

y

u

u

n

n

n

.n
INSIDE

AMIGA
Graphics

Sheldon Leemon

n
COMPUTE! PublicationsjncM
Part of ABC Consumer Magazines. Inc.

One of the ABC Publishing Companies

Greensboro, North Carolina

y

u

u

LJ

U

U

U

LJ

Copyright 1986, COMPUTE! Publications, Inc. All rights reserved.

Reproduction or translation of any part of this work beyond that permitted by

Sections 107 and 108 of the United States Copyright Act without the permission of

the copyright owner is unlawful.

Printed in the United States of America

10 987654321

ISBN 0-87455-040-8 J" j

The author and publisher have made every effort in the preparation of this book to insure the ac

curacy of the programs and information. However, the information and programs in this book are

sold without warranty, either express or implied. Neither the author nor COMPUTE! Publications, \ |
Inc., will be liable for any damages caused or alleged to be caused directly, indirectly, incidentally, J j
or consequentially by the programs or information in this book.

The opinions expressed in this book are solely those of the author and are not necessarily those of

COMPUTE! Publications, Inc. I i
<)

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919)

275-9809, is part of ABC Consumer Magazines, Inc., one of the ABC Publishing Com

panies, and is not associated with any manufacturer of personal computers. Amiga \ !
and AmigaDOS are trademarks of Commodore-Amiga, Inc. ' '

LJ

n

n Contents
n

< .. I Foreword v

j [Introduction vii

1. Setting Up the Display Screen 1

2. Windows 33

3. Drawing Lines and Shapes 71

4. Text 131

5. Drawing and Manipulating Image Blocks 157

6. Sprites and Bobs 187

7. Advanced Topics 245

Appendix. Function Summary 269

Index 299

y

u

u

Foreword

A!
mong personal computers, Amiga graphics are un

paralleled. Its custom graphics chips, powerful 68000

microprocessor, and true multitasking capability

)J # mdrive this immensely powerful graphics machine.

Learning to utilize the powerful features included in the

Amiga's hardware and software, though, can be complex, even

frustrating. Inside Amiga Graphics, written for the intermediate

and advanced programmer, details how you can take advan

tage of the Amiga's power.

Whether you program in BASIC, C, or machine language,

you'll find here the information you need to begin exploiting

the advanced power of the Amiga's coprocessor, the copper; its

high-speed memory-mover chip, the blitter; and its software li

brary functions.

Inside Amiga Graphics covers everything from setting up

your own display screens and windows to drawing and filling

shapes. Scores of program examples written in C and Amiga

BASIC make it easy to understand even the most advanced

graphics techniques. You'll see how to use the functions in the

Graphics and Intuition libraries to create and open custom

screens; draw lines and fill shapes; move sprites around the

screen; change text fonts; and much more. You can even use

the stand-alone routines in your own programs.

The author of Inside Amiga Graphics, Sheldon Leemon, is

the author of the bestselling Mapping the Commodore 64 and

has coauthored three other COMPUTE! books, including the

popular COMPUTE'S AmigaDOS Reference Guide.

Inside Amiga Graphics is for the intermediate to advanced

BASIC, C, or machine language programmer. Here in one vol

ume is everything you need to exploit the advanced graphics

features of this latest and greatest computer from Commodore.

y

u

u

n

n

n

Introduction

pi "TT"he Amiga is the first personal computer to fully exploit the

I advanced features of the 68000 microprocessor. The
I graphics capabilities of the Amiga surpass any micro-

Pl I computer in its class.
Unlike most other microcomputers which use the micro

processor each time the display changes, the Amiga uses a

separate coprocessor, called the copper, to control every aspect

of the screen display. The copper uses its own program, the

copper list, and operates entirely independently of the main

68000 microprocessor. In the course of executing its program,

the copper can actually write to the graphics hardware regis

ters. Thus, it can change every feature of the display on a line-

by-line basis (and in some cases, even a pixel-by-pixel basis).

The display features that the copper controls include a

choice of two horizontal and two vertical display resolutions,

color resolutions ranging from 2 to 4096 colors (available

onscreen at the same time), and a selection of 4096 colors

which the computer can display.

Most other microcomputers require display data to be

stored in a specific location. Not so for the Amiga. Any por

tion of the first 512K of memory can be displayed in any or

der. This capability even includes the ability to display two

distinct graphics planes at once, one superimposed upon the

other.

pj Sprites, Too

The Amiga also supports hardware sprites. Sprites are anima

tion objects which are displayed by a mechanism entirely sep-

P"[arate from that of the rest of the graphics. They are easily
moved, and their shapes may be changed without affecting

r^m> any other part of the display.

I \ The Amiga has eight hardware sprites, each of which can

be up to 16 dots wide, as tall as the screen (or taller), and of

n three different colors (plus transparent). In addition, pairs of

sprites can be "attached" so that they form a single sprite

n

u

u
that is of normal size, but can display up to 15 colors (plus

transparent). j I

Although there are only eight sprites, the hardware lets

you change their shapes and horizontal positions as you move

down the display. Therefore, it is possible to have a single j j
sprite appear as many different objects in one display.

Moving Graphics Data in Memory LJ
In addition to the many and varied features of the display

hardware, the Amiga contains a high-speed memory-mover

chip known as the blitter (short for bit-block image transfer-

rer). The blitter is used to move graphics data around in mem

ory (and, consequently, around the display) almost instantly.

With most computers, in order to move a graphics image,

you must use the microprocessor to read the display memory,

perform complicated calculations to determine the memory lo

cation of each part of the image, perform more calculations to

combine the image data with that of the background, and

store the new combined image data in memory. With the

Amiga, all you have to do is specify the size and location of

the object to be moved, and the location of the destination,

and let the blitter do the rest.

The Amiga's blitter can not only move a bit-image

quickly, but it can also perform sophisticated manipulation of

up to three data sources at once. This means that it can com

bine images in various ways, such as inverting and erasing im

ages. The blitter also performs hardware line drawing and area

filling, thus permitting it to draw solid or patterned lines at

any angle when it is given the line's origin, direction, and

length. And it can fill an enclosed area with color, either dur- I j
ing a copy operation or by itself.

Software Support LJ

The Amiga provides a wealth of software support that en

hances the capabilities of its powerful hardware. This software j j

support consists of several levels of graphics support routines, i—>

ranging from the simplest drawing routines to the Layers li

brary, a system for maintaining multiple displays onscreen at j j

once, to Intuition, a user interface that among other things is *—

vui

u

n

H

able to manage a number of overlapping window displays.

The operating system Kernel even contains an entire software

animation system, complete with provisions for sequenced

drawing and synchronized motion of related objects, collision

detection, and more.

Programming Choices

Considering the length of the capsule description of the

Amiga's graphics capabilities furnished above, it should be ap

parent that the subject of Amiga graphics is a broad one in

deed. For one thing, the machine can be programmed at every

level described above. It is possible to ignore the operating

system entirely and program the hardware graphics chips di

rectly. Or, you might decide to ignore the Intuition windowing

system and use the most basic graphics routines supplied by

the operating system.

Though either of these methods affords an extremely high

level of control over the system's graphics, they all require an

intimate knowledge of the hardware and operating system

software. Moreover, using the lower level graphics features of

the machine undermines one of its greatest strengths, its abil

ity to run several programs at once. By their very nature, pro

grams that directly access the display hardware or use the

lowest level operating system routines take over all of the

Amiga's graphics resources. One of the primary functions of

Intuition's windowing system is to provide a common ground

in which programs that know nothing of each other's exis

tence can peacefully share the graphics resources of the

machine.

Therefore, for the most part, this book deals with pro

gramming Amiga graphics at the highest level, that which is

compatible with Intuition. Examples are written mainly in the

C programming language and in Amiga BASIC. C, although

not as widely known as BASIC, is fast becoming the language

of choice for producing commercial application programs on

microcomputers. The Amiga operating system was designed to

interface with C as its primary programming language.

While Amiga BASIC does not offer the execution speed of

C, it nonetheless provides convenient access to the most im-

IX

u

u

portant graphics features of the Amiga. It is extremely valu

able as a graphics learning tool for two reasons. First, its own j [
commands closely parallel the features of the operating system

routines. If you're familiar with the former, it's easier to learn , .

about the latter. Second, Amiga BASIC also provides a rela- ! 1
tively simple method for calling operating system graphics

routines directly from BASIC. This means that virtually any of | i

the graphics routines that can be called from C can be exe- '—*
cuted from BASIC, even though BASIC may not be ideally

suited for setting up the data structures that the operating sys

tem routines require.

Because of the power and flexibility offered, dealing with

the full range of the Amiga's graphics capabilities can be some

what complex. In ordinary use, however, you may discover that

Amiga graphics are actually easier to program than those of

other microcomputer systems. This book is intended to show

you both sides of the Amiga. The basics of graphic display

will be covered in detail, allowing you to discover how simple

and convenient these capabilities can be to use. Along the

way, we hope to touch on enough of the more esoteric side of

the Amiga to satisfy the more adventurous reader as well.

LJ

U

U

u

n

.U;

o

Ui

iHfli

^0(^tSWffS^^9B

SliiiSlftKlSSiit

mmmmm,

so?

in

y

u

u

H

H

Setting Up the Display

Screen

T:
I"—I "TP^he Amiga uses a technique called raster graphics to pro

duce its display. The picture you see on the screen is

composed of a number of horizontal lines, each made

up of many tiny dots of color. These lines are created by

an electronic video beam, or raster.

When producing a display, the electronic beam starts at

the top left corner of the screen and moves from left to right,

lighting up points on the line as it goes. These dots of color

that it lights are known as pixels (short for picture elements);

they comprise the smallest unit of the display that you can

control.

As the beam gets to the right edge of the horizontal line

(or scan line, as it is called), it shuts off while it moves back to

the left edge and down a line. This time period is called the

horizontal blanking interval The beam then starts scanning the

next line from left to right, repeating the cycle.

When the beam has finished scanning the last line at the

bottom of the screen, it is turned off while it moves back up to

the top left corner. This period of time is called the vertical

blanking interval, or vblank.

It takes 1/60 second to scan the entire screen from top to

bottom. This means that each pixel is drawn on the screen 60

times per second.

The three most fundamental characteristics of the display

are the horizontal resolution (the number of dots drawn per

line), the vertical resolution (the number of lines per frame),

and the color resolution (the number of possible colors for

each dot). We will examine the variations that the Amiga pro

vides for each of these display characteristics below.

Horizontal Resolution

Two levels of horizontal resolution are available on the

Amiga, high resolution and normal, or low, resolution. In

u
Chapter 1

u

high-resolution mode, the display can have a maximum of 752 \ \

dots of color in each line. Such a long line will probably not [—'

be displayed completely on most monitors, however. For that

reason, the user interface supports a standard line length of]

640 dots across in high resolution. In low-resolution mode the ' '

standard display width is only 320 pixels across, each dot be

ing twice as wide as in high-resolution mode. j]
There is no special text only display mode on the Amiga.

Text is drawn on the graphics screen. Therefore, the horizontal

resolution has a dramatic effect on the size in which this text

appears on the screen. In high-resolution mode, a maximum

of 80 characters can fit on a single line of text when using the

system default Topaz 8 font, and 64 characters when using the

Topaz 9 font. In low-resolution mode, half as many characters

can fit on a line as in high-resolution mode.

Vertical Resolution

There are two levels of vertical resolution. Here again, the ab

solute maximum display height is somewhat larger than the

one typically used by the system. The standard (noninterlaced)

mode can provide up to 242 lines vertically. Typically, how

ever, the user interface provides a display height of 200 lines

in noninterlaced mode.

Interlaced mode provides 400 lines of vertical resolution

by means of a hardware trick. As explained above, the display

is formed by a beam of light that starts at the top of the screen

and scans one line at a time from right to left until it gets to

the bottom of the screen. Sixty complete scans occur every sec

ond, and each scan provides a complete picture. In interlaced j j

mode, each scan provides only half the picture. After every '—i

even frame is drawn, the beam of light is moved down half a

line so that the lines of the odd frame are interlaced between I j

the lines left by the even scans. This allows twice the vertical

resolution in the same amount of space (see Figure 1-1).

While interlaced mode doubles the vertical resolution, it j j
cuts the refresh rate (the number of complete pictures formed

per second) in half, since it now takes two passes to update l ,

the entire display. One result is that in interlaced mode, the ! i
display tends to flicker, or vibrate. The amount of vibration

n
Setting Up the Display Screen

n

n

depends to a large extent on the type of monitor used.

When the electron beam strikes the face of the display

tube, it lights up a dot onscreen, but that dot remains lit only

for a short period of time. So, while the picture may appear to

be solid if it is redrawn 60 times per second, it may seem less

so if redrawn only 30 times per second. There are special

types of monitors whose picture tubes contain high-persistence

phosphors that stay lit for a longer period of time. But these

monitors are not really suited for general use with the Amiga

since their picture does not change quickly enough. On high-

persistence monitors, moving objects (such as the mouse

pointer) appear to leave trails of light behind them as they

move.

Figure 1-1. Interlacing Mode

First scan fills in normal number of display lines.

H

n

1
-1

1

1
'
1
1

— — ————1

.1

1
1

1

Second scan of the same frame adds an ex

tra line between each scan line.

The colors being displayed also affect the amount of

flicker an interlaced display produces. An interlaced screen

showing black text on a white background is almost unview-

able. The best results are generally obtained when using color

combinations that have as little contrast in brightness levels as

possible. It also helps considerably to turn down the contrast

adjustment on your monitor until the flickering fades. Even if

u
Chapter 1

u

you stick to optimum color combinations and monitor settings, j I

however, interlaced mode generally will not produce very '—'
good results on most monitors.

Color Resolution L—i

The Amiga offers flexibility in its choice of color resolution,

which is the number of colors that can be displayed onscreen 1 [
at any one time. The color resolution is determined by the

number of blocks of display memory, known as bit planes, that

are allocated to the display. This is also sometimes referred to

as the display depth. In order to explain how display memory

is used to make up the screen display, we must first briefly re

view binary arithmetic.

Binary. In the binary (base 2) numbering system, there

are only two digits, zero and one. It may seem difficult to

count very high with only two digits to work with, but it

works the same way as in the decimal system. After you've

counted from zero to one, you have to add another digit to the

left. In the decimal system, each column to the left increases

in value by a power of 10 (ten's place, hundred's place, and so

forth). In the binary system, each column to the left increases

in value by a power of 2. So a one in the second digit to the

left has a value of 2, the next digit to the left has a value of 4,

and so on. For instance, with two binary digits you can count

from 0 to 3:

00 = 0

01 - 1

10 = 2 (2+0)

11 = 3 (2+1) j |

Any decimal number can be represented by a series of ze

ros and ones. Converting numbers to binary is very useful

when working with computers, because the zero and one can j^J

represent two opposite logic states like true and false. Or, to

bring the subject back to graphics, they can portray the two { {

states of a pixel, display on or display off. And in practice, I S

that is how the display pattern is related to the numbers

stored in display memory. Each dot that is turned on corre- i i

sponds to a binary digit (or bit) that is set to one, and each dot '—'
that is turned off corresponds to a bit that is reset to zero.

u

n
Setting Up the Display Screen

n

pi Bit planes. A bit plane is the area of memory that stores

' I information concerning which color is to be shown at each dot
position of the screen display. It is organized so that the first

[—"I memory location contains information about the leftmost eight

dots on the top line, the second location contains the display

pattern for the next eight dots, and so on.

f""| In low-resolution mode, there are 320 pixels per line, so it
takes 40 bytes of memory, each holding eight bits, to represent

the display for one line. And since there are 200 lines in

noninterlaced mode, it takes 8000 bytes of memory (200 X

40) to make up one complete bit plane. In high-resolution or

interlaced mode, there are twice as many pixels; thus, it takes

twice as much memory (16,000 bytes) to hold the display

data. And if both high-resolution and interlaced modes are

used at once, there are four times as many dots, and four

times as much memory (32,000 bytes) is needed to hold the

display data.

A single bit plane can hold the information for a two-

color display. But if you want to represent more than two col

ors (background and foreground), you need more than one bit

to represent a single dot on the screen. On the Amiga, the

maximum number of colors available is increased by adding

more bit planes. When using more than one bit plane, the dig

its from corresponding spots on the different planes are

grouped together as one number. For example, if there are two

bit planes, the first digit from plane 0 is grouped together with

the first digit of plane 1 to form a two-digit binary number. As

we have seen from the illustration above, two binary digits

"1 can be combined in four different ways to represent four num-

' bers from 0 to 3. So, using two bit planes allows a maximum
of four color combinations. Each additional bit plane increases

j~~[the number of colors that can be displayed by a factor of two

(see Figure 1-2).

Hardware color registers. The numbers which are formed

I | from the bits from the various bit planes do not correspond to
actual colors. These numbers correspond instead to special

_ memory locations known as hardware color registers. The color

i ! registers may be thought of as a set of 32 pens, each of which

H 7

Chapter 1

u

u

may be filled with colored "ink" in any of the 4096 shades

that can be displayed on the Amiga. I—

Register 0 always holds what is normally thought of as

the background color; any dot position whose display memory i

holds the number 0 displays this color. When you wish to use

another color to draw a line or a point, you put the number of

a color register into the bit planes of display memory (or, as is | I

more likely, you have the operating system drawing routines

do it for you). The color whose number is currently contained

in that color register is the color that appears onscreen.

Unlike ink, however, the color of a dot drawn onscreen

can change after you have drawn it. When the display mem

ory for a screen dot holds the number of a particular pen, that

dot displays whatever color is in the pen at any given mo

ment, not the color that was in the pen at the time the dot

was drawn. This means that if you use pen 1 (hardware regis

ter 1) to draw a line, and that pen contains the color red, the

line will be red. But if you change the color in pen 1 to green

after you've drawn the line, the line you drew and everything

else onscreen that was drawn with pen 1 will instantly be

come green. Figure 1-2 shows the correspondence between bit

planes, color registers, and colors.

Memory Usage

The maximum number of bit planes that can be used (and the

number of colors available) depends on the horizontal resolu

tion of the screen. In high-resolution mode, up to four bit

planes can be used for a total of 16 colors on the screen at , .

once. Normally, in low-resolution mode, up to five bit planes I I
may be used for a maximum of 32 colors. There are certain

special graphics modes that can be used in conjunction with i i

low-resolution mode which require six bit planes. These '—'
modes will be discussed separately later.

In determining how many bit planes to use, there are a f I

number of tradeoffs to consider. Each bit plane consumes its

share of valuable RAM. As stated above, display memory re

quirements range from 8000 bytes per plane in low-resolution j |
mode to 32,000 per plane for high-resolution, interlaced mode.

u

3
3

3
3

3
3

3
3

3
3

F
i
g
u
r
e

1-
2.

R
e
l
a
t
i
o
n
s
h
i
p
o
f
B
i
t
-
P
l
a
n
e
V
a
l
u
e
s
t
o
C
o
l
o
r

0
1
0
B
i
n
a
r
y
S
e
l
e
c
t
s
C
o
l
o
r
R
e
g
i
s
t
e
r
2

f

P
l
a
n
e
0
-
►

P
l
a
n
e

1
-
*
■

P
l
a
n
e
2
-
•
>

C o 1 o r R e g s t e r

0 1

-
►
2 3 4 5 6 7 8 1 1

3
1

R
G
B

e
r

1

d
e

u

e
e

n

V
V

V

a
a

a

1
1

1

u
u

u

e
e

e

R

0

1
5 0 0

1
5 0

1
5

1
5

G

0 0

1
5 0 0

1
5

1
5

1
5

B

0 0 0

1
5

1
5

1
5 0

1
5

=
B
l
a
c
k

=
R
e
d

=
G
r
e
e
n
-
*

=
B
l
u
e

=
P
u
r
p
l
e

=
C
y
a
n

=
Y
e
l
l
o
w

=
W
h
i
t
e

c
/
> I (Q C
D g co
"

G
r
e
e
n
d
o
t
a
p
p
e
a
r
s
o
n
s
c
r
e
e
n
.

Chapter 1

Therefore, a 640 X 400 display that has four bit planes (al

lowing up to 16 colors) uses almost 128K of memory for the

display alone. In a 256K system, such a display would con

sume virtually all free RAM.

Besides using a lot of memory, high-resolution displays

that use a lot of bit planes can slow down the microprocessor

as well. A good illustration of this can be heard when you use

the built-in speech synthesis while a high-resolution screen

with four bit planes is being displayed. The voice sounds very

scratchy and rough. The job of updating the display takes so

much time that the display chips must preempt some of the

time in which the processor has access to user memory. You

can generally avoid such conflicts by keeping to displays that

require no more memory than a four-color high-resolution

(noninterlaced) screen.

Both of these concerns affect the capabilities of the Amiga

as a multitasking machine. Obviously, it is going to be much

more difficult to run other programs along with yours if yours

leaves no free memory or burdens the processor unduly. This

is not to say that you should never use the more memory-

consumptive display modes. Rather, you should keep in mind

the degree to which they will hamper other applications and

use them more sparingly than if you expected to have the en

tire machine at the disposal of your application.

Table 1-1. Graphics Memory Requirements

u

u

u

u

u

10

u

u

u

u

u

n

Setting Up the Display Screen

n

Viewports and Screens

The Amiga's display coprocessor, the copper, allows a change

of all the characteristics of the display on a line-by-line basis.

This means that segments of differing horizontal, vertical, and

color resolution may appear on the screen at once.

The operating system makes the changes to the display

mode when the electron beam has reached the right edge of

the screen and is turned off while it moves back to the left

edge. This means that segments of differing display modes are

confined to horizontal stripes that extend across the complete

width of the screen.

While it is technically possible to change display modes in

the middle of a horizontal line, making the change while the

display is being drawn can result in unpredictable and un

sightly visual effects and is therefore impractical. In effect, you

may not have an area of high-resolution display and an area

of low-resolution side by side.

View and Viewports

In a multitasking environment, it's impossible for each pro

gram to have direct control over the copper and, therefore,

over the entire display. The operating system provides a

method by which each application can decide how it wants its

display to look without having to take over the whole display.

In this scheme, the overall display is known as the view.

Figure 1-3. Possible Division of Display into Views

11

Chapter 1

The view can be divided into one or more viewports. Each

viewport defines its own display resolutions, colors, and spe

cial features. Since the display can be changed only at the end

of a horizontal line, each viewport must form a complete hori

zontal segment. These segments are stacked one on top of the

other to form the view. At least one blank scan line is used to

separate one viewport from another.

Screens

Intuition, the Amiga's user interface, implements viewports

through the use of data structures known as screens. A screen

has a few more limitations than a viewport. A screen must be

as wide as the standard display, either 640 pixels (high resolu

tion) or 320 pixels (low resolution). Though it can be any

number of lines tall, if it is shorter than the display, it must sit

at the bottom of the display, not at the top or middle. There

can be no gap between the bottom of the screen and the bot

tom of the display. If you wish to stack multiple displays

onscreen, you must have overlapping screens, with the tallest

screen in back and the shortest in front. Intuition maintains

two blank scan lines at the place where two screens meet.

Figure 1 -4. Division of Display into Intuition Screens

Screen 1

640 X 200

80-column text

40-column text Screen 2

320 X 100

Each screen must extend down to the bottom of the display and be as wide as the

display width.

U

LJ

LJ

LJ

* 1

12 LJ

Setting Up the Display Screen

j—I . Screens come with two of the system gadgets attached,

' ' the drag bar and the depth arrangers. The drag bar allows the
user to move the whole screen up and down by clicking on

j \ the bar, then holding down the left mouse button and drag-

f] ging the mouse. The depth arrangers allow the user to bring
the screen to the front of the display or send it to the back by

P"j clicking on the light or dark squares. In addition, a title may
appear in the bar at the top of the screen.

The display screen that appears when you turn on the

computer is known as the Workbench screen. This is the

screen used by both the Workbench and the Command Line

Interpreter (CLI). It is a high-resolution, noninterlaced display,

which is two bit planes deep, providing a maximum of four

screen colors. The actual color selections that appear on this

screen are those set by the Preferences program. If none has

been set, the Workbench screen uses the system default colors

of blue, white, black, and orange.

Application programs are free to use the Workbench

screen. The windowing system described below was designed

to allow several overlapping windows, each potentially be

longing to a different program, to coexist on one screen.

For instance, when you start Amiga BASIC, the BASIC in

terpreter does not open its own screen. Rather, the output and

list windows are drawn on the Workbench screen. Unless you

specify otherwise, all of the output from a BASIC program is

displayed in a window which shares the display characteristics

of the Workbench screen.

There are several advantages to using the Workbench

f—] screen for your programs. It's convenient to use because you

don't have to do anything to set it up—it's already there.

Using another screen means that you have to allocate memory

i"""] for that screen in addition to the display memory used for the
Workbench screen (which will be there in any case unless the

^ application is able, under special circumstances, to close it). It

J j allows easy access to the Workbench or CLI—you just use the

depth arrangement buttons in the corner of the window to

,—. send your window behind the Workbench. Finally, it presents

I ^ a reasonably good tradeoff of system resources. It has high

resolution for 80-column text and two bit planes for a touch of

I I 13

Chapter 1

color, but not so much color as to hog most of the system's

memory.

Opening Custom Screens

Despite the versatility of the Workbench screen, there will be

times when you'll want to custom-tailor the display charac

teristics to suit your needs. This means opening a custom

screen. From C or machine language, you use the Intuition li

brary routine OpenScreen to set up a new screen (we'll discuss

the BASIC commands later on). This call takes the form

Screen = OpenScreen(NewScreen);

(dO) (aO)

This means that when you call the OpenScreen routine, you

must furnish the address of a data structure known as a

NewScreen structure, and the routine, if successful, opens the

screen and returns the address of the Screen data structure in

the dO register. If it is not successful, it returns the number 0

instead.

Before you can call this routine, however, there are two

preparatory steps that you must take. First, you must set up

the data structures required by the OpenScreen routine. And

next, you must use the OpenLibrary command to prepare the

Intuition library for use, if it has not already been opened.

The first step is the more involved. The OpenScreen rou

tine requires a pointer to a block of data known as a

NewScreen structure. This structure contains 14 different

pieces of information about the screen that you want created.

Here is the C language definition of the NewScreen data ,

structure: I !

struct NewScreen

SHORT LeftEdge, TopEdge lJ
SHORT Width, Height, Depth;

UBYTE DetailPen, BlockPen; l ,

USHORT ViewModes, Type; LJ
struct TextAttr *Font;

UBYTE *DefaultTitle;

struct Gadget *Gadgets; 1 j
struct Bitmap *CustomBitMap;

}

14 LJ

Setting Up the Display Screen

The explanation of these variables is as follows:

LeftEdge and TopEdge. These describe the top corner of

the screen. In the current version of Intuition, a screen must

be as wide as the display, so LeftEdge should always be set to

zero. TopEdge specifies the scan line where you want the

screen to start. For purposes of describing the location of a

particular scan line, we say that the top line of the display is

line 0, and line numbers increase as we move down to the

bottom line, whose number is line 199 or 399, depending on

whether the display is noninterlaced or interlaced.

Width, Height, and Depth. The width should be set to

the full display width, 640 for high resolution or 320 for low

resolution. Since all screens must go down to the bottom of

the display, Height should be set to the display height minus

TopEdge. For example, if TopEdge is set to 50, Height should

be set to 150 for a noninterlaced display. Depth specifies the

number of bit planes, from 1 to 6. The number of planes de

termines the number of possible colors, as explained above.

DetailPen. DetailPen specifies the color register to be

used for details, such as the text characters that appear in the

title bar.

BlockPen. BlockPen specifies the color register to be used

for filled areas, such as the title bar background.

ViewModes. This flag lets you set the various display

modes which follow:

HIRES. If this flag is set, horizontal resolution is 640 pixels

across. Otherwise, the horizontal resolution is 320 pixels.

INTERLACE. If selected, the vertical resolution is 400 lines

instead of the default 200 lines.

SPRITES. Turns on sprite DMA and allocates color map

memory for sprite color registers so that sprites may be in

cluded in the display. Even if you omit this flag, it may be

possible to use sprites in the display, since the mouse pointer

is a sprite, and therefore sprite DMA must always be on in or

der to display the pointer.

DUALPF. This is used to set up a special mode in which

there are two overlapping display fields (called playfields).

HAM. This flag enables the special Hold and Modify dis

play mode, which can be invoked only from a low-resolution

15

Chapter 1

screen that is six bit planes deep. This mode will be discussed

more thoroughly in the "Advanced Topics" chapter.

EXTRA-HALFBRITE. This flag enables the special

Halfbrite display mode, which can be invoked only from a j j

low-resolution screen that is six bit planes deep. This mode '—'

will also be discussed more thoroughly in the "Advanced Top

ics" chapter.) j

Type. This should be set to CUSTOMSCREEN. If you '—l

wish to set up your own custom bitmap so that you control

where the display memory for this screen is, you should add

the CUSTOMBITMAP flag here also as well as supplying the

address of the bitmap in the CustomBitMap field described

below.

Font. A pointer to the Intuition data structure for the text

font that should be used as the default in this screen. The for

mat of the TextAttr structure is discussed in the chapter on

text. If you wish to use the default system font, you may set

this value to zero.

DefaultTitle. This is a pointer to the address of a string

of ASCII text characters, ending with an ASCII 0. This text is

displayed in the screen's title bar. If you don't want a title, set

this value to zero.

Gadgets. This value points to the address of the first gad

get in a linked list of your own custom screen gadgets (the

drag bar and depth arrangers appear regardless of this setting).

If there are no custom gadgets, set this to zero.

CustomBitMap. If you wish to specify the display mem

ory used for this screen, this value should point to a BitMap

structure that describes this display memory area. If you wish j

Intuition to allocate the display memory, set this to zero. Cus- •—•

torn bitmaps are discussed in the "Advanced Topics" chapter.

But rest assured that in almost every case it is sufficient to use J j

the display memory that Intuition allocates. l—'
Once the data structure is set up, the next step is to open

the Intuition library, if it hasn't been opened already. The) I

Amiga was designed so that no system routine has to start at a

fixed memory location. Rather, each group of operating system

functions is set up in the format known as a library. Each rou- j j
tine within a library starts at a fixed offset from the beginning

16 U

Setting Up the Display Screen

p-| of the library, but in order to find the address of the library it-

' I self, you must call the Exec library function OpenLibrary. Exec

is the only library whose address is stored in a fixed place in

f***| memory. Its address is always in memory location 4, also

known as AbsExecBase.

The OpenLibrary call takes this form:

! [library.base.address = OpenLibtSLry("name.library",version);
(dO) (al) (dO)

You must pass the OpenLibrary routine a pointer to the

name of the library and the library version number. The name

must be a string of lowercase ASCII characters that end with

an ASCII 0. For example, the Intuition library would be re

ferred to as "intuition.library". The version number corre

sponds to the version of the operating system that you require.

The program will run if the version of Kickstart used is the

one specified or any later version. The current internal version

number can be found by using the Version menu item on the

Special menu of the Workbench. If it does not matter what

version is used, use the number 0, which allows the Open-

Library routine to succeed no matter what version of Kickstart

is used.

If the OpenLibrary call is successful, it returns the base

address of the library in register dO. If it is not successful, it re

turns a zero in that register.

Machine language programs explicitly use the pointer re

turned by OpenLibrary for the purpose of making indirect

calls through the library base vector. Thus, calling a library

routine is a two-step process. The OpenLibrary call is used to

| (find the base address of the library. That address is saved and

used to make indirect calls to the library routines that start at

f—. fixed offsets from the library base.

!_.. I With the Amiga Macro Assembler, you can use the sym
bolic names for these offsets provided by the Amiga.lib library

r—j file. These symbolic names use the name of the routine pre-

■ ■ ceded by the characters _LVO (Library Vector Offset). So, after

you have used OpenLibrary to get with the base address for

rn the Intuition library and moved that address from register dO

to register a6, you could call OpenScreen like this:

JSR _LVOOpenScreen(A6)

R 17

Chapter 1

You would of course have to first set up the NewScreen < ,

structure and store a pointer to it in register aO. If the I—!
OpenScreen call is successful, the pointer to the Screen data

structure is returned in the dO register. j /

A Machine Language Example

The sample machine language program, Program 1-1, demon- j j

strates the process of opening a new screen. It opens a low- ' '
resolution screen that covers the full display, waits a few

seconds, and closes it.

A C Language Example

C programs must also use the OpenLibrary routine before

accessing functions found in the library. But with C, it is not

necessary to explicitly use the library base pointer to call sys

tem library routines. You may just call the library routines as

you would any external function, and the C compiler takes

care of the process of jumping through the correct offset from

the library base. Here is a typical example of opening a library

from C:

IntuitionBase = (struct IntuitionBase *)

OpenLibrary(//intuition.library//,31)

The cast (struct IntuitionBase *) is used to let the Lattice C

Compiler know that the value returned is of the proper type.

Once the library is open, you could use the following C code

to open a new screen:

Screen = (struct Screen *)OpenScreen (NewScreen)}

(dO) (aO) ,

If successful, the call opens the new screen and returns a '—'
pointer to the Screen data structure. That data structure con

tains the information from the NewScreen data, plus a lot more. I j

It is possible to examine this information to learn things about

the screen. For example, structure member Screen.TopEdge

contains the current vertical coordinate of the top of the j j
screen. This can be used to learn where a user has dragged the

screen. Full details about the information stored in the Screen ,

structure appear in the "Intuition/Intuition.h" include file. Lj

18

}
J

I
]
D

D
]

Z
)
U

3
3

P
r
o
g
r
a
m

1-
1.

O
p
e
n
i
n
g
a
N
e
w

S
c
r
e
e
n
,
M
L
E
x
a
m
p
l
e

X
R
E
F

_
_
A
b
s
E
x
e
c
B
a
s
e

X
R
E
F

_
L
V
O
O
p
e
n
L
i
b
r
a
r
y

X
R
E
F

_
_
L
V
O
C
l
o
s
e
L
i
b
r
a
r
y

X
R
E
F

^
L
V
O
O
p
e
n
S
c
r
e
e
n

X
R
E
F

L
V
O
C
l
o
s
e
S
c
r
e
e
n

*
*
*
*

o
p
e
n

t
h
e

I
n
t
u
i
t
i
o
n

L
i
b
r
a
r
y

*
*
*
*

m
o
v
e
a
.
l

#
I
n
t
u
i
t
i
o
n
N
a
m
e
,
a
l

m
o
v
e
.
l

#
3
1
,
d
0

m
o
v
e
a
.
l

_
_
A
b
s
E
x
e
c
B
a
s
e
,
a
6

j
s
r

_
_
L
V
0
0
p
e
n
L
i
b
r
a
r
y
(
a
6
)

m
o
v
e
.
l

d
0
,
I
n
t
u
i
t
i
o
n
L
i
b
r
a
r
y

r
a
s
k

f
o
r

'
i
n
t
u
i
t
i
o
n
.
l
i
b
r
a
r
y
1

;
v
e
r
s
i
o
n

3
1

o
r

l
a
t
e
r

(
n
o
t

u
s
e
d

i
n

v
l
.
0
)

?
g
e
t

p
o
i
n
t
e
r

t
o

E
x
e
c

l
i
b
r
a
r
y

r
j
u
m
p

t
h
r
o
u
g
h

o
f
f
s
e
t

t
o
O
p
e
n
L
i
b
r
a
r
y

7
s
a
v
e

p
o
i
n
t
e
r

t
o

I
n
t
u
i
t
i
o
n

l
i
b
r
a
r
y

b
a
s
e

a
d
d
r
e
s
s

b
e
q

A
b
o
r
t

;
i
f

p
o
i
n
t
e
r

n
o
t

f
o
u
n
d
,

a
b
o
r
t

*
*
*
*

o
p
e
n

o
u
r

S
c
r
e
e
n

*
*
*
*
*

m
o
v
e
a
.
l

#
N
e
w
C
u
s
t
S
c
r
e
e
n
,
a
0

m
o
v
e
a
.
l

I
n
t
u
i
t
i
o
n
L
i
b
r
a
r
y
,
a
6

j
s
r

_
_
L
V
0
0
p
e
n
S
c
r
e
e
n
(
a
6
)

m
o
v
e
.
l

d
0
#
C
u
s
t
S
c
r

b
e
q

A
b
o
r
t

*
*
*
*
*

w
a
i
t

a
f
e
w

s
e
c
o
n
d
s

*
*
*
*

m
o
v
e
.
l

#
$
f
f
f
f
f
,
d
0

;
p
o
i
n
t
e
r

t
o

N
e
w
W
i
n
d
o
w

s
t
r
u
c
t
u
r
e

i
n

a
0

7
p
o
i
n
t
e
r

t
o

I
n
t
u
i
t
i
o
n

l
i
b
r
a
r
y

b
a
s
e

i
n

a
6

7
j
u
m
p

t
h
r
o
u
g
h

o
f
f
s
e
t

t
o

O
p
e
n
W
i
n
d
o
w

7
s
a
v
e

p
o
i
n
t
e
r

t
o
W
i
n
d
o
w

s
t
r
u
c
t
u
r
e

7
i
f

n
o

p
o
i
n
t
e
r

r
e
t
u
r
n
e
d
,

a
b
o
r
t

I (
D

l
o
o
p
:

s
u
b
i
.
1

b
n
e

#
l
,
d
0

l
o
o
p

(5 (
D

O
k
*

c
l
o
s
e

t
h
e

S
c
r
e
e
n

*
*
*
*

m
o
v
e
a
.
l

C
u
s
t
S
c
r
,
a
0

m
o
v
e
a
.
l

I
n
t
u
i
t
i
o
n
L
i
b
r
a
r
y
,
a
6

j
s
r

_
_
L
V
0
C
l
o
s
e
S
c
r
e
e
n
(
a
6
)

7
s
e
t

S
c
r
e
e
n

p
o
i
n
t
e
r

p
a
r
a
m
e
t
e
r

f
o
r

c
a
l
l

;
s
e
t

p
o
i
n
t
e
r

t
o

I
n
t
u
i
t
i
o
n

L
i
b
r
a
r
y

;
a
n
d

c
l
o
s
e

t
h
e
w
i
n
d
o
w

O Q (
D

m
o
v
e
a
.
l

I
n
t
u
i
t
i
o
n
L
i
b
r
a
r
y
,
a
l

7
s
e
t

p
o
i
n
t
e
r

t
o

i
n
t
u
i
t
i
o
n

l
i
b
r
a
r
y

m
o
v
e
a
.
l

_
A
b
s
E
x
e
c
B
a
s
e
,
a
6

7
g
e
t

p
o
i
n
t
e
r

t
o

E
x
e
c

l
i
b
r
a
r
y

j
s
r

_
L
V
0
C
l
o
s
e
L
i
b
r
a
r
y
(
a
6
)

7
j
u
m
p

t
h
r
o
u
g
h

o
f
f
s
e
t

t
o

C
l
o
s
e
L
i
b
r
a
r
y

*
*
*
*

q
u
i
t

i
m
m
e
d
i
a
t
e
l
y

i
f

l
i
b
r
a
r
y

w
o
n
'
t

o
p
e
n

*
*
*
*

d
0

7
r
e
t
u
r
n

c
o
d
e

i
n

d
0

A
b
o
r
t
:

c
l
r
.
l

r
t
s

*
*
*
*

h
e
r
e
'
s

o
u
r

d
a
t
a

*
*
*
*

S
E
C
T
I
O
N

d
a
t
a
,
D
A
T
A

I
n
t
u
i
t
i
o
n
N
a
m
e
:

d
c
.
b

*
i
n
t
u
i
t
i
o
n
.
l
i
b
r
a
r
y
1
,
0

S
T
i
t
l
e
:

d
c
.
b

'
C
u
s
t
o
m

L
o
w
-
R
e
s

S
c
r
e
e
n
'
,
0

*
*
*
*

t
h
e

N
e
w
S
c
r
e
e
n

s
t
r
u
c
t
u
r
e

*
*
*
*

N
e
w
C
u
s
t
S
c
r
e
e
n
:

d
e
w

0

d
e
w

0

d
e
w

3
2
0

d
e
w

2
0
0

?
L
e
f
t
E
d
g
e

7
T
o
p
E
d
g
e

7
W
i
d
t
h

7
H
e
i
g
h
t

r
t
e
x
t

o
f
w
i
n
d
o
w

t
i
t
l
e

c
c

c
c

c

n
z
i
n

3
3

z
i
u

u

;
D
e
p
t
h

;
D
e
t
a
i
l
P
e
n

;
B
l
o
c
k
P
e
n

;
s
p
e
c
i
a
l

d
i
s
p
l
a
y

m
o
d
e
s

;
S
c
r
e
e
n

t
y
p
e
—
C
U
S
T
O
M
S
C
R
E
E
N

;
p
o
i
n
t
e
r

t
o

c
u
s
t
o
m

f
o
n
t

s
t
r
u
c
t
u
r
e

;
T
i
t
l
e
—

p
t
r

t
o

S
c
r
e
e
n

t
i
t
l
e

t
e
x
t

;
p
t
r

t
o

S
c
r
e
e
n

g
a
d
g
e
t
s

;
B
i
t
M
a
p
—

p
t
r

t
o

c
u
s
t
o
m

B
i
t
M
a
p

;
p
l
a
c
e

t
o

s
t
o
r
e

I
n
t
u
i
t
i
o
n

l
i
b
r
a
r
y

b
a
s
e

a
d
d
r
e
s
s

7
p
l
a
c
e

t
o
k
e
e
p

p
o
i
n
t
e
r

t
o
W
i
n
d
o
w

s
t
r
u
c
t
u
r
e

E
N
D

(
D

(
Q

"
D C
D g Q i

h
o

(D

d
e
w

d
c
,
b

d
e
b

d
e
w

d
e
w

d
e
l

d
e
l

d
e
l

d
e
l

3 3 1 0 $
0
f

0 S
T
i
t
l
e

0 0

S
E
C
T
I
O
N

m
e
m
,
B
S

I
n
t
u
i
t
i
o
n
L
i
b
r
a
r
y
:

d
s
.
l

C
u
s
t
S
c
r
:

d
s
.
l

1 1

Chapter 1

Program 1-2 is a C program example that opens a new

screen. First, if either the OpenLibrary or OpenScreen routine

fails, it returns a value of zero. Your program should check for

this event and abort if either call does not work.

Second, the example programs use the CloseLibrary func- j [
tion before they end. OpenLibrary is used not only to find the

pointer to the base address of a system library, but is also used |

to load nonresident libraries from disk. Such nonresident li- I—

braries take up valuable RAM, so when you're through using

them, it is advantageous to notify the system that the library

code is no longer needed and that the memory space it occu

pies may be reused. Of course, resident libraries like the Intu

ition and Graphics libraries will not be unloaded if they are no

longer in use, since they are in Writeable Control Store (WCS)

rather than RAM. Therefore, it is not strictly necessary to close

them when you are finished using them. Nonetheless, it's a

good habit to close libraries you will no longer use. Finally,

the CloseScreen routine is used to close the screen when the

program is finished. This is necessary in order to clear it from

the display and to free the memory used by the screen.

BASIC Custom Screens

Amiga BASIC also lets you set up a new screen with the

SCREEN statement.

SCREEN screen—number, width, height, depth, mode

The BASIC statement gives you considerably fewer

choices to make than does the Intuition library routine. The

first value you must supply, screen_number, is a number from

1 to 4 which is used to identify the screen for the purpose of j j

closing the screen when you are done with it and for opening

windows (see Chapter 2 for more information on windows).

The width and height values correspond to those passed j
to OpenScreen in the NewScreen data structure. Width should

always be set to 320 for a low-resolution screen or 640 for .

high-resolution, just as you do when using the operating sys- I—

tern routines. Setting a lesser width confuses the display.

Height is a different matter. Intuition does allow you to set up j j

a screen that is shorter than the full display height. But be- l—'

22
u

Setting Up the Display Screen

n

n

n

H

n

cause of a flaw in the way that the first version of Amiga

BASIC sets up short screens, you must take some additional

steps if you want to create a noninterlaced screen that is fewer

than 200 lines tall or an interlaced screen of fewer than 400

lines. These steps are detailed a little later on.

The depth value is a number from 1 to 5 that specifies the

number of bit planes to use. This, in turn, determines the

number of different colors available at any one time. As previ

ously discussed, each additional plane doubles the number of

colors available. The number of colors available for each depth

value is as follows:

In high-resolution mode, the maximum number of bit

planes that can be used is only four. Low-resolution screens

can use five bit planes.

The final value to be specified in the SCREEN statement

is the mode. There are four different display modes available

from Amiga BASIC. Here are the meanings of each of the al

lowable mode values:

1 Low resolution, noninterlaced

2 High resolution, noninterlaced

3 Low resolution, interlaced

4 High resolution, interlaced

For example, to set up a low-resolution, noninterlaced

screen that displays up to eight colors simultaneously, you

would use the statement

SCREEN 1,320,200,3,1

When you open a screen with the SCREEN statement,

BASIC allocates display memory for it in the same way that

the Intuition library routine OpenLibrary does. When you are

23

P
r
o
g
r
a
m

1
-
2
.
O
p
e
n
i
n
g
a
N
e
w

S
c
r
e
e
n
,
C

E
x
a
m
p
l
e

/
*

I
n
c
l
u
d
e

t
h
e

d
e
f
i
n
i
t
i
o
n
s

t
h
a
t

w
e

n
e
e
d

*
/

t
i
n
c
l
u
d
e

<
e
x
e
c
/
t
y
p
e
s
.
h
>

#
i
n
c
l
u
d
e

<
i
n
t
u
i
t
i
o
n
/
i
n
t
u
i
t
i
o
n
.
h
>

/
*

S
t
r
u
c
t
u
r
e
s

n
e
e
d
e
d

f
o
r

l
i
b
r
a
r
i
e
s

*
/

s
t
r
u
c
t

I
n
t
u
i
t
i
o
n
B
a
s
e

*
I
n
t
u
i
t
i
o
n
B
a
s
e
;

/
*

S
t
r
u
c
t
u
r
e
s

r
e
q
u
i
r
e
d

f
o
r

g
r
a
p
h
i
c
s

*
/

s
t
r
u
c
t

S
c
r
e
e
n

*
C
u
s
t
S
c
r
;

/
*

*
*
*
*
*
*
*

P
r
e
-
i
n
i
t
i
a
l
i
z
e
d

I
n
t
u
i
t
i
o
n

S
t
r
u
c
t
u
r
e
s

*
*
*
*
*
*
*
*

*
/

s
t
r
u
c
t

N
e
w
S
c
r
e
e
n

N
e
w
C
u
s
t
S
c
r

=

O (
D

0
,
0
,

3
2
0
,
2
0
0
,
3
,

3
,
1
,

N
U
L
L
,

C
U
S
T
O
M
S
C
R
E
E
N
,

/
*

L
e
f
t
E
d
g
e

(
a
l
w
a
y
s
=
0
)
,
T
o
p
E
d
g
e

*
/

/
*

W
i
d
t
h
,

H
e
i
g
h
t
,

D
e
p
t
h

*
/

/
*

D
e
t
a
i
l
P
e
n

a
n
d

B
l
o
c
k
P
e
n

*
/

/
*

s
p
e
c
i
a
l

d
i
s
p
l
a
y

m
o
d
e
s

*
/

/
*

S
c
r
e
e
n

T
y
p
e

*
/

N
U
L
L
,

/
*

P
o
i
n
t
e
r

t
o

C
u
s
t
o
m

f
o
n
t

s
t
r
u
c
t
*
/

"
L
o
w
-
R
e
s

S
c
r
e
e
n
"
,

/
*

P
o
i
n
t
e
r

t
o

t
i
t
l
e

t
e
x
t

*
/

N
U
L
L
,

/
*

P
o
i
n
t
e
r

t
o

S
c
r
e
e
n

G
a
d
g
e
t
s

*
/

N
U
L
L
,

/
*

P
o
i
n
t
e
r

t
o

C
u
s
t
o
m
B
i
t
M
a
p

*
/
.

};

/
*
*
*
*
*
*
*
*
*
*
*
*
*
*

p
r
o
g
r
a
m

B
e
g
i
n
s

H
e
r
e

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
/

C
C

(I
c

i
:

:

]
J

I]
J

I
)

I
)

II
J

3

m
a
i
n
(
)

{ /
*

O
p
e
n

t
h
e

I
n
t
u
i
t
i
o
n

l
i
b
r
a
r
y

*
G
e
t

p
o
i
n
t
e
r

t
o

W
C
S

r
o
u
t
i
n
e
s
,

a
n
d

i
f

=
0
,

*
l
i
b
r
a
r
y

i
s
n
'
t

a
v
a
i
l
a
b
l
e
.

*
/

I
n
t
u
i
t
i
o
n
B
a
s
e

=
(
s
t
r
u
c
t

I
n
t
u
i
t
i
o
n
B
a
s
e

*
)

O
p
e
n
L
i
b
r
a
r
y
(
"
i
n
t
u
i
t
i
o
n
.
l
i
b
r
a
r
y
"
,
L
I
B
R
A
R
Y
_
V
E
R
S
I
O
N
)
;

i
f

(
I
n
t
u
i
t
i
o
n
B
a
s
e

=
=

N
U
L
L
)

e
x
i
t
(
F
A
L
S
E
)
;

/
*

O
p
e
n

S
c
r
e
e
n
.

I
f

i
t
'
s

a
d
d
r
e
s
s

=
0
,

i
t
w
a
s
n
'
t

o
p
e
n
e
d
.

*
/

N
U
L
L
)

i
f

(
(
C
u
s
t
S
c
r

=

(
s
t
r
u
c
t

S
c
r
e
e
n

*
)
O
p
e
n
S
c
r
e
e
n
(
&
N
e
w
C
u
s
t
S
c
r
)
)

e
x
i
t
(
F
A
L
S
E
)
;

D
e
l
a
y
(
3
0
0
)
;

C
l
o
s
e
S
c
r
e
e
n
(
C
u
s
t
S
c
r
)
;

C
l
o
s
e
L
i
b
r
a
r
y
(
I
n
t
u
i
t
i
o
n
B
a
s
e
)
;

I (
Q (
D g C
O (
D

Chapter 1

LJ

finished with the screen, you should free up that display

memory with the SCREEN CLOSE statement, which uses this | \

syntax:

SCREEN CLOSE screen-number j |

In the example above, you could close the screen with

screen close 1 , ,

lJ
Creating a Short Screen in BASIC

As stated above, Amiga BASIC does not set up short screens

correctly. Since a screen that is less than full height must al

ways sit at the bottom of the display, the TopEdge setting of

the NewScreen structure should be equal to the full height of

the display minus the height of the screen.

BASIC apparently always sets the TopEdge value to zero,

however, so that the screen starts at the top of the display.

Therefore, when you set the height for a value less than the

full display height, you create a screen that ends before the

bottom of this display. As a result, the display becomes con

fused, and random "garbage" fills the bottom of the display.

When you drag the screen down by using the drag bar, how

ever, everything is sorted out, and the screen takes its proper

position at the bottom of the display.

Therefore, after you create a short screen using Amiga

BASIC, you must move the screen down to its proper position

under program control (since you can't very well depend on

users to realize that they have to pull the drag bar to

straighten out the display). BASIC has no direct instruction to

perform this task, but the Intuition library does. And BASIC

does provide a way for you to call such routines. (

The way that you call operating system library functions

from BASIC is by using the LIBRARY statement I ,

LIBRARY "name.library" l—'

where name.library represents the name of the library, in the

same format used by the OpenLibrary routine (lowercase) ,
only).

BASIC uses this information to call OpenLibrary, which . ,

provides the library base address. In order to use the library I—I
base address to call the library routines, BASIC still needs a

26 i I

Setting Up the Display Screen

I—i way of finding out the address offsets of these routines and

' ' the registers used to pass the data values they need. For this
purpose, it uses a special data file that must be located in the

p"j current disk directory when the program is run. The format of

this file is described in detail in Appendix F of the Amiga

BASIC manual. Its name must be the same as that of the li-

P"! brary, with the characters .bmap (for binary map) appended
to it.

Files named graphics.bmap and dos.bmap are provided in

the BasicDemos directory of the BASIC disk; they allow BASIC

to access the Graphics and DOS libraries.

To use other libraries, such as the Intuition library, you

must create a .bmap file for that library. This can be accom

plished in one of two ways. First, you can obtain what is

known as an .fd file. These are text files that are included with

the Amiga Macro Assembler (and possibly the Lattice C Com

piler as well). They describe the offsets and data registers for

each routine in the library and can be converted to .bmap

form by the "ConvertFD" program which is found in the

BasicDemos directory of the BASIC distribution disk. The

other method is to use the BASIC file commands to create a

.bmap file from the program that uses it. This is the approach

that we'll take for purposes of demonstrating library routines.

Of course, if you already have these .bmap files, you can omit

this portion of the demo programs.

Once you have opened the library with the LIBRARY

statement, you may use any routine described in the .bmap

file via the CALL statement. The syntax for this statement is

[~j CALL Routine—name (valuel,value2,...)

It is possible also to use the alternative form:

p1 Routine_name valuel,value2,...

For the purposes of this statement, the name of the rou-

tine is used as the name of a variable that holds the actual ad-

fl dress of the routine. BASIC computes this address from the
library base address and the address offset given in the .bmap

— file, and then stores it in the variable Routine__name.

' ! Since most code addresses are 24 bits long, the variable
Routine_name must be of the long-integer or double-precision

H 27

Chapter 1

type. If it is not, a Type mismatch error occurs when you try

to call the routine. You can make sure that the variable is of

the correct type by using the DEFLNG or DEFDBL statement,

or by adding the correct symbol to the end of the name

(Routine_name& or Routine_name#).

The values in parentheses (value 1, value2, and so on) are

the data values used by the routine. You must make sure that

these values also are of the correct type. Usually, it is safe to

make all variables involved in a library call into long integers

by adding the ampersand (&) to the variable name.

The Intuition library routine used to move a screen is

named, appropriately enough, MoveScreen. The format for

this routine is

MoveScreen (Screen, DeltaX, DeltaY);

(aO) (dO) (dl)

where Screen is a pointer to the Screen data structure, and

DeltaX and DeltaY are the increments by which you wish to

move the screen. DeltaX is only provided for upward compati

bility, since currently a screen must fill the entire horizontal

display and therefore cannot be moved horizontally. This

value should be set to zero for purposes of clarity (though it is

currently ignored). The DeltaY value should be set for the

number of scan lines that you wish to move the screen, either

downward (a positive number) or upward (a negative number).

BASIC does not provide a direct way to learn the address

of the Screen data structure. It does, however, provide a way

to discover the address of a Window data structure. Among

the items provided in this data structure is the address of the

window's screen. The BASIC function WINDOW(7) returns j (
the address of the Window data structure. This address of the

Screen data structure for the screen on which the window re- ,

sides can be found at address WINDOW(7)+54. Therefore, LJ

you can find the screen data address by opening a window on

the screen and taking the value at PEEKL(WINDOW(7)+54). (»

Though this method works, it does not represent the best <—'
in programming practices. Normally, it is not a good idea to

access data structures using absolute offsets, because these j I

structures could possibly change in future versions of the com

puter or future versions of the operating system and render

28 LJ

H
Setting Up the Display Screen

n

p-j your program incompatible. Therefore, while we demonstrate

this technique as one way of correctly generating short screens

using the first version of Amiga BASIC, we caution you to use

rn such methods sparingly and only in cases where better tech

niques do not exist.

Once the address of the Screen data structure is known,

I I use the MoveScreen routine to move a screen 100 scan lines
down the display with the statement

CALL MoveScreen&(Screen&,0,100)

Program 1-3 shows the whole process involved in setting

up a short screen from BASIC.

Program 1-3. Setting Up a Short Screen from BASIC

DEFLNG a-z

GOSUB Initlib 'initialize Intuition library

SCREEN 1,320,100,3,1 'open short screen

WINDOW 2,"Short Screen Window",(0,15)-(297,86),,1

PALETTE 0,0,0,0 'change screen colors

PALETTE 2,0,.3,.6

s = PEEKL(WINDOW(7)+46) 'find Screen address

CALL MoveScreen(s,0,100) 'and move it down

PRINT

PRINT "Hello, out there"

x = INT (TIMER)+5 'wait a few seconds

WHILE (TIMER <x)

WEND

WINDOW CLOSE 2 'close window,

SCREEN CLOSE 1 'Screen

r""j LIBRARY CLOSE 'and all libraries

END

["""] Initlib:
CHDIR "ram:" 'put bmap file in RAM:

p—^ 'Create text of .bmap file

j | fd$="MoveScreen"+CHR$(0)

fd$=fd$+CHR$(255)+CHR$(94)+CHR$(9)+CHR§(1)

fd$=fd$+CHR$(2)+CHR$(0)

j | 'print it to the file

OPEN "intuition.bmap" FOR OUTPUT AS 1

PRINT#l,fd§;

(—J CLOSE 1

29

LJ
Chapter 1

u

'open the library j I

LIBRARY "intuition.library" I I
CHDIR "df0:"

RETURN j I

Manipulating Screens <

As seen above, it is possible to move a screen up and down '—'
under program control. The Intuition library also contains

routines that allow you to control the depth arrangement of

your screens from a program. These two library functions are

ScreenToBack(Screen);

(aO)

and

ScreenToFront(Screen);

(aO)

They operate exactly as if the user had clicked on one of

the depth arrangement gadget boxes in the top right corner of

the screen.

The Workbench screen is a special case. Since it is meant

to be available to several different programs at once, you can't

count on knowing the address of its Screen structure, as if it

were a screen that your application had opened. To arrange

the depth of the Workbench screen, you use the Intuition li

brary functions:

results = WBenchToFront();

(dO)

and I j

results = WBenchToBack(); '—'
(dO)

These functions do not require you to pass them the ad- j j
dress of a Screen data structure. They return a false (zero)

value if the Workbench screen is closed and a true (nonzero) , ,

value if it is open and can be moved. I I
Opening and closing the Workbench screen is a special

case also. The Workbench screen opens when you start up the j i

computer and normally stays open all the time. If your pro- l—'
gram needs more memory, it may be able to gain some by

30 LJ

n
Setting Up the Display Screen

n

PI closing the Workbench screen, however. The Intuition library

function that performs this task is

_ results = CloseWorkBench();

I I (do)

This routine will not succeed in closing the Workbench

|—I screen if any application programs have opened windows on

' ' the screen and are using it. In such a case, the function returns
a value of false (zero). But if the only program using the

Workbench screen is the Workbench itself, it will close its win

dow and free up the memory used by its display. A true (non

zero) value will then be returned.

If your program has closed the Workbench screen, you

should try to open it again when the program finishes. To do

this, use the function

results = OpenWorkBench();

(dO)

This function returns a false (zero) value if the Workbench

screen cannot be opened, or a true (nonzero) value if the Work

bench can be opened or already was open when the function

was called.

n

n

n

n

n 31

ISO

iiiili^BW

liiHi

iiii^^BSfi

£^&M^§;&§^

^'^IB

^WjiitiS

^^^^

m

us

s«a

.^a

y

u

u

_ Windows
R

AnIntuition screen completely defines a graphics display

area, and it's possible to draw directly onto the

screen. If a program writes directly to the screen,

however, there is no easy way to separate its output

from that of another.

One of the major functions of Intuition is to allow many

tasks or programs, each with its own display area, to share a

single display. For this reason, Intuition allows you to divide

the display area of a screen into several overlapping windows.

This system allows each task or program to function as if it

has the display area all to itself, even if in reality all are shar

ing the display bitmap of the same screen.

The Layers Library

The graphics foundation of the Intuition windowing system is

a group of operating system routines known as the Layers li

brary. The Layers library provides routines for organizing the

display into a number of rectangles and making it appear that

some rectangles are in front of others, though in fact, all of

them share the same display space. This library provides the

means of restoring the display when one rectangle is moved

or uncovered.

These routines also perform what is known as clipping.

This means that if you're drawing within a certain rectangle,

all drawing will be confined to within the boundaries of that

rectangle. When the drawing reaches the borders of the rect

angle, graphics output stops so that you don't overwrite the

area belonging to an adjacent rectangle or even some memory

unrelated to the display.

To the foundation provided by the Layers library, Intu

ition adds a number of other features to make up its window

ing system. Many of these features relate more to the area of

input/output (I/O) than they do to graphics. These include

the system of gadgets and pull-down menus, graphic devices

which allow the user to communicate with a program.

35

u
Chapter 2

u

The windowing system also provides the means by which j

a program can obtain information about the position of the <°—J
mouse pointer and which keys the user presses on the key

board. For the most part, we will pass over these features and | (

stress those aspects of Intuition windows that relate to graph- '—'

ics on the Amiga. You should note, however, that the exis

tence of these vital I/O functions provides another reason for I j

using windows for your program graphics, rather than draw

ing directly on the screen display area.

Opening a Window

The process of opening an Intuition window is very similar to

that of opening a screen. The library routine that is used takes

this form:

Window = OpenWindow(NewWindow);

(dO) (aO)

The routine requires as input a pointer to a data structure

known as a NewWindow structure. If the call sucessfully

opens the window, it returns a pointer to the Window data

structure of the new window. This data structure contains all

the information provided by the NewWindow structure and

more. If unsuccessful, the OpenWindow function returns a

zero value.

Like the NewScreen structure used by the OpenScreen

routine, the NewWindow data structure describes a wide vari

ety of attributes of the new window. The definition of this

data structure in C looks like this:

struct NewWindow

SHORT LeftEdge, TopEdge, Width, Height;

UBYTE DetailPen, BlockPen;

USHORT IDCMPFlags; | j

ULONG Flags; ^
struct Gadget *FirstGadget;

struct Image "CheckMark; I

UBYTE Title; ^J
struct Screen *Screen;

struct BitMap *Bitmap; ^ ,

SHORT MinWidth, MinHeight, MaxWidth, MaxHeight; LJ
USHORT Type;

LJ

n

Windows

As you can see, a lot of information is needed to create a

new window. That's because there are many variations on the

kinds of windows that can be created. We'll discuss these vari-

ations below, as we explain the function of each member of

the NewWindow data structure.

