

u

u

u

u

u

u

u

u

u

u

u

u

COMPUTE'S

DATA
FILE
HANDLER
for the Commodore 64

Blaine D. Standage
John L. Darling

Kenneth D. Standage

COMPUTE!" Publicationsjnc^
One of the ABC Publishing Companies ^^

Greensboro, North Carolina

Copyright 1985, COMPUTE! Publications, Inc. All rights reserved

Reproduction or translation of any part of this work beyond that permitted by

Sections 107 and 108 of the United States Copyright Act without the permission of

the copyright owner is unlawful.

Printed in the United States of America

ISBN 0-942386-86-8

10 98765432

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919)

275-9809, is one of the ABC Publishing Companies and is not associated with any

manufacturer of personal computers. Commodore 64, PET, and CBM are trademarks

of Commodore Electronics Limited and/or Commodore Business Machines, Inc.

Contents

Foreword v

Author's Preface vii

1: Getting Started with DFH 1

Introduction to DFH 3

Simplified Operation 8

Data File Structures 13

Error Sources and Handling 19

2: Operating DFH 25

The Bootstrap 27

Create, Edit, Sort, and List 29

Printing 40

3: File Manipulation 51

Merging Files 53

Restructuring Files 60

Split and Extract 66

4: The DFH Editor 75

A Sequential File Editor 77

Using the Editor 83

5: Disk Use 93

Disk Support Commands 95

DOS Shorthand Commands 97

6: DFH Applications Examples Ill

Why Samples? 113

A Magazine Cardfile System 114

A Genealogy File 121

7: File Conversion 129

Converting Non-DFH Files 131

8: The ML Subroutines 145

The Subroutine Package 147

Subroutine Examples 155

9: Entering the Programs 163

A Beginner's Guide to Typing In Programs 165

How to Type In Programs 167

The Automatic Proofreader 169

Machine Language Program Generator 173

10: Program Listings 179

Machine Language Programs 181

BASIC Programs 209

Index 269

Coupon for ordering disk 273

LJ

LJ

U

U

Foreword

rganizing information for fast retrieval and quick

sorting is one of the things computers do best. Busi

ness computers have been doing it for years. So why

not have a powerful data base manager for your PET or Com

modore 64? That's exactly what COMPUTED Data File Handler

for the Commodore 64 is—a series of integrated programs that

give you a sophisticated and efficient data-handling system.

The Data File Handler will store, sort, merge, split, ex

tract, and print records you've created. It allows you to or

ganize your data in records with up to 20 fields. Sorting is

allowed on any field. You can create print formats and save

them to disk for use at any time. And the entire system works

on either the Commodore 64 or PET computer.

Although the focus of this book is data base management,

the book is much more than that. The authors have also in

cluded a sequential file editor that can be used with any

sequential file. You can edit and resave word processing files

or look at those mysterious SEQ files. Also included are four

machine language routines, instructions on how to use these

routines in your own programs, and more than a dozen useful

disk commands.

Since all the BASIC programs are listed here, you can

learn from the techniques by studying the listings. If you plan

to type in the programs, we've included an error-checking pro

gram, "The Automatic Proofreader/' that will verify your typ

ing line by line, making perfect program entry easy.

COMPUTEl's Data File Handler for the Commodore 64 in

cludes everything you need, from the system itself to vital

information. With this package and your computer, you'll be

organized like never before.

u

u

u

u

u

u

u

u

u

u

u

u

Preface

I or every good solution there must be a problem which

caused it. In this case the problem was "How do I

manipulate large data files?"

I wanted to create some large files and do some

manipulating of those files. I wanted to be able to sort, merge,

and print the files. This led to a single BASIC program which

did some of the easier tasks, showed me a lot of other features

I needed, and started a long evolutionary process of develop

ing the programs of the Data File Handler (DFH) set. Along

the way I have had a lot of help.

The DFH Editor was conceived and written by my close

friend, John L. Darling. He also contributed the machine lan

guage sorting and partitioning subroutines. These routines

were originally written to be used as independent programs,

and that capability has been preserved. John also served as my

chief technical editor and critic. I was careful to return that

favor when working on his programs.

My brother Kenneth was the first to see a need for the

file-splitting and data record extraction features of DHF Split.

As a result, he was selected to create the program and write

about it.

The result of these efforts is a coordinated set of programs

for data file handling. Although I didn't know it then, these

are the programs I wanted in the beginning. They are ones I

can really use!

The DFH programs are efficient when used on small or

large data sets. (The largest processed to date is a 48-file set

containing over 25,000 records.) Because these programs em

ploy a generalized approach, they have already been used by

my associates for a wide variety of tasks.

I would be the last to suggest that there are no bugs in

these programs. Quite the contrary, I feel there is no such

thing as a perfect program, and these programs will be no

exception. However, we have removed all the known bugs

and the programs have been carefully tested. I believe they

will do a good job for you. I hope you enjoy using them.

Blaine Standage

Vll

u

u

u

u

u

u

u

u

G

U

LJ

U

Chapter 1

Getting Started

with DFH

u

u

u

u

u

u

u

u

G

U

LJ

U

Getting Started with DFH

Introduction to DFH

This book was written with two major goals in mind: to

present and explain the operation of a coordinated

family of general-purpose Data File Handler (DFH)

programs; and to provide some insight into the overall proce

dures for working with data files, with or without these

programs.

In keeping with these objectives, it is to your advantage to

treat this book as a reference manual rather than a cookbook

or a novel. Cookbooks are dictatorial and novels describe how

someone else did it. Most of the material in this book is de

signed to help you create your own method of handling data.

It will provide you with a powerful set of tools and instruc

tions for using them.

This book is written primarily for the computer user

rather than the programmer, and no programming knowledge

is required. However, skilled programmers will find that the

DFH programs are a solid base from which they can build and

continue in many directions.

Program Protection

While we expect and trust you to honor the copyright laws,

we do not want to prevent you from altering the programs to

satisfy your own special needs. Therefore, none of the pro

grams contains any copy-protection code or other program

ming techniques which would, in any way, restrict your

handling of them.

The complete listings for all BASIC programs and the nec

essary data to create all machine language programs are in

cluded in the final chapters.

A disk containing all the programs, including the source

code for the machine language programs, is available by call

ing COMPUTE! Publications toll free at 1-800-334-0868 or by

using the coupon in the back of this book.

If you wish to enter the programs manually, you should

refer to Chapter 9, "Entering the Programs," for details. There

we have done our best to make the manual entry process as

easy and error-free as possible.

Getting Started with DFH

Equipment Required
The Data File Handler (DFH) programs will work on any

Commodore 64 computer with a single disk drive such as the

1541, and any PET or CBM computer with BASIC 3.0 or

BASIC 4.0 ROMs. This includes the 2000, 4000, 8000, and

9000 series computers, but does not include the original ver

sion PET computers. When run on a PET or CBM, a Com

modore dual disk drive is required.

A Commodore dot-matrix printer is recommended to fully

utilize all printing features. However, only a few minor

capabilities will be lost if a daisywheel printer is used.

Disk drives are expected to function as device 8. Printers

are expected to function as device 4.

Other computer/disk combinations and different device

assignments can be supported through program changes. Al

though no procedural details are given in this book, consid

erable care was taken during the programming to allow for

such customizing changes. Pay special attention to the variable

TY (TY stands for type) if you attempt a configuration change.

This variable is used in all the BASIC programs to control spe

cial actions which are dependent on the computer type and

disk drive type.

Program Organization
There are six BASIC programs and three machine language

programs in the Data File Handler series.

BASIC programs:

DFH BOOT

DFH SORT

DFH PRINT

DFH MERGE

DFH SWAP

DFH SPLIT

Machine Language Programs:

DFH SUBS$79

DFH ED.C64$90

DFH ED.PET$70

DFH BOOT is the only program you need to remember

by name. It provides overall executive control and allows you

the freedom to select the functions you wish to perform, with-

Getting Started with DFH

out regard to which programs are required to get the job done.

This bootstrap determines which computer is being used and

automatically makes any necessary adjustments to computer

and program configuration. The loading and execution of all

the other programs is controlled by DFH BOOT/

AH of the BASIC programs reload DFH BOOT and return

control to it when they have completed their tasks. Since these

programs load and run each other, it is necessary to give each

program the exact filename as it appears above.

Each of the BASIC programs uses the machine language

subroutines contained in DFH SUBS$79. These subroutines are

automatically installed and protected by DFH BOOT.

The machine language subroutines can also be used by

BASIC programs of your own design. An entire chapter is de

voted to the details of how this is done. The final machine

language programs are two versions of the DFH Editor, one

for the Commodore 64 and the other for PET/CBM comput

ers. The DFH BOOT program can be used to load, protect, and

activate the DFH Editor. However, the DFH Editor is a com

pletely independent program which will not return control to

DFH BOOT/

The DFH Editor provides the ability to directly access and

manipulate sequential data files in much the same way you

handle BASIC program files. A variety of new and powerful

commands are provided, and many of them can also be used

for handling program files.

The DFH Editor also provides a powerful Disk Operation,

Support (DOS) command set. The appearance (syntax) of

these commands is very similar to existing Commodore disk

commands. However, these commands provide many ex-,

tended options which give increased power and flexibility in

handling disk files?

Later in the book there is an extensive discussion of the

features and operation of the DFH Editor. Also included are

the procedures for loading, activating, and using the DFH Edi

tor as a completely independent program.

Data Capacity
It would have been quite an impressive job of programming

had we been able to write the DFH with unlimited capability.

Unfortunately, this is not the case, and we will all have to live

within the limits of the hardware and program design. But we

Getting Started with DFH

believe you will find the capacity quite adequate for most

applications.

• Data File Structure: Sequential data files containing single-

field or multifield records. The field delimiter is selected by

the operator.

• Maximum Fields: Up to 20 fields per record.

• Maximum Record Length: 74 characters. This may be the

most significant limit.

• Maximum File Size: Up to 700 records or 14,000 characters

for DFH SORT (Create, Edit, Sort, and List functions). For all

other functions, file size is limited only by disk capacity.

• Suggested File Size Limit: 650 records or 13,000 characters,

to allow space for editing and additions. This limit is used by

the merge program as a default which the operator may ig

nore if he or she desires.

• Maximum Number of Files: 50 files for the merge program.

No limit for other programs.

• Maximum Number of Disks: 50 disks for the merge program.

No limit for other programs.

Program Features
The following features apply to the DFH programs as a group,

except for the DFH Editor. The file-handling and DOS

capabilities of the DFH Editor are detailed in a separate

chapter.

• Sorting: Sort on any individual field or on complete data

records. Sorts in ascending or descending order. The machine

language sort routine will sort 650 records in about five

seconds.

• Editing: Add, edit, and delete functions. Monitored to pre

vent errors, such as including delimiter as data, creating long

records, etc. Previous content default prompting for add and

edit.

• Listing: Lists file with line numbers assigned for editing ref

erence. Lists in character case currently in use for screen dis

play. Character case can be changed from within any

program.

• Printing: Fully formatted printing per operator specifications.

Page and column headings and controllable page numbering.

Successive file printing with or without page breaks. Print

formats can be saved to disk for later use. WordPro file ere-

Getting Started with DFH

ation of formatted pages on request, complete with global file

linking.

• Merging: Merges up to 50 presorted files from up to 50 disks.

Merges in ascending or descending order based on full record

content or on the content of any single field. Merged output

is saved in 1 to 99 files as requested by the operator. This

function can be used to break large files into smaller, uniform-

size files.

• Restructuring: Five record-reorganization modes are available

for use on a field-by-field basis. This function can be used to

change field order, concatenate fields, create new fields, add

constant data, and delete fields.

• File Splitting: Files are split based on data changes in speci

fied, full or partial, data fields. Files can be split automati

cally at predefined data change points, or the operator can

maintain constant control of split/no-split decisions.

Record Extraction: Records are selectively extracted and

placed in a new file, based on operator-defined data content

matches. This function can run automatically or under

continuous operator control.

Getting Started with DFH

Simplified Operation

This section presents the minimum necessary operating

instructions. It assumes you have all the programs

properly saved on a disk. If you do not have the pro

grams saved on disk and wish to use the Data File Handler as

you read about the features and procedures, you will need to

jump to Chapter 9 at this point.

The instructions provided in this section rely very heavily

on the user-friendly nature of the DFH programs. With the

exception of the editing and disk operation commands ofjhe

DFH Editor, the programs provide_ensugh aid to the user that

they are essentially self-teaching7~
This self-teaching feature has been proved several times

by giving the programs to a new user with absolutely no writ

ten instructions. A few words to indicate that the overall pur

pose of the programs is to create and process data files were

all that was necessary.

Beyond the fact that learning is slower without written

instructions, there is a serious disadvantage to the simple

"load and run" method. Even after a few weeks of using the

programs, you will still not be aware of many powerful

capabilities of the DFH programs.

On the other hand, maybe you don't want to know "all

about data files," but just have a specific job to do.

Just Load and Run
For a really quick way to get started creating and processing

data files, simply insert your program disk and type:

LOAD"DFH BOOT",8

Then press RETURN, type RUN, press RETURN again, and

follow the instructions. No kidding—that's all there is to it.

Except for the utility commands of the DFH Editor, all of

the DFH programs are almost completely self-guiding. It is

hard to make an error, and even the errors you make are

usually no problem. The programs will almost always assist

you back into normal operation.

When you load DFH BOOT and run it, the machine lan

guage subroutines are automatically loaded and protected.

Next, a program identification and summary information page

is presented and will remain in place until you indicate you

Getting Started with DFH

_ are ready to continue. The main menu will now appear from

• » which you can choose one of the DFH processing functions to

^ Create, Edit, List, Sort, Merge, Print, Restructure records, Split

1) data files, or Extract records from files. You can also choose to

fmmi activate the DFH Editor, but that is a separate topic, as we will

1 ' see in a moment.

When you select any of the DFH processing functions, the

appropriate processing program will automatically be loaded

and run. Additional menus or instructions will be presented to

guide you through the desired process and finally return you

to the main menu for another selection.

If you are using a 64, the computer will be set into a PET

Emulator configuration just before leaving the DFH BOOT

program for the first time. The start of BASIC will be at $0401,

and the start of screen will be at $8000. When you exit

through the boot program, the computer will be returned to

normal configuration, except that the top of memory will be

left at $9000 to protect the DFH Editor in case it has been

loaded. Each of these actions will happen automatically when

necessary as you respond to the program prompts.

The DFH Editor
One item on the main menu is very different. Selecting the

DFH Editor function will cause the DFH Editor program to be

loaded and activated. The top of memory will be set to protect

the program. Except for some memory reduction, the com

puter will be returned to a normal power-up configuration.

You might now continue to operate your computer in any

way you wish and never realize that anything was different.

Actually, you now have a complete set of disk operating sys

tem (DOS) support commands and sequential-file editing com

mands at your disposal.

I—, The DFH Editor operations do not depend in any way on

1 the rest of the DFH programs. Therefore, you can usually

f—I leave the DFH Editor activated at all times to take advantage

• of the added DOS and editing commands. There will be some

pi exceptions to this rule. When another of your programs must

■ use memory needed by the DFH Editor, they cannot coexist,

r—i so you must choose one or the other.

Getting Started with DFH

DOS Commands List
The following is a quick-reference listing of the DOS com

mands syntax. For details refer to the DOS Commands section.

Read disk error channel.

>

Display disk directory.

>$ dnqualifiers

Copy disk file.

>C dr:newname=dr:oldname

Copy and Append files on disk.

>C dnnewname=dr:oldnamel/dr:oldname2...

Duplicate disk. (PET only.)

>D dest dr=source dr

Initialize disk.

>Idr

New (format) a disk.

>N dr:diskname,id

Rename a disk file.

>R dr:newname=dr:oldname

Scratch a disk file.

>S drrfilename

Validate disk.

>Vdr

Load a program or sequential file.

/ dr:filename,qualifiers

Load and run a program file.

tdnfilename

Save a program or sequential file.

*-dr:filename,qualifiers

Verify a program or sequential file.

] dr:filename,qualifiers

10

Getting Started with DFH

Append a program or sequential file to the one in memory.

& dr:filename

File Edit Commands List
The following is a quick-reference listing of the file edit com

mands syntax. For details refer to the DFH Editor Commands

section.

Add a character to end of records in range.

;AD character,range

Automatic line numbering by increment.

;AU increment

Change Screen display case.

;CS

Delete lines in range.

;DE range

Erase screen Down from cursor.

;ED

Erase screen Up from cursor.

;EU

Find and Change character strings in range.

;FC /oldstring/newstring/,range

Find character strings in range.

;FI /string/,range

Set BASIC Mode. (For program files.)

;MB

Kill Mode. (Disable the DFH Editor.)

;MK

Set Text Mode. (For sequential files.)

;MT

Insert Quote at start of records in range.

;QT S,range

11

Getting Started with DFH

Renumber lines in range.

;RN incr,newstart,range

UnNew (cancel a NEW command).

;UN

Display DFH Editor commands menu.

; (or;+invalid command code)

12

Getting Started with DFH

Data File Structures

The DFH programs are all written to handle data files.

To do this they rely on a well-defined and uniform file

structure. This is similar to a group of people intending

to have a conversation—everything will go well if they all

speak the same language.

The file structure is the backbone of any file-handling sys

tem and influences all aspects of the processing programs.

Consequently, designing or selecting a file structure requires

close attention. Obviously, a file structure has already been

picked for these programs, but we think you should know

how and why it was chosen. This should be of particular in

terest if you decide to write programs to extend the power of

these programs to meet your own unique needs.

First, there is no such thing as the best data file structure.

That would be like saying that a luxury sedan is the best ve

hicle. It might be in some cases, but not on the motorcycle

trail. In short, the best can't be determined until you define the

job to be done.

So, where does that leave us? The bad news is that no file

structure can handle all data file processing needs. The good

news is that a well-chosen structure can support a large

percentage of those needs.

The Most Common File
The most common data file has a structure so simple that we

often don't even use the word structure when describing it. It

is created by writing data items to a data file one after the

other on a "one record = one data item" basis.

With a knowledge of how the data was saved in these

simple files, a programmer can recall the data for processing.

If numbers were saved, the processing program will input to

numeric variables. If characters were saved, the inputs must be

to string variables. Saving a mixture of numbers and charac

ters can cause problems if the expected inputs get out of sync

with the actual data types. It is one thing for a program to in

put data, determine it is incorrect, and let the operator take

some appropriate action. But it's a disaster when the program

detects an error and simply quits in the middle of the job.

This suggests that the first rule about data files is that

they should contain only characters, never numbers. Numeric

13

Getting Started with DFH

characters can always be converted back to numbers with the

VAL command.

Please don't think there is anything wrong with a simple

"one data item equals one data record" filing method. In

many cases nothing more is needed. However, life starts to get

more complicated when the data begins to come in sets. And

as we will see, this is more the rule than the exception.

Data Sets and Records
A set of data is a number of data items which are closely re

lated to each other. Sometimes they must occupy a fixed po

sition in relation to other sets in the file. In other cases there is

only a loose relationship with the other sets in the file.

In essentially all cases, the items within each data set

must be kept together. A name and address is a common ex

ample of a data set. When you want to sort a name and ad

dress file, you may be concerned with the names, but you also

don't want to break any of the sets in the process.

One way to keep data sets grouped together is to save all

the items of a set in a single data record. This concept is built

into the file structure we have chosen for the DFH programs.

When you think of it, the great majority of all data you might

want to process has a set quality about it. The sets may be

small, like a simple expense record containing only dates and

amounts, or they can be quite large, like recipe files for your

kitchen.

Why Not Recipes?
The recipe file is an interesting example. Did you ever wonder

why everyone talks about getting a computer to handle reci

pes, but no one ever seems to do it? It sounds reasonable that

the computer should be able to prepare a shopping list and

quantity-scaled recipes for an entire week if you give it meal-

by-meal menus and the number of people to be present for

each meal.

The problems here come more from the data storage and

handling requirements than from how to program the calcula

tions. The recipe program illustrates the need for a complex

file structure. The requirements for a data set which has a title,

an ingredient list with quantities, and a paragraph or two of

instructions are not a trivial problem.

14

Getting Started with DFH

In case you are wondering, short of purchasing a pro

fessional program, the usual solution to this recipe problem is

to give up and feed the recipes to a word processor program.

Now, even though you still haven't automated your shopping

list, you can at least tell your friends and neighbors that you

have your recipes in the computer.

If we stop short of what might be called complex data

sets, we find that we have already covered most of the normal

situations. The typical data set contains a reasonable amount

of well-defined data. It is here that we concentrated our ef

forts. We tried for a file structure that would provide maxi

mum efficiency in this middle ground of data processing. At

the same time, the structure allows us to work with complex

data sets if we are willing to give up some efficiency.

Real-World Limits
To further define what we mean by "a reasonable amount of

well-defined data," we must take a look at the realities of our

computer. We have decided that there are advantages to stor

ing data as strings of characters. What limits does that impose?

First, no string can be longer than 255 characters. Your

computer simply won't handle longer strings. Also, if we plan

to use the INPUT# command in our processing programs, we

are faced with an even smaller number. No more than 80

characters can be input from a file. Another absolute computer

limit.

Since the alternative to the INPUT* is the extremely slow

GET# command, let's accept the 80-character limit. Actually,

we are going to reduce the limit to 74 characters a little later,

and you'll see that we can live with it quite easily.

It might be very difficult to design a good file structure

with only 74 characters per record if we followed the old tra

ditional approach of allocating a fixed number of character

spaces for each data field. That method wastes a lot of space

because the allocation must provide space for the longest data

item. We can't afford to design that type of inefficiency into

our programs.

We will stick with the idea of each record containing a set

of data items, each in its own field. If we simply throw out all

the unused spaces, we can pack a lot more data into the av

erage record. But then how can we tell where one data item

15

Getting Started with DFH

(field) ends and the next begins? Fortunately, there is a simple

answer: We can use a delimiter.

A delimiter is any character that is used only to mark the

boundaries between data fields. The price we pay to get rid of

the wasted space in fixed-length fields is that the character se

lected as a delimiter can never be used as a part of the data.

The loss of any character can be a problem. If we try to

choose a standard delimiter character, someone will have data

that already contains that character. DFH avoids this problem

by leaving the choice of the delimiter to the user.

Let's take a look at three records from a name and phone

number file created with only the rules we have defined so

far:

ED*113-525-7457

JOE*124-632-0808

SUSAN*012-415-9454

Editing and Line Numbers
At first glance the records in the preceding example seem to

illustrate a reasonable file structure. In fact, some of our early

experiments used a structure similar to this one. It didn't take

long for the problems to show up.

We were using an editor program similar to the one in

cluded in this book and routinely used it to make changes in

data files. To do its job efficiently, the editor needs a line

number assigned to each data record. The editor assigns these

numbers as the data records are loaded into memory, and re

moves them when the data file is saved to disk.

The function of the line numbers is similar to the line

numbers in a BASIC program. They are used for editing the

data in memory. Just as in a BASIC program, the line numbers

must be counted in the 80-character per line editing limit.

This is why the rule of 74 characters per record was

formed—to make room for four-digit line numbers. Remember

that these numbers never exist on the disk. The DFH Editor is

the only routine that uses them, but the editor functions are so

valuable that it was well worth giving up these few characters

per record.

Special Characters
When we introduced shifted characters into data files to get

entries like "Bob" instead of "BOB", it was obvious that a

16

Getting Started with DFH

leading quotation mark for each record would be a great help.

Shifted characters will not list correctly unless they are inside

quotes.

Adding the leading quote provided many other side bene

fits. In effect, it removed all restrictions as to what characters

could be included as data. Special characters such as commas,

colons, cursor motion characters, etc., could all be used as

data. The quote itself is still a restricted character, but now it is

doing something for us.

The leading quote also allows leading spaces in the first

data field, not just the later fields. That idea was expanded to

allow trailing spaces in the final field by adding a trailing

delimiter character. Leading and trailing spaces are often quite

useful when aligning some types of data for proper sorting.

Applying these rules, our previous example records might

look like this:

1010 "£0*113-525-7457*

1020 "JOE*124-632-0808*

1030 "SUSAN*012-415-9454*

The line numbers are included only to show how the records

would look when examined with DFH Editor control.

A Special First Line
Even with the file structure this well-defined, some small

aggravations still remained. When using the DFH Editor to

make changes, we would sometimes forget the name of the

file we were editing. Also, it was inconvenient to have

processing programs scan to the end of the first record just to

find out what delimiter was being used.

Both of these problems were solved by adding a special

first line to the files. This line (record) is never used for data.

The first nonquote character in the first record is used as the

delimiter for the file. This character is followed by file identi

fication constructed in the form of a DFH Editor SAVE com

mand. The following first line would work just fine for our

example file:

1000 "*<-@0:TELEDATA

The asterisk is the delimiter for the file. The next character is a

left arrow. This is the single-character DFH Editor SAVE com

mand. The @0: indicates that the SAVE is to be done in

replacement mode to drive 0. The remaining characters are the

filename.
17

Getting Started with DFH

This line can be used as a SAVE command by listing it;

then typing spaces over the line number, the quote, and the

delimiter; and then pressing RETURN. If it seems easier or

more logical, you can accomplish the same thing by placing

the cursor on the left arrow, deleting to the left margin, and

pressing RETURN. In any case, using this line as a SAVE com

mand eliminates the possibility of a typing error in the

filename.

We have now defined our file structure: multifield records

of up to 74 characters, each record preceded by a quote, each

field ending with a delimiter, the delimiter specified by being

the first nonquote character in the first record of the file.

If you still have both eyes open, you've noticed that we

have not told you how to handle complex data sets with this

file structure. On that point we ask you to have faith for a lit

tle while. The question is much easier to answer by example,

and that will be done in the Applications chapter (Chapter 6).

We're confident you'll be surprised by the complex data that

can be handled with this simple file structure.

18

Getting Started with DFH

Error Sources and

Handling

In the first part of this section we will discuss two sources

of error inherent in the Commodore disk system. Either

can be the source of a major disaster. The potential danger

is such that these sources of error should be common knowl

edge to any Commodore computer user. However, we have

found this is not usually the case.

The last part of this section will discuss common operator

mistakes and the protections which are built into the DFH

programs to prevent those mistakes from causing any damage.

There is no intent to present an in-depth study of error

handling and error-protection coding. That could be the sub

ject of an entire book.

No Duplicate Disk IDs
It is very important that every one of your disks have its own

unique disk ID code. Duplicate IDs can cause contamination

and loss of disk data. This results from the methods used to

maintain the Block Allocation Map (BAM) information in the

disk directories.

The BAM is a system of internal bookkeeping that the

disk controller uses to remember which blocks contain valid

data and which ones are available for new storage. In Com

modore systems, a block is the same as a sector. When a disk

is initialized, either automatically or by direct operator com

mand, the BAM is read from the disk and placed in the in

ternal memory of the drive controller.

Some years ago, it was reported that some disk file

contamination problems were probably caused by an unidenti

fied bug in the replacement save command code, and owners

were advised not to use that command. We are absolutely

convinced, through continual use of the replacement save, and

from detailed examination of the drive controller code, that no

such bug ever existed. Rather, we believe duplicate IDs have

been and still are the major cause of disk data loss.

Whenever you command any writing operation, the ID on

the disk is checked against the ID which was obtained during

the most recent initialization. If these two IDs are different, a

19

Getting Started with DFH

disk initialization must be performed before any writing can

take place.

On model 1541, 4040 and early model 8050 drives, this

initialization will be performed automatically. On model 2040

drives, the operator is required to command the initialization.

On late model 8050 and 8052 drives, the situation cannot oc

cur because initialization is performed automatically each time

the drive door is pushed to the closed position.

If the ID on the disk and the ID in the drive controller

memory are the same, the drive controller assumes (logically

enough) that the disk has not been physically changed. It then

proceeds to use the BAM that it obtained during the last

initialization to determine where to write the new data. After

writing the data, the updated BAM is written to the disk in the

drive.

If the disks had, in fact, been changed but the IDs were

the same, you are going to be in trouble. The disk controller,

assuming that the disk has not been changed, will refer to the

BAM in its memory to find open blocks where it can write

data. Since the BAM in memory is not the correct one for this

disk, the blocks which it shows as being open may or may not

already contain data. If these blocks do contain valid data, it

will be written over and lost forever.

Now, to make matters even worse, after the write opera

tion is finished, the incorrect BAM from memory is written to

the disk, forever destroying the correct BAM for that disk. In

all future operations, the wrong BAM, now on the disk, will

be used to guide any write operations. The data on the disk

simply becomes more and more contaminated until it is utterly

useless.

For the above reasons, on dual drive systems, the Copy

command is much preferred over the Duplicate command. The

Duplicate command duplicates everything on the disk, includ

ing the ID code, producing two disks with the same ID.

Don't Scratch Open Files
Probably the second most common cause of disk data loss is

using the Scratch command to get rid of an open file. The

Validate command is what you should use.

It seems quite logical that you would get rid of an open

file the same way as you get rid of a closed one. There are

very few warnings against it, but scratching a file that has

20

Getting Started with DFH

been left open is one of the worst possible things you can do.

(You can tell that a file is open by listing a directory of the

disk. Files with asterisks next to their names are still open.)

To understand why, we must examine what happens to

the Block Allocation Map (BAM) and the next-block pointers

when a file is written and when it is scratched. When a file is

opened for writing, two unused blocks are located by examin

ing the BAM. The directory entry is written with a pointer to

the first of these two blocks. This is where the first data in the

file will be written.

The drive controller then begins preparing the contents of

the first block in an internal buffer. The first two bytes in this

block are a pointer to the second block. Preparation of the first

block continues by adding the data that is to be saved to disk.

When the buffer is full, the first block is written to the disk.

Then the BAM is searched for the third available block.

The controller writes a pointer to the third block into the

buffer where it is now preparing the contents of the second

block. The pointers and the BAM are always working one

block ahead of the current storage location.

If we close the file, the final pointer will be replaced by

an end-of-file code. But if we simply interrupt the process, we

are left with a pointer pointing to a block that has not actually

been used. Hold that thought for a moment while we look at

the Scratch process.

When a Scratch is commanded, the next-block pointers are

traced and the corresponding BAM entries are marked unused

until the end of file is found. The process is completed by

marking the directory entry for that file as deleted. Notice that

the Scratch command must find an end-of-file code to finish

its process, but a file that has not been closed does not have

an end-of-file code. So what happens?

In a common case, the last block in the open file will be

pointing at a block that was used at some previous time. Con

sequently, it will have a pointer, and the next block will also

have a pointer. Somewhere down the line, one of those left

over pointers may point into a valid file which has been writ

ten more recently. This is where the problems really start.

As soon as the pointers link into a currently valid file, we

find the disk controller marking those blocks unused, while

the Scratch process continues to hunt for the end of file code.

At this point we have an incorrect BAM, but no data has been

21

Getting Started with DFH

lost. We lose the data as soon as we write another file to the

disk. Seeing all those nice convenient unused blocks, the next

writing operation will probably use them. Now we have lost

part of an older file. If we were to load that file, we would see

that part or all of the newer file appears attached to what is

left of the old file.

Depending on exactly how the files are cross-linked and

what operations are performed on them next, this problem can

continue to grow until many files have been contaminated.

Often the problem may not even be detected until a great

amount of damage has been done.

If you ever find yourself with cross-linked files, the best

course of action is to copy each file to a new disk. There they

will at least be linked properly, and the extent of the damage

can be assessed without provoking more problems.

Operator Errors
No program can protect against all operator errors, but we

have made a sincere attempt in this direction. The DFH pro

grams are very friendly. A good part of this friendliness comes

from protecting users from the results of errors they might

normally make. Of course, the best protection is careful opera

tion, but none of us is perfect.

The idea behind built-in error protection is to keep the

program running and prevent the loss or contamination of

data. All of the DFH programs, except the bootstrap program

and the DFH Editor, have built-in error protection.

Extensive error protection in the bootstrap program is un

necessary because none of your data or data files can be

threatened while the bootstrap is running. For the DFH Editor,

error protection of the type we are discussing is simply not

appropriate. The DFH Editor is a utility program that must be

able to perform according to operator direction regardless of

the consequences.

Many of the error-protection features are discussed or

illustrated in the chapter on detailed operation. Program re

sponses to some of the most common mistakes are shown in

the following list. (Some problems apply only to particular

computers.)

1. Typing RETURN without any data during an INPUT opera

tion will not cause the usual exit from program operation. If

22

Getting Started with DFH

a null input is valid for the current situation, the program

will accept- this action as a null. Otherwise, the input will

simply be ignored, and the program will wait for a valid

input.

2. Inputting an alphabetic character when a number is needed

will not cause an error. This input is treated the same as a

0. If 0 is valid for the current operation, the program pro

ceeds. If not, the input will be requested again.

3. Asking for a disk operation without a disk installed will

only cause a disk error message to be displayed. The pro

gram will then prompt you through a series of questions/

actions to return to the operation you were trying to

perform.

4. If the program cannot find a file or program that you have

requested, it will advise you of the situation and request a

disk change.

5. Inserting the wrong disk during a disk change will only

cause the program to reprompt you for the correct one.

6. If you request data to be saved in a file that already exists,

the program will warn you and will require confirmation

that you want to replace the existing file.

7. All operations which will delete data will require confirma

tion from the operator.

In general, you will find it hard to make a mistake from

which you cannot recover, but no program is entirely bomb

proof, so here, are some don'ts:

1. The RUN/STOP key has been left active, so do not press it

during program operation. If it is accidentally pressed, you

may be able to recover by typing CONT and pressing

RETURN.

2. Do not remove a disk when its drive active light is on (un

less you have already bombed the program and have no

choice). If you find yourself about to do this in response to

a message, reread the message. It is probably asking for a

change on the other drive.

The final, and easily the most important, error protection

is making backup copies. No program can protect you from ul

timate disasters such as power failures or spilled coffee.

23

y

y

m

y

y

y

y

Operating DFH

'n The Bootstrap

DFH BOOT is a bootstrap routine which provides initial

setup and overall executive control for the other DFH

programs. It is the only program in the DFH series

that you need to know by name.

The easiest way to use any of the DFH programs is to

start by loading and running DFH BOOT. Simply insert your

program disk in the disk drive and then type:

LOAD "DFH BOOT",8

Then press the RETURN key, type RUN, and press the RE

TURN key again.

The first time DFH BOOT is run, after turning on your

computer, it displays a brief summary of overall program

capability and loads the machine language subroutines DFH

SUBS$79. These operations are controlled by a test to see if

the subroutines are already in memory. On subsequent runs,

when the subroutines are found already in place, the bootstrap

will not display the features summary or reload the

subroutines.

The bootstrap also determines what type of computer is

being used and conditions it as necessary. For all computers,

the top of memory is set at $7900 to protect the machine lan

guage subroutines. For 80-column PETs, the screen is con

densed vertically for graphic display. For 64 computers, the

start of BASIC is relocated to $0401 and the screen memory is

relocated to $8000 to make it look internally like a PET

computer.

Next the main menu for the DFH functions is displayed.

From this menu you can select functions without needing to

know the name of the program that will perform them. For

example, the program DFH SORT performs four functions,

three of which are not indicated by its filename.

The main menu presented by the DFH BOOT program

will appear as follows:

DATA FILE HANDLER FUNCTIONS

1 CREATE OR EDIT A DATA FILE

2 LIST (HARD COPY FOR EDITING)

3 SORT BY RECORD OR FIELD CONTENT

4 MERGE SORTED FILES

27

Operating DFH

5 PRINT PER USER-DEFINED FORMAT

6 SPLIT FILES BY FIELD CONTENT

7 EXTRACT RECORDS BY FIELD CONTENT

8 RESTRUCTURE DATA RECORDS

9 ACTIVATE DFH EDITOR & DOS

10 QUIT

YOUR CHOICE ? 1

The main menu shows only the major functions of the

DFH programs. When one of them is selected, the appropriate

program will be loaded and run. At that time a secondary

menu will usually be presented to further determine exactly

what task is to be performed. All of the individual DFH pro

grams except the DFH Editor can be directed to return to the

master menu when you have finished using them.

Selecting the DFH Editor will cause the editor to be

loaded and activated. The top of memory will be set to protect

the editor at $9000 (decimal 36864) in the 64 or at $7000

(decimal 28672) in PET computers. With the exception of the

changed memory limit and the fact that a command intercept

wedge is installed, the computer will be returned to its normal

power-on condition.

Activating the DFH Editor leaves you with a computer

that appears near normal. Actually, you have a powerful set of

Disk Operation Support (DOS) shorthand commands and a

wide selection of file-editing commands at your disposal. De

tailed descriptions of the DOS and Editor commands are pre

sented later in this book.

Notice the difference between the edit function (menu

item 1) and the DFH Editor (menu item 9). Item 1 is used to

create and edit the contents of data files under DFH program

control. The DFH Editor, along with its DOS functions, is in

tended to be used as a stand-alone program which can directly

access and manipulate sequential data files.

The bootstrap program also contains termination proce

dures which are designed to return the computer to very near

its normal (power-on) state. The exception is that in the Com

modore 64 the top of memory is left set at $9000 to protect

the DFH Editor just in case it had previously been loaded.

For PET computers, the top of memory is returned to the

normal $8000, and for 80-column models, the screen is re

stored to normal line spacing.

28

Operating DFH

Create, Edit, Sort,

and List

The DFH SORT program is called into operation by

selecting any one of the first three functions listed in

the bootstrap main menu. This program provides a

method of creating, editing, sorting, and listing multifield

sequential data files.

The DFH SORT program lets you create files with up to

20 fields in each record. The delimiter you select to separate

the individual fields can be any character except a number, a

space, or a quote. Obviously, the delimiter must not be a

character used as data in the file.

All actions needed to set up a sequential data file are

accomplished in response to a series of questions asked by the

program. A variety of data entry and editing features are in

cluded to reduce the manual effort required to enter or edit

data, to reduce the chance of data errors, and to insure a uni

form and controlled data format.

Sorting can be performed on the complete data records or

on any field within the records. Both ascending and descend

ing order sorting are available. Files can be listed in much the

same manner as BASIC program files. Line numbers are in

cluded in the listings to assist in subsequent editing efforts.

Individual files of up to 700 records or 14,000 characters

(about 61 disk blocks) can be created and processed.

Operating DFH SORT
In the discussions that follow, all references to disk drive

numbers apply only to PET systems where dual drives are

normal. For Commodore 64 systems, the program will not

produce such messages.

When you select any of the first three functions from the

bootstrap main menu, DFH SORT will be loaded and run

automatically, and a short menu of start-up options will be

displayed:

DATA ENTRY AND SORTING FUNCTIONS

1 CHANGE DISPLAY/PRINT CASE

2 LOAD DATA FILE FROM DISK

29

Operating DFH

5 CREATE A NEW FILE

7 INITIALIZE ANOTHER DISK

9 QUIT OR GO TO MASTER MENU

YOUR CHOICE ? 1

Option 1 allows you to change the case of the screen dis

play and the printer to provide the most useful presentation

for the data you are processing. The printer will always print

in the same case as the screen.

Option 7 allows the installation of another disk anytime

you wish. This option releases you from any requirement to

have your data files arranged in a particular order before run

ning the program.

The primary purpose of this first menu is to select

whether you want to use option 2 to load an existing data file

from disk for processing, or use option 5 to create a com

pletely new data file.

Loading a File
Let's assume that you have a data file named TEST on the

disk in drive 0 and wish to load it. Menu option 2 will result

in a sequence similar to the following:

INPUT FROM DRIVE # ?0

DATA FILENAME ? TEST

52 DATA RECORDS LOADED.

(6 DISK BLOCKS)

7 FIELDS PER DATA RECORD.

"!" IS THE FIELD DELIMITER.

PRESS ANY KEY TO CONTINUE

As the data file is being loaded, the count of data records

loaded is continuously updated on the screen.

When loading is complete, the program displays the num

ber of blocks the file occupied on the disk, the number of

fields per record, and the delimiter used in the file. The delim

iter is the first character in the first line of the data file.

The program determines the number of fields per record

by counting the number of delimiters in the first data record

(second line) of the file. If you are processing a file which was

not created by one of the DFH programs and which does not

have a uniform number of fields per record, you must be sure

that the first data record contains as many fields as any record

30

Operating DFH

in the file. (The general procedures for converting files which

were not prepared by a DFH program are covered in detail in

Chapter 7, "File Conversion.")

With the file loaded, the program waits for you to PRESS

ANY KEY TO CONTINUE. This allows time to review the re

sults of the loading operation before proceeding to the next

step.

Once you press a key, the program will display the com

plete options menu. This is an expanded version of the menu

we just used, and we'll examine it later. Right now, let's back

up and see what would have happened if we had decided to

create a completely new file. After all, that may be the first

thing you will need to do.

Creating a New File
When you select option 5 from the start-up menu, the pro

gram will first need some basic information about the structure

of the file and will then begin accepting data:

FIELDS PER RECORD ? 2

DELIMITER TO BE USED ? !

A ADD F FINISHED ? A

LINE# 1010, FIELD 1

"(field #1 data)

LINE* 1010, FIELD 2

"(field #2 data)

A ADD D DELETE

E EDIT F FINISHED ? A

You can specify any number of fields per data record from

1 to 20. Numbers outside this range will not be accepted and

the question will be repeated.

The delimiter character you choose must be one that will

not be used in any of the data in the file. Beyond that, the

only restriction is that the delimiter cannot be a number or a

quote. The program will not accept an illegal delimiter.

While you are entering data, the program will not allow

you to enter your selected delimiter as a data character. A little

later in this section, when we discuss sorting, we will explore

some additional considerations in selecting a delimiter.

Since there is no data in your new file at this point, your

first action is limited to only two choices: ADD a new line of

data or indicate you are FINISHED.

31

Operating DFH

After you enter data for the first line, your choices from

the next action display will also allow you to EDIT or DE

LETE. Let's look at each of these four selections.

Add a New Line
The program will guide you through the new line data entry

process by displays that show which record and field are be

ing entered. The contents of the same field in the previous

record are displayed as an operator input prompt. If this data

is to be repeated in the current record, you can simply hit the

RETURN. If most of the characters in the data field are to be

repeated, the normal onscreen editing procedures can be used

prior to RETURN. Both of these techniques can save a lot of

time and improve the accuracy of data entry.

All data used for input prompting is preceded by a quote.

This leading quote is needed if leading spaces, shifted charac

ters, or special function characters are to be contained in the

data. You may either retype the leading quote or cursor past it.

The only time a trailing quote is required is when trailing

spaces are being entered. Otherwise, the trailing quote is

acceptable but not required. If the data being entered contains

only unshifted alphanumeric characters, you may choose to

simply type over the leading quote.

Warning: If you use a leading quote and then em

bed a quote within the data, the program will probably

quit and you will not be able to restart it without loss

of all data in memory. We simply could not find a way

to protect against this operator error.

Editing a Record
When you select the EDIT function, you will be asked which

line you want to edit. The data records are always numbered

beginning with 1010 and proceeding in increments of ten. If

you request a line which does not exist, the program prints a

warning message and asks for a new line number:

32

Operating DFH

A ADD D DELETE

E EDIT F FINISHED ? E

EDIT LINE # ? 0520

OUT OF RANGE

EDIT LINE # ? 1010

LINE* 1010, FIELD 1

" (field 1 data)

The first time you request the EDIT function, the default

prompting will be for the last line in the file. Thereafter, the

default prompting will be for the line following the one you

most recently edited or deleted.

If your request is out of range and too low, the program

will return a default prompt to the first line in the file. If your

request is out of range and too high, the program will return a

default prompt to the last line in the file.

If your request is for a line you have already deleted, the

program will tell you the line is ALREADY DELETED and will

present a default prompt for the next line in the file.

Once you select a valid line to edit, the process is almost

like a new line entry. The only difference is that the default

data prompts will be from the line you are editing instead of

from the previous line.

When you finish editing a line, the default prompting (if

used) will keep you in EDIT mode and will proceed to the

next higher numbered record for editing.

Delete a Record
The third option is DELETE. When you request the DELETE

function, you will be asked for a record number. The out-of-

range warnings and reprompting work the same as for EDIT.

A ADD D DELETE

E EDIT F FINISHED ? D

DELETE LINE # ? 7050

OUT OF RANGE

DELETE LINE # ? 1240

1240 "E01!68-01-15!962!21.55H!

ARE YOU SURE ? Y

DELETED

.33

Operating DFH

The requested record is displayed with its line number,

leading quote, and all the delimiters exactly as it would appear

in a listing of the file. To reduce the chance of accidental dele

tions, you will be asked ARE YOU SURE ? before the record

is deleted. For this question the default prompt will always

beN.

Because the default prompting causes the records to be

displayed without deleting them, this function can be used to

review the contents of a series of records. You simply continue

hitting the RETURN key and look at the records as they are

displayed.

Finished—Return to Menu
When you have completed all the data entry and editing you

wish to do, simply select FINISHED and the program will re

turn to the functions menu for your next selection. You might

wish to do this quite often to store your newly entered data to

disk.

If you have deleted any records, a special message will be

displayed when you decide to return to the functions menu:

DUE TO DELETIONS, THE FILE IS NOW BEING

SORTED ON FIELD #0 IN ASCENDING ORDER.

- YOU MAY RE-SORT AS DESIRED -

This automatic sorting operation is done to gather all the

records into a compact group to insure that no null records are

saved with the file.

Since sorting is a desired function in the great majority of

computer-based data files, this automatic sorting step will

usually be an acceptable procedure. However, there will be

some exceptions where it is desired that the file be maintained

in a different sort order.

For those cases, you should create one extra field in the

data records. This field will contain sequential line numbers or

other alphanumeric codes which, when sorted, will produce

the desired order for the data records.

When the program displays the functions menu, you will

see that it has been expanded and now contains some new

items that were not meaningful until you created or loaded a

file:

DATA ENTRY AND SORTING FUNCTIONS

1 CHANGE DISPLAY/PRINT CASE

34

Operating DFH

2 LOAD DATA FILE FROM DISK

3 SORT THE FILE

4 SAVE THE FILE

5 ADD, EDIT, OR DELETE RECORDS

6 LIST THE FILE

7 INITIALIZE ANOTHER DISK

9 QUIT OR GO TO MASTER MENU

YOUR CHOICE ? 1

Also, note that option 5 is now for adding or editing

records, not for creating a new file. Except for the new file

start-up questions, option 5 works exactly like the earlier ver

sion of option 5 which we have just discussed.

Sorting the Data
One of the most valuable features of this program is its ability

to selectively and very rapidly sort the data in a file. Maxi

mum sorting time for large data files is usually under ten sec

onds. Sorting can be in ascending or descending order and can

be based on the complete data records or on any individual

data field.

The following is a typical sequence which could occur

when we select the sorting option:

FIELD TO BE SORTED ? 4

A ASCENDING OR

D DESCENDING ORDER ? A

352 TOTAL DATA RECORDS

324 DATA RECORDS SORTED

28 RECORDS WITH NULL IN FIELD 4

PRESS ANY KEY TO CONTINUE

In this example we asked for a sort in ascending order on

the data in field 4 of each record. The program found that

there were 352 records in the file, but only 324 of them con

tained data in field 4. The remaining 28 records are retained in

the data file, but they are in random order and not immedi

ately available for editing or listing because there was no basis

on which they could be sorted.

The data fields are numbered beginning with 1. This al

lows the number 0 to be used for a special purpose. When

field 0 is specified, the entire data record is sorted. Since all

characters, including the delimiters, are used in a field 0 sort,

35

Operating DFH

there is no possibility of a null result and all records will be

sorted.

Sorting on field 0 can require special consideration in the

choice of a delimiter. As an illustration, the following two re

sults could be obtained by sorting identical data with different

delimiters (! and >) in ascending order:

2! 200>

20! 20>

200! 2>

Because the first delimiter, !, has a character code value which

is less than any numeric character, we can see that 2! is less

than 20 and that 20! is less than 200. (The sorting evaluation

takes place character by character from left to right.) Likewise,

we see that 200 is less than 20> and 20 is less than 2> be

cause the > has a character code value greater than any nu

meric character.

If you find that you need to change the delimiter used in

a file, you can do it easily by the DFH SWAP program. That

program is called by selecting the restructure option from the

bootstrap main menu. Alternate methods are also available

through the use of the DFH Editor.

Saving the File
When you have finished creating or editing a file, you will

want to save it on a disk. The program will guide you through

this process, explaining your options (and there can be some

interesting ones) as you go. Let's look at the simplest case

first:

ORIGINAL FILENAME ? TEST

NEW FILENAME ? TEST

OUTPUT TO DRIVE # ? 0

325 BLOCKS FREE

REPLACE EXISTING FILE ? Y

SAVING - PLEASE WAIT -

PRESS ANY KEY TO CONTINUE

The program first displays a reminder of what file (if any)

was originally loaded and asks for the filename to use for

saving. We choose the same name and are then asked for a

drive number.

The program indicates how many free blocks are on the

disk, and would insist we change disks if there are not enough

36

Operating DFH

blocks free. Because the file already exists, we are asked about

replacing it, and finally the file is saved. If we choose not to

replace the file, we have a chance to install a new disk and

continue or return to the functions menu.

A more interesting situation is presented when the file has

been sorted on a data field which contains some nulls. In that

case the conversation would start with a display similar to

this:

1 SAVE COMPLETE FILE

2 SAVE ONLY THE 24 RECORDS

WITH DATA IN FIELD 3

YOUR CHOICE ? 2

This display indicates that the file has been sorted on field

3 and that only 24 of the records have data in that field

(implying that there are additional records in the file with

nulls in field 3).

Save the Complete File
If you decide to save the complete file, an advisory message

will be displayed as follows:

FILE WILL BE ERASED FROM MEMORY

DURING THIS SAVE. PRESS M FOR

ANOTHER MENU SELECTION, OR -

PRESS ANY KEY TO CONTINUE

In this situation, due to the nature of the sorting sub

routine, the program does not know the exact locations of the

records which had nulls in the sorted field. Thus the sorted

records will be saved first, and then the remaining records will

be sorted on field 0 and saved.

To prevent their being saved twice, the original sorted

records must be deleted from memory as they are sent to the

disk so that the field 0 sort can be done on the remaining

records. If you wish to continue working on the same file after

this type of save, you must reload the file.

The other choice is to save only the sorted records. When

this is done, the entire file will still be contained in memory

after the save. With this feature we see that the sorting/

saving process can be used to isolate and save selected parts of

a file based on the null or not-null condition of any data field.

Here's an example of the use of a partial save. Let's say

your company makes a number of products which use a lot of

37

Operating DFH

the same parts but in different quantities. You get a request for

one of the products and must order the required parts. You

can extract data for the order list by using a file where each

record represents an individual part with field 1 containing the

part number, and each following field containing the quantity

of that part which is used in each of the products.

PN 5425-A*2*9**

PN 5681-A*1*5*7*

PN 6004-D*l**4*

In this example the product represented by field 3 uses

nine of the first part number, five of the second part number,

and none of the third part number. A sort on field 3 followed

by a partial save will create a file that contains only the

records for the parts needed to build that product.

When we discuss the DFH printing functions, you'll see

how to produce the parts order list by selectively printing only

the desired fields, which in this example would be the part

numbers from field 1 and the quantities from field 3.

Listing the File
When preparing to edit a file, it is often easier to have a

printed copy of the file exactly as it appears in memory. The

listing option is used for this purpose.

The file listing will include line numbers. These numbers

are not a part of the file data. They are assigned to the records

as the file is being loaded or created to provide a method of

identifying the individual records.

The list produced on the printer will be in the same case

as the screen display (lowercase and uppercase, or uppercase

and graphics). You can change the case at any time by select

ing option 1 in the functions menu.

When listing begins, the program will display

PRESS ANY KEY TO PAUSE, THEN -

Q TO QUIT LISTING OR ANY OTHER

KEY TO CONTINUE.

This feature allows you complete freedom to pause or

stop the listing at any time you wish. For PET users, a mo

mentary touch of a key will be sensed, but on the Commodore

64 the key must be held down until the listing stops.

38

Operating DFH

Maximum File Size
There is obviously a limit to how much data can be contained

in memory. Consequently, there must be some file-size restric

tions. Since this program, unlike others in the DFH series,

must contain a complete file in memory, it dictates the maxi

mum individual file size.

The DFH SORT program can load or create files of up to

14,000 characters (about 61 disk blocks) or 700 data records,

whichever occurs first.

