

u

g

u

u

a

u

H

n

n

C. Regena

COMPUTE! PublicationsJncflS
Part of ABC Consumer Magazines. Inc.

One of the ABC Publishing Companies

Greensboro, North Carolina

u

u

u

u

Copyright 1986, COMPUTE! Publications, Inc. All rights reserved.

Reproduction or translation of any part of this work beyond that permitted by

Sections 107 and 108 of the United States Copyright Act without the permission of

the copyright owner is unlawful.

Printed in the United States of America

10 9 8 7 6 5 4 i j

ISBN 0-87455-041-6

The author and publisher have made every effort in the preparation of this book to insure the ac- j t

curacy of the programs and information. However, the information and programs in this book are < I
sold without warranty, either express or implied. Neither the author nor COMPUTE! Publications, ^~~^
Inc., will be liable for any damages caused or alleged to be caused directly, indirectly, incidentally,

or consequentially by the programs or information in this book.

The opinions expressed in this book are solely those of the author and are not necessarily those of

COMPUTE! Publications, Inc.

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919) \ i

275-9809, is part of ABC Consumer Magazines, Inc., one of the ABC Publishing [)
Companies, and is not associated with any manufacturer of personal computers.

Amiga is a trademark of Commodore-Amiga, Inc.

H

H

n
Foreword v

Preface vii

1. Getting Started 1

2. PRINT Statements 15

3. Random Numbers 25

4. Interactive Programming 31

5. Program Transfer 39

6. Arrays and DATA Statements 57

7. Menus, Windows, and the Mouse 77

8. Graphics 87

9. Music, Sounds, and Speech 103

10. Built-in Functions 119

11. Educational Programming 131

12. Miscellaneous Techniques 159

13. Debugging 171

14. Sample Programs 177

Index 197

Disk Coupon 199

u

g

u

u

a

u

H

' J Elementary Amiga BASIC is a complete primer in the funda
mentals of BASIC programming. Whether you are just starting

r-^ to program or have worked with BASIC on another computer,

' J you'll find all the commands, statements, and techniques you

will need for effective programming on the Amiga. Every as

pect of Amiga BASIC is demonstrated, with plenty of practical

example programs which you can type in and use or modify

to meet your own needs.

You will learn to use the powerful features of Commo

dore's versatile 16-bit computer to create your own screens

and windows, create and display menus, display text, and con

trol the mouse in order to exploit the Amiga's sophisticated

screen display capabilities.

You will learn to create colorful graphics in several

modes, including sprites and animated objects. And control

ling the Amiga's advanced sound chips from BASIC, you will

be able to create sound effects, compose and play music, and

program the computer to speak in different voices and ac

cents—even to speak a foreign language.

Elementary Amiga BASIC also offers a solid grounding in

educational programming, providing a wide variety of easy-to-

understand, interactive programs which can be used in the

classroom or at home by students of all ages.

n

All the programs in this book are ready to type in and

run. If you prefer not to type in the programs, however,

you can order a disk which includes the programs in the

book. Call toll-free 1-800-346-6767 (in New York, call

212-887-8525) or use the coupon found in the back of

this book.

u

g

u

u

a

u

H

H.

n

n

I appreciate the opportunity to try BASIC programming on an

other computer. It's fun to experiment with new commands

and new features. The main purpose of this book is to help

you enjoy your Amiga computer by making it do what you

want it to do. I hope to give you explanations of how Amiga

BASIC works and to get you started on your own program

ming. I have tried to include a variety of programs illustrating

the versatility of the Amiga. Feel free to take these program

ming ideas and customize them for your own needs.

I offer a special thanks to Stephen Levy, Editor of COM

PUTE! Books, who tried to keep me informed about the Amiga

as the computer and the BASIC programming language were

being updated and revised. Thanks also to members of the

COMPUTE! staff who helped make this book possible.

This book is dedicated to my baby son, Brett Lynn

Whitelaw, who made his arrival the same week as my Amiga

came. He has had to share his new life with the computer as I

have been writing this book.

C. Regena

January, 1986

vu

u

g

u

u

a

u

a

Q

u

u

a

H

n

n

. I In the few years since microcomputers were introduced, home
computers have become more powerful and less expensive

i—[and much easier to use. It's possible to use a computer with-

' l out knowing a thing about programming, because of the wide
variety of ready-to-use application programs which only re

quire you to select the program you want, load it, and run it.

However, to get the computer to do exactly what you

want it to do, you may want to customize someone else's pro

gram or write your own. This book will teach you the fun

damental skills necessary to program the Amiga in BASIC. I

have included a variety of programs which you may type in

and use as they are or modify to better fit your needs.

We will discuss the Amiga BASIC programming language

that is packaged with your Amiga, so you won't need to buy

anything extra to start programming. In addition, all of the

instructions in this book will work without expanded memory

or any extra peripherals.

If you already know how to program in BASIC for an

other computer, you will find that most Amiga BASIC com

mands are familiar, although the syntax of some may be

slightly different and there are some new commands which

give you an introduction to the Amiga's special graphics,

sound, and speech features.

We can't possibly include everything here, of course, but

COMPUTE! will be publishing other books and articles for

more advanced programmers which will go into more detail

for the Amiga's special features.

I will assume you have the Amiga BASIC disk and manual

that came with your computer. The manual is a handy ref

erence guide, containing descriptions and syntax of the avail

able commands, and should be used along with this book.

How to Load Amiga BASIC

To begin, you should sit at the Amiga, with the manual and

this book both handy so that you can refer to them as you

practice on the computer. Then follow these six steps to boot

up, or start, your computer:

1. Turn on the monitor and Amiga.

2. At the Kickstart prompt, insert the Kickstart disk.

3. At the Workbench prompt, insert the Workbench disk.

4. When the disk drive light goes out and the screen shows

the Workbench disk icon, insert the Amiga BASIC disk.

Warning: Never remove a disk while the disk drive light is on.

5. Move the mouse arrow pointer onto the Amiga BASIC disk

icon and press the left mouse button twice (called a double

click) to select and open this disk.

6. A window will appear. Move the pointer to the Amiga

BASIC programming icon and select it by double-clicking

the left mouse button.

The arrow pointer will change to the busy symbol and

the disk drive light will go on as Amiga BASIC is loaded.

Next, a blue screen appears with two windows. The main

window is the Output window, in which you will see a

statement about Commodore Amiga BASIC. When you run a

program, the results appear on this window. At the right of

the screen is a List window. When you have a program in

memory, the listing appears in this window. While the pro

gram is running, this window disappears.

Figure 1-1. The Amiga Startup Screen

u

U

u

u

u

u

u

u

u

H

p. Chapter 1

I I You are now ready to start programming. A vertical orange
line (the cursor) will appear in the List window. As you type,

^ the letters are displayed and the cursor moves along to the

I I next position on the screen line. You start off in the List win
dow because that's where you will be entering your programs.

New Terms and Commands

Before we get too involved in programming, here are a few

terms which you will be seeing a lot of. As you work your

way through the book, you may want to flip back to this page

to refresh your memory of what they mean.

REM is the keyword for REMark. This word allows you to

put explanations or comments within a program. The com

puter will essentially ignore these statements. Examples:

REM TITLE

200 REM Draw wheels

CALC: REM Perform calculations

END is a command to stop the program. This command

is optional in a program because the computer will automati

cally stop when it finishes going through the instructions.

Some programmers like to use END before subroutines so the

computer won't accidentally execute subroutines and cause er

rors. A STOP command will also stop execution. Some

computers require the END statement to save the program

properly. In this book END is used as the last statement in

each program so that you can tell when you have entered a

complete program.

LIST shows a listing of your program on the List screen

and is used in command mode (in the Output window). If you

are in the Output window after a program has run, and you

want to see the List window again, you may type the com

mand LIST and press RETURN.

RUN tells the computer to execute the program in mem

ory. One of the functions of a computer is that you can run a

program as many times as you want and the computer won't

mind.

CLS is the command to CLear the Screen (Output win

dow). I often use this command near the beginning of a pro

gram to make sure the screen will be clear. The Amiga

automatically clears the screen when a program is run, but

Chapter 1

you would want to use this command if the program is re- | |
peated or if you want a clear screen between sections of a

program.

NEW is the command to clear, or discard, the old pro- | (
gram and get ready for a new program. In the Output win

dow, type NEW and press RETURN. If you have a program in

memory, a system message will appear asking if you want to j |
save the program. Use the mouse to select your answer. After

a NEW command, both windows clear.

Statements and commands. A statement is an instruction

in the program. A command is a particular kind of statement

which tells the computer to do something.

Logical line. A logical line is an instruction in the pro

gram. It may actually consist of several statements separated

by colons.

Line numbering. Although most computer versions re

quire that each program line start with a line number, Amiga

BASIC does not. You may use numbers or alphanumeric labels

to reference a line, although this is not necessary. Line num

bers are treated as labels by the computer.

Labels. Using descriptive labels can make a program eas

ier to understand. The label is a word followed by a colon,

such as

INIT: REM Initialize variables

You do not use the colon when you reference the line label in

another part of the program, such as

GOSUB INIT

The familiar line numbers are used in this book to sim

plify the descriptions of what is happening in the programs.

The numbers also make it a little easier to keep track of the | j
lines as you enter the programs. Also, if you have the earlier

version of ABasiC or are translating to a different version of

BASIC, line numbers are required. [_J
In computers that require line numbers, it doesn't matter

what order you type the lines in; the computer will arrange

the lines in numeric order. In Amiga BASIC, however, if you

need to insert a line, you must move the cursor to the appro

priate place in the listing and insert the line in its proper spot.

Constants and variables. Two more terms you'll hear a

lot when you are programming are constant and variable. A

constant never changes throughout the program. It may be a

H

Chapter 1
f i

[. I numeric variable (such as 14, 8.5, 20, and so on) or a string

variable, which may contain characters other than numbers

r-n (such as JOHN or 123-4567).

I I A variable is a name that may have its value changed as

the program is running. For example, a numeric variable may

nbe SCORE, which initially starts at zero then increments by

one each time a hit is made in a game. A string variable may

be NAME$, which starts with the value "CHERY", then is

changed to "RICHARD", then later to "CINDY" as the pro

gram is run.

A string variable name ends with a dollar sign. A string

may be the null string (it contains nothing and is represented

as " "), or it may contain as many as 255 characters. All letters

and numerals are valid in variable names, but the name must

not be a reserved word (a command or keyword).

What's a Program?

There are two ways to make the Amiga execute, or perform,

commands. The simplest is to type a command in the Output

window and press RETURN. The computer will execute that

command immediately. But a computer program is a whole se

ries of instructions which tell the computer what to do. To

write a set of instructions without having the computer exe

cute them as soon as you type them in, you need to be in the

List window. The computer keeps track of the things you have

entered and won't execute the instructions until you run the

program.

There are two ways to run a program. One way is to

move from the List window to the Output window by moving

(the mouse arrow to the Output window and pressing the left

mouse button once. Type RUN, then press the RETURN key.

mmm. Another way is to use the menu options which are at the

\ top of the screen. To make the menu selections appear, press

the right mouse button, and you will see the main menu head-

ings—Project, Edit, Run, and Windows. Holding the right but-

I ton down, move the pointer to the Run menu. A secondary

menu appears. Point to Start and release the button.

If you started with the cursor in the List window, it will

I return after the program ends. If the Output window was ac

tive (if the cursor was in that window), the List window will

not reappear when the program is finished. To get the List

j window back, type LIST and press RETURN.

u

.1

Initializing a Disk Lj

If your program is more than a few lines long, you won't want

to type it in each time you use it. Instead, after it is typed in i j

once, you can save it on a disk, then at any later time you can '—'
load it back in to run it.

To save a program, you first need an initialized disk. It's a \ i

good idea to have several initialized disks on hand while '—'
you're programming. If you prefer, you may save a program

on the same disk that Amiga BASIC is on.

To initialize a disk:

1. Turn on the monitor and computer.

2. At the Kickstart prompt, insert the Kickstart disk.

3. At the Workbench prompt, insert the Workbench disk.

4. Select the Workbench disk icon by moving the mouse

pointer to the disk icon and double-clicking the left mouse

button. The Workbench window will appear.

5. Remove the Workbench disk and put in a new disk. An

icon of a disk will appear with the label DF0:BAD.

6. Select the new disk by moving the arrow onto the disk

icon and double-clicking the left mouse button. The white

disk icon will change to black.

7. Press the right mouse button and move to the menu bar.

The three menus are Workbench, Disk, and Special. Under

Disk, select Initialize by releasing the mouse button when

Initialize is highlighted.

8. You will see a message: Please replace volume Workbench in

any drive. Take out the new disk and put in the Work

bench disk.

9. This message then appears: Please insert disk to be initial

ized in drive 0. Take out the Workbench disk and put in))

the new disk. Move the mouse so the arrow points to —'
Continue and press the left mouse button.

10. When you see OK to initialize disk in drive 0 (all data will t j

be erased)?, move the arrow to Continue and press the left *—
mouse button. The drive light will go on and the disk label

on the disk icon will change to DF0:BUSY. When the light } j

goes off, the label changes to EMPTY and you are '—'
finished.

To give your new disk a meaningful name, move the

arrow to the Empty disk icon and press the left mouse but

ton. The disk turns black. Holding the right mouse button

n

r—i Chapter 1

down, move to the menu bar. Under the Workbench menu

choose Rename by releasing the right mouse button when

Rename is highlighted. A line will appear with the title

Empty in it. Move the arrow to the box and press the left

mouse button. Use the arrow keys and BACK SPACE key

to erase Empty, then type the name of your new disk.

Press RETURN when you are finished typing, and the disk

is renamed.

Saving Programs

To save a program on the same disk that you used to load

Amiga BASIC, move the cursor to the Output window by

moving the arrow to the left screen and pressing the left

mouse button. Choose a title for your program and then type

the command

SAVE "TITLE"

and press RETURN. Notice that the title of the window

changes from BASIC to the title you have chosen. Once you

have a title on the window and want to save another copy,

you just need the command SAVE.

To save the program on a different initialized disk, use the

command

SAVE "DF0:TITLE"

DFO: tells the computer to save the program onto whatever

disk is in the disk drive. Without DFO: the computer will ask

you for the disk that you used to load Amiga BASIC.

Another way to save the program is to use the mouse to

move to the menu bar. Under the Project menu, select Save. A

message box appears and asks you to type in a title.

Loading a Program

To use a program that has previously been saved, you need to

load the program. Put the cursor in the Output window. Using

the name of the particular program you want, enter the

command

LOAD "NAME"

If the program is on a different disk from the one you

used to load Amiga BASIC, use the command

LOAD "DF0:NAME"

-Chapter 1

u

If the program you want is filed in a drawer, first specify i)

the name of the drawer. For example, to load one of the

demonstration programs in the BasicDemos drawer when you | ,

are in Amiga BASIC, use the command I 1

LOAD "BasicDemos/music"

or, if it is on a different disk, l I

LOAD "DFO:BasicDemos/music"

When the program is successfully loaded, the listing will ap

pear in the List window.

It is also possible to load and automatically run a program

from a disk by using the command

RUN "NAME"

or

RUN "DF0:NAME"

However, the List window does not clear if this method is

used.

Typing In Programs

Computers are rather particular in understanding what you

type, so the programs in this book must be entered exactly as

listed in order to work properly.

To be safe, you should save your work at last every half-

hour or so. A power failure or a brownout (a dip in voltage)

can be frustrating if it causes you to lose many hours of work.

It's also a good idea to use two separate disks as you save

your programs. It is possible for a power failure to occur (or

the machine to lock up) right as you are saving a new version

over another version, and both versions will be lost. If that

happens, you will be very glad to have a backup copy on an

other disk.

The programs in this book have short lines, even though

a program line may contain as many as 255 characters and

may have several statements separated by colons. Many pro

gram lines could be combined, but shorter lines are easier to

read. If you decide to use longer lines, you should know that

as you are typing a longer line, the List screen will scroll to

the right. You can use the arrow keys to scroll the display left

and right in order to see a different section of the long line.

10

r^ Chapter 1

n

n

Be especially careful in typing DATA statements. Read the

numbers carefully and be sure to copy the commas exactly as

they are shown.

Editing Features

To make changes in your programs, you activate the List win

dow by moving the mouse pointer to the window and clicking

the left button. Then you use the arrow keys or the mouse to

position the cursor in the line you want to change. To use the

mouse, simply move the arrow to where you want the cursor

to be, then press the left button.

To insert characters, place the cursor in the desired po

sition and start typing. For example, enter this program seg

ment into the List window:

10 REM EDIT PRACTICE

20 PRINT "HI"

30 A=3:B=4

40 C=A+B:PRINT C

50 END

Let's say you want to add D=5 to line 30. Move the

cursor to the end of line 30, right after the 4. Now type

:D=5

You do not need to press RETURN (doing so will insert a

blank line). If you want to add another line, you may press

RETURN to get the blank line and then start typing. For

examaple, you may add a line:

35 PRINT D

by pressing RETURN after the 5 on line 30, then entering line

35. You don't have to create the blank line first, but you may

find it less confusing.

Now let's add something in the middle of a line. At line

20, add a name after HI inside the quotation marks. Place the

cursor after the I and before the closing quotation mark. Now

type a space, then a name, such as LEWIS. Notice how the

11

LJ

Chapter 1

LJ

rest of the line moves over as you type. Do not press RE- j J
TURN. Line 20 should now look like this:

20 PRINT "HI LEWIS" 1)

LJ
To delete a character, place the cursor to the right of the

unwanted character, then press the BACK SPACE key. To illus- . .

trate, change HI in line 20 to HELLO. First, place the cursor 1 I
right after the I in HI. Press the BACK SPACE key to erase the

/. Now type ELLO, and line 20 should look like this:

20 PRINT "HELLO LEWIS"

You also can edit a line by using the highlighting feature.

Use the mouse to position the cursor at the point where you

want to start editing. Keep holding the left mouse button

down as you move it, and you'll notice that the background of

the characters changes to yellow. Any characters in the yellow

band will be changed. Release the left mouse button when

you have highlighted all the characters to be changed. Next,

type the correct characters. All the yellow characters will

disappear.

If you make a mistake and highlight more characters that

you mean to, you can cancel the highlighting by releasing the

button and moving the pointer to another line. Click the left

mouse button to shift the cursor out of the highlighted area,

then start over by repositioning the cursor at the start of the

characters you want to highlight.

Let's try an example. Change the name LEWIS in line 20

to DEAN. Use the mouse to move the arrow tip to the L in

LEWIS. Press the left mouse button to start the cursor at the L

Keep holding the left mouse button down and move the arrow \ i

across the name to the S—the name LEWIS will be in black I—J
letters with a yellow background. Now release the mouse but

ton. Type a different name, such as DEAN. As soon as you j ;

press D, all of the yellow letters disappear, and you can finish I—1
typing EAN.

You may use this same method to change just one letter. \ j

For example, suppose you need to change DEAN to JEAN. 1—I

Use the mouse to move the cursor to the D in DEAN. Press

the left mouse button and move it just slightly so only the let- j ,

ter D is highlighted. Now release the mouse button and type i—J
the letter /.

You may use the mouse and the yellow highlighted areas

to delete more than one character at a time as you do with the

BACK SPACE key. Move the mouse to highlight all the charac-

ters to be deleted, then press the BACK SPACE key. For ex

ample, delete the word EDIT in line 10. Use the mouse to

place the arrow at the E in EDIT. Hold the left mouse button

down while you move to the space after EDIT. Now release

the mouse button and press the BACK SPACE key once. The

line should now look like this:

10 REM PRACTICE

You may use this method to delete several lines. Let's say

you want to delete lines 35 and 40. Move the mouse any

where on line 35 and press the left mouse button. Holding the

button down, move downward to line 40. Notice that the

whole two lines will turn yellow. Now let go of the mouse

button. You may press either the RETURN key or the BACK

SPACE key to get rid of both lines. If you use the RETURN

key, you will get one blank line before line 50.

Figure 1-2. Using Highlighting to Edit Lines

13

erl

LJ

LJ

| j

Another way to delete several lines is to activate the Out- { 1

put window (move the arrow to the Output window and click

the left mouse button). Now type the DELETE command with { ,

the specified line numbers or labels you wish to delete, such

as DELETE 300-500, and then move back to the List window.

This method is quick if you have to delete a range of lines

which are not all showing on the screen at once.

u

u

LJ

LJ
14

u

g

u

u

a

u

n

' Chapter 2'

To get started programming, let's try a few PRINT statements.

PRINT is a command to display something on the screen. If

you want to print a message, simply put it in quotation marks:

PRINT "HELLO"

20 PRINT "I like to program."

PRINT "Bye for now."

When you run the program, the messages inside the

quotation marks will be printed on the screen.

You can print actual messages enclosed in quotation

marks, numbers, or variables (either string or numeric). Here

are some example PRINT statements:

PRINT NAME?

PRINT 3

PRINT 5+8

PRINT x

Try writing a program to print a message. Or you can try

drawing pictures using symbols. Program 2-1 is an example.

Program 2-1. Face

REM FACE

CLS

PRINT

PRINT '

PRINT '

PRINT '

PRINT '

PRINT '

PRINT '

PRINT '

PRINT

END

' /

'loo

'I .
•1 o
•\

\"
1

1"
1"
1"

/"

Unless you specify otherwise, each PRINT statement

starts printing on a new line. In the examples above, each

PRINT statement displayed one item per line. To print several

items with one PRINT statement, the items must be separated

by delimiters (semicolons or commas). Program 2-2 illustrates

various forms of printing.

17

\ I

' Chapter 2 ■

u

Figure 2-1. Making a Face with PRINT Statements

\ I

Program 2-2. Printing

10 REM PRINTING

20 CLS

30 PRINT "HELLO"

40 PRINT

50 PRINT "FIRST";"SECOND"

60 PRINT "THIRD ";"FOURTH"

70 PRINT "FIVE","SIX","SEVEN"

80 PRINT 7-5

90 END

Line 10 is a REMark stating the title of the program. Line

20 clears the screen, then line 30 prints one word. Line 40

prints a blank line. Line 50 illustrates that the semicolon prints

the second item right after the first. If you want a space be

tween two items, you need to put the space within the quota

tion marks, as in line 60. Line 70 shows what happens when

you separate items with commas—the next item starts in the

next print region. Line 80 prints a numeric calculation.

Formatting the Display

To get spaces in your printing or to line up the words and

numbers into columns, you can use spaces within quotation

marks, or you can use the TAB and SPC functions. TAB is like

18

u

u

/ J

| (Chapter 2

a typewriter tabulator that indents to a certain column. TAB(n)

will start your printing in column n. SPCfn) will print n num

ber of spaces before your next item.

A PRINT statement can contain several TAB and SPC

functions. Program 2-3 is a short program that numbers the

columns and illustrates the use of TAB and SPC.

Program 2-3. TAB and SPC

10 REM TAB AND SPC

20 CLS

30 PRINT "1234567890123456789012345678"

40 PRINT TAB(5)7"START"

50 PRINT TAB(8);"A1I;SPC(6)7MB"

60 PRINT

70 END

Another useful formatting function is STRINGS, which is

used to print several repeats of the same character along a

line. The syntax is STRING$(n,c;. The first value inside the

parentheses is the number of characters you need, and c is the

ASCII value of the character (or the actual character within

quotation marks). For example, STRING$(10,65) tells the com

puter to print a string of ten letter A's—the ASCII code of A is

65. Another way to write this is STRING$(10,"A").

"Tbird" is longer program that illustrates how to get a

kind of low-resolution drawing by printing symbols. It illus

trates delimiters between printed items, the TAB function to

start printing in a certain column, the SPC function to print a

number of spaces between items, and the STRINGS function

to print strings of characters.

Program 2-4. Tbird

10 REM TBIRD

20 CLS:PRINT

30 PRINT TAB (20);"mMMMMMm";SPC(7);"mMMMMm";SPC(9);"mMMMMMm"

40 PRINT TAB(17);"mMMMMMMMMMM";SPC(6);"<MMMMM";SPC(8);"MMMMMM

MMMMm"

50 PRINT TAB(14);"mMMMMMMMMMMMMMMMm";SPC(6);"MMM";SPC(6);"mMM

MMMMMMMMMMMm"

60 PRINT TAB(12);"mMMMMMMMMMMMMMMMMMMM"7SPC(5);"MMMn7SPC(4);"

mMMMMMMMMMMMMMMMMMm"

70 PRINT TAB(10);"mll;STRING?(54,IIM");"m"

80 PRINT TAB(8);"mmll;STRING?(57,"M");"m"

90 PRINT TAB(6);"mM m"?STRING?(59,"M")?"m"

l00 PRINT TAB(4);"mMM MM ";STRING?(19,"M");"YYMMMMMMMYY";S
TRING$(19,"M");" MM MMm"

110 PRINT TAB(8);"mM m";STRING?(18,"M");SPC(4);"MMMMMMM";SPC

(4);STRING?(18,"M11);11 Mm Mm"

19

■ Chapter 2 ■

120 PRINT TAB(6);"mM mMM mMMM MMMMMMMMM MMMMMMMMM M

MMMMMMMM MMMm MMm Mm"

130 PRINT TAB(9);"mMM mMM MM MMM" ;SPC(8) 7 "MMMMMMMMM11 ;SPC(8
)j"MMM MM MMm MMm"

140 PRINT TAB(13);"mMM mMM mM";SPC(9)7STRING?(11,"M");SPC(9)
; "Mm MMm MMm Mm"

150 PRINT TAB(ll);"mM mMM M"?SPC(10)7"mMMMMMMMMMm"7SPC(10
) 7 "M Mm MMm"

160 PRINT TAB(15)7llmM"?SPC(18)711MMMMMMM"?SPC(17)7llM Mm"
170 PRINT

190 END

Figure 2-2. The Thunderbird Drawn by Tbird

Program

ijmmmmmmmmh m ' mmmmmmmh
ihmom(hihmmmmh m r """"""'

ti inmm 11 uutiMHmitf

m TO H

The LOCATE command provides a more efficient way to

print at a certain place on the screen or to relocate the cursor { (
(rather than printing blank lines and TABulating to a column).

This command is of the form LOCATE r,c where r is the row {

number and c is the column number of the starting position [[

on the screen.

LOCATE 5,10:PRINT "MESSAGE" V (

starts printing MESSAGE in column 10 of the fifth row from

the top. I I

You may wish to highlight your printing by using dif- *—j

ferent colors. COLOR f,b requires a foreground color /and a

20 ^

I \

' Chapter 2'

/ \ background color b, where / and b are numbers from 0 through

3. The default print color is COLOR 1,0, or white on blue. The

blue screen color is color 0, white is 1, black is 2, and orange

| \ is 3 (without defining new screens and palettes). Try this
sequence:

f* COLOR 2,1

PRINT "TRY THIS"

COLOR 3,2:PRINT "AND THIS"

COLOR 0,1:PRINT "Inverse"

COLOR 1,0:PRINT "BACK TO NORMAL"

I \

/ \

The PRINT USING Statement

PRINT USING is a handy statement to use when you want to

format your printing. The Amiga BASIC manual lists all the

different forms and options for printing numbers and strings.

Program 2-5 illustrates different forms. In printing numbers,

the number sign (#) indicates the placement of a numeral.

Program 2-5. Using

10 REM PRINT USING NUMBERS

20 CLS

30 A=123.456

40 B=75

50 C=.2

60 D=-l.35067

70 PRINT USING "###";A

80 PRINT USING M###";B

90 PRINT USING M###";C

100 PRINT USING M###";D

110 PRINT

120 PRINT USING "$$###.##";A,B,C,D

130 PRINT USING "$$###.##-";A#B,C,D

140 PRINT USING "+###.#";A,B,C,D

150 PRINT USING "###-";A,B,C,D

160 PRINT USING "########,.##";1234567.856*

170 PRINT USING "###.# A";A,B,C,D

180 PRINT

190 PRINT USING "**###.##";A

200 PRINT USING "**###.##";B

210 PRINT USING "**###.##";C

220 PRINT USING "**###.##";D

230 PRINT

240 END

H
21

Chapter 2

j 1

Lines 30-60 assign numbers to the variable names A, B, { j
C, and D. Lines 70-100 print the numbers using the format

"###", indicating a whole number of three digits. Notice that

the numbers are rounded and right-justified. \ [
Lines 120-130 illustrate how money amounts are printed.

Two dollar signs precede the # signs. Lines 140-150 print

signed numbers. In line 160, a comma before the decimal in- |_J
dicates that a comma is to be placed every three digits to the

left of the decimal place. In line 170, another character, A, is

printed after the number. It is included in the format within

the quotation marks. Lines 190-220 have two asterisks before

the number, which tells the computer to print leading asterisks

in the field.

Program 2-6 illustrates some of the formatting options for

strings.

Program 2-6. Using Strings

10 REM PRINT USING STRINGS

20 CLS

30 A$="RICHARD"

40 B$="BOB"

50 C$="RANDY"

60 PRINT USING "i";A$,B$,C$

70 PRINT USING "1 ";A$,B$,C$

80 PRINT

90 PRINT USING "W" ;A$,B$,C$

100 PRINT

110 PRINT USING "\ \";A$

120 PRINT

130 PRINT USING "\ \";A$

140 PRINT USING "\ \";B$
150 PRINT USING "\ \";C$

160 PRINT

170 PRINT USING "&";A$,B$,C$

180 PRINT USING "fit ";A$,B$,C$

190 PRINT I /

200 PRINT USING "HIS INITIAL IS l.";A$ J i
210 END

Lines 30-50 define string variables A$, B$, and C$. The |_[
exclamation point in the PRINT USING format indicates that

the first character only of a string is to be printed. Line 60

illustrates this. Line 70 also uses ! to print the first character, | {
but places a space after the character.

Two back slash marks indicate that the first two characters

of a string are to be printed, as in line 90. To print more than I \
the first two characters, insert spaces between the back

slashes. The total number of characters to be printed will be

22 U

Chapter 2

n

the number of spaces between the back slashes plus two for

the back slashes. Line 110 indicates that four characters are to

be printed. Lines 130-150 print ten characters each. Note that

the strings are printed left-justified with spaces in the rest of

the field.

The ampersand (&) indicates printing the whole string no

matter what length. Line 170 uses & to print the three strings.

If you need a space, it can be included. Line 180 uses &, then

a space to separate the names.

With PRINT USING, other characters included within the

quotation marks will be printed as is, so you can combine a ti

tle with a format. Line 200 includes a message, then ! to in

dicate printing the first character of the string A$.

Setting Line Width

WIDTH is used to limit the number of characters that can be

printed per line. If you do not specify a width and print a long

sentence, you can see only part of it on the screen. The other

part is printed, but you must scroll the display to see it. If you

have a specified width within the 80 columns of the screen,

the long sentence will be split and limited to the visible

screen. The size of the characters is not affected. Try this

example.

WIDTH 15

PRINT "THIS IS A SENTENCE OF MORE THAN 15 CHARACTERS."

WIDTH 40

PRINT "NOW TRY THIS SENTENCE TO SEE HOW IT IS PRINTED."

Remember that you can use extra spaces in the printed

messages so that words are not split. For example, in the last

printed message above, insert an extra space before the word

PRINTED.

J i

I)

23

u

g

u

u

a

u

u

g

u

u

a

u

..... Chapter 3

n

Random Numbers

I (One of the functions of a computer is to make random selec
tions. Games may start with screens of random obstacles,

f0mmt quizzes may print questions in a random order, and school ex-

i (ercises may present random activities.

RND is the function to obtain random numers. RND re

turns a random decimal fraction between 0 and 1. To see an

example, type PRINT RND in the Output window and press

RETURN.

Usually, you will prefer to work with whole numbers. The

INT function yields the INTeger, or whole number, portion of

a number. For example, INT(3.21239) is the whole number 3.

Since RND gives a decimal fraction, multiply it by a whole

number, then take the INTeger portion. For example,

PRINT INT(10*RND)

will give a random number from 0 through 9 because RND is

a fraction and INT takes the lower integer (it does not round

the number). Now, if you really want random numbers from 1

through 10 instead of 0 through 9, use INT(10*RND)+l.

In throwing a die, you get numbers from 1 through 6, so

the random number would be INT(6*RND)+1. If you have two

dice, the possibilities are 1 through 12, or INT(12*RND)+1.

Try this program:

Program 3-1. Random

10 FOR C=l TO 5

I (20 PRINT INT(10*RND)+1

30 NEXT C

p"^ 40 END

Run it several times. Notice that you always get the same

pi sequence of random numbers. This can be helpful when you

■--- are testing a program, but most times you will want different

numbers each time. The RANDOMIZE command is used to

;—'! mix up the numbers (technically, this is called using a different

' ■ seed). Add this line to the program and try running it again:

^^ 5 RANDOMIZE

f i

27

u
Chapter 3

The RANDOMIZE command should come before the RND j [
function in the program.

This time when you run the program, the computer asks

you to enter a number. If you enter a different number each j[
time, you will get a different sequence of random numbers.

Most of the time you will want your programs to generate

random numbers without having the user enter numbers. The | j
Amiga has a built-in TIMER which changes automatically. We

can use TIMER as a way to get a different number each time

the program is run. The randomization command becomes

5 RANDOMIZE TIMER

Program 3-2, ''Simple Drill," illustrates a way to write a

simple study drill. As you learn to program, you can improve

this program by adding sound and graphics, or you can use

the general idea to develop a drill about something else.

First, a random number from 0 through 9 is chosen and

called A (line 130). Line 140 chooses another random number,

B, from 0 through 9. Line 150 prints the problem of A+B, and

the next line asks the student for the answer. Line 170 com

pares the student's answer with the correct answer; then the

computer either prints the correct answer or a message that

the student was correct.

A scoring feature is added by using a counter SCORE

which starts at zero and is incremented by one each time the

answer is correct. A FOR-NEXT loop presents ten problems for

the quiz. After the quiz, the student's score is printed. The stu

dent then has the option to try again.

Program 3-2. Simple Drill

10 REM SIMPLE DRILL L—i
20 CLS

30 PRINT "ADDITION DRILL"

40 PRINT:PRINT "You will see a problem." \ j

50 PRINT:PRINT "Type the answer and press <RETURN>." ^_1
60 PRINT:PRINT

70 PRINT "Press any key to start."

80 K$=INKEY$:IF K$="" THEN 80 , ,

90 SCORE=0 I
100 FOR P=l TO 10 "4*s^
110 CLS

120 RANDOMIZE TIMER

130 A=INT(10*RND)

140 B=INT(10*RND)

150 PRINT A7"+";B;

160 INPUT "= ",T

28

n
• Chapter 3 ■

j \

170 IF T=A+B THEN 200

180 PRINT:PRINT "NO, THE TOTAL IS";A+B

190 GOTO 220

200 PRINT:PRINT "CORRECT 1"

210 SCORE=SCORE+1

220 PRINT:PRINT "PRESS <RETURN>"

230 K$=INKEY$:IF K$="" THEN 230

240 IF ASC(K$)<>13 THEN 230

250 NEXT P

260 CLS

270 PRINT "YOUR SCORE WAS"

280 PRINT SCORE;"CORRECT"

290 PRINT "OUT OF 10 PROBLEMS."

300 PRINT:PRINT "TRY AGAIN? (Y/N)"

310 K$=INKEY$:IF K$="Y" THEN 90
320 IF K$o"N" THEN 310

330 PRINT:PRINT "PROGRAM ENDED"
340 END

Outline of

Lines

10

20

30-70

80

90

100

110

120-140

150

160

170

180-190

200-210

220-240

250

260-290

300-320

330-340

Simple Drill Program

Explanation

REMark—title of program.

Clears screen.

Print title and instructions.

Waits for student to press any key.

Initializes SCORE at zero.

Performs quiz of ten problems.

Clears screen.

Randomly choose two numbers A and B.

Prints problem.

Receives student's answer.

Compares student's answer with correct sum.

If answer is incorrect, print correct answer; branch.

If answer is correct, print message; increment score.

Wait for student to press RETURN key.

Goes to next problem.

Clear screen; print score.

Print option to try again; branch appropriately.

End program.

29

u

0

u

• Chapter 4 ■

Programming

You can print all kinds of messages on the screen now, but

eventually you will want the user to type something and the

program to react to it. This is called interactive programming.

One way we get a messsage into the computer within a pro

gram is by using INPUT. For example,

PRINT "Type a number"

INPUT N

The computer will print the message and then wait for the

user to type a number and then press RETURN. The computer

will assign that number to the variable called N. The variable

with the name N is a numeric variable, so a number must be

entered—no symbols or letters.

To accept a string, a string variable name (a variable name

with a dollar sign at the end) must be used with INPUT, such

as INPUT N$. With a string variable, any kind of characters

may be entered, and the variable N$ will equal whatever is

entered.

You can use INPUT in a variety of ways in your program

ming—entering names and addresses for a file, entering num

bers to figure a mortgage payment, entering answers to a math

quiz, entering numbers to be played as a song, typing answers

to a grammar quiz, and so forth.

In the previous example we used a PRINT statement to

tell the user what to enter. The next statement was an INPUT

to receive the answer. If you prefer, you can combine these

statements using an input prompt. After the INPUT command,

put your prompting message in quotation marks. Follow the

last quotation mark with a semicolon, then the variable name:

INPUT "What is the answer";A

This method keeps the input cursor on the same line as

the prompt message. The first method put the input on the

next line. You could also print a message and put a semicolon

33

u

'* u

after the printed message, then use an INPUT command. No

tice that a question mark is automatically printed.

PRINT "Enter a word.";

INPUT W$
u

If you do not want INPUT to print a question mark, you

can use a comma instead of the semicolon after the input

prompt:

INPUT "The answer is ",A

Experiment to get used to the spacing involved.

Illustrations of INPUT

Program 4-1 is a short interactive program that illustrates dif

ferent ways to use INPUT. Line 30 asks a question, then line

40 receives a string variable. Line 70 uses an input prompt

with a semicolon, then a numeric variable. Lines 110 and 120

use the input prompt with a comma.

Program 4-1. Input

10 REM INPUT

20 CLS

30 PRINT "WHAT IS YOUR NAME?"

40 INPUT N$

50 PRINT "HELLO, ";N$

60 PRINT

70 INPUT "HOW OLD ARE YOU";A

80 PRINT A;"IS A GOOD AGE."

90 PRINT

100 PRINT "NOW ADD TWO NUMBERS."

110 INPUT "FIRST NUMBER IS ",B

120 INPUT "SECOND NUMBER IS ",C I j
130 PRINT t~>
140 PRINT "THE SUM IS";B+C

150 END

u
Better Input Control

INPUT receives whatever the user types in before pressing the \J
RETURN key—whether it is one character, several lines of

characters, or nothing. With INPUT, it is easy for the user to (

cause errors by entering something the program is not expect- jj

ing. INKEY$ is a method of receiving input that is more

u

n
- Chapter 4 -

i I pressed. The character pressed is not printed on the screen un
less the program specifies so with a PRINT command. Pro-

**-. gram 4-2 is an example of how INKEY$ is used.

Program 4-2. INKEY$ Example

f—! 10 PRINT "Press a Key."
' t

20 K$=INKEY$:IF K$="" THEN 20

30 PRINT K$

40 END

Line 10 prints the message to press a key. Line 20 checks

to see if a key K$ is pressed. If no key is pressed, then K$ will

be the null string " " and the computer will branch back to

the same line. Only if a key is pressed will the program con

tinue. Line 30 prints the character generated by the keypress.

You may wait until the user presses a certain key before

continuing:

Program 4-3. Wait for a Certain Key

10 PRINT "Press the space bar."

20 K?=INKEY$:IF K$<> " " THEN 20

30 PRINT "Press the return key."

40 K$=INKEY$:IF K$<>CHR$(13) THEN 40

I often use INKEY$ to get a response and ignore all

invalid responses. For example, this routine, "Get a Number/'

^ will ignore all keys that are not numbers:

Program 4-4. Get a Number

■r**i 10 PRINT "Press a number."

"■"*' 20 N$=INKEY$

p_t 30 IF N$<"0" OR N$>"9" THEN 20

' 40 PRINT N$

P! Program 4-5 is a quiz about converting roman numerals

'—'■■ and shows several types of interactive programming com
mands. The user may first choose converting from a roman

H
35

• Chapter 4 ■

u

numeral to an arabic number, converting from an arabic num

ber to a roman numeral, or ending the program. INKEY$ is

used to receive the choice, which must be a number from 1

through 3.

Line 370 receives a numeric answer using INPUT. Line

480 receives an INPUT string variable answer for the roman

numeral. If an answer is incorrect, the correct answer is

printed, then the user must press RETURN to continue the

program. Lines 400-420 use INKEY$ to wait for RETURN to

be pressed; then another problem of the same type is printed.

