
$12.95

COMPUTEI's

FIRST BOOK

PET/CBM

n

o

n

n

o

n

o

O

n

o

o

n

n

o

n

n

n

n

n

o

n

n

o

n

o

o

o

o

o

o

n

n

o

O

From The Editors of COMPUTE! Magazine

Published by COMPUTE! Books,

A Division of Small System Services, Inc.

Greensboro, North Carolina

PET is a registered tradamark of Commodore Business Machines, Inc.

Copyright © 1981, Small System Services, Inc. All rights reserved. Portions of this material
have appeared in various issues of COMPUTE! Magazine during 1980.

Reproduction or translation of any part of this work beyond that permitted by Sections 107

and 108 of the United States Copyright Act without the permission of the copyright owner
is unlawful.

Printed in the United States of America

ISBN 0-942386-01-9

10 98 7 65432

ll

Table of Contents

Introduction Robert Lock, Page iv

Chapter One: Getting Started Page 1

A Commodore Perspective Bob Crowell, Page 2

ROM-antic Thoughts Jim Butterfield, Page 9

Tokens Aren't Just for Subways Harvey Herman, Page 12

Big Files on a Small Computer Elizabeth Deal, Page 15

PETting with a Joystick Harvey Herman, Page 25

Joystick Revised Harvey Herman, Page 28

Chapter Two: Programmer's Corner Page 33

How to Program in BASIC with the Subroutine Power

ofFORTRAN Elizabeth Deal, Page 34
Sorting Sorts Rick and Belinda Hulon, Page 42

Saving Memory in Large Programs Mike Richter, Page 55

Programmer's Notes for the CBM 8032 Roy Busdiecker, Page 57

Uncrashing On UpgradeROM Computers Jim Butterfield, Page 62

Memory Partition ofBASIC Workspace Harvey Herman, Page 66
The Deadly Linefeed Jim Butterfield, Page 68

Using the GET Statement on the PET Alfred Bruey, Page 69
Apparent Malfunction ofthe < Key Jim Butterfield, Page 72
Shiftwork Jim Butterfield, Page 73

Chapter Three: Beyond the BASICS Page 77

Mixing BASIC and Machine Language Jim Butterfield, Page 78

Simulated BASIC in Machine Language Blain Standage, Page 83

Fitting Machine Language into the PET Jim Butterfield, Page 89

Machine Language Code For Appending Disk Files.. Robert H. Wollenberg,.. Page 92

Using Direct Access Files with the Commodore 2040
Dual Drive Disk Chuck Stuart, Page 95

File Conversions on the Commodore 2040 Drive Hal Wadleigh, Page 108

Using Disk Overlays on the PET Marty Franz, Page 113

Variable-Field-Length Random Access Files on the

2040 Disk Drive Peter Spencer, Page 117

CBM/PET Front Panel BoydRay,Page 122

Chapter Four: Graphics Page 125

Lower Case Descention on the Commodore 2022 Printer W. M. Bunker, Page 126

Plotting with the 2022 Printer John Winn, Page 128

Keyprint Charles Brannon, Page 136

80 x 50 Graphics Murray Weingarten, Page 139

Chapter Five: Utilities Page 145

Cross Reference for the PET Jim Butterfield, Page 146

TRACE for the PET Brett Butler, Page 151

Utinsel: Enabling Utilities Larry Isaacs, Page 154

Converting ASCII Files To PET BASIC Harvey Herman, Page 160
Multitasking on Your PET? Quadra-PET Charles Brannon, Page 163

An Easier Method ofSaving Data Plus Home Accounting Robert Baker, Page 166

Block Access Method for Commodore Drives Tom Conrad, Page 175

Disk Lister: A Disk Cataloging Program Robert Baker, Page 183

Compactor Robert Baker, Page 190

Feed Your PET Some Applesoft G. A. Campbell, Page 200

Chapter Six: Communications Page 217

TelePET Jim Butterfield, Page 218

BASIC CBM 8010 Modem Routines Jim Butterfield, Page 223

Appendicesa ., Page 225

PET in Transition —ROM Upgrade Map Jim Butterfield, Page 226

A Few Entry Points, Original/Upgrade ROM Jim Butterfield, Page 231

BASIC 4.0 Memory Map Jim Butterfield, Page 234

PET 4.0 ROM Routines Jim Butterfield, Page 238

Index Page244

in

Robert C. Lock, Editor/Publisher, COMPUTE!

Magazine

In the fall of 1979, COMPUTE! Magazine began as a quarterly

resource and applications journal for owners and users of a
variety of personal computers. Since that beginning, weVe

been supporting the Commodore PET and the Commodore

Business Machine. On the pages that follow, you'll find some

of the best of the PET/CBM articles that appeared in

COMPUTE! during 1980.

The Commodore product line is continuing to expand, and

in the monthly issues of COMPUTE! Magazine, you'll con
tinue to find the same commitment and support for the PET,

the CBM series, and now, the SuperPet and VIC-20 models.

COMPUTERS internationally recognized authors continue to

support, encourage and tutor readers from the beginner to

the advanced.

WeVe organized the following material, and designed the book

so that it will be easy to use". If you have any comments or

suggestions regarding this book, or future books you'd like to

see from us, please let us know.

Our special thanks to Charles Brannon, Richard Mansfield,

and Kathleen Martinek of the editorial staff at COMPUTE!;
Kate Taylor, Dai Rees, and De Potter of the Production staff;

Georgia Papadopoulos, Art Director; and Harry Blair, our

illustrator.

COMPUTE! Books is a division of Small System Services

publishers of COMPUTE! Magazine.

Editorial offices are located at

505 Edwardia Drive, Greensboro, NC 27409 USA. 919-275-

IV

A Commodore

Perspective
Robert J. Crowell

The history of the Commodore PET computer is a very interesting

and mostly unknown story. For the benefit of the vast group of

Commodore PET owners, here is a brief history, from the author's

experience, on the evolution of the Commodore PET.

The story of the Commodore PET computer began in 1974.

MOS Technology, a semiconductor research and manufacturing

company in Norristown, PA., was partially purchased by

Commodore. This purchase gave Commodore a new technological

'poor to draw from. In 1975, the founders of MOS Technology,

some of whom were from the Motorola 6800 (microprocessor) design

group, felt that they could improve on the 6800 microprocessor.

The resultant research and development led to the announcement

of a whole new series of integrated circuits, the 6500 series. The

6502 CPU "Computer on a chip" microprocessor and future CPU of

the PET was born. The announcement of this family of chips did

not arouse much excitement except in engineering circles. As the

product data sheets on this new family of chips were circulated,

engineers spent many hours discussing the future applications of the

6502 CPU, PIAs, VIAs, and other esoteric technological marvels.

At this time, during early 1976, the microcomputer industry

consisted of a relatively small number of engineering type hobbyists

happily assembling a few microcomputers (the first microcomputers

were produced in kit form). Soon various articles began appearing

that heralded the availability of microcomputers for everyone.

How many of these "computers on a board" would sell? No

one at that time could estimate the market for a technologically new

product like microcomputers. As advertisements on this new

product continued circulating, the infant "hobbyist" market began

clamoring for attention by ordering thousands of these units, mostly

on a cash prepaid basis. Send in your funds and wait three to six

months for your unit to arrive!

During this period the engineers at MOS Technology, having

recently been acquainted with this new industry, announced that

they would introduce a new computer on a board called the KIM-1.

The KIM-1, with the 6502 as the CPU/brain, became a success

before the first unit came off the assembly line. The "father unit" of

the PET was born.

Thousands upon thousands of KIMs were subsequently sold as

the hobbyist, industrial, and educational markets adopted the

KIM-1 with open arms. Remember, the KIM-1 was designed for easy

use. All you had to do was hook up your own power supply, hook

up a cassette, and away you went happily programming in

hexadecimal format! Even at this early stage it was evident to some

people that the KIM's days were numbered. Sooner or later the

various markets demanding the KIM-1 would become

semi-saturated.

During the introduction of the KIM, a vague shape began

forming in the mind of a senior engineer at MOS. Why not design a

KIM-like unit that would contain a power supply, an interpretive

language (BASIC) to allow non-technical people to program it, a

CRT video display, and a keyboard? Could a product like that be

sold? Who would buy it? How would the unit be marketed?

As the KIM-1 enjoyed a vast amount of success, MOS

Technology was selling integrated circuits for use in calculators and

other products. (All you Apple owners can thank MOS Technology

for the 6502 Microporcessor!) Enter Commodore in a big way!

Commodore, a customer and partial stockholder of MOS, was one

of the earliest manufacturers of handheld calculators. MOS

Technology had the chip development and manufacturing

capabilities to produce chips in large quantities, but did not have a

consumer-oriented marketing staff. Commodore did not have any

large chip manufacturing capability, but was essentially a marketing

firm with offshore calculator manufacturing capabilities. The match

was obvious and a very quick "takeover" was arranged. The result

was that Commodore became a vertically integrated company,

designing and manufacturing chips on one end and selling the

finished product on the other end. This' vertical integration, in

conjunction with the overseas arm of Commodore, laid the

foundation that allowed Commodore to announce that an entirely

new product was coming. By December of 1976, Commodore's

stock had jumped from 4Vi to 7.

Who would buy the unit? At what price? What do we call it?

As this new unit would probably be sold directly to users in the

home, an acceptable name had to be created. Remember, in 1977,

very few people had a firm understanding of this new market, and

the general consensus was that the lion's share of the market would

be people utilizing the unit for "personal" transactions. Since

computers were "scary" to the average person (they fill entire rooms

Getting Started

and cost millions of dollars, don't they?), a nice, comfortable

product name had to be created. The name Personal Electronic

Transactor was quite a mouthful, but, as was originally planned, the

acronym P.E.T. became the accepted name.

The original pricing of the unit was announced in mid-1977 at

$495 for the 4K RAM unit. The price quickly went to $595 for the

4K unit and a $795 8K (optional) unit was announced.

The industry scoffed and said it couldn't be done at that price.

Well, basic marketing philosophy (and good corporate management)

dictates that if you come out at the lowest possible price point, with

a good possibility of a mass market, you might make small profits (if

any) at the beginning, and you make it up in future large volume

production. Of course, a low price also helps to preclude market

entry from competitors. An ulterior pricing motive may have been

to announce a price that would remain stable. In the mid 1970's the

pricing in the calculator market continuously decreased as

companies "skimmed" the market with one lower price point after

another. Due to these regular decreases in price, the purchasing

public began waiting for lower prices before they purchased. If the

PET was announced at a higher price, say at $1195 and then

dropped to $995 and then again to $795 the market would possibly

have waited for even lower price points. As the PET, by its very

nature, would have a much longer product life cycle than a

calculator product, a stable pricing policy became an important

consideration.

In June of 1977, Commodore unveiled the PET at the

Consumer Electronics Show in Chicago. There was the PET, amidst

all the Commodore calculators. The public went wild. I personally

stood there and like many others wrote out a check (at full retail) to

Commodore to purchase a PET. I watched one person purchase four

units. During the three-day Show, Commodore's stock again

jumped, this time to 9lA.

Commodore originally announced that the PET was capable of

handling many different tasks, especially with their "soon to be

available" 2020 printer. Many of these potential uses would, of

course, require a printer as well as support from Commodore.

However, Commodore never had a chance. After Popular Science

put the PET on it's cover the demand for the PET exploded.

Commodore quoted 30-day delivery, then 60, then 90, then an

astounding 4-5 months! Remember, these were all prepaid orders.

Commodore was inundated with customer orders, dealer inquiries,

and requests for information. Due to the size of Commodore's staff,

many requests went unanswered, as Commodore concentrated on

the task at hand — producing as many PETs as possible.

As Commodore was marketing the PET directly to consumers,

the 40 to 50 dealer inquiries received per day piled up. A few

persistent dealers continued to clamor for attention.

Due to the absolutely incredible demand for the PET,

Commodore was extremely selective of its dealers. Commodore

required a service technician, a retail outlet, an excellent credit

history, and a cash deposit on future orders. The cash deposit

weeded out a large percentage of potential dealers and left

Commodore with only financially strong dealers to choose from. A

tremendous commitment to the future of the PET and to

Commodore was required for a prospective dealer to send a certified

check for a large amount of money, with no idea when to expect

their deposits back. The required cash deposit also supplied

Commodore with short-term working capital, allowing them to

maximize production. In early 1978, as demand continued to

expand, the Commodore PET dealer network was started.

The dealers who were selected found themselves able to require

prepayment from customers: in economic terms, a vertical transfer

of funds. Commodore required deposit funds and in turn, the

dealer required prepayment; delivery to customers (from dealers)

was now 30-60 days. The purchasing public prepaid and prepaid.

Commodore's stock rose and rose.

As volume production began in earnest, Commodore (I

assume) realized that within a year or so PET production and

therefore supply would be close to PET demand. Commodore had

increased production, but had not increased their marketing staff to

support the large numbers of PETs being delivered. As the PET is a

computer, many user and dealer questions arose. Most of these

questions went unanswered as the small marketing staff at

Commodore was taxed to the limit. In order to expand the markets

for the PET, a crash effort began to bring the long-awaited

peripheral printer to market.

Problem after problem developed, vendor designs were

examined, tested, and discarded one by one. A print head was

finally accepted and Commodore announced that the long awaited

printer would go into immediate production with deliveries

commencing in a few months. After this public announcement, in

January of 1978, Commodore found that the print head they had

selected did not perform within the specified engineering

parameters. The print head mechanism developed problems after

5

Getting Started

continuous use. An increase in price was announced hoping (I

assume) that the extra projected profits would justify a quick re-

engineering of the unit. However, this was not to happen. The print

head problem, coupled with other problems was enough to force

Commodore to cancel the 2020 printer. Back to the drawing board.

Within a few months, Commodore announced that they would

come out with two new printers, at higher prices, at some point in

the future.

Many customers had prepaid 2020 printer otders and the lack

of information from Commodore on their orders, coupled with the

lack of good documentation on the PET, strained customer and

dealer relations. In the midst of all these problems, a larger problem

arose. PET production was rising faster than PET demand and soon

a production surplus would be created.

A major corporate decision was finally made to bring in some

upper echelon personnel to assist Commodore in the transition

from the marketing of the 8K PET to the marketing of the CBM

business system (large keyboard PETs and peripherals). A secondary

charter for the new, upgraded marketing department was to expand

the chain of distribution.

The new personnel began to support the Commodore PET line

which would soon include the business peripherals: the 2040 Dual

Floppy Disk Drive, and the 2023 and 2022 printers. With the new

large keyboard PETs, Commodore introduced the long awaited

updated version of their operating system and offered a ROM

Retrofit Kit to 8K owners. This ROM Retrofit Kit, while eliminating

the major problems of the 8K operating system, also allowed 8K

owners to utilize the new 2040 Dual Disk. Up until this time,

Commodore had only one product to worry about, the 8K PET.

However, with the start of production of the new units, suddenly

Commodore had eight products to worry about. In February of

1979, concurrent with this new production, Commodore

consolidated their operations (previously in three different locations

in the Palo Alto, California area) under one roof. Commodore's

new 60,000 square foot facility in Santa Clara tremendously

simplified production and other logistics.

In April of 1979, all of the new business peripherals became

available — suddenly, all the components required for a business

system (CPU, Disk Storage, and a printer) were available. Owners

and dealers scrambled to understand the 2040 Disk operating

system and to write/modify business software to run on this system.

Many people in the industry thought that demand would increase

Getting Started

once a full system configuration and software were available.

However the market didn't even wait for the software and demand

increased tremendously. In April of 1979, Commodore announced

that they had appointed five regional distributors (an important and

necessary move) to provide front end marketing and logistic support

to smaller and new dealers. At this time Commodore announced an

educational blockbuster. For every two 8K units purchased at retail

(from a dealer), Commodore would supply the school with one free

8K unit; an effective discount of 331/3%! Many people in the

industry suggested that this was Commodore's method of cleaning

out the existing stock of 8K units. This was not completely true.

Since the announcement of the PET, Commodore had not directly

advertised the PET. Rather than advertise nationally on a product

that was experiencing strong demand, Commodore decided to

support the educational market. This program achieved its goal of

moving the 8K unit, in large numbers, into the educational markets.

Demand continued unabated on the entire Commodore

product line. At the June, 1979 National Computer Conference in

New York, Commodore announced a Word Processing program

written for the PET system. This excellent program was a milestone

in the evolution of the PET system as it was the first viable business-

oriented software that would be mass marketed by Commodore.

Soon thereafter, various distributors announced a full line of

business programs including General Ledger, Mailing List, and the

new Word Processing System. For the first time, a fairly complete set

of business software was available for the Commodore System.

During June of 1979 Commodore's stock, having almost

continuously risen, reached an all-time high of 41 5/8!

In my opinion, the Commodore system has the potential of

becoming the most popular and widely used small business system

of 1980. New products, among them an 8K version with a large

keyboard, are being developed. The early 1980's will prove to be an

exciting period as the PET system becomes more powerful. If

Commodore continues to keep the end consumer in mind and

supports their distributor and dealer network, I expect the

Commodore product line to continue achieving success. As other

manufacturers enter the small computer market, with business

systems not far behind, we can expect to see Commodore Marketing

maintaining their new emphasis.

This brief history, from my own experience, may not be

entirely accurate as far as dates, etc., are concerned. My intent was

not to write a technical article. The history of the PET contained

7

many problem periods; the fact remains that the PET is one of the

most powerful and popular microcomputers and was one of the

major forces behind the new era of small computers.

My congratulations to Commodore.

ROM-antic thoughts

Jim Butterfield

Should you upgrade to a new ROM set?

Here comes another ROM set or two from Commodore, and once

again the user will need to make the decision: should I upgrade?

It's a tough question. It will cost money, and some of your

programs may cease to work until they have been modified. If you

don't, you'll be left behind and won't have access to some of the

new goodies.

BASIC programs will, as always, remain compatible, so long as

they don't bristle with obscure PEEKs and POKEs. Machine

language itself doesn't change, but programs which use routines

built into the ROMs will need changing since the routines will have

moved to new locations. Some commercial machine language

programs will survive transfer to new ROMs, but many won't.

A more subtle problem creeps in. As the machine is enhanced,

programs will start to use the new built-in features, and users may

find themselves having to retro-convert these so that they will run

on older systems. A command such as DOPEN is convenient and

compact, but users who haven't converted up will have to translate

this to the appropriate OPEN 1,8,3 . . . command. New disk

features will be-particularly noticeable for this. New systems, for

example, won't need to initialize disk and will offer very simple disk

error checking; older systems will need to add extra coding to do

these. Some new disk features such as APPEND or Relative files

have no counterpart on the old systems.

Some terminology:

Commodore is currently referring to ROM sets by means of a

numbering scheme. They translate roughly as follows:

BASIC LO Original ROM, as fitted in the early 4K and 8K PETS.

Not good for disk I/O; arrays limited to 256 elements; cassette

tape files a little awkward.

BASIC 2.0 Upgrade ROM, fitted on more recent machines. Gar

bage collection still a problem. Keyboard/disk interface rather

clumsy. Built-in machine language monitor. Linefeed output

to IEEE a minor problem.

Basic 4.0 New ROM, currently being released. Disk command

built into BASIC. Garbage collection fast, and Linefeed prob

lem eliminated. Uses more ROM space. Available for both

Getting Started

40- and 80-column machines, but not for original PET 8K

hardware.

BASIC 5.0 Business ROM, not yet released. Rumored to have

many BASIC enhancements, including high-precision decimal

arithmetic.

BASIC 2.0 and 4.0 have alternate versions for the two types of

keyboard — graphics or business.

Disk systems:

DOS 1.0 Original 2040 disk system* INITIALIZE command

needed; RENAME sometimes doesn't work.

DOS 2.0 New system, currently being released- INITIALIZE

not needed, but allowed. Relative files and APPEND command

implemented. Fast BACKUP command. Can be retrofitted to

early 2040 units. The new 8050 disk system will have charac

teristics similar to DOS 2.0

Printer ROM systems haven't settled down yet. There are two

systems available, but both have minor problems; a third is

rumored.

Upgrading: the Options

Users who still have BASIC 1.0 should upgrade, at least to BASIC

2.0. There are too many good things available.

The original 8K machines cannot be readily upgraded beyond

BASIC 2.0; their hardware won't support BASIC 4.0.

It's not necessary to upgrade both BASIC and DOS ROMs at

the same time, but it's probably a good idea. BASIC 4.0 and DOS

2.0 work harmoniously together.

Switch to BASIC 4.0 if you need any of the following:

— to be up to date with the latest software;

— to eliminate garbage collection delays;

— to allow inexperienced users to use the disk with more

natural, English-like commands.

Switch to DOS 2.0 if you want to take advantage of the new

APPEND feature of the powerful relative file structure.

If you still have original ROMs (the ones that say ***

COMMODORE BASIC *** upon power-up), plan to upgrade.

It's your option as to whether you want to switch to BASIC

4.0 and DOS 2.0. If you like the new features, go ahead. But you'll

still have a good, serviceable system if you stay with upgrade ROM

(BASIC 2.0).

Upgrading the disk file can be treated as a separate question.

10

Getting Started

The original unit is excellent for program SAVEing and LOADing.

But if you plan to do a lot of work with data files, the new features

of DOS 2.0 can look very attractive.

It's your choice.

11

Setting Started

Tokens Aren't Just for

Subways - A Convenient

Method to List Microsoft

BASIC Tokens

Harvey B- Herman

The latest buzzword in computer circles is "Tokens." I have even

heard the verb "tokenize" used in casual conversation. However, my

observation is that many people are still confused about the

meaning of this term and would like to learn more. How do you

explain to someone looking at the table on p. 8 of the Spring 1979,

issue of the PET Gazette (list compiled by Jim Butterfield) why, for

example, a decimal 161 in memory can have four or more different

meanings, including the three letter BASIC key word GET? This

article is intended to clear up some of the confusion (I hope) and to

illustrate a convenient method to list all the tokens in various

versions of Microsoft BASIC (PET, KIM, SYM, etc.).

Understanding tokens is not just an idle exercise. Useful

programs have begun to appear which use "token knowledge" for

specific purposes. For example, Len Lindsay recently published (The

PET Gazette, Summer, 1979, p. 10) a program to identify PEEK and

POKE in BASIC programs so they can be more easily converted to

run on PETs with new ROMs. This program searches memory for

the PEEK and POKE tokens and would not work unless these

values are known. Other Microsoft BASICs have similar, but not

identical, lists of tokens. To use the Lindsay program on other

components it probably would be necessary to change the token

values. A BASIC program to list PET tokens is shown and discussed

below.

The program can be adapted to other BASICs with only a few

changes. Before proceeding to that discussion, a few words about

tokens are in order. The concept underlying tokens is not difficult

to understand. Programs are not stored exactly as they are typed in.

Instead of storing all the characters in the keyword PRINT, for

example, PET Microsoft BASIC stores only one 8 bit character,

decimal value 153. This saves storage space and speeds up execution

of programs. All the tokens are greater than 127, i.e., their

12

hexadecimal value has its most significant bit (MSB) set. The

BASIC interpreter can rapidly identify the tokens by checking the

MSB and jumping to the appropriate subroutine.

The number of tokens in a given BASIC depends on the

number of commands and functions which have been implemented.

In a recent article on tokens (MICRO 15:20) a list for OSI BASIC

was included which showed 68 tokens (for comparison PET has 75).

Also, the PRINT token had the decimal value of 151 (PET uses 153).

These facts are cited to emphasize the importance of modifying

programs which PEEK at memory for particular tokens when

transferring the programs to other computers. The values may

accidentally agree, but don't count on it.

The program shown is LOADed and RUN normally. It

converts the REM tokens in statements 128 to 202 (PET version) to

the correspondingly numbered token and terminates with a list of

the tokens and their decimal and hexadecimal equivalents. Note the

program will not run a second time with a simple RUN command as

the first REM has been replaced with an END (try RUN 500

instead). The PET version can be listed on a printer, if available, by

deleting the REM in statement 500 and properly closing the file

after the program ends.

If you are using this program on another computer (KIM or

SYM) the number of tokens will need to be changed. The proper

value can be found by trial and error. When the number of tokens is

less, an error will be printed when the list in statement 550

attempts to print an invalid token. The number of the last printed

token is used to correct statement 550. The REM comments will

help in locating other statements which use the number of tokens

and need correction. When the number of tokens is greater than the

PET, more initial REMs should be added (203 and above), and the

number of tokens increased appropriately until an invalid token

causes an error message as above.

Whatever computer is being used, the list of tokens should be

kept handy as it is an invaluable aid in understanding and

modifying programs written for other systems.

128 REM 80 137 REM 89 170 REM AA 179 REM B3
129 REM 81 138 REM 8A 171 REM AB 180 REM B4
130 REM 82 139 REM 8B 172 REM AC 181 REM B5
131 REM 83 140 REM 8C 173 REM AD 182 REM B6
132 REM 84 141 REM 8D 174 REM AE 183 REM B7
133 REM 85 ! 175 REM AF 184 REM B8
134 REM 86 • 176 REM B0 185 REM B9

135 REM 87 168 REM A8 177 REM Bl 186 REM BA

136 REM 88 169 REM A9 178 REM B2 187 REM BB

13

Getting Started

188 REM BC

189 REM BD
190 REM BE

191 REM BF

192 REM C0

193 REM Cl

194 REM C2

195 REM C3

196 REM C4

197 REM C5

198 REM C6

199 REM C7

200 REM C8

201 REM C9

202 REM CA

500 REM OPEN 5,4:CMD 5

510 FOR 1=1 TO 667 STEP 9:REM 667(9*#TOKENS-8)

520 J=J+1

530 POKE 1028+If127+J:REM 1028(START OF PROGRAM STORAGE+4)

540 NEXT I

550 LIST 128-202: REM 202(127+#TOKENS)

560 REM PRINT#5:CLOSES

READY.

Program

(Below)

With

Output

142 REM 8E

143 REM 8F

144 REM 90

145 REM 91

146 REM 92

147 REM 93

148 REM 94

149 REM 95

150 REM 96

151 REM 97

152 REM 98

153 REM 99

154 REM 9A

155 REM 9B

156 REM 9C

157 REM 9D

158 REM 9E

159 REM 9F

160 REM A0

161 REM Al

162 REM A2

163 REM A3

164 REM A4

165 REM A5

166 REM A6

167 REM A7

128 END 80

129 FOR 81

130 NEXT 82

131 DATA 83

132 INPUT* 84

133 INPUT 85

134 DIM 86

135 READ 87

136 LET 88

137 GOTO 89

138 RUN 8A

139 IF 8B

140 RESTORE 8C

141 GOSUB 8D

142 RETURN 8E

143 REM 8F

144 STOP 90

145 ON 91

146 WAIT 92

147 LOAD 93

148 SAVE 94

149 VERIFY 95

150 DEF 96

151 POKE 97

152 PRINT* 98

153 PRINT 99

154 CONT 9A

155 LIST 9B

156 CLR 9C

157 CMD 9D

158 SYS 9E

159 OPEN 9F

160 CLOSE A0

161 GET Al

162 NEW A2

163 TAB(A3

164 TO A4

165 FN A5

166 SPC(A6
167 THEN A7

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

NOT A8

STEP A9

+ AA

- AB

* AC

/ AD

" AE
AND AF

OR B0

> Bl

= B2

< B3

SGN B4

INT B5

ABS B6

USR B7

FRE B8

POS B9

SQR BA

RND BB

LOG BC

EXP BD

COS BE

SIN BF

TAN C0

ATN Cl

PEEK C2

LEN C3

STR$ C4

VAL C5

ASC C6

CHR$ C7

LEFT$ C8

RIGHT$ C9

MID$ CA

READY.

14

Big Files On A

Small Computer

Elizabeth Deal

The program described here demonstrates a way of reducing data

storage requirements by a factor of eight. It is written in Microsoft

Basic for a PET computer.

I have seen several programs that create and use cross-index files

for library search, statistical surveys, and similar applications. They

usually require large computers, such as a 48K system with two disk

drives. A very thorough file handling system has been described

recently by Dr. Sanger in the November, 1979, issue of

Microcomputing. In his article, each attribute is coded as two letters

and six attributes are permitted for each record. This requires twelve

letters and, therefore, twelve bytes.

In the method described here, each attribute is coded as yes or

no and the user can have as many attributes as he desires. If the

application lends itself to such coding into a list of keys or attributes,

then this system will permit the handling of large amounts of data in

core at one time. It also permits the use of logical AND, OR or NOT

operators in retrieval with any combination of attributes.

By way of illustration, a library search requires quick access to

those entries that contain desired subject matter. Two, three, or six

byte coding of each key is very core consuming, and limits the

number of records that can be in core at one time.

The solution I propose is twofold: (1) set up a smart coding

procedure for classification of subjects described in an article into

keys that can be scored yes or no, and (2) "pack" the data for storing

it in core, on tape or on disk, and then "unpack" it, one record at a

time, during the search for the applicable attributes. This paper

describes an efficient way to "pack" and "unpack" the data so that a

larger file can be searched on a small computer without the use of

accessory memory devices, such as disks. Of course, if one has a

system with a disk the method described here would permit use of an

even larger file. We are aware that the first part of the solution

(setting up the coding procedure) is challenging. It is the real problem

and the performance of the system depends on how logical and

meaningful the selected keys are.

Each logical record consists of the text part and the data part.

The text part must be adequate for positive identification of the

15

articles being searched, but the length should be kept to a minimum.

Name, date, and page might be enough. The data part is what we can

compress. The yes-no or 1-0 codes are entered in groups of fifteen

ones and zeros. These, in turn, are packed into the two byte integer

variable S%.

Fifteen attributes require two bytes, thirty attributes require

four bytes, and so on. A user of the system need not concern himself

with what the program does with binary numbers. He only needs to

know that there will be as many S% values per record as there are

groups of fifteen keys. The user then needs to provide a decision for

retrieving the records of interest to him. The decision is written as a

statement at the beginning of a program and is immediately edited

for syntax-type errors. Logical operators AND, OR, NOT, as well as

arithmetic ones (= ,<>,<»>) are used. The decision can be written

on one or more lines leading to a combining variable TR. TR is set to

one if true, and all records meeting TR condition are then displayed.

Complete instructions for writing TR lines are listed in lines 2970 and

3420.

How is it done? For once those long tables of powers of two, that

are a part of every book on programming, come in handy. The

program is set up in such a way that the user thinks of the list of

fifteen keys from left to right, 1 to 15. The program sees them as being

numbered from right to left, 0 to 14. Like this:

- Key numbers B%(k)k = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-Program sees asm = 14 13 12 11 1098765432 10

-Input key values 1000 1 1111 100000

The program now takes key values and wherever it finds a "1" it

raises 2 to the m-th power. The sum of all this is then stored in

integer variable S% (record number, sum number)*. The bytes are

used instead of at least 15. During the process of retrieval the opposite

procedure takes place — the sum is "unpacked" into working storage

of 15 values. The same values are, of course, reused by all records.

The lines of the program that drive this system are 1470 to 1510 and

1920 to 1990 the other way. It seems like a lot of hassle, but the core

saving is tremendous. The loops that do the packing and unpacking

take from 0.2 second to 0.9 second, the latter representing all fifteen

bits on. (These times could be reduced by rewriting these two loops as

machine code subroutines.) Another way to save time would be to set

up the most frequently used keys next to one another as this will

leave the loop sooner. In the example shown above, the program will

loop ten times. Had a "1" been in position 4 or 11 the loop would be

16

executed five times.

The program now has two sections. One packs the data, the

other unpacks it. In between, the values should be stored on tape.

And at the beginning, routines for creating and updating files should

be provided. As listed, the program works as if it were a file system. It

can be used as a training ground in writing decision lines. It should be

used as a part of a larger system.

To customize the program for your system (1) delete lines 2770

on to reduce core from 10K to 5.2K, (2) in line 1020 insert the

maximum number of records that will fit, (3) modify G if you wish in

lines 1020 and 1340 (G= 1 or 2 is now permitted), and (4) insert your

machine size in line 2450.

As written, the program takes about 5.2K after removal of all

REM lines that are at the end. A search type program that would

contain a dictionary of keys should take no more than 6K. How

many records can various systems handle? If we assume that each

record has 26 bytes of text plus 30 yes-no attributes, an 8K system

could search 66 records, a 16K system could search 330 records, and a

32K system could search 866 records. A 100K disk would add 3,333

records and a half-megabyte disk would add 16,500 records.

*S%(nr,g) = 25 + 26+27 + 28+210 + 2H = 18,400

Credits: Ken Brossoie

Microcomputing, November, 1979, page 44.

Neil Harris, A-B Computers, Montgomeryville, Pa.

1000 C0=0:C1=1:C2=2:C3=3:C5=5:C6=6:

-.CA=10 :CE=14 :CF=15 :D$=""

1010 REM ELIZABETH DEAL,MALVERN,PA

1020 R= 200:G=2:DIM HD$(R),S%(R,G),

-,WA$(15) ,V$(G) ,B%(15*G) fQQ%(15)

FORJ=C1TOCF:READWA$(J):NEXTJ

FORK=0TOCE:QQ%(K)=C2 ~K:NEXT
1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1141

1142

REM RENUMBER 1000f10 WHEN NEEDED
•

REM>>>> READ THIS <<<<

REM INSERT DECISION

REM KEEP LST-TR-RTRN SEQUENCE
•

LIST-1280

DX=ABS(B%(1)ORB%(2)) :

DY=ABS(B%(3)ORB%(4)) :

DZ=ABS(NOT(B%(5)ANDB%(6))):

17

1143 TR=ABS(DXANDDYANDDZ) :

1150 RETURN

1160 :

1170 REM>>>>> •:■ MUST END EACH LINE

1180 :

1210 REM TR=ABS((B%(1)ANDNOTB%(2)) //

1220 REM TR=ABS(S%(N,2)>512)WILL DIS-

1230 REM PLAY RECS MEETING STMT TR.

1240 :

1250 REM >> TYPE 'RUN1, VERIFY, THEN

1255 REM TYPE IGOTO1300I TO CONT.

1260 REM (OR ~ ~ THIS LINE*)

1270 :

1280 REM ========= SECTION 1 =========

1290 :

1300 A=TI:REM //CHOSE SEC.1/2 HERE ///

1310 GOSUB2420:REM // SUBR 1 ///

1320 PRINT"fiII:N=l:LT=0

1330 PRINT "HOW MANY GROUPS OF 15 KEYS -i

-i?":PRINTTAB(9) "ENTER 1 OR 2"

1340 INPUTG:PRINT:IFG<1ORG>2GOTO1330

1350 PRINT:PRINT:PRINT"ENTER TEXT,

-.OR 'XX1 TO END INPUT"

1360 PRINTTAB(2)"!";TAB(27)"i"

1370 INPUTHD$(N):IFLEFT$(HD$(N),

-i2) = "XX"THEN1550

1380 HL=LEN(HD$(N)):E=0

1390 REM // INPUT15 BITSfFLAG ERRORS

1400 :FORJ=C1TOG:PRINT:PRINT"15 KEYS";

1410 PRINT" illi!!!!!!i ! i!!" :PRINTTAB(

-.7) ;:INPUTV$(J)

1420 :FORLL=C1TOCF:S$=MID$(V$(J),LL,1)

1430 IF(S$<>"0"ANDS$O"1")THENE=E+1:

-.GOTO1450

1440 .-NEXT

1450 :NEXTJ

1460 IFE>0THENPRINT:PRINT"rERROR DO -i

-iAGAIN":GOTO1350

1470 TX=TI :FORJ=C1TOG:S%(N,J)=C0

1480 :FORL=C0TOCE?PQ=VAL(MID$(V$(J),

-iCF-L,Cl)) :IFPQ=OTHEN1500

1490 S%(N,J)=S%(N,J)+QQ%(L)

1500 :NEXTL:PRINTTAB(14)"SUM="S%(NrJ)

1510 :NEXTJ:TY=TI

1520 PRINT"(";INT((TY-TX)/C6)/CA;"SEC)";
-i: PRINTTAB (25) "OK";N; "OF";R

1530 N=N+C1:LT=LT+HL:IFN<=RGOTO1350

18

1540

1550

1560

1570

1580

1590

1600

1610

1620

1630

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1830

1840

1850

1860

1880

1890

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2005

2010

PRINT:PRINT:PRINTTAB(6):PRINT"*****
-,** NO MORE ROOM *******"

PRINT:PRINT:PRINT:PRINT"# OF -■

-■RECORDS PUT IN"; N-l: PRINT

PRINT"* OF BYTES USED BY TEXT";LT

PRINT"# OF BYTES USED BY KEYS";

-i2*G*(N-Cl) :PRINT:PRINT"BYTES -i

-iLEFT";FRE(0)

PRINT:PRINT:PRINT

PRINT"HIT 'S' TO STOP" :PRINT"ANY -.

-.KEY TO CONTINUE"

GETA?:IFA$=""THEN1600

IF A$="S"THENSTOP: REM/CHANGE/

REM // STORE DATA ON TAPE HERE

SECTION 2

>> # OF RECORDS (NR), TEXT

REC (HD$(NR)) AND G-SUMS

S%(RfG) ARE USED IN THIS

SECTION; BITS ARE COMPUTED

AND ASSIGNED TO KEYS ARRAY

B%(6*15)

>> B% OR S% ARE CHECKED FOR

COMPLIANCE WITH TR STMT.

=====

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

PRINT"fi":NR=N-l

:FORN=C1TONR:K=C0:JA=TI

IFKS>C0THEN2000

FORK=C1TOG*CF:B%(K)=0:NEXT

JS=TI:FORJ=C1TOG:TP=S%(N,J):

-.JJ= J-Cl

IFTP=C0THEN1990

Q=INT(LOG(TP)/LOG(C2)):U=CF-Q

:FORM=C0TOQ:BP=QQ%(Q-M)

IF(TP)>=BPTHENB%(CF*JJ+U+M)=C1:

iTP=TP-BP

IFTP=C0THEN1990

:NEXTM

:NEXTJ:JE=TI

FORM=1TO4:PRINT"==========";:NEXT
PRINT:PRINTHD$(N)

GOSUB1140: IFTRO1THENPRINT:

-•PRINT"*** NO MATCH ***" :GOTO2030

19

2020 PRINT:PRINT"THIS RECORD MATCHES:11

2030 PRINT:PRINTTR$

2040 :FORJ=C1TOG:

2050 PRINTIIGROUPII;J;llSUM=";S%(Nf J) :

-.NEXTJ: PRINT

2070 IFKS>C0THEN2130

2080 K=C1:PRINT:FORJ=C1TOG

2090 PRINT"BIT";(J-Cl)*(K-Cl)+C1;:

-iPRINTTAB(7) ;" -> ";:PRINTTAB(12);

2100 :FORK=C1TOCF:PRINTRIGHT$(STR$(B%(CF

2110 :NEXTK:PRINT" <- ";J*(K-C1)

2120 :NEXTJ

2130 PRINT:PRINT:PRINT" (TIME IN BIT -i

-iLOOP";INT((JE-JS)/6)/10;"SEC) "

2140 PRINT"(TOTAL TIME:";INT((TI-JA)/6)/

-.10; "SEC) "

2150 :FORM=1TOCA:PRINT"====";:NEXT

2160 PRINT:PRINTTAB(11)"HIT ANY KEY FOR -

-.MORE"

2170 PRINTTAB(6)"'Q1 TO QUIT AND RERUN -i

iOPTIONS"

2180 GET A$:IFA$=""GOTO2180

2190 IFA$="Q"GOTO2210

2200 :NEXTN :REM // END REC LOOP /

2210 PRINT"frW"TAB(16) "OPTIONS" : PRINT

2220 PRINT"1. SAME TRf NEW DATA -i

-iSTARTING AT REC";NR+C1

2230 PRINT"2. RERUN: SAME TR AND DATA"

2240 PRINT"3. QUIT"

2250 GETD$:IFD$<"1"ORD$>"3"GOTO2250

2260 ONVAL(D$)GOTO2270r1880/2280

2270 N=NR+C1:GOTO1350

2280 PRINT"\hWSURE ?"

2290 GETA$:IFA$="N"GOTO2210

2300 IFA$="Y"THEN END: REM /PROG END/

2310 GOTO2290

2320 REM === DATA=FOR SUBR.l =======

2330 :

2340 DATA"NOT"f"","+"f"-","*","/","",

-."AND"

2350 DATA"OR",">","="f"<","","","ABS"

2360 :

2370 REM ============================

2380 :

2390 REM SUBROUTINE 1

2400 REM FIND AND EDIT TR STATEMENT

20

2410 :

2420 TR$="":LX=0:KB=0:KS=0:P=0:J1=1:
-iKC=0 : L1 = 0 : R1 = 0 : SB=0 : JA=0:JZ=0

2440 PRINT"fiFOUND 'LIST1 AT";

2450 :FORJ=1350TO32000-FRE(0):IFPEEK(J)=
-.155THENPRINT" ***";J: JA=J

2460 IFPEEK(J)=142THENJZ=J:PRINT"FOUND -.
VRETURN1 AT ***"; JZ :GOTO2475

2470 :NEXTJ

2475 IFJA=0ORJZ=0THENPRINT"CANIT FIND -.
iDECISIONS; SEE SUBl LISTING ":STOP

2480 :FORJJ=JA+11TOJZ:LL=PEEK(JJ)

2490 IFLL=58THENJJ=JJ+5:LP$=CHR$(13):
-.GOTO2540

2500 IFLL<128THENLP$=CHR$(LL):GOTO2540

2510 :FORM=168TO182:IFLL=MTHENLP$=WA$(M-
-0.67):LX=LX+LEN(LP$):GOTO2530

2520 :NEXTM

2530 IFM=182THENSB=SB+1
2540 LX=LX+1

2550 IFLX>255THENPRINT"STRING TOO -i

-.LONG-LIMIT 255":E5=1:GOTO2700

2560 TR$=TR$+LP$

2570 rNEXTJJ

2580 :FORJJ=J1TOLX+1

2590 M$=MID$(TR$fJJfl):KB=KB-(M$="B"):

iKS=KS-(M$="S11) :P=P-(M$="%")

2600 KC=KC-(M$=","):Ll=Ll-(M$="(") :

-iRl=Rl-(M$=fl)n)

2610 NEXTJJ

2620 PRINT" B ";" S ";" % ";" , ";" (";

-.") "/"ABS11;" L "

2630 KB=KB-SB:KS=KS-SB

2640 PRINTKB;KS;P;KC;L1;R1;SB;LX

2650 PRINT:PRINTTAB(5)"YOUR DECISION IS:

-." : PRINT: PRINTTR$: PRINT

2660 E1=(KB>0)AND(KBOP) :E2= (KS>0) AND(KS

-.OP) :E3=(KS>0)AND(KSOKC) :

-.E4=(L1OR1)

2670 IFE1ORE2THENPRINT"* USE % -(B% OR -i

-.S%) !!": PRINT" USE NO OTHER Bf Sf

-i %"

2680 IFE3THENPRINT"* USE S%(Nf#)FOR -.

-.2-DIM ARRAY"

2690 IFE4THENPRINT"* () DON'T MATCH:

Vf;Ll;"LEFTf AND";Rl;"RIGHT"

2700 IFE1ORE2ORE3ORE4ORE5THENPRINT:

21

-iPRINT"TYPE 'RUN1 TO FIX": STOP

2710 PRINTTAB(5)"HIT ANY KEY TO i

-iCONTINUE"

2720 PRINTTAB(3)"OR fSTOPf TO CORRECT/CH

-iANGE"

2730 PRINT:PRINTTAB(5)"THEN TYPE 'RUN1 -

-i TO FIX"

2740 PRINT:PRINT" (EDITING AND RE-RUN -i

-.WIPE OUT DATA) "

2750 GETA$:IFA$=""THEN2750

27-60 RETURN

2770 REM ============================

2780 REM EXAMPLE OF INPUT FOR ONE

2790 REM LOGICAL RECORD WITH TEXT

2800 REM AND 2 GROUPS OF 15 ATTRI-

2810 REM BUTES EACH, STORED AS

2820 REM 25+4 BYTES.

2830 REM

2840 REM >TEXT:

2850 REM ! !

2860 REM 1.MAG.NAME/11-78/ /P.106

2870 REM >FIRST 15KEYS

2880 REM 111010000001011

2890 REM >SECOND 15KEYS

2900 REM 001001000100010

2910 REM >END OF DATA

2920 REM ! !

2930 REM XXXX

2940 REM

2950 REM ============================

2960 REM

2970 REM POSSIBLE USES OF TR LINE(S)

2980 REM

2990 REM 1.DECISION IS WRITTEN AT THE

3000 REM START OF A RUN AND CANNOT BE

3001 REM CHANGED DURING THE RUN.

3005 REM

3010 REM 2.QUICK LISTING OF RECORDS

3020 REM WHICH MIGHT HAVE ANY KEYS

3030 REM ON WITHIN SOME GROUP —

3040 REM TR=ABS(S%(N,#)>=512 AND

3050 REM S%(N,#)<=4096):

3060 REM WILL DISPLAY TEXT OF RE-

3070 REM CORDS THAT HAVE SOME BITS

3080 REM FROM 3 TO 6 ON (15-12,15-9)

3085 REM

3090 REM 3.SLOWER LISTING OF RECORDS

22

Getting Started

3100

3105

3110

3120

3125

3130

3140

3150

3160

3170

3180

3190

3200

3210

3240

3250

3260

3280

3290

3300

3310

3320

3330

3340

3350

3360

3370

3380

3390

3400

3410

3420

3430

3440

3450

3460

3470

3480

3490

3500

3510

3520

3530

3540

3550

3560

3570

REH

REM

REH

REH

REH

REH

REH

REH

REH

REH

REH

REH

REH

REH

REH

REH

REH

REH

REH

REH

REH

REH

REM

REH

REH

REH

REH

REH

REH

REH

REH

REH

REH

REH

REH

REH

REH

REH

REH

REH

REH

REH

REH

REH

REH

REH

REH

(TEXT AND BITS):

3.1 ALL RECORDS

TR=ABS(B%(1)ORB%(1)=0):

3.2 SOME RECORDS - USE AND

fORfNOT AS YOU DO IN LOGIC

BUT RETAIN 'ABS1 IN ALL

EXPRESSIONS. END EACH LINE

WITH A ' : ' . SIMPLE EXPRES

SIONS WILL SHOW UP VIA

SUB1. FOR-LOOPS AND OTHER

TOKENS WILL NOTfBUT THE

PROGRAM WILL STILL RUN.

4.USE () CAREFULLY -

NOT(XANDZ) ONOTXANDNOTZ

WORXANDYORZO (WORX) AND (YORZ)

5.AVOID VARIABLES WITH BrSf

% IN THEM - ONLY ABS AND

NAMES LISTED ABOVE ARE LEGAL

6.DECISION LINES ARE SCANNED

FIRST FOR OBVIOUS ERRORS, SO

WE DON'T LOOSE DATA LATER

BY EDITING THESE LINES.

7.LOGIC OF PROGRAM DEPENDS

ON USE OF ABS FUNCTION -

USE FORMAT: 'VAR=ABS():'

ON ALL LINES.

PURPOSE : FOR ANY INFORMA

TION PROCESSING WHERE DATA

CAN BE CODED INTO Y/N FORM.

STORAGE (CORE/TAPE/DISK)

REQUIREMENTS ARE REDUCED BY

AT LEAST A FACTOR OF 8 AS

COMPARED TO CONVENTIONAL

CODING OF KEYS FOR SEARCH.

THIS SYSTEM WILL STORE 15

KEYS-ATTRIBUTES-Y/N THINGS

IN BASIC'S 2-BYTE INTEGER

23

Getting Started

3580 REM VARIABLE.

3590 REM

3600 REM TEXT SHOULD BE LIMITED TO

3610 REM MINIMUM THAT WILL POSITI-

3620 REM VELY IDENTIFY A RECORD.

3630 REM

3640 REM ===========================

3650 REM

3660 REM ELIZABETH DEAL, MALVERNfPA

24

PETting With A Joystick
Harvey B. Herman

Here is the necessary background and hookup information for adding a

joystick to your PET. See also "Joystick Revised" for a simple

programming interface.

My older style PET keyboard gets banged around quite a bit when

my kids play games which use the number pad. A recent PETVPourri

column in Kilobaud (1) prompted me to install a joystick on my

PET in order to save my keytops from further wear. This article is

intended to share my experiences with this project and to encourage

other fumblethumbs like myself to try it.

I purchased the Atari joysticks from Sears as suggested in the

above column (catalog #6C99835) for $9.95 each. Since I could not

find a mating connector, I cut off each end and attached them to a

User Port connector as per the instructions (see also refs 2 and 3).

The latter connector can be purchased from any number of

companies (e.g., AB Computers). Four signal diodes (1N662), whose

specifications I believe are not critical, are also used in this super

simple interface circuit which can be constructed in about Vz hour.

Check to make sure that the diode cathodes are connected as

shown in the circuit diagram (1) and the color coded wires of the

joystick are connected to the proper pins of the User Port

connector. Otherwise no special precautions are necessary. I did it

right the first time (yes, brag!)

This neat hardware would, of course, be useless without

software to work it. Cursor magazine (4) has supplied several

programs which have a joystick option. I tried these first (Demon,

Canyon, Pickup and Nab) with success. These programs are written

to work with various model joysticks wired and oriented in different

ways. Since my configuration was fixed, I modified the joystick

subroutine in each Cursor program to skip the test step. That

procedure can be tedious if a program is run repeatedly. The

following changes in the Cursor joystick subroutine should work for

all Atari-type joysticks wired according to the circuit diagram in

reference 1:

61030 PRINT: FOR 1=0 to 5: READ T, P:

GOSUB61120:

T(I)=T:J(T)=P:NEXTI

61120 T=INT (T/16) AND T: RETURN

61250 DATA 255, 5, 223, 4, 239, 6 127, 8 191, 2, 63, 0.7, 1, 9, 3

25

I ran the original program once to find the values in the T array

and used DATA statements in the modified program in order to

skip the test step. This considerably speeds up the beginning of a

game. I have deliberately ignored the rationale behind the bit

manipulations in statement 61120. It is not necessary to understand

that in order to use joysticks. I emphasize this point because I hope

it will encourage PET users who may strain at bits to attempt

projects such as described here. In a future article I may try my

hand at a tutorial for those who wish to delve into this mystery

further.

If a program was not written with a joystick in mind another

modification procedure must be used to convert it away from

number pad use. As an example, I modified the program Obstacle

(5) which utilizes the full keyboard as two pseudo-joysticks. Each

player manipulates his piece (screen character) with the new

standard keyboard patterns. "W, X, A and D" and "8, 2, 4, 6". The

object is to keep from running into the screen trail left by the other

player — the first to do so loses. As with many games, it is easier to

use than to describe. The following statements in the original

program are used to sense a keypress by a player and change

direction if necessary:

260 GET R$

265 IF R$= "W" THEN AD= 1

300 IF R$ "8"THENBD = 1

If W is pressed, the direction of the left player's piece is changed to

up. If 8 is pressed, the direction of the right player's piece is also

changed to up. Player and direction are determined by the above

keyboard pattern which can be learned quickly by new players.

Converting a program like this to joystick use is very easy. The

following statements will do this:

260 M=PEEK (59471)

265 IF (M OR 240) = 247 THEN AD= 1

300 IF (M OR 15)

26

127 THEN BD=1

The elipsis can be fleshed out with the help of the table below. A

peek at the User Port gives a unique value for each position of the

joystick as long as only one is being used. It is necessary to "mask"

with 15 or 240 if the possibility exists of both being used at the same

time. If only one joystick is used and it doesn't matter which, a

further operation with the PEEKed value generates simpler numbers

(shown in the last column of the table). This "trick" was used in

statement 61120 in the cursor subroutine and the resulting values

used in the main body of the program.

I feel this is an excellent project for a beginner. It is not difficult

to modify existing programs for joystick use. Original PET owners

with disappearing keytops will appreciate the saving on wear and

tear. To be fair, I should say that every program is not suitable for

conversion. When fine control of movement is required, joysticks

may be difficult to use. Some players with poor hand-eye

coordination may still prefer the keyboard. As for me, it seems quite

natural to chase and catch some seemingly elusive demon with my

movements under reflex control by a joystick.

REFERENCES

1. Kilobaud Microcomputing, Robert W. Baker, January 1980, p. 14

2. PET User's Group Newsletter, Vol. 0, No. 3, p. 6, 1978

3. Best of PET Gazette, Chuck Johnston, p.42, 1979

4. Cursor Magazine, P.O. Box 550, Goleta, CA 93017

5. Dilithium Press, P.O. Box 92, Forest Grove, OR 97116

TABLE

POSITION

center

left

right

up

down

button

left up

right up

left down

right down

mask

T=PEEK (59471)

Joystick 1

255

223

239

127

191

63

95

111

159

175

TOR 15

Joystick 2

255

253

254

247

251

, 243

245

246

249

250

T OR 240

T= INT (T/16)

ANDT

15

13

14

7

11

3

5

6

9

10

27

Getting Started

Joystick Revised

Harvey B. Herman

joysticks add a new dimension to games. Moving a stick to indicate

direction is so much more natural than pressing a key.

My previous article, "PETing with a Joystick," (Compute #4) gave

some general hints on how to interface a joystick to the PET. In

particular, I showed how to modify BASIC programs so that they

worked with this device. Nevertheless, it is still a pain to change the

large number of old programs that may already be in one's library. I

looked around for an easier way to interace with the joysticks that

would entail minimal modification of pre-existing programs. This

article discusses a machine language program that allows one to use

joysticks, without any changes in programs which use the

conventional keyboard pattern to indicate the direction of player

movement.

Last year Kilobaud Microcomputing (March, 1979) had an article

on the PET User Port. The author, Gregory Yob, illustrated some

software which would service an additional keyboard connected to

the User Port. The PET interrupt routine uses a pointer in RAM

which can be changed to point to special User code. In the PET,

every 60th of a second an interrupt is generated to service, among

other things, peripherals like the screen and keyboard. It is possible

to modify the pointer to service a foreign device (in the above article

the new keyboard) before proceeding with the normal interrupt

processing. I used this idea to write a machine language program

which would service a joystick connected to the User Port.

The joystick controller program (shown in the figure) has three

entry points. The first (XON) is used to manually initialize the

interrupt vectors, program variables and User Port. The second

(XOFF) is used to manually disable the operation of the program

and to restore the old software vectors. The third (PCODE) is

automatically entered after the next interrupt once the program has

been initialized.

The code from line 500 on is the main section of the joystick

handler. It puts a number in the keyboard buffer which indicates

the direction to move next. This number, of course, depends on the

position of the joystick. The program attempts to minimize contact

bounce by determining if the character is stable at the User Port for

two successive (2 x 1/60 sec) jiffies. This value can be experimented

with to suit one's taste. The program follows the Yob example and

28

does not allow the keyboard buffer to overflow. A simplified

flowchart of the main section is shown in the figure. Modifications

necessary for new ROMs are shown in the table (not tested).

The number returned from the User Port falls in the range 63

to 255 (decimal). It is converted by a shift and AND operation to a

unique number in the simpler scale of 3 to 15 (decimal) (INT(T/16)

and T). This number in turn, is converted by table look up to an

indicator of direction movement and stored in the keyboard buffer.

A simple example should help to clarify matters. Use the table in

my previous article for reference.

If joystick 1 is positioned left, the hex value read at the User

Port is DF (223 decimal). The binary equivalent of this number is:

1101 1111

Next shift right four times (INT(T/16)) and the number is:

0000 1101

Finally, AND with the original number (AND T).

The result of these operations:

0000 1101

is 0D hex or 13 decimal.

This number is not in the normal keypad movement pattern.

However, we can convert it to "move left" by reading a table whose

14th value is ASCII 4. The latter number is stuffed into the
keyboard buffer. By positioning the joystick left, we end up with the

same result as if we had typed 4 on the keyboard. BASIC programs

which use 4 to move left can be used without any modifications. A

similar analysis applies to both joysticks and to all other numbers in

the normal keypad movement pattern. In addition, I chose to make

the button press mean the number five and straight up mean no

keypress.

The hex values given in the listing, can be converted to data

statements using a program which appeared in the PET Gazette (H.

Sherman, Spring 79, p. 14). Alternatively, one could use a monitor

program to load this program. In either case a monitor program is

probably the best way to enter the hex values initially.

The joystick controller program described here has been

helpful to me when converting programs that use one joystick. A

slightly more complicated version would be necessary if one needs to

use both joysticks in a two player game. I will be happy to answer

questions about the interface or program if you include a SASE.