The merging program will encourage the creation of in

dividual files under 13,000 characters (about 57 disk blocks) or

650 records. This provision can be overridden to create large

files for special purposes, but the intent is to allow some space

for additions and editing by DFH SORT.

39

Operating DFH

Printing

The DFH PRINT program provides an efficient and flex

ible method of printing the data contained in multifield

sequential data files.

The major features of the DFH PRINT program are:

• Multifile and multidisk linking.

• Page headings with resettable page numbers.

• Page length and positioning control.

• Printing case control (UC/GR or LC/UC).

• Individually justified field headings.

• Print all fields or only selected fields.

• Reorder field positions during printing.

• Left/right justification for each field.

• Page images saved as WordPro files on demand.

• WordPro files linked for global operations.

• Printing format specification saved on disk.

• Self-guiding operation.

There are too many options and variations in this pro

gram to describe them all. However, this is a very user-

friendly program and it will easily guide you through any

variations you may want to use. The program is designed so

that you can easily recover from almost any operating error

you might make. A typical program operation sequence will

be used to illustrate the major features and general flow of the

program.

Operating the Program
The DFH PRINT program is activated by selecting the printing

function in the bootstrap main menu.

The first display is a short set of operating notes. These

notes will not be repeated, so until you become comfortable

with the program, you might want to keep a written copy

handy.

AH references to disk drive numbers apply only to PET

systems where dual drives are normal. For Commodore 64

systems, the program will not produce such messages.

N O T E S

ALL SOURCE DATA AND PRINT FORMAT FILES

WILL BE IN DRIVE #0.

40

Operating DFH

ANY WORDPRO OUTPUT FILES CREATED WILL

BE SAVED ON DRIVE #1.

OUTPUT OPERATIONS CAN BE:

FROZEN BY PRESSING ANY KEY

-THEN-

ABORTED BY PRESSING Q

-OR-

RESUMED BY PRESSING ANY OTHER KEY.

SET PRINTER TO TOP-OF-FORM AND

PRESS ANY KEY TO CONTINUE.

The program will maintain paper-position control during

all operations following this step. However, there will be sev

eral opportunities for paper-position adjustment in case you

forget and move the paper by hand during program operation.

When you press a key to continue, the program displays

the first of four menus that will be used to guide you in

producing the output you want:

FORMAT SOURCES

1 CHANGE SCREEN/PRINTER CASE

2 LOAD FORMAT FILE FROM DISK

3 DEFINE THE PRINTING FORMAT

9 QUIT OR GO TO MASTER MENU

YOUR CHOICE ?3

The options to quit (option 9) and to change the case of

the screen and printer (option 1) are presented in all four

menus so you can switch case or quit whenever you want.

The case of the output to the printer and the WordPro files will

always be the same as the current case of the screen.

Selecting option 9 will cause an orderly shutdown, closing

all open disk files, etc. To complete the orderly shutdown and

restore the computer to normal configuration, you should re

turn to the main menu and "quit" from there. The quit option

in each of the individual DFH programs is for the convenience

of programmers who may want to examine the code while it is

in an operational condition.

The primary purpose of this first menu is to select a

method of defining the printing format. You can either load a

format that you defined and saved during some previous op

eration of this program, or you can define a completely new

41

Operating DFH

print format. If you load a print format file, you will be given

opportunities to modify it later in the program. This can be a

real timesaver for similar formats.

Defining the Print Format
If you want to define a new print format, the program will

guide you through the process, working down from the top of

the page and left to right across the print fields. Such a

conversation might start as follows:

DEFINE THE PRINTING FORMAT

BLANK LINES ABOVE HEADING ? 3

ENTER PAGE HEADING LINE

USE TWO ENTRY LINES TO FORM A

COMPLETE PAGE HEADING LINE.

USE '<>' TO SHOW PAGE NUMBER LOCATION

DON'T DISTURB THE QUOTE OR THE END OF

LINE MARKER.

" (left half of page heading)

" (right half of page heading)

STARTING PAGE # ? 1

BLANK LINES BELOW HEADING ? 1

OF PRINT FIELDS ? 2

As shown here, you can specify the number of blank lines

to be printed on each page above the page heading line. The

technique of entering the page heading in two parts allows the

program to be used with equal success on computers with

either 40- or 80-column displays. The end of each page head

ing entry line is marked by what appears to be a reverse field

space character. This marker character (not shown here) allows

trailing spaces to be preserved without a closing quote and

also indicates the proper right-hand limit for characters being

typed in.

You can specify the number of blank lines below the page

heading to separate it from the individual field headings.

Your entry for the number of print fields is used by the

program to provide default prompting as the individual print

field formats are defined. You can override the effect of this

input if you change your mind while defining the print field

formats.

42

Operating DFH

By defining the individual print field formats, you can

print the data in any order you wish, independent of the order

of the data fields. The difference between a data field and a

print field is important in understanding this process. A data

field is a part of a data record, and it occupies a fixed position

relative to the other fields in the record. The data in a print

field is a part of a printed line, but it does not have a fixed po

sition until the line is printed.

With this program, you have total control of what data

fields get printed, where they get printed, and the order in

which they are printed. The data from any data field can be

printed in any print field.

Let's continue the conversation with the computer and

examine the options available in defining a print field.

FOR PRINT FIELD # 1

SPACES AHEAD OF FIELD ? 0

PRINT DATA FIELD # ? 1

LEFT OR RIGHT JUSTIFIED ? L

OF COLUMNS IN FIELD ? 9

FIELD HEADING

" head 1 "

NOW AT COLUMN # 9

MORE FIELDS ? Y

In defining a print field you first specify the number of

spaces which will be printed to the left of the print field. For

the first print field, these spaces establish the left margin for

the printed data. For all other fields, these spaces provide a

uniform and guaranteed open area between successive print

fields.

Next you select which data field you want printed in the

print field you are defining, indicate whether you want the

data to be left- or right-justified within the print field, and

specify how many columns (character spaces) are to be used in

the print field.

Finally, you enter the field heading. The field heading will

be justified left or right, the same as the data in that field. For

added control of heading placement, leading and trailing

spaces can be included. To maintain these spaces during re

vision cycles, the previously entered field headings will be

used for default prompting and will always be displayed with

leading and trailing quotes.

43

Operating DFH

If you specify more than 38 columns in a field, you will

be allowed two lines of 38 characters each for the field head

ing. Again, this is to allow the program to run on both 40-

and 80-column computers.

If you enter a field heading that contains more characters

than you asked for in the print field, a warning message will

tell you how many extra characters there are, and the program

will ask you to redefine the format for that print field. To cor

rect the problem, you can change either the number of col

umns in the print field or the number of characters in the field

heading.

As each print field is defined, the program shows the total

number of columns which have been used and asks if more

fields are to be defined.

When you indicate that all print fields have been defined,

the program will proceed as follows:

#BLANK LINES ABOVE DATA ?1

DATA LINES/PAGE (MAX 54) ? 54

In this sequence you specify the number of blank lines be

tween the field headings and the first printed data line. Now,

having all the heading information, the program calculates the

maximum number of data lines that can be printed on each

page. This value is displayed and also used as an input

prompt. You may request any number of lines up to the maxi

mum. Higher numbers will simply not be accepted.

Setup Options
With the print format now completely defined, the second

menu will be presented.

SETUP OPTIONS

1 CHANGE SCREEN/PRINTER CASE

2 LOAD FORMAT FILE FROM DISK

3 MODIFY THE PRINTING FORMAT

4 TEST HEADINGS TO SCREEN

5 TEST HEADINGS TO PRINTER

6 SAVE PRINT FORMAT FILE

7 OUTPUT OPTIONS

9 QUIT OR GO TO MASTER MENU

YOUR CHOICE ?6

44

Operating DFH

An important function of this menu is to give you an

opportunity to change your mind about anything you have

done up to this point. By using this menu you can examine all

the headings by printing them either to the screen (option 4)

or to the printer (option 5) to make sure they are correct.

If you don't like what you see, you can either modify the

format (option 3) or load a completely new format (option 2).

If you modify the format, all your previous entries will be

used as default prompts so that you can simply hit RETURN

for items that don't need changing.

This entire sequence of test printing and modifying can be

repeated as many times as necessary to get the headings just

right. If you are printing the headings to the printer, the pro

gram will conserve paper by suppressing the paging feature.

However, all printed lines are counted so that the program can

automatically reestablish the paper position to top of page

when you are ready to continue.

When you have the print format defined the way you

want it, you can save it to disk for later use (option 6). The

conversation following your decision to save the format might

appear as follows. (To illustrate an error-protection feature,

let's make some mistakes this time.)

READY TO SAVE PRINT FORMAT FILE

DELIMITER TO BE USED ? 7

ILLEGAL DELIMITER 7

DELIMITER TO BE USED ? E

CHARACTER IS USED IN HEADINGS

DELIMITER TO BE USED ? !

FILENAME ? FM-TEST

REPLACE EXISTING FILE ? Y

Our first error was choosing an illegal delimiter—numbers

are not allowed as delimiters. We then tried an E, which had

already been used in one of the headings and also produced

an error message. The program accepted the ! as a delimiter.

Notice that the delimiter used in the format file has no

relation to the delimiter used in any of your data files. It is se

lected independently and is used to separate the data fields

within the format file records.

The choice of filename was not an error, although it

might have been, depending on our intentions. We simply se

lected the name of a file that already existed, and in the next

45

Operating DFH

line, confirmed that we wanted the new print format file to re

place it. If we had chosen not to replace the file, we would

have been given an opportunity to install a different disk and

then return to the setup options menu.

Output Options
With the printing format checked, you are ready to select op

tion 7 and go to the output options menu to specify the output

process:

OUTPUT OPTIONS

1 CHANGE SCREEN/PRINTER CASE

2 SCREEN OUTPUT ONLY

3 PRINTER OUTPUT ONLY

4 WORDPRO FILES ONLY

5 WORDPRO AND PRINTER

6 WORDPRO AND SCREEN

7 RETURN TO SETUP OPTIONS

9 QUIT OR GO TO MASTER MENU

YOUR CHOICE ? 5

If you have an 80-column screen, you might want to try

option 2 to send some completely formatted data to the screen

to see how it looks. The output can be stopped at any time

(press Q to stop, any other key to pause, and another key to

unpause). With a 40-column screen you may have more suc

cess doing this test with the printer option.

In either case, the program will ask for the name of the

file you want printed, and will send the formatted output to

the device you select. Once you like the way the output looks,

simply select the option you want, tell the program what file

to print, and wait for completion.

To illustrate as many features as possible, let's look at

what happens when we ask for a combined WordPro and

printer output (option 5). This selection will create WordPro

files that are exact images of the printed output. Our conversa

tion with the program might be:

IS PRINTER AT TOP OF FORM ? Y

FOR WORDPRO FILES

FILENAME ? WP-

409 BLOCKS FREE ON DRIVE #1

FOR WORDPRO FILE WP-.001

46

Operating DFH

The first question in this conversation provides an

opportunity to readjust the position of the printer paper in

case you had moved it by hand. If you answer no to this ques

tion, you will be asked to adjust the paper and tell the pro

gram when you are ready to go again.

Next you need to tell the program what name you want to

use for the WordPro files. The program will modify any name

you give it by adding a period and a three-digit number to

create the filenames actually used to save the WordPro files.

There will be as many WordPro files as there are pages of

printed output.

When printed under WordPro control, each of the WordPro

files will produce an exact image of the corresponding page

printed by the DFH PRINT program. The first file will contain

WordPro commands to set the paper size, number of printed

lines per page, and the left and right margins. Each file will

begin with a comment line containing the name of the file. In

serted at the end of each file (except the last one) are a force

page command to insure proper paging and a next file linkage

command to allow global printing.

After you enter the filename, the program will check to

see if there is enough room on the disk to save the first file. If

there is not enough free space, you will be asked to install a

different disk in drive 1. This checking process will be done

for each WordPro file that is created.

If you are using a Commodore 64, the basics of the space-

checking procedure are still followed, but an impossible situa

tion is reached if you run out of space on the disk. You can't

change disks without removing the input data file, so you

simply must have enough space for all the WordPro files or you

can't complete the task.

Disk space will not be a problem if you start out with a

moderately empty disk. You can use DFH SORT (items 1-3 on

the bootstrap main menu) to move a file to a new disk. For

worst-case estimating, assume that each printed page will re

quire 19 disk blocks for WordPro file storage.

If a file with the same name as a new WordPro file is

found at any time during the output process, the program will

ask if you wish to replace it with the new file. If you do not

want to replace the file, you must install a different disk (ex

cept on Commodore 64, where you either replace or quit). The

program will guide you through this process.

47

Operating DFH

Some minor confusion may result if you create a series of

WordPro files which overlap into a longer series of files with

the same name. Because of the next-file linkage lines, a

WordPro global printing will end correctly at the last of the

new files and a global copy will also end the copy at the cor

rect point, but you will not be able to identify the last of the

new files by examination of the disk directory. It is much bet

ter to use a different name or scratch all the old files before

creating the new ones.

With the output setup now completed, the program re

quests the name of the first data file to be printed:

READY FOR FIRST DATA FILE

FILENAME ? EX68

END OF SOURCE FILE

PRESS ANY KEY TO CONTINUE

Continue Options
When printing and WordPro file creation have proceeded to the

end of the first data file and you indicate you are ready, the

continue options menu will be displayed:

CONTINUE OPTIONS

1 CHANGE SCREEN/PRINTER CASE

2 CONTINUE—NO PAGE BREAK

3 CONTINUE—AT TOP OF PAGE

4 CHANGE PRINTING SETUP

5 PRINT OPERATIONS SUMMARY

9 QUIT OR GO TO MASTER MENU

YOUR CHOICE ? 2

As you can see, there are several ways to continue. Prob

ably the most often used of these is option 2, which links in

the next data file without any indication in the output as to

where the transition took place.

Option 3 begins printing the next file at the top of the

next page. The same print format is used, but you can select

the page number of the next page in case you do not wish to

continue numbering in sequence.

If you want to change the printing setup (option 4), the

program will close any open WordPro files, eject the printer

paper to the top of the next page, and return you to the setup

48

^ Operating DFH

n

H
options menu, where you can take any action desired to pre-

l! pare for added printing.
Printing an operations summary (option 5) can be done at

[""! any time. It will interrupt the printing like option 4 by closing
any open WordPro files and ejecting paper to the top of the

l. .* next page. When the operations summary has been printed,

the program will return to the setup options menu.

The operations summary provides a complete record of

how the file(s) were printed and shows if there was any data

that would not fit in the defined print fields. The number of

any such field overruns, and the largest number of excess

characters are listed for each print field.

n

h

49

y

m

a

File Manipulation

Merging Files

The DFH MERGE program allows you to merge

presorted multifield data file sets of nearly any size.

The files may be large or small, on one or many disks.

A maximum of 50 files can be merged in a single operation.

Up to 99 files can be produced in a single operation. An in

dividual file can be as large as the capacity of a single disk.

Why Merge?
Have you ever started a project involving data storage and

found you could not complete it because not all the data

would fit in memory at one time? Or maybe you got past that

problem and then gave up when the data would no longer fit

on one (or two) disks.

If you are working with data that requires sorting, merg

ing is necessary when all the data cannot be contained in the

computer's memory. As the data base size grows and you cre

ate more and more files, another limit is reached when all the

files can no longer be stored on a single disk.

The following example shows three data records of a file

named "idfile" which uses the * as a delimiter to separate the

three fields in each record:

1000 "*<-@0:idfile

1010 "Brown*Jack*45721*

1020 "Jones*John*15113*

1030 "Smith*Susan*23442*

The line numbers are not a part of the data file and are

not stored on disk. They are added where needed for referenc

ing purposes by the DFH programs.

To visualize the concept of merging, assume that the left

column of the following illustration represents records from

one data file and the right column represents records from an

other file. Both files have been sorted so that the names are in

alphabetical order. Merging produces a file containing both

sets of data in the order we would get if we simply pushed

the two columns of the illustration together from left and

right. It is a single set of records still in alphabetical order.

53

File Manipulation

"Brown*Jack*45721*

"Edwards*Sam*22705*

//Gray*Donna*70442*

"Jones*John*15113*

//Smith*Susan*23442*

"Wilson*Alan*10046*

File Size Management
The DFH MERGE program will merge from 1 to 50 files

which are stored on from 1 to 50 disks. Any number of output

files up to 99 can be created by the merging process.

The program will recommend the minimum number of

output files that should be requested. This number is based on

input file sizes obtained by the machine language Spool sub

routine as the files are located. During output, the program

counts both characters and records as they are written to disk

and closes the file when either count reaches its precalculated

limit.

If you follow the recommendations of the program, the

size of the merged files will be limited to 650 records or

13,000 characters (about 57 disk blocks), whichever occurs

first. These limits insure that the merged files can be handled

by programs like DFH SORT which must load a complete file

into memory. It also provides a reasonable amount of space

for editing and additions to the files before the maximum

capacity of DFH SORT is reached.

If you ask for less than the recommended minimum num

ber of files, the program displays a warning message and asks

you to confirm your request. Thus, the program allows you

complete freedom to create large individual files, but issues

warnings when it appears that you may be creating a problem

for yourself.

Running the merge program on a single input file is one

way of breaking a large file into approximately uniform-size,

smaller files. This, or some equivalent method of reducing in

dividual file size, is necessary if you have files that are too

large to load into the computer.

Of course, it is also possible to create a few large files

from many smaller files. You may even wish to create a single,

very large file to be used for special purposes such as long,

unattended printing operations.

54

File Manipulation

Operating the Program
Once the MERGE function is called from the bootstrap master

menu, it is completely self-guiding in its operation. Con

sequently, a single example will be used to illustrate the gen-

eral procedure. The sample problem will involve merging

three short files that are located on two different disks. The

conversation between program and operator might proceed as

follows. (All references to disk drive numbers apply only to

PET systems where dual drives are normal.)

READY TO MERGE FILES

HOW WERE THE SOURCE FILES SORTED ?

SORTED ON FIELD # ? 1

A ASCENDING OR

D DESCENDING ORDER ? A

It is important for each of the input files to have been

sorted using the method specified for the merging. If the files

are not properly sorted, the output files will not be merged in

the correct order. If you have any doubt about the condition of

the input files, you should re-sort them before merging.

ENTER NAMES OF UP TO 50 SOURCE FILES

NAME OF SOURCE FILE # 1 ? EX68

ANY MORE FILES ? Y

NAME OF SOURCE FILE # 2 ? EX70

ANY MORE FILES ? Y

NAME OF SOURCE FILE # 3 ? EX69

ANY MORE FILES ? N

ALL FILENAMES OK ? Y

Up to this point you have specified how the input files

were sorted, entered the names of the input files to be merged,

and indicated that all filenames are okay.

If you had answered that the filenames were not okay,

you would have been asked:

REDEFINE THE MERGE ? Y

A yes answer would allow you to correct any errors, while a

no answer would allow you to quit or return to the master

menu.

The conversation continues:

READY TO LOCATE FILES & CHECK SIZES

55

File Manipulation

SOURCE FILES IN DRIVE ? 0

OUTPUT FILES TO DRIVE ? 1

INSTALL SOURCE DISK #1

IN DRIVE #0

THEN, PRESS ANY KEY TO CONTINUE

FOUNDEX68 6 BLOCKS

FOUND EX70 10 BLOCKS

STILL LOOKING FOR:

EX69

INSTALL SOURCE DISK #2

IN DRIVE #0

THEN, PRESS ANY KEY TO CONTINUE

FOUND EX69 8 BLOCKS

ALL FILES LOCATED

As shown above, the program first asks where you in

tended to install the source and destination disks.

Next you are asked to install a disk that the program will

later refer to as input disk 1. This arbitrary identification simply

provides a way for you to know what disk to install when the

program asks for that disk later during the merging. If you

wish, you may mark the disk label, but don't worry about

later inserting the wrong disk. At that time, the program will

continue to prompt you until you get it right.

When you indicate that the input disk is installed, the

directory is searched for any of the previously named input

files. Two of them are found, but EX69 is not located, so the

program asks for input disk #2 to be inserted so that the search

can continue.

Getting the correct disk installed is important during this

setup phase because the program is also testing to see that

none of the named files appears on more than one disk. If a

duplicate is found, you must correct the problem and redefine

the merge process.

As the input files are located on the disk, the machine

language Spool subroutine is used to find the number of

records and data characters in each file. This information is

used for internal memory and file-size management during the

merge. A summary is also presented for your information:

MERGE INFORMATION SUMMARY

3 TOTAL DATA FILES

216 TOTAL RECORDS

23 TOTAL BLOCKS

56

File Manipulation

READY TO DEFINE OUTPUT FILES

1 OUTPUT FILES ARE SUGGESTED.

HOW MANY DO YOU WANT ?2

A SEQUENCE NUMBER WILL BE ADDED TO

EACH OUTPUT FILENAME. WHAT NAME DO

YOU WANT TO USE ? TEST

As shown above, you can choose to create more output files

than are actually needed.

In this example, the general name for the output files will

be TEST. The program will add a two-digit sequence number

to this name for each file created. Thus the two output files

will be named TEST.01 and TEST.02.

The size of these two files will be approximately the

same, but significant variations are possible depending on how

uniform the record lengths are. In extreme cases it is possible

to produce one more output file than the number requested.

Now the data is to be loaded:

READY TO LOAD INITIAL FILE SEGMENTS

73 RECORDS FROM EX69

INSTALL INPUT DISK #1

IN DRIVE #0

THEN, PRESS ANY KEY TO CONTINUE

52 RECORDS FROM EX68

91 RECORDS FROM EX70

When the initial loading sequence begins, the program

examines the disk currently in the source drive, looking for the

first of the source files, and loads from it if it is found. The

program will request whatever disk it needs to continue the

loading.

For large files, this sequence would have loaded only the

first part of each of the input files, but in this example the files

were small enough to be completely loaded during the initial

pass. Here, the number of records loaded from each file is dis

played in reverse video to indicate that all records in the files

have been loaded. If only a partial loading had been done, the

number of processed records would have been displayed in

normal video.

When all of the initial file segments have been loaded,

they are sorted in preparation for the first merge output. The

sorting takes about seven seconds and is relatively indepen

dent of file size. Sorting activity is indicated by a flashing

reverse video character.
57

File Manipulation

The remainder of this example is

INSTALL OUTPUT DISK #1

IN DRIVE #1

THEN, PRESS ANY KEY TO CONTINUE

161 BLOCKS FREE FOR TEST2.01

122 RECORDS OUT TO TEST2.01

148 BLOCKS FREE FOR TEST2.02

94 RECORDS OUT TO TEST2.02

MERGE COMPLETED

MORE FILES TO MERGE ? N

PRESS Q TO QUIT OR ---

ANY OTHER KEY FOR MASTER MENU

In this example, the output disk was not blank. In fact, it

had only 161 blocks free when the first output file was

opened, and 148 blocks free when the second output file was

opened. If there had not been enough free blocks for any out

put file, the user would have been asked to INSTALL OUT

PUT DISK #2. The newly installed disk would also have been

checked for free blocks.

When the merge is complete, you are asked if there are

more files to merge. A yes answer would return you immedi

ately to the setup process, avoiding a round trip to the master

menu.

Finally, you are asked if you want to quit immediately or

return to the master menu for another function selection. If

you quit immediately, it will leave your computer with an un

usual memory configuration, so this exit should be used only

when you intend to power down anyway. Its real purpose is

for the programmer who might want to quit, make a program

examination or modification, and then rerun or resave the

program.

Hints for Merging
This program allows you freedom to solve your data-merging

problems in the way you think best. However, this freedom

can be misused to your own disadvantage.

For example, we recently tried two methods of merging a

data set containing over 25,000 records. The data was in 48

files on three nearly full disks (over 1600 disk blocks). One

58

File Manipulation

approach completed the task in less than two hours. We aban

doned the other approach when our timing estimates showed

that more than 26 hours would be required to complete the job.

We offer the following suggestions for merging very large

data sets (more than one full disk) and especially those con

tained in a large number of files.

If there are some small individual files, they should first

be merged into larger files. The merging runs faster as the

number of files decreases, and small files don't take long to

merge. The time you spend to merge the small files will be

more than recovered during later merging because of the

smaller number of files involved at that time.

Merging runs faster, and with less work, when you don't

have to waste time changing disks, so you may want to ar

range a series of single-disk merges rather than trying to do

the entire job in one pass. Moving files from disk to disk is

quite simple with a dual disk drive. But even with a single

drive you can use the DFH SORT program to move moderate-

size files.

Here is an example of the type of file moves that could

help: If you have two disks of data, you could merge all the

files on each disk into four files. With a dual disk drive, these

merges can run unattended once you get them started. Next,

move the files so that the first two files from each merge are

on one disk, and the last two files from each merge are on an

other disk. With this arrangement, the number of disk changes

during the final merge will be greatly reduced.

Don't be concerned that the files you create during inter

mediate merges might be very large. They can be split into as

many files as you want during the final merge.

As you work with large files you will surely develop your

own techniques for saving time. These suggestions are in

tended to get you started. Merging files is a time-consuming

operation, so it is important to spend a few minutes pre-

thinking the process in order to save execution time.

59

File Manipulation

Restructuring Files

The DFH SWAP program provides the capability of uni

formly restructuring the data fields within a multifield

data file.

The ordering of the fields can be changed. New fields can

be added at any place in the records. The data in existing

fields can be concatenated into new fields. New constant data

can be added (either leading or trailing) to an existing data

field.

All of these operations are available for each field you

wish to define in a new file. Sound like a lot? It is, and yet it

is very simple once you see the reasons for restructuring and

the logic behind the various options.

It is not unusual to decide, somewhere in the middle of a

large data-handling project, that the data structure you chose

for the data files was not really the best one. Or, worse yet,

maybe it won't even work. Or perhaps you just need the same

data organized in more than one way. DFH SWAP was writ

ten to get you out of such difficulties.

The program allows five types of reorganization to be per

formed on the data fields of multifield sequential data files.

Each of these types will be discussed as we examine the op

eration of the program.

Program Operation
This program is called into action by selecting the restructure

function in the bootstrap master menu. The operation begins

with a program/operator conversation similar to the following.

(Remember, all references to disk drive numbers apply only to

PET systems where dual drives are normal.)

READY TO RESTRUCTURE DATA RECORDS

CHANGE DISPLAY CASE ? N

SOURCE FILE IN DRIVE ? 0

SOURCE FILENAME ? DATA1

OUTPUT FILE TO DRIVE ? 1

OUTPUT FILENAME ? NEWDAT

343 BLOCKS FREE

REPLACE EXISTING FILE ? Y

60

File Manipulation

The first question allows you to change the case of the

screen display. Depending on the data in your file, you may

need to change the case to be able to read the data when it is

displayed later in the program. If you are not sure what case

you need, don't worry—you will be able to return to this op

tion from several points in the program.

Next, the program needs the name of the data file you in

tend to restructure and where it is located. With this infor

mation it will immediately check that file to find the delimiter

used and the number of fields per record.

When you enter the name and location of the new file

you wish to create, the program checks the disk to see if there

are enough free blocks to store the converted file.

If a file with the requested name already exists, the pro

gram asks if you want to replace the existing file. If you de

cided not to replace the file, the program would ask you to:

PRESS E TO EXIT, OR -

ANY OTHER KEY TO REDEFINE

If you request the exit, the program will ask if you wish to

quit immediately or return to the bootstrap master menu.

The redefine option first asks if you need a new disk and

then allows you to completely redefine the conversion. This

time it remembers all the answers you have given and uses

them as default prompts. This allows you to simply press RE

TURN for any answers that are still correct.

This general redefining procedure is used in almost all

cases where you appear to be having problems.

When you have either selected an unused output filename

or decided to replace an existing one, the program will ask

what delimiter is to be used. The delimiter that it suggests by

default prompting is the delimiter that it found when it

opened the input file.

You should be cautious about changing the delimiter. The

program will not allow you to use an illegal delimiter (a num

ber or a quote). However, if you select a new delimiter, you

must be sure it is not already used as a data character in the

data file. The program can't protect you from this mistake, and

it can really mess up a data file.

When the input and output files have been defined, the

program clears the screen and presents a display like the

following:

61

File Manipulation

FIRST RECORD (5 FIELDS) IN

SOURCE FILE DATA1 IS:

JONES!TOM!123MAIN!SOMEWHERE/USA!!

NEW DATA FIELD [#1] TO CONTAIN:

1 DATA FROM AN OLD DATA FIELD

2 NEW FIXED DATA

3 OLD DATA FIELD + NEW FIXED DATA

4 NEW FIXED DATA + OLD DATA FIELD

5 DATA FROM TWO OLD DATA FIELDS

9 REDEFINE OR EXIT

YOUR CHOICE ? 1

The first lines on the screen remind you what file you are

working with and the number of fields in the first record. The

entire first record of the file is displayed to help you in decid

ing how to restructure the data.

Skipping ahead a little, the final item in this menu allows

you to go back and redefine the conversion process. For ex

ample, if the displayed record has graphics characters where

you expected uppercase, you might want to use option 9 to go

back and change the display case.

This complete menu will be repeated for each field you

decide to include in your new data file.

Menu Selections
Let's examine each of the menu options as they might be used

to create field 1 in the new data file:

Option 1—DATA FROM AN OLD DATA FIELD. Data

from any selected field in the input data file will be placed in

the new data field you are defining.

For this option the program will ask

DATA FROM WHICH OLD DATA FIELD ?

and you respond by entering the field number.

Option 2—NEW FIXED DATA. New data which you

will enter from the keyboard will be placed in the new data

field you are defining. This new data will be repeated in every

record of the new file.

For this option the program will ask

WHAT NEW DATA

62

File Manipulation

and you respond by entering any characters you want.

Remember that some special cases such as leading or

trailing spaces, commas, colons, and most shifted characters

will need to be enclosed in quotations.

Option 3—OLD DATA FIELD + NEW FIXED DATA.

New data which you specify will be added to the data from a

field in the input data file and will be placed in the new data

field you are defining.

For this option the program will ask

WHICH OLD DATA FIELD ?

WHAT NEW DATA

?

and you respond by entering the number of the old data field

and then the characters you want added to it.

Remember that this adding is a string concatenation

(attaching end to end) and not a mathematical addition.

Option 4—NEW FIXED DATA + OLD DATA FIELD.

This function works just like option 3 except that the new

fixed data is placed ahead of the old data.

For this option the program will ask

WHAT NEW DATA

?

WHICH OLD DATA FIELD ?

and you respond by entering the new characters you want in

the field and then the number of the old data field you want

added to them.

Option 5—DATA FROM TWO OLD DATA FIELDS.

The data from two fields in the input data file will be com

bined in the order you specify and placed in the new data

field you are defining.

For this option the program will ask

FIRST OLD DATA FIELD ?

SECOND OLD DATA FIELD ?

and you respond by entering the two field numbers.

Each time you finish defining the new contents of a data

field, the program will ask if there are any more fields to be

defined.

63

File Manipulation

Redefining the Change
When you have finished defining as many data fields as you

wish (up to 20) for the new file, you will have the option of

continuing with the conversion as you have defined it or going

back to change the definition.

READY TO CONVERT FILE:

DATA1-TO-NEWDAT

PRESS R TO REDEFINE OR

PRESS ANY KEY TO CONTINUE

If you press R you will be allowed to completely redefine

the conversion, including the names and locations of the input

and output files. The program will assist you in this process

by providing default prompts which will be the answers you

previously gave for the same questions.

When you decide to let the conversion take place, the

program will present a running count of the records as they

are converted and saved to disk:

524 DATA RECORDS CONVERTED

CONVERSION COMPLETE

ANY MORE FILES ? N

PRESS Q TO QUIT, OR -

ANY OTHER KEY FOR MASTER MENU

When the conversion is complete, you will be asked if

there are any more files to be converted. This is useful when it

is necessary to do the same conversion on a large number of

files, because the program will also ask if the same conversion

definition is to be used. If it is, you need to enter only the new

input and output filenames to start the next file conversion.

If there are no more files to restructure, the program will

allow you to quit immediately or return to the bootstrap mas

ter menu to select another function.

Restructure Applications
Probably the most common use of this program is to rearrange

the positions of the data fields within each record of a file.

This is often done so that a complete record sort (sort on field

0) will produce the results normally obtained by a true multi-

field sorting process.

64

File Manipulation

We have had various other reasons to restructure data

files, and we're sure you will find many new applications. To

stimulate your imagination, consider these possible uses:

1. You have a data file which was not prepared using the DFH

programs. Its format is correct except that it does not have a

uniform number of data fields because trailing null fields

and trailing delimiters were omitted. The restructuring pro

gram will automatically guarantee that each record contains

leading quotes, add trailing delimiters, and will produce a

uniform number of fields per record.

2. While getting ready to create a new data file, you notice

that all of the entries for some fields either start or end with

identical character groups (for example, part numbers that

all start with P/N). Simply omit these characters when

entering the data. The P/N can be added quite easily after

the data file is created.

3. You want to add new data fields to an existing file. Use

restructuring to create a new blank field at any position you

choose. You can then use the editing function to place the

new data in the newly created field. Or fill your new field

with some fixed data if it will save any typing during the

editing process.

65

File Manipulation

Split and Extract

he DFH SPLIT program provides a method of splitting

files or extracting parts of files. Perhaps you are saying,

"That sounds nice, but where is the practical value?"

Let's look at a couple of common applications. (You'll think of

more on your own.)

Imagine a file of expense records for your automobiles—

we'll let you have two of them. Each record contains four

fields: date, vehicle name, cost, and type of expense. The file

has been sorted so that the dates are in order.

For some reason, you want to split this single large file

into 12 files, each containing the records for one month. The

SPLIT function of DFH SPLIT will do this with ease. In fact, it

would be almost as easy to do something weird like saving

January to March in one file, not saving June and August at

all, and saving the rest of the months in individual files.

For a second example, assume you want to extract all

records for your Chevy and put them in a separate file. You

could re-sort the file on the correct field and then use SPLIT,

but the extra work is not necessary. This job is exactly what

the EXTRACT function of DFH SPLIT is designed to do, with

out any preliminary sorting operations.

You can have EXTRACT look for a data pattern in a fixed

location within a field or have it search the entire field—it's

your choice. You tell the program what data to look for and

what field to look in, and it will extract and save all records

containing the specified data.

Both SPLIT and EXTRACT leave your original files just as

they were. The data which is split or extracted from them is

saved in new files.

The SPLIT Operation
This program is called into action by selecting either the

SPLIT function or the EXTRACT function in the bootstrap

main menu. The first decision you will make is to choose be

tween SPLIT and EXTRACT as shown in the following screen

display. (All references to disk drive numbers apply only to

PET systems where dual drives are normal. For Commodore

64 systems, the program will not produce such messages.)

READY TO SPLIT FILES OR EXTRACT DATA

66

File Manipulation

S SPLIT OR

E EXTRACT ? S

PREVIEW TO PRINTER ? N

SOURCE FILE IN DRIVE ? 0

NAME OF SOURCE FILE ? EXPENSE

The second question will allow you to find out what the

results of any split might be without actually creating any new

files. This preview can, in some cases, provide all the infor

mation you need. For example, you might simply want to

know how many expense items there were in each month.

When you have named the first source file, the program

will open the file, check the delimiter, and read the first

record. This record will be used a little later to help you define

the split.

When the program has found the requested source file, it

needs to know where to put the output files that will be

created.

OUTPUT FILES TO DRIVE ?0

If you select the same drive for both source files and out

put files, the program will assume that you want the output

files on the same disk with the input files. This procedure will

be followed unless there is no room on the disk. In that event

the program will revert to a two-disk operation, but it will still

use only the single drive you selected.

If you are operating on a 64, the preceding message

would have no meaning. (The program assumes you only

have one disk drive.) In its place you would see:

SOURCE AND OUTPUT FILES

ON THE SAME DISK ?Y

A yes answer will allow the program to proceed in a more

automatic mode, while a no answer alerts the program to

prompt you for disk changes as necessary to save the output

files on a separate disk.

Defining the Split Points
The program needs to know what conditions it should look for

to decide where to split the file. In general, either this proce

dure can be defined so that the computer can proceed auto

matically through the entire job, or it can be set up to allow

you to make all the major decisions as the job progresses.

67

File Manipulation

Let's look at a typical display:

FIRST RECORD IN EXPENSE IS:

84-01-14*FORD*17.25*FUEL*

CHANGE PRINT CASE ? N

SPLIT ON WHICH FIELD ? 1

FIELD 1 = "84-01-14"

SPLIT AT CHANGES IN:

E ENTIRE FIELD, OR

S SELECTED POSITIONS ? S

START POSITION ? 4

OF CHARACTERS ? 2

SELECTED FROM FIELD 1: "01"

Notice you can split the file based on changes within any

field, and on changes in the entire field or in any part of it.

The result of each choice is displayed for your examination.

Later in the process you will get a chance to change any in

correct selections.

Before the actual file splitting begins, you must decide

how to save and name the output files.

SPLITTING/SAVING PROCESS TO BE:

A AUTOMATIC, OR

0 OPERATOR'S CHOICE ? O

SELECT OUTPUT FILENAMES:

1 INDIVIDUALLY OR

S SEQUENTIALLY ? S

A 3-DIGIT SEQUENCE NUMBER WILL

BE ADDED TO THE NAME YOU ENTER

OUTPUT FILENAME ? EXP

SPLIT DEFINED OK ? Y

If you want "automatic" file splitting, the file will be split

at each change in the data in the selected field (or partial

field). If you want to pick and choose from the possible splits,

you should select "operator's choice." This will allow you to

collect or discard groups of records and save the collected

records to disk whenever you wish.

If you requested "individual" filenames, you would not

be asked for a filename at this time. Rather, you would be

asked to enter a new filename each time you are ready to save

a set of collected records to disk.

68

File Manipulation

If you choose the "sequential" naming procedure, as

shown in the example, the program will know the correct

filename to use when it is ready to save each new file. It cre

ates these names by adding a three-digit number to the basic

filename you enter. In this example, the first two files created

would be named EXP.001 and EXP.002.

The last question allows you to start over if you have

made an error or have changed your mind.

Details of the Split
When you indicate that the split is correctly defined, the pro

gram will begin the process of splitting the file. It will find

each split point, and only needs to know if you wish to save

or discard the records in each group.

The first display is short because there are not many

choices you can make at the first split point:

SPLITTING FILE EXPENSE

BASED ON CONTENTS OF FIELD 1

0 RECORDS (0 BYTES) IN MEMORY

NEXT RECORD GROUP IS:

"84-01-14"

1 ADD NEXT RECORD GROUP TO MEMORY

2 DISREGARD NEXT RECORD GROUP

8 DEFINE NEW JOB SETUP

9 QUIT OR GO TO MASTER MENU

YOUR CHOICE ? 1

Options 8 and 9 will be included in all menu displays.

Option 8 allows you to completely redefine the SPLIT or EX

TRACT job setup. It is almost like a new run except that all

your previous answers are used as default prompts.

Option 9 is your way out of the program, either by a

complete quit or by going back to the bootstrap main menu.

Now, let's assume you picked option 1 (add to memory),

and then made the same choice the next time the menu was

presented. We are skipping one variation of the display, but

you'll get the idea easily enough. The display will now be ex

panded to:

SPLITTING FILE EXPENSE

BASED ON CONTENTS OF FIELD 1

69

File Manipulation

91 RECORDS (3172 BYTES) IN MEMORY

"84-01-14"

-THROUGH-

"84-02-27"

NEXT RECORD GROUP IS:

"84-03-12"

1 ADD NEXT RECORD GROUP TO MEMORY

2 DISREGARD NEXT RECORD GROUP

3 SAVE RECORDS IN MEMORY TO DISK

8 DEFINE NEW JOB SETUP

9 QUIT OR GO TO MASTER MENU

YOUR CHOICE ? 3

The expanded display now indicates that 91 records are

being held in memory and shows the contents of the selected

field for both the first and last of those records. We also have

an added option—to save the present memory contents to disk

as a separately named file. Let's try option 3:

283 DISK BLOCKS FREE

FILE "EXP.001" EXISTS

WANT TO REPLACE IT ? Y

91 RECORDS OUT TO "EXP.001"

PRESS ANY KEY TO CONTINUE

If there were not enough blocks free on the disk, you

would be asked to change disks. The question about file

replacement will be asked only if needed. If you choose not to

replace an existing file, you will get a chance to change disks

or quit.

If you change disks for either of these reasons, the pro

gram will test the new disk for free blocks and try again to

save the new file.

The splitting and saving process will continue under your

control until the end of the source file is reached. But this may

not be the end of the split.

Split Continuation
The end of a file may be the end of the job, or it might be

only the end of one file in a multifile data set. The continu

ation menu gives you several ways to proceed.

70

File Manipulation

SPLITTING FILE EXPENSE

BASED ON CONTENTS OF FIELD 1

15 RECORDS (827 BYTES) IN MEMORY

"84-12-02"

-THROUGH-

"84-12-30"

END OF FILE EXPENSE

3 SAVE RECORDS IN MEMORY TO DISK

4 CONTINUE TO NEXT SOURCE FILE

8 DEFINE NEW JOB SETUP

9 QUIT OR GO TO MASTER MENU

YOUR CHOICE ? 3

Option 4, CONTINUE TO NEXT SOURCE FILE, requires

the entry of a new source filename. If the split data pattern

does not change at the beginning of the new file, and you

were adding records to memory, records will continue to be

added. If you were disregarding records, they will continue to

be disregarded.

If you decide to save the records in memory to disk, that

will be done in the usual manner; the menu will be repeated

with no records shown in memory, and option 3 will no

longer be shown.

Once the split is completed, option 8 allows you to set up

a new job without going back to the bootstrap main menu. All

of your previous setup answers will be used as input prompts

to save time in case the setups are similar.

Extracting Selected Records
Option 8 of the above menu will give you the opportunity to

use the EXTRACT function. The first few lines of an EXTRACT

setup are very similar to SPLIT. The most obvious difference

is that only one output file is created. The only records that

are extracted are those containing data that matches your

specifications.

As you can see in the following display, the program

needs to know how to find the records you want to extract.

FIRST RECORD IN EXPENSE IS:

84-01-14*FORD*17.25*FUEL*

CHANGE PRINT CASE ? N

71

File Manipulation

u
WHAT DATA ARE YOU LOOKING FOR

AND WHERE IS IT LOCATED: U

WHAT DATA STRING ? CHEVY , ,

IN WHICH FIELD ? 2 L-'

FIELD 2 = "FORD" U

SEARCH FOR STRING AT:

B BEGINNING OF FIELD

S SPECIFIED POSITION

A ANYWHERE IN FIELD ? B

EXTRACT DEFINED OK ? Y

The program will search only in the field you request.

Within that field it can be directed to start the search at the

first character or at any other character position. For this ex

ample we are looking for all CHEVY entries in field 2.

Another option is to search the entire field for any occur

rence of the specified string. This form of search is slower and

should be used only when it is really needed.

The last question allows you to redefine the extract func

tion if you wish. All your previous answers will be used as

prompts to save time. Just hit RETURN to reconfirm any cor

rect answers.

When you indicate you are happy with the setup, the pro

gram will begin searching the source file for any extract

records. Since this may be a long process for large files, an

activity display is presented which shows a running count of

records examined and records extracted.

EXTRACTING FROM FILE TF 2

RECORDS WITH "10" IN FIELD 1

50 RECORDS EXAMINED

10 RECORDS EXTRACTED

PRESS ANY KEY TO CONTINUE

At the end of each file the program will wait so you can [_}

examine the record counts. When you are ready to continue, a

new display will be shown: j j

EXTRACTING FROM FILE EXPENSE

BASED ON CONTENTS OF FIELD 1 U

10 RECORDS (704 BYTES) IN MEMORY

\ 1

END OF FILE EXPENSE LJ

72 U

File Manipulation

3 SAVE RECORDS IN MEMORY TO DISK

4 CONTINUE TO NEXT SOURCE FILE

8 DEFINE NEW JOB SETUP

9 QUIT OR GO TO MASTER MENU

YOUR CHOICE ? 3

This display is very similar to the one you get at the end of a

source file while doing a split. You can proceed directly to the

next source file (option 4) and continue to accumulate ex

tracted records. If there are no more source files, you should

use option 3 to save the records which have been extracted.

When you have completed extracting and saving, you can

define a new job setup (either SPLIT or EXTRACT), or quit or

return to the bootstrap main menu.

73

u

u

u

u

u

u

u

u

G

U

LJ

U

The DFH Editor

A Sequential File

Editor

Have you ever seen a sequential file on one of your

disk directories and wondered what was in it? Of

course, you could write a program to display the file

contents. But it's the old chicken and egg problem. If you

knew enough about the file to write a good display program,

you might not need to display it.

If you did write a display program, your efforts wouldn't

stop there. When you can see the contents of your sequential

files, you will, sooner or later, want to modify them. At that

point you have just defined your need for an editor.

A Different Editor
Unlike program files, sequential files cannot easily be listed

and modified. Years ago we asked, "Why hasn't someone al

ready developed a utility program to do that?"

You could greatly simplify some data processing programs

if you had direct access to the data files. One file of this type

is your personal address book. Most of the processing is mak

ing new entries, deletions, and changes. If these operations

could be done with an editor, the processing program would

only need to read the file and print it in an acceptable format.

If you do much machine language programming, you al

ready know about a form of direct access. Your source code

files are probably prepared for assembly under the control of

some type of editor program. (There is a good chance that the

DFH Editor presented here can replace your present source

code editor.)

The DFH Editor allows you to handle sequential files as

though they were BASIC programs. With the DFH Editor you

can load, list, modify, and save using the same procedures you

use with program files. The DFH Editor also adds some

powerful commands you probably haven't seen. We will talk

about them later.

File Organization
To understand how and why the DFH Editor works, we need

to quickly review the differences (and similarities) of program

77

The DFH Editor

and sequential files and how the Commodore screen editor

helps prepare program files.

As it's loaded from the disk into memory, a sequential file

looks quite different from a BASIC program file. Except for the

RETURN characters which are used to mark the end of each

record, all the bytes in a sequential file are data characters. A

BASIC program, on the other hand, contains two extra bytes

at the beginning of the file and four additional bytes at the

beginning of each line of BASIC code.

Starting at the beginning of the file:

• Bytes 1 and 2 contain the load pointer. This is the memory

address where the file loading will start. These bytes are

used only to direct the loading and are not stored in mem

ory. The Commodore 64 does not use these bytes unless a

trailing ,1 is included in the LOAD command.

• Bytes 3 and 4 contain the link pointer. This is the address

where the next program line will start.

• Bytes 5 and 6 contain the BASIC line number.

• The following bytes (as many as needed) are the BASIC pro

gram line. A zero byte marks the end of the program line.

This pattern of link pointers, line numbers, and program

lines is repeated to the end of the program, which is indicated

by both link pointer bytes being 0.

It would seem logical that if we added link pointers and

line numbers and changed the RETURN characters to zero

bytes, we might be able to handle a sequential file just like a

BASIC program. That is correct thinking, but it is not quite

enough. The remaining problems are related to the actions of

the Commodore screen editor and a process called tokenizing.

Tokens Versus Text
As you create a BASIC program, the screen-editing routine

converts all the BASIC commands to single characters called

tokens. Each token represents a complete BASIC command.

This reduces the storage space required for a program file,

both in memory and on disk.

In the reverse process, when a program is listed, the to

kens are used to produce the printed BASIC commands you

see on the screen. However, if a token character is found in

side quotes, it will not be converted to a BASIC command, but

will simply be printed.

78

The DFH Editor

The characters you put inside quotes are never tokenized

because they are considered to be text. You can (and routinely

do) put token characters inside quotes because the shifted ver

sion of almost every key on your keyboard is a token. You

cannot accidentally place a token outside quotes. Even if you

type the character on the screen, the screen editor will simply

discard it when the line is transferred to memory.

For an editor to work with sequential files, this tokenizing

effect must be disabled. We cannot allow the computer to alter

any data. It must not create tokens, and it must accept any to

kens (shifted characters) that we want to enter as data. We

have now defined two more requirements for an editor to be

used with sequential files.

These simple changes give you complete freedom to enter

anything you want from the keyboard. Well, almost. They do

if you understand how the quote mode works.

Quotes and the LIST Function
As stated previously, the normal LIST function includes pro

visions for changing tokens back to BASIC commands. For an

existing file containing token characters, this was a real

aggravation, and we considered modifying the LIST operation

for use with the DFH Editor.

However, there was a much better way to solve this prob

lem. A new command was created that installs leading quotes in

every record in a file. With a leading quote, the LIST function

will print all characters without any attempt at conversion.

The ability to insert and delete leading quotes gives you

much more control in handling your sequential files. As an

illustration of this flexibility, consider the following typical op

erations using the DFH Editor:

1. For files which do not contain tokens, you can load, list,

modify, save, and verify just as though you were handling a

BASIC program file.

2. For files which do (or might) contain tokens, you can load,

and then install leading quotes. With the quotes in place,

you can list and modify the file just like a BASIC program.

When ready to save the file, you can either leave the quotes

installed or, with a single command, you can discard all of

them.

79

The DFH Editor

When you are creating a file from the keyboard, you have

complete freedom to use quotes or not as you see fit. Just

remember that if you type a shifted character in a line that

does not have leading quotes, you can expect to see it listed as

a BASIC command, or even worse, it may produce a SYNTAX

ERROR during listing.

We have covered a lot of ground, so let's take a moment

to look at some examples of file creation and handling. Some

times an example, like a picture, is worth a thousand words. If

you look closely, you may notice a procedural error in the pro

gram code. It is there to help illustrate the power of the DFH

Editor, and will be corrected later.

The programs in these examples are shown as though the

computer were set to display in uppercase/lowercase mode (as

opposed to graphics mode). If you want to try these examples

on a computer that defaults to uppercase and graphics, you

should change the display case. For Commodore 64, use the

shifted Commodore key to toggle the screen case. For small

screen PETs, type POKE 59468,12 for lowercase, and POKE

59468,14 to return to uppercase.

The following program will create a sequential file, named

test-1, which will contain the information in the program's

DATA statements.

100 open 3,8,6,"@0:test-l,seq,write"

110 cr$=chr$(13): rem "carriage return"

120 qt$=chr$(34): rem "quote character"

130 : read a$

140 print#3,a$;cr$;

150 if a$="end" then close 3: end

160 goto 130

170:

180 data "Ed*203 Grand, Anytown"

190 data "June*14 Birch, City"

200 data "end"

Let's try to read and display the sequential file with another

program as follows:

100 open 5,8,4,"test-l,seq,read"

110 : input* 5,a$

120 if a$="end" then close 5: end

130 print a$: goto 110

The printed output from this program will be

80

The DFH Editor

Ed*203 Grand

June*14 Birch

This is not exactly what we wanted. The city names got lost

somewhere. Also, look at what happens when we command

the DFH Editor to Text Mode and load and list the file.

1000 vald*203 chr$rand, atnnytown

1010 mid$une*14 peekirch, lenity

1020 end

Here again we see something that looks like a problem.

All the shifted characters are being displayed as BASIC com

mands. We know the word Grand is in the sequential file be

cause our second program got it and printed it, yet it is listed

as chr$rand.

However, if we use the DFH Editor to install leading

quotes with its ;QT command and list the file again, we will

see:

1000 "Ed*203 Grand, Anytown

1010 "June*14 Birch, City

1020 ''end

You must use the ;QT command to insert the leading

quotes. You must not try to insert them manually after listing.

That would only preserve the characters that had been printed

on the screen, and the actual data bytes would be lost.

If we now use the DFH Editor to save the file and then

rerun the second program to read and display the file, we will

see:

Ed*203 Grand, Anytown

June*14 Birch, City

Of course, we could get the same results by correcting

that deliberate error in the first program. Simply change line

140 to read:

140 print#3,qt$;a$;cr$;

Adding the qt$ variable causes the program to insert a leading

quote in every record. With the file now created properly, the

display program will work, and the DFH Editor can load and

list the file without any distortion.

The most important thing these examples have done is to

demonstrate the importance of leading quotes in sequential

files. I suspect that most existing data files do not contain

81

The DFH Editor ^
u

U
quotes, but this simple change to the structure can add

tremendous flexibility by removing almost all restrictions on LJ

what data characters can be saved in the file.