LeftEdge, TopEdge. These describe the initial position of

the top left corner of your window. The required values spec

ify in pixels how far that corner is from the top left corner of

the screen. The coordinates for this corner are (0,0). Their ver

tical component increases as you go down the display, and the

horizontal component increases as you move across the dis

play to the right.

Width, Height. These values describe the initial size of

the window in pixels. The Width value should be less than or

equal to the width of the screen (640 or 320 pixels) minus the

LeftEdge value. The Height value should be less than or equal

to the height of the screen (200 or 400 lines) minus the

TopEdge value.

These size values describe the total size of the window.

Keep in mind, however, that not all of this area will be avail

able for your graphics. Unless otherwise specified, each win

dow comes with a border drawn around it. At the minimum,

this border is a double line that occupies several pixels. If the

border contains one or more gadgets, like the depth arrangers,

drag bar, or close box in the top border and sizing box in the

right border, the border can be considerably wider. The size of

each border can be found in the Window data structure vari

ables BorderLeft, BorderRight, BorderTop, and BorderBottom.

Remember that the area available for drawing should be re

duced by the values found in these variables.

DetailPen, BlockPen. These values contain the pen num-

bers used to draw different parts of the window. The DetailPen

value is the number of the pen used to draw details like the

text in the title bar, certain gadgets, and the inner border line

around the window. The BlockPen value is the number of the

pen used to draw filled blocks like the title bar and the outer

border line that surrounds the window. Either or both of these

values can be set to —1, in which case the pen used will be

37

u
Chapter 2

u

the same one contained in the DetailPen and/or BlockPen j j

variables in the Screen data structure. '—'

IDCMPFlags. This variable can contain a number of flags

that specify the conditions under which Intuition will send j j

your program messages about I/O functions.

Flags. The Flags variable contains a lot of information

about just what kind of window will be created. This infor- j j
mation is in the form of flags, numbers which have a special

meaning to Intuition. Some of these flags are mutually exclu

sive, but most can be added together in a number of different

combinations. These flags affect many different aspects of the

window's appearance and performance. The explanations of

these flags are grouped together below by function.

Refresh method. One of the most important aspects of the

window that is controlled by the Flags variable is the method

used to refresh its display. When one window is moved on top

of another, the display information for the window that is cov

ered up is no longer saved in the display bitmap area. Some

provision must be made for saving that information elsewhere

so that the display can be restored if the window is later un

covered. The same is true when the sizing gadget is used to

make a window a different size. Information is lost when a

window is made smaller and must be restored when the win

dow is made larger again.

The Layers library provides Intuition with three different

schemes for refreshing the display. These methods vary in the

amount of memory used, the amount of work that the pro

gram must do to refresh the display, and how quickly the re

fresh is accomplished. Each is associated with one of the J \

refresh flags that can be stored in the Flags variable. You must

set one and only one of these flags when you open a window.

The first method is SIMPLE-REFRESH. Simple refresh- 1_|
ing requires the least memory of the three methods, but it

does the least for you. A SIMPLE_REFRESH window is drawn , ,

in the screen's display memory and uses no additional mem- ! I
ory buffers. When you choose this refresh method, Intuition

preserves the display when the user merely moves the win- | i

dow around the screen with the drag bar. It does not bother to <—'
save the portion of a window that is obscured, however, when

38 LJ

H
Windows

n

j—*| the window is sized or another window is moved on top of it.

1 l Therefore, the program itself must redraw the display when
ever it gets a message from Intuition, either via the Intuition

p""j Direct Communication Message Port (IDCMP) or the console

device, telling it that the window has been uncovered or sized

larger.

j I Although SIMPLE_REFRESH uses less memory than the
other methods, it tends to be a bit slower. Intuition does, how

ever, provide a set of functions that can help speed up the re

fresh routines that you provide. Whenever a window is moved

or sized, Intuition keeps track of what part of the old display

was damaged by the move. The function BeginRefresh() clips

the display so that no matter how much drawing your pro

gram orders the operating system to do, it will only perform

the portions of the drawing commands that act on the area

that was damaged. This prevents it from redrawing sections

that do not need to be refreshed. When the program is fin

ished with the refresh, it should call the function

EndRefresh(), which terminates the clipping.

The next method is known as SMART_REFRESH. Like

the SIMPLE-REFRESH window, the SMART_REFRESH win

dow uses the screen's bitmap for its display. When part of a

SMART-REFRESH window is obscured, either by another

window or by resizing, Intuition saves the part that was cov

ered up in an extra memory buffer. This method requires more

memory than SIMPLE-REFRESH since it stores both the portion

of the window that is displayed and that which is covered.

In return, however, a SMART_REFRESH window takes

n care of most of the refresh process by itself and generally re

freshes the window more quickly than does SIMPLE—REFRESH.

Since Intuition saves the display information for the part of

PI the window that is covered up, it is able to restore that part of
the display when the window is uncovered again. The same is

_ true when a window is sized down and then enlarged. The only

I I case in which Intuition will inform the program that a SMART-
REFRESH window needs to be refreshed is when the window

nis made larger than its original size. When that happens, you

may use the BeginRefresh() and EndRefresh() routines to con

fine the refresh to the area that was just uncovered. Note that

n 39

u
Chapter 2

u

if you do not attach a sizing gadget to the SMART-REFRESH (

window, the program will never have to refresh the display. . !

The final refresh scheme requires a special window type

known as a SUPER-BITMAP window. This type of window j /

uses part of the screen's display memory for its graphics, but '—'
also has it own complete bitmap storage area. This bitmap

area may be larger than that required by the current window I

display. The SUPER_BITMAP window uses the most memory

of all, since information for the entire display area is saved in

RAM in addition to the portion of the screen memory used for

the display. Because the entire bitmap for this window is al

ways saved in memory, however, Intuition can refresh its dis

play for you automatically.

In addition to the extra memory requirements, the SUPER-

BITMAP window requires a little more work to set up. RAM

must be allocated for the bitmap area, and the bitmap must be

initialized and linked into the window. Because of these extra

requirements, the subject of SUPER—BITMAP windows will be

left for more thorough treatment in the "Advanced Topics"

chapter.

The last flag concerning window refresh is called

NOCAREREFRESH. This flag should be set only when you

do not intend to perform any window refreshing, regardless of

the circumstances. It tells Intuition never to send any messages

to this window concerning window refresh events.

Borders. Unless you specify otherwise, Intuition automati

cally draws a double line around each window to make it eas

ier for the user to distinguish where one window ends and

another begins. The border area need not be confined to the | i

thickness of these lines, however. If there are gadgets in the '—'
border, such as the system close box, drag bar, depth arrang

ers, or sizing box, the border area will automatically be ex- j j

tended to accommodate these gadgets. —'

As explained above, these extended borders are drawn with

in the area specified for the window, and they occupy part of j J

the usable area of the window. There are two flags that can be

used to change this state of affairs. The first, BORDERLESS,

creates a window that has no border lines drawn around it [_)
and no extended border area automatically placed around the

40 LJ

n
Windows

p*| gadgets. In fact, the only things that denote the edges of such

' a window at all are the border gadgets, or the text of the win
dow title, if any of these are used. The lack of borders gives

I you a little more room to draw on, which is useful for applica

tions that need the entire width of the screen—for 80-column

text, for example. Of course, since border lines are normally

I I used to separate one window from the next, it could be con
fusing to put a number of small, borderless windows on the

screen at once. That's why it makes more sense to make a

borderless window fill the entire display. You can also use the

BACKDROP flag, described below, to keep the borderless win

dow in the background.

The other flag, GIMMEZEROZERO, creates a window

where the border area is drawn in an entirely separate layer

from the rest of the window. Normally, the border area of a

window is drawn in the same layer as the rest of the window.

This means that the border lines and the gadgets take up some

of the window's drawing room. You cannot start drawing at

the edge of the window because that's where the borders are,

and if you do start there, you may draw over gadgets that are

located in the border. With a Gimmezerozero window, there is

never any possibility that you will draw over the border lines

or gadgets. Your drawing area consists only of the part of the

window that lies inside the border area. For purposes of draw

ing, the top left corner of the window—the (0,0) coordinate—

lies in an area that is safe to use, rather than in the border

area as with other windows. Although a Gimmezerozero win

dow frees you from worrying about drawing over the border

area, it does use more RAM than a regular window. It also

slows down such operations as moving and sizing windows,

since each window is in effect made up of two subwindows.

j | Use of the BACKDROP flag produces a window that al
ways stays in the background. It opens behind every other

window that is already open on the screen; it cannot be

j I moved, depth arranged, or sized. In fact, you cannot attach the
sizing box, the drag bar, or the depth arrangement gadgets to

i—^ this kind of window. The close box is the only system gadget

1 * that may be attached to a Backdrop window. Non-Backdrop

windows always stay in front of a Backdrop window; using

n

n 41

u
Chapter 2

u

the depth arrangement gadgets on a normal window never j [

sends it behind a Backdrop window. ' '

The other distinctive feature of a Backdrop window is that

it does not necessarily cover the screen's title bar as other win-] (

dows do. By default, the screen's title bar goes in front of a

Backdrop window that is opened at the top of the screen. You (

can, however, change this with the Intuition library function j |
ShowTitle, which takes the form

ShowTitle(Screen, Showlt);

(aO) (dO)

where Screen is a pointer to the address of the Screen data

structure, and Showlt is a Boolean value true (1) or false (0). A

call to this function with a true value for the Showlt variable

causes the title bar to be shown in front of Backdrop windows,

while a false value hides the title bar behind any window.

It is particularly useful to add Backdrop features to a

Borderless window. If you create such a window full-size, with

no system gadgets or title, and hide the screen title bar, you

will have the entire drawing surface of the display at your dis

posal, just like that of any ordinary microcomputer display.

The difference, however, is that you can still open auxiliary

windows on top of such a display.

Gadgets, activation, and other flags. The remainder of the

flags are not strictly concerned with display aspects of the

window. The first group allows you to attach any of the sys

tem gadgets that you wish. These flags are WINDOWCLOSE

(close box), WINDOWDEPTH (depth arrangers), WINDOW-

DRAG (drag bar), and WINDOWSIZING (size box). Two ad- ,

ditional flags allow you to position the size box either in the I !
right border (SIZEBRIGHT), which is its default position, or

in the bottom border (SIZEBBOTTOM). , i

Another set of flags deals with window activation. The ac- '—I
tive window is the one which is ready to accept input from

the user. Generally, it is the user who decides which window j)

will become active, by clicking the mouse button while the '—*

pointer rests in that window. You can tell the active window

from inactive ones because the title bar of the active window 1 j

is drawn in solid colors, while the title bars of inactive win-

42 u

Windows

p—i dows are ghosted (covered with a pattern of dots, making

j ' them lighter in appearance).
If you include the flag ACTIVATE, upon opening, the

r"*! new window becomes the active one. Two other flags allow
your window to receive a message from Intuition telling it

when the user makes it active or inactive.

]""] The flag ACTIVEWINDOW tells Intuition that you want
your program to receive a message each time the window be

comes active, and INACTIVEWINDOW requests a message

each time the window becomes inactive.

The last two flags are also used for I/O functions.

REPORTMOUSE requests that a message be sent to your pro

gram each time the mouse moves. RMBTRAP is used to let

your program know about right mouse button clicks, rather

than having them perform menu functions without informing

your program of their occurrence as is usually the case.

FirstGadget. This NewWindow variable points to the ad

dress of the first in a linked list of Gadget data structures

which describe your own custom gadgets. If you don't have

any custom gadgets, you may set this value to null (zero).

CheckMark. This is a pointer to the address of an Image

data structure that describes the shape of the image to be used

as a checkmark to show when a menu item has been selected.

If you want to use the default checkmark, set this value to null

(zero).

Title. This is a pointer to the address of the window title

text. This text consists of a string of ASCII characters, ending

in an ASCII 0. As much as possible of this text is displayed in

PI the window's title bar, the width of the window being the

determining factor. The text is drawn using the screen's de

fault text font. The letters themselves are drawn in the color of

|j the DetailPen, while the background for the letters is drawn in
the color of the BlockPen.

f0mmi If you use a value of null (zero) for the Title field, no title

) 1 will appear in the title bar. In fact, there will not even be a ti

tle bar at the top of the window unless you attach one of the

f—■» gadgets that go in the top border of the window. These gad-

I gets include the close box, the drag bar, and the depth
arrangers.

t I 43

u
Chapter 2

u

Screen. If you are using a custom screen, this value i j

should be set to the address of the Screen data structure which !—I
was returned by the OpenScreen function. If you are using the

Workbench screen, then this field is ignored. \ (

Bitmap. If you chose SUPER-BITMAP for your method '—*

of screen refresh, this field should be set to the address of the

custom BitMap data structure that you have set up. If you j j
have specified one of the other refresh types, this field will be

ignored.

MinWidth, MinHeight, MaxWidth, MaxHeight. These

four variables are used to set the minimum and maximum

sizes to which the user may change your window by using the

sizing gadget. If you do not attach the sizing gadget to this

window by setting the flag value WINDOWSIZING, then

these variables are ignored by Intuition. If you include the siz

ing gadget and set any of these values to zero, it means that

you wish to use the same setting as that in the Width or

Height variables discussed above. Thus, if you set both

MinWidth and MinHeight to zero, it means that you don't

want to let the window get any smaller than its initial size.

If you wish to change these limits after the window has

been opened, you can do so with a call to the WindowLimits

function, of the form

status =

(dO)

WindowLimitsCWindow^inWidt^MinHeightMaxWidt^MaxHeight);

(aO) (dO) (dl) (d2) (d3)

where Window is the pointer to the Window data structure

that was returned by the OpenWindow call, and the other j j

variables are as discussed above. A zero used for any of the

size values means that the previous limit should not be

changed. A value of true (1) will be returned if all the values \ j

are within range, and false (0) if one of the minimums is

greater than the current size or if one of the maximums is less

than the current size. J j
Type. This variable is used to specify the type of screen to

which this window is attached. The two types that you can

choose are WBENCHSCREEN for the Workbench screen and l_j
CUSTOMSCREEN for your own custom screen. If you are

44 I I

Windows

using a custom screen, you must open the screen before open

ing the window, and you must place the Screen data structure

address returned by the OpenScreen call into the NewWindow

variable Screen.

Program 2-1 demonstrates opening a simple window on

the Workbench Screen in C. If you are using the Lattice C

Compiler, call the file "Window.c", and compile and link it

using the MakeSimple script. Since most of the demonstration

programs in this book require you to open a new window,

we'll be using this program as an include file with later dem

onstration programs that use the Workbench screen. When

used for this purpose, the comment marks (/* */) should be

removed from the line

/* Demo(); */

because Demo is the name of the function that makes up our

sample programs.

Program 2-2 is the machine language version of Program

2-1. Call Program 2-2 "Window.asm" and compile it from the

CLI with the command

:c/assem window.asm -o window.o tinclude -c W200000

This assumes that the assembler is in the c directory of your

disk, the source code file is in the current directory, and the

include files are in the include directory. If the compile is suc

cessful, link the window.o file to the library file Amiga.lib with

the command

:c/alink window.o to window library :lib/amiga.lib

again assuming that the linker is in the c directory and the li-

,| brary files are in the lib directory.
Most of the sample programs in this book will be written

nin C, and not machine language. Nonetheless, if you compare

the C and machine language versions of this program, it

should be clear that the two are very similar. If you are a ma-

rn chine language programmer who is at all familiar with C, it

1 should not be too dificult for you to make the necessary
translation.

n

45

4 O
n

P
r
o
g
r
a
m

2
-
1
.
O
p
e
n
i
n
g
a
W
i
n
d
o
w

In
C

/
*

I
n
c
l
u
d
e

t
h
e

d
e
f
i
n
i
t
i
o
n
s

w
e

n
e
e
d

*
/

#
i
n
c
l
u
d
e

<
e
x
e
c
/
t
y
p
e
s
.
h
>

#
i
n
c
l
u
d
e

<
i
n
t
u
i
t
i
o
n
/
i
n
t
u
i
t
i
o
n
.
h
>

/
*

S
t
r
u
c
t
u
r
e
s

n
e
e
d
e
d

f
o
r

l
i
b
r
a
r
i
e
s

*
/

s
t
r
u
c
t

I
n
t
u
i
t
i
o
n
B
a
s
e

*
I
n
t
u
i
t
i
o
n
B
a
s
e
;

s
t
r
u
c
t

G
f
x
B
a
s
e

*
G
f
x
B
a
s
e
;

/
*

S
t
r
u
c
t
u
r
e
s

r
e
q
u
i
r
e
d

f
o
r

g
r
a
p
h
i
c
s

*
/

s
t
r
u
c
t

S
c
r
e
e
n

*
C
u
s
t
S
c
r
;

s
t
r
u
c
t
W
i
n
d
o
w

*
W
d
w
;

s
t
r
u
c
t

V
i
e
w
p
o
r
t

*
W
V
P
;

/
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

p
r
o
g
r
a
m

C
o
n
s
t
a
n
t
s

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
/

#
d
e
f
i
n
e

R
p

W
d
w
-
>
R
P
o
r
t

/
*

s
h
o
r
t
e
n

t
h
i
s

u
p

*
/

#
d
e
f
i
n
e

B
L
U
P

0

#
d
e
f
i
n
e

W
H
T
P

1

#
d
e
f
i
n
e

B
L
K
P

2

#
d
e
f
i
n
e

O
R
N
P

3

/
*

*
*
*
*
*
*
*

p
r
e
-
i
n
i
t
i
a
l
i
z
e
d

N
e
w
W
i
n
d
o
w

S
t
r
u
c
t
u
r
e

*
*
*
*
*
*
*
*

*
/

s
t
r
u
c
t

N
e
w
W
i
n
d
o
w
N
e
w
W
d
w

=

{ 0
,
0
,

/
*

L
e
f
t

E
d
g
e
,

T
o
p

E
d
g
e

*
/

6
4
0
,
2
0
0
,

/
*

W
i
d
t
h
,

H
e
i
g
h
t

*
/

B
L
U
P
,
W
H
T
P
,

/
*

B
l
o
c
k

P
e
n
,

D
e
t
a
i
l

P
e
n

*
/

O Q r
o

(I
[I

[I
C

C
C

C
[I

C
I
Z

3
3

3
3

U
3

Z
\
3

3
3

C
L
O
S
E
W
I
N
D
O
W
,

S
M
A
R
T
_
R
E
F
R
E
S
H

I
B
O
R
D
E
R
L
E
S
S

N
U
L
L
,

N
U
L
L
,

N
U
L
L
,

/
*

N
U
L
L
,

N
U
L
L
,

/
*

I
D
C
M
P

F
l
a
g
s

*
/

A
C
T
I
V
A
T
E

W
I
N
D
O
W
C
L
O
S
E
,

/
*

F
l
a
g
s

*
/

/
*

P
o
i
n
t
e
r

t
o

F
i
r
s
t

G
a
d
g
e
t

*
/

/
*

P
o
i
n
t
e
r

t
o

C
h
e
c
k

M
a
r
k

i
m
a
g
e

*
/

T
i
t
l
e

*
/

/
*

P
o
i
n
t
e
r

t
o

S
c
r
e
e
n

s
t
r
u
c
t
u
r
e
,

d
u
m
m
y

*
/

/
*

P
o
i
n
t
e
r

t
o

c
u
s
t
o
m

B
i
t

M
a
p

*
/

0
,
0
,

/
*

M
i
n
i
m
u
m

W
i
d
t
h
,

H
e
i
g
h
t

*
/

0
,
0
,

/
*

M
a
x
i
m
u
m

W
i
d
t
h
,

H
e
i
g
h
t

*
/

W
B
E
N
C
H
S
C
R
E
E
N

/
*

T
y
p
e

o
f

S
c
r
e
e
n

i
t

r
e
s
i
d
e
s

o
n

*
/

}

/
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

p
r
o
g
r
a
m

B
e
g
i
n
s

H
e
r
e

*
*
*
*
*
*
*
*
*
*

*
/

m
a
i
n
(
)

t /
*

O
p
e
n

t
h
e

I
n
t
u
i
t
i
o
n

a
n
d

G
r
a
p
h
i
c
s

l
i
b
r
a
r
i
e
s
.

*
G
e
t

p
o
i
n
t
e
r

t
o
W
C
S

r
o
u
t
i
n
e
s
,

*
a
n
d

i
f

=
0
,

l
i
b
r
a
r
i
e
s

a
r
e
n
'
t

a
v
a
i
l
a
b
l
e
.

*
/

I
n
t
u
i
t
i
o
n
B
a
s
e

=
(
s
t
r
u
c
t

I
n
t
u
i
t
i
o
n
B
a
s
e

*
)

O
p
e
n
L
i
b
r
a
r
y
(
"
i
n
t
u
i
t
i
o
n
.
l
i
b
r
a
r
y
"
,
L
I
B
R
A
R
Y
_
V
E
R
S
I
O
N
)
;

i
f

(
I
n
t
u
i
t
i
o
n
B
a
s
e

=
=

N
U
L
L
)

e
x
i
t
(
F
A
L
S
E
)
;

G
f
x
B
a
s
e

=
(
s
t
r
u
c
t

G
f
x
B
a
s
e

*
)

O
p
e
n
L
i
b
r
a
r
y
(
"
g
r
a
p
h
i
c
s
.
l
i
b
r
a
r
y
"
,

L
I
B
R
A
R
Y
_
_
V
E
R
S
I
O
N
)
;

i
f

(
G
f
x
B
a
s
e

=
=

N
U
L
L
)

e
x
i
t
(
F
A
L
S
E
)
;

/
*

O
p
e
n

t
h
e

W
i
n
d
o
w
.

I
f
W
d
w

=
0
,

i
t
w
a
s
n
'
t

o
p
e
n
e
d
.

*
/

i
f

(
(
W
d
w

=
(
s
t
r
u
c
t
W
i
n
d
o
w

*
)
O
p
e
n
W
i
n
d
o
w
(
&
N
e
w
W
d
w
)
)

=
=

N
U
L
L
)

e
x
i
t
(
F
A
L
S
E
)
;

g
d
e
m
o
(
)
i

o

W
a
i
t
(
K
<
W
d
w
-
>
U
s
e
r
P
o
r
t
-
>
m
p
_
S
i
g
B
i
t
)
;

Q

/
*

w
a
i
t

t
i
l
l

c
l
o
s
e

b
o
x

c
l
i
c
k
e
d

*
/

H (D

C
l
o
s
e
W
i
n
d
o
w
(
W
d
w
)
;

I
O

C
l
o
s
e
L
i
b
r
a
r
y
(
G
f
x
B
a
s
e
)
;

C
l
o
s
e
L
i
b
r
a
r
y
(
I
n
t
u
i
t
i
o
n
B
a
s
e
)
;

P
r
o
g
r
a
m

2
-
2
.
O
p
e
n
i
n
g
a
W
i
n
d
o
w

In
M
a
c
h
i
n
e
L
a
n
g
u
a
g
e

I
N
C
L
U
D
E

"
e
x
e
c
/
t
y
p
e
s
.
i
"

I
N
C
L
U
D
E

"
i
n
t
u
i
t
i
o
n
/
i
n
t
u
i
t
i
o
n
.
i
"

*
e
x
t
e
r
n
a
l

r
e
f
e
r
e
n
c
e
s

t
o

l
i
b
r
a
r
y

r
o
u
t
i
n
e
s

X
R
E
F

_
A
b
s
E
x
e
c
B
a
s
e

X
R
E
F

_
L
V
O
O
p
e
n
L
i
b
r
a
r
y

X
R
E
F

J
L
V
O
C
l
o
s
e
L
i
b
r
a
r
y

X
R
E
F

J
L
V
O
W
a
i
t

X
R
E
F

_
L
V
O
O
p
e
n
W
i
n
d
o
w

X
R
E
F

_
L
V
O
C
l
o
s
e
W
i
n
d
o
w

*
*
*
*
*
*
*
*
*
*
*
*
*
*

O
p
e
n

t
h
e

I
n
t
u
i
t
i
o
n

L
i
b
r
a
r
y

*
*
*
*
*
*
*
*
*
*
*
*
*

m
o
v
e
a
.
1

#
I
n
t
u
i
t
i
o
n
N
a
m
e
,
a
l

;
r
e
q
u
e
s
t

'
i
n
t
u
i
t
i
o
n
.
l
i
b
r
a
r
y
1

m
o
v
e
.
l

#
L
I
B
R
A
R
Y
_
V
E
R
S
I
O
N
,
d
0

m
o
v
e
a
.
1

_
A
b
s
E
x
e
c
B
a
s
e
,
a
6

r
g
e
t

p
o
i
n
t
e
r

t
o

E
x
e
c

l
i
b
r
a
r
y

j
s
r

_
L
V
0
0
p
e
n
L
i
b
r
a
r
y
(
a
6
)

;
j
s
r

t
h
r
u

O
p
e
n
L
i
b
r
a
r
y

o
f
f
s
e
t

m
o
v
e
.
l

d
0
,
I
n
t
u
i
t
i
o
n
B
a
s
e

;
s
a
v
e

p
t
r

t
o

I
n
t
u
i
t
i
o
n

l
i
b

b
e
q

A
b
o
r
t

;
i
f

p
t
r

n
o
t

f
o
u
n
d
,

a
b
o
r
t

tz
c:

c
c

r:
n

c
iz

iz
iz

n
j

u

*
*
*
*
*
*
*
*
*
*
*
*
*

o
p
e
n

o
u
r

s
i
m
p
l
e

w
i
n
d
o
w

*
*
*
*
*
*
*
*
*
*
*
*
*
*

m
o
v
e
a
.
l

#
N
e
w
W
d
w
,
a
0

?
p
o
i
n
t
e
r

t
o
N
e
w
W
i
n
d
o
w

s
t
r
u
c
t

m
o
v
e
a
.
l

I
n
t
u
i
t
i
o
n
B
a
s
e
,
a
6

7
p
o
i
n
t
e
r

t
o

I
n
t
u
i
t
i
o
n

l
i
b
r
a
r
y

j
s
r

_
L
V
0
0
p
e
n
W
i
n
d
o
w
(
a
6
)

7
j
s
r

t
h
r
u

O
p
e
n
W
i
n
d
o
w

o
f
f
s
e
t

m
o
v
e
.
l

d
0
,
W
d
w

7
s
a
v
e

p
t
r

t
o
W
i
n
d
o
w

s
t
r
u
c
t
u
r
e

b
e
q

A
b
o
r
t

7
i
f

n
o

p
t
r

r
e
t
u
r
n
e
d
,

a
b
o
r
t

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

w
a
i
t

f
o
r

m
o
u
s
e

c
l
i
c
k

*
*
*
*
*
*
*
*
*
*
*
*

m
o
v
e
a
.
l

W
d
w
,
a
0

7
g
e
t

p
o
i
n
t
e
r

t
o
W
i
n
d
o
w

m
o
v
e
a
.
l

w
d
_
_
U
s
e
r
P
o
r
t
(
a
0
)
,
a
0

7
g
e
t

p
o
i
n
t
e
r

t
o

I
D
C
M
P

p
o
r
t

*
f
i
n
d

w
h
i
c
h

o
f

t
h
e

t
a
s
k
'
s

s
i
g
n
a
l

b
i
t
s

i
s

s
e
t

*
w
h
e
n

I
n
t
u
i
t
i
o
n

s
e
n
d
s

u
s

a
m
e
s
s
a
g
e

m
o
v
e
.
b

M
P
_
S
I
G
B
I
T
(
a
0
)
,
d
l

m
o
v
e
q
.
l

#
l
,
d
0

7
c
o
n
v
e
r
t

b
i
t

n
u
m
b
e
r

t
o

m
a
s
k

l
s
l
.
l

d
l
,
d
0

7
b
y

s
h
i
f
t
i
n
g

s
o
m
a
n
y

t
i
m
e
s

m
o
v
e
a
.
l

_
_
A
b
s
E
x
e
c
B
a
s
e
,
a
6

7
s
e
t

p
o
i
n
t
e
r

t
o

E
x
e
c

l
i
b
r
a
r
y

j
s
r

_
L
V
0
W
a
i
t
(
a
6
)

7
s
l
e
e
p

t
i
l

w
e

g
e
t

a
m
e
s
s
a
g
e

*
*
*
*
*
*
*
*
*
*
*
*

c
i
O
S
e

t
h
e

w
i
n
d
o
w

a
n
d

l
i
b
r
a
r
y

*
*
*
*
*
*
*
*
*
*
*

m
o
v
e
a
.
l

W
d
w
,
a
0

7
s
e
t
W
i
n
d
o
w

p
o
i
n
t
e
r

m
o
v
e
a
.
l

I
n
t
u
i
t
i
o
n
B
a
s
e
,
a
6

7
s
e
t

p
t
r

t
o

I
n
t
u
i
t
i
o
n

L
i
b

j
s
r

_
L
V
0
C
l
o
s
e
W
i
n
d
o
w
(
a
6
)

7
a
n
d

c
l
o
s
e

t
h
e

w
i
n
d
o
w

m
o
v
e
a
.
l

I
n
t
u
i
t
i
o
n
B
a
s
e
,
a
l

7
s
e
t

p
t
r

t
o

I
n
t
u
i
t
i
o
n

m
o
v
e
a
.
l

_
A
b
s
E
x
e
c
B
a
s
e
,
a
6

7
u
s
e

E
x
e
c

l
i
b
r
a
r
y

j
s
r

_
L
V
0
C
l
o
s
e
L
i
b
r
a
r
y
(
a
6
)

7
a
n
d

C
l
o
s
e

t
h
e

L
i
b
r
a
r
y

*
*
*
*
*
*
*

q
U
i
t

i
m
m
e
d
i
a
t
e
l
y

i
f

l
i
b
r
a
r
y

w
o
n
'
t

o
p
e
n

*
*
*
*
*
*
*

5
"

^
A
b
o
r
t
:

^
^

c
l
r
.
l

d
0

7
r
e
t
u
r
n

c
o
d
e

i
n

d
0

*>

r
t
s

e
n

*
*
*
*
*
*
*
*
*
*
*
*
*
*

h
e
r
e
'
s

o
u
r

d
a
t
a

*
*
*
*
*
*
*
*
*
*
*
*
*
*

o
O

S
E
C
T
I
O
N

d
a
t
a
,
D
A
T
A

I
n
t
u
i
t
i
o
n
N
a
m
e
:

d
e
b

'
i
n
t
u
i
t
i
o
n
,
l
i
b
r
a
r
y
1
,
0

W
F
l
a
g
s

E
Q
U

W
I
N
D
O
W
C
L
O
S
E
1
S
M
A
R
T
_
_
R
E
F
R
E
S
H
I
A
C
T
I
V
A
T
E
1
B
O
R
D
E
R
L
E
S
S

;
L
e
f
t
E
d
g
e

;
T
o
p
E
d
g
e

;
W
i
d
t
h

;
H
e
i
g
h
t

;
D
e
t
a
i
l
P
e
n

;
B
l
o
c
k
P
e
n

;
I
D
C
M
P
F
l
a
g
s
—

I
n
t
u
i
t
i
o
n
m
e
s
s
a
g
e
s

;
F
l
a
g
s
—

G
a
d
g
e
t
s
,

R
e
f
r
e
s
h

m
o
d
e
,

e
t
c
.

;
F
i
r
s
t
G
a
d
g
e
t
—

p
t
r

t
o

u
s
e
r

g
a
d
g
e
t
s

;
C
h
e
c
k
M
a
r
k
—
p
t
r

t
o

c
u
s
t
o
m

c
k
m
a
r
k

;
T
i
t
l
e
—

p
t
r

t
o
w
i
n
d
o
w

t
i
t
l
e

t
e
x
t

;
S
c
r
e
e
n
—

p
t
r

t
o

c
u
s
t
o
m

S
c
r
e
e
n

;
B
i
t
M
a
p
—

p
t
r

t
o

c
u
s
t
o
m

B
i
t
M
a
p

;
M
i
n
W
i
d
t
h
—

t
o

s
i
z
e

w
i
n
d
o
w

;
M
i
n
H
e
i
g
h
t

;
M
a
x
W
i
d
t
h

;
M
a
x
H
e
i
g
h
t

W
B
E
N
C
H
S
C
R
E
E
N

;
T
y
p
e
—

u
s
e
W
o
r
k
b
e
n
c
h

S
c
r
e
e
n

S
E
C
T
I
O
N

m
e
m
,
B
S
S

I
n
t
u
i
t
i
o
n
B
a
s
e
:

d
s
.
l

1

*
p
l
a
c
e

t
o

s
t
o
r
e

I
n
t
u
i
t
i
o
n

l
i
b
r
a
r
y

b
a
s
e

a
d
d
r
e
s
s

N
e
w
W
d
w
:

d
e
w

d
e
w

d
e
w

d
e
w

d
e
b

d
e
b

d
e
l

d
e
l

d
e
l

d
e
l

d
e
l

d
e
l

d
e
l

d
e
w

d
e
w

d
e
w

d
e
w

d
e
w

0 0 6
4
0

2
0
0

0 1 C
L
O
S
E
W
I
N
D
O
W

W
F
l
a
g
s

0 0 0 0 0 0 0 0 0 W
B
E
N
C
H
S
C
R
E
E

[
I
C

c
c

c

U
U

Z
l

U
H

I
]

I
]

I
]

Z
l

W
d
w
: d
s
.
l

1

*
p
l
a
c
e

t
o

k
e
e
p

p
o
i
n
t
e
r

t
o
W
i
n
d
o
w

s
t
r
u
c
t
u
r
e

E
N
D

P
r
o
g
r
a
m

2-
3.

O
p
e
n
i
n
g
a
C
u
s
t
o
m
S
c
r
e
e
n

in
C

/
*

I
n
c
l
u
d
e

t
h
e

d
e
f
i
n
i
t
i
o
n
s

w
e

n
e
e
d

*
/

#
i
n
c
l
u
d
e

<
e
x
e
c
/
t
y
p
e
s
.
h
>

#
i
n
c
l
u
d
e

<
i
n
t
u
i
t
i
o
n
/
i
n
t
u
i
t
i
o
n
.
h
>

/
*

S
t
r
u
c
t
u
r
e
s

n
e
e
d
e
d

f
o
r

l
i
b
r
a
r
i
e
s

*
/

s
t
r
u
c
t

I
n
t
u
i
t
i
o
n
B
a
s
e

*
I
n
t
u
i
t
i
o
n
B
a
s
e
;

s
t
r
u
c
t

G
f
x
B
a
s
e

*
G
f
x
B
a
s
e
;

/
*

S
t
r
u
c
t
u
r
e
s

r
e
q
u
i
r
e
d

f
o
r

g
r
a
p
h
i
c
s

*
/

s
t
r
u
c
t

S
c
r
e
e
n

*
C
u
s
t
S
c
r
;

s
t
r
u
c
t
W
i
n
d
o
w

*
W
d
w
;

s
t
r
u
c
t

V
i
e
w
p
o
r
t

*
W
V
P
;

/
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

p
r
o
g
r
a
m

C
o
n
s
t
a
n
t
s

#
d
e
f
i
n
e

R
p

W
d
w
-
>
R
P
o
r
t

/
*

s
h
o
r
t
e
n

t
h
i
s

u
p

*
/

#
d
e
f
i
n
e

W
H
I
T
E

0
x
F
F
F

5
"

#
d
e
f
i
n
e

R
E
D

0
x
F
0
0

Q
-

#
d
e
f
i
n
e

G
R
E
E
N

0
X
0
F
0

^

O
l

#
d
e
£
i
n
e

B
L
U
E

0
X
0
0
F

#
d
e
f
i
n
e

C
Y
A
N

0
X
0
F
F

#
d
e
f
i
n
e

P
U
R
P
L
E

0
x
F
0
F

#
d
e
f
i
n
e

Y
E
L
L
O
W

0
x
F
F
0

#
d
e
f
i
n
e

B
L
A
C
K

0
x
0
0
0

/
*

*
*
*
*
*
*
*
*
*
*
*
*

c
o
l
o
r

M
a
p

D
a
t
a

O Q •
o (
D

r
o

*
*
*
*
*
*
*
*
*
*
*
*
*

*
.

s
t
a
t
i
c

U
S
H
O
R
T

c
o
l
o
r
m
a
p

[
8
]

=

t B
L
A
C
K
,

/
*

b
a
c
k
g
r
o
u
n
d

c
o
l
o
r

*
/

0

/
*

c
o
l
o
r

o
f
w
i
n
d
o
w
-
c
l
o
s
e

b
o
x

*
/

#
d
e
f
i
n
e

B
G
R
P

W
H
I
T
E
,

#
d
e
f
i
n
e

W
H
T
P

1

B
L
U
E
,

/
*

c
o
l
o
r

o
f
m
e
n
u

t
i
t
l
e

*
/

#
d
e
f
i
n
e

B
L
U
P

2

R
E
D
,

/
*

c
o
l
o
r

o
f
w
i
n
d
o
w
-
c
l
o
s
e

d
o
t

*
/

#
d
e
f
i
n
e

R
E
D
P

3

G
R
E
E
N
,

#
d
e
f
i
n
e

G
R
N
P

4

Y
E
L
L
O
W
,

#
d
e
f
i
n
e

Y
E
L
P

5

P
U
R
P
L
E
,

#
d
e
f
i
n
e

P
U
R
P

6

C
Y
A
N

#
d
e
f
i
n
e

C
Y
N
P

7

/
*

*
*
*
*
*
*
*
*
*
*

p
r
e
-
i
n
i
t
i
a
l
i
z
e
d

T
e
x
t

S
t
r
u
c
t
u
r
e

*
*
*
*
*
*
*

*
/

s
t
r
u
c
t

T
e
x
t
A
t
t
r

S
t
d
F
o
n
t

=

"
t
o
p
a
z
.
f
o
n
t
"
,

/
*

F
o
n
t

N
a
m
e

*
/

c
.
c

c
c

c
c

c
c

j
u

::
)

T
O
P
A
Z
J
E
I
G
H
T
Y
,

F
S
_
N
O
R
M
A
L
,

F
P
F

R
O
M
F
O
N
T
,

/
*

F
o
n
t

H
e
i
g
h
t

*
/

/
*

S
t
y
l
e

*
/

/
*

P
r
e
f
e
r
e
n
c
e
s

*
/

/
*

*
P
r
e
-
i
n
i
t
i
a
l
i
z
e
d

N
e
w
S
c
r
e
e
n

a
n
d

N
e
w
W
i
n
d
o
w

S
t
r
u
c
t
u
r
e
s

*
*
/

s
t
r
u
c
t

N
e
w
S
c
r
e
e
n

N
e
w
C
u
s
t
S
c
r

I 0
,
0
,

3
2
0
,
2
0
0
,
3
,

P
U
R
P
,
Y
E
L
P
,

S
P
R
I
T
E
S
,

C
U
S
T
O
M
S
C
R
E
E
N
,

f
c
S
t
d
F
o
n
t
,

N
U
L
L
,

N
U
L
L
,

N
U
L
L
,

};

/
*

L
e
f
t
E
d
g
e

(
a
l
w
a
y
s
=
0
)
,
T
o
p
E
d
g
e

*
/

/
*

W
i
d
t
h
,

H
e
i
g
h
t
,

D
e
p
t
h

*
/

/
*

D
e
t
a
i
l
P
e
n

a
n
d

B
l
o
c
k
P
e
n

*
/

/
*

s
p
e
c
i
a
l

d
i
s
p
l
a
y

m
o
d
e
s

*
/

/
*

S
c
r
e
e
n

T
y
p
e

*
/

/
*

P
o
i
n
t
e
r

t
o
C
u
s
t
o
m

f
o
n
t
*
/

/
*

P
o
i
n
t
e
r

t
o

t
i
t
l
e

t
e
x
t

*
/

/
*

P
o
i
n
t
e
r

t
o

S
c
r
e
e
n

G
a
d
g
e
t
s

*
/

/
*

P
o
i
n
t
e
r

t
o

C
u
s
t
o
m
B
i
t
M
a
p

*
/

s
t
r
u
c
t

N
e
w
W
i
n
d
o
w

N
e
w
W
d
w

-

O
l

0
,
0
,

3
2
0
,
2
0
0
,

B
L
U
P
,
W
H
T
P
,

C
L
O
S
E
W
I
N
D
O
W
,

S
M
A
R
T
_
R
E
F
R
E
S
H

I
B
O
R
D
E
R
L
E
S
S

N
U
L
L
,

N
U
L
L
,

N
U
L
L
,

/
*

N
U
L
L
,

N
U
L
L
,

/
*

L
e
f
t

E
d
g
e
,

T
o
p

E
d
g
e

*
/

/
*

W
i
d
t
h
,

H
e
i
g
h
t

*
/

/
*

B
l
o
c
k

P
e
n
,

D
e
t
a
i
l

P
e
n

*
/

/
*

I
D
C
M
P

F
l
a
g
s

*
/

I
A
C
T
I
V
A
T
E

I
W
I
N
D
O
W
C
L
O
S
E
,

/
*

F
l
a
g
s

*
/

/
*

P
o
i
n
t
e
r

t
o

F
i
r
s
t

G
a
d
g
e
t

*
/

/
*

P
o
i
n
t
e
r

t
o

C
h
e
c
k

M
a
r
k

i
m
a
g
e

*
/

T
i
t
l
e

*
/

/
*

P
o
i
n
t
e
r

t
o

S
c
r
e
e
n

s
t
r
u
c
t
u
r
e
,

d
u
m
m
y

*
/

/
*

P
o
i
n
t
e
r

t
o

c
u
s
t
o
m

B
i
t

M
a
p

*
/

0
,
0
,

/
*

M
i
n
i
m
u
m

W
i
d
t
h
,

H
e
i
g
h
t

*
/

O
0
,
0
,

/
*

M
a
x
i
m
u
m

W
i
d
t
h
,

H
e
i
g
h
t

*
/

q
C
U
S
T
O
M
S
C
R
E
E
N

/
*

T
y
p
e

o
f

S
c
r
e
e
n

i
t

r
e
s
i
d
e
s

o
n

*
/

"D

};
<jf

/
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

p
r
o
g
r
a
m

B
e
g
i
n
s

H
e
r
e

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
/

*°

m
a
i
n
(
)

/
*

O
p
e
n

t
h
e

I
n
t
u
i
t
i
o
n

a
n
d

G
r
a
p
h
i
c
s

l
i
b
r
a
r
i
e
s
.

*
G
e
t

p
o
i
n
t
e
r

t
o

W
C
S

r
o
u
t
i
n
e
s
,

*
a
n
d

i
f

=
0
,

l
i
b
r
a
r
i
e
s

a
r
e
n
'
t

a
v
a
i
l
a
b
l
e
.

*
/

I
n
t
u
i
t
i
o
n
B
a
s
e

=
(
s
t
r
u
c
t

I
n
t
u
i
t
i
o
n
B
a
s
e

*
)

O
p
e
n
L
i
b
r
a
r
y
(
"
i
n
t
u
i
t
i
o
n
.
l
i
b
r
a
r
y
"
,

L
I
B
R
A
R
Y
_
V
E
R
S
I
O
N
)
;

i
f

(
I
n
t
u
i
t
i
o
n
B
a
s
e

=
=

N
U
L
L
)

e
x
i
t
(
F
A
L
S
E
)
;

G
f
x
B
a
s
e

=
(
s
t
r
u
c
t

G
f
x
B
a
s
e

*
)

O
p
e
n
L
i
b
r
a
r
y
(
"
g
r
a
p
h
i
c
s
.
l
i
b
r
a
r
y
"
,

L
I
B
R
A
R
Y
_
V
E
R
S
I
O
N
)
;

i
f

(
G
f
x
B
a
s
e

=
=

N
U
L
L
)

e
x
i
t
(
F
A
L
S
E
)
;

/
*

O
p
e
n

t
h
e

S
c
r
e
e
n

a
n
d

W
i
n
d
o
w
s
.

I
f

t
h
e
y

=
0
,

t
h
e
y

w
e
r
e
n
'
t

o
p
e
n
e
d
.

*
/

i
f

(
(
N
e
w
W
d
w
.
S
c
r
e
e
n

=
C
u
s
t
S
c
r

=

(
s
t
r
u
c
t

S
c
r
e
e
n

*
)
O
p
e
n
S
c
r
e
e
n
(
&
N
e
w
C
u
s
t
S
c
r
)
)

=
=

N
U
L
L
)

e
x
i
t
(
F
A
L
S
E
)
;

i
f

(
(
W
d
w

«
(
s
t
r
u
c
t
W
i
n
d
o
w

*
)
O
p
e
n
W
i
n
d
o
w
(
&
N
e
w
W
d
w
)
)

=
=

N
U
L
L
)

e
x
i
t
(
F
A
L
S
E
)
;

/
*

f
i
n
d

t
h
e

v
i
e
w
p
o
r
t

a
n
d

l
o
a
d

c
o
l
o
r

m
a
p
*
/

i
[;

:
c

[i
c:

c
c

n
c

c

3
I
I

J
IJ

)
II

D
IJ

I]

W
V
P

=
(
s
t
r
u
c
t
V
i
e
w
p
o
r
t

*
)
V
i
e
w
p
o
r
t
A
d
d
r
e
s
s
(
W
d
w
)
;

L
o
a
d
R
G
B
4
(
W
V
P
,
&
c
o
l
o
r
m
a
p
,
8
)
;

/
*
l
o
a
d

o
u
r

n
e
w

c
o
l
o
r
s

*
/

d
e
m
o
(
)
;

W
a
i
t
(
K
<
W
d
w
-
>
U
s
e
r
P
o
r
t
-
>
m
p
_
S
i
g
B
i
t
)
;

C
l
o
s
e
W
i
n
d
o
w
(
W
d
w
)
;

C
l
o
s
e
S
c
r
e
e
n
(
C
u
s
t
S
c
r
)
;

C
l
o
s
e
L
i
b
r
a
r
y
(
G
f
x
B
a
s
e
)
;

C
l
o
s
e
L
i
b
r
a
r
y
(
I
n
t
u
i
t
i
o
n
B
a
s
e
)
;

P
r
o
g
r
a
m

2-
4.

O
p
e
n
i
n
g
a
C
u
s
t
o
m
S
c
r
e
e
n

In
M
a
c
h
i
n
e

L
a
n
g
u
a
g
e

I
N
C
L
U
D
E

"
e
x
e
c
/
t
y
p
e
s
.
i
"

I
N
C
L
U
D
E

"
i
n
t
u
i
t
i
o
n
/
i
n
t
u
i
t
i
o
n
.
i
"

*
E
x
t
e
r
n
a
l

r
e
f
e
r
e
n
c
e
s

t
o

l
i
b
r
a
r
y

r
o
u
t
i
n
e
s

X
R
E
F

_
_
A
b
s
E
x
e
c
B
a
s
e

X
R
E
F

_
_
L
V
O
O
p
e
n
L
i
b
r
a
r
y

X
R
E
F

_
L
V
O
C
l
o
s
e
L
i
b
r
a
r
y

X
R
E
F

_
_
L
V
O
W
a
i
t

X
R
E
F

_
L
V
O
O
p
e
n
W
i
n
d
o
w

X
R
E
F

_
L
V
O
C
l
o
s
e
W
i
n
d
o
w

X
R
E
F

_
L
V
O
O
p
e
n
S
c
r
e
e
n

X
R
E
F

L
V
O
C
l
o
s
e
S
c
r
e
e
n

0
1

I

U
l

O
N

*
*
*
*
*
*
*
*
*
*
*
*
*

o
p
e
n

t
h
e

i
n
t
u
i
t
i
o
n

L
i
b
r
a
r
y

*
*
*
*
*
*
*
*
*
*

m
o
v
e
a
.
l

#
I
n
t
u
i
t
i
o
n
N
a
m
e
,
a
l

m
o
v
e
.
1

#
L
I
B
R
A
R
Y
_
V
E
R
S
I
O
N
,
d
0

m
o
v
e
a
.
l

_
A
b
s
E
x
e
c
B
a
s
e
,
a
6

j
s
r

_
L
V
O
O
p
e
n
L
i
b
r
a
r
y
(
a
6
)

m
o
v
e
.
l

d
0
,
I
n
t
u
i
t
i
o
n
B
a
s
e

b
e
q

A
b
o
r
t

;
r
e
q
u
e
s
t
1
i
n
t
u
i
t
i
o
n
.
l
i
b
r
a
r
y
1

;
g
e
t

p
o
i
n
t
e
r

t
o

E
x
e
c

l
i
b
r
a
r
y

;
j
s
r

t
h
r
u

O
p
e
n
L
i
b
r
a
r
y

v
e
c
t
o
r

7
s
a
v
e

p
t
r

t
o

I
n
t
u
i
t
i
o
n

l
i
b

;
i
f
p
o
i
n
t
e
r

n
o
t

f
o
u
n
d
,

a
b
o
r
t

O Q ■
D (
D

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

o
p
e
n

o
u
r

S
c
r
e
e
n

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

m
o
v
e
a
.
1

#
N
e
w
C
u
s
t
S
c
r
e
e
n
,
a
0

m
o
v
e
a
.
l

I
n
t
u
i
t
i
o
n
B
a
s
e
,
a
6

j
s
r

_
L
V
0
0
p
e
n
S
c
r
e
e
n
(
a
6
)

m
o
v
e
.
l

d
0
#
C
u
s
t
S
c
r

b
e
q

A
b
o
r
t

;
p
o
i
n
t
e
r

t
o

N
e
w
S
c
r
e
e
n

;
p
t
r

t
o

I
n
t
u
i
t
i
o
n

l
i
b
r
a
r
y

;
j
s
r

t
h
r
u

O
p
e
n
W
i
n
d
o
w

v
e
c

;
s
a
v
e

p
o
i
n
t
e
r

t
o

S
c
r
e
e
n

;
i
f

n
o

p
t
r

r
e
t
u
r
n
e
d
,

a
b
o
r
t

*
*
*
*
*
*
*
*
*
*
*
*
*
*

O
p
e
n

o
u
r

s
i
m
p
l
e

w
i
n
d
o
w

*
*
*
*
*
*
*
*
*
*
*
*
*
*

m
o
v
e
a
•
1

m
o
v
e
.
1

m
o
v
e
a
•
1

j
s
r

m
o
v
e
.
1

b
e
q

#
N
e
w
W
d
w
,
a
0

;
p
o
i
n
t
e
r

t
o

N
e
w
W
i
n
d
o
w

C
u
s
t
S
c
r
,
n
w
_
S
c
r
e
e
n
(
a
0
)

;
l
i
n
k

S
c
r
e
e
n

t
o

N
e
w
W
i
n
d
o
w

;
p
o
i
n
t
e
r

t
o

I
n
t
u
i
t
i
o
n

l
i
b

;
j
s
r

t
h
r
u

O
p
e
n
W
i
n
d
o
w

v
e
c
t
o
r

;
s
a
v
e

p
o
i
n
t
e
r

t
o
W
i
n
d
o
w

7
i
f

n
o

p
t
r

r
e
t
u
r
n
e
d
,

a
b
o
r
t

I
n
t
u
i
t
i
o
n
B
a
s
e
,
a
6

_
L
V
O
O
p
e
n
W
i
n
d
o
w
(
a
6
)

d
0
,
W
d
w

A
b
o
r
t

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

W
a
i
t

f
o
r
m
o
u
s
e

c
l
i
c
k

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

m
o
v
e
a
.
l

W
d
w
#
a
0

?
g
e
t

p
o
i
n
t
e
r

t
o
W
i
n
d
o
w

m
o
v
e
a
.
l

w
d
_
_
U
s
e
r
P
o
r
t
(
a
0
)
,
a
0

?
g
e
t

p
t
r

t
o

I
D
C
M
P

p
o
r
t

*
f
i
n
d
w
h
i
c
h

o
f

t
h
e

t
a
s
k
'
s

s
i
g
n
a
l

b
i
t
s

i
s

s
e
t

*
w
h
e
n

I
n
t
u
i
t
i
o
n

s
e
n
d
s

u
s

a
m
e
s
s
a
g
e

m
o
v
e
.
b

M
P
_
S
I
G
B
I
T
(
a
0
)
,
d
l

m
o
v
e
q
.
l

#
l
,
d
0

l
s
l
.
l

d
l
#
d
0

7
c
o
n
v
e
r
t

b
i
t

n
u
m
b
e
r

t
o

m
a
s
k

7
b
y

s
h
i
f
t
i
n
g

s
o
m
a
n
y

t
i
m
e
s

[I
[I

\Z
II

C
c:

c
ri

c
c

A
3

3
3

3

U
l

m
o
v
e
a
.
1

j
s
r

*
*
*
*
*
*
*
*
*
*
*

m
o
v
e
a
.
1

m
o
v
e
a
.
1

j
s
r

m
o
v
e
a
.
1

j
s
r

m
o
v
e
a
.
1

m
o
v
e
a
.
1

A
b
s
E
x
e
c
B
a
s
e
,
a
b

;

_
L
V
O
W
a
i
t
(
a
6
)

c
l
o
s
e

t
h
e
w
i
n
d
o
w

a
n
d

W
d
w
,
a
0

I
n
t
u
i
t
i
o
n
B
a
s
e
,
a
6

_
L
V
0
C
l
o
s
e
W
i
n
d
o
w
(
a
6
)

C
u
s
t
S
c
r
,
a
0

^
L
V
O
C
l
o
s
e
S
c
r
e
e
n
(
a
6
)

I
n
t
u
i
t
i
o
n
B
a
s
e
,
a
l

A
b
s
E
x
e
c
B
a
s
e
,
a
6

j
s
r

_
_
L
V
O
C
l
o
s
e
L
i
b
r
a
r
y
(
a
6
)

;
s
e
t

p
o
i
n
t
e
r

t
o

E
x
e
c

l
i
b
r
a
r
y

;
W
a
i
t

t
i
l

w
e

g
e
t

a
m
e
s
s
a
g
e

l
i
b
r
a
r
y

*
*
*
*
*
*
*
*
*
*
*

;
s
e
t
W
i
n
d
o
w

p
o
i
n
t
e
r

;
s
e
t

p
t
r

t
o

I
n
t
u
i
t
i
o
n

L
i
b

;
a
n
d

c
l
o
s
e

t
h
e
w
i
n
d
o
w

;
s
e
t

S
c
r
e
e
n

p
o
i
n
t
e
r

;
a
n
d

c
l
o
s
e

t
h
e

S
c
r
e
e
n

;
s
e
t

p
t
r

t
o

I
n
t
u
i
t
i
o
n

;
u
s
e

E
x
e
c

l
i
b
r
a
r
y

;
C
l
o
s
e

t
h
e

I
n
t
u
i
t
i
o
n

l
i
b

*
*
*
*
*

q
U
i
t

i
m
m
e
d
i
a
t
e
l
y

i
f

s
o
m
e
t
h
i
n
g

w
o
n
'
t

o
p
e
n

*
*
*
*

d
0

;
r
e
t
u
r
n

c
o
d
e

i
n

d
0

A
b
o
r
t
:

c
l
r
.
l

r
t
s

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

h
e
r
e
'
s

o
u
r

d
a
t
a

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

S
E
C
T
I
O
N

d
a
t
a
,
D
A
T
A

I
n
t
u
i
t
i
o
n
N
a
m
e
:

d
e
b

'
i
n
t
u
i
t
i
o
n
.
l
i
b
r
a
r
y
1
,
0

W
F
l
a
g
s

E
Q
U

W
I
N
D
O
W
C
L
O
S
E
1
S
M
A
R
T
_
R
E
F
R
E
S
H

i
A
C
T
I
V
A
T
E
I
B
O
R
D
E
R
L
E
S
S

*
*
*
*
*
*
*
*
*
*
*
*

t
h
e

N
e
w
S
c
r
e
e
n

s
t
r
u
c
t
u
r
e

*
*
*
*
*
*
*
*
*
*
*
*

N
e
w
C
u
s
t
S
c
r
e
e
n
:

d
e
w

0

d
e
w

0

d
e
w

3
2
0

7
L
e
f
t
E
d
g
e

7
T
o
p
E
d
g
e

7
W
i
d
t
h

0
0

d
e
w

d
e
w

d
e
b

d
e
b

d
e
w

d
e
w

d
e
l

d
e
l

d
e
l

d
e
l

2
0
0

3 0 1 0 C
U
S
T
O
M
S
C
R
E
E
N

0 0 0 0

*
*
*
*
*
*
*
*
*
*
*
*

t
h
e

N
e
w
W
i

N
e
w
W
d
w
:

d
e
w

d
e
w

d
e
w

d
e
w

d
e
b

d
e
b

d
e
l

d
e
l

d
e
l

d
e
l

d
e
l

d
e
l

d
e
l

d
e
w

d
e
w

d
e
w

d
e
w

d
e
w

0 0 3
2
0

2
0
0

0 1 C
L
O
S
E
W
I
N
D
O
W

W
F
l
a
g
s

0 0 0 0 0 0 0 0 0 C
U
S
T
O
M
S
C
R
E
E
N

;
H
e
i
g
h
t

;
D
e
p
t
h

7
D
e
t
a
i
l
P
e
n

7
B
l
o
c
k
P
e
n

7
s
p
e
c
i
a
l

d
i
s
p
l
a
y

m
o
d
e
s

7
S
c
r
e
e
n
t
y
p
e
—
C
U
S
T
O
M
S
C
R
E
E
N

7
p
o
i
n
t
e
r

t
o

c
u
s
t
o
m

f
o
n
t

s
t
r
u
c
t
u
r
e

7
T
i
t
l
e
—

p
t
r

t
o

S
c
r
e
e
n

t
i
t
l
e

t
e
x
t

?
p
t
r

t
o

S
c
r
e
e
n

g
a
d
g
e
t
s

?
B
i
t
M
a
p
—

p
t
r

t
o

c
u
s
t
o
m

B
i
t
M
a
p

?
L
e
f
t
E
d
g
e

7
T
o
p
E
d
g
e

7
W
i
d
t
h

?
H
e
i
g
h
t

?
D
e
t
a
i
l
P
e
n

7
B
l
o
c
k
P
e
n

7
l
D
C
M
P
F
l
a
g
s
—

I
n
t
u
i
t
i
o
n

m
e
s
s
a
g
e
s

7
F
l
a
g
s
—

G
a
d
g
e
t
s
,

R
e
f
r
e
s
h

m
o
d
e
,

e
t
c
.

?
F
i
r
s
t
G
a
d
g
e
t
—

p
t
r

t
o

u
s
e
r

g
a
d
g
e
t

?
C
h
e
c
k
M
a
r
k
—
p
t
r

t
o

c
u
s
t
o
m

c
k
m
a
r
k

7
T
i
t
l
e
—

p
t
r

t
o
w
i
n
d
o
w

t
i
t
l
e

t
e
x
t

7
S
c
r
e
e
n
—

p
t
r

t
o

c
u
s
t
o
m

S
c
r
e
e
n

7
B
i
t
M
a
p
—

p
t
r

t
o

c
u
s
t
o
m

B
i
t
M
a
p

?
M
i
n
W
i
d
t
h
—
t
o

s
i
z
e
w
i
n
d
o
w

?
M
i
n
H
e
i
g
h
t

7
M
a
x
W
i
d
t
h

;
M
a
x
H
e
i
g
h
t

?
T
y
p
e
—

u
s
e

C
u
s
t
o
m

S
c
r
e
e
n

O Q C
D

I
O

c
c:

i:
li

[i
r:

c
c

c
t:

S
E
C
T
I
O
N

m
e
m
,
B
S
S

I
n
t
u
i
t
i
o
n
B
a
s
e
:

d
s
.
l

1

*
p
l
a
c
e

t
o

s
t
o
r
e

I
n
t
u
i
t
i
o
n

l
i
b
r
a
r
y
b
a
s
e

a
d
d
r
e
s
s

W
d
w
: d
s
.
l

1

*
p
l
a
c
e

t
o

k
e
e
p

p
o
i
n
t
e
r

t
o
W
i
n
d
o
w

s
t
r
u
c
t
u
r
e

C
u
s
t
S
c
r
;

d
s
.
l

1

*
p
l
a
c
e

t
o
k
e
e
p

p
o
i
n
t
e
r

t
o

S
c
r
e
e
n

s
t
r
u
c
t
u
r
e

E
N
D

s. I

Chapter 2

Opening a Custom Screen

Some of the sample programs in this book will require the use *—•

of a custom screen. Program 2-3 is the C language version of a

program demonstrating how to open a custom screen and then j t

open a window on that screen. '—'
This program should be called Windowl.c, and should be

compiled and linked just as Window.c was. This program will j f

also be INCLUDEd in some of our sample programs later on,

and the same caution about removing the comments from the

line that calls the Demo() function applies.

For the benefit of machine language programmers, Pro

gram 2-4 is a similar program which does not open the

Graphics library or change the color map.

Manipulating Windows

The Intuition library provides several functions for manipulat

ing windows after they've been opened. These allow you to

move the window, resize it, and change its depth arrange

ment. To move a window, use the the routine MoveWindow.

A typical call to this routine takes the form

MoveWindow(Window,DeltaX,DeltaY);

(aO) (dO) (dl)

where Window is a pointer to the Window data structure re

turned by the call to OpenWindow. DeltaX and DeltaY are

signed values that specify how far the window is to be moved

horizontally and vertically. A positive DeltaX value means that

the window is to be moved that many pixels to the right,

while a negative value means that it is to be moved to the left.] j

A positive DeltaY value means that the window is to be (—'

moved that many lines toward the bottom of the display,

while a negative DeltaY means that it is to be moved toward | I

the top. ' '
It's your responsibility to make sure that it is possible to

move the window to the location specified by MoveWindow. I I
If the window is already at the right edge of the screen, for ex

ample, and you try to move it farther to the right, you'll prob- .)

ably crash the system. You can prevent this by checking the I !

window's current position before moving it. The boundaries of

60 [J

Windows

p*"! the window can be computed from the values found in the

TopEdge, LeftEdge, Width, and Height fields of the Window

data structure.