29

TABLE

Old PET/New PET Equivalent Locations

Description Old New

Hardware interrupt vectors $219/$21A $90/$91

Hardware interrupt routine $E685 $E62E

Keyboard buffer index $20D $9E

Start of keyboard buffer $20F $26F

Interrupt return $E67E $E6E4

PARTIAL FLOW CHART

Joystick Controller Program

Compare previous character

same different

second compare ^ second compare

set first flag

1 store previous character

, » reset first flag, return
decrement

number counter

repeat character zero zero

initialize number

counter (12hex, 18dec)

not time

return

shift/AND

table lookup

zero zero

no keypress

or illegal

store in keyboard buffer

. return

30

Getting Started

033A-

033B-

033D-

0340-

0342-

0345-

0347-

034A-

034C-

034F-

0352-

0353-

0354-

0355-

0357-

035A-

035C-

035F-

0360-

0361-

0363-

0364-

0365-

0366-

0367-

036A-

0 36D-

0370-

0372-

0375-

0377-

0 37A-

037D-

0380-

0382-

0385-

0387-

038A-

038C-

0 38F-

0391-

0 394-

0397-

0398-

0399-

78

A9

8D

A9

8D

A9

8D

A9

8D

8D

58

60

78

A9

8D

A9

8D

58

60

A9

48

48

48

48

4C

AD

CD

F0

8D

A9

8D

4C

2C

10

CE

FO

4C

A9

8D

A9

8D

AD

4A

4A

4A

6A

19

03

1A

00

43

FF

CB

CC

85-

19

E6

1A

00

85

4F

CB

OB

CB

00

CC

B4

CC

08

CD

08

B4

FF

CC

OC

CD

CB

02

02

E8

03

03

02

02

E6

E8

0110

0120

0130

0140

0150

0160

0170

0180

0190

0200

0210

0220

0230

0240

0250

0260

0270

0280

0290

0300

0310

0320

0330

0340

0350

0360

0370

0380

0 39 0

0400

0410

0420

0430

0440

0450

0460

0470

0480

0490

0500

0510

0520 ;

0530 I

0540 ;

0550 J

03

03

03

03

03

03

03

03

03

03

0560

0570

0580

0590

0600

0610

0620

0630

0640

0650

0660

0670

0680

0690

0700

0710

0720

0730

0740

0750

0760

0770

0780

0790

0800

0810

; JOYSTICK CONTROLLER PROGRAM

•BA S33A

; DISABLE INTERRUPTS

XON SEI

; SET UP NEW INTERRUPT VECTOR

LDA #S6A

STA S219

LDA #S3

STA S21A

i INITIALIZE USER PORT

LDA #S0

STA SE843

; INITIALIZE PROGRAM VARIABLES

LDA #$FF

STA PREV

STA FIRST

;ENABLE INTERRUPTS AND RETURN

CLI

RTS

; DISABLE INTERRUPTS

XOFF SEI

; RESTORE INTERRUPT VECTOR

LDA #S85

STA S219

LDA #SE6

STA S21A

J ENABLE INTERRUPTS AND RETURN

CLI

RTS

; ADJUST STACK

STAX LDA #$0

PHA

PHA

PHA

PHA

; CONTINUE INTERRUPT PROCESSING

JMP SE685

; MAIN JOYSTICK HANDLER

; LOOK AT USER PORT

PCODE LDA SE84F

; SAME?-YES.

SECOND?-ADD TO KEYBOARD BUFFER.

THIRD OR GREATER?-KEEP COUNT.

ADD TO BUFFER IF > 12 TIMES

RETURN IF NOT

NO. RESTORE VARIABLES AND RETURN.

CMP PREV

BEQ EQ

; NOT SAME

STA PREV

LDA #S0

STA FIRST

JMP FINISH

; same

EQ BIT FIRST

BPL SKIP

; THIRD OR GREATER

DEC NUMB

BEQ RESET

; < 12 REPEATS

JMP FINISH

J SECOND TIME

SKIP LDA #SFF

STA FIRST

i PICKUP > 12 TIMES

RESET LDA #12

STA NUMB

i ACC/16 AND ACC

LDA PREV

LSR A

LSR A

LSR A

31

Getting Started

039A-

039B-

039E-

039F-

03A2-

03A4-

03A7-

03AA-

03AB-

Q3AD-

Q3AF-

03B1-

03B4-

03B7-

03B8-

03BB-

Q3BE-

03C1-

03C3-

03C6-

03C9-

03CB-

03CC-

03CD-

4A

2D

AA

BD

FO

AE

9D

E8

EO

DO

A2

8E

20

EA

4C

00

35

39

00

32

36

00

00

00

CB

BB

10

OD

OF

OA

02

00

OD

61

7E

00

00

38

31

00

00

03

03

02

02

02

03

E6

00

37

33

34

0820

0830

0840

0850

0860

0870

0880

089 0

0900

0910

0920

0930

0940

0950

0960

0970

0980

0990

1000

1010

1020

1030

1040

1050

1060

1070

1080

LSR

AND

A

PREV

; CONVERT TO ASCII

; zero?

TAX

LDA

RETURN

BEQ

TABL/X

FINISH .

i OTHERWISE STORE IN KEYBOARD BUFFER

; watch

COUNTER

1 BACK 1

FINISH

1

TABL

TABL1

PREV

FIRST

NUMB

LDX

STA

I NX

S20D

S20F*X

FOR BUFFER OVERFLOW

CPX

BNE

LDX

STX

#10

COUNTER

#S0

S20D

TO NORMAL CODE

JSR

NOP

JMP

• BY

• BY

• BY

• BY

.BY

• EN

STAX

SE67E

0 0 0 '5* 0 '798*

0 M32* 0 '46' 0

0

0

0

32

How To Program In

BASIC With The

Subroutine Power of

FORTRAN

Elizabeth Deal

Fortran and PL/I programmers may take subroutines out of the

library and append them easily to any main program. Those of us

programming in BASIC have to be very careful when we append

previously written subroutines, since the variable names have to be

identical, rather than passed through a COMMON storage area or

a parameter list (as in Fortran). This article describes a way to

simulate a COMMON storage area when programming in BASIC.

It is written for a upgrade PET, but can be modified for an old PET

or adapted for other microcomputers, such as Apple or Ohio

Scientific. It requires some extra code which occupies about 2500

bytes, but is is fast and can handle all PET-supported n-dimensional

arrays of strings and arithmetic values.

Subroutines in BASIC are internal procedures in that variables

active in the main program interact with those in the subroutine. In

order to pass parameters to and from a subroutine that has

previously been written for another application, we must either

rewrite the subroutine or assign all names from the calling program

to names used by the subroutine. For single variables it is a

nuisance, but easy to do. It is more complicated for arrays. Several

options are available: (1) rewrite the subroutine or the main

program, (2) move one element of the array at a time, (3) move the

entire array at one time if the subroutine requires presence of the

whole array. We'll avoid these unwieldly options.

To illustrate the problem, imagine that you have written a

subroutine to find minimum and maximum values of a 1000

element array S, but the main program uses array M. Perhaps your

subroutine uses S so many times that you dread the idea of

rewriting it, or the main program calls the subroutine for many

different variables. To use the appended subroutine, the main

program will assign a dimension of 1000 elements to arrays M and

S. It will then move all elements ofM array into S array and then

34

Programmer's Corner

use :he subroutine. The trouble with this procedure is that two

thousand elements are used where only one thousand are needed

it takes eight seconds to move the array one way while BASIC

rprets the instructions in machine code one thousand times.

e we to pass one value at a time, the memory area would be

, but the program still would have to spend eight seconds

moving the array element into a single variable.

My solution to this memory and time wasting lies in moving

the name of the array instead of the array elements. The array

> put. It is never moved, but its name is changed back and forth

apout half a second.

The procedure to use for the entire project is to write the main

program, append whatever subroutines one needs (via Toolkit or

merge or append program), initialize single variables, append

•outine presented here (from line 2520 to 3680), and insert the

ng information between two dotted lines in the main program.

More than one variable can share a name with the name used

subroutine (see array MK% and M%). The number of such

ibles used in one program is limited only by what can fit in 255

s of string QS$. String QS$, together with the DIM statement,

e key to the program. It is a directory of array names in the

in which they appear in the DIM statement. For instance:

Posit on in the QS$ string: 12 3 4 5 6 7

QS$ string contains: M%, MK%, M, MQ$, SI%, S, SQ$

DIM statement contains: M%, MK%, M, MQ$.

In this example, names that begin with "S" refer to arrays used in

the subroutine. The asterisk is used to emphasize that they must not

appear in the DIM statement. They should also not be dimensioned

in your subroutine. Actually, it is delightful to get a

REDIMENSIONED ARRAY ERROR here, since it is the proof that

the name change works.

PET provides us with all the information we need to be able to

change names. Pointer to the start of arrays is stored in locations 44

and

inte

Wer

saved

only

stay

in

any

the

link

in the i

vari&i

by

is th

order

and 45 (125 and 127 in original PET). Pointer to the end of arrays is

in lc cation 46 and 47 (128 and 129 for original PET). Array names

tored in the first two bytes preceding each array, and theare j

memory size required by that array is in bytes three and four. In the

initializing routine, several Q-arrays are declared. The end of those

arrays becomes the pointer to the beginning of the arrays that we

are concerned with — those in the DIM statement between two

dotted lines. The program (lines 2720 to 2840) reads a name of an

array and stores each character, separately, and the address, in a

35

Programmer's Corner

table. The pointer is then moved to the next array by the number of

bytes the first array used. When the names and address of arrays in

common have been processed, the program modifies the names in

the QS$ string (lines 2960 to 3100) so that each byte will correspond

to the internal format of the PET name storage. The two lists are

then compared (lines 3100 to 3200) byte by byte and, if they match,

the program continues. If there is any discrepancy, it is indicated in

the error message and the job is abandoned. (If, during the

execution, the arrays are moved, the job will also be abandoned and

the program will count the byte shift. However, if it happens in a

spot undetectable by my routines, the standard PET error messages

will result.)

In order to tell the find + set routines which names to change,

we use position numbers in the GS$ string. Thus, to replace name

M with S we will set variable QM=3 which corresponds to the

third name in the QS$ list, and variable QS = 6 which corresponds

to the sixth name in the QS$ list The find + set routine will put a

name referred to by the QS variable into the name referred to by

the QM variable, or S over M. Now the work subroutine uses S,

and, on return, the original name is reset so that the calling

program can continue whatever it is to do with array M.

The output of the demonstration program consists of showing

what happens to the variables at any given time. It occupies about a

screenful. Two trivial subroutines are used. #1 adds one to integers,

finds MIN and MAX of a floating point array and adds two

characters to the elements of string array. #2 creates an array in the

subroutine and passes those values to the main program, showing

that the process works in both directions and that it does not

matter where the array is created.

To make it easier to understand the listing, I have named all

variables that are related to or used in the initialize, find + set, and

reset routines with a letter "Q" in the first position. Non-Q

variables are general variables used in the main program and

mathematical routines.

There are several important restrictions that must be observed.

Most "BAD SUBSCRIPT ERROR," or "ILLEGAL QUANTITY

ERROR" messages occurring during the find + set routine and

most of the erroneous data subsequent to return from reset routine

will be due to failure to comply with these rules:

1. All single variables and functions (from the main program and

subroutines) must be assigned a value prior to the DIM statement in

the main program and prior to using undimensioned, small arrays.

36

Programmer's Corner

This is a good rule to follow anyway. Commodore advises that

arrays are actually moved seven bytes each time a new single

variable is defined in a program. Our program depends on arrays

staying in one place throughout the entire program and

subroutines. I have not yet found a simple way to have a really

independent COMMON area.

2. Provide a string (QS$) of one or two character array names that

will be used in common. The array name used in a calling program

must precede the corresponding names in the subroutine. In the

demonstration program M% and MK% precede the listing of SI%,

but M% and MK% need not be adjacent to SI% or each other in

the QS$ string.

3. Arrays from the main program that will be subject to name

change must be dimensioned first. They must be contiguous. They

must be in the same order in which they were listed in the QS$

string. The type of arrays that are common between the calling

program and the subroutine must agree (i.e., integer with integer),

the number of dimensions must agree, and their size must agree only

to the extent required by the logic of the program. (If array M was

dimensioned to twenty elements, but the subroutine tried to use an

array S of fifty, you'd end up with a subscript error or garbage. If

the array was dimensioned to fifty, and the work subroutine used

twenty, there is no problem.)

4. Just before going into the find + set subroutine, tell the program

(by use of QM and QS variables) which n ames will be changed.

QM must be smaller than QS.

The initialize, find + set and reset routines take up about 2500

bytes at execution time. That is equivalent to two 250 element

arrays of floating point numbers. From the memory point of view, it

makes sense to use these routines only when the array size exceeds

that amount. From the time point of view, it makes sense to use

them when the array size exdeeds fifty elements. It takes half a

second to change and reset the name, but it takes two seconds to

move the array one way and two seconds to move it back. From the

editing point of view, it is, for me, easier to use this procedure than

to fool around with names. The hassle of defining single variables is

made easier by PAICS Programmer's Toolkit DUMP command.

Note on terms used in this article:

Fortran programmers should note that this system simulates

COMMON in its ability to pass the arrays in BASIC, bu;t that it is

based on the concept of EQUIVALENCE, and can be used as such.

37

Programmer's Corner

PL/I programmer will see that it is similar to the DEFINED (and

not BASED) attribute of variables, and that the allocation is still

STATIC.

1000 REM==============================

1020 REM SIMULATION OF COMMON IN BASIC

1040 REM BY

1060 REM ELIZABETH DEAL

1080 REM 337 W.FIRST AVEf MALVERNr PA

1100 REM 19355; (215)647-4876

1120 REM_ APRIL 9, 1980

1140 REM REF:

1160 REM 1) GENE BEALS OF AB COMPUTERS

1180 REM 2) PET USER NOTES 3) COMPUTE

1200 REM 4) LEN LINDSAY :OLD PET/NEW

1220 REM PET IN MICROCOMPUTING

1240 REM 5) COMMODORE MANUAL

1260 REM==============================

1280 REM

1300 REM DEFINE NON-Q SINGLE-V,FN

1320 IN=20:FL=15:LI$=nn:FORI=lTO39:

-iLI$=LI$+n-n :NEXTI: JI=0 : JF=0 :Q=0 :

-»KX=0

1340 MN=0:MX=0:1=0:J=0:K=0:Sl=2:S2=2:

-iS3=2 : Z=64 :L=0 :M=0 :N=0 :TX=0

1360 REM

1380 REM

1400 :

1420 REM LINK MAIN WITH Q SUBROUTINES

1440 REM DEFINE QS$fINITIALIZE IN THE

1460 REM SUBf DIM ARRAYS IN COMMON,

1480 REM BACK TO INIT.r THEN MAIN

1500 :

1520 QS$=ltM%,MK%,M,MQ$,SI%,S,SQ$"

1540 GOSUB2520

1560 DIM M%(IN)rMK%(IN)fM(FL)

1580 DIM MQ$(Sl,S2fS3)

1600 GOSUB2720

1620 :

1640 REM

1660 REM

1680 REM BACK TO MAIN PROGRAM

1700 REM

1720 REM DIM ALL OTHER ARRAYS

1740 REM (NONE HERE)

1760 REM ASSIGN VALUES

1780 FORJ=1TOIN:MK%(J)=J:NEXT

1800 FORJ=1TOFL:M(J)=-J/100:NEXT

1820 FORI=1TOS1:FORJ=1TOS2:FORK=1TOS3:

38

-»MQ$ (I, J, K) =CHR$ (I+Z) +CHR$ (J+Z) +CHR

i$(K+Z)

1840 NEXTK,J,I

1860 REM ASSIGN QS,QM FOR NAME

1880 REM CHANGE; POKE NEW NAME; USE

1900 REM IN SUBROUTINES; RESET NAMEf

1920 REM CONTINUE.

1940 REM

1960 PRINTLI?: REM DEMO FEW ARRAYS

1980 QS=7:QM=4:GOSUB3300:QS=6:QM=3:

-iGOSUB3300 :QS=5 :QM=2 :GOSUB3300 :

-iREM FIND+SET

2000 JI=IN:JF=FL:I=S1:J=S2:K=S3:

-iGOSUB2260:PRINTnSUB#l, ";

2020 GOSUB3460:REM RESET ALL NAMES

2040 PRINT:PRINT11 (MK%) "; :FORJ=1TOIN:

iPRINTMK%(J);:NEXT:PRINT

2060 PRINT:PRINT"(M)";:FORJ=1TOFL:

-.PRINTM(J) ; :NEXT:PRINT

2080 PRINTTAB(10) fIMIN=nMN", MAX=nMX

2100 PRINT:PRINT11 (MQ$) "; :FORI=1TOS1:

-iFORJ=1TOS2:FORK=1TOS3:PRINTMQ$(I,

-»J,K) ;

2120 NEXTKfJfI:PRINT:PRINTLI$

2140 REM DEMO ONE ARRAY

2160 QS=5:QM=1:GOSUB3300:KX=IN:GOSUB2380

-.:PRINT"SUB#2, "; :GOSUB3460
2180 PRINT:PHlNTn(M%)";:FORJ=1TOIN:

-.PRINTM% (J) ; :NEXT:PRINT:PRINTLI$

2200 END: REM END MAIN

2220 REM

2240 REM===WORK SUB#1=================

2260 ::FORQ=1TOJI:SI%(Q)=SI%(Q)+1:

-i NEXTQ

2280 FORL=1TOI:FORM=1TOJ:FORN=1TOK:

-iSQ$(LrMfN) = ll*il+SQ$(LfMfN)+l7":
iNEXTNfMfL

2300 MX=-1.7E38:MN=1.7E38:FORJ=1TOJF:

iIFS(J)<=MNTHENMN=S(J)

2320 IFS(J)>=MXTHENMX=S(J)

2340 NEXTJ:RETURN

2360 REM===WORK SUB#2=================

2380 ::FORK=1TOKX:SI%(K)=K:NEXT:RETURN

2400 REM

2420 REM==*==*==*==*==*==*==*==*==*==*

2440 REM

2460 REM===SUB: INITIALIZE============

2480 REM

2500 REM DCL QfS: SINGLE,FNfARR

2520 ::PRINT"INIT1":DEFFNQA(QP)=PEEK(QP)

39

Programmer's Corner

-i+256*PEEK(QP+l)

2540 QB=0:QC=0:QD=0:QE=0:QF=0:QH=0:QI=0:

-.QJ=0 : QK=0 : QL=0 : QM=0 : QN=0

2560 QP=0:QQ=0:QR=0:QS=0:QT=0:QU=0:QW=0:

iQX=0:QY=0:QZ=0:Q=0

2580 QK$=lin:QM$="fI:QL=LEN(QS$)/2

2600 IFPEEK(50003)=1THENQ5=44:Q6=46:

iQ7=54:Q8=152:GOTO2640

2620 Q5=126:Q6=128:Q7=136:Q8=516

2640 ::DIMQG(QL)fQl(QL)fQ2(QL),QD$(QL),

-»Q3(QL) fQ4(QL) ,QN$(QL) :FORQ=1TOQL

2660 QD$(QL) = nn:QN$(QL) = fltI:NEXT

2680 QZ=FNQA(Q5):QI=FNQA(Q6):PRINT"MAIN"

-.: RETURN

2700 REM ARRAYS FROM DIM

2720 ::PRINT"INIT211 :QD=FNQA(Q7) :

-.GOSUB3640:QH=QI:QE=FNQA(Q6)

2740 ::QK=QK+1:QG(QK)=QH:QC=QG(QK):

-iQl (QK) =PEEK (QC) :Q2 (QK) =PEEK (QC+1)

2760 QX=Q1(QK):QY=Q2(QK)

2780 QT=0:QT=QT+37*(-(QX>=128ANDQY>=128)

-.) +36*(- (QX<128ANDQY>=128))

2800 QX=QX-128*(-(QX>128)):QY=QY+128*(-(

-iQY=0)) -128* (- (QY>128))

2820 QD$(QK)=CHR$(QX)+CHR$(QY)+CHR$(QT):

iREM DO NOT COMPARE QD$ TO QN$!!

2840 QN=FNQA(QC+2):QH=QH+QN:IFQH<QEGOTO2

•V740

2860 REM ARRAYS FROM QS$

2880 QU=1:FORQ=1TOLEN(QS$):QK$=MID$(QS$r

-iQ, 1) : IFQK$= ", flTHENQU=QU+l: NEXTQ

2900 QN$(QU)=QN$(QU)+QK$:NEXTQ

2920 IFQU<2THENPRINTn***CORRECT QS$":END

2940 REM FIX NAMES IN QS$

2960 FORQ=1TOQU:QM$=QN$(Q):QF=0:QJ=0:

iQT=ASC(RIGHT$(QM$,1))

2980 QT=QT*(-(QT=36ORQT=37)):QF=128*(-(Q

-»T=37)) :QJ=128*(-(QT=37ORQT=36))

3000 IFLEN(QM$)>2GOTO3060

3020 IFQJ=0ANDQT=0THENQM$=QM$+CHR$(0):

iGOTO3060

3040 QM$=LEFT$(QM$f1)+CHR$(128)+CHR$(QT)

3060 ::QX=QF+ASC(LEFT$(QM$fl)):QY=QJ+ASC

i(MID$(QM$,2,l)):QY=QY-QJ*(-(QY>255

-))
3080 Q3(Q)=QX:Q4(Q)=QY:REM PRINTQ;TAB(4)

iQM$;TAB(10)QX;QY

3100 NEXTQ:QQ=0:FORQ=1TOQK:IFQ1(Q)=Q3(Q)

iANDQ2(Q)=Q4(Q)GOTO3140

3120 QQ=QQ+1:QN$(Q)=QN$(Q)+" <— ??"

40

3140 ::NEXTQ:IFQQ=0GOTO3200

3160 PRINT:PRINT"***NO MATCH !":PRINT:

iPRINT"QS/QM QS$"TAB(20)"DIM":
-iPRINT

3180 FORQ=1TOQU:PRINTTAB(1)QTAB(7)QN$(Q)

-.TAB(20)QD$(Q) :NEXTQ:END

3200. PRINTIfMAIN.":PRINT"PRESS 'SHIFT1 -i

-.TO CONT MAIN PRGM" :WAITQ8,1:

-.PRINT11 OK"

3220 RETURN

3240 REM

3260 REM===SUB: FIND+SET NAME=========

3280 REM

3300 ::QD=FNQA(Q7):GOSUB3640

3320 IFQS<=QMTHENPRINT"***BAD POSITION -.

-.NUMBERS" : PRINT"QS= "QS " , QM= "QM: END

3340 QR=QG(QM):PRINT"SET "QN$(QS)TAB(8)"

-iOVER "QN$(QM) ; :PRINTTAB(18) "AT"QR

3360 QB=QB+1:QG(QM)=-QG(QM):POKEQRf

-iQ3 (QS) : POKEQR+1 , Q4 (QS)

3380 RETURN

3400 REM

3420 REM===SUB: RESET NAME============

3440 REM

3460 ::IFQB<1THENPRINT"***IMPROPER CALL -.

-/TO RESET":END

3480 QD=FNQA(Q7) :GOSUB3640:PRINT"RESET -.

-.NAME AT";

3500 FORQ=1TOQK:IFQG(Q)>0GOTO3540

3520 QG(Q)=-QG(Q):QR=QG(Q):POKEQR,Ql(Q):

-.POKEQR+1 fQ2(Q) :PRINTQR;

3540 ::NEXTQ:PRINT:RETURN

3560 REM

3580 REM CHECK COMMON ARRAYS POS

3600 REM CALLED BY INITfSETfRESET

3620 REM

3640 ::QW=FNQA(Q5):IFQW=QZTHENRETURN

3660 PRINT: PRINT"***ARRAYS MOVED"QW-QZ"

-iBYTES"

3680 PRINT" PRIOR TO LINE"QD:END

3700 REM==============================

41

Programmer's Corner

Sorting Sorts:

A Programming

Notebook

Part One

Belinda and Rick Hulon

An important aspect of many business applications involving

microcomputers is the selection and efficient use of an appropriate

sorting routine. While sorting routines are readily available in the

literature and/or easily programmable, some thought should be given

to the type of sort used. This two-part article will deal with six of the

better known sorting algorithms: Selection Sort, Bubble Sort, Shell

Sort, Quick Sort, Merge Sort, and Heap Sort. These sorts range from

very simple to quite complex, from extremely slow to exceedingly fast.

This first article will concern itself with the simpler, slow to

intermediate sorts.

In this article we evaluate Selection Sort, Bubble Sort and Shell

Sort. Selection Sort is a very simple, straightforward routine (see

Figure 1). Its method is to iteratively pass through the list of items to

be sorted. On the initial pass, the first item is compared with each

successive item, exchanging it with any element that is "less than"

the first item. The "new" first element is then compared to each item

after the point of exchange. This process continues until one entire

pass is completed. The procedure is then repeated for the second item

in the list, then the third, etc., until the last item is reached. Thus,

Selection Sort essentially "selects out" the smallest item on the first

pass, the next smallest on the second, and so on. This sort, then,

always goes through a set number of passes regardless of the state of

the list. An already sorted list would still go through the entire

routine as though it were not sorted.

Bubble Sort accomplishes its task not by comparing one item to

all the others as in Selection Sort, but rather by comparing adjacent

elements in the list, switching whenever necessary. In addition, it sets

a "flag" to indicate when no exchanges have been made in a given

pass, thus signalling the end of the sort. Bubble Sort, therefore, takes

only as many passes as it needs. An already sorted list would use one

pass to determine that no exchanges were made. A listing of Bubble

42

Sort can be found in Figure 2.

The third sort to be considered, Shell Sort, is somewhat more

complicated. Shell Sort is essentially an extension of Bubble Sort.

Initially a "gap" size is determined to be the largest integer less than

or equal to half of the list size (e.g., if the list contained 11 items, the

initial gap size would be 5). This gap size supplies the essential

difference between Shell Sort and Bubble Sort, for, instead of

only comparing adjacent items, Shell Sort compares items separated

by the gap size, exchanging them when necessary. Once it determines

that no exchanges were made on the last pass with a particular gap

size, the size of the gap is cut in half and the process continues. As

one can easily see, this results in a Bubble Sort when the gap size

becomes 1, but since the list is already partially sorted, it does not

require as much time for larger lists as a regular Bubble Sort would.

Shell Sort, like Selection Sort, does not provide for an "easy out."

However, it does not go through the routine a set number of times: a

pre-sorted list will require only enough passes to obtain a gap size of

1, since there will never be any exchanges. (See Figure 3)

10 FOR 1=1 TO N-l

20 FOR J=I+1 TO N

30 IF V(I) <= V(J) THEN 70

40 S=V(I)

50 V(I)=V(J)

60 V(J)=S

70 NEXT J

80 NEXT I

90 END

Figure 1

10 F=l

20 IF F=0 THEM 120

30 F=0

40 FOR 1=1 TO N-l

50 IF V(I)<=V(I+1) THEN 100

60 S=V(I)

70 V(I)=V(I+1)

80 V(I+1)=S

90 F=l

100 NEXT I

110 GOTO 20

120 END

Figure 2

10 GP=N

20 IF GP<=1 THEN 16D

43

Programmer's Corner

30 GP=IMT(GP/2)

40 HI=K-GP

50 F=0

60 FOR 1 = 1 TO III

70 GI=GP+I

80 IF V(I)<=V(GI) THEN 130

90 S=V(I)

100 V(I)=V(GI)

110 V(GI)=S

120 F=l

130 NEXT I

140 IF F=l THEN 50

150 GOTO 20

160 END

Figure 3

WHERE:

V =Array containing data to be

sorted

S =Holding variable used for

exchanging items

N =Number of items to be

sorted

F =Fla.g indicating occurrence

of an exchange

GP =Gap size

MI =Number of times the loop

must be iterated on one

pass; depends on gap size

GI =Index for comparison;

depends on gap size

Several factors are involved in determining the efficiency of a

sorting algorithm. The time involved, or the speed of the sort, is

usually one of our major concerns, especially with micros. Two

important factors contributing to the speed and efficiency of a sort

are the number of comparisons made and the number of actual

exchanges involved in sorting a list. In this case we counted any

comparison made (including the checking of flags), not just data

comparisons. Although we are not directly concerned with CPU

time in terms of actual cost, it seems obvious that the few

comparisons and exchanges made in the same (or less) amount of

time, the more efficient the sort will be. These three factors then,

time, number of comparisons, and number of exchanges comprise

our criterion for comparison. The actual method used was to

generate 30 different lists of random numbers, having each algorithm

sort each list. The 30 values for each of the criterion for the different

list sizes were averaged to produce the values given in Table 1. This

44

procedure was followed for lists of size 10, 25, 50 and 100. All data

was obtained from a Commodore CBM with 32K of internal RAM.

BUBBLE SORT

List Size

10

25

50

100

SELECTION SORT

SHELL SORT

TABLE 1

Number of

Comparisons

75

508

2098

8811

45

300

1225

4950

72

339

967

2669

Number of

Exchanges

21

153

592

2450

21

144

505

1815

11

63 .

155

399

Time

1.8s

12.4s

50.7s

3.6m

1.1s

7.3s

28.0s

1.8m

1.5s

7.4s

20.9s

57.2s

WHERE:

s = seconds

m = minutes

It should be noted that upon beginning this article there were

some basic expectations. Having already run a similar project on a

large computer, we expected similar results from the CBM. The

initial project showed, true to the numerous textbooks available, that

while Selection Sort and Bubble Sort were good for small lists (even

superior to more sophisticated sorts), Shell Sort would be better for

larger lists. Also, Selection Sort should be faster than Bubble Sort,

due to the nature of the algorithms (we omit the mathematical

determination of this situation). In this experiment we did duplicate

our first results fairly well, as can be seen from Table 1. However, the

amount of time involved seemed flabbergasting. Of course, we could

not have expected a micro to compare in speed to a mainframe, but

the differences were disturbing. For example, the time involved in the

sorting of a list of 500 items by one of these sorts ran into hours,

somewhat troublesome for business applications. Having mulled over

this for a while we came to a tentative conclusion which seemed to

explain this occurrence. Our original sorting routines were written in

PL/1, a batch language for use on an IBM 360/370. In this situation

the source code went through a compiler which translated it into

machine code for execution. On our CBM, however, the routines

were written in interpreted BASIC. One important difference

45

between an interpreter and a compiler is that, with a compiler, the

source is "compiled" only once. The machine code is produced and

the higher level language is no longer a concern. With an interpreter,

on the other hand, each line of code is interpreted every time it is

encountered. This, then, should account for much of the excessive

time observed. As a test, we wrote Selection Sort (chosen for its

simplicity) in machine code. This eliminated the interpretation stage.

This gives us a better idea of just how much time is actually involved

in sorting the lists. The elimination of an interpreter changed the

time involved drastically. While the BASIC routine required 1.1

seconds to sort a list of only 10 items, the machine code version took

it Size

10

25

50

100

TABLE 2

Time for

BASIC routine

1.1 sec

7.3 sec

28.0 sec

1.8 min

Time for

mach. code routine

0.00 sec

0.02 sec

0.05 sec

0.17 sec

solittle time as to record a duration of 0 seconds! Since the built-in

timer of the CBM records time in "jiffies" or 1/60 of a second, it

actually took less than 1/60 of a second to sort the list. The results

are even more impressive for a list of 100 items. While BASIC

required 109.2 seconds (just under 2 minutes) the machine code

version required only .2 seconds. In other words, the BASIC

algorithm took 546 times longer than did the machine code routine.

Much of this extra time, then, seems to be a result of the BASIC

interpreter. Thus, what might seem to be a very efficient sort could

actually prove to be worse than a less efficient sort, depending on the

amount of code involved and the number of items to be sorted. In the

design of business software, as much attention should be paid to the

language (and therefore type of compiler or interpreter) as to the type

of sort involved. If you are willing to work with machine code then

more efficient sorts should be considered. We will include machine

code listings in the next article along with the evaluations of Quick

Sort, Merge Sort, and Heap Sort.

46

Part Two

As mentioned in the first article of this two-part series, the selection

of an appropriate sorting algorithm is crucial for many business

applications involving microcomputers. While the first article

concerned itself with the slow to intermediate sorts (Selection,

Bubble and Shell), this article deals with the faster, more

sophisticated (and therefore less intuitive) algorithms. At the outset

of the writing of this article three "fast" sorts were under

consideration: Quick Sort, Heap Sort, and Merge Sort. Initially

Merge Sort was thought to be an appropriate sort since it is not

only fairly fast, but also is the one chosen as the "built-in" sorting

algorithm for many mainframes. Upon closer examination it was

determined that Merge Sort was not a viable algorithm for a micro

(at least not the version to which we had access). While the actual

programming could be done, the routine would require an immense

amount of data storage and numerous array swaps. Since this

algorithm was of dubious value for business applications on a micro,

we decided to delete it from the article. This article will instead

concentrate on the comparison of Heap Sort and Quick Sort as well

as relating them to the previously examined sorts. It will also discuss

the advantages of a machine code algorithm over its BASIC

counterpart and present a hopefully usable machine code version of

Heat Sort for your implementation.

Quick Sort is a fairly fast sorting algorithm which achieves its

goal by subdividing the original list of data items. This is done by

initially placing the first item in the list in its proper place relative to

the other items in the list, i.e., all of the items to its "right" are

larger. This process continues with the two newly created lists until

the entire array is sorted. Quick Sort, though complicated, is a very

efficient sort.

Heap Sort is an even more complicated algorithm which

involves the use of a "binary tree". The sort is achieved by

"traversing" the tree. The larger items are worked up a "branch,"

one by one, until they reach the top. Each is then placed in its

appropriate place at the bottom of the heap and a new value

"climbs" the tree. While this algorithm is even less intuitive than

Quick Sort, it, too, is a very speedy algorithm.

It is important to note that, while a thorough understanding of

these algorithms would be helpful in terms of making modifications,

etc., it is not crucial to the implementation of the listings provided

as useful tools. The above descriptions are obviously not intended

47

Programmer's Corner

to provide you with a complete understanding of how these routines

work. Rather, they are simply meant to give you a general idea of

their functioning. There are numerous books on the subject of

sorting which would provide you with a better understanding of

these algorithms. Since such a discussion would be lengthy, is not

the purpose of this article and is not necessary to use the presented

routines, we will not engage in a further description of the

algorithms.

In the last article, time, number of comparisons, and number

of exchanges were used as the basis of comparing the sorting

algorithms. Due to the nature of the routines currently being

scrutinized, it becomes difficult to define comparisons and

exchanges. Certainly the end result would not be something one

could compare to the more straightforward comparison and

exchange counts of the slower algorithms. For that reason, this

article shall concentrate on the less questionable concept of time.

Indeed, for most users this will be the most important factor

anyway.

For consistency, the data was gathered in the same manner as

before: thirty lists of random numbers were generated, sorted and

timed. The times were then averaged to give the data reported in

Table 1. This process was repeated for lists of size 10, 24, 50, 100,

500.

Upon examining the data in Table 1, it is easy to see that

Quick Sort was consistently faster than Heap Sort. Our prediction

was that Heat Sort would be the faster sort on larger lists, but it did

not hold true. However, one must remember that, unlike the sorts

in the last article, there are numerous versions of Quick Sort and

Heap Sort and Heap Sort available. Consequently, the results could

vary depending on the rendition used. For our particular versions,

Quick Sort became increasingly faster than Heap Sort as the list size

increased. Looking back at the data collected for the three slower

sorts, one can readily verify that Quick Sort and Heap Sort are

much more efficient. For lists often, the "fastest" time recorded for

the "slow" sorts was 1.1 seconds (Selection Sort). From Table 1 we

can see that Quick Sort required .99 seconds and Heap Sort 1.31

seconds to sort ten items. This is not surprising since Heap Sort is

known to be more efficient on larger lists. Indeed, as the list size

increases, both Heap Sort and Quick Sort out-perform the others.

For lists of size 100, Quick Sort required 16.2 seconds and Heap

Sort 25.17 seconds; the least time recorded for the slower sorts was

57.2 seconds by Shell Sort. In fact, Selection Sort required 1.8

48

Programmer's Corner

minutes and Bubble Sort 3.6 minutes to sort 100 items. One might

also note that while it took Quick Sort an average of 105.12 seconds

to sort 500 items, it was not even feasible to sort 500 items by the

slower sorts due to the immense amount of time involved.

It was shown in the last article that, due to the nature of an

interpreter (vs. a compiler), BASIC algorithms are much slower

than their counterparts in a compiled language (ex. PL/1). Since an

interpreter must translate each BASIC statement into machine code

every time it is encountered, an algorithm written in machine code

should proceed much faster. Indeed, the data presented in the

previous article showed that a machine code version of Selection

Sort (a "slow") sorted 100 items in 0.17 seconds! Even Quick Sort

required as much as 16.2 seconds to sort a list of this size. In fact,

Quick Sort required .99 seconds to sort only ten items. It took

Quick Sort almost six times longer to sort ten items than the

machine code version of Selection Sort to sort 100 items. It should

be obvious then that a machine code version of even a slow sort

would be preferable to a BASIC version of a fast sort. While the

BASIC algorithms presented were capable of sorting random

numbers of more than one byte, only random numbers between 1

and 100 were used so that each number was only one byte in

length. The machine code sort was very specialized in that it would

only sort 255 or fewer single byte data items. For this reason no

listing is presented. Included, however, is a machine code version of

Heap Sort which will sort more than one byte of data. The data

provided in Table 2 was obtained by sorting character strings of 10

or fewer characters (bytes). The numbers cannot be directly

compared to the other sorts since the algorithm does sort larger

items of data, but, even so, one can easily see that it is far superior

to the BASIC algorithms.

The listing provided of the machine code version of Heap Sort

is actually a BASIC program containing the sorting routine in

DATA statements. Lines 110-190 of the program poke the

algorithm into memory beginning at hex location $1600. Please note

that this routine is not relocatable, therefore it will not be possible

to alter its starting position. The BASIC program as listed is very

similar to the one we used to gather the data that appears in Table 2

in that it generates N random character strings with length varying

from one to ten bytes and sorts those items. We suggest that if you

intend to use this sorting algorithm you first copy the given listing

verbatim. In that way you will very easily be able to determine if

indeed you have copied the entire list of data statements properly by

49

simply running the program. Be sure, however, to save the program

before you attempt to execute it, for if any data statements were

copied incorrectly you could easily lose control of the execution and

be forced to implement a cold start. Once you are sure the

algorithm is functioning correctly, you may proceed to modify the

program to suit your particular need.

As an example of how you might use this algorithm, suppose

you have 100 character strings stored on tape that you wish to have

sorted and printed on the screen. You could accomplish this task by

making the following additions and substitutions:

90 OPEN 1,1,(filename

350INPUT#l,A$

360 L = LEN(A$)

420 X$ = MID$(A$J,1) :PRINT X$;

440 POKE BD + P +],ASC(X$)

After keying in the above lines, it is simply necessary to run the

program and respond to the list size prompt with "100". As another

example, suppose the situation were the same as the above, but

instead of character strings, the tape file contained monetary

amounts in the range $0.00 to about $65,000.00. The following

changes should be made.

90 OPEN l,l,0,filename

350 INPUT#1,A:PRINT A

360 L = 3

400 A2 = INT(A)

410 Q = INT(A2/256)

420 Rl = A2-Q*256

430 R2 = INT((A-A2) *100 + 100 + .5)

440POKEBD + P + 1,Q

450 POKE BD + P + 2,R1

460 POKE BD + P + 3,R2

500

800 A = 256*PEEK(Y + 1) + PEEK(Y + 2)

820 A = A + (PEEK(Y + 3)/100)

840 PRINT A

860

880

In total, on a 32K machine, this algorithm is equipped to handle

approximately 5000 bytes of data. It will function on 8K, 16K, and

32K Commodore CBMs and PETs, but of course the amount of

data that can be used will depend on the amount of RAM available.

This two-part series of articles, then, has concerned itself with

the selection of an appropriate sorting algorithm. Listings of slow,

fast, simple and complex sorts have been provided and at least

50

Programmer's Comer

partially explained. It has been pointed out that such criteria as the

time involved and the amount of knowledge and actual

programming required must always be of concern to the user when

choosing a sorting routine. Depending on the type of application

needed and the expertise of the user, any of the BASIC algorithms

or the machine code sort that we have presented could be

implemented. Microcomputers can be of vast benefit to the small

business, but only if used properly and wisely. The selection of an

appropriate sorting algorithm is an important part of using your

micro wisely.

List Size

10

25

50

100

500

Avg. time for Quick Sort

List Size

10

25

50

100

500

.99

3.09

7.11

16.21

105.12

Time in seconds

TABLE 1

Time (sees) for mach.

.09

.14

.23

.45

2.67

TABLE 2

Avg. time for Heap Sort

1.31

4.37

10.69

25.17

169.91

code Heap Sort

HEAPSORT

100 L=INT(N/2)+l

120 K=N

140 IF L=l THEN 220

160 L=L-1

180 S=V(L)

200 GOTO 300

220 S=V(K)

240 V(K)=V(1)

260 K=K-1

280 IF K<1 THEN V(I)=S:GOTO 440

300 J=L

320 I=J

340 J=J+J

360 IF J>K THEN V(I)=S:GOTO 140

51

Programmer's Corner

380 IF J<K THEN IF V(J)<V(J+1) THEN J=J+1

400 IF S>=V(J) THEN V(I)=S:GOTO 140

420 V(I)=V(J) .-GOTO 320

440 END

QUICK SORT

100 TP=1:LOWER(1)=1:UPPER(1)=N

120 IF TP<=0 THEN 480

140 LB=LOWER(TP):UB=UPPER(TP):TP=TP-1

160 IF UB<=LB THEN 120

180 I=LB:J=UB:TEMP=V(I)

200 IF J<1 THEN 260

220 IF TEMP>=V(J) THEN 260

240 J=J-1:GOTO 200

260 IF J<=I THEN V(I)=TEMP:GOTO 400

280 V(I)=V(J):I=I+1

300 IF I>N THEN 360

320 IF V(I)>=TEMP THEN 360

340 I=I+1:GOTO 300

360 IF J>I THEN V(J)=V(I):J=J-1:GOTO 220

380 V(J)=TEMP:I=J

400 TP=TP+1

420 IF I-LB<UB-I THEN LOWER(TP)=1+1:

UPPER(TP)=UB:UB=I-1:GOTO 160

440 LOWER(TP)=LB:UPPER(TP)=1-1:LB=I+1

460 GOTO 160

480 END

HEAP SORT IN MACHINE CODE

100 PRINT11 ONE";

105 PRINT" MOMENT, PLEASE.

110 BS=5632:BA=6402

120 FOR I=BS TO BS+1000

140 READ A

160 IF A=500 THEN 240

180 POKE IfA

190 NEXT I

240 P=0:C=0:PRINT"

260 INPUT"HOW MANY ITEMS";N

265 PRINT" THE ORIGINAL LIST

270 BD=BA+2*N+10

280 FOR 1=1 TO N

290 PRINTI" ";

300 Q=INT((BD+P)/256)

320 R=(BD+P)-Q*256

340 POKE BA+C,R:POKE BA+C+1,Q

360 L=INT(10*RND(1))+1

380 POKE BD+PfL

400 FOR J=l TO L

52

Programmer's Corner

420 X=INT(26*RND(1))+65:PRINTCHR$(X);
440 POKE BD+P+JfX

460 NEXT J

480 P=P+L+l:C=C+2

500 PRINT

520 NEXT I

540 T1=TI

560 Q=INT(N/256)

580 R=N-Q*256

600 POKE 6168,R:POKE 6169,Q
620 L=INT(N/2)+l

640 Q=INT(L/256)

660 R=L-Q*256

680 POKE 6170fR:POKE 6171fQ

700 SYS 05632

720 T2=(TI-Tl)/60

740 PRINT" THE SORTED LIST

760 FOR 1=0 TO N-l

770 PRINTI+111 ";

780 Y=PEEK(BA+2*I)+256*PEEK(BA+2*I+1)

800 L=PEEK(Y)

820 FOR J=l TO L

840 PRINTCHR$(PEEK(Y+J));

860 NEXT J

880 PRINT

900 NEXT I

920 PRINT"nT2n SECS

930 PRINT" HIT ANY KEY TO CONTINUE

940 GET T$:IF T$="n THEN 940

960 GOTO 240

1000 DATA 173,27,24,208,104,173,26,24

1010 DATA 201,1,208,97,173,24,24,24

1020 DATA 42,133,178,173,25,24,42,105

1030 DATA 25,133,179,234,234,160,0,177

1040 DATA 178,141,32,24,200,177,178,141

1050 DATA 33,24,173,3,25,145,178,136

1060 DATA 173,2,25,145,178,56,173,24

1070 DATA 24,233,1,141,24,24,173,25

1080 DATA 24,233,0,141,25,24,201,0

1090 DATA 208,80,173,24,24,208,75,173

1100 DATA 28,24,24,42,133,178,173,29

1110 DATA 24,42,105,25,133,179,234,173

1120 DATA 32,24,160,0,145,178,200,173

1130 DATA 33,24,145,178,96,56,173,26

1140 DATA 24,233,1,141,26,24,173,27

1150 DATA 24,233,0,141,27,24,173,26

1160 DATA 24,24,42,133,178,173,27,24

1170 DATA 42,105,25,133,179,160,0,177

1180 DATA 178,141,32,24,200,177,178,141

1190 DATA 33,24,173,26,24,141,30,24

1200 DATA 173,27,24,141,31,24,173,30

53

3
3

3
3

3
3

3
3
O
O

3
3
O

3
3

3
3
O

3
O

3
3

3
3

3
3

3
O

3
3

3
3
O

3
3

3

S
t

e
n

0
0
C
M
C
n

r
-

-
r
^

c
m

r
o

i
n

r-\
r
H
r
H
o
o

r
-
r
o

C
M

-
C
O
»
h

-
r
H

r
H

C
M
Q
C
O
C
M
i
n
r
-

-
V
O

^
r
H

—
r
o
^
^

s
r
r
o

«
*
r

-
s
j

«
*
i
H

-
r
o

-
r
-

-
i
-
h

C
M

-
C
M
r
O
*
*
*
t
f

*
.
S
H
0
0
H
l
D

-

-
v
o

-
r
-
*
c
M
C
M
C
M

-
-
r
-

-
v
o
r
o

s
t

^
S
i
r
H
P
^

c
m
r
o
r
o
r
H

0
0

e
n
r
*

r
o

-
c
m

-
i
n
^
«

-
v
o
r
-

»
.
*
•
.

*
«
a
*

-
r
o

-
c
m

<
*
r
H
r
H
r
o
s
i
c
m

r
o
c
m

i
n
c
m
^

-
c
m

-

s
t

s
t

«
3
«

S
t
O
O

r
H
r
O

r
O
C
O

*
*
C
M
r
H

r
H
c
m
*
*

-
r
^

e
n
c
m
r
^
r
o

-
-

•
»
«
a
»

*.
«.
c
m
^
r

t
-
i
e
n
c
m

-
i
-
h
c
m
s
i
c
m

r
^
c
M
o
o
r
o

-
r
o

-
r
-
-
^

-
-
c
o
c
m

r
^
c
n
c
M
s
t
r
H
r
o
r
o
o
o
e
n
r
H

—

C
n
r
H
r
H
r
O
r
O
r
H
C
M

r
H
r
H
C
M

-
S
i

-
P
-
C
M
P
-
P
^

-
V
O

r
H
^
T
*
*
r
O

t
-
i

-
e
n

-
-
-
^
C
M
C
M
r
H

-
r
H
r
H
i
n
V
O

-
i
-
H
r
H
r
H

-
v
o

-
r
o
r
o
r
o
r
o

-
c
m

-
r
H

-
s
^
h

^
j
*

^
^

w
u
o
c
n
e
n
e
n
e
n

r
^
»
c
m
o
o

—
s
t
o
o
r
o
r
o
r
H

—

*
t
f
r
H
S
t
C
M
C
M
r
H
f
-

t-i
-
r
-
i

-
V*~

S
i
C
O

t
-
i
r
O
r
O

-
V
O

m
m

-
m
c
M

-
^
r
-
c
o
p
-

-
v
o

-
r
o

-
-
r
-

r
^

r
H

-
r
H

-
^

-
r
o
r
H
"
^
c
m

-
o
o

•
.
C
O

*.
»
»
C
M

-
r
O

r
H
C
O
r
H

-
-

-
r
^
r
H

r
o

-
r
o
r
o

-
r
*
«

m

0
0

^
r
H
-
^

•»
i
H
C
M
C
M
i
H
C
O

c
m
"
^
r
o
v
o
c
m
r
o

*
•.

•»
-
e
n

-
C
*

-
i
H

•
.
(
M
0
0
O
M
S
0
O
H

•»
S
»

r
H

-
e
n
-
m

•
.
r
^
i
s
*
o
o
r
»

*
>
v
o
c
o

-
C
M

-
*
t
f

-
-
i
-
H

-
*
*

r
H
S
)
r
H
s
j
^

r
*
r
o
r
-
c
m
-
m

-
i
n

-
i
n
*
*

-
s
»

r
H

-
r
o
r
o
r
o
c
m

r
-
»
r
o

v
o

-
c
m
c
m
c
m
^

*
t
f
s
t
c
m
c
m

-
-

^
i

*.
*.

*.
*
.
r
H

-
r
H
O
O
^
T

-
r
O
r
H
C
M
r
H

-
^
T
S
)
0
0

s
»
r
o
r
o
r
o
r
H

-
r
o

-
r
-
-
m

-
-

-
-
s
>

-
v
o

s
t

o
o

r
o

r
H

e
n

^
r
o

-
s
i

c
m

c
m

c
m

r
-

^
r
r
o
c
M
v
o

v
o
o
o
-

r
H

S
t
r
O

-
r
H

r
H
S
t
S
I

C
O

-

r
H
r
H
0
0

-
S
t

-
C
M
^

C
M

C
O
C
M

-
-
r
-
C
M

-
c
m

-
c
m

r
*
»

r
H
r
-
v
o

^
*
t
f
r
H
0
0
C
M
C
O
S
t

-
S
t

-
S
t

-
-
C
n

C
M
S
t

-
r
H
V
O
r
H
O
O
i
n

-
S
t

-
«
3
<
0
0

-

-
r
H
r
^

-
r
H

-
r
H
^

c
n
o
o
e
n
c
m
r
-
c
m

m
-
r
^
r
o

-
r
o

-
c
m
v
o
i
-
h
v
o

-
i
-
H
r
-

r
o
e
n
r
H
r
o
c
m
r
o
c
n

-
r
H

-
r
H
m

-
-

-
r
^

-
r
H

0
0
r
H
S
>

•
*
*

-
1
^

-
r
H
m
^

r
H
S
t

-
r
H

-
C
M
^
V
O
r
^
*
*

-
V
O
C
M

•»
^
s
*

^
S
t

-
r
H
r
H
r
H
C
M
V
O
r
H

-

-
r
o
v
o

-
r
o

r
H
r
-
c
m

v
o
*
*
m

-
c
m

r
o

^
T
r
H
r
H
V
O
r
H

-
r
H
O
O
r
H
C
M
r
H
C
M
r
-

-

s
t

—
—

p*"*
—
p
"

—
t
—
i

—
—

—
P
"
*

—
r
o

-
c
n
m

v
o

-
s
t

r
-
*

■
—
S
t
0
0

—
r

^
•
r
H
r
H
C
n

-
-
r
H
C
n
S
t

C
M

-
-

-
-
t
f
V
O

-
i
H
^
r
V
O
C
M
r
H

-
C
M

-
O
O
r
O
S
t
^
J
*

-
r
H

-
C
M
P
^
P
-

-
P
^
P
-

^
o

-
-

-
r
-

r
-

-

r
H
C
M

«
H
^

C
M
C
O

•
.
*
.
•
»
»
.

-
r
-
\

-

-
-

-
t
-
i

-
-
e
n

e
n
e
n
i
n
i
d
-
m

•
.
H
H
H

-
-
r
H

C
O

-
C
M
r
H

1"^
C
M
C
M
^

-
C
M

o
o

-
-

-
r
o

s
i

-
-
r
-

-
-
r
H

-
-

-
r
o

-

r
-
v
o

c
m
c
m
e
n
^

c
m

-
r
o
c
o

•<*
r**

t-i
e
n
r
-

M
^
S
O
C
M
(
N
H

r
H
V
O
C
M

-
r
-
'

-
r
H

-
C
M

t
-
i
e
n

*
r
s
j
c
m

-
r
H
-
^

-
e
n

«
»
o
o

-
s
i

•
«
*
r
o
s
>
o
o

-
-
^

-
o
o

c
m
c
m
v
o
c
m
r
-
m

s
»

<
<
<

<

Saving Memory In

Large Programs:

Mike Richter

If you find your free memory space getting cramped, try some of these

suggestions to solve the ?OUT OF MEMORY ERROR.

1. Pack your statements into long lines. Each new line number

costs four bytes more than a colon for continuation.

2. On very long lines, use the shorthand (? for PRINT, gO for
GOTO) to stay within the 80-character limit.

3. Relace IF X = O THEN A = A + 1 with A = A- (X = O).

A logical expression evaluates to -1 if true, O if false. Those values
may be used arithmetically.

4. Some IF ... GOTO structures can be replaced efficiently
with ON ... GOTO. For example:

1000 IF X = 1 GOTO 100

1010 GOTO 200

may be replaced with: 1000 ONXX GOTO 100: GOTO 200

5. Close up the spaces in the BASIC statements; they just

waste storage, although they may help readability.

6. Semicolons are rarely needed in single-line printing.
For example,

PRINT TAB(5)"X = "X

prints the same as PRINT TAB(5);UX = ";X

7. Use computed values in TAB and SPC expressions rather

than FOR/NEXT.

8. A string of blanks (usually, 39 of them) is useful for erasing

all or a part of a line. To erase 20 characters, PRINT

LEFT$(BL$,20). Variations and extensions of the idea are

numerous. A string of cursor control characters can be used to

locate a line in the same way. With CC$ defined as "home, 24xcd",

you get to line N by PRINT LEFT$(CC$,N +1).

9. Putting the above material together may save 20-50% of the

code. One check you can make on how tightly the program is

packed is to figure out what fraction of your lines must end where

they do because they either finish with an unavoidable IF or just

plain run out of space on the 80-character line.

Don't be fanatical about saving space, but wonders can

55

sometimes be worked. I took a 24K APPLE program and added

features in transferring it to the PET. The result took les than 2.4K

of memory! OREGON TRAIL is another example which probably

took well over 20K as published, yet runs in the 8K (really, 7K-1) of

a PET when properly compressed.

56

Programmer's Notes For

The CBM 8032

Roy Busdiecker

Several good articles describing major features of the CBM 8032,

have already appeared (Butterfield Reports: The 8032, by Jim

Butterfield, COMPUTE! Issue #5; and New Additions to the

Commodore Line, by Robert W. Baker, Kilobaud Microcomputing,

July 1980). There are quite a few features, however, which were not

mentioned in those articles and will be of interest to those who

own, or are contemplating purchase, of the new machine.

New Functions from Keyboard

My most recent (and most exciting) discovery is the fact that many

of the new screen-editor functions (scroll down, delete line, insert

line, etc.) can be activated directly from the keyboard, without the

necessity of doing a PRINT CHR$ (XX) as described in the articles.

The trick is simply to press the right combination of keys

simultaneously. The combinations are shown in Figure 1. In some

cases, it doesn't matter which key is pressed first; however, it's

generally safer to press the key listed in the left column first.

Abbreviation

DE

ES

LA

LS

OR

RS

SH

TA

UA

k

P

Function

Condensed graphics

Scroll down

Erase from beginning

of line to cursor

Meaning (Key)

Delete

Escape

Left Arrow

Shift Key on Left Side

Off/Reverse

Shift Key on Right Side

Either Shift

Tab

Up Arrow

Key on Alpha-Numeric Keyboard

Key on Numeric Keypad

Keys

LS RS 2k

LS ES K

LSTAI

LS Ik UA

LS LA 3p

SH TA LA DE

SHLAQ4p

57

Programmer's Corner

Erase to end

Delete line

Insert line

Set top left: corner

of window

Set bottom right

corner of window

SH LA A 6p

SH LA Z 2p

SH ES LA 5p

SH OR LA lp

LAQ4p

LAA6p

LAZ2p

ES LA 5p

OR LA lp

TA LA DE

ESORK

ORTAI

OR Ik UA

ORQO

ORAL

SH ES OR K

SH ORTAI

SH OR Ik UA

SHORQO

SH OR A L

ZAL

ZESK

ZlkUA

SHZAL

SH Z ES K

SH Z Ik UA

Figure 1. Keyboard Combinations for Special Screen Editor Functions

Calling The Monitor

Those who make heavy use of the built-in monitor can enter it with

a SYS 54386. This mode of entry gives a "call" entry rather than

the "break" entry you get with a SYS 1024. There are two

observable differences between the two forms. A "call" entry gives a

*C message on the screen, and does not change the value in the

stack pointer (SP). A "break" entry gives a *B message, and

decrements the value in the stack pointer by two. The "break"
feature was not designed as the normal method for getting into the

monitor, but rather as a tool for machine language programming.

It's possible that, if you went back and forth from BASIC to

monitor many times using the SYS 1024 "break" entry, you could

run out of stack pointer space, although it's rather unlikely.

Incidentally, for the older PET/CBM 200146 and -32, the "call"

entry for the monitor is SYS 64785.

Automatic Program Adjustments

Many folks use location 50003 to allow a program to figure out what

58

Programmer's Corner

kind of PET/CBM computer it's running on. PRINT PEEK (50003)

gives a value of 0 on "old" PET's (version 1, BASIC 2.0), a value of

1 on "new" PET/CBM (version 2, BASIC 3.0), and now a value of

160 on the CBM 8032 (BASIC 4.0). Since many page zero locations

in 8032 are the same as in the "new" PET/CBM's, some programs

designed to run on either "old" or "new" versions can be adapted

for the 8032 as shown in Figure 2.

Original program

10PV=PEEK(50003)

20REM:=0 for OLD PETs, = 1 for NEW

Modified for 8032

10PV=PEEK(50003)

15 IF PV = 160 THEN PV= 1 :?"Program running on CBM 8032"

20 REM:=0 for OLD,= 1 for NEW, = 160 for 8032

Figure 2.