Remember that when the INPUT* command is used to LJ
read a data record, the leading quote is discarded. If you are

using one of your own programs to handle data records, you I (

must remember to reinstall the leading quote when you store

the data records on disk.

82 u

The DFH Editor

Using the Editor

The normal method of activating the DFH Editor is to

load and run the bootstrap program, DFH BOOT, and

select the DFH Editor function from the main menu.

The correct editor program for your computer (DFH

ED.C64$90 for the Commodore 64 or DFH ED.PET$70 for the

PET) will be loaded and activated. Total control will be re

turned to the keyboard with the DFH Editor in Text mode

ready to work with sequential files.

If you know that the DFH Editor program is already

loaded, you can simply execute a SYS to the activation

address:

SYS 36864 to activate the 64 editor.

SYS 28672 to activate the PET editor.

Due to its location at $9000 (decimal 36864) in the 64, the

DFH Editor can remain installed (not necessarily activated) at

all times once it has been loaded. Thus, it will usually be

available for activation with a SYS command.

In PET computers, with less memory available, the situa

tion is quite different. There the DFH Editor is located at

$7000 (decimal 28672), and shares memory space with the

machine language subroutines used by other DFH programs.

Therefore, the DFH Editor will only be present when it has

just been selected from the DFH main menu.

Of course, if you wish to take total control, you can load

the DFH Editor for your computer directly into memory and

SYS to the activation address. When used this way, the DFH

Editor becomes completely independent of the remaining pro

grams in the DFH family.

During the activation routine the DFH Editor installs a

command interception wedge in the computer's Character Get

(CHRGET) routine. The DFH Editor sets top of memory to

protect itself from strings created by BASIC programs. The

amount of memory reserved for the DFH Editor should not af

fect the vast majority of your other computer programs.

Deactivating the Editor
One of the DFH Editor commands, ;MK, is the primary means

of deactivating the DFH Editor. Deactivating the editor does

not release the top of memory back to its normal address. The

83

The DFH Editor

intent is that the editor will remain protected should you wish

to reactivate it at a later time. If you wish to restore normal

top of memory without cycling power, it can be done quite

simply by typing

POKE 55,0: POKE 56,160: CLR (for the Commodore 64)

or

POKE 52,0: POKE 53,128: CLR (for the PET)

The DFH Editor can also be tested from within a BASIC

program to see if it is activated, and can be deactivated by a

SYS command.

For Commodore 64 computers:

If PEEK (36876) = 242 the editor is active.

If PEEK (36876) = 243 the editor is not active.

Deactivate by SYS 36867.

For PET computers:

If PEEK (28684) = 242 the editor is active.

If PEEK (28684) = 243 the editor is not active.

Deactivate by SYS 28675.

This method of checking and deactivating is intended for

use by your own BASIC programs when those programs need

to be loaded into the memory occupied by the DFH Editor.

Note that BASIC programs will run a little faster if the editor

is not active. This is because the Character Get routine does

not have to check for the presence of editor commands.

The DFH Editor Commands
The DFH Editor provides 14 new file-editing commands. Five

of them can be used only with sequential files (Text mode).

The remaining commands can be used in Text mode and also

with program files (BASIC mode).

Command Meaning Use For

; Display menu & set repeat Text & BASIC

;AD Add a character Text

;AU Auto line numbering Text & BASIC

;CS Change screen case Text & BASIC

;DE Delete lines Text & BASIC

;ED Erase screen down Text & BASIC

;EU Erase screen up Text & BASIC

;FC Find and change Text

84

;FI

;MB

;MK

;MT

;QT

;RN

;UN

Find string

Set BASIC Mode

Kill DFH Editor

Set Text Mode

Insert quote

Renumber lines

UnNew

The DFH Editor

Text

Text & BASIC

Text & BASIC

Text & BASIC

Text

Text

Text & BASIC

In the following paragraphs we will examine the functions of

each of these commands. They are described in alphabetical

order.

Display Menu & Set Repeat

Used in Text or BASIC mode.

Syntax: ; or ;(any invalid command code)

When the DFH Editor command is simply the edit prefix

character (;) or the prefix character followed by an invalid

command code, the complete DFH Editor menu will be dis

played on the screen. The current operating mode, Text or

BASIC, is also displayed.

The menu can be called to refresh your memory when

you can't remember the code for a desired function. When the

menu appears in response to an error, it serves as a reminder

of what commands are available.

The Menu command also performs a hidden function. It

reestablishes the repeating keys feature. The repeat will be lost

on some PET computers when a tape LOAD or SAVE is per

formed or when any LOAD command is executed within a

BASIC program. If you suddenly find yourself with a

nonrepeating keyboard, just call the menu, and the repeat fea

ture will again be operating.

Add A Character

Used in Text mode.

Syntax is: ;AD char,Range

-R2

,R1-R2

Where: char = Character to be added; Rl = start line num

ber; R2 = end line number.

This command adds the specified character to the end of

85

The DFH Editor

each line within the specified range. If a range is not specified,

the character will be added to all lines in the file.

The message SYNTAX ERROR is displayed if the range is

not specified properly or if more than one Add character is

specified.

The message LINE >74 CHRS is displayed for any line

that contains more than 74 data characters after the new

character is added.

The character will not be added if the resulting line would

contain more than 250 data characters.

Here are some suggested uses for this command.

• When adding fields to existing data records. Use it to install

trailing field delimiters and trailing fixed data patterns to re

duce your typing effort.

• If you suspect there may be trailing spaces in some records,

install a presently unused character at the end of each record.

The trailing blanks can then be seen, and the records can be

edited without losing the trailing spaces.

• To add a string of characters, simply add a presently unused

character and then use the ;FC (Find and Change) command

to change the dummy character to the desired string. Use the

;FI (Find) command to check for unused characters.

Auto Line Numbering

Used in Text or BASIC mode.

Syntax: ;AU incr

Where: incr = line number increment value.

This command causes automatic printing of a correctly in

cremented next-line number during data entry or editing op

erations. The numbers are printed following a carriage return

on a numbered line containing data. The new number will be

the number of the entered or edited line plus the increment

value.

Automatic line numbering is disabled if the increment

value is less than 1 or if it is not specified. It is also disabled

by running a program; by executing the Renumber command;

or a DOS LOAD, Append, or SAVE command.

Change Screen Case

Used in Text or BASIC mode.

Syntax: ;CS

86

The DFH Editor

This command switches the display case of the screen. The

contents of the computer's memory do not change.

Delete Lines

Used in Text or BASIC mode-

Syntax: ;DE Range

Rl

Rl-

-R2

R1-R2

Where: Rl = start line number; R2 = end line number.

This command deletes all lines within the specified range

of line numbers.

The range syntax is the same as for a LIST command. The

defaults are Rl = 0 and R2 = 63999, but at least one range

parameter must be specified. When both range parameters are

used, they must be in ascending order.

The line delete command should not be used to delete an

entire file. Use the NEW command for that purpose.

The message SYNTAX ERROR is displayed if the range is

not specified properly.

Erase Screen Down

Used in Text or BASIC mode.

Syntax: ;ED

This command erases the screen from the line containing the

command down to the bottom of the screen. For 40-column

screens, the existing screen line linking is retained after the

erasure. The linking pattern will exist until the CLR key is

pressed or until the linked lines are scrolled off the screen.

When a line of more than 40 characters is typed or listed

onto a 40-column screen, the first and second physical lines

are linked into an 80-character logical line. This linked struc

ture is quite easy to see when the data that caused it is still on

the screen. However, when the data is erased, using the ;ED

or ;EU commands, the linking pattern still exists and it can

cause unexpected results.

This usually happens when you type a command on what

appears to be an empty line, when in fact it is logically linked

to the line immediately above and that line already contains

some characters. A simple rule will keep you out of trouble.

87

The DFH Editor

When you have recently executed an Erase command, always

keep at least one blank line above the cursor. This way, there

is no possibility that your newly typed input could be acci

dentally linked to characters above it on the screen.

Erase Screen Up

Used in Text or BASIC mode.

Syntax: ;EU

This command erases the screen from the line containing the

command up to the top of the screen. Existing screen-line link

ing is retained for 40-column screens. (See the caution about

linked lines under "Erase Screen Down" above.)

Find and Change

Used only in Text mode*

Syntax: ;FC /old/new/,Range

,-R2

,R1-R2

Where: old = String to be found; new = Replacement string;

/ = The string delimiter character (not contained in either

string); Rl = Start line number; and R2 = End line number.

This command finds a specified "old" character string

occurring in a range of line numbers and changes it to the

"new" character string. If a "range" is not specified, the com

plete file will be searched.

All lines where changes are made are displayed. If more

than one change is made in a line, the entire line is displayed

once for each change.

Lines containing up to 250 total data characters can be

modified by this command. The execution of this command

can be paused or resumed by momentarily pressing the space

bar. It can be halted by pressing the RUN/STOP key.

The message SYNTAX ERROR will be displayed if the

range is not specified properly or if all three string delimiters

are not the same.

The message DATA >74 CHRS will be displayed if a line

contains more than 74 data characters after the change has

been accomplished.

The message CAN'T ALTER NEXT LINE will be dis

played, followed by the problem line, if the requested change

88

The DFH Editor

would create a line having more than 250 data characters. The

Find and Change operation is terminated by this error.

Character strings can be found and deleted by not specify

ing a "new" string, as in ;FC/ABC//.

Find String

Used only in Text mode.

Syntax< ;FI /string/,Range

-R2

,R1-R2

Where: string = String to be found; / = String delimiter

character (not contained in the string); Rl = Start line num

ber; R2 = End line number.

Use this command to find and display a specified charac

ter string occurring in a range of line numbers. If a range is

not specified, the complete file will be searched.

If the string is found more than once in a line, the entire

line is displayed each time the string is found. The execution

of this command can be paused or resumed by momentarily

pressing the space bar. It can be halted by pressing the

RUN/STOP key.

The message SYNTAX ERROR will be displayed if the

range is not specified properly or if both delimiters are not the

same. The message DATA >74 CHRS will be displayed if a

found line contains more than 74 data characters.

Set BASIC Mode

Used in Text or BASIC mode-

Syntax: ;MB

This command sets the DFH Editor to BASIC mode. This is

the mode your computer is in when you turn power on. In this

mode you are assumed to be working with BASIC program

files. Machine language program files are also loaded and

saved in BASIC mode.

The DFH Editor functions which work in both BASIC and

Text modes are set to perform correctly with BASIC program

files. The DFH Editor functions which work only with sequen

tial files are disabled. The DOS commands for loading, saving,

verifying, and appending are set for proper handling of BASIC

and machine language program files.

89

The DFH Editor

The message BASIC MODE is displayed.

Kill Editor

Used in Text or BASIC mode*

Syntax: ;MK

The Kill command deactivates all DFH Editor functions,

including the DOS commands. The command intercept wedge

is removed, and the CHRGET routine is restored to its power-

on condition.

The message DFH EDITOR KILLED is displayed.

The top-of-memory setting which was established when

the DFH Editor was activated is not altered by this command.

See Deactivating the Editor, page 83, for additional top-of-

memory notes.

Set Text Mode

Used in Text or BASIC mode.

Syntax: ;MT

This command sets the DFH Editor to Text mode. All DFH

Editor functions are active and are set to work correctly with

sequential files. The DOS commands for loading, saving,

verifying, and appending are set for proper handling of

sequential files.

The message TEXT MODE is displayed.

Insert Quote

Used only in Text mode.

Syntax: ;QT S,Range

-R2

,R1-R2

Where: S = Stop on error flag, optional (only perform error

checks); Rl = start line number; R2 = end line number.

Without the stop flag (S), this command inserts a quote

character at the start of all lines within the specified range. If

the first character is already a quote, the line will not be

changed. If a range is not specified, the entire file will be

processed.

The message SYNTAX ERROR is displayed if the range is

not specified properly. IMBEDDED QUOTE is displayed if a

90

The DFH Editor

quote character is found other than as the first or last character

in the line. DATA >74 CHRS is displayed if there are more

than 74 data characters (including the quote) in the line.

When the stop flag (S) is included, quotes are not in

serted, but each line in the specified range is checked for

errors. If an error is found, the line is displayed along with the

appropriate error message and the checks are halted. This pro

cess assumes that you would be wanting to correct the de

tected errors.

Additional notes:

1. The Insert Quote command should be used before editing a

file which might contain numbers as the first data charac

ters in any record. The leading number would be inter

preted as part of the line number during editing and would

cause incorrect results.

2. The Insert Quote command should be used before editing a

file which might contain shifted characters. Without leading

quotes, most shifted characters will be interpreted as BASIC

tokens. When these characters are LISTed, they will appear

as BASIC commands. Editing such a line would reinstall the

line with the commands as character strings rather than the

token equivalent.

3. If you have inserted quotes to enable editing a file but want

to save the file without the quotes, they can be deleted with

the ;FC (Find and Change) command: ;FC/"//-

Renumber

Used only in Text mode*

Syntax: ;RN NI,NS,Old Range

-R2

,R1-R2

Where: NI = Line number increment value; NS = New start

line number; Rl = Old start line number; R2 = Old end line

number.

This command renumbers lines in the specified range of

old line numbers, assigning a new start line number and using

the specified increment value. The default values are: NI =

10, NS = 1000, Rl = 0, R2 = 63999. Illustrations of default

ing combinations are shown in the examples which follow.

91

The DFH Editor

Caution: To allow you maximum flexibility, no error

checking is performed before the new line numbers are as

signed. If you are using the "old range" specification, you will

usually need to insure that the line numbers remain in proper

sequence. If you discover that the line numbers are not all in

ascending order, renumbering the entire file will correct the

problem.

Examples of renumbering:

;RN Renumbers the entire file. New line numbers start at 1000

and increment by 10.

;RN 5 Renumbers the entire file. New line numbers start at

1000 and increment by 5.

;RN 15,2000 Renumbers the entire file. New line numbers start

at 2000 and increment by 15.

;RN 2,1400,1000-3000 Renumbers only existing lines in the

range 1000-3000. New line numbers will start at 1400 and in

crement by 2.

UnNew

Used in Text and BASIC modes.

Syntax: ;UN

UnNew restores the last data file or BASIC program contained

in memory if a NEW command has been executed. The mes

sage ERROR will be displayed if the file or program in mem

ory cannot be reconstructed.

92

Disk Use

Disk Support

Commands

Many programmers use one of the available shorthand

command sets for the Disk Operating System (DOS).

Very often the program used is "DOS 4.0" or

"UNIVERSAL WEDGE" for PET computers or "DOS 5.1" for

Commodore 64 computers.

Not a New DOS!
In creating the DFH Editor, there was no desire to create a

new DOS shorthand command set. As far as they went, the

existing commands were just fine. Additional capabilities were

needed much more than changes.

Consequently, the DOS shorthand command set for the

DFH Editor will look familiar to anyone who is presently

using one of the Commodore DOS programs. In fact, you

could probably use it for a long time before discovering any of

the extended capabilities.

Some commands perform differently depending on the

mode of the DFH Editor. For example, a sequential file is

loaded differently than a BASIC file, but there was no reason

to invent a new LOAD command. This DOS knows that it can

only load BASIC files in BASIC mode and sequential files in

Text mode.

Some commands have an extended parameter set. For ex

ample, in BASIC mode, the LOAD command can now be di

rected to the computer's start of BASIC, to the LOAD address

contained in the program file, or to any address specified by

the operator. As the LOAD is executed, the start and end ad

dresses are displayed so that you always know exactly where

the program is located in memory.

Several new commands such as SAVE, Verify, and Ap

pend were added to the shorthand command set. In addition

to the shorthand convenience, extended parameter sets make

these commands very powerful. For example, the SAVE com

mand can perform a normal SAVE, or it can be directed to

save any address range of memory. For single-drive Com

modore 64 systems, this is handy because machine language

95

Disk Use

programs can now be moved from disk to disk as easily as

BASIC programs.

Various small changes were made to provide more

convenience for the operator. For example, why should you

have to write a small program to see why the disk error light

is on? When this utility is used, any command which provokes

a disk error will report the error condition in plain English.

All in all, you should find this DOS powerful and easy

to use.

DOS Activation
The DOS functions are activated (and deactivated) along with

the file-editing functions of the DFH Editor. For most opera

tions you can leave the DFH Editor, and consequently the

DOS, active at all times. This is true even when you are writ

ing or running programs that have nothing to do with data file

handling. In fact, if you don't already have a good BASIC

programming support utility, you will find that some DFH Edi

tor commands can be very useful while you're writing or

revising BASIC programs. Just remember to put the DFH Edi

tor into BASIC mode before trying to work on BASIC

programs.

On those occasions where there is a conflict between the

DFH Editor and another program, it will usually be because

both programs want to be loaded into the same memory ad

dresses. In the Commodore 64 the memory from $9000

through $9FFF (decimal 36864 to 40959) should be reserved

for the DFH Editor. In PET computers, the memory from

$7000 through $7FFF (decimal 28672 to 32767) should be

reserved.

96

Disk Use

„" DOS Shorthand

n Commands

The Commodore Disk Operating Systems are fully supported

using a shorthand syntax similar to DOS 4.0 (for PET) or DOS

5.1 (for Commodore 64). These shorthand commands can be

used only from the keyboard. Inside a BASIC program you

must still use the normal disk command syntax as described in

your computer user's manuals.

The Disk Error Channel is read after each disk command

is executed. Any message other than 00 OK 00 00 will be dis

played. A general requirement for all commands is that the

first character of the DOS command must be the first

nonspace character on the screen line when the RETURN key

is pressed.

The primary DOS command codes and their general

meanings are shown in the following table. In most cases,

these codes are followed by other characters to completely de

fine the command.

>

>#

>$
>c

>D

>I

>N

>R

>S

>V

/

&

]

Read error channel

Set default device number

Display directory

Copy disk file

Duplicate disk

Initialize disk

New (format) disk

Rename a file

Scratch a file

Validate a disk

Load a file

Load and run

Append to memory

Save a file

Verify a file

Read Error Channel

Syntax: >

This command reads the disk error channel and displays the

error message on the screen. This command has no options,

and no additional characters are allowed. If the disk error light

is on, this command will display the error message and clear

the error status.
97

Disk Use

Set Default Device Number

Syntax: ># device*

Where: device* = Disk device number.

Use this command to set the disk device number that will be

used as a default by the DOS commands.

When the DFH Editor is activated, the default device

number is set to 8.

The current device number is displayed, along with the

current operating mode, when this command is executed. The

current device number is also displayed when the DFH Editor

menu display is commanded.

Display Disk Directory

Syntax: >$ dr:qualifiers

Where: dr = drive number; qualifiers = partial directory

specifications.

Use this command to display the disk directories without

disturbing memory contents. The display can be paused or re

sumed by momentarily pressing the space bar or halted by

pressing the RUN/STOP key.

The drive number is optional. If it is not specified, the

directories for both drives will be displayed on dual drive

systems.

When they are used, the qualifiers determine which direc

tory entries will be listed. They allow selective examination of

a directory as shown in the last five of the following examples:

>$ Display the complete disk directory (64), or both direc

tories (PET).

>$1 Display the complete disk directory for the disk in drive 1.

>$1: Display only the disk title and number of blocks free on

drive 1.

>$0:AB* Display drive 0 directory titles beginning with "AB".

>$0:?A?B* Display drive 0 directory titles with second charac

ter = "A" and fourth character = "B".

>$1:*= S Display all the sequential file titles on drive 1.

>$0:AB*=P Display all the program file titles on drive 0

beginning with "AB".

98

Disk Use

Copy Disk Files

Syntax: >C dr:new=dr:oldl,dr:old2....

Where: dr = drive number; new = new filename; old = old

filename(s).

Copy Disk Files is usually used to copy files from one disk

drive to another. For this purpose it can be used only with a

dual disk drive.

It can be used on a single disk drive to copy a file back

onto the same disk with a new filename assigned. However,

the Rename command is often better suited to that task.

When multiple "old" filenames are specified, the "new"

file will contain the concatenated (added end to end) combina

tion of all the old files in the order they were specified.

A special form of this command >C dr=dr will copy all

files on the disk in one drive onto the disk in the other drive.

This form of the Copy command works on all dual drives ex

cept for the Model 2040.

Disk drive numbers are always required and wild card

characters (? or *) cannot be used in the filenames.

The following are examples of the major forms of the

Copy command:

>C1:FILEA=O:FILEA Copy a file on drive 0 named FILEA to

drive 1.

>CO:FILEA=1:FILEB Copy a file on drive 1 named FILEB to

drive 0 where it will be named FILEA.

>C0:FILEA=0:FILEB Copy a file on drive 0 named FILEB to a

new location on drive 0 where it will be named FILEA.

When the drive numbers are the same, the filenames must

be different.

>C1 = O Copy all the files on the disk in drive 0 onto the disk

in drive 1. This form of the Copy command is not valid

for Model 2040 disk drives.

>C0:FILEA=0:FILEB,0:FILEC Copy FILEB and FILEC into a

new file named FILEA. The concatenation proceeds in the

order the source files are specified.

Up to four files can be concatenated by a single command

so long as the total number of characters in the command is

less than 40. This form of the Copy command can be used to

perform the functions of the CONCAT command found in

BASIC 4.0 systems.

99

Disk Use

For total disk copy operations on dual drive systems, the

Copy command is much preferred over the Duplicate com

mand for the following reasons:

1. The Copy command allows the disk identification characters

to remain different on the two disks, while the Duplicate

command does not. Refer to the Error Sources and

Handling section for detailed information on this very im

portant subject.

2. The Copy command moves only valid file data, so it is

usually quicker than the Duplicate command. Also, the data

is stored in optimum track and sector locations on the

destination disk, which can provide somewhat faster access.

Duplicate Disk

Syntax: >D newdr=olddr

Where: newdr = destination drive number; olddr = source

drive number.

The Duplicate Disk command is only valid for systems with a

dual disk drive. It performs the same function as the BACKUP

command in BASIC 4.0 systems. As an example, the

command:

>D1=O

duplicates the contents of the disk in drive 0 onto the disk in

drive 1. The disk title, disk ID, Block Allocation Map, direc

tory, all files, and all unused blocks are duplicated. No disk

cleanup is attempted.

This command will not work unless all tracks and sectors

can be read. Thus, it cannot be used with a disk that has a de

fect which has been manually blocked off (marked as used) in

the Block Allocation Map.

Caution: Severe problems can develop from having more

than one disk with the same ID in your library. Therefore, the

Copy command or a separate disk-copying program should be

used in place of the Duplicate command whenever possible.

This subject is discussed in detail in the Error Sources and

Handling section.

Initialize Disk

Syntax: >I dr

Where: dr = drive number

This command causes the drive controller to load the Block

100

Disk Use

Allocation Map from the disk into the controller memory. The

general purpose is to let the drive controller know that a dif

ferent disk has been installed in the drive.

The drive number is not required for single-drive disk

units, but if it is used it must be specified as drive 0.

If the drive number is omitted on a dual drive system,

both drives will be initialized.

An initializing command is required for Model 2040

drives when disks are changed. Its use is optional for most

other drives unless disks with the same ID code are being

changed.

Duplicate ID codes within your disk library are very dan

gerous except with later model 8050 and model 8052 disk

drives. Sooner or later you will destroy data on a disk because

of a failure to initialize allowed by the duplicate ID codes. This

subject is discussed in detail in the section on Error Sources

and Handling.

New (Format) Disk

Syntax: >N dr:diskname,ident

Where: dr = drive number; diskname = title of the disk;

ident = disk ID code.

Use this command only on new disks or on disks that contain

files you don't want any more. The New Disk command pre

pares (formats) a disk for first-time use by writing all nec

essary track, sector, and directory information. It is equivalent

to the HEADER command in BASIC 4.0 systems.

If the disk has never been used, the two-character identi

fication code must be included in the command. In this case

the formatting is a lengthy operation which involves writing in

every track and sector on the disk.

If the disk has already been used and if you do not need

to change the ID code, a shorter form may be used. When the

ID is not specified, a new disk title is created, the Block

Allocation Map is cleared, and all files are marked as scratched.

This operation takes only a few seconds and is commonly re

ferred to as a Short Form New.

The results of a Short Form New appear very similar to a

Complete New, since the directory will show a completely

empty disk. Actually, all previous file contents are still on the

disk, but are not accessible except by specialized disk file-

recovery programs.

101

Disk Use

Rename a File

Syntax: >R dr:newname=dr:oldname

Where: dr = drive number; newname = new filename;

oldname = existing filename.

Change the name of a disk file with this command. The file is

not moved. Only the filename in the disk directory is changed.

The second drive number is not required for most sys

tems. If it is used, both drive numbers must be the same.

Scratch a File

Syntax: >S dr:qualifiers

Where: dr = drive number; qualifiers = filename selection

information.

Be careful using this command. It will delete one or more files

on a disk and return a confirming message. For example, the

message "01, FILES SCRATCHED, 03,00" would indicate

three files were scratched.

If a full filename is used as a qualifier, only the named

file will be scratched. Groups of files can be scratched by

using wild card characters (? or *) in the qualifier portion of

the command.

The following are examples of commonly used forms of

the Scratch command:

>S0:TABLE Would scratch the file named TABLE on drive 0.

>S0:AB* Would scratch all files on drive 0 that have names

beginning with AB.

>S0:??A?? Would scratch all files on drive 0 with five-

character names where the third character is A.

>S1:* Would scratch all the files on drive 1. This can be done

much faster using the short form of the Disk New

command.

Caution: You should never use the Scratch command as a

substitute for the Validate command to get rid of an open file.

The sector linkages are not set correctly in an open file, and

valid sectors of another file can be left open for reuse during

future write operations. Additional information on this subject

is included in the section on Error Sources and Handling.

Validate a Disk

Syntax: >V dr

Where: dr = drive number.

102

Disk Use

The primary use of this command is to remove directory en

tries for files that have been left open. An open file is identi

fied in a directory listing by an asterisk (*) just ahead of the

file type code, such as *PRG or *SEQ.

Validate is the same as the COLLECT command in BASIC

4.0 systems. It constructs a new Block Allocation Map for the

disk by tracing the block linkages for all properly closed files.

All open files are marked scratched.

Caution:

1. You should never, use the Scratch command as a substitute

for the Validate command, to get rid of an open file. The

dangers are explained in the section on Error Sources and

Handling.

2. Never use the Validate command on a protected

commercial disk, on a disk containing REL files, or on a

disk which has user-allocated sectors. The BAM for the

disk will probably not be reconstructed properly in

those cases, and will eventually result in loss of data.

Load a File

Syntax: / drrfilename,qualifier

Where: dr = drive number; filename = name of file; qualifiers

= loading directions (BASIC mode only).

This command is used to load program (PRG) and sequential

(SEQ) files from disk into memory. The operation of this com

mand depends on the mode of the DFH Editor. Program files

can be loaded in BASIC mode and sequential files can be

loaded in Text mode. User (USR) files and relative (REL) files

cannot be loaded with this command.

A command to load a file which does not match the cur

rent mode will produce the error message FILE TYPE MIS

MATCH, followed by a reminder of the current mode.

The drive number is not needed for single drive systems.

If it is used, it must be 0. With dual drives the drive number is

optional. If it is omitted, both drives will be searched for the

named file. A good rule to remember is that drive numbers are

optional for loading, but they are always required for saving.

Both types of wild card characters (? and *) can be used in

the filename. For example, specifying the filename as ?A*

would cause loading of the first file found on the disk which

has a filename with an A as the second character.

103

Disk Use

Because the LOAD command operates differently depend

ing on the mode of the DFH Editor, the two modes will be

discussed separately.

Loading Sequential Files

Syntax: / dr:filename

Since the qualifier parameter is not valid in the Text mode, it

is not used here. A typical LOAD command might be:

/OrTESTl

This command would cause the sequential file named

TEST1 to be loaded from drive 0 into the computer memory.

The loading would start at the current start-of-BASIC ad

dress. For 64 systems, this would normally be $0801 (decimal

2049), while for PETs it would be $0401 (decimal 1025).

When sequential files are loaded, line numbers are added

to each record as it is received from the disk. The line num

bers start at 1000 and increment by 10.

The value of the status variable (ST) will be displayed at

the end of the LOAD operation, along with a reminder of the

current operating mode, BASIC or Text. ST=40 (hex, decimal

64) is normal for a good LOAD operation.

Loading Program Files

The qualifier after the filename is an optional parameter for

the LOAD command when the DFH Editor is in BASIC mode.

This allows three forms of the LOAD command:

/ drtfilename for a "relative" load.

/ dr:filename,l for an "absolute" load.

/ dr:filename,$xxxx for a "directed" load.

Let's examine each of these three forms.

For a relative LOAD, the program file will be loaded at

the current start of BASIC address. For Commodore 64 sys

tems this address is normally $0801, and for PETs it is $0401.

The address of the end of the program is determined by the

length of the program file.

A relative LOAD will normally be used to load BASIC

programs. With this feature, PET computers can now load

BASIC programs prepared on 64 systems. Special relocation

procedures are not required.

For an absolute LOAD, the program file will be loaded at

the address specified by the LOAD point bytes contained in

104

Disk Use

the file. The LOAD point bytes are the first two bytes in all

program files. The LOAD point address bytes are automati

cally set when the file is saved. They always indicate the ad

dress where the program was located when the SAVE was

performed.

An absolute LOAD will normally be used to load machine

language programs.

The absolute LOAD operates exactly like the absolute

LOAD (using the trailing ,1) of the Commodore 64 computer.

This is also identical to the normal LOAD operation in a PET

computer.

The directed LOAD is a new form which allows you to di

rect the LOAD to begin at any address (designated in hexa

decimal). When used with its counterpart, the directed SAVE,

it can be used to move the contents of any section of RAM or

ROM to any memory address you want.

As an example for the Commodore 64, you could create

and direct save a screen image, then direct load it to an alter

nate screen location and direct save it from there. You now

have an alternate screen image that can be loaded by a BASIC

program.

Another use for the directed LOAD is for program files

that would normally load into zero page (addresses $0000

through $00FF) or other areas where the operating condition

of the computer is altered. These files can be direct loaded into

a less delicate part of memory where they can be examined,

and perhaps changed, by another utility program such as a

machine language monitor.

For all forms of program loading, the start and end ad

dress of the actual LOAD will be displayed in hexadecimal

notation.

Appropriate error messages will be displayed for any disk

errors that are encountered during the loading operation.

PET users should note that in the preceding description

we have altered the normal DOS LOAD command to the form

used by 64 computers. As longtime PET users, we are very

unhappy that Commodore did not choose to make the relocat

ing LOAD feature compatible in both directions by having the

Commodore 64's ,1 indicate relocation rather than absolute.

However, we are stuck with it and have simply tried to make

the best out of a bad situation by accepting the new standard.

105

Disk Use

If you like to use the DOS LOAD and RUN command,

you may soon encounter a special problem that can be easily

corrected. Many machine language programs that are designed

to load and run like a BASIC program are assembled with a

LOAD point of $0400 rather than $0401. The LOAD and RUN

command in this DOS always assumes that a BASIC program

is being loaded, and for PET computers, defaults to a LOAD at

$0401. This leaves the program offset by one byte, and it will

not run.

The solution is very simple. Load the program using the

,1 for an absolute LOAD and then resave it using the relative

form of the SAVE command. The relative SAVE will establish

a new LOAD point address of $0401 which allows you to use

the LOAD and RUN command.

Load and Run

Syntax: Tdnfilename

Where: dr = disk drive number; filename = name of file to

be loaded.

Load and run BASIC program files with this command; not

valid in Text mode.

The drive number is not needed for single-drive systems.

If it is used, it must be specified as 0. For dual-drive systems,

the drive number is optional. If it is omitted, both drives will

be searched for the named file.

This command always performs a relative LOAD. The

program is loaded beginning at the current start of BASIC. For

64 computers this address is normally $0801, and for PETs it

is $0401.

The start and end addresses of the load will be displayed

in hexadecimal notation. However, they may be hard to see if

the program you are running begins with a CLEAR SCREEN

command or other commands which would remove the LOAD

message from the screen.

Both types of wild card characters (? and *) can be used in

the filename. For example, specifying the filename as ?A*

would cause loading of the first file found on the disk which

has a filename with an A as the second character.

The message FILE TYPE MISMATCH, followed by a re

minder of the current mode, will be displayed if the requested

file is not a program (PRG) file.

106

Disk Use

Appropriate error messages will be displayed for any disk

errors that are encountered during the loading operation.

Append to Memory

Syntax: & drtfilename

Where: dr = drive number; filename = name of file to

append.

Use Append to Memory to load program (PRG) or sequential

(SEQ) files from disk and append them to a file already in the

computer memory. The operation of this command depends

on the mode of the DFH Editor. Program files can be ap

pended in BASIC mode and sequential files can be appended

in Text mode. User (USR) files and relative (REL) files cannot

be appended.

The message FILE TYPE MISMATCH, followed by a re

minder of the current mode, will be displayed if the requested

file does not match the current mode of the DFH Editor.

The drive number is not required for single-drive systems.

If it is used, it must be 0. With dual drives the drive number is

optional. If it is omitted, both drives will be searched for the

named file.

Both types of wild card characters (? and *) can be used in

the filename. For example, specifying the filename as ?A*

would cause loading of the first file found on the disk which

has a filename with an A as the second character.

In Text mode the complete file in memory will be re

numbered following the append operation. This is necessary

because line numbers do not exist on the disk for sequential

files, but are assigned when the file is loaded or appended.

In BASIC mode the line numbers of the appended file are

not altered. It is the user's responsibility to be sure that the

line numbers of the appended file are all greater than the larg

est line number of the original file in memory. Otherwise, it

may not be possible to edit the resulting file. To prevent this

problem, renumber the file which is to be appended, before

you try to append it.

The value of the status variable (ST) will be displayed at

the end of the Append operation, along with a reminder of the

current operating mode. ST = 40 (decimal 64) is normal for a

good LOAD operation.

This command is not intended to be used to append a

machine language file to a BASIC program. It will perform the

107

Disk Use

Append, but you will probably not be able to list the result

because the last two bytes of the BASIC program will have

been altered by the Append operation.

Appropriate error messages will be displayed for any disk

errors that might be encountered during the appending

operation.

Save a File

Syntax: <-@dr:filename,range

Where: @ = Replacement mode indicator; dr = Disk drive

number; filename = Name of file to save; range = Hex ad

dress range (BASIC mode), or Line number range (Text mode).

This command is used to save sequential files, BASIC pro

grams, or other memory images (such as machine language

programs) to disk.

SAVEs performed with the DFH Editor in Text mode will

produce sequential (SEQ) files, while SAVEs in BASIC mode

will produce program (PRG) files. This is completely indepen

dent of the actual nature of the memory contents. For ex

ample, it would be possible (but not useful) to load, a BASIC

program while in BASIC mode, then switch modes and save it

as a sequential file. Watch your mode changes!

The @ is optional. When used, it indicates that the saved

file should replace any existing file which has the same name.

If the @ is not used and a file with the specified name already

exists, a FILE EXISTS message will be displayed and the SAVE

will not be performed.

The drive number is required. A SYNTAX ERROR mes

sage will be displayed if the drive number is not included in

the command.

The filename must be fully specified and must not contain

any wild card (? or *) characters, commas, or colons.

The current DFH Editor mode is displayed when the

SAVE has been completed.

The actions of the SAVE command are dependent on the

current mode of the DFH Editor as discussed in the following

paragraphs.

108

Disk Use

Saving Sequential Files

SAVEs performed with the DFH Editor in Text mode will pro

duce sequential (SEQ) files. The line numbers are discarded as

the records are saved.

In Text mode, the range parameter can be used to specify

a range of numbered lines to be saved. For this mode the syn

tax of the SAVE command can be shown as:

<-@dr:filename,range

Rl

Rl-

-R2

R1-R2

Where: Rl = Start line number; R2 = End line number.

The range parameter is optional. If it is omitted, the entire

file in memory will be saved. The file occupies the section of

memory defined by the start-of-BASIC and end-of-program

pointers.

The range parameters are used in the same manner as for

a LIST command. For example:

350-500 = lines from 350 through 500.

650- = all from 650 through end of file.

-200 = all lines from start of file through 200.

An example of the SAVE command using the range

parameter in Text mode is:

H):TESTFILE,1540-2200

This command would save lines 1540 through 2200 as a

sequential file named TESTFILE. Notice that, in this example,

the optional @ has been left out so the SAVE would not be

executed if a file named TESTFILE already existed on drive 0.

Saving Program Files

SAVEs performed with the DFH Editor in BASIC mode will

produce program (PRG) files. In BASIC mode the range

parameter can be used to specify an address range of memory

to be saved. When used in this way, it is called a directed

SAVE. In BASIC mode the syntax of the SAVE command can

be shown as:

*-@dr:filename,$xxxx yyyy

Where: xxxx = Start address (Hex); yyyy = End address plus

one (Hex).

109

Disk Use

The range parameter ($xxxx yyyy) is optional. If it is not

used, the complete BASIC program in memory will be saved.

The directed SAVE is intended for use in saving machine

language programs. Except for special purposes, such as pro

gram relocation, BASIC programs should not be saved using

the range parameter.

An example of the SAVE command using the range

parameter in BASIC mode to save a machine language pro

gram is

^@1:TESTPROG,$7000 72AE

Note that the leading dollar sign ($) is omitted for the ending

address. This command would save the contents of the com

puter memory from hexadecimal address $7000 through

$72AD as a program file named TESTPROG. In this example

the optional @ has been included so the SAVE will automati

cally replace any existing file named TESTPROG on drive 1.

Verify a File

Syntax:] drrfilename,qualifier

Except for the primary command character], the syntax

for this command is exactly the same as the syntax for the

LOAD command.

Use this command to verify (compare) the contents of a

file on disk against the contents of the computer's memory. Its

operation is exactly the same as the LOAD command except

that the memory contents are not changed. Please refer to the

LOAD command for a complete description of the syntax.

The message 7VERIFY ERROR will be displayed if the file

on disk is not exactly the same as the file in memory.

110

Chapter 6

DFH

Applications

Examples

DFH Applications Examples

Why Samples?

You now should have a good idea of the power of the

DFH system. But the discussion so far has been about

the general use and functions of DFH. Many possible

uses perhaps came to mind as you read and experimented

with the system. Indeed, you may have already entered some

data and begun to use DFH. We suspect that some readers will

be making extensive use of the system long before they read

this chapter.

The purpose of this chapter is to illustrate, through exam

ples, the features of the DFH programs and how they can be

applied to solve your data-handling problems. The examples

were chosen to show the use of a wide variety of DFH pro

gram features. The main emphasis is placed on understanding

the reasons each feature is used and how alternate methods

could be used to obtain different results.

The DFH programs were not designed to solve some nar

rowly defined problem. They are intended to assist you in

handling data files for almost any purpose. Thus, we cannot

hope to guess exactly what you want to do, or direct you step

by step in an exact procedure to obtain the results you want.

To get the most out of this chapter, you should have

some understanding of how to use the various DFH functions.

This is explained in the chapter on operating procedures. In

the applications examples, the DFH functions are usually men

tioned in a general way without mentioning the step-by-step

operations needed to perform them.

113

DFH Applications Examples

A Magazine Cardfile

System

This application example was chosen to demonstrate

how a number of specialized files and printouts can be

obtained from a single data base. Many of the capabili

ties of the DFH programs will be used in combination with

each other.

The objective for this example is to create a cardfile sys

tem for the articles contained in several monthly magazines.

The primary requirement is that the system must eliminate

most of the time normally spent in searching for a particular

article or subject.

Some ways the system will be used are:

• To find the location of articles dealing with a particular pri

mary subject.

• To review the subjects of individual magazines in chronologi

cal order.

• To find the location of articles dealing with a particular

secondary subject. This could be a more time-consuming

search, but should be quite accurate.

There are some mistakes which are often made in a situa

tion such as this. One mistake is trying to create the ultimate

system. Simplicity is much more important than an elaborate

result. If a particular feature is not easy to implement and use,

or if it does not provide a distinct benefit, it should not be

built into the system.

Another mistake is losing sight of the fact that total time

is important, not the time for any one task. There is no point

in saving five hours a month of lookup time if it takes five

hours each month to maintain the data base for the system.

The third mistake is designing an on-line system when it

is not needed. On-line systems are fine for businesses where

the computer is left running the same program all day. In the

home you may want to use your cardfile system while the

computer is tied up running some other program.

For example, you might be using a word processor pro

gram to write a report and need to locate a reference article for

information to go in the report. Chances are, you won't shut

114

DFH Applications Examples

down the word processor to activate the cardfile system. That

situation is self-defeating. You have a system that you can't

use when you need it.

The Necessary Elements
The list of really necessary data for the system was narrowed

down to:

1. Magazine identification: This was reduced to a code number

to save typing time and file space. It really isn't too difficult

to keep a cross-reference sheet handy showing that 01

means National Geographic, and so on, especially when

there may be only a few items in the list.

2. Date: A four-digit system was chosen with year first, then

month. This allows the dates to sort correctly without any

special processing. They may be a little hard to read at first,

but remember, it's total time we are trying to save.

3. Page number: The only special consideration here is to pick

a standard number of digits and pad with leading blanks or

zeros. Again, this is to avoid the need for any special

sorting requirements.

4. Subjects: Here keywords are used rather than descriptions.

The primary keyword is listed first, and followed by as

many secondary keywords as needed.

Titles of the articles are not included because they can be

long, and we didn't like the idea of all that extra typing every

month. Also, you are not likely to remember the exact title

anyway.

A few sample records, representing three different maga

zines, are shown below:

1010"01!8405!557!volcanoes,archeology!

1020 "01!8405!626!krill,ocean,marine life!

1170 "02!8404!048!stocks,investments!

1180 "02!8404!140!disk,1541,scratching!

1210"03!8405!038!investment,sociology!

1220 "03!8405!122!herbs,natural health!

At this point you might question whether the four data

fields are in the proper order. Actually, there is no correct

order. The best way to set up the data depends on how you

intend to use it. However, the DFH programs allow you to

restructure the data anytime you wish, so you should not

worry too much about how you set it up in the beginning. We

will explore an alternate order a little later on.
115

DFH Applications Examples

Maintaining the Data File
Since the data file contains only the minimum essential infor

mation, it is quite easy to maintain. The editing feature of the

DFH programs is used to add new information to the file once

a month, or at any other time you wish.

Taking advantage of the repeating data entry capability,

the magazine ID and the date are entered with only a carriage

return. The page number is no problem, and only the choice

of keywords requires any thought.

Descriptive keywords can be obtained directly from the

titles of some articles. For others, the title will not be descrip

tive, and you will need to scan the article to see what it is

about.

Often an article will cover more than one subject. If you

can't decide on a single primary keyword because several

seem equally important, you may want to create more than

one data record for the article. Remember that creating this

type of data file is an individualized operation. You must se

lect keywords in a manner that means something to you,

never mind the rest of the world.

Although we decided to use a primary and secondary

keyword system for this example, you might just as logically

decide to use only one keyword per record and create multiple

records when more than one subject is covered. We felt that

this took up too much file space for the added benefit it pro

vided, but you should choose a method that is best for you.

In any case, using a keyword system is efficient because

you don't have to read the entire article, and the keywords

you choose will usually mean more than the title of the article.

Most important of all, the time you spend keeping the data

current can be held to a minimum.

Locating an Article
Our most common use of the cardfile system is to locate an

article or a group of articles based on the primary keyword.

We can do this using a printed output list that is updated once

a month.

When the magazines for the month have all arrived, we

have a short file-updating session. The DFH add and edit fea

tures are used to enter all the new data records into the data

file. The file is sorted on field 4 to put it in order according to

the primary keywords, and then it is printed.

116

DFH Applications Examples

The printing format was set up and saved when we first

started using the system. At first we would change the date in

the print format file each month. Later we realized that simply

discarding the previous copy would insure that we were using

the latest version. Always look for ways to avoid work.

The printed output from this operation looks something

like the following sample:

Magazine Subject List

Mag

02

02

03

03

01

02

02

02

02

01

Date

8307

8404

8405

8405

8405

8311

8301

8307

8404

8405

Page

160

140

122

038

626

271

192

224

048

557

Pagel

Subjects

disk,backup

disk,1541,scratching

herbs,natural health

investment,sociology

krill,ocean,marine life

programming,function key

programming,input

programming,usr,function

stocks,investment

volcanoes,archeology

Using this list, you can quickly locate all the articles dealing

with any primary subject without regard to when they were

published or which magazine they were in.

This one list satisfies most of our needs for locating infor

mation on any subject. The remaining needs take a variety of

forms, most of which can be satisfied by some small additional

processing.

Reference by Magazine
For some types of research it is useful to have a separate sub

ject list for each magazine with the entries sorted by date.

Working from the master data file, these lists can be prepared

quickly and easily.

The first step is to sort the master file on field 0. This is a

special sorting designation which causes sorting of entire

records without regard to field delimiters. This sorting step

groups the records for each magazine together. Within each

group the records are sorted by date, and within each date

they are sorted by page number. This order of sorting is a di

rect result of the ordering of the data within the data fields.

Next, the DFH split function is used to examine the con

tents of field 1 and create (split off) a separate file for each of

117

DFH Applications Examples

the magazine code numbers. These files should look similar to

the following examples:

File 01:

1000 "!*-@0:magfile.001

1010 "01!8405!557!volcanoes,archeology!

1020 //01!8405!626!krill/ocean/marine life!

File 02:

1000 "!<-@0:magfile.002

1010 "02!8404!048!stocks,investment!

1020"02!8404!140!disk,1541,scratching!

File 03:

1000 "!<-@0:magfile.003

1010//03!8405!038!investment/sociology!

1020 "03!8405!122!herbs,natural health!

All that remains is to print these files. Each one can be

printed with the full magazine title in the heading. The date,

page number, and keyword fields need to be printed, but there

is no point in printing the magazine ID code.

The printouts look like the following sample:

Subject Index for COMPUTE! 05-25-84 Page 1

Date Page Subject

programming,input

disk,backup

programming,usr,function

programming,function key

stocks,investment

disk,1541,scratching

You may have noticed that we did not re-sort the master

data file back into its normal order during this process. That

was not an oversight. The file will be re-sorted after the next

month's additions are made, and nothing is gained by sorting

it twice. Again, keep looking for ways to avoid work.

Reference by Date
Once in a while you may want to look at a cardfile listing

which is organized by date without regard to the source of the

articles. This can be useful for spotting trends. For example, it

might reveal that more and more articles on a particular sub

ject are being published by more than one magazine.

The data file was not originally set up to support this

particular operation, but the DFH restructuring function will

118

8301

8307

8307

8311

8404

8404

192

160

224

271

048

140

DFH Applications Examples

allow us to quickly change the order of the data fields. What

we need to do is copy the data in the original file which is or

ganized as:

Magazine Date Page Subjects

into a new data file with the data organized as:

Date Subjects Magazine Page

Using the restructuring program, we would place data

from old field 2 in new field 1, data from old field 4 in new

field 2, etc.

The new data file is then sorted on field 0. This puts the

records in order by date. Within identical date groups, the or

der will be according to subject keywords. When both the date

and primary keyword are identical, the ordering will be by

secondary keywords. A sample section of the new file might

appear as:

1010 "8301!programming,input!02!192!

1020 "8307!disk,backup!02!160!

1030 "8307!programming,usr,function!02!224!

1040 "8311!programming,function key!02!271!

1050"8404!disk,1541,scratching!02!140!

1060"8404!stocks/investment!02!048!

1070 "8405!herbs,natural health!03!122!

1080"8405!investment,sociology!03!038!

1090 "8405!krill,ocean,marine life!01!626!

1100 "8405!volcanoes,archeology!01!557!

This new ordering of the data fields allows the records to

be sorted into a sequence which satisfies our needs. Note that

the columns of printed output need not follow this new order.

The DFH printing function can print the data fields in any

order you like.

We have found that the printed output seems easier to use

when the column order is the same for all printed lists. When

we first produced a satisfactory printed output for this file

arrangement, we saved the print format file. Now it can be re

called and used whenever it is needed.

Another timesaver—for a special-purpose file like the one

we have just described, there is no reason to keep the file after

you have printed a list from it. At that time it has served its

purpose and should be scratched.

This illustrates a trap you should always avoid: having

two files to update when one will do. Every time you sit down

119

DFH Applications Examples

at the keyboard to enter or edit data, you run the risk of mak

ing errors. The more typing you do, the more errors you make,

so avoid typing whenever possible.

A Single Subject List
On some occasions, you may want to do an exhaustive search

for all articles about a particular subject without regard for

whether it was the primary subject or one of the secondary

subjects. The EXTRACT function can accomplish this very

easily.

The EXTRACT function can operate in two ways. You can

look for a word occurring in a specified place within a field, or

for a word occurring anywhere within a field. The latter

method is what we should use here, because we don't know

whether the keyword we specify will be primary or secondary.

All the records that contain the specified keyword in field

4 (the subjects field) will be saved in a new file.

This new file can be sorted in any way that suits your

needs, or it may not need to be sorted. If the master file was

already sorted by keyword (field 4) when the EXTRACT was

performed, the extracted records will still be in that order. If

that is the order you want, all you need to do is print the file.

You can probably use one of your previously prepared printing

formats.

Another possibility is to do another EXTRACT operation

on the new file using a different keyword. The resulting file

would have only those records which contain both keywords.

As you can see, there is an almost endless variety of ways

you can process even a simple data base like the one in this

example. That is one of the real advantages of the DFH pro

grams. They do not presume to know what you want to do.

They simply provide the tools for you to use in obtaining any

result you desire.

120

DFH Applications Examples

A Genealogy File

Some of your data file handling and processing problems

will be difficult, but even seemingly impossible jobs can

often be handled by careful planning.

The Genealogy File is used as an example because it re

quires handling large amounts of complex and unstructured

data. The problems that must be solved will test some limits

of the DFH programs.

Several new data-handling concepts will be introduced.

These are important because the underlying ideas can be ap

plied to many other situations. One of these concepts is the

creation of data fields that are used to control the overall data-

processing tasks. In many cases the data contained in such a

field will never be included in the final printed output.

Two data control fields will be used in this example. An

identification (ID) field is used to control data sorting, and an

operations (OP) code field is used to direct the operations of a

separate printing program.

It is worth noting that selecting the data organization and

handling procedures to produce the genealogy listing shown

in this example was not a simple task. Various options were

explored and abandoned. The question "Can this be done?"

was asked more than once. When you start working with your

own complex data sets, don't be surprised if you have the

same doubts, but don't give up too soon. The results can be

very gratifying.

The Desired Results
The desired final output from the Genealogy File is a printed

listing as shown in the following sample. (This may or may

not be the best way to present a family tree; but it works, and

it was the desired form.)

There is a separate section containing the data set for each

person. Each section starts with the ID number and name of

the person, and contains all the information about that person.

The numbers down the right side are IDs for the immedi

ate relatives (parents, spouse, and children) mentioned within

the data set. The data sets are in order by ID so that the infor

mation for any person can be located quickly and easily.

121

DFH Applications Examples

1120 HENRY STANDAGE (M*)

-BECAME U.S. CITIZEN 13 NOV 1855

-MEMBER OF THE MORMON BATTALION

ADDRESS: -CHILDHOOD IN PETWORTH ENGLAND

-MOVED TO AMERICA IN 1835

-MOVED TO UTAH IN 1847

BORN: 26 FEB 1818 LONDON ENGLAND

OCCUPATION: STOREKEEPER AND FARMER

FATHER: WILLIAM STANDAGE #1050

MOTHER: ELIZABETH SARAH (HOWARD) STANDAGE #1060

DIED: 08 MAY 1899 MESA ARIZONA

BURIED: ? ? ? MESA ARIZONA

MARRIED: SOPHRONIA ARMENIA SCOTT #1130

16 APR 1845

-MAYBE 13 APR 1845

CHILDREN: -NONE-

ADOPTED: RANSON ROSS REEVES

MARRIED: HENRIETTA ROGERS #1140

16 APR 1851 SALT LAKE CITY UTAH

CHILDREN: WILLIAM NOAH STANDAGE (M) #1160

EDA ELIZABETH STANDAGE (F) #1180

HANNAH MARINA STANDAGE (F) #1200

SARAH CAROLINE STANDAGE (F) #1220

1130 SOPHRONIA ARMENIA (SCOTT) STANDAGE (F-)

BORN: ? ? 1821

DIED: 01 JUL 1896 MESA ARIZONA

-BROKEN NECK FROM FALL

MARRIED: HENRY STANDAGE #1120

1140 HENRIETTA (ROGERS) STANDAGE (F-)

BORN: 30 MAY 1832 SHELBYVILLE OHIO

FATHER: NOAH ROGERS

MOTHER: EDA (HOLLISTER) ROGERS

DIED: 11 OCT 1898 MESA ARIZONA

BURIED: 12 OCT 1898 MESA ARIZONA

MARRIED: HENRY STANDAGE #1120

1150 WILLIAM STANDAGE (M*)

ADDRESS: -POSSIBLY EMIGRATED TO AMERICA IN 1834

BUT HIS BROTHER HENRY BELIEVED HIM TO

BE IN GLASGOW SCOTLAND IN 1860

Defining the Problems
By examining the desired output, several problems can be

identified. Let's look at these problems and the general tech

niques that are used to solve them.

