

G

o

a

a

n COMPUTED

n FIRST BOOK
OF THE

COMMODORE

128

COMPUTE!' Publfoationsjncd
Part of ABC Consumer Magazines, Inc.

^^ One of the ABC Publishing Companies

j | Greensboro, North Carolina

The following articles were originally published in COMPUTE! magazine, copyright 1985, COM

PUTE! Publications, Inc.:

"Sound and Music/' originally titled "Sound and Music on the Commodore 128" (August and

September); "Jump Search" (September); "Word Search" (September); "Save-with-Replace: De

bugged at Last" (October and November); "Dynamic Keyboard," originally titled "Dynamic Key

board for Commodore Machines" (October, November, and December); "Advanced Commodore

128 Video" (December).

The following articles were originally published in COMPUTERS Gazette magazine, copyright 1985,

COMPUTE! Publications, Inc.:

"Litter Patrol" (September); "Exploring BASIC 7.0," originally titled "Exploring 128 BASIC: An

End to PEEKs and POKEs" (November).

The following article was originally published in COMPUTE! magazine, copyright 1986, COM

PUTE! Publications, Inc.:

"Switchbox" (March).

The following articles were originally published in COMPUTE'S Gazette magazine, copyright 1986,

COMPUTE! Publications, Inc.:

"Programming Music and Sound," originally titled "Programmng Music and Sound on the 128"

(January); "REM Highlighter" (January); "Exploring the 128's Monitor" (February); "Important 128

Memory Locations," originally titled 'Commodore 128 Memory Map Important Locations" (Febru

ary); "Lexitron" (February); "Disk Commands," originally titled "Disk Commands on the 128"

(February); "Autoboot," originally titled "128 Autoboot" (March); "Cataloger" (March); "Storage

and Display," originally titled "Storage and Display: Using Peripherals with the 128" (March);

"All About CP/M on the 128" (April); "Windows on the 128" (April); "Word Counter" (May);

"Blick," originally titled "Power BASIC: Blick" (May); "Coder-Decoder" (May).

Copyright 1986, COMPUTE! Publications, Inc. All rights reserved.

Reproduction or translation of any part of this work beyond that permitted by

Sections 107 and 108 of the United States Copyright Act without the permission of

the copyright owner is unlawful.

Printed in the United States of America

10 98765432 1

ISBN 0-87455-059-9

The authors and publisher have made every effort in the preparation of this book to insure the ac-

curacy of the programs and information. However, the information and programs in this book are (
sold without warranty, either express or implied. Neither the authors nor COMPUTE! Publica

tions, Inc., will be liable for any damages caused or alleged to be caused directly, indirectly, inci

dentally, or consequentially by the programs or information in this book.

The opinions expressed in this book are solely those of the authors and are not necessarily those ' J
of COMPUTE! Publications, Inc.

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919)

275-9809, is part of ABC Consumer Magazines, Inc., one of the ABC Publishing Com- I I
panies, and is not associated with any manufacturer of personal computers. Commo

dore 64, Commodore 128, and VIC-20 are trademarks of Commodore Electronics

Limited. CP/M is a registered trademark of Digital Research, Inc.

Contents

n

n

n

n

n

Foreword v

Chapter 1. Programming 1
Exploring BASIC 7.0

Todd Heimarck 3

Save-with-Replace: Debugged at Last

P. A. Slaymaker 17

Dynamic Keyboard

Jim Butterfield 28

Jump Search

Jerry Sturdivant 37

Coder-Decoder

W. M. Shockley 40

Exploring the 128's Monitor

Richard Mansfield 43

Important 128 Memory Locations

Jim Butterfield 46

All About CP/M on the 128

Howard Golk 51

Chapter 2. Sound and Graphics 61
Windows on the 128

Jim Vaughan 63

Advanced Commodore 128 Video

Jim Butterfield 69

Programming Music and Sound

Philip I. Nelson 74

Sound and Music

Philip I. Nelson 81

Chapter 3. Games 99
Orbitron

Mark Tuttle and Kevin Mykytyn 101
Litter Patrol

Charles Brannon 110

Word Search

Michael B. Williams

128 Version by Patrick Parrish 120

Switchbox

Todd Heitnarck 126

Lexitron

Ron Wilson 135

Chapter 4. Utilities 141
MetaBASIC: Programmer's Problem Solver

Kevin Mykytyn 143

REM Highlighter

Don A. Ellis 154

Blick

Plummer Hensley 157

Word Counter

Thomas K. Tucker 159

Chapter 5. Peripherals 163
Storage and Display 165

Disk Commands

Todd Heitnarck 170

Cataloger

Kevin Mykytyn 180

Autoboot

Steve Stiglich 186

Appendices 195

A. How to Type In Programs 197

B. The Automatic Proofreader

Philip I. Nelson 199

C. Machine Language Editor, MLX

Ottis R. Cowper 203

Index 213

Disk Coupon 217

u

LJ

U

LJ

Foreword

COMPUTEl's First Book of the Commodore 128 is packed full of
information and programs ready to type in and run in 128

mode.

COMPUTE! Publications is the leading publisher of type-

in programs and articles for Commodore users. In COM

PUTEl's First Book of the Commodore 128 we've collected our

best programs and articles for the 128 from COMPUTE! maga

zine and COMPUTEl's Gazette and added some never before

published programs.

Game players will enjoy the challenge and thrill of play

ing "Orbitron," a fast-paced game for two players that re

quires careful planning, and "Switchbox," a strategy game for

one or two players.

Programmers will enjoy the added convenience of "Meta-

BASIC," a utility that adds 11 new commands to BASIC, such
as Find, Merge, Dlist, and Resave. They'll also enjoy articles

and programs that illustratate how to add windows, sound,

and music to programs.

Also included are easy-to-use programs to catalog your

disk library, make any program on a disk automatically load

and run when you turn on your 128, and much more.

The articles are clearly and concisely written. And we've

included "The Automatic Proofreader" and "MLX, the Ma

chine Language Editor" to help you avoid errors when typing

in the programs. As with all COMPUTE! publications, each

program has been carefully and thoroughly tested.

G

o

a

a

Chapter 1

Programming

G

o

a

a

H

n

H

n

n

n

n

n

n

Exploring BASIC 7.0

Todd Heimarck

BASIC 7.0 is the most powerful Commodore BASIC to date. If you
learned programming on a VIC or 64, you'll appreciate the many
new commands which greatly simplify programming. In a line or
two, you can accomplish what might have taken five or ten on a

VIC or 64.

The Commodore 128 has two things going for it. The first is

122,365 available bytes of memory, twice as much memory as

a Plus/4, three times as much as a 64, and 34 times as much

as an unexpanded VIC. If you wish, you can add still more

memory—the 128 is expandable to 512K.

The second and even more impressive feature is the new

BASIC 7.0, which virtually eliminates the need for PEEKs and

POKEs. BASIC programmers can forget about looking up the

memory locations for high-resolution graphics or trying to re

member how to define a sprite. (Machine language program

mers, of course, will still be concerned with how PEEKs and

POKEs affect the computer.)

The 128's BASIC includes all commands from BASIC 2.0

(the language in the VIC and 64), all commands except one

(RLUM) from BASIC 3.5 (found in the Plus/4 and 16), the

disk commands from the Commodore PET, plus many brand

new ones.

If you're experienced at programming the VIC or 64,

you'll enjoy exploring the new BASIC. Let's look at what you

can do with the 128.

Sprites and Music Without POKEs

The Plus/4 has more memory and a better BASIC than the 64.

But Commodore eliminated two very popular features of the

64: sprites and the SID chip. Sprites, objects which can be

moved independently around the screen, are often used as

characters in games. The Sound Interface Device (SID chip),

best described as a minisynthesizer, can produce sounds and

music that would be impossible on computers with simple

tone generators.

u
Chapter 1 , -1

Creating sprites on the 64 can be difficult, even if you —'
know what you're doing. First, you have to convert the shape _

to DATA statements, either on graph paper or with a sprite I I
editor. Next, each sprite needs several POKEs to set x and y '—'
positions, colors, expansion, priorities, and so on.

The 128 makes sprites easy. A sprite editor program is I j
built in—just enter SPRDEF to turn it on. Draw the sprite on '—'
the screen, and the shape can be immediately saved to mem

ory. You then use the SPRITE command to turn it on, give it a

color, and set priority, expansion, and multicolor mode.

MOVSPR moves it to a specific position on the screen. You

can also include a speed and direction—the sprite will move

automatically, until you tell it to stop.

Another option is to draw a shape on the hi-res screen,

save it into a variable with SSHAPE (Save SHAPE), and put

that shape into a sprite with SAVSPR. The shape can be

stored to disk through BSAVE or by putting the SSHAPEd

variable into a sequential file.

While the sprite is moving around the screen, you can

check for collisions with COLLISION. This command works

like a conditional GOSUB. When a sprite hits an object on the

screen, the program automatically goes to a subroutine. Within

the subroutine, BUMP tells you which sprites are involved.

There are also commands for reading sprite colors and posi

tions. It's all done without a single POKE.

Music is just as easy to program. The new statements give

you much easier access to the capabilities of the SID chip. PLAY

"DEF", for example, plays the notes D, E, and F. There are

three voices, six octaves, and ten envelopes (including piano,

accordion, calliope, drum, flute, guitar, harpsichord, organ,

trumpet, and xylophone). The notes of the melody can range

from sixteenths to whole notes. You can define your own in

struments with ENVELOPE and FILTER. TEMPO speeds up or J I

slows down the melody being played. There's also a SOUND —'
command for explosions, blips, and other sound effects.

U
More Control over Programming

Numerous commands to help the programmer are included. ,-—.

AUTO enables automatic line numbering, and RENUMBER re- j |
numbers lines. DELETE removes a range of lines from the

program. KEY allows you to put commonly used strings into ,—-,

H

H

H

n

n

n

n

n

n

n

Programming

function key definitions. HELP is very useful when you're de

bugging a program; it lists the line where the error occurred

and indicates where the problem is (there's also a HELP key,

which does the same thing). TRON turns on the trace func

tion, so you can follow a program line by line. TRAP is like

GOTO; when it's enabled, an error does not halt the pro

gram—it causes the program to jump to an error-handling

routine you've written.

New reserved variables include ER (the error number if

something goes wrong in a program), EL (the line number

where an error occurred), and ERR$ (the name of the error).

RESUME makes the program continue after an error has

stopped it. And if the light on the disk drive starts blinking

because of a disk error, you no longer have to open the error

channel and input the error information. Just type PRINT

DS,DS$ to find out what went wrong.

Other disk commands, most of which are self-explanatory,

include APPEND, BACKUP, BLOAD, BOOT, BSAVE, CATA

LOG, COLLECT, CONCAT, COPY, DCLEAR, DCLOSE, DI

RECTORY, DLOAD, DOPEN, DSAVE, DVERIFY, HEADER,

RECORD, RENAME, and SCRATCH.

You can experiment with machine language by using the

built-in ML monitor, entered via MONITOR. It's similar to

Micromon or Supermon. Once you've written an ML program,

start it up with the new version of the SYS command, which

allows passing of values to the A, X, Y, and P registers. Once

you exit to BASIC, you can look at the last values in these reg

isters with RREG (Read REGister). DEC and HEX assist in

making conversions between decimal and hexadecimal. Com

modore has added XOR (exclusive OR) to complement AND

and OR. There are also ways of handling data that may be in

the external memory expansion module: FETCH, STASH,

SWAP.

Enhancements and Improvements

In addition to the normal PRINT statement, there's PRINT

USING, which allows formatting of strings and numbers

before they're printed. This is especially useful when you're

dealing with financial information and want dollars and cents

printed. PUDEF allows prior definition of which characters

will appear in PRINT USING statements. When you print out

Chapter 1

a check, for example, you might want leading asterisks instead

of spaces.

The CHAR statement is a variation on PRINT, but it

works on both text and hi-res screens. Since you can include

the x and y positions, it works like PRINT AT, which is found

on other computers.

IF-THEN now includes ELSE and BEGIN-BEND. BEGIN

and BEND mark off a section of the program that will be exe

cuted only if the previous IF condition is true. FOR-NEXT

loops can be replaced with DO-LOOP (see the example

below).

MID$ has a new feature: It can assign a string to the mid

dle of another string. So A$="HELLO": MID$(A$,2)= "IPP"

would make A$ into "HIPPO". INSTR finds the position of

one string inside another. It could tell you, for example, that

"DEF" is inside "ABCDEFGHI", starting at the fourth

position.

The RESTORE command can be followed by a line num

ber to set the READ-DATA pointer to a specific line.

PRINT FRE(O) now displays how much memory is avail

able in the first bank of memory, where programs are stored,

while FRE(l) displays how much memory is left in the bank

containing variables. And since the variables are kept separate

from the program, adding a line to a program does not destroy

variable definitions. You can stop a program, make some

changes, and then GOTO a line to resume the program with

previously defined variables.

The Slowest Commodore—And the Fastest

How fast is the 128? As a simple benchmark, we ran a FOR-

NEXT loop that counted from 1 to 10,000 and printed the

number of jiffies (a jiffy is 1/60 second). The 128 was the fast- .

est and the slowest Commodore computer (it was tested twice,

once with the FAST command, once with SLOW):

Speed in t i

Jiffies Computer | |
929 128 (SLOW)

895 +4/16 ,--,

653 64

612 VIC

440 128 (FAST)

n

n

n

n

n

Programming

There's a good reason why the 128 can be both the fastest

and the slowest. All Commodore BASICs are interpreted,

which means the computer figures out (interprets) what the

program should be doing as the program is running. Some

other languages—even other BASICs—are compiled. Compiled

programs are written with an editor program (similar to a

word processor) and then compiled into object code that's

closer to machine language than an interpreted program.

When an interpreted BASIC gets to a command like

PRINT, it has to look through a table listing the location of

the routine that makes PRINT work. Adding more commands

to the Plus/4, and even more to the 128, makes the list

longer. So the computer has to spend more time searching for

command definitions. In addition, TO has several meanings in

BASIC 7.0. You can loop FOR D=l TO 10000, or DRAW

from one point TO another, or copy files from one disk drive

TO another.

The 128, with the biggest and best Commodore BASIC, is

also the slowest of the bunch, as you can see from the timings

above. To adjust for this, Commodore has added two new

commands: FAST and SLOW.

The clock that drives the main processing chip runs at 1

megahertz (MHz), or 1,000,000 cycles per second. The FAST

command doubles the speed of the clock to 2 MHz. It's espe

cially good in programs that require a lot of calculations.

There's a tradeoff, though. The 40-column screen goes blank

while FAST is in effect. But if you want speed, the screen dis

play probably won't matter. If you own a 64 and tape drive,

you're probably used to seeing the screen blank while pro

grams are loaded.

The VIC-20 has been the fastest Commodore computer

for the last few years. Now there's a faster one.

Hi-Res Graphics

The sound, programming, disk access, and other commands

are great improvements. But the new hi-res graphics com

mands are the most fun to play with. Rather than trudging

through a long list of what the commands do, let's look at

three short graphics programs.

Program 1-1 creates a bar chart. It reads values from

DATA statements, figures out a scale, and draws the chart.

Chapter 1

The number of values is limited only by the horizontal resolu
tion of the screen (320 pixels). The values can be any positive

number; the graph will be scaled accordingly.

First, lines 20-30 set up a loop to READ through the

DATA statements. Normally, you'd expect an OUT OF DATA

error as soon as there are no more items to read. But line 10

prevents the program from stopping. TRAP40 tells the com

puter to go to line 40 if an error occurs. Forcing an error to

happen is not particularly good programming practice, but it

illustrates one use of TRAP.

By the time we get to line 40, the variable MAX holds the

highest value, and TL is the total number of bars to be plotted.

We change the TRAP target to line 100, which switches to the

text screen, GRAPHIC0, and prints the line number with the

error, EL, and the type of error, ERR$(ER). If you type the pro

gram correctly, this error routine shouldn't be necessary.

The business with the logarithms is part of the scaling.

Dividing the LOG of a number by the LOG of 10 and taking

the INTeger value gives you the number of digits to the

left of the decimal place. Another way to do this is SC=

LEN(STR$(INT(MAX*1.2)))-1.

u

u

LJ

n

n

n

n

n

Programming

n

n

n

n

n

We'll be using the screen as if it were graph paper 500

squares across by 1024 squares deep. The screen is really only

320 by 200, and it's not possible to get better resolution than

that, but the SCALE command in line 50 allows you to treat

the screen as if it had more points.

A single command, GRAPHIC1 in line 50, turns on hi-res

mode. Other options would be to split the screen between hi

res and text or to go into multicolor hi-res (with or without

text split). SCNCLR clears whichever screen (hi-res or text) is

currently being displayed. COLOR0, the background, is set to

white. The foreground (COLOR1) and border (COLOR4) are

painted purple. The 128 uses color numbers 1-16 rather than

0-15, so you can look at the keyboard and find the color num

ber from the colors printed on the numeric keys. Blue would

be color 7, for example.

We can now start the graph. In line 60, ten lines are

drawn across the screen as background for the bars. The first

number after DRAW is the color (color 1 was set to purple in

the previous line). It's followed by the x and y coordinates of

the beginning and the end of the line. RESTORE resets the

DATA statements so the values can be read again.

All of the bars are drawn in the next loop. The values are

taken from DATA statements and the coordinates (XC and

YC) are calculated for the top left corner of the bar. BOX then

plots a rectangle, based on the x and y positions of two oppo

site corners. To make the bars fatter, increase the .75 to a

value of 1. Decrease it to make thinner bars. The second to the

last number after BOX means the rectangle should not be ro

tated. The last number 1 after BOX fills in the rectangle after

it's drawn.

Finally, we wait for a keypress. GETKEY works like GET,

except it stops the program until a key is pressed. GRAPHIC0

sends us back to the text screen, and the program ends.

Everything has been done in ten lines, without a single

PEEK, POKE, AND, or OR. If you wrote such a program on

the 64, it would be at least twice as long. And you'd need a

reference guide to find all the POKEs and formulas for turning

pixels on and off.

Chapter 1

The Pie Chart

The next example program, Program 1-2, reads a list of values

from DATA statements and creates a pie chart.

u

u

u

LJ

The first line may look strange to VIC and 64 owners,

with the DO-UNTIL-LOOP structure. The typical FOR-NEXT

loop starts counting at one number and ends when it reaches

a specified value. But this loop starts at DO and repeats over

and over when it reaches the LOOP statement. Three things

can terminate the loop. It can loop WHILE an expression is

true (when it's false, the loop ends). Or DO-LOOP can con

tinue while some expression is false, UNTIL it's true. Or, the

EXIT command can get you out of the loop.

In this case, the loop reads a variable A$ from DATA

statements. It continues UNTIL it finds the word END. TL is

the total number of items on the list—the numbers which will

be translated to slices of the pie graph. SUM is the total of the

values. We don't need a maximum in this program.

Line 20 enables the multicolor hi-res screen and clears it

(adding ,1 after GRAPHIC3 is another way of doing

SCNCLR). The different colors are set, and SCALE is turned

on (to the default value of 1024 by 1024). WIDTHl makes the

graphics routines use the thinnest lines available.

u

u

10

Programming

Next, the CIRCLE command draws a circle in color 2,

centered on the screen. CIRCLE could have been called POLY

GON, because it can also create triangles, squares, pentagons,

hexagons, and other regular shapes. The label "Pie Chart" is

then printed in uppercase/lowercase above the circle. The

CHAR command, as noted above, prints at a specified location

on any text or hi-res screen. In this case, we're printing in

color 2, starting at the fourteenth column and first row.

The rest of the program is math, to convert the numbers

from the DATA statements first into percentages of the total

and then into angles (which will add up to 360 degrees). Note

the underlined t at the end of line 50. That means you should

type a SHIFTed f, the pi character (n).

We don't need to go into the details of trigonometric func

tions like sine and cosine. They're necessary to calculate the

angles for the sides of the wedges. After the wedge is on the

screen, we also have to find a point in the middle of the angle

and use PAINT to fill it with color (line 90).

The U.S. on a Flag

The final program, Program 1-3, best illustrates the power of

the new graphics commands. It's just nine lines long, plus

three for DATA statements. The result is an American flag su

perimposed on a map of the United States.

11

u
Chapter 1

(

Line 10 jumps right into the multicolor hi-res screen. Col- '—
ors 0-3 are set to blue, red, white, and light gray. Line 20

draws the 13 stripes, using the BOX command, alternating be- j~|
tween red and white. The expression (J>96) will equal 0 if '—I
false and — 1 if true. It's needed to make the stripes shorter at
the top of the flag, so there will be room for the stars. f I

A single white star is created in line 30. There should be <—I
50 stars on the flag, but it's necessary to draw only one to be
gin with. The SSHAPE (Save SHAPE) in line 40 copies the
star (ten pixels wide and six deep) into the variable SA$. Once
it's saved, we can use SA$ like a rubber stamp and quickly
make all 50 stars appear.

Line 50 calculates x and y positions for each of the 50

stars and GSHAPEs them into place. The flag is done.

The coordinates of the roughly drawn U.S. map shape have
been put into DATA statements to be read in line 60. DRAW
puts the edges of the map on the screen, on top of the flag. Fi
nally, line 80 fills the area outside the map with light gray.

The Question of Compatibility

VIC and 64 owners may wonder about hardware and software
compatibility between their systems and the 128. As far as we

can tell, tape drives, disk drives, monitors, modems, joysticks,
and other peripherals will work with the 128 in either 64

mode or 128 mode. In addition, the 64 mode is completely
compatible with all 64 software (on disk, tape, or cartridge) we

have tested. The CP/M option, however, requires the newer,
faster 1571 (single double-sided drive) or 1572 (dual double-
sided drive). And the tape drives and joysticks for the Plus/4
and 16 will not work on the 128 because the connectors are of
different sizes.

There are two video outputs available in 128 and CP/M

mode: 40-column composite video and 80-column RGB (the j
64 mode has no 80-column option). You can have two screens

containing completely different text. Early reports on the 128

noted that the 80-column option is available only with an 1 [
RGB (Red, Green, Blue) monitor. That's true if you want 80

columns and color; we've hooked up the 128 to an IBM RGB

monitor using a standard cable. But pin 7 of the IBM cable is j I
not used, and Commodore has put 80-column monochrome

output on that pin. We've wired up a cable that allows 80 col

umns (black-and-white only) on a 1701 or 1702 monitor. j j

12

LJ

Programming

(Cardco recently announced such a cable, at a suggested price

of $9.95.) You can have 80 columns, but no color, on your

Commodore monitor with only a slight sacrifice of resolution.

BASIC 7.0 Keywords

All Commodore BASICs contain the commands of version 2.0,

found on the VIC and 64. Version 3.5, from the Plus/4 and

16, included many useful new graphics commands as well as

some new commands and functions for program control. The

new BASIC 7.0 has all of the previous commands (except

RLUM, used to read a color's luminance in BASIC 3.5), and

much more, giving 128 programmers the most powerful

BASIC yet available on a Commodore computer.

Table 1-1. BASIC 7.0 Keywords

ABS

AND

APPEND

ASC

ATN

AUTO

BACKUP

BANK

BEGIN-BEND

BLOAD

BOOT

BOX

BSAVE

BUMP

CATALOG

CHAR

CHR$

CIRCLE

CLOSE

CLR

CMD

COLLECT

COLLISION

COLOR

CONCAT

CONT

COPY

COS

DATA

DCLEAR

DCLOSE

DEC

DEFFN

DELETE

DIM

DIRECTORY

DLOAD

DO-LOOP-WHILE-UNTIL-EXIT

DOPEN

DRAW

DSAVE

DS$

DVERIFY

ELSE

END

ENVELOPE

ERR$

EXP

FAST

FETCH

FILTER

FN

FOR-NEXT

FRE

GET

GET#

GETKEY

GO 64

GOSUB

GOTO/GO TO

GRAPHIC

GSHAPE

HEADER

HELP

13

Chapter 1

u

HEX$

IF-GOSUB

IF-GOTO

IF-THEN

IF-THEN-ELSE

INPUT

INPUT#

INSTR

INT

JOY

KEY

LEFT$

LEN

LET

LIST

LOAD

LOCATE

LOG

LOOP

MID$

MONITOR

MOVSPR

NEW

ON-GOSUB

ON-GOTO

OPEN

PAINT

PEEK

PEN

PLAY

POINTER

POKE

POS

POT

PRINT

PRINT#

PRINT USING

PRINT# USING

PUDEF

RCLR

RDOT

READ

RECORD

REM

RENAME

RENUMBER

RESTORE

RESUME

RETURN

RGR

14

RIGHT$

RND

RREG

RSPCOLOR

RSPPOS

RSPRITE

RUN

RWINDOW

SAVE

SCALE

SCNCLR

SCRATCH

SGN

SIN

SLEEP

SLOW

SOUND

SPC

SPRCOLOR

SPRDEF

SPRITE

SPRSAV

SQR

SSHAPE

ST

STASH

STEP

STOP

STR$

SWAP

SYS

TAB

TAN

TEMPO

TI

TI$

TO

TRAP

TROFF

TRON

UNTIL

USR

VAL

VERIFY

VOL

WAIT

WHILE

WIDTH

WINDOW

XOR

u

u

u

LJ

LJ

n

n

n

n

Programming

Program 1-1. Bar Chart
For mistake-proof program entry, be sure to use "The Automatic Proofreader/' Appendix B.

f~| JX 10 TRAP40
PF 20 READN:IFN>MAXTHENMAX=N

GK 30 TL=TL+1:GOTO20

nCG 40 TRAP100:SC=INT(1+LOG(MAX*1.1)/LOG(10)):YY=10

T(3-SC):XX=500/(TL+2)
DC 50 GRAPHIC1:SCNCLR:SCALE1,500,1023:COLOR0,2:COL

OR1,5:COLOR4,5

EM 60 FORJ=1TO10:DRAW1/0,J*100TO499,J*100:NEXT:RES

TORE

FE 70 FORJ=1TOTL:READN:XC=J*XX:YC=1000-(N*YY):BOX1

,XC,YC,XC+XX*•75,1000,0,1:NEXT

EC 80 GETKEYA$:GRAPHIC0:END

RH 90 DATA252,183,185,204,289,446,418,193,204,34,2

72,203

QA 100 GRAPHIC0:PRINT"LINE"EL"SEEMS TO HAVE AN ERR

OR: ":PRINTERR$(ER)

Program 1-2. Pie Graph
For mistake-proof program entry, be sure to use "The Automatic Proofreader/' Appendix B.

XX 10 DO UNTIL A$="END":READA$:TL=TL+1:SUM=SUM+VAL

(A$):LOOP:TL=TL-1
HJ 20 GRAPHIC3,1:COLOR0,13:COLOR1,3:COLOR2,2:COLOR

3,15:COLOR4,13:SCALE1:WIDTH1

GA 30 CIRCLE2,512,512,300,360:CHAR2,14,1,CHR$(14)+

11 PIE CHART ",0

ES 40 XS=812:YS=512:PC=0:AN=0:RESTORE

CX 50 FORJ=1TOTL:DRAW2,512,512TOXS,YS:READN:TN=AN+

(N/SUM)*2*T
RP 60 YS=512-SINTTN)*360:XS=512+COS(TN)*300

PK 70 MA=PN+(AN-PN)/2
JD 80 AT=512-SIN(MA)*270:XT=512+COS(MA)*255

BF 90 PAINTPC,XT,AT,1

GG 100 PN=AN:AN=TN:PC=(PC+1)AND3:NEXT

nSG 110 GETKEYA$:GRAPHIC0,1:COLOR0,12:LIST

SH 120 DATA1235,3679,4168,1718,3696,1467,2375,1137

,END

' Program 1-3. Map with Flag
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix B.

CS 10 GRAPHIC3,1:COLOR0,7:COLOR1,3:COLOR2,2:COLOR3

,16:COLOR4,16:WIDTH1:C=1

HK 20 FORJ=35TO160STEP10:HX=64*(J>96)+75:BOXC,HX,J

,150,J+9,0,1:C=3-C:NEXT

H
15

n

u
Chapter 1

DD 30 DRAW2,19,40 TO 21,45 TO 16,42 TO 22,42 TO 17 I I
,45 TO 19,40

QA 40 SSHAPE SA$,15,40,24,45:NS=5:IN=0

GS 50 FORJ=0TO8:SY=J*7+40:FORK=0TONS:SX=K*10+14+IN
:GSHAPESA$,SX,SY:NEXTK:NS=9-P-NS:IN=5-IN:NEX 1 '
TJ

EH 60 X=15:Y=36:FORJ=1TO15:READNX,NY:DRAW3,X,YTONX
,NY:X=NX:Y=NY:NEXT j

MH 70 DRAW3,X,YTO15,36

PJ 80 PAINT3,80,1,0

FE 90 GETKEYA?:GRAPHIC0

EC 100 DATA90,38,98,50,120,60,143,35,148,39
CD 110 DATA 128,86,122,120,138,143,132,146,112,126
SP 120 DATA 84,130,77,165,56,140,24,126,11,9?0

16

LJ

U

i

H Save-with-Replace:
I-, Debugged at Last

n
P. A. Slaymaker

Since the early days of the Commodore PET in the late 1970s, a

controversy has raged over one particular disk command—5ave-

with-Replace, This convenient command automatically replaces an

existing disk file with a new file of the same name, combining

SCRATCH and SAVE in one operation. But for years, many

Commodore users have shunned Save-with-Replace like poison,

swearing that it contains a mysterious bug which unpredictably

scrambles disks. And just as many other users contend the bug

doesn't exist at all. Now, finally, there's proof: The bug does exist in

the 1541 and 1571 drives, it can be demonstrated, and, most im

portantly, it can be avoided. This is the first full explanation of why

the bug happens and how you can circumvent it.

It's time to settle something once and for all: There is a Save-

with-Replace bug! It afflicts the disk operating system (DOS)

built into every 1541 and 1571 disk drive, potentially threaten

ing every disk on which you use the Save-with-Replace com

mand. We'll review what the Save-with-Replace bug typically

does, list a program which demonstrates the bug beyond

doubt, explain why it happens, and, finally, recommend a pro

cedure for avoiding the bug.

The Save-with-Replace command (typed as SAVE@) has

been accused of scrambling, swapping, duplicating, or over

writing disk files and of messing up block allocation maps (a

BAM is a map on a disk which keeps track of which blocks

are storing files and which are free). Many computer maga

zines and other authorities in the Commodore community

have warned against using SAVE@. Yet other Commodore ex

perts have never experienced problems with SAVE@ and

swear the bug is an old hacker's tale. There are many anec

dotes about when the bug strikes, which files are affected, and

when the files or BAM will be garbled. The mystery has per

sisted for so long because usually the bug is not repeatable.

But this article shows how to replicate the bug and explains

17

u
Chapter 1 (

= LJ

why it is related primarily to the file length and the distribu- '—'
tion of free blocks on the disk as determined by the BAM.

Recently some new evidence surfaced about SAVE@. In I j

an article published in the July 1985 issue of The Transactor, '—'
"SAVE with Replace Exposed!!/' author Charles H. Whittern

showed that the bug exists under some conditions. This article

made some observations on files likely to be affected and '—
listed a program which repeatedly loaded and saved files

using SAVE@. Afterward, an examination of the disk showed

some files to be scrambled. Unfortunately, no details of the

file configurations were given, and the editors admitted that

the bug had them baffled—but at least the problem was rec

ognized, a first step.

Our investigation shows that the bug usually occurs when the

drive number has not been specified on previous drive operations,

such as loading a file or listing a directory. In other words, typing

L0AD"filename",8 or L0AD"$",8 instead of DLOAD"filename"

or LOAD"0:filename",8 or LOAD"0:$",8 sets up conditions

for the bug. The drive number 0 should be specified in disk

commands because, as well explain later, the SAVE@ bug is

related to the phantom software drive 1 in the 1541 and 1571.

(Note that BASIC 7.0 adds the 0: to all DOS commands.) In

addition, the bug tends to bite disks on which many files have

been scratched and rewritten. This leaves gaps on the disk so

that a file is scattered over many tracks. These gaps do not

normally cause a problem if you specify the drive number in

disk commands.

Therefore, the key to avoiding the SAVE@ bug is to always

specify drive 0 when performing any disk drive function, to al

ways reset the drive before any SAVE@ operation, or to use

DLOAD, DSAVE, and F3 for directory. Resetting the drive re

quires either turning the drive off and then on, or sending a

reset command (OPEN15, 8,15,"UJ"). j j

Demonstrating the Bug

At this point, some of you might be skeptical that the SAVE@]]
bug really exists. To prove that it does, the accompanying pro

gram formats a new disk with the single file "SAVE@ I j

DEMO" and alters the BAM to simulate a partially used disk | j
with a gap due to scratched files.

18

n

n

n

Programming

n

For this demonstration you'll need two disks—one to save

the original program on and a second disk that will be format

ted by the accompanying program. Remember, formatting a

disk erases everything from it, so be sure to use a new disk for

this demonstration.

Follow these instructions carefully (be sure to use the

LOAD and SAVE commands, not DLOAD and DSAVE, for

this demonstration):

1. Type the program exactly as listed—including all uppercase

REM statements. It's important to type the program as

listed because it must be at least nine blocks long on the

test disk to insure proper results.

2. Save the program on a disk before running it.

3. Set the computer for 40 columns. Put a blank test disk in

the drive and run the program. It will format the disk

(erasing anything that might be on the disk) and save a file

called SAVE@ DEMO on the disk. Type LOAD"$",8 to list

the directory and notice that 254 blocks are free if you

have a 1541 drive and that 918 blocks are free if you have

a 1571 drive.
4. Reset the drive by turning it off, then on. Load the file by

typing LOAD"SAVE@ DEMO",8.

5. Save the file three times using the SAVE@ command

(SAVE"@0: SAVE@ DEMO",8). Do not list the directory or

perform any other operation between SAVE@ commands.

6. Initialize the drive with OPEN l,8,15,"I0:":CLOSE 1.

7. List the directory by typing LOAD"$",8. What's this? There

were 254 (1541) or 918 (1571) blocks free before, but now

there are 258 (1541) or 922 (1571)—a discrepancy of four

blocks. (If you don't get this result, it probably means that

you haven't followed the directions exactly. Start again at

step 3.) If you examine the BAM with a disk utility, you'll

see that the first four sectors of the file are marked as free.

If you executed a fourth SAVE@ command, it would over

write the beginning of the file, and the disk would be cor

rupted even worse.

8. Now rerun the program to^make a new test disk. Reset the
drive and run the above test again, but specify the drive

number for the load (LOAD"0:SAVE@ DEMO",8). The

SAVE@ bug does not occur!

19

u
Chapter 1

Always Specify Drive 0 '—
This demonstration provides a powerful lesson: All DOS com

mands should include the drive number 0 (remember, BASIC [I
7.0 DOS commands add drive number 0 for you): '—'

Load file LOAD"0:filename",8 .

DLOAD"filename"

Save fUe SAVE"0:filename",8 !—'
DSAVE"filename"

Save with replace SAVE"@0:filename",8

DSAVE"@filename"

LOAD directory LOAD"$0:",8

DIRECTORY

F3

Initialize drive 0 OPEN15,8,15,"I0":CLOSE15

Validate OPEN15,8,15,"V0":CLOSE15

COLLECT

Similarly, all disk file commands should specify the drive

number.

Most Commodore users do not specify the drive number

when loading the directory or files. The 2541 User's Manual

examples for the LOAD command don't specify the drive, and

neither do most magazine articles. If the drive number is not

specified, the disk drive is supposed to default to drive 0.

What actually happens very often causes an error message

such as 74,DRIVE NOT READY,00,00.

The Missing Drive

The early Commodore PETs were available with dual disk

drives—two drives in one unit. The drives were addressed as

0: and 1: when using disk commands. But on later Commo

dore computers designed to use the 1540/1541, multiple

drives are addressed by changing the device number, not the

drive number. The device number for a single drive is 8. That's I I
why you type a command like LOAD "filename",8. On dual-

drive systems, the second drive is usually addressed as device

9, as in LOAD"filename",9. Therefore, most people stopped I I
(or never started) specifying the drive number, which is 0:, for —

all 1541 and 1571 disk drives. Drive 1: simply doesn't exist

with the 1541. I I
What happens when the drive number is not specified for '—'

a LOAD or SAVE? DOS first checks for a drive number. If

20

u

u

H

n

n

n

n

n

n

n

n

n

Programming

none is specified, it assumes drive 0. Okay so far. Then DOS

attempts to read the disk. If no disk is found, DOS automati

cally switches to the nonexistent drive 1. A DRIVE NOT

READY error then results whether or not a drive number was

specified. If a disk is found, DOS searches its internal directory

for the specified file. If the default drive was used, DOS

switches to drive 1 to continue searching. This also causes the

DRIVE NOT READY error, since there is no drive 1. Further

more, drive 1 remains the default drive as long as there are di

rectory searches to be done. The internal drive pointers must

be reset to recover from this error condition.

SAVE@ always works properly in our tests if the drive

number is specified on all operations and no direct access

buffers are allocated. We are not aware of anyone who has

documented a failure under these conditions (assuming a

closed file was specified, sufficient room was present on the

disk, and no read or write errors occurred). Thus, Commodore

experts who claim there is no bug are partially correct. We

have also found that if the drive number is not always speci

fied during loads and directory listings, as is common practice,

the SAVE@ bug can occur even though the drive number is

specified in the SAVE@ command.

Files stored on just one or two tracks—such as short files

on a fresh disk—are not prone to the SAVE@ bug. Files stored

over many tracks on disks on which many files have been

saved and scratched are the most susceptible, as are files saved

with some utilities intended to speed up the 1541 disk drive.

DOS Thievery

First, we should note that although the SAVE@ command de

letes a disk file and saves a replacement in a single operation,

it works differently than if you issued separate SCRATCH and

SAVE commands. SAVE@ calls entirely different DOS

routines—the SCRATCH and SAVE are executed as part of a

continuous procedure, and the SAVE@ command therefore re

quires that more drive buffers be available.

DOS V2.6 has five internal buffers, numbered 0-4. These

buffers start at memory pages $300, $400, $500, $600, and

$700, respectively. Normally, an image of the disk's BAM

(Block Availability Map) is stored in the page at $700, an im

age of the directory sector in use is stored at $600, and the

21

u
Chapter 1

other three buffers are available for file use. As long as a '—
buffer is active, it cannot be used for anything else. If DOS _

has assigned an internal channel to the BAM at $700, then

trying to open a direct channel to buffer 4 (from BASIC: '—

OPEN 2,8,2,//#4//) will produce a 70,NO CHANNEL,00,00

error. j ' I

Similarly, DOS assigns channels and buffers to the direc- '—'
tory sector and file sectors which are being read or written.

Normally, DOS assigns two read or two write channels and

uses only three of the five buffers. The SAVE@ command,

however, requires all five buffers—two read, two write, and

the BAM. If DOS can't find a free buffer, it tries to steal an as

signed but inactive buffer. This thievery causes the SAVE@

command to fail occasionally—for reasons which will be dis

cussed shortly.

Why does omitting the drive number in disk commands

cause DOS to steal a buffer? When a file is opened or loaded

via the OPEN routine ($D7B4), DOS searches the internal di

rectory to look for the specified filename (DOS routine names

and addresses in this article conform to those listed in Inside

Commodore DOS, Datamost, 1984). ONEDRV ($C312) deter

mines whether a drive was specified. OPTSCH ($C3CA) as

signs a default or specified drive for each file in the command,

and also calls AUTOI ($C63D). AUTOI reads the BAM of the

disk in the specified drive, and also tries to initialize drive 1 if

no drive was specified. Usually buffer 3 ($600) is allocated for

the phantom drive 1 BAM, and a Bl SEEK command is issued

to the disk controller. This results in an internal DRIVE NOT

READY error in the disk controller. The error is trapped by

AUTOI, but not reported outside the disk drive. This leaves

buffer 3 allocated but inactive. FFST ($C49D) then reads the

directory and tries to find the file.

The reason this inactive buffer assignment is important is j I

that the SAVE@ command requires all five buffers, but only four i—i

are now available. Whenever DOS needs to allocate a buffer,

it calls GETBUF ($D28E). If one is not free, GETBUF tries to i

steal an inactive one by calling STLBUF ($D339). If the drive . I
number is always specified and no direct access buffers are

allocated, STLBUF is never called. We verified this by modify- j I

ing GETBUF after copying DOS onto an EPROM (Erasable- 1 I
Programmable Read Only Memory). If a channel can't be

stolen, then a NO CHANNEL error occurs. But if STLBUF is |~j

called, the SAVE@ bug sometimes occurs. I I

22

u

n

n

n

n

n

Programming

H

n

n

n

Stealing the Wrong Buffer

STLBUF can be called several times during a SAVE@ com

mand. The result is that the BAM and directory sectors can be
reassigned to different buffers during a single SAVE@. We

have found the BAM and directory sectors in every drive

buffer after different SAVE@ commands. We have found
copies of the current directory sector in two different buffers,
one an old sector and one properly updated, but the wrong

one had been written to the disk. Somehow, the pointers to

the BAM and directory sectors are not properly accounted for.
Which buffer is stolen by STLBUL depends on prior buffer
usage and the values stored in LRUTBL,Y ($FA,Y), the least

recently used table. It appears that STLBUF updates all point
ers except LRUTBL,Y. This means that multiple calls to

STLBUF may steal the wrong buffer—in this case, the wrong

buffer to steal is the BAM.
The BAM is stored in the drive in one of the buffers.

STLBUF should not steal the drive 0 BAM, but should instead
take back the unused buffer incorrectly assigned to drive 1. It

never steals the drive 1 BAM, buffer 3 at $600, because

STLBUF cannot take a buffer which encountered a drive error.

Remember that an internal DRIVE NOT READY error did oc

cur, because there is no drive 1.

To test this, we copied into EPROM an altered version of
DOS with STLBUF modified to allow stealing a buffer with

this error. This allowed the phantom drive 1 BAM buffer to be
freed, and the SAVE@ bug did not strike during tests with

this modified DOS.

If this buffer stealing occurs, why does SAVE@ work
most of the time? We must dig deeper into DOS to answer

this question. When a file is opened and blocks (or sectors) are

written to a disk, the BAM is not directly updated in the drive

memory. Instead, a BAM image for each of two tracks is
stored at BAM ($2A1-$2BO). Each time a new block is allo

cated by WUSED ($EF90), it is recorded in the BAM image.

When a new track is tested for free sectors, DOS checks

whether it has a BAM image for it. If not, it calls SWAP

($F05B), which first updates the BAM with the BAM image

from the next-to-last track, copies the new track's BAM map

into the BAM image, and then zeros that track in the BAM.

This all works perfectly—most of the time.

23

u
Chapter 1

After the last file sector is written to the disk, the BAM '—'
still has not been written to the disk^In fact, the BAM in the
drive is wrong because it has not yet been updated from the
BAM images. When a file is closed, the disk directory is '—
closed, CLSDIR ($DBA5), by reading in the file's directory sec
tor, testing for a replace file type, and then rewriting it to the I I

disk. MAPOUT ($EEF4) is called to read the BAM off the disk, I I
if necessary, and then to update it from the BAM images by
calling PUTBAM ($F0A5). The updated BAM is then written
back to the disk.

During a SAVE@ command, DOS performs an additional
step after reading the directory sector. The file type is desig

nated as replace, so DELFIL ($C87D) is called to delete the

original version of the file from the BAM. It reads in the BAM

if necessary when freeing the first sector, FRETS ($EF5F), and

then proceeds to trace through the file and delete sectors in
the BAM images. The BAM is then written to the disk.

Bungled BAM

Normally, this procedure works correctly. But havoc results if

the BAM buffer is stolen while the file is being closed. This
can happen during a SAVE@ command because DELFIL re

quires two additional buffers. The BAM can be stolen at differ

ent points during the procedure, depending on which buffers

were previously used—which, in turn, depends on the number

of sectors in the file and the tracks on which it is stored.

After the BAM is stolen, it is read back in when needed

and updated from the BAM images. Only two tracks can be

updated, however, since there are only two images. If more

than two tracks have been accessed by SAVE@, the BAM may

not be correctly updated. A track could be updated correctly,

left unchanged, or fully allocated, depending on when the
BAM was stolen. M

If extra sectors are allocated, the BAM is incorrect, but no
permanent harm is done. A validate command will cure the

problem. If sectors are not allocated, then a new file will be j I
saved on top of the old file's sectors. In Program 1-4, a fourth

SAVE@ command would result in the file being written on

top of the old file's first four sectors, and then the whole new I I
file would be scratched—a tragic result, indeed.

Based on these findings, we recommend that you avoid

24

u

n

n

n

n

n

n

n

n

n

n

Programming

the SAVE@ command when direct access channels to the

drive are open or if you don't always specify the drive number

in disk commands. You should also avoid SAVE@ when using

programs or cartridges intended to speed up access on the

1541 disk drive. These programs often reserve internal drive

buffers and may cause problems even if the drive number is

specified. If you're using the DOS Wedge, we recommend is

suing a >UI or >UJ command before each SAVE@ command

to be sure all the buffer pointers are reset. Many word proces

sors also allow you to send these commands to the drive.

Otherwise, the drive should be turned off and then on before

using SAVE@. (On the SX-64, Commodore's portable 64,

press the drive reset button.)

During our studies we found several other minor bugs in

DOS V2.6, including the subroutine which puts the value 2 at

the drive memory location $197. This bug does no harm since

it affects a normally unused section of drive memory. How

ever, we have found it can affect DOS routines downloaded

into the drive. There may be other bugs or quirks which we

have not found, so the Commodore DOS controversy may

never be fully closed.

Program 1-4. SAVE@ Bug Demonstration
For mistake-proof program entry, be sure to use 'The Automatic Proofreader," Appendix B.

KQ 10 COLOR 0,1:COLOR 4,1

FQ 20 PRINT"{BLK}{CLR}lYEL}{2 DOWN}{RIGHT}{RVS}
{TAB}"CHR$(14)"{HjSAVE@ BUG DEMONSTRATION"

CC 40 PRINT"{CYN}{DOWN}{RIGHT}THE SAVE@ DEMO PROGR

AM FORMATS A BLANK"

GD 50 PRINT"{RIGHT}DISK, ALTERS THE BAM, SAVES ITS

ELF, AND";

RS 60 PRINT"{RIGHT}THEN ALTERS THE BAM AGAIN.

{2 SPACES}SAVE@ WILL"

PM 70 PRINT"IRIGHTjFAIL THE THIRD TIME ON THIS DIS

K."

RD 80 PRINT "{DOWN } {RIGHT} {GRN }_INSERT DISK TO FORMA

T - PRESS {RVS} SPACE {OFF}."

FD 90 GOSUB 5000: REM{2 SPACES]GET KEY PRESS

BP 100 IF K<>60 THEN 90:REM WAIT FOR SPACE

BC 110 PRINT"{DOWN}{RIGHT}{REDjWARNING! THE DISK W

ILL BE ERASED."

HR 120 PRINT"{RIGHT}{YEL}ARE YOU SURE? TO CONTINUE
PRESS <Y>."

RF 130 FOR T=0 TO 100:NEXT: REM TIME DELAY

HM 140 GOSUB 5000s REM{2 SPACES}GET KEY PRESS

25

u
Chapter 1 . - -.

1 I I

GH 150 IF K=25 THEN 170: REM CONTINUE IF <Y> ' '
JA 160 PRINT"{DOWN}{RIGHT}{YEL}PROGRAM ABORTED.":G

OTO 330 I —j

PD 170 CLOSE2:CLOSE15: REM{2 SPACESjCLOSE CHANNELS j |
KQ 180 OPEN15,8,15: REM OPEN COMMAND CHANNEL

SM 190 PRINT"{DOWN}{RIGHT}{CYN}NOW FORMATTING DISK
- PLEASE WAIT." II

QA 200 PRINT*15,"N0:SAVE@ TEST"CHR$(44)"PS": ' '
{3 SPACES}REM{2 SPACES}FORMAT DISK

XA 210 GOSUB 3000: REM CHECK ERROR CHANNEL

JH 220 PRINT"{UP}{RIGHT}{PUR}FORMATTING HAS BEEN C
OMPLETED.U SPACES}" ~

KB 230 PRINT" {DOWN} {RIGHT} g7§ALTERING BAM."
FX 240 GOSUB 4010: REM OPEN DIRECT CHANNEL AND CHE

CK ERROR CHANNEL

XE 250 GOSUB 1010: REM{2 SPACES}ALTER BAM

CF 260 CLOSE2:CLOSE15: REM{2 SPACES}CLOSE CHANNELS

JH 270 PRINT"{RIGHT}{RED}SAVING SAVE@ DEMO."
BG 280 SAVE"0:SAVE@ DEMO",8

EG 290 PRINT"{RIGHT}{YEL}ALTERING BAM."
PB 300 GOSUB 4000: REM OPEN DIRECT CHANNEL AND CHE

CK ERROR CHANNEL

KA 310 GOSUB 2010: REM{2 SPACES}ALTER BAM

HM 320 PRINT"{DOWN}{RIGHT}{CYNjDISK IS FINISHED! N
OW REFER TO TEXT." "~

SK 330 CLOSE2:CLOSE15: REM{2 SPACES}CLOSE CHANNELS

JX 340 POKE 208,0: REM{2 SPACES}CLEAR KEYBOARD
PP 350 END

EA 1000 REM * MODIFY BAM SECTOR FOR SAVE

FP 1010 PRINT#15,"Ul:2 0 18 0" : GOSUB 3000:

{4 SPACES}REM READ BAM SECTOR
BG 1020 PRINT#15,"B-P:2 52" : GOSUB 3000:

{6 SPACES}REM POSITION BUFFER POINTER TRAC
K 13

BA 1030 FOR 1=1 TO 20: PRINT#2,CHR$(0);:{8 SPACES}

NEXT:REM{2 SPACES}FILL BAM WITH ZEROS

BA 1040 PRINT#15,"B-P:2 76":GOSUB 3000:{6 SPACES}R

EM POSITION BUFFER POINTER TRACK 19

DQ 1050 FOR 1=25 TO 92: PRINT#2,CHR$(0);: I f
{8 SPACES}NEXT:REM{2 SPACES}FILL BAM WITH ' '
{SPACE}ZEROS

EG 1060 PRINT#15,"U2:2 0 18 0" : GOSUB 3000: j ,

{4 SPACES}REM{2 SPACES}WRITE TO BAM SECTOR
PC 1070 PRINT#15,"10" : GOSUB 3000:{13 SPACES}REM

{SPACE}INITIALIZE BAM
XF 1080 RETURN | I

AF 2000 REM * MODIFY BAM SECTOR AFTER SAVE I I
AP 2010 PRINT#15,"Ul:2 0 18 0" : GOSUB 3000:

{4 SPACESjREM READ BAM SECTOR

26

n

n

n

n

BD

JE

BS

CX

XJ

SG

KB

KF

KA

MA

FC

SM

JA

ED

HM

AR

XS

SA

RJ

2020

2030

2040

2050

2060

2070

2080

2090

3000

3010

3020

3030

4000

4010

4020

5000

5010

5020

5030

Programming

PRINT#15,"B-P:2 60" : GOSUB 3000:

(7 SPACES}REM POSITION BUFFER POINTER TRAC

K 15

REM{2 SPACES}FREE UP 12 SECTORS ON TRACKS

{2 SPACES}15 TO 17
PRINT#2,CHR$(4)CHR$(15)CHR$(0)CHR$(0);

PRINT#2,CHR$(4)CHR$(15)CHR$(0)CHR$(0);

PRINT#2,CHR$(4)CHR$(15)CHR$(0)CHR$(0);

PRINT#15,MU2:2 0 18 0M : GOSUB 3000:

{4 SPACES}REM{2 SPACES}WRITE TO BAM SECTOR

PRINT#15,"I0" : GOSUB 3000:113 SPACESjREM
{SPACE UNITIALIZE BAM

RETURN

INPUT#15,EN,E$,ET,ES

IF EN=0 OR EN=73 THEN RETURN

PRINT"{2 DOWN}{RIGHT}MEN;E$;ET;ES

CLOSE2:CLOSE15:END

OPEN15,8,15:GOSUB3000:REM{2 SPACES}OPEN CO

MMAND CHANNEL AND CHECK ERROR

OPEN2,8,2,"#M2GOSUB3000: REM OPEN DIRECT C

HANNEL AND CHECK ERROR CHANNEL

RETURN

POKE208,0:POKE212,88: REM CLEAR KEY

K=PEEK(212)

IF K=88 THEN 5010

RETURN

n

n

n

n

n

27

Dynamic Keyboard
Jim Butterfield

Dynamic keyboard techniques let you perform tasks that would
otherwise be difficult or impossible in BASIC

LJ

U

LJ

Many BASIC commands can be used in either direct mode

(typed directly on the keyboard without a line number) or pro

gram mode (as part of a program). Certain statements and com

mands, however, work only in direct mode. Using them in a

program requires the dynamic keyboard technique, which lets a

program act like it's you—typing on the keyboard. This

method is especially effective on Commodore machines be
cause of their full-screen editing. The term dynamic keyboard

was first used by Mike Louder in 1978, though the technique

had been used previously by Larry Tessler to merge programs.