(| You can also change the size of the window under pro

gram control, using the SizeWindow procedure. A call to this

_ function looks like

' 1 SizeWindow(Window,DeltaX,DeltaY);
(aO) (dO) (dl)

where Window is a pointer to the Window data structure, and

DeltaX and DeltaY specify the movement of the right and bot

tom borders of the window. A positive DeltaX signifies that

the right edge of the window will expand to the right, while a

negative value means that it contracts to the left. A positive

DeltaY means that the bottom edge of the window expands

downward, while a negative DeltaY means that it shrinks up

ward. As with MoveWindow, this procedure performs no error

checking, so it is up to your program to make sure that the

window does not, for example, expand off the edge of the

screen.

Two other Intuition library functions allow your program to

change the depth arrangement of your window. The procedure

WindowToFront(Window);

(aO)

brings your window to the front of the display, as if the user

had clicked on the UpFront depth arrrangement gadget, while

the procedure

WindowToBack(Window);

j [(aO)

sends your window to the back of the display.

H Closing a Window
When you are through using a window, you must call the

i—i CloseWindow function to erase the window and free up the

memory it has been using. The format for this routine is

CloseWindow(Window);

n <*°>
where Window is the pointer to the Window data structure

r—> that was returned by the OpenWindow routine.

1 ' 6i

u
Chapter 2

u

BASIC Windows y

Unlike C and machine language, Amiga BASIC does not allow

you to draw on a screen until you have opened a window on

it. The BASIC interpreter uses the Workbench screen and] 1
opens two windows on it, the output window, which is used

for program output, and the list window, which is used only \ ,

to display and edit the program listing. I—»
If you have not opened any other windows, graphic out

put goes by default to the BASIC output window, the one that

appears on the left side of the screen with the word BASIC in

its title bar when you start up the BASIC interpreter.

But it's quite possible for a BASIC program to open and

close its own graphics windows, either on the default Work

bench screen or on a custom screen. Graphics output can be

directed to any open window, by making it the one that is cur

rently active under program control.

To open a new window, you use the WINDOW statement.

This statement requires you to supply some of the information

that goes into a NewWindow data structure, but limits your

choices. The syntax is

WINDOW window_num [, [title] [,[size] ^attributes]

[,screen_num]]]

The window ID. The first value, window__num, is an

identification number which other statements use to refer to

this window. For example, you use this window number with

the WINDOW CLOSE statement to specify which window to

close and with the WINDOW OUTPUT statement to specify

the window to which graphics output should be directed. | j

You may use any number from 1 upward for your '—!

window_num. The number 1, however, is reserved for the

output window that BASIC uses. While you can close this I j

window and reopen it like other windows, it still has a special

significance, since it is the only window in which the user can

type immediate-mode BASIC commands. Moreover, a program j [
does not have absolute control over this window, since its

comings and goings are affected by the Show Output item on

the BASIC menu bar. If there is no output window currently I j
open, BASIC tends to be fussy about the syntax used to open

H
Windows

one. Since default values (such as that for the size of the win

dow) do not always apply to the default output window, you

may have to specify values that are listed here as optional.

Be careful when using the default output window for your

program's output. Remember that the default window has a

size gadget that lets the user change the size of the window at

any time, and the user is likely to change the size of that win

dow to allow it to share space with the list window. Therefore,

if it is important that your window be a certain minimum size

(as it almost always is), either open a second window or re

open window 1 to the requisite size.

The title is an optional string expression that will be dis

played in the window's title bar. If you omit this expression,

there will be no title (and there may not be a title bar, either,

depending on the value chosen for attributes). Window 1, the

default output window, is an exception. It displays the name

of the program or the word BASIC in its title bar if you fail to

specify your own title.

Sizing and positioning BASIC windows. Another op

tional value that you may specify is the size and position of

the window. If you omit this value, your new window will

cover the entire display screen. The exception to this is when

you open an existing window or one that your program had

opened earlier and closed. In that case, the window defaults to

its previous size.

The way that you specify the size and position of the win

dow is to describe the coordinates of the top left and bottom

right corners of the window. The format for this description is

(left, topMright, bottom)

As we said earlier, the display is 640 pixels (dots) wide in

high-resolution mode and 320 pixels wide in low-resolution

mode. When describing the left and right coordinates for the

screen, we say that horizontal position 0 is at the left edge of

the screen, and 319 or 639 is at the right edge, depending on

whether low- or high-resolution mode is used. The height of

the display is 200 lines noninterlaced or 400 lines interlaced.

In describing the top and bottom coordinates, we say that line

0 is at the top of the display, and line 199 or line 399 at the

bottom, depending on whether or not the display is interlaced.

63

Chapter 2

u

LJ

This would lead you to believe that the correct description

for a full-size window would be (0,0)-(639,199) for a high-

resolution, noninterlaced display. But as mentioned earlier in

this chapter, you must also take into account the space re

quired for the border line that is drawn around the window

and for gadgets like the title bar and the sizing gadget.

Since the WINDOW statement does not allow you to cre

ate a borderless window, at the very least each window will

have a a double border line drawn around it. Because of this,

the highest line number that you can specify as the bottom

line of the window is 186 for a noninterlaced screen and 386

for an interlaced screen. The highest value that you can spec

ify for the right side of the window is 631 for a high-resolution

screen and 311 for a low-resolution screen. If you attach a siz

ing gadget to your window as described below, this gadget is

drawn in the right border of the window and further reduces

the possible width of the window. A window that contains a

sizing gadget can have a maximum horizontal value of 617 on

a high-resolution screen or 297 on a low-resolution screen. To

summarize, the table gives the proper descriptions for the larg

est possible windows:

The attributes value is a subset of the Flags field used in

the NewWindow data structure which we described above. It

is used to specify which of the standard window gadgets will

be attached to the window that you are opening and the

screen refresh method to be used.

The available system gadgets include the sizing gadget,

the drag bar, the depth arrangement boxes, and the close box.

The sizing gadget appears in the lower right-hand corner

u

64 LJ

Windows

r—] of the window and allows the user to change the size of the

- ' window.
The drag bar appears in the title bar at the top of the win-

j"-l dow and allows the user to move the window around on the

screen if the window is smaller than the screen.

The depth arrangement boxes appear in the upper right

J j corner of the window; they can be used to send the window to

the back of the screen (the dark box) or to bring it to the front

of the screen (the light-colored box).

The close box is located in the upper left corner of the

window and allows the user to close the window entirely by

clicking on the box.

Refresh window. The attribute value also lets you choose

from two of the available screen refresh methods. If you so de

sire, it lets you make the new window a SMART-REFRESH

window. As explained above, this means that the contents of

the window will be redrawn after the window has been cov

ered by another window or has been resized. While this can

be very convenient, it may be costly in terms of memory

usage, since BASIC must reserve enough memory to save the

part of the image that is covered up. If you do not specify that

you want a SMART_REFRESH window, you will get a

SIMPLE_REFRESH window instead.

The following table lists the numbers that can be used for

the attribute value and their meanings:

f/ftf1;:'.:

is

:tlt

: "■■■'■^■■■■■'■:'"

r.mi§m

Ml

Si

^^
iipii

'■■..■■■■ ■ 'i^ftjwf''

iifilii

IS!

mi
mat
mm

mWill

Any or all of these values may be used. To attach more

than one gadget to your window, add the attribute value of

each together. For example, use an attribute value of 3 to indi

cate that you wish the window to have both a sizing gadget

(1) and a drag bar (2). Any number from 0 to 31 is a valid

65

Chapter 2

attribute value. If you use 0 as the attribute value, you will get

a plain window with a border around it (and a title bar, if you

have given the window a title). If you do not specify a value

here, the default value 31 (which provides all of the gadgets

and smart screen refresh) is used.

Screen number. The last option value for the WINDOW

statement is screen—num, the number of the screen upon

which you wish the window to be drawn. If you do not spec

ify a value here, the default Workbench screen (whose

screen__num is — 1) will be used. If you want to attach the

window to a custom screen you have opened, use the screen

number that you specified as the first value of the SCREEN

command when you opened that screen.

When you open a window with the WINDOW statement,

not only is a new window created, but two other things hap

pen as well. The first is that this window is brought to the

front of the screen and becomes the active window (the win

dow whose title bar is shown in solid lines). The second is

that this window becomes the current output window. This

means that from then on, the output from any graphics or text

commands will be directed to this window until the program

redirects output to another window. It is possible to make an

existing window the current output window without bringing

it to the front of the screen by using the WINDOW OUTPUT

statement. The syntax of this statement is WINDOW OUTPUT

window_num, where window_num is the window number

assigned as the first value of the WINDOW statement that cre

ated the window.

It's also possible to bring an existing window to the front

of the display and make it the current window with the WIN

DOW statement. The syntax for this form is WINDOW

window_num, with no other values specified. If the attribute

value for that window is 15 or higher, the contents of the win

dow will be restored when the window is brought forward.

BASIC'S WINDOW Function

In addition to the WINDOW statement, BASIC also provides a

WINDOW function that can be used to check which window

is active, which is the current output window, the size and

66

LJ

U

H

n

H

Windows

depth of the current output window, and the location where

the next text character will be drawn. In effect, it provides

much of the information that a C program could learn by

checking the Window data structure. The syntax for this func

tion is

value = Window^

where n is a number from 0 to 8. The following table shows

what information is returned for each value of n.

'^M^:S:MW&^

These last two bits of information are particularly useful

in calling Intuition and Graphics library functions from BASIC,

since these usually require a pointer to either the Window or

RastPort data structures. In addition, many other useful pieces

of information can be gained by PEEKing at these structures

directly.

Closing a Window from BASIC

To close a window, use the WINDOW CLOSE statement. The

syntax for this statement is WINDOW CLOSE window_num.

When you use this statement to close the current output win

dow, the visible window that was previously the current out

put window becomes current once more. Note that this is

different from what happens when the user of a program

67

u
Chapter 2

u

closes the window by clicking on the close gadget. In that

case, the closed window remains the current window, and

graphics output goes nowhere at all. A program can check to

see whether the current output window has been closed by

using the WINDOW function. If WINDOW(7) = 0, there is no

Window data structure, which means that the current window

has been closed and the program should make another win

dow current.

68 LI

n

n

n

■lliUl

lflLJ

ilS^^ I^^BBiS

S!®PIS|iMt&v!

Bl?M^^5f»S>V»V

Mi

^^RI i^^BilS"l^^Pi§

u

u

0

u

n

n

_ Drawing Lines and Shapes
! 1

Whenever Intuition opens a window, it prepares a

drawing surface as well. It keeps the information

it needs for graphics rendering in a data structure

known as a rastport. The rastport for each win

dow includes the following types of information:

• Information used for clipping so that drawing takes place

only within the area of the window that is currently exposed.

• The pens used in drawing foreground and background areas.

These pens are known as the APen (foreground) and BPen

(background). A third pen, OPen (the area outline pen) is

sometimes used to draw an outline around a filled shape.

To specify the color with which you wish to draw, you

set the APen (and sometimes the BPen) to the number of the

pen that contains that color. For example, the default colors

for the Workbench screen are blue (pen 0), white (pen 1),

black (pen 2), and orange (pen 3). Therefore, to draw an or

ange line, you would first set the foreground pen value to 3,

the number of the orange pen. The actual mechanics of set

ting the colors that will be drawn by each pen are discussed

in a separate section below.

• Pattern information, for drawing patterned lines and pat

terned area fills.

• Information about temporary storage areas and other infor

mation required for filling entire areas of the display.

1 | • The current drawing position of the drawing pen.
• Information about animated shapes.

r— • The current drawing mode.

L I • Information about the text font and font styles that are being
used.

j-"| Most of the drawing routines in the Graphics library refer

to the window's rastport. C language programmers can use the

RPort field in the Window data structure returned by Open-

P"| Window to locate the window's rastport. If the declaration for
the Window data structure initialized by OpenWindow is

|—) struct Window *Wdw

1] 73

Chapter 3

then the window's rastport may be referred to as

Wdw->RPort

BASIC programmers can also use the rastport to call i"~ j

Graphics library functions. The BASIC function WINDOW(8) '—'
returns a pointer to the rastport of the current output window.

Color Selection U->
As stated in Chapter 1, the maximum number of colors that

can be displayed at one time on a given screen depends on the

number of bit planes of display memory allocated for that

screen. One bit plane allows two colors, two bit planes four

colors, three bit planes eight colors, and so forth.

We have also seen that if there are three bit planes, the

display memory for each dot position on the display screen

contains three binary digits, which may hold a number from 0

to 7. This number held in display memory does not refer di

rectly to a color, using a code where 0 is black, 1 is white, and

so forth. Instead, the number at the screen dot position refers

to a color register.

The color registers may be thought of as a set of 32 pens,

each of which may filled with colored ink in any of the 4096

shades that can be displayed on the Amiga. Register 0 always

holds what is normally thought of as the background color;

any dot position whose display memory holds the number 0

will display this color. When you wish to use another color to

draw a line or a point, you specify the pen (color register) that

is to be used in drawing it. Whatever color ink it currently

contains is the color that the pen will draw. \ \

Unlike ink, however, the color of a dot drawn onscreen *—»

can change after you have drawn it. When the display mem

ory for a screen dot holds the number of a particular pen, that j (

dot displays whatever color is in the pen at any given mo-

ment, not the color that was in the pen at the time the dot was

drawn. This means that if you use pen 1 to draw a line, and j I

that pen contains the color red, the line will be red. But if you

change the color in pen 1 to green after you've drawn the line,

the line you drew and everything else on the screen that was j |
drawn with pen 1 will instantly become green.

74 (—I

Drawing Lines and Shapes

P"] The two factors which determine what color will be

drawn on the screen, therefore, are the pen you're using for

the drawing and the color used by that pen. You choose a pen

; | to draw with by assigning a pen number to the Amiga's draw

ing pens. There are two primary drawing pens, the foreground

^ pen (APen) and the background pen (BPen). The foreground

I [pen is used when drawing single points or solid lines. When

drawing dotted lines or text, the background pen is used in

addition to the foreground pen.

The Graphics library routines used to set the drawing

pens are SetAPen and SetBPen. The formats for calls to these

routines are

SetAPen (RastPort, Pen);

(al) (dO)

and

SetBPen (RastPort, Pen);

(al) (dO)

where Pen is the pen number (color register) to be used for

the drawing pen.

In BASIC, the COLOR statement is used to set the color

register for each of the drawing pens. The syntax is

COLOR [foreground—pen-number] [, background_pen_number]

where foreground—pen__number and background__perL_number

are the numbers of the pens (color registers) used by the fore

ground and background pens, respectively. If your program

does not use any COLOR statements, the foreground pen de-

faults to pen 1 and the background pen to pen 0.

Color Registers

<—1 In addition to determining which color register will be used

'. -' for drawing, we must also determine the color that the register

contains. Colors are chosen by mixing various levels of the

|—I colors red, blue, and green. Each color register holds one of 16

color levels for each of these colors, which means that there

are 4096 (16X16X16) possible colors to choose from.

I"""] The Graphics library routine that you use to set a color

75

u
Chapter 3

LJ

register for a particular screen is SetRBG4 (set four bits each of j j

red, green, and blue values). ^

SetRGB4 (ViewPort, pen, red, green, blue);

(aO) (dO) (dl) <d2) (d3) j [

Note that this function requires as part of its input the ad

dress of the ViewPort data structure. As was explained in r {

Chapter 1, the ViewPort describes a horizontal slice of the dis- 1—I

play that has particular display characteristics, which result

from the way it sets the graphics hardware registers. It is re

lated to the screen. The fact that this function uses the

ViewPort should remind you that the same pen colors are

used by all of the windows in a screen.

To find the address of the ViewPort associated with a par

ticular window, use the Intuition library function:

ViewPort = ViewPortAdress(Window);

(dO) (aO)

The other values required by this function are the number

of the pen (color register) that you are changing and the red,

green, and blue color values. These values represent color in

tensity from 0 (darkest) to 15 (brightest).

It is also possible to load several color registers at once

with the routine LoadRGB4. This routine takes the form

LoadRGB4 (ViewPort, Colormap, Pens);

(aO) (al) (dO)

where Colormap is a pointer to a table of 16-bit color values,

stored in the format OxORGB, where the high four bits

(nybble) are always zero, and the next three nybbles each hold

a 4-bit value for red, green, and blue intensity. The Pens value j j

specifies the number of registers to load from the table. Colors

are always assigned in order, starting with pen 0, then pen 1,

and so on. LJ
In Amiga BASIC, you set the color for each pen with the

PALETTE statement. The syntax for this statement is , ,

PALETTE pen.number, red_value, green_value, blue.value '—'

The value pen—number specifies the color register whose

color you wish to change. The values red—value, green—value, j j
and blue—value are the levels of each of these three primary

76 LJ

n
Drawing Lines and Shapes

colors you wish to use. These are expressed as fractions rang

ing from 0 (the lowest level, using none of that color) to 1 (the

highest level of that color). Although in theory, the 16 levels

could be represented by dividing by 15, in practice, Amiga

BASIC does not convert the fractions to color levels quite

evenly. Table 3-1 gives the values that we will be using with

the PALETTE statement and the range of values that can be

used to produce the same color level.

Table 3-1. PALETTE Values

Since there are 4096 possible combinations, it is impossi

ble to describe each available combination or explain exactly

how to find a particular shade. In general, however, the higher

the color level, the brighter the color, and the lower the level,

the darker the color. Whether the color displayed by a register

tends toward the red, green, or blue depends on which value

has the highest brightness level. If all three values are equal,

the color is a shade of gray.

Thus, PALETTE 0,0,0,0 or SetRGB4 (Vp,0,0,0,0) sets pen 0

to black, while PALETTE 0,1,1,1 or SetRGB4 (Vp,0,15,15,15)

sets it to white. You may lighten a shade by increasing the

77

Chapter 3
u

LJ

value of the two other colors in equal proportions. PALETTE

0,1,0,0 or SetRGB4 (Vp,0,15,0,0) sets pen 0 to a bright red,

while PALETTE 0,l,.3,.3 or SetRGB4 (Vp,0,15,5,5) lightens it

to a rose color. To darken the original red color, you could try

PALETTE 0,.5,0,0 or SetRGB4 (Vp,0,8,0,0).

When you are unsure of what colors to mix, it may help

to start with the nearest primary color mixture and experiment

from there. These are the primary color mixtures:

If you do not specify a color change for a particular color

register, the default color will be used. The default values for

each of the 32 pens are listed in Table 3-2. The value given is

that used for the SetRGB4 function, with the BASIC PALETTE

value in parentheses.

Keep in mind that the same color palettes are used by ev

ery window in a screen. When you change the pen colors with

the PALETTE statement, you affect the color of every window

that appears in the same screen as the current output window.

The change is limited to that screen, however, and windows in

other screens will not be affected.

Locating Color Information

Sometimes it is useful for your program to be able to find out

the actual colors that your window is using. This information

can be learned indirectly from the ViewPort data structure. As

we have seen above, you find the ViewPort address by using

the Intuition function ViewPortAddress. One of the members

of the ViewPort struct is a pointer to another data structure

called the ColorMap. In turn, the ColorMap structure contains

78

u

LJ

\ I

U

LJ

Drawing Lines and Shapes

Table 3-2. Default Pen Colors

Pen

0

1

, 2

3

4

5

6

7

. 8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26; !

27

28

29

;30

31

Red

0

15

0

15

0

15

0

15

6,

14:

9

14

5

9

0

12

0

13

0

15

4

5

6

7

8

9

10

11.

12

13

14

15

(0)

(1)

(0)
(1)
(0)

(1)

(0)
(1)

(0.4)

(0.9)

(0.55)

(0.9)

(0;3)

(0.55)

(0)

(0.75)

(0)
(0.8)

(0)

(1)
(0.25)

(0.3)

(0.4)

(0.45)

(0.5)

(0.55)

(0.6)

(0.7)

(0.75)

(0.8)

(0,9)

(1)

Green

5

15

0,

8

0

0 "

15

15

2

5

15

11

2

15

12

0

2

0

12

4

5

6

7

8

r

10

ii

12

iii
15

(0.3)

(1)
(0)

(0.5)

(0)
(0)

(1)
(1)
(P.I),
(0.3)

(1)
(0.7)

(0.3)

(0.1)

(1)
(0.75)

(0).

(0.1)

(0)
(0.75)

(0.25)

(0.3)

(0.4)

(0.45)

(0.5)

(0.55)

(0.6)

(0:7)

(0.75)

(0.8)

(0.9) -

(1)

Blue

. ,10

.«:-l5

1 :2 *

\ o
15

15

i

0

'"'"is"
8

' : r 12

f* 6 *
s "12

0

:,*o

4

, - 'M5 -

8

"\l/ijol

12

13

r>?l4~

(0.6)

"(0) ;^/

(1)« \:.V*
(1) ;?

(1) ,-->.» f¥

(0.05)
<0) ^;%:

* (1')* r-V^'^
(iy '^V
(0.5)

(0.75)4;? :

(b) ;slv

(0) •-■
(0t6) t;

(o.25)?;>;
(0.3)°{>A

io*4)-:^i
(0,45)Vt^;
(0.5):^
(0.55) %; .

;(0.6j-*;-^i"
%(0'.7)C^-?:^
(0.75) "i.
(0.8) v.,.

XO.9),^
>(!)--;!.

.Dark'bWe;,: r^v:

"Whiteifv--/ ^f.;-"

Blaek'.f/';/^1 * "^ 0"
k;Grattggr\'' ' '"'*X
Blue'^ --'5/^ ^ >' '^^

;Gym?i -^.: , -:^

'Red--ofin|f^^' ^t*-
Iime g?ffh *

^Bliie: v.i^iin; ?^t^|i;;

Blue-grlen ,

,!©i?ay .fflfr^^h-- *.";, *^f

Black M: -':* *

'Cray"! (dkrk) '*** YV:
;©ray-fc;^s^;% ;1 :> %\
vQray^^ I ^- > -As'
- (Jrayf^^> ~«\ ^>A
iGray;8:w^4 - ' ;'\'j*
Gray 9;(i|t^digrn:))) £

HiKy^ifev^'^H*-^
fGrayl^)", ->'
.Gray 13 v^, .\ I

a pointer to a table of colors called ColorTable. So, to get the

address of this table, you use these statements:

ColorMap = ViewPort->ColorMap;

ColorTable = ColorMap->ColorTable;

Once you find the address of the table, you must know

how to interpret the numbers it contains. The color values for

79

Chapter 3 LJ

u
each pen (color register) are stored in a 16-bit word. The first

word gives the colors for pen 0, the second for pen 1, and so i

on. In these 16-bit words, the first four bits are zeros, the next

four represent the red value, the next four the green, and the

final four bits represent the blue color level. So, the hex value | j
0x0f82 represents a red value of 15, a green value of 8, and a

blue value of 2. I .

In order to find the colors for a window from BASIC, first I—I
find the address of the window's ViewPort. To do this, use the

library routine ViewPortAddress. Until now, we have only

used passed values to a library routine. To get a value back,

we must use the DECLARE FUNCTION command. The syn

tax for this command is

DECLARE FUNCTION FunctionName() LIBRARY

In this case, we would use the statement

DECLARE FUNCTION ViewPortAddress&() LIBRARY

Of course, we must also open the Intuition library with the

statement

LIBRARY "intuition.library"

We must also have an intuition.bmap file in our current

directory to let BASIC know the proper offset for the

ViewPortAddress function. As with previous example pro

grams, we will include a subroutine in the program below to

create such a file in case the user does not have one. Once this

is done we can find the ViewPort address with the statement

ViewPort& = ViewPortAddress&(WINDOW(7))

From the C language definition of the ViewPort structure, } ,

we can determine that the address of the ColorMap structure i I

appears at an offset of four bytes from the beginning of the

ViewPort. Thus, s i

ColorMap& - PEEKL(ViewPort&+4) ^

From the definition of the ColorMap structure, we may ,

also tell that the address of the ColorTable is four bytes from I I
the beginning of that structure, so

ColorTable& = PEEKL(ColorMap&+4) i I

u

Drawing Lines and Shapes

If we put these together, we get the statement

ColorTable& = PEEKL(PEEKL(ViewPort&+4)+4)

Once we have found the address of the ColorTable, we

may use the PEEK function to look at the color settings for the

individual color registers. Program 3-1 shows how to find the

red, green, and blue values for each color register. It uses an

array to translate these values from their normal range 0-15 to

the fractional values used by the PALETTE statement. It prints

a table that shows the PALETTE red, green, and blue values

for each pen.

Program 3-1. Finding Color Values from BASIC

DECLARE FUNCTION ViewPortAddress&() LIBRARY

GOSUB Init

VPA& = ViewPortAddress&(WINDOW(7))

ColorTable& = PEEKL(PEEKL(VPA&+4)+4)

FOR Pen = 0 TO 31

Red = PEEK(ColorTable&+2*Pen)

Bluegreen = PEEK(ColorTable&+2*Pen+l)

Green=Bluegreen\l6

blue = Bluegreen MOD 16

PRINT "Pen";Pen;

PRINT Colvals(Red),

PRINT Colvals(Green),

PRINT Colvals(blue)

NEXT

LIBRARY CLOSE

END

Init:

[""I DIM Colvals(15)
! FOR X=0 TO 15

READ a: Colvals(X)=a

NEXT X

n
DATA 0,.05,.1,.2,.25,.3,.4,.45,.5

DATA .55, .6,.7,.75,.8,.9,1

| { Initlib:
CHDIR "ram:" 'put bmap file in RAM:

n'Create text of .bmap file

fd$="ViewPortAddress"+CHR§(0)

fd$=fd$+CHR$(254)+CHR$(212)+CHR$(9)+CHR$(0)

81

Chapter 3

'print it to the file

OPEN "intuition.bmap" FOR OUTPUT AS 1

PRINT#l,fd$;

CLOSE 1

'open the library

LIBRARY "intuition.library"

CHDIR "df0:"

RETURN

Drawing Points

The simplest of the drawing commands is that used to set the

color of a single point of the display. The Graphics library rou

tine used to accomplish this is WritePixel. The format for this

function is

result = WritePixeKRastPort, X, Y);

(dO) (al) (dO) (dl)

where RastPort is a pointer to the RastPort data structure of

the window, and x and y specify the horizontal and vertical

coordinates of the point to be drawn. These x and y coordi

nates are relative to the top left corner of the window. Their

values, therefore, should be smaller than those of the win

dow's boundaries. You may check the size of the window by

looking at the Width and Height values in the Window data

structure.

If the function is successful, it draws the point specified in

the color of the current foreground pen (APen), and returns a

value of 0. If the routine could not draw the point because it

lay outside the area of the rastport, the function returns a

value of —1. \

In Amiga BASIC the statements that color a single dot on '—[
the screen are PSET and PRESET. The two statements are

identical, except PSET uses the foreground pen as its default » I

drawing pen and PRESET uses the background pen. The syn

tax is

PSET [STEP] (x,y) [,pen] LJ
PRESET [STEP] (x,y) [,pen]

There are two ways of indicating the position at which] I

you want the dot drawn. The first is to use absolute horizontal —

82

LJ

Drawing Lines and Shapes

and vertical coordinates. The horizontal coordinates range

from 0 at the left edge of the screen to a maximum of 631 or

311 at the right edge of the screen for a full-size window, de-

pending on whether your screen is high-resolution or low-

resolution. If you have a sizing gadget in the right border of

the window, the maximum is cut to 617 or 297. The vertical

coordinates range from 0 at the top of the screen to 186 or 386

at the bottom, depending on whether the screen is noninter

laced or interlaced. If there is no title bar, the coordinate at the

bottom of the screen is 195 (noninterlaced) or 395 (interlaced).

If your window is smaller, of course, you should use values

that are less than the width and height of the current output

window. You can find these values by using the WINDOW(2)

function to return the window's width and the WINDOW(3)

function to return its height. The x and y coordinates that you

specify are relative to the top left corner of the window, re

gardless of where the window is positioned on the screen.

To put a white dot (the default color of the default fore

ground pen) midway down the left edge of the standard out

put window on the Workbench Screen, you would use

PSET (0,98)

To erase that dot (by drawing over it with the background

pen), you could use

PRESET (0,98)

Relative Coordinates

The other way to specify the point at which to draw the dot is

to indicate that you wish to use relative coordinates by includ-

ing the keyword STEP. Relative coordinates specify a position

relative to the last dot drawn. If none has been drawn yet, the

position is relative to the middle of the output window (in-

eluding the borders). For a full-size low-resolution, noninter

laced window, for example, this position would be (160,100).

A positive horizontal coordinate indicates that the dot will be

positioned to the right of the last one, while a negative coordi

nate moves the dot to the left. A positive vertical coordinate

means that this dot is drawn lower than the last one, and a

negative vertical coordinate means it is drawn closer to the

83

Chapter 3

top. For instance, if the last dot drawn was at (100,50), this

statement would draw the next dot at (90,70):

PSET STEP (-10,20)

If the last dot drawn was at position (150,90), this statement

would draw a dot at (110,80):

PSET STEP (-40,-10)

Relative coordinates are extremely useful when you wish

to draw the same image in different places, or when you aren't

quite sure where the image will be drawn.

Let's say, for example, that you are drawing an image in a

window that has a sizing gadget. If the user leaves the win

dow alone, the right edge may be at position 600. But if he or

she shrinks the window, its right edge may be only at position

400. You can find the right edge with the WINDOW function

and set the first point accordingly. By using relative coordi

nates for the rest of the drawing statements, all of them will

then be positioned properly, regardless of where the right edge

of the window is. The other advantage of using relative co

ordinates is that they can make it easier to change your pro

gram. If you later decide that you want to move an image over

a few pixels, it is much easier just to change the starting point

than to change the coordinates for every point.

Pen Color

Both the PSET and PRESET statements take an optional pen

value. That value, if specified, selects the pen to be used in

drawing the dot. If none is specified, the PSET statement uses

the color register associated with the foreground pen, and

PRESET uses the color register associated with the background

pen. The foreground and background pen values default to

color registers 1 and 0, respectively. You can change these as-

signments at any time, however, by using the COLOR state-

ment (see below). Note that when you specify the pen to use,

PSET and PRESET can be used interchangeably; the only dif-

ference between them is the default pen that each uses.

84

u

Drawing Lines and Shapes

Which Pen?

Sometimes it is useful for a program to be able to tell what

pen was used to color a particular location in a window. The

operating system provides a routine called ReadPixel which

does just that. A call to this function is of the form

Pen = ReadPixel (RastPort, X, Y);

P~j (dO) (al) (dO) (dl)

The value RastPort is the address of the window's RastPort

structure. The x and y values stand for the horizontal and ver

tical coordinates of the point that you wish to read. If the

point lies within the area of the rastport, the value returned

will be the number of the pen with which the dot is colored. If

the point is out of range of the rastport, a — 1 is returned.

In Amiga BASIC, the POINT function returns the same

information. The syntax of this function is

Pen = POINT(x,y)

where x and y specify the horizontal and vertical coordinates

of the point to be read. Like ReadPixel, this function returns

the pen number used to color the point if it lies within the

area of the window. If the point lies outside the current output

window boundaries, the function returns a value of —1.

PSET (100,50),3 T>raw at 100,50 with pen 3

Pen& = POINT(100,50) 'Read dot at 100,50 into Pen&

PRINT Pen& 'Should be 3, for pen 3

This program draws a dot at (100,50) with pen 3, then reads

the pen value at (100,50) into the variable Pen&. The value of

Pen& is printed to confirm that it has read the pen number

r—i correctly.

Drawing Lines and Shapes

f—1 Drawing single points is the least of the Amiga's abilities.

Amiga BASIC and the operating system also contain com

mands that allow you to draw lines and entire geometric

j~] shapes such as rectangles, squares, circles, ellipses, and poly
gons at once.

H

!"—! 85

Chapter 3

The Graphics library routine that is used to draw lines is

called Draw. A call to this routine looks like j i

Draw (RastPort, X, Y);

(al) (dO) (dl)

where x and y are the coordinates for the endpoint of the line. '—!

The starting point for Draw depends on the current position of

the drawing pen. This position is also sometimes referred to as J j

the pixel cursor. Whenever you use one of the drawing pens

to do any drawing, the position of the pen stays at the last dot

that was drawn. For example, if you use WritePixel to color

the dot at position (200,100), the drawing pen is left at that

spot after the dot is drawn.

It is possible to move the drawing pen without drawing

anything. The Graphics library routine Move is used to pick

up the drawing pen and move it to a new location. A call to

this routine takes the form

Move (RastPort, X, Y);

(al) (dO) (dl)

Therefore, to specify both the starting and ending points of

the line, you must use a call to Move followed by one to

Draw. For example, to draw a line from position (10,15) to po

sition (100,150), you would use the sequence

Move (RastPort, 10,15);

Draw (RastPort, 100,150);

Drawing Lines and Rectangles from BASIC

In Amiga BASIC, the LINE statement is the one you use to

draw lines or rectangles:

LINE [[STEP] (xl,yl)]-[STEP] (x2,y2), [pen_number] [,b [f]] !_!
With the LINE statement, you specify two pairs of coordinates,

one for the starting point and one for the ending point. These I j

coordinates can be absolute coordinates, relative coordinates,

or a combination of absolute and relative. For example, the

statements j j

LINE (30,50) - STEP (40,40)

LINE STEP (0,0) - STEP (-40,40) . ,

86 u

Drawing Lines and Shapes

rmm first draw a line from (30,50) to (70,90) and then draw a line

i I from that point to (30,130).
The value pen_number can be used to indicate the pen to

i—) use for drawing the line. If no pen is specified, the current

I foreground pen is used as the primary drawing pen.
Besides drawing lines, the LINE statement can also be

p—j used to draw rectangles. By adding the letter b after the pen

' number (or a comma used as a place holder instead of the pen
number), you can indicate that you want a box to be drawn.

When this option is used, the first pair of coordinates specifies

the top left corner of the box, while the second pair deter

mines where the lower right corner will be placed. For ex

ample, this statement draws a box from (100,50) to (150,50) to

(150,100) to (100,100) to (100,50), using the foreground pen

color:

LINE (100,50) - STEP (50,50),,b

If you use the letters bd instead of just b, the box is filled

in with either the foreground pen color or the color of the pen

that you've selected. For more information, see the section

about filled shapes, below.

Lines and Points, Program Examples

To consolidate what we've presented so far, here are a couple

of short example programs. Programs 3-2 and 3-4 are written

in C, and Programs 3-3 and 3-5 are in BASIC.

Program 3-2 uses the WritePixel, Move, and Draw routines

to draw three lines in different colors. It uses a window that

sits on the 640 X 200 Workbench screen. Program 3-3 is a

| | BASIC version and uses PSET and LINE.
Program 3-4 draws the same three lines, only this time a

fmmmt window opened on a low-resolution screen that has its own

! ! custom color palette. It also uses the ReadPixel routine to read

each dot in a rectangular area that contains parts of the three

r—i lines and then resets each point to a new color. When the

1 ! drawing is done in Program 3-5, the program waits for the
user to click the mouse button and then closes the new win-

fj dow and screen.

R 87

Chapter 3

u

Program 3-2. Drawing Lines and Points In C
i

#include <window.c> '—'

demo()

int y? '—'

SetAPen (Rp,l); j

Move(Rp,50,50)? j

Draw(Rp,150,100)7

SetAPen (Rp,3);

Draw(Rp,50,150);

SetAPen (Rp,2)?
for (y=50?y<151?y++)

WritePixel(Rp,50,y)7

/* end of Draw.c */

Program 3-3. Drawing Lines and Points In BASIC

LINE (50, 50)-STEP (.100,50)

'draw first with foreground pen 1

LINE STEP (0,0)-STEP(-100,50),3

1 second line drawn with pen 3

FOR y = 50 TO 150

PSET (50,y),2

'third line with pen 2

NEXT

END

Program 3-4. Drawing Lines and Points on a Low-Resolution i j

Screen '—'

#include <windowl.c>

demo() <—!
{
int x,y,Pen;

SetAPen (Rp,l); '—'
Move(Rp,50,50)7

Draw(Rp,150,100);

SetAPen (Rp,3)? ' '
Draw(Rp,50,150)?

88 LJ

Drawing Lines and Shapes

H

n

SetAPen (Rp,2);

for (y=50;y<151;y++)

WritePixel(Rp,50,y);

for (x=48;x<101;x++)

{
for (y=50;y<151;y++)

{
Pen = ReadPixel(Rp,x,y);

SetAPen(Rp,3-Pen);

WritePixel(Rp,x,y);

}

/* end of Drawl.c */

Program 3-5. Drawing Lines and Points in BASIC on a Low-

Resolution Screen

SCREEN 1,320,200,2,1 '320x200 low-res, 4 color Screen

WINDOW 2,,,0,1 'Full-screen window, no gadgets

PALETTE 0,1,1,1 'White background

PALETTE 1,1,0,0 'red

PALETTE 2,0,1,0 'green

PALETTE 3,0,0,1 'blue

'draw 1st with foreground pen (1)

LINE (50,50) - STEP (100,50)

'second line drawn with pen 3

LINE STEP (0,0) - STEP (-100,50),3

FOR y = 50 TO 150

PSET (50,y),2 'third line with pen 2

NEXT

FOR y = 50 TO 150

FOR x = 49 TO 100

Pen = POINT(x,y) 'read pen for each point

PSET (x,y), 3-Pen 'and complement

NEXT x

NEXT y

WaitForClick: IF NOT MOUSE(0) THEN WaitForClick

WINDOW CLOSE 2 'close the window

SCREEN CLOSE 1 'and the Screen

END

Chapter 3

Drawing Polygons

One of the Graphics library routines, PolyDraw, can be help

ful in drawing shapes composed of a number of connected

lines. You give this routine a list of points on the screen as in- j j

put, and PolyDraw draws a line from the current pen position <—»

to the first point on the list, then from the first point on the

list to the next point, and the next, until lines have been drawn j |

to all specified points. To call this routine, you use the form

PolyDraw(RastPort, Coordinate—pairs, Array—address);

(al) (dO) (aO)

where Array_address is a pointer to the beginning address of

an array of (x,y) coordinate pairs. This array holds the x and y

coordinates for a number of points on the screen, stored in the

format of one 16-bit word for the x coordinate followed by an

other 16-bit word for the y coordinate. Such an array might

look like this:

WORD points—array [] =

180,50,

210,80,

10,120,

180,150,

100,150,

70,120,

70,80,

100,50,

10,10

};

The variable Coordinate—pairs holds the number of (x,y)

pairs in the array. Since it takes two words of data to describe I j

each point, the number in Coordinate—pairs should be half as

large as the total number of words in the array. In the above

example, 18 words are used in the array to describe nine points, j j
so 9 is the appropriate number to use for Coordinate—pairs. A

PolyDraw using this array would look like this:

PolyDraw (RastPort, 8, &points—array[0J); 1—'

To use the PolyDraw routine from BASIC, you must first

open the Graphics library with the statement I i

LIBRARY "graphics.library"

90 LJ

n
Drawing Lines and Shapes

n

(Note: When this LIBRARY statement is used, BASIC gets

M information about the location of the system graphics routines

from a file called graphics.bmap. This file is included on the

(*—* Amiga BASIC disk, in the BasicDemos directory, and must be

' I present in the current disk directory when the program con
taining the LIBRARY statement is run.)

p"] Once the library is open, you can call PolyDraw with the

1 I BASIC statement

CALL PolyDraw& (RP&, Coordinate-pairs, Array_address)

where RP& is the rastport address of the window, which can

be found with the WINDOW(8) function. The other values

specify the points to be drawn.

To use PolyDraw, you must first set up an array of short

integers. This array must hold the coordinates of each point

which is to be connected by a line. For instance, if you wanted

to use PolyLine to draw a line from the current pen position to

(100,100), then to (120,70), then to (90,50), you could set up

an array called POINTS%(), where POINTS%(0)= 100,

POINTS%(1)= 100, POINTS%(2)= 120, POINTS%(3)= 70,

POINTS%(4)= 90, and POINTS%(5)=50. You would then call

PolyDraw with the statement

CALL PolyDraw& (RP&,3,VARPTR(POINTSo/0(0))

The number 3 indicates that there are three pairs of co

ordinates. It is important to remember that the proper figure

for the Coordinate—pairs value is not the size of the array, but

the number of coordinate pairs (half the size of the array). The

second value to pass is the address of the array, which can be

found by using the VARPTR function.

PolyDraw uses the current location of the drawing pen as

its starting point. This location depends on where the last

point was drawn; if none was drawn, it defaults to (0,0).

Rather than leaving things to chance, you will probably want

to move the pixel cursor to the correct starting location before

calling PolyDraw. This can be accomplished with a call to

Move, a Graphics library routine that was described above.

The proper way of calling this routine from BASIC (once the

Graphics library has been opened, of course) is

CALL Move& (RP&, x&,y&)

91

Chapter 3

u

where RP& is the address of the window RastPort (WIN- ,

DOW(8)), and x& and y& are the horizontal and vertical co- | \
ordinates at which the pixel cursor is set.

Although Move does not seem to have any effect on rela- , <

tive coordinates used with LINE and PSET (BASIC appears to 1—I
keep track of its own internal pen position), it has a definite

effect on the positioning of BASIC text. Preceding a PRINT j J

statement with a call to Move allows you to position text at

precise coordinates, rather than at a particular character

position.

Drawing Octagons Using PolyDraw

Program 3-6 shows how to draw an eight-sided figure using

PolyDraw from BASIC. It uses a custom low-resolution screen

and shows how to use the COLOR statement with CLS to

clear the window to a particular color. Program 3-7 is a similar

program written in C.

Program 3-6. Using PolyDraw from BASIC

LIBRARY "graphics.library"

SCREEN 1,320,200,4,1

'320X200 low-res, 16 color screen

WINDOW 2,,,0,1

'Full-screen window, no gadgets

Rp&=WIND0W(8)

'Window's RastPort address

COLOR 9,1

'foreground to red, back to white

CLS

'clear screen to white

DIM points%(16) j j
FOR p=0 TO 15 l '

READ d

points%(p)=d

'put coordinate pairs in array j

NEXT

DATA 180,50, 210,80, 210,120, 180,150

DATA 100,150, 70,120, 70,80, 100,50 , ,

CALL Move& (Rp&,100,50) ' '
'move pixel cursor

CALL PolyDraw& (Rp&,8,VARPTR(points%(0))) j i

'draw polygon J [

92
u

Drawing Lines and Shapes

II WaitForClick: IF NOT MOUSE(0) THEN WaitForClick

n
WINDOW CLOSE 2

SCREEN CLOSE 1

END

Program 3-7. Using PolyDraw from C

#include <windowl.c>

demo()

{
static UWORD Points [] =

{
180,50,

210,80,

210,120,

180,150,

100,150,

70,120,

70,80,

100,50

}

SetAPen (Rp,l);

Move(Rp,100,50);

PolyDraw(Rp,8,fcPoints);

/* end of Polydraw.c */

Circles

In addition to the line drawing functions provided by the

Graphics library, BASIC provides a CIRCLE statement, which

can be used to draw circles, ellipses, and arcs. The syntax is

CIRCLE [STEP] (x,y),radius ^pen-number [,start_angle,

end—angle [,aspect—ratio]]]

The only values that are required are the coordinates of the

center point and the radius of the circle. The center coordi

nates may be expressed as an absolute—such as (50,50),

which indicates a point 50 dots from the left edge and 50 dots

93

u
Chapter 3

LJ

from the top—or relative to the point where the last dot was j j
drawn—for instance, STEP (50,50), 50 dots to the right and 50

dots below the last position drawn.

After the circle is drawn, the pixel cursor remains at the |
center point of the circle, even though no dot is drawn there.

This means that you can draw concentric circles by specifying j f

a center point of STEP (0,0) for each circle, as the following I—I
program demonstrates:

CIRCLE (100,100), 20

FOR R=27 TO 100 STEP 7

CIRCLE STEP (0,0), R

NEXT

The radius value is the radius of the circle, expressed in

pixels. Note that the vertical radius will probably not be the

same as the horizontal radius. Since there are 640 pixels across

and only 200 lines vertically on the Workbench screen, a circle

that was 100 pixels wide and 100 pixels high would be tall

and skinny, not round. Therefore, the CIRCLE statement auto

matically scales down the vertical radius to make the circle ap

pear round. You can change this scaling with the aspect—ratio

value, discussed below.

The pen__number value designates the pen that you want

used to draw to the circle. If you do not specify a pen number,

the foreground pen is used as a default.

The start—angle and encLangle values allow you to draw

only a portion of the circle or ellipse. The values designate the

starting and ending angles of the arc, expressed in radians.

Since there are 2*pi radians in a circle, the permissible values

range from 0 to 2*pi. The point described by a value of 0 is 1 I
the rightmost point on the circle, that which we would nor

mally think of being at 90 degrees. As the value increases, you i i

move around the circle counterclockwise. The value for the '—!
point at the top of the circle is pi/2, that for the left of the cir

cle is pi, and that for the bottom of the circle is pi*3/2. To j j

convert degrees to radians, use the formula —'

radians = degrees/180 * pi

The starting angle may be smaller than the ending angle, •—>

but in either case, the arc will be drawn counterclockwise.

94 ^—I

Drawing Lines and Shapes

I f This means that the statement

CIRCLE (100,100), 70,, 0, 3.14*3/2

T~\ draws three-quarters of a circle (starting at the right and mov

ing counterclockwise to the bottom). If you reverse the starting

and ending points, however, the statement

! I CIRCLE (100,100), 70,, 3.14*3/2, 0

draws only a quarter circle (starting at the bottom and moving

counterclockwise to the right side).

If either the start_angle or end—angle value is negative,

the value will be treated as if it were positive, but that position

on the arc will be connected by a line to the center of the cir

cle. For example, this statement produces a wedge, with both

ends of the arc connected to the center point.

CIRCLE (100,100), 70,, - 3.14*7/4, -.01

Reversing the start and end points gives you a circle with a

wedge cut out of it.

The aspect—ratio value describes the scaling used to make

the circle appear round instead of elliptical. Since the standard

Workbench screen is 640 pixels wide, but only 200 lines tall, a

circle which is as many dots tall as it is wide will be tall and

skinny instead of round. So the width is multiplied by the

aspect—ratio value to determine the height. The default value

for a high-resolution, noninterlaced screen is .44, which means

that vertical radius will be 44 percent as large as the horizon

tal radius. For a low-resolution, noninterlaced screen, the de

fault is .88, twice as large, because the screen is half as many

dots wide. An aspect—ratio value of less than the default cre

ates an ellipse that is short and fat, while a value that is

greater than the default creates an ellipse that is tall and

skinny. If the aspect—ratio value is greater than 1, the horizon

tal radius may be shortened to preserve the ratio of height to

width. This means that the ellipse created by the statement

CIRCLE (100,100), 70 „„ 10

will be narrower than the circle drawn by the statement

CIRCLE (100,100), 70

95

u
Chapter 3

u

Patterned Lines j_j
Until this point, the lines that we have been drawing have all

been solid. The Amiga graphics hardware, however, is capable j /

of drawing dotted lines as well. The pattern for line drawing '—>

can be up to 16 dots wide. It is stored as a 16-bit number in

the rastport variable LinePtrn. j [

Although there is no direct Graphics library routine that

sets the line pattern, the include file Graphics/Gfxmacros.h

contains a macro routine that can be used. This macro routine

directly manipulates the RastPort data structure. To use it, in

clude the GRAPHICS/GFXMACROS.h file in your program,

and invoke it with a statement like

SetDrPt (Window, Pattern);

where Window points to the address of the Window data

structure, and Pattern is a 16-bit number that represents the

line pattern.

We have discussed in previous chapters the way in which

binary numbers relate to the patterns of color that appear on

the computer display. For example, the number 65,535 in base

two looks like this:

1111111111111111

Imagine this as a pattern for line drawing, where every

one represents a position where a dot will be drawn with the

foreground pen, and every zero represents a position where a

dot will either be drawn with the color of the background pen

or left alone, depending on the drawing mode selected. You

can see that this pattern produces a solid line drawn with the \ i

foreground pen. The number 43,690, on the other hand, looks '—'
like this in binary format:

1010101010101010 [_j

This represents a pattern where one dot of foreground color

alternates with one dot of background color, in other words, a i j

dotted line. '—»

Counting in binary is difficult for most of us, because of

the long string of digits needed to represent relatively small j

numbers. The hexadecimal, or base 16, number system is some- '—'

what easier to use when figuring out line patterns, since each

96 ^

n

Drawing Lines and Shapes

digit corresponds to four dots. The following table shows the

correspondence between dot patterns and hexadecimal digits:

By breaking the 16-dot mask down into 4-dot groups, we

can figure out the patterns a little more easily. For instance, if

we want a pattern where three dots of foreground color alter

nate with one of background, we choose the pattern that cor

responds to E hexadecimal and repeat it four times. The macro

statement to set such a pattern is

SetDrPt (Window, OxEEEE);

The line pattern is used with all operating system and

BASIC instructions that use the hardware line-drawing ca

pabilities. This includes the BASIC LINE statement and

Polyline Graphics library routine.

The line pattern also affects the lines that are used to con

nect the starting and ending arcs to the center when negative

values are used for start—angle and/or encLangle in the CIR

CLE statement. Normally, you would not be aware of this,

since the pattern is initialized to —1, which is the signed bi

nary equivalent of 16 binary one bits, representing a solid line

drawn in the foreground color. If you change the line pattern,

however, all lines will be drawn with that pattern until you

97

u
Chapter 3

LJ

change it again. (Note—when you change colors with SetAPen j ;

or SetBPen, it sets the line drawer to restart the pattern—try '—'

this with a 12-dot segment of 15-dot pattern.)

Program 3-8 is a short C language program that demon- j

strates the use of the line pattern with the Graphics library

line drawing commands.

From BASIC, you set the line pattern with the PATTERN | j
statement. The syntax is

PATTERN [line—pattern] [,area_pattern]

The value which determines how lines are drawn is

line_pattern. The other value, area—pattern, is used for pattern

fills; it will be discussed in the section "Filled Shapes" that ap

pears below. The line—pattern value is an integer expression

that describes a mask that is 16 dots wide. For example, the

BASIC equivalent of the SetDrMd example given above is

PATTERN &HEEEE

Program 3-9 is a BASIC program; note the affect PAT

TERN has on the line drawing. When you want to switch back

to drawing a solid line, use PATTERN — 1.

Program 3-8. Line Patterns in C

tinclude <windowl.c>

#include <graphics/gfxmacros.h>

demo()

{
int line;

static UWORD Points [] =

180,50, j |
210,80,

210,120,

180,150, i (

100,150, LJ
70,120,

70,80,

100,50) |

}; U

SetAPen(Rp,l) ;

SetBPen(Rp,2); j j
SetDrPt(Rp,0xF0F0); < '

98

n
Drawing Lines and Shapes

r*) Move(Rp,100,50);
1 ' PolyDraw(Rp,8,&Points);

_ for (line=2; line<7; line++)

' SetAPen(Rp,line);
SetBPen(Rp,line+1);

Move(Rp,100,line*20+20);

|j Draw(Rp,180,line*20+20);

Program 3-9. Line Patterns from BASIC

LIBRARY "graphics.library"

'Make output window full size

WINDOW 1,,(0,0)-(617,186),31,-1

Rp&=WIND0W(8) 'Window's RastPort address

DIM points%(16)

FOR p=0 TO 15

READ d

points%(p)=d

NEXT

DATA 180,50, 210,80, 210,120, 180,150

DATA 100,150, 70,120, 70,80, 100,50

PATTERN &HFF00 'even stripes

COLOR ,2 'white and black

CALL Move* (Rp&,100,50)

'draw polygon

CALL PolyDraw& (Rp&,8,VARPTR(points%(0)))

PATTERN &HFFF0 'mostly foreground

'draw orange and black box

LINE (250,10) - STEP (350,170),3,b

PATTERN &HAAAA 'dotted pattern

COLOR ,3 'white and orange

LINE (70,10)-(210,40) 'draw dotted line

PATTERN &HF0F0 'smaller stripes

COLOR ,0 'default colors

CIRCLE (425,95), 100,1, -4.71,-3.14

'circle with wedge removed

END

99

LJ
Chapter 3

u

Drawing Modes j_j

The Amiga graphics drawing routine can operate in two pri

mary drawing modes, which are mutually exclusive. So far, we ,

have been doing all of our drawing in the default drawing 1 i

mode, but that doesn't matter much, since the two modes

have the same effect when drawing solid lines. But with the } >

introduction of patterned lines (and text, as we shall see later), !—»

the subject of drawing modes becomes a good deal more

relevant.

The default drawing mode that we have been using is

known as the JAM2 mode, because in some instances this

mode "jams" both the color of the foreground pen and the

color of the background pen into display memory simulta

neously. BASIC always selects JAM2 mode, so if you want to

select one of the other modes described below, you must do so

by using the operating system Graphics library routine for

changing drawing modes.

In BASIC, the default color for the background pen is the

same as that of the display background, so it is sometimes dif

ficult to tell that two colors are being drawn at once. But if

you enter the BASIC statement

COLOR ,3

in immediate mode, it is quite easy to see that both the text

characters and the background are drawn at once (in this case,

white letters on an orange background).

Another case in which the effects of JAM2 mode are evi

dent is patterned line drawing. In JAM2 mode, all of the bits

of the line pattern that are set to 1 are drawn with the fore- | I

ground pen, and all of the bits of the line pattern that are set '—

to 0 are drawn in the background pen. When drawing solid

lines, the JAM2 mode does not quite live up to its name, since j
only the foreground pen color is used.

The other major drawing mode on the Amiga is known as

JAM1 mode. As you might have guessed, in JAM1 mode, only lJ
one pen, the foreground pen, is used for drawing. This means

that the area that would normally be drawn in with the back- j

ground pen in JAM2 mode is left undisturbed by JAM1 mode. !—>
Using JAM1 mode, it is possible to superimpose text on a

100 J

Drawing Lines and Shapes

(graphics image without blotting out a rectangular area of that

image. Patterned lines turn out differently in JAM1 mode than

-^ in JAM2 mode, since only the bits of the pattern that contain

I i ones will be colored, leaving the areas represented by zero bits

as they are. Solid lines are drawn the same as in JAM2 mode,

—j however, since only the foreground pen is used in either case.

I In addition to these two drawing modes, there are two
modes that modify their effect. The first is known as COM

PLEMENT mode. In this mode, neither the foreground nor

background pen is used. Instead, the color of each screen dot

where a pen was supposed to draw is complemented. To com

plement the color of a pixel, you invert the bits of its pen

number, changing all the ones to zeros and all the zeros to

ones first.

For those who do not think in binary, another way of

looking at the process is that you take the highest possible pen

number, subtract the pen number of the current color, and

you're left with the pen number of the new color. For instance,

if the window that you're drawing on is attached to a screen

that has three bit planes, there are eight drawing pens. These

pens are numbered from 0 to 7. If you want to find the com

plement of pen 2, subtract 2 from 7, which leaves 5. If you are

using four bit planes, the highest pen number is 15, so the

complement of pen 2 would be pen 13.

COMPLEMENT mode is useful only with JAM1 mode. If

you add COMPLEMENT mode to JAM2 mode, dots that are

represented by zero bits are complemented along with the

dots represeneted by one bits. The result is that the entire area

is complemented, and you end up with solid lines instead of

patterned lines and solid rectangles instead of text. When

COMPLEMENT mode is used with JAM1 mode, however,

only the area represented by one bits is complemented.

The other mode that can be used to modify JAM1 and

JAM2 is called INVERSVID. Used mostly for text, INVERSVID

reverses the roles of the foreground pen and background pen.

If you use the INVERSVID mode along with JAM1 to draw

text, the background area surrounding the letters will be col

ored in with the foreground pen, while the area where the

101

_

! !

Chapter 3

characters themselves would normally be drawn is left un

touched. If COMPLEMENT mode is added to the combination

of INVERSVID and JAM1, the area that is represented by zero

bits is the one that is complemented. When used with JAM2

mode, INVERSVID merely reverses the colors of foreground

and background pens.

The drawing modes can be set with the operating system

routine SetDrMd (short for Set Draw Mode). A call to this rou

tine takes the form

SetDrMd (RastPort, Mode);

(al) (dO)

From BASIC, the syntax to use is

CALL SetDrMd& (RP&,Mode&)

where RP& is the address of the window's rastport—WIN-

D0W(8)—and Mode& is a value equal to the combination of

values which represent the various modes desired. While C

programmers can use the names of the modes, which have

been defined in the graphics include files, BASIC programmers

can use the following table to find the correct value for the

modes desired.

You may add these values to form any combination. To

select a combination of JAM1, COMPLEMENT, and

INVERSVID modes, for example, you would use the number 6

(0 + 2+4).

Program 3-10 is a C program and should help you visual

ize the effects of the various drawing modes. The Text routine

was used to add text to better illustrate the effects of these

modes. This function is explained more fully in Chapter 4.

Program 3-11 is a similar program written in BASIC.

u

102 u

n
Drawing Lines and Shapes

H

p-) Program 3-10. Drawing Modes, C Example

#include <windowl,c>

#include <graphics/gfxmacros.h>

M demoO
{

nSetAPen (Rp,4);

RectFill(Rp, 88,10,247,110);

SetAPen (Rp,2);

SetBPen (Rp,3);

SetDrPt (Rp,0xFF00);

Move(Rp,20,20);

SetDrMd (Rp,JAMl);

Text(Rp, "This is JAM1 mode ",18);

Draw(Rp,300,20);

Move(Rp,20#30);

SetDrMd (Rp,JAM1+INVERSVID);

Text(Rp/'This is INVERSE ",17);

SetDrMd (Rp,JAMl);

Draw(Rp#300,30) ;

Move(Rp,20,55);

SetDrMd (Rp,JAM2);

Text(Rp, "This is JAM2 mode ",18);

Draw(Rp,300,55);

Move(Rp,20,65);

SetDrMd (Rp,JAM2+INVERSVID);

Text(Rp,"This is INVERSE ",16)7

Draw(Rp,300,65);

Move(Rp,20,90);

SetDrMd(Rp,COMPLEMENT);

Text(Rp,"This is COMPLEMENT mode ",24);

Ij Draw(Rp,300,90);

Move(Rp,20,100);

—_ SetDrMd (Rp,COMPLEMENT+INVERSVID);

j I Text(Rp,"This is INVERSE ",16);
Draw(Rp,300,100);

n '
Program 3-11. Drawing Modes, BASIC Example

I LIBRARY "graphics.library"
DEFLNG a-z 'all long integers

n

Chapter 3

u

u

SCREEN 1,320,200,3,1 '320*200 low-res { .

'8-color screen j

WINDOW 2,,,0,1 'full screen window

1 no gadgets

PALETTE 0,1,1,1 'White background 1 |
PALETTE 1,1,0,0 'red—foreground pen

PALETTE 2,0,1,0 'green—background pen

PALETTE 3,0,0,1 'blue j

PALETTE 4,1,1,0 'yellow—complement I—

PALETTE 7,0,0,0 'black—complement

Mode$(0)="JAMl mode"

Mode$(l)="INVERSID JAM1"

Mode$(2)="JAM2 mode"

Mode$(3)="INVERSID JAM2"

Mode$(4)="COMPLEMENT mode"

Mode$(5)="INVERSID COMP"

LINE (92,17)- STEP (170,120),3,bf

'draw blue box for contrast

PATTERN &HFF00 'striped pattern

COLOR 1,2 'set colors to red and green

FOR Row = 0 TO 5 'for 6 lines

y=((Row\2)+l)*5+(Row MOD 2=0)
LOCATE y,4 'position for print

Mode = (Row\2) - 4*(Row MOD 2=1)

CALL SetDrMdSt (WINDOW(8) ,Mode)

1 set drawing mode

PRINT "This is ";Mode?(Row)

'print text in this mode

LINE (219,y*8-4)- STEP (85,0)

'draw line in this mode

NEXT

WaitForClickrIF NOT MOUSE(0) THEN WaitForClick

WINDOW CLOSE 2 I
SCREEN CLOSE 1

END

Filled Shapes

Not only can the Amiga graphics routines draw lines and |

shapes, but they can fill them with color as well. We have al

ready seen one example of filled shapes in the BASIC LINE

statement. As you may remember, if you add the letters bf to | |
the end of this statement, a filled box is drawn. For example,

104 u

Drawing Lines and Shapes

this statement draws a box that is 200 pixels X 100 pixels,

using the color of the foreground pen:

LINE (20,10) - STEP (200,100),,bf

The operating system routine which performs the equiva

lent function is called RectFill. The blitter assists this opera

tion, drawing the filled rectangle almost instantly. The syntax

for this routine is

RectFill (RastPort, XI, Yl, X2, Y2);

(al) (dO) (dl) (d2) (d3)

where the point X1,Y1 is the location of the upper left corner

of the filled box, and the point X2,Y2 is the location of the

lower right corner. In the default case, the rectangle will be

solidly filled with the color of the foreground pen (APen), but

this may be altered by changing the area pattern and drawing

mode, as we shall see later.

The Graphics library also provides routines that allow you

to create nonrectangular filled shapes. These area fill routines,

as they are called, let you create a list of points to be con

nected by lines, like the list used by the PolyFill routine. Then,

they use the list both to draw the figure and fill it in, either

with the color of the foreground pen, or using a fill pattern, as

we shall see later.

