Al . =
aNEdoT Leamon

haster the imprassive power of Amiga graphics with
IR Comprenansive Tutonal ano

refgrance guiae

A COMPUTE! Books Putlication

]

]

]

1

N

S~

9

)

-

1

INSIDE
AMIGA
Graphics

Sheldon Leemon

COMPUTE! Publico’rions,lnc.@

Part of ABC Consumer Magazines, Inc.
One of the ABC Publishing Companies

Greensboro, North Carolina

Copyright 1986, COMPUTE! Publications, Inc. All rights reserved.

Reproduction or translation of any part of this work beyond that permitted by
Sections 107 and 108 of the United States Copyright Act without the permission of
the copyright owner is unlawful.

Printed in the United States of America
10987654321
ISBN 0-87455-040-8

The author and publisher have made every effort in the preparation of this book to insure the ac-
curacy of the programs and information. However, the information and programs in this book are
sold without warranty, either express or implied. Neither the author nor COMPUTE! Publications,
Inc., will be liable for any damages caused or alleged to be caused directly, indirectly, incidentally,
or consequentially by the programs or information in this book.

The opinions expressed in this book are solely those of the author and are not necessarily those of
COMPUTE! Publications, Inc.

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919)
275-9809, is part of ABC Consumer Magazines, Inc., one of the ABC Publishing Com-
panies, and is not associated with any manufacturer of personal computers. Amiga
and AmigaDOS are trademarks of Commodore-Amiga, Inc.

L

I

B

]

-~

-

]

]

]

Contents

FOreword e \
INnfroduction Vii
1. Setting Up the Display Screen 1
2. WiNAOWS .. oo e 33
3. Drawing Linesand Shapes 71
N = 131
5. Drawing and Manipulating Image Blocks 157
6.8pritesandBobs 187
7.Advanced TOPICS ..o i it e e 245
Appendix. Function Summary 269
INAEX .. 299

]

]

J

N

I

)

]

i~

)

Foreword

mong personal computers, Amiga graphics are un-
paralleled. Its custom graphics chips, powerful 68000
microprocessor, and true multitasking capability
drive this immensely powerful graphics machine.

Learning to utilize the powerful features included in the
Amiga’s hardware and software, though, can be complex, even
frustrating. Inside Amiga Graphics, written for the intermediate
and advanced programmer, details how you can take advan-
tage of the Amiga’s power.

Whether you program in BASIC, C, or machine language,
you'll find here the information you need to begin exploiting
the advanced power of the Amiga’s coprocessor, the copper; its
high-speed memory-mover chip, the blitter; and its software li-
brary functions.

Inside Amiga Graphics covers everything from setting up
your own display screens and windows to drawing and filling
shapes. Scores of program examples written in C and Amiga
BASIC make it easy to understand even the most advanced
graphics techniques. You'll see how to use the functions in the
Graphics and Intuition libraries to create and open custom
screens; draw lines and fill shapes; move sprites around the
screen; change text fonts; and much more. You can even use
the stand-alone routines in your own programs.

The author of Inside Amiga Graphics, Sheldon Leemon, is
the author of the bestselling Mapping the Commodore 64 and
has coauthored three other COMPUTE! books, including the
popular COMPUTE!"s AmigaDOS Reference Guide.

Inside Amiga Graphics is for the intermediate to advanced
BASIC, C, or machine language programmer. Here in one vol-
ume is everything you need to exploit the advanced graphics
features of this latest and greatest computer from Commodore.

]

R

}

]

}

Introduction

he Amiga is the first personal computer to fully exploit the
advanced features of the 68000 microprocessor. The
graphics capabilities of the Amiga surpass any micro-
computer in its class.

Unlike most other microcomputers which use the micro-
processor each time the display changes, the Amiga uses a
separate coprocessor, called the copper, to control every aspect
of the screen display. The copper uses its own program, the
copper list, and operates entirely independently of the main
68000 microprocessor. In the course of executing its program,
the copper can actually write to the graphics hardware regis-
ters. Thus, it can change every feature of the display on a line-
by-line basis (and in some cases, even a pixel-by-pixel basis).

The display features that the copper controls include a
choice of two horizontal and two vertical display resolutions,
color resolutions ranging from 2 to 4096 colors (available
onscreen at the same time), and a selection of 4096 colors
which the computer can display.

Most other microcomputers require display data to be
stored in a specific location. Not so for the Amiga. Any por-
tion of the first 512K of memory can be displayed in any or-
der. This capability even includes the ability to display two
distinct graphics planes at once, one superimposed upon the
other.

Sprites, Too

The Amiga also supports hardware sprites. Sprites are anima-
tion objects which are displayed by a mechanism entirely sep-
arate from that of the rest of the graphics. They are easily
moved, and their shapes may be changed without affecting
any other part of the display.

The Amiga has eight hardware sprites, each of which can
be up to 16 dots wide, as tall as the screen (or taller), and of
three different colors (plus transparent). In addition, pairs of
sprites can be ““attached” so that they form a single sprite

vii

that is of normal size, but can display up to 15 colors (plus
transparent).

Although there are only eight sprites, the hardware lets
you change their shapes and horizontal positions as you move
down the display. Therefore, it is possible to have a single
sprite appear as many different objects in one display.

Moving Graphics Data in Memory

In addition to the many and varied features of the display
hardware, the Amiga contains a high-speed memory-mover
chip known as the blitter (short for bit-block image transfer-
rer). The blitter is used to move graphics data around in mem-
ory (and, consequently, around the display) almost instantly.

With most computers, in order to move a graphics image,
you must use the microprocessor to read the display memory,
perform complicated calculations to determine the memory lo-
cation of each part of the image, perform more calculations to
combine the image data with that of the background, and
store the new combined image data in memory. With the
Amiga, all you have to do is specify the size and location of
the object to be moved, and the location of the destination,
and let the blitter do the rest.

The Amiga’s blitter can not only move a bit-image
quickly, but it can also perform sophisticated manipulation of
up to three data sources at once. This means that it can com-
bine images in various ways, such as inverting and erasing im-
ages. The blitter also performs hardware line drawing and area
filling, thus permitting it to draw solid or patterned lines at
any angle when it is given the line’s origin, direction, and
length. And it can fill an enclosed area with color, either dur-
ing a copy operation or by itself.

Software Support

The Amiga provides a wealth of software support that en-
hances the capabilities of its powerful hardware. This software
support consists of several levels of graphics support routines,
ranging from the simplest drawing routines to the Layers li-
brary, a system for maintaining multiple displays onscreen at
once, to Intuition, a user interface that among other things is

viii

NN U N

-

I

[

L [

(IR .

1

1

B A B

_}

able to manage a number of overlapping window displays.
The operating system Kernel even contains an entire software
animation system, complete with provisions for sequenced
drawing and synchronized motion of related objects, collision
detection, and more.

Programming Choices

Considering the length of the capsule description of the
Amiga’s graphics capabilities furnished above, it should be ap-
parent that the subject of Amiga graphics is a broad one in-
deed. For one thing, the machine can be programmed at every
level described above. It is possible to ignore the operating
system entirely and program the hardware graphics chips di-
rectly. Or, you might decide to ignore the Intuition windowing
system and use the most basic graphics routines supplied by
the operating system.

Though either of these methods affords an extremely high
level of control over the system’s graphics, they all require an
intimate knowledge of the hardware and operating system
software. Moreover, using the lower level graphics features of
the machine undermines one of its greatest strengths, its abil-
ity to run several programs at once. By their very nature, pro-
grams that directly access the display hardware or use the
lowest level operating system routines take over all of the
Amiga’s graphics resources. One of the primary functions of
Intuition’s windowing system is to provide a common ground
in which programs that know nothing of each other’s exis-
tence can peacefully share the graphics resources of the
machine.

Therefore, for the most part, this book deals with pro-
gramming Amiga graphics at the highest level, that which is
compatible with Intuition. Examples are written mainly in the
C programming language and in Amiga BASIC. C, although
not as widely known as BASIC, is fast becoming the language
of choice for producing commercial application programs on
microcomputers. The Amiga operating system was designed to
interface with C as its primary programming language.

While Amiga BASIC does not offer the execution speed of
C, it nonetheless provides convenient access to the most im-

ix

portant graphics features of the Amiga. It is extremely valu-
able as a graphics learning tool for two reasons. First, its own
commands closely parallel the features of the operating system
routines. If you're familiar with the former, it’s easier to learn
about the latter. Second, Amiga BASIC also provides a rela-
tively simple method for calling operating system graphics
routines directly from BASIC. This means that virtually any of
the graphics routines that can be called from C can be exe-
cuted from BASIC, even though BASIC may not be ideally
suited for setting up the data structures that the operating sys-
tem routines require.

Because of the power and flexibility offered, dealing with
the full range of the Amiga’s graphics capabilities can be some-
what complex. In ordinary use, however, you may discover that
Amiga graphics are actually easier to program than those of
other microcomputer systems. This book is intended to show
you both sides of the Amiga. The basics of graphic display
will be covered in detail, allowing you to discover how simple
and convenient these capabilities can be to use. Along the
way, we hope to touch on enough of the more esoteric side of
the Amiga to satisfy the more adventurous reader as well.

[L

N

-

]

],

Setting Up the Display
Screen

he Amiga uses a technique called raster graphics to pro-

duce its display. The picture you see on the screen is

composed of a number of horizontal lines, each made

up of many tiny dots of color. These lines are created by
an electronic video beam, or raster.

When producing a display, the electronic beam starts at
the top left corner of the screen and moves from left to right,
lighting up points on the line as it goes. These dots of color
that it lights are known as pixels (short for picture elements);
they comprise the smallest unit of the display that you can
control.

As the beam gets to the right edge of the horizontal line
(or scan line, as it is called), it shuts off while it moves back to
the left edge and down a line. This time period is called the
horizontal blanking interval. The beam then starts scanning the
next line from left to right, repeating the cycle.

When the beam has finished scanning the last line at the
bottom of the screen, it is turned off while it moves back up to
the top left corner. This period of time is called the vertical
blanking interval, or vblank.

It takes 1/60 second to scan the entire screen from top to
bottom. This means that each pixel is drawn on the screen 60
times per second.

The three most fundamental characteristics of the display
are the horizontal resolution (the number of dots drawn per
line), the vertical resolution (the number of lines per frame),
and the color resolution (the number of possible colors for
each dot). We will examine the variations that the Amiga pro-
vides for each of these display characteristics below.

Horizontal Resolution

Two levels of horizontal resolution are available on the
Amiga, high resolution and normal, or low, resolution. In

Chapter 1

high-resolution mode, the display can have a maximum of 752
dots of color in each line. Such a long line will probably not
be displayed completely on most monitors, however. For that
reason, the user interface supports a standard line length of
640 dots across in high resolution. In low-resolution mode the
standard display width is only 320 pixels across, each dot be-
ing twice as wide as in high-resolution mode.

There is no special text only display mode on the Amiga.
Text is drawn on the graphics screen. Therefore, the horizontal
resolution has a dramatic effect on the size in which this text
appears on the screen. In high-resolution mode, a maximum
of 80 characters can fit on a single line of text when using the
system default Topaz 8 font, and 64 characters when using the
Topaz 9 font. In low-resolution mode, half as many characters
can fit on a line as in high-resolution mode.

Vertical Resolution

There are two levels of vertical resolution. Here again, the ab-
solute maximum display height is somewhat larger than the
one typically used by the system. The standard (noninterlaced)
mode can provide up to 242 lines vertically. Typically, how-
ever, the user interface provides a display height of 200 lines
in noninterlaced mode.

Interlaced mode provides 400 lines of vertical resolution
by means of a hardware trick. As explained above, the display
is formed by a beam of light that starts at the top of the screen
and scans one line at a time from right to left until it gets to
the bottom of the screen. Sixty complete scans occur every sec-
ond, and each scan provides a complete picture. In interlaced
mode, each scan provides only half the picture. After every
even frame is drawn, the beam of light is moved down half a
line so that the lines of the odd frame are interlaced between
the lines left by the even scans. This allows twice the vertical
resolution in the same amount of space (see Figure 1-1).

While interlaced mode doubles the vertical resolution, it
cuts the refresh rate (the number of complete pictures formed
per second) in half, since it now takes two passes to update
the entire display. One result is that in interlaced mode, the
display tends to flicker, or vibrate. The amount of vibration

4

A I

[..

[

L

[

[

[

1

-

bl

1

|

1

Setting Up the Display Screen

depends to a large extent on the type of monitor used.

When the electron beam strikes the face of the display
tube, it lights up a dot onscreen, but that dot remains lit only
for a short period of time. So, while the picture may appear to
be solid if it is redrawn 60 times per second, it may seem less
so if redrawn only 30 times per second. There are special
types of monitors whose picture tubes contain high-persistence
phosphors that stay lit for a longer period of time. But these
monitors are not really suited for general use with the Amiga
since their picture does not change quickly enough. On high-
persistence monitors, moving objects (such as the mouse
pointer) appear to leave trails of light behind them as they
move.

Figure 1-1. Interlacing Mode

First scan fills in normal number of display lines.

Second scan of the same frame adds an ex-
tra line between each scan line.

The colors being displayed also affect the amount of
flicker an interlaced display produces. An interlaced screen
showing black text on a white background is almost unview-
able. The best results are generally obtained when using color
combinations that have as little contrast in brightness levels as
possible. It also helps considerably to turn down the contrast
adjustment on your monitor until the flickering fades. Even if

5

Chapter 1

you stick to optimum color combinations and monitor settings,
however, interlaced mode generally will not produce very
good results on most monitors.

Color Resolution

The Amiga offers flexibility in its choice of color resolution,
which is the number of colors that can be displayed onscreen
at any one time. The color resolution is determined by the
number of blocks of display memory, known as bit planes, that
are allocated to the display. This is also sometimes referred to
as the display depth. In order to explain how display memory
is used to make up the screen display, we must first briefly re-
view binary arithmetic.

Binary. In the binary (base 2) numbering system, there
are only two digits, zero and one. It may seem difficult to
count very high with only two digits to work with, but it
works the same way as in the decimal system. After you've
counted from zero to one, you have to add another digit to the
left. In the decimal system, each column to the left increases
in value by a power of 10 (ten’s place, hundred’s place, and so
forth). In the binary system, each column to the left increases
in value by a power of 2. So a one in the second digit to the
left has a value of 2, the next digit to the left has a value of 4,
and so on. For instance, with two binary digits you can count
from 0 to 3:

00 =0
01=1
10 = 2 (2+0)
11 =3 (2+1)

Any decimal number can be represented by a series of ze-
ros and ones. Converting numbers to binary is very useful
when working with computers, because the zero and one can
represent two opposite logic states like true and false. Or, to
bring the subject back to graphics, they can portray the two
states of a pixel, display on or display off. And in practice,
that is how the display pattern is related to the numbers
stored in display memory. Each dot that is turned on corre-
sponds to a binary digit (or bit) that is set to one, and each dot
that is turned off corresponds to a bit that is reset to zero.

6

L [

[

[

[

-

[[C

B

i T

11 1]

1

Setting Up the Display Screen

Bit planes. A bit plane is the area of memory that stores
information concerning which color is to be shown at each dot
position of the screen display. It is organized so that the first
memory location contains information about the leftmost eight
dots on the top line, the second location contains the display
pattern for the next eight dots, and so on.

In low-resolution mode, there are 320 pixels per line, so it
takes 40 bytes of memory, each holding eight bits, to represent
the display for one line. And since there are 200 lines in
noninterlaced mode, it takes 8000 bytes of memory (200 X
40) to make up one complete bit plane. In high-resolution or
interlaced mode, there are twice as many pixels; thus, it takes
twice as much memory (16,000 bytes) to hold the display
data. And if both high-resolution and interlaced modes are
used at once, there are four times as many dots, and four
times as much memory (32,000 bytes) is needed to hold the
display data.

A single bit plane can hold the information for a two-
color display. But if you want to represent more than two col-
ors (background and foreground), you need more than one bit
to represent a single dot on the screen. On the Amiga, the
maximum number of colors available is increased by adding
more bit planes. When using more than one bit plane, the dig-
its from corresponding spots on the different planes are
grouped together as one number. For example, if there are two
bit planes, the first digit from plane 0 is grouped together with
the first digit of plane 1 to form a two-digit binary number. As
we have seen from the illustration above, two binary digits
can be combined in four different ways to represent four num-
bers from 0 to 3. So, using two bit planes allows a maximum
of four color combinations. Each additional bit plane increases
the number of colors that can be displayed by a factor of two
(see Figure 1-2).

Hardware color registers. The numbers which are formed
from the bits from the various bit planes do not correspond to
actual colors. These numbers correspond instead to special
memory locations known as hardware color registers. The color
registers may be thought of as a set of 32 pens, each of which

Chapter 1

may be filled with colored “ink” in any of the 4096 shades
that can be displayed on the Amiga.

Register 0 always holds what is normally thought of as
the background color; any dot position whose display memory
holds the number 0 displays this color. When you wish to use
another color to draw a line or a point, you put the number of
a color register into the bit planes of display memory (or, as is
more likely, you have the operating system drawing routines
do it for you). The color whose number is currently contained
in that color register is the color that appears onscreen.

Unlike ink, however, the color of a dot drawn onscreen
can change after you have drawn it. When the display mem-
ory for a screen dot holds the number of a particular pen, that
dot displays whatever color is in the pen at any given mo-
ment, not the color that was in the pen at the time the dot
was drawn. This means that if you use pen 1 (hardware regis-
ter 1) to draw a line, and that pen contains the color red, the
line will be red. But if you change the color in pen 1 to green
after you've drawn the line, the line you drew and everything
else onscreen that was drawn with pen 1 will instantly be-
come green. Figure 1-2 shows the correspondence between bit
planes, color registers, and colors.

Memory Usage

The maximum number of bit planes that can be used (and the
number of colors available) depends on the horizontal resolu-
tion of the screen. In high-resolution mode, up to four bit
planes can be used for a total of 16 colors on the screen at
once. Normally, in low-resolution mode, up to five bit planes
may be used for a maximum of 32 colors. There are certain
special graphics modes that can be used in conjunction with
low-resolution mode which require six bit planes. These
modes will be discussed separately later.

In determining how many bit planes to use, there are a
number of tradeoffs to consider. Each bit plane consumes its
share of valuable RAM. As stated above, display memory re-
quirements range from 8000 bytes per plane in low-resolution
mode to 32,000 per plane for high-resolution, interlaced mode.

8

[R I I

-

L [

[=
)
o uaamsuo sreadde jop usain
3 \
> 1€ < T 2ue[d
o I
2 : -~ 1aurg
o AMM = [st st ST | 2
o MofPA = |0 ST st |9 <~ 0 3UeId
- wek) = [6T ST 0 S
o ofdmg = | 1 0 ST ¥
2 an[g = [ST 0 0O €
mv L—>udd1n = |0 ST O +—
= pPPI= [0 0 ST I
° oeyg= |0 0 0 0
0 1
4954 2
|
3 9 9 s
nnan 1
I 11 8
e © @® 9
A A A b 0
u X
9 9 o
n a2 p I
I 1 @ o
4954 o) ﬁ

Z 19315139y 10[0)) $1I3[3S Areurg 010

JO|0D O} sen|pbA eup|d-ig Jo diysuonoiay] g-1 einbi4

L *C [L L [[L

Chapter 1

Therefore, a 640 X 400 display that has four bit planes (al-
lowing up to 16 colors) uses almost 128K of memory for the
display alone. In a 256K system, such a display would con-
sume virtually all free RAM.

Besides using a lot of memory, high-resolution displays
that use a lot of bit planes can slow down the microprocessor
as well. A good illustration of this can be heard when you use
the built-in speech synthesis while a high-resolution screen
with four bit planes is being displayed. The voice sounds very
scratchy and rough. The job of updating the display takes so
much time that the display chips must preempt some of the
time in which the processor has access to user memory. You
can generally avoid such conflicts by keeping to displays that
require no more memory than a four-color high-resolution
(noninterlaced) screen.

Both of these concerns affect the capabilities of the Amiga
as a multitasking machine. Obviously, it is going to be much
more difficult to run other programs along with yours if yours
leaves no free memory or burdens the processor unduly. This
is not to say that you should never use the more memory-
consumptive display modes. Rather, you should keep in mind
the degree to which they will hamper other applications and
use them more sparingly than if you expected to have the en-
tire machine at the disposal of your application.

Table 1-1. Graphics Memory Requirements

10

I I I A

L [[

]

]

)

.\

)

1

-~

)

Setting Up the Display Screen

Viewports and Screens

The Amiga’s display coprocessor, the copper, allows a change
of all the characteristics of the display on a line-by-line basis.
This means that segments of differing horizontal, vertical, and
color resolution may appear on the screen at once.

The operating system makes the changes to the display
mode when the electron beam has reached the right edge of
the screen and is turned off while it moves back to the left
edge. This means that segments of differing display modes are
confined to horizontal stripes that extend across the complete
width of the screen.

While it is technically possible to change display modes in
the middle of a horizontal line, making the change while the
display is being drawn can result in unpredictable and un-
sightly visual effects and is therefore impractical. In effect, you
may not have an area of high-resolution display and an area
of low-resolution side by side.

View and Viewports

In a multitasking environment, it’s impossible for each pro-
gram to have direct control over the copper and, therefore,
over the entire display. The operating system provides a
method by which each application can decide how it wants its
display to look without having to take over the whole display.
In this scheme, the overall display is known as the view.

Figure 1-3. Possible Division of Display into Views

View 1

View2

View 3

11

Chapter 1

The view can be divided into one or more viewports. Each
viewport defines its own display resolutions, colors, and spe-
cial features. Since the display can be changed only at the end
of a horizontal line, each viewport must form a complete hori-
zontal segment. These segments are stacked one on top of the
other to form the view. At least one blank scan line is used to
separate one viewport from another.

Screens

Intuition, the Amiga’s user interface, implements viewports
through the use of data structures known as screens. A screen
has a few more limitations than a viewport. A screen must be
as wide as the standard display, either 640 pixels (high resolu-
tion) or 320 pixels (low resolution). Though it can be any
number of lines tall, if it is shorter than the display, it must sit
at the bottom of the display, not at the top or middle. There
can be no gap between the bottom of the screen and the bot-
tom of the display. If you wish to stack multiple displays
onscreen, you must have overlapping screens, with the tallest
screen in back and the shortest in front. Intuition maintains
two blank scan lines at the place where two screens meet.

Figure 1-4. Division of Display into Intuition Screens

80-column text

Screen 1
640 X 200

Screen 2

40-column text
co ex 320 X 100

Each screen must extend down to the bottom of the display and be as wide as the
display width.

12

L L

[

-

-

[

-
——

(

-

L

]

|

)

]

-1

N

L

)

Setting Up the Display Screen

Screens come with two of the system gadgets attached,
the drag bar and the depth arrangers. The drag bar allows the
user to move the whole screen up and down by clicking on
the bar, then holding down the left mouse button and drag-
ging the mouse. The depth arrangers allow the user to bring
the screen to the front of the display or send it to the back by
clicking on the light or dark squares. In addition, a title may
appear in the bar at the top of the screen.

The display screen that appears when you turn on the
computer is known as the Workbench screen. This is the
screen used by both the Workbench and the Command Line
Interpreter (CLI). It is a high-resolution, noninterlaced display,
which is two bit planes deep, providing a maximum of four
screen colors. The actual color selections that appear on this
screen are those set by the Preferences program. If none has
been set, the Workbench screen uses the system default colors
of blue, white, black, and orange.

Application programs are free to use the Workbench
screen. The windowing system described below was designed
to allow several overlapping windows, each potentially be-
longing to a different program, to coexist on one screen.

For instance, when you start Amiga BASIC, the BASIC in-
terpreter does not open its own screen. Rather, the output and
list windows are drawn on the Workbench screen. Unless you
specify otherwise, all of the output from a BASIC program is
displayed in a window which shares the display characteristics
of the Workbench screen. ‘

There are several advantages to using the Workbench
screen for your programs. It’s convenient to use because you
don’t have to do anything to set it up—it’s already there.
Using another screen means that you have to allocate memory
for that screen in addition to the display memory used for the
Workbench screen (which will be there in any case unless the
application is able, under special circumstances, to close it). It
allows easy access to the Workbench or CLI—you just use the
depth arrangement buttons in the corner of the window to
send your window behind the Workbench. Finally, it presents
a reasonably good tradeoff of system resources. It has high
resolution for 80-column text and two bit planes for a touch of

13

Chapter 1

color, but not so much color as to hog most of the system’s
memory.

Opening Custom Screens

Despite the versatility of the Workbench screen, there will be
times when you’ll want to custom-tailor the display charac-
teristics to suit your needs. This means opening a custom
screen. From C or machine language, you use the Intuition li-
brary routine OpenScreen to set up a new screen (we’ll discuss
the BASIC commands later on). This call takes the form
Screen = OpenScreen(NewScreen);

(do) (@0)
This means that when you call the OpenScreen routine, you
must furnish the address of a data structure known as a
NewScreen structure, and the routine, if successful, opens the
screen and returns the address of the Screen data structure in
the dO register. If it is not successful, it returns the number 0
instead.

Before you can call this routine, however, there are two
preparatory steps that you must take. First, you must set up
the data structures required by the OpenScreen routine. And
next, you must use the OpenLibrary command to prepare the
Intuition library for use, if it has not already been opened.

The first step is the more involved. The OpenScreen rou-
tine requires a pointer to a block of data known as a
NewScreen structure. This structure contains 14 different
pieces of information about the screen that you want created.
Here is the C language definition of the NewScreen data
structure:

struct NewScreen
{
SHORT LeftEdge, TopEdge
SHORT Width, Height, Depth;
UBYTE DetailPen, BlockPen;
USHORT ViewModes, Type;
struct TextAttr *Font;
UBYTE *DefaultTitle;
struct Gadget *Gadgets;
struct Bitmap *CustomBitMap;

7
14

L C

[

I

|

)

)

]

1l

_

1

Setting Up the Display Screen

The explanation of these variables is as follows:

LeftEdge and TopEdge. These describe the top corner of
the screen. In the current version of Intuition, a screen must
be as wide as the display, so LeftEdge should always be set to
zero. TopEdge specifies the scan line where you want the
screen to start. For purposes of describing the location of a
particular scan line, we say that the top line of the display is
line 0, and line numbers increase as we move down to the
bottom line, whose number is line 199 or 399, depending on
whether the display is noninterlaced or interlaced.

Width, Height, and Depth. The width should be set to
the full display width, 640 for high resolution or 320 for low
resolution. Since all screens must go down to the bottom of
the display, Height should be set to the display height minus
TopEdge. For example, if TopEdge is set to 50, Height should
be set to 150 for a noninterlaced display. Depth specifies the
number of bit planes, from 1 to 6. The number of planes de-
termines the number of possible colors, as explained above.

DetailPen. DetailPen specifies the color register to be
used for details, such as the text characters that appear in the
title bar.

BlockPen. BlockPen specifies the color register to be used
for filled areas, such as the title bar background.

ViewModes. This flag lets you set the various display
modes which follow:

HIRES. If this flag is set, horizontal resolution is 640 pixels
across. Otherwise, the horizontal resolution is 320 pixels.

INTERLACE. If selected, the vertical resolution is 400 lines
instead of the default 200 lines.

SPRITES. Turns on sprite DMA and allocates color map
memory for sprite color registers so that sprites may be in-
cluded in the display. Even if you omit this flag, it may be
possible to use sprites in the display, since the mouse pointer
is a sprite, and therefore sprite DMA must always be on in or-
der to display the pointer.

DUALPF. This is used to set up a special mode in which
there are two overlapping display fields (called playfields).

HAM. This flag enables the special Hold and Modify dis-
play mode, which can be invoked only from a low-resolution

15

Chapter 1

screen that is six bit planes deep. This mode will be discussed
more thoroughly in the ““Advanced Topics” chapter.

EXTRA_HALFBRITE. This flag enables the special
Halfbrite display mode, which can be invoked only from a
low-resolution screen that is six bit planes deep. This mode
will also be discussed more thoroughly in the “Advanced Top-
ics” chapter. :

Type. This should be set to CUSTOMSCREEN. If you
wish to set up your own custom bitmap so that you control
where the display memory for this screen is, you should add
the CUSTOMBITMAP flag here also as well as supplying the
address of the bitmap in the CustomBitMap field described
below. '

Font. A pointer to the Intuition data structure for the text
font that should be used as the default in this screen. The for-
mat of the TextAttr structure is discussed in the chapter on
text. If you wish to use the default system font, you may set
this value to zero.

DefaultTitle. This is a pointer to the address of a string
of ASCII text characters, ending with an ASCII 0. This text is
displayed in the screen’s title bar. If you don’t want a title, set-
this value to zero.

Gadgets. This value points to the address of the first gad-
get in a linked list of your own custom screen gadgets (the
drag bar and depth arrangers appear regardless of this setting).
If there are no custom gadgets, set this to zero.

CustomBitMap. If you wish to specify the display mem-
ory used for this screen, this value should point to a BitMap
structure that describes this display memory area. If you wish
Intuition to allocate the display memory, set this to zero. Cus-
tom bitmaps are discussed in the ““Advanced Topics” chapter.
But rest assured that in almost every case it is sufficient to use
the display memory that Intuition allocates.

Once the data structure is set up, the next step is to open
the Intuition library, if it hasn’t been opened already. The
Amiga was designed so that no system routine has to start at a
fixed memory location. Rather, each group of operating system
functions is set up in the format known as a library. Each rou-
tine within a library starts at a fixed offset from the beginning

16

[

[

[

L L

[

]

-l

'J

J

n

-

00

Setting Up the Display Screen

of the library, but in order to find the address of the library it-
self, you must call the Exec library function OpenLibrary. Exec
is the only library whose address is stored in a fixed place in
memory. Its address is always in memory location 4, also
known as AbsExecBase.

The OpenlLibrary call takes this form:
library_base_address = OpenLibrary(“name.library” version);

(do) (a1) (d0)

You must pass the OpenLibrary routine a pointer to the
name of the library and the library version number. The name
must be a string of lowercase ASCII characters that end with
an ASCII 0. For example, the Intuition library would be re-
ferred to as “intuition.library”. The version number corre-
sponds to the version of the operating system that you require.
The program will run if the version of Kickstart used is the
one specified or any later version. The current internal version
number can be found by using the Version menu item on the
Special menu of the Workbench. If it does not matter what
version is used, use the number 0, which allows the Open-
Library routine to succeed no matter what version of Kickstart
is used.

If the OpenlLibrary call is successful, it returns the base
address of the library in register d0. If it is not successful, it re-
turns a zero in that register.

Machine language programs explicitly use the pointer re-
turned by OpenLibrary for the purpose of making indirect
calls through the library base vector. Thus, calling a library
routine is a two-step process. The OpenLibrary call is used to
find the base address of the library. That address is saved and
used to make indirect calls to the library routines that start at
fixed offsets from the library base.

With the Amiga Macro Assembler, you can use the sym-
bolic names for these offsets provided by the Amiga.lib library
file. These symbolic names use the name of the routine pre-
ceded by the characters _LVO (Library Vector Offset). So, after
you have used OpenLibrary to get with the base address for
the Intuition library and moved that address from register d0
to register a6, you could call OpenScreen like this:

JSR _LVOOpenScreen(A6)
17

Chapter 1

You would of course have to first set up the NewScreen
structure and store a pointer to it in register a0. If the
OpenScreen call is successful, the pointer to the Screen data
structure is returned in the d0 register.

A Machine Language Example

The sample machine language program, Program 1-1, demon-
strates the process of opening a new screen. It opens a low-
resolution screen that covers the full display, waits a few
seconds, and closes it.

A C Language Example

C programs must also use the OpenLibrary routine before
accessing functions found in the library. But with C, it is not
necessary to explicitly use the library base pointer to call sys-
tem library routines. You may just call the library routines as
you would any external function, and the C compiler takes
care of the process of jumping through the correct offset from
the library base. Here is a typical example of opening a library
from C:

IntuitionBase = (struct IntuitionBase *)

OpenLibrary(“intuition.library”,31)

The cast (struct IntuitionBase *) is used to let the Lattice C
Compiler know that the value returned is of the proper type.
Once the library is open, you could use the following C code
to open a new screen:

Screen = (struct Screen *)OpenScreen (NewScreen);
(d0) (a0)

If successful, the call opens the new screen and returns a
pointer to the Screen data structure. That data structure con-
tains the information from the NewScreen data, plus a lot more.
It is possible to examine this information to learn things about
the screen. For example, structure member Screen.TopEdge
contains the current vertical coordinate of the top of the
screen. This can be used to learn where a user has dragged the
screen. Full details about the information stored in the Screen
structure appear in the “Intuition/Intuition.h” include file.

18

L L C =

[

I I

[

-

doot auq xS
op ' 1# T°TQns
sdooTt
PP’'IIIFIISH T°3aou

»xxy SPUOD®S MBI ® JTPAM yyxyx

3I0qe ‘pauiniax Isojurod ou JFT! 3I00Y beq

9IN30NI3S MOPUTM O3 I33uTod aaes! I1083IsSnD’gp T°*2A0u
moputmuadp 03 39s3jo ybnoayz dumf(! (9e)usaaoSuadOOAT asC

9e ut aseq AI1eiqTT UOT3TN3UI O3 Iajurtod! ge’AiexqTIIUOT3ITNIUI T °*E3A0W
ge UT 2IN3dNnI3}s MOPUTMMBN O3 Ixa3jutod! ge’usaldS3ISNDMONE T °e2a0uW

sxxxx U99I0S INO U2dO yyyx

Setting Up the Display Screen

jI04qe ‘punoj 3jou xajutod JFT! 3309V baq
ssaippe aseq AIraqIT UOTITNIUI O3 aajutod aaes!
KxeaqiTuoT3lTnNiuUI ‘gp T°*92a0u

KaeaqtIuado o3 39s3yFyo ybnoayz dunl! (9e)KaeaqTTuadOOAT asC
Kaeaqr1 oox¥ 03 xojutod 38b6!¢ oe‘assegooxdsqy T°eoAow

(@°TA UT pasn 30u) Id93T IO TE UOTSIdA! gP’'IEH# T°*aaouw
,KieaqrT uot3Tniur, 103 se! 1e‘swWeNuUOT3ITNIUIH T°e2A0W

sxxx KIRIQTT UOTITNIUI OYF UDAO yyyyx

U9aIDS9SOTIOAT_ JAUX
u2210SuUadOOAT_ JIIX
A1e1q1T9SOTDOAT_ JTUX
ArexqrTuadoOAT_ JF¥X
asegoaxdsqy JIIX

a|dwpx3 YN ‘UseIds maN b BuiuedO '|-| woiboid

- C 1 C L

Chopter' 1

I R 0) N B

IybreH! 9PT M-Op

YIPTM! gZE M°Op

ebpadoy ¢ 7} M°Op

ebpa3FoT! @ M°op
TU9BIDSISNIMON

xxxx 9INIONIIS UIDIOSMON 9UI yxyxx

8T3IT3} MOPUTM JO 3IX93!¢ g’ ,ud92Id8 S9NY-MOT WO3ISN), q-op
:9T3TLS

g’ ,A1eaqrr uoT3iTN3iuT, Qq°op
:aweNuoT3ITNIUI

YI¥d‘e3ep NOILDIS
»¥xy BIBP INO S ,3I9Y xxyxx
s31
gp Ul °9poOdO uanilax! 2P T°aTo
:3I0QY
sxxx U2do 3 ,uom Axeaqrl IT ATo3eTpoumutr 3ITND 444y
Kxeaqriaso1d 03 3I9s3Jo ybnoaylz dunl! Ammvhumunﬂamm0aoo>qH asC

KxeaqT1 o9x3 03 asjurod 3ab!¢ ge’/asegoaxdsqy 1 *eaaou
K1eaiq1T uoT3ITN3UT O3 I@3jurod 139s! Te’AIeIqTTUOTITNIUI T °EdA0W

MOpUTM 93} 9SOTD pue! Aomvcmmuomwonoo>ql asC
KieaqrT uor3TN3lul 03 Iajutod 38s! ge’K1eaqTITUOTITNIUT T°E9AOW
1Teo> x03 x932wexed xsjutod usaids 239s! ge’aosasn) Tcesaou

sxyy USDIOS 9U3 OSOTO yyxx

20

Setting Up the Display Screen

[

"

L.

2IN3ONIIS MOPUTM O3 Ixa@3jutod dasay o3 ooetd!

ssaippe aseq AIeIqTT UOT3IThIUI 92103s O3 @oeTd!

dew3td wo3isnd o3 13d -- denatg!
syabpeb useids o3 a3d!

3X93 39T3T3 ua93aads 03 I3d —- BT3ITL!
2IN35oNI3s 3UOF wOo3lsSnd 03 J93jurod!
NITIDSHOLSNO~--2843 ueeads!

sopouw Aeydstp TeTo9ds!

uadgyoordg!

uadgirelaq!

yadaq!

.

[

21

aNd

T T°sp
:10838N)

1 1°sp
:XzeaqyIUOT3ITNIUT

Ssd‘uwew NOILDIS

@ T1°op

@ T1°°p
ST3ITLS T°0P
@ T1°oP

3@$ m-op

@ M-op

q-op
qop
M Op

MM~

[I A

Chapter 1

Program 1-2 is a C program example that opens a new
screen. First, if either the OpenLibrary or OpenScreen routine
fails, it returns a value of zero. Your program should check for
this event and abort if either call does not work.

Second, the example programs use the CloseLibrary func-
tion before they end. OpenlLibrary is used not only to find the
pointer to the base address of a system library, but is also used
to load nonresident libraries from disk. Such nonresident li-
braries take up valuable RAM, so when you're through using
them, it is advantageous to notify the system that the library
code is no longer needed and that the memory space it occu-
pies may be reused. Of course, resident libraries like the Intu-
ition and Graphics libraries will not be unloaded if they are no
longer in use, since they are in Writeable Control Store (WCS)
rather than RAM. Therefore, it is not strictly necessary to close
them when you are finished using them. Nonetheless, it’s a
good habit to close libraries you will no longer use. Finally,
the CloseScreen routine is used to close the screen when the
program is finished. This is necessary in order to clear it from
the display and to free the memory used by the screen.

BASIC Custom Screens

Amiga BASIC also lets you set up a new screen with the
SCREEN statement.

SCREEN screen_number, width, height, depth, mode

The BASIC statement gives you considerably fewer
choices to make than does the Intuition library routine. The
first value you must supply, screen_number, is a number from
1 to 4 which is used to identify the screen for the purpose of
closing the screen when you are done with it and for opening
windows (see Chapter 2 for more information on windows).

The width and height values correspond to those passed
to OpenScreen in the NewScreen data structure. Width should
always be set to 320 for a low-resolution screen or 640 for
high-resolution, just as you do when using the operating sys-
tem routines. Setting a lesser width confuses the display.
Height is a different matter. Intuition does allow you to set up
a screen that is shorter than the full display height. But be-

22

[

L

-

([

.

(

[

]

}

N

-}

]

o I T M

]

Setting Up the Display Screen

cause of a flaw in the way that the first version of Amiga
BASIC sets up short screens, you must take some additional
steps if you want to create a noninterlaced screen that is fewer
than 200 lines tall or an interlaced screen of fewer than 400
lines. These steps are detailed a little later on.

The depth value is a number from 1 to 5 that specifies the
number of bit planes to use. This, in turn, determines the
number of different colors available at any one time. As previ-
ously discussed, each additional plane doubles the number of
colors available. The number of colors available for each depth
value is as follows:

In high-resolution mode, the maximum number of bit
planes that can be used is only four. Low-resolution screens
can use five bit planes.

The final value to be specified in the SCREEN statement
is the mode. There are four different display modes available
from Amiga BASIC. Here are the meanings of each of the al-
lowable mode values:

1 Low resolution, noninterlaced
2 High resolution, noninterlaced

3 Low resolution, interlaced
4 High resolution, interlaced

For example, to set up a low-resolution, noninterlaced
screen that displays up to eight colors simultaneously, you
would use the statement
SCREEN 1,320,200,3,1

When you open a screen with the SCREEN statement,
BASIC allocates display memory for it in the same way that
the Intuition library routine OpenLibrary does. When you are

23

Chapter 1

S0 I S S B

/% xxexsrrxxxxsrxrxyy OIOH SUTDOg WeIBOId yyxxxxxxxrxxxs/

‘{

*/+ deW3THWO3sSnD 03 I93uUTod 4/ ‘TINN

/» S3i8bped usaidg 03 I93UTOd 5/ ‘TINN

/x 3IX®3 9T3T3} 03 IdS3UTOd 4/ /,U99108 say-MOT,,
/#30NI3Ss 3JuO3 wo3snd O3 IdIUTOod 4/ ‘TINN
/+ ®d&L ueoids 4/ NZIIOSWOLSND

/x sepow AeTdsTp Teroads ./ ‘TINN

/» USddo0Td pue uadirelad x/ ‘1’

/% U3aded ‘IUBTOH ‘UIPTM 4/ ‘e‘ppT’'oZE

/» obpadoy,‘ (g=sAemTe) °6pIIFOT &/ ‘9'9G

}

= IDSISNDOMON US9IDSMON 3IONIIS

/% xxxxxxxy SOINIONIFS UOTITNIUI PIZTTRTITUT—OAd syxxxsx »/

{I1083SNDy UIDIDS 3IONIIS

/x soTuydeab 103 paaTnbal saan3lonils ,/
{2segUOT3ITNIUI, OSEqguUOT3ITNIUI 3IONIIS
/% SOTIRIQTIT I0J pOpPodU S2INIONIIS 4/

<Y°*UOT3ITNIUT /UOTITNIUT> SPNTOUT#H
<y-sadiiy/oexs> opniouUTH

/x Po2U 9M eyl SUOTITUTIOP 92Ul SpNTOUI 4/

a|dwpx3 D ‘usaldg meN b Buuedp 'z-1 woibolid

o~

Setting Up the Display Screen

[

[

(-

! (eseguoT3Tniul)AIeaqiIasoTd
! (10838SND)U88IDSDSOTO

{(ppc)Letad

{(ISTYI)ITXD
(TINN == ((I0S3IsSnDMeN%R)usaxdsuado(y US99IDS 3IONIIS)
= I0S3Isnd)) 3T

/+ °pouado 3,usem 3T ‘g = ssaippe S,3T FJI °Uud2IdS uado 4/

_ {(FSTYI)ITX® (TINN == 9SeqguoTlTNiul) 3IT
{(NOISYIA Mm<mqu.:humunﬂA.GOMMAs»cﬂgvhumunﬂdswmo
(¥ ©SeqUOT3ITNIUI 3IONIIS) = dseqguoTiTniul

/%

*aTqerTRAR 3 ,UST AIRIqTIT &
‘g = JT pue ‘sauT3inox SOM 03 Iajutod 399 4
KxeaqTT uoT3iTnlul 9y3 uado 4/

}

()urew

I U N

25

[

Chapter 1

finished with the screen, you should free up that display
memory with the SCREEN CLOSE statement, which uses this
syntax:

SCREEN CLOSE screen_number
In the example above, you could close the screen with
SCREEN CLOSE 1

Creating a Short Screen in BASIC

As stated above, Amiga BASIC does not set up short screens
correctly. Since a screen that is less than full height must al-
ways sit at the bottom of the display, the TopEdge setting of
the NewScreen structure should be equal to the full height of
the display minus the height of the screen.

BASIC apparently always sets the TopEdge value to zero,
however, so that the screen starts at the top of the display.
Therefore, when you set the height for a value less than the
full display height, you create a screen that ends before the
bottom of this display. As a result, the display becomes con-
fused, and random “‘garbage” fills the bottom of the display.
When you drag the screen down by using the drag bar, how-
ever, everything is sorted out, and the screen takes its proper
position at the bottom of the display.

Therefore, after you create a short screen using Amiga
BASIC, you must move the screen down to its proper position
under program control (since you can’t very well depend on
users to realize that they have to pull the drag bar to
straighten out the display). BASIC has no direct instruction to
perform this task, but the Intuition library does. And BASIC
does provide a way for you to call such routines.

The way that you call operating system library functions
from BASIC is by using the LIBRARY statement

LIBRARY “name.library”

where name.library represents the name of the library, in the
same format used by the OpenLibrary routine (lowercase
only).

BASIC uses this information to call OpenLibrary, which
provides the library base address. In order to use the library
base address to call the library routines, BASIC still needs a

26

[

[

I

[~

[

[

-

)

N

-}

1

]

1

]

)

-]

Setting Up the Display Screen

way of finding out the address offsets of these routines and
the registers used to pass the data values they need. For this
purpose, it uses a special data file that must be located in the
current disk directory when the program is run. The format of
this file is described in detail in Appendix F of the Amiga
BASIC manual. Its name must be the same as that of the li-
brary, with the characters .bmap (for binary map) appended
to it.

Files named graphics.bmap and dos.bmap are provided in
the BasicDemos directory of the BASIC disk; they allow BASIC
to access the Graphics and DOS libraries.

To use other libraries, such as the Intuition library, you
must create a .bmap file for that library. This can be accom-
plished in one of two ways. First, you can obtain what is
known as an .fd file. These are text files that are included with
the Amiga Macro Assembler (and possibly the Lattice C Com-
piler as well). They describe the offsets and data registers for
each routine in the library and can be converted to .bmap
form by the “ConvertFD” program which is found in the
BasicDemos directory of the BASIC distribution disk. The
other method is to use the BASIC file commands to create a
.bmap file from the program that uses it. This is the approach
that we’ll take for purposes of demonstrating library routines.
Of course, if you already have these .bmap files, you can omit
this portion of the demo programs.

Once you have opened the library with the LIBRARY
statement, you may use any routine described in the .bmap
file via the CALL statement. The syntax for this statement is

CALL Routine_name (valuel,value2,...)
It is possible also to use the alternative form:
Routine_name valuel,value2,...

For the purposes of this statement, the name of the rou-
tine is used as the name of a variable that holds the actual ad-
dress of the routine. BASIC computes this address from the
library base address and the address offset given in the .bmap
file, and then stores it in the variable Routine_name.

Since most code addresses are 24 bits long, the variable
Routine_name must be of the long-integer or double-precision

27

Chapter 1

type. If it is not, a Type mismatch error occurs when you try
to call the routine. You can make sure that the variable is of
the correct type by using the DEFLNG or DEFDBL statement,
or by adding the correct symbol to the end of the name
(Routine_name& or Routine_name#).

The values in parentheses (valuel, value2, and so on) are
the data values used by the routine. You must make sure that
these values also are of the correct type. Usually, it is safe to
make all variables involved in a library call into long integers
by adding the ampersand (&) to the variable name.

The Intuition library routine used to move a screen is
named, appropriately enough, MoveScreen. The format for
this routine is
MoveScreen (Screen, DeltaX, DeltaY);

(a0) (do) d1)
where Screen is a pointer to the Screen data structure, and
DeltaX and DeltaY are the increments by which you wish to
move the screen. DeltaX is only provided for upward compati-
bility, since currently a screen must fill the entire horizontal
display and therefore cannot be moved horizontally. This
value should be set to zero for purposes of clarity (though it is
currently ignored). The DeltaY value should be set for the
number of scan lines that you wish to move the screen, either
downward (a positive number) or upward (a negative number).

BASIC does not provide a direct way to learn the address
of the Screen data structure. It does, however, provide a way
to discover the address of a Window data structure. Among
the items provided in this data structure is the address of the
window’s screen. The BASIC function WINDOW(7) returns
the address of the Window data structure. This address of the
Screen data structure for the screen on which the window re-
sides can be found at address WINDOW(7)-+54. Therefore,
you can find the screen data address by opening a window on
the screen and taking the value at PEEKL(WINDOW(7)+54).

Though this method works, it does not represent the best
in programming practices. Normally, it is not a good idea to
access data structures using absolute offsets, because these
structures could possibly change in future versions of the com-
puter or future versions of the operating system and render

28

L

B

N

N

-

]

-

1

Setting Up the Display Screen

your program incompatible. Therefore, while we demonstrate
this technique as one way of correctly generating short screens
using the first version of Amiga BASIC, we caution you to use
such methods sparingly and only in cases where better tech-
niques do not exist.

Once the address of the Screen data structure is known,
use the MoveScreen routine to move a screen 100 scan lines
down the display with the statement

CALL MoveScreené&(Screené,0,100)

Program 1-3 shows the whole process involved in setting
up a short screen from BASIC.

Program 1-3. Setting Up a Short Screen from BASIC

DEFLNG a-z
GOSUB Initlib ‘'initialize Intuition library

SCREEN 1,320,100,3,1 'open short screen
WINDOW 2, "Short Screen Window", (@,15)-(297,86),,1
PALETTE 0,9,9,0 'change screen colors
PALETTE 2,0,.3,.6

s = PEEKL(WINDOW(7)+46) ‘find Screen address

CALL MoveScreen(s,®,100) 'and move it down

PRINT
PRINT "Hello, out there"

x = INT (TIMER)+5 'wait a few seconds
WHILE (TIMER <x)

WEND
WINDOW CLOSE 2 ‘close window,
SCREEN CLOSE 1 'Screen
LIBRARY CLOSE ‘and all libraries
END
Initlib:
CHDIR "ram:" 'put bmap file in RAM:

'Create text of .bmap file
fd$="MoveScreen"+CHRS (0)
£d$=£4$+CHRS$ (255)+CHRS$ (94) +CHRS (9)+CHRS (1)
£d$=£fd$+CHR$ (2)+CHRS$ (D)

‘print it to the file
OPEN "intuition.bmap” FOR OUTPUT AS 1
PRINT#1,£4d$;
CLOSE 1
29

Chapter 1

‘open the library
LIBRARY "intuition.library"
CHDIR "df@:"

RETURN

Manipulating Screens

As seen above, it is possible to move a screen up and down
under program control. The Intuition library also contains
routines that allow you to control the depth arrangement of
your screens from a program. These two library functions are

ScreenToBack(Screen);
(a0)

and

ScreenToFront(Screen);
(a0)

They operate exactly as if the user had clicked on one of
the depth arrangement gadget boxes in the top right corner of
the screen.

The Workbench screen is a special case. Since it is meant
to be available to several different programs at once, you can’t
count on knowing the address of its Screen structure, as if it
were a screen that your application had opened. To arrange
the depth of the Workbench screen, you use the Intuition li-
brary functions:

results = WBenchToFront();
~(do)

and

results = WBenchToBack();
(d0)

These functions do not require you to pass them the ad-
dress of a Screen data structure. They return a false (zero)
value if the Workbench screen is closed and a true (nonzero)
value if it is open and can be moved.

Opening and closing the Workbench screen is a special
case also. The Workbench screen opens when you start up the
computer and normally stays open all the time. If your pro-
gram needs more memory, it may be able to gain some by

30

IR B I

[

[SN N A

1 1 1 1 1

1 1]

Setting Up the Display Screen

closing the Workbench screen, however. The Intuition library
function that performs this task is
results = CloseWorkBench();

(do)

This routine will not succeed in closing the Workbench
screen if any application programs have opened windows on
the screen and are using it. In such a case, the function returns
a value of false (zero). But if the only program using the
Workbench screen is the Workbench itself, it will close its win-
dow and free up the memory used by its display. A true (non-
zero) value will then be returned.

If your program has closed the Workbench screen, you
should try to open it again when the program finishes. To do
this, use the function
results = OpenWorkBench();

(d0)

This function returns a false (zero) value if the Workbench
screen cannot be opened, or a true (nonzero) value if the Work-
bench can be opened or already was open when the function
was called.

31

e
- -

b

)

]

1

)

]

)

]

]

)

7

Windows

n Intuition screen completely defines a graphics display

area, and it’s possible to draw directly onto the

screen. If a program writes directly to the screen,

however, there is no easy way to separate its output
from that of another.

One of the major functions of Intuition is to allow many
tasks or programs, each with its own display area, to share a
single display. For this reason, Intuition allows you to divide
the display area of a screen into several overlapping windows.
This system allows each task or program to function as if it
has the display area all to itself, even if in reality all are shar-
ing the display bitmap of the same screen.

The Layers Library

The graphics foundation of the Intuition windowing system is
a group of operating system routines known as the Layers li-
brary. The Layers library provides routines for organizing the
display into a number of rectangles and making it appear that
some rectangles are in front of others, though in fact, all of
them share the same display space. This library provides the
means of restoring the display when one rectangle is moved
or uncovered.

These routines also perform what is known as clipping.
This means that if you're drawing within a certain rectangle,
all drawing will be confined to within the boundaries of that
rectangle. When the drawing reaches the borders of the rect-
angle, graphics output stops so that you don’t overwrite the
area belonging to an adjacent rectangle or even some memory
unrelated to the display.

To the foundation provided by the Layers library, Intu-
ition adds a number of other features to make up its window-
ing system. Many of these features relate more to the area of
input/output (I/O) than they do to graphics. These include
the system of gadgets and pull-down menus, graphic devices
which allow the user to communicate with a program.

35

Chapter 2

The windowing system also provides the means by which
a program can obtain information about the position of the
mouse pointer and which keys the user presses on the key-
board. For the most part, we will pass over these features and
stress those aspects of Intuition windows that relate to graph-
ics on the Amiga. You should note, however, that the exis-
tence of these vital I/O functions provides another reason for
using windows for your program graphics, rather than draw-
ing directly on the screen display area.