Direct Versus Programmed

A direct-mode command doesn't have a line number and is

executed as soon as you press RETURN. An example is PRINT

"HELLO". In program mode, the command does have a line

number and is executed only when you type RUN and then

press RETURN. An example is 10 PRINT "HELLO". Most

BASIC commands work in both direct and program mode.

A few BASIC commands cannot be used in direct mode,

however; they may appear only in a program. GET, INPUT,

GET#, and INPUT# are the best-known of these. Usually,

these commands use a segment of memory called the input

buffer to store data as it arrives, and they won't work in direct

mode because the same input buffer is used to hold the com- ,

mand itself. Thus, the incoming data might overwrite the com- J |
mand you typed in.

On the other hand, some BASIC commands can be used

only in direct mode—not in a program. CONT, for example, |
causes an indefinite pause when used in a program. LIST

works in program mode, but on most Commodore computers ;—-,

the program ends after executing LIST. In direct mode, you |
can enter a program line to add to the program or change it.

You can't do this while running a program. Again, there's a ((

28

u

n

n

n

n

n

n

n

n

n

Programming

difference between programs and direct commands—they

have different powers.

A very important difference is found in the LOAD com

mand. If typed as a direct command, LOAD fills memory with

a new program from tape or disk. If there was already a pro

gram in memory, it vanishes and its variables are thrown

away. But a LOAD command executed within a program is

quite different. The new program comes in, but existing vari

ables are not scrapped—they are preserved so that the new

program can use them. This is a powerful programming tech

nique called chaining, which lets one program continue pro

cessing data that was generated by a previous program.

Invisible Fingers

Direct keyboard statements can perform certain tasks that pro

grams can't (at least, not in the usual way). For example, if we

want a program to invite a student to type in a formula,

BASIC doesn't allow the formula to be evaluated (an INPUT

statement won't evalute the formula 2 + 2 as 4).

Similarly, suppose we want one program—perhaps a

main menu program—to load and run another program.

That's hard to do because BASIC wants to chain the new pro

gram to the old one. Instead of starting the next program

fresh, it tries to make it a continuation of the previous pro

gram. On rare occasions, there may be a real need to allow a

program to change itself, although this is tricky because every

time you change a program (by editing a line, for example), its

variables go away. It's hard for any program to continue run

ning after its variable values disappear.

We can accomplish these things, however, by using a

startling technique: making the computer type on its own key

board. How can a computer do this? It doesn't even have any

fingers.

Here's how it works. When you strike a key, the infor

mation always goes first to a memory area called the keyboard

buffer. After it gets there, it is picked up and used by the com

puter. If we can put a character in the keyboard buffer without

actually pressing any keys, it will appear to have been typed,

and the computer responds exactly as if the corresponding key

was pressed.

29

u
Chapter 1

= I I

Self-Keying LJ
Let's try a quick example to see how it works. We'll ask the

128 to self-type the letter X:) |
POKE 208,1:POKE 842,88

The first POKE tells the computer how many characters

are waiting in the keyboard buffer. The second puts the char- I—

acter X in the first slot of the buffer. After you type the line

and press RETURN, the computer reports READY and acts as

if you had pressed the X key. The letter X appears on the

screen and the cursor flashes to its right. It would be easier

just to type the X, of course, but we've established a new ca

pability. A program can now, in effect, type on the keyboard.

Using the Screen

With this technique alone, you're limited to pretty short com

mands. The keyboard buffer usually has a size limit of about

nine characters. Also, it's cumbersome for a program to put

characters into the buffer one at a time. But on Commodore

machines we can take advantage of screen editing to process

longer direct commands.

Whenever you press the RETURN key, the computer

reads the screen. Whatever it finds there, it does—perform a

command, enter a line, or whatever. To make a program exe

cute a long direct-mode command, follow these steps:

1. PRINT the command on the screen in a known place.

2. Position the cursor three lines above the command to be

executed.

3. Enter POKE 208,1 so the operating system will know that

there is one keypress stored in the keyboard buffer.

4. Put a carriage return in the keyboard buffer by entering

POKE 842,13. j |

5. Terminate execution with an END command. 1 I

When the program reaches END, here's what happens.

The desired command is on the screen and the RETURN is in | I

the keyboard buffer. The program terminates, and the com- '—'
puter prints READY. Although the program has ended, the

computer receives the RETURN as if you had just pressed that j j

key, so it executes the line on the screen. Among other things, <—'
that line might contain a GOTO or CONT that would continue

the program. J I

30

n

n

Programming

A Simple Example

_. Here's a simple program that uses the dynamic keyboard

I 1 method to do something normally forbidden by BASIC: a
computed GOTO. In most cases, a straightforward ON-GOTO

_. command does the same job better, but let's use this example

j [for the sake of simplicity.
Enter the following lines:

JM 120 PRINT "PICK A NUMBER 3 TO 5"

PR 130 INPUT "NUMBER";L

KG 140 IF L<3 OR L>5 THEN 130

QH 150 PRINT CHR$(147)

EB 160 PRINT

AC 170 PRINT

GB 180 PRINT "GOTO";L*100

BG 190 PRINT CHR$(19)

The program isn't finished, but you might like to see what

we have so far. If you run it and enter 3 in response to the

prompt, you'll find the program stopped with the cursor blink

ing over a line that says GOTO 300. To execute that direct

command, all you'd need to do is press RETURN. When we

complete the program, it will press RETURN by itself. Finish

the program by entering these lines:

PS 200 POKE 208,1

BM 210 POKE 842,13

CD 220 END

JX 300 PRINT "THIS IS LINE 300"

DE 310 GOTO 120

DF 400 PRINT "HERE'S 400"

QP 410 GOTO 120

KS 500 PRINT "LINE 500 IS THE END"

H

n

n

n

n

It's as easy as that. Once you grasp the basic method, all

sorts of interesting applications come to mind.

You may print more than one command on a screen line.

Just as in a program line, separate the multiple direct-mode

commands with colons. You can use more than one screen

line of direct-mode commands as well. However, you must be

careful to put the commands in exactly the right place, and

make sure the cursor flashes directly over the line to be exe

cuted when the program stops.

Here are some applications for the dynamic keyboard

technique:

31

Chapter 1

• Allow a user to enter a formula that the program will use; '—
• Allow a program to load another program;

• Allow a program to modify itself (tricky); if

• Run test programs to determine, for instance, how the com- '—'
puter responds to certain direct commands and calculations.

Keyboard Buffer Locations

The keyboard buffer counter on the 128 is at location 208, and
the start of the buffer is 842. Usually, your program must
POKE a value of 1 into the counter, and a value of 13 (the
character code for RETURN) into the buffer. That tells the
computer there's one RETURN character in the buffer waiting
to be processed. If there's more than one line of direct-mode
commands on the screen to be performed, you need a higher
count and more characters.

Entering a Formula

Let's write a brief program that allows a student to enter a for

mula and then generates a table of values based on the for
mula. More complex versions of the program might solve an

equation or draw a graph, but we'll keep the example simple.

In practice, it would be wise for your program to check for

valid syntax before evaluating the formula. Again, for the sake
of brevity, we'll do only the dynamic keyboard portion.

MR 100 PRINTH{CLR}{DOWN)FORMULA EVALUATION.":PRINT
"INPUT A FORMULA"

JC 110 PRINT"BASED ON{SHIFT-SPACE}VARIABLE X":PRIN

T"SUCH AS:":PRINT"{DOWN}{2 SPACES}Y= X*7-SQ

R(X)" .-PRINT

RK 120 PRINT"YOUR FORMULA:":INPUT"{DOWN}{2 SPACES}

Y=";F$:PRINTCHR$(147):PRINT:PRINT

CE 130 PRINT"Y=";F$;II:GOTO150":DIMV(10):FORX=1TO10 j /
:PRINTCHR$(19)

HA 140 POKE 208,1:POKE842,13:END

FJ 150 V(X)=Y:NEXT X:FOR X=l TO 10:PRINT X,V(X):NE

LJ
Notice how this program does a task which would be dif

ficult or impossible without using the dynamic keyboard i i

technique. { |

32

Programming

Loading Another Program

If you put a LOAD command in a program, the new program

doesn't load in the usual way. Instead, it's chained to the old
program. The new program retains the variables and arrays (if

certain rules are observed), and the effect is that of two

successive programs working continuously on a single job.
That's not always what is wanted. Especially with menu pro

grams or bootstraps (program-loading programs), your goal
may be simply to start the new program without preserving

variables or data from the old one. That's what happens when
you perform LOAD as a direct command. With the dynamic

keyboard technique, we can simulate this from within a

program.

Let's write a simple dynamic keyboard loading sequence.

MQ 100 PRINT"{CLR}{DOWN}PROGRAM LOADING":PRINT"PRO

GRAM{2 DOWN}":PRINT"PROGRAM NAME":INPUTP$

BR 110 PRINT"ICLR}":PRINT:PRINT:PRINT"LOAD";CHR$(3

4);P$;CHR$(34);",8":PRINT:PRINT

RQ 120 PRINT:PRINT:PRINT"RUN":PRINTCHR$(19):POKE20

8,2:POKE842,13:P0KE843,13

Note that there are two separate command lines: one for

LOAD and one for RUN. Of course, it's important to position

the lines correctly, but that's not hard to work out when you

set up the program. You see everything happening on the

screen, and, if you've placed your command a line too high or

low, the problem is easy to spot.

Tricks and Advanced Points

On computers with color capabilities, you can hide your dy

namic keyboard tricks if you wish. If you print the direct-

mode commands in the same character color as the screen

background, they won't be visible to you, but the computer

can still see and execute them. Your program can even change

colors as it runs so that some parts of the commands are visi

ble and some are not.

Occasionally, you'll want to use the dynamic keyboard

technique to change a program as it runs. That's always tricky,

and if you are in 64 mode, anytime you add or change a pro

gram line, the values of all variables are lost. It's hard to run a

33

Chapter 1

program when its variables disappear, but it can be done if han
dled carefully. The critical variables can be reentered using the
dynamic keyboard technique, using lines such as X=7:L=120:
GOTO 580. Another, somewhat more cumbersome method is
to POKE the value of each variable into spare memory and
PEEK the value later when needed. In 128 mode, variables are
not a problem as variables are not disturbed by changing the
program.

Why would a program need to change itself? The most
usual situation involves converting an ASCII program listing
into tokenized BASIC format. It's common to list programs in
ASCII (untokenized) form when translating from one com
puter to another. This is especially true when you transfer pro
grams over the phone line with a modem. As each line of the
ASCII listing arrives, it must be entered as if it were being
typed, to store it in tokenized format. While it's possible to do
the whole job by hand (by printing each line on the screen
and pressing RETURN), the dynamic keyboard technique lets
the computer do this busywork for you.

Self-Editing Programs

The usual way to change a program is to type in a new line

and press RETURN. The line is either added to the program or

it replaces an existing line with the same line number. A pro

gram can do this, too, using the dynamic keyboard technique.

You might be wondering why you'd ever need to design a

program that modifies itself, anyway. Here's an example. Sup

pose you have something in a special part of memory—a ma

chine language program, a screen picture, or a data table.

Whatever it is, you want to take the information and build it

into a series of DATA statements so that it can be reconsti

tuted by a BASIC program when needed. Perhaps you'd like

to publish a small machine language program in a newsletter

or magazine, and want readers to be able to type it in as

DATA statements rather than the more complex hexadecimal

code. How to do it?

First, let's write some data into memory so that you'll

have something to convert to DATA statements. Here's a

quick program to put a series of prime numbers into memory

locations 3072-3125:

34

n

n

n

n

n

Programming

n

n

n

n

HD 100 POKE 3072,2

DF 110 POKE 3073,3

RD 120 N=3

GC 130 FOR A=3074 TO 3125

HM 140 N=N+2

RE 150 FOR M=3 TO SQR(N)+.l STEP2

MR 160 T=N/M

AF 170 IF T=INT(T) THEN 140

BD 180 NEXT M

GP 190 PRINT N,

EX 200 POKE A,N

BS 210 NEXT A

That's not the most efficient prime number generator, but

it does put the numbers into memory. The last number should

be 251. Now, suppose you want these values in DATA state

ments so that a different program will be able to POKE them

back at the start of the run.

Frenzied Activity

Type NEW to make space for the new program.

BH 10 L=100:A=3074

MF 15 PRINT CHR$(147):N=0

DG 20 PRINT

CH 25 PRINT

EK 30 PRINT L;"DATA";

SB 35 D$=STR$(PEEK(A))

SA 40 IF N>0 THEN D$=","+MID$(D$,2)

QE 45 PRINT D$;

BC 50 A=A+1:N=N+1:IF N<10 AND A<3126 THEN GOTO 35

DK 55 PRINT

JX 60 L=L+10

EA 65 PRINT "GOTO 15"

XX 70 PRINT CHR$(19)

JQ 75 POKE 208,1:IF A<3126 THEN POKE 208,2

XJ 80 POKE 842,13:POKE 843,13

GF 85 END

Be sure to type the semicolon at the ends of lines 30 and

45. When you run the program, you'll see a frenzy of activity

on the screen for a few moments. Then the action stops with

the cursor over a line which says GOTO 15. Don't execute this

line. Instead, move the cursor down, type LIST, and press RE

TURN. You'll find that the program contains six new lines of

DATA statements.

35

Chapter 1

Start the new DATA lines at line 100 (variable L). Since i—'
the data maker program ends at a lower line number, there's

no danger of replacing existing lines with new ones. The Com

modore 128 in 128 mode, unlike the Commodore 64 and the '—'
128 running in 64 mode, does not reset the variables back to

zero when a program line is added to a program. Therefore, J I

it's necessary to set the counter, N, back to zero on line 15 '—'
and to simply increment L, line number, by ten.

After the DATA lines have been created—you've gener

ated only a few—you might want to get rid of the program

that made them. You could do this manually by clearing the

screen and giving the direct command:

FOR J=10 TO 85 STEP 5:PRINT J:

NEXT J

This prints the line numbers on a blank screen. You could

then move the cursor back and strike RETURN 16 times,

eliminating the lines. It would take a little ingenuity, but you

could even cause the program to wipe itself out using the dy

namic keyboard. (Hint: Crunch the program into fewer than

ten lines—then stuff the keyboard buffer with the same num

ber of RETURN characters.)

It's been a long voyage. If you've stayed with it, you can

probably see how the dynamic keyboard technique expands

what you can do with the computer. Though it requires care,

it also creates new possibilities. "Dynamic keyboard" is not

just a buzzword, although you may add it proudly to your

vocabulary. It's a new resource.

36

u

u

LJ

H

n

n Jump Search

n

n

n

n

n

n

n

Jerry Sturdivant

Learn how the binary search method can speed up data handling.

The short demonstration program listed here runs in either 64 or

128 mode.

Searching for a specific item in a collection of data is a funda

mental computing task. Word processors, databases, and ad

dress book programs all need to locate data quickly and

accurately. This article shows how to use the simple binary

search method in BASIC programs for efficient data handling.

For a demonstration, type in, save, and run "Jump

Search." Program 1-5 will operate in either 64 or 128 mode.

The demo program creates a list of ten city names in al

phabetic order, with population figures for each city (of

course, an actual program would contain much more data).

Lines 100-140 store the city names in a string array and the

population figures in a matching numeric array. Once this is

done, you can find the population of any city in the list by

searching for its name. For example, if your search finds that

AKRON is stored in array element S$(2), then the population

for Akron can be found in the numeric array element PP(2).

The city names are stored in the array in alphabetical or

der because this search technique works only on data that has

been arranged in alphabetic or numeric order. If you consider the

situation for a moment, you'll realize that no organized

searching method can speed up the hunt for a particular item

in a randomly arranged set of data. If you can't tell whether a

word you've found should come before or after the word

you're looking for, then you'll have to examine every word in

the list until you find an exact match. Arranging the data into

alphabetic or numeric order, called sorting, is a separate prob

lem. Just remember that only ordered data can be searched

efficiently.

The simplest way to find a word in an alphabetical list is

to start at the A's and hunt forward through the alphabet until

you find a match. A sequential search of this type is very easy

to program (all you need is a FOR-NEXT loop), but it's also

slow and inefficient. When the target word is toward the end

37

Chapter 1

of the alphabet, sequential searching wastes a lot of time look- '—J
ing through all the preceding words.

Jump to the Center

The binary search method (called binary because it repeatedly (-,
divides the data list in half) is much faster. Rather than start- | |
ing at the beginning of the alphabet, it jumps in at the center.

Let's look at the example program to see how this works.
The variable B stands for the beginning of the word list, E

stands for the end, and C represents the center. Say that your
target word is ATLANTA. When the search begins, line 200

finds the center of the ten-word list and jumps to that position
(in this case finding the sixth word, ANAHEIM). Since ANA
HEIM doesn't match ATLANTA, the program skips to line 250
for a critical test.

At this point the database is divided into two blocks,
lower and higher. The program first decides which block holds
the target word, then jumps to the center of that block to con
tinue the search. Since ATLANTA comes after ANAHEIM in

the alphabet, it must be stored in the higher block of words.

Note that in just one step, you've eliminated the need to look

at anything in the first half of the database. A sequential

search (which compares ATLANTA to ABILENE, then to AK
RON, then to ALBANY, and so forth) takes six steps to
accomplish the same result.

Now it's time for the second jump. Lines 260-270 set a

new beginning point just above the center (B = C + 1) and

go back to line 200. The program finds the center of the new

list (which consists of four words, ANCHORAGE to AUSTIN)

and jumps to that position. This time the target word matches

the found word. While the binary method found the target

word with only two comparisons, a sequential search would

require nine (eight comparisons to eliminate ABILENE through I
ATHENS, and a ninth to confirm ATLANTA). —'

The more data you have, the more time the binary

method saves. For instance, if the list contains 1,000 words,

most words are found in about 8 comparisons (the sequential

method usually requires hundreds). If you expand the list to

10,000 words, only about 12 comparisons are required (com

pared to thousands for the sequential method). The secret lies

in the halving technique. By repeatedly chopping the list in

38

n

n

n

n

n

Programming

n

n

n

n

n

half, this method quickly eliminates large chunks of data from

consideration and zeros in on the target. Of course, you're not

limited to string data. With slight modifications this routine

can search'numeric data as well.

Program 1-5. Jump Search
For mistake-proof program entry, be sure to use "The Automatic Proofreader/' Appendix B.

CG 100 N=10

MQ 110 DIM S$(N),PP(N)

HD 120 FOR 1=1 TO N

KJ 130 READ S$(I),PP(I)

AS 140 NEXT I

XR 150 E=N

KC 160 B=l

XG 170 P=0

SE 180 PRINT "ENTER CITY"

SD 190 INPUT C$

HF 200 C=INT((E+l-B)/2)+B

QE 210 IF E-B<3 THEN 300

AJ 220 IF C$<>S$(C) THEN 250

HB 230 P=C

AC 240 GOTO 340

GC 250 IF C$<S$(C) THEN 280

MP 260 B=C+1

JC 270 GOTO 200

QS 280 E=C-1

AD 290 GOTO 200

HB 300 FOR I=B TO E

XH 310 IF C$<>S$(I) THEN 330

JJ 320 P=I

DM 330 NEXT I

JK 340 IF P<>0 THEN 370

RQ 350 PRINT "DATA NOT FOUND."

MM 360 GOTO 150

XG 370 PRINT S$(P),PP(P)

CP 380 GOTO 150

EP 999 REM CITY & POPULATION DATA

PC 1000 DATA ABILENE,89000

QH 1010 DATA AKRON,237000

KR 1020 DATA ALBANY,250000

CH 1030 DATA ALBUQUERQUE,332000

XR 1040 DATA ALVERINA,29000

HH 1050 DATA ANAHEIM,219000

RK 1060 DATA ANCHORAGE,174500

KP 1070 DATA ATHENS,150000

PC 1080 DATA ATLANTA,425000

XX 1090 DATA AUSTIN,346000

39

Coder-Decoder

u

u

u

W. M. Shockley

Protect the privacy of your DATA statements with this short routine

that scrambles and restores any text. Its useful in almost any pro
gram that keeps information in DATA statements.

Probably the most convenient way to store lists of information

in BASIC programs is to use DATA statements. A word game

like Hangman, for instance, might have 50-100 words in

DATA. The questions and answers in a trivia game would fit

nicely in DATA statements. An adventure game would contain

lists of rooms and their treasures. A history quiz would con

tain names and dates. There are many possibilities.

But DATA statements aren't very secure. Someone can

easily list the program, where the words, questions, rooms,

history facts, and so on, are right there for the user to read or

memorize. In other situations—a personal diary, say—you

want the information kept secret from anyone but yourself.

Scrambling Characters

"Coder-Decoder" is a short utility program which transforms

normal DATA inputs into seeming gibberish. If the program is

listed, the DATA statements are almost impossible to read. A

second part of the program (lines 63210 on) retranslates the

gibberish into the original DATA statements.

Type in the program and save a copy. Coder-Decoder al

lows DATA statements to be typed in directly, without line

numbers or the word DATA. It uses the dynamic keyboard

technique to add DATA statements to memory. The Coder j ,

section (lines 63010-63130) can be used as a subroutine to j (
generate statements for a program already in memory. It can

be added as is. Once it's in memory with the program, just

type RUN 63010. It will continue until the word END is typed |
at the prompt.

Adding It to a Program I—
The two routines are short enough so that they can be listed

on the screen (after being loaded) and added to a program on I j

40

u

n

n

n

n

n

Programming

40-column computers. Load the Coder portion of the program

and list it on the screen. Load the program to which it is to be

appended. Then go to the top of the screen and press RE

TURN enough times to enter the lines of the Coder routine

into the program in memory.

The Decoder section (lines 63210-63300) can be added in

the same way. This routine turns the DATA statements back

into what you originally typed in. The DATA statements are

read into the variable A$. After decoding, an unscrambled

word is returned to the program as B$. When you have more

than one DATA statement, use a FOR-NEXT loop to retrieve

the coded words.

There are a couple of restrictions which must be observed.

Commas, colons, and semicolons cannot be used in the inputs.

The letters and numbers and extra characters which can be

used are listed in S$, defined in line 63220. Others can be

added by extending S$ and Sl$ and the 41 in the R loop (line

63080 in the Coder routine and line 63260 in the Decoder

routine).

In addition, each input must be no longer than 116 char

acters on the 128, and up to 70 characters on the 64, VIC,

Plus/4, and 16.

Program 1-6. Coder-Decoder
For mistake-proof program entry, be sure to use "The Automatic Proofreader/' Appendix B.

REM **** CODER ****

X=10000

Y=842:Z=208:B$= IIH

PRINT "{WHTHCLR}"
S$="•ABCDEFGHIJKLMNOPQRSTUVWXYZ?I12345678
90. "

Sl$=" 17ZYXWVUTSRQPONMLKJIHGFEDCBA.098765

4321'"

PRINT"ENTER DATA TO BE CODED ('END1 TO QU

IT):":INPUTA$ sIFA$="END"THEN END

FORN=1TOLEN(A$)

FORR=1TO41

IFMID$(A$,N,1)=MID$(S$,R,1)THENC$=MID$(SI

$,R,1):R=41

NEXTR

B$=B$+C$:NEXTN

PRINT"{CLR}IBLK}"X"DA"CHR$(34)B$CHR$(34)"

12 DOWN}X="X+1":GOTO63020"

POKEY,19:POKEY+1,13:POKEY+2,13:POKEY+3,13

:POKEZ,4:END

41

n

n

n

MH

DC

CX

XK

DP

EG

HX

HC

SR

AM

XX

KR

RB

SX

63000

63010

63020

63030

63040

63050

63060

63070

63080

63090

63100

63110

63120

63130

u
Chapter 1 . .

AP 63200 REM **** DECODER **** l '
BM 63210 SI$=".ABCDEFGHIJKLMNOPQRSTUVWXYZ?!1234567

890' " i I

BD 63220 S$=" i?ZYXWVUTSRQPONMLKJIHGFEDCBA.0987654 { |
321IM

BK 63230 PRINTM{CLR}ENTER # OF DATA STATEMENTS TO

{SPACE}DECODE:":INPUTN:FORL=1TON:B$=M" I
RF 63240 READA$:REM GET FROM DATA STATEMENT ' '
KS 63250 FORN=1TOLEN(A$)

KG 63260 FORR=1TO41

BB 63270 IFMID$(A$,N,1)=MID$(S$,R,1)THENC$=MID$(S1
$, R, 1):R=41

HR 63280 NEXTR

FX 63290 B$=B$+C$:NEXTN

KP 63300 PRINTB$:NEXTL:REM USE B$ IN YOUR PROGRAM,

DELETE PRINTB? IF NECESSARY

u

u

u

42

u

n

H

H Exploring the 128's
n Monitor

n

n

n

Richard Mansfield

Unlike the VIC and 64, the 128 has a built-in monitor. A monitor

can be a valuable tool for machine language programmers. It can

be especially useful for debugging ML routines.

Let's take a look at a special feature built into the new Com

modore 128 which makes life easier for ML programmers. The

several early Commodore machines—the PET, 8032, and

SuperPet which preceded the VIC and 64—all had a doorway

to ML called a monitor. Open this door and you go down be

low BASIC, down into the computer's engine room where you

can get close to the microprocessor and the computer's

memory.

The VIC and 64 did not come with a monitor (though you

can buy add-on monitors or find monitor programs like

Supermon and Micromon in books). Nonetheless, it's nice to

have a resident monitor, a permanent, easy passageway into

the heart of the machine.

On the 128, you just type MONITOR or press F8, and

you're in a different world, with new prompts and new com

mands. Here's a rundown of the various commands:

• Compare takes a look at two separate sections of memory

and prints the address of any locations which differ. You

might use this to see whether two programs differ or to

quickly determine which version is the more recent. (Each

n command is a single letter, and all numbers are hexadecimal

(base 16). Compare, for example, is activated with C 1000

2000 8000 which prints out differences in memory between

$1000-$2000 and $8000-$9000.)
• Fill fills a range of memory with a specific value. It's some

times used to lay down a zone of zeros in, say, the second

cassette buffer, prior to running a commercial program. Then,

you can go back and look at the blanket of zeros and quickly

see which locations are being used by the commercial pro-

[—■1 gram for storage.

H
43

Chapter 1

• Go, like SYS, starts the execution of an ML routine, which I—'
should end with a BRK if you want to reenter the monitor.

• Hunt is particularly useful for tracking down ROM locations I I

that you might want to use. If, for example, you know that a '—I
64 ROM routine to print out numbers starts with PHAiTAX,

you could request a hunt for this pattern of bytes in 128 | " [

ROM and find out where to JSR. (H 1000 2000 48 AA would I—I
look for PHAiTAX.)

• Jump, which is undocumented in the System Guide, performs

a JSR to an ML routine. It does the same thing as Go, with

one exception. If you jump to a routine that ends with RTS,

you return to the monitor. But if you Go to the same routine,

the RTS sends you back to BASIC.

• Load loads a file from tape or disk.

• Memory goes through a specified range of memory and prints

the numeric and character values therein. This can be used

both for locating special areas of ROM like the BASIC

keywords or for checking that your ML program is working

correctly by looking at its buffers, pointers, and so on, after a
BRK in a running program.

• Registers shows you what's currently in the Accumulator,

X, and Y registers as well as the program counter (where

you were in memory when BRK took effect) and the status

register. The registers are automatically printed onscreen

when you enter the monitor. It's quite useful when debug

ging to see where you hit a BRK and what's going on with

the registers. This is the equivalent of inserting STOP in your

BASIC programs and then asking for variable values with ?

VARIABLENAME so you can try to locate where things are
going awry.

• Save is very valuable. You can save any section of memory to

disk or tape, even the screen. If you've tried to save machine

language programs on the VIC or 64 without a monitor or i

assembler, you know how useful a built-in ML Save com- I
mand is (S //NAME",08, 1000,2000).

• Transfer sounds better than it is. It allows you to move any < /

section of memory to another location. Unfortunately, most I I
ML isn't relocatable (JSRs, and so forth, still target their old

addresses). The best way to relocate ML is to use an efficient \~ i

assembler where you can simply change the start address (|
and reassemble at the new location.

44
LJ

U

n

n

n

n

n

n

n

n

n

n

Programming

The monitor also allows you to change the values in the

registers (to set up a test); to directly modify the bytes in

memory (not too useful unless you're typing in a "hex dump"

type listing from a book or magazine); and to directly type in

mnemonics (very useful when you want to insert a BRK, NOP,

or test values). Possibly the most valuable tool in the monitor

is the disassembler. Like BASIC'S LIST command, a

disassembler will display the fundamental source code of any

ML, and then you can directly modify it and test it again.

There's also a mini-assembler, but unless you're creating a

very short ML routine, it's far better to stick with more effec

tive assemblers.

Some of the facilities of the monitor are more valuable

than others, and it would have been nice to have a single-step

trace function. But when you're trying to hunt down those elu

sive bugs in an ML program, there's nothing like having a

good, built-in monitor only a function key away. In fact, on

some computers the monitor is called, simply, the debugger.

45

u

u

Important 128 Memory

Locations

Jim Butterfield

This abridged memory map shows key locations of the Commo
dore 128 in 128 mode. Included are decimal and hexadecimal ad
dresses, and brief descriptions of the functions of each location.

This memory map applies to the Commodore 128 when used
in the 128 mode. In 64 mode, the machine's map is identical
to that of the Commodore 64.

There are 28 pages (256 bytes each) of overhead before
the start of BASIC. The following list shows some of the more
important locations.

Architecture

Bank numbers as used in the BASIC BANK command and the
built-in machine language monitor's addressing scheme are

misleading. The banks do not represent different physical
blocks of memory, but rather different arrangements of the

RAM and ROM in the computer; configuration numbers might
be a more appropriate term. Bank 0 shows RAM level 0,

which contains work areas and the user's BASIC program.

Bank 1 also shows RAM—this time (for addresses above hexa
decimal $0400) level 1, which contains variables, arrays, and

strings. Other "banks" are really configurations, with various

types of ROM or I/O chip registers overlaying RAM. Thus,

bank 15 is BASIC and Kernal ROM and I/O chip registers

covering part of RAM bank 0. Bank 14 is BASIC and Kernal I " I

ROM and the character generator ROM overlaying part of I I
RAM bank 0. Architecture is set so that addresses below

$0400 in all banks reference bank 0 only. Memory configura- j /
tions other than the 16 predefined banks can be achieved by I I
storing a mask value in address $FF00, or calling up prestored

masks by writing to $FF01-$FF04. j j

46
LJ

n

n

n

n

n

Programming

n

n

n

n

Memory Map

All Banks:

Hex Decimal Description

0000-0001 0-1 8502 on-chip I/O port, similar to 64

000F 15 TyPe: $FF=string; $00=numeric

0010 16 Type: $80=integer; $00=floating point

0015 21 Current I/O prompt flag

0016-0017 22-23 Integer value

002D-002E 45-46 Pointer: start-of-BASIC (bank 0)

002F-0030 47-48 Pointer: start-of-variables (bank 1)

0031-0032 49-50 Pointer: start-of-arrays (bank 1)

0033-0034 51-52 Pointer: end-of-arrays (bank 1)

0035-0036 53-54 Pointer: string storage (bank 1)

0039-003A 57-58 Pointer: limit-of-memory (bank 1)

003B-003C 59-60 Current BASIC line number

003D-003E 61-62 Pointer: current character in BASIC text

0041-0042 65-66 Current DATA line number

0043-0044 67-68 Pointer: current DATA item.

0047-0048 71-72 Pointer: current BASIC variable name

0049-004A 73-74 Pointer: current variable address

0063 99 Floating point accumulator 1: exponent

0064-0067 100-103 Floating point accumulator 1: mantissa

0068 104 Floating point accumulator 1: sign

006A-006F 106-111 Floating point accumulator 2: exponent,

and so on

0070 112 Sign comparison, accumulator 1 versus 2

0071 113 Floating point accumulator 1 low-order

byte (for rounding)

007D-007E 125-126 Pointer: BASIC runtime stack

0090 144 Status word ST for serial/tape operations

0091 145 STOP and RVS flags

0098 152 Number of open files

0099 153 Current input device, normally 0

009A 154 Current output CMD device, normally 3

009D 157 I/O messages: 192=all, 64=errors,

0=none

00A0-00A2 160-162 Jiffy clock high/medium/low

00AE-00AF 174-175 Ending address for LOAD, SAVE, and

VERIFY

00B7 183 Number of characters in current filename

00B8 184 Current logical file number

00B9 185 Current secondary address

00BA 186 Current device number

00BB-00BC 187-188 Address of current filename

00C0 192 Tape motor interlock

47

Chapter 1

Hex

00C8-00CB

OOCC-OOCD

OODO

OOD1

00D3

00D5

00D6

00D7

00D9

OOEO-OOE1

00E2-00E3

00E4-00E7

00E8-00E9

OOEB

OOEC

OOFB -OOFE

O1OO-O1FF

0100-013E

0100-0124

0125-0138

0200-02A1

02A2-02AE

02AF-02BD

02BE-02CC

02CD-02E2

02E3-02FB

02FC-02FD

0300-0311

0312-0313

0314-0315

0316-0317

0318-0319

031A-032D

032E-033D

033E-0349

034A-0353

0354-035D

035E-0361

48

Decimal

200-203

204-205

208

209

211

213

214

215

217

224-225

226-227

228-231

232-233

235

236

251-254

256-511

256-318

256-292

293-312

512-673

674-686

687-701

702-716

717-738

739-763

764-765

768-785

786-787

788-789

790-791

792-793

794-813

814-829

830-841

842-851

852-861

862-865

Description

RS-232 input/output buffer addresses

Keyboard decode pointer (bank 15)

Number of characters in keyboard
hi ifforuuiier

Number of programmed characters

waiting

Key shift flag: 0=no shift

Matrix coordinate of last key pressed (88

if no key)

Input from screen or keyboard

40/80 columns: 0=40 columns

Character base: 0=ROM, 4=RAM

Pointer to current text screen line

Pointer to current color line

Screen margins: bottom, top, left, right

Input cursor log (row, column)

Current cursor line

Current cursor column

Unused

Processor stack area

Tape error log

DOS work area

PRINT USING work area

BASIC input buffer

Routine to get a character from any

bank

Routine to store a character in any bank

Routine to compare a character in any

bank

JSR to another bank

JMP to another bank

Function execute hook

BASIC indirect vectors

Unused

IRQ vector

Break interrupt vector

NMI interrupt vector

Kernal vectors

Kernal links

Keyboard matrix shift vectors

Keyboard buffer

Tab stop bits

Line wrap bits

u

u

L

U

J

J

n

n

n

n

n

Programming

n

n

n

n

n

Hex

0362-036B

036C-0375

0376-037F

0380-039E

0386

039F-03D1

03DF

FF00

FF01-FF04

Decimal

866-875

876-885

886-895

896-926

902

927-938

991

65280

65281-65284

Bank 0 (BASIC programs):

0400-07FF

07F8-07FF

0800-09FF

0A00-0A01

0A05-0A06

0A07-0A08

0A18

1024-2047

2040-2047

2048-2559

2560-2561

2565-2566

2562-2563

2584

Description

Logical file number table

Device number table

Secondary address table

CHRGET subroutine

CHRGOT entry

Subroutines to fetch from RAM banks

Floating point accumulator 1: overflow

MMU configuration register

MMU load configuration registers

40-column text screen memory

Sprite pointers

BASIC runtime stack

Vector: BASIC restart

Bottom-of-memory pointer (bank 0)

Top-of-memory pointer (bank 1)

Index to last character in the RS-232 in-

0A19

0A1A

0A1B

0A20

2585

2586

2587

2592

0A22

0B00-0BBF

0C00-0DFF

0E00-0FFF

1000-10FF

117A-117B

117C-117D

11E9-11EA

1200-1201

1202-1203

1204-1207

1208

1209-120A

1210-1211

1212-1213

1218-121A

2594

2816-3007

3072-3583

3584-4095

4096-4351

4474-4475

4476-4477

4585-4586

4608-4609

4610-4611

4612-4615

4616

4617-4618

4624-4625

4626-4627

4632-4634

put buffer

Index to first character in the RS-232 in

put buffer

Index to last character in the RS-232

output buffer

Index to first character in the RS-232

output buffer

Maximum number of characters in the

keyboard buffer

Key repeat flag: 128=all, 64=none

Cassette buffer, also used by disk

autoboot programs (CP/M or otherwise)

RS-232 input, output buffers

Sprite definition area (56-63)

Programmed key lengths and definitions

Float-fixed vector

Fixed-float vector

Light pen values, x and y

Previous BASIC line number

Pointer: BASIC statement for CONT

PRINT USING characters (, . $)

Error type (ER) of last error

Line number of last error (EL)

Pointer: End of BASIC (bank 0)

Pointer: BASIC program limit

USR jump vector

49

Chapter 1

Hex

121B-121F

1C00-FEFF

1COO-1FFF

2000-3FFF

4000-FEFF

Decimal Description

4635-4639 RND seed value

7168-65279 BASIC program text area

7168-8191 Color memory (if hi-res screen is used)

8192-16383 Screen bitmap memory (if hi-res screen
is used)

16384-65279 BASIC program text area (if hi-res

screen is used)

Bank 1 (BASIC variables):

0400-FEFF 1024-65279 BASIC variables, arrays, strings

Bank 14 Same as bank 15, below, except:

D000-DFFF 53248-57343 Character generator ROM

Bank 15:

4000-CFFF

D000-D030

D400-D41C

D500-D50A

D600-D601

D800-D8E7

DC00-DC0F

DD00-DD0F

DF00-DF0A

EOOO-FEFF

FF47-FFFF

16384-53247

53248-53296

54272-54300

54528-54538

54784-54785

R18-19

R31

55296-56295

56320-56336

56576-56591

57088-57098

57344-65279

65351-65535

ROM: BASIC

40-column video chip (8564)

SID sound chip (6581)

MMU memory configuration chip (8722)

80-column video chip (8563)

Video address, low/high

Video data, read/write

Color nybbles (for 40 column video)

CIA 1 (6526)

CIA 2 (6526)

DMA controller

ROM: Kernal

ROM: Jump table to important Kernal

routines

u

u

u

u

u

u

50

u

n

n

n All About CP/M on
n the 128

Howard Golk
"""1

CP/M is one of the oldest operating systems—but one of the

newest available for Commodore users. We've included lots of

practical examples, useful tips, and helpful notes on available
CP/M software.

The Commodore 128 brings something very new to Commo

dore users: CP/M (Control Program for Microcomputers). Al

though CP/M was briefly available for the 64, it was a poor

version which conformed to only a few of the standards for

truly compatible CP/M software. With the 128 and 1571 disk

drive, a 100 percent compatible version of CP/M has arrived.

You're probably aware of the thousands of programs that run

under CP/M. But before you invest a lot of time and money,

there are a few things you should know about what CP/M

is—-and more importantly, what it is not.

A Fundamental Difference

All computers have an operating system (OS). The OS handles

all the primary input, output, and housekeeping operations.

When you type LOAD and press RETURN on a Commodore

64, you're instructing the OS to locate and read in a program

from tape or disk. The OS is responsible for all communication

between your programs and peripherals, such as the disk drive
and display screen.

n There are many different kinds of operating systems.

Commodore computers have always had dedicated operating

systems; that is, each model (PET, CBM, 64, VIC-20, and so

non) contains its own customized operating system. Because

software written for dedicated operating systems is not trans

portable from one machine to another, each model requires its

nown library of software. PET programs didn't run correctly (if

at all) on 8032s or VICs and vice versa. Many other popular

computers also have dedicated operating systems: Apple II,

r—] Atari, and Timex/Sinclair to name a few.

51

n

u
Chapter 1 , ,

CP/M, however, is a transportable operating system. It

was not written for any one particular computer. The idea is

that programs written for an Osborne can theoretically be run

on a Kaypro, Sanyo, Heathkit, or any other computer with

CP/M. The early CP/M machines employed a standard eight-

inch disk format (IBM-34). (Incidentally, the first CP/M ma- j j
chines were very expensive because they required 64K of —

memory, a massive amount at the time, to operate.)

Commodore operating systems are ROM based. The en

tire OS (which is mostly a collection of small machine lan

guage programs) is stored on chips inside the machine. This

method of storage has many advantages. The computer gener

ally performs fast, and all system commands are available at

all times. However, ROM-based operating systems have a few

disadvantages. Because the OS is stored on chips, it must be

relatively small. ROM-based systems also are more difficult to

upgrade or expand since this requires adding or replacing

chips in the computer.

An alternative is a RAM-based operating system like

CP/M. Rather than putting the machine code that makes up

the operating system on chips, the code is on disk instead.

RAM-based operating systems can generally be much larger

than those which are ROM based—which means you can

have many more commands and utilities. Upgrading RAM-

based operating systems is much easier—you simply add or

replace files on the system disk. The disadvantage to this kind

of OS is that you amass a lot of system disks. These can

sometimes be a source of frustration when you're doing rou

tine jobs like copying files. Disk capacity is also a problem,

since the OS can easily use up half the space on a disk. But

once a program is running, the system disk is no longer re

quired and can be removed. In fact, the system disk is useless

while an applications program is running.

CP/M Versus Commodore

CP/M has many interesting advantages over dedicated operat-] [
ing systems like Commodore's. Not all of these advantages are

features of CP/M particularly. Many are the results of the ef- , ,

forts toward compatibility with dozens of different computers) j
by clever hardware and software developers.

52

n

n

n

n

n

Programming

n

n

H

H

n

Commodore users are accustomed to software that needs

no installation. You just insert the program disk, type some

thing like LOAD"*",8,1, and you're on your way. This is

rarely the case with CP/M programs.

Software packages for CP/M computers must be installed

for the particular hardware they're to run on. Since this pro

cess is required for compatibility, it gives every program the

capability for a large degree of customization. For example,

you can generally run CP/M software with any combination

of disk drives. You tell the software which drives to use and

how to access them. This eliminates a problem common to

dedicated operating systems. All too often, your software ex

pects specific hardware devices to be used. If your hardware is

unusual in any way, you may be stuck. For example, some

Commodore programs are designed to operate with a dual

disk drive, but not two single drives.

When you install software, you provide it with the codes

and parameters used by your hardware to do such things as

clear the screen and move the cursor. Business software is

usually without color, yet color can be added to many CP/M

business programs by the user. This is possible because CP/M

programs must be installed for your terminal (screen). While

you're identifying the codes to use for things like reverse, un

derline, and so on, you can insert a few color codes.

Software is not easy to install if you're new to computers

(it's often difficult for experts, too). CP/M requires much more

dealer support, especially when installing the software. This is

one of the reasons CP/M software is more expensive than

software for the Commodore 64. New 128 owners will quickly

learn that many good CP/M programs can successfully be in

stalled only by the dealer.

Since the early days of Commodore, users have often pre

ferred non-Commodore printers. Because of this, software de

velopers for Commodore computers began providing several

versions of their programs—each for a different printer. Even

tually, these developers provided a method for users them

selves to define the printer control codes for printers not on

the list. With CP/M computers, everything is handled this

way. The screen, printer, disk drives, memory capacity, and

keyboard are all redefinable.

53

Chapter 1

CP/M Command Structure

CP/M is disk based. Much of CP/M is located on the disk in

the form of COM files (command files). When you type a com

mand on the keyboard, the computer looks for a program on

the disk by that name.

With CP/M commands, you can place a parameter after

the command, and the operating system will pass that param

eter to the command program. For example, if you type

"DUMP MYFILE", the "DUMP.COM" program is loaded into

memory and "MYFILE" (the parameter) is passed to it. In this

case, the DUMP program will send the contents of "MYFILE"

to the screen.

With CP/M, many applications programs depend on the

operating system for part of their operation. Don't be surprised

if a program you buy requires you to supply your own text

editor to create and update data files. CBASIC from Digital Re

search is such a program. The CP/M disk itself includes a

general-purpose text editor called "ED.COM", but reviews of

this program are not exactly raves—just typing up a grocery

list can be a nightmare. Nonetheless, it does allow you to

manipulate text files.

One immediate use for a text editor is to create batch files.

These are completely new to Commodore-only users—and

they're extremely useful. All computers include commands for

formatting disks, copying files, erasing files, loading programs,

and so on. Many common housekeeping jobs require you to

execute a series of these commands sequentially. Each time

you perform a routine task (like making backup disks), you

must type in the list of commands one at a time. With CP/M,

you can put a long list of these commands into a disk file,

then execute all the commands in the file by simply typing the

filename (you may have to precede the filename with the

word SUBMIT—depending on how your system is set up).

The file that executes a series of commands is a batch file.

Batch files can even use variables as parameters. That

way, the same batch file can perform a long series of system

functions on different groups of files. In a sense, then, CP/M

is both an operating system and a simple programming lan

guage. Under CP/M you can write programs that run other

programs. As an example, suppose you have a batch file on

your system disk called "PURGE.SUB" that contains:

54

n
Programming

n

n

n

n

n

n

n

n

PIP B:$2 = A:$l

ERA A:$l

The $1 and $2 are variables. When you type the batch

filename followed by one or more parameters, the parameters

will take the place of the variables. If you type PURGE

SOMEFILE ANYFILE, the result would be the same as if you

had typed

PIP BrANYFILE = ArSOMEFILE

ERASE ArSOMEFILE

PIP will copy SOMEFILE from drive A to drive B and re

name it as ANYFILE. ERA erases SOMEFILE on drive A. One

of the nice features of CP/M is that you can rename com

mands. Try this:

RENAME COPY.COM = PIP.COM

Now you can use COPY instead of PIP. All other aspects

of the command remain the same. Of course, if you used the

PIP command in any batch files (like the one above), they

would have to be changed. Alternatively, you can have both

by making a copy of "PIP.COM" instead of renaming it (that

is, PIP COPY.COM = PIP.COM).

The Transition

CP/M's design seems rather alien if you learned on a Com

modore system. The disk system will no doubt be frustrating,

especially with only one disk drive. Since CP/M is disk based,

your disks are cluttered with "system utilities." To execute

most CP/M commands, a COM file must be on the disk

you're using. This can be maddening—often a Catch-22 situa

tion. You place utilities (COM files) on disks, execute them,

then erase them to free up disk space. You could, of course,

just leave all your COM files on all your disks, but there

would be little or no room left for your programs and data.

The CP/M operating system takes disk drives very seri

ously. Commodore's disk operating system (DOS) stores only

a few items of information about files on a disk. Only the

name, type, and size of the file are stored in the disk's direc

tory. CP/M disks have a much more sophisticated directory.

Commodore users will find a lot of new features with CP/M

directories: Here's a sample:

55

Directory for Drive A:

Name

DITS BAK

SETDEF COM

PURGE SUB

Total Bytes

Total IK Blocks

Bytes

IK

4K

IK

= 6K

= 6

User

Recs

1

29

1

0

Attributes

DirRW

SysRO

DirRO

I Total Records

I

Prot

read

none

none

= 31

Jsed/Max Dir Entries

Update

09/01/82 13:04

08/25/82 13:07

10/02/85 14:50

Access

09/01/82 13:07

09/01/82 03:30

10/02/85 14:50

Files Found = 3

for Drive A: 11/64

u
Chapter 1

LJ

U

U

You can mark individual files as "read only" and prevent

them from being altered or erased. You can hide files so that

they do not show up in the disk's directory. You can even give

files a password. CP/M will tell you the date and time a file

was created and last updated (or the last time it was read).

CP/M even knows if a file has been altered since the last time

it was copied, which is a handy feature when updating backup

disks.

CP/M computers often employ hard disk drives. To help

organize the potential thousands of files on one disk, CP/M

allows you to break up the directory into 16 "user areas." Es

sentially, the computer treats each directory as a different disk.

To change user areas, type USER n, where n is a number from

0 to 15. User areas can be troublesome. When reformatting an

old disk, you might erase important files because they're listed

in another user area. To see the entire directory, type

DIR [USERS=ALL]

Mountains of Software

Why use CP/M anyway? Software—and lots of it, thousands

of programs that do a multitude of things. If you need a pro

gram that calculates the net capacity of an oval salad bowl, or

the number of toothpicks required to build a full-size boat,

chances are there's a CP/M program out there to do it. Before

you begin digging through the heap of available CP/M pro

grams, let's look at a few items which might be of interest.

WordStar from MicroPro. Nearly every CP/M computer '—

system contains a copy of this extremely powerful word pro

cessing program. It's so popular that it's almost become part of j

the CP/M standard. There is a close copy of WordStar called •—'

NewWord (from NewStar Software). It has some interesting ad

vantages over WordStar, especially for systems with advanced

features like those found on the new 128. When properly in- '—
stalled, NewWord shows bold and underlining on the screen.

It's a true "what you see is what you get" word processor. I j

56

u

n

n
Programming

n

n

n

n

n

n

n

MBASIC-80 from Microsoft. There are thousands of pro

grams written in MBASIC. Commodore users will quickly no

tice the lack of a screen editor. Many programmers use Word

Star (or another text editor) to enter and edit BASIC programs.

This is possible because MBASIC can optionally read and write

program files in text form (nontokenized). This also makes it

easy for BASIC programs to write other BASIC programs.

Turbo Pascal from Borland International. Many 128 own

ers will have purchased their machines specifically to run this

fast and powerful language. It has many outstanding features

and sells for under $50. If you write large programs, consider

Pascal as an alternative to BASIC. Many consider that Turbo

Pascal is fast becoming the definitive language for CP/M (and

MS-DOS) computers. Turbo is even suitable for developing ad

vanced programs like word processors and spreadsheets.

SuperCalc from Sorcim. An outstanding spreadsheet, pow

erful enough to be used even to work out math routines in

your BASIC or Pascal programs. Like NewWord, SuperCalc is

an "enhanced" version of another program, VisiCalc (from

VisiCorp). SuperCalc'fs documentation is built into the program

itself. You can press the ? key anytime for instructions.

dBASE from Ashton-Tate. This is a simplified program

ming language designed specifically for database applications.