Outline of

Lines

20

30-60

70-130

140-160

170-200

210-310

320

330-360

370

380-390

400-420

430

440-450

460-470

480

490

500-510

520

530-540

Roman Numerals Program

Explanation

Clears screen.

Print title.

READ from DATA the roman numeral equivalents

for hundreds, tens, and ones.

Print menu screen.

Receive choice and branch appropriately.

Calculate roman numeral equivalent of random

number N.

Branches for second choice.

Print problem.

Receives answer.

If answer is incorrect, print correct answer.

Wait for user to press RETURN.

Prints message for correct answer.

Present option for another problem; branch to menu.

Print problem.

Receives roman numeral.

If answer is correct, branches.

Print correct answer.

Branches to line 400.

Clear screen and end.

Program 4-5. Roman Numerals

10 REM ROMAN NUMERALS

20 CLS

30 PRINT TAB(31);"******************"
40 PRINT TAB(31);"* ROMAN NUMERALS *"
50 PRINT TAB(31);»******************"

60 PRINT:PRINT

70 FOR C=l TO 9

80 READ H$(C),T$(C),S$(C)

36

u

u

H

- Chapter 4 -

H

n

90 NEXT C

100 DATA C,X,I,CC,XX,II,CCC,XXX,III

110 DATA CD,XL,IV,D,L,V,DC,LX,VI

120 DATA DCC,LXX,VII,DCCCLXXX,VIII

130 DATA CM,XC,IX

140 PRINT TAB(24);"CHOOSE: 1 ROMAN TO ARABIC"

150 PRINT TAB(33);"2 ARABIC TO ROMAN"

160 PRINT TAB(33);"3 END PROGRAM"

170 A$=INKEY$

180 IF A$<"1" OR A$>"3" THEN 170

190 RANDOMIZE TIMER

200 ON VAL(A$) GOTO 210,210,530

210 CLS:R$=""

220 N=INT(1999*RND)+1:NN=N

230 IF N<1000 THEN 250

240 R$="M":N=N-1000

250 IF N<100 THEN 280

260 NR=INT(N/100)

270 R$=R$+H$(NR):N=N-NR*100

280 IF N<10 THEN 310

290 NR=INT(N/10)

300 R$=R$+T$(NR):N=N-NR*10

310 IF N>0 THEN R$=R$+S$(N)

320 IF A$="2" THEN 460

330 PRINT "GIVEN THE ROMAN NUMERAL"

340 PRINT:PRINT:PRINT R$

350 PRINT:PRINT:PRINT

360 PRINT "WHAT IS THE CORRESPONDING NUMBER?"
370 INPUT A

380 IF A=NN THEN 430

390 PRINT:PRINT "THE NUMBER IS ";NN

400 PRINT:PRINT "PRESS <RETURN>"

410 E$=INKEY$

420 IF E$»CHR$(13) THEN 210 ELSE 410

430 PRINT:PRINT "CORRECT1":PRINT

440 PRINT:PRINT "ANOTHER PROBLEM?":PRINT
450 GOTO 140

460 PRINT "GIVEN THE NUMBER";NN

470 PRINT:PRINT "TYPE THE CORRESPONDING ROMAN NUMERAL."
480 INPUT E$:E$=UCASE$(E$)

490 IF E$=R$ THEN 430

500 PRINT:PRINT "THE CORRECT NUMBER IS"
510 PRINT R$

520 GOTO 400

530 CLS

540 END

H

37

u

u

n

r—1 Chapter 5
\ y

H

The Amiga will execute the lines in a program in listed order

unless the program tells the computer otherwise. In this chap-

p^ ter, we will look at several ways you can transfer control to a

^ different place in your programs and discuss the advantages

for doing so.

The GOTO Statement

GOTO is a statement that tells the computer to GO TO a dif

ferent line (as in GO DIRECTLY TO JAIL, DO NOT PASS

GO). In Amiga BASIC, you can go to a line by specifying a

line number or a line label. If you use an alphanumeric label,

the label in the line must have a colon after it, but the GOTO

statement does not use the colon after the label:

10 GOTO SAMPLE

SAMPLE: GOTO 10

You can transfer to a previous line, a later line, or even

put the computer in a loop going to the same line.

Program 5-1. GOTO

10 REM GOTO

20 PRINT "ONE"

30 GOTO 60

40 PRINT "TWO%

§ 50 GOTO 80

60 PRINT "THREE11"

? 70 GOTO 40

80 PRINT "FOUR"-

90 GOTO 90 * "N

v x—y
100 END

"j Program 5-1 does not print the words in the order shown
in the program because the GOTO commands transfer to dif-

ferent lines. The arrows show how the program is executed.

!

41

• Chapter 5

This program does not end because the computer keeps going t_J
to line 90. Press CTRL-C (Break) to stop execution.

Using GOTO to create loops can create lots of printing ef

fects with short programs: Lj'

Program 5-2. Loop ,

10 REM LOOP ^C^

20 CLS

30 PRINT "HELLO"

40 GOTO 30

50 END

Keep in mind that GOTO commands can make a program

hard to follow and less efficient. If you have to debug a pro

gram with many GOTO commands, you pretty much have to

play computer to follow the logic, tracing each GOTO to the

indicated line.

FOR-NEXT Loops

The FOR-NEXT statement creates a loop that is executed a cer

tain number of times, then the program continues.

Program 5-3. FOR1

10 REM FOR1

20 FOR T=l TO 5

30 PRINT "HI"

I |
40 NEXT T i^J

50 END

(I

The variable T (use any name you wish) is a counter. Line

20 says to start T at the value 1, then go until T is the limit of

5. Line 30 prints HI. Line 40 says NEXT T, which increments

T by one. The computer checks to see whether T has reached

the limit of 5. If not, the program transfers to the statement di

rectly following the FOR statement. This process continues un

til the limit is exceeded, then the program continues with the

line after NEXT. In this example, T will be 1, 2, 3, 4, and 5

42

n

pi Chapter 5

! f when HI is printed. When T is 6, the loop finishes and the
program ends.

^w Program 5-4 is another example of a FOR-NEXT loop.

Program 5-4. FOR2

p-^ 10 REM FOR2

> 20 FOR C=0 TO 9

30 PRINT C,C*C

40 NEXT C

50 END

The variable C starts at 0 and goes to 9. In this example,

the counter is actually used within the loop.

The counter does not have to be incremented by one. You

can specify a STEP size. Suppose you want to count by twos:

Program 5-5. FOR3

10 REM FOR3

20 FOR N=0 TO 10 STEP 2

30 PRINT N

40 NEXT N

50 END

The STEP size can be a fraction:

Program 5-6. FOR4

j' 10 REM F0R4

20 FOR X=l TO 3 STEP .5

r1"^ 30 PRINT X

40 NEXT X

^ 50 END
7

The STEP size can be negative, which would be decreas
ing the index:

43

u
Chapter 5

10 REM F0R5

20 FOR B=10 TO 0 STEP -1 I j

30 PRINT B

40 NEXT B 1 |

50 END

Any of the numbers in the FOR statement can be vari

ables. An example is

FOR X=A TO B STEP S

There is no limit to how long your FOR-NEXT loop is, but

you do need to make sure there is a NEXT statement to corre

spond with each FOR statement. You can also have nested

loops—again, make sure the FORs and NEXTs are matched.

Program 5-8. FOR6

10 REM F0R6

20 FOR A=l TO 3

30 FOR B=l TO 5

40 PRINT A;"*";B;1I = II;A*B

50 NEXT B

60 PRINT

70 NEXT A

80 END

Subroutines

If you want the program to perform the same series of steps in

different places, there's no need to enter identical lines of code

several times in the program. You can put the process in a

subroutine and then use GOSUB to perform the routine each

time you want it.

GOSUB is similar to GOTO except that GOSUB goes out

to a subroutine, then returns. GOSUB is followed by a line

number or line label, and when the program comes to the

GOSUB statement, it will branch to the specified line, just as it

44

u

n

Chapter 5
n

n

n

does with GOTO. However, with GOSUB the computer will

remember where it branched from. When it gets to the com

mand RETURN in the subroutine, it will branch back to the

first line after the GOSUB statement.

Be sure that every GOSUB is matched with a RETURN.

n Otherwise, your program will stop running and an error mes

sage will be displayed. You can have GOSUBs within other

GOSUBs—each RETURN branches back to the GOSUB it

most recently executed.

Program 5-9 illustrates the use of subroutines by drawing

dice. Five random numbers are chosen for dice, and the five

dice are drawn. Subroutines are used to draw the dots. Lines

170-180 draw one dot. Lines 190-210 draw two dots. Lines

220-230 are the subroutine to draw three dots by first using

the one-dot subroutine, then the two-dot subroutine.

Lines 240-270 draw four dots by first using the two-dot

subroutine, then drawing the other two dots. Lines 280-290

draw five dots by using the four-dot subroutine (which in turn

uses the two-dot subroutine) and the one-dot subroutine.

Lines 300-330 draw six dots by using the four-dot subroutine

and then drawing two more dots.

Program 5-9. Dice

10 REM DICE

20 CLS

30 X=30:Y=30:R=6

40 RANDOMIZE TIMER

50 FOR 1=1 TO 5

60 D=INT(6*RND)+1

70 LINE (X,Y)-(X+80,Y+40),1,BF

80 ON D GOSUB 150,170,200,220,260,280

90 X=X+120

100 NEXT I

110 LOCATE 15,20:PRINT "PRESS 1 TO TOSS"

120 LOCATE 16,20:PRINT "PRESS 2 TO END"

130 E$=INKEY$:IF E$="l" THEN 20

140 IF E$="2" THEN 320 ELSE 130

150 CIRCLE (X+40,Y+20),R,2

160 RETURN

170 CIRCLE (X+20,Y+10),R,2

180 CIRCLE (X+60,Y+30),R,2

190 RETURN

200 GOSUB 150:GOSUB 170

210 RETURN

220 GOSUB 170

230 CIRCLE (X+20,Y+30),R,2

240 CIRCLE (X+60,Y+10),R,2
250 RETURN

260 GOSUB 220:GOSUB 150

270 RETURN

45

LJ

• Chapter 5 , .

280 GOSUB 220

290 CIRCLE (X+20,Y+20),R,2 ! L
300 CIRCLE (X+60,Y+20),R,2

310 RETURN

320 CLS I I
330 END LJ

Conditional Branching I |
Conditional branching is what makes a computer seem intelli

gent. Actually, of course, the programmer has to tell the com

puter what to do. IF-THEN statements direct the computer to

branch a certain way if a certain condition is true. Amiga BASIC

also allows ELSE, which directs a branch if the condition is

not true.

The basic form is IF expression THEN clause ELSE clause,

where expression is a numeric expression or a condition to be

tested and clause can be either another BASIC command or a

line number or label.

IF SCORE=10 THEN 370

tells the computer to check whether the variable SCORE is

equal to 10. If so, the program branches to line 370. If not, the

program ignores everything after THEN and simply goes to

the next line.

IF SCORE=10 THEN 370 ELSE 180

will branch to line 370 if the expression SCORE=10 is true or

it will branch to line 180 if the expression is false.

Commands also are allowed after THEN and ELSE, and

there can be several commands separated by colons:

IF SCORE=10 THEN PRINT "YOU WIN":G=G+1:GOTO 470

ELSE GOTO Play M

A numeric expression containing any of the arithmetic op

erators can be used, or string expressions can be compared. If

a condition is false, the value of the expression is 0; if it is [^J
true, the value is —1. These are acceptable expressions:

200 IF A THEN 250 j I

IF N$<>"ZZZ" THEN GOTO 500

IF LEN(P$)>3 THEN PRINT P$, j

500 IF B/D<C*A THEN A=A+1

600 IF X-Y THEN Z=10 ELSE Z=5

46

f 1

,—», Chapter 5 ■

Logical operators also can be used. The words accepted

are NOT, AND, OR, XOR, EQV, and IMP. (See your manual

for a detailed discussion of these operators.) For example,

n

700 IF A$<"1" OR A$>"4" THEN 650

IF A=10 AND N$="M" THEN PRINT N$

ON-GOTO and ON-GOSUB

ON-GOTO and ON-GOSUB are conditional transfer state

ments. They can take the place of several IF-THEN statements.

Let's say the user has a choice, and then that choice is tested:

IF CH=1 THEN GOTO 1000

IF CH=2 THEN GOTO 2000

IF CH=3 THEN GOTO 3000

IF CH=4 THEN GOTO 4000

Since the value of CH can be 1, 2, 3, or 4, an ON-GOTO

statement can be used to write this sequence more simply:

ON CH GOTO 1000,2000,3000,4000

This statement says that, depending on the value of CH, the

program is to branch to certain lines. If CH is 1, go to the first

line number; if CH is 2, go to the second line number; and so

forth.

ON-GOSUB is the same idea, but the program will go to

a subroutine, then return to the next statement after the ON-

GOSUB call.

ON X+l GOSUB 250,250,300,400,650

This statement checks the value of X+l. If it is 1, the com-

puter goes to subroutine 250; if it is 2, GOSUB 250; if it is 3,

GOSUB 300; if it is 4, GOSUB 400; and if it is 5, GOSUB 650.

Applying What We've Learned

|"—1 Program 5-10, "Math Competency," illustrates the use of pro-

' ' gram transfer in several forms. GOTO is used to branch past
several lines in the program. FOR-NEXT loops are used to

n
47

LJ

Chapter 5 c

U

read in data (more about DATA statements in the next chap- | j
ter) and to print similar lines in some of the problems. GOSUB

is used to call a subroutine that is used in several places. ON-

GOTO is used to branch to seven different lines after a choice j \
from the main menu is made. IF-THEN statements are used in

a variety of ways to print the problems.

This program presents problems which are similar to j j
problems on a mathematics competency examination such as

standard achievement tests. Although these tests are designed

for high-school students, the mathematics are at an ele

mentary-school level. The problems involve addition, mul

tiplication, and division.

Random names and numbers are used in the problems.

The computer generates problems in word form, or story prob

lems. If an answer is incorrect, the correct answer is given,

usually with an explanation, and another problem is pre

sented. If the answer is correct, the program continues or gives

the student the option of having a similar problem.

Figure 5-1. An Interactive Program—Math

Competency

Jot earns S 1,51 pep houp,
le wfks 11 hours per week.
Ho* wtch will he earn in 28 veeks?

m%% i io m mm
2 10 CQNIKilE

LU

u

48

n

n

n

n

n

n

1 Chapter 5

There are six basic types of problems:

1. Buying Items. A list of items and their prices is printed.

What would it cost to buy all the items on the list? If you

had a certain amount of money, which two items could you

buy?

2. Sales Tax. If you buy a list of items with a certain sales tax

rate, what is the total cost?

3. Earning Money. A person earns a certain amount per hour

and works a given number of hours per week. What are the

total earnings per week or for a given number of weeks?

4. Weekly Expenses. A list of expenses for one week is given.

What is the total expense for the week? What would be the

total for several weeks?

5. Saving Money. An item costs a certain amount of money. If a

person saves for a given number of weeks, how much per

week must be saved?

6. Averages. Several numbers in a category are listed. What is

their average?

Lines 80 to 480 use DATA statements and READ state

ments in FOR-NEXT loops to define arrays which hold the

possible names, number limits, and phrases for the problems.

(Arrays and related commands will be covered in the next

chapter.) The variable names have numbers which relate to

the section of the program in which they are used. Each array

of names has both girls and boys, and the subscripts are used

later to determine whether the feminine or masculine pronoun

is needed.

To determine prices for items, the minimum values are

read in from the data, and the computer adds a random num

ber within limits to that base minimum number.

PRINT USING is a helpful command to print money or to

line up columns and to make sure zero amounts are printed in

(—) the columns.

-] Random numbers are used to choose the wording of the
problems. Either different phrases in arrays are printed, or

f—] branching with IF-THEN statements determines the printing.

49

' Chapter 5

Outline of Math Competency Program

Lines Explanation

12-17 DIMension arrays for variables.

20 Branches past subroutine.

30-50 Subroutine to wait for student to press RETURN.

60-70 Clear screen; print title.

80-480 Define elements of arrays for possible names, num

bers, and phrases used in writing problems.

480-610 Print main menu screen and branch.

620-840 First problem for Buying Items.

850-1160 Second problem for Buying Items.

1170-1400 Problem for Sales Tax.

1410-1610 First problem for Earning Money.

1620-1830 Second problem for Earning Money.

1840-2010 Third problem for Earning Money.

2020-2070 Print options; branch.

2080-2360 Problem for Weekly Expenses.

2370-2570 Problem for Saving Money.

2580-3200 Problem for Averages.

3210-3220 Clear screen; end.

u

u

u

u

Program 5-10. Math Competency

10 REM MATH COMPETENCY

12 DIM J1$(3,5),J1(3,5,2),N1$(6)

13 DIM T2$(4),B2$(4,4),B2(4,4)

14 DIM N3$(5),J3$(5),T3$(5)

15 DIM N4$(6),B4$(3),A4$(3,5)

16 DIM N5$(6),A5(3),B5(3),M5(3),F5(3)

17 DIM N6$(8)

20 GOTO 60

30 PRINTtPRINT "PRESS <RETURN>"

40 E$*INKEY$:IF E$<>CHR$(13) THEN 40

50 RETURN

60 CLS

70 PRINT TAB(7);"** MATH COMPETENCY **"

80 FOR A=l TO 3:FOR C=l TO 5

90 READ J1$(A,C),J1(A,C,1),J1(A,C,2)

100 NEXT C,A

110 DATA PENCIL,8,15#ERASER,2,10,NOTEBOOK,35,99,RULER,29,49

120 DATA PAPER,59,90,DOLL,249,599,BALL,49,89,TRUCK,100,150,GA

ME,270,500

130 DATA MODEL,300,700,CANDY,20,50,MEAT,123,425,FRUIT,24,50

140 DATA CHIPS,100,257,BREAD,100,179

150 FOR A=l TO 6:READ N1$(A):NEXT A

160 DATA Laura,Cindy,Chery,David,Randy,Brett

170 H$(1)="PENCIL AND ERASER"

180 H$(2)="BALL AND TRUCK"

190 H$(3)="CANDY AND FRUIT"

200 REM

210 FOR C=l TO 4:READ T2$(C)

50

LJ

I !

u

LJ

LJ

n

n

n

' Chapter 5

n

n

220 FOR A=l TO 4:READ B2$(C,A) ,B2(C,A)-.NEXT A,C

230 DATA HARDWARE,HAMMER,15,PLIERS,3,SAW,6,NAILS,1

240 DATA CLOTHES,BELT,4,TIE,5,SHIRT,6,PANTS,20

250 DATA TOYS,BALL,1,CAR,2,GAME,5,DOLL,6

260 DATA SUPPLIES,PAPER,4,CLIPS,1,PENCILS,1,ENVELOPES,2

270 REM

280 FOR A=0 TO 5:READ N3$(A),J3$(A),T3$(A):NEXT A

290 DATA Sam,doing odd jobs.,Paul,Joe,mowing lawns.,Jack,Bob,

tending children.

300 DATA Mark,Ann,running errands.,Jane,Sue,doing housework.

310 DATA Judy,Kim,delivering ads.,Dawn

320 REM

330 FOR A=l TO 3:READ N4$(A),N4$(A+3),B4$(A)

340 FOR C=l TO 5:READ A4$(A,C):NEXT C

350 NEXT A

360 DATA Lena,Andy,is going to,Camp Beaver,Camp fee,Horse rid

ing

370 DATA Tennis lessons,Craft supplies,Laura,Bill,will atten

d,Sports Clinic

380 DATA Tuition,Uniform fee,Equipment fee,Special events

390 DATA Jodi,John,will stay at,Logan Canyon,Camp fee

400 DATA T-shirts,Activity fee,Supplies

410 REM

420 FOR C=l TO 6:READ N5$(C) :NEXT C

430 DATA Jenny,Angie,Chris,Brent,Grant,Chuck

440 FOR C=l TO 3:READ A5$(C),B5(C),M5(C),F5(C):NEXT C

450 DATA bike,80,5,7,stereo,90,5,14,computer,100,10,10
460 REM

470 FOR C=l TO 8:READ N6$(C):NEXT C

480 DATA Sue,Pat,Rita,June,Bob,Ron,Kent,Mike
490 REM

500 PRINT:PRINT:PRINT "CHOOSE:"

510 PRINT:PRINT TAB(8);"1 BUYING ITEMS"

520 PRINT:PRINT TAB(8);"2 SALES TAX"

530 PRINT:PRINT TAB(8);"3 EARNING MONEY"

540 PRINT:PRINT TAB(8);"4 WEEKLY EXPENSES"

550 PRINT:PRINT TAB(8);"5 SAVING MONEY"

560 PRINT:PRINT TAB(8);"6 AVERAGES"

570 PRINT:PRINT TAB(8);"7 END PROGRAM"

580 RANDOMIZE TIMER

590 E$=INKEY$

600 IF E$<"1" OR E$>"7" THEN 590

610 ON VAL(E$) GOTO 630,1180,1420,2090,2380,2590,3210

620 REM BUYING ITEMS

630 CLS:PRINT "Given this price list:":PRINT

640 A=INT(3*RND+1):TP=0
650 FOR C=l TO 5:D=J1(A,C,2)-J1(A,C,1)

660 P=J1(A,C,1)+INT(D*RND+1):TP=TP+P:XX(C)=P

670 PRINT TAB(4);J1$(A,C);TAB(20);

680 PRINT USING "##.##";P/l00:NEXT C

690 F=INT(2*RND+1)

700 IF F=2 THEN 740

710 PRINT:PRINT "How much will it cost to buy all"

720 PRINT "the items on the list?"

730 GOTO 770

740 N=INT(6*RND+1)

750 PRINT:PRINT N1$(N);" wants to buy everything on the"

760 PRINT "list. What would the total cost be?"

770 INPUT "$",X

51

' Chapter 5

L)

U

780 IF ABS(X-TP/100)<.001 THEN 830 i)

790 PRINT:PRINT "ADD ALL FIVE NUMBERS." j j

800 PRINT "THE TOTAL IS ";

810 PRINT USING "$##.##";TP/100

820 GOSUB 30:GOTO 630 , .

830 PRINT:PRINT "CORRECT1" j I
840 GOSUB 30 { '
850 CLS:PRINT:PRINT

860 FOR C=l TO 5:PRINT TAB(4);J1$(A,C);TAB(20);

870 PRINT USING "##.##";XX(C)/100:NEXT C

880 PRINT

890 IF F=l THEN PRINT "If you could only ";:GOTO 910

900 PRINT "If ";N1$(N);M could only ";

910 IF A=l THEN M=INT(5*RND+25):GOTO 940

920 IF A=2 THElij M=INT(36*RND) +239:GOTO 940
930 M=INT(18*RND+100)

940 PRINT USING "spend $##.##";M/100
950 PRINT "which of these pairs of items on the"

960 IF F=l THEN PRINT "list could you buy?":GOTO 990

970 IF N<4 THEN PRINT "list could she buy?":GOTO 990

980 PRINT "list could he buy?"

990 R=INT(4*RND+1):PRINT:PRINT

1000 FOR V=l TO 4:IF V=R THEN S$(V)=H$(A):GOTO 1060

1010 X=INT(2*RND+4):S$(V)=J1$(A,X):X=INT(3*RND+1)

1020 S$(V)=S$(V)+" AND "+J1$(A,X)

1030 IF V=l THEN 1060

1040 FOR Vl=l TO V-1:IF S$(V1)=S$(V) THEN 1010

1050 NEXT VI

1060 PRINT CHR$(64+V);" "+S$(V):NEXT V

1070 E$=INKEY$:IF E§="" THEN 1070

1080 PRINT E$:IF ASC(E$)<>64+R THEN 1140

1090 PRINT:PRINT "CORRECT11'

1100 PRINT:PRINT "TRY AGAIN? (Y/N)"

1110 E$=INKEY$:IF E$="Y" OR E$="y" THEN 630

1120 IF E$<>"N" AND E$<>"n" THEN 1110

1130 CLS:GOTO 500

1140 PRINT:PRINT "THE TOTAL OF THE TWO ITEMS MUST BE"

1150 PRINT USING "LESS THAN $##.##";M/100

1160 GOTO 1100

1170 REM SALES TAX

1180 CLS

1190 A=0:T=INT(4*RND+2)

1200 PRINT "Sales tax on the following items"

1210 PRINT "is";T;"per cent, or $.0";RIGHT$(STR$(T),1)

1220 PRINT "for each dollar spent." |
1230 PRINT "What is the total cost?":PRINT ' '

1240 I=INT(4*RND+1):PRINT TAB(5);T2$(I):PRINT

1250 FOR J=l TO 4:P=B2(I,J)+.25*(INT(4*RND))

1260 PRINT B2$(I,J),:PRINT USING "$###.##";P:A=A+P:NEXT J I)
1270 PRINT " ": PRINT i i
1280 INPUT " TOTAL COST = $",B

1290 PRINT:TX=l+T/l00:TA=A*TX+.005
1300 IF ABS(B-TA)<.01 THEN 1360

1310 PRINT:PRINT "ADD COSTS FOR TOTAL."

1320 PRINT "PRICE OF ITEMS = ";:PRINT USING "$###.##";A

1330 PRINT "MULTIPLY BY ";T/100;" FOR TAX, THEN ADD.":PRINT

1340 PRINT USING "TOTAL COST = $###.##";TA ,

1350 GOSUB 30:GOTO 1180)

1360 PRINT:PRINT "CORRECT!" i)

52 u

n

n

1370 PRINT:PRINT "TRY AGAIN? (Y/N)m
1380 E$=INKEY$:IF E$="Y" OR E$="y" THEN 1180

1390 IF E$<>"N" AND E$<>"n" THEN 1380

1400 CLS:GOTO 500

1410 REM EARNING MONEY

1420 CLS

1430 N=INT(6*RND):H=8+INT(11*RND)

1440 P=1+.25*INT(10*RND)

I—•? 1450 PRINT N3$(N);" works";H;"hours per week."

/ | 1460 IF N<3 THEN PRINT "He earns ";:GOTO 1480
1470 PRINT "She earns ";

1480 PRINT USING "$##.## per hour.";P

1490 IF N<3 THEN PRINT "How much does he earn";:GOTO 1510

1500 PRINT "How much does she earn";

1510 PRINT " in a week?"sPRINT

1520 INPUT "$",D:D1=P*H

1530 IF ABS(D-D1)<.001 THEN 1570

1540 PRINT:PRINT "MULTIPLY";H;"HOURS BY";:PRINT USING "$##.##

PER HOUR.";P

1550 PRINT:PRINT USING "THE ANSWER IS $###.##";D1

1560 GOSUB 30:GOTO 1420

1570 PRINT:PRINT "CORRECTl"

1580 PRINT:PRINT "PRESS 1 TO TRY AGAIN"

1590 PRINT TAB(7);"2 TO CONTINUE"

1600 E$=INKEY$:IF E$="l" THEN 1420

1610 IF E$<>"2" THEN 1600

1620 CLS

1630 N=INT(5*RND):H=INT(ll*RND+8)

1640 P=1+.25*INT(10*RND)

1650 PRINT N3$(N);" earns ";:PRINT USING "$##.## per hour.";P

1660 IF N<3 THEN PRINT "He works";-.GOTO 1680

1670 PRINT "She works";

1680 PRINT H;"hours per week."

1690 IF N<3 THEN PRINT "How much will he earn in";:GOTO 1710

1700 PRINT "How much will she earn in";

1710 W=INTU9*RND+2):PRINT W; "weeks?" :PRINT
1720 INPUT "$",D

1730 D1=P*H*W:IF ABS(D-D1)<.001 THEN 1790

1740 PRINT:PRINT "MULTIPLY";H;"HOURS BY";

1750 PRINT USING "$##.## PER HOUR.";P

1760 PRINT "THEN MULTIPLY BY";W;"WEEKS."
1770 PRINT USING "THE ANSWER IS $###.##";D1
1780 GOSUB 30:GOTO 1620

I"**] 1790 PRINT:PRINT "CORRECTi"
(. J 1800 PRINT:PRINT "PRESS 1 TO TRY AGAIN"

1810 PRINT TAB(7);"2 TO CONTINUE"

1820 E$=INKEY$:IF E$="l" THEN 1620

(-—> 1830 IF E$<>"2" THEN 1820

i \ 1840 CLS
1850 J=INT(5*RND):T=INT(5*RND)

1860 P=1+.25*INT(10*RND)
r-«, 1870 W=INT(8*RND)+2

f \ 1880 PRINT T3$(T);" earned ";

1890 PRINT USING "§##.## last week";P:PRINT J3$(J):PRINT
1900 IF T<3 THEN PRINT "If he";:GOTO 1920
1910 PRINT "If she";

I ' 1920 PRINT " earned this amount every week,"

f... ' 1930 PRINT "what would the total income be"
1940 PRINT "for";W;"weeks?":PRINT

53

LJ
■ Chapter 5

1950 INPUT H$",D j
1960 D1=P*W:IF ABS(D-D1)<.001 THEN 2010 i)
1970 PRINT:PRINT USING "MULTIPLY $##.## PER WEEK";P

1980 PRINT "BY";W;"WEEKS."

1990 PRINT:PRINT USING "THE ANSWER IS $###.##";D1 - \ j

2000 GOSUB 30:GOTO 1840 [\
2010 PRINT:PRINT "CORRECTI"

2020 PRINT:PRINT "PRESS 1 TO TRY AGAIN"
2030 PRINT TAB(7);"2 START 'EARNING MONEY1 ' OVER" { .

2040 PRINT TAB(7);"3 RETURN TO MAIN MENU SCREEN" [I
2050 E$=INKEY$:IF E$="l" THEN 1840

2060 IF E$="2" THEN 1420

2070 IF E$<>"3" THEN 2050 ELSE CLS:GOTO 500

2080 REM WEEKLY EXPENSES

2090 CLS

2100 I=INT(3*RND+1)

2110 PRINT "Here are the expenses for one week at":PRINT A4$(

1,1);"."-.PRINT

2120 P=10*INT(5*RND+l)+40

2130 PRINT A4$(I,2);TAB(20);:PRINT USING "$##.##";P:T=P

2140 P=.25*INT(12*RND+l)+2.75

2150 PRINT A4$(I,3);TAB(20);:PRINT USING "$##.##";P:T=T+P

2160 P=.5*INT(8*RND+1)+1.5

2170 PRINT A4$(I,4);TAB(20);:PRINT USING "$##.##";P:T=T+P

2180 P=.5*INT(5*RND+l)+.5

2190 PRINT A4$(I,5);TAB(2Q);:PRINT USING "$##.##";P:T=T+P

2200 PRINT:INPUT "Total expenses for one week = $",D

2210 IF ABS(D-T)<.001 THEN 2230

2220 PRINT:PRINT USING "ADD THE NUMBERS TO GET TOTAL $###.##"

;T:PRINT

2230 W=INT(7*RND+2)

2240 PRINT:PRINT N4$(INT(6*RND+1));" ";B4$(INT(3*RND+1));" ";

A4$(I,1)

2250 PRINT "for";W;"weeks. What will it cost?"

2260 INPUT "$",0

2270 IF ABS(D-W*T)<.001 THEN 2320

2280 PRINT:PRINT "MULTIPLY TOTAL EXPENSE PER WEEK"

2290 PRINT "TIMES";W;"WEEKS."

2300 PRINT USING "$###.## * # = $*##.##";T,W,T*W

2310 GOSUB 30:GOTO 2090

2320 PRINT:PRINT "CORRECT!"

2330 PRINT:PRINT "TRY AGAIN? (Y/N)"
2340 E$=INKEY$:IF E$=MY" OR E$="y" THEN 2090

2350 IF E$o"N" AND E$o"n" THEN 2340 i)

2360 CLS:GOTO 500 J j
2370 REM SAVING MONEY

2380 CLS

2390 R6=INT(6*RND+1) , ,

2400 PRINT N5$(R6);" wants to buy a "; I
2410 R3=INT(3*RND+1):PRINT A5$(R3);"." * '
2420 P=B5(R3)+M5(R3)*INT(F5(R3)*RND+1)

2430 PRINT USING "It will cost $###.##. ";P

2440 IF R6>=4 THEN E$="he" ELSE E$="she"

2450 W=10*INT(4*RND+1)

2460 PRINT "If ";E$;" saves for";W;"weeks,"

2470 PRINT "how much will ";N5$(R6)M need to save"

2480 PRINT "each week?":PRINT

2490 INPUT "$",D:IF ABS(D-P/W)<.01 THEN 2530

2500 PRINT:PRINT USING "TOTAL COST $###.## DIVIDED BY ##";P,W

• Chapter 5

2510 PRINT USING "WEEKS = $###.##"jP/W
2520 GOSUB 30-.GOTO 2380

2530 PRINT-.PRINT "CORRECTl"

2540 PRINTtPRINT "ANOTHER PROBLEM? (Y/N)m
2550 E$=INKEY$:IF E$="Y" OR E$="y" THEN 2380

2560 IF E$<>"N" AND E$o"n" THEN 2550

2570 CLS:GOTO 500

2580 REM AVERAGES

2590 CLS

2600 Z=INT(3*RND+1):T=0

2610 ON Z GOTO 2620, 2710, 2810

2620 PRINT "A bowling team had the following scores for one g

ame.":PRINT

2630 X=INT(2*RND)

2640 FOR 1=1 TO 4

2650 S=115+INT(40*RND):T=T+S

2660 PRINT N6$(I+X*R);TAB(8);S

2670 NEXT I

2680 PRINT:PRINT "What was the team's average score"

2690 PRINT "for the game?"

2700 N=4:F=10:GOTO 2910

2710 PRINT "A basketball team won the following"

2720 PRINT "number of games.":PRINT

2730 N=4+INT(3*RND+1):Y=1983-N

2740 FOR 1=1 TO N

2750 S=50+INT(20*RND):T=T+S:Y=Y+1

2760 PRINT Y;TAB(9);S

2770 NEXT I

2780 PRINT:PRINT "What was the average number of games"

2790 PRINT "per year the team won during these years?"

2800 F=6:GOTO 2910

2810 PRINT "A fullback gained the following"

2820 PRINT "number of yards in several football games."

2830 N=4+INT(3*RND+1)

2840 FOR 1=1 TO N

2850 S=60+INT(30*RND):T=T+S

2860 PRINT TAB(5);S

2870 NEXT I

2880 PRINT:PRINT "What was the fullback's average"

2890 PRINT "number of yards gained per game?"

2900 F=10

2910 A=INT(T/N+.5):PRINT

2920 C=INT(4*RND+1):ON C GOTO 2930,2960,3010,3050

2930 PRINT "A ";A

2940 FOR 1=1 TO 3:A=A+INT(F*RND+1)sPRINT CHR$(65+I)+" ";A:NEX

T I

2950 GOTO 3080

2960 PRINT "A ";A-INT(F*RND+1)

2970 PRINT "B ";A

2980 A=A+INT(F*RND+1):PRINT "C ";A

2990 A=A+INT(F*RND+1):PRINT "D ";A

3000 GOTO 3080

S010 I=A-INT(F*RND+1):J=I-INT(F*RND+1)

3020 PRINT "A ";JsPRINT "B ";I:PRINT "C ";A

3030 PRINT "D ";A+INT(F*RND+1)
3040 GOTO 3080

3050 I=A-INT(F*RND+1):J=I-INT(F*RND+1):K=J-INT(F*RND+1)
3060 PRINT "A ";K:PRINT "B ";J

3070 PRINT "C ";I:PRINT "D ";A

55

u
■ Chapter 5

3080 E$=INKEY$ { |

3090 IF E$>="a" AND E$<="d" THEN CE=ASC(E$)-96:GOTO 3120 (j

3100 IF E$<"A" OR E$>"D" THEN 3080

3110 CE=ASC(E$)-64

3120 IF CE=C THEN 3160 . ,

3130 PRINT:PRINT "NO, THE ANSWER IS ";CHR$(64+C) ; f
3140 PRINT "DIVIDE TOTAL BY NUMBER OF ITEMS." ' [
3150 GOSUB 30:GOTO 2590

3160 PRINT:PRINT "CORRECTl"

3170 PRINT-.PRINT "ANOTHER PROBLEM? (Y/N)" j /
3180 E$=INKEY$:IF E$="Y" OR E$="y" THEN 2590 1 1
3190 IF E$o"N" AND E$<>"n" THEN 3180

3200 CLS:GOTO 500

3210 CLS

3220 END

56

u

n

H

H

H

I .1

n

n

n

Memory locations, or addresses, are like a wailful of post of

fice boxes, each with its own name or label. Each location con

tains a value. For example, suppose we have these values

assigned to these locations at the beginning of a program:

A=3

B=4

X=10

The boxes would look like this:

A

3

B

4

X

10

Later in the program you may change the values:

A=7

B=A+2

X=A+B

The values in the boxes change; they become

A

7

B

9

X

16

Each of these boxes has a name, and each name repre

sents only one box.

Now, just as in the post office, some boxes can be bigger

than others:

B

The C box can be divided into smaller parts, but they are

still parts of C. In this case, the C box holds an array, and dif

ferent values can go into each section of C. We specify each

59

■ Chapter 6

LJ

part of C with a subscript, a number in parentheses. The

names of the elements of the array C are C(l), C(2), and C(3).

A

C(l)

B

C(2)

X

C(3)

Boxes can be even larger—representing one, two, or even

more dimensions. Here is a chart of D, which has two dimen

sions. The first subscript may be 1 or 2, and the second sub

script may be 1, 2, 3, or 4.

A

C(l)

B

C(2)

X

C(3)

Da«

D(2,l)

D(l,2)

D(2,2)

D<1,3)

D(2,3)

D(l,4)

D(2,4)

Efficient Programming

Arrays can make a repetitive computer program more efficient.

Suppose you are describing three children whose names are

Richard, Robert, and Randy. We can say:

NAME?(1)="Richard"

NAME$(2)="Robert"

NAME$(3)="Randy"

Now we wish to list some things about these children:

AGE(1)=14

AGE(2)=9

AGE(3)=5

COLOR?(l)="Black"

COLORS(2)="Red"

COLOR$(3)="Blue"

LJ

60

' Chapter 6

/""} SPORTS(l)="Basebali"

SP0RT$(2)="Football"

p*| SPORT?(3)="Basketball"

We now have our information about the children in four

'—| arrays. You can print a list of the children by using a single

/- * loop and a variable subscript:

200 FOR J=l TO 3

210 PRINT NAME$(J);AGE(J),SPORT$(J)

220 NEXT J

If you wish to know about a particular child, print only

his or her information by searching the arrays for a particular

subscript.

N=2:PRINT NAME$(N),COLOR?(N)

If you have a longer list, you could sort. For example, to

find all the nine-year-olds, for any given total number (T) of

children:

400 FOR J=l TO T

410 IF AGE(J)<>9 THEN 430

420 PRINT NAME$(J)

430 NEXT J

The computer will execute only line 420 and print a name

when the value of AGE(J) is 9.

^ Two-dimensional arrays. This information about the

/ (children could be in a two-dimensional array rather than in
the four one-dimensional arrays above. Call the main array

rn PERSONS. The data may be arranged like this:
/ (

PERSON?(1,1)="Richard"

i0mm^ PERSON$(1,2)="14"

I. ' PERSON?(1,3)="Black"

PERSON?(l,4)="Baseball"

61

LJ
■ Chapter 6

PERSON?(2,l)="Robert" I I
i }

PERSON?(2,2)="9"

PERSON?(2,3)="Red" |

PERSON?(2,4)="Football"

! {
PERSON?(3,1)="Randy" ^—}

PERSON?(3,2)="5"

PERSON?(3,3)="Blue"

PERSON?(3,4)="Basketball"

The first subscript tells us which child's data is held in

that variable, and the second subscript identifies the category

of information, name, age, color, and sport. The word or num

ber in quotation marks is the string placed in each address of

our post office boxes.

Arrays can contain both numeric variables and string

variables.

Creating Dimensions

If you use a variable name with a subscript without first

DIMensioning that variable, the computer automatically re

serves 11 elements for the array (subscripts 0 through 10). If

you need more than 11, use a DIM statement to clear enough

space:

DIM D(30)

If you want to conserve memory and you do not need all j j

11 elements, you can save memory by DIMensioning the array U
for fewer elements:

10 DIM A(6) jj

The DIMension statement must appear before any ref

erence to the array; it is wise to put all DIMension statements j j

near the beginning of the program.

The computer automatically starts numbering all sub

scripts with zero. In other words, there can be elements such \ \

as D(0) and E(l,0). Since the zero variable counts as one ele- {—'
ment, a statement like DIM A(10) reserves 11 subscripted vari-

*

G

n

L > ables, A(0) through A(10). If you prefer to use only elements

numbered one and above, you may use the OPTION BASE

f—j statement:

OPTION BASE 1

_ DIM A(5),B(12)

DATA, READ, and RESTORE Statements

A DATA statement is always associated with a READ state

ment, and together they essentially perform LET, or assign

ment, processes, assigning values to variables. (By the way, the

command LET is optional in Amiga BASIC; LET A=4 usually

is written A=4.)