Of course, this modification will not adapt all programs for the

8032. I've seen very few programs for 40-column machines whose

output looks "right" on the 80-column unit (those which do are the

ones without sophisticated graphics or formatting). If the program

uses built-in routines from the PET/CBM ROM, it will take more

effort to find the routine in the 8032 and modify the program to use

it.

Hidden Memory

As in previous machines, the screen memory appears to "use up"

memory addresses from 32768 to 36863, although only the first 2000

of those are "real" screen memory addresses. Another 2000 are

"image" addresses, due to the incomplete decoding ofthose

addresses. Of particular interest are the 48 addresses from 34768^$73>@
through 34815 which do not appear to be used for anything. ThaT""—

memory space .could be used for short machine language routines,

or data values that need to be tucked away where BASIC can't

hurt them.

One bug I discovered in the 8032 is that a PRINT "[HOME]"

often returns the cursor to the second line on the screen, rather

than the first.

It was very frustrating to me to discover that many of the

excellent machine language tools IVe obtained via Jim Butterfield

and Carl Moser do not work on the 8032. For those fortunate

enough to have access to a 2040 disk drive, a 2001-32, and an 8032

all at the same time, it's possible to create a "host-target

environment" or development system for the 8032.

59

Programmer's Corner

Old Tools for New Programs

The 8032 and 2001-32 can both be connected to the 2040 using the

IEEE-488 ports and the appropriate cables. A program "saved" to

disk from one machine can be loaded into the other, and the

transfer will work either way. You must be careful, however, not to

have both computers trying to access the disk at the same time, or

the system will get locked up. I've also experienced lockups when

one of the computers is running certain machine language

programs.

If you want to create an assembly language program for the

8032, you can use a good assembler (like the MAE from Eastern

House Software) running on the 2001-32. After assembling the

program in the 2001-32, use the built-in monitor to save the

resulting machine language to disk. When the disk file is then

loaded into the 8032, it will go into the memory locations

corresponding to those from which it was saved.

Another thing I wanted to do was to look at the ROM in the

8032. Unfortunately, the only disassembler I had that would run on

the 8032 was written in BASIC, and was exceedingly slow. On the

other hand, I had several machine language disassemblers that were

quite fast, but would not run on 8032. The solution was to copy a

block of 8032 ROM, for example $B000 to $BFFF, into free RAM,

say $1000 to $1FFF. This can be done in command mode with a

statement like

FOR I=Q TO 4095:POKE 4096+I,PEEK

(45056 + I):NEXT

When this is finished, we use the 8032's monitor to save the copy

($1000 to $1FFFF), which can then be loaded into the 2001-32 for

examination. The choice of locations, obviously, must be such that

it will not interfere with any of the tools being used to examine the

code.

ROM Features

The monitor in the 8032 is very similar to that in the 2001-32,

except for having been relocated. This is both good and bad. It's

good because the 2001-32 monitor is documented, which allows us

to figure out some of the ROM routine locations in the 8032 which

correspond to known routine locations in the 2001-32. It's bad

because there are many improvements which should have been

made. It's a shame to waste half the screen, when we could be seeing

twice as many locations on the 80 column machine. It's also a

shame to have such limited capabilities in a monitor, when so many

60

Programmer's Corner

good ones are available.

In the 8032, the operating system ROM starts at $B000 rather

than $C000, which means there are only two free ROM sockets.

Obviously, Word Pro 4 will take up at least one of those when it

appears (this is being written in mid-August, and weVe not been

able to obtain a production copy yet).

Reader Feedback

We expect to be learning many more features of the 8032 in coming

months, especially when we are able to get one of the new 8050 disk

drives and test its interactions with old and new computers.

Any COMPUTE! readers who would like to contribute their

discoveries may forward them to me, and I'll incorporate them in a

future article (giving credit to the first contributor of each item). I

would be especially interested in keyboard combinations that cause

a shift from graphics to business mode (upper and lower case letters)

and the ones to cause the screen to scroll up (without having to

cursor down to the bottom of the screen).

Send your contributions directly to me at Virginia Micro

Systems, Inc., 14415 Jefferson Davis Highway, Woodbridge, VA

22191.

61

Un-CrashingOn Upgrade

ROM Computers

Jim Butterfield

Here's the original "Uncrashing" article.

If you do much work in machine language, sooner or later you'll

write a program that will crash.

Formerly, you were out of luck. Unless you were lucky enough

to stumble into a type 1 crash — which would take you to the

Machine Language Monitor, or to an ?INVALID NUMERIC

statement — your only remedy would be to reset, and wipe memory.

Type 2 crashes (tight loops) could be guarded against with a

little preparation involving fiddling with the interrupt structure. But

the nasty type 3 crash (X2 codes) cannot be fixed without kicking

the Reset line; and Reset means memory test, and memory test

means you'll have to reload your program.

No more. On upgrade ROMs, you can come out of a hard

crash with memory preserved.

Method: Set the diagnostic sense pin to ground, then kick the

Reset line. The processor will re-awaken in the Machine Language

Monitor with memory preserved.

There's more: you're not yet out of the woods. Type a

semicolon followed by RETURN; PET will respond with a question

mark. Now move the cursor back to your register display line, and

change the Stack Pointer (SP) value from 01 to F8. This strange

procedure is important: you must follow it exactly. Once you've

done so, you're clear. You may return to BASIC with an X if you

like, or proceed in the MLM.

Hardware: To make the diagnostic sense pin: take a standard

12-pin edge connector and wire pin 5 (diagnostic sense) to pin N

(ground). Key the connector so it sits on the parallel user port. Plug

it in whenever you want to un-crash, but don't leave it on the

machine.

The Reset button is a little trickier, since you have to know

where to connect it. Check with someone who's knowledgeable on

PET hardware.

Commercial sources: International Technical Systems. Box

264, Woodbridge VA 22194 makes a Reset button.

Gord Reithmeier, 411 Duplex Avenue, Apt. 11, Toronto

62

Programmer's Corner

Canada M4R 1V2, makes two uncrashing devices, either of which

fits on the Parallel User Port; they include a diagnostic pin toggle

switch and a Reset button. An IC clip snakes inside PET's cover to

connect to the reset line. Instructions are included. The basic unit

sells for $20; or for $30 the unit also includes the Poor Man's D/A

converter.

63

Programmer's Corner

Memory Partition of

BASIC Workspace

Harvey B, Herman

A 6502 microprocessor can address a total of 65K bytes of memory

(RAM plus ROM). The address space for BASIC programs (RAM)

is necessarily restricted to less than that without resorting to

hardware tricks. However, most BASIC programs do not take up

anywhere near the maximum amount of reserved memory (32K

bytes for the PET). Occasionally it would be useful to have several

short, noninteracting BASIC programs in memory at the same time.

For example, we use short programs to check student laboratory

calculations Q. Chem. Ed., Vol. 55, p. 654 (1978)). When multiple

laboratories are in process it would be simpler to LOAD a tape

containing a number of programs and have each student run the

program appropriate for his experiment.

One way to combine programs is to renumber and merge

individual programs with a subsequent re-save of the combination.

There are several disadvantages to this approach. It is important to

keep line numbers separate in each program to be merged or you

may not be able to delete or LIST parts of the program (unnerving

at first). An ordinary LIST of the program will show frequently

unrelated parts as one program (not aesthetically pleasing). The

student user must remember to RUN with a line number specified

for his chosen segment (or risk being hopelessly confused). Finally

this approach will not allow placing utility programs (written in

BASIC) in reserved areas of memory unless they are merged with

every program (a formidable task).

Since I frequently use a number of short programs and have

unused memory, I thought it would be helpful to partition the

BASIC workspace for storage of individual programs. For example,

an 8K PET (7167 bytes free) could have three 2K partitions under

control of a IK master program. It is possible to make other

configurations as long as the total does not overrun the free memory

available. If the partitioning is done properly the stored programs

would not interact with each other. Each program would "think" it

was in a IK PET. (I actually owned a 2K PET once when I had a

memory failure.) The master program would be in charge of

adjusting the necessary pointers so a given program could be

accessed when requested by the user.

64

Programmer's Comer

Microsoft BASIC (for the PET and other microcomputers) uses

pointers to subdivide free memory. The table summarizes important

pointers (at least for this discussion) for both old and new PETs.

The following material is for the old ROMs. It is not necessary to do

any hex arithmetic to use the method I will describe. However, it

does help to understand a little about pointers. If BASIC program

text is stored beginning at location hex 0401 (it is assumed location

hex 0400 contains a zero) the pointers to start of text (location

122/123) would read 1 and 4 for low and high byte respectively.

That example was not too difficult but it must be remembered that

the value returned is in decimal. If start of text was changed to, say

hex 1001, location 123 would now read 16 corresponding to the

decimal representation of the most significant half of that number

(hex 10). To activate a new partition it is only necessary to set

pointers to start of BASIC text (122/123), end of BASIC text

(124/125) and top of memory (134/135). Subsequently executing

CLR will set all the other pointers automatically (e.g., bottom of

strings, etc.) and, after END, we find ourself in the new partition.

As an exercise I wrote a short master program (IK workspace)

controlling three short donothing BASIC programs (each in a 2K

workspace). They are shown in the figure. The master program asks

the user for a program number and automatically sets the pointers

to activate that program. At this point the user is in a 2K workspace

with one program active which can be RUN or modified as desired.

The last statement can be RUN or modified as desired. The last

statement in each of the short programs returns the user to the

master program. Each program is completely independent of the

others, snug and protected in its own private world.

Setting up the example or one like it is not difficult. Each

program could be typed in after the partition is activated by the

master program (NEW first). Keep track of the size of each program

by PEEKing at locations 124 and 125. This information should be

stored in the master program so one can enter and leave the

partition without destroying the BASIC text (c.f., line 210 in master

program). The size of the master program should also be recorded

and restored before returning to it (c.f., line 40 in program 1).

Relatively long programs are a nuisance to type into each

partition. If the program is on cassette tape it can be relocated to

any partition using the procedure described in my article "MOVE

IT" (MICRO 16:17 and 17:18). Normally tapes load starting at hex

0400. By reading in the tape header first and changing the load

parameters in the tape buffer, information on cassette tape can be

65

stored elsewhere in memory. Keep two points in mind. One, before

using the relocated programs for the first time, the BASIC line links

(see p. A-9 in PET User Manual) must be corrected. The easiest way

to do this is to type any line number not in the program and return.

Two, record the length of the program by PEEKing at locations 124

and 125 after an ordinary tape load. In my example program I

showed 4 and 74 respectively. Since I intended to relocate the

program to a partition beginning at hex 800, it was necessary to use

the values 8 and 74 in line 210 in the master program.

The partition idea described above should be applicable, with

only minor changes, to any microcomputer using Microsoft BASIC.

In fact I used a partition for the first time on my SYM to store an

initialization program which was used infrequently. In this case the

partitions were of unequal length, 4K and 8K. Readers might be

interested in storing their short BASIC utility programs in an out-

of-the-way partition and activate the programs when necessary as I

did with the SYM initialization program. Maybe others could share

their ideas on the subject with me care of this magazine. We could

publish the best ones in a future article. (Anyone for time sharing?)

Important PET Pointers

(Low/High Bytes)

ROM Upgrade ROM

Start of Text 122/123 40/41

End of Text 124/125 42/43

Top of Memory 134/135 52/53

10 REM MEMORY PARTITION-MASTER PROGRAM

20 REM EXAMPLE:

30 REM THREE PROGRAM WORKSPACES

35 REM CREATED AT:

40 REM HEX 0800-0FFF PROGRAM 1

50 REM HEX 1000-17FF PROGRAM 2

60 REM HEX 1800-1FFF PROGRAM 3

65 POKE 123f04:POKE 122,01

66 POKE 125f06:POKEl24f57:CLR

67 POKE2048,0:POKE4096,0:POKE6144,0

70 :

80 REM HARVEY B. HERMAN

90 :

95 PRINT "WHICH PROGRAM DO YOU WANT";

100 INPUT"(1-3)";N

110 ON N GOTO 200,300,400

200 POKE 123,08:POKE122,01

66

Programmer's Corner

205 POKEl35f24:POKEl34f0

210 POKE 125,08:POKE 124,74:CLR:END

300 POKE 123,16:POKE122,01

305 POKE135,24:POKE134,0

310 POKE 125f16:POKE 124f74:CLR:END

400 POKE 123,24:POKEl22f01

405 POKE135,32:POKE134,0

410 POKE 125f24:POKE 124f74:CLR:END

10 REM PROGRAM

20 A=l

30 PRINT A

40 POKEl23f4

45 POKE124,57

50 POKE125f06

55 POKEl35f8

60 CLR:END

10 REM PROGRAM 2

20 B=2

30 PRINT B

40 POKEl23f4

45 POKE124,57

50 POKEl25f06

55 POKE135,8
60 CLR:END

10 REM PROGRAM 3
20 C=3

30 PRINT C

40 POKEl23f4

45 POKE124,57

50 POKE125,06

55 POKE135,8

60 CLR:END

67

The Deadly Linefeed
Jim Butterfield

Jim's advice in "The Deadly Line Feed" is definitely worth heeding. Just

try it once the other way! Incidentally, this precaution is not necessary

with BASIC 4.0.

When you write a BASIC statement like PRINT X, you print the

value and start a new line.

To start a new line, the PET sends two characters: a RETURN,

which terminates the old line, and a LINEFEED, which is often not

needed and is sometimes deadly.

The linefeed character (CHR$(10)) is there to tell some types of

printer that it's time to move the paper up. The Commodore printers

don't need it, but others often do.

There are at least two cases, however, when you must not send

the linefeed character — it will give you trouble.

Case one is when you're sending data to a disk file. If you should

write this character to disk, you'll read it later — and it will give you

problems.

Case two is when you're sending a formatted line to the

Commodore printer — that is, to secondary address #1. It will seem

to work in many cases; but you'll have problems when you try to

change the format line by addressing secondary address #2.

How do you avoid sending the linefeed? Don't let PET

terminate a line for you: do it yourself by sending the RETURN

character.

So instead of sending PRINT#5, X code PRINT#5, X;CHR$(13);

and be sure you don't forget the semicolon at the end of the line. If

you have a lot of print lines of this type, you can set the RETURN

into a string variable and save space: say R$ = CHR$(13) and then

you can code PRINT#5, X;R$; to do the job.

68

UsingTheGETStatement

On The PET

Alfred J. Bruey

The GET statement is one of the least standard of any in Microsoft

BASIC. Here's how you can use it on the PET, for programming or

converting programs from one machine to another.

Although most programs use the INPUT statement to enter data

during the execution of a BASIC program, the GET statement may

be used to advantage, especially in cases where the program is to be

run by a non-computeroriented person.

The GET statement retrieves one character at a time from the

keyboard buffer. Usually it is used with a string variable. The
statement has the form

20 GET A$

This statement assigns the next character in the keyboard buffer to

the string variable A$.

Since the GET statement executes as soon as it is encountered,

whether there is anything in the keyboard buffer or not, it is usually

necessary to check for the null character with a statement of the

form

20 GET A$: IF A$ = "" THEN 20

The IF ... THEN statement puts the program in a loop until a key

is pressed.

In the examples above, the value will not be displayed on the

screen, so you will probably want to add a PRINT statement so you

can see what key you pressed. The program will then look like this:

20 GET A$: IF A$ = "" THEN 20

30 PRINT A$

The GET statement also does not prompt the user for input so we

would normally add a PRINT statement before the GET statement:

10 PRINT "ENTER A CHARACTER";

20 GET A$: IF A$ = "" THEN 20

40 PRINT A$

This short program prompts the user for a character, waits until he

enters it, and then prints it on the screen.

If you try this example, you'll notice that you don't have to use

69

Programmer's Corner

the RETURN key to enter the data. The ability of the GET

statement to accept a character without the use of the RETURN

key is a great advantage in a program where the user has to enter

many one character answers, such as Y or N for YES or NO, or in a

game where the progam has to recognize that you are depressing

one of the cursor keys. For example, let's look at a program that

waits for a Y or N answer:

5 REM WAIT FOR A Y OR N ANSWER

10 GET A$: IF A$ <> "Y" AND

A$O"N"THEN 10

30 REM GO HERE IF Y OR N IS

ENTERED

For our next step, let's examine a short routine that will let us enter

exactly five characters with a GET statement.

10 PRINT "ENTER FIVE

CHARACTERS";

20 FOR I = 1 TO 5

30 GET A$(I): IF A$(I) = "" THEN 30

40 PRINT A$(I)

50 NEXT I

This routine allows any five characters to be entered. If you were to

write a program for a non-programmer, you would probably want to

write the program so that it would not recognize some of the special

characters, such as the cursor-movement and clear-screen

characters. Also, we would want to prohibit the user from entering

a RETURN until he had entered the required number of characters.

As a final touch, we will require that the user be able to use the

DELETE key so he can correct errors during the keyboard entry.

As an example that uses the restrictions above, consider the

following listing. This program allows you to enter nine numeric

characters followed by the RETURN. The DELETE key is active

during the process. This routine could be used to enter a social

security number. First the listing, then a line-by-line explanation of

the coding:

10 FOR 1=1 TO 10

20 GET S$(I):IF S$(I) = lf" THEN 20

30 IF(S$(I)<II011 OR S$(I)>H9") AND -i

-iS$(I)OCHR$(20) AND S$ (I) <>CHR$ (13)

-. THEN 20

40 IF S$(I)=CHR$(20) AND 1=1 THEN 20

50 IF S$(I)=CHR$(20) THEN PRINT CHR$(157)

-i+n "+CHR$(157) ;:I=I-1:GOTO 20

54 IF K10 AND S$ (I) =CHR$ (13) THEN 20

55 IF 1=10 AND S$(I)OCHR$(13) THEN 20

70

57 IF 1=10 AND S$(I)=CHR$(13) THEN 70

60 PRINT S$(I);

70 NEXT I

80 END

Line 10: The beginning of the FOR . . . NEXT loop

Line 20: waits for a character to be entered

Line 30: A character gets rejected and execution returns to

line 20 unless the character entered is one of the following:

a. an integer from .0 to 9

b. the DELETE character (CHR$(20))

c. the RETURN character (CHR$(13))

Line 40: Rejects the DELETE character if it is the first

character, since there is nothing yet to delete.

Line 50: If it is a DELETE character, but not the first"

character, print a BACKSPACE, blank, BACKSPACE. Then

reduce the character count by one and go back for another

character.

Line 54: Reject RETURN if it isn't the tenth character

Line 57: Goes on with the program if tenth character is

RETURN

Line 60: Prints character 0 to 9 on the screen

Line 70: End of FOR . . . NEXT loop.

It may look complicated, but the coding was necessary to protect

the system against invalid entries. You also might want to disable

the STOP key to keep the user from breaking out of the program.

The preceding examples should get you started with the GET

statement. I think you'll find it a desirable alternative to the INPUT

statement in many of your programs.

71

Programmer's Corner

Apparent Malfunction

of the< Key

Jim Butterfield

In many PETs, the less-than (<) key will appear to be dead if

cassette tape drive #1 is disconnected.

If you have to run without a tape drive, you might like to make

up a plug for the tape edge connector. Putting a ground on the

input line (connecting pins A-l and D-4 on the cassette edge

connector) should make the problem disappear.

72

Shift Work

Jim Butterfield

There are quite a jew little tricks yet to be discovered on the PET. Here}s

a whole article on the Shift Key.

The SHIFT keys on the PET are pretty straightforward, right? Hold

either one down while you hit another key, and you get the key's

shifted equivalent: upper or lower case or a graphic. Not much to be

said there.

Well, maybe one or two things . . .

Shifted Return

RETURN does two jobs: it takes you to the start of the next line,

and it executes the line you're leaving.

Sometimes you don't want to execute the line. You're just

drawing a picture on the screen. When you hit RETURN, the

computer will take that part of the Klingon attack vessel you've just

drawn and try to execute it as a BASIC command; you get

7SYNTAX ERROR, which doesn't help your picture much.

Other times, you have a BASIC line, but you don't want to

execute it yet. Maybe you've got a little muddled up with the

programmed cursor and every time you try to back up the cursor to

fix things you get another unwanted graphic. You don't want to

press RETURN and enter this botched line into your program

before you have a chance to fix things up.

Just hold down SHIFT as you press RETURN and you'll go to

the next line without trying to execute what you've just done.

Shifted Space

When you press SPACE, the PET prints a space. When you hold

down the SHIFT key and press SPACE, the PET prints a space.

Same thing. The shifted SPACE, however, is a different character

on the screen. Looks the same, but it's not a true space. How can

you use this? Here's one very handy application. Suppose you want

to do an INPUT and don't want the user to accidentally stop the

program by typing RETURN without input. Shifted-space will do

the trick. Try this tiny program:

10 INPUT "(see note below)";X$

20 PRINT "THANK YOU.":GOTO 10

Here's what to put between the quotes on line 10. After you type

the first quote mark, hold down the shift; type three spaces; type

73

Programmer's Corner

three cursor left characters. Now release the shift and complete the

line, starting at the second quote mark.

I call this program ABUSE. After a hard day at the computer,

you can put this one in, and proceed to call it every name under the

sun. It will thank you and ask for the next insult.

The interesting thing is that the program won't stop if you

press RETURN without input. That invisible shifted-space that you

have printed to the right of the question mark is a genuine input

character. If you don't write over it with your own information, it

will be accepted as input, and the program won't stop. Instead, it

will humbly thank you ... for nothing.

Pseudo-shifted Characters

There's a group of characters that you can't input via

keyboard/screen, but which are useful in certain types of file

handling. The shifted RETURN is also useful in this application.

Here's the problem. When you use the INPUT# statement for

receiving data from tape or disk, the input procedure stops on three

characters: comma, colon, and RETURN.

This is annoying when you're trying to input names from an

address list like DR. ALOYSIUS CHIP, PHD or HORACE

SCHMEDLAMP, JR. or have address lines like ATTENTION:

MURPHY. The input routine nearly drops the PHD, JR. and

MURPHY, and you're left to scratch your head over why the data

disappeared.

Relief is in sight. If you can catch the comma or colon before

you write it to file, just change it to its shifted equivalent by adding

64 decimal to the ASCII value. It takes a little more work when you

write it, but it saves work and puzzlement when you read it back

later. The general technique for a single character is:

A = ASC(A$): IF A=44 OR A=58 THEN A$=CHR$(A+64)

You can write the re-formed A$ to the file and feel secure that it will

come back without trouble and print correctly.

Exactly the same thing can be done with quotation marks. The

input routine assumes that ordinary quote marks are there so that

they can be removed before you see the string. There's a good

reason for this, but it doesn't help you when you really want them

to be there and part of the input data. Once again, shift the quote

by adding 64 to it. Since quotes are often directly program-

generated (rather than input), you can just use CHR$ (98) instead of

CHR$ (22).

Occasionally, you may want to input two lines at a time from a

74

file. The shifted-return will do the trick. Oddly enough, you must

add 128 to the RETURN to make a shifted return: it's CHR$(141).

This always works great if your input goes to the screen. If you're

using a printer, however, check it out to make sure it recognizes the

shifted-return and does the right thing.

Afterthought

Before I leave you to shift for yourself, try this last little keyboard

curiosity. Hold down both shift keys. Now, with your third hand,

or nose, or whatever, try pressing a few keys on the left-hand side of

the keyboard: Q, A, S, Z.

I don't know why you get the odd characters. There's probably

a moral here: two shifts are not better than one? Too many shifts

spoil the keyboard?

75

f

\

\

\

V

V

N

\

76

r>

n

n

n

Mixing BASIC and
Machine Language

Jim Butterfield

This is a logical extension of "Fitting Machine Language Into The PET."

The example programs are useful, and illustrate the concept.

It's not too hard to put BASIC and machine language together.

Care is needed, of course, but there's no great mystery.

One of the easiest tricks is to put the machine language

program behind the BASIC program in memory. Once youVe

created and saved the package, it may be LOADed and SAVEed

without special instructions. There's one thing you need to watch,

however: when the package is complete, you must not change the

BASIC program. If you do, the machine language part will be

moved away from its original location. Your SYS command will

take you to the wrong place, and the machine language program

probably won't work anyway.

The following sample programs use this kind of packaging.

Here's how to set them up on your machine:

1. Type in the BASIC program completely. Check it carefully, since

you won't have the option of changing it later.

2. Enter the machine language monitor. If you happen to have an

early PET with original ROM (no built-in monitor), you should

have previously loaded one of the "high-monitors" that are

available. (See Roy Busdiecker's article: "Relocate PET Monitor

Almost Anywhere".)

3. Double check to ensure that your BASIC program hasn't

somehow crept up above the machine language area that you plan

to use. There are several ways to do this. One is to inspect the

BASIC memory area and spot the three 00 values that signal the

end of the BASIC program. Another way is to take a look at the

start-of-variables pointer (hex 7C and 7D on original ROMs; hex

2A and 2B on upgrade ROMs) and make sure it's below the area

you are about to work in.

4. Now type in the machine language as shown. Check it closely; a

single mistake will cause improper operation.

5. Finally — still in the Machine-Language Monitor — save the

whole thing from start-of-BASIC (hex 0400) to end-of-machine-

78

Beyond The BASICS

language-plus one. On the Universal ROM Test program, for

example, you'd save from 0400 to 084A.

Now your program is ready. It can be loaded, saved or copied

without any special knowhow. Just remember — don't change the

BASIC part of the program.

Universal ROM Test

This program loads into any machine and tells you what kind of

ROM you have. It will test ROM repeatedly until you stop it ...

this makes it good for spotting intermittent errors.

All of the standard ROM sets I know about are there. There

are also a couple of experimental Commodore ROM sets included —

I had a chance to take a look at them during a recent trade show.

These may change by the time Commodore releases them, so don't

take them too literally.

100 PRINT"fiM UNIVERSAL ROM TEST JIM -i

-iBUTTERFIELD"

110 DATA "011 ORIGINAL"f59487r12796f

-.51858 , 61980 , 58622 , 7753 , 6792 ,-1,-1

120 DATA "019 ORIGINAL",59339,12796,

i51858,61980,58622,7753,6792,-l,-l

130 DATA "UPGRADE PERSONAL",41799,42993,

i64959,8803,38129,43129,23093,-1,-1

140 DATA "UPGRADE BUSINESS",41799,42993,

-i64959,8803,38129,43129,23093,-l,-l

160 DATA "DOS PERSONAL I",40596,45201,

-.34900,08207,47820,00390,44555,

-.40847,44239

170 DATA "DOS BUSINESS I",40596,45201,

-.27250,08207,47820,00390,44555,

-.40847,44239

180 DATA "DOS 80-CHARS I",40596,45201,

-.21130,08207,47820,00390,44555,

-.40847,44239

190 DATA "*"

200 DATA 192,208,224,240,200,216,248,

-.176,184

210 DIMA$(8),V(8,9),A(9),R(9),M(9)

220 READX$:IFX$="*"GOTO290

230 R=R+1:A$(R)=X$

240 FORJ=1TO9:READV(R,J):NEXTJ:GOTO220

290 FORJ=1TO9:READA(J):NEXTJ

300 FORJ=1TO9:POKE1023,A(J):SYS2112

310 R(J)=PEEK(1021)+PEEK(1022)*256

320 NEXTJ:P=7

79

330 FORJ=1TOR:M(J)=0:FORK=1TOP:IFR(K)=V(

-iJ,K)THENM(J)=M(J)+l

340 NEXTKfJ

350 L=-1:FORJ=1TOP:IFM(J)>LTHENL=M(J):

-iK=J

360 NEXTJ:IFP=7ANDV(K,8)>=0THENP=9:

-iGOTO330

370 N=N+1 :PRINTnJiTEST";N: PRINTHM^M ;
-iA$(K) :PRINT

380 FORJ=1TOP

390 IFR(J)=V(KfJ)THENPRINT:GOTO410

400 A=A(J):B%=A/16:C=A-B%*16:PRINTCHR$(B

-,%+55);CHR$(C+48)

410 NEXTJ:PRINT

420 PRINT"BAD ROMS:";P-L;n< ":GOTO300

0840 AD FF 03 85 B2 A9 08 85

0848 B5 A9 00 85 Bl 85 B3 A0

0850 00 18 71 Bl 90 02 E6 B3

0858 C8 D0 F6 E6 B2 C6 B5 D0

0860 F0 8D FD 03 A5 B3 8D FE

0868 03 60 00 00 FF 00 00 FF

RAM Test

This is a very fast memory test, yet it's quite thorough. It's adapted

from the memory test in The First Book of KIM — you can dig out

more details there if you're curious.

The coding is a little crowded; I wanted to fit the whole thing

into 256 bytes so that the rest of memory would be available for

testing.

The program tests memory repeatedly until stopped. Users

with a full 32K of memory can input a value of 33 and test screen

memory too. That way, they can see the actual test on the screen as

it happens.

10 INPUT"fi^HOW MANY K" ;K :K=K*4-1

20 POKE185fK:POKE184f5

30 N=N+l:SYSll56:PRINTMhTEST ";N;

40 J=PEEK(187):IFJ>KGOTO30

50 PRINT"FAILED AT";J*256+PEEK(186)

•

.: 0484 A9 00 A8 85 BA 85 BC A2

.: 048C 02 86 BD A5 B8 85 BB A6

.: 0494 B9 A5 BC 49 FF 85 BE 91

.: 049C BA C8 D0 FB E6 BB E4 BB

.: 04A4 B0 F5 A6 BD A5 B8 85 BB

80

04AC

04B4

04BC

04C4

04CC

04D4

04DC

04E4

A5

BA

C5

A6

02

D0

B0

49

BC

C8

BB

BD

A5

F0

E8

FP

CA

D0

B0

A5

BC

E6

C6

30

10

F6

EC

BE

Dl

BB

BD

Al

04

E6

A5

CA

BA

A5

10

84

A2

BB

B8

10

D0

B9

AD

BA

02

A5

85

04

15

C5

A5

60

91

B9

BB

A2

C8

BB

BC

32

Tape Test

The version given is for Upgrade ROM only. This lets you watch

any PET tape and see the kind of signals that are coming in from it.

I had hoped that this program would solve head alignment

problems once and for all. It doesn't quite make the grade, since in

my opinion it's not sufficiently sensitive to slight alignment changes.

Even so, you will find the program instructive.

100 PRINTlffiTAPE TEST # JIM BUTTERFIELD"

110 POKE59468r12

120 PRINT:X$=nLEADER":GOSUB500

130 X$=nDATA":GOSUB500

140 X$=IIERROR":GOSUB500

150 INPUT"TAPE UNITlf;T

160 IFT>2ORT<1GOTO150

170 POKE212,T

180 SYS(1280):END

500 PRINT11 UCCI"

510 PRINT" £ H ~ ";X$

520 PRINT" JFFK"

530 RETURN

READY.

0500

0508

0510

0518

0520

0528

0530

0538

0540

0548

0550

0558

0560

0568

20

15

E8

EF

E8

00

8D

13

A9

94

EF

8D

69

29

12

CE

AD

8D

A9

A9

91

E8

20

Bl

A5

F2

00

F7

F8

13

40

40

34

6E

00

10

95

A9

B8

80

29

10

78

E8

E8

E8

8D

8D

58

F8

B8

A0

8D

AD

IF

C7

A6

A9

8E

10

13

90

20

A2

B5

95

7A

6A

8D

30

D4

90

FA

0B

E8

00

F0

02

Bl

B8

80

81

6A

C5

CA

8D

00

EE

8D

A9

F8

A0

F0

CA

A5

06

81

20

F0

4E

29

11

F9

05

2C

00

06

10

B9

BA

20

7A

81

Beyond The BASICS

0570 05 2C 40 E8 2C 10 E8 4C

0578 E4 E6 AE 49 E8 AD 48 E8

0580 EC 49 E8 D0 F5 A0 FF 8C

0588 48 E8 8C 49 E8 E0 FC 90

0590 08 E0 FF D0 07 C9 50 90

0598 0B E6 B3 60 E0 FE D0 10

05A0 C9 60 90 0C A5 CC 29 FC

05A8 F0 03 E6 Bl 60 E6 CC 60

05B0 A9 00 85 CC E6 B2 60 00

Leader Write

This is for Upgrade ROM only. It writes continuous "leader"

(sometimes called "shorts") to tape. It's useful, in conjunction with

Tape Test, in checking out various brands of tape for data quality.

100 PRINT"rH x. WRITE LEADER TAPE "

110 PRINT"i # JIM BUTTERFIELD"

120 PRINT"^ THIS PROGRAM WRITES A -.

iCASSETTE TAPE"

130 PRINT"WITH 'LEADER1 SIGNAL."

140 PRINTH THE CASSETTE TAPE SO PRODUCED

-iMAYBE11

150 PRINT"USED WITH fTAPE TEST1 TO EITHER:

V

160 PRINT" —CERTIFY THE TAPE AS OK;"

170 PRINT" —ALIGN TAPE HEADS OF THE ->

-iOTHER CASSETTE"

180 PRINT" UNITS. IN THIS CASE,

-. BE SURE"

190 PRINT" THAT YOU ARE WRITING ON A"

200 PRINT" PRECISELY ALIGNED TAPE -.

210 SYS1472:END

READY.

05C0 A9 01 85 D4 20 47 F8 A9

05C8 70 8D C3 00 78 A9 A0 8D

05D0 4E E8 A2 08 20 9B FC A9

05D8 02 85 DE A9 34 8D 13 E8

05E0 8D F9 00 8D 49 E8 58 A9

05E8 70 8D C3 00 20 35 F8 F0

05F0 F6 20 7B FC 4C 84 F2 AA

82

Simulated BASIC In

Machine Language

Blaine D, Standage

Would you like to be able to execute BASIC statements from within

machine language programs? Here's how . . . (The $C702 entry point is

for Upgrade ROMs. The 4.0 equivalent is $B787. For original ROMs it

is $C6F5.)

There are probably very few among us who, having ventured into

machine language programming, have not found themselves

struggling long and hard to do something as simple as opening or

closing a file. — "Its so easy in BASIC! Now I should be able to set

these zero page values and JSR to $... M — "Darn! Well, maybe

if I. . ." If that stirs unpleasant memories, this article is just for

you. I have been there many times. Often those hours of hard work

produce a good result which I carefully record for future use (at

which time it still may not work because of a subtle difference in the

situation). And then there are times when I give up and write a

companion program in BASIC to do only that one elusive task:

"OPEN4,4: SYS4096: CLOSE4: END".

Now, I have two programs to do the job of one, two loads,

coordinated revisions, etc. What a mess!

Recently, in a fit of frustration, I decided that if the PET could

execute a BASIC instruction in a BASIC program, then there must

be some way to make it do the same thing in a machine language

program. And not just file related commands, nor even most of the

commands. I wanted all the commands. Each and every one! After

all, who's in charge here? Me or the PET?

In much less than the time spent on several previous individual

problems, I had a general solution. I can now execute any BASIC

command from within a machine language program with what I call

"simulated BASIC" and the procedure is beautifully simple. So

simple that it has become a double edged blessing/curse. The

blessing is that I will never again be stuck fighting an isolated

machine language problem that I could easily solve in BASIC unless

I choose to. The curse is that, having such an easy way out, I may

not struggle as hard as I should to learn more secrets of the ROM

code.

For pure machine language programs the most popular use of

83

simulated BASIC will probably be the execution of IEEE bus and

file related commands such as OPEN, CMD, SAVE, LOAD, and

CLOSE. Complex arithmetic calculations are also a good

application. How would you like to try "B = 543*SQR(SIN(A))" in

machine language? No problem using simulated BASIC! Just

"simulate" the same instructions that you would execute if the

calculation were being done in a comparison BASIC program.

Naturally this must include the PEEKs and POKEs necessary to

transfer data access to and from the machine language program.

In addition, there are some very interesting possibilities for

BASIC programs with machine language subroutines. From within

the machine language subroutine you might want to do something

simple like changing the value of a BASIC variable without

returning to the BASIC part of the program. Or, you might want to

try something complex like making a multi-way branching decision

to take you back to an instruction in BASIC other than the one

you came from. Just be sure you understand the operation of the

stack before you try branching operations with simulated BASIC.

Branching is a little tricky, but it can be done.

Now that you have some idea of what simulated BASIC can

do for you, let's seriously examine the way to make it happen.

Procedure

1. Create a string of bytes which look like a normal BASIC

language instruction in memory.

2. Save the contents of the BASIC buffer pointer ($77 and $78),

and the most significant byte of the current BASIC line number

($37).

3. Put the ADDRESS of the first byte of the "instruction" in the

BASIC buffer pointer, and set $37 to zero.

4. Put the first byte of the "instruction" in the accumulator, set the

carry bit, and JSR to ROM location $C702 where the "instruction"

will be executed.

5. Restore the original values to the locations you saved in step 2.

The reasons for some points in the above procedure may not

be obvious to all of us so let's dig a little deeper.

The simulated BASIC instruction created in Step 1 differs very

slightly from a real BASIC instruction line.

The image of a real BASIC instruction in memory contains a

next line address pointer (two bytes), a line # (two bytes), the

instructions bytes, and a terminator byte. Since we are not truly

84

Beyond The BASICS

operating in BASIC, the next line address and the line number are

not needed.

Within a real BASIC instruction, all commands, functions,

and relational operators are saved in memory as tokens. This

convention must be followed exactly in creating the simulated

instruction.

For simulated BASIC the instruction terminator should be a

$00 byte because multiple instructions in a single line are not

allowed.

If you are using an assembler, the source code for an example

instruction such as "OPEN9,4,0" might be:

.BYTE $9F,'9,4,0\ $00

where $9F is the token for "OPEN". After assembly, the bytes in

memory would be:

9F 39 2C 34 2C 30 00

In Step 2, saving the contents of the BASIC buffer pointer is

optional, depending on how your program is structured. They need

not be saved if your program is totally machine language and if it

terminates in a "warm start" or other action which forces the zero

page pointers to a known state.

If you have any doubts, play it safe and save the pointers!

There are a few instructions such as INPUT and GET which

can be executed only in "program" mode and the ROM code

performs two tests to determine the current mode. One of these

tests involves the BASIC buffer pointer bytes and, since we are

already altering them, this test will pass. The other test checks the

contents of location $37, which is the most significant byte of the

current BASIC line number. To execute these special instructions in

simulated BASIC, location $37 must be set to some value other

than $FF. Since changing this byte does not affect the execution of

the other instructions, I usually set it to zero and restore it (see Step

5) as a standard part of the procedure.

Steps 3,4, and 5 are straightforward. Just remember that the

least significant byte of the "instruction" ADDRESS goes in

location $77 and the most significant in $78, and don't forget to set

the carry bit or you'll get some very odd results.

That's all there is to it. The whole world of BASIC is now

available to you in machine language. Program what you can or

what you choose to in machine language and do the things you find

difficult in simulated BASIC.

85

Implementation

Now I would like to suggest a method I have found most useful in

implementing simulated BASIC. Table 1 contains source code,

slightly modified for clarity, from an operational program.

Depending on which assembler you have, there may be minor

differences between this source code and the code that you will

actually use, but the methods illustrated are applicable in any case.

If you don't have an assembler, don't be discouraged. All the

advantages of simulated basic are still available to you. Its just going

to be more difficult for you to get the code into your computer, but

you should be used to that by now.

The first six lines in the table show code which would be

contained in the body of your program. They cause the execution of

the three simulated BASIC instructions which you will see near the

end of the table. The values which are loaded into the X register are

the number of bytes between the start of the "instruction" table and

the start of the individual "instruction" that is to be executed.

The code in the center section of the table is a subroutine

which performs the execution steps which were described previously

(see Steps 2 through 5).

An advantage of this subroutine method over others I have

tried is that the contents of the "instruction" list can be changed or

added to without any manual re-calculation of X register index

values. Those values are computed at assembly time as a result of

the last three source code lines in the table.

General Comments

The key location in ROM ($C702) for simulated basic execution is

for a 2001 series PET with Upgrade ROM. (See Editor's Note at start

of article for other machines).

Next, every BASIC instruction I have executed using

"simulated BASIC" has worked exactly as expected, but I obviously

have not tried anything approaching all the possible applications,

so, don't be surprised if, somewhere along the old flow chart,

something unusual should happen. Just be sure to let us all know

about it.

Finally, for those of you who may want to double check your

construction of a "simulated BASIC" code line: Simply NEW the

computer, type in the desired line of code, (complete with line

number) then SYS 1024 to the monitor and look at the code from

location $0405 to the first "zero" byte.

86

Table 1.

SAMPLE IMPLEMENTATION OF SIMULATED BASIC

7043

7045

7048

704A

704D

704/

727F

7281

7284

7286

7289

728B

728E

728F

7290

7292

7294

7296

7298

729A

729C

729F

72AO

72A3

72A6

72A8

72AB

A2

20

A2

20

A2

20

A5

8D

A5

8D

A5

8D

18

8A

69

85

A9

85

69

85

BD

38

20

AD

85

AD

85

72AD AD

72B0 85

00

7F

07

7F

10

7F

77

4F

78

50

37

51

B3

77

00

37

72

78

B3

02

4F

77

50

78

51

37

72

72

72

77

77

77

72

C7

77

77

77

LDX#INDEX1

JSR BEXEC

LDX#INDEX2

JSR BEXEC

LDX#INDEX3

JSR BEXEC

;SAVE BASIC INSTRUCTION POINTER

;AND LINE# MS BYTE

BEXEC LDA $77

STA $774F

LDA $78

STA $7750

LDA $37

STA 7751

;SET NEW POINTER & LINE# VALUES

CLC

TXA

ADC #<INSTR1

STA $77

LDA #$00

STA $37

ADC#>INSTR1

STA $78

;FIRST INSTRUCTION BYTE TO ACC,

;SET CARRY BIT, AND EXECUTE

LDAINSTR1,X

SEC

JSR$C702(B7<?7)

;RESTORE BASIC POINTER & LINE#

LDA $774F

STA $77

LDA $7750

STA $78

LDA $7751

STA $37

87

72B2 60 RTS

72B3

72B6

72B9

72BA

72BD

72C0

72C3

9F

34

00

98

C7

33

A0

36

2C

36

28

29

36

2C

30

2C

31

00

00

;'BASIC INSTRUCTION TABLE

;OPEN6,4,0

INSTR1 .BYTE $9F, '6,4,0\$00

;PRINT#6 CHR$(13)

INSTR2 .BYTE $98,'6,\$C7,'(13)\$00

;CLOSE6

INSTR3 .BYTE $A0/6\$00

INDEX1 =INSTR1-INSTR1 J rg'} - 7 :

INDEX2=INSTR2-INSTR1 «? x$A - *7 <

INDEX3=INSTR3-INSTR1 i ^d J - 7 i

i? ? *a

$3:1

Fitting Machine

Language Into The PET

Jim Butterfield

Machine language needs an area of protected memory.

A PET machine language program must coexist with BASIC. You

need at least one BASIC instruction, even if it*s only a SYS

command to start the machine language running. You could give

the SYS as a direct command from the keyboard; but it's usually

much better to run it in as a program line and let the user type

RUN.

The BASIC program is usually in a predictable place. It will

start at address 1025 (hexadecimal 0401), and will occupy memory

space upward from there. The end of the BASIC program can be

spotted by the fact that memory will contain three consecutive

zeros.

Your machine language program can go almost anywhere

that's free. There are three favorite places for such programs:

— in the cassette buffer(s);

— immediately above the end of BASIC;

— at the top of memory.

Each has its advantages and drawbacks. Let's deal with them one at

a time.

Cassette Buffer(s)

If you use only cassette number 1, the second cassette buffer is free

and available for your use. Its address is hex 033A to 03F9, which

gives you 192 locations to play with. If you don't use cassette tape at

all, i.e., you use disk, you may use both buffers; this gives you

addresses from 027A to 03F9 hex, or 384 locations.

The newest models of PET/CBMs use a small portion of the

second cassette buffer. If you have 4.0 ROMs — that is, your

machine accepts English-language commands like SCRATCH or

CATALOG — you'll need to leave the bottom twenty locations or

so free. And if your machine has a TAB key, you must leave a few

locations at the top — or your tab stops will change mysteriously.

On these newer models, work in the range of,0350 to 03ED and

you'll be reasonably safe. (t^V (I <tf5)
The cassette buffer area is ideal for machine language

89

programs. Except as noted above, it is completely unused for any

BASIC activity. Loading new BASIC programs won't affect it. You

may easily save machine language and BASIC together by using the

machine language monitor's .S (Save) command and specifying the

address range, from start-of-machine-language to endof-BASIC.

The whole thing will be saved; and later, a LOAD from BASIC will

load everything back, both machine language and BASIC.

There are two problems. First, the amount of space is limited.

You'll find plenty of room for your first small programs, but as you

get more experienced and more ambitious your programs will

become too big to fit into this space.

The second problem may not be a problem at all, depending

on your objectives. Programs which have been written and saved

using the above techniques can't be copied easily. The naive user

who performs LOAD and then SAVE will load the whole program

— but will save only the BASIC part. To copy the program, you

need to go to the machine language monitor — and then you need

to know the addresses to give for the .S (Save) command. If you

prefer to keep your programs private, this can be a useful technique.

But if you'd rather see them passed around, this can be a problem —

you might get tired of being the only person that can make copies

for other people.

Above The End Of BASIC.

This isn't hard to do, once you get the hang of adjusting the start-

of-variables pointer (located at 2A and 2B hex in upgrade ROM, or

at 7C and 7D in original ROM). After your BASIC program is

written, this pointer will direct you to the available memory

immediately after that program. Put your machine language

program there, and then change the pointer so that it indicates a

location above both programs — both BASIC and machine

language. Give the BASIC CLR command after you do this, and all

the other pointers will line up correctly.

Now you can use a BASIC SAVE to record your program.

Both BASIC and machine language will be saved, and they will

both load together at a later time.

Using this system, you'll have lots of space for your machine

language program if you need it. The composite program can be

copied easily: just do a conventional LOAD and SAVE any time

you want an extra copy.

There's one drawback to using this system. Once you have set

it up, it is difficult to make a change to the BASIC program. If you

90

Beyond The ©ASICS

add or delete anything — even a single character — your machine

language program will move to a new location. You'll need to

change your SYS command or USR vector. Worse, most machine

language programs can't be moved without needing changes. You

will have to rewrite the program so that it will work properly in its

new location.

This is one of the most convenient ways to position machine

language. Keep in mind, however, that it reduces your freedom to

change the BASIC program.

At The Top Of Memory

This is a very convenient place to put relatively permanent machine

language programs. It goes in the high end of memory. Since string

variables are written in high memory, you must protect this type of

program by moving the limit-of-BASIC-memory pointer down so

that it points below your program. (This pointer is located at

hexadecimal 34 and 35 in upgrade ROM, or hex 86 and 87 in

original ROM). Once you have done so, the program will take up

permanent residence and will usually remain in your machine until

you turn the power off.

In this case, the BASIC and machine language programs are

no longer adjacent in memory. You can't SAVE and LOAD them

together. Be sure to LOAD the machine language program first,

followed by the BASIC program; otherwise some of the BASIC

pointers will be mixed up, and you'll probably get an ?OUT OF

MEMORY error. Remember, too, that the machine language

program will take up permanent residence. It won't go away when

you load a new BASIC program.

Another problem that you'll have to face with this technique is

that different machines are fitted with different amounts of memory.

A machine language program that sits neatly at the top of an 8K

machine will lie smack in the middle of memory on a 16K unit. You

would need different versions for different sizes of machine. Keep in

mind, once again, that you usually can't move a machine language

program to a new location without making changes to it.

It is possible to write a program which finds the top of

memory, parks the machine language program up there (wherever it

happens to be), makes all necessary corrections, and then moves the

limit-of-BASIC-memory pointer to the proper place. Many

programs, such as Superman and the DOS "wedge" system, do

exactly that. It's an advanced technique, however — don't try your

hand at it until you feel you're ready.

91

Beyond The BASICS

Machine Language Code

ForAppendingDisk Files

Robert H. Wollenberg

A common problem (appending or merging programs) has been solved in

several ways, but many users still donyt have this capability. Mr.

Wollenberg's program, written for the upgrade ROM PET, elegantly does

the trick.

The attached machine language routine provides a very useful tool

for those who have been frustrated (as I have) by the inability of the

current disk operating system (DOS) of the Commodore 2040 Dual

Drive Disk to append programs. Although firmware recently

introduced by Palo Alto IC's (The Programmer's Toolkit) provides

some relief to those who require a convenient appending procedure,

it suffers a serious drawback. The system operates only by

appending a tape file to a program already in memory. Thus, it

becomes necessary to first save program pieces to tape and then

reload these in proper sequence using the append command. Since I

was reluctant to use this slow tape file procedure, I searched for

alternatives involving disk files.

A little investigation of the DOS command, Copy, reveals that

ths instruction goes a long way toward solving the problem. BASIC

is stored in memory starting at location $0401. The first two bytes

are forward pointers to the next line of code (stored by the usual

6502 convention of low byte/high byte). Locations $0403 and $0404

store the line number for this first line of BASIC. The ASCII Code

for this line is stored beginning at location $0405 and ends with the

delimiter zero. The next byte begins the second line of BASIC and

is stored at the location pointed to by the forward pointers at

locations $0401 - $0402 described above. By following the forward

pointers from line to line, one eventually reaches the end of the

BASIC code. This event is signaled when the forward pointers

are zero.

When the DOS Copy command concatenates two disk files,

the zero page values indicate that both programs were combined;

however, listing the concatenated program reveals only the first

program. The second program, for all purposes, remains invisible to

the BASIC interpreter. This is because the forward pointers of the

first program eventually point to the two delimiters, zero, and at

92

0015

0017

0013

0019

0020

0021
0022

0023
0024

0025

0026

002?

0028

0029

0030

0031

0032

0033
0034

0035

0036

0037

0038

0039
0040

0041

0042

0043
0044

0045

0046

0047

0000

033fl

033C

033E

0340

0343

0346

0348

034R

034C

034E

0350
0352

0354

0356

0353

0359

035B
035C

035E

0361
0364

036?

0369
036C

036D

036F

0371

0373

0375

037?

0379

H9

85

85

20

20
F©

A5

I»0

C6

C6

fl9

fl0

91

ft9

38

91

88

10

20

20

2&
D0

4C

38

fl5

E5

C9
H0

ft5

C5

60

FF

11

12

2C

6C
21

5C

62

5D

5C

00

04

5C

20

5C

FB

72

42

6C

HI

8B

2fl

5C

62

04

2B
5D

C5

03

C5

C4

03

C3

STfiRT

SKIP

HGHIN

HONE

ENDBflS

NOTEND

♦ =

LDfl

STfl

STfl

JSR

JSR

BEQ

LDfi

BNE

DEC

DEC

LDfi

LDV

STR

LDfl

I'EV

STfl

LEV

BPL

JSR
JSR

JSR

BNE

JMP
SEC

LDfl

SBC

CMP

BNE

LDfi

CMP

RTS

*033fi

#*FF

$11

$12

*C52C
ENDBflS
DONE

*5C

SKIP

*5D

*5C

#$00

#$04

<$5C.Vr'

#$20

($5O,V

flGftIN

$C572

$C442

ENDBflS

STflRT

$C38B

$2fl

$5C

#$02

NOTEND

$2B

$5D

;SETUP TO FIND PROGRflM BELIMITE

.ROM FIND LINE # ROUTINE

;CHECK FOR END OF BflSIC

;VES, EXIT flND PRINT REflDV
.:CURRENT LINE

,MOVE BflCK ONE BVTE

;SETUP FOR 4 LOOPS

.:STORE NEW PROGRflM DELIMITER

;LOfiD fiSCII BLfiNK

.: STORE BLflNKS

;ROM 'CLR' ROUTINE

;ROM FIX CHRINING ROUTINE
;CHECK FOR END OF BflSIC

;DO NEXT PROGRflN IF MORE

; EXIT TO BflSIC

;CHECK FOR END OF BflSIC ROUTINE
;TOP OF VftRIflBLES

.: CURRENT LOCflTION

.DIFFERENCE = 2 IF END
;RETURN IF NOT DONE

;CHECK HIGH flDDRESS

Q REM ROBERT H WOLLENBERG

16 REM PROGRflM TO flPPEND USING DISK CONCflTENflTE COMMflND
15 DEF FHfl<X>=PEEK<X)+256#PEEK<X+l>:DEF FNB<X>=FNfi<X>-X
20 I =FNfl < 40 > •• E=FNfl < 42> : X=FNB < I >

25 IF I+X>=E-2 THEN PRINT"END OF MEMORV-NO LINK"-END
30 I=I+X-IF FNfl<I>O0 THEN X=FNB<I> -GOTO 25

35 FOR J=I TO 1+3:P0KEJ.PEEK<J+4>:NEXT

40 F0RJ=I+4 TO 1+7 POKEJ,32 NEXT: V=I-1025+4•' REM OFFSET
45 X=FNB < I > +V •• POKE I+1,1NT < il +i< > /256) : POKE I, I +X-256# I NT < < I+X >/256)
50 I=I+X:IF FNfKI>O0 flND ICE-2 THEN 45

55 IF FNfKi:>=0 flND KE-2 THEN 35
60 PRINT"LINK-COMPLETE":END

REflDV.

this point the end of BASIC is signaled. The next two bytes are

pointers to the start of BASIC text for the second program as

originally saved to disk. If the first line of the second program is

moved forward in memory by four bytes, then the last line of the

first program will point to the first line of the second program and

the linking process will be nearly complete. In order to finish the

linking procedure, the forward pointers of the second program must

be recalculated to compensate for the relocation of code. This is

done conveniently using the ROM chaining routine at $C442.

To use the attached machine code, first use the disk Copy

command to concatenate up to four program pieces. For example, to

append parts A, B and C to form program D, the following

command is executed (after loading the DOS support):

►CO:D=1:A,1:B,1:C

Next load the machine code and the concatenated program D into

memory and type:

93

SYS826

The programs are linked and the message: "READY." appears.

For comparison, I have written a BASIC program to link

concatenated programs. In this case the linking program must be

the first program concatenated. Once concatenated, the new

program is loaded into memory and then linked by typing:

RUN

The linking program is then deleted, leaving only the desired

appended program. Comparison of these two procedures revealed

that the machine language code ran nearly a thousand times faster

than the BASIC code.

94

Using DirectAccess Files

With The Commodore

2040 Dual Drive Disk
Part One

Chuck Stuart

How to use the random access capabilities of the 2040 disk drive.

One of the main advantages of using direct access files is the ability

to access any record in a file directly without having to read

through the entire file. With direct access, the last record in a file

can be located and read into memory just as fast as the first record.

Also, any record in a direct access file may be read into memory,

updated, and then written back to the file without disturbing the

other records in the file.

Although true direct access files are not directly supported in

the current 2040 Disk Operating System, Commodore has provided

a series of disk utility commands that will, in effect, allow direct

access file processing. The difference is that, instead of the DOS

keeping up with the track and sector addresses of each record in the

file, a separate sequential file must be maintained to hold the record

keys and address pointers. If for instance, the direct access file is a

Customer account file keyed by account number, then the

sequential file would hold an account number for each record in the

account file plus the track and sector addresses for each record. This

sequential file must be loaded into an array in memory before any

processing of the direct access file can take place. To access a specific

account, the array must be searched for the desired account number

and then the corresponding track and sector niimbers are used to

directly access the record.

If the 2040 supported true direct access file processing, it would

only be necessary to indicate the account number in the INPUT# or

PRINT# statement and the DOS would keep up with the track and

sector addresses in its own directory. Hopefully this will be

implemented in a later version of the DOS.

It will probably be a little easier to understand and successfully

use direct access files if you understand how a disk is laid out in

95

tracks and sectors. Each disk has 35 tracks, each track is divided

into from 16 to 20 sectors, and each sector holds 256 bytes of data.

Each byte will hold one character. Since an entire sector is read

from or written to the disk at a time, sectors are generally referred

to as data blocks or simply "blocks." Tracks and sectors do not

physically exist on the disk, but are electronically impressed upon

the surface material of the disk during the NEWing process, hence

the expression "soft: sectored." Track 18, being centrally located in

the middle of the disk, is used by the 2040 DOS to hold the

directory. The remaining 34 tracks are available to the user. If

you're having trouble visualizing the tracks and sectors on a disk,

think of the disk as a bull's eye target and the rings on the target as

the tracks on the disk. Now if you cut the target into pie shaped

wedges, you can see how the tracks are divided into sectors or data

blocks.

Reading data into your program from the disk or writing data

to the disk from your program using direct access is a two step

process. To read data from a direct access file into your program,

you must first load the data from the disk into one of the 256 byte

disk buffers with the BLOCK-READ disk utility command. Once

the data block has been successfully loaded into the buffer, it can

then be read into memory with a standard input# statement. The

process is just the reverse when writing data from your program to a

direct access file. You first write the data to a buffer using a PRINT/

statement, then the data must be loaded from the buffer onto the

disk with the BLOCK-WRITE disk utility command. It is important

to understand this process. The BLOCK-READ command loads an

entire 256 byte sector from the disk into a buffer and makes it

available to your program through a standard INPUT# statement.

The BLOCK-WRITE command takes the contents of an entire 256

byte disk buffer and loads it onto a sector of the disk. It makes no

difference if the record contained only one byte of data, it still

occupies one entire 256 byte sector on the disk. Later I will explain

how to place multiple records in a sector using the BUFFER-

POINTER disk utility command.

One other area to cover is the BLOCK AVAILABILITY MAP

(BAM). This is a reference map used by DOS to keep up with which

blocks are being used and which blocks are available to use. To keep

DOS from overwriting your direct access files with sequential files,

you must flag those blocks on the BAM so DOS will know they are

being used. As we will see later, this is done with the BLOCK-

ALLOCATE disk utility command.