Opening a Window

The process of opening an Intuition window is very similar to
that of opening a screen. The library routine that is used takes
this form:
Window = OpenWindow(NewWindow);

(do) (a0)

The routine requires as input a pointer to a data structure
known as a NewWindow structure. If the call sucessfully
opens the window;, it returns a pointer to the Window data
structure of the new window. This data structure contains all
the information provided by the NewWindow structure and
more. If unsuccessful, the OpenWindow function returns a
zero value.

Like the NewScreen structure used by the OpenScreen
routine, the NewWindow data structure describes a wide vari-
ety of attributes of the new window. The definition of this
data structure in C looks like this:

struct NewWindow

{

SHORT LeftEdge, TopEdge, Width, Height;
UBYTE DetailPen, BlockPen;

USHORT IDCMPFlags;

ULONG Flags;

struct Gadget *FirstGadget;

struct Image *CheckMark;

UBYTE *Title;

struct Screen *Screen;

struct BitMap *Bitmap;

SHORT MinWidth, MinHeight, MaxWidth, MaxHeight;
USHORT Type;

36

[

-

L [

[O

1

N

I

]

N

)

]

)

-}

Windows

As you can see, a lot of information is needed to create a
new window. That’s because there are many variations on the
kinds of windows that can be created. We’ll discuss these vari-
ations below, as we explain the function of each member of
the NewWindow data structure.

LeftEdge, TopEdge. These describe the initial position of
the top left corner of your window. The required values spec-
ify in pixels how far that corner is from the top left corner of
the screen. The coordinates for this corner are (0,0). Their ver-
tical component increases as you go down the display, and the
horizontal component increases as you move across the dis-
play to the right.

Width, Height. These values describe the initial size of
the window in pixels. The Width value should be less than or
equal to the width of the screen (640 or 320 pixels) minus the
LeftEdge value. The Height value should be less than or equal
to the height of the screen (200 or 400 lines) minus the
TopEdge value.

These size values describe the total size of the window.
Keep in mind, however, that not all of this area will be avail-
able for your graphics. Unless otherwise specified, each win-
dow comes with a border drawn around it. At the minimum,
this border is a double line that occupies several pixels. If the
border contains one or more gadgets, like the depth arrangers,
drag bar, or close box in the top border and sizing box in the
right border, the border can be considerably wider. The size of
each border can be found in the Window data structure vari-
ables BorderLeft, BorderRight, BorderTop, and BorderBottom.
Remember that the area available for drawing should be re-
duced by the values found in these variables.

DetailPen, BlockPen. These values contain the pen num-
bers used to draw different parts of the window. The DetailPen
value is the number of the pen used to draw details like the
text in the title bar, certain gadgets, and the inner border line
around the window. The BlockPen value is the number of the
pen used to draw filled blocks like the title bar and the outer
border line that surrounds the window. Either or both of these
values can be set to —1, in which case the pen used will be

37

Chapter 2

the same one contained in the DetailPen and/or BlockPen
variables in the Screen data structure.

IDCMPFlags. This variable can contain a number of flags
that specify the conditions under which Intuition will send
your program messages about I/O functions.

Flags. The Flags variable contains a lot of information
about just what kind of window will be created. This infor-
mation is in the form of flags, numbers which have a special
meaning to Intuition. Some of these flags are mutually exclu-
sive, but most can be added together in a number of different
combinations. These flags affect many different aspects of the
window’s appearance and performance. The explanations of
these flags are grouped together below by function.

Refresh method. One of the most important aspects of the
window that is controlled by the Flags variable is the method
used to refresh its display. When one window is moved on top
of another, the display information for the window that is cov-
ered up is no longer saved in the display bitmap area. Some
provision must be made for saving that information elsewhere
so that the display can be restored if the window is later un-
covered. The same is true when the sizing gadget is used to
make a window a different size. Information is lost when a
window is made smaller and must be restored when the win-
dow is made larger again.

The Layers library provides Intuition with three different
schemes for refreshing the display. These methods vary in the
amount of memory used, the amount of work that the pro-
gram must do to refresh the display, and how quickly the re-
fresh is accomplished. Each is associated with one of the
refresh flags that can be stored in the Flags variable. You must
set one and only one of these flags when you open a window.

The first method is SIMPLE_REFRESH. Simple refresh-
ing requires the least memory of the three methods, but it
does the least for you. A SIMPLE_REFRESH window is drawn
in the screen’s display memory and uses no additional mem-
ory buffers. When you choose this refresh method, Intuition
preserves the display when the user merely moves the win-
dow around the screen with the drag bar. It does not bother to
save the portion of a window that is obscured, however, when

38

I I I

[

(N A I

-

I S B

]

n

N

7

I

)

Windows

the window is sized or another window is moved on top of it.
Therefore, the program itself must redraw the display when-
ever it gets a message from Intuition, either via the Intuition
Direct Communication Message Port (IDCMP) or the console
device, telling it that the window has been uncovered or sized
larger.

Although SIMPLE_REFRESH uses less memory than the
other methods, it tends to be a bit slower. Intuition does, how-
ever, provide a set of functions that can help speed up the re-
fresh routines that you provide. Whenever a window is moved
or sized, Intuition keeps track of what part of the old display
was damaged by the move. The function BeginRefresh() clips
the display so that no matter how much drawing your pro-
gram orders the operating system to do, it will only perform
the portions of the drawing commands that act on the area
that was damaged. This prevents it from redrawing sections
that do not need to be refreshed. When the program is fin-
ished with the refresh, it should call the function
EndRefresh(), which terminates the clipping.

The next method is known as SMART_REFRESH. Like
the SIMPLE_REFRESH window, the SMART_REFRESH win-
dow uses the screen’s bitmap for its display. When part of a
SMART_REFRESH window is obscured, either by another
window or by resizing, Intuition saves the part that was cov-
ered up in an extra memory buffer. This method requires more
memory than SIMPLE_REFRESH since it stores both the portion
of the window that is displayed and that which is covered.

In return, however, a SMART_REFRESH window takes
care of most of the refresh process by itself and generally re-
freshes the window more quickly than does SIMPLE_REFRESH.
Since Intuition saves the display information for the part of
the window that is covered up, it is able to restore that part of
the display when the window is uncovered again. The same is
true when a window is sized down and then enlarged. The only
case in which Intuition will inform the program that a SMART_
REFRESH window needs to be refreshed is when the window
is made larger than its original size. When that happens, you
may use the BeginRefresh() and EndRefresh() routines to con-
fine the refresh to the area that was just uncovered. Note that

39

Chapter 2

if you do not attach a sizing gadget to the SMART_REFRESH
window, the program will never have to refresh the display.

The final refresh scheme requires a special window type
known as a SUPER_BITMAP window. This type of window
uses part of the screen’s display memory for its graphics, but
also has it own complete bitmap storage area. This bitmap
area may be larger than that required by the current window
display. The SUPER_BITMAP window uses the most memory
of all, since information for the entire display area is saved in
RAM in addition to the portion of the screen memory used for
the display. Because the entire bitmap for this window is al-
ways saved in memory, however, Intuition can refresh its dis-
play for you automatically.

In addition to the extra memory requirements, the SUPER__
BITMAP window requires a little more work to set up. RAM
must be allocated for the bitmap area, and the bitmap must be
initialized and linked into the window. Because of these extra
requirements, the subject of SUPER_BITMAP windows will be
left for more thorough treatment in the ““Advanced Topics”
chapter. .

The last flag concerning window refresh is called
NOCAREREFRESH. This flag should be set only when you
do not intend to perform any window refreshing, regardless of
the circumstances. It tells Intuition never to send any messages
to this window concerning window refresh events.

Borders. Unless you specify otherwise, Intuition automati-
cally draws a double line around each window to make it eas-
ier for the user to distinguish where one window ends and
another begins. The border area need not be confined to the
thickness of these lines, however. If there are gadgets in the
border, such as the system close box, drag bar, depth arrang-
ers, or sizing box, the border area will automatically be ex-
tended to accommodate these gadgets.

As explained above, these extended borders are drawn with-
in the area specified for the window, and they occupy part of
the usable area of the window. There are two flags that can be
used to change this state of affairs. The first, BORDERLESS,
creates a window that has no border lines drawn around it
and no extended border area automatically placed around the

40

L

-

(U IO R A

]

1

N

X

n

N

|

B

)

1}

Windows

gadgets. In fact, the only things that denote the edges of such
a window at all are the border gadgets, or the text of the win-
dow title, if any of these are used. The lack of borders gives
you a little more room to draw on, which is useful for applica-
tions that need the entire width of the screen—for 80-column
text, for example. Of course, since border lines are normally
used to separate one window from the next, it could be con-
fusing to put a number of small, borderless windows on the
screen at once. That’s why it makes more sense to make a
borderless window fill the entire display. You can also use the
BACKDRORP flag, described below, to keep the borderless win-
dow in the background.

The other flag, GIMMEZEROZERO, creates a window
where the border area is drawn in an entirely separate layer
from the rest of the window. Normally, the border area of a
window is drawn in the same layer as the rest of the window.
This means that the border lines and the gadgets take up some
of the window’s drawing room. You cannot start drawing at
the edge of the window because that’s where the borders are,
and if you do start there, you may draw over gadgets that are
located in the border. With a Gimmezerozero window, there is
never any possibility that you will draw over the border lines
or gadgets. Your drawing area consists only of the part of the
window that lies inside the border area. For purposes of draw-
ing, the top left corner of the window—the (0,0) coordinate—
lies in an area that is safe to use, rather than in the border
area as with other windows. Although a Gimmezerozero win-
dow frees you from worrying about drawing over the border
area, it does use more RAM than a regular window. It also
slows down such operations as moving and sizing windows,
since each window is in effect made up of two subwindows.

Use of the BACKDROP flag produces a window that al-
ways stays in the background. It opens behind every other
window that is already open on the screen; it cannot be
moved, depth arranged, or sized. In fact, you cannot attach the
sizing box, the drag bar, or the depth arrangement gadgets to
this kind of window. The close box is the only system gadget
that may be attached to a Backdrop window. Non-Backdrop
windows always stay in front of a Backdrop window; using

41

Chapter 2

the depth arrangement gadgets on a normal window never
sends it behind a Backdrop window.

The other distinctive feature of a Backdrop window is that
it does not necessarily cover the screen’s title bar as other win-
dows do. By default, the screen’s title bar goes in front of a
Backdrop window that is opened at the top of the screen. You
can, however, change this with the Intuition library function
ShowTitle, which takes the form
ShowTitle(Screen, Showlt);

(a0) (do)
where Screen is a pointer to the address of the Screen data
structure, and Showlt is a Boolean value true (1) or false (0). A
call to this function with a true value for the ShowlIt variable
causes the title bar to be shown in front of Backdrop windows,
while a false value hides the title bar behind any window.

It is particularly useful to add Backdrop features to a
Borderless window. If you create such a window full-size, with
no system gadgets or title, and hide the screen title bar, you
will have the entire drawing surface of the display at your dis-
posal, just like that of any ordinary microcomputer display.
The difference, however, is that you can still open auxiliary
windows on top of such a display.

Gadgets, activation, and other flags. The remainder of the
flags are not strictly concerned with display aspects of the
window. The first group allows you to attach any of the sys-
tem gadgets that you wish. These flags are WINDOWCLOSE
(close box), WINDOWDEPTH (depth arrangers), WINDOW-
DRAG (drag bar), and WINDOWSIZING (size box). Two ad-
ditional flags allow you to position the size box either in the
right border (SIZEBRIGHT), which is its default position, or
in the bottom border (SIZEBBOTTOM).

Another set of flags deals with window activation. The ac-
tive window is the one which is ready to accept input from
the user. Generally, it is the user who decides which window
will become active, by clicking the mouse button while the
pointer rests in that window. You can tell the active window
from inactive ones because the title bar of the active window
is drawn in solid colors, while the title bars of inactive win-

42

N N

L

L

[

[

]

N

Bl

i

1

;

Windows

dows are ghosted (covered with a pattern of dots, making
them lighter in appearance).

If you include the flag ACTIVATE, upon opening, the
new window becomes the active one. Two other flags allow
your window to receive a message from Intuition telling it
when the user makes it active or inactive.

The flag ACTIVEWINDOW tells Intuition that you want
your program to receive a message each time the window be-
comes active, and INACTIVEWINDOW requests a message
each time the window becomes inactive.

The last two flags are also used for I/O functions.
REPORTMOUSE requests that a message be sent to your pro-
gram each time the mouse moves. RMBTRAP is used to let
your program know about right mouse button clicks, rather
than having them perform menu functions without informing
your program of their occurrence as is usually the case.

FirstGadget. This NewWindow variable points to the ad-
dress of the first in a linked list of Gadget data structures
which describe your own custom gadgets. If you don’t have
any custom gadgets, you may set this value to null (zero).

CheckMark. This is a pointer to the address of an Image
data structure that describes the shape of the image to be used
as a checkmark to show when a menu item has been selected.
If you want to use the default checkmark, set this value to null
(zero).

Title. This is a pointer to the address of the window title
text. This text consists of a string of ASCII characters, ending
in an ASCII 0. As much as possible of this text is displayed in
the window’s title bar, the width of the window being the
determining factor. The text is drawn using the screen’s de-
fault text font. The letters themselves are drawn in the color of
the DetailPen, while the background for the letters is drawn in
the color of the BlockPen.

If you use a value of null (zero) for the Title field, no title
will appear in the title bar. In fact, there will not even be a ti-
tle bar at the top of the window unless you attach one of the
gadgets that go in the top border of the window. These gad-
gets include the close box, the drag bar, and the depth
arrangers.

43

Chapter 2

Screen. If you are using a custom screen, this value
should be set to the address of the Screen data structure which
was returned by the OpenScreen function. If you are using the
Workbench screen, then this field is ignored.

Bitmap. If you chose SUPER_BITMAP for your method
of screen refresh, this field should be set to the address of the
custom BitMap data structure that you have set up. If you
have specified one of the other refresh types, this field will be
ignored.

MinWidth, MinHeight, MaxWidth, MaxHeight. These
four variables are used to set the minimum and maximum
sizes to which the user may change your window by using the
sizing gadget. If you do not attach the sizing gadget to this
window by setting the flag value WINDOWSIZING, then
these variables are ignored by Intuition. If you include the siz-
ing gadget and set any of these values to zero, it means that
you wish to use the same setting as that in the Width or
Height variables discussed above. Thus, if you set both
MinWidth and MinHeight to zero, it means that you don't
want to let the window get any smaller than its initial size.

If you wish to change these limits after the window has
been opened, you can do so with a call to the WindowLimits
function, of the form
status =
(o)

WindowLimits(Window,MinWidth,MinHeight, MaxWidth,MaxHeight);
(a0) (do) (d1) (d2) (d3)

where Window is the pointer to the Window data structure
that was returned by the OpenWindow call, and the other
variables are as discussed above. A zero used for any of the
size values means that the previous limit should not be
changed. A value of true (1) will be returned if all the values
are within range, and false (0) if one of the minimums is
greater than the current size or if one of the maximums is less
than the current size.

Type. This variable is used to specify the type of screen to
which this window is attached. The two types that you can
choose are WBENCHSCREEN for the Workbench screen and
CUSTOMSCREEN for your own custom screen. If you are

44

.

[

[

[

1

|

S

5 T e

B

Windows

using a custom screen, you must open the screen before open-
ing the window, and you must place the Screen data structure
address returned by the OpenScreen call into the NewWindow
variable Screen.

Program 2-1 demonstrates opening a simple window on
the Workbench Screen in C. If you are using the Lattice C
Compiler, call the file “Window.c”, and compile and link it
using the MakeSimple script. Since most of the demonstration
programs in this book require you to open a new window,
we’ll be using this program as an include file with later dem-
onstration programs that use the Workbench screen. When
used for this purpose, the comment marks (/* */) should be
removed from the line

/* Demo(); */

because Demo is the name of the function that makes up our
sample programs.

Program 2-2 is the machine language version of Program
2-1. Call Program 2-2 “Window.asm” and compile it from the
CLI with the command

:c/assem window.asm -o window.o :include -c W200000

This assumes that the assembler is in the c directory of your
disk, the source code file is in the current directory, and the
include files are in the include directory. If the compile is suc-
cessful, link the window.o file to the library file Amiga.lib with
the command

:c/alink window.o to window library :lib/amiga.lib

again assuming that the linker is in the ¢ directory and the li-
brary files are in the lib directory.

Most of the sample programs in this book will be written
in C, and not machine language. Nonetheless, if you compare
the C and machine language versions of this program, it
should be clear that the two are very similar. If you are a ma-
chine language programmer who is at all familiar with C, it
should not be too dificult for you to make the necessary
translation.

45

Chapter 2

N B B

/x ued TTe3ad ‘uad 30oTd s/ *dLHM'dn1d
/% IUBTOH ‘UIDPTM &/ ‘902 ' 8v9
/+ ©bpa doi ‘ebpd 3IFOT &/ ‘o'o

}
= MPMM3N MOPUTMM®ON 3IONaJS

/* xxxxxxxx 2INIDONIIS MOPUTMMON POZTTRTITUT-OId sxxxxxx »/
€ dNJO sutjoap#

4 dJ1d suTjop#

1 dLHM PuTIop#

] dnTd suTFop#

/» dn sTy3l uslIoys / 3I0dY <—-MpPM dy sut3yop#
J¥xxrxrxexxxxxxxy SIULISUOD WeIBOId yxyxxxxxxxxxxxxxx/
{dAMy FITOIMOTA 3IONIIS

{MpDMy MODUTM 3ONI3S

{1083SNDy, UIDIDS 3IONIRS

/s« sotudeab 1oz paitnbai ssin3lonils ,/

!asedxIo, osedxyd 3IOnI3s
{9SeguUOT3TN3UIy 9SRHUOTITNIUI 3IONIAIS

/s SOTIRIQIT I0F POPO3U S8INIDONIIS 4/

<Y UOT3ITNIUT /UOTITNIUT> SPNTOUT#H
<y-sadA3l/oaxa> 8pniouTH

/+ D99U ®M SUOTITUTISP aY3 dPNTOUI 4/

D U] Mopuip o BuuedQ ' |-z woibolid

_J

46

windows

[

L

{

{(dSTYI)ITXD
(TINN == ((MpMMaN%)mOopuTMuadO(y MOPUTIM 3IONIIS) = MPM)) IT

/% °pPouado 3, usem 3T ‘g = MpM FI °MOPUTM @Yl uado /

_ {(ISTYA)ITXD (TINN == °Ssedxyd) IFT
! (NOISYIA X¥VNEIT ‘,AxeaqriT°sotydeab,)Laexqriuado
(x 9Sedxyd 3IDONAIS) = 9sedxID

_ {(ISTYA)ITXS (TINN == 9SBHUOTITNIUI) IFT
{(NOISYAA AYVYEIT' ,AI0IqTT°UOTITNIUT,)AxRIqTTUadO
A« 9seqguoT3iTnjul uvﬂhu—mv = I¥sedguoT3iTnijul

/*
*dTqeITRAR 3 ,UdI® SOTIRIQIT ‘g = IJT pue
sauT3INOI SOM O3 I93juTod 389

*saTaeIqTT SoTydeao pue uoT3ITNIUI a8yl uado 4/

}

()utew

/% ¥xx¥xxxxxy OIOH SuTHog WeIBOId sxsxxsrxrxxzrxsrs »/

‘{
/% UO SOpPTISsax 3T uaaIds Jo adAL ./ NITIOSHONITEM

/x IUBTSH ‘YIDPTM UMUWTXEW 4/ ‘9'0

/x IUBTOH ‘U3IPTM WNWTUTH 4/ ‘0’0

/+ deW 3Td wo3isnd 03 ISIUTOd &/ TINN

/x Auump ‘21IN30NI3S USSIDS O3 IBSIUTOd 4/ fTINN
/x PTITL &/ ‘TINN

[/« 2beUT jIeW dayd 031 I23UTOd 5/ TINN

/+ 32bped 3IsaTg 03 I93UTO4d 4/ TINN

/x SBRTd 5/ 'ISOTOMOANIM | SSITIEQYOL |
FIVAILIOV | HSTYJITY LUVYWS
/+ Sbel1a awoal s/ ‘MOANIMASOTIO

L I I I

47

[

B I I B S s

3Ioqe ‘punoj 3ou x3d FT! 3xoqyYy beq

qIT uoT3Tniul o3 I3d aaes! aseqguoT3TInNiuI ‘gp 1°9A0uw
3es330 Kreaqruedo nayy asf! (9e)iaeaqrTuadoOAT asC
KxeaqtT ooxHT o3 a93utod 396! om~ommmvwxmwn4l 1°esa0u
PP ‘NOISYIA XUVHLITE T°®a0u

,Lxeaqr1*uor3iTniur, 3Isonboex! Te‘SWeNUOTITNIUI# T°esa0w

¥xxxxxsxxyeryx AIRIQTT UOTITNIUI BY3 USAO yysyyxxxssrsxavxs

MOPUTM®SOTDOAT_ JTUX
MOPUTMU2dOOAT_ JHNX
ITEMOAT_ JJ¥X
K1e1q1TeSOTOOAT_ JFWX
AxeaqrTuadooAT_ JEAX
osedgoaXxygsqv JTIX

sauT3INOI AIRAQIT O3 S9OUIIIDI TRUIDIXD

2w T°UOT3ITNIUT /UOTITNIUT,, dANTONI
. T°sadk3/oexa,, JANIONI

abpnBuDT BUIYODA Ul MOPUIM b BuiuedQ ‘g-z wpibold

! (sseguoT3Tniul)AxeaqrIasord
! (osegx3yn)haeaqiIssord
{ (MPM)MOPUTMESOTD

/x POXOITO X0q 3SOTD TTIT3I 3ITeM /
{(3196TS Au¢-3I04I9SN<—MPM>>T)ITEM

Chapter 2

48

¢ (yowsp

windows

s3x
gp uT 9pod uanjiax! op 1°31°
:3aoqvy

sxxxxxy U2dO 3 uom AxeaqTT IT ATo3eTpoumiT 3ITND L xxxxsx

L1e1qr1 9yl 950D pue! (9v)AIRIQITSSOTIOAT asC
Kxeaqi1 ooxd asn! oe’ssegooxdsqy T°esaAouw
uoT3Tn3jul 03 a3d 3as! Te‘’ssequoT3iTniul T°eaaouw
MOpUTM @Y} ©SOTO pue! Ammvzovcﬂzmmvoo>ql asC
qT1 uoT3lTniul o3 13d 38s! ge’asequOT3ITNIUI T°e2A0UW
a93utod MOpPUTM 39S ge‘MpM T°eaaouw

xxxrxrrrrxxy AIRIQTT DUR MOPUTM BYJ OSOTD yyyxxxxxxxss

obessawr e 386 am TT13 deaTs! (9®)3TeMOAT asC
Kaeaqrt1 oe9xd o3 asjutod 3es! ge’‘assegoaxdsqy - esAoW

sowty Auew os Buriztus Kq! P’ 1P T1°1IST
)sew O3 Jaqunu 3ITq JIADAUOD ! pp‘1# T1°bsaouw

1P’ (@e)LIEOIS dW q°‘aa0u
sbessaw ® sn SpPUaS UOTITNIUI USYM 4
398 ST S3Tq TRUBTS §,3Se3 BY3 JO UDTUYM PUTIT

330d gWDAI o3 x33jutod 39b!¢ Qm~asmvuuomuom:|03 1 °*eaaou
MOpuTM 03 x9j3utod 3ab! ge’MpM T°®aaou

sxxxrxrxxxyy AOTTO OSNOW JOT FTCM yyyxxxu¥¥XXXXXENEE

3I10qe ‘pauaniax x3d ou 3IT! 3I0qVY baq
8IN30NI3s MOPUTIM 03 I3d aaes! MDPM '’ gP 1°*9A0U
398330 MmopuTMuado nayi asl! Awmvsovcﬂzcmmoo>ql as(
Kieaqt1 uoT3lTN3UI O3 I93jutod! ge‘ssequoT3iTN3UI T °eaAouw
0NI3S MOPUTMMSN O3 Ia3jutod! Qe ‘MpMMaN$ T °eaaou

sxxsxxpxyxyyxy MOPDUTM STAWTS INO UBAO yyyxyxxxxxvxrx

[L [L L L

49

[

[I N Y B JE [R A Y

ssoippe aseq Ai1eiqTT UOTITNIUI 2I03S 03 ooefd 4
T T°sp
t9seguUoOT3ITNIUL

ssg’‘waw NOILDIS

u99I0S YouagiaoM asn -- 3adAL! NIATIDSHONIALIM M°Op
ybToHxeR ! 1] Mme°Op
UIPTMXeR ! "] M°*Op
IYBTOHUTIW ¢ 7] M°Op
MODUTM 3ZTS O3 =—- YIPTMUTKW! 7} M°Dp
dew3tg wo3asno o3 13d —-- deraytg! 2 T°op
u99I0S wo3lsnd 03 I13d -~ usaiIds! "] 1°op
3X93 9T3T3 MOpuIM 03 I3d —-= BT3ITL!) T°op
jIewsd wolsnd 03 I3d-- YIeWOaYD! 7] 1°°p
s3abpeb zosn o3 x3d -- 3abpeoisatg! 2 T°op
*039 ‘spowm ysaiysy ‘sisbpen -- sberg! sbeTam T1°op
sebessau UOTITNIUI —-- SBeTIAWOAI! MOANIMIASOTID T°oP
uadgyooig! T q-°op
uadiTelaq! 2 q*op
IybToH! 9@z Mm°Op
YIpTM! [7374°] M*Op
abpadog ¢ [/ M°Op
ebpaayaT! g m-op

SMpMMBN

SSEITIAQYOL 1ZIVAILOV THSHIITY LAYKS 1 ZSOTOMOANIM nod sbetam

g’ ,AaeIqTT°UOTITNIUT, Q°Op
taweNuoT3ITNRIUT

¥IVd ‘e3ep NOILDIS

50

XXX % ¥ ¥ xx¥¥ CIBP ANO S BAY yxxxxxrr¥x¥r¥r*¥

Chapter 2

51

2AGXP NIFYO auTyop#
20axg dqay 2utyop#
dJIXQP dLIHM SUTIap#

Windows

/+ dn sTU3l usizaoys %/ 3304y <-MPM dy surjyep#

[exxxxxxrxrsxsxxrxxxxxsrxrsny SIULISUOD werboxd srexrxvvrrnxrxnnn/
{dAMx 3ITOAMBTA 3IONIIS

{MpPMy MOPUTM 30NI3S

{ID083SNDy USDIDS 3IONIAIS

/+ soTuydeab 103 psatnbai saanioniis ,/

{osegxyny 9SeEgXJD 3IONIIS
{9sequoT3iTniul, 9seguoT3lTNIUI 3IONIIS

/+ S®TIRIQIT I0J pOPOSU S2INIONIIS 4/

<Y uOT3ITNIUT /UOTITNIUT> SpPNTOouT#
<y*sadi3/ooxo> opnyouT#

/% PO3U @M SUOTITUIIOP 9Y3l oOpnToUI 4/

D Ul usaldg woyisnd b Buwedo '¢g-z woibold

and
9IN3OdNI3IS MOPUTM O3 Id3uTOod dosy o3 aoerd

1 1°sp
:MDM

L L [| L L ¢ *C [

J0 I N

Chapter 2

] I

B

/x PWeN juod y/ ! ,3uoz-zedol,,

}

= JUOJPIS IIFIVYIXSL 3IoNI3S

/% xxxxxxy 9INJONIAS XS] POZTTRTITUT-B1d

L
9
S
14
/% 0P 9SOTO-MOPUTAM FO uo.ﬁmo %/
/% 1373 nuaw jo uo.ﬂow %/
/x XOQ 9SOTO-MOPUTM JO IOTOD ~_,\H
2

/+ IOTOD punoabyoeq /

LEEE L E L L L XS #\

!
dNXD autiep#
NYXD
ddnd surIep#
‘da1d9nd
dTdX SuTIop#
‘MOTTHIX
dNYD duTIop#
! NITID
daay sutryap#
‘axd
dnd surIep#
‘an1d
dLHM Sutjop#
‘3LIHM
ddod SuTISp#
yovd

}

= [8] dewzoT1Od INOHSN OT3ILIS

/% sxxxxxsexxyyrss 300 de IOTOD yxxxxxxxsxsxx x/

000*@

MOVTIg SuTIop#

PdIXP MOTIIX SUTISpP#
d@daxg q1d9nd SuTILP#

Jd9XQ
d00%0

NVXD Sutjesp#
an1d SuTIyap#

B

52

windows

/» deW 3Td wo3snd O3 I23IUTOd 4/ ‘ TINN

/+ Aummp ‘®iIn3oniys ussIdS 03 I9IUTOd 4/ TINN
[+ OT3ITL »/ TINN

/+ OBRUWT 3IeW 3}O°9UD 03 I9IUTOd 4/ ‘TION

/x 3°bped 3s1Td 03 I93UTOd &/ ‘TINN

/x SBRTd 5/ ‘HSOTOMOANIM | SSITIIQUOH |
FIVAILOVY | HSINJITI LUVWS
/x SBRTd dWOAI &/ 'MOANIMISOTO

/+ USd TTE3IBQ ‘usad YOOTd &/ ‘dIHM'dN1dg
/% IUBT®H ‘UIDPTM 4/ ‘90z ‘0Z¢E
/» ®bpa dog ‘26pd IFOT »/ ‘9’'p

}

= MPMMSN MODUTMMBN 3OnNa3s

‘f

/» deW3Tauwo3lsn) 03 I93UTOod »/ TINN

/x S39bpen usaadg 03 Is3uTOd &/ ‘TINN
/% 3IX®3 9T3ITI O3 I93UTOd &/ ‘TINN
/#3UOF wo3lsnd O3 Id3juTod s/ ‘3uo0dp3sx®

/» 24&L usaI08 4/ ' NIFIDOSWOLSND

/x sopom Aeidstp Teroads / ‘SdLIYAS

/x USddPOTd pue usditelad x/ ‘ar1ax’‘ aand
/x U3dad ‘3IyBToH ‘UIPTM x/ ‘€'z ‘ozE

/» °bpadol’ (g=skemte) a6pAIFOT «/ ‘2'0

}

= JIDSISNDMION UIBIDSMIN 3JIOonagys

/» x» S9IN31ONIIS MOPUTMMON PU®R UISIDSMON POZTTRTITUT-31d «
—

/x S®duUa1838ad x/ ‘ LNOJWOY ddd

/% @TA3IS &/ ‘TYWION Sd

/x IUBT®H 3uogd x/ 'ALHOId ZVdOL

*/

[(- .«

53

L

Chapter 2

I R R

/sdeu I0TO0D peOT pu®e 3zodmaTA 9Yl PUTIF 4/

$(ISTYI)ITX®
(TINN == Aasvs3ozwvzovcﬂ3cvmoay MOPUTM 3IONI3IS) = MpPM)) 3IT

{(FSTVI)ITXD
(11 == ((IDS3ISNDMAN%)U99I0SUadQ (4 UDDIDS 3IONIIS)
= IDS3ISND = USDIDS*MPMMON)) FT

/+ °Pouado 3 ,usiam Aoyz ‘g = Ksy3j JI *SMOPUTM pue US3IDS 3yl uado &/

_ {(ISIVA)ITX® (TINN == asegx3yo) IT
{ (NOISYAA XYdVILIT + Kxeaqr1-sotydeab,)KreaqrIuado
(x ©5edx3d 3ONIIS) = BsedXID

_ £(ISTIVA)3ITXS (TIAN == 9SBEUOTITNIUI) IT
{ (NOISYIA XWWNEIT ‘,KAxeaqr1-uor3iTniut,)irexqriuado
(x ©SeguoT3Tniul 3IONIIS) = 8seguoTiTniul

/x
*aTqeITIRAR 3 ,UdI® SOTIRIQTIT ‘@ = FT pue 4
sSauT3nNOI SOM O3 a93jutod 38D 4

*soTaRIqTT soTydeid pue UOTITNIUI 3UF Uad0 4/

}

()utew

/% sxxxrxxxxxxxxxy 9I9H surbog weIboxd yxxrrxxxxxsrxxxsr x/

‘{

/% UO S9PTSax 3T u8aIdS Jo 9dAL 5/ NITIOSWOLSND
/v IUBTOH ‘UIPTM WNWTXCN 5/ "5'0

/x IUBTOH ‘UIPTM UNWTUTIW 5/ ‘g

]

54

u9910S9SOTDONT_ JFA¥X
us9I0SUSdOOAT_ JFUX
MOPUTMSSOTDOAT_ JIIX
moputMuadooAT_ JTAX
ITeMOAT_ JIIX
K1eaqTT9SOTOOAT_ JTIX
K1eaxq1TuadOOAT JIIX
asegooxdsqy JTIX

windows

souT3INOI AIRIQIT O3 SOOUSIDIDI TRUIDIXH

»T°UOTITNUT/UOTITNIUT, FANTONI
LI°sadky /oexe, HANTONI

eBDNBUDT SUIYODIA Ul UseIds woysn) b BuiuedQ ‘-z wnibold

¢ (98egUOT3ITNIUT) AIRIQTITISOTD

! (osegxyd)L1eaqrIasord

{ (10838ND) U9BIDSISOTD

{ (MPM)MOPUTMISOTD
£ (3T46TS du¢-3I04I980<-MPM>>T)ITEM
{()owap

/% SIOTOD M3U INO PROT4/ { (g 'dewzoT0D% ‘dAM) PEDIPROT
{ (MPM)SS2IPPYITOIMITA(x ITOIMOTA 3IONIIS) = dAM

C C C C (- [0

55

L

_]

Chapter 2

]

) I I R R B
sowty Auew os bButr3iytys XAq! gp’1P T°1ST

)sew 03 JIaqunu 3Tq JIDAUOD ! oP‘T4# T°boaaoum

TP’ (PR)LlIEDIS dW d°aAoW
abessaw B SN SPuUdS UOTITNIUI USIYM

398 ST S3Tq TeubTs s,3se3 ayl JO UYDTUM DUTT

3x0d dWDAI ©3 134 38b!¢ am~aamvunomummalv3 1 °*eaaou
MOPUTM O3 xajutod 386! ge’MmpM T°eaaouw

xxxxxrxrrryrxxxy AOTTO OSNOW JIOF JTOM yyyyxrxrrrrrrxs

3xoqe ‘pauaniax a3d ou FT! 330qV baq
MOpPUTM O3 a93utod aaes! MDM '’ QP T°*3@A0u
I0309A moputMuado nayl asl! (o')MopuTMuadooOAT xsC
qIT uoT3TN3UI 03 I93uTOod! ge‘aseqguoT3iTNiul T°eaaAow
MODUTMMON O3 U®2IDS UTT! (@ge)U98IDS MU’IDSISND 1°aa0u
MODUTMMSN 03 Ix@3jutod! ge ‘MpMMaNE T °eaaou

¥xxxxxxxxxxxxy MOPUTM OSTAUTS INO USAO yyyxxsxxxxrsrsrx

3xoqe ‘psuxniax 13d ou JT! 3I0QVY baq
usai1ds 03 1d3utod saes! I083snd ‘gp 1°sa0u
oea mopuTMmuado nayly asl! (9e)usaaosuadoOAT asC
KA1exqTl uoT3ITN3lUI 03 Ix3d! ge‘9sequoT3iTniul T°esaou
usaIDdSMON 03 I23utod! ge ‘usaIdsS3ISNDMONE T °eaaAow

sxxxsrrxxrxxxppxy UODIDS INO UDAO yyyyxxxxsxxrvxxyas

3I0qe ‘punoj jou x9jutod 3IT! 3Ioqvy baq

qTT uOT3ITN3uI 03 13d asaAes! 2seguoT3lTnilul ‘gp 1°*2A0u
I10309A Axeaqruado naylz asl! Aomvhumnnﬁqzwmoo>aﬂ asC
KaeaqT1 o9xd 03 xo9jutod 3ab! ge'’assegoaxgsqvy T °*eaaou

PP’NOISYAA AYVNEIT# T°oAow

,Kaeaqr1°uoT3Tniut,3senbax! Te‘SWeNUOT3ITRIUI# T°eaAouw
Nel
sxxxxxxxxxy AIRIQTT UOTITNIUI BYI USAO yyyxxxxsxxsrsxr O

Windows

Y3IDTM? @zZE Mm°op

abpadoyg, ¢ "] Mm°Op
ebpa3zeT! @ M-op
TU9BADSISNIMIN

*x¥xxxyrxxrxx OAINIONIIS UIDIDSMON OUI yywxyrxvvnvry
wwma&&a&om—WB¢>HBU€—ZWN&&H%IH&<ZW—ﬂWOAOBOQZHS noa sberam

g’ ,LA1eaqTT°UOTITNIUT, Qq°Op
faweNuoT3ITNIUT

VIVYd‘e3lep NOILOJAS
rrxxxyrxnxxrrryx CICPD INO S BIBY yyxxrx¥xsrrrXR8%%H"
s3x
@gp UT ®pOdD uanjlax! op T*a1o
:3.30qY

sxxx U2dO 3 ,uom Butyjzowos JT ATo3eTpaumut ITND ey xx

qTT UOT3ITNIUI aY3z 2sOTD! (9e)Xi1eIqTToSOTDOAT_ as(
Kxeaqr1 oexd esn! 9e’asegoaxdsqy 1°eaaou
uoT3TNIUI 03 13d 388! Te’aseguoT3iTniul T1°eaAow
useId0S Y3l 9SOTO pue! (9B)UIIIDSSSOTIOAT asC
J93uTtod u8aIdS 398! ge’1os3isn) T*eaAou
MODUTM 3y3 9SOTD pue! (9B)MOPUTMSSOTDOAT asC
g1 uoTI3TN3lUI 03 I13d 388! ge‘asequoT3iTnN3iul T *EaA0W
I93uTod MOpPUTM 398! ge’'MpM T°esaou
¥¥¥xexyrxxx ATRIQTT PUR MOPUTAM BUJ ISOTD yyxxsxsxsss
obessaw © 38b am TT3 3ITEM! Aomvuﬂmzo>ql asC
Kaeaqi1 o9xd o3 x@3jutod 3es! or’‘ssegoaxgsqy ' eoaouw

[NN I B

57

(-

Chapter 2

)

u29I0S wo3sn) asn -- adig!¢
IybToHXeN !

YIPTMXER ¢

IybTeHUTKH!

MOPUTA 9ZTS O3—- YIPTMUTW!

dew3tg wo3snd 03 13d -- depatd!
u?aI08 wo3snd 03 I3d -- us’’dIdS!¢
3x93 9T3T3 MopuTtA 03 13d —-- ST3ITL!
JjIewyd wo3lsnd 03 I3d-- YIeWYOayd!
39bpeb x9sn 03 a3d -- 9b6peHISATIA!
039 ‘apow ysaijoy ‘sisabped -- sberd!
sobessaw UOT3ITNIUI -- SHBRTIAWOAI?
uadyooid!

uadirelsq:d

ybTaH !

Y3IpTM!

abpadoy, ¢

obpd3zeT!

BN I

NITIOSWOLSND

[SRSESESRSRSRSRS R

sbeTdam
MOANIMISOTO
T

(7}

[]14

(YA

[}

0

)

Mmeop
M*Op
Mmeop
M op
meop
1°°op
T°oP
1°op
1°op
T°op
T°0oP
T°oP
q-op
q°op
Mm*op
M*Op
M*Op
Meop
: MDMMIN

sxxxxxxrxxy O9INIONIIS MOPUTMMIN BUI yxxsxxsrxrrrr

dew3td wo3isndo o3 x3d -- denatqg!
s3ebpeb usaios o3z a3d!
3X23 97313 U9a1ds 03 I13d —- ST3ITL!

21Nn30NI3Ss JUOF wo3lsnd 03 Iajutod!
NAFIOSHOLSNO--2dA3 usaids!

sopou KAeidsTp Tetroads!

GO&#UOHQN

uadirelaqa’

yadaqg!

JybteH!

]
]
0
]
NIFIOSWOLSND

T°°oP
T°°pP
T°9oP
T°°pP
M*Dp
MeOp
q*op
q°op
M*Op
M-Op

_

58

59

Windows

aNz

2INn30N13s ud91dS 03 xo3utod desy o3 soerd
1 T°sp
£ I083ISND

2IN3dONI}S MOPUTM 03 Id3utod desy 03 aodeld
1 1°sp
$MpM

sseappe 9seq AIexqIT UOTITNIUI 31038 03 oderd ,
T T°sp
t@aseguoT3iTniul

ssg‘wsw NOILOIS

C C C [C L

Chapter 2

Opening a Custom Screen

Some of the sample programs in this book will require the use
of a custom screen. Program 2-3 is the C language version of a
program demonstrating how to open a custom screen and then
open a window on that screen.

This program should be called Window1.c, and should be
compiled and linked just as Window.c was. This program will
also be INCLUDEd in some of our sample programs later on,
and the same caution about removing the comments from the
line that calls the Demo() function applies.

For the benefit of machine language programmers, Pro-
gram 2-4 is a similar program which does not open the
Graphics library or change the color map.

Manipulating Windows

The Intuition library provides several functions for manipulat-
ing windows after they’ve been opened. These allow you to
move the window, resize it, and change its depth arrange-
ment. To move a window, use the the routine MoveWindow.
A typical call to this routine takes the form
MoveWindow(Window,DeltaX,DeltaY);

(a0) (do) 1)
where Window is a pointer to the Window data structure re-
turned by the call to OpenWindow. DeltaX and DeltaY are
signed values that specify how far the window is to be moved
horizontally and vertically. A positive DeltaX value means that
the window is to be moved that many pixels to the right,
while a negative value means that it is to be moved to the left.
A positive DeltaY value means that the window is to be
moved that many lines toward the bottom of the display,
while a negative DeltaY means that it is to be moved toward
the top.

It’s your responsibility to make sure that it is possible to
move the window to the location specified by MoveWindow.
If the window is already at the right edge of the screen, for ex-
ample, and you try to move it farther to the right, you'll prob-
ably crash the system. You can prevent this by checking the
window’s current position before moving it. The boundaries of

60

[

-

[

[

[

L

7l

)

N

]

1)

]

\

)

]

windows

the window can be computed from the values found in the
TopEdge, LeftEdge, Width, and Height fields of the Window
data structure.

You can also change the size of the window under pro-
gram control, using the SizeWindow procedure. A call to this
function looks like
SizeWindow(Window,DeltaX,DeltaY);

(a0) (do) (d1)
where Window is a pointer to the Window data structure, and
DeltaX and DeltaY specify the movement of the right and bot-
tom borders of the window. A positive DeltaX signifies that
the right edge of the window will expand to the right, while a
negative value means that it contracts to the left. A positive
DeltaY means that the bottom edge of the window expands
downward, while a negative DeltaY means that it shrinks up-
ward. As with MoveWindow, this procedure performs no error
checking, so it is up to your program to make sure that the
window does not, for example, expand off the edge of the
screen.

Two other Intuition library functions allow your program to
change the depth arrangement of your window. The procedure
WindowToFront(Window);

(a0)
brings your window to the front of the display, as if the user
had clicked on the UpFront depth arrrangement gadget, while
the procedure

WindowToBack(Window);
(a0)

sends your window to the back of the display.

Closing a Window
When you are through using a window, you must call the
CloseWindow function to erase the window and free up the
memory it has been using. The format for this routine is
CloseWindow(Window);

(a0)
where Window is the pointer to the Window data structure
that was returned by the OpenWindow routine.

61

Chapter 2

BASIC Windows

Unlike C and machine language, Amiga BASIC does not allow
you to draw on a screen until you have opened a window on
it. The BASIC interpreter uses the Workbench screen and
opens two windows on it, the output window, which is used
for program output, and the list window, which is used only
to display and edit the program listing.

If you have not opened any other windows, graphic out-
put goes by default to the BASIC output window, the one that
appears on the left side of the screen with the word BASIC in
its title bar when you start up the BASIC interpreter.

But it’s quite possible for a BASIC program to open and
close its own graphics windows, either on the default Work-
bench screen or on a custom screen. Graphics output can be
directed to any open window, by making it the one that is cur-
rently active under program control.

To open a new window, you use the WINDOW statement.
This statement requires you to supply some of the information
that goes into a NewWindow data structure, but limits your
choices. The syntax is

WINDOW window_num [, [title] [[size] [attributes]
[,screen_num]]]

The window ID. The first value, window_num, is an
identification number which other statements use to refer to
this window. For example, you use this window number with
the WINDOW CLOSE statement to specify which window to
close and with the WINDOW OUTPUT statement to specify
the window to which graphics output should be directed.

You may use any number from 1 upward for your
window_num. The number 1, however, is reserved for the
output window that BASIC uses. While you can close this
window and reopen it like other windows, it still has a special
significance, since it is the only window in which the user can
type immediate-mode BASIC commands. Moreover, a program
does not have absolute control over this window, since its
comings and goings are affected by the Show Output item on
the BASIC menu bar. If there is no output window currently
open, BASIC tends to be fussy about the syntax used to open

62

|

[

[

[

]

1

)

1

]

Windows

one. Since default values (such as that for the size of the win-
dow) do not always apply to the default output window, you
may have to specify values that are listed here as optional.

Be careful when using the default output window for your
program’s output. Remember that the default window has a
size gadget that lets the user change the size of the window at
any time, and the user is likely to change the size of that win-
dow to allow it to share space with the list window. Therefore,
if it is important that your window be a certain minimum size
(as it almost always is), either open a second window or re-
open window 1 to the requisite size.

The title is an optional string expression that will be dis-
played in the window’s title bar. If you omit this expression,
there will be no title (and there may not be a title bar, either,
depending on the value chosen for attributes). Window 1, the
default output window, is an exception. It displays the name
of the program or the word BASIC in its title bar if you fail to
specify your own title.

Sizing and positioning BASIC windows. Another op-
tional value that you may specify is the size and position of
the window. If you omit this value, your new window will
cover the entire display screen. The exception to this is when
you open an existing window or one that your program had
opened earlier and closed. In that case, the window defaults to
its previous size.

The way that you specify the size and position of the win-
dow is to describe the coordinates of the top left and bottom
right corners of the window. The format for this description is

(eft, top)-(right, bottom)

As we said earlier, the display is 640 pixels (dots) wide in
high-resolution mode and 320 pixels wide in low-resolution
mode. When describing the left and right coordinates for the
screen, we say that horizontal position 0 is at the left edge of
the screen, and 319 or 639 is at the right edge, depending on
whether low- or high-resolution mode is used. The height of
the display is 200 lines noninterlaced or 400 lines interlaced.
In describing the top and bottom coordinates, we say that line
0 is at the top of the display, and line 199 or line 399 at the
bottom, depending on whether or not the display is interlaced.

63

Chapter 2

This would lead you to believe that the correct description
for a full-size window would be (0,0)-(639,199) for a high-
resolution, noninterlaced display. But as mentioned earlier in
this chapter, you must also take into account the space re-
quired for the border line that is drawn around the window
and for gadgets like the title bar and the sizing gadget.

Since the WINDOW statement does not allow you to cre-
ate a borderless window, at the very least each window will
have a a double border line drawn around it. Because of this,
the highest line number that you can specify as the bottom
line of the window is 186 for a noninterlaced screen and 386
for an interlaced screen. The highest value that you can spec-
ify for the right side of the window is 631 for a high-resolution
screen and 311 for a low-resolution screen. If you attach a siz-
ing gadget to your window as described below, this gadget is
drawn in the right border of the window and further reduces
the possible width of the window. A window that contains a
sizing gadget can have a maximum horizontal value of 617 on
a high-resolution screen or 297 on a low-resolution screen. To
summarize, the table gives the proper descriptions for the larg-
est possible windows:

The attributes value is a subset of the Flags field used in
the NewWindow data structure which we described above. It
is used to specify which of the standard window gadgets will
be attached to the window that you are opening and the
screen refresh method to be used.

The available system gadgets include the sizing gadget,
the drag bar, the depth arrangement boxes, and the close box.

The sizing gadget appears in the lower right-hand corner

64

[4

R

{

-

]

-

]

N

]

,""]

)

1

}

Windows

of the window and allows the user to change the size of the
window.

The drag bar appears in the title bar at the top of the win-
dow and allows the user to move the window around on the
screen if the window is smaller than the screen.

The depth arrangement boxes appear in the upper right
corner of the window; they can be used to send the window to
the back of the screen (the dark box) or to bring it to the front
of the screen (the light-colored box).

The close box is located in the upper left corner of the
window and allows the user to close the window entirely by
clicking on the box.

Refresh window. The attribute value also lets you choose
from two of the available screen refresh methods. If you so de-
sire, it lets you make the new window a SMART_REFRESH
window. As explained above, this means that the contents of
the window will be redrawn after the window has been cov-
ered by another window or has been resized. While this can
be very convenient, it may be costly in terms of memory
usage, since BASIC must reserve enough memory to save the
part of the image that is covered up. If you do not specify that
you want a SMART_REFRESH window, you will get a
SIMPLE_REFRESH window instead.

The following table lists the numbers that can be used for
the attribute value and their meanings:

Any or all of these values may be used. To attach more
than one gadget to your window, add the attribute value of
each together. For example, use an attribute value of 3 to indi-
cate that you wish the window to have both a sizing gadget
(1) and a drag bar (2). Any number from 0 to 31 is a valid

65

Chapter 2

attribute value. If you use 0 as the attribute value, you will get
a plain window with a border around it (and a title bar, if you
have given the window a title). If you do not specify a value
here, the default value 31 (which provides all of the gadgets
and smart screen refresh) is used.

Screen number. The last option value for the WINDOW
statement is screen_num, the number of the screen upon
which you wish the window to be drawn. If you do not spec-
ify a value here, the default Workbench screen (whose
screen_num is —1) will be used. If you want to attach the
window to a custom screen you have opened, use the screen
number that you specified as the first value of the SCREEN
command when you opened that screen.

When you open a window with the WINDOW statement,
not only is a new window created, but two other things hap-
pen as well. The first is that this window is brought to the
front of the screen and becomes the active window (the win-
dow whose title bar is shown in solid lines). The second is
that this window becomes the current output window. This
means that from then on, the output from any graphics or text
commands will be directed to this window until the program
redirects output to another window. It is possible to make an
existing window the current output window without bringing
it to the front of the screen by using the WINDOW OUTPUT
statement. The syntax of this statement is WINDOW OUTPUT
window_num, where window_num is the window number
assigned as the first value of the WINDOW statement that cre-
ated the window.

It's also possible to bring an existing window to the front
of the display and make it the current window with the WIN-
DOW statement. The syntax for this form is WINDOW
window_num, with no other values specified. If the attribute
value for that window is 15 or higher, the contents of the win-
dow will be restored when the window is brought forward.

BASIC’s WINDOW Function

In addition to the WINDOW statement, BASIC also provides a
WINDOW function that can be used to check which window
is active, which is the current output window, the size and

66

F

(

o

!

[

——

]

N

]

]

]

)

1

b,

Windows

depth of the current output window, and the location where
the next text character will be drawn. In effect, it provides
much of the information that a C program could learn by
checking the Window data structure. The syntax for this func-
tion is

value = Window(n)

where 7 is a number from 0 to 8. The following table shows
what information is returned for each value of n.

These last two bits of information are particularly useful
in calling Intuition and Graphics library functions from BASIC,
since these usually require a pointer to either the Window or
RastPort data structures. In addition, many other useful pieces
of information can be gained by PEEKing at these structures
directly.

Closing a Window from BASIC

To close a window, use the WINDOW CLOSE statement. The \
syntax for this statement is WINDOW CLOSE window_num.
When you use this statement to close the current output win-
dow, the visible window that was previously the current out-
put window becomes current once more. Note that this is
different from what happens when the user of a program |

67

Chapter 2

closes the window by clicking on the close gadget. In that
case, the closed window remains the current window, and
graphics output goes nowhere at all. A program can check to
see whether the current output window has been closed by
using the WINDOW function. If WINDOW(7) = 0, there is no
Window data structure, which means that the current window
has been closed and the program should make another win-
dow current. '

68

[

[

[~

[

[

{

{_

[

—

[

I

it

g

D0 a0 3 i e T R B

,] ::} J

1

]

N

-

]

-~

]

]

—

Drawing Lines and Shapes

henever Intuition opens a window, it prepares a

drawing surface as well. It keeps the information

it needs for graphics rendering in a data structure

known as a rastport. The rastport for each win-
dow includes the following types of information:

e Information used for clipping so that drawing takes place
only within the area of the window that is currently exposed.

* The pens used in drawing foreground and background areas.
These pens are known as the APen (foreground) and BPen
(background). A third pen, OPen (the area outline pen) is
sometimes used to draw an outline around a filled shape.

To specify the color with which you wish to draw, you
set the APen (and sometimes the BPen) to the number of the
pen that contains that color. For example, the default colors
for the Workbench screen are blue (pen 0), white (pen 1),
black (pen 2), and orange (pen 3). Therefore, to draw an or-
ange line, you would first set the foreground pen value to 3,
the number of the orange pen. The actual mechanics of set-
ting the colors that will be drawn by each pen are discussed
in a separate section below.

* Pattern information, for drawing patterned lines and pat-
terned area fills.

¢ Information about temporary storage areas and other infor-
mation required for filling entire areas of the display.

* The current drawing position of the drawing pen.

¢ Information about animated shapes.

* The current drawing mode.

* Information about the text font and font styles that are being
used.