Suppose we want to initialize several variables, then print

some combinations of the numbers. The program segment

would be like this:

10 A=4

20 B=7

30 C=3

40 D=5

50 E=12

60 F=2

70 PRINT A+B,C*D,E/F

Using DATA and READ, lines 10-60 may be combined

r-■> like this:

/ I
10 READ A,B,C,D,E,F

rmm. 20 DATA 4,7,3,5,12,2

- - 70 PRINT A+B,C*D,E/F

r-^ Both of these sequences do the same thing. Defining the

t _! variables without using DATA statements can sometimes make

a program easier to understand, with less chance for error.

rn However, using DATA statements can combine many rep-

>[v etitious lines and thus save memory and make the program

more efficient.

63

u

Chapter ©

\ I

When the computer comes to a READ statement, it looks _j
for the first DATA statement. The first variable in the READ

statement will correspond with the first number in the DATA

statement. In this case, the computer will read 4 for the value J !
of A. The computer will then READ B and will go to the very

next DATA item to assign 7 to B, and so on. s

The DATA statement may be placed anywhere in the pro- i_J
gram. For example, you may change line 20 and put the DATA

statement at line 5 and place it before the READ statement. Or

you may change it to line 80 after the PRINT statement, and

the program will work exactly the same. The computer ignores

DATA statements until a READ statement is encountered; then

the computer will look at the DATA statements in order.

You won't actually see anything while the computer is

reading data, but your variables will be assigned the values

and you can use them in calculations. To see the results, you

will need to PRINT.

Your data items may also be strings. Quite often, you will

see a READ statement in a loop to perform repeated opera

tions, perhaps using subscripted variables or variables in an

array:

10 REM DATA1

20 FOR C=l TO 10

30 READ N$(C):PRINT N$(C)

40 NEXT C

50 DATA CHERY,RICHARD,CINDY,BOB,RANDY

60 DATA BRETT,ED,BILL,JOHN,JIM

In this program segment, N$(l) will be CHERY, N$(2) {_
will be RICHARD, and so on. Since long lines (up to 255

characters) are accepted, all of the data may be typed on one

line. Or you may use several lines for the DATA statements. j '
The computer keeps track of a data pointer to know how

much data is used and which is the next item to be used. If all

the data is finished in one line, the computer goes to the next J (
DATA statement if it needs more. If you do not have enough

data items, however, the computer will display an error

message. j \
Your job as a programmer is to make sure that the data

matches the READ statements and that items are read in the

64

n

,—» Chapter 6 ■

/ ; right order. You may combine numbers and strings in the

same statements as long as you make sure the numbers go to

_ numeric variable names and the strings go to string variable

I 1 names. If you have extra data items, the computer simply ig

nores them.

r-n Reusing data. The RESTORE statement lets you reuse the

I \ data items or makes sure the computer starts with the very

first DATA statement in the program. RESTORE moves the

data pointer from whatever data items have already been used

back to the first item. Program 6-1 is an example.

Program 6-1. DATA2

10 REM DATA2

20 FOR C=l TO 3

30 READ A,B

40 PRINT A;M+";B;"=";A+B

50 NEXT C

60 PRINT

70 RESTORE

80 FOR C=l TO 2

90 READ X,Y

100 PRINT X;II*";Y;I1=II;X*Y

110 NEXT C

120 DATA 2,4,8,5,7,3

130 END

When you run this program, the values of A and B will

first be 2 and 4, then 8 and 5, then 7 and 3. line 70 RE-

STOREs the data. X and Y will then be read as 2 and 4 the

first time through the loop, and 8 and 5 the second time

through the loop. We didn't need to use all the data. If there

were another READ statement later in the program, the data

value would be 7.

p-^ In the program above, it wouldn't matter if we inter-

[\ changed lines 60 and 70; the result would be the same. The

RESTORE and READ statements may be separated by other

f~m> statements. Notice, however, that the program would be dif-

{__ (ferent if you put the RESTORE statement between lines 80
and 90.

r—I If you spend a little time experimenting with DATA,

I J READ, and RESTORE statements, you'll soon understand how

they work. Try putting your statements in different places in

m, the program. Try using different numbers of items in the

/ I DATA and READ statements.

A specific starting point. Another useful feature of the

r^, RESTORE statement is that you can specify a data line num-

65

u

' Chapter 6 . ,

u

ber. RESTORE alone will start the data over with the first [_J
DATA line in the program. RESTORE n, where n is a line

number, will start the data over with the data in line n. For ex

ample, RESTORE 800 in a program means that the next READ j_j
statement will start with the data in line 800. This command

can really help you keep track of DATA statements. If you

have a long program with a lot of data, you can arrange your |^J
data properly, then use RESTORE n before each READ state

ment so that you know exactly which data goes with which

segment of the program.

Following is an example of using RESTORE in a music

program. The data items are frequencies for the SOUND com

mand. Some of the musical phrases will be used more than

once. Rather than making you type more DATA statements

(which would be repetitious), RESTORE allows the same data

to be used over again.

In this example, GOSUB 120 will perform the subroutine

in lines 120-160. This subroutine READs a frequency F, then

plays the note, and repeats this process for seven notes. To

make it easier to understand, the data items are arranged

seven to a line. Line 20 will read the data in line 40. Line 30

will read the data in line 50. Line 60 RESTORES the data in

line 40 so that line 70 will use the data in line 40 again. Since

line 40 is also the first DATA statement, I could have used

either RESTORE or RESTORE 40. Line 80 says to RESTORE

100, so line 90 will use the data of line 100.

Program 6-2. DATA3

10 REM DATA3

20 GOSUB 120

30 GOSUB 120) !

40 DATA 262,330,294,262,330,392,349 L_J
50 DATA 440,392,494,523,587,494,523

60 RESTORE 40

70 GOSUB 120 \ I

80 RESTORE 100 j \
90 GOSUB 120

100 DATA 262,330,294,262,392,330,262

110 GOTO 170 .

120 FOR C=l TO 7

130 READ F L—
140 SOUND F,10

150 NEXT C

160 RETURN \ I
170 END ww>

If you have problems with this sample program, the most

likely place to look for typing errors is in the DATA state- ^ J

66

H

i—^ Chapter 6 ■

I I ments. Remember that those numbers are frequencies, so they

will all be three-digit numbers. Make sure you have the com-

r~h mas placed correctly, and make sure you don't have a comma

i [at the end of a line.
One thing to keep in mind with programming is that

r-4 there are several ways to write a program to accomplish the

(1 same thing. The DATA/READ process is just one method, and

even then there are different ways of arranging your DATA

and READ statements to make the computer do what you

want it to do.

The "Math Competency" program in the previous chapter

illustrates the use of arrays for the variables.

The "Roman Numerals" program is another program that

uses arrays and DATA statements. Each element of the array

contains the roman numeral equivalent.

Next, let's look at a program which creates the Braille

alphabet—you could use the same idea for Morse code or for

lowercase letters corresponding to capital letters or your own

symbol code.

This program illustrates using arrays for the variables. In

stead of using A= 100000, B=101000, C=110000, and so

forth, the variables are B$(l), B$(2),..., through B$(26) for the

26 letters of the alphabet. Each B$ holds a code for the Braille

dots. There are six positions for dots in Braille. The code for

each letter consists of ones and zeros; a one indicates a dot

and a zero indicates a blank space.

Line 70 is a FOR-NEXT loop that reads in the 26 values.

The data is contained in lines 80-120. To help you in typing

the lines, these DATA statements contain five numbers each,

p^ except the last statement, which has six.

,i J Lines 210-280 contain a subroutine that converts the ones

and zeros to the graphic representation of the Braille symbol.

r^ One by one, each number of the six-digit code is examined. If

I I the number is one, a lowercase o is printed representing a dot.

If the number is zero, a space is printed.

fmm^ The program consists of three parts. The first part prints

: i the Braille alphabet in order. (If you want to quit and return to

the main menu, press RETURN.) The second part allows you

^ to press any letter key to see the equivalent Braille symbol.

/ [Part 3 is a quiz. A random letter is shown. The user presses

the letter key for the Braille pattern. In any section you can get

r^ back to the main menu screen by pressing RETURN.

ii

67

- Chapter 6'

LJ

U

Outline of Braille Program

Lines Explanation

20-50 Clear screen and print title.

60 Dimensions arrays B$(26) for the Braille equivalents

of the 26 letters and N(26) for use in the quiz.

70 READs in the values for B$.

80-120 DATA containing the codes for the Braille letters.

130-200 Print main menu screen and branch.

210-280 Subroutine to print the Braille symbol in three rows

of two positions each. COLOR 2,1 changes to black

printing on a white background. MID$ looks at the

code one digit at a time.

290-300 Subroutine to delay.

330-350 Print introduction for printing Braille alphabet.

360-400 For the 26 letters, print the Braille equivalent.

INKEY$ checks to see if the RETURN key is pressed.

410-430 Wait for user to press RETURN.

440-480 Print instructions for second part of program.

490-540 Detect key pressed by user, which must be RETURN

or one of the alphabet letters.

550 Prints the letter pressed and its Braille equivalent.

560 Branches back to line 490.

570-630 Print instructions for quiz.

640 Initializes N array to keep track of which letters have

been used; initializes G for number of guesses.

650 Performs quiz for 26 letters.

660 Chooses a random letter that has not been chosen

before.

670 Initializes flag F for use in keeping track of missed

letters.

680 Increments number of guesses, G.

690-700 Print Braille letter.

710-760 Receive answer.

770 If answer is correct, prints message.

780-820 If answer is incorrect, return for another guess. If an

swer is incorrect twice, show correct letter. Wait for

user to press RETURN.

830 If answer is correct, sets N(T) to zero so the letter

will not be chosen again.

840 Goes to next letter.

850-860 Print score.

870 Transfers to line 410.

880 Ends.

68

' Chapter 6 ■

n

n

Program 6-3. Braille

10 REM BRAILLE

20 CLS

30 PRINT TAB(20);STRING?(20,"*")

40 PRINT TAB(20);"* BRAILLE ALPHABET *"

50 PRINT TAB(20);STRING?(20,"*")

60 DIM B$(26),N(26)

70 FOR T=l TO 26:READ B$(T):NEXT T

80 DATA 100000,101000,110000,110100,100100

90 DATA 111000,111100,101100,011000,011100

100 DATA 100010,101010,110010,110110,100110

110 DATA 111010,111110,101110,011010,011110

120 DATA 100011,101011,011101,110011,110111,100111

130 PRINT:PRINT:PRINT TAB(5);"CHOOSE:"

140 PRINT TAB(15);"1 SEE COMPLETE ALPHABET"

150 PRINT TAB(15);"2 CHOOSE LETTERS"

160 PRINT TAB(15);"3 QUIZ"

170 PRINT TAB(15);"4 END PROGRAM"

180 E§=INKEY$:IF E$<"1" OR E§>"4" THEN 180

190 CLS

200 ON VAL(E§) GOTO 330,440,570,880

210 FOR J=l TO 3:COLOR 2,1

220 A$=MID$(B?(T),J*2-1,1)

230 C$=MID$(B?(T),J*2,1)

240 IF A§="1" THEN PRINT " O "; ELSE PRINT "

250 IF C§="1" THEN PRINT "o "; ELSE PRINT "

260 COLOR 1,0:PRINT:PRINT TAB(16);

270 NEXT J:PRINT:PRINT

280 RETURN

290 FOR DELAY=1 TO 2000:NEXT DELAY

300 RETURN

330 PRINT TAB(20);"ALPHABET"

340 PRINT:PRINT "PRESS <RETURN> TO RETURN TO MAIN MENU."

350 PRINT:PRINT

360 FOR T=l TO 26

370 PRINT TAB(8);CHR§(64+T);TAB(16);:GOSUB 210

380 E?=INKEY$:IF E$=CHR$(13) THEN CLS:GOTO 120

390 GOSUB 290

400 NEXT T

410 PRINT:PRINT "PRESS <RETURN>."

420 E$=INKEY?:IF E$<>CHR$(13) THEN 420

430 CLS:GOTO 120

440 PRINT "Press a letter. The Braille equivalent will be s
hown."

450 PRINT

460 PRINT "Press <RETURN> to get back to the main menu scree
n."

470 PRINT

480 PRINT "Start by pressing any letter.":PRINT:PRINT
490 E$=INKEY$

500 IF E§="" THEN 490

510 IF E$=CHR$(13) THEN CLS:GOTO 120
520 IF E$<"A" OR E$>"z" THEN 490

530 IF E$>"Z" AND E$<"a" THEN 490

540 IF E$<"a" THEN T=ASC(E$)-64 ELSE T=ASC(E$)-96
550 PRINT TAB(8);CHR$(T+64);TAB(16);:GOSUB 210
560 GOTO 490

570 PRINT TAB(20);"BRAILLE QUIZ"

580 PRINT:PRINT "You will see a Braille representation of on

69

■ Chapter © . (

590 PRINT:PRINT "of the letters of the alphabet,"]

600 PRINT:PRINT "Type the letter." ^-^
610 PRINT:PRINT "The quiz consists of 26 letters."

620 PRINT:PRINT "Press <RETURN> if you prefer to stop the qu

iz.") I
630 PRINT:PRINT:PRINT:PRINT >L_j
640 FOR T=l TO 26:N(T)=1:NEXT T:G=0

650 FOR Z=l TO 26

660 T=INT(26*RND)+1:IF N(T)=0 THEN 660 I /
670 F=0 I\
680 G=G+1 ^""^
690 PRINT TAB(16);

700 GOSUB 210

710 E$=INKEY$

720 IF E$="" THEN 710

730 IF E$=CHR$(13) THEN CLS:GOTO 120

740 IF E$>="A" AND E§<="Z" THEN E=ASC(E$)-64:GOTO 760
750 IF E$>="a" AND E§<="z" THEN E=ASC(E§)-96 ELSE 710
760 PRINT TAB(16);E$:PRINT

770 IF E=T THEN PRINT "CORRECT":PRINT:GOTO 830

780 F=F+1:IF F<2 THEN PRINT "SORRY, TRY AGAIN.":PRINT:PRINT:
GOTO 680

790 PRINT "THE CORRECT ANSWER IS ";CHR$(T+64)

800 PRINT:PRINT "PRESS <SPACE BAR>":PRINT:PRINT

810 E$=INKEY$:IF E$<>" " THEN 810
820 GOTO 660

830 N(T)=0

840 NEXT Z

850 PRINT:PRINT "OUT OF 26 LETTERS/1

860 PRINT "YOU REQUIRED";G;"GUESSES."
870 GOTO 410

880 END

The "States and Capitals'' program in the sample program

section (Chapter 14) illustrates the use of READ, DATA, and

RESTORE in drawing the states. Line labels are used to help

keep track of which data goes with which state.

Arrays in Recipes

Here is another program, "Cookie File/' (Program 6-4), that]_J
illustrates the use of READ and DATA statements. This pro

gram uses line numbers instead of labels. Arrays are used to

keep track of an ingredient list and an inventory of ingredi

ents. DATA statements are used to hold recipes for cookies.

RESTORE is used to get to a certain recipe.

The first section lists the ingredients. You may specify Y

for yes or N for no, indicating whether you have the ingredi

ent or not. After you have gone through the list of ingredients,

the computer will let you know which cookies can be made

with those ingredients.

The second section of the program prints the recipe for

70

• Chapter 6

the cookie you choose. Fifteen recipes are included. After the

recipe is printed, you may convert the recipe if you wish—

multiply the recipe by two or three or one half, or even a

number with a fraction such as 7.5.

Lines 1310-1350 list the ingredients with their measure-

ments. This information is READ in in lines 30-60. The

ingredients are saved in the INV$ array, and the ingredients

with the measurements are in the ING$ array. INV$(n,0) stores

the names of the ingredients for the n ingredients, and

INV$(n,l) stores a Y or N for the inventory list.

The cookie recipes are in the DATA statements in lines

1360-1500. Following the name of the cookie are the amounts

of the ingredients in the same order as they are in the ingredi

ent list. Only those ingredients used will have numbers. In

typing these statements, you need to be very careful to get the

commas in the right places or you might get data errors or

wrong recipes. The last number in the line is the oven tem

perature. Lines 810-960 RESTORE the proper data for each

type of cookie.

When the computer is checking to see which cookies can

be made, the data for the cookies is restored. If a there is a

number in the recipe indicating an ingredient, the correspond

ing ingredient in the inventory list is checked and has to be a

Y. If it is an N, indicating you don't have the ingredient, that

cookie name will not be printed.

Outline of Cookie File Program

Lines Explanation

20 DIMensions arrays for 20 ingredients and inventory

items.

30-60 READ in from DATA the measurements and names

of the ingredients.

70-150 Clear screen, print main menu screen, then branch.

160-200 Print instructions for inventory list.

210 Initializes number of Y (Yes) ingredients.

220-320 For each ingredient print the name and record re

sponse of Y or N.

330 Initializes C as the number of cookies that can be

made.

340-380 If the user does not have flour or sugar or if the

number of available ingredients is four or fewer,

print message for no cookies.

71

• Chapter 6

Lines Explanation

390-410 Wait for user to press RETURN; branch to main

menu.

420 RESTORES data for cookie recipes.

430 READs name of cookie.

440-480 Compare ingredients in recipe with inventory list.

490-500 Print name of cookie that can be made; increment

counter.

510-550 Read next data item, checking for next cookie.

560 If no cookies can be made, branches back to

message.

570-580 Print message and branch to wait procedure.

590-760 Print list of available cookie recipes.

770-790 Receive choice, making sure key pressed is avail

able letter for recipe.

800-810 Branch to desired cookie.

820-960 RESTORE proper DATA statement for recipe.

970 Prints name of cookie.

980-1060 READ data for ingredient. If a number is read, that

is the measurement for the corresponding ingredient.

1070-1080 READ and print temperature.

1090 Prints instruction for certain recipes.

1100-1180 Ask if user wants to convert recipe, and if so, by

what number or fraction.

1190-1240 Print converted recipe.

1250-1260 Ask if user wants to convert again.

1270-1290 Wait for user to press RETURN before going to

main menu.

1300-1350 DATA for measures and ingredients. Quotation

marks are used because measures have a trailing

space.

1360-1510 DATA for cookie recipes. Be careful typing

commas.

1520-1530 Clear screen and end.

u

u

u

u

u

Program 6-4. Cookie File

10 REM COOKIE FILE

20 DIM ING$(19),INV$(19,1)

30 FOR 1=0 TO 19

40 READ A$,INV$(I,0)

50 ING$(I)=A$+INV$(l,0)

60 NEXT I

70 CLS

80 PRINT TAB(12);"COOKIE FILE"

90 PRINT:PRINT "CHOOSE:"

100 PRINT:PRINT "1 NEED TO KNOW WHAT CAN BE MADE"

72

u

u

u

u

u

Chapter 6 ■

I !; 110 PRINT:PRINT "2 WANT TO SEE A CERTAIN RECIPE11
" - 120 PRINT:PRINT "3 END PROGRAM"

130 K$=INKEY$:IF K$<"1" OR K$>"3" THEN 130

,_ 140 ON VAL(K?) GOTO 160,600,1520

1 150 REM
• ■'■ 160 CLS

170 PRINT "IN THE FOLLOWING LIST"
180 PRINT "PRESS 'Y' IF YOU HAVE THE INGREDIENT."

f~-\ 190 PRINT "PRESS 'N' IF YOU DO NOT."
J \ 200 PRINT "PRESS 'S' TO START OVER.":PRINT:PRINT

210 YS=0

220 FOR K=0 TO 19

230 PRINT INV$(K,0);

240 K$=INKEY$

250 IF K$="S" OR K$="s" THEN 160

260 IF K$="N" OR K$="n" THEN 290

270 IF K$<>"Y" AND K$<>"y" THEN 240

280 YS=YS+1

290 PRINT TAB(20);K$

300 IF K$="n" THEN K$="N"

310 INV$(K,1)=K$

320 NEXT K

330 C=0

340 PRINT:PRINT "YOU CAN MAKE:":PRINT

350 IF INV$(0,1)="N" THEN 380

360 IF INV$(7,1)="N" THEN 380

370 IF YS>4 THEN 420

380 PRINT "NOTHING TODAY.":PRINT "YOU NEED MORE SUPPLIES."

390 PRINT:PRINT "PRESS <RETURN> TO CONTINUE."

400 K$=INKEY$:IF K$<>CHR$(13) THEN 400

410 GOTO 70

420 RESTORE 1360

430 READ A$

440 FOR J=0 TO 19

450 READ B$

460 IF B§="" OR B$="0" THEN 480

470 IF INV$(J,1)="N" THEN 510

480 NEXT J

490 PRINT A$

500 C=C+1

510 READ D$

520 IF D$="ZZZ" THEN 570

530 IF LEN(D$)<6 THEN 510

540 A$=D$

550 GOTO 440

560 IF C=0 THEN 380

570 PRINT:PRINT "GO AHEAD AND BAKE!"

n580 GOTO 390

590 REM

600 CLS

610 PRINT "CHOOSE:11:PRINT

n620 PRINT "A ALMOND COOKIES"

630 PRINT "B BALL COOKIES"

'"" "- BROWNIES"

BUTTERSCOTCH BARS"

CHOCOLATE CHIP BARS"

CHOCOLATE CHIP COOKIES"

CHOCOLATE DROP COOKIES"

HONEY BALLS"

HONEY SPICE COOKIES"

MEXICAN WEDDING COOKIES"

n

630

640

650

660

670

680

690

700

710

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

"B

11C

"D

11E

"F

"G

"H

"I

"J

73

u
■ Chapter 6

720 PRINT "K OATMEAL CHOCOLATE CHIPS"

730 PRINT "L OATMEAL CRISPS"

740 PRINT "M SNICKERDOODLES"

750 PRINT "N SUGAR COOKIES"

760 PRINT "O TOFFEE BARS" I I

770 C$=INKEY$ ^)
780 IF C$>="a" AND C$<="o" THEN C=ASC(C$)-96:GOTO 800

790 IF C$<"A" OR C$>"Z" THEN 770 ELSE C=ASC(C?)-64

800 CLS \ I

810 ON C GOTO 820,830,840,850,860,870,880,890,900,910,920,93 M
0,940,950,960 ^^
820 RESTORE 1360:GOTO 970

830 RESTORE 1370:GOTO 970

840 RESTORE 1380:GOTO 970

850 RESTORE 1390:GOTO 970

860 RESTORE 1400:GOTO 970

870 RESTORE 1410:GOTO 970

880 RESTORE 1420:GOTO 970

890 RESTORE 1430:GOTO 970

900 RESTORE 1440:GOTO 970

910 RESTORE 1450:GOTO 970

920 RESTORE 1460:GOTO 970

930 RESTORE 1470:GOTO 970

940 RESTORE 1480:GOTO 970

950 RESTORE 1490:GOTO 970

960 RESTORE 1500:GOTO 970

970 READ A$:PRINT A$:PRINT

980 1=0

990 FOR J=0 TO 19

1000 READ B$

1010 IF B$="" OR B$="0" THEN 1060

1020 AMT(I)=VAL(B$)

1030 INGR$(I)=ING$(J)

1040 PRINT AMT(I);INGR$(I)

1050 1=1+1

1060 NEXT J

1070 READ T

1080 PRINT:PRINT "Bake at";T;"degrees."

1090 IF C=8 OR C=10 THEN PRINT "Roll in powdered sugar."

1100 PRINT:PRINT "WANT TO CONVERT RECIPE? (Y/N)"

1110 K$=INKEY$

1120 IF K$="N" OR K$="n" THEN 1270

1130 IF K$O"Y" AND K$o"y" THEN 1110

1140 PRINT:PRINT "MULTIPLY BY WHAT NUMBER" ft 1
1150 INPUT "OR DECIMAL FRACTION";F W

1160 IF F>0 THEN 1190

1170 PRINT:PRINT "SORRY, F>0"

1180 GOTO 1140 , a

1190 CLS [)

1200 PRINT F;"TIMES ORIGINAL RECIPE":PRINT:PRINT

1210 PRINT A$:PRINT

1220 FOR K=0 TO 1-1 , ,

1230 PRINT F*AMT(K);INGR$(K) <

1240 NEXT K ^^
1250 PRINT:PRINT "CONVERT AGAIN? (Y/N)"
1260 GOTO 1110

1270 PRINT:PRINT "PRESS <RETURN> TO CONTINUE." I j
1280 K$=INKEY$:IF K$<>CHR$(13) THEN 1280 LJ>
1290 GOTO 70

1300 REM

74
u

n

j—I Chapter 6

v ^ 1310 DATA "c. ",shortening,"c. ",sugar,"c. ",brown sugar
'■~1~ 1315 DATA "c. ",powdered sugar, "tbsp. ",honey, "", eggs

1320 DATA "tsp. ",vanilla,"c. ",flour,"tsp. ",baking powder

._ 1325 DATA "tsp. ",baking soda,"tsp. ",salt

! 1330 DATA "tsp. ",cinnamon,"tbsp. ",cocoa,"tsp. ",almond ext
- ! ract

1335 DATA "c. ",milk,"c. ",oatmeal

1340 DATA "oz. ",chocolate chips,"doz. ",almonds

P-*"? 1350 DATA "tsp. ",cake decors, "c. ",cinnamon & sugar
J i- 1360 DATA ALMOND COOKIES, 2, 2, , , , 2,, 3, 2, , ,, , 2, , , ,4, , , 375

1370 DATA BALL COOKIES,.5,.33,,,,1,.5,.75,,,,,,,,,,,2,,375

1380 DATA BROWNIES,.5,1,,,,2,1,.75,.5,,.5,,6,,,,,,,,350

1390 DATA BUTTERSCOTCH BARS,.5,,2,,,2,1,1.75,2,,.25,,,,,,,,,

,375

1400 DATA CHOCOLATE CHIP BARS,.5,,1,,,1,1,1.75,,.5,.5,,,,.5,

,12,,,,350

1410 DATA CHOCOLATE CHIP COOKIES,.5,.25,.5,,,1,.5,1,,.5,.5,,

1420 DATA CHOCOLATE DROP COOKIES,.5,,1,,,1,1,1.67,,.5,.5,,6,

#•5,,,,,,350

1430 DATA HONEY BALLS,.5,,,,2,,1,1,,,.25,,,,,,,,,,300

1440 DATA HONEY SPICE COOKIES,.5,.75,,,4,,.5,1,,,, . 5,,,,,,,,

,375

1450 DATA MEXICAN WEDDING COOKIES,.75,,,.67,,,1,1.5,,,.25,1,

1460 DATa'oATMEAL CHOCOLATE CHIPS,1,1,.5,,,2,1,2,,1,1,,,,,2,
6,,,,350

1470 DATA OATMEAL CRISPS,1,1,1,,,2,1,1.5,,1,1,,,,,3,,,,,350

1480 DATA SNICKERDOODLES,1,1.5,,,,2,,2.75,3,,.5,,,,,,,,,.5,4
00

1490 DATA SUGAR COOKIES,.67,.75,,,,1,.5,2,1.5,,.25,,,,.25,,,
,,,375

1500 DATA TOFFEE BARS,1,,1,,,,1,2,,,,,,,,,6,,,,350

1510 DATA ZZZ

1520 CLS

1530 END

75

u

u

n

' Chapter 7

n

You can look at how menus work on the Amiga when you

first turn on the computer. After inserting the Workbench disk,

push the right mouse button and move toward the top of the

screen. The top highlighted line will change and menu titles

will appear. As you touch a title, a menu will drop down with

several options. As you move the mouse downward, the sub

titles will be highlighted. To make a selection, you place the

pointer over the item you want and then release the right

mouse button.

You can use this same menu structure in your BASIC pro

grams. The form for creating a menu is

MENU menu-id,itetn-id,state [,title]

The menu-id is the number assigned to the menu bar selection

and can be a number from 1 through 10. If you select 1, for

example, your menu will be in the leftmost menu position.

The item-id is the number assigned to the menu item un

der the menu bar and can be a value from 0 through 20. Item-

id 0 refers to the entire menu. The other numbers are for the

choices under the main topic.

The state argument is 0 to disable, 1 to enable, or 2 to en

able and place a checkmark.

The title is a string containing the title of the item chosen.

MENU Functions

MENU ON enables event trapping or use of the ON MENU

GOSUB statement.

There are two functions involved with MENU. MENU(O)

is similar to INKEY$ and is reset to zero every time it exe-

cutes, but returns a number which corresponds to the number

of the last menu bar selection made—the main menu chosen.

MENU(l) returns a number which corresponds to the

number of the last menu item chosen or the subtopic chosen.

MENU RESET restores the original Amiga BASIC default

menu bar.

Program 7-1 illustrates the use of the MENU statements.

79

1 Chapter 7

This sample only prints a statement when an item is chosen, \\
but this method could be used to choose actual menu items in

a program.

Line 20 resets the second position menu to FRACTIONS.

Under this title there will be five subtopics, which are defined

in lines 30-70.

Lines 100-110 check to see whether the second menu has

been selected. For our example, the program just stays at these

lines until FRACTIONS is chosen.

Under FRACTIONS are the five choices. Line 120 uses

MENU(l) to see which item has been chosen and calls it

CHOICE. Line 130 branches depending on the item chosen. If

you choose to end the program, line 610 resets the menu bar

to the original second menu in Amiga BASIC.

Program 7-1. Menus

10 REM MENUS

20 MENU 2,0,1,"FRACTIONS"

30 MENU 2,1,1,"Simplify"

40 MENU 2,2,1,"Add"

50 MENU 2,3,1,"Multiply"

60 MENU 2,4,1,"Divide"

70 MENU 2,5,1,"End Program"

80 MENU ON

90 CLS

100 M=MENU(0)

110 IF M<>2 THEN 100

120 CHOICE=MENU(1)

130 ON CHOICE GOSUB 200,300,400,500,600

140 GOTO 100

200 PRINT "Simplify Fractions"

210 RETURN

300 PRINT "Add Fractions"

310 RETURN

400 PRINT "Multiply Fractions"

410 RETURN , ,

500 PRINT "Divide Fractions" T/

510 RETURN

600 PRINT "End Program"

610 MENU RESET

620 END jj

Creating Windows > >

You can make your own windows in BASIC with the versatile

WINDOW command. The basic command is

WINDOW id

where id is a number which identifies the window. For ex

ample, The Output window that appears while you are in , ,

80

p

j—j Chapter 7

\ . -,v BASIC is window number 1, so for your own windows you
should specify a number greater than 1.

.*—r You can add more information to a WINDOW statement

: '■ to further define your program's window. In order, you can

give the window a title, specify the size similar to the LINE or

pn GET command, specify a type which sets up how much the

' user can do with the window, and choose a screen ID which
n can be a value from 1 through 4. When you use the WINDOW

statement, a new Output window is created and displayed and

brought to the front of the screen.

The title is a string expression that will show up in the ti

tle bar at the top of the window.

The type is a number from 0 through 31:

1 Window size can be changed and a sizing gadget appears

in the lower right side of the window.

2 Window can be moved about using the title bar.

4 Window can be moved from front to back of other win

dows, and that gadget appears in the upper right corner.

8 Window can be closed using a close gadget.

16 Contents of window reappear after the window has tem

porarily been covered by another window.

To specify a type, add together two or more of these

values.

To define the size of the window, use the rectangular co

ordinates of the form (xl,yl)-(x2,y2), where (xl,yl) are the co

ordinates of the upper left corner and (x2,y2) are the

coordinates of the lower right corner on the full screen. If you

don't specify coordinates for the size, the window appears at

the current default for that window—whatever was previously

set in the program. The initial defaults are for the full screen.

WINDOW CLOSE id is the command to make the named

window invisible.

WINDOW OUTPUT id names the window for current

output without moving the window to the front—direct output

can go to a window that is behind another.

A Window Illustration

The next program illustrates some of the options of the WIN

DOW statement. It sets up three windows and puts something

in each.

81

■ Chapter 7 ■

Line 30 defines window 2, entitled Printing. It will be at \^Ji
the rectangle from (10,10) to (250,50), which is the upper left

section of the screen. Its type number is 14, which says the

window can be moved about using the title bar; it has the t-j
front and back option; and it can be closed by the upper left

corner gadget (2 + 4 + 8 = 14). ,. .

Line 40 sets up window 3 with the title Lines. It will be at \j

the right side of the screen and has a type of 7. It can be

moved about using the title bar; it can be moved from front to

back; and the window size can be changed.

Line 50 defines window 4 with the title Circles. It will ap

pear in the lower left section of the screen and has type 6.

This window can be moved about and has the front and back

gadget.

When you run the program and the windows appear, you

can see the different gadgets available in the corners of each

window. You can experiment with the mouse to see which op

tions are available.

Lines 60-80 print a message in window 2. Notice that the

COLOR command only applies to that window.

Lines 90-130 draw lines in window 3. Keep in mind that

the coordinates specified in graphics commands are relative to

that window wherever it is—not the whole output screen.

Lines 140-190 draw circles in window 4. Again, notice

the coordinates are for that window, not the big screen.

Program 7-2. Windows

10 REM WINDOWS

20 CLS

30 WINDOW 2,"Printing",(10,10)-(250,50),14

40 WINDOW 3,"Lines",(265,15)-(500,65),7 -

50 WINDOW 4,"Circles",(15,65)-(300,180),6

60 WINDOW 2 W
70 COLOR 3,2:LOCATE 3,5

80 PRINT "This is Window 2"

90 WINDOW 3 i j
100 X2=10 \^J
110 LINE(0,0)-(X2,lfc>0)

120 X2=X2+10

130 IF X2<400 THEN 110 } i

140 WINDOW 4 JJ
150 X=15:Y=10

160 FOR 1=1 TO 9

170 CIRCLE (X,Y),20 , ,

180 X=X+20:Y=Y+10

190 NEXT I

200 END

82
u

n

_ Chapter 7

Controlling the Mouse

You can control cursor movements and make menu selections

f—1 with either the keyboard or the mouse, but using the mouse

' i gives both the programmer and the program user more flex

ibility. There are several commands and functions in Amiga

r—\ BASIC that relate to the mouse and the position of the pointer

arrow. You should refer to your manual for detailed discussion

of these commands. Here we will summarize the commands

and give some sample programs of how the mouse commands

work.

The MOUSE ON statement enables event trapping based

on the user's pressing the left mouse button.

Related to MOUSE ON is ON MOUSE-GOSUB, which

directs the program for events.

MOUSE OFF disables the ON MOUSE event trapping.

MOUSE STOP suspends mouse event trapping—event

trapping continues but the ON MOUSE-GOSUB statement is

not executed until a subsequent MOUSE ON statement is

executed.

The MOUSED functions are listed in your Amiga BASIC

manual in detail. This function returns values that indicate

whether the left mouse button was pressed and give infor

mation about the position of the arrow. The function param

eter n can be a number from 0 through 6.

This first short program (Program 7-3) checks the position

of the mouse when the button is pressed. Line 30 uses

MOUSE(O) to check whether the button is pressed. The pro

gram stays at this line until the value of the function is not

zero. When you press the left button, the value is no longer

p-| zero and the program continues. Line 40 uses MOUSE(5) to

L J determine the ending x coordinate and MOUSE(6) for the end

ing y coordinate. These values are printed on the screen.

rO\ Line 50 returns to line 30. As you run this program, move

_J the mouse to various places to see the coordinates returned
when you press the left mouse button. To stop the program,

f-n: press CTRL-C (Break).

Program 7-3. Mouse

|—\ 10 REM MOUSE

) } 20 CLS
30 IF MOUSE(0)=0 THEN 30

40 PRINT MOUSE(5);II,";MOUSE(6)

k-^ 50 GOTO 30

60 END

83

u
Chapter 7

Now, what do you do with those coordinates? Here's a j [
short routine (Program 7-4) that shows how you can draw by

pressing the left button and moving the mouse around.

Line 20 defines x and y to be integers using DEFINT. Line [^J
30 clears the screen. Line 40 waits until the left mouse button

is pressed. When the button is pressed, line 50 checks the cur

rent x coordinate with MOUSE(l) and the current y coordinate (^J
with MOUSE(2) and returns the values x and y. These co

ordinates are used in the PSET command in line 60 to turn on

a point—place a white dot on the blue screen. Line 70

branches back to line 40 to keep checking the mouse button.

Program 7-4. Drawing with the Mouse

10 REM DRAWING WITH MOUSE

20 DEFINT X,Y

30 CLS

40 IF MOUSE(0)=0 THEN 40

50 X=MOUSE(1):Y=MOUSE(2)

60 PSET (X#Y)

70 GOTO 40

80 END

To move an object, use the GET and PUT commands.

GET gets a rectangle of information or a picture from a speci

fied area, then PUT places that rectangle back on the screen in

a different place.

Use a DIMension statement to reserve an array large

enough to keep track of the information in the rectangle you

will be moving. GET is of the form

GET (xl,yl)-(x2,y2),A

where (xl,yl) are the coordinates of the upper left corner of

the desired rectangle and (x2,y2) are the coordinates of the (-|

lower right corner. A is the array name given to this rectangle. LJ

PUT specifies the coordinates of the upper left corner

where you want to put the array A. The form is , ^ >

PUT (x,y),A U
Program 7-5 is an illustration of the use of GET and PUT.

Line 20 dimensions the array A. Line 40 draws a box, and line juj
50 draws a circle in the box. Line 60 uses the coordinates of

the box's outside dimensions and calls this rectangle the A ar

ray. Line 70 redraws the picture with PUT, starting at the up- M

per left coordinates (100,100).

Chapter 7

| | Program 7-5. GET and PUT

10 REM GETPUT

^ 20 DIM A(100)

II 30 CLS
40 LINE (10,10)-(30,30),,BF

50 CIRCLE (20,20),8,0

60 GET (10,10)-(30,30),A

n70 PUT (100,100),A

80 END

To move an object on the screen (such as an icon in your

own program), we can use a combination of the MOUSE func

tions and the GET and PUT commands. Here's one way to do

this (Program 7-6) . Lines 50-70 draw a simple picture on the

screen in the upper left corner. Line 80 GETs the information

and stores it in array A (dimensioned in line 30).

Line 100 checks to see whether the left mouse button has

been pressed. If not, the program stays at line 100. When the

button is pressed, the current x and y position is checked with

MOUSE(l) and MOUSE(2). If it is different from the previous

position, lines 130-150 redraw the picture with PUT, and x

and y are reinitialized.

Program 7-6. Moving

10 REM MOVING

20 DEFINT A,X,Y

30 DIM A(1000)

40 CLS

50 LINE (0,0)-(50,50),,BF

60 CIRCLE (25,15),10,0

70 CIRCLE (25,25),15,0

80 GET (0,0)-(50,50),A

90 REM CHECK MOUSE

100 IF MOUSE(0)=0 THEN 100

nll0 IF ABS(X-MOUSE(l))>2 THEN 130

120 IF ABS(Y-MOUSE(2))<3 THEN 100

130 PUT(X,Y),A

140 X=MOUSE(1):Y=MOUSE(2)

150 PUT(X,Y),A

P"1 160 GOTO 100
(170 END

nlfyou want to move and not erase as you go, you can cre

ate some interesting graphics. To illustrate, we will draw a cir-

n

n

cle, then let you draw with that circle by moving the mouse

and pressing the left button.

85

Chapter 7

u

Program 7-7. Drawing2 { [

10 REM DRAWING2

20 DEFINT A,X,Y:DIM A(300)

30 CLS I I

40 CIRCLE (8,8),8 I I
50 GET (0,0)-(16,16),A

60 IF MOUSE(0)=0 THEN 60

70 X=MOUSE(1):Y=MOUSE(2) I f

80 PUT (X,Y),A I I
90 GOTO 60

100 END

86

u

LJ

U

LJ

U

'.■.'■ ■■■'-'■..--■.■■ . •';"
- . " ■: ; - . n°: ■ -■.. ■■=■.■■■■;.■.,■■ r.■■■■:■, 3 , ':
° ■• .1! ■. -.-.-"' ■.-.■■ -.', , -.T-!y. .■■•■■■ ^ ■ . ■ .a

; ;V;;^

; '

-:■:. ?-:. ■■■..'■■■■- .. ■ . ■-. : '■:■■■.:-■■ .-y <-:-'- ■■.'..-. .-.v- ><■:■■■■:'

-,/.■■■..■:■ -v... .■■■ ■■.-.■ ■ ■*•"■ ■■ ■■.■. ■.■■•.■■■■■i ■■■ ■...:,..■..;-.

s ' ■■■/:■■■;■_-■ .■■■■■■■■'■■■ ■.■■■!■■ ■■;■■■■■'. ■!•■■.■>.V-'--;*. '"^..■'i^W ■•; ':.';--'^'
w-/■:■. ..■■■■■"■■:■■■...■■■■ ■ v.- ■,,■„■■ i.-...:. ■■■-^■; ■;.-.."^...>^.v,. ■-■■:■■ ■- ■■.■"'"1 j'

. ' i'.i ■ ■■■■-'-' t>'' i1--- *■.&■■'■■ ■*' .-•*■ ■■■■

"■■*'■ - '"'■■

■■ *■ :,. :■■■■ ::■:■. ;■■■../■ .(!: ■ '■■■■..■

■?■ -.