First, it is obvious that the amount of information in each

data set can be quite large and the maximum amount cannot

be predicted. Also, there is nothing in the genealogy data itself

122

DFH Applications Examples

that can be used to identify the records belonging to a particu

lar data set. Since sorting will be performed, some data must

be added to each record to hold each data set together. In this

example the identification (ID) number is added for that

purpose.

When you are forced to add data to a file, you should try

to get the maximum possible benefit from that data. The ID

number provides a second benefit by becoming the primary

means of finding the data for each person in the file.

The second problem is that most of the information in

each data set is optional. This forces the use of identifying

headings (BORN:, FATHER:, MOTHER:, etc.) to produce a use

ful printed output. But these headings would take up a lot of

space in the data file, and rather than solving any problems,

they would become just another complicating factor.

This brings up the general principle that a data file should

not contain any unnecessary data. It is not obvious how to ap

ply this principle until we look at the third problem.

The third problem is that the printed output we want is

too complex to be conveniently handled by the DHF printing

routines. As it turns out, a separate printing program will

solve the complex print format problem and will allow us to

include a very small amount of information in the file which

will solve the headings problem and provide complete data

sorting control. For this example the added data will be called

the operations (OP) code.

When there is this much to be gained, it is worthwhile to

consider writing your own auxiliary processing programs to

work with the DFH system files. We have chosen that option

for this applications example to illustrate the general proce

dures involved.

The File Format
Let's take a look at the data records which produce the first

few lines of the sample output:

2050 "1120!100!HENRY STANDAGE (M*)!!

2060 "1120!101!-BECAME U.S. CITIZEN 13 NOV 1855!!

2070 "1120!102!-MEMBER OF THE MORMON BATTALION!!

2080 "1120!110!-CHILDHOOD IN PETWORTH ENGLAND!!

2090 "1120!111!-MOVED TO AMERICA IN 1835!!

2100 "1120!112!-MOVED TO UTAH IN 1847!!

2110 "1120!120!1818-02-26!LONDON ENGLAND!

123

DFH Applications Examples

2120 "1120!130!STOREKEEPER AND FARMER!!

2130 "1120!150!WILLIAM STANDAGEJ1050!

In the first field of each record is the number 1120. This is

the identification (ID) number for HENRY STANDAGE. This

is followed by a three-digit operations (OP) code number. To

gether these numbers provide the basis for all sorting that will

be required.

The OP code is also used to tell the auxiliary printing pro

gram how to handle the information in the remaining two

fields. Notice that whenever the OP code ends in 0, a heading

of some kind is printed. For example, the 100 code causes the

printing of a blank line followed by the ID number and the

subject's name, while the 110 code triggers the ADDRESS:

heading.

Now compare the record containing the 120 OP code

with the BORN: line in the sample output. See how the date

has been altered prior to printing? Dates are easy to sort if

they are represented by numbers in year-month-day order.

Since people don't read that form very well, we simply have

the print program do a conversion to keep everyone happy.

Two points are being made here. First, by writing an

auxiliary program, you can process more complex data than

would be possible with the DFH programs alone. Second, you

can simplify your processing tasks with techniques like our OP

code system.

Operations Codes
The following list shows all of the possible operations codes

that could be used in field 2. These codes dictate what type of

information should be placed in field 3 and field 4. Special

headers that will be printed in response to some codes are

shown in parentheses in field 3. Field 1 is not shown because

it always contains the ID number.

FIELD 2 FIELD 3 FIELD 4

100 NAME

101-109 misc. personal info.

110 (Address:) TEXT

111-119 misc. residence info.

120 (Born:) DATE PLACE

121-129 misc. birth info.

124

DFH Applications Examples

130

131-139

140-149

150

151-159

160

161-169

170

171-179

180

181-189

190-199

200

201-209

210

211-219

220-229

230

231-239

240

241-249

250

251-259

260

261-269

270-299

300-899

900-999

(Occupation:)

misc.

RESERVED

(Father:)

misc.

(Mother:)

misc.

(Died:)

misc. cause, etc.

(Buried:)

misc.

RESERVED

(Married #1:)

NOT USED

misc.

RESERVED

(Children:)

NAMES

NOT USED

children cont.

(Step:)

children

(Adopted:)

children

RESERVED

Used like 200-299

RESERVED

TEXT

NAME

NAME

DATE

DATE

NAME

DATE

NAME

ID number

NAMES

NAME

NAMES

NAME

NAMES

ID number

ID number

PLACE

PLACE

ID number

PLACE

ID number

ID number

ID number

ID number

ID number

ID number

for additional marriages.

The Printing Program
The auxiliary printing program that was used for genealogy

files in this example is shown in the following listing. When

this program is used with data files like the ones just de

scribed, it will produce printed output in the form shown in

this example.

Since this program is intended as an example rather than

a finished product, it does not contain any error-checking fea

tures. You should feel free to modify it (and also the data for

mat) to satisfy your own needs and desires.

125

DFH Applications Examples

This program is not intended for general use with the

other DFH programs. The DFH PRINT program is for general

use. This example is meant as an illustration of the type of

specialized printing that is possible.

Sample Auxiliary Printing Program

For mistake-proof program entry, be sure to use "The Automatic Proofreader," Chapter 9.

1000 REM SAVE "@0:EX.G.PRINT",8 :rem 243

1010 : :rem 252

1020 REM"- AN EXAMPLE PROGRAM TO FORMAT AND PRINT

{SPACE}GENEALOGY -" :rem 95
1030 REM11- FILE DATA PREPARED BY THE 'DFH1 PROGRAM

S -" :rem 218

1040 : :rem 255

1050 REM11— TOP OF MEMORY = $7900 TO PROTECT SUBRO

UTINES —" :rem 91

1060 IF PEEK (65534)=72 THEN 1080: REM'1— C64 COMP

UTER —" :rem 163

1070 POKE 52,0: POKE 53,121: GOTO 1110: REM11— PET
—•• :rem 128

1080 : POKE 55,0: POKE 56,121: REM11— C64
:rem 79

1090 : :rem 4

1100 REM11— TEST/INSTALL M.L. SUBROUTINES
:rem 124

1110 : IF PEEK(30977)=21 AND PEEK (30980)=30 THEN

{SPACE}1160 :rem 144

1120 PRINT "{RVS} LOADING DFH SUBS$79 {OFF}11
:rem 218

1130 CLR : LOAD "DFH SUBS$79",8,1 :rem 168
1140 : srem 0

1150 REM"—PROGRAM TITLE & INITIALIZATION—"
:rem 139

1160 : CR$=CHR$(13): FT%=0: FA$="DA" :rem 255

1170 RB$="{RVS}{39 SPACES}{OFF}"+CR$:rem 138
1180 PRINT "{CLR}";RB$7"{RVS}{2 SPACES}G.PRINT

{20 SPACES}05-19-84{2 SPACES}{OFF}";CR$;RB$;
:rem 253

1190 PRINT "{RVS}{4 SPACES}A PROGRAM TO PRINT FAMI

LY TREE{5 SPACES}{OFF}" :rem 187
1200 PRINT "{RVS}{4 SPACES}(GENEALOGY) DATA FILES.

{12 SPACES}{OFF}";CR$;RB$; :rem 1

1210 PRINT "{RVS}{4 SPACES} REQUIRES DFH SUBS$
79 {5 SPACES}{OFF}";CR$;RB$;"{DOWN}"

:rem 43

1220 : :rem 255

1230 DIM DA$(10),MO$(12),HD$(30) :rem 43

1240 FOR JJ=0 TO 12: READ MO$(JJ): NEXT JJ:rem 189

126

DFH Applications Examples

1250 DATA " ? ","JAN","FEB","MAR","APR","MAY","JUN
11 : rem 66

1260 DATA "JUL","AUG","SEP","OCT","NOV","DEC"
srem 172

1270 Sl$="t5 SPACES}11 :rem 243

1280 HD$(11)=S1$+"ADDRESS:{4 SPACES}": HD$(12)=S1$

+"BORN:{7 SPACES}" :rem 31
1290 HD$(13)=S1$+"OCCUPATION: ": HD$(15)=S1$+"FATH

ER:{5 SPACES}" :rem 157

1300 HD$(16)=S1$+"MOTHER:{5 SPACES}": HD$(17)=S1$+

"DIED:(7 SPACES}" :rem 208

1310 HD$(18)=S1$+"BURIED:{5 SPACES}": HD$(20)=S1$+

"MARRIED:{4 SPACES}" :rem 167

1320 HD$(21)=S1$+"{12 SPACES}": HD$(23)=S1$+"CHILD

REN:{3 SPACES}" :rem 245
1330 HD$(25)=S1$+"STEP{8 SPACES}": HD$(26)=S1$+"AD

OPTED:{4 SPACES}" :rem 241

1340 PH$="GENEALOGY DATA FOR 'STANDAGE' FAMILIES"*
CR$:rem 100

1350 PH$=PH$+"g37 T§" :rem 124

1360 : :rem 4

1370 REM" START OF MAIN PROGRAM " :rem 97

1380 : :rem 6

1390 OPEN 4,4: GOSUB 1720: REM" PAGE HEADING —

:rem 148

1400 : INPUT "DATA FILE NAME{6 SPACES}";IL$: OPEN

{SPACE}8,8,8,"0:"+IL$+",S,R" :rem 184

1410 INPUT# 8,FD$: FD$=LEFT$(FD$,1): TT=ST: GOTO 1

440 :rem 93

1420 : srem 1

1430 : PRINT# 4,CR$;: NL=NL+1: IF NL>58 THEN GOSUB

1710 :rem 147

1440 : IF TT<>0 THEN 1760 :rem 225

1450 INPUT* 8#DA$(0): TT=ST: SYS 30979: CD=VAL(DA$

(2)) :rem 116

1460 CP%=(CD+.5)/l0: IF CP%*10<>CD THEN PRINT* 4#H
D$(21);: GOTO 1600 :rem 219

1470 : :rem 6

1480 REM" PRINT PRIMARY CODE LINES " :rem 74

1490 : :rem 8

1500 IF CP%<>10 THEN 1530 :rem 224

1510 PRINT* 4,CR$;CR$;: NL=NL+2: IF NL=>58 THEN GO

SUB 1710 :rem 138

1520 PRINT* 4,DA$(1);" ";DA$(3);: GOTO 1430:rem 96

1530 : IF CP%>29 THEN CP%=CP%-10: GOTO 1530

:rem 153

1540 : :rem 4

1550 PRINT* 4,HD$(CP%); :rem 207

1560 IF CP%=12 OR CP%=17 OR CP%=18 OR CP%=21 THEN

{SPACE}1660 :rem 165

127

DFH Applications Examples

1570 : :rem 7

1580 REMM ALLIGN & PRINT ID# ' S " : rem 152

1590 : :rem 9

1600 : PRINT* 4,DA$(3);: SP=18+LEN(DA$(3)) : IP SP>

60 THEN SP=60 irem 9

1610 IF DA$(4)oM" THEN PRINT# 4,SPC(62-SP);"#";DA

$(4); :rem 55

1620 GOTO 1430 irem 202

1630 : :rem 4

1640 REM" PRINT DATE ENTRIES " :rem 198

1650 : :rem 6

1660 : PRINT* 4,RIGHT?(DA$(3),2);" ";MO$(VAL(MID$(

DA$(3),6,2))); :rem 11

1670 PRINT* 4," II;LEFT$(DA$(3)#4)7"{2 SPACES}" ;DA$
(4);: GOTO 1430 :rem 232

1680 : :rem 9

1690 REM" PRINT PAGE HEADING " :rem 160

1700 : :rem 2

1710 : FOR JJ=NL+1 TO 66: PRINT* 4,CR$;: NEXT JJ

:rem 11

1720 : PRINT* 4,PH$;CR$;CR$;: NL=3: RETURN :rem 81

1730 : :rem 5

1740 REM" TEST FOR MORE FILES " :rem 207

1750 : :rem 7

1760 : CLOSE 8: PRINT "END OF FILE" :rem 77

1770 INPUT "MORE FILES TO PRINT{3 SPACES}Y{3 LEFT}
";KB$: IF LEFT$(KB$,1)="Y" THEN 1400 :rem 218

1780 PRINT* 4: CLOSE 4: END :rem 169

128

Chapter 7

File Conversion

m

File Conversion

Converting Non-DFH

Files

There may be times when you want to use the DFH

programs on data files that were not produced by the

DFH programs. The structure of those files will prob

ably not be the same as a DFH file. However, there is a good

chance that they can be converted to the DFH structure. The

amount of effort required will obviously depend on the degree

of similarity between the two structures.

The DFH programs are quite flexible about what struc

tures they can read. If the minimum requirements for DFH

files are met, the existing files can be read and a standardized

output file will be produced.

Minimum Requirements

The minimum requirements for a data file to be read and pro

cessed by the DFH programs are:

1. The first character in the file other than a quote (the first

readable character) will be used as the delimiter for the file.

All other characters in the first record are assumed to be file

identification information, not data, and will be ignored.

2. The delimiter must not be a numeric character or a quote.

3. The first data record must contain at least as many fields as

any other record in the file. Most of the DFH programs

count the delimiters in the first data record to determine

how many fields are being used.

4. A quote must be the first character of all data records which

contain shifted characters, control characters, commas, or

colons. All DFH processing programs use the INPUT* com

mand, so the quote is necessary to handle special

characters.

5. Embedded quotes are not allowed in any record.

6. No record should contain more than 74 characters. This

permits the addition of line numbers while remaining

within the 80-character limit for onscreen editing and input

operations.

If these minimum requirements are not already met by

the existing file, some conversion will be required. Some files

131

File Conversion

can be converted quite easily using only the DFH Editor com

mands, while others may require a BASIC program to assist in

completing the conversion.

In either case, you should perform a preliminary conver

sion using the DFH Editor. This will insure uniformity within

the file and will allow you to write much simpler BASIC

conversion programs if they are needed.

Preliminary Conversion
Because the DFH Editor is a general data file editing utility, it

is well-suited to making the types of changes implied by the

minimum requirement rules.

The following procedure can be used as a preliminary

conversion process on almost any sequential data file. In the

beginning, you should follow it step by step in the order it is

presented. As you gain more experience and understanding of

the processes involved and the reasons for them, you may

want to alter the procedure to be more efficient for individual

situations.

It is very important that you not attempt any onscreen

manual editing until the preliminary conversion process has

been completed. There are some situations where premature

editing, including a simple RETURN keypress on a data line,

could severely alter the data contained in the file. Once you

understand the ways you can lose data, you can violate this

rule. Until then, play it safe and don't edit too early.

Step 1: Load and Examine:

Activate the DFH Editor, load the file you want to con

vert, and list the first few lines.

The most important thing this does is to insure that the

DFH Editor is able to handle the file. The DFH Editor cannot

handle files which have records containing more than 250

data characters, are too large to fit into the computer memory,

or contain any record terminated by more than one carriage

return character.

Due to a peculiar problem in the model 2040 disk units,

the DFH Editor had to be programmed to interpret two

consecutive carriage return characters as being the same as an

end of file.

If any of these problems exist, they must be corrected by a

preprocessing program before continuing the conversion

process.

132

File Conversion

Another reason for listing a few lines is that even a quick

examination can give you some idea of the type of data con

tained in the file and the general method of data organization.

Step 2: Find Two Unused Characters:

Use the ;FI (Find) command to find two characters which

are not used in the file. They will be used during the conver

sion and then removed. For easy reference we will call these

unused characters Ul and U2.

If you are checking for the character *, the command

would be

If no data records are displayed in response to this com

mand, then * is not used in the file. This process can be aided

by simply looking at some of the data. For example, if it ap

pears there are no shifted characters, you might try to find two

shifted characters that are not used in the file.

The two unused characters you select will only be used on

a temporary basis during the preliminary conversion. Since

they will be removed later, there should be no concern about

their contaminating the file data.

Step 3: Replace Embedded Quotes:

Use the ;FC (Find and Change) command to find all

quotes and change them to Ul. If the Ul character was an *,

this command would be

;FC/"/7

This is only the first step in eliminating all embedded

quotes. It will not be completed until much later in the pro

cess. Don't worry that we also seem to be eliminating leading

and trailing quotes. Those cases will be corrected later.

Step 4: Insert Leading Quotes:

Use the ;QT (Insert Leading Quotes) command to insert a

quote as the first character of each record. A single execution

of this command, when used without its range parameters,

will perform the needed quote insertions for every record in

the file.

While the ;QT command is executing, you might notice

error messages indicating that there are more than 74 charac

ters in some of the records. This problem will be handled

later. For now you should simply ignore the long-line error

messages.

133

File Conversion

Step 5: Remove Leading Ul Characters:

Use the ;FC (Find and Change) command to find all cases

where the new leading quotes are immediately followed by

the Ul character. The purpose of this step is to restore a single

leading quote to all the records which originally contained

leading quotes. (Recall that we changed all quotes to Ul in

step 3.)

If the Ul character was *, this command would be

;FC/"*/7

The only Ul characters remaining in the file after this step

will be replacements for embedded or trailing quotes.

Step 6: Protect Trailing Spaces:

Use the ;AD (Add Final Character) command to add the

U2 character to the end of all records in the file.

This step has two purposes. First, it provides a temporary

character to protect any trailing spaces in the data records.

(This temporary character will later be replaced with a delim

iter character.) Second, it provides a means of locating and

removing any Ul characters which were originally trailing

quotes.

If the U2 character was %, this command would be

;AD %

Step 7: Remove Trailing Quotes:

Use the ;FC (Find and Change) command to replace all

U1-U2 character combinations with U2 characters. At this time

the U1-U2 combination can exist only where the file originally

contained a trailing quote.

If the Ul character was * and the U2 character was %,

this command would be

After this step, the only Ul characters remaining in the

file will be the ones used to temporarily replace embedded

quotes. All U2 characters will be at the end of the data

records. In some cases, they will have replaced trailing quotes

which are not needed in the DFH files.

Step 8: Install Delimiters:

This step must be done in different ways depending on

whether the original data file structure used delimiter

characters.

134

File Conversion

If delimiters were not used in the original file, you must

pick one. Use the ;FI (Find) to help you find a character not al

ready used in the file. Then, use the ;FC (Find and Change)

command to replace the U2 characters with your chosen

delimiter character.

If the file contained multifield records using delimiters to

mark the field boundaries, you must execute two commands to

complete this step. First, use the ;FC command to replace all

delimiter-U2 combinations with the delimiter character. Then

use the ;FC command again to replace all remaining U2

characters with the delimiter character.

You may find some files that use a group of characters in

a particular sequence as the delimiter. Once they are identi

fied, these multiple-character delimiters can be converted ex

actly like the single-character versions. Just remember that

such groups must ultimately be reduced to single characters

because the DFH programs will accept only single-character

delimiters.

Step 9: Fix the Start of the File:

Install a first record with the delimiter as the first

nonquote character. Remember that the DFH programs expect

the file data to begin with the second record in the file.

If the first record is already being used for some type of

file identification, you can simply insert the delimiter as the

first character of that record.

If the first record contains file data, you must add a com

pletely new first record containing the delimiter as its first

character. Although the delimiter is the only required item,

you might want to create a DFH standard first record at this

time:

900 "!<-@0:filename

As illustrated here, the ! is the file delimiter. The left arrow

character is the DFH Editor's SAVE command. The advantage

of installing a complete first record is that it can be used to

execute file SAVEs without the worry of typing errors. As you

become more comfortable with file conversions, you may wish

to create a standard first line very early in the conversion pro

cess. Having such a first line makes it easy to save the file

after every few conversion steps.

Sometimes you may find files that use more than one

record for identification, setup, or other nondata information.

135

File Conversion

In those cases the extra records must be deleted because the

DFH programs would treat them as data.

Step 10: Fix Embedded Quotes:

Use the ;FI (Find) command to locate all remaining Ul

characters. These characters mark the spots where embedded

quotes existed in the original file. They must be handled in

some logical manner, but exactly what to do depends on the

nature of the data in the file and how you intend to use it.

There are cases where embedded quotes can simply be re

moved with no loss of meaning. Sometimes, where the data is

textual in nature, they might be replaced with apostrophes (')

and still convey the same meaning. The only firm rule is to

think the problem through before acting because you are

changing the actual data in the file at this step, not just

conditioning it for use with the DFH programs.

Step 11: Check for Long Records:

This final step is to check for, and possibly fix, records

containing more than 74 data characters.

The ;QT (Insert Quotes) command provides a way to do

this. When used in its simple form ;QT, it will now display

only records containing more than 74 data characters. Remem

ber, we have already insured that there are no embedded

quotes which it could find as errors, and all the records al

ready contain leading quotes, so no installation displays will

be shown. That leaves only the possibility of long-line errors

to be displayed.

If no long records are found, you are through with the

preliminary conversion process, and perhaps through with the

complete process, as we will see in a moment.

Editing Long Records
If only a few long records are found, you should take the time

to examine them closely. It is often possible to reduce the

number of characters in a line without altering the meaning of

the data.

These alterations can be done with normal onscreen

editing techniques, but this is not recommended because all

displayed characters in excess of 80 (including line numbers

and spaces) will be lost at the first RETURN and will require

manual reentry after the record has been shortened.

A much better way to edit long records is by using the

136

File Conversion

;FC command with a range parameter specifying the single

line to be altered. For example, a command to change

CALIFORNIA to CA in line 2350 could be:

;FC/CALIFORNIA/CA/,2350

As the change is made, the changed record will be dis

played and automatically checked to see if it is still too long.

If a change such as the one just described can be applied

to the complete file, simply use the ;FC command without the

range parameter. This can sometimes provide significant

reductions in overall file size—usually a good objective.

The remaining possibility for long records is that there

might be a large number of them which cannot easily be cor

rected by manual editing. The general cases of splitting long

records and combining short records will be discussed in the

next two sections, and will involve writing separate BASIC

conversion programs.

Not all long record problems can be solved. Occasionally

files with long records simply can't be split into shorter

records. Fortunately, that should not happen very often.

Combining Records
If you have done the preliminary file conversion described in

the preceding paragraphs, you may not need to do any more.

If there are no long records remaining in the file and if the

data is organized the way you want it, the conversion is

complete.

The previous discussion assumed that the fundamental

structure of the old file placed all items of each set of data in a

single record. Obviously, that will not always be the case.

In the general discussion on file structures, we noted that

one of the most common structures was the simple one data

item = one file record method. The problem of how to group

the data into sets was sidestepped at that time by implying

that the program used to process the data would also handle

the grouping, or that the groups (records) would have been

created correctly if the data was to be handled by the DFH

programs.

Now we are looking at a different situation. We are faced

with data records that already exist and need to be grouped

into new, larger, multifield records so that the data can be

handled by the DFH programs.

137

File Conversion

One of the best ways to accomplish this is to write a

BASIC program that will group each data set into a multifield

record. Each field would then contain an individual data item

(record) from the original file. The most important thing you

must know is how many data items it takes to make a set. If

this number is the same for all the sets in the file, a simple

program like the one shown below will do the job just fine.

Converting Files 1
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Chapter 9.

1000 REM SAVE "@0:EX.F.CONV-1",8 srem 249

1010 : srem 252

1020 REM11- AN EXAMPLE PROGRAM TO COMBINE GROUPS OF

SHORT RECORDS -" srem 175

1030 REM"- INTO LONGER, MULTI-FIELD RECORDS IN A N

EW FILE -"

1040 s

1050 REM11-INITIALIZE & GET FILENAMES-11

1060 s

1070 QT$=CHR$(34)s REM"-QUOTE CHARACTER-11

1080 CR$=CHR$(13)s REM"-CARRIAGE RETURN-"

1090 INPUT "OLD FILENAME{2 SPACES}";OF$
1100 INPUT "NEW FILENAME{2 SPACES}";NF$

1110 INPUT "FIELDS/RECORD ";FR

1120 s

1130 REM"-OPEN DATA FILES-"

1140 s

1150 OPEN 8,8,8, Il0s"+OF$+",S,R"

1160 OPEN 9,8,9,"0s"+NF$+",S,W"

1170 s

1180 REM"-CREATE NEW FIRST LINE-"

1190 s

1200 INPUT* 8,DE$s DE$=LEFT$(DE$,1)

1210 PRINT* 9,QT$;DE$7"«@0s";NF$7CR$;

1220 s

1230 REM"-CONVERSION ROUTINE-"

1240 s

1250 s RC=0s RO$=""

1260 s INPUT* 8,RI$s TT=STs RO$=RO$+RI$

1270 RC=RC+ls IF RC<FR THEN 1260

1280 PRINT* 9,QT$;RO$;CR$;

1290 IF TT=0 THEN 1250

1300 CLOSE 8s CLOSE 9s END

srem 131

srem 255

srem 212

srem 1

srem 94

srem 79

srem 178

srem 180

srem 15

srem 254

srem 6

srem 0

srem 35

srem 42

:rem 3

srem 154

srem 5

srem 85

srem 52

srem 255

srem 116

srem 1

srem 132

srem 138

srem 183

srem 216

srem 103

srem 108

Let's take a look at the results produced by this sample

program.

138

File Conversion

Assume that the original file contained records which we

have determined should be grouped three per set. Also, we

have already performed the preliminary conversion steps dur

ing which we selected ! as a delimiter and assigned a tem

porary filename of NAMES1. A partial listing of the file might

appear as:

1000 "!<-@0:NAMESl

1010 "MARY!

1020 '712 OAK ST.!

1030 "133-1478!

1040 "JOE!

1050 "884 ELM AVE.!

1060 "132-0808!

Running the sample program specifying NAMES2 as the

new filename and requesting three fields per record would

produce this file:

1000 "!<-@0:NAMES2

1010 "MARYS712 OAK ST.5133-1478!

1020 "JOES884 ELM AVEJ132-0808!

After combining records as shown in this example, there

is one additional step. Combining the short records may have

produced new records that are too long, so you must again

check for long records as you did in step 11 of the preliminary

conversion process.

Simply use the DFH Editor to load the file and then exe

cute the ;QT command. If no long-line errors are displayed,

the file is ready to be used by any of the DFH processing

programs.

If only a few long records are found, you should seriously

consider whether they can be corrected on an individual basis.

The procedures for this are also discussed in step 11 of the

preliminary conversion process.

On the other hand, if a high percentage of the records are

too long, you may need to consider some alternate method of

grouping the data sets. The Genealogy File example in the

applications section discusses this situation in some detail.

Splitting Long Records
If you complete the preliminary file conversion and find that

most of the records are too long, you must decide on some

method to split them. Exactly what you decide to do will, of

139

File Conversion

course, depend on the nature of the data. Here is how you

might handle a typical example.

We have casually been using name and address type data

for some previous examples. Now let's use that same type of

data for a more complex (perhaps more realistic) example. As

sume that the existing file contains long records with six fields

as follows:

Field 1: Name (Last, First, Middle)

Field 2: Address

Field 3: City, State and Zip Code

Field 4: Telephone Number(s)

Field 5: Birthdate

Field 6: Employer

The basic plan we will use in this case is to create sepa

rate records for the existing fields. This is almost the reverse of

what we did in the example on combining records, but we will

also introduce a new concept, the phantom field.

There is nothing magical about a phantom field. Even its

name is nothing special and you may wish to call it something

else depending on how it is used. (It is called an operations

code field in the Genealogy File example in the applications

chapter because of the function it performed there.) The term

phantom often seems correct because it almost never appears

in a printed output.

A phantom field is created to help control some data

processing step. In this example it will be used to help control

the data sorting process. It is assumed that there will be a

need to sort a name and address file from time to time. Let's

see why the extra help may be needed.

If we simply separated the fields of the example file into

individual records and then sorted the file, the result would be

a terrible mess. A partial solution would be to have two fields

in each record of the new file, with the first field always

containing the person's name. Now each set of data would

stay together during a sort, but not in any particular order

within the set.

Let's carry this idea further and use three fields per

record. Again put the name in the first field, but move the file

data to field 3. The second field will be a phantom field

containing a sequence number. This number would indicate

what field the data came from in the original file and would

keep the records of each set in proper order during sorting.

140

File Conversion

You may have reasoned at this point that the name (field

1 in the original file) would not need to have its own separate

record in the new file. After all, it's going to be included in all

the other records. The problem is that if the name exists only

in field 1, we must print field 1 in order to see it. Thus, we

would have the name printed five times, once for each record.

That would look messy, so let's just treat the first field as

another phantom field. Both the name (in field 1) and the se

quence number (in field 2) will be used only for sorting con

trol, and only the data (in field 3) will be printed. The first two

fields could be combined, but file maintenance editing and

new data entry using the DFH programs will be easier if they

are left separated.

Now we can take a look at a BASIC program which per

forms the conversion we have just described:

Converting Files 2
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Chapter 9.

1000 REM SAVE "@0:EX.F.CONV-2",8 :rem 250

1010 : :rem 252

1020 REM11- AN EXAMPLE PROGRAM TO SPLIT LONG MULTI-

FIELD RECORDS -" :rem 133

1030 REM"- INTO SHORTER RECORDS IN A NEW FILE -"

:rem 155

1040 : :rem 255

1050 REM"-GET FILENAMES & OPEN FILES-" :rem 135

1060 : :rem 1

1070 INPUT "OLD FILENAME{2 SPACES}";OF$:rem 176

1080 INPUT "NEW FILENAME{2 SPACES}";NF$:rem 187
1090 OPEN 8,8,8,"0:"+OF$+",S,R" :rem 38

1100 OPEN 9,8,9,"0:"+NF$+",S,W" :rem 36

1110 : :rem 253

1120 REM"-INITIALIZE & GET DELIMITER-" :rem 221

1130 : :rem 255

1140 DIM SE$(20),DA$(20) :rem 151

1150 CR$=CHR$(13): QT$=CHR$(34) :rem 108

1160 : GET #8,DE$: IF DE$=QT$ THEN 1160 :rem 137

1170 : GET #8,GT$: IF GT$<>CR$ THEN 1170 :rem 220

1180 FOR JJ=1 TO 20 :rem 184

1190 SE$(JJ)=MID$(STR$(JJ),2)+DE$:rem 48

1200 IF JJ<10 THEN SE$(JJ)="0"+SE$(JJ) :rem 208

1210 NEXT JJ :rem 151

1220 : :rem 255

1230 REM"-CREATE NEW FIRST LINE-" :rem 150

1240 : :rem 1

1250 PRINT* 9,QT$;DE$;'U@0:";NF$;CR$; :rem 56

141

File Conversion

1260 : :rem 3

1270 REMM-PUT FIELDS IN ARRAY-11 :rem 18

1280 : :rem 5

1290 : NR=1: GET #8,GT$: REM"-DISCARD QUOTE-"

:rem 184

1300 : DA$(NR) = IMI :rem 25

1310 : GET #8,GT$z TT=ST :rem 235

1320 IF GT$=CR$ THEN 1390 :rem 6

1330 DA$(NR)=DA$(NR)+GT$:rem 34

1340 IF GT$<>DE$ THEN 1310 :rem 49

1350 NR=NR+1: GOTO 1300 :rem 217

1360 : :rem 4

1370 REM"-SAVE RECORDS TO DISK-" :rem 92

1380 : :rem 6

1390 : FOR JJ=1 TO NR-1 :rem 145

1400 PRINT* 9,QT$;DA$(1);SE$(JJ);DA$(JJ);CR$;

:rem 221

1410 NEXT JJ: IF TT=0 THEN 1290 :rem 114

1420 CLOSE 8: CLOSE 9: END :rem 111

Since this is only a sample program to illustrate a process,

it does not contain any error checks or self-protection features.

Whatever problem you are actually trying to solve will un

doubtedly be a little different from the one we have described.

This program is general enough that it can be easily modified

to solve the exact problem you are facing.

Because long records are hard to illustrate on a printed

page without getting very difficult to read, we'll use short

records. You can imagine them to be long and irregular.

Assume that we have already performed the preliminary

conversion steps during which we found the delimiter to be *

and assigned a temporary filename of TESTl. A partial listing

of the file might appear as:

1000 "*^@O:TEST1

1010 "NA1*AD1*CT1*PH1*BD1*EM1*

1020 "NA2*AD2*CT2*PH2*BD2*EM2*

Running the sample program specifying TEST2 as the

new filename would produce:

1000 "*<-@0:TEST2

1010 "NAl*01*NAl*

1020 "NA1*O2*AD1*

1030 "NA1*O3*CT1*

1040 "NA1*O4*PH1*

1050 "NA1*O5*BD1*

142

File Conversion

1060 "NA1*O6*EM1*

1070 "NA2*01*NA2*

1080 "NA2*02*AD2*

1090 "NA2*03*CT2*

1100 "NA2*04*PH2*

1110 "NA2*05*BD2*

1120 "NA2*06*EM2*

Whenever a record-splitting operation, as shown in this

example, is completed, another check for any remaining long

records is a good idea. Although you might feel it unlikely

that any long records could remain, the check is easy to do

and might avoid the loss of data during later processing.

If just a few long records are found, you may be able to

correct them on an individual basis using the DFH Editor. The

;FC command is suggested due to its ability to handle long

lines.

On the other hand, if a high percentage of the records are

still too long, you will probably need to devise a new method

of splitting the records.

There are no fixed rules about file conversion. Each time

you want to convert an existing file to a structure that can be

handled by the DFH programs, the details of the problem will

be different. It is up to you to arrive at a suitable solution. All

we can do is provide a powerful set of tools and instructions

for their use.

You may also encounter some files that employ a structure

that is either impractical or impossible to convert to the DFH

format. One example of a very difficult structure is a sequen

tial file that contains only one (very long) record. There is al

most no means of even examining this type of file except with

a BASIC program which uses the GET# command to access

the data. Even the DFH Editor is of no use when the individ

ual record length exceeds 250 data characters.

143

m

The ML

Stibroutines

m

The ML Subroutines

The Subroutine

Package

In order to get full use of the explanations in this chapter,

you should be an experienced BASIC programmer. It is not

necessary to be able to understand or even read this chap

ter to get full use of the DFH programs. The purpose of this

chapter is to illustrate how the machine language subroutines

can be used in your own programs. If you're not interested in

understanding how to use these programs for other applica

tions, you should skip this chapter.

The machine language subroutines described here are

used by each of the BASIC programs in the DFH family. The

subroutine file, DFH SUBS$79, is automatically installed and

used whenever it is needed without any special action from

the user.

However, there is another way the subroutines can be

used. Each subroutine performs useful functions that can

easily be used in your own BASIC programs.

There are four machine language subroutines included in

the DFH SUBS$79 program file. When loaded they occupy

memory from $7900 (decimal 30976) to just short of $8000

(decimal 32768).

A brief summary of these functions is provided in the

following paragraphs for quick reference. The summaries will

be followed by detailed explanations and examples of how

each subroutine can be used.

Sort. This is a routine to sort string data contained in

single-dimension string arrays. Sorting can be performed on

complete records (strings) or on individual fields within the

records. Sorting can be in ascending or descending alpha

numeric order. The number of non-null items sorted is re

ported to your BASIC program.

Activate by: SYS 30976 ($7900)

Uses Variables: FA$ = Array name

FD$ = Delimiter

FO$ = Sorting order

FS°/o = Sort field number

FT% = Number of strings sorted

147

The ML Subroutines

Partition. Use this routine to separate the fields of a

multifield string into individual strings. The multifield string is

placed into the #0 element of a designated array by your

BASIC program. The routine then places the contents of each

field in the #1 through #n elements of the array and reports

the total number of fields partitioned.

Activate by: SYS 30979 ($7903)

Uses Variables: FA$ = Array name

FD$ = Delimiter

FT°/o = Number of strings sorted

Convert. This is a routine to convert strings into equiva

lent strings in WordPro character code. Your BASIC program

places the characters in a designated string variable and Con

vert leaves the results in the same string variable. The conver

sion can be to either uppercase or lowercase WordPro

characters under control of the BASIC program.

Activate by: SYS 30982 ($7906)

Uses Variables: WS$ = WordPro String

WC$ = WordPro Case

Spool. This is a routine to read and disregard any speci

fied number of records from a sequential data file on disk. It is

used with files that have been opened by a BASIC program.

When it is used to spool to a particular record, it will report

the total number of records and characters in the file to that

point. When directed to spool through an entire file, it will re

port the total number of records and characters in the file.

Activate by: SYS 30985 ($7909)

Uses Addresses: 30993-30994 = Target record number

($7911-$7912)

30991-30992 = number of records spooled

($790F-$7910)

30995-30996 = number of characters spooled

($7913-$7914)

Multifield Records
Throughout this book we talk a lot about multifield records in

sequential data files. The Sort and Partition subroutines de

pend heavily on this organization, so perhaps a short descrip

tion oriented to those functions might help. Skip ahead if you

are comfortable with multifield records.

148

The ML Subroutines

Multifield records are an efficient method of storing and

handling items of data that are related to each other in some

way. This is probably the most common of all data-handling

situations. The data for ordinary items like checkbooks, ex

pense records, name and address lists, and price lists are all of

this type. Each record (or line) in a multifield file will contain

all the related data for one entry with each item of data in its

own field.

A special character, called a delimiter, is used to mark the

transition points between adjacent data fields. This allows the

data to be fully compacted for storage because the only

nondata characters in the file are the delimiters and a leading

quote character.

A typical file of part numbers and prices, when loaded

and listed using the DFH Editor, might appear as follows:

1000 "!<-@0:PRICELIST

1010 "2200719.95!

1020 "22493124.50!

1030 "31447J4.45!

1040 "40987134.00!

In the first record, the first nonquote character is the

delimiter character used for the entire data file. In this ex

ample it is the exclamation mark (!). The remainder of the first

record contains file identification information which is set up

in the form of an DFH Editor SAVE command.

The leading quotation mark in each record allows the data

to contain characters which would normally cause problems

during an input operation. Typical characters in this class are

the comma, the colon, and most shifted characters.

The leading quote also allows the first field to contain

leading spaces or numeric characters. Data starting with nu

meric characters would normally cause trouble during

onscreen editing since the numeric characters would be inter

preted as part of the line number. The quote is discarded dur

ing INPUT operations, so it will not interfere with any type of

data processing.

A delimiter is used at the end of each data record. This al

lows the last field in the record to contain trailing spaces.

When you are setting up your own file structures, you

should seriously consider this method. Even if you have no in

tentions of using the DFH processing programs, you may still

find uses for the DFH Editor's capabilities.

149

The ML Subroutines

Both the Sort and the Partition subroutines presume a

multifield structure even though the Sort routine can be di

rected to operate on the entire record without regard to delim

iters. Obviously, Partition can do nothing without multiple

fields.

These routines don't care how the data file is structured

with regard to the file identification record or leading quotes.

They operate on data records that have already been installed

in a string data array under control of a BASIC program.

The Sort Routine
Sort is a handy machine language sorting utility. The routine

uses the Heapsort algorithm, and operates on single-dimension

string arrays that have been defined in a BASIC program.

A maximum string length of 255 characters is imposed by

BASIC, and the Sort routine will work with strings up to that

limit. If the INPUT* command is to be used, the limit is 80

characters per string. However, if the strings are to be saved in

sequential data files, a more practical maximum of 74 charac

ters is strongly recommended. This limit allows line numbers

of up to four characters to be added for onscreen data editing

under control of the DFH Editor. If the data files are to be

used with other DFH programs, the 74-character limit is

required.

The Sort routine presumes that the strings may be sub

divided into separate data fields and that sorting may be done

on the complete strings or on any single field within the

strings. The boundaries of these fields are marked by delimiter

characters:

S$(5)='7OESMITH*DENVER*133-1784*"

In this example the string array element, S$(5) contains

three fields separated by the delimiter *. The name is in field

1, city in field 2, and phone number in field 3.

The maximum number of records (strings) in the string ar

ray is defined by a DIMension statement in the BASIC pro

gram. The Sort routine will always operate on the entire array,

including all null strings. The sorting time is determined more

by the size of the array than by the amount of data in it. A

sort time of eight seconds is typical for a 1000-record array.

To illustrate how the Sort routine handles null strings,

consider the following program segment which creates a 31-

element array with string data only in elements 11 through 20.

150

The ML Subroutines

100 DIM A$(30): FOR J=ll TO 20

110 A$(J)=STR$(J): NEXT J

When the Sort routine is used on this array, the 10 non-

null strings (11 through 20) will be sorted and moved into ele

ments 0 through 9. The null strings will occupy the remaining

elements of the array. This treatment of nulls is the same

regardless of whether the sorting is in ascending or descending

order.

The Sort routine uses five dedicated BASIC variables to

define its sorting process.

FA$ Array Name (must be specified)

FT% Total Non-null Strings sorted

FD$ Delimiter (default: FD$= "*")

FS% Sort Field (default: FS%=0)

FO$ Sort Order (default: FO$="A//)

These variables are dedicated for the Sort routine in the

same sense that ST, TI, and TI$ are dedicated for Commodore

BASIC—you can use them, but only in specified ways.

The general programming procedure for using the Sort

routine in a BASIC program is:

1. Set FA$ to define the array to be sorted. If the string array

to be sorted is BX$(), use FA$="BX".

2. Set FT% = 0 to reserve a place in memory for the number of

non-null strings sorted.

3. Set FD$ to define the delimiter. If the delimiter is ! then use

FD$ = "!". If FD$ is not set, the Sort routine will use * as a

default delimiter.

4. Set FS% to select the field to be sorted. If FS% is not set,

the default will be field 0, which causes sorting of the com

plete strings including the delimiter characters.

5. Set FO$ to select the sort order. If FO$ is not defined, the

default condition will be FO$= //A", which produces a sort

in ascending order. FO$ ="D" produces a sort in descend

ing order.

6. SYS 30976 to execute the Sort routine. (Same as $7900.)

During execution of the Sort routine, a special flashing

cursor will be displayed on the screen to let you know the

program is busy sorting.

When control is returned to the BASIC program, the first

string will be located in element 0 of the array and the last

151

The ML Subroutines

non-null string will be in element FT% — 1. Actually the

strings are not moved; only the array element pointers are

changed. The result is the same and it's much faster.

An individual field in a string can be null simply by hav

ing two delimiter characters next to each other. A field is also

considered null if the field number specified for sorting is

larger than the number of fields actually contained in the

string.

Only the strings containing data in the sort field will be

sorted. The remaining strings in the array will be treated as

nulls, and due to the nature of the Heapsort algorithm, they

will be scattered through the remainder of the string array ele

ments. (Not to worry. The scattered records can be recovered

by sorting on some other field or on the entire record, a field 0

sort.)

Since FT% reports the number of non-null elements that

it has sorted, the deliberate inclusion of null fields can be used

to allow selective extraction of a part of the array contents.

There are three error messages that can be produced by

the Sort routine.

UNDEF'D FUNCTION ERROR No array name was assigned to

FA$.

FILE NOT FOUND The array assigned to FA$ was

not a string array.

DIM'D ARRAY ERROR The array assigned to FA$ had

more than one dimension.

A BASIC program illustrating the use of the Sort sub

routine is included in the programming examples at the end of

this chapter.

The Partition Routine
The Partition subroutine is a fast machine language routine

that creates separate strings from the individual fields of a

multifield string. Like Sort, it is intended to be used as a sub

routine called from a BASIC program. Due to its generalized

nature, and because equivalent routines in BASIC are very

slow, it is useful in a wide variety of situations.

The Partition routine uses three of the same dedicated

variables used by the Sort routine:

EA$ Array Name (must be specified)

FT% total fields partitioned
FD$ Delimiter (default: FD$="*")

152

The ML Subroutines

The general programming procedure for using the Par

tition routine in a BASIC program is:

1. Dimension a string array of up to 254 elements to hold the

partitioned strings. For example, DIM DA$(20) for up to 20

fields in a string.

2. Set FA$ to identify the array to be used. If the array is

DA$(), then use FA$ = //DA//.

3. Set FT%= 0 to reserve a place for the number of fields

partitioned.

4. Set FD$ to define the delimiter. If the delimiter is ! then use

FD$ = "r. If FD$ is not set, the Partition routine will use *

as the default delimiter.

5. Put the string to be partitioned in the 0 element of the

partitioning array, DA$(0) for this example.

6. SYS 30979 to execute the Partition routine. ($7903)

When control is returned to the BASIC program, FT% will

contain the number of separate strings created. The first of

these strings will be located in element 1 of the defined array,

the second string in element 2, etc. If any null fields were con

tained within the original string, the corresponding element in

the array will be null.

Array elements not needed by the Partition routine will

retain their previous contents. Thus, if you partitioned a six-

field string and then partitioned a four-field string, the array

elements 5 and 6 would still contain data from the first string.

For this reason it is important to use the value in FT% to

determine where the last valid field was placed.

The Partition routine can produce the same three error

messages as Sort. However, please notice that the DIM'D AR

RAY ERROR message now has two possible meanings.

UNDEF'D FUNCTION ERROR No array name was assigned to

FA$.

FILE NOT FOUND The array assigned to FA$ was

not a string array.

DIM'D ARRAY ERROR The array assigned to FA$ had

more than one dimension, or it

was dimensioned with more than

254 elements.

A BASIC program illustrating the use of the Partition sub

routine is included in the programming examples at the end of

this chapter.

153

The ML Subroutines

Subroutine Protection

DFH SUBS$79 can be loaded like a BASIC program, either

from the keyboard (immediate mode) or from within a BASIC

program. If you are using a Commodore 64, don't forget the ,1

at the end of the LOAD command:

LOAD "DFH SUBS$79",8,1

Because of its location at $7900, the top of memory must

be set at $7900 (or lower) to protect the program code from

strings generated by BASIC programs. This is done from the

64 keyboard by

POKE 55,0: POKE 56,121: CLR

or from the PET keyboard by

POKE 52,0: POKE 53,121: CLR

A much simpler method, from an operator's point of view,

is to load DFH SUBS$79 from within the same BASIC pro

gram that will use it. Like DFH BOOT, the BASIC program

should check to see if DFH SUBS$79 is loaded and protected.

If that has not been done, the program should lower the top of

memory and load DFH SUBS$79.

After this LOAD the computer will automatically begin

execution at the lowest-numbered line in the BASIC program.

This time the tests will pass and the BASIC program continues

execution. The program lines to perform this Test and LOAD

operation should be at or very near the start of the program.

An example for the Commodore 64:

100 IF PEEK (56)>120 THEN POKE 55,0: POKE 56,121: CLR

110 IF PEEK (30977)=19 AND PEEK (30980)=28 THEN 130

120 LOAD "DFH SUBS$79",8,1

130 REM"-- PROGRAM CONTINUES --"

For PET computers line 100 should be

100 IF PEEK (53)>120 THEN POKE 52,0: POKE 53,121: CLR

While this is obviously not foolproof, it will get the job

done in most cases, and the extra LOAD is performed only

when necessary.

More complete examples of this technique can be found in

the DFH programs.

154

The ML Subroutines

Subroutine Examples

Below is a series of BASIC program examples that illus

trate the use of the four machine language subroutines

of DFH SUBS$79. We have included these examples as

an illustration of how you might use these subroutines in your

own BASIC programs.

The first program, EX.CREATE, is used to create a sequen

tial file named TESTFILE and store it on disk. The other four

example programs will use this file for demonstration

purposes.

TESTFILE will contain a file identification line followed

by ten data records. Each data record contains three fields: an

ID number, a name, and a birthdate. The * is used as a delim

iter character.

The example programs contain REM lines to show you

what each section of code is doing. Therefore, the written

explanation for each program is quite brief.

EX.CREATE
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Chapter 9.

1000 REM SAVE "@0:EX.CREATE11,8 :rem 165

1010 : :rem 252

1020 REM"— AN EXAMPLE PROGRAM TO CREATE A TEST DA

TA —" :rem 68

1030 REM"— PILE FOR USE BY OTHER EXAMPLE PROGRAMS

—M :rem 40

1040 : :rem 255

1050 REM11— INITIALIZE —" :rem 148

1060 CR$=CHR$(13): REM11— CARRIAGE RETURN

:rem 167

1070 QT$=CHR$(34): REM"— QUOTE CHARACTER —"
:rem 184

1080 FO$="TESTFILEM: REM"— OUTPUT FILENAME —"

:rem 171

1090 : :rem 4

1100 REM"— OPEN THE DISK STORAGE FILE —" :rem 17

1110 OPEN 9,8,9,"@0:"+FO$+",S,W" :rem 102

1120 : :rem 254

1130 REM"— CREATE FIRST LINE WITH DELIMITER = * -

-11 :rem 71

1140 PRINT# 9,QT$;"*«@0:";PO$;CR$; :rem 121

1150 : :rem 1

1160 REM"— READ, PRINT, AND SAVE DATA RECORDS —"
:rem 211

155

The ML Subroutines

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

FOR JJ=1 TO 10: READ DA$: PRINT DA$

PRINT# 9,QT $;DA$;CR$;

NEXT JJ
•

■

REM"— CLOSE DISK FILE AND QUIT —"

CLOSE 9: END

:

REM"— FILE DATA, ID#*NAME*BIRTHDAY

DATA "001*TOM*05-26"

DATA "101*LA VERDA*09-22"

DATA "002*JOHN B*03-24"

DATA "102*PAT*04-28"

DATA "003*MYRON*08-15"

DATA "103*DONNA*11-10"

DATA "004*HOWARD*02-08"

DATA "104*DEMA*03-21"

DATA "005*JOHN D*08-04"

DATA "105*PEGGY*07-12"

:

:rem 37

:rem 187

:rem 158

:rem 253

:rem 119

:rem 133

:rem 0

:rem 9

:rem 245

:rem 6

:rem 117

:rem 240

:rem 161

:rem 106

:rem 199

:rem 23

:rem 122

:rem 131

:rem 3

Each of the following example programs begins with a

check to see which computer is being used. This information is

used to set the top of memory at $7900 to protect the machine

language subroutine file DFH SUBS$79. This is followed im

mediately by a check to see if the subroutines are already in

place. If not, the subroutine file is loaded.

The following program demonstrates the use of the Sort

subroutine. Data records are read from TESTFILE into the

middle of an array, and the contents of the array are printed.

The first sorting pass demonstrates a sort on field 2 in

ascending order and shows that the records are moved to the

start of the array during sorting.

The next pass demonstrates a descending order sort on

field 1. Notice that the only setup changes required are to

FS% to control the sort field and to FO$ to control the sorting

order.

The program pauses after each operation to allow exami

nation of the results on the screen.

EX.SORT
For mistake-proof program entry, be sure to use "The Automatic Proofreader/' Chapter 9.