96

Now that the general concept of direct access files and the way

they work on the Commodore 2040 Dual Drive Disk has been

explained, the actual coding necessary to do the job will be

examined line by line. Lines 500 to 680 would be part of the main

program while lines 1000 to 1520 are subroutines which execute the

various disk utility commands as required. The subroutines will be

examined first, then the main program.

Lines 1000-1090

This subroutine is called after each disk utility or read/write

command to check the error channel, channel 15, to see if a disk

error has occurred. If an error has occurred, the error number and

error message are displayed along with the track and sector address

where the error occurred. If the error number is 00 then no error

occurred and control returns to the main program.

Lines 1100-1190

This subroutine is used to allocate (or reserve) one sector on

the disk through the use of the Block-Allocate disk utility command

in line 1110. The sector is flagged on the BAM so DOS will not use

it later for storage of sequential files. Looking at line 1110, D is the

disk drive number, T is the track number, and S is the sector

number. These values must be preset in the main program. After

line 1110 requests the allocation, line 1120 reads the error channel

to see if an error has occurred. If no error has occurred, control

returns to the main program. If the error number is 65, this means

that the requested block has already been allocated. But lo and

behold, DOS has been kind enough to locate the track and sector

numbers of the next available block and place them in ET$ and

ES$. These values are placed in T and S and we again request

allocation. Two important points must be remembered. DOS does

not automatically allocate the next available block. It just tells you

where it is. To allocate the block you must reset T and S to the

values returned in ET$ and ES$ and then reissue the Block-Allocate

command in line 1110. The other thing to remember is that, for a

block to be successfully allocated, a direct access file must be open

when the Block-Allocate command is given and that the block will

not actually be reserved on the BAM until that file is closed.

Allocating a block will not keep you from writing on it. It just keeps

DOS from writing on it.

Lines 1200-1220

This subroutine is used to free a previously allocated block.

The Block-Free command is the exact opposite of the Block-Allocate

command. In line 1210, D is the disk drive number and T and S

97

hold the track and sector address of the block to be freed. After the

command has been executed, line 1220 sends control to the error

channel routine. If no error occurred, control returns to the main

program. This routine is used to delete records from a direct access

file by immediately releasing the block back to DOS. There is,

therefore, no need for periodic system housekeeping to reclaim

unused disk space. As with the Block-Allocate command, a direct

access file must be open when the Block-Free command is given,

and the block is not actually flagged as available until the file is

closed.

Lines 1300-1320

This subroutine is used to make a block on the disk available

for reading by your program. In the Block-Read utility command,

line 1310, CH holds the channel number. D holds the disk drive

number, and T and S hold the track and sector addresses of the

block to be read. When the command is executed, a 256 byte data

block is read from the disk and placed in one of the disk buffers.

The data can then be read into memory with a standard INPUT#

statement. After the block is read in from the disk, line 1320 sends

control to the error check routine and, if no error has occurred,

control returns to the main program.

Lines 1400-1420

This subroutine uses the Block-Write utility command to

write the contents of a 256 byte buffer onto the disk. Again, CH

holds the channel number, D holds the disk drive number, and T

and S hold the track and sector addresses of the sector where the

data is to be placed. Before this routine is executed, data should be

placed in the buffer using the PRINT/ statement. After execution,

control passes to the error check routine and then back to the main

program.

Lines 1500-1520

This routine uses the Buffer-Pointer utility command to set the

buffer pointer to the byte in the buffer where reading or writing is to

begin. Correct use of this routine will allow multiple records per

sector, giving more efficient utilization of disk space. In line 1510,

CH is the channel number and BP is the byte pointer. If BP is set to

a value less than 1, it will be treated as though it were set to 1. If set

to a value greater than 255, it will wrap around and begin at 1

again. Setting BP to 260 has the same effect as setting it to 5. After

execution, line 1520 directs control through the error check routine

and back to the main program.

Lines 500 to 590

98

Beyond The BASICS

These lines show the coding necessary to write records to a

direct access file. They would be part of the main program.

Line 510 opens the command/error channel, channel 15, and

assigns it to file number 15. Channel 15 must be opened and

assigned to a file before any communication between computer and

disk can take place.

Line 520 sets the channel variable to 3 and the disk drive

variable to 1. The channel can be set to any unused channel

between 3 and 15. The drive number is set to 1 for the left drive or

0 for the right drive.

Line 530 opens file number 1 and assigns it to channel CH, in

this case, 3. The "#" tells DOS that this is a direct access file.

Line 540 is used to locate the next available sector and allocate

it on the BAM. T is set to 1 and S is set to 0 because that is the

address of the first sector on the disk. If that sector has been

allocated, the next available sector is automatically located and

allocated by the subroutine in lines 1200 to 1290.

Line 550 sets the buffer pointer to 1 so DOS will begin writing

at the first byte in the buffer.

Line 560 writes the record data to the buffer beginning at the

byte referenced by the buffer pointer.

Line 570 writes the buffer to the disk sector previously

allocated in line 540. At this point, T and S must be saved along

with whatever record key is being used so that this record can be

found on the disk later.

Line 580 closes the direct access file opened in line 530.

Lines 600 to 680

This subroutine contains the coding necessary to read records

from a direct access file. It would be part of the main program.

Line 610 opens file number 1 and assigns it to the preset

channel in CH. The "#" tells DOS that this is a direct access file.

Line 620 loads a block of data from the disk and places it in

the buffer assigned to channel CH. T and S must be set to the

address of the sector where the desired record is located.

Line 630 sets the buffer pointer to begin reading at the first

byte in the buffer.

Line 640 reads the record data from the buffer into the

program.

Line 650 checks the status word.

Line 670 closes the direct access file.

This program will run as is. It will write the numbers 1

through 10 to the disk and then read them back in. If you add a line

99

to the program that will print T, S, and the array A$ on the screen,

you can verify that the correct data was written to and then read

from the disk and even see to which sector it was written. Notice

that each time the program is run, a new sector is allocated and

used. These sectors will become wasted space on the disk unless you

free them with the Block-Free command. Add a GOSUB 1200 at

line 665 and notice that now the program reuses the same sector

each time. Why? What would happen if you moved the GOSUB

1200 to line 675? Why?

Now we will explain how to write more than one record to a

sector. If youVe followed everything up to this point, especially the

section on the Buffer-Pointer command, then you have probably

pretty well figured it out for yourself.

If each record in a direct access file occupies one entire sector

of the disk, then each disk will only hold a maximum of about 670

records. If each record contained only a few bytes of data, this

would be totally unacceptable waste of valuable disk space. In order

to achieve maximum use of the available disk space, we must pack

the maximum number of records to a sector.

In order to do this it is necessary to reduce the record size to

the minimum number of bytes that will store the necessary data.

Most DOS allow data to be written to the disk in binary format like

the data is stored in memory. In other words, integer data requires

two bytes of disk space and floating point data requires five bytes.

Although 2040 DOS is an excellent first release version, this type of

disk packing is one the standard DOS features not supported. Data

is written to the disk in the same form it is written on the screen.

Each character takes one byte of disk space. In addition, numeric

data includes leading and trailing blanks. For this reason it is

usually more efficient to write data to the disk in string format.

String data occupies one byte of disk space for each character in the

string. In addition, if the record contains more than one data field,

then each field must be followed by a CARRIAGE RETURN,

CHR$(13), field delimiter. This requires one extra byte per field. If

each field in the record is always the same size, in other words the

record contains no string fields such as CUSTOMER NAME that

vary in size from record to record, then all the fields can be

concatenated into a single string field before writing the record to

the disk. This could result in a considerable saving since no field

delimiters would be required. Upon reading the record back in, it

could be split up into the original fields with the MID$ statement.

Once the maximum record size has been determined, divide

100

500 REM WRITE A DIRECT ACCESS RECORD

510 OPEN 15,8,15 :GOSUB 1000

520 CH=3 :D=1

530 OPEN l,8,CH,n#" :GOSUB1000

540 T=l :S=0 :GOSUB 1100

550 BP=1 :GOSUB1500

560 FOR 1=1 TO 10 :PRINT#1,I CHR? (13) ; .-NEXT I

570 GOSUB 1400

580 CLOSE 1

600 REM READ A DIRECT ACCESS RECORD

610 OPEN lf8,CHr"#n :GOSUB 1000

620 GOSUB 1300

630 BP=1 :GOSUB 1500

640 FOR 1=1 TO 10 :INPUT#1, A$(I)

650 IF ST THEN 1=10

660 NEXT I

670 CLOSE 1

690 END

1000 REM ERROR CHANNEL INPUT ROUTINE

1010 INPUT#15f EN$,EM$,ET$,ES$

1020 IF EN$="00n GOTO 1090

1030 PRINT n DISK ERROR #n EN$ " " EM$ n M ET$ n " ES$

1040 INPUT n CONTINUE? n; A$

1050 IF A$OnYn THEN STOP

10 90 RETURN

1091 REM

1100 REM ALLOCATE 1 D/A BLOCK

1110 PRINT#15,nB-A";D;T;S

1120 INPUT#15,EN$,EM$,ET$,ES$

1130 IF EN$="00M GOTO 1190

1140 IF EN$=n65n THEN T=VAL(ET$) : S=VAL (ES$):GOTO 1110

1150 GOTO 1030

1190 RETURN

1191 REM

1200 REM FREE 1 D/A BLOCK

1210 PRINT#15r nB-Fn;D;T;S

1220 GOTO 1000

1291 REM

1300 REM READ D/A BLOCK

1310 PRINT#15, "B-R";CH;D;T;S

1320 GOTO 1000

1391 REM

1400 REM V7RITE D/A BLOCK

1410 PRINT#15, "B-Wn;CH;D;T;S

1420 GOTO 1000

1491 REM

1500 REM SET BUFFER POINTER

1510 PRINT#15, "B-Pn;CH;BP

1520 GOTO 1000

the record size in bytes into 255 to determine the maximum number

of records that can be stored on a single sector of the disk. For

101

Beyond The BASICS

example, if each record in the file has been determined to have a

maximum length of 20 bytes including all necessary field delimiters,

then by dividing 20 into 255 we see that we can store 12 records per

sector. Since the zero byte is used by DOS as an EOI pointer, the

first record begins in byte 1, the second record in byte 21, the third

record in byte 31, etc. Now you will have to add a fourth field to

your sequential pointer file. Besides record key, track address, and

sector address, you must identify each record's position in the block.

Then, to locate a specific record in the file, you would search the

record key array for the desired record, use the corresponding track

and sector addresses to read in the indicated sector, and then set the

buffer pointer to the value in the corresponding record position

field. Now you are ready to read the desired record into your

program with a standard PRINT# statement.

Before winding this up, there is one other important area that

should be covered and that is the correct way to write data to the

disk. The following lines show several ways data can be written.

100PRINT#l,A$,B,C%

200PRINT#l,A$;B;C%

300 PRINT#1, A$ CHR$(13) B CHR$(13)C% CHR$(13);

400 FOR I = 1 TO 10:PRINT#l, A$(I):NEXTI

500 FOR I = 1 TO 10:PRINT#l, A$(I),:NEXTI

600 FOR I = 1 TO 10:PRINT#l, A$(I)CHR$(13);:NEXTI

Line 100

WRONG! Commas have the same skipping effect on the disk

as they do on the screen. This would result in very inefficient use of

disk space.

Line 200

WRONG! Semicolons are non printing characters and will not

work as field delimiters. Any attempt to read A$ would read B and

C% as well.

Line 300 .

CORRECT. This method will write a CARRIAGE RETURN,

CHR$(13), field delimiter between each field and the semicolon on

the end keeps OS from adding a trailing LINE FEED character to

the last field.

Line 400

WRONG! The OS will add CARRIAGE RETURN and LINE

FEED characters to each field. The CARRIAGE RETURN

character is desired but the LINE FEED will become the first

character in the following field and can cause numerous problems.

Line 500

102

Beyond The BASICS

WRONG! Same reason as line 100.

Line 600

CORRECT. The required CARRIAGE RETURN character is

inserted between each field in the record and the semicolon keeps

the OS from adding a LINE FEED character. The PET Operating

System treats all data the same no matter if it is printing to screen,

disk, or printer. For this reason, the last field in every PRINT#

command should be followed by a semicolon to keep the OS from

adding a LINE FEED character to the output data string. This

LINE FEED character will become the first character in the

following field and will cause all kinds of headaches. It will crash

your program with a data check error if you attempt to read the

field in numeric format and can lead to erroneous comparisons if

read in string format. This is true whether you are using direct

access or sequential files. Data is much easier to read correctly from

the disk if it was written correctly to the disk.

You should now be well versed in the theory of using direct

access files on disk. Next comes the fun part, gaining actual

experience reading and writing direct access files on your disk. Start

with the program in lines 500-680 plus the subroutines in lines 1000

to 1520. When you are sure you know exactly what each line does,

you can start experimenting around, adding lines, etc. When the

program crashes, and it probably will several times, back up and

don't try anything new until you know exactly what went wrong.

Before you know it, you11 be the club expert on 2040 direct access

files.

103

Part Two

We have attempted to explain in detail how to use and understand

Direct Access Files with the new Commodore 2040 Dual Drive

Floppy Disk. Using and understanding Direct Access file

organization is mandatory if you plan to develop any serious

business software for the Commodore microcomputer system.

We will now expand on the principles previously covered and

also try to answer some of the questions we have received in the

mail concerning those principles. References to line numbers in the

following material refer back to the Direct Access coding explained

in part one. It will help you to understand the following information

if you refer back to that part.

Before getting started, it would probably be prudent to point

out what seemed an error to many readers. Some thought that the

GOTO 1000 in lines 1220, 1320, 1420, and 1520 should have been a

GOSUB 1000 instead. On glancing over the coding this might

appear to be true, but a more careful examination of the logic flow

will show that each of the disk utility routines beginning at lines

1200, 1300, 1400, and 1500 flow into the error channel read routine

beginning at line 1000 and the RETURN in line 1090 is the logical

return path for each of these subroutines.

If you own a 2040, you should have by now received the final

version of the instruction manual. If not, call (408) 727-1130 and ask

for one. Although much more professional-looking in appearance,

this final version offers little more useful information than the

temporary version, especially in the area of Direct Access file

organization. In light of this shortcoming, we will continue to pass

along what practical information we uncover during the continued

development and support of our business software systems. At the

same time, we would appreciate receiving any additional

information and user hints that others might discover.

Updating Direct Access Files

As we pointed out in part one, one of the best reasons for

using Direct Access files is that it gives you the ability to read in any

record in a file, update the information contained in that record,

and then write that record back to the file without disturbing any

other records in the file. The records can be accessed in any other

records in the file. The records can be accessed in any order

regardless of their physical order on the disk. The last record in the

file can be found and read as easily and as fast as the first record in

the file.

104

Unfortunately, the BLOCK-READ and BLOCK-WRITE disk

utility commands that we previously covered do not lend themselves

well to this type of file updating. Early on in our software

development we discovered this problem. The B-W command places

the value of the current buffer pointer in the zero byte of the block

and the B-R command uses this value to set the STATUS WORD

to 64. During this process the record data is affected if an attempt is

made to update more than one record per OPEN statement. The

only answer was to OPEN and then CLOSE the file each time a

record in the file was to be updated. Needless to say, this method

greatly slowed processing — not because of the extra time required

to OPEN and CLOSE the files, but because of the time required for

the disk READ/WRITE HEAD to physically move to the disk

Directory Track, track. 18, to update the BLOCK AVAILABILITY

MAP (BAM) and then return to the processing track.

Fortunately there is a better method. The USER command Ul

is used rather than the BLOCK-WRITE command. The following

two lines should replace the corresponding lines of BASIC coding

shown in part one.

1310 PRINT#15, Ul ;CH;D;T;S

1410 PRINT#15, U2 ;CH;D;T;S

The USER command, Ul, performs the same function as the

BLOCK-READ command, B-R, except that a 255 character block is

assumed since any character count stored in the zero byte is

ignored. The USER command, U2, is identical to the BLOCK-

WRITE command, B-W, except that the contents of the zero byte

are unchanged when the block is written to the disk. When using

the Ul and U2 commands for reading and writing Direct Access

disk files, you must always set the buffer pointer to the desired

position before issuing a PRINT# or INPUT# command. This is

accomplished through the use of the BUFFER-POINTER command,

B-P, as explained in part one. With a little practice you should now

be able to update Direct Access files on the 2040 with no problems.

Detecting A Disk Full Condition Using Direct Access Files

In explaining how to create Direct Access files, we left out one

rather important detail. That was how to tell when the disk is full.

Go back to lines 1100-1190 and study the associated description of

how the BLOCK-ALLOCATE command works. Remember that

this command is used for finding and allocating the next available

disk sector in creating and expanding a Direct Access file. The track

and sector address of the next available block is returned in the

105

Beyond The BASICS

third and fourth parameters of the Command Channel. This is ET$

and ES$ in line 1120 of our example. The block located at that

track and sector is then allocated and becomes part of our Direct

Access file.

All this is great, but what happens when all of the available

disk sectors have been allocated? How does DOS manage to inform

us of this rather important event? Simple. When no more disk

sectors are available then DOS returns 00's in ET$ and ES$ instead

of the address of the next available sector. Be sure to check EN$ for

a 65 to ensure that some type of disk error has not occurred that

might also cause ET$ and ES$ to be set to 00. The following lines of

BASIC coding should be inserted in the program example in part

one.

1140IFEN$<>65 GOTO 930

1150 IF ET$=00 AND ES$=00

GOTO 9000

1160T= VAL(ET$): S = VAL(ES$):

GOTO 1110

Notice that the original line 1140 is replaced by the new one.

Line 1140 now checks for the correct error number to ensure that

some unexpected disk error has not occurred. If one has occurred, if

EN$ is any value other than 65, then control is passed to the error

handling routine. Notice that the branch is to line 930 rather than

the usual line 900. This is because the error channel has already

been read in line 1120. Line 1150 checks to see if the disk is full and,

if so, control is passed to the appropriate routine at line 9000. Line

1160 resets T and S to the track and sector address of the next

available sector and branches back to request allocation.

100 REM THIS IS AN EXAMPLE OF DIRECT

105 REM ACCESS FILE UPDATING.

106 REM

110 REM LINES 200 TO 299 READ A RECORD

115 REM FROM A DIRECT ACCESS FILE,

120 REM UPDATE THE RECORDf THEN WRITE

125 REM THE RECORD BACK TO THE FILE.

126 REM

130 REM LINES 1000 THROUGH 1520 WERE

135 REM DISCUSSED IN DETAIL IN PART

140 REM ONE OF THIS SERIES.

150 REM

200 REM UPDATE A DIRECT ACCESS RECORD

210 CH*=4: D=0: BP=1: CR$=CHR$(13)

220 OPEN4f8r4fn#n: GOSUB 1000

230 T=15: S=12: GOSUB 1300: GOSUB 1500

106

240 INPUT#4,A$,B$fCfDfK

250 A$=nTESTn: K=K+1

260 GOSUB 1500

270 PRINT#4rA$ CR$ B$ CR$ C$ CR$

275 PRINT#4fD$ CR$ K CR$

280 GOSUB 1400

290 CLOSE 4

299 END

1000 REM ERROR CHANNEL INPUT ROUTINE

1010 INPUT#15f ENfEMfET$,ES$

1020 IF EN$="00fI GOTO 1090

1030 PRINT "DISK ERROR #n EN$ n " EM$;

1031 PRINT " n ET$ n " ES$

1040 INPUT "CONTINUE? "; A$

1050 IF A$<>"Y" THEN STOP

1090 RETURN

1091 REM

1300 REM READ A D/A BLOCK

1310 PRINT#15, nUl";CH;D;T;S

1320 GOTO 1000

1391 REM

1400 REM WRITE A D/A BLOCK

1410 PRINT#15f "U2";CH;D;T;S

1420 GOTO 1000

1491 REM

1500 REM SET BUFFER POINTER

1510 PRINT#15, "B-P";CH;BP

1520 GOTO 1000

107

File Conversions On The

Commodore 2040 Drive

Hal Wadleigh

This article complements Robert W. Baker's "WordPro Converter." Now

you can process a WordPro "File Cabinet" or provide mailing label

merging.

The vast majority of business systems using PETs and CBMs are

attached to a 2040 disk drive. One of the reasons is that Wordpro

(the word processing system) can turn the CBM-2040 combination

into one of the most cost-effective word processing machines on the

market. The other applications which can also be programmed for

the same equipment are a nice bonus, but Wordpro usually pays for

the system.

The initial concept behind Wordpro was for the word processing

function to be distinct from other functions. The software design was

predicted on the assumption that Wordpro files would not have to be

accessed by other programs. Consequently, the files were designed in

program blocks — not as ASCII data files. Time has proven that

assumption to be inaccurate. Many text files created in Wordpro

contain information that is often necessary for other computer

functions and Wordpro documents often need data from ASCII files

created by other functions.

The problem has a fairly simple solution — two conversion

programs. One translates Wordpro files into ASCII files and the

other performs the reverse.

The attached program listings will not be very meaningful

without some explanation of the way Wordpro files are structured.

Wordpro files are programs, not sequential files. A carriage return by

the operator puts a back-arrow into the text and moves the cursor to

the start of the next screen line. Since the file is actually a program,

the first two bytes of the file are a reverse-format integer designating

the address at which the program should begin loading. Luckily, the

2040 DOS allows single character GETs from a program file. It may

be OPENed in the same way a sequential file is opened, and the

status word (dedicated variable ST) can be used to find the end of the

file.

In the attached listing of the Wordpro to ASCII conversion

program, the subroutine at line 10000 sets up the character

108

conversion table. Characters in Wordpro files are in screen code, not

ASCII. The subroutines at 1000 is the error checking and endof-file

scanning routine. These two techniques are the key elements in file

conversion for these kinds of files. The structural differences between

the file types is handled by simply throwing out the two pointer bytes

at the beginning of the file. The program listed does this with a pair

of initial GETs and is processed by replacing it with a carriage return

and throwing out the additional blank spaces behind the back arrow.

That is the reason that it is necessary to keep track of the screen

column from which the Wordpro character came (C% in the

program).

The program which does the reverse conversion uses the same

basic techniques, but re-inserts the pointer and padding blanks that

are discarded in the other program.

Word processing is the foremost application for all

microcomputers today. Now it doesn't have to be an entirely

separated function on 2040 systems, but can be integrated into a

cohesive data processing system for small businesses. Invoices

generated in Wordpro can be converted and merged into an order-

processing system. Block file lists generated and maintained in

Wordpro can be converted for a demographic analysis. Mailing list

label data can be converted into Wordpro block files for use in

customized mass mailings.

There are other instances where the same type of file conversion

techniques may be useful — converting the CBM altered ASCII set to

standard ASCII for output to a printer is one example. The principle

involved is to do as much of the conversion as possible in a table and

to program only those functions that cannot be mapped. It's easier

and faster that way.

5 POKE59468,14:GOSUB10000

7 PRINT"fiEORDPRQ TO ASCII CONVERSION":

-iPRINT

10 INPUT "WORDPRO FILE NAME .<«";¥$:

-iIFF$=n."GOTO10

20 INPUT"£RIVE NUMBER .<«" ; A$: A=ASC (A$)

-i-48:IFA<0ORA>1GOTO20

30 INPUT "ASCII FILE NAME .«<";hF$:
-iIFAF$="."GOTO30

40 INPUT"ERIVE NUMBER .<«";A$:B=ASC (A$)

-.-48: IFB<0ORB>1GOTO40

50 A$=CHR$(A+48):B$=CHR$(B+48):OPEN15,8,

-il5:PRINT#15, "I"+A$

60 IFBOATHENPRINT#15, "I"+B$

70 F$=A$+":"+F$+"fPfR":REM DRIVE*:

109

-.PILE NAMEfPROGRAM,READ ACCESS

80 OPENl,8r2,F$:GOSUBl000:REM OPEN AND -.

-.CHECK

90 AF$=B$+II:II+AF$+",S,W":REM DRIVE#:

■nFILE NEME,SEQUENTIAL,WRITE ACCESS

100 OPEN2,8r3fAF$:GOSUBl000

110 GET#1,A$:GOSUB1000:REM SKIP POINTER,

-. LOW BYTE

120 GET#1,A$:GOSUB1000:REM SKIP POINTER,

-. HIGH BYTE

130 C%=39:REM INITIALIZE COLUMN COUNTER

140 GET#1,A$:C%=C%+1:IFC%>39THENC%=0

150 IFA$=CHR$(31)GOTO170:REM CARRIAGE -.

-.RETURN

160 PRINTT$(ASC(A$));:PRINT#2,T$(ASC(A$))

-.; : GOSUB1000: GOTO14 0

170 PRINT:PRINT#2,CHR$(13);:IFC%=39GOTO14

-.0:REM NO PADDING

180 FORI=C%TO38:GET#1,A$:GOSUB1000:

iIF (ASC (A$) AND63) O32THENPRINT:

-iPRINTnxFILLER £BBQEn:STOP

190 NEXT:GOTO130:REM FILLER (CHARACTER 32 -i

-.OF 160) HAS BEEN DELETED

200 END

1000 SA%=ST:REM TEMPORARY STORAGE OF i

-.STATUS WORD

1010 INPUT#15,E,E$,T,S:IFE<1GOTO1040:

-.REM DISK ACTION OK

1020 PRINT:PRINTlfxDISK ERROR";E;E$:

-.PRINTMTRACK= "; T; " SECTOR= "; S:

-.PRINT nSTATUS=";SA%

1030 CLOSE1:CLOSE2:CLOSE15:END

1040 IFSA%=0THENRETURN:REM ALL OK

1050 M$="STATUS ERROR="+STR$(SA%):

-.IFSA%=64THENM$="FILE CONVERTED11

1060 PRINT: PRINT"*.11 ;M$:GOTO1030

1070 REM END OF ERROR CHECKING SUBROUTINE

10000 DIMT$(255):REM TRANSLATION ARRAY

10010 FORI=0TO31:T$(I)=CHR$(I+64):NEXT

10020 FORI=32TO63:T$(I)=CHR$(I):NEXT

10030 FORI=64TO95:T$(I)=CHR$(I+128):NEXT

10040 FORI=96TO127:T$(I)=CHR$(I+64):NEXT

10050 FORI=128TO255:T$(I)=nr"+T$(I-128)+If

-ir":NEXT

10060 RETURN

COMPUTE NOTES: The pointer found at the beginning of the WORDPRO II

files will vary depending on the number of lines of main text you specified. Since

WORDPRO II doesn't use this pointer when loading files, you could increase the

workspace in the ASCII TO WP program by reducing the value assigned to WP in

line 20. Just make sure that you declare enough main text in WORDPRO to

no

Beyond The BASICS

accommodate the file.

Use abbreviations in lines 180 and 1020 of the WORDPRO TO ASCII program

to keep from exceeding the limit of 80 characters per line, i.e. use "gE" for "get#" and

"?" for "print".

Also, the "-"character in line 95 of the ASCII TO WORDPRO program

represents a backarrow character.

5 POKE59468,14:GOSUB2000

7 PRINT"fiASCIl TO HORDPRO CONVERSION":
-.PRINT

10 EL=PEEK(52) :EH=PEEK(53) :REM POINTERS -i

iTO END OF MEMORY

20 WP=12296:EW=EL+256*EH-1:REM $3008—BEGI

-.NNING & END OF WORDPRO WORKSPACE

30 INPUT "ASCI I INPUT FILE .««n;F$:

-•IFF$=".flGOTO30

40 INPUT"DRIVE .<«";D$:D=ASC (D$) -48:

-iIFD<0ORD>1GOTO40

50 INPUT "WORDPRO FILE NAME .<«";VIF$:

iIFWF$="."GOTO50

60 INPUT"DRIVE .<«" ;D$:WD=ASC (D$) -48 :

~.IFWD<0ORWD>1GOTO60

70 F$=RIGHT$(STR$(D),1)+":"+F$+",S,R":

iWF$=RIGHT$(STR$(WD),1)+":"+WF$+",P,

-.W"

80 OPEN15,8,15:PRINT#15,"I":GOSUB1000:

iOPENIf 8,2,F$:GOSUB1000

82 OPEN2 f 8,3 fWF$:GOSUB1000:L%=0:CB=WP+2:

-.R%=0

85 PRINT#2fCHR$(8)+CHR$(48);:GOSUBl000:

-.REM INITIAL POINTERS

90 GET#1,A$:SA=ST:GOSUB1000:IFA$=""GOTO170

95 IFA$=CHR$(13)THENPRINT"~":GOTO120

96 PRINTA$;

100 IFA$="x"THENR%=l:GOTO170

110 IFA$="f"THENR%=0:GOTOl70

120 BV=T%(ASC(A$)) :IFBV=0ANDA$O"@"GOTO170

125 IFR%=1THENBV=BV+128

130 PRINT#2fCHR$(BV);:CB=CB+1:L%=L%+1:

-iIFL%>39THENL%=0

140 IFA$OCHR$(13)GOTO160

150 IFL%>0THENFORI=L%TO39:PRINT#2f" ";:

-iCB=CB+l: NEXT: L%=0 : R%=0

160 IFCB>EWGOTO210:REM END OF WORKSPACE

170 IFSA<1GOTO90

180 IFSA=64GOTO200

190 PRINT:PRINT"jlSTATUS ERROR";SA:END

200 PRINT:PRINT"rFILE CONVERTED":CLOSE2:

-.GOSUB1000 :CLOSE1 :GOSUB1000 :CLOSE15 :

-iEND

210 PRINT:PRINT"xMORKSPACE FULL—CHAINING -.

Ill

iFILE":CLR2:GOSUB1000

220 WF$=LEFT$(WF$,LEN(WF$)-4)+STR$(C%)+",

iP,Wn:GOTO82

1000 INPUT#15,E,E$,T,S:IFE<1GOTO1020

1010 PRINT:PRINT"xfiISK ERROR";E;E$:

-.PRINTT,S,SA:END

1020 IFSA<1ORSA=64THENRETURN

1030 PRINT:PRINT"r£TATUS ERROR"; SA: END

2000 DIMT%(255)

2010 T%(13)=31:REM WORDPRO RETURN MARKER

2020 FORI=64TO95:T%(I)=I-64:NEXT

2030 FORI=32TO63:T%(I)=I:NEXT

2040 FORI=192TO223:T%(I)=I-128:NEXT

2050 FORI=224TO255:T%(I)=1-64:NEXT

2060 RETURN

112

Beyond The BASICS

Using Disk Overlays

On The PET

Marty Franz

Overlaying or "chaining" lets you write and use programs that are much

larger than your available memory.

If youVe written very large BASIC programs on the PET, thereVe

probably been times when youVe wanted to break them into

smaller pieces to save storage or make maintenance easier. As an

example of this, consider disk utilities: you don't need to have the

code necessary to copy files and check for errors loaded into storage

along with the code to list the disk directory, since you will only be

performing one of those functions at a given time. Instead, it'd be

nice to write small "copy files" and "list directory" programs and

just load the one needed. To make accessing these programs more

convenient, a master program could then decide which one to load,

based on your input. When the little utility programs were done,

they'd reload the master program again to allow another selection.

This approach to program design is called "overlay

segmenting." It has several advantages over putting every desired

function into a single large program. One is storage efficiency: only

the code needed to perform a specific function is loaded in storage at

any given time. Another is modularity: when a bug is found you

only have to modify a single, small program. Also, if you want to

add another function you only have to write the program that

implements it and make the master program "aware" of how

to load it.

Fortunately, the PET allows one program to load another by

letting you put LOAD statements in BASIC programs. It will even

suppress the normal SEARCHING FOR and LOADING messages,

so the user won't notice that another program is being loaded.

Unfortunately, there's a serious restriction on this: the overlay

program must be smaller than the program loading it! This is

because the pointers that tell BASIC how large the program is and

where the variables are kept aren't reset when a LOAD is done

from another program. The Microsoft people have done this so that

the new program can access the previous one's variables. But it

means that the master program has to be the largest program in our

utility package. What if we want to add an "edit files" function? It'd

113

be nice to use all the memory available to us for keeping text while

we were editing it. With the master program hogging storage to

insure that its overlays will always be smaller, this will severely limit

what's available to our editor.

To have a really useful disk overlay scheme, then, we have to

get around this restriction on program size. For that, we have to

know how BASIC programs are stored. Addresses 42 and 43 on

new PETs are a pointer (low and high bytes) to where variable

storage starts in a BASIC program. It also tells where the program

text ends. If we poke these addresses with a larger pointer value,

we've effectively increased the size of our program.

So, a way to insure that our program is always bigger than the

one we're going to load next is to set the "program end" pointer

right before the LOAD statement. What's the largest possible value

we can give to its pointer? It's the highest RAM memory address,

kept for us at address 52 and 53. We want to make it one page (256

bytes) less than that, actually, because BASIC might need interim

storage for variables.

When the new program is loaded and begins running, the first

thing it will have to do is tell BASIC how big it really is, so that the

rest of storage can be freed up for use by its variables. Luckily, the

actual length of a program is kept by the LOAD routines at

addresses 201 and 202. So, we reset the pointer at address 42 to this

value before we do any processing in our overlay.

The only flaw in this scheme is the previous program's

variables. BASIC keeps track of where variable storage begins and

ends, and it's based on the endof-text pointer. Each time we mess

with this pointer we have to get BASIC to clean up variable storage

for us. The CLR statement will do that.

Our overlay scheme is now complete. Whenever we load an

overlay, we make our program as large as possible beforehand to

avoid the length restriction:

996 POKE 42,PEEK(52)

997 POKE 43,PEEK(53)-1

998 CLR

999 LOAD "next",8

And, when the overlay begins execution, we first reset the program-

end pointer to the actual program size:

1 POKE 42,PEEK(201)

2 POKE 43,PEEK(202)

3 CLR

The CLR statements clean up the variables for us, and we allow one

114

page less than the largest RAM address for interim storage of

BASIC variables.

There are two "gotchas" involved in this overlay scheme,

however. The first is that if we want to pass variables between

overlays we're out of luck, because the CLRs will clobber whatever

was kept in storage. In a future article, I'll discuss a secure way to

pass parameters between programs. For now, we can POKE

variables into a protected storage area like the second cassette buffer

and have them remain intact during the LOAD process. We'll have

to do this for the name of the program you're loading if it's going to

be kept in a string. That's why we kept a page of storage free for

variables when we increased the program's size. After the pointer is

reset, we need to fish the name of the program out of protected

storage as a string so we can do the LOAD. The sample master

program shows how this is done.

The second "gotcha" relates to writing and testing overlays. It's

probably a good idea to omit the entry and exit linkage from them

while they're being tested. Why? Each time the program is run, it'll

reset its end-of-program pointer to the value it had when it was last

loaded. This is very bad when you make a lot of changes and the

program size is altered dramatically. You could lose all your changes

(at best) or mess up your program to the point where you can't do

anything with it (at worst). When debugging an overlay, type NEW

before loading it, and be sure to save a copy before running it again.

There are many applications for overlays. For example, the

master program could use light pen input to select the overlays,

simplifying the user's interface to the PET. If the overlays were

carefully written to take all their parameters from memory, the

master program could read input from a file, and complex functions

could be built up from lists of simpler ones. A file could tell the

master program to first assemble, then run, a 6502 machine

language program by calling assembler and loader overlays. This is

called "batch" or "command language" processing and is done on

much larger computer systems. Suffice it to say that with the ability

to do overlay segmenting, the power of the PET for serious

programming is greatly enhanced.

L08 REM SflMPLE MflSTER PRQGRRM
110 REM USING PET DISK OVERLflVS

128 REM

130 POKE 42,PEEK(201>:POKE 43,PEEK<262)

148 CLR

150 REM INITIflLIZE PROGRflM

115

166 DF*="-"-SI*=" "+DF*+"IMI"

170 OPEN 15,8,15

188 REM RSK FOR PROGRflM NfiME

190 PR I NT: PR I NT: PR I NT " PROGRflM ".: SI *;

200 INPUT P*

210 IF P$=DF* THEN 190

220 :IF P*="BVEn THEN NEW:END
230 REM CHECK DISK FOR PROGRflM

249 OPEN 1,8,2,P*+",P,R"

250 GOSUB 508

260 CLOSE 1

270 IF E=0 THEN 308

280 :PRINT--PRINTEM*

290 =GOTO 180

300 GOSUB 360

310 POKE 42,PEEK <52>:POKE 43,PEEK < 53>-1

320 CLR

330 GOSUB 438

340 LORD P*,8

350 END

360 REM SflVE P$ IN TflPE BUFFER

370 POKE 82?,LEN<P*>-fl=828

380 FOR 1=1 TO LEN<P*>

396 •• POKE fl, flSC < MID* < P*, 1,1 > >
400 -fl=fl+l

410 NEXT I

420 RETURN

430 REM GET P$ FROM TflPE BUFFER

440 P$="":fl=828

450 FOR 1=1 TO PEEK(827>

460 :P$=P*+CHR$ <PEEK <fl > >
470 :fl=fl+l

480 NEXT I

490 RETURN

500 REM CHECK DISK ERRORS
510 E=0

520 INPUT#15,EN,EM$,ET,ES

530 IF EN=8 THEN RETURN

540 E=l

550 RETURN

116

Variable-Field-Length

Random Access Files On

The 2040 Disk Drive
Peter Spencer

A sophisticated technique to make the most of your 2040's random access

capabilities.

Do you have voluminous file storage needs, but hate to see a large

fraction of each disk eaten up by the empty space that seems to be

an inherent feature of most random access programs?

This program shows how to write variable field length random

access files on the 2040 disk drive. The density of packing is truly

amazing. Compare it to the density achieved by any fixed length

program you have, including the lengthy relative record program in

the 2040 User's Manual.

The writing to disk is done in lines 41 to 77, and the retrieval

from disk is in lines 82 to 106. The rest of the program is a driver

routine patched on from a longer program of mine.

For this sample program, I have used the line number as the

key for each field. You can easily use some other key, and have

more than one field per key. In that case, you must change the

output to the key file (lines 71-77) so that it contains the number of

keys used, each key, the number of fields for that key (if variable),

and the track, sector, and buffer pointers for each field within that

key. Lines 88-95 would have to be similarly changed.

Yes, you read the above correctly, you can even have a

variable number of fields per key! Such a variable field number,

variable field length program can be of considerable use if you want

to store abstracts, test questions, criterion-referenced test questions

(using the criterion or instructional objective code "number" as the

key), or parts inventory (you could use the machine name as the

key, and each part as a field, with subfields for cost, price, or

onhand, backordered, and so forth).

The driver routine I have used can be considerably shorter if

you wish to use regular input rather than the bullet-proof and

hyphenation-proof form provided in lines 118-133. There, a line-

overrun on input from the keyboard (detected in line 125) results in

the entire word being removed to the next consecutive line

117

(accomplished in lines 128-133 and 119).

1 CLR

2 PRINT"fixVARIABLE FIELD LENGTH FILES ON i

-.THE 2040f ^PETER SPENCER"

3 GOSUB108:MK=0:LL=80

4 DIMPA(300):DIMTA(300):DIMSA(300)

5 NLS=1:D=0:F=0:X=0:Y=0:T=0

6 SP$="

-,

7 M$=CHR$(13)

8 S$=nil:Z$=flfl:IN$=lfll:DIMA$(300) :OPENl5f 8f

-.15

9 REM: PROGRAM ENTRY

10 PRINT"fixSfTART NEW FILEf OR nWrORK ON -.

iOLD FILE? ";

11 GOSUB33

12 PRINTnNAME OF FILE ";:GOSUB119:

-,A$(1)=IN$

13 IFS$=lfSMTHENGOTO22

14 GOTO83

15 REM: SHOW FILE ENTRIES

16 FORK=1TONLSSTEP15:F=K:D=K+14

17 FORI=FTOD:PRINTI;TAB(6);A$(I):NEXTI

18 PRINT"Jitl;SP$;SP$;SP$

19 PRINT"JirSrCROLL NEXT 15 LINES, OR -i

-iHEfXIT? II;:GOSUB33:IFS$="E"THENK=NLS

20 PRINT"BtW;:NEXTK

21 REM: SHOW MENU

22 PRINT"fin;SP$;SP$;SP$

23 PRINT"JmRfEAD INf xOrUTPUT, rTfYPEf ";

24 PRINT"xSrCROLLf ";

25 PRINT"xErXIT?";:GOSUB33

26 IFS$="EflTHEN79

27 IFS$=IITtIGOTO110

28 IFSS="OfIGOTO42

29 IFS$=MR"GOTO83

30 IFS$=flSllTHENPRINT"R^^";:GOTO16

31 GOTO22

32 REM: GET UTILITY

33 GETS$:IFS$=""THEN33

34 PRINTS$:RETURN

35 REM: READ ERROR CHANNEL

36 INPUT#15fENfEM,ETfES

37 IFEN$="00"THENRETURN

38 PRINTnERROR ON DISK"

39 PRINTEM$;EN$rET$,ES$

40 CLOSE6:CLOSE7:CLOSE15:END

41 REM: OUTPUT ROUTINE

42 IFMKO0THEN46

43 PRINT"INSERT DISK IN LEFT DRIVE & TYPE -i

iGO";:GOSUB33

118

Beyond Tiie BASICS

44 PRINT#15f"11"

45 OPEN6f8,6f"#":GOSUB35

46 PRINTfITHERE ARE";NLS; "ENTRIES" :MK=1

47 PRINT"STORE FROM ";:GOSUB119:X=VAL(IN$)

-.:PRINT"TO ";

48 GOSUB119:Y=VAL(IN$)

49 I=X

50 REM: ALLOCATE 1 BLOCK

51 T=1:S=0

52 PRINT#15,"B-A";1;T;S

53 INPUT#15,EN?,EM$,ET$,ES$

54 IFEN$="00"THEN57

55 IFEN$="65"THENT=VAL(ET$):S=VAL(ES$):

-.GOTO52

56 GOTO38

57 BP=1

58 PRINT#15r"B-P:"6;BP:GOSUB35

59 PRINT#6fA$(I);M$;:GOSUB35:PRINTI;A$(I);

-,T;S;BP

60 PA(I)=BP:TA(I)=T:SA(I)=S

61 BP=BP+LEN(A$(I))+1

62 IF(LEN(A$(1+1))+1+BP)>255THEN67

63 1=1+1

64 IFK=YTHEN58

65 PRINT#15,"U2:"6;1;T;S:GOSUB35

66 CLOSE6:GOTO72

67 PRINT#15 ,"U2:"6;1;T;S:GOSUB35

68 1=1+1

69 IFK=YTHEN50

70 CLOSE6

71 REM: OUTPUT KEY FILE, OVERWRITING OLD ■

-.KEY FILE IF NECESSARY

72 OPEN7,8,7,"@1:"+LEFT$(A$(1)+SP$,

-.10)+".KEY01,S,W":GOSUB35

73 PRINT#7fNLS;M$;:GOSUB35

74 FORI=1TONLS

75 PRINT#7fTA(I);M$;SA(I);M$;PA(I);M$;:

iGOSUB35

76 NEXTI

77 CLOSE7:GOSUB35

78 REM: EXIT PROGRAM

79 PRINT"SHUT DOWN?";:GOSUB33

80 IFS$="N"GOTO22

81 CLOSE6:CLOSE7:CLOSE15:END

82 REM:

83 PRINT"rREAD KEYS AND FILE FROM DISK"

84 IFMKO0THEN87

85 PRINT"INSERT DISK IN LEFT DRIVE & TYPE ■

-iGO";:GOSUB33

86 PRItiT#15,"I1":MK=1

87 OPEN7,8 f 7,"1:"+LEFT$(A$(1)+SP$ f

-,10)+".KEY01fSfR":GOSUB35

119

88 INPUT#7,NLS:RS=ST:GOSUB35

89 PRINT"^NLS=";NLS

90 PRINT" # TR SE BP"

91 FORI=1TONLS

92 INPUT#7fTA(I),SA(I),PA(I):RS=ST:GOSUB35

93 PRINTI;TA(I);SA(I);PA(I)

94 NEXTI

95 CLOSE7:GOSUB108

96 REM: READ FILE

97 OPEN6,8,6,"#":GOSUB35

98 FORI=1TONLS

99 PRINT#15,"U1:"6;1;TA(I);SA(I):GOSUB35

100 PRINT#15f"B-P:"6;PA(I)

101 GOSUB35

102 INPUT#6fA$(I):GOSUB35

103 IFTA(I)=0THEN106

104 PRINTI;A$(I)

105 NEXTI

106 CLOSE6:GOSUB108

107 GOTO22

108 FORI=1TO1000:NEXTI:RETURN:REM:

-i DELAY LOOP

109 REM: TYPE ROUTINE

110 PRINT"LENGTH OF LINE (MAXIMUM=80)n;:

-.Z9$="80":GOSUB119:LL=VAL(IN$)

111 PRINT"firTYPE NEW LINES";CHR$(13);"(TYP

-iE 'STOP1 TO STOP)) ":PRINTSP$

112 D=NLS:IFD>=5THENF=D-4:GOSUB135:GOTO114

113 F=1:GOSUB135

114 PRINTNLS+l;CHR$(13);nT";TAB(4)

115 GOSUB119:IFIN$="STOP"THEN22

116 A$(NLS+1)=IN$

117 NLS=NLS+1:GOTO111

118 REM: BULLET-PROOF INPUT

119 IN$=llll:IFZ9$OIllfTHENPRINTn? ";Z9$;:

-.POKE167,0:IN$=Z9$:Z9$="":GOTO121

120 PRINT"? ";:POKE167f0

121 GETZ$:IFZ$=""THEN121

122 IFZ$=CHR$(13)THENPRINT" ":POKE167,1:

-.RETURN

123 IFZ$=CHR$(20)THENONSGN(LEN(IN$))+1GOTO

-,121,127

124 PRINTZ$;:IN$=IN$+Z$

125 IFLEN(IN$)>LLTHENGOSUB128:PRINT" ":

-iPOKEl67fl:RETURN

126 GOTO121

127 PRINTZ$;:IN$=MID$(IN$flfLEN(IN$)-l):

-.GOTO121

128 FORZ9=LEN(IN$)TO1STEP-1

129 IFMID$(IN$,Z9,1)<>" "THEN133

130 Z9$=RIGHT$(IN$,LEN(IN$)-Z9)

131 IN$=LEFT$(IN$,Z9-1)

120

132 Z9=l

133 NEXTZ9:RETURN

134 REM: SCREEN DISPLAY

135 FORI=FTOD:PRINTI;TAB(6);A$(I):NEXTI:

iRETURN

READY.

121

Beyond The BASICS

PET/CBM Front Panel

Boyd Ray

Here is a novelty program for all PET/CBM owners. It displays, in

realtime, the binary value of the data in sixteen user-selected

memory locations. The display is placed on the upper part of the

screen and is updated sixty times a second giving a front panel

effect. The cursor is excluded from this field.

Sixteen arbitrary memory locations have been selected for

inspection. You may change them as often as you wish by revising

the data on the first three data lines and re-running the program.

Prefix four-character hexadecimal locations with a u$."

Program 1 will run on all PET/CBM machines including the

80XX. Take extra care when typing the program and be sure to save

it before attempting to run it. The machine code is self-modifying

and is located just below screen memory.

When you have checked the listing a couple of times and you

are certain it is right, run the program. If it works and your

"blinking lights" front panel is blinking as it should be, jot down

the SYS vectors for later use. Now press a few keys and observe the

changes in the data or show junior how the clock counts in binary.

You might want to refer to your favorite memory map from here on.

Now try these direct commands:

POKE 59467,16:POKE 59466,15

FORI=0TO255:POKE59464,I:FOR] = lto25:NEXTJ,I

Watch the shift register in action. Try different values in location

59466 and observe the change in wave shape.

When youVe had your fill of this sort of thing, change the

values on the first three data lines to 826 through 841 and add line

110;

110 POKE 826+ 16*RND(1),256*RND(1):GOTO 110

Now re-run the program. This causes a "do nothing" random

bit display which is similar to one of the props seen on the

submarine "Seaview" in the old TV series.

If you prefer Ts and 0's in your display, change the 81 and 87

on data line 133 to 49 and 48 before saving the program. If the

program is running, POKE (the disable vector +133) with 49 and

POKE (the disable vector +138) with 48. This is risky!

Observe that CPU speed is reduced considerably, (as much as
50% on the 20XX PETs). This will be of no concern if the program

122

Beyond The BASICS

is used solely for enlightenment. You may clear the screen, list the

program and even NEW the program and use your own. Just

remember the SYS vectors and be sure that the displayed bytes are

the ones you want to observe before NEWing.

Please note that when "Front Panel" is enabled, screen area

available to the user is reduced to 16 lines (20 on the 80XX). If your

program's format relies on a full screen then some undesired

scrolling will probably result.

1 REM PET/CBM FRONT PANEL BY BOYD RAY
2 REM MOST BE TOTAL OP 16 DATA ITEMS

3 REM ON THREE LINES THAT FOLLOW1

4 DATA5,$E811,142,$E812,143
5 DATA$E844,166f$E845,168,59464

6 DATA$0036,59465,198,59466,216,59467

7 REM IF USING 'OLD ROMS', CHANGE DATA

8 REM 5 TO 90,142 TO 513,143 TO 514,

9 REM 166 TO 547,168 TO 549, $0036 TO
10 REM 136,198 TO 226,AND 216 TO 245

11 REM ON- DATA LINES ABOVE

14 IFPEEK(1014)=1THEN25

15 PV=1+PEEK(50003):IFPV=161THENPV=3

16 IFPEEK(57344)=76THENPV=4

17 A=134:B=135:IFPV>1THENA=52:B=53

18 POKE1015,PV:PORE1016,A:POKE1017,B

21 HIMEM=PEEK(A)+PEEK(B)*256

22 POKE59468f12iIFPEEK(HI)=120THEN28

23 AD*HIMEM-642:GOSUB145

24 POKEA,L:POKEB,HsCLR
25 PV=PEEK(1015):A=PEEK(1016):B=PEEK(101

V7)

26 HIMEM«PEEK(A)+PEEK(B)*256

27 DISABLE=HIMEM:ENABLE=DISABLE+32

28 IFPEEK(HI)=120THENSYS(DISABLE)

29 A$="ADDRESS 7 DATA 0":S$=" "
30 PRINTnfi";A$;S$|:IFPV=4THENPRINTA$;S$|

31 IFPV=4THENPRINTA$;S$;

32 C$="0123456789ABCDEF":PRINTA$

33 AM=HIMEM+179:FORI=0TO15:READ ADDR$

34 ADDR$=RIGHT$(" "+ADDR$,6)

35 AD=VAL(ADDR$):GOSDB146

36 POKEAM+I*4,L:POKEAM+I*4+1,H

37 PRINTADDR$;

39 PRINT"»»»»»»»";:NEXT

42 PRINT:I«0:IFPEEK(HI)=120THEN160

44 READ BYTE$:IFBYTE$="!"THEN56

46 BYTE«VAL(BYTE$):I$=RIGHT$(BYTE$,1)

48 IFI$O"*"THEN54

50 AD=HIMEM+BYTE:GOSUB145

52 POKEHIMEM+I,L:1=1+1:POKEHIMEM+I,H

53 1=1+1:GOTO44

54 POKEHIMEM+I,BYTE:1=1+1:GOTO44

56 TA=HI+177:FORI=0TO15:READD:AD=HI+D

57 GOSDB145:POKETA+I*4,L:POKETA+1+I*4,H

58 NEXT:AD=HIMEM+45:GOSDB145

123

59 POREHI+34,L:POREHI+39,H

60 IFPV=4ANDD=589THEN56

61 IFPV=1THEN160:REM IP 20XX

62 POKEHI+2,46:POKEHI+156f46:POREHI+4r

-il44

63 POREHI+36,144:POREHI+5,0:POREHI+10,0

64 POREHI+37,0:POKEHI+42,0:POREHI+9,145

65 POREHI+41r145:FORI=47TO49:POREHI+I,

-,234

66 NEXTI:POREHI+143,216:POREHI+151,216

67 POREHI+153,93:POREHI+154,226

70 IPPV=2THEN160:REM IF 30XX

71 POREHI+2 , 85:POREHI+7,228:POREHI+153,

-»127

72 POREHI+154,224:POREHI+156,85

73 POREHI+157f228

74 IFPV=3THEN160:REM IP 40XX

75 POREHI+145,5:POREHI+149,5

76 POREHI+22,200:POREHI+29,200

77 POREHI+60,200:POREHI+64,200

78 AD=HI+441:GOSUB145:POREHI+25,L

79 POREHI+26,H:POREHI+57,L:POREHI+58,H

80 POREHI+153,103:GOTO160:REH IF 80XX

120 DATA120f169,133,141,25,2,169,230/141

121 DATA26,2,88,96,162,0,189,0,128,157

122 DATA241*,189,180,128,157,421*,232

123 DATA224,180,208,239,120,169,0,141,25

124 DATA?,169,0,141,26,2,88,96,162,0,32

125 DATA158*,189,241*,157,0,128,189,421*

126 DATA157,180,128,232,224,180,208,236

127 DATA162,0,189,177*,133,1,232,189
128 DATA177*,133,2,232,189,177*,141,96*

129 DATA232,189,177*,141,97*,232,173f0,0

130 DATA141,176*,160,0,185,168*,44,176*

131 DATA240,6,32,132*,76,120*,32,137*
132 DATA200,192,8,48,234,224,64,48,196
133 DATA76,142*,169,81,145,1,96,169,87
134 DATA76,134*,165,245,201,9,176,7,105

135 DATA9,133,245,32,219,229,76,133,230

136 DATA173,64,232,73,32,41,32,240,247
137 DATA96,128,64,32,16,8,4,2,1,255,1

138 DATA289,309,329,349,369,389,409,429

139 DATA449,469,489,509,529,549,569,589
140 DATA329,349,369,389,409,429,449,469
141 DATA489,509,529,549,569,589,609,629
145 H=INT(AD/256):L=AD-H*256:RETURN

146 IFMID$(ADDR$,2,l)On$"THEN145

147 D=0:FORJ=1TO4:FORR=1TO16

148 IFMID$(AD$,J+2,1)OMID$(C$,R,
-il)THEN150

149 C=R-1:R=16

150 NEXTR:D=(D+C)*16:NEXTJ:AD=D/16
151 GOTO145

160 SYS(HI+13)

170 IFPEER(1014)=1THEN200

180 PRINTnSYS(B;DI;")DISABLES/SYS(";
190 PRINTEN;n)ENABLES":POREl014,l
200 REM START OF USER PROGRAM

READY.

124

Graphics

Lower Case Descension

On The Commodore

2022 Printer

W. M. Bunker

The programmability of the printer makes it possible to do just

about anything you want with it, from listing a program to plotting.

I'm enclosing one example. The lower case letters on the printer are

made as shown on the first two lines at the bottom of the listing.

This is common on dox matrix printers — my General Electric

Terminet 30 at work, far more expensive than the 2022, does this.

On the 2022, if you don't like their lower case letters, you can

make your own. These are shown below the original version. The

program listed produces the improved letters. For each line to be

printed, define it as P$, then GOSUB 5000, and printing as shown

will result.

100 DIMLN(6):LN(2)=71:LN(3)=74

110 LN(4)=80:LN(5)=81:LN(6)=89

120 DIMPP$(6):SP$=n n:ST$=nn

130 OPEN3r4:OPEN5f4f5:OPEN6f4f6

140 DATA0,0,0,64,0,0

150 DATA57r69,69,63,0f0

160 DATA2,l,lf126f0f0

170 DATAl27f68r68f56f0,0

180 DATA56f68,68r127f0f0

190 DATAl20,5f5f126f0f0

200 FORI=1TO6:PP$(I)=ST$

210 FORJ=1TO6:READA

220 PP$(I)=PP$(I)+CHR$(A)

230 NEXTJ:NEXTI

240 A$=nT[DN]HE QUICK BROWN FOX JUMPED"

250 A$=A$+n OVER THE LAZY DOG'S BACK."
260 B$=nJ[DN]JJ[UP]G[DN]GG[UP]Q[DN]n

270 B$=B$+"QQ[UP]Y[DN]YY[UP]P[DN]PP.n

280 PRINT#3fA$:PRINT#3,B$

290 P$=A$:GOSUB330

300 P$=B$:GOSUB330

310 CLOSE3

320 END

330 KL=0:LL=LEN(P$)

126

340 PRINT#5,PP$(1):Q$=ST$

350 FORI=1TOLL

360 CC$=MID$(P$,I,1):CC=ASC(CC$)

370 IFCC=145THENKL=0:GOTO460

380 IFCC=17THENKL=1:GOTO460

390 IFKL=0 GOTO460

400 IFCC=71THENQ$=Q$+SP$:GOTO470

410 IFCC=80THENQ$=Q$+SP$:GOTO470

420 IFCC=81THENQ$=Q$+SP$:GOTO470

430 IFCC=89THENQ$=Q$+SP$:GOTO470

440 IF CC <> 74 GOTO 460

450 Q$ = Q$ + CHR$(254): GOTO 470

460 Q$=Q$+CC$

470 NEXT I

480 PRINT#6fCHR$(5)

490 PRINT#3,Q$

500 FORL=2TO6:PRINT#5,PP$(L)

510 Q$=ST$:KL=0

520 FORI=1TOLL

530 CC$=MID$(P$,I,1):CC=ASC(CC$)

540 IFCC=145THENKL=0:GOTO590

550 IFCC=17THENKL=1:GOTO590

560 IFKL=0ORCCOLN(L)GOTO580

570 Q$=Q$+CHR$(254):GOTO590

580 Q$=Q$+SP$

590 NEXT I

600 PRINT#3,Q$; CHR$(141);

610 NEXT L

620 PRINT#6fCHR$(19)

630 PRINT#3

640 PRINT#6fCHR$(24)

650 RETURN

127

Plotting With The

2022 Printer

John Winn

The special features of the 2022 printer make for some surprising

applications. Here's a remarkable and useful one.