"■:.■■■ "■ r-- ■*

-r:':^3^>;i
^^ ■;■.;/:«■-■■■ ":-'V':^- ..,-."

:■ -7 ■>■ ;:^>^"'v:^>fe^v-^ '-'.'■■■■.■;;v _
> "-^ ■■ ■■■■■: ■"■■' :-!- ■■ '.-■;>■■*.*■''■■■■": ^ - ■■ '*.■<■■■■■
■.■■'■■'■■■■■■■■■■■■..■■;■ .-■;;"i'':'-v/y^^r^V/ ■:

';J ■ ■■■ "-■'■!*■■ ■■: :";!"'*l"'J;iV " '■ ■■■"■■■■"■■ :

:;■; ■- ■'■-.■■■.-•r'i-.---.-::. ■■

■■■■■■■ ■:-? ;. "'-''" ''■'■' -

-■■' ■ ^ ".■;"■■ .<■'-'

.■-."■•"*■■ ..-■/ -'■-. v,:-.:! ;".■.■■■,'■■ '■>■
rt\. ;<*\%.:j:-;: .*■:.; -v,i-■--.'■■.

Q

B

D

Chapter 8 ■

n
tics

["""{ Graphics on the Amiga can be a lot of fun. Many of the basic
programs in this book can be enhanced by adding graphics.

This book, however, is designed for beginning programmers

f""} and thus the graphics programming will be limited. COM
PUTE! is publishing articles and other books which will go

into more detail about the many graphics capabilities of the

Amiga.

The standard output screen is 640 pixels (dots) wide and

200 pixels high, which gives you a total of 128,000 individual

dots which can be used in your pictures.

Printing in Color

The simplest form of graphics involves printing text in dif

ferent colors. This device can be used in regular, nongraphic

programs to highlight error messages or other important

prompts to the program user or to separate the program's

messages from the user's input. To print in different colors on

the standard screen, use the command

COLOR f,b

where / is the value of the foreground color and b is the back

ground color value. The colors are numbered from 0 through

3. For example, this will print black letters on an orange back

ground rather than the standard white on blue.

COLOR 2,3

PRINT "HELLO/'

j—I You can add interest and draw attention to certain lines by

varying the COLOR command before your PRINT statements.

! i Drawing Lines

Many of the drawing commands use coordinates in paren-

fl theses, listed as (x,y) where x is the distance from the left of

1 the screen going toward the right. The upper left corner of the
screen is (0,0). The y coordinate is the distance down the

*—■) screen. For example, (10,20) would be 10 pixels across and 20

f] pixels down.

89

■ Chapter 8

LJ

U

The LINE command is the basic drawing command to go \ j

from one point to another. Program 8-1 illustrates several 1—J
forms of the LINE command.

Line 20 is the basic LINE command to draw from the first l >

point (10,10) to the second point (50,40) using coordinates J—I

(x,y) from the upper left corner of the screen. Line 30 uses the

same type of command. Line 40 illustrates a LINE command { ,

that starts at the last point drawn and goes to the specified i—1
point. These two lines will create a drawing that will go from

(20,50) to (60,75) and then to (70,60).

You'll notice that the previous lines are drawn in white,

the default color. You may specify a color number right after

the second coordinate if you prefer a different color. Line 50

draws a black line.

The LINE command has some added options. Line 60

illustrates the Box option, indicated by a B after the color num

ber. This command will draw a box with the upper left corner

at the first coordinate set (10,100) and the lower right corner at

the second coordinates (30,120). It will be outlined in color

number 3, which is orange.

In line 70, BF is the Box Filled option, or a box that is col

ored in. If you want just to use the default color, you don't

need to specify the color number, but you do need to use the

right number of commas. Line 80 draws a Box Filled with the

default color white.

Program 8-1. Line

10 REM LINE

20 LINE (10,10)-(50,40)

30 LINE (20,50)-(60,75)

40 LINE -(70,60)

50 LINE (80,80)-(130,70),2

60 LINE (10,100)-(30,120),3,B

70 LINE (40,110)-(65,140),2,BF ' >
80 LINE (80,105)-(100,130),,BF

90 END

I]

With just the LINE graphics command you can create

beautiful designs. Draw the lines in certain patterns or in a

certain sequence. Program 8-2 draws lines using three nested j I

FOR-NEXT loops. ^

l /

LJ

90 u

n Program 8-2. Lines

■ Chapter 8 ■

10 REM LINES

20 CLS

{—| 30 X1=320:Y1=0:X2=320:Y2=199

f \ 40 M=X1:N=X2

45 FOR J=l TO 5

50 FOR C=0 TO 3

—■« 60 FOR 1=1 TO 8

I 70 LINE (X1,Y1)-(X2,Y2),C

1 • 80 LINE (M,Y1)-(N,Y2),C
90 Xl=Xl-5zX2=X2+5

100 M=M+5:N=N-5

110 NEXT I

120 NEXT C

130 NEXT J

140 END

Next, in Program 8-3, we'll use the LINE command with

the BF option to draw boxes. Two loops are used to draw the

pattern. This time, IF-THEN statements are used instead of

FOR-NEXT loops.

Program 8-3. Boxes

10 REM BOXES

20 C=1:X=0:Y=0:CLS

30 LINE(X,Y)-(X+50,Y+50),C,BF

40 C=C+1:IF C=4 THEN C=l

50 X=X+20:Y=Y+10

60 IF Y<=130 THEN 30

70 LINE(X,Y)-(X+50,Y+50),C,BF

80 C=C+1:IF C=4 THEN C=l

90 X=X+20:Y=Y-10

100 IF Y>0 THEN 70

110 END

A lot of interesting graphics effects are done by using the

CIRCLE command. The basic form of the CIRCLE command is

r^ to specify a pair of coordinates which is the center of the cir-

- s cle, then a radius, then optionally the color of the circle.
Program 8-4 contains the CIRCLE command in lines 30

f—"> and 60. The center point is always the same—(320,100)—or

about the middle of the screen. Concentric circles are drawn in

a loop with the radius, R, increasing each time. Then the cir-

r-> cles are drawn with the background color 0, which in effect

] erases the present circles. These circles are drawn with a
decreasing radius. Line 90 changes the color of the drawing.

rH Line 100 creates an endless loop, so to stop the program press

• ^ CTRL-C to break or use the mouse to select Stop under the
Run menu.

'■] 91

u
i

LJ

Program 8-4. Circles | ;

10 REM CIRCLES

20 CLS:C=1

30 CIRCLE (320,100),R#C i j

40 R=R+4 (j
50 IF R<100 THEN 30

60 CIRCLE (320,100),R,0

70 R=R-4 . ,

80 IF R>0 THEN 60

90 C=C+1:IF C=4 THEN C=l

100 GOTO 30

110 END

Just as there are several options in the LINE command,

there are several in the CIRCLE command. The number right

after the center coordinates is the radius. After the radius

number is the color number. The next two numbers are a

starting point and an ending point, so you may draw an arc,

or part of a circle. The last number is the aspect, or the

height/width ratio. The numbers after the radius are optional.

Here's a program (Program 8-5) which illustrates several

kinds of CIRCLE commands. Line 20 draws a circle using

color 2, black.

Line 30 draws a circle with color 3. This command speci

fies a starting point of 0 and an ending point of 3.14159 (which

is approximately pi). Keep in mind that these numbers are ex

pressed in radians. The starting point may be left out and

would be assumed to be 0, which is at the three o'clock po

sition on a round clock face. The direction is counterclockwise.

You do not have to start at 0, of course, and line 40 draws

a circle starting at pi radians (at the left side of the circle) and

going to 6.

The aspect number gives the height/width ratio to make

the circle into an ellipse. If this number is not specified, the | j
default value is 1, a circle. line 50 draws an ellipse that has a

ratio of 2. Note that if some of the optional numbers are left

out, the commas are still necessary. Line 60 draws an ellipse J j
with a fractional ratio, .33. Again, the starting and ending

point are not specified, so the ellipse is complete.

Line 70 draws an arc of an ellipse by specifying the start- j |
ing point of 1, the ending point of 3, and a height/width ratio

of 1.5.

92

Chapter 8

["""} Program 8-5. Circles2

10 REM CIRCLES2

20 CIRCLE (30,50),20,2

]t 30 CIRCLE (100,50),30,3,0,3.14159
' V 40 CIRCLE (130,50),40,1,3.14159,6

50 CIRCLE (190,50),25,,,,2

60 CIRCLE (100,90),25,3,,,.33

f—) 70 CIRCLE (100,170),40,2,1,3,1.5

f \ 80 END

Painting on the Amiga

The PAINT command is used to fill in screen areas with color.

(It must be used in a window that has been defined with a

type of 16 through 31.) The command specifies the co

ordinates of a point where painting is to start, then a hue

number. The next number, the border color at which to stop,

is optional.

The following short program (Program 8-6) illustrates the

PAINT command. Line 20 defines a WINDOW with the type

of 24. Line 30 draws a circle; then the next line draws a line

that goes through the circle. Line 40 paints starting at point

(40,50), which is the lower part of the circle, and uses color

number 3. The next line paints the upper part of the circle be

cause it starts at the point (60,50). It paints with the color 2,

black, and goes to the border of color 3, the orange circle

outline.

Program 8-6. Paint

10 REM PAINT

20 WINDOW 2/'PAINTING",(100,10)-(200,100),24

30 CIRCLE (50,50),30,3

LINE (20,20)-(100,100),3

40 PAINT (40,50),3

PAINT (60,50),2,3

50 END

Graphic Patterns

When you draw a line or fill in an area with BF or AREAFILL,

the default values are a solid line and a solid fill pattern. How

ever, you can change both these patterns with the PATTERN

statement. You can use graph paper to draw out a pattern of

filled-in squares, then convert each row to its hexadecimal

equivalent. The pattern numbers start with &H.

93

' Chapter 8 ■

L_J

LJ

Here's a sample pattern using two defined pattern lines } j

(Program 8-7). First, line 20 draws a box so that you will be —'
able to see the pattern. Without a pattern specification it will

be the solid color. Line 30 DIMensions the integer variable) \

PAT% for two elements. Line 40 and the next line define the {—!
pattern for each of the PAT% elements. These will repeat in a

filled area. Line 50 defines the pattern. The first number, \ }

&HFF, defines the pattern for a line. &HFFFF is a solid line, so '—*
this is the same as &HFF00 and will yield a dotted line. The

second specification is the PAT% array for the filled areas.

Line 60 draws a line using the new pattern. Line 70 draws

a box filled with the new pattern.

Program 8-7. Pattern

10 REM PATTERN

20 LINE (0,0)-(80,80),,BF

30 DIM PAT%(1)

40 PAT%(0)=&HAAAA

PAT%(1)=&HFFFF

50 PATTERN &HFF,PAT%

60 LINE (0,90)-(90,90)

70 LINE (10#100)-(80,150),,BF

80 END

Try two different numbers in line 40, and a different pat

tern in line 50. You can see how using different patterns can

make some beautiful effects. By the way, changing the line

pattern by using PATTERN can affect the cursor when it is in

the Output window. For example, the above pattern will make

the cursor disappear because of the trailing zeros.

Your pattern in a filled area doesn't have to be just two

alternating lines. This next program (Program 8-8) illustrates a

pattern array P% that contains four elements to define even

more intricate fill patterns. (\

The PATTERN command in line 40 first defines the line,

then the fill pattern.

Program 8-8. Pattern2

10 REM PATTERN2

20 DIM P%(3))

30 P%(0)=&HFFFF ' }
P%(1)=&HAAAA

P%(2)=&H5555

P%(3)=&H3333 \ (
40 PATTERN &H3333,P% \ !
50 LINE (10,10)-(80,80),,BF

60 LINE (0,90)-(90,90)

70 END ^ i

94 U

n

f\ Now try changing the hexadecimal numbers in line 30 for
the P% elements. For example,

{-—^ &HFAFA

/ [
&HAFAF

f-^ &H5353

■■-^ &H3535

Or another pattern would be

&H6666

&H1212

&H4444

&H7777

Area Fills

Because it takes up a lot of memory, the PAINT command is

very limited with the 256K Amiga, but AREA and AREAFILL

can be versatile enough to do the same thing. AREA com

mands specify points to be joined in a polygon, then

AREAFILL joins those points and fills in the polygon with the

default solid color or a specified pattern. You don't actually see

anything on the screen after AREA statements until you use

the AREAFILL command.

AREA commands can use actual numbers (or variables)

specifying coordinates of points, or they can use the STEP op

tion which gives relative distances.

Program 8-9 illustrates how AREA, AREAFILL, and PAT-

fl TERN can work.
The three AREA statements in line 20 define points for a

triangle, and line 30 fills in the triangle. Line 40 uses four

pi AREA statements to define a quadrilateral. Line 50 uses

AREAFILL 1 which will use the reverse. You can specify either

1 or 0, and the default is 0.

fP~j Line 60 DIMensions an array PAT% with four elements,

then the four elements are defined with hexadecimal patterns.

Line 70 redefines the fill patterns.

P"? Line 80 starts with a specific AREA point; then STEP in

dicates go a relative distance from the last point. Line 90 fills

in that polygon.

H

u

■ Chapter 8

Line 100 illustrates how the PATTERN command [_]
changed the line, and line 110 illustrates the pattern in a filled

box. Line 120 defines another triangle, and line 130 fills with
the reverse.) |

Program 8-9. Areas

10 REM AREAS / j

20 AREA (25,10) ^ '
AREA (50,20)

AREA (0,20)

30 AREAFILL

40 AREA (50,25)

AREA STEP (20,15)

AREA STEP (-10,15)

AREA STEP (-10,-10)

50 AREAFILL 1

60 DIM PAT%(3)

PAT%(0)=&H505

PAT%(1)=&HA0A

PAT%(2)=&H505

PAT%(3)=&HA0A

70 PATTERN &HFFF,PAT%

80 AREA (100,50)

AREA STEP (50,20)

AREA STEP (-50,20)

AREA STEP (-50,-20)

AREA STEP (50,-20)

90 AREAFILL

100 LINE (0,120)-(200,120)

110 LINE (10,130)-(150,170),3,BF
120 AREA (180,130)

AREA STEP (30,20)

AREA STEP (-50,20)

130 AREAFILL 1

140 END

Adding Colors to Your Palette

What about all the colors the Amiga is supposed to have? So { f

far I have simplified the programs by just using the four de- j \

fault colors for the standard screen: 0, the background blue; 1,

white; 2, black; and 3, orange. These colors can be changed by . t

using Preferences on the Workbench, or you can use the PAL- } \
ETTE command.

Think of the PALETTE command as an artist's palette on , (

which you mix colors. For each of the four possible colors, or] t
paint buckets, you can mix a combination of red, green, and

blue. The first number in the PALETTE command is one of the

paint buckets. The next three numbers are the mixtures in or- \ \
der of red, green, and blue. The numbers can be thought of as

u

r-n Chapter 8 ■

/) fractions from 0 through 1. Black is 0,0,0, or no colors, and
white is 1,1,1, or a mixture of all colors.

^ Program 8-10 illustrates the PALETTE command by draw-

/ \ ing four boxes of the four colors. PALETTE 0, or the back

ground color, is a mixture of 1,1,1 which is white. PALETTE 1,

_ the default drawing and printing color, is a mixture of 0,0,1.

/ 1 PALETTE 2 is 0,1,0. PALETTE 3 is 1,0,0.

Program 8-10. Palettes

10 REM PALETTES

20 PALETTE 0,1,1,1

PALETTE 1,0,0,1

PALETTE 2,0,1,0

PALETTE 3,1,0,0

40 FOR C=0 TO 3

LINE (C*20,80)-(C*20+20,120),C,BF

NEXT C

50 END

Now try some fractional mixtures in the above program:

PALETTE 0,0,0,0

3,.2,.2,.2

or

PALETTE 0,.1,.8,.8

1,.3,.2,.4

2,.4,.1,.6

3,.8,.5,0

You can see that you could spend all day experimenting with

colors.

The next program (Program 8-11) can help you experi

ment with colors. A box of colors appears at the left of the

screen. There are three "tubes'' for the three colors at the

right. A circle appears above one of the paints. Use the arrow

keys to move the level of color up or down. Press RETURN to

move to the next tube of color. As you adjust the levels with

the arrow keys, the numbers above the columns are the num

bers to be used in the PALETTE statement to produce the

color in the square. The colors start at 0,0,0.

97

LJ
■ Chapter 8 —

Line 20 is a FOR-NEXT loop that draws the three boxes [_J
for the level indicators. Line 30 draws the large box of color.

Line 40 defines the y coordinate for drawing the circle indicat

ing which tube you can change the level on. Line 50 is the j (
number of the tube T.

Line 60 defines XX and LL for the x position and level for

the particular tube. The circle is drawn above the tube that can |_j
be adjusted.

Line 70 detects which key on the keyboard is pressed—

the RETURN key, the up arrow key, or the down arrow key.

All other keys are ignored. DL is the change in level, which

can be —1 or +1. If the down arrow key is pressed, the line is

erased, but if you are moving up, the lines stay drawn.

Line 80 defines LL for the changed level and checks the

top and bottom positions. PALETTE changes the color in the

box. The new values for the mixtures are printed.

Line 90 is the procedure when the RETURN key is

pressed. The circle is erased, the tube number is incremented,

and the next tube is available for input.

To stop this program you will need to press CTRL-C or

Stop from the menu bar.

Program 8-11. Palettes2

10 REM PALETTES2

20 FOR C=l TO 3

CC=C*110+130

LINE (CC,79)-(CC+10,181),,B

LINE (CC,180)-(CC+10,180)

X(C)=CC+5:L(C)=180

NEXT C

30 LINE (40,10)-(120,60),2,BF

40 Y=70

50 T=l i j

60 XX=X(T):LL=L(T) !
CIRCLE (XX,Y),5

70 A$=INKEY?:IF A$=MM THEN 70

IF A$=CHR$(13) THEN 90

IF A$=CHR$(28) THEN DL=-1:GOTO 80 j (
IF A$<>CHR$(29) THEN 70 j '
DL=1

LINE (XX-4,LL)-(XX+4,LL),0
80 LL=LL+DL i I

IF LL<80 THEN LL=80 j j
IF LL>180 THEN LL=180

LINE (XX-4,LL)-(XX+4,LL),1

P(T)=(180-LL)/100:L(T)=LL . ,
PALETTE 2,P(1),P(2),P(3) M
LOCATE 5,1:PRINT TAB(18+T*14);" "

LOCATE 5,30:PRINT P(l),P(2),P(3)

GOTO 70

I)

r-) Chapter 8 ■
> I

/ j 90 CIRCLE (XX,Y),5,0
T=T+1:IF T>3 THEN 50 ELSE 60

100 END

r—>

/ \

Sprites and Bobs

*—» A whole book can be written about programming moving ob-

f ^ jects—sprites and blitter objects (bobs). I'll just get you started
here. Most of the commands start with OBJECT, and you can

just sit at the computer and start experimenting.

To define a shape, use the Object Editor program that

comes with the demonstration programs on the same disk as

Amiga BASIC. If you are in BASIC, you can load this program

with the command

LOAD "BasicDemos/ObjEdit"

For an example, press 1 to design a sprite. Now use the right

mouse button to see the menus on the menu bar. Use the left

mouse button to change the size of the object or to choose a

color, then to draw with the pen (or use the different shapes).

When you have designed an object, press the right mouse but

ton to go to the Project menu and select Save. You will be

asked for a title for your work. Remember, if you are saving

on a different disk, to use "DFO:". I designed a snake and

called it "DF0:SNAKE".

When you are finished designing objects, you can use NEW

to get rid of the ObjEdit program and start your own program.

The example below (Program 8-12) illustrates how to set up

one sprite and shows how some of the commands are used.

OPEN "DF0:SNAKE" FOR INPUT AS 1

is used to OPEN the file containing the information about the

object designed using the Object Editor program. The next line

reads the information as a string with INPUT$(LOF(1),1).

OBJECT.SHAPE 1 says to define shape number 1 with that

previously saved string.

CLOSE 1 closes the file that we will no longer need.

OBJECT.X and OBJECT.Y define where the object will

start on the screen. The object number 1 is specified, along

with the x coordinate and y coordinate. I defined SX and SY to

be the speed in the x direction and the speed in the y direc

tion. OBJECT.VX and OBJECT.VY specify those speeds (veloc

ities) for object number 1.

99

LI

Chapter 8

OBJECT ON makes our sprite visible. Without specifying I

a number, all objects would become visible. OBJECT.START

starts the object in motion. Again, a number can be specified, ,

and no number means all objects. i

Line 40 tests to see whether the sprite collided with the

border line. If K is 0, there is no collision and the sprite can {

keep moving. If K is —1 or —3, then the top or bottom border I

was hit and the y velocity needs to be changed; otherwise, the

side borders were hit and the x velocity needs to be reversed.

GOTO 30 continues the program until you choose Stop on the

menu bar or press CTRL-C.

Program 8-12. Sprite

10 REM SPRITE

OPEN "DF0:SNAKE" FOR INPUT AS 1

OBJECT.SHAPE 1,INPUT?(LOF(1),1)

CLOSE 1

OBJECT.X 1,20

OBJECT.Y 1,50

SX=60:SY=50

OBJECT.VX 1,SX

OBJECT.VY 1,SY

OBJECT.ON

30 OBJECT.START

40 K=COLLISION(1)

IF K=0 THEN 40

IF K=-l OR K=-3 THEN SY=OBJECT.VY(1):OBJECT.VY 1,-SY:GOTO

30

SX=OBJECT.VX(1)

OBJECT.VX 1,-SX

GOTO 30

END

Use of the object commands is an advanced topic and be- ,

yond the scope of this book. See COMPUTEl's Advanced Amiga j

BASIC, Inside Amiga Graphics, or COMPUTEl's Amiga Pro

grammer's Guide for more detailed information. Briefly, here

are some of the other commands you might encounter:

OBJECT.AX and OBJECT.AY are accelerations of the ob

ject in the x and y directions.

OBJECT.CLIP (xl,yl)-(x2,y2) defines a rectangle, and ob

jects cannot be drawn outside the area. The default value is

the border of the current Output window.

OBJECT.CLOSE id is like closing a file—you use this

command when you no longer need an object.

100

H

Chapter 8

I 1 OBJECT.OFF makes an object invisible and stops an ob
ject if it was started with OBJECT.START. The object is still

n available if you use .OFF.

OBJECTSTOP freezes the motion of an object (it will still

be visible).

<—■> OBJECT.HIT determines collision objects.

/ \ OBJECT.PLANES is used with blitter objects to set the

bob's planePICK and place-on-off masks.

OBJECT.PRIORITY is used to set priority of bobs, which

determines when an object is drawn in relation to other ob

jects—or whether objects are in front of or behind other

objects.

n

n

r

/ i

101

Q

B

D

Q

B

D

- Music, Sounds, and

f | The basic command to produce a musical tone on the Amiga is

SOUND f,d,v,c

where / is a frequency (pitch), d is duration, v is volume, and c

is the audio channel from 0 through 3.

The frequency is a number for the standard cycles per sec

ond for a tone, such as 440 for an A note. The Amiga BASIC

manual has a chart, or you may want to make your own using

musical staff paper.

The duration is a number for the length of time you want

a tone to play.

The volume may be a number from 0 through 255, where

255 is the loudest. If you leave the volume parameter out of

the statement, the default value is 127.

When you're using SOUND statements to program the

computer to play a tune, it's a good idea to use a variable for

the duration. For example, let T represent the length of a quar

ter note. T/2 would be an eighth note; T*2, a half note; and

T*4, a whole note. Try this short tune:

Program 9-1. Music1

10 REM MUSIC1

20 T=10

mmmi 30 SOUND 330,T

- ' 40 SOUND 294,T/2

__, 50 SOUND 262,T/2

60 SOUND 294,T

70 SOUND 330,T*1.5

) 80 SOUND 349,T/2

90 SOUND 392,4*T

V 100 END

105

■ Chapter 9

Now suppose you want to play the tune twice as fast.

With a variable duration you need to change only line 20, not

all of the SOUND statements. Try T=5.

To make the tune slower, try T=20. The notes stay in the

right proportion. Line 30 is a quarter note, for example. Lines

40, 50, and 80 are eighth notes. Line 70 is a dotted quarter

note. Line 90 represents a whole note.

The frequencies can also be variables specified at the

beginning of the program. The note names can be used as the

variables to make your program conform somewhat to regular

musical notation. Program 9-1 can be written like this:

Program 9-2. Music2

10 REM MUSIC2

20 T=10:C=262:D=294

25 E=330:F=349:G=392

30 SOUND E,T

40 SOUND D,T/2

50 SOUND C,T/2

60 SOUND D,T

70 SOUND E,T*1.5

80 SOUND F,T/2

90 SOUND G,4*T

100 END

DATA statements can shorten the program if you are

using lots of SOUND statements. Here's the same tune using

DATA:

Program 9-3. Music3

10 REM MUS1C3

20 T=l

30 FOR N=l TO 7

40 READ F,D

50 SOUND F,D*T

60 NEXT N

106

U

H

p-i Chapter 9 ■

70 DATA 330,1,294, .5,262, .5,294,1,330,1.5,349, .5,392,4

80 END

If you read music, you can use this method to translate

sheet music to the computer.

Switching Channels

If you want more than one tone at a time, as a chord, you can

use the four channels of sound.

Here's a short tune (Program 9-4) that uses the four chan

nels. The music information is contained in DATA statements,

in the order duration factor D and then four frequency num

bers to go with the four channels.

Line 20 sets a time of 4. When a duration factor D is read

in, it is multiplied by T for the total duration. Line 30 reads

the value for D. If D is 0, it indicates the end of the data and

the program branches to the end.

Lines 40-70 are a FOR-NEXT loop that reads the four fre

quencies. For each frequency, the SOUND statement starts the

music. F is the frequency, and the counter S is also used in the

SOUND statement. S is first used to set the volume—the up

per notes are played louder than lower notes. S is also used

for the channel number.

Line 80 transfers control back to the READ statement for

the next set of numbers. This music is from the Rondo section

of Beethoven's Fifth Concerto.

Program 9-4. Rondo

10 R£M RONDO

20 T=4

30 READ D:IF D=0 THEN 1000

40 FOR S=0 TO 3

50 READ F

60 SOUND F,D*T,150-S*20,S

70 NEXT S

80 GOTO 20

90 DATA 2,466,392,311,156

100 DATA 2,622,392,311,233

110 DATA 2,622,466,392,196

120 DATA 2,784,466,392,196

130 DATA 2,20,20,20,233

140 DATA 1,784,622,466,19b

150 DATA 1,932,20,20,20

160 DATA 1,932,784,622,156

170 DATA 1,1244,20,20,20

180 DATA 2,1244,932,784,233

190 DATA 2,1244,932,784,196

107

u

Chapter 9

200 DATA 2,1244,932,784,156 j
210 DATA 2,20,20,20,233 -wJ
220 DATA 1,1244,932,784,15b

230 DATA 1,1568,932,784,156

240 DATA 2,1396,932,698,349 1 {
250 DATA 2,20,20,20,233 -CJ
260 DATA 1,1108,932,698,208

270 DATA 1,139b,932,698,208

280 DATA 2,1244,932,784,156 \ >

290 DATA 2,1244,932,784,233 [•

300 DATA 1,784,622,196,156

310 DATA l,932,t>22,196,15b

320 DATA 2,932,698,587,117

330 DATA 2,932,698,587,233

340 DATA 1,932,698,587,175

350 DATA 1,880,698,587,175

360 DATA 4,932,698,587,117

370 DATA 0

1000 END

The Amiga's musical abilities can be used in a wide variety

of ways—for fun, for learning basic skills, and for sharpening

your musicianship. You can put music into the computer and

then sing with it. Or you can play a solo instrument with the

computer playing the accompaniment. The Amiga is especially

good for learning music, because you can immediately hear

any changes you want to implement as you are composing.

Or, if you are trying to learn a piece that has a difficult

rhythm, program it on your Amiga. Play it first at a slow

tempo, then gradually increase the tempo as you practice

along with the computer.

In addition, musical tones work well in interactive pro

grams. You can use a sound for a prompt or a happy musical

interlude for correct responses.

With some experimentation you can make many different

sounds with the computer. The best way to learn to program

the music is to sit at the computer and experiment. ^ I
"Notes" is an educational program that illustrates the use

of the SOUND command. This program is designed for the

beginning music student. The first option, Keyboard, shows i_J,
the letter names of the keys on a piano or organ keyboard and

then presents a drill of ten keys chosen at random. A question

mark appears under a key, and the student must press the cor- |_J
rect letter name. When the correct letter is pressed, the name

of the key appears and that tone is played.

The second and third options are Treble Clef and Bass ^J
Clef. These two sections display the appropriate staff and clef,

and present words and phrases to help the student remember

108 ^

t

L I the letter names of the notes. A drill of ten notes is then
presented.

r-% An array S$ is used to keep track of the letter names of

the notes, and S is the array to save the frequencies of the

corresponding notes. In the Keyboard section, notes from 0

through 18 are used. In the Treble Clef and Bass Clef sections,

notes from 1 through 9 are used.

Program 9-5. Notes

10 REM NOTES

20 DIM S$(18),S(18)

50 CLS

60 LOCATE 5,10:PRINT "LET'S LEARN NOTES"

70 PRINT:PRINT "CHOOSE:":PRINT

80 PRINT "1 KEYBOARD"

90 PRINT "2 TREBLE CLEF"

100 PRINT "3 BASS CLEF"

110 PRINT "4 END PROGRAM"

120 E$=INKEY$:IF E$="" THEN 120

130 IF E?<"1" OR E$>"4" THEN 120

140 CLS:RANDOMIZE TIMER

145 ON VAL(E$) GOTO 750,1280,1880,2120

150 REM KEYBOARD

160 CLS:LINE(0,0)-(640,70),1,BF
170 FOR 1=24 TO 640 STEP 32

180 LINE(I,0)-(I,70),2

190 NEXT I

200 RESTORE 210

210 DATA 48,80,144,176,208,272,304

215 DATA 368,400,432,496,528,596
220 FOR 1=1 TO 13

230 READ A

240 LINE(A,0)-(A+16,48),2,BF
250 NEXT I

260 RETURN

270 LOCATE 23,1:PRINT "PRESS <RETURN> TO CONTINUE.";
290 E$=INKEY$:IF E$="" THEN 290

300 IF ASC(£$)<>13 THEN 290
310 CLS:RETURN

320 REM CDE

330 LINE(192,36)-(336,116),1,BF
340 LINE(240,96)-(240,116),2
350 LINE(288,96)-(288,116),2
360 LINE(228,36)-(252,96),2,BF

370 LINE(276,36)-(300,96),2,BF
380 LOCATE 16,28:PRINT "C"
390 RETURN

400 REM STAFF

410 FOR 1=43 TO 107 STEP 16
420 LINE (0,I)-(640,I),1
430 NEXT I

440 RETURN

450 REM TREBLE CLEF

460 LOCATE 2,18:PRINT "TREBLE CLEF NOTES"
470 LINE (76,118)-(84,122)

109

u

• Chapter 9

U

480 LINE -(86,116):LINE -(70,36) j I.
490 LINE -(76,28):LINE -(84,26) ^^
500 LINE -(90,30):LINE -(88,40)
510 LINE -(72,54):LINE -(40,75)

520 LINE -(34,84):LINE -(38,95) i ■

530 LINE -(48,102):LINE -(64,106) v-J
540 LINE -(100,106):LINE -(116,100)

550 LINE -(124,94):LINE -(122,86)

560 LINE -(116,80):LINE -(104,76) v- j

570 LINE -(80,76):LINE -(64,82) £ j
580 LINE -(60,88):LINE -(64,98)

590 RETURN

600 REM BASS CLEF

610 LOCATE 2,20:PRINT "BASS CLEF NOTES"

620 LINE (50,56)-(62,62),,BF

630 PRESET (64,62):PRESET (62,56):PRESET (50,62)

640 LINE (52,53)-(58,55),,BF

650 LINE (54,52)-(68,47)

660 LINE (58,52)-(68,47)

670 LINE -(88,44):LINE -(104,44)

680 LINE -(126,50):LINE -(136,59)

690 LINE -(136,72):LINE -(126,82)

700 LINE -(102,95):LINE -(82,101)

710 LINE (160,52)-(164,55),,BF

720 LINE (160,64)-(164,67),,BF

730 RETURN

740 REM KEYBOARD

750 REM

760 GOSUB 160

770 LOCATE 10,2:PRINT "BCDEFGABCD

EFGABCDEFG"

780 PRINT:PRINT " The musical keyboard has groups of 3 blac

k keys alternating"

790 PRINT " with groups of 2 black keys."

800 PRINT:PRINT " Each white key has a letter name."

810 PRINT " We use the letters ABCDEFG."

820 RESTORE 840

830 FOR 1=0 TO 18:READ S$(I),S(I):NEXT I

840 DATA B,247,C,262,D,293,E,330,F,349,G,393,A,440,B,494

850 DATA C,523,D,587,E,659,F,698,G,783,A,880,B,988,C,1047

860 DATA D,1175,E,1319,F,1397

870 GOSUB 270

880 PRINT "One of the easiest keys to find is ICI." ,

890 GOSUB 330] |
900 GOSUB 270 >—'

910 GOSUB 160

920 LOCATE 10,6:PRINT "C";TAB(34);"C";TAB(62);"C"

930 GOSUB 270 \ j
940 PRINT "'D1 is between the two black keys and 'E' is on t

he right."

960 GOSUB 330

970 LOCATE 16,34:PRINT "D E"

980 GOSUB 270

990 GOSUB 160

1000 LOCATE 10,2:PRINT "BCDEFGABC

D E F G A B C D E F G" , ,

1010 PRINT:PRINT " Notice the letter names repeat." iN \
1020 PRINT:PRINT:PRINT " NOW FOR A QUIZ ..." ^^
1030 GOSUB 270

1040 GOSUB 160

110

n

n

H

jj 1050 LOCATE 15,10:PRINT "NAME THE NOTE"
1060 PK=-1

1070 FOR T=l TO 10

1080 N=INT(19*RND):IF N=PK THEN 1080

P"l 1090 PK=N:C=4*N+1
I * 1110 LOCATE 10,C:PRINT "?"

1120 LOCATE 10,C:PRINT " "
1130 A$=INKEY$:IF A$="" THEN 1110

i~—! 1140 IF A$=S$(N) THEN 1170

^ v 1150 SOUND 250,4:SOUND 200,4

1160 GOTO 1110

1170 SOUND S(N),40

1180 LOCATE 10,C:PRINT S$(N)

1190 FOR DELAY=1 TO 5000:NEXT DELAY

1200 LOCATE 10,C:PRINT " "

1210 NEXT T

1220 LOCATE 15,10:PRINT "GOOD W O R K 1"

1230 FOR 1=1 TO 20

1240 SOUND 1000*RND+523,2

1250 NEXT I

1260 GOTO 50

1270 REM TREBLE CLEF

1280 REM

1290 GOSUB 410:GOSUB 460

1300 RESTORE 1310

1310 DATA F,698,E,659,D,587,C,523,B,494,A,440,G,392,F,349,E,

330

1320 FOR 1=1 TO 9:READ S$(I),S(I):NEXT I

1330 LOCATE 18,2:PRINT "The names of the notes on the spaces

spell the word FACE."

1350 SOUND 349,6:LOCATE 13,28:PRINT "F"

1360 SOUND 440, 6-.LOCATE 11, 32:PRINT "A"

1370 SOUND 523,6:LOCATE 9,36:PRINT "C"

1380 SOUND 659,6:LOCATE 7,40:PRINT "E"

1390 GOSUB 270

1400 GOSUB 410:GOSUB 460

1410 LOCATE 17,2:PRINT "Learn this phrase to help you rememb

er the notes on lines."

1420 PRINT:PRINT " The first letter of each word is the lett

er name of the note."

1430 PRINT:PRINT TAB(24);"EVERY GOOD BOY DOES FINE."

1440 SOUND 330,6:LOCATE 14,24:PRINT "Every"

1450 SOUND 392,6:LOCATE 12,36:PRINT "Good"

r^ 1460 SOUND 494,6:LOCATE 10,46:PRINT "Boy"

* i 1470 SOUND 587,6:LOCATE 8,54:PRINT "Does"
1480 SOUND 698,6:LOCATE 6,64:PRINT "Fine"

1490 GOSUB 270

1500 GOSUB 410:GOSUB 460

1510 LOCATE 18,20:PRINT "NAME THE NOTE"
1520 PN=0

1530 FOR T=l TO 10

1540 N=INT(9*RND)+1:IF N=PN THEN 1540
J) 1550 PN=N:C=5+N:D=C*8-11
'.. } 1560 I=260:J=280

1570 FOR R=D TO D+4

1580 LINE (I,R)-(J,R),3

f—^ 1590 1=1-2:J=J+2:NEXT R

/) 1600 LINE (l,D+5)-(J,D+8),3,BF
1610 FOR R=D+9 TO D+13

1620 1=1+2:J=J-2

r^ 1630 LINE (I,R)-(J,R),3

111

Chapter 9 . .

1640 NEXT R } |
1660 A$=INKEY$:IF A$=MI> THEN 1660

1670 IF A$=S$(N) THEN 1700
1680 SOUND 250,5:SOUND 200,5

1690 GOTO 1660

1700 SOUND S(N),40,255

1710 LOCATE C,44:PRINT S$(N)

1720 FOR DELAY=1 TO 5000:NEXT DELAY

1730 LINE (250,D)-(360,D+13),0,BF . .

1740 FOR 1=43 TO 107 STEP 16 >

1750 LINE (250,I)-(360,I) . ^^
1760 NEXT I

1770 NEXT T

1780 LOCATE 18,20:PRINT "GREAT 11"

1790 FOR T=l TO 20

1800 SOUND 1000*RND+523,2

1810 NEXT T

1820 PRINT:PRINT "TRY AGAIN? (Y/N)n

1830 E$=INKEY$:IF E$="N" THEN 50

1840 IF E$o"Y" THEN 1830

1850 LOCATE 20,1:PRINT "

1860 GOTO 1510

1870 REM BASS CLEF

1880 REM

1890 GOSUB 410:GOSUB 610

1900 LOCATE 16,2:PRINT "Phrases to learn the bass clef notes

refer to animals."

1910 PRINT " For the notes on spaces, remember:"

1920 PRINT:PRINT TAB(28);"ALL COWS EAT GRASS."

1930 SOUND 110,6,255:LOCATE 13,28:PRINT "All"

1940 SOUND 131,6,255:LOCATE 11,38:PRINT "Cows"

1950 SOUND 165,6,255:LOCATE 9,50:PRINT "Eat"

1960 SOUND 196,6,255:LOCATE 7,60:PRINT "Grass"

1970 GOSUB 270

1980 GOSUB 410:GOSUB 610

1990 LOCATE 17,1:PRINT "For the line notes use this phrase:"

2000 PRINT:PRINT TAB(24);"GREAT BIG DOGS FIGHT ANIMALS."

2010 SOUND 98,6,255:LOCATE 14,24:PRINT "Great"

2020 SOUND 123,6,255:LOCATE 12,36:PRINT "Big"

2030 SOUND 147,6,255:LOCATE 10,44:PRINT "Dogs"

2040 SOUND 175,6,255:LOCATE 8,54:PRINT "Fight"

2050 SOUND 220,6,255:LOCATE 6,66:PRINT "Animals"

2060 RESTORE 2070

2070 DATA A,220,G,196,F,175,E,165,D,147,C,131,B,123,A,110,G, \ i

2080 FOR 1=1 TO 9:READ S$(I),S(I):NEXT I

2090 GOSUB 270

2100 GOSUB 410:GOSUB 610 [j

2110 GOTO 1510

2120 END

Creating Different Sounds [j

By varying the WAVE value of a voice, you can produce many

different sounds on the Amiga. The default WAVE is a sine

wave, a pure tone. To make the tone sound different, you can

change the WAVE pattern. For example, for a noise the pattern

is erratic. Then, of course, you can change the WAVE for each ^

Lj
112

H

_^ Chapter 9 ■

I"""] of the four voices and combine those for all sorts of variations
in sound.

f The WAVE command uses an integer array of 256 num-

r""^ bers (elements 0-255). You will need a DIMension statement
near the beginning of the program to reserve space. For ex-

fmm^ ample, if we call our array W, we can use

i V' 20 DEFINT W

30 DIM W(255)

where DEFINT defines W as an integer.