Most of the drawing routines in the Graphics library refer
to the window’s rastport. C language programmers can use the
RPort field in the Window data structure returned by Open-
Window to locate the window’s rastport. If the declaration for
the Window data structure initialized by OpenWindow is

struct Window *Wdw
73

Chapter 3

then the window’s rastport may be referred to as
Wdw->RPort

BASIC programmers can also use the rastport to call
Graphics library functions. The BASIC function WINDOW(8)
returns a pointer to the rastport of the current output window.

Color Selection

As stated in Chapter 1, the maximum number of colors that
can be displayed at one time on a given screen depends on the
number of bit planes of display memory allocated for that
screen. One bit plane allows two colors, two bit planes four
colors, three bit planes eight colors, and so forth.

We have also seen that if there are three bit planes, the
display memory for each dot position on the display screen
contains three binary digits, which may hold a number from 0
to 7. This number held in display memory does not refer di-
rectly to a color, using a code where 0 is black, 1 is white, and
so forth. Instead, the number at the screen dot position refers
to a color register.

The color registers may be thought of as a set of 32 pens,
each of which may filled with colored ink in any of the 4096
shades that can be displayed on the Amiga. Register 0 always
holds what is normally thought of as the background color;
any dot position whose display memory holds the number 0
will display this color. When you wish to use another color to
draw a line or a point, you specify the pen (color register) that
is to be used in drawing it. Whatever color ink it currently
contains is the color that the pen will draw.

Unlike ink, however, the color of a dot drawn onscreen
can change after you have drawn it. When the display mem-
ory for a screen dot holds the number of a particular pen, that
dot displays whatever color is in the pen at any given mo-
ment, not the color that was in the pen at the time the dot was
drawn. This means that if you use pen 1 to draw a line, and
that pen contains the color red, the line will be red. But if you
change the color in pen 1 to green after you’ve drawn the line,
the line you drew and everything else on the screen that was
drawn with pen 1 will instantly become green.

74

L L

(R I

CoC o

[

[

3

J

I

;

N

a

Drawing Lines and Shapes

The two factors which determine what color will be
drawn on the screen, therefore, are the pen you're using for
the drawing and the color used by that pen. You choose a pen
to draw with by assigning a pen number to the Amiga’s draw-
ing pens. There are two primary drawing pens, the foreground
pen (APen) and the background pen (BPen). The foreground
pen is used when drawing single points or solid lines. When
drawing dotted lines or text, the background pen is used in
addition to the foreground pen.

The Graphics library routines used to set the drawing
pens are SetAPen and SetBPen. The formats for calls to these
routines are

SetAPen (RastPort, Pen);

(a1) (do)
and
SetBPen (RastPort, Pen);
(a1) (do)

where Pen is the pen number (color register) to be used for
the drawing pen.

In BASIC, the COLOR statement is used to set the color
register for each of the drawing pens. The syntax is

COLOR ([foreground_pen_number] [, background_pen_number]

where foreground_pen_number and background _pen_number
are the numbers of the pens (color registers) used by the fore-
ground and background pens, respectively. If your program
does not use any COLOR statements, the foreground pen de-
faults to pen 1 and the background pen to pen 0.

Color Registers

In addition to determining which color register will be used
for drawing, we must also determine the color that the register
contains. Colors are chosen by mixing various levels of the
colors red, blue, and green. Each color register holds one of 16
color levels for each of these colors, which means that there
are 4096 (16 X 16 X 16) possible colors to choose from.

The Graphics library routine that you use to set a color

75

Chapter 3

register for a particular screen is SetRBG4 (set four bits each of
red, green, and blue values).
SetRGB4 (ViewPort, pen, red, green, blue);

(a0) do) d1) (d2) (d3)

Note that this function requires as part of its input the ad-
dress of the ViewPort data structure. As was explained in
Chapter 1, the ViewPort describes a horizontal slice of the dis-
play that has particular display characteristics, which result
from the way it sets the graphics hardware registers. It is re-
lated to the screen. The fact that this function uses the
ViewPort should remind you that the same pen colors are
used by all of the windows in a screen.

To find the address of the ViewPort associated with a par-
ticular window, use the Intuition library function:

ViewPort = ViewPortAdress(Window);
(do) (a0)

The other values required by this function are the number
of the pen (color register) that you are changing and the red,
green, and blue color values. These values represent color in-
tensity from 0 (darkest) to 15 (brightest).

It is also possible to load several color registers at once
with the routine LoadRGB4. This routine takes the form
LoadRGB4 (ViewPort, Colormap, Pens);

(a0) (a1 (d0)
where Colormap is a pointer to a table of 16-bit color values,
stored in the format 0xORGB, where the high four bits
(nybble) are always zero, and the next three nybbles each hold
a 4-bit value for red, green, and blue intensity. The Pens value
specifies the number of registers to load from the table. Colors
are always assigned in order, starting with pen 0, then pen 1,
and so on.

In Amiga BASIC, you set the color for each pen with the
PALETTE statement. The syntax for this statement is

PALETTE pen_number, red_value, green_value, blue_value

The value pen_number specifies the color register whose
color you wish to change. The values red_value, green_value,
and blue_value are the levels of each of these three primary

76

-

[

;

1l

1

]

1

]

l

]

]

Drawing Lines and Shapes

colors you wish to use. These are expressed as fractions rang-
ing from 0 (the lowest level, using none of that color) to 1 (the
highest level of that color). Although in theory, the 16 levels
could be represented by dividing by 15, in practice, Amiga
BASIC does not convert the fractions to color levels quite
evenly. Table 3-1 gives the values that we will be using with
the PALETTE statement and the range of values that can be
used to produce the same color level.

Table 3-1. PALETTE Values

Since there are 4096 possible combinations, it is impossi-
ble to describe each available combination or explain exactly
how to find a particular shade. In general, however, the higher
the color level, the brighter the color, and the lower the level,
the darker the color. Whether the color displayed by a register
tends toward the red, green, or blue depends on which value
has the highest brightness level. If all three values are equal,
the color is a shade of gray.

Thus, PALETTE 0,0,0,0 or SetRGB4 (Vp,0,0,0,0) sets pen 0
to black, while PALETTE 0,1,1,1 or SetRGB4 (Vp,0,15,15,15)
sets it to white. You may lighten a shade by increasing the

77

Chapter 3

value of the two other colors in equal proportions. PALETTE
0,1,0,0 or SetRGB4 (Vp,0,15,0,0) sets pen 0 to a bright red,
while PALETTE 0,1,.3,.3 or SetRGB4 (Vp,0,15,5,5) lightens it
to a rose color. To darken the original red color, you could try
PALETTE 0,.5,0,0 or SetRGB4 (Vp,0,8,0,0).

When you are unsure of what colors to mix, it may help
to start with the nearest primary color mixture and experiment
from there. These are the primary color mixtures:

If you do not specify a color change for a particular color
register, the default color will be used. The default values for
each of the 32 pens are listed in Table 3-2. The value given is
that used for the SetRGB4 function, with the BASIC PALETTE
value in parentheses.

Keep in mind that the same color palettes are used by ev-
ery window in a screen. When you change the pen colors with
the PALETTE statement, you affect the color of every window
that appears in the same screen as the current output window.
The change is limited to that screen, however, and windows in
other screens will not be affected.

Locating Color information

Sometimes it is useful for your program to be able to find out
the actual colors that your window is using. This information
can be learned indirectly from the ViewPort data structure. As
we have seen above, you find the ViewPort address by using
the Intuition function ViewPortAddress. One of the members
of the ViewPort struct is a pointer to another data structure
called the ColorMap. In turn, the ColorMap structure contains

78

-

L

—

[

L L

[

v———'~

{

I

Drawing Lines and Shapes

Table 3-2. Default Pen Colors

a pointer to a table of colors called ColorTable. So, to get the
address of this table, you use these statements:

ColorMap = ViewPort->ColorMap;
ColorTable = ColorMap->ColorTable;

Once you find the address of the table, you must know
how to interpret the numbers it contains. The color values for

79

Chapter 3

each pen (color register) are stored in a 16-bit word. The first

word gives the colors for pen 0, the second for pen 1, and so

on. In these 16-bit words, the first four bits are zeros, the next
four represent the red value, the next four the green, and the

final four bits represent the blue color level. So, the hex value
0x0f82 represents a red value of 15, a green value of 8, and a
blue value of 2.

In order to find the colors for a window from BASIC, first
find the address of the window’s ViewPort. To do this, use the
library routine ViewPortAddress. Until now, we have only
used passed values to a library routine. To get a value back,
we must use the DECLARE FUNCTION command. The syn-
tax for this command is

DECLARE FUNCTION FunctionName() LIBRARY
In this case, we would use the statement
DECLARE FUNCTION ViewPortAddress&() LIBRARY

Of course, we must also open the Intuition library with the
statement

LIBRARY “intuition.library”

We must also have an intuition.bmap file in our current
directory to let BASIC know the proper offset for the
ViewPortAddress function. As with previous example pro-
grams, we will include a subroutine in the program below to
create such a file in case the user does not have one. Once this
is done we can find the ViewPort address with the statement

ViewPort& = ViewPortAddress&(WINDOW(7))
From the C language definition of the ViewPort structure,
we can determine that the address of the ColorMap structure

appears at an offset of four bytes from the beginning of the
ViewPort. Thus,

ColorMap& = PEEKL(ViewPorté&+4)

From the definition of the ColorMap structure, we may
also tell that the address of the ColorTable is four bytes from
the beginning of that structure, so

ColorTable& = PEEKL(ColorMapé&+4)

80

L

[

[

L

-

a1 1 1

1

1 1

N

I

Drawing Lines and Shapes

If we put these together, we get the statement
ColorTable& = PEEKL(PEEKL(ViewPort&+4)+4)

Once we have found the address of the ColorTable, we
may use the PEEK function to look at the color settings for the
individual color registers. Program 3-1 shows how to find the
red, green, and blue values for each color register. It uses an
array to translate these values from their normal range 0-15 to
the fractional values used by the PALETTE statement. It prints
a table that shows the PALETTE red, green, and blue values
for each pen.

Program 3-1. Finding Color Values from BASIC

DECLARE FUNCTION ViewPortAddress&() LIBRARY
GOSUB Init

VPA& = ViewPortAddress&(WINDOW(7))
ColorTable& = PEEKL(PEEKL(VPA&+4)+4)

FOR Pen = @ TO 31
Red = PEEK(ColorTable&+2*Pen)
Bluegreen = PEEK(ColorTable&+2*Pen+l)
Green=Bluegreen\16
blue = Bluegreen MOD 16
PRINT "Pen";Pen;
PRINT Colvals(Red),
PRINT Colvals(Green),
PRINT Colvals(blue)
NEXT

LIBRARY CLOSE
END

Init:

DIM Colvals(15)

FOR X=0 TO 15

READ a: Colvals(X)=a
NEXT X

DATA ©,.05,.1,.2,.25,.3,.4,.45,.5
DATA .55,.6,.7,.75,.8,.9,1

Initlib:
CHDIR "ram:" 'put bmap file in RAM:

'‘Create text of .bmap file

fd$="ViewPortAddress"+CHRS(0)
£3$=£d$+CHR$ (254)+CHRS$(212)+CHRS$ (9)+CHRS$ (D)

81

Chapter 3

'print it to the file

OPEN "intuition.bmap" FOR OUTPUT AS 1
PRINT#1, £4$;

CLOSE 1

‘open the library
LIBRARY "intuition.library"
CHDIR "df@:"

RETURN

Drawing Points
The simplest of the drawing commands is that used to set the
color of a single point of the display. The Graphics library rou-
tine used to accomplish this is WritePixel. The format for this
function is
result = WritePixel(RastPort, X, Y);

(do) (a1) (d0) (d1)
where RastPort is a pointer to the RastPort data structure of
the window, and x and y specify the horizontal and vertical
coordinates of the point to be drawn. These x and y coordi-
nates are relative to the top left corner of the window. Their
values, therefore, should be smaller than those of the win-
dow’s boundaries. You may check the size of the window by
looking at the Width and Height values in the Window data
structure.

If the function is successful, it draws the point specified in
the color of the current foreground pen (APen), and returns a
value of 0. If the routine could not draw the point because it
lay outside the area of the rastport, the function returns a
value of —1.

In Amiga BASIC the statements that color a single dot on
the screen are PSET and PRESET. The two statements are
identical, except PSET uses the foreground pen as its default
drawing pen and PRESET uses the background pen. The syn-
tax is
PSET [STEP] (x,y) [,pen]

PRESET [STEP] (x,y) [,pen]

There are two ways of indicating the position at which

you want the dot drawn. The first is to use absolute horizontal

82

L [

[[

[

L [[[[

1

7}

"]

[

N

)

Drawing Lines and Shapes

and vertical coordinates. The horizontal coordinates range
from 0 at the left edge of the screen to a maximum of 631 or
311 at the right edge of the screen for a full-size window, de-
pending on whether your screen is high-resolution or low-
resolution. If you have a sizing gadget in the right border of
the window, the maximum is cut to 617 or 297. The vertical
coordinates range from 0 at the top of the screen to 186 or 386
at the bottom, depending on whether the screen is noninter-
laced or interlaced. If there is no title bar, the coordinate at the
bottom of the screen is 195 (noninterlaced) or 395 (interlaced).
If your window is smaller, of course, you should use values
that are less than the width and height of the current output
window. You can find these values by using the WINDOW(2)
function to return the window’s width and the WINDOW(3)
function to return its height. The x and y coordinates that you
specify are relative to the top left corner of the window, re-
gardless of where the window is positioned on the screen.

To put a white dot (the default color of the default fore-
ground pen) midway down the left edge of the standard out-
put window on the Workbench Screen, you would use

PSET (0,98)

To erase that dot (by drawing over it with the background
pen), you could use

PRESET (0,98)

Relative Coordinates

The other way to specify the point at which to draw the dot is
to indicate that you wish to use relative coordinates by includ-
ing the keyword STEP. Relative coordinates specify a position
relative to the last dot drawn. If none has been drawn yet, the
position is relative to the middle of the output window (in-
cluding the borders). For a full-size low-resolution, noninter-
laced window, for example, this position would be (160,100).
A positive horizontal coordinate indicates that the dot will be
positioned to the right of the last one, while a negative coordi-
nate moves the dot to the left. A positive vertical coordinate
means that this dot is drawn lower than the last one, and a
negative vertical coordinate means it is drawn closer to the

83

Chapter 3

top. For instance, if the last dot drawn was at (100,50), this
statement would draw the next dot at (90,70):

PSET STEP (—10,20)

If the last dot drawn was at position (150,90), this statement
would draw a dot at (110,80):

PSET STEP (—40,—10)

Relative coordinates are extremely useful when you wish
to draw the same image in different places, or when you aren’t
quite sure where the image will be drawn.

Let’s say, for example, that you are drawing an image in a
‘window that has a sizing gadget. If the user leaves the win-
dow alone, the right edge may be at position 600. But if he or
she shrinks the window, its right edge may be only at position
400. You can find the right edge with the WINDOW function
and set the first point accordingly. By using relative coordi-
nates for the rest of the drawing statements, all of them will
then be positioned properly, regardless of where the right edge
of the window is. The other advantage of using relative co-
ordinates is that they can make it easier to change your pro-
gram. If you later decide that you want to move an image over
a few pixels, it is much easier just to change the starting point
than to change the coordinates for every point.

Pen Color

Both the PSET and PRESET statements take an optional pen
value. That value, if specified, selects the pen to be used in
drawing the dot. If none is specified, the PSET statement uses
the color register associated with the foreground pen, and
PRESET uses the color register associated with the background
pen. The foreground and background pen values default to
color registers 1 and 0, respectively. You can change these as-
signments at any time, however, by using the COLOR state-
ment (see below). Note that when you specify the pen to use,
PSET and PRESET can be used interchangeably; the only dif-
ference between them is the default pen that each uses.

84

[

C

([

[

[

[

(

L

]

]

1

]

]

N

]

]

]

Drawing Lines and Shapes

Which Pen?

Sometimes it is useful for a program to be able to tell what
pen was used to color a particular location in a window. The
operating system provides a routine called ReadPixel which
does just that. A call to this function is of the form
Pen = ReadPixel (RastPort, X, Y);

(do) (al) (d0) (d1)
The value RastPort is the address of the window’s RastPort
structure. The x and y values stand for the horizontal and ver-
tical coordinates of the point that you wish to read. If the
point lies within the area of the rastport, the value returned
will be the number of the pen with which the dot is colored. If
the point is out of range of the rastport, a —1 is returned.

In Amiga BASIC, the POINT function returns the same

information. The syntax of this function is

Pen = POINT(x,y)

where x and y specify the horizontal and vertical coordinates
of the point to be read. Like ReadPixel, this function returns
the pen number used to color the point if it lies within the
area of the window. If the point lies outside the current output
window boundaries, the function returns a value of —1.

PSET (100,50),3 ‘Draw at 100,50 with pen 3
Pen& = POINT(100,50) ‘Read dot at 100,50 into Pené
PRINT Pen& ‘Should be 3, for pen 3

This program draws a dot at (100,50) with pen 3, then reads
the pen value at (100,50) into the variable Pen&. The value of
Pen& is printed to confirm that it has read the pen number
correctly.

Drawing Lines and Shapes

Drawing single points is the least of the Amiga’s abilities.
Amiga BASIC and the operating system also contain com-
mands that allow you to draw lines and entire geometric
shapes such as rectangles, squares, circles, ellipses, and poly-
gons at once.

85

Chapter 3

The Graphics library routine that is used to draw lines is
called Draw. A call to this routine looks like
Draw (RastPort, X, Y);

(al) (d0) (d1)
where x and y are the coordinates for the endpoint of the line.
The starting point for Draw depends on the current position of
the drawing pen. This position is also sometimes referred to as
the pixel cursor. Whenever you use one of the drawing pens
to do any drawing, the position of the pen stays at the last dot
that was drawn. For example, if you use WritePixel to color
the dot at position (200,100), the drawing pen is left at that
spot after the dot is drawn.

It is possible to move the drawing pen without drawing
anything. The Graphics library routine Move is used to pick
up the drawing pen and move it to a new location. A call to
this routine takes the form
Move (RastPort, X, Y);

(a1 (d0) (d1)
Therefore, to specify both the starting and ending points of
the line, you must use a call to Move followed by one to
Draw. For example, to draw a line from position (10,15) to po-
sition (100,150), you would use the sequence

Move (RastPort, 10, 15);
Draw (RastPort, 100, 150);

Drawing Lines and Rectangles from BASIC

In Amiga BASIC, the LINE statement is the one you use to
draw lines or rectangles:

LINE [[STEP] (x1,y1)]-[STEP] (x2,y2), [pen—number] [,b [f]]

With the LINE statement, you specify two pairs of coordinates,
one for the starting point and one for the ending point. These
coordinates can be absolute coordinates, relative coordinates,
or a combination of absolute and relative. For example, the
statements

LINE (30,50) - STEP (40,40)
LINE STEP (0,0) - STEP (—40,40)

86

L [

|

[

[

[

[

(

]

]

N

1

]

1

_

1 1

Drawing Lines and Shapes

first draw a line from (30,50) to (70,90) and then draw a line
from that point to (30,130).

The value pen_number can be used to indicate the pen to
use for drawing the line. If no pen is specified, the current
foreground pen is used as the primary drawing pen.

Besides drawing lines, the LINE statement can also be
used to draw rectangles. By adding the letter b after the pen
number (or a comma used as a place holder instead of the pen
number), you can indicate that you want a box to be drawn.
When this option is used, the first pair of coordinates specifies
the top left corner of the box, while the second pair deter-
mines where the lower right corner will be placed. For ex-
ample, this statement draws a box from (100,50) to (150,50) to
(150,100) to (100,100) to (100,50), using the foreground pen
color:

LINE (100,50) - STEP (50,50),,b

If you use the letters bd instead of just b, the box is filled
in with either the foreground pen color or the color of the pen
that you've selected. For more information, see the section
about filled shapes, below.

Lines and Points, Program Examples

To consolidate what we’ve presented so far, here are a couple
of short example programs. Programs 3-2 and 3-4 are written
in C, and Programs 3-3 and 3-5 are in BASIC.

Program 3-2 uses the WritePixel, Move, and Draw routines
to draw three lines in different colors. It uses a window that
sits on the 640 X 200 Workbench screen. Program 3-3 is a
BASIC version and uses PSET and LINE.

Program 3-4 draws the same three lines, only this time a
window opened on a low-resolution screen that has its own
custom color palette. It also uses the ReadPixel routine to read
each dot in a rectangular area that contains parts of the three
lines and then resets each point to a new color. When the
drawing is done in Program 3-5, the program waits for the
user to click the mouse button and then closes the new win-
dow and screen.

87

Chapter 3

Program 3-2. Drawing Lines and Points In C
$include <window.c>

demo()

int y;

SetAPen (Rp,1):
Move(Rp, 59,59);
Draw(Rp,159,100);

SetAPen (Rp,3);
Draw(Rp,59,159);

setAPen (Rp,2):
for (y=50;y<151;y++)
WritePixel(Rp,59,Y):

}

/* end of Draw.c */

Program 3-3. Drawing Lines and Points In BASIC

LINE (50,50)-STEP (198,59)
‘draw first with foreground pen 1
LINE STEP (@,0)-STEP(-100,58),3
'second line drawn with pen 3
FOR y = 50 TO 158
PSET (50,y),2
‘third line with pen 2
NEXT
END

Program 3-4. Drawing Lines and Points on a Low-Resolution
Screen

#include <windowl.c>

demo()

int x,y,Pen;
SetAPen (Rp,1l);
Move(Rp,50,50);
Draw(Rp,150,1900);

SetAPen (Rp,3);
Draw(Rp,50,150):;

88

AN I I I I

[

- CC

[

[

]

I .

.

]

]

-

1

i

2}

Drawing Lines and Shapes

SetAPen (Rp,2);
for (y=50;y<151;y++)
WritePixel(Rp,50,Y):
for (x=48;x<101;x++)
for (y=508;y<151;y++)
{
Pen = ReadPixel(Rp,Xx,Y):
SetAPen(Rp, 3-Pen);
WritePixel(Rp,x,Y):
}

/* end of Drawl.c */

Program 3-5. Drawing Lines and Points in BASIC on a Low-
Resolution Screen

SCREEN 1,320,200,2,1 '320x200 low-res, 4 color Screen

WINDOW 2,,,0,1 'Full-screen window, no gadgets
PALETTE 0,1,1,1 'White background

PALETTE 1,1,0,0 'red

PALETTE 2,9,1,0 ‘green

PALETTE 3,90,0,1 ‘'blue

‘draw lst with foreground pen (1)
LINE (50,50) - STEP (100,50)
‘'second line drawn with pen 3

LINE STEP (@,0) - STEP (-100,59),3
FOR y = 50 TO 150

PSET (50,y),2 'third line with pen 2
NEXT
FOR y = 50 TO 150
FOR x = 49 TO 100
Pen = POINT(x,y) ‘read pen for each point
PSET (x,y), 3-Pen ‘'and complement
NEXT x
NEXT y

WaitForClick: IF NOT MOUSE(@) THEN WaitForClick

WINDOW CLOSE 2 'close the window
SCREEN CLOSE 1 ‘and the Screen
END

89

Chapter 3

Drawing Polygons

One of the Graphics library routines, PolyDraw, can be help-
ful in drawing shapes composed of a number of connected
lines. You give this routine a list of points on the screen as in-
put, and PolyDraw draws a line from the current pen position
to the first point on the list, then from the first point on the
list to the next point, and the next, until lines have been drawn
to all specified points. To call this routine, you use the form

PolyDraw(RastPort, Coordinate_pairs, Array_address);
@b (do) (a0)

where Array_address is a pointer to the beginning address of
an array of (x,y) coordinate pairs. This array holds the x and y
coordinates for a number of points on the screen, stored in the
format of one 16-bit word for the x coordinate followed by an-
other 16-bit word for the y coordinate. Such an array might
look like this:

WORD points_array [] =

{
180,50,

210,80,

10,120,

180,150,

100,150,

70,120,

70,80,

100,50,

10,10
Y

The variable Coordinate_pairs holds the number of (x,y)

pairs in the array. Since it takes two words of data to describe
each point, the number in Coordinate_pairs should be half as
large as the total number of words in the array. In the above
example, 18 words are used in the array to describe nine points,
so 9 is the appropriate number to use for Coordinate_pairs. A
PolyDraw using this array would look like this:

PolyDraw (RastPort, 8, &points_array[0]);

To use the PolyDraw routine from BASIC, you must first
open the Graphics library with the statement

LIBRARY “graphics.library”
90

L L

(.

[[

|

[

| I S

-

[BTN S B R

Drawing Lines and Shapes

(Note: When this LIBRARY statement is used, BASIC gets
information about the location of the system graphics routines
from a file called graphics.bmap. This file is included on the
Amiga BASIC disk, in the BasicDemos directory, and must be
present in the current disk directory when the program con-
taining the LIBRARY statement is run.)

Once the library is open, you can call PolyDraw with the
BASIC statement

CALL PolyDraw& (RP&, Coordinate_pairs, Array_address)

where RP& is the rastport address of the window, which can
be found with the WINDOW(8) function. The other values
specify the points to be drawn.

To use PolyDraw, you must first set up an array of short
integers. This array must hold the coordinates of each point
which is to be connected by a line. For instance, if you wanted
to use PolyLine to draw a line from the current pen position to
(100,100), then to (120,70), then to (90,50), you could set up
an array called POINTS%(), where POINTS%(0)=100,
POINTS%(1)=100, POINTS%(2)=120, POINTS%(3)="70,
POINTS%(4)=90, and POINTS%(5)=50. You would then call
PolyDraw with the statement

CALL PolyDrawé& (RPé&,3, VARPTR(POINTS%(0))

The number 3 indicates that there are three pairs of co-
ordinates. It is important to remember that the proper figure
for the Coordinate_pairs value is not the size of the array, but
the number of coordinate pairs (half the size of the array). The
second value to pass is the address of the array, which can be
found by using the VARPTR function.

PolyDraw uses the current location of the drawing pen as
its starting point. This location depends on where the last
point was drawn; if none was drawn, it defaults to (0,0).
Rather than leaving things to chance, you will probably want
to move the pixel cursor to the correct starting location before
calling PolyDraw. This can be accomplished with a call to
Move, a Graphics library routine that was described above.
The proper way of calling this routine from BASIC (once the
Graphics library has been opened, of course) is

CALL Move& (RP&, x&,y&)
91

Chapter 3

where RP& is the address of the window RastPort (WIN-
DOW(8)), and x& and y& are the horizontal and vertical co-
ordinates at which the pixel cursor is set.

Although Move does not seem to have any effect on rela-
tive coordinates used with LINE and PSET (BASIC appears to
keep track of its own internal pen position), it has a definite
effect on the positioning of BASIC text. Preceding a PRINT
statement with a call to Move allows you to position text at
precise coordinates, rather than at a particular character
position.

Drawing Octagons Using PolyDraw

Program 3-6 shows how to draw an eight-sided figure using
PolyDraw from BASIC. It uses a custom low-resolution screen
and shows how to use the COLOR statement with CLS to
clear the window to a particular color. Program 3-7 is a similar
program written in C.

Program 3-6. Using PolyDraw from BASIC
LIBRARY "graphics.library"

SCREEN 1,320,200,4,1

'320X200 low-res, 16 color screen
WINDOW 2,,,9,1

'Full-screen window, no gadgets
Rp&=WINDOW(8)

'Window's RastPort address

COLOR 92,1

'foreground to red, back to white
CLS

'clear screen to white

DIM points%(16)
FOR p=@ TO 15
READ 4
points%(p)=d
'put coordinate pairs in array

NEXT
DATA 180,54, 210,80, 210,120, 180,150
DATA 100,150, 70,120, 70,80, 100,50

CALL Move& (Rp&,100,50)

'move pixel cursor

CALL PolyDraw& (Rp&,8,VARPTR(points%(@)))
‘draw polygon

92

L

[

B .

[

[

[

P

]

]

1

_}

|
|

1

)

Drawing Lines and Shapes

WaitForClick: IF NOT MOUSE(@) THEN WaitForClick

WINDOW CLOSE 2
SCREEN CLOSE 1

END

Program 3-7. Using PolyDraw from C
#include <windowl.c>

demo()

static UWORD Points [] =

189,50,
219,80,
210,120,
180,150,
109,150,
70,128,
79,88,
100,508

.
’

SetAPen (Rp,1);
Move(Rp, 100,50);
PolyDraw(Rp, 8, &Points);

}

/* end of Polydraw.c */

Circles

In addition to the line drawing functions provided by the

Graphics library, BASIC provides a CIRCLE statement, which

can be used to draw circles, ellipses, and arcs. The syntax is

CIRCLE [STEP] (x,y),radius [[pen_number [start_angle,
end_angle [,aspect_ratio]]]

The only values that are required are the coordinates of the

center point and the radius of the circle. The center coordi-

nates may be expressed as an absolute—such as (50,50),

which indicates a point 50 dots from the left edge and 50 dots

93

Chapter 3

from the top—or relative to the point where the last dot was
drawn—for instance, STEP (50,50), 50 dots to the right and 50
dots below the last position drawn.

After the circle is drawn, the pixel cursor remains at the
center point of the circle, even though no dot is drawn there.
This means that you can draw concentric circles by specifying
a center point of STEP (0,0) for each circle, as the following
program demonstrates:

CIRCLE (100,100), 20
FOR R=27 TO 100 STEP 7

CIRCLE STEP (0,0), R
NEXT

The radius value is the radius of the circle, expressed in
pixels. Note that the vertical radius will probably not be the
same as the horizontal radius. Since there are 640 pixels across
and only 200 lines vertically on the Workbench screen, a circle
that was 100 pixels wide and 100 pixels high would be tall
and skinny, not round. Therefore, the CIRCLE statement auto-
matically scales down the vertical radius to make the circle ap-
pear round. You can change this scaling with the aspect_ratio
value, discussed below.

The pen_number value designates the pen that you want
used to draw to the circle. If you do not specify a pen number,
the foreground pen is used as a default.

The start_angle and end_angle values allow you to draw
only a portion of the circle or ellipse. The values designate the
starting and ending angles of the arc, expressed in radians.
Since there are 2*pi radians in a circle, the permissible values
range from 0 to 2*pi. The point described by a value of 0 is
the rightmost point on the circle, that which we would nor-
mally think of being at 90 degrees. As the value increases, you
move around the circle counterclockwise. The value for the
point at the top of the circle is pi/2, that for the left of the cir-
cle is pi, and that for the bottom of the circle is pi*3/2. To
convert degrees to radians, use the formula

radians = degrees/180 * pi

The starting angle may be smaller than the ending angle,
but in either case, the arc will be drawn counterclockwise.

94

[

I T

[

]

)

B

]

P B B B

]

Drawing Lines and Shapes

This means that the statement
CIRCLE (100,100), 70,, 0, 3.14*3/2

draws three-quarters of a circle (starting at the right and mov-
ing counterclockwise to the bottom). If you reverse the starting
and ending points, however, the statement

CIRCLE (100,100), 70,, 3.14*3/2, 0

draws only a quarter circle (starting at the bottom and moving
counterclockwise to the right side).

If either the start_angle or end_angle value is negative,
the value will be treated as if it were positive, but that position
on the arc will be connected by a line to the center of the cir-
cle. For example, this statement produces a wedge, with both
ends of the arc connected to the center point.

CIRCLE (100,100), 70,, -~ 3.14*7 /4, -.01

Reversing the start and end points gives you a circle with a
wedge cut out of it.

The aspect_ratio value describes the scaling used to make
the circle appear round instead of elliptical. Since the standard
Workbench screen is 640 pixels wide, but only 200 lines tall, a
circle which is as many dots tall as it is wide will be tall and
skinny instead of round. So the width is multiplied by the
aspect_ratio value to determine the height. The default value
for a high-resolution, noninterlaced screen is .44, which means
that vertical radius will be 44 percent as large as the horizon-
tal radius. For a low-resolution, noninterlaced screen, the de-
fault is .88, twice as large, because the screen is half as many
dots wide. An aspect_ratio value of less than the default cre-
ates an ellipse that is short and fat, while a value that is
greater than the default creates an ellipse that is tall and
skinny. If the aspect_ratio value is greater than 1, the horizon-
tal radius may be shortened to preserve the ratio of height to
width. This means that the ellipse created by the statement

CIRCLE (100,100), 70 ,,,, 10
will be narrower than the circle drawn by the statement
CIRCLE (100,100), 70

95

Chapter 3

Patterned Lines

Until this point, the lines that we have been drawing have all
been solid. The Amiga graphics hardware, however, is capable
of drawing dotted lines as well. The pattern for line drawing
can be up to 16 dots wide. It is stored as a 16-bit number in
the rastport variable LinePtrn. ‘

Although there is no direct Graphics library routine that
sets the line pattern, the include file Graphics/Gfxmacros.h
contains a macro routine that can be used. This macro routine
directly manipulates the RastPort data structure. To use it, in-
clude the GRAPHICS/GFXMACROS.h file in your program,
and invoke it with a statement like

SetDrPt (Window, Pattern);

where Window points to the address of the Window data
structure, and Pattern is a 16-bit number that represents the
line pattern.

We have discussed in previous chapters the way in which
binary numbers relate to the patterns of color that appear on
the computer display. For example, the number 65,535 in base
two looks like this:

1111111111111111

Imagine this as a pattern for line drawing, where every
one represents a position where a dot will be drawn with the
foreground pen, and every zero represents a position where a
dot will either be drawn with the color of the background pen
or left alone, depending on the drawing mode selected. You
can see that this pattern produces a solid line drawn with the
foreground pen. The number 43,690, on the other hand, looks
like this in binary format:

1010101010101010

This represents a pattern where one dot of foreground color
alternates with one dot of background color, in other words, a
dotted line.

Counting in binary is difficult for most of us, because of
the long string of digits needed to represent relatively small
numbers. The hexadecimal, or base 16, number system is some-
what easier to use when figuring out line patterns, since each

96

I B [

I I

[

[

-

)

J

]

]

—

]

Drawing Lines and Shapes

digit corresponds to four dots. The following table shows the
correspondence between dot patterns and hexadecimal digits:

By breaking the 16-dot mask down into 4-dot groups, we
can figure out the patterns a little more easily. For instance, if
we want a pattern where three dots of foreground color alter-
nate with one of background, we choose the pattern that cor-
responds to E hexadecimal and repeat it four times. The macro
statement to set such a pattern is

SetDrPt (Window, OXEEEE);

The line pattern is used with all operating system and
BASIC instructions that use the hardware line-drawing ca-
pabilities. This includes the BASIC LINE statement and
PolyLine Graphics library routine.

The line pattern also affects the lines that are used to con-
nect the starting and ending arcs to the center when negative
values are used for start_angle and/or end_angle in the CIR-
CLE statement. Normally, you would not be aware of this,
since the pattern is initialized to —1, which is the signed bi-
nary equivalent of 16 binary one bits, representing a solid line
drawn in the foreground color. If you change the line pattern,
however, all lines will be drawn with that pattern until you

97

Chapter 3

change it again. (Note—when you change colors with SetAPen
or SetBPen, it sets the line drawer to restart the pattern—try
this with a 12-dot segment of 15-dot pattern.)

Program 3-8 is a short C language program that demon-
strates the use of the line pattern with the Graphics library
line drawing commands.

From BASIC, you set the line pattern with the PATTERN
statement. The syntax is

PATTERN [line_pattern] [,area_pattern]

The value which determines how lines are drawn is
line_pattern. The other value, area_pattern, is used for pattern
fills; it will be discussed in the section “Filled Shapes” that ap-
pears below. The line_pattern value is an integer expression
that describes a mask that is 16 dots wide. For example, the
BASIC equivalent of the SetDrMd example given above is

PATTERN &HEEEE

Program 3-9 is a BASIC program; note the affect PAT-
TERN has on the line drawing. When you want to switch back
to drawing a solid line, use PATTERN —1.

Program 3-8. Line Patterns in C

#include <windowl.c>
#include <graphics/gfxmacros.h>

demo()

int line;
static UWORD Points [] =
{

180,50,
210,80,
210,120,
180,159,
100,150,
70,129,
70,80,
100,50

!

SsetAPen(Rp,1);
SetBPen(Rp,2);
SetDrPt(Rp, 9xFOFD) ;

98

N I

[

[[

!

[

|

[

]

I

1

]

Drawing Lines and Shapes

Move(Rp, 108,50);
PolyDraw(Rp, 8,&Points);

for (line=2; line<7; line++)

SetAPen(Rp, line);
SetBPen(Rp, line+l);
Move(Rp,10@,1line*20+20);
?raw(Rp,lBﬂ,line*20+2ﬂ);

Program 3-9. Line Patterns from BASIC
LIBRARY "graphics.library"

'Make output window full size
WINDOW 1,,(@,0)-(617,186),31,-1

Rp&=WINDOW(8) 'Window's RastPort address

DIM points%(16)
FOR p=@ TO 15
READ 4
points%(p)=4d
NEXT
DATA 180,54, 210,80, 210,120, 180,150
DATA 100,150, 70,128, 70,80, 100,59

PATTERN &HFFQ0 'even stripes
COLOR ,2 'white and black
CALL Move& (Rp&,100,50)

‘draw polygon

CALL PolyDraw& (Rp&,8,VARPTR(points%(@)))

PATTERN &HFFFOQ '‘mostly foreground
‘draw orange and black box
LINE (250,18) - STEP (359,170),3,b

PATTERN &HAAAA ‘dotted pattern
COLOR ,3 'white and orange
LINE (79,190)-(210,40) ‘draw dotted line
PATTERN &HFOFQ 'smaller stripes
COLOR ,0 'default colors

CIRCLE (425,95), 1904,1, -4.71,-3.14
‘circle with wedge removed

END
99

Chapter 3

Drawing Modes

The Amiga graphics drawing routine can operate in two pri-
mary drawing modes, which are mutually exclusive. So far, we
have been doing all of our drawing in the default drawing
mode, but that doesn’t matter much, since the two modes
have the same effect when drawing solid lines. But with the
introduction of patterned lines (and text, as we shall see later),
the subject of drawing modes becomes a good deal more
relevant.

The default drawing mode that we have been using is
known as the JAM2 mode, because in some instances this
mode “jams” both the color of the foreground pen and the
color of the background pen into display memory simulta-
neously. BASIC always selects JAM2 mode, so if you want to
select one of the other modes described below, you must do so
by using the operating system Graphics library routine for
changing drawing modes.

In BASIC, the default color for the background pen is the
same as that of the display background, so it is sometimes dif-
ficult to tell that two colors are being drawn at once. But if
you enter the BASIC statement

COLOR ,3

in immediate mode, it is quite easy to see that both the text
characters and the background are drawn at once (in this case,
white letters on an orange background).

Another case in which the effects of JAM2 mode are evi-
dent is patterned line drawing. In JAM2 mode, all of the bits
of the line pattern that are set to 1 are drawn with the fore-
ground pen, and all of the bits of the line pattern that are set
to 0 are drawn in the background pen. When drawing solid
lines, the JAM2 mode does not quite live up to its name, since
only the foreground pen color is used.

The other major drawing mode on the Amiga is known as
JAM1 mode. As you might have guessed, in JAM1 mode, only
one pen, the foreground pen, is used for drawing. This means
that the area that would normally be drawn in with the back-
ground pen in JAM2 mode is left undisturbed by JAM1 mode.
Using JAM1 mode, it is possible to superimpose text on a

100

N

L

[

1

]

1

B

l

Drawing Lines and Shapes

graphics image without blotting out a rectangular area of that
image. Patterned lines turn out differently in JAM1 mode than
in JAM2 mode, since only the bits of the pattern that contain
ones will be colored, leaving the areas represented by zero bits
as they are. Solid lines are drawn the same as in JAM2 mode,
however, since only the foreground pen is used in either case.

In addition to these two drawing modes, there are two
modes that modify their effect. The first is known as COM-
PLEMENT mode. In this mode, neither the foreground nor
background pen is used. Instead, the color of each screen dot
where a pen was supposed to draw is complemented. To com-
plement the color of a pixel, you invert the bits of its pen
number, changing all the ones to zeros and all the zeros to
ones first.

For those who do not think in binary, another way of
looking at the process is that you take the highest possible pen
number, subtract the pen number of the current color, and
you're left with the pen number of the new color. For instance,
if the window that you're drawing on is attached to a screen
that has three bit planes, there are eight drawing pens. These
pens are numbered from 0 to 7. If you want to find the com-
plement of pen 2, subtract 2 from 7, which leaves 5. If you are
using four bit planes, the highest pen number is 15, so the
complement of pen 2 would be pen 13.

COMPLEMENT mode is useful only with JAM1 mode. If
you add COMPLEMENT mode to JAM2 mode, dots that are
represented by zero bits are complemented along with the
dots represeneted by one bits. The result is that the entire area
is complemented, and you end up with solid lines instead of
patterned lines and solid rectangles instead of text. When
COMPLEMENT mode is used with JAM1 mode, however,
only the area represented by one bits is complemented.

The other mode that can be used to modify JAM1 and
JAM2 is called INVERSVID. Used mostly for text, INVERSVID
reverses the roles of the foreground pen and background pen.
If you use the INVERSVID mode along with JAM1 to draw
text, the background area surrounding the letters will be col-
ored in with the foreground pen, while the area where the

101

Chapter 3

characters themselves would normally be drawn is left un-
touched. If COMPLEMENT mode is added to the combination
of INVERSVID and JAM1, the area that is represented by zero
bits is the one that is complemented. When used with JAM2
mode, INVERSVID merely reverses the colors of foreground
and background pens.

The drawing modes can be set with the operating system
routine SetDrMd (short for Set Draw Mode). A call to this rou-
tine takes the form

SetDrMd (RastPort, Mode);
(al) (do)

From BASIC, the syntax to use is
CALL SetDrMd& (RP&,Mode&)

where RP& is the address of the window’s rastport—WIN-
DOW(8)—and Mode& is a value equal to the combination of
values which represent the various modes desired. While C
programmers can use the names of the modes, which have
been defined in the graphics include files, BASIC programmers
can use the following table to find the correct value for the
modes desired.

You may add these values to form any combination. To
select a combination of JAM1, COMPLEMENT, and
INVERSVID modes, for example, you would use the number 6
(0+2+4).

Program 3-10 is a C program and should help you visual-
ize the effects of the various drawing modes. The Text routine
was used to add text to better illustrate the effects of these
modes. This function is explained more fully in Chapter 4.
Program 3-11 is a similar program written in BASIC.

102

-

[N I

[

B I D R B

I I N B

n

Drawing Lines and Shapes

Program 3-10. Drawing Modes, C Example

#include <windowl.c>
#include <graphics/gfxmacros.h>

demo()

SetAPen (Rp,4):
RectFill(Rp,88,10,247,110);

SetAPen (Rp,2);
SetBPen (Rp,3):
SetDrPt (Rp,dxFF0d);

Move(Rp,29,29);

SetDrMd (Rp,JAM1);

Text(Rp, "This is JAMl mode ",18):
Draw(Rp, 309,20) ; ’

Move(Rp,20,39);

SetDrMd (Rp,JAM1+INVERSVID);
Text(Rp,"This is INVERSE ",17);
SetDrMd (Rp,JAM1);

Draw(Rp, 399,30);

Move(Rp, 20,55);

SetDrMd (Rp,JAM2);

Text (Rp, "This is JAM2 mode ",18);
Draw(Rp, 309,55);

Move (Rp, 20,65) ;

SetDrMd (Rp,JAM2+INVERSVID);
Text(Rp, "This is INVERSE ",16);
Draw(Rp,399,65);

Move(Rp,20,90);

SetDrMd(Rp, COMPLEMENT) ;

Text(Rp, "This is COMPLEMENT mode ",24);
Draw(Rp, 309,99) ;

Move(Rp,20,100);

SetDrMd (Rp, COMPLEMENT+INVERSVID);
Text(Rp,"This is INVERSE ",16);
Draw(Rp, 399, 100) ;

Program 3-11. Drawing Modes, BASIC Example

LIBRARY "graphics.library"
DEFLNG a-z ‘'all long integers

103

Chapter 3

SCREEN 1,320,200,3,1 '320*200 low-res
'8-color screen
WINDOW 2,,,0,1 'full screen window

‘no gadgets

PALETTE 4,1,1,1 'White background
PALETTE 1,1,0,8 'red--foreground pen
PALETTE 2,0,1,8 'green--background pen
PALETTE 3,9,0,1 'blue

PALETTE 4,1,1,8 'yellow--complement
PALETTE 7,9,0,0 ‘'black--complement

Mode$ (0)="JAM1 mode"
Mode$(1)="INVERSID JAM1"
Mode$ (2)="JAM2 mode"

Mode$ (3)="INVERSID JAM2"
Mode$ (4)="COMPLEMENT mode"
Mode$ (5)="INVERSID COMP"

LINE (92,17)- STEP (176,128),3,bf
‘draw blue box for contrast

PATTERN &HFF@@ 'striped pattern

COLOR 1,2 'set colors to red and green

FOR Row = @ TO 5 'for 6 lines
y=((Row\2)+1)*5+(Row MOD 2 = @)
LOCATE y,4 ‘position for print
Mode = (Row\2) - 4*(Row MOD 2 = 1)
CALL SetDrMd& (WINDOW(8),Mode)
‘'set drawing mode
PRINT "This is ";Mode$(Row)
'print text in this mode
LINE (219,y*8-4)- STEP (85,9)
'draw line in this mode

NEXT

WaitForClick:IF NOT MOUSE(@) THEN WaitForClick
WINDOW CLOSE 2

SCREEN CLOSE 1

END

Filled Shapes

Not only can the Amiga graphics routines draw lines and
shapes, but they can fill them with color as well. We have al-
ready seen one example of filled shapes in the BASIC LINE
statement. As you may remember, if you add the letters bf to
the end of this statement, a filled box is drawn. For example,

104

[[[

[[

L

IR

[

B

]

I I

Drawing Lines and Shapes

this statement draws a box that is 200 pixels X 100 pixels,
using the color of the foreground pen:

LINE (20,10) - STEP (200,100),,bf

The operating system routine which performs the equiva-
lent function is called RectFill. The blitter assists this opera-
tion, drawing the filled rectangle almost instantly. The syntax
for this routine is
RectFill (RastPort, X1, Y1, X2, Y2);

(a1) (d0) (d1) (d2) (d3)
where the point X1,Y1 is the location of the upper left corner
of the filled box, and the point X2,Y2 is the location of the
lower right corner. In the default case, the rectangle will be
solidly filled with the color of the foreground pen (APen), but
this may be altered by changing the area pattern and drawing
mode, as we shall see later.

The Graphics library also provides routines that allow you
to create nonrectangular filled shapes. These area fill routines,
as they are called, let you create a list of points to be con-
nected by lines, like the list used by the PolyFill routine. Then,
they use the list both to draw the figure and fill it in, either
with the color of the foreground pen, or using a fill pattern, as
we shall see later.

The area fill routines (and the flood fill routine described
below) require that you set up some temporary work space
before you use them. First, you must declare a data structure
called an Arealnfo structure for use by the rastport and a
buffer area to be used by the Arealnfo structure, like this:

struct Arealnfo Alnfo;
WORD Buffer [200];

Then, you must initialize the Arealnfo structure by calling the
InitArea routine:

InitArea (&Alnfo, &Buffer, Max_points);

where &Alnfo is a pointer to your Arealnfo structure, and
&Buffer is a pointer to the buffer area. The Max_points vari-
able specifies the maximum number of points that can be de-

scribed for your filled area. Since each point uses five bytes,
the maximum number of points equals the size of the buffer

105

Chapter 3

divided by 2.5 (the buffer is composed of two-byte words,
since it must be lined up on a word boundary). In the example
above, the Max_points variable would be set to 80 points, be-
cause there are 200 words (400 bytes) in the buffer area.

After you initialize the Arealnfo structure, you must tie it
into your window’s rastport by pointing the RastPort variable
Arealnfo at the now-initialized structure:

RastPort ->Arealnfo = Alnfo;

The Arealnfo structure is used to store the list of points
that make up your filled shape. But the area fill routines also
need a temporary work space in which to construct the image.
Because we are dealing with windows, the image can’t be
drawn directly on the screen since part of the window may be
obscured. Therefore, the image must be created in a temporary
work space where it can be clipped to fit the window’s display
space upon moving it to the display window. Typically, this
space will be as large as a single bit plane for the screen you
are using so that an image as large as the display may be cre-
ated. Since a single bit plane on the WorkBench screen re-
quires 16,000 bytes, this can be a substantial amount of
memory; you may wish to reduce the size of the buffer some-
what if you know that your image will be smaller.

The graphics work space is associated with a data struc-
ture called a TmpRas structure. As with the Arealnfo structure,
your program must declare a TmpRas structure:

struct TmpRas TRas;

The actual work space associated with the TmpRas struc-
ture must be located in the lower 512K of memory, since the
blitter chip can access only that portion of memory. Although
most people have only 512K of memory (for now, at least), it
makes sense to take the necessary steps to make sure that your
program will work on systems with expansion memory as
well. Therefore, instead of simply declaring an array for buffer
space, you should use the Graphics library routine AllocRaster
to properly allocate an area of graphics memory. This function
is executed with the statement

Raster = AllocRaster (Width, Height);
(do) (d1)

106

[

L [

.

)

]

I

R

]

Drawing Lines and Shapes

The Width and Height variables give the size of the bit
plane to be allocated. The Width is the number of pixels
across, and the Height is the number of lines the display occu-
pies. If the function is able to reserve for itself the proper
amount of chip memory (as the lower 512K is called), it re-
turns a pointer to the beginning of the display bulffer.

So, you might allocate a buffer for the TmpRas structure
as shown below:

PLANEPTR RBuffer;
RBuffer = (PLANEPTR)AllocRaster(640,200);

There are two important points to note about the
AllocRaster function. The first is that if the system is unable to
allocate the necessary memory, the routine returns a zero. You
should therefore check the result of the AllocRaster operation
and abort your program if the buffer cannot be allocated. The
second point is that when you have allocated memory, it is up
to you to free that memory once you are finished with it. This
can be accomplished with the FreeRaster function, which is
executed like this:

FreeRaster(Raster, Width, Height);
(a0) (do) (d1)

where Raster is the pointer returned by the AllocRaster rou-
tine, and Width and Height are the exact same values used by
the original AllocRaster call. If you do not deallocate the mem-
ory, it will continue to be reserved even after your program
ends, so be sure to free all of the memory you have allocated.

Once the buffer is allocated, the TmpRas structure must
be initialized with a call to InitTmpRas:
InitTmpRas (&TRas, Rbuffer, Size);

(@0) (a1) (do)

where TRas and Rbuffer are the pointers to the TmpRas struc-
ture and buffer described above. The Size variable is the size
of the buffer in bytes. Since AllocRaster allocates a bit plane
whose width is measured in bits, you have to convert to bytes
to find the size of the plane. A C macro, RASSIZE, can per-
form the conversion for you. For instance, you could find the
size of a 640 X 200 bit plane with the statement

Size = RASSIZE(640,200);
107

Chapter 3

The TmpRas structure must also be linked into the
RastPort. We can combine both the initialization and linking
steps into one statement:

RastPort->TmpRas = (struct TmpRas *)
InitTmpRas(&TRas, Rbuffer, RASSIZE(640,200));

After you've initialized both the Arealnfo and TmpRas
structures, you may begin using the area fill commands. The
first of these is AreaMove. AreaMove is used to start a new
shape by defining the starting (and ending) point for that
shape. The syntax for this statement is
AreaMove (RastPort, X, Y);

(a1) (do) (d1)
where RastPort is a pointer to the RastPort structure, and x
and y are the coordinates of the point. If another shape is al-
ready in progress when you call AreaMove, that shape will be
completed (but not drawn) and the new one started.

The AreaDraw procedure is used to add another point to
the shape. This procedure can be called with the statement
AreaDraw (RastPort, X, Y);

(a1) (d0) (d1)

Despite its name, AreaDraw does not do any drawing.
The actual drawing does not happen until an AreaEnd state-
ment is executed. The syntax for such a call is
AreaEnd(RastPort);

(a1)

AreaEnd completes the current shape, and causes all of
the shapes that have been defined to be drawn and filled.
Note that unlike PolyDraw, you do not have to define the
endpoint of the shape to get a closed figure. AreaEnd auto-
matically completes the shape by joining the last point defined
to the first one. By default, the area will be solidly filled in the
color of the foreground pen. It is possible, however, to use a
two-color patterned fill, as we shall see later.

Program 3-12 shows all of the steps needed to draw a
filled version of the octagon we drew in the PolyDraw example.