In the January/February issue of COMPUTE!, Len Lindsay

mentioned using the Commodore Model 2022 Tractor Feed Printer

for plotting applications. He pointed out that the ability to vary the

line spacing in this printer allows a high degree of vertical

resolution. In a somewhat unrelated article in the same issue, W. M.

Bunker showed how the user-defined character, CHR$(254), could

generate attractive lower case letters with descending tails. He also

mentioned the plotting possibilities of this printer. This article puts

both ideas together — the variable line spacing and the user-defined

character — to produce a plotting subroutine of surprisingly high

resolution.

The logic behind this subroutine (which is actually a set of

subroutines) is to increase resolution from that given by the height

of a line and the width of a space to that of a single printer matrix

dot. In the way I will describe the subroutine, I will have in mind a

graph of computed values of some function, such as Y = SIN (X). In

the second part of the article, I will show how data values can be

plotted point by point, how bar graphs could be generated, and how

more generalized graphics could be done.

Think about how you would graph the function Y = SIN (X) by

hand. You would first decide which direction on your graph paper

would be in the X direction, and which the Y direction. For us, the

X direction will increase down the page as the printer paper

advances, and the Y direction will increase across the page, in the

direction of the print head motion. Normally, you would hold the

graph paper so that X increases from left to right and Y increases

from bottom to top. On the printer plot, this orientation is achieved

by tilting your head to the right — the plot will be rotated from the

usual orientation as it is produced by the printer.

Your next choice in plotting by hand is to pick the minimum

and maximum X and Y values to be spanned by the graph. Let's call

these values XN, XX, YN, and YX, respectively, in the program.

You would then decide how frequently to mark off the two axes

128

with tick marks, and how big to make the graph (how much of the

graph paper page to use). For the printer, we can choose the size of

the graph by specifying the number of columns wide for the Y axis

(variable NY) and the number of rows long for the X axis (variable

NX). The size of the page limits NY to a maximum of about 60 for a

standard QVi" X11" page. The X axis can be as long as you want

(until you run out of paper!), but at the line spacing used in the

program, one has about 120 lines (rows) per page. Tick marks are

specified by stating the number of columns per tick (variable YT)

and the number of rows per tick (variable XT).

Your final step in making the graph is to choose a starting

value for X, a final value for X, and an increment for X. The smaller

the increment, the more points you will have to plot. You then

generate values for Y = SIN (X) at each X value, and put a point on

your graph paper at each (X,Y) coordinate. The heart of the plotting

subroutine does exactly the same thing. Given X and Y pairs of

values, the subroutine figures out which row and column they lie in,

and turns on the dot in the space which corresponds to that (X,Y)

pair. On the printer, the spacing between lines is set so that each

row is six dots tall. The column to column spacing is also six dots,

giving a resolution of about 1/60". (This is comparable to early

digital plotters with 0.01" resolution!)

Now look at the subroutines. The first one (lines 60000-60400)

is called via GOSUB 60000 once your main program has established

the values for scaling and size mentioned above (NY, NX, YT, XT,

XN, XX, YN, and YX). First, it opens files for its own

communication with the printer. Secondary addresses 0, 5, and 6

are needed to print, set the special character, and set the line

spacing, respectively. Variables needed by the subroutine are

computed or initialized, the YN and YX values are printed outside

the graph, the Y axis is printed, along with tick marks, using

graphic symbols, the line spacing is set via PRINT# 12, CHR$(14),

and the XN value is printed, setting up the first row for plotting.

The first subroutine returns at this point.

Your main program then computes (X,Y) pairs, one at a time,

in increasing order of X. After each pair is computed, your program

goes to the main subroutine via GOSUB 61000. This subroutine

first checks to see if the computed point really lies within the graph

limits. If not, it simply returns. Lines 61100 to 61130 find out which

row (NR%) of matrix dots contain the point, (X,Y). These lines also

find out which printer line (NL%) we are dealing with, and how

many blank spaces (NB%) precede the one containing (X,Y). The

129

special character is built up in the array C%. Whenever a dot

appears in a new row or column, the current special character

is printed (lines 61200 and 61210) without a carriage return/line

feed. If we are suddenly on a new line, that condition is sensed (via

the variable LL%, standing for "last line") and the X axis borders (at

both ends of the graph and with tick marks if required) are printed

to finish the line and move on to the next. If it is recognized that

several blank lines are required between the last point and the

current one, these are generated as well (lines 61220 through 61340

do all this). The subroutine can RETURN to get the next (X,Y)

values at several points in this scheme.

Finally, when all the (X,Y) pairs have been computed, your

main program calls the termination subroutine via GOSUB 60500.

This routine forces a point to be plotted at (X=XX, Y=YX) to

guarantee that any remaining blank lines appear at the "end" of the

plot. The final Y axis label, XX, is printed out, along with the

"bottom" Y axis border (lines 60550-60750). The line spacing is

graciously reset to the default value with the PRINT#12, CHR$(24)

statement. Finally, YN and YX values are printed once more, the

files are closed, and the subroutine returns.

The graph is now complete as far as these subroutines are

concerned. Any graph titles or other notations you may want can

be printed before plotting (before the GOSUB 60000) or after

plotting (on return from the termination subroutine).

A sample driving program is shown to illustrate these

instructions. The REM statements point out what is happening step

by step. Of course, the values set by INPUT statements could be

computed directly in many cases, as long as they are established

before plot initialization. The final plot produced by this program is

shown as well. Note that the limiting factor in the plot quality is the

mechanical error in print head motion. The print head does not

return to exactly the same point with each carriage return. That's

why the X axis is a bit wiggly, at least on my printer.

The speed at which a plot is produced depends on two factors.

The first is the computation time needed to generate (X,Y) points

themselves. The second is quite variable and depends on the shape

of the graph and the X increment chosen. Each point line

containing at least one plotted point must be printed twice — once

for the point, without a line feed, and once for the X axis borders,

with a carriage return/line feed. If several plotted points occur on

the same print line in a variety of print columns, the line will be

overprinted several times, since the special character can be used in

130

Graphics

only one way in any single PRINT statement. The example graph

took about 5 minutes to plot all 600 points.

A few general comments are in order before turning to ways to

extend the subroutine. First, integer variables are used in many

places to force truncated integer arithmetic without specifying the

INT function. An exception occurs in lines 60200, 60600, 61230 and

61310 where INT is used to sense the need to print a tick mark.

Also notice the use of the logical OR in line 61150 to turn on the

bits that set the special character. (The 2022 instructions describe

how to set this character dot-by-dot.) The OR is needed rather than

a simple addition in case the same matrix dot is turned on by more

than one (X,Y) pair. The OR will not change a bit already set, while

addition will, in general.

Since this subroutine package is meant to be used by a variety

of programs, it has a self-contained file structure, opening and

closing what it needs independently of the main program. For any

particular program, this feature could be removed and all files could

be controlled by the main program.

Suppose you want to plot rather widely spaced points, instead

of closely spaced points along a curve. Widely spaced single dots are

difficult to see. Or suppose two or more different sets of data have to

be plotted on the same graph. What is needed in both cases is some

way to plot larger and different types of symbols instead of points.

One way of plotting symbols is discussed below, but it is not fool

proof.

The simplest way to make an arbitrary symbol (a plus, x,

square, or whatever) is to begin by defining the dot-to-dot distances,

DX and DY, with the statements

DX=(XX-XN)/(6*NX)

DY=(YX-YN)/(6*NY).

Then, after computing each (X,Y) pair, call a new subroutine (let's

say it is called by GOSUB 62000) in line 340 of the example

program instead of the main (61000) subroutine. The new

subroutine constructs the symbol you choose, centered about the

correct (X,Y) point. In the sample symbol subroutine, the way to

plot a small + , three dots wide, is shown. Other symbols can be

created in many shapes and sizes, but all are subject to problems if

the X values are too closely spaced. If the symbols overlap from one

point line to the next, and the next symbol wants to extend back to

the previous print line, you have troubles. The printer won't back
up. The only safe way around this problem is to go through your

data point by point, and create a new data set representing all the

131

dots in all the symbols for all the original data. This new data has to

be arranged in order of increasing X values, but it can then be

plotted point-by-point using the original scheme without problems.

More complex graphics — high resolution pictures of arbitrary

shapes — will always have to face the problem of one-directional

paper motion. A line-by-line "raster scan" is possible, but 60 print

columns contain 60x6x6= 2160 matrix dots per print line. Turning

on the correct dots and scanning all the possibilities could take an

intolerable amount of time.

For many applicatins, a bar graph (histogram) is more useful

than a point-by-point or line graph. Bar graphs are easily generated

using the built-in PET graphics characters, as long as the bars go

"across the page" rather than "up and down." The line spacing

must be set to the same close spacing used here, or to a closer

spacing, if half-size graphic symbols (and lower resolution) are

acceptable. The resolution is lower because half-size symbols don't

come in as many widths as full size symbols. Even with the built-in

graphics symbols, the bar graph won't look perfect, since small gaps

in the bar graph silhouette will exist with these symbols. The best

approach would use a mixture of built-in graphics plus a special

character at the end of the bar to give a continuous silhouette.

13.85

-1.5

PLOT OF V=SIN<X> FOR X= 0 *ff

PRRRMETERS FOR THIS GRflPH...

NV= 68 NX= 60 VT= 10 XT= 5

SfiMPLE

TO 6 *tt STEP .01 #ir

132

60000 OPEN10, 4.. 0 : OPEN11,4,5: OPEN12,4,6-1FNV>60THENNV=60

60050 XTtf=XT : VTtf=VT: LLX=0 : LB«=0 •' NXX=6*NX-1 : NV7i=6*NV-1

60100 CR*=CHR*<141> :SC*=CHR*<254> :Q=<NV?i-H>/6-LEN<STR*<VN>> : IFQ<0THENQ=0

60150 PRINT#10:PRINT#10,TRB<9>VN.:TftBCQ>VX:PRINT#10, " J"; :FORQ=1TONY

60200 IFQ/VT?i= I NT < Q/VTX > THEN60300

60250 PRINT*10, "_"; GOTO60350

60300 PRINT#10,"J";

60350 NEXT: PRINT* 10, "_":PRINT#12,CHR*<14> G*=STR*<XN> ■• Q*=RIGHT*<Q*, LEN<Q*>-L>

60400 PRINT#10,TfiB<10-LEN<Q*>>Q*;CR*; RETURN

INITIRLIZRTION SUBROUTIME

100 REM INITIALIZE PLOT SIZE VARIABLES

110 INPUT "HOW MANY COLUMNS (1 TO i

-,60) ";NY

120 INPUT "HOW MANY COLUMNS PER TICK";YT

130 INPUT "HOW MANY ROWS (120 PER -,

-iPAGE) ";NX

140 INPUT "HOW MANY ROWS PER TICK";XT

150 INPUT "X MIN AND X MAX";XN,XX

160 INPUT "Y MIN AND Y MAX";YN,YX

170 INPUT "X START AND END (UNITS OF

-O";X1,X2

180 INPUT "X INCREMENT (UNITS OF)n;XS

200 REM CALL INITIALIZATION SUBROUTINE
210 GOSUB 60000

300 REM DEFINE THE FUNCTION TO BE -.

-.PLOTTED POINT BY POINT

310 FOR X=X1* TO X2* STEP XS*

320 Y=SIN(X)

330 REM CALL MAIN SUBROUTINE FOR EACH ->

-iPOINT

340 GOSUB 61000

350 NEXT

400 REM CALL THE PLOT TERMINATION i

-.SUBROUTINE

410 GOSUB 60500

500 REM ADD A TITLE TO THE BOTTOM OF -.

-.THE GRAPH

510 OPEN1,4,0

520 PRINT#1,"PLOT OF Y=SIN(X) FOR i

-,X="X1"* TO "X2n* STEP "XS"* "

600 REM PRINT OUT REMAINING GRAPH n

-.PARAMETERS

610 PRINT #1, "PARAMETERS FOR THIS GRAPH -.

620 PRINTtl, "NY="NY" NX="NX" YT="YT" -,
-iXT="XT

999 END
SRMPL.E DRIVING PROGRflM

61000 IF (Y<YN)OR(Y>YX)OR(X<XN)OR(X>XX) -,
-.THEN RETURN

61100 NC% = 1+(Y-YN)/(YX-YN)*NY%

61110 NB% = (NC%-l)/6 : NC% = NC%-6*NB%

61120 NR% = 1+(X-XN)/(XX-XN)*NX%
61130 NL% = (NR%-l)/6 : NR% = NR%-6*NL%

61140 IF NL% <> LL% OR NB% <> LB% THEN i
iGOSUB 61200

61150 LL%=NL% :LB%=NB% :C% (NC%) =C% (NC%) -.
-iOR 2"(6-NR%) : RETURN

61200 Q$ = "" : FOR Q=l TO 6 :Q$=Q$+CHR$

-i(C%(QJ) : C%(Q)=0 : NEXT :

-t PRIMT#11,Q$

61210 PRINT#L0,TAB(LB%+11)SCCR
61220 IF NL%=LL% THEN RETURN

61230 IF (LL%+1)/XT% = INT((LL% +1)/XT%) -,
-.THEN 61250

61240 PRINT#10,TAB(10) "X" TAB(NY)":E" :

133

-. GOTO 61260

61250 PRINT#10,TAB(10) " M TAB(NY) "L"

61260 IF NL% <> LL%+1 AND NL% <> LL% -i

-iTHEM GOSUB 61300

61270 RETURN

61300 FOR Q=l TO NL%-LL%-1

61310 IF (LL%+Q+1)/XT%=INT((LL%+Q+1)/

iXT%) THEN 61330

61320 PRINT#10, TAB(10) wXn TAB(NY) -.

-i"In : GOTO 61340

61330 PRINT#10, TAB(10) " " TAB(NY) -n

-."LMLIST

61340 NEXT : RETURN

MRIN F-LOTTIMG SUBROUTINE

Note: These listings were done with a CBM 32B computer which has a slightly

different graphics character set and no key for PI. In the Sample Driving Program,

Lines 170, 180, 310, and 520 should have the symbol for PI inserted in the spaces

left: blank. In the Main Plotting Subroutine, lines 61250 and 61330 have a blank in

quotes which should be :, i.e. the "opposite" graphics character to the L.

-1.5 1.5

18.85"

-1.5 1.5

PLOT OF V=SIN<X> FOR X= 0 *ff TO 6 #fr STEP .25 #ir

PRRflMETERS FOR THIS GRRPH...

NV= 20 NX= 38 VT= 5 XT= 5

SRMPLE F-L.OT"

60500 X-XX: V»VX •' G0SUB61000 ■ 00SUB61200= G0SUB61250

60550 Q*=STR*<XX> :Q*«RIGHT*<Q*,LEN<Q*>-1>:PRINT#10,TflBa0-LEN<Q*>>Q*"

GB699 FORQ«1TONV •' IFQ/VTH* INT < Q/VTX >THEN60700

60650 PRINT#1O/ ""•"; GOTO60750

60788 PRINT#18."T;

60758 NEXT:PRINT#40'"""^ PRINT#12.CHR*<24 >

60800 Q»<NVX+1>/6-LEN< STR* < VN> >•IFQ<0THENQ=0
60850 PRINT#10,TRB<9>VN;TRB<Q>VX

60988 CLOSElOXLOSEll • CLOSE12-RETURN

F>L-OT TERM I MF*T I OM SUBROUT I ME

134

62080 REM RLTERNRTE SUBROUTINE FOR PLOTTING DRTR RS fl SMftLL +

62010 REM OX FIND DV MUST HRVE BEEN DEFINED BV THE MRIN PROGRRM

62020 X«X-DX:QOSUB 61000

62030 X=X+DX:V»V-DV-GOSUB 61000

62040 V-V+DV-GOSUB 61000

62050 V=V+DVGOSUB 61000

62060 V=V-DV-X=X+DX:GOSUB 61000

62070 REM RESTORE X TO ORIGINRL VRLUE BEFORE RETURNING

62080 X»X-DX

62090 RETURN

RERDV.

SRMPLE SVMEOL SLJBROUTI ME

135

Keyprint

Charles Brannon

KEYPRINT is an easy solution to many hardcopy problems. For

example, how would you copy the instructions from a computer game

onto your printer? The obvious solution is to modify the program to

direct its output to the printer. This is, however, time-consuming.

Besides, what if — horror of horrors — you do not know how to

make this modification?

So what does KEYPRINT do, anyway? Simple. You just touch a

single key and the entire screen is copied onto the printer. This can

happen at any time: while calculations are in progress, during a game

of STARTREK, after a print-out of information to the screen, when

you touch that certain key accidentally — anytime. KEYPRINT

totally interrupts everything PET is doing, dumps the screen onto the

printer, and then returns control back to BASIC as though nothing

had happened.

KEYPRINT's uses are multitudinous. No longer do you have to

write special printer subroutines. It's just touch and go. Your software

can even call the screen dump directly with a SYS command. If you

have a Commodore 2022 printer, you can copy graphics verbatim.

(Remember to set the lines-per-inch to eight first. A side-effect of this

is that text looks crammed together; remember to reset the lpi to six.)

So here's how to use KEYPRINT:

1. Enter the machine language monitor with an SYS 1024 command.

2. If youVe already typed in and saved KEYPRINT, enter:

.L "KEYPRINT",01

and hit RETURN. Now type an X, hit RETURN and go to step 6.

3. Otherwise, list the block of memory that KEYPRINT occupies

with:

.M 033A 03CB

4. Now, using the cursor, replace the "numbers" (which often

contain alphabetic characters, since they're hexadecimal) with the

one shown in the listing. Type these bytes in exactly as shown. (All

machine language program instructions seem to stress that, but it's

really important as the program will CRASH if you don't type it in

perfectly right.) Remember to hit RETURN after each line.

5. Save the program by entering:

.S "KEYPRINT",01,033A,03CB (Afterwards, enter .X to exit to BASIC)

136

6. Now activate KEYPRINT with:

SYS 826 (hit RETURN)

The cursor should re-appear almost instantly, blinking merrily under

READY. If it doesn't, then your PET has crashed. Why? Either you

typed in the program incorrectly, (even one tiny mistake) or you're

using an original ROM PET. Shame on you! Go back and check over

that program you typed in! (Aren't you glad you saved it first?)

7. Hopefully, your cursor came back. That means that KEYPRINT is

ready and rarin' to go. How do you make it work? Just press the " *

key. If you have a printer hooked up that responds to a device

number of 4, then the entire screen will be printed onto your printer.

For devices other than 4, POKE 858, DN where DN equals the

device number of your printer. (If the above terminology seems

confusing, don't worry. If you have a Commodore printer, everything

will work fine. If not, then I can't guarantee flawless operation.)

8. KEYPRINT remains in your machine until you turn it off or you

otherwise interrupt its power supply (Like dropping the PET or

setting it on fire). KEYPRINT can be de-activated, however, by a

simple procedure: Hold down the shift key and press the RUN/STOP

key or type in LOAD and hit RETURN. Ignore any messages the

PET gives. Now press the RUN/STOP key again. The word BREAK

is displayed and that is exactly what you did to KEYPRINT — you

broke it. It will work no longer. IMPORTANT NOTE: loading any

program also "breaks" KEYPRINT. In either case, you can re-activate

it with a SYS 826.

9. If you don't want to have to type a key to dump the screen, use a

SYS 849 either in direct mode or within a program. It does not

matter whether KEYPRINT is "activated" or not for the command to

work.

So there you have it. I plan to use KEYPRINT quite a bit in the

future. I think of it as a "Wedge" for the printer as DOS SUPPORT

(Commodore) is for the 2040.

P.S. I want to make it clear which key is used to print the screen: it is

the key to the right of the ampersand at the top of the keyboard, not

the shift of "M." Also, be aware that some programs use the second

cassette buffer (where KEYPRINT resides) for data storage or for their

own machine language programs.

Resources:

Butterfield, Jim. "PET in Transition" COMPUTE!, pp 68-70 (Fall, 1979)

Sheward, D. "Listing from Commodore's The Transactor' ",
The Paper, p. 39 (March/April 1980)

137

B*
PC IRQ SR RC XR VR SP

; 0401 0345 32 04 5E 00 F4

M 033R 03C6
033R 78 09 03 85 91 R9 45 85
0342 90 58 68 R5 97 C9 45 DO

934R 03 20 51 03 4C 2E E6 R9

0352 80 85 20 FI9 00 85 IF R9
85 60 85 D4 20 BR F0035R 04

0362 20 2D Fl
036R 0D 85 21

R9 19 85 22 R9

20 D2 FF R9 11
0372 RE 4C E8 E0 0C DO 02 R9

037R 91 20 D2 FF RO 0O Bl IF
8382 29 7F fifl Bl IF 45 21 10
038R OB Bl IF 85 21 29 80 49

0392 92 20 D2 FF 8fl C9 28 BO
039R 84 09 48 DO OE C9 40 98
03R2 OR C9 60 BO 04 09 80 DO

93RR 02 49 CO 20 D2 FF CS CO

03B2 28 90 CB R5 IF 69 27 85

83BR IF 9© 02 E6 20 C6 22 DO

03C2 R6 R9 OD 20 D2 FF 4C CC
83CR FF 72 21 61 3F 7F 76 57

°SflVE

138

80 x 50 Graphics

Murray D. Weingarten

One of the deficiencies in BASIC, as written for the PET, is that it

does not allow the user to set or clear on the screen an individual

point specified by two coordinates. Hence, to set, for example, the

point in row 7, column 15 of the screen, one needs to write

statements of the form

10 A=32768+ 7*40+15 : POKE A, 160

instead of simply SET(15,7). Even then, the maximum resolution

obtainable using this approach is 40x25.

With a little extra programming, it is possible to overcome

these difficulties. The PET graphics character set includes all the

characters necessary to support a screen resolution of 80 X 50. The

approach to use was laid out in a program written by Jerry Velders

in the PET USER NOTES (vol. 2, #1) in 1979. That program,

however, did not allow the user to clear points, only to set them.

Moreover, the coordinates of the point to be set had to be POKEd

into zero page memory, adding unnecessary BASIC statements.

The program listed here POKEs a machine language routine

anywhere in the RAM space of the PET. Once it has been RUN,

the coordinates of a point on the screen may be specified in any

BASIC statement by the variable names XX and YY (0£XX$79; ,

0YY49). Executing the function USR(l) will then set that point

on the screen, while USR(O) will clear the point. It is up to the user

to ensure that XX and YY contain legal coordinate values before

the USR function is executed.

Following are some simple programming examples:

(1) 10 PRINT "dr"

20 FOR YY=0 TO 49: XX=0: A= USR(l): XX=79:

A=USR(1):NEXTYY

30 FOR XX=0 TO 79: YY=0: A= USR(l): YY=49:

A=USR(1): NEXTXX

puts a border around the screen.

(2) 10 PRINT "dr"

20 FOR XX =0 TO 79

30 YY=25 - 24*SIN(XX/5): A=USR(1): NEXTXX

plots a sine wave

(3) 10 PRINT "dr"

20Xl = l:XX=0:YY=5

30 IF XX>79 OR XX< 0 THEN XI =X1: GOTO 50

139

40A=USR(l)

50 FOR A=0 TO 10: NEXTA: A=USR(O):XX=XX+X1:

GOTO 30

moves a point back and forth across the screen.

The disassembly shows how the program looks when POKEd

into high memory on an 8K PET. The code from 1EDB to 1F4B

extracts the values of XX and YY from the BASIC variables storage

area of memory. The code from 1F4D to the end is analogous to

Jerry Velders' program. It calculates the correct screen address,

determines what is already at that screen address, and POKEs that

address with the necessary graphics character.

I have found the routine to be particularly useful in the graphic

display of numerical data on the screen, where doubling the

resolution of the screen is more important than having available a

wide variety of graphics symbols.

The routine, as written, will only operate on original ROM

PETs. This is due to the use of the BASIC subroutines FLPINT,

ABS, and MVFACC, and the use of the pointers at 7C to 7F to

point to BASIC variables storage. Substitution of the correct

addresses should allow it to work with other ROMs as well.

1EC9

1ED1

1EDB

1EDC

1EDD

1EE0

1EE2

1EE5

1EE7
1EEA

1EEC

1EEF

1EF1

1EF4
1EF6

1EF8

1EFA

1EFC

1EFE

1F00

1F02

1F03

1F05

1F07
1F09

1F0B

1F0C

1F0E

20 7C 6C

7E E2 7F

08

D8

20 A7 DO

A5B4
8D C5 IE

A9 02

8D C8 IE

A5 7C

8D C6 IE

A5 7D

8D C7 IE

A0 00 •

B17C

C9 58

F0 22

C9 59

FO1E

A5 7C

18

69 07
90 02

E6 7D

85 7C

38

A5 7F

E5 7D

El 7B FF 62 FE

FB 61 EC FC A0

PHP

CLD

JSR FLPINT

LDAB4
STA 1EC5

LDA #02

STA 1EC8

LDA7C

STA 1EC6

LDA7D

STA 1EC7

LDY #00

LDA (7C),Y

CMP #58

BEQ 1F1E

CMP #59

BEQ 1F1E

LDA7C

CLC

ADC #07

BCC 1F09

INC7D

STA7C

SEC

LDA7F

SBC7C

! TABLE.

Save parameter (indicating

SET or CLEAR)

at 1EC5.

Counter = 2.

Save contents of 7C

and 7D (start of BASIC

variables).

Load ace. with first

letter of a variable

name.

Is it 'X' or T'?

NO. Increase pointer

at 7C by 7.

Have we gone

too far?

140

1F10

1F12

1F15

1F17
1F1A
1F1C

1F1D

1F1E

1F1F
1F21

1F23

1F24
1F26

1F28

1F29

1F2B

1F2D

1F2E

1F31

1F34

1F37
1F38

1F39

1F3B

1F3D

1F3F

1F42

1F45

1F48

1F4B

1F4D

1F4F

1F50

1F53

1F55

1F57
1F5A

1F5B

1F5D

1F60

1F63 •

1F65

1F68

1F6A

1F6C

1F6F

1F72

1F75

1F77
1F79

1F7C

1F7F

1F81

1F84

10 E2

AD C6 IE

85 7C

AD C7 IE

85 7D

28

60

C8

Dl 7C

DODD

48

A4 7D

A5 7C

18

69 02

90 01

C8

20 74 DA

20 2A DB

20 A7 DO

68

AA

A5B4
E0 58

F0 06

8DC1 IE

4C 48 IF

8D CO IE

CE C8 IE

D0B3

A2 02

18

BD BF IE

09 FE

69 01

9D C2 IE

CA

D0F2

AD C3 IE

CD C4 IE

D0 0D

AD C3 IE

DO 15

A9 02

8D C2 IE

4C 8C IF

ADC3 1E

DO 10

A9 01

8D C2 IE

4C 8C IF

A9 08

8D C2 IE

4C 8C IF

BPL 1EF4

LDA 1EC6

STA7C

LDA 1EC7

STA7D

PLP

RTS

INY

CMP (7C),Y

BNE 1F00

PHA

LDY7D

LDA7C

CLC

ADC #02

BCC 1F2E

INY

JSR MVAFACC

JSR ABS

JSR FLPINT

PLA

TAX

LDAB4
CPX #58

BEQ 1F45

STA 1EC1

JMP 1F48

STA 1EC0

DEC 1EC8

BNE 1F00

LDX #02

CLC

LDA 1EBF,X

ORA #FE

ADC #01

STA 1EC2,X

DEX

BNE 1F4F

LDA 1EC3

CMP 1EC4

BNE 1F72

LDA 1EC3

BNE 1F7F

LDA #02

STA 1EC2

JMP 1F8C

LDA 1EC3

BNE 1F87

LDA #01

STA 1EC2

JMP 1F8C

LDA #08

STA 1EC2

JMP 1F8C

NO. next variable.

YES. restore

7C and 7D,

and return to

BASIC.

YES. Is next letter of

variable name the same?

no. next variable.

yes. set Y and ace.

to point to variable.

move to FACC

ensure positive,

convert to integer.

store at 1EC0 (XX)

or 1EC1 (YY).

go back for next

coordinate,

both XX and YY

obtained.

For XX and YY,

store 255 if even

or 0 if odd.

Determine quadrant

number pointed to by

XX and YY.

8

4

1

2

141

1F87
1F89

1F8C

1F8F

1F92

1F94
1F97
1F99

1F9C

1F9F

1FA0

1FA1

1FA4
1FA6

1FA8

1FA9

1FAC

1FAD

1FAF

1FB2

1FB4

1FB7

1FBA

1FBC

1FBF

1FC2

1FC4
1FC5

1FC7
1FC9

1FCC

1FCF

1FD2

1FD5

1FD8

1FDB

1FDD

1FDE

1FE1

1FE2

1FE5

1FE8

1FEB

1FED

1FFO

1FF1

1FF4
1FF5

1FF8

1FFB

A9 04
8D C2 IE

4E CO IE

4E Cl IE

A9D8

8D BD IF

A9 7F

8D BE IF

AEC1 IE

E8

18

ADBD1F

69 28

90 04
18

EE BE IF

CA

D0F5

6D CO IE

90 03

EE BE IF

8D BD IF

A2 00

AD

DD C9 IE

F0 08

E8

E0 10

D0F6

4C 12 IF

ADBD1F

8D F9 IF

AD BE IF

8D FA IF

AC C5 IE

FOOB

8A
OD C2 IE

AA

BD C9 IE

4C F8 IF

ADC2 1E

49 OF

8DC2 1E-

8A

2D C2 IE

AA

BD C9 IE

8D

4C 12 IF

LDA #04
STA 1EC2

LSR 1EC0

LSR 1EC1

LDA #D8
STA 1FBD

LDA #7F

STA 1FBE

LDX 1EC1

INX

CLC

LDA 1FBD

ADC #28

BCC 1FAC

CLC

INC 1FBE

DEX

BNE 1FA4
ADC 1EC0

BCC 1FB7
INC 1FBE

STA 1FBD

LDX #00
LDA

CMP 1EC9,X

BEQ 1FCC

INX

CPX #10

BNE 1FBF

JMP 1F12

LDA 1FBD

STA 1FF9

LDA 1FBE

STA 1FFA

LDY 1EC5

BEQ 1FE8

TXA

0RA 1EC2

TAX

LDA 1EC9,X

JMP1FF8

LDA 1EC2

EOR #0F

STA 1EC2

TXA

AND 1EC2

TAX

LDA 1EC9,X
STA

IMP 1F12

Calculate screen address

pointed to by XX and YY

1) Divide XX and YY

by 2.

2) Calculate 32768 +

40*YY+XX

3) Store address at

1FBD and 1FBE.

Load ace. from screen

address, and find

corresponding value in

table at 1EC9.

Return with no action

if match not found.

Transfer screen address

at 1FBD and 1FBE, to

1FF9 and 1FFA.

SET OR CLEAR?

SET.

OR table position,

with quadrant number.

CLEAR.

AND table position

with complement of

quadrant number.

POKE screen ck return.

142

10 PRINT"{CLEAR}WHERE WOULD YOU LIKE T

HIS ROUTINE LOADED (0=HIGH MEM

ORY)n

110 INPUTB:IFBO0THENPRINT" {CLEAR} ":B1 =
B:GOTO410

210 B=256*PEEK(135)+PEEK(134)-320
310 POKE135,INT((B-l)/256):POKE134,B-1-

256*INT((B-1)/256):CLR

320 B1=256*PEEK(135)+PEEK(134)+1:B=B1
350 PRINT" {CLEAR}11

410 PRINT"{HOME}";B:READN$:IFLEFT$(N$,1

)="X"THBNN=VAL(RIGHT$(N$,LEN (N
$)-l)):GOTO520

450 IFN$="END"THEN3000

510 GOSUB610:GOTO410

520 AH=INT((Bl+N)/256):AL=B1+N-256*AH

530 POKEB,AL:POKEB+1,AH:B=B+2:GOTO410

610 R$=RIGHT$(N$,1):R=ASC(R$):L$=LEFT$(

N$,l):L=ASC(L$)

710 IFR<65THENR=R-48:GOTO910

810 R=R-55

910 IFL<65THENL=L-48:GOTO1110

1010 L=L-55

1110 L=L*16+R:POKEB,L:B=B+1:RETURN
2000 DATA00,00,00,00,00,00,00,00,0 0

2010 DATA20f7Cr6CfElf7BfFFf62fFE#7E/E2

2020 DATA7FfFB/61fECfFCfA0f00f00

2030 DATA08rD8r20rA7rD0fA5fB4f8DfX05

2040 DATAA9,02f8DfX08,A5f7Cr8DfX06fA5

2050 DATA7D,8D,X07,A0,00,B1,7C,C9,58,F0

2060 DATA22fC9,59#F0flEfA5f7Cr18f69r07

2070 DATA90f02fE6f7Df85f7C#38fA5f7F,E5

2080 DATA7D,10,E2fAD,X06f85,7C,AD,X07

2090 DATA85r7Df28f60fC8#Dlf7CfD0fDDf48

2100 DATAA4,7D,A5,7C,18,69,02,90,01

2110 DATAC8f20f74rDAr20f2AfDB/20fA7,D0

2120 DATA68,AArA5,B4rE0#58fF0f06r8DfX01r

4C

2130 DATAX136f8D#X00rCEfX08fD0fB3

2140 DATAA2f02f18fBDfX-01f09#FE,69f01f9D

,X02

2150 DATACAfD0rF2rADrX03#CD#X04#D0,0D

2160 DATAAD,X03fD0r15fA9f02r8DfX02,4C

2170 DATAX204,AD,X03,D0f10,A9,01f8D,X02

2180 DATA4CrX204fA9f08f8DfX02f4C,X204

2190 DATAA9,04,8D,X02,4E,X00,4EfX01

2200 DATAA9#D8f8D#X253fA9#7Fr8DfX254

2210 DATAAE,X01fE8f18,ADfX253f69r28#90

2220 DATA04,18,EE,X254,CAfD0,F5,6D,X00

2230 DATA90f03fEEfX254f8DfX253fA2r00

143

2240 DATAAD,00,00,DD,X09fF0,08fE8,E0,10

2250 DATAD0,F6,4C,X82rAD,X253,8D,X313

2260 DATAAD,X254,8D,X314,AC,X05,F0,0B

2270 DATA8A,0D,X02,AA,BD,X09,4C,X312

2280 DATAAD,X02,49,0F,8D,X02,8A,2D,X0 2

2290 DATAAA,BD,X09,8D,00,00f4C,X82,END

3000 BH=INT((Bl+27)/256):BL=Bl+27-256*BH

:POKE1,BL:POKE2,BH

4000 PRINT11 {02 DOWN}{REV}80 X 50 GRAPHIC

S ROUTINE{OFF}"

4010 PRINT"{02 DOWNjTHIS ROUTINE OCCUPIE

Sn;B-Bl;"BYTES AT"

4 020 PRINT"LOCATION";B1

4030 PRINT"{DOWNjRESERVE VARIABLE NAMES "

'XX1 AND 'YYMI

4 040 PRINT"FOR THE COORDINATES OF THE PO

INT TO BE"

4045 PRINT"SET OR CLEARED."

4050 PRINT"{02 DOWN}XX= 0 TO 79 YY

=0TO49"

4060 PRINT"{02 DOWN}{REV}SET{OFF} A POIN

T WITH 'USR(l)'"

4070 PRINT"{REV}CLEAR{OFF} A POINT WITH m

•USR(0)'"

4080 PRINT"{DOWN}FOR PROGRAMMING EXAMPLE

, TYPE 'RUN5000111

4090 END

5000 X=40:Y=25:DX=RND(-TI):PRINT"{CLEAR}

11 • G= 1

5010 DT=3+G*(1+INT(2*RND(1))):ONDTGOTO50

15,5020,5022,5025,5030

5015 DX=1:DY=0:GOTO5040

5020 DX=-1:DY=0:GOTO5040

5025 DX=0:DY=-1:GOTO5040

5030 DX=0:DY=1:GOTO5040

5040 L=2+INT(30*RND(1))

5050 FORM=1TOL

5060 X=X+DX:Y=Y+DY:IFX=-1THENX=79:GOTO51

00

5070 IFX=80THENX=0:GOTO5100

5080 IFY=50THENY=0:GOTO5100

5090 IFY=-1THENY=49:GOTO5100

5100 IFDXO0THENYY=Y:XX=X:A=USR(1) :YY=Y-

1:A=USR(0):YY=Y+1:A=USR(0):GOT

05150

5120 YY=Y:XX=X:A=USR(1):XX=X-1:A=USR(0):

XX=X+1:A=USR(0)

5150 NEXTM

5160 G=-G:GOTO5010

144

Cross-Reference

For The PET

Jim Butterfield

One of the handy things about the 2040 disk system is that it allows

you to read programs — or write them, for that matter — as if they

were data files.

The possibilities are endless: you can analyze or cross-reference

programs; renumber them; repack them into the minimum number

of lines, deleting spaces, comments, etc.; or even create a program-

writing program that is tailor-made for a particular job.

This program does cross-referencing of a BASIC program. It's

written in BASIC: that means that it won't run too fast (all those

GET statements), but you can read what it's doing fairly easily.

There are two types of cross-references normally needed for a

BASIC program. One is the variable cross-reference: where do I use

B$? The other is a line number cross-reference: when do I go to line

360? This program does either. An example of both types is shown

— the program in this case did the cross-references of itself

Reading a BASIC Program as a File.

To read a BASIC program, you must open it as a file, using type P

for program. Line 170 of the cross-reference program does this.

If you read a zero character from the program (that's CHR$(0),

not ASCII zero which has a binary value of 48), the GET command

gives you a small problem: it will give you a null string instead of

the CHR$(0) you might normally expect. You need to watch for this

condition and correct it where necessary: you'll see this type of

coding in lines 260, 270, and 300.

The first thing to do when you open the file is to get the first

two bytes. These represent the program start address, and should be

CHR$(1) and CHR$(4) for a normal BASIC program starting at

hexadecimal 0401. (See line 180).

Now you're ready to start work on a line of BASIC. The first

two bytes are the forward chain. If they are both zero (null string)

we have reached the end of the BASIC program; otherwise, we

don't need them for this job. (See line 240).

Continuing on the BASIC line: the next pair of bytes

represent the line number, coded in binary. We're likely to need

this, so we calculate it as L (lines 260 to 280) and also create its

146

string equivalent. L$. We take an extra moment to right-justify the

string by putting spaces at the front so that it will sort into proper

numeric order.

From this point on, we are looking at the text of the BASIC

line until we reach a zero which flags endof-line. At that time, we

go back and grab the next line.

Detailed Syntax Analysis.

When digging out variables or line numbers, we have several jobs to

do. As we look through BASIC text, we must find out where the

variable or line number starts. For a variable, that's an alphabetic

character; for a line number, it's the preceding keyword GOTO,

GOSUB, THEN or RUN followed by an ASCII numeric.

Once we've "acquired" the variable or line number, we must

pick up its following characters and tack them on. For line numbers,

it's strictly numeric digits. For variables, things are more complex.

Both alphabetic and numeric digits are allowed, but we should

throw away all after the first two, since GRUMP and GROAN are

the same variable (GR) in PET Basic. We must also pick up a type

identifier — % for integer variables or $ for strings — if present.

Finally, we have to spot the left bracket that tells us we have an

array variable.

To help us do this rather complex job, we construct a character

type table. Each entry in the table represents an ASCII character,

and classifies it according to its type. Numeric characters are type 6.

If we're looking for variables, alphabetic characters are type 5,

identifiers (% and $) are type 7, and the left bracket is type 8.

To help us in scanning the BASIC line, we define the end-of*

line character as type 0; the quotation mark as type 2; the REM

token as type 3; and the DATA token as type 4.

Every time we get a new character from BASIC, we get its type

from table C as variable C9. If we're looking for a new variable or

line number, we see if it matches C — alphabetic for variables,

numeric for line numbers. Once we find the new item, we kick C

out of range and start searching based on the value of Cl. This

mechanism means that we can search for a variable starting with an

alphabetic, and then allow the variable to continue with

alphabetics, numerics, or whatever.

To summarize variables in this area: A is the identity of the

character we have obtained from the BASIC program, and C9 is its

type. If we're searching, C is the type we are looking for; otherwise

it's kicked out of range, to -1 or 9. Cl tells us we're collecting

147

characters and what types we're allowed to collect. C2 is our

variables/line numbers flag; it tells us what we're looking for. M$ is

the string we've assembled.

The routine from 480 to 520 scans ahead to skip over strings in

quotes and DATA and REM statements.

Collecting The Results.

For each of the BASIC programs we are analyzing, we collect and

sort any items we find, eliminating duplicates. They are staged in

array A$ in lines 320 to 370. If they are line numbers, they will be

left justified so that the sort will be a little odd — line 100 will come

before line 20 since we use a string comparison.

When we're ready to start a new line, we add this table to our

main results table, array X$, in lines 200 to 220. To save sorting

time, we merge these pre-sorted values into the main table. At this

point, our data has the line number stuck on the end; this way,

we're handling two values with a single array.

Because the merging of the two tables must start at the top so

that we can make room for the new items, the items are handled in

reverse alphabetic order. We print this to the screen so that you can

watch things working. At BASIC speed, this program can take

quite a while to run; it's nice to confirm that the computer is doing

something during this period.

Final Output.

We finish the job starting at line 530. It's mostly a question of

breaking the stuck-together strings apart again and then checking to

see if we need to start a new line.

Do Your Own Thing.

The size of array X$ determines how large a program you can

handle. The given value of 500 is about right for 16K machines; on

32K you can raise it to 1500 or so.

If you're squeezed for space, change array C to an integer array

C%. As you can see from the cross-reference listing, you'll need to

change lines 100, 140, 150, 160, and 310 — see how handy the

program is?

As mentioned before, run time is slow. A machine language

program — or even a BASIC program with machine language

inserts — would speed things up dramatically.

100 DIM A$(15),B$(3)fX$(500)fC(255)

110 PRINT"CROSS-REF JIM BUTTERFIELD"

148

120 Q$=CHR$(34):S$=" ":B$(1)=Q$:

-.B$(3)=CHR$(58)

130 INPUT"VARIABLES OR LINES";Z$:C2=5:

-iIFASC (Z$) =76THENC2=6

140 FORJ=1TO255:C(J)=4:NEXTJ:FORJ=48TO57:

-»C(J)=6:NEXTJ

150 IFC2=5THENFORJ=65TO90:C(J)=5:NEXTJ:

-iFORJ=36TO38:C(J)=7:NEXTJ:C(40)=8

160 C(34)=1:C(143)=2:C(131)=3

170 INPUT"PROGRAM NAME";P$:OPENlf8f3,"0:

V+P$+",P,R"

180 GET#lfAfB:IFASC(B$)O4THENCL0SEl:

-iSTOP

190 IFB=0GOTO240

200 PRINTL$;:K=X:FORJ=BTO1STEP-1:PRINT" ";

iA$(J);:X$=A$(J)+L$

210 IFX$(K)>=X$THENX$(K+J)=X$(K):K=K-1:

iGOTO210

220 X$(K+J)=X$:NEXTJ:X=X+B:PRINT:B=0

230 REM: GET NEXT LINE, TEST END

240 GET#1,A$,B$:IFLEN(A$)+LEN(B$)=0GOTO530

250 REM GET LINE NUMBER

260 GET#lfA$:L=LEN(A$):IFL=1THENL=ASC(A$)

270 GET#lfA$:A=LEN(A$):IFA=1THENA=ASC(A$)

280 C=C2-:C1=-1:L=A*256+L:L$=STR$(L) :

-»IFLEN(L$)<6THENL$=LEFT$(S$r6-LEN(L$)
-0+L$

290 REM GET BASIC STUFF

300 GET#lfA$:A=LEN(A$):IFA=1THENA=ASC(A$)

310 C9=C(A):IFC9>C1GOTO380

320 K=0:IFB=0GOTO360

330 FORJ=1TOB:IFA$(J)=M$GOTO370

340 IFA$(J)<M$THENNEXTJ:K=B:GOTO360

350 FORK=BTOJSTEP-1:A$(K+1)=A$(K):NEXTK
360 B=B+1:A$(K+1)=M$

370 C=C2:C1=-1:M$=""

380 IFC2=5GOTO420

390 IFA=137ORA=138ORA=141ORA=167THENC=6:

-iGOTO470

400 IFA=44ORA=32GOTO470

410 IFC9O6THENC=9:GOTO470

420 IFC9=CTHENC=-1:C1=4

430 IFO6GOTO470

440 IFC<0ANDC9>C1ANDC9>6THENC1=C9:GOTO460

450 IFC2=5THENIFLEN(M$) >2ORO0GOTO470

460 M$=M$+A$

470 ONC9+lGOTO190f480f480f480:GOTO300

149

480 B$=B$(C9):C$=nn

490 GET#l,A$:IFA$=fllIGOTO190

500 IFA$=B$GOTO300

510 IFA$=OQ$GOTO490

520 A$=B$:B$=C$:C$=A$:GOTO490
530 CLOSEl: INPUTlf PRINTER";Z$

540 C=3:Z=6:IFASC(Z$)=89THENC=4:Z=12

550 OPEN2fC:PRINT#2:PRINT#2f "CROSS -i

iREFERENCE - PROGRAM ";P$

560 X$=Illf:FORJ=lTOX:A$=X$(J)

570 FORK=1TOLEN(A$) :IFMID$(A$,K,1)<>" -.

-»flTHENNEXTK:STOP

580 B$=LEFT$(A$,K-1):C$=MID$(A$fK+l):

-iIFX$=BSGOTO600

590 PRINT#2:Y=0:X$=B$:PRINT#2,X$;LEFT$(S$

-i5-LEN(X$));

600 Y=Y+1:IFY<ZGOTO620

610 Y=l:PRINT#2:PRINT#2fS$;

620 PRINT#2rLEFT$(S$f6-LEN(C$));C$;

630 NEXTJ:PRINT#2:CLOSE2

150

Trace For The PET

Brett Butler

I wished I had a TRACE program when I first got my PET.

Eventually, I wrote it myself.

TRACE allows you to actually see BASIC executing. It resides

in the high end of memory, occupying less, than 340 bytes.

It displays each line as it's interpreted. This means that it

shows the actual BASIC commands being performed, rather than
just LISTing the line. If part of a line is not executed, you won't see

it. For example, if you have a conditional statement such as:

100 ON A GOTO 200,300,400 and variable

A is 2, you'll see: 100 ON A GOTO 200,300, or with an IF statement like:
100 IF A > 5 THEN B = B + 2

with A less than 5 you'll see: 100 IF A > 5 THEN B

with A 5 or over you'll see: 100 IF A > 5 THEN B = B + 2

One more characteristic of TRACE: it also shows values that

are being input.

TRACE comes as a BASIC program, which POKEs the

machine language instructions into the proper place. It finds the

high end of memory, wherever it happens to be, and then builds the

machine language up there. So it doesn't matter if your PET is fitted

with 4K, 8K, 16K or more: TRACE will be packed into the right

place.

Programs may be changed, or new programs loaded, without

affecting TRACE. It will stay in there until you cut power off. All

BASIC functions operate normally (but slower). If you use the

STOP key to stop a program, hold it down for a few moments until

it "catches."

There are two versions of TRACE: one for original ROM and

one for the new upgrade (16K, 32K) ROM.

Once the machine language version of TRACE is written to fit

your machine, it may be used right away or saved with the Machine

Language Monitor . . . BASIC TRACE tells you how to do this.

The machine language version is handier, since it will load more

quickly — and it may be loaded without disturbing other BASIC

programs previously in memory.

There are four locations you need to know to run TRACE

properly. The BASIC TRACE loader gives you the addresses that

apply to your machine.

INITIALIZE — seals TRACE into high memory and restores

any existing BASIC programs. Use once after loading the machine

151

Utilities

language TRACE.

ARM — sets TRACE on. From this point on, BASIC

programs can be TRACE'd.

DISARM — sets TRACE off. TRACE remains locked in high

memory, but does not act on your BASIC program.

Speed Location — Poke any value from 1 to 255 here, to

control the speed of the TRACE display.

The SYS commands for ARM and DISARM may be given

directly from a program. So when you're debugging, you can have

your program turn TRACE on at a certain point, and turn it off

again later.

If you're tracing a dull part of your program, hold down the

SHIFT key. This will speed things up a bit.

Special thanks to Jim Butterfield, Toronto; without his

encouragement and assistance TRACE would still be just an idea.

1 PRINT"THIS PROGRAM LOCATES TRACE IN"

2 PRINT"ANY SIZE MEMORY THAT IS FITTED..."

3 PRINT"THIS VERSION' WORKS ONLY WITH"

4 PRINT"ORIGINAL ROM PETS - USE ANOTHER"

5 PRINT"VERSION FOR THE NEW (16K,32K) MACHINES"

10 DATA-343,162,5,189,181,224,149, 194,202,16,248,169,239,133,210,96

11 DATA173,-343,133,134,173,-342,133, 135,169,255,133,124,160,0,162

12 DATA3,134,125,162,3,32,-272,208, 249,202,208,248,32,-272,32,-272

13 DATA76,106,197,162,5,189,-6,149, 194,202,16,248,169,242,133,210,96

14 DATA230,124,208,2,230,125,177,124, 96,230,201,208,2,230,202,96,32

15 DATA197,0,8,72,133,79,138,72,152, 72,166,137,165,136,197,77,208,4

16 DATA228,78,240,107,133,77,133,82, 134,78,134,83,173,4,2,208,14,169

17 DATA3,133,74,202,208,253,136,208, 250,198,74,16,246,32,-54,169,160

18 DATA160,80,153,255,127,136,208, 250,132,76,132,84,132,85,132,86,120

19 DATA248,160,15,6,82,38,83,162, 253,181,87,117,87,149,87,232,48,247

20 DATA136,16,238,216,88,162,2,169, 48,133,89,134,88,181,84,72,74,74

21 DATA74,74,32,-44,104,41,15,32, -44,166,88,202,16,233,32,-38,32,-38

22 DATA165,75,197,201,240,55,165, 79,208,4,133,77,240,47,16,42,201,255

23 DATA208,8,169,94,32,-30,24,144, 33,41.,127,170,160,0,185,145,192,48

24 DATA3,200,208,248,200,202,16, 244,185,145,192,48,6,32,-32,200,208

25 DATA245,41,127,32,-32,165,201, 133,75,104,168,104,170,104,40,96,168

26 DATA173,64,232,41,32,208,249,152, 96,9,48,197,89,208,4,169,32,208

27 DATA2,198,89,41,63,9,128,132,81, 32,-54,164,76,153,0,128,192,79,208

28 DATA2,160,7,200,132,76,164,81,96, 76,-256,32,-263

1000 S2=PEEK(134)+PEEK(135)*256: Sl=S2-343

1010 FOR J=S1 TO S2-1

1020 READ X:IF X>=0 GOTO 1050

1030 Y=X+S2:X=INT(Y/256):Z=Y-X*256

1040 POKE J,Z:J=J+1

1050 POKE J,X

1060 NEXT J

1070 PRINT" === TRACE ==="

1080 REM BY BRETT BUTLER, TORONTO

1090 PRINT"TO INITIALIZE AFTER LOAD: SYS";S1+17
1100 PRINT"TO ENABLE TRACE: SYS";SI+56

1110 PRINT"TO DISABLE: SYS"; Sl+2

1120 PRINT"CHANGE SPEED V7ITH: POKE"; S1+124;",X"

1130 PRINT"==MAKE A NOTE OF ABOVE COMMANDS=="

1140 PRINT"SAVE USING MACHINE LANGUAGE MONITOR:11
1150 PRINT" .S 01,TRACE";

1160 S=INT(Sl/256):T=S1-S*256

152

1170 POKE 134rT:POKE 135,S

1180 POKE 130fT:POKE 131,S

1190 S=S1:GOSUB1400

1200 S=S2:GOSUB1400

1210 PRINT:END

1400 PRINT",";:S=S/4096

1410 GOSUB1420

1420 GOSUB1430

1430 T=INT(S):IF T>9 THEN T=T+7

1440 PRINT CHR$(T+48);: S=(S-INT(S))*16:RETURN

5 PRINT"THIS PROGRAM LOCATES TRACE IN"

6 PRINT"ANY SIZE MEMORY THAT IS FITTED..."

7 PRINT"THIS VERSION WORKS ONLY WITH"

8 PRINT"UPGRADE ROM (32K) PETS - USE

9 PRINT"ANOTHER VERSION FOR ORIGINAL ROM"

10 PRINT"MACHINES."

11 DATA -342,162,5,189,249,224,149, 112,202,16,248,169,239,133,128,96
12 DATA 173,-342,133,52,173,-341,133, 53,169,255,133,42,160,0,162,3

13 DATA 134,43,162,3,32,-271,208,249, 202,208,248,32,-271,32,-271,76

14 DATA 121,197,162,5,189,-6,149,112, 202,16,248,169,242,133,128,96

15 DATA 230,42,208,2,230,43,177,42, 96,230,119,208,2,230,120,96

16 DATA 32,115,0,8,72,133,195,138,72, 152,72,166,55,165,54,197

17 DATA 253,208,4,228,254,240,106, 133,253,133,35,134,254,134,36,165

18 DATA 152,208,14,169,3,133,107,202, 208,253,136,208,250,198,107,208

19 DATA 246,32,-54,169,160,160,80, 153,255,127,136,208,250,132,182,132

20 DATA 37,132,38,132,39,120,248,160, 15,6,35,38,36,162,253,181

21 DATA 40,117,40,149,40,232,48,247, 136,16,238,216,88,162,2,169

22 DATA 48,133,103,134,102,181,37,72, 74,74,74,74,32,-44,104,41

23 DATA 15,32,-44,166,102,202,16,233, 32,-38,32,-38,165,184,197,119

24 DATA 240,55,165,195,208,4,133,253, 240,47,16,42,201,255,208,8

25 DATA 169,105,32,-30,24,144,33,41, 127,170,160,0,185,145,192,48

26 DATA 3,200,208,248,200,202,16,244, 185,145,192,48,6,32,-32,200

27 DATA 208,245,41,127,32,-32,165, 119,133,184,104,168,104,170,104,40

28 DATA 96,168,173,64,232,41,32,208, 249,152,96,9,48,197,103,208

29 DATA 4,169,32,208,2,198,103,41,63, 9,128,132,106,32,-54,164,182

30 DATA 153,0,128,192,195,208,2,160, 7,200,132,182,164,106,96,76

31 DATA -255,32,-262

1000 S2=PEEK(52)+PEEK(53)*256: Sl=S2-342

1010 FOR J=S1 TO S2-1

1020 READ X:IF X>=0 GOTO 1050

1030 Y=X+S2:X=INT(Y/256):Z=Y-X*256

1040 POKE J,Z:J=J+1

1050 POKE J,X

1060 NEXT J

1070 PRINT" === TRACE ==="

1080 REMARK: BY BRETT BUTLER, TORONTO

1090 PRINT"TO INITIALIZE AFTER LOAD: SYS";S1+17

1100 PRINT"TO ENABLE TRACE: SYS";Sl+56

1110 PRINT"TO DISABLE: SYS";Sl+2

1120 PRINT"CHANGE SPEED WITH: POKE";S1+123;",X"

1130 PRINT"==MAKE A NOTE OF ABOVE COMMANDS=="

1140 PRINT"SAVE USING MACHINE LANGUAGE MONITOR:"

1150 PRINT" .S ";

1160 S=INT(Sl/256):T=S1-S*256

1170 POKE 52,T:POKE 53,S

1180 POKE 48,T:POKE 49,S

1190 PRINTCHR$(34);"TRACE";CHR$(34); ",01";

1200 S=S1:GOSUB1400

1210 S=S2:GOSUB1400

1220 PRINT:END

1400 PRINT",";:S=S/4096
1410 GOSUB1420

1420 GOSUB1430

1430 T=INT(S):IF T>9 THEN T=T+7

1440 PRINTCHR$(T+48);:S=(S-IMT(S))*16 :RETURN

153

Utilities

Utinsel:

Enabling Utilities
Larry Isaacs

There is a growing amount of good utility software which can make

the time spent with our PETs more productive. Some of these utilities

add themselves to the operating system of the PET, providing us with

extra commands, debugging tools, etc. It was may desire to have a

number of these in memory at the same time and be able to access

them as needed. To do this, there were a couple of problems to be

dealt with.

The first problem comes from the way these utilities attach

themselves to the operating system. When enabled, usually via a SYS

command, they attach themselves to the operating system by

modifying the CHARGOT routine found in page zero. The

operating system uses this routine to fetch characters from a program

while it is running, or from the keyboard buffer when executing

immediate commands. By modifying the CHARGOT routine, the

utility can examine the input before the operating system does. When

using various utilities, it's possible for one utility's modifications to be

incompatible with another's.

So far the only difficulty I've encountered involving the

CHARGOT routine is with Commodore's DOS Support Program,

also known as the Wedge. The Wedge requires a machine language

jump instruction in the first three bytes of the CHARGOT routine.