Now you can put different numbers in the W array. For

example,

FOR C=0 TO 255

W(C)=1

NEXT C

Or you can make a calculation, perhaps a trigonometric func

tion of C, for each value of W(C). Or you can read the values

from DATA:

FOR C=0 TO 255

READ W(C)

NEXT C

Now use the WAVE command to set the waveform for a

particular channel:

WAVE 0,W

WAVE 1,W

,—9

■ You could set each channel to a different array.

To give you an idea of how different numbers in the array

f] affect the sound, try the next program. I have used the tone of

-) concert A (frequency 440). First the tone is sounded with the

default waveform:

(I WAVE 0,SIN

SOUND 440,60

/■ A graph of the sine wave is drawn on the screen. The

numbers in the array can be from —127 to +127, so the bor-

—^ ders of the screen will be the boundaries. Use the mouse to
\ j

113

u
Chapter 9

move to a particular point and press the left mouse button to jj
change that particular array element to a different number.

You can hold the left mouse button down as you slowly move

in the x direction if you want each element to change grad- \ \

ually. The new element number values are graphed, and 440 ^^
is played.

If you want to know all the values for the elements so ^ I

that you can put them in DATA statements, get the tone you "^
want and then press RETURN. Then click the left mouse but

ton once. The values are printed on the screen.

In the program, line 20 defines all variables starting with

W, T, J, and K to be integers. Line 30 DIMensions the array W

for the 256 elements. Line 40 is the default WAVE, and line 50

sounds 440 so that you can hear the default sound on channel 0.

Lines 60-130 draw the graph of the sine wave. Line 140

changes the waveform to the new array W, which at first is a

scaled sine wave where the numbers are whole numbers be

tween — 127 and +127. Line 150 sounds the frequency of

440. The next two lines check to see whether the RETURN

key was pressed.

Line 160 checks to see whether the left mouse button is

pressed. Line 170 ignores any mouse activity beyond the right

side of the graph. Any up and down movement will affect the

last point of the graph. Line 180 erases the original graph line,

and lines 190-200 draw the new graph line where the mouse

button is pressed. Line 210 changes the particular W element

to the new value, then line 220 branches back to change the

W array in the WAVE statement and play the tone with the

new sound.

Lines 300-310 print the values of all the W elements for

use in DATA statements. | i

Program 9-6. Sound Wave

10 REM SOUND WAVE |
20 DEFINT W,T,J#K s"ra^
30 DIM W(255)

40 WAVE 0,SIN

50 SOUND 440,60 [j
60 LINE (0,100)-(620,100) -s***>

70 PI=3.14159

80 F=2*PI/510
90 FOR X=0 TO 510 STEP 2) j

100 Y=SIN(F*X) \^J
110 YY=100-40*Y

W(X/2)=127-YY*127/100

120 LINE (X,YY)-(X,100) , >

n

Chapter 9 ■

130 NEXT X

140 WAVE 0,W

150 SOUND 440,2

R$=INKEY$

IF R$=CHR$(13) THEN 300

160 IF MOUSE(0)=0 THEN 160

170 J=MOUSE(1):IF J>510 THEN J=510

180 LINE(J,0)-(J,200),0

190 K=MOUSE(2)

200 LINE (J,K)-(J,100)

210 W(J/2)=127-K*127/100

220 GOTO 140

300 WIDTH 77

LOCATE 20,1

310 FOR T=0 TO 255

PRINT W(T); ,

NEXT T

END

Making the Amiga Speak

The Amiga has impressive speech capabilities built in. All you

need is the Workbench disk.

Just as we set up a wave array for the waveform to hear a

certain kind of music, we can set up an array for speech.

There are default values which you can use until you're ready

to define your own. The voice characteristics we can define in

the array are pitch, inflection, rate, voice, tuning, volume,

channel, mode, and control.

Pitch is expressed in hertz and is a number between 65

and 320. The default is 110, which is a male speaking voice.

The inflection can be 0 for using inflections and

emphasizing syllables or 1 for a robot-like monotone.

The rate is a number betwen 40 and 400 words per

minute; the default is 150.

The voice is 0 for male and 1 for female.

The tuning number is the sampling frequency in hertz

(Hz). The number can range from a low of 5000 to a high,

squeaky 28000. The default is 22200.

Volume is a number from 0 for no sound to 64 as the

loudest.

•—1 The channel is the combination of channels and is a

■?_,_\' value from 0 through 11.

The mode can be 0 for synchronous speech output or 1

I—-1 for asynchronous speech output.

n

115

u
Chapter 9

Control is used when the mode is 1. It can be 0 for say- I j

ing one statement and then the next, 1 for canceling the pre- ^
vious statement, or 2 for immediately interrupting the first

statement and executing the second one. \ !

The easiest way to define the array (which must be inte- ^^
ger) is to use data:

j /
FOR T=0 TO 8 ^J

READ S%(T)

NEXT T

DATA 110,0,250,0,22200,64,1,0,0

Once the conditions of speech are set up, you type some

thing for the computer to say. One speech command is SAY

TRANSLATES. You can use a string of regular English words

and the computer will translate it to sounds and speak them.

Common pronunciations are used, so you may need to change

some spellings to fit the computer's pronunciation. Program 9-

7 is a short example. (Another example came with the Basic-

Demos on the Amiga BASIC disk).

In the SAY TRANSLATES command, you can use a string

in quotation marks, as in line 20. You can also set up a string

variable and use that variable name, as in line 30. S% is the

array of the speech conditions.

Remember to insert the Workbench disk to run speech

programs.

Program 9-7. Speech

REM—SPEECH

10 FOR T=0 TO 5 {)
READ S%(T) l^J

NEXT T

20 SAY TRANSLATE$("HELLO"),S%

30 M$="THIS IS A TEST." , -,

SAY TRANSLATE?(M$),S% |^J.

DATA 105,0,144,0,20590,63

Another way to get the computer to speak is to use the j^J.
SAY command using phonemes, which are unique letter

combinations representing specific sounds. A description of

phonemes is given in the Amiga BASIC manual. You must use j^J
only the phonemes on the chart or you will get an error

message.

116 ^

n
Chapter 9 •

H

j](

Our next example, Program 9-8, illustrates how you can

make the Amiga speak different languages by spelling phonet-

ically with the phoneme method.

Line 10 sets up the speech conditions array S%. Line 20

defines the five different messages. Line 30 prints the menu

screen, and line 40 lets the user choose a language or end the

program.

Program 9-8. Language

REM—LANGUAGE

10 FOR T=0 TO 5

READ S%(T)

NEXT T

DATA 105,0,144,0,20590,63

20 TEXT$(1)="AHN DUH TWAA KAETR SEYNK SIYS SEHT WIYT NAHF DI

YS"
TEXT$(2)="UWNOH DOHS TREYS KWAATROH SIYN KOH SEYS SIY EH

TEH OHCHOH NUWEHVEH DLIYEHS"
TEXT$(3)="AYNS TZWAY DRAY FIYR FUWNF SEHKS ZIYBAXN AAKT N

OYN TSEYN"

TEXT$(4)="IYCHIY NIY SAAN SHIY GOH /HIYCHIY /HAACHIY /HRO

HKUW KUW JUW"
TEXT$(5)="WAHN TUW THRIY FOHR FAYV SIHKS SEHVAXN EYT NAYN

TEHN"

30 PRINT '"LANGUAGE"

PRINT:PRINT

PRINT '

PRINT '

PRINT '

PRINT '

PRINT '

PRINT '

PRINT '

'CHOOSE:1'

1 1

1 2

1 3

' 4

1 5

1 6

FRENCH"

SPANISH"

GERMAN"

JAPANESE"

ENGLISH"

END PROGRAM"

40 A$=INKEY$

IF A$<"1" OR A$>"6" THEN 40

IF A$="6" THEN 50

/«. SAY TEXT$(VAL(A$)),S%

\) GOTO 40

~ 50 CLS:END

117

Q

B

D

Q

B

D

n

n

n

H Commands like RUN, GOSUB, and PRINT start a BASIC
statement and control what happens in that line. Functions, on

the other hand, are like small subroutines within a statement.

|) They return a value or a string. A statement which uses a
function must also contain a command that tells what to do

with that function.

String Functions

Usually, the computer treats information as numeric. Certain

information, however, is treated as strings, or groups of

characters that can be letters, numbers, or symbols. A string is

contained in double quotation marks, it can be up to 255

characters, and a string variable name must end with a dollar

sign, such as A$.

Strings in Amiga BASIC are combined, or concatenated,

with the plus sign:

PRINT A$+B$

NAME$=FIRST$+M SMITH"

You cannot combine string and numeric expressions. If

you do have numbers and want to use them as strings, use the

STR$ function to change the numeric value to a string:

N$=STR$(N)

PHONE?"586-"+STR$(NUMBER)

If you have a string that contains a number character, you

can convert it to a numeric value (for example, for calcula

tions) with VAL:

1 A=VAL(A$)

X=X-VAL(Z$)

n
All characters handled by a computer have a unique nu

meric value called the ASCII value (American Standard Code

PI for Information Interchange). ASC(X$) is a function which re-

— turns the ASCII value of the first character in a string. If the

fi
1 ' 121

u

u
string expression to be converted is a constant, it must be con- i i

tained in quotation marks: ^—(

PRINT ASC("*")

i j
PRINT ASC(C$) LrJ

A=ASC(A$)

This program returns the ASCII value of any character ^*-
you press on the keyboard:

10 REM ASCII COOES

20 E$=INKEY$

30 IF E$="" THEN 20

40 PRINT E$;ASC(E$)

50 GOTO 20

60 END

Press CTRL-C, Break, to end the program.

CHR$ can be considered the inverse of ASC. CHR$M re

turns the character represented by the ASCII value x. Try

these commands:

PRINT CHR$(48)

PRINT CHR$(65)

This program illustrates the CHR$ function by printing

the characters corresponding to the ASCII values 54-67.

10 REM CHR$

20 FOR C=54 TO 67 , ,

30 PRINT C;CHR$(C) S/

40 NEXT C

50 END l^J

Here is a program that illustrates more string functions:

Program 10-1. Strings ^
10 REM STRINGS ■ ,

A$=HCHERY" j

B$=" RICHARD" ^^

D$="ROBERT"
i j

122 LJ

n

Chapter 10-

H

n

E$=HRANDY"

F§="BRETT LYNN"

20 PRINT A$;" has a Length of";LEN(A$)

30 PRINT LEFT?(B$,4);" is a nickname."

40 PRINT MID$(C$,2,3)

50 PRINT RIGHT$(D$,4)

60 PRINT RIGHT$(D$,4)+" "+LEFT$(E$,3)

70 P=INSTR(F$," "):PRINT P

n80 R=INSTR(2,D$,"R"):PRINT R

, , 90 PRINT STRINGS(32,"*")

100 PRINT STRING?(10,65)

110 S$="NAME"+SPACE$(5) + IIPH0NE11

120 PRINT S$

130 IF LEN(D$)>LEN(E$) THEN PRINT D$

140 END

Line 20 illustrates the use of the function LEN. LEN(A$)

returns the length of the string A$, or the number of charac

ters in the string. LEN("GREETINGS") would be 9 because

there are nine letters in the word. In the program, the string

A$ is CHERY, which has five letters.

LEFT$, MID$, and RIGHT$ get certain portions of a

string. LEFT$(X$,n>) returns n characters starting at the left of

the string—or the first n characters of the string. RIGHT$(X$,nJ

returns n characters from the right end of the string, or the last

n characters. MlD$(X$,s,n) returns a string from the middle of

the given string. X$ is the original string, s is the number of

the starting character, and n is the number of characters in the

string you want. MID$(C$,2,3) says to look at string C$ and

start with the second character and use three characters. Since

C$ is CINDY, this function starts with the second character, I,

and takes three letters, so the result is IND.

INSTR is a function used to locate a certain letter or string

within another string. In line 70, INSTR(F$," ") wants to find

^ the space " " in the string F$ and will return the numbered

!_ I position of that space. The string F$ is "BRETT LYNN". The

string we want to find is the space. It is in position 6, so the

-^ value returned will be 6. You can specify either constants or

I, variables in the INSTR function. An example of variables is

X=INSTR$(X$,A$)

HI X will be the position of the first character of A$ found in X$.

You may not want to start at the beginning of a string to

find another string. You can specify a number (or numeric

fl variable) as the first parameter in the INSTR function and the

— searching will start with that character instead of the first

n
123

u
Chapter 10

character. Line 80 uses this function. R will be the position of I I

"R" in the string D$ starting with the second character.

STRINGS is a handy function if you want to print a long

string of one character. STRING$(n,c; returns a string of n I |

number of the character with ASCII value c or a character ^
specified in quotation marks. Line 90 will print 32 asterisks.

Line 100 will print ten of the character corresponding to ASCII [I

value 65, which is the letter A. ^
Lines 60 and 110 illustrate how you can combine strings

with the plus sign. The functions can be used in combinations.

Line 130 illustrates the LEN function to show that you can use

the string functions in calculations or comparisons.

Numeric Functions

The mathematical functions are three-letter abbreviations with

an argument or numeric expression in parentheses. The nu

meric expression can be either a constant (number) or a vari

able or expression.

ABS(# returns the absolute value of a numeric expression

x. The absolute value of a number is the number itself without

a plus or minus sign. ABS(-4) is 4. ABS(4) is 4. ABS(0) is 0.

ATNfr) returns the arctangent of the expression x. The

arctangent of x is the angle whose tangent is x. In BASIC, an

gles are expressed as radians. If you want the equivalent angle

in degrees, you can convert by multiplying the radians by

180/pi, or 57.2957795.

QOS(x) returns the cosine of the expression x. Remember

that the angle needs to be expressed in radians.

SIN(# returns the sine of the angle x.

TANM returns the tangent of the angle x. < i

EXPfr) gives the exponential function, or the value of e to ^
the x power.

UDG(x) gives the natural logarithm of x, or log of x with |

the base e. Remember that the argument or expression x must '—'
be greater than zero. The logarithm and exponential functions

are inverses: j |

X=LOG(EXP(X)) and X=EXP(LOG(X))

INTfo) gives the integer function of a number x, which is {

the whole number part of the number x if x is positive and the Lj
next smaller whole number if the number x is negative. An

other way to think of the INTeger function is that the result is

124 ^

Chapter 10

[""I the closest integer or whole number to the left of the decimal
point of a number.

^ SGNfo) returns the sign of a number x. If x is negative,

H SGNft) is equal to -1. If x is positive, SGNfa) is +1 or 1. If x
is 0, SGNfa) is 0.

SQRfa) returns the square root of x.

jl DEF FN. If you wish to use a function that is not listed
here, a combination of these functions, or any sort of formula

or equation, you can define your own functions with a DEF

statement. You need to define the function before you use the

function in a program. It is usually simplest to put DEF state

ments near the beginning of the program. Here are some

examples:

DEF FNF(X)=2*X*X-5*X+SQR(X)

DEF FNR(N)=INT(N*RND+1)

Our next program, "Stepping," uses the function SGN to

see if one note is higher, lower, or the same as another. This

program can be used with beginning music students who are

learning to read music. Two notes are shown on the staff. The

student presses the appropriate arrow key to indicate whether

the notes are stepping up, stepping down, or staying the same.

CR is the correct response and is calculated with SGN(N2—Nl),

where N2 is the second note and Nl is the first note. If CR is

1, the answer is up, if CR is 0, the notes are the same, and if

CR is —1, the answer is down.

Lines 20-90 clear the screen, and print the title and

instructions. Lines 100-130 read from data the frequency F

and the y coordinate Y for each of nine notes. Lines 140-150

rn wait for the student to press the space bar to start.

Line 160 performs the quiz for ten problems. Lines

180-200 draw the staff of five lines. Lines 210-280 draw the

j—"| labels and arrows.

1 Line 290 randomly chooses the two notes Nl and N2.
Line 300 calcultes CR, which is the difference between the

rn notes. Lines 310-380 draw the two notes using Z as the rel-

' ative y coordinate.
Line 390 makes a prompting sound, then lines 400-425

p—I detect which arrow key is pressed. Line 430 checks the an-

1 ' swer, and, if the answer is incorrect, line 440 plays an uh-oh
sound and line 450 transfers back to line 390 to get another

n
125

I

u

answer. The answer must be correct to continue. Line 460 I I

prints the message for a correct answer, then line 470 plays

the two notes shown. Line 480 delays, then line 490 goes to

the next problem. | I

At the end of the quiz, lines 500-520 play a tune of ran

dom notes. Lines 530-550 present an option to try again.

Lines 560-570 clear the screen and end the program.

Program 10-2. Stepping

10 REM STEPPING UP OR DOWN

20 CLS

30 PRINT:PRINT TAB(30);"STEPPING UP OR DOWN"

40 PRINT:PRINT:PRINT

50 PRINT "You will see two notes."

60 PRINT:PRINT "From the first one, do you step up, step down,"

70 PRINT:PRINT "or stay the same to play the second note?"

80 PRINT:PRINT "Use the arrow keys."

90 PRINT:PRINT:PRINT

100 FOR C=l TO 9:READ F(C),Y(C):NEXT C

110 DATA 330,110,349,100,392,90

120 DATA 440,80,494,70,523,60

130 DATA 587,50,659,40,698,30

140 PRINT "Press the space bar to start."

150 S$=INKEY$:IF S$<>" " THEN 150

160 FOR PROB=1 TO 10

170 CLS:RANDOMIZE TIMER

180 FOR C=40 TO 120 STEP 20

190 LINE (0,C)-(620,C),1

200 NEXT C

210 LOCATE 20,10:PRINT "" STEP UP";

220 LINE (75,152)-(75,160)

230 PRINT TAB(30);"> STAY THE SAME";

240 LINE (228,155)-(238,155)

250 PRINT TAB(60);"STEP DOWN"

260 LINE (452,150)-(452,158)

270 LINE (448,155)-(452,158)

280 LINE -(456,155)

290 N1=INT(9*RND)+1:N2=INT(9*RND)+1
300 CR=SGN(N2-N1)

310 Z=Y(N1) I I
320 LINE (160,Z)-(184,Z+20),3,BF 1 '
330 LINE (152,Z+3)-(192,Z+17),3,BF

340 LINE (144,Z+6)-(200,Z+14),3,BF
350 Z=Y(N2) j I

360 LINE (360,Z)-(384,Z+20),3,BF 1 |
370 LINE (352,Z+3)-(392,Z+17),3,BF

380 LINE (344,Z+6)-(400,Z+14),3,BF

390 SOUND 1300,2 ,

400 A$=INKEY$:IF A$="" THEN 400 I
410 A=ASC(A$) l
420 IF A<28 OR A>30 THEN 390

425 IF A=28 THEN R=l ELSE IF A=29 THEN R=-l ELSE R=0

430 IF CR=R THEN 460 I I
440 SOUND 165,2:SOUND 131,2 ' '

450 GOTO 390

460 LOCATE 23,34:PRINT "CORRECT 1"

n

n

n

n

n

470 SOUND F(N1),5:SOUND F(N2),5

480 FOR DELAY=1 TO 3000:NEXT DELAY

490 NEXT PROB

500 FOR P=l TO 25

510 SOUND INT(400*RND)+400,1

520 NEXT P

530 LOCATE 23,1:PRINT "TRY AGAIN? (Y/N)m
540 A$=INKEY$:IF A$="Y" OR A$="y" THEN 160

550 IF A$o"N" AND A$<>"n" THEN 540

560 CLS

570 END

Graphing Functions

Using the built-in functions and graphics commands to graph

mathematical equations on the screen can help you under

stand mathematical concepts easily and quickly.

To graph simple equations by hand, you first set up an

(x,y) coordinate system. You might have an equation such as

Y=4*X, Y=X*X, or Y=SIN(X). You pick a value for x, solve

for y, and plot the point (x,y). Continue this process for sev

eral points and you can see the graph of the function. All this

manual calculation is tedious work, but fortunately, your com

puter can come to the rescue—by doing the repetitive work.

The following sample graphing programs define a func

tion with DEF FN. The x values vary in a loop to get the y

values. The results need to be scaled to look good on the

screen. Rather than just plot the point (X<Y), the programs

draw a LINE from y to the x-axis to show the graph a little

better.

This first program graphs SIN(X). Line 30 uses DEF FN to

define the function F(X) as SIN(X). Line 40 prints the title. To

plot a different function, you can replace SIN(X) and change

the title. This graph will use positive numbers only, so the left

edge of the screen will be the y-axis. Line 50 uses the LINE

command to draw the x-axis line across the screen and at the

middle.

The loop in lines 60-110 picks an x value and evaluates

the corresponding y value, which is a scaled value of FNF(X).

The 100 is used to move the y value to the middle of the

screen. Lines 80 and 90 make sure the graphed points don't go

off the screen. We really don't need to worry about the limits

i—| for the SIN(X), but if you want to substitute a different func-

. J tion, it may need those limits.

Line 100 draws a line from the y value to the x-axis at the

p-1 point for x. Line 60 increments the value for x by 0.2 in each

127

u

Chapter 10 , »

point evaluated. You can change the scaling factor of 40 in Lj
line 70 and the factor 10 in line 100 to get the size graph you

want. You also can change the x values in line 60.

LJ

Figure 10-1. Graph of a Sine Wave

LJ

Program 10-3. Graphing SIN(X)

10 REM GRAPHING SIN(X)

20 CLS

30 DEF FNF(X)=SIN(X)

40 PRINT "SIN(X)M

50 LINE(0,100)-(640,100)

60 FOR X=0 TO 64 STEP .2

70 Y=100-(40*FNF(X)) j J

80 IF Y<=0 THEN Y=0 ()

90 IF Y>=199 THEN Y=199

100 LINE (X*10,Y)-(X*10,100)

110 NEXT X , j

120 END J j

SIN(X) is a built-in function, so line 30 could have been

omitted and you could have simply used SIN(X) in line 70. j j
However, the use of FNF(X) makes this program more general.

To graph a different function, you only have to change the

function definition in line 30 and change the label in line 40 j j
(or delete line 40). Try these substitutions for line 30:

128

n

n

H DEF FNF(X)=COS(X)
DEF FNF(X)=X/12

DEF FNF(X)=X*X/150

PI DEF FNF(X)=TAN(X)
DEF FNF(X)=LOG(X+1)

r-^ Go ahead and try some functions of your own. Remem-

l j ber, you may want to change some of the scaling factors or

spread out your graph by changing the limit and step size in

line 60.

Now let's try combining functions on the graph. You can

use the same program, but change lines 40 and 70:

40 DEF FNG(X)=(1/3)*SIN(3*X)

70 Y=100-40*(FNF(X)+FNG(X))

The program will keep F(X) and add it to G(X). The com

plete listing should now look like that in Figure 10-2.

Figure 10-2. Combined Functions

Program 10-4. Combining Functions

10 REM COMBINING FUNCTIONS

20 CLS

30 DEF FNF(X)=SIN(X)

40 DEF FNG(X)=(1/3)*SIN(3*X)

50 LINE(0,100)-(640,100)

60 FOR X=0 TO 64 STEP .2

129

u

■Chapter 10 , ,

Lj

i j

70 Y=100-40*(FNF(X)+FNG(X)) | J
80 IF Y<=0 THEN Y=0

90 IF Y>=199 THEN Y=199

100 LINE (X*10,Y)-(X*10,l00) j

110 NEXT X 1

120 END ' *

Program 10-4 adds the two functions and graphs the re- (,

suits. You can change to subtraction by changing the plus to a t—)
minus in line 70 or by making one of the defined functions

negative.

u

LJ

LJ

130

•-.. -:-;-^\.
'-, ■. j-' ■>■'- ■■■■.■':-■■■: '"■"■ '■■■ ''■'-"'■' >' ■■:-!<H%

^. ■■-■■■>■. '■

:. ■"■-.■■■■■■ v:'-: ■■:.:: ■ - "iTT:. :; ,./:. :-- :" ■■■■.■■■■*:. ■.■■.= ■." -:"-. .:.i-.«i--=;--. .■: ■ \- .■■;.■;.:-■■■:■..■.. ■ '.'■■■"•':: ' .-.■..■":? ■"'■1:v"-":i '^■"■yf'

p ''

I . .; "

a

u

u

a

u

r—| Chapter 11

- Educational

Many people cite education as the main use for a computer in

the home. While a computer will never take the place of a lov

ing parent or schoolteacher, it can be a powerful learning tool

for enhancing a child's education. In addition, color graphics

and music can add a dimension of fun to the learning process.

The programs presented here are a beginning point—feel

free to customize the programs for your own use. Perhaps you

can change the music, the graphics, or the colors. Add names

of your own students. I used a simple arpeggio for a correct

answer; you can substitute your favorite tune. Change a drill

to suit your own needs.

A Drill Program

There are many kinds of educational programs. Probably the

most common type is the drill. "Simple Drill," Program 3-2, in

the "Random Numbers" chapter illustrates the basic program

ming for a drill program using random questions. This struc

ture can be used for any type of drill.

Program 11-1 is a counting drill for young children,

consisting of ten problems. Up to seven shapes are displayed

in random colors. A random number of objects—up to nine—

appear on the screen. The child must count the objects and

press the correct number. If the answer is incorrect, there is an

uh-oh sound. The student must press the right number for the

program to continue.

Point out to the child that the numbers are on the top row

of keys (below the function keys) or on the number pad at the

right side of the keyboard. This program can help children learn

the concept of counting objects in a one-to-one relationship.

A(I) and B(I) are the coordinates for each of the nine ob

jects. Line 160 chooses a random number, N, the number of

objects from one to nine. Line 170 chooses a random number

from 1 through 3 for the color. Line 180 chooses a random

number, S, from 1 through 7 for the shape number. The

shapes are in different subroutines, and line 210 is an ON-

133

u

-Chapter II

u

GOSUB command to go to a particular subroutine depending

on the value of S. The loop in lines 190-220 draws the right

number of objects.

Figure 11-1. Counting Shapes
LJ

u

Program 11-1. Counting Shapes

10 REM COUNTING SHAPES

20 CLS

30 LOCATE 3,30

40 PRINT "** COUNTING SHAPES **

50 LOCATE 6,3:PRINT "You will see some shapes on the screen.
H

60 PRINT:PRINT " How many shapes are there?"

70 PRINT:PRINT " Press the correct number."

80 FOR J=l TO 9:READ A(J),B(J):NEXT J

90 DATA 72,40,176,48,288,32,408,44

100 DATA 96,88,200,104,296,84,384,96,496,92

110 PRINT:PRINT:PRINT " PRESS THE SPACE BAR TO START."

120 RANDOMIZE TIMER

130 A§=INKEY§:IF A$<>" " THEN 130

140 FOR P=l TO 10

150 CLS:FL=0

160 N=INT(9*RND+1)

170 C=INT(3*RND+1)

180 S=INT(7*RND+1)

190 FOR L=l TO N

200 X=A(L):Y=B(L)

210 ON S GOSUB 490,520,580,690,780,820,1040

220 NEXT L

230 LOCATE 22,1:PRINT "HOW MANY OBJECTS? ";

240 A§=INKEY$

134

LJ

U

Chapter 11

250 IF A$="" THEN 240

260 IF A$<"1" OR A$>"9" THEN 250

270 PRINT A$

280 IF VAL(A$)=N THEN 370

290 SOUND 330,2:SOUND 262,2

300 FL=FL+1:IF FL<2 THEN LOCATE 22,19:PRINT " ":GOTO 230

310 FOR L=l TO N

320 SOUND 1300,2:LOCATE B(L)/8,A(L)/8+1

330 PRINT L

340 NEXT L

350 FOR D=l TO 4000:NEXT D

360 GOTO 400

370 SOUND 262,3:SOUND 330,3

380 SOUND 392,3:SOUND 523,6

390 FOR D=l TO 2000:NEXT D

400 NEXT P

410 FOR J=l TO 25

420 SOUND 900*RND+500,2

430 NEXT J

440 CLS

450 LOCATE 5,5:PRINT "TRY AGAIN? (Y/N)m

460 A$=INKEY$:IF A$="Y" OR A$="yil THEN 140

470 IF A$="N" OR A$=nn" THEN 1060 ELSE 460

480 REM SQUARE

490 LINE (X,Y)-(X+48,Y+24),C,BF
500 RETURN

510 REM TRIANGLE

520 LINE (X+24,Y)-(X+48,Y+24),C
530 LINE -(X,Y+24),C

540 LINE -(X+24,Y),C

56« RETURtf

570 REM OCTAGON

580 LINE (X+16,Y)-(X+32,Y),C

590 LINE -(X+48,Y+8),C

600 LINE -(X+48,Y+16),C

610 LINE -(X+32,Y+24),C

620 LINE -(X+16,Y+24),C

630 LINE -(X,Y+16),C

640 LINE -(X,Y+8),C

650 LINE -(X+16,Y),C

670 RETURN

680 REM HEXAGON

690 LINE (X+16,Y)-(X+40,Y),C

700 LINE -(X+56,Y+12),C

710 LINE -(X+40,Y+24),C

720 LINE -(X+16,Y+24),C

730 LINE -(X,Y+12),C

740 LINE -(X+16,Y),C

760 RETURN

770 REM CROSS

780 LINE (X+16,Y)-(X+32,Y+24),C,BF

790 LINE (X,Y+8)-(X+48,Y+16),C,BF

800 RETURN

810 REM FLOWER

820 LINE (X,Y)-(X+16,Y),C

830 LINE -(X+24,Y+12),C

840 LINE -(X+32,Y),C

850 LINE -(X+48,Y),C

860 LINE -(X+48,Y+8),C

870 LINE -(X+24,Y+12),C

880 LINE -(X+48,Y+16),C

135

-Chapter II

LJ

LI

\ I
890 LINE -(X+48,Y+24),C I[

900 LINE -(X+32,Y+24),C

910 LINE -(X+24,Y+12),C

920 LINE -(X+16,Y+24),C .

930 LINE -(X,Y+24),C)
940 LINE -(X,Y+16),C J '
950 LINE -(X+24,Y+12),C

960 LINE -(X,Y+8),C

970 LINE -(X,Y),C \ (

1020 RETURN I i
1030 REM RECTANGLE

1040 LINE (X,Y+6)-(X+48,Y+18),C,BF

1050 RETURN

1060 CLS

1070 END

Question-and-Answer Quizzes

Another type of drill is a question-and-answer quiz, such as a

history quiz with dates corresponding to events. Any subject

can be used with the basic programming idea, and any num

ber of items or questions and answers may be used.

In Program 11-2, an event will be shown on the screen,

and the student must type the year the event occurred and

press RETURN. The dates and events are contained in the

DATA statements. Line 20 defines N as the number of events.

Line 40 sets WIDTH 80 so the printing will be limited on

the screen. You may use spaces in your events so the printing

looks good and doesn't split words.

Line 100 READs the dates D(M) and events E$(M) from

the DATA. Line 110 initializes the score, S, to be zero. S is in

cremented by one for each correct answer in line 220.

In line 230, the event, E$, is set to the null string, " ", so

the event will not be chosen again.

If you use questions with words for answers rather than < ,

the numbers for dates, change the variable D to a string I '
variable.

Program 11-2. History Trivia—Ontario j !

10 REM HISTORY TRIVIA—ONTARIO

20 N=18

30 DIM D(N),E$(N) /
40 WIDTH 80:CLS < '

50 PRINT TAB(10);"** HISTORY TRIVIA: ONTARIO **"

60 PRINT:PRINT:PRINT

70 PRINT "You will be given an event." \ j

80 PRINT:PRINT "What year did it take place?11 I }
90 PRINT:PRINT "Type the year and press <RETURN>."

100 FOR M=l TO N:READ D(M),E$(M):NEXT M

110 S=0 ,

136

■Chapter 11

[(120 PRINT:PRINT:PRINT "PRESS THE SPACE BAR TO START."

130 RANDOMIZE TIMER

140 A$=INKEY$:IF A$<>" " THEN 140

n 150 FOR T=l TO 10

f \ 160 CLS:LOCATE 3,1

170 R=INT(N*RND)+1:IF E$(R)="" THEN 170

180 PRINT E$(R)

190 PRINT:INPUT "What was the year? ",Y

r~^ 200 IF Y=D(R) THEN 220
r \ 210 PRINT:PRINT "The correct year was";D(R):GOTO 230

220 PRINT:PRINT "CORRECT!":S=S+1

230 E$(R)=""

240 PRINT:PRINT "PRESS <RETURN>."

250 A$=INKEY$

260 IF A$<>CHR$(13) THEN 250

270 NEXT T

280 CLS:PRINT

290 PRINT "Out of 10 events in this quiz, your score is";S

300 PRINT:PRINT:PRINT

310 GOTO 520

320 DATA 1615,Samuel de Champlain reached Lake Huron

330 DATA 1763,Ontario was ceded to Great Britain by the Trea

ty of Paris

340 DATA 1780,First British settlement on Niagara River

350 DATA 1784,Influx of United Empire Loyalists

360 DATA 1791,Separate government given to Upper Canada

370 DATA 1792,First session of Upper Canada Legislature at N

ewark

380 DATA 1812,War between U.S. and Great Britain

390 DATA 1827,King's College founded in Toronto

400 DATA 1837,William Lyon MacKenzie led rebellion at York

410 DATA 1840,Act of Union

420 DATA 1856,Toronto linked to Montreal by Grand Trunk Rail

way

430 DATA 1867,British North America Act; Canada became a nat

ion

440 DATA 1885,Canadian Pacific Railway completed to link Ont

ario and B.C.

450 DATA 1912,Ontario enlarged by Keewatin District of North

west Territories

460 DATA 1959,St. Lawrence Seaway completed from Lake Erie t

0 Montreal

R470 DATA 1962,Canada's first nuclear power plant at Rolphton

480 DATA 1964,Toronto's International Airport inaugurated

490 DATA 1978,Toronto PET Users Group organized

520 END

' \ General-Purpose Multiple Choice

1 have seen a number of programs written for multiple-choice

^ tests. The computer is an ideal way to administer such tests
] because it can mix up the test questions so that each run is

different. Each question has four possible answers, and the

"""? computer can keep track of the correct answer. However, all of

the programs I have seen print the question, then the answers

in the same order each time the program is run. Here is a gen-

■~] eral-purpose multiple-choice test (Program 11-3) that chooses

137

LJ

questions in a random order without repetition and also re- I \
arranges the possible answers in a random order.

I am including computer literacy questions here for an ex- (,

ample. Again, you may use any number of questions. Line 300 i i

sets up 20 questions for this quiz. Line 190 DIMensions vari

ables for 30 questions. T$ is the question. A$ are the answers, >

and B is the correct answer. Lines 200-260 read in the ques- Lj

tions and answers from the DATA from line 720 to the end.

Note that the last DATA statement contains Z's to indicate the

end as information is being read in.

S$ keeps track if a question is used. Line 230 sets each

S$(I) equal to "A". As a question is used, S$ is set to " " in

line 360. Lines 320-330 provide that if S$ is " ", then another

question must be chosen.

Lines 370-390 define C(J) for the four answers for mixing

up the order in which the answers are printed. Line 400 ran

domly chooses D for the correct answer. Line 410 defines

AA$(D) to hold the correct answer. The C variable for the cor

rect answer is set to zero so that it cannot be used in another

position. Lines 430-490 mix up the order of the answers, mak

ing sure the correct answer is in the right position and each

answer is used only once. Lines 500-530 print the four an

swers with the four possible choices A, B, C, and D.

Lines 540-580 receive the student's answer, making sure

it is a letter from A through D (uppercase or lowercase), then

print the choice. Line 590 checks to see if the key pressed is

the correct choice. Line 600 prints the message for an incorrect

answer and prints the correct answer. Line 620 prints COR

RECT for a correct answer, then line 630 increments the score,

SC. Lines 640-670 wait for the student to press RETURN

before going to the next question. Lines 680-700 clear the j {
screen and then print the score.

As you are typing the DATA statements, note that some

of the lines have extra spaces. This is to adjust the printing for] j
the WIDTH 77 screen so that words will not be split. If the

question contains a comma as part of the printing, the ques

tion must be enclosed in quotation marks. j l
To make a test for a different topic, simply change the

questions and answers in the DATA statements, making sure

that you have enough questions for a complete quiz. The last j J
DATA statement contains the ZZZ to signal the end.

f \

r-i Chapter 11
/ \

pi

' t Program 11-3. Multiple-Choice Test

100 REM MULTIPLE CHOICE TEST

«—*, 110 CLS:WIDTH 80

) 120 PRINT " **************************

130 PRINT " * MULTIPLE CHOICE TEST *"
140 PRINT " **************************

Fmm^ 150 PRINT:PRINT:PRINT:PRINT

Yl 160 PRINT "TEST OF 20 QUESTIONS"
' ' 170 PRINT:PRINT "PRESS LETTER OF CORRECT"

180 PRINT "ANSWER FOR EACH QUESTION."

190 DIM T§(30),A$(30,4),B(30),S§(30),AA§(4)

200 1=1

210 READ T$(I),A$(I,1),A$(I,2),A$(I,3),A$(I,4),B(I)

220 IF T$(I)="ZZZ" THEN 260

230 S$(I)="A"

240 1=1+1

250 GOTO 210

260 1=1-1

270 PRINT:PRINT "PRESS <RETURN> TO START."

280 K?=INKEY§

290 IF K$<>CHR$(13) THEN 280

300 FOR P=l TO 20

310 RANDOMIZE TIMER

320 X=INT(I*RND)+1

330 IF S$(X)="" THEN 320

340 CLS

350 PRINT T?(X):PRINT

360 PRINT:S$(X)=""

370 FOR J=l TO 4

380 C(J)=1

390 NEXT J

400 D=INT(4*RND)+1

410 AA$(D)=A$(X,B(X))

420 C(B(X))=0

430 FOR J=l TO 4

440 IF J=D THEN 490

450 E=INT(4*RND)+1

460 IF C(E)=0 THEN 450

470 AA$(J)=A?(X,E)
480 C(E)=0

490 NEXT J

~m^ 500 FOR J=l TO 4

j \ 510 PRINT CHR$(64+J);". ";AA$(J)
520 NEXT J

530 PRINT:PRINT
.._ 540 REM

H 550 K$=INKEY§
' 560 IF K$<"A" OR (K$>"D" AND K$<"a") OR K$>"d" THEN 550

570 IF ASC(K$)>68 THEN K$=CHR$(ASC(K$)-32)

580 PRINT K$:PRINT

"P 590 IF ASC(K$)=64+D THEN 620
1 600 PRINT "NO, THE ANSWER IS ";CHR§(64+D);"."

610 GOTO 640

620 PRINT "CORRECT"

—I 630 SC=SC+1

\ 640 PRINT:PRINT "PRESS <RETURN>."

650 K$=INKEY?

660 IF K$<>CHR$(13) THEN 650
^^ 670 NEXT P

680 CLS

139

Chapter 11

690 PRINT "OUT OF 20 QUESTIONS," II
700 PRINT "YOUR SCORE IS ";SC:PRINT:PRINT

710 GOTO 1360

720 DATA One of the major attractions of a computer is that

it 1
730 DATA has active involvement., is expensive., is a status s -1 *-

ymbol.

740 DATA allows uninvolvement.,1

750 DATA A video game is best described as i /

760 DATA an expensive toy.,a special purpose computer.,a horn j \
e computer.,

an educational toy.,2

770 DATA The computer owes its flexibility to the fact that

it is

780 DATA small.,complicated.,programmable.,an electronic dev

ice.,3

790 DATA "Because a computer is programmable,"

800 DATA it can be used to perform only a limited number of

functions.

810 DATA it cannot be used for educational purposes.

820 DATA it cannot be used for entertainment.

830 DATA it can become a general purpose tool.,4

840 DATA The main advantage of a computer as opposed to othe

r calculating devices is its

850 DATA cost.,size.portability.,programmable nature.,4

860 DATA Books and manuals that accompany a computer-related

product are

870 DATA software.,documentation.,data.,compu-forms.,2

880 DATA Visicalc is best described as

890 DATA a tutorial program.,an electronic spreadsheet.

900 DATA an educational program.,an entertainment program.,2

910 DATA All of the following are programming languages exce

Pt

920 DATA BASIC, Pascal., Visicalc, Logo., 3

930 DATA One of the major problems in acquiring computer lit

eracy is

940 DATA people need to be skilled in math to use computers.

950 DATA the computer is a very complicated machine.

960 DATA the field has its own lexicon or language.

970 DATA people need a background in logic and statistics.,3

980 DATA The parts of a computer are arranged in such a way

as to form

990 DATA a system.,a machine.,a subsystem.,an organization.,

1 ■ i i
1000 DATA The processing of data in a computer system result i *

s in the generation of

1010 DATA a program.,readouts.,information.,statistics.,3

1020 DATA "Basically, a computer is intended to produce" [j

1030 DATA information.,data.,statistics.,programs.,1 j \

1040 DATA The basic function of a computer is to transform

1050 DATA programs into data.

1060 DATA data into programs.

1070 DATA information into data. } j
1080 DATA data into information.,4 <—-*

1090 DATA "By using a , one may connect a computer to t

he telephone to permit computer conferencing."