You can learn to program dBASE in a fraction of the time re

quired to learn an actual computer language.

What is CP/M best for? Business. Word processing and

database programs run especially well under CP/M. The 80-

column screen is considered a must for business applications.

You won't find a lot of arcade-style games for CP/M, but you

will find some excellent and lengthy adventure games (by

John O'Hare). In general, graphics programs are few and far

between.

Although we've mentioned BASIC and Pascal, you can

get almost any language for CP/M, including Forth, C, PILOT,

Logo, COBOL, FORTRAN, and many more. There are hun

dreds of user groups for CP/M also. Most offer free advice,

technical information, and public domain software.

Hands On

Let's switch on your Commodore 128 with the CP/M disk in

the drive. The computer will automatically come up in

CP/M+ mode (also known as CP/M 3.0).

57

u
Chapter 1

If you do not have an RGB monitor connected to your I I
128, something is rather odd from the start. The 40-column

screen shows only half the computer's screen. The other half j (
is sitting invisibly off to the right. If you move the cursor more I I
than 39 characters to the right, the screen will shift over for
you (to move more quickly, hold down the CONTROL key i 1

and press the cursor-right or cursor-left key on the top row of I I
the keyboard). Why only half a screen? Because most CP/M
computers have 80-column screens. Also, many CP/M pro

grams format their output for an 80-column screen. This

strange compromise was the result. It's best either to buy an

RGB monitor or to connect the 80-column output to a mono

chrome monitor. (See your Commodore dealer for a special ca
ble. The 80-column cables are available from at least three

sources: Batteries Included, Cardco, and Microvation.) If you

already own a color monitor, you can get 80 columns (in
black-and-white only) with such a cable.

CP/M filenames contain three parts:

D: (DRIVE): Each disk drive is identified by a letter.

The first drive is drive A, the second is B, and so on. The

drive letter is always followed by a colon. In filenames, the

drive letter identifies the location of the file.

FILENAME The filename can be from one to eight let

ters long. It can contain the letters A-Z, the numbers 0-9, and

a few punctuation marks. To be safe, do not use punctuation

marks in filenames. Usually, case is not important. CP/M trans

lates lowercase to uppercase for all CP/M utilities. However,

some programs (like MBASIC-80) allow upper- and lowercase

filenames, but if used, CP/M utilities will not be able to access

them.

.EXT A three-letter extension is optional (with a few

exceptions). It usually identifies the type of the file. For ex

ample, all word processing files could have an extension of

.TXT (for text). Or .DAT for data files, .BAS for BASIC pro- I
grams, .LTR for letters, and so on. You can make up all the

extensions you need. A few are reserved for the system (like i i

.COM), and others are used by applications programs. I I
If you do not specify a drive letter, the default drive is

used. This is the drive identified in the system prompt: t »

A> means A is the default drive. '—I
B> means B is the default drive.

u
58

Programming

You can change the default drive by typing the desired
drive letter followed by a colon (you would type the B: in this

example):

A>B:

B>

Now the system will assume drive B whenever a drive

letter is not specified for a file.
All the CP/M commands outlined in the 128 manual fol

low certain file naming guidelines. The system also contains a

standard ambiguous file naming system that allows you to

specify a group of files that have something in common.

The asterisk is a wildcard. As the name implies, anything
will match it. Suppose your disk contains the following files:

LETTER.TXT BOB.TXT BUDGET.CAL MAIL.DAT
SPOOL.PRN DEBLTXT MARY.TXT MLPGM.ASM

SID.COM

If we type

DIR *.TXT

the computer will respond with

LETTER.TXT BOB.TXT DEBLTXT MARY.TXT

The asterisk can be used along with letters:

DIR MV MAIL.DAT MARY.TXT MLPGM.ASM

Another wildcard is the question mark. The asterisk
matches items of any length. The question mark will match
only one letter. In other words, *.* is the same as ????????.???.

Here's an example using wildcards:

DIR *.?A?

BUDGET.CAL MAIL.DAT

Only those files with an A in the second position of the exten

sion are displayed.

Running Programs

The first programs you'll probably run are those found on the
CP/M disk. You might spend hours trying to load programs in
order to run them. If you're used to a Commodore, you'll see
dozens of strange error messages if you try typing things like:

59

Chapter 1

LOAD "PROGRAM"

or LOAD PROGRAM

or LOAD PROGRAM.COM

or EXECUTE PROGRAM

or EXECUTE PROGRAM.COM '—'
or RUN PROGRAM.COM

or ACCESS PROGRAM j (

None of these work. CP/M automatically loads and runs

a program when you type its name. Your CP/M disk contains

a program called "HELP.COM" . To run this program, you

need only type its name (excluding .COM):

HELP

The "HELP" program will then load and run. To exit,
press RETURN.

If the program you want to run is not in machine lan
guage (or compiled), the proper language interpreter must be

loaded first. A program written in BASIC will generally have
an extension of .BAS. But you must first load a program such

as MBASIC. You can do it all at once by typing

MBASIC PROGRAM

where PROGRAM is the name of the BASIC program you
wish to load. MBASIC will be loaded, then the BASIC pro

gram. The BASIC program will then run automatically. To exit
MBASIC, type SYSTEM.

The Bottom Line

CP/M is a little cranky, somewhat sluggish, and rather unfor

giving. But it has endured the test of time. The CP/M world is

very complete: Every imaginable program, gadget, and utility
is available in one or more forms for CP/M.

Commodore's 128 version of CP/M conforms to all the

CP/M standards if it's run with the 1571 disk drive. However,) f

if you run this version with a 1541 disk drive, be sure to bring »—I
a lunch. This configuration is very, very slow. Even a simple
directory listing is extraordinarily slow.

Speed is not the only factor. The 1541 cannot read the I—
disks from other CP/M computers. Without this capability,

CP/M is practically useless. But with the 1571 and a 128, all 1 I

the speed and versatility of CP/M are available. I I

60

Chapter 2

Sound

and Graphics

G

o

a

a

Windows on the 128

Jim Vaughan

n

H

H

H
Creating windows is fast and easy on the 128. This tutorial covers

i I the basics—what windows are and how to use them. Also in-
' ' eluded is a program that allows you to save the text area beneath

a window.

The Commodore 128 is a powerful and versatile machine. Be
sides having 128K of user memory, 80- or 40-column screen

output, and a powerful BASIC (7.0), it also has a built-in
Commodore 64 and full CP/M capability.

While new programs for the 128 mode are beginning to

emerge, it's still mainly up to the owner to explore the new
horizons opened by BASIC 7.0. One of the most fascinating
new commands added to the BASIC language is WINDOW.
Windows have become increasingly popular within the per
sonal computer industry in the past few years. Some word
processors now use pull-down menus for help while preserv
ing your text onscreen. Some windowing allows two separate

programs to be run on the two halves of the screen.

Creating Your First Window
A window is simply a section of the screen that you partition
off for your exclusive use. When you're in a window, the com
puter acts as if that portion of the screen is all there is. A pro
gram listing, a disk directory, or even a running program will
be displayed in just one section of the screen. In this way, you
can perform calculations or list programs in one section with
out disturbing the work you're doing elsewhere on the screen.
The 128 offers two ways in which you can implement win
dows. Try this simple experiment. First, type in this line in di
rect mode (no line number), and press RETURN:

FOR 1=1 TO 640:PRINT"*=";:NEXT

This fills your screen with a jumble of garbage, but it's
sufficient to illustrate our example. Now, move the cursor to
any point in the upper left part of the screen, press ESC and
then T (ESC is the first gray key on the top row of the key
board). Don't hold down the ESC key; press it once and re-

63

Chapter 2

u

u

lease it, then press T. Now move the cursor to any point in '—'
the lower right side of the screen, and press ESC and then B.
You've just created your first window—but it doesn't look like I I
much, right? Now, press SHIFT-CLR/HOME. Voila! Type in a '—>
few commands (DIRECTORY, for example) and see how the
window keeps the screen output within the borders that you I I
give it. It's easy to remember the keys: ESC-T (T for Top) sets '—'
the top left corner of the window, and ESC-B (Bottom) sets the
bottom right corner.

This simple example illustrates the first method of
windowing using direct mode. You can create a window any
where on the screen with this technique. To restore your
screen to its full format (80 X 25 or 40 X 25), just press the
CLR/HOME key twice. This clears the window settings and
resets your screen to normal. The direct method (ESC-T and

ESC-B) is useful for quick calculations or program debugging.
For example, I often wish to do some simple calculations
while debugging a program, but I want to see the program
listing also. It's easy. I just move my cursor off to the side of
the listing, use the above sequence to create a window in di
rect mode, and calculate. The listing doesn't scroll off the
screen while I'm trying to do some simple calculations. You
can also use the window in direct mode to test out a program
line to see its effect on the screen.

Adding Windows to a Program

Once you start playing with the above windowing technique,
you'll no doubt think of many programming applications
where windowing could be used. The ESCape key has an
ASCII value of 27, so within a program you could position the
cursor to the top left corner and then PRINT CHR$(27); "T"

for the top of the window and then cursor down and right to ,
PRINT CHR$(27); "B" for the bottom. But BASIC 7.0 provides M
an easier means to create a window: with the WINDOW com

mand. This allows easy access to windowing from within your
BASIC programs. The format for the command is j j

WINDOW X1,Y1,X2,Y2,CLEAR

The variables XI and Yl are the screen coordinates of the) j
upper left corner of the window, and the variables X2 and Y2 '—'
are the screen coordinates of the lower right corner of the win
dow. CLEAR is an optional flag. If CLEAR is set to 1, it clears F I

64

LJ

n

n

n

Sound and Graphics

n

the window area after it's created, and if CLEAR is 0 (or omit
ted altogether), any text on the screen remains there. The x
values for the WINDOW command must be between 0 and 79
for the 80-column screen. The y values must be between 0

and 24.
|—| Program 2-1, "Window Demo," will work either in 40- or
I i 80-column mode. The program's purpose is to illustrate the

use of windows in a program, but it also creates an interesting
screen display while running. The program listing provides the
basics for creating a general subroutine to handle windowing.
Given four values (XI, Yl, X2, Y2), this routine will create the
window, clear it of any text, and then create a border around
the new window to set it off from the rest of the screen. It
should be noted that this routine will create a window slightly
larger than the one requested so that it can accommodate the
border around the window. Program 2-1 is fine if you don't
care about the text (or graphics) that will be written over when
the window is created. But what about that pull-down menu

that comes down onto the screen of your word processor or

database? Surely, you don't want to lose any of that valuable
data. The programming solution is to read in the data that lies
beneath the window, save it in some buffer area, create the
window, and then when you're done with it, restore the previ

ous contents of the screen.

Your first instinct might be to go in and start PEEKing the
appropriate screen locations and saving the data. This would
work fine for the 40-column screen (memory locations be
tween $0400 and $0800), but 80-column output is handled a
bit differently. If you take a look at the abbreviated memory
map in the back of your 128 System Guide, you'll note that
there are no memory locations listed for the 80-column screen.

This is because the 80-column screen is stored internally in a
16K memory area which is not directly accessible to the user,

and therefore cannot be read or written to via any commands

in BASIC.

Although the 80-column screen is not directly accessible,

it can be PEEKed and POKEd in machine language. So, to

save part of the screen, we'll PEEK every character from the
area under the window (screen memory is found in locations

$0000-$0800 of the internal RAM of the 80-column chip) and
save them to a buffer. It's also necessary to save attribute
memory ($0800-$1000), which is the equivalent of 40-column

color memory.
65

Chapter 2

u

u

The Save Routines]
Program 2-2 is designed to work with the 40-column screen,
while Program 2-3 is for 80 columns. Both programs POKE a I |
machine language program into memory at 8192. (Note that '—'
this is part of the hi-res screen area, so you must avoid graph
ics commands while using these programs.) To add the I
routines in your own programs, follow these steps: <—»

1. Be sure to include the commands GRAPHIC1:GRAPHICO at
the beginning of your program. This sets aside 9K of mem
ory for the hi-res screen, memory which will actually be
used by the ML routine.

2. After the routine has been POKEd into memory, you can
save the contents of a window with SYS 8192. This SYS
must come after you've used the WINDOW command. You

can then clear the window and print the menu (or whatever
you wish to place in the window).

3. To recall the previous contents of the window, insert a SYS
8195.

The two programs create a sample screen, put a window
there, and then wait for a keypress. The screen underneath the
window is then restored.

Program 2-1. Window Demo
For mistake-proof program entry, be sure to use "The Automatic Proofreader/' Appendix B.

EK 100 MODE=RGR(G)

CP 110 REM *CHECK TO SEE IF IT'S A 40 OR 80

110 SPACESjCOLUMN DISPLAY*
JE 120 IF MODE=5 THEN BEGIN

JX 130 :{3 SPACES}A=78:B=40:C=38
QG 140 :13 SPACES}FAST

BX 150 BEND:ELSE BEGIN

KR 160 :{3 SPACES}A=38:B=20:C=18:BEND
SQ 170 REM *START THE MAIN LOOP*

GG 180 SCNCLR] I

XK 190 PRINTCHR$(27)"MH7: REM *SET NO-SCROLL* ! '
FP 200 X1=INT(RND(0)*B):Y1=INT(RND(0)*12)

BS 210 X2=INT((RND(0)*B)+C):Y2=INT(RND(0)*10+12) j I
XA 220 IFX1>X2 OR Y1>Y2 OR X2>A OR Y2 >22 ORXK2 O M

R Yl<2 THEN200

RB 230 REM *CREATE THE LARGER WINDOW AND

{12 SPACES}DRAW THE BORDER* I I
BF 240 WINDOW X1-1,Y1-1,X2+1,Y2+1 ,1 I I
AD 250 X=RWINDOW(0):Y=RWINDOW(1)

QG 260 PRINT "O";:FORI=lTO(Y-l):PRINTllgY311; :NEXT:PR , ,
INT»p..- I

66

u

n

n

n

H

Sound and Graphics

EF 270 FORI=lTOX-l:PRINTllgHiM;TAB(Y);"gM§":NEXT

MP 280 PRINT"L";:FORI=1TO(Y-l):PRINT"§P§";:NEXT:PR

nINT"@/'~
PX 290 REM *CREATE WINDOW AND FILL IT*

JC 300 WINDOW X1,Y1,X2,Y2

, , HJ 310 A1=(RND(0)*38+40):IFRND(0)<.2THENPRINTCHR$(

I 15);
1 GF 320 IFRND(0)>.9THENPRINTCHR?(18);

HB 330 IF RND(0)>.8 THEN BEGIN

PX 340 REM *CHOOSE NORMAL OR REVERSE SCREEN*

DS 350 :{5 SPACES}IF S?="N" THEN SSasllR":PRINTCHR$ (

27)S$;:ELSE PRINTCHR?(27)"N";:S?="N"

AM 360 BEND

DK 370 REM *CHOOSE COLOR FOR DISPLAY*

AE 380 PRINTCHR?(149+D);:D=D+1:IFD>7THEND=0

BH 390 IFD=3THEND=4

SK 400 FORC1=0 TO (X * Y):PRINTCHR?(Al);:NEXT:PRIN

TCHR?(143);CHR?(146);CHR?(5)

GM 410 GOTO200

Program 2-2. Window Save for 40 Columns
For mistake-proof program entry, be sure to use "The Automatic Proofreader/' Appendix B.

MX 100 GOSUB150:GRAPHIC 1:GRAPHIC 0:COLOR 0,1

EC 110 PRINT"{CLR}11; :FOR A=l TO 24:COLOR 5, (AAND15

)+l-(A=16):PRINT"ABCDEFGHIJKLMNOPQRSTUVWXYZ

1234567890ASZX";:NEXT

SH 120 WINDOW 5,3,35,13:SYS 8192

AB 130 PRINT "ICLR}{5 DOWN}{3 SPACES}PRESS ANY KEY

TO CONTINUE"

AD 140 GETKEY A?:SYS 8195:SLEEP 2:GOTO130

JH 150 C=0:FORA=8192TO8335:READB:C=C+B:POKEA,B:NEX

TsIFC<>20215THENPRINTM{CLR}DATA ERROR":END:

ELSE RETURN

MJ 160 DATA 169,0,44,169,1,133,143,32,100,32,169,0

,133,250

QS 170 DATA 169,48,133,251,165,231,56,229,230,133,

I 158,230,158,165

1 EF 180 DATA 228,56,229,229,133,159,230,159,165,158

,133,254,160,0

nFR 190 DATA 165,143,208,7,177,141,145,250,76,57,32

,177,250,145

MC 200 DATA 141,200,198,254,208,236,165,250,24,101

,158,133,250,165

nQE 210 DATA 251,105,0,133,251,32,130,32,198,159,20

8,210,165,142

HM 220 DATA 201,212,176,11,165,139,133,141,165,140

,133,142,76,18

67

Chapter 2

u

u

u

u

MX 230 DATA 32,96,165,230,133,141,169,4,133,142,16

6,229,240,6

XR 240 DATA 32,130,32,202,208,250,165,141,133,139,

165,142,24,105

RQ 250 DATA 212,133,140,96,165,141,24,105,40,133,1

41,165,142,105,0,133,142,96 .

U
Program 2-3. Window Save for 80 Columns
For mistake-proof program entry, be sure to use "The Automatic Proofreader/' Appendix B.

RE 100 GRAPHIC 1:GRAPHIC 5:GOSUB150:COLOR 0,1

FC 110 PRINT"{CLR}";:FOR A=l TO 48:COLOR 5,(AAND7)

+2:PRINT"ABCDEFGHIJKLMNOPQRSTUVWXYZ12345678

90ASZX";:NEXT

KQ 120 WINDOW 10,3,70,13:SYS 8192

QJ 130 PRINT "{CLR}{5 DOWN}{16 SPACESjPRESS ANY KE

Y TO CONTINUE"

AD 140 GETKEY A$:SYS 8195:SLEEP 2:GOTO130

GS 150 C=0:FORA=8192TO8377:READB:C=C+B:POKEA,B:NEX

T:IFC<>24072THENPRINT"{CLR}DATA ERROR":END:

ELSE RETURN

JQ 160 DATA 169,0,44,169,1,133,143,32,118,32,169,0

,133,250

QS 170 DATA 169,48,133,251,165,231,56,229,230,133,

158,230,158,165

RA 180 DATA 228,56,229,229,133,159,230,159,165,158

,133,254,165,142

EC 190 DATA 162,18,32,162,32,165,141,162,19,32,162

,32,160,0

FQ 200 DATA 162,31,165,143,208,8,32,174,32,145,250

,76,75,32

GB 210 DATA 177,250,32,162,32,200,198,254,208,232,

165,250,24,101

SG 220 DATA 158,133,250,165,251,105,0,133,251,32,1

48,32,198,159

DS 230 DATA 208,192,165,142,201,9,176,11,165,139,1

33,141,165,140

KP 240 DATA 133,142,76,18,32,96,165,230,133,141,16

9,0,133,142 1 1
RC 250 DATA 166,229,240,6,32,148,32,202,208,250,16

5,141,133,139

JF 260 DATA 165,142,24,105,8,133,140,96,165,141,24 j
,105,80,133

JJ 270 DATA 141,165,142,105,0,133,142,96,142,0,214

,44,0,214

HE 280 DATA 16,251,141,1,214,96,142,0,214,44,0,214 1
,16,251,173,1,214,96

68

LJ

U

n

n

n Advanced Commodore
n 128 Video

i
Jim Butterfield

Two valuable techniques worth mastering on any computer are

being able to relocate screen memory and to set up a custom

character set When you run the example program, be ready for a

surprise. For intermediate and advanced BASIC programmers.

You can do a lot of graphics on the Commodore 128 with an

elementary knowledge of the new BASIC: circles, squares,

lines, and points appear by means of simple BASIC com

mands. But advanced programmers may still need to get into

the mechanics of video. Here's a simple exercise for 128-mode

40-column screens that will give a little insight into the

"works."

The question often arises: How can I implement a new

character set? Some people want to design their own personal

ized codes or graphics symbols for the screen; others are inter

ested in foreign languages. In 40 columns, the 8564 video chip

is practically identical to the 6567 of the Commodore 64. With

a few new rules, we can put the chip's features to work in the

same way.

Because the Commodore 128 makes it easy, I'll be includ

ing some hexadecimal addresses in the following listing. If

you'd rather use decimal numbers, the computer will do quick

conversions for you, and you can make the substitutions in

the program.

Changing Addresses

Let's build the program step by step and note points of

interest.

100 POKE 58,DEC("C0")

110 CLR

I'm planning to put the screen and its new character set

into memory bank 1, at addresses $C000 to $CBFF—character

set at $C000, screen at $C800. [By the way, if you'd rather use

69

u
Chapter 2 , -(

the decimal value 192 instead of DECC'CO"), be my guest. I

prefer CO because it's easier to visualize it as part of the full

address $C000. Be sure to type a zero and not the letter O, or

you'll get an error.] Bank 1 is where BASIC puts its variables;

we wouldn't want these to get mixed up with our screen. So

we cut down the top-of-variable-memory pointer to $C000.

There's really no danger of a memory conflict with this small

program, but we might as well do it right.

The CLR command makes sure the other variable pointers

don't get mixed up by this change.

120 TRAP 500

This command may be unfamiliar to many Commodore

programmers. It sets up an error trap so that if anything goes

wrong in the following code, the computer hops to line 500,

which will restore the screen. This saves us from the horrible

prospect of watching the program stop with a syntax error

while the screen is still scrambled and unreadable. The TRAP

command gives us another bonus: If the computer freezes—or

is just too slow—we can press RUN/STOP, and the program

zips to line 500 and wraps things up.

130 BANK 15

We're about to fiddle with the insides of computer chips

(registers), so this command calls for memory bank 15 to make

the chips accessible. This insures that the next few POKEs will

be directed to the right place.

140 POKE DEC("DD00"),148

Except for the decimal number conversion ($DD00=56576),

this POKE is identical to the way it's done on the Commodore

64. Briefly, it means this: Display video out of the memory

slice in the range $C000-$FFFF. We haven't specified the bank

yet, but we'll get around to it in a moment.

150 POKE DEC("0A2C"),32 I—
We're still in bank 15, but this address isn't a chip. The

address $0A2C (decimal 2604) is below $4000 (16384). When I
we're using bank 15, all such low addresses go to RAM, bank

0. This POKE sets the position of the character set and the

screen within the video slice we've selected. The calculation I
goes like this: We want the screen to be at $C800, which is 2K

70

n

n

n

n

n

Sound and Graphics

above the start of the video slice at $C000, so multiply the 2

by 16 and add a similar value for the character set. In this

case, the character set is right at the start of the slice; so we

add 0 to get a value of 32.

On the Commodore 64, we'd do exactly the same calcula

tion, but we'd put the result in address $D018 (53272). In fact,

that's the same address at which our value will end up in the

Commodore 128, but we must let the computer's interrupt

routine deliver it there for us. So instead of POKEing the

value directly into $D018, we store it at $0A2C (2604). As part

of the computer's interrupt procedure, it will copy the contents

of this location into $D018.

160 POKE DEC("D506"),68

This tells the computer to take video from bank 1. If we

wanted video from bank 0, we'd POKE a value of 4—or just

leave this line out, since that's the value that will be there in

any case.

170 POKE 217,4

This POKE tells the computer to take its video from RAM,

not ROM. We don't need to give this one for the addresses we

have chosen since there is no conflict. This very low address

has a special banking rule: All addresses below hex $400

(1024) go to RAM bank 0, regardless of the bank which has

been specified.

Relocating the Screen

Now our video is set up and ready to go. We'd better put

something on the screen so we can see it working. It seems

sensible to copy our old screen to the new place; then we'll

copy the character set. We'll make a slight change so you can

see how to create a new set of characters.

First, our screen must move from bank 0, address $400, to

bank 1, address $C800. We must move the whole thousand

characters.

200 FOR J=0 TO 999

210 BANK 0:X=PEEK(1024+J)

220 BANK 1:POKE DEC("C800")+J,X

230 NEXT J

71

u
Chapter 2 (,

This moves screen memory, but since the character set is

not in place, the result would look rather muddy. We can read

the character set by selecting bank 14; it is found in this bank

at addresses $D000-$D7FR There are 256 characters times 8

bytes per character, which means 2048 bytes to move. Just as

we moved the screen in the lines above, we must move the

character bytes one at a time, flipping between banks 14 and 1.

Well also change the characters slightly as we move

them. This allows us to see that indeed we've taken control of
the character set.

300 FOR J=DEC("C000") TO DECCC7FF") STEP 8

310 FOR K=0 TO 7

320 BANK 14

330 X=PEEK(J+4096+7-K)

340 BANK 1

350 POKE J+K,X

360 NEXT K

370 NEXT J

This puts the character set in place. When you run the

program (after typing in the additional lines below), you

should see your original computer screen—slightly changed.

We could insert a delay loop to prolong the effect, but the

screen takes long enough to change that you'll have plenty of

time to see what happens.

Cleaning Up

We're finished—almost. We must be neat and put everything

back the way it was. This also gives you a chance to see the

original values that were in the various registers and

addresses.

500 BANK 15

510 POKE DEC("DD00"),151 I |

520 POKE DEC("0A2C"),20 I 1
530 POKE DEC("D506"),4

540 POKE 217,0 ,

These lines restore the original screen. A little study '—'

should enable you to guess at what each POKE does—or

undoes. I |

Finally, we need two last lines to complete the job. But '—1
there's an important note: Do not enter these lines until you've

72

n

n

n

n

n

Sound and Graphics

tested the program and found it good. If your program has a

problem, you'll want to be able to look at the variables (by

using commands such as PRINT J) to find out what went

wrong. These final lines make it impossible for you to do so.

550 POKE 58,DEC("FF")

560 CLR

We've given back to the computer its variable storage

memory. And the job is complete.

n

n

n

n
73

u

u

Programming Music u

ancTSound u

Philip I. Nelson . ,

1 I
Anxious to unleash your new Commodore 128's sound and music

capabilities? Here are some practical examples of how to use the

powerful new BASIC 7.0 commands in working programs.

One of the Commodore 128's most welcome features is its

ability to make music and sound effects with simple BASIC

commands. Gone are the days when it took hours of program

ming and multiple POKEs to create sound on a Commodore

computer. Since your 128 System Guide explains the basics of

each command, we'll look at some programs that actually put

them to work.

Musical Keyboard

Program 2-4, "Musical Keyboard," is lots of fun to use and

also demonstrates how arrays can simplify your programs. It

defines four rows of keys on the 128's keyboard as musical

keys, giving you two separate one-octave keyboards. By press

ing keys 0-9 on the numeric keypad, you can switch to any of

the 128's ten predefined instrument voices.

Think for a moment how you would structure a musical

keyboard program like this. It requires that you read the com

puter's keyboard, detect the pressing of certain keys, and

translate those keypresses into musical notes. One way to do

this would be with a long series of individual IF tests (IF

A$ = "X" THEN PLAY "O3C", and so on). But that would be |
slow and inefficient. This program takes a different approach,

using arrays that store the music data and simplify the key

board-scanning process as well.

Take a look at lines 60-90, the setup portion. Both of the

arrays (P$ and T$) are dimensioned with 256 elements, enough

to hold all the possible keyscan values. Line 80 stores a PLAY j j
string (O3C, O3#C, etc.) in each element of the P$ array that

corresponds to the keyscan value (23, 18, etc.) of a key that

we'll use to make music. Line 90 creates a similar array for se- j j

74

n

n

n

n

n

Sound and Graphics

n

n

n

n

n

lecting different instruments with the numeric keypad keys.

(Actually, these two arrays could be combined into one, but

we want to display the instrument data separately.)

After the setup portion is complete, the program loops

continuously through lines 20-50. The statement X=PEEK(212)

returns the value of the last key pressed. (Location 212 per

forms the same function as location 197 on the 64 and VIC-

20. The statement FOR J=l TO 1E9:PRINT PEEK(212):NEXT

lets you see the keyscan value of any key.) Lines 30-40 use

the keyscan value as an index into the T$ and P$ arrays. The

IF statements in these lines will be true only for those array el

ements in which we placed data: Every other element in the

arrays is empty, containing nothing but a null string (" ").

Note that the arrays make it possible to use a short, efficient

working loop that doesn't slow the program as a multitude of

IF statements would.

Since this program uses PLAY to make the actual notes,

you may wonder why there's a SOUND command in line 60.

The statement FOR J=l TO 3:SOUND J,0,0:NEXT immedi

ately silences all SOUNDs that may be in effect from a previ

ous program (or your own experiments). When you're setting

up a sound program, it's prudent to reset sound and music pa

rameters to a known state to avoid unwanted residual effects.

If you fail to take this precaution, previous sound commands

(FILTER, etc.) may prevent your sounds from working prop

erly. Of course, pressing RUN/STOP-RESTORE resets most

sound parameters, but that's not a very elegant solution. Thus,

line 70 ensures that various TEMPO and PLAY parameters are

set as needed in this program (filter off, maximum volume, etc.).

Although PLAY can generate as many as three notes at

once, the 128's BASIC can read only one key at a time. So this

keyboard is necessarily monophonic. Machine language

routines are necessary to create a polyphonic (chord-playing)

keyboard.

128 Soundmaker

"Soundmaker," Program 2-5, is the shortest of the example

programs, but it creates the most complex effects, using all

three of the 128's voices simultaneously. Type in Soundmaker

and save it to disk or tape (pay close attention to the punctua

tion in line 60). When you run the program, it spends a few

seconds in preparation, then invites you to press any key.

75

Chapter 2 . ,

j I

Whenever you press a key, the 128 executes a new

SOUND command and displays it on the screen for reference.
As you'll soon discover, SOUND can create a dazzling variety I j
of effects. All three voices are used, in 1-2-3 order, so if you —
keep pressing keys, you'll hear as many as three different
sounds at once. The duration of each sound is limited to 100. j 1
If you want to hear individual sounds, wait until the current —
sound is done before pressing a key.

Note the difference in the way that SOUND and PLAY

handle volume. SOUND does not produce any sounds at all
unless you have previously set the volume to some nonzero
value with VOL (line 70). PLAY, on the other hand, sets vol
ume for itself with the U symbol, and pays no attention to
VOL commands.

The frequency of each sound is determined by the ASCII
value of the key you press. Keys with high values (like Z,

ASCII 90) create higher pitched sounds than those with lower

values (like the space bar, ASCII 32). Pressing SHIFT pitches
the entire keyboard higher. The waveform and sweep direc

tion for each sound are selected at random, while the mini

mum frequency and step value are held within reasonable
ranges.

Song Player

Program 2-6 demonstrates a simple way to encode and play

music on the 128. "Song Player," lets you enter PLAY strings

under program control, adding them to the program as DATA

statements with the dynamic keyboard method. After entering

your music, you can replay it at any time or resave it along

with the program. Pay special attention to the punctuation in

lines 60 and 190, which cause the program to modify itself.

The music entry routine permits you to enter as many as i i

29 PLAY symbols at one time (blank spaces are acceptable, al- I I
though PLAY ignores them). Consult the 128 System Guide for

an explanation of the various PLAY symbols. Before adding i j

the PLAY string as a DATA statement, the program checks ev- I |
ery character in the string to make sure it is legal. If you enter

a character that the PLAY command does not understand (Z, i i

for instance), the program signals an error and lets you try | |
again. Note that while the program can tell whether a charac

ter is a legal PLAY symbol, it does not check for correct PLAY i j

I I

76

u

Sound and Graphics

n

n

n

n

n

n

syntax: You are still responsible for arranging the symbols in

meaningful order. For example, the string "XU$#" contains

legal PLAY characters, but causes an error when you try to

PLAY it. If the PLAY string is accepted, the screen flashes

briefly as the program adds the string as a DATA line, then

the entry prompt reappears. You can return to the main screen

by entering MENU or by typing RETURN without entering

any characters.

Music data is added beginning with line 1000. Successive

DATA lines are entered as 1001, 1002, and so on, up through

63998. Do not delete or renumber line 63999; it contains a

string that marks the end of the music data. When you exit the

program by pressing Q, it automatically modifies line 10 to let

you resave the program complete with the new data. The next

time you load and run the program, all the data will be there.

Since this program modifies itself as it runs, don't renumber it

or alter any lines unless you understand exactly how the dy

namic keyboard processing works.

As short as they are, these program examples demonstrate

a number of handy sound and music techniques. It's often

preferable to use variables rather than literal values in sound

commands. SOUND VOC, FRQ, DUR is just as valid as

SOUND 1, 11000, 100—and considerably easier to under

stand. And replacing literals with variables lets you change the

sound dynamically, just by redefining the variable. Since the

computer can often look up a variable faster than it can inter

pret a literal, variables can also speed up a program

somewhat.

PLAY accepts variables, too, so PLAY A$ and PLAY

A$(23) work just as well as PLAY "C D E F". You may also

concatenate PLAY strings and use other string operations such

as MID$, LEFTS, and so on:

10 PLAY "X0U9S":P$="CDEFGAB"

20 FOR J=ASC("1") TO ASC("6"):

FOR K=l TO 7

30 PLAY "O"+CHR$(J)+MID$(P$,K,1)
40 NEXT:NEXT

PLAY accepts nearly any string construction that PRINT

can handle. However, you may not separate PLAY strings

with a comma or semicolon. One final reason to put strings

into variables is that it simplifies debugging. If you're not sure

77

u
Chapter 2 . (

LJ

what a PLAY statement is doing, simply PRINT the string on

the screen to see what it contains.

Program 2-4. Musical Keyboard
For mistake-proof program entry, be sure to use "The Automatic Proofreader/' Appendix B.

QH 10 GOSUB 60

DJ 20 GETKEY A$:X=PEEK(212)

HC 30 IF T$(X)<>n"THEN PLAY T$(X):PRINT "lHOMEjMSP

C(7)"TUNE:"MID$(T$(X),2)

SE 40 IF P$(X)<>""THEN PLAY P$(X):PRINT M{HOME}"P$
(X)"{2 SPACES]11

RD 50 GOTO 20

CP 60 DIM P$(256)#T$(256):FOR J=l TO 3:S0UND J,0,0
:NEXT

BC 70 PLAY "U9 X0 T7 S":TEMPO 15

EP 80 READ K,P$:P$(K)=P$:IF P$<>"DONE" THEN 80

ED 90 READ K,P$:T$ (K)="T"+P$:IF P$o"DONEM THEN 90

XD 100 PRINT CHR$(147)SPC(10)n{RVS}{2 DOWNjMUSICAL

KEYBOARD {OFF}11: PRINT SPC(12)"4 5 6 7 8 9"
JP 110 PRINT SPC(H)"E R T Y U I O":PRINT SPC(12)"

D F G H J K"

BD 120 PRINT SPC(11)"X C V B N M ,":PRINT "{HOME}"

SPC(7)"TUNE:"MID$(T$(70),2):RETURN

RE 130 DATA 23,030,18,O3#C,20,O3D,21,03#D

XE 140 DATA 31,O3E,26,O3F,28,O3#F,29,O3G

GK 150 DATA 39,O3#G,34,O3A,36,O3#A,37,O3B

MM 160 DATA 47,O4C,14,04C,11,04#C,17,04D

CA 170 DATA 16,O4#D,22,O4E,19,O4F,25,O4#F

RC 180 DATA 24,O4G,30,04#G,27,O4A,33,O4#A

PA 190 DATA 32,O4B,38,O5C,256,DONE

DH 200 DATA 81,0,71,1,68,2,79,3,69,4,66,5

RP 210 DATA 77,6,70,7,65,8,78,9,256,DONE

Program 2-5. Soundmaker
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix B.

EH 10 GOSUB 70

KH 20 GETKEY A$:V=V+1:IF V=4 THEN V=1:PRINT

CD 30 W=INT(RND(1)*4):DI=INT(RND(1)*3):FRQ=K(T(ASC

($))) , ,
RB 40 MI=INT(FRQ/(8*(V*W+1))):S=INT((FRQ-MI)/((INT

(RND(1)*10)+1)*(MI/100))) I i
HM 50 SOUND V,0,0:SOUND V,FRQ,100,DI,MI,S,W

SB 60 PRINT"SOUND"V"{LEFT},"FRQ"{LEFT},"100"{LEFT} . /
,"DI"{LEFT},"MI"{LEFT},"S"{LEFT},"W"{LEFT}," j
:GOTO 20

AK 70 FOR J=l TO 3:SOUND J,0,0:NEXT:VOL 15:DIM K(2

56),T(256):FOR J=l TO 255:T(J)=J I j

78

u

n

n

n

n

H

n

n

n

Sound and Graphics

HA 80 K(J)=J* 150 :NEXT:POKE 2594,128 :PRINT CHR$(147
)SPC(10)"{DOWN}{RVS}128 SOUNDMAKER{OFF}M

DD 90 PRINT SPC(10)"PRESS ANY KEY":PRINT:RETURN

Program 2-6. Song Player
For mistake-proof program entry, be sure to use "The Automatic Proofreader/' Appendix B.

GK 10 J= 1017

FD 20 CH$=" 0123456789#$.XVOTUWHQISRMABCDEFG":PLAY

"X0 U9 O4T7 I"
DS 30 PRINT"tCLR}[2 RIGHT}{RVS}128 SONG MAKER":PRI

NT"{2 DOWN}{2 RIGHT}{RVS}ElOFF}NTER

{2 SPACES}{RVS}P{OFF}LAY{2 SPACES}{RVS}Q

{OFFjUIT"

GD 40 GETKEY A$:IF A$<>"E"ANDA$<>"P"ANDA$<>"Q" THE

N 40

AG 50 IF A$="E" THEN 120

HD 60 IFA$="Q" THEN PRINT"{CLR}10 J="J:POKE 208,2:

POKE 842,19:POKE 843,13:END

KE 70 REM SONG PLAYING ROUTINE

AX 80 RESTORE:PRINT "{DOWN}PLAYING SONG. PRESS ANY

KEY TO QUIT."

XX 90 GET A$:READ P$:IF A$=""ANDP$<>"FINI" THEN PR

INT P$:PLAY P$:GOTO90

GA 100 PRINT "IDOWN}END OF SONG•

XF 110 REM MUSIC ENTRY ROUTINE

SA 120 POKE 208,0:PRINT "{CLRjENTER MUSIC DATA (29

-CHARACTER MAXIMUM)"

GE 130 PRINT "TYPE 'MENU' TO EXIT"

MG 140 P$="":INPUT "{8 SPACES}";P$:IF P$="MENU" OR

P$="" THEN 20

DF 150 X=0:FOR M=l TO LEN(P$):FOR K=l TO LEN(CH$)
KE 160 IFMID$(P$,M,1)=MID$(CH$,K,1)THENX=X+1

KR 170 NEXT K,M:IF X<LEN(P$) THEN PRINT"ILLEGAL MU

SIC DATA":PRINT P$:GOTO 130

CP 180 PRINT "{CLR}";J;"DATA ";P$:PRINT "J="J+1":G

OTO 120"

SG 190 POKE 208,4:POKE 842,19:POKE 843,13:POKE 844

,13:END

ER 999 REM MUSIC DATA STARTS HERE

XE 1000 DATA A

JF 1001 DATA C

MG 1002 DATA D

AE 1003 DATA A

CF 1004 DATA B

EG 1005 DATA C

GH 1006 DATA D

JJ 1007 DATA E

79

Chapter 2

u

u

MK 1008 DATA F

QM 1009 DATA G

DJ 1010 DATA H

KH 1011

JF 1012

DATA E

DATA A

MG 1013 DATA B

MJ 1014 DATA E

SJ 1015 DATA D

JR 1016 DATA M

KR 63999 DATA FINI

u

u

u

U

80

u

Sound and Music

Philip I. Nelson

The Commodore 128's advanced BASIC makes it easy and fun to
create music or sound effects. This chapter shows how to use the
VOL, TEMPO, and ENVELOPE statements, explores the FILTER,
SOUND, and PLAY commands, and includes three short tutorial

programs.

If you've heard much about the new Commodore 128, you

probably know that it contains a very powerful music maker:

the SID (Sound Interface Device) chip, exactly as found in the

Commodore 64, and still the best sound chip in any personal

computer. The SID chip provides three independent voices

(tone generators) for playing up to three notes at once, and

four different waveforms to simulate virtually any sound.

Although both computers use the SID chip, the compari

son ends there. Since Commodore 64 BASIC has no sound

commands, even simple 64 sound effects require several POKE

statements. The 128's BASIC eliminates the POKEs by adding

six new music and sound commands: PLAY, SOUND, VOL,

TEMPO, ENVELOPE, and FILTER.

Simplicity and Power

The PLAY command is both powerful and easy to use. If you

have access to a 128, type in and run the following one-line

program. (The spaces make the statement more readable, but

are not necessary.)

100 PLAY "CDEFGFEDC"

The 128 plays nine notes, going up the scale and down

again. It would take a lot more work to play the same nine

notes on the 64—you'd need at least three preliminary POKEs

(to set the volume and sound envelope), plus four POKEs for

each note (one to turn on the voice, two to set the pitch, and

one to turn off the voice).

Interestingly, you can control the SID chip in 128 mode

with the same POKEs as on the 64. That's usually a waste of

time, since the 128's BASIC commands are more convenient

than POKEs. However, 128 BASIC has certain limitations

81

Chapter 2

(SOUND statements can't use ring modulation or synchroniza

tion, for example). If you already know sound programming —

on the 64, you may still find uses for old-fashioned 64 pro- l
gramming techniques.

The PLAY command is so versatile that it's almost a

minilanguage in itself. In addition to playing notes, you can | j
insert rests, change octaves, choose any of ten different instru

ment voices, use filtering, and even play multivoice music.

VOL Means Volume

The VOL command affects all three voices at once and accepts

values from 0 (silence) to 15 (maximum). Add the following

line to the example program and run it again:

10 VOL 15

Since the song plays at the same volume, it seems VOL

had no effect. In fact, VOL just duplicated the default volume

setting that PLAY uses when no volume is specified. When

you turn on the 128, it establishes several music and sound

settings (parameters) in advance. For instance, the PLAY state

ment above plays the notes at maximum volume with a sound

envelope and waveform that simulate a piano. Other default

sound parameters, too, remain in effect until you change them.

In many cases you can set the volume at the beginning of

a program and leave it alone. However, gradual changes in

volume can add to the dynamics of a song. Since drastic volume

changes make the SID chip "pop," don't use VOL to turn indi

vidual notes on and off. (To hear the pop, turn up the volume

on your monitor or TV set, enter the following line without a

line number, and press RETURN: VOL 15:VOL 0:VOL 15.)

Unlike PLAY statements, SOUND statements default to a

volume of 0. Before using SOUND, you must always use VOL

to set the volume to some nonzero value. | j

TEMPO

TEMPO is another command that affects all voices equally, I—

setting the speed at which a song plays. TEMPO is followed

by one number in the range 0-255. The default tempo setting I j

is 15, a pedestrian speed. Add the following line to the ex- I—I
ample program and run it again:

20 TEMPO 50

82

u

Sound and Graphics

n

n
1 At a tempo of 50, the song plays much faster. Try several

different TEMPO values in line 20. As you'll find, the highest
j I tempos are exceedingly fast—too speedy for playing whole

{ songs, but handy for simulating trills and grace notes. Change
the TEMPO value back to 15 when you're done experimenting

pi with line 20. a
' Don't confuse tempo—the overall speed of the music—

with the individual duration of each note (quarter note, six
teenth, etc.). In conventional music a quarter note lasts one
"beat," an eighth note lasts one-half beat, and so on. Tempo
defines how many beats are played in a minute. At faster tem
pos every note plays faster, but quarter notes still last twice as

long as eighth notes. The default note duration for PLAY is a
quarter note.

A Built-in Orchestra

The ENVELOPE command is more versatile than VOL or
TEMPO. It is used to create customized instrument sounds for
your songs. ENVELOPE takes the following general form:

ENVELOPE i, a, d, s, r, w, p

In the above example, i stands for the instrument number,
a for attack rate, d for decay rate, s for sustain rate, r for release
rate, w for waveform, and p for pulsewidth. Naturally, in a pro
gram these letters are replaced with appropriate numbers.

The first number in an ENVELOPE statement chooses one
of the 128's instrument voices. There are ten predefined instru
ments, numbered 0-9 as shown here:

Instrument ENVELOPE
Piano 0

Accordion 1

Calliope 2

Drum 3

Flute 4

Guitar 5

Harpsichord 6

Organ 7

Trumpet 8

Xylophone 9

Since PLAY commands use the same instrument numbers,
you'll want to become familiar with this list. To pick an instru-

j—I ment within PLAY, add a T (for tune) followed by the desired

r

n

n

n

Chapter 2

u

u

instrument number. For instance, PLAY "T5 C D T3 E F" se

lects instrument 5 (guitar) and plays notes C and D, then se

lects instrument 3 (drum) and plays notes E and F. The same
numbering scheme identifies customized instruments, as you'll

see in a moment. The default instrument for PLAY statements

is instrument 0 (piano); if you don't specify an instrument,

PLAY always produces a piano sound.

Sound Envelopes

To create new instrument sounds, you'll need to learn about
sound envelopes and waveforms. Every natural sound has a
distinctive envelope, or sound pattern. Consider the difference
between a snare drum and a violin. Drum sounds begin and
end very sharply. The drumhead starts vibrating the instant

you strike it and fades quickly. Violin sounds start out more

softly, as the string gradually picks up vibrations from the
bow, and fade softly as the vibration dissipates.

The 128 defines different sound envelopes in terms of
four values: attack, decay, sustain, and release (ADSR). The at-
tack value defines how quickly the sound rises from silence to
its peak volume. Decay defines how quickly the sound fades
from peak volume to the volume at which it will be sustained
(held). Sustain sets the volume level for the sound's main du
ration. Release defines how quickly the sound fades from its
sustained volume back to silence again. Figure 2-1 illustrates a

typical sound envelope.
In ENVELOPE statements, the four numbers after the in

strument number define the ADSR envelope. ADSR numbers

can range from 0 to 15.

Figure 2-1. Typical Sound Envelope

u

u

84

u

n

n

n

n

Sound and Graphics

Waveforms

ENVELOPE also lets you pick different waveforms. Each of the
SID chip's three voices can produce four different waveforms,
diagrammed in Figure 2-2. The triangle waveform (used for
the flute, instrument 4) is soft and rich. The sawtooth wave
(used for the guitar, instrument 5) creates a louder, harsher
sound.

The pulse waveform (used for the organ, instrument 7) is
the most versatile of all. It's louder than the triangle wave and
can be adjusted to make sounds that are rich and full or thin
and faint. The noise waveform (used for the drum, instrument
3) is a random mishmash of frequencies that make a hissing
or rushing sound. ENVELOPE uses the following waveform
numbers:

Number

0

1

2

3

4

Waveform

Triangle

Sawtooth

Pulse

Noise

Ring modulation

Figure 2-2. Waveforms

Triangle Pulse

n

n

n ;
£

n <

n

/\ /\
/ V \

Sawtooth

\ \ N
\|
N

/

Noise

Ring modulation is a special effect, different from the
Dther waveforms. The SID chip creates ring modulation by
:ombining the frequencies of two voices into one complex
jound. Note that ENVELOPE cannot use synchronization, an
other SID effect familiar to 64 programmers.

85

u

Chapter 2 j i

Finally, ENVELOPE lets you choose different pulsewidth
values for the pulse waveform (2). The pulsewidth number
can range from 0 to 4095. Look again at the pulse wave dia- j
gram in Figure 2-2. The top portion of each wave is wider
than the bottom portion. The pulsewidth value defines the ra
tio between these two parts of the wave. Medium pulsewidth I j
values (roughly 1000-3000) produce fairly symmetrical waves
and full, solid tones. Very small or very large pulsewidth val
ues produce asymmetrical waves and thin, hollow tones.

ENVELOPE with PLAY

To see what ENVELOPE^can do, add line 30 to the example
program, and change line 100 to add Tl and a few more

notes:

30 ENVELOPE 1, 7, 0, 0, 0, 2, 2000

100 PLAY "Tl CDEFGAGFEDC"

Run the program again and notice how different the new

instrument sounds. Line 30 selects instrument 1; sets attack at
7; decay, sustain, and release at 0; waveform at 2 (pulse); and

pulsewidth at 2000.

The Tl in line 100 might seem redundant at first: If EN
VELOPE selects instrument 1, why specify instrument 1 again

in the PLAY statement? This is necessary because of the de
fault system. Until you specify otherwise in a PLAY statement,

PLAY always uses instrument 0, the piano. Thus, whenever
you define a new instrument with ENVELOPE, you must use

the same instrument number after T in the appropriate PLAY

statement. If you forget, PLAY ignores the ENVELOPE state

ment and uses instrument 0 or whatever instrument you last

selected with T.
Redefining an instrument with ENVELOPE replaces the

predefined instrument of that number. Thus, you can never I
have more than ten instruments at once. However, new in

struments can be introduced at any time with new ENVE

LOPE statements.]
ENVELOPE can be tricky to handle, since it gives you to- —1

tal control over the ADSR envelope and must be properly in
tegrated with other sound commands. For instance, an J I
envelope that sounds fine at slow tempos may be unsuitable 1—!
at faster tempos. Don't be discouraged if your first experiments

sometimes fail. Remember, ENVELOPE is necessary only for |J

86

u

n

n

n

n

Sound and Graphics

customized instrument sounds. If you're happy with the

predefined instruments, just use T in a PLAY statement to
choose the one you want.

FILTER Needs PLAY

Like the ENVELOPE command, FILTER does nothing notice
able until you turn the filter on with a PLAY statement. Insert
XI inside the PLAY string wherever you want to turn the filter
on, and XO where you want to turn it off. If you leave out the
X parameter, PLAY ignores preceding FILTER commands (the
filter remains off). In the simplest case (a FILTER command
followed by PLAY"X1"), the filter affects all three voices.
However, you can also filter each voice individually:

FILTER 1000,1,0,0,15

PLAY "VI XI V2 X0 V3 X0

These statements turn the low-pass filter on for voice 1
and turn it off for voices 2 and 3. The 128 remembers which
voice to filter when it executes subsequent PLAY statements
(more about multivoice music is explained below). However,
you can use only one filter setting at a time. For instance, you

can't use a low-pass filter for voice 1 and a band-pass filter for
voice 2. Whenever XI appears in a PLAY string, the 128 uses
the most recent FILTER setting. If no FILTER command has
been executed, this may result in silence.

A FILTER Editor

As with other sound effects, the best way to learn is to listen
and experiment; Program 2-7, "FILTER Editor," lets you do
just that. It's self-prompting, so you need only type it in, save

a copy, and run it. The menu screen displays all the current

filter parameters and lets you change whatever you like. To
select any option, press a number key from 0 to 9, and follow
the prompts. The program begins with no filtering (all filters
off) for comparison.

Option 9 switches you to the display screen, plays an as
cending musical scale with whatever filtering you've selected,
and displays the FILTER statement currently in effect. Once
you find a filter setting you like, write down the FILTER state
ment displayed on the screen and use it in your own pro

grams. From this screen, the number keys 1-6 select different

87

LJ
Chapter 2 . -,

octaves for the scale. Press the space bar to return to the main I—
screen.

Option 7 lets you select any of the 128's ten predefined

instrument envelopes, and option 8 controls the tempo at I—
which the scale is played. Note that some of the predefined

envelopes don't work well at fast tempos: The note ends

before the sound envelope can complete its natural cycle. Use ,

a slower tempo to slow things down and study a particular

effect.