This jump instruction should jump to the starting point in the Wedge

machine code. Unfortunately, the Wedge is not able to put this jump

instruction into the CHARGOT routine. It is put there by some

extra machine code which is part of the DOS Support Program on

diskette. This means I don't have a SYS command to enable the

Wedge. If I enable another utility which modifies the first three bytes

of the CHARGOT routine, it would take some extra work to re-

enable the Wedge.

The second problem is simply all those SYS commands you

have to remember. The following program, called UTINSEL,

provides a simple and flexible solution to the above problems. With

it, you only need to remember a couple of SYS commands.

UTINSEL consists of a menu table and a machine language

program, which is executed via a SYS command. The menu table is

154

user definable and can contain up to nine entries. Each entry consists

of a prompt mesesage plus a copy of the CHARGOT routine that

enables the associated utility or utilities. When executed, the

machine language program lists the prompt messages, preceding each

with a number. By typing the number of the menu item you want

plus a carriage return, the associated CHARGOT routine will be

copied into the proper location in page zero.

The UTINSEL/NEW program includes the machine code and

menu table in DATA statements, plus a BASIC program which

POKES the code and table into the top of free memory. To adapt

UTINSEL/NEW to your own requirements, you need only modify

the menu table.

To set up your own utility package, first reset your PET. Next,

load in the utilities which occupy RAM. Now run a version of

UTINSEL with only the ORIGINAL menu entry provided in the

listing. To determine what CHARGOT routines you will need for

your menu table, write a short program to print out 24 memory

locations starting at 112 for upgrade PETs and 194 for original PETs.

Now you may enable the desired utility and then run your program

to print out the required CHARGOT routine. Before enabling other

utilities, restore the original CHARGOT routine by executing the

UTINSEL program you loaded earlier. In some cases it is possible to

enable more than one utility. For example, The BASIC

Programmer's Toolkit and the WEDGE can be enabled

simultaneously.

To set up the menu table, you must include a set of DATA

statements for each utility. The first DATA statement of a set should

contain a prompt message. The next DATA statements should

contain the CHARGOT routine needed by the utility, or utilities,

associated with the prompt message. These sets of statements may be

placed in the menu table in any order. After youVe entered the menu

table, set N in the program to the number of entries.

Now save a copy of the program with your table; then run it.

The machine code and table will be loaded into memory just below

your utilities. Write down the two SYS commands it prints out. The

first one sets the top of memory pointer to just below UTINSEL, and

the other executes the UTINSEL machine code. To save your utility

package, enter the machine language monitor and examine the top of

memory pointer at hex 34 and 35. If you haven't done this before,

type SYS 1024 and M 0034 0035 to get a hex dump of these locations.

Use these values to save memory from this starting address up to the

physical top of memory. Refer to the Commodore manual for more

155

detail on the SAVE command. For the program listing provided, hex

34 and 35 were 47 and 7D respectively, and the save command was S

"UTILITY.PKG",08,7d47,8000 for saving on Commodore disk using

a 32K CBM. Whenever you load in your utility package, be sure to

use the SYS command to get the top of free memory before running

any programs.

The listing provided is for UTINSEL/NEW, which runs on new

ROMs. The menu table includes entries for The BASIC

Programmer's Toolkit, the Commodore DOS Support program, and

the original CHARGOT routine. You may also want to include the

TRACE utility by Brett Butler in the Fall COMPUTE! The second

listing gives the changes needed to convert the program to

UTINSEL/OLD for original ROMs. When printing the CHARGOT

routine, start at 194 instead of 112. You will have to have a machine

language monitor on tape if you wish to save the machine code on

the original ROMs.

100 REM UTINSEL/NEW

110 REM UTILITY INPUT ROUTINE SELECTOR

120 PRINT

130 PRINT"COPYRIGHT 1979 SMALL SYSTEM"

140 PRINT"SERVICES,INC."

150 PRINT"900 SPRING GARDEN STREET"

160 PRINT"GREENSBORO, N.C. 27403 USA"

170 PRINT

180 REM ALL RIGHTS RESERVED. THIS

190 REM PROGRAM MAY BE DUPLICATED FOR

200 REM USE BY INDIVIDUALS FOR THEIR

210 REM SPECIFIC MACHINE. SUCH

220 REM DUPLICATION MUST INCLUDE THE

230 REM COPYRIGHT NOTICE AND ADDRESS.

240 REM REPRODUCTION FOR COMMERCIAL

250 REM PURPOSES IS EXPRESSLY

260 REM PROHIBITED.

270 REM

280 PRINT"UTINSEL IS BEING LOADED"

290 PRINT"INTO HIGH MEMORY"

300 PRINT

310 REM

320 REM UTINSEL MACHINE CODE

330 DATA 169f0f133,48f133f52,169f0

340 DATA 133,49,133,53,76,137,195,165

350 DATA lr72,165f2,72,162,0f160

360 DATA 0,134,1,132,2,162,1,142

370 DATA 58,3,169,13,32,210,255,32

380 DATA 210,255,32,-38,224,0,208

156

390 DATA 23f169,13f32,210,255f169f145

400 DATA 32f210f255,173,58,3,9,48

410 DATA 32r210f255,238,58f3f208,218

420 DATA 169,13f32f210,255,32,207r255

430 DATA 170,41,240,201,48,208,241,138

440 DATA 41f15f205f58f3r16f233,141

450 DATA 58f3,32f-38f162,0f177

460 DATA 1,149,112,224,24,240,4,232

470 DATA 200r208f244,104,133f2f104,133

480 DATA 1,76,137,195,160,0,174,58

490 DATA 3f202f240f9,177,1,201,0

500 DATA 240,22,168,208,244,32,205,253

510 DATA 32,205,253,200,177,1,201,0

520 DATA 240,6,32,210,255,24,144,243

530 DATA 200,96

540 REM

550 REM MENU TABLE

560 DATA "TOOLKIT"

570 DATA 230,119,208,2,230,120,173,0

580 DATA 0,76,154,178,0,76,196,178

590 DATA 100,0,100,0,56,233,179,0

600 DATA "WEDGE 4.0":REM FOR 32K PET

610 DATA 76,82,126,2,230,120,173,0

620 DATA 0,201,58,176,10,201,32,240

630 DATA 239,56,233,48,56,233,208,96

640 DATA "ORIGINAL"

650 DATA 230,119,208,2,230,120,173,0

660 DATA 0,201,58,176,10,201,32,240

670 DATA 239,56,233,48,56,233,208,96

680 REM

690 REM POKE MACHINE CODE TO TOP OF

700 REM FREE MEMORY

710 REM

720 TA=PEEK(52)+PEEK(53)*256-1

730 SA=TA-162

740 FORJ=SATOTA-1

750 READ B:IFB>=0 GOTO790

760 AD=B+TA: B=INT(AD/256)

770 B1=AD-B*256

780 POKE J,B1:J=J+1

790 POKE J,B

800 NEXT J

810 REM

820 REM LOAD TABLE FROM TOP DOWN

830 REM FIRST MOVE POINTER FOR STRINGS

840 REM

850 Tl=INT((SA-2048)/256)

157

860 T2=(SA-2048)-Tl*256

870 POKE48,T2:POKE49,T1

880 REM

890 REM SET N = #TABLE ENTRIES

900 REM

910 N=3

920 S1=SA

930 FORK=1TO N

940 READ M$:EL=LEN(M$)+26

950 S2=S1:S1=S2-EL

960 POKES1,EL:IF K=l THEN POKES1,0

970 PORJ=1TOLEN(M$)

980 POKESl+JfASC(MID$(M$,J))

990 NEXT J

1000 S3=Sl+J:POKES3r0:S3=S3+l

1010 FOR J=S3TOS2-1

1020 READ B:POKEJ,B

1030 NEXT J

1040 NEXT K

1050 REM

1060 REM FIX POSITION DEPENDENT CODE

1070 REM

1080 Tl=INT(Sl/256):T2=S1-T1*256

1090 POKE SA+22,T2:POKE SA+24fTl

1100 POKE SA+1,T2-1:POKE SA+7,T1

1110 REM

1120 REM LINK TABLE

1130 REM

1140 LA=S1:L=0

1150 IF PEEK(LA)=0 THEN GOTO 1190

1160 L=L+PEEK(LA):POKE LAfL:LA=Sl+L

1170 GOTO1150

1180 REM

1190 PRINT "USE SYSn SA;

1200 PRINT "TO SET TOP OF MEMORY"

1210 PRINT"USE SYS" SA+15;

1220 PRINT "TO RUN UTINSEL"

1230 POKE52rT2-l:POKE53,Tl

1240 POKE48,T2-l:POKE49fTl

1250 NEW

1 REM UTINSEL NEW-TO-OLD

2 REM COPYRIGHT 1979 SMALL SYSTEM

3 REM SERVICES,INC.

4 REM 900 SPRING GARDEN STREET

5 REM GREENSBORO, N.C. 27403 USA

7 REM TO CONVERT UTINSEL/NEW TO

8 REM UTINSEL/OLD, SUBSTITUTE

158

9 REM THE FOLLOWING STATEMENTS

330 DATA 169,0,133f130f133,134f169,0

340 DATA 133f131f133f135,76,139,195,165

380 DATA 210,255,32,-40,224,0,208

450 DATA 58,3,32,-40,162,0,177

480 DATA 1,76,139,195,160,0,174,58

500 DATA 240,24,168,208,244,169,32,32

510 DATA 210,255,32,210,255,200,177,1

520 DATA 201,0,240,6,32,210,255,24

530 DATA 144,243,200,96

570 DATA 230,201,208,2,230,202,173,0

600 REM DISCARD WEDGE MENU ENTRY

650 DATA 230,201,208,2,230,202,173,0

720 TA=PEEK(134)+PEEK(135)*256-1

730 SA=TA-164

870 POKE130,T2:POKE131,T1

1230 POKE134,T2-1:POKE135,T1

1240 POKE130,T2-1:POKE 131,Tl

159

Converting ASCII Files

to PET BASIC

Harvey B, Herman

Recently I have been experimenting with a program (not discussed

here) which makes PET into a terminal (CompuMart T/C 2001

terminal option) which can communicate with remote computers.

Normally, the characters that are received by the PET, when acting

as a terminal, are displayed on the screen. I modified the program to

optionally save the characters (ASCII Code) to a reserved area in

high memory (approximately decimal 8192 and above). Obviously,

this program required memory in this area and will need to be

modified for an unexpanded 8K PET. The question one might ask

is, "What can I do with an ASCII file in high memory?" This article

is intended to answer that question.

Commodore's PET is not the first computer I have worked

with and I suspect the same may be true for many readers. I have

spent many hours developing BASIC programs on remote

computers for use with my research and in my teaching. It would be

advantageous if I could also use these programs (suitably modified)

on the PET. I have no strong desire to retype all these programs. If I

could convert the ASCII file of a program listing made by a

terminal program into a PET BASIC program it would save

immense amounts of work. Any minor changes could then be done

with the screen editor.

The program called ASCII shown in the figure, converts

ASCII files in high memory into BASIC programs. It is intended for

use with expanded PETs with original ROMs. The POKE locations

in statement number 63290, 525-527-528, need to be changed to

158-623-624 for upgrade ROMs. The program uses the dynamic

keyboard idea of Mike Lauder (see Best of PET Gazette). It writes

two lines on the screen and puts two carriage returns in the

keystroke buffer. The first line is a BASIC statement taken from

part of a program listing saved in high memory by the terminal

program. The second line is an immediate mode statement which

restores a memory position counter and jumps back into the main

program again. It is necessary to remember the current position in

high memory because all variables were set to zero after the previous

step. This is true whenever a new BASIC statement is added to a

program, as in this case. All the new BASIC statements are added

160

to the front of the main program which was purposely written with

very large statement numbers. At the conclusion of this program,

the statements belonging to the ASCII program can be deleted by

hand or with The Programmer's BASIC Toolkit.

The ASCII program can be used to do a minor amount of

editing "on the fly/* Some of my original programs were done on a

computer which uses "#" instead of " <>" and I included a

conversion in statement 63180. Also "[" and "]" were used in place

of "(" and ")," in some places and this conversion is done in

statements 63160 and 63170.1 also removed 7 (bell character) from

the programs. Besides giving a syntax error later when run on a PET

program, the inclusion of 7 occasionally caused lines to be over 80

characters long. This stopped the ASCII program with a syntax

error which then- had to be manually restarted. All these

programmed editing changes saved a lot of manual editing later.

The end of my ASCII files is signified by the ASCII character

4, otherwise the program might continue indefinitely, adding

unwanted BASIC statements, or garbage. This check is done in

statement 63200. It should reach this point and stop if each line

begins with a number, is less than 80 characters long, and the

counter in statement 63070 is positioned to the beginning of the

ASCII listing in high memory. Conversion to PET syntax, if

required, would begin here.

I have used the ASCII program to convert very large ASCII

files to PET programs. The same program should be usefiil when I

acquire CP/M ASCII files on 5-1/4" diskettes. The disk and

operating system which I am using (PEDISK and Wilserv Software)

can read CP/M files, and the ASCII program discussed here will

convert them to PET BASIC programs.

63000 REM PROGRAM CONVERTS AN ASCII FILE -.

-.IN

63010 REM HIGH MEMORY TO A PET BASIC i

-iPROGRAM

63020 REM HIGH MEMORY BEGINS AT $2017(8215

-i DEC)

63030 REM

63040 REM HARVEY B. HERMAN

63050 REM

63060 REM I IS MEMORY COUNTER

63070 1=8215

63080 REM THROW AWAY FIRST LINE

63090 A=PEEK(I) : IFAO13THENI=I+1 :GOTO63090

63100 PRINT"!hhhr

63110 1=1+1

161

63120 REM NEXT CHARACTER FROM ON HIGH

63130 A=PEEK(I)

63140 REM REPLACE [&] WITH (&)

63150 REM REPLACE # WITH <>

63160 IF A=91 THEN A=40

63170 IF A=93 THEN A=41

63180 IF A=35 THEN PRINTn<>";:GOTO63110

63190 REM CHAR $04 AT END OF FILE

63200 IF A=4 THEN STOP

63210 REM THROW AWAY '7

63220 IF A=39 THEN IF PEEK(I+1)=55 THEN -.

-iI=I+l:GOTO 63110

63230 REM PRINT BASIC LINE ON SCREEN. -.

iAFTER CR

63240 REM PRINT NECESSARY VARIABLES AND -i

-iPUT CR

63250 REM IN KEYSTROKE BUFFER. END PROGRAM

63260 REM INCORPORATE LINE AND BEGIN AGAIN

63270 PRINT CHR$(A);

63280 IF A=13 THEN PRINTnI=";I;":GOTO63100

63290 IF A=13 THEN POKE 527,13:POKE528,13:

-iPOKE 525,2:END

63300 GOTO63110

162

Multitasking On
Your PET?

QUADRA-PET

Charles Brannon

QUADRA-PET is a machine language program that lets you

partition the memory of an Upgrade ROM PET or CBM into four 8K

blocks. Each block is an independent program workspace. Programs

existing in each 8K partition can be selected and then used and

modified without affecting any of the other programs. You can jump

to any other of the programs at any time.

After initialization with SYS 926, PET displays the question:

WHICH PET? [14]

Perhaps Mary, an avid computer-games buff, types in "1" and loads

STARTREK. She plays it for a while and then leaves to eat lunch.

Meanwhile, Bob goes to the PET, sees that someone is using PET #1,

and switches to PET #2 to write a business program. After nearly

"perfecting" it, he leaves to see what Mary is up to. Now the kids

come in and, after arguing for a half-hour, agree to share the PET,

one using PET #3 and the other PET #4. Fortunately for Bob and

Mary, nothing the kids do can harm their programs.

How To Use QUADRA-PET

1. Load or type in one of the versions of QUADRA-PET (BASIC or

hex):

2. Enter NEW

3. SYS 926 to initialize.

4. PET will respond with WHICH PET? (14)

5. Select the one you wish to use.

6. Before loading or typing in a program for the first time, type in

NEW.

7. To select another PET, SYS 826 and follow instructions 4-7.

Now comes the fun part — how does it work? Many memory

locations in zero page (0-256) are pointers. QUADRA-PET works

with three of those pointers.

On power-up, PET determines the end of memory by writing a

character to every memory location and then reading it back. PET

163

then increments a memory location until a failure in reading that

character occurs. This indicates that the end of available memory has

been reached. Physically, this pointer is at location 52 decimal ($34).

The second pointer is at the start of memory, stored in location 41.

Originally, this points to the actual start of user memory, 1024. The

last pointer is the end of text pointer. As you write your program it

changes.

QUADRA-PET partitions the memory by changing these

pointers to point to successively higher memory locations, depending

on which PET is in use. Since the end of text pointer changes, it must

be saved before we move to a new PET and restored on return.

QUADRA-PET, as it is in machine language, does all these things

seemingly instantaneously.

HOWTO SAVE A PROGRAM PRODUCED WITH

QUADRA-PET:

1. SYS 1024 to go to the Monitor.

2. Enter: .M 0028 002B and type RETURN.

3. You will get a display something like:

.:0028 0104 3E04

4. We will use only the first four bytes. Write down the first pair in

reverse order on paper, for example:

0401

Do the same with the second pair. (e.g. 043E)

5. Enter: .S "PROG NAME",01,XXXX,YYYY where "PROG NAME"

is the name of your program, XXXX is the first number you wrote

down, and YYYY is the second. For example, to save the example

program which we will call "PET#1," you would enter: .S "PET #1",

01,0401,043E

6. Press RETURN and press play and record to save your program.

7. To load this saved program into a space prepared by QUADRA-PET,

just SYS 1024 and enter .L "PROG NAME" where "PROG NAME"

is the name of your program.

HOWTO LOAD A PRE-EXISTING PROGRAM INTO A

SPACE PREPARED BY QUADRA-PET:

I could tell you how to do this on the original ROM PET but, quite

frankly, I can't find the memory locations for this procedure in the new

PET. All you PET experts - HELP!

If you can figure it out, please send in the procedure to COMPUTE!.

A little imagination will create many uses for QUADRA-PET.

For education, it is the perfect way to keep four students'

programs in the PET at the same time. Each program can be worked

on and modified in any way without affecting any of the other

164

programs.

In business, four different business programs can exist

simultaneously in PET's memory, ready to use. For the small penalty

of loading the programs into the program workspaces at the start of

the day, all four are within reach of a carriage return — faster than

any disk drive.

Machine language programmers can fill partitions with useful

routines, leaving one or more partitions for BASIC. QUADRA-PET

itself is short and easily relocatable.

I would be interested to find out which novel and useful

applications for QUADRA-PET you can think up!

Happy QUADRA-PETing!

References

CBM User Manual 2001-32, First Edition. Commodore Business Machines, Inc., Palo Alto,

CA(1979)

Harvey B. Herman, "Memory Partition of BASIC Workspace",

COMPUTE!, pp. 18-20 (Jan., Feb. 1980)

Jim Butterfield, "PET in Transition (memory map) COMPUTE!, pp. 68-70 (Fall, 1979)

0 REM*********************************

1 REM QUADRA PET
2 REM*********************************

3 REM:BY CHARLES BRANNON 06/07/80

10 FOR I = 826 TO 941

20 READ A

30 POKE I, A

40 NEXT

50 SYS926

60 END

1000 DATA174,126f3,165,42f157f131f3f165

1010 DATA43,157,135,3,169,143,160,3,32

1020 DATA28,202,32,228,255,41,15,240,249
1030 DATA201,5,176,245,170,202,142,126,3
1040 DATA169,1,133,40,189,127,3,133,41
1050 DATA189,131,3,133,42,189,135,3,133
1060 DATA43,169,0,133,52,189,139,3,133
1070 DATA53,32,119,197,96,0,4,32,64

1080 DATA96,3,3,3,3,4,32f64f96

1090 DATA32,64,96,128,87,72,73,67,72

1100 DATA32,80,69,84,63,32,40,49,45

1110 DATA52,41,0,169,0,141,0,32,141
1120 DATA0,64,141,0,96,76,58,3
READY.

165

An Easier Method of
Saving Data Plus

Home Accounting

Robert W. Baker

The techniques presented here are applicable to a wide variety of systems

where non-volatile variables are needed.

Whenever a program must save specific data for the next time it is

run, the data are normally saved in a tape data file. This requires

inserting a tape with the data file and reading the previous values

every time the program is run. When the program is done, the tape

must be rewound or changed and another data file written to save

the new data. This procedure can waste a good deal of time,

especially if only a small amount of data is needed and the program

is normally run quite frequently. It can take as long as 10 to 15

seconds on the PET just to find the data file and read the header

record before actually reading any data. In addition, you now have

a tape for the program and another tape for the data file. If you only

have several values to save, using data files is awkward,

cumbersome, and not worth the trouble. Several applications that

could be done very easily on a computer, in reality become useless

when requiring data files.

Another possible method of saving data is to change the

BASIC pointers and save the data along with the program on tape.

The next time the program is loaded, the BASIC pointers are then

reset and a GOTO xxxxx command is used to execute the program.

If a RUN command is used instead of a GOTO, the data is lost and

the program must be re-loaded. This method is too complicated and

requires a number of functions the user must perform each time he

or she saves or loads the program and data. It also runs the risk of

permanently losing the data.

There is a way, however, that a program can save small

amounts of data within the program itself using a very simple

procedure. The basic theory is to include DATA statements in the

program with initial data specified for the first time the program is

run. The DATA statements and their associated data define space

within the program for the data that is to be saved after each time

166

the program is run. Before terminating, the program simply POKE's

the new values to be saved back into the DATA statement(s) to

replace the original data. The program itself is then saved after each

execution and the latest data is automatically included without any

special actions by the user. Whenever the program is loaded, the

previous data is readily available using the standard READ

command of BASIC. Saving data using this method is extremely

simple, but it does require knowing the format of BASIC lines

stored in memory. The necessary information on the PET has been

described in various newsletters and several magazine articles, so it

will not be repeated here. This article was written for the PET

primarily, but the technique will work for other machines as well.

The listing for a Home Budget program that I've been using for

several months on my 8K PET is included to help illustrate this

simple data saving technique. Looking at the start of the program,

lines 10 and 20 contain DATA statements to reserve space for 12

numeric values to be saved after each time the program is run. The

DATA statements are located at the very beginning of the program,

making it easier to know where to do the POKE's. Each value saved

can be up to six digits in length, since this is the length of each field

specified in the original DATA statements. Disregarding how the

program actually works for now, the data from lines 10 and 20

would normally be read into elements of array "M" by lines 510 and

520. When the program is done, the value of a single element ofM

or M(x) is converted to a six character string with leading zeros

blanked as spaces in line 1010. This insures that all six characters of

each field in the data statements are changed every time the new

data is saved in the program. The ASCII value of each character in

the string representation of M(x) is then poked into a DATA

statement by line 1030. This loop is repeated for all 12 values and a

reminder is then printed so the user will not forget to save the

program with the updated data. The program could have even

printed the actual SAVE command for the user if desired. I

intentionally left this out, however, in case the user decided the new

data was not correct and wanted to re-run the program without

saving the updated values.

If you should use this technique in your own program, don't

forget it can be used to save strings or numbers. Be careful you don't

destroy the DATA statement itself or the separating commas when

POKEing characters into a DATA statement. Also, don't forget to

step over the endof-line flag, the 2-byte link, the 2-byte line

number, and the 1-byte DATA statement "token" when more than

167

one line is used to save data in the program. Each field definition

should reserve enough space for the maximum length expected to be

encountered by the program. Numeric values must be converted to

strings before being saved. Quotes should be used at the beginning

and end of each field when saving text strings. Don't forget to step

past the quotes when POKEing the strings into the DATA

statements. Strings should be changed to the length of the field

being POKEd into by appending spaces as was done in the example

with the numeric values after converting them to text strings. This

will insure the entire field is updated each time the program is run

and the correct data is always saved. The DATA statements must

remain at a constant location in memory. Being at the beginning of

the program avoids problems with changing locations caused by

editing the program before the DATA statements. If the DATA

statements are moved, the address used for the POKEs must be

changed accordingly.

Home Accounting

I don't claim to be an accounting expert but the Home Budget

program works and serves a very useful purpose for me. It is based

on an "original budget system I devised that used an accounting

book to record all income and expenditures. Various "accounts"

within the budget help allocate what money from each paycheck is

to be reserved for which bills in order to meet the projected

expenses. Accounts for bills that are paid at least once a month are

kept in the family checking account where they are readily

available. Accounts for all other bills, paid at longer intervals, are

normally kept in the savings account until needed. An account is

established for each major expenditure, such as: insurances, home

mortgage, utilities, telephone, auto loan, auto expenses, charge

accounts, Christmas presents, vacation, etc. All smaller expenses are

grouped into a miscellaneous account that is kept in the checking

account. An additional account is reserved in the savings account

for all "excess" funds, as the true "savings" total.

This simple BASIC program provides all the desired functions

to keep an accurate home budget with a minimum of effort. It does

not have any fancy features, instead it provides the necessary

information in an easy-to-use format. It displays each account total

along with the current checking and savings balances for fast and

easy verification. Each transaction is entered by selecting the

appropriate account number and the value to credit (+) or debit (-)

the specified account. Positive values indicate deposits (credit) and

168

negative values indicate expenses or bills paid (debit). The actual

transactions are not recorded, only the running totals for each

account are retained to keep the amount of saved data at a

minimum. An additional feature of this program is the ability to set

the amount to be credited to each account for a paycheck deposit.

Thus, come payday, you simply enter the amounts deposited to the

checking and savings account and the program does the rest. An

account total can become negative if expenses exceed current funds

allocated for that expense. This effectively indicates "borrowing"

money from other accounts and should be corrected by transferring

money from another account or changing the pay deposit value for

the account. A negative checking or savings balance should be

avoided as this indicates a very serious problem such as an

overdrawn checking account. The first step in setting up the budget

is to decide what accounts are needed and how many will be in

checking or savings. In line 500 of the program, the variable "C" is

defined as the number of budget accounts in checking (7), and "S" is

defined as the number of accounts in savings (5). The variable "A"

is computed as the total number of budget accounts (C + S = 12),

and the money (M) and name (N$) arrays are dimensioned in the

same line.

Since we are going to save the data within the program, we

must define storage for the values in DATA statements. Line 10

contains the initial values for the checking accounts and line 20 is

for the savings accounts. Separate DATA statements were used for

checking and savings to allow easy addition or deletion of accounts

as required. All values will be kept as whole numbers by multiplying

each value by 100. This will help avoid decimal points and problems

associated with fractions, besides making the data easier to save

using POKEs. With six digits per field, the limiting values for any

account value are: -999.99 to +9999.99 since the minus sign takes

up one digit space for negative numbers.

The actual account names are stored in lines 100-210. Lines

100 and 110 are for the checking accounts while lines 200 and 210

define the savings account names. Each name should be limited to

28 characters for the program to function properly. In addition, the

last checking account must be the MISC account and the last

savings account must be the excess SAVINGS account. The

amount to be deposited from a paycheck to each checking account is

specified in line 300 with a zero value shown for the MISC

account, the last value. This account automatically gets any

remainder from the pay deposit after all the required checking

169

Utilities

account deposits are made. If the pay deposit is not large enough to

meet the required checking budget total, the difference is subtracted

from the MISC account. Line 400 contains the corresponding

savings pay deposit values, with a zero value for the excess

SAVINGS account, the last value. This account acts just as the

MISC account does for the checking account. Any savings pay

deposit excess/shortage is added/subtracted to this account.

To customize the program for your own use, simply set the

correct values of C and S in line 500. Then add or delete the

required DATA fields in lines 10 and 20, and the account names in

lines 100-210. Change any account names as required, but keep

each to a maximum of 28 characters. Set the PAY deposit values for

each account in lines 300 and 400 by taking into consideration the

related expenses and frequency of payment. Remember to keep the

MISC and SAVINGS accounts as the last accounts in the checking

and savings, with zero pay deposit values for each. That should be

all the changes required to convert the program for your own

situation. Individual accounts can be added or deleted at any time

by similar changes. Don't forget to set an account value to zero by

transferring any money to other accounts before deleting the

account. This will keep your checking and savings balances correct.

The program listing contains a number of REM lines to help

document the program. If you should decide to use the example

program, please don't bother entering these lines. They'll only make

the program LOADing and SAVEing much longer, since the

program will be about three times larger than needed. This is

exactly what we tried to avoid by saving the data within the

program to minimize tape usage. Once typed in, a few minutes

experimenting with the program should clearly indicate how it

works. Enter a few transactions, then type D and LIST lines 10 and

20 to see what was SAVEd within the program. If you have any

problems, check for extra spaces in lines 10 and 20 or check the

POKE address in line 1010.

10 DATA000000,000000,000000,000000,000000,

000000,000000

20 DATA000000,000000,000000,000000,000000

30 :
31 REM *******************************

32 REM * HOME BUDGET PROGRAM *

33 REM * *

34 REM * BY: ROBERT W. BAKER *

35 REM * 15 WINDSOR DRIVE *

170

36 REM * ATCO, NJ 08004 *
39 REM *******************************

50 :
51 REM ===============================

52 REM DATA STATEMENTS TO SAVE VALUES

53 REM MUST BE THE FIRST STATEMENTS

54 REM IN THE PROGRAM TO MAKE THEM

55 REM EASY TO FIND.

56 REM ACCOUNT DESCRIPTIONS FOLLOW -

57 REM ===============================

58 :

100 DATA "CHARGES"

102 DATA "GAS & AUTO EXPENSES"

105 DATA "MORTGAGE"

110 DATA "TELEPHONE", "UTILITIES"

115 DATA "AUTO LOAN","MISC"

200 DATA "AUTO INSURANCE"

205 DATA "HOMEOWNERS INSURANCE"

210 DATA "LIFE INSURANCE", "CHRISTMAS"

215 DATA "SAVINGS"

250 :

251 REM ==============================

252 REM FOLLOWING DATA STATEMENT

253 REM CONTAINS STANDARD DEPOSIT

254 REM VALUES FOR PAY DEPOSIT.

255 REM ==============================

256 :

300 DATA 25,40,150,10,50,45,0

400 DATA 30,7,25,15,0

450 :

451 REM ==============================

452 REM MAJOR VARIABLE DEFINITIONS:

453 REM C = # OF ITEMS IN CHECKING

454 REM S = # OF ITEMS IN SAVINGS

455 REM A = TOTAL NUMBER OF ■ACCTS1

456 REM CB = CHECKING BALANCE

457 REM SD = TOTAL SAVINGS DEPOSIT

458 REM M(.) = CURRENT ACCT VALUES

459 REM N$(.) = ACCT NAMES FROM DATA
470 REM ==============================

471 REM READ VALUES FROM DATA

472 REM STATEMENTS TO INITIALIZE.
479 REM ==============================

480 :

500 C=7:S=5:A=C+S:DIM M(A),N$(A)
505 CB=0:SD=0

510 FOR X=l TO C:READ M(X):CB=CB+M(X)
515 NEXT

171

520 FOR X=C+1 TO A:READ M(X)

525 SD=SD+M(X):NEXT

540 FOR X=l TO A:READ N$(X):NEXT

550 L$=" $"

590 :

591 REM =============================

592 REM DISPLAY ACCT #, NAME, & VALUE

593 REM ALONG WITH CHECKING/SAVINGS

594 REM TOTALS, THEN PROMPT FOR INPUT

595 REM =============================

596 :

600 PRINT"[CLR]";:C2=0:S2=0

605 FOR X=l TO C:V=M(X):GOSUB 900:NEXT

606 PRINT TAB(30)"["DDDDDDDDD"]"

610 PRINT11 [RV] TOTAL CHECKING " ;

611 PRINT"BALANCE[RVOFF] $";

615 V=CB:GOSUB 910:PRINT

620 FOR X=C+1 TO A:V=M(X):GOSUB 900

625 NEXT: PRINT TAB (30) " ["DDDDDDDDD11] "

630 PRINT" [RV]TOTAL SAVINGS ";

631 PRINT"ON DEPOSIT[RVOFF]... $";

635 V=SD: GOSUB 910

636 FOR X=l TO 39

637 PRINT" ["$",LC,DN,"Efl,UP] ";:NEXT

640 PRINT:PRINT"[DN]~"

641 :

642 REM ==============================

643 REM GET USER INPUT & CHECK FOR

644 REM VALID INPUT -

645 REM ==============================

646 :

650 PRINT"["-@@"] ACCT#f [RV]P[RVOFF]";

651 INPUT"AYf ORf [RV]D[RVOFF]ONE";A$

660 X=VAL(A$):IF X>0 AND X<=A THEN 800

664 :

665 REM ==============================

666 REM ****** CREDIT PAY ********

667 REM ==============================

668 :

670 IFLEFT$(A$,1)<>"P"OR(C1O0)THEN1000

671 :

672 REM =============================

673 REM GET CHECKING/SAVINGS DEPOSITS

674 REM TO CREDIT STANDARD PAY.

675 REM CAN ONLY USE ONCE PER RUN!

676 REM =============================

677 :

680 INPUT" CHECKING DEPOSIT";C1

172

681 INPUT" SAVINGS DEPOSIT";SI

685 C1=INT(100*(C1+.00D)

686 S1=INT(100*(S1+.00D)

690 FOR X=l TO A:READ V:V=V*100

695 IF X=C THEN V=C1-C2

700 IF X=A THEN V=Sl-S2

710 GOSUB 950:NEXT:GOTO 600

750 :

751 REM ==============================

752 REM ***** CREDIT/DEBIT ACCT *****

753 REM ==============================

754 :

800 PRINT"[DN]AMT TO CREDIT(+)";

805 INPUT" / DEBIT(-)";V

850 V=INT(100*(V+.001)):GOSUB 950

855 GOTO600

890 :

891 REM =============================

892 REM SUBROUTINE TO GENERATE SINGLE

893 REM LINE OF DISPLAY WITH -

894 REM ACCT #, NAME, AND VALUE IN

895 REM STANDARD FORMAT.

896 REM =============================

897 :

900 PRINT RIGHT$(STR$(X+100)f2);" ";

901 PRINTN$(X);RIGHT$(L$f29-LEN(N$(X)))

905 T$=STR$(INT(ABS(V)/100)*SGN(V))

910 PRINT RIGHT$(" "+T$,4);

915 IFV<0ANDV>-100THENPRINT"[2 LC]-0";

920 PRINT".";RIGHT$(STR$(ABS(V)+100)f2)

925 RETURN

940 :

941 REM ============================== ,

942 REM SUBROUTINE TO CREDIT/DEBIT

943 REM ACCT & UPDATE SAVINGS/CHECKING

944 REM TOTALS.

945 REM ==============================

946 :

950 M(X)=M(X)+V

955 IF X>C THEN SD=SD+V:S2=S2+V:RETURN

960 CB=CB+V:C2=C2+V:RETURN

990 :

991 REM ==============================

992 REM ****** CHECK IF DONE *****

993 REM ==============================

994 :

1000 IF LEFT$(A$fl) <> "D" THEN 600

1001 :

173

1002 REM =============================

1003 REM AT END OF PROGRAM SAVE DATA

1004 REM BACK INTO THE PROGRAM, THEN

1005 REM PRINT REMINDER TO SAVE PGM

1006 REM =============================

1007 :

1010 N=1030:FOR X=l TO A

1015 L$=RIGHT$(" n+STR$(M(X)),6)

1030 FOR Y=l TO 6

1035 POKE N,ASC(MID$(L$fY,l)):N=N+1

1040 NEXT:N=N+1:IF X=C THEN N=N+5

2000 NEXT

2005 PRINT"[CLR]REWIND TAPE AND SAVE n

2006 PRINT"THE PROGRAM"

2010 PRINT"[DN]TO RETAIN THE NEW DATA!"

2011 PRINT"[2 DN]"

2015 END

2020 REM

2030 REM CURSOR POSITIONING AND GRAPHICS

2040 REM CHARACTERS ARE ENCLOSED WITHIN

2050 REM BRACKETS. THE GRAPHIC CHARS.

2060 REM ARE SHOWN AS UNSHIFTED CHARS.

2070 REM BETWEEN QUOTES. THE CURSOR

2080 REM CONTROL CHARACTERS ARE

2090 REM INDICATED AS FOLLOWS:

2100 REM SP=SPACE; LC=LEFT CURSOR

2110 REM UP=UP CURSOR; DN=DOWN CURSOR

2120 REM CLR=CLEAR SCREEN; RV=REVERSE

2130 REM RVOFF=REVERSE OFF

174

Block Access Method

Map ForA Commodore

2040 Disk Drive
Tom Conrad

A tutorial on some of the complex functions of the Commodore Disk

Drives.

Overview

The Block Access Method (BAM) map program will allow you to

see where your files are allocated. You can save and delete files and

observe the allocation technique.

Description

The purpose of the BAM is to protect allocated files so they are not

written over and therefore destroyed. The BAM map resides on the

directory track 18. The BAM is in the first half of sector 0.

The layout looks like this:

BAM Dump

TRACK 18 SECTOR 0

Track

NUMBER

00:112011 0100 115 FF FF1FI 1

08: 15FFFF1F15FFFF1F 2 3

10: 15FFFF1F15FFFF1F 4 5

18: 15FFFF1F15FFFF1F 6 7

20: 15FFFF1F15FFFF1F 8 9

28: 15FFFF1F15FFFF1F 10 11

30: 15FFFF1F15FFFF1F 12 13

38: 15FFFF1F15FFFF1P 14 15

40: 15FFFF1F15FFFF1F 16 17

48: 12FCFF0F14FFFF0F 18 19

50: 14FFFF0F14FFFF0F 20 21

58: 14FFFF0F14FFFF0F 22 23

60: 14FFFF0F 24

12FFFF03 25

175

68: 12FFFF0312FFFF03

70: 12FFFF0312FFFF03

78: 12FFFF03

26 27

28 29

30

11FFFF01 31

80: 11FFFF0111FFFF01 32 33

82: 11FFFF0111FFFF01 34 35

a - Address of the next sector which is where the directory begins,

b -The start of the BAM map for track 1.

Detailed Explanation

OO:12O1O1OO115|FF|FF|1F|

a - Total free sectors for track 1. In this case it is hex 15 or decimal 21. Since track

1 has a maximum of 21 sectors, track 1 is totally empty.

b - The bit configurations for sectors 0 through 7. Bit on means empty sector and

bit off means allocated sector.

hex FF = bits "1111 111 1"

0th sector

lth sector

2th sector

3th sector

4th sector

5th sector

6th sector

7th sector

Therefore all sectors are empty.

c - bit configurations for sectors 8 thru 15

hexFF=bits " 1 1 1 1 1 T

II
I 8th sector

) 9th sector
10th sector

11th sector

12th sector

13th sector

14th sector

15th sector

176

d - bit configurations for sectors 16 through 20.

hexlF=bits"0 0 0 l 1111"

16th sector

17th sector

18th sector

19th sector

20th sector

In any empty disk, the "d" byte changes from IF, OF, 03, 01 to compensate for

varying number of sectors per track.

hex IF is the pattern where there are 21 sectors as in tracks 1 through 17.

hex OF is the pattern where there are 20 sectors as in tracks 18 through 24.

hex IF is the pattern where there are 18 sectors as in tracks 25 through 30.

hex IF is the pattern where there are 17 sectors in tracks 31 through 35.

Observations Using The BAM Map Program

The BAM turns off the bits when it allocates a sector. The BAM

Map Program looks at these bits and if the bit is on (meaning it is

free and has not been allocated) it will print either a "$ " or a white

square. By looking at the map you can determine how full or empty

the disk is.

Varying numbers of sectors.

The reason for the varying number of sectors per track is to pack

more data on the disk. The worse case (17 sectors per track)

propagated throughout the disk would decrease the number of

sectors per track by 95 sectors or 24K.

Sectors not contiguous

The sectors are in 255 byte blocks. A program file, which is stored

in 255 bytes, is not written on the disk contiguously, but written

approximately one-halftrack apart. Using the BAM program, you

can see when you save a program on an empty disk, that DOS will

save the first 255 bytes on track 17 sector 0, the second 255 bytes on

sector 10, the third 255 bytes on sector 3, and so on. The purpose of

these gaps is to speed up the processing by not waiting for a full

rotation of the disk. If the program were written contiguously after

each write, DOS would have to wait an entire rotation of the disk

to write the next sequential sector. Thus, the BAM Map will show

where alternating sectors are allocated.

Allocation of sectors

DOS allocates disk space very efficiently. Sectors are allocated

around the directory (track 18). This reduces the read/write head

177

Utilities

movement because it reads the directory first, then reads the file. By

having the file close to the directory, head movement is reduced.

Where sectors are allocated

When you delete the first program on a full disk, the BAM Map will

show free sectors near the directory. When you save a new program,

it will start by allocating those free sectors nearest the directory and

will start filling in where you deleted the old file. If the new program

is larger than the old program, it will try to allocate sectors further

and further from the directory. By using this allocation technique,

the need for a disk compress is eliminated.

PROGRAM EXPLANATION

100'170 Initialization

180-190 Which drive?

200-430 Prints the BAM Map outline.

100 REM* BLOCK ACCESS METHOD DUMP *

110 REM* WRITTEN BY TOM CONRAD *

120 REM*

130 REM*

140 REM* INITIALIZATION *

150 DIM A(4)

160 NL$=CHR$(0)

170 T=0: REM TOTAL FREE BLOCKS

175 REM* WHICH DRIVE *

180 PRINTnfitWt*DRIVE?n
190 GET D$: IF D$=nn GOTO 190

195 REM* PRINTS THE BAM MAP OUTLINE *

200 PRINTS rTRACKSr 111111111122222

-i22222333333n

210 PRINT11 123456789012345678901234567

i89012345M

220 PRINT"! SSS$$SSSSSSSSSSSSS$SSS$$$

iSSSSSSSS"

230 PRINTnxSf0JL

240 PRINT"
a n

250 PRINTnxCr2J.

i"
260 PRINTnj:Tr3_L

Q. It

I jfc.

270 PRINT"rO?41

178

280 PRINT"rRf51

1"
290 PRINT" 61

Q. II

300 PRINT11 71

310 PRINT11 81

320 PRINT11 91
a tf

330 PRINTM101
a ii

340 PRINTM111
a II

350 PRINTn121

1"
360 PRINTn131

a i«

370 PRINTn141

i"
380 PRINT"151

a n

390 PRINTM161

400 PRINTn171

Q####tl

410 PRINTn181

iQ#####w

420 PRINTn191

-.fORi=EMPTYfl

430

440 S$=nn: T$=nfl

450 W§=n^11: FOR 1=1 TO 25: S$=S$+W?:NEXT

460 V$=fI>": FOR 1=1 TO 40: T$=T$+V$:NEXT

465 REM* INIT DRIVE AND CK FOR ERROR *

470 OPEN 15,8,15,nI"+D$:GOSUB 760

475 REM* ALLOC BUFFER 0 TO CHANNEL 2 *

480 OPEN 2,8,2, n#ll+ll0": GOSUB 760

485 REM* BLOCK-READ INTO BUFFER *

490 PRINT#15,nUl:2,IfD$,18,0: GOSUB 760

495 REM* SET BUFFER POINTER *

500 PRINT#15,ffB-P:2,411

505 REM* MEMORY READ *

510 PRINT#15,MM-RMCHR$(0)CHR$(17)

520 REM* SEARCH FOR EMPTY SECTORS *

530 FOR 1=1 TO 35

179

540

545

550

560

565

570

580

590

600

605

610

620

630

635

640

645

650

660

670

680

FOR L=l TO 4

:REM* GETS A BYTE FROM BUFFER

:GET#2fA$

:IF A$="" THEN A$=NL$

:REM*CONVERSION FROM CHAR TO ASCI

:A(L)= ASC(A$)

:IF L=l AND IO18 THEN T=T+A(1)

NEXT L

FOR J=2 TO 4

REM* PRINTS ALTERNATING SQUARES

PRINT "to":IF INT(j/2)=j/2 THEN -
-iPRINT "Jm "

IF A(J)=ASC(CHR$(0)) THEN GOTO -

i680:REM* SECT FULL *

FOR K=7 TO 0 STEP -1

:REM* PRINTS ALTERNATING SQUARES

-i*

:PRINT "Jii/'rIF INT(K/2)=K/2 THEN

-iPRINT "Jar "

:REM* DECODES DECIMAL TO BIT *

:IF (A(J)-2~K)<0 GOTO 670

:A(J)=A(J)-2"K:GOSUB 790

NEXT K

NEXT J

690 NEXT I

700 PRINTS ":REM* CLEAR SQUARE *

705 REM* PRINTS TOTAL FREE BLOCKS *

710 PRINT LEFT$(S$,22)LEFT$(T$,23)"FREE -

-,BLKS="T"TTTTff
715 REM* MAP ON SCREEN UNTIL KEY IS HIT*

720 GET Z$:IF Z$="" GOTO 720

730 CLOSE 2:CLOSE 15

735 REM* START PROGRAM AGAIN *

740 GOTO 170

750 REM* CHECK FOR DISK ERROR *

760 INPUT#15fENfEM,ETfES: IF EN$="00" -

-iTHEN RETURN

770 PRINT "rDISK ERROR:r " EM$ " " EN$f

-.ET "f" ES

780 END

790 REM* PRINT ALTERNATING PATTERN *

800 IF INT(l/2)= 1/2 AND INT(K/2)= K/2 -i

iTHEN C$="&"

810 IF INT(l/2)Ol/2 AND INT(K/2)= K/2 -i

-iTHEN C$="x "
820 IF INT(l/2)= 1/2 AND INT (K/2) OK/2 -.

-/THEN C$="l. "

180

830 IF INT(I/2)OI/2 AND INT(K/2)OK/2 -

-iTHEN C$="r&"

840 PRINT "h11 LEFT$(S$f3+((J-2) *8)+K) -i

-iLEFT$(T$f2 + I) C$

850 RETURN

TRflCKS 1111111111222222
1234567896123456789012345

S0
El
C2

51
R5

8
9

1?
12

15
16

il
19
20

I OR&=EMPTV
J FREE BLKS= 8

References:

Parsons, James C, "Display Track and Sector", Commodore Newsletter Vol. 1

Number 8, January 1980.

Commodore Business Machines, Commodore CBM Dual Floppy Disk Model 2040

User Manual, July 1979.

440*460 Sets up S$ with 25 cursor downs. Sets up T$ with 40 cursor rights.

470 Initializes the requested drive & checks for a disk error.

480 Allocates buffer 0 to channel 2 for block commands that follow.

181

490 User command that does a block-read. It reads from the requested disk,

track 18, sector 0 into the disk buffer and checks for a disk error.

500 Set the channel 2 pointer to the 5th byte in the buffer where the BAM

Map starts.

510 Memory-Read Command sets up the byte pointed to by the address 1700.

530-690 Read the BAM and look for empty sectors.

550 The GET# will receive one byte from the buffer via channel 15

560 The byte is in character form and, if it is null, it needs to be changed to

CHR$(0) otherwise statement 570 will end the conversion.

570 Conversion to numeric.

580 This calculates the total free sectors available. A(l) is the total free sectors

for that particular track. The total is calculated by summing all the A(l)'s

except Track 18 which is reserved only for the directory and cannot be

allocated for any files.

610 Prints in the upper left corner a alternating:^*and white squares to show

when the program is running.

620 If sector is full (all bits are off) go to next byte.

630-670 Decodes the decimal number into bit pattern and check if bit is on.

640 Same as 610

650 If the number minus the powers of 2 is greater than or equal to zero then

the bit is on and go to 790 to print^ on the screen.

700 Program is finished running now clear the square in the upper left corner.

710 Print the total free blocks.

720 Keep map on screen until any key is typed.

730 Close the files.

740 Start program again.

750-780 Subroutine to check for disk error.

790-850 Prints'^'or white square for the empty sector.
840 The first LEFT$ is calculating how many cursor downs (sector no.) are

needed and the second one is calculating how many cursor LEFT$ (track

no.) are needed.

182

Disk Lister

A Disk Cataloging Program

For The Commodore PET

And 2040 Disk

Baker Enterprises

Having finally copied all my programs from cassette onto floppy

disks, I suddenly found it somewhat difficult to find out where

anything was. With well over 300 programs scattered on to 20 or 30

disks, it just wasn't easy to quickly locate a particular program. In

addition, I was starting to use Word Pro 3 quite heavily to write

articles and various documents, saving them all on disk as well.

Because of this, I decided to write a program to catalog all the disks

and condense the information onto a single diskette.

The program shown here is the first step toward my final goal.

It can catalog well over 100 diskettes with the current Commodore

2040 disk drive. It only has a few functions implemented, but it has

proven to be very handy. I have a "wish" list of other features I

intend to add in the near future. All I need now is the time to do it!

The major flow of the program should be straightforward. IVe

sprinkled the program with REMarks to help document several

operations and a few of the variables used. If you should copy the

program, I would strongly recommend leaving out all REMarks and

unnecessary spaces to help speed up program execution.

In its present form, the program reads the directory of any disk

placed in drive #1. It then writes a condensed directory as a data file

on the master directory disk drive #0. All of this is done

automatically without any user input other than selecting the

program function and verifying that the correct disk was inserted.

Once the data files are created, you can then display or print the

directory of any disk that has been cataloged in the master

directory. The directory will show the disk name, ID, and format. It

will also show an alphabetized list of the files on the disk along with

the file type and length (in blocks) of each file. While a directory is

being listed, hitting "S" will stop the listing until another key is hit.

Hitting "Q" at any time during the listing will terminate the list

function. A sample directory printout is shown in Figure 1 to give

you an idea of what is displayed.

183

The file names of the sequential data files created for the

master directory consist of the two character disk ID followed by a

period and the letters DIR. In its compacted form, the major disk

information takes 25 bytes and each entry in the directory takes 20

bytes. Since the disk ID is used to create the data file name, be

careful not to duplicate disk IDs. This precaution is also

recommended when upgrading to DOS 2.0 since DOS uses the ID

to recognize that a disk has been changed in the drive. Another

hint on using this program — reserve one disk as the master

directory disk with nothing else stored on that disk except the

directory data files. This will allow cataloging the maximum number

of disks into your master directory.

If a catalogued disk is later updated or modified, simply

re-catalog the disk to update the master directory. The old data file

will be deleted and a new one created, all automatically. The

program also provides a delete function, so you can delete a

cataloged disk that no longer exists. This function simply deletes the

appropriate data file for the specified disk ID. You could actually

accomplish the same function by manually scratching the correct

data file from the master directory disk.

Currently, when listing or deleting directories, you must enter

the two character disk ID. This can be inconvenient at times, but it

does make things easier. I intend to allow entering the ID or the disk

name in the next version I'm working on. However, this will require

maintaining some kind of cross-reference to correlate the disk IDs

and disk names. When this feature is added, the delete function will

always have to be used to remove a disk from the master directory.

The added cross-reference will also be the basis for several other

features I intend to add:

List all disk IDs currently used in alphabetical order;

optionally display each disk's corresponding 16 character

name. This will help avoid using duplicate disk IDs when

creating new disks.

List all disk names in alphabetical order and show each disk's

corresponding 2-character disk ID.

Ability to list all disks on which a particular file can be found.

This function should use character matching in case you can't

remember the exact file name or want all files starting with a

particular word, etc.

One other thing I would like to add is computation of the number

of free blocks from the BAM. If this information were included in

184

the data files for each disk, you could then list all disks with the

number of free blocks displayed. This would allow quickly finding

space on a disk to save a new program of known length.

Right now I'm not sure when I'll be able to get around to

finishing this project. At least I've got something useful for now and

it does help tremendously. If you have any ideas or suggestions as to

other features you think might be useful, or if you're interested in

how the final version turns out, let me know.

10 REM ******* DISK LISTER ************

20 REM

30 REM BY: ROBERT W. BAKER

40 REM

50 REM 15 WINDSOR DRIVE, ATCOf NJ 08004

60 REM

70 REM ********************************

80 :

90 CLR:DIM D$(150)fD(150):Q$=CHR$(34):

-.CR$=CHR$(13)

100 REM DISPLAY MENU & SELECT FUNCTION

110 PRINT"fin;SPC(9) ;"x.D ISK LIST-.

iE R":GOSUB 1340

120 PRINT SPC(5);"0 - DONE*

130 PRINT SPC(5);"1 - UPDATE MASTER -i

-iDIRECTORY*

140 PRINT SPC(5);"2 - DISPLAY SELECTED -.

-.DIRECTORY*

150 PRINT SPC(5);lf3 - DELETE DISK ENTRY -i

-.FROM MASTER

160 GOSUB 1340

170 PRINT"RENTER DESIRED FUNCTION: ";

180 GOSUB 1320

190 IF C$="0" THEN PRINT"fin: END
200 C=VAL(C$):IF C<1 OR C>3 THEN 180

210 ON C GOTO 250,750,1050

220 REM *************************

230 REM UPDATE MASTER DIRECTORY

240 REM *************************

250 PRINT"filNSERT UPDATE DISK IN DRIVE -.

-i#l

260 GOSUB 1310:GOSUB 1340:PRINT"OK

270 OPEN 15,8,15

280 PRINT#15,"II"
290 OPEN 5f8r5f"$lfSfRn:GOSUB 1260

300 Y=142:GOSUB 1200:REM *** SKIP BAM

310 Y=16:GOSUB 1180 :DN$=S$:REM *** DISK -.

-.NAME

185

320 Y=2:G0SUB 1200:REM *** SKIP SPACES

330 Y=2:G0SUB 1180 :DI$=S$:REM *** DISK.-.

-iID

340 PRINT"RjlDISK NAME:r W;DN$:

-i PRINTHjlDISK ID:r nDI$:

tGOSUB 1340

350 PRINT"CORRECT DISK INSERTED"; :
i GOSUB 1350:IF C$="N" THEN 710

360 GOSUB 1340:PRINT"READING DIRECTORY -.

-iENTRIES...

370 GOSUB 1250

380 Y=2:GOSUB 1180 :DF$=S$:REM *** DISK -.

-.FORMAT

390 Y=89:GOSUB 1200:NF=0:Z=0:REM *** -i

-iSKIP TO FIRST DIRECTORY ENTRY

400 GOSUB 1220:FT=V:F$=C$:REM *** FILE -.

-.TYPE (0=DELETED)

410 Y=2:GOSUB 1200 :REM *** SKIP -.

^STARTING TRACK & SECTOR

420 Y=16:GOSUB 1180:REM *** FILE NAME

430 Y=9:GOSUB 1200 :REM *** SKIP UNUSED -i

iINFO

440 GOSUB 1220:X=V:GOSUB 1220:X=X+(V*256

-i) :REM *** #BLOCKS IN FILE

450 IF FT>0 THEN NF=NF+1:D$(NF)=F$+S$:

-iD(NF)=X:REM *** ADD FILE IF NOT -.