1000 REM SAVE "@0:EX-SORT",8 :rem 57

1010 :

1020 REM"— AN EXAMPLE PROGRAM USING THE

156

:rem 252

1 SORT ' —

:rem 79

The ML Subroutines

1030 REM"— SUBROUTINE CONTAINED IN fDFH SUBS$79f

{SPACE}—" :rem 205

1040 : :rem 255

1050 REM11— TOP OF MEMORY = $7900 TO PROTECT SUBRO

UTINES —" :rem 91

1060 IF PEEK (65534)=72 THEN 1080: REM11— C64 COMP

UTER —" :rem 163

1070 POKE 52,0: POKE 53,121: GOTO 1110: REM11— PET

:rem 128

1080 : POKE 55,0: POKE 56,121: REM"— C64 —"

jrem 79

1090 : :rem 4

1100 REM"— TEST/INSTALL M.L. SUBROUTINES —"
:rem 124

1110 : IF PEEK(30977)=21 AND PEEK (30980)=30 THEN

{SPACE}1160 :rem 144
1120 PRINT "{RVS} LOADING DFH SUBS$79 {OFF}"

:rem 218

1130 CLR : LOAD "DFH SUBS$79",8,1 :rem 168

1140 : :rem 0

1150 REM"— INITIALIZE —" :rem 149

1160 : DIM DA$(20): REM"— DATA ARRAY —" :rem 231

1170 SS=30976: REM"— SORT ADDRESS $7900

:rem 13

1180 FT%=0: REM"~ RECORD COUNT —" : rem 84

1190 FA$="DA": REM"— SORT ARRAY NAME —" : rem 122

1200 : :rem 253

1210 REM"— OPEN FILE AND GET DELIMITER —":rem 68

1220 OPEN 3,8,3,"0:TESTFILE,S,R" :rem 36

1230 INPUT# 3,FD$: FD$=LEFT$(FD$,1) :rem 86

1240 : :rem 1

1250 REM"— LOAD DATA TO ARRAY ELEMENTS #5 THRU #1

4 :rem 4

1260 JA=4 :rem 197

1270 : JA=JA+1: INPUT* 3,DA$(JA): IF ST=0 THEN 127

0 :rem 90

1280 CLOSE 3 :rem 116

1290 : :rem 6

1300 REM"— DISPLAY RAW DATA —" : rem 186

1310 PRINT "{DOWN}ARRAY#","RAW DATA FROM DISK
{DOWN}" :rem 45

1320 FOR JJ=0 TO 15: PRINT JJ,DA$(JJ): NEXT JJ

:rem 217

1330 GOSUB 1480 :rem 20

1340 : srem 2

1350 REM"— SORT ON FIELD #2 AND DISPLAY RESULTS -

irem 94

1360 PRINT "{DOWN}ARRAY*"/'ASCENDING SORT ON FIELD
#2{DOWN}" :rem 249

1370 FO$="A": FS%=2: SYS SS :rem 140

157

The ML Subroutines

1380 FOR JJ=0 TO FT%-1: PRINT JJ,DA$(JJ) : NEXT JJ

:rem 150

1390 GOSUB 1480 :rem 26

1400 : :rem 255

1410 REM11— SORT ON FIELD #1 AND DISPLAY RESULTS -

-" :rem 90

1420 PRINT "{DOWN}ARRAY#M,"DESCENDING SORT ON FIEL

D #1{DOWN}" :rem 61
1430 FO$="D": FS%=1z SYS SS :rem 139

1440 FOR JJ=0 TO FT%-1: PRINT JJ,DA$(JJ) : NEXT JJ

:rem 147

1450 END :rem 161

1460 : :rem 5

1470 REM"—SUBR— WAIT FOR OPERATOR —" :rem 198

1480 : PRINT "{RVS} PRESS ANY KEY TO CONTINUE

{OFF}{DOWN}" :rem 243
1490 : GET KB$: IF KB$<>"" THEN 1490 :rem 206

1500 : GET KB$: IF KB$="" THEN 1500 :rem 129

1510 RETURN :rem 167

The next program shows how to use the Partition sub

routine to separate multifield records into individual strings.

The original records are displayed, followed immediately

by the partitioned results.

EX.PARTITION
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Chapter 9.

1000 REM SAVE "@0:EX,PARTITION",8 :rem 171

1010 : :rem 252

1020 REM11— AN EXAMPLE PROGRAM USING THE ' PARTITIO

N1 —'• :rem 193

1030 REM"— SUBROUTINE CONTAINED IN 'DFH SUBS$79'

{SPACE} — " :rem 205
1040 : :rem 255

1050 REM"— TOP OF MEMORY = $7900 TO PROTECT SUBRO

UTINES —" :rem 91

1060 IF PEEK (65534)=72 THEN 1080: REM"— C64 COMP

UTER —" :rem 163

1070 POKE 52,0: POKE 53,121: GOTO 1110: REM"— PET

:rem 128

1080 : POKE 55,0: POKE 56,121: REM"— C64 —"
:rem 79

1090 : :rem 4

1100 REM"— TEST/INSTALL M.L. SUBROUTINES —"
:rem 124

1110 : IF PEEK(30977)=21 AND PEEK (30980)=30 THEN

{SPACE}1160 :rem 144

158

The ML Subroutines

1120 PRINT "{RVS} LOADING DFH SUBS$79 {OFF}11

:rem 218

1130 CLR : LOAD "DFH SUBS$79",8,1 :rem 168

1140 : :rem 0

1150 REM"— INITIALIZE --" :rem 149

1160 : DIM DA$(20): REM"— PARTITIONING SPACE FOR

{SPACE}20 FIELDS —" :rem 82

1170 SP=30979: REM"— PARTITION ADDRESS = $7903 —

:rem 191

1180 FT%=0: REM"— PARTITIONED FIELD COUNT —"

:rem 60

1190 FA$="DA": REM"— PARTITION ARRAY NAME —"

:rem 236

1200 : :rem 253

1210 REM"— OPEN DATA FILE & GET DELIMITER —"

:rem 177

1220 OPEN 9,8,9,"0:TESTFILE,SfR" :rem 48

1230 INPUT* 9,FD$: FD$=LEFT$(FD$,1) :rem 92

1240 : :rem 1

1250 REM"— INPUT, PARTITION & DISPLAY DATA RECORD

S —" :rem 130
1260 : INPUT# 9,DL$: TT=ST :rem 149

1270 PRINT DL$:rem 11

1280 DA$(0)=DL$: SYS SP: REM"— PARTITION ~"

:rem 146

1290 PRINT "{2 SPACES}";: FOR JJ=1 TO FT%: PRINT D

A$(JJ),: NEXT JJ: PRINT :rem 178
1300 IF TT=0 THEN 1260: REM"— NEXT RECORD —"

:rem 116

1310 CLOSE 9: END :rem 133

The next is for WordPro users only. It demonstrates the use

of the Convert subroutine by taking the contents of the pre

viously prepared sequential file, TESTFILE, and creates a

WordPro file containing those data records. The WordPro file is

named WPROFILE.

Since the only way to check the results of this program is

under control of WordPro, if you do not use WordPro, you

should skip this example.

Pay special attention to the code that adds the left-arrow

character (WordPro's carriage return indicator) and fills the

remainder of the line with spaces. Each line in a finished

WordPro file should have an exact multiple of 40 characters.

This system will work for both 40- and 80-column computers.

159

The ML Subroutines

EX.CONVERT
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Chapter 9.

1000 REM SAVE "@0:EX.CONVERT",8 :rem 18

1010 : :rem 252

1020 REM"— AN EXAMPLE PROGRAM USING THE 'CONVERT1

—" :rem 40

1030 REM"— SUBROUTINE CONTAINED IN •DFH SUBS$79I

{SPACE}— " :rem 205

1040 : :rem 255

1050 REM"— TOP OF MEMORY = $7900 TO PROTECT SUBRO

UTINES —" :rem 91

1060 IF PEEK (65534)=72 THEN 1080: REM"— C64 COMP

UTER —" :rem 163

1070 POKE 52,0: POKE 53,121: GOTO 1110: REM"— PET

:rem 128

1080 : POKE 55,0: POKE 56,121: REM"— C64 —"

:rem 79

1090 : :rem 4

1100 REM11— TEST/INSTALL M.L. SUBROUTINES

:rem 124

1110 : IF PEEK(30977)=21 AND PEEK (30980)=30 THEN

{SPACE}1160 :rem 144
1120 PRINT "{RVS} LOADING DFH SUBS$79 {OFF}"

:rem 218

1130 CLR : LOAD "DFH SUBS$79",8,1 :rem 168

1140 : :rem 0

1150 REM"— INITIALIZE —" :rem 149

1160 SC=30982: REM"— CONVERT ADDRESS $7906 —"

:rem 216

1170 SP$="{40 SPACES}": REM"— 40 SPACES —"

:rem 74

1180 WC$="": REM"— UPPER CASE —" :rem 199

1190 : :rem 5

1200 REM"— OPEN DATA FILE AND WORDPRO FILE —"

:rem 43

1210 OPEN 8,8,8,"0:TESTFILE,S,R" :rem 45

1220 INPUT# 8,WS$: REM"— DISCARD FIRST LINE —"

:rem 106

1230 OPEN 9,8,9,"@0:WPROFILE,P,W" :rem 123

1240 PRINT* 9,CHR$(0);CHR$(64);: REM"— DUMMY 'LOA

D ADDRESS'=$4000 —" :rem 203

1250 : -rem 2

1260 REM"— INPUT, PRINT AND CONVERT DATA —"

:rem 252

1270 : INPUT# 8,WS$: TT=ST :rem 175

1280 PRINT WS$: :rem 96

1290 SYS SC: REM"— CONVERT WS$ TO WORDPRO CHARACT

ERS —" :rem 22

1300 * :rem 254

160

The ML Subroutines

1310 REM"— PAD WITH LEFT ARROW & SPACES TO MULTIP

LE OF 40 CHARACTERS —" :rem 53

1320 LE=LEN(WS$) :rem 146

1330 AC=39-LE-40*(LE>39)-40*(LE>79)-40*(LE>119)

:rem 186

1340 REM11— PREVIOUS LINE NOT VALID FOR STRING LEN

GTHS > 159 CHARACTERS —" :rem 58

1350 WS$=WS$+CHR$(31): REM"— ADD LEFT ARROW —"

:rem 24

1360 WS$=WS$+LEFT$(SP$,AC): REM"— ADD SPACES —"

:rem 131

1370 PRINT# 9,WS$;: REM11— SAVE LINE TO WORDPRO FI

LE —" :rem 70

1380 LC=LC+1: IF TT=0 THEN 1270: REM11— GET NEXT R

ECORD —" :rem 78

1390 : :rem 7

1400 CLOSE 8: CLOSE 9 :rem 92

1410 PRINT "{DOWN}";LC;"DATA RECORDS CONVERTED TO
{SPACE}WORDPRO" :rem 151

1420 PRINT "FORMAT.{2 SPACES}WORDPRO FILE 'WPROFIL

E1 SAVED" :rem 5

1430 PRINT "ON DISK. :rem 109

The final example program shows how to use the Spool

subroutine to read and disregard records in a file to gain ac

cess to a particular record in that file.

The program allows you to choose any one of the ten

data records in TESTFILE for spooling and display. It also dis

plays the total number of characters in the file prior to the se

lected record.

Pay special attention to the method used to compute the

POKE values for the target record number, and the method of

recovering the total character count.

EX.SPOOL
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Chapter 9.

1000 REM SAVE "@0:EX.SPOOL",8 irem 126

1010 : :rem 252

1020 REM"— AN EXAMPLE PROGRAM USING THE 'SPOOL1 -

:rem 148

1030 REM"— SUBROUTINE CONTAINED IN 'DFH SUBS$79'

{SPACE}—" :rem 205

1040 : :rem 255

1050 REM"— TOP OF MEMORY = $7900 TO PROTECT SUBRO

UTINES --" :rem 91

161

The ML Subroutines

1060 IF PEEK (65534)=72 THEN 1080: REM"— C64 COMP

UTER — •■ :rem 163

1070 POKE 52,0: POKE 53,121: GOTO 1110: REM"— PET

—" :rem 128

1080 : POKE 55,0: POKE 56,121: REM"-- C64

:rem 79

1090 : :rem 4

1100 REM"— TEST/INSTALL M.L, SUBROUTINES —"

:rem 124

1110 : IF PEEK(30977)=21 AND PEEK (30980)=30 THEN

{SPACE}1160 :rem 144
1120 PRINT "{RVS} LOADING DFH SUBS?79 {OFF}"

:rem 218

1130 CLR : LOAD "DFH SUBS?79",8,1 :rem 168

1140 : :rem 0

1150 REM"— INITIALIZE AND POKE TARGET # TO $7911-

12(2 SPACES}(L,H) —" :rem 187
1160 : SS= 30985: REM"— SPOOL ADDRESS =$7909

:rem 85

1170 : INPUT "TARGET RECORD # ";RN srem 91

1180 IF RN<1 OR RN>10 THEN 1170 :rem 62

1190 RP%=RN/256: POKE SS+9,RP% :rem 161

1200 POKE SS+8,RN-RP%/256 :rem 135
1210 : :rem 254

1220 REM"— OPEN FILE, SPOOL, AND INPUT RECORD

srem 250

1230 OPEN 5,8,6,"TESTFILE,S,R" :rem 192

1240 SYS SS: REM"— SPOOL —" :rem 15

1250 INPUT* 5,DA$: CLOSE 5 :rem 106

1260 : :rem 3

1270 REM"— PRINT RECORD AND CHARACTER COUNT

:rem 219

1280 PRINT "{DOWN}";DA$7"{DOWN}" srem 33

1290 TC=PEEK (SS+10)+PEEK (SS+11)*256 :rem 227

1300 PRINT "THE FILE CONTAINS";TC;"CHARACTERS"

:rem 38

1310 PRINT "PRIOR TO THIS RECORD.{DOWN}" :rem 251

1320 INPUT "ANOTHER RECORD{4 SPACES}y{3 LEFT}";KB$

:rem 134

1330 IF LEFT$(KB$,1)="Y" THEN 1170 :rem 214

162

Chapter 9

Entering

the Programs

u

u

u

u

u

u

u

u

G

U

LJ

U

Entering the Programs

A Beginner's Guide to

Typing In Programs

What Is a Program?
A computer cannot perform any task by itself. Like a car with

out gas, a computer has potential, but without a program, it

isn't going anywhere. Most of the programs published in this

book are written in a computer language called BASIC. BASIC

is easy to learn and is built into all Commodore 64s and PETs.

BASIC Programs
Computers can be picky. Unlike the English language, which

is full of ambiguities, BASIC usually has only one right way of

stating something. Every letter, character, or number is signifi

cant. A common mistake is substituting a letter such as O for

the numeral 0, a lowercase 1 for the numeral 1, or an upper

case B for the numeral 8. Also, you must enter all punctuation

such as colons and commas just as they appear in the book.

Spacing can be important. To be safe, type in the listings ex

actly as they appear.

Braces and Special Characters
The exception to this typing rule is when you see the braces,

such as {DOWN}. Anything within a set of braces is a special

character or characters that cannot easily be listed on a printer.

When you come across such a special statement, refer to

"How to Type In Programs."

About DATA Statements
Some of the DFH programs contain numerous DATA state

ments. These lines provide information needed by the pro

gram. These lines are especially sensitive to errors.

If a single number in any one DATA statement is

mistyped, your machine could lock up, or crash. The keyboard

and STOP key may seem dead, and the screen may go blank.

Don't panic—no damage is done. To regain control, you have

to turn off your computer, then turn it back on. This will erase

whatever program was in memory, so always save a copy of

your program before you run it. If your computer crashes, you

can load the program and look for your mistake.

165

Entering the Programs

Sometimes a mistyped DATA statement will cause an er

ror message when the program is run. The error message may

refer to the program line that READs the data. The error is still

in the DATA statements, though.

Get to Know Your Machine
You should familiarize yourself with your computer before

attempting to type in a program. Learn the statements you use

to store and retrieve programs from tape or disk. You'll want

to save a copy of your program, so that you won't have to

type it in every time you want to use it. Learn to use your ma

chine's editing functions. How do you change a line if you

made a mistake? You can always retype the line, but you at

least need to know how to backspace. Do you know how to

enter reverse video, lowercase, and control characters? It's all

explained in your computer's manuals.

In order to insure accurate entry of each program line, we

have included a checksum program. Please read the article

called "The Automatic Proofreader" before typing in any of

the programs in this book.

A Quick Review

1. Type in the program a line at a time, in order. Press

RETURN at the end of each line. Use backspace or the back

arrow to correct mistakes.

2. Check the line you've typed against the line in the book.

You can check the entire program again if you get an error

when you run the program.

166

Entering the Programs

' o make it easy to know exactly what to type when
entering one of these programs into your computer, we

have established the following listing conventions.

Generally, Commodore 64 and PET program listings will

contain words within braces which spell out any special

characters: {DOWN} would mean to press the cursor-down

key. {5 SPACES} would mean to press the space bar five

times.

To indicate that a key should be shifted (hold down the

SHIFT key while pressing the other key), the key would be

underlined in our listings. For example, S would mean to

type the S key while holding the SHIFT key. This would ap

pear on your screen as a heart symbol. If you find an under

lined key enclosed in braces (for example, {10 N}), you should

type the key as many times as indicated (in our example, you

would enter ten shifted N's).

Here is a list of some of the characters you will see in

braces and the proper keys to press:

When you

see

{CLR}

{HOME}

{UP}

DOWN}

LEFT}

RIGHT}

RVS} CTRL/9 (64) or RVS (PET)

OFF} CTRL/0 (64) or SHIFT/RVS (PET)

{SPACE} Space bar

About the quote mode: You know that you can move the

cursor around the screen with the CRSR keys. Sometimes a

programmer will want to move the cursor under program con

trol. That's why you see all the {LEFT}'s, {HOME}'s, and

{CLR}'s in our programs. The only way the computer can tell

the difference between direct and programmed cursor control

is the quote mode.

Press

SHIFT and CLR/HOME

CLR/HOME

SHIFT/tCRSRI

TCRSRI

167

Entering the Programs

Once you press the quote (the double quote, SHIFT/2),

you are in the quote mode. If you type something and then try

to change it by moving the cursor left, you'll only get a bunch

of reverse-video lines. These are the symbols for cursor left.

The only editing key that isn't programmable is the DEL key;

you can still use DEL to back up and edit the line. Once you

type another quote, you are out of quote mode.

You also go into quote mode when you INSerT spaces

into a line. In any case, the easiest way to get out of quote

mode is to just press RETURN. You'll then be out of quote

mode and you can cursor up to the mistyped line and fix it.

In order to insure accurate entry of each program line, we

have included a checksum program. Please read the article

called "The Automatic Proofreader" before typing in any of

the programs in this book.

Use the Correct Filenames
You must save each of the DFH .programs using the exact

filename listed below. Save each of the BASIC programs as

you usually would:

SAVE "filename",*

When creating the machine language programs, follow the

directions in the section "Machine Language Program Gen

erator" later in this chapter. Be sure to enter the proper

filename when prompted by the generator program.

BASIC Program Filenames

DFH BOOT

DFH SORT

DFH PRINT

DFH MERGE

DFH SWAP

DFH SPLIT

Machine Language Program Filenames

DFH SUBS$79

DFH ED.C64$90

DFH ED.PET$70

168

Entering the Programs

The Automatic

Proofreader
Charles Brannon

The listings for each of the BASIC programs contain a

trailing REM and a checksum number at the end of

each program line. These items are not a part of the

programs. They simply show the checksum number that will

be produced by the Proofreader routine as each line is entered.

For the Commodore 64 this is the same program that has

been published several times in COMPUTE! and in COM-

PUTEl's Gazette. If you are using a Commodore 64 and are al

ready familiar with operating the Proofreader program, you

can proceed immediately to type in the BASIC programs.

The Proofreader will work on all Commodore 64s and on

all PETs containing BASIC 3.0 and 4.0. It will not work on the

very earliest PETs.

The Proofreader for the PET operates exactly the same as

the one for the 64, but it is located just below the screen mem

ory, at $7F00, rather than in the tape buffer.

It is best to begin using the Proofreader with no other pro

grams loaded in memory. Therefore, before running the Proof

reader, turn your computer off then on again, and load and

run the Proofreader. The following section explains how to in

stall and use the Proofreader programs.

Preparing the Proofreader

1. Using the listing below, type in the Proofreader for your

computer. Be very careful when entering the DATA state

ments—don't type an 1 instead of a 1, an O instead of a 0,

extra commas, etc.

2. Save the Proofreader on disk at least twice before running it

for the first time. This is very important because the Proof

reader erases part of itself when you first type RUN.

3. After the Proofreader is saved, type RUN. It will check itself

for typing errors in the DATA statements and warn you if

there's a mistake. Correct any errors and save the corrected

version. Keep a copy in a safe place—you'll need it again

and again, every time you enter a program from this book.

169

Entering the Programs

4. When a correct version of the Proofreader is run, it activates

itself. You are now ready to enter a program listing. On the

64 if you press RUN/STOP-RESTORE, the Proofreader is

disabled. To reactivate it, just type the command SYS 886

and press RETURN. The PET Proofreader can only be dis

abled by cycling power.

Using the Proofreader
All listings in this book have a checksum number appended to

the end of each line, for example, :rem 123. Don't enter this

statement when typing in a program. It is just for your infor

mation. The rem makes the number harmless if someone does

type it in. It will, however, use up memory if you enter it, and

it will confuse the Proofreader, even if you entered the rest of

the line correctly.

When you type in a line from a program listing and press

RETURN, the Proofreader displays a number at the top of

your screen. This checksum number must match the checksum

number in the printed listing. If it doesn't, it means you typed

the line differently than the way it is listed. Immediately re-

check your typing. Remember, don't type the rem statement

with the checksum number; it is published only so you can

check it against the number which appears on your screen.

The Proofreader is not picky with spaces. It will not no

tice extra spaces or missing ones. This is for your convenience,

since spacing is generally not important. But occasionally

proper spacing is important, so be extra careful with spaces,

since the Proofreader will catch practically everything else that

can go wrong.

There's another thing to watch out for: If you enter a line

using abbreviations for commands, the checksum will not

match up. But there is a way to make the Proofreader check it.

After entering the line, LIST it. This eliminates the abbrevi

ations. Then move the cursor up to the line and press RE

TURN. It should now match the checksum. You can check

whole groups of lines this way.

Commodore 64 Proofreader

100 PRINT"{CLR}PLEASE WAIT...":FORI=886TO1018:READ
A:CK=CK+A:POKEI,A:NEXT

110 IF CK<>17539 THEN PRINT"{DOWN}YOU MADE AN ERRO

R":PRINT"IN DATA STATEMENTS.":END

170

Entering the Programs

120 SYS886:PRINT"{CLR}{2 DOWN}PROOFREADER ACTIVATE
D.M:NEW

886 DATA 173,036,003,201,150#208

892 DATA 001,096,141,151,003,173

898 DATA 037,003,141,152,003,169

904 DATA 150,141,036,003,169,003

910 DATA 141,037,003,169,000,133

916 DATA 254,096,032,087,241,133

922 DATA 251,134,252,132,253,008

928 DATA 201,013,240,017,201,032

934 DATA 240,005,024,101,254,133

940 DATA 254,165,251,166,252,164

946 DATA 253,040,096,169,013,032

952 DATA 210,255,165,214,141,251

958 DATA 003,206,251,003,169,000

964 DATA 133,216,169,019,032,210

970 DATA 255,169,018,032,210,255

976 DATA 169,058,032,210,255,166

982 DATA 254,169,000,133,254,172

988 DATA 151,003,192,087,208,006

994 DATA 032,205,189,076,235,003

1000 DATA 032,205,221,169,032,032

1006 DATA 210,255,032,210,255,173

1012 DATA 251,003,133,214,076,173

1018 DATA 003

PET Proofreader

1080 PRINT "{CLR}PLEASE WAIT..."

1090 FOR 1=32512 TO 32686

1100 READ A: C=C+A: POKE I,A: NEXT I

1110 IF C=23728 THEN 1140

1120 PRINT "{DOWN}THERE IS AN ERROR"

1130 PRINT "IN THE DATA STATEMENTS.": END

1140 : PRINT "{CLR}{2 DOWN}PROOFREADER ACTIVATED."

1150 POKE 52,0: POKE 53,127

1160 SYS 32512: NEW

1170 :

1180 DATA 169,076,133,112,169,013

1190 DATA 133,113,169,127,133,114

1200 DATA 096,230,119,208,002,230

1210 DATA 120,142,176,127,140,177

1220 DATA 127,104,168,104,170,072

1230 DATA 152,072,224,180,240,013

1240 DATA 224,195,240,009,174,176

1250 DATA 127,172,177,127,076,118

1260 DATA 000,165,119,141,066,127

1270 DATA 141,082,127,165,120,141

171

u
Entering the Programs

u

1280 DATA 067,127,141,083,127,173

1290 DATA 002,002,201,000,240,224

1300 DATA 201,032,240,220,169,000

1310 DATA 141,175,127,173,002,002

1320 DATA 201,000,240,022,201,032

1330 DATA 240,007,024,109,175,127

1340 DATA 141,175,127,238,082,127

1350 DATA 208,233,238,083,127,076

1360 DATA 081,127,165,216,141,178

1370 DATA 127,206,178,127,169,019

1380 DATA 032,210,255,169,018,032

1390 DATA 210,255,169,058,032,210

1400 DATA 255,174,175,127,169,000

1410 DATA 172,252,255,192,022,240

1420 DATA 006,032,217,220,076,154

1430 DATA 127,032,131,207,169,032

1440 DATA 032,210,255,032,210,255

1450 DATA 173,178,127,133,216,169

1460 DATA 013,032,210,255,076,040

1470 DATA 127

u

U

172 LJ

Entering the Programs

Machine Language

Program Generator

The three machine language program files, DFH

SUBS$79, DFH ED.C64$90, and DFH ED.PET$70, are

each quite long when entered by hand. Without some

help, they would also be terribly hard to debug to find typing

errors.

The method used to enter the DFH machine language

programs will make errors very unlikely. In general, you

would need to make a combination of four exactly compensat

ing errors to get by the error-detecting routine.

There are a number of convenience features you should

enjoy. You will be entering BASIC programs, so you can save

the partially completed program whenever you wish and com

plete the entry process in as many sessions as you like. There

will be no temporary addresses to remember. You can make

test runs as often as you like to check your typing accuracy, or

make none at all until you have entered all the data. It's your

choice, and the program will assist you in either method.

Your typing errors can be corrected one at a time as they

are found or simply noted and corrected in a single editing

session. The program does all error checks each time it is run.

It will not create the machine language file until all errors are

corrected. When the machine language file is finally created, it

is guaranteed to be correct and no debugging will be needed.

General Procedure
The| first step(in the procedure is to type in the BASIC pro

gram? ML PROG GEN. This is a reusable program which is set

up so that DATA statements can be added to it. Three dif

ferent sets of DATA statements will be transformed into three

machine language program files on disk.

When ML PROG GEN has been typed in and saved, we

will temporarily attach a very short set of DATA statements

that are designed to test various features of the program.

When testing is completed, we will strip away the DATA state

ments and save the program. This version should be left intact

for future use.

173

Entering the Programs

In three separate operations (one for each of the machine

language programs) we will modify copies of ML PROG GEN

by attaching DATA statements. Each copy will be given a new

name and saved.

The DATA statements contain the load point address of

the machine language program, all the program bytes, and

checksums for both rows and columns. All the data is in hex-

byte form, eight-bytes per line, so that it is visually compatible

with an eight-column machine language monitor display. The

hex form and the absence of commas also reduce your typing

effort.

As a double-check we have included Proofreader rems for

each of the DATA statements. This means that you can use the

Proofreader while entering the data and check each line as it

is entered. Then, when the ML PROG GEN is run, it will do a

second check of the data, as explained in the next paragraph.

This will assure that the final machine language program will

be correct.

When these BASIC programs are run, they ask for a

filename to use in saving the machine language program. The

data in each row and column is cross-checked for accuracy,

and the machine language file is created and saved. If an error

is detected, the file creation is aborted and the error is dis

played. (Be sure to respond to the prompt with the correct

filename, as shown in the first line of the DATA listing.)

If you wish, you may make a note of the DATA line num

bers containing the errors and continue with tests for any

additional errors. The errors are corrected by editing the same

as with any BASIC program. Remember to resave the program

after making corrections.

When the program finally runs to completion with no er

rors, it will have saved a completely correct machine language

program file on disk—ready to load and execute.

Programmers will find the SAVE technique in the ML

PROG GEN interesting. If the SAVE is creating a new file and

encounters an error, it simply scratches the file. However, if it

was doing a replacement SAVE, the previous file is completely

recovered during the abort following error detection. It's a

handy technique which we have never seen published. Look

at the code if you are curious—the key is a disk initialization
before closing the open write file.

174

Entering the Programs

Preparing the Generator
You arejnow ready! to enter, save, and test the code generator
program. In Chapter 10 you will find the program called ML

PROG GEN. Type this program into your computer and save

it on your disk.

Notice that the first line of the program not only contains

the program title, but is structured as a SAVE command con

tained within a remarks line. If you list this line and then type

spaces over the beginning part, you are left with a SAVE com

mand for that program. It will execute when you press RE

TURN. This type of first line is used on all our BASIC

programs to avoid typing errors while saving the programs.

Now load ML PROG GEN and add the following three

DATA lines to the end of the program. They contain two

deliberate errors to illustrate the error-checking capability of

ML PROG GEN. The DATA lines must be entered exactly as

shown to allow a valid test.

4000 DATA 00 79 4D 15 79 4C IE 79 CA

4001 DATA 4C 27 79 20 30 69 8D

4002 DATA B4 60 3B CB57 3B 96 15 QQ

Now run the program. When you are asked to enter a

filename, type something simple like TEST. You will be keep

ing this file only long enough to make sure the program is

working.

As the program runs, it should tell you that there are

errors in lines 4000 and 4001 and in columns 3, 6, 7, and 8. If

you do not get this result, you have an error in either the pro

gram or in the DATA statements. Do not proceed beyond this

point until you get this exact result.

Now you can correct the data errors by changing two

bytes in lines 4000 and 4001 so that they read:

4000 DATA 00 79 4C 15 79 4C IE 79 CA

4001 DATA 4C 27 79 20 30 79 4C 72 8D

Now save the program and then run it again. No error

messages should be produced, and the TEST file should be

saved on disk. If you get any indicated errors, you must find

the source of the problem and correct it before proceeding.

Be sure you have saved a good copy of ML PROG GEN

and then type:

LOAD"TEST",8,1

(The ,1 is for 64 users, but won't hurt the rest of you.)

175

Entering the Programs

Now spot-check a couple of locations to see if the correct

code loaded into the right addresses.

PRINT PEEK (30977) Should produce 21.

PRINT PEEK (30980) Should produce 30.

You should feel free to do a more exhaustive test if you

wish, but successful results to this point should be adequate to

insure that the program is okay.

Finally, load the ML PROG GEN program again, delete

the three DATA lines, and use program line 1000 to save the

program for future use. You can also delete the TEST file. It is

no longer needed.

Creating the Subroutines
Now that the machine language program generator has been

tested and saved, we are going to make three new programs

from it. These will be the programs which actually create the

machine language program files.

Load ML PROG GEN from disk. Then find the listing for

DFH SUBS GEN in Chapter 10. It will have only a title line

and a lot of DATA statements. Enter this program as a

modification to ML PROG GEN, which you already have in

memory. Be sure to use the line numbers as shown. We want

the new title line at the start and the DATA lines at the end.

The DATA line numbers are important because any detected

errors will be referred to by the line numbers as shown in the

listing.

Save this new program as often as you like during the

typing-in process, but be sure to use the new name contained

in the new first line. You don't want to destroy your copy of

ML PROG GEN.

When you have entered and saved the program, run it as

many times as needed to locate and correct any errors (as ex

plained above). This time, when asked for a program filename,
enter the filename:

DFH SUBSS79

You must use this exact name because the bootstrap pro

gram for the Data File Handler programs will load the sub
routines using this name.

When the program runs to completion without any de

tected errors, you will have a fully functional subroutine set

stored on disk and ready to use.

176

- Entering the Programs

n
Creating the Editor Programs

_j Now you need to repeat the process you used to create the

machine language subroutines. This time you will be creating

H the DFH Editor program. If you want the DFH Editor for both
^ the Commodore 64 and the PET, it will be repeated twice.

L_) Again, load the ML PROG GEN program and modify it

by adding the appropriate editor code for your machine. The

listing for DFH ED.6 is for the Commodore 64, and DFH ED.P

GEN is for PET computers.

When you assign the machine language program

—V filename, use DFH ED.C64S90 for Commodore 64, and DFH

ED.PET$75Tor PET computers. Once again, the filenames
must be exactly as shown because they will be loaded by the

DFH bootstrap program.

Moving from the 64 to the PET
If you have chosen to type in the DFH programs on a Com

modore 64, you will find that they will not immediately run

on a PET. This is because the LOAD point bytes were set to

$0801 when the programs were saved on the Commodore 64.

To load correctly in a PET, the LOAD point bytes need to be

changed to $0401.

Several articles have been published showing methods for

changing the LOAD point bytes, but they are not necessary in

this case. The DFH programs have a built-in capability for this

change.

Simply use the bootstrap program (DFH BOOT) with your

64 to load one of the other BASIC programs. By the time it is

loaded, your 64 will have been reconfigured to look like a

PET. At the first opportunity, exit from the program using the

Q (quit) option rather than returning to the bootstrap main menu.

Now, list the first line of the program and use the built-in

^ SAVE command to save the program.

; -> Next, load DFH BOOT. Since your 64 is now configured

_ like a PET, the program will be automatically relocated to

j ~ $0401. Do not run the program; simply list the first line and

_ use the built-in SAVE command to save DFH BOOT from its

" present location at $0401.
„ You now have both DFH BOOT, and whichever other pro-

' • gram you selected, saved with new LOAD point bytes. You

^ can now run DFH BOOT and repeat the first part of this

'- -3 procedure to resave the remainine four BASIC programs/

n 177

u

y

.y

Q

y

y

ti

y-

y-

y

u

u

u

u

u

u

u

u

G

U

LJ

U

Program Listings

Machine Language

Programs

This section contains the listings used to create the three

machine language subroutines. Please refer to Chapter

9 for complete instructions on how to enter these

programs.

The following list contains the filenames of each program

along with a very brief statement of its purpose or function.

ML PROG GEN. This is the control program for generat

ing machine language program files and storing them on disk.

The code is generated from DATA statements which are

added to ML PROG GEN. The program contains extensive er

ror checking and can only function with DATA statements

which are created by ML DATA GEN. Please refer to Chapter

9 for specific instructions for using this program.

DFH SUBS GEN. This set of DATA statements is added

to ML PROG GEN. When the combined program is run, it

will create the machine language program DFH SUBS$79 and

save it on disk for your future use. DFH SUBS$79 is the sub

routine set used by all the BASIC programs of the DFH

family.

DFH ED.P GEN. This set of DATA statements is added to

ML PROG GEN. When the combined program is run, it will

create the machine language program DFH ED.PET$70 and

save it on disk for your future use. DFH ED.PET$70 is the

PET version of the DFH Editor.

DFH ED.6 GEN. This set of DATA statements is added to

ML PROG GEN. When the combined program is run, it will

create the machine language program DFH ED.C64$90 and

save it on disk for your future use. DFH ED.C64$90 is the

Commodore 64 version of the DFH Editor.

ML PROG GEN
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Chapter 9.

1000 REM SAVE "@0:ML PROG GEN",8 :rem 209
1010 s :rem 252

1020 REM" GENERAL PROGRAM LINES ARE 1000-2000"
:rem 4

1030 : :rem 254

1070 : :rem 2

181

Program Listings

1080 PRINT M{CLR}{RVS} ML PROGRAM GENERATO

R {OFF}11 srem 204
1090 PRINT "{DOWN}THIS PROGRAM CREATES AND SAVES T

O DISK," srem 82

1100 PRINT flA MACHINE LANGUAGE PROGRAM!2 SPACES}FR
OM THE" srem 58

1110 PRINT "'DATA1 STATEMENTS IN THIS PROGRAM.

{2 SPACES}THE" srem 250

1120 PRINT "FIRST DATA LINE STARTS AT LINE '4000'"
srem 15

1130 PRINT "AND SHOULD INCREMENT BY '1'." srem 37

1140 PRINT "{DOWN}EACH DATA LINE CONTAINS NINE HEX

BYTES." srem 30

1150 PRINT "THE FIRST EIGHT BYTES REPRESENT PROGRA

M" srem 201

1160 PRINT "BYTES.{2 SPACESjTHE NINTH BYTE IS A CH

ECKSUM" srem 20

1170 PRINT "VALUE WHICH CAUSES THE TOTAL LINE SUM"
srem 208

1180 PRINT "TO EQUAL ZERO." srem 36

1190 PRINT "{DOWNjTHE FINAL LINE CONTAINS EIGHT *C

OLUMN" srera 229

1200 PRINT "CHECKSUMS1 AND A 'QQ1 TERMINATOR CODE.

srem 179

1210 PRINT "EACH COLUMN SUM VALUE CAUSES THE SUM"

srem 128

1220 PRINT "FOR THAT COLUMN OF DATA TO BE ZERO."

srem 195

1230 PRINT "{DOWNjTHE '..' CHARACTERS IN THE LAST
{SPACE}PROGRAM" :rem 215

1240 PRINT "LINE ARE USED FOR PADDING AT THE END."

srem 34

1250 GOSUB 1290$ GOTO 1420 srem 78

1260 $ srem 3

1270 REM"—SUB— WAIT FOR OPERATOR —»-" srem 159

1280 s srem 5

1290 $ PRINT "{4 SPACES}{DOWN}{RVS} PRESS ANY KEY

{SPACE}TO CONTINUE {OFF}{DOWN}" srem 3
1300 s GET KB$s IF KB$<>"" THEN 1300 srem 186

1310 s GET KB$s IF KB$="" THEN 1310 srem 127

1320 RETURN srem 166

1330 s srem 1

1340 REM11—SUB— DISK ERROR CHECK " srem 40

1350 s srem 3

1360 s INPUT* 15,EN,EM$,ET,ESs IF EN=0 OR EN=63 TH

EN RETURN srem 249

1370 IF EN>19 THEN PRINT "{RVS} DISK ERROR {OFF}"

srem 238

1380 PRINT "{RVS}"EN;EM$7ET;ES8 RETURN srem 244
1390 s srem 7

182

Program Listings

1400 REM" LINE-BY-LINE CHECKSUM TEST "

:rem 211

: :rem 0

: DIM SM(9): CR$=CHR$(13): LN=3999: EL=0

:rem 18

RE$="": OPEN 15,8,15: PRINT :rem 147

: INPUT "ML PROGRAM FILE NAME{2 SPACES}";NA$
:rem 183

: INPUT "SAVE ON DISK DRIVE #{4 SPACES}0
{3 LEFT}";DR$:rem 104
IF DR$<>"0" AND DR$<>"1" THEN 1450 :rem 119

: OPEN 8,8,8,RE$+DR$+II:"+NA$+",P,W": EC=1

:rem 41

GOSUB 1360: IF EN=0 THEN 1540 :rem 217

CLOSE 8: EC=0: IF EN<>63 THEN 1960 :rem 233

INPUT "REPLACE EXISTING FILE{3 SPACES}Y
{3 LEFT}";KB$:rem 61
IF LEFT$(KB$,1)="Y" THEN RE$="@": GOTO 1470

srem 200

GOTO 1440 :rem 202

: srem 3

: PRINT "{DOWN}TESTING DATA LINE & CREATING M
L CODE{DOWN}" :rem 126
: LN=LN+1: PRINT "{UP}";LN: READ DL$: IF RIGH

T$(DL$,2)="QQ" THEN EL=2 :rem 109
CF=0: LS=0: SP=0: CH=0 srem 132

FOR JJ=1 TO LEN(DL$)-EL: CV=ASC(MID$(DL$,JJ,1

)) srem 83

IF CV>57 AND CV<65 THEN 1650 srem 174

CV=CV-48+7*(CV>57)s IF CV<0 OR CV>15 THEN 165

0 srem 158

CH=CH+1 srem 118

IF CF=0 THEN CF=ls SP=SP+ls HN=CV*16s SM(SP)=

SM(SP)+CV*16s GOTO 1650 srem 246

CF=0s HN=HN+CVs SM(SP)=(SM(SP)+CV) AND 255

srem 73

AND (JJ<LEN(DL$)-2)) THEN P

srem 14

srem 199

THEN SP=SP+.5s CH=CH+

srem 141

1410

1420

1430

1440

1450

1460

1470

1480

1490

1500

1510

1520

1530

1540

1550

1560

1570

1580

1590

1600

1610

1620

1630

1640

1650

IF (EL=0 AND EC=l

RINT# 8,CHR$(HN);

LS=(LS+HN) AND 255

: IF MID$(DL$,JJ,1)="

1

1660 NEXT JJ: IF (LS=0 AND EL=0 AND CH=18) THEN 15

50

1670

1680

1690

1700

1710

IF EL=2 THEN 1760s REM"COL SUM

srem 149

srem 109

• srem 9

PRINT "{RVS} DATA ERROR IN LINE{2 SPACES}#";L

N;"{LEFT} {OFF}" srem 188

PRINT LN;"DATA ";DL$s GOSUB 1860 srem 0

PRINT "{RVS} C {OFF} CONTINUE CHECKING OR

{RVS} E {OFF} END ?" srem 194

183

Program Listings

1720 : GOSUB 1300: IF KB$="C" THEN PRINT "CHECKING

LINE{DOWN}": GOTO 1550 : rem 57 j_j
1730 IF KB$o"E" THEN 1720 :rem 7

1740 END :rem 163 i j

1750 : :rem 7 L-'
1760 : ER=0: EP$="{RVS} COLUMN CHECKSUM ERROR(S) I V ,

N COLUMN(S)"+CR$:rem 206 1—I
1770 FOR JJ=1 TO 8 :rem 147

1780 IF SM(JJ)<>0 THEN ER=l: EP$=EP$+STR$(JJ)+","

:rem 115

1790 NEXT JJ: IF ER=0 AND EC=l THEN 1940 :rem 55

1800 IF ER=0 THEN PRINT "NO OTHER ERRORS.": GOTO 1

960 :rem 201

1810 GOSUB 1860: PRINT LEFT$ (EP$,LEN(EP$)-l)

:rem 172

1820 END :rem 162

1830 : :rem 6

1840 REM" CLOSE ML FILES ON ERROR " :rem 172

1850 : :rem 8

1860 : IF EC=0 THEN RETURN :rem 156

1870 IF RE_$="@" THEN PRINT# 15,"I";DR$: GOTO 1890

:rem 19

1880 CLOSE 8: PRINT* 15,"S";DR$;":";NA$:rem 46

1890 : GOSUB 1360: CLOSE 8: EC=0 :rem 109

1900 PRINT "{DOWNHRVS} ML DISK FILE ABORTED.

{OFF}{DOWN}": RETURN :rem 142

1910 : :rem 5

1920 REM" PROGRAM TERMINATION " :rem 100

1930 : :rem 7

1940 : PRINT "{2 DOWN} CHECKSUMS ALL OK 11":rem 86

1950 PRINT "{DOWN}{RVS} ML PROGRAM SAVED ON DISK

{OFF}{DOWN}" :rem 82

1960 : CLOSE 8: CLOSE 15: IF EN=0 THEN END:rem 157

1970 PRINT "{RVS}{4 SPACES}PROGRAM TERMINATED
{4 SPACES}{OFF}": END :rem 92

1980 : srem 12

1990 REM" DATA FOR M.L. PROGRAM " :rem 23

2000 : :rem 252

DFH SUBS GEN U
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Chapter 9. j_J

500 REM SAVE "@0:DFH SUBS GEN",8 :rem 227

4000 DATA 00 79 4C 15 79 4C IE 79 CA :rem 220 LJ
4001 DATA 4C 27 79 20 30 79 4C 10 EF :rem 199

4002 DATA 7F 00 00 00 00 00 00 20 61 :rem 102 i ;

4003 DATA 30 79 20 C4 79 4C CD 79 68 :rem 217 L"j
4004 DATA 20 30 79 20 C4 79 4C 60 2E :rem 180

4005 DATA 7D 20 30 79 20 D8 7A 4C FC :rem 233 LJ

184
U

Program Listings

4006

4007

4008

4009

4010

4011

4012

4013

4014

4015

4016

4017

4018

4019

4020

4021

4022

4023

4024

4025

4026

4027

4028

4029

4030

4031

4032

4033

4034

4035

4036

4037

4038

4039

4040

4041

4042

4043

4044

4045

4046

4047

4048

4049

4050

4051

4052

4053

4054

4055

DATA C6

DATA 9D

DATA 7F

DATA A9

DATA 03

DATA 12

DATA 7F

DATA C4

DATA D0

DATA B9

DATA B9

DATA 85

DATA A0

DATA 8D

DATA 7F

DATA 2D

DATA 8D

DATA 7F

DATA 78

DATA 7A

DATA A5

DATA 85

DATA A5

DATA D0

DATA 0D

DATA 10

DATA 69

DATA 91

DATA 02

DATA 27

DATA 20

DATA 7A

DATA D0

DATA A4

DATA A5

DATA A5

DATA 18

DATA 0D

DATA 0A

DATA 96

DATA 00

DATA 03

DATA D6

DATA CA

DATA D0

DATA 20

DATA B5

DATA 2F

DATA 7B

DATA 9D

7E A9

20 D2

AE FE

06 8D

A2 00

A0 00

E8 C8

A0 D2

04 A9

00 00

00 00

FC A0

03 8C

86 7F

B9 2C

00 8D

8A 7F

B9 77

00 8D

20 El

0D 6A

0E E6

0F D0

44 20

20 Al

18 69

00 85

17 88

C6 0D

A5 0C

CB 7B

30 FB

02 C6

0F 20

0E 85

0A 85

26 0A

F0 04

C5 0C

7B A0

88 10

85 17

7B A2

10 F9

06 E6

96 7B

12 95

7B A5

20 CB

7B A5

20 20 D2

FF A9 00

FF E0 48

8E 7F E0

2C A2 09

BD 96 7E

C0 09 D0

AE FE FF

Dl A0 B8

8D 85 7F

85 FB B9

00 E0 48

8F 7F B9

B9 2B 00

00 8D 88

89 7F B9

B9 2F 00

00 8D 8C

8D 7F 60

7B 4C 85

85 0F A5

0E D0 02

4A A5 0E

CF 7A A6

7B 20 C0

03 85 1A

IB A0 02

10 F9 A5

C6 0C A5

D0 23 20

20 F3 7C

4C D8 7A

0F C6 0E

Al 7B 20

0A A5 0F

08 A5 0B

26 0B A5

90 0A B0

F0 33 B0

02 Bl 17

F8 18 A5

90 02 E6

02 B5 19

20 2F 7B

0A D0 02

20 D6 7B

20 CA 10

16 F0 09

7B 4C DE

17 85 1A

FF A9 59

8D 8E AE

F0 0F AF

IB F0 CC

2C A2 B6

99 Bl 33

F4 A9 9B

E0 48 F7

85 FB DA

A4 FB 17

01 00 0D

D0 02 E5

2A 00 E0

8D 87 76

7F B9 4F

2E 00 57

8D 8B 6A

7F B9 00

20 D8 97

7C 18 A5

0C 6A 35

E6 0F B2

C9 01 B5

0C A4 2D

7B A5 B7

A5 11 17

Bl 1A 8A

0C D0 46

0D D0 D7

9D 7B FD

20 CF 1C

A5 0E 0A

A6 0E Dl

C0 7B B6

85 0B 7A

85 09 86

0B C5 12

06 A5 0A

47 20 EB

99 19 D3

17 69 33

18 20 Bl

95 20 88

A5 16 A8

E6 0B 77

A2 02 BA

F9 20 91

20 9D E5

79 20 5C

A5 18 D0

:rem 1

:rem 31

:rem 84

:rem 33

:rem 198

:rem 208

:rem 21

:rem 59

:rem 15

:rem 234

:rem 197

:rem 222

:rem 244

:rem 246

:rem 11

:rem 223

:rem 20

:rem 248

:rem 220

:rem 235

:rem 242

:rem 244

:rem 252

:rem 253

:rem 223

:rem 157

:rem 195

:rem 205

:rem 249

:rem 243

:rem 251

:rem 18

:rem 253

:rem 232

:rem 238

:rem 203

:rem 195

:rem 204

:rem 228

:rem 208

:rem 179

:rem 165

:rem 211

:rem 248

:rem 218

:rem 219

:rem 191

:rem 236

:rem 10

:rem 238

185

Program Listings

4056

4057

4058

4059

4060

4061

4062

4063

4064

4065

4066

4067

4068

4069

4070

4071

4072

4073

4074

4075

4076

4077

4078

4079

4080

4081

4082

4083

4084

4085

4086

4087

4088

4089

4090

4091

4092

4093

4094

4095

4096

4097

4098

4099

4100

4101

4102

4103

4104

4105

DATA 85

DATA 17

DATA 7A

DATA FB

DATA 90

DATA CA

DATA 48

DATA CA

DATA 84

DATA CA

DATA 84

DATA EB

DATA IF

DATA E6

DATA 60

DATA 23

DATA C9

DATA FA

DATA 03

DATA 88

DATA 09

DATA 20

DATA F0

DATA 21

DATA B0

DATA 03

DATA A5

DATA A6

DATA 08

DATA 10

DATA 03

DATA A5

DATA F0

DATA 00

DATA 12

DATA A0

DATA 10

DATA 3F

DATA E9

DATA 85

DATA 02

DATA 46

DATA A9

DATA 85

DATA 7C

DATA 03

DATA CF

DATA C9

DATA 60

DATA 85

IB 20

91 1A

A0 00

60 A2

7F 95

10 Fl

B5 1C

10 F3

IF A5

F0 14

IF D0

E0 02

18 65

IE 98

A5 1C

A6 06

00 F0

7A 20

20 FA

84 19

E0 00

60 A5

03 20

D0 0C

07 C4

20 8B

19 85

0A A4

A4 09

85 17

18 A5

22 65

60 A0

88 10

00 91

02 Bl

F8 60

7C 90

4C Bl

03 C8

Bl 0C

A0 C4

2A D0

05 A2

90 04

Bl 08

20 3F

44 F0

86 0E

08 AD

96 7B

88 10

Bl FB

20 B5

03 68

60 A2

95 20

60 A6

05 Dl

E0 01

01 C8

90 02

ID 85

38 E5

85 IF

D0 03

09 20

EA 7A

7A A0

A6 07

D0 24

23 F0

8B 7B

C8 C4

IF 90

7B 60

16 68

0B 4C

86 21

A5 11

21 65

18 85

02 Bl

F8 60

17 88

17 99

A2 46

08 20

7F A0

A9 00

09 80

20 3F

04 A0

C6 A0

A9 00

85 06

7C A0

02 A9

84 0F

87 7F

A0 02

F9 4C

49 F6

03 48

9D 90

03 B5

68 95

06 A0

ID D0

D0 05

C4 1C

84 IF

ID 90

IF 85

A5 20

4C 52

EA 7A

A5 1C

01 84

A5 IF

A5 23

FB E0

Bl ID

23 90

EF 60

A5 16

85 19

Al 7B

84 22

85 18

17 85

18 CA

17 99

A0 02

10 F8

1C 00

A0 Cl

D8 7A

00 Bl

C6 0A

85 04

7C 90

00 Bl

D3 20

F0 04

A2 46

00 Bl

00 85

AD 86

85 09

Bl DC

46 IB

91 6A

BD 26

7F 45

20 5B

1C 19

00 87

0C E9

C8 B4

90 54

A5 59

02 13

IF 84

85 Fl

7B 45

20 9A

F0 57

16 2E

D0 9A

D0 8B

00 ED

Dl 48

02 C2

90 F7

48 74

60 41

A6 93

A5 59

A2 5F

17 07

D0 85

12 9B

B9 B5

60 56

88 59

20 2F

A2 99

0C 3E

F0 47

A2 8D

04 E7

0C FC

3F 3C

A0 B3

A0 31

0C F9

07 CC

7F C7

A0 92

:rem 224

:rem 210

:rem 249

:rem 227

:rem 213

:rem 205

:rem 199

:rem 200

:rem 245

:rem 232

:rem 218

:rem 219

:rem 189

:rem 251

:rem 213

:rem 191

:rem 222

:rem 19

:rem 201

:rem 233

:rem 204

:rem 235

:rem 228

:rem 207

:rem 237

:rem 185

:rem 172

:rem 253

:rem 181

:rem 189

:rem 160

:rem 214

:rem 200

:rem 201

:rem 156

:rem 186

:rem 202

:rem 233

:rem 255

:rem 220

:rem 198

:rem 222

:rem 244

:rem 231

:rem 192

:rem 163

:rem 245

:rem 210

:rem 248

:rem 220

186

Program Listings

4106

4107

4108

4109

4110

4111

4112

4113

4114

4115

4116

4117

4118

4119

4120

4121

4122

4123

4124

4125

4126

4127

4128

4129

4130

4131

4132

4133

4134

4135

4136

4137

4138

4139

4140

4141

4142

4143

4144

4145

4146

4147

4148

4149

4150

4151

4152

4153

4154

4155

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

00 Bl

Bl 08

08 69

09 A5

ED 89

08 85

C8 Bl

88 7F

09 A0

07 C8

18 A0

C8 Bl

85 08

8B 7F

24 4C

A5 09

C9 01

7A 4C

85 0C

17 18

69 00

A9 01

85 19

C0 7B

2C A6

01 84

07 E4

E4 06

12 90

19 D0

02 E6

0D E5

D4 20

A5 19

08 60

7C A9

1C A9

06 85

7B A4

13 C5

C4 12

07 20

A5 08

1C 65

00 85

88 4C

20 4B

84 1A

7D A2

20 DD

08 C5 0E

C5 0F F0

07 85 08

08 CD 88

7F 90 DA

0A C8 Bl

08 85 0D

85 08 AD

00 Bl 08

Bl 08 C5

02 Bl 08

08 65 09

CD 8A 7F

90 D5 20

B4 7F A5

85 18 A0

F0 08 20

Bl 7F A0

88 Bl 17

69 04 85

85 11 60

85 08 A9

85 1A 20

20 75 7E

06 F0 22

IF A5 05

06 F0 0E

D0 02 E6

E8 A5 IF

02 E6 1A

09 A5 0C

09 B0 B7

3F 7C B0

91 08 88

A5 0D F0

00 85 09

01 85 07

20 20 9D

12 F0 14

05 F0 0C

90 F3 88

C4 7D A5

85 19 E6

07 65 20

1C C8 C4

8D 7D A9

7D 4C D8

A9 30 A2

12 20 DD

7D A2 00

D0 07

18 18

90 02

7F A5

60 C8

08 85

18 60

89 7F

C5 03

04 F0

65 08

85 09

A5 09

D8 7A

08 85

04 Bl

D8 7A

06 Bl

85 0D

10 A5

20 85

00 85

9D 7B

A5 12

A0 00

Dl 13

E8 D0

IF C8

F0 06

E6 08

C5 08

A2 C6

0B A0

A5 1A

03 4C

85 19

85 08

7B 20

A0 00

E6 1C

A9 00

1C F0

08 18

85 20

12 B0

00 85

7A 86

04 20

7D A2

F0 0C

C8 D5

A5 AE

E6 83

09 C8

Bl C8

0C 57

AD C8

85 32

D0 06

24 9B

48 D8

68 IB

ED 02

A0 7F

17 14

17 49

A2 2A

17 9C

A5 E8

18 12

7C 80

09 92

20 6B

F0 0B

A2 D4

D0 FE

06 53

C4 B3

E6 D6

D0 57

A5 EC

A0 96

03 F3

91 Dl

D2 D5

85 2A

85 9C

C0 3D

Bl 7A

C8 5D

85 Fl

04 E3

A5 0A

A9 A5

04 0D

1A DA

15 DF

DD E6

16 9D

9D 4B

:rem 220

:rem 243

:rem 171

:rem 253

:rem 20

:rem 201

:rem 232

:rem 234

:rem 174

:rem 213

:rem 184

:rem 200

:rem 4

:rem 6

:rem 201

:rem 180

:rem 218

:rem 241

:rem 228

:rem 154

:rem 156

:rem 179

:rem 209

:rem 225

:rem 202

:rem 218

:rem 212

:rem 243

:rem 237

:rem 215

:rem 245

:rem 247

:rem 232

:rem 212

:rem 218

:rem 197

:rem 198

:rem 191

:rem 207

:rem 245

:rem 211

:rem 225

:rera 211

:rem 190

:rem 196

:rem 1

:rem 2

:rem 222

:rem 245

:rem 253

187

Program Listings

4156

4157

4158

4159

4160

4161

4162

4163

4164

4165

4166

4167

4168

4169

4170

4171

4172

4173

4174

4175

4176

4177

4178

4179

4180

4181

4182

4183

4184

4185

4186

4187

4188

4189

4190

4191

4192

4193

4194

4195

4196

4197

4198

4199

4200

4201

4202

4203

4204

4205

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

62

62

A5

E8

A2

20

45

7E

00

7A

20

7F

78

23

62

F0

62

0A

62

FE

F0

14

91

4C

B7

02

4C

9F

A2

A2

0A

0C

57

A2

0A

29

05

00

F0

10

AE

FF

2A

D0

20

EE

79

79

20

30

7F

7F

04

9D

0B

45

7E

A9

A9

38

D8

99

00

A5

7F

A9

7F

A9

7F

FF

15

ED

13

CF

4C

C7

EF

85

13

57

A5

D0

A0

E9

88

7F

F0

D0

7E

79

85

A8

C0

EC

.CF

10

D0

D0

CC

30

E8

60

29

62

D0

7E

A2

62

7F

AD

7A

77

A6

23

BD

30

BD

30

E8

C0

A5

87

C8

B3

57

4C

A7

22

2C

A0

0A

02

D3

4C

Bl

91

02

03

A9

8D

7F

AE

0D

EE

7A

79

D3

CB

FF

30

9D

A5

7F

7F

E7

A2

18

AC

99

62

AC

00

15

F0

62

9D

62

9D

E8

42

13

7F

A5

4C

C3

Bl

E0

A9

A2

C3

F0

A9

20

Bl

0C

0C

29

4C

00

13

20

8E

F0

14

EE

AD

AD

20

60

29

62

03

D0

E0

A2

14

A5

8F

78

7F

8F

AD

A4

29

7F

62

7F

62

D0

D0

CD

90

18

BC

4C

7E

7A

A2

04

20

06

00

3F

7F

C9

4C

3F

D8

8D

79

C6

7F

0B

79

0F

0F

10

CF

46

B2

7F

9D

02

01

06

A5

1C

7F

00

20

7F

8D

1A

C6

C9

7F

C9

7F

D3

19

86

09

91

F5

73

4C

D0

4C

6C

3F

A0

85

7C

A2

80

05

91

7A

0F

8D

FF

B5

EE

4C

79

79

79

7A

41

CA

E8

62

A9

D0

A5

20

20

99

20

B7

AD

7F

60

23

3A

CA

3A

CA

60

A4

7F

A5

13

4C

F5

Cl

09

45

00

7C

00

05

90

00

90

7F

0C

88

79

14

20

90

13

24

D0

CD

CD

30

24

28

9D

7F

20

04

08

20

45

77

D8

7F

8C

99

85

FE

D0

FE

D0

FE

AC

12

A5

17

60

87

4C

7E

A9

A4

03

B0

Bl

A2

05

A4

07

E4

C0

4C

8D

79

E4

D0

79

7F

03

11

12

FB

28

46

34

99

14

E5

47

82

5D

AD

CF

6A

9B

IF

2A

15

AE

Fl

AE

D7

A0

62

CC

A4

D3

62

E3

31

42

3A

0A

19

00

4D

C6

B3

Dl

07

44

BB

47

44

65

89

94

DA

4E

76

CF

58

E2

5D

:rem

:rem

:rem

:rem

:rem

:rem

:rera

:rem

:rem

15

227

197

244

220

169

214

42

232

:rem 6

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

59

16

198

222

32

34

34

35

15

249

16

236

193

i 41

:rem 4

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

245

13

240

187

227

197

206

223

:rem 5

:rem

:rem

:rem

:rem

216

231

195

248

:rem 1

:rem

:rem

:reir

:rem

:reir

199

t 11

i 57

253

i 43

:rem 3

:rem 253

:rem 6

:rem 7

srem

:rem

212

190

188

Program Listings

4206 DATA 41 24 28 30 29 2C 30 30 8E :rem 161

4207 DATA 30 2C 30 30 30 29 00 30 BB :rem 154

4208 DATA 33 2D 32 39 2D 38 34 .. 9C :rem 181

4209 DATA D6 C2 D4 63 61 25 91 15 QQ :rem 249

DFH ED.P GEN
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Chapter 9.