The area fill routines (and the flood fill routine described

below) require that you set up some temporary work space

before you use them. First, you must declare a data structure

called an Arealnfo structure for use by the rastport and a

buffer area to be used by the Arealnfo structure, like this:

struct Arealnfo AInfo;

WORD Buffer [200];

Then, you must initialize the Arealnfo structure by calling the

InitArea routine:

InitArea (&AInfo, &Buffer, Max-points);

where &AInfo is a pointer to your Arealnfo structure, and

&Buffer is a pointer to the buffer area. The Max_points vari

able specifies the maximum number of points that can be de

scribed for your filled area. Since each point uses five bytes,

the maximum number of points equals the size of the buffer

105

Chapter 3

u

LJ

divided by 2.5 (the buffer is composed of two-byte words, |
since it must be lined up on a word boundary). In the example

above, the Max_points variable would be set to 80 points, be- {

cause there are 200 words (400 bytes) in the buffer area. I

After you initialize the Arealnfo structure, you must tie it

into your window's rastport by pointing the RastPort variable « i

Arealnfo at the now-initialized structure: '—'

RastPort ->Arealnfo = AInfo;

The Arealnfo structure is used to store the list of points

that make up your filled shape. But the area fill routines also

need a temporary work space in which to construct the image.

Because we are dealing with windows, the image can't be

drawn directly on the screen since part of the window may be

obscured. Therefore, the image must be created in a temporary

work space where it can be clipped to fit the window's display

space upon moving it to the display window. Typically, this

space will be as large as a single bit plane for the screen you

are using so that an image as large as the display may be cre

ated. Since a single bit plane on the WorkBench screen re

quires 16,000 bytes, this can be a substantial amount of

memory; you may wish to reduce the size of the buffer some

what if you know that your image will be smaller.

The graphics work space is associated with a data struc

ture called a TmpRas structure. As with the Arealnfo structure,

your program must declare a TmpRas structure:

struct TmpRas TRas;

The actual work space associated with the TmpRas struc

ture must be located in the lower 512K of memory, since the I
blitter chip can access only that portion of memory. Although

most people have only 512K of memory (for now, at least), it

makes sense to take the necessary steps to make sure that your '—

program will work on systems with expansion memory as

well. Therefore, instead of simply declaring an array for buffer I I

space, you should use the Graphics library routine AUocRaster

to properly allocate an area of graphics memory. This function

is executed with the statement j |

Raster = AUocRaster (Width, Height);

(d0) (dl)

106

Drawing Lines and Shapes

The Width and Height variables give the size of the bit

plane to be allocated. The Width is the number of pixels

across, and the Height is the number of lines the display occu

pies. If the function is able to reserve for itself the proper

amount of chip memory (as the lower 512K is called), it re

turns a pointer to the beginning of the display buffer.

So, you might allocate a buffer for the TmpRas structure

as shown below:

PLANEPTR RBuffer;

RBuffer = (PLANEPTR)AUocRaster(640,200);

There are two important points to note about the

AllocRaster function. The first is that if the system is unable to

allocate the necessary memory, the routine returns a zero. You

should therefore check the result of the AllocRaster operation

and abort your program if the buffer cannot be allocated. The

second point is that when you have allocated memory, it is up

to you to free that memory once you are finished with it. This

can be accomplished with the FreeRaster function, which is

executed like this:

FreeRaster(Raster, Width, Height);

(aO) (dO) (dl)

where Raster is the pointer returned by the AllocRaster rou

tine, and Width and Height are the exact same values used by

the original AllocRaster call. If you do not deallocate the mem

ory, it will continue to be reserved even after your program

ends, so be sure to free all of the memory you have allocated.

Once the buffer is allocated, the TmpRas structure must

be initialized with a call to InitTmpRas:

InitTmpRas (&TRas, Rbuffer, Size);

(aO) (al) (dO)

where TRas and Rbuffer are the pointers to the TmpRas struc

ture and buffer described above. The Size variable is the size

of the buffer in bytes. Since AllocRaster allocates a bit plane

whose width is measured in bits, you have to convert to bytes

to find the size of the plane. A C macro, RASSIZE, can per

form the conversion for you. For instance, you could find the

size of a 640 X 200 bit plane with the statement

Size = RASSIZE(640,200);

107

LJ
Chapter 3

LJ

The TmpRas structure must also be linked into the f J

RastPort. We can combine both the initialization and linking

steps into one statement:

RastPort->TmpRas = (struct TmpRas *) I 5
InitTmpRas(&TRas, Rbuffer, RASSIZE(640,200));

After you've initialized both the Arealnfo and TmpRas j \

structures, you may begin using the area fill commands. The '

first of these is AreaMove. AreaMove is used to start a new

shape by defining the starting (and ending) point for that

shape. The syntax for this statement is

AreaMove (RastPort, X, Y);

(al) (dO) (dl)

where RastPort is a pointer to the RastPort structure, and x

and y are the coordinates of the point. If another shape is al

ready in progress when you call AreaMove, that shape will be

completed (but not drawn) and the new one started.

The AreaDraw procedure is used to add another point to

the shape. This procedure can be called with the statement

AreaDraw (RastPort, X, Y);

(al) (dO) (dl)

Despite its name, AreaDraw does not do any drawing.

The actual drawing does not happen until an AreaEnd state

ment is executed. The syntax for such a call is

AreaEnd(RastPort);

(al)

AreaEnd completes the current shape, and causes all of

the shapes that have been defined to be drawn and filled. \ j

Note that unlike PolyDraw, you do not have to define the '—'

endpoint of the shape to get a closed figure. AreaEnd auto

matically completes the shape by joining the last point defined jj

to the first one. By default, the area will be solidly filled in the

color of the foreground pen. It is possible, however, to use a

two-color patterned fill, as we shall see later. • [;
Program 3-12 shows all of the steps needed to draw a

filled version of the octagon we drew in the PolyDraw example. , l

108

n
Drawing Lines and Shapes

! I

Program 3-12. Filled Octagon, C Example

#include <window.c>

demo()

int count;

UWORD AreaBuf [200];

PLANEPTR TBuf;

struct TmpRas TRas;

struct Arealnfo AInfo;

static UWORD Points []

{
180,50,

210,80,

210,120,

180,150,

100,150,

70,120,

70,80

InitArea(&AInfo,AreaBuf, 80);

Rp->AreaInfo = &AInfo;

if ((TBuf = (PLANEPTR)AllocRaster(640,200)) == NULL)
exit(FALSE);

Rp->TmpRas = (struct TmpRas *)lnitTmpRas

(&TRas,TBuf,RASSIZE(640,200));

SetAPen (Rp,l);

AreaMove(Rp,100,50);

for (count=0; count <14; count+=2)

AreaDraw(Rp,Points[count],Points[count+1]);
AreaEnd(Rp);

FreeRaster(TBuf,640,200);

/* end of Areafill.c */

Area Fill from BASIC

The BASIC equivalent of the Graphics library area fill routines

are AREA and AREAFILL. You use AREA like AreaMove and

AreaDraw, to specify each point of the filled shape individ

ually. The syntax is

AREA [STEP] (x,y)

109

LJ
Chapter 3

u

The only value that you must specify is a coordinate for

one of the points of the filled polygon. This coordinate may be J j
expressed as an absolute position, for example, (10,20), or rela

tive to the last point drawn, for example, STEP (10,-20). , }

To draw a filled polygon with AREAFILL, issue an AREA 1]
statement for each point of the polygon in the order in which

you want the points drawn. You do not have to specify the i j

starting point twice since the last point will automatically be '—»
connected to the first point. A maximum of 20 points may be

used to define the polygon. If more AREA statements are

used, all but the first 20 are ignored. When enough AREA

statements have been given to describe all of the points in the

polygon, use the AREAFILL statement to connect the points

and fill the polygon.

Program 3-13 is a BASIC program that shows how to

draw a filled version of the eight-sided figure used in the

PolyDraw example.

Program 3-13. Filled Octagon, BASIC Example

FOR p=0 TO 7

READ x,y

DATA 180,50, 210,80, 210,120, 180,150

DATA 100,150, 70,120, 70,80, 100,50

AREA (x,y) 'AREA for each coordinate pair

NEXT

AREAFILL 'draw filled shape

Flood Fill

The last of the shape filling commands is a general-purpose ,

flood fill routine. Unlike the previous commands that we've I }
discussed, a flood fill does not first draw a shape and then fill

it in. Rather, it colors in an existing enclosed area. By default, » /

the area will be solidly filled with the color of the foreground L—>
pen, but as we shall see later, patterned filling is also possible.

Flood filling operates in one of two modes. In outline j j

mode, the entire area enclosed by a border of the outline color ^—^

is filled. Filling begins at the point which you specify and con

tinues in all directions. As the fill moves outward, every hori- j j

zontally and vertically adjacent pixel which is not colored with

no d

Drawing Lines and Shapes

the pen designated as the area outline pen (AOlPen) is filled.

; [The fill pattern stops spreading at each point where it encoun

ters a pixel that is the color of the AOlPen. If the area of the

r-n fill is not completely surrounded by the outline color, the fill

; | will "leak" out, and the entire window will be filled. We will

discuss how to change the color of the area outline pen in the

r—» next section.

I I In color mode, all adjacent pixels of the same color are
filled. You designate the point at which filling begins, and

whatever color is located at that point becomes the color which

the fill routine displaces. As the fill moves outward, every hor

izontally and vertically adjacent pixel which is colored with

the displacement pen is filled. The fill stops spreading at each

point where a pixel drawn in another pen color is encountered.

The syntax for the flood fill routine is

Flood (RastPort, Mode, X, Y);

(al) (d2) (dO) (dl)

where x and y specify the coordinate at which the fill begins,

and Mode specifies the fill mode (0 = outline mode, 1 =

color mode). It is important to remember that like the area fill

ing routines, Flood uses the Arealnfo and TmpRas structures.

Therefore, you must always initialize an Arealnfo and TmpRas

for the RastPort of a window in which you intend to do flood

filling before any filling actually takes place.

Program 3-14 gives examples of both types of flood filling

in C. It outlines four boxes in white, and then fills them in

various colors, using the outline method. It then fills the cen

ter box in white and uses the color method to fill all the white

p-) areas on the screen, including the outline of the other four

' ' boxes.

<—| Program 3-14. Flood Fill from C

#include <windowl.c>

#include <graphics/gfxmacros.h>
fmmm> demo ()

! i {

int count;

nUWORD AreaBuf [200];

PLANEPTR TBuf;

struct TmpRas TRas;

r~; in

Chapter 3

struct Arealnfo AInfo;

static UWORD Points [] = /* coordinates for boxes */ i
{ ' '

110,20,210,70,

10,70,110,120, i)

110,120,210,170, I 1
210,70,310,120

};

InitArea(&AInfo,AreaBuf, 80); I—I
Rp->AreaInfo = &AInfo;

if ((TBuf = (PLANEPTR)AllocRaster(640f200)) == NULL)

exit(FALSE);

Rp->TmpRas = (struct TmpRas *)InitTmpRas

(&TRas,TBuf,RASSIZE(640,200));

/* Draw four boxes outline in white, */

/* and flood fill them with different colors */

SetOPen (Rp,l);

for (count=0; count<16;count+=4)

{
Move(Rp,Points[count],Points[count+1]);

SetAPen (Rp,l);

Draw(Rp,Points[count+2],Points[count+l]);

Draw(Rp,Points[count+2],Points[count+3]);

Draw(Rp,Points[count],Points[count+3]);

Draw(Rp,Points[count],Points[count+1]);

SetAPen (Rp,2+(count/4));
Flood(Rp,0,9+Points[count],9+Points[count+l]);

}

/* Now, fill the center box with white */
/* and fill all white areas with purple */

SetAPen (Rp,l);
Flood(Rp,0,170,100); /* use outline fill mode */

SetAPen (Rp,6);

Flood(Rp,1,170,100); /* use color fill mode */ j|

FreeRaster(TBuf,640,200);

■ u
/* end of Areafill.c */

\)
\ i

112 \ j
1)

Drawing Lines and Shapes

^ BASIC'S Flood—PAINT

I t The BASIC version of the flood fill is the PAINT statement,
which supports only the outline mode of filling. The syntax

\—[for the PAINT is

PAINT [STEP] (x/y) [,fill_pen [,border_pen]]

The only required value is the coordinates of the point at

which the filling begins. The coordinates may be expressed as

an absolute location or relative to the location of the last dot

that was drawn.

The two optional values that you may specify are

fill—pen, the number of the pen which is used to do the fill

ing, and border—pen, the number of the pen at which the fill

ing stops. The default value for the fill—pen is that of the

foreground pen, while the border—pen defaults to the same

value as is currently in fill—pen.

PAINT uses the outline method for filling. If the shape

that you choose to PAINT is not completely enclosed by the

border color, the fill color will escape through the gap and

spread out to cover the entire window. Likewise, if you have

not specified a border—pen that matches the border color, the

fill will proceed right through the border.

There are some more serious concerns associated with

using PAINT. The statement will not work with a window set

for smart refreshing of the screen. If you try to use PAINT in a

window which was opened with an attribute value of greater

than 15, you'll crash the system. Since the default output win

dow has an attribute value of 31, it is not safe to use PAINT in

that window unless you reopen it with a WINDOW statement

M giving a lower attribute value.
Another point to watch for is specifying coordinates for

«—I PAINT that lie outside the window boundaries. This is particu-

< \ larly easy to do when you're specifying relative coordinates.

Such a PAINT statement may fill areas of memory that do not

i—■[belong to the display, and this can crash the system.

-- The following example draws a circle, PAINTS it white,

and PAINTS the rest of the window orange.

H

113

Chapter 3

WINDOW l,,(0,)-(300,186),15 'Reopen output window to type 15

CIRCLE (150,100),100 'draw the circle I j
PAINT STEP (0,0) 'fill it with foreground pen l—J
PAINT (0,0),3,l 'fill rest of screen with pen 3

Fill and the Area Outline Pen *—{j
We've talked about the functions of the rastport's foreground

pen (APen) and background pen (BPen), but so far have only j j
mentioned the area outline pen (AOlPen) in passing. This pen

has two functions relevant to the fill commands. First, as

noted above, it is used to designate a stop color for the outline

mode of the flood fill command. Second, it can be used to

designate a color to be used for drawing an outline around an

area fill or RectFill shape.

Although there are Graphics library statements that can

be used to change the color of the foreground and background

pens, there is no equivalent statement to change the color of

the area outline pen. There is a C language macro contained

in the file graphics/gfxmacros.h, however, that can be used in

place of such a function. To change the value in the AOlPen,

use the statement

SetOPen (RastPort, pen);

This macro really performs two functions. First, it changes

the value of the AOlPen variable in the rastport. Its second

function is to change the Flags variable, setting a flag called

AREAOUTLINE. This flag indicates that every shape created

by the area fill routine should have an outline drawn around it

in the color of the AOlPen. So, if you set the AOlPen with the

SetOPen macro, you will automatically get outlines around ,

your area fill shapes. To turn the outlining off, you must use 1 !
another C macro statement:

BOUNDARY_OFF (RastPort); | j

To set area outlines from BASIC, you must use POKEs to

perform the work done by the SetOPen macro. SetOPen does

two things. First, it sets the color in the RastPort variable 1 '
AOlPen. Then, it sets the AREAOUTLINE flag (which has a

value of 8) in the Flags variable of the RastPort. Looking at * \

the C language definition of the RastPort structure, we see that <—'

114 y

Drawing Lines and Shapes

the AOlPen variable comes at an offset of 27 bytes from the

jj beginning of the structure. Since the address of the RastPort is
returned by the WINDOW(8) function, AOlPen = WIN-

r^ DOW(8)+ 27. Likewise, the Flags variable comes at an offset of

i I 32 bytes from the start of the RastPort, so Flags = WIN

DOW^)+32. Once we know these two locations, we can use

r—> the statement

1 POKE AOlPen,Pen
to set the color of the area outline pen. We can use the

statement

POKEW Flags, PEEK(Flags) OR 8

to set the AREAOUTLINE flag. Note that we use an OR state

ment so as not to disturb the other Flags setting, and we also

use a POKEW statement since Flags is a 16-bit variable.

To turn area outlining off, reset Flags with this statement:

POKEW Flags, PEEK(Flags) AND 8

Here, then, is the entire series of statements needed to set

area outlining from BASIC:

AOlPen = WINDOW(8)+27

Flags - WINDOW(8)+32

POKE AOlPen, 3 'use pen 3 for border

POKEW Flags, PEEK(Flags) OR 8 'turn outlining on

Be sure to turn off outlining before your program ends so

as not to disrupt the function of other programs. If you forget,

you may find that text will not be printed properly in the

BASIC output window, and the computer may even crash.

P| Patterned Fills

We have already seen how the SetDrPt macro could be used

to set a pattern to be used in line drawing. Similarly, the

!l SetAfPt macro can establish a pattern to be used for filled

shapes.

r—> The process of setting up the fill pattern is a little more

! j complex since a two-dimensional area is involved. The area

pattern is still 16 bits wide, but it is several lines high as well.

p—| You can choose the height of the pattern yourself, but you

must stick to a power of 2 (2 lines, 4 lines, 8 lines, 16 lines,

P 115

Chapter 3

and so forth). Since you're working with a screen with a maxi

mum height of 200 lines, don't make the pattern more than 64

lines high.

You may remember that the line pattern is a 16-bit num

ber that represents a pattern of 16 dots. The area fill pattern j I

may be thought of as an array of 16-bit patterns, stacked one

on top of the other. You determine the values to be placed in

this array in the same way that you determine the line pattern j (
value. It may help to visualize the pattern if you write it out in

binary digits, using ones to stand for dots filled with the fore

ground color and zeros to stand for dots filled with the back

ground color. For example, let's look at a pattern that draws

the letters HI:

0000000000000000 = 0x0000

0110011001111110 = 0x667E

0110011000011000 = 0x6618

0111111000011000 = 0x7E18

0110011000011000 = 0x6618

0110011000011000 = 0x6618

0110011001111110 = 0x667E

0000000000000000 = 0x0000

As you can see, we drew the pattern using zeros and

ones, and then converted the resulting binary numbers to

hexadecimal numbers. To set up an area fill pattern using

these values, we first put them in an array:

WORD Pattern [] =

0x0000,

0x667E,

0x6618,

0x7E18, l_j
0x6618,

0x6618,

0x667E, I (

0x0000 L-J
};

Then, we use the SetAfPt macro statement J I

SetAfPt (RastPort, &Pattern[0], Height_exp);

where &Pattern[0] is a pointer to the first byte of the array, j j

and Height—exp is the exponent part of the height of the pat- ' '

116

u

Drawing Lines and Shapes

n

n

H

tern expressed as a power of 2. As we have stated, the height

of the pattern must equal 2 raised to some power. So if the

pattern is 8 lines high (2A3), the Height_exp value is 3, and if

the pattern is 32 lines high (2A5), Height_exp is 5.

Once the pattern is set, any RectFill, AreaEnd, or Flood

operation will use this pattern to fill the designated area. The

■—1 colors used for the fill will depend on the drawing mode cho

sen. When JAM2 is selected, the pixels represented by ones in

the bit pattern are drawn in the color of the foreground pen,

and the pixels represented by zeros are drawn with the back

ground pen. When JAM1 is selected, the pixels represented by

zeros are not affected. And when both JAM1 and COMPLE

MENT are chosen, the pixels represented by ones will be

complemented.

Program 3-15 demonstrates the use of the area fill pattern

inC

Program 3-15. Area Fill Pattern from C

#include <windowl.c>

#include <graphics/gfxmacros-h>

demo()

{

UWORD AreaBuf [200];

PLANEPTR TBuf;

struct TmpRas TRas;

struct Arealnfo AInfo;

static WORD Points [] = /* coordinates for polygon */

195,60,

230,90,

Pf 230,130,
' * 195,160,

125,160,

, . 90,130,

I 90,90,
1 ! 125,60

};

i"""] static UWORD Patl [] = /* 'HI1 fill pattern */

0x0000,

r— 0X667E,

! j 0x6618,
0X7E18,

0x6618,

n

LJ
Chapter 3

u

0x6618,

0X667E,

0x0000

0X667E, | I
•—I

static UWORD Pat2 [] = /* geometric pattern */ j

{ L
0X0FF0,

0XF00F,

0XAAAA, !
0x5555, u
0XA5A5,

0X5A5A,

0XF0F0,

0X0F0F

static UWORD Pat3 [] = /* random fill pattern */

t
0X048C,

0X159D,

0x26AE,

0X37BF,

0x3333,

0XAAAA,

0X3C3C,

0XD43D4

/* initialize temporary data structures and buffers */

InitArea(&AInfo,AreaBuf, 80);

Rp->AreaInfo = &AInfo;

if ((TBuf = (PLANEPTR)AllocRaster(640,200)) == NULL)

exit(FALSE);

Rp->TmpRas = (struct TmpRas *)lnitTmpRas

(SeTRas, TBuf, RASSIZE (640, 200)) ;

/* draw a filled triangle with Area commands */

i

SetAfPt(Rp,&Pat2[0], 3);

SetAPen(Rp,2);

SetBPen(Rp,5);

AreaMove(Rp,280,100); I 1
AreaDraw(Rp,280,180);

AreaDraw(Rp,200,180);

AreaEnd(); j (

/* draw a filled rectangle with RectFill */

SetAfPt(Rp,&Patl[0],3); j j

SetAPen(Rp,4); '

118

n
Drawing Lines and Shapes

nSetBPen(Rp,3);

SetOPen(Rp,l); /* outline it in white */

RectFill(Rp,15,15,80,96);

j (/* Draw a polygon with PolyDraw and Flood fill it */

SetAfPt(Rp,&Pat3[0],3);

j—i SetAPen(Rp,6);

1 I SetOPen(Rp,6);
SetBPen(Rp,7);

Move(Rp,125,60) ;

PolyDraw(Rp,8,&Points);

Flood(Rp,0,160, 100); /* use outline fill mode */
FreeRaster(TBuf,640,200);

/* end of Fillpat.c */

Pattern Fill in BASIC

In BASIC, the same PATTERN statement that is used to set a

pattern for line drawing can also be used to set the pattern for

area filling. The area fill pattern should be stored in an array

of 16-bit (short) integers. First, DIMension the array to a

power of 2. For example, the proper DIM statement for an

eight-element array called Pattern% is

DIM Pattern%(7)

since the array starts with element 0.

Next, you must determine the values with which to fill

the array, as demonstrated above. Once we have determined

the values for the pattern elements, we assign these values to

the array Pattern%. Then, we set the area fill pattern to the

values stored in this array with the statement

PATTERN ,Pattern%()

When the pattern is set, BASIC makes its own internal

copy of the array. Pattern% is no longer needed unless you

want to set the pattern to another array and change back later.

You may ERASE the array after the PATTERN statement is

given in order to free up memory.

119

Chapter 3
u

u

Program 3-16 fills a box with the HI pattern that we de- . ,

signed above. Notice that at the end of the program, we set I i
the area fill pattern back to a solid pattern. If we had not done

so, the cursor in our default output window would have been \ \

rendered difficult to see. We do not have to change the pattern '—'
back at the end of the next example because it opens its own

window, rather than using the default window. Each window j j

has its own private line pattern and area fill pattern.

The area fill pattern is used with all of the commands that

produce filled shapes. Program 3-17 demonstrates the three

different kinds of patterned fills: boxes, AREAFILLs, and

PAINTing.

Program 3-16. Filling a Box with a Pattern

WINDOW 1,,(0,0)-(250,186)

'size the output window

DIM pat%(7)

FOR p=l TO 6

READ d

pat%(p)=d

'put the pattern into an array

NEXT

DATA &h667e, &h6618, &h7el8

DATA &h6618, &h6618, &h667e

PATTERN ,pat%

'use the pattern for fills

LINE (16,32)-STEP(192,96),fbf

FOR p=0 TO 7

pat%(p)=-l

NEXT

PATTERN -l,pat%

'return the pattern to solid
END , ,

Li

Program 3-17. Boxes, AREAFILLs, and PATTERNS
\ I

SCREEN 1,320,200,4,1 * l
'16-color, lo-res

WINDOW 2,,,0,1

'full-sized window

120 jj

n
Drawing Lines and Shapes

PALETTE 0,0,0,0

•black background

DIM pat%(7)

'pattern array has 8 elements

COLOR 9,14

f=0:GOSUB Fillpat

1 set pattern

CIRCLE (160,100),70

PAINT (160,100)

•flood fill

COLOR 5,6

f=&HA5A5:GOSUB Fillpat

'set pattern

LINE (10,10)-STEP(60,90),,bf

■rectfill

COLOR 11,9

f=&H5555:GOSUB Fillpat

1 set pattern

AREA (280,100)

AREA STEP (0,80)

AREA STEP (-80,0)

AREAFILL

'area fill

WaitForClick: IF NOT MOUSE(0) THEN WaitForClick

WINDOW CLOSE 2

SCREEN CLOSE 1

WINDOW OUTPUT 1

END

Fillpat:

'create a repeating or random fill pattern

RANDOMIZE TIMER

FOR p=0 TO 7

IF f=0 THEN pat%(p)=RND*60000&-30000 ELSE pat%(p)=f
NEXT

PATTERN ,pat%

RETURN

121

u
Chapter 3

LJ

Multicolor Fill Patterns (

So far, we've just been using two-color patterns to fill our LJ
shapes. With a little extra effort, however, you can produce a

multicolor fill pattern that fills shapes with as many colors as j j

your screen allows. —}

The first step is to create the display data for the pattern.

The process is the same as that for a two-color pattern, except j j

here you must provide a complete pattern for every bit plane

used. For example, if you are drawing on a screen that is three

bit planes deep, and you want to create a fill pattern that is

two lines high, you must supply six words of pattern data. The

first four words in the pattern are drawn in plane 0, the next

four words in plane 1, and the last four in plane 2. Therefore,

if your data looked like this, the top line of the pattern would

be one solid color, and the bottom line would be another solid

color:

UWORD Filpat [] =

0x0000, /* data for plane 0 */

0x0000,

0x0000, /* data for plane 1 */

Oxffff,

Oxffff, /* data for plane 1 */

Oxffff,

To find out which color is used, we group the correspond

ing bits from each plane as three-bit numbers. In this example,

the bits from the top line of planes 0 and 1 are all set to 0.

That means the rightmost two digits of the number will be 0.

The bits from the top line of plane 2 are all set to 1. That] j

means the leftmost digit of the number will be 1. Therefore, '—'

the pen number used to color the top line of the pattern will

be 100 binary, or 4. The bits from the second line of the pat- j '

tern are set to 1 (plane 2), 1 (plane 1), 0 (plane 0). This is '

equivalent to the binary number 110, or 6, so pen 6 will be

used to color the bottom line of the pattern. j j
The other step you must take is to specify the Height_exp

value as a negative number. In the example above, the height , ,

of the pattern is 2 (2A1), so Height_exp would normally be 1. LJ

122 u

Drawing Lines and Shapes

n

n

But since this is a multicolor pattern, we specify the height ex

ponent as — 1 instead. The SetAfPt macro statement for this

example would look like this:

SetAfPt (RastPort, &filpat, -1);

Program 3-18 is a C program that sets up an eight-color

fill pattern on our low-resolution custom screen. The pattern is

in the shape of a grid, with four rows of two colors each. Sam

ple shapes are created using all three fill modes, rectfill, area

fill, and flood fill.

Program 3-18. Shapes with Multicolor Patterns, C Example

#include <windowl.c>

#include <graphics/gfxmacros.h>

demo()

t

UWORD AreaBuf [200];

PLANEPTR TBuf;

struct TmpRas TRas;

struct Arealnfo AInfo;

static WORD Points [] = /* coordinates for polygon */

195,60,

230,90,

230,130,

195,160,

125,160,

90,130,

90,90,

125,60

static UWORD Pattern [] /* grid fill pattern */

0x0000, 0x0000, 0x0000, 0x0000,

0XFFFF, 0XFFFF, 0XFFFF, 0XFFFF,

0x0000, 0x0000, 0x0000, 0x0000,

0XFFFF, 0XFFFF, 0XFFFF, 0XFFFF,

0x0000, 0x0000, 0x0000, 0x0000,

0x0000, 0x0000, 0x0000, 0x0000,

0XFFFF, 0XFFFF, 0XFFFF, 0XFFFF,

0XFFFF, 0XFFFF, 0XFFFF, 0xFFFF,

0XFF00, 0XFF00, 0XFF00, 0XFF00,

0XFF00, 0XFF00, 0XFF00, 0XFF00,

0XFF00, 0xFF00, 0XFF00, 0XFF00,

0XFF00, 0XFF00, 0XFF00, 0XFF00

i *

123

u
Chapter 3

u

/* initialize temporary data structures and buffers */ \ i
] I

InitArea(&AInfo,AreaBuf, 80);

Rp->AreaInfo = &AInfo;

if ((TBuf = (PLANEPTR)AllocRaster(640,200)) == NULL) \ j

exit(FALSE); i 1
Rp->TmpRas = (struct TmpRas *)lnitTmpRas

(&TRas,TBuf,RASSIZE(640,200));

/* set pens, drawmode, and fill pattern */ I J

SetAfPt(Rp,&Pattern[0],-4);

SetAPen(Rp,255);

SetBPen(Rp,0);

SetDrMd(Rp,JAM2);

/* draw a filled triangle with Area commands */

AreaMove(Rp,280,100);

AreaDraw(Rp,280,180);

AreaDraw(Rp,200,180);

AreaEnd();

/* draw a filled rectangle with RectFill */

SetOPen(Rp,l); /* outline it in white */

RectFill(Rp,15,15,80,96);

/* Draw a polygon with PolyDraw and Flood fill it */

SetOPen(Rp,255);

Move(Rp,125,60);

PolyDraw(Rp,8,&Points);

Flood(Rp,0,160, 100); /* use outline fill mode */

FreeRaster(TBuf,640,200);

1 u
/* end of Colorpat.c */

Multicolor Fill Pattern from BASIC

Using a multicolor fill pattern from BASIC is a bit more diffi- I j

cult. BASIC uses the PATTERN in place of the SetAfPt macro, ^~
and this command is very particular about the type of input it

receives. It requires that the pattern array you use be DIMen- j I
sioned to a size equal to a power of 2. But when you use a

124 M

n

Drawing Lines and Shapes

(—"I multicolor fill pattern, you must supply patterns for a number

of bit planes, and each pattern must be a power of 2 in length.

If you want to use a 16-line pattern on a screen that is three

j[planes deep, you must provide three 16-word patterns, or 48

words of data in all. But if you try to DIMension your array to

48 elements, PATTERN will give you an Illegal function call er-

i I ror message.
The solution to this problem is fairly simple. You must

DIMension your array to the next largest power of 2. For our

48-word example, you must DIM the array to 64 elements and

fill only the first 48. Remember, since by default arrays start

with element 0, the way to DIM a 64-element array is with the

statement

DIM pat%(63)

Of course, if you have used the OPTION BASE 1 state

ment to make your arrays start with element 1 rather than ele

ment 0, you would use the statement

DIM pat%(64)

The other problem is how to set the area pattern size to a

negative number. PATTERN sets the pattern size to the power

of 2 that is appropriate for the size of your array. If you DI

Mension a 64-element array, it sets the pattern size to 6

(2*6 = 64). For a 16-line multicolor pattern, you need to specify

a pattern size of —4. Since you can't DIMension the array to a

negative size, you must take a different approach. The SetAfPt

macro puts the size of the pattern into a rastport variable

called AreaPtSz. The BASIC equivalent would be to POKE this

F~{ value into the rastport.
As we have mentioned, POKEing data into Intuition data

v structures should not be your first choice of programming

J I methods, since the possibility exists that the composition of

those data structures will change in the future. As a practical

j—I matter, however, the chance of such a change is slight, and

L_ (there is no other way to used multicolor fills from BASIC. So

all that remains is to find the address of the AreaPtSz variable.

r-| From the C declaration for the RastPort data structure, we

'-■ -' can tell that the AreaPtSz variable is located at an offset of 29
bytes from the beginning of the RastPort. The WINDOW(8)

n

u
Chapter 3

LJ

function can be used to find the address of the RastPort. There- j j

fore, the address for AreaPtSz is equal to WINDOW(8)+ 29. *—J

The next problem is POKEing a negative number. Because

of the way that BASIC stores numbers internally, negative j j

numbers cannot be represented with fewer than 16 bits. The

AreaPtSz variable is only an 8-bit number, however, so we

cannot POKE it with a larger value. So we must cut this nega- |_J
tive number down to size. To do this, we can use the AND

operator to mask off the top 8 bits. The proper expression to

use is the negative number AND 255. Therefore, to POKE the

number — 4 into the AreaPtSz variable, you would use the

statement

POKE WINDOW(8)+29, -4 AND 255

The final step is to set the foreground color to the maxi

mum pen value and the background color to 0 (JAM2 is al

ready our default drawing mode). The WINDOW(6) function

tells us what the maximum drawing pen number is for that

window. So we can set the pens correctly with the statement

COLOR WINDOW(6),0

regardless of how many bit planes are used by the screen.

From here on in, the multicolor area pattern is used just

like the two-color variety. Program 3-19 is a BASIC program

which uses the eight-color pattern that we created for the C

example (Program 3-18). It fills shapes with this pattern using

all three fill modes (LINE bf, AREA, and PAINT).

Program 3-19. Shapes with Multicolor Patterns, BASIC

Example , j
I' j

** s—

'* Multicolor pattern fill program *

'* uses an 8 color fill pattern to show * i /

•* how multicolor fills can be performed * LJ
'* using the AREA, PAINT, and LINE bf *

1 * commands *

•••a** 1^_

GOSUB InitScreen

1 Dimension a 64 byte pattern array, '—)
1 and fill first 48 bytes without pattern
1 (3 planes of 16 bytes each)

126 LJ

Drawing Lines and Shapes

DIM pat%(63) 'dim pattern array

FOR Pbyte=0 TO 47 'partially fill array

READ patdat 'with our data

pat%(Pbyte) = patdat

NEXT

PATTERN ,pat% 'set pattern

ERASE pat% 'we no longer need array

The following code performs the work

of the C Macro SetAfPt (pat%,-3).

Since there is no library call,

we must POKE the size value directly

to the Rastport.

Rp=WINDOW(8) 'Rastport address

AreaPtSz = Rp+29 'Area Pattern size

POKE AreaPtSz,-4 AND 255

'-4 is pattern size,

1 16 words (4A2) per bit plane

REM—Here are the 48 words of data

REM—for grid pattern

'Plane 0

DATA &h0000,&h0000,&h0000,&h0000

DATA &hffff,&hffff,&hffff,&hffff

DATA &h0000,&h0000,&h0000,&h0000

DATA &hffff,&hffff,&hffff,&hffff

'Plane 1

DATA &h0000#&h0000,&h0000,&h0000

DATA &h0000,&h0000,&h0000,&h0000

DATA &hffff,&hffff,&hffff,&hffff

DATA &hffff,&hffff,&hffff,&hffff

'Plane 2

DATA &hff00,&hff00,&hff00,&hff00

DATA &hff00,&hff00,&hff00,&hff00

DATA &hff00,&hff00,&hff00,&hff00

DATA &hff00,&hff00,&hff00,&hff00

COLOR WINDOW(6),0

'It is important that

'PenA = maxpen, PenB = 0

'Now that the pattern is set up,

'we draw three shapes and use

•different fills to fill them

127

Chapter 3

CIRCLE (160,100),70

PAINT (160,100) 'flood fill

LINE (10,10)-STEP(60,90),,bf 'rectfill

LI

LJ

AREA (280,100)
AREA STEP (0,80)

AREA STEP (-80,0)

AREAFILL

u

•area fill

WaitForClick:

IF NOT MOUSE(0) THEN WaitForClick

WINDOW CLOSE 2

SCREEN CLOSE 1

WINDOW OUTPUT 1

END

InitScreen:

SCREEN 1,320,200,3,1 *8-color, lo-res

WINDOW 2,,,0,1

PALETTE

PALETTE

PALETTE

PALETTE

PALETTE

PALETTE

PALETTE

PALETTE

RETURN

0,0,0,0

1,1,lfl
2,0,0,1

3,1,0,0

4,0,1,0

5,1,1,0

6,1,0,1

7,0,0,1

'black

1 white

•blue

•red

'green

•yellow

1 purple

•cyan

u

128 LJ

n

n

n

'\'\';.i- i'ii?:\'i%'0:!i ':.'r'jiii''f'i

v?SRS--:

WU^^<-MBUSmU:

MiliBli

illMiliSiilsilMiiiM J

i^S

i^y.il^KRlSl^^Ki^i

mi

mi

S?iiSI ^Ili^

^SlliiSISI

s^^si

&;-*•:,
>*->&&%

■^z&m

m

im

m^%m&is

u

u

0

u

n

n

n

n

Text

W
e normally don't think of the text that appears on a

computer screen as graphics, but on the Amiga

there is really very little difference between text

and any other kind of graphics. Since text is

drawn on the screen like any other image, graphics and text

images may be mixed freely. The various display modes dis

cussed in Chapter 1 and the drawing modes discussed in

Chapter 3 all affect text output.

For C programmers, there are actually two methods of

producing text on the Amiga. The first method is to attach a

console device to your output window. This device provides

an interface much like that of the old style Teletype terminal

(TTY). From the standpoint of the program, text is sent to the

console as it would be to a disk drive or any other device.

The console device takes this text and outputs it sequen

tially to the screen. It takes care of the details involved in

maintaining a clean display, such as making sure that the bor

ders are not overwritten, updating the block cursor, returning

to the next line after the end of the current line, and scrolling

the display when the last line is filled. So, while the device it

self uses the graphics system to render the text on the screen,

your program need not be aware of the details of text drawing.

Although the console device takes care of a lot of the

work involved in text-intensive displays, it also takes over

control of much of the display. For example, with the console

device, you can specify the placement of text only by character

position; you cannot achieve the pixel-by-pixel precision at

tainable through direct control of text. Graphics-intensive

applications will therefore probably need to take advantage of

the other method of producing text on the Amiga. This

method involves drawing the text on the screen just as you

would any other graphics image.

133

u
Chapter 4

u

Text as Graphics r i

Using the Graphics library routines to draw text is very similar

to using them for line drawing. The basic library routine for

text rendering is called Text; it's executed like this: j |

Text(RastPort,Text_string,Chars);

(al) (aO) (dO) ,

where the variable Text—String points to a string of ASCII '—!
characters, and the variable Chars specifies the number of

characters to be written. The text is printed at the current pen

position. As we mentioned in Chapter 3, this position may be

changed by using the Move() library routine. After the text

has been printed, the horizontal pen position is moved to the

end of the last character printed. The vertical position remains

the same.

When you print text with the Text routine, the size and

position of the text image depends a lot on the font that is

used. The three most important factors to consider are the

height of the font, its width, and the baseline.

The height of the font tells how many lines the characters

in that font occupy vertically. If a font is h pixels high, you

must print each line of text at least h pixels below the previous

line so as not to overwrite part of that line.

The width of the font measures the number of pixels the

average character in the font occupies horizontally. For

monospaced fonts like the two standard system fonts, each

character will actually be that wide. But the Amiga also sup

ports proportionally spaced fonts in which the widths of indi

vidual characters may vary. For example, in a proportional { ,

font, the letters i and / can be much thinner than m and w. For I I
proportional fonts, the width value gives an approximation of

the average character width. t i

Finally, the baseline value specifies how the character will '—'
be positioned vertically. Since each character can be several

lines tall, there must be some means of deciding if the vertical I I

coordinate of the character position actually specifies the top

line of the character, the bottom line, or somewhere in be

tween. The baseline is the font characteristic that specifies how j [

much of the character extends above the specified vertical po

sition of the character and how much below.

u

n
Text

j—| The height, width, and baseline values for the font cur-

1 ' rently used by a particular window are kept track of in the
RastPort structure for that window. Your program can learn

r~"| these values by using the following statements:

Height - Rp->TxHeight;

Width = Rp->TxWidth;

I™] Baseline = Rp->TxBaseline;

The two system fonts that are included in the operating

system are known as Topaz 8 and Topaz 9. The number after

the name of the font designates the height of the font, so each

character of the Topaz 8 font is 8 lines high, and each charac

ter of the Topaz 9 font is 9 lines high. This means that a maxi

mum of 25 lines of Topaz 8 characters can fit on a 200-line

noninterlaced screen, while only 22 lines of Topaz 9 characters

fit on the same size screen. The width of Topaz 8 characters is

8 pixels, so a maximum of 80 such characters can fit on a single

high-resolution (640 pixel) line, 40 on a low-resolution (320

pixel) line. Topaz 9 characters are 10 pixels wide, so 64 of them

can fit on a high-resolution line, and 32 on a low-resolution

line.

The baseline for each of these fonts is 6. That means that

each character extends six pixels above the point specified as

the vertical coordinate for the character. In Topaz 8, the sev

enth line, the baseline, is the last line used to draw most char

acters, and the final line is usually left blank to leave a space

between lines. Only characters that descend below the line,

such as g and y are drawn down past the baseline. Since the

Topaz 9 has the same baseline, though it is one line taller, it

r*"^ has two lines below the baseline. This means that even for
characters with descenders, there is a blank line between the

bottom of that character and the top of the character on the

! ! next line.
As with other drawing commands, the Text routine puts

*—I the burden on the user to make sure that the resulting image

L ' lies inside the window boundaries and does not overwrite the

borders and gadgets. Because most of each character appears

r*> above the baseline, you must be sure to leave room for the top

- ' of the character when you position it vertically. This means
that the minimum vertical position for a character is equal to

R 135

u
Chapter 4

u

the baseline. For the default fonts, you should not place a | »

character higher than line 6, or the top might be clipped off. t—I
Even when you offset your character six lines from the

top, it still will be printed at the top of the window. Unless i j

you are using a Gimmezerozero type window, in which the '—'

borders are drawn in their own separate layer, your text will

overwrite the title bar. To avoid this, you must offset your line I j

of text by the number of lines occupied by the title bar. To

find out how much room is taken up by border graphics, you

may use the Window structure variables BorderLeft, Border-

Top, BorderRight, and BorderBottom. For instance, to find out

how much room the title bar takes up at the top of the win

dow, you could use the statement

BarHeight = Window->BorderTop;

Program 4-1 is a C program that illustrates correct (and

incorrect) placement of text.

Program 4-1. Text Routines in C

#include <window.c>

demo()

{
UWORD h,b;

BYTE t;

SetAPen(Rp,l);

SetBPen(Rp,0);

h = Rp->TxHeight;

b = Rp->TxBaseline;

t = Wdw->BorderTop;

Move(Rp,50,b); I)
Text(Rp,"This overwrites the title bar",29),•

Move(Rp,50,b+t)? | I

Text(Rp,"This is the first clear line of of text",39); L—<•

Move(Rp,50,b+t+h);

Text(Rp,"This is the next line of text",29);

/* end of Text.c */ jj

136

Text

fl Keeping Text in the Window

In order to make sure that your text does not run off the right

r—i edge of the window, you may have to calculate the length of

' I your text before it is printed. With the monospaced system

fonts, this is simple, because the length of the text in pixels is

j~| eight or ten times the number of characters used, depending

on whether Topaz 8 or 9 is the font used.

With proportionally spaced fonts, the task is harder, since

each character has its own individual width. The Graphics li

brary provides a function that will perform the calculation for

you. It can be called with the statement

Length = TextLength(RastPort,Text_string,Chars);

(dO) (al) (aO) (dO)

where the input is the same as for the Text routine, and

Length is the width of the text line in pixels. TextLength only

calculates what the length of the string would be if it were ac

tually printed. Since text that goes past the edge of the win

dow will be clipped, it is possible that the part of the string

that is actually printed is much shorter than Length.

As we mentioned earlier, the colors in which the text is

drawn depend on the same factors as any other drawing, the

colors in the foreground and background pens, and the draw

ing mode currently in use. In the default drawing mode,

JAM2, the color of the foreground pen is used to draw the text

itself, and the color of the background pen is used to draw the

background behind the text characters.

r-j Text in BASIC

' -■' The situation is somewhat different in BASIC, since the PRINT

statement, the primary method for displaying text, works more

!"""] along the lines of the console device than the Text() routine.

However, because of the variable size of the output window,

programmers still have some responsibility for making sure

j » that the text is printed within the confines of the window in

which they are working. For example, try typing the following

_ one-line BASIC program in the immediate mode:

'- ' FOR x=0 TO 255:PRINT x;:NEXT

1 137

u
Chapter 4

u

You'll see that the PRINTed output goes right off the edge | j

of the screen. To insure that this does not happen in your pro

gram, use the WIDTH command to set the maximum line

width. When used for this purpose, the syntax of the com- j j
mand is

WIDTH linesize [,print_tab]

where linesize is the maximum line length, and print—tab is

an optional value that specifies the width of the columns used

when a comma is added to the end of a PRINT statement.

The maximum line length depends both on the width of

your window and the size of the text font that you are using.

If you have set the 80-column font as the default using the

Preferences program, then each character will be eight dots

wide, resulting in a maximum line width of 80 characters for a

high-resolution window and 40 for a low-resolution window.

Actually, since some room is taken up by the border drawn

around the window and the sizing gadget (if present), this will

be reduced to 75 or 76 characters in high resolution and half

that number in low resolution. If you have set the 60-column

font as the default, then the width of each character will be

ten pixels, and the maximum number of characters must be re

duced accordingly.

This assumes, of course, that you are using a full-size

window and that the window cannot be sized. If this is not

the case, your program may have to check the size of the win

dow in order to set the output WIDTH. The WINDOW(2)

function returns the current width of the window in pixels.

Therefore, to find the maximum line length, you can divide \ j

the WINDOW(2) figure by 8 or 10, depending on whether you (—)

are using the 80- or 60-column font.

This raises the related question of how your program can | J

tell which size of system font it is using. The default character (]
size is determined by the settings of the Preferences program,

so there is no clear way to tell whether BASIC will start up in I j

the 60-column (9 point) or 80-column (8 point) font. Since

each letter of the former font is larger than the corresponding

character of the latter, text that has been carefully positioned] j
for one mode might appear completely out of line in the other.

One way around this problem is to find out what size font . »

138

Text

n

j| is being used and adjust your program output accordingly. As

we said in the previous section, the height of the text font is

r^n stored in a rastport variable called TxHeight. According to the

! i definition for the RastPort data structure, this variable comes
at an offset of 58 bytes from the beginning of the structure.

r—I Therefore, a quick, if not elegant, way of finding out the

' height of the font being used in the output window is to use
the statement

Height = PEEKW (WINDOW(8) +58)

If Height is equal to 8, you know that the Topaz 8 (80-column)

font is being used, and if it is 9, the Topaz 9 (60-column) font

is the default. A safer alternative, and one that we recom

mend, is to call the Graphics library routine AskFont. This

routine will be discussed a little later.

Once you have found out what size text is being used by

the program, you can insure accurate placement of text by

using PTAB. The LOCATE statement, which is normally used

for text placement, moves the text cursor to even character po

sitions. The absolute coordinates of these character positions

may vary according to the size of the text font. But PTAB moves

the text cursor to an absolute pixel location. Its syntax is

PTAB(x)

where x is the horizontal coordinate for the text cursor. If you

wish to position the text at an absolute vertical coordinate as

well, you must use the operating system routine Move, which

was demonstrated in Chapter 3 in the explanation of the Poly-

_ Draw routine in the "Drawing Polygons" section. Remember

f _ I that the vertical position you specify will be used to determine
the point where the baseline of the text is placed.

r—| A simpler solution, perhaps, to the problems raised by the

' ' placement of variable-sized text is to have your program itself
open a new window and specify the font to be used in that

P") window. This procedure is described in the next section.

Like other BASIC graphics figures, the color of text de^

pends on the setting of the foreground and background pens.

(~j You can change the color of text by using the COLOR state
ment that we described in Chapter 3 to reset these foreground

rn and background pens.

1 ' 139

Chapter 4

Changing Fonts ji

Changing from one system font to another is a multistep pro

cess. First, you must set up a TextAttr (Text Attribute) data

structure that describes the font that you wish to use. Next, j j
you must open the font with the OpenFont routine. Then, you

must specify that font as the one currently used by your win- , .

dow's rastport with the SetFont routine. 1 I
The syntax for the OpenFont routine is

FontPtr = OpenFont(TextAttr);

(dO) (aO)

where TextAttr is a pointer to a TextAttr data structure. This

structure provides a description of the font that you wish to

open. The C definition for the TextAttr structure looks like

this:

struct TextAttr

{
STRPTR ta_Name;

UWORD ta_Size;

UBYTE ta_Style;

UBYTE ta_Flags;

};

The first field, ta_Name, is where you specify the name

of the font. This name is composed of the lowercase ASCII

characters of the font name, followed by the characters .font,

and ending with an ASCII 0. For example, the correct format

for the name of the system fonts is topaz.font.

The next variable, ta_Size, contains the height of the font

in lines. The ta__Style field contains flags that specify whether

this font is designed as a normal typeface or as a special style j j
of font. Possible special-style flags include FSF_NORMAL (0),

FSF_UNDERLINED (1), FSF_BOLD (2), FSF_ITALICS (4),

and FSF-EXTENDED (8). LJ
Finally, the ta_Flags variable contains a number of flags

that provide information about the origin and intended use for . .

the font. These include FPF_ROMFONT (1), FPF_DISKFONT LJ
(2), FPF_REVPATH (4), FPF_TALLDOT (8), FPF_WIDEDOT

(16), FPF_PROPORTIONAL (32), FPF_DESIGNED (64), and j j

FPF_REMOVED (128). The first two indicate whether the font '—'
is in ROM or DISK-based. The next flag specifies that the font

140 LJ

n
Text

n

PI is designed to be printed from right to left (REVerse PATH).

The next two indicate whether the font was designed specifi

cally for high or low resolution, interlaced or not. The PRO-

i [PORTIONAL flag indicates that the width of each character is

specified individually. DESIGNED means that the font was de-

_ signed and not generated by using some formula to modify an

! I existing font. Finally, REMOVED means that the font is not
currently linked into the system.

Therefore, to open the standard 80-column text font, you

could use these statements:

Struct TextFont FontPtr;

struct TextAttr StdFont = { "topaz.font", 8, 0, 0};

FontPtr = OpenFont(&StdFont);

This indicates that you wish to open the Topaz font, eight

lines high, normal style, and with no special preference flags.

The system tries to find the best possible match to your de

scription. If no match is found, the OpenFont routine returns a

zero. If the font you described, or one close to it, is found, the

routine returns a pointer to the TextFont structure that de

scribes the font it found. In determining what the best match

is, the system first matches the font name. It then tries to

match the height, style, and flags fields, in that order. You can

check to see whether the font that was found matched your

request exactly by looking at the fields tf_YSize, tf—Style, and

tL-Flags in the TextFont structure that was returned.

Once you're sure that a nonzero pointer to the TextFont

structure was returned by OpenFont, you may use the SetFont

r—) routine to begin using that font. A call to SetFont takes the

i J form

SetFont(RastPort, FontPtr);

f—j (al) (aO)

where FontPtr is the TextFont structure pointer that was re

turned by OpenFont. Program 4-2 shows how to write to a

j (window using both sizes of the standard system font in the C

language.

_ Notice that when we finished with the font that we

!_J opened, we used the CloseFont routine, which takes this form:

CloseFont(FontPtr);

n (ai)
141

Chapter 4

That's because OpenFont not only supplies us with the ad

dress for the TextFont structure, but also marks the font as be- «—

ing in use by our application. This is significant because the

operating system may unload a non-ROM font (like a disk- \ >

loaded font) if it is not in use and additional free memory is '—'
required. While the system fonts will not be unloaded, it is

nonetheless a good idea to get into the habit of closing fonts | |

after you are done with them. The exception to this, as we ' '

shall see a bit later, is with disk-loaded fonts under version 1.1

of the operating system, which should not be closed because

of a system bug.

As was pointed out in the last section, if you do not spec

ify a default font for your screen or window, you will get the

system font set by the Preferences program. You can find out

which font is being used by the current window with the

function AskFont, which takes the form

AskFont(RastPort, TextAttr);

(aO) (al)

where TextAttr is a pointer to an empty TextAttr structure that

you have set up to receive the information about the current

font. Once the statement has been executed, you can check the

contents of this structure to determine the name, height, style,

and preference flags for the current font. (See Program 4-2.)

Changing System Fonts in BASIC

To specify the font to be used in a window, you must use the

operating system routines OpenFont, SetFont, and CloseFont.

The first step is to use OpenFont to get a pointer to a font de- j j

scriptor. Since this call returns a value, you must use the DE

CLARE FUNCTION statement as well as opening the Graphics

library with the LIBRARY statement. 1 j
(Remember: When a call to the Graphics library is used,

BASIC gets information about the location of the system . ■,

graphics routines from a file called graphics.bmap. This file is I 1
included on the Amiga BASIC disk in the BasicDemos direc

tory and must be present in the current disk directory when i j

the program containing the LIBRARY statement is run.) i—'

142 LJ

]
3

z)
::
]
u

=1
n

J
^

-]

P
r
o
g
r
a
m

4
-
2
.
W
r
i
t
i
n
g
t
o
a
W
i
n
d
o
w

in
C

#
i
n
c
l
u
d
e

<
w
i
n
d
o
w
.
c
>

d
e
m
o
(
)

{ s
t
r
u
c
t

T
e
x
t
F
o
n
t

*
F
o
n
t
P
t
r
;

s
t
a
t
i
c

s
t
r
u
c
t

T
e
x
t
A
t
t
r

S
y
s
F
o
n
t

=

{
"
t
o
p
a
z
.
f
o
n
t
"
,
T
O
P
A
Z
_
E
I
G
H
T
Y
,
0
,
0
}
;

S
e
t
A
P
e
n
(
R
p
,
l
)
;

S
e
t
B
P
e
n
(
R
p
,
0
)
;

F
o
n
t
P
t
r

=
(
s
t
r
u
c
t

T
e
x
t
F
o
n
t

*
)
O
p
e
n
F
o
n
t
(
&
S
y
s
F
o
n
t
)
;

i
f

(
F
o
n
t
P
t
r

=
=

0
)

e
x
i
t
(
F
A
L
S
E
)
;

S
e
t
F
o
n
t
(
R
p
,
F
o
n
t
P
t
r
)
;

M
o
v
e
(
R
p
#
5
0
#
6
0
)
;

T
e
x
t
(
R
p
,
"
T
h
i
s

i
s

t
h
e

s
y
s
t
e
m

T
o
p
a
z

f
o
n
t
,

8
l
i
n
e
s

h
i
g
h
"
,
4
3
)
;

C
l
o
s
e
F
o
n
t
(
F
o
n
t
P
t
r
)
;

S
y
s
F
o
n
t
.
t
a
_
Y
S
i
z
e

=
T
O
P
A
Z
_
S
I
X
T
Y
;

F
o
n
t
P
t
r

=
(
s
t
r
u
c
t

T
e
x
t
F
o
n
t

*
)
O
p
e
n
F
o
n
t
(
&
S
y
s
F
o
n
t
)
;

i
f

(
F
o
n
t
P
t
r

=
=

0
)

e
x
i
t
(
F
A
L
S
E
)
;

S
e
t
F
o
n
t
(
R
p
,
F
o
n
t
P
t
r
)
;

M
o
v
e
(
R
p
,
5
0
,
8
0
)
;

T
e
x
t
(
R
p
,
"
T
h
i
s

i
s

t
h
e

s
y
s
t
e
m

T
o
p
a
z

f
o
n
t
,

9
l
i
n
e
s

h
i
g
h
"
,
4
3
)
;

C
l
o
s
e
F
o
n
t
(
F
o
n
t
P
t
r
)
;

h-
>

/
*

e
n
d

o
f

S
y
s
f
o
n
t
.
c

*
/

C
O

Chapter 4

The proper syntax for the OpenFont call is , .

FontPtr& = OpenFont&(VARPTR(textAttr&(0))) ^J
The one value that must be supplied to the OpenFont

command is the address of a TextAttr data structure. In 1 j
BASIC, this can be set up as a long integer array having two

elements. The first element of the array holds the address of a . ,

text string, ending with an ASCII 0, that names the font. In I I
the case of the system fonts, the name is topaz.font. The other

element of the array holds the height of the font, the style,

and the preference flags. For our purposes, we can ignore the

style and preference flags. The form of the text attribute array

therefore is

textAttr&(0) = SADD("topaz.font"+CHR$(0))

textAttr&(l) = height*65536&

where height is either 8 (for the 80-column font) or 9 (for the

60-column font).

Once FontPtr& for a particular font has been found, it can

be used to set that font for use in a particular window with

the SetFont call. The syntax of that call is

CALL SetFont&(Rp, FontPtr&)

where RP is the address of the window's RastPort structure—

found by the WINDOW(8) function—and FontPtr& is the

pointer found by the OpenFont call.

Finally, when you are through with a font that you've

opened, you should close it with the CloseFont call:

CALL CloseFont&(FontPtr&)

Programs 4-3 and 4-4 are in BASIC. Program 4-3 opens a \ j

window and writes one sentence in each of the two system '—'

fonts. Program 4-4 is an example of using the AskFont routine

to find out which font is currently in use. I j

Program 4-3. Writing to a Window in BASIC

'This program prints both system fonts jj

DEFLNG a-z

'all variables default to long integer { -,

DECLARE FUNCTION OpenFont LIBRARY J j

144

Text

; i

LIBRARY "graphics.library"

WINDOW 2/"System Fonts",(100,50)-(525,100),12

WIDTH 41

FOR height=8 TO 9

textAttr(0)=SADD("topaz.font"+CHR$(0))

textAttr(1)=height*65536&

IF FontPtr THEN CloseFont FontPtr

FontPtr=OpenFont(VARPTR(textAttr(0)))

IF FontPtr THEN SetFont WINDOW(8),FontPtr

PRINT

PRINT " This shows the system font";height;

PRINT "points high"

NEXT height

WINDOW OUTPUT 1

END

Program 4-4. Using AskFont from BASIC

'This program identifies the current system font

DEFLNG a-z

'all variables default to long integer

LIBRARY "graphics.library"

DIM TextAttr(2)

AskFont WIND0W(8),VARPTR(TextAttr(0))

height = TextAttr(l)\65535&

a=l:x=0

WHILE(a)

'get font name

a=PEEK(TextAttr(0)+x)

IF a > 0 THEN n$=n$+CHR$(a)

x=x+l

WEND

PRINT "The current font it '";n§;

PRINT "',";height;"lines high"

Software-Generated Font Styles

It would be nice if all the style variations for the font you're

using were available as separately defined fonts, but this is

very rarely the case. The operating system can provide some

help, however. It contains a routine that can take the font that

145

Chapter 4

you're working with and algorithmically generate the styles

that are not designed into the fonts. Let's say that you're using

a normal font, like one of the system fonts, and want to print

italics. The SetSoftStyle routine can take your normal font and \ /

"bend" every character as it is printed, according to a certain '—•

formula, to make it appear as though the font were italicized.

This routine can currently emulate all of the possible styles, j I

with the exception of extended (which provides expanded, or

double-wide, print). The syntax for the Softstyle call is

Result = SetSoftStyle(RastPort, Style, Enable);

(dO) (al) (dO) (dl)

where Style is the combination of all the flags for the styles

that you want set. For example, if you wanted the text to ap

pear in boldface (2) and underlined (1), you would set Style to

3. The Enable value is a mask that specifies which of the style

features is to be generated algorithmically (as opposed to style

features that are inherent in the design of the font). After all,

you wouldn't want to try to italicize an italics font. The Enable

mask should have bits set for each of the styles that can be

generated by the operating system software.

An easy way of discovering what styles can be generated

from software for the current font is to use the AskSoftStyle

routine, which follows this format:

Enable = AskSoftStyle(RastPort);

(dO) (al)

The Enable value returned by this routine can be used as

the mask for SetSoftStyle, if you want your style setting to af

fect all possible flags.

You can also use the Enable mask to affect only a single j j
software style, leaving the rest as they are. This allows you to

make settings cumulative, so if you set underline with one call

and bold with the next, the latter will not cancel out the j i
former.

The SetSoftStyle routine returns the value Result, which i ,

represents the combination of flags for the style that was actu- <•—I
ally generated. This result may be different from the style you

requested if the software was unable to comply with your re- j |

quest, or if you merely added one flag to the existing settings. —'

146 LJ

Text

Program 4-5 uses the SetSoftStyle routine to change the

font styles of the current system font. Program 4-6 is written

in BASIC and shows how to use the SetSoftStyle routine to

run through all the possible style combinations for the two

system fonts.

Although the operating system does a pretty good job of

manipulating normal fonts to create the various styles, you

may find that if you're writing text a character at a time, some

times the beginning of one character will blank out the end of

the previous character. The solution to this problem is to join

all the characters that you intend to write on a single line into

one long string before you use Text() to print them. The

Text() routine can adjust the intercharacter spacing if it is

dealing with an entire phrase at once.

Disk-Based Fonts

Using disk-based fonts is very similar to using the system

fonts, but there are some important differences. The first dif

ference is that in order to use a disk-based font, the data de

scribing that font must be present on your system disk.

To be more specific, in order to use a disk font, there

must be two files describing that font located in the fonts: di

rectory. The name fonts: is a logical device name that is as

signed to the fonts: directory of your system disk at startup

time. The first file has the same format as the name of the font

as specified in the TextAttr data structure. For example, if the

font name is Ruby, there must be a file called ruby.font in the

fonts: directory. This file describes each separate font size and

style available for the font and gives the filenames of the data

files that actually contain the font shape information.

The font data file is the second file that is required. It is

usually located in a separate subdirectory under the fonts: di

rectory and bears the name of the font size. For example, the

data describing the Ruby font that is eight lines high is found

in the file fonts:ruby/8.

Another important difference between using the system

fonts and disk-based fonts is that you must use the OpenDisk-

Font command to open the font, rather than the OpenFont

147

Chapter 4

routine. The OpenDiskFont command is found in the Diskfont

library, and not the Graphics library. Therefore, to open a disk

font, you must first open the Diskfont library. From C, you

use the OpenLibrary routine to do this, just as you would for

the Graphics library:

DiskfontBase =

OpenLibrary("diskfonUibrary^LIBRARY_VERSION);

The Diskfont library is disk-based, so in order to open it, you

must have the file diskfont.library in the libs: directory of your

system disk. Once you open this library, you have access to

the two routines that it contains. The first is OpenDiskFont.