108

[

0

[

[

(-

[

[

[

-

B

]

B

]

]

i

]

v

]

]

Drawing Lines and Shapes

Program 3-12. Filled Octagon, C Example

#include <window.c>

demo()

int count;

UWORD AreaBuf [200];
PLANEPTR TBuf;

struct TmpRas TRas;
struct ArealInfo Alnfo;

static UWORD Points [] =
{

180,59,
219,88,
210,120,
180,159,
100,150,
70,120,
78,80

1

InitArea(&AInfo,AreaBuf, 80);
Rp->ArealInfo = &AInfo;
if ((TBuf = (PLANEPTR)AllocRaster(640,200)) == NULL)
exit (FALSE);
Rp->TmpRas = (struct TmpRas *)InitTmpRas
(&TRas, TBuf, RASSIZE(640,299));

SetAPen (Rp,1):;

AreaMove(Rp,100,50);

for (count=9; count <14; count+=2)
AreaDraw(Rp,Points[count], Points[count+1]);

AreaEnd(Rp);

FreeRaster(TBuf, 640, 200) ;
}

/* end of Areafill.c */

Area Fill from BASIC

The BASIC equivalent of the Graphics library area fill routines
are AREA and AREAFILL. You use AREA like AreaMove and
AreaDraw, to specify each point of the filled shape individ-
ually. The syntax is

AREA [STEP] (x,y)

109

Chapter 3

The only value that you must specify is a coordinate for
one of the points of the filled polygon. This coordinate may be
expressed as an absolute position, for example, (10,20), or rela-
tive to the last point drawn, for example, STEP (10,-20).

To draw a filled polygon with AREAFILL, issue an AREA
statement for each point of the polygon in the order in which
you want the points drawn. You do not have to specify the
starting point twice since the last point will automatically be
connected to the first point. A maximum of 20 points may be
used to define the polygon. If more AREA statements are
used, all but the first 20 are ignored. When enough AREA
statements have been given to describe all of the points in the
polygon, use the AREAFILL statement to connect the points
and fill the polygon.

Program 3-13 is a BASIC program that shows how to
draw a filled version of the eight-sided figure used in the
PolyDraw example.

Program 3-13. Filled Octagon, BASIC Example

FOR p=0 TO 7
READ X,y
DATA 180,50, 210,80, 210,120, 180,150
DATA 100,156, 70,120, 70,80, 100,50
AREA (x,y) 'AREA for each coordinate pair
NEXT

AREAFILL ‘'draw filled shape

Flood Fill

The last of the shape filling commands is a general-purpose
flood fill routine. Unlike the previous commands that we’ve
discussed, a flood fill does not first draw a shape and then fill
it in. Rather, it colors in an existing enclosed area. By default,
the area will be solidly filled with the color of the foreground
pen, but as we shall see later, patterned filling is also possible.
Flood filling operates in one of two modes. In outline

mode, the entire area enclosed by a border of the outline color
is filled. Filling begins at the point which you specify and con-
tinues in all directions. As the fill moves outward, every hori-
zontally and vertically adjacent pixel which is not colored with

110

L

[

[[

(I

[

[

[

-]

]

]

]

Drawing Lines and Shapes

the pen designated as the area outline pen (AOIPen) is filled.
The fill pattern stops spreading at each point where it encoun-
ters a pixel that is the color of the AOIPen. If the area of the
fill is not completely surrounded by the outline color, the fill
will “leak’” out, and the entire window will be filled. We will
discuss how to change the color of the area outline pen in the
next section.

In color mode, all adjacent pixels of the same color are
filled. You designate the point at which filling begins, and
whatever color is located at that point becomes the color which
the fill routine displaces. As the fill moves outward, every hor-
izontally and vertically adjacent pixel which is colored with
the displacement pen is filled. The fill stops spreading at each
point where a pixel drawn in another pen color is encountered.

The syntax for the flood fill routine is

Flood (RastPort, Mode, X, Y);
(a1) (d2) (do) (d1)

where x and y specify the coordinate at which the fill begins,
and Mode specifies the fill mode (0 = outline mode, 1 =
color mode). It is important to remember that like the area fill-
ing routines, Flood uses the Arealnfo and TmpRas structures.
Therefore, you must always initialize an Arealnfo and TmpRas
for the RastPort of a window in which you intend to do flood
filling before any filling actually takes place.

Program 3-14 gives examples of both types of flood filling
in C. It outlines four boxes in white, and then fills them in
various colors, using the outline method. It then fills the cen-
ter box in white and uses the color method to fill all the white
areas on the screen, including the outline of the other four
boxes.

Program 3-14. Flood Fill from C

#include <windowl.c>
#include <graphics/gfxmacros.h>
demo()

int count;

UWORD AreaBuf [208];
PLANEPTR TBuf;
struct TmpRas TRas;

111

Chapter 3

struct ArealInfo AInfo;

static UWORD Points [] = /* coordinates for boxes */

110,20,210,70,
19,79,110,129,
110,120,210,170,
210,70,3190,128

I’

InitArea(&AInfo,AreaBuf, 80);
Rp->ArealInfo = &AInfo;

if ((TBuf = (PLANEPTR)AllocRaster(640,200)) == NULL)

exit (FALSE);
Rp->TmpRas = (struct TmpRas *)InitTmpRas
(&TRas, TBuf,RASSIZE(640,200));

/* Draw four boxes outline in white, */
/* and flood fill them with different colors */

SetOPen (Rp,1):
for (count=@; count<16;count+=4)

Move(Rp, Points[count],Points[count+1]);
SetAPen (Rp,1);

Draw(Rp, Points[count+2], Points[count+1]);
Draw(Rp,Points[count+2],Points[count+3]);
Draw(Rp,Points[count],Points[count+3]);
Draw(Rp, Points[count],Points[count+1]);
SetAPen (Rp,2+(count/4));
Flood(Rp,@,9+Points[count], 9+Points[count+1]);

/* Now, fill the center box with white */
/* and fill all white areas with purple */

SetAPen (Rp,1l):
Flood(Rp,®,178,100); /* use outline fill mode */

SetAPen (Rp,6);
Flood(Rp,1,178,108); /* use color fill mode */

FreeRaster(TBuf,640,200);
}

/* end of Areafill.c */

112

[

[

N R I

-

-

-l

]

b

]

B

1

N

=

Drawing Lines and Shapes

BASIC’s Flood—PAINT

The BASIC version of the flood fill is the PAINT statement,
which supports only the outline mode of filling. The syntax
for the PAINT is

PAINT [STEP] (x,y) [fill_pen [,border_pen]]

The only required value is the coordinates of the point at
which the filling begins. The coordinates may be expressed as
an absolute location or relative to the location of the last dot
that was drawn.

The two optional values that you may specify are
fill_pen, the number of the pen which is used to do the fill-
ing, and border_pen, the number of the pen at which the fill-
ing stops. The default value for the fill_pen is that of the
foreground pen, while the border_pen defaults to the same
value as is currently in fill_pen.

PAINT uses the outline method for filling. If the shape
that you choose to PAINT is not completely enclosed by the
border color, the fill color will escape through the gap and
spread out to cover the entire window. Likewise, if you have
not specified a border_pen that matches the border color, the
fill will proceed right through the border.

There are some more serious concerns associated with
using PAINT. The statement will not work with a window set
for smart refreshing of the screen. If you try to use PAINT in a
window which was opened with an attribute value of greater
than 15, you'll crash the system. Since the default output win-
dow has an attribute value of 31, it is not safe to use PAINT in
that window unless you reopen it with a WINDOW statement
giving a lower attribute value.

Another point to watch for is specifying coordinates for
PAINT that lie outside the window boundaries. This is particu-
larly easy to do when you're specifying relative coordinates.
Such a PAINT statement may fill areas of memory that do not
belong to the display, and this can crash the system.

The following example draws a circle, PAINTS it white,
and PAINTS the rest of the window orange.

113

Chapter 3

WINDOW 1,,(0,)-(300,186),15 ‘Reopen output window to type 15

CIRCLE (150,100),100 ‘draw the circle
PAINT STEP (0,0) ‘fill it with foreground pen
PAINT (0,0),3,1 ‘fill rest of screen with pen 3

Fill and the Area Outline Pen

We’ve talked about the functions of the rastport’s foreground
pen (APen) and background pen (BPen), but so far have only
mentioned the area outline pen (AOIPen) in passing. This pen
has two functions relevant to the fill commands. First, as
noted above, it is used to designate a stop color for the outline
mode of the flood fill command. Second, it can be used to
designate a color to be used for drawing an outline around an
area fill or RectFill shape.

Although there are Graphics library statements that can
be used to change the color of the foreground and background
pens, there is no equivalent statement to change the color of
the area outline pen. There is a C language macro contained
in the file graphics/gfxmacros.h, however, that can be used in
place of such a function. To change the value in the AOIPen,
use the statement

SetOPen (RastPort, pen);

This macro really performs two functions. First, it changes
the value of the AOIPen variable in the rastport. Its second
function is to change the Flags variable, setting a flag called
AREAOUTLINE. This flag indicates that every shape created
by the area fill routine should have an outline drawn around it
in the color of the AOIPen. So, if you set the AOIPen with the
SetOPen macro, you will automatically get outlines around
your area fill shapes. To turn the outlining off, you must use
another C macro statement:

BOUNDARY_OFF (RastPort);

To set area outlines from BASIC, you must use POKEs to
perform the work done by the SetOPen macro. SetOPen does
two things. First, it sets the color in the RastPort variable
AOIPen. Then, it sets the AREAOUTLINE flag (which has a
value of 8) in the Flags variable of the RastPort. Looking at
the C language definition of the RastPort structure, we see that

114

I O R

[

L

1

]

a -

-]

]

n

Drawing Lines and Shapes

the AOIPen variable comes at an offset of 27 bytes from the
beginning of the structure. Since the address of the RastPort is
returned by the WINDOW(8) function, AOIPen = WIN-
DOW(8)+27. Likewise, the Flags variable comes at an offset of
32 bytes from the start of the RastPort, so Flags = WIN-
DOW(8)+32. Once we know these two locations, we can use
the statement

POKE AOIlPen,Pen

to set the color of the area outline pen. We can use the
statement

POKEW Flags, PEEK(Flags) OR 8

to set the AREAOUTLINE flag. Note that we use an OR state-
ment so as not to disturb the other Flags setting, and we also
use a POKEW statement since Flags is a 16-bit variable.

To turn area outlining off, reset Flags with this statement:

POKEW Flags, PEEK(Flags) AND 8

Here, then, is the entire series of statements needed to set
area outlining from BASIC:
AOIlPen = WINDOW(8)+27
Flags = WINDOW(8)+32

POKE AOIlPen, 3 ‘use pen 3 for border
POKEW Flags, PEEK(Flags) OR 8 ‘turn outlining on

Be sure to turn off outlining before your program ends so
as not to disrupt the function of other programs. If you forget,

you may find that text will not be printed properly in the
BASIC output window, and the computer may even crash.

Patterned Fills

We have already seen how the SetDrPt macro could be used
to set a pattern to be used in line drawing. Similarly, the
SetAfPt macro can establish a pattern to be used for filled
shapes.

The process of setting up the fill pattern is a little more
complex since a two-dimensional area is involved. The area
pattern is still 16 bits wide, but it is several lines high as well.
You can choose the height of the pattern yourself, but you
must stick to a power of 2 (2 lines, 4 lines, 8 lines, 16 lines,

115

Chapter 3

and so forth). Since you’re working with a screen with a maxi-
mum height of 200 lines, don’t make the pattern more than 64
lines high.

You may remember that the line pattern is a 16-bit num-
ber that represents a pattern of 16 dots. The area fill pattern
may be thought of as an array of 16-bit patterns, stacked one
on top of the other. You determine the values to be placed in
this array in the same way that you determine the line pattern
value. It may help to visualize the pattern if you write it out in
binary digits, using ones to stand for dots filled with the fore-
ground color and zeros to stand for dots filled with the back-
ground color. For example, let’s look at a pattern that draws
the letters HI:

0000000000000000 = 0x0000
0110011001111110 = 0x667E
0110011000011000 = 0x6618
0111111000011000 = O0x7E18
0110011000011000 = 0x6618
0110011000011000 = 0x6618
0110011001111110 = 0x667E
0000000000000000 = 0x0000

As you can see, we drew the pattern using zeros and
ones, and then converted the resulting binary numbers to
hexadecimal numbers. To set up an area fill pattern using
these values, we first put them in an array:

WORD Pattern [] =

0x0000,
0x667E,
0x6618,
0x7E18,
0x6618,
0x6618,
0x667E,
0x0000

Yi
Then, we use the SetAfPt macro statement
SetAfPt (RastPort, &Pattern[0], Height_exp);
where &Pattern[0] is a pointer to the first byte of the array,
and Height_exp is the exponent part of the height of the pat-

116

[=

[

[

]

-1

2

N

)

Drawing Lines and Shapes

tern expressed as a power of 2. As we have stated, the height
of the pattern must equal 2 raised to some power. So if the
pattern is 8 lines high (2°3), the Height_exp value is 3, and if
the pattern is 32 lines high (2°5), Height_exp is 5.

Once the pattern is set, any RectFill, AreaEnd, or Flood
operation will use this pattern to fill the designated area. The
colors used for the fill will depend on the drawing mode cho-
sen. When JAM2 is selected, the pixels represented by ones in
the bit pattern are drawn in the color of the foreground pen,
and the pixels represented by zeros are drawn with the back-
ground pen. When JAML1 is selected, the pixels represented by
zeros are not affected. And when both JAM1 and COMPLE-
MENT are chosen, the pixels represented by ones will be
complemented.

Program 3-15 demonstrates the use of the area fill pattern
in C.

Program 3-15. Area Fill Pattern from C

#include <windowl.c>
#include <graphics/gfxmacros.h>
demo()

UWORD AreaBuf [200];
PLANEPTR TBuf;

struct TmpRas TRas;
struct ArealInfo AInfo:;

static WORD Points [] = /* coordinates for polygon */
{

195,649,
230,90,
230,130,
195,160,
125,160,
99,1309,
90,90,
125,60

'

static UWORD Patl [] = /* 'HI' fill pattern */
{

9x0000,
9x667E,
9x6618,
Ox7E18,
9x6618,

117

Chapter 3

9x6618,
@x667E,
Ox0000
}:

static UWORD Pat2 [] = /* geometric pattern */

static UWORD Pat3 [] =
{

/*

/*

/*

OxOFFO,
OxFOOF,
@xAAAA,
@x5555,
@xAS5AS5,
@xS5A5A,
OXFOFO,
OxOFIF

’

?x048C,
#x159D,
@x26AE,
@x37BF,
9x3333,
@xAAAA,
@x3C3C,
@xD43D4

12

initialize temporary data structures and buffers */

InitArea(&AInfo,AreaBuf, 80);
Rp->Arealnfo = &AlInfo;

if ((TBuf = (PLANEPTR)AllocRaster(648,200)) == NULL)

exit(FALSE);
Rp~>TmpRas = (struct TmpRas *)InitTmpRas
(&TRas, TBuf,RASSIZE(649,200));

draw a filled triangle with Area commands */

SetAfPt(Rp,&Pat2[@],3);
SetAPen(Rp, 2);
SetBPen(Rp,5);

AreaMove(Rp, 280,100);
AreaDraw(Rp, 280,180);
AreaDraw(Rp, 200,180);
AreaEnd();

draw a filled rectangle with RectFill */

SetAfPt(Rp,&Patl[@],3);
SetAPen(Rp,4):

118

/* random fill pattern */

L

.

|

[

{

I

[

—

[

}

1

B

Drawing Lines and Shapes

SetBPen(Rp,3);
SetOPen(Rp,1); /* outline it in white */

RectFill(Rp,15,15,80,96);
/* Draw a polygon with PolyDraw and Flood fill it */

SetAfPt(Rp,&Pat3[@],3);

SetAPen(Rp,6);

SetOPen(Rp,6);
‘SetBPen(Rp,7);

Move(Rp,125,609);

PolyDraw(Rp, 8, &Points);

Flood(Rp,®,160, 188); /* use outline £ill mode */
FreeRaster (TBuf, 640, 200);

}

/* end of Fillpat.c */

Pattern Fill in BASIC

In BASIC, the same PATTERN statement that is used to set a
pattern for line drawing can also be used to set the pattern for
area filling. The area fill pattern should be stored in an array
of 16-bit (short) integers. First, DIMension the array to a
power of 2. For example, the proper DIM statement for an
eight-element array called Pattern% is

DIM Pattern%:(7)

since the array starts with element 0.

Next, you must determine the values with which to fill
the array, as demonstrated above. Once we have determined
the values for the pattern elements, we assign these values to
the array Pattern%. Then, we set the area fill pattern to the
values stored in this array with the statement

PATTERN ,Pattern%()

When the pattern is set, BASIC makes its own internal
copy of the array. Pattern% is no longer needed unless you
want to set the pattern to another array and change back later.
You may ERASE the array after the PATTERN statement is
given in order to free up memory.

119

Chapter 3

Program 3-16 fills a box with the HI pattern that we de-
signed above. Notice that at the end of the program, we set
the area fill pattern back to a solid pattern. If we had not done
so, the cursor in our default output window would have been
rendered difficult to see. We do not have to change the pattern
back at the end of the next example because it opens its own
window, rather than using the default window. Each window
has its own private line pattern and area fill pattern.

The area fill pattern is used with all of the commands that
produce filled shapes. Program 3-17 demonstrates the three
different kinds of patterned fills: boxes, AREAFILLs, and
PAINTing.

Program 3-16. Filing a Box with a Pattern

WINDOW 1,,(8,08)-(250,186)
'size the output window

DIM pat%(7)

FOR p=1 TO 6
READ 4
pat%(p)=d
'put the pattern into an array
NEXT
DATA &h667e, &h6618, &h7el8
DATA &h6618, &h6618, &h667e

PATTERN ,pat$
'use the pattern for fills
LINE (16,32)-STEP(192,96),,bf

FOR p=@ TO 7
pat3(p)=-1
NEXT
PATTERN -1,pat$
'return the pattern to solid
END

Program 3-17. Boxes, AREAFILLs, and PATTERNSs

SCREEN 1,320,200,4,1
‘l16-color, lo-res
WINDOW 2,,,0,1
'full-sized window

120

DN N N

-

A I A .

]

]

'

1

N

.

)

S B B

;

1

Drawing Lines and Shapes

PALETTE 0,0,0,0
‘black background

DIM pat%(7)
'pattern array has 8 elements

COLOR 9,14
f=@:GOSUB Fillpat
'set pattern

CIRCLE (169,100),70
PAINT (160,100)
'flood fill

COLOR 5,6

f=&HA5A5:GOSUB Fillpat

‘set pattern

LINE (10,10)-STEP(60,98),,bf
'rectfill

COLOR 11,9

f=&H5555 :GOSUB Fillpat
'set pattern

AREA (280,100)

AREA STEP (@,80)

AREA STEP (-80,0)
AREAFILL

'‘area fill

WaitForClick: IF NOT MOUSE(@) THEN WaitForClick

WINDOW CLOSE 2
SCREEN CLOSE 1
WINDOW OUTPUT 1
END

Fillpat:
‘create a repeating or random fill pattern
RANDOMIZE TIMER
FOR p=0 TO 7 .
IF f=0 THEN pat%(p)=RND*60000&-30009 ELSE pat%(p)=f
NEXT
PATTERN ,pat$
RETURN

121

Chapter 3

Multicolor Fill Patterns

So far, we’ve just been using two-color patterns to fill our
shapes. With a little extra effort, however, you can produce a
multicolor fill pattern that fills shapes with as many colors as
your screen allows.

The first step is to create the display data for the pattern.
The process is the same as that for a two-color pattern, except
here you must provide a complete pattern for every bit plane
used. For example, if you are drawing on a screen that is three
bit planes deep, and you want to create a fill pattern that is
two lines high, you must supply six words of pattern data. The
first four words in the pattern are drawn in plane 0, the next
four words in plane 1, and the last four in plane 2. Therefore,
if your data looked like this, the top line of the pattern would
be one solid color, and the bottom line would be another solid
color:

UWORD Filpat[] =
0x0000, /* data for plane 0 */

0x0000,

0x0000, /* data for plane 1 */
Oxffff,

Oxffff, /* data for plane 1 */
Oxffff,

To find out which color is used, we group the correspond-
ing bits from each plane as three-bit numbers. In this example,
the bits from the top line of planes 0 and 1 are all set to 0.
That means the rightmost two digits of the number will be 0.
The bits from the top line of plane 2 are all set to 1. That
means the leftmost digit of the number will be 1. Therefore,
the pen number used to color the top line of the pattern will
be 100 binary, or 4. The bits from the second line of the pat-
tern are set to 1 (plane 2), 1 (plane 1), 0 (plane 0). This is
equivalent to the binary number 110, or 6, so pen 6 will be
used to color the bottom line of the pattern.

The other step you must take is to specify the Height_exp
value as a negative number. In the example above, the height
of the pattern is 2 (2°1), so Height_exp would normally be 1.

122

SR A

l

-

]

Drawing Lines and Shapes

]

But since this is a multicolor pattern, we specify the height ex-
ponent as —1 instead. The SetAfPt macro statement for this
example would look like this:

SetAfPt (RastPort, &filpat, —1);

Program 3-18 is a C program that sets up an eight-color
fill pattern on our low-resolution custom screen. The pattern is
in the shape of a grid, with four rows of two colors each. Sam-
ple shapes are created using all three fill modes, rectfill, area
fill, and flood fill.

1

)

=

Program 3-18. Shapes with Multicolor Patterns, C Example

#include <windowl.c>
#include <graphics/gfxmacros.h>
demo()

UWORD AreaBuf [200];
PLANEPTR TBuf;

struct TmpRas TRas;
struct ArealInfo AInfo;

static WORD Points [] = /* coordinates for polygon */

195,60,
230,90,
239,139,
195,164,
125,160,
90,130,
9”,99,
125,60

sta?ic UWORD Pattern [] = /* grid fill pattern */

Ox0000, Ox0000, 0x0000, Ox0000,
OxFFFF, OxFFFF, OxFFFF, OxFFFF,
Ox0000, 0x0000, 0x0000, Ox0000,
OxFFFF, @xFFFF, OxFFFF, OxFFFF,

1

ox0000, 0x0000, 0x0000, 0x0000,
0x0000, 0xP000, Ox0000, Ox0000,
@xFFFF, @xFFFF, @OxFFFF, OxFFFF,
OxFFFF, OXFFFF, OxFFFF, OxFFFF,

]

OxFF00, OxFFO0O, OxFFO0, OxFF0Q,
OxFF00, OxFF00, OxFF@0, OXFFOQ,
OxFF00, OxFFO0@, OxFFO00, OXFF00Q,
OxFF00, OxFFOO, OxFF00, OxFFO0

!’

1

]

123

Chapter 3

/*

/*

/*

/*

/*

}
/*

initialize temporary data structures and buffers */
InitArea(&AInfo,AreaBuf, 80);
Rp->ArealInfo = &AlInfo;
if ((TBuf = (PLANEPTR)AllocRaster(640,200)) == NULL)
exit (FALSE);
Rp->TmpRas = (struct TmpRas *)InitTmpRas
(&TRas, TBuf, RASSIZE(640,2008));
set pens, drawmode, .and fill pattern */
SetAfPt(Rp,&Pattern[0],-4);
SetAPen(Rp, 255);
SetBPen(Rp,d):;
SetDrMd(Rp, JAM2) ;
draw a filled triangle with Area commands */
AreaMove(Rp, 280,109);
AreaDraw(Rp, 280,189);
AreaDraw(Rp, 200,180);
AreaEnd();
draw a filled rectangle with RectFill */
SetOPen(Rp,1); /* outline it in white */
RectFill(Rp,15,15,80,96);
Draw a polygon with PolyDraw and Flood fill it */
SetOPen(Rp, 255);
Move(Rp,125,60);
PolyDraw(Rp,8,&Points);
Flood(Rp,9,160, 160); /* use outline fill mode */

FreeRaster(TBuf, 649, 200) ;

end of Colorpat.c */

Multicolor Fill Pattern from BASIC

Using a multicolor fill pattern from BASIC is a bit more diffi-

cult. BASIC uses the PATTERN in place of the SetAfPt macro,
and this command is very particular about the type of input it
receives. It requires that the pattern array you use be DIMen-

sioned to a size equal to a power of 2. But when you use a

124

L L

[

[

[

[

L

-

[

]

o I

1

7]

]

Drawing Lines and Shapes

multicolor fill pattern, you must supply patterns for a number
of bit planes, and each pattern must be a power of 2 in length.
If you want to use a 16-line pattern on a screen that is three
planes deep, you must provide three 16-word patterns, or 48
words of data in all. But if you try to DIMension your array to
48 elements, PATTERN will give you an Illegal function call er-
ror message.

The solution to this problem is fairly simple. You must
DIMension your array to the next largest power of 2. For our
48-word example, you must DIM the array to 64 elements and
fill only the first 48. Remember, since by default arrays start
with element 0, the way to DIM a 64-element array is with the
statement

DIM pat%(63)

Of course, if you have used the OPTION BASE 1 state-
ment to make your arrays start with element 1 rather than ele-
ment 0, you would use the statement

DIM pat%(64)

The other problem is how to set the area pattern size to a
negative number. PATTERN sets the pattern size to the power
of 2 that is appropriate for the size of your array. If you DI-
Mension a 64-element array, it sets the pattern size to 6
(2°6=64). For a 16-line multicolor pattern, you need to specify
a pattern size of —4. Since you can’t DIMension the array to a
negative size, you must take a different approach. The SetAfPt
macro puts the size of the pattern into a rastport variable
called AreaPtSz. The BASIC equivalent would be to POKE this
value into the rastport.

As we have mentioned, POKEing data into Intuition data
structures should not be your first choice of programming
methods, since the possibility exists that the composition of
those data structures will change in the future. As a practical
matter, however, the chance of such a change is slight, and
there is no other way to used multicolor fills from BASIC. So
all that remains is to find the address of the AreaPtSz variable.

From the C declaration for the RastPort data structure, we
~can tell that the AreaPtSz variable is located at an offset of 29
bytes from the beginning of the RastPort. The WINDOW(8)

125

Chapter 3

function can be used to find the address of the RastPort. There-
fore, the address for AreaPtSz is equal to WINDOW(8)+29.

The next problem is POKEing a negative number. Because
of the way that BASIC stores numbers internally, negative
numbers cannot be represented with fewer than 16 bits. The
AreaPtSz variable is only an 8-bit number, however, so we
cannot POKE it with a larger value. So we must cut this nega-
tive number down to size. To do this, we can use the AND
operator to mask off the top 8 bits. The proper expression to
use is the negative number AND 255. Therefore, to POKE the
number —4 into the AreaPtSz variable, you would use the
statement

POKE WINDOW(8)+29, —4 AND 255

The final step is to set the foreground color to the maxi-
mum pen value and the background color to 0 (JAM2 is al-
ready our default drawing mode). The WINDOW(6) function
tells us what the maximum drawing pen number is for that
window. So we can set the pens correctly with the statement

COLOR WINDOW(6),0

regardless of how many bit planes are used by the screen.

From here on in, the multicolor area pattern is used just
like the two-color variety. Program 3-19 is a BASIC program
which uses the eight-color pattern that we created for the C
example (Program 3-18). It fills shapes with this pattern using
all three fill modes (LINE bf, AREA, and PAINT).

Program 3-19. Shapes with Multicolor Patterns, BASIC
Example

O o e oo de de o de de de o e de de e de ke de e de g de e dede de de g de ke ke g de ke de ke K ke ke ok dek ok ok

'* Multicolor pattern fill program

'* uses an 8 color fill pattern to show *

'* how multicolor fills can be performed *

‘* using the AREA, PAINT, and LINE bf *
*
*
*

'* commands
‘e

¥ e de de e ode de de e de de de de de de e o de de e de g d de g de ek de ke ke dede ke ke ke ok kodkok koK

GOSUB InitScreen

' Dimension a 64 byte pattern array,
' and fill first 48 bytes without pattern
' (3 planes of 16 bytes each)

126

[

[

|

A I

L

[

.

1

N

}

3

-l

1

;, ~.

1 1

Drawing Lines and Shapes

DIM pat%(63) ‘dim pattern array

FOR Pbyte=@ TO 47 ‘partially fill array
READ patdat 'with our data
pat3(Pbyte) = patdat

NEXT

PATTERN ,pat$ 'set pattern

ERASE pat$ ‘'we no longer need array

The following code performs the work
of the C Macro SetAfPt (pat%,-3).
Since there is no library call,

we must POKE the size value directly
to the Rastport.

Rp=WINDOW(8) 'Rastport address
AreaPtSz = Rp+29 'Area Pattern size

POKE AreaPtSz,-4 AND 255
'~4 is pattern size,
' 16 words (4"2) per bit plane

REM--Here are the 48 words of data
REM--for grid pattern

'Plane 0

DATA &h@000,&h0000, &h@B80, &h000d
DATA &hffff,&hffff,&hffff,&hffff
DATA &h@000,5h0000,&h@000,&h0000
DATA &hffff,&hffff,&hffff,&hffff

'Plane 1

DATA &h0000, &h@d000, &h0009,&nh0030
DATA &h@000, &h0900,5nh0000 , &hd000
DATA &hffff,&hffff,&hffff,&hffff
DATA &hffff,&hffff,&hffff,&hffff

'Plane 2

DATA &hff@@,&hffd0,&hff00,&hff00
DATA &hff@@,&hff00,&hff00,&hff00
DATA &hff@@,&hff@d,&hff00,&hff00
DATA &hff@@,&hffd0,&hff00, &hf£00

COLOR WINDOW(6),@

'It is important that

'PenA = maxpen, PenB = 0
'Now that the pattern is set up,
'we draw three shapes and use
'different fills to £ill them

127

Chapter 3

CIRCLE (169,100),79
PAINT (160,100) ‘flood fill

LINE (10,10)-STEP(68,90),,bf ‘rectfill

AREA (280,100)

AREA STEP (@,80)

AREA STEP (-80,0)

AREAFILL ‘area fill

WaitForClick:
IF NOT MOUSE(@) THEN WaitForClick

WINDOW CLOSE 2
SCREEN CLOSE 1
WINDOW OUTPUT 1
END

InitScreen:
SCREEN 1,320,200,3,1 '8-color, lo-res
WINDOW 2,,,0,1

PALETTE 0,8,0,0 'black
PALETTE 1,1,1,1 'white
PALETTE 2,0,9,1 'blue
PALETTE 3,1,0,0 'red
PALETTE 4,9,1,8 'green
PALETTE 5,1,1,0 ‘'yellow
PALETTE 6,1,0,1 'purple
PALETTE 7,0,0,1 ‘cyan
RETURN

128

D CCC

[

[

-

[

-

-

D0 a0 3 i e T R B

N I N B

I

Text

e normally don’t think of the text that appears on a

computer screen as graphics, but on the Amiga

there is really very little difference between text

and any other kind of graphics. Since text is
drawn on the screen like any other image, graphics and text
images may be mixed freely. The various display modes dis-
cussed in Chapter 1 and the drawing modes discussed in
Chapter 3 all affect text output.

For C programmers, there are actually two methods of
producing text on the Amiga. The first method is to attach a
console device to your output window. This device provides
an interface much like that of the old style Teletype terminal
(TTY). From the standpoint of the program, text is sent to the
console as it would be to a disk drive or any other device.

The console device takes this text and outputs it sequen-
tially to the screen. It takes care of the details involved in
maintaining a clean display, such as making sure that the bor-
ders are not overwritten, updating the block cursor, returning
to the next line after the end of the current line, and scrolling
the display when the last line is filled. So, while the device it-
self uses the graphics system to render the text on the screen,
your program need not be aware of the details of text drawing.

Although the console device takes care of a lot of the
work involved in text-intensive displays, it also takes over
control of much of the display. For example, with the console
device, you can specify the placement of text only by character
position; you cannot achieve the pixel-by-pixel precision at-
tainable through direct control of text. Graphics-intensive
applications will therefore probably need to take advantage of
the other method of producing text on the Amiga. This
method involves drawing the text on the screen just as you
would any other graphics image.

133

Chapter 4

Text as Graphics

Using the Graphics library routines to draw text is very similar
to using them for line drawing. The basic library routine for
text rendering is called Text; it's executed like this:

Text(RastPort, Text_string,Chars);

(a1) (a0) (d0)
where the variable Text_string points to a string of ASCII
characters, and the variable Chars specifies the number of
characters to be written. The text is printed at the current pen
position. As we mentioned in Chapter 3, this position may be
changed by using the Move() library routine. After the text
has been printed, the horizontal pen position is moved to the
end of the last character printed. The vertical position remains
the same.

When you print text with the Text routine, the size and
position of the text image depends a lot on the font that is
used. The three most important factors to consider are the
height of the font, its width, and the baseline.

The height of the font tells how many lines the characters
in that font occupy vertically. If a font is h pixels high, you
must print each line of text at least h pixels below the previous
line so as not to overwrite part of that line.

The width of the font measures the number of pixels the
average character in the font occupies horizontally. For
monospaced fonts like the two standard system fonts, each
character will actually be that wide. But the Amiga also sup-
ports proportionally spaced fonts in which the widths of indi-
vidual characters may vary. For example, in a proportional
font, the letters i and I can be much thinner than m and w. For
proportional fonts, the width value gives an approximation of
the average character width.

Finally, the baseline value specifies how the character will
be positioned vertically. Since each character can be several
lines tall, there must be some means of deciding if the vertical
coordinate of the character position actually specifies the top
line of the character, the bottom line, or somewhere in be-
tween. The baseline is the font characteristic that specifies how
much of the character extends above the specified vertical po-
sition of the character and how much below.

134

[N I I

[

. C [

[

]

J

]

]

)

)|

S

3

)

Text

The height, width, and baseline values for the font cur-
rently used by a particular window are kept track of in the
RastPort structure for that window. Your program can learn
these values by using the following statements:

Height = Rp->TxHeight;
Width = Rp->TxWidth;
Baseline = Rp->TxBaseline;

The two system fonts that are included in the operating
system are known as Topaz 8 and Topaz 9. The number after
the name of the font designates the height of the font, so each
character of the Topaz 8 font is 8 lines high, and each charac-
ter of the Topaz 9 font is 9 lines high. This means that a maxi-
mum of 25 lines of Topaz 8 characters can fit on a 200-line
noninterlaced screen, while only 22 lines of Topaz 9 characters
fit on the same size screen. The width of Topaz 8 characters is
8 pixels, so a maximum of 80 such characters can fit on a single
high-resolution (640 pixel) line, 40 on a low-resolution (320
pixel) line. Topaz 9 characters are 10 pixels wide, so 64 of them
can fit on a high-resolution line, and 32 on a low-resolution
line.

The baseline for each of these fonts is 6. That means that
each character extends six pixels above the point specified as
the vertical coordinate for the character. In Topaz 8, the sev-
enth line, the baseline, is the last line used to draw most char-
acters, and the final line is usually left blank to leave a space
between lines. Only characters that descend below the line,
such as g and y are drawn down past the baseline. Since the
Topaz 9 has the same baseline, though it is one line taller, it
has two lines below the baseline. This means that even for
characters with descenders, there is a blank line between the
bottom of that character and the top of the character on the
next line.

As with other drawing commands, the Text routine puts
the burden on the user to make sure that the resulting image
lies inside the window boundaries and does not overwrite the
borders and gadgets. Because most of each character appears
above the baseline, you must be sure to leave room for the top
of the character when you position it vertically. This means
that the minimum vertical position for a character is equal to

135

Chapter 4

the baseline. For the default fonts, you should not place a
character higher than line 6, or the top might be clipped off.

Even when you offset your character six lines from the
top, it still will be printed at the top of the window. Unless
you are using a Gimmezerozero type window, in which the
borders are drawn in their own separate layer, your text will
overwrite the title bar. To avoid this, you must offset your line
of text by the number of lines occupied by the title bar. To
find out how much room is taken up by border graphics, you
may use the Window structure variables BorderLeft, Border-
Top, BorderRight, and BorderBottom. For instance, to find out
how much room the title bar takes up at the top of the win-
dow, you could use the statement

BarHeight = Window->BorderTop;
Program 4-1 is a C program that illustrates correct (and
incorrect) placement of text.
Program 4-1. Text Routines in C
#include <window.c>
demo()

UWORD h,b;
BYTE t;

SetAPen(Rp,1);
SetBPen(Rp,d);

h = Rp->TxHeight;
b = Rp->TxBaseline;
t = Wdw->BorderTop;
Move(Rp,50,b);

Text(Rp, "This overwrites the title bar",29);

Move(Rp,50,b+t);

Text(Rp,"This is the first clear line of of text",39);

Move(Rp,58,b+t+h);
Text(Rp,"This is the next line of text",29);

}

/* end of Text.c */

136

[

-

[

1

]

1

]

D

-]

B

]

)

]

Text

Keeping Text in the Window

In order to make sure that your text does not run off the right
edge of the window, you may have to calculate the length of
your text before it is printed. With the monospaced system
fonts, this is simple, because the length of the text in pixels is
eight or ten times the number of characters used, depending
on whether Topaz 8 or 9 is the font used.

With proportionally spaced fonts, the task is harder, since
each character has its own individual width. The Graphics li-
brary provides a function that will perform the calculation for
you. It can be called with the statement

Length = TextLength(RastPort, Text_string,Chars);

(o) @n @0) (o)
where the input is the same as for the Text routine, and
Length is the width of the text line in pixels. TextLength only
calculates what the length of the string would be if it were ac-
tually printed. Since text that goes past the edge of the win-
dow will be clipped, it is possible that the part of the string
that is actually printed is much shorter than Length.

As we mentioned earlier, the colors in which the text is
drawn depend on the same factors as any other drawing, the
colors in the foreground and background pens, and the draw-
ing mode currently in use. In the default drawing mode,
JAM2, the color of the foreground pen is used to draw the text
itself, and the color of the background pen is used to draw the
background behind the text characters.

Text in BASIC

The situation is somewhat different in BASIC, since the PRINT
statement, the primary method for displaying text, works more
along the lines of the console device than the Text() routine.
However, because of the variable size of the output window,
programmers still have some responsibility for making sure
that the text is printed within the confines of the window in
which they are working. For example, try typing the following
one-line BASIC program in the immediate mode:

FOR x=0 TO 255:PRINT x;:NEXT

137

Chapter 4

You'll see that the PRINTed output goes right off the edge
of the screen. To insure that this does not happen in your pro-
gram, use the WIDTH command to set the maximum line
width. When used for this purpose, the syntax of the com-
mand is

WIDTH linesize [,print_tab]

where linesize is the maximum line length, and print_tab is
an optional value that specifies the width of the columns used
when a comma is added to the end of a PRINT statement.

The maximum line length depends both on the width of
your window and the size of the text font that you are using.
If you have set the 80-column font as the default using the
Preferences program, then each character will be eight dots
wide, resulting in a maximum line width of 80 characters for a
high-resolution window and 40 for a low-resolution window.
Actually, since some room is taken up by the border drawn
around the window and the sizing gadget (if present), this will
be reduced to 75 or 76 characters in high resolution and half
that number in low resolution. If you have set the 60-column
font as the default, then the width of each character will be
ten pixels, and the maximum number of characters must be re-
duced accordingly.

This assumes, of course, that you are using a full-size
window and that the window cannot be sized. If this is not
the case, your program may have to check the size of the win-
dow in order to set the output WIDTH. The WINDOW(2)
function returns the current width of the window in pixels.
Therefore, to find the maximum line length, you can divide
the WINDOW(2) figure by 8 or 10, depending on whether you
are using the 80- or 60-column font.

This raises the related question of how your program can
tell which size of system font it is using. The default character
size is determined by the settings of the Preferences program,
so there is no clear way to tell whether BASIC will start up in
the 60-column (9 point) or 80-column (8 point) font. Since
each letter of the former font is larger than the corresponding
character of the latter, text that has been carefully positioned
for one mode might appear completely out of line in the other.

One way around this problem is to find out what size font

138

[[

[

[

[

[

I I R

]

]

i

]

n

L I B B

]

Text

is being used and adjust your program output accordingly. As
we said in the previous section, the height of the text font is
stored in a rastport variable called TxHeight. According to the
definition for the RastPort data structure, this variable comes
at an offset of 58 bytes from the beginning of the structure.
Therefore, a quick, if not elegant, way of finding out the
height of the font being used in the output window is to use
the statement

Height = PEEKW (WINDOW(8) +58)

If Height is equal to 8, you know that the Topaz 8 (80-column)
font is being used, and if it is 9, the Topaz 9 (60-column) font
is the default. A safer alternative, and one that we recom-
mend, is to call the Graphics library routine AskFont. This
routine will be discussed a little later.

Once you have found out what size text is being used by
the program, you can insure accurate placement of text by
using PTAB. The LOCATE statement, which is normally used
for text placement, moves the text cursor to even character po-
sitions. The absolute coordinates of these character positions
may vary according to the size of the text font. But PTAB moves
the text cursor to an absolute pixel location. Its syntax is

PTAB(x)

where x is the horizontal coordinate for the text cursor. If you
wish to position the text at an absolute vertical coordinate as
well, you must use the operating system routine Move, which
was demonstrated in Chapter 3 in the explanation of the Poly-
Draw routine in the “Drawing Polygons’’ section. Remember
that the vertical position you specify will be used to determine
the point where the baseline of the text is placed.

A simpler solution, perhaps, to the problems raised by the
placement of variable-sized text is to have your program itself
open a new window and specify the font to be used in that
window. This procedure is described in the next section.

Like other BASIC graphics figures, the color of text de-
pends on the setting of the foreground and background pens.
You can change the color of text by using the COLOR state-
ment that we described in Chapter 3 to reset these foreground
and background pens.

139

Chapter 4

Changing Fonts
Changing from one system font to another is a multistep pro-
cess. First, you must set up a TextAttr (Text Attribute) data
structure that describes the font that you wish to use. Next,
you must open the font with the OpenFont routine. Then, you
must specify that font as the one currently used by your win-
dow’s rastport with the SetFont routine.
The syntax for the OpenFont routine is

FontPtr = OpenFont(TextAttr);

(o) @0)
where TextAttr is a pointer to a TextAttr data structure. This
structure provides a description of the font that you wish to
open. The C definition for the TextAttr structure looks like
this:
struct TextAttr

{

STRPTR ta_Name;
UWORD ta_Size;
UBYTE ta_Style;
UBYTE ta_Flags;

%

The first field, ta_Name, is where you specify the name
of the font. This name is composed of the lowercase ASCII
characters of the font name, followed by the characters .font,
and ending with an ASCII 0. For example, the correct format
for the name of the system fonts is topaz.font.

The next variable, ta_Size, contains the height of the font
in lines. The ta_Style field contains flags that specify whether
this font is designed as a normal typeface or as a special style
of font. Possible special-style flags include FSFE_NORMAL (0),
FSF_UNDERLINED (1), FSF_BOLD (2), FSF_ITALICS (4),
and FSF_EXTENDED (8).

Finally, the ta_Flags variable contains a number of flags
that provide information about the origin and intended use for
the font. These include FPF_ROMFONT (1), FPE_DISKFONT
(2), FPF_REVPATH (4), FPFE_TALLDOT (8), FPF_WIDEDOT
(16), FPF_PROPORTIONAL (32), FPF_DESIGNED (64), and
FPF_REMOVED (128). The first two indicate whether the font
is in ROM or DISK-based. The next flag specifies that the font

140

[[

I

[

[

[

[

I

I

_J

n

]

]

]

]

]

Text

is designed to be printed from right to left (REVerse PATH).
The next two indicate whether the font was designed specifi-
cally for high or low resolution, interlaced or not. The PRO-
PORTIONAL flag indicates that the width of each character is
specified individually. DESIGNED means that the font was de-
signed and not generated by using some formula to modify an
existing font. Finally, REMOVED means that the font is not
currently linked into the system.

Therefore, to open the standard 80-column text font, you
could use these statements:
Struct TextFont FontPtr;

struct TextAttr StdFont = { “topaz.font”, 8, 0, 0};
FontPtr = OpenFont(&StdFont);

This indicates that you wish to open the Topaz font, eight
lines high, normal style, and with no special preference flags.
The system tries to find the best possible match to your de-
scription. If no match is found, the OpenFont routine returns a
zero. If the font you described, or one close to it, is found, the
routine returns a pointer to the TextFont structure that de-
scribes the font it found. In determining what the best match
is, the system first matches the font name. It then tries to
match the height, style, and flags fields, in that order. You can
check to see whether the font that was found matched your
request exactly by looking at the fields tf_YSize, tf_Style, and
tf_Flags in the TextFont structure that was returned.

Once you're sure that a nonzero pointer to the TextFont
structure was returned by OpenFont, you may use the SetFont
routine to begin using that font. A call to SetFont takes the
form

SetFont(RastPort, FontPtr);

(a1) (a0)
where FontPtr is the TextFont structure pointer that was re-
turned by OpenFont. Program 4-2 shows how to write to a
window using both sizes of the standard system font in the C
language.

Notice that when we finished with the font that we
opened, we used the CloseFont routine, which takes this form:
CloseFont(FontPtr);

(a1)
141

Chapter 4

That’s because OpenFont not only supplies us with the ad-
dress for the TextFont structure, but also marks the font as be-
ing in use by our application. This is significant because the
operating system may unload a non-ROM font (like a disk-
loaded font) if it is not in use and additional free memory is
required. While the system fonts will not be unloaded, it is
nonetheless a good idea to get into the habit of closing fonts
after you are done with them. The exception to this, as we
shall see a bit later, is with disk-loaded fonts under version 1.1
of the operating system, which should not be closed because
of a system bug.

As was pointed out in the last section, if you do not spec-
ify a default font for your screen or window, you will get the
system font set by the Preferences program. You can find out
which font is being used by the current window with the
function AskFont, which takes the form
AskFont(RastPort, TextAttr);

@0) @1
where TextAttr is a pointer to an empty TextAttr structure that
you have set up to receive the information about the current
font. Once the statement has been executed, you can check the
contents of this structure to determine the name, height, style,
and preference flags for the current font. (See Program 4-2.)

Changing System Fonts in BASIC

To specify the font to be used in a window, you must use the
operating system routines OpenFont, SetFont, and CloseFont.
The first step is to use OpenFont to get a pointer to a font de-
scriptor. Since this call returns a value, you must use the DE-
CLARE FUNCTION statement as well as opening the Graphics
library with the LIBRARY statement.

(Remember: When a call to the Graphics library is used,
BASIC gets information about the location of the system
graphics routines from a file called graphics.bmap. This file is
included on the Amiga BASIC disk in the BasicDemos direc-
tory and must be present in the current disk directory when
the program containing the LIBRARY statement is run.)

142

[

Text

. C

/+ ©°3uo3ysis Jo pus 4/

{

! (13d43U04q) FUOISSOTD

£(ey’,ubTY SOUTT 6 ‘3uocy zedol walsks ayzx st STYL, ‘dd)3IXaL
{(g8‘@s Ay)aa0N

{ (x13d3u0g‘dy)3juodlss

{(ISTYI)ITXS (g == I3dIuod) 3IT

! (3uogs&sxy)auoguado(« JUOJIXD] IONIAIS) = I3d3IUOJ

{XLXIS Z¥dOL = 9ZTSX ©3}°3uodsis

! (13d3U0d)3U0IISOTD

{(ev’,ubTy sauTT 8 ‘3uoy zedol wa3Isks ay3x ST STYL, ‘di)Iixal
{(g9'ps 'Ad)anon

! (x13g3u0d ‘dy)3uodlas

{(ISTYd)ITX® (g == I3J3uod) IT

uﬂuco&mhwwvucom:omoaa Juog3lxs] 3IonIjxs) = I3diuod

{(g'Adg)uadglss
{(1'dy¥)uadviss

:{g’'@'XIHOIT 2ZV¥dOdl’,3uo3-zedol,}
= juogsis I133¥3X3] 3IONI3IS OT3Ie3Ss
{13d3U0dy IUOIIXDL IONIIS
}
()owsp
<D °*MOpPUTM> 9pPNTOUT#

D Ul MOPUIM © O} BUUM g7 wpibold

(L - L

143

{

Chapter 4

The proper syntax for the OpenFont call is
FontPtr& = OpenFont&(VARPTR(textAttré&(0)))

The one value that must be supplied to the OpenFont
command is the address of a TextAttr data structure. In
BASIC, this can be set up as a long integer array having two
elements. The first element of the array holds the address of a
text string, ending with an ASCII 0, that names the font. In
the case of the system fonts, the name is topaz.font. The other
element of the array holds the height of the font, the style,
and the preference flags. For our purposes, we can ignore the
style and preference flags. The form of the text attribute array
therefore is
textAttr&(0) = SADD(“topaz.font” + CHR$(0))
textAttr&(1) = height*65536&
where height is either 8 (for the 80-column font) or 9 (for the
60-column font).

Once FontPtr& for a particular font has been found, it can
be used to set that font for use in a particular window with
the SetFont call. The syntax of that call is

CALL SetFont&(Rp, FontPtr&)

where RP is the address of the window’s RastPort structure—
found by the WINDOW(8) function—and FontPtr& is the
pointer found by the OpenFont call.

Finally, when you are through with a font that you've
opened, you should close it with the CloseFont call:

CALL CloseFont&(FontPtré&)

Programs 4-3 and 4-4 are in BASIC. Program 4-3 opens a
window and writes one sentence in each of the two system
fonts. Program 4-4 is an example of using the AskFont routine
to find out which font is currently in use.

Program 4-3. Writing to a Window in BASIC

'This program prints both system fonts
DEFLNG a-z

'all variables default to long integer
DECLARE FUNCTION OpenFont LIBRARY

144

IR I I

[

[

(I |

[

[

]

1

)

]

Text

LIBRARY "graphics.library"

WINDOW 2,"System Fonts",(100,50)-(525,100),12
WIDTH 41

FOR height=8 TO 9
textAttr(@)=SADD("topaz.font"+CHRS (D))
textAttr(1l)=height*65536&
IF FontPtr THEN CloseFont FontPtr
FontPtr=OpenFont (VARPTR(textAttr(g)))
IF FontPtr THEN SetFont WINDOW(8),FontPtr
PRINT
PRINT " This shows the system font";height;
PRINT "points high"

NEXT height

WINDOW OUTPUT 1
END

Program 4-4. Using AskFont from BASIC
'This program identifies the current system font

DEFLNG a-z
'all variables default to long integer
LIBRARY "graphics.library"”

DIM TextAttr(2)
AskFont WINDOW(8),VARPTR(TextAttr(@))
. height = TextAttr(1)\65535&

a=1:x=0

WHILE(a)

'get font name
a=PEEK(TextAttr(0)+x)
IF a > @ THEN n$=n$+CHR$(a)
x=x+1
WEND

PRINT "The current font it '";n$;

PRINT "',":;height;"lines high"

Software-Generated Font Styles

It would be nice if all the style variations for the font you're
using were available as separately defined fonts, but this is
very rarely the case. The operating system can provide some
help, however. It contains a routine that can take the font that

145

Chapter 4

you're working with and algorithmically generate the styles
that are not designed into the fonts. Let’s say that you're using
a normal font, like one of the system fonts, and want to print
italics. The SetSoftStyle routine can take your normal font and
“bend” every character as it is printed, according to a certain
formula, to make it appear as though the font were italicized.
This routine can currently emulate all of the possible styles,
with the exception of extended (which provides expanded, or
double-wide, print). The syntax for the Softstyle call is
Result = SetSoftStyle(RastPort, Style, Enable);
(do) (a1) (do) (d1n)

where Style is the combination of all the flags for the styles
that you want set. For example, if you wanted the text to ap-
pear in boldface (2) and underlined (1), you would set Style to
3. The Enable value is a mask that specifies which of the style
features is to be generated algorithmically (as opposed to style
features that are inherent in the design of the font). After all,
you wouldn’t want to try to italicize an italics font. The Enable
mask should have bits set for each of the styles that can be
generated by the operating system software.

An easy way of discovering what styles can be generated
from software for the current font is to use the AskSoftStyle
routine, which follows this format:

Enable = AskSoftStyle(RastPort);
(d0) (a1)

The Enable value returned by this routine can be used as
the mask for SetSoftStyle, if you want your style setting to af-
fect all possible flags.

You can also use the Enable mask to affect only a single
software style, leaving the rest as they are. This allows you to
make settings cumulative, so if you set underline with one call
and bold with the next, the latter will not cancel out the
former.

The SetSoftStyle routine returns the value Result, which
represents the combination of flags for the style that was actu-
ally generated. This result may be different from the style you
requested if the software was unable to comply with your re-
quest, or if you merely added one flag to the existing settings.

146

I S A

[

[

]

|

.

1

a

i1

]

]

]

Text

Program 4-5 uses the SetSoftStyle routine to change the
font styles of the current system font. Program 4-6 is written
in BASIC and shows how to use the SetSoftStyle routine to
run through all the possible style combinations for the two
system fonts.

Although the operating system does a pretty good job of
manipulating normal fonts to create the various styles, you
may find that if you're writing text a character at a time, some-
times the beginning of one character will blank out the end of
the previous character. The solution to this problem is to join
all the characters that you intend to write on a single line into
one long string before you use Text() to print them. The
Text() routine can adjust the intercharacter spacing if it is
dealing with an entire phrase at once.

Disk-Based Fonts

Using disk-based fonts is very similar to using the system
fonts, but there are some important differences. The first dif-
ference is that in order to use a disk-based font, the data de-
scribing that font must be present on your system disk.

To be more specific, in order to use a disk font, there
must be two files describing that font located in the fonts: di-
rectory. The name fonts: is a logical device name that is as-
signed to the fonts: directory of your system disk at startup
time. The first file has the same format as the name of the font
as specified in the TextAttr data structure. For example, if the
font name is Ruby, there must be a file called ruby.font in the
fonts: directory. This file describes each separate font size and
style available for the font and gives the filenames of the data
files that actually contain the font shape information.

The font data file is the second file that is required. It is
usually located in a separate subdirectory under the fonts: di-
rectory and bears the name of the font size. For example, the
data describing the Ruby font that is eight lines high is found
in the file fonts:ruby/8.