-.DELETED

460 Z=Z+l:Z=Z-(INT(Z/8)*8) :REM *** -i

iZ=ENTRY WITHIN THIS DISK BLOCK

470 IF Z>0 THEN Y=2:GOSUB 1200 :REM ** -.

-iSKIP 2 BYTES IF NOT LAST ENTRY IN

iBLOCK

480 IF SS=0 THEN 400:REM *** CONTINUE -i

-iTILL END OF DIRECTORY

490 CLOSE 5:IF NF<2 THEN 600

500 GOSUB 1340

510 PRINT"SORTING DIRECTORY ENTRIES...

520 REM SORT DIRECTORY INTO

530 REM ALPHABETICAL ORDER

540 FOR X=l TO NF:FOR Y=l TO NF-1

550 IF D$(Y)<=D$(Y+1) THEN 570

560 C$=D$(Y):C=D(Y):D$(Y)=D$(Y+l):

-.D(Y)=D(Y+1):D$(Y+1)=C$:D(Y+1)=C
570 NEXT Y,X

580 REM DELETE OLD DIRECTORY

590 REM DATA FILE & SAVE NEW COPY

600 GOSUB 1340:PRINT"UPDATING MASTER i
-iDIRECTORY...

186

610 S$="0:ll+DI$+ll.DIRfI

620 PRINT#15,"S"+S$

630 OPEN 5f8r5fS$+IIfSfWII:GOSUB 1260

640 PRINT#5fQ$;DN$;Q$;CR$;:GOSUB 1260

650 PRINT#5fDI$;CR$;:GOSUB 1260

660 PRINT#5rDF$;CR$;:GOSUB 1260

670 IF NF=0 THEN 710

680 FOR X=l TO NF:FOR Y=l TO 17:

-iPRINT#5,MID$(D$(X) ,Y,1) ;:GOSUB -«

il260:NEXT Y

690 H=INT(D(X)/256):L=D(X)-(256*H)

700 PRINT#5,CHR$(L);CHR$(H);CR$;:

-iGOSUB 1260:NEXT X

710 CLOSE 5:CLOSE 15:GOTO 110
720 REM *******************************

730 REM DISPLAY SELECTED DISK DIRECTORY

740 REM *******************************

750 PRINT"fiTO DISPLAY DISK DIRECTORY11:

-iGOSUB 1140:OPEN 15, 8f 15

760 OPEN 5,8,5,S$+n,S,Rll:GOSUB 1260

770 GOSUB 1340: PRINT"WANT PRINTED -.

-iCOPY11;: GOSUB 1350:GOSUB 1340

780 PD=3:IF C$=nYn THEN PD=4

790 OPEN 4,PD:REM *** PD = PRINT DEVICE -

-iSELECTOR (3=DISPLAYf 4=PRINTER)

800 INPUT#5,DN$:GOSUB 1260
810 INPUT#5fDI$:GOSUB 1260

820 INPUT#5fDF$:GOSUB 1260

830 IF PD=3 THEN PRINT11!!";

840 PRINT#4f"iDISK NAME:f ";DN$

850 PRINT#4

860 PRINT#4f"xDISK ID:f ";DI$;SPC(10);"

-.JlDISK FORMAT:r ";DF$
870 PRINT#4 : REM *** DISK FORMAT WILL -.

iBE BLANK FOR DOS 1.0

880 PRINT#4,"CCCCCCCCCCCCCCCCCCCCCCCCCCC

-iCCCCCCCCCCCC": PRINT#4

890 Y=17:GOSUB 1180:REM *** GET FILE i

-iNAME & TYPE

900 GOSUB 1220:Z=V:GOSUB 1220:Z=Z+(256*V

-.):REM *** GET #BLOCKS

910 GOSUB 1250:REM *** SKIP LAST CR

920 PRINT#4fRIGHT$(n "+STR$(Z)f

-4);" ";

930 PRINT#4fMID$(S$f2f16);SPC(3);

940 V=ASC(LEFT$(S$fl)):REM *** DECODE i

iFILE TYPE

950 IF V=129 THEN PRINT#4r"SEQn;

187

960 IF V=130 THEN PRINT#4,MPGMn;

970 IF V=131 THEN PRINT#4,"USR";

980 PRINT#4:GET C$:IF C$="S" THEN GOSUB -i

il320:REM *** ALLOW START/STOP OF i

-iLIST

990 IF C$<>"Q" AND SS=0 THEN 890

1000 CLOSE 4:CLOSE 5:CLOSE 15: IF PD=3 -i

-.THEN GOTO 1300

1010 GOTO 110
1020 REM *******************************

1030 REM DELETE DISK DIRECTORY DATA FILE
1040 REM *******************************

1050 PRINT"fiTO DELETE DISK FROM MASTER -.

-iDIRECTORY": GOSUB 1140:OPEN 15,8,15

1060 PRINT#15,nS"+S$:CLOSE 15:GOTO 110

1070 :

1080 REM ***********************

1090 REM ***** SUBROUTINES *****

1100 REM ***********************

1110 :

1120 REM *** GET DISK ID

1130 REM *** & MAKE DATA FILE NAME

1140 INPUTHENTER DISK ID %HK";DI$
1150 IF DI$=n™ THEN 110

1160 S$=n0:n+LEFT$(DI$f2)+ll.DIR":RETURN

1170 REM *** READ STRING FROM DISKf

-. Y-BYTES LONG

1180 S$=fl":FOR X=l TO Y:GOSUB 1250:

iS$=S$+C$:NEXT X:RETURN

1190 REM *** SKIP Y-BYTES OF DISK FILE

1200 FOR X=l TO Y:GOSUB 1250:NEXT X:

iRETURN

1210 REM *** READ BYTE & RETURN ASC -.

-iVALUE

1220 V=0:GOSUB 1250: IF C$<>"" THEN -i

-iV=ASC(C$)

1230 RETURN

1240 REM *** GET BYTE & CHK FOR DISK -i

-iERROR

1250 GET#5fC$:SS=ST

1260 INPUT#15,EN,EM$,ET,ES:IF EN=0 THEN -i

-.RETURN

1270 PRINTnfij:DISK ERROR!*

1280 PRINT EN;EM$;ET;ES:CLOSE 4:CLOSE 5:
-.CLOSE 15

1290 REM *** MISC ROUTINES ***

1300 GOSUB 1340:GOTO 110

1310 PRINT"^DEPRESS ANY KEY TO CONTINUE

188

1320 GET C$:IF C$=nn THEN 1320

1330 RETURN

1340 printH
:RETURN

1350 PRINT" (Y/N) ? ";

1360 GOSUB 1320: IF C$OnYfI AND C$O"Nn

-/THEN 1360

1370 PRINT C$: RETURN

.,/f/ N/

/////// lin ///// /
I

/// /1

n

189

Compactor

Robert W. Baker

This program is invaluable to programmers who cringe when they "run

out of memory."

This program is the result of several days of experimenting with

BASIC program structures and the 2040 disk. In short, the program

will read a BASIC program that was saved on disk and create a

new, compacted copy. The program will delete all REMarks,

unnecessary spaces, and leading colons. Much of this is similar to

other utility programs currently available. However, this program

goes one step further. It combines program lines whenever possible

to eliminate the link, line number, and line-end-flag overheads

normally associated with each line. It will make a program as small

as possible, and most likely faster running.

While creating this program, I came across a few

undocumented "quirks" of Commodore BASIC. Since many people

are currently experimenting with the capabilities of having programs

"write" programs on disk, this information may be of interest:

Zero Length Lines:

Normally, it is impossible to create a zero length line using the

screen editor on the PET. By zero length line, I mean a line with a

link, line number, and end-of-line flag, but no BASIC commands or

text. If you were to type just a line number using the screen editor,

you would actually delete a line instead of entering a zero length

line. However, when writing a BASIC program on disk as a data

file, there is nothing stopping you from entering a zero length line. ,

But if you want the program to run, you cannot have any zero

length lines in the program. BASIC cannot link the program lines

correctly whenever there is a zero length in the program.

Long Lines:

At the other extreme, you cannot create a BASIC line that is longer

than 255 bytes. Again, using the PET screen editor you could not

create such a line. You are normally limited to a maximum of 78

bytes due to the line wrapping characteristics and at least a one digit

line number. When writing a BASIC program on disk as a data file,

be careful not to create a line greater than 255 bytes. Otherwise the

program will usually not load from the disk. If it does load, the

program will be totally destroyed and unusable.

190

Printing Long Lines:

Here's a quick comment on the Commodore printers. If you list a

program that contains lines longer than 80 characters, the printed

listing may be incorrect. It appears that the printer occasionally

switches out of listing mode and into print mode when a line

exceeds 80 characters. At the start of the next line everything is ok

again.

Program Description

When running the COMPACTOR program, the BASIC program

to be compacted must be on the diskette inserted in drive #0. The

new compacted version will be written on the diskette in drive #1

with the same filename, but with a "/C" suffix. The program will

read the program to be compacted as a sequential disk data file, and

the file will be read twice.

The first pass checks for line numbers within the subject

program that are targets of: GOTO, GOSUB, or IF ... THEN

(line #) statements. When a target line is found, it is saved

in matrix TL if not already saved. A check is also made for multiple

target lines in ON . . GOTO and ON . . GOSUB statements. Each

target line will be displayed on the PET screen in the order found.

This helps to give some indication of the scanning progress, since it

can be rather slow.

During the second pass, each line is copied, deleted, or

compacted as appropriate. The line number will be displayed as

each line is processed to let you know how the program is

progressing. The rules followed by the COMPACTOR are as

follows:

Any leading colons and/or spaces on a line are deleted.

A line that has only REMarks is deleted if it is not a target line. The

remark will be replaced with a single colon if the line is a target line

and must be retained. This may produce a leading colon if the next

line is not a target line and is combined with this line. The line

cannot be reduced to a zero length line since BASIC cannot link a

program correctly with a zero length line, as mentioned earlier.

If any line contains an IF ... THEN or GOTO statement, another

line cannot be combined with this line. Any line combined after

these BASIC commands would never be executed, thus the program
would not function properly.

Any spaces within a line, not enclosed in quotes, are deleted.

Any REMarks at the end of a BASIC line are deleted to the end of
the line.

191

Anything within quotes is copied, untouched. If an ending quote is

missing from the line, one is added if another line could be

combined with this line. Therefore, if a line does not contain an

IF ... THEN or GOTO statement, an ending quote is added.

When a colon is found within a BASIC line and not within quotes,

the next non-space character is checked before copying the colon. If

a REMark follows the colon, the colon and the rest of the line is

deleted. Otherwise the colon is copied, and processing continues as

normal.

At the end of each BASIC line, a check is made to see if the next

line can be combined with this line. If there were no IF ... THEN

or GOTO commands, and the next line is not a target line, the

lines are combined. When combining lines, the line and line

number are discarded, a colon is written, and the next line is

processed as part of the previous line.

If the next line cannot be combined with the current line, the end

of line flag is copied along with a dummy link and the next line

number. A dummy link is used to avoid excesive processing and

working buffers necessary with calculating program links. Also, the

links are automatically corrected by PET BASIC with the RUN or

CLR command^. As a standard operating procedure, the newly

created program output by COMPACTOR should be loaded and

re-linked, then re-saved onto disk. The program can be re-linked by

issuing a CLR command after being loaded.

As mentioned previously, a BASIC program line cannot exceed 255

bytes in length. If it does, the program may not load from disk or it

may be totally unusable. To protect against this, the

COMPACTOR program stops combining lines if more than 170

bytes have been written in a single basic line. Since any normal line

cannot exceed 78 bytes in length, this should insure that no

program generated lines are longer than the maximum length.

As an example of what this program will do, I included a

listing of a compacted version of the COMPACTOR program itself.

Since this program has many REMarks, compacting saves over 3000

bytes for about a 50% saving in memory space. For most programs,

the savings will be much smaller, depending on programming style.

A side benefit, however, is the increase in the operating speed of

compacted programs. I should warn, though, that the compacting

process can be rather slow. Compacting of the COMPACTOR

program (a 6K program with all the REMarks) takes about 16

minutes. But all you have to do is start if off and then go get a cup

of coffee while the PET does the work! And you only have to run it

192

once for any given program!

10 REM ***************************

20 REM * COMPACTOR *

30 REM * *

40 REM * BY: ROBERT BAKER *

50 REM * *

60 REM * BAKER ENTERPRISES *

70 REM * 15 WINDSOR DR. *

80 REM * ATCOf N.J. 08004 *
90 REM ***************************

100 :

110 CLR : DIM TL(1000)

120 :

130 REM ****************

140 REM READY DISK FILES

150 REM ****************

160 :

170 PRINT"fi"SPC(15) "xCOMPACTORM

180 PRINT" rlNPUTr FILE IN rDRIVE #0t

190 PRINT"xOUTPUTf FILE IN rDRIVE #1^

200 INPUT"xINPUT FILE NAMEf";FL$

210 PRINT"fiSCANNING FILE

220 PRINT" FOR TARGET LINES +♦

230 OPEN 15,8,15 : GOSUB 2370

240 OPEN 5,8,5, "0 : II+FL$+",P,R"

250 :
260 REM ***************************

270 REM READ LOAD ADR, LINK & LINE#

280 REM ***************************

290 :

300 GOSUB 2370 : GOSUB 2310

310 GOSUB 2310 : IF V+V1=0 THEN 790

320 GOSUB 2310 : LN=V1+(256*V)

330 :

340 REM *****************************

350 REM SCAN BASIC LINES

360 REM FOR GOTO, GOSUB & THEN TOKENS

370 REM *****************************

380 :

390 GOSUB 2330

400 IF V=0 THEN 310

410 IF V=137 OR V=141 THEN 480

420 IF VO167 THEN 390

430 :

440 REM ****************

450 REM GET TARGET LINE#

460 REM ****************

470 :

480 LT=0

490 GOSUB 2330 : IF V=32 THEN 490

500 IF V<48 OR V>57 THEN 580

193

Utilities

510 LT=(10*LT)+VAL(C$)

520 GOSUB 2330 : GOTO 500

530 :

540 REM ************************

550 REM CHECK IF ALL READY FOUND

560 REM ************************

570 :

580 FOR X=0 TO N

590 IF TL(X)=LT THEN 710

600 NEXT X

610 TL(N)=LT : N=N+1

620 PRINT LT,

630 IF N<1000 THEN 710

640 PRINTMMTOO MANY TARGET LINES!

650 GOTO 2430

660 :

670 REM ***************************

680 REM CHECK FOR 'ON...GOTO/GOSUB1
690 REM ***************************

700 :

710 IF V=44 THEN 480

720 IF VO32 THEN 400

730 GOSUB 2330 : GOTO 710

740 :

750 REM *****************

760 REM SORT TARGET LINES

770 REM *****************

780 :

790 IF N<2 THEN 900

800 FOR X=0 TO N-l

810 FOR Y=0 TO N-2

820 IF TL(Y) < TL(X) THEN 840

830 V=TL(Y) : TL(Y)=TL(X) : TL(X)=V

840 NEXT Y,X

850 :
860 REM *********************

870 REM GET READY FOR COMPACT

880 REM *********************

890 :

900 PRINT "fiCOMPACTING LINES....W

910 CLOSE 5

920 OPEN 5f8f5,M0:lf+FL$+n,P,Rlf

930 GOSUB 2370

940 FO$=LEFT$(FL$f14)+n/Cn
950 PRINT#15f"S1:"+FO$
960 OPEN 6,8,6, lll:ll+FO$+"fP,W11

970 GOSUB 2370

980 :
990 REM **************

1000 REM COPY LOAD ADR

1010 REM **************

1020 :

194

1030 GOSUB 2310

1040 PRINT#6,CHR$(Vl);

1050 PRINT#6,CHR$(V); : R=0

1060 :

1070 REM ***********************

1080 REM COPY LINK & LINE NUMBER

1090 REM ***********************

1100 :

1110 GOSUB 2310 : Kl=Vl : K2=V

1120 F=0 : IF V+V1=0 THEN 2230

1130 GOSUB 2310 : Ll=Vl : L2=V

1140 LN=L1+(256*L2) : PRINT LNr

1150 GOSUB 2330

1160 IF V=32 OR V=58 THEN 1150

1170 IF V=0 THEN 1200

1180 IF V<> 143 THEN 1240

1190 GOSUB 2330 : IF V>0 THEN 1190

1200 F=l : FOR X=0 TO N

1210 IF TL(X)<LN THEN NEXT X

1220 IF TL(X)=LN THEN 1240

1230 GOTO 1110

1240 PRINT#6,CHR$(K1);CHR$(K2);

1250 PRINT#6fCHR$(Ll);CHR$(L2); : R=4

1260 IF F THEN PRINT#6,":"; : R=5

1270 F=0 : GOTO 1360

1280 :
1290 REM **************************

1300 REM **** SCAN BASIC LINE ***

1310 REM **** & COMPACT PROGRAM ***
1320 REM **************************

1330 :

1340 PRINT#6fC$; : R=R+1

1350 GOSUB 2330

1360 IF V=137 THEN F=l

1370 IF V=139 OR V=167 THEN F=l

1380 IF V=0 THEN 1820

1390 IF V=32 THEN 1350

1400 :
1410 REM ********************

1420 REM 'REM1 TOKEN -

1430 REM DISCARD REST OF LINE

1440 REM ********************

1450 :

1460 IF VO143 THEN 1550

1470 GOSUB 2330 : IF V>0 THEN 1470

1480 GOTO 1820

1490 :

1500 REM **************************

1510 REM QUOTE -

1520 REM COPY TILL NEXT OR LINE END
1530 REM **************************

1540 :

195

Utilities

1550 IF VO34 THEN 1690

1560 PRINT#6fC$; : R=R+1

1570 GOSUB 2330

1580 IF V=34 THEN 1340

1590 IF V>0 THEN 1560

1600 IF F THEN V=0 : GOTO 1050

1610 PRINT#6fCHR$(34); : R=R+1

1620 GOTO 1820

1630 :

1640 REM ************************

1650 REM IF COLON - CHK NEXT CHAR

1660 REM ELSE COPY CHAR

1670 REM ************************

1680 :

1690 IF VO58 THEN 1340

1700 GOSUB 2330

1710 IF V=32 OR V=58 THEN 1700

1720 IF V=143 THEN 1470

1730 IF V=0 THEN 1820

1740 PRINT#6,n:n; : R=R+1

1750 GOTO 1360

1760 :

1770 REM ****************************

1780 REM END OF LINE -

1790 REM CAN WE COMPACT THESE LINES ?

1800 REM ****************************

1810 :

1820 IF'F OR (R>170) THEN V=0:GOTO 1050

1830 GOSUB 2310

1840 IF V+V1=0 THEN 2230

1850 GOSUB 2310 : LN=V1+(256*V)

1860 L1=V1 : L2=V : PRINT LN,

1870 :
1880 REM ************************

1890 REM CHK IF LINE# IS A TARGET

1900 REM ************************

1910 :

1920 FOR X=0 TO N

1930 IF TL(X)<LN THEN NEXT X

1940 IF TL(X)=LN THEN 2110

1950 :
1960 REM ********************

1970 REM NOT USED -

1980 REM DISCARD LINK & LINE#
1990 REM ********************

2000 :
2010 GOSUB 2330 : IF V=143 THEN 1470
2020 IF V=32 OR V=58 THEN 2010

2030 IF V=0 THEN 1830

2040 PRINT#6f":"; : R=R+1 : GOTO 1360

2050 :
2060 REM ****************************

196

2070 REM LINE# NEEDED -

2080 REM WRITE LINE END, LINK & LINE*
2090 REM ****************************

2100 :

2110 PRINT#6fCHR$('0) ;CHR$(1) ;CHR$(1) ;
2120 PRINT#6rCHR$(Ll);CHR$(L2); : R=4

2130 GOSUB 2330

2140 IF V=32 OR V=58 THEN 2130

2150 IF V=0 OR V=143 THEN PRINT#6,":"j

2160 F=0 : GOTO 1360

2170 :

2180 REM ********************

2190 REM END OF COMPACT -

2200 REM WRITE END OF PROGRAM

2210 REM ********************

2220 :

2230 PRINT#6fCHR$(0);CHR$(0);CHR$(0);

2240 PRINT"fixDONE^f"
2250 GOTO 2430

2260 :

2270 REM *************************

2280 REM ***** SUBROUTINES *****

2290 REM *************************

2300 :

2310 GOSUB 2330 : Vl=V

2320 :

2330 GET#5,C$: GOSUB 2370

2340 IF C$="" THEN V=0 : RETURN

2350 V=ASC(CS) : RETURN

2360 :

2370 INPUT#15,ENrEM$,ET,ES

2380 IF EN=0 THEN RETURN

2390 :

2400 PRINT : PRINT"^hhhtDISK ERRORS

2410 PRINT EN;EM$;ET;ES

2420 :

2430 CLOSE 5 : CLOSE 6 : CLOSE 15

READY.

110 CLR:DIMTL(1000):PRINTnfinSPC(15)"rCOMPA

W1: PRINT" xJNPUTr FILE IN -.

#0^":PRINT"rOUTPUTf FILE IN -
1X.DRIVE #1^": INPUT11

XlNPUT FILE NAMEf ";FL$: PRINT"RSCANNING -.
iFILE11 .-PRINT" FOR TARGET LINES

230 OPEN15f8f15:GOSUB2370:OPEN5f8f5f"0:
-in+FL$+lf,P,R":GOSUB2370:GOSUB2310

310 GOSUB2310:IFV+V1=0THEN790
320 GOSUB2310:LN=V1+(256*V)
390 GOSUB2330

197

400 IFV=0THEN310

410 IFV=137ORV=141THEN480

420 IPVO167THEN390

480 LT=0

490 GOSUB2330:IFV=32THEN490

500 IFV<48ORV>57THEN580

510 LT=(10*LT)+VAL(C$):GOSUB2330:GOTO500

580 FORX=0TON:IFTL(X)=LTTHEN710

600 NEXTX:TL(N)=LT:N=N+1:PRINTLT,:

iIFN<1000THEN710

640 PRINTMMTOO MANY TARGET LINES!11:

iGOTO2430

710 IFV=44THEN480

720 IFVO32THEN400

730 GOSUB2330:GOTO710

790 IFN<2THEN900

800 FORX=0TON-1:FORY=0TON-2:IFTL(Y)<TL(X)T

-.HEN840

830 V=TL(Y):TL(Y)=TL(X):TL(X)=V

840 NEXTY,X

900 PRINT"fiCOMPACTING LINES....+in:CLOSE5:
-iOPEN5,8,5, n0:"+FL$+lt,P,Rfl:GOSUB2370:

-,FO$=LEFT$(FL$,14)+n/Cn:PRINT#15,nSl:

-,"+FO$:OPEN6,8

, 6, "1: "+FO$+", PrWlf :GOSUB2370 :GOSUB2310 :

-,PRINT#6,CHR$(V1);

1050 PRINT#6fCHR$(V);:R=0
1110 GOSUB2310:K1=V1:K2=V:F=0:IFV+V1=0THEN

-.2230

1130 GOSUB2310:L1=V1:L2=V:LN=L1+(256*L2):

-.PRINTLN,

1150 GOSUB2330:IFV=32ORV=58THEN1150

1170 IFV=0THEN1200

1180 IFVO143THEN1240

1190 GOSUB2330:IFV>0THEN1190

1200 F=1:FORX=0TON:IFTL(X)<LNTHENNEXTX

1220 IFTL(X)=LNTHEN1240

1230 GOTO1110

1240 PRINT#6rCHR$(Kl);CHR$(K2);:PRINT#6f

-.CHR$ (LI) ; CHR$ (L2) ; : R=4: IFFTHENPRINT#

-i6rn:n;:R=5

1270 F=0:GOTO1360

1340 PRINT#6fC$;:R=R+l

1350 GOSUB2330

1360 IFV=137THENF=1

1370 IFV=139ORV=167THENF=1

1380 IFV=0THEN1820

1390 IFV=32THEN1350

1460 IFVO143THEN1550

1470 GOSUB2330:IFV>0THEN1470

1480 GOTO1820

1550 IFVO34THEN1690

198

1560 PRINT#6,C$;:R=R+1:GOSUB2330:IFV=34THE
-iN1340

1590 IFV>0THEN1560

1600 IFFTHENV=0:GOTO1050

1610 PRINT#6fCHR$(34);:R=R+l:GOTO1820
1690 IFVO58THEN1340

1700 GOSUB2330:IFV=32ORV=58THEN1700
1720 IFV=143THEN1470

1730 IFV=0THEN1820

1740 PRINT#6 ,":";:R=R+1:GOTO1360

1820 IFFOR(R>170)THENV=0:GOTO1050

1830 GOSUB2310:IFV+V1=0THEN2230

1850 GOSUB2310:LN=V1+(256*V):L1=V1:L2=V:

-.PRINTLN, :FORX=0TON: IFTL (X)<LNTHENNEX

-iTX

1940 IFTL(X)=LNTHEN2110

2010 GOSUB2330:IFV=143THEN1470

2020 IFV=32ORV=58THEN2010

2030 IFV=0THEN1830

2040 PRINT#6,n:n;:R=R+1:GOTO1360

2110 PRINT#6,CHR$(0);CHR$(1);CHR$(1);:

-nPRINT#6 r CHR$ (LI) ; CHR$ (L2) ; : R=4

2130 GOSUB2330:IFV=32ORV=58THEN2130

2150 IFV=0ORV=143THENPRINT#6fn:n;

2160 F=0:GOTO1360

2230 PRINT#6fCHR$(0);CHR$(0);CHR$(0);:

-,PRINT"RxDONE^ n: G0T02 4 3 0
2310 GOSUB2330:V1=V

2330 GET#5fC$:GOSUB2370:IFC$=nifTHENV=0:
-iRETURN

2350 V=ASC(C$) .-RETURN

2370 INPUT#15,EN,EM$fETfES:IFEN=0THENRETUR
-.N

2400 PRINT:PRINTn^^xDISK ERRORt":
-iPRINTEN; EM$; ET; ES

2430 CLOSE5:CLOSE6:CLOSE15
READY.

199

Feed Your PET

Some APPLESOFT

G. A. Campbell

At first glance, this would seem to be an impossible task, but after reading

this article, it makes sense. You can load and modify APPLE programs to

run on your PET. Not impossible — that's incredible!

We all know that there is no such thing as compatibility in the

world of personal computers. For example, the APPLE and the PET

store programs on tape quite differently. However, by using the

program in Listing 1, you can load programs from an APPLE

directly into a PET. To be more specific, you can load APPLESOFT

programs (cassette or ROM versions) into an upgrade-ROM PET.

Conversion to original-ROM PET's is trivial.

Structure of an APPLESOFT Tape

One of the things which make the process fairly easy is the simple

way that APPLEs SAVE programs. A bit is stored as one full cycle,

on tape. A short cycle is a zero-bit, one about twice as long is a one-

bit, and leader is slightly longer again. A byte is simply made up of

eight bits, unlike the PET, which has a start-bit and a parity-bit.

The high-order bit comes first.

A program is stored in two blocks. The first is a length block.

It contains four bytes:

low-order half of program length

high-order half of program length

fixed hexadecimal "55"

checksum of the above.

The checksum is formed by beginning with hexadecimal "FF," then

doing an exclusive-or on each byte of the block.

The second block contains the exact image of the program as it

resides in memory. It is suffixed by two bytes, the second of which is

a checksum formed the same way as for the length block. These two

bytes are not counted in the program length.

Each block is preceded on tape by about ten seconds of leader

(long bits) and one zero-bit, and followed by some tape which is

effectively blank.

The other thing which makes the task easy is that both

APPLESOFT and PET BASIC were written by Microsoft, and thus

200

programs have exactly the same format in memory.

The APPLESOFT Loader

The program in listing one contains many comments to point out

the subtleties of how it operates. The major functions are:

Initialize everything upon entry so the program can be rerun if

there is an error.

Time the cycles passing the head on the cassette.

Throw away the first bit.

Wait for the start-bit.

Makes bytes out of the following bits.

Do the checksum on the length block, and set up to read the

actual program.

Convert the statement pointers if the program was cassette

APPLESOFT.

Translate the BASIC tokens.

Convert the statement pointers from beginning at hexadecimal

0801 to hexadecimal 0501.

Move the program down from 0801 to 0501. (The code to do

this is at the start of the program, since part of the loader is

overlaid.)

Memory Requirements

The loader reads programs into the same location as ROM-based

APPLESOFT. This is hexadecimal 0801, which is just above the

screen on an APPLE. However, by the time the process is

completed, the program has shuffled down to 0401. Thus, on an 8K

PET you can load 6K of program text. Ignoring memory differences

due to conversion, you have an additional IK available for

variables. APPLESOFT is also available as a loadable program (as

opposed to ROM), in which case the APPLE requires 1 IK more

than the PET to hold the same program.

Program Operation

The steps to load an APPLESOFT program are:

From BASIC, load the "APPLESOFT LOADER."

Type RUN, but don't press RETURN.

Position the APPLE tape at the beginning of the tone for the

program you want. For the first program on a tape, just do a

rewind. Otherwise, you will need an audio cassette-player. The

201

Utilities

person who provided the APPLE tape should be able to show

you how to position tape, since they do it all the time.

Press PLAY and wait three to nine seconds.

Press RETURN.

There are several possible results. The good one is that the PET

displays OK and READY. Stop the tape and type 0 (zero) and

RETURN. This deletes line zero, which is the last remnant of the

loader, this is safe even if the APPLE program has a line zero, since

only the first one is deleted. The APPLE program is now available

for any required conversion. (See below)

About half the time, a question mark will print. This is

followed by a BRK, which puts you in the machine language

monitor on the upgrade-ROM PET. Type X to return to BASIC

and try again. There was a checksum error on the length block. The

error was possibly caused by the tape being positioned incorrectly. If

you obtain the question mark a couple of times, try changing the 3E

(decimal 62) which is stored at hexadecimal E811 by the routine

named INIT to 3C (decimal 60). The APPLE is not consistent on

whether a cycle is low-high or high-low. Since the loader only

notices one transition per cycle, catching the wrong one gives it half

of that bit, and half of this bit. Garble is the result. Fortunately, the

program block always seems to be consistent with the length block.

The time spent establishing which way to go is slight, since the

length block ends about 11 seconds into the tape.

You may get the message TOO BIG immediately after reading

the length block, which means the program won't fit into available

memory.

The worst result is that the PET displays BAD. This means

that there was a checksum error on the program block. It is

necessary to reload the loader, and perhaps to reset the PET. I

didn't see this result until I had succeeded in loading about 30

APPLE programs. The APPLE tends to like tapes which are a little

quieter than PET tapes, so you might try getting a louder copy of

the program.

Now the Fun Begins

Unfortunately, cassette tape format is not the only difference

between the PET and the APPLE. After deleting line 0, you have a

program loaded. You can list it, change it, or save it. But will it run?

The answer is maybe. It can happen. But some programs will be

hopeless. The APPLE has a very fancy graphics system, and

APPLESOFT supports it. All the graphics commands are translated

202

into CMD (which the APPLE doesn't have). If there are any of

these in the program you just loaded, you may have big trouble.

Perhaps the person who gave you the APPLE tape can help you

convert it, but it may not be worth the effort.

There are several other BASIC commands on the APPLE

which are not available on the PET. The loader translates most of

these into VERIFY, which is not supported by the APPLE. There

are a few APPLE commands which are very easy to convert to the

PET. The loader does phony translations on these. And finally,

there are commands which translate exactly, but do not give the

same result. The worst part of trying to correct these differences is

that a line of BASIC can be 239 characters long on the APPLE,

versus 80 on the PET. The longer lines will run just fine, but cannot

easily be changed using the PET screen editor. Thus, you have to

split this type of line into multiple lines.

The whole process will be greatly helped if you have an

extended BASIC which includes the commands FIND and

RENUMBER. This allows you to FIND commands which could

cause problems, and split program lines without concern about

smearing existing lines.

Space does not permit a complete tutorial on converting

APPLESOFT programs. However, ignoring graphics, here are some

suggestions:

Commands With No PET Equivalent

DEL - To delete program line. Unlikely to be imbedded in a

program, since it also stops execution.

TRACE

NOTRACE - Usage obvious. Not needed in a working program.

POP - Cancel a GOSUB. This is an atrocious technique.

HIMEM * Set top of memory. Could be replaced with POKEs but

is unlikely to be in a pure BASIC program which doesn't use

graphics.

LOMEN - Set bottom of memory. Within a program it will

probably cause the program to fail (even on the APPLE).

ONERR

RESUME - Replace with programmed editing.

SPEED = - Sets display rate. Replace with delay loops in key

locations if necessary.

& - Does a jump to a machine language routine which the user

must establish. Not part of normal BASIC programs.

203

NORMAL

FLASH

INVERSE -Adjusts the video mode for subsequent PRINT

statements. The equivalent of INVERSE is specified within the text

on the PET.

Commands With Phony Translation

TEXT/CONT - TEXT sets the text window to be the whole

screen. CONT has no function within a program, so it is

substituted. A program with multiple TEXT statements probably

changes the size of the text window with POKE statements in order

to print headings once, and then change what appears under them

with PRINT statements.

HTAB/NEW - NEW has no function within a program except to

make it commit suicide. HTAB is like TAB, but does not appear in

a PRINT statement. HTAB can be directly converted to

PRINTTAB(n-l); although it can very often be moved into an

adjacent PRINT statement.

HOME/OPEN - OPEN is not supported by APPLESOFT. HOME

clears the text window, so it can usually be replaced with

PRINT"clr".

VTAB/CLOSE - CLOSE is not supported by APPLESOFT.

VTABn positions the cursor on line n. Programs which use VTAB

usually have lots of them, so at the start of the program define a

string, for example DN$, containing a HOME character followed by

24 DOWNs. Then replace VTABn with PRINT LEFT$(DN$,n).

STORE/SAVE

RECALL/LOAD - It is assumed that you won't be converting

programs with LOAD or SAVE in them. STORE and RECALL are

used to dump matrices out to tape and read them back. Convert by

putting in the appropriate OPEN, PRINT#, CLOSE or OPEN,

INPUT#, CLOSE loops.

Commands Which May Give Different Results

PR#/PRINT# - Used to LO to devices other than the screen and

keyboard. Definitely not equivalent.

CALL/SYS - Used to invoke a machine language program. Almost

certainly will require change. Note that CALL, WAIT, PEEK, and

POKE on the APPLE may specify negative numbers. The address

used will be 65536 minus the amount specified. This convention is a

carryover from integer-BASIC, and has no equivalent on the PET.

The most popular CALLs on the APPLE are:

204

-936 - clear the text window. Replace by printing a screen-clear.

-958 - clear the text window from the current print position. More

difficult to replace.

-868 - clear from the current print position to the end of the line.

WAIT - Wait for an external event. Will require rework, since it

references an actual memory location.

POKE - Sets a specific memory location to a particular value.

Usually will require substantial rework.

PEEK - Returns the value stored in a specific memory location. Will

also require rework.

USR - Another way to invoke a machine language routine.

RND - On the APPLE, RND(O) repeats the previous RND, unlike

the PET, where it generates a truly random number.

GET - On the APPLE, this waits for a key to be pressed. On the

PET, a null string is returned if no key has been pressed. To

convert, make sure it is oh a line by itself, and add a test like this:

nnnn GET A$: IF A$ = "" THEN nnnn

In the APPLE program there may be a PEEK at location -16384 to

see if a key is being pressed which can be combined with the GET.

= - (Horrors. If you can't trust " = " what can you trust!) If the result

of a comparison is used as a number, it will give a different result.

For example, N =A=B sets N to a value depending on whether A

equals B. On the APPLE, an equal condition gives a value of 1, on

the PET, equal gives -1.

ASC Usually ASC of a letter is 64 greater on the APPLE than on

the PET.

LIST - Terminates program execution on the PET, but not on the

APPLE.

INPUT - APPLESOFT allows INPUT of a null string. You may

encounter programs which invite you to "PRESS RETURN TO

CONTINUE." On the PET, of course, you will obtain the READY.

prompt and you are out of the program. Change the prompt to

"PRESS A KEY TO CONTINUE," and replace the INPUT with a

GET.

- INPUT generates a question mark prompt on the PET, but not on

the APPLE.

BELL - On the APPLE, you can make the speaker beep by printing

a control-G. No character appears on the screen. On the PET it

prints as a reverse-G.

TAB - Use one position less on the PET.

205

PRINT - There are a number of detail differences. For example,

tab-fields (invoked with commas) are 10 characters wide on the PET

versus a sequence of 16,16,8,16,16,8. . . on the APPLE. A number is

preceded by a space and followed by a skip on the PET, but not on

the APPLE.

The Bottom Line

Does it work? It sure does! As long as you avoid graphics, you can

have a program up and running in short order. I was able to load

one Adventure-style game and have it completely running in less

than half an hour. It sure beat keying in 16K of program text.

Many thanks must go to Keith Falkner of Toronto, who

provided the description of what an APPLE tape looks like, many

tapes to test with, and access to the manuals describing

APPLESOFT.

0005

0020

0030

0040

0050

0060

0070

0080

0090

.LS

APPLESOFT LOADER

FOR USE ON THE COMMODORE PET/CBM

COPYRIGHT (C) 1980

GORD CAMPBELL

36 DOUBLETREE ROAD

WILLOWDALEf ONTARIO

M2J 3Z4

0- 00 0D 04

0403- 00 00 9E

0406- 31 30 35

0110

0120

0130

0140

0150

0160

0170

0180

0190

0200

0210

0220

0230

0240

0250

0260

0270

0280

0290

0300

0310

0320

0330

0340

0350

0360

0370

0380

; TO ASSEMBLE USING CARL MOSER'S

; ASSM/TEDf REQUIRES 'SET1 COMMAND

; AND A 32K MACHINE, SINCE THE SOURCE

; (INCLUDING COMMENTS) IS TOO LARGE

TO FIT

; INTO DEFAULT AREA, AND OBJECT

; GOES INTO THE DEFAULT TEXT AREA.

;

WHERE .DE 1

USED FOR STORE INDIRECT

THE ONLY PART OF PAGE ZERO

WHICH IS SMEARED. IT DOESN'T

MATTER, BECAUSE THE 'USR'

VECTOR SHOULD BE SET UP BY

ANY PROGRAM WHICH USES IT.

PGMEN .DE $2A

BASIC 'END OF PROGRAM'

CHANGE THIS TO $7C AND YOU

ARE CONVERTED TO ORIGINAL ROM.

PRINT .DE $FFD2

; PRINT ROUTINE

.BA $0400

.OS

; HERE IS A BASIC PROGRAM.

•BY 0 $0D 4 0 0 $9E

.BY '1056:' $80

206

0409- 36 3A 80

040C- 00 00 00

040F- 00

0410- 00 00 00

0413- 00

0414- 00

0416- 00

0418- 00

0419- 00

041A- 00

041B- 42 41 44

041E- 4F 4B

0390

0420- 4C 50

0423-

0425-

0427-

0429-

042B-

042D-

042F-

0431-

0433-

0435-

0437-

0439-

043B-

043D-

043F-

0441-

A9 08

85 02

A9 05

85 2B

A0 00

84 01

84 2A

Bl 01

91 2A

E6 2A

D0 02

E6 2B

A5 2A

C5 2C

D0 07

A5 2B

.BY 0 0 0 0

0410 ; IT READS '0 SYS1056:END'

0420 ;

0430 ;

0440 ; — VARIABLES —

0450 ;

0460 LENGTH .BY 00 00 00 00

0470

0480

0490

0500

0510

0520

0530

0540

0550

0560

0570

0580

0590

0600

0610

0620

0630

0640

0650

0660

0670

0680

0690

0700

0710

0720

0730

0740

0750

0760

0770

0780

0790

0800

0810

0820

0830

0840

0850

0860

0870

; APPLESOFT 'LENGTH1 BLOCK

; IS STORED HERE

STLEN .SI 0

; LENGTH OF CURRENT BLOCK

STLOC .SI 0

; WHERE IT GOES

CHAR .BY 0

; CURRENT CHARACTER

MODE .BY 0

; WHICH ACTIVITY NOW:

; 0 - SYNCHRONIZING

1 - LEADER

2 - DATA

BLOCK .BY 0

; WHICH BLOCK:

; 0 - LENGTH BLOCK

; 1 - PROGRAM BLOCK

BAD .BY 'BAD1

OK .BY 'OK'

; CHECKSUM MESSAGES

;

. *** ENTRY POINT ***

MUST BE AT $0420

FOR THE 'BASIC PROGRAM

JMP INIT

; SKIP PAST CODE WHICH MOVES

; THE PROGRAM DOWN FROM $0801

; TO $0501. THIS CODE IS NEEDED

; BECAUSE WHEN LINE ZERO (THE

; PHONY BASIC PROGRAM) IS DELETED

•END OF PROGRAM' ETC ARE ONLY

ADJUSTED BY ONE PAGE MAXIMUM.
;

;

;

;

;

MOVE

0890

0900

0910

0920

0930

0940

0950

0960

0970

0980

0990

MOVE PROGRAM DOWN 3 PAGES

LDA #8

STA *WHERE+1

LDA #5

STA *PGMEN+1

LDY #0

STY *WHERE

STY *PGMEN

MOVLP LDA (WHERE),Y

STA (PGMEN),Y

INC *PGMEN

BNE MOVOK

INC *PGMEN+1

MOVOK LDA *PGMEN

CMP *PGMEN+2

BNE INWHERE

LDA *PGMEN+1

207

0443- C5 2D

0445- D0 01

0447- 60

0448- E6 01

044A- D0 E5

044C- E6 02

044E- D0 El

0450- A9 04

0452- 8D 14 04

0455- 8D 17 04

04,58- A9 10

045A- 8D 16 04

00

04

045D- A9

045F- 8D 15

0462- 8D 19 04

0465- 8D 1A 04

0468- 78

0469- AD 10 E8

046C- A9 3E

046E- 8D 11 E8

0471-

0474-

0476-

0479-

047B-

047D-

047F-

AD 16 04

85 01

AD 17 04

85 02

A0 08

A2 00

E8

2C 11 E8

0483- 10 FA

0485- AD 10 E8

0488- AD 19 04

048B-

048D-

048F-

0491-

0493-

0495-

0496-

F0 2C

C9 01

F0 2D

E0 40

30 03

38

B0 01

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

1360
1370

1380

1390

1400

1410

1420

1430

1440

1450

1460

1470

1480

1490

1500

1510

1520

1530

1540

1550

1560

1570

1580

1590

1600

1610

1620

1630

1640

CMP *PGMEN+3

BNE INWHERE

RTS ; FINISHED

INWHERE INC *WHERE

BNE MOVLP

INC *WHERE+1

BNE MOVLP

. ** ALWAYS GOES **

;

; INITIALIZATION

•

; SET UP POINTERS ETC ON ENTRY

; SO IF WE HAD A BAD LOAD, WE

; CAN TRY AGAIN BY ENTERING 'RUN1

INIT LDA #4

STA STLEN

STA STLOC+1

LDA #$10

STA STLOC

LDA #0

STA STLEN+1

STA MODE

STA BLOCK

SEI

DISABLE INTERRUPTS

LDA $E810

CLEAR 6520

LDA #$3E

STA $E811

MAKE 6520 RESPOND TO

LOW TO HIGH TRANSITION

FOR SOME TAPES THE '3E'

; ABOVE MUST READ '3C1

; (IE. HIGH TO LOW TRANSITION)

LDA STLOC

STA *WHERE

LDA STLOC+1

STA *WHERE+1

END OF INITIALIZATION

INITY

INITX

COUNT

LDY #8

LDX #0

INX

; COUNT HOW MANY TIMES

; THROUGH THE LOOP

BIT $E811

; HAVE WE A TRANSITION YET?

BPL COUNT

; BRANCH BACK IF NOT YET

LDA $E810

; RESET THE 6520

LDA MODE

; WHAT WERE WE DOING?

BEQ STARTUP

CMP #1

BEQ STARTBIT

; REAL DATA NOW

CPX #$40

BMI ZEROBIT

SEC

BCS SETBIT

208

0498-

0499-

049C-

049D-

049F-

04A2-

04A4-

04A7-

04A9-

04AC-

04AE-

04B1-

04B3-

04B5-

04B7-

04B9-

04BC-

04BE-

04C0-

04C2-

04C5-

04C7-

04CA-

04CC-

04CE-

04D1-

04D4-

04D7-

04DA-

04DC-

04DE-

04E1-

04E2-

04E3-

04E6-

04E9-

04EC-

04EF-

04F2-

18

2E

88

D0

AD

91

CE

D0

AD

F0

CE

E6

D0

E6

D0

EE

D0

E0

10

EE

D0

AD

D0

A9

4D

4D

4D

CD

F0

A9

20

58

00

AD

8D

AD

8D

EE

D0

18

DE

18

01

14

08

15

19

15

01

C6

02

C2

19

BF

40

BB

19

B6

1A

62

FF

10

11

12

13

07

3F

D2

10

14

11

15

14

03

04

04

04

04

04

04

04

04

04

04

04

04

FF

04

04

04

04

04

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760

1770

1780

1790

1800

1810

1820

1830

1840

1850

1860

1870

1880

1890

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

2110

2120

2130

2140

2150

2160

2170

2180

2190

2200

2210

2220

2230

2240

2250

2260

2270

2280

; ** ALWAYS GOES **

ZEROBIT CLC

; THE CARRY BIT NOW INDICATES

; WHETHER WE GOT A ZERO OR ONE

SETBIT ROL CHAR

; ROTATE IT INTO THE CHARACTER

DEY

; FINISHED THIS CHARACTER?

BNE INITX ; NO

LDA CHAR

STA (WHERE)rY

; STORE THE CHARACTER

DEC STLEN

; REDUCE CHARACTER COUNT

BNE NEXTCHAR

LDA STLEN+1

; FINISHED THIS BLOCK?

BEQ FINMODE

DEC STLEN+1

NEXTCHAR INC *WHERE

; INCREMENT DATA POINTER

BNE INITY

INC *WHERE+1

BNE INITY

; ** ALWAYS GOES **

STARTUP INC MODE

; THROW AWAY FIRST TRANSITION

BNE INITX

; ** ALWAYS GOES **

STARTBIT CPX #$40

; IS IT A START BIT?

BPL INITX ; NO

INC MODE

BNE INITX

; ** ALWAYS GOES **

FINMODE LDA BLOCK

; WE JUST LOADED A BLOCK.

; WHICH ONE WAS IT?

BNE LOADED

LDA #$FF

EOR LENGTH

; CHECKSUM ON LENGTH BLOCK

EOR LENGTH+1

EOR LENGTH+2

CMP LENGTH+3

BEQ NEXTBLK

LDA #$3F

; BAD LOAD: PRINT QUESTION MARK

; AND QUIT WITH A 'BREAK'

JSR PRINT

CLI

; QUIT NOW

BRK

NEXTBLK LDA LENGTH

; INITIALIZATION FOR PROGRAM LOAD

STA STLEN

LDA LENGTH+1

STA STLEN+1

INC STLEN

; LOAD CHECKSUM TOO

; MUST GO TWO BYTES PAST

; THE END OF THE ACTUAL PROGRAM

;

BNE LEN1

209

04F4-

04F7-

04FA-

04FC-

04FF-

0501-

0503-

0505-

0507-

0509-

050C-

050E-

0511-

0513-

0515-

0517-

051A-

051D-

051E-

0520-

0521-

0523-

0525-

0528-

052B-

052E-

052F-

0531-

0534-

0536-

0539-

053B-

053D-

053F-

0542-

0544-

0546-

0549-

054C-

054E-

0550-

0552-

0554-

0556-

0558-

EE

EE

D0

EE

A9

85

A9

85

A5

CD

D0

AD

C5

90

A2

BD

20

CA

10

60

90

A9

8D

EE

4C

58

A5

8D

A5

8D

A9

85

A9

8D

A9

85

8D

8D

A9

A0

51

E6

D0

E6

A6

15

14

03

15

08

02

01

01

35

15

13

14

34

0E

06

5F

D2

F7

F2

00

19

1A

7B

01

16

02

17

08

02

05

02

01

01

01

19

FF

00

01

01

02

02

01

04

04

04

04

04

06

FF

04

04

04

04

04

04

04

04

2290

2300

2310

2320

2330

2340

2350

2360

2370

2380

2390

2400

2410

2420

2430

2440

2450

2460

2470

2480

2490

2500

2510

2520

2530

2540

2550

2560

2570

2580

2590

2600

2610

2620

2630

2640

2650

2660

2670

2680

2690

2700

2710

2720

2730

2740

2750

2760

2770

2780

2790

2800

2810

2820

2830

2840

2850

2860

2870

2880

2890

2900

2910

2920

INC

LEN1 INC

BNE

INC

LENOK LDA

STLEN+1

STLEN

LENOK

STLEN+1

#$08

; ALWAYS LOAD AT $0801

. if IT'S CASSETTE APPLESOFT

; CONVERT IT LATER
;

STA

LDA

STA

LDA

CMP

BNE

♦WHERE+1

#$01

♦WHERE

♦PGMEN+11

STLEN+1

DIFFPAGE

; CHECKING ON V7HETHER THERE IS

; ENOUGH MEMORY.

LDA

CMP

BCC

MEMBAD LDX

MEMCHR LDA

JSR

DEX

BPL

STLEN

♦PGMEN+10

MEMOK

#6

TOOBIGfX

PRINT

MEMCHR

; MESSAGE DISPLAYED: QUIT NOW

RTS

DIFFPAGE BCC

MEMOK LDA

STA

INC

JMP

LOADED CLI

MEMBAD

#$00

MODE

BLOCK

INITY

; ALLOW INTERRUPTS NOW

LDA ♦WHERE

?SET HIGH ADDRESS

STA

LDA

STA

STLOC

♦WHERE+1

STLOC+1

? INITIALIZATION FOR CHECKSUM

? AND PROGRAM LINKAGE

LDA

STA

LDA

STA

LDA

STA

STA

STA

7NOW USE 'MODE1

? VALUES ARE:

#8

♦WHERE+1

#5

$0402

#1

♦WHERE

$0401

MODE

1 AS QUOTE-MODE FLAG

0 - CURRENTLY INSIDE QUOTES

1 - NOT IN

LDA

LDY

CHKLOOP EOR

QUOTES

#$FF

#0

(WHERE),Y

? CHECKSUM CALCULATION

INC

BNE

INC

CHKEND LDX

♦WHERE

CHKEND

♦WHERE+1

♦WHERE

210

Utilities

055A-

055D-

055F-

0561-

0564-

0566-

0568-

056A-

056D-

0570-

0573-

0576-

0579-

057C-

057F-

0582-

0585-

0588-

058B-

058D-

058F-

0591-

0593-

0596-

0598-

059A-

059C-

059E-

05A0-

05A1-

05A3-

05A5-

05A6-

05A7-

05A9-

05AB-

05AD-

05B0-

05B2-

05B4-

05B5-

05B7-

05B8-

05BA-

05BC-

05BF-

05C1-

05C3-

05C6-

05C9-

05CB-

05CD-

05CF-

EC

D0

A6

EC

D0

Dl

F0

AD

20

AD

20

AD

20

4C

AD

20

AD

20

A9

85

A9

85

AD

C9

F0

A0

Bl

F0

38

E9

91

AA

88

Bl

85

86

4C

A0

Bl

AA

D0

C8

Bl

D0

4C

A0

Bl

8E

8D

A0

E6

D0

E6

16

Fl

02

17

EA

01

15

IB

D2

1C

D2

ID

D2

8B

IE

D2

IF

D2

01

01

08

02

02

08

16

01

01

EB

28

01

01

01

02

9A

00

01

08

01

03

12

01

01

16

17

04

01

02

02

04

04

04

FF

04

FF

04

FF

05

04

FF

04

FF

08

05

06

04

04

2930

2940

2950

2960

2970

2980

2990

3000

3010

3020

3030

3040

3050

3060

3070

3080

3090

3100

3110

3120

3130

3140

3150

3160

3170

3180

3190

3200

3210

3220

3230

3240

3250

3260

3270

3280

3290

3300

3310

3320

3330

3340

3350

3360

3370

3380

3390

3400

3410

3420

3430

3440

3450

3460

3470

3480

3490

3500

3510

3520

3530

3540

3550

3560

CPX

BNE

LDX

CPX

BNE

CMP

BEQ

LDA

; PRINT 'BAD1

JSR

LDA

JSR

LDA

JSR

STLOC

CHKLOOP

♦WHERE+1

STLOC+1

CHKLOOP

(WHERE)fY

CHKOK

BAD

PRINT

BAD+1

PRINT

BAD+2

PRINT

; DO THE REST ANYWAY

JMP

CHKOK LDA

; PRINT 'OK1

JSR

LDA

JSR

CASSREL LDA

STA

LDA

STA

LDA

CMP

BEQ

CASSLP LDY

CASSREL

OK

PRINT

OK+1

PRINT

#1

♦WHERE

#8

♦WHERE+1

$0802

#$08

TRANS

#1

? IT'S CASSETTE APPLESOFT

; ORIGINAL ADDRESS WAS $3001

LDA

BEQ

(WHERE),Y

CASSREL

; ON THE SECOND PASS, IT LOOKS

; LIKE ROM APPLESOFT

SEC

SBC

STA

TAX

DEY

LDA

STA

STX

JMP

TRANS LDY

LDA

TAX

BNE

INY

; LAST LINE OF

LDA

BNE

JMP

NOTEN LDY

LDA

STX

#$28

(WHERE) ,Y

(WHERE) ,Y

♦WHERE

♦WHERE+1

CASSLP

#0

(WHERE),Y

NOTEN

TOKENS DONE?

(WHERE),Y

NOTEN

TOKDONE

#1

(WHERE),Y

STLOC

; SET END OF CURRENT LINE

STA

LDY

TOTXT INC

STLOC+1

#4

♦WHERE

; STEP PAST POINTER

; AND LINE NUMBER-

BNE

INC

WHOK

♦WHERE+1

211

05D1-

05D2-

05D4-

05D6-

05D8-

05DA-

05DD-

05DF-

05E2-

05E4-

05E7-

05E9-

05EC-

05EE-

05EF-

05F1-

05F4-

05F6-

05F8-

05FA-

05FC-

05FE-

0601-

0603-

0605-

0608-

060A-

060C-

060F-

0612-

0615-

0617-

061A-

061D-

061F-

0622-

0625-

0627-

0629-

062C-

062D-

062F-

0631-

0633-

0635-

0637-

0639-

88

D0

Bl

C9

D0

AD

F0

CE

F0v

EE

D0

AE

F0

AA

10

BD

91

E6

D0

E6

A5

CD

D0

A5

CD

D0

A9

8D

4C

EE

D0

EE

EE

D0

EE

AD

85

85

AD

38

E9

85

85

A9

85

A9

85

F7

01

22

0F

19

05

19

12

19

0D

19

08

05

00

01

01

02

02

01

16

Dl

02

17

CA

01

19

B0

16

03

17

16

03

17

16

2C

2E

17

03

2D

2F

01

01

08

02

04

04

04

04

07

04

04

04

05

04

04

04

04

04

04

3570

3580

3590

3600

3610

3620

3630

3640

3650

3660

3670

3680

3690

3700

3710

3720

3730

3740

3750

3760

3770

3780

3790

3800

3810

3820

3830

3840

3850

3860

3870

3880

3890

3900

3910

3920

3930

3940

3950

3960

3970

3980

3990

4000

4010

4020

4030

4040

4050

4060

4070

4080

4090

4100

4110

4120

4130

4140

4150

4160

4170

4180

4190

4200

WHOK DEY

BNE

TRLOOP LDA

CMP

; IS IT A QUOTE

BNE

LDA

BEQ

DEC

BEQ

TOTXT

(WHERE) fY

#$22

:?

NOQ

MODE

MODEON

MODE

NXTCHAR

; ** ALWAYS GOES **

MODEON INC

BNE

MODE

NXTCHAR

; ** ALWAYS GOES **

NOQ LDX

BEQ

; BRANCH IF WE

TAX

BPL

MODE

NXTCHAR

ARE IN QUOTES

NXTCHAR

; ONLY TRANSLATE TOKENS

LDA $0700fX

; TRANSLATE FROM TABLE

STA

NXTCHAR INC

BNE

INC

WHEOK LDA

CMP

(WHERE),Y

♦WHERE

WHEOK

*WHERE+1

*WHERE

STLOC

; HAVE WE FINISHED THIS LINE?

BNE

LDA

CMP

BNE

LDA

STA

TRLOOP

♦WHERE+1

STLOC+1

TRLOOP

#1

MODE

; RESET QUOTE MODE FLAG

JMP

;

TRANS

; FINISHED TOKEN TRANSLATION

TOKDONE INC

; INCLUDE THE '

STLOC

00 00' (END OF

; PROGRAM) IN THE LENGTH

;

BNE

INC

MORLOC INC

BNE

INC

LOCDON LDA

STA

STA

LDA

SEC

SBC

STA

STA

?

MORLOC

STLOC+1

STLOC

LOCDON

STLOC+1

STLOC

*PGMEN+2

*PGMEN+4

STLOC+1

#$03

*PGMEN+3

*PGMEN+5

; SET UP PROGRAM LINKS FOR

; MOVE FROM $0801 TO $0501

;

LDA

STA

LDA

STA

#1

*WHERE

#8

*WHERE+1

212

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

>
>
>
>
>
>
o
^
o
o
o
o
c
o
c
o
c
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

I
i

I
i

i
i

i
i

i
i

i
i

i
I

J
O P t-
>

h
3

O
N
O
N
O
N
O
N
O
N
O
N
O
N
O
N
G
\
O
N
O
N
O
N
O
N
0
\
G
\
O
N
O
N
O
N
O
N

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i

-—
*

3
O
™

C
O

*
M

C
O
U

m
*

c
o

m
o

r
a

*
c
o

o
a

>
w

o
o

w
o

w

3
3

»
h
3

^
E
d
t
i
w
c
w
c
w
c
g
c
o
c
o
o
a
t
^
w
c
o
t
^
t
^

co
!>

</
>
to

-
2
J
O
*
c
o
*
c
o
—
»

=**
=

c
o
w
—

2
!

s
m

n
O
B
<
H
S
^
S
!
w

»
^
M
S
J

C
O

C
O

""
*J

^
j

H
H

^
s

t"
'
3
3

t
^

D
3

l
^

E
C

l
^

t
*

3
3

*
•

•*
•
*
•
•
•
*
•
*
■
•
*
•
•

^
»

*
•

•*
•

*
•

^
«

**
•

^
«

*
•

^
«

**
•

^
»

*•
•

^
»

^
«

^
«

^
»

«»
•

*•
•

%
•

<
«
•
<
«
•

[
t
q

£
-
i

g
o

_
W
H
t
^
D
d
C
d
H
H
H

M
O
W

t"
*

^
^

'S
i

*t
^
^
0

!S
i
^
0

2
!

^
0

S
S

C
5

J
O

O
ti

ffl
^
4
n

►fl
*
Z
Z

rf
tf
it
fi

tfl
!E

EC
I
^
O
E
C

ffi
ffi

ffi
^f
fi

»
t
i
2
5
S

5
n

"*
^

*
H
D
2

*t
M

O
J^3

50
O

M
+
M

W
+
Z
M

z
o
H
H
O
O
P
z
o
o
M
a
n
o
o
n
D
»
»
t
i
n
o
f
l
^
^
r
F
l
*
*
M
»
>
s
M
?
§
x
§
D

S
S

<
§

t
M

^
M
M
^

t
d
S
S
>
t
d
P
>
<
5
d
H
3
>
l
P
>
H
S
>
!
0
>
r
i
O
!
S
!
O
H
H
O
t
i
W
«

D
t
-
'
G
>
H
3

Z
w
-

k*
k
J

w
h
h
w

o
w
B
S
»
n
o
p

ii
n
r
o
>
s
o
t
i

m
z
z
^
\
h
i
j
h
9

^
«

!
0
S
2
\

J
O

0
3

J
O

p
>
>
M
>
W

W
S
!