500 REM SAVE

4000 DATA 00

4001 DATA 4C

4002 DATA FE

4003 DATA BD

4004 DATA F7

4005 DATA 0A

4006 DATA 8D

4007 DATA BD

4008 DATA A9

4009 DATA 70

4010 DATA 86

4011 DATA B5

4012 DATA A6

4013 DATA D0

4014 DATA 74

4015 DATA AD

4016 DATA C9

4017 DATA 75

4018 DATA B6

4019 DATA 77

4020 DATA 13

4021 DATA BD

4022 DATA D0

4023 DATA 84

4024 DATA 7A

4025 DATA 70

4026 DATA 85

4027 DATA 60

4028 DATA 0B

4029 DATA 03

4030 DATA F0

4031 DATA 4D

4032 DATA 29

4033 DATA F6

4034 DATA 75

4035 DATA A9

4036 DATA 97

4037 DATA 2F

4038 DATA A9

4039 DATA A9

"@0:DFH ED.P GEN"

70 4C 0D 70 4C DE

0D 70 4C 0D 70 F3

FF E0 IB F0 ID A2

65 74 9D F9 73 CA

8E FF 87 EC FF 83

A9 87 8D F7 73 A9

F8 73 20 F2 74 A2

02 7B 95 79 CA 10

08 8D B2 78 A2 00

E4 34 98 E5 35 B0

34 84 35 4C 04 75

86 AD A2 F2 8E 0C

78 E0 02 D0 11 A6

0D BA BD 02 01 CD

F0 14 D0 02 A4 B6

A5 B5 C9 3A 90 01

20 F0 45 4C 22 7B

70 B0 03 4C 16 73

A2 00 86 81 86 05

B9 00 02 5D B4 78

C9 80 F0 13 E6 05

B3 78 10 FA BD B4

E5 F0 Cl E8 C8 D0

77 A5 05 0A AA BD

48 BD D0 7A 48 20

4C 70 00 78 AD 2A

90 AD 2B 74 85 91

BD 05 01 CD 60 74

BD 06 01 CD 61 74

20 62 74 A5 97 C9

05 CD 4D 75 F0 0B

75 A9 10 8D 4E 75

74 A5 91 CD 2B 74

AD 4E 75 F0 05 CE

D0 EC CE 4F 75 D0

04 8D 4F 75 A9 00

A9 02 85 A8 D0 D8

2C A9 5E 2C A9 5D

26 85 B3 C9 5D D0

01 2C A9 00 85 9D

.8

74 29

AE CD

6C ED

D0 C7

F0 97

B0 76

0F Dl

F8 E6

A0 56

04 12

85 43

70 7A

77 02

01 DB

A6 B6

60 05

20 D9

84 0F

A4 72

F0 55

E8 CE

78 25

El 39

Dl 19

73 5C

74 11

58 31

D0 6C

D0 BF

FF 03

8D F4

4C E9

F0 Dl

4E 89

E7 86

85 D4

A9 40

2C 40

03 00

20 3F

:rem 173

:rem 205

:rem 9

:rem 63

:rem 21

:rem 60

:rem 249

:rem 235

:rem 2

:rem 214

:rem 186

:rem 163

:rem 4

:rem 187

:rem 4

:rem 219

:rem 219

:rem 213

:rem 184

:rem 186

:rem 209

:rem 231

:rem 5

:rem 8

:rem 240

:rem 234

:rem 190

:rem 200

:rem 222

:rem 252

:rem 210

:rem 5

:rem 247

:rem 234

:rem 23

:rem 25

:rem 229

:rem 231

:rem 10

:rem 217

:rem 217

189

Program Listings

4040

4041

4042

4043

4044

4045

4046

4047

4048

4049

4050

4051

4052

4053

4054

4055

4056

4057

4058

4059

4060

4061

4062

4063

4064

4065

4066

4067

4068

4069

4070

4071

4072

4073

4074

4075

4076

4077

4078

4079

4080

4081

4082

4083

4084

4085

4086

4087

4088

4089

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

47 77 A4

74 A5 7C

5E D0 03

75 A9 60

77 20 CC

74 20 70

A5 B3 C9

F0 0C 20

0C 20 7B

74 C9 00

D3 20 4A

2C 74 A5

3E 74 85

PC A5 80

29 D0 08

86 A4 87

B3 C9 26

E9 02 85

85 FC 20

0B 20 F4

F8 7E 20

20 F8 7E

29 BF F0

A0 00 84

6E 4C 56

FF A5 80

2A A5 CA

20 08 74

03 4C D2

14 74 E6

00 20 D2

00 F0 07

1A 74 20

A9 0D 20

DA 77 AD

6F 85 D3

20 32 74

06 20 35

3B 74 20

85 D4 20

D3 20 32

5F 20 3E

D0 04 C5

72 A5 5F

20 33 7F

3E 74 D0

0D 10 03

00 Bl 77

Bl 77 29

4C ID 74

Dl D0

10 0C

4C EE

20 DE

FF A5

00 C9

5E F0

70 00

7F B0

D0 DC

74 20

D3 20

FB 20

D0 06

C9 24

86 FB

D0 1A

FB A5

F8 7E

77 4C

4D 74

20 C0

10 A5

9E A0

74 A9

D0 08

85 2B

A5 B3

7E 20

Dl E6

FF 20

C9 2C

76 00

D2 FF

B2 78

20 2F

A0 00

74 C8

2C 7F

2C 74

74 20

74 85

5F F0

20 33

C9 0D

F4 20

20 2C

C9 40

FE C9

20 47

03 4C

A5 B3

7E 4C

77 20

D2 20

2C D0

10 C9

C9 24

07 4C

A9 60

50 74

32 74

3E 74

A6 28

D0 08

84 FC

38 A5

2B E9

A2 8B

E3 71

20 47

77 A5

9D D0

60 2C

0D 20

A5 C9

20 0E

C9 5E

11 74

Dl 20

70 00

D0 F2

20 9D

A9 6E

85 D4

74 A5

Bl 77

D0 F6

AD B2

A9 6F

3E 74

60 C9

03 20

7F A5

F0 05

38 74

7F 60

D0 03

30 F0

77 A2

ID 91

C9 2E

63 68

A0 4D

41 C6

19 IE

26 92

D0 B7

ID BA

85 89

20 4B

20 02

85 77

A4 97

A6 94

A5 A9

2A 6D

00 DC

A0 1C

20 AA

74 CE

96 D8

07 FF

A0 72

D2 D4

85 11

74 15

F0 F5

4C 70

76 74

C9 B6

20 32

7B A4

4C F6

A9 D6

D3 FE

F0 82

20 83

78 AF

85 4A

85 10

30 Fl

AD 48

60 B3

20 43

24 9A

A0 15

C8 34

03 C5

25 7E

:rem 210

:rem 240

:rem 0

:rem 213

:rem 244

:rem 192

:rem 239

:rem 202

:rem 253

:rem 235

:rem 166

:rem 167

:rem 221

:rem 237

:rem 208

:rem 21

:rem 246

:rem 14

:rem 15

:rem 227

:rem 227

:rem 229

:rem 10

:rem 200

:rem 238

:rem 240

:rem 224

:rem 242

:rem 197

:rem 215

:rem 198

:rem 199

:rem 192

:rem 34

:rem 29

:rem 7

:rem 175

:rem 191

:rem 16

:rem 237

:rem 162

:rem 208

:rem 223

:rem 217

:rem 195

:rem 212

:rem 181

:rem 199

:rem 245

:rem 215

190

j
3

j
n

n
u

n

Q
O
O
O
O
O
U
Q
t
o
a
i
l
S
O
o
n
v
O
C
0
S
U
i
Q
v
O
U
i
S
)

h
r
j
^
Q

h
c
j
4
^

O
N
O
>
r
o
o

M
O
^

>
o
o

n
j

*
>
j
<
s

|
p

i
-
1
1
^

I
0
0

V
O
Q

*x
j
C
^
Q

*r
|

U
}
>
G
)

I
O

^
4

t
O

^
J

1
S
i

(S
)
S
i

t
o

(D
h

IH
(D
1

(D

(
D
(
D
(
D
(
D
(
D
(
D
(
(
(
D
(
D

3
3
3
3
3
3
3
3
3

t
O
t
O
t
O
t
O
t
O
M
t
O
t
O
l
O

3
3
3
3
3
3
3
3
n
>
h
(
g
g

(
i
>
a
>
h
3
3
3
3

3
t
O
W
H
K
J

0 3

4

K
>

C
D
0
0

C
D
C
O

0
0

C
D
0
0

0
0

0
0
0
0

O
C
D
O
^
(
t
O
<
a

^
1
^

O
\
G
\

M
Q
v
0
C
D

O
\
G
\

O
\

O
S

O
S

O
\

O
\
O
>

O
N
O
\
U
l

U
l
U
l
U
i

U
l
U
i

U
i
U
l
U
l
U
l

0
C
D
^
O
N
U
^
(
N
»
M
G
l
0
O
O
^
O
t
U
^
l
4
*
(
A
>
N
>
t
-
i
G
)
V
0
C
D
*
<
*
l
O
N
U
i
4
t
t
O
t
O
h
-
'
<
S
)

[T
y

i
P
^

nr
i
n
Q

i
^
^
^
o

G
0

*
^
^

^
C
0
^
U
i
5
l
Q
n
w
^
O
v
O
H
n
w
W
O
W
^
n

O
^
H
O
t
s
)
>
i
l
O
>
U
l
O
^
0
0

d
W
O
t
t
Q
O
I
S
l
N
J
O
U
i
^
O

^
4
^
O
^

u
i
w
n
n
Q
O
^
(
X
)
n
o
N
^
n

o
>
5
i
t
t
)
o
o
B
J
W
H
M
j
D
H

t
O

M
K
)
3
l
O
H
t
O
(
O
(
O
H
H
t
O
(
O
N
)
t
O
H
t
s
)
N
)
H

(
O
t
O
t
O
t
O
t
O
M
t
O

0
Q
^
a
)
^
O

c
c

c:
c

c
c

c
c

c

Program Listings

4190

4191

4192

4193

4194

4195

4196

4197

4198

4199

4200

4201

4202

4203

4204

4205

4206

4207

4208

4209

4210

4211

4212

4213

4214

4215

4216

4217

4218

4219

4220

4221

4222

4223

4224

4225

4226

4227

4228

4229

4230

4231

4232

4233

4234

4235

4236

4237

4238

4239

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

5B 76

00 20

20 41

FF 20

20 70

2C D0

26 D0

76 4C

17 74

DA 77

20 41

C9 00

A0 00

04 A0

02 E6

C6 5D

A0 00

5C A5

4C 62

20 1A

20 D2

65 5C

20 6B

90 01

85 B3

F0 0C

05 20

03 20

C9 23

50 72

00 91

B0 85

77 A9

47 77

06 84

D0 F9

87 20

77 20

20 92

A0 04

87 20

E0 A9

72 A5

77 A0

91 2A

C8 Bl

96 AA

2A C8

B2 78

A5 2B

20 6B

D7 7B

74 4C

6B 76

00 C9

F5 F0

09 20

ID 74

20 0B

4C 4A

76 38

F0 11

Dl 5C

00 91

5D 60

C6 5C

Bl 5C

2B 85

76 20

74 20

FF D0

85 5C

76 F0

60 68

4C 13

20 E4

E4 FF

2C 7F

D0 03

4C E4

77 A5

BA 20

24 A0

A9 60

Dl 20

20 92

23 74

A0 77

77 A9

D0 D5

Dl 77

0D 20

D2 20

FF C8

F0 07

77 85

A4 Dl

E8 E0

85 D4

85 DB

76 F0 07

B0 0B A5

13 72 20

F0 DC D0

00 F0 06

0C A5 B3

73 76 4C

20 76 00

74 A9 6E

74 20 3E

A4 9D F0

C9 01 F0

F0 07 18

5C E6 5C

A5 5C D0

60 20 5B

60 A5 2A

5D 20 62

70 00 F0

9D 7B A9

0B C8 98

90 02 E6

06 20 D7

68 20 7A

72 20 44

FF C9 20

F0 FB 60

C9 24 F0

4C 85 7F

73 A9 49

D2 85 BB

50 72 20

00 91 77

20 DE 77

A0 77 C6

77 A6 86

A9 20 20

C9 00 D0

0D 20 Dl

20 92 77

20 B3 76

D2 FF 20

41 74 4C

84 Dl Bl

C9 2C D0

80 A9 00

BD 3C 78

04 D0 F5

A5 2A 85

A9 00 85

A2 95

D2 5C

D2 68

F6 6E

C9 E8

C9 F2

33 79

20 F7

20 9F

76 Dl

11 AF

0D 6F

90 94

D0 5D

02 88

76 6A

85 9F

76 FA

03 59

0D 64

18 BC

5D 89

7B 97

77 2E

74 IF

D0 48

D0 DD

0D 48

20 Dl

A0 09

A5 9C

87 88

20 F4

A0 24

Dl D7

A5 3D

Dl 08

0C AD

77 B9

A5 E9

D0 F8

70 E9

AF 47

77 A5

F3 96

85 DD

91 49

AD D0

DA 4F

82 20

:rem 209

:rem 231

:rem 166

:rem 38

:rem 198

:rem 25

:rem 185

:rem 193

:rem 216

:rem 247

:rem 208

:rem 216

:rem 188

:rem 218

:rem 212

:rem 235

:rem 221

:rem 237

:rem 164

:rem 216

:rem 5

:rem 218

:rem 204

:rem 175

:rem 183

:rem 244

:rem 19

:rem 215

:rem 217

:rem 211

:rem 233

:rem 182

:rem 183

:rem 206

:rem 215

:rem 231

:rem 164

:rem 224

:rem 211

:rem 220

:rem 205

:rem 242

:rem 213

:rem 4

:rem 238

:rem 232

:rem 6

:rem 22

:rem 8

:rem 220

193

Program Listings

4240

4241

4242

4243

4244

4245

4246

4247

4248

4249

4250

4251

4252

4253

4254

4255

4256

4257

4258

4259

4260

4261

4262

4263

4264

4265

4266

4267

4268

4269

4270

4271

4272

4273

4274

4275

4276

4277

4278

4279

4280

4281

4282

4283

4284

4285

4286

4287

4288

4289

DATA 85

DATA 72

DATA F0

DATA BA

DATA C9

DATA 20

DATA Dl

DATA D2

DATA D2

DATA 77

DATA 4C

DATA FF

DATA 85

DATA 78

DATA 20

DATA 77

DATA 60

DATA 44

DATA 45

DATA 54

DATA 48

DATA 56

DATA 49

DATA 23

DATA 2C

DATA 20

DATA 92

DATA 20

DATA 4B

DATA 0D

DATA 12

DATA 4D

DATA 42

DATA 44

DATA 45

DATA 2A

DATA 27

DATA 20

DATA 4E

DATA CE

DATA 41

DATA 3B

DATA D5

DATA 4D

DATA 3B

DATA CE

DATA 00

DATA 53

DATA 4E

DATA 41

83 60

18 A5

F0 D0

E0 03

FF A5

EE 77

20 C0

20 41

7E A2

A5 96

D2 FF

4C 3B

D3 A9

85 D4

C6 FF

20 D2

12 20

45 44

20 0D

41 20

41 52

49 4E

53 4B

20 53

57 93

45 44

0D 00

45 44

49 4C

20 4F

20 54

4F 44

41 53

45 20

4E 44

3D 24

54 20

4E 45

45 20

BE AF

C4 3B

44 C5

3B 46

C2 3B

51 D4

BB 00

00 00

4B 20

44 53

44 20

20 CC

5F 65

ID 20

F0 E5

87 85

85 87

77 20

74 20

38 A0

20 0A

20 D2

74 E6

0E 85

4C 53

4C CF

FF E8

49 4D

20 51

0D 12

3E 37

20 0D

47 20

20 44

54 3D

12 20

49 54

12 20

49 54

4C 45

4F 50

45 58

45 20

49 43

0D 0D

49 4E

12 20

41 4C

58 54

0D FF

A6 DD

41 D5

3B 45

C3 3B

4D CB

3B 52

00 00

00 20

43 4F

0D 20

50 52

FF 20

60 C9

CC FF

A6 BB

86 A2

A4 96

CC FF

70 72

05 20

7F A9

FF 20

Dl E6

D2 AD

74 A6

FF BD

88 D0

42 45

55 4F

20 44

34 20

0D 53

12 20

45 56

24 2C

44 46

4F 52

44 46

4F 52

44 20

53 21

54 20

0D 12

20 4D

41 50

47 20

43 41

54 45

20 4C

FF 52

DE DF

3B 43

C4 3B

46 C9

3B 4D

CE 3B

00 00

20 44

4D 4D

20 4C

4F 47

70 ID

60 84

A6 A2

4C El

0E 51

F0 45

A5 48

4C 0B

F4 ID

20 DC

CC 06

Dl 98

B2 3B

D2 A4

FF 45

F6 62

44 0D

54 CA

41 CA

43 3F

41 57

44 36

20 FA

53 36

48 E6

20 F9

48 5D

20 F9

92 99

20 51

20 49

20 7C

4F E2

50 5C

20 0B

4E 71

52 ED

49 EC

55 9B

3B 4A

D3 59

45 F8

3B 62

D4 42

55 B5

00 77

49 33

41 D5

4F 33

52 Dl

:rem 212

:rem 199

:rem 25

:rem 26

:rem 254

:rem 226

:rem 248

:rem 174

:rem 227

:rem 243

:rem 16

:rem 26

:rem 11

:rem 232

:rem 87

:rem 1

:rem 166

:rem 190

:rem 182

:rem 169

:rem 161

:rem 155

:rem 186

:rem 164

:rem 181

:rem 182

:rem 167

:rem 184

:rem 207

:rem 177

:rem 133

:rem 192

:rem 187

:rem 172

:rem 188

:rem 174

:rem 191

:rem 214

srem 11

:rem 130

:rem 216

:rem 239

:rem 240

srem 21

:rem 249

:rem 167

:rem 109

:rem 222

:rem 200

:rem 173

194

Program Listings

4290

4291

4292

4293

4294

4295

4296

4297

4298

4299

4300

4301

4302

4303

4304

4305

4306

4307

4308

4309

4310

4311

4312

4313

4314

4315

4316

4317

4318

4319

4320

4321

4322

4323

4324

4325

4326

4327

4328

4329

4330

4331

4332

4333

4334

4335

4336

4337

4338

4339

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

41

45

50

47

20

56

52

4F

20

55

20

41

52

54

20

47

54

20

4D

4E

45

44

49

53

4E

52

45

49

41

49

44

53

53

0D

48

0D

54

20

53

44

54

42

20

4E

41

57

20

20

54

0D

4D

58

45

52

54

45

4F

52

20

4E

50

56

41

45

54

20

45

4C

42

47

4E

45

4E

45

20

41

45

4E

4E

4E

20

0D

49

4B

20

53

20

4D

45

49

45

45

4C

2D

4E

20

44

44

4F

2D

53

54

4E

41

45

52

47

20

4C

20

52

45

4D

58

52

43

52

49

45

45

20

4C

45

20

44

53

4E

44

47

47

53

53

43

49

45

45

45

4F

52

4E

0D

52

49

4E

43

43

49

46

52

55

20

0D

44

4D

58

49

52

54

4F

42

47

20

53

54

41

48

0D

4E

52

20

43

45

53

53

4F

45

20

20

45

53

54

45

20

4C

44

54

44

44

54

47

52

20

4E

45

45

4D

53

48

20

31

4F

20

20

53

54

46

41

45

41

41

0D

50

20

0D

49

41

41

45

0D

53

41

54

0D

43

57

20

55

26

20

0D

52

54

4D

4C

49

20

49

45

20

20

45

54

45

57

4C

44

50

20

4D

2D

52

20

50

20

0D

59

4D

58

44

53

20

52

4F

41

4C

52

55

20

43

43

53

45

45

52

4E

53

50

20

53

46

49

20

4F

20

54

54

54

0D

4C

51

4E

45

53

20

20

29

4C

45

45

2D

20

41

52

4F

20

20

53

54

2F

49

20

4F

52

44

49

41

54

4E

48

52

45

20

52

45

0D

43

0D

43

54

49

4E

42

44

44

4F

45

4F

49

45

55

55

58

0D

28

4E

0D

41

44

4E

52

54

50

4F

52

20

50

20

0D

52

43

53

47

20

44

4E

43

4F

55

41

45

0D

4C

41

45

45

52

46

48

52

4E

47

41

45

46

52

58

52

4E

41

4F

4D

54

55

43

45

20

59

49

55

45

EA

31

C8

C5

4E

BB

C5

ED

IF

DB

57

CC

EC

E5

CD

F7

CF

F5

01

D9

24

El

EC

D6

08

CD

10

34

CC

E5

C5

11

DC

ID

Dl

F6

C5

17

D0

C9

D3

C2

03

10

EA

5F

CA

1C

B6

4F

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

irem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

: rem

:rem

:rem

:rem

:rem

194

143

189

190

168

185

193

216

201

196

134

180

188

175

205

155

207

208

164

181

157

181

204

154

205

163

163

157

188

226

174

137

205

212

178

179

180

209

167

205

204

154

183

184

215

186

188

159

212

219

195

Program Listings

4340

4341

4342

4343

4344

4345

4346

4347

4348

4349

4350

4351

4352

4353

4354

4355

4356

4357

4358

4359

4360

4361

4362

4363

4364

4365

4366

4367

4368

4369

4370

4371

4372

4373

4374

4375

4376

4377

4378

4379

4380

4381

4382

4383

4384

4385

4386

4387

4388

4389

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

53 45

2D 2D

2D 52

44 2D

55 33

52 56

2D 0D

2D 71

65 7C

9D 73

BB 7E

E9 7B

05 70

4C 7E

00 00

78 AD

C9 20

E9 D0

7B 20

A5 12

A5 5C

20 0B

5C P0

5C 86

AA A5

8A 18

2B 85

21 C8

A5 2B

74 A5

85 2A

0E 74

09 F0

ID 74

40 A5

20 76

E6 20

11 05

11 85

60 20

76 85

12 E5

00 85

82 A9

DB 20

4C ID

00 F0

74 A5

DB 20

74 20

52 56

2D 0D

45 53

2D 2D

2D 2D

45 44

DC 7E

2A 71

28 7B

97 73

D0 74

86 7E

08 70

70 00

00 E6

00 02

F0 EF

60 20

17 74

85 83

A6 5D

74 90

08 AA

5D A5

22 E5

65 2A

2B A0

D0 F9

C5 22

IF A6

90 01

4C FC

07 C9

20 17

12 85

00 F0

70 00

12 D0

12 20

6B 76

41 A5

41 60

9D 85

E8 85

76 00

74 20

16 20

11 85

76 00

9D 7B

45 44

2D 55

45 52

2D 2D

52 45

2D 2D

C4 76

27 71

7B 7E

E5 7C

C3 7E

03 75

4C 55

00 00

77 D0

C9 3A

38 E9

2F 7B

A5 11

60 20

85 21

0E A0

88 Bl

21 38

5D A8

85 2A

00 Bl

E6 5D

B0 EF

20 18

E8 86

73 F0

2D F0

74 A5

41 20

0A C9

20 17

06 A9

El 7B

85 40

11 C5

20 D8

83 A9

DA A9

90 05

2F 7B

1A 74

DA A5

F0 03

20 9E

2D 2D DD

32 2D 8B

56 45 B7

0D 2D Al

53 45 EF

2D 2D IB

24 71 9D

D2 72 EB

3A 7B CE

F7 7C 12

4E 7C 78

02 70 AE

70 80 82

00 00 C6

02 E6 EB

B0 0A 1C

30 38 AF

4C 84 4D

85 82 ID

9B 7B AB

86 22 AE

01 Bl 71

5C 85 E8

E5 5C 82

B0 IE D7

98 65 23

5C 91 E7

E6 22 03

20 08 82

69 02 7F

2B 20 07

08 90 3B

03 4C CB

11 85 89

0B 74 A4

2D D0 AA

74 A5 3A

FF 85 D5

90 CF 7D

20 6B 4F

40 A5 64

7E A9 49

0A 85 9E

03 85 5D

F0 21 E9

20 76 C3

20 17 15

12 85 3B

20 1A 62

76 20 00

:rem 205

:rem 241

:rem 178

:rem 250

:rem 209

:rem 216

:rem 7

:rem 220

:rem 31

:rem 253

:rem 2 5

:rem 230

:rem 157

:rem 156

:rem 203

:rem 232

:rem 9

:rem 243

:rem 192

:rem 223

:rem 237

:rem 178

:rem 6

:rem 233

srem 22

:rem 205

:rem 228

:rem 245

:rem 230

:rem 216

:rem 186

:rem 239

:rem 247

:rem 182

:rem 175

:rem 235

:rem 177

:rem 223

:rem 224

:rem 195

:rem 188

:rem 211

:rem 227

:rem 2

:rem 199

:rem 221

:rem 155

srem 224

:rem 187

:rem 196

196

Program Listings

4390

4391

4392

4393

4394

4395

4396

4397

4398

4399

4400

4401

4402

4403

4404

4405

4406

4407

4408

4409

4410

4411

4412

4413

4414

4415

4416

4417

4418

4419

4420

4421

4422

4423

4424

4425

4426

4427

4428

4429

4430

4431

4432

4433

4434

4435

4436

4437

4438

4439

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

62

65

41

6B

DB

20

85

20

B3

03

17

0F

Bl

Bl

C8

D3

4C

C0

C8

03

63

E6

7D

20

30

D0

00

76

E6

85

02

Fl

F0

E5

C8

17

19

A9

18

B0

18

63

B5

F0

02

F5

A5

7D

20

20

76

82

76

76

8D

70

47

D8

78

20

A9

AD

5C

5C

Bl

84

B0

84

Bl

4C

7E

2A

Bl

D8

20

09

86

B0

52

87

D0

88

74

2F

Bl

18

A2

53

98

E7

65

7E

38

0F

91

18

2B

4C

23

20

A5

85

28

D0

B3

00

C6

7E

85

93

00

B3

C9

F0

5C

B5

2B

05

5C

4F

A4

D0

5C

7E

0F

20

46

03

A4

Bl

ED

84

20

85

5C

98

9A

8D

65

A5

05

F0

E5

85

5C

A5

65

0C

74

D2

DA

DA

65

FB

78

20

77

85

46

76

85

78

22

0D

F0

24

A5

84

D0

7D

05

02

F0

85

7E

D8

20

20

52

5C

E8

05

2F

86

D0

65

A0

B3

86

86

85

03

31

B6

E8

2A

87

7D

A0

FF

20

A5

83

20

C9

D8

A9

47

20

C8

81

C9

F0

C9

04

46

81

B5

FB

20

A5

E6

94

05

A2

7E

0F

93

A6

F0

C8

84

7E

F0

FB

86

19

78

B0

10

B5

20

A8

A6

C8

65

85

A6

00

C8

41

DB

85

5B

53

7E

40

A9

81

C0

24

53

E6

22

E6

30

D0

E6

C0

2F

47

2B

C8

A2

02

85

7E

76

2E

ED

C6

B5

A5

41

A5

C9

20

4C

EB

02

B0

4B

C8

30

C6

86

2B

40

84

Bl

76

08

DB

76

D0

A9

D0

80

76

01

46

F0

D0

D0

81

0A

27

B5

FB

7E

91

20

D0

00

86

05

20

84

A5

DD

87

A5

31

A0

86

02

F4

A4

C9

C6

05

7E

A5

BD

B6

85

20

A5

81

5C

18

20

20

D0

03

22

0A

8D

B0

D0

50

EC

21

DC

D0

C0

F0

88

90

20

5C

AA

F9

86

46

A2

81

52

2F

00

D0

46

38

00

10

B0

77

7D

FC

87

20

A5

31

00

D0

2A

AA

41

A9

F0

BA

12

B9

93

7E

2F

34

08

43

7B

80

21

41

5F

00

90

CC

5B

15

F8

9D

43

61

D8

B3

85

E6

D8

2A

2D

74

DA

Cl

10

25

D3

67

DF

05

DF

6F

9E

B7

33

15

8A

CA

E2

FB

2A

:rem

:rem

:rem

:rem

218

219

206

244

:rem 11

:rem

:rem

:rem

:rem

:rem

:rem

200

217

233

190

205

151

:rem 7

:rem 220

srem 16

:rem

:rem

:rem

srem

222

193

253

233

:rem 22

:rem

:rem

:rem

240

226

226

:rem 3

srem

:rem

:rem

srem

srem

srem

207

192

209

187

182

248

srem 16

srem 2

srem

srem

srem

srem

srem

srem

229

214

193

246

203

211

srem 30

srem 2

srem

srem

srem

s rem

srem

srem

srem

srem

srem

srem

244

183

236

238

223

240

233

248

249

199

srem 3

197

Program Listings

4440

4441

4442

4443

4444

4445

4446

4447

4448

4449

4450

4451

4452

4453

4454

4455

4456

4457

4458

4459

4460

4461

4462

4463

4464

4465

4466

4467

4468

4469

4470

4471

4472

4473

4474

4475

4476

4477

4478

4479

4480

4481

4482

4483

4484

4485

4486

4487

4488

4489

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

14 C9 22

F0 C8 Bl

88 A9 22

D2 FP C0

D0 08 F0

EB 7D 20

C9 53 D0

FF 4C 84

F3 A4 B5

D0 04 A2

77 A4 77

8D B3 78

F0 0C C5

C8 D0 F2

7B A5 5C

20 A5 2A

22 60 A5

A5 20 C5

Bl IF A4

40 7E D0

EC E6 20

21 A4 B5

D0 01 60

22 C6 21

E8 49 02

73 A0 00

Bl 28 D0

F0 06 C8

98 A0 00

A9 00 65

84 7B C6

84 90 02

A2 7D A0

A2 6F A0

77 4C E4

10 E4 A6

7C 30 0D

86 B5 E8

A2 68 A0

D2 7E A2

77 A2 01

20 0A 7F

4A 20 22

20 22 7F

68 4C D2

02 69 06

49 FF 85

FB 4C D2

0F 28 90

00 8D 00

D0 F4 C0

5C F0 02

D0 E4 A9

4C B0 06

18 20 02

08 7E AD

08 A9 0D

7B 20 B3

60 A2 13

00 A0 13

C8 94 2E

95 2F B9

05 F0 05

84 77 60

85 IF A5

85 21 A5

IF C5 21

22 60 A4

B5 C8 91

01 60 E6

D0 E8 A4

91 21 20

A5 21 D0

4C 63 7E

8D 4C E8

Bl 28 D0

0C A0 04

D0 F9 4C

18 65 28

29 C8 91

85 18 65

E6 85 60

0E D0 06

0E 85 7C

73 A5 7C

7C 10 12

20 7A 77

86 77 4C

07 20 F4

96 A0 04

B5 FA 48

68 48 4A

7F AA 68

48 8A 20

FF 18 69

69 3A 60

0D 60 24

FF C9 3A

02 69 08

01 20 70

02 90 EB

E6 81 E2

0D 20 23

A5 81 47

7E 4C 34

B3 78 1A

20 D2 64

76 F0 7D

A0 12 ED

4C F4 97

A9 00 3B

00 02 C9

F6 2F 20

4C A5 2A

5D 85 59

2B 85 16

D0 04 00

05 C8 83

IF 20 3F

IF D0 3C

05 Bl FC

40 7E F6

02 C6 71

AD 4C Dl

4C E4 DC

11 C8 6B

Bl 28 CE

F9 73 Cl

91 28 6A

28 4C FC

84 85 30

A9 00 76

A9 80 34

20 F4 2C

30 EE A7

60 A5 C3

A2 FF 95

75 70 AF

77 4C 78

20 F4 C0

B5 FB 3F

4A 4A C9

29 0F AB

D2 FF 7C

F6 90 74

A5 0D DA

0D 30 65

08 29 B4

60 A9 BD

00 D0 12

:rem 222

:rem 246

:rem 216

:rem 247

:rem 195

irem 14

:rem 220

:rem 10

:rem 237

:rem 208

:rem 230

:rem 231

:rem 224

:rem 241

:rem 0

:rem 197

:rem 183

:rem 200

:rem 252

:rem 231

:rem 20

:rem 195

:rem 181

:rem 248

trem 31

:rem 206

:rem 236

:rem 13

:rem 187

irem 240

trem 196

:rem 182

:rem 226

:rem 249

irem 10

:rem 207

xrem 245

trem 255

trem 218

trem 234

:rem 14

trem 240

trem 248

trem 243

trem 253

trem 222

:rem 216

:rem 43

trem 218

trem 144

198

Program Listings

4490

4491

4492

4493

4494

4495

4496

4497

4498

4499

4500

4501

4502

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

06

3A

01

7F

73

77

90

70

11

20

20

20

2D

20

7F

20

0D

90

D0

CF

00

8D

F4

23

D2

BD

CC

0A

70

00

DE

02

85

B0

B2

77

74

FF

13

FF

0A

00

01

85

E6

87

C5

78

AE

A9

4C

D9

4C

0A

F0

38

85

78

86

20

A2

B2

20

D2

IE

ID

0A

EB

60

86

20

86

17

2C

78

20

7E

3E

74

8D

20

20

84

E9

60

74

A0

A9

D2

• •

09

20

00

3A

E9

E6

73

20

A5

0C

00

FF

• •

AD

12

92

3A

D2

25

DD

09

CB

BE

F4

8F

73

QQ

srem 225

:rem 232

:rem 190

:rem 199

:rem 225

:rem 240

:rem 204

:rem 211

:rem 7

:rem 251

:rem 211

:rem 211

jrem 64

DFH ED.6 GEN
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Chapter 9.

:rem 147

:rem 183

:rem 213

:rem 230

:rem 28

:rem 247

:rem 249

:rem 183

:rem 205

:rem 48

:rem 245

:rem 24

:rem 193

:rem 79

:rem 181

:rem 204

:rem 234

:rem 213

:rem 207

:rem 11

:rem 6

:rem 21

:rem 18

:rem 202

:rem 203

:rem 211

:rem 22

:rem 192

:rem 41

:rem 254

:rem 239

500

4000

4001

4002

4003

4004

4005

4006

4007

4008

4009

4010

4011

4012

4013

4014

4015

4016

4017

4018

4019

4020

4021

4022

4023

4024

4025

4026

4027

4028

4029

REM SAVE

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

00

4C

1A

7C

29

F4

00

B0

94

F2

D0

02

AC

93

F0

B0

A2

B9

C9

E5

E5

7A

48

4C

03

BD

06

FC

75

10

M@0:DFH

90

0D

94

86

FC

93

A0

04

8D

8E

11

01

EF

C9

46

03

00

00

80

97

F0

A5

BD

73

A9

05

01

A5

94

8D

4C

90

A2

FF

8D

A9

90

86

ED

0C

A6

C9

93

3A

4C

4C

86

02

F0

10

BD

0B

02

00

EA

01

C9

C5

F0

76

0D

4C

0F

CA

F3

08

E4

37

93

90

7A

A4

AE

90

54

0A

84

5D

13

FA

E8

0A

9A

78

8D

C9

F8

C9

0B

94

ED.6

90

0D

BD

10

93

8D

37

84

8E

A6

D0

F0

EE

01

9A

93

86

E6

E6

BD

C8

AA

48

A9

15

BE

D0

FF

8D

4C

GEN"

4C

90

34

F6

09

E4

98

38

EE

7B

0D

17

93

60

20

8C

0B

97

0B

E6

D0

BD

20

31

03

D0

03

F0

75

31

02

F3

9A

A5

03

97

E5

4C

93

E0

BA

D0

AD

C9

61

EF

A4

F0

E8

97

El

03

5E

8D

58

0A

20

05

94

EA

,8

94

20

95

D2

8D

A2

38

2C

A2

02

BD

03

ED

20

90

93

7A

13

BD

D0

84

9A

90

14

60

BD

93

CD

A9

AD

A5

IB

81

B8

2F

IE

00

5B

AE

El

AB

B6

09

90

7F

56

A5

68

IE

70

89

C8

09

4E

0D

IF

B2

10

BD

45

199

Program Listings

4030

4031

4032

4033

4034

4035

4036

4037

4038

4039

4040

4041

4042

4043

4044

4045

4046

4047

4048

4049

4050

4051

4052

4053

4054

4055

4056

4057

4058

4059

4060

4061

4062

4063

4064

4065

4066

4067

4068

4069

4070

4071

4072

4073

4074

4075

4076

4077

4078

4079

DATA 15

DATA 94

DATA CE

DATA 77

DATA A9

DATA 2C

DATA D0

DATA 93

DATA D0

DATA 0D

DATA 4C

DATA 20

DATA FF

DATA 00

DATA C9

DATA 20

DATA B9

DATA 00

DATA 60

DATA F3

DATA 20

DATA 20

DATA 06

DATA 24

DATA AE

DATA D0

DATA AE

DATA 36

DATA 97

DATA D2

DATA 20

DATA 0C

DATA A2

DATA D2

DATA 85

DATA A6

DATA 5E

DATA A6

DATA A2

DATA 79

DATA C9

DATA 20

DATA 9A

DATA 4C

DATA 20

DATA 93

DATA 20

DATA FF

DATA BA

DATA 20

03 C9

F0 05

77 94

94 A9

2F 2C

A9 26

03 A9

85 0A

03 4C

AD F0

2C 9E

10 97

A5 B8

C9 2C

5E F0

73 00

9E B0

D0 DB

85 B9

A5 BA

96 FF

A5 FF

A6 2B

D0 08

84 AF

1A 38

A5 2E

9E A2

4C D8

F5 20

F2 96

A5 93

1C 4C

FF A5

2D A5

20 33

F0 03

4C AE

25 A0

00 20

00 F0

FD AE

A9 0D

0C 97

Bl FF

FF A0

A8 FF

20 6A

20 B4

96 FF

EA F0 F6

CE 76 94

D0 E7 A9

00 85 C5

A9 5E 2C

8D F0 93

01 2C A9

20 77 96

08 AF A5

93 C9 5E

4C 8D 94

20 D2 96

20 C3 FF

D0 1A AD

10 C9 26

C9 24 D0

07 4C 08

A9 00 85

20 AF F5

20 B4 FF

20 A5 FF

85 AF A5

A4 2C D0

A6 89 A4

AD F0 93

A5 2D E9

E9 00 85

8B A0 0B

91 20 36

F3 F4 20

A5 90 29

D0 03 A2

37 A4 A9

83 D0 08

AF 85 2E

A5 AD F0

4C 0F 9E

A7 E6 B7

07 20 26

D2 FF 20

07 C9 2C

20 79 00

20 D2 FF

AD E4 97

A9 6F 85

00 Bl 7A

C8 D0 F6

9E AD E4

FF A9 6F

20 A5 FF

AD 76 2C

D0 EC E3

04 8D 36

F0 DC 36

A9 5D C3

C9 5D CF

00 85 29

A4 B7 56

7F 10 F6

D0 03 C9

A9 60 74

20 CC C5

20 73 2F

F0 93 Fl

F0 0C EE

0C 20 84

AF C9 26

B8 A9 C6

20 D5 A9

A5 B9 7D

85 AE 54

83 D0 10

08 C9 B8

8A 86 21

C9 26 00

02 85 9C

AF 20 42

20 26 0E

9E 20 A0

36 9E 3E

BF F0 4B

ID 2C FE

0D 20 45

A5 AE DC

20 59 CE

93 C9 69

20 8E 08

E6 B7 7F

97 20 95

73 00 03

D0 F2 89

20 CF AD

A9 6E A8

85 BA AA

B9 20 BA

F0 06 AD

20 AE DD

97 85 2C

85 B9 ID

85 62 A0

:rem 5

:rem 0

:rem 249

:rem 228

:rem 30

:rem 25

:rem 192

:rem 202

:rem 246

:rem 14

:rem 247

:rem 189

:rem 8

:rem 250

:rem 10

:rem 170

:rem 4

:rem 247

:rem 241

:rem 45

:rem 0

:rem 242

:rem 242

:rem 207

:rem 11

:rem 238

:rem 246

:rem 224

:rem 212

:rem 243

:rem 235

:rem 249

:rem 220

:rem 41

:rem 4

:rem 240

:rem 239

:rem 60

:rem 168

:rem 176

:rem 236

:rem 250

:rem 33

:rem 34

:rem 13

:rem 255

:rem 45

:rem 31

:rem 39

:rem 245

200

Program Listings

4080

4081

4082

4083

4084

4085

4086

4087

4088

4089

4090

4091

4092

4093

4094

4095

4096

4097

4098

4099

4100

4101

4102

4103

4104

4105

4106

4107

4108

4109

4110

4111

4112

4113

4114

4115

4116

4117

4118

4119

4120

4121

4122

4123

4124

4125

4126

4127

4128

4129

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

20 A5

04 C5

A5 62

71 9E

FF D0

10 03

Bl 7A

7A 29

08 AF

A5 7F

2B 85

2D A4

E4 97

00 F0

73 00

9E 90

A9 87

FF 4C

90 20

05 86

85 85

62 A2

DD BD

06 9D

20 9D

3A F0

9F A4

00 02

E8 BD

C9 3A

20 D0

07 99

99 00

C8 C8

93 A9

A9 FF

85 87

30 16

01 B5

68 95

A9 D8

20 81

A5 8A

B0 EB

83 9E

83 9E

00 9E

52 A0

94 4C

93 A5

FF 85

62 F0

20 71

C9 0D

F4 20

20 6A

C9 40

FE C9

4C 77

10 03

87 A5

2E 86

85 BA

10 C9

C9 24

C4 A9

A6 89

67 96

6B A9

F0 2B

63 A5

90 38

A2 00

77 02

77 02

CB A6

A2 FF

C9 20

00 02

90 F4

01 E8

00 02

02 C8

C8 4C

00 F0

85 89

A5 D2

A9 FF

87 48

89 CA

20 ED

87 A9

A4 89

68 68

90 0A

AA AD

FF 03

16 20

D8 93

7B 8D

63 C9 30

03 20 A4

9E A5 63

F0 05 20

AB FF 24

9E 60 A0

D0 03 C8

30 F0 03

96 20 AC

4C 06 95

2C 85 88

89 84 8A

20 73 00

2C D0 F5

D0 C9 20

F3 8D J0C

A4 8A 20

68 68 20

F0 31 A5

A5 14 18

15 65 86

20 49 BC

BD 01 01

E8 D0 F5

E8 86 C6

7F 30 03

A0 00 E8

F0 F8 D0

C9 30 90

BD 00 02

BD 00 02

E8 C8 D0

C8 99 00

A2 A4 AE

05 AE F4

86 8A A5

85 88 24

20 ED 9D

B5 89 95

10 F3 30

9D A2 00

01 20 EF

C4 87 E5

4C 83 A4

8D EF 93

EF 93 60

07 04 07

26 97 20

A5 7A 3D

EE 93 20

D0 8B

92 8C

20 A2

A5 61

FF 50

00 C5

Bl 80

4C 27

92 92

A5 3D

A6 45

AD 37

C9 EA

20 26

AA 3D

90 49

D8 7B

61 67

85 Fl

65 24

85 69

20 EF

F0 15

A9 8E

C9 CD

4C 67

BD D7

01 5C

04 CC

C9 Fl

F0 78

F4 EA

02 3A

F3 75

93 9A

Dl C4

89 C3

A2 C6

87 21

05 78

A9 8A

9D 82

88 EC

20 02

20 16

41 65

A2 AC

1A El

ED 1C

1A 05

:rem 237

:rem 193

:rem 194

:rem 217

:rem 44

:rem 181

:rem 228

:rem 243

:rem 237

:rem 222

:rem 223

:rem 253

:rem 240

:rem 203

:rem 226

:rem 2

:rem 3

:rem 223

:rem 224

:rem 194

:rem 179

:rem 208

:rem 230

:rem 248

:rem 249

:rem 241

:rem 39

:rem 199

:rem 222

:rem 246

:rem 193

:rem 232

:rem 180

:rem 30

:rem 235

:rem 18

:rem 216

:rem 11

:rem 195

:rem 203

:rem 5

:rem 203

:rem 16

:rem 212

:rem 228

:rem 3

:rem 221

:rem 171

:rem 28

:rem 240

201

Program Listings

4130

4131

4132

4133

4134

4135

4136

4137

4138

4139

4140

4141

4142

4143

4144

4145

4146

4147

4148

4149

4150

4151

4152

4153

4154

4155

4156

4157

4158

4159

4160

4161

4162

4163

4164

4165

4166

4167

4168

4169

4170

4171

4172

4173

4174

4175

4176

4177

4178

4179

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

94 AD

93 85

9A 95

8D 0C

A0 11

83 A9

86 A6

48 29

68 10

20 D2

D2 PF

C9 0D

96 20

05 02

77 94

A2 90

3A 95

90 F0

93 C9

0B 20

D2 F5

84 4C

95 20

20 6E

C3 FF

0B F0

A5 90

20 F2

60 85

20 CC

F0 03

20 1A

20 C9

20 D2

95 F0

B0 0B

04 92

F0 DC

00 F0

0D AD

20 A0

AF 20

13 A6

AF F5

38 A4

11 C9

5F F0

91 5F

60 A5

5F 60

ED 93 85

7B 60 A2

72 CA D0

90 4C B9

20 26 97

24 A2 98

83 BD E9

7F 20 D2

EE A9 20

FF A0 00

E6 85 D0

D0 EF F0

78 94 4C

A9 10 8D

78 A2 C6

8E 15 03.