Another important difference between using the system
fonts and disk-based fonts is that you must use the OpenDisk-
Font command to open the font, rather than the OpenFont

147

Chapter 4

routine. The OpenDiskFont command is found in the Diskfont
library, and not the Graphics library. Therefore, to open a disk
font, you must first open the Diskfont library. From C, you
use the OpenLibrary routine to do this, just as you would for
the Graphics library:
DiskfontBase =
OpenLibrary(“diskfont.library”,LIBRARY_VERSION);

The Diskfont library is disk-based, so in order to open it, you
must have the file diskfont.library in the libs: directory of your
system disk. Once you open this library, you have access to
the two routines that it contains. The first is OpenDiskFont.
The format for this statement is similar to that of OpenFont:
FontPtr = OpenDiskFont(TextAttr);

(do) @0)

OpenDiskFont not only returns a pointer to the TextFont
data structure that describes the font, but it also loads the font
into memory from the disk. All of the fonts described in the
fontname.font file are loaded at the same time. Thus, if you
open another size of the same font later, a disk access will not
be necessary.

Once you have opened the font successfully, you may use
it the same way as you would a system font, by executing a
SetFont statement. Program 4-7 shows how to use C to load
the Ruby font from disk and display text in two sizes of that
font.

Notice that we did not close the font after using it. Be-
cause of a bug in the 1.1 version of the system software, a
disk-based font is not correctly purged from the font list when
it is unloaded. This means that a later attempt to access the
font could result in the system trying to use a font that is no
longer there. For the present time, the simplest fix is to leave
the font open. Kickstart versions 1.2 and higher should fix the
bug, so if you're using a version later than 1.1, remember to
close the disk font when you are through with it.

148

-

{

[

[

Text

[

[/« ©°91X38330S JO pus 4/

{

{((s)ustaas’s’‘dy)axaL
{(K'x'dyg)sa0K
}

is, Ieyo
{K'x jut
(s’K’x)3vautad

{

{(259T43s DITVLII pue Q108 Y3oq ST_STUL, ’@zT’QS)3IVIUTIL
{(a1089 dSd ‘@109 4sd ‘dy)sTL3IS3IFosiss

{(w®TA38 DITYLI @Y3 ST_STUL, ‘@aT‘eS)IVIUTII
(56T ‘OITVYLI dsd ‘dy)arX3isigyosiss

‘(491435 QINITYIANN @Y3 ST STUL, ‘@8’@S)IVIUTI
{(9S9C ‘QANITIIANN JSd ‘dy)sTA3IS3IFOsS3Ies

{(w3uo3y wo3lshs ay3z yo 97435 TYWINON Y3 ST STUL,’'P9’@S)IVIUTI
{(g’'Ay)usgdlres
{(1'dy¥)uadvass

Avosmw

<O *MODPUTM> IpNTOUT$

D Ul syuo4 Buibuby) ‘g wpibolid

L [[

149

[

Chapter 4

)

]

]

[N S

NINLTI
INI¥d
9T14&3s IXAN
INT¥d
t,uterd, INI¥d NIHL @=2T1K3S JI
{,ouTTaspun, INI¥d NHHL T ANV 9T&3S JI
!, pTOd, INI¥d NAHL Z ANV 9T143s JI
!, POZTOTTP3II, INIVd NIHL ¥ ANV o143S JI
(ssz‘a1&3S’ (8)MOANIM) °TA31S3J0S3I®S TIVD
L 0L g = ©T&X3s Jod
WUBTY sautod, {3ubray?, ‘3uoy we3sis, ININd
:saT&3s3jutad

anNg
dSOTO XHWILIT
T LNdINO MOANIM

3ybray IXAN
(313d3uU0d)IU0IaSOTD TIVO NIAHIL I33diuod JI
sa1A3s3utad dnsoo
juogsbueyd dNS0O
6 OL 8 = 3ybTay yod
g€ HIAIM
8'(z81’'@@E)-(€'0) ' wS®TAIS pue s3juod, ‘'z MOANIM
JKaeaqrtesotydeab, XIVILIT

AYV¥gIT 3uoguado NOILONNJ dIVIDAA
z-e DNT1J3d

sjuo3y we3lsks yjzoq jo saThas TTe s3utad wexboad sTyl,

2ISVg Ul sjuo4 Buibuby) ‘9-f7 woibBold

]

150

Text

[

{(,ubTy sautT 8 ‘3uoy Aqny peseq-}SIP @Y} ST STYL,’'P9’Hs)IVIUTIA
! (13d3u0g ‘dy¥) 3uodIas

{(ISTYI)ITX® (@ == I3IJIuod) 3IT

! (uodAqnin) JuoINSTAULdO (4 IUOCIIXDL IONAIS) = I3dIUOI

! (g*'dy)uagdlas
{(1'd¥)uadviess

_ {(ISTYA)ITXD (TINN == 9SedgluoIsTd) IT
¢ (NOISYIA XUVHEIT’ ,L1eaqIT°3uoIysTP,)Axeaqrauado
(x Kxeaqi1 3IONI3S) = 95RGIUOIYSTA

t{p'p’'8’ ,quoz Lqna,}
= 3uodiqnyd I33IYIX3L IONAIS DTILIS
{13d3U0dy 3IUOJIXD], IONIIS
}
()owsp

{9segluoINSTdy AIRIqIT IONIIS

<Y*saTIRIqTT/O9X9> SpPNIouT#
<D °MOpUTM> 2pPNTOUT#

D Ul Juo4 b Buippo /-7 WnibBold

NNLIY
3I3d3U0J ’ (8)MOANIM 3IUOIISS NIHL IIdauod JI
(((9)33133¥3IX31)¥LddVA)Iuoguado = I13d3uod
39£6559x3UBTOY=(T)IIIVIXOL
($oweN3Iuod)AqVsS=(@)I3IVIX3L
(@) $9HO+,3uU03 * Zedo] , =4oweN3uod

sjuogabueyd

[- i

151

(

[Y N U0 A T B

/* ©°3UOIYSTA FO pus ,/

{

{((s)usTays’s‘dy)3xal
$(K'x'dg)aa0N
}

is, xeyp
{K'x qut
(s’&’'x)3y3utad

{

! (esegiuoz)s1a)LIRIqITSSOTD

¢ (,ubTy SOUTT ZT1 ‘3uoc3y Aqny poseq-)SIP dY3l ST STUL, ‘'@PT‘GS)IVIUTI]
¢ (x3d3u0d ‘dy) 3uodaas

{(ASTVd)3ITX® (@ == I3d3uod) JFT

¢ (uodhqnyn)juodystquado(x IUOIIXI] 30NnI38) = 1343U0d

{21 = 92TSX e3°*3juogiqny

Chapter 4
152

n

1

S D I

]

al

]

‘_.
|

)

]

Text

Disk-Based Fonts from BASIC

You can use disk-based fonts from BASIC, providing that you
have the diskfont.bmap file necessary to open the library. Pro-
gram 4-8 shows how to create such a file on the RAM: disk. It
displays print in two sizes of the Ruby font. To end the pro-
gram, click the left mouse button while the pointer is in the
display window.

The selection of disk-based fonts available depends on the
files contained in your fonts: directory. The Diskfont library
contains a routine that will let you check what fonts are cur-
rently available. The format for this statement is
Bytes_short = AvailFonts(Buf_ptr, Buf_size, Type);

(do) (a0) (do) dn
In order to use this routine, you must first set up a buffer area
in which to store the font descriptions. The value Buf_ptr con-
tains the address of the first byte of the pointer, and the value
Buf_size contains the size of the buffer in bytes. The Type
variable is used to specify whether you want only the fonts al-
ready loaded into memory listed (1), only the disk fonts (2), or
both (3). The size of the buffer that is needed depends on how
many fonts there are on the disk. If you have only the original
fonts that came on the Workbench disk, a buffer of 1000 bytes
should be plenty. If it turns out that you have not allocated a
big enough buffer, however, the value Bytes_short will be re-
turned, telling you how many more bytes you need for your
buffer.

If your call to AvailFonts is successful, your buffer will
contain a data structure called an AvailFontsHeader, followed
by a data structure called an AvailFonts structure for each of
the fonts that was found. The AvailFontsHeader is just an un-
signed 16-bit value which tells you how many fonts were
found. The AvailFonts structures that follow contain an un-
signed 16-bit value that tells whether the font was found in
memory (1) or on disk (2). This value is followed by the
TextAttr structure that describes the font.

One thing to watch for is duplicate listings for a font. A
disk font that is opened resides in memory at least until it is
closed and possibly longer. Therefore, if you request to see
both the fonts that are loaded into memory and the disk fonts,

153

Chapter 4

you may find one entry for the font in memory and another

for the version that is on disk.

Program 4-9 shows how to use the AvailFonts routine to
get the relevant information about all available disk fonts.

Program 4-8. Creating diskfont.omap

DEFLNG a-2z
'all variables default to long integer

DECLARE FUNCTION OpenDiskFont LIBRARY
GOSUB InitLib

WINDOW 2,"Disk Fonts",(100,50)-(525,100),0
WIDTH 41

FOR height = 8 TO 12 STEP 4
textAttr(0)=SADD("ruby.font"+CHRS$ (0))
textAttr(l)=height*65536&
FontPtr=OpenDiskFont (VARPTR(textAttr(0)))
IF FontPtr THEN SetFont WINDOW(8),FontPtr
PRINT
PRINT " This shows the ruby font":;height;
PRINT "points high"
'IF FontPtr THEN CloseFont FontPtr
' don't close disk fonts when using
'Kickstart 1.1

NEXT height

WaitForClick:
IF NOT MOUSE(@) THEN WaitForClick

WINDOW CLOSE 2
WINDOW OUTPUT 1
END

InitLib:

CHDIR "ram:"

D$="OpenDiskFont"+CHRS$ (4)
D$=D$+CHR$(255)+CHR$(226)+CHR$(9)+CHR$(0)
OPEN "RAM:diskfont.bmap" FOR OUTPUT AS #1
PRINT #1,DS$;

CLOSE #1

D$=D$+"SetFont"+CHR$ (9)

D$=D$+CHRS (255) +CHRS (190) +CHRS$ (10) +CHRS (9) +CHRS (9)

OPEN "RAM:graphics.bmap" FOR OUTPUT AS #1
PRINT #1,D$;
CLOSE #1

LIBRARY "diskfont.library"
LIBRARY "graphics.library"

154

I N

[

B D

s

1

7

.

CHDIR "df@:grafprogs"”
RETURN

Program 4-9. Using AvailFonts from BASIC

DEFLNG a-z
‘all variables default to long integer

GOSUB InitLib

NumFonts= @
Type=0
NamePtr=0
Height=g
n=0:a=0:x=0

DIM Buf%(200)
CALL AvailFonts (VARPTR(Buf%(@)), 400, 2)

NumFonts = Buf%(0)
FOR n = @ TO NumFonts-1

Type = Buf%(1+5*n)
NamePtr = 65536&*Buf%(2+5*n)+Buf%(3+5*n)
Height = Buf%(4+5*n)

' Style = Buf$%(5+5*n)\256

Flags = Buf%(5+5*n) AND 255

a=1l:x=@:D$=""

WHILE(a)
a=PEEK(NamePtr+x)
IF a>@ THEN D$=DS$+CHRS$(a)
x=x+1

WEND

PRINT D$;Height
NEXT n

END

InitLib:

CHDIR "ram:"

D$="AvailFonts"+CHRS$ (Q)
D$=D$+CHR$ (255) +CHRS (220) +CHRS (9)
D$=D$+CHR$(1)+CHR$(2)+CHR$(0)

OPEN "RAM:diskfont.bmap" FOR OUTPUT AS #1
PRINT #1,DS$;

CLOSE #1

LIBRARY "diskfont.library"
CHDIR "df@:grafprogs"
RETURN

Text

155

D0 a0 3 i e T R B

]

1

1]

[R B

]

]

Drawing and Manipulating
Image Blocks

o far, we’ve looked at the process of drawing images point

by point. In this chapter, we'll explore methods of trans-

ferring an entire image—a whole block of data bytes—

to the screen at once. Most such methods on the Amiga
involve the use of the blitter, the powerful data-moving hard-
ware chip.

Not only does the blitter move data at blinding speed, it
also can combine and manipulate data from several different
sources at once. This allows it to pick out just the bits that
form the image and move them, leaving the background.data
behind.

The one disadvantage to using the blitter is that it, like
the other special hardware chips in the Amiga, can access only
the first 512K of memory. This may not seem a significant
problem to those who have not expanded their systems with
external memory. However, as expansion becomes more com-
mon, the use of chip memory, as it is called, will become a
more important consideration. You should keep in mind that
image data may have to be stored in chip memory in order for
the routines described below to function correctly.

Therefore, to insure that your program will work correctly
with expanded systems, you must take steps to make sure that
this data will be loaded into the lower 512K. There are at least
two methods of doing so. '

The first method is to have your program allocate chip
memory using the AllocMem routine, and then copy your data
to that memory. This works, but is inefficient because you end
up having two copies of the data in memory at once. If you
are using a compiler that works with the Alink linker, you
probably have access to the Atom utility program. This pro-
gram allows you to specify the kind of memory into which
certain segments of object code must be loaded. Compiler’s
other than Amiga C (such as the Manx Aztec C Compiler)

159

Chapter 5

usually include an option which allows initialized data to be
loaded into chip memory. Using the Atom utility, or the equiv-
alent provided by your compiler and linker, is the preferred
method of making sure that your data ends up in chip memory.

Filling Memory
One of the simplest tasks that the blitter can perform is to fill
a block of memory with a given number. This can be useful,
for example, in clearing the screen or in setting an entire
rastport to a certain color. The SetRast Graphics library routine
allows you to do the latter. The format of this statement is
SetRast (RastPort, Pen);

a1 (do)
where Pen is the number of the pen (color register) whose
color you wish to use to fill the rastport.

The BASIC equivalent of SetRast is the CLS statement
that clears the screen. It will set the current window to what-
ever color is in the background pen, which is set by the sec-
ond value in the COLOR statement.

The blitter can also be used for tasks like clearing memory
that is not used for the display. The BltClear statement will fill
a contiguous block of memory with zeros. The syntax of this
statement is
BltClear (Memory, Bytes, Flags);

(al) (d0) (dD
where Memory is a pointer to the block of contiguous mem-
ory, and Bytes specifies the number of bytes to clear. The
Flags value determines how bytes are counted. If bit 1 of this
value is clear (Flags AND 1=0), Bytes is used to specify the
number of bytes to clear. The number of bytes must be even.
If bit 1 of Flags is set, however, the lower 16 bits of Bytes
specify the number of bytes per row, and the upper 16 bits
specify the number of rows to clear. In this mode, the number
of bytes per row must be fewer than 129, and the number of
rows must be fewer than 1025. By setting bit 0 of Flags, you
may force the BltClear function to wait until the blitter is fin-
ished clearing the memory before returning back to the pro-
gram that called it.

160

[[

[

[[

L [[[

1

I I

B I

N

Drawing and Manipulating Image Blocks

Scrolling

Another of the tasks that the blitter can perform is to scroll a
rectangular area of a window horizontally, vertically, or both
at once. The Graphics library routine that is used for this pur-
pose is called ScrollRaster, and it takes the following form:

ScrollRaster (RastPort, Dx, Dy, X1, Y1, X2, Y2);
(a1) (d0) (d1) (d2) (d3) (d4) (d5)

where Dx and Dy are the horizontal and vertical offsets, X1
and Y1 describe the top left corner of the rectangle, and X2
and Y2 specify the bottom right corner of the rectangle.

When you scroll a rectangle, only the data inside the rect-
angle moves. .You can think of the process as chopping off one
edge of the rectangle and moving the rest over to fill the part
that was chopped off. The vacant area that was created by
moving the rectangle is then filled with the color of the back-
ground pen. The Dx and Dy offsets specify how far a distance
(in pixels) the rectangle is to be moved, and, consequently,
how many pixels will be lost. If you wish to move it to the
right, Dx should be negative; if you wish to move it to the left,
Dx should be positive. Similarly, if you wish to move the rect-
angle down, use a positive Dy value, and if you want to move
it up, use a negative Dy. For instance, if you specify a Dx of 2
and a Dy of 0, the rectangle will scroll two pixels to the left.
The leftmost two pixels of image data will disappear off the
edge, and the rightmost two pixels will be filled in background
color.

If there is an area of background color surrounding the
rectangle that you scroll, the image will appear to move
smoothly. Written in C, Program 5-1 scrolls some colored rect-
angles around the screen.

Scrolling in BASIC

The BASIC statement SCROLL performs the same task as
ScrollRaster. The syntax is

SCROLL rectangle, x_offset, y_offset

The rectangle value specifies the coordinates of the upper left
and lower right corners of the area to be scrolled. It is ex-
pressed in the form

161

Chapter 5

(left,top)-(right,bottom)

where left and right are the horizontal coordinates, and top
and bottom the vertical coordinates. These are always expressed
as absolute coordinates and cannot be expressed relative to the
last position drawn, as the drawing commands can be.

The x_offset and y_offset values show how far to move
the designated area horizontally and vertically. The image data
for the edge of the rectangle that moves will be lost. The area
from which the rectangle is moved will be filled in back-
ground color.

Program 5-2 roughly mimics the main action of the arcade
game Space Invaders by scrolling a group of shapes from side
to side and steadily downward.

Program 5-1. Scrolling in C

#include <windowl.c>
#include <graphics/gfxmacros.h>

?emo()
int Row, Col;

SetAPen (Rp,4):
for (Row=1l;Row<5;Row++)

for (Col=@;Col<8;Col++)
RectFill(Rp,Col*30,Row*2@,Col*3@+203, Row*20+12);

Row=10;
w?ile (Row<100)

for(Col=@; Col<8l; Col++)
scrollRaster (Rp,-1,9,Col,Row,Col+230,Row+82);
ScrollRaster (Rp,%,-10,80,Row,Col+318,Row+92);
Row+=10;

for(Col=@; Col<8l; Col++)
ScrollRaster (Rp,1l,0,808-Col,Row,318-Col,Row+82);

ScrollRaster (Rp,9,-10,8,Row,230,Row+92);
Row+=10;

/* end of Scroll.c */

162

I I

[[

[I I

[

]

Drawing and Manipulating Image Blocks

Program 5-2. Scrolling in BASIC

'Box Invaders

SCREEN 1,320,200,2,1 'lo-res, 4-color Screen
WINDOW 2,,,0,1 'full-size window
PALETTE 9,0,0,0 'black background
PALETTE 2,1,.2,.2 'red
FOR Row = @ TO 3 ‘draw 4 rows

FOR Column = @ TO 7 'of 8 boxes

LINE (Column*30,Row*20)- STEP (20,12),2,bf
NEXT Column, Row

inc=-1: Column=-1

FOR Row= @ TO 11
Column = Column-SGN(Column)
inc = -SGN(inc)
'move boxes vertically
SCROLL (Column,Row*1@)-(Column+230,Row*10+82),0,10

FOR Column = @-80*(inc = -1) TO 8@+80*(inc=-1) STEP inc

‘move them horizontally
SCROLL (Column,Row*18)-(Column+230,Row*10+82),inc,d
NEXT Column, Row

WaitForClick: IF NOT MOUSE(@) THEN WaitForClick

WINDOW CLOSE 2
SCREEN CLOSE 1
WINDOW OUTPUT 1
END

Copying Images
A more sophisticated blitter operation involves copying a rect-
angle of data from one area of a raster and moving that data
to another part of the same raster or to another raster. Not
only can the blitter make an exact copy of the original data, it
can also combine that data in various ways with the data that
already exists in the destination area.

The command used to copy a rectangular area of a raster
bears the euphonious appellation ClipBlit. The format for this
call is

ClipBlit
(SrcRp,SrcX,SrcY,DestRp,DestX,DestY, Width, Height, Minterm);
(a0) (do) (d1) (a1 (d2) (d3) (d4) (d5) (d6)

163

Chapter 5

As you can see, there are quite a few values that you must
pass to this routine. The SrcRp and DestRp values are pointers
to the rastports that contain the source rectangle (the area that
you are copying) and the destination rectangle (the area to
which you are copying it). SrcX and SrcY describe the coordi-
nates for the upper left corner of the source area, and DestX
and DestY specify the upper left corner of the destination area.
Width and Height specify the size of the rectangle.

The final value, Minterm, is an eight-bit number that de-
scribes the kind of logic operation performed on the data in
the source rectangle and the destination rectangle to achieve
the final output rectangle. Only the high four bits are signifi-
cant. The meaning of each bit is as follows:

In these logic terms, B stands for data in the source rect-
angle, and C stands for data in the destination rectangle. The B
with a line over it stands for NOT B, and the C with a line
over it stands for NOT C. By combining the logic terms repre-
sented by the component values of Minterm, we can solve the
resulting equations to find out what data will be included in
the output. For example, if we use the Minterm 192 (0xC0),
we get the logic equation

D = BC + BC

where D stands for the destination rectangle. If we group this
equation differently, we get

D=B(C+ 0

Since C and NOT C cancel each other out, we are left with
D=B

where the destination rectangle is an exact copy of the source

164

[[

[

[

(

]

]

]

3

]

]

1

]

]

Drawing and Manipulating Image Blocks

rectangle, both foreground and background. Here are a few
more examples:

For Minterm 0x30: D = BC + BC=B(C+ 0 =B

Destination is an inverted copy of the source rectangle in
which every zero bit is changed to a one, and vice versa.

For Minterm 0x50: D = BC + BC=C (@B + B) = C

Destination is an inverted copy of the destination rectan-
gle in which every zero bit is changed to a one, and vice versa.

For Minterm 0x60: D = BC + BC

Destination is a combination of both source rectangle data
and destination rectangle data. Where either source or destina-
tion has a zero bit, the value of the other is displayed. Where
both have a one bit, a zero is displayed.

For Minterm 0x80: D = BC

Destination combines source and destination rectangle
data. Only the areas where both source and destination con-
tain a one bit will be displayed in other than background
color.

In all, there are 15 different logic term combinations. Even
if solving logic equations is not one of your favorite pastimes,
with a little experimentation, you should be able to figure out
what the other combinations do.

Program 5-3 is a C program that demonstrates the use of
ClipBlit. It sets up a smaller window on top of the full-size
one and draws an octagon in it. It then copies that octagon to
the larger window, using three different Minterm values to
come up with three different destination rectangles.

Program 5-3. Using ClipBlIit
#include <window.c>

demo()

struct Window *Wdw2;
#define Rp2 Wdw2->RPort

165

Chapter 5

static UWORD Points [] =
{

180,50,
210,80,
210,120,
180,150,
100,150,
79,120,
70,80,
109,50

7

NewWdw.Flags = SMART REFRESH;
NewWdw.LeftEdge = 320;
NewWdw.Width=319;

if ((wdw2 = (struct Window *)OpenWindow(&NewWdw))
== NULL) exit(FALSE);

SetAPen (Rp2,1);
Move(Rp2,100,50);
PolyDraw(Rp2,8,&Points);

/* SetAPen (Rp,2);
RectFill(Rp,30,30,238,75); */

ClipBlit(Rp2,69,50,Rp,@,508,142,101,08xC0);
ClipBlit(Rp2,69,50,Rp,143,50,142,101,0x30);
ClipBlit(Rp2,69,58,Rp,75,98,142,101,0x60);

Wait(l<<wdw->UserPort->mp_SigBit);
/* wait till close box clicked */

CloseWindow(Wdw) ;
CloseWindow(Wdw2);
CloseLibrary(GfxBase);
CloseLibrary(IntuitionBase);
exit(TRUE);

}

/* end of ClipBlit.c */

Drawing an Image from a Pattern

The Graphics library contains a routine that lets you fill se-
lected points in an area, rather than the entire area. The points
affected by this fill operation are specified by an image pattern
that you set up in a data area. The routine is called BltPattern,
and its syntax is

166

A I I R

[

[

[

[

L C

Drawing and Manipulating Image Blocks

BltPattern (RastPort, Pattern, X1, Y1, X2, Y2, Width);

(a1) (a0) (d0) (dD) (d2) (d3) (d9)
where X1 and Y1 specify the upper left corner of the RastPort
destination rectangle, and X2 and Y2 are the coordinates of the
- lower right corner. The Pattern value points to the beginning
of the image mask data, and Width describes how the pattern
is laid out by telling how many bytes there are per row. This
number must be an even value. The total number of bytes of
pattern data can be found by multiplying the number of bytes
per row times the number of rows (Y2 — Y1).

You convert an image for BltPattern to pattern data in ex-
actly the same way as you do in determining AreaPattern data.
You draw the image as a series of filled boxes and empty
boxes, and then convert that image to a binary number by
substituting a one for each filled box and a zero for each
empty one. For example, the data needed to draw a cross
would look like this:

When you use the BltPattern statement, only the area that
corresponds to the places where there are one bits in the pat-
tern will be affected. Those points will be filled just as if they
were part of an AreaFill, so just what ends up inside the im-
age pattern depends on the foreground and background pen
values, the drawing mode, and the area pattern.

Program 5-4 is a C program that demonstrates the use of
BltPattern. It draws the image of a box with several holes cut
out, filled with the same patterns as used in the pattern fill ex-
ample in Chapter 3.

167

Chapter 5

Program §-4. Using BltPattern

#include <windowl.c>
#include <graphics/gfxmacros.h>
demo ()

static UWORD Patl [] = /* 'HI' fill pattern */

0x000a,
@x667E,
9x6618,
Ox7ELS8,
2x6618,
Px6618,
@x667E,
0x0000

]
static UWORD Pat2 [] = /* geometric pattern */

Ox0FFd,
OXFOOF,
@xAAAA,
@x5555,
@xA5A5,
@x5A5A,
GxFOFQ,
OxOFQF

’
static UWORD Pat3 [] = /* random fill pattern */
{

#x048C,
@x159D,
Ox26AE,
@9x37BF,
P#x3333,
@xAAAA,
@gx3C3cC,
@xD43D4

’
static UWORD Image [] =
{

@xFFFF,0xFFFF,0xFFFF, 0XFFFF, 0XFFFF,
@xFFFF, 0xFFFF,0xFFFF, 0xFFFF, 0xFFFF,
OxFFFF,0xFFFF,0xFFFF, 0XFFFF, 8xFFFF,

OxXFFFF, 0x0000,xFFFF, 0x0000, 0xFFFF,

@xFFFF,0x0000,3xFFFF,0x0000 ,3xFFFF,
OxFFFF,0x0000,3xFFFF,0x0000,3xFFFF,

168

I T

.

[

(

IR

u

3

1

n

]

Drawing and Manipulating Image Blocks

OxFFFF,0xFFFF,8xFFFF,0XFFFF, 0XFFFF,
OXFFFF,dxFFFF,0xFFFF,80xFFFF,0XFFFF,
OxFFFF,0xFFFF,0xFFFF, 0xFFFF,0XFFFF,

OxFFFF,3xFFFF,0xFFFF, 0xFFFF, dxFFFF,
OxFFFF,0xFFFF,0xFFFF, 0xFFFF, 0XFFFF,
OxFFFF, @xFFFF,0xFFFF, 0xFFFF, 0xFFFF,

OxFFFF,9x0000,0xFFFF,0x0000,9xFFFF,
OxFFFF,0x0000,0xFFFF,3x0000 ,0xFFFF,
OxFFFF,0x0000,0xFFFF, 0x0000 ,0xFFFF,

OxFFFF,0xFFFF,0xFFFF, 0xFFFF, 0xFFFF,
OxFFFF,0xFFFF, 0xFFFF, 0xFFFF,0xXxFFFF,
@XFFFF,dxFFFF,0xFFFF, OxFFFF,0XFFFF

-
.

SetAfPt(Rp,&Pat2[@],3);
SetAPen(Rp, 2);
SetBPen(Rp,5);

BltPattern (Rp,&Image,50,50,130,66,10);

SetAfPt (Rp, &Pat3[@],3);
SetAPen(Rp, 3);
SetBPen(Rp,4):;

BltPattern (Rp,&Image,l130,100,210,116,10);

SetAfPt(Rp,&Patl[8],3);
SetAPen(Rp,6);
SetBPen(Rp,7);

BltPattern (Rp,&Image,210,150,290,166,10);
}
/* end of Bltpat.c */

Moving Images to and from BASIC Arrays (GET

and PUT)

The BASIC equivalent of the Graphics library routines that use

the blitter to move an entire image are the statements PUT

and GET. The GET statement allows you to capture the image

in a rectangular area of the screen in a data array. The PUT

statement allows you instantly to redisplay that image else-

where in the window (or in another window entirely).
Normally, before you can PUT an image to the screen,

169

Chapter 5

you must draw it in a window, using the normal drawing
commands, and store it in an array by using the GET com-
mand. The syntax is

GET (x1,y1)-(x2,y2), array [(subl[,sub2...])]

The two values that must be specified are the rectangle
whose image is to be stored and the name of the array in
which it will be saved. The area of the rectangle is specified
by the coordinate pairs (x1, y1) and (x2, y2). The first pair rep-
resents the absolute position of the top left corner of the rect-
angular area, and the second specifies the bottom right corner.

Before we can use an array to store an image, the size of
the array must be declared with the DIM statement. Its size
must be large enough to hold all of the display data. To deter-
mine the size to which the array must be DIMensioned, let’s
first take a look at the format in which the image is stored. If a
16-bit (short) integer array is used, the first three words store
the width, height, and depth of the array. Let’s take the case
of an image that is 40 dots wide, 20 lines high, and three bit
planes deep:

a%(0) = 40
a%(1) = 20
a%?2) = 3

Since the image data is stored in 16-bit words, the width
of the image is rounded up to the next highest multiple of 16
to find the least number of words required to store one line of
the image. In this example, each line requires 3 words of data
(48 bits) to hold the 40 dots. Since there are 20 lines per bit
plane, each bit plane requires 60 words (3 words wide * 20
high) to hold the data. The correspondence of the bit patterns
of the data words and the dots that make up the display is the
same as that described in the section on pattern drawing
above and in the section on patterned fills in Chapter 3. The
data for plane 0 is assigned to array elements as follows:

a%(3)=lineOleft a%(4)=lineOmiddle a%(5)=lineOright
a%(6)=linelleft a%(7)=linelmiddle a%(8)=linelright

a%(60)=linel9left a%(61)=line19middle a%(62)=lineldright

170

L [

[

(I

[

[

[

[

]

]

]

1

]

]

)

Drawing and Manipulating Image Blocks

The same kind of assignment is made for each of the
three bit planes. Since there are three bit planes, a total of 183
words are required (60 words / bit plane * 3 bit planes + 3
format words).

For purposes of your programs, if you use short integer
arrays, you may use the formula

arraysize = 3 + INT((16 + x2 — x1) /16) * (1 + y2 — y1) * depth
To find the size to which you must DIMension the array, use
DIM a%(arraysize)

The GET statement allows you to specify subscripts for
the array. This allows you to create multidimensional arrays,
with a picture stored in each subscript. For instance, if you
want to store five images that each require an integer array of
500 words, you may dimension one array for all five images
using the statement form

DIM a%(500,5)
When you fill the array, use this form:

GET (x1,y1)-(x2,y2),a%(0,0) ‘first image
GET (x3,y3)-(x4,y4),a%(0,1) ‘second image
GET (x5,y5)-(x6,y6),a%(0,2) ‘third image

Note that the first subscript always stays at zero, while
the second keeps track of the image number. '

To redisplay the stored image, you use the PUT state-
ment. The form of this statement is

PUT [STEP] (x,y), array [(subl[,sub2...])] [,combination_type]

Here you need only specify the coordinates of the top left
corner of the image and the name of the array in which it is
stored. The coordinates may be specified either as absolute
points or as an offset relative to the last point drawn. As with
GET, multiple array dimensions may be specified.

The kind of image drawn when you use the PUT state-
ment depends on the value you choose for combination_type.
As with the ClipBlit operation described above, PUT can be
used not only to display the exact duplicate of the saved rect-
angle, but also to combine that image with that of the destina-
tion rectangle in various ways. Five types of combinations
may be made between the image values stored in the array

171

Chapter 5

and the values that are currently displayed onscreen. Their
names are PSET, PRESET, AND, OR, and XOR. The concepts
behind these combinations should not be so strange; PSET
and PRESET are graphics commands which we have dis-
cussed, and the others are logical operators.

If the PSET combination_type is selected, the entire rect-
angular area of the image will appear, exactly as it was saved.
This includes the background color as well as any foreground
colors used. If the PRESET type is chosen, the entire area of
the image appears with each color, including the background
color, complemented. This means, for example, that if the
screen is two planes deep, parts of the image that were stored
as color 0 would appear in color 3, parts that were stored as
color 1 would appear in color 2, and vice versa. For more
information about complementing, see the section “Drawing
Modes” in Chapter 3.

The three remaining combination types use the logical op-
erators AND, OR, and XOR (exclusive OR) to combine the pen
values of the stored image with those displayed onscreen. In
the AND mode, the bits of the image are logically ANDed
with those of the display. The following chart shows all of the
possible combinations of one pen color ANDed with another
in a four-color display:

The OR combination mode logically ORs the bits of the
image with those of the display. The following chart shows all
of the possible combinations of one pen color ORed with an-

172

B N

[

[[

I I

[

[

Drawing and Manipulating Image Blocks

other in a four-color display:

Resulting
Display Pen

The XOR combination mode is the default mode used if
no combination_type is specified. One reason for this mode
being the default is that when it is used, the entire image al-
ways appears onscreen (though its color may vary), and the
part of the stored image that was drawn with the background
pen never appears. Also, because it undoes its own effects, the
XOR operator is useful for a limited form of animation. Using
XOR mode, if you PUT an image once, the image appears, but
if you PUT the same image a second time in the same place
using XOR, the display is restored to its original state before
the PUT took place. See if you can figure out why from the
following chart, which shows all of the possible combinations
of one pen color XORed with another in a four-color display.

-

do
WNNRRROOCO O™
ORONWOWNRON

173

Chapter 5

Program 5-5 graphically demonstrates the various color
combinations resulting from the use of the different combina-
tion types. An interesting feature of this program is that the
array used by the PUT statement is not created by a cor-
responding GET statement. Rather than drawing the image,
we use the same technique demonstrated above to create the
BltPattern and the area fill pattern. Rows of binary data are
laid out one on top of the other to form a picture. This data is
then read into the appropriate elements of the image array.

Program 5-6 demonstrates the more usual method of
drawing a picture and storing it into the array to be used later
by the PUT statement. To keep the user from seeing the pic-
ture when we first GET it, the PALETTE statement is used to
change the foreground pen color to the same shade as the
background pen color, rendering the drawing invisible. Also,
note that a single two-dimensional array is used to store the
image of all six dice. We can display the proper dice face by
just changing the second array subscript.

Program 5-5. Graphics Demo Using PUT

DEFINT a-z
WINDOW 1,,(9,8)-(500,180)

DIM man(48)

man(@)=16 'image is 16 bits wide
man(1)=18 'by 18 lines high
man(2)=2 ‘and 2 bit planes deep

FOR x=3 TO 20

READ d ‘read image data
man(x)=4 '‘into the PUT array
NEXT
FOR row= 1 TO 3 '3 rows

FOR col=@ TO 4 'of 5 columns each
LINE (48+100*col,9+50*row)-STEP (20,10),row,bf
NEXT col

PUT (50,50*row), man,PSET

PUT (150,50*row), man,PRESET

PUT (250,58*row), man,AND

PUT (350,50*row), man,OR

PUT (450,5@0*row), man,XOR
NEXT row

174

[

[

[

[

[

U D I |

[

Drawing and Manipulating Image Blocks

WIDTH 69
LOCATE 5,1 'print heading

PRINT PTAB(40) "PSET" PTAB(138) "PRESET";
PRINT PTAB(248) "AND" PTAB(350) "OR";
PRINT PTAB(440) "XOR"

LOCATE 1,1

REM--18 words of image data

DATA &HO7EQ, &HOFFY, &H1998, &H1FF8
DATA &H1C38, &HOFFO, &HO3CO, &HOFFQ
DATA &HFFFF, &HFFFF, &HOFFO, &HOFFQ
DATA &H1FF8, &H1FF8, &H1E78, &H1C38
DATA &H7C3E, &H7C3E

Intuition Images

For C programmers, the Intuition library provides an excellent
general-purpose image-display mechanism. Although Intuition
uses this system specifically for the purpose of rendering the
graphics images associated with such Intuition features as gad-
gets and menus, it can be used to create ordinary graphics ob-
jects for whatever purpose you might have.

At the heart of this image-production system is a data
structure known as the Image structure. This structure pro-
vides all the information needed to draw the Image. The C
language definition for the Image data structure looks like this:

struct Image

{
SHORT LeftEdge, TopEdge;
SHORT Width, Height, Depth;
SHORT *ImageData;
UBYTE PlanePick, PlaneOnOff;
struct Image *NextImage;

7

As you can see, it’s necessary to supply a number of values in
order to define the image. The first two, LeftEdge and
TopEdge, specify the coordinates of the top left corner of the
image. When used to draw Intuition objects like gadgets, these
values specify the exact position of the object. However, when
used with the DrawIlmage routine, which we will examine be-
low, these values may be modified by offset values, which ef-
fectively allows you to place them anywhere in the window.

175

_J

Chapter 5

1

_J

N I Y S

SOTPTITOY dASTH TTOYIOINOOUYD NHAHL ,,=S$XIINI JI

ANF: T IN4INO MOANIM3:T FASOTO NITYOS NIHL @=(8)MOANIM JI
pue ‘MoOpuTmM ay3 pesoTd I8sn II,

s TTOdI0INO2YD

90TpP 2aoqe sxsqunu JUTIA, T+(Z)TTOH(PST)EVLd *T+(T)TTO¥ (LTT)dVLd INI¥d
1‘'6 ILVOOT:@Pv HIAIM

sbueyd ‘eoTd IXAN
MOTTO oyeu, P’'BST ANNOS: 100" ‘P2GAT ANNOS
s3jods meap, ((a1@)1T0¥ ‘g)s30ds’ (1L’ 1x) &nd
9TP quelq, Jdd’'Z49TA’(6€‘LY) dAALS-(TL’TIX)ANIT
1701 wopuex e 3o1d, (9xaNY) INI=(@TQ)TTO¥

9Tp ybTrax 10 3391 O3 3I°S, Y +9TAL¥9=1X
sawTl} 9 Yoea TTOI ‘SOTpP OM3 9sn, Z OL T=9Td ¥0d:§ Ol g=obueyd YOI
$90TPTTIOY

90Tp 3O autrT dol, g8=1k

uoTIOUNF ONY OZTTeTITUT, WAWIL AZIWOANVI
surebe 11ox o3 Koy Aue o3TI3S, INI¥d
9’61 IALVOOT :.E€ HIAIM

sKexae sbewtr ao0Tp dn 38s, 9OTAITUI dNSOD

s3jods 90TpP 23TyMm, T°T'1’€ IALLATVA

sj3ods 9O0TpP 93TuMm, T'1T’1’S ILLATYA
punoxbaaoy ueaab, 2'1'9'y ALLATINVA
punoibaixoz pai, 9’9’1’ dLLITYd
punoabsoeq oeld, @'@‘@g‘g ILLIATYI

MOpPUTM US9IDS-TINT, 18’’’ MOANIM
sI0T0D 8 ‘sax1-0T, 1‘€'909Z'02€'T NITIOS
Z-Y INIJJ3d

ainydld © MpiIQ O} 139 puD INd Buisn ‘9-¢ wpibBold

]

176

Drawing and Manipulating Image Blocks

CIT'CIT'98'CHT1°66°99Z‘66'8LT YIVd
ZIT'THT’98/CTT‘CTIT1 '8LT 98 96 VIV
66'L2T'66'LTT 21199298 '8LT YI¥d

NINLITY

utebe a3Tym sizods ojew pue UIIIODS IeIDTO , ST1O

T'1T'1T'T 3LLATYd

aITed LXAN

e3lep aT9Yl peax, (T+aTed’g)s3lods’(e6TT1'€CZ)-(08°891)LdAD

(xTed’g)s3iods’ (6T1'6GT)-(@8°HAT) 1LAD

90Tp OM3 MeIp, 30ds ILXIN

sadeys aoTp Jo sated ¢ 103,

9TqTSTAUT oa®

(K’'x)LNIVd
S (K'x)ITTOAID
K'x guayd
€ 0oL pg=30ds J0od
¢ dd1ls ¥ OL @g=ated ¥oOd

sjods os ‘punoabjyoeq=punoxboaioz a3euw, ‘@G’‘@g’T ILILIATVd
(z)TT0¥ ‘(L’@@S)s3ods WIA

S10dS Aexie o3juT ejep abewT 8yl SIIAD ULyl pue WIA
90TPp 92Uz JOo sjods 8yl SMeIp aurinoxqns STUL WII
:201Q3TUI

177

Chapter 5

The Width value is the width of the image in pixels. An
image can be any width, provided that you furnish enough
data to define its shape. As we’ll see below, each line of image
data is composed of a number of 16-bit words sufficient to
contain the image. For example, if the image is 12 pixels wide,
you must use only one 16-bit word of image data per line for
each bit plane used. If the image is 40 pixels wide, you must
use three words per line, because 48 (3 * 16 bits) is the lowest
multiple of 16 into which 40 pixels will fit. When your image
width is not an even multiple of 16, the image will take the
form of the most significant bits. In other words, if your image
is 40 pixels wide, the image will take its shape from the first
two words in each line (32 bits), plus the leftmost eight bits of
the third word. The low-order eight bits of the last word in
each line will be ignored.

The Height value gives the height of the image in number
of lines. The Depth value specifies the number of bit planes
used to define the image, which in turn determines the num-
ber of different colors that can be displayed within the image.
This value does not have to be the same as the depth of the
screen on which the image will be drawn. If it is greater than
the depth of that screen, however, not all of the bit planes of
data will be displayed.

Together, the Width, Height, and Depth values determine
how the image data will be interpreted. The data for each bit
plane will consist of Height number of lines, each composed
of sufficient 16-bit words to contain Width number of pixels.
The bit planes are laid out one after the other so that the data
starts with the first word of the first line of the first bit plane,
continues with the second word of that line, until the whole
line has been defined. The data after that is used to describe
the next line of the first bit plane. After the last line of the first
bit plane has been defined, the next data word starts the first
line of the second bit plane, and so on, until Depth number of
planes have been defined.

The next variable is ImageData. This is a pointer to the
actual display data that you've defined. We will examine the
process of setting up that data in more detail below.

The next two values, PlanePick and PlaneOnOff, allow

178

-

[

(-

)

B

)

~

]

[

)

A

Drawing and Manipulating Image Blocks

you to specify the bit planes into which the image data will be
drawn. This affords a certain amount of flexibility in the
choice of colors that can be used to depict various parts of the
image. As a result, two images, using the exact same image
data, can be drawn in two completely different sets of colors.

PlanePick and PlaneOnOff can be thought of as masks
that can change the order in which your image would nor-
mally be drawn into the various bit planes available. Ordi-
narily, your image would be transferred to the display in
sequential order, with the first bit plane of your image going
into the first bit plane of the display, the second image plane
to the second display plane, and so forth. If you have an im-
age that is two planes deep, however, and a screen that is five
planes deep, you may not always want to place your image
into the first two bit planes. That’s where PlanePick and
PlaneOnOff come into play.

PlanePick is used to determine which bit planes of the
display receive your image data. Let’s say that you have a
two-plane image that uses pens 2 and 3, and you want to dis- -
play it on a three-plane screen. Normally, the two image
planes would be displayed in planes 0 and 1. You can set
PlanePick, however, to display these as two entirely different
planes. You choose which planes will be used by setting
PlanePick to the sum of the bit values of the planes in which
you wish the object displayed. Each bit value corresponds to 2
raised to the nth power, where n is the number of the plane.

For example, the bit value of plane 0 is 1 (2°0), the bit
value of plane 1 is 2 (2"1), and so forth. The PlanePick value
that corresponds to the normal setting of planes 0 and 1
would be 3 (1 + 2). To display the image in planes 1 and 2,
you would set the PlanePick value to 6 (2 + 4). The part of
the image that was created using pen 1 will now be displayed
in the color of pen 2, and the part of the image that was cre-
ated using pen 2 will now be displayed in the color of pen 4.
The part of the image that was originally colored in pen 3
(both planes set) will now be shown in the color of pen 6. The
following chart shows each of the possible PlanePick values
for a three-plane screen, the binary representation for that
value, and the meaning of such a PlanePick setting.

179

Chapter 5

‘ Planerck Bmary ~ s
2 Di flay Planes Used '
No image planes are fdlsplayed

- ple ; est
The‘first image plane goes into display
plane 0, the second into plane 2 the rest

are not dlsplayed '
7 U1 The first i un ge plane goes into dlsplay

The PlaneOnOff value can be used to further enhance the
selection of colors. Let’s go back to the example above of a
two-plane (four-color) image and a three-plane (eight-color)
screen. If you wanted to display your object in pen colors 3, 5,
and 7 instead of 2, 4, and 6, it would not be possible using
PlanePick alone since these colors require that a bit be set in
each two-color plane. PlaneOnOff lets you decide whether the
color planes that were not chosen by PlaneOnOff will always
be set to all zero bits or all one bits. In our example, an image
that originally used planes 0 and 1 (pen colors 1, 2, and 3)
was changed to use planes 1 and 2 (pen colors 2, 4, and 6).
This means that plane 0 is not used at all. PlaneOnOff lets
you determine how plane 0 will be set as well. If you chose a
PlaneOnOff value of 1, which corresponds to a one bit in
plane 0, every bit in plane 0 will be set to 1. This has the ef-
fect of adding 1 to the pen values made possible by PlanePick.
If PlanePick is set to 6, and PlaneOnOff is set to 1, the parts
of the object that were originally drawn in pens 1, 2, and 3
will appear in pen colors 3, 5, and 7 . The background color,

180

1

0 R R DA

Drawing and Manipulating Image Blocks

which was originally drawn in pen 0, will now be set to pen 1.

The last value in the Image structure is NextImage. If you
place the address of another Image structure in this variable,
the two Images become linked, and anytime the first is drawn,
the second will be drawn also (though the reverse is not true).
This image may in turn be linked to another. The last image
in the chain should have a null (zero) value in the NextImage
variable to show that there are no more images in the chain.
Linking images together in this is often much more memory
efficient than designing a multipart image as one big image
that contains a lot of blank space.

The final step is to create the image display data. This
process is similar to creating the pattern for area filling or any
of the other image commands that we’ve covered. You must
draw a picture composed of filled and unfilled boxes, and con-
vert those boxes to binary numbers, where ones represent
filled boxes and zeros represent unfilled boxes. The pattern
can be any number of pixels wide, but the data must be
aligned on word boundaries. When it comes time to draw the
image, the operating system routine uses the leftmost bits of
each line of image data.

It’s important to note that in order for an Intuition image
to display properly on a machine that uses expansion memory,
the image display data (not the Image structure) must be in
the lower 512K of memory. You can insure this by using the
Atom utility program before using Alink or by using the equiv-
alent option on your own linker.

When the image data has been created and the Image
structure which points to that data has been set up, you may
draw the image by calling the DrawImage routine. The syntax
for this routine is

DrawlImage (RastPort, Image, LeftOffset, TopOffset);
(a0) (a1) (d1) (d2)

where Image is a pointer to the Image data structure, and
LeftOffset and TopOffset are position values that are added to
the LeftEdge and TopEdge values in the Image structure to ar-
rive at the actual positioning of the image on the screen. This
means that even though you specify a position for the image

181

Chapter 5

in the Image structure, you are not bound to use that position,
but can draw the image anywhere onscreen.

Program 5-7 shows many of the features of the Intuition
Image structure. It defines two images, one of a little man and
the other of a balloon, each two planes deep. It links these
two images by having the Image structure of one point to the
other so that both can be drawn with a single call to
DrawImage; it also shows how to draw just the last image in
the linked list. It uses the PlanePick and PlaneOnOff values to
change the colors used to display these two-plane images on a
three-plane screen.

Program 5-7. Using the Intuition Image Structure

#include <windowl.c>
#include <graphics/gfxmacros.h>

UWORD ManData [] = /* picture of man */

@x0FCa, /* Plane @ */
Ox3FF0,
9x33349,
@x33349,
@x3FF0,
@x3CF4g,
Ox0FCO,
2x0309,
OxFFFC,
BxFFFC,
9x0FC@,
@x0FCO,
@x3FF0,
@x3CFd,
@x3CFQ,
@xFCFC,
@xFCFC,

2x0000, /* Plane 1 */
9x00949,
@x0CCa,
@x@ccd,
9x0000,
0x0300,
9x0009,
0x0009,
2x0000,
x0000,
9x0009,
9x0003,
Ox0000,

182

I

[

[

]

]

]

)

]

1

]

N

]

Drawing and Manipulating Image Blocks

2x0000,
0x0000,
0x0000,
?xﬂﬂﬂﬂ

UWORD BaloonData [] =
{

Ox0F8d, /* Plane @ */
@x3FEJ,
Ox7FF9,
Ox7FF@,
OxFFF8,
OxFFF8,
9xFFF8,
@x7FF9,
@x7FF0,
Ox3FEJ,
gx0F80,
ox0999,
ox0000,
0x09309,
9x00009,
9x0000,
9x0000,
ox0000 ’
o9x0900,
9x0099,
2x0009,
9x00009,

Ox0F8J, /* Plane @ */
Ox3FEQD,
Ox7FF@,
Ox7FF0,
@xFFF8,
@xXFFF8,
@xFFF8,
Ox7FF0,
Ox7FF@,
J9x3FEQD,
2x0F89,
0x9200,
9x9200,
9x03200,
2x0200,
2x0200,
9x0200,
9x0200,
9x0200,
2x02049,
9x0200,
0x0200

183

Chapter 5

struct Image ManImage =

9,12, /* left, top position */
14,17,2, /* width, height, depth */
&ManDatal[@], /* pointer to image data */
3,0, /* PlanePick, PlaneOnOff */
NULL /* pointer to next Image */

}:

struct Image BaloonImage =

8,d, /* left, top position */

13,22,2, /* width, height, depth */

&BaloonDatal[@], /* pointer to image data */

3,0, , /* PlanePick, PlaneOnOff */

&ManImage /* pointer to next Image */
demo()

DrawImage (Rp,&Baloonlmage,l100,58);

BaloonImage.PlanePick = 6;
ManImage.PlanePick = 6;
DrawImage (Rp,&BaloonlImage,130,50);

DrawImage (Rp,&ManImage,78,50);

BaloonImage.PlaneOnOff = 1;
ManImage.PlaneOnOff = 1;
DrawImage (Rp,&Baloonlmage,16@,50);

BaloonImage.PlanePick = 5;
ManImage.PlanePick = 5;
BaloonImage.PlaneOnOff = @;
ManImage.PlaneOnOff = @;

DrawImage (Rp,&BaloonImage,198,58);

BaloonImage.PlaneOnOff = 2;

ManImage.PlaneOnOff = 2;
DrawImage (Rp,&Baloonlmage,220,58);

}

/* end of Image.c */

184

“——

L f

I

—~—

G

.

i

&

ik
S

D0 a0 3 i e T R B

1 1

B

1

B I R

Sprites and Bobs

sing the block-image transfer methods discussed in Chap-

ter 5 can be very useful for stamping images in various

locations on the display screen and for a limited form

of animation. But for full animation effects, something
a little more is needed.

There are basically two ways to achieve animation of a
graphics object on a microcomputer. The first is by quickly re-
shuffling the contents of the display bitmap. The second
method makes use of special display hardware to create dis-
tinct animation objects. The Amiga supports both of these
methods of animating images. For bitmap animation, it offers
animation objects called bobs (short for blitter objects). In addi-
tion, the special display hardware of the Amiga supports ani-
mation objects known as sprites.

Sprites

Sprites are graphics objects that are created by special hard-
ware, and are displayed and moved around the screen entirely
independently of the normal bitmap display (which is some-
times also called the playfield display). Since the display data
for sprites is stored in a different area than the bit planes used
by the normal display, sprites do not interfere with or change
bitmap data as they move about. And since the sprite display
data includes information about where to position the sprite
on the screen, moving a sprite is as easy as changing its dis-
play data.

Sprite graphics affords the programmer tremendous
power for animating objects. But sprites have their limitations.
First of all, the hardware supports only eight hardware sprites
on any given horizontal line. The impact of this limitation is
lessened somewhat by the system software, which lets you
move sprites around while the screen is being drawn. While a
sprite can appear only once on a particular horizontal line, it
may be redrawn on a different horizontal line farther down
the screen. The software mechanism for reusing sprites so that

189

Chapter 6

one sprite may appear in different shapes, sizes, colors, and
locations on the same screen is known as vsprites (for virtual
sprites). We’ll discuss vsprites in detail a little later on.

Another limitation of sprites is their size. Each sprite can
be a maximum of 16 bits (dots) wide. Though this may seem
somewhat narrow, you should note that sprites are always dis-
played in low-resolution mode, regardless of the resolution of
the normal bitmap graphics screen. This means that if the
playfield (bitmap) screen is high resolution, each dot of the
sprite will be twice as wide as a dot of background graphics.
Though the width of a sprite is limited to 16 bits, its height is
determined strictly by the number of lines of shape data that
you provide for it. Each sprite can be as tall as the screen.