The SID filter is a bit notorious. While it works fine on

some machines (my old 64 has a great one), its performance

may vary from one SID chip to the next. The manual for our
preproduction 128 notes that filtering "cannot be counted on,"

suggesting that nothing was done to improve the 128's filter.

With practice you should be able to achieve satisfactory effects

on your own machine, though they might sound somewhat

different on another computer.

The SOUND Command

SOUND is a very powerful command intended for sound ef

fects rather than music. Unlike PLAY (which defaults to maxi

mum volume), SOUND has a default volume setting of zero.

Thus, you must turn the volume up with VOL before the first

SOUND statement in a program. And whereas PLAY delays

the rest of your program until it completes the current PLAY

string, SOUND statements play "in the background" while the

program continues. To demonstrate, enter NEW and press

RUN/STOP-RESTORE (to clear the SID chip), then type in

and run the following two-line program:

RG 10 VOL 15:SOUND 1,5000,200:SOUND 2,4000,200:SOU

ND 3,3000,200

SX 20 FOR J=l TO 10:PRINT"PROGRAM CONTINUING":NEXT

:PRINT"DONE" |

Notice how the three-voice sound continues even after

this program ends and returns the computer to READY mode. I [

The first number in a SOUND statement (1, 2, or 3) picks !—'
one of the 128's three voices. By using different voice num

bers, you can play up to three sounds at once. However, the I I

128 ordinarily waits until a voice has finished the current I—I
SOUND statement before starting a new SOUND statement

for that voice. To illustrate, in line 10 of the above program, F [

88

n

n
Sound and Graphics

I change the 2 and 3 to 1; then run it again. Now voice 1 plays
three notes in sequence.

J I In most cases SOUND'S background-playing ability is de-
1 I sirable: Sound effects don't slow down the rest of your pro

gram. However, in other cases you might want to interrupt a

I I sound immediately (if, for example, the user wants to exit the
! I program). Fortunately, this is easy to do: SOUND statements

with zero duration take effect immediately, whether or not
preceding sounds have finished. Thus, SOUND 1,0,0 silences

voice 1; use FOR J=l TO 3: SOUND J,0,0: NEXT to silence all
three voices.

Since variables can be used for any SOUND parameter,

you can create more dynamic, integrated effects by incorporat

ing other program variables in SOUND commands. For ex

ample, say that your game uses the variable X to represent a
spaceship's screen position. To make a cruising sound, you

might substitute something like X*1000 for the frequency
number in a SOUND command.

A SOUND Editor

"SOUND Editor," listed below, lets you experiment with

SOUND commands and design sound effects for your own
programs using up to three voices at once. Type in and save

Program 2-8, then run it. The first thing you'll hear are three
complex, multivoice sound effects (don't worry if they're not
exactly to your taste—you'll soon know enough about

SOUND to replace them with your own). Next, the editing
screen appears, displaying ten options and all the current

SOUND parameters (your User's Guide explains the meaning
of each parameter). To choose an option, press a number key
from 0 to 9. The program instructs you how to proceed and
does not let you enter inappropriate values.

j [Option 1 lets you switch from one voice to another. Op
tion 9 switches you to the display screen, which plays the cur-

, , ren* sound and displays the SOUND statements that create it.
j j It's fun to experiment with SOUND Editor, and it can save a

lot of programming time. Use it to design exactly the sound
you want, then copy the SOUND statements from the display

j j screen and use them in your programs. (Though the program
can play sounds with one, two, or three voices at once, it's not
necessary to use multiple voices. Zero-duration SOUND state-

I j ments produce no sound and may be ignored.)

n
89

u
Chapter 2 .

The PLAY Command '—'
Designed for real music making, PLAY is the most versatile of
all the 128's sound commands. As outlined in the User's | j
Guide, PLAY works much like the familiar PRINT command.

Each PLAY command is followed by a string containing spe

cial control characters. The letters A-F are interpreted as notes;

thus, the statement PLAY"C D E F" plays the four notes C-D-
E-F. In the last example, PLAY was followed by a string of
characters enclosed in quotation marks. However, PLAY can

also handle string variables (A$ ="C D E F": PLAY A$).
To see this method at work, type in and save Program 2-

9, "PLAY Demonstrator." It plays a short, Bach-like tune with
several different instrument envelopes. Note that all of the
music control characters are stored in DATA statements. Line

50 READs each line of data into a string named A$, and the
subroutine at line 20 PRINTs each music string just before it is

PLAYed.
like other strings, PLAY strings can be concatenated

(combined) with the + operator, and manipulated with any of
the string-related functions: MID$, LEFT$, RIGHTS, LEN,
VAL, CHR$, ASC, and STR$. Program 2-7 contains several

different examples.
For complex music you might want to store PLAY strings

in a string array. For instance, the following statement stores

100 elements of music data in a string array named M$():

FOR J=l TO 100: READ M$fl): NEXT.

Once the music array is created, you can quickly access any

string it contains: PLAY M$(3) plays the third music string
held in M$(), and so on. This is very helpful for repeating cer

tain passages. You may also find it useful to create separate

arrays for different purposes (one to store notes, another for

duration characters, and so forth). j j

Multivoice Music

Since the SID chip has three voices, PLAY can play up to II
three notes simultaneously. The V control character (followed
by 1, 2, or 3) determines which voice is affected. Thus, the

statement j [
PLAY "VI C V2 E V3 G"

plays a simple three-note chord. After processing VI C, the j |

90

u

Sound and Graphics

128 "looks ahead" to see whether it should play other notes
at the same time; however, the computer looks ahead only as
far as the next note. Thus, the statement

PLAY "VI CDE V2 CDE"

does not play the notes C-D-E simultaneously with two
voices. Instead, it plays two sequential notes (C-D) with voice
1, then two simultaneous notes (E and C) with voices 1 and 2,
followed by two sequential notes (D-E) with voice 2.

When all voices play notes of the same duration, multi-
voice music is not particularly difficult to write: Insert VI
before each note for voice 1, V2 before each voice 2 note, and
so forth (concatenations like A$ ="V1"+A$ can help con
dense the otherwise cumbersome code). However, when dif
ferent voices play notes of different durations, you must make
sure that all the durations add up.

For instance, you might want voice 1 to hold a long

whole note while voice 2 plays a series of sixteenth notes. To
keep the timing straight, you should not let voice 1 play an
other note until voice 2 has finished the equivalent of a whole
note (16 sixteenths or whatever). Similarly, the timing may be

thrown off if voice 2 plays more than 16 sixteenths before
voice 1 gets back in the act. The M control character suppos
edly tells the 128 to wait until all voices finish the current
measure before moving ahead. But M is just an adjuster. It
can't magically repair music that doesn't add up in the first
place.

Interactions

As noted throughout this chapter, certain 128 sound com
mands work with certain others. The VOL command, for in
stance, is needed only for SOUND statements (PLAY sets

volume independently with the U control character). TEMPO,
FILTER, and ENVELOPE, on the other hand, seem designed
to work with PLAY. TEMPO is irrelevant to SOUND (which
sets its own duration, and so on); ENVELOPE and FILTER
have no effect until activated by PLAY.

However, other interactions are possible (at least on our
128, admittedly a preproduction model). For instance, though
the SOUND statement provides no way to turn on the filter,
SOUNDs can be affected by "leftover" filter settings. If the
128 executes a FILTER statement followed by PLAY"X1", the

91

Chapter 2

u

u

filter remains on and affects subsequent SOUND statements.

PLAY"X0" turns the filter off for SOUND as well as for

PLAY.

This interaction can be viewed either as an advantage—

filtering is otherwise unavailable with SOUND—or as a pitfall

for unwary programmers. To prevent unwanted interactive ef

fects, begin sound and music programs by setting all sound

parameters at zero or default values. Commodore 64 program

mers often clear the SID chip with

FOR J=54272 TO 54296: POKE J,0: NEXT

Though this statement does clear the 128's SID chip, it doesn't

necessarily change the 128's sound settings, which are re

corded elsewhere in memory.

Program 2-7. FILTER Editor
For mistake-proof program entry, be sure to use "The Automatic Proofreader/' Appendix B.

u

u

FF 100

EG 110

XB 120

RX 130

CS 140

PA 150

KA 160

GH 170

BB 180

HM 190

MF 200

RF 210

FM 220

DB 230

KX 240

KE 250

RG 260

GF 270

ER 280

DR 290

AM 300

SC 310

DD 320

PP 330

92

{RVS}ON

{RVS}ON

{RVS}ON

{OFF}11

{OFF}"

{OFF}"

GOSUB570:GOTO310

FORJ=1TO3:SOUNDJ,0,0:NEXT:FILTER0,0,0,0,0:R

ETURN

PLAY A$: RETURN

LP$= " OFF":IFLP=1THENLP$

RETURN

BP$=" OFF":IFBP=1THENBP$

RETURN

HP$= " OFFn:IFHP=lTHENHP$

RETURN

PRINTD$"SET CUTOFF FREQUENCY (0-2047)"
INPUTA:IFA<0ORA>2047THENGOSUB550:GOTO190

FQ=A:RETURN

LP=ABS(LP=0):RETURN

BP=ABS(BP=0):RETURN

HP=ABS(HP=0):RETU RN

PRINTD$"S;ET FILTER RESONANCE (0-15)":INPUTA

:IFA<0ORA>15THENGOSUB550:GOTO250

RE=A:RETURN

PRINTD?"CHOOSE SOUND ENVELOPE (0-9)":INPUTA

:IFA<0ORA>9THENGOSUB550:GOTO270

WV$="T"+CHR$(A+48):RETURN

PRINTD?"CHOOSE TEMPO (1-2 55)":INPUTA:IFA<10

RA>255THENGOSUB550:GOTO290

TM=A:RETURN

PRINT"{CLR}{RVS} 128 FILTER EDITOR

PRINT"1 {RVS}

14 SPACES}"

PRINT"2 {RVS}
UB130:PRINTLP$

u
TER EDITOR :PRINT

FREQUENCY IOFFT"FQ"{LEFT}

L0W{2 SPACES}PASS {OFF}";:GOS

n

n

n

n

n

Sound and Graphics

ER 340 PRINT"3 iRVS} BAND PASS {OFF}"; :GOSUB150 :PR

INTBP$

JR 350 PRINT"4 iRVS} HIGH PASS {OFF}";:GOSUB170:PR

INTHP?

MR 360 PRINT"5 IRVS} RESONANCE {OFF}";RE"{LEFT} ":

PRINT " { 2 SPACES } {RVS } { OFF } "

AM 370 PRINT "7 {RVS} ENVELOPE{2 SPACES} {OFF} "MID$

(WV$,2)T$(VAL(MID$(WV$,2)))
CK 380 PRINT"8 {RVS} TEMPO{5 SPACES}{OFF}"TM"

{LEFT}{2 SPACES}M:PRINT"9 {RVS} PLAY
{6 SPACES}{OFF}":PRINT"0 {RVS} QUIT
{6 SPACES} {OFF} {DOWN}" ~"

PM 390 PRINT"{RVS}ENTER YOUR CHOICE (0-9)":PRINT"
{3 SPACES}{UP}"

GX 400 GETKEYA$:IFA$<"0"ORA$>"9"ORA$="6"THENPRINT:

GOSUB550:PRINT:GOTO390

MP 410 IFA$="9"THEN440

MF 420 IFA$="0"THENEND

EF 430 ONVAL(A$)GOSUB190,220,230,240,250,250,270,2

90:PRINTE$:GOTO320

MQ 440 PRINTCHR$(147)"OCTAVE "MID$(OC$,2)CHR$(13)

RQ 450 PRINT"LOW{2 SPACES}PASS "LP$:PRINT"BAND PAS

S "BP$:PRINT"HIGH PASS "HP$:PRINT

BR 460 PRINT"{RVS}CURRENT FILTER STATEMENT:":PRINT

:PRINT"FILTER ";

CA 470 PRINTMID?(STR$(FQ),2)","MID$(STR$(LP),2)","

MID$(STR$(BP),2)",";

EC 480 PRINTMID$(STR$(HP),2)","MID$(STR$(RE),2):PR
INT:FILTER FQ,LP,BP,HP,RE

CX 490 PRINT"PRESS {RVS} 1-6 {OFF} FOR OCTAVE"CH

R$(13)SPC(6)"{RVS} SPACE {OFF} TO EXIT"

QC 500 F$="X0 ":IFLP=1ORBP=1ORHP=1THENF$="X1 "

QD 510 A$=F$+WV$+"S":GOSUB120:TEMPO TM

MK 520 GET B$:IFB$=CHR$(32)THENGOSUB110:GOTO310

HD 530 IFB$=>"1"ANDB$<="6"THENOC$="O"+CHR$(VAL(B$)

+48) .-PRINT" {HOME} "SPC(6)VAL(B$)

GG 540 A$=OC$+"CDEFGAB":GOSUB120:GOTO520

FB 550 GOSUB110:FORJ=1TO3:SOUNDJ,1000+J*500,15,0,0

,0,2,J*1000:NEXT

kq 560 print"{up}{rvsInappropriate":sleepi:print"
{up}{13 spaces}{3 up}":return

ha 570 printchr$(14)chr$(8) :forj=54272to54296 .-poke
j,0:next:vol15:d$=chr$(19)

ks 580 forj=1to15:d$=d$+chr$(17):next:fq=1000:lp=0

:bp=0:hp=0:re=15:wv£="t7"?tm=55

ad 590 forj=1to35:x$=x$+chr$(32):next:e$=d$+x$+chr

$(13)+X$+CHR$(19)+CHR$(13)

BP 600 FORJ=0TO9:READX$:T$(J)="{2 SPACES}"+X$:NEXT

:OC$="O3":GOSUB110:RETURN

93

u
Chapter 2 .

CH 610 DATA"PIANO 16 SPACES}","ACCORDION{2 SPACES}" I 1
,"CALLIOPEI 3 SPACES}","DRUM{7 SPACES}","FLU

TE16 SPACES}" i /

PS 620 DATA"GUITAR{5 SPACES}","HARPSICHORD","ORGAN)|
I6 SPACES}","TRUMPET{4 SPACES}","XYLOPHONE

{2 SPACES}"

Lj1
Program 2-8. SOUND Editor
For mistake-proof program entry, be sure to use "The Automatic Proofreader/' Appendix B.

SX 10 GOSUB30:GOSUB5 70:GOTO320

GX 20 PRINT"{CLR}{RVS}128 SOUND EDITOR":PRINT:RETU

RN

RD 30 FORJ=1TO3:SOUNDJ,0,0:NEXT:RETURN

RP 40 PRINTD$"CHOOSE VOICE (1-3)":INPUTA:IFA<10RA>

3THENGOSUB550:GOTO40

GQ 50 VC=A:RETURN

QS 60 PRINTD?"CHOOSE FREQUENCY (0-65535)"
MA 70 INPUTA:IFA<0ORA>65535THENGOSUB550:GOTO60

FG 80 FQ(VC)=A:RETURN

BG 90 PRINTD$"CHOOSE DURATION (600=10 SECONDS)11
SJ 100 INPUTA:IFA<0THENGOSUB550:GOTO90

QC 110 DU(VC)=A:RETURN

KB 120 PRINTD?"CHOOSE DIRECTION OF SOUND SWEEP"

PX 130 PRINT"0=UP{2 SPACES}l=DOWN{2 SPACES}2=OSCIL
LATE":INPUTA:IFA<0ORA>2THENGOSUB550:GOTO120

ED 140 DI(VC)=A:RETURN

CF 150 PRINTD$"CHOOSE MINIMUM FREQUENCY FOR"

GF 160 PRINT"SOUND SWEEP (0-6553 5)":INPUTA:IFA<0OR

A>65535THENGOSUB550:GOTO150

JJ 170 IFA=>FQ(VC)THENGOSUB550:GOTO150

JG 180 MI(VC)=A:RETURN

KH 190 PRINTD$"CHOOSE STEP VALUE FOR SOUND SWEEP"

RP 200 PRINT"(LESSER OF 32767 OR"FQ(VC)-MI(VC)+l"

{LEFT})"

SF 210 INPUTA:IFA<0ORA>32767THENGOSUB550:GOTO190

FJ 220 IFA>(FQ(VC)-MI(VC))THENGOSUB550:GOTO190

MS 230 SV(VC)=A:RETURN j I

HE 240 PRINTD?"CHOOSE WAVEFORM{SHIFT-SPACE} j j
{5 SPACES}0=TRIANGLE"

JA 250 PRINT"1=SAWTOOTH{2 SPACES}2=PULSE{2 SPACES}

3=WHITE NOISE"

FQ 260 INPUTA:IFA<0ORA>3THENGOSUB550:GOTO240 I 1
PC 270 WV(VC)=A:RETURN

CP 280 PRINTD?"CHOOSE PULSE WIDTH" (i

DQ 290 PRINT"(0-4095)":INPUTA:IFA<0ORA>4095THENGOS

UB550:GOTO280

FC 300 PW(VC)=A:RETURN

HX 310 GOSUB20 I J

94

u

Sound and Graphics

SS 320 PRINT"1 {RVS} VOICE{6 SPACES}{OFF}"VC:PRINT

"2 {RVS} FREQUENCY{2 SPACES}{OFF}"FQ(VC)"
{LEFT} {4 SPACES}1'

QK 330 PRINT"3 {RVS} DURATION{3 SPACES } {OFF} "DU(VC

)"{LEFT}{4 SPACES}"

GG 340 PRINT"4 {RVS} DIRECTION{2 SPACES}{OFF}"DI(V
C)DI$(DI(VC)) "

CH 350 PRINT"5 {RVS} MINIMUM{4 SPACES}{OFF}"MI(VC)
11 {LEFT} {4 SPACES }":PRINT "6 {RVS} STEP VALUE
{OFF}"SV(VC)"{LEFT}{4 SPACES}" ~*

JP 360 PRINT"7 {RVS} WAVEFORM{3 SPACES}{OFF}"WV(VC
)WV$(WV(VC))

EJ 370 PRINT"8 {RVS} PULSEWIDTH {OFF}"PW(VC)"

{LEFT}{4 SPACES}"

JH 380 PRINT"9 {RVSj HEAR SOUND {OFF}":PRINT"0

{RVS} QUIT{7 SPACES}{OFF}":PRINT
PM 390 PRINT"{RVS}ENTER YOUR CHOICE (0-9)":PRINT"

13 SPACES}{UP}"

BS 400 GETKEYA$:IFA$<"0"ORA$>"9"THENPRINT:GOSUB550
:PRINT:GOTO390

MP 410 IFA$="9"THEN440

EX 420 IFA$="0"THENGOSUB30:END

RC 430 ONVAL(A$)GOSUB40,60,90/120,150,190,240,280:
PRINTE?:GOTO320

HG 440 PRINT"{CLR}THE FOLLOWING SOUND STATEMENTS":
PRINT"{2 SPACES}CREATE THE SOUNDS YOU HEAR.

HG 450 PRINT"ZERO-DURATION SOUNDS ARE SILENT."

EM 460 FORJ=1TO3:SOUNDJ,FQ(J),DU(J),DI(J),MI(J),SV
(J),WV(J),PW(J):NEXT

DP 470 FORJ=1TO3:PRINT:PRINT"SOUND ";

MH 480 PRINTMID$(STR$(J),2)","MID$(STR$(FQ(J)),2)"
,"MID$(STR$(DU(J)),2)",";

PH 490 PRINTMID$(STR$(DI(J)),2)","MID$(STR$(MI(J))
.2)","MID$(STR$(SV(J)),2)M,";

HR 500 PRINTMID$(STR$(WV(J)),2)","MID$(STR$(PW(J))
,2):NEXT

GR 510 PRINT:PRINT"PRESS {RVS}RETURN{OFF} TO EXIT"
^RINTSPCUJ^tRVSjSPACE-tOFF} TO REPEAT"

GQ 520 GETKEYA$:IFA$=CHR$Tl3)THENGOSUB30:GOTO310
RS 530 IFA$=CHR$(32)THENGOSUB30:GOTO440
EF 540 GOTO520

GH 550 GOSUB30:FORJ=1TO3:SOUNDJ#1000+J*500,15,0,0,
0,2,J*1000:NEXT

KQ 560 PRINT"{UP}{RVS}INAPPROPRIATE":SLEEP1:PRINT"
{UP}{13 SPACES}T3 UP}":RETURN

CF 570 PRINTCHR$(14):D$=CHR$(19):FORJ=54272TO54296
:POKEJ,0:NEXT:FORJ=1TO15

BE 580 D$=D$+CHR$(17):NEXT:GOSUB20:VOL15:FORJ=1TO3
8:X$=X$+CHR$(32):NEXT

95

LJ
Chapter 2 I ,

RD 590 VC=1:E$=D$+X$+CHR$(13)+X$+CHR$(13)+X$+CHR$(' '
19)+CHR$(13)

MF 600 FORK=2000TO4000STEP220:FORJ=1TO3:SOUNDJ#K*2 i ,

+J*20,45,2,K,K/3,2,4095-K j j
GG 610 NEXTJ,K:FORJ=45TO1STEP-5:SOUND1,J*1000,5,1,

J*100,J*280,2,2300

JK 620 SOUND2,3200-J*20,5,0,0,0,2,1500:SOUND3,J*12 I I

00,5,1,J*120,J*300,2,3000 I 1
JX 630 NEXT:FORJ=1TO3:SOUNDJ,10000,200,1,J*2000,J*

400,2,2 300:NEXT:FORJ=1TO3

RH 640 READFQ(J),DU(J),DI(J),MI(J),SV(J),WV(J),PW(

J) :NEXT:FORJ=0TO3:READA$

MB 650 WV$(J)=" "+A$:NEXT:FORJ=0TO2:READA$:DI$(

J) = " "+A$:NEXT:RETURN

KG 660 DATA10000,260,2,2000,60,2,2000,0,0,0,0,0,0,

2000,0,0,0,0,0,0,2000

PS 670 DATA"TRIANGLE","SAWTOOTH","PULSE{3 SPACES}"

,"NOISEI 3 SPACES!"
GA 680 DATA"UPWARD{3 SPACES}","DOWNWARD ", "OSCILLA

TE"

Program 2-9. PLAY Demonstrator
For mistake-proof program entry, be sure to use "The Automatic Proofreader/' Appendix B.

GA 10 GOTO30

EQ 20 PRINTA$:PLAYA$:RETURN

RR 30 PRINTCHR$(147)CHR$(14)SPC(3)CHR$(18)"128 PLA

Y DEMONSTRATOR"CHR$(13)

KG 40 FORJ=54272TO54296:POKEJ,0:NEXT:FILTER0,0,0,0

:FORJ=1TO3:SOUNDJ,0,0:NEXT

RF 50 READA$:IFA$<>"Z"THENGOSUB20:GOTO50

XG 60 PRINT:PRINTSPC(2)CHR$(18)"PRESS P TO PLAY AG

AIN, Q TO QUIT"

AS 70 GETKEYG$:IFG$="P"THENRUN

KC 80 IFG$<>"Q"THEN70

ME 90 END

RQ 100 DATA U9 X0 VI S

FH 110 DATA T7 05 C 04 B 05 IC S04 GRERGR

XJ 120 DATA T6 CDC 03 B 04 IC S03 GRERGR I

AH 130 DATA T7 CGDGEGDGC

BH 140 DATA 04 C 03 BAGFEDC

GE 150 DATA 05 C 04 BAGFED

MB 160 DATA T6 CGDGEGFGEGDG l >
MP 170 DATA CG 03 #A 04 G 03 A 04 G 03 G 04 G

BG 180 DATA 03 F R 05 FE I F S DR 04 BR 05 DR i j

QQ 190 DATA T2 G 06 G 05 A 06 G 05 B 06 G C 06 GDG j j
FG

AH 200 DATA ERDCDGC 05 B

JB 210 DATA T4 ERDCDGC 04 B

96

n

n

n

n

EA 220 DATA T6 ERDCDGC 03 B

XA 230 DATA T0 ERDCDGC 02 BC

JS 240 DATA T7 03 CDEFGABC

HD 250 DATA 04 CDEFGABC

ES 260 DATA 05 CDEFGAB

RE 270 DATA 06 CR 05 CR I 03 CR

AC 50000 DATA Z

Sound and Graphics

n

n

n

n

n
97

G

o

a

a

Chapter 3

Games

G

o

a

a

n

Orbitron

Mark Tuttle and Kevin Mykytyn

You'll need to plan ahead to outmaneuver your opponent and

score in "Orbitron," an interplanetary game for two players. Re

quires two joysticks.

Pass the ball between your three orbiting planets before your

opponent grabs it. Move the ball and control to the outer orbit

with perfect timing so your planet moves into position for a

shot on goal. But be sure you pass in front of your goal before

the other player has a chance to grab the ball. Or pass the ball

between orbits just as your opponent picks up the ball, being

sure that your player will be able to recapture it. Perhaps you

want the other player to temporarily move the ball into posi

tion for you.

First Things First

Yes, "Orbitron" is a challenging game where two players try

to outwit each other in order to pass the ball into position for

a score. Playing Orbitron takes some practice. Each player

must learn to control his or her three orbiting planets and pass

the ball.

Player 1 is red and uses a joystick attached to port 1;

player 2 is white and uses port 2. Each player has three orbit

ing planets: Player l's planets orbit in a clockwise direction,

while player 2's move counterclockwise.

Each player can control only one planet at any one time.

The planet currently being controlled is a different color from

the other two moving in the same direction. Player 1 has con

trol over the purple planet; player 2 has control over the gray

planet. To control the outer orbiting planet, press the fire but

ton and push up—instantly the planet changes color to indi

cate control. Likewise, press the fire button without moving

the stick to control the center planet, and pull back while

pressing the button to control the inner planet.

101

u
Chapter 3

Once You've Got Control '—>
Once you have control of a planet, there are two things you

can do: Change its speed, and pass or shoot. Move your joy- I j
stick to the right to increase the speed of a planet and to the '—'
left to decrease the speed. Once the speed of a planet is set, it

remains at that speed until it's changed again. The speed of II
each planet is shown on the bottom of the screen. '—

To pass the ball to another orbit, simply pull the stick

down to throw the ball to an inner orbit, and push up to shoot

at the goal or pass the ball to an outer orbit.

Playing the Game

The first time the game is run, there will be a minute and a

half delay while the game is set up. Once the title screen ap

pears, press either fire button to start the game.

The best way to learn to control the ball and your planets

is to practice playing the game. The object of the game is to

score five goals first. At the start of the game, a ball appears

somewhere in the inner orbit. To score a goal, a player must

move the ball from the inner orbit to the outer orbit, then

shoot it into one of the two goals (on the left and right edges

of the outer ring). Whenever a planet passes over the ball, it

picks up the ball and carries it until it's either passed to an

other orbit or the other planet in the same orbit crosses over

the planet carrying the ball, stealing it. You don't have to have

control over the planet to steal the ball.

Remember, though, to pass the ball between orbits and to

shoot, you must have control of the planet that has the ball.

To score, you must have control of your outer planet, that

planet must be carrying the ball as it passes a goal, and you

must shoot (push the stick up) as the planet passes the goal.

If you miss while trying to score a goal (or pass outward , ,

while on the outer ring), then the ball is transferred to the in- | \
ner ring.

Typing It In I—'
Orbitron is written in two parts. Program 3-1 is written in

BASIC and should be typed in using "The Automatic Proof- I I

reader" (Appendix B). If you are using tape, you'll need to '—'
change the 8 in line 10 to a 1. Program 3-2 is the machine

language section of the program and must be entered using I j

102

u

n

n

n

n

n

n

n

n

n

n

Games

"MLX," the machine language editor program. MLX, and com

plete instructions for its use, can be found in Appendix C.

Once you've typed in MLX, save a copy for use with "Meta-

BASIC," found in Chapter 4, and with programs from other

COMPUTE! publications.

When you're ready to enter the data from Program 3-2,

load and run MLX. You'll be asked for the starting and ending

address of the program. Enter:

Starting address: 7530

Ending address: 7997

Also, since Program 3-1 will automatically load the file created

by MLX, you should answer the MLX prompt for a filename

with ORB.OBJ when saving the data.

Tape users should save Program 3-1 at the beginning of a

new tape, then remove the tape without rewinding it. Next,

insert a tape with MLX on it, and load and run MLX, answer

ing the prompts as above. When you're ready to save a copy

of the data from Program 3-2, remove the tape containing

MLX and insert the tape with Program 3-1 on it. Using the

Save option of MLX, save the data from Program 3-2 immedi

ately following Program 3-1.

Once you've finished entering and saving Program 3-1,

and the data from Program 3-2 (using MLX), you're ready to

play the game. First, load Program 3-1. Next, disk users

should insert the disk with ORB.OBJ on it; if you're using

tape, leave the play button down after loading Program 3-1.

Run Program 3-1—it will automatically load ORB.OBJ from

tape or disk.

Program 3-1. Orbitron
For mistake-proof program entry, be sure to use "The Automatic Proofreader/' Appendix B.

DR 10 GRAPHIC 1:GRAPHIC 0 :BANK0 :IFQ=0THENQ=1 :LOAD"

ORB.OBJ",8,1

XQ 20 COLOR 4,7:COLOR 0,7:PRINT"tCLRJ19 DOWN}g7l

12 SPACES}WHILE INITIALIZING THE SCREEN WILL

I SHIFT-SPACE]BE"

XD 30 PRINT"{DOWN}12 SPACESjBLANK FOR APPROXIMATEL

Y lWHT}1.5g73 MINUTES.":SLEEP4:FAST:BANK0:GO

SUB510

MS 40 PRINTCHR$(11)CHR$(27)"M":GRAPHIC 1,1

103

u
Chapter 3 , ,

BG 50 CIRCLE 1,20,20,5,4:PAINT 1,20,20:SSHAPE SP$, I 1
10,13f33,33:FORA=2TO7:SPRSAV SP$,A:NEXT:CIRC

LE 1,50,50,2 .-PAINT 1,50, 50 :SSHAPE SP$,40,43,

63,63:SPRSAV SP$,1

DM 60 GRAPHIC 4,1,0:WIDTH 1:MT(1) =-4:MT(2) =127:C0= ' !
1:CR=35

HM 70 COLOR 0,1:COLOR 1,6:COLOR 2,8:COLOR 3,15:COL j |

OR 4,1 I I
MS 80 CIRCLE 3,3,14,2,3:SSHAPE A$(1),0,11,17,17

AD 90 CIRCLE 1,80,83,15,15:FORI=1TO3:CIRCLE CO,80,

83,CR,CR:CO=CO+1:CR=CR+20:NEXT

AB 100 CIRCLE 2,154,83,2,6,0,180,1:CIRCLE 2,6,83,2

,6,180,2,1:GOSUB440

JP 110 PAINT 3,150,100,1:PAINT 2,130,100,1:PAINT 1

,50,100,1

PE 120 SPRITE 1,1,1,0:SPRITE 2,1,12,0:SPRITS 3,1,5

,0:SPRITE 4,1,2,0

HD 130 SPRITE 5,1,3,0:SPRITE 6,1,2,0rSPRITE 7,1,3,

0:GOSUB140:GOTO160

SQ 140 MOVSPR 1,173,122:MOVSPR 2,225,124:MOVSPR 3,

225,128rMOVSPR 4,265,124

DM 150 MOVSPR 5,265,128:MOVSPR 6,305,124:MOVSPR 7,

305,128:RETURN

HX 160 CHAR 3,0,0,"PLAYER 1",0:CHAR 3,32,0,"PLAYER

2",0:PRINT"lHOME}{9 DOWN}";

XD 170 GOSUB180:GOTO270

ED 180 PRINT"g2§{4 SPACES}gD§IRVSJgD§gF§I OFF]gF§

lRVS}gK§gD§gF§lOFFigFllRVSjgK§gD§gF§lOFF}

&F3 lRVS}gF§gD)|lOFF} gC§ { RVS } gF§ gD5| lOFF j gV§

lRVS}gK3gD§gF§lOFFjgFlgD5|lRVSigD§gF§lOFF}

BFlIRVS j gK§ gC3 gK§IOFF}gK§18 SPACES}{RVS}gK§

IOFF}gK3{RVS}gK3IOFF J";
JB 190 PRINT " gK3 { RVS JgK|JgC3gV3t OFF }gV§t RVS jgK3gC§

BV3lOFF}gV3 lRVS}gK§lOFF}gK§l2 SPACES)IRVSj

&K§IOFF}gK§ IRVS}gK3 gC§ gV§I OFF}gViIRVS J gK3

I OFF } gKjJ I RVS J gK§ I OFF} gK§ I RVS j gK§ I 2 SPACES }

lOFF}gK§lWHT}{8 SPACES}{RVSjgK3I OFF}gK§

IRVS}gK§{OFF}gK§{RVS J gK§ gD3 gC§{OFF}";

CF 200 PRINT" {RVS)gK3lOFF}gK§lRVS}gK3lOFF}gK§ i i

IRVS}gK3{OFF}gK§I 2 SPACES}IRVS}gK§IOFF}gK§

I SPACE}{RVS}gK§ gD3 gC§ t OFF} IRVS}gK§{OFF}gK§

IRVS}gK§{OFF}gK§IRVS}gK3IOFF}gK3 t RVS}gF*
lOFF}gK5|l9 SPACES} I RVS }g2 I§lOFF} gC3gV§gC§
BV§gCllRVS}g2 IilOFF} "; I

HE 210 PRINT" tRVSjg2 I§lOFF}l2 SPACES}gClgVl gC§

BV§gCigV3 lRVS}g2 I§lOFF} gC3gV§gC3gV3":BAN ,
K15:POKE53269,0:BANK0:SLOW

HD 220 PRINTSPC(8)"lDOWN}g7§PRESS FIREBUTTON TO PL
AY":RETURN

104

n

H

H

n

n

n

n

n

Games

MA 230 PRINT"g71{2 SPACES} gDl I RVS}gDlgFl {OFF} gF|

{RVS}|VlgC3{OFF} {RVS}gKlgC3{OFF}gDl{RVS}

BKlgD3ElHOFF}gV3l4 SPACES }gD3 I RVSjiDliFi
IOFF}BF§{RVS} gKl {OFF} gKl {RVS}gKlIOFF}gK§
lRVS}gK3gD§gIilOFF}gV3tRVS}gK§gD§gFHOFF}

&F3U SPACES} lYEL}{RVS}gKHOFF}gK3gIigF§

lRVS}gK§";

BK 240 PRINT"gClgVllOFF}gKl{RVS}gK3g2 D§ gKlgCl

i OFF}gF§ t 5 SPACES}{RVS} gKl {OFF}gKl i RVS j gKl

IOFF} gKHRVS}gKl{OFF}gKl i RVS j gKlI OFF}gKl

I RVS } gKl gCH OFF } gFl I RVS J gKl gCl gVl I OFF } gV§

I 4 SPACES } { GRN } { RVS } gKl I OFF } gKl i RVS } gKl

I OFF j gKl i RVS j gKH OFF J gKl I RVS j gKl {OFF } gKl

lRVS}gKllOFF}n;

QE 250 PRINT"gKl IRVS} gKl{OFF}gKl16 SPACES}{RVS}

gK3{OFF}gKl{RVS}gKl{OFF}gKlgCl{RVS}gClgVl

{ OFF } gVI { RVS } gKH OFF } gKl { 2 SPACES } { RVS } gKl

BDlgCl{OFF}{6 SPACES}!RVS}g2 HlOFF} gClgVl

gClgVlgClgVl {RVS}gIllOFF}gCl{RVS}g2 H";

CC 260 PRINTM{OFF}gVll5 SPACES}{RVS}g2 HlOFF}

{2 SPACES}gC§gVl gC3lRVS}g2 H{OFF}gVlgCl

gVlgClgVl{HOME}":RETURN

QF 270 IFJOY(1)=128ORJOY(2)=128THENGOTO320:ELSE 27

0

GC 280 GOSUB430:PRINT"{DOWN}INNER{2 SPACES}g4lB

{GRNjlRVS} {OFF}{9 SPACES}g4lB"SPC(2)"{WHT}

INNER";

HS 290 PRINT"{2 SPACES}g43B{RVS}{GRN} {OFF}

{9 SPACES}g43B"

AE 300 PRINT"g2lMIDDLE B4lB{YEL}{RVS} {OFF}

{9 SPACES}g43B"SPC(2)"{WHTjMIDDLE g4lB{YEL}

{RVS} {OFF}{9 SPACES}g4lB"

RD 310 PRINT"g2lOUTER{2 SPACES }"f41BB731 RVS} {OFF}

{9 SPACES}g4lB"SPC(2)"{WHT}OUTERl2 SPACES}

B43BB731RVS} {OFF}{9 SPACES}g43B{HOME}":RET

URN

XH 320 FORA=0TO21:GRAPHIC 4f0,A:FORX=1TO40:NEXT:NE

nXT:GOSUB280

KQ 330 GOSUB140:BANK15:POKE53269/127:BANK 0

AS 340 GRAPHIC 4,0,21:POKE29212,RND(1)*256:SYS3000

0:GOTO360

nQD 350 SYS30003

FS 360 IFPEEK(29210)=0THENPL=2:GOTO370:ELSEPL=1

XD 370 MOVSPR 1,PEEK(29213)*297+27,126:GOSUB450:SC

(PL)=SC(PL)+1:MT(PL)=MT(PL)+6

AE 380 PAINT 3,MT(PL),14,0:IFSC(1)=5ORSC$(2) =5THENP

RINT"{CLR}":GOSUB430:GOTO390:ELSE350

PE 390 SPRITE 1,0,1,0:GOSUB430:GOSUB230:GOSUB480:S

LEEP2

105

u
Chapter 3 , .

SH 400 MT(1)=-4:MT(2)=127:SC(1)=0:SC(2)=0:PRINT"
{CLRJ17 DOWN]";

KH 410 SPRITE 1,1,1,0:MOVSPR 1,173,122 :GOSUB180

JH 420 FORA=21TO0STEP-1 :GRAPHIC 4,0,A:FORX=1TO40:N I
EXT:NEXT:GOSUB440:GOTO270

DA 430 PRINT"ICLRJ120 DOWNJg21":RETURN ,

JB 440 N=0:FORZ=1TO2:FORI=1TO5:GSHAPE A$(1),N,11,0
:N=N+6:NEXT:N=129:NEXT:RETURN ' '

QS 450 FORJ=1TO15STEP5:SOUND1,J*1000,5,1,J*100,J*2
80,2,2300

BX 460 SOUND2,3200-J*20,5,0,0,0,2,1500:SOUND3,J*12
00,5,1,J*120,J*300,2,3000

SH 470 NEXT:RETURN

GQ 480 VOL 3:FORJ=45TO1STEP-2:SOUND1,J*1000,5,1,J*
100,J*280,2,2300

CB 490 SOUND2,3200-J*20,5,0,0,0,2,1500:SOUND3,J*12
00,5,1,J*120,J*300,2,3000

BF 500 NEXT:RETURN

ED 510 XC=175:YC=125:Q=3:FORR=25TO65STEP20:N=0
XF 520 FORA=0TO2*TSTEP.02:X=XC+2*R*COS(A):Y=YC+R*S

IN(A):XH=INT(X/256)

KB 530 XL=X-XH*256:G=(Q-1)*1000+N:POKE20000+G,XL:P
OKE23000+G,XH:POKE26000+G,Y

SS 540 N=N+1:NEXT:N=N-1:NH=INT(N/256):NL=N-NH*256-
POKE29000+(Q-1)*2,NL

KD 550 POKE29006+(Q-1)*2,NL:POKE29001+(Q-1)*2,NH:P
OKE29007+(Q-1)*2,NH:Q=Q-1:NEXT:RETURN

Program 3-2, ORB.OBJ
This data must be entered using MIX. See Appendix C

Starting address: 7530

Ending address: 7997

Save using the filename: ORB.OBJ

7530:20 87 77 AD 00 FF 48 A9 11

7538:3E 8D 00 FF 20 CB 77 20 E4

7540:39 76 20 F6 77 20 26 79 DA

7548:20 39 76 20 EF 76 20 FB F7 1 I

7550:75 CE DF 79 D0 12 AD E0 48 I I
7558:79 8D DF 79 20 17 78 20 65

7560:76 75 20 B4 75 20 6A 79 AD

7568:A5 91 C9 7F F0 FA A2 5A CE I
7570:CA D0 FD 4C 48 75 A0 05 D7 1 '
7578:A2 0A A9 00 8D E4 79 AD 0D

7580:F7 79 8D D6 11 AD EF 79 7D II
7588:8D D7 11 B9 Fl 79 9D D8 77 I |
7590:11 B9 F9 79 4A 2E E4 79 97

7598:B9 E9 79 9D D9 11 CA CA 57

75A0:88 10 E8 AD FF 79 8D ID E9 i !

106

u

n

n

n

n

n

Games

n

n

n

n

n

75A8:72 4A 2E E4 79 AD E4 79 39

75B0:8D E6 11 60 A2 0A BD EF EC

75B8:75 85 FB BD F0 75 85 FC 80

75C0:8A 4A A8 B9 9A 79 38 E9 49

75C8:0F 4A 4A 4A 8D E3 79 A9 54

75D0:0A 38 ED E3 79 8D E3 79 0E

75D8:A0 09 A9 20 CC E3 79 F0 67

75E0:02 B0 02 A9 A0 91 FB 88 9F

75E8:10 F2 CA CA 10 C8 60 DD E0

75F0:07 B5 07 8D 07 C8 07 A0 90

75F8:07 78 07 8A 48 98 48 AD Fl

7600:E2 79 0A A8 A2 01 98 4A ID

7608:CD IB 72 F0 IF AD 10 72 42

7610:D9 A2 79 D0 17 AD 11 72 D2

7618:D9 A3 79 D0 0F AD C4 79 49

7620:D0 0A 98 4A 8D IB 72 A9 17

7628:01 8D C4 79 98 18 69 06 27

7630:A8 CA 10 D2 68 A8 68 AA B4

7638:60 A2 05 DE 92 79 F0 03 EB

7640:4C A8 76 BD 9A 79 8A C9 Cl

7648:03 90 03 38 E9 03 A8 BD 29

7650:9A 79 0A 4A 88 10 FC 9D EA

7658:92 79 8A 0A A8 B9 A2 79 C9

7660:18 79 B2 79 99 A2 79 B9 A9

7668:A3 79 79 B3 79 99 A3 79 E2

7670:10 0C B9 48 71 99 A2 79 D4

7678:B9 49 71 99 A3 79 B9 48 IB

7680:71 38 F9 A2 79 8D E3 79 E0

7688:B9 49 71 F9 A3 79 0D E3 73

7690:79 B0 08 A9 00 99 A2 79 27

7698:99 A3 79 B9 A2 79 85 FD 0A

76A0:B9 A3 79 85 FE 20 24 77 13

76A8:CA 30 0D E0 02 D0 8C 20 43

76B0:EF 76 20 FB 75 4C 3B 76 C0

76B8:60 20 4E 08 52 F0 55 20 49

76C0:4E 08 52 F0 55 D8 59 C0 Bl

76C8:5D A8 61 D8 59 C0 5D A8 79

76D0:61 90 65 78 69 60 6D 90 FE

76D8:65 78 69 60 6D 18 65 FD 5E

76E0:85 FB AD E3 79 65 FE 85 68

76E8:FC 8C E5 79 A0 00 60 8A 1C

76F0:48 98 48 AD IB 72 C9 07 49

76F8:F0 0E 0A A8 B9 A2 79 8D 86

7700:10 72 B9 A3 79 8D 11 72 9B

7708:AD 10 72 85 FD AD 11 72 B3

7710:85 FE AD E2 79 0A A8 A2 4D

7718:06 20 24 77 20 5E 77 68 DF

7720:A8 68 AA 60 B9 BA 76 8D 0C

7728:E3 79 B9 B9 76 20 DD 76 A0

7730:B1 FB 9D Fl 79 AC E5 79 8D

107

u
Chapter 3 . .

7738:B9 C6 76 8D E3 79 B9 C5 9B ' '
7740:76 20 DD 76 Bl FB 9D F9 48

7748:79 AC E5 79 B9 D2 76 8D 07 I I

7750:E3 79 B9 Dl 76 20 DD 76 4A | |
7758:B1 FB 9D E9 79 60 AD IB 35

7760:72 C9 07 F0 10 AD 10 72 B4

7768:CD C2 79 D0 08 AD 11 72 B6

7770:CD C3 79 F0 11 A9 00 8D 32 l '
7778:C4 79 AD 10 72 8D C2 79 A7

7780:AD 11 72 8D C3 79 60 A9 20

7788:00 A0 0B 8D DC 79 8D DD 9F

7790:79 99 A2 79 88 10 FA A0 A9

7798:0B B9 76 79 99 B2 79 88 F4

77A0:10 F7 A0 05 B9 84 79 99 66

77A8:9A 79 A9 01 99 92 79 88 IB

77B0:10 F2 A9 02 8D DA 79 8D 12

77B8:DB 79 8D E2 79 A9 0A 8D E7

77C0:DF 79 8D E0 79 A9 07 8D CB

77C8:1B 72 60 A2 19 A9 00 9D 25

77D0:00 D4 BD DC 77 9D 00 D4 81

77D8:CA 10 F4 60 00 0F 00 0C IE

77E0:81 0F F0 00 00 00 00 00 72

77E8:00 00 00 0F 00 0C 15 0C 2F

77F0:00 00 0A F3 IF 60 20 0A 25

77F8:78 C9 CF B0 F9 C9 6B 90 F9

7800:F5 8D 10 72 A9 00 8D 11 Fl

7808:72 60 AD 1C 72 0A 0A 38 C9

7810:6D 1C 72 8D 1C 72 60 A2 F3

7818:01 BD DA 79 18 7D 46 79 A8

7820:8D DE 79 20 3C 79 29 0F E9

7828:C9 0F D0 05 A9 00 9D DC 91

7830:79 A0 00 20 3C 79 48 29 89

7838:10 D0 02 A0 01 68 4A B0 9E

7840:59 C0 01 D0 08 A9 00 9D BF

7848:DA 79 4C 05 79 BD DC 79 D4

7850:D0 F8 AD DE 79 CD IB 72 37

7858:D0 F0 AD IB 72 8D 1A 72 C5

7860:A9 07 8D IB 72 AD E2 79 D4

7868:F0 09 CE E2 79 20 5A 79 96 II

7870:4C 0A 79 AD 11 72 F0 07 4F I I
7878:AD 10 72 C9 2F 90 15 AD C2

7880:10 72 C9 04 90 08 C9 99 61

7888:90 0A C9 A0 B0 06 68 68 5E

7890:68 8D 00 FF A9 02 8D E2 6C ' !
7898:79 60 4A B0 33 C0 01 D0 22

78A0:07 A9 02 9D DA 79 10 5D D3

78A8:BD DC 79 D0 58 AD DE 79 9C j
78B0:CD IB 72 D0 50 AD IB 72 8C

78B8:8D 1A 72 A9 07 8D IB 72 F6

78C0:AD E2 79 C9 02 F0 3E EE 4C j j

108

n

n

n

H

n

n

n

n

n

78C8:E2 79 20 4A 79 4C 0A 79 BC

78D0:4A B0 13 AC DE 79 B9 9A 2B

78D8:79 C9 5F F0 28 18 69 01 69

78E0:99 9A 79 4C 05 79 4A B0 8C

78E8:13 AC DE 79 B9 9A 79 C9 F6

78F0:0F F0 12 38 E9 01 99 9A 8C

78F8:79 4C 05 79 C0 00 F0 0A E3

7900:A9 01 9D DA 79 A9 01 9D 7B

7908:DC 79 CA 30 03 4C 19 78 18

7910:A2 01 BD 46 79 18 7D DA B2

7918:79 A8 9D 03 7A BD 48 79 AA

7920:99 28 D0 CA 10 EC A0 06 2C

7928:CC 03 7A F0 0B CC 04 7A AE

7930:F0 06 B9 8A 79 99 28 D0 50

7938:88 10 ED 60 BD 00 DC 8D 6C

7940:02 7A AD 02 7A 60 00 03 01

7948:0B 04 A9 10 8D 12 D4 A9 FF

7950:0A 8D 0F D4 A9 15 8D 12 A9

7958:D4 60 A9 10 8D 12 D4 A9 0C

7960:12 8D 0F D4 A9 15 8D 12 BD

7968:D4 60 AD 14 7A 69 19 8D 0E

7970:14 7A 8D 08 D4 60 FF FF 66

7978:FF FF FF FF 01 00 01 00 75

7980:01 00 01 00 28 3C 50 28 0F

7988:3C 50 01 01 01 02 02 02 F3

7990:02 02 00 00 00 00 00 00 05

Games

109

Litter Patrol

no

u

u

u
Charles Brannon

BASIC 7.0 puts the power of the 128 within easy reach of the aver
age programmer, 'litter Patrol" demonstrates how the 128's BASIC

can be used to create an interesting and exciting game.

The Commodore 128 runs all 64 software, and can use virtu

ally all 64 hardware and peripherals. This makes it easy to up

grade to the 128 and gives first-time Commodore owners

instant access to the large 64 software library.

To use the expanded keyboard, full 128K memory, and

RGB color 80 columns, you need to run in the true 128 mode.

The 128 mode is a real upgrade of the 64, but has a familiar

feel to it. The same VIC chip is used to display 40 columns,

bitmap graphics, and sprites, so the screen even looks the

same, except for Commodore's new power-on color choice—

light green text on a dark gray screen with a light green bor

der. You need an RGB monitor (or a monochrome monitor

with an adapter cable) to use the full-color 80 column mode,

which is entirely independent of the 40-column screen sup
ported by the VIC chip.

The BASIC 7.0 is one of the most feature-packed BASICs

I've seen. To learn about the BASIC, I wrote a simple Frogger-

type game, taking advantage of the automatic sprite-movement

feature supported by BASIC. It seemed that if the game were

designed around the special BASIC features, I could get ma

chine language animation and payability. I was half right. The

game, "Litter Patrol," will run only in BASIC 7.0 in the 128
mode.

Playing Litter Patrol *—'
Litter Patrol uses a joystick plugged into port 2. A joystick

plugged into port 1 still interferes with the keyboard in 128
mode.

The goal of Litter Patrol is quite simple: Pick up all the

bits of litter and fill all the trash cans. Your heavy-duty (but I I
sluggish) truck can move in eight directions almost anywhere

on the screen. The cars, zooming back and forth on the high-

u

n

n

n

n

n

n

n

H

n

n

Games

way, are constantly throwing out bits of trash, which appear

as bright dots (periods) on the road. Move the claw of your

truck over the trash bit, and press the fire button. Your truck

picks up the litter.

Now move the claw over any trash can (which looks like

a hollow circle), and press the button. The trash drops in the

can, and the lid closes. Each trash can can hold only one load

of trash, so it turns solid to show you not to use it again. After

you've filled all 12 trash cans, you proceed to the next level. The

cars go faster, and you move more slowly—quite a handicap.

The game would be easy (and pointless) if not for the

zooming cars. Dodging them provides the entire challenge for

the game. If you get hit, you lose your trash bit—if you're car

rying one—and one truck. The game ends when you lose all

five trucks. Just to make things more interesting, you have a

time limit, represented by a blue bar at the top of the screen.

The bar drops by one segment every two seconds, so you

have about 80 seconds to complete each level. The game ends

instantly when you run out of time.

There are some safe zones for your truck where you can't

be hit, medians between each roadway, and at the top and

bottom of the screen. There's a secret safety zone, too, but I'll

leave its discovery to you. You must move your truck halfway

onto the roadway to fill a trash can, though. This makes a

tough game even tougher. The hardest part of writing a game

is in making it challenging but not too frustrating. Almost any

game gets easier with practice, but an unfair game doesn't en

courage you to try.