The format for this statement is similar to that of OpenFont:

FontPtr = OpenDiskFont(TextAttr);

(dO) (aO)

OpenDiskFont not only returns a pointer to the TextFont

data structure that describes the font, but it also loads the font

into memory from the disk. All of the fonts described in the

fontname.font file are loaded at the same time. Thus, if you

open another size of the same font later, a disk access will not

be necessary.

Once you have opened the font successfully, you may use

it the same way as you would a system font, by executing a

SetFont statement. Program 4-7 shows how to use C to load

the Ruby font from disk and display text in two sizes of that

font.

Notice that we did not close the font after using it. Be

cause of a bug in the 1.1 version of the system software, a

disk-based font is not correctly purged from the font list when

it is unloaded. This means that a later attempt to access the

font could result in the system trying to use a font that is no

longer there. For the present time, the simplest fix is to leave

the font open. Kickstart versions 1.2 and higher should fix the

bug, so if you're using a version later than 1.1, remember to

close the disk font when you are through with it.

u

148

j
□

a
3
a

a
d

c
j

i
a

5

P
r
o
g
r
a
m

4
-
5
.
C
h
a
n
g
i
n
g

F
o
n
t
s

in
C

t
i
n
c
l
u
d
e

<
w
i
n
d
o
w
.
c
>

d
e
m
o
(
)

S
e
t
A
P
e
n
(
R
p
,
l
)
;

S
e
t
B
P
e
n
(
R
p
,
0
)
;

P
r
i
n
t
A
t
(
5
0
,
6
0
,
"
T
h
i
s

i
s

t
h
e

N
O
R
M
A
L

s
t
y
l
e

o
f

t
h
e

s
y
s
t
e
m

f
o
n
t
"
)
;

S
e
t
S
o
f
t
S
t
y
l
e
(
R
p
,

F
S
F
_
U
N
D
E
R
L
I
N
E
D
,

2
5
5
)
;

P
r
i
n
t
A
t
(
5
0
,
8
0
,
"
T
h
i
s

i
s

t
h
e

U
N
D
E
R
L
I
N
E
D

s
t
y
l
e
"
)
;

S
e
t
S
o
f
t
S
t
y
l
e
(
R
p
,

F
S
F
_
_
I
T
A
L
I
C
#

2
5
5
)
;

P
r
i
n
t
A
t
(
5
0
,
1
0
0
.
"
T
h
i
s

i
s

t
h
e

I
T
A
L
I
C

s
t
y
l
e
"
)
;

S
e
t
S
o
f
t
S
t
y
l
e
(
R
p
#

F
S
F
_
B
O
L
D
#

F
S
F
_
B
O
L
D
)
;

P
r
i
n
t
A
t
(
5
0
,
1
2
0
/
'
T
h
i
s

i
s
b
o
t
h

B
O
L
D

a
n
d

I
T
A
L
I
C

s
t
y
l
e
s
"
)
;

P
r
i
n
t
A
t
(
x
r
y
,
s
)

i
n
t

x
,
y
;

c
h
a
r

*
s
;

t
M
o
v
e
(
R
p
,
x
,
y
)
;

T
e
x
t
(
R
p
#
s
#
s
t
r
l
e
n
(
s
)

/
*

e
n
d

o
f

S
o
f
t
S
t
y
l
e
.
c

*
/

C
J
1

o
P
r
o
g
r
a
m

4
-
6
.
C
h
a
n
g
i
n
g

F
o
n
t
s

in
B
A
S
I
C

'
T
h
i
s

p
r
o
g
r
a
m

p
r
i
n
t
s

a
l
l

s
t
y
l
e
s

o
f
b
o
t
h

s
y
s
t
e
m

f
o
n
t
s

D
E
F
L
N
G

a
-
z

D
E
C
L
A
R
E

F
U
N
C
T
I
O
N

O
p
e
n
F
o
n
t

L
I
B
R
A
R
Y

L
I
B
R
A
R
Y

"
g
r
a
p
h
i
c
s
.
l
i
b
r
a
r
y
"

W
I
N
D
O
W

2
,
"
F
o
n
t
s

a
n
d

S
t
y
l
e
s
"
,
(
0
,
3
)
-
(
3
0
0
,
1
8
2
)
,
8

W
I
D
T
H

3
0

F
O
R
h
e
i
g
h
t

=
8

T
O

9

G
O
S
U
B

C
h
a
n
g
e
F
o
n
t

G
O
S
U
B

P
r
i
n
t
S
t
y
l
e
s

I
F

F
o
n
t
P
t
r

T
H
E
N

C
A
L
L

C
l
o
s
e
F
o
n
t
(
F
o
n
t
P
t
r
f
c
)

N
E
X
T
h
e
i
g
h
t

W
I
N
D
O
W

O
U
T
P
U
T

1

L
I
B
R
A
R
Y

C
L
O
S
E

E
N
D

P
r
i
n
t
S
t
y
l
e
s
:

P
R
I
N
T

"
S
y
s
t
e
m

f
o
n
t
,
"
;
h
e
i
g
h
t
;
"
p
o
i
n
t
s

h
i
g
h
"

F
O
R

S
t
y
l
e

=
0

T
O

7

C
A
L
L

S
e
t
S
o
f
t
S
t
y
l
e

(
W
I
N
D
0
W
(
8
)
,
S
t
y
l
e
,
2
5
5
)

I
F

S
t
y
l
e

A
N
D

4
T
H
E
N

P
R
I
N
T

"
I
t
a
l
i
c
i
z
e
d

"
;

I
F

S
t
y
l
e

A
N
D

2
T
H
E
N

P
R
I
N
T

"
b
o
l
d

"
;

I
F

S
t
y
l
e

A
N
D

1
T
H
E
N

P
R
I
N
T

"
u
n
d
e
r
l
i
n
e
"
;

I
F

S
t
y
l
e
=
0

T
H
E
N

P
R
I
N
T

"
p
l
a
i
n
"
;

P
R
I
N
T

N
E
X
T

S
t
y
l
e

P
R
I
N
T

R
E
T
U
R
N

o Q

c
c

c
c

i
z

l
:
c

c

1
3

G
3

1)
3

~1
J

-J
3

C
h
a
n
g
e
F
o
n
t
:

F
o
n
t
N
a
m
e
$
=
"
t
o
p
a
z
.
f
o
n
t
"
+
C
H
R
$
(
0
)

T
e
x
t
A
t
t
r
(
0
)
=
S
A
D
D
(
F
o
n
t
N
a
m
e
?
)

T
e
x
t
A
t
t
r
(
l
)
=
h
e
i
g
h
t
*
6
5
5
3
6
&

F
o
n
t
P
t
r

=
O
p
e
n
F
o
n
t
(
V
A
R
P
T
R
(
T
e
x
t
A
t
t
r
&
(
0
)
)
)

I
F

F
o
n
t
P
t
r

T
H
E
N

S
e
t
F
o
n
t

W
I
N
D
O
W
(
8
)
,
F
o
n
t
P
t
r
&

R
E
T
U
R
N

P
r
o
g
r
a
m

4
-
7
.
L
o
a
d
i
n
g
a

F
o
n
t

in
C

#
i
n
c
l
u
d
e

<
w
i
n
d
o
w
.
c
>

#
i
n
c
l
u
d
e

<
e
x
e
c
/
l
i
b
r
a
r
i
e
s
.
h
>

s
t
r
u
c
t

L
i
b
r
a
r
y

*
D
i
s
k
f
o
n
t
B
a
s
e
;

d
e
m
o
(
)

{ s
t
r
u
c
t

T
e
x
t
F
o
n
t

*
F
o
n
t
P
t
r
;

s
t
a
t
i
c

s
t
r
u
c
t

T
e
x
t
A
t
t
r

R
u
b
y
F
o
n
t

=

{
"
r
u
b
y
.
f
o
n
t
"
,
8
,
0
,
0
}
;

D
i
s
k
f
o
n
t
B
a
s
e

=
(
s
t
r
u
c
t

L
i
b
r
a
r
y

*
)

O
p
e
n
L
i
b
r
a
r
y
(
"
d
i
s
k
f
o
n
t
.
l
i
b
r
a
r
y
"
,
L
I
B
R
A
R
Y
_
V
E
R
S
I
O
N
)
;

i
f

(
D
i
s
k
f
o
n
t
B
a
s
e

=
=

N
U
L
L
)

e
x
i
t
(
F
A
L
S
E
)
;

S
e
t
A
P
e
n
(
R
p
,
l
)
;

S
e
t
B
P
e
n
(
R
p
f
0
)
;

F
o
n
t
P
t
r

=
(
s
t
r
u
c
t

T
e
x
t
F
o
n
t

*
)
O
p
e
n
D
i
s
k
F
o
n
t
(
&
R
u
b
y
F
o
n
t
)
;

i
f

(
F
o
n
t
P
t
r

=
=

0
)

e
x
i
t
(
F
A
L
S
E
)
;

(D

S
e
t
F
o
n
t
(
R
p
,
F
o
n
t
P
t
r
)
;

2-
P
r
i
n
t
A
t
(
5
0
#
6
0
,
"
T
h
i
s

i
s

t
h
e

d
i
s
k
-
b
a
s
e
d

R
u
b
y

f
o
n
t
#

8
l
i
n
e
s

h
i
g
h
1
1
)
;

R
u
b
y
F
o
n
t
.
t
a
_
Y
S
i
z
e
=
1
2
;

O

F
o
n
t
P
t
r

=
(
s
t
r
u
c
t

T
e
x
t
F
o
n
t

*
)
O
p
e
n
D
i
s
k
F
o
n
t
(
&
R
u
b
y
F
o
n
t
)
;

g
"

i
f

(
F
o
n
t
P
t
r

=
=

0
)

e
x
i
t
(
F
A
L
S
E
)
;

-
q

S
e
t
F
o
n
t
(
R
p
,
F
o
n
t
P
t
r
)
;

jj
j"

P
r
i
n
t
A
t
(
5
0
,
1
0
0
,
"
T
h
i
s

i
s

t
h
e

d
i
s
k
-
b
a
s
e
d

R
u
b
y

f
o
n
t
,

1
2

l
i
n
e
s

h
i
g
h
1
1
)
;

"•

C
l
o
s
e
L
i
b
r
a
r
y
(
D
i
s
k
f
o
n
t
B
a
s
e
)
;

} P
r
i
n
t
A
t
(
x
,
y
,
s
)

i
n
t

x
#
y
;

c
h
a
r

*
s
;

{
M
o
v
e
(
R
p
,
x
,
y
)
;

T
e
x
t
(
R
p
,
s
,
s
t
r
l
e
n
(
s
)
)
;

/
*

e
n
d

o
f

D
i
s
k
f
o
n
t
.
c

*
/

c
[i

c
c

l:
d

Text

Disk-Based Fonts from BASIC

You can use disk-based fonts from BASIC, providing that you

have the diskfont.bmap file necessary to open the library. Pro

gram 4-8 shows how to create such a file on the RAM: disk. It

displays print in two sizes of the Ruby font. To end the pro

gram, click the left mouse button while the pointer is in the

display window.

The selection of disk-based fonts available depends on the

files contained in your fonts: directory. The Diskfont library

contains a routine that will let you check what fonts are cur

rently available. The format for this statement is

Bytes—short = AvailFonts(Buf_ptr, Bu£_size, Type);

(dO) (aO) (dO) (dl)

In order to use this routine, you must first set up a buffer area

in which to store the font descriptions. The value Buf_ptr con

tains the address of the first byte of the pointer, and the value

Buf_size contains the size of the buffer in bytes. The Type

variable is used to specify whether you want only the fonts al

ready loaded into memory listed (1), only the disk fonts (2), or

both (3). The size of the buffer that is needed depends on how

many fonts there are on the disk. If you have only the original

fonts that came on the Workbench disk, a buffer of 1000 bytes

should be plenty. If it turns out that you have not allocated a

big enough buffer, however, the value Bytes_short will be re

turned, telling you how many more bytes you need for your

buffer.

If your call to AvailFonts is successful, your buffer will

contain a data structure called an AvailFontsHeader, followed

("""! by a data structure called an AvailFonts structure for each of

the fonts that was found. The AvailFontsHeader is just an un-

t signed 16-bit value which tells you how many fonts were

I j found. The AvailFonts structures that follow contain an un

signed 16-bit value that tells whether the font was found in

^ memory (1) or on disk (2). This value is followed by the

1. J TextAttr structure that describes the font.
One thing to watch for is duplicate listings for a font. A

«—i disk font that is opened j^sides in memory at least until it is

—' closed and possibly longer. Therefore, if you request to see

both the fonts that are loaded into memory and the disk fonts,

Hi 153

Chapter 4

u

you may find one entry for the font in memory and another

for the version that is on disk. ^_J

Program 4-9 shows how to use the AvailFonts routine to

get the relevant information about all available disk fonts. ?
I j

Program 4-8. Creating diskfont.bmap

DEFLNG a-z I
'all variables default to long integer I—

DECLARE FUNCTION OpenDiskFont LIBRARY

GOSUB InitLib

WINDOW 2,"Disk Fonts",(100,50)-(525,100),0

WIDTH 41

FOR height = 8 TO 12 STEP 4

textAttr(0)=SADD("ruby.font"+CHR?(0))
textAttr(l)=height*65536&

FontPtr=OpenDiskFont(VARPTR(textAttr(0)))

IF FontPtr THEN SetFont WIND0W(8),FontPtr

PRINT

PRINT " This shows the ruby font";height;

PRINT "points high"

•IF FontPtr THEN CloseFont FontPtr

1 don't close disk fonts when using

'Kickstart 1.1

NEXT height

WaitForClick:

IF NOT MOUSE(0) THEN WaitForClick

WINDOW CLOSE 2

WINDOW OUTPUT 1

END

InitLib:

CHDIR "ram:"

D$="OpenDiskFont"+CHR$(0)

D$=D$+CHR$(255)+CHR$(226)+CHR§(9)+CHR$(0)

OPEN "RAM:diskfont.bmap11 FOR OUTPUT AS #1

PRINT #1,D$; , j

CLOSE #1 I I

D$=D$+"SetFont"+CHR$(0)

D$=D$+CHR$(255)+CHR$(190)+CHR$(10)+CHR$(9)+CHR$(0) , ,

OPEN "RAM:graphics.bmap" FOR OUTPUT AS #1 1 \
PRINT #1,D$;

CLOSE #1

LIBRARY "diskfont.library" I
LIBRARY "graphics.library"

154 u

Text

CHDIR "df0:grafprogs1

RETURN

?—] Program 4-9. Using AvailFonts from BASIC

DEFLNG a-z

'all variables default to long integer

[j GOSUB InitLib

NumFonts= 0

Type=0

NamePtr=0

Height=0

n=0:a=0:x=0

DIM Buf%(200)

CALL AvailFonts (VARPTR(Buf%(0)) , 400, 2)

NumFonts = Buf%(0)

FOR n = 0 TO NumFonts-1

Type = Buf%(l+5*n)

NamePtr = 65536&*Buf%(2+5*n)+Buf%(3+5*n)
Height = Buf%(4+5*n)

1 Style = Buf%(5+5*n)\256

1 Flags = Buf%(5+5*n) AND 255

a=l:x=0:D?=""

WHILE(a)

a=PEEK(NamePtr+x)

IF a>0 THEN D§=D$+CHR§(a)

x=x+l

WEND

PRINT D$;Height

NEXT n

END

InitLib:

CHDIR "ram:11

D$=MAvailFonts"+CHR§(0)

D$=D$+CHR$(255)+CHR§(220)+CHR$(9)

D$=D$+CHR§(1)+CHR$(2)+CHR§(0)

OPEN "RAM:diskfont.bmap" FOR OUTPUT AS #1
PRINT #1,D$;

CLOSE #1

LIBRARY "diskfont.library"

CHDIR Mdf0:grafprogs"

RETURN

155

u

u

lllli;^.;sO

:-^^^^^^^^^^^^^^^^^^^;"^v""l-":-- ;"TV"-v/-^?'SL—-.-^^^^^

mmm

-iW'iM

u

u

0

u

Drawing and Manipulating

Image Blocks

{o far, we've looked at the process of drawing images point

by point. In this chapter, we'll explore methods of trans

ferring an entire image—a whole block of data bytes—

to the screen at once. Most such methods on the Amiga

involve the use of the blitter, the powerful data-moving hard

ware chip.

Not only does the blitter move data at blinding speed, it

also can combine and manipulate data from several different

sources at once. This allows it to pick out just the bits that

form the image and move them, leaving the background.data

behind.

The one disadvantage to using the blitter is that it, like

the other special hardware chips in the Amiga, can access only

the first 512K of memory. This may not seem a significant

problem to those who have not expanded their systems with

external memory. However, as expansion becomes more com

mon, the use of chip memory, as it is called, will become a

more important consideration. You should keep in mind that

image data may have to be stored in chip memory in order for

the routines described below to function correctly.

Therefore, to insure that your program will work correctly

with expanded systems, you must take steps to make sure that

— this data will be loaded into the lower 512K. There are at least

' I two methods of doing so.
The first method is to have your program allocate chip

r*i memory using the AllocMem routine, and then copy your data

' ' to that memory. This works, but is inefficient because you end
up having two copies of the data in memory at once. If you

P"! are using a compiler that works with the Alink linker, you

probably have access to the Atom utility program. This pro

gram allows you to specify the kind of memory into which

f~i certain segments of object code must be loaded. Compiler's
other than Amiga C (such as the Manx Aztec C Compiler)

H 159

u
Chapter 5

u

usually include an option which allows initialized data to be j j

loaded into chip memory. Using the Atom utility, or the equiv

alent provided by your compiler and linker, is the preferred

method of making sure that your data ends up in chip memory. j j

Filling Memory

One of the simplest tasks that the blitter can perform is to fill | |
a block of memory with a given number. This can be useful,

for example, in clearing the screen or in setting an entire

rastport to a certain color. The SetRast Graphics library routine

allows you to do the latter. The format of this statement is

SetRast (RastPort, Pen);

(al) (dO)

where Pen is the number of the pen (color register) whose

color you wish to use to fill the rastport.

The BASIC equivalent of SetRast is the CLS statement

that clears the screen. It will set the current window to what

ever color is in the background pen, which is set by the sec

ond value in the COLOR statement.

The blitter can also be used for tasks like clearing memory

that is not used for the display. The BltClear statement will fill

a contiguous block of memory with zeros. The syntax of this

statement is

BltClear (Memory, Bytes, Flags);

(al) (dO) (dl)

where Memory is a pointer to the block of contiguous mem

ory, and Bytes specifies the number of bytes to clear. The

Flags value determines how bytes are counted. If bit 1 of this | j

value is clear (Flags AND 1 = 0), Bytes is used to specify the '—'
number of bytes to clear. The number of bytes must be even.

If bit 1 of Flags is set, however, the lower 16 bits of Bytes j

specify the number of bytes per row, and the upper 16 bits

specify the number of rows to clear. In this mode, the number

of bytes per row must be fewer than 129, and the number of j |
rows must be fewer than 1025. By setting bit 0 of Flags, you

may force the BltClear function to wait until the blitter is fin

ished clearing the memory before returning back to the pro- I I
gram that called it.

160 LJ

n

n
Drawing and Manipulating Image Blocks

n

r—i Scrolling

Another of the tasks that the blitter can perform is to scroll a

rectangular area of a window horizontally, vertically, or both

~| at once. The Graphics library routine that is used for this pur
pose is called ScrollRaster, and it takes the following form:

ScrollRaster (RastPort, Dx, Dy, XI, Yl, X2, Y2);

(al) (dO) (dl) <d2) <d3) (d4) (d5)

where Dx and Dy are the horizontal and vertical offsets, XI

and Yl describe the top left corner of the rectangle, and X2

and Y2 specify the bottom right corner of the rectangle.

When you scroll a rectangle, only the data inside the rect

angle moves. You can think of the process as chopping off one

edge of the rectangle and moving the rest over to fill the part

that was chopped off. The vacant area that was created by

moving the rectangle is then filled with the color of the back

ground pen. The Dx and Dy offsets specify how far a distance

(in pixels) the rectangle is to be moved, and, consequently,

how many pixels will be lost. If you wish to move it to the

right, Dx should be negative; if you wish to move it to the left,

Dx should be positive. Similarly, if you wish to move the rect

angle down, use a positive Dy value, and if you want to move

it up, use a negative Dy. For instance, if you specify a Dx of 2

and a Dy of 0, the rectangle will scroll two pixels to the left.

The leftmost two pixels of image data will disappear off the

edge, and the rightmost two pixels will be filled in background

color.

If there is an area of background color surrounding the

rectangle that you scroll, the image will appear to move

smoothly. Written in C, Program 5-1 scrolls some colored rect

angles around the screen.

Scrolling in BASIC

The BASIC statement SCROLL performs the same task as

ScrollRaster. The syntax is

SCROLL rectangle, x-offset, y_offset

The rectangle value specifies the coordinates of the upper left

and lower right corners of the area to be scrolled. It is ex

pressed in the form

161

Chapter 5
u

u

(left,top)-(right,bottom) L i

where left and right are the horizontal coordinates, and top

and bottom the vertical coordinates. These are always expressed

as absolute coordinates and cannot be expressed relative to the { |
last position drawn, as the drawing commands can be.

The x_-offset and y_offset values show how far to move

the designated area horizontally and vertically. The image data | |
for the edge of the rectangle that moves will be lost. The area

from which the rectangle is moved will be filled in back

ground color.

Program 5-2 roughly mimics the main action of the arcade

game Space Invaders by scrolling a group of shapes from side

to side and steadily downward.

Program 5-1. Scrolling in C

#include <windowl.c>

#include <graphics/gfxmacros.h>

demo()

{
int Row, Col;

SetAPen (Rp,4);

for (Row=1;Row< 5;Row++)

{
for (Col=0;CoK8;Col++)

RectFill(Rp,Col*30,Row*20,Col*30+20,Row*20+12);

}

Row=10;

while (Row<100)

{
for(Col=0; C0K8I; Col++)

ScrollRaster (Rp,-1,0,Col,Row,Col+230,Row+82);

ScrollRaster (Rp,0,-10,80,Row,Col+310,Row+92)7

Row+=10;

for(Col=0; C0K8I; Col++)

ScrollRaster (Rp,1,0,80-Col,Row,310-Col,Row+82);

ScrollRaster (Rp,0,-10,0,Row,230,Row+92);

Row+=10;

}
/* end of Scroll.c */

162

Drawing and Manipulating Image Blocks

<—| Program 5-2. Scrolling in BASIC
f "*

'Box Invaders

SCREEN 1,320,200,2,1

-*"> WINDOW 2,,,0,1

] i PALETTE 0,0,0,0
PALETTE 2,1,.2,.2

'lo-res, 4-color Screen

1 full-size window

'black background

•red

FOR Row = 0 TO 3 'draw 4 rows

FOR Column = 0 TO 7 'of 8 boxes

LINE (Column*30,Row*20)- STEP (20,12),2,bf

NEXT Column, Row

inc=-l: Column=-1

FOR Row= 0 TO 11

Column = Column-SGN(Column)

inc = -SGN(inc)

'move boxes vertically

SCROLL (Column,Row*10)-(Column+230,Row*10+82),0,10

FOR Column = 0-80*(inc = -1) TO 80+80*(inc=-l) STEP inc

'move them horizontally

SCROLL (Column,Row*10)-(Column+230,Row*10+82),inc,0

NEXT Column,Row

WaitForClick: IF NOT MOUSE(0) THEN WaitForClick

WINDOW CLOSE 2

SCREEN CLOSE 1

WINDOW OUTPUT 1

END

Copying Images

A more sophisticated blitter operation involves copying a rect

angle of data from one area of a raster and moving that data

to another part of the same raster or to another raster. Not

only can the blitter make an exact copy of the original data, it

can also combine that data in various ways with the data that

already exists in the destination area.

The command used to copy a rectangular area of a raster

bears the euphonious appellation ClipBlit. The format for this

call is

ClipBlit

(SrcRp,SrcX,SrcY,DestRp,DestX,DestY, Width, Height, Minterm);

(aO) (dO) (dl) (al) (d2) (d3) (d4) (d5) (d6)

163

Chapter 5

As you can see, there are quite a few values that you must

pass to this routine. The SrcRp and DestRp values are pointers

to the rastports that contain the source rectangle (the area that

you are copying) and the destination rectangle (the area to

which you are copying it). SrcX and SrcY describe the coordi

nates for the upper left corner of the source area, and DestX

and DestY specify the upper left corner of the destination area.

Width and Height specify the size of the rectangle.

The final value, Minterm, is an eight-bit number that de

scribes the kind of logic operation performed on the data in

the source rectangle and the destination rectangle to achieve

the final output rectangle. Only the high four bits are signifi

cant. The meaning of each bit is as follows:

In these logic terms, B stands for data in the source rect

angle, and C stands for data in the destination rectangle. The B

with a line over it stands for NOT B, and the C with a line

over it stands for NOT C. By combining the logic terms repre

sented by the component values of Minterm, we can solve the

resulting equations to find out what data will be included in

the output. For example, if we use the Minterm 192 (OxCO),

we get the logic equation

D = BC + BC

where D stands for the destination rectangle. If we group this

equation differently, we get

D = B (C + C)

Since C and NOT C cancel each other out, we are left with

D = B

where the destination rectangle is an exact copy of the source

164

U

LJ

\ !

u

u

Drawing and Manipulating Image Blocks

rectangle, both foreground and background. Here are a few

more examples:

For Minterm 0x30: D = BC + BC = B(C + C) = B

Destination is an inverted copy of the source rectangle in

which every zero bit is changed to a one, and vice versa.

For Minterm 0x50: D = BC + BC = C(B + B) = C

Destination is an inverted copy of the destination rectan

gle in which every zero bit is changed to a one, and vice versa.

For Minterm 0x60: D = BC + BC

Destination is a combination of both source rectangle data

and destination rectangle data. Where either source or destina

tion has a zero bit, the value of the other is displayed. Where

both have a one bit, a zero is displayed.

For Minterm 0x80: D = BC

Destination combines source and destination rectangle

data. Only the areas where both source and destination con

tain a one bit will be displayed in other than background

color.

In all, there are 15 different logic term combinations. Even

if solving logic equations is not one of your favorite pastimes,

with a little experimentation, you should be able to figure out

what the other combinations do.

Program 5-3 is a C program that demonstrates the use of

ClipBlit. It sets up a smaller window on top of the full-size

one and draws an octagon in it. It then copies that octagon to

the larger window, using three different Minterm values to

come up with three different destination rectangles.

Program 5-3. Using ClipBlit

#include <window.c>

demo ()

struct Window *Wdw2;

♦define Rp2 Wdw2->RPort

165

u
Chapter 5

U

static UWORD Points [] =

{ U180,50, ' '
210,80,

210,120, r

180,150, |

100,150,

70,120,

70,80,

100,50

};

NewWdw.Flags = SMART_REFRESH;

NewWdw.LeftEdge = 320;

NewWdw.Width=319;

if ((Wdw2 = (struct Window *)OpenWindow(&NewWdw))

== NULL) exit(FALSE);

SetAPen (Rp2,1);

Move(Rp2,100,50);

PolyDraw(Rp2,8,&Points);

/* SetAPen (Rp,2);

RectFill(Rp,30,30,230,75); */

ClipBlit(Rp2,69,50,Rp,0,50,142,101,0xC0);

ClipBlit(Rp2,69,50,Rp,143,50,142,101,0x30);

ClipBlit(Rp2,69,50,Rp,75,98,142,101,0x60);

Wait(K<Wdw->UserPort->mp_SigBit) ;

/* wait till close box clicked */

CloseWindow(Wdw);

CloseWindow(Wdw2);

CloseLibrary(GfxBase);

CloseLibrary(IntuitionBase);

exit(TRUE);

/* end of ClipBlit.c */
i)

I I

Drawing an Image from a Pattern

The Graphics library contains a routine that lets you fill se

lected points in an area, rather than the entire area. The points

affected by this fill operation are specified by an image pattern K ,

that you set up in a data area. The routine is called BltPattern, I—>
and its syntax is

166

Drawing and Manipulating Image Blocks

BltPattern (RastPort, Pattern, XI, Yl, X2, Y2, Width);

(al) (aO) (dO) (dl) (d2) (d3) (d4)

where XI and Yl specify the upper left corner of the RastPort

destination rectangle, and X2 and Y2 are the coordinates of the

lower right corner. The Pattern value points to the beginning

of the image mask data, and Width describes how the pattern

is laid out by telling how many bytes there are per row. This

number must be an even value. The total number of bytes of

pattern data can be found by multiplying the number of bytes

per row times the number of rows (Y2 — Yl).

You convert an image for BltPattern to pattern data in ex

actly the same way as you do in determining AreaPattern data.

You draw the image as a series of filled boxes and empty

boxes, and then convert that image to a binary number by

substituting a one for each filled box and a zero for each

empty one. For example, the data needed to draw a cross

would look like this:

« 0x|£0

00O0OO1111000000 - Ox3C0
0600001111000000 « 0x3C0
1111111111111111 -p- OxFFFF

illlllllllllllll = OxFFFF

1111111111111111 = OxFFFF

0000001111000000 - 0x3C0

POQOOI111000000 - 0x3jC0

6oo;O06iiii©ooood - Oxsco
0000001111000060 « 0x3C0

When you use the BltPattern statement, only the area that

corresponds to the places where there are one bits in the pat

tern will be affected. Those points will be filled just as if they

were part of an AreaFill, so just what ends up inside the im

age pattern depends on the foreground and background pen

values, the drawing mode, and the area pattern.

Program 5-4 is a C program that demonstrates the use of

BltPattern. It draws the image of a box with several holes cut

out, filled with the same patterns as used in the pattern fill ex

ample in Chapter 3.

167

Chapter 5
LJ

LJ

Program 5-4. Using BItPattern t ,

#include <windowl.c> l—'
#include <graphics/gfxmacros.h>

demo() , '

static UWORD Patl [] = /* •HI1 fill pattern */

{ I
0x0000, , !
0x667E,

0x6618,

0x7E18,

0x6618,

0x6618,

0x667E,

0x0000

static UWORD Pat2 [] = /* geometric pattern */

0X0FF0,

0XF00F,

0XAAAA,

0x5555,

0XA5A5,

0X5A5A,

0XF0F0,

0X0F0F

static UWORD Pat3 [] = /* random fill pattern */

0X048C,

0X159D,

0x26AE,

0X37BF,

0x3333,

0XAAAA,

0X3C3C, j {
0XD43D4 ' '

static UWORD Image [] = | i

0XFFFF,0XFFFF,0xFFFF,0XFFFF,0xFFFF,

0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF, ,

0XFFFF,0XFFFF,0XFFFF,0XFFFF,0XFFFF, j I

0XFFFF,0X0000,0XFFFF,0x0000,0XFFFF,

0XFFFF,0x0000,0XFFFF,0x0000,0XFFFF, , >

0XFFFF,0x0000,0XFFFF,0x0000,0xFFFF, | \

168

Drawing and Manipulating Image Blocks

0XFFFF,0XFFFF,0xFFFF,0XFFFF,0XFFFF,

0XFFFF,0XFFFF,0XFFFF,0XFFFF,0XFFFF,

0XFFFF,0XFFFF,0XFFFF,0XFFFF,0XFFFF,

0XFFFF,0XFFFF,0XFFFF,0xFFFF,0XFFFF,

0XFFFF,0XFFFF,0XFFFF,0XFFFF,0XFFFF,

0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,

0XFFFF,0X0000,0XFFFF, 0x0000,0XFFFF,

0XFFFF,0X0000,0XFFFF,0X0000,0XFFFF,

0XFFFF,0X0000,0XFFFF,0x0000,0XFFFF,

0XFFFF,0XFFFF,0XFFFF,0xFFFF# 0XFFFF,

0XFFFF,0XFFFF,0XFFFF,0XFFFF,0XFFFF,

0XFFFF,0XFFFF,0xFFFF# 0XFFFF,0XFFFF

}

SetAfPt(Rp,&Pat2[0],3);

SetAPen(Rp,2);

SetBPen(Rp,5);

BltPattern (Rp,Sclmage,50,50,130,66,10);

SetAfPt(Rp,&Pat3[0],3);

SetAPen(Rp,3);

SetBPen(Rp,4);

BltPattern (Rp,&Image,130,100,210,116,10);

SetAfPt(Rp,&Patl[0],3);

SetAPen(Rp,6);

SetBPen(Rp,7);

BltPattern (Rp,&Image,210,150,290,166,10);

^^ /* end of Bltpat.c */

i i

n
Moving Images to and from BASIC Arrays (GET

and PUT)

The BASIC equivalent of the Graphics library routines that use

the blitter to move an entire image are the statements PUT

and GET. The GET statement allows you to capture the image

in a rectangular area of the screen in a data array. The PUT

statement allows you instantly to redisplay that image else

where in the window (or in another window entirely).

Normally, before you can PUT an image to the screen,

169

Chapter 5

you must draw it in a window, using the normal drawing) j

commands, and store it in an array by using the GET com- '—'

mand. The syntax is

GET (xl,yl)-(x2/y2), array [(subl[,sub2...])J [_]

The two values that must be specified are the rectangle

whose image is to be stored and the name of the array in i i

which it will be saved. The area of the rectangle is specified '—'
by the coordinate pairs (xl, yl) and (x2, y2). The first pair rep

resents the absolute position of the top left corner of the rect

angular area, and the second specifies the bottom right corner.

Before we can use an array to store an image, the size of

the array must be declared with the DIM statement. Its size

must be large enough to hold all of the display data. To deter

mine the size to which the array must be DIMensioned, let's

first take a look at the format in which the image is stored. If a

16-bit (short) integer array is used, the first three words store

the width, height, and depth of the array. Let's take the case

of an image that is 40 dots wide, 20 lines high, and three bit

planes deep:

a%(0) = 40

a%(l) = 20

a%(2) = 3

Since the image data is stored in 16-bit words, the width

of the image is rounded up to the next highest multiple of 16

to find the least number of words required to store one line of

the image. In this example, each line requires 3 words of data

(48 bits) to hold the 40 dots. Since there are 20 lines per bit

plane, each bit plane requires 60 words (3 words wide * 20 i |

high) to hold the data. The correspondence of the bit patterns '—'

of the data words and the dots that make up the display is the

same as that described in the section on pattern drawing | {

above and in the section on patterned fills in Chapter 3. The

data for plane 0 is assigned to array elements as follows:

a%(3)=lineOleft a%(4)=lineOmiddle a%(5)=lineOright ! [
a%(6)=linelleft a%(7)=linelmiddle a%(8)=linelright

a%(60)=Iinel91eft a%(61)=Iinel9middle a%(62)=Iinel9right

170 LJ

Drawing and Manipulating Image Blocks

1 The same kind of assignment is made for each of the

v three bit planes. Since there are three bit planes, a total of 183
words are required (60 words / bit plane * 3 bit planes + 3

1 format words).

For purposes of your programs, if you use short integer

arrays, you may use the formula

I arraysize = 3 + INT((16 + x2 - xl) /16) * (1 + y2 - yl) * depth
To find the size to which you must DIMension the array, use

DIM a%(arraysize)

The GET statement allows you to specify subscripts for

the array. This allows you to create multidimensional arrays,

with a picture stored in each subscript. For instance, if you

want to store five images that each require an integer array of

500 words, you may dimension one array for all five images

using the statement form

DIM a%(500,5)

When you fill the array, use this form:

GET (xl,yl)-(x2,y2),a%(0,0) 'first image

GET (x3,y3)-(x4,y4),a%(0,l) 'second image
GET (x5,y5)-(x6,y6),a%(0,2) 'third image

Note that the first subscript always stays at zero, while

the second keeps track of the image number.

To redisplay the stored image, you use the PUT state

ment. The form of this statement is

PUT [STEP] (x,y), array [(subl[,sub2...])] ^combination-type]

-> Here you need only specify the coordinates of the top left

i corner of the image and the name of the array in which it is
stored. The coordinates may be specified either as absolute

i points or as an offset relative to the last point drawn. As with

' GET, multiple array dimensions may be specified.
The kind of image drawn when you use the PUT state-

"| ment depends on the value you choose for combination—type.

As with the ClipBlit operation described above, PUT can be

used not only to display the exact duplicate of the saved rect-

"| angle, but also to combine that image with that of the destina
tion rectangle in various ways. Five types of combinations

n may be made between the image values stored in the array

1 171

Chapter 5

and the values that are currently displayed onscreen. Their

names are PSET, PRESET, AND, OR, and XOR. The concepts

behind these combinations should not be so strange; PSET

and PRESET are graphics commands which we have dis

cussed, and the others are logical operators.

If the PSET combination—type is selected, the entire rect

angular area of the image will appear, exactly as it was saved.

This includes the background color as well as any foreground

colors used. If the PRESET type is chosen, the entire area of

the image appears with each color, including the background

color, complemented. This means, for example, that if the

screen is two planes deep, parts of the image that were stored

as color 0 would appear in color 3, parts that were stored as

color 1 would appear in color 2, and vice versa. For more

information about complementing, see the section "Drawing

Modes" in Chapter 3.

The three remaining combination types use the logical op

erators AND, OR, and XOR (exclusive OR) to combine the pen

values of the stored image with those displayed onscreen. In

the AND mode, the bits of the image are logically ANDed

with those of the display. The following chart shows all of the

possible combinations of one pen color ANDed with another

in a four-color display:

The OR combination mode logically ORs the bits of the

image with those of the display. The following chart shows all

of the possible combinations of one pen color ORed with an-

LJ

172

Drawing and Manipulating Image Blocks

other in a four-color

First Pen

• 0

0

0

..•.'&,■ -: °
' :V;~ '' j

1

2

3

display:

Second Pen

i
i

,_. - $-'.

"i
3

.-2

3

3

Resulting

Display Pen

0

1
2

3 ..' . ; ',■/.

3

3

2 .-: .;,-

3

3

The XOR combination mode is the default mode used if

no combination—type is specified. One reason for this mode

being the default is that when it is used, the entire image al

ways appears onscreen (though its color may vary), and the

part of the stored image that was drawn with the background

pen never appears. Also, because it undoes its own effects, the

XOR operator is useful for a limited form of animation. Using

XOR mode, if you PUT an image once, the image appears, but

if you PUT the same image a second time in the same place

using XOR, the display is restored to its original state before

the PUT took place. See if you can figure out why from the

following chart, which shows all of the possible combinations

of one pen color XORed with another in a four-color display.

f First Pen
ft\j

0

0

0

1

1

1

2

2

3

Second Pen
d
u

1

. . 2, .

3

1

2

3

2

3

Resulting \-•'■■■{
Display Pen ■'

n '-'■ ■' "'u

1

2 --. ■ . i-

3

0

3

2 ;

0

1

o .;. ■;; :k

173

Chapter 5

Program 5-5 graphically demonstrates the various color

combinations resulting from the use of the different combina- <_J
tion types. An interesting feature of this program is that the

array used by the PUT statement is not created by a cor

responding GET statement. Rather than drawing the image, I I
we use the same technique demonstrated above to create the

BltPattern and the area fill pattern. Rows of binary data are i j

laid out one on top of the other to form a picture. This data is '—'
then read into the appropriate elements of the image array.

Program 5-6 demonstrates the more usual method of

drawing a picture and storing it into the array to be used later

by the PUT statement. To keep the user from seeing the pic

ture when we first GET it, the PALETTE statement is used to

change the foreground pen color to the same shade as the

background pen color, rendering the drawing invisible. Also,

note that a single two-dimensional array is used to store the

image of all six dice. We can display the proper dice face by

just changing the second array subscript.

Program 5-5. Graphics Demo Using PUT

DEFINT a-z

WINDOW 1,,(0,0)-(500,180)

DIM man(40)

man(0)=16 'image is 16 bits wide

man(l)=18 'by 18 lines high

man(2)=2 'and 2 bit planes deep

FOR x=3 TO 20

READ d 'read image data

man(x)=d 'into the PUT array

NEXT

FOR row= 1 TO 3 '3 rows '—'

FOR col=0 TO 4 'of 5 columns each

LINE (48+100*col,9+50*row)-STEP (20,10),row,bf i ,
NEXT col I |

PUT (50/50*row), man,PSET . ,

PUT (150,50*row), man,PRESET] |
PUT (250,50*row), man,AND

PUT (350,50*row), man,OR

PUT (450,50*row), man,XOR j I
NEXT row

174 jj

Drawing and Manipulating Image Blocks

WIDTH 60

LOCATE 5,1 'print heading

PRINT PTAB(40) "PSET" PTAB(130) "PRESET"7

PRINT PTAB(240) "AND" PTAB(350) "OR";

PRINT PTAB(440) "XOR"

LOCATE 1,1

REM—18 words of image data

DATA &H07E0, &H0FF0, &H1998, &H1FF8

DATA &H1C38, &H0FF0, &H03C0, &H0FF0

DATA &HFFFF, &HFFFF, &H0FF0, &H0FF0

DATA &H1FF8, &H1FF8, &H1E78, &H1C38

DATA &H7C3E, &H7C3E

Intuition Images

For C programmers, the Intuition library provides an excellent

general-purpose image-display mechanism. Although Intuition

uses this system specifically for the purpose of rendering the

graphics images associated with such Intuition features as gad

gets and menus, it can be used to create ordinary graphics ob

jects for whatever purpose you might have.

At the heart of this image-production system is a data

structure known as the Image structure. This structure pro

vides all the information needed to draw the Image. The C

language definition for the Image data structure looks like this:

struct Image

SHORT LeftEdge, TopEdge;

SHORT Width, Height, Depth;

SHORT *ImageData;

UBYTE PlanePick, PlaneOnOff;

struct Image *NextImage;

};

As you can see, it's necessary to supply a number of values in

order to define the image. The first two, LeftEdge and

TopEdge, specify the coordinates of the top left corner of the

image. When used to draw Intuition objects like gadgets, these

values specify the exact position of the object. However, when

used with the Drawlmage routine, which we will examine be

low, these values may be modified by offset values, which ef

fectively allows you to place them anywhere in the window.

175

P
r
o
g
r
a
m

5
-
6
.
U
s
i
n
g
P
U
T
a
n
d
G
E
T

t
o
D
r
a
w
a

P
i
c
t
u
r
e

D
E
F
I
N
T

A
-
Z

S
C
R
E
E
N

1
,
3
2
0
,
2
0
0
,
3
,
1

W
I
N
D
O
W

2
,
,
,
8
,
1

■
l
o
-
r
e
s
,

8
c
o
l
o
r
s

1
f
u
l
l
-
s
c
r
e
e
n
w
i
n
d
o
w

O Q ■
D (D

P
A
L
E
T
T
E

0
,
0
,
0
,
0

P
A
L
E
T
T
E

2
,
1
,
0
,
0

P
A
L
E
T
T
E

4
,
0
,
1
,
0

P
A
L
E
T
T
E

5
,
1
,
1
,
1

P
A
L
E
T
T
E

3
,
1
,
1
,
1

'
b
l
a
c
k

b
a
c
k
g
r
o
u
n
d

1
r
e
d

f
o
r
e
g
r
o
u
n
d

1
g
r
e
e
n

f
o
r
e
g
r
o
u
n
d

•
w
h
i
t
e

d
i
c
e

s
p
o
t
s

'
w
h
i
t
e

d
i
c
e

s
p
o
t
s

G
O
S
U
B

I
n
i
t
D
i
c
e

'
s
e
t

u
p

d
i
c
e

i
m
a
g
e

a
r
r
a
y
s

W
I
D
T
H

3
7
:

L
O
C
A
T
E

1
9
,
6

P
R
I
N
T

"
S
t
r
i
k
e

a
n
y

k
e
y

t
o

r
o
l
l

a
g
a
i
n
"

R
A
N
D
O
M
I
Z
E

T
I
M
E
R

'
i
n
i
t
i
a
l
i
z
e

R
N
D

f
u
n
c
t
i
o
n

y
l
=
8
0

'
t
o
p

l
i
n
e

o
f

d
i
c
e

R
o
l
l
d
i
c
e
:

F
O
R

C
h
a
n
g
e
=
0

T
O

5
:
F
O
R

D
i
e
=
l

T
O

2

x
l
=
6
4
*
D
i
e
+
4
0

R
o
l
l
(
D
i
e
)
=
I
N
T
(
R
N
D
*
6
)

L
I
N
E
(
x
l
,
y
l
)
-
S
T
E
P

(
4
7
,
3
9
)
,
D
i
e
*
2
,
B
F

P
U
T

(
x
l
,
y
l
)
,
S
p
o
t
s
(
0
,
R
o
l
l
(
D
i
e
)
)

S
O
U
N
D

1
0
0
0
0
,
.
0
0
1
:
S
O
U
N
D

1
5
0
,
0

N
E
X
T

D
i
e
,

C
h
a
n
g
e

'
u
s
e

t
w
o

d
i
c
e
,

r
o
l
l

e
a
c
h

6
t
i
m
e
s

1
s
e
t

t
o

l
e
f
t

o
r

r
i
g
h
t

d
i
e

'
p
i
c
k

a
r
a
n
d
o
m

r
o
l
l

•
b
l
a
n
k

d
i
e

'
d
r
a
w

s
p
o
t
s

'
m
a
k
e

c
l
i
c
k

W
I
D
T
H

4
0
:
L
O
C
A
T
E

9
,
1

P
R
I
N
T

P
T
A
B
(
1
1
7
)

R
o
l
l
(
l
)
+
1
;

P
T
A
B
(
1
8
0
)
R
o
l
l
(
2
)
+
l

'
p
r
i
n
t

n
u
m
b
e
r
s

a
b
o
v
e

d
i
c
e

C
h
e
c
k
F
o
r
R
o
l
l
:

'
I
f

u
s
e
r

c
l
o
s
e
d

t
h
e

w
i
n
d
o
w
,

e
n
d

I
F
W
I
N
D
O
W
(
8
)
=
0

T
H
E
N

S
C
R
E
E
N

C
L
O
S
E

1
:
W
I
N
D
O
W

O
U
T
P
U
T

1
:
E
N
D

I
F

I
N
K
E
Y
$
=
"
"

T
H
E
N

C
h
e
c
k
F
o
r
R
o
l
l

E
L
S
E

R
o
l
l
d
i
c
e

C
C

C
(I

C
c

c
c

J
C1

I
n
i
t
D
i
c
e
:

R
E
M

T
h
i
s

s
u
b
r
o
u
t
i
n
e

d
r
a
w
s

t
h
e

s
p
o
t
s

o
f

t
h
e

d
i
c
e

R
E
M

a
n
d

t
h
e
n

G
E
T
s

t
h
e

i
m
a
g
e

d
a
t
a

i
n
t
o

a
r
r
a
y

S
P
O
T
S

D
I
M

S
p
o
t
s
(
5
0
0
,
7
)
,

R
o
l
l
(
2
)

P
A
L
E
T
T
E

1
,
0
,
0
,
0

'
m
a
k
e

f
o
r
e
g
r
o
u
n
d
=
b
a
c
k
g
r
o
u
n
d
,

s
o

s
p
o
t
s

a
r
e

i
n
v
i
s
i
b
l
e

F
O
R

P
a
i
r
=
0

T
O

4
S
T
E
P

2
'
f
o
r

3
p
a
i
r
s

o
f

d
i
c
e

s
h
a
p
e
s

F
O
R

S
p
o
t
=
0

T
O

3

R
E
A
D

x
,
y

C
I
R
C
L
E
(
x
,
y
)
,
5

P
A
I
N
T
(
x
,
y
)

Q

N
E
X
T

S
p
o
t

'
d
r
a
w

t
w
o

d
i
c
e

g

G
E
T

(
1
0
4
,
8
0
)
-
(
1
5
9
,
1
1
9
)
,
S
p
o
t
s
(
0
,
P
a
i
r
)

ig
G
E
T
(
1
6
8
,
8
0
)
-
(
2
2
3
,
1
1
9
)
,
S
p
o
t
s
(
0
,
P
a
i
r
+
l
)

'
r
e
a
d

t
h
e
i
r

d
a
t
a

3

N
E
X
T

P
a
i
r

<
Q Q

P
A
L
E
T
T
E

1
,
1
,
1
,
1

£
C
L
S

'
c
l
e
a
r

s
c
r
e
e
n

a
n
d

m
a
k
e

s
p
o
t
s

w
h
i
t
e

a
g
a
i
n

R
E
T
U
R
N

^ 3

D
A
T
A

1
7
8
,
8
6
,
2
0
6
,
1
1
2
,
1
2
7
,
9
9
,
1
2
7
,
9
9

-g
'

D
A
T
A

2
0
6
,
8
6
,
1
7
8
,
1
1
2
,
1
1
2
,
8
6
,
1
4
2
,
1
1
2

C

D
A
T
A

1
7
8
,
9
9
,
2
0
6
,
9
9
,
1
4
2
,
8
6
,
1
1
2
,
1
1
2

Q
.

(
Q O O

LJ

Chapter 5

The Width value is the width of the image in pixels. An

image can be any width, provided that you furnish enough

data to define its shape. As we'll see below, each line of image

data is composed of a number of 16-bit words sufficient to

contain the image. For example, if the image is 12 pixels wide,

you must use only one 16-bit word of image data per line for

each bit plane used. If the image is 40 pixels wide, you must

use three words per line, because 48 (3 * 16 bits) is the lowest

multiple of 16 into which 40 pixels will fit. When your image

width is not an even multiple of 16, the image will take the

form of the most significant bits. In other words, if your image

is 40 pixels wide, the image will take its shape from the first

two words in each line (32 bits), plus the leftmost eight bits of

the third word. The low-order eight bits of the last word in

each line will be ignored.

The Height value gives the height of the image in number

of lines. The Depth value specifies the number of bit planes

used to define the image, which in turn determines the num

ber of different colors that can be displayed within the image.

This value does not have to be the same as the depth of the

screen on which the image will be drawn. If it is greater than

the depth of that screen, however, not all of the bit planes of

data will be displayed.

Together, the Width, Height, and Depth values determine

how the image data will be interpreted. The data for each bit

plane will consist of Height number of lines, each composed

of sufficient 16-bit words to contain Width number of pixels.

The bit planes are laid out one after the other so that the data

starts with the first word of the first line of the first bit plane, ,

continues with the second word of that line, until the whole < I
line has been defined. The data after that is used to describe

the next line of the first bit plane. After the last line of the first • /

bit plane has been defined, the next data word starts the first —>

line of the second bit plane, and so on, until Depth number of

planes have been defined. \ j

The next variable is ImageData. This is a pointer to the { '

actual display data that you've defined. We will examine the

process of setting up that data in more detail below. \ \
The next two values, PlanePick and PlaneOnOff, allow

178 "t (

Drawing and Manipulating Image Blocks

you to specify the bit planes into which the image data will be

drawn. This affords a certain amount of flexibility in the

choice of colors that can be used to depict various parts of the

image. As a result, two images, using the exact same image

data, can be drawn in two completely different sets of colors.

PlanePick and PlaneOnOff can be thought of as masks

that can change the order in which your image would nor

mally be drawn into the various bit planes available. Ordi

narily, your image would be transferred to the display in

sequential order, with the first bit plane of your image going

into the first bit plane of the display, the second image plane

to the second display plane, and so forth. If you have an im

age that is two planes deep, however, and a screen that is five

planes deep, you may not always want to place your image

into the first two bit planes. That's where PlanePick and

PlaneOnOff come into play.

PlanePick is used to determine which bit planes of the

display receive your image data. Let's say that you have a

two-plane image that uses pens 2 and 3, and you want to dis-'

play it on a three-plane screen. Normally, the two image

planes would be displayed in planes 0 and 1. You can set

PlanePick, however, to display these as two entirely different

planes. You choose which planes will be used by setting

PlanePick to the sum of the bit values of the planes in which

you wish the object displayed. Each bit value corresponds to 2

raised to the nth power, where n is the number of the plane.

For example, the bit value of plane 0 is 1 (2A0), the bit

value of plane 1 is 2 (2A1), and so forth. The PlanePick value

that corresponds to the normal setting of planes 0 and 1

would be 3 (1 + 2). To display the image in planes 1 and 2,

you would set the PlanePick value to 6 (2 + 4). The part of

the image that was created using pen 1 will now be displayed

in the color of pen 2, and the part of the image that was cre

ated using pen 2 will now be displayed in the color of pen 4.

The part of the image that was originally colored in pen 3

(both planes set) will now be shown in the color of pen 6. The

following chart shows each of the possible PlanePick values

for a three-plane screen, the binary representation for that

value, and the meaning of such a PlanePick setting.

179

Chapter 5

PlanePick

Value

0

1

Binary

Value

000

001

010

Oil

100

101

110

111

Display Planes Used

No image planes are displayed.

The first image plane^ goes into display

plane 0; the rest are ftot displayed?;

The first image plane goes into display

plane 1; the rest are not displayed.

Th^ first image plane goes into (Jisplay

plafie 0, theriecohd mtto'fJlane iff the re

are not displayed.

The first image plane; goes into display

plane 2; the fest are ^iot displayed. ;i.

The first image plane goes into display

plane 0, the second into plane 2; the rest

are not displayed. !

The first image plan^ goes into display *

plane 1, the second ipto plane 2; the rest

are not displayed. ;

The first image plane goes into display

plane 1, the second |nto plane 2, the thir<J

into plane 3. i '

The PlaneOnOff value can be used to further enhance the

selection of colors. Let's go back to the example above of a

two-plane (four-color) image and a three-plane (eight-color)

screen. If you wanted to display your object in pen colors 3, 5,

and 7 instead of 2, 4, and 6, it would not be possible using

PlanePick alone since these colors require that a bit be set in

each two-color plane. PlaneOnOff lets you decide whether the

color planes that were not chosen by PlaneOnOff will always

be set to all zero bits or all one bits. In our example, an image

that originally used planes 0 and 1 (pen colors 1, 2, and 3)

was changed to use planes 1 and 2 (pen colors 2, 4, and 6).

This means that plane 0 is not used at all. PlaneOnOff lets

you determine how plane 0 will be set as well. If you chose a

PlaneOnOff value of 1, which corresponds to a one bit in

plane 0, every bit in plane 0 will be set to 1. This has the ef

fect of adding 1 to the pen values made possible by PlanePick.

If PlanePick is set to 6, and PlaneOnOff is set to 1, the parts

of the object that were originally drawn in pens 1, 2, and 3

will appear in pen colors 3, 5, and 7 . The background color,

180

Drawing and Manipulating Image Blocks

fmmm^ which was originally drawn in pen 0, will now be set to pen 1.

I t The last value in the Image structure is Nextlmage. If you

place the address of another Image structure in this variable,

r—| the two Images become linked, and anytime the first is drawn,

! the second will be drawn also (though the reverse is not true).

This image may in turn be linked to another. The last image

pi in the chain should have a null (zero) value in the Nextlmage

' variable to show that there are no more images in the chain.

Linking images together in this is often much more memory

efficient than designing a multipart image as one big image

that contains a lot of blank space.

The final step is to create the image display data. This

process is similar to creating the pattern for area filling or any

of the other image commands that we've covered. You must

draw a picture composed of filled and unfilled boxes, and con

vert those boxes to binary numbers, where ones represent

filled boxes and zeros represent unfilled boxes. The pattern

can be any number of pixels wide, but the data must be

aligned on word boundaries. When it comes time to draw the

image, the operating system routine uses the leftmost bits of

each line of image data.

It's important to note that in order for an Intuition image

to display properly on a machine that uses expansion memory,

the image display data (not the Image structure) must be in

the lower 512K of memory. You can insure this by using the

Atom utility program before using Alink or by using the equiv

alent option on your own linker.

When the image data has been created and the Image

P-, structure which points to that data has been set up, you may

I I draw the image by calling the Drawlmage routine. The syntax
for this routine is

pi Drawlmage (RastPort, Image, LeftOffset, TopOffset);
(aO) (al) (dl) (d2)

where Image is a pointer to the Image data structure, and

: I LeftOffset and TopOffset are position values that are added to

the LeftEdge and TopEdge values in the Image structure to ar-

i—I rive at the actual positioning of the image on the screen. This

' ! means that even though you specify a position for the image

H

Chapter 5

in the Image structure, you are not bound to use that position,

but can draw the image anywhere onscreen.

Program 5-7 shows many of the features of the Intuition

Image structure. It defines two images, one of a little man and

the other of a balloon, each two planes deep. It links these

two images by having the Image structure of one point to the

other so that both can be drawn with a single call to

Drawlmage; it also shows how to draw just the last image in

the linked list. It uses the PlanePick and PlaneOnOff values to

change the colors used to display these two-plane images on a

three-plane screen.

Program 5-7. Using the Intuition Image Structure

#include <windowl.c>

#include <graphics/gfxmacros.h>

u

LJ

) f

UWORD ManData []

{
/* picture of man */

0X0FC0,

0X3FF0,

0x3330,

0x3330,

0x3FF0,

0X3CF0,

0X0FC0,

0x0300,

0XFFFC,

0XFFFC,

0X0FC0,

0X0FC0,

0X3FF0,

0X3CF0,

0X3CF0,

0XFCFC,

0XFCFC,

0x0000,

0x0000,

0X0CC0,

0X0CC0,

0x0000,

0x0300,

0x0000,

0x0000,

0x0000,

0x0000,

0x0000,

0X0000,

0X0000,

/* Plane 0 */

/* Plane 1 */

u

u

182 LJ

n
Drawing and Manipulating Image Blocks

| 1.
/ /

n

n

i t
i \

mmmm

<)

! |

: [

n

0X0000,

0X0000,

0X0000,

0X0000

};

UWORD BaloonData [] =
r

0X0F80,

0X3FE0,

0x7FF0,

0X7EF0,

0XFFF8,

0XFFF8,

0XFFF8,

0X7FF0,

0X7FF0,

0x3FE0,

0X0F80,

0X0000,

0X0000,

0X0000,

0X0000,

0X0000,

0X0000,

0X0000,

0X0000,

0X0000,

0X0000,

0X0000,

0X0F80,

0x3FE0,

0X7FF0,

0X7FF0,

0XFFF8,

0XFFF8,

0XFFF8,

0X7FF0,

0X7FF0,

0X3FE0,

0X0F80,

0x0200,

0x0200,

0x0200,

0x0200,

0x0200,

0x0200,

0x0200,

0x0200,

0x0200,

0x0200,

0x0200

/* Plane 0

/* Plane 0

183

Chapter 5

struct Image Manlmage =

0,12, /* left, top position */
14,17,2, /* width, height, depth */

&ManData[0], /* pointer to image data */

3,0, /* PlanePick, PlaneOnOff */

NULL /* pointer to next Image */

}

struct Image Baloonlmage =

8,0, /* left, top position */
13,22,2, /* width, height, depth */
&BaloonData[0], /* pointer to image data */

3,0, /* PlanePick, PlaneOnOff */
&ManImage /* pointer to next Image */

}

demo()

Drawlmage (Rp,&BaloonImage,100,50);

Baloonlmage.PlanePick = 6;

Manlmage.PlanePick =6;

Drawlmage (Rp,ficBaloonlmage,130,50);

Drawlmage (Rp, ficManlmage,70,50);

Baloonlmage.PlaneOnOff = 1;

Manlmage.PlaneOnOff =1;

Drawlmage (Rp,ficBaloonlmage,160,50);

Baloonlmage.PlanePick = 5;

Manlmage.PlanePick = 5;

Baloonlmage.PlaneOnOff =0; \

Manlmage.PlaneOnOff = 0; !
Drawlmage (Rp,&BaloonImage,190,50);

Baloonlmage.PlaneOnOff =2; j j

Manlmage.PlaneOnOff = 2; L- r
Drawlmage (Rp,ficBaloonlmage,220,50);

1 LJ
/* end of Image.c */

u

184
u

n

n

n

WmMmiu

S--;?liili{^^

:r^:-M^P^USS&)■■ ^vSliRlilc^v: i^elii^KiS/-■/ ^SiK^^S?;?^"
vKixfeS^

gS||^|||f^

ii-m

u

u

0

u

Sprites and Bobs

Usingthe block-image transfer methods discussed in Chap

ter 5 can be very useful for stamping images in various

locations on the display screen and for a limited form

of animation. But for full animation effects, something

a little more is needed.

There are basically two ways to achieve animation of a

graphics object on a microcomputer. The first is by quickly re

shuffling the contents of the display bitmap. The second

method makes use of special display hardware to create dis

tinct animation objects. The Amiga supports both of these

methods of animating images. For bitmap animation, it offers

animation objects called bobs (short for Witter objects). In addi

tion, the special display hardware of the Amiga supports ani

mation objects known as sprites.

Sprites

Sprites are graphics objects that are created by special hard

ware, and are displayed and moved around the screen entirely

independently of the normal bitmap display (which is some

times also called the playfield display). Since the display data

for sprites is stored in a different area than the bit planes used

by the normal display, sprites do not interfere with or change

bitmap data as they move about. And since the sprite display

data includes information about where to position the sprite

on the screen, moving a sprite is as easy as changing its dis

play data.

Sprite graphics affords the programmer tremendous

power for animating objects. But sprites have their limitations.

First of all, the hardware supports only eight hardware sprites

on any given horizontal line. The impact of this limitation is

lessened somewhat by the system software, which lets you

move sprites around while the screen is being drawn. While a

sprite can appear only once on a particular horizontal line, it

may be redrawn on a different horizontal line farther down

the screen. The software mechanism for reusing sprites so that

189

Chapter 6

one sprite may appear in different shapes, sizes, colors, and

locations on the same screen is known as vsprites (for virtual

sprites). We'll discuss vsprites in detail a little later on.