20 IE 97

03 4C 67

26 D0 0A

26 97 4C

A9 01 20

C2 94 A9

CF FF C9

95 B0 08

4C E7 91

E6 A9 00

F0 D8 98

96 A5 5F

2E A5 B8

FF AD F0

4C 1C 9B

92 20 Bl

FF 4C 1C

FF 20 88

07 A2 00

A5 B8 20

20 D2 FF

D0 F6 20

06 C9 2C

F0 93 C9

95 4C 60

79 00 20

A9 6E 20

20 6B 95

93 F0 11

01 F0 0D

07 18 90

E6 5F D0

5F D0 02

20 88 95

7A AD

18 BD

F8 A9

90 A2

A2 00

85 85

97 F0

FF E6

20 D2

Bl 85

02 E6

D3 20

D0 9E

76 94

8E 14

58 60

85 84

96 AD

A2 8B

B0 94

68 95

01 20

0D F0

A5 B8

A5 90

20 6E

20 6B

85 2D

20 C3

93 C9

4C 04

96 A6

95 A9

95 20

20 09

C3 FF

20 98

73 00

D0 F5

26 D0

95 4C

6B A9

0C 97

20 6E

C9 00

A0 00

04 A0

02 E6

C6 60

A0 00

EE A5

42 54

F3 31

41 5F

86 4A

86 E6

26 FE

83 B6

FF E0

20 19

86 86

AA DE

40 44

8D 1C

03 70

20 50

A5 AE

F0 97

A0 D7

20 68

A5 CD

68 A8

13 A4

20 A8

D0 75

95 53

95 4B

A5 FD

FF AE

5D BF

92 28

B8 6F

0D 65

98 1A

9B 0E

4C BA

95 2C

C9 12

F0 60

09 FB

08 16

20 64

4C 21

95 19

F0 D7

Dl B7

00 5E

60 B3

C6 DE

Bl B3

:rem 51

:rem 204

:rem 2

:rem 235

:rem 169

:rem 217

:rem 21

:rem 255

:rem 248

:rem 204

:rem 250

:rem 45

:rem 199

:rem 206

:rem 201

:rem 164

:rem 232

:rem 234

:rem 249

:rem 190

:rem 235

:rem 206

:rem 10

:rem 215

:rem 6

:rem 217

:rem 234

:rem 8

:rem 16

:rem 69

zrem 212

:rem 214

:rem 3

:rem 209

:rem 194

:rem 28

:rem 212

:rem 228

:rem 229

:rem 18

:rem 184

:rem 192

:rem 215

:rem 232

:rem 219

:rem 211

:rem 197

:rem 244

:rem 252

:rem 201

202

Program Listings

4180

4181

4182

4183

4184

4185

4186

4187

4188

4189

4190

4191

4192

4193

4194

4195

4196

4197

4198

4199

4200

4201

4202

4203

4204

4205

4206

4207

4208

4209

4210

4211

4212

4213

4214

4215

4216

4217

4218

4219

4220

4221

4222

4223

4224

4225

4226

4227

4228

4229

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

5F 60

85 60

20 73

20 CF

D0 0B

5F 90

F0 06

68 68

4C 04

20 E4

E4 FF

6A 9E

D0 03

4C D8

7A A5

8D Fl

96 A9

77 96

06 84

D0 F9

8A 20

97 20

20 C2

A0 04

8A 20

E0 A9

92 A5

96 A0

91 2D

C8 Bl

90 AA

2D C8

E4 97

A5 2E

85 86

92 18

F0 F0

Fl 93

93 4C

A2 0E

90 F0

FF A5

92 4C

20 26

A9 20

20 CC

E6 B7

AD E4

A6 B8

BD 31

A5 2D

20 8F

00 F0

9A A9

C8 98

02 E6

20 09

20 AA

92 20

FF C9

F0 FB

C9 24

4C C3

93 A9

B8 8D

93 20

24 A0

A9 60

B7 20

20 C2

CD BD

D2 96

96 A9

D0 D5

03 97

0D 20

B8 20

FF C8

F0 07

7A 85

A4 B7

E8 E0

85 BA

85 BC

60 20

A5 62

D0 IF

E0 03

C9 FF

20 20

CF 20

B8 20

0F 9E

97 A5

4C D2

FF 4C

85 B9

97 85

20 C6

97 20

85 5F

95 4C

03 20

0D 20

18 65

60 20

9B 90

96 8D

ED F6

20 D0

60 D0

F0 0D

9E 20

49 A0

F2 93

49 92

00 91

20 10

D2 96

96 A6

A9 20

C9 00

0D 20

20 C2

20 El

D2 FF

C3 FF

84 B7

C9 2C

83 A9

BD 6E

04 D0

A5 2D

A9 00

CC FF

65 63

20 CC

F0 E4

A5 8A

97 85

F2 96

C3 FF

A2 38

90 20

FF 20

AE FF

A9 0E

BA 4C

FF 4C

D2 FF

A5 2E B8

8F 95 67

FD AE AF

D2 FF D0

5F 85 64

98 95 7C

01 60 55

F0 93 C0

F0 0C IF

05 20 IF

03 20 DF

C9 23 22

49 92 85

00 91 26

A5 9A D8

20 B7 ID

7A 20 D2

97 A0 83

C6 B7 BA

89 A5 EB

20 03 E0

D0 0C 3C

03 97 18

96 A5 9A

95 D0 56

20 67 F2

4C El 02

Bl 7A 9D

D0 F3 93

00 85 D7

97 91 18

F5 AD CD

85 BB 34

85 85 39

20 67 23

C9 60 5E

FF AE 98

AE F2 25

85 89 1C

8A A4 C6

20 CC ID

20 67 3B

A0 05 F6

48 9E E8

D2 FF 29

E6 B7 7F

85 B8 31

C0 FF 8E

CF FF A3

E8 88 1A

:rem 3

:rem 217

:rem 231

:rem 21

:rem 227

:rem 206

:rem 169

:rem 238

:rem 252

:rem 231

:rem 20

:rem 239

:rem 211

:rem 212

:rera 32

:rem 214

:rem 200

:rem 187

:rem 247

:rem 15

:rem 222

:rem 209

:rem 180

:rem 219

:rem 183

:rem 243

:rem 244

:rem 27

:rem 239

:rem 233

:rem 254

:rem 36

:rem 0

:rem 227

:rem 206

:rem 200

:rem 41

:rem 247

:rem 21

:rem 218

:rem 240

:rem 7

:rem 234

:rem 199

:rem 10

:rem 85

:rem 254

:rem 58

:rem 66

:rem 8

203

Program Listings

4230

4231

4232

4233

4234

4235

4236

4237

4238

4239

4240

4241

4242

4243

4244

4245

4246

4247

4248

4249

4250

4251

4252

4253

4254

4255

4256

4257

4258

4259

4260

4261

4262

4263

4264

4265

4266

4267

4268

4269

4270

4271

4272

4273

4274

4275

4276

4277

4278

4279

DATA D0

DATA 45

DATA 4F

DATA 44

DATA 20

DATA 53

DATA 20

DATA 56

DATA 2C

DATA 46

DATA 52

DATA 46

DATA 52

DATA 20

DATA 21

DATA 20

DATA 12

DATA 4D

DATA 50

DATA 20

DATA 41

DATA 45

DATA 4C

DATA 52

DATA DF

DATA 43

DATA 3B

DATA C9

DATA 4D

DATA 3B

DATA 00

DATA 44

DATA 4D

DATA 4C

DATA 47

DATA 20

DATA 41

DATA 52

DATA 4F

DATA 20

DATA 20

DATA 53

DATA 54

DATA 2F

DATA 49

DATA 20

DATA 4F

DATA 52

DATA 44

DATA 49

F6 60

44 44

54 45

41 54

43 48

41 56

44 49

20 23

53 2C

48 20

20 92

48 20

20 4B

92 0D

20 12

20 4D

20 42

4F 44

50 45

20 2A

4E 27

52 20

49 4E

55 CE

3B 41

D3 3B

45 D5

3B 4D

D4 3B

55 CE

00 00

49 53

41 4E

4F 41

52 41

54 45

50 50

4F 47

52 20

20 56

50 52

20 4F

0D 20

52 55

43 20

53 41

47 52

20 54

44 20

4E 47

12 20

45 44

20 0D

41 20

41 52

49 4E

53 4B

20 53

57 93

45 44

0D 00

45 44

49 4C

20 4F

20 54

4F 44

41 53

45 20

4E 44

3D 24

54 20

4E 45

45 20

BE AF

C4 3B

44 C5

3B 46

C2 3B

51 D4

BB 00

00 00

4B 20

44 53

44 20

4D 53

58 54

45 4E

52 41

54 45

45 52

4F 47

52 20

20 4C

4E 20

50 52

56 45

41 4D

45 58

54 52

20 43

49 4D

20 51

0D 12

3E 37

20 0D

47 20

20 44

54 3D

12 20

49 54

12 20

49 54

4C 45

4F 50

45 58

45 20

49 43

0D 0D

49 4E

12 20

41 4C

58 54

0D 08

A6 DD

41 D5

3B 45

C3 3B

4D CB

3B 52

00 00

00 20

43 4F

0D 20

50 52

20 4F

0D 20

44 20

4D 53

58 54

49 46

52 41

54 45

4F 41

42 41

47 0D

20 50

53 20

54 0D

41 49

48 41

42 D0

55 E4

20 AC

34 ID

0D 88

12 06

45 0C

24 3F

44 F5

4F DD

44 79

4F DD

44 D9

53 E0

54 48

0D 6E

20 4C

41 60

47 AB

43 C0

54 F5

20 EA

FF A4

DE BD

3B 55

C4 62

46 E6

3B 5F

CE 24

00 E7

20 C0

4D D6

20 40

4F CF

52 C5

20 4E

50 D8

20 C5

0D ED

59 EB

4D C8

58 DB

44 3F

53 E6

20 3E

52 EF

4F C8

41 FB

4C DC

52 E4

:rem 189

:rem 153

:rem 196

:rem 161

:rem 162

:rem 156

:rem 164

:rem 165

:rem 189

:rem 205

:rem 137

:rem 198

:rem 206

:rem 192

:rem 134

:rem 193

:rem 143

:rem 195

:rem 212

:rem 160

:rem 183

:rem 184

:rem 236

:rem 93

:rem 246

:rem 218

:rem 241

:rem 44

:rem 250

:rem 213

:rem 93

:rem 207

:rem 170

:rem 216

:rem 188

:rem 166

:rem 168

:rem 191

:rem 214

:rem 186

:rem 185

:rem 186

:rem 193

:rem 188

:rem 166

:rem 168

:rem 213

:rem 192

:rem 193

:rem 187

204

Program Listings

4280

4281

4282

4283

4284

4285

4286

4287

4288

4289

4290

4291

4292

4293

4294

4295

4296

4297

4298

4299

4300

4301

4302

4303

4304

4305

4306

4307

4308

4309

4310

4311

4312

4313

4314

4315

4316

4317

4318

4319

4320

4321

4322

4323

4324

4325

4326

4327

4328

4329

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

41 43

54 4F

4E 55

48 41

52 45

45 0D

20 4C

52 41

45 45

0D 45

43 52

0D 46

43 48

54 52

49 4E

4E 47

42 41

44 45

44 46

4F 52

45 58

4F 52

49 4E

45 41

55 4F

55 4D

58 54

0D 55

28 43

4E 45

0D 20

41 59

44 49

4E 55

52 45

2D 2D

32 2D

56 45

0D 2D

53 45

2D 2D

0D 91

C2 92

6C 9A

2C 9C

80 9B

02 90

90 80

00 00

02 E6

54 45

20 4C

4D 42

4E 47

45 4E

44 45

49 4E

53 45

4E 20

52 41

45 45

49 4E

41 4E

49 4E

44 20

53 0D

53 49

0D 4B

48 20

0D 53

54 20

20 4D

53 45

44 49

54 45

42 45

20 4C

4E 2D

41 4E

57 20

20 44

20 44

54 4F

0D 2D

53 45

2D 2D

2D 52

44 2D

55 33

52 56

2D 0D

16 91

97 9B

92 93

F8 9D

IB 9B

05 90

4C 6C

00 00

7B AD

52 0D

49 4E

45 52

45 20

20 43

4C 45

45 53

20 53

44 4F

53 45

4E 20

44 20

47 45

47 53

53 54

53 45

43 20

49 4C

45 44

45 54

45 44

4F 44

52 54

4E 47

0D 52

52 20

49 4E

4E 45

43 45

43 4D

49 53

46 48

52 20

55 31

52 56

2D 0D

45 53

2D 2D

2D 2D

45 44

19 9E

13 91

5A 9A

8B 93

F4 93

C3 9D

08 90

90 00

00 E6

00 02

41 55 EE

45 20 F5

0D 43 E7

53 43 E7

41 53 DF

54 45 FB

0D 45 13

43 52 CD

57 4E D0

20 53 10

55 50 CE

26 20 6C

20 53 E7

0D 46 D6

52 49 C3

54 20 FF

4D 4F E2

4C 20 IE

49 54 E8

20 54 F2

49 54 C9

45 0D 0D

20 4C BF

20 51 E7

45 4E Dl

54 45 CC

45 53 B9

57 20 19

4C 20 12

44 29 F9

50 4C 37

20 45 0F

4D 45 CC

2D 2D 43

45 44 A0

2D 55 90

45 52 F3

2D 2D 40

52 45 4D

2D 2D DD

F2 95 2E

10 91 76

B8 9D 31

1A 9C 01

00 9E 7E

2B 94 10

4C 3F B6

00 00 A8

7A D0 D0

C9 3A EB

:rem 186

:rem 209

:rem 210

:rem 182

:rem 190

:rem 213

:rem 191

:rem 171

:rem 216

:rem 150

:rem 187

:rem 187

:rem 182

:rem 205

:rem 184

:rem 214

:rem 193

:rem 222

srem 181

:rem 196

srem 165

:rem 208

:rem 203

:rem 175

:rem 205

:rem 184

:rem 200

:rem 207

srem 164

srem 203

srem 157

srem 151

srem 204

srem 211

srem 155

srem 242

srem 186

srem 215

srem 216

srem 211

srem 254

srem 153

srem 251

srem 229

srem 19

srem 238

srem 187

srem 173

srem 166

srem 0

205

Program Listings

4330

4331

4332

4333

4334

4335

4336

4337

4338

4339

4340

4341

4342

4343

4344

4345

4346

4347

4348

4349

4350

4351

4352

4353

4354

4355

4356

4357

4358

4359

4360

4361

4362

4363

4364

4365

4366

4367

4368

4369

4370

4371

4372

4373

4374

4375

4376

4377

4378

4379

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

B0

30

4C

85

CD

86

01

5F

E5

B0

98

5F

E6

20

69

2E

08

03

14

13

2D

A9

FF

90

20

43

9E

0A

03

F0

20

20

15

20

95

95

08

BC

95

D0

A9

D0

80

95

01

49

F0

D0

D0

84

0A

38

B6

85

9A

25

Bl

85

5F

IE

65

91

25

33

02

20

90

4C

85

A6

D0

A5

85

CF

98

A5

A9

85

85

21

79

6B

85

FD

20

18

20

20

D0

03

22

0A

8D

B0

D0

50

EC

22

DC

D0

C9

E9

9A

A5

A5

20

5F

5F

AA

8A

2E

24

A5

A5

85

59

09

08

43

20

E6

14

14

60

95

15

00

85

BC

4C

00

A9

BC

AE

8F

65

6E

98

DB

20

85

20

E5

03

17

0F

Bl

Bl

C8

D3

20

D0

20

15

5F

13

F0

86

A5

18

85

C8

2E

A5

2D

A6

F0

AF

A5

79

20

05

85

20

85

E5

85

A9

20

08

F0

A5

20

20

95

85

95

95

8D

73

4A

15

97

20

A9

AD

5F

5F

Bl

8C

F0

60

6B

85

A6

A6

08

60

25

65

2E

D0

C5

22

90

4C

07

20

15

00

73

15

15

98

44

44

93

E8

79

AF

16

14

79

CF

A5

85

28

D0

E5

00

C6

9E

85

C0

00

E5

C9

F0

5F

ED

EF

20

A9

86

60

90

AA

A5

E5

2D

A0

F9

25

A6

01

83

C9

6B

85

F0

00

D0

20

95

A5

60

85

85

00

20

20

85

00

9A

BB

BB

65

FB

97

20

7A

85

49

95

85

97

22

0D

F0

93

38

61

A5

60

85

0E

88

24

60

85

00

E6

B0

23

E8

A4

2D

A9

44

0A

20

06

13

85

14

20

86

BB

90

61

FD

BB

F0

20

20

A5

86

20

C9

15

A9

4A

20

C8

84

C9

F0

C9

04

24

E9

9A

14

20

24

A0

Bl

38

A8

2D

Bl

60

EF

18

86

F0

F0

A5

20

C9

6B

A9

9B

43

C5

15

A9

A9

05

9A

AE

A5

03

CB

6E

BC

85

88

53

9E

40

A9

AE

C0

24

53

E6

22

E6

49

5D

64

77

Bl

E6

3E

14

D6

5B

4C

Dl

15

99

60

E4

50

82

21

81

EB

FF

05

00

2C

6C

45

ED

72

8E

Dl

96

2E

IE

Cl

39

C8

3D

84

9B

C7

3D

DB

DB

BB

42

13

53

16

A2

60

:rem 8

:rem

:rem

:rem

184

236

179

:rem 5

:rem

:rem

:rem

:reir

:rem

:rem

:rem

194

225

227

i 16

242

213

230

:rem 4

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

171

203

218

212

226

162

229

221

192

186

203

204

167

251

:rem 3

:rem

:rem

:rem

:rem

:rem

:rem

:rem

192

230

215

245

194

28

234

:rem 2

:rem

:rem

zrem

:rem

:rem

:rem

199

238

28

179

238

246

:rem 0

:rem

:rem

:rem

:rem

:rem

:rem

:rem

227

168

236

19

230

28

241

206

Program Listings

4380

4381

4382

4383

4384

4385

4386

4387

4388

4389

4390

4391

4392

4393

4394

4395

4396

4397

4398

4399

4400

4401

4402

4403

4404

4405

4406

4407

4408

4409

4410

4411

4412

4413

4414

4415

4416

4417

4418

4419

4420

4421

4422

4423

4424

4425

4426

4427

4428

4429

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

30

D0

93

D0

9C

0B

02

F0

85

9D

15

20

20

55

5F

E8

0B

20

85

5F

98

9A

8D

65

A5

0B

9D

93

F0

00

93

85

20

A5

84

5F

02

E6

0D

A5

9D

E5

20

95

13

13

31

B9

05

60

0A

29

EE

FB

20

A5

E6

91

0B

A2

9E

4A

C0

A6

F0

C8

8C

6A

89

D0

65

A0

E5

89

89

8D

F0

38

11

02

D0

2D

E4

44

A9

F0

90

84

20

84

4C

97

D2

F0

A0

4C

A9

00

F6

4C

C0

F0

ED

C0

6A

4A

2E

C8

A2

02

85

9D

95

31

ED

C6

ED

9D

F0

FB

89

19

97

B0

10

ED

03

E5

8D

91

F4

A5

9C

20

20

14

F0

88

D2

D0

25

C9

FF

F3

12

26

00

02

32

D7

4C

BF

93

FB

9D

91

20

D0

00

86

0B

20

84

A5

DD

8A

93

A5

42

A5

C9

20

4C

EB

02

93

20

34

EF

5F

18

2E

4C

CD

20

C9

C8

A9

FF

08

9D

53

4C

AC

D0

97

8D

F0

C8

9A

B0

84

88

90

20

5F

E4

F9

86

49

A2

AE

55

32

00

D0

A5

34

A0

89

02

26

DE

C9

C6

B0

86

A8

93

E8

A5

65

41

BD

D2

22

Bl

22

C0

F0

20

D0

B6

ED

04

A4

E5

0C

D0

A5

2D

0B

C8

03

9F

E6

9C

20

33

D0

00

95

E6

85

02

Fl

49

38

00

10

B0

97

9C

FC

8A

05

9D

C8

A6

C8

2D

8A

9C

A0

FF

D0

5F

D0

4C

18

43

08

9A

93

A2

7A

97

C5

F2

5F

A5

8C

Bl

4C

9D

2D

Bl

15

20

09

86

B0

55

8A

D0

38

F0

E5

C8

17

19

A9

18

B0

18

20

AD

A5

33

CE

65

85

A6

00

C8

F4

F0

E4

B0

20

9D

A9

20

60

00

C8

95

0B

84

85

84

ED

5F

85

A4

D0

5F

9E

4A

20

49

03

A4

Bl

ED

84

78

32

Bl

18

A2

53

98

E7

65

9F

ED

34

BD

EF

89

2E

43

84

Bl

C0

02

A9

06

3D

AD

0D

El

A2

A0

94

32

F0

7A

22

B4

50

9F

16

3D

33

3A

IB

AB

F7

4C

E3

D3

3D

28

33

93

Bl

A7

69

44

D4

81

IB

F3

74

93

D3

5A

Al

Dl

D9

4E

49

49

2E

B4

E6

40

9A

A8

DA

72

5A

25

6A

56

89

4B

38

:rem 231

:rem 14

:rem 46

:rem 250

:rem 9

:rem 251

:rem 252

:rem 247

:rem 209

:rem 219

:rem 210

:rem 226

:rem 214

:rem 221

:rem 25

:rem 6

:rem 6

:rem 225

:rem 227

:rem 242

:rem 196

:rem 204

:rem 9

:rem 32

:rem 207

:rem 237

:rem 5

:rem 233

:rem 14

:rem 15

:rem 227

:rem 249

:rem 235

:rem 221

:rem 238

srem 246

:rem 225

:rem 1

:rem 233

:rem 220

:rem 0

srem 2

:rem 244

:rem 12

:rem 163

:rem 232

:rem 204

:rem 226

srem 243

:rem 236

207

Program Listings

4430

4431

4432

4433

4434

4435

4436

4437

4438

4439

4440

4441

4442

4443

4444

4445

4446

4447

4448

4449

4450

4451

4452

4453

4454

4455

4456

4457

4458

4459

4460

4461

4462

4463

4464

4465

4466

4467

4468

4469

4470

4471

4472

4473

4474

4475

4476

4477

4478

DATA A5

DATA A5

DATA 24

DATA A4

DATA C8

DATA 60

DATA E7

DATA 91

DATA A5

DATA 4C

DATA 8D

DATA Bl

DATA 0C

DATA D0

DATA 18

DATA 2C

DATA 88

DATA E6

DATA 0E

DATA 0E

DATA 93

DATA 7F

DATA 20

DATA E8

DATA A0

DATA A2

DATA 01

DATA 9E

DATA 60

DATA 9E

DATA D2

DATA 06

DATA 85

DATA D2

DATA 90

DATA 00

DATA CC

DATA 0A

DATA 73

DATA 00

DATA DE

DATA 02

DATA 85

DATA B0

DATA E4

DATA 97

DATA BD

DATA FF

DATA 9C

60 85 23

2E 85 25

D0 04 A5

0B C8 Bl

91 22 20

E6 22 D0

A4 0B Bl

24 20 7B

24 D0 02

9F 9D AD

18 D0 4C

2B D0 11

A0 04 Bl

F9 4C 62

65 2B 91

C8 91 2B

18 65 87

88 60 A9

D0 06 A9

85 7F 20

A5 7F 30

10 13 60

AA 96 A2

86 7A 4C

07 20 26

96 A0 04

B5 AD 48

68 48 4A

9E AA 68

48 8A 20

FF 18 69

69 3A 60

FF 60 24

FF C9 3A

02 69 08

01 20 73

FF 4C 08

0A 0A 0A

00 F0 EB

01 38 60

85 88 86

E6 7B 20

8A 86 89

C5 20 6B

97 A2 2C

AE E4 97

A9 20 20

4C 0F 9E

B0 B8 39

A5 2D

60 A5

23 C5

22 AC

7B 9D

EB E6

24 AC

9D D0

C6 25

18 D0

D8 93

C8 Bl

2B F0

A4 98

2B A9

4C B6

85 87

00 A2

80 A2

26 97

EE 10

A5 7F

FF 8E

61 90

97 4C

20 26

B5 AE

4A 4A

29 0F

D2 FF

F6 90

A5 FF

FF 30

08 29

60 A9

00 D0

AF 20

8D 00

20 78

20 DD

87 E6

DD 93

60 20

A9 A5

A0 0C

A9 00

D2 FF

• • • •

28 7C

85 24 D8

22 C5 97

25 60 F6

ED 93 8A

D0 01 7C

23 D0 04

ED 93 69

01 60 E2

C6 24 90

49 02 98

A0 00 34

2B D0 CF

06 C8 B6

A0 00 AD

00 65 8E

9A C6 EE

90 02 D6

7D A0 CA

6F A0 42

4C D8 ED

E4 A6 91

30 0E 9C

ED 93 Fl

A2 68 Dl

0F 9E 83

97 A2 A5

20 48 8A

4A 20 6A

20 60 38

68 4C EB

02 69 BD

49 FF 0B

FB 4C 82

0F 28 C4

00 8D 67

06 20 76

78 9E FC

01 20 2A

9E 0D 6F

93 90 47

7A D0 D8

90 CF AE

73 00 EF

14 8D 11

20 26 C5

20 CD AA

20 D2 97

. . . . 08

37 65 QQ

:rem 206

:rem 207

:rem 193

:rem 19

:rem 217

:rem 226

:rem 15

:rem 198

:rem 199

:rem 3

:rem 214

: rem 3

:rem 230

:rem 247

:rem 210

:rem 37

:rem 192

:rem 251

:rem 229

:rem 4

srem 238

:rem 215

:rem 36

:rem 234

:rem 211

:rem 198

:rem 250

srem 243

:rem 215

:rem 35

:rem 254

: rem 5

:rem 7

:rem 7

:rem 183

:rem 131

srem 62

srem 197

srem 246

srem 17 3

srem 15

s rem 14

srem 205

srem 227

srem 228

srem 18

srem 253

srem 191

srem 32

208

Program Listings

BASIC Programs

This section contains listings for the six BASIC programs

in the DFH family. Please refer to Chapter 9 for com

plete instructions before entering these programs. Each

of these programs must be saved to disk with the filenames

shown in the first line of each program.

In order to allow these programs to work on the PET, it

was necessary to indicate the drive number when one DFH

program loads and runs another. For this reason, PET owners

should place the program disk in drive 0. PET owners who

usually don't need a drive 0 for LOADs and who may want to

use either drive 1 or drive 0 should remove the "0:"+ from

the OPEN statements on the following lines:

DFH BOOT 1870

DFH SORT 4350

DFH MERGE 3160

DFH SWAP 3660

DFH SPLIT 4640

and change line 6030 in DFH PRINT to read:

6030 : DR$=//0//: PS$="DFH BOOT":OPEN 8,8,8,PS$+",P,R

DFH BOOT

For mistake-proof program entry, be sure to use "The Automatic Proofreader," Chapter 9.

1000 REM SAVE "@0:DFH BOOT",8 :rem 44

1010 : :rem 252

1020 REM" A BOOTSTRAP LOADER, MEMORY CONDITIONER A

ND MASTER MENU FOR" :rem 159

1030 REM" DATA FILE HANDLER (DFH) PROGRAMS."

:rem 224

1040 : :rem 255

1070 : :rem 2

1080 IF PEEK (824)<>249 OR LF<>249 THEN 1180: REM"

—NOT PET EDITOR REQ.--" : rem 151

1090 : :rem 4

1100 REM" RESTORE PET & ACTIVATE EDITOR AT $700

0 " :rem 195

1110 : :rem 253

1120 POKE 52,0: POKE 53,112: CLR :rem 98

1130 KB$="SYS28672"+CHR$(13): FOR JJ=1 TO LEN(KB$)

:rem 135

1140 POKE 622+JJ,ASC(MID$(KB$,JJ,l)): NEXT JJ: POK

E 158,LEN(KB$) :rem 224

209

Program Listings

1150 IF PEEK (58590)=208 THEN PRINT CHR$(14): REM"

—80 COL SCREEN EXPAND--" : rem 253

1160 NEW :rem 178

1170 : :rem 3

1180 : IF PEEK (824)<>250 OR LF<>250 THEN 1300: RE

MM—NOT C64 EDITOR REQ. —" : rem 128

1190 : :rem 5

1200 REM11 RESTORE C64 & ACTIVATE EDITOR AT $900

0 " :rem 138

1210 : :rem 254

1220 KB$="SYS36864"+CHR$(13): FOR JJ=1 TO LEN(KB$)

:rem 137

1230 POKE 630+JJ,ASC(MID$(KB$,JJ,l)): NEXT JJ: POK

E 198, LEN(KB$) :rem 227

1240 : POKE 55,0: POKE 56,144: POKE 56578, PEEK (5

6578) OR 3 :rem 140
1250 POKE 56576, (PEEK (56576) AND 252) OR 3

:rem 68

1260 POKE 53272,21: POKE 648,4 :rem 245

1270 POKE 53280,254: POKE 53281,246: PRINT CHR$(15

4); :rem 228

1280 POKE 43,1: POKE 44,8: POKE 2048,0: PRINT "

{CLR}": NEW : rem 72
1290 : :rem 6

1300 : IF PEEK (65534)=72 THEN 1430: REM"— PET OR

C-64 ?" :rem 6

1310 : :rem 255

1320 REM" SETUP FOR 'PET1 COMPUTERS "

:rem 109

1330 : :rem 1

1340 IF PEEK (28684) = 242 THEN SYS 28675: REM"— DE

ACTIVATE EDITOR —" :rem 159

1350 POKE 52,0: POKE 53,121: REM"— TOP OF MEMORY

{SPACE}= $7900" :rem 154

1360 IF PEEK (58590)=208 THEN PRINT CHR$(142): REM

"80 COL SCREEN CONDENSE" :rem 13

1370 IF PEEK (824)<>248 THEN 1540: REM"— NOT A PR

OG'D LOAD" :rem 48

1380 POKE 42,PEEK (201): POKE 43,PEEK (202): REM"-

- END OF BASIC" :rem 38

1390 GOTO 1540 :rem 208

1400 : :rem 255

1410 REM" SETUP FOR 'C-64* COMPUTERS "

:rem 94

1420 : :rem 1

1430 : POKE 55,0: POKE 56,121: REM"— TOP OF MEMOR

Y = $7900" :rem 217

1440 POKE 56578, PEEK (56578) OR 3: REM"— I/O CON

T. TO OUTPUT" :rem 5

210

Program Listings

1450 POKE 56576, (PEEK (56576) AND 252) OR 1: REM"

— SCREEN BANK = $8000" :rem 5

1460 POKE 53272,5: REM"— OFFSET = $0000" :rem 2

1470 POKE 648,128: REM"— SCREEN EDITOR = $8000"

:rem 208

1480 POKE 53280,14: POKE 53281,14: PRINT CHR$(31);

: REM"— COLOR CONT. " :rem 225

1490 IF PEEK (824)<>248 THEN 1540: REM"— NOT A PR

OG'D LOAD" :rem 51

1500 POKE 45,PEEK (174): POKE 46,PEEK (175): REM"-

- END OF BASIC" :rem 56

1510 : :rem 1

1520 REM" INITIALIZE & ARE M.L. SUBROUTINES LOA

DED ? " srem 46

1530 : :rem 3

1540 : POKE 824,0: CLR : OPEN 15,8,15: TY=2

:rem 102

1550 IF PEEK (65534)=72 THEN TY=6: Y0$=CHR$(31): Y
1$=CHR$(158) srem 187

1560 : :rem 6

1570 DIM PG$(10): CR$=CHR$(13): CU$=CR$+"{UP}": TA
=18 srem 91

1580 PG$(0)="DFH SUBS$79": PG$(l)="DFH SORT": PG$(

2)=PG$(1) :rem 50

1590 PG$(3)=PG$(1): PG$(4)="DFH MERGE": PG$(5)="DF

H PRINT" :rem 32

1600 PG$(6)="DFH SPLIT": PG$(7)=PG$(6): PG$(8)="DF

H SWAP" :rem 240

1610 PG$(9)="DFH ED.PET$70": PG$(10)="DFH ED.C64$9

0" :rem 118

1620 IF PEEK (30977)=21 AND PEEK (30980)=30 THEN 2

050: REM"ML SUBS LOADED" :rem 60

1630 : :rem 4

1640 RD$="{RVS}{39 SPACES}{OFF}": PRINT "{CLR}";RD
$:rem 61

1650 PRINT "{RVS}{3 SPACES}D A T A{3 SPACESjF I L
{SPACE}E{3 SPACES}H A N D L E R{3 SPACES}
{OFF}";CR$;RD$:rem 98

1660 PRINT "{RVS} 07-15-84{2 SPACES}BY BLAINE

D. STANDAGE, {OFF}" :rem 180

1670 PRINT "{RVS} JOHN L. DARLING & KENNETH D. STA

NDAGE {OFF}";CR$;RD$:rem 194

1680 PRINT "{RVS} A FAMILY OF COORDINATED PROGRAMS

F0R{2 SPACES}{OFF}" :rem 90
1690 PRINT "{RVS} PREPARATION AND COMPLETE PROCESS

ING{3 SPACES}{OFF}" :rem 179

1700 PRINT "{RVS} OF SEQUENTIAL DATA FILES CONTAIN

ING{3 SPACES}{OFF}" :rem 68

1710 PRINT "{RVS} EITHER SINGLE-FIELD OR MULTI-FIE

LD{4 SPACES}{OFF}" :rem 15

211

Program Listings

1720 PRINT "{RVS} DATA RECORDS.{25 SPACES}{OFF}";C
R$;RD$:rem 130

1730 PRINT "{RVS} MAXIMUM DATA CAPACITY:

{16 SPACES}{OFF}" :rem 0

1740 PRINT "{RVS}{3 SPACES}50{2 SPACES}FILES ON UP

TO 50 DISKS{9 SPACES}{OFF}" :rem 225

1750 PRINT "{RVS}{3 SPACES}650 RECORDS PER FILE (*

){12 SPACES}{OFF}" :rem 113

1760 PRINT "{RVS}{3 SPACES}20{2 SPACES}FIELDS PER

{SPACE}RECORD{15 SPACES}{OFF}" :rem 2
1770 PRINT "{RVS}{3 SPACES}74{2 SPACES}CHARACTERS

{SPACE}PER RECORD{11 SPACES}{OFF}" :rem 53
1780 PRINT "{RVS}{3 SPACES}(*)=SOME EXCEPTIONS ALL

OWED.{8 SPACES}{OFF}";CR$;RD$:rem 82

1790 PRINT "{RVS} ESSENTIAL OPERATOR INSTRUCTIONS

{SPACE}ARE{3 SPACES}{OFF}" :rem 231
1800 PRINT "{RVS} PRESENTED DURING PROGRAM OPERATI

ON.{3 SPACES}{OFF}";CR$;RD$;CR$:rem 133

1810 GOSUB 1930: PS$=PG$(0) :rem 145

1820 : GOSUB 1870: IF EN<>0 THEN 1820 : rem 85

1830 PRINT "{RVS} LOADING ";PS$;" {OFF}": LOAD PS$

,8,1 :rem 162

1840 : :rem 7

1850 REM"—SUB TEST FOR NEEDED PROGRAM FILE

11 :rem 76

1860 : :rem 9

1870 : OPEN 8,8,8,"0:"+PS$+",P,R": GOSUB 2000: CLO

SE 8: IF EN=0 THEN RETURN :rem 173

1880 PRINT "{DOWN}INSTALL A DISK CONTAINING:"

:rem 90

1890 PRINT "{RVS} ";PS$;" {OFF} — THEN —": GOSUB

1930: RETURN :rem 76

1900 : :rem 4

1910 REM"—SUB WAIT FOR OPERATOR " :rem 205

1920 : :rem 6

1930 : PRINT "PRESS ANY KEY TO CONTINUE" :rem 62

1940 : GET KB$: IF KB$<>"" THEN 1940 :rem 206

i950 : GET KB$: IF KB$="" THEN 1950 :rem 147
1960 RETURN :rem 176

1970 : :rem 11

1980 REM"—SUB DISK ERROR TEST " : rem 65

1990 : :rem 13

2000 : INPUT# 15,EN,EM$,ET,ES: IF EN=0 THEN RETURN

:rem 23

2010 PRINT Yl$;"{DOWN}{RVS} DISK ERROR {OFF}"Y0$:

{SPACE}PRINT EN;EM$;ET;ES: RETURN :rem 160
2020 : :rem 254

2030 REM" FUNCTION SELECT MENU " :rem 86

2040 : :rem 0

2050 : Kl$="l" :rem 83

212

Program Listings

2060 : PRINT M{CLR}{RVS}{4 SPACES}DATA{2 SPACES}FI

LE{2 SPACES}HANDLER{2 SPACES}FUNCTIONS
{4 SPACES} {OFF}11 :rem 251

2070 PRINT "{DOWN}{RVS} 1 {OFF}{2 SPACESJCREATE OR

EDIT A DATA FILE" :rem 118

2080 PRINT "{DOWN}{RVS} 2 {OFF}{2 SPACES}LIST (HAR
D COPY FOR EDITING)" :rem 84

2090 PRINT "{DOWN}{RVS} 3 {OFF}{2 SPACES}SORT BY R
ECORD OR FIELD CONTENT" :rem 70

2100 PRINT "{DOWN}{RVS} 4 {OFF}{2 SPACES}MERGE SOR
TED FILES :rem 15

2110 PRINT "{DOWN}{RVS} 5 {OFF}{2 SPACES}PRINT PER
USER DEFINED FORMAT" :rem 234

2120 PRINT "{DOWN}{RVS} 6 {OFF}{2 SPACESjSPLIT FIL
ES BY FIELD CONTENT" :rem 154

2130 PRINT "{DOWN}{RVS} 7 {OFF}{2 SPACES}EXTRACT R
ECORDS BY FIELD CONTENT" :rem 202

2140 PRINT "{DOWN}{RVS} 8 {OFF}{2 SPACES}RE-STRUCT
URE DATA RECORDS" :rem 70

2150 PRINT "{DOWN}{RVS} 9 {OFF}{2 SPACES}ACTIVATE
{SPACE}DFH EDITOR &{RIGHT}DOS" :rem 154

2160 PRINT "{DOWN}{RVS} 10 {OFF}{2 SPACESjQUIT
{DOWN}" :rem 4

2170 PRINT "YOUR CHOICE ";TAB(TA+2);K1$;"

{2 SPACES}";CU$;TAB(TA); :rem 245
2180 INPUT Kl$: SE=VAL(K1$): IF SE<1 OR SE>10 THEN

2060 :rem 123

2190 IF SE=10 THEN 2420 :rem 136

2200 : :rem 254

2210 LF=248: IF SE<>9 THEN 2250 :rem 62

2220 IF TY=2 THEN LF=249: GOTO 2250 :rem 74

2230 LF=250: SE=10 :rem 157

2240 : :rem 2

2250 : PS$=PG$(SE): GOSUB 1870: IF EN=0 THEN 2320

:rem 244

2260 IF TY=6 THEN DR$="0": GOTO 2290 2rem 83

2270 : PRINT "WHICH DRIVE";TAB(TA+2);"0";CU$;TAB(T

A); :rem 241

2280 INPUT DR$: DR$=LEFT$(DR$,1): IF DR$<"0" OR DR

$>"1" THEN 2270 :rem 57

2290 : PRINT* 15,"I";DR$;CR$;: GOSUB 2000 :rem 118

2300 IF ENO0 THEN PRINT "CAN'T INITIALIZE, TRY AG

AINl": GOTO 2270 :rem 186

2310 GOTO 2060 :rem 199

2320 : CLOSE 15: POKE 824,LF: PRINT "{RVS} LOADING
";PS$7" {OFF}" :rem 208

2330 IF TY=2 THEN 2360 :rem 109

2340 IF SE>8 THEN 2370 :rem 97
2350 POKE 43,1: POKE 44,4: POKE 1024,0: REM"™ STA

RT OF BASIC = $0401" :rem 225

213

Program Listings

2360 : LOAD PS$,8: REM"—LOAD DFH PROGRAM—"

:rem 112

2370 : POKE 30977,195: POKE 30980,195: REM"~VOID

{SPACE} SUBS—" :rem 199
2380 LOAD PS$,8,1: REM11—LOAD DFH EDITOR—":rem 68

2390 : :rem 8

2400 REM" PROGRAM EXIT ROUTINES " :rem 199

2410 : :rem 1

2420 : CLOSE 15: POKE 30977,195: POKE 30980,195: R

EM11—VOID SUBS—11 :rem 217

2430 IF TY=6 THEN 1240 :rem 110

2440 POKE 52,0: POKE 53,128 : rem 84

2450 IF PEEK (58590)=208 THEN PRINT CHR$(14): REM"

—80 COL SCREEN EXPAND—" : rem 1

2460 NEW :rera 182

DFH SORT

For mistake-proof program entry, be sure to use "The Automatic Proofreader," Chapter 9.

1000 REM SAVE "@0:DFH SORT",8 :rem 64

1010 : :rem 252

1020 REM" A DATA FILE HANDLER PROGRAM FOR DATA ENT

RY, EDITING," :rem 107

1030 REM" SORTING AND LISTING MULTI-FIELD SEQUENTI

AL DATA FILES." :rem 209

1040 : :rem 255

1070 : :rem 2

1080 REM" SET TOP OF BASIC IF REQUIRED—"

:rem 152

1090 : :rem 4

1100 IF PEEK (65534)=72 THEN 1140: REM"—C-64 COMP

UTER—" :rem 200

1110 IF PEEK (824)<>248 THEN 1180: REM"—NOT PROG1

D LOAD—" :rem 65

1120 POKE 42,PEEK (201): POKE 43,PEEK (202): GOTO

{SPACE}1180 :rem 209
1130 : :rem 255

1140 : POKE 53280,14: POKE 53281,14: PRINT CHR$(31

);: REM"—COLORS—" :rem 95
1150 IF PEEK (824)<>248 THEN 1180: REM"—NOT PROG1

D LOAD—" :rem 69

1160 POKE 45,PEEK (174): POKE 46,PEEK (175)

:rem 176

1170 : :rem 3
1180 : CLR : POKE 824,0: GOSUB 1550: GOTO 2400

:rem 6

1190 : :rem 5

1200 REM"====== START OF SUBROUTINES======":rem 77

12i0 * :rem 254

214

Program Listings

1220 REM"~SUB—INPUT RECORDS—11 :rem 135

1230 s :rem 0

1240 : INPUT* 8,DA$(NR): TT=ST: NC=NC+LEN(DA$(NR))

: NR=NR+1 :rem 25

1250 PRINT M{UP}";NR: IF TT<>0 OR NOMC OR NR>MR T
HEN RETURN : rem 77

1260 GOTO 1240 :rem 201

1270 : :rem 4

1280 REM"—SUB—DATA ENTRY—" :rem 151

1290 : :rem 6

1300 : TS$(0)=DA$(PL): NC=NC-LEN(DA$(ML%)): DA$(ML

%)="": SYS SP: MF=FT% :rem 227

1310 FOR JJ=1 TO NF: IF JJ>MF THEN TS$(JJ)=""

:rem 115

1320 : PRINT "{DOWN}{RVS} LINE*";ML%*10+BN;"{LEFT}
, FIELDM;JJ; "{LEFT} {OFF}11 ;CR$; " ";TS$(JJ);

: rem 64

1330 AS=ASC(RIGHT$(TS$(JJ),1)+ZR$) :rem 187
1340 IF AS=32 OR AS=160 THEN PRINT "{LEFT}{RVS}";C

HR$(160); :rem 164

1350 PRINT CR$;"{UP}II7QT$;CR$;II{UP}11; :rem 98
1360 INPUT* 1,TC$(0): PRINT : LT=LEN(TC$(0))

:rem 96

1370 JA=0: IF LT<1 THEN 1450 :rem 146

1380 : JA=JA+1: IF MID$(TC$(0),JA,1)<>QT$ THEN 140

0 :rem 84

1390 PRINT Y1$;"{DOWN} {RVS} QUOTE INSIDE TEXT

{2 SPACES}{OFF}";Y0$: GOTO 1440 :rem 239

1400 : IF JA<LT THEN 1380 :rem 240

1410 FA$="TC": SYS SP: FA$=MTS" :rem 114

1420 IF FT%<2 AND RIGHT$(TC$(0),1)<>FD$ THEN 1450

:rem 3

1430 PRINT Y1$;"{DOWN} {RVS} DELIMITER IN TEXT
{2 SPACES}{OFF} ";Y0$;QT$;FD$;QT$:rem 139

1440 : PRINT " {RVS} RE-ENTER THE FIELD {OFF}11: GO
TO 1320 :rem 56

1450 : AS=ASC(RIGHT$(TC$(0),1)+ZR$) :rem 132

1460 IF AS=160 THEN TC$(0)=LEFT$(TC$(0),LT-l)+" "

:rem 223

1470 DA$(ML%)=DA$(ML%)+TC$(0)+FD$: NEXT JJ:rern 198

1480 : :rem 7

1490 NC=NC+LEN(DA$(ML%)): IF LEN(DA$(ML%))<74 THEN

RETURN :rem 167

1500 PRINT "{RVS} LINE IS";LEN(DA$(ML%))-73;"

{LEFT}{RVS} CHARACTERS TOO LONG " :rem 87
1510 GOTO 1300 :rem 196

1520 : :rem 2

1530 REM"—SUB—INITIALIZE—" :rem 219

1540 : :rem 4

215

Program Listings

1550 : Y0$="": Yl$="": MR=700: MC=14000: REM"—MAX

RECORDS & CHR'S—" :rem 208

1560 DIM DA$(MR),TS$(20),TC$(80) :rem 137

1570 TY=2: IF PEEK (65534)=72 THEN TY=6: Y0$=CHR$(

31): Y1$=CHR$(158) :rem 19

1580 LC=59468: IF TY=6 THEN LC=53272 :rem 145

1590 CA$="": IF (PEEK (LC) AND 2)<>0 THEN CA$="

{DOWN}" :rem 47

1600 CR$=CHR$(13): QT$=CHR$(34): CU$=CR$+"{UP}": S
1=22: TA=6: TB=18 :rem 111

1610 ID$="0": FT%=0: M1=2: SS=30976: SP=SS+3: RN=l

000: BN=1010: LN=13 srem 17

1620 RL$=Y1$+"{DOWN}{RVS}{3 SPACES}OUT OF RANGE

{2 SPACES}{OFF}"+Y0$: YC$="YOUR CHOICE "

:rem 194

1630 NR=0: LL=-1: ZR$=CHR$(0): AD$=Y1$+"{DOWN}
{RVS} ALREADY DELETED {OFF}"+Y0$:rem 208

1640 OPEN 1,0: OPEN 15,8,15: RETURN :rem 108

1650 : :rem 6

1660 REM"—SUB— WAIT FOR OPERATOR —" :rem 117

1670 : :rem 8

1680 : PRINT "{DOWNjPRESS ANY KEY TO CONTINUE"

srem 81

1690 : GET KB$: IF KB$<>"" THEN 1690 :rem 210

1700 : GET KB$: IF KB$="" THEN 1700 :rem 133

1710 RETURN :rem 169

1720 : :rem 4

1730 REM"—SUB—WAIT FOR YES OR NO—" :rem 54

1740 : :rem 6

1750 : KB$="Y" :rem 146

1760 : PRINT CU$;SPC(S1);"? ";KB$;CU$;SPC(Sl+2);

:rem 118

1770 : INPUT# 1,KB$: PRINT : KB$=LEFT$(KB$,1)

:rem 103

1780 IF KB$="Y" OR KB$="N" THEN RETURN :rem 26

1790 PRINT "{RVS} Y {OFF} YES OR {RVS} N {OFF} NO"

;CU$;SPC(S1)"? ";: GOTO 1770 :rem 173

1800 : :rem 3

1810 REM"—SUB—TEST/PRINT DISK ERROR—" : rem 155

1820 : :rem 5

1830 : INPUT* 15,EN,EM$,ET,ES: IF EN=0 OR EN=63 TH

EN RETURN :rem 251

1840 PRINT Yl$;"{DOWN}{RVS} DISK ERROR {OFF}";Y0$;
CR$;EN;EM$;ET;ES: RETURN :rem 77

1850 : :rem 8

1860 REM"—SUB—STRING INPUT—" :rem 86

1870 : :rem 10

1880 : PRINT CU$;SPC(S1);"? ";K1$;CU$;SPC(Sl+2);

:rem 104

1890 INPUT* 1,K1$: PRINT : RETURN :rem 99

216

Program Listings

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

2110

2120

2130

2140

2150

2160

2170

2180

2190

2200

REM"—SUB—NUMERIC INPUT--11

:rem 4

:rem 142

: :rem 6

: PRINT CU$;SPC(Sl);"?";K2;CU$;SPC(Sl+2);

:rem 65

INPUT* 1,KB$: PRINT : K2=VAL(KB$): RETURN

:rem 73

: :rem 9

REM"—SUB—TEST DELIMITER—" :rem 207

: :rem 11

: EF=0: IF FD$<>"" THEN 2000 :rem 42

PRINT "{RVS} ENCLOSE COMMA/COLON/SPACE IN QUO
TES {OFF}": EF=1: RETURN :rem 200
: IF LEN(FD$)<>1 OR ASC(FD$)<32 THEN EF=1