The Time Eaters

Litter Patrol is fun to play, but a caveat is in order. I didn't in

tend to program the game for its own sake, but for its educa

tional value. Keeping in mind that the game is in BASIC, you

may find it too slow. The main problem is the automatic sprite

movement. The cars move by themselves once set up, but

they are time eaters, stealing time during the interrupts from

the mainline BASIC program. More about this below.

We'll take a walk through the program listing. Litter Pa

trol, Program 3-3, is too big for a line-by-line analysis, so we'll

tackle it in chunks.

Lines 100-190. The GRAPHIC 0,1 command switches to

the 40-column text screen and clears the screen. The COLOR

111

u
Chapter 3 , ,

I I
0,12 statement sets the background color to dark gray (even '—l
though this is the default color), and COLOR 4,6 sets the bor

der color to green. Note that the colors are numbered 1-16, I !

not 0-15 as in POKEs. We GOSUB 760 to fill sprite shape '—1
strings from the DATA statements.

The roadways will be the background color showing | [

through other areas printed with reverse spaces. This lets us '—'
put yellow and white lines on the road. We'll print green

reverse spaces to represent grass, delineating the roadways. To

print the median lines and grass, we create 40 character strings

within the FOR-NEXT loop. It may be easier for the program

mer just to define the literal strings as 40 characters within

quotation marks (like SP$ = "{40 SPACES}"), but it's easier to

type in the program if we use a FOR-NEXT loop. Everything

is done with CHR$ codes. Instead of printing color codes, we

use the COLOR command to change the text color. However,

you'll occasionally see a {SPACE}. Just type one space instead

of the word in braces.

Line 140 turns off all sprites that may have been active

from a previous run of the game. We then print the roadways

with green bars above the road, white or yellow median bars

for the middle of the road, and blank lines for the road itself.

The time line is printed in blue at the top of the screen.

Lines 200-250. Line 200 is trying to print a 40-column

reverse string at the bottom of the screen. You can't normally

do this without scrolling, but it's possible if you print 39 char

acters, cursor left, use the INST/DEL key to insert the thirty-

ninth character into the fortieth position, then print another

character to fill the gap created by INST/DEL.

The title of the game is printed with the CHAR command.

CHAR is a usable substitute for PRINT AT. It lets you print

any string at any x,y position on the screen, and in normal or

reverse field. Combine it with COLOR to change the text] \

color. The subroutines at 720 and 730 are used to display the '—'
score and number of trucks ("lives") remaining. The FOR-

NEXT loop in lines 220-230 draws all the trash cans, at rows I j
2, 9, 16, 23, and columns 8, 20, and 32. I I

We then build a music string. It's a cutesy, happy melody,

but all that's important here is to notice the PLAY syntax. The I j
letters C-D-E-F-G-A-B stand for notes. The VI sets the voice I /
to voice 1, O2 sets the octave to 2 (that's an O, not a zero),

and TO selects a piano-like instrument setting. The letter I sets j j

112

G

n

n

n

Games

the note duration to eighth notes; Q is used for quarter notes,

with a period for a dotted quarter. The sharp (#) precedes the

HI note it modifies. And JR is used as a rest. We'll play the string
1 ' in line 360.

Lines 260-320. The automatic car sprites are set up.

j I SPRCOLOR sets the sprite multicolor registers to white and
black. All sprites share these colors. White is used for the

windshield (or the claw on the truck), and black for the tires. I

used the built-in sprite editor to design the sprites, then made

DATA statements for them. The DATA statements are read

into strings, then each string is assigned to a sprite with the

SPRSAV command. Sprite strings are 67 characters long, not

64 as you might expect.

For the six sprites (FOR 1=2 TO 7), we read (line 270) the

sprite x and y positions from a DATA statement at line 1110.

Notice that you can now RESTORE to any line number. The

SPRITE command turns on the sprite, sets its color, and speci

fies multicolor mode. It can also be used to select

sprite/foreground priority, and x,y expansion. Nonexpanded

sprites offer the greatest detail.

The MOVSPR command can move a sprite to any posi

tion, up or down by any amount, or automatically at any an

gle and at 16 speeds. We use the automatic syntax (the two

arguments are separated by a # sign instead of a comma). The

angle is either 90 (right) or 270 (left). Angle 0 is pointing

straight up in the sprite angular system. Whether a sprite goes

left or right depends on its sprite number. If (SN=2) is true

(-1), then 180 is added to 90, giving us 270. Otherwise, the

angle is 90.

The speed, which can range from 0 to 15, varies from up

to five speeds from the base speed, DF. This sets the difficulty

level. A higher DF gives generally faster cars. We save the an-

I * gles and speeds in arrays so that we can later pause the game

' ' (all speeds go to zero) and restart it from the arrays.
The automatic sprite movement is amazing. Even if you

P"! stop the program, the sprites continue. You can LIST your

1 * program, and the sprites still whiz by. However, you'd notice

a suspicious slowness to the listing. When you use automatic

n sprites, everything else slows down drastically. The more

sprites are moving, and the faster they go, the less time is

available for the main program. This made the truck-moving

n
113

n

u
Chapter 3

part of Litter Patrol quite sluggish and explains why the truck
moves more slowly as the cars go faster.

While automatic sprites give you smooth, fast motion, this
motion is not under your control. Speed is the reason you

would use the automatic sprites in the first place, but the time

saved by the automation is stolen from your main program.

You can achieve a workable compromise if you plan your
game around the limitations.

Lines 340-360. We synchronize the truck's position with
the character screen so that the claw will cover the dots that

represent trash bits. The truck always moves eight notches at a

time, as if it were a character. Therefore, it's always synchro
nized with the character grid.

Line 350 turns on the collision interrupts. Any time a

sprite hits a sprite, the program goes to line 580. Since all the

sprites are in separate lanes, this can happen only when the

truck is smashed. When we RETURN from the subroutine at
line 580, the program picks up where it left off when the colli
sion occurred.

We play the tune in line 360 only at the beginning of the
first level (IF DF=1).

Lines 370-470. We enter the main loop here. While the
car sprites move automatically, we must move the truck our

selves. First, if two seconds have passed (TI—T>120), we

erase a character from the time line. If the time line hits zero,
we go to the "game is over" routine at line 640. In 380, we

check for a keystroke. If a key is pressed, we halt all sprites
and wait for a new keystroke with GETKEY, then turn all the
sprites back on.

In line 390, we check for the highly probable: Is the value
of RND(l), which randomly varies between 0 and 1, less than
0.95? About 95 times out of 100, it will be, skipping lines 400
and 410. Five percent of the time, though, RND(1) will be

greater than or equal to 0.95, so we pick a sprite number, read

its x,y position, translate the sprite coordinates to character co

ordinates, and draw a white period to represent an empty cola
can (or whatever litterbugs throw out car windows). They all

look like little dots, though, from your aerial perspective. The
random statement controls the timing of litter dropping. Without

it, there would be a stream of trashy bits flowing from all cars.

114

n

n

n

n

n

n

n

n

Games

Lines 420-460. These lines move the truck. The JOYstick

command returns a number from 0 to 8, and is greater than

128 if the fire button is pressed. We use the JOY value as an

index into the DX and DY arrays. These arrays contain the

values —8, 0, or 8 for each position. For example, the south

west position of the joystick is down eight (+8) and left eight

(—8). Remember that we're moving eight spaces at a time. We

add this displacement to the current x and y positions of the

sprite, then relocate the sprite to the new position. We subtract

the displacement if that would put the sprite off the screen.

Lines 480-570. This is the fire button routine, called by

line 430 if it's pressed. It first figures out the position of the

character underneath the truck claw, then PEEKs screen mem

ory to see what the character is. If it's a period (a trash bit),

and if the truck is not carrying a trash bit, we POKE directly

into the sprite shape to put a dot in the claw, then POKE a

space into the position where the period was. So even in

BASIC 7.0, you sometimes need to use PEEK and POKE. One

point is added to the player's score, which is redisplayed using

the subroutine at 720.

If the character is an empty trash can (hollow ball), and if

the truck is carrying a piece of trash, we change that hollow

ball to a solid ball, increment the filled trash can counter, and

award ten points. If all 12 trash cans are full, we award a 1000

point bonus and increment the difficulty level, without letting

the difficulty level exceed 3. The game is restarted at line 140.

Notice the use of BEGIN and BEND. BEGIN starts a block

of code that is executed only if a preceding IF was true. BEND

ends the block. So BEGIN-BEND lets you extend the state

ment after a THEN into several lines. I placed a colon on

these extended lines to remind myself that they are part of a

BEGIN-BEND block..

Lines 580-700. This is the collision routine, called auto

matically whenever the truck is hit. The function BUMP(l)

reads the sprite-to-sprite collision register. The collision rou

tine should be called only when the sprites collide, but I found

it was entered twice for every time the truck was hit. The

check in line 580 prevents false collisions. I still don't know

why this is necessary.

115

n

u
Chapter 3

For the collision, we print a silly message, make a high- I I
pitched sound effect, move the truck back to the bottom of the

screen, remove any trash bit the truck may be carrying, reset i j

the collision with A=BUMP(1), then decrease the number of I I
trucks. If there are still trucks remaining, we continue with the

game by RETURNing from the sprite interrupt.

For the "game over" routine, we play another tune, print I
the GAME OVER message, and wait for the fire button to be

pressed while we redraw GAME OVER in different colors.

Before we check for the button press, we first wait for the

player to let go of the button in case the player was picking

up or dropping a trash bit. Otherwise, the game would in

stantly restart.

Lines 720-1110. These are simple subroutines. Line 720

updates the score; line 730 updates the number of remaining

trucks; 740 stops all sprites; 750 restarts them; and 760-780

read in the joystick displacements and sprite shapes. The rest

of the program is made up of DATA statements for the cars

and the truck.

The descriptions above can give you an idea of the detail

required to program even a simple game. This is not meant to

discourage, but to challenge.

Program 3-3. Litter Patrol
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix B.

AE 100 GRAPHIC 0,1:COLOR 0,12:COLOR 4,6:GOSUB760:D

F=1:LV=5:R=RND(-TI):R=RND(0)

KR 110 FORI=1TO40:SP$=SP$+" ":LN$=LN$+"-M

HX 120 BL$=BL$+CHR$(210):UL$=UL$+CHR§(183):NEXT

CE 130 BL$=CHR$(146)+BL$:UL$=CHR$(146)+UL$:SP$=CHR

$(18)+SP$

AX 140 FORI=1TO8:SPRITE I,0:MOVSPR 1,0,0:NEXT

MA 150 PRINTCHR$(147);:COLOR 5,6:PRINTSP$

HJ 160 TL=38:COLOR 5,7:PRINTLEFT$(SP$,40);:COLOR 5

,6:PRINT" "SP$ j {
JE 170 PRINT:PRINT:COLOR 5,16:PRINT LN$:PRINT :PRIN I 1

T

RB 180 COLOR 5,6:PRINT SPSP :PRINT: PRINT: COLOR 5,

16:PRINTLN$:PRINT:PRINT

JS 190 COLOR 5,6:PRINT SPSP:PRINT:PRINT:COLOR 5,

8:PRINTBL$;UL$:PRINT:PRINT

AF 200 COLOR 5,6:PRINTSP$LEFT$(SP$,40)CHR$(157)CHR

$(148)CHR$(32); I
CP 210 COLOR 5,14:CHAR 1,12,0," LITTER PATROL ",1:

GOSUB720 :GOSUB730

116
LJ

U

n
__ Games

n

n

n

n

n

FM 220 COLOR 5,6:FOR Y=2 TO 27 STEP 7
ED 230 FOR X=8 TO 32 STEP 12:CHAR 1,X,Y,CHR$(215),

1:NEXT:NEXT

SC 240 M$="V1 02 T0 IEGGEGGEGG ,Q #E I DFFDFFDFF .

QE"

PQ 250 M$=M$+"I EGGEGGEGG .Q A I AAFGGEFFD .Q CRRR

MQ 260 SPRCOLOR 2,1
BX 270 RESTORE 1110:FORI=2TO7:READ SY,SN:SPRSAV SS

$(SN),I

CQ 280 MOVSPR I,0,56+SY*8

FM 290 SPRITE I,1,1+1,0,0,0,1
XK 300 ANG%(I)=90-180*(SN=2):SPD%(I)=5*RND(1)+DF

MX 310 MOVSPR I,ANG%(I)#SPD%(I)

RF 320 NEXT

QJ 330 XP=102:YP=237:MOVSPR 1,XP,YP

DC 340 SPRITE 1,1,11,0,0,0,1:SPRSAV SS$(0),1

SS 350 COLLISION 1,580

GK 360 IF DF=1 THEN PLAY M$:SOUND 1,0,0

KH 370 IFTI-T>120THENCOLOR 5,6:CHAR 1,TL,1,CHR$(32

),1:T=TI:TL=TL-1:IFTL<0THEN640

KH 380 GET A$:IF A$<>"" THEN GOSUB740:GETKEY A$:GO

SUB750

KS 390 IF RND(1)<.95 THEN420

RG 400 S%=2+6*RND(1):X=RSPPOS(S%,0):Y=RSPPOS(S%,1)
DP 410 IF X>31 AND X<336 THEN COLOR 5,2:CHAR 1,(X-

24)/8,(Y-50)/8+l,"."

SC 420 J=JOY(2):IF J=0 THEN370

EE 430 IF J AND 128 THEN 480

PC 440 XP=XP+DX(J):IF XP<24 OR XP>343 THEN XP=XP-D

X(J)
FE 450 YP=YP+DY(J) :IF YP<61 OR YP>237 THEN YP=YP-D

Y(J)

PC 460 MOVSPR 1,XP,YP

JD 470 GOTO 370
CR 480 X%=(XP-24)/8+l:Y%=(YP-50)/8:SP=1024+X%+40*Y

%:C=PEEK(SP)

BC 490 IF C=46 AND HT=0 THEN BEGIN:POKE 3584,65:PO

nKESP,32:HT=l

JK 500 :SOUND 1,700,20,0,600,10,3:SC=SC+1:GOSUB72d

: BEND

nFS 510 IF HT AND C=215 THEN BEGIN:POKE SP,209:POKE

3584,64:SOUND 1,5000,5,,,,3

DA 520 :HT=0:F=F+l:SC=SC+10:GOSUB720:FL=FL+l:IF FL

<12 THEN 370

nKJ 530 :GOSUB740:FORI=0TO63

MM 540 :COLOR 5,(IAND15)+l:CHAR 1,4,12,"BONUS 1000

POINTS FOR COMPLETION",!
JX 550 ::NEXT:SC=SC+1000:DF=DF-(DF<3):FL=0:GOTO140

PH 560 BEND

117

u
Chapter 3

DK 570 GOTO370 I |
XG 580 IF BUMP(1)=0 THEN RETURN

PE 590 COLOR 5,9:CHAR 1,12,0,"OH1 YOWEE OUCH 1M,1

HJ 600 FORI=1TO11:SPRITE1,1,1:SOUND 1,2000+RND(1)*

1000,1,,,,3:NEXT { S
RB 610 COLOR 5,14:CHAR 1,12,0," LITTER PATROL ",1

AQ 620 XP=102:YP=237:MOVSPR 1,XP,YP:POKE 3584,64:H I I

T=0:A=BUMP(1) | |
SX 630 LV=LV-1:GOSUB730:IF LV THEN RETURN

QA 640 COLLISION 1:PLAY "T0 02 ICCEEGRBRA

A F D Q C R R":SOUND 1,0,0

GH 650 COLOR 5,16:CHAR 1,7,12,"GAME OVER — PRESS

{SPACE}TRIGGER",1:C=0

HS 660 IF JOY(1)=128 THEN660

BB 670 IF JOY(2)=128 THEN690

EH 680 COLOR 5,C+1:CHAR 1,7,12,"GAME OVER",1:C=(C+

1)AND15:GOTO670

DJ 690 FORI=1TO8:SPRITE I,0:MOVSPR 1,0,0:NEXT

AM 700 RUN

FS 720 COLOR 5,15:CHAR 1,0,0,"SCORE:"+MID$(STR$(SC

),2),1:RETURN

AK 730 COLOR 5,4:CHAR 1,30,0,"TRUCKS:"+STR$(LV),1:

RETURN

BH 740 F0RQQ=2 T07:MOVSPR QQ,90#0:NEXT:RETURN

MK 750 FOR I=2TO7:MOVSPR I,ANG%(I)#SPD%(I):NEXT:RE

TURN

DF 760 FOR 1=0T08:READ DX(I),DY(I):NEXT

CF 770 FOR 1=0 TO 2:FOR J=l TO 67:READ A$:SS$(I)=S

S$(I)+CHR$(DEC(A$)):NEXT:NEXT

RG 780 RETURN

XG 790 DATA 0,0,0,-8,8,-8,8,0,8,8,0,8,-8,8,-8,0,-8

,-8

CM 810 DATA 40,10,00,40,10,00,40,10,00,15,40,00,05

,00,00,05

JM 820 DATA 00,00,2A,80,00,EA,B0,00,EA,B0,00,2A,80

,00,2A,80

KR 830 DATA 00,EA,B0,00,EA,B0,00,00,00,00,00,00,00

,00,00,00

BD 840 DATA 00,00,00,00,00,00,00,00,00,00,00,00,00

,00,00,17 I
QM 850 DATA 00,14,00

QB 900 REM CAR FACING LEFT

RM 910 DATA 00,00,00,00,00,00,00,00,00,00,00,00,00

,00,00,00 L—I
FF 920 DATA 00,00,0F,00,3C,AB,96,A9,2B,AA,6A,3A,7D

,6A,2A,7D I |

BM 930 DATA 6A,3A,7D,6A,2B,AA,6A,AB,96,A9,0F,00,3C | j
,00, 00,00

MK 940 DATA 00,00,00,00,00,00,00,00,00,00,00,00,00

,00,00,17 I i

118

u

n
Games

n

n AA 950 DATA 00,14,00

GQ 1000 REM CAR FACING RIGHT

nKX 1010 DATA 00,00,00,00,00,00,00,00,00,00,00,00,0

0,00,00

BK 1020 DATA 00,00,00,3C,00,F0,6A,96,BA,69,AA,E8,A

9,7D,AC

nXJ 1030 DATA A9,7D,A8,A9,7D,AC,69,AA,E8,6A,96,BA,3

C,00,F0

QR 1040 DATA 000,00,00,00,00,00,00,00,00,00,00,00,

00,00,00

SP 1050 DATA 00,00,00,17,00,14,00

GC 1100 REM POSITION AND DIRECTION OF EACH CAR

PS 1110 DATA 2,1,5,1,9,2,12,2,16,1,20,2

n

n

n

n
119

p

Word Search
Michael B. Williams , ,
728 Version by Patrick Parrish j 1

'Word Search" is a computerized puzzle-maker that can provide
hours of challenging fun. A printer is required. I—

You're probably familiar with word search puzzles: Certain
words are hidden in a rectangle of nonsense letters, and it's
your job to hunt them down. "Word Search" lets you create
such puzzles on your computer's printer with words of your
own choice. Since you design the puzzle, you can make it as

easy or as difficult as you want, using up to 100 different

words. Topical puzzles make the game even more interesting.
For example, you might include only computer words, the

names of foreign cities, or stumpers like uxorious and bougain
villaea. Parents and teachers can make puzzles for children
using weekly vocabulary lists.

Save a copy of Word Search and refer to the notes below
before running the program.

Word Search begins by asking you for the number of

words to be hidden. When you've answered that question, the

computer asks you to choose the number of rows and columns

for the puzzle grid. Since the grid must be big enough to hide

all the words, the computer tells you when you've made the
grid too small and lets you try again.

Next, Word Search lets you enter the words one by one.

There's no particular limit on word length, but keep in mind

that the words must fit inside the grid. (For example, you can't

fit a 12-letter word in a 6 X 6 grid.) Since longer words are

harder to fit into the grid, the computer sorts the words by | i

length (from longest to shortest) so it can place the longest I I
words first. When many words are involved, this can take a

few minutes, so be patient.

Once the words are sorted, you're allowed to name the I
puzzle. You also have the option of printing the solution to

the puzzle (parents and teachers might want to separate the

solution from the puzzle until the puzzle has been tried). After I
printing one puzzle, you can create another, using the same

word list (the words will be rearranged) or entirely new i j

120

u

Games

n

I i words. Word Search is designed to permit a maximum of 100
words in a 99 X 99 grid. However, puzzles of that size can

r—I take a long time to create—over an hour in some cases. In ad-
! I dition, many printers can't print more than 80 columns unless

you first send the printer a special escape code for condensed

r—-I type (see your printer manual).

Program 3-4. Word Search
For mistake-proof program entry, be sure to use "The Automatic Proofreader/' Appendix B.

QA 95 MC=99

DD 100 DIM FF$(100),S$(99),W$(100),CC(100),RR(100)

,L(100),E$(2,2)

EE 110 FOR I=-l TO 1

BH 120 FOR J=-l TO 1

SX 130 READ E$(I+1,J+1)

JX 140 NEXT J

QX 150 NEXT I

AC 160 DATA "NW"," N","NE"," WM,"i2 SPACES}"," E",
"SW"," S","SE"

BM 170 FOR 1=1 TO MC

RA 180 G$=G$+" "

RC 190 NEXT I

DH 200 FOR 1=1 TO 8

BK 210 READ D(1,I),D(2,I)

QD 220 NEXT I

SA 230 DATA -1,-1,-1,0,-1,1,0,-1

HA 240 DATA 0,1,1,-1,1,0,1,1

QC 250 GOTO 1220

PD 260 REM SHELL SORT

KS 270 PRINT "SORTING,.."

HA 280 X=l

AX 290 X=2*X

QS 300 IF X<=W0 THEN 290

JP 310 X=INT(X/2)

HJ 320 IF X<>0 THEN 340

DM 330 RETURN

QQ 340 FOR Y=l TO W0-X

RD 350 Z=Y

XR 360 A=Z+X'

GB 370 IF L(Z)>=L(A) THEN 460

BH 380 X$=W$(Z)

QS 390 W$(Z)=W$(A)

PS 400 W$(A)=X$

GB 410 B=L(Z)

JQ 420 L(Z)=L(A)

EM 430 L(A)=B

XK 440 Z=Z-X

BG 450 IF Z>0 THEN 360

n

n

H

n
121

Chapter 3

u

RP 460 NEXT Y [

SA 470 GOTO 310 * ' >

QC 480 REM HIDE WORDS

DX 490 FOR X=l TO W0 I j

JE 500 FOR Y=l TO 50

HG 510 R1=INT(RND(1)*R0)

JC 520 C1=INT(RND(1)*C0)

KD 530 D1=INT(RND(1)*8)+1 I I
GE 540 O1=D1 I I
AH 550 DX=D(1,D1)

MG 560 DY=D(2,D1)

GS 570 IF R1+DX*L(X)<1 OR R1+DX*L(X)>R0 OR C1+DY*L

(X)<1 THEN 590

ME 580 IF C1+DY*L(X)<=C0 THEN 630

PK 590 D1=D1*(D1<8)*(1=1)+1

XH 600 IF D1O01 THEN 550

CD 610 NEXT Y

BM 620 GOTO 800

FS 630 FOR Z=l TO L(X)

EH 640 IF MID$(W$(X),Z,1)<"A" OR MID$(W$(X),Z,1)>"
Z" THEN 680

RA 650 R1=R1+DX

CJ 660 C1=C1+DY

CM 670 IF MID$(S$(R1),C1,1)<>" " AND MID$(S$(Rl),C

1,1)<>MID$(W$(X),Z,1) THEN 590
GK 680 NEXT Z

QG 690 FOR Z=L(X) TO 1 STEP -1

AE 700 IF MID$(W$(X),Z,1)<"A" OR MID$(W$(X),Z,1)>"
Z" THEN 770

FD 710 S$(R1)=MID$(S$(R1),1,C1-1)+MID$(W$(X),Z,1)+
MID$(S$(R1),C1+1)

DS 720 RR(X)=R1

BX 730 CC(X)=C1

XC 740 FF$(X)=E$(DX+1,DY+1)

GJ 750 R1=R1-DX

EB 760 C1=C1-DY

KX 770 NEXT Z

RX 780 NEXT X

JM 790 GOTO 890

QK 800 GOSUB 17 20 I j

GB 810 PRINT "SORRY, BUT I CAN'T FIT WORD NUMBER " I I
;STR$(X);" , ";W$(X);CI , ";

DC 820 PRINT "INTO THE GRID. SHOULD I SKIP IT, STA , j

RT OVER, OR TRY AGAIN")
PH 830 INPUT X$ ' '
BA 840 IF MID$(X$,1,2)="ST" THEN 1660

SP 850 IF MID$(X$,1,2)="TR" THEN 500 I I

JH 860 IF MID$(X$,1,2)<>"SK" THEN 830 I !
AH 870 W$(X)="/"

BB 880 GOTO 780

122 I

H

n

n

n

n

n

n

n

n

n

Games

RF 890 FOR X=l TO R0

GK 900 FOR Y=l TO C0

KG 910 IF MID$(S$(X),Y,1)<>" " THEN 930
CC 920 S$(X)=MID$(S$(X),1,Y-1)+CHR$(INT(26*RND(1)+

65))+MID$(S$(X),Y+l)

JJ 930 NEXT Y

EJ 940 NEXT X

XA 950 REM DONE

KE 960 PRINT

JF 970 PRINT "I AM FINISHED. WHAT DO YOU WANT TO C

ALL THE WORD SEARCH"

EX 980 INPUT T$

FK 990 SL=0

JP 1000 PRINT

XF 1010 PRINT "DO YOU WANT TO PRINT THE SOLUTION (

Y/N)"
RG 1020 GOSUB 1180

BX 1030 IF A$="N" THEN 1050

PK 1040 SL=1

DC 1050 GOSUB 2000

PP 1060 GOSUB 1720

ME 1070 F=0

PG 1080 PRINT "DO YOU WANT ANOTHER GRID (Y/N)"

GR 1090 GOSUB 1180

HG 1100 IF A$="Y" THEN 1120

SE 1110 END

KD 1120 PRINT

FM 1130 PRINT "DO YOU WANT TO USE THE SAME WORDS (

Y/N)"

RS 1140 GOSUB 1180

PM 1150 IF A$="N" THEN 1280

MM 1160 F=l

JM 1170 GOTO 1340

XM 1180 INPUT A$

JJ 1190 IF A?<>"Y" AND A$o"N" THEN 1180

PP 1200 RETURN

HC 1210 REM INITIALIZATION

AC 1220 GOSUB 1720

GF 1230 LL=6

GH 1240 GOSUB 1740

HP 1250 PRINT "{8 SPACESjWORD SEARCH"

XH 1260 LL=4

KJ 1270 GOSUB 1740

EA 1280 FOR 1=1 TO W0

FQ 1290 W$(I)=""

DM 1300 L(I)=0

ER 1310 NEXT I

RP 1320 PRINT TAB(5);"HOW MANY WORDS WOULD YOU":PR

INT TAB(5);"LIKE IN YOUR WORD SEARCH"

CP 1330 INPUT W0

123

Chapter 3

QB 1340

JH 1350

SM 1360

HC 1370

AF 1380

GH 1390

ED 1400

RF 1410

MC 1420

PM 1430

QM 1440

SS 1450

KP 1460

JH 1470

SF 1480

CG 1490

PQ 1500

BM 1510

PC 1520

JS 1530

QB 1540

MS 1550

FM 1560

EQ 1570

EH 1580

DR 1590

CH 1600

HG 1610

XB 1620

CA 1630

HX 1640

CG 1650

KE 1660

MD 1670

SF 1680

XX 1690

DE 1700

KM 1710

PS 1720

CQ 1730

PQ 1740

AM 1750

RJ 1760

XB 1770

DA 1999

MC 2000

124

PRINT

PRINT "HOW MANY ROWS AND COLUMNS IN THE GR

ID"

INPUT R0,C0

PRINT

PRINT

IF R0*C0>=10*W0 THEN 1440

PRINT "I DON'T THINK I COULD DO THIS."

FOR 1=1 TO 1000

NEXT I

GOTO 1340

PRINT "I THINK I CAN DO THIS."

IF C0<=MC THEN 1470

PRINT "(BUT IT WON'T FIT ON THE PAPER.)"

IF F=l THEN 1660

LL=3

GOSUB 1740

PRINT "ENTER THE ";STR$(W0);" WORDS.":PRIN

T"TO CORRECT A MISTAKE, ENTER X"

PRINT

FOR 1=1 TO W0

PRINT "WORD NUMBER ";I;":"

INPUT X$

IF LEN(X$)<=R0 AND LEN(X$)<=C0 AND X$<>"X"

THEN 1610

IF X$<>"X" THEN 1590

u

u

u

u

u

GOTO 1530

PRINT "OOPS...THE WORD IS TOO LONG."

GOTO 1530

W$(I)=X$

L(I)=LEN(X$)

NEXT I

GOSUB 1720

GOSUB 270

PRINT

PRINT "OKAY, I WILL GO TO WORK (WISH ME LU

CK) . "

FOR 1=1 TO R0

S$(I)=LEFT$(G$,C0)

NEXT I

GOTO 490

PRINT CHR$(147)

RETURN

FOR 1=1 TO LL

PRINT

NEXT I

RETURN

REM PRINTER ROUTINE

OPEN3,4:PRINT#3,T$:PRINT#3

u

u

u

n

n

n

n

n

QD

EC

MM

SX

KP

QX

SH

XE

CQ

BM

PQ

ER

XE

JM

MM

BP

CM

XE

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

2110

2120

2130

2140

2150

2160

2170

2180

Games

PRINT#3,"14 SPACES}";:FORI=1TOC0:IFI/10<>I

NT(I/10)THENPRINT#3," ";:GOTO2030

PRINT#3 ,MID$(STR$(I),2,1);

NEXTI:PRINT#3

PRINT#3,"{4 SPACES}";:FORI=1TOC0:PRINT#3,R

IGHT$(STR$(I),1);:NEXTI:PRINT# 3

FORX=1TOR0:IFX<10THENPRINT#3," ";

PRINT#3,STR$(X)" ";

FORY=1TOC0:PRINT#3,MID$(S$(X),Y,1);

NEXTY:PRINT#3:NEXTX:PRINT#3:PRINT#3:PRINT#

3,"WORD LIST:"

FORX=1TOW0:IFW$(X)="/"THEN2110

PRINT#3,W$(X)

NEXTX:FORI=1TO5:PRINT#3:NEXTI:IFSL=0THEN21

80

PRINT#3,"SOLUTION LIST:":PRINT#3#"WORD

{21 SPACES}ROW{3 SPACES}COLUMN";

PRINT#3,"13 SPACES}DIR"

FORX=1TOW0:IFW$(X)="/"THEN2170

PRINT#3#W$(X);LEFT$(G$#25-LEN(W$(X)));RR(X

);LEFT$(G$,8-LEN(STR$(RR(X))));

PRINT#3#CC(X);LEFT$(G$,6-LEN(STR$(CC(X))))

;FF$(X)

NEXTX

CLOSE3: RETURN

n

n

n

n
125

Switchbox
Todd Heimarck

It looks easy, but takes time to master. "Switchbox" is a challeng

ing strategy game that's fun to watch and play.

u

u

LJ

U

U

Playing "Switchbox" is like putting dominos in place for a

chain reaction—either you're setting them in position or

you're knocking them over. Winning requires skill and a sense

of when to go for points and when to lay back and wait for a

better board. The goal is simple: You try to score more points

than your opponent by dropping balls into a boxful of two-

way switches. Each switch has a trigger and a platform. If the

ball lands on an empty platform, it stops dead. But if it hits a

trigger, it reverses the switch and continues. In many cases

dropping a single ball creates a cascading effect—one ball sets

another in motion, which sets others in motion, and so on, all

the way down.

Type in Program 3-5 using "The Automatic Proofreader"

and save a copy before you run it.

A Box of Switches

Switchbox is a tale of twos: Each switch has two parts, two

positions, two states, two paths in, and two paths out. The

two parts are the platform and the trigger. A switch can lean

to the left (platform left, trigger right) or to the right (platform

right, trigger left).

Figure 3-1. Trigger States

Before:

Left switch

After:

Right switch

126

U

u

u

n

n

n

n

n

n

n

n

n

Games

The trigger is weak and always allows balls to pass. But

the platform is strong enough to hold a single ball. So the

platform either holds a ball—it's full—or it does not and is

empty. When a ball sits on a platform, the switch is said to be

loaded, or full.

Figure 3-2. Loaded Trigger

Left

path

in

Right

path

in

Figure 3-2 shows a full switch over two empty switches.

The platform holds a ball and leans to the left. The trigger ex

tends to the right. Note that the switch on top has two path

ways leading in, the left path and the right, and that the right

path leading out is the left path into one of the switches be

low. The left path of the top switch leads into the right path

of the other, the switch below and to the left. If you drop a

ball down the right-hand path, it hits the trigger and flips that

switch to the right. Then it continues down, hits the left-hand

trigger below, and flips that switch as well.

In the meantime, the ball on the platform is set in motion

(when the switch is flipped) and then hits the trigger. The top

switch is reset to point to the left. The second ball then drops

a level to the platform below, where it stops. The playing field

is composed of five levels, with four switches in the first level

and eight in the bottom level. At the beginning of the game,

there are no balls on the field—all platforms are empty—and

the position of each switch is chosen randomly.

127

LJ
Chapter 3

1 \ I

Moving Down the Path '—'
Players alternate dropping balls into one of eight entry points.

These balls (and others) may or may not make it all the way jl
through the switchbox to one of the 16 exit paths. Balls fall

straight down (with one exception), so a ball's movement is al

ways predictable. When a ball hits an empty switch, one of j I
two things can happen. If it lands on the empty platform, it

stops dead in its tracks. But if it lands on a trigger, it falls

through to the next level below.

Moving balls always make it through loaded switches.

Triggers allow balls to continue and move the switch to the

other position. If it's loaded, the dead ball on the platform is

put into motion and it hits the trigger that just moved over.

This makes the switch go back to its original position, but

with an empty platform. So when a ball hits the trigger of a

loaded switch, its motion continues unabated. The switch

moves, the ball on the platform begins to fall, and it hits the

newly placed trigger. The newly emptied switch moves back

again, and the two balls drop to the next level.

There's one more possibility: a ball dropping onto a plat

form that already holds a ball. A platform can't hold more

than one ball, so when this happens, one of the balls slides

over to the trigger. So the ball does not move straight down—

it slides over to the next pathway. This is the exception to the

rule that balls drop in a straight line. Of course, when the ball

hits the trigger, the switch changes position, causing the other

ball to drop and hit the trigger.

The Chain Reaction

At the game's start, all platforms are empty, so four of eight

entry paths are blocked. Remember that your turn ends when

a ball hits an empty platform and stops. As the switches fill i i

up, the chances increase that a ball will descend through sev- I I
eral levels. The goal is to score points by getting balls to pass

all the way through the maze of the switchbox. The best way j j

to collect a lot of points is to cause a chain reaction. (I
A ball that hits a loaded switch from either side continues

on its way. And the previously inert ball on the platform starts r i

moving. One enters, two exit. If both of those balls encounter I |
full platforms, four drop from the switches. The pathways are

staggered, so the effects can spread outward, with more and r i

more balls cascading toward the bottom. j |

128

u

H

n

n

n

n

n

n

n

n

Games

Rather than taking an easy point or two, it's often worth

while to build up layers of loaded switches. Watch out for

leaving yourself vulnerable, though. Because players take

turns, you'll want to leave positions where your opponent's

move gives you a chance to create a chain reaction. The best

strategy is to play defensively. Look ahead a move or two, and

watch for an opening that allows you to score several points at

once.

Four Quarters

A game of Switchbox always lasts four rounds. In the first

(equality), each exit counts for two points. Your goal is to

score ten points. The second quarter has more points available

as well as a higher goal. If you look at the exits, you'll see that

the farther away from the middle, the higher the point value.

The numbers increase in a Fibonacci sequence: 1, 2, 3, 5, 8,

and so on. Each number is the sum of the previous two (1+2

is 3, 2+3 is 5, 3+5 is 8, and so on). The target score in round

2 is 40.

In round 3 the numbers are a bit lower. They increase

arithmetically (1, 2, 3, 4, up to 8 in the corners). A goal of 20

points brings you to round 4, where you can score big. Here

the numbers are squares: 1, 4, 9, 16, 25, all the way to 64 at

the edges. In rounds 2-4, it's sometimes prudent to leave a

middle path open for your opponent to score a few points in

order to gather a high score on the big numbers to the left and

right.

Each round lasts until one player has reached the goal. At

that point the other player has one last turn before the round

ends. It's possible to win the round on this last-chance play;

watch out for barely topping the goal and leaving a chain re

action open for the other player. An arrow points to the score-

board of the player whose turn it is. On the other side of the

screen, you'll see a number where the arrow should be. That's

the goal for the current round.

Bonus points are awarded at the conclusion of each

round. Four numbers appear below the scorecards. The first is

simply the total so far. The second is the total plus a bonus of

the goal for the round if the player's points are equal to or

greater than the goal. For example, if the goal is 20 and you

get 18, there's no bonus. If you score 22, the bonus is the goal

129

Chapter 3

for that round (20), and you'd have 42 points. The third num

ber under the Scoreboard is the difference between scores for

the rounds. If you win by two points, two is added to your

score (and two is subtracted from the other player's). The final

number is the grand total of the first three scores and bonuses.

Rounds 1 and 3 are fairly low-scoring with low goals. You

may want to seed the field with extra balls during these quar

ters so that you can collect more points in the second and

fourth quarters.

Variations

Although the goal of the game is to score the most points,

there's no reason you couldn't agree to play for low score. In a

"lowball" game, you would try to avoid scoring points. You

wouldn't necessarily play backward; you would have to adjust

the strategy of where to place the balls. Fill up the board as

much as possible and leave your opponent in a situation

where he or she is forced to score points.

The DATA statements at the beginning of the program

determine the goal for each round and the point values for the

exit paths. You can prolong the game by doubling the goals;

this also dilutes the value of a big score at the beginning of a

round, preventing one player from winning on the first or sec

ond turn. An interesting variation is to assign negative values

to some slots. If some paths score negative points, you are

forced to think harder about where the balls will drop.

In addition to the numbered keys (1-8), the plus (+) and

minus (—) keys are active. Pressing the plus key drops a ball

at random down one of the eight entry paths. Pressing minus

allows you to pass your turn to your opponent.

Once you've mastered the regular game, you can add

some new rules. Each player gets three passes per half, similar

to the three timeouts in a football game. If you don't like the |
looks of the board, press the minus key to use one of your

passes. After one player has skipped a turn, the other player . i

must play (this prevents the possibility of six passes in a row). | |
It's also a good idea to make a rule that a player can't pass on

two consecutive turns. You can also give each player two ran- r —»

dom moves to be played for the opponent. In other words, j |
after making a move, you could inform your opponent that

130

u

u

n

n

n

n

n

n

n

n

n

n

Games

you're going to give him or her one of your random moves

and you would press the plus key.

Here's one more change you could make: Instead of alter

nating turns, allow a player to continue after scoring. When a

player drops a ball and scores some points, the other player

would have to pass (by pressing the minus key). If the first

player scores again, the opponent passes again, and so on, un

til no more points are scored.

Playing Solitaire

To drop a ball, press a number key (1-8). The numeric keypad

is convenient for choosing a move. By using the pass and

random-turn options, you can play against the computer. Here

are the rules for solitaire play:

1. The computer always scores first. At the beginning of every

round, the computer plays randomly until at least one point

is acquired. Press the plus key for the computer's turn. You

must continue passing (skip your turn with the minus key)

until the computer puts points on the board.

2. After the first score by the computer, you can begin to play.

When the computer has a turn, press the plus key for a ran

dom move.

3. Whenever you make points, you must pass again until the

computer scores. When the computer gets more points, you

can begin to play again. This rule means you should hold

back on the easy scores of a few points; wait until there's an

avalanche available.

4. If you're the first to reach the goal, the computer gets a last

chance. Don't make this move randomly; figure out the best

opportunity for scoring and play that move for the last-

chance turn.

In the interest of keeping these programs to a manageable

length, no attempt has been made to provide an "intelligent"

computer opponent. Once you become familiar with the game,

you might find it an interesting project to try adding some

routines that give the computer a rational basis for picking one

move over another.

131

Chapter 3

Program 3-5. Switchbox '—
For mistake-proof program entry, be sure to use "The Automatic Proofreader/' Appendix B.

FP 10 DIMSW(4,7,1),SP$(1),LB(32,4),AR$(1),PT(4,16) | I
SC (1 8) l"

DE 12 SP$(0) = "{OFF}g*HRVS}g*§{OFF}g@3II:SP$(l)=M
G@3{RVSj£tOFF}£M:AR$(0) = "<_I {DOWNj{2 LEFT}

JBW§":AR?"(l) = ll?Q§K{UPJl2 LEFT} U>" :QR=1 :PRIN I
TCHR$(27);"M" "" ~~

EC 14 COLOR0,16:COLOR4/7:COLOR5,7:TX=RND(-TI/137)
QS 20 FORJ=1TO4:READPT(J,0):REM NAME AND GOAL

XC 22 FORK=1TO8:READL:PT(J,K+8)=L:PT(J,9-K)=L:NEXT
K,J?REM POINTS

RP 24 DATA 10:REM ROUND 1 (EQUAL)

PE 25 DATA 2,2,2,2,2,2,2,2

PF 26 DATA 40:REM ROUND 2 (FIBONACCI)

HP 27 DATA 1,2,3,5,8,13,21,34

KJ 28 DATA 20:REM ROUND 3 (ARITHMETIC)

BG 29 DATA 2,3,4,5,6,7,8,9

EB 30 DATA 80:REM ROUND 4 (SQUARES)

SF 31 DATA 1,4,9,16,25,36,49,64

PB 40 SCNCLR:INPUT"PLAYER 1";PI$:INPUT"PLAYER 2";P

2?:P1$=LEFT$(P1$,5):P2$=LEFT$(P2$,5):PRINTP1
$;" VS ";P2$

JD 42 PRINT "IS THIS CORRECT?":GETKEYA$:IFASC(A$)<>
89THEN40

PB 50 GOSUB500:GOSUB700:REM SETUP

HD 60 FORRR=lTO4:TX=1072+40*RR:POKETX,90:POKETX+22
,90

XG 62 GOSUB620:REM PUT SCORES AT BOTTOM

SF 65 QR=1-QR:COLOR5,7:TY=QR*20:TX=28-TY:WINDOWTX,
0,TX+2,1,1:PRINTRIGHT$(STR?(PT(RR,0)),3):PRI

NT"{2 HOME}":TX=8+TY:CHAR1,TX,QR,AR$(QR)

SK 70 GOSUB900:IFSC(1-QR,RR)=>PT(RR,0)THEN300:REM
.{SPACE}END OF ROUND

AK 80 GOTO65

EX 300 FORJ=0TO1:FORK=5TO8:SC(J,K)=0:NEXTK,J

QP 310 FORJ=0TO1:FORK=1TO4:GL=PT(K,0):AC=SC(J,K):S

C(J,5)=SC(J,5)+AC:SC(J,6)=SC(J,6)-(AC=>GL)*
GL:SC(J,7)=SC(J,7)+(SC(J,K)-SC(1-J,K)):NEXT
K,J

QB 320 FORJ=0TO1:FORK=6TO7:SC(J,K)=SC(J,K)+SC(J,5)
:NEXTK,J

SC 330 FORJ=0TO1:FORK=5TO7:SC(J,8)=SC(J,8)+SC(J,K) I
:NEXTK,J

ME 340 COLOR5,12:FORJ=0TO1:FORK=5TO8:Y$=STR$(SC(J, j ~.

K)):L=LEN(Y$):TX=6+J*31-L:TY=3+K:CHAR1,TX,T
Y,Y$:NEXTK,J ' *

CX 400 NEXTRR:REM END OF MAIN LOOP 60-499

EB 499 GETKEYA$:RUN

132

G

n
_. Games

I I BA 500 SCNCLR:PRINTSPC(ll)7"gA3lRVSjgO3lOFF}"7:FOR
J=1TO7 :PRINT " iOFF } gR3l RVS } gOl " ; :NEXT: PRINT "

nlOFF}gS3":LL=7

QB 510 FORJ=0TO4:TX=9-2*J:TY=l+J*4:BX=TX+20+J*4:BY

=TY+4:WIND0WTX,TY,BX,BY:R$="- "

CD 520 FORK=1TO2:PRINT"{2 SPACES}{RVSj {OFF} n7:GO

j 1 SUB600:PRINT"{RVSj ":NEXT

I I BQ 530 PRINT" {RVSj£ {OFF} ";:GOSUB600:PRINT"
IRVS] g*§"

PM 540 LL=LL+2:PRINT"lRVSj£lOFF}£"7:GOSUB600:PRI

NT"{LEFT}g*3{RVS J g*f{OFF}"7:NEXTJ
JP 550 WINDOWl,21,38,2 3:PRINT"gR§ "7:GOSUB600:PRIN

n

n

g§

BF 560 R$=HtRVS}gUil0FF}gE|M:LL=LL+l:PRINTII§Zi"7 :G

OSUB600:PRINT"{LEFT}gX§":WINDOW0,0,39,24

QS 599 RETURN

KX 600 FORL=1TOLL:PRINTR$;:NEXT:RETURN

MA 620 COLOR5,12:FORJ=1TO16:K=PT(RR,J):JJ=2+J*2

RK 630 IFK>9THENL=INT(K/10):L$=MID$(STR$(L),2,1):E

LSEL$=CHR$(32)

MC 640 CHAR1,JJ,23,L$:CHAR1,JJ,24,RIGHT$(STR$(K),1

):NEXTJ:RETURN

SX 700 FORJ=0TO4:SY=4+J*4;FORK=0TOJ+3:SX=12-J*2+K*

4:CHAR1,SX+1,SY-1,." "

MX 710 WP=INT(RND(1)*2)

HA 720 SW(J,K,0)=WP:SW(J,K,1)=0:GOSUB800

RM 730 NEXTK,J

SK 740 FORJ=1TO8:POKE1074+J*2,48+J:NEXT

XJ 750 FORJ=0TO1:BX=J*31:WINDOWBX,0,BX+7,7

BQ 760 PRINT"lOFFHBLK}gD<|lRVSj I PUR] {7 SPACES]

EQ 770 FORK=lTO4:PRINT"lRVS]{BLK}iK)|lOFF}{PUR}gKl

15 SPACES}lRVS]gK§"7:NEXT

KQ 775 PRINT"{RVSHBLK}gK3lPUR}gC2UOFF}g5 IilRVSj

gV3I OFF}{BLK}gC§IRVS j g6 13 IOFF j gV§"7

HK 780 NEXT:PRINT"12 HOME)":COLOR5,5

RE 790 CHAR1,3+(LEN(P1$)=5),0,P1$,1

QJ 791 CHAR1,34+(LEN(P2$)=5),0,P2$,1

nRP 799 RETURN

BA 800 COLOR5,2:CHAR1,SX,SY,SP$(WP):RETURN

JJ 900 FORJ=0TO32:LB(J,0)=# :NEXT:NB=l:POKE208,0

RC 910 GETKEYA$:IFA$="-"THENRETURN:ELSEIFA$="+"THE

NA$=STR$(INT(RND(1)*8+1))

FX 915 A=VAL(A$):IF(A<1)OR(A>8)THEN910

FK 920 LB(0,0)=1:FORJ=1TO3:LB(0,J)=0:NEXT:LB(0,4)=

nl0+A*2

SF 1000 DO:EX=1

KR 1010 FORJ=0TO32:IFLB(J,0)THENEX=0:GOSUB1100

GP 1020 NEXT:IFEXTHENEXIT

EF 1030 LOOP:RETURN

133

Chapter 3

u

KJ 1100 DY=LB(J,0):DX=LB(J,l):LY=LB(J,2):NY=LB(J,3

):NX=LB(J,4):SM=1064+NX+LY*160+NY*40:IF(LY

+NY)THENPOKESM,32

GJ 1110 LB(J,3)=(NY+1)AND3:ONNY+1GOTO1200,1300,140

0,1500

EE 1200 IFLY>4THENLB(J,0)=0:GOTO1700:REM SCORING R

OUTINE

QE 1220 POKESM+40/81:ONINT(RND(l)*3+l)GOTO1800,181

0,1820

QS 1300 VX=0:GOSUB1600:IF SW(WY,WX,1)AND(SW(WY,WX,

0)=SD)THEN VX=1-2*SD:LB(J,1)=VX:LB(J,3)=NY

+l:LB(J,4)=NX+VX:POKESM+40+VX,81:GOTO1840
EG 1310 IF SW(WY,WX,0)=SDTHENLB(J,0)=0:SW(WY,WX,1)

=1:POKE SM+40,81:GOTO1830

HC 1320 LB(J,3)=NY+1:POKESM+40,81:ONINT(RND(1)*3+1
)GOTO1800,1810,1820

QD 1400 LB(J,l)=0:LB(J,4)=NX+DX:POKESM+40+DX,81:GO

TO1850

FD 1500 LB(J,2)=LY+1:POKESM+40,81:GOSUB1600:SW(WY,

WX,0)=1-SW(WY,WX,0)

DA 1510 IF SW(WY,WX,1)THENLB(NB,0)=1:LB(NB,1)=0:LB

(NB,2)=LY:LB(NB,3)=0:LB(NB,4)=NX+2-SD*4:NB

=NB+l2SW(WY,WX,l)=0:POKESM-40+2-SD*4r32:GO

SUB1860

PA 1520 SX=12-WY*2+WX*4:SY=4+WY*4:WP=SW(WY,WX,0):G

OSUB800:GOTO1840

FH 1600 WY=LY:JX=(NX/2)+LY-6:WX=INT(JX/2):SD=JXAND

1:RETURN

KX 1700 SF=PT(RR,NX/2-l)

RA 1710 SG=SC(QR,RR)+SF:COLOR5,12

GG 1720 TX=5+31*QR+(SG>9)+(SG>99)+(SG>999)
QS 1730 TY=1+RR:A$=MID$(STR$(SG),2)

JJ 1740 CHAR1,TX,TY,A$:SC(QR,RR)=SG:GOTO1870

MJ 1800 SOUND1,4500,8:RETURN

CP 1810 SOUND1,9000,8:RETURN

FC 1820 SOUND1,6750,8:RETURN

AH 1830 SOUND2,7500,8,1,6250,125,1,1024:RETURN

QD 1840 SOUND2,6000,12,2,4200,150,3:RETURN

EH 1850 SOUND2,30000,12,2,10000,5000,3:RETURN

BX 1860 SOUND3,1500,24,0,1450,25,3:RETURN

RQ 1870 SOUND1,12000,24:SOUND2,7500,12,0,7300,25:S

OUND3,9000,18:RETURN

u

u

134

LJ

Lexitron

Ron Wilson

Like a bowl of alphabet soup, the "Lexitron" screen appears to be

just a jumbled mass of letters. Can you find the ten hidden words

before time runs out? A joystick is required.

If you enjoy the hidden word games often found in newspa

pers and magazines, you'll like "Lexitron." But unlike the ones

done with pencil and paper, Lexitron adds a few twists.

There's a time limit, and you can select one of three difficulty

levels.

The game is written entirely in BASIC. After typing it in,

be sure to save a copy. Be especially careful when typing in

the DATA statements in lines 1200 and 1210. These lines hold

the word pool from which Lexitron selects.