1100 DATA adapter,connector,conference link,modem,4 \ '

1110 DATA Intangibility is a major characteristic of

1120 DATA software.,the computer.,hardware.,magnetic disks.,

1130 DATA The use to which a computer is put is called

140

n

n

, 1140 DATA a program.,a routine.,an application.,a function.,

- -- 3

1150 DATA Inside the computer information is represented by

nll60 DATA punched cards.,electronic signals.,magnetic tape.,

magnetic disks.,2

1170 DATA The on/off pattern that is used in the computer is

the basis of the

1180 DATA circuit code.,binary code.,binomial code.,bidecima

>—•) 1 code., 2

/ \ 1190 DATA "With telecommuting, information is most commonly

transmitted between terminals"

1200 DATA by radio.,over telephone wires.

1210 DATA via satellite.,by television.,2

1220 DATA A computer program is an example of

1230 DATA hardware.,software.,firmware.,flexware.,2

1240 DATA The first electronic computer was

1250 DATA ENIAC, ENID., IBM MARK I., IBM Cybernaught., 1

1260 DATA The computer is instructed or told what to do by

1270 DATA hardware.,firmware.,software.,smartware.,3

1280 DATA The most significant factor in purchasing a comput

er is

1290 DATA relative cost.,available software.,available hardw

are.,available firmware.,2

1300 DATA Which is the most common type of secondary storage

currently used in personal computers?

1310 DATA floppy disks,bubble memory,electric conductors,tun

nel junction memory,1

1320 DATA RAM is used as a measure of

1330 DATA primary storage capacity.,processing power.

1340 DATA processing speed.,word length.,1

1350 DATA ZZZ,Z,Z,Z,Z,0

1360 END

Homework Helper

Other valuable uses for the computer, both in class and at

home, are in the areas of supplying example problems and an

swers as well as checking answers to homework problems.

Answering programs allow the student to indicate the

rmm> type of problem and INPUT the numbers for the calculations;

1 \ then the program prints the answer. Any type of problem with

a formula may be made into this type of answering program.

This type of program is helpful when there are many prob-

| i lems to solve that all use the same formula.
"Homework Helper—Factors," Program 11-4, is designed

to help a student quickly check the answers to an assignment

I] with problems involving factoring. It is written for problems
encountered in the fourth, fifth, and sixth grades. The student

should do the class assignment in the usual way, writing the

; \ problem down on paper and working it out step by step. This

program may then be used to check the answers. The program

0^it% has four main sections.

) \
141

LJ

• Chapter 11 j ,

LJ

Find All Factors. The student enters a number, and all j i
possible factors or divisors of that number are listed from larg

est to smallest. The list of factors includes the number itself] |

and the number 1. The number to be factored must be greater | i

than 1 and must be a whole number (integer). Example: All

the factors of 18 are 18, 9, 6, 3, 2, and 1.

Find Prime Factors. Finding the prime factors is also] [
called complete factorization or making a prime factor tree.

The student enters a number, and all the prime factors of that

number are listed from smallest to largest. Thse numbers mul

tiplied together yield the original number. The student's an

swer does not have to list the factors in a certain order to be

considered correct. This section lists all the factors necessary to

obtain the given number. If only the prime factors of a num

ber are desired, the student would still choose this option of

the program, and the answer would consist of the list of fac

tors without duplication of numbers. Example: All prime fac

tors of 18 are 2, 3, 3. Prime factors without duplication would

be 2 and 3.

Find Greatest Common Factor. The student enters two

numbers. The computer lists the greatest common factor,

which is the largest number that can be divided evenly into

both the input numbers. If both numbers are prime or if they

have no common factors, then the greatest common factor is

1. Example: The greatest common factor of 18 and 24 is 6.

Find Least Common Multiple. The student first indicates

whether there are two numbers or three numbers, then inputs

those numbers (this is adequate for fifth-grade or sixth-grade

mathematics). The program will print the least common mul

tiple, or the lowest number that all the given numbers may be

divided into without remainders. This exercise is an introduc-] [
tion to finding least common denominators. Example: The

least common multiple of 4 and 12 is 12. The least common

multiple of 4, 6, and 5 is 60.] j
After each answer is given, the student has the option of

trying another problem or going back to the main menu

screen. 1_J
The INTeger function is used to help find the factors. In

finding all the factors, numbers from 2 to the number are di

vided into the original number. If the quotient is equal to the

INTeger of the quotient, that means the number may be di

vided evenly and the quotient is a factor. In finding the prime

142

H
•Chapter 11

I „ J factors, once a factor is found, the limit in the loop is changed.
In finding the greatest common factor, numbers are tested as

factors for both the input numbers.
n

Program 11-4. Homework Helper—Factors

<-*) 10 REM FACTORS

/ | 20 CLS:WIDTH 80

30 PRINT TAB(20),-STRINGS(19,"♦"I

40 PRINT TAB(20);"* HOMEWORK HELPER *"

50 PRINT TAB(20);"*";SPC(17);"*"

60 PRINT TAB(20);"* FACTORS *"

70 PRINT TAB(20);STRING?(19,"*")

80 PRINT:PRINT2PRINT

90 PRINT TAB(10);"CHOOSE: 1 FIND ALL FACTORS"

100 PRINT TAB(19);"2 FIND PRIME FACTORS"

110 PRINT TAB(19);"3 FIND GREATEST COMMON FACTOR"

120 PRINT TAB(19);"4 FIND LEAST COMMON MULTIPLE"

130 PRINT TAB(19);"5 END PROGRAM"

140 C$=INKEY$

150 IF C$<"1" OR C$>"5" THEN 140

160 ON VAL(C§) GOTO 320,480,630,940,1350

170 PRINT:PRINT "CHOOSE: 1 .ANOTHER PROBLEM"

180 PRINT TAB(10);"2 BACK TO MAIN MENU SCREEN"

190 C$=INKEY§

200 IF C?="2" THEN 20

210 IF C$<>"1" THEN 190

220 RETURN

230 PRINT:PRINT

240 INPUT "ENTER NUMBER TO BE FACTORED: ",N
250 IF N>1 THEN 270

260 PRINT:PRINT "NUMBER MUST BE GREATER THAN ONE.":PRINT:GOT
O 240

270 IF N=INT(N) THEN 290

280 PRINT:PRINT "NUMBER MUST BE A WHOLE NUMBER.":PRINT:GOTO
240

290 IF N<10001 THEN 310

300 PRINT:PRINT "PLEASE USE NUMBER LESS THAN 10000.":PRINT:G
OTO 240

310 RETURN

320 CLS

f—» 330 PRINT "GIVEN A NUMBER, FIND ALL ITS FACTORS."
! \ 340 GOSUB 230

350 PRINT:PRINT "FACTORS OF";N;"ARE"
360 PRINT N;

—^ 370 B=INT(N/2+l)

380 FOR C=2 TO B

390 IF N/C<>INT(N/C) THEN 430
400 B=N/C:PRINT B;
410 IF B=l THEN 450

420 IF B=2 THEN 440

430 NEXT C

440 PRINT " 1"

45k) PrtINT

460 GOSUB 170

470 GOTO 320

480 CLS

490 PRINT "GIVEN A NUMBER, FIND THE PRIME FACTORS,"
500 PRINT "ALSO KNOWN AS COMPLETE FACTORIZATION"

143

Chapter 11

510 GOSUB 230 ! i
520 PRINT:PRINT "THE PRIME FACTORS ARE:11 * >
530 G=INT(N/2)

540 FOR M=2 TO G

550 IF N/M<>INT(N/M) THEN 570 J I
560 N=N/M:G=N:PRINT M;:GOTO 540 V _I
570 NEXT M

580 IF N=l THEN 600

590 PRINT N . i

600 PRINT 1 \
610 GOSUB 170

620 GOTO 480

630 CLS

640 PRINT "FIND THE GREATEST COMMON FACTOR OF TWO GIVEN NUMB

ERS. "

650 PRINT

660 M=0:N=0

670 INPUT "FIRST NUMBER: ",M

680 IF M>1 THEN 700

690 PRINT:PRINT "ENTER A NUMBER GREATER THAN 1.":PRINT:GOTO

670

700 IF M<10000 THEN 720

710 PRINT:PRINT "MUST BE A NUMBER LESS THAN 10000.":PRINT:GO

TO 670

720 IF M=INT(M) THEN 740

730 PRINT:PRINT "A WHOLE NUMBER PLEASE.":PRINT:GOTO 670

740 PRINT:INPUT "SECOND NUMBER: ",N

750 IF N>1 THEN 770

760 PRINT:PRINT "ENTER A NUMBER GREATER THAN l.":GOTO 740

770 IF N<10000 THEN 790

780 PRINT:PRINT "MUST BE A NUMBER LESS THAN 10000.":GOTO 740

790 IF N=INT(N) THEN 810

800 PRINT:PRINT "A WHOLE NUMBER PLEASE.":GOTO 740

810 PRINT:PRINT "GREATEST COMMON FACTOR = ";

820 IF M=N THEN G=M:GOTO 910

830 IF M<N THEN 850

840 SWAP MfN

850 FOR K=l TO M

860 IF (M/K)<>INT(M/K) THEN 900

870 J=M/K

880 IF (N/J)<>INT(N/J) THEN 900

890 G=J:GOTO 910

900 NEXT K:G=1

910 PRINT G) /

920 GOSUB 170 I j.
930 GOTO 630

940 CLS

950 PRINT "FIND THE LEAST COMMON MULTIPLE OF TWO OR THREE NU { j

MBERS." I i

960 PRINT "—
970 PRINT:PRINT "HOW MANY NUMBERS—2 OR 3?

980 A$=INKEY$

990 IF A$<"2" OR A$>"3" THEN 980

1000 A=VAL(A$):PRINT A$

1010 FOR C=l TO A:N(C)=0

1020 PRINT:PRINT "NUMBER";C;:INPUT N(C)

1030 IF N(C)>1 THEN 1050))

1040 PRINT "NUMBER MUST BE GREATER THAN ONE.":GOTO 1020 Lj
1050 IF N(C)<1000 THEN 1070

1060 PRINT "NUMBER MUST BE LESS THAN 1000.":GOTO 1020

1070 IF N(C)=INT(N(C)) THEN 1090 i '" j

144

H

H

n

n

■Chapter 11

1080 PRINT "A WHOLE NUMBER PLEASE.":GOTO 1020

1090 NEXT C

1100 IF A$="3" THEN 1180

1110 IF N(1)<>N(2) THEN 1130

1120 L=N(1):GOTO 1320

1130 IF N(1)<N(2) THEN 1150

1140 SWAP N(1),N(2)

1150 FOR C=l TO N(l)

1160 IF C*N(2)/N(1)=INT(C*N(2)/N(1)) THEN L=C*N(2):GOTO 1320

1170 NEXT C:L=N(1)*N(2):GOTO 1320

1180 S=0

1190 FOR C=l TO 2

1200 IF N(C)<=N(C+1) THEN 1220

1210 -SWAP N(C),N(C+1):S=1

1220 NEXT C:IF S=l THEN 1180

1230 FOR C=l TO N(2)

1240 F=C*N(3)

1250 IF (F/N(1)=INT(F/N(1))) AND (F/N(2)=INT(F/N(2))) THEN L

=F:GOTO 1320

1260 NEXT C

1270 M=N(2)*N(3)

1280 FOR C=l TO N(l)

1290 F=C*M

1300 IF F/N(1)=INT(F/N(D) THEN L=F:GOTO 1320
1310 NEXT C:L=M*N(1)

1320 PRINT:PRINT "LEAST COMMON MULTIPLE IS ";L

1330 GOSUB 170

1340 GOTO 940

1350 CLS

1360 END

Interaction with the Student

Tutorial programs actually teach the student as the program is

used. The main idea for tutorial programs as computer-aided

instruction is that a student can work at his or her own pace.

The computer introduces topics as the student is ready for

them. Often, the program advances only when the student

masters a certain level, and the program may offer remedia

tion if necessary. The student has instant feedback through

interaction with the computer.

The typing program and the algebra program in Chapter

14, "Sample Programs," are examples of tutorials. "Notes" in

the chapter on music may also be considered a tutorial with a

— drill. "Locating Points" presented here is a tutorial for begin-

i \ ning coordinate geometry at the elementary level.

This program teaches the student how a rectangular co-

^ ordinate system works. First, a random example point with a

L i given x coordinate and y coordinate is shown on a rectangular

coordinate system. The student may press Y (yes) to see an-

^ other example point or N (no) to continue the program.

* i

145

H

H

Chapter 11

If the student presses N, the screen clears and a random

point is shown. The student must identify the point by first

pressing the number for the x coordinate and then the number

for the y coordinate. If the answer is incorrect, the correct an

swer is shown and the student must do another problem. If

the answer is correct, the student has the option of trying an

other problem of the same kind or continuing the program.

The next section of this tutorial shows the grid with a

point at (0,0). A random set of coordinates is chosen and

printed. The student must locate the point by moving the dot

on the grid. Arrow keys are used to move the dot. When the

student has moved the point to the desired position, he or she

presses the RETURN key. The point changes color and is

checked. If the answer is incorrect, the student is shown the

right location and given another problem. If the answer is cor

rect, the student has the option of having another of the same

type of problem, starting the program over, or ending the

program.

The grid is printed several times, so it is placed in a sub

routine in lines 50-140. The COLOR command changes the

color of the printing.

Line 250 converts the x and y values chosen to ROW and

COLumn variables for use in the LOCATE commands. The

subroutine in lines 290-360 changes the colors of the lines to

show a location first using a COLOR statement, then printing

the lines. Printing from right to left for the line is done by

using a FOR-NEXT loop with a negative STEP size, lines

330-340.

Outline of Locating Points Program

Lines

40

50-140

150-190

200-260

270-360

370-390

400

420

Explanation

Branches past subroutines.

Subroutine to clear screen and draw grid.

Subroutine to wait for student to press RETURN.

Subroutine to randomly choose x and y and deter

mine the ROW and COL position.

Subroutine to play uh-oh for incorrect answer and

to draw lines showing correct position.

Subroutine to play arpeggio for correct answer.

Clears screen.

Prints title.

U

146

LJ

U

LJ

;er 11

n

i i

Lines

430-470

480-550

560-630

640-670

680-760

770-840

850-900

910-1000

1010-1020

1030-1190

1200-1205

1210-1240

1250

1260-1320

1330-1340

Explanation

Define strings for graphic characters used in print

ing grid.

Print title screen with information.

Print first screen showing example point.

Present option for another example or to continue

and branch.

Print problem and ask student for coordinates.

Receive student's answers.

If answer is incorrect, show and print correct an

swer; do another problem.

Print instructions.

Ask student to locate point.

Move point as student presses arrow keys.

When student presses RETURN, change color of

point.

If answer is incorrect, show correct point and do

another problem.

If answer is correct, plays an arpeggio.

Print options and branch.

Clear screen and end.

Program 11-5. Locating Points

10 REM LOCATING POINTS

40 GOTO 400

50 REM GRID

60 CLS:COLOR 1:PRINT

70 FOR M=6 TO 1 STEP -1

80 PRINT TAB(5);RIGHT$(STR$(M),1);L1$

90 PRINT TAB(6);U1$:PRINT TAB(b);Ul$
100 NEXT M

110 PRINT TAB(5);"0";L1$

120 PRINT TAB(6);"0 12 3 4 5

140 RETURN

150 LOCATE 22,2:PRINT "PRESS <RETURN>."
160 BEEP

170 E$=INKEY$

180 IF E$<>CHR$(13) THEN 170

190 RETURN

200 REM CHOOSE X AND Y

210 X=INT(10*RND)

220 Y=INT(7*RND)

230 X$=RIGHT$(STR$(X),1)

240 Y$=RIGHT$(STR$(Y),1)

250 ROW=20-3*Y:COL=6+4*X
260 RETURN

270 REM INCORRECT

280 SOUND 250,5:SOUND 200,5
290 REM DRAW STRIPES

300 COLOR 3

310 FOR M=21-Y*3 TO 20

320 LOCATE M,COL:PRINT U$:NEXT M

147

u
■ Chapter 11

330 FOR M=3+4*X TO 6 STEP -1 \ j
340 LOCATE ROW,M:PRINT L$:NEXT M v_J-

350 LOCATE ROW,COL:PRINT "+";:COLOR 1

360 RETURN

370 SOUND 262,3:SOUND 330,3 | j

380 SOUND 392,3:SOUND 523,6 j _ t

390 RETURN

400 CLS:WIDTH 80

420 PRINT TAB(20);"** LOCATING POINTS **"

430 C$="+":S$=" " [
440 L$=C$+" " L~J
450 U$="|":U2$=U$+"

460 L1$=L?:U1$=U2$

470 FOR M=l TO 9:L1$=L1§+L$:U1$=U1$+U2$:NEXT M

480 PRINT:PRINT

490 PRINT " This program discusses coordinate geometry,"

500 PRINT:PRINT " or locating points using x- and y-coordi

nates."

510 PRINT

520 PRINT " Any point can be defined on the grid by specif

ying"

530 PRINT:PRINT " an x distance and a y distance from the

origin."

540 RANDOMIZE TIMER

550 GOSUB 150

560 GOSUB 60

570 X=INT(5*RND)+1:Y=INT(4*RND)+1

580 GOSUB 230

590 GOSUB 300

600 PRINT " (";X$;",";Y$;")"

610 COLOR 2:LOCATE 10,50

620 PRINT "A point has an x-coordinate"
630 PRINT TAB(50);"and a y-coordinate."

640 PRINT-.PRINT TAB (50); "Want another example? (Y/N)";
660 E$=INKEY$:IF E$="Y" OR E$="y" THEN 560

670 IF E$o"N" AND E$<>"n" THEN 660

680 GOSUB 60

690 GOSUB 210

700 COLOR 3

710 LOCATE ROW,COL:PRINT "*"

720 COLOR 2

730 LOCATE 10,50:PRINT "What are the coordinates?"

740 PRINT:PRINT TAB(50);"(?,?)"

750 COLOR 3

760 LOCATE 12,51:PRINT "?"

770 E$=INKEY$:IF E$<"0" OR E$>"9" THEN 770

780 LOCATE 12,51

790 PRINT RIGHTS(E$,l);

810 LOCATE 12,53:PRINT "?"

820 F$=INKEY$:IF F$<"0" OR F$>"9" THEN 820

830 LOCATE 12,53

840 PRINT RIGHT?(F$,l); t ;

850 IF VAL(E$)=X AND VAL(F$)=Y THEN GOSUB 370:GOTO 910 (
860 GOSUB 280 ^^
870 LOCATE 13,50:PRINT "(";X$;",";Y$;")"

880 COLOR 1:LOCATE 15,50:PRINT "PRESS <RETURN>."

890 GOSUB 170 j j
900 GOTO 680 ^J
910 COLOR 1:LOCATE 15,49

920 PRINT "PRESS 1 FOR SAME TYPE PROBLEM"

n

n
-Chapter 11

930 PRINT TAB(55);"2 TO CONTINUE PROGRAM"

940 E$=INKEY$:IF E$="l" THEN 680

950 IF E$<>"2" THEN 940

960 CLS

970 PRINT "You will be given the coordinates."

980 PRINT:PRINT "Use the arrow keys to position the point,"

990 PRINT:PRINT "then press <return>."

1000 GOSUB 150

1010 GOSUB 60:GOSUB 210

1020 LOCATE 10,50:PRINT "LOCATE (";X$;",";Y$;")"

1030 TR=20:TC=6

1040 COLOR 3:LOCATE TR,TC:PRINT "*"

1050 E?=INKEY§:IF E$="" THEN 1050

1060 IF E$=CHR$(13) THEN 1200

1090 IF ASC(E$)=30 THEN DC=4:DR=0:GOTO 1140

1100 IF ASC(E$)=28 THEN DC=0:DR=-3:GOTO 1140

1110 IF ASC(E$)=31 THEN DC=-4:DR=0:GOTO 1140

1120 IF ASC(E$)<>29 THEN 1050

1130 DC=0:DR=3

1140 COLOR 1:LOCATE TR,TC:PRINT C$

1150 TR=TR+DR:IF TR>20 THEN TR=20

1160 IF TR<2 THEN TR=2

1170 TC=TC+DC:IF TO42 THEN TC=42

1180 IF TC<6 THEN TC=6

IlStf GOTO lJJ4fcJ

1200 COLOR 1:LOCATE TR,TC:PRINT "*"
1205 COLOR 3:LOCATE TR,TC:PRINT "*"

1210 IF TR=ROW AND TC=COL THEN 1250

1220 GOSUB 280

1230 LOCATE 15,50:PRINT "PRESS <RETURN>"

1240 GOSUB 170:GOTO 1010

1250 GOSUB 370

1260 COLOR 1:LOCATE 17,49

1270 PRINT "PRESS 1 FOR SAME TYPE PROBLEM"

1280 PRINT TAB(55);"2 START PROGRAM OVER"

1290 PRINT TAB(55);"3 END PROGRAM"

1300 E$=INKEY$

1310 IF E$<"1" OR E$>"3" THEN 1300

1320 ON VAL(E$) GOTO 1010,400,1330

1330 CLS

1340 END

r~| Educational Games

Another type of educational program is a game. The student

p^ can have fun while learning or reviewing concepts.

1 I "Grid" is a game to practice the concept of coordinates
learned in the Locating Points program. An object is hidden

P^ somewhere on the grid. The objective is to find the hidden

[i point in as few guesses as possible. Guesses are made by
specifying coordinates, first pressing the x coordinate, then the

ny coordinate. The point guessed is shown.

If the answer is not the position of the hidden point, there

is an uh-oh sound and a hint is printed. An arrow on the point

r^n shows the direction of the hidden point.

' ' 149

u
• Chapter 11

The score of the number of guesses is shown in the upper \

right corner of the screen. After the student has successfully

found the point, the option to try again is presented.

You can make a better theme by using different graph- I j

ics—perhaps a wumpus in a hidden cave or a bomb to be det- * '

onated in a hotel or a black hole in space.

Printing the grid and the logic for printing the points are it

similar to the Locating Points program. To print the hint ar

rows, IF-THEN statements are used comparing the student's

answer to the coordinates of the hidden point.

Program 11-6. Grid

10 REM GRID

40 C$="+":S$=" ":D$="*"

50 L$=C?+" "

60 U$="|":U2$=U$+"

70 L1$=L$:U1$=U2$

80 FOR M=l TO 9:L1$=L1$+L$:U1$=U1$+U2$:NEXT M

90 CLS

110 PRINT:PRINT TAB(26);"** GRID **"

120 PRINT:PRINT:PRINT

130 PRINT " Find the hidden point on the grid."

140 PRINT:PRINT

150 PRINT " Specify an x-coordinate then a y-coordinate."

160 PRINT:PRINT

170 PRINT " If the point you chose is incorrect, you will

be given a hint."

180 PRINT:PRINT

190 PRINT " Your score is shown in the upper right corner

of the screen."

210 PRINT:PRINT:PRINT

220 PRINT TAB(10);"PRESS THE SPACE BAR TO BEGIN."

230 RANDOMIZE TIMER

240 A$=INKEY$:IF A$<>" " THEN 240

250 CLS:COLOR 2:PRINT

260 FOR M=6 TO 1 STEP -1

270 PRINT TAB(5);RIGHT$(STR$(M),1);L1$

280 PRINT TAB(6);U1$:PRINT TAB(6);U1$

290 NEXT M

300 PRINT TAB(5);"0";L1$

310 PRINT TAB(6);"0 12345678 9"

320 COLOR 1 | |

330 X=INT(10*RND) I,
340 Y=INT(7*RND) **~J
350 X$=RIGHT$(STR$(X),1)

360 Y$=RIGHT$(STR$(Y),1)

370 ROW=20-3*Y:COL=6+4*X \ I
380 LOCATE 1,65:PRINT "SCORE" U>

390 SC=0

400 SC=SC+1:IF SO99 THEN 690

410 COLOR 1:LOCATE 2,67:PRINT SC) i

420 LOCATE 10,50:PRINT "(?,?)" J]
430 COLOR 3:LOCATE 10,51:PRINT "?"

450 E$=INKEY?:IF E$<"0" OR E$>"9" THEN 450

460 LOCATE 10,51

Chapter 11

n

470 PRINT RIGHT?(E$,l)

490 LOCATE 10,53:PRINT "?"

500 F$=INKEY$:IF F$<"0" OR F$>"6" THEN 500

510 LOCATE 10,53

520 PRINT RIGHT?(F$,l)

530 E=VAL(E$):F=VAL(F$)

540 EX=6+4*E:FY=20-3*F:LOCATE FY,EX

550 PRINT D$

560 IF E=X AND F=Y THEN 650

570 BEEP

580 IF E=X THEN 610

590 IF E>X THEN H$=CHR$(60) ELSE H$=CHR$(62)

600 GOTO 630

610 IF F>Y THEN H$=CHR$(68) ELSE H$=CHR$(94)

630 LOCATE FY,EX:PRINT H$

640 GOTO 400

650 COLOR 1:LOCATE FY,EX:PRINT D$

660 SOUND 262,3:SOUND 330,3

670 SOUND 392,3:SOUND 523,6

680 GOTO 720

690 COLOR 1:LOCATE 15,50

700 PRINT "SORRY, YOU LOST."

710 PRINT TAB(50);"THE POINT IS AT (";X$;",";Y$;")."

720 COLOR 1:LOCATE 18,50

730 PRINT "PLAY AGAIN? (Y/N)m

740 A$=INKEY$:IF A$="Y" OR A$="y" THEN 90

750 IF A$<>"N" AND A$<>"n" THEN 740

760 CLS

770 END

Text Simulations

Simulations and creativity programs probably offer the best

use of a computer in education, but these programs are more

difficult to write in BASIC. However, it is possible to write

simple simulation games in BASIC using text instead of com

plicated graphics sequences.

"Flight Schedule" fits in the category of a text simulation.

The student may make choices and the program continues

f""j depending on those choices. The student starts at Seattle,
^ Washington, but is given a choice of a destination in the east-

ern part of the United States. This program is designed to help

jj students learn to read and interpret flight schedules.

Three airlines are listed with some of their destination cit-

^ ies. The student may select one of the airlines. The flights cho-

f"J sen must be direct flights. The portion of the schedule for a
~" particular airline going to the destination is shown, and the

^^ student must answer comprehensive questions about the

f""j" schedule. All questions have multiple-choice answers. Most of
"~" the answers include an explanation after the student's

response.

nr 11

u

The flight schedules for this program are modified ex

cerpts from actual airlines, although the names of the airlines

have been changed. All flights are theoretically possible.

This program is mainly composed of PRINT statements [j

with branching. You can enhance the program by adding more s—r

destination cities, giving a choice of origination cities, and

allowing more connecting flights.) /

The PRINT statements to display the schedules are in ***—'
subroutines because they are printed several times. The sub

routines use line labels rather than line numbers. Numbers are

used, however, on some of the other lines that need referenc

ing. E$ is always used for the student's answer, and INKEY$ is

used rather than INPUT to prevent scrolling of the schedule.

Program 11-7. Flight Schedule

10 REM FLIGHT SCHEDULE

20 CLS:PRINT

PRINT TAB(20);"** FLIGHT SCHEDULE **"

PRINT:PRINT:PRINT

PRINT "Your object is to fly from the west coast to the"

PRINT:PRINT "east coast area. Plan the trip."
Dl$(l)="New York City"

Dl$(2)="Greensboro, N.C."

PRINT:PRINT:PRINT

PRINT "Your originating city is SEATTLE, WASHINGTON."

PRINT:PRINT:GOSUB PRESSKEY

30 CLS:PRINT:PRINT

PRINT "You will leave from the Seattle/Tacoma Airport."

PRINT:PRINT "What is your destination?":PRINT

PRINT " 1 ";D1$(1)

PRINT " 2 ";D1$(2)

SOUND 1300,2

40 E$=INKEY$:IF E$<"1" OR E$>"2" THEN 40

DD=VAL(E$)

PRINT:PRINT

PRINT "Your destination city is ";D1$(DD):PRINT:PRINT

GOSUB PRESSKEY

50 GOSUB AIRLINES

IF AL<>2 THEN 70

PRINT:PRINT "Sorry, Beeline does not have direct flights
ii

60 PRINT "to ";D1$(DD)

GOSUB PRESSKEY:GOTO 50

70 IF DD=2 AND AL=3 THEN GOTO UNIVERSAL.G

IF AL=1 AND DD=1 THEN GOTO AIRWEST.NY

IF AL=3 AND DD=1 THEN GOTO UNIVERSAL.NY

PRINT:PRINT "Sorry, Airwest does not have direct flights

":GOTO 60

REM Seattle to New York, Airwest

AIRWEST.NY:

GOSUB AA1

152

n

n

-Chapter II

f1"") PRINT "What time do you want to leave?":PRINT
L l' PRINT "1 7:00 a.m.":PRINT "2 3:15 p.m."

80 E$=INKEY$:IF E$<>"1" AND E$<>"2" THEN 80

E=VAL(E$)

r—| GOSUB AA2

f s, PRINT "If you leave at ";L$(E)"f"

PRINT "what time will you arrive at New York?"

PRINT "1 7:00 a.m.111PRINT "2 4:35 p.m."

^m> PRINT "3 3:30 p.m.11:PRINT "4 12:35 a.m."

I (PRINT "5 7:00 p.m."

90 E$=INKEY$:IF E$<"1" OR E$>"5" THEN 90

IF E=l AND E$="2" THEN PRINT:PRINT "YES.":GOTO 100

IF E=2 AND E$="4" THEN PRINT:PRINT "YES.":GOTO 100

PRINT:PRINT "NO."

100 GOSUB ARRIVE

GOSUB AA2

PRINT "Is your ";L$(E);H flight nonstop? Y/N"

110 E$=INKEY$:IF E$="Y" OR E$="y" THEN 120

IF E$<>"N" AND E$<>"n" THEN 110 ELSE PRINT "CORRECT."

120 PRINT:PRINT "The STOPS column indicates there is one sto

P."
PRINT "Where is it?":PRINT

PRINT "1 Houston":PRINT "2 Greensboro":PRINT "3 Denve

r"

PRINT "4 Salt Lake City":PRINT "5 Chicago":PRINT

130 E$=INKEY$:IF E$<"1" OR E$>"5" THEN 130

IF E$="4" THEN PRINT "CORRECT."

PRINT "SLC stands for Salt Lake City..11

GOSUB PRESSKEY:GOSUB AA2

PRINT "Meal symbols:"

PRINT "B-Breakfast L-Lunch D-Dinner S-Snack"

PRINT "M-More than one meal appropriate to time."

PRINT:PRINT "Do you get a meal on your ";L$(E);" flight?

PRINT " 1 Yes, breakfast":PRINT " 2 Yes, lunch"

PRINT " 3 Yes, dinner":PRINT " 4 Yes, more than one"
PRINT " 5 No":PRINT

140 E$=INKEY$:IF E$<"1" OR E$>"5" THEN 140

IF E=l THEN 150

IF E§="3" THEN 160

PRINT "The MEAL column indicates *D' meaning dinner.":G0
TO 170

150 IF E$="4" THEN 160

f-*7 PRINT "The MEAL column indicates 'M' meaning more than o
i 1 ne meal."

GOTO 170

160 PRINT "CORRECT.":PRINT

170 GOSUB PRESSKEY:GOSUB AA2

PRINT "You chose to leave at ";L$(E);M."

PRINT "What is the flight number of your first flight?"

PRINT " A 353":PRINT " B 566"

PRINT " C 720":PRINT " D 700"

PRINT " E 435":PRINT

180 E?=INKEY$:IF E$<"A" OR (E$>"E" AND E$<"a") OR E$>"e" THE

N 180

IF E=l AND (E$="A" OR E$="a") THEN PRINT "Correct; Fligh
t No. 353":GOTO 190

IF E=2 AND (E?="C" OR E$="c") THEN PRINT "Correct; Fligh
t No. 720":GOTO 190

PRINT "The first number in the FLIGHT column is the flig
ht"

153

IT 11

u

u

u
PRINT "number for the-first part of the trip."

190 GOSUB PRESSKEY:GOTO PLANE

REM Seattle-Greensboro, Universal

UNIVERSAL.G:

GOSUB UA1

PRINT "What time do you want to leave?":PRINT

FOR T=l TO 4:PRINT T;SPC(3);L$(T):NEXT T

200 E$=INKEY$:IF E$<"1" OR E$>"4" THEN 200

E=VAL(E?):GOSUB UA2

PRINT "If you leave at ";L$(E);M, what time will you arr

ive"

PRINT "at Greensboro?":PRINT

PRINT "A 6:35 p.m.":PRINT "B 10:36 p.m.":PRINT "C 9
:51 a.m."

PRINT "D 10:35 a.m.":PRINT "E 1:40 p.m.":PRINT

210 E$=INKEY$:IF E$<"A" OR (E$>"E" AND E$<"a") OR E$>"e" THE

N 210

IF E=l AND (E$="A" OR E$="a") THEN PRINT "YES."

IF E=2 AND (E$="B" OR E$="b") THEN PRINT "YES."

IF E=3 AND (E$="B" OR E$="b") THEN PRINT "YES."

IF E=4 AND (E?="C" OR E$="c") THEN PRINT "YES."

GOSUB ARRIVE:GOSUB UA2

PRINT "If you wanted to arrive at Greensboro and wait th

e"

PRINT "minimum time for a noon meeting, which would be t

he best?"

PRINT "Leave at:"

FOR T=l TO 4:PRINT T;SPC(3);L$(T):NEXT T

220 E$=INKEY$:IF E$<"1" OR E$>"4" THEN 220

IF E$="4" THEN PRINT:PRINT "YES."

PRINT:PRINT "The 12:20 a.m. flight arrives before noon,"

GOSUB PRESSKEY:GOSUB UA2

PRINT "The VIA column indicates you have a connecting fl

ight."

PRINT "Where do you stop?"

PRINT " 1 Las Vegas":PRINT " 2 Salt Lake City"
PRINT " 3 Denver":PRINT " 4 Chicago"
PRINT " 5 Cincinnati":PRINT " 6 Houston"

230 E$=INKEY$:IF E$<"1" OR E$>"6" THEN 230

IF E$="4" THEN PRINT:PRINT "CORRECT."

PRINTJPRINT "CHI stands for Chicago."

GOSUB PRESSKEY:GOSUB UA2

PRINT "You chose the ";L$(E);M flight." i >
PRINT "What is the beginning flight number?" J
PRINT " A 140":PRINT " B 144"-.PRINT " C 150"
PRINT " D 902":PRINT " E 745":PRINT " F 408"

240 E$=INKEY$:IF E$<"A" OR (E$>"F" AND E$<"a") OR E$>"f" THE ,

N 240

IF E=ASC(E$)-64 OR E=ASC(E$)-96 THEN PRINT:PRINT "CORREC SeV

T."
PRINT:PRINT "The first number in the FLIGHT column is ";

F$(E)"." I j
GOSUB PRESSKEY:GOSUB UA2 W-t
PRINT "Two of the flights actually combine in Chicago."

PRINT "What is their final flight number?"
PRINT " A 884":PRINT " B 144":PRINT " C 492"
PRINT " D 150":PRINT " E 217":PRINT " F 951"

25& E$=INKEY$:IF E$<"A" OR (E$>"F" AND E$<"a") OR E$>"f" THE

N 250
IF E$="C" OR E$="c" THEN PRINT:PRINT "CORRECT." . >

154

Chapter 11

j ; PRINT:PRINT "Flights 144 and 150 both join Flight 492."
■-" GOSUB PRESSKEY:GOSUB UA2

GOSUB SERVICE

,„,_ GOTO PLANE

f V UNIVERSAL.NY:
GOSUB UA3

PRINT "What time do you want to leave?":PRINT

f*n FOR T=l TO 5:PRINT T;SPC(3);L?(T):NEXT T
■1 j 260 E!?=INKEY$:IF E$<"1" OR E$>"5" THEN 260

E=VAL(E$)

GOSUB UA4

PRINT "If you leave at ";L$(E);", what time will you arr

ive in New York?"

FOR T=l TO 5:PRINT CHR$(64+T);SPC(3);A$(T):NEXT T

270 E$=INKEY$:IF E$<"A" OR (E$>"E" AND E$<"a") OR E$>"e" THE

N 270

IF E=ASC(fi$)-64 OR E=ASC(E$)-96 THEN PRINT:PRINT "CORREC

T."

PRINT:PRINT "The second column has the corresponding arr

ival time."

PRINT "It is ";A$(E)

GOSUB PRESSKEY:GOSUB UA4

PRINT "You chose the ";L$(E);M flight."

PRINT "Where will you land?":PRINT

PRINT " 1 Newark Airport"

PRINT " 2 Kennedy Airport":PRINT

280 E$=INKEY$:IF E2?<"1" OR E§>"2" THEN 280
IF (E=3 OR E=5) AND E$="2" THEN PRINT "Yes, ";:GOTO 290

IF E§="2" THEN PRINT "No, ";:GOTO 290

IF E=3 OR E=5 THEN PRINT "No, ";:GOTO 290

PRINT "Yes, ";

290 PRINT "E indicates Newark and J indicates Kennedy."

GOSUB PRESSKEY:GOSUB UA4

PRINT "You chose the ";L$(E);" flight."

PRINT "What is your beginning flight number?"

FOR T=l TO 5:PRINT CHR$(64+T);" ";FL(T):NEXT T

300 E?=INKEY$:IF E$<"A" OR (E$>"E" AND E$<"a") OR E$>"e" THE

N 300

IF E=ASC(E$)-64 OR E=ASC(E$)-96 THEN PRINT:PRINT "CORREC

T • "

-, PRINT "Your flight number is";FL(E);"."

ff 7 GOSUB PRESSKEY:GOSUB UA4
\^ PRINT:PRINT "If you wanted a non-stop flight and wanted

to"

RANDOMIZE TIMER:A=INT(2*RND+1)

nW$(l)="before":W$(2)="after"

PRINT "leave ";W$(A);M noon, what would be your flight n

-—- umber?"

FOR T=l TO 5:PRINT CHR$(64+T);" ";FL(T):NEXT T

. ■ 310 E$=INKEY$:IF E$<"A" OR (E$>"E" AND E$<"a") OR E$>"e" THE

r*i n 310
:_'' IF A=l AND (E$="C" OR E$="c") THEN PRINT: PRINT "CORRECT,

n

IF A=2 AND (E$="E" OR E$="e") THEN PRINT:PRINT "CORRECT.

m
! PRINT:PRINT "0 indicates no stops. Flight 40 leaves bef

ore"

PRINT "noon, and Flight 18 after."

p^. GOSUB PRESSKEY:GOSUB UA4

155

• Chapter 11

u

PRINT:PRINT "If you want to meet a friend at the Staplet

on"

PRINT "International Airport in Denver, what time do you

leave Seattle?"

FOR T=l TO 5:PRINT CHR$(64+T);" ";L$(T):NEXT T

320 E$=INKEY$:IF E$<"A" OR (E$>"E" AND E$<"a") OR E$>"e" THE

N 320

IF E$="A" OR E$="a" THEN PRINT:PRINT "CORRECT."

PRINT:PRINT "The last column indicates the first flight

stops in Denver."

GOSUB PRESSKEY:GOSUB UA4

PRINT "You chose the ";L$(E);" flight."

PRINT "Does it make any stops?"

PRINT:PRINT "1 Yes, one in Denver."

PRINT "2 Yes, one in Chicago."

PRINT "3 Yes, in Denver and in Chicago."

PRINT "4 Yes, in Salt Lake City."

PRINT "5 No, it is non-stop.":PRINT

330 E$=INKEY$:IF E$<"1" OR E$>"5" THEN 330

IF E=l AND E$="l" THEN PRINT "CORRECT.":GOTO 340

IF E=l THEN PRINT "NO.":GOTO 340

IF E=3 AND E$="5" THEN PRINT "CORRECT.":GOTO 340

IF E=5 AND E$="5" THEN PRINT "CORRECT.":GOTO 340

IF E=3 OK E=5 THEN PRINT "NO.":GOTO 340

Ii? E$="2" THEN fRI*rT "CORRECT." 2<iOTO 340

PRINT "NO."

340 PRINT "Tne last column indicates 0 for nonstop,"

PRINT "or a city abbreviation for a stop."