Normally, each dot of a sprite can be colored in any one
of three colors, or it can be transparent. In effect, each sprite is
two bit planes deep. Instead of color 0 being a distinct back-
ground pen, however, the parts of the sprite that normally
would be colored by pen 0 take on the color of the bitmap un-
derneath. The actual colors that the sprite displays are deter-
mined by the upper 16 color registers. Each pair of sprites
shares a set of color registers. The register assignments for
each sprite are shown in the table below:

Note that the sprites share these color registers with the
normal bitmap graphics. This means that if you're using five
bit planes for the playfield, you will not be able to select 32
unique colors for the playfield and 12 more unique colors for
the sprites. You'll be confined to a total of 32 colors. On the
other hand, not every program requires that you use five bit
planes at once, and programs that require a high-resolution
screen don't even allow you to use five bit planes.

The use of sprites may actually allow you to use fewer bit

190

I I

[[

[S F I

]

]

B

]

)

Sprites and Bobs

planes for your program display. If most of your program dis-
play uses one or two colors, but some areas require a few ad-
ditional colors, you may use sprites to provide those colors,
rather than allocating additional bit planes unnecessarily. This
practice can free up a lot of memory for use by other programs
in the Amiga’s multitasking environment.

Although normally each sprite is limited to three colors,
there is a special mode in which you may attach two sprites
together to form one colorful sprite. Although this sprite is only
16 bits wide, each dot may be one of 15 colors or transparent.
You may attach only sprites that share the same color registers
(for example, sprites 0 and 1, 2 and 3, and so forth). When you
attach them, the two bit planes of each sprite are combined to
form four bit planes. These four bit planes display the colors
from registers 17 through 31. A one value in the bit planes
displays pen 17, a two displays pen 18, and so on.

A final word of caution before we start exploring how to
manipulate sprites. Sprites don't fit into the framework of the
Intuition user interface very well. In order to manage windows
on the display effectively, Intuition must have complete con-
trol over it. Sprites, however, are not affected by manipulation
of the normal bitmap graphics system. As a result, Intuition
has no way of keeping sprites in a particular window. If you
resize the window, move it with the drag bar, or use the depth
arrangers to send it to the back, the sprite will just stay put. In
fact, sprites won’t even move with the screen if you drag it up
and down, unless they have to in order to keep from moving
onto another screen. This can be inconvenient at best. For seri-
ous use in your own programs, therefore, you'll usually get
the best results by using sprites on a custom screen and in
windows that can’t be moved, sized, or depth arranged.

Simple Sprites

The operating system provides two methods for using sprites
on the Amiga. The first is less flexible, but very easy to set up.
This system is known as simple sprites. The simple sprite sys-
tem follows the hardware model for sprites very closely. It al-
lows for only eight sprites, used in only one place per display.

191

Chapter 6

Since the Intuition pointer is actually a sprite, there are only
seven sprites available for your use.

Setting up simple sprites requires you to provide little
more than the data actually used by the sprite hardware. The
first step is to set up the display data that defines the shape of
the sprite. This data uses a slightly different format from that
of Intuition images or the shape information for patterned fills.

Image data for those constructs are set up so that each bit
plane is defined separately. First comes the shape information
for the entire first bit plane, then the shape information for all
of the next bit plane. With simple sprites, however, the data
for both bit planes is intermixed. Each line of sprite shape def-
inition data consists of one 16-bit word of data for plane 1,
followed by another 16-bit word of data for plane 0 of that
line. Another difference is that the sprite shape data contains
two additional 16-bit words having a value of zero, one at the
beginning and the other at the end of the data table. These
added words hold a place for position data created by the sim-
ple sprite machine.

“To illustrate the above information, let’s create the data
needed for a sprite whose shape is a striped rectangle. We'll
make the top stripe color 3, the middle stripe color 2, and the
bottom stripe color 1. We will separate each of the colored
stripes with a transparent stripe (color 0). The data for such a
sprite looks like this:

UW?RD Sprite_data [] =

0x0000, 0x0000,
/* Holds place for position and control data */

/* stripe of color 3--both planes have all 1's */
OxFFFF, @xFFFF,
OxFFFF, OxFFFF,
@xFFFF, OxFFFF,

/* stripe of color @--both planes have all @'s */
Ox0000, 0x0900,

/* Stripe of color 2--plane 1 has l's, plane @ has @'s */

OxFFFO, 0x0000,
OxFFFO, 9x0000,
OxFFFO, 0x0000,
0x0000, 9x0000,

192

- [[

|

1

N

1

]

}

J

Sprites and Bobs

/* stripe of color l--plane 1 has @'s, plane @ has 1l's */

0x0008, OXFFFF,
0x00090, GxFFFF,
0x0000, OxFFFF,

/* This line can be used to indicate attached sprites */
0x0000, Ox0000

,

Remember our caution in Chapter 5: Sprite shape data is
used directly by the display hardware chips. Since these chips
have access only to memory located in the bottom 512K of the
computer’s address space, you must take steps to insure that
your sprite data is loaded into this area if you want your pro-
gram to function correctly on machines that are equipped with
external expansion memory. To do this, you must either use
the Atom utility on your Amiga C object code file before link-
ing or whatever equivalent provision is made by compiler and
linker.

The next step in creating a simple sprite is to set up a
SimpleSprite data structure. The C language declaration for
such a structure is as follows:

struct SimpleSprite

UWORD *posctldata;
UWORD height;
UWORD XY;
UWORD num;

Yi

Most of these values are self-explanatory. The first,
posctldata, is a pointer to the address of the position and con-
trol data that the sprite machine will use to position the sprite.
Since we have already said that space for that data is reserved
at the beginning of the shape data table, this value should
contain the starting address of the sprite shape data.

The height variable tells how many lines of actual shape
data are contained in the table. Remember that the table con-
tains an extra line at the beginning and the end, and count
only the lines that contain actual shape data. For example, the
data table that we created above contains 13 lines of data
(each line consisting of two 16-bit words), but only 11 of these

193

Chapter 6

lines contain sprite shape data, so the correct value for height
is 11.

The x and y values correspond to the horizontal and verti-
cal position at which the sprite is initially displayed.

Finally, the num value indicates the number of the hard-
ware sprite used to display this simple sprite. You do not need
to specify this number since it is automatically supplied by the
sprite machine when you allocate a sprite for your use.

An initialized SimpleSprite data structure looks like this:
struct SimpleSprite StripeSprite =

{&Sprite_data[0], 11, 100, 50, 0 };

It is not absolutely necessary to preinitialize every value
in the SimpleSprite structure. The posctldata value may be
supplied by using the ChangeSprite statement. The x and y
position values may be supplied by the MoveSprite statement.
And the sprite number will be supplied by the GetSprite state-
ment. All of these statements will be discussed in greater de-
tail below. What’s important to remember is that the one
value that you must supply is the height of the sprite. If this
value is left at zero, nothing will be displayed.

After you've set up the shape data and the SimpleSprite
data structure, the next step is to allocate a sprite for your use
from the sprite machine. You can request a particular sprite or
ask to be given the first available sprite. The statement used to
reserve a sprite for your exclusive use is GetSprite. The proper
form for this statement is
Sprite_got = GetSprite (SimpleSprite, Sprite_number);

(do) (a0) (d0)

The GetSprite statement requires that you pass it two val-
ues. The SimpleSprite value is the address of the SimpleSprite
data structure that you’ve set up for this sprite. The
Sprite_number value is the number of the hardware sprite
that you are requesting (from 0 to 7). If you don’t care which
sprite you get, you can supply a value of —1, and the system
will allocate the first available sprite for your use. The
GetSprite routine returns the value Sprite_got, which tells you
which sprite (0-7) was allocated for your use.

If the GetSprite call succeeds, the number of the sprite

194

[

[

(

[

1

]

1

]

]

]

N

1

-]

]

Sprites and Bobs

that you have reserved will also be placed in the num variable
of the SimpleSprite structure. When the system is unable to al-
locate the particular sprite that you requested, or when no
sprites are available for allocation, the value returned in
Sprite_got is —1. Your program should test the value that
GetSprite returns to make sure that a sprite is allocated before
going any further. As was mentioned above, sprite 0 is used
by Intuition’s mouse pointer, so don't try to reserve it for your
own use. And since sprite 1 shares color registers with sprite
0, if you use that sprite, it will always be the same colors as
the pointer.

The final step in displaying your sprite is to link your
SimpleSprite data structure and shape data into the simple
sprite machine. The way you do this is by calling the Change-
Sprite routine, which tells the sprite machine what shape you
want the sprite to be. The format for this statement is
ChangeSprite (Vp, SimpleSprite, Sprite_data);

(a0) (a1) (a2)
where the SimpleSprite and Sprite_data values are pointers to
those two data structures. The Vp value stands for the address
of the viewport, which can be found with the Intuition state-
ment ViewPortAddress, which we discussed in Chapter 3. If
you wish only to position the sprite relative to the current
view, however, you can use a zero for this value. If the call to
ChangeSprite is successful, the address of the sprite data struc-
ture is placed in the posctldata variable of the SimpleSprite
structure, and your sprite is displayed at the position specified
by the x and y variables in the SimpleSprite structure. You can
use ChangeSprite not only to initially specify the shape of

your sprite, but to change this shape while the sprite is on dis-

play as well.

While your sprite is being displayed, you may wish not
only to change its shape, but to change its position as well. To
move the sprite, use the command MoveSprite. The syntax for
MoveSprite is
MoveSprite (Vp, SimpleSprite, X, Y);

(a0) (a1) (d0) (d1)

where Vp is a pointer to the viewport (or zero if the sprite is

195

Chapter 6

positioned relative to the current view), SimpleSprite is a
pointer to the structure of the same name, and X and Y specify
the new position for the sprite.

The x and y position is relative to the entire display (not
just the screen you are using). The position (0,0) places the top
left corner of the sprite at the top left corner of the display
screen. As the x value increases, the sprite moves to the right,
and as the y value increases, the sprite moves downward. Re-
member, the horizontal resolution for sprites is only 320
across, so the maximum x value at which you can see at least
part of the sprite is 319. Also, you should note that it is possi-
ble to use negative values for x and y. Using a negative value
for x moves the sprite off the screen to the left, and using a
negative value for y moves it off the top of the screen.

Once a sprite has been allocated to you, it can no longer
be used by other programs or by the vsprite system of virtual
sprites. Therefore, you should always remember to release the
sprite as soon as you are finished using it. This is accom-
plished with the FreeSprite statement, whose syntax is

FreeSprite (Sprite_number);
(d0)

Notice that all that is required by this statement is the
number of the sprite. This means that you could, in theory,
free sprites used by other programs as well as your own. Obvi-
ously, such a practice would be bad manners at the very least
and could well crash the system. Take care to free only the
sprites allocated to you.

Program 6-1 is a C language program which shows the
use of all of the SimpleSprite commands discussed.

Notice that we used the Graphics library routine
WaitBOVP before moving the sprite. This routine uses the
syntax
WaitBOVP(Vp);

(a0)
where Vp is a pointer to the window’s viewport, which we
find with the Intuition function ViewPortAddress. The
WaitBOVP call is used by the program to synchronize sprite
movements with the video beam. Its function is to wait until

196

[

[

[

]

-]

|

]

N

]

]

]

]

]

Sprites and Bobs

the video beam gets to the bottom of the viewport. At that
point, we can safely move the sprite without having to worry
that the movement will take place while the video beam is re-
drawing the sprite. The result of such an occurrence could be
a noticeable flicker or jerkiness to the motion.

Program 6-1. Simple Sprite Demonstration, C Example

#include <window.c>
#include <graphics/sprite.h>

struct SimpleSprite Sprite;

UWORD Sprite_datal] =

{

2,0, /* position, control */

OxFFFF,0xFFFF,
OxFFFF, 0XFFFF,

?xCO03,0xCE73,
9xC0O03,9xCE73,

@xFF8F,0xC@73,
OxFF8F,9xC@73,

@xC0OB3,08xCE73,
@xC0P@3,0xCE73,

@xF1FF,9xCE@3,
@xF1FF,0xCE@3,

@xCP03,0xCE73,
@xC003,9xCE73,

@xFFFF,3xFFFF,
OxFFFF,3xFFFF,

?,0 /* end */

demo()

SHORT spgot;
SHORT n, r, dx, dy:

WVP = (struct ViewPort *) ViewPortAddress(Wdw);

spgot = GetSprite(&Sprite,3);
if (spgot l= 3) exit (FALSE);

197

Chapter 6

Sprite.x = Sprite.y =0;
Sprite.height = 14;

SetRGB4 (wvP,21,12,3,8);
SetRGB4 (wWvP,22,3,13,4);
SetRGB4 (WVP,23,12,19,4);

ChangeSprite (0,&Sprite,Sprite_data);
MoveSprite(@,&Sprite,60,90);

dx = -1;

dy = 1;

for (n=@; n < 20; n++){
if (n & 1) dy = -dy:
else dx = -dx;
r = @;

while (r++<110){
WaitBOVP(WVP);
MoveSprite (@,&Sprite,Sprite.x+dx,Sprite.y+dy);

}
FreeSprite(spgot);

} /* end of Simpspr.c */

Using SimpleSprites from BASIC

The steps for using SimpleSprites from BASIC are largely the
same as those required by C language programs. First, we
must set up the sprite shape data and SimpleSprite data struc-
tures. Normally, BASIC programmers use subscripted arrays
for such tasks, but in this case there are two problems with
that approach. We must make sure that the sprite image data
remains in chip memory, and BASIC has no mechanism for
specifying where an array will be located in memory.

The second problem is that all variables of the same type
are stored together, and space for new variables is allocated
dynamically, while the program is running. This means that if
a nonsubscripted variable is first used after an array is DIMen-
sioned, the whole array is moved up in memory to make room
for the new simple variable. The data for sprites must always
stay in the same place, and since subscripted variables can
move around, it is impractical to use them for this purpose.

One reasonable alternative is to use the Graphics library

198

R I

[

[

-

L

]

]

B

]

]

N

]

]

_}

Sprites and Bobs

routine AllocRaster to allocate a small bit of free memory for
storing sprite data. The AllocRaster statement was described in
detail in Chapter 3, but to summarize, it allocates storage for
data that is a certain number of bits wide by a specified num-
ber of lines tall. Since the routine returns the address of the
memory that is allocated, you must use the DECLARE FUNC-
TION statement at the beginning of your program to let it
know that AllocRaster will return a value. Of course, the DE-
CLARE FUNCTION statement must be used in conjunction
with the LIBRARY “‘graphics.library”” statement that is used to
open the Graphics library routines for access from BASIC. Re-
member also that you must have the graphics.bmap file in
your current directory when you try to open the Graphics
library.

The storage that you allocate with AllocRaster should be
16 bits wide, since that is smallest width of each data word
that you will be using. The number of words to request de-
pends on the size of your sprite. Each SimpleSprite data struc-
ture requires 6 words of storage, 2 for the pointer to
posctldata, and 1 each for height, x, y, and num. In addition,
each shape data structure requires 4 more words of overhead
for the two zero words at the beginning and end of each
shape definition. Therefore, you must reserve 10 data words in
addition to 2 words for each line of shape data. For a shape
that is 14 lines high, like the one defined in Program 6-2, you
need a total of 38 words, 28 for shape data and 10 for the
overhead of the SimpleSprite structure and posctldata.

Once you allocate RAM with the AllocRaster routine, it is
lost to the system until you release it with the FreeRaster call.
Always remember to free the memory you've allocated at the
end of your program and to release exactly the same amount
of memory as you initially requested.

After you have allocated the necessary RAM, you should
clear it to all zeros. You could do this by using the POKE
statement. In Program 6-2 we use the BltClear routine to let
the blitter do the work.

Once you have the data space allocated and initialized,
you will have to use the POKEW statement to fill in the neces-
sary values. If the base address of data space is stored in the

199

Chapter 6

variable Sprite, then the height of the sprite must be stored in
Sprite+4, the x position in Sprite+6, and the y position in
Sprite+8. The num value at Sprite+10 will be filled in by the
GetSprite call, and the two zero words at the beginning of the
shape data take up the positions Sprite+12 through
Sprite+15. The actual shape data begins at Sprite+16.

To allocate a sprite for your use, you use the GetSprite
call, just as you would from C. Since GetSprite returns a value
telling you what sprite was allocated, you must use DECLARE
FUNCTION at the beginning of the program to let BASIC
know that it should pass back this value. Your program should
check the value returned and continue only if the sprite that
you requested was allocated. Remember that sprite 0 is re-
served for the mouse pointer, so don’t try to allocate that
sprite. Also keep in mind that sprite 1 shares color registers
with sprite 0, so if you choose that sprite, its colors will always
be the same as those of the pointer.

After you have allocated the sprite and set up the sprite
data, you may use ChangeSprite to link the data and Simple-
Sprite structure with the operating system sprite machine. If
you have stored the data as suggested above, with the Simple-
Sprite structure first, followed by the shape data, the addresses
to pass to ChangeSprite are Sprite (the SimpleSprite stucture)
and Sprite+12 (the shape data). This call will display your
sprite in the chosen shape. You may use ChangeSprite again
to change the shape to another form that you've set up in
data. To move the sprite, use the MoveSprite routine just as
you would from C.

Program 6-2 displays the same sprite shape as the C ex-
ample in Program 6-1 and makes the sprite follow the mouse
pointer around the screen.

Program 6-2. Simple Sprite Demonstration, BASIC Example

LIBRARY "graphics.library"
T$="Mouse moves sprite, CTRL-C to end"
WINDOW 2,TS,,0

DEFLNG A-2z

DECLARE FUNCTION GetSprite() LIBRARY
DECLARE FUNCTION AllocRaster ()LIBRARY
GOSUB InitSprite

200

I

-

(-

]

]

]

[

]

1

-]

]

J

]

Sprites and Bobs

ON BREAK GOSUB Cleanup 'set cleanup on BREAK
BREAK ON

WHILE MOUSE(@)<4 '‘Continue 'til BREAK
X=MOUSE(1)/2-16 'find mouse x

y=MOUSE(2)-4

CALL WaitTOF

CALL MoveSprite(d,sprite,x,y)
‘move paddle accordingly
WEND

Cleanup:

FreeSprite(1l) 'free the sprite
Cleanupl:

CALL FreeRaster(sprite,16,38) 'free the memory
WINDOW CLOSE 2 ‘close the window
END

InitSprite:

sprite = AllocRaster(16,38)

‘allocate memory for sprite shape data
IF sprite= @ THEN PRINT "No RAM":END
'if memory can't be allocated, quit
CALL BltClear (sprite,76,0)

‘use the blitter to clear the memory

IF GetSprite(sprite,l) <> 1 THEN
WINDOW OUTPUT 1
PRINT "Can't Get Sprite"
GOTO Cleanupl

END IF
'try to allocate sprite 1-if can't, quit
POKEW sprite+4,14 ‘set height of sprite
POKEW sprite+6,MOUSE(1l)/2-16 'set x
POKEW sprite+8, MOUSE(2)-4 'set y
FOR x=16 TO 68 STEP 4 'set shape = block
READ A%,B%

POKEW sprite+x,A%
POKEW sprite+x+2,B%
NEXT

CALL ChangeSprite (@, sprite, sprite+l2) 'take shape

RETURN

DATA &HFFFF, &HFFFF
DATA &HFFFF, &HFFFF
DATA &HC@@3, &HCE73
DATA &HCO@3, &HCE73
DATA &HFF8F, &HC@73
DATA &HFF8F, &HC@73
DATA &HC@@3, &HCE73

201

Chapter 6

DATA &HC@@3, &HCE73
DATA &HF1FF, &HCE@3
DATA &HF1FF, &HCE@3
DATA &HC@03, &HCE73
DATA &HC@@3, &HCE73
DATA &HFFFF, &HFFFF
DATA &HFFFF, &HFFFF

Attaching Simple Sprites

It is possible to create colorful sprites that can display up to 15
different colors at once, plus transparent, by combining two
adjacent sprites. The procedure is fairly simple. First, create two
sprites of the same size and position them at the same spot on
the screen. These sprites must make up a single pair that nor-
mally shares the same color registers (for example, sprites 0
and 1, 2 and 3, and so forth). After you've used ChangeSprite
to display them, set the SPRITE_ATTACHED bit in the second
control word at the beginning of the shape-definition data for
the second sprite. From then on, the two sprites will be
attached.

When you attach two sprites in this manner, the two bit
planes of shape data for each line of each sprite are combined
to form four bit planes. The bit planes of the lower numbered
sprite are used as planes 0 and 1 for the combined sprite, and
the bit planes of the higher numbered sprite are used as
planes 2 and 3. For instance, if you are using sprites 3 and 4,
here is the order in which each word of each data line is used:

Since there are four bits used to define each dot, each dot
can be any one of 16 colors. The attached sprites use the up-
per 15 color registers. Color 0 being transparent, color 1 uses
pen 17, color 2 uses pen 18, and so forth. Therefore, if the
data words for line 1 of sprite 3 are 0x0000, OxFFFF, and the

202

I N

-

[

-

I

-

4 1]

|

1

}

N

1

]

=

]

Sprites and Bobs

data words for line 1 of sprite 4 are 0x0000, OXxFFFF, they will
combine to form a color value of 1010 binary, or 10, for each
dot. This means that the first line of the sprite will be a solid
bar of pen color 26 (10+16).

Attached sprites use all 15 color registers only so long as
the position of each sprite is identical. If you move them apart,
they will be displayed as two separate sprites, each using up
to three colors plus transparent. The color registers used to
display those colors will differ from those normally assigned,
however. Regardless of which pair of sprites is used, the lower
numbered sprite will select its colors from registers 17-19, and
the higher numbered sprite will use registers 20, 24, and 28,
which are normally not used by any of the hardware sprites.
Fortunately, it is easy to keep the two sprites together. If you
use MoveSprite to move the lower numbered sprite of the
pair, the routine will automatically move both sprites together.

Program 6-3 is a C language sample that shows the use of
attached sprites. It creates a box-shaped sprite made up of
stripes of every available color.

From BASIC, creating attached sprites is very similar to
the process of creating two single sprites. The only real differ-
ence is that you must use the POKE statement to set the at-
tach bit of the second sprite. The value for this attach bit is
&HB80 (128), and the control word whose bit you must set is
located at an offset of three bytes from the beginning of the
shape data block. Therefore, if your SimpleSprite data struc-
ture for the second sprite appears at address Sprite2, and the
shape data comes directly after it at address Sprite2+12, then
the control word that you must POKE is located at Sprite2+15.
The correct statement to set the attach bit in this case would be

POKE Sprite2+15, PEEK(Sprite2+15) OR 128

We OR the contents of the control word with 128 in order to
make sure that only the attach bit is changed.

Program 6-4, a BASIC program, shows how to create two
attached sprites. It uses the 15-color striped sprite of the previ-
ous example and again lets you move the sprite with the mouse.

203

Chapter 6

Program 6-3. Attached Sprites, C Example

#include <window.c>
#include <graphics/sprite.h>

demo()

SHORT spgot;
SHORT n, r, x, y, dx, dy:

struct SimpleSprite Sprite2;
struct SimpleSprite Sprite3;

UWORD Sprite2_datal[32]:
UWORD Sprite3_data[32];

Sprite2_datal[@] = Sprite2_datall] = @:
Sprite3_data[@] = Sprite3_datall] = @;
Sprite2 ~datal30] = Sprltez datal31] = @;
Sprite3_data[3@] = Sprite3_data[31] = 0;

for (n = 2; n<29 ;n+=2)

Sprite2_dataln] = ©@x5555;
Sprite2_data[n+1] = 9x3333;
Sprite3_ “data[n] = Ox@FOF;
?pr1te3 “dataln+l] = OxQOFF;

spgot = GetSprite(&Sprite2,2);
if (spgot I= 2) exit (FALSE);

spgot = GetSprite(&Sprite3,3);
if (spgot l= 3) exit (FALSE);

dx =
dy = 1;

Sprite2.x = Sprite2.y =0;
Sprite3.x = Sprite3.y =8;
Sprite2.height = Sprite3.height = 14;

WVP = (struct ViewPort *) ViewPortAddress(wWdw);

ChangeSprite (0,&Sprite2, Sprite2_data);
ChangeSprite (@,&Sprite3,Sprite3_ data);

Sprite3_datal[1]|=SPRITE_ATTACHED;
MoveSprite(@,&Sprite2,60,90);

for (n=@; n < 20; n++){

if (n & 1) dy = -dy;
else dx = -dx;

204

[

Sprites and Bobs

r = 0;
whi%e (r++<110)

x=Sprite2.x+dx;
y=Sprite2.y+dy:;
WaitBOVP(WVP);
MoveSprite (@,&Sprite2,x,y):;
} WaitTOF();
}

FreeSprite(2);
FreeSprite(3);

} /* end of Attspr.c */

Program 6-4. Attached Sprites, BASIC Example

LIBRARY "graphics.library"
T$="Mouse moves sprites, CTRL-C to end"
WINDOW 2,T$,,0

DEFLNG a-z

DECLARE FUNCTION GetSprite() LIBRARY
DECLARE FUNCTION AllocRaster()LIBRARY
GOSUB InitSprite

ON BREAK GOSUB Cleanup 'set cleanup on BREAK
BREAK ON

WHILE MOUSE(9Q)<4 ‘Continue 'til BREAK
x=MOUSE(1)/2~-16 'find mouse x

y=MOUSE(2)-4

CALL WaitTOF

CALL MoveSprite(@,sprite,x,y)
'move paddle accordingly
WEND

Cleanup:

FreeSprite(2) ‘free the sprite
FreeSprite(3). 'free the sprite
Cleanupl:

CALL FreeRaster(sprite,16,76) 'free the memory
WINDOW CLOSE 2 ‘close the window
END

InitSprite:

sprite = AllocRaster(16,76)

‘allocate memory for sprite shape data
IF sprite= @ THEN PRINT "No Ram" :END
'if memory can't be allocated, quit
sprite2 = sprite+76

CALL BltClear (sprite,152,0)

'‘use the blitter to clear the memory

205

Chapter 6

IF GetSprite(sprite,2) <>2 THEN
WINDOW OUTPUT 1
PRINT "Can't Get Sprite 2"
GOTO Cleanupl

END IF

IF GetSprite(sprite2,3) <>3 THEN
WINDOW OUTPUT 1
PRINT "Can't Get Sprite 3"
GOTO Cleanupl

END IF

' try to allocate sprites 2-3,

* if you can't, clean up and quit

POKEW sprite+4,14 'set height of sprite
POKEW sprite2+4,14

FOR x=16 TO 68 STEP 4 'set shape = block
POKEW sprite+x,&H5555
POKEW sprite+x+2,&H3333
POKEW sprite2+x,&HFOF
POKEW sprite2+x+2, &HFF
NEXT

CALL ChangeSprite (0, sprite, sprite+l2) °'take shape
CALL ChangeSprite (@, sprite2, sprite2+12) 'take shape

'Set the ATTACH bit to attach the sprites
POKE sprite2+15,PEEK(sprite2+15) OR 128

‘Set sprite color registers randomly
RANDOMIZE TIMER
FOR p=20 TO 31

PALETTE p, RND(1), RND(1), RND(1)
NEXT p

RETURN

The Intuition Pointer as a Sprite

By default, the Intuition mouse pointer is displayed as a red
arrow, outlined in black and beige. You can change this de-
fault pointer with the Edit Pointer function of the Preferences
program. The shape of the new pointer is then saved in a file
called system-configuration in the devs: directory and is used
every time you boot up with the system disk on which it
resides.

It is also possible, however, to change the shape of the
pointer under program control. The Intuition library includes a

206

I

-

-

-

N S S

[

|

Sprites and Bobs

function called SetPointer that is used for this purpose. Its

syntax is
SetPointer
(Window, Sprite_data, Height, Width, XOffset, YOffset);
(a0) (a1) (d0) (d1) (d2) (d3)

The variable Window is a pointer to the Window data
structure. The pointer is tied to whichever window is currently
active. Therefore, when you use SetPointer, the shape of the
pointer changes only when the window to which you've
linked that new shape becomes active.

Since we have already established that Intuition uses
hardware sprite 0 for the mouse pointer, it should hardly
come as a surprise that the Sprite_data variable used by
SetPointer is the address of the same kind of sprite data table
as used by ChangeSprite. Again, the first two words of the
data table are set to zero, followed by two words of shape data
for each line of the pointer, and finally the last two words of
the table, which are also set to zero.

The next two variables which you pass to SetPointer are
the height of the pointer shape in lines and the width in dots.
The width value must be less than or equal to 16, since that is
the maximum width of a sprite.

The final two values specify the position of the pointer’s
hot spot. This is the point that is considered the exact current
location of the pointer. In the default pointer arrow, the sec-
ond dot of the second line of the pointer is considered to be
the point. If you wish this point to register as another spot on
the custom pointer that you have designed, you must specify x
and y offsets to move this point from its default position of
(0,0). A negative x offset moves this point to the right, and a
negative y offset moves it down. For instance, if you have de-
signed a pointer that is 15 dots wide and 15 dots high, you
would specify an x offset of —7 and a y offset of —7 to center
the hot spot right in the middle of your pointer. An x offset of
—15 would move the point to the top right corner of your
new pointer.

When you wish to change the pointer back to its default

207

Chapter 6

shape, you may use the Intuition function ClearPointer to do
so. The format for this function is

ClearPointer(Window);
(a0)

Program 6-5 demonstrates how to change the shape of
the pointer in a window. It transforms the pointer into the
popular crosshairs shape used by many drawing programs.

Setting up a new pointer shape from BASIC is very simi-
lar to setting up a simple sprite. Because of the tendency of
subscripted arrays to move around in memory as new vari-
ables are defined, you must allocate space for the sprite shape
data with AllocRaster, just as you do for simple sprites. In this
case, however, you don’t have to allocate room for the Simple-
Sprite data structure. You need only allocate enough space for
the shape data and four extra words for the control words
before and after the shape data. Once you have placed the
shape data into memory, you may use the SetPointer call to
change the pointer shape.

Program 6-6 shows how to change the shape of the
pointer from the default arrow to crosshairs from BASIC.

In addition to creating custom pointers, SetPointer can be
used to make the pointer disappear as well. This can be par-
ticularly useful for games in which you wish to limit the range
of motion of the pointer. The BASIC program, Program 6-7,
uses SetPointer to change the pointer to a one-line-high shape
that is completely transparent. It then uses some simple sprites
to substitute for the pointer, but limits their range of motion to
the bottom line of the screen. The result is a new pointer that
acts like the paddle used in many arcade games. Note that al-
though the pointer is invisible, it still functions. If you press
the right mouse button to activate the menu bar and move the
mouse pointer to the top of the screen, you will find that you
can make menu selections even though you cannot see the
pointer.

208

[

T

Sprites and Bobs

Program 6-5. Changing the Shape of the Pointer,
C Example

#include <window.c>

UWORD Sprite_datal] =

{

2,0, /* position, control */

9x0440,0x92C0,
9x0449,0x02C0,
0x0449,0x02C0,
9x0440,9x92C0,
0x0440,90x02C0o,

OxFC7E,@x02FE,
0x0000,dxFEFE,
9x0000,9x0000,
0x0000,3xFEFE,
@xFC7E, 0x0FE80,

0x0440, 0x0680,
0x0449, 0x0680,
0x0440, 0x0680,
0x0440, 0x0680,
0x0440, 0x0680,

2,0 /* end */

demo()
{

/* set the new pointer */
SetPointer(Wdw, &Sprite_data[®], 15, 15, -7, -7);

} /* end of setPoint.c */

Program 6-6. Changing the Shape of the Pointer,
BASIC Example

LIBRARY "intuition.library"
LIBRARY "graphics.library"
T$="New Pointer Window"
T$=T$+" -- CTRL-C to end"
WINDOW 1,T$

209

Chapter 6

DEFLNG a-z

DECLARE FUNCTION AllocRaster()LIBRARY

GOSUB 1Init ‘change pointer

ON BREAK GOSUB Cleanup 'set cleanup on BREAK
BREAK ON

WHILE 1 'Continue 'til BREAK
WEND

Cleanup:
CALL ClearPointer (WINDOW(7)) 'restore pointer
CALL FreeRaster(ptr,16,34) ‘'free the memory

END

Init:

ptr = AllocRaster(16,34)

'allocate memory for sprite shape data
IF ptr = @ THEN PRINT "No RAM": END
'if memory can't be allocated, quit

FOR x=@ TO 64 STEP 4 'set shape = block
READ D1,D2
POKEW ptr+x,Dl
POKEW ptr+2+x,D2

NEXT

CALL SetPointer (WINDOW(7), ptr,15, 15, -7, -7)
‘Change pointer shape

RETURN

DATA 0,0

DATA &H440,&H2CO
DATA &H440,&H2CO
DATA &H440,&H2CO
DATA &H440,&H2CO
DATA &H440,&H2CH
DATA &HFC7E, &H@2FE
DATA &H@, &HFEFE
DATA &H@, &HO

DATA &H@, &HFEFE
DATA &HFC7E, &HFES80
DATA &H440, &H680
DATA &H440, &H680
DATA &H440, &H680
DATA &H440, &H680
DATA &H440, &H680
DATA 4,0

210

]

|

)

B

)

Pl

1

}

1

M

1

]

1

]

N

™

Sprites and Bobs

Program 6-7. The Invisible Pointer

LIBRARY "graphics.library"

LIBRARY "intuition.library"

T$="Mouse moves paddle, CTRL-C to end"
WINDOW 2,T$,,0

DEFLNG a-2z

DECLARE FUNCTION GetSprite() LIBRARY
DECLARE FUNCTION AllocRaster()LIBRARY
GOSUB InitSprite

ON BREAK GOSUB Cleanup 'set cleanup on BREAK
BREAK ON

WHILE MOUSE(@)<4 ‘Continue 'til BREAK
X=MOUSE(1)/2-16 'find mouse x

CALL WaitTOF

CALL MoveSprite(@,sprite,x,193)

CALL MoveSprite(®,sprite+44,x+12,193)
'‘move paddle accordingly

WEND

Cleanup:

FreeSprite(2) 'free the sprite
FreeSprite(3) 'free the sprite
Cleanupl:

CALL FreeRaster(sprite,16,50) 'free the memory
CALL ClearPointer (WINDOW(7))

WINDOW CLOSE 2 ‘close the window
END

InitSprite:

sprite = AllocRaster(16,50)

'‘allocate memory for sprite shape data
IF sprite= @ THEN PRINT "No RAM": END
‘if memory can't be allocated, quit
sprite2 = sprite+44

CALL BltClear (sprite,100,0)
‘use the blitter to clear the memory

IF GetSprite(sprite,2) <>2 THEN
WINDOW OUTPUT 1
PRINT "Can't get Sprite 2"
GOTO Cleanupl

END IF

IF GetSprite(sprite2,3) <>3 THEN
WINDOW OUTPUT 1
PRINT "Can't get Sprite 3"
GOTO Cleanupl

END IF

' try to allocate sprites 2-3,

' if can't, quit

211

Chapter 6

POKEW sprite+4,6 'set height of sprite
POKEW sprite2+4,6

FOR x=16 TO 36 STEP 4 'set shape = block
POKEW sprite+x,-1
POKEW sprite+x+2,0
POKEW sprite2+x,-1
POKEW sprite2+x+2,0

NEXT

CALL ChangeSprite (@, sprite, sprite+l2)
'take shape

CALL ChangeSprite (@, sprite2, sprite2+12)
'take shape

CALL SetPointer (WINDOW(7),sprite+88,1,1,9,0)

RETURN

Vsprites and Bobs

As their name would suggest, simple (or hardware) sprites op-
erate fairly closely to the hardware model for sprites, and are
relatively simple to create and manipulate. The two other ani-
mation objects supported by the Amiga, vsprites and bobs, re-
quire a much greater amount of software overhead for their
operation. This makes them much more versatile than simple
sprites, but also makes them correspondingly more complex.

Indeed, the Amiga animation system is so intricate that it
would take an entire book to explain it adequately. Therefore,
what is provided here is more of an overview of vsprite and
bob operations than an exhaustive explanation. The BASIC in-
terpreter provides a simple means of accessing a full range of
vsprite and bob commands, so we’ll be using a number of
BASIC programs to illustrate the features of these animation
objects.

Although vsprites and bobs are similar in many ways, the
hardware basis for each is very different. Vsprites are based on
the hardware sprites and share many of their limitations, such
as size (16 pixels wide) and number of colors (a maximum of
three plus transparent). '

The animation software, however, provides a way of over-
coming some of the limitations of hardware sprites, such as
the restriction on the total number of sprites that can be dis-

212

I N

[

-

[

-

-

-

1

1

n

_

]

B

]

n

Sprites and Bobs

played onscreen at once. While there are only eight hardware
sprites, the vsprite system can dynamically allocate these
hardware sprites so that one hardware sprite can be used to
display several virtual sprites in different parts of the screen at
once. In addition, it can change the color registers used by
these sprites from line to line so that a sprite that appears in
one set of colors at the top of the screen may appear in a to-
tally different set of colors at the bottom of the screen. The
only limitations are those imposed by the hardware; you can’t
have more than eight vsprites on a single horizontal line at
once, and you may be limited to fewer than that if the colors
used by the vsprites are all different.

Bobs are animation objects that are created by using the
normal display hardware, not the separate sprite system. This
playfield animation system uses the blitter chip to sequentially
save the background area of the image destination, move the
image, and restore the background of the image source.

Since bobs are part of the bitmap, their size and color
limitations are the same as those of the bitmap. You can dis-
play as many bobs as will fit on the screen, and they may be
as large as the bitmap display and may have as many colors
as are supported by the screen upon which they are displayed.
Their principal drawback is one of speed. If you try to move
very large bobs, or a lot of them at the same time, the enor-
mous overhead requirements may make things somewhat
slow, even with the powerful hardware assistance of the
blitter.

Displaying Vsprites and Bobs

Though the hardware basis of vsprites and bobs is different,
the system treats them very similarly, and so we shall discuss
them together. In the Amiga animation system, the individual
animation objects like vsprites and bobs are referred to as
GELs (short for Graphics ELements). To display one of these
GELs, you must first create a linked list of graphics elements.
You then set up data for each of your vsprites or bobs, and
add it to this list. The data you create for each GEL includes
items like its size, shape, and position. Before displaying the
GELs, you must sort the list to get them into the order in

213

Chapter 6

which they will be displayed on the screen. Then you ask the
animation system to display them. Every time you make a
change to one of the members of the list, you must sort the
list again before displaying the changes.

The first step is to declare a GelsInfo structure, initialize
it, and link it into the rastport into which you will be display-
ing the vsprites or bobs. You initialize the GelsInfo structure
with the InitGels statement. The syntax for this statement is
InitGels(vspritel, vsprite2, GelsInfo);

(a0) (a1) (@2
where vspritel and vsprite2 are dummy VSprite data struc-
tures that are used to mark the beginning and end of the GEL
list, and GelsInfo is the address of the GelsInfo data structure
that will be used to keep track of the GEL information. You
must link this initialized GelsInfo structure into your rastport
by placing its address in the rastport GelsInfo variable. The
following C language fragment demonstrates the process of
initializing and linking the GelsInfo structure:
struct VSprite vsl, vs2;
struct GelsInfo GInfo;

InitGels(vsl, vs2, GInfo);
RastPort->GelsInfo = &GlInfo

The next step is to set up the data that defines the shape
and color of your image. The format of the image data that
you'll create depends on whether you are using a vsprite or a
bob. Vsprites use the format for sprite shape data that we dis-
cussed above; two 16-bit words of data for each line of the
sprite, where the first word is used for color plane 0, and the
second word is used for color plane 1. For bobs, you must set
up a shape data table similar to the one used by the Intuition
Image structure that we discussed in Chapter 5. There are as
many bit planes as the image is deep, and each plane is com-
posed of a number of lines of data. Each line contains as many
16-bit words as are necessary to hold the widest part of the
image, and there are as many lines as the image is high.

The next data structure that you must set up is the
VSprite structure. The C language definition of this structure
looks like this:

214

[

[

L

[

[

“['

[[

C

a1 1 1

Sprites and Bobs

struct VSprite

struct VSprite *NextSprite;
struct VSprite *DrawPath;
struct VSprite *ClearPath;
WORD 01dY, O1dX;
WORD Flags;

WORD Y,X;

WORD Height;

WORD Width;

WORD Depth;

WORD MeMask;

WORD HitMask;

WORD *ImageData;
WORD *BorderLine;
WORD *CollMask;
WORD *SprColors;

struct Bob VSBob;

BYTE PlanePick;

BYTE PlaneOnOff;
VUserStuff VUserExt;

%

As you can see, the VSprite structure contains a lot of
variables which describe many different aspects of the
vsprite’s display. Not all of these variables must be initialized
by the user, however. The first six variables, for example, are
for the use of the system. And the last member of the struc-
ture provides a place for users to add their own extensions to
the animation system.

The variables Y and X are used to store the vertical and
horizontal positions of the GEL. The Height, Width, and
Depth variables are used to describe the size and color resolu-
tion of the object (note that vsprites will always be 16 bits
wide and two color planes deep).

The ImageData variable is used to store the address of the
shape data table that you created to describe the object’s
shape. The SprColors variable is used only for vsprites and
points to a table that contains three 16-bit words of color data.
These contain the colors for planes 1, 2, and 3 (plane 0 is al-
ways transparent). The format for this color table is 0xORGB,
where the R stands for a 4-bit red color level value, G stands
for a 4-bit green color level value, and B stands for a 4-bit

215

Chapter 6

blue color level value. Therefore, a table consisting of the data
words 0xF00, 0x0F0, and 0x00F would contain the colors red,
green, and blue.

The colors used by bobs are the same as those used by
the rest of the background graphics. You may use the
PlanePickOn and PlanePickOff variables, however, to vary the
colors that are displayed. Use of these variables is covered in
the section on Intuition Images at the end of Chapter 5, and is
also summarized in the section on BASIC animation objects
below.

The Flags variable can be set to the value of one or more
flags. These control the way in which the object will be dis-
played. The flag VSPRITE should be set if the object is a
vsprite, but not if it is a bob. The other flags that can be set by
the user concern the way a bob is displayed. The SAVEBACK
flag indicates that the background is to be saved before the
bob is drawn and restored after it is moved. If this option is
desired, the user must provide a storage area for the saved
background image that is as large as the bob shape data area.

The OVERLAY flag indicates that portions of the bob im-
age definition that use the background color (pen 0) should be
treated as transparent when moving the bob. If this flag is not
set, the entire rectangle of the bob, background and all, will
cover the image it is placed on top of.

The MeMask, HitMask, CollMask, and BorderLine vari-
ables are used in detecting a collision between GELs or be-
tween a GEL and the screen borders. CollMask and BorderLine
are used by the system to maintain collision masks. CollMask
should point to a storage area the size of one of the image’s
bit planes, while BorderLine should point to a storage area the
size of the width of one line of image data. After setting these
pointers, you may initialize the contents of these masks with
the call InitMasks. The format for this statement is
InitMasks(VSprite);

(a0)
where VSprite is a pointer to the VSprite structure that con-
tains the addresses of the mask areas. HitMask and MeMask
are used to determine the kinds of collisions between objects

216

[[

[

[

-

-

[

I N

1

11 1 1

B

N

1 1

1

Sprites and Bobs

that the system will detect. Use of these variables is discussed
below in the section on collision detection for BASIC anima-
tion objects.

The final variable, VSBob, is used only if there is a bob
associated with this vsprite. If this is the case, it should be set
to point to the Bob data structure.

If the GEL that you're setting up happens to be a bob,
then you must initialize a Bob data structure in addition to the
VSprite structure. Here is the C language declaration for this
structure:

struct Bob

WORD Flags;

WORD *SaveBuffer;

WORD *ImageShadow;

struct Bob *Before;

struct Bob *After; Y,
struct VSprite *BobVSprite;
struct AniComp *BobComp;

struct DBufPacket *DBuffer;

BUserStuff BUserExt;

Y

The Flags variable contains only a couple of user settings.
A setting of SAVEBOB tells the system not to erase the old
bob image when moving the bob. This allows you to use the
bob like a paintbrush. The BOBISCOMP flag is used to show
that this bob is part of a larger animation object known as an
AnimComp. If this is the case, the variable BobComp is set to
point to the address of the AnimComp structure.

The BobVSprite variable should contain the address of the
VSprite data structure associated with the bob. Although not
every vsprite has a corresponding bob, every bob must have a
corresponding VSprite data structure.

The SaveBuffer variable should be set to point to a buffer
area that is as large as the shape data area for the bob. This is
where the background image behind the bob is temporarily
saved. The ImageShadow variable should contain the address
of another buffer area that is the same size as the Collision
Buffer or as large as one bit plane of the bob image. In fact,
you'll often use the same area for the two buffers.

217

Chapter 6

Bob Priority

The variables marked Before and After are used to determine
the priority between bobs. Normally, the order in which bobs
are drawn depends strictly upon their positions on the screen.
The bob that is drawn last is said to have the highest priority,
because if it overlaps with another bob, it will cover up part of
that bob and thus appear to be in front of it.

When it is important to have one bob always appear to be
in front of another, regardless of their positions, you can spec-
ify the drawing order with these two variables. For example, if
you want Bobl to always appear in front of Bob2, you would
set the After variable of Bobl to point to the Bob2 data struc-
ture to make sure that Bobl is always drawn after Bob2. Also,
you would have to set the Before variable of the Bob2 data
structure to point to the Bob1l data structure to make sure that
Bob2 is always drawn before Bobl. The C code would look
like this:

Bobl.After = &Bob2;
Bob2.Before = &Bob1;

If the priority of the rest of the bobs doesn’t matter, set all
the unused Before and After variables to zero.

The last variable is called Dbuffer. It points to a buffer
area that is used in a special technique known as double-
buffering. When you use double-buffering, you set up two
separate display areas. While you are drawing into one area,
you display the other area, then switch when the drawing is
done. That way, the drawing never takes place while the user
is watching. This prevents the flicker and smear effects that
can occur when part of the screen contains the old image and
part contains the new. Setting up a double-buffered display is
a more advanced technique, and we will not discuss the de-
tails fully here. However, you should remember that if you're
using a large number of bobs, or very big ones, you may need
to perform double-buffering to make them move smoothly. If
you are not using double-buffering, this value should be set to
zero.

218

[

L. [[= [N I I

[

)

]

)

)

]

Sprites and Bobs

Add Bob to the GEL List

Once you have set up the image, vsprite, and bob data, you
may add the bob to the GEL list with the call AddBob:
AddBob(Bob, RastPort);

(a0) (a1)
where Bob is the address of the Bob data structure, and Rast-
Port is the addresss of the rastport into which the bob is to be
drawn. If you are using vsprites rather than bobs, the call is

AddVSprite(VSprite, RastPort);
(a0) (a1)

When you have added all of your GELs, you must put
them into order before displaying them. Use the SortGList
statement to sort the members of the GEL list by vertical and
horizontal positions:

SortGList(RastPort);
(a1

Finally, you may display bobs with the call DrawGList, which
takes the form
DrawGList(RastPort, ViewPort);

@n (@0)

When you execute this statement, the bobs are actually
drawn on the screen. This drawing is performed in synchroni-
zation with the electronic raster beam to keep the display
smooth. Nonetheless, if you are using a large bob or many
smaller ones, you may have to take steps of your own to make
sure that the display does not flicker when you move them.

While DrawGList actually draws the bobs, it does not dis-
play vsprites, since their display depends on the contents of
the hardware registers of the display chips, rather than the
contents of display memory. DrawGList can only generate new
copper instructions to change the contents of these registers.
In order to merge these instructions in with the present copper
instruction list, you must use the following two routines:
MrgCop(View);

(a1)

and

LoadView(View);

(a1) 219

Chapter 6

Program 6-8 gives a brief demonstration of creating a bob
and moving it around the screen.

If you wish to change some aspect of the bob data, such
as its shape or position, you must call SortGList and
DrawGlList after making the change so that it will be dis-
played. If you wish to remove a bob from the GELs list en-
tirely, you may do so with the RemBob statement. The form of
this statement is the same as that of AddBob:

RemBob(Bob, RastPort);
(a0) (a1)

The OBJECT Commands—Vsprites and Bobs in BASIC

As mentioned at the beginning of the chapter, Amiga BASIC
provides full support for the operating system animation
routines. This support takes the form of a number of state-
ments, all beginning with the word OBJECT.

Like the operating system animation routines, all of the
Amiga BASIC OBJECT statements described below work with
either bobs or vsprites. There are slight variations on how
these statements are carried out, however, due to the inherent
differences in the nature of these two kinds of objects.
Whether you choose to make an object a bob or a vsprite will
depend to some degree on the needs of your program. Here
are some of the differences between the two object types
which you should consider.

Size and resolution. Bobs have the same resolution as
the screen on which they appear, while vsprites always appear
in low resolution. Vsprites can be only 16 pixels wide; bobs
can be virtually any size, so long as you have enough memory
to store their shape data.

Number of objects. Only eight vsprites of the same color
can appear on a single horizontal line, and only four of differ-
ent colors. Theoretically, at least, you can display as many
bobs onscreen as you want. In practice, however, you'll find
that Amiga BASIC does not handle a lot of bobs any better
than it does a lot of vsprites. In fact, the amount of jitter intro-
duced by numerous bobs onscreen at once may make them
quite unattractive when used in large numbers.

220

[

[

[

[

[

- L

[

[

L

Sprites and Bobs

[

[

(-

[

221

o~
~~

/x SUOTSU®3}X® I8sn ON 5/ TION

/x @ueld peyoTdun 03 S,g TTe = FFJOuosueld »/ 'QPOXP
/x soueld € ¥OTd = }OTdoueid x/ ‘LOX0

/% MOT3q UT POTITIF doq 03 xo3jutod ,/ ‘TION

/x SIoToo 23Tads asn 3,us90p dqoq x/ ‘TIONN

/x SEWTITOD £/ ‘[@]yseuD®

/+ ®uTTlISPIOH 5/ ‘[@]OUTTER

/x ®3IRgObewI ./ ‘[@Je3ep sbewIx

/x OMSEWATH «/ ‘1

/% SCHOW &/ ‘1

/» u®91Ddg se auwes ‘desp saueld € = yadeq / ‘e
/+ S3TA $9 = mox 18d Spaom § = UIPTM «/ 'y

/x UBPTU SOUTT @gpy = IUBTSH 4/ ‘9%
/+ uoT3Tsod X 4/ ‘21
/+ uoritsod X / ‘99
/x SPRTd x/ ‘MOVEIAVS | AVTIIAO
/% ®TdeTaea wa3lsis o/ TIAN ‘TIAN TION
‘fTIAN TIAN TION
}

= A 93TadsSA 3Iona3ls

{[p]ouTTd QUOM

[PV x PIMSEPWD UOM

{[€ » OV » V]X23INAS QUOM
{[€ & OV » Plelep obewI QIOM

<y-s1eb/sotydeabs aspniout#
<D * TMOPUTM> apnNIoUuT#

sgog BUINO ‘-9 wpibold

. L [[

Chapter 6

I D S B

{9Tqe31D® = ISTPURHITOD*OJUuTIsTab
{7IAN = XOTOD3ISeT*oFuTrsTab
ITINN = auTI3Xau-ojursTab

/xxxxxxrxxy OFJUI STOD SZTTCTITUI sxxxxxx/
IX @IOM

{Ap aquom

IXp (UOM

) {3Tqe3ld STqeLITIOO 3IdONIIS
/+ Q4 NUTT O3 OFUTSId6 ,/ ‘ozursisb ojuIlsTsd 3Iona3ys

/% 3ISTT sT26 103 se3tads Aummp ./ igs ‘1s 931TadsSA Ionals
}
()owsp
.
/% UOTSU®3IXT 19801 ON x/ TINN t
/x PPI9IINQ STANOP 3IOU -- ISIINEA 4/ ‘TINN
/» Fusuoduwiod uoTjewtue 3 ,UST qoq -- dwopqod x/ ‘TINN
/x dod s3T 03 83Tadsa JUTT -- 93TIASAGOH «/ ‘A%
/x I933BW 3 ,USSOP I9PIO HBUTMRID 5/
/% I9IIY &/ TINN
/+ ®30338€ 4/ ‘TION
/« MOpeRUS = [TOD -- MopeysabewI / ‘[@]seud®
/» pubsoeq ®ARS 03—~ I9FINESABS 4/ ‘[@]a233INngs®
/+ SBRTd &/ ‘g

}

= q qog 3onais

_J

222

[

Sprites and Bobs

R M

[

/% xxxxxxy DUNOIR T DAOW yyyyyxsssxvrvxrsvvsr x/

223

{(dAm’dy)asTIomeaq
{(dy)3sTID3I08
{(dg ‘axz)qodppv

/% sxxxxxx IT MRID DPUR QOH 9Y3} PP® xxyxxxxxxxxsxs x/

£ (A%)S)SENITUT
{3y = qOHSA*A

{
{3appx@=[€zE+x]e3ep_sbeuwl
~thQ%QIHNNm+NuM#Mv OUMEH
{ppaaxg=[1Zc+xJeiep_sbeur
{ppadxpg=[gZE+x]erep obeur

{@Paaxg=[€9T+x Jerep_obeul
~thQ%QIHN®H+%uMUMU 0OMEH
!@PPPxg=[T9T+X Jerep_sbeul
1 3333xP=[@9T+X Jerep obemr

:pPPPX@=[c+x Jerep_sbeuwl
! ppPPxXp=[z+x]e3rep_obeur
{3d3ax@g=[1+x]Jerep_; obeurT
tJa13xg=[xJeaep obeul
}

(p=+X {LST >X {p=X)I03F

[rxxxxrxxxx SASEW ‘BICD SO6PUT ITUL yysxvvr/

{ogursT1abn = ogulsyen«-dy
{(ogutsTeby ‘Zs® ‘IS%)STED3ITUI

. o C

B

Chapter 6

]

7]

B N D R

/» ©°doq Fo pus ,/{

{
{(dAM‘dY¥)IsTIOMRIQ
{()Joratem

(P96 > X<-o31adsaqod q) IT

(P1 > X<-@3Tadsaqod q || @PE < (xp

(81 > X<—-o3Tadsagod q || 98T < (&Ap

{(dy)3IsTIDII0S

{Xp- = Xp
=+ NAlﬂu...n.HQm\wnom.Qv)3T
«hmvl = h@

=+ X<-93Tadsaqo€- d))IT
}

(++X:9@PT>X{@=X)I0F

Ap
xp

X4
1

nn

224

]

]

1

)

)

N

|

]

]

1

.