Another limitation of sprites is their size. Each sprite can

be a maximum of 16 bits (dots) wide. Though this may seem

somewhat narrow, you should note that sprites are always dis

played in low-resolution mode, regardless of the resolution of

the normal bitmap graphics screen. This means that if the

playfield (bitmap) screen is high resolution, each dot of the

sprite will be twice as wide as a dot of background graphics.

Though the width of a sprite is limited to 16 bits, its height is

determined strictly by the number of lines of shape data that

you provide for it. Each sprite can be as tall as the screen.

Normally, each dot of a sprite can be colored in any one

of three colors, or it can be transparent. In effect, each sprite is

two bit planes deep. Instead of color 0 being a distinct back

ground pen, however, the parts of the sprite that normally

would be colored by pen 0 take on the color of the bitmap un

derneath. The actual colors that the sprite displays are deter

mined by the upper 16 color registers. Each pair of sprites

shares a set of color registers. The register assignments for

each sprite are shown in the table below:

■l?p£

Note that the sprites share these color registers with the

normal bitmap graphics. This means that if you're using five

bit planes for the playfield, you will not be able to select 32

unique colors for the playfield and 12 more unique colors for

the sprites. You'll be confined to a total of 32 colors. On the

other hand, not every program requires that you use five bit

planes at once, and programs that require a high-resolution

screen don't even allow you to use five bit planes.

The use of sprites may actually allow you to use fewer bit

190

u

u

LJ

U

U

U

u

u

u

Sprites and Bobs

planes for your program display. If most of your program dis

play uses one or two colors, but some areas require a few ad

ditional colors, you may use sprites to provide those colors,

rather than allocating additional bit planes unnecessarily. This

practice can free up a lot of memory for use by other programs

in the Amiga's multitasking environment.

Although normally each sprite is limited to three colors,

there is a special mode in which you may attach two sprites

together to form one colorful sprite. Although this sprite is only

16 bits wide, each dot may be one of 15 colors or transparent.

You may attach only sprites that share the same color registers

(for example, sprites 0 and 1, 2 and 3, and so forth). When you

attach them, the two bit planes of each sprite are combined to

form four bit planes. These four bit planes display the colors

from registers 17 through 31. A one value in the bit planes

displays pen 17, a two displays pen 18, and so on.

A final word of caution before we start exploring how to

manipulate sprites. Sprites don't fit into the framework of the

Intuition user interface very well. In order to manage windows

on the display effectively, Intuition must have complete con

trol over it. Sprites, however, are not affected by manipulation

of the normal bitmap graphics system. As a result, Intuition

has no way of keeping sprites in a particular window. If you

resize the window, move it with the drag bar, or use the depth

arrangers to send it to the back, the sprite will just stay put. In

fact, sprites won't even move with the screen if you drag it up

and down, unless they have to in order to keep from moving

onto another screen. This can be inconvenient at best. For seri

ous use in your own programs, therefore, you'll usually get

the best results by using sprites on a custom screen and in

windows that can't be moved, sized, or depth arranged.

Simple Sprites

The operating system provides two methods for using sprites

on the Amiga. The first is less flexible, but very easy to set up.

This system is known as simple sprites. The simple sprite sys

tem follows the hardware model for sprites very closely. It al

lows for only eight sprites, used in only one place per display.

191

G
Chapter 6

LJ

Since the Intuition pointer is actually a sprite, there are only \ >

seven sprites available for your use. ^
Setting up simple sprites requires you to provide little

more than the data actually used by the sprite hardware. The) J

first step is to set up the display data that defines the shape of

the sprite. This data uses a slightly different format from that

of Intuition images or the shape information for patterned fills. i j

Image data for those constructs are set up so that each bit

plane is defined separately. First comes the shape information

for the entire first bit plane, then the shape information for all

of the next bit plane. With simple sprites, however, the data

for both bit planes is intermixed. Each line of sprite shape def

inition data consists of one 16-bit word of data for plane 1,

followed by another 16-bit word of data for plane 0 of that

line. Another difference is that the sprite shape data contains

two additional 16-bit words having a value of zero, one at the

beginning and the other at the end of the data table. These

added words hold a place for position data created by the sim

ple sprite machine.

To illustrate the above information, let's create the data

needed for a sprite whose shape is a striped rectangle. We'll

make the top stripe color 3, the middle stripe color 2, and the

bottom stripe color 1. We will separate each of the colored

stripes with a transparent stripe (color 0). The data for such a

sprite looks like this:

UWORD Sprite_data [] =

0x0000, 0x0000,

/* Holds place for position and control data */ k - ■ .

i j
/* Stripe of color 3—both planes have all l's */ *

0XFFFF, 0XFFFF,

0XFFFF, 0XFFFF, 4 t

0XFFFF, 0XFFFF, ^_J

/* Stripe of color 0—both planes have all 0's */

0x0000, 0x0000, < I

/* Stripe of color 2—plane 1 has l's, plane 0 has 0's */

0XFFF0, 0x0000,

0XFFF0, 0x0000, | I

0XFFF0, 0x0000, i I

0x0000, 0x0000,

192 LJ

Sprites and Bobs

n
; \

p_ /* Stripe of color 1—plane 1 has 0's, plane 0 has l's */

j] 0x0000, 0XFFFF,
0X0000, 0XFFFF,

0X0000, 0XFFFF,

!—i

I j /* This line can be used to indicate attached sprites */
0x0000, 0x0000

};

Remember our caution in Chapter 5: Sprite shape data is

used directly by the display hardware chips. Since these chips

have access only to memory located in the bottom 512K of the

computer's address space, you must take steps to insure that

your sprite data is loaded into this area if you want your pro

gram to function correctly on machines that are equipped with

external expansion memory. To do this, you must either use

the Atom utility on your Amiga C object code file before link

ing or whatever equivalent provision is made by compiler and

linker.

The next step in creating a simple sprite is to set up a

SimpleSprite data structure. The C language declaration for

such a structure is as follows:

struct SimpleSprite

UWORD *posctldata;

UWORD height;

UWORD X,Y;

UWORD num;

};

Most of these values are self-explanatory. The first,

posctldata, is a pointer to the address of the position and con-

| | trol data that the sprite machine will use to position the sprite.

Since we have already said that space for that data is reserved

,—, at the beginning of the shape data table, this value should

I I contain the starting address of the sprite shape data.
The height variable tells how many lines of actual shape

f—i data are contained in the table. Remember that the table con-

1 -' tains an extra line at the beginning and the end, and count
only the lines that contain actual shape data. For example, the

("-] data table that we created above contains 13 lines of data

(each line consisting of two 16-bit words), but only 11 of these

n 193'

u
Chapter 6

lines contain sprite shape data, so the correct value for height . ,

is 11. LJ
The x and y values correspond to the horizontal and verti

cal position at which the sprite is initially displayed. j j

Finally, the num value indicates the number of the hard- '—'
ware sprite used to display this simple sprite. You do not need

to specify this number since it is automatically supplied by the j (

sprite machine when you allocate a sprite for your use.

An initialized SimpleSprite data structure looks like this:

struct SimpleSprite StripeSprite =

{&Sprite_data[O], 11,100, 50, 0 };

It is not absolutely necessary to preinitialize every value

in the SimpleSprite structure. The posctldata value may be

supplied by using the ChangeSprite statement. The x and y

position values may be supplied by the MoveSprite statement.

And the sprite number will be supplied by the GetSprite state

ment. All of these statements will be discussed in greater de

tail below. What's important to remember is that the one

value that you must supply is the height of the sprite. If this

value is left at zero, nothing will be displayed.

After you've set up the shape data and the SimpleSprite

data structure, the next step is to allocate a sprite for your use

from the sprite machine. You can request a particular sprite or

ask to be given the first available sprite. The statement used to

reserve a sprite for your exclusive use is GetSprite. The proper

form for this statement is

Sprite—got = GetSprite (SimpleSprite, Sprite-number);

(dO) (aO) (dO)

The GetSprite statement requires that you pass it two val- j I

ues. The SimpleSprite value is the address of the SimpleSprite

data structure that you've set up for this sprite. The I ,

Sprite_number value is the number of the hardware sprite «—I
that you are requesting (from 0 to 7). If you don't care which

sprite you get, you can supply a value of —1, and the system j j

will allocate the first available sprite for your use. The *—}

GetSprite routine returns the value Sprite—got, which tells you

which sprite (0-7) was allocated for your use. j J

If the GetSprite call succeeds, the number of the sprite ' '

194 U

I i

Sprites and Bobs

j—i that you have reserved will also be placed in the num variable

'] of the SimpleSprite structure. When the system is unable to al

locate the particular sprite that you requested, or when no

P""] sprites are available for allocation, the value returned in

Sprite—got is —1. Your program should test the value that

GetSprite returns to make sure that a sprite is allocated before

I going any further. As was mentioned above, sprite 0 is used

by Intuition's mouse pointer, so don't try to reserve it for your

own use. And since sprite 1 shares color registers with sprite

0, if you use that sprite, it will always be the same colors as

the pointer.

The final step in displaying your sprite is to link your

SimpleSprite data structure and shape data into the simple

sprite machine. The way you do this is by calling the Change-

Sprite routine, which tells the sprite machine what shape you

want the sprite to be. The format for this statement is

ChangeSprite (Vp, SimpleSprite, Sprite.data);

(aO) (al) (a2)

where the SimpleSprite and Sprite—data values are pointers to

those two data structures. The Vp value stands for the address

of the viewport, which can be found with the Intuition state

ment ViewPortAddress, which we discussed in Chapter 3. If

you wish only to position the sprite relative to the current

view, however, you can use a zero for this value. If the call to

ChangeSprite is successful, the address of the sprite data struc

ture is placed in the posctldata variable of the SimpleSprite

structure, and your sprite is displayed at the position specified

by the x and y variables in the SimpleSprite structure. You can

j | use ChangeSprite not only to initially specify the shape of

your sprite, but to change this shape while the sprite is on dis-

<—, play as well.

I i While your sprite is being displayed, you may wish not
only to change its shape, but to change its position as well. To

p—i move the sprite, use the command MoveSprite. The syntax for

' ■' MoveSprite is

MoveSprite (Vp, SimpleSprite, X, Y);

I j (aO) (al) (dO) (dl)

where Vp is a pointer to the viewport (or zero if the sprite is

R 195

u
Chapter 6

u

positioned relative to the current view), SimpleSprite is a ;

pointer to the structure of the same name, and X and Y specify *—1
the new position for the sprite.

The x and y position is relative to the entire display (not \ }

just the screen you are using). The position (0,0) places the top '—'
left corner of the sprite at the top left corner of the display

screen. As the x value increases, the sprite moves to the right, | |

and as the y value increases, the sprite moves downward. Re- ' '
member, the horizontal resolution for sprites is only 320

across, so the maximum x value at which you can see at least

part of the sprite is 319. Also, you should note that it is possi

ble to use negative values for x and y. Using a negative value

for x moves the sprite off the screen to the left, and using a

negative value for y moves it off the top of the screen.

Once a sprite has been allocated to you, it can no longer

be used by other programs or by the vsprite system of virtual

sprites. Therefore, you should always remember to release the

sprite as soon as you are finished using it. This is accom

plished with the FreeSprite statement, whose syntax is

FreeSprite (Sprite—number);

(dO)

Notice that all that is required by this statement is the

number of the sprite. This means that you could, in theory,

free sprites used by other programs as well as your own. Obvi

ously, such a practice would be bad manners at the very least

and could well crash the system. Take care to free only the

sprites allocated to you.

Program 6-1 is a C language program which shows the

use of all of the SimpleSprite commands discussed. 1

Notice that we used the Graphics library routine

WaitBOVP before moving the sprite. This routine uses the ,

syntax | I

WaitBOVP(Vp);

<a0) y

where Vp is a pointer to the window's viewport, which we

find with the Intuition function ViewPortAddress. The

WaitBOVP call is used by the program to synchronize sprite J j

movements with the video beam. Its function is to wait until

196 LJ

Sprites and Bobs

<—) the video beam gets to the bottom of the viewport. At that

' ' point, we can safely move the sprite without having to worry
that the movement will take place while the video beam is re-

f—j drawing the sprite. The result of such an occurrence could be

a noticeable flicker or jerkiness to the motion.

r-j Program 6-1, Simple Sprite Demonstration, C Example

#include <window.c>

#include <graphics/sprite.h>

struct SimpleSprite Sprite;

UWORD Sprite_data[] =

0,0, /* position, control */

0xFFFF,0xFFFF,

0xFFFF,0xFFFF,

0xC003,0xCE73,

0xC003,0xCE73,

0xFF8F,0xC073,

0xFF8F,0xC073,

0xC003,0xCE73,

0xC003,0xCE73,

0xFlFF,0xCE03,

0xFlFF,0xCE03,

0xC003,0xCE73,

0xC003,0xCE73,

0xFFFF,0xFFFF,

0xFFFF,0xFFFF,
->

! 0,0 /* end */

1 demoO

SHORT spgot;

SHORT n, r, dx, dy;

> WVP = (struct Viewport *) ViewPortAddress(Wdw);

spgot = GetSprite(&Sprite,3);

| if (spgot 1= 3) exit (FALSE);

197

u
Chapter 6

u

Sprite.x = Sprite.y =0; ,

Sprite.height = 14; j

SetRGB4 (WVP,21,12,3,8);

SetRGB4 (WVP,22,3,13,4); ^

SetRGB4 (WVP,23,12,10,4); |

ChangeSprite (0,&Sprite,Sprite_data);

MoveSprite(0,&Sprite,60,90); j j

1 i
dx = -1;

dy = 1;

for (n=0; n < 20; n++){

if (n & 1) dy = -dy;

else dx = -dx;

r = 0;

while (r++<110){

WaitBOVP(WVP);

MoveSprite (0,&Sprite,Sprite.x+dx,Sprite.y+dy);

}

FreeSprite(spgot);

} /* end of Simpspr.c */

Using SimpleSprites from BASIC

The steps for using SimpleSprites from BASIC are largely the

same as those required by C language programs. First, we

must set up the sprite shape data and SimpleSprite data struc

tures. Normally, BASIC programmers use subscripted arrays

for such tasks, but in this case there are two problems with

that approach. We must make sure that the sprite image data

remains in chip memory, and BASIC has no mechanism for

specifying where an array will be located in memory.

The second problem is that all variables of the same type

are stored together, and space for new variables is allocated

dynamically, while the program is running. This means that if

a nonsubscripted variable is first used after an array is DIMen-

sioned, the whole array is moved up in memory to make room

for the new simple variable. The data for sprites must always

stay in the same place, and since subscripted variables can

move around, it is impractical to use them for this purpose.

One reasonable alternative is to use the Graphics library

198

n

n

Sprites and Bobs

routine AllocRaster to allocate a small bit of free memory for

storing sprite data. The AllocRaster statement was described in

detail in Chapter 3, but to summarize, it allocates storage for

data that is a certain number of bits wide by a specified num

ber of lines tall. Since the routine returns the address of the

memory that is allocated, you must use the DECLARE FUNC

TION statement at the beginning of your program to let it

know that AllocRaster will return a value. Of course, the DE

CLARE FUNCTION statement must be used in conjunction

with the LIBRARY "graphics.library" statement that is used to

open the Graphics library routines for access from BASIC. Re

member also that you must have the graphics.bmap file in

your current directory when you try to open the Graphics

library.

The storage that you allocate with AllocRaster should be

16 bits wide, since that is smallest width of each data word

that you will be using. The number of words to request de

pends on the size of your sprite. Each SimpleSprite data struc

ture requires 6 words of storage, 2 for the pointer to

posctldata, and 1 each for height, x, y, and num. In addition,

each shape data structure requires 4 more words of overhead

for the two zero words at the beginning and end of each

shape definition. Therefore, you must reserve 10 data words in

addition to 2 words for each line of shape data. For a shape

that is 14 lines high, like the one defined in Program 6-2, you

need a total of 38 words, 28 for shape data and 10 for the

overhead of the SimpleSprite structure and posctldata.

Once you allocate RAM with the AllocRaster routine, it is

lost to the system until you release it with the FreeRaster call.

Always remember to free the memory you've allocated at the

end of your program and to release exactly the same amount

of memory as you initially requested.

After you have allocated the necessary RAM, you should

clear it to all zeros. You could do this by using the POKE

statement. In Program 6-2 we use the BltClear routine to let

the blitter do the work.

Once you have the data space allocated and initialized,

you will have to use the POKEW statement to fill in the neces

sary values. If the base address of data space is stored in the

199

LJ
Chapter 6 '

U

variable Sprite, then the height of the sprite must be stored in (

Sprite+4, the x position in Sprite+6, and the y position in j j
Sprite+8. The num value at Sprite+10 will be filled in by the

GetSprite call, and the two zero words at the beginning of the i >

shape data take up the positions Sprite+12 through i—!
Sprite+15. The actual shape data begins at Sprite+16.

To allocate a sprite for your use, you use the GetSprite j

call, just as you would from C. Since GetSprite returns a value '—3
telling you what sprite was allocated, you must use DECLARE

FUNCTION at the beginning of the program to let BASIC

know that it should pass back this value. Your program should

check the value returned and continue only if the sprite that

you requested was allocated. Remember that sprite 0 is re

served for the mouse pointer, so don't try to allocate that

sprite. Also keep in mind that sprite 1 shares color registers

with sprite 0, so if you choose that sprite, its colors will always

be the same as those of the pointer.

After you have allocated the sprite and set up the sprite

data, you may use ChangeSprite to link the data and Simple-

Sprite structure with the operating system sprite machine. If

you have stored the data as suggested above, with the Simple-

Sprite structure first, followed by the shape data, the addresses

to pass to ChangeSprite are Sprite (the SimpleSprite stucture)

and Sprite+12 (the shape data). This call will display your

sprite in the chosen shape. You may use ChangeSprite again

to change the shape to another form that you've set up in

data. To move the sprite, use the MoveSprite routine just as

you would from C.

Program 6-2 displays the same sprite shape as the C ex- j i

ample in Program 6-1 and makes the sprite follow the mouse i—•
pointer around the screen.

Program 6-2. Simple Sprite Demonstration, BASIC Example I 1

LIBRARY "graphics•1ibrary"

T§="Mouse moves sprite, CTRL-C to end"

WINDOW 2,T$,,0

DEFLNG A-z

DECLARE FUNCTION GetSprite() LIBRARY

DECLARE FUNCTION AllocRaster()LIBRARY
GOSUB InitSprite

200

Sprites and Bobs

ON BREAK GOSUB Cleanup

BREAK ON

1 set cleanup on BREAK

WHILE MOUSE(0)<4

x=MOUSE(l)/2-16

y=MOUSE(2)-4

CALL WaitTOF

CALL MoveSprite(0,sprite,x,y)

•move paddle accordingly

WEND

Cleanup:

FreeSprite(l)

Cleanupl:

CALL FreeRaster(sprite,16,38)

WINDOW CLOSE 2

END

'Continue 'til BREAK

'find mouse x

1 free the sprite

'free the memory

'close the window

InitSprite:

sprite = AllocRaster(16,38)

•allocate memory for sprite shape data

IF sprite= 0 THEN PRINT "No RAM":END

*if memory can't be allocated, quit

CALL BltClear (sprite,76,0)

'use the blitter to clear the memory

IF GetSprite(sprite,1) <> 1 THEN

WINDOW OUTPUT 1

PRINT "Can't Get Sprite"

GOTO Cleanupl

END IF

'try to allocate sprite 1-if can't, quit

POKEW sprite+4,14 'set height of sprite

POKEW sprite+6,MOUSE(l)/2-16 'set x

POKEW sprite+8, MOUSE(2)-4 'set y

'set shape = blockFOR x=16 TO 68 STEP 4

READ A%,B%

POKEW sprite+x,A%

POKEW sprite+x+2,B%

NEXT

CALL ChangeSprite (0, sprite, sprite+12) 'take shape

RETURN

DATA

DATA

DATA

DATA

DATA

DATA

DATA

&HFFFF,

&HFFFF,

&HC003,

&HC003,

&HFF8F,

&HFF8F,

&HC003,

&HFFFF

&HFFFF

&HCE73

&HCE73

&HC073

&HC073

&HCE73

201

Chapter 6

DATA

DATA

DATA

DATA

DATA

DATA

DATA

&HC003,

&HF1FF,

&HF1FF,

&HC003,

&HC003,

&HFFFF,

&HFFFF,

&HCE73

&HCE03

&HCE03

&HCE73

&HCE73

&HFFFF

&HFFFF

Attaching Simple Sprites

It is possible to create colorful sprites that can display up to 15

different colors at once, plus transparent, by combining two

adjacent sprites. The procedure is fairly simple. First, create two

sprites of the same size and position them at the same spot on

the screen. These sprites must make up a single pair that nor

mally shares the same color registers (for example, sprites 0

and 1, 2 and 3, and so forth). After you've used ChangeSprite

to display them, set the SPRITE-ATTACHED bit in the second

control word at the beginning of the shape-definition data for

the second sprite. From then on, the two sprites will be

attached.

When you attach two sprites in this manner, the two bit

planes of shape data for each line of each sprite are combined

to form four bit planes. The bit planes of the lower numbered

sprite are used as planes 0 and 1 for the combined sprite, and

the bit planes of the higher numbered sprite are used as

planes 2 and 3. For instance, if you are using sprites 3 and 4,

here is the order in which each word of each data line is used:

Since there are four bits used to define each dot, each dot

can be any one of 16 colors. The attached sprites use the up

per 15 color registers. Color 0 being transparent, color 1 uses

pen 17, color 2 uses pen 18, and so forth. Therefore, if the

data words for line 1 of sprite 3 are 0x0000, OxFFFF, and the

202

u

u

u

u

u

n
Sprites and Bobs

n'

p-1 data words for line 1 of sprite 4 are 0x0000, OxFFFF, they will

'- - combine to form a color value of 1010 binary, or 10, for each

dot. This means that the first line of the sprite will be a solid

p-j bar of pen color 26 (10 + 16).

Attached sprites use all 15 color registers only so long as

the position of each sprite is identical. If you move them apart,

] j they will be displayed as two separate sprites, each using up

to three colors plus transparent. The color registers used to

display those colors will differ from those normally assigned,

however. Regardless of which pair of sprites is used, the lower

numbered sprite will select its colors from registers 17-19, and

the higher numbered sprite will use registers 20, 24, and 28,

which are normally not used by any of the hardware sprites.

Fortunately, it is easy to keep the two sprites together. If you

use MoveSprite to move the lower numbered sprite of the

pair, the routine will automatically move both sprites together.

Program 6-3 is a C language sample that shows the use of

attached sprites. It creates a box-shaped sprite made up of

stripes of every available color.

From BASIC, creating attached sprites is very similar to

the process of creating two single sprites. The only real differ

ence is that you must use the POKE statement to set the at

tach bit of the second sprite. The value for this attach bit is

&H80 (128), and the control word whose bit you must set is

located at an offset of three bytes from the beginning of the

shape data block. Therefore, if your SimpleSprite data struc

ture for the second sprite appears at address Sprite2, and the

shape data comes directly after it at address Sprite2 + 12, then

J*~] the control word that you must POKE is located at Sprite2 + 15.

1 The correct statement to set the attach bit in this case would be

n POKE Sprite2+15, PEEK(Sprite2+15) OR 128

We OR the contents of the control word with 128 in order to

make sure that only the attach bit is changed.

pi Program 6-4, a BASIC program, shows how to create two

■ attached sprites. It uses the 15-color striped sprite of the previ

ous example and again lets you move the sprite with the mouse.

203

u
Chapter 6

u

Program 6-3. Attached Sprites, C Example , ,

#include <window.c>

#include <graphics/sprite.h>

demo() i |

SHORT spgot;

SHORT n, r, x, y, dx, dy; j j

struct SimpleSprite Sprite2;

struct SimpleSprite Sprite3;

UWORD Sprite2_data[32];

UWORD Sprite3_data[32];

Sprite2_data[0] = Sprite2_data[l] = 0;

Sprite3_data[0] = Sprite3_data[l] = 0;

Sprite2_data[30] = Sprite2_data[31] = 0;

Sprite3_data[30] = Sprite3_data[31] = 0;

for (n = 2; n<29 ;n+=2)

Sprite2_data[n] = 0x5555;

Sprite2_data[n+1] = 0x3333;

Sprite3_data[n] = 0X0F0F;

Sprite3__data[n+1] = 0X00FF;

spgot = GetSprite(&Sprite2,2);

if (spgot 1= 2) exit (FALSE);

spgot = GetSprite(&Sprite3,3);

if (spgot 1= 3) exit (FALSE);

Sprite2.x = Sprite2.y =0;

Sprite3.x = Sprite3.y =0;

Sprite2.height = Sprite3.height = 14;

WVP = (struct Viewport *) ViewPortAddress(Wdw); \ I

ChangeSprite (0,&Sprite2, Sprite2_data);

ChangeSprite (0, &Sprite3, Sprite3__data) ;

I i

Sprite3_data[l]I=SPRITE_ATTACHED; <—'
MoveSprite(0,&Sprite2,60,90);

dx = -1; j !
dy = 1; '—'

for (n=0; n < 20; n++){

if (n & 1) dy = -dy; i j

else dx = -dx; jj

204

Sprites and Bobs

_ r = 0;

j] while (r++<110)

x=Sprite2.x+dx;

p—. y=Sprite2.y+dy;

I | WaitBOVP(WVP);
MoveSprite (0,&Sprite2,x,y);

WaitTOFO;

J

FreeSprite(2);

FreeSprite(3);

} /* end of Attspr.c */

Program 6-4. Attached Sprites, BASIC Example

LIBRARY "graphics.library"

T$="Mouse moves sprites, CTRL-C to end"

WINDOW 2,T$,,0

DEFLNG a-z

DECLARE FUNCTION GetSprite() LIBRARY

DECLARE FUNCTION AllocRaster()LIBRARY
GOSUB InitSprite

ON BREAK GOSUB Cleanup 'set cleanup on BREAK

BREAK ON

WHILE MOUSE(0)<4 'Continue 'til BREAK

x=MOUSE(l)/2-16 'find mouse x
y=MOUSE(2)-4

CALL WaitTOF

CALL MoveSprite(0,sprite,x,y)

'move paddle accordingly

WEND

P"? Cleanup:
' i FreeSprite(2) 'free the sprite

FreeSprite(3). 'free the sprite

. Cleanupl:

M CALL FreeRaster(sprite,16,76) 'free the memory

'- * WINDOW CLOSE 2 'close the window
END

(j InitSprite:

- sprite = AllocRaster(16,76)

'allocate memory for sprite shape data

ftmmti IF sprite= 0 THEN PRINT "No Ram":END

j | 'if memory can't be allocated, quit

sprite2 = sprite+76

CALL BltClear (sprite,152,0)

r—\ 'use the blitter to clear the memory

i 1 205

Chapter 6

U

IF GetSprite(sprite,2) <>2 THEN

WINDOW OUTPUT 1

PRINT "Can't Get Sprite 2"

GOTO Cleanupl

END IF

IF GetSprite(sprite2,3) <>3 THEN

WINDOW OUTPUT 1

PRINT "Can't Get Sprite 3"

GOTO Cleanupl j j

END IF 1 1
' try to allocate sprites 2-3,

' if you can't, clean up and quit

POKEW sprite+4,14 'set height of sprite

POKEW sprite2+4,14

FOR x=16 TO 68 STEP 4 'set shape = block

POKEW sprite+x,&H5555

POKEW sprite+x+2,&H3333

POKEW sprite2+x,&HF0F

POKEW sprite2+x+2,&HFF

NEXT

CALL ChangeSprite (0, sprite, sprite+12) 'take shape

CALL ChangeSprite (0, sprite2, sprite2+12) 'take shape

'Set the ATTACH bit to attach the sprites

POKE sprite2+15,PEEK(sprite2+15) OR 128

'Set sprite color registers randomly

RANDOMIZE TIMER

FOR p=20 TO 31

PALETTE p, RND(l), RND(l), RND(l)

NEXT p

RETURN

The Intuition Pointer as a Sprite

By default, the Intuition mouse pointer is displayed as a red

arrow, outlined in black and beige. You can change this de-

fault pointer with the Edit Pointer function of the Preferences

program. The shape of the new pointer is then saved in a file

called system-configuration in the devs: directory and is used

every time you boot up with the system disk on which it

resides.

It is also possible, however, to change the shape of the i j

pointer under program control. The Intuition library includes a '—'

206

Sprites and Bobs

function called SetPointer that is used for this purpose. Its

syntax is

SetPointer

(Window, Sprite-data, Height, Width, XOffset, YOffset);

(aO) (al) (dO) (dl) (d2) (d3)

The variable Window is a pointer to the Window data

structure. The pointer is tied to whichever window is currently

active. Therefore, when you use SetPointer, the shape of the

pointer changes only when the window to which you've

linked that new shape becomes active.

Since we have already established that Intuition uses

hardware sprite 0 for the mouse pointer, it should hardly

come as a surprise that the Sprite_data variable used by

SetPointer is the address of the same kind of sprite data table

as used by ChangeSprite. Again, the first two words of the

data table are set to zero, followed by two words of shape data

for each line of the pointer, and finally the last two words of

the table, which are also set to zero.

The next two variables which you pass to SetPointer are

the height of the pointer shape in lines and the width in dots.

The width value must be less than or equal to 16, since that is

the maximum width of a sprite.

The final two values specify the position of the pointer's

hot spot. This is the point that is considered the exact current

location of the pointer. In the default pointer arrow, the sec

ond dot of the second line of the pointer is considered to be

the point. If you wish this point to register as another spot on

the custom pointer that you have designed, you must specify x

and y offsets to move this point from its default position of

(0,0). A negative x offset moves this point to the right, and a

negative y offset moves it down. For instance, if you have de

signed a pointer that is 15 dots wide and 15 dots high, you

would specify an x offset of — 7 and a y offset of — 7 to center

the hot spot right in the middle of your pointer. An x offset of

— 15 would move the point to the top right corner of your

new pointer.

When you wish to change the pointer back to its default

207

Chapter 6

shape, you may use the Intuition function ClearPointer to do

so. The format for this function is

ClearPointer(Window);

(aO)

Program 6-5 demonstrates how to change the shape of

the pointer in a window. It transforms the pointer into the

popular crosshairs shape used by many drawing programs.

Setting up a new pointer shape from BASIC is very simi

lar to setting up a simple sprite. Because of the tendency of

subscripted arrays to move around in memory as new vari

ables are defined, you must allocate space for the sprite shape

data with AllocRaster, just as you do for simple sprites. In this

case, however, you don't have to allocate room for the Simple-

Sprite data structure. You need only allocate enough space for

the shape data and four extra words for the control words

before and after the shape data. Once you have placed the

shape data into memory, you may use the SetPointer call to

change the pointer shape.

Program 6-6 shows how to change the shape of the

pointer from the default arrow to crosshairs from BASIC.

In addition to creating custom pointers, SetPointer can be

used to make the pointer disappear as well. This can be par

ticularly useful for games in which you wish to limit the range

of motion of the pointer. The BASIC program, Program 6-7,

uses SetPointer to change the pointer to a one-line-high shape

that is completely transparent. It then uses some simple sprites

to substitute for the pointer, but limits their range of motion to

the bottom line of the screen. The result is a new pointer that

acts like the paddle used in many arcade games. Note that al- pi

though the pointer is invisible, it still functions. If you press

the right mouse button to activate the menu bar and move the

mouse pointer to the top of the screen, you will find that you \\

can make menu selections even though you cannot see the

pointer. , .

n

208

Sprites and Bobs

Program 6-5. Changing the Shape of the Pointer,

C Example

tinclude <window.c>

UWORD Sprite data[] =

{
0,0, /* position, control */

0x0440,0X02C0,

0x0440,0x0200,

0x0440,0X02C0,

0x0440,0X02C0,

0x0440,0x0200,

0xFC7E,0x02FE,

0x0000,0XFEFE,

0X0000,0X0000,

0x0000,0XFEFE,

0xFC7E,0x0FE80,

0x0440, 0x0680,

0x0440, 0x0680,

0x0440, 0x0680,

0x0440, 0x0680,

0x0440, 0x0680,

0,0 /* end */

};

demo()

/* set the new pointer */

) ! SetPointer(Wdw, &Sprite_data[0], 15, 15, -7, -7);

} /* end of SetPoint.c */

Program 6-6. Changing the Shape of the Pointer,

BASIC Example

LIBRARY "intuition.library"

LIBRARY "graphics.library"

T$="New Pointer Window"

T$=T$+" — CTRL-C to end"

WINDOW 1,T$

209

H
Chapter 6

DEFLNG a-z

DECLARE FUNCTION AllocRaster()LIBRARY

GOSUB Init 'change pointer

ON BREAK GOSUB Cleanup 'set cleanup on BREAK

BREAK ON nsf^t

I)

WHILE 1 'Continue 'til BREAK

WEND

Cleanup:

CALL ClearPointer (WINDOW(7)) 'restore pointer

CALL FreeRaster(ptr,16,34) 'free the memory

END

Init:

ptr = AllocRaster(16,34)

'allocate memory for sprite shape data

IF ptr = 0 THEN PRINT "No RAM": END

'if memory can't be allocated, quit

FOR x=0 TO 64 STEP 4 'set shape = block

READ D1,D2

POKEW ptr+x,Dl

POKEW ptr+2+x,D2

NEXT

CALL SetPointer (WIND0W(7), ptr,15, 15, -7, -7)

1 Change pointer shape

RETURN

DATA 0,0

DATA &H440,&H2C0

DATA &H440,&H2C0

DATA &H440,&H2C0

DATA &H440,&H2C0

DATA &H440,&H2C0

DATA &HFC7E, &H02FE

DATA &H0, &HFEFE

DATA &H0, &H0

DATA &H0, &HFEFE

DATA &HFC7E, &HFE80

DATA &H440, &H680 j !
DATA &H440, &H680

DATA &H440, &H680

DATA &H440, &H680 ,

DATA &H440, &H680

DATA 0,0 -

n

210

Sprites and Bobs

Program 6-7. The Invisible Pointer

LIBRARY "graphics.library"

LIBRARY "intuition.library"

T$="Mouse moves paddle, CTRL-C to end"

WINDOW 2,T$,,0

DEFLNG a-z

r*-? DECLARE FUNCTION GetSpriteO LIBRARY

! I DECLARE FUNCTION AllocRaster()LIBRARY
GOSUB InitSprite

ON BREAK GOSUB Cleanup 'set cleanup on BREAK

BREAK ON

WHILE MOUSE(0)<4 'Continue 'til BREAK

x=MOUSE(l)/2-16 'find mouse x

CALL WaitTOF

CALL MoveSprite(0,sprite,x#193)

CALL MoveSprite(0,sprite+44,x+12,193)

'move paddle accordingly

WEND

Cleanup:

FreeSprite(2) 'free the sprite

FreeSprite(3) 'free the sprite

Cleanupl:

CALL FreeRaster(sprite,16,50) 'free the memory

CALL ClearPointer(WIND0W(7))

WINDOW CLOSE 2 'close the window

END

InitSprite:

sprite = AllocRaster(16,50)

'allocate memory for sprite shape data

IF sprite= 0 THEN PRINT "No RAM": END

'if memory can't be allocated, quit

sprite2 = sprite+44

CALL BltClear (sprite,100,0)

P"? 'use the blitter to clear the memory

IF GetSprite(sprite,2) <>2 THEN

WINDOW OUTPUT 1

PI PRINT "Can't get Sprite 2"
-_J GOTO Cleanupl

END IF

PI IF GetSprite(sprite2,3) <>3 THEN
' WINDOW OUTPUT 1

PRINT "Can't get Sprite 3"

nGOTO Cleanupl

, , END IF

' try to allocate sprites 2-3,

' if can't, quit

n

Chapter 6

POKEW sprite+4,6 'set height of sprite

POKEW sprite2+4,6

FOR x=16 TO 36 STEP 4 'set shape = block

POKEW sprite+x,-l

POKEW sprite+x+2,0

POKEW sprite2+x,-l

POKEW sprite2+x+2,0

NEXT

CALL ChangeSprite (0, sprite, sprite+12)

•take shape

CALL ChangeSprite (0, sprite2, sprite2+12)

1 take shape

CALL SetPointer(WINDOW(7),sprite+88,1,1,0,0)

RETURN

Vsprites and Bobs

As their name would suggest, simple (or hardware) sprites op

erate fairly closely to the hardware model for sprites, and are

relatively simple to create and manipulate. The two other ani

mation objects supported by the Amiga, vsprites and bobs, re

quire a much greater amount of software overhead for their

operation. This makes them much more versatile than simple

sprites, but also makes them correspondingly more complex.

Indeed, the Amiga animation system is so intricate that it

would take an entire book to explain it adequately. Therefore,

what is provided here is more of an overview of vsprite and

bob operations than an exhaustive explanation. The BASIC in

terpreter provides a simple means of accessing a full range of

vsprite and bob commands, so we'll be using a number of

BASIC programs to illustrate the features of these animation \ }

objects. '—r
Although vsprites and bobs are similar in many ways, the

hardware basis for each is very different. Vsprites are based on | J

the hardware sprites and share many of their limitations, such

as size (16 pixels wide) and number of colors (a maximum of

three plus transparent). L^j
The animation software, however, provides a way of over

coming some of the limitations of hardware sprites, such as ,

the restriction on the total number of sprites that can be dis- ' 1

212

LJ

Sprites and Bobs

played onscreen at once. While there are only eight hardware

| J sprites, the vsprite system can dynamically allocate these

hardware sprites so that one hardware sprite can be used to

fi^ display several virtual sprites in different parts of the screen at

i I once. In addition, it can change the color registers used by

these sprites from line to line so that a sprite that appears in

j—! one set of colors at the top of the screen may appear in a to-

1 I tally different set of colors at the bottom of the screen. The

only limitations are those imposed by the hardware; you can't

have more than eight vsprites on a single horizontal line at

once, and you may be limited to fewer than that if the colors

used by the vsprites are all different.

Bobs are animation objects that are created by using the

normal display hardware, not the separate sprite system. This

playfield animation system uses the blitter chip to sequentially

save the background area of the image destination, move the

image, and restore the background of the image source.

Since bobs are part of the bitmap, their size and color

limitations are the same as those of the bitmap. You can dis

play as many bobs as will fit on the screen, and they may be

as large as the bitmap display and may have as many colors

as are supported by the screen upon which they are displayed.

Their principal drawback is one of speed. If you try to move

very large bobs, or a lot of them at the same time, the enor

mous overhead requirements may make things somewhat

slow, even with the powerful hardware assistance of the

blitter.

Displaying Vsprites and Bobs

! ! Though the hardware basis of vsprites and bobs is different,

the system treats them very similarly, and so we shall discuss

f*-» them together. In the Amiga animation system, the individual

1 ' animation objects like vsprites and bobs are referred to as

GELs (short for Graphics Elements). To display one of these

f—] GELs, you must first create a linked list of graphics elements.

' t You then set up data for each of your vsprites or bobs, and

add it to this list. The data you create for each GEL includes

["I items like its size, shape, and position. Before displaying the

1 GELs, you must sort the list to get them into the order in

n 213

Chapter 6

which they will be displayed on the screen. Then you ask the

animation system to display them. Every time you make a j |

change to one of the members of the list, you must sort the

list again before displaying the changes. , (

The first step is to declare a Gelslnfo structure, initialize !—I

it, and link it into the rastport into which you will be display

ing the vsprites or bobs. You initialize the Gelslnfo structure » i

with the InitGels statement. The syntax for this statement is '—'

InitGels(vspritel, vsprite2, Gelslnfo);

(aO) (al) (a2)

where vspritel and vsprite2 are dummy VSprite data struc

tures that are used to mark the beginning and end of the GEL

list, and Gelslnfo is the address of the Gelslnfo data structure

that will be used to keep track of the GEL information. You

must link this initialized Gelslnfo structure into your rastport

by placing its address in the rastport Gelslnfo variable. The

following C language fragment demonstrates the process of

initializing and linking the Gelslnfo structure:

struct VSprite vsl, vs2;

struct Gelslnfo GInfo;

InitGels(vsl, vs2, GInfo);

RastPort->GelsInfo = &GInfo

The next step is to set up the data that defines the shape

and color of your image. The format of the image data that

you'll create depends on whether you are using a vsprite or a

bob. Vsprites use the format for sprite shape data that we dis

cussed above; two 16-bit words of data for each line of the

sprite, where the first word is used for color plane 0, and the

second word is used for color plane 1. For bobs, you must set [j

up a shape data table similar to the one used by the Intuition '—'

Image structure that we discussed in Chapter 5. There are as

many bit planes as the image is deep, and each plane is com- i [

posed of a number of lines of data. Each line contains as many kr>"J
16-bit words as are necessary to hold the widest part of the

image, and there are as many lines as the image is high. Lj

The next data structure that you must set up is the

VSprite structure. The C language definition of this structure , (

looks like this: 1 !

214 (J

Sprites and Bobs

_ struct VSprite

n {
struct VSprite *NextSprite;

struct VSprite *DrawPath;

j struct VSprite *ClearPath;

WORD OldY, OldX;

WORD Flags;

p| WORD Y,X;

1 ' WORD Height;
WORD Width;

WORD Depth;

WORD MeMask;

WORD HitMask;

WORD "ImageData;

WORD *BorderLine;

WORD "CollMask;

WORD *SprColors;

struct Bob VSBob;

BYTE PlanePick;

BYTE PlaneOnOff;

VUserStuff VUserExt;

};

As you can see, the VSprite structure contains a lot of

variables which describe many different aspects of the

vsprite's display. Not all of these variables must be initialized

by the user, however. The first six variables, for example, are

for the use of the system. And the last member of the struc

ture provides a place for users to add their own extensions to

the animation system.

The variables Y and X are used to store the vertical and

horizontal positions of the GEL. The Height, Width, and

r-| Depth variables are used to describe the size and color resolu

tion of the object (note that vsprites will always be 16 bits

wide and two color planes deep).

PI The ImageData variable is used to store the address of the

shape data table that you created to describe the object's

shape. The SprColors variable is used only for vsprites and

f"j points to a table that contains three 16-bit words of color data.
These contain the colors for planes 1, 2, and 3 (plane 0 is al-

ways transparent). The format for this color table is OxORGB,

I | where the R stands for a 4-bit red color level value, G stands
for a 4-bit green color level value, and B stands for a 4-bit

H 215

LJ
Chapter 6

LJ

blue color level value. Therefore, a table consisting of the data ,

words OxFOO, OxOFO, and OxOOF would contain the colors red, !

green, and blue.

The colors used by bobs are the same as those used by j |

the rest of the background graphics. You may use the '—'
PlanePickOn and PlanePickOff variables, however, to vary the

colors that are displayed. Use of these variables is covered in j j

the section on Intuition Images at the end of Chapter 5, and is

also summarized in the section on BASIC animation objects

below.

The Flags variable can be set to the value of one or more

flags. These control the way in which the object will be dis

played. The flag VSPRITE should be set if the object is a

vsprite, but not if it is a bob. The other flags that can be set by

the user concern the way a bob is displayed. The SAVEBACK

flag indicates that the background is to be saved before the

bob is drawn and restored after it is moved. If this option is

desired, the user must provide a storage area for the saved

background image that is as large as the bob shape data area.

The OVERLAY flag indicates that portions of the bob im

age definition that use the background color (pen 0) should be

treated as transparent when moving the bob. If this flag is not

set, the entire rectangle of the bob, background and all, will

cover the image it is placed on top of.

The MeMask, HitMask, CollMask, and Borderline vari

ables are used in detecting a collision between GELs or be

tween a GEL and the screen borders. CollMask and BorderLine

are used by the system to maintain collision masks. CollMask

should point to a storage area the size of one of the image's j i

bit planes, while BorderLine should point to a storage area the '—'
size of the width of one line of image data. After setting these

pointers, you may initialize the contents of these masks with > j

the call InitMasks. The format for this statement is ' '

InitMasks(VSprite);

<a0) ■ LJ

where VSprite is a pointer to the VSprite structure that con

tains the addresses of the mask areas. HitMask and MeMask i i

are used to determine the kinds of collisions between objects '—'

216 I I

Sprites and Bobs

that the system will detect. Use of these variables is discussed

below in the section on collision detection for BASIC anima

tion objects.

The final variable, VSBob, is used only if there is a bob

associated with this vsprite. If this is the case, it should be set

to point to the Bob data structure.

If the GEL that you're setting up happens to be a bob,

then you must initialize a Bob data structure in addition to the

VSprite structure. Here is the C language declaration for this

structure:

struct Bob

WORD Flags;

WORD *SaveBuffer;

WORD *ImageShadow;

struct Bob *Be£ore;

struct Bob *After; y

struct VSprite *BobVSprite;

struct AniComp *BobComp;

struct DBufPacket *DBuffer;

BUserStuff BUserExt;

};

The Flags variable contains only a couple of user settings.

A setting of SAVEBOB tells the system not to erase the old

bob image when moving the bob. This allows you to use the

bob like a paintbrush. The BOBISCOMP flag is used to show

that this bob is part of a larger animation object known as an

AnimComp. If this is the case, the variable BobComp is set to

point to the address of the AnimComp structure.

The BobVSprite variable should contain the address of the

! I VSprite data structure associated with the bob. Although not
every vsprite has a corresponding bob, every bob must have a

r—I corresponding VSprite data structure.

I I The SaveBuffer variable should be set to point to a buffer

area that is as large as the shape data area for the bob. This is

|—I where the background image behind the bob is temporarily

! ' saved. The ImageShadow variable should contain the address
of another buffer area that is the same size as the Collision

j—"I Buffer or as large as one bit plane of the bob image. In fact,

you'll often use the same area for the two buffers.

n 217

Chapter 6

Bob Priority

The variables marked Before and After are used to determine

the priority between bobs. Normally, the order in which bobs

are drawn depends strictly upon their positions on the screen.

The bob that is drawn last is said to have the highest priority,

because if it overlaps with another bob, it will cover up part of

that bob and thus appear to be in front of it.

When it is important to have one bob always appear to be

in front of another, regardless of their positions, you can spec

ify the drawing order with these two variables. For example, if

you want Bobl to always appear in front of Bob2, you would

set the After variable of Bobl to point to the Bob2 data struc

ture to make sure that Bobl is always drawn after Bob2. Also,

you would have to set the Before variable of the Bob2 data

structure to point to the Bobl data structure to make sure that

Bob2 is always drawn before Bobl. The C code would look

like this:

Bobl.After = &Bob2;

Bob2.Before = &Bobl;

If the priority of the rest of the bobs doesn't matter, set all

the unused Before and After variables to zero.

The last variable is called Dbuffer. It points to a buffer

area that is used in a special technique known as double-

buffering. When you use double-buffering, you set up two

separate display areas. While you are drawing into one area,

you display the other area, then switch when the drawing is

done. That way, the drawing never takes place while the user

is watching. This prevents the flicker and smear effects that

can occur when part of the screen contains the old image and I I

part contains the new. Setting up a double-buffered display is

a more advanced technique, and we will not discuss the de

tails fully here. However, you should remember that if you're j |

using a large number of bobs, or very big ones, you may need

to perform double-buffering to make them move smoothly. If

you are not using double-buffering, this value should be set to | |
zero.

u

2,8 u

Sprites and Bobs

— Add Bob to the GEL List

■ Once you have set up the image, vsprite, and bob data, you

may add the bob to the GEL list with the call AddBob:

I \ AddBob(Bob, RastPort);
(aO) (al)

p—, where Bob is the address of the Bob data structure, and Rast-

' ! Port is the addresss of the rastport into which the bob is to be

drawn. If you are using vsprites rather than bobs, the call is

AddVSprite(VSprite, RastPort);

(aO) (al)

When you have added all of your GELs, you must put

them into order before displaying them. Use the SortGList

statement to sort the members of the GEL list by vertical and

horizontal positions:

SortGList(RastPort);

(al)

Finally, you may display bobs with the call DrawGList, which

takes the form

DrawGList(RastPort, ViewPort);

(al) (aO)

When you execute this statement, the bobs are actually

drawn on the screen. This drawing is performed in synchroni

zation with the electronic raster beam to keep the display

smooth. Nonetheless, if you are using a large bob or many

smaller ones, you may have to take steps of your own to make

sure that the display does not flicker when you move them.

p-** While DrawGList actually draws the bobs, it does not dis-

1 ' play vsprites, since their display depends on the contents of
the hardware registers of the display chips, rather than the

j—■) contents of display memory. DrawGList can only generate new

1 ■ copper instructions to change the contents of these registers.
In order to merge these instructions in with the present copper

f~? instruction list, you must use the following two routines:

MrgCop(View);

_ i and

LoadView(View);

! i (' 219

Chapter 6

Program 6-8 gives a brief demonstration of creating a bob ,

and moving it around the screen. I I
If you wish to change some aspect of the bob data, such

as its shape or position, you must call SortGList and i j

DrawGList after making the change so that it will be dis- <—I
played. If you wish to remove a bob from the GELs list en

tirely, you may do so with the RemBob statement. The form of j {

this statement is the same as that of AddBob: '—J

RemBob(Bob, RastPort);

(aO) (al)

The OBJECT Commands—Vsprites and Bobs in BASIC

As mentioned at the beginning of the chapter, Amiga BASIC

provides full support for the operating system animation

routines. This support takes the form of a number of state

ments, all beginning with the word OBJECT.

Like the operating system animation routines, all of the

Amiga BASIC OBJECT statements described below work with

either bobs or vsprites. There are slight variations on how

these statements are carried out, however, due to the inherent

differences in the nature of these two kinds of objects.

Whether you choose to make an object a bob or a vsprite will

depend to some degree on the needs of your program. Here

are some of the differences between the two object types

which you should consider.

Size and resolution. Bobs have the same resolution as

the screen on which they appear, while vsprites always appear

in low resolution. Vsprites can be only 16 pixels wide; bobs

can be virtually any size, so long as you have enough memory I j
to store their shape data.

Number of objects. Only eight vsprites of the same color j j

can appear on a single horizontal line, and only four of differ- L—'

ent colors. Theoretically, at least, you can display as many

bobs onscreen as you want. In practice, however, you'll find \ i

that Amiga BASIC does not handle a lot of bobs any better s—'

than it does a lot of vsprites. In fact, the amount of jitter intro

duced by numerous bobs onscreen at once may make them j j

quite unattractive when used in large numbers.

220 ! j

D
3

I)
IJ

II

P
r
o
g
r
a
m

6
-
8
.
M
o
v
i
n
g
B
o
b
s

#
i
n
c
l
u
d
e

<
w
i
n
d
o
w
l
«
c
>

#
i
n
c
l
u
d
e

<
g
r
a
p
h
i
c
s
/
g
e
l
s
.
h
>

W
O
R
D

I
m
a
g
e
_
d
a
t
a
[
4

*
4
0

*
3
]
;

W
O
R
D

S
b
u
f
f
e
r
[
4

*
4
0

*
3
]
;

W
O
R
D

C
m
a
s
k
[
4

*
4
0
]
;

W
O
R
D

B
l
i
n
e
[
4
]
;

s
t
r
u
c
t

V
S
p
r
i
t
e

v
=

N
U
L
L
,

N
U
L
L
,

N
U
L
L
,

N
U
L
L
,

N
U
L
L
,

N
U
L
L
,

/
*

s
y
s
t
e
m

v
a
r
i
a
b
l
e

*
/

O
V
E
R
L
A
Y

I
S
A
V
E
B
A
C
K
,

/
*

F
l
a
g
s

*
/

6
0
,

/
*

Y
p
o
s
i
t
i
o
n

*
/

1
0
,

/
*

X
p
o
s
i
t
i
o
n

*
/

4
0
,

/
*

H
e
i
g
h
t

=
4
0

l
i
n
e
s

h
i
g
h

*
/

4
,

/
*

W
i
d
t
h

=
4
w
o
r
d
s

p
e
r

r
o
w

=
6
4

b
i
t
s

*
/

3
,

/
*

D
e
p
t
h

=
3
p
l
a
n
e
s

d
e
e
p
,

s
a
m
e

a
s

S
c
r
e
e
n

*
/

1
,

/
*

M
e
M
a
s
k

*
/

1
,

/
*

H
i
t
M
a
s
k

*
/

&
I
m
a
g
e

d
a
t
a
[
0
]
,

/
*

I
m
a
g
e
D
a
t
a

*
/

&
B
l
i
n
e
l
0
]
,

/
*

B
o
r
d
e
r
L
i
n
e

*
/

&
C
m
a
s
k
[
0
]
,

/
*

C
o
l
l
M
a
s
k

*
/

c/
>

N
U
L
L
,

/
*

b
o
b

d
o
e
s
n
'
t

u
s
e

s
p
r
i
t
e

c
o
l
o
r
s

*
/

"2
N
U
L
L
,

/
*

p
o
i
n
t
e
r

t
o
b
o
b

f
i
l
l
e
d

i
n
b
e
l
o
w

*
/

j
f

0
x
0
7
,

/
*

P
l
a
n
e
P
i
c
k

=
p
i
c
k

3
p
l
a
n
e
s

*
/

o>
0
x
0
0
,

/
*

P
l
a
n
e
O
n
O
f
f

=
a
l
l

0
'
s

t
o

u
n
p
i
c
k
e
d

p
l
a
n
e

*
/

Q

N
U
L
L

/
*

N
o

u
s
e
r

e
x
t
e
n
s
i
o
n
s

*
/

^
};

oo O

s
t
r
u
c
t

B
o
b

b
=

f
0
,

/
*

F
l
a
g
s

*
/

&
S
b
u
f
f
e
r
[
0
]
,

/
*

S
a
v
e
B
u
f
f
e
r
—
t
o

s
a
v
e

b
a
c
k
g
n
d

*
/

&
C
m
a
s
k
[
0
]
,

/
*

I
m
a
g
e
S
h
a
d
o
w
—

c
o
l
l

=
s
h
a
d
o
w

*
/

N
U
L
L
,

/
*

B
e
f
o
r
e

*
/

N
U
L
L
,

/
*

A
f
t
e
r

*
/

/
*

d
r
a
w
i
n
g

o
r
d
e
r

d
o
e
s
n
'
t

m
a
t
t
e
r

*
/

&
v
,

/
*

B
o
b
V
S
p
r
i
t
e

—
l
i
n
k

v
s
p
r
i
t
e

t
o

i
t
s

b
o
b

*
/

N
U
L
L
,

/
*

B
o
b
C
o
m
p
—

b
o
b

i
s
n
'
t

a
n
i
m
a
t
i
o
n

c
o
m
p
o
n
e
n
t

*
/

N
U
L
L
,

/
*

D
B
u
f
f
e
r
—

n
o
t

d
o
u
b
l
e

b
u
f
f
e
r
e
d

*
/

N
U
L
L

/
*

N
o

U
s
e
r

E
x
t
e
n
s
i
o
n

*
/

O Q 5"

d
e
m
o
(
)

t s
t
r
u
c
t

V
S
p
r
i
t
e

s
i
,

s
2
;

s
t
r
u
c
t

G
e
l
s
l
n
f
o

g
e
l
s
i
n
f
o
;

s
t
r
u
c
t

c
o
l
l
T
a
b
l
e

C
t
a
b
l
e
;

W
O
R
D

d
x
;

W
O
R
D

d
y
;

W
O
R
D

x
;

/
*
*
*
*
*
*
*

i
n
i
t
i
a
l
i
z
e

G
e
l
s

I
n
f
o

*
*
*
*
*
*
*
*
*
*
/

g
e
l
s
i
n
f
o
.
n
e
x
t
L
i
n
e

=
N
U
L
L
;

g
e
l
s
i
n
f
o
.
l
a
s
t
C
o
l
o
r

=
N
U
L
L
;

g
e
l
s
i
n
f
o
.
c
o
l
l
H
a
n
d
l
e
r

=
&
C
t
a
b
l
e
;

/
*

d
u
m
m
y

s
p
r
i
t
e
s

f
o
r

g
e
l
s

l
i
s
t

*
/

/
*

g
e
l
s
i
n
f
o

t
o

l
i
n
k

R
p

*
/

i
c

c:
[i

[I
C

tl
C

C

J
3

3
3

3
I
]

I
J
3

I
n
i
t
G
e
l
s
(
&
s
l
,

&
s
2
,

&
g
e
l
s
i
n
f
o
)
;

R
p
-
>
G
e
l
s
I
n
f
o

=
&
g
e
l
s
i
n
f
o
;

/
*
*
*
*
*
*
*

I
n
i
t

i
m
a
g
e

d
a
t
a
,

m
a
s
k
s

*
*
*
*
*
*
*
*
*
*
/

f
o
r
(
x
=
0
;

x
<

1
5
7
;

x
+
=
4
)

I
m
a
g
e
_
d
a
t
a
[
x
3
=
0
x
F
F
F
F
;

I
m
a
g
e
_
d
a
t
a
[
x
+
l
3
=
0
x
F
F
F
F
;

I
m
a
g
e
_
_
d
a
t
a
[
x
+
2
3
=
0
x
0
0
0
0
;

I
m
a
g
e
_
d
a
t
a
[
x
+
3
3
=
0
x
0
0
0
0
;

I
m
a
g
e
_
d
a
t
a
[
x
+
1
6
0
3
=
0
x
F
F
F
F
;

I
m
a
g
e
_
d
a
t
a
[
x
+
1
6
1
3
=
0
x
0
0
0
0
;

I
m
a
g
e
_
_
d
a
t
a
[
x
+
1
6
2
3
=
0
x
0
0
F
F
;

I
m
a
g
e
_
d
a
t
a
[
x
+
1
6
3
3
=
0
x
F
F
0
0
;

I
m
a
g
e
_
d
a
t
a
[
x
+
3
2
0
3
=
0
x
F
F
0
0
;

I
m
a
g
e
_
d
a
t
a
[
x
+
3
2
l
3
=
0
x
F
F
0
0
;

I
m
a
g
e
_
d
a
t
a
[
x
+
3
2
2
3
=
0
x
0
0
F
F
;

I
m
a
g
e
-
d
a
t
a
[
x
+
3
2
3
3
=
0
x
0
0
F
F
;

v
.
V
S
B
o
b

=
&
b
;

I
n
i
t
M
a
s
k
s
(
&
v
)
;

i
n

/
*

*
*
*
*
*
*
*
*
*
*
*
*
*

a
d
d

t
h
e

B
o
b

a
n
d

d
r
a
w

i
t

*
*
*
*
*
*
*

*
/

S I
A
d
d
B
o
b
t
&
b
,

R
p
)
;

Q
S
o
r
t
G
L
i
s
t
(
R
p
)
;

q

D
r
a
w
G
L
i
s
t
(
R
p
,
W
V
P
)
;

w

K
/*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

m
o
v
e

it
a
r
o
u
n
d

*
*
*
*
*
*
*

*/
£

<*
x
■

i'
o

d
y

=
2
;

U Q

f
o
r
(
x
=
0
;
x
<
1
0
0
0
;
x
+
+
)

"S
{

2
i
f
(

(
b
.
B
o
b
V
S
p
r
i
t
e
-
>
Y

+
=

d
y
)

>
1
8
0

I
I
b
.
B
o
b
V
S
p
r
i
t
e
-
>
Y

<
1
0
)

<
*

d
y

=
-
d
y
;

i
f
(

(
b
.
B
o
b
V
S
p
r
i
t
e
-
>
X

+
=

d
x
)

>
3
0
0

I
I
b
.
B
o
b
V
S
p
r
i
t
e
-
>
X

<
1
0
)

d
x

=
-
d
x
;

S
o
r
t
G
L
i
s
t
(
R
p
)
;

i
f

(
b
.
B
o
b
V
S
p
r
i
t
e
-
>
Y

<
9
0
)

W
a
i
t
T
O
F
O
;

D
r
a
w
G
L
i
s
t
(
R
p
,
W
V
P
)
;

}
/
*

e
n
d

o
f
b
o
b
.
c

*
/

c
t
z

c
z
c

c
c

[i
c

c
c

Sprites and Bobs

Speed of motion. Vsprites move quickly, but bobs can be

slower, particularly if you're using very large bobs or many of

them. Generally speaking, the more bobs, the slower they

move. If you create a lot of bobs, they can be so slow as to

make their use impractical from BASIC.

Number and selection of colors. Bobs can use the maxi

mum number of colors available on the screen on which they

appear. They are limited to the exact same color selection as

any other bitmap object that is drawn on that screen. Vsprites

can have only three foreground colors and one background

color. But these colors can be completely different from the

ones selected for the rest of the screen. The only limitation is

that no more than four vsprites of different colors can appear

next to each other on the display. Vsprites can therefore be

used to add color to a display without using up more bit

planes' worth of memory. The additional colors are made

available by changing the sprites' color registers as vsprites

move up and down the screen. Since vsprites use the same

color registers as the upper 16 bitmap pens' registers, bitmap

objects drawn in these colors may change color as the vsprites

move up and down. For this reason, it is not advisable to use

vsprites on 32-color screens.

Color priority. Bobs have a selectable priority; you can

determine which will be displayed in front of the others. As

implemented by BASIC, vsprites always appear in front of

bobs and in a fixed order in front of each other.

Hardware system used. Because bobs are part of the nor

mal bitmap display, they fit much better into the windowing

environment of Intuition. They move when their windows are

moved, they never move outside the borders of their windows

into other windows, and they disappear when their windows

are covered or closed. None of this can be said for vsprites.

Because they use a completely different hardware display sys

tem, sprites don't stay in their windows and will be displayed

even after the window is closed. They can also cause color

conflicts with the mouse pointer. Because the pointer is actu

ally a sprite, its color registers may be affected when the op

erating system software changes the sprite color registers. This

means that the pointer color may be different in one horizon-

225

u
Chapter 6

u

tal part of the screen than in another when you use vsprites. . ,

This can be solved, but at the cost of reducing the number of <—I
hardware sprites, and thus vsprites, available.