GOSUB PRESSKEY:GOSUB UA4

GOSUB SERVICE

GOTO PLANE

STOP

PRESSKEY:

PRINT:PRINT "Press <RETURN>";

2 RE$=INKEY?:IF RE$="M THEN GOTO 2

IF RE$<>CHR$(13) THEN 2

RETURN

AIRLINES:

CLS:PRINT "Seattle/Tacoma"

PRINT:PRINT "** AIRWEST AIRLINES **";TAB(45);"** BEELINE

PRINT " To Chicago";TAB(48);"To Honolulu"

PRINT " To Dallas/Ft. Worth";TAB(48);"To Las Vegas, Ne
v."

PRINT " To Denver":PRINT " To Houston"

PRINT " To Las Vegas, Nev.":PRINT " To New York" | ,

PRINT " To Washington, D.C." J;

PRINT:PRINT "** UNIVERSAL AIRWAYS **" ^^
PRINT " To Chicago":PRINT " To Dallas/Ft. Worth"

PRINT " To Greensboro/High Point/Winston-Salem" ■
PRINT " To Miami, F1.":PRINT " To New York/Newark" I i
PRINT " To Toronto, Ont." W^

PRINT:PRINT "CHOOSE AN AIRLINES: A, B, OR U";

3 E$=INKEY$:IF E$="" THEN 3

IF E$<>"A" AND E$<>"a" AND E$<>"B" AND E$o"b" AND E$<>"
U" AND E$<>"u" THEN 3

IF E$="A" OR E$="a" THEN AL=1

IF E?="B" OR E$="b" THEN AL=2

IF E$= "U" OR E$= "u" THEN AL=3 (\ \

CLS:RETURN | f

156

u

n

Chapter 11

J I ARRIVE:

—- PRINT:PRINT "The first column is when you leave."

PRINT "The second column is when you'arrive."

PRINT "You will arrive at ";A$(E)

nGOSUB PRESSKEY

RETURN

SERVICE:

p-*> PRINT "SERVICE: X Meal";TAB(30);"S Snacks";TAB(50);"% C

J J ocktails"
PRINT TAB(ll);"(d Movie" ;TAB(30) ; "a Audio" ; TAB (50) ;"& Sho

rt subject"

IF Q=2 THEN 6

. PRINT:PRINT "Will you get a meal on your flight?"

PRINT " Y—Yes N—No"

4 E$=INKEY?:IF E$="Y" OR E$="y" THEN PRINT:PRINT "CORRECT.

":GOTO 5

IF E$o"N" AND E$<>"n" THEN 4

5 PRINT:PRINT "The X symbol indicates a meal.":GOSUB PRESS

KEY

6 RETURN

AA1:

L$(l)="7:00 a.m.":L$(2)="3:15 p.m."

A$(l)="4:35 p.m.":A$(2)="12:35 a.m."
AA2:

CLS:PRINT "** AIRWEST AIRLINES **":PRINT

PRINT "LEAVE ARRIVE FLIGHT STOPS CNCT

MEAL"

PRINT "Seattle/Tacoma to New York K-Kennedy":PRINT

PRINT "7:00a 4:35p K 353/566 1 SLC

M"

PRINT "3:15p 12:35a K 720/700 1 SLC

D"

PRINT:PRINT:PRINT

RETURN

UA1:

L§(1)="7:45 a.m.":L?(2)="10:35 a.m.":L$(3)="1:10 p.m.":L

$(4)="12:20 a.m."

A$(l)="6:35 p.m.":A$(2)="10:36 p.m.":A$(3)=A$(2):A$(4)="

9:51 a.m."

F$(1)="140":F$(2)="144":F$(3)="150":F$(4)="902"

ff^' F2$(1)="884":F2$(2)="782":F2$(3)="492":F2$(4)="644"

~^ UA2:
CLS:PRINT "** UNIVERSAL AIRLINES **":PRINT

■p-*! ■ • n PRINT " LEAVE ARRIVE FLIGHT SERVICE VIA

^ PRINT "Seattle/Tacoma"

PRINT " TO Greensboro/High Point/Winston-Salem":PRINT

" " "" 6:35p 140/884 o « % X Chi

PRINT

PRINT

PRINT

PRINT:

RETURN

"10:35a

11 l:10p

"12:20a

PRINT

10:36p

10:36p

9:51a

144/492

150/492

902/217

o @ !

* @ \

@ '

I X

h X

t X

Chi

Chi

Chi

157

LJ
■Chapter 11

UA3: j |

L$(l) ="7:00a.m.":L§(2) ="7:45 a.m. " :L$(3) ="8:05 a.m." 'M
L$(4)="10:35 a.m.":L$(5)="l:00 p.m.":A$(1)="4:52 p.m."

A$(2)="5:20 p.m.":A$(3)="4:00 p.m.":A$(4)="8:12 p.m."

A$(5)="8:55 p.m.":FL(1)=752:FL(2)=140:FL(3)=40 , ,

FL(4)=144:FL(5)=18

UA4:

CLS:PRINT "** UNIVERSAL AIRLINES **":PRINT

IA"

en"

hi"

ft "XJ

hi"XXX

IA
V

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

RETURN

" LEAVE ARRIVE

"Seattle/Tacoma"

11 TO New

" 7:00a

" 7:45a

11 8:05a

"10:35a

" l:00p

York, N.Y.

4:52p(E)

5:20p(E)

4:00p(J)

8:12p(E)

8:55p(J)

FLIGHT

E=Newark

752/694

140/122

40

144/104

18

SERVICE

J=Kennedy"

o @ % X

o @ % X

<$ % X

> @ % X

o @ % X

V

D

C

C

PLANE: CLS

PRINT "HAVE A NICE FLIGHTl"

RESTORE PICTURE

PICTURE:

DATA 212,88,480,136,6

DATA 528,160,528,164,520,166

DATA 484,164,416,152,260,126
DATA 396,118,420,66,2

DATA 408,63,346,109

DATA 356,142,156,174,2

DATA 136,170,296,131

DATA 196,107,156,88,7

DATA 156,85,246,100,228,96

DATA 156,57,128,53,112,52,164,86

DATA 164,61,170,40,2

DATA 160,36,128,53

DATA 134,68,80,74,3

DATA 64,74,56,72,120,56

DATA 316,98,310,100,5

DATA 310,103,318,102,316,98

DATA 252,88,250,94

DATA 256,121,260,122,12

DATA 260,126,250,127,250,126 I [
DATA 252,123,256,121,224,112 W

DATA 188,106,188,110,186,112

DATA 180,112,220,123,254,127
FOR J=l TO 8

READ X1,Y1,X2,Y2,N

LINE (X1,Y1)-(X2,Y2)
FOR T=l TO N

READ X,Y:LINE -(X,Y) „-

NEXT T ■ (

NEXT J L"—'
LOCATE 22,1

END

158

.-•■ ■ ■";",■■■■■ .,: ■■■.-..

■r^l>"-^^:^'C v-^v■■ ■■■■■•■■.^^■^■•■■'■:": ■■*'■'■■/
'1 ■.,■.■;,'.

■"■'■■' ■ *■■' ,','•'"■■'■".■

»'

'."'■■";■ : ■■■-■) .- ° ■ -?'■*' ..■■ .:'■■' '*'■■■..

a

u

u

a

u

Chapter 12'

i i

Techniques

j - Sorting
One of the functions of a computer is to organize data, and

there are many sort routines which take your raw data and ar

range it in ascending or descending order. For example, you

may want to sort a list of people by birth date, or you may

want to alphabetize a list of names. Here are four BASIC al

gorithms for sorting (Programs 12-1 through 12-4).

In these examples, 50 random numbers are printed, sorted

in ascending order, and then printed. The array A is DIMen-

sioned in line 20 for the 50 numbers. WIDTH 77 is used to

print the numbers on the screen. Line 30 uses RANDOMIZE

TIMER to randomize the numbers, and line 40 chooses and

prints the 50 random numbers.

SWAP is used to switch numbers. SWAP a,b will put the

value of number a into b, and the value that was in b will be

come 0.

These algorithms sort in ascending order. If you need

descending order, change the less-than (<) signs to greater-

than (>) signs. If you need to use strings rather than numbers,

put dollar signs on all the variable names that contain items to

be sorted—use A$ instead of A.

Bubble Sort

The bubble sort, or simple interchange sort, is commonly used

because it is easy to understand. The program compares each

number to the next number and exchanges numbers where

necessary. If even one switch has been made during a pass

through all the numbers, the loop of comparisons starts over.

The number of passes through the loop depends on how

many items were out of order. This sort is better for lists that

are not much out of order or that haven't very many items. It

can be quite slow for long lists of very mixed up items.

161

" u

Program 12-1. The Bubble Sort kj

10 REM BUBBLE SORT

20 DIM A(50):WIDTH 77

30 RANDOMIZE TIMER | |
40 FOR 1=1 TO 50:A(I)=INT(100*RND) :PRINT A(I);:NEXT I:PRINT:

PRINT

50 L=49

60 S=0:FOR 1=1 TO L:IF A(I)<=A(I+1) THEN 80

70 SWAP A(I),A(I+1):S=1:L=I

80 NEXT I

90 IF S=l THEN 60

100 FOR 1=1 TO 50:PRINT A(I);:NEXT I

110 END

Shell Sort

The shell sort is considerably faster than the bubble sort be

cause the number of comparisons that need to be made is re

duced. In an array of N numbers, first determine B so that 2 to

the B power is less than N, and N is less than 2 to the B+l

power. Then initialize B as 2 to the B—1 power. The loop var

ies counter I from 1 to N—B. First, check if A(I) is less than or

equal to A(I+B). If so, increment I and continue comparisons.

If not, exchange A(I) and A(I+B) and change the subscript.

When I reaches the value of N, reduce B by a factor of 2 and

start the loop again. When B equals 0, the sort is complete.

Program 12-2. The Shell Sort

10 REM SHELL SORT

20 DIM A(50):WIDTH 77

30 RANDOMIZE TIMER

40 FOR 1=1 TO 50:A(I)=INT(100*RND):PRINT A(I);:NEXT I:PRINT:

PRINT

50 8=1

60 B=2*B:IF B<=50 THEN 60

70 B=INT(B/2) :IF B=0 THEN 120

80 FOR 1=1 TO 50-B:C=I

90 D=C+B:IF A(C)<=A(D) THEN 110

100 SWAP A(C),A(D):C=C-B:IF C>0 THEN 90

110 NEXT I:GOTO 70

120 FOR 1=1 TO 50:PRINT A(I);:NEXT

130 END

Maximum and Minimum Sort

The maximum and minimum sort passes through all the num

bers and puts the smallest number at one end and the largest j_j
number at the other end. Each pass finds the next smallest

and next largest numbers and puts them toward the appro-

162

n

l Chapter 12-

n

priate ends. The numbers are filled in from the ends toward

the center in the array of sorted numbers.

Program 12-3. Maximum and Minimum Sort

10 REM MAXIMUM AND MINIMUM SORT

20 DIM A(50):WIDTH 77

fH 30 RANDOMIZE TIMER
) 40 FOR 1=1 TO 50:A(I)=INT(100*RND):PRINT A(I);:NEXT IzPRINT:

\ PRINT

50 N=50:S=1

60 L=A(S):J=S:U=L:K=S

70 FOR I=S TO N

80 IF A(I)>U THEN U=A(I):K=I

90 IF A(I)<L THEN L=A(I):J=I

100 NEXT I

110 IF J=N THEN J=K

120 SWAP A(N),A(K):N=N-1

130 SWAP A(S),A(J):S=S+1

140 IF N>S THEN 60

150 FOR 1=1 TO 50:PRINT A(I);:NEXT

160 END

Quick Sort

The quick sort has become popular because it is one of the

fastest sorting procedures in BASIC. I have translated it for

Amiga BASIC here.

Program 12-4. Quick Sort

10 REM QUICK SORT

20 DIM A(50):WIDTH 77

30 RANDOMIZE TIMER

40 FOR 1=1 TO 50:A(I)=INT(100*RND):PRINT A(I);:NEXT I:PRINT:

PRINT

50 N=50:S(1)=1:S(2)=N:T=1

60 IF T=0 THEN 180

70 T=T-1:I=2*T:L=S(I+1):M=S(I+2):X=A(L):J=L:K=M+1

80 K=K-1:IF K=J THEN 140

90 IF X<=A(K) THEN 80

100 A(J)=A(K)

110 J=J+1:IF K=J THEN 140

120 IF X>=A(J) THEN 110

130 A(K)=A(J):GOTO 80

140 A(J)=X:IF M-J<2 THEN 160

150 I=2*T:S(I+1)=J+1:S(I+2)=M:T=T+1

160 IF K-L<2 THEN 60

170 I=2*T:S(I+1)=L:S(I+2)=K-1:T=T+1:GOTO 60

180 FOR 1=1 TO N:PRINT A(I);:NEXT I

190 END

163

u
Chapter 12 ,

d

Dealing Cards {_J

How do you choose random items without repetition? One

way is to have all the items in an array and set a flag when an j

element is chosen. For example, in the "States and Capitals" ^

program in Chapter 14, the S$ array contains the names of the

states. When a state has been named correctly, the particular , t

S$ element is set to the null string, " ", so that it won't be L^J

chosen again.

This next sample program, Program 12-5, illustrates how

you can simulate dealing cards from a deck without replacing

cards. I've just printed the number or name of the card with

its suit, but in an actual game you would use graphics.

Line 20 DIMensions an array C(13,4) to hold cards for the

13 possible numbers (1 through 10 plus jack, queen, and king)

and the four possible suits. Lines 30-40 define S$ strings for

the names of the four suits. Line 50 clears the screen and then

starts the loop for dealing five cards.

Line 60 uses RANDOMIZE TIMER to make sure different

numbers are chosen each time the program is run. Line 70

chooses a random NUMBER from 1 through 13. Line 80

chooses a random SUIT from 1 through 4. Line 90 makes sure

the card hasn't been chosen previously. Originally, all the C

elements will be 0. Line 150 sets the card chosen to 1 so that

it cannot be chosen again. For example, if NUMBER is 5 and

SUIT is 3, C(5,3) is the card chosen. Lines 100-140 print the

card, and line 160 goes to the next card.

Lines 170-200 print the options. The first option will deal

five more cards from the same deck; that is, cards are not re

placed. Option 2 replaces the five cards and deals from a

whole new deck.

Lines 240-250 keep track of how many cards have been i I
dealt if cards are not replaced. After 50 cards, a new deck is

needed. Lines 280-320 reset the C array so that all values are , ,

zero and all cards may then be chosen. i^j

Program 12-5. Dealing Cards

10 REM CARDS I I
20 DIM C(13,4)

30 S$(1)="HEARTn:S$(2)=nCLUB"

40 S$(3)="DIAMONDM:S$(4)="SPADE" ; 1

50 CLS:FOR DEAL=1 TO 5 | |
60 RANDOMIZE TIMER

70 NUMBER=INT(13*RND)+1

80 SUIT=INT(4*RND)+1 ,~ ,

164 ^

n

n

n

n

n

n

n

90 IF C(NUMBER,SUIT)=1 THEN 70

100 PRINT

110 IF NUMBER=11 THEN PRINT "JACK";:GOTO 140

120 IF NUMBER=12 THEN PRINT "UUEEN";:GOTO 140

130 IF NUMBER=13 THEN PRINT "KING"; ELSE PRINT NUMBER;

140 PRINT TAB(10);S$(SUIT)
150 C(NUMBER,SUIT)=1

160 NEXT DEAL

170 PRINT:PRINT

180 PRINT "PRESS 1 DEAL FIVE MORE"

190 PRINT " 2 DEAL FROM FULL DECK"

200 PRINT " 3 END PROGRAM"

210 K$=INKEY$

220 IF K$<nl" OR K$>"3" THEN 210

230 ON VAL(K$) GOTO 240,280,340

240 T=T+1

250 IF T<10 THEN 50

260 PRINT:PRINT "OUT OF CARDS; STARTING OVER"

270 FOR DELAY=1 TO 2000:NEXT DELAY

280 FOR J=l TO 13

290 FOR K=l TO 4

300 C(J,K)=0

310 NEXT K

320 NEXT J

330 GOTO 50

340 END

Using a Timing Device

You may wish to use a timing device in a program to time

how long it takes to respond to a question or to perform an act

for a certain amount of time in a game. TIMER is similar to a

clock and can return a number that can be used as a number

of seconds. For example, go to the Output screen and type

PRINT TIMER and press RETURN. A number is printed, such

as 43525. Wait a few seconds and PRINT TIMER again. This

time the number might be 43537. The difference between the

two numbers is the amount of time that elapsed between the

two commands. In this case, the difference is 43537 — 43525

= 12. This number is in seconds.

Here is a short program (Program 12-6) that illustrates the

use of TIMER. The program will time how long it takes you to

type in a message. Line 50 will BEEP to signal the start of the

timing. Line 60 sets the variable Tl to TIMER. Line 70 is IN

PUT to receive your typing. When you press RETURN, line 80

sets the variable T2 to the new value of TIMER. Line 100

prints the length of time, which is the difference between T2

and Tl.

165

u

Chapter 12 , .

Program 12-6. Timing j j

10 REM TIMING

20 PRINT "TYPE IN A MESSAGE THEN PRESS <RETURN>."

30 PRINT "START AT THE TONE." | I
40 FOR DELAY=1 TO 2000:NEXT DELAY J '
Sid BEEP

60 T1=TIMER

70 INPUT MSG? I |

80 T2=TIMER I 1
90 PRINT:PRINT

100 PRINT "THE TIME WAS";T2-T1;"SECONDS."

110 END

Arrow Keys

There are several ways you can use the arrow keys in a pro

gram. One way is to use INKEY$ to scan the keyboard and see

if a key is pressed. The ASCII codes of the arrow keys are

28

31 — t — 30
29

You can use IF-THEN statements to test the ASCII value of

the keys to see which direction is pressed. "Stepping/7 Pro

gram 10-2, in Chapter 10 uses the arrow keys to receive the

answers.

The following program illustrates a use of the arrow keys.

"Doodler" is a drawing program. A point starts at the middle

of the screen with x and y coordinates 310 and 90. PSET

draws the point on the screen (line 30). Line 40 initializes the

color C.

Line 50 uses K$=INKEY$ to see if a key is pressed. Lines

60-80 check whether the key pressed is the space bar, and if

so, the color number is changed. The color may be from 0 j j

through 4.

Lines 90-120 check to see whether the arrow keys have

been pressed. If an arrow key is pressed, the appropriate x or i I

y coordinate is changed. Lines 130-160 check the border con- —f
ditions for the point. If it is at an edge, the point will "wrap"

to the opposite edge. Line 170 uses PSET to draw the new j I

point. Line 180 returns to line 50 for the next keypress.

Program 12-7. Doodler i i

10 REM DOODLE

12 CLS

14 PRINT "** DOODLE **" , ■>

166

f)

Chapter 12-

n

16 PRINT:PRINT "Use the arrow keys to move."

18 PRINT:PRINT "Press the space bar to change colors.1

20 PRINT:PRINT:PRINT

22 PRINT "PRESS <RETURN> TO START DRAWING."

I"""! 24 E$=INKEY$
' } 26 IF E$<>CHR$(13) THEN 24

28 CLS

30 X=310:Y=90:PSET (X,Y)

f—! 40 C=0

) (50 K$=INKEY$:IF KJ?="" THEN 50
" 60 IF K$<>" " THEN 90

70 C=C+1:IF C>3 THEN C=0

80 COLOR C:GOTO 170

90 IF ASC(K$)=31 THEN X=X-1:GOTO 130

100 IF ASC(K$)=30 THEN X=X+1:GOTO 130

110 IF ASC(K$)=28 THEN Y=Y-1:GOTO 130

120 IF ASC(K$)=29 THEN Y=Y+1 ELSE 50

130 IF X<0 THEN X=615

140 IF X>615 THEN X=0

150 IF Y<0 THEN Y=185

160 IF Y>185 THEN Y=0

170 PSET (X,Y)

180 GOTO 50

190 END

Spelling Practice

School children all over the nation seem to have weekly spell

ing tests. Drill, practice, repetition—another use for a com

puter. Program 12-8, "Spelling Flash Cards," is designed to

computerize spelling flash cards.

It is designed for up to 30 words, but if you have more,

change the DIM statement in line 20 and the limit in line 150.

Put your own spelling words in the DATA statements in

lines 630-680, making sure that the words are separated by

commas. After the last spelling word, put a comma and the @

symbol (typed with SHIFT-2). Save the program, then you can

use it all week.

The program presents the words in a random order. A

word is printed on the screen momentarily, then erased. The

student must type the word and press RETURN. To see the

word again, press the space bar. If the word is missed twice,

the word is shown and will then appear again later in the

quiz. The quiz continues until all the words have been spelled

correctly. Asterisks at the bottom of the screen indicate cor

rectly spelled words.

If you want to have the word flashed on the screen a dif

ferent length of time, change the limit in line 300. You may

want to add speech to have the computer say the word rather

H
167

-Chapter 12'

u

than flash it on the screen. Speech does take time to experi

ment on the pronunciations.

Outline of Spelling Flash Cards Program

Lines

20

30-120

130-150

160

190

230

240

250

260

270

280-310

320-410

420-510

520-570

580-620

630-680

690

Explanation

DIMensions W$ for 30 words.

Print title and instructions.

READ in spelling words from DATA. The last data

item must be @.

Initializes the number of words, N, and column, C,

for printing the asterisks for correct words.

Waits for student to press the space bar to start.

Clears screen.

Performs quiz for N number of words.

Initializes T for times word is missed.

Randomly chooses a word that has not previously

been spelled correctly.

Clears previous printing.

Print word, delay, then clear word.

Receive student's spelling.

If word is incorrect, go back for another try; if

word is missed twice, print word, then wait for stu

dent to press RETURN.

If word is correct, print an asterisk, play an arpeg

gio, set W$ to " " so that it cannot be chosen

again, and go to next word.

Clear screen; play tune of random notes.

DATA containing spelling words.

Ends.

u

LJ

U

Program 12-8. Spelling Flash Cards

10 REM SPELLING PRACTICE

20 DIM W$(30)

30 CLS

40 PRINT TAB(18);"*********************"
50 PRINT TAB(18);"* SPELLING PRACTICE *"

60 PRINT TAB(18);"*********************"

70 PRINT:PRINT

80 PRINT "You will see a spelling word flash on the screen."

90 PRINT

100 PRINT "When it disappears you type the word then press <

RETURN>."

110 PRINT

120 PRINT "If you need to see the word again, press the spac

e bar."

130 T=l:RESTORE

140 READ W$(T)zIF W$(T)="@" THEN 160

168

LJ

U

LJ

LJ

U

n

H

n

n

n

f I

n

n

150 T=T+1:IF T<31 THEN 140

t 160 N=T-1:C=0
170 PRINT:PRINT:PRINT

180 PRINT "PRESS THE SPACE BAR TO START."

190 S?=INKEY?:IF S?<>" " THEN 190

230 CLS:RANDOMIZE TIMER

240 FOR P=l TO N

250 T=0

260 R=INT(N*RND+1):IF W$(R)="" THEN 260

270 LOCATE 5,6:PRINT SPACE?(20)

280 BEEP-.LOCATE 5, 6: PRINT W?(R)

290 L=LEN(W?(R))

300 FOR DELAY=1 TO 3000:NEXT DELAY

310 LOCATE 5,6:PRINT SPACE?(20)

320 LOCATE 5,4:PRINT "> ";

330 B?=lln

340 FOR J=l TO L+5

350 E?=INKEY?:IF E?="" THEN 350

360 IF ASC(E?)=13 THEN 420

370 IF E?=" " THEN 270

380 E?=UCASE?(E?)

390 IF E?<"A" OR E?>"Z" THEN 350

400 PRINT E?;:B?=B?+E?

410 NEXT J

420 IF B?=W?(R) THEN 520

430 SOUND 330,2:SOUND 262,2

440 T=T+1:IF T<2 THEN 270

450 PRINT:PRINT TAB(6);W?(R)

460 PRINT:PRINT "PRESS <RETURN> TO CONTINUE."

470 E?=INKEY?

480 IF E?<>CHR?(13) THEN 470

490 LOCATE 6,6-.PRINT SPACE?(20)

500 PRINT:PRINT SPACE?(27)

510 GOTO 250

520 C=C+1:LOCATE 22,C*2+10

530 PRINT "*"

540 SOUND 262,2:SOUND 330,2

550 SOUND 392,2:SOUND 523,6

560 W?(R)=""

570 NEXT P

580 CLS

590 FOR T=l TO 30

600 SOUND 500+500*RND,2

610 NEXT T

620 GOTO 690

630 DATA BEAUTIFUL,FIR,SKIRT,CIRCLE

640 DATA SQUIRREL,DOCTOR,BEYOND,CLOSET

650 DATA CONNECT,CONCERN,COSTUME,PROMISE,,

660 DATA PRODUCTS,PROBABLY,POPULAR

670 DATA HORIZONTAL,MUSIGIAN

680 DATA ELECTRICITY,ADDITION,

690 END

169

a

u

u

a

u

■.'-'.' '■;:' ...■■■"•'.'■ '.-' ' '■■■■■■'■ '

!..-■■ -■ '■■ "'
I-"' . ■ ■' ""

"■^.■■■■■;■..'■,■ ■' ■■■..'■'.-

■;.. ' ■'.■ . -.■'■.. ;._"-.',:..'.'; i'.^. >:; ■.■■;"£' ■ .■" ■ ■ ■'..".

..^::;V. .;A

-.■■ - ■.".-■■■ ;:F:R] :.:;-V":,;:;>v. 1
. ■■; ■'■■ : ■■■..-.. :V->:"-:;i'Vr -;n-; :;■■!

::.:.''.■ ■ . ■ ■ . ..■■'■■

v ':..-■■ ! ■ '■ ■ >'■ ■■'■■■ ■ ■ ''

■ ■■' ■ ■ ■.. ' '

■■■-■■;"■"' ;■'■'■"".■.■■".■■:"■'■■■■■.■■■'"■■■■.■■•■ .■"■'■..-■■.-..' ". : "■'■■.'■■=■"■■. ■ ■''■'?■ ':■■■''■■ 1

:.:'■=■:■.■ ' ■ ■ '■■'■'■'»'■■■■ '''''■■-'.■■■■.'.' -^'''./.. ■ ■ ■'" ■"■■;,■ . ;-r'

: ■"■ ',■;■..!■ ■ ".■ ■■■..■;■ . ':'■;■■■ .. ■"' '■■.■ ■ .. ■ ■: .; . . • - » ■ j

...'■'-■I

!■■■ ': ■'■'. ■." ■■■■.-.. '■1 ■' '"

■•;<

':''■■■• "'■■■■: V
- ■ ■■■■-

'*'' ■'■'.. ' ■ ■ "■ '■'■'■ V ': :;.. '■' ■ ■.■■■.■■.■■■• ■".■■■ " .■'■/■■:■ " .'°-■'■'■ ' ■■■■ 'I

■'■■■■ "■ ""^.^'*; -:"-??:"]'"'■ ■ "^^:^7 >:AiV: V;;:;f:'.-'■':;:i";''.!::A-V: ■■:;-'V; I'/\!;!B'J

a

u

u

a

u

I. \

Chapter 13

H
Debugging

It can be frustrating to spend hours typing in a program, then

have it not run properly. Before you heave the keyboard at the

monitor or call yourself or the author all sorts of names, here

are some suggestions on how to diagnose and solve program

ming problems.

Syntax Errors

The easiest problems to correct are syntax errors. When you

run the program, it will stop if there is a syntax error. The List

window will appear with the program listing. The line contain

ing the error will be outlined in orange, and an error message

will appear at the top of the screen. Press the mouse arrow at

the OK box by the error message, then click the cursor at the

offending line to correct it.

The most likely syntax error is a mistyped BASIC word or

another symbol where there should be a colon, semicolon, or

comma. Make sure parentheses are in the right places and

matched. Quotation marks may also need to be checked.

Check also that a zero has not been mistaken for the letter O

or vice versa. I avoid using the letter O as a variable name.

You might also watch out for the letter I and the number 1

and the letter B and the number 8. FOR statements must be

matched with NEXT statements.

Line Number Errors

It's a little more difficult to pinpoint errors where the program

seems to be running improperly. Refer to the line-by-line

explanation to try to pinpoint the lines that could be causing

the problem. LIST those lines to check for typing errors.

Check line numbers in branching statements such as

GOTO, ON-GOTO, ON-GOSUB, GOSUB, and IF-THEN state-

ments. Be sure to type the line numbers exactly as they are

shown in the listing. One little number can cause the com

puter to branch to a wrong statement and thus act strangely.

173

LJ
— Chapter 13

u

Check Variable Values |_j

Anytime the computer stops with an error, you can print out

values for variables to see what they are at that point. For ex- . ;

ample, if you get an error message and the statement is LO- J |
CATE R,C, you can type PRINT R,C in the Output window

and press RETURN to see the present values for those vari- ;

ables. If they are incorrect, you can refer to previous lines to | \
see how those variables were calculated. See where the vari

ables were defined, then follow through the logic to see where

they could have been altered incorrectly.

Watch Those DATA Statements

Judging from my mail, the most common place for errors to

occur in a program is in DATA statements, especially if there

are lots of items with commas. Even if the error message refers

to a different line, the DATA statement may be the real cause

for the error. Although DATA statements can be much longer,

I tried to keep them short, so they would be easier to type in.

You need to compare the corresponding READ statement

with the DATA statements to make sure items are read in the

right order. The error could be in a previous DATA statement

if data has been read in previously.

If there is a RESTORE statement, make sure the line num

ber is typed correctly. In DATA statements, type the numbers

carefully, making sure all commas are exactly as shown in the

listing. Do not end a DATA statement with a comma. It is pos

sible that DATA lists contain commas with nothing between

them. This indicates that the value read would be the null

string, or " ". If you have several commas in the list, be sure

you have the right number of commas. j j
Keep in mind that when the program stops with an error

you can print the values of any variables. If you are reading

data in a loop, you can print the loop counter to see how far i I
into the DATA statements you have successfully read. You can

also print the variable(s) being read to see what the last

acceptable value was, then use that information to pinpoint a [j
typing error in a DATA statement.

The listings in this book were taken directly from the

computer to try to avoid typesetting errors. Although we hope 1 j
the listings are error-free, the possibility of errors does exist.

LJ

r-, Chapter 13

I i After you have checked and rechecked and still haven't found
the problem, you may be tempted to write the author for help.

p-, If you do write, please be specific about the type of error that

/ t occurred, and be sure to specify the program title, the name of
the book, and what type of computer you are using.

n

175

a

u

u

a

u

a

u

u

a

u

/ t

<—} Chapter 14-

n

You could use a calculator to calculate a mathematical formula,

and it would probably be faster for one problem than the com-

puter. However, if you have to solve many problems using the

same formula, the computer can simplify the task. Program 14-1

illustrates that concept by using the formula to find a monthly

payment when you borrow a certain amount of money.

The user enters an amount borrowed, the number of years

for the loan, and the yearly interest rate. Prompts are given for

these numbers. The computer then calculates and prints what

the monthly payment would be.

After each INPUT statement, the number entered is

checked to see whether it is within reasonable bounds for the

formula. The formula is calculated in line 240 and is rounded

to the nearest cent in line 250.

Program 14-1. Loan Payments

10 REM LOAN PAYMENTS

20 CLS

30 PRINT "** LOAN PAYMENTS **"

40 PRINT

50 PRINT "YOU WANT TO BORROW A CERTAIN"

60 PRINT "AMOUNT OF MONEY.

70 PRINT:PRINT "IF INTEREST IS COMPOUNDED,"

80 PRINT "WHAT IS THE MONTHLY PAYMENT?":PRINT

90 INPUT "AMOUNT BORROWED";P

100 IF P>0 THEN 130

110 PRINT "ENTER AMOUNT MORE THAN ZERO PLEASE"

120 PRINT:GOTO 80

130 PRINT

140 INPUT "HOW MANY YEARS";Y

150 IF Y>0 THEN 180

160 PRINT "MUST BE MORE THAN ZERO"
170 GOTO 130

180 N=12*Y

190 PRINT

200 PRINT "WHAT IS THE INTEREST RATE"
210 INPUT "IN PERCENT"; I

220 1=1/1200

230 F=(1+I)AN

240 M=P*(I*F/(F-1))

250 M=(lNT(100*(M+.005)))/l00
260 PRINT

270 PRINT "MONTHLY PAYMENT =";M
280 PRINT

290 END

179

-Chapter 14-

u

Li

Adverbs i

Here is a method for printing random sentences. The com

puter "makes up" a sentence, and the user must find the ad- I j

verb in the sentence and type it. There is a quiz of ten ■—y

sentences.

The words are read in from data in lines 90-120. Arrays } \

are used to hold the words. Line 80 reads in the words. The '—*
words in the DATA statements are in the order of an article or

modifier, a noun for the subject, a verb, and an adverb. The

arrays for the words are A$, B$, C$, and D$, respectively, and

each array has ten words.

Lines 190-200 choose one of the ten words in each array

to be used for the sentence. Line 210 chooses a random num

ber J from 1 through 3 which will determine how the sentence

is written. Line 220 uses ON-GOTO to branch to the printing

procedure. The first possibility (line 230) is A$, B$, C$, D$.

The second possibility (line 250) is A$, B$, D$, C$. The third

possibility (line 270) is D$, A$, B$, C$. D$ will always be the

adverb.

Line 290 receives the user's answer of what the adverb is

and is called V$. Line 300 checks the answer. Line 310 prints

the correct word if the user's answer was incorrect. Lines

330-340 print a message and increment the score for a correct

answer. Lines 350-370 wait for the user to press RETURN

before continuing to the next sentence.

Line 400 prints the score for ten sentences, then lines

410-450 present the option to try again and branch

appropriately.

Program 14-2. Adverbs \ ,

10 REM ADVERBS

20 CLS:PRINT

30 PRINT TAB(30);M***********" . ,
40 PRINT TAB(30);"* ADVERBS *") \
50 PRINT TAB(30);11***********11 i I
60 PRINT:PRINT:PRINT "You will be shown a sentence."

70 PRINT:PRINT "Type the adverb then press <RETURN>."
80 FOR C=0 TO 9-.READ A$ (C) ,B?(C) ,C$(C), D$ (C) :NEXT C j J
90 DATA THE,CAT,CRAWLED,QUICKLY,A,DOG,JUMPED,QUIETLY,MY,DEER \^_j

,RAN,HAPPILY

100 DATA YOUR,COW,LOPED,SLYLY,HIS,FOX,WIGGLED,SLOWLY,HER,WOL

F,GALLOPED \ \

110 DATA JOYFULLY,ITS,BOY,SPED,RAPIDLY,OUR,GIRL,CREEPED,SILE \ ^

NTLY

120 DATA THAT,BUG,HURRIED,CALMLY,ONE,BEAR,MOVED,SWIFTLY

130 PRINT:PRINT:PRINT "Press the space bar to start."

1 I

180

Chapter 14-

/ } 140 E$=INKEY$:IF E$<>" " THEN 140

150 RANDOMIZE TIMER

160 SCORE=0

fmmt^ 170 FOR T=l TO 10

] i 180 CLS:PRINT:PRINT

1 190 A=INT(10*RND):B=INT(10*RND)
200 C=INT(10*RND):D=INT(10*RND)

210 J=INT(3*RND)+1

r*> 220 ON J GOTO 230,250,270
(\ 230 PRINT A$(A);" ";B$(B);M ";C$(C);n ";D$(D);"."

240 GOTO 280

250 PRINT A§(A);" ";B$(B);" ";D$(D);" ";C$(C);"."

260 GOTO 280

270 PRINT D$(D);" ";A§(A);M M;B$(B);" M;C$(C);"."

280 PRINT:PRINT

290 INPUT "ADVERB: ",V$:V$=UCASE$(V$)

300 IF V$=D$(D) THEN 330

310 PRINT:PRINT "The adverb is ";D$(D)

320 GOTO 350

330 PRINT:PRINT "CORRECT1"

340 SCORE=SCORE+1

350 PRINT:PRINT "Press <RETURN>."

360 E$=INKEY$

370 IF E$<>CHR$(13) THEN 360

380 NEXT T

390 CLS

400 PRINT "Your score is";SCORE;"right out of 10 sentences."

410 PRINT:PRINT:PRINT "Try again? (Y/N)11
420 E$=INKEY$

430 IF E$="Y" OR E$="y" THEN 160

440 IF E$o"N" AND E$o"n" THEN 420

450 PRINT "NO":PRINT:PRINT:PRINT
460 END

States and Capitals

One of the most common drill programs is testing a student

on the names of states and capitals. Here is a version for the

Amiga. First, a map of the continental United States is drawn,

then in random order a state is outlined. The user must type

the name of the state. (Make sure the CAPS LOCK key is on.)

If the state named is not correct, the user has a second chance.

If it is incorrect twice, the state name is given and that state

will appear again later in the quiz.

When the state is named correctly, the user will be asked

for the capital. Again, there are two chances to get the correct

answer before the correct capital is given. If the state and cap

ital are named correctly, that state will not appear again in the

quiz. A score is kept by keeping track of the number of

guesses for both the state and the capital. Since there are 50

states with their 50 capitals, a perfect score would be 100. The

computer will print the number of guesses it takes to go

through all the states.

181

LJ

.14

Line 20 is a DIMension statement for the state array S$ j[

and the capital array C$. Lines 30-100 clear the screen and

print the title and instructions.

Line 110 reads in from data the state and the capital for] I
the 50 states. Lines 120-280 contain the states with their cap

itals. Lines 290-300 wait for the user to press the space bar to

continue the program. J /

Line 310 uses RANDOMIZE TIMER so that states will be '
chosen randomly. Line 320 initializes G for the number of

guesses. Line 330 is the beginning of the FOR-NEXT loop for

the 50 states. Line 340 initializes F for a flag for incorrect

answers.

Line 350 clears the screen for each new problem. Line 360

RESTORES the data starting at line 370 for drawing the map.

The DATA statements in lines 370-490 contain x and y co

ordinates for drawing the map using the LINE command. The

drawing is in lines 500-530.

Line 540 chooses a random number R from 1 to 50. If the

state was previously named correctly, S$(R) will have been set

to the null string, " ", so if the random number R points to a

null string, another number must be chosen. Lines 550-580

use ON-GOSUB to go to a subroutine that will RESTORE the

proper data for drawing that state. The subroutines are named

by state abbreviations rather than line numbers.

Lines 590-620 draw the state. The DATA statements for

each state have an (xl,yl) and (x2,y2) set of coordinates for

the LINE command, then a number C indicating how many

LINE commands will be needed, and then pairs of numbers

for the coordinates for the rest of the lines to complete draw

ing the state.

Lines 630-870 receive the answers and check them. Lines J (

880-920 print the number of guesses. Lines 930-950 play a

tune of random tones.

If you have trouble with this program, the most likely j]
place for errors is in typing the numbers in the DATA state

ments. Keep in mind that most of the numbers are pairs of x

and y coordinates. Make sure there are no extra commas and jj

no commas at the ends of the lines. The subroutines are la

beled with state abbreviations to help you know which DATA

statements correspond to which state if you do have an error. \ \

182

f i

r—I Chapter 14
; j

) Program 14-3. States and Capitals

10 REM STATES AND CAPITALS

^— 20 DIM S$(50),C$(50)

30 CLS

•- 40 LOCATE 2,22:PRINT "** UNITED STATES **"

50 LOCATE 5,6:PRINT "You will see an outline of a state."
60 LOCATE 7,6:PRINT "Type the name of the state, then its ca

fl pital city."
' J 70 LOCATE 9,6:PRINT "If you get the state and capital correc

t,"

80 LOCATE 11,11:PRINT "it will not appear again."

90 LOCATE 13,6:PRINT "The quiz consists of all 50 states in

a random order."