Up, Down, Left; and Right

To play Lexitron, load it and type RUN. Be sure to have a joy

stick plugged into port 2. First, you'll be asked to select one of

three skill levels. Level 1 is the easiest, with all the hidden

words spelled left to right or top to bottom. Level 2 is more

difficult. Besides forward spellings, words are also formed in

their reversed spelling order (from right to left or bottom to

top). Level 3 is the most difficult, with words spelled diago

nally, and both forward and reversed diagonal words being

formed. You might want to stay clear of level 3 until you've

played a few times.

After you've selected a skill level by moving your joystick

to the appropriate number, press the fire button. The screen

will clear for a few seconds while the game words are being

selected and hidden. But don't leave your seat—the timer

starts as soon as the game appears on the screen.

Using your joystick, move the cursor to the word you've

found, and press the fire button on each letter until you com

plete the word. Each time a correct letter is registered, the time

level, which moves from top to bottom, is pushed back toward

the top. Avoid guessing letters by trial and error. Wrong en

tries only reduce the amount of time.

135

u
Chapter 3

All valid game words are at least six letters long. This rule —
is in force so that accidental (and sometimes humorous) letter

combinations do not cost you time and effort. You'll often see I I
words like MAN, CAR, SEE, or TRY, but Lexitron does not '—'
recognize them. Also be aware of letter additions. For ex

ample, Lexitron may choose and hide the word AMERICA,) I

but by chance the letter following could be an N, thus AMERI- '—'
CAN. Lexitron may not recognize the extra N.

Easy Modifications

The Lexitron vocabulary words are coded so that players can
not list the program and get an illegal sneak preview. If you

wish to add your own words to the program, the code is sim

ple. Each letter represents the letter which alphabetically fol

lows. For example, the letter A is coded as B. ABACUS would

be coded as BCBDVT. If you decide to add your own words,

start with a new line—1220—and remember that all words

must be at least six letters long. Be sure the last word in the

list is FOE (the word END in code). This signals to the pro

gram that it's reached the end of the word list. You might

want to avoid using words with the letters X, Z, or the Q-U

combination. A sharp player can spot words with those letters
in seconds.

If you find that Lexitron is too easy or too difficult, you

can change the value .009 in line 330. This controls the timer.

Raising and lowering this value will change the allotted time,

thus the difficulty of the game. A value less than .009 (such as

.007) makes the game easier, and, conversely, increasing the
value makes it more difficult.

There are a few strategies to consider when playing

Lexitron. For instance, in some cases it's not to your advantage

to enter a word as soon as you find it. If you have trouble j - >

finding some of the hidden words, Lexitron sometimes pro- | j
vides a clue by flashing a word at the bottom of the screen.

Program 3-6. Lexitron
For mistake-proof program entry, be sure to use "The Automatic Proofreader/' Appendix B. '

EM 10 BANK 15 ,

HB 100 PRINT"(CLR}{3 DOWN}"SPC(11)"L E X I T R O N J

13 DOWN}":DIMAR$(20,15),AR(20#15),LN(200)
FQ 110 P$ = " {HOME} 123 DOWNJU5 SPACES }" :FORA=0TO10 :

READQ(A):NEXT I j

136

u

u

u

LJ

U

Games

CB 120 FORA=0TO8:READD(A) :NEXT:DATA 0,1,5,0,7,8,6,

0,3,2,4,0,-40,-39,1,41,40,39,-1

JA 130 DIML(200):DATA -41:PRINTSPC(3)"PLEASE WAIT

tSPACE}WHILE LOADING WORDS"

MD 140 S=54272:FORA=STOS+23:POKEA,0:NEXT:POKEA,15:

POKES+5,28:POKE53280,6

KG 150 SC=1274:CD=54272:PT=56320:BC=53281:W=15:BL=

6:SB=53265:CS=15

PB 160 Z=646:A1=15:A2=14:A3=1:A4=7:A5=6:A6=1

EK 170 GOSUB1160:GOSUB1120

SD 180 GOSUB1090

KE 190 GW=0:FORA=0TO19:FORB=0TO14:AR(A,B)=0:NEXTB,

A:FORA=0TONW:L(A)=0:NEXT:PS=SC

ME 200 LL=7:POKEBC,W:POKEZ,A5:PRINT"{CLRJ13 DOWN]

15 SPACES}USE JOYSTICK TO CHOOSE A LEVEL"

CS 210 POKEZ,A6:PRINTSPC(10)"12 DOWNJ15 SPACES]

IRVS}1";:POKEZ,A5:PRINT"{2 SPACES}2

12 SPACESJ3":MS=SC+5

HQ 220 PRINT"14 DOWNj13 SPACES}{RVS}11 OFF}

12 SPACESjALL WORDS SPELLED FORWARDS

{14 SPACES}NO DIAGONALS"

SM 230 PRINT"13 SPACES}{2 DOWN}{RVS}2{OFF}

12 SPACES}FORWARD & REVERSED SPELLINGS

112 SPACES}NO DIAGONALS"

CM 240 PRINT"(3 SPACES}{2 DOWN}{RVS}3{OFF}

12 SPACES}FORWARD & REVERSED SPELLINGS

112 SPACES}DIAGONALS INCLUDED"

PG 250 GOSUB410:IFJ=0THEN2 50

RS 260 POKEMS+CD,A5:MS=MS-3*(J=3)*-(MS<SC+ll)+3*(J

=7)*-(MS>SC+5):POKEMS+CD,A6

QS 270 IFJ<128THEN250

QJ 280 PRINT"tCLR}{BLK}{8 DOWN}"SPC(14)"PLEASE WAI

T":FORTD=1TO1000:NEXT

RM 290 LV=(MS-(SC+5))/3+l:POKESB,PEEK(SB)AND239:PO

KEBC,BL:GOSUB970

XK 300 GOSUB850:QF=1:T=1:GOSUB480:POKESB,PEEK(SB)O

R16:TI$="000000":GOTO390

BS 310 REM JOYSTICK ROUTINE

EP 320 IFRND(1)<.003THENGOSUB670

FP 330 IFRND(1)<.009THENGOSUB540

BA 340 GOSUB410:IFJ=0THEN320

AM 350 IFJ>127THENGOSUB430:GOTO320

RR 360 POKEPS,PEEK(PS)AND127:TP=PS

QE 370 IF(PEEK(PS+CD)ANDCS)=A3THENPOKEPS+CD,A2

CP 380 PS=PS+D(JAND15):IFPEEK(PS)<1ORPEEK(PS)>26TH

ENPS=TP

MG 390 POKEPS,PEEK(PS)ORl28:IF(PEEK(PS+CD)ANDCS)<>

A4THENPOKEPS+CD,A3

JP 400 GOTO320

137

n
Chapter 3

EC 410 J=Q(15-(PEEK(PT)AND15))-128*((PEEK(PT)AND16

)=0):RETURN

BH 420 REM PRESS FIREBUTTON

EH 430 IF(PEEK(PS+CD)ANDCS)=A4THENRETURN

QX 440 Y=INT((PS-SC)/40):X=PS-SC-Y*40

KJ 450 IFAR(X,Y)=0THENPRINTP$HTRY ANOTHER":GOSUB54

0JRETURN I I

QG 460 PRINTP$"GOOD ANSWER" LJ
BP 470 POKEPS+CD,A4:T=AR(X,Y)-1:L(T)=L(T)+1

GD 480 POKES+4/16:POKES+4,17:POKES+l,10+10*L(T)

FP 490 FORA=SC+554TO(SC+554)-40*LLSTEP-40:POKEA+40

,93:POKEA+71,93

KM 500 POKEA,160:POKEA+31,160:FORTD=1TO20:NEXT:NEX

T:IFQF=1THENQF=0:RETURN

GF 510 GOSUB590:LL=LL-(LL<15):AR(X,Y)=0:IFL(T)=LN(

T)THENGOSUB610

EG 520 RETURN

JH 530 REM ENERGY DRAIN

CJ 540 POKES+4,32:POKES+4,33:POKES+1,30:FORTD=1TO2

00:NEXT:POKES+1,15

SD 550 FORA=SC-6TO(SC-6)+40*(15-LL)STEP40:POKEA-40

, 93 :POKEA-9,93 :POKEA, 160

AP 560 POKEA+31,160:FORTD=1TO20:NEXT:NEXT:GOSUB590

:LL=LL-1:IFLL=-1THEN700

JM 570 RETURN

RJ 580 REM CLEAR MESSAGE

XQ 590 PRINTP$"{19 SPACES}":RETURN

GA 600 REM GOT A WORD

AK 610 GW=GW+1:IFGW=10THEN770

JK 620 FORTD=1TO300:NEXT:PRINTP$"WELL DONE I"

AB 630 POKES+4,32

SD 640 POKES+4,35:FORA=6TO20:POKES+1,A:FORTD=30TO4

0:POKES+15,TD:NEXT:NEXT

RK 650 GOSUB590:RETURN

GJ 660 REM GIVE A CLUE

SX 670 A=RND(1)*10:IFL(A)=0THENPRINTP$"CLUE:"W$(A+

M):FORT=1TO800:NEXT

BS 680 GOSUB590:RETURN

SC 690 REM END OF GAME I [

KQ 700 PRINT" I HOME} 14 DOWN] iBLK} " :FORA=0TO14 ."PRINT I I
:PRINTSPC(10);:FORB=0TO19

RB 710 IFAR(B,A)<>0THENPRINTAR$(B,A);:GOTO730

JQ 720 PRINT"IRIGHT}";

HG 730 NEXT:NEXT:PRINT:POKEZ,A4:PRINT "12 DOWN]

16 SPACES}PRESS FIREBUTTON TO CONTINUE"

RX 740 GOSUB410:IFJ<128THEN740

XJ 750 GOSUB410:IFJ>127THEN750

JS 760 POKEZ,A5:PRINT"{CLR}{4 DOWN]16 SPACESjSORRY

, YOU DIDN'T MAKE IT{4 DOWN]":GOTO790

n
138

n

LI

U

u

GE

QD

XR

PA

RG

QE

RK

MR

KG

770

780

790

800

810

820

830

840

850

1

LJ

1)
1 1

U

u

PC

KG

HB

CD

KK

MB

GH

920

930

940

950

960

970

980

Games

POKEZ,A5:PRINT"{CLR}{4 DOWN]16 SPACES}CONGR

ATULATIONSH2 SPACES}YOU WON"

PRINT"13 DOWN}19 SPACES}YOUR TIME WAS "MID?

(TI$,3,2)":"RIGHT$(TI$,2)
FORI=1TO1000:NEXT:POKEBC#W:PRINT"15 DOWN}

14 SPACES}PRESS FIREBUTTON TO PLAY AGAIN"

PRINT"12 DOWN}I10 SPACES}PRESS DOWN TO QUIT
it

GOSUB410:IFJ>127THENPRINTSPC(13)"{2 DOWN}

IRVS}PLEASE WAIT":GOSUB1170:GOTO180

IFJTHENPRINT"{CLR}":END

GOTO810

REM PRINT ARRAY

PRINT"ICLR}(4 SPACES}{CYN}{RVS}iK31 OFF}BK§

I 2 SPACES}{RVS}gK§ gD§ gI§ I OFF}gV§IRVS}gK§
IOFF}gK§IRVS}EK§IOFF}gK§ IRVS}gF§ gD§I OFF}
BC§ t RVS}gFlBD3IOFF}gV§(RVS}gK§ &D§ gF§I OFF}

. BF§ gD*IRVS}gD* gPlIOFF}gF§IRVS}gK3 BC§ gK§

lOFF}gK3MSPC(8);

CP 860 PRINT"lRVS}gK§lOFF}gK§{2 SPACES}IRVS}gK§gC3

IOFF}&F§ t 2 SPACES}t RVS}gF|BD3IOFF}
12 SPACES}{RVS}gK§lOFF}gK3l2 SPACES}{RVS}

&K3lOFF}gK3 lRVS}gK§gC§gV3lOFF}gVHRVS}gK3

tOFF}gK§ t RVS}gK3{OFF}gK§{RVS}|Kl{2 SPACES}
tOFF}gKiIISPC(8)"g78{RVS}gK3lOFF}gKl";

FG 870 PRINT"12 SPACES}IRVS}gK§IOFF}gK§I 2 SPACES}
&D31RVS}gD§ gF31OFF}gF§ IRVS}gK3I OFF}gK3
12 SPACES}lRVS}gK3lOFF}gK3 {RVS}gK§gD§gC§

{OFF} {RVS}gK§{OFF}gK§lRVS}gK3lOFF}gK3lRVS}

BK3lOFF}gK3{RVS}gF§{OFF}gKi"SPC(8)IIgCi{RVS}

B2 13{OFF}gVlgC|";

AG 880 PRINT"{RVS}g2 I§{OFF}gV§gC§gV§gC§gV§ {RVS}

B2 I§{OFF}{2 SPACES}gC§gVl g
{RVS}g2 IilOFF} g§ggg

MX 890 POKEZ#A1:PRINTSPC(4)"B{4 SPACES}{RVS}gA§***

••»»»****»*****»*gS|{QFF}{4 SPACES}B"
PJ 900 PRINTSPC(4)"B{4 SPACES}{RVS}B{OFF}";:FORA=0

TO14:FORB=0TO19

FH 910 POKEZ,A2:IFAR$(B,A)=" "THENPRINTCHR$(65+RND

(1)*26);:GOTO930

PRINTAR$(B,A);

NEXT:POKEZ#Al:PRINT"lRVS}B{OFF}{4 SPACES}B"

:PRINTSPC(4);"B{4 SPACES}TRVS}BlOFF}";:NEXT
PRINT:PRINTSPCT4)"{UP}B{4 SPACES }{RVS} gZ§J^

••••••••••********gXJlOFF}{4 SPACES}B"

RETURN

REM PUT WORDS IN THE ARRAY

B=INT(RND(1)*(NW-10))

M=B:FORA=0TO9:W$=W$(B+A)

139

Chapter 3

n
HR 990 DR=RND(1)*2TLV:DY=DY(DR):DX=DX(DR):L=LEN(W$ ' 1

)

FF 1000 SX=INT(RND(1)*19+1):SY=INT(RND(1)*14+1):RX j 1
=SX:RY=SY | |

GD 1010 NX=SX+(L-1)*DX:NY=SY+(L-1)*DY:IFNX<0ORNY<0
ORNX>190RNY>14THEN990

KB 1020 FL=0:FORL=1TOLEN(W$):IFAR$(SX,SY)<>" "THEN
FL=1:L=LEN(W$)

XJ 1030 SX=SX+DX:SY=SY+DY

SQ 1040 NEXT:IFFLTHENA=A-1:NEXT

MX 1050 FORL=1TOLEN(W$):AR$(RX,RY)=MID$(W$,L,1)

JD 1060 AR(RX,RY)=A+1:RX=RX+DX:RY=RY+DY:NEXT:LN(A)
=LEN(W$):NEXT

MC 1070 RETURN

CH 1080 REM SHUFFLE WORDS

HE 1090 FORA=1TONW/2:B=RND(1)*NW:C=RND(1)*NW:T$=W$
(B):W$(B)=W$(C):W$(C)=T$

JX 1100 NEXT:RETURN

HH 1110 REM READ IN WORDS

DM 1120 DIMW$(200):NW=-1

MA 1130 NW=NW+1:READW$:FORA=1TOLEN(W$):W$(NW)=W$(N
W)+CHR$(ASC(MID$(W$, A,1))-1)

FP 1140 NEXT:IFW$(NW)<>"END"THEN1130
SK 1150 RETURN

BJ 1160 FORA=0TO7:READDX(A)/DY(A):NEXT
BF 1170 FORA=0TO19:FORB=0TO14:AR$(A#B)=" ":NEXTB#A
FM 1180 RETURN

AX 1190 DATA 0,1,1,0,0,-1,-1,0,-1,1,1,1,1,-1,-1,-1
CX 1200 DATA DBSOJWBM,DJSDVT,DBOBEB,VOJUFE,UFMFQIP

OF,NPOLFZ,DPNQVUFS

RB 1210 DATA KPZTUJDL,NPOTUFS,TUBQMFS,NBHJDBM,TIVG
GMF,FOE

n

140

n

n

n

Chapter 4

Utilities

G

o

a

a

n

n

n MetaBASIC:
Programmer's Problem Solver

n &

n

n

n

n

Kevin Mykytyn

"MetaBASIC," originally written for the Commodore 64, has been

rewritten to work with the 128 running in 128 mode. It adds 11

new debugging and testing commands to BASIC 7.0.

You've bought your first car and it runs well. But when you

take it out on the highway, you're dismayed to find that it

won't go faster than 45 miles per hour. What do you do?

Take it to your favorite mechanic who might give you

three options: Remove the engine and replace it with a brand-

new one. Or add some fancy turbocharging, fuel-injected

doohickeys to the engine you already have. Or, without add

ing anything, you could tune it up, using a special machine

that measures the engine's performance.

A BASIC Tune-Up

You can add new programming commands to your 128 in

three similar ways. The first is to toss out BASIC and create a

whole new language (a more powerful engine) based on your

ideas of what a programming language should do.

The second method, a language extension, keeps BASIC,

but adds some new programming commands. You keep the

BASIC engine, but add some additional parts which make it

work faster or more efficiently.

The third way is like a tune-up which doesn't change the

engine. You add direct mode commands for debugging. This is

not a new language or even an extension of BASIC; it's more

properly called a development system or writing/debugging tool

nThe new commands you add cannot be used inside a program;

, | they work only in immediate mode.

New languages and extensions have several advantages.

But they also have a major drawback: You have to load the

language or extension before you load the main program, or

the program just won't work.

143

u
Chapter 4

I '1
The nice thing about a development system like "Meta- '—'

BASIC" is that it's there when you need it, during the time

you're writing and tuning up a program. But once you've fin- I |

ished the program, you don't need MetaBASIC to run it—you '—!
can disconnect the tune-up machine.

Typing It In

MetaBASIC is written entirely in machine language, and "MLX,"

the Machine Language Editor, is required to type it in. MLX

can be found in Appendix C. Be sure to read the specific direc

tions for using MLX before typing in MetaBASIC. Save a cou

ple of copies of MLX; you'll need it to type in "Orbitron" and
other programs which appear in other COMPUTE!
publications.

Load and run MLX. Give it the following information:

Starting Address: 1300

Ending Address: 18BF

Next, following the MLX instructions, enter MetaBASIC and
save it.

To use MetaBASIC, follow these steps:

1. BLOAD "MetaBASIC" (for disk) or

LOAD"MetaBASIC",l,l (for tape)

2. SYS 4864

After the SYS, it may seem that nothing is happening. But

MetaBASIC is running in the background, and you now have

11 new commands to help you write and debug programs.

Using MetaBASIC

MetaBASIC uses English mnemonics, so you don't have to

memorize a lot of SYS numbers. Once MetaBASIC is active, _

you'll have these 11 additional commands: AID, CHANGE, I (
DEFAULT, DLIST, FIND, MERGE, QUIT, READ, RESAVE, '—'
START, and UNNEW.

The commands work only in direct mode; you cannot add j j
them to programs. Also, you're limited to one command per —

line (although you can still use multistatement lines inside

your programs). Unlike ordinary BASIC commands, there are j I
no abbreviations. You must type out the entire MetaBASIC —}
command. If you wish to stop the execution of a command, _

press the RUN/STOP key (not RUN/STOP-RESTORE). If it I)

144

n

n

n

n

n

n

n

n

n

Utilities

seems to be working incorrectly, make sure the syntax is

correct.

Machine language programmers should remember that

MetaBASIC occupies memory locations $1300-$18BF (4864-

6335) and uses zero page locations $FB-$FE (251-254) and

$AC-$AF (172-175).

MetaBASIC Commands
Here's an alphabetical list of the new commands and how to

use them, with examples. MetaBASIC commands and strings

appear in boldface and numbers appear in italics. Anything

enclosed in parentheses is optional.

If something is described as a disk command, it won't

work unless you have a disk drive. However, some of the ML

programming aids can be useful in BASIC and vice versa.

AID

Syntax: AID

Lists all available MetaBASIC commands.

CHANGE

Syntax: CHANGE @old string@new string@ (,startnum,

endnum)

CHANGE @old string@new string@ (,startnum)

CHANGE @old string@new string@ („ endnum)

CHANGE /old string/new string/ (,startnum,

endnum)

CHANGE /old string/new string/ (,startnum)

CHANGE /old string/new string/ („ endnum)

See also FIND.

CHANGE searches through the program in memory, changing

every occurrence of the old string to the new one. The strings

can be up to 30 characters long and must be bracketed by the

commercial at sign (@) or the slash (/). All lines in which

changes are made are listed to the screen. The format with the

commercial at sign is the tokenized form and should be used

to change BASIC commands and variable names. The ASCII

form (the slash format) is useful when you want to change a

145

u
Chapter 4 I .

word in a string without changing keywords. For example, i—

CHANGE /print/write/

will change all occurrences of the word print within quotation ! I
marks without changing any PRINT statements.

Use the slash format to change anything inside quotation i i

marks or after a REM statement; use the at sign format to I I
change anything not inside quotation marks or after a REM

statement. Remember that mathematical operators within pro

grams such as +, —,*,/,>, <, and = are stored as tokens,

not characters, so you must use the @ format when searching

for one of these.

If you omit the line numbers, CHANGE affects the whole

program. If you want to change only one section, add the

starting and ending line numbers, marked off by commas.

Example: CHANGE @X@QQ@,,200 changes the variable

X to QQ in all lines up to and including 200. To change the

name Charles to John throughout the program, CHANGE

/CHARLES/JOHN/.

DEFAULT

Syntax: DEFAULT border, background, text

See also QUIT.

When you hit RUN/STOP-RESTORE, the screen reverts to

the default colors green and black. DEFAULT lets you change

these values to whatever you prefer.

If your 128 is hooked up to a black-and-white TV, change
the character/background color to a more readable

combination.

To disable DEFAULT (and go back to normal colors), use

the QUIT command.

Example: DEFAULT1,1,O changes border and background

to white, and characters to black. If you press RUN/STOP- I
RESTORE, you'll see white characters on a black background.

The border and background color changes affect only the i j

40-column screen; the text color change affects both the 40- 1 I
and 80-column displays.

u

146

u

n
P^ Utilities

n

n

n

n

n

n

n

DUST

Syntax: DLIST "filename?'

See also READ.

This command lists a BASIC program from disk to the screen

without affecting what's currently in memory. The program

name must be enclosed in quotation marks. DLIST enables

you to look at a program before using MERGE or SCRATCH.

Example: DLIST "BASICPROGRAM" reads the file from

disk and lists it to the screen.

FIND

Syntax: FIND @string@ (,startnum, endnum)

FIND @string@ (,startnum)

FIND @string@ („ endnum)

FIND /string/ {,startnum, endnum)

FIND /string/ {,startnum)
FIND /string/ („ endnum)

See also CHANGE.

This allows you to find any word, variable, or other string

within a program. Each line containing the search string is

listed to the screen. If you wish to search just one section of

the program, add the starting and ending line numbers, sepa

rated by commas.

If you're trying to find BASIC keywords (like PRINT or

REM), use the first format. It also works for variables and

numbers. The second format should be used when you're

looking for strings or items inside quotation marks.

Example: FIND @A=@ searches for lines where variable

A is defined.

MERGE

Syntax: MERGE "program name"

MERGE reads a program from disk, lists each line to the

screen, and adds the line to the program in memory. If the

programs have common line numbers, the program on disk

takes precedence. Say they both contain a line 250. The line

250 from the disk program will replace line 250 in memory.

147

u
Chapter 4 , I

Before using this command, you may want to use DLIST '—
to make sure you're merging the right program. And if there

are conflicting line numbers, you can use RENUMBER to re- ! I

number one of the two programs. If you want to merge just '—'
part of one program, use DELETE to eliminate the unwanted

lines. } |

QUIT

Syntax: QUIT

This resets all vectors and disables all MetaBASIC commands.

MetaBASIC is still protected from BASIC. Reenter the program

with SYS 4864.

READ

Syntax: READ "filename"

See also DLIST.

READ allows you to examine sequential disk files. The infor

mation in the file is displayed to the screen, without altering

whatever program is in memory.

In the rare case that you want to use the BASIC READ

statement from direct mode (to see if all DATA statements

have been read), you can precede it with a colon to distinguish

it from MetaBASIC's READ command.

RESAVE

Syntax: RESAVE "filename"

The disk command save-with-replace (SAVE "@O\filename")

first saves the program and then scratches the older version,

so there must always be enough free space on the disk for the

new version of the program. Thus, the command can cause I I

problems if you don't have enough available disk space for '—'
the new version. Save-with-replace also has other problems;

see the article "Save-with-Replace: Debugged at Last" earlier I f

in this book. '—I
RESAVE reverses the order—first it scratches the old ver

sion of your program from disk, and then it does a regular j I

SAVE, solving both of the above problems. 1—I

148

u

n

n

n

n

n

Utilities

START

Syntax: START "filename"

If you forget where a machine language program begins, put

the disk in the drive and use this command. This can help

when you have forgotten the SYS that starts a program.

Example: START "METABASIC" should display 4864

on the screen.

UNNEW

Syntax: UNNEW

You may never need this command, but it's nice to have it

available. If you accidentally type NEW and you want to re

trieve the program, use UNNEW to get it back.

Program 4-1. MetaBASIC
This data must be entered using MIX. See Appendix C.

Starting address: 1300

Ending address: 18BF

1300:4C 15 13 4C E5 5E 4C 32 2C

1308:8E 4C E8 4D 4C A0 50 4C 4C

1310:E5 50 4C 64 50 A2 34 A0 23

1318:13 D0 0E A9 03 8D 00 0A B0

1320:A9 40 8D 01 0A A2 0D A0 82

1328:43 8E 04 03 8C 05 03 A2 65

1330:80 6C 00 03 AD 00 FF 8D DC

1338:C1 18 A9 00 8D 00 FF A9 90

1340:FB 8D 28 03 A9 17 8D 29 EA

1348:03 A9 0F A8 A2 08 20 BA F6

1350:FF 20 EA 17 A9 00 20 BD 98

1358:FF 20 C0 FF A2 00 8E C2 93

1360:18 A0 FF C8 B9 00 02 F0 0A

1368:3F C9 20 F0 F6 DD B7 13 65

1370:D0 28 C8 E8 BD B7 13 29 CC

1378:7F D9 00 02 D0 1C BD B7 IF

1380:13 10 EF AD C2 18 0A AA 42

1388:8C C3 18 84 3D A9 02 85 4B

1390:3E BD EF 13 48 BD EE 13 9E

1398:48 60 E8 BD B7 13 F0 08 E7

13A0:10 F8 E8 EE C2 18 10 B9 69

13A8:18 A9 0F 20 C3 FF AD Cl 64

13B0:18 8D 00 FF 4C 0D 43 41 A4

13B8:49 C4 43 48 41 4E 47 C5 39

13C0:44 45 46 41 55 4C D4 44 01

13C8:4C 49 53 D4 46 49 4E C4 D7

n

n

n

n
149

n

Chapter 4

u

u

U
13D0:4D 45 52 47 C5 51 55 49 15

13D8:D4 52 45 41 C4 52 45 53 08

13E0:41 56 C5 53 54 41 52 D4 4C |

13E8:55 4E 4E 45 D7 00 03 14 44 , [

13F0:53 14 ID 14 7F 16 50 14 B3

13F8:7C 16 1A 13 34 17 4F 17 0B

1400:C8 17 EF 17 A0 FF C8 B9 12] (
1408:B7 13 F0 0F 08 29 7F 20 E3 I '
1410:D2 FF 28 10 Fl 20 30 17 2F

1418:4C 06 14 4C 01 18 20 A8 80

1420:18 8E B7 18 20 A8 18 8E D2

1428:B6 18 20 A8 18 8E B8 18 C4

1430:A9 3D 8D 00 0A A9 14 8D DA

1438:01 0A 4C 01 18 AD B6 18 F9

1440:8D 21 D0 AD B7 18 8D 20 C5

1448:D0 AD B8 18 85 Fl 4C 03 6C

1450:40 A9 00 2C A9 01 8D C5 F7

1458:18 20 3A 16 A2 FF 20 5C EE

1460:16 AD C5 18 F0 03 20 5F 6C

1468:16 A9 FF 85 47 85 48 A5 E4

1470:2D 85 FC A5 2E 85 FD 20 2E

1478:A1 18 90 17 20 12 13 A5 10

1480:61 85 FC A5 62 85 FD 20 F9

1488:86 03 20 A4 18 90 04 86 94

1490:47 85 48 A0 00 Bl FC 8D IF

1498:C2 18 C8 Bl FC 0D C2 18 16

14A0:D0 06 20 03 13 4C 01 18 CA

14A8:C8 Bl FC 85 16 C8 Bl FC CD

14B0:85 17 A5 47 38 E5 16 A5 B5

14B8:48 E5 17 B0 02 90 E3 A2 29

14C0:00 C8 Bl FC F0 30 DD C7 EC

14C8:18 D0 F4 8C C6 18 C8 E8 A9

14D0:BD C7 18 F0 09 Dl FC F0 56

14D8:F5 AC C6 18 D0 El 8C C2 6B

14E0:18 A5 FC 85 61 A5 FD 85 99

14E8:62 20 0F 13 AD C5 18 D0 E2

14F0:15 AC C6 18 D0 C9 C8 98 01

14F8:18 65 FC 85 FC A5 FD 69 62

1500:00 85 FD 4C 93 14 AD C2 IB \ (

1508:18 18 65 FC 8D B9 18 A5 E9 I I
1510:FD 69 00 8D BA 18 AD C6 C4

1518:18 18 65 FC 8D BD 18 A5 0A

1520:FD 69 00 8D BE 18 AD BD EB

1528:18 18 6D C0 18 8D BD 18 A8 l !
1530:AD BE 18 69 00 8D BE 18 46

1538:20 8E 15 AD BD 18 38 ED 40 j ' i

1540:B9 18 8D BD 18 AD BE 18 E7 | |
1548:ED BA 18 8D BE 18 AD 10 B5

1550:12 18 6D BD 18 8D 10 12 3C

1558:AD 11 12 6D BE 18 8D 11 39 j

150

Utilities

1560:12 A0 00 Bl FC 18 6D BD B7

1568:18 91 FC C8 Bl FC 6D BE 4A

1570:18 91 FC A2 FF E8 BD C7 BB

1578:18 D0 FA AC C6 18 88 E8 9D

1580:C8 BD C7 18 F0 04 91 FC B0

1588:D0 F5 88 4C BF 14 AD 10 28

1590:12 38 ED B9 18 8D BB 18 Bl

1598:AD 11 12 ED BA 18 8D BC 0D

15A0:18 AD B9 18 38 ED BD 18 08

15A8:8D C2 18 AD BA 18 ED BE F8

15B0:18 0D C2 18 D0 01 60 B0 FF

15B8:3E AE BC 18 18 8A 6D BA 47

15C0:18 8D E4 15 AD B9 18 8D 5A

15C8:E3 15 18 8A 6D BE 18 8D F9

15D0:E7 15 AD BD 18 8D E6 15 9F

15D8:E8 AC BB 18 D0 04 F0 0D 21

15E0:A0 FF B9 FF FF 99 FF FF F8

15E8:88 C0 FF D0 F5 CE E4 15 5E

15F0:CE E7 15 CA D0 EA 60 AD 6C

15F8:B9 18 8D 1C 16 AD BA 18 6E

1600:8D ID 16 AD BD 18 8D IF 60

1608:16 AD BE 18 8D 20 16 AE CB

1610:BC 18 F0 20 A9 00 8D BF E8

1618:18 A0 00 B9 FF FF 99 FF 47

1620 :FF C8 CC BF 18 D0 F4 EE F0

1628:1D 16 EE 20 16 E0 00 F0 6D

1630:08 CA D0 E0 AD BB 18 D0 98

1638:DD 60 EE C3 18 AC C3 18 98

1640:B9 00 02 D0 03 4C 2C 18 50

1648:C9 20 F0 EE C9 2F F0 09 64

1650:C9 40 D0 Fl 48 20 0D 43 CA

1658:68 85 FC 60 AC C3 18 A9 0E

1660:FF 8D C0 18 C8 E8 B9 00 E6

1668:02 F0 DA 9D C7 18 EE C0 44

1670:18 C5 FC D0 EF 84 3D A9 7C

1678:00 9D C7 18 60 A9 00 2C 5C

1680:A9 01 8D C5 18 A0 00 20 33

1688:5F 18 20 E4 FF 20 E4 FF 07

1690:20 E4 FF 8D C2 18 20 E4 7A

1698:FF 0D C2 18 D0 03 4C 01 0E

16A0:18 A0 02 A9 02 8D 01 02 26

16A8:20 E4 FF 99 14 00 99 00 8B

16B0:02 C8 C0 04 D0 F2 88 C8 94

16B8:20 E4 FF 99 00 02 C9 00 63

16C0:D0 F5 8C 00 02 A2 02 C8 CB

16C8:99 00 02 CA D0 F9 A9 00 70

16D0:85 61 A9 02 85 62 38 20 B3

16D8:0F 13 AD C5 18 D0 03 4C B9

16E0:E5 16 4C 90 16 A9 04 85 FC

n

n

n

n
151

n

u
Chapter 4

=z=—_—=_ u

16E8:3D A9 02 85 3E A2 FE A0 Dl I 1

16F0.-16 20 0C 17 AD 00 02 38 CC

16F8:E9 03 A8 4C 09 13 EE 20 47 i j

1700:D0 20 IF 17 A9 00 8D 00 5C I
1708:FF 4C 90 16 AD 02 03 8D C5

1710:C3 18 AD 03 03 8D C4 18 FB

1718:8E 02 03 8C 03 03 60 AD C9 j I

1720:C3 18 8D 02 03 AD C4 18 78 I 1
1728:8D 03 03 60 A9 20 D0 02 B5

1730:A9 0D 4C D2 FF A0 02 20 D3

1738:5F 18 20 E4 FF 8D C3 18 44

1740:A5 90 D0 09 AD C3 18 20 DC

1748:D2 FF 4C 3A 17 4C 01 18 11

1750:A2 0F 20 C9 FF 20 3A 18 41

1758:AC C3 18 8A 38 6D C3 18 90

1760 :AA A9 00 9D 00 02 A2 02 77

1768 :BD B0 17 99 00 02 88 CA 02

1770:10 F6 AE C3 18 CA CA A9 Al

1778:02 20 B3 17 20 CC FF AD 79

1780:C4 18 AE C3 18 E8 A0 02 D0

1788:20 BD FF 20 EA 17 A0 02 2F

1790:20 E3 17 A2 01 B5 2D 95 A3

1798:FC CA 10 F9 A9 FC AE 10 48

17A0:12 AC 11 12 20 D8 FF 20 CA

17A8:7E 18 20 30 17 4C 01 18 27

17B0:53 30 3A 85 FD 98 48 86 9D

17B8:FC A0 00 Bl FC D0 03 68 42

17C0:A8 60 20 D2 FF C8 4C BB 04

17C8:17 A0 02 20 5F 18 20 E4 6D

17D0:FF 8D C3 18 20 E4 FF AE 9F

17D8:C3 18 20 06 13 20 30 17 E3

17E0:4C 01 18 A9 02 A2 08 4C 0A

17E8:BA FF A9 00 AA 4C 68 FF 01

17F0:A0 01 98 91 2D 20 03 13 DE

17F8:4C 01 18 20 6E F6 F0 01 C4

1800:60 20 21 18 18 A9 02 20 99

1808:C3 FF 18 A9 0F 20 C3 FF 38

1810:20 CC FF 20 30 17 AD Cl 80

1818:18 8D 00 FF A2 80 6C 00 A7 |

1820:03 A9 6E 8D 28 03 A9 F6 7A 1
1828:8D 29 03 60 18 A9 0F 20 75

1830:C3 FF 20 21 18 A2 0B 6C 26

1838:00 03 AC C3 18 C8 B9 00 52 II
1840:02 F0 E9 C9 22 D0 F6 8C 56 ' '
1848:C3 18 A2 FF C8 E8 B9 00 12

1850:02 F0 04 C9 22 D0 F5 CA E5

1858:30 D2 E8 8E C4 18 60 20 C2

1860:E3 17 20 EA 17 20 3A 18 C0

1868:8A AE C3 18 E8 A0 02 20 71

152

u

u

n

n

n

n

n

n

n

n

n

1870:BD FF 20 C0 FF 20 7E 18 25

1878:A2 02 20 C6 FF 60 A2 0F C0

1880:20 C6 FF 20 E4 FF C9 30 5F

1888:D0 0D 20 E4 FF C9 0D D0 C8

1890:F9 4C CC FF 20 E4 FF 20 IF

1898:D2 FF C9 0D D0 F6 4C 01 38

18A0:18 20 80 03 C9 2C D0 0C Dl

18A8:20 80 03 20 0C 13 A6 16 7B

18B0:A5 17 38 60 18 60 00 00 C8

18B8:00 00 00 00 00 00 00 00 E8

Utilities

153

n

REM Highlighter
u

Don A. Ellis I j

If you headline routines in your programs with REMs, here's a

short and clever utility that helps you find important sections of I j
code more quickly. It highlights REMs on your screen and your

printer.

Trying to find the REMark statements in a crowded program

listing as it scrolls by is difficult, particularly after a few late-

night hours in front of the screen. Like many other program

mers, I use asterisks (***), but that's only marginally effective.

Blank REM lines inserted to set off the comments and identify

program routines work better, but use up both screen space

and memory.

A Better Solution

"REM Highlighter" automatically tweaks another program, at

no cost to memory, so that REM statements on separate lines

will be displayed in reverse, standing out sharply. The ad

justed program may be saved normally, and this version will

retain its reversed comments when reloaded.

First type in and save Program 4-2, REM Highlighter. Be

sure to save a copy of the program before you run it since it

erases itself from memory when it loads the program to be

highlighted.

Load and run Highlighter, and enter the name of the pro

gram you wish to tweak. If you're using disk, that's all there is

to it. If you're using tape, the process is a little less automatic,

but still simple (see details below). i >

Be sure to enter the program exactly as in the listing; it j |
depends on precise screen layout to function, so the spacing is

tight. Common keyword abbreviations must be used; when r j

you see an underlined character, it means to enter it with the j |
SHIFT key held down.

The disk version uses the dynamic keyboard technique. It

POKEs keystrokes into the keyboard buffer so that when the |
program ends, the computer is fooled into thinking that cer

tain keys have been pressed. REM Highlighter first loads the i »

154

u

H

n

n

n

n

n .

n

n

GE

JD

JS

DP

BH

SJ

HC

10

12

14

16

18

20

22

Utilities

program to be modified, so the Highlighter itself is overwritten

(and lost). But several lines of BASIC (63994-63999) have

been left on the screen. The 13's in the keyboard buffer are

carriage returns, so the computer prints RETURN over lines,

adding them to the program just loaded. The final line tells

the program to GOTO 63995, and the program obliges by

jumping to the Highlighter routine. When it's finished, blank

lines numbered 63994-63999 are printed on the screen. The

dynamic keyboard is again used to press RETURN over the

lines, erasing them from memory. You're left with the pro

gram with reversed REMs. You can now save back to disk.

Using the Program with Tape

A special procedure is required for using Highlighter with

tape. First type in Program 4-2.

It's necessary to append Highlighter to the program you

wish to tweak. To accomplish this:

1. Load the program you wish to be highlighted.

2. Clear the screen; in direct mode, enter the following line:

PRINT45;PEEK(45)/46;PEEK(46):A=PEEK(4624)

+PEEK(4625)*256-2:C=INT(A/256):

B=a-C*256:POKE45,B:POKE46,C

3. Load REM Highlighter.

4. Using the values displayed (by step 2), POKE 45 and 46

with their original values again.

5. Type RUN 63993.

Program 4-2. REM Highlighter
For mistake-proof program entry, be sure to use "The Automatic Proofreader/' Appendix B.

N=208:P=842:COLOR0,7:BANK0

PRINTMiCLR}MCHR$(14)CHR$(8):PRINT"§73REM

IRVS jHIGHLIGHTERlDOWNJ

INPUT"12 DOWN]PROGRAM NAME";N$:IFN$=""THENPR

INT"15 UPjM:GOTO14

Q$=CHR$(34):PRINTM{CLR}{22 DOWNLOADING
{DOWNj":PRINTN$"[HOME}{BLU}LOAD"Q$NQ",8
PRINT"14 DOWN j 63994S=PEE(S)+PEE(S+l)*256

PRINTM63995IFPEE(S+4)=143TH?liQ$lllHOME}lCYN}11

Q$"PEE(S+2)+PEE(S+3)*256:T=S+4:GOS63997
PRINTM63996ON-TS<>.)GO63994:?"Q$"ICLR]{BLU}"
Q$";:GO63999 ~~

155

LJ
Chapter 4

= =^=——= u

QK 24 PRINT"63997T=T+1:IFPEE(T)=.THRET |
PK 26 PRINT"63998ON-(PEE(T)=32)GO63997:P0KT+(T>S+5

),18:RET . .

BA 28 PRINT"63999POKP,19:FOI=1TO6:POKP+I,13:763993

+I:NE:POKP+I,154:POKN,8 ' '
KC 30 PRINTM?"Q$"16 DOWN]IRVSjIWHT}HIGHLIGHTING"Q$

":N=208:P=842:S=45:GO63994 | j

BM 32 POKEP#19:FORI=1TO8:POKEP+I/13:NEXT:POKEN#9 j |

Program 4-3. REM Highlighter, Tape Modifications
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix B.

PK 63993 BANK0 :PRINT "{CLR}l':N=208:P=842:S=PEEK(45)

+PEEK(46)*256:GOTO63995

AF 63994 S=PEEK(S)+PEEK(S+l)*256

FR 63995 IFPEEK(S+4)=143THENPRINT"{HOME}"PEEK(S+2)

+PEEK(S+3)*256:T=S+4:GOSUB63997

HM 63996 ON-(S<>.)GOTO63994:GOTO63999

GB 63997 T=T+1:IFPEEK(T)=.THENRETURN

DE 63998 ON-(PEEK(T)=32)GOTO63997:POKET+1*(T>S+5),

18:RETURN

RH 63999 PRINT"tCLR}";:POKEP#19:FORI=1TO8:POKEP+I,

13:PRINT63991+I:NEXT:POKENr9

156

n

n

H

n

n

Blick

Plummer Hensley

Use a blick to spice up your programs by adding a blink and a

click to the PRINT command. Anytime you type a character to

the screen, you'll see an underline cursor accompanied by a

brief sound.

If you don't think sound is important, try playing your favorite

action game with the volume turned all the way down. It's

just not as much fun without the explosions, zaps, and other

noises.

Sounds help to liven up games, so why not make PRINT

statements a little more interesting? This program gives you a

blink and a click (a blick) every time a character is printed.

Typing It In

Enter Program 4-4 and save it to tape or disk before proceed

ing. Saving is important because the last command in line 120

is a NEW, which erases the program currently in memory.

"Blick" is written in machine language (ML), but you

don't need to know ML to use it. It is presented in the form of

a BASIC loader that reads DATA statements and POKEs the

routine into memory. After running it, you should see the

message BLICK ENABLED.

Once Blick is in memory, try printing a message, PRINT

"THIS IS BLICK", for example. Or load a program and list it.

See the table below for ideas on customizing the program.

If you should accidentally disable Blick by pressing

RUN/STOP-RESTORE or RUN/STOP-RESET, enter SYS

3072 to reenable Blick. To turn off Blick, enter the following

all on one line:

POKE 806,121:POKE 807,239

To change the cursor character, substitute the appropriate

ASCII value for x in the following POKE:

POKE 3128,*

157

u
Chapter 4

Finally, the blinking speed can be modified by substitut- '—'
ing any number from 0 to 255 for y (anything above 234 will

speed it up) in this statement:

POKE 3133,1/

How It Works L
Blick is a "wedge" that temporarily diverts the PRINT com

mand into a routine that prints an underline character, makes

a sound, and erases the underline. When it's finished, it goes

on to the main PRINT command.

PRINT is a common, easy-to-use command in BASIC. But

at the machine language level, PRINT is more complex; it has

to do a lot of work. First, the computer looks ahead to see

whether it will be printing a variable, a number, a string, or

maybe even a long calculation. Once that's straightened out

and BASIC knows the sequence of characters to be printed, it

goes through the Kernal routine for printing characters (always

at location $FFD2 on the 128). The Kernal routine looks at lo

cations 806-807 to find the actual ROM routine for printing a

character.

This pointer was deliberately designed to be the weak link

in the process. If we change the address there, anytime the

computer wants to print a character, it runs into a detour we

have set up. This detour handles the blink and the click before

jumping back to the main PRINT routine.

Program 4-4. Blick
For mistake-proof program entry, be sure to use "The Automatic Proofreader/' Appendix B.

BA 100 FORI=3072TO3158:READA:POKEI,A:CK=CK+A:NEXT

XD 110 IFCKO10998THENPRINT"ERROR IN DATA STATEMEN

TS.":STOP

FE 120 SYS3072:PRINT"BLICK ENABLED":NEW , ,

SF 130 DATA 169,15,141,24,212,141,19,212,169,120

SM 140 DATA 141,15,212,169,1,141,14,212,169,0 ' '
RH 150 DATA 141,20,212,162,34,160,12,142,38,3

QG 160 DATA 140,39,3,96,72,169,0,141,0,255

SD 170 DATA 104,32,121,239,133,167,134,168,132,169 |
FG 180 DATA 169,33,141,18,212,169,175,32,121,239

PS 190 DATA 162,234,160,0,200,208,253,232,208,250

SS 200 DATA 169,32,141,18,212,169,20,32,121,239 j
EF 210 DATA 165,167,166,168,164,169,96 ' 1

158

u

u

n

n

n

n

n

n

n

n

n

n

Word Counter

Thomas K. Tucker

If you ever need a quick word count of a document, this program

is for you. It works with text files—program or sequential—created

by almost any word processor. A disk drive is required.

Teachers are fond of giving assignments in terms of words: a

"3,000-word term paper" or a "500-word essay," for example.

I recently wrote such a paper using the word processor Speed-

Script, but when I finished writing, I had no idea of the num

ber of words. It seemed to me it would be a fairly easy task to

write a program to count the words in a file, but first I had to

determine what constituted a word.

Spaces separate words from neighboring words, so the

number of spaces in a document should equal the number of

words. The only snag would be multiple spaces in the file. I

didn't want to count all the spaces, just the ones immediately

preceded by a character that was not a space.

The BASIC program I came up with looked something

like this:

10 Z=0:A$=" ":B$=" "

20 INPUT"FILENAME";F$

30 OPEN l,8,0,F$+",P,R"

40 GET#1/A$

50 IF 64 AND ST THEN 90

60 IF A$=CHR$(32) THEN IF B$<>

CHR$(32) THEN Z=Z+1

70 B$ - A$

80 GOTO 40

90 CLOSE 1

100 PRINT"NUMBER OF WORDS IN

FILE : ";Z+2

110 END

Line 50 checks for the end of the file. Line 60 rules out

counting consecutive spaces as more than one word. By ex

periment, I found that by adding 2 to the counter (Z), a more

accurate count is shown. Since printer format codes and car

riage returns are counted as words, a 100 percent accurate

count is not possible. But it's rarely important that the final

159

u
Chapter 4 , ,

number of words is exact. (Is anyone penalized for being six '—'
words short in a 2,000-word paper?)

I i

Speeding It Up

The BASIC program above took over four minutes to count

about 2,500 words. Much too slow. |
Writing the loop part of the program (lines 40 to 80) in

machine language (ML) seemed to be the answer. Since it's a

short routine, it fits nicely into the RS-232 input buffer at

$0C00 (3072). The ML data is POKEd into the input buffer by

using DATA statements.

Later I added the directory routine and the option of

counting sequential as well as program files. This program

should read files written on any word processor—but remem

ber, the more printer code strings used in the file, the less ac

curate the word count. In any case the program is pretty fast,

taking about 40 seconds to count a 2,500-word, 60-block file.

How to Use It

"Word Counter" is easy to use. Type in and save Program 4-

5. The program as listed is for the 128 mode, but it will count

words created by a word processor in 64 or 128 mode.

When you've finished writing and saving your document,

load Word Counter and type RUN. The first prompt is PRESS

D FOR DIRECTORY. Insert the disk containing the text file

and press D. You're then asked to type in the filename and

type P (Program) or S (Sequential) for file type. Word Counter

reads through the file, and seconds later displays the number

of words. You're then asked if you'd like to count the words

in another file.

Editor's Note: We tested Word Counter with text files created _

by SpeedScript, Paperback Writer (128 and 64 versions), and

Word Writer 128. The program gave a reasonably accurate count '—'
with these files (program or sequential), which were of varying

length.

Program 4-5. Word Counter
For mistake-proof program entry, be sure to use "The Automatic Proofreader/' Appendix B. | »

PB 10 PRINT"1CLR}"CHR$(142):BS=3072:COLOR0,7:COLOR ' '
4,7

CP 20 I=I+1:READA:IFA<0THEN50 I 1

160

u

n

n

n

n

n

n

n

n

n

n

Utilities

QQ 30 POKEBS+1+I,A

AC 40 GOTO20

RA 50 Z=0:D$=""

EF 60 PRINT"lCLR}{2 DOWN}PRESS D FOR DIRECTORY"

KG 70 GETA$:IFA$=""THEN70

FX 80 IFA$o"D"THEN160

XG 90 OPEN1,8,0,"$0"

ES 100 PRINT:FORA=1TO32:GET#1,C$:NEXT

KR 110 GET#1,B$:IFST<>0THENCLOSE1:SYS65484:GOTO160

BC 120 IFB$<>CHR$(34)THEN110

PC 130 GET#1,B$:IFB$<>CHR$(34)THEND$=D$+B$:GOTO130

MB 140 GET#1,B$:IFB$=CHR$(32)THEN140

AE 150 PRINT" ";B$;"13 SPACES}";D$:D$="":GOTO110

HD 160 INPUT"12 DOWNjFILE NAME";F$

AJ 170 IFF$=""THENPRINTM{4 UP}":GOTO160

FE 180 PRINT"lCLR}{2 DOWNjFILE TYPE?"

EM 190 PRINT"(2 DOWN}{RVSjPlOFFjROGRAM"

GM 200 PRINT"tDOWN}{RVS}SI OFFJEQUENTIAL"

HR 210 GETG$:IFG$o"P"ANDG$<>"S"THEN210

KX 220 PRINT"12 DOWN}COUNTING"

BR 230 IFG$="S"THEN250

JK 240 OPEN1,8,0,F$+",P,R":GOTO260

MP 250 OPEN1,8,0,F$+",S,R"

FA 260 SYSBS+2

AK 270 Z=PEEK(BS)+256*PEEK(BS+l)+2

RC 280 PRINT"ICLR}{DOWN}NUMBER OF WORDS:"Z:CLOSE1

DF 290 OPEN15,8,15,"10":CLOSE15

GP 300 PRINT"IDOWN}ANOTHER FILE?I2 SPACES}(Y/N)

AQ 310 GETA$:IFA$="Y"THEN50

AB 320 IFA$="N"THENEND

CG 330 GOTO310

HH 340 DATA 169,0,141,0,12,141,1,12,141,66,12,141,

67,12,162,1,32

BK 350 DATA 198,255,32,183,255,41,64,208,34,32,207

,255,141,66,12,201,32,208,15

QJ 360 DATA 32,207,255,201,32,240,8,238,0,12,208,3

,238,1,12,173,66,12,141

BQ 370 DATA 67,12,76,21,12,32,231,255,96,3,4,-1

161

G

o

a

a

Chapter 5

Peripherals

G

o

a

a

H

n

n Storage and Display

H

H

The two most important peripherals you'll use with your 128 are a

disk drive and a monitor. Here's some helpful information on the
1571 drive and the video display options that are available. An ex

cerpt from Chapter 4 of COMPUTEl's 128 Programmer's Guide.