LJ
Creating and Displaying OBJECTS

The first step in creating a movable object is to define its shape. \ j

This is done by using the Amiga BASIC program ObjEdit, '—'
which is found in the BasicDemos drawer of the Amiga Extras

disk. This program allows you to use the mouse to draw a bob

or vsprite image and then save that image to a disk file. The

format of the disk file that the ObjEdit program saves is such

that it can be read by your program and used to form a mov

able object in that image.

Instructions for using the ObjEdit program are found in

your Amiga BASIC manual. You should remember, however,

that if you edit a sprite using the program supplied, the image

of the sprite in the editor will be only half as wide as the

vsprite object that appears in your program, because the editor

uses the high-resolution mode (640 dots across), while vsprites

always appear in low resolution (320 across). Also, unless you

alter the program as indicated in the REMarks at the start of

the listing, it will edit only four-color objects.

Once you have drawn the shape and saved its image to a

file (which for purposes of this example we will name Image-

File), the next step is to read that file into a string in your pro

gram. The statement lines that your program may use to

accomplish this task are

OPEN "ImageFile" FOR INPUT as 1 . >

Objectlmage$ = INPUT$(LOF(1),1) LJ
CLOSE 1

These statements read the entire image file into one long \ j

string. Once the information resides in this string, it may be *—

used by the OBJECT.SHAPE statement to create an object

having that shape. The syntax for this is j I

OBJECT.SHAPE object_num, shape_definition_string

where the object__num value is a number greater than zero j j

that you assign to the object to identify it for future com- '—'

226 \J

Sprites and Bobs

mands, and shape—definition—string is the string into which

you have read the image file information (here, Objectlmage$).

Once you assign the shape data in the string to the object, that

string is no longer needed, and you may free up the memory

it required by assigning its value to that of the null string (" ").

The OBJECT.SHAPE statement also allows you to create a

new object which has exactly the same shape as an existing

object. The syntax for this form is

OBJECT.SHAPE new-object-num, existing__object_num

where the value new—object—num. is the identification number of

the new object that you are creating, and existing_object_num is

the identification number of the object whose shape you are

using. When you create a new object using this form of

OBJECT.SHAPE, both objects share that memory area where

the image data is shared, and this saves some memory. In all

other ways, however, the two objects are separate and may be

treated as unique objects. As we will see, they may even be of

different colors.

Once you have assigned a shape to an object or objects,

you need only to give the OBJECT.ON statement in order to

display them. The format is

OBJECT.ON [object_num [,object_num...]]

where the values marked object—num are an optional list of

the identification numbers of the objects that you wish dis

played. If you supply a list of one or more object numbers,

only those objects will be displayed. If you use OBJECT.ON

with no object—num. values, all objects that have been defined

using OBJECT.SHAPE will be displayed.

To suspend the display of an object temporarily, you may

use an OBJECT.OFF statement of the form

OBJECT.OFF [object-num [,object_num...]]

where the values marked object—num are an optional list of

the identification numbers of the objects that you wish to dis

appear. As above, if you supply a list of one or more object

numbers, only those objects will vanish, but if you use the

command with no object—num values, all objects that have

been defined using OBJECT.SHAPE will be turned off.

227

u
Chapter 6

u

To disable an object permanently and release all of the j /

memory associated with maintaining its shape and other <—*

attributes, you may use the OBJECT.CLOSE statement whose

syntax is) j

OBJECT.CLOSE [object_num [,object_num...]]

where the values marked object_num are an optional list of j j

the identification numbers of the objects that you wish to dis- '—•
able. As before, if you supply a list of one or more object

numbers, only those objects will be closed, but if you use the

command with no object_num values, all objects that have

been defined using the OBJECT.SHAPE statement will be

closed.

Setting the OBJECT Color

Vsprites and bobs use different mechanisms for determining

the colors in which the object will be displayed. Vsprites use

some of the upper 15 color registers, as explained in the sec

tion on hardware sprites, above, and they change the contents

of those registers as they move. The colors that a vsprite will

display are determined by the last six bytes of its ObjEdit file.

These six bytes contain three byte pairs representing the three

foreground pens. Each pair has the red value in the first byte,

and the green and blue-green packed in the second byte. Each

color value is represented by a number from 0 to 15. The

green-blue byte contains a number that is the sum of 16 times

the green value plus the blue value. In other words,

grnblu =16*green + blue

The ObjEdit program always sets the colors of the three J (

foreground pens to white, black, and orange. If you wish to

use other colors for your vsprites, you must alter the ObjEdit

program or the file that it produces, or change the color values | j
in the string after it has been read in from the file. Since the

last is the simplest approach, it is the one we'll use.

The following program fragment demonstrates how to j 1
change the string. It should appear in your program after the

image file has been read into the string Objectlmage$, and , j

before the OBJECT.SHAPE command assigns the image in the LI
string to an object. We use the colors black (0,0,0), purple

228 LJ

n
Sprites and Bobs

PI (15,0,15), and cyan (0,15,15), but you can change the red and

grnblu values to suit your needs.

_ L=LEN(ObjectImage$)

ij redl = 0

grnblul = 0

red2 = 15

I—I grnblu2 = 0 * 16 + 15

1 l red3 = 0
grnblu3 = 15 * 16 +15

Col$=CHR$(redl) + CHR$(grnblul)

Col$ = Col$+CHR$(red2) + CHR$(grnblu2)

Col$ = Col$+CHR$(red3) + CHR$(grnblu3)

MID$(ObjectImage$,L-5) = Col$

Bobs, on the other hand, take their colors from the same

pens as any other normal graphics image on the screen. Which

color pen is used to draw the bob is dependent on the bit im

age data that you create with the ObjEdit program. You can

change these colors with the PALETTE statement, but the rest

of the graphics images that were drawn with the same pen

will change also.

The OBJECT.PLANES statement allows you to change the

pen used by your bob without changing the composition of its

bit planes. It is not really useful for vsprites, since their color

selection works differently, as explained above. The syntax is

OBJECT.PLANES object_num [,PlanePick] [,PlaneOnO£f]

PlanePick and PlaneOnOff can be thought of as masks

that can change the normal order in which the bit planes are

displayed. Their use was described in detail in Chapter 5, in

nthe section on "Intuition Images," but we will summarize that

information again because it is so useful.

PlanePick is used to determine what bit planes are used

p—} for the display. Let's say that you have a two-plane image that

* uses pens 2 and 3, and you want to display it on a three-plane

screen. Normally, the two planes would be displayed in

p"! planes 0 and 1. But you can set PlanePick to display these as

two entirely different planes. You choose these planes by set

ting PlanePick to the sum of the bit values of the planes in

i (which you wish the object displayed. Each bit value corre

sponds to 2An, where n is the plane number.

li 229

u
Chapter 6

u

For instance, the bit value of plane 0 is 1 (2*0), the bit » >

value of plane 1 is 2 (2A1), and so on. The PlanePick value t I
that corresponds to the normal setting of planes 0 and 1

would be 3 (1+2). To display the image in planes 1 and 2, \ »

you would set the PlanePick value to 6 (2+4). The part of the '—f

image that was created using pen 1 will now be displayed in

the color of pen 2, and the part of the image that was created j |

using pen 2 will now be displayed in the color of pen 4. The ' '

part of the image that was originally colored in pen 3 (both

planes set) will now be shown in the color of pen 6.

The PlaneOnOff value can be used to further enhance the

selection of colors. Let's say that in the above example you

wanted to display your object in pen colors 3, 5, and 7 instead

of 2, 4, and 6. Using PlanePick alone, this would not be possi

ble, since each of these colors requires that two color planes

be set. PlaneOnOff lets you set the color planes that were not

chosen in PlaneOnOff.

In our example, an image that originally used planes 0

and 1 (pen colors 1, 2, and 3) was changed to use planes 1

and 2 (pen colors 2, 4, and 6). PlaneOnOff lets you set plane 0

as well. If you choose a PlaneOnOff value of 1, which corre

sponds to plane 0, everywhere that a pixel is set in plane 1 or

2 will also be set in plane 0. This has the effect of adding 1 to

the pen values made possible by PlanePick. If PlanePick is set

to 6, and PlaneOnOff is set to 1, the parts of the object that

were originally drawn in pens 1, 2, and 3 will appear in pen

colors 3, 5, and 7.

OBJECT Priority , ,

When two bobs overlap, there is a question as to which one is '—'
drawn on top of the other. Left to its own devices, the operat

ing system will make its own determination based on the posi- j

tion of the objects. If you wish one object always to be ' '

displayed in front of others, you may specify this with the

OBJECT.PRIORITY statement. This statement takes the form |_|

OBJECT.PRIORITY object_num, priority

where object_num is the identification number of the object, j j

and the priority value is a number from —32768 to 32767. —f

230 ! I'

Sprites and Bobs

Objects with a higher priority number are displayed on top of

objects with a lower priority number. Note that this statement

applies only to bobs; vsprites always appear in front of normal

graphics objects like bobs.

Positioning and Moving OBJECTS

You position your movable objects with OBJECT.X and

OBJECT.Y. These statements use the syntax

OBJECT.X object_num, X-position

OBJECT.Y object_num, y_position

where object—num is the object ID, and the x_position and

y—position values are the coordinates of the top left corner of

the object. Although vsprites are always displayed in low reso

lution (320 pixels across), their x_position values are relative

to the screen resolution. If vsprites appear on a high-resolution

screen, their visible range of motion is from —15 to 639. This

range is not affected at all by the size of the current output

window, unlike that of bobs, which can be seen only in the

visible part of their windows. Regardless of the visible range

of the object, the position commands will keep track of an ob

ject's position through the range of —32768 to 32767.

You may find that the positions of the objects do not

change immediately when an OBJECT.X or OBJECT.Y is is

sued. If no objects are in motion, you may have to wait until a

motion command or another command that affects the display

occurs.

The position statements also may be used as functions to

determine the current x and y position of an object. The syntax

for the functions is

x_position = OBJECT.X (object—num)

y_position = OBJECT.Y (object_num)

where x_position and y_position represent the current coordi

nates for the object whose ID number is object—num.

Normally, a bob will be displayed if positioned anywhere

within its window. It is possible to further restrict the visible

range of a bob with the OBJECT.CLIP statement. The format

is

OBJECT.CLIP(left,topMrightJbottom)

231

u
Chapter 6

LJ

where the first pair of coordinates represents the top left cor- j ,

ner of the visible area, and the second pair specifies the bot- u_J
torn right corner. If you position the bob anywhere outside the

specified area, it will not be displayed. Although clipping does j t

not apply to vsprites, the OBJECT.CLIP statement sets the '—'
boundaries for the purpose of collision detection (see below)

for both bobs and vsprites. j f

While it's possible to move your graphics objects by

changing their x and y positions, it may require a number of

program statements to keep them in motion. Amiga BASIC

provides statements which let you move these objects at a

constant rate of speed with just a couple of statements. These

statements are OBJECT.VX and OBJECT.VY, and their syntax is

OBJECT.VX object-num, x_velocity

OBJECT.VY object-num, y_velocity

The x—velocity and y_velocity values represent the speed

of the object in pixels per second. A positive x value moves

the object to the right, and a positive y value moves the object

down. Negative velocity values move the object in the oppo

site direction.

After you have set the velocity for an object, you must

use OBJECT.START to set it in motion. This statement takes

the form

OBJECT.START [object-num [,object_num...]]

If you specify a list of one or more object_num values,

only those objects will start moving. If no object_num value is

given, all previously defined objects will move.

To stop an object, you can use the OBJECT.STOP state- j j

ment, whose syntax is '—!

OBJECT.STOP [object-num [,object_num...]]

This statement will also apply to specific objects only if a 1 I
list of object—num values is furnished. Otherwise, all motion

is stopped. An object's motion is also stopped when it is made » j

invisible with an OBJECT.OFF statement. w_;

Once an object is put into motion, it will keep going until

it collides with a border or with another object. Such a colli- j |

sion has the same effect on the object as an OBJECT.STOP ^

232 LJ

Sprites and Bobs

statement. Therefore, if you want to keep the object in motion,

you must periodically check for collisions. This can be accom

plished either by using the OBJECT.X and OBJECT.Y functions

to check the position of the object, or by using the ON COL

LISION statement discussed below to change its direction

when it reaches the border of the screen. When you have de

tected a collision, you must start up the object again with an

OBJECT.START statement.

Like the positioning statements, the velocity statements

also can be used as functions to determine the current velocity

of an object. The syntax of the functions is

x-velocity = OBJECT.VX (object_num)

y_velocity = OBJECT.VY (object_num)

where x__velocity and y_velocity are the current velocities of

object_num that are returned by the function.

Program 6-9 brings together a number of the elements

discussed above. Since this book cannot transmit the equiva

lent of an image file created by the ObjEdit, we use a subrou

tine called Initlmage to create the string equivalent of such a

file. The image described by the file is that of a bob in the

shape of a flying saucer. This image is assigned to two bobs,

and the color of one is changed using the OBJECT.PLANES

statement. Both bobs are then positioned and set into motion.

Just as the velocity statements allow you to change the

position of an object automatically, Amiga BASIC includes

acceleration statements that allow you to change the velocity

automatically. The format of these statements is

OBJECT.AX object—num, x_acceleration—rate

OBJECT.AY object_num, y_acceleration_rate

where x_acceleration_-rate and y__acceleration_rate represent

the velocity to be added to an object's current velocity every

second. In other words, it specifies the velocity change in

pixels per second.

The above caution to watch an object once it is set in mo

tion applies even more strongly when you use the acceleration

statement. A high rate of acceleration may cause an object to

hit a border very quickly. It may even develop "escape veloc

ity," where it is redrawn at such large intervals that collision

1 * 233

Chapter 6

u

u

checking no longer works. In such a case, it will not stop at I [

the border, but will keep right on going and disappear from ^^
the display entirely.

These statements also may be used as functions to deter-) [

mine an object's current acceleration rate. The format of the

acceleration functions is .

x_acceleration_rate = OBJECT.AX (object_num) '—'
y_acceleration—rate = OBJECT.AY (object—num)

where the function returns the x or y acceleration rate of

object__num.

Program 6-9. Flying Bobs

WINDOW 1,"Unidentified Flying BOBs",(0,0)-(300,186),4

GOSUB Initlmage

'create Shipshape? from data,

1 instead of reading image file

OBJECT.SHAPE 1, Shipshape? 'create first space ship

OBJECT.Y 1,50 'position it vertically

OBJECT.VX 1,60 'give it horizontal motion

OBJECT.SHAPE 2,1 'create second ship

OBJECT.PLANES 2,2,1 ' make it white with orange windows

OBJECT.X 2,150 'position white ship horizontally

OBJECT.Y 2, 180 'and vertically

OBJECT.VY 2,-45 'give it vertical velocity upward

OBJECT.ON 'display both ships

OBJECT.START 'start them moving

FOR delay = 1 TO 2300 'kill time while they move

NEXT delay

OBJECT.CLOSE 'wipe out both objects I |

END I S

Initlmage:

'Create the string equivalent I I

'of an ObjEdit image file J—>

FOR x=0 TO 89

READ d%] j

ShipShape$=ShipShape$+CHR$(d%) *—'
NEXT

RETURN

DATA 0, 0, 0, 0 ,0, 0, 0, 0

DATA 0, 0, 0, 2, 0, 0, 0, 32

234

Sprites and Bobs

DATA

DATA

0, 0,
0, 0

0, a.

1 Bit Plane 0

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

•Bit

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

&H00,

&H00,

&H00,

&H03,

&H03,

&H00,

&H00,

&H00,

Plane

&H00,

&H03,

&HFF,

&HFF,

&HFF,

&HFF,

&H03,

&H00,

&H00,

&H00,

&H00,

&HC3,

&HC3,

&H00,

&H00,

&H00,

1

&H3F,

&HFF,

&HFF,

&HFF,

&HFF,

&HFF,

&HFF,

&H3F,

0, 24

&H00,

&H00,

&H00,

&HC3,

&HC3,

&H00,

&H00,

&H00,

&HFC,

&HFF,

&HFF,

&HFF,

&HFF,

&HFF,

&HFF,

&HFC,

. 0. 3

&H00

&H00

&H00

&HC0

&HC0

&H00

&H00

&H00

&H00

&HC0

&HFF

&HFF

&HFF

&HFF

&HC0

&H00

n

n

H

Detecting Collisions

When a movable object collides with another object or with

one of the borders of the window, Amiga BASIC notes the

collision and saves the information about it on a stack. This

stack can hold information about only 16 collisions at a time.

After the stack is full, BASIC ignores any subsequent

collisions.

You can receive several kinds of information about colli

sions from the COLLISION function. The syntax for the vari

ous forms of this function is

object_num = COLLISION (0)

collision-window = COLLISION (-1)

collision-code = COLLISION (object_num)

COLLISION (0) gives the objecL_number of the object

that was involved in the collision whose information is the top

item on the stack. This form leaves the collision information

on the stack, where it can be retrieved by a subsequent call of

the third form, COLLISION (object_num).

COLLISION (— 1) identifies the window in which the col

lision recorded on the top item of the stack occurred. It also

leaves the collision information on the stack.

COLLISION (object—num) is the most common. It returns

235

Chapter 6

a number, collision—code, that identifies what collided with | j

the object in question during the collision recorded by the top '—'

entry on the stack. In the process, it also removes the item

from the stack to make room for new entries. If you specify j I

the object—num of an object that was not involved in the colli

sion recorded on the top of the stack, the collision—code will

be zero, indicating no collision, and you'll have lost the chance j [
to find out what happened in that collision. Therefore, if you're

unsure which object was involved in the collision recorded on

the top of the stack, check it first with COLLISION (0).

Besides zero, indicating no collision, other possible

collision—codes include positive numbers, which correspond to

the object—num of another object with which the object col

lided, and negative numbers, which indicate a collision with

one of the window borders. The significance of these negative

values is

— 1 Object collided with top border

— 2 Object collided with left border

—3 Object collided with bottom border

—4 Object collided with right border

There is a way to detect collision other than having your

program check the COLLISION function every so often. If you

use the ON COLLISION statement, BASIC will notify your

program every time that it detects a collision and will cause

your program to execute a specified subroutine after the cur

rent statement finishes its execution. The format of this state

ment is

ON COLLISION GOSUB label

where label is the program label for the subroutine that is to -—>]
be executed. You can change the subroutine that is to be exe

cuted at any time by issuing the ON COLLISION GOSUB | j

statement with another label, or you can disable collision trap- N—f
ping with the statement

ON COLLISION GOSUB 0 LJ

like other event-trapping statements, the ON COLLISION

statement will not actually direct the program to your subrou- j |

tine when a collision happens until you give the statement ' '

COLLISION ON

236 i—'

Sprites and Bobs

It will, however, still place collision event information in

its stack, so when the COLLISION ON statement comes, the

program will be directed to the specified subroutine once for

each collision event that has been stored. After you have

given the COLLISION ON statement, you may suspend event

trapping with the statement

COLLISION STOP

which will stop it until the next COLLISION ON statement.

To end collision trapping entirely, use the statement

COLLISION OFF

Normally, Amiga BASIC records collisions between every

object, and between objects and the window borders. In some

cases, however, you may not want to take any action if certain

objects collide with each other or with the border. You there

fore might not want BASIC to take any notice of these colli

sions at all. You can prevent the detection of certain collisions

with the OBJECT.HIT statement. This statement takes the

form

OBJECT.HIT object_num [MeMask] [,HitMask]

where MeMask and HitMask are values whose bit patterns de

termine which type of object will collide. Think of MeMask as

a number that defines the collision type of this object and

HitMask as a number that describes the collision type of the

object with which this object will collide. If you logically AND

the MeMask of one object with the HitMask of another, a col

lision will be detected only if the result is not zero. In addi

tion, if the HitMask of an object is an odd number (has a one

as the least significant bit), it will collide with borders.

For example, let's take the following four objects:

Object_num MeMask HitMask Collides With

1

2

3

4

0010 (2)

0100 (4)

1000 (8)

0010 (2)

1101

1010

0110

0001

(13)

(10)

(6)

(1)

obj2, obj3, borders

objl, obj3

objl, obj2

borders only

Object 1 has a HitMask that indicates it collides with all

object types except those that have the same MeMask as it

does. Its HitMask value is 13, which produces a nonzero result

237

Chapter 6

when ANDed with either the MeMask of object 2 (4) or the ^

MeMask of object 3 (8). But 13 and the MeMask of object 4 (2) !_]
equals zero. Therefore, object 1 collides with both objects 2

and 3, but not object 4. Since its HitMask is odd, it also col- , »

lides with borders. '—I
Objects 2 and 3 have HitMasks with each other's MeMask

bit set, in addition to that of object 1. They collide with each v j

other and with object 1, therefore, but not with the border,

since both are even numbers.

Object 4 has a HitMask with only the least significant bit

set. It has zeros in the bit places represented by the MeMasks

of all the other objects. Therefore, it collides only with the

borders.

In the above example, none of the objects has HitMasks

that indicate that they can collide with another object, unless

that other object also has a HitMask that indicates it collides

with the first. Since the position of the objects will determine

whether object 1 collides with object 2, or object 2 collides

with object 1, it is a good practice to make sure that the

HitMasks of each is set so that both collide with each other or

neither collides with each other. Otherwise, the collision of the

two objects will not always be reported.

Program 6-10 was adapted from the Demo program

which appears on the Extras disk. It demonstrates many of the

statements explained in this section. It creates the shape of a

flying saucer vsprite from data and changes the data so that a

second vsprite is shown in different colors. It moves and accel

erates these vsprites, and uses collision trapping to bounce

them off the borders. It uses collision masking to make sure « ,

that only border collisions are detected, not collisions between 1—\
the ships. The demonstration stops after a certain number of

bounces to make sure that the ships do not reach escape ve- » j

locity and disappear off the screen. ^
You may notice that if you move the mouse pointer up

and down the screen as the ships are bouncing, the pointer) |

colors will change. This is because the vsprite system uses the ' '

available hardware sprites in order, and hardware sprite 1

shares its color registers with sprite 0, the one used for the j
pointer. So, when the animation system changes the color of

238 LJ

n
Sprites and Bobs

n

sprite 1, it also changes the color of the pointer. One way to

get around this problem is to use the GetSprite command to

reserve sprite 1, thus making it unavailable to the vsprite sys

tem. Try substituting the following lines for the beginning of

Program 6-10 (the part before the subroutines):

LIBRARY "graphics.library"

DEFINT a-z

WINDOW 1, "Bouncing Space Ships"

DIM Sprite(10)

CALL GetSprite&(VARPTR(Sprite(0)),l)

GOSUB initialize 'set up sprites

WHILE Running

SLEEP 'only do something

'when the sprites collide

WEND

OBJECT.CLOSE 'release all objects

PALETTE 0,0,.3,.6 'screen back to blue

CALL FreeSprite&(l)

END

Notice how the mouse pointer no longer changes colors

when you move it on top of the spaceships.

H

239

£
P
r
o
g
r
a
m

6-
10

.
Vs

pr
it

e
D
e
m
o

§
O

Q

D
E
F
I
N
T

a
-
z

"2
.

W
I
N
D
O
W

1
,
"
B
o
u
n
c
i
n
g

S
p
a
c
e

S
h
i
p
s
"
,
(
0
,
0
)
-
(
3
0
0
,
1
8
6
)
,
4

CD O

G
O
S
U
B

I
n
i
t
i
a
l
i
z
e

'
s
e
t

u
p

s
p
r
i
t
e
s

W
H
I
L
E

R
u
n
n
i
n
g

S
L
E
E
P

'
o
n
l
y

d
o

s
o
m
e
t
h
i
n
g

w
h
e
n

t
h
e

s
p
r
i
t
e
s

c
o
l
l
i
d
e

W
E
N
D

O
B
J
E
C
T
.
C
L
O
S
E

'
r
e
l
e
a
s
e

a
l
l

o
b
j
e
c
t
s

P
A
L
E
T
T
E

0
,
0
,
.
3
,
.
6

'
s
c
r
e
e
n

b
a
c
k

t
o

b
l
u
e

E
N
D

B
o
u
n
c
e
:

T
=

T
+
1
:
I
F

T
=

2
5

T
H
E
N

R
u
n
n
i
n
g

=
0

s
=

C
O
L
L
I
S
I
O
N
(
0
)

'
w
h
i
c
h

o
b
j
e
c
t

c
o
l
l
i
d
e
d
?

I
F

s
=

0
T
H
E
N

E
x
e
u
n
t

'
n
o
n
e

c
=

C
O
L
L
I
S
I
O
N
(
s
)

'
w
h
a
t

d
i
d

i
t

c
o
l
l
i
d
e

w
i
t
h
?

v
x

=
O
B
J
E
C
T
.
V
X
(
s
)

v
y

=
O
B
J
E
C
T
.
V
Y
(
s
)

I
F

(
c
=
-
l

A
N
D

v
y

<
0
)

O
R

(
c
=
-
3

A
N
D

v
y

>
0
)

T
H
E
N

'
o
b
j
e
c
t

b
o
u
n
c
e
d

o
f
f

t
o
p

o
r
b
o
t
t
o
m

b
o
r
d
e
r

O
B
J
E
C
T
.
V
Y

s
,
-
v
y

E
L
S
E
I
F

(
c
=
-
2

A
N
D

v
x

<
0
)

O
R

(
c
=
-
4
A
N
D

v
x

>
0
)

T
H
E
N

'
o
b
j
e
c
t

b
o
u
n
c
e
d

o
f
f

l
e
f
t

o
r

r
i
g
h
t

b
o
r
d
e
r

O
B
J
E
C
T
.
V
X

s
,
-
v
x

E
N
D

I
F

G
O
T
O

B
o
u
n
c
e

E
x
e
u
n
t
:

O
B
J
E
C
T
.
S
T
A
R
T

'
m
a
k
e

i
t

g
o

a
g
a
i
n

R
E
T
U
R
N

[i
c

c
c

c
c

ti
r:
:
d

c

i
3

j
o

d
3

3

I
n
i
t
i
a
l
i
z
e
:

R
u
n
n
i
n
g

=
1

P
A
L
E
T
T
E

0
,
0
,
0
,
0

G
O
S
U
B

I
n
i
t
l
m
a
g
e

•
C
r
e
a
t
e

S
h
i
p
S
h
a
p
e
$

f
r
o
m

d
a
t
a

'
r
a
t
h
e
r

t
h
a
n

r
e
a
d
i
n
g

i
m
a
g
e

f
i
l
e

O
B
J
E
C
T
.
S
H
A
P
E

1
,

S
h
i
p
S
h
a
p
e
$

O
B
J
E
C
T
.
Y

1
,
2
0

O
B
J
E
C
T
.
V
X

1
,
1
0

O
B
J
E
C
T
.
V
Y

1
,
7

O
B
J
E
C
T
.
A
Y

1
,
1

O
B
J
E
C
T
.
A
X

1
,
2

L
=
L
E
N
(
S
h
i
p
s
h
a
p
e
?
)

r
e
d
l
=
0

g
r
n
b
l
u
l
=
0

r
e
d
2
=
1
5

g
r
n
b
l
u
2

=
0
*
1
6
+
1
5

r
e
d
3
=
0

g
r
n
b
l
u
3
=
1
5
*
1
6
+
3

'
0
,

1
5
,

1
5

=

C
o
l
$
=
C
H
R
$
(
r
e
d
l
)
+
C
H
R
$
(
g
r
n
b
l
u
l
)

C
o
l
?
=
C
o
l
?
+
C
H
R
?
(
r
e
d
2
)
+
C
H
R
?
(
g
r
n
b
l
u
2
)

C
o
l
?
=
C
o
l
?
+
C
H
R
?
(
r
e
d
3
)
+
C
H
R
?
(
g
r
n
b
l
u
3
)

M
I
D
?
(
S
h
i
p
s
h
a
p
e
?
,
L
-
5
)
=
C
o
l
?'
c
h
a
n
g
e

c
o
l
o
r

d
a
t
a

o
f

v
s
p
r
i
t
e

0
,
0
,
0

=
b
l
a
c
k

1
5
,
0
,
1
5

=
p
u
r
p
l
e

a
q
u
a

O
B
J
E
C
T
.
S
H
A
P
E

2
,

S
h
i
p
s
h
a
p
e
?

O
B
J
E
C
T
.
Y

2
,
3
0

O
B
J
E
C
T
.
V
X

2
,
2

O
B
J
E
C
T
.
V
Y

2
,
2

O
B
J
E
C
T
.
A
Y

2
,
2

O
B
J
E
C
T
.
A
X

2
,
2

'
c
r
e
a
t
e

a
s
a
u
c
e
r

w
i
t
h

n
e
w

c
o
l
o
r
s

§ C
O

Q a <
o

J
£

O
B
J
E
C
T
.
O
N

N
>

O
B
J
E
C
T
.
S
T
A
R
T

O
B
J
E
C
T
.
C
L
I
P

(
0
,
0
)
-
(
2
7
5
,
1
8
4
)

O
B
J
E
C
T
.
H
I
T

1
,
2
,
1

O
B
J
E
C
T
.
H
I
T

2
,
2
,
1

O
N

C
O
L
L
I
S
I
O
N

G
O
S
U
B

B
o
u
n
c
e

C
O
L
L
I
S
I
O
N

O
N

R
E
T
U
R
N

I
n
i
t
l
m
a
g
e
:

F
O
R

x
=
0

T
O

6
3

R
E
A
D

d
%

S
h
i
p
S
h
a
p
e
$
=
S
h
i
p
S
h
a
p
e
$
+
C
H
R
$
(
d
%
)

N
E
X
T

R
E
T
U
R
N

D
A
T
A

0
,

0
,

0
,

0
,

0
,

0
,

0
,

0

D
A
T
A

0
,

0
,

0
,

2
,

0
,

0
,

0
,

1
6

D
A
T
A

0
,

0
,

0
,

8
,

0
,

2
5
,

0
,

3

D
A
T
A

0
,

0
,

0
,

0
,

0
,

0
,

0
,

0
D
A
T
A

2
5
,

1
5
2
,

2
5
,

1
5
2
,

0
,

0
,

0
,

0

D
A
T
A

0
,

0

'
S
p
r
i
t
e

I
m
a
g
e

D
a
t
a

1
2
b
y
t
e
s

w
i
d
e

b
y

•
8

l
i
n
e
s

h
i
g
h

D
A
T
A

&
H
0
7
,

&
H
E
0

D
A
T
A

&
H
1
F
,

&
H
F
8

D
A
T
A

&
H
F
F
,

&
H
F
F

D
A
T
A

&
H
F
F
,

&
H
F
F

D
A
T
A

&
H
F
F
,

&
H
F
F

•
m
a
k
e

t
h
e
m

v
i
s
i
b
l
e

1
s
t
a
r
t

t
h
e
m
m
o
v
i
n
g

1
s
e
t
b
o
r
d
e
r
s

'
o
n
l
y

c
o
l
l
i
d
e

w
i
t
h

b
o
r
d
e
r
s

'
s
e
t

c
o
l
l
i
s
i
o
n

t
r
a
p
p
i
n
g

'
t
u
r
n

i
t

o
n

o Q C
D

O
^

[
I
C

C
I
C

C
I

d
\z

c
:

r:

j
u

u
a

n
'

-1
-j

J
^

D
A
T
A

&
H
F
F
,

&
H
F
F

D
A
T
A

&
H
1
F
,

&
H
F
8

D
A
T
A

&
H
0
7
,

&
H
E
0

•
S
p
r
i
t
e

c
o
l
o
r
s

'
R
G
B

v
a
l
u
e
s

a
r
e

h
e
l
d

i
n

t
w
o

•
h
e
x
b
y
t
e
s
—
0
R

A
N
D

G
B

D
A
T
A

&
H
0
0
,

&
H
0
0

D
A
T
A

&
H
0
F
,

&
H
0
0

D
A
T
A

&
H
0
F
,

&
H
F
0

Q Q
.

o

^W§l§83fR^^

':'M^ ;•■'%:••'..;■' r'::MM' y'-:'' :r^ M'-y:y^-'^ :'''y'r'y ^.J: .y'' ^M:^-: '*.%■■''.'^y'/:-\'.:/-'z:-'/ "?■:■■>'■ r,--.y

i^Bi

u

u

0

u

Advanced Topics

uring our exploration of the graphics capabilities of

the Amiga, we have touched on a number of topics,

which, because of their complexity, could not be ex-

plained fully when they were mentioned. In this

chapter, we will be discussing three such topics in greater de

tail: SUPER-BITMAP windows, Hold and Modify (HAM) dis

play mode, and Extra Halfbrite display mode. None of these

graphics modes is directly supported by BASIC, and by nature

they don't lend themselves to being implemented in BASIC

through the use of POKEs or library calls. This discussion,

therefore, will be confined to programming in the C language.

SUPER-BITMAP Windows

In Chapter 2, we discussed the three methods for refreshing

windows, which is the term used to describe the process of re

storing the contents of a window after it has been covered by

another window and then uncovered again, or when it has

been moved.

One method is to create what is known as a

SUPER_BITMAP window. This involves setting up a separate

bitmap storage area for the window. This storage area is large

enough to contain the entire contents of the window. Al

though we normally think of a bitmap as an area of memory

that is used to hold data that is actually displayed, the con

tents of the SUPER—BITMAP are not directly shown onscreen.

\ | Rather, the part of the bitmap that represents the area of the

window that is currently uncovered is copied to the screen's

,_, bitmap. No matter what happens to the copy that is being dis-

i I played, the contents of the SUPER-BITMAP remain safe. This

means that the programmer never has to worry about refresh-

{—) ing a SUPER—BITMAP window, because Intuition always has

' > a copy of the data available to it.
Another advantage of the SUPER-BITMAP window is

f"[that the bitmap area may be any size, up to 1024 X 1024

pixels. This allows the programmer to create a picture that is

H

Chapter 7

larger than the window used to display it, or even larger than

can fit on the display screen at one time. There are a couple of

implications to this. When you try to output graphics to other

types of windows, the output is clipped or cut off if it is di- \ j

rected outside the boundaries of the window. With a SUPER— '—'
BITMAP window, data directed outside the window's screen

boundaries may not appear on the display immediately, but it ! j

will be stored in the bitmap if it falls within the boundaries of L~'
this larger area. The window may then be scrolled over the

contents of the bitmap so as to reveal these hidden portions of

the big picture one at a time.

The price that you pay for the advantages of a SUPER-

BITMAP window is a little extra programming effort and addi

tional memory usage. The amount of extra memory required

may be quite substantial if you create a very large bitmap con

taining many bit planes.

In order to set up a SUPER—BITMAP window, you must

create your own bitmap data structure and storage area, and

initialize them before you can open the window. The first step

is to declare a BitMap data structure:

struct BitMap BitMap;

This structure contains information about the display lay

out of the data, the number of bit planes, and the height and

width of each bit plane. To initialize these values, use the

Graphics library call InitBitMap. The format for this statement is

InitBitMap(BitMap, Depth, Width, Height);

(aO) (dO) (dl) (d2)

where BitMap is a pointer to the BitMap data structure, Depth . ,

is the number of bit planes used, and Width and Height give I—f
the dimensions of each bit plane in pixels.

The BitMap data structure also contains pointers to the ac- | j

tual memory areas used to store the data for each bit plane. In l—'

order to initialize these BitMap.Planes values, you must allo

cate memory for the bitmap storage. You do this with the | {

AllocRaster memory allocation function that we discussed in

Chapter 3. For example, if you have initialized a BitMap data

structure for a bitmap that is 640 X 400 pixels and two planes Ij

248
u

Advanced Topics

deep, the following code fragment would allocate the required

; | memory areas and link the addresses of these areas into the

BitMap structure:

r—» for (x=0;x<2;x+ +)

i I if
«BitMap.Planes[x] = (PLANEPTR)AUocRaster(640,200)) = =0)

r-, exit(400);

j | else BltClear (BitMap.Planes[x],16000,0);

Notice that we also used the BltClear statement, which we

discussed in Chapter 3, to initialize the bitmap to all zeros.

Having completed initialization of the BitMap data struc

ture, we must still link that structure into the NewWindow

structure before opening the window. We do this by storing a

pointer to the BitMap structure in the Bitmap variable of the

NewWindow structure, like this:

NewWdw.BitMap = (struct BitMap *)&BitMap;

Before opening the window, make sure that the Flags vari

able in the NewWindow structure shows the refresh type as

SUPER_BITMAP also.

As we mentioned above, once you have set up the SUPER-

BITMAP window, you may position the graphics cursor any

where within the bitmap and place graphics there, whether

that portion of the bitmap is currently being displayed or not.

When you wish to scroll the window around the bitmap to re

veal the hidden portions of it, you may use the library routine

ScrollLayer. Before you use this routine, however, you must

first open the Layers library, of which this function is a part.

The process of opening this library is very similar to that of

[j opening the Intuition library or Graphics library. First, you de

clare a structure for storing the base address of the library:

struct LayersBase *LayersBase;

' -' Next, you open the library, assigning the result to the base
address variable. If the value returned is zero, the library is

P"} not available, and your program should exit:

LayersBase = (struct LayersBase *)

OpenLibraryHayersJibrary^LIBRARY-VERSION);

f~[if (LayersBase = = NULL) exit(FALSE);

249

Chapter 7

Once you have opened the library, you may use the

ScrollLayer routine. The syntax for this statement is

ScrollLayer (Layer—Info, Layer, dx, dy);

(aO) (al) (dO) (dl)

where Layer_Info and Layer are pointers to data structures, '—'

and Dx and Dy are the horizontal and vertical offsets by

which you wish to move the window. The Layer—Info data J |

structure is part of the Screen data structure; in Program 7-1

this value is set to zero, and the Layer—Info structure from our

window's screen is used. A pointer to the Layer structure is

part of the Window data structure. If the pointer to your win

dow was declared as

struct Window *Wdw;

then the Layer structure can be referred to by the expression

Wdw->WLayer

Program 7-1 is a simple example of setting up a bitmap

that is larger than the window. It sets up a BitMap area that is

as large as the Workbench screen, but opens a SUPER-BITMAP

window that is only a quarter of the size of the display. Sev

eral lines of text are written to the bitmap, and then the

ScrollLayer statement is used to scroll the contents of the bit

map through the window to reveal the hidden parts of the text.

One important point to keep in mind is that in order for a

portion of the SUPER—BITMAP to be displayed, its data must

be moved to the portion of the screen's bitmap display area

that is used by its window. Therefore, if you directly modify

the contents of the SUPER-BITMAP itself, it will not alter the

screen display of the SUPER-BITMAP window until the win- j ;

dow actually needs to be refreshed by Intuition. For example, '—'
when the ScrollLayer command is used to change the portion

of the bitmap that is displayed, such a refresh takes place. | j

u

250 Lj

d
n

P
r
o
g
r
a
m

7
-
1
.
S
U
P
E
R
_
_
B
I
T
M
A
P
W
i
n
d
o
w

*
S
u
p
e
r
B
i
t
.
C

*
S
h
o
w
s
h
o
w

t
o

s
e
t

u
p

a
S
u
p
e
r
B
i
t
M
a
p

w
i
n
d
o
w

*
w
h
o
s
e

b
i
t
m
a
p

i
s
b
i
g
g
e
r

t
h
a
n

t
h
e

w
i
n
d
o
w
,

*
a
n
d

s
c
r
o
l
l

t
h
e

w
i
n
d
o
w

a
r
o
u
n
d

i
n

t
h
e

b
i
t
m
a
p

C
J
l

/
*

I
n
c
l
u
d
e

t
h
e

d
e
f
i
n
i
t
i
o
n
s

w
e

n
e
e
d

*
/

i
i
n
c
l
u
d
e

<
e
x
e
c
/
t
y
p
e
s
.
h
>

#
i
n
c
l
u
d
e

<
i
n
t
u
i
t
i
o
n
/
i
n
t
u
i
t
i
o
n
.
h
>

/
*

S
t
r
u
c
t
u
r
e
s

n
e
e
d
e
d

f
o
r

l
i
b
r
a
r
i
e
s

*
/

s
t
r
u
c
t

I
n
t
u
i
t
i
o
n
B
a
s
e

*
I
n
t
u
i
t
i
o
n
B
a
s
e
;

s
t
r
u
c
t

G
f
x
B
a
s
e

*
G
f
x
B
a
s
e
;

s
t
r
u
c
t

L
a
y
e
r
s
B
a
s
e

*
L
a
y
e
r
s
B
a
s
e
;

/
*

S
t
r
u
c
t
u
r
e
s

r
e
q
u
i
r
e
d

f
o
r

g
r
a
p
h
i
c
s

*
/

s
t
r
u
c
t

B
i
t
M
a
p

B
i
t
M
a
p
;

s
t
r
u
c
t
W
i
n
d
o
w

*
W
d
w
;

/
*
*
*
*
*
*
*
*

P
r
o
g
r
a
m

C
o
n
s
t
a
n
t
s

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
/

(D a o1 O C
O

#
d
e
f
i
n
e

R
p

W
d
w
-
>
R
P
o
r
t

#
d
e
f
i
n
e

B
L
U
P

0

#
d
e
f
i
n
e

W
H
T
P

1

#
d
e
f
i
n
e

B
L
K
P

2

#
d
e
f
i
n
e

O
R
N
P

3

/
*

t
o

s
h
o
r
t
e
n

t
h
i
s

u
p

*
/

O Q "
D C
D

/
*

P
r
e
-
i
n
i
t
i
a
l
i
z
e
d

N
e
w
S
c
r
e
e
n

a
n
d

N
e
w
W
i
n
d
o
w

S
t
r
u
c
t
u
r
e
s

*
/

s
t
r
u
c
t

N
e
w
W
i
n
d
o
w
N
e
w
W
d
w

V

/
*

L
e
f
t

E
d
g
e
,

T
o
p

E
d
g
e

*
/

/
*

W
i
d
t
h
,

H
e
i
g
h
t

*
/

/
*

B
l
o
c
k

P
e
n
,

D
e
t
a
i
l

P
e
n

/
*

I
D
C
M
P

F
l
a
g
s

*
/

_
A
C
T
I
V
A
T
E

+
G
I
M
M
E
Z
E
R
O
Z
E
R
O

+
W
I
N
D
O
W
C
L
O
S
E
,

/
*

F
l
a
g
s

*
/

N
U
L
L
,

/
*

P
o
i
n
t
e
r

t
o

F
i
r
s
t

G
a
d
g
e
t

*
/

N
U
L
L
,

/
*

P
o
i
n
t
e
r

t
o

C
h
e
c
k

M
a
r
k

i
m
a
g
e

*
/

"
S
c
r
o
l
l
i
n
g

S
u
p
e
r
B
i
t
M
a
p

W
i
n
d
o
w
"
,

/
*

T
i
t
l
e

*
/

0
,
0
,

3
2
0
,
1
0
0
,

B
L
U
P
,
W
H
T
P
,

C
L
O
S
E
W
I
N
D
O
W
,

S
U
P
E
R
B
I
T
M
A
P

N
U
L
L
,

N
U
L
L
,

0
,
0
,

0
.
0
,

W
B
E
N
C
H
S
C
R
E
E
N

/
*

P
o
i
n
t
e
r

t
o

S
c
r
e
e
n

s
t
r
u
c
t
u
r
e
,

d
u
m
m
y

*
/

/
*

P
o
i
n
t
e
r

t
o

c
u
s
t
o
m

B
i
t

M
a
p

*
/

/
*

M
i
n
i
m
u
m

W
i
d
t
h
,

H
e
i
g
h
t

*
/

/
*

M
a
x
i
m
u
m
W
i
d
t
h
,

H
e
i
g
h
t

*
/

/
*

T
y
p
e

o
f

S
c
r
e
e
n

i
t

r
e
s
i
d
e
s

o
n

*
/

/
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*

p
r
o
g
r
a
m

B
e
g
i
n
s

H
e
r
e

*
*
*
*
*
*
*
*
*
*

*
/

m
a
i
n
(
)

{ i
n
t

x
;

C
C

u
:
i
u

/
*

O
p
e
n

t
h
e

I
n
t
u
i
t
i
o
n
,

G
r
a
p
h
i
c
s

a
n
d

L
a
y
e
r
s

l
i
b
r
a
r
i
e
s
.

*
G
e
t
s

p
o
i
n
t
e
r

t
o
W
C
S

r
o
u
t
i
n
e
s
,

a
n
d

i
f

=
0
,

*
l
i
b
r
a
r
i
e
s

a
r
e
n
'
t

a
v
a
i
l
a
b
l
e
,

s
o

q
u
i
t
.

*
/

I
n
t
u
i
t
i
o
n
B
a
s
e

=
(
s
t
r
u
c
t

I
n
t
u
i
t
i
o
n
B
a
s
e

*
)

O
p
e
n
L
i
b
r
a
r
y
(
"
i
n
t
u
i
t
i
o
n
.
l
i
b
r
a
r
y
"
,
L
I
B
R
A
R
Y
_
V
E
R
S
I
O
N
)
;

i
f

(
I
n
t
u
i
t
i
o
n
B
a
s
e

=
=

N
U
L
L
)

e
x
i
t
(
1
0
0
)
;

G
f
x
B
a
s
e

=
(
s
t
r
u
c
t

G
f
x
B
a
s
e

*
)

O
p
e
n
L
i
b
r
a
r
y
(
"
g
r
a
p
h
i
c
s
.
l
i
b
r
a
r
y
"
,
L
I
B
R
A
R
Y
_
_
V
E
R
S
I
O
N
)
;

i
f

(
G
f
x
B
a
s
e

=
=

N
U
L
L
)

e
x
i
t
(
2
0
0
)
;

L
a
y
e
r
s
B
a
s
e

=
(
s
t
r
u
c
t

L
a
y
e
r
s
B
a
s
e

*
)

O
p
e
n
L
i
b
r
a
r
y
(
"
l
a
y
e
r
s
.
l
i
b
r
a
r
y
"
,
L
I
B
R
A
R
Y
_
V
E
R
S
I
O
N
)
;

i
f

(
L
a
y
e
r
s
B
a
s
e

=
=

N
U
L
L
)

e
x
i
t
(
3
0
0
)
;

/
*

I
n
i
t
i
a
l
i
z
e

t
h
e
b
i
t
m
a
p

a
n
d

o
p
e
n

t
h
e

W
i
n
d
o
w
.

*
I
f

t
h
e
w
i
n
d
o
w

p
o
i
n
t
e
r

i
s

0
,

i
t
w
a
s
n
'
t

o
p
e
n
e
d
.

*
/

I
n
i
t
B
i
t
M
a
p
(
&
B
i
t
M
a
p
,
2
,
6
4
0
,
2
0
0
)
;

f
o
r

(
x
=
0
;
x
<
2
;
x
+
+
)

i
f

^
(
(
B
i
t
M
a
p
.
P
l
a
n
e
s
[
x
]

=
(
P
L
A
N
E
P
T
R
)
A
l
l
o
c
R
a
s
t
e
r
(
6
4
0
,
2
0
0
)
)

=
=
0
)

?
e
x
i
t
(
4
0
0
)
;

<

e
l
s
e

B
l
t
C
l
e
a
r

(
B
i
t
M
a
p
.
P
l
a
n
e
s
[
x
]
,
1
6
0
0
0
,
0
)
;

§ O C
D

N
e
w
W
d
w
.
B
i
t
M
a
p

=
(
s
t
r
u
c
t

B
i
t
M
a
p

*
)
&
B
i
t
M
a
p
;

^j O

k>
i
f

((
W
d
w

=
(
s
t
r
u
c
t
W
i
n
d
o
w

*
)
O
p
e
n
W
i
n
d
o
w
(
&
N
e
w
W
d
w
)
)

=
=
0
)

"2
.

2
e
x
i
t
(
5
0
0
)
;

8

r
o

d
e
m
o
O
;

O

W
a
i
t
(
K
<
W
d
w
-
>
U
s
e
r
P
o
r
t
-
>
m
p
_
S
i
g
B
i
t
)
;

-
g

f
o
r

(
x
=
0
;
x
<
2
;
x
+
+
)

/
*

f
r
e
e
b
i
t
-
m
a
p

m
e
m
o
r
y

*
/

-*

i
f

(
B
i
t
M
a
p
.
P
l
a
n
e
s
C
x
]

i
=

0
)

^
F
r
e
e
R
a
s
t
e
r
(
B
i
t
M
a
p
.
P
l
a
n
e
s
[
x
]
,
6
4
0
,
2
0
0
)
;

/
*

C
l
o
s
e

t
h
e
w
i
n
d
o
w

a
n
d

t
h
e

l
i
b
r
a
r
i
e
s

*
/

C
l
o
s
e
W
i
n
d
o
w
(
W
d
w
)
;

C
l
o
s
e
L
i
b
r
a
r
y
(
G
f
x
B
a
s
e
)
;

C
l
o
s
e
L
i
b
r
a
r
y
(
I
n
t
u
i
t
i
o
n
B
a
s
e
)
;

C
l
o
s
e
L
i
b
r
a
r
y
(
L
a
y
e
r
s
B
a
s
e
)
;

}
/
*

e
n
d

o
f

m
a
i
n

*
/

d
e
m
o
(
)

{ i
n
t

l
i
n
e
;

S
e
t
A
P
e
n
(
R
p
,
W
H
T
P
)
;

f
o
r

(
l
i
n
e
=
2
0
;

l
i
n
e

<
1
9
0

;
l
i
n
e

+
=

1
0
)

{ M
o
v
e
(
R
p
,
1
0
,
l
i
n
e
)
;

T
e
x
t
(
R
p
,
"
T
h
i
s

t
e
x
t

l
i
n
e

i
s

i
n

a
s
c
r
o
l
l
i
n
g

s
u
p
e
r
-
b
i
t
m
a
p

w
i
n
d
o
w
"
,
5
2
)
;

}

S
c
r
o
l
l

(
1
,
1
)
;

S
c
r
o
l
l

(
1
,
-
1
)
;

S
c
r
o
l
l

(
0
,
1
)
;

S
c
r
o
l
l

(
-
1
,
0
)
;

S
c
r
o
l
l

(
-
1
,
0
)
;

}

c
c

c
c

c
c

c
c

c
c

n
Advanced Topics

n

n

n

n

n

n

n

n

0

o a
CO -H

<D

■+■»

a

a)

•H
H

...

V

H

...

II

M

0

rd

$
A

\U •*

(d ^^

H O

0 -P

o (d
^ CO ^'^

U

J

a

CO

m

0

'd
c
w

255

LJ
Chapter 7

LJ

Hold and Modify Mode \i

In Chapter 2, we said that in most circumstances, five is the

maximum number of bit planes that a screen can use. In cer-

tain special display modes, however, six bit planes may be j [

used at a time. Since high-resolution and interlaced screens

cannot use more than four bit planes, these special modes are . ,

confined to use in low-resolution, noninterlaced mode only. 1—!
The first of these special modes is called Hold and Modify

(HAM) mode. Normally, the maximum number of colors that

you can display onscreen at once is 32, since there are only 32

hardware color registers available for use. Hold and Modify

mode, however, allows you to bypass this limitation and to

display all 4096 shade onscreen at once.

The secret is in how the pen number for each dot of the

screen display is interpreted. When HAM is active, the highest

two bits of the pen number control how the lower four bits of

that number are interpreted. When the top two bits are both

zeros, the lower four bits are interpreted as a pen number

from 0 to 15, as normal. When one or more of these top two

bits are set to one, however, the interpretation is very differ

ent. In that case, determining the color of the pixel is a two-

part process.

First, you start by making the color of the pixel the same

as that of the next pixel to the left. Then, you modify one of

the three color components of the pixel (red, green, or blue)

by changing it to the value of the lower four bits of the pen

value. Which color component is changed depends on the

value in the high-order two bits. If those bits are set to 01, the

blue component is modified. If they are set to 10, the red bits J j

of the pixel to the left are replaced. And if they are set to 11,

the green component is the one that is changed. I >

You should see now why this mode is called Hold and i 1

Modify. It extends the color selection by allowing you to copy

(Hold) two of the three color values used by the preceding \ i

pixel and to change (Modify) the other value to the new value {—'

specified by the lower four bits of the pen number. The fol

lowing list summarizes the actions taken according to the] |

settings of the top two bits of the pen value for each dot:

256 u

i t
Advanced Topics

n
OOxrra Use the pen value specified by the bits xxxx as you would

ordinarily. For example, if these bits had the value 1010, it

would mean to use the color values specified in pen (color

register) 12.

Olrra: Duplicate the red and green values of the pixel to the left,

and use the value xxxx for the blue color value.

Duplicate the green and blue values of the pixel to the left,

and use the value xxxx for the red color value.

Duplicate the red and blue values of the pixel to the left,

and use the value xxxx for the green color value.

Setting up and using a Hold and Modify screen is fairly

straightforward. To activate Hold and Modify mode, set the

ViewModes value in the NewScreen data structure to HAM.

Do not set the HIRES or LACE flags. Set the Depth variable of

that structure to 6, and open the Screen as you normally

would. When drawing in a window that appears on that

screen, use the SetAPen statement to set the foreground pen

to a value of 0 to 15 to draw using the normal pen colors. If

you wish to draw using the Hold and Modify method, add 16

to the color intensity desired if you want to hold the red and

green values of the pixel to the left, and modify the blue

value. Add 32 if you wish to modify the red value, or add 48

if you wish to modify the green value.

Program 7-2 shows how to use the Hold and Modify

mode. It draws six strips, each of which is divided into 16

color segments.

Although HAM mode allows you to display a lot of colors

at once, you have limited control over the color selection of

any one pixel. Since you can change only one color value per

pixel, to change colors entirely takes three pixels.

Another limitation is that when you use HAM mode for a

number of pixels in a row, the color of each succeeding pixel

depends on that of the pixel to the left. Changing the color

value of the first pixel in that row could change all of the

pixels that appear to its right. This is demonstrated in Program

7-2. Originally, the bottom three strips of color are identical to

the top three. All that is required to change them entirely,

however, is to draw a single horizontal line in front of each.

Because of these limitations, HAM mode is somewhat dif

ficult to use for purposes such as freehand drawing. On the

PI 257

u
Chapter 7

LJ

other hand, the extended color resolution that it affords can be .

used very successfully in applications such as digitizing color I -,
video images. Pictures produced by this method are amazingly

faithful to the original, considering that they use a 320 X 200 i >

display resolution. '—'

Extra Halfbrite Mode LJ
Another special display mode that uses six bit planes is called

the Extra Halfbrite mode. This mode is not discussed very

much in the Amiga technical literature, because it was a very

late addition to the Amiga hardware. In fact, many of the first

Amigas do not support this mode at all. At the time of this

writing, Commodore-Amiga has not announced a policy con

cerning updates to the new display chip.

Extra Halfbrite represents a compromise between HAM

and the normal display mode which allows the user to extend

the color selection beyond the normal 32 colors. In Extra

Halfbrite mode, the lower five bits of the pen value are used

to select a color register from 0 to 31. If the sixth bit is set to

one, however, the red, green, and blue values held in that

color register are shifted one place to the right. This effectively

halves the luminance value for each color. The resulting dis

play, therefore, is a much darker version of the original color.

Setting up and using an Extra Halfbrite screen is similar to

the process used for a HAM screen. Set the ViewModes vari

able in the NewScreen structure to EXTRA_HALFBRITE. Do

not set the LACE or HIRES flags. Set the Depth variable to 6.

When drawing, add 32 to the pen value to get the Halfbrite

equivalent of the color. I (

The Extra Halfbrite mode offers a bit of extra flexibility in

color selection, but it is not really as handy as having 64 dis- ,

tinct color registers. For one thing, since each Halfbrite color 1 j

uses only three bits for red, green, and blue values, there are

only 512 possible Halfbrite colors, one-eighth of the total t i

Amiga color palette. And, as you may have noticed in Pro- '—>
gram 7-3, the Halfbrite colors are all fairly dark and are less

distinct from one another for that reason as well. j ;

258 u

3
o

a

P
r
o
g
r
a
m

7
-
2
.
H
o
l
d
a
n
d
M
o
d
i
f
y

/
*

I
n
c
l
u
d
e

t
h
e

d
e
f
i
n
i
t
i
o
n
s

w
e

n
e
e
d

*
/

#
i
n
c
l
u
d
e

<
e
x
e
c
/
t
y
p
e
s
.
h
>

#
i
n
c
l
u
d
e

<
i
n
t
u
i
t
i
o
n
/
i
n
t
u
i
t
i
o
n
.
h
>

/
*

S
t
r
u
c
t
u
r
e
s

n
e
e
d
e
d

f
o
r

l
i
b
r
a
r
i
e
s

*
/

s
t
r
u
c
t

I
n
t
u
i
t
i
o
n
B
a
s
e

*
I
n
t
u
i
t
i
o
n
B
a
s
e
;

s
t
r
u
c
t

G
f
x
B
a
s
e

*
G
f
x
B
a
s
e
;

/
*

S
t
r
u
c
t
u
r
e
s

r
e
q
u
i
r
e
d

f
o
r

g
r
a
p
h
i
c
s

*
/

s
t
r
u
c
t

S
c
r
e
e
n

*
C
u
s
t
S
c
r
;

s
t
r
u
c
t
W
i
n
d
o
w

*
W
d
w
;

s
t
r
u
c
t
V
i
e
w
p
o
r
t

*
W
V
P
;

/
*
*
*
*
*
*
*
*
*
*

p
r
o
g
r
a
m

C
o
n
s
t
a
n
t
s

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
/

#
d
e
f
i
n
e

R
p

W
d
w
-
>
R
P
o
r
t

/
*

t
o

s
h
o
r
t
e
n

t
h
i
s

u
p

*
/

#
d
e
f
i
n
e

B
L
A
C
K

0
x
0
0
0

#
d
e
f
i
n
e

B
G
R
P

0
^

t
d
e
f
i
n
e

M
O
D
B
L
U

0
x
1
0

£
#
d
e
f
i
n
e

M
O
D
R
E
D

0
x
2
0

D

#
d
e
f
i
n
e

M
O
D
G
R
N

0
x
3
0

g a

/
*

*
P
r
e
-
i
n
i
t
i
a
l
i
z
e
d

N
e
w
S
c
r
e
e
n

a
n
d

N
e
w
W
i
n
d
o
w

S
t
r
u
c
t
u
r
e
s

*
*
/

■§ O C
O

O
N
O

s
t
r
u
c
t

N
e
w
S
c
r
e
e
n

N
e
w
C
u
s
t
S
c
r

0
,
0
,

3
2
0
,
2
0
0
,
6
,

1
,
0
,

H
A
M
,

C
U
S
T
O
M
S
C
R
E
E
N
,

N
U
L
L
,

N
U
L
L
,

N
U
L
L
,

N
U
L
L
,

/
*

L
e
f
t
E
d
g
e

(
a
l
w
a
y
s
=
0
)
,
T
o
p
E
d
g
e

*
/

/
*

W
i
d
t
h
,

H
e
i
g
h
t
,

D
e
p
t
h

*
/

/
*

D
e
t
a
i
l
P
e
n

a
n
d

B
l
o
c
k
P
e
n

*
/

/
*

s
p
e
c
i
a
l

d
i
s
p
l
a
y

m
o
d
e
s

*
/

/
*

S
c
r
e
e
n

T
y
p
e

*
/

/
*

P
o
i
n
t
e
r

t
o

C
u
s
t
o
m

f
o
n
t
*
/

/
*

P
o
i
n
t
e
r

t
o

t
i
t
l
e

t
e
x
t

*
/

/
*

P
o
i
n
t
e
r

t
o

S
c
r
e
e
n

G
a
d
g
e
t
s

*
/

/
*

P
o
i
n
t
e
r

t
o

C
u
s
t
o
m
B
i
t
M
a
p

*
/

O Q "
D C
D

s
t
r
u
c
t

N
e
w
W
i
n
d
o
w

N
e
w
W
d
w

=

t 0
,
0
,

/
*

L
e
f
t

E
d
g
e
,

T
o
p

E
d
g
e

*
/

3
2
0
,
2
0
0
,

/
*

W
i
d
t
h
,

H
e
i
g
h
t

*
/

N
U
L
L
,
N
U
L
L
,

/
*

B
l
o
c
k

P
e
n
,

D
e
t
a
i
l

P
e
n

*
/

C
L
O
S
E
W
I
N
D
O
W
,

/
*

I
D
C
M
P

F
l
a
g
s

*
/

S
M
A
R
T
_
R
E
F
R
E
S
H

I
A
C
T
I
V
A
T
E

I
B
O
R
D
E
R
L
E
S
S

I
W
I
N
D
O
W
C
L
O
S
E
,

/
*

F
l
a
g
s

*
/

N
U
L
L
,

/
*

P
o
i
n
t
e
r

t
o

F
i
r
s
t

G
a
d
g
e
t

*
/

N
U
L
L
,

/
*

P
o
i
n
t
e
r

t
o

C
h
e
c
k

M
a
r
k

i
m
a
g
e

*
/

N
U
L
L
,

/
*

T
i
t
l
e

*
/

N
U
L
L
,

/
*

P
o
i
n
t
e
r

t
o

S
c
r
e
e
n

s
t
r
u
c
t
u
r
e
,

d
u
m
m
y

*
/

N
U
L
L
,

/
*

P
o
i
n
t
e
r

t
o

c
u
s
t
o
m

B
i
t

M
a
p

*
/

0
,
0
,

/
*

M
i
n
i
m
u
m

W
i
d
t
h
,

H
e
i
g
h
t

*
/

0
,
0
,

/
*

M
a
x
i
m
u
m

W
i
d
t
h
,

H
e
i
g
h
t

*
/

C
U
S
T
O
M
S
C
R
E
E
N

/
*

T
y
p
e

o
f

S
c
r
e
e
n

i
t

r
e
s
i
d
e
s

o
n

*
/

/
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

p
r
o
g
r
a
m

B
e
g
i
n
s

H
e
r
e

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
/

m
a
i
n
(
)

c
c

c
c

[I
tl

[I
C

C

□
□

:j
z)

11
D

a
n

/
*

O
p
e
n

t
h
e

I
n
t
u
i
t
i
o
n

a
n
d

G
r
a
p
h
i
c
s

l
i
b
r
a
r
i
e
s
.