Sprites and Bobs

Speed of motion. Vsprites move quickly, but bobs can be
slower, particularly if you're using very large bobs or many of
them. Generally speaking, the more bobs, the slower they
move. If you create a lot of bobs, they can be so slow as to
make their use impractical from BASIC.

Number and selection of colors. Bobs can use the maxi-
mum number of colors available on the screen on which they
appear. They are limited to the exact same color selection as
any other bitmap object that is drawn on that screen. Vsprites
can have only three foreground colors and one background
color. But these colors can be completely different from the
ones selected for the rest of the screen. The only limitation is
that no more than four vsprites of different colors can appear
next to each other on the display. Vsprites can therefore be
used to add color to a display without using up more bit
planes’ worth of memory. The additional colors are made
available by changing the sprites’ color registers as vsprites
move up and down the screen. Since vsprites use the same
color registers as the upper 16 bitmap pens’ registers, bitmap
objects drawn in these colors may change color as the vsprites
move up and down. For this reason, it is not advisable to use
vsprites on 32-color screens.

Color priority. Bobs have a selectable priority; you can
determine which will be displayed in front of the others. As
implemented by BASIC, vsprites always appear in front of
bobs and in a fixed order in front of each other.

Hardware system used. Because bobs are part of the nor-
mal bitmap display, they fit much better into the windowing
environment of Intuition. They move when their windows are
moved, they never move outside the borders of their windows
into other windows, and they disappear when their windows
are covered or closed. None of this can be said for vsprites.
Because they use a completely different hardware display sys-
tem, sprites don’t stay in their windows and will be displayed
even after the window is closed. They can also cause color
conflicts with the mouse pointer. Because the pointer is actu-
ally a sprite, its color registers may be affected when the op-
erating system software changes the sprite color registers. This
means that the pointer color may be different in one horizon-

225

Chapter 6

tal part of the screen than in another when you use vsprites.
This can be solved, but at the cost of reducing the number of
hardware sprites, and thus vsprites, available.

Creating and Displaying OBJECTs

The first step in creating a movable object is to define its shape.
This is done by using the Amiga BASIC program ObjEdit,
which is found in the BasicDemos drawer of the Amiga Extras
disk. This program allows you to use the mouse to draw a bob
or vsprite image and then save that image to a disk file. The
format of the disk file that the ObjEdit program saves is such
that it can be read by your program and used to form a mov-
able object in that image.

Instructions for using the ObjEdit program are found in
your Amiga BASIC manual. You should remember, however,
that if you edit a sprite using the program supplied, the image
of the sprite in the editor will be only half as wide as the
vsprite object that appears in your program, because the editor
uses the high-resolution mode (640 dots across), while vsprites
always appear in low resolution (320 across). Also, unless you
alter the program as indicated in the REMarks at the start of
the listing, it will edit only four-color objects.

Once you have drawn the shape and saved its image to a
file (which for purposes of this example we will name Image-
File), the next step is to read that file into a string in your pro-
gram. The statement lines that your program may use to
accomplish this task are
OPEN “ImageFile” FOR INPUT as 1
ObjectImage$ = INPUT$(LOF(1),1)

CLOSE 1

These statements read the entire image file into one long
string. Once the information resides in this string, it may be
used by the OBJECT.SHAPE statement to create an object
having that shape. The syntax for this is

OBJECT.SHAPE object_num, shape_definition_string

where the object_num value is a number greater than zero
that you assign to the object to identify it for future com-

226

N N

=

L [

[

_J

]

)

)

_

v

Sprites and Bobs

mands, and shape_definition_string is the string into which
you have read the image file information (here, Objectlmage$).
Once you assign the shape data in the string to the object, that
string is no longer needed, and you may free up the memory
it required by assigning its value to that of the null string (“ ”).

The OBJECT.SHAPE statement also allows you to create a
new object which has exactly the same shape as an existing
object. The syntax for this form is

OBJECT.SHAPE new_object_num, existing_object_num

where the value new_object_num is the identification number of
the new object that you are creating, and existing_object_num is
the identification number of the object whose shape you are
using. When you create a new object using this form of
OBJECT.SHAPE, both objects share that memory area where
the image data is shared, and this saves some memory. In all
other ways, however, the two objects are separate and may be
treated as unique objects. As we will see, they may even be of
different colors.

Once you have assigned a shape to an object or objects,
you need only to give the OBJECT.ON statement in order to
display them. The format is

OBJECT.ON [object_num [,object_num...]]

where the values marked object_num are an optional list of
the identification numbers of the objects that you wish dis-
played. If you supply a list of one or more object numbers,
only those objects will be displayed. If you use OBJECT.ON
with no object_num values, all objects that have been defined
using OBJECT.SHAPE will be displayed.

To suspend the display of an object temporarily, you may
use an OBJECT.OFF statement of the form

OBJECT.OFF [object_num [,object_num...]]

where the values marked object_num are an optional list of
the identification numbers of the objects that you wish to dis-
appear. As above, if you supply a list of one or more object
numbers, only those objects will vanish, but if you use the
command with no object_num values, all objects that have
been defined using OBJECT.SHAPE will be turned off.

227

Chapter 6

To disable an object permanently and release all of the
memory associated with maintaining its shape and other
attributes, you may use the OBJECT.CLOSE statement whose
syntax is
OBJECT.CLOSE [object_num [,object_num...]]

where the values marked object_num are an optional list of
the identification numbers of the objects that you wish to dis-
able. As before, if you supply a list of one or more object
numbers, only those objects will be closed, but if you use the
command with no object_num values, all objects that have
been defined using the OBJECT.SHAPE statement will be
closed.

Setting the OBJECT Color

Vsprites and bobs use different mechanisms for determining
the colors in which the object will be displayed. Vsprites use
some of the upper 15 color registers, as explained in the sec-
tion on hardware sprites, above, and they change the contents
of those registers as they move. The colors that a vsprite will
display are determined by the last six bytes of its ObjEdit file.
These six bytes contain three byte pairs representing the three
foreground pens. Each pair has the red value in the first byte,
and the green and blue-green packed in the second byte. Each
color value is represented by a number from 0 to 15. The
green-blue byte contains a number that is the sum of 16 times
the green value plus the blue value. In other words,

grnblu =16*green + blue

The ObjEdit program always sets the colors of the three
foreground pens to white, black, and orange. If you wish to
use other colors for your vsprites, you must alter the ObjEdit
program or the file that it produces, or change the color values
in the string after it has been read in from the file. Since the
last is the simplest approach, it is the one we’ll use.

The following program fragment demonstrates how to
change the string. It should appear in your program after the
image file has been read into the string ObjectImage$, and
before the OBJECT.SHAPE command assigns the image in the
string to an object. We use the colors black (0,0,0), purple

228

I N

[

I D

I

1]

]

)

|

1

Sprites and Bobs

(15,0,15), and cyan (0,15,15), but you can change the red and
grnblu values to suit your needs.
L=LEN(ObjectImage$)

redl =0

grnblul = 0

red2 = 15

grnblu2 = 0 * 16 + 15

red3 =0

grnblu3 = 15 * 16 +15

Col$=CHRS$(red1) + CHR$(grnblul)

Col$ = Col$+CHRS(red2) + CHR$(grnblu2)
Col$ = Col$+CHRS(red3) + CHR$(grnblu3)
MID$(ObjectImage$,L-5) = Col$

Bobs, on the other hand, take their colors from the same
pens as any other normal graphics image on the screen. Which
color pen is used to draw the bob is dependent on the bit im-
age data that you create with the ObjEdit program. You can
change these colors with the PALETTE statement, but the rest
of the graphics images that were drawn with the same pen
will change also.

The OBJECT.PLANES statement allows you to change the
pen used by your bob without changing the composition of its
bit planes. It is not really useful for vsprites, since their color
selection works differently, as explained above. The syntax is

OBJECT.PLANES object_num [,PlanePick] [,PlaneOnOff]

PlanePick and PlaneOnOff can be thought of as masks
that can change the normal order in which the bit planes are
displayed. Their use was described in detail in Chapter 5, in
the section on “Intuition Images,” but we will summarize that
information again because it is so useful.

PlanePick is used to determine what bit planes are used
for the display. Let’s say that you have a two-plane image that
uses pens 2 and 3, and you want to display it on a three-plane
screen. Normally, the two planes would be displayed in
planes 0 and 1. But you can set PlanePick to display these as
two entirely different planes. You choose these planes by set-
ting PlanePick to the sum of the bit values of the planes in
which you wish the object displayed. Each bit value corre-
sponds to 2°n, where n is the plane number.

229

Chapter 6

For instance, the bit value of plane 0 is 1 (2°0), the bit
value of plane 1 is 2 (2"1), and so on. The PlanePick value
that corresponds to the normal setting of planes 0 and 1

~would be 3 (1+2). To display the image in planes 1 and 2,
you would set the PlanePick value to 6 (2+4). The part of the
image that was created using pen 1 will now be displayed in
the color of pen 2, and the part of the image that was created
using pen 2 will now be displayed in the color of pen 4. The
part of the image that was originally colored in pen 3 (both
planes set) will now be shown in the color of pen 6.

The PlaneOnOff value can be used to further enhance the
selection of colors. Let’s say that in the above example you
wanted to display your object in pen colors 3, 5, and 7 instead
of 2, 4, and 6. Using PlanePick alone, this would not be possi-
ble, since each of these colors requires that two color planes
be set. PlaneOnOff lets you set the color planes that were not
chosen in PlaneOnOff.

In our example, an image that originally used planes 0
and 1 (pen colors 1, 2, and 3) was changed to use planes 1
and 2 (pen colors 2, 4, and 6). PlaneOnOff lets you set plane 0
as well. If you choose a PlaneOnOff value of 1, which corre-
sponds to plane 0, everywhere that a pixel is set in plane 1 or
2 will also be set in plane 0. This has the effect of adding 1 to
the pen values made possible by PlanePick. If PlanePick is set
to 6, and PlaneOnOff is set to 1, the parts of the object that
were originally drawn in pens 1, 2, and 3 will appear in pen
colors 3, 5, and 7. '

OBJECT Priority

When two bobs overlap, there is a question as to which one is
drawn on top of the other. Left to its own devices, the operat-
ing system will make its own determination based on the posi-
tion of the objects. If you wish one object always to be
displayed in front of others, you may specify this with the
OBJECT.PRIORITY statement. This statement takes the form

OBJECT.PRIORITY object_num, priority

where object_num is the identification number of the object,
and the priority value is a number from —32768 to 32767.

230

S S

[

L

L

I B

1

]

1

)

N

]

1

]

[~

1

]

' Sprites and Bobs

Objects with a higher priority number are displayed on top of
objects with a lower priority number. Note that this statement
applies only to bobs; vsprites always appear in front of normal
graphics objects like bobs.

Positioning and Moving OBJECTs
You position your movable objects with OBJECT.X and
OBJECT.Y. These statements use the syntax

OBJECT.X object_num, x_position
OBJECT.Y object_num, y_position

where object_num is the object ID, and the x_position and
y—position values are the coordinates of the top left corner of
the object. Although vsprites are always displayed in low reso-
lution (320 pixels across), their x_position values are relative
to the screen resolution. If vsprites appear on a high-resolution
screen, their visible range of motion is from —15 to 639. This
range is not affected at all by the size of the current output
window, unlike that of bobs, which can be seen only in the
visible part of their windows. Regardless of the visible range
of the object, the position commands will keep track of an ob-
ject’s position through the range of —32768 to 32767.

You may find that the positions of the objects do not
change immediately when an OBJECT.X or OBJECT.Y is is-
sued. If no objects are in motion, you may have to wait until a
motion command or another command that affects the display
occurs.

The position statements also may be used as functions to
determine the current x and y position of an object. The syntax
for the functions is
x—position = OBJECT.X (object_num)
y—position = OBJECT.Y (object_num)
where x_position and y_position represent the current coordi-
nates for the object whose ID number is object_num.

Normally, a bob will be displayed if positioned anywhere
within its window. It is possible to further restrict the visible
range of a bob with the OBJECT.CLIP statement. The format
is

OBJECT.CLIP (lefttop)-(right,bottom)
231

Chapter 6

where the first pair of coordinates represents the top left cor-
ner of the visible area, and the second pair specifies the bot-
tom right corner. If you position the bob anywhere outside the
specified area, it will not be displayed. Although clipping does
not apply to vsprites, the OBJECT.CLIP statement sets the
boundaries for the purpose of collision detection (see below)
for both bobs and vsprites.

While it’s possible to move your graphics objects by
changing their x and y positions, it may require a number of
program statements to keep them in motion. Amiga BASIC
provides statements which let you move these objects at a
constant rate of speed with just a couple of statements. These
statements are OBJECT.VX and OBJECT.VY, and their syntax is

OBJECT.VX object_num, x_velocity
OBJECT.VY object_num, y_velocity

The x_velocity and y—_velocity values represent the speed
of the object in pixels per second. A positive x value moves
the object to the right, and a positive y value moves the object
down. Negative velocity values move the object in the oppo-
site direction.

After you have set the velocity for an object, you must
use OBJECT.START to set it in motion. This statement takes
the form

OBJECT.START [object_num [,object_num...]]

If you specify a list of one or more object_num values,
only those objects will start moving. If no object_num value is
given, all previously defined objects will move.

To stop an object, you can use the OBJECT.STOP state-
ment, whose syntax is

OBJECT.STOP [object_num [,object_num...]]

This statement will also apply to specific objects only if a
list of object_num values is furnished. Otherwise, all motion
is stopped. An object’s motion is also stopped when it is made
invisible with an OBJECT.OFF statement.

Once an object is put into motion, it will keep going until
it collides with a border or with another object. Such a colli-
sion has the same effect on the object as an OBJECT.STOP

232

R N SR I

.

(

.

1]

i

1

:J

| SN S I B

Sprites and Bobs

statement. Therefore, if you want to keep the object in motion,
you must periodically check for collisions. This can be accom-
plished either by using the OBJECT.X and OBJECT.Y functions
to check the position of the object, or by using the ON COL-
LISION statement discussed below to change its direction
when it reaches the border of the screen. When you have de-
tected a collision, you must start up the object again with an
OBJECT.START statement.

Like the positioning statements, the velocity statements
also can be used as functions to determine the current velocity
of an object. The syntax of the functions is

x—velocity = OBJECT.VX (object_num)
y—velocity = OBJECT.VY (object_num)

where x_velocity and y_velocity are the current velocities of
object_num that are returned by the function.

Program 6-9 brings together a number of the elements
discussed above. Since this book cannot transmit the equiva-
lent of an image file created by the ObjEdit, we use a subrou-
tine called Initlmage to create the string equivalent of such a
file. The image described by the file is that of a bob in the
shape of a flying saucer. This image is assigned to two bobs,
and the color of one is changed using the OBJECT.PLANES
statement. Both bobs are then positioned and set into motion.

Just as the velocity statements allow you to change the
position of an object automatically, Amiga BASIC includes
acceleration statements that allow you to change the velocity
automatically. The format of these statements is
OBJECT.AX object_num, x_acceleration_rate
OBJECT.AY object_num, y_acceleration_rate
where x_acceleration_rate and y_acceleration_rate represent
the velocity to be added to an object’s current velocity every
second. In other words, it specifies the velocity change in
pixels per second.

The above caution to watch an object once it is set in mo-
tion applies even more strongly when you use the acceleration
statement. A high rate of acceleration may cause an object to
hit a border very quickly. It may even develop “escape veloc-
ity,” where it is redrawn at such large intervals that collision

233

Chapter 6

checking no longer works. In such a case, it will not stop at
the border, but will keep right on going and disappear from
the display entirely.

These statements also may be used as functions to deter-
mine an object’s current acceleration rate. The format of the
acceleration functions is
x—acceleration_rate = OBJECT.AX (object_num)
y—acceleration_rate = OBJECT.AY (object_num)
where the function returns the x or y acceleration rate of
object_num.

Program 6-9. Flying Bobs

WINDOW 1,"Unidentified Flying BOBs",(9,0)-(300,186),4
GOSUB InitImage
'create ShipShape$ from data,
'instead of reading image file

OBJECT.SHAPE 1, ShipShape$ ‘'create first space ship

OBJECT.Y 1,50 'position it vertically
OBJECT.VX 1,60 ‘give it horizontal motion
OBJECT.SHAPE 2,1 ‘create second ship
OBJECT.PLANES 2,2,1 ' make it white with orange windows
OBJECT.X 2,150 'position white ship horizontally
OBJECT.Y 2, 180 ‘and vertically
OBJECT.VY 2,-45 'give it vertical velocity upward
OBJECT .ON ‘display both ships
OBJECT.START ‘start them moving

FOR delay = 1 TO 2300 'kill time while they move

NEXT delay

OBJECT.CLOSE 'wipe out both objects

END

InitImage:

‘Create the string equivalent
‘'of an ObjEdit image file

FOR x=@ TO 89

READ 4%
ShipShape$=ShipShape$+CHRS (ds)
NEXT

RETURN

DATA @, 0, 0, O ,0, O, O, @
DATA @, @, 0, 2, 0, 9, 9, 32

234

[[

L

-

[

— .

[

[

-

1

1

b

n

Sprites and Bobs

DATA 0, 9, 0, 8, @, 24, 9, 3
DATA @, O

' Bit Plane @

DATA &HOO@, &HOO, &HOO, &HOO
DATA &HOO, &HOJ, &HOO, &HOO
DATA &HOO, &HOO, &HOO, &HOO
DATA &HO3, &HC3, &HC3, &HC@
DATA &HO3, &HC3, &HC3, &HCO
DATA &HOO, &HOO, &HOO, &HOD
DATA &HOO, &HOO, &HOO, &HOOD
DATA &HOO, &HOO, &HOO, &HOO
'Bit Plane 1

DATA &HOO, &H3F, &HFC, &HOQ
DATA &HO3, &HFF, &HFF, &HCO
DATA &HFF, &HFF, &HFF, &HFF
DATA &HFF, &HFF, &HFF, &HFF
DATA &HFF, &HFF, &HFF, &HFF
DATA &HFF, &HFF, &HFF, &HFF
DATA &HO3, &HFF, &HFF, &HCO
DATA &HOQ, &H3F, &HFC, &HOO

Detecting Collisions

When a movable object collides with another object or with
one of the borders of the window, Amiga BASIC notes the
collision and saves the information about it on a stack. This
stack can hold information about only 16 collisions at a time.
After the stack is full, BASIC ignores any subsequent
collisions.

You can receive several kinds of information about colli-
sions from the COLLISION function. The syntax for the vari-
ous forms of this function is
object_num = COLLISION (0)
collision_window = COLLISION (—1)
collision_code = COLLISION (object_num)

COLLISION (0) gives the object_number of the object
that was involved in the collision whose information is the top
item on the stack. This form leaves the collision information
on the stack, where it can be retrieved by a subsequent call of
the third form, COLLISION (object_num).

COLLISION (—1) identifies the window in which the col-
lision recorded on the top item of the stack occurred. It also
leaves the collision information on the stack.

COLLISION (object_num) is the most common. It returns

235

Chapter 6

a number, collision_code, that identifies what collided with
the object in question during the collision recorded by the top
entry on the stack. In the process, it also removes the item
from the stack to make room for new entries. If you specify
the object_num of an object that was not involved in the colli-
sion recorded on the top of the stack, the collision_code will
be zero, indicating no collision, and you’ll have lost the chance
to find out what happened in that collision. Therefore, if you're
unsure which object was involved in the collision recorded on
the top of the stack, check it first with COLLISION (0).
Besides zero, indicating no collision, other possible
collision_codes include positive numbers, which correspond to
the object_num of another object with which the object col-
lided, and negative numbers, which indicate a collision with
one of the window borders. The significance of these negative
values is
—1 Object collided with top border
—2 Object collided with left border

—3 Object collided with bottom border
—4 Object collided with right border

There is a way to detect collision other than having your
program check the COLLISION function every so often. If you
use the ON COLLISION statement, BASIC will notify your
program every time that it detects a collision and will cause
your program to execute a specified subroutine after the cur-
rent statement finishes its execution. The format of this state-
ment is

ON COLLISION GOSUB label

where label is the program label for the subroutine that is to
be executed. You can change the subroutine that is to be exe-
cuted at any time by issuing the ON COLLISION GOSUB
statement with another label, or you can disable collision trap-
ping with the statement

ON COLLISION GOSUB 0

Like other event-trapping statements, the ON COLLISION
statement will not actually direct the program to your subrou-
tine when a collision happens until you give the statement

COLLISION ON
236

I .

[[

N

1

N

)

2

-

]

-]

]

B

]

Sprites and Bobs

It will, however, still place collision event information in
its stack, so when the COLLISION ON statement comes, the
program will be directed to the specified subroutine once for
each collision event that has been stored. After you have
given the COLLISION ON statement, you may suspend event
trapping with the statement

COLLISION STOP

which will stop it until the next COLLISION ON statement.
To end collision trapping entirely, use the statement

COLLISION OFF

Normally, Amiga BASIC records collisions between every
object, and between objects and the window borders. In some
cases, however, you may not want to take any action if certain
objects collide with each other or with the border. You there-
fore might not want BASIC to take any notice of these colli-
sions at all. You can prevent the detection of certain collisions
with the OBJECT.HIT statement. This statement takes the
form

OBJECT.HIT object_num [MeMask] [HitMask]

where MeMask and HitMask are values whose bit patterns de-
termine which type of object will collide. Think of MeMask as
a number that defines the collision type of this object and
HitMask as a number that describes the collision type of the
object with which this object will collide. If you logically AND
the MeMask of one object with the HitMask of another, a col-
lision will be detected only if the result is not zero. In addi-
tion, if the HitMask of an object is an odd number (has a one
as the least significant bit), it will collide with borders.

For example, let’s take the following four objects:

Object_num MeMask HitMask Collides With

1 0010 (2) 1101 (13) obj2, obj3, borders
2 0100 (4) 1010 (10) objl, obj3

3 1000 (8) 0110 (6) obj1, obj2

4 0010 (2) 0001 (1) borders only

Object 1 has a HitMask that indicates it collides with all
object types except those that have the same MeMask as it
does. Its HitMask value is 13, which produces a nonzero result

237

Chapter 6

when ANDed with either the MeMask of object 2 (4) or the
MeMask of object 3 (8). But 13 and the MeMask of object 4 (2)
equals zero. Therefore, object 1 collides with both objects 2
and 3, but not object 4. Since its HitMask is odd, it also col-
lides with borders.

Objects 2 and 3 have HitMasks with each other’s MeMask
bit set, in addition to that of object 1. They collide with each
other and with object 1, therefore, but not with the border,
since both are even numbers.

Object 4 has a HitMask with only the least significant bit
set. It has zeros in the bit places represented by the MeMasks
of all the other objects. Therefore, it collides only with the
borders.

In the above example, none of the objects has HitMasks
that indicate that they can collide with another object, unless
that other object also has a HitMask that indicates it collides
with the first. Since the position of the objects will determine
whether object 1 collides with object 2, or object 2 collides
with object 1, it is a good practice to make sure that the
HitMasks of each is set so that both collide with each other or
neither collides with each other. Otherwise, the collision of the
two objects will not always be reported.

Program 6-10 was adapted from the Demo program
which appears on the Extras disk. It demonstrates many of the
statements explained in this section. It creates the shape of a
flying saucer vsprite from data and changes the data so that a
second vsprite is shown in different colors. It moves and accel-
erates these vsprites, and uses collision trapping to bounce
them off the borders. It uses collision masking to make sure
that only border collisions are detected, not collisions between
the ships. The demonstration stops after a certain number of
bounces to make sure that the ships do not reach escape ve-
locity and disappear off the screen.

You may notice that if you move the mouse pointer up
and down the screen as the ships are bouncing, the pointer
colors will change. This is because the vsprite system uses the
available hardware sprites in order, and hardware sprite 1
shares its color registers with sprite 0, the one used for the
pointer. So, when the animation system changes the color of

238

[[

-

[

<

.

B

L

[

[

-

1]

N

7

_J

]

]

|

]

N

]

Sprites and Bobs

sprite 1, it also changes the color of the pointer. One way to
get around this problem is to use the GetSprite command to
reserve sprite 1, thus making it unavailable to the vsprite sys-
tem. Try substituting the following lines for the beginning of
Program 6-10 (the part before the subroutines):

LIBRARY "graphics.library"
DEFINT a-2z
WINDOW 1, "Bouncing Space Ships"
DIM Sprite(19)
CALL GetSprite&(VARPTR(Sprite(@)),1)
GOSUB initialize 'set up sprites
WHILE Running
SLEEP ‘only do something

‘when the sprites collide
WEND
OBJECT.CLOSE 'release all objects
PALETTE 0,0,.3,.6 'screen back to blue
CALL FreeSprite&(1l)
END

Notice how the mouse pointer no longer changes colors
when you move it on top of the spaceships.

239

I

Chapter 6

]

u

]

NOLIY
utebe ob 31 °yeu, IYVYLS * LOIL€0

sjunexy

aounog OLOD
JdI NI
XA=-'8 XA°LOALEO
I9paoq 3Iybtrax 10 3F8T FJo padounoq 3doafqo,
NAdHL (@ < XA NV $-=0) ¥O (@ > XA ONY Z-=0) JIASTH
Aa-'s XA°1D3ILHO
Iepaoq wo3ljoq Io dojz FFo pedunoq 3oalqo,
NIHL (@ < Aa QNVY €-=0) 4O (@ > &AA QNY T-=0) JI
(S)XA°1LDILHO = Aa
(S)XA°LOILEO = XA

ZUITM SPTTTOD 3IT PTP 3IeUM, (8)NOISITIOD = D
auou, 3Junaxy NIHL @ = S JI
ZPOPTTTO® 309[qo yoTym, ()NOISITIOD = S
g = butuuny NIHL SZ = & JI:T+l = &
s @ounog
aNg
anTq 03 j}oeq uaaxds, 9°'€*'g’'P FALILITVA
s3oalqo TTe osearax, dso1d * LOdrdo
aNIM
opITTOO® sa3Tads ay3z uaym bButyzswos op ATuo, dda91s

futuuny ITIHM
so3Tads dn 319s, 9zZTTeTIITUI dNSOD

7'(981'00€)-(@'@) ' wSAdTUS @oeds butounod, 'T MOANIM
z-e LNIJAd

oweq e4udsA '01-9 wpiboid

240

[

Sprites and Bobs

[

|

(N

2'C XV aomnmo

z’'e

2'CT XA° aounmo

(A4

PE’Z X°LDALdO
SIOTOD MdU Y3TM IddNes e 893eadld, $adeysdTys ‘z IJVHS*1OILHO

$100=(5-T’ $adeysdTys) $AIn

(enTquab) $UHO+(EP3I) $YHO+$TOD=$TOD
AﬂﬁﬁncumvwmmU+AvauvwmmU+WH00nwaoo
(TnTquab) $YHO+ (TP21) $YHO=$TOD

enbe = g1 ‘ST ‘g , £+9T+ST=gnTquUIb

@=€cpax

a1dand = gT1’@’ST , GT+9T4@ = ZnTquab

ST=Cpax

soeTq = @g’'6‘g , g=TnTquab

: g=Tpax

23 Tadsa jo e3ep 10100 abueyo, ($odeysdTys) NAT="T
1 XVY°1OArdo
T A¥Y°*LDdALdo
T XA°LOILHO
T XA*LDdLdo
Z'T X°LOdLdo
¢odeysdTys ‘T HIVHS®LOIALHO

[4
T
L
21
]

9113 abeurr HBurpesx ueyl Iayzex,
ejep woil $adeysdrys a3eaid,
ebewI3TUI ENSOD

9‘'0‘'0'p ILLATYA

1 = Butuuny

t@zZTTRT3ITUI

N R I

241

[

Chapter 6

IR

JJH®
JddH®
JdH?
8J4HY
@aH™

'JIHR VIV
‘JAHR YINd
‘JIHS YIYd
‘ATHR YIvVd
' LOH® YIvVd

ybty ssulr 8,
Kq sp1m seliq g,
e3jeq abewy a3Tads,

9 ‘? YLvVd

@ ‘0 ’'® ‘0 ‘TST ‘ST ‘'TST ‘ST YIvd

0 ‘0 ‘0 ‘0 ‘0’0
€ ‘0 ‘ST ‘9 ‘s ‘D
91 ‘0 ‘@ ‘D ‘T ‘P

o ‘0 ‘0 ‘0 ‘0 ‘0

‘e ‘@ YINVd
‘e ‘e v¥ivd
‘g ‘9 YINd
‘g ‘@ YINd

NINLIE
LXAN

($p) $¥HO+$odeysdrys=4¢adeysdrus

€9

uo 3T uany,

P avad
oL @=X ¥Ood
tobewrr3TUI

NNLIY

NO NOISITIOO

butrddeay wuoTsTITOO 398, sounod €NSOD NOISITIOD NO

sieapioq Y3lTm apITTOD LATUuOo,

1‘¢’z LIH®°LOALHO

1’2’1 LIH*°LOIALLO
siepioq 398, (¥81°GLZ)-(9‘QP) dITO°LDILHO

futaow weyz 3Ie3s,
9TqTISTA Wway3l aeuw,

LIVYLS * LOILd0
NO* O3 g0

1]

242

Sprites and Bobs

C C [

{

O

@JdH?
9PHZ
@9H3

243

* IPHZ YIvYd
'IgHR YINd
‘@gHR YINd

g9 aNY dg--so34q x9y,
oM3 UT pTaYy aae sanTea g9¥,
sI10T0o 93Tads,

[

PIHS
8J4H®
JdH3

L

‘ L@H3 YINd
‘ITH® YINd
' IIHR WINd

I I

D0 a0 3 i e T R B

]

]

]

)

~

]

)

]

]

)

]

Advanced Topics

uring our exploration of the graphics capabilities of
the Amiga, we have touched on a number of topics,
which, because of their complexity, could not be ex-
plained fully when they were mentioned. In this
chapter, we will be discussing three such topics in greater de-
tail: SUPER_BITMAP windows, Hold and Modify (HAM) dis-
play mode, and Extra Halfbrite display mode. None of these
graphics modes is directly supported by BASIC, and by nature
they don’t lend themselves to being implemented in BASIC
through the use of POKEs or library calls. This discussion,
therefore, will be confined to programming in the C language.

SUPER_BITMAP Windows

In Chapter 2, we discussed the three methods for refreshing
windows, which is the term used to describe the process of re-
storing the contents of a window after it has been covered by
another window and then uncovered again, or when it has
been moved.

One method is to create what is known as a
SUPER_BITMAP window. This involves setting up a separate
bitmap storage area for the window. This storage area is large
enough to contain the entire contents of the window. Al-
though we normally think of a bitmap as an area of memory
that is used to hold data that is actually displayed, the con-
tents of the SUPER_BITMAP are not directly shown onscreen.
Rather, the part of the bitmap that represents the area of the
window that is currently uncovered is copied to the screen’s
bitmap. No matter what happens to the copy that is being dis-
played, the contents of the SUPER_BITMAP remain safe. This
means that the programmer never has to worry about refresh-
ing a SUPER_BITMAP window, because Intuition always has
a copy of the data available to it.

Another advantage of the SUPER_BITMAP window is
that the bitmap area may be any size, up to 1024 X 1024
pixels. This allows the programmer to create a picture that is

247

Chapter 7

larger than the window used to display it, or even larger than
can fit on the display screen at one time. There are a couple of
implications to this. When you try to output graphics to other
types of windows, the output is clipped or cut off if it is di-
rected outside the boundaries of the window. With a SUPER
BITMAP window, data directed outside the window’s screen
boundaries may not appear on the display immediately, but it
will be stored in the bitmap if it falls within the boundaries of
this larger area. The window may then be scrolled over the
contents of the bitmap so as to reveal these hidden portions of
the big picture one at a time.

The price that you pay for the advantages of a SUPER
BITMAP window is a little extra programming effort and addi-
tional memory usage. The amount of extra memory required
may be quite substantial if you create a very large bitmap con-
taining many bit planes.

In order to set up a SUPER_BITMAP window, you must
create your own bitmap data structure and storage area, and
initialize them before you can open the window. The first step
is to declare a BitMap data structure:

struct BitMap BitMap;

This structure contains information about the display lay-
out of the data, the number of bit planes, and the height and
width of each bit plane. To initialize these values, use the
Graphics library call InitBitMap. The format for this statement is
InitBitMap(BitMap, Depth, Width, Height);

(a0) (do) dn (d2)
where BitMap is a pointer to the BitMap data structure, Depth
is the number of bit planes used, and Width and Height give
the dimensions of each bit plane in pixels.

The BitMap data structure also contains pointers to the ac-
tual memory areas used to store the data for each bit plane. In
order to initialize these BitMap.Planes values, you must allo-
cate memory for the bitmap storage. You do this with the
AllocRaster memory allocation function that we discussed in
Chapter 3. For example, if you have initialized a BitMap data
structure for a bitmap that is 640 X 400 pixels and two planes

248

-

[

[

[

[

[

[

(-

(-

[

]

]

1

)

]

]

I

]

]

Advanced Topics

deep, the following code fragment would allocate the required
memory areas and link the addresses of these areas into the
BitMap structure:
for (x=0;x<2;x+ +)

if

((BitMap.Planes[x] = (PLANEPTR)AllocRaster(640,200)) = =0)

exit(400);
else BltClear (BitMap.Planes[x],16000,0);

Notice that we also used the BltClear statement, which we
discussed in Chapter 3, to initialize the bitmap to all zeros.

Having completed initialization of the BitMap data struc-
ture, we must still link that structure into the NewWindow
structure before opening the window. We do this by storing a
pointer to the BitMap structure in the Bitmap variable of the
NewWindow structure, like this:

NewWdw.BitMap = (struct BitMap *)&BitMap;

Before opening the window, make sure that the Flags vari-
able in the NewWindow structure shows the refresh type as
SUPER_BITMAP also.

As we mentioned above, once you have set up the SUPER_
BITMAP window, you may position the graphics cursor any-
where within the bitmap and place graphics there, whether
that portion of the bitmap is currently being displayed or not.
When you wish to scroll the window around the bitmap to re-
veal the hidden portions of it, you may use the library routine
ScrollLayer. Before you use this routine, however, you must
first open the Layers library, of which this function is a part.
The process of opening this library is very similar to that of
opening the Intuition library or Graphics library. First, you de-
clare a structure for storing the base address of the library:

struct LayersBase *LayersBase;

Next, you open the library, assigning the result to the base
address variable. If the value returned is zero, the library is
not available, and your program should exit:

LayersBase = (struct LayersBase *)

OpenlLibrary(“layers.library”,LIBRARY_VERSION);
if (LayersBase == NULL) exit(FALSE);

249

Chapter 7

Once you have opened the library, you may use the
ScrollLayer routine. The syntax for this statement is
ScrollLayer (Layer_Info, Layer, dx, dy);

- (a0) (@) (do) (d1)
where Layer_Info and Layer are pointers to data structures,
and Dx and Dy are the horizontal and vertical offsets by
which you wish to move the window. The Layer_Info data
structure is part of the Screen data structure; in Program 7-1
this value is set to zero, and the Layer_Info structure from our
window’s screen is used. A pointer to the Layer structure is
part of the Window data structure. If the pointer to your win-
dow was declared as

struct Window *Wdw;
then the Layer structure can be referred to by the expression
Wdw->WLayer

Program 7-1 is a simple example of setting up a bitmap
that is larger than the window. It sets up a BitMap area that is
as large as the Workbench screen, but opens a SUPER_BITMAP
window that is only a quarter of the size of the display. Sev-
eral lines of text are written to the bitmap, and then the
ScrollLayer statement is used to scroll the contents of the bit-
map through the window to reveal the hidden parts of the text.

One important point to keep in mind is that in order for a
portion of the SUPER_BITMAP to be displayed, its data must
be moved to the portion of the screen’s bitmap display area
that is used by its window. Therefore, if you directly modify
the contents of the SUPER_BITMAP itself, it will not alter the
screen display of the SUPER_BITMAP window until the win-
dow actually needs to be refreshed by Intuition. For example,
when the ScrollLayer command is used to change the portion
of the bitmap that is displayed, such a refresh takes place.

250

[

[

(-

[

[

(-

‘Advanced Topics

[

[

(-

/#xxxrxexxxxrxxrxxx SIULISUOD weiboid Pappp—ys
{MPMy MODUTIM 23Dha38

{dew3tg dewatd 3onais

/+ soTtydexb 103 psarnbsi saan3loniis /
!{osegsaalke], asegsiaker] 3onais

{osedxIdy o9sedxIn 3onIls

{9SequUOTITNIUI, 9SBUOTITNIUI 3JONIIS

/+ S9TIRIqIT I0F POpPodU S$9INIONIIS 5/

<Y UOT3ITNIUT /UOTITNIUT> OPNTOUT#H
<y-sadL3y /oexa> epniouT$

/x D®9U ®M SUOTITUTIOP SY3 SPNTOUI 4/

****%#*¥****#**#******i*******%***%*%i%*******##***%

dew3Tq 9yl UT punoie MOPUTIM 8y} TTOIDS pue
‘moputM 8yl ueysy i9b6Tq sT dew3ztq asoym
moputm depztgaadns e dn 39S 03 MOY SMOYS
D-31daadng

* K Kk x Kk X

*
******¥¥**%**#**#i**#***#*#*******#*#*%**#****k****\

MOPUIM dVINLIE3dNS *L-£ woibold

[(- L [

251

[

B B

Chapter 7

]

7]

B

{x jur
}

()uteuw

/% ssxxxxxxxx OIOH surbed weIbold syxsxrrrrxrxvrxy x/

I':
!
/x UO SOPTSaI 3T U83IDS JFO 0dAL 4/ NITIDSHONTEM

/% IUBTSH ‘YIPTM UNUTXEH 5/ ‘9'0

/% IUPTSH ‘UIPTM UMWTUTH 4/ ‘0’0

/+ deW 3Td wo3lsnd 03 I93uToed 4/ NN

/» Auump ‘8I1n30NnI3s US99IDS O3 ISJUTOd x/ TINN
/% PTITL »/ + ,mopuTM dewatgaedns buriroaoss,

[/ °beWT MIeW }O9YD O3 ISIUTOd 4/ fTIAN

/+ 39bpeD 3I8I1Td 031 Id3UTOd »/ TION

/% SbeTd «/ 'ISOTOMOANIM + OYAZOVAZAWWIO +
FIVAILOV + dVWLIE ¥3dnS
/x SPeTd dWDaI «/ MOANIMISOTO

/+ Ued TTe3aq ‘uad 3}oo1d %/ ' JLEM’ dnTg
/% FUBTSH ‘UIDTM »/ ‘091 BTE
/x °6pd dol ‘obpd 3FOT x/ : ‘g

}
= MPMM3AN MOPUTMMBN 3IOonNIl}s

/% S°IN30NI3}S MOPUTMMON DUR US3IDSMON POZTTRTITUT-31d 4/

3 dN¥O SUTIop#
z dy1g surTFep#
1 dLHM SUTIop#
) dnd suTIep#
/» dn STyl us3lIOUs O3 4/ 3ITOJI<-MpM 4¥ SuTIop4

]

252

Advanced Topics

(-

[

‘(opS)3TX®
(6 == ((MPMMONZ)MOPUTMUSAO(y MOPUTM 3IONIIS) = MPM)) 3IT

tdel3TEY(x dEeW3ITE 3IONA3IS) = deWITa ApPMMON

{(g'PP@E9T’ [x]soueTd deW3Td) IeaTd3Td oST2
{(goY)3ITX®

(g== ((909Z‘@¥9)I938LYOOTTIV(ILJANVId) = [x]sauerd- den3iIq))

3T
(++X%Z>x!g=X) 103

{(p0Z ‘gv9 ‘'z ‘denNaTgn)deNITaITUI

/+ ‘Pouado 3 ,usem 3IT ‘g ST Id3UTOd MOPUTAM BYI JTI &
*MOpPUTM @Yy uado pue dewiTq 9yl SZTTRIITUI 4/

_ {(@PE)ITX2 (TINN == osegsisie]) IT
! (NOISYIA AVEEIT’ AxeaqrT - saakeT,)AxeaqrIuado
(osedsaaker] 30n13s) = asegsialer]

_ {(@PZ)3ITX® (TINN == °@sedx3yd) IT
! (NOISHAA AMVHEIT’,LAxexqrT-soTtydeab,)Lxeaqriuado
(x 98eEXJD IONIIS) = SseIXID

_ {(@PT)3TXS (TINN == ©SEFUOTITNIUI) 3T
£ (NOISYIA A¥YEEIT’,AIeIqTT UOT3ITNIUT,)AxRIqTTUSdO
(x ©SeqUOT3ITNIUI 3IONIIS) = 2SLFUOTITNIUI

/[

*31Inb o8 ‘sTqelTeEAR 3},UdIR SITARIAIT «

‘g = JT pue ‘sSauT3inol SOM O3 Id93UTOd 838D 4
*saTaexqT saske] pue soTyderp ‘uoTiITnUI 9Y3z uado 5/

R I B

253

[

Chapter 7

JN A R I B

{

{(@'1-) 110108
(@°'T-) T1TOIDS
{(1'@) T1TOIOS
{(T1-'1) T1OaDS
uAH..: T110ad5s

{

£(zg* moputm dewytg-aadns BUTTTOIDS ® UT ST SUTT 3I¥93 STYL, 'dd)3Ixal

{(SUTT QT ‘dy)d4a0K
(T =+ ®urT ¢ @61 > dUTT "@Numcﬁavuuou
{(dLHM'd¥)uadvles
{3uTT 3UT

}

()owsp
/+ uTeW JO pud «/ |
! (esegsasieT)Aaeiq1I9s0TD
{ (osequoT3TN3lul)AIRIqTIS8SOTD
! (osegx3n)LieaqrIasord
{ (MPM)MOPUTMISOTD
/% SOTIRIQIT SY3} pue MOPUTM dY3 ISOTD 4/
{(poZ ‘b9’ [x])soueTd denaTd)I93seyea1d
(@ =1 [x]ssueld-den3itd) IT
/+ Kxousuw dew-31q 2313 4/ (++X!Z>X{g=x) 103
£(37E6TS dw<-3I0dI98N<~MPM>>T)3ITEM

1 ()owsp

254

Advanced Topics

C LG & L

{(K'x *‘z0KeTM<-MpM ‘@) IoKeITTOIDS

255

/x ©°3Tqaadng Jo pud 5/ {

uathBvﬁM%

}

i @21 > ®UuTl g = °UTT) I03F

fauTT 3UT

}
{K'x qut
(A'x) TTOaDS

C -0 C .

Chapter 7

Hold and Modify Mode

In Chapter 2, we said that in most circumstances, five is the
maximum number of bit planes that a screen can use. In cer-
tain special display modes, however, six bit planes may be
used at a time. Since high-resolution and interlaced screens
cannot use more than four bit planes, these special modes are
confined to use in low-resolution, noninterlaced mode only.

The first of these special modes is called Hold and Modify
(HAM) mode. Normally, the maximum number of colors that
you can display onscreen at once is 32, since there are only 32
hardware color registers available for use. Hold and Modify
mode, however, allows you to bypass this limitation and to
display all 4096 shade onscreen at once.

The secret is in how the pen number for each dot of the
screen display is interpreted. When HAM is active, the highest
two bits of the pen number control how the lower four bits of
that number are interpreted. When the top two bits are both
zeros, the lower four bits are interpreted as a pen number
from 0 to 15, as normal. When one or more of these top two
bits are set to one, however, the interpretation is very differ-
ent. In that case, determining the color of the pixel is a two-
part process.

First, you start by making the color of the pixel the same
as that of the next pixel to the left. Then, you modify one of
the three color components of the pixel (red, green, or blue)
by changing it to the value of the lower four bits of the pen
value. Which color component is changed depends on the
value in the high-order two bits. If those bits are set to 01, the
blue component is modified. If they are set to 10, the red bits
of the pixel to the left are replaced. And if they are set to 11,
the green component is the one that is changed.

You should see now why this mode is called Hold and
Modify. It extends the color selection by allowing you to copy
(Hold) two of the three color values used by the preceding
pixel and to change (Modify) the other value to the new value
specified by the lower four bits of the pen number. The fol-
lowing list summarizes the actions taken according to the
settings of the top two bits of the pen value for each dot:

256

L

.

[

(N I A S

]

1

)

]

]

}

b

1

]

Advanced Topics

00xxxx Use the pen value specified by the bits xxxx as you would
ordinarily. For example, if these bits had the value 1010, it
would mean to use the color values specified in pen (color
register) 12.

Olxxxx Duplicate the red and green values of the pixel to the left,
and use the value xxxx for the blue color value.

10xxxx Duplicate the green and blue values of the pixel to the left,
and use the value xxxx for the red color value.

11xxxx Duplicate the red and blue values of the pixel to the left,
and use the value xxxx for the green color value.

Setting up and using a Hold and Modify screen is fairly
straightforward. To activate Hold and Modify mode, set the
ViewModes value in the NewScreen data structure to HAM.
Do not set the HIRES or LACE flags. Set the Depth variable of
that structure to 6, and open the Screen as you normally
would. When drawing in a window that appears on that
screen, use the SetAPen statement to set the foreground pen
to a value of 0 to 15 to draw using the normal pen colors. If
you wish to draw using the Hold and Modify method, add 16
to the color intensity desired if you want to hold the red and
green values of the pixel to the left, and modify the blue
value. Add 32 if you wish to modify the red value, or add 48
if you wish to modify the green value.

Program 7-2 shows how to use the Hold and Modify
mode. It draws six strips, each of which is divided into 16
color segments.

Although HAM mode allows you to display a lot of colors
at once, you have limited control over the color selection of
any one pixel. Since you can change only one color value per
pixel, to change colors entirely takes three pixels.

Another limitation is that when you use HAM mode for a
number of pixels in a row, the color of each succeeding pixel
depends on that of the pixel to the left. Changing the color
value of the first pixel in that row could change all of the
pixels that appear to its right. This is demonstrated in Program
7-2. Originally, the bottom three strips of color are identical to
the top three. All that is required to change them entirely,
however, is to draw a single horizontal line in front of each.

Because of these limitations, HAM mode is somewhat dif-
ficult to use for purposes such as freehand drawing. On the

257

Chapter 7

other hand, the extended color resolution that it affords can be
used very successfully in applications such as digitizing color
video images. Pictures produced by this method are amazingly
faithful to the original, considering that they use a 320 X 200
display resolution.

Extra Halfbrite Mode

Another special display mode that uses six bit planes is called
the Extra Halfbrite mode. This mode is not discussed very
much in the Amiga technical literature, because it was a very
late addition to the Amiga hardware. In fact, many of the first
Amigas do not support this mode at all. At the time of this
writing, Commodore-Amiga has not announced a policy con-
cerning updates to the new display chip.

Extra Halfbrite represents a compromise between HAM
and the normal display mode which allows the user to extend
the color selection beyond the normal 32 colors. In Extra
Halfbrite mode, the lower five bits of the pen value are used
to select a color register from 0 to 31. If the sixth bit is set to
one, however, the red, green, and blue values held in that
color register are shifted one place to the right. This effectively
halves the luminance value for each color. The resulting dis-
play, therefore, is a much darker version of the original color.

Setting up and using an Extra Halfbrite screen is similar to
the process used for a HAM screen. Set the ViewModes vari-
able in the NewScreen structure to EXTRA_HALFBRITE. Do
not set the LACE or HIRES flags. Set the Depth variable to 6.
When drawing, add 32 to the pen value to get the Halfbrite
equivalent of the color.

The Extra Halfbrite mode offers a bit of extra flexibility in
color selection, but it is not really as handy as having 64 dis-
tinct color registers. For one thing, since each Halfbrite color
uses only three bits for red, green, and blue values, there are
only 512 possible Halfbrite colors, one-eighth of the total
Amiga color palette. And, as you may have noticed in Pro-
gram 7-3, the Halfbrite colors are all fairly dark and are less
distinct from one another for that reason as well.

258

S IR B A

(

C [o [

Advanced Topics

/% x S®IN3ONIIS MOPUTMMON pUE USDIDSMON DPOZTTRTITUT-91d 5 »/

PEXP NIDUAOW SUTIap#
PZX@ AIIAOW SUTISP4#
PTXg NTEAOW SuTFap#

] dyod auTyap#
P@90X@ MOVId SuTyap#

/x dn sTyY3 us3zaoys 03 ./ AI04d <—-MPM dy aurjyop#
/rrxxrrrxrrrrrryxyyrxxy SIURLISUOD WRIBOId yyyxxrxxxvx/
{dAMy ITOAMDTA 3IONIAIS

{MpPMy MOpPUTM 3ONI]S

{1083SNDy USSIDS IONIAIS

/x soTudeab 103 psatnbal s8In3ONIIS 4/

l{osegxXJD, OSERAXJD IONIIS
{9SegUOTITNIUI 4 SSBRHUOTITNIUI 3IONIAIS

/s SOTIRIQIT I0J papesu S8IN3IdONIIS 4/

<Y°uoT3ITNIUT /UOTITNIUT> OpNTOUT#
<y-sadiy/ooxa> apnTOUTH

/x DP92U ©M SUOTITUIFOP BY3} apnIoUI 4/

AJIPON PUD PIOH 'Z-/ wpibold

N IO B

259

C

BN D R B B B0 S D B
}

()uteu

/x xxxxxxrrxxxxxxy OIOH suibog welboxd yyxxxxxxvxxxxxxx x/

I3
¢
/x UO SOPTSSI 3T uaa1ds 3o 9dAL / NITIDSWOLSND

/+ IUBTOH ‘U3IPTM WNWTIXEH / ‘0'o

[+ JUBTOH ‘YIPTM UMWTUTKH 4/ ‘0’0

/+ deW 3Tg wo3lsnd 03 I93UTOd &/ I INN

/x Aummp ‘9In30NI3}E UIBIDS OF ISIUTOA &/) TINN
/v PTITL £/ ‘ TINN

/+ ®BBWT IR 3Ydayd 03 I°3UTOd x/ TTINN

/x 3°9bpes 3sITJ 031 I93UTOd &/ TIAN

/x sbe1d x/ ‘HSOTOMOANIM | SSITIIQHOL |
FIVAILOV | HSIWITA LAVWS
/x SPeTd aWdodal «/ MOANIMISOTO

/+ USd TTRI2A ‘usd OOTd 4/ TION‘ TINN
/% IUBT®H ‘UIPTM «/ ‘goc‘oTe
/x ©6pd 4ol ‘96pE 3IFOT / ‘9'0

}

= MPMMON MOPUTMMBN 3IONI3}S

S

/» deW3Tdwo3lsn)y O3 I93UTOd &/ ‘TION

/» S39bpen usaads o3 I93uTOd »/ ‘TINN

/x 3I¥93 9T3T3 O3 I93UTOd x/ TINN

/+3UOF WO3ISND O3 I93IUTOd &/ TINN

/x °d&L ued1dS 4/ ! NEFJOSWOLSND

_H /+ sopou Keidstp Teroads / ‘WVH

o /x USddOOTE pue usadrTe3lad &/ ‘9’1

rot /x U3daa ‘IUBTSH ‘UIDTM «/ ‘o‘ppT'@TE
.m /» °bpadoy’ (g=skemte) obpd3IFOT &/ ‘9’‘'D o
O } O

= JIDSISNDMON USDIOSMON 3IONIJS

Advanced Topics

{(3TEBTS dW<¢-3I0dI9SA<-MPM>>T)ITEM -
N
{ ()owap
/% T IOTOD 3884/ {(@'6’€’c'dAM) pEDEISS
/% T I0TOD 39S,/ A¢ 9’81’ 'dAM) yEDEISS
/% T I0TOD 39s4/ (88’9 T1'dAM) paDYI®S
‘(o

/» 3PeTq o3 punoabyoeq 38sy/ 2'0'0'@’'dAM) FEDEISS
! (MPM)SSOIPPYITOIMSTA(x ITOIMSTA IONIIS) = JAM

/sdeu I0TOD peOoT pue 3I0dMOTA B8yl PuTI »/

) {(FISTYI)ITXD
(TINN == ((MpMMON3)MOPUTMUSAQ(x MOPUTM 3IONIIS) = MPM)) IT

{(ISTYd)ATX®
(TINN == ((I0S3snDpMaNz)usaadsuado(y U910 3IONIAIS)
= IDSISND = UDSIDS*MPMMaEN)) IT

/+ °pouado 3 ,usxsm Asyz ‘g = sasjurtod ITOYI JI
*SMODUTM pue u®aId§ 2y3 uado 4/

_ {(FSTYA)ITXS (TINN == osedx3ypn) IT
{(NOISYTA AR¥VYEIT ‘,KxeaqTT°sortydeab,)Azeaqrrusdo
At osedxiydo &Uﬁkumv = I9sedxyo

_ ~Ammq<mvuaxw (TINN == 9seguUOT3ITNIUI) IT
{(NOISYIA R¥VYEIT ‘,A1exqil‘uoT3irTniut,)Lreaqiuado
Ak aseqguoT3iTnijul MOSM#MV = 9sedquoTiTniul

[
*aTqeITeAR 3 ,usIe S3TIRITIT ‘g = JT DU .
sauT3nox SOM 03 Iajutod 199 4

*59TIRIqTIT SOTUdead pue UOTITNIUI oYl uado 4/

(B I I I O

I R

Chapter 7

]

]

{

! (P9T+040€ ‘81 ' AY) MeId
L (@8+04@€ ‘8T 'AY) 2A0KN
{(o*dy¥)uadvies

}

(++0ip>0:T=D) a0OF

{

{(P6T LT+Ox8T GLT ‘Ox8T'AY) TTTIIOY
L(POT LT+Ox8T 080481 'dY) TTTAIOSN
! (O4+NTHAON ‘ A)usadvies

(P9T ' LT+Ox8T 'OV T 0481 A¥) TTTIIOSY
{(GL'LT+O48T @S ‘D81 AY) TTTIIOSN
! (0+NIDAOKW ‘dY)uadviess

L(BET'LT+048T 'GTT D481 'AY) TTTIIONY
(@Y LT+O48T'0Z ‘0481 'A¥) TTTIION
{ (0+@TIAONW ' dY)uadvaes

}

(+40%91>0:T=0) i0%

{d jut

}

()owap

{

! (@seguoT3Tniul)A1ReIqITaSOTD
! (osegx3n)AieaqI1asoTd

! (I083SND)Us8IDSISOTD

{ (MPM)MODUTMOSOTD

262

Advanced Topics

[

[

.