As you probably know, the 1571 drive has two separate op

erating modes. It can be either a fast, double-sided drive (1571

mode) or a slower, single-sided drive (1541 mode). In ordinary

circumstances, DOS automatically uses 1571 mode when the

computer is in 128 mode, and 1541 mode when you switch

the computer to 64 mode with GO 64. However, it's possible

to switch the drive from one mode to another under program

control. The following program switches from 1571 mode to

1541 mode:

10 OPEN 15,8,15

20 PRINT#15,"U0>M0"

30 CLOSE 15

After you run the program, the drive will read and write

to the top side of the disk alone, just like a 1541. To return to

1571 mode, replace line 20 as shown here and rerun the

program:

20 PRINT#15,"UO>M1"

You can also switch from one read/write head to another

in a program. Switch your drive to 1541 mode, then format a

new disk using the disk name SIDE ZERO. Now replace line

20 as shown here and rerun the program:

20 PRINT#15,"UO>H1"

Now format the disk again using the disk name SIDE

ONE, then read the disk directory.

Replace line 20 with this line and rerun the program:

20 PRINT#15,"U0>H0"

At this point, the disk directory should show SIDE ZERO.

You now have a disk formatted on both sides in 1541 mode.

Either side may be accessed by changing disk heads as shown
above. If you have old single-sided disks around, this is one

165

u
Chapter 5 . (

way to extend their usefulness. Note, however, that the sec- '—
ond side cannot be read in a 1541 drive. It is only readable by

a 1571 drive, which has two read/write heads rather than one.

Why the 1571 Is Faster

A 1541 disk drive can read a disk pretty quickly. That is, it | |
can copy data from the surface of the disk to its internal mem

ory fast enough. But it transfers data to the computer at a

much slower rate. The problem lies in the 1541's communica

tion protocol, which Commodore has fittingly dubbed "slow

mode." There are now an abundance of Commodore 64 pro

grams which increase the speed of the 1541 drive. Such utili

ties reprogram both the drive and the computer to accelerate

the data transfer rate at the risk of less reliable communica

tions. The 1571 offers much faster transfer modes, and we'll

show you how to access them under program control. But you

first need to understand some simple facts about serial data
transfer.

Most Commodore peripherals, including 1541 and 1571

drives, attach to the computer through a serial communication

bus. The term bus is a jargon name for "group of wires," and

serial means that only one bit (logical 1 or 0) of data can move

along the bus at a time. To send a byte of data over the serial

bus, a device first has to break the data down into its eight

component bits. This sounds slower than it really is. Some se

rial communication systems—the Ethernet local-area network,
for instance—are very fast. But there's one reason why Com

modore's serial bus is so slow. Commodore computers built

before the 128 don't use any special-purpose hardware for se

rial bus communications. Instead, the computer's microprocessor

executes a program to convert a byte to bits and send both the

data and associated control signals (like "Here's another bit" —
and "I'm done, now it's your turn to talk") down the bus.

Since the microprocessor isn't specifically designed for such

operations, it can't do them as fast as a special-purpose serial
device.

The 128 and 1571 use a new system called fast serial mode
to relieve the microprocessor of most serial communication
chores. In the original serial protocol, one wire in the serial
bus cable was named—Service Request (SRQ)—but never
used. Now this wire has been put to work carrying a high-

166

n

n

n

Peripherals

speed clock signal to accompany data sent at a faster rate.

Since the clock signal and the data move faster than the

n microprocessor can follow, the Complex Interface Adapter

chip at location $DC00 (CIA #1) assumes more responsibility

for communications. The CIA's Serial Data Register (SDR) at

j I location $DC0C was unused on the 64. But in the 128, it reads

' I and writes to the serial bus's data line. Thus, in the 128's fast
serial mode, the most speed-critical tasks are done by hard

ware that was unused (or underused) on the 64.

Why Learn About Fast Mode?

Some people—Commodore's programmers, for instance—

have to know the details of serial communication backward

and forward, but you can ignore all the bits and bytes and

three-letter words and still benefit from fast serial mode. Every

serial input/output routine in the 128's operating system has

been written to use fast mode whenever it can. Whenever a

serial device is active, the 128 checks to see if it can handle

fast mode. Whether you access the device from BASIC or ma

chine language, fast mode will be used if you have a 1571

connected to your 128.

For some disk operations, the 1571 is even faster because

of new burst mode disk access commands. In conventional disk

access, each request for data from the drive returns only one

byte. When you're loading a large file, the computer spends

most of its time saying "next byte, please" over and over

again. Burst commands, on the other hand, tell the disk drive

to pass many blocks (256-byte packages) of data without any

further instruction. These commands can operate on as many

as 256 blocks of disk data at a time. There is also a new fast

load command that reads a complete disk file in one opera

tion. As CP/M users will be glad to learn, burst mode is also

available with any command that relates to MFM-formatted

(non-Commodore CP/M) disks.

Since the computer's LOAD routine knows about fast

load, ordinary BASIC commands like LOAD, DLOAD, and

BLOAD (as well as ML routines which call Kernal LOAD) use

burst mode if it's available. Unfortunately, since there is no

corresponding fast save command, all save operations transfer

data at the normal byte-by-byte rate.

n

n

n

n
167

H

LJ
Chapter 5

Video Displays I I
Like virtually every other microcomputer, the Commodore 128

communicates with you, the programmer, chiefly through a I j

monitor or some type of display screen. Several options are '—!
available to accommodate a wide variety of needs.

The least expensive alternative is to connect the computer I

to an ordinary TV, using the cable and switch box supplied by '—f
the manufacturer. The RF (Radio Frequency) modulated output

of the computer contains both audio and video signals, which

the TV receives through its antenna input like an ordinary

broadcast signal. Though it has the advantage of low cost, a

TV hookup rarely provides as clear a display as using a dedi

cated monitor. The RF cable acts as an antenna of sorts, pick

ing up stray signals from the general vicinity. In the past few

years, an increasing number of combination TV/monitor de

vices have appeared on the market. These are essentially tele

visions with extra connections for direct input from a home

computer or video-recording device. In monitor mode, the de

vice bypasses the TV circuits that receive broadcast signals,

usually providing a display equal to that of a dedicated monitor.

If you have owned or used another Commodore computer

before purchasing your 128, chances are good that you're fa

miliar with the most popular type of dedicated monitor—the

composite monitor. This type includes the Commodore 1701

and 1702 monitors (and many similar non-Commodore de

vices), which display an excellent image in 40-column mode.

These monitors are connected to the computer through the

eight-pin video connector at the computer's rear. Commodore

composite monitors usually produce the best picture through

the rear connectors, which split the color portion of the signal

into separate chroma (color) and luma (brightness) signals,

rather than those in the front of the device.

A monochrome monitor, though it provides no color (and j f

often no sound), offers another inexpensive alternative. For a I 1
40-column display, simply connect the luma output plug of

the video output cable to the monitor's input (luma is essen- i j

tially the video signal stripped of its color information). A dia- I I
gram of the pins in the video output appears in your 128

System Guide. If you're not sure which plug is luma, go ahead j |

and experiment. You can't harm either device by momentarily I i
connecting the wrong plug to the monitor. Monochrome dis

plays are usually very sharp—more distinct than the best dis-) j

168

n

n

n

n

n

n

n

Peripherals

play produced by a composite monitor.

The third major type of monitor is the RGBI (Red/Green/

Blue/Intensity), in which a separate signal is provided for each

of the three primary video colors—red, green, and blue. The

128's 80-column display is in RGBI format. Since the nine-pin

RGBI connector at the rear of the 128 is much like that on an

IBM PC or PCjr, you should be able to use any color monitor

compatible with those machines. Besides providing an ex

tremely clear image, an RGBI monitor gives you 80 columns of

characters on the screen—ideal for word processing, spread

sheets, and so on. The Commodore 1902 monitor, designed

expressly for the 128, is a dual monitor: You can switch it

from 40-column composite mode to 80-column RGBI mode

simply by pressing a switch.

Though it requires making your own connector cable, you

can get an acceptable 80-column monochrome display on a

Commodore 1701 or 1702 monitor. The first step is to pur

chase a standard male nine-pin D connector (Radio Shack part

#276-1537 is acceptable), a length of shielded coaxial cable,

and an ordinary RCA phono plug. As shown on page 352 of

the Commodore 128 System Guide, pin 1 of the RGBI connector

is ground, and pin 7 is monochrome output. (Note that the di

agram on page 352 shows the pins as if you are inside the

computer looking out. The pins of the plug you buy should be

numbered; just look for pins 1 and 7.) To make an 80-column

cable, you need only connect pin 7 of the D connector to the

signal (inner) portion of the RCA plug and connect pin 1 to

the ground (outer) portion of the plug (via the coaxial cable, of

course). If you don't know how to do this yourself, any friend

with a soldering iron and some electronics experience should

be able to do it for you.

A homebrew cable of this type produces an excellent 80-

column image on any monochrome monitor that accepts com

posite output, and an acceptable display on a Commodore

1701 or 1702 monitor. To use it with a Commodore composite

monitor, turn the contrast down and plug the RCA connector

end of the cable into the VIDEO connector on the front or the

LUMA connector on the back. The ordinary light-on-dark dis

play will probably not be very readable: Press ESC-R to

switch to dark characters on a light background. Though it's

not quite RGBI quality, the image is definitely usable and

gives you access to 80 columns at a cost of only a few dollars.

169

Disk Commands
Todd Heimarck

170

U

U

u

Whether you have a 1541 disk drive or a new 1571, there are a
number of powerful disk commands available to you; also included I I
here are some useful hints and shortcuts. i—'

BASIC 7.0 is a vast improvement over previous Commodore

BASICs. The computer has its share of flashy new commands,

the ones that give you POKEless sprites, easy-to-program mu

sic and sound effects, and hi-res graphics. The glamour of

these powerful keywords can easily bewitch a new 128 owner.

Disk commands, on the other hand, are just disk com

mands. They're mundane. But if you learn about the new

ways of loading, saving, and handling files, you'll save a lot of

time, time that could be spent programming—or playing with

sprites, music, and hi-res graphics.

We'll concentrate on using the 128 disk commands, most

of which work equally well on the 1541 disk drive or the new

1571. But we'll also touch briefly on a few of the new 1571

DOS commands.

A Dozen Ways to Load

If you want to load a BASIC program, you have four choices:

1. LOAD "filename",8

2. DLOAD "filename"

3. RUN "filename"

4. Press SHIFT-RUN/STOP

For machine language or binary files:

5. LOAD "filename",*,! |
6. BLOAD "filename"

7. BLOAD "filename", Bbank, Paddress

8. BOOT "filename" [_

From within the machine language monitor:

9. L "filename",S j I
10. L "filename",8,address '—'

LJ

U

n

n

n

n

n

n

n

n

n

Peripherals

Finally, there are two ways to start up autoboot programs:

11. BOOT

12. Turn on or reset the computer with an autoboot disk in

the drive.

Loading BASIC Programs

As in BASIC 2.0, the LOAD command defaults to tape, so you

must include the device number when loading from disk. But

LOAD should never be necessary when DLOAD and RUN are

available.

DLOAD is a new command; the D stands for "Disk/' and

it defaults to drive 0, device 8. If you own a dual drive, you

can add a comma and either DO or Dl to pick a drive for load

ing. Unfortunately, 128 owners may never see the 1572 dual

drive; as of this writing, Commodore has apparently decided

not to manufacture it. You can still add single drives to your

system, though. To access a second or third drive, follow

DLOAD with a comma and U9, U10, and so on. The current

device number of the 1571 can be selected by flipping

switches on the back. To change to device 9, for example,

make sure it's turned off and flip down the switch nearest to

the cords. This is much simpler than what's required to mod

ify a 1541, opening it up and cutting a solder trace.

The next command on the list, RUN, has been modified.

By itself, it still runs a program, but if you add a program

name, the program loads and runs. As with DLOAD and most

other disk commands, you can specify a drive number with D

or a device number with U after the program name.

In 64 mode, pressing SHIFT-RUN/STOP still loads and

runs the first program from tape. But in 128 mode, this com

bination loads and runs the first program on disk.

BLOADing Binary Files

A binary file is most often a machine language program, al

though there are several other possibilities: sprite shapes, re

defined characters, function key definitions, hi-res pictures, to

name just a few. With binary files it's usually important that

they load into a specific area of memory.

If you're familiar with the VIC or 64, you'll recognize

LOAD "filename",8,1- It loads a file back into the part of

memory from which it was saved.

171

u
Chapter 5

BLOAD does the same thing, but you don't have to in- '—
elude the 8 and the 1. BLOAD can also send a file to a differ

ent section of memory if you append a B (for Bank number) I

and a P (Position). With an unexpanded 128, the only two '—'
choices for the bank are 0 and 1. BASIC programs are stored

in bank 0, variables in bank 1. The position can be any mem- j I

ory location in the range 0-65535. '—'
BOOT "filename" loads a machine language program and

executes a SYS to the starting address. It's the machine lan

guage equivalent of RUN "Rename" for BASIC programs.
You can also load from within the machine language

monitor with the L command. After the filename, you must

include a comma and an 8 (for device 8, the disk drive). If you

wish to relocate the program to a different section of memory,

you can include the new address as well.

Autoboot Sectors

When you first turn on a 128, it checks to see whether a disk

drive is attached and turned on. If so, it tries to read track 1,

sector 0 into memory (the 256 bytes of the boot sector are

read into locations $0B00-$0BFF). If the letters CBM are found

at the beginning of that disk sector, the autoboot sequence

begins.

You can see how this works by following this power-on

sequence:

1. Turn on your TV/monitor and disk drive, but not the 128.

2. Insert the CP/M disk that came with the 128 into the 1541

or 1571.

3. Turn on the 128.

The CP/M disk has an autoboot sector; it's designed to

load and run CP/M automatically. An alternative to resetting

the computer is to enter BOOT without a filename.] {
Autoboot sectors aren't limited to CP/M. It's possible to '—'

create disks that automatically load and run a BASIC or an ML

program. To create such a disk, load and run the AUTOBOOT j I
MAKER program on the disk that comes with the 1571. '—'

The first three bytes of track 1, sector 0 (the characters C,

B, and M) are followed by the low byte of the load address, j
the high byte, the bank number for the load, and the number '—'
of sequential disk sectors to be loaded. These four bytes aren't

important when you're autobooting BASIC programs, so they j I

172

u

n

n

n

n

n

n

n

n

n

n
f I

Peripherals

should usually be zeros. Starting at the eighth byte, you put

the disk name (for the BOOTING message), and end with a

zero. Next is the name of the program you wanted to load,

again terminated by a zero. Finally, there's machine language

which will be called after the load.

Chained Programs

Commodore computers have always had problems with chain

ing, the process of loading and running one program from

within another. The difficulties stemmed from the way vari

ables were stored in memory in previous Commodores: The

beginning of variable storage immediately followed the end of

the BASIC program.

Chaining is a snap on the 128. Since the program is kept

separate from variables, you don't need to worry about pro

gram length. To load and run another program, just follow

these rules:

1. If you want to keep the variables from the first program,

use DLOAD. The second program loads and runs. All vari

able values are retained.

2. If you want to clear the variables, use RUN "filename",

where filename is the name of the second program.

3. To load a binary file, use either BLOAD "filename" or BOOT

"filename".

A Shortcut

There's a quick and convenient way to DLOAD or RUN a pro

gram if you save it a certain way. Include this line at the be

ginning of the program you're working on:

1 REM DSAVE "01PROGRAM-

NAME {SHIFT-SPACE}:

The {SHIFT-SPACE} means hold down SHIFT and press

the space bar. Play with the spacing of the line so that press

ing TAB once puts the cursor in front of DSAVE and pressing

it twice lands the cursor on the 1 in front of the program

name. When you want to do a safety save of an incomplete

program, LIST 1 and TAB twice. Change version number 01 to

02, and press RETURN. Now cursor up to the beginning of

the line and TAB once. Tap the ESC key (next to TAB) and

then press P. This erases everything from the cursor to the be-

173

u
Chapter 5

——_^=__ u

ginning of the line (ESC-Q erases everything to the end of a I
line, and you can remember these two ESC commands if you

mind your p's and q's). Press RETURN, and your program is j j

saved to disk with the new version number. 1 I
Later, when you come back to work on the program, press

F3 to see the directory (if it goes by too fast, the Commodore | j

key slows it down; the NO SCROLL key temporarily pauses I 1
it). When you see the latest version, press RUN/STOP. Cursor

up to the program name and type DLOAD or RUN. Better yet,

press F2 (DLOAD) or F6 (RUN). The SHIFT-SPACE in line 1

puts a quotation mark between the program name and the co

lon. Without the colon, DLOAD or RUN would interpret PRG

as part of the command.

Another advantage to including the DSAVE on line 1 is

that when you send a program listing to your printer, the ver

sion number is right there at the top of the page.

Saving

Here are a few ways to save programs:

1. SAVE "filename",*

2. DSAVE "filename"

3. BSAVE "filename", Bbank, Pstart TO Fend

4. From the ML monitor: S "filename",8, start, end+1

The first two, SAVE and DSAVE, are just ordinary ways

to save ordinary BASIC programs. BSAVE and the monitor

save are a little more interesting. They save a section of mem

ory as a binary file. Note that when you're in the monitor, you

have to add 1 to the ending address of the memory being saved.

You might think these two methods would be most useful

for saving ML programs. They are good for that, of course, but

there are also several areas of memory you may want to BSAVE

for use in a BASIC program: i /

$0E00-$0FFF Sprite definitions '—'
$1000-$ 1OFF Ten function key definitions

$1COO-$3FFF Hi-res screen

The addresses are listed in hexadecimal. To convert to

decimal, use the DEC function, PRINT DEC("0E00"), for

example.

If you create several sprites with SPRDEF for a game, you

can BSAVE the sprite area to disk. In the game, you would

174

n

n

n

n

n

n

n

n

Peripherals

then BLOAD them back into memory. This works a lot faster

than POKEing them into memory or reading a sequential file,

especially if you're using a 1571.

In case you're wondering about the reference above to ten

function keys, yes, there are ten redefinable keys. There are

the eight you can define with the KEY command (labeled

F1-F8), but also SHIFT-RUN/STOP and HELP. If you go into

the monitor and do a memory display of 1000-1 OFF, you can

see the ten key definitions. The first ten bytes in this area list

the length of each function key. The rest are the actual charac

ters that print when you press one of them. The number 13 is

ASCII for a carriage return, the equivalent of pressing the RE

TURN key. After redefining the keys, you can BSAVE their

new values. To retrieve the previous key definitions, use

BLOAD.

Handling Sequential Files

DOPEN and DCLOSE are new ways of establishing and

breaking connections with a sequential file. There's not much

to say about them; if you already know how to OPEN and

CLOSE sequential files, you'll catch on quickly. The difference

in syntax is illustrated below:

OPEN 3,8A,"fHename,S,Vf"

DOFEN#3,"filename",W

Note that DOPEN doesn't need as much information as

OPEN. OPEN is a general-purpose command; it can set up a

logical file to a disk file, a tape file, a printer, a modem, and so

on. DOPEN, on the other hand, is for disk files only. So

OPEN needs the device number and disk channel (,8,4), but

DOPEN doesn't. The S after the filename indicates that a se

quential file will be opened. Since DOPEN defaults to sequen

tial files, it too is unnecessary. Also, note that the W for Write

is outside the quotation marks in the second example.

APPEND is a variation on DOPEN. It opens an already

existing disk file for a write operation. Any information writ

ten to the sequential file is added to the end. Data at the be

ginning of the file is safe and unchanged.

There aren't any new ways of reading or writing files.

You still PRINT* to send data and either INPUT# or GET# to

read a file.

175

LJ
Chapters . .

Relative Files Are Much Easier

Being able to randomly access records in a file can sometimes » i

greatly speed up a program. With sequential files, you may | |
sometimes have to read through 50 records just to get to the

fifty-first. A relative file allows you to obtain the information , i

you need almost immediately. LJ

In BASIC 2.0, creating and maintaining a relative file re

quires sending a number of CHR$ codes. If you write pro

grams for relative files in 64 mode, you'll have to learn the

complexities of relative files. But not on the 128. In just a few

lines, you can open and write to a relative file. Let's say you

wanted 100 records with 20 characters in each record. Your

program to set up a file would look something like this:

10 DOPEN#3,"XYZFILE",L20

20 RECORD#3,100

30 PRINT#3,"LAST RECORD"

40 RECORD#3,100

50 CLOSE3

That's all there is to it. When DOPEN is followed by an L

and a number, it opens a relative file. The length of each

record is set by L20. Records can be from 1 to 254 bytes long.

Because the record length is stored in the directory, you need

to use the L parameter only when the file is first created.

RECORD* positions the pointer to the desired record (up

to 65535 can be accessed, depending on the record length).

You must include the logical file number and the record num

ber. A third number can be added if you want to start reading

or writing partway into the record. If this number is omitted,

you'll begin at the first byte of the record.

In line 30, we PRINT# to record number 100. Printing to

a previously nonexistent record forces the disk drive to create

that record and all previous records. Line 40 positions the i

pointer again to avoid a rare bug that sometimes corrupts files, L_
and then file 3 is closed.

Once the file is created, you can easily access records with

DOPEN and RECORD*. You PRINT# to write and either |
GET# or INPUT# to read records.

Utilities L
There are more new commands that help when you're pro

gramming. The F3 key is defined to print DIRECTORY. So, I I

176

PI

Peripherals

n

n

n

n

with the press of a single key, you can see what's on a disk.

Two very useful reserved variables are DS (short for Disk

Status) and DS$. The first returns the disk error number; the

second prints out the error message. If the red light on a 1541

starts flashing (the green light on a 1571), just enter PRINT

DS$ and you can see what went wrong. Consult your disk

drive manual for a complete list of error messages.

Within a program, DS is usually more helpful than DS$.

After a disk operation, add a line IF DS>19 THEN 500, where

line 500 is the beginning of an error-handling routine.

The variable DS will normally hold a zero if no errors oc

curred. But if DS is equal to 20 or more, something has gone

wrong. There are a few exceptions, though: Error 01 is not an

error; it's triggered after a SCRATCH operation. The error

message will be FILES SCRATCHED, followed by a comma

and the number of files that were scratched. Error 50

(RECORD NOT PRESENT) is no matter for concern if you've

just created or expanded a relative file. If you write to a previ

ously nonexistent record in a relative file, it's added to the

disk. The record was not present before the operation and

thus causes the error 50. Finally, when you first turn on or re

set a disk drive, you'll receive an error 73, which is simply an

announcement of which version of DOS is inside the drive.

Several other new commands make file management easier.

RENAME and SCRATCH are fairly straightforward. SCRATCH

is followed by a filename inside quotation marks. Pattern

matching, using wildcards like question marks or asterisks, is

available for those times when you want to scratch several

files with similar names. To change the name of a file, RE

NAME "ol&name" TO "newname". This syntax is certainly eas

ier to remember than OPEN 15,8,15, "R0:newname=oldname",

the required syntax on the VIC or 64.

COLLECT validates the disk. It's used mostly for cleaning

up the block allocation map (BAM) to get rid of improperly

closed files. These were formerly called "poison files," but the

1571 disk drive manual refers to them as "splat files." They're

marked by an asterisk in the directory, *PRG, for example.

DCLEAR initializes the disk; it's the same as sending "10"

to channel 15.

CONCAT combines the contents of two sequential files.

You can use it on program files, but the result won't be a

177

u
Chapter 5 , ,

merged program because the two zeros that mark the end of a

BASIC program get in the way.

Two disk commands designed primarily for dual drives 1 j
are COPY and BACKUP. The first copies a file from one drive '—'
to another. But you must use a dual drive—COPY won't work

with two single drives. It can also make a copy to the original j I
disk (if you want to rearrange a directory, for example). '—'
BACKUP copies a whole disk. It too requires a dual drive.

A Few Quirks

There are a few annoying features of the 128—not bugs, just

bothersome quirks.

The most serious of these is that SHIFT-RUN/STOP

loads and runs the first file on disk. A nice feature if that's

what you want, but sooner or later, while programming, you'll

accidentally press SHIFT-LOCK and RUN/STOP or the Com

modore key and RUN/STOP. When the disk drive starts spin

ning, you have only a few seconds to unlock the SHIFT-

LOCK key and press RUN/STOP to prevent the first program

from loading. If you fail to stop it, the program loads and runs

and you've lost any part of your other program that was not

saved. To avoid this situation, you may want to put a sequen

tial file at the beginning of a disk. If you accidentally type

SHIFT-RUN/STOP, the computer will try to load the sequen

tial file, but it won't work. The program you're working on

will be safe if this precaution is taken.

You can also accidentally save a program. The default val

ues for F7 and F3 are LIST and DIRECTORY. Very helpful

when you want to take a look at what's on a disk or what's in

a program. But in between these two keys is F5, which is de

fined as DSAVE. If you reach up to list a program and acci

dentally press F5 and F7, the computer will print DSAVE"LIST

and begin saving your program under that name.

VERIFY and DVERIFY don't always work as you would

expect. Each line of a BASIC program contains a memory

pointer to the beginning of the next line. When you allocate a

graphics area, the BASIC program is moved up by 9K, and all

the line links change. Line links that don't match will lead to , i

a false VERIFY ERROR. You can test this by entering a one- | j
line program and saving it to disk. Now type GRAPHIC1:

GRAPHICO to allocate a graphics area. List the program and

178

L1

n

n

n

n

n

n

n

Peripherals

use DVERIFY to check your save. You should see an error

message.

Something to remember when you're using disk com

mands is that variables must be enclosed in parentheses. The

following two examples show the right and wrong ways to

use variables:

Wrong RENAME H$ TO "FINALFINAL"

Correct RENAME (H$) TO "MOSTRECENT"

How Fast Is the 1571?

If you already own a 1541 drive, you can use it with a 128.

You don't need to buy a 1571, unless speed is important.

Here's how the two drives compare:

1541 1571

9K LOAD (hi-res screen) 27 seconds 4 seconds

Disk format 89 seconds 43 seconds

(one side) (two sides)

Quick format (no ID) 2.5 seconds 3.4 seconds

(one side) (two sides)

Going into 80 columns and using the FAST command to

double the speed of the microprocessor saves only a few

tenths of a second on disk operations. So the speed of the

computer is not a factor. The bottleneck is the speed at which

the data travels through the serial cable.

Note that formatting, which is handled completely within

the disk drive, is twice as fast for twice the disk capacity. This

suggests that writing operations are quicker on the 1571.

Even when you send the command to make the 1571 act

like a 1541, it's faster. A 1541 takes nearly a minute and a half

to format a disk. The 1571 in 1541 mode takes only one

minute and 12 seconds.

1—| The "act like a 1541" command is OPEN 15,8,15:

I I PRINT#15, "U0>M0". To reset to 1571 mode, PRINT#15,

"UO>M1" (these commands can be used in 64 mode as well).

While the 1571 is emulating the 1541, you can choose

which read/write head is used with PRINT#15, "U0>H0" or

PRINT#15, "UO>H1". By switching heads, you can format

nboth sides of a disk as if they were separate disks.

Another plus for the 1571 is its ability to read a variety of

CP/M formats. If you plan to do much with CP/M, the 1571

provides more flexibility. Even if you don't, it's faster and can

handle more data than the 1541.

179

n

Cataloger

Kevin Mykytyn

u

u

LJ
Organize your disk library by making it easy to find any program

on any disk. Included are options to print out a master directory | I

and alphabetically sort all filenames. '—»

After owning a computer and disk drive for a while, it doesn't

take long before you find yourself inundated by programs and

disks. No matter how well your disks are organized, you may

still find yourself loading several directories searching for that

one program. "Cataloger" offers a practical solution. It's a

straightforward, menu-based program that creates a master di

rectory for all your disk-based programs. Several extra features

make it especially useful.

Managing Hundreds of Files

Cataloger is written entirely in BASIC. As listed, it can handle

up to 2000 filenames in 128 mode. In 64 mode, the program

can handle only 800 filenames—if you want to use the pro

gram in 64 mode, you'll need to change the value of NR in

line 10 from 2000 to 800.

After you've typed in the program using "The Automatic

Proofreader," save a copy. To use it, type RUN. A menu of

nine choices is displayed:

1. CATALOG A SET OF DISKS

2. SEE ALL RLE NAMES

3. PRINT ALL FILE NAMES

4. SORT NAMES ALPHABETICALLY

5. CREATE A SEQUENTIAL FILE

6. CREATE A PROGRAM FILE

7. LOAD AN OLD FILE 1—'
8. DELETE A DISK

9. START NEW FILE

If you're using the program for the first time, choose op

tion 1, Catalog a Set of Disks. You'll then be asked for a disk

name up to 16 characters long. This should be the name on I I
the label of the disk you wish to catalog. Put the disk in the

drive and press RETURN. The directory of the disk is dis-

u
180

n

n

n

n

n

Peripherals

played on the screen and the filenames are entered into the

master directory. Next, you're asked whether you want to con

tinue or quit. If you have more disks to catalog, press any key.

Otherwise, type Q to go back to the main menu.

After entering all the disks you wish to catalog, you can

view the master directory. Option 2, See All File Names, dis

plays the master directory on the screen. You can also print it

out on any Commodore printer by using option 3. Make sure

the printer is turned on before you choose this option.

The filenames are stored in a format slightly different

from a standard disk directory. The filename is followed by

the number of blocks used, then the disk name.

Once you've viewed the directory, use option 5, Create a

Sequential File, to save it. Choose this option if you wish to

make changes later to the master directory.

Option 6 also saves your master directory to disk, but in

stead of creating a sequential file, it creates a program begin

ning at line 100. Whenever you wish to view the master

directory, you can load the program created.

Adding, Deleting; and Sorting

At some point, you'll want to add or delete disks from your

master directory. Options 7 and 8 are used for this purpose.

Option 7 is used to load any directory stored in sequential file

format (with option 5). After loading a file, you can choose

option 1, and all new filenames will be appended to the old

directory. Make sure you save your changes to disk when

you're through.

To delete a disk from the master directory, choose option

8. In order for this option to work correctly, the directory must

be unsorted. If you wish to have a sorted master directory on

disk, you should first save it unsorted.

The delete option removes all filenames from the disk

name specified. Therefore, it's important that all disks have a

unique name. If you've made changes to a disk and wish to

enter the changes in the master directory, use option 8 to de

lete that disk; then use option 1 to enter the newer disk

version.

You'll find it easier to locate a specific file if the master di

rectory has been sorted. Once the file has been saved in se

quential file format, use option 4 to sort the names.

181

u
Chapter 5

———= u

To delete the directory in memory and start a new direc- '—
tory, use option 9.

Program 5-1. Cataloger , j
For mistake-proof program entry, be sure to use "The Automatic Proofreader/' Appendix B.

GF 10 NR=2000:DIMB$(NR):IFPEEK(794)O74THEN30

FR 20 POKE53281,15:POKE53280,15:KB=198:RO=214:GOTO I
60

EJ 30 IFPEEK(794)<>189THEN50

KH 40 COLOR 0,16:COLOR 4,16:KB=208:RO=235:PRINTCHR

$(27)"M"zGOTO60

BA 50 RO=205:KB=239:POKE65301,241:POKE65305,241:PO

KE2025,255

RE 60 S$="{20 SPACES}":C=0:OPEN15,8,15:D$="

19 DOWN]11

GJ 70 PRINT"ICLRjlRVSilRED}16 SPACESJCHOOSE ONE OF

THE FOLLOWING{7 SPACES}{BLU}{OFF}"

AG 80 PRINTSPC(5)"{2 DOWN}1. CATALOG A SET OF DISK

S"

BK 90 PRINTSPC(5)"{DOWN}2. SEE ALL FILE NAMES"

JJ 100 PRINTSPC(5)"{DOWN}3. PRINT ALL FILE NAMES"

SP 110 PRINTSPC(5)"{DOWN}4. SORT NAMES ALPHABETICA

LLY"

KD 120 PRINTSPC(5)"{DOWN}5. CREATE A SEQUENTIAL FI

LE"

AR 130 PRINTSPC(5)"{DOWNj6. CREATE A PROGRAM FILE"

SX 140 PRINTSPC(5)"{DOWNJ7. LOAD AN OLD FILE"

SM 150 PRINTSPC(5)"{DOWN}8. DELETE A DISK"

QH 160 PRINTSPC(5)"{DOWN}9. START NEW FILE"

MP 170 PRINTSPC(12)"lRED}IDOWNJIRVSJ PRESS Q TO QU

ITlBLUHOFFj"

DD 180 POKEKB,0:WAITKB,1:GETA$:IFA$="Q"THENCLOSE15

:PRINT"{CLRJ":END

SP 190 IFA$<"1"ORA$>"9"THEN180

FS 200 ONVAL(A$)GOSUB210,510,520,640,730,740,850,9

40,1040:GOTO70

JK 210 F$="DISK":GOSUB1050:IFDN$="Q"THENRETURN
QR 220 PRINT"tCLRHRVSHRED}"SPC(20-LEN(DN$)/2)DN$

"12 DOWNilBLUj" I
CP 230 CLOSE2:OPEN2,8,0,"$":GOSUB390:IFA$="Q"THENR

ETURN

KG 240 X=4:NF=0:IFEXTHEN220 1 j
QK 250 B$(C)="":FL=-1:GOSUB310:X=2:GET#2,LN$ I 1
BJ 260 GET#2#HN$:NM=ASC(LN$+CHR$(0))+256*ASC(HN$+C

HR$(0)):PRINTSPC(5)NM; , ,

PF 270 GET#2#A$:IFA$=""THEN320

XD 280 IFA$=CHR$(34)THENFL=-FL

JJ 290 IFFL=1THENB$(C)=B$(C)+A$

RC 300 PRINTA$;:GOTO270

182

u

n

n

n

n

n

n

n

Peripherals

ER 310 FORA=1TOX:GET#2,A$:NEXT:RETURN

EQ 320 IFB$(C)=""THENCLOSE2:GOSUB480:IFA$<>"Q"THEN
210

AC 330 IFB$(C)=""THENRETURN

XQ 340 PRINT:NM$=STR$(NM)

FA 350 B$(C)=RIGHT$(B$(C),LEN(B$(C))-1)

SC 360 B$(C)=B$(C)+LEFT$(S$,19-LEN(B$(C))-LEN(NM$)
)+NM$+"l2 SPACES}"+DN$

AR 370 IFNF=1THENC=C+1:IFC=NR THEN1080

BS 380 NF=1:GOTO250

DQ 390 RF=0:EX=0:A$="H:INPUT#15,EN,M$,T,S

RC 400 IFEN<20THENRETURN

KQ 410 PRINT"tHOME}"D$:FORA=lTO5:PRINT"l35 SPACES}
" :NEXT

HB 420 EX=1:PRINT:PRINT"{HOME}{BLU}"D$EN;M$;T;S:IF
ENO63THEN470

RD 430 RF=1:PRINT"{DOWN} DO YOU WANT TO REPLACE TH

E FILE? (Y/N)11

AB 440 GETA$:IFA$=MNMTHENRETURN
CM 450 IFA$o"Y"THEN440

JA 460 EX=0:PRINT#15,"SM+DN$:RETURN

EK 470 CLOSE2

RS 480 PRINT:PRINT"IDOWNJtBLU}I2 SPACES}PRESS ANY

I SPACE} KEY TO CONTINUE (RVS}Q TO QUIT I OFF}11
:POKEKB,0:WAITKB,1

PR 490 GETA$:RETURN

GP 500 PRINT:PRINT"{DOWN}{BLU}{6 SPACESjPRESS ANY

iSPACE}KEY TO CONTINUE":POKEKB,0:WAITKB,1:R
ETURN

BG 510 DV=3:SA=0:SP=1:DN$="":NM=0:GOTO550

ER 520 PRINT"{CLR}"D$"PRESS [M] TO RETURN TO THE M

ENU ANY{5 SPACES}OTHER KEY TO PRINT"

BF 530 POKEKB,0:WAITKB,1:GETA$:IFA$="M"THEN70

JP 540 DV=4:SP=20:SA=0:DN$="":NM=0

MB 550 IFC<=0THENPRINT"{CLR}"D$SPC(10)"{BLU}NO FIL

ES IN MEMORY":GOTO500

AX 560 IFNMTHENGOSUB1050:DN$="0:"+DN$+",S,W"

QR 570 CLOSE2:OPEN2,DV,SA,DN$:GOSUB390:IFA$="Q"THE

NRETURN

MJ 580 IFRFANDEX=0THEN570

HX 590 IFRFTHEN560

QD 600 IFEXTHEN570

SP 610 PRINT"tCLR}lDOWN}ll:FORA=0TOC:PRINT#2,SPC(SP

)B$(A)

FJ 620 IFPEEK(RO)=21THENGOSUB500:PRINT"lCLR}

13 DOWN}"

SS 630 NEXT:CLOSE2:GOSUB500:RETURN

GX 640 IFC<=0THENPRINT"tCLR}"D$SPC(10)"tBLU}NO FIL

ES IN MEMORY":GOTO500

183

Chapter 5

u

u

MG 650 D=C-1:M=D:PRINTIIICLR}"D$SPC(15) "SORTING
ii

AB 660 M=INT(M/2):IFM=0THENRETURN

EJ 670 J=0:K=D-M

JS 680 I=J

RK 690 L=I+M

MR 700 IFB$(I)>B$(L)THENT$=B$(I):B$(I)=B$(L):B$(L)

=T$:I=I-M:IFI>0THEN690

CQ 710 J=J+1:IFJ>KTHEN660

PF 720 GOTO680

PS 730 DV=8:SP=5:SA=2:F$="FILE":NM=1:DN$=DN$+",S,W

":GOTO550

SX 740 GOSUB1050:DN$ = "0:II+DN$:IFDN$ ="0:Q"THENRETUR

N

BS 750 GLOSE2:OPEN2,8,2,DN$+",P,W":GOSUB390:IFA$=M

Q"THENRETURN

KF 760 IFRFANDEX=0THEN750

GJ 770 IFRFTHEN740

KX 780 IFEXTHEN750

MK 790 PRINT#2,CHR$(1)CHR$(8);:FORA=0TOC-1

FG 800 PRINT#2,CHR$(4)CHR$(4);:LN=100+A

BE 810 HB=INT(LN/256):LB=LN-HB*256:PRINT#2,CHR$(LB

)CHR$(HB);

AJ 820 PRINT#2,CHR$(34)B$(A)CHR$(34)CHR$(0);

QG 830 NEXTA:PRINT#2,CHR$(0)CHR$(0);

RJ 840 CLOSE2:RETURN

QH 850 F$="FILE11:GOSUB1050:IFDN$ = IIQI1THENRETURN

EC 860 OPEN2,8,2,"0:"+DN$+",S,R":GOSUB390:IFEXTHEN

850

XE 870 FL=-1:B$(C)="":FORA=1TO5:GET#2,A$:NEXT

SP 880 GET#2,A$:IFA$=CHR$(13)THEN910

BG 890 B$(C)=B$(C)+A$

QB 900 GOTO880

GP 910 IFSTTHENCLOSE2:RETURN

GE 920 C=C+1:IFC=NR THEN1080

KD 930 GOTO870

QM 940 F$="DISK":GOSUB1050:IFDN$="Q"THENRETURN

DP 950 PRINT"ICLR}"D$SPC(14)"DELETING":EN=0

KD 960 FL=0:FORA=0TOC-1

XH 970 IFMID$(B$(A),22,16)=DN$ANDFL=0THENFL=1:SN=A

RE 980 IFMID$(B$(A),22,16)<>DN$ANDFL=1THENEN=A:A=C

BP 990 NEXT:IFFL=0THENPRINT"[DOWN]"SPC(12)"FILE NO

T FOUND":GOTO1030

PE 1000 IFEN=0THENEN=C+1:GOTO1020

GS 1010 FORA=SNTOC-(EN-SN):B$(A)=B$(EN+A-SN):NEXT

QG 1020 C=C-(EN-SN):PRINT"IDOWN}"SPC(14)"DELETED"

MH 1030 GOSUB500:C=C-(C<0):RETURN

FF 1040 C=0:RETURN

BK 1050 PRINT"ICLR}14 DOWN] PUT DISK IN DRIVE AND

tSPACE}ENTER "F$" NAME"

184

L

U

L1

Peripherals

» I

1 I XG 1060 PRINT" (UP TO 16 CHARACTERS) (RVSjQ TO QUI
TlOFFj"

nRH 1070 POKE19,1 .-INPUT "{DOWN] I RED} " ;DN$:POKE19 ,0 :

DN$=LEFT$(DN$,16):RETURN

HG 1080 PRINT"ICLR}"D$"IRED}THE MASTER DIRECTORY I

S FULL.12 SPACES}SAVE THE PRESENT FILE AND

n QR 1090 PRINT"START A NEW DIRECTORY•tBLU}":GOSUB50

0:RETURN

n

n

n

n
185

n

Autoboot

186

u

u

u
Steve Stiglich

These four programs allow you to create boot disks that automati

cally load and run a program when your 128 is turned on. You I I

don't even have to type LOAD—its all done for you. The '—I
"autorun" disks can boot programs for either 128 mode or 64

mode from the 1541 or 1571 drive.

For many Commodore users, the idea of a boot disk is brand-

new. But if you've done much work with an Apple, IBM, or

Atari, you know how convenient it is to insert a disk, turn on

the system, and see a program automatically load and run.

When a Commodore 128 is turned on (or when it's reset with

SYS 65341), it checks for the presence of a disk drive. If the

drive is turned on and contains a disk, the 128 checks track 1,

sector 0, for an autoboot sector. Upon finding one, it follows

the instructions there for loading and running a program.

The programs presented here allow you to write an

autoboot sector to any disk. In addition, you can create a disk

that makes the 128 go into 64 mode and automatically load

and run your favorite program for the 64. You could make a

SpeedScript boot disk, for example. All you'd have to do is

turn on the drive, insert the disk, and power on the 128.

All four programs are written in BASIC, although some

contain short machine language routines inside DATA state

ments. Program 5-2 writes an autoboot sector to a disk. The

boot sector attempts to load and run a 128 program called

"HI", so you should have a file by that name on the same

disk. Program 5-3 is a menu program that gives you five

choices. If you want this to be your boot program, save it to

disk under the name "HI". Program 5-4 creates a machine

language autorun 64 program file that causes another 64 pro

gram to load and run automatically after going into 64 mode.

Program 5-5 uses the dynamic keyboard technique to load and

run a BASIC or machine language program for the 64.

u

n

n

n

n

n

Peripherals

n

n

n

n

H

Special Typing Instructions

Programs 5-2, 5-3, and 5-4 should be typed in and saved from

128 mode. You must not have a graphics area allocated when

these programs are saved. If you've been working with hi-res

graphics, enter GRAPHIC CLR before saving the programs.

The name given to Program 5-3 should be "HI" if you want

the menu to come up automatically when you turn on the sys

tem (if you plan to boot any other 128 program, you can skip

Program 5-3). It's of no importance which names you use for

Program 5-2 or Program 5-4.

Program 5-5 is written for 64 mode, so you should enter

GO 64 before beginning to type it in. This program must be

saved from 64 mode. Be very careful with lines 10 and 20; type

them exactly as listed. Save this program (from 64 mode) un

der the name "64LOADER". It should be on the same disk as

Programs 5-3 and 5-4.

Creating an Autoboot Sector for 128 Programs

Program 5-2, "Create 128 Autoboot Sector," is fairly straight

forward. It writes an autoboot sector to track 1, sector 0, of a

disk. Load Program 5-2, insert a disk into your 1541 or 1571,

and type RUN.

It first prompts you for a screen color. Enter a number in

the range 0-15. If you want the screen to be white, for ex

ample, enter 1. Next, you're asked for a border color. The de

fault values (if you don't answer the questions) are a blue

screen with a light gray border. The screen and border will

take on these colors when the disk is booted.

When you've set the screen and border colors, Program 5-

2 writes the autoboot sector to disk. If you reset your 128 by

turning it off and then on, it will read the sector and try to

load a file called "HI". The HI file can be any valid program

saved from 128 mode. It will load and automatically run. If
you should want to load and run a machine language pro

gram, use these two lines, substituting the filename and SYS

address of your ML (machine language) program:

10 BLOAD "filename?'

20 SYS xxxxx

DSAVE this short program as "HI", and when it boots, it

will load the ML and start it running.

187

u
Chapter 5

Using the Menu from Program 5-3 I I
If you load and run Program 5-3, you'll see a menu with five

options: I I

64 MODE—BASIC '—'
64 MODE—RUN FILE

BOOT CP/M DISK I
128 MODE—BASIC '—

128 MODE—RUN FILE

Use the cursor keys to select one of the options, then

press RETURN. If you should choose 128 MODE—BASIC, the

program NEWs itself and exits to BASIC; 128 MODE—RUN

FILE prompts you for the program name and then loads and

runs that file.

If you opt for CP/M, it asks you to insert a CP/M disk.

After doing so, press RETURN, and CP/M will boot.

Choose 64 MODE—BASIC to go directly to 64 mode

without loading a program. The second choice, 64 MODE—

RUN FILE, leads into several questions. First, you're asked

DOES FILE CONTAIN AUTORUN CODE (Y/N)? If you've

used Program 5-4 to create an autorun file (see below), you

should answer yes and provide a filename. Program 5-3 then

BLOADs the autorun file and executes the GO 64 command.

If you answer no to the prompt, then there must be a

copy of the "AUTORUN.C64" file on the disk (see the de

scription of Program 5-4 below for instructions on how to cre

ate this file). The program loads AUTORUN.C64, and inserts

the name of your program. Next, you're asked IS THIS A

SELF-STARTING FILE (Y/N)? If the 64 program to be loaded

is in BASIC, answer yes. If not, you'll have to provide a SYS

address. Finally, the 128 goes into 64 mode and runs the pro

gram you've requested.

A Memory-Based Cartridge for the 64? | [
We've already seen that the 128 checks for an autoboot disk

sector when power is first turned on. But how does this pro- , j

gram go into 64 mode and, in the process, cause the 64 to | |
load and run a program? The answer can be found in the 64's

own power-up routine. When you turn on a 64 (or GO 64 on » .

the 128), the computer doesn't access the disk drive, but it | |
does look for a cartridge. If it finds a certain sequence of letters

and numbers at location 32768 (hexadecimal $8000), it does

188

n

n

n

n

n

n

n

H

n

Peripherals

not enable BASIC, but instead surrenders control to the pro

gram in the cartridge.

All three modes of the 128 (128, 64, and CP/M) share

certain areas of memory. So, if we write a cartridge emulator,

it can be BLOADed into location 32768 (in 128 mode). With

that special program in place, the GO 64 command makes the

computer turn into a 64 and begin the reset routine. As 64

mode is initializing itself, it finds something that looks like a

cartridge at 32768. The memory-based cartridge tells it to load
and run a program from disk.

In order to get this to work, we have to create the car

tridge emulator with Programs 5-4 and 5-5.

First, enter Program 5-5 (remember, this must be typed and

saved from 64 mode). Let's say you call it "64LOADER". Now

turn the 128 off and back on, and enter Program 5-4 (from
128 mode). Now we can begin.

Run Program 5-4. Answer the first prompt with

"64LOADER" (which must be on the disk currently in the

drive). The disk drive light will turn on while the program is

read into memory. When it's finished, it will ask for a file

name. Answer "AUTORUN.C64". It will create the generic

cartridge emulator used by Program 5-3. If this emulator is on

a disk, Program 5-3 will be able to put the 128 into 64 mode

and run any BASIC or ML program.

You can also generate a cartridge emulator for running a

specific program. Let's say you want to create an autorun file

for a game called SPACEGAME (saved as a BASIC program

from 64 mode). Load and run Program 5-4. When it asks for

the program name, answer "SPACEGAME". After reading the

file, it will ask for a filename. Call it something like

"SPACE.BOOT".

With a specific boot program in place, you can go into 64

mode and run it with the following sequence of events:

1. Insert the disk in the drive and turn on your 128.

2. The boot sector (which was created by Program 5-2) is

loaded. It, in turn, loads the "HI" program (Program 5-3,

saved under the name HI) from the disk.

3. Program 5-3 presents you with the menu of choices. Cursor

down to 64 MODE—RUN FILE and press RETURN.

4. Answer yes to DOES FILE CONTAIN AUTORUN CODE?

and enter SPACE.BOOT as the name of the program. The

computer then goes into 64 mode. The boot program, acting

189

LJ
Chapter 5

like a cartridge, then loads and runs the 64 program J—'
SPACEGAME.

Bypassing the Menu

There's one final option. Let's say you want to set up a boot i >

disk that goes into 64 mode and loads (and runs) SpeedScript. | |
You don't need Program 5-3, because you don't want the

menu to appear—you just want SpeedScript to load and run.

Follow these steps:

1. Load SpeedScript (from 64 mode) and save it to a freshly

formatted disk.

2. Load Program 5-5 (again from 64 mode) and change lines

10-20. The first line should say A$="SPEEDSCRIPT" and

line 20 should read B$="RUN:". (If this were a machine

language program stored at 49152, you would substitute

SYS 49152 in line 20.) Save this under the name

"SSLOADER" as the second program on the disk containing

SpeedScript.

3. Go into 128 mode by pressing the reset switch, or turning it

off and then back on. Load Program 5-4 and insert the disk

containing the two programs. Run Program 5-4 and answer

SSLOADER for the program name. Then answer SS.BOOT

for the name of the boot program. There are now three pro

grams on the disk.

4. While still in 128 mode, type NEW. Enter this one-line

program:

10 BLOAD"SS.BOOT":GO 64

Save this to the disk as "HI"—the fourth program on the

disk.

5. Finally, load Program 5-2. Switch disks, inserting the dedi

cated SpeedScript disk. Run the program, and an autoboot

sector will be created. Now you have a disk which contains

four programs and a boot sector.

Turn everything off. Turn on the disk drive and insert the

SpeedScript disk. Turn on the 128. You don't need to do any- |
thing else. The boot sector loads the program called "HI". It

loads the cartridge emulator and goes into 64 mode. The code i l

at 32768 makes the 64 think a cartridge is in place, so I |
SSLOADER is run. It, in turn, loads and runs SpeedScript.

It may seem like a lot of work, but the results are worth i—i

LJ

190

u

n
Peripherals

n

n

n

n

n

n

n

n

it. To load and run a 64 program, just turn on your 128. Ev

erything is handled by the boot sector (and the related files).

Program 5-2. Create 128 Autoboot Sector
For mistake-proof program entry, be sure to use "The Automatic Proofreader/' Appendix B.