*
G
e
t

p
o
i
n
t
e
r

t
o

W
C
S

r
o
u
t
i
n
e
s
,

*
a
n
d

i
f

=
0
,

l
i
b
r
a
r
i
e
s

a
r
e
n
'
t

a
v
a
i
l
a
b
l
e
.

*
/

I
n
t
u
i
t
i
o
n
B
a
s
e

=
(
s
t
r
u
c
t

I
n
t
u
i
t
i
o
n
B
a
s
e

*
)

O
p
e
n
L
i
b
r
a
r
y
(
"
i
n
t
u
i
t
i
o
n
.
l
i
b
r
a
r
y
"
,

L
I
B
R
A
R
Y
_
V
E
R
S
I
O
N
)
7

i
f

(
I
n
t
u
i
t
i
o
n
B
a
s
e

=
=

N
U
L
L
)

e
x
i
t
(
F
A
L
S
E
)
7

G
f
x
B
a
s
e

=
(
s
t
r
u
c
t

G
f
x
B
a
s
e

*
)

O
p
e
n
L
i
b
r
a
r
y
(
"
g
r
a
p
h
i
c
s
.
l
i
b
r
a
r
y
"
,

L
I
B
R
A
R
Y
_
V
E
R
S
I
O
N
)
7

i
f

(
G
f
x
B
a
s
e

=
=

N
U
L
L
)

e
x
i
t
(
F
A
L
S
E
)
?

/
*

O
p
e
n

t
h
e

S
c
r
e
e
n

a
n
d

W
i
n
d
o
w
s
.

*
I
f

t
h
e
i
r

p
o
i
n
t
e
r
s

=
0
,

t
h
e
y
w
e
r
e
n
'
t

o
p
e
n
e
d
.

*
/

i
f

(
(
N
e
w
W
d
w
.
S
c
r
e
e
n

=
C
u
s
t
S
c
r

=

(
s
t
r
u
c
t

S
c
r
e
e
n

*
)
O
p
e
n
S
c
r
e
e
n
(
&
N
e
w
C
u
s
t
S
c
r
)
)

=
=

N
U
L
L
)

e
x
i
t
(
F
A
L
S
E
)
7

i
f

(
(
W
d
w

=
(
s
t
r
u
c
t
W
i
n
d
o
w

*
)
O
p
e
n
W
i
n
d
o
w
(
&
N
e
w
W
d
w
)
)

=
=

N
U
L
L
)

e
x
i
t
(
F
A
L
S
E
)
7

/
*

f
i
n
d

t
h
e

v
i
e
w
p
o
r
t

a
n
d

l
o
a
d

c
o
l
o
r

m
a
p
*
/

W
V
P

=
(
s
t
r
u
c
t
V
i
e
w
p
o
r
t

*
)
V
i
e
w
p
o
r
t
A
d
d
r
e
s
s
(
W
d
w
)
7

9-
S
e
t
R
G
B
4
(
W
V
P
,
0
f
0
,
0
,
0
)
;

/
*
s
e
t

b
a
c
k
g
r
o
u
n
d

t
o

b
l
a
c
k

*
/

Q
S
e
t
R
G
B
4
(
W
V
P
,
l
,
0
,
8
,
8
)
?

/
*
s
e
t

c
o
l
o
r

1
*
/

^

S
e
t
R
G
B
4
(
W
V
P
,
2
,
1
0
f
0
,
4
)
7

/
*
s
e
t

c
o
l
o
r

2
*
/

(D
S
e
t
R
G
B
4
(
W
V
P
f
3
,
3
,
9
,
0
)
7

/
*
s
e
t

c
o
l
o
r

2
*
/

Q
.

g
i

d
e
m
o
(
)

7
"
D

oi
O

•^
W
a
i
t
(
K
<
W
d
w
-
>
U
s
e
r
P
o
r
t
-
>
m
p
_
_
S
i
g
B
i
t
)

7
w

N O
N
N

C
l
o
s
e
W
i
n
d
o
w
(
W
d
w
)

;

C
l
o
s
e
S
c
r
e
e
n
(
C
u
s
t
S
c
r
)
;

C
l
o
s
e
L
i
b
r
a
r
y
(
G
f
x
B
a
s
e
)

;

C
l
o
s
e
L
i
b
r
a
r
y
(
I
n
t
u
i
t
i
o
n
B
a
s
e
)
;

d
e
m
o
(
)

t i
n
t

c
;

f
o
r

(
q
=
l
;
c
<
1
6
;
c
+
+
)

t S
e
t
A
P
e
n
(
R
p
,
M
O
D
R
E
D
+
c
)
;

R
e
c
t
F
i
l
l
(
R
p
,
1
8
*
c
,
2
0
,
1
8
*
c
+
1
7
,
4
0
)
;

R
e
c
t
F
i
l
l
(
R
p
,
1
8
*
c
,
1
1
0
,
1
8
*
c
+
1
7
,
1
3
0
)
;

S
e
t
A
P
e
n
(
R
p
,
M
O
D
G
R
N
+
c
)
;

R
e
c
t
F
i
l
l
(
R
p
,
1
8
*
c
,
5
0
,
1
8
*
c
+
1
7
,
7
0
)
;

R
e
c
t
F
i
l
l
(
R
p
,
1
8
*
c
f
1
4
0
,
1
8
*
c
+
1
7
#
1
6
0
)
;

S
e
t
A
P
e
n
(
R
p
,
M
O
D
B
L
U
+
c
)
;

R
e
c
t
F
i
l
l
(
R
p
#
1
8
*
c
,
8
0
,
1
8
*
c
+
1
7
,
1
0
0
)
;

R
e
c
t
F
i
l
l
(
R
p
,
1
8
*
c
,
1
7
0
,
1
8
*
c
+
1
7
,
1
9
0
)
;

f
o
r

(
c
=
l
;
c
<
4
;
c
+
+
)

{ S
e
t
A
P
e
n
(
R
p
,
c
)
;

M
o
v
e
(
R
p
,
1
8
,
3
0
*
c
+
8
0
)
;

D
r
a
w
(
R
p
,
1
8
,
3
0
*
c
+
1
0
0
)
;

}

(
Z

\Z
C

C
C

o Q

C
[
I
C
C
C
I

J
3

3
i
3

3
]
3

3
3

3

t
o

t
o

P
r
o
g
r
a
m

7
-
3
.
E
x
t
r
a

H
a
l
f
b
r
i
t
e
M
o
d
e

/
*

I
n
c
l
u
d
e

t
h
e

d
e
f
i
n
i
t
i
o
n
s

w
e

n
e
e
d

*
/

t
i
n
c
l
u
d
e

<
e
x
e
c
/
t
y
p
e
s
.
h
>

#
i
n
c
l
u
d
e

<
i
n
t
u
i
t
i
o
n
/
i
n
t
u
i
t
i
o
n
.
h
>

/
*

S
t
r
u
c
t
u
r
e
s

n
e
e
d
e
d

f
o
r

l
i
b
r
a
r
i
e
s

*
/

s
t
r
u
c
t

I
n
t
u
i
t
i
o
n
B
a
s
e

*
I
n
t
u
i
t
i
o
n
B
a
s
e
;

s
t
r
u
c
t

G
f
x
B
a
s
e

*
G
f
x
B
a
s
e
;

/
*

S
t
r
u
c
t
u
r
e
s

r
e
q
u
i
r
e
d

f
o
r

g
r
a
p
h
i
c
s

*
/

s
t
r
u
c
t

S
c
r
e
e
n

*
C
u
s
t
S
c
r
;

s
t
r
u
c
t
W
i
n
d
o
w

*
W
d
w
;

s
t
r
u
c
t
V
i
e
w
p
o
r
t

*
W
V
P
;

/
*
*
*
*
*
*
*
*
*
*

p
r
o
g
r
a
m

C
o
n
s
t
a
n
t
s

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
/

#
d
e
f
i
n
e

R
p

W
d
w
-
>
R
P
o
r
t

/
*

t
o

s
h
o
r
t
e
n

t
h
i
s

u
p

*
/

U
W
O
R
D

c
o
l
o
r
m
a
p

[
3
2
]

=
/
*

c
o
l
o
r
s

f
o
r

p
e
n

0
-
3
1

*
/

{
0
x
8
8
8
,

0
X
F
0
0
,

0
X
0
F
0
,

0
X
0
0
F
,

0
X
F
F
0
,

0
X
0
F
F
,

0
X
F
0
F
,

0
x
F
F
F
,

0
X
A
0
4
,

0
X
0
A
4
,

0
X
A
4
0
,

0
x
4
0
A
,

0
x
4
A
0
,

0
x
0
4
a
,

0
x
A
A
0
,

0
x
A
0
A
,

0
x
9
5
3
,

0
x
3
6
9
,

0
x
8
4
A
,

0
x
C
3
B
,

0
x
8
E
4
#

0
x
5
C
8
#

0
x
6
7
8
,

0
x
9
8
3
,

0
x
7
7
A
,

0
x
9
B
4
,

0
X
D
4
D
,

0
x
C
F
7
,

0
x
3
B
9
,

0
x
9
5
E
,

0
x
D
D
5
,

0
x
4
F
7

Q O (D a o C
O

on
/
*

*
P
r
e
-
i
n
i
t
i
a
l
i
z
e
d

N
e
w
S
c
r
e
e
n

a
n
d

N
e
w
W
i
n
d
o
w

S
t
r
u
c
t
u
r
e
s

*
*
/

s
t
r
u
c
t

N
e
w
S
c
r
e
e
n

N
e
w
C
u
s
t
S
c
r

=

0
,
0
,

3
2
0
,
2
0
0
,
6
,

1
,
0
,

E
X
T
R
A
_
H
A
L
F
B
R
I
T
E
,

C
U
S
T
O
M
S
C
R
E
E
N
,

N
U
L
L
,

N
U
L
L
,

N
U
L
L
,

N
U
L
L
,

/
*

L
e
f
t
E
d
g
e

(
a
l
w
a
y
s
=
0
)
,
T
o
p
E
d
g
e

*
/

/
*

W
i
d
t
h
,

H
e
i
g
h
t
,

D
e
p
t
h

*
/

/
*

D
e
t
a
i
l
P
e
n

a
n
d

B
l
o
c
k
P
e
n

*
/

/
*

s
p
e
c
i
a
l

d
i
s
p
l
a
y

m
o
d
e
s

*
/

/
*

S
c
r
e
e
n

T
y
p
e

*
/

/
*

P
o
i
n
t
e
r

t
o

C
u
s
t
o
m

f
o
n
t
*
/

/
*

P
o
i
n
t
e
r

t
o

t
i
t
l
e

t
e
x
t

*
/

/
*

P
o
i
n
t
e
r

t
o

S
c
r
e
e
n

G
a
d
g
e
t
s

*
/

/
*

P
o
i
n
t
e
r

t
o

C
u
s
t
o
m
B
i
t
M
a
p

*
/

O Q (D

s
t
r
u
c
t

N
e
w
W
i
n
d
o
w

N
e
w
W
d
w

0
,
0
,

3
2
0
,
2
0
0
,

N
U
L
L
,
N
U
L
L
,

C
L
O
S
E
W
I
N
D
O
W
,

S
M
A
R
T
_
R
E
F
R
E
S
H

I
B
O
R
D
E
R
L
E
S
S

N
U
L
L
,

N
U
L
L
,

N
U
L
L
,

N
U
L
L
,

N
U
L
L
,

0
,
0
,

0
,
0
,

C
U
S
T
O
M
S
C
R
E
E
N

/
*

L
e
f
t

E
d
g
e
,

T
o
p

E
d
g
e

*
/

/
*

W
i
d
t
h
,

H
e
i
g
h
t

*
/

/
*

B
l
o
c
k

P
e
n
,

D
e
t
a
i
l

P
e
n

*
/

/
*

I
D
C
M
P

F
l
a
g
s

*
/

I
A
C
T
I
V
A
T
E

I
W
I
N
D
O
W
C
L
O
S
E
,

/
*

F
l
a
g
s

*
/

/
*

P
o
i
n
t
e
r

t
o

F
i
r
s
t

G
a
d
g
e
t

*
/

/
*

P
o
i
n
t
e
r

t
o

C
h
e
c
k

M
a
r
k

i
m
a
g
e

*
/

/
*

T
i
t
l
e

*
/

/
*

P
o
i
n
t
e
r

t
o

S
c
r
e
e
n

s
t
r
u
c
t
u
r
e
,

d
u
m
m
y

*
/

/
*

P
o
i
n
t
e
r

t
o

c
u
s
t
o
m

B
i
t

M
a
p

*
/

/
*

M
i
n
i
m
u
m

W
i
d
t
h
,

H
e
i
g
h
t

*
/

/
*

M
a
x
i
m
u
m

W
i
d
t
h
,

H
e
i
g
h
t

*
/

/
*

T
y
p
e

o
f

S
c
r
e
e
n

i
t

r
e
s
i
d
e
s

o
n

*
/

ti
c
c

c:
c

c
r
:

3
3

u
]

Z
)
3

*
*
*
*
*
*
*
*
*
*
*
*
*
*

/ m
a
i
n
(

{

P
r
o
g
r
a
m

B
e
g
i
n
s

H
e
r
e

*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
/

/
*

O
p
e
n

t
h
e

I
n
t
u
i
t
i
o
n

a
n
d

G
r
a
p
h
i
c
s

l
i
b
r
a
r
i
e
s
.

*
G
e
t

p
o
i
n
t
e
r

t
o
W
C
S

r
o
u
t
i
n
e
s
,

*
a
n
d

i
f

=
0
,

l
i
b
r
a
r
i
e
s

a
r
e
n
'
t

a
v
a
i
l
a
b
l
e
.

*
/

I
n
t
u
i
t
i
o
n
B
a
s
e

=
(
s
t
r
u
c
t

I
n
t
u
i
t
i
o
n
B
a
s
e

*
)

O
p
e
n
L
i
b
r
a
r
y
(
"
i
n
t
u
i
t
i
o
n
.
l
i
b
r
a
r
y
"
,

L
I
B
R
A
R
Y
_
V
E
R
S
I
O
N
)
;

i
f

(
I
n
t
u
i
t
i
o
n
B
a
s
e

=
=

N
U
L
L
)

e
x
i
t
(
F
A
L
S
E
)
;

G
f
x
B
a
s
e

=
(
s
t
r
u
c
t

G
f
x
B
a
s
e

*
)

O
p
e
n
L
i
b
r
a
r
y
(
"
g
r
a
p
h
i
c
s
.
l
i
b
r
a
r
y
"

,
L
I
B
R
A
R
Y
_
V
E
R
S
I
O
N
)

;

i
f

(
G
f
x
B
a
s
e

=
=

N
U
L
L
)

e
x
i
t
(
F
A
L
S
E
)
;

/
*

O
p
e
n

t
h
e

S
c
r
e
e
n

a
n
d

W
i
n
d
o
w
s
.

*
I
f

t
h
e
i
r

p
o
i
n
t
e
r
s

=
0
,

t
h
e
y
w
e
r
e
n
'
t

o
p
e
n
e
d
.

*
/

i
f

(
(
N
e
w
W
d
w
.
S
c
r
e
e
n

=
C
u
s
t
S
c
r

=

(
s
t
r
u
c
t

S
c
r
e
e
n

*
)
O
p
e
n
S
c
r
e
e
n
(
&
N
e
w
C
u
s
t
S
c
r
)
)

e
x
i
t
(
F
A
L
S
E
)
;

N
U
L
L
)

i
f

(
(
W
d
w

=
(
s
t
r
u
c
t
W
i
n
d
o
w

*
)
O
p
e
n
W
i
n
d
o
w
(
&
N
e
w
W
d
w
)
)

e
x
i
t
(
F
A
L
S
E
)
;

/
*

f
i
n
d

t
h
e

v
i
e
w
p
o
r
t

a
n
d

l
o
a
d

c
o
l
o
r

m
a
p
*
/

N
U
L
L
)

W
V
P

=
(
s
t
r
u
c
t

V
i
e
w
p
o
r
t

*
)
V
i
e
w
P
o
r
t
A
d
d
r
e
s
s
(
W
d
w
)
;

L
o
a
d
R
G
B
4
(
W
V
P
,
&
c
o
l
o
r
m
a
p
,
3
2
)
;

/
*
l
o
a
d

c
o
l
o
r

r
e
g
i
s
t
e
r
s

*
/

> a s 1 o1 •
g o" CO

d
e
m
o
(
)
;

W
a
i
t
(
K
<
W
d
w
-
>
U
s
e
r
P
o
r
t
-
>
m
p
_
S
i
g
B
i
t
)
;

C
l
o
s
e
W
i
n
d
o
w
(
W
d
w
)
;

C
l
o
s
e
S
c
r
e
e
n
(
C
u
s
t
S
c
r
)
;

C
l
o
s
e
L
i
b
r
a
r
y
(
G
f
x
B
a
s
e
)
;

C
l
o
s
e
L
i
b
r
a
r
y
(
I
n
t
u
i
t
i
o
n
B
a
s
e
)
;

d
e
m
o
(
)

t i
n
t

c
?

f
o
r

(
c
=
0
;
c
<
1
6
;
C
+
+
)

{ S
e
t
A
P
e
n
(
R
p
,
c
)
;

/
*

c
o
l
o
r

b
a
r
s

f
o
r

c
o
l
o
r
s

0
-
1
5

*
/

R
e
c
t
F
i
l
l
(
R
p
,
1
8
*
c
,
2
0
,
1
8
*
c
+
1
7
,
4
0
)
;

S
e
t
A
P
e
n
(
R
p
,
c
+
3
2
)
;

/
*

a
n
d

t
h
e

h
a
l
f
b
r
i
t
e

v
e
r
s
i
o
n
s

*
/

R
e
c
t
F
i
l
l
(
R
p
,
1
8
*
c
,
5
0
,
1
8
*
c
+
1
7
,
7
0
)
;

S
e
t
A
P
e
n
(
R
p
,
c
+
1
6
)
;

/
*

c
o
l
o
r

b
a
r
s

f
o
r

c
o
l
o
r
s

1
6
-
3
1

*
/

R
e
c
t
F
i
l
l
(
R
p
,
1
8
*
c
,
1
1
0
,
1
8
*
c
+
1
7
,
1
3
0
)
;

S
e
t
A
P
e
n
(
R
p
#
c
+
4
8
)
;

/
*

a
n
d

t
h
e

h
a
l
f
b
r
i
t
e

v
e
r
s
i
o
n
s

*
/

R
e
c
t
F
i
l
l
(
R
p
,
1
8
*
c
,
1
4
0
,
1
8
*
c
+
1
7
,
1
6
0
)
;

o Q <
D

V
I

}
/
*

e
n
d

H
a
l
f
B
r
i
t
e
.
c

*
/

C
I
I
C

C
C

c
c

c
:
c

\z

n

n

n

illy

;jpi|

:^^^B^^^^^B^^^^^^^^

SII^Siil»liii^«il^i^ii»iiii^i«

liii

Slii

t€M

;;F^*^:'^

■-•^:^k^^,
4€}

sfc

u

u

0

u

Function Summary
n

H AddBob

Location graphics library

—' Function Adds a bob to the current GEL list

syntax AddBob(Bob, RastPort);

(aO) (al)

input Bob = Pointer to the Bob data structure to be
Parameters added tQ the Kst

RastPort = Pointer to the RastPort structure to

which the GEL list is linked

AddVSprite

Location graphics library

Function Adds a vsprite to the current GEL list

syntax AddVSprite(VSprite, RastPort);
(aO) (al)

input VSprite = Pointer to the VSPrite data structure
Parameters to fee ddd h U

RastPort = Pointer to the RastPort structure to

which the GEL list is linked

i _ 1 AllocRaster

Location graphics library

Function Allocates free memory from the heap for use as

display memory

syntax Raster = AllocRaster(Width, Height);
(dO) (dO) (dl)

n

271

Appendix

Input

Parameters

Results

AreaDraw

Location

Function

Syntax

Input

Parameters

Results

Width = Width of the bit plane in pixels

Height = Height of the bit plane in lines

If the function is able to allocate the memory

requested, Raster will contain a pointer to the

memory area. If not, it will contain a zero.

graphics library

Adds a point to the list of points used to fill an

area

Error = AreaDraw(RastPort, X, Y);
(al) (dO) (dl)

RastPort = Pointer to the RastPort data

structure

X = Horizontal coordinate of the point

Y = Vertical coordinate of the point

Error is set to — 1 if there is no room left in the

list of points; otherwise, 0.

AreaEnd

Location

Function

Syntax

Input

Parameters

graphics library

Fills an area using a list of vertices

AreaEnd(RastPort);
(al)

RastPort = Pointer to the RastPort data

structure

AreaMove

Location graphics library

Function

272

Closes the current polygon described by a list of

points and defines the starting point for a new

polygon

u

j j

u

LJ

U

Function Summary

Syntax

Input

Parameters

Results

AskFont

Location

Function

Syntax

Input

Parameters

Error = AreaMove(RastPort, X, Y);
(al) (dO) (dl)

RastPort = Pointer to the RastPort data

structure

X = Horizontal coordinate of the point

Y = Vertical coordinate of the point

Error is set to — 1 if there is no room left in the

list of points; otherwise, 0.

graphics library

Moves the text attributes of the current font to a

TextAttr data structure

AskFont(RastPort, TextAttr);
(al) (aO)

RastPort = Pointer to the RastPort data

structure

TextAttr = Pointer to the TextAttr data structure

to be filled

AskSoftStyle

n

H

H

n

Location

Function

Syntax

Input

Parameters

Results

graphics library

Returns the style bits for the font styles that can

be generated by the operating system software

for the current font. The value returned may be

used as the Enable mask for SetSoftStyle.

Enable = AskSoftStyle(RastPort);
(dO) (al)

RastPort = Pointer to the RastPort data

structure

The valid style bits are returned in Enable.

273

Appendix

AvailFonts

Location

Function

Syntax

Input

Parameters

Results

diskfont library

Builds an array of information on all of the

fonts available on disk or in memory or both

Bytes_short
(dO)

Type);
(dl)

AvailFonts(Buf_ptr, Buf_size,
(aO) (dO)

Buf_ptr = Pointer to the memory buffer used

to hold the array

Buf_size = Size of the buffer in bytes

Type = The type of font to search for.

AFF__MEMORY is used to search for fonts

in memory, and AFF_DISK is set to search

for disk-residents fonts. Both can be used.

If the buffer does not have enough room to

contain all of the font information, Bytes_short

contains the number of additional bytes that

must be added to the buffer size so that it can

contain all of the font information.

BltClear

Location

Function

Syntax

Input

Parameters

graphics library

Fills a section of chip memory with zero bytes

BltClear(Memory, Bytes, Flags);
(l) (dO) (dl)

y y

(al) (dO)

lags)
(dl)

274

Memory = Pointer to memory to clear (must

start on a word boundary)

Bytes = Amount of memory to clear (usually

an even number of bytes)

Flags = Set bit 0 to force the function to wait

until the memory is cleared before resum

ing. Bit 1 is used to determine if Bytes is in

terpreted as an even number of bytes (0) or

as a number of rows and bytes per row to

clear.

LJ

U

U

U

Function Summary

BltPattern

Location

Function

Syntax

Input

Parameters

BNDRYOFF

Location

Function

Syntax

Input

Parameters

graphics library

Draws through as stencil, using the standard

drawing rules

BltPattern(RastPort, Pattern, XI, Yl, X2, Y2,
(al) (aO) (dO) (dl) (d2) (d3)

Width);
(d4)

RastPort = Pointer to the RastPort data

structure

Pattern = Pointer to the two-dimensional sten

cil pattern

XI = Horizontal coordinate for the upper left

corner of the destination in the RastPort

Yl = Vertical coordinate for the upper left cor

ner of the destination in the RastPort

X2 = Horizontal coordinate for the lower right

corner of the destination in the RastPort

Y2 = Vertical coordinate for the lower right cor

ner of the destination in the RastPort

Width = Width of the two-dimensional stencil

pattern in bytes

include/graphics/gfxmacros.h (graphics macro)

Turns off outlining of filled figures

BNDRYOFF(RastPort);

RastPort = Pointer to the RastPort data

structure

n

275

Appendix LJ

ChangeSprite

graphics libraryLocation

Function

Syntax

Input

Parameters

i \

Links a table of sprite shape data to a

SimpleSprite data structure, thus determining

the shape of that simple sprite

ChangeSprite (ViewPort, SimpleSprite,
(aO) (al)

Sprite_data);
(a2)

ViewPort = Pointer to the ViewPort data struc

ture (a zero may be used if the sprite is po

sitioned relative to the view)

SimpleSprite = Pointer to an initialized

SimpleSprite data structure

Sprite—data = Pointer to a table of sprite shape

data

i {

ClearPointer

Location intuition library

Function

Function

Returns the Intuition mouse pointer to its de

fault shape

Syntax

input

Parameters

ClipBlit

Location

ClearPointer(Window);

(aO)

Window = Pointer to the Window data

structure

graphics library

Transfers (and possibly manipulates) bitmap

data from a rectangular area in one rastport to

another rastport or to a different portion of the

same rastport

u

276

Function Summary

n
Syntax

Input

Parameters

n

CloseFont

Location

Function

Syntax

Input

Parameters

ClipBlit

(SrcRp, SrcX, SrcY, DestRp, DestX, DestY,
(aO) (dO) (dl) (al) (d2) (d3)

Width, Height, Minterm);
(d4) (d5) (d6)

SrcRp = Pointer to the source RastPort data

structure

SrcX = Horizontal coordinate for the upper left

corner of the source rectangle

SrcY = Vertical coordinate for the upper left

corner of the source rectangle

DestRp = Pointer to the destination RastPort

data structure

DestX = Horizontal coordinate for the upper

left corner of the destination rectangle

DestY = Vertical coordinate for the upper left

corner of the destination rectangle

Width = Width of the rectangle (in bits)

Height = Height of the rectangle (in lines)

Minterm = The blitter logic minterm used to

transfer and/or manipulate the graphics im

age data

graphics library

Indicates to the system that a font opened with

the OpenFont call is no longer in use

CloseFont(FontPtr);
(al)

FontPtr = Pointer to a font descriptor (obtained

from OpenFont call)

H

CloseLibrary

Location

Function

exec library

Indicates to the system that a library opened

with OpenFont call is no longer in use

! \ 277

Appendix

Syntax CloseLibrary(LibraryBase);
(al)

input LibraryBase = Pointer to the base address of
parameters the iibrary (obtained from OpenLibrary call)

CloseWindow

Location intuition library

Function Closes an Intuition window, unlinks it from the

system, and deallocates its memory

Syntax

Input

Parameters

CloseWindow(Window);
(aO)

Window = Pointer to the Window data

structure

CloseWorkBench

Location intuition library

Function

Syntax

Attempts to close the Workbench screen

Results = CloseWorkBench();
(dO)

Results If any applications have opened windows on

the Workbench screen, it can't be closed, and

Results will be set to false (0). If the screen was

closed, Results is set to true (1). , ,

LJ
Draw

Location graphics library j <

Function Draws a line from the current pen position to a

specified point, using the current pens, line pat- j \
tern, and drawing mode

syntax Draw(RastPort, X, Y); I !
(al) (dO)(dl) t—'

278 J I

Function Summary

! I

n

n

n

n

n

Input

Parameters

RastPort = Pointer to the RastPort data

structure

X = Horizontal position of the line's endpoint

Y = Vertical position of the line's endpoint

DrawGList

Location graphics library

Function

Syntax

Input

Parameters

Processes the GEL list, drawing bobs and con

structing a copper list for vsprites

DrawGList(RastPort, ViewPort);

(al) (aO)

RastPort = Pointer to the RastPort data

structure

ViewPort = Pointer to the ViewPort data

structure

Drawlmage

Location intuition library

Draws an Intuition image into the rastportFunction

Syntax

Input

Parameters

Drawlmage (RastPort, Image, LeftOffset,
(aO) (al) (dl)

TopOffset);
(d2)

RastPort = Pointer to the RastPort data

structure

Image = Pointer to the Image data structure

LeftOffset = Horizontal placement offset for

the image

TopOffset = Vertical placement offset for the

image

n

279

Appendix

FreeRaster

Location

Function

Syntax

Input

Parameters

graphics library

Releases graphics memory back to the system

memory pool

FreeRaster(Raster, Width, Height);
(aO) (dO) (dl)

Raster = Pointer to the beginning of memory

allocation (obtained from AllocRaster call)

Width = Width of the bit plane in bits (must be

the same value used in AllocRaster)

Height = Height of the bit plane in lines (must

be the same as used in AllocRaster)

LJ

FreeSprite

Location

Function

Syntax

Input

Parameters

GetSprite

Location

Function

Syntax

graphics library

Deallocates a hardware sprite so that your

application no longer has exclusive use of that

sprite

FreeSprite (Sprite_number);
(dO)

Sprite—number = The number of the hardware

sprite to be released

graphics library

Reserves a hardware sprite for your exclusive

use

Sprite_got = GetSprite (SimpleSprite,
(dO) (aO)

Sprite_number);

(dO)

280 u

! i
Function Summary

n

n

n

Input

Parameters

l I

Results

InitBitMap

Location

Function

Syntax

Input

Parameters

InitGels

Location

Function

Syntax

Input

Parameters

n

SimpleSprite = A pointer to the SimpleSprite

structure to be used with the hardware

sprite that is allocated.

Sprite—number = The number of the hardware

sprite (0-7) that you are requesting. If you

wish to use the first available sprite, pass a

value of — 1, and read Sprite_got to find out

which sprite was reserved.

Sprite_got contains the number of the hardware

sprite (0-7) that was actually allocated. If none

could be allocated, its value is —1.

graphics library

Initializes a BitMap data structure to default values

InitBitMap(BitMap, Depth, Width, Height);
(aO) (dO) (dl) <d2)

BitMap = Pointer to the BitMap data structure

Depth = Number of bit planes to be used

Width = Width of each bit plane (in bits)

Height = Height of each bit plane (in lines)

graphics library

Initializes a GEL list

InitGels(VSpritel, VSprite2, Gelslnfo);
(aO) (al) (a2)

VSpritel = Pointer to a dummy VSprite data

structure to be used as the head of the GEL

list

VSprite2 = Pointer to a dummy VSprite data

structure to be used as the tail of the GEL

list

Gelslnfo = Pointer to the Gelslnfo data struc

ture to be initialized

281

Appendix

InitMasks

Location

Function

Syntax

Input

Parameters

LoadRGB4

Location

Function

Syntax

Input

Parameters

LoadView

Location

Function

Syntax

Input

Parameters

graphics library

Initializes the BorderLine and CoUMask values

used by the VSprite data structure

InitMasks(VSprite);
(aO)

VSprite = Pointer to the VSprite data structure

graphics library

Loads a list of color register values from a data

table

LoadRGB4(ViewPort, Colormap, Pens);
(aO) (al) (dO)

ViewPort = Pointer to the ViewPort data

structure.

Colormap = Pointer to the table of color values

for the registers. This table is arranged as an

array of 16-bit data words, where the first

nybble is zero, the second contains the red

color value, the third the green, and the

fourth the blue.

Pens = The number of consecutive color regis

ters to load, starting with register 0.

graphics library

Creates a display using a new copper list

LoadView(View);

(al)

View = Pointer to the View data structure

Li

U

282

Function Summary

Move

Location graphics library

Function Moves the drawing pen from its current location

to the specified position without drawing

anything

syntax Move (RastPort, X, Y);

(al) (dO) (dl)

input RastPort = Pointer to the RastPort data
Parameters structure

X = New horizontal coordinate

Y = New vertical coordinate

MoveScreen

Location intuition library

Function Drags an Intuition screen up or down the

display

syntax MoveScreen (Screen, DeltaX, DeltaY);
(aO) (dO) (dl)

input Screen = Pointer to the Screen data structure

parameters DeltaX = Offset by which to move the screen

horizontally (ignored by current version of

Intuition)

DeltaY = Offset by which to move the screen

vertically (current version of Intuition re

quires the bottom of the screen to stay at or

below the bottom of the display)

MoveSprite

Location graphics library

Function Changes the display position of a simple sprite

to the specified location

syntax MoveSprite(ViewPort, SimpleSprite, X, Y);
(aO) (al) (dO) (dl)

283

Appendix

Input

Parameters

ViewPort = Pointer to the ViewPort data

structure

SimpleSprite = Pointer to the SimpleSprite data

structure

X = New horizontal position of the sprite

Y = New vertical position of the sprite

MoveWindow

Location intuition library

Function

Syntax

Input

Parameters

MrgCop

Location

Function

Syntax

Input

Parameters

Moves an Intuition window under software

control

MoveWindow(Window, DeltaX, DeltaY);
(aO) (dO) (dl)

Window = Pointer to the Window data

structure

DeltaX = Horizontal offset by which to move

the window

DeltaY = Vertical offset by which to move the

window

graphics library

Merges together coprocessor instructions to

form one instruction list

MrgCop(View);
(al)

View = Pointer to the View data structure

OpenDiskFont

Location diskfont library

Function Obtains a pointer to the font descriptor for a

disk-resident font and indicates that the font is
being used by your application

LJ

U

U

284

Function Summary

n

Syntax

Input

Parameters

OpenFont

Location

Function

Syntax

Input

Parameters

FontPtr = OpenDiskFont(TextAttr);

(dO) (aO)

TextAttr = Pointer to a TextAttr data structure

that describes the font you wish to open

graphics library

Obtains a pointer to the font descriptor for a

memory-resident font and indicates that the

font is being used by your application

FontPtr = OpenFont(TextAttr);
(dO) (aO)

TextAttr = Pointer to a TextAttr data structure

that describes the font you wish to open

OpenLibrary

n

n

n

Location

Function

Syntax

Input

Parameters

exec library

Obtains a pointer to the base address of a li

brary and indicates that the library is being

used by your application

Library__base_address =
(dO)

OpenLibrary("name.library",Version);
(al) (dO)

"name.library" = Pointer to a string of ASCII

characters that names the library. This name

must be in the form "name.library", all in

lowercase letters, ending with an ASCII 0

(for example, "graphics.library").

Version = Version number of the library.

OpenLibrary will successfully open the li

brary only if the version of the library that

the system is using is greater than or equal

to this number.

285

u
Appendix

u

Results If the library can be successfully opened, its

base address is returned in

Library_base__address. If not, a value of 0 is

returned.

OpenScreen

Location intuition library

Function Sets up a Screen data structure and displays the

Intuition screen described by a NewScreen data

structure

syntax Screen = OpenScreen(NewScreen);
(dO) (aO)

input NewScreen = Pointer to the NewScreen data

Parameters structure that describes the characteristics of

the screen.

Results If the screen is successfully opened, Screen con

tains a pointer to the Screen data structure. If

not, Screen is set to zero.

OpenWindow

Location intuition library

Function Sets up a Window data structure and displays

the Intuition window described by a

NewWindow data structure

syntax Window = OpenWindow(NewWindow);
(dO) (aO)

input NewWindow = Pointer to the NewWindow

Parameters data strUcture that describes the characteris

tics of the window.

Results If the window is successfully opened, Window

contains a pointer to the Window data structure. | j

If not, Window is set to zero. *—'

286 jj

Function Summary

H

Syntax

Input

Parameters

OpenWorkBench

Location intuition library

Function Attempts to open the Workbench screen

syntax Result = OpenWorkBench();

Results

PolyDraw

Location

Function

If the screen is open, Result is set to true (1). If

not, it is set to false (0).

ReadPixel

Location

Function

Syntax

graphics library

Draws a series of connected lines from the cur

rent pen position to the points specified by a ta

ble of (x,y) coordinate pairs, using the current

drawing modes, pen colors, and line pattern.

PolyDraw(RastPort, Coordinate_pairs,
(al) (dO)

Array_address);
(aO)

RastPort = Pointer to the RastPort data

structure

Coordinate_pairs = Number of coordinate

pairs in the data table

Array—address = Pointer to the data table of

coordinate pairs

graphics library

Finds the color register (pen) used to color the

point at a specified location on the display

Pen = ReadPixel(RastPort, X, Y);
(dO) (al) (dO) (dl)

287

Appendix

Input

Parameters

Results

RemlBob

Location

Function

Syntax

Input

Parameters

RastPort = Pointer to the RastPort data

structure

X = Horizontal coordinate for the point

Y = Vertical coordinate for the point

If the point lies within the boundaries of the

rastport, Pen is set to the pen number used to

color the point. If not, Pen is set to —1.

graphics library

Removes a bob from the GEL list and erases it

from the rastport display

RemIBob(Bob, RastPort);
(aO) (al)

Bob = Pointer to the Bob data structure

RastPort = Pointer to the RastPort data

structure

LJ

U

LJ

LJ

ScreenToBack

Location intuition library

Function

Syntax

Input

Parameters

Moves the specified screen to the back of the

display

ScreenToBack(Screen);
(aO)

Screen = Pointer to the Screen data structure

ScreenToFront

Location intuition library

Function Moves the specified screen to the front of the

display

u

288

Function Summary

syntax ScreenToFront(Screen);
(aO)

input Screen = Pointer to the Screen data structure
Parameters

ScrollLayer

Location layers library

Function Copies data to a layer from a SuperBitMap so as

to reposition the display over the bitmap

syntax ScrollLayer(Layer_Jnfo, Layer, DeltaX, DeltaY);
(aO) (al) (dO) (dl)

input Layer_Jnfo = Pointer to the Layer_info data
Parameters Structure

Layer = Pointer to the Layer data structure

DeltaX = Horizontal offset by which to move

the layer

DeltaY = Vertical offset by which to move the

layer

ScrollRaster

Location graphics library

Function Scrolls the contents of a rectangular area of a

rastport

syntax ScrollRaster(RastPort, Dx, Dy, XI, Yl,
(al) (dO) (dl) (d2) (d3)

X2, Y2);

(d4) (d5)

289

Appendix

Input

Parameters

SetAFPt

Location

Function

Syntax

Input

Parameters

SetAPen

Location

Function

Syntax

Input

Parameters

RastPort = Pointer to the RastPort data

structure

Dx = Horizontal offset by which to scroll the

rectangle

Dy = Vertical offset by which to scroll the

rectangle

XI = Horizontal position of the left edge of the

rectangle

X2 = Horizontal position of the right edge of

the rectangle

Yl = Vertical position of the top edge of the

rectangle

Y2 = Vertical position of the bottom edge of

the rectangle

include/graphics/gfxmacros.h (graphics macro)

Sets a pattern for area fills

SetAFPt(RastPort, Pattern, Size);

RastPort = Pointer to the RastPort data

structure

Pattern = Pointer to a table of 16-bit pattern

data words

Size = Number of data words in pattern (must

equal a power of 2)

graphics library

Sets the color register used by the foreground

drawing pen

SetAPen(RastPort, Pen);
(al) (dO)

RastPort = Pointer to the RastPort data

structure

Pen = Color register used for the pen

U

LJ

U

LJ

U

u

LJ

U

LJ

290

Function Summary

n

n

n

n

H

SetBPen

Location

Function

Syntax

Input

Parameters

SetDrMd

Location

Function

Syntax

Input

Parameters

SetDrPt

Location

Function

Syntax

Input

Parameters

graphics library

Sets the color register used for the background

drawing pen

SetBPen(RastPort, Pen);

(al) (dO)

RastPort = Pointer to the RastPort data

structure

Pen = Color register used for the pen

graphics library

Sets a drawing mode for drawing routines

SetDrMd(RastPort, Mode);
(al) (dO)

RastPort = Pointer to the RastPort data

structure

Mode = Drawing mode (JAM1, JAM2, COM

PLEMENT, INVERSVID)

include/graphics/gfxmacros.h (graphics macro)

Sets a pattern to use for line drawing

SetDrPt(RastPort, Pattern);

RastPort = Pointer to the RastPort data

structure

Pattern = A 16-bit drawing pattern

291

Appendix

SetFont

Location

Function

Syntax

Input

Parameters

graphics library

Sets the font to be used for drawing text in a

rastport

SetFont(RastPort, FontPtr);

(al) (aO)

RastPort = Pointer to the RastPort data

structure

FontPtr = Pointer to a font descriptor (obtained

from OpenFont)

SetOPen

Location

Function

Syntax

include/graphics/gfxmacros.h (graphics macro)

Sets the pen used for outlining filled figures and

turns on outlining

SetOPen(RastPort, Pen);

Input

Parameters

SetPointer

Location

Function

Syntax

292

Kastrort = rointer to me Kastrort data

structure

Pen = Color register used for the pen

intuition library

Sets the shape of the Intuition mouse pointer in

a window

SetPointer

(Window, Sprite-data, Height, Width, XOffset,
(aO) (al) (dO) (dl) (d2)

YOffset);
(d3)

u

u

LJ

Lj

U

n

Function Summary

Input

Parameters

n

n

SetRast

Location

Function

Syntax

Input

Parameters

SetRGB4

Location

Function

Syntax

Input

Parameters

Window = Pointer to the Window data

structure

Sprite_data = Pointer to a table of sprite shape

data

Height = Height of the pointer sprite in lines

Width = Width of the sprite in pixels (must be

less than or equal to 16)

XOffset = Horizontal offset of the hot spot

YOffset = Vertical offset of the hot spot

graphics library

Sets the entire RastPort to a specified color

SetRast(RastPort, Pen);

(al) (dO)

RastPort = Pointer to the RastPort data

structure

Pen = Color register used to color the rastport

graphics library

Sets the red, green, and blue color values for

a color register

SetRGB4(ViewPort, Pen, Red, Green, Blue)

(aO) (dO) (dl) (d2) (d3)

ViewPort = Pointer to the ViewPort data

structure

Pen = Color register to set

Red = Red color level (0-15)

Green = Green color level (0-15)

Blue = Blue color level (0-15)

293

Appendix

SetSoftStyle

Location graphics library

Function Sets the software-generated font style

Syntax

Input

Parameters

Results

ShowTitle

Location

Function

Syntax

Input

Parameters

Result = SetSoftStyle(RastPort, Style, Enable);
(dO) (al) (dO) (dl)

RastPort = Pointer to the RastPort data

structure

Style = The software-generated style requested

Enable = A mask that determines which style

bit can be changed; can be derived from

AskSoftStyle

The resulting style is returned in Result.

intuition library

Determines whether the screen title bar will be

displayed in front of a backdrop window or not

ShowTitle(Screen, Showlt);
(aO) (dO)

Screen = Pointer to the Screen data structure.

Showlt = A flag that indicates whether or not

to display the title bar in front of a backdrop

window. A value of true (1) means show the

title bar, while a value of false (0) means

hide it.

SizeWindow

Location

Function

intuition library

Changes the size of an Intuition window under

program control

u

u

u

LJ

LJ

294 U

Function Summary

Syntax

Input

Parameters

SortGList

Location

Function

Syntax

Input

Parameters

SizeWindow(Window, DeltaX, DeltaY);

(aO) (dO) (dl)

Window = Pointer to the Window data

structure

DeltaX = Change to the width of the window

DeltaY = Change to the height of the window

graphics library

Sorts the GEL list by vertical position of each

element, prior to displaying the GELs

SortGList(RastPort);
(al)

RastPort = Pointer to the RastPort data

structure

Text

Location

Function

Syntax

Input

Parameters

graphics library

Draws text in a rastport using the current font

Text(RastPort,Text_string,Chars);
(al) (aO) (dO)

RastPort = Pointer to the RastPort data

structure

TexL_string = Pointer to a string of ASCII

characters

Chars = Number of characters to print

TextLength

Location graphics library

Function Finds the length (in bits) that a string of charac

ters would occupy if printed to a rastport using

the current text font

295

Appendix

u

syntax Length = TextLength(RastPort,Text_string,
(dO) (al) (aO) I I

Chars); ^
(dO)

input RastPort = Pointer to the RastPort data l—'
Parameters Structure

Text_string = Pointer to a string of ASCII J j

characters '—;
Chars = Number of characters to be printed

ViewPortAddress

Location intuition library

Function Finds the address of a window's viewport

syntax ViewPort = ViewPortAddress(Window);

(dO) (aO)

input Window = Pointer to the Window data
Parameters Structure

Results The address of the viewport is returned in

viewport

WBenchToBack

Location intuition library

Function Moves the Workbench screen to the back of the

display

syntax Results = WBenchToBack();
(dO)

Results If the Workbench was opened, Results is set to

true (1). If not, it is set to false (0).

296
u

H

H

n

n

n

H

n

n

Function Summary

WBenchToFront

Location intuition library

Function

Syntax

Results

Moves the Workbench screen to the front of the

display

Results = WBenchToFront();
(dO)

If the Workbench was opened, Results is set to

true (1). If not, it is set to false (0).

WindowLimits

Location intuition library

Function

Syntax

Input

Parameters

Sets new limits to which a window may be

sized

status = WindowLimits(Window, MinWidth,
(dO) (aO) (dO)

MinHeight, MaxWidth, MaxHeight);
(dl) (d2) (d3)

Window = Pointer to the Window data

structure

MinWidth = New minimum width of the win

dow (in pixels)

MinHeight = New minimum height of the win

dow (in lines)

MaxWidth = New maximum width of the win

dow (in pixels)

MaxHeight = New maximum height of the

window (in lines)

297

Appendix

WindowToBack

Location intuition library

Function

Syntax

Input

Parameters

Moves the specified window to the back of the

display

WindowToBack(Window);

(aO)

Window = Pointer to the Window data

structure

WindowToFront

Location intuition library

Function

Syntax

Input

Parameters

Moves the specified window to the front of the

display

WindowToFront(Window);

(aO)

Window = Pointer to the Window data

structure

LJ

LJ

LJ

WritePixel

Location graphics library

Function

Syntax

Input

Parameters

Colors a single pixel with the current fore

ground drawing pen

Result = WritePixel(RastPort, X, Y);
(dO) (al) (dO) (dl)

RastPort = Pointer to the RastPort data

structure

X = Horizontal position of the dot

Y = Vertical position of the dot

LJ

U

298 LJ

Index

! ! AddBob Graphics library routine 219,
220, 271

AddVsprite Graphics library routine

—| 219, 271
AllocMem Intuition library routine 159

AllocRaster Graphics library routine

199, 248, 271-72

Amiga BASIC ix-x, 13

animation 189-239

AOlPen (area outline pen) 114-15

APen (foreground pen) 73, 114

AREA BASIC statement 109-10

AreaDraw Graphics library routine

108-9, 272

AreaEnd Graphics library routine 272

AREAFILL BASIC statement 109-10,

120

"Area Fill Pattern from C program

117-19

Arealnfo data structure 105

AreaMove Graphics library routine

108-9, 272-73

area outline pen, fill and 114-15

AreaPtSz rastport variable 125

array 90

AskFont Graphics library routine 141,

273

AskSoftStyle Graphics library routine

146-47, 273

aspect ratio 95

"Attached Sprites, BASIC example"

program 205-6

"Attached Sprites, C Example"

program 204-5

AvailFonts Diskfont library routine 153,

n 274
i \ background color 8, 74

Backdrop windows. See windows,

Backdrop

BasicDemos directory of BASIC disk 2

BASIC statements 169-75, 220-37

BeginRefresh Intuition library routine

39

binary arithmetic 6

bit planes 6, 7-8, 13, 23, 74

extra 256-58

blitter viii, 159-61, 163-65

memory limitations of 159

blitter objects. See bobs

BltClear Graphics library routine 160,

199, 274

BltPattern Graphics library routine

166-68, 275

.bmap file 27

customizing 27

BNDRYOFF routine 275

Bob data structure 217

bob priority 218

bobs 213-39

Intuition and 225-26

BPen (background pen) 73, 114

C (programming language) ix, 14, 67

CALL BASIC statement 27

ChangeSprite Graphics library routine

195, 202, 276

"Changing Fonts in BASIC" program

150-51

"Changing Fonts in C" program 149

"Changing the Shape of the Pointer,

BASIC Example" program 209-11

"Changing the Shape of the Pointer, C

Example" program 208

chip memory 159-60

CIRCLE BASIC statement 93-95

circles 93-95

ClearPointer Intuition library routine

208, 276

CLI (Command Line Interpreter) 13

ClipBlit Graphics library routine

163-65, 276-77

clipping, windows and 35

CloseFont Graphics library routine 141,

277

CloseLibrary Exec library routine 277-78

CloseWindow Intuition library routine

61, 278

CloseWorkBench Intuition library

routine 31, 278

CLS BASIC statement 160

collisions, detecting 235-39

color 8-10, 78-82, 84, 122-26

information, locating 78-81

register 74, 75-78

resolution 6-8

selection, lines and shapes 74-78

COLOR BASIC statement 160

colors

available 7-10

changing 8

changing after drawn 74

object 228-30

using all 4096 at once 256-58

299

LJ

U

Command line Interpreter. See CLI

COMPLEMENT drawing mode 101-2,

117

console device 133

"ConvertFD" program 27

copper vii, 11, 21

copper list vii

copying images, C and 163-65

"Creating diskfont.bmap" program

154-55

custom screens

BASIC and 22-23, 26-30

opening 14-26

DECLARE FUNCTION BASIC

statement 80, 142, 199, 200

depth arranger gadget 13

DIM BASIC statement 125

diskfont.bmap file 153-54

display depth 6

display memory 74

display mode 23, 247, 258

display modes, showing multiple at

once 11. See also viewport

display screen, setting up 3-31

DOS library 27

drag bar gadget 13

DrawGList Graphics library routine

219, 279

Draw Graphics library routine 86,

278-79

Drawlmage Intuition library routine

181-82, 279

drawing modes 100-102, 117, 137

"Drawing Modes, BASIC Example"

program 103-4

"Drawing Modes, C Example" program

103

"Drawing Octagons Using PolyDraw"

program 92-93

EndRefresh Intuition library routine 39

Extra Halfbrite display mode 247, 258

"Extra Halfbrite mode" program

263-66

.fd file 27

"Filled Octagon, BASIC Example"

program 110

"Filled Octagon, C Example" program

109

filled shapes 104-9

"Filling a Box with a Pattern" program

120-21

filling memory 160

fill patterns, multicolor, BASIC and

124-26

fill patterns, multicolor, C and 122-24

"Finding Color Values from BASIC"

program 81-82

300

flood fill, BASIC and 113-14

flood fill, C and 110-12

"Flood Fill from C" program 111-12

"Flying Bobs" program 234-35

font 135, 137

changing in BASIC 142-44

changing in C 140-42

disk-based, BASIC and 153-54

disk-based, C and 147-48

styles, software-generated 145-47

FreeRaster Graphics library routine 199,

280

FreeSprite Graphics library routine 196,

280

gadget 13, 35

GEL (Graphics ELement) 213-14

GET BASIC graphics statement 169-74

GetSprite Graphics library routine

194-95, 280-81

graphics.bmap system file 142

"Graphics Demo Using PUT" program

174-75

graphics/gfxmacros.h file 96, 114

Graphics library 27

opening from BASIC 90-91

hardware color registers 7-8

hardware sprites. See simple sprites

high-resolution mode 7

Hold And Modify (HAM) display mode

247, 256-58

"Hold and Modify" program 259-62

horizontal resolution 8

modes 3-4

screen display 3-4

image blocks 159-82

Image data structure 175-81

images, moving in BASIC 169-75

InitArea routine 105-6

InitBitMap Graphics library routine

248, 281

InitGels Graphics library routine 21,

281

InitMasks Graphics library routine 282

input/output (I/O) functions, available

for windows 36

interlaced mode 4-6, 7

problems with 4-6

Intuition images, C and 175-82

Intuition library 175-82

Intuition pointer 206-8

INVERSID drawing mode 101-2

"Invisible Pointer, The" program

211-12

JAM1 drawing mode 100-102, 117

JAM2 drawing mode 100-102, 117, 137

Layers library 35, 249

library 16-17

u

u

LJ

LJ

LJ

n

n

i i

n

LIBRARY BASIC statement 26, 27,

90-91, 142, 199

library vector offset 97

LINE BASIC statement 86-87, 92

"line Patterns from BASIC" program

99

"Line Patterns in C" program 98-99

lines and shapes 73-126

drawing from BASIC 86-87

drawing from C 85-90

list window, Amiga BASIC 13, 62

"Loading a Font in C" program 151-52

LoadRGB4 Graphics library routine 76,

282

LoadView Graphics library routine 282

LOCATE BASIC statement 139

low-resolution mode 7

machine language 14

memory, moving graphics data in viii

memory usage, color and 8-10

Move Graphics library routine 86, 91,

283

MoveScreen Intuition library routine

28, 283

MoveSprite Graphics library routine

195-96, 283-84

MoveWindow Intuition library routine

60, 284

"Moving Bobs" program 221-24

MrgCop Graphics library routine 284

NewScreen structure 14-16

NewWindow data structure 36-44

object. See also bobs

color 228-30

commands, BASIC 220-37

moving 231-34

priority 230

ObjEdit Amiga BASIC program 226

offset, system library member 1, 27

OPen (outline pen) 73

OpenDiskFont Diskfont library routine

147-48, 284-85

OpenFont Graphics library routine 140,

147, 285

"Opening a Custom Screen in C"

program 51-55

"Opening a Custom Screen in Machine

Language" program 55-59

"Opening a New Screen, C Example"

program 24-25

"Opening a New Screen, ML Example"

program 18, 19-21

opening a window, C and 36-48

"Opening a Window in C" program

46-48

"Opening a Window in Machine Lan

guage" program 48-51

Openlibrary Exec library routine 14,

17-18, 22, 23, 249, 285-86

C and 18, 22, 24-25

OpenScreen Intuition library routine

14-16, 22, 286

OpenWindow Intuition library routine

36, 286

OpenWorkBench Intuition library

routine 31, 287

OPTION BASE BASIC statement 125

output window, Amiga BASIC 13,

62-63, 137

PAINT BASIC statement 113-14, 120

problems with 113

PALETTE BASIC statement 76-78

pattern array 119, 124-25

PATTERN BASIC statement 98,

119-20, 124-25

patterned lines 96-99

pattern fill, BASIC and 119-21

PEEKL BASIC function 28

PEEKW BASIC function 139

pen 37-38

color, BASIC and 84

colors, default 79

determining which used 85

POINT BASIC function 85

pointer, changing 207-8

points, drawing 82-83

POKE BASIC statement 114-15, 125

POKEW BASIC statement 115, 199

PolyDraw Graphics library routine

90-92, 287

polygons, drawing 90-93

PRESET BASIC statement 82, 83,

84-85

PRINT BASIC statement 92

PSET BASIC statement 82, 83, 84-85,

87,92

PTAB BASIC function 139

pull-down menus 35

PUT BASIC graphics statement 169-74

RAM disk 153

raster graphics 3

RastPort data structure 73, 105

BASIC and 74

C and 73-74

ReadPixel Graphics library routine 85,

287-88

RectFill Graphics library routine 105

relative coordinates 83-84

RemBob Graphics library routine 220,

288

SCREEN BASIC statement 22-23

SCREEN CLOSE BASIC statement 26

Screen data structure 12-14, 28

301

screens, custom, BASIC and 22-23,

26-30

BASIC restrictions 62

opening 14-26

screens, manipulating 30-31

ScreenToBack Intuition library routine

303, 288

ScreenToFront Intuition library routine

30, 288-89

SCROLL BASIC statement 161-62

scrolling

BASIC and 161-62

C and 161, 249

"Scrolling in BASIC" program 163

"Scrolling in C" program 162

ScrollLayer Layers library routine

249-50, 289

ScrollRaster Graphics library routine

161, 289-90

SetAfpt macro 115-17, 123

SetAPen Graphics library routine 75,

257, 290

SetBPen Graphics library routine 75,

291

SetDrMd Graphics library routine 102,

291

SetDrPt C macro 115, 291

SetFont Graphics library routine

140-41, 292

SetOPenC macro 114, 292

SetPointer Intuition library routine 207,

292-93

SetRast Graphics library routine 160,

293

SetRGB4 Graphics library routine 76,

78, 293

SetSoftStyle Graphics library routine

146-47, 294

"Setting Up a Short Screen from

BASIC" program 29-30

"Shapes with Multicolor Patterns,

BASIC Example" program 126-28

"Shapes with Multicolor Patterns, C

Example" program 123-24

short screens

bug in Amiga BASIC 26

moving 26-29

ShowTitle Intuition library routine 294

"Simple Sprite Demonstration, BASIC

Example" program 200-202

"Simple Sprite Demonstration, C

Example" program 197-98

simple sprites

attaching 202-3

BASIC and 198-202

68000 microprocesor vii

SizeWindow Intuition library routine

61, 294-95

SortGList Graphics library routine 219,

295

sprites

BASIC arrays and 198-99

limitations of 189-90, 191, 193

simple, C and 191-97

windows and 191

"SUPER_BITMAP window" program

251-55

SUPER-BITMAP windows 247-50

Teletype terminal (TTY) 133

text 133-54

BASIC and 137-39

C and 134-37

Graphics library routines and 134-37

positioning precisely 92

superimposing on graphics 100-101

window and 137

TextAttr data structure 140

Text Graphics library routine 134-36,

295

TextLength Graphics library routine

295-96

text mode, not availabale on Amiga 4

"Text Routines in C" program 136

TmpRas data structure 106-8

"Using AskFont from BASIC" program

145

"Using AvailFonts from BASIC"

program 155

"Using BltPattern" program 168-69

"Using ClipBlit" program 165

"Using PolyDraw from C" program 93

"Using PUT and GET to Draw a Pic

ture" program 176-77

"Using the Intuition Image Structure"

program 182-84

vertical resolution 4-6

video images, digitizing 258

view 11

viewport 11-12, 78-79

ViewPortAddress Intuition library

routine 76, 296

virtual sprites. See vsprites

"Vsprite Demo" program 240-43

vsprites 189-90, 212-17

structure 214-15

vsprites and bobs

BASIC and 220-39

defining 213-16

WaitBOVP Graphics library routine 196

WBenchToBack Intuition library routine

30, 296

LJ

U

302 u

WBenchToFront Intuition library

routine 30, 297

WCS (Writeable Control Store) 22

wedge, drawing 95

WIDTH BASIC statement 138

WINDOW BASIC function 28, 74,

66-68, 138-39

WINDOW BASIC statement 62-66

window borders 40-41

WINDOW CLOSE BASIC statement

67-68

Window data structure 28

checking from BASIC 67

WindowLimits Intuition library routine

297

WINDOW OUTPUT BASIC statement

66

windows 35-68

windows, Backdrop 41-42

BASIC 62-68

manipulating 60-61

multiple, BASIC and 66

opening 36-45

opening, BASIC 62-63

refreshing from BASIC 65

refreshing from C 38-40, 247-50

screens and 13

sharing a screen 35

sizing 61

WindowToBack Intuition library routine

61, 298

WindowToFront Intuition library

routine 61, 298

Workbench screen 13, 62, 95

manipulating 30-31

using for programs 13-14

Writeable Control Store. See WCS

WritePixel Graphics library routine 82,

298

"Writing to a Window in BASIC"

program 144-45

303

u

u

0

u

COMPUTE! Books

Ask your retailer for these COMPUTEI Books or order
directly from COMPUTE!.

Call toll free (in US) 1-800-346-6767 (in NY 212-887-
8525) or write COMPUTE! Books, P.O. Box 5038, F.D.R.
Station, New York, NY 10150.

Quantity Title Price* Total

COMPUTEI's Beginner's Guide to the Amiga
(025-4) * $16.95
COMPUTEI's AmigaDOS Reference Guide
(047-5) $14.95

Elementary Amiga BASIC (041-6) $14.95

COMPUTEI's Amiga Programmer's Guide (028-9) $16.95

COMPUTEI's Kids and the Amiga (048-3) $14.95

Inside Amiga Graphics (040-8) $16.95

Advanced Amiga BASIC (045-9) $16.95

COMPUTEI's Amiga Applications (053-X) $16.95

•Add $2.00 per book for shipping and handling.
Outside US add $5.00 air mail or $2.00 surface mail.

NC residents add 4.5% sales tax

Shipping & handling: $2.00/book

Total payment

All orders must be prepaid (check, charge, or money order).

All payments must be in US funds.

NC residents add 4.5% sales tax.

□ Payment enclosed.

Charge □ Visa □ MasterCard □ American Express

Acct. No Exp. Date

Name

Address

City State Zip

'Allow 4-5 weeks for delivery.

Prices and availability subject to change.

Current catalog available upon request.

u

u

0

u

u

u

0

u

If you've enjoyed the articles in this book, you'll find

the same style and quality in every monthly issue of

COMPUTE! Magazine. Use this form to order your

subscription to COMPUTE!.

For Fastest Service

Call Our Toll-Free US Order Line

1-800-247-5470
In IA call 1-800-532-1272

COMPUTE!
P.O.Box 10954

Des Moines, IA 50340

My computer is:

□ Commodore 64 or 128 □ TI-99/4A □ IBM PC or PCjr □ VIC-20
□ Apple □ Atari □ Amiga □ Other

□ Don't yet have one...

□ $24 One Year US Subscription
□ $45 Two Year US Subscription
□ $65 Three Year US Subscription

Subscription rates outside the US:

□ $30 Canada and Foreign Surface Mail
□ $65 Foreign Air Delivery

Name

Address

City

Country

State Zip

Payment must be in US funds drawn on a US bank, international

«—I money order, or charge card.

•..! □ Payment Enclosed □ Visa

□ MasterCard □ American Express

<*—i

! i Acct. No. Expires /
(Required)

n
' * Your subscription will begin with the next available issue. Please

allow 4-6 weeks for delivery of first issue. Subscription prices subject

r—, to change at any time.

u

u

0

u

u

u

0

u

	2009_02_18_18_13_39.pdf
	2009_02_18_18_21_31.pdf
	2009_02_18_18_31_07.pdf
	2009_02_18_18_39_18.pdf
	2009_02_18_18_40_45.pdf
	amiga_inside-graphics.pdf
	front.jpg
	back.jpg