100 LOCATE 15,6:PRINT "PLEASE MAKE SURE CAPS LOCK IS ON."

110 FOR C=l TO 50:READ S$(C),C$(C):NEXT C

120 DATA ALABAMA,MONTGOMERY, ALASKA, JUNEAU, ARIZONA, PHOENIX, AR

KANSAS

130 DATA LITTLE ROCK,CALIFORNIA,SACRAMENTO,COLORADO,DENVER

140 DATA CONNECTICUT,HARTFORD,DELAWARE,DOVER,FLORIDA,TALLAHA

SSEE

150 DATA GEORGIA,ATLANTA,HAWAII,HONOLULU,IDAHO,BOISE,ILLINOI

S

160 DATA SPRINGFIELD,INDIANA,INDIANAPOLIS,IOWA,DES MOINES,KA

NSAS

170 DATA TOPEKA,KENTUCKY,FRANKFORT,LOUISIANA,BATON ROUGE,MAI

NE

180 DATA AUGUSTA,MARYLAND,ANNAPOLIS,MASSACHUSETTS,BOSTON,MIC

HIGAN

190 DATA LANSING,MINNESOTA,ST. PAUL,MISSISSIPPI,JACKSON,MISS

OURI

200 DATA JEFFERSON CITY,MONTANA,HELENA,NEBRASKA,LINCOLN,NEVA

DA

210 DATA CARSON CITY,NEW HAMPSHIRE,CONCORD,NEW JERSEY,TRENTO

N

220 DATA NEW MEXICO,SANTA FE,NEW YORK,ALBANY,NORTH CAROLINA,

RALEIGH

230 DATA NORTH DAKOTA,BISMARCK,OHIO,COLUMBUS,OKLAHOMA,OKLAHO

MA CITY

240 DATA OREGON,SALEM,PENNSYLVANIA,HARRISBURG,RHODE ISLAND,P

ROVIDENCE

r~*1 250 DATA SOUTH CAROLINA, COLUMBIA, SOUTH DAKOTA, PIERRE, TENNESS
I \ EE

260 DATA NASHVILLE,TEXAS,AUSTIN,UTAH,SALT LAKE CITY,VERMONT

270 DATA MONTPELIER,VIRGINIA,RICHMOND,WASHINGTON,OLYMPIA
,—, 280 DATA WEST VIRGINIA,CHARLESTON,WISCONSIN,MADISON,WYOMING,
< ^ CHEYENNE

1 290 LOCATE 22,14:PRINT "Press the space bar to start."
300 A§=INKEY?:IF A$<>" " THEN 300

-^ 310 RANDOMIZE TIMER

| 320 G=0

330 FOR N=l TO 50

340 F=0

.. 350 CLS

^ REM DRAW MAP

i 360 RESTORE 370

370 DATA 280,32,356,32,356,28,364,28,360,32,398,35,380,42,39
0,42

183

•Chapter 14-

u

u

380 DATA 410,37,406,40,420,43,432,40,444,43,436,43,448,46,44 f f
6,53 * '
390 DATA 448,54,454,51,460,56,456,64,466,63,486,54,486,53,50

2,48

400 DATA 512,40,536,36,540,28,542,22,546,23,555,21,566,31,56 j f
8,30 UJ
410 DATA 568,33,550,40,548,46,555,51,558,51,558,49,558,51,55

5,51

420 DATA 528,61,532,63,526,79,532,85,528,91,492,110,492,118, i i

512,135 M
430 DATA 512,142,508,145,496,140,486,133,484,126,472,123,460

,125

440 DATA 454,123,420,126,420,129,424,131,404,131,404,129,396

,128

450 DATA 392,130,380,130,344,138,344,147,350,149,332,148,324

,144

460 DATA 326,142,306,130,296,130,288,133,278,130,272,123,268

,123

470 DATA 260,119,246,118,246,120,216,118,186,110,186,108,166

,108

480 DATA 164,104,158,101,140,95,128,80,134,76,128,76,124,72,

120,62

490 DATA 126,54,128,50,142,35,144,24,156,26,160,23

500 LINE (160,23)-(224,28)

510 FOR T=l TO 97

520 READ X,Y:LINE -(X,Y)

530 NEXT T

REM DRAW STATE

540 R=INT(50*RND+1):IF S$(R)="" THEN 540

550 IF R>25 THEN 580

560 ON R GOSUB ALA,ALS,AZ,AK,CA,COL,CON,DE,FL,GA,HA,ID,IL,IN
,IO,KA,KY,LA,ME,MD,MAS,MICH,MINN,MISS,MO

570 GOTO 590

580 ON R-25 GOSUB MONT,NEB,NEV,NH,NJ,NM,NY,NC,ND,OH,OKL,ORE,
PA,RI,SC,SD,TN,TX,UT,VT,VIR,WA,WV,WI,WY

590 READ X1,Y1,X2,Y2,C:LINE(X1,Y1)-(X2,Y2)

600 FOR J=l TO C

610 READ X,Y:LINE -(X,Y)

620 NEXT J

630 SOUND 1300,2:G=G+1

640 LOCATE 21,2:INPUT "STATE";SS$:SS$=UCASE$(SS$)

650 IF SS$=S$(R) THEN 740

660 SOUND 330,2:SOUND 262,2 .

670 F=F+1:IF F=2 THEN 700 I
680 LINE (0,160)-(400,199),0,BF ' '
690 GOTO 630

700 PRINT " The state is ";S$(R)

710 PRINT:PRINT " Press the space bar to continue."; \ i
720 A$=INKEY$ LJ
730 IF A$=" " THEN 340 ELSE 720

740 SOUND 262,2:SOUND 330,2

750 SOUND 392,2:SOUND 523,4:F2=0 \ i

760 G=G+1:LOCATE 22,2:INPUT "CAPITAL";CC$:CC$=UCASE$(CC$) J)
770 IF CC$=C$(R) THEN 840

780 SOUND 330,2:SOUND 262,2

790 F2=F2+1:IF F2=2 THEN 820

800 LINE (0,168)-(400,199),0,BF <

810 GOTO 760 C—J
820 PRINT " The capital is ";C$(R)

830 GOTO 710

[_

184

n

'Chapter 14-

j \ 840 SOUND 262,2:SOUND 330,2
850 SOUND 392,2:SOUND 523,4

860 S$(R)="":FOR D=l TO 2000-.NEXT D

n870 NEXT N

880 CLS

890 PRINT:PRINT "A perfect score is 100."

900 PRINT:PRINT

_ 910 PRINT "You had";G;"guesses."

^j 920 PRINT:PRINT:PRINT
j : 930 FOR C=l TO 40

940 SOUND 500*RND+300,1

950 NEXT C

960 GOTO 2740

ALA: RESTORE Al

All DATA 426,124,426,99,5,448,99

DATA 456,112,458,119,436,119,438,123

RETURN

ALS: RESTORE A2

A2: DATA 80,26,76,5,26,48,1,28,6,38,12,22,12,24,16,34,16

DATA 34,18,20,21,20,26,26,24,24,29,38,31,32,35,0,40

DATA 32,36,48,32,56,25,52,30,66,27,76,29,84,29

DATA 106,40,106,36,114,39,96,28,88,29

LOCATE 2,8:PRINT "?"

RETURN

AZ: RESTORE A3

A3: DATA 236,119,242,91,7,200,88,196,93,192,92

DATA 192,102,188,106,190,108,186,110

RETURN

AK: RESTORE A4

A4: DATA 368,94,406,94,9,406,96,412,9b

DATA 410,100,400,107,400,112,374,112

DATA 374,110,368,110,368,94

RETURN

CA: RESTORE Cl

Cl: DATA 128,55,160,58,6,152,73,190,98

DATA 192,102,186,109,166,108,164,104

RETURN

COL: RESTORE C2

C2: DATA 248,72,304,72,3,304,92,248,92,248,72
RETURN

CON: RESTORE C3

r C3: DATA 534,58,532,52,2,546,51,546,55
LOCATE 8,69:PRINT "\"

LOCATE 9,70:PRINT "?"

RETURN

DEi RESTORE Dl

Dl: DATA 520,67,524,72,2,528,72,522,67

LOCATE 9,70:PRINT "<?"

RETURN

FL: RESTORE Fl

Fl: DATA 438,123,434,119,6,456,119,456,120

— DATA 484,120,486,121,486,117,492,117
RETURN

GA: RESTORE Gl

*"** Gl: DATA 490,110,468,97,8,448,97,456,111,454,115,460,119,48
.(\ 4,119

DATA 486,121,486,117,492,117
RETURN

HA: RESTORE HI

185

•Chapter 14-

u

Li

HI: DATA 56,80,60,80,4,64,84,54,86,50,81,54,80

LOCATE 10,2:PRINT "O o ."

LOCATE 9,9:PRINT "?"

RETURN

ID: RESTORE II

III DATA 200,27,194,40,11,198,41,188,48,184,56,232,57,236,5

0

DATA 220,51,216,45,212,46,214,40,206,36,208,27

RETURN

IL: RESTORE 12

12: DATA 418,62,396,62,10,400,66,390,74,398,82

DATA 402,80,402,84,414,90,424,86

DATA 426,80,424,66,418,62

RETURN

IN: RESTORE 13

13: DATA 446,64,428,64,7,422,66,426,79

DATA 424,85,438,83,442,79,446,78,446,64

RETURN

10: RESTORE 14

14: DATA 390,58,350,58,7,348,63,356,74

DATA 390,74,394,69,400,66,390,bl,390,58

RETURN

KA: RESTORE Kl

Kl: DATA 360,77,304,77,4,304,92

DATA 368,92,366,82,360,77

RETURN

KY: RESTORE K2

K2: DATA 402,93,402,90,10,424,85,438,83

DATA 442,79,460,80,464,83,474,86

DATA 464,91,412,91,412,93,402,93

RETURN

LA: RESTORE LI

LI: DATA 418,125,416,122,7,398,122

DATA 404,116,400,111,376,111

DATA 376,117,380,123,378,129

RETURN

ME: RESTORE Ml

Ml: DATA 536,34,548,45,0

LOCATE 4,74:PRINT "?"

RETURN

MD: RESTORE M2

M2: DATA 530,72,522,72,7,526,67,490,69

DATA 490,72,504,70,512,72,512,74,522,75

RETURN

MAS: RESTORE M3

M3: DATA 548,48,532,48,3,532,52,548,52,548,54

RETURN

MICH: RESTORE M4) /

M4: DATA 392,42,410,45,8,416,48,418,45 UJ
DATA 436,44,424,51,424,56

DATA 430,60,428,64,456,64

RETURN \ |

MINN: RESTORE M5 jj
M5: DATA 342,32,346,47,6,342,48,348,59

DATA 392,59,378,52,376,47,380,42

RETURN

MISS: RESTORE M6) (
M6: DATA 428,124,426,100,7,406,100 ^-^

DATA 400,107,400,111,404,115

DATA 398,122,416,122,418,126

RETURN \ I
\ I

186

■Chapter 14-

' \

i \

MO: RESTORE M7
M7: DATA 392,74,356,74,11,366,82,368,95

DATA 406,95,406,97,410,97,416,92

DATA 416,90,402,84,402,80,398,82,392,74

RETURN

MONT: RESTORE M8
M8: DATA 208,27,206,36,7,214,40,212,46

DATA 216,45,220,52,236,50,290,50,290,32

RETURN

NEB: RESTORE Nl
Nls DATA 288,62,288,72,6,304,72,304,78

DATA 360,78,350,64,332,62,288,62

RETURN

NEV: RESTORE N2

N2: DATA 204,61,156,60,5,156,74,192,96

DATA 196,92,202,94,204,61

RETURN

NH: RESTORE N3
N3: DATA 536,34,548,45,2,534,48,536,36

LOCATE 6,72:PRINT M<?"

RETURN

NJ: RESTORE N4

N4: DATA 534,58,522,58,4,522,62,526,64

DATA 520,67,530,69

LOCATE 9,70:PRINT "?"

RETURN

NM: RESTORE N5

N5: DATA 238,120,240,91,4,296,91

DATA 296,117,260,117,260,119

RETURN

NY: RESTORE N6

N6: DATA 476,59,516,55,6,532,59,528,60

DATA 548,56,532,59,530,47,524,38

LOCATE 7,65:PRINT "?"

RETURN

NC: RESTORE N7

N7: DATA 526,83,478,87,4,460,96,488,94

DATA 502,95,512,98

RETURN

ND: RESTORE N8

N8: DATA 290,32,290,47,2,346,47,342,32

RETURN

OH: RESTORE 01

Oil DATA 456,63,446,63,4,446,76,468,79

DATA 480,71,480,58

RETURN

OKL: RESTORE 02

02: DATA 294,92,368,92,5,372,108,320,106

DATA 320,96,294,96,294,92

RETURN

ORE: RESTORE 03

03: DATA 144,33,152,38,5,200,41,188,48

DATA 190,50,184,60,128,55

RETURN

PA: RESTORE PI

Pis DATA 480,59,480,69,6,522,67,526,63

DATA 524,62,524,57,516,56,480,59

RETURN

RIt RESTORE Rl

Rli DATA 548,54,548,50,2,542,50,542,55

LOCATE 8,70:PRINT M\"

187

u

Chapter 14 , (

LOCATE 9,71:PRINT "?"

RETURN

SC: RESTORE SI

SI: DATA 490,110,468,97,4,488,94

DATA 492,96,502,95,512,99

RETURN

SD: RESTORE S2

S2: DATA 344,47,288,47,5,288,61,334,61

DATA 350,63,348,62,344,47

RETURN

TN: RESTORE Tl

Tli DATA 424,90,480,90,5,456,98,404,98

DATA 412,92,424,92,424,90

RETURN

TX: RESTORE T2

T2: DATA 260,118,296,118,9,296,95,320,95

DATA 320,106,340,108,366,108,374,110

DATA 376,118,380,122,378,130

RETURN

UT RESTORE UI

Ul: DATA 232,63,204,63,5,204,90,248,90

DATA 248,71,232,71,232,63

RETURN

VT: RESTORE VI

VI: DATA 536,36,534,49,2,528,49,524,38

RETURN

VIR: RESTORE V2

V2: DATA 524,75,512,74,9,512,72,504,70

DATA 496,76,492,76,488,82,480,84

DATA 472,84,462,88,528,84

RETURN

WA: RESTORE Wl

Wl: DATA 200,26,196,40,2,152,38,144,33

RETURN

WV: RESTORE W2

W2: DATA 492,70,482,70,13,480,68,480,72,468,78,470,82
DATA 478,84,488,82,492,76,496,77

DATA 500,71,506,71,506,69,492,72,492,70
RETURN

Wl: RESTORE W3

W3: DATA 380,42,376,47,11,378,53,390,57

DATA 390,61,396,63,418,63,416,55

DATA 420,47,412,51,414,47,408,45,392,42
RETURN

WY: RESTORE W4

W4: DATA 288,52,224,52,3,224,71,288,71,288,52
RETURN

2740 END

Typing

A common use for a home computer is to learn touch typing,

or keyboarding. The computer is ideal for learning to type be

cause the keyboard is like the keys on a typewriter, and the

computer can give immediate feedback. Typing tutorials also

are useful if you like to program, because you will want to

learn to type efficiently.

188

•Chapter 14-

; - This program is called "Typel" because it is only the first
unit of a possible typing course. It is a tutorial for the "home

f—i position" keys only. Subsequent programs could teach the rest

i J of the keys in a progressive order. Additional programs could
present drills to improve typing skills after the key positions

<—*■ and fingering are learned.

Outlines of the hands are drawn by using LINE com

mands. The DATA statements containing coordinates are in

subroutines in lines 270-460. The subroutine in lines 210-260

reads the data and draws the lines.

Lines 570-580 contain data for the keys with their

corresponding column position and a frequency for the

SOUND command when that key is indicated. Line 590 reads

in this information for the eight home row keys. The LOCATE

command is used to place the cursor in the proper position for

printing.

Lines 900-910 contain phrases that can be typed by using

only the home keys. The quiz randomly chooses from these

phrases, and the student must type five phrases correctly to

complete the quiz.

Program 14-4. Typel

10 REM TYPE1

20 CLS

50 PRINT TAB(25);"T Y P E - E T T £"

60 PRINT:PRINT TAB(30);"UNIT 1"

70 PRINT:PRINT TAB(27);"HOME POSITION"

80 PRINT:PRINT:PRINT

90 PRINT "CAPS LOCK SHOULD BE ON"

100 GOTO 470

120 PRINT:PRINT "PRESS ANY KEY TO CONTINUE."

140 E$=INKEY$:IF E$="" THEN R=RND:GOTO 140

•—? 150 RETURN

\ 160 LOCATE 10,A(J):PRINT L$(J)

170 SOUND F(J),3

180 E$=INKEY$:IF E$<>L$(J) THEN 180

_, 190 LOCATE 10,A(J):PRINT " "

i 200 RETURN

210 READ X1,Y1,X2,Y2,N

220 LINE(X1,Y1)-(X2,Y2),3
230 FOR 1=1 TO N

—? 240 READ X2,Y2:LINE -(X2,Y2),3
J 250 NEXT I

260 RETURN

270 REM LEFT HAND

—) 280 RESTORE 300

I 300 DATA 170,199,230,160,36,230,158
305 DATA 224,156,208,156,188,162,160,171
310 DATA 152,171,148,166,152,155,182,112

•^ 315 DATA 184,104,180,99,172,98,156,111
^ 320 DATA 142,129,130,139,142,92,136,88

189

■Chapter 14-

U

j j

]j325 DATA 128,86,120,88,112,100,96,138]j
330 DATA 94,93,92,89,86,87,80,88 *"^
335 DATA 72,92,70,97,64,114,62,139

340 DATA 60,142,48,111,40,108,32,108

345 DATA 26,111,28,128,24,199 j

350 GOSUB 210 ^W^

360 RETURN

370 REM RIGHT HAND

380 RESTORE 390) /

390 DATA 416,199,370,156,26,372,151 ^1
395 DATA 382,150,392,152,432,166

400 DATA 422,136,408,107,412,100,418,98

405 DATA 430,101,456,142,454,92,464,87

410 DATA 476,87,484,92,496,140,516,98

415 DATA 528,92,534,92,544,96,534,144

420 DATA 566,112,576,110,582,115,574,131

425 DATA 554,163,552,199

430 GOSUB 210

460 RETURN

470 PRINT:PRINT

480 PRINT "This unit will teach you the 'home' position of t

ouch typing•"

500 PRINT:PRINT "As you learn to type, your fingers will res

t lightly"

510 PRINT "on these 'home1 keys."

520 PRINT:PRINT "You will gradually learn to type other lett

ers, but your fingers"

530 PRINT "should always return to the home position."

540 PRINT:PRINT

560 RESTORE 570

570 DATA A,6,262,S,12,292,D,18,330,F,24,349

580 DATA J,53,392,K,60,440,L,68,494,;,74,523

590 FOR M=l TO 8:READ L$(M),A(M),F(M):NEXT M

600 GOSUB 120

610 CLS

620 GOSUB 280:GOSUB 380

630 LINE (192,136)-(400,147),1,BF

640 PRINT "Place your fingers on the keys as shown."

650 PRINT

660 PRINT "Your right thumb will press the space bar."

670 FOR M=l TO 8

680 LOCATE 10,A(M):PRINT L$(M)

690 SOUND F(M),3 .

700 NEXT M) f
710 LOCATE 4, 2:GOSUB 120

720 LINE (0,0)-(600,80),0,BF

730 LOCATE 1,4

740 PRINT "Type each letter as it appears."

760 FOR T=l TO 3:FOR J=l TO 8

770 GOSUB 160

780 NEXT J:NEXT T

790 FOR T=l TO 30 V t

800 J=INT(8*RND+1):IF J=K THEN 800 jj
810 K=J

820 GOSUB 160

830 NEXT T

840 LOCATE 1,4-.PRINT "CHOOSE: 1 Try again"; SPACER (12) J j
850 PRINT TAB(13);"2 Continue program" <**™*i
860 E$=INKEY§:IF E$="l" THEN 720

870 IF E?<>"2" THEN 860

880 CLS > 1
\ 1

190

r—-[Chapter 14-

j 890 RESTORE 900

~ 900 DATA A SAD LAD;,A FAD;,ASK A LAD;,A SAD FAD,A LAD ASKS D

AD

_ 910 DATA ALFALFA,ALAS A SAD DAD,DAD ASKS A LAD,ASK DAD

I ! 920 FOR T=l TO 9:READ P$(T):NEXT

, J 930 PRINT "Use your right little finger to press <RETURN>."

940 PRINT

950 PRINT "Type the phrase shown, then press <RETURN>."

****[960 PRINT
! \ 970 PRINT "You must type five phrases correctly to end the d
"~" rill."

1050 GOSUB 120

1060 FOR T=l TO 5

1070 CLS

1080 FOR X=80 TO 480 STEP 40

1090 LINE (X,62)-(X+24,74),1,BF

1100 NEXT X

1110 COLOR 2,1

1120 LOCATE 9,12:PRINT "A";SPC(4);"S";SPC(4);"D";SPC(4);"F";

1130 LOCATE 9,42:PRINT "J";SPC(4);"K";SPC(4);"L";SPC(4);";";

1140 COLOR 1,0

1150 J=INT(9*RND+1)

1160 IF P$(J)="" THEN 1150

1170 LOCATE 14,30:PRINT P$(J)

1180 COLOR 2,3:LOCATE 15,28:INPUT B$:COLOR 1,0

1190 IF B$=P$(J) THEN 1230

1200 SOUND 330,2:SOUND 262,2

1210 GOSUB 120

1220 GOTO 1070

1230 SOUND 262,3:SOUND 330,3

1240 SOUND 392,3:SOUND 523,6

1250 P$(J)=""

1260 NEXT T

1270 PRINT:PRINT

1280 PRINT "CHOOSE: 1 Practice letters"

1290 PRINT TAB(10);"2 Practice words"

1300 PRINT TAB(10);"3 End program"

1310 A$=INKEY$:IF A$="l" THEN 610

1320 IF A$="2" THEN 880

1330 IF A$<>"3" THEN 1310

1340 CLS

1350 END

r—*

Algebra: Binomial Multiplication

r—j While there is a lot of educational software available for youn-

LJ ger children, material for older students is not so readily avail
able. This algebra program offers something for an older

r—* student. I have written this program for other computers and

J it has been so popular that I am including it here. Binomial

multiplication is just one concept in algebra, but this program

—■ can give you ideas so that you can write programs for other

U, 1 topics in algebra.
This program is for practicing multiplication of two

r—i binomials. First, an example problem is shown. It is printed
) 'i

191

■Chapter 14-

with lines 120-220. Lines 240-570 show the multiplication in

general form.

Lines 580-860 present the first problem for the student. It

contains only positive numbers, and the numeric factors are

random numbers A and B from 1 through 3 (so the results will

always be one-digit numbers). Lines 890-990 print another ex-

ample problem, and lines 1000-1010 call a subroutine to

present a problem with positive numbers and coefficients for

all factors.

Lines 1030-1100 print a screen about using positive and

negative numbers. Line 1110 calls the subroutine to present a

problem which can contain positive and negative numbers.

Lines 1130-1280 print more information.

Lines 1300-1350 are the subroutine to wait for the stu

dent to press RETURN before continuing the program. Lines

1360-1370 are the subroutine to play the uh-oh tones for an

incorrect response. Lines 1380-1390 play the arpeggio for a

correct response.

Lines 1400-1450 are the subroutine to receive an answer

for a number. A question mark is blinked in the position speci

fied by ROW,C.

Lines 1460-1530 present the option to have another simi

lar problem or to continue the program. If any part of the

problem is answered incorrectly, another problem is presented.

If the problem is correct, then the program proceeds to this

subroutine and the student may choose whether to practice

more or to go on.

Lines 1540-2050 contain the subroutine to print a prob

lem with random numbers. T may equal 1 or 2. If T is 1, all

the numbers are positive. A, B, D, and E are the coefficients

and factors to be multiplied. F is a flag to indicate an incorrect

answer. The SGN function is used to determine the sign of a

product or sum.

Lines 2060-2170 are the subroutine to get the plus or mi-

nus sign on problems that contain positive and negative

numbers.

Lines 2180-2270 position the numbers in answers

depending on whether they are one digit or two digits.

10 REM ALGEBRA

20 CLS

30 RANDOMIZE TIMER

u

u

Program 14-5. Algebra I]

u
192

•Chapter 14-

\ 70 PRINT TAB(20);"BINOMIAL MULTIPLICATION"

"' 80 PRINT:PRINT "This program discusses multiplication of two

binomials, "

^^ 90 PRINT

I1 100 PRINT "such as (x+5) times (x+4)."
~^' 110 GOSUB 1300

120 PRINT "Compare algebraic multiplication to numeric multi

^^^ plication:"

fj\ 130 PRINT: PRINT
■!_\ 140 PRINT TAB(10);"1 2" ;TAB(60) ; "x + 2"

150 PRINT

160 PRINT TAB(10);"1 3";TAB(60);"x + 3"

170 PRINT TAB(8);" ";TAB(58);H "

180 PRINT

190 PRINT TAB(10);"3 6";TAB(59);"3x + 6"

195 PRINT TAB(55);"2"

200 PRINT TAB(8);"1 2";TAB(54);"x + 2x"

210 PRINT TAB(7);" ";TAB(54);" "

215 PRINT TAB(55);"2"

220 PRINT TAB(8);"1 5 6";TAB(54);"x + 5x + 6"

230 GOSUB 1300

240 CC=3

250 PRINT "IN GENERAL,

260 PRINT:PRINT

270 PRINT TAB(40);"x +

280 COLOR 3,0:PRINT "a"

290 COLOR 1,0:PRINT:PRINT TAB(40);"x + ";
300 COLOR 3,0:PRINT "b"

310 COLOR 1,0:PRINT TAB(39);" "

320 PRINT:COLOR 3,0

330 PRINT TAB(39);"b";

340 COLOR 1,0:PRINT "x + ";

350 COLOR 3,0:PRINT "ab"

360 COLOR 1,0:PRINT TAB(32);"2"

370 PRINT TAB(31)7"x +

380 COLOR 3,0:PRINT "a";

390 COLOR 1,0:PRINT "x"

400 PRINT TAB(31);" "

405 PRINT TAB(32);"Jn
410 PRINT TAB(31);"x +

420 COLOR 3,0:PRINT "(a+b)";

430 COLOR 1,0:PRINT "x + ";

440 COLOR 3,0:PRINT "ab"

r""| 450 COLOR 1,0
'.._ }. 460 PRINT :i>KlrtT

470 print "The first term is x * x"
480 PRINT "The last term is ";

p—V 490 COLOR 3,0:PRINT "a";
! I 500 COLOR 1,0:PRINT " * ";
"^ 510 COLOR 3,0:PRINT "b"

520 COLOR 1,0:PRINT "The middle term combines ";
rma^ 530 COLOR 3,0:PRINT "a";

540 COLOR 1,0:PRINT " and ";
— 550 COLOR 3,0:PRINT "b";

560 COLOR 1,0:PRINT " multiplied by x"
570 GOSUB 1300

<*■"■] 580 PRINT "NOW YOU MULTIPLY:"
v_l) 590 A=INT(3*RND)+1:B=INT(3*RND)+1:F=0

600 PRINT:PRINT TAB(50);"x +";A
610 PRINT:PRINT TAB(50);"x +";B

|—* 620 PRINT TAB(49);"_ "

193

u
Chapter 14

u

630 PRINT j
640 PRINT B;"TIMES TOP ROW";TAB(49);"?x + ?" W

650 ROW=8:C=49:GOSUB 1400

660 IF VAL(K$)=B THEN 680

670 GOSUB 1360:GOTO 650 (j

680 C=54:GOSUB 1400 i^J-
690 IF VAL(K$)=B*A THEN 710

700 GOSUB 1360:GOTO 680

710 PRINT:PRINT TAB(45) ; "2" /) ,

720 PRINT " x TIMES TOP ROW";TAB(44);"x + ?x" Li

730 ROW=10:C=49:GOSUB 1400 ^
740 IF VAL(K$)=A THEN 760

750 GOSUB 1360:GOTO 730

760 PRINT:PRINT TAB(44);STRING?(11," ")

770 PRINT TAB(45);"2" ~

780 PRINT " ADD";TAB(44);"x + ?x + ?"

790 ROW=13:GOSUB 1400

800 IF VAL(K?)=A+B THEN 820

810 GOSUB 1360:GOTO 790

820 C=54:GOSUB 1400

830 IF VAL(K?)=A*B THEN 850

840 GOSUB 1360:GOTO 820

850 IF F=0 THEN 870

860 GOSUB 1300:GOTO 580

870 GOSUB 1460

880 IF K?="l" THEN 580

890 PRINT "There may be coefficients of the first term,"

900 PRINT "but the rules don't change."

910 PRINT:PRINT "For example,"

920 PRINT:PRINT TAB(30);"2y +5"

930 PRINT:PRINT TAB(30);"3y +1"

940 PRINT TAB(30);" "

950 PRINT:PRINT TAB(30);"2y + 5"

955 PRINT TAB(25);"2"

960 PRINT TAB(23);"6y + 15y "

970 PRINT TAB(23);STRING?(13,"_")

975 PRINT TAB(25);"2"

980 PRINT TAB(23);"6y + 17y + 5"

990 GOSUB 1300

1000 T=1:SD=1:SD$=" + II:SE=1:SE$=" + "

1010 GOSUB 1590

1020 IF K?="l" THEN 1010

1030 PRINT "Binomials may contain + or - numbers."

1040 PRINT:PRINT "Multiply the numbers as usual, and"

1050 PRINT:PRINT "remember the rules for the signs."

1060 PRINT .-PRINT TAB(10);"+ * + = +"

1070 PRINT:PRINT TAB(10);"+ * - = -"

1080 PRINT:PRINT TAB(10);"- * + = -"

1090 PRINT:PRINT TAfl(10);"- * - = +"

1100 GOSUB 1300

1110 T=2:GOSUB 1550

1120 IF K?="l" THEN 1110

1130 PRINT "There may be cases when the middle term becomes) {
zero" ^-~'
1140 PRINT

1150 PRINT "so you do not need to specify the middle term."

1160 PRINT:PRINT \ j

1170 PRINT " x + 3";TAB(40);"2y + 2" C*1
1180 PRINT:PRINT " x - 3";TAB(40);"4y - 4"

1190 PRINT " ";TAB(40);" "

1195 PRINT:PRINT TAB(5);"2";TAB(42);"2"

194

Chapter 14 ■

fl 1200 PRINT " x - 9";TAB(40);"8y - 8"
\..-_> 1210 GOSUB 1300

1220 PRINT "Other multiplication problems include + or -"

1230 PRINT:PRINT "numbers in the first term"

f*l 1240 PRINT:PRINT "and/or alphabetic characters as coefficien

J | ts"
1250 PRINT:PRINT "for either term."

1260 PRINT:PRINT

A. 1270 PRINT "This completes this unit of instruction.":PRINT:

, i PRINT

k ■ 1280 GOTO 2280
1290 STOP

1300 LOCATE 23,1:PRINT "PRESS <RETURN>.";

1310 E$=INKEY?

1320 IF E?="" THEN 1310

1330 IF ASC(E$)<>13 THEN 1310

1340 CLS

1350 RETURN

1360 SOUND 330,2:SOUND 262,2:F=1

1370 RETURN

1380 SOUND 262,2:SOUND 330,2:SOUND 392,2:SOUND 523,4

1390 RETURN

1400 SOUND 1300,2

1410 K$=INKEY?:IF K$<>"" THEN 1440

1420 LOCATE ROW,C:PRINT "?";

1430 LOCATE ROW,C:PRINT " ";:GOTO 1410

1440 LOCATE ROW,C:PRINT K$;

1450 RETURN

1460 LOCATE 22,1

1470 PRINT "CHOOSE: 1 ANOTHER PROBLEM"

1480 PRINT TAB(10);"2 CONTINUE PROGRAM"

1490 SOUND 1300,2

1500 K$=INKEY$

1510 IF K$<>"1" AND K$<>"2" THEN 1500

1520 CLS

1530 RETURN

1540 IF T=l THEN 1590

1550 SD=(-1)"(INT(2*RND)+1)

1560 IF SD=1 THEN SD$="+" ELSE SD$="-"

1570 SE=(-1)"(INT(2*RND)+1)

1580 IF SE=1 THEN SE$="+" ELSE SE$="-"

1590 CLS

1600 A=INT(7*RND)+1:B=INT(7*RND)+1

fmm^ 1610 D=INT(7*RND)+1:E=INT(7*RND)+1:F=0

f j 1620 IF A=B AND D=E THEN 1600

'■•-■ 1630 IF (A*E*SE=(-1)*B*D*SD) THEN 1600
1640 A$=RIGHT$(STR$(A),1)

1650 B$=RIGHT$(STR$(B),1)

1660 X$=CHR$(87+INT(4*RND)+32)

1670 PRINT "MULTIPLY":PRINT

1680 PRINT TAB(29);A$;X$;" ";SD$;" ";D

1690 PRINT:PRINT TAB(29);B$;X§;" ";SE$;" ";E

r*J 1700 PRINT TAB(28);"_^ ": PRINT

* ' 1710 PRINT SE$; RIGHT? (STR$ (E), 1); " * TOP ROW" ;TAB(30) ;X$; " +

n

1720 ROVtf=8:IF T=l THEN 1740
^Oh 1730 C=26:S$=SE$:GOSUB 2060

/ I 1740 CC=27:P=A*E:GOSUB 2180
- 1750 IF T=l THEN 1790

1760 C=32:SS=SGN(SE*SD)

^- 1770 IF SS=1 THEN S$="+" ELSE S$="-"

195

u
Chapter 14

u

1780 GOSUB 20b0 (f

1790 CC=33:P=D*E:GOSUB 2180 A J
1800 PRINT:PRINT TAB(24);"2"

1810 PRINT " "B$;X$;" * TOP ROW";TAB(23);X$;" + ";X$

1820 ROW=ROW+2:CC=20:P=A*B:GOSUB 2180

1830 IF T=l THEN 1850

1840 C=2b:S$=SD§:GOSUB 2060

1850 CC=27:P=B*D:GOSUB 2180

1860 PRINT TAB(21);STRING$(15,"__")

1870 PRINT TAB(24);"2"

1880 PRINT " ADD";TAB(23);X$;" + M;X$;" +"

1890 ROW=ROW+3:CC=20:P=A*B:GOSUB 2180

1900 M=A*E*SE+B*D*SD

1910 IF T=l THEN 1950

1920 C=26:SS=SGN(M)

1930 IF SS=1 THEN S$="+" ELSE S$="-n

1940 GOSUB 2060

1950 CC=27:P=ABS(M):GOSUB 2180

1960 IF T=l THEN 2000

1970 C=32:SS=SGN(SE*SD)

1980 IF SS=1 THEN S$="+" ELSE S$="-"

1990 GOSUB 2060

2000 CC=33:P=D*E:GOSUB 2180

2010 GOSUB 1380

2020 IF F=l THEN GOSUB 1300:GOTO 1540

2030 GOSUB 1460

2040 IF K$="l" THEN 1540

2050 RETURN

2060 SOUND 1300,2

2070 K$=INKEY$:IF K$<>"" THEN 2110

2080 LOCATE ROW,C:PRINT "+";

2090 LOCATE ROW,C:PRINT "-";

2100 GOTO 2070

2110 LOCATE ROW,C:PRINT K$;

2120 IF K$=S$ THEN 2160

2130 IF S$=M+" AND K$="=" THEN 2160

2140 IF S$="-" AND K$="JI THEN 2160

2150 GOSUB 1360

2160 LOCATE ROW,C:PRINT S$

2170 RETURN

2180 L=LEN(STR$(P))-1

2190 IF L=l THEN CC=CC+1

2200 C$="":FOR T=l TO L

2210 C=CC+T:GOSUB 1400

2220 C$=C$+K$

2230 NEXT T

2240 IF VAL(C$)=P THEN 2270

2250 GOSUB 1360

2260 FOR T=l TO L:LOCATE ROW,CC+L:PRINT " ";:NEXT T:GOTO 220
0

2270 RETURN

2280 END

196 u

n

n

H

/ '1
'•- "c:""

/«■■»■,
I 1

i J

ABS(x) 124

addresses 59

"Adverbs" program 180-81

"Algebra" program 192-96

&H 93, 94

AREA 95, 96

AREAFILL 93-96

arrays 49, 59-62, 67, 70

two-dimensional 61, 62

arrow keys 166

ASCII codes 19, 121-24, 166

ATN(x) 124

BF93

blitter objects. See bobs

bobs 99-101

boot up. See starting the system

"Braille" program 67, 69-70

branching 152

conditional 46, 47

break 42, 91

brownout 10

channel 115

CHR$ 122

CIRCLE 91, 92

CLOSE 99

CLS5

COLOR 20, 21, 89

command 6

constant 6

control 116

"Cookie File" program 72-75

COS(x) 124

counter 42

"Counting Shapes program" 134-36

DATA 59, 63-67, 70, 106, 174

debugging 173-75

DEF FN 125

DEFINT 84

DELETE 14

delimiters 17

DIMension 62, 84

editing 11, 14

ellipse 92

ELSE 46

END 5

errors

line number 173

syntax 173

execute 7

EXP(x) 124

"Flight Schedule" program 152-58

FOR 28, 42-44, 173

SE&nmi -<a^3py man pragq

formatting 8, 9, 18-23

FOR-NEXT loop 28, 42-44

functions 121-30

combined 129, 130

graphing 127-30

numeric 124-26

string 121-24

GET 84, 85

GOSUB 44, 45, 79, 121

GOTO 41, 42

graphics 89-101

"Grid" program 150, 151

"History Trivia—Ontario" program

136, 137

"Homework Helper—Factors" program

143-45

IF 46

IF-THEN 46, 47

inflection 115

initializing a disk. See formatting

INKEY$ 34-36, 152, 166

INPUT 33-36

input prompt 33

INSTR 123

INTeger 27, 142

interactive programming 33

INT(x) 124

Kickstart disk 4

labels 6

"Language" program 117

LEFTS 123

LEN 123, 124

LET 63

LINE 90, 91

line

drawing 89-91

logical 6

numbering 6

LIST 5

LOAD 9, 10

"Loan Payments" program 179

LOCATE 20

"Locating Points" program 147-49

LOG(x) 124

"Math Competency" program 50-56

memory, expanded 3

memory locations 59

MENU 79, 80

MENU RESET 79

MID$ 123

mode 115

mouse 83-85

197

u

MOUSE(n) 83

MOUSE OFF 83

MOUSE ON 83

MOUSE STOP 83

"Multiple-Choice Test" program

139-41

music 105-12

NEW 6

NEXT 28, 42-44, 173

"Notes" program 109-12

OBJECT 99-101

OBJECT.AX 100

OBJECT.AY 100

OBJECT.CLIP 100

OBJECT.CLOSE 100

OBJECT.HIT 101

OBJECT.OFF 101

OBJECT.PLANES 101

OBJECT.PRIORITY 101

OBJECT.STOP 101

ON-GOSUB 47

ON-GOTO 47

ON MENU 79

ON MOUSE-GOSUB 83

OPEN 99

OPTION BASE 63

PAINT 93

PALETTE 96-98

PATTERN 93-96

phonemes 1216

pitch 115

pixels 89

PRINT 17-23, 121

PRINT USING 21-23

programs 7

drill 28, 29, 133-36

multiple-choice test 137-41

question-and-answer quiz 136, 137

PSET 166

PUT 84, 85

RANDOMIZE 27, 28

random numbers 27-29

rate 115

READ 63-67, 70

REM5

reserved word 7

RESTORE 65-67, 174

RIGHTS 123

RND27

"Roman Numerals" program 36-37

RUN 5, 121

SAVE 9, 10

SAY TRANSLATES 116

seed 27

SGN(x) 125

SIN(x) 124, 128

sorting 161-64

bubble sort 161

maximum 162

minimum 162

quick 163

shell sort 162

simple interchange sort 161

SOUND 105-09

SPC19

speech 115-17

"Spelling Flash Cards" program 168-69

sprites 99-101

SQR(x) 125

starting the system 3

statement 6

"States and Capitals" program 183-88

STEP 43

STOP 5

stopping the program 42, 91

STRINGS 19, 124

subroutines 44, 45

SWAP 161

TAB 19

TAN(x) 124

THEN 46

TIMER 28, 165

tuning 115

"Typel" program 189-91

typing in programs 10, 11

VAL 121

variable 6

numeric 7

string 7

voice 115

volume 115

WAVE 112-14

WIDTH 23

WINDOW 80-82

WINDOW CLOSE 81

WINDOW OUTPUT 81

Workbench disk 4, 115

(1

U

'1 '

<' iuJ

1 /

198
1)

H
v

To order your copy of Elementary Amiga BASIC Diskt call

our toll-free US order line: 1-800-346-6767 (in NY 212-887-

8525) or send your prepaid order to:

Elementary Amiga BASIC Disk

COMPUTEI Publications

P.O. Box 5038

F.D.R. Station

New York, NY 10150

Send copies of 728 LADS Disk at $15.95 per copy.

All orders must be prepaid (check, charge, or money order). NC

residents add 5% sales tax. NY residents add 8.25% sales tax.

Subtotal $

Shipping and Handling: $2.00/disk $

Sales tax (if applicable) $

Total payment enclosed $

□ Payment enclosed

□ Charge a Visa □ MasterCard a American Express

Acct. No. Exp. Date
(Required)

Name _

H
Address

City State Zip

Please allow 4-5 weeks for delivery.

a

u

u

a

u

a

u

u

a

u

	amiga_AmigaDOS.pdf
	front.jpg
	back.jpg

	amiga_basic_cover.pdf
	front.jpg
	back.jpg