QF 10 REM *** PROGRAM CREATES A C-128 BOOT DISK TO

LOAD & RUN 'HI1 FILE ***

BD 20 DATA67,66,77,0,0,0,0,0,0,120,32,132,255,234,
234,234,234,234,169,195

HD 30 DATA141,238,255,169,8,141,239,255,169,0,141,

240,255,169,15,141,32,208,169,6

RQ 40 DATA141,33,208,165,213,201,72,208,1,96,169,7
2,141,233,7,169,73,141,234,7,169

QA 50 DATA1,162,8,160,255,32,186,255,32,192,255,16

9,2,162,233,160,7

HR 60 DATA32,189,255,169,0,32,213,255,142,16,18,14
0,17,18,32,231,255,169,4,133,208

EQ 70 DATA169,82,141,74,3,169,85,141,75,3,169,78,1
41,76,3,169,13,141,77,3,96,-1

DS 80 DIMA(121)

CA 90 FORMX=1TO121:READS:X=X+S:IFS=-1THEN110
EP 100 A(MX)=S:NEXT

CF 110 IFXO14733THENPRINT"ERROR IN DATA STATEMENT

S.":STOP

GA 120 PRINT"lCLR}g6§12 DOWNjENTER YOUR PREFERRED
{SPACE]COLOR CHOICES"

SF 130 PRINT"{2 DOWN}# OF SCREEN COLOR";:INPUTA(40

):POK$E53281,A(40)

EA 140 PRINT"lDOWN}# OF BORDER COLOR";:INPUTA(35):

POKE53280,A(35)

KD 150 PRINT"(DOWN)ARE THESE ACCEPTABLE? (Y/N)";:I

NPUTA$:IFA$O"Y"THEN120

DH 160 POKE53280,15:POKE53281,6:PRINT"{CLR]{WHT}"
DR 170 PRINT"{2 DOWNJIRVS}INSERT A FORMATTED DISK

ISPACEJTO RECEIVE DATA "

QF 180 PRINT"IRVS}110 SPACES}THEN PRESS [RETURN]

111 SPACES]"
FA 190 GETR$:IFR$<>CHR$(13)THEN190

FG 200 PRINT"{2 DOWN]WORKING...":OPEN15,8,15:OPEN5
,8,5,"#":PRINT#15,"B-P:5,0"

JM 210 FORD=1TOMX:PRINT#5,CHR$(A(D));:NEXTD:PRINT#
5

GH 220 PRINT*15,"M-W:"CHR$(0)CHR$(5);1;CHR$(67)

KK 230 PRINT#15,"B-P:5,0":PRINT*15,"U2:5,0,1,0":CL

OSE5:CLOSE15

FH 240 OPEN15,8,15:INPUT*15,A$,B$,C$,D$:CLOSE15
MC 250 IFA$="00"THENPRINT"BOOT TRACK WRITTEN":END

MB 260 PRINT"IRVS}AN ERROR HAS OCCURRED.":PRINTA$,
B$,C$,D$

GH 270 END

191

u
Chapter 5

Program 5-3. Menu I—I
Note: Save as "HI" if you want the menu to boot.
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix B. ,

HQ 10 REM *** AUTO-BOOT "HI" PROGRAM *** I 1
HP 20 PRINT"lCLR}{2 DOWN]"TAB(8)"§5§

CS 30 PRINTTAB(11)"{YEL}C-128 SYSTEM MENU&51":PRIN I

TTAB(8)" B6§" ' '
XS 40 DATA64 MODE - BASIC,64 MODE - RUN FILE,BOOT

ISPACEjCP/M DISK,128 MODE - BASIC

FF 50 DATA128 MODE - RUN FILE

MH 60 MX=5:FORD=1TOMX:READA$(D):NEXT

JE 70 FORD=lTOMX:CHAR0,20-(LEN(A$(D))/2),5+D*2,A$(

D),0:NEXT

FS 80 NW=1:CHAR0,0,20, "USE CURSOR KEYS TO MOVE-RET

URN TO SELECT"

EQ 90 PRINT"lWHT}":CHAR0,20-(LEN(A$(NW))/2),5+NW*2

,A$(NW),l:PRINT"i6§"

HP 100 GETR$:IFR$="lDOWNj"THEN140

HB 110 IFR$="lUPj"THEN170

HQ 120 IFR$=CHR$(13)THEN200

EJ 130 GOTO100

DP 140 CHAR0,20-(LEN(A$(NW))/2),5+NW*2,A$(NW),0

AE 150 NW=NW+1:IFNW=MX+1THENNW=1

BA 160 GOTO90

HF 170 CHAR0,20-(LEN(A$(NW))/2),5+NW*2,A$(NW),0

CG 180 NW=NW-1 :IFNW=.THENNW=MX

RD 190 GOTO90

QF 200 ONNWGOTO220,290,230,280,260

PR 210 GOTO100

SF 220 GO64

SH 230 PRINT"ICLR}{DOWN]INSERT CP/M SYSTEM DISK, P

RESS [RETURN]"

BH 240 GETR$:IFR$<>CHR$(13)THEN240

HR 250 BOOT

JA 260 PRINT"ICLR}{DOWNJFILENAME";:INPUTF$

EC 270 RUN(F$)

RF 280 PRINT"ICLR}{DOWN}THIS DISK CONTAINS:I DOWNj"

:DIRECTORY:NEW j
MC 290 PRINT"{CLR}DOES FILE CONTAIN AUTORUN CODE (' 1

Y/N)";

PK 300 INPUTF$:IFF$<>"Y"ANDF$<>IIN"THEN290 i |

CM 310 IFF$="Y"THEN440 |
DQ 320 BLOAD"AUTORUN.C64"

PA 330 PRINT"ICLRJIDOWNJFILE NAME";:INPUTF$

KA 340 IF LEN(F$)=.ORLEN(F$)>16THEN290 I
ER 350 FORD=1TOLEN(F$):POKE32888+D,ASC(MID$(F$,D,1 I 1

)):NEXT:POKE32888+D,42

ED 360 PRINT"IS THIS A SELF STARTING FILE? (Y/N)" r i

U
192

u

n

n

n

n

n

n

n

n

n

Peripherals

SG 370 GETKEYA?

RS 380 IF A$oMN"THEN 430

MH 390 PRINT"IDOWN}ENTER FILE START ADDRESS";:INPU
TF$

AJ 400 IFLEN(F$)=.ORLEN(F$)>5THEN390
HQ 410 F$="SYS"+F$

SK 420 FORD=1TOLEN(F$):POKE32915+D,ASC(MID$(F$,D,1
)):NEXT

HC 430 GO64

PP 440 PRINT"I2 DOWNjFILE NAME";:INPUTF$

DQ 450 BLOAD(F$)

PF 460 GO64

Program 5-4. Create 64 Autorun Program
For mistake-proof program entry, be sure to use "The Automatic Proofreader/' Appendix B.

CK 10 REM ** CREATES AN AUTO RUN FILE WHEN YOU ENT

ER 64 MODE **

ED 20 REM ** MUST BE RUN IN 128 MODE. THE PBASIC P

ROGRAM MUST BE BASIC 2.0 I **

JA 30 DATA15,128,9,128,195,194,205,56,48,104,168,1
04,170

AK 40 DATA104,64,162,255,120,154,216,142,22,208,32
,163,253,32,80

DP 50 DATA253,32,21,253,32,24,229,88,32,83,228,32,
191,227,32

JX 60 DATA34,228,162,251,154,169,113,133,43,169,12
8,133,44,234,234

DQ 70 DATA169,0,133,45,169,0,133,46

JK 80 DATA162,160,134,56,169

GE 90 DATA82,141,119,2,169,213,141,120,2,169,13,14

1,121,2,169

DQ 100 DATA3,133,198,162,128,138,76,116,164,0,0,0,

0,0,0,51,47

FD 110 DATA49,53,22,49,46,49,0,0,0,0

GR 120 PRINTCHR$(147):DN$=CHR$(17)

KA 130 PRINTDN$"ENTER FILENAME TO AUTORUN";:INPUTF

1$
SF 140 OPEN2,8,2,F1$+",P,R":GOSUB300:CLOSE2
HH 150 PRINTCHR$(147)DN$DN$"POKE45,113:POKE46,128:

DLOAD"CHR$(34)Fl$CHR$(34)

PJ 160 PRINTDNDNDNDN"PP=FRE(0):P0KE45,l:P0KE46

,28:GOTO170tHOME j";

XJ 165 POKE208,2:POKE842,13:POKE843,13:END

XA 170 PRINTCHR$(147)CHR$(17)"ENTER AUTORUN FILENA

ME: ";:INPUTF$

ER 180 PRINTCHR$(17)"["F$"] FILESIZE:"118+(32 397-P

P)"BYTES"

QD 190 XX=(32397-PP)+32768+118

193

LJ
Chapters , ,

MQ 200 BANK0:RESTORE:FORD=.TO112:READS:POKE32768+D ' '
,S:NEXT

GR 210 HI=INT(XX/256):LO=256*(XX/256-INT(XX/256)) . j

QC 220 POKE32827,LO:POKE32831,HI j
CC 230 BSAVE(F$),B0,P32768TOP(XX)

BQ 240 GOSUB300

MX 250 PRINTCHR$(17)MAUT0RUN FILE CREATED." | j

AK 260 PRINTCHR$(17)"CREATE ANOTHER? (Y/N)" I !
FX 270 GETKEYA$:IFA$="Y"THENRUN

XR 280 IF A$="N"THENPRINTCHR$(147):NEW

DH 290 GOTO270

KE 300 CLOSE15:OPEN15,8,15:INPUT#15,A$,B$:IFA$<>"0

0MTHENPRINT"IDOWN}(RIGHT}IRVS}ERROR :"B$:EN

D

PK 310 RETURN

Program 5-5. 64 Loader Program
Enter and save from 64 mode.

For mistake-proof program entry, be sure to use "The Automatic Proofreader/' Appendix B.

KR 10 A$= " "

DQ 20 B$="RUN:...•"

BS 30 PRINT"ICLR}{BLU}12 DOWNJPO43,1:PO44,8:NEW":P

RINT"12 DOWN]LOAD"CHR§(34)ACHR(34)",8,1

EG 40 PRINT"{4 DOWNj?CHR$(5):"B$"(HOMEj";

SX 50 POKE808,237:POKE809,246

MG 60 POKE198#3:POKE631,13:POKE632,13:POKE633,13:E

ND

D

U

U

U
194

G

o

a

a

n

n

n

n

n

n

Appendix A
How to Type In Programs

In order to make it as easy as possible to enter the programs

in this book, we've included two program entry aids written in

BASIC: "The Automatic Proofreader" and "MIX" To assist

you in understanding how to enter these programs, COM

PUTE! has established the following listing conventions.

Generally, BASIC program listings like the one for MLX

will contain words within braces which spell out any special

characters: {DOWN} means to press the cursor-down key; {5

SPACES} means to press the space bar five times.

To indicate that a key should be shifted (press the key

while holding down the SHIFT key), the key will be under

lined in our listings. For example, S means to type the S key

while holding down the SHIFT key. This would appear on

your screen as a heart symbol. If you find an underlined key

enclosed in braces, for example, {10 N}, you should type the

key as many times as indicated. In this case, you would enter

ten shifted N's.

If a key is enclosed in special brackets, f< >\, you should

hold down the Commodore key while pressing the key inside

the special brackets. (The Commodore key is the key in the

lower left corner of the keyboard.) Again, if the key is pre

ceded by a number, you should press the key as many times

as indicated; [<9@>] means type Commodore-@ nine times.

Refer to Figure A-l when entering cursor and color con

trol keys:

197

Appendix A

Figure A-1. Keyboard Conventions

Whentou

Read:

{CLR}

{HOME}

{UP}

{DOWN}

{LEFT}

{RIGHT}

{RVS}

{OFF}

{BLK}

{WHT}

{RED}

{CYN}

{PUR}

{GRN}

{BLU}

{YEL}

Press:

| SHIFT | CLR/HOME

| CLR/HOME

| SHIFT |

| SHIFT |

f CRSR i |

f CRSR | |

«-CRSR-> |

«-CRSR-*|

| CTRL | | 9 |

| CTRL | | 0 |

[CTRL | |_l

1 CTRL 1 1 2 1
| CTRL | | 3 |

| CTRL | [~~4 |

| CTRL | | 5 |

| CTRL | | 6 |

| CTRL | | 7 |

|CTRL || 8 |

See:

WhenYbu

Read:

i 5

{ F2}

{ F3}

{ » }

{ F5 }

{ F6 }

{ F7 }

{ F8 }

Press:

| COMMODORE | |T|

I COMMODORE I

|commodore||3|

i commodore | [~4~[

| commodore | [7]

I COMMODORE I m

|COMMODORE | |T]

| commodore] [T|

~7T

See:

| SHIFT | | f3

| f5

| SHIFT | pj"

| ft

I SHIFT I I f7

u

u

u

u

u

SHIFT

U

LJ

198

Appendix B
The Automatic Proofreader

Philip I. Nelson

"The Automatic Proofreader" helps you type in program list

ings without typing mistakes. It's a short error-checking pro

gram that conceals itself in memory and adheres to your

Commodore's operating system. Each time you press RETURN

to enter a program line, the Proofreader displays a two-letter

checksum in reverse video at the top of your screen. If the

checksum on your screen doesn't match the one in the printed

listing, you've typed the line incorrectly—it's that simple. You

don't have to use the Proofreader to enter printed listings, but

doing so greatly reduces your chances of making a typo.

Getting Started

First, type in the Automatic Proofreader program exactly as it

appears in the listing. Since the Proofreader can't check itself,

type carefully to avoid mistakes. Don't omit any lines, even if

they contain unfamiliar commands. As soon as you're finished

typing the Proofreader, save at least two copies on disk or tape

before running it the first time. This is very important because

the Proofreader erases the BASIC portion of itself when you

run it, leaving only the machine language portion in memory.

When that's done, type RUN and press RETURN. After

announcing which computer it's running on, the Proofreader

installs the ML routine in memory, displays the message

PROOFREADER ACTIVE, erases the BASIC portion of itself,

and ends. If you type LIST and press RETURN, you'll see that

no BASIC program remains in memory. The computer is ready

for you to type in a new BASIC program.

Entering Programs

Once the Proofreader is active, you can begin typing in a

BASIC program as usual. Every time you finish typing a line

and press RETURN, the Proofreader displays a two-letter

checksum (reverse-video letters) in the upper left corner of the

screen. Compare this checksum with the two-letter checksum

199

u
Appendix B , ,

printed to the left of the corresponding line in the program '—•
listing. If the letters match, it's almost certain the line was

typed correctly. If the letters don't match, check for your mis

take and correct the line. '—'
The Proofreader ignores spaces that aren't enclosed in

quotation marks, so you can omit spaces (or add extra ones)

between keywords and still see a matching checksum. For ex- '—'
ample, these two lines generate the same checksum:

10 PRINT'THIS IS BASIC'

10 PRINT "THIS IS BASIC'

However, since spaces inside quotation marks are almost

always significant, the Proofreader pays attention to them. For

instance, these two lines generate different checksums:

10 PRINT"THIS IS BASIC

10 PRINT'THIS ISBA SIC"

A common typing mistake is transposition—typing two

successive characters in the wrong order, like PIRNT instead

of PRINT or 64378 instead of 64738. A checksum program

that adds up the values of all the characters in a line can't

possibly detect transposition errors (it can only tell whether

the right characters are present, regardless of what order

they're in). Because the Proofreader computes the checksum

with a more sophisticated formula, it is also sensitive to the

position of each character within the line and thus catches

transposition errors.

The Proofreader does not accept keyword abbreviations

(for example, ? instead of PRINT). If you prefer to use abbrevi

ations, you can still check the line with the Proofreader: Sim

ply LIST the line after typing it, move the cursor back onto the

line, and press RETURN. LISTing the line substitutes the full

keyword for the abbreviation and allows the Proofreader to

work properly. The same technique works for rechecking a j (

program you've already typed in: Reload the program, LIST i—i
several lines on the screen, and press RETURN over them.

Do not use any GRAPHIC commands while the Proofreader

is active. When you activate a command like GRAPHIC 1, the I—

computer moves everything at the start of BASIC program

space—including the Proofreader—to another memory area, | j

causing the Proofreader to crash. The same thing happens if I I
you run any program that contains a GRAPHIC command.

The Proofreader deallocates any graphics areas before install- j |

200

Appendix B

ing itself in memory, but you are responsible for seeing that

the computer remains in this configuration.

Though the Proofreader doesn't interfere with other

BASIC operations, it's always a good idea to disable it before

running any other program. Some programs may need the

space occupied by the Proofreader's ML routine or may create

other memory conflicts. However, the Proofreader is purposely

made difficult to dislodge: It's not affected by tape or disk op

erations, or by pressing RUN/STOP-RESTORE. The simplest

way to disable it is to turn the computer off, then on again.

Program B-1. The Automatic Proofreader

10 VEC=PEEK(772)+256*PEEK(773):LO=43:HI=44

20 PRINT "AUTOMATIC PROOFREADER FOR ";:IF VEC=4236

4 THEN PRINT "C-64"

30 IF VEC=50556 THEN PRINT "VIC-20"

40 IF VEC=35158 THEN GRAPHIC CLR:PRINT "PLUS/4 & 1

6"

50 IF VEC=17165 THEN LO=45:HI=46:GRAPHIC CLR:PRINT

"128"

60 SA=(PEEK(LO)+256*PEEK(HI))+6:ADR=SA

70 FOR J=0 TO 166:READ BYT:POKE ADR,BYT:ADR=ADR+1:

CHK=CHK+BYT:NEXT

80 IF CHK<>20570 THEN PRINT "*ERROR* CHECK TYPING

{SPACE}IN DATA STATEMENTS":END

90 FOR J=l TO 5:READ RF,LF,HF:RS=SA+RF:HB=INT(RS/2

56):LB=RS-(256*HB)

100 CHK=CHK+RF+LF+HF:POKE SA+LF#LB:POKE SA+HF,HB:N

EXT

110 IF CHK<>22054 THEN PRINT "*ERROR* RELOAD PROGR

AM AND CHECK FINAL LINE":END

120 POKE SA+149,PEEK(772):POKE SA+150,PEEK(773)

130 IF VEC=17165 THEN POKE SA+14,22:POKE SA+18,23:

POKESA+29,224:POKESA+139,224

140 PRINT CHR$(147);CHR$(17);"PROOFREADER ACTIVE":

SYS SA

150 POKE HI,PEEK(HI)+l:POKE (PEEK(LO)+256*PEEK(HI)

)-l,0:NEW

160 DATA 120,169,73,141,4,3,169,3,141,5,3

170 DATA 88,96,165,20,133,167,165,21,133,168,169

180 DATA 0,141,0,255,162,31,181,199,157,227,3

190 DATA 202,16,248,169,19,32,210,255,169,18,32

200 DATA 210,255,160,0,132,180,132,176,136,230,180

210 DATA 200,185,0,2,240,46,201,34,208,8,72

220 DATA 165,176,73,255,133,176,104,72,201,32,208

230 DATA 7,165,176,208,3,104,208,226,104,166,180

240 DATA 24,165,167,121,0,2,133,167,165,168,105

201

LJ
Appendix B

250 DATA 0,133,168,202,208,239,240,202,165,167,69 ' '
260 DATA 168,72,41,15,168,185,211,3,32,210,255
270 DATA 104,74,74,74,74,168,185,211,3,32,210 i i
280 DATA 255,162,31,189,227,3,149,199,202,16,248 |
290 DATA 169,146,32,210,255,76,86,137,65,66,67

300 DATA 68,69,70,71,72,74,75,77,80,81,82,83,88
310 DATA 13,2,7,167,31,32,151,116,117,151,128,129, I

167,136,137 I 1

u

202

u

u

n

n Appendix C
n Machine Language Editor,

n

MLX

Ottis R. Cowper

"MLX" is a new way to enter long machine language pro

grams without a lot of fuss. MLX lets you enter the numbers

from a special list that looks similar to BASIC DATA state

ments. It checks your typing on a line-by-line basis. It won't

let you enter invalid characters or let you continue if there's a

mistake in a line. It won't even let you enter a line or digit out

of sequence.

Using MLX

Type in and save some copies of MLX (you'll want to use it

to enter future ML programs from other COMPUTE! publica

tions). When you're ready to enter the machine language part

of "Orbitron" or "MetaBASIC", load and run MLX. It asks you

for a starting address and an ending address. These addresses

are

Program 3-2. ORB.OBJ

Starting address: 7530..

Ending address: 7997

Save as: ORB.OBJ

Program 4-1. MetaBASIC

Starting address: 1300

Ending address: 18BF

If you're unfamiliar with machine language, the addresses

(and all other values you enter in MLX) may appear strange.

Instead of the usual decimal numbers you're accustomed to,

these numbers are in hexadecimal—a base 16 numbering sys

tem commonly used by ML programmers. Hexadecimal—hex

for short—includes the numbers 0-9 and the letters A-F. But

don't worry—even if you know nothing about ML or hex, you

should have no trouble using MLX.

After you enter the starting and ending addresses, MLX

will offer you the option of clearing the workspace. Choose

n

n

n

n
203

H

u
Appendix C , ,

this option if you're starting to enter a program for the first —

time. If you're continuing to enter a program that you partially

typed from a previous session, don't choose this option.

It's not necessary to know more about this option to use l—'
MLX, but here's an explanation if you're interested: When you

first run MLX, the workspace area contains random values.

Clearing the workspace fills it with zeros. This makes it easier '—'
to find where you left off if you enter the listing in multiple

sittings. However, clearing the workspace is useful only before

you first begin entering a listing; there's no need to clear it

before you reload to continue entering a partially typed listing.

When you save your work with MLX, it stores the entire

contents of the data buffer. If you clear the workspace before

starting, the incomplete portion of the listing is filled with ze

ros when saved and thus refilled with zeros when reloaded. If

you don't clear the workspace when first starting, the incom

plete portion of the listing is filled with random data. Whether

or not you clear the workspace before you reload, this random

data will refill the unfinished part of the listing when you load

your previous work. The rule, then, is to use the clear work

space feature before you begin entering data from a listing and

not to bother with it afterward.

At this point, MLX presents a menu of commands:

Enter data

Display data

Load data

Save file

Catalog disk

Quit

Entering a Listing

To begin entering data, press E. You'll be asked for the ad- i ;

dress at which you wish to begin entering data. (If you I I
pressed E by mistake, you can return to the command menu

by pressing RETURN.) When you begin typing, you should

enter the starting address here. If you're typing a program in

multiple sittings, you should enter the address where you left

off typing at the end of the previous session. In any case,

make sure the address you enter corresponds to the address of

a line of the MLX listing. Otherwise, you'll be unable to enter

the data correctly.

204

n

n

n

n

n

Appendix C

After you enter the address, you'll see that address appear

as a prompt with a nonblinking cursor. Now you're ready to

enter data. Type in all nine numbers on that line, beginning

with the first two-digit number after the colon (:). Each line

represents eight data bytes and a checksum. Although an MLX-

format listing resembles the "hex dump" machine language

listings you may be accustomed to, the extra checksum num

ber on the end allows MLX to check your typing. (You can en

ter the data from an MLX listing using the built-in monitor if

the rightmost column of data is omitted, but we recommend

against it. It's much easier to let MLX do the proofreading and

error checking for you.)

Only the numbers 0-9 and the letters A-F can be typed

in. If you press any other key (with some exceptions noted be

low), you'll hear a warning buzz. To simplify typing, MLX re

defines the function keys and the + and — keys on the numeric

keypad so that you can enter data one-handed. Figure C-l

shows the keypad configuration supported by MLX.

Figure C-1. Keypad for 128 MLX

A B C D

7

4

1

8

5

2

0

9

6

3

•

E

F

E
N
T
E
R

MLX checks for transposed characters. If you're supposed

to type in A0 and instead enter 0A, MLX will catch your mis

take. To correct typing mistakes before finishing a line, use the

INST/DEL key to delete the character to the left of the cursor.

205

LJ
Appendix C

(The cursor-left key also deletes.) If you mess up a line really '—'
badly, press CLR/HOME to start the line over.

The RETURN key is also active, but only before any data I j
is typed on a line. Pressing RETURN at this point returns you '—'
to the command menu. After you type a character of data,

MLX disables RETURN until the cursor returns to the start of I I

a line. Remember, you can press CLR/HOME to get to a line '—'
number prompt quickly.

Beep or Buzz

When you enter a line, MLX recalculates the checksum from

the eight bytes and the address and compares this value to the
number from the ninth column. If the values match, you'll

hear a pleasant beep to indicate that the line was entered cor
rectly. The data is then added to the workspace area, and the

prompt for the next line of data appears. But if MLX detects a
typing error, you'll hear a low buzz and see an error message.

MLX will then redisplay the line for editing.

To make corrections in a line that MLX has redisplayed

for editing, compare the line on the screen with the one

printed in the listing, then move the cursor to the mistake and

press the correct key. The cursor-left and -right keys provide

the normal cursor controls. (The INST/DEL key now works as

an alternative cursor-left key.) You cannot move left beyond

the first character in the line. If you try to move beyond the

rightmost character, you'll reenter the line. During editing, RE

TURN is active; pressing it tells MLX to recheck the line. You

can press the CLR/HOME key to clear the entire line if you

want to start from scratch, or if you want to get to a line num

ber prompt to use RETURN to get back to the menu.

After you have entered the last number on the last line of
the listing, MLX automatically moves to the Save option. ,-

Other MLX Functions

The second menu choice, DISPLAY DATA, examines memory I I

and shows the contents in the same format as the program '—'
listing (including the checksum). When you press D, MLX asks

you for a starting address. Be sure that the starting address I j

you give corresponds to a line number in the listing. Other- '—'
wise, the display will be meaningless. MLX displays program

lines until it reaches the end of the program, at which point

206

n

n

n

n

n

n

n

Appendix C

the menu is redisplayed. You can pause the scrolling display

by pressing the space bar. (MLX finishes printing the current

line before halting.) To resume scrolling, press the space bar

again. To break out of the display and return to the menu

before the ending address is reached, press RETURN.

Two more menu selections let you save programs and

load them back into the computer. These are SAVE FILE and

LOAD DATA; their operation is quite straightforward. When

you press S or L, MLX asks you for the filename. (Again,

pressing RETURN at this prompt without entering anything

returns you to the command menu.) Next, MLX asks you to

press either D or T to select disk or tape.

You'll notice the disk drive starting and stopping several

times during a save. Don't panic; this is normal behavior. MLX

opens and writes to the file instead of using the usual SAVE

command. (Loads, on the other hand, operate at normal speed—

thanks to the relocating feature of BASIC 7.0's BLOAD com

mand.) Remember that MLX saves the entire workspace area

from the starting address to the ending address, so the save or

load may take longer than you might expect if you've entered

only a small amount of data from a long listing. When saving

a partially completed listing, make sure to note the address

where you stopped typing so that you'll know where to re

sume entry when you reload.

Error Alert

MLX reports any errors detected during the save or load and

displays the standard error messages. (Tape users should bear

in mind that the Commodore 128 is never able to detect errors

when saving to tape.) MLX also has three special load error

messages:

• INCORRECT STARTING ADDRESS, which means the file

you're trying to load does not have the starting address you

specified when you ran MLX. In this case, no data will be

loaded.

• LOAD ENDED AT address, which means the file you're try

ing to load ends before the ending address you specified

when you started MLX. The data from the file is loaded, but
it ends at the address specified in the error message.

• TRUNCATED AT ENDING ADDRESS, which means the file
you're trying to load extends beyond the ending address you

207

Appendix C

specified when you started MLX. The data from the file is

loaded, but only up to the specified ending address.

If you see one of these messages and feel certain that

youVe loaded the right file, exit and rerun MLX, being careful

to enter the correct starting and ending addresses.

If you wish to check which programs are on a disk, select | j
the C option from the command menu for a directory. You can

use the 128's NO SCROLL key to pause the display. After

ward, press any key to return to the menu.

The Quit menu option has the obvious effect—it stops

MLX and enters BASIC. The RUN/STOP key is trapped, so

the Q option lets you exit the program without turning off the

computer. (Of course, RUN/STOP-RESTORE also gets you

out.) You'll be asked for verification; press Y to exit to BASIC

or any other key to return to the menu. After quitting, you can

type RUN again and reenter MLX without losing your data as

long as you don't use the clear workspace option.

The Finished Product

When you've finished typing all the data for an ML program

and saved your work, you're ready to see the results. The in

structions for loading and using the finished product vary

from program to program. So check the instructions in the ar

ticle about the program.

An Ounce of Prevention

By the time you finish typing in the data for a long ML pro

gram, you'll have many hours invested in the project. Don't

take chances—use our "Automatic Proofreader" (Appendix B)

to type MLX, and then test your copy thoroughly before first

using it to enter any significant amount of data. Make sure all , ,

the menu options work as they should. Enter fragments of the | j
program starting at several different addresses, then use the

Display option to verify that the data has been entered cor- ,

rectly. And be sure to test the Save and Load options several |
times to insure that you can recall your work from disk or

tape. Don't let a simple typing error in MLX cost you several . ,

nights of hard work. | j

u
208

Appendix C

Program C-1. MLX

AE 100 TRAP 960:POKE 4627,128:DIM NL$,A(7)

XP 110 Z2=2:Z4=254:Z5=255:Z6=256:Z7=127:BS=256*PEE

K(4627):EA=65280

FB 120 BE$=CHR$(7):RT$=CHR$(13):DL$=CHR$(20):SP$=C

HR$(32):LF$=CHR$(157)

KE 130 DEF FNHB(A)=INT(A/256):DEF FNLB(A)=A-FNHB(A

)*256:DEF FNAD(A)=PEEK(A)+256*PEEK(A+1)

JB 140 KEY 1,MA":KEY 3,"B":KEY 5,MCM:KEY 7,"D":V0L

15:IF RGR(0)=5 THEN FAST

FJ 150 PRINT"{CLR}"CHR$(142);CHR$(8):COLOR 0,15:C0

LOR 4#15:COLOR 6,15

GQ 160 PRINT TAB(12)"{RED}{RVS}{2 SPACES}|9 @1
{2 SPACES}"RT$;TAB(12)"{RVS}{2 SPACES}{OFF}
{BLU} 128 MLX {RED}{RVS}{2 SPACES}MRT$;TAB(
12)"{RVS}{13 SPACES} {BLU}11

FE 170 PRINT"{2 DOWN}{3 SPACES}COMPUTEI'S MACHINE

{SPACE}LANGUAGE EDITOR{2 DOWN}"

DK 180 PRINT"{BLK}STARTING ADDRESS|<4§"; :GOSUB 260:

IF AD THEN SA=AD:ELSE 180

FH 190 PRINT"{BLK}{2 SPACES}ENDING ADDRESS&4§";:GO

SUB 260:IF AD THEN EA=AD:ELSE 190

MF 200 PRINT"{DOWN}{BLK}CLEAR WORKSPACE [Y/N]?g4§"

:GETKEY A$:IF A$<>"Y" THEN 220

QH 210 PRINT"{DOWN}{BLU}WORKING...";:BANK 0:FOR A=

BS TO BS+(EA-SA)+7:POKE A,0:NEXT A:PRINT"DO

NE"

DC 220 PRINT TAB(10)"{DOWN}{BLK}{RVS} MLX COMMAND

{SPACEjMENU E43{DOWN}":PRINT TAB(13)"{RVS}E
{OFF}NTER DATA"RT$;TAB(13)"{RVS}D{OFF}ISPLA
Y DATA"RT$;TAB(13)"{RVS}L{OFF}OAD FILE"

HB 230 PRINT TAB(13)"{RVS}S{OFF}AVE FILE"RT$;TAB(1

3)"{RVS}C{OFF}ATALOG DISK"RT$;TAB(13)"{RVS}

Q{OFF}UIT{DOWN}{BLK}"

AP 240 GETKEY A$:A=INSTR("EDLSCQ",A$):ON A GOTO 34

0,550,640,650,930,940:GOSUB 950:GOTO 240

SX 250 PRINT"STARTING AT";:GOSUB 260:IF(AD<>0)OR(A

$=NL$)THEN RETURN:ELSE 250

BG 260 A$=NL$:INPUT A$:IF LEN(A$)=4 THEN AD=DEC(A$

)
PP 270 IF AD=0 THEN BEGIN:IF A$<>NL$ THEN 300:ELSE

RETURN:BEND

MA 280 IF AD<SA OR AD>EA THEN 300

PM 290 IF AD>511 AND AD<65280 THEN PRINT BE$;:RETU

RN

SQ 300 GOSUB 950:PRINT"{RVS} INVALID ADDRESS

{DOWN}{BLK}":AD=0:RETURN

RD 310 CK=FNHB(AD):CK=AD-Z4*CK+Z5*(CK>Z7):GOTO 330

209

G
Appendix C

DD 320 CK=CK*Z2+Z5*(CK>Z7)+A I I
AH 330 CK=CK+Z5*(CK>Z5):RETURN

QD 340 PRINT BE$;"{RVS} ENTER DATA M:GOSUB 250:IF , .
{SPACE}A$=NL$ THEN 220 I

JA 350 BANK 0:PRINT:F=0:OPEN 3,3

BR 360 GOSUB 310:PRINT HEX$(AD)+":";:IF F THEN PRI

NT L$:PRINT"{UP}{5 RIGHT}11; I I
QA 370 FOR 1=0 TO 24 STEP 3:B$=SP$:FOR J=l TO 2:IF I I

F THEN B$=MID$(L$,I+J,1)

PS 380 PRINTM{RVS}"B$+LF$7 :IF K24 THEN PRINT11
{OFF}";

RC 390 GETKEY A$:IF (A§>11/11 AND A$<":") OR(A$>"@li

{SPACE}AND A$<"G") THEN 470
AC 400 IF A$="+" THEN A$="E":GOTO 470

QB 410 IF A$=H-" THEN A$=nFn:GOTO 470

FB 420 IF A$=RT$ AND ((1=0) AND (J=l) OR F) THEN P

RINT B$;:J=2:NEXT:I=24:GOTO 480

RD 430 IF A$="{HOME}" THEN PRINT B$:J=2:NEXT:I=24:
NEXT:F=0:GOTO 360

XB 440 IF (A$= " {RIGHT}11) AND F THEN PRINT B$+LF$; :

GOTO 470

JP 450 IF A$<>LF$ AND A$<>DL$ OR ((1=0) AND (J=l))

THEN GOSUB 950:GOTO 390

PS 460 A$=LF$+SP$+LF$.-PRINT B$+LF$; : J=2-J:IF J THE

N PRINT LF$;:1=1-3

GB 470 PRINT A$;:NEXT J:PRIOT SP$;

HA 480 NEXT I:PRINT:PRINT" {UP} {5 RIGHT}";:L$="

{27 SPACES}"
DP 490 FOR 1=1 TO 25 STEP 3:GET#3,A$,B$:IF A$=SP$

{SPACE}THEN 1=25:NEXT:CLOSE 3:GOTO 220
BA 500 A$=A$+B$:A=DEC(A$):MID$(L$,I,2)=A$:IF K25

{SPACEjTHEN GOSUB 320:A(l/3)=A:GET#3,A$

AR 510 NEXT I:IF A<>CK THEN GOSUB 950:PRINT:PRINT"

{RVS} ERROR: REENTER LINE ":F=1:GOTO 360

DX 520 PRINT BE$:B=BS+AD-SA:FOR 1=0 TO 7:POKE B+I,

A(I):NEXT I

XB 530 F=0:AD=AD+8:IF AD<=EA THEN 360

CA 540 CLOSE 3:PRINT"{DOWN}{BLU}** END OF ENTRY **

{BLK}{2 DOWN}'1:GOTO 650 | j
MC 550 PRINT BE$;"{CLR}{DOWN}{RVS} DISPLAY DATA ": I 1

GOSUB 250:IF A$=NL$ THEN 220

JF 560 BANK 0:PRINT"{DOWN}{BLU}PRESS: {RVS}SPACE
{OFF} TO PAUSE, {RVS}RETURN{OFF} TO BREAK

B4§{DOWN}"
XA 570 PRINT HEX$(AD)+":";:GOSUB 310:B=BS+AD-SA

DJ 580 FOR I=B TO B+7:A=PEEK(I):PRINT RIGHT$(HEX$(I I

A),2);SP$;:GOSUB 320:NEXT I I 1
XB 590 PRINT"{RVS}";RIGHT$(HEX$(CK),2)

GR 600 F=1:AD=AD+8:IF AD>EA THEN PRINT"{BLU}** END r- «

OF DATA **":GOTO 220 | I

210

n

n

n

n

n

Appendix C

EB 610 GET A$:IF A$=RT$ THEN PRINT BE$:GOTO 220

QK 620 IF A$=SP$ THEN F=F+1:PRINT BE$;

XS 630 ON F GOTO 570,610,570

RF 640 PRINT BE$"{DOWN}{RVS} LOAD DATA H:OP=1:GOTO

660

BP 650 PRINT BE$"{DOWN}{RVS} SAVE FILE M:OP=0

DM 660 F=0 :F$=NL$: INPUT "FILENAME^! ";F$: IF F$=NL$

{SPACE}THEN 220

RF 670 PRINT"{DOWN}{BLK}{RVS}T{OFF}APE OR {RVS}D

{OFF}ISK: B4l";
SQ 680 GETKEY A$:IF A$="T" THEN 850:ELSE IF A$<>"D

11 THEN 680

SP 690 PRINT"DISK{DOWN}":IF OP THEN 760

EH 700 DOPEN#1,(F$+",P"),W:IF DS THEN A$=D$:GOTO 7

40

JH 710 BANK 0:POKE BS-2,FNLB(SA):POKE BS-1,FNHB(SA

):PRINT"SAVING ";F$ xPRINT

MC 7 20 FOR A=BS-2 TO BS+EA-SA:PRINT#1,CHR$(PEEK(A)

);:IF ST THEN A$="DISK WRITE ERROR":GOTO 75

0

GC 730 NEXT A:CLOSE 1:PRINT"{BLU}** SAVE COMPLETED

WITHOUT ERRORS **":GOTO 220

RA 740 IF DS=63 THEN BEGIN:CLOSE 1:INPUT"{BLK}REPL
ACE EXISTING FILE [Y/N]&4l";A$:IF A$="Y" TH

EN SCRATCH(F$):PRINT:GOTO 700:ELSE PRINT"

{BLK}":GOTO 660:BEND

GA 750 CLOSE 1:GOSUB 950:PRINT"{BLK}{RVS} ERROR DU

RING SAVE: B4§":PRINT A$:GOTO 220

FD 760 DOPEN#1,(F$+",P"):IF DS THEN A$=DS$:F=4:CLO

SE 1:GOTO 790

PX 770 GET#1,A$,B$:CLOSE 1:AD=ASC(A$)+256*ASC(B$):

IF ADOSA THEN F=l :GOTO 790

KB 780 PRINT"LOADING ";F$:PRINT:BLOAD(F$),B0,P(BS)
:AD=SA+FNAD(174)-BS-1:F=-2*(AD<EA)-3*(AD>EA

RQ 790 IF F THEN 800:ELSE PRINT"{BLU}** LOAD COMPL

ETED WITHOUT ERRORS **":GOTO 220

ER 800 GOSUB 950:PRINT"{BLK}{RVS} ERROR DURING LOA

D: B4§":ON F GOSUB 810,820,830,840:GOTO220

QJ 810 PRINT"INCORRECT STARTING ADDRESS (";HEX$(AD

);")":RETURN

DP 820 PRINT"LOAD ENDED AT ";HEX$(AD):RETURN

EB 830 PRINT"TRUNCATED AT ENDING ADDRESS ("HEX$(EA

)")":RETURN

FP 840 PRINT"DISK ERROR ";A$:RETURN

KS 850 PRINT"TAPE":AD=POINTER(F$):BANK 1:A=PEEK(AD

):AL=PEEK(AD+1):AH=PEEK(AD+2)

XX 860 BANK 15:SYS DEC("FF68"),0,1:SYS DEC("FFBA")
,1,1,0:SYS DEC("FFBD"),A,AL,AH:SYS DEC("FF9

0"),128:IF OP THEN 890

211

D
Appendix G

I I
FG 870 PRINT:A=SA:B=EA+1:GOSUB 920:SYS DEC("E919") I I

,3:PRINT"SAVING ";F$

AB 880 A=BS:B=BS+(EA-SA)+1:GOSUB 920:SYS DEC("EA18 , ,

"):PRINTM{DOWN}{BLU}** TAPE SAVE COMPLETED
{SPACE}**":GOTO 220 ' '

CP 890 SYS DEC(ME99AM):PRINT:IF PEEK(2816)=5 THEN

{SPACEjGOSUB 950:PRINT"{DOWN}{BLK}{RVS} FIL
E NOT FOUND ":GOTO 220

GQ 900 PRINT"LOADING ...{DOWN}":AD=FNAD(2817):IF A

D<>SA THEN F=l:GOTO 800:ELSE AD=FNAD(2819)-

1:F=-2*(AD<EA)-3*(AD>EA)

SH 910 A=BS:B=BS+(EA-SA)+1:GOSUB 920:SYS DEC("E9FB

"):IF ST THEN 800:ELSE 790

XB 920 POKE193,FNLB(A):POKE194,FNHB(A):POKE 174,FN

LB(B):POKE 175,FNHB(B):RETURN

CP 930 CATALOG:PRINT"{DOWN}{BLU}** PRESS ANY KEY F
OR MENU **":GETKEY A$:GOTO 220

MM 940 PRINT BE$"{RVS} QUIT B4§";RT$;"ARE YOU SURE

[Y/N]?":GETKEY A$:IF A$o"Y" THEN 220:ELSE
PRINT"{CLR}":BANK 15:END

JE 950 SOUND 1,500,10:RETURN

AF 960 IF ER=14 AND EL=260 THEN RESUME 300

MK 970 IF ER=14 AND EL=500 THEN RESUME NEXT

KJ 980 IF ER=4 AND EL=780 THEN F=4:A$=DS$:RESUME 8

00

DQ 990 IF ER=30 THEN RESUME:ELSE PRINT ERR$(ER);"

{SPACE}ERROR IN LINE";EL

u

212

n

Index

n

n

@ See at sign

? See question mark

/ See slash

accumulator 44

addresses, changing 69-71

addressing scheme 46

ADSR 84, 86

AID 144, 145

AND 5

APPEND 5, 175

ASC90

ASCII code 34, 64, 76, 145, 175

asterisk 59

at sign (@) 145

attack rate 83, 84

AUTO 4

autoboot 172, 186-90

autoboot sector 186, 187

AUTOI 22

"Automatic Proofreader, The" program

201-2

automatic sprite movement 110, 111,

114

BACKUP 5, 178

BAM 17, 21-24, 177

BANK 5, 46, 70-72

bank numbers 46

"Bar Chart" program 15

BASIC 7.0 3

BASIC 7.0 keywords 13, 14

batch files 54, 55

BEGIN 6, 115

BEGIN-BEND 6

BEND 6, 115

binary search method 37-39

"Blick" program 158

BLOAD 5, 167, 170-72, 175

block allocation map. See BAM

blocks of data 167

BOOT 5, 170, 172

boot disk 186

bootstraps 33

BOX 9

BRK 44, 45

BSAVE 4, 5, 174, 175

BUMP routine 4, 115

burst mode 167

bus 166

CATALOG 5

"Cataloger" program 182-85

CBM 172

chaining 29, 33, 173

CHANGE 144, 145

CHAR 6, 11, 112

character set 69-71

CHR$ code 90, 176

chroma 168

CIA chip 167

CIRCLE 11

CLEAR 64

clock 7

CLOSE 18, 175

CLR70

CLSDIR 24

"Coder-Decoder" program 41

coding 40

COLLECT 5, 177

COLLISION 4

collision routine 115

colon 114, 115

color 9, 53

COLOR 9

COM files 54

compare 43

compatibility (of 128) 12

complex interface adapter. See CIA chip

CONCAT 5, 177

CONT 28

COPY 5, 178

CP/M 51-60

"Create 128 Autoboot Sector" program

191

"Create 64 Autorun Program" program

193

DATA 34, 40

dBASE program 57

DCLEAR 5, 177

DOLOSE 5, 175

DEC 5

decay rate 83, 84

decimal addresses 46

decoding 40, 41

DEFAULT 144, 146

default volume 82

DELETE 4, 148

DELFIL 24

development system 143

device number 20

DF113

direct mode 28-33

DIRECTORY 5, 176, 178

disassembler 45

213

disk controller 22

disk drive number 20

disk drives 12, 17, 20, 53, 165-67

1541 mode 165, 166, 179

1571 mode 165-67, 179

disk operating system. See DOS

DLIST 144, 147

DLOAD 5, 17, 20, 167, 170, 171, 173,

174

DO-LOOP 6

DOPEN 5, 175, 176

DOS 17, 20, 55, 177

DOS V2.6 25

DOS Wedge 25

DO-UNTIL-LOOP structure 10

DRAW 7, 9

DRIVE NOT READY error 21, 22

DS177

DS$ 177

DSAVE 5, 17, 20, 173, 174

DUR 77

duration 83

DVERIFY 5, 178

dynamic keyboard technique 28-36, 40,

76, 155

editing 34-36

EL 5, 8

ELSE 6

END 30

ENVELOPE 4, 81, 83-86, 91

EPROM (Erasable-Programmable Read

Only Memory) 22

ER5

ERR$ 5, 8

EXIT 10

FAST 7, 179

fast serial mode 166

FETCH 5

FFST ($C49D) 22

fill 43

FILTER 4, 81, 87, 88, 91

SID 88

"FILTER Editor" program 92-94

FIND 144, 147

FOR-NEXT loop 6, 37, 41

frequency 76

FRETS 24

FRQ 77

GET 28

GET# 28, 175, 176

GETBUF 22

GETKEY 9

GO 44

GOTO 31

GRAPHIC 9, 66, 178

GRAPHIC CLR 187

GSHAPE 12

HEADER 5

HELP 5

"HELP" program 60

HEX 5

hexadecimal addresses 46, 203

hi-res graphics 7-12

horizontal resolution 8

hunt 44

IF-THEN 6

INPUT 28

INPUT# 28, 175, 176

input buffer 28

INSTR6

instrument number 83

INT 8

internal buffers 21, 22

internal channel 22

jiffy 6

JOYstick 115

JSR routine 44

jump 44

"Jump Search" program 39

KEY 4

keyboard buffer 29-32

keyboard buffer counter 32

keyboard conventions 198

keyscan values 74

L170

LEFT$ 77, 90

LEN90

"Lexitron" program 136-40

LIST 28, 173, 178

"Litter Patrol" program 116-19

LOAD 17, 20, 29, 33, 44, 167, 170, 171

loading a program 170-74

LRUTBL,Y 23

luma 168

MAPOUT 24

"Map with Flag" program 15

mask value 46

MBASIC-80 program 57

megahertz 7

memory 6, 28, 29

MEMORY 44

memory map 46-50

MENU 77

menu, bypassing 190

"Menu" program 192

MERGE 144, 147

"MetaBASIC" program 149-53

MID$ 6, 77, 90

"MLX" program 209-12

mnemonics 45, 144

LJ

U

u

u

u

u

LI

214

u

monitor 43-45, 168, 169

composite 168

monochrome 168

RGBI 169

MONITOR 5

monophonic 75

MOVSPR 4, 113

multivoice music 90

music 74-78, 81-92

"Musical Keyboard" program 78

NEW 88

NewWord program 56

NO CHANNEL error 22

NOP45

ONEDRV 22

ON-GOTO 31

OPEN 17, 22, 175

operating system (OS) 51

dedicated 51

RAM-based 52

ROM-based 52

transportable 52

OPTSCH 22

OR 5

"Orbitron" program 103-9

PAINT 11

pi character 11

pie chart 10

"Pie Graph" program 15

pitch 76

PLAY 4, 74-78, 81-84, 86, 87, 90

"PLAY Demonstrator" program 96

POLYGON 11

polyphonic 75

PRINT 5, 6, 77, 157

PRINT# 175, 176

PRINT DS,DS$ 5

PRINT FRE(# 6

PRINT USING 5

programming 4, 5

program mode 28-33

programs

compiled 7

interpreted 7

PUDEF 5

pulsewidth 83, 86

PUTBAM 24

question mark 44, 59

QUIT 144, 146, 148 ,

radio frequency. See RF

RAM 46

READ 144, 148

READ-DATA pointer 6

RECORD 5

RECORD# 176

registers 5, 44

A5

P5

X5

Y5

relative file 176

release rate 83, 84

relocating the screen 71

REM 146, 154

"REM Highlighter" program 155, 156

RENAME 5, 177

RENUMBER 4, 177

RESAVE 144, 148

reserved variables 5

RESTORE 6, 9

RESUME 5

RETURN 28, 77, 175

RF (radio frequency) output 168

RIGHTS 90

ring modulation 85

ROM locations 44, 46, 52

RREG5

RUN 28, 170,171, 173, 174

running programs 59

RUN/STOP key 144

RUN/STOP-RESTORE 75, 88, 146

S174

SAVE 17, 20, 21, 44

SAVE@ 17, 20

"SAVE@ Bug Demonstration" program

25-27

save-with-replace 17-27, 148

saving a program 174

SAVSPR 4

SCALE 9

SCNCLR 9, 10

SCRATCH 5, 17, 21, 147, 177

screen editing 30

SEEK 22

sequential files 175

sequential search 37

serial 166

serial communication bus 166

service request (SRQ) 166

SHIFT-RUN/STOP 170, 171, 178

SID chip. See sound interface device

slash (/) 145

SLOW 7

"Song Player" program 79

sorting 37

sound 81-92

SOUND 4, 75-77, 81, 82, 88, 89, 91

"SOUND Editor" program 94-96

sound effects 74-78

sound interface device (SID) 3, 81, 92

215

"Soundmaker" program 78

sound pattern 84

speed 6, 7

SPRCOLOR 113

SPRDEF 4, 174

SPRITE 4, 113

sprites 3

SPRSAV 113

SSHAPE 4, 12

START 144, 149

STASH 5

STLBUT 22, 23

STOP 44

STR$ 90

SUBMIT 54

SuperCalc program 57

sustain rate 83, 84

SWAP 5, 23

sweep direction 76

"Switchbox" program 132-34

synchronization 85

SYS5

system utilities 55

TAB 173

TEMPO 4, 75, 81, 83, 91

text editor 54

THEN 114, 115

TO 7

tone generators 81

transfer 44

TRAP 5, 8, 70

TRON5

tune 83

Turbo Pascal 57

UNNEW 144, 149

user areas 56

utilities 176-78

VAL90

validate 24

variables 179

VERIFY 178

video displays 168, 169

video outputs 12

VOC 77

voices 81

VOL 76, 81, 82, 88, 91

waveform 76, 81, 83, 85

noise 85

pulse 85

sawtooth 85

triangle 85

WIDTH 10

WINDOW 63-66

"Window Demo" program 66

windows 63-68

adding 64

"Window Save for 80 Columns" pro

gram 68

"Window Save for 40 Columns" pro

gram 67

"Word Counter" program 160, 161

"Word Search" program 121-25

WordStar program 56

writing/debugging tool 143

WUSED 23

XOR5

u

G

u

u

u

u

216

n

i \ To order your copy of First Book of 128 Disk, call our toll-free US
order line: 1-800-346-6767 (in NY 212-887-8525) or send your

|—» prepaid order to:

' J) First Book of 128 Disk
___ COMPUTE! Publications

R P.O. Box 5038
— F.D.R. Station

New York, NY 10150

All orders must be prepaid (check, charge, or money order). NC res

idents add 4.5% sales tax.

Send copies of First Book of 128 Disk at $12.95 per copy.

Subtotal $

Shipping and Handling: $2.00/disk $

Sales tax (if applicable) $

Total payment enclosed $.

□ Payment enclosed

□ Charge □ Visa □ MasterCard □ American Express

Acct. No. Exp. Date
(Required)

Name _

j | Address

46659923

j—I City State Zip

Please allow 4-5 weeks for delivery,

n

n

n

G

o

a

a

G

o

a

a