H
O

C
O
3

J
O
\

»
j

r
n

o
i
i
c
o
F
o
d
i
i
o
s

jo
k
^
m
o

>
a

r
w
m

»o
td

ii
c
o
c
a
o

S
o

o
n

s
i

h
t-

3
a

m
co

a
^
^
h

S

♦
*

*
*

*
*

y
u

*
*

*
*

*

C
O

IT
1
0
3

07A6-

07A7-

07A8-

07A9-

07AA-

07AB-

07AC-

07AD-

07AE-

07AF-

07B0-

07B1-

07B2-

07B3-

07B4-

07B5-

07B6-

07B7-

07B8-

07B9-

07BA-

07BB-

07BC-

07BD-

07BE-

07BF-

07C0-

07C1-

07C2-

07C3-

07C4-

07C5-

07C6-

07C7-

07C8-

07C9-

07CA-

07CB-

07CC-

07CD-

07CE-

07CF-

07D0-

07D1-

07D2-

07D3-

07D4-

07D5-

07D6-

07D7-

07D8-

07D9-

07DA-

07DB-

07DC-

07DD-

07DE-

07DF-

07E0-

07E1-

07E2-

07E3-

07E4-

07E5-

95

93

94

95

88

89

8A

8B

8C

95

8D

8E

8F

90

91

92

93

94

96

97

99

9A

9B

9C

Al

A2

A3

A4

A5

A6

A7

9D

A8

A9

AA

AB

AC

AD

AE

AF

B0

Bl

B2

B3

B4

B5

B6

B7

B8

9D

9D

B9

BA

BB

BC

BD

BE

BF

C0

Cl

C2

C3

C4

C5

4830

4840

4850

4860

4870

4880

4890

4900

4910

4920

4930

4940

4950

4960

4970

4980

4990

5000

5010

5020

5030

5040

5050

5060

5070

5080

5090

5100

5110

5120

5130

5140

5150

5160

5170

5180

5190

5200

5210

5220

5230

5240

5250

5260

5270

5280

5290

5300

5310

5320

5330

5340

5350

5360

5370

5380

5390

5400

5410

5420

5430

5440

5450

5460

.BY $95

.BY $93

.BY $94

- .BY $95

.BY $88

.BY $89

.BY $8A

.BY $8B

.BY $8C

.BY $95

.BY $8D

.BY $8E

.BY

.BY

.BY

.BY

.BY

.BY

.BY

.BY

.BY

.BY

.BY

.BY

.BY

.BY

.BY

.BY

.BY

.BY

.BY

.BY

.BY

.BY

.BY

.BY

.BY

.BY

.BY

.BY

.BY

.BY

.BY

.BY

.BY

.BY

.BY

.BY

.BY

.BY

.BY

.BY

.BY

.BY

.BY

.BY

.BY

.BY

.BY

.BY

.BY

.BY

.BY

.BY

$8F

$90

$91

$92

$93

$94

$96

$97

$99

$9A

$9B

$9C

$A1

$A2

$A3

$A4

$A5

$A6

$A7

$9D

$A8

$A9

$AA

$AB

$AC

$AD

$AE

$AF

$B0

$B1

$B2

$B3

$B4

$B5

$B6

$B7

$B8

$9D

$9D

$B9

$BA

$BB

$BC

$BD

$BE

$BF

$C0

$C1

$C2

$C3

$C4

$C5

; *RESUME

; *RECALL/LOAD **

; *STORE/SAVE **

; *SPEED=

; LET

; GOTO

; RUN

; if
; RESTORE

; *&

; GOSUB

; RETURN

; REM

; STOP

; ON

; WAIT *

; LOAD

; SAVE

; DEF

; POKE *

; PRINT

; CONT

; LIST

; CLEAR

; GET *

; NEW

; TAB(*

; TO

; FN

; SPC(

; THEN

; *AT

; NOT

; STEP

• +

; * (TIMES)
• /

; * (EXPONENTIATION)
; AND

; OR

; =
. <

; SGN

; INT

; ABS

; USR *

; FRE

; *SCRN(

; *PDL

; POS

; SQR

; RND *

; LOG

; EXP

; COS

; SIN

; TAN

; ATN

; PEEK *

; LEN

; STR$

; VAL

214

07E6- C6

07E7- C7

07E8- C8

07E9- C9

07EA- CA

07EB- 8F 8F 8F

07EE- 8F 8F 8F

07F1- 8F 8F 8F

07F4- 8F 8F 8F

07F7- 8F 8F 8F

07FA- 8F 8F 8F

07FD- 8F 8F 8F

5470 .BY $C6 ; ASC

5480 .BY $C7 ; CHR$

5490 .BY $C8 ; LEFT$

5500 .BY $C9 ; RIGHT?

5510 .BY $CA ; MID$

5520 ;

5530 ; REMAINDER NOT IMPLEMENTED

SUBSTITUTE IREMI5540

5550

5560 .BY $8F $8F $8F $8F $8F $8F

5570 .BY $8F $8F $8F $8F $8F $8F

5580 .BY $8F $8F $8F $8F $8F $8F

0800- 00

5590

5600

5610

5620

5630

5640

5650

5660

5670

5680

5690

5700

5710

5720

5730

5740

5750

5760

5770

5780

5790

5800

.BY $8F $8F $8F

COMMANDS WHICH ARE PRECEEDED BY

AN ASTERISK ABOVE ARE NOT

IMPLEMENTED ON THE PET. THE ONES

WHICH DEPEND ON APPLE HARDWARE

(GRAPHICS AND PDL) ARE TRANSLATED

INTO •CMD1, THE OTHERS INTO

'VERIFY1

;

; COMMANDS WITH AN ASTERISK TO

; THE RIGHT MAY TRANSLATE BADLY.

; COMMANDS WITH TWO ASTERISKS ARE

; PHONY TRANSLATIONS FOR MANUAL

; CONVERSION.

; SEE ARTICLE FOR DETAILS.

;

; END OF PHONY BASIC PROGRAM

.BY 0 0 0

.EN

215

o

Q

Q

Q

O

o

o

o

o

o

o

o

o

Q

O

O

o

o

o

o

o

o

o

o

216

o

Q

Q

Q

Q

O

O

Q

TelePET

Jim Butterfield

It's helpful to know just how telecommunication equipment works with

the PET and how you can get the most out of it. Mr. Butterfield lucidly

explains . . .

This is the age of computers talking to other computers. There's no

reason why your PET can't join in the conversation, too. New

communications interfaces for the PET are being announced fairly

often these days. What's involved in the hookup?

Most commercial offerings give you the whole package to

enable you to hook up and be "on the air" fairly quickly. But since

there technical approaches are different, it's worthwhile to look at

what a communications interface needs to do.

Interface Elements

There are several programs that need to be addressed in order to

hook your PET to a telephone line. Starting at the telephone end,

they are:

1. The telephone company gets annoyed if you wire things directly

to the telephone line, unless they are "approved" devides. The small

user should also worry about the dangers to his PET: some hefty

voltages can come from the telephone exchange.

The easiest solution to this is an acoustic coupler. You fit your

telephone handset into one of these, and it arranges to make noises

into the transmitter and to listen to the earpiece with a microphone.

No electrical connection — sound power does the whole job.

2. The telephone system was designed to carry voice, or sounds in a

certain frequency range. The PET signal needs to be changed to an

audible signal in order to be transmitted; at the other end, the

sound frequencies need to be changed back into bits — the ones and

zeros that the PET needs.

This program is solved by a device called a Modem. A Modem

consists of two parts: a modulator, which changes bits to tone

frequencies for sending; and a demodulator, which changes the

tones back to bits.

3. You can normally send and/or receive only one bit at a time.

PET handles eight bits at a time. Something has to take the eight

bits from the PET (the "parallel" signal, since eight bits come out

together) and fire them off one bit at a time (creating a "serial"

signal, with one bit after the other). In the other direction, you must

218

Communications

collect the eight bits, one at a time, pack them together and deliver

them to the PET as a parallel eight-bit byte.

Tied into this problem of parallel-to-serial conversion is a

related job. Much of the time PET will have nothing to send. We

must distinguish between an idle connection, where nothing is

being sent, and an active connection which has a character under

way.

This last task is usually effected by a signal called a start bit.

The start bit is sent before the PET's information bits; it says, "here

comes a character." If you don't use a start bit, you know that the

line is idle.

All of the tasks above can be performed in machine language

programs, or in a rather clever chip called a UART. Either way, you

must arrange to send a start bit, then the eight data bits, one at a

time, and then a brief pause (sometimes called a stop bit) before you

start the next character. Coming the other way, the receiving PET

must wait for a start bit and then collect the eight data bits into a

single byte.

4. If you're communicating with a non-PET at the distant end, the

other computer will probably want to receive a standard code called

ASCII, and will send that code back to you. PET does not store

characters in ASCII format, so that a little translation will be

needed in both directions.

PET has characters that don't exist in ASCII. For example,

most of the PET graphic characters don't have any corresponding

ASCII characters. You'll have to give them up.

There are a few ASCII characters that don't have any

counterpart in the PET. Most of the these are called control

characters. You'll probably need a few of these for a good

communications interface. Most commercial packages make them

available with a two-key combination from the PET. For example,

the keys Reverse, semicolon often generate the character known as

ESC or Escape in ASCII; this character usually tells the distant

computer to stop whatever it's doing and wait for a new command

from you. It's a very handy character to know when the distant

computer has started to send out a massive amount of data which

you realize you really don't want.

5. The physical connection at the PET is either the IEEE-488 bus or

the Parallel User Port. If it's the IEEE-488 bus, the connected device

will have to obey the protocols — recognizing when it's selected,

receiving and delivering characters to the bus, etc.

If it's the Parallel User Port, PET will need to contain a

219

machine language program which is called by the user's program

any time it is desired to receive or send.

The IEEE-488 bus is simple to use — a normal PRINT #

command will send data — but since the bus is shared with other

devices, careful design is needed.

Tracing the Flow

Let's put the above together and track a character from the PET to

the line, and vice-versa.

1. PET decides to send a character. If the interface is via the IEEE

bus, PET might simply issue the command PRINT #7, "A"; or if the

interface is via the parallel user port, the program might say, SYS

30456,"A". There are many possible variations.

2. The character — in this case, the letter A which is represented in

PET text mode as hexadecimal Cl — must be translated to true

ASCII. This might be done in either program or in hardware; in

either case, the result is hexadecimal 41.

3. The parallel to serial translation now takes place. Once again,

this may be done within a program or by hardware (a UART chip).

A start bit is generated followed by the eight bits of data; each is

sent at the appropriate time.

4. Each bit, as it is generated, is translated by the modem into an

appropriate tone frequency. One frequency represents a zero bit,

another represents a one bit.

5. The tones generated by the modem are fed into a small speaker

which is very close to the telephone handset transmitter. The sound

from the speaker is picked up by the telephone and sent to the line.

It's on the way ...

At the receiving end:

6. The telephone earpiece has been making a whining sound from

the tone received from the line. The sound is picked up by a small

microphone close to the earpiece.

7. The signal reaches the modem which examines the tone and

classifies it as either a logic zero or a logic one. It passes along the

logic state, zero or one, to the serial to parallel translator.

8. The serial to parallel translator waits patiently for a start bit

(logic zero) to be received. When it sees this, it carefully collects the

eight data bits at the appropriate times. This might be done either

in a program or in hardware (again, with a UART).

9. The eight-bit character might be placed into a buffer or might

just be held for pickup by the PET. In either case, the received

character will need to be translated from ASCII into PET format.

220

The Modem/Acoustic Coupler

The modem and acoustic coupler are invariably packaged together.

Speeds up to 30 characters per second are generally available; lower

speeds will work, but the highest rate of 30 cps is a virtual standard

now.

The Commodore interface packages everything into the

modem/coupler case: IEEE bus interface, UART, the whole thing.

Other suppliers use standard, commercially available

modem/couplers and supply extra hardware and/or programs to

complete the interface.

The commercially available modems use an interface known as

RS-232. It's nice to have this interface available, since you connect

other things besides modems to it. Various types of terminals, both

video or hard copy, will hook up with no problems.

Parallel/Serial interfaces and Buffering

It's economical and flexible to use a program to do your

parallel/serial interface, and buffering can be provided quite easily.

It does take up memory space, however, and it can keep the PET

rather busy; bits move in and out at a rate of one every three

milliseconds or so. Your interface from BASIC will be rather ore

tricky, too: PRINT # or GET # won't make the connection too

easily.

Hardware costs more, but helps with some of these problems.

You may not be liberated from the need for special programs,

though. The mighty UART chip can only catch or send one

character at a time. Unless you have buffering, PET will have to

wait before the next character can be sent or received.

The GPIB bus

The IEEE-488 bus is ideal for sending or receiving characters from

BASIC. As always, however, there's a catch or two. If the device

you're sending to is busy and can't catch the character you want to

send it, it will probably hang up the bus so that everything stops

until it's ready. The same thing may happen if you try to INPUT or

GET a character or value that hasn't arrived yet; you'll either time

out or wait.

This isn't new. Many devices hold up the IEEE bus — the

printer and the disk do it, for example. But with a communications

interface, waiting time becomes a serious problem. You might lose a

character if the bus is hung up waiting for something else to happen.

It becomes more important to use the bus in a more sophisticated

way.

221

Looking them Over

All of the above problems have been solved in a variety of ways by

the various suppliers. A remarkable amount of ingenuity has been

called into play, and the user has considerable choice.

Check out the units available to see which ones fit your style.

How much of the package is hardware, and how much software?

How easily can you interface with your own BASIC programs? Can

you attach devices other than a modem? Does the unit contain

buffering? How is the translation to and from ASCII accomplished?

Can you abandon ASCII if you choose and send directly from PET

to PET, for graphics or program transfer? How much memory will

you need in the PET? Will you need disk? And, of course, how

much money will it all cost?

There's no single answer. Find out what suits you.

Communications interfaces are here. You11 see more of them

used in the PET community. One of these days, you'll be tempted to

join the network.

222

Basic CBM 8010 Modem

Routines

Jim Butterfield

Jim Butterfield presents a pair of amazing little programs for

telecommunications — in BASIC!

The programs given on page 7 of the 8010 Modem Operator's

Manual don't seem to do the job. In particular, the ASCII interface

program often crashes; prints peculiar things if you are receiving

parity characters; and drops line characters from time to time.

Here are a couple of replacement programs that should do the

job better.

ASCII Interface

Set the modem switches to OR (Originate) and HD (Half Duplex).

One exception: if you're working an "echoplex" type of system, the

distant computer will repeat back everything you send; in this case,

set the switch to FD (Full Duplex).

The program takes a few seconds to set up its translation

arrays. You may start the program before telephone connection is

established.

Special control characters can be set up, depending on your

needs. Note, for example, that the delete character has been

implemented in this program: PET's delete, decimal value 20, will be

translated to ASCII backspace, decimal value 8, and vice versa; you

can see the coding on line 210. You may implement your own to

suit the needs of the computer or network. To enable Control-P,

more accurately known as DLE (Data Link Escape) you might code:

T(176) = 16. This would translate PET's shifted-zero character, a

square-corner with bit value 176, to the ASCII DLE character,

value 16.

PET-to-PET Interface

Both users should set their modem switches to HD (Half Duplex).

One user should set OR (Originate), and the other AN (Answer); it

doesn't matter which user sets what, so long as they are different.

Communication is two-way in either case.

Cursor controls, reverse screen, and graphics features are

supported. A user can clear both screens with the CLR key.

223

The biggest operational problem is making sure you don't both

try to talk at the same time. There's no flashing cursor to prompt

you. You'll soon get used to waiting for a pause from the other PET

before sending your own stuff.

General Comments

The business part of these programs — lines 300-320 — are under

severe time constraints. If you modify the programs, check carefully

to make sure you don't start losing the occasional character

incoming from the line.

These programs are quite simple; they convert your PET into a

CRT terminal. That's not a cost-effective way to use a PET

(terminals are cheaper) and eventually you should anticipate fitting

more sophisticated programs which will allow you to send and

receive programs and files.

For communications to an ASCII system:

100 REM 8010 INTERFACE JIM BUTTERFIELD

110 REM FOR ASCII LINES

120 REMARK: SET SWITCH TO HD

200 DIM F(255),T(255)

210 FOR J = 32 TO 64 : T(J) =J : NEXT J : T(13) = 13 :

T(20) = 8

220 FOR J = 65 TO 90 : K =J + 32 : T(J) = K : NEXT J

230 FOR J o 91 TO 95 : T(J) =J : NEXT J

240 FOR J = 193 TO 218 : K =J-128 : T(J) = K : NEXT J

250 REM ADD EXTRA FUNCTIONS HERE

260 FOR J = 0 TO 255 : K = T(J) : IF K THEN F(K) =J :

F(K + 128)=J

270 NEXT J

280 POKE 1020,0 : POKE 59468,14

290 OPEN 595 : PRINT "ASCII 1/0 READY"

300 GET A$: IF A$<>"" THEN PRINT#5,CHR$

(T(ASC(A$)));

310 GET#5, A$: IF ST = 0 AND A$< >"" THEN

PRINT CHR$(F(ASC(A$)));

320 GOTO 300

For communications to another PET:

100 REM 8010 INTERFACE JIM BUTTERFIELD

110 REM FOR PET INTERCOMMUNICATION

120 REMARK: SET SWITCH TO HD

280 POKE 1020,0 : POKE 59468,14 if text mode desired

290 OPEN 595 : PRINT "PET 1/0 READY"

300 GET A$: IF A$<>"" THEN PRINT#5,A$;

310 GET#5,A$: IF ST = 0 THEN PRINT A$;

320 GOTO 300

224

225

PET In Transition

Jim Butterfield

1/ you own the Upgrade ROM, you can use this memory map for your

own programs for Original ROM PETs.

A transition issue of the Pet Gazette is very appropriate, because the

PET itself is in transition. New products and new software are going

to change the nature of the machine. Old hands at PET systems use

will have to learn new tricks.

A lot of "old" software won't work on the new machines.

Those chess and music playing programs, for example, can't make

the transition in their present form. Many of the POKEs and PEEKs

have shifted to new locations. SYS, USR and WAIT commands will

need reworking.

The machines themselves have a few hardware changes. A new

memory arrangement eliminates screen hash. The screen can no

longer be blanked, so that certain special effects (explosions, etc.) are

difficult to achieve. The character generator has changed, giving an

unfamiliar reversal of upper and lower case. The memory expansion

edge connector is physically different; it appears as if Commodore

doesn't intend it to be user accessible any more. Instead, a

"motherboard" architecture is hinted at; and empty ROM sockets

suggest that new software may be forthcoming. An assembler? New

languages? It's anybody's guess right now.

Further hardware changes are rumoured. Most of the ones I

hear are associated with screen format changes (80 characters?

Colour? Programmable characters?)

With all these changes, what should the PET owner do? Stay

with his original machine? Retrofit with the new ROM chips? Buy

the new model?

My recommendation is this: upgrade with new ROMs, or buy

a new unit; but either way, take the plunge. You'll want the new

model if you are strong on large keyboards, green screens, and/or

ROM expansion capability; otherwise, stay with your existing

machines, but fit the new ROM programs.

There's too much good stuff in the new software to hold back.

The limit on array size is lifted; tape files behave correctly; the

IEEE-488 bus works better; the built-in Machine Language Monitor

is very valuable; you can now pull the computer out of a total crash

without losing memory; and numerous little improvements have

226

been made.

Commodore may introduce more ROMs in the future. But I

believe that they won't tinker with lower memory (locations 0 to

1023 decimal) to any great extent. So an upgrade which is made

now should last for a while.

Commercial software houses will have to wrestle with the

upgrade, of course. Buyers will have to closely examine programs on

sale to make sure that they are compatible with their computer

model. "AC/DC" programs, which will run on any existing ROM,

will be a help (I understand that such a version of Microchess will

soon be available). Eventually, I believe that the upgraded ROMs

will become standard, and most software will be written for them;

the original ROM will fade out of the picture.

Clubs, and newsletters like The Pet Gazette, will also need to

cope with this transition. Programs and techniques will have to be

carefully identified: which ROM set will they work on? Where

possible, two versions will be desirable.

Eventually — hopefully — well all settle back into a standard

machine. And then we can focus our attention fully on the main

objective: making it do the jobs we want to do.

Memory locations for ROMupgrade on PET computers * Jim Butterfield, Toronto

USR Jump instruction

Search character

Scan-between-quotes flag

BASIC input buffer pointer; # subscripts

Default DIM flag

Type: FF=string, 00=numeric

Type: 80=integer, 00=floating point

DATA scan flag; LIST quote flag; memory flag

Subscript flag; FNx flag

0=input; 64=get; 152=read

ATN sign flag; comparison evaluation flag

input flag; suppress output if negative

current I/O device for prompt-suppress

BASIC integer address (for SYS, GOTO, etc.)

Temporary string descriptor stack pointer

Last temporary string vector

Stack of descriptors for temporary strings

Pointer for number transfer

Misc. number pointer

Product staging area for multiplication

Pointer; Start-of-BASIC memory

Pointer: End-of-BASIC, Start-of-Variables

Pointer: End-of-Variables, Start-of-Arrays

Pointer: End-of-Arrays

Pointer: Bottom-of-strings (moving down)

0000-0002

0003

0004

0005

0006

0007

0008

0009

000A

000B

oooc

000D

000E

0011-0012

0013

0014-0015

0016-001E

001F-0020

0021-0022

0023-0027

0028-0029

002A-002B

002C-002D

002E-002F

0030-0031

0-2

3

4

5

6

7

8

9

10

11

12

13

14

17-18

19

20-21

22-30

31-32

33-34

35-39

40-41

42-43

4445

4647

4849

227

0032-0033

0034-0035

0036-0037

0038-0039

003A-003B

003C-003D

003E-003F

0040-0041

0042-0043

0044-0045

0046-0047

0048

004A

004B-004C

004D-0050

0051-0053

0054-0058

0059-005D

005E-0063

0064

0065

0066-006B

006C

006D

006E-006F

0070-0087

0088-008C

008D-008F

0090-0091

0092-0093

0094-0095

0096

0097

0098

0099-009A

009B

009C

009D

009E

009F

00A0

00A1

00A3-00A4

00A5

00A6

00A7

00A8

00A9

00AA

OOAB

50-51

52-53

54-55

56-57

58-59

60-61

62-63

64-65

66-67

68-69

70-71

72

74

75-76

77-80

81-83

84-88

89-93

94-99

100

101

102-107

108

109

110-111

112-135

136-140

141-143

144-145

146-147

148-149

150

151

152

153-154

155

156

157

158

159

160

161

163-164

165

166

167

168

169

170

171

Utility string pointer

Pointer: Limit of BASIC Memory

Current BASIC line number

Previous BASIC line number

Pointer to BASIC statement (for CONT)

Line number, current DATA line

Pointer to current DATA item

Input vector

Current variable name

Current variable address

Variable pointer for FOR/NEXT

Y save register, new-operator save

Comparison symbol accumulator

Misc. numeric work area

Work area; garbage yardstick

Jump vector for functions

Misc. numeric storage area

Misc. numeric storage area

Accumulator #1: E,M,M,M,M,S

Series evaluation constant pointer

Accumulator hi-order propogation word

Accumulator #2

Sign comparison, primary vs. secondary

low-order rounding byte for Acc#l

Cassette buffer length/Series pointer

Subrtn: Get BASIC Char; 77, 78=pointer

RND storage and work area

Jiffy clock for IT and TI$

Hardward interrupt vector

Break interrupt vector

NMI interrupt vector

Status word ST

Which key depressed: 255=no key

Shift key: 1 if depressed

Correction clock

Keyswitch PIA: STOP and RVS flags

Timing constant buffer

Load=0, Verify = 1

characters in keyboard buffer

Screen reverse flag

IEEE-488 mode

End-of-line-for-input pointer

Cursor log (row, column)

PBD image for tape I/O

Key image

0=flashing cursor, else no cursor

Countdown for cursor timing

Character under cursor

Cursor blink flag

EOT bit received

228

OOAC

OOAD

OOAE

OOAF

OOBO

OOB1

00B2

00B4

OOB5

OOB7

00B9

OOBA

OOBB

OOBC

OOBD

OOBE

OOBF

OOCO

OOC1

00C2

00C3

00C4-00C5

00C6

00C7-00C8

00C9-00CA

00CB-00CC

OOCD

OOCE

OOCF

OODO

OOD1

00D2

00D3

00D4

OOD5

00D6-00D7

00D8

00D9

00DA-00DB

OODC

OODD

OODE

OODF

00E0-00F8

00F9

OOFA

OOFB-OOFC

O1OO-O1OA

0100-013E

O1OO-O1FF

172

173

174

175

176

177

178

180

181

183

185

186

187

188

189

190

191

192

193

194

195

196497

198

199-200

201-202

203-204

205

206

207

208

209

210

211

212

213

214-215

216

217

218-219

220

221

111

111

224-248

249

250

251-252

256-266

256-318

256-511

Input from screen/input from keyboard

X save flag

How many open files

Input device, normally 0

Output CMD device, normally 3

Tape character parity

Byte received flag

Tape buffer character

Pointer in file name transfer

Serial bit count

Cycle counter

Countdown for tape write

Tape buffer #1 count

Tape buffer #2 count

Write leader count; Read pass I/pass 2

Write new byte; Read error flag

Write start bit; Read bit seq error

Pass 1 error log pointer

Pass 2 error correction pointer

0 = Scan; l-15=Count; $40 = Load; $80 = End

Checksum

Pointer to screen line

Position of cursor on above line

Utility pointer: tape buffer, scrolling

Tape end address/end of current program

Tape timing constants

00=direct cursor, else programmed cursor

Timer 1 enabled for tape read; 00=disabled

EOT signal received from tape

Read character error

/characters in file name

Current logical file number

Current secondary addrs, or R/W command

Current device number

Line length (40 or 80) for screen

Start of tape buffer, address

Line where cursor lives

Last key input; buffer checksum; bit buffer

File name pointer

Number of keyboard INSERTs outstanding

Write shift: word/Receive input character

#blocks remaining to write/read

Serial word buffer

Screen line table: hi order address &. line wrap

Cassette #1 status switch

Cassette #2 status switch

Tape start address

Binary to ASCII conversion area

Tape read error log for correction

Processor stack area

229

0200-0250

0251-025A

025B-0264

0265-026E

026F-0278

027A-0339

033A-03F9

03FA-03FB

0400-7FFF

8000-8FFF

9000-BFFF

C000-E0F8

E0F9-E7FF

E810-E813

E820-E823

E840-E84F

F000-FFFF

512-592

593-602

603-612

613-622

623-632

634-825

826-1017

1018-1019

1024-32767

32768-36863

36864-49151

49152-57592

57593-59391

59408-59411

59424-59427

59456-59471

61440-65535

BASIC input buffer

Logical file number table

Device number table

Secondary address, or R/W cmd, table

Keyboard input buffer

Tape #1 buffer

Tape #2 buffer

Vector for Machine Language Monitor

Available RAM including expansion

Video RAM

Available ROM expansion area

Microsoft BASIC interpreter

Keyboard, Screen, Interrupt programs

PIAl-Keyboard I/O

PIA2-IEEE-488 I/O

VIA-I/O and Timers

Reset, tape, diagnostic monitor

230

A Few Entry Points,

Original/Upgrade
4.0 ROM

Jim Butterfield

Entry points seen in various programmers* machine language

programs. The user is cautioned to check out the various routines

carefully for proper setup before calling, registers used, etc.

ORIG

C357

C359

C38B

C3AC

C430

C433

C48D

C522

C553

C567

C56A

C59A

C6B5

C863

C9CE

C9D2

CA27

CA2D

CA47

CA49

CE11

CE13

CE1C

CFD7

D079

D0A7

D278

D679

D68D

D6C4

D73C

D8FD

D9B4

UPGR

C355

C357

C389

C3AB

C439

C442

C495

C52C

C55D

C572

C575

C5A7

C6C4

C873

C9DE

C9E2

CA1C

CA22

CA43

CA45

CDF8

CDFA

CE03

CFC9

D069

D09A

D26D

D67B

D68F

D6C6

D773

D934

D9EE

4.0

B3CD

B3CF

B3FF

B41F

B4AD

B4B6

B4FB

B5A3

B5D4

B5E9

B5EC

B622

B74A

B8F6

BADB

BADF

BB1D

BB23

BB44

BB46

BEF5

BEF7

BFOO

C187

C2B9

C2EA

C4BC

C8D7

C8EB

C921

C99D

CB5E

CC18

DESCRIPTION

?OUT OF MEMORY

Send BASIC error message

Warm start, BASIC

Crunch &l insert line

Fix chaining & READY.

Fix chaining

Crunch tokens

Find line in BASIC

Do NEW

Reset BASIC and do CLR

DoCLR

Reset BASIC to start

Continue BASIC execution

Get fixed-point number from BASIC

Send Return, LF if in screen mode

Send Return, Linefeed

Print string

Print precomputed string

Print"?"

Print character

Check for comma

Check for specific character

•SYNTAX ERROR'

Find fl-pt variable, given name

Bump Variable Address by 2

Float to Fixed conversion

Fixed to Float conversion

Get byte to X reg

Evaluate String

Get two parameters

Add (from memory)

Multiply by memory location

Multiply by ten

231

DA74

DAA9

DB1B

DC9F

DCA9

DCAF

E3EA

na

na

na

E7DE

F0B6

FOBA

F12C

E7DE

F167

F17A

F17E

F187

F2C8

F2CD

F32A

F33F

na

F3DB

F3E5

F3FF

F411

F43F

F462

F495

F504

F52A

F52D

F579

F57B

F5AE

F64D

F667

F67D

F6E6

F78B

F7DC

F83B

F85E

F87F

F88A

F8B9

F8C1

F913

FBDC

DAAE

DAE3

DB55

DCD9

DCE3

DCE9

E3D8

E775

E7A7

E7B6

F156

F0B6

FOBA

F128

F156

F16F

F17F

F183

F18C

F2A9

F2AE

F301

F315

F322

F3E6

F3EF

F4OA

F41D

F447

F466

F494

F4FD

F521

F524

F56E

F57O

F5A6

F63C

F656

F66C

F6F0

F77O

F7BC

F812

F835

F855

F85E

F886

F88E

F8E6

FB76

CCD8

CDOD

CD7F

CF83

CF8D

CF93

E202

D722

D754

D763

F185

FOD2

FOD5

F143

F185

F19E

F1B6

F1B9

F1CO

F2DD

F2E2

F335

F349

F356

F425

F42E

F449

F45C

F486

F4A5

F4D3

F53C

F560

F563

F5AD

F5AF

F5E5

F67B

F695

F6AB

F72F

F7AF

F7DF

F857

F87A

F89A

F8A3

F8CB

F8D3

F92B

FBBB

Unpack memory variable to Accum#l

Copy Ace #1 to (X,Y) location

Completion of Fixed to Float conversion

Print fixed-point value

Print floating-point value

Convert number to ASCII string

Print a character

Output byte as 2 hex digits

Input 2 hex digits to A

Input 1 hex digit to A

Print system message

Send'talk'to IEEE

Send 'listen' to IEEE

Send Secondary Address

Send canned message

Send character to IEEE

Send Walk'

Send 'unlisten'

Input from IEEE

Close logical file

Close logical file in A

Check for Stop key

Send message if Direct mode

LOAD subroutine

?LOAD ERROR

Print READY & reset BASIC to start

Print SEARCHING. . .

Print file name

Get LOAD/SAVE type parameters

Open IEEE channel for output.

Find specific tape header block

Get string

Open logical file from input parameters

Open logical file

?FILE NOT FOUND, clear I/O

Send error message

Find any tape header block

Get pointers for tape LOAD

Set tape buffer start address

Set cassette buffer pointers

Close IEEE channel

Set input device from logical file number

Set output device from LFN.

PRESS PLAY..; wait

Sense tape switch

Read tape to buffer

Read tape

Write tape from buffer

Write tape, leader length in A

Wait for I/O complete or Stop key

Reset tape I/O pointer

232

FD1B

FFC6

FFC9

FFCC

FFCF

FFD2

FFE4

FC9B

FFC6

FFC9

FFCC

FFCF

FFD2

FFE4

FCEO

FFC6

FFC9

FFCC

FFCF

FFD2

FFE4

Set interrupt vector

Set input device

Set output device

Restore default I/O devices

Input character

Output character

Get character

233

Basic 4.0 Memory Map

Jim Butterfield

There are some differences in usage between the 40- and 80-column

machines.

Hex Decimal

0000-0002

0003

0004

0005

0006

0007

0008

0009

000A

000B

oooc

O0OD-O0OF

0010

0011-0012

0013-0015

0016-001E

001F-0022

0023-0027

0028-0029

002A-002B

002C-002D

002E-002F

0030-0031

0032-0033

0034-0035

0036-0037

0038-0039

003A-003B

003C-003D

003E-003F

0040-0041

0042-0043

0044-0045

0046-0047

0048-0049

004A

004B-0050

0051-0053

0054-005D

005E

0-2

3

4

5

6

7

8

9

10

11

12

13-15

16

17-18

19-21

22-30

31-34

35-39

40-41

4243

44-45

46-47

48-49

50-51

52-53

54-55

56-57

58-59

60-61

62-63

64-65

66-67

68-69

70-71

72-73

74

75-80

81-83

84-93

94

Description

USR jump

Search character

Scan-between-quotes flag

Input buffer pointer; # of subscripts

Default DIM flag

Type: FF=string, 00=numeric

Type: 80=integer, 00=floating point

Flag: DATA scan; LIST quote; memory

Subscript flag; FNX flag

0=INPUT; $40=GET; $98=READ

ATN sign/Comparison Evaluation flag

Disk status DS$ descriptor

Current I/O device for prompt-suppress

Integer value (for SYS, GOTO etc)

Pointers for descriptor stack

Descriptor stack (temp strings)

Utility pointer area

Product area for multiplication

Pointer: Startof-BASIC

Pointer: Start-of-Variables

Pointer: Startof-Arrays

Pointer: End-of-Arrays

Pointer: String-storage (moving down)

Utility string pointer

Pointer: Limit-of-memory

Current BASIC line number

Previous BASIC line number

Pointer: BASIC statement for CONT

Current DATA line number

Current DATA address

Input vector

Current variable name

Current variable address

Variable pointer for FOR/NEXT

Y-save; op-save; BASIC pointer save

Comparison symbol accumulator

Misc work area, pointers, etc

Jump vector for functions

Misc numeric work area

Accum#l: Exponent

234

005F-0062

0063

0064

0065

0066-006B

006C

006D

006E-006F

0070-0087

0077-0078

0088-008C

008D-008F

0090-0091

0092-0093

0094-0095

0096

0097

0098

0099-009A

009B

009C

009D

009E

009F

00A0

00A1

00A3-00A4

00A5

00A6

00A7

00A8

00A9

00AA

OOAB

00AC

00AD

OOAE

OOAF

OOBO

00B1

00B2

00B3

00B4

00B5

00B7

00B9

OOBA

00BB-00BC

OOBD

OOBE

OOBF

95-98

99

100

101

102-107

108

109

110-111

112-135

119-120

136-140

141-143

144-145

146-147

148-149

150

151

152

153-154

155

156

157

158

159

160

161

163-164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

183

185

186

187-188

189

190

191

Accum#l: Mantissa

Accum#l: Sign

Series evaluation constant pointer

Accum#l hi-order (overflow)

Accum#2: Exponent, etc.

Sign comparison, Acc#l vs #2

Accum#l lo-order (rounding)

Cassette buff len/Series pointer

CHRGET subroutine; get BASIC char

BASIC pointer (within subrtn)

Random number seed.

Jiffy clock for TI and TI$

Hardware interrupt vector

BRK interrupt vector

NMI interrupt vector

Status word ST

Which key down; 255=no key

Shift key: 1 if depressed

Correction clock

Keyswitch PIA: STOP and RVS flags

Timing constant for tape

Load=0, Verify = 1

Number of characters in keybd buffer

Screen reverse flag

IEEE output; 255=character pending

End-of-line-for-input pointer

Cursor log (row, column)

IEEE output buffer

Key image

0=flash cursor

Cursor timing countdown

Character under cursor

Cursor in blink phase

EOT received from tape

Input from screen/from keyboard

X save

How many open files

Input device, normally 0

Output CMD device, normally 3

Tape character parity

Byte received flag

Logical Address temporary save

Tape buffer character; MLM command

File name pointer; MLM flag, counter

Serial bit count

Cycle counter

Tape writer countdown

Tape buffer pointers, #1 and #2

Write leader count; read passim

Write new byte; read error flag

Write start bit; read bit seq error

235

00C0-00C1

00C2

00C3

00C4-00C5

00C6

00C7-00C8

00C9-00CA

00CB-00CC

OOCD

OOCE

OOCF

OODO

OOD1

00D2

OOD3

00D4

OOD5

00D6-00D7

00D8

00D9

00DA-00DB

OODC

OODD

OODE

OODF

00E0-00F8

OOEO-OOE1

00E2

00E3

00E4

OOE5

00E6

OOE7

00E8

00E9-00EA

OOEB-OOEC

00F9-00FA

OOFB-OOFC

OOFD-OCFE

O1OO-O1OA

0100-013E

O1OO-O1FF

0200-0250

0251-025A

025B-0264

0265-026E

026F-0278

027A-0339

033A-03F9

033A

033B

192-193

194

195

196-197

198

199-200

201-202

203-204

205

206

207

208

209

210

211

212

213

214-215

216

217

218-219

220

221

222

223

224-248

224-225

226

227

228

229

230

231

232

233-234

235-236

249-250

251-252

253-254

256-266

256-318

256-511

512-592

593-602

603-612

613-622

623-632

634-825

826-1017

826

827

Error log pointers, pass!/2

0=Scan/1-15=Count/$40=Load/$80=End

Write leader length; read checksum

Pointer to screen line

Position of cursor on above line

Utility pointer: tape, scroll

Tape end addrs/End of current program

Tape timing constants

0=direct cursor, else programmed

Tape read timer 1 enabled

EOT received from tape

Read character error

characters in file name

Current file logical address

Current file secondary addrs

Current file device number

Right-hand window or line margin

Pointer: Start of tape buffer

Line where cursor lives

Last key/checksum/misc.

File name pointer

Number of INSERTs outstanding

Write shift word/read character in

Tape blocks remaining to write/read

Serial word buffer

(40-column) Screen lien wrap table

(80-column) Top, bottom of window

(80-column) Left window margin

(80-column) Limit of keybd buffer

(80-column) Key repeat flag

(80-column) Repeat countdown

(80-column) New key marker

(80-column) Chime time

(80-column) HOME count

(80-column) Input vector

(80-column) Output vector

Cassette status, #1 and #2

MLM pointer/Tape start address

MLM, DOS pointer, misc.

STR$ work area, MLM work

Tape read error log

Processor stack

MLM work area; Input buffer

File logical address table

File device number table

File secondary adds table

Keyboard input buffer

Tape #1 input buffer

Tape #2 input buffer

DOS character pointer

DOS drive 1 flag

236

033C

033D

033E

033F-0340

0341

0342-0352

0353-0380

03EE-03F7

03FA-03FB

03FC

0400-7FFF

8000-83FF

8000-87FF

9000-AFFF

B000-DFFF

E000-E7FF

E810-E813

E820-E823

E840-E84F

E880-E881

FOOO-FFFF

828

829

830

831-832

833

834-850

851-896

1006-1015

1018-1019

1020

1024-32767

32768-33791

32768-34815

36864-45055

45056-57343

57344-59391

59408-59411

59424-59427

59456-59471

59520-59521

61440-65535

DOS drive 2 flag

DOS length/write flag

DOS syntax flags

DOS disk ID

DOS command string count

DOS file name buffer

DOS command string buffer

(80-column) Tab stop table

Monitor extension vector

IEEE timeout defeat

Available RAM including expansion

(40-column) Video RAM

(80-column) Video RAM

Available ROM expansion area

BASIC, DOS, Machine Lang Monitor

Screen, Keyboard, Interrupt programs

PIA 1 - Keyboard I/O

PIA 2 - IEEE-488 I/O

VIA - I/O and timers

(80-column) CRT Controller

Reset, I/O handlers, Tape routines

237

PET 4.0 ROM Routines

Jim Butterfield

The 40-character and 80-character machines are the same except for

addresses $E000-$E7FF.

This map shows where various routines lie. The first address is

not necessarily the proper entry point for the routine. Similarly,

many routines require register setup or data preparation before

calling.

B000-B065

B066-B093

B094-B0B1

B0B2-B20C

B20D-B321

B322-B34F

B350-B392

B393-B39F

B3A0-B3CC

B3CD

B3FF-B41E

B41F-B4B5

B4B6-B4E1

B4E2-B4FA

B4FB-B5A2

B5A3-B5D1

B5D2

B5EC-B621

B622-B62F

B630-B6DD

B6DE-B784

B785-B7B6

B7B7-B7C5

B7C6-B7ED

B7EE-B807

B808-B812

B813-B82F

B830-B85C

B85D

B883^B890

B891

B894-B8B2

B8B3

B8C6-B8D5

B8D6-B8F5

B8F6-B92F

Description

Action addresses for primary keywords

Action addresses for functions

Hierarchy and action addresses for operators

Table of BASIC keywords

BASIC messages, mostly error messages

Search the stack for FOR or GOSUB activity

Open up space in memory

Test: stack too deep?

Check available memory

Send canned error message, then:

Warm start; wait for BASIC command

Handle new BASIC line input

Rebuild chaining of BASIC lines

Receive line from keyboard

Crunch keywords into BASIC tokens

Search BASIC for given line number

Perform NEW, and;

Perform CLR

Reset BASIC execution to start

Perform LIST

Perform FOR

Execute BASIC statement

Perform RESTORE

Perform STOP or END

Perform CONT

Perform RUN

Perform GOSUB

Perform GOTO

Perform RETURN, then:

Perform DATA: skip statement

Scan for next BASIC statement

Scan for next BASIC line

Perform IF, and perhaps:

Perform REM: skip line

Perform ON

Accept fixed'point number

238

B930-BA87 Perform LET

BA88-BA8D Perform PRINT#

BA8E-BAA1 Perform CMD

BAA2-BB1C Perform PRINT

BB1D-BB39 Print string from memory

BB3A-BB4B Print single format character

BB4C-BB79 Handle bad input data

BB7A-BBA3 Perform GET

BBA4-BBBD Perform INPUT#

BBBE-BBF4 Perform INPUT

BBF5-BC01 Prompt and receive input

BC02-BCF6 Perform READ

BCF7-BD18 Canned Input error messages

BD19-BD71 Perform NEXT

BD72-BD97 Check type mismatch

BD98 Evaluate expression

BEE9 Evaluate expression within parentheses

BEEF Check parenthesis, comma

BF00-BF0B Syntax error exit

BF8C-C046 Variable name setup

C047-C085 Set up function references

C086-C0B5 Perform OR, AND

C0B6-C1 ID Perform comparisons

C11E-C12A Perform DIM

C12B-C1BF Search for variable

C1C0-C2C7 Create new variable

C2C8-C2D8 Setup array pointer

C2D9-C2DC 32768 in floating binary

C2DD-C2FB Evaluate integer expression

C2FC-C4A7 Find or make array

C4A8 Perform FRE, and:

C4BC-C4C8 Convert fixed-to-floating

C4C9-C4CE Perform POS

C4CF-C4DB Check not Direct

C4DC-C509 Perform DEF

C5OA-C51C Check FNx syntax

C51D-C58D Evaluate FNx

C58E-C59D Perform STR$

C59E-C5AF Do string vector

C5B0-C61C Scan, set up string

C61D-C669 Allocate space for string

C66A-C74E Garbage collection

C74F-C78B Concatenate

C78C-C7B4 Store string

C7B5-C810 Discard unwanted string

C811-C821 Clean descriptor stack

C822-C835 Perform CHR$

C836-C861 Perform LEFT$

C862-C86C Perform RIGHTS

C86D-C896 Perform MID$

C897-C8B1 Pull string data

239

C8B2-C8B7 Perform LEN

C8B8-C8C0 Switch string to numeric

C8C1-C8D0 Perform ASC

C8D1-C8E2 Get byte parameter

C8E3-C920 Perform VAL

C921-C92C Get two parameters for POKE or WAIT

C92D-C942 Convert floating-to-fixed

C943-C959 Perform PEEK

C95A-C962 Perform POKE

C963-C97E Perform WAIT

C97F-C985 Add 0.5

C986 Perform subtraction

C998-CA7C Perform addition

CA7D-CAB3 Complement accum#l

CAB4-CAB8 Overflow exit

CAB9-CAF1 Multiply-a-byte

CAF2-CB1F Constants

CB20 Perform LOG

CB5E-CBC1 Perform multiplication

CBC2-CBEC Unpack memory into accum#2

CBED-CC09 Test & adjust accumulators

CCOA-CC17 Handle overflow and underflow

CC18-CC2E Multiply by 10

CC2F-CC33 10 in floating memory

CC34 Divide by 10

CC3D Perform divide-by

CC45-CCD7 Perform divide-into

CCD8-CCFC Unpack memory into accum#l

CCFD-CD31 Pack accum#l into memory

CD32-CD41 Move accum#2 to #1

CD42-CD50 Move accum#l to #2

CD51-CD60 Round accum#l

CD61-CD6E Get accum#l sign

CD6F-CD8D Perform SGN

CD8E-CD90 Perform ABS

CD91-CDD0 Compare accum#l to memory

CDD1-CEO 1 Floating-to-fixed

CE02-CE28 Perform INT

CE29-CEB3 Convert string to floating-point

CEB4-CEE8 • Get new ASCII digit

CEE9-CEF9 Constants

CF78 Print IN, then:

CF7F-CF92 Print BASIC line #

CF93-D0C6 Convert floating-point to ASCII

DOC7-D1O7 Constants

D108 Perform SQR

D112 Perform power function

D14B-D155 Perform negation

D156-D183 Constants

D184-D1D6 Perform EXP

D1D7-D220 Series evaluation

240

D221-D228 RND constants

D229-D281 Perform RND

D282 Perform COS

D289-D2D1 Perform SIN

D2D2-D2FD Perform TAN

D2FE-D32B Constants

D32C-D35B Perform ATN

D35C-D398 Constants

D399-D3B5 CHRGET sub for zero page

D3B6-D471 BASIC cold start

D472-D716 Machine Language Monitor

D717-D7AB MLM subroutines

D7AC-D802 Perform RECORD

D803-D837 Disk parameter checks

D838-D872 Dummy disk control messages

D873-D919 Perform CATALOG or DIRECTORY

D91A-D92E Output

D92F-D941 Find spare secondary address

D942-D976 Perform DOPEN

D977-D990 Perform APPEND

D991-D9D1 Get disk status

D9D2-DA06 Perform HEADER

DA07-DA30 Perform DCLOSE

DA31-DA64 Set up disk record

DA65-DA7D Perform COLLECT

DA7E-DAA6 Perform BACKUP

DAA7-DAC6 Perform COPY

DAC7-DAD3 Perform CONCAT

DAD4-DB0C Insert command string values

DB0D-DB39 Perform DSAVE

DB3A-DB65 Perform DLOAD

DB66-DB98 Perform SCRATCH

DB99-DB9D Check Direct command

DB9E-DBD6 Query ARE YOU SURE?

DBD7-DBE0 Print BAD DISK

DBE1-DBF9 Clear DS$ and ST

DBFA-DC67 Assembly disk command string

DC68-DE29 Parse BASIC DOS command

DE2C-DE48 Get Device Number

DE49-DE86 Get file name

DE87-DE9C Get small variable parameter

** Entry points only for E000-E7FF **

E000 Register/screen initialization

E0A7 Input from keyboard

El 16 Input from screen

E202 Output character

E442 Main Interrupt entry

E455 Interrupt: clock, cursor, keyboard

E600 Exit from Interrupt
**

F000-F0D1 File messages

241

F0D2 Send Talk'

F0D5 Send 'Listen'

F0D7 Send IEEE command character

F109-F142 Send byte to IEEE

F143-F150 Send byte and clear ATN

F151-F16B Option: timeout or wait

F16OF16F DEVICE NOT PRESENT

F170-F184 Timeout on read, clear control lines

F185-F192 Send canned file message

F193-F19D Send byte, clear control lines

F19E-F1AD Send normal (deferred) IEEE char

F1AE-F1BF Drop IEEE device

F1C0-F204 Input byte from IEEE

F205-F214 Get a byte

F215-F265 INPUT a byte

F266-F2A1 Output a byte

F2A2 Abort files

F2A6-F2C0 Restore default I/O devices

F2C1-F2DC Find/setup file data

F2DD-F334 Perform CLOSE

F335-F342 Test STOP key

F343-F348 Action STOP key

F349-F350 Send message if Direct mode

F351-F355 Test if Direct mode

F356-F400 Program load subroutine

F401-F448 Perform LOAD

F449-F46C Print SEARCHING

F46D-F47C Print LOADING or VERIFYING

F47D-F4A4 Get Load/Save parameters

F4A5-F4D2 Send name to IEEE

F4D3-F4F5 Find specific tape header

F4F6-F50C Perform VERIFY

F50D-F55F Get Open/Close parameters

F560-F5E4 Perform OPEN

F5E5-F618 Find any tape header

F619-F67A Write tape header

F67B-F694 Get start/end addrs from header

F695-F6AA Set buffer address

F6AB-F6C2 Set buffer start &l end addrs

F6C3-F6CB Perform SYS

F6CC-F6DC Set tape write start &. end

F6DD-F767 Perform SAVE

F768-F7AE Update clock

F7AF-F7FD Connect input device

F7FE'F84A Connect output device

F84B-F856 Bump tape buffer pointer

F857-F879 Wait for PLAY

F87A-F88B Test cassette switch

F88C-F899 Wait for RECORD

F89A Initiate tape read

F8CB Initiate tape write

242

F8E0-F92A

F92B-F934

F935-F944

F945-F975

F976-FA9B

FA9C-FBBA

FBBB-FBC3

FBC4-FBC8

FBC9-FBD7

FBD8-FBF3

FBF4-FC85

FC86-FCBF

FCCO-FCDA

FCDB-FCEA

FCEB-FCF8

FCF9-FD0A

FDOB-FD15

FD16-FD4B

FD4C-FD5C

** Jump table:

FF93-FF9E

FF9F-FFAA

FFAB-FFB6

FFB7-FFBC

FFBD

FFCO

FFC3

FFC6

FFC9

FFCC

FFCF

FFD2

FFD5

FFD8

FFDB

FFDE

FFE1

FFE4

FFE7

FFEA

FFFA-FFFF

Common tape I/O

Test I/O complete

Test STOP key

Tape bit timing adjust

Read tape bits

Read tape characters

Reset tape read address

Flag error into ST

Reset counters for new byte

Write a bit to tape

Tape write

Write tape leader

Terminate tape; restore interrupt

Set interrupt vector

Turn off tape motor

Checksum calculation

Advance load/save pointer

Power-on Reset

Table of interrupt vectors
**

CONCAT,DOPEN,DCLOSE,RECORD

HEADER,COLLECT,BACKUP,COPY

APPEND, DSAVE,DLOAD,CATALOG

RENAME,SCRATCH

Get disk status

OPEN

CLOSE

Set input device

Set output device

Restore default I/O devices

INPUT a byte

Output a byte

LOAD

SAVE

VERIFY

SYS

Test stop key

GET byte

Abort all files

Update clock

Hard vectors: NMI, Reset, INT

243

Accounting 166-170

Applications 15-24, 166-170
Apple 200-206

Arrays 15, 34-41, 42, 51

ASCII 160

Assembly Language (See Machine

Language)

BASIC

Conversion 200-206

Structure 12, 64-67, 83-88,
146-150, 151-153, 190-192

Cassette (See Tape)

CBM 8032 57-61

CHRGET 154-159

CPU (6502, 6800) 2

Data 15-24, 166-170

Disk (Also see DOS, I/O) 10, 68,

113-116, 175-182, 183-184

DOS 10, 92-93

BAM 96-97, 177-178, 184
Direct-Access 95-107, 117-121

Files (Also see Disk, DOS, I/O)

15-24,95-107, 108-111,117-121,
146-150, 160-162, 166-170

Garbage Collection 10

GET 69-71
Hardware (Also see CPU, Disk,

Printer, Tape, etc.)

PIA/VIA 2

Uncrashing/Reset 62-63

Trouble-Shooting 72
History 2

INPUT 72

I/O (Input/Output) 68, 69-71,

73-75,92-94, 117-121,218-224
Interfacing 226-238

Joystick 25-32

Languages (Also see BASIC,

Machine Language) 34, 200-206
Machine Language 28, 49-54, 58,

78-81,83-88,89-91,92-93,

122-124, 136-138, 139-144,
151-153

Memory 59, 64-67, 89-91

Conservation 15-24, 55-56,
113-116, 163-165, 190-192
Partitioning 15-24

Maps 226-257
RAM, ROM Test 79-80

Modem 218-224
Peripherals (See Disk, Printer, etc.)

Plotting 128-135, 139-144

Pointers (Also see BASIC

Structure) 163-164, 166

Printer 126-127, 128-135, 136-138,

226-238

ROM (Also see Memory, Memory

Maps)

Conversion 66, 90

(4.0) 60-61

New/Upgrade 9

Retrofit 6, 9-10

Sorting 42-54

Special Characters 57-58

Subroutines 34-41

Tape 81-82, 200-206

Telecommunications 218-224

Tokens 12-14

Uncrashing 62-63

User Port 15,28,29,31,62-63

Variables (Also see Arrays) 166

Wedge (See CHRGET)

WordPro 108-111

244

n

n

o

n

o

n

.n

n

o

o

o

n

o

o

o

n

o

o

n

n

n

o

o

n

n

n

o

n

n

n

n

n

n

n

o

n

u

u

o

u

u

u

O

u

u

O.

O

U

O

u

u

O

u

u

u

O

o

0

0

u

n

o

n

n

o

n

o

O

n

o

o

n

n

o

n

n

n

n

n

o

n

n

o

n

o

o

o

o

o

o

n

n

o

O

■u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

If you've enjoyed the articles in this book, you'll find the

same style and quality in every monthly issue of COMPUTE!
Magazine. Use this form to order your subscription to
COMPUTE!

For Fastest Service,

Call Our Toil-Free US Order Line

800-334-0868
In NC call 919-275-9809

COMPUTE!
P.O. Box 5406

Greensboro, NC 27403

My Computer Is:

□ PET □Apple □Atari QVIC □ Other. _□ Don'tyet have one...

i $20.00 One Year US Subscription
$36.00 Two Year US Subscription
$54.00 Three Year US Subscription

Subscription rates outside the US:

$25.00 Canada
$38.00 Europe, Australia New Zealand/Air Delivery
$48.00 Middle East North Africa Central America/Air Mail
$68.00 Elsewhere/Air Mail
$25.00 International Surface Mail (lengthy, unreliable delivery)

Name

Address

City

Country

State Zip

Payment must be in US Funds drawn on a US Bank; International Money

Order, or charge card.

□ Payment Enclosed □ VISA

□ MasterCard □ American Express

Ace t. No. Expires /

233101

If you've enjoyed the articles in this book, you'll find

the same style and quality in every monthly issue of

COMPUTE!^ Gazette for Commodore.

For Fastest Service

Call Our Toil-Free US Order Line

800-334-0868
In NC call 919-275-9809

COMPUTED Gazette
P.O. Box 5406

Greensboro, NC 27403

My computer is:

□ VIC-20 □ Commodore 64 □ Other.

$20 One Year US Subscription
$36 Two Year US Subscription
$54 Three Year US Subscription

Subscription rates outside the US:

□ $25 Canada
□ $45 Air Mail Delivery
□ $25 International Surface Mail

Name

Address

City State Zip

Country

Payment must be in US Funds drawn on a US Bank, International Money

Order, or charge card.

□ Payment Enclosed n VISA
□ MasterCard □ American Express

Acct, No. Expires /

233101

COMPUTE! Books
P.O. Box 5406 Greensboro, NC 27403

Ask your retailer for these COMPUTE! Books. If he or she
has sold out order directly from COMPUTE!

For Fastest Service

Call Our TOLL FREE US Order Line

800-334-0868
In NC call 919-275-9809

Quantify Title Price Total

The Beginner's Guide to Buying A Personal
Computer $ 3.95**

COMPUTED First Book of Atari $12.95*

Inside Atari DOS $19.95*

COMPUTED First Book of PET/CBM $12.95*

Programming the PET/CBM $24.95*"

Every Kid's First Book of Robots and

Computers $ 4.95**

COMPUTED Second Book ofAtari $12.95*

COMPUTED First Book of VIC $12.95*

COMPUTED First Book of Atari Graphics $12.95*

Mapping the Atari $14.95*

Home EnergyApplications On Your

Personal Computer $14.95*

Machine Language for Beginners $12.95*

Add $2 shipping and handling. Outside US add $4 air mail; $2
surface mail.

Add $1 shipping and handling. Outside US add $4 air mail; $2
surface mail.

Add $3 shipping and handling. Outside US add $9 air mail; $3
surface mail.

Please add shipping and handling for each book

ordered.

Total enclosed or to be charged.

All orders must be prepaid (money order, check, or charge). All

payments must be in US funds. NC residents add 4% sales tax.

□ Payment enclosed Please charge my: □ VISA □ MasterCard

□ American Express Acc't, No. Expires /

Name

Address

City State Zip

Country

s Allow 4-5 weeks for delivery.

■ 01-9

■

O

O

o

Q

Q

O

O

Q-;

O

O

:O

O

O

Q

O

O

O

O

o

o

o

o

o

o

Q

O

Q

O

O

O

Q

O

O.

n

o

n

n

o

n

o

O

n

o

o

n

n

o

n

n

n

n

n

o

n

n

o

n

o

o

o

o

o

o

n

n

o

O