L

LAYXQ ‘cadx@ ‘TAS6XP ‘69EXP
‘LIOXP ‘AyaxXg@ ‘vH6X@ ‘NLLXD
'€86%X@ ‘8L9X@ ‘8DSX@ ‘vABXQY
'HEDXP ‘Y¥BXP ‘69€EXP ‘£56X0
'YQUXQ ‘QYVYXQg ‘eygxg ‘ovvXe
'YpYX0 ‘OYVXg ‘YYOX@ ‘vOVXQ
'IJIXQP ‘dAPdXg ‘dIQX@ ‘@IIXP
‘IPOXY ‘0JPX0 ‘O0IXP ‘888X0 y
= [gz€] dewioTod QIOMN

/+ T€-p ued 103 SIOTOD 4/
/+ dn sTY3 ua3lIoys 03 ,/ 33044 <-MDM dy sutjep#
[xxxxxxxxxxexsxrxrrxxrpxsx SIULISUOD WeIBOId wywvwvxxvrx/
{dAMy 3ITOAMOTA 3IONIIS

{MpMy MOPDUTM 3IONI3S

{I0838ND 4 U83IDS 3IONIIS

/« sotudeab 103 paxrtnbax saanijonils 4/

{osegXIDy OSREXJD 3IONIIS
{9SPHUOTITNIUI y 9SLEUOTITNIUI 3IONIIS

/x S@TIRIqTIT I03 PIpPs3aU $9INJONIIS x/

<Y UOTITNIUT /UOTITNIUT> SPNTOUTH
<y-sadiy/ooxa> apniouTH

/x D99U ®M SUOTITUTISP aY3 8pPNIOUI 4/

SPON SJLQYDH DIXT ‘€-/ WoIboid

C o L

263

[

_l

Chapter 7

_

N

]

Y R

H
/+ UO SOPTSaI 3T usaadg Jo adAL ./ NATIDSWOLSND

/+ IUBTSH ‘U3IPTM umuIxen ./ ‘s’'0
/% IUBTOH ‘UIPTM WNWTUTW 4/ ‘9'0
/» deW 319 wo3lsno 03 I93UTOd 4/ 1NN
/x Aunmp ‘a1In3ona3ls usoxds O3 I93UTOd &/ NN
/% ®TITL «/ TINN
/+ ®DRUT YIeW }DOoydD 03 IS3UTOd 4/ ' TINN
/+ 3°6peD 3IsATI 03 ISIUTOJ o/ TION
/x sbetd 4/ ‘@SOTOMOANIM | SSITIAQHOH |

FLVAILOV | HSTIITN LAVKS
/+ SBRTd aAWOAI &/ ‘MOANIMISOTO

/x Udd TTE3IaQ ‘usad AOOTd x/ ‘TION‘ TINN
/% FIUBTPH ‘UIPTM »/ [XA YA
/+ 2bpa doy ‘ebpa 3IFo */ ‘2'9

}

= MPMMBN MOPUTMMON I}

R

/% deWITHWO3ISND 03 ISIUTOd 4/ ION
/x S3iobped usaadg 03 IIIUTOd 4/ ‘I ION
/x 3X®3 ST3ITI 03 I2UTOd 4/ AN
/¥3UOJ WO3snd 03 ISIUTOd 4/ AN

/x ®dAL usaids 4/ ! NFFIOSWOLSND
/« sopou Aeidstp Teroeds ./ ‘dLIYGITVH ILXI

/x U®d300Td pue uadiTe3lad s/ ‘9’1

/+ U3ded ‘IUBTOH ‘UIPTM 4/ ‘9'ppZ ‘OZE

/+ °bpadoy’ (g=sXemte) °6pd3IFoT 4/ ‘0'o
}

= IDSISNDMAEN USDIDSMON 3IOonax

/% » S2IN3ONIIS MOPUTMMON PUR USSIOSMON DPOZTTERTITUT-33d 5 »/

B

onxas

a8

264

Advanced Topics

/+ SI93sTbax I0TOD peoTy/ {(zg 'dewaoT100% ' dAM) FEDYPROT
{ (MpM)SS2IPPYIIOIMOTA(x ITOIMOTA 3IONIYIS) = dAM

/sdeuw I0TOD peROT pue 3IIO0AMITA BY3} PUTT »/

{(ISTVI)ITXD
(TINN == ((MpPMMONZ)MOpuTMuadO(y MOPUTM 3IONIIS) = MPM)) IT

‘(ASTYd)ITX®
(TINN == ((IDSISNDMONZ)US2I0SUSad0 (4 UDBIDS 3IONIIS)
= IDS3ISND = UDDIDS MPMMaBN)) IT

/+ *peusdo 3 ,usixam Aayz ‘g = sasjurod ITOYI FI &
*SMOPUTM pue U®21dSs 9yl uado 5/

_ {(ISTYA)3ITX® (TINN == 9sedx3id) FT
! (NOISYEA X¥VNLIT ‘,KxeaqiT°soTydeab,)LzexqrIusdo
(x» ©SedxJD 30NI3IS) = 9sedxId

_ {(ISTYA)ITXD (TINN == 9SREUOTITNIUI) IFT
{(NOISYAA XYVNEIT ‘,A1e1qrT-uoT3Tniur,)Areaqrusdo
A«. 9sedquoTiTInijul uoﬂuumv = 9sedguoTiTnijul

/x
*oTqeITRAR 3 ,USI® SOTIRIAIT ‘g = JT Pbue
SPUT3INOI SOM O3 I@3uTod 389

*soTIRIqTT soTydead pue uoTITNIUI oY} usdo 4/

}

()utew

/% xxxxxxxxxxxxxy OIOH SUTHOH WeIBOId xxsxxssxxxxvvsr x/

265

S R AR R IV I

B I

Chapter 7

]

]

) R Y B

/% ©°*93ITILITEH PUD ,/{

{

f(Q9T ' LT+04BT YT 0481 'AY) TTTIIOY
/+ SUOTISI®A 83TaqFTeY 9U3} pue ,/ ! (8p+0’dy)uadyiss

(PET'LT+OxBT 'OTT D81 'AY) TTTIIODNY
/+ T€-91 SIOTOD 103 SIeq IOTOD 5/ { (9140 ‘dY)uadviess

L(@L'LT+O48T QS D81 'AY) TTTIIOY
/x SUOTSIBA 83TaqFTeY oYl pue ,/ ! (ze+d0’dy¥)uadvies

(@Y LT+0x81 /020481 'AY) TTTIIONY
/% ST-@ SIOTOD I0J sIeq IOTOD 4/ {(o'dy¥)usadvaiss
}

(++2:91>0ig=D) 103

{5 jurt

}

()ouwsp

! (osequoT3iTniul) aeaqiIosoTd t
{ (asegx3n)AieIqITasoTd
! (1083SND)Ua8IDSISOTD
{ (MpM)MOPUTMOSOTD

£(3T9hTS Au<-31I04IDSN<-MPM>>T)ITeM

{ ()owap

-

266

D

ey
i

e

'.'."; :

D0 a0 3 i e T R B

I

1

]

[

]

o

1]

l

Function Summary

AddBob
Location graphics library
Function Adds a bob to the current GEL list
Syntax AddBob(Bob, RastPort);

(a0) (al)
Input Bob = Pointer to the Bob data structure to be -
Parameters added to the list

RastPort = Pointer to the RastPort structure to
which the GEL list is linked
AddVSprite
Location graphics library
Function Adds a vsprite to the current GEL list
Syntax AddVSprite(VSprite, RastPort);
(a0) (a1)

Input VSprite = Pointer to the VSPrite data structure
Parameters to be added to the list

RastPort = Pointer to the RastPort structure to
which the GEL list is linked

AllocRaster

Location graphics library

Function Allocates free memory fromi the heap for use as
display memory

Syntax Raster = AllocRaster(Width, Height);
(d0) (d0) (d1)

271

Appendix
Input
Parameters

Results

AreaDraw

Location

Function

Syntax

Input
Parameters

Results

AreaEnd

Location
Function

Syntax

Input
Parameters

AreaMove

Location

Function

272

Width = Width of the bit plane in pixels
Height = Height of the bit plane in lines

If the function is able to allocate the memory
requested, Raster will contain a pointer to the
memory area. If not, it will contain a zero.

graphics library

Adds a point to the list of points used to fill an
area

Error = AreaDraw(RastPort, X, Y);
(al) (d0) (d1)

RastPort = Pointer to the RastPort data
structure

X = Horizontal coordinate of the point

Y = Vertical coordinate of the point

Error is set to —1 if there is no room left in the
list of points; otherwise, 0.

graphics library
Fills an area using a list of vertices

AreaEnd(RastPort);
(al)

RastPort = Pointer to the RastPort data
structure

graphics library

Closes the current polygon described by a list of
points and defines the starting point for a new

polygon

IR I I

[

S IR R B

1 1 1

1

]

Function Summary

Syntax Error = AreaMove(RastPort, X, Y);

(al) (d0) (d1)
Input RastPort = Pointer to the RastPort data
Parameters structure

X = Horizontal coordinate of the point
Y = Vertical coordinate of the point

Results Error is set to —1 if there is no room left in the
list of points; otherwise, 0.

AskFont

Location graphics library

Function Moves the text attributes of the current font to a
TextAttr data structure

Syntax AskFont(RastPort, TextAttr);

(al) (a0)

Input RastPort = Pointer to the RastPort data

Parameters structure
TextAttr = Pointer to the TextAttr data structure

to be filled

AskSoftStyle

Location graphics library

Function Returns the style bits for the font styles that can
be generated by the operating system software
for the current font. The value returned may be
used as the Enable mask for SetSoftStyle.

Syntax Enable = AskSoftStyle(RastPort);

(d0) (al)

Input RastPort = Pointer to the RastPort data

Parameters structure

Results The valid style bits are returned in Enable.

273

Appendix

AvailFonts

Location

Function

Syntax

Input
Parameters

Results

BitClear

Location
Function

Syntax

Input
Parameters

274

diskfont library

Builds an array of information on all of the
fonts available on disk or in memory or both

Bytes_short = AvailFonts(Buf_ptr, Buf_size,
(d0) (a0) (d0)

Type);
(1)

Buf_ptr = Pointer to the memory buffer used
to hold the array

Buf_size = Size of the buffer in bytes

Type = The type of font to search for.
AFF_MEMORY is used to search for fonts
in memory, and AFF_DISK is set to search
for disk-residents fonts. Both can be used.

If the buffer does not have enough room to
contain all of the font information, Bytes_short
contains the number of additional bytes that
must be added to the buffer size so that it can
contain all of the font information.

graphics library
Fills a section of chip memory with zero bytes

BltClear(Memory, Bytes, Flags);
(al) (d0) (d1)

Memory = Pointer to memory to clear (must
start on a word boundary)

Bytes = Amount of memory to clear (usually
an even number of bytes)

Flags = Set bit 0 to force the function to wait
until the memory is cleared before resum-
ing. Bit 1 is used to determine if Bytes is in-
terpreted as an even number of bytes (0) or
as a number of rows and bytes per row to
clear.

I I I

L

I P |

C

)

]

)

2]

)

BltPattern

Location

Function

Syntax

Input
Parameters

BNDRYOFF

Location
Function
Syntax

Input
Parameters

Function Summary

graphics library

Draws through as stencil, using the standard
drawing rules

BltPattern(RastPort, Pattern, X1, Y1, X2, Y2,

(a1) (@0) (d0) (d1) (d2) (d3)
Width);
(d4)
RastPort = Pointer to the RastPort data
structure
Pattern = Pointer to the two-dimensional sten-
cil pattern

X1 = Horizontal coordinate for the upper left
corner of the destination in the RastPort

Y1 = Vertical coordinate for the upper left cor-
ner of the destination in the RastPort

X2 = Horizontal coordinate for the lower right
corner of the destination in the RastPort

Y2 = Vertical coordinate for the lower right cor-
ner of the destination in the RastPort

Width = Width of the two-dimensional stencil
pattern in bytes

include/graphics /gfxmacros.h (graphics macro)
Turns off outlining of filled figures
BNDRYOFF(RastPort);

RastPort = Pointer to the RastPort data
structure

275

Appendix
ChangeSprite
Location graphics library
Function Links a table of sprite shape data to a
SimpleSprite data structure, thus determining
the shape of that simple sprite
Syntax ChangeSprite (ViewPort, SimpleSprite,
(a0) (al)
Sprite_data);
(@2)
Input ViewPort = Pointer to the ViewPort data struc-
Parameters

ture (a zero may be used if the sprite is po-
sitioned relative to the view)

SimpleSprite = Pointer to an initialized
SimpleSprite data structure

Sprite_data = Pointer to a table of sprite shape
data

ClearPointer

Location

Function

Syntax -

Input
Parameters

ClipBlit

Location

Function

276

intuition library

Returns the Intuition mouse pointer to its de-
fault shape

ClearPointer(Window);
(a0)

Window = Pointer to the Window data
structure

graphics library

Transfers (and possibly manipulates) bitmap
data from a rectangular area in one rastport to
another rastport or to a different portion of the
same rastport

,v,

[

[

[

(.

[

[

[

]

]

]

1

]

]

]

2

_)

Syntax

Input
Parameters

CloseFont

Location

Function

Syntax

Input
Parameters

Function Summary

ClipBlit
(SrcRp, SrcX, SrcY, DestRp, DestX, DestY,
(a0) (do) (d1) (al) (d2) (d3)
Width, Height, Minterm);
(d4) (d5) (deé)

SrcRp = Pointer to the source RastPort data
structure

SrcX = Horizontal coordinate for the upper left
corner of the source rectangle

SrcY = Vertical coordinate for the upper left
corner of the source rectangle

DestRp = Pointer to the destination RastPort
data structure

DestX = Horizontal coordinate for the upper
left corner of the destination rectangle

DestY = Vertical coordinate for the upper left
corner of the destination rectangle

Width = Width of the rectangle (in bits)

Height = Height of the rectangle (in lines)

Minterm = The blitter logic minterm used to
transfer and/or manipulate the graphics im-
age data

graphics library

Indicates to the system that a font opened with
the OpenFont call is no longer in use

CloseFont(FontPtr);
(a1)

FontPtr = Pointer to a font descriptor (obtained
from OpenFont call)

Closelibrary

Location

Function

exec library

Indicates to the system that a library opened
with OpenFont call is no longer in use

277

Appendix
Syntax CloseLibrary(LibraryBase);
(a1)
Input LibraryBase = Pointer to the base address of
Parameters the library (obtained from OpenLibrary call)
CloseWindow
Location intuition library
Function Closes an Intuition window, unlinks it from the
system, and deallocates its memory
Syntax CloseWindow(Window);
(a0)
Input Window = Pointer to the Window data
Parameters

structure

CloseWorkBench

Location
Function

Syntax

Results

Draw

Location

Function

Syntax

278

intuition library
Attempts to close the Workbench screen

Results = CloseWorkBench();
(d0)

If any applications have opened windows on
the Workbench screen, it can’t be closed, and
Results will be set to false (0). If the screen was
closed, Results is set to true (1).

graphics library

Draws a line from the current pen position to a
specified point, using the current pens, line pat-
tern, and drawing mode

Draw(RastPort, X, Y);
(al) (d0)(d1)

[

[

[

[

[

(- [

[

(-

]

1

I I

n

]

~

]

N

)

Function Summary

Input RastPort = Pointer to the RastPort data
Parameters structure
X = Horizontal position of the line’s endpoint
Y = Vertical position of the line’s endpoint

DrawGlList
Location graphics library
Function Processes the GEL list, drawing bobs and con-

structing a copper list for vsprites

Syntax DrawGList(RastPort, ViewPort);
(al) (a0)
Input RastPort = Pointer to the RastPort data
Parameters structure
ViewPort = Pointer to the ViewPort data
structure
Drawimage
Location intuition library
Function Draws an Intuition image into the rastport
Syntax Drawlmage (RastPort, Image, LeftOffset,
(a0) (al) (d1)
TopOffset);
(d2)
Input RastPort = Pointer to the RastPort data
Parameters structure

Image = Pointer to the Image data structure

LeftOffset = Horizontal placement offset for
the image

TopOffset = Vertical placement offset for the
image

279

Appendix

FreeRaster

Location

Function

Syntax

Input
Parameters

FreeSprite

Location

Function

Syntax

Input
Parameters

GetSprite

Location

Function

Syntax

280

graphics library

Releases graphics memory back to the system
memory pool

FreeRaster(Raster, Width, Height);
(a0) (d0) (d1)

Raster = Pointer to the beginning of memory
allocation (obtained from AllocRaster call)
Width = Width of the bit plane in bits (must be

the same value used in AllocRaster)
Height = Height of the bit plane in lines (must
be the same as used in AllocRaster)

graphics library

Deallocates a hardware sprite so that your
application no longer has exclusive use of that
sprite

FreeSprite (Sprite_number);
(d0)

Sprite_number = The number of the hardware
sprite to be released

graphics library

Reserves a hardware sprite for your exclusive
use

Sprite_got = GetSprite (SimpleSprite,
(d0) (a0)

Sprite_number);
(d0)

I B

B

[

[

[

L

]

1

B N B

]

)

!

]

Input
Parameters

Results

InitBitMap

Location
Function

Syntax

Input
Parameters

InitGels

Location
Function

Syntax

Input
Parameters

Function Summary

SimpleSprite = A pointer to the SimpleSprite
structure to be used with the hardware
sprite that is allocated.

Sprite_number = The number of the hardware
sprite (0-7) that you are requesting. If you
wish to use the first available sprite, pass a
value of —1, and read Sprite_got to find out
which sprite was reserved.

Sprite_got contains the number of the hardware
sprite (0-7) that was actually allocated. If none
could be allocated, its value is —1.

graphics library
Initializes a BitMap data structure to default values

InitBitMap(BitMap, Depth, Width, Height);
(a0) (d0) (d1) (d2)

BitMap = Pointer to the BitMap data structure
Depth = Number of bit planes to be used
Width = Width of each bit plane (in bits)
Height = Height of each bit plane (in lines)

graphics library
Initializes a GEL list

InitGels(VSpritel, VSprite2, GelsInfo);
(a0) (al) (a2)

VSpritel = Pointer to a dummy VSprite data
structure to be used as the head of the GEL
list

VSprite2 = Pointer to a dummy VSprite data
structure to be used as the tail of the GEL
list

GelsInfo = Pointer to the GelsInfo data struc-
ture to be initialized

281

Appendix

InitMasks

Location

Function

Syntax

Input
Parameters

LoadRGB4

Location

Function

Syntax

Input
Parameters

LoadView

Location
Function

Syntax

Input
Parameters

282

graphics library

Initializes the BorderLine and CollMask values
used by the VSprite data structure

InitMasks(VSprite);
(a0)

VSprite = Pointer to the VSprite data structure

graphics library

Loads a list of color register values from a data
table

LoadRGB4(ViewPort, Colormap, Pens);
(a0) (al) (d0)

ViewPort = Pointer to the ViewPort data
structure.

Colormap = Pointer to the table of color values
for the registers. This table is arranged as an
array of 16-bit data words, where the first
nybble is zero, the second contains the red
color value, the third the green, and the
fourth the blue.

Pens = The number of consecutive color regis-
ters to load, starting with register 0.

graphics library
Creates a display using a new copper list

LoadView(View);
(al)

View = Pointer to the View data structure

.

[

[

[

[

[

[

C

]

1

]

]

1

]

I

,M

——

_J

Function Summary

Move
Location graphics library
Function Moves the drawing pen from its current location
to the specified position without drawing
anything
Syntax Move (RastPort, X, Y);
(al) (d0) (d1)
Input RastPort = Pointer to the RastPort data
Parameters structure
X = New horizontal coordinate
Y = New vertical coordinate
MovesScreen
Location intuition library
Function Drags an Intuition screen up or down the
display
Syntax MoveScreen (Screen, DeltaX, DeltaY);
(a0) (d0) (d1)
Input Screen = Pointer to the Screen data structure
Parameters DeltaX = Offset by which to move the screen
horizontally (ignored by current version of
~ Intuition)

DeltaY = Offset by which to move the screen
vertically (current version of Intuition re-
quires the bottom of the screen to stay at or
below the bottom of the display)

MoveSprite

Location graphics library

Function Changes the display position of a simple sprite
to the specified location

Syntax MoveSprite(ViewPort, SimpleSprite, X, Y);

(a0) (@) (o) (d1)
283

Appendix
Input ViewPort = Pointer to the ViewPort data
Parameters structure
SimpleSprite = Pointer to the SimpleSprite data
structure
X = New horizontal position of the sprite
Y = New vertical position of the sprite
MoveWindow
Location intuition library
Function Moves an Intuition window under software
control
Syntax MoveWindow(Window, DeltaX, DeltaY);
(a0) (d0) (d1)
Input Window = Pointer to the Window data
Parameters structure
DeltaX = Horizontal offset by which to move
the window
DeltaY = Vertical offset by which to move the
window
MrgCop
Location graphics library
Function Merges together coprocessor instructions to
form one instruction list
Syntax MrgCop(View);
(a1)
Input View = Pointer to the View data structure
Parameters
OpenDiskFont
Location diskfont library
Function Obtains a pointer to the font descriptor for a
disk-resident font and indicates that the font is
being used by your application
284

L

[

VU D N

Lo

]

]

]

1

]

]

1l

I

1

Function Summary

Syntax FontPtr = OpenDiskFont(TextAttr);

(do) (a0)
Input TextAttr = Pointer to a TextAttr data structure
Parameters

that describes the font you wish to open

OpenFont
Location graphics library
Function Obtains a pointer to the font descriptor for a
memory-resident font and indicates that the
font is being used by your application
Syntax FontPtr = OpenFont(TextAttr);
(d0) (a0)
Input TextAttr = Pointer to a TextAttr data structure
Parometers that describes the font you wish to open
OpenlLibrary
Location exec library
Function Obtains a pointer to the base address of a li-
brary and indicates that the library is being
used by your application
Syntax Library_base_address =
(do)
OpenLibrary(“name.library”,Version);
(al) (d0)
Input “name.library”” = Pointer to a string of ASCII
Parameters characters that names the library. This name

must be in the form “‘name.library”, all in
lowercase letters, ending with an ASCII 0
(for example, “graphics.library”’).

Version = Version number of the library.
OpenLibrary will successfully open the li-
brary only if the version of the library that
the system is using is greater than or equal
to this number.

285

Appendix

Results If the library can be successfully opened, its
base address is returned in
Library_base_address. If not, a value of 0 is
returned.

OpenScreen

Location intuition library

Function Sets up a Screen data structure and displays the
Intuition screen described by a NewScreen data
structure

Syntax Screen = OpenScreen(NewScreen);

(d0) (a0)

Input NewScreen = Pointer to the NewScreen data

Parameters structure that describes the characteristics of

the screen.

Results If the screen is successfully opened, Screen con-
tains a pointer to the Screen data structure. If
not, Screen is set to zero.

OpenWindow

Location intuition library

Function Sets up a Window data structure and displays
the Intuition window described by a
NewWindow data structure

Syntax Window = OpenWindow(NewWindow);

(do) (a0

Input NewWindow = Pointer to the NewWindow

Parometers data structure that describes the characteris-

tics of the window.

Results If the window is successfully opened, Window
contains a pointer to the Window data structure.
If not, Window is set to zero.

286

N I

[

[

[

]

_}

N

1

"~

1

Function Summary

OpenWorkBench
Location intuition library
Function Attempts to open the Workbench screen
Syntax Result = OpenWorkBench();
(d0)
Results If the screen is open, Result is set to true (1). If
not, it is set to false (0).
PolyDraw
Location graphics library
Function Draws a series of connected lines from the cur-
rent pen position to the points specified by a ta-
ble of (x,y) coordinate pairs, using the current
drawing modes, pen colors, and line pattern.
Syntax PolyDraw(RastPort, Coordinate_pairs,
(al) (do)
Array_address);
(a0)
Input RastPort = Pointer to the RastPort data
Parameters structure
Coordinate_pairs = Number of coordinate
pairs in the data table
Array_address = Pointer to the data table of
coordinate pairs
ReadPixel
Location graphics library
Function Finds the color register (pen) used to color the
point at a specified location on the display
Syntax Pen = ReadPixel(RastPort, X, Y);

(d0) (al) (d0) (d1)

287

Appendix
Input RastPort = Pointer to the RastPort data
Parameters structure
X = Horizontal coordinate for the point
Y = Vertical coordinate for the point
Results If the point lies within the boundaries of the
rastport, Pen is set to the pen number used to
color the point. If not, Pen is set to —1.
RemiBob
Location graphics library
Function Removes a bob from the GEL list and erases it
from the rastport display
Syntax RemIBob(Bob, RastPort);
(a0) (al)
Input Bob = Pointer to the Bob data structure
Paramsters RastPort = Pointer to the RastPort data
structure
ScreenToBack
Location intuition library
Function Moves the specified screen to the back of the
display
Syntax ScreenToBack(Screen);
(a0)
Input Screen = Pointer to the Screen data structure
Parameters
ScreenToFront
Location intuition library
Function Moves the specified screen to the front of the
display
288

I .

SO

[

I

L

-

]

e A

Syntax

Input
Parameters

ScrollLayer

Location

Function

Syntax

Input
Parameters

ScrollRaster

Location

Function

Syntax

Function Summary

ScreenToFront(Screen);
(a0)

Screen = Pointer to the Screen data structure

layers library

Copies data to a layer from a SuperBitMap so as
to reposition the display over the bitmap

ScrollLayer(Layer_Info, Layer, DeltaX, DeltaY);
(a0) (al) (do) (d1)

Layer_Info = Pointer to the Layer_Info data
structure

Layer = Pointer to the Layer data structure

DeltaX = Horizontal offset by which to move
the layer

DeltaY = Vertical offset by which to move the
layer

graphics library

Scrolls the contents of a rectangular area of a
rastport

ScrollRaster(RastPort, Dx, Dy, X1, Y1,
(al1) (do) (d1) (d2) (d3)

X2, Y2);

(d4) (d5)

289

Appendix

Input
Parameters

SetAFPt

Location
Function
Syntax

Input
Parameters

SetAPen

Location

Function

Syntax

Input
Parameters

290

RastPort = Pointer to the RastPort data
structure

Dx = Horizontal offset by which to scroll the
rectangle

Dy = Vertical offset by which to scroll the
rectangle

X1 = Horizontal position of the left edge of the
rectangle

X2 = Horizontal position of the right edge of
the rectangle

Y1 = Vertical position of the top edge of the
rectangle

Y2 = Vertical position of the bottom edge of
the rectangle

include/graphics/gfxmacros.h (graphics macro)
Sets a pattern for area fills
SetAFPt(RastPort, Pattern, Size);

RastPort = Pointer to the RastPort data
structure

Pattern = Pointer to a table of 16-bit pattern
data words

Size = Number of data words in pattern (must
equal a power of 2)

graphics library

Sets the color register used by the foreground
drawing pen

SetAPen(RastPort, Pen);
(a1) (d0)

RastPort = Pointer to the RastPort data
structure
Pen = Color register used for the pen

A IR R

[

i

N B

]

B —

j

]

]

——

| —

{

il

]

SetBPen

Location

Function

Syntax

Input
Parameters

SetDrMd

Location
Function

Syntax

Input
Parameters

SetDrPt

Location
Function
Syntax

Input
Parameters

Function Summary

graphics library -

Sets the color register used for the background
drawing pen

SetBPen(RastPort, Pen);
(@) (4o

RastPort = Pointer to the RastPort data

structure
Pen = Color register used for the pen

graphics library
Sets a drawing mode for drawing routines

SetDrMd(RastPort, Mode);
(al) (d0)

RastPort = Pointer to the RastPort data
structure

Mode = Drawing mode (JAM1, JAM2, COM-
PLEMENT, INVERSVID)

include/graphics/gfxmacros.h (graphics macro)
Sets a pattern to use for line drawing
SetDrPt(RastPort, Pattern);

RastPort = Pointer to the RastPort data

structure
Pattern = A 16-bit drawing pattern

291

Appendix

SetFont

Location

Function

Syntax

Input
Parameters

SetOPen

Location

Function

Syntax

Input
Parameters

SetPointer

Location

Function

Syntax

292

graphics library

Sets the font to be used for drawing text in a
rastport

SetFont(RastPort, FontPtr);
(al) (a0)

RastPort = Pointer to the RastPort data
structure

FontPtr = Pointer to a font descriptor (obtained
from OpenFont)

include/graphics /gfxmacros.h (graphics macro)

Sets the pen used for outlining filled figures and
turns on outlining

SetOPen(RastPort, Pen);
RastPort = Pointer to the RastPort data

structure
Pen = Color register used for the pen

intuition library

Sets the shape of the Intuition mouse pointer in
a window

SetPointer
(Window, Sprite_data, Height, Width, XOffset,
(a0) (al) (d0) (d1) (d2)
YOffset);
(d3)

[L[

[

[

-

—_—

R BN |

[

1

1

1

Input
Parameters

SetRast

Location
Function

Syntax

Input
Parameters

SetRGB4

Location

Function

Syntax

Input
Parameters

Function Summary -

Window = Pointer to the Window data
structure

Sprite_data = Pointer to a table of sprite shape
data

Height = Height of the pointer sprite in lines

Width = Width of the sprite in pixels (must be
less than or equal to 16)

XOffset = Horizontal offset of the hot spot

YOffset = Vertical offset of the hot spot

graphics library
Sets the entire RastPort to a specified color

SetRast(RastPort, Pen);
(@l) (do)

RastPort = Pointer to the RastPort data
structure
Pen = Color register used to color the rastport

graphics library

Sets the red, green, and blue color values for
a color register

SetRGB4(ViewPort, Pen, Red, Green, Blue)
(a0) (do) (d1) (d2) (d3)

ViewPort = Pointer to the ViewPort data
structure

Pen = Color register to set

Red = Red color level (0-15)

Green = Green color level (0-15)

Blue = Blue color level (0-15)

293

Appendix

SetSoftStyle

Location
Function

Syntax

Input
Parameters

Results

ShowtTitle

Location

Function

Syntax

Input
Parameters

SizeWindow

Location

Function

294

graphics library
Sets the software-generated font style

Result = SetSoftStyle(RastPort, Style, Enable);
(do) (al) (do) (d1)

RastPort = Pointer to the RastPort data
structure

Style = The software-generated style requested

Enable = A mask that determines which style
bit can be changed; can be derived from
AskSoftStyle

The resulting style is returned in Result.

intuition library

Determines whether the screen title bar will be
displayed in front of a backdrop window or not

ShowTitle(Screen, Showlt);
(a0) (d0)

Screen = Pointer to the Screen data structure.

Showlt = A flag that indicates whether or not
to display the title bar in front of a backdrop
window. A value of true (1) means show the
title bar, while a value of false (0) means
hide it.

intuition library

Changes the size of an Intuition window under

program control

L [L

[

,__.

[

[

]

n

|

B S

]

)

B —

~

]

Syntax

Input
Parameters

SortGList

Location

Function

Syntax

Input
Parameters

Text
Location
Function

Syntax

Input
Parameters

TextLength

Location

Function

Function Summary

SizeWindow(Window, DeltaX, DeltaY);
(a0) (d0) (d1)

Window = Pointer to the Window data
structure

DeltaX = Change to the width of the window

DeltaY = Change to the height of the window

graphics library

Sorts the GEL list by vertical position of each
element, prior to displaying the GELs

SortGList(RastPort);
(al)

RastPort = Pointer to the RastPort data
structure

graphics library
Draws text in a rastport using the current font

Text(RastPort, Text_string,Chars);
(al) (a0) (d0)

RastPort = Pointer to the RastPort data
structure

Text_string = Pointer to a string of ASCII
characters

Chars = Number of characters to print

graphics library
Finds the length (in bits) that a string of charac-

ters would occupy if printed to a rastport using
the current text font

295

Appendix
Syntax Length = TextLength(RastPort, Text_string,
(d0) (al) (a0)
Chars);
(d0)
Input RastPort = Pointer to the RastPort data
Parameters structure
Text_string = Pointer to a string of ASCII
characters
Chars = Number of characters to be printed
ViewPortAddress
Location intuition library
Function Finds the address of a window’s viewport
Syntax ViewPort = ViewPortAddress(Window);
(d0) (a0)
Input Window = Pointer to the Window data
Parameters structure
Results The address of the viewport is returned in
viewport
WBenchToBack
Location intuition library
Function Moves the Workbench screen to the back of the
display
Syntax Results = WBenchToBack();
(do)
Resulfs If the Workbench was opened, Results is set to
true (1). If not, it is set to false (0).
296

CCC

[

Function Summary

WBenchToFront
Location intuition library
Function Moves the Workbench screen to the front of the
display
Syntax Results = WBenchToFront();
(d0)
Results If the Workbench was opened, Results is set to

true (1). If not, it is set to false (0).

WindowLimits

Location intuition library

Function Sets new limits to which a window may be
sized

Syntax status = WindowLimits(Window, MinWidth,

(d0) (a0) (d0)
MinHeight, MaxWidth, MaxHeight);
(d1) (d2) (d3)
Input Window = Pointer to the Window data
Parameters Structure

MinWidth = New minimum width of the win-
dow (in pixels)

MinHeight = New minimum height of the win-
dow (in lines)

MaxWidth = New maximum width of the win-
dow (in pixels)

MaxHeight = New maximum height of the
window (in lines)

297

Appendix

WindowToBack

Location intuition library
Function Moves the specified window to the back of the
display
Syntax WindowToBack(Window);
(a0)
Input Window = Pointer to the Window data
Parameters structure
WindowToFront
Location intuition library‘
Function Moves the specified window to the front of the
display
Syntax WindowToFront(Window);
(a0)
Input Window = Pointer to the Window data
Parameters structure
WritePixel
Location graphics library
Function Colors a single pixel with the current fore-
ground drawing pen
Syntax Result = WritePixel(RastPort, X, Y);
(d0) (al) (d0) (d1)
Input RastPort = Pointer to the RastPort data
Parameters structure
X = Horizontal position of the dot
Y = Vertical position of the dot
298

[

- N

R |

I

{

{

[

[

]

1

N

]

|

1]

_]

Index

AddBob Graphics library routine 219,
220, 271

AddVsprite Graphics library routine
219, 271

AllocMem Intuition library routine 159

AllocRaster Graphics library routine
199, 248, 271-72

Amiga BASIC ix-x, 13

animation 189-239

AO1Pen (area outline pen) 114-15

APen (foreground pen) 73, 114

AREA BASIC statement 109-10

AreaDraw Graphics library routine
108-9, 272

AreaEnd Graphics library routine 272

AREAFILL BASIC statement 109-10,
120

“Area Fill Pattern from C” program
117-19

Arealnfo data structure 105

AreaMove Graphics library routine
108-9, 272-73

area outline pen, fill and 114-15

AreaPtSz rastport variable 125

array 90

AskFont Graphics library routine 141,
273

AskSoftStyle Graphics library routine
146-47, 273

aspect ratio 95

“Attached Sprites, BASIC example”
program 205-6

“Attached Sprites, C Example”
program 204-5

AvailFonts Diskfont library routine 153,
274

background color 8, 74

Backdrop windows. See windows,
Backdrop

BasicDemos directory of BASIC disk 2

BASIC statements 169-75, 220-37

BeginRefresh Intuition library routine
39

binary arithmetic 6

bit planes 6, 7-8, 13, 23, 74
extra 256-58

blitter viii, 159-61, 163-65
memory limitations of 159

blitter objects. See bobs

BltClear Graphics library routine 160,
199, 274

BltPattern Graphics library routine
166-68, 275

.bmap file 27
customizing 27

BNDRYOFF routine 275

Bob data structure 217

bob priority 218

bobs 213-39
Intuition and 225-26

BPen (background pen) 73, 114

C (programming language) ix, 14, 67

CALL BASIC statement 27

ChangeSprite Graphics library routine
195, 202, 276

“Changing Fonts in BASIC” program
150-51

“Changing Fonts in C” program 149

“Changing the Shape of the Pointer,
BASIC Example” program 209-11

“Changing the Shape of the Pointer, C
Example” program 208

chip memory 159-60

CIRCLE BASIC statement 93-95

circles 93-95

ClearPointer Intuition library routine
208, 276

CLI (Command Line Interpreter) 13

ClipBlit Graphics library routine
163-65, 276-77

clipping, windows and 35

CloseFont Graphics library routine 141,
277

CloseLibrary Exec library routine 277-78

CloseWindow Intuition library routine
61, 278

CloseWorkBench Intuition library
routine 31, 278

CLS BASIC statement 160

collisions, detecting 235-39

color 8-10, 78-82, 84, 122-26
information, locating 78-81
register 74, 75-78
resolution 6-8
selection, lines and shapes 74-78

COLOR BASIC statement 160

colors
available 7-10
changing 8
changing after drawn 74
object 228-30
using all 4096 at once 256-58

299

Command Line Interpreter. See CLI

COMPLEMENT drawing mode 101-2,
117

console device 133

“ConvertFD”’ program 27

copper vii, 11, 21

copper list vii

copying images, C and 163-65

“Creating diskfont.bmap” program
154-55

custom screens
BASIC and 22-23, 26-30
opening 14-26

DECLARE FUNCTION BASIC
statement 80, 142, 199, 200

depth arranger gadget 13

DIM BASIC statement 125

diskfont.bmap file 153-54

display depth 6

display memory 74

display mode 23, 247, 258

display modes, showing multiple at
once 11. See also viewport

display screen, setting up 3-31

DOS library 27

drag bar gadget 13

DrawGList Graphics library routine
219, 279

Draw Graphics library routine 86,
278-79

DrawlImage Intuition library routine
181-82, 279

drawing modes 100-102, 117, 137

“Drawing Modes, BASIC Example”
program 103-4

“Drawing Modes, C Example” program
103

“Drawing Octagons Using PolyDraw"”’
program 92-93

EndRefresh Intuition library routine 39

Extra Halfbrite display mode 247, 258

“Extra Halfbrite mode” program
263-66

fd file 27

“Filled Octagon, BASIC Example”
program 110

“Filled Octagon, C Example” program
109

filled shapes 104-9

“Filling a Box with a Pattern” program
120-21

filling memory 160

fill patterns, multicolor, BASIC and
124-26

fill patterns, multicolor, C and 122-24

“Finding Color Values from BASIC”
program 81-82

300

flood fill, BASIC and 113-14
flood fill, C and 110-12
“Flood Fill from C” program 111-12
“Flying Bobs"” program 234-35
font 135, 137
changing in BASIC 142-44
changing in C 140-42
disk-based, BASIC and 153-54
disk-based, C and 147-48
styles, software-generated 145-47
FreeRaster Graphics library routine 199,
280
FreeSprite Graphics library routine 196,
280
gadget 13, 35
GEL (Graphics ELement) 213-14
GET BASIC graphics statement 169-74
GetSprite Graphics library routine
194-95, 280-81
graphics.bmap system file 142
“Graphics Demo Using PUT” program
174-75
graphics/gfxmacros.h file 96, 114
Graphics library 27
opening from BASIC 90-91
hardware color registers 7-8
hardware sprites. See simple sprites
high-resolution mode 7
Hold And Modify (HAM) display mode
247, 256-58
“Hold and Modify” program 259-62
horizontal resolution 8
modes 3-4
screen display 3-4
image blocks 159-82
Image data structure 175-81
images, moving in BASIC 169-75
InitArea routine 105-6
InitBitMap Graphics library routine
248, 281
InitGels Graphics library routine 21,
281
InitMasks Graphics library routine 282
input/output (I/0) functions, available
for windows 36
interlaced mode 4-6, 7
problems with 4-6
Intuition images, C and 175-82
Intuition library 175-82
Intuition pointer 206-8
INVERSID drawing mode 101-2
“Invisible Pointer, The” program
211-12
JAM1 drawing mode 100-102, 117
JAM2 drawing mode 100-102, 117, 137
Layers library 35, 249
library 16-17

(.

]

B

1

n

]

1

LIBRARY BASIC statement 26, 27,
90-91, 142, 199

library vector offset 97

LINE BASIC statement 86-87, 92

“Line Patterns from BASIC” program
99

“Line Patterns in C" program 98-99

lines and shapes 73-126
drawing from BASIC 86-87
drawing from C 85-90

list window, Amiga BASIC 13, 62

“Loading a Font in C” program 151-52

LoadRGB4 Graphics library routine 76,
282

LoadView Graphics library routine 282

LOCATE BASIC statement 139

low-resolution mode 7

machine language 14

memory, moving graphics data in viii

memory usage, color and 8-10

Move Graphics library routine 86, 91,
283

MoveScreen Intuition library routine
28, 283

MoveSprite Graphics library routine
195-96, 283-84

MoveWindow Intuition library routine
60, 284

“Moving Bobs” program 221-24

MrgCop Graphics library routine 284

NewScreen structure 14-16

NewWindow data structure 36-44

object. See also bobs
color 228-30
commands, BASIC 220-37
moving 231-34
priority 230

ObjEdit Amiga BASIC program 226

offset, system library member 1, 27

OPen (outline pen) 73

OpenDiskFont Diskfont library routine
147-48, 284-85

OpenFont Graphics library routine 140,
147, 285

“Opening a Custom Screen in C”
program 51-55

“Opening a Custom Screen in Machine
Language” program 55-59

“Opening a New Screen, C Example”
program 24-25

“Opening a New Screen, ML Example”
program 18, 19-21

opening a window, C and 36-48

“Opening a Window in C” program
46-48

“Opening a Window in Machine Lan-
guage” program 48-51

OpenLibrary Exec library routine 14,
17-18, 22, 23, 249, 285-86
C and 18, 22, 24-25

OpenScreen Intuition library routine
14-16, 22, 286

OpenWindow Intuition library routine
36, 286

OpenWorkBench Intuition library
routine 31, 287

OPTION BASE BASIC statement 125

output window, Amiga BASIC 13,
62-63, 137

PAINT BASIC statement 113-14, 120
problems with 113

PALETTE BASIC statement 76-78

pattern array 119, 124-25

PATTERN BASIC statement 98,
119-20, 124-25

patterned lines 96-99

pattern fill, BASIC and 119-21

PEEKL BASIC function 28

PEEKW BASIC function 139

pen 37-38
color, BASIC and 84
colors, default 79
determining which used 85

POINT BASIC function 85

pointer, changing 207-8

points, drawing 82-83

POKE BASIC statement 114-15, 125

POKEW BASIC statement 115, 199

PolyDraw Graphics library routine
90-92, 287

polygons, drawing 90-93

PRESET BASIC statement 82, 83,
84-85

PRINT BASIC statement 92

PSET BASIC statement 82, 83, 84-85,
87,92

PTAB BASIC function 139

pull-down menus 35

PUT BASIC graphics statement 169-74

RAM disk 153

raster graphics 3

RastPort data structure 73, 105
BASIC and 74
C and 73-74

ReadPixel Graphics library routine 85,
287-88

RectFill Graphics library routine 105

relative coordinates 83-84

RemBob Graphics library routine 220,
288

SCREEN BASIC statement 22-23

SCREEN CLOSE BASIC statement 26

Screen data structure 12-14, 28

301

screens, custom, BASIC and 22-23,
26-30
BASIC restrictions 62
opening 14-26

screens, manipulating 30-31

ScreenToBack Intuition library routine
303, 288

ScreenToFront Intuition library routine
30, 288-89

SCROLL BASIC statement 161-62

scrolling
BASIC and 161-62
C and 161, 249

“Scrolling in BASIC” program 163

“Scrolling in C” program 162

ScrollLayer Layers library routine
249-50, 289

ScrollRaster Graphics library routine
161, 289-90

SetAfpt macro 115-17, 123

SetAPen Graphics library routine 75,
257, 290

SetBPen Graphics library routine 75,
291

SetDrMd Graphics library routine 102,
291

SetDrPt C macro 115, 291

SetFont Graphics library routine
140-41, 292

SetOPen C macro 114, 292

SetPointer Intuition library routine 207,
292-93

SetRast Graphics library routine 160,
293

SetRGB4 Graphics library routine 76,
78, 293

SetSoftStyle Graphics library routine
146-47, 294

“Setting Up a Short Screen from
BASIC” program 29-30

“Shapes with Multicolor Patterns,
BASIC Example” program 126-28

“Shapes with Multicolor Patterns, C
Example” program 123-24

short screens
bug in Amiga BASIC 26
moving 26-29

ShowTitle Intuition library routine 294

“Simple Sprite Demonstration, BASIC
Example” program 200-202

“Simple Sprite Demonstration, C
Example” program 197-98

simple sprites
attaching 202-3
BASIC and 198-202

68000 microprocesor vii

302

SizeWindow Intuition library routine
61, 294-95

SortGList Graphics library routine 219,
295

sprites
BASIC arrays and 198-99
limitations of 189-90, 191, 193
simple, C and 191-97
windows and 191

“SUPER_BITMAP window” program
251-55

SUPER_BITMAP windows 247-50

Teletype terminal (TTY) 133

text 133-54
BASIC and 137-39
C and 134-37
Graphics library routines and 134-37
positioning precisely 92
superimposing on graphics 100-101
window and 137

TextAttr data structure 140

Text Graphics library routine 134-36,
295

TextLength Graphics library routine
295-96

text mode, not availabale on Amiga 4

“Text Routines in C”” program 136

TmpRas data structure 106-8

“Using AskFont from BASIC” program
145

“Using AvailFonts from BASIC”
program 155

“Using BltPattern” program 168-69

“Using ClipBlit” program 165

“Using PolyDraw from C” program 93

“Using PUT and GET to Draw a Pic-
ture” program 176-77

“Using the Intuition Image Structure”
program 182-84

vertical resolution 4-6

video images, digitizing 258

view 11

viewport 11-12, 78-79

ViewPortAddress Intuition library
routine 76, 296

virtual sprites. See vsprites

““Vsprite Demo” program 240-43

vsprites 189-90, 212-17
structure 214-15

vsprites and bobs
BASIC and 220-39
defining 213-16

WaitBOVP Graphics library routine 196

WBenchToBack Intuition library routine
30, 296

[

L

,.__
—

[

[

-

]

I D B

-

1

1

-3 1

WBenchToFront Intuition library
routine 30, 297

WCS (Writeable Control Store) 22

wedge, drawing 95

WIDTH BASIC statement 138

WINDOW BASIC function 28, 74,
66-68, 138-39

WINDOW BASIC statement 62-66

window borders 40-41

WINDOW CLOSE BASIC statement
67-68

Window data structure 28
checking from BASIC 67

WindowLimits Intuition library routine
297

WINDOW OUTPUT BASIC statement
66

windows 35-68

windows, Backdrop 41-42
BASIC 62-68
manipulating 60-61

multiple, BASIC and 66
opening 36-45
opening, BASIC 62-63
refreshing from BASIC 65
refreshing from C 38-40, 247-50
screens and 13
sharing a screen 35
sizing 61

WindowToBack Intuition library routine
61, 298

WindowToFront Intuition library
routine 61, 298

Workbench screen 13, 62, 95
manipulating 30-31
using for programs 13-14

Writeable Control Store. See WCS

WritePixel Graphics library routine 82,
298

““Writing to a Window in BASIC”
program 144-45

303

D0 a0 3 i e T R B

]

]

)

-

)

l

COMPUTE! Books

Ask your retailer for these COMPUTE! Books or order
directly from COMPUTE!.

Call toll free (in US) 1-800-346-6767 (in NY 212-887-
8625) or write COMPUTE! Books, P.O. Box 5038, F.D.R.
Station, New York, NY 10150.

Quantity Title i Price* Total
——— COMPUTE!'s Beginner's Guide to the Amiga

(025-4) $1695
— COMPUTE!'s AmigaDOS Reference Guide

(047-5) $1495
—_ Elementary Amiga BASIC (041-6) $1495
—— COMPUTEl's Amiga Programmer’s Guide (028-9) $16.95
——— COMPUTE!'s Kids and the Amiga (048-3) $1495
— Inside Amiga Graphics (040-8) $1695
— Advanced Amiga BASIC (045-9) 81695
—— COMPUTEI's Amiga Applications (053-X) $16.95

*Add $2.00 per book for shipping and handling.
Outside US add $5.00 air mail or $2.00 surface mail.

NC residents add 4.5% sales tax
Shipping & handling: $2.00/book
Total payment

All orders must be prepaid (check, charge, or money order).
All payments must be in US funds.

NC residents add 4.5% sales tax.

O Payment enclosed.

Charge 0O Visa OMasterCard O American Express

Acct. No Exp. Date
Name.

Address

City State Zip.

*Allow 4-5 weeks for delivery.
Prices and availability subject to change.
Current catalog available upon request.

D0 a0 3 i e T R B

D0 a0 3 i e T R B

i

)

-

]

)

'
.

)

N

)

)

)

[

If you've enjoyed the articles in this book, you’ll find
the same style and quality in every monthly issue of
COMPUTE! Magazine. Use this form to order your
subscription to COMPUTE!.

For Fastest Service
Call Our Toll-Free US Order Line

1-800-247-5470
In 1A call 1-800-532-1272

COMPUTE!

P.O. Box 10954
Des Moines, |IA 50340

My computer is:

O Commodore 64 or 128 O TI-99/4A O 1BM PC or PCjr O VIC-20
O Apple O Atari O Amiga 0O Other
0 Don‘t yet have one...

O $24 One Year US Subscription
0O $45 Two Year US Subscription
0O $65 Three Year US Subscription

Subscription rates outside the US:

0 $30 Canada and Foreign Surface Mail
0O $65 Foreign Air Delivery

Name

Address

City State Zip
Country '

Payment must be in US funds drawn on a US bank, international
money order, or charge card.

0O Payment Enclosed [Visa
O MasterCard 0O American Express

Acct. No. Expires /

(Required)

Your subscription will begin with the next available issue. Please
allow 4-6 weeks for delivery of first issue. Subscription prices subject
to change at any tfime.

D0 a0 3 i e T R B

Amiga Graphics

The Amiga has the most advanced graphics capabdifies of any
consumer computer. And inside Amiga Graphics s the compre-
hensive guide to the power of Amiga graphics. Whether you
prograrn in BASIC, C, or machine language, you'l find heare a
waalth of information you can use fo add impressive graphics
1o your owm programs.
Hera's o sample of what you'l find inside:
» Cleor explanafions of how fo access and use Induition routines.
+ How 10 create and open CUSfOm SCreens.
«Loading and changing text fonts from BASIC and C language.
» Lsing the graphics.library from BASIC and C.
« Drawing and manipulating imoge biocks,
» How o create ond use sprites and bobs.
» Dozens of program examples you can leomn from and use.
Written cleary and concisaly, inside Amiga Graphics & the
guide fo programming graphics on the Amiga. Whethar you
want fo saf up a display scréen or program sprifes—in BASIC or
C==this book has the information you need fo take your Amiga
1o its limits.

ISBN 0-B7455-040-8

Spisy|

E
@
0
Q)
0
ae
-
0

€ ©

w]
T
.]
n .
o
—

	2009_02_18_18_13_39.pdf
	2009_02_18_18_21_31.pdf
	2009_02_18_18_31_07.pdf
	2009_02_18_18_39_18.pdf
	2009_02_18_18_40_45.pdf
	amiga_inside-graphics.pdf
	front.jpg
	back.jpg