:rem 84

IF ASC(FD$)>127 AND ASC(FD$)<161 THEN EF=1

:rem 165

IF FD$="0" OR VAL(FD$)<>0 THEN EF=l :rem 7

IF EF=1 THEN PRINT Y1$;"{RVS} ILLEGAL DELIMIT

ER {OFF}{2 SPACES}";Y0$;FD$:rem 68
RETURN :rem 166

: :rem 1

REM"—SUB—DISK CHANGE/INITIALIZE—" :rem 218

: :rem 3

: ER=0 :rem 8

PRINT "{DOWN}NEED A NEW DISK";: GOSUB 1750: I
F KB$="N" THEN ER=1: RETURN :rem 120

: IF TY=6 THEN ID$="0": GOTO 2130 :rem 118

PRINT "WHICH DRIVE";: K1$=ID$: GOSUB 1880: ID

$=K1$:rem 216

IF ID$<"0" OR ID$>"1" THEN 2100 :rem 172

: PRINT "{DOWN}INSTALL NEW DISK — THEN{UP}":
GOSUB 1680 :rem 177

PRINT* 15,"I";ID$: GOSUB 1830: IF EN=0 THEN R

ETURN :rem 224

PRINT "CAN'T INITIALIZE — TRY AGAIN.": GOTO

{SPACE}2100 :rem 245
: : rem 3

REM"—SUB—CHANGE CASE—" :rem 172

: :rem 5

: CV=PEEK(LC) :rem 225

IF (CV AND 2)=2 THEN POKE LC,(CV AND 253): CA

': RETURN :rem 158

2210 POKE LC,(CV OR 2): CA$="{DOWN}": RETURN
:rem 250

2220 : :rem 0

2230 REM"—SUB—TEST #BLOCKS FREE—" :rem 42

2240 : :rem 2

2250 : OPEN 14,8,0,"$"+ID$+":": GOSUB 1830: IF EN=

0 THEN 2290 : rem 190

217

Program Listings

2260 CLOSE 14: PRINT Y1$;"{RVS} CAN'T READ OUTPUT

{SPACE}DISK DIRECTORY {OFF}";Y0$:rem 95
2270 GOSUB 2080: IF ER=1 THEN RETURN :rem 242

2280 ER=0: GOTO 2250 :rem 12

2290 : FOR JJ=1 TO 18: GET #14,X1$,X2$: NEXT JJ: C

LOSE 14 :rem 115

2300 BF%=ASC(X1$+ZR$)+ASC(X2$+ZR$)*256 :rem 66

2310 PRINT "{DOWN}";BF%;TAB(TA);"BLOCKS FREE11

:rem 231

2320 IF BF%>(MC+2*MR)/254+2 THEN RETURN :rem 126

2330 ER=1: PRINT Y1$;"{RVS} NOT ENOUGH BLOCKS FREE

{OFF}";Y0$: Ml=7: RETURN :rem 42

2340 : :rem 3

2350 REM"====== START MAIN PROGRAM ======":rem 153

2360 : :rem 5

2370 REM11 MENU AND SELECTION--" :rem 131

2380 : :rem 7

2390 : GOSUB 1680 :rem 87

2400 : PRINT "{CLR}{RVS}{4 SPACES}DATA ENTRY AND S

ORTING FUNCTIONS{3 SPACES}{OFF}" :rem 102

2410 PRINT "{DOWN}{RVS} 1 {OFF}{2 SPACES}CHANGE DI

SPLAY/PRINT CASE" :rem 18

2420 PRINT "{DOWN}{RVS} 2 {OFF}{2 SPACES}LOAD DATA

FILE FROM DISK" :rem 57

2430 IF NR>0 THEN PRINT "{DOWN}{RVS} 3 {OFF}
{2 SPACES}SORT THE FILE" :rem 151

2440 IF NR>0 THEN PRINT "{DOWN}{RVS} 4 {OFF}
{2 SPACES}SAVE THE FILE" :rem 128

2450 IF NR<1 THEN PRINT "{DOWN}{RVS} 5 {OFF}

{2 SPACES}CREATE A NEW FILE": GOTO 2480

:rem 145

2460 IF NROLL+1 THEN PRINT "{DOWN}{RVS} 5 {OFF}
{2 SPACES}EDIT OR DELETE RECORDS": GOTO 2480

:rem 32

2470 PRINT "{DOWN}{RVS} 5 {OFF}{2 SPACES}ADD# EDIT

, OR DELETE RECORDS" :rem 53

2480 : IF LL>-1 THEN PRINT "{DOWN}{RVS} 6 {OFF}
{2 SPACES}LIST THE FILE" :rem 243

2490 PRINT "{DOWN}{RVS} 7 {OFF}{2 SPACES}INITIALIZ
E ANOTHER DISK" :rem 186

2500 PRINT "{DOWN}{RVS} 9 {OFF}{2 SPACES}QUIT OR G

O TO MASTER MENU{DOWN}" :rem 181

2510 : PRINT YC$;: K2=M1: GOSUB 1930: IF K2=l THEN

GOSUB 2190 :rem 178

2520 IF K2=2 THEN 2650 :rem 64

2530 IF K2=7 THEN GOSUB 2100: GOTO 2400 :rem 245

2540 IF K2=9 THEN 4300 :rem 67

2550 IF NR<1 THEN 2590 :rem 103

2560 IF K2=3 THEN 2940 :rem 71

2570 IF K2=4 THEN Ml=3: GOTO 3090 :rem 167

218

Program Listings

2580 IF K2=5 THEN Ml=4: GOTO 3530 :rem 169

2590 : IF K2=5 AND NR<1 THEN Ml=4: GOTO 3620

:rem 196

2600 IF K2=6 AND LL>-1 THEN Ml=5: GOTO 4130

:rem 168

2610 PRINT "{UP}";: GOTO 2510 :rem 161

2620 : :rem 4

2630 REM" LOAD FILE FROM DISK—" :rem 115

2640 : :rem 6

2650 : CLR : PRINT : GOSUB 1550: IF TY=6 THEN Kl$=

"0": GOTO 2680 :rem 224

2660 : PRINT "INPUT FROM DRIVE #"; :rem 117

2670 K1$=ID$: GOSUB 1880: IF K1$<"0" OR K1$>"1" TH

EN 2660 :rem 242

2680 : ID$=K1$:rem 152

2690 : :rem 11

2700 : PRINT "SOURCE FILE NAME";: K1$=IL$: GOSUB 1

880: IL$=K1$: NA$=IL$:rem 47

2710 IF LEN(IL$)>LN THEN IL$=LEFT$(IL$,LN): GOTO 2

700 :rem 154

2720 OPEN 8,8,8,ID$+":"+IL$+",S,R": GOSUB 1830

:rem 89

2730 IF EN<>0 THEN CLOSE 8: GOSUB 2080: GOTO 2400

:rem 50

2740 : :rem 7

2750 INPUT* 8,X1$: IF ST<>0 THEN 2880 :rem 173

2760 FD$=LEFT$(X1$,1): GOSUB 1980: IF EF<>0 THEN 2

890 :rem 240

2770 NR=0: PRINT " {DOWN}" ;TAB(TA); "DATA RECORDS LO
ADED." :rem 115

2780 GOSUB 1240: IF NOMC OR NR>MR THEN 2850

:rem 92

2790 FOR JJ=1 TO LEN(DA$(0)): IF MID$(DA$(0),JJ,1)

=FD$ THEN NF=NF+1 :rem 242

2800 NEXT JJ: PRINT TAB(TA);"(";INT((NC+2*NR)/254+

1)7"DISK BLOCKS){DOWN}" :rem 16

2810 PRINT NF;TAB(TA);"FIELDS PER DATA RECORD."

:rem 8

2820 PRINT " "7QT$;FD$;QT$;TAB(TA);"IS THE FIELD D

ELIMITER." :rem 179

2830 Ml=3: LL=NR-1: GOTO 2900 :rem 6

2840 : :rem 8

2850 : PRINT Y1$;"{RVS} FILE TOO LARGE TO LOAD.
{2 SPACES}MORE THAN: {OFF}" :rem 109

2860 PRINT "{RVS}";MR;"{LEFT} RECORDS(2 SPACES}-OR
- ";MC;"{LEFT} CHARACTERS {OFF}";Y0$:rem 247

2870 CLOSE 8: CLR : GOSUB 1550: GOTO 2390 :rem 96

2880 : PRINT Y1$;"{RVS} NO DATA RECORDS IN THE FIL

E {OFF} ";Y0$:rem 179

219

Program Listings

2890 : Ml=2: PRINT Yl$;M{DOWN} INPUT TERMINATED

{OFF}";Y0$:rem 246

2900 : CLOSE 8: GOTO 2390 :rem 244

2910 : :rem 6

2920 REM" SORT DATA BY FIELD--11 :rem 55

2930 : :rem 8

2940 : PRINT "{DOWN}FIELD TO BE SORTED"; :rem 133

2950 K2=0: GOSUB 1930: FS%=K2: IF FS%<0 OR FS%>20

{SPACE}THEN 2940 :rem 227

2960 : PRINT "{RVS} A {OFF} ASCENDING ORM;CR$7"

{RVS} D {OFF} DESCENDING ORDER"; :rem 212

2970 K1$="A": GOSUB 1880: FO$=K1$: IF K1$<>"A" AND

Kl$o"D" THEN 2960 :rem 108

2980 : srem 13

2990 : FA$="DA": SYS SS: IF FS%=0 THEN NR=FT%

srem 93

3000 PRINT CR$;NR;TAB(TA);"TOTAL DATA RECORDS"

srem 11

3010 PRINT FT%;TAB(TA);"DATA RECORDS SORTED"
srem 132

3020 IF NR=FT% THEN 3040 :rem 230
3030 PRINT NR-FT%;TAB(TA);"RECORDS WITH NULL IN FI

ELD";FS% :rem 211

3040 : Ml=4: LL=FT%-1: IF DF<>0 THEN DF=0: M1=3

:rem 103

3050 GOTO 2390 srem 207

3060 : srem 3

3070 REM" SAVE THE FILE--" srem 3
3080 s srem 5

3090 : IF NR=LL+1 THEN SF=0: GOTO 3220 srem 213

3100 PRINT "{DOWN}{RVS} 1 {OFF}{2 SPACESjSAVE COMP
LETE FILE" srem 35

3110 PRINT "{DOWN}{RVS} 2 {OFF}{2 SPACESjSAVE ONLY
THE {RVS}";LL+1;"{LEFT} {OFF} RECORDS"

srem 208

3120 PRINT TAB(TA);"WITH DATA IN FIELD {RVS}";FS%;
"{LEFT} {OFF}{DOWN}" srem 170

3130 s PRINT YC$;s K2=2s GOSUB 1930s IF K2=l THEN

{SPACE}SF=ls GOTO 3170 srem 94

3140 IF K2=2 THEN SF=0s GOTO 3220 srem 178

3150 GOTO 3130 srem 201

3160 s srem 4

3170 s PRINT "{DOWNjFILE WILL BE ERASED FROM MEMOR

Y" srem 135

3180 PRINT "DURING THIS SAVE.{2 SPACESjPRESS {RVS}

M {OFF} FOR" srem 96

3190 PRINT "ANOTHER MENU SELECTION OR —{UP}"s GOS

UB 1680 srem 159

3200 IF KB$="M" THEN 2400 :rem 200

3210 : srem 0

220

Program Listings

3220 : PRINT :rem 142

3230 IF IL$<>IMI THEN PRINT "ORIGINAL FILE NAME";CU

$;SPC(S1+2);IL$:rem 162

3240 : PRINT "NEW FILE NAME";: K1$=NA$: GOSUB 1880

: NA$=K1$:rem 89

3250 IF LEN(NA$)>LN THEN NA$=LEFT$(NA$,LN): GOTO 3

240 :rem 136

3260 : :rem 5

3270 IF TY=6 THEN K1$="0": GOTO 3300 :rem 52

3280 : PRINT "OUTPUT TO DRIVE #";: K1$=ID$: GOSUB

{SPACE}1880 :rem 151
3290 IF K1$<"0" OR K1$>"1" THEN 3280 :rem 157

3300 : ID$=K1$: RE$="" :rem 4

3310 : :rem 1

3320 GOSUB 2250: IF ER=1 THEN ER=0: GOTO 2390

:rem 83

3330 : OPEN 8,8,8,RE$+ID$+":"+NA$+",S,W": GOSUB 18

30: IF EN=0 THEN 3390 :rem 61

3340 CLOSE 8: IF EN=63 THEN 3360 :rem 117

3350 GOSUB 2080: GOTO 2400 :rem 78

3360 : PRINT "REPLACE EXISTING FILE";: GOSUB 1750:

IF KB$="N" THEN 2400 :rem 94

3370 RE$="@": GOTO 3330 :rem 133

3380 : :rem 8

3390 : PRINT* 8,QT$;FD$;"«@0:";NA$;CR$; :rem 116

3400 PRINT "SAVING — PLEASE WAIT —": IF SF=1 THE

N 3430 :rem 204

3410 FOR JJ=0 TO LL: PRINT* 8,QT$;DA$(JJ);CR$;: NE

XT JJ: GOTO 3470 :rem 72

3420 : :rem 3

3430 : FOR JJ=0 TO LL: PRINT* 8,QT$;DA$(JJ);CR$;:

{SPACE}DA$(JJ)="": NEXT JJ :rem 140

3440 FS%=0: FA$="DA": SYS SS :rem 192

3450 FOR JJ=0 TO FT%-1: PRINT* 8,QT$;DA$(JJ);CR$;:

DA$(JJ)="": NEXT JJ :rem 217

3460 NR=0: LL=-1: M1=2 :rem 110

3470 : GOSUB 1830: CLOSE 8 :rem 60

3480 IF ENO0 THEN PRINT Y1$;"{RVS} FILE NOT SAVED

CORRECTLY {OFF}";Y0$:rem 75

3490 GOTO 2390 :rem 215

3500 : :rem 2

3510 REM" EDIT/ADD RECORDS—" :rem 2

3520 : :rem 4

3530 : IF NR=LL+1 THEN PR$="A": GOTO 3680 :rem 96

3540 PRINT "{DOWN}{RVS} NOTE {OFF} - PRESENT SORT
{SPACE}ON FIELD {RVS} #";FS%;"{LEFT}{RVS}

{OFF}" :rem 13
3550 PRINT "HAS PRODUCED {RVS}";NR-LL-1;"{LEFT}

{OFF} RECORDS (OUT OF";NR :rem 48

221

Program Listings

3560 PRINT "TOTAL) WHICH CAN'T BE EDITED DUE TO"
:rem 195

3570 PRINT "NULLS IN THAT FIELD.{DOWN}" :rem 153

3580 PRINT "NEW RECORDS CAN NOT BE ADDED IN"

:rem 208

3590 PRINT "PRESENT SORT CONDITION.{2 DOWN}":rem 2

3600 PR$="E": GOTO 3680 :rem 153

3610 : :rem 4

3620 : NF=2: FD$="i": PR$="A" :rem 84

3630 : PRINT "{DOWN}* FIELDS PER RECORD"; :rem 163

3640 K2=NF: GOSUB 1930: NF=K2: IF NF<1 OR NF>20 TH

EN 3630 :rem 196

3650 : PRINT "DELIMITER TO BE USED";: K1$=FD$: GOS

UB 1880: FD$=K1$:rem 35

3660 GOSUB 1980: IF EF=1 THEN 3650 :rem 224

3670 : :rem 10

3680 : FA$="TS": EL%=LL*10+RN :rem 249

3690 : PRINT "{DOWN}";: IF NR=LL+1 THEN PRINT "

{RVS} A {OFF} ADD{2 SPACES}"; :rem 172
3700 IF LL>-1 THEN PRINT "{RVS} D {OFF} DELETE";CR

$;"{RVS} E {OFF} EDIT "; :rem 229
3710 PRINT "{RVS} F {OFF} FINISHED"; :rem 11

3720 K1$=PR$: GOSUB 1880: PR$=K1$:rem 215

3730 IF PR$="A" AND NR=LL+1 THEN 3790 :rem 138

3740 IF PR$="E" AND LL>-1 THEN 3840 :rem 238

3750 IF PR$="D" AND LL>-1 THEN 3930 :rem 238

3760 IF PR$="F" THEN 4050 :rem 228

3770 GOTO 3690 :rem 220

3780 : :rem 12

3790 : IF NR<MR AND NC<MC THEN 3810 :rem 66

3800 PRINT Y1$;"{RVS} FILE SIZE LIMIT REACHED

{OFF}";Y0$: Ml=4: GOTO 2390 :rem 65
3810 : PL=LL: LL=LL+1: ML%=LL: NR=NR+1: IF LL=0 TH

EN PL=0 :rem 96

3820 EL%=LL*10+BN: GOSUB 1300: GOTO 3690 :rem 97

3830 : :rem 8

3840 : PRINT "{DOWN}EDIT LINE #{2 SPACES} ";

: K2=EL%+10 :rem 8

3850 IF K2>LL*10+BN THEN K2=LL*10+BN :rem 191

3860 GOSUB 1930: EL%=K2 :rem 200

3870 IF EL%<BN THEN PRINT TAB(TB);RL$: EL%=RN: GOT

O 3840 :rem 105

3880 IF EL%>LL*10+BN THEN PRINT TAB(TB);RL$: EL%=L

L*10+RN: GOTO 3840 :rem 8

3890 ML%=(EL%-BN)/l0+.5: PL=ML% :rem 130

3900 IF DA$(ML%)="" THEN PRINT TAB(TB);AD$: GOTO 3

690 srem 55
3910 GOSUB 1300: GOTO 3690 :rem 86

3920 : :rem 8

222

Program Listings

3930

3940

3950

3960

3970

3980

3990

4000

4010

4020

4030

4040

4050

4060

4070

4080

4090

4100

4110

4120

4130

4140

4150

4160

4170

4180

4190

4200

4210

4220

4230

4240

4250

: PRINT "{DOWN}DELETE LINE #{2 SPACES} ";

: K2=EL%+10 :rem 59

IF K2>LL*10+BN THEN K2=LL*10+BN :rem 191

GOSUB 1930: EL%=K2 :rem 200

IF EL%<BN THEN PRINT TAB(TB);RL$: EL%=RN: GOT

O 3930 :rem 105

IF EL%>LL*10+BN THEN PRINT TAB(TB);RL$: EL%=L

L*10+RN: GOTO 3930 :rem 8

ML%=(EL%-BN)/l0+.5 :rem 177

IF DA$(ML%) = IIM THEN PRINT TAB(TB);AD$: GOTO 3

690 :rem 64

PRINT "{DOWN}";EL%;M "?QT$;DA$ (ML%) :rem 13
PRINT "{DOWNjARE YOU SURE";: KB$="N": GOSUB 1

760: IF KB$=MN" THEN 3690 :rem 130

NC=NC-LEN(DA$(ML%)): DA$(ML%) = 1IM :rem 173

DF=1: Ml=3: PRINT TAB(Sl+4);"{UP}{RVS} DELETE

D {OFF}": GOTO 3690 :rem 169
: :rem 2

: IF DF=0 THEN 2400 :rem 126

PRINT "{DOWNjDUE TO DELETIONS, THE FILE IS NO

W BEING" :rem 246

PRINT "SORTED ON FIELD #0 IN ASCENDING ORDER.

:rem 142

PRINT "— YOU MAY RE-SORT AS DESIRED —"

:rem 213

:rem 244

:rem 255

:rem 12

:rem 1

:rem 92

FO$="A": FS%=0: GOTO 2990

REM" LIST THE FILE—"

: IF NR=LL+1 THEN 4160

PRINT "{DOWNjONLY THE {RVS}";LL+1;"{LEFT}

{OFF} RECORDS WITH DATA" :rem 37

PRINT "IN FIELD {RVS}11 ;FS%; " {LEFT} {OFF} WILL
BE LISTED." :rem 1

: PRINT "{DOWNjPRESS ANY KEY TO PAUSE, THEN -
:rem 27

PRINT "{RVS} Q {OFF} TO QUIT LISTING OR ANY O

THER" :rem 157

PRINT "KEY TO CONTINUE." :rem 189

OL=1000: LP=1: OPEN 4#4: PRINT* 4, ;OL;QT$; FD$

;lU@0:";IL$;CR$; :rem 99

FOR JJ=0 TO LL: OL=OL+10: PRINT* 4,OL;CA$;QT$

;DA$(JJ);CR$; :rem 230

LP=LP+1: IF LP=>60 THEN LP=0: FOR JA=l TO 6:

{SPACE}PRINT* 4,CR$;: NEXT JA :rem 75
GET KB$: IF KB$="" THEN 4250 :rem 78

: GET KB$: IF KB$="" THEN 4230 :rem 135

IF KB$="Q" THEN JJ=LL :rem 116

: NEXT JJ: FOR JA=1 TO 66-LP: PRINT* 4,CR$;:

{SPACE}NEXT JA :rem 12

223

Program Listings

4260 CLOSE 4: Ml=5: GOTO 2400 :rem 217

4270 : :rem 7

4280 REM" PROGRAM TERMINATION--" :rem 57

4290 : :rem 9

4300 : CLOSE 4: CLOSE 8: CLOSE 14 :rem 168

4310 : PRINT "{DOWNjPRESS {RVS} Q {OFF} TO QUIT OR
:rem 71

4320 PRINT "ANY OTHER KEY FOR MASTER MENU":rem 213

4330 GOSUB 1690: IF KB$o"Q" THEN 4350 :rem 158

4340 PRINT "{RVS} PROGRAM TERMINATED {OFF}";: CLOS
E Is CLOSE 15: END :rem 136

4350 : PS$="DFH BOOT": OPEN 8,8,8,"0:"+PS$+",P,R"

:rem 245

4360 GOSUB 1830: CLOSE 8: IF EN=0 THEN 4390

:rem 201

4370 PRINT "{DOWNjTRYING TO LOAD {RVS} ";PS$;"

{OFF}" :rem 117

4380 GOSUB 2080: GOTO 4310 :rem 84

4390 : CLOSE 1: CLOSE 15: PRINT m{DOWN}{RVS} LOADI

NG ";PS$;" {OFF}" :rem 6

4400 POKE 824,248: LOAD PS$,8 :rem 228

DFH PRINT

For mistake-proof program entry, be sure to use "The Automatic Proofreader," Chapter 9.

1000 REM SAVE "@0:DFH PRINT",8 :rem 133

1010 : :rem 252

1020 REM" A DATA FILE HANDLER PROGRAM FOR PRINTING

MULTI-FIELD SEQUENTIAL" :rem 229

1030 REM" DATA FILES TO SCREEN, PAPER, OR WORDPRO

{SPACE}FILES UNDER CONTROL OF" :rem 33
1040 REM" A USER DEFINED FORMAT WHICH CAN BE STORE

D FOR FUTURE USE." :rem 159

1050 : :rem 0

1080 : :rem 3

1090 REM" SET TOP OF BASIC IF REQUIRED—"

:rem 153

1100 : :rem 252

1110 IF PEEK (65534)=72 THEN 1150: REM"— C-64 COM

PUTER —" :rem 202

1120 IF PEEK (824)<>248 THEN 1190: REM"— NOT A PR

OG'D LOAD —" :rem 132

1130 POKE 42,PEEK (201): POKE 43,PEEK (202): GOTO

{SPACE}1190 :rem 211

1140 : :rem 0

1150 : POKE 53280,14: POKE 53281,14: PRINT CHR$(31

);: REM"—COLORS—" :rem 96

1160 IF PEEK (824)<>248 THEN 1190: REM"— NOT A PR

OG'D LOAD —" :rem 136

224

Program Listings

1170 POKE 45,PEEK (174): POKE 46,PEEK (175)
:rem 177

1180 : :rem 4

1190 : CLR : POKE 824,0: TY=2: Y0$="": Y1$=IMI
:rem 112

1200 IF PEEK (65534)=72 THEN TY=6: Y0$=CHR$(31): Y

1$=CHR$(158) :rem 179

1210 GOTO 4080 :rem 201

1220 : :rem 255

1230 REM"======== START OF SUBROUTINES ==========

11 :rem 251

1240 : :rem 1

1250 REM"—SUB—PARTITION & PRINT RECORDS—"

:rem 103

1260 : :rem 3

1270 : INPUT# 8,DA$(0): TT=ST: IF LEN(DA$(0))>80 T

HEN 5950 :rem 214

1280 SYS SP?: WS$=n": FOR JB=1 TO CC: WS$=WS$+LEFT$

(BL$,FB(JB)) :rem 91

1290 IF NF(JB)>FT% THEN WS$=WS$+LEFT$(BL$,FC(JB)):

GOTO 1340 :rem 27

1300 LE=FC(JB)-LEN(DA$(NF(JB))): IF -LE>OL(JB) THE

N OL(JB)=-LE :rem 159

1310 IF LE<0 THEN OC(JB)=OC(JB)+l: LE=0 :rern 47

1320 IF FJ$(JB)="L" THEN WS$=WS$+DA$(NF(JB))+LEFT$

(BL$,LE): GOTO 1340 :rem 198

1330 WS$=WS$+LEFT$(BL$,LE)+DA$(NF(JB)) :rem 112

1340 : NEXT JB: IF SE%<3 THEN PRINT* DV,CA$;WS$;CR

$; :rem 71

1350 IF SE%>1 THEN GOSUB 1950 :rem 2

1360 IF SE%<3 AND DV<>3 THEN PL%=PL%+1 :rem 233

1370 LL%=LL%+1: DL%=DL%+1: IF LL%=DM% THEN PN=PN+1

: GOSUB 1460: GOSUB 1580 :rem 165

1380 GET KB$: IF KB$="M THEN 1410 :rem 77

1390 : GET KB$: IF KB$=IMI THEN 1390 :rem 143

1400 IF KB$="Q" THEN RETURN :rem 230

1410 : IF TT=0 THEN 1270 :rem 157

1420 RETURN :rem 167

1430 : :rem 2

1440 REM"—SUB—TOP OF FORM & NEW WORDPRO FILE—"

:rem 2

1450 : :rem 4

1460 : LL%=0: IF DV<>3 AND PL%<>0 THEN BK=66-PL%:

{SPACE}GOSUB 1740: PL%=0 :rem 190

1470 IF SE%<2 THEN RETURN :rem 149

1480 GOSUB 2030: GOSUB 1910: GOSUB 1880: PRINT# 9,

11 ";: CLOSE 9 :rem 217

1490 : GOSUB 2560: IF OK<>0 THEN 1490 :rem 95

1500 IF SF>49 THEN 1530 :rem 145

225

Program Listings

1510 IF TY<>6 THEN PRINT DC$: GOSUB 2460: GOTO 149

0 :rem 225

1520 GOTO 5930 :rem 210

1530 : NA$=FW$: DR$=DO$: GOSUB 2290: IF EN<>0 THEN

GOSUB 2460: GOTO 1490 :rem 229

1540 GOSUB 1890: RETURN :rem 54

1550 : :rem 5

1560 REM"—SUB—PRINT PAGE/FIELD HEADINGS—"

:rem 108

1570 : :rem 7

1580 : BK=B1: GOSUB 1750 :rem 204

1590 WS$=HA$: IF HE=0 THEN WS$=WS$+STR$(PN)+" "+HB

$:rem 209
1600 IF SE%<3 THEN PRINT* DV,CA$;WS$;CR$; :rem 7

1610 IF SE%>1 THEN GOSUB 1950 :rem 1

1620 BK=B2: GOSUB 1750: WS$=H": FOR JH=1 TO CC

:rem 97

1630 WS$=WS$+LEFT$(BL$,FB(JH)) :rem 183

1640 IF FJ$(JH)=MRM THEN WS$=WS$+LEFT$(BL$,LH(JH))

+FH$(JH): GOTO 1660 :rem 236

1650 WS$=WS$+FH$(JH)+LEFT$(BL$,LH(JH)) :rem 133
1660 : NEXT JH: IF SE%<3 THEN PRINT# DV,CA$;WS$;CR

$7 :rem 82

1670 IF SE%>1 THEN GOSUB 1950 :rem 7

1680 BK=B3: GOSUB 1750: LL%=2+B1+B2+B3 :rem 216

1690 IF SE%<3 AND DV<>3 THEN PL%=PL%+LL%: IF PL%>6

6 THEN PL%=PL%-66 :rem 54

1700 RETURN :rem 168

1710 : :rem 3

1720 REM"—SUB—PRINT BLANK LINES—11 : rem 90

1730 : :rem 5

1740 : FP=1 :rem 10

1750 : IF BK<1 THEN 1790 :rem 144

1760 TS=39: FOR JJ=1 TO BK: IF SE%>1 AND FP=0 THEN

GOSUB 1990 :rem 190

1770 IF SE%<3 THEN PRINT* DV,CR$; :rem 35

1780 NEXT JJ :rem 163

1790 : FP=0: RETURN :rem 40

1800 : :rem 3

1810 REM"—SUB—CLOSE WORDPRO FILE—" :rem 173

1820 : :rem 5

1830 : IF SE%>1 THEN GOSUB 1910: GOSUB 1920: PRINT

9," ";: CLOSE 9 :rem 120

1840 SE%=1: GOSUB 1460: RETURN :rem 151

1850 : . :rem 8

1860 REM"—SUB—WORDPRO MESSAGES, CONVERSION & LIN

E PAD—" :rem 201

1870 : :rem 10

1880 : WS$=CK$+"NX:"+FW$+NP$: GOTO 1930 :rem 48

226

Program Listings

1890 : PRINT* 9,BF$;: WS$=CK$+"CM: M+FW$+NP$: GOTO

{SPACE} 1930 :rem 81
1900 : WS$=CK$+MPP66:PG62:LM1:RM79": GOTO 19 30

:rem 2

1910

1920

1930

1940

1950

1960

WS$=CK$+"FP": GOTO 1930 :rem 7

WS$=CK$+"CM:END" jrem 211

WC$="{DOWN}M: GOTO 1960 :rem 154
:rem 8

WC$=CA$: IF WS$="fl THEN RETURN :rem 211

LS=LEN(WS$): TS=39-LS-40*(LS>39)-40*(LS>79)

-40*(LS>119) :rem 108

1970 IF LEFT$(WS$,1)=CK$ THEN PRINT# 9,CK$;: WS$=M

ID$(WS$,2) :rem 11

1980 SYS SW: PRINT# 9,WS$; :rem 211

1990 : PRINT# 9,CHR$(31);LEFT$(BL$,TS);: RETURN
:rem 141

2000 : :rem 252

2010 REM"—SUB—INCREMENT & FORMAT WORDPRO FILE NU

MBER—" :rem 141

2020 : xrem 254

2030 : PC=PC+1: NP$=IIM: IF PO99 THEN 2050 : rem 61

2040 NP$="0": IF PC<10 THEN NP$=NP$+ll0" :rem 193

2050 : NP$="."+NP$+MID$(STR$(PC),2): RETURN:rem 82

2060 : :rem 2

2070 REM11—SUB—TEST DELIMITER—11 : rem 200

2080 : :rem 4

2090 : EF=0: IF FD$oIMI THEN 2110 :rem 37

2100 PRINT "{RVS} ENCLOSE COMMA/COLON/SPACE IN QUO
TES {OFF}11: EF=1: RETURN :rem 184

2110 : IF LEN(FD$)<>1 OR ASC(FD$)<32 THEN EF=1

:rem 86

2120 IF ASC(FD$)>127 AND ASC(FD$)<161 THEN EF=1

:rem 167

2130 IF FD$=M0H OR VAL(FD$)<>0 THEN EF=l :rem 9

2140 IF EF=1 THEN PRINT Y1$;M{RVS} ILLEGAL DELIMIT

ER {OFF}{2 SPACES}";Y0$;FD$:rem 70

2150 RETURN :rem 168

2160 : :rem 3

2170 REM11—SUB—SET UP INPUT FILE—" :rem 43

2180 : srem 5

2190 : PRINT : DR$=DI$: OPEN 8,8#8,DR$+":M+NA$+M,S

*RM xrem 186
2200 GOSUB 3010: IF EN<>0 THEN 2240 :rem 5

2210 INPUT# 8,X1$: IF ST=0 THEN 2230 :rem 92

2220 PRINT Y1$;"{RVS} NO DATA RECORDS IN THE FILE
{SPACE}{OFF}";Y0$: GOTO 2240 :rem 168

2230 : FD$=LEFT$(X1$,1): GOSUB 2090: IF EF=0 THEN
{SPACE}RETURN :rem 235

2240 : CLOSE 8: ER=1: RETURN :rem 9

2250 : :rem 3

227

Program Listings

2260

2270

2280

2290

2300

2310

2320

2330

2340

2350

2360

2370

2380

2390

2400

2410

2420

2430

2440

2450

2460

2470

2480

2490

2500

2510

2520

2530

2540

2550

2560

REM"—SUB—SET UP OUTPUT FILE—"

: NE$="": TF?=",S,W": GOTO 2300

: NE$=NP$: TF$=",P,W"

: RE$="": PRINT

: OPEN 9,8,9,RE$+DR$+":"+NA$+NE$+TF$

GOSUB 3010: IF EN=0 THEN RETURN

CLOSE 9: IF EN<>63 THEN RETURN

PRINT "REPLACE EXISTING FILE";

GOSUB 2720: IF KB$="Y" THEN RE$="@":

0

RETURN

REM"—SUB—GET FILE NAME—

:rem 140

:rem 5

:rem 241

:rem 53

:rem 2

:rem 82

:rem 227

:rem 197

:rem 92

GOTO 231

:rem 77

:rem 171

:rem 6

:rem 14

: :rem 8

: PRINT "FILE NAME";: K1$=NA$: GOSUB 3080: NA

$=K1$:rem 102

IF LEN(NA$)=<LN THEN RETURN :rem 91

NA$=LEFT$(NA$,LN): PRINT "{RVS} NAME TOO LONG

{OFF}": GOTO 2400 :rem 252
: :rem 3

REM"—SUB—DISK CHANGE/INITIALIZE—" :rem 220

: :rem 5

: KB$="Y" :rem 145

PRINT "{DOWNjNEED A NEW DISK";: GOSUB 2730: I
F KB$="N" THEN RETURN :rem 58

PRINT "{DOWN}CHANGE DISK"; :rem 188
IF TY<>6 THEN PRINT " IN DRIVE #";DR$;:rem 31

PRINT "{2 SPACES}— THEN": GOSUB 2650:rem 168
PRINT* 15,"I"+DR$+CR$;: GOSUB 3010: IF EN<>0

{SPACE}THEN 2460

RETURN

:rem 26

:rem 169

:rem 4

:rem 236

:rem 6

GOSUB 301

:rem 230

2570 IF EN<>0 THEN CLOSE 14: GOSUB 2460: OK=l: RET

2580

2590

REM"—SUB—FIND BLOCKS FREE—"

: DR$=DO$: OPEN 14,8,0,"$"+DR$+":":

0

URN :rem 134

FOR JJ=1 TO 18: GET # 14,X1$,X2$: NEXT JJ: CL

OSE 14 :rem 59

SF=ASC(X1$+ZR$)+ASC(X2$+ZR$)*256: PRINT CR$;S

F;"BLOCKS FREE"; :rem 39

2600 IF TY<>6 THEN PRINT " ON DRIVE #";DR$;:rem 30

2610 PRINT CR$;" FOR WORDPRO FILE ";FW$;NP$: OK=0:

RETURN :rem 22

2620 : :rem 4

2630 REM"—SUB—WAIT FOR OPERATOR—" :rem 115
2640 : :rem 6

2650 : PRINT "PRESS ANY KEY TO CONTINUE" :rem 62

228

Program Listings

2660 : GET KB$: IF KB$oMM THEN 2660

2670 : GET KB$: IF KB$="" THEN 2670

2680 RETURN

2690 :

2700 REM"—SUB—WAIT FOR YES OR NO—"

2710 :

2720 : KB$="Y"

2730 : PRINT CU$;SPC(S2);"?

2740 : INPUT* 1,KB$: PRINT

:rem 206

:rem 147

:rem 176

:rem 11

:rem 52

:rem 4

:rem 144

;KB$;CU$ 7 SPC(S2+2)7

:rem 118

KB$=LEFT$(KB$,1)

:rem 101

2750 IF KB$="Y" OR KB$="N" THEN RETURN :rem 24

2760 PRINT "{RVS} Y {OFF} YES OR {RVS} N {OFF} NO

{SPACE}? "7: GOTO 2740 :rem 120
2770 : :rem 10

2780 REM"—SUB—PRESET FORMAT DATA—" :rem 167

2790 : :rem 12

2800 : FOR JJ=1 TO 20: FB(JJ)=2: NF(JJ)=JJ: FJ$(JJ
)="L": FC(JJ)=9 :rem 74

2810 FH$(JJ)=MID$(STR$(JJ),2): MF$(JJ)="Y": OC(JJ)
=0: OL(JJ)=0 :rem 67

2820 NEXT JJ: FB(1)=0: H1$=M": H2$="" :rem 1

2830 Bl=3: B2=l: B3=l: Dl=55: BP=1: PN=1: CC=2: FD

$="1": RETURN :rem 146

2840 : :rem 8

2850 REM11—SUB—FORM PAGE HEADING—" : rem 48

2860 : :rem 10

2870 : HA$=H1$+H2$: HB$=HA$: HE=0: JJ=l :rem 157

2880 : IF MID$(HA$,JJ,2)="<>" THEN HA$=LEFT$(HA$,J

J-l): GOTO 2910 :rem 115

2890 IF JJ=>LEN(HA$) THEN HE=1: RETURN :rem 146

2900 JJ=JJ+1: GOTO 2880 :rem 209

2910 : HB$=MID$(HB$,JJ+2,74-LEN(HA$)): RETURN

:rem 198

2920 : :rem 7

2930 REM"—SUB—CHANGE CASE—" :rem 176

2940 : :rem 9

2950 : CV=PEEK (LC) :rem 229

2960 IF (CV AND 2)=2 THEN POKE LC,(CV AND 253): CA

$=•■": RETURN :rem 171

2970 POKE LC,(CV OR 2): CA$="{DOWN}": RETURN:rem 7

2980 : :rem 13

2990 REM11—SUB—TEST/PRINT DISK ERROR—" : rem 165

3000 : :rem 253

3010 : ER=0: INPUT# 15,EN,EM$,ET,ES: IF EN=0 OR EN

=63 THEN RETURN :rem 49

3020 PRINT Y1$?"{DOWN}{RVS} DISK ERROR {OFF}M7Y0$7

:rem 12

3030 IF TY<>6 THEN PRINT "{RVS}ON DRIVE #M;DR$;"

{OFF}"7 :rem 63

229

Program Listings

3040 PRINT CR$;EN;EM$;ET;ES: ER=1: RETURN :rem 204

3050 : :rem 2

3060 REMH—SUB—STRING INPUT—11 : rem 80

3070 : :rem 4

3080 : PRINT CU$;SPC(S1);"? ";Kl$;CU$;SPC(Sl+2);:

{SPACE}GOTO 3100 :rem 153

3090 : PRINT CU$;SPC(S2);"? ";K1$;CU$;SPC(S2+2);

:rem 101

3100 : INPUT# 1,K1$: PRINT : RETURN :rem 143

3110 : :rem 255

3120 REM11—SUB—NUMERIC INPUT—11 :rem 137

3130 : :rem 1

3140 : PRINT CU$;SPC(S2);"?M;K2;CU$;SPC(S2+2);

:rem 62

3150 INPUT# 1,KB$: PRINT : K2=VAL(KB$): RETURN

:rem 68

3160 : :rem 4

3170 REM11—SUB—LOAD FORMAT FILE—" :rem 244

3180 : trem 6

3190 : PRINT M{RVS} LOAD PRINT FORMAT FILE {OFF}
{DOWN}" :rem 35

3200 NA$=FF$: LN=16: GOSUB 2400: FF$=NA$:rem 55

3210 GQSUB 2800: GOSUB 2190: IF ER<>0 THEN GOSUB 2

460: OK=2: RETURN :rem 120

3220 GOSUB 3340: CC=VAL(DA$(1)): BP=VAL(DA$(2)): P

N=BP: B1=VAL(DA$(3)) :rem 200

3230 B2=VAL(DA$(4)): B3=VAL(DA$(5)): IF OK=1 THEN
{SPACE}RETURN :rem 10

3240 GOSUB 3340: H1$=DA$(1): IF OK=1 THEN RETURN

:rem 50

3250 GOSUB 3340: H2$=DA$(1): JJ=1: IF OK=1 THEN RE

TURN :rem 112

3260 : GOSUB 3340: FB(JJ)=VAL(DA$(1)): NF(JJ)=VAL(

DA$(2)): FJ$(JJ)=DA$(3) :rem 31
3270 FC(JJ)=VAL(DA$(4)): LH(JJ)=VAL(DA$(5)): MF$(J

J)=DA$(6) :rem 111

3280 IF OK=1 THEN RETURN :rem 115

3290 GOSUB 3340: FH$(JJ)=DA$(1): IF OK=1 THEN RETU

RN :rem 49

3300 JJ=JJ+1: IF JJ<~CC THEN 3260 :rem 221

3310 INPUT* 8,DA$(0): SYS SP: D1=VAL(DA$(1)): DM%=

VAL(DA$(2)) :rem 188

3320 CLOSE 8: GOSUB 2870: OK=0: RETURN :rem 92

3330 : :rem 3

3340 : INPUT* 8,DA$(0): SYS SP: IF ST=0 THEN RETUR

N :rem 13

3350 CLOSE 8: PRINT Y1$;"{RVS} BAD FILE DATA {OFF}

M;Y0$: OK=1: RETURN :rem 86

3360 : :rem 6

3370 REM11—SUB—DEFINE OR MODIFY PRINT FORMAT—"

:rem 87

230

Program Listings

3380

3390

3400

3410

3420

3430

3440

3450

3460

3470

3480

3490

3500

3510

3520

3530

3540

3550

3560

3570

3580

3590

3600

3610

3620

3630

3640

3650

3660

3670

3680

3690

: : rem 8

: PRINT "{DOWN}{RVS} DEFINE THE PRINTING FORM
AT {OFF}{DOWN}": GOTO 3410 :rem 155

: PRINT "{DOWN}{RVS} MODIFY THE PRINTING FORM

AT {OFF}{DOWN}" :rem 117

: PRINT '"♦BLANK LINES ABOVE HEADING11;: K2=B1:

GOSUB 3140 :rem 90

IF K2<0 OR K2>58 THEN 3410 :rem 1

B1=K2: PRINT "{DOWN}{RVS} ENTER PAGE HEADING

{SPACE}LINE {OFF}11 :rem 106

PRINT "{DOWNJUSE TWO ENTRY LINES TO FORM A"
:rem 185

PRINT "COMPLETE PAGE HEADING LINE." :rem 89

PRINT "{DOWN}USE '<>' TO SHOW PAGE NUMBER LOC

ATION" :rem 135

PRINT "{DOWNjDON'T DISTURB THE QUOTE OR THE E

ND OF" :rem 134

PRINT "LINE MARKER.{DOWN}" :rem 201
: PRINT " ";H1$;SPC(36-LEN(H1$));"{RVS}";LM$;

CU$;QT$:rem 12

PRINT "{UP}";: INPUT* 1,H1$: PRINT :rem 19

IF LEN(H1$)<37 OR LEN(H1$)=37 AND RIGHT$(H1$,

1)=LM$ THEN 3530 srem 148

H1$=LEFT$(H1$,36): PRINT "{RVS} TOO LONG 1
{OFF}": GOTO 3490 srem 171
: H1$=LEFT$(H1$,36) :rem 177
: PRINT " ";H2$;SPC(36-LEN(H2$));"{RVS}";LM$;

CU$;QT$:rem 10

PRINT "{UP}";: INPUT* 1,H2$: PRINT :rem 25
IF LEN(H2$)<37 OR LEN(H2$)=37 AND RIGHT$(H2$,

1)=LM$ THEN 3580 srem 161

H2$=LEFT$(H2$,36): PRINT "{RVS} TOO LONG I

{OFF}": GOTO 3540 srem 174
: H2$=LEFT$(H2$,36) srem 184

GOSUB 2870: IF HE=1 THEN 3630 :rem 225

: PRINT "{DOWN}STARTING PAGE #";: K2=BP: GOSU

B 3140 srem 212

IF K2<0 OR K2>9000 THEN 3600 :rem 95

BP=K2: PN=BP srem 190

: PRINT "#BLANK LINES BELOW HEADING";: K2=B2:

GOSUB 3140 . :rem 107

IF K2<0 OR K2+B1>58 THEN 3630 :rem 167
• :rem 8

B2=K2: JL=0: CL=0: REM"—INDIVIDUAL FIELD INF

ORMATION —" srem 25

: PRINT "{DOWN}* OF PRINT FIELDS";: K2=CC: GO

SUB 3140 :rem 31

IF K2<1 OR K2>20 THEN 3670 :rem 7

CC=K2: FOR JJ=1 TO CC: MF$(JJ)="Y": NEXT JJ

:rem 27

231

Program Listings

3700 FOR JJ=CC TO 20: MF$(JJ)="N": NEXT JJ:rem 191

3710 : JL=JL+1 :rem 202

3720 : PRINT "{DOWN}{RVS}{5 SPACESjFOR PRINT FIELD

{4 SPACES}#";JL;"{LEFT}{RVS} {OFF}" :rem 134
3730 : PRINT M# SPACES AHEAD OF FIELD11;: K2=FB(JL)

: 60SUB 3140 :rem 38

3740 IF K2<0 OR K2>78 THEN 3730 :rem 13

3750 FB(JL)=K2: CL=CL+FB(JL) :rem 39

3760 : PRINT "PRINT DATA FIELD #";: K2=NF(JL): GOS

UB 3140 :rem 53

3770 IF K2<1 OR K2>20 THEN 3760 :rem 7

3780 NF(JL)=K2 :rem 7

3790 : PRINT "LEFT OR RIGHT JUSTIFIED";: K1$=FJ$(J

L): GOSUB 3090 :rem 66

3800 IF Kl$o"L" AND Kl$o"R" THEN 3790 :rem 137

3810 FJ$(JL)=K1$:rem 68

3820 : PRINT "#OF COLUMNS IN FIELD11;: K2=FC(JL) : G

OSUB 3140 :rem 205

3830 IF K2<1 OR K2>78 THEN 3820 :rem 14

3840 FC(JL)=K2: CL=CL+FC(JL) :rem 41
3850 PRINT "FIELD HEADING": IF FC(JL)<39 THEN 3890

:rem 217

3860 PRINT QT$;LEFT$(FH$(JL),37);QT$;CU$;: INPUT*

{SPACE}1#KB$: PRINT :rem 41
3870 PRINT QT$;MID$(FH$(JL),38);QT$;CU$;: INPUT# 1

,FH$(JL): PRINT :rem 194

3880 FH$(JL)=KB$+FH$(JL): GOTO 3900 :rem 93

3890 : PRINT QT$;LEFT$(FH$(JL),37);QT$;CU$;: INPUT

1,FH$(JL): PRINT :rem 78

3900 : LH(JL)=FC(JL)-LEN(FH$(JL)): IF LH(JL)=>0 TH

EN 3940 srem 18

3910 PRINT "{DOWNjFIELD HEADING IS {RVS}";-LH(JL);
"{OFF} CHR'S TOO LONG" :rem 30

3920 PRINT "RE-ENTER DATA FOR THIS FIELD{DOWN}"

:rem 143

3930 CL=CL-FB(JL)-FC(JL): GOTO 3720 :rem 162

3940 : PRINT "{DOWN}NOW AT COLUMN{2 SPACES}#";CL
:rem 48

3950 PRINT "{6 SPACES}MORE FIELDS";: KB$=MF$(JL)

:rem 141

3960 GOSUB 2730: MF$(JL)=KB$: IF KB$="Y" THEN 3710

:rem 50

3970 : CC=JL: PRINT "{DOWN}#BLANK LINES ABOVE DATA
";: K2=B3: GOSUB 3140 :rem 53

3980 IF K2<0 OR K2+B1+B2>58 THEN 3970 :rem 84

3990 B3=K2: D2=59-B1-B2-B3: IF D1>D2 THEN D1=D2

:rem 139

4000 : PRINT "DATA LINES/PAGE (MAX";D2;")";: K2=D1

: GOSUB 3140 :rem 61

4010 IF K2<1 OR K2>D2 THEN 4000 :rem 3

232

Program Listings

4020 D1=K2: DM%=2+B1+B2+B3+D1: RETURN :rem 235

4030 : :rem 1

4040 REM"======= START OF MAIN PROGRAM =========="

:rem 93

4050 : srem 3

4060 REM" INITIALIZATION--11 :rem 251

4070 : :rem 5

4080 : DIM FB(20),NF(20),FJ$(20),FC(20),FH$(20),LH
(20),OC(20),OL(20) srem 120

4090 DIM DA$(21),MF$(20) :rem 154

4100 OPEN 1,0s OPEN 3,3: OPEN 4,4: OPEN 15,8,15

:rem 74

4110 PRINT# 4,"{HOME}";: GOSUB 2800 :rem 236

4120 BL$="{63 SPACES}" :rem 250
4130 LC=59468: IF TY=6 THEN LC=53272 :rem 139

4140 CA$="": IF (PEEK (LC) AND 2)<>0 THEN CA$="

{DOWN}" :rem 41

4150 CR$=CHR$(13): CU$=CR$+"{UP}": QT$=CHR$(34)

srem 91

4160 LM$=CHR$(160): CK$=CHR$(122): ZR$=CHR$(0): BF

$=ZR$+CHR$(16) srem 94

4170 DV=3: Sl=22: S2=27: FA$="DA"s FT%=0: SP=30979

: SW=30982 :rem 56

4180 DI$="0": FF$="FM-M: FW$="WP-": DO$="1": IF TY

=6 THEN DO$="0" :rem 205

4190 Ml=2: M4=2: CH$="YOUR CHOICE " srem 42

4200 DC$="{RVS} DISK FULL ": IF TY<>6 THEN DC$=DC$

+"IN DRIVE #"+DO$:rem 207

4210 s srem 1

4220 PRINT "{CLR}{DOWN} NOTES —
srem 178

4230 IF TY=6 THEN 4280 :rem 117

4240 PRINT "{DOWN} ALL SOURCE DATA AND PRINT FORMA

T FILES" srem 12

4250 PRINT " MUST BE IN{3 SPACES}{RVS} DRIVE #0
{OFF}" :rem 116

4260 PRINT "{DOWN} ANY WORDPRO OUTPUT FILES CREATE

D WILL" :rem 87

4270 PRINT " BE SAVED ON{2 SPACES}{RVS} DRIVE #1
{OFF}" :rem 167

4280 : PRINT "{2 DOWN} OUTPUT OPERATIONS CAN BE:"
:rem 131

4290 PRINT "{DOWN}{2 SPACESjFROZEN BY PRESSING ANY
KEY" :rem 92

4300 PRINT "{2 SPACES}-THEN-";CR$;"{2 SPACES}ABORT

ED BY PRESSING {RVS} Q {OFF}" :rem 144

4310 PRINT "{2 SPACES}-OR-";CR$;"{2 SPACES}RESUMED
BY PRESSING ANY OTHER KEY." :rem 163

4320 PRINT "{3 DOWN}SET PRINTER TO TOP-OF-FORM AND

:rem 105

233

Program Listings

4330

4340

4350

4360

4370

REM" FORMAT SOURCE MENU--

:rem 4

:rem 129

: :rem 6

: GOSUB 2650 :rem 84

: PRINT "{CLR}{DOWN}{RVS}{5 SPACES}F O R M A

{SPACE}T{4 SPACES}S O U R C E S{5 SPACES}
{OFF}" :rem 14

PRINT "{DOWN}{RVS} 1 {OFF}{2 SPACES}CHANGE SC
:rem 91

4380

4390 PRINT M{DOWN}{RVS} 2 {OFF}{2 SPACES}LOAD FORM
AT FILE FROM DISK" :rem 240

4400 PRINT M{DOWN}{RVS} 3 {OFF}{2 SPACES}DEFINE TH

4410

REEN/PRINTER CASE"

E PRINTING FORMAT"

4420

4430

4440

4450

4460

4470

4480

4490

4500

4510

4520

4530

4540

4550

4560

4570

4580

4590

4600

4610

4620

4630

4640

:rem 65

PRINT "{2 DOWN}{RVS} 9 {OFF}{2 SPACES}QUIT OR

GO TO MASTER MENU{DOWN}" :rem 200
: PRINT CH$;: K2=M1: GOSUB 3140 :rem 111

IF K2=l THEN GOSUB 2950 :rem 196

IF K2=2 THEN 4490 :rem 71

IF K2=3 THEN GOSUB 3390: M2=4: GOTO 4560

:rem 51

IF K2=9 THEN 5980 :rem 85

PRINT "{UP}";: GOTO 4420 :rem 169
: :rem 10

: GOSUB 3190: IF OK=1 THEN Ml=2: GOTO 4360

:rem 133

IF OK=2 THEN Ml=2: GOTO 4370 :rem 190

M2=4: GOTO 4560 :rem 252

: :rem 5

REM" SETUP OPTIONS MENU--" :rem 199

: :rem 7

: GOSUB 2650 :rem 85

: PRINT "{CLR}{DOWN}{RVS}{5 SPACESjS E T U P

{4 SPACESjO P T I O N S{7 SPACES}{OFF}"
:rem 223

{OFF}{2 SPACES}CHANGE SC

:rem 92

PRINT "{DOWN}{RVS}

REEN/PRINTER CASE1

PRINT "{DOWN}{RVS} 2 {OFF}{2 SPACES}LOAD FORM
AT FILE FROM DISK" :rem 241

PRINT "{DOWN}{RVS} 3 {OFF}{2 SPACES}MODIFY TH
E PRINTING FORMAT" :rem 104

PRINT "{DOWN}{RVS} 4 {OFF}{2 SPACES}TEST HEAD

:rem 106

5 {OFF}{2 SPACES}TEST HEAD

:rem 208

INGS TO SCREEN"

PRINT "{DOWN}{RVS}
INGS TO PRINTER"

PRINT "{DOWN}{RVS} 6 {OFF}{2 SPACES}SAVE PRIN
T FORMAT FILE" :rem 45

PRINT "{2 DOWN}{RVS} 7 {OFF}{2 SPACES}OUTPUT
{SPACE}OPTIONS" :rem 184
PRINT "{DOWN}{RVS} 9 {OFF}{2 SPACESjQUIT OR G
O TO MASTER MENU{DOWN}" :rem 188

234

Program Listings

4650 : PRINT CH$;: K2=M2: GOSUB 3140

4660 IF K2=l THEN M2=4: GOSUB 2950

4670 IF K2=2 THEN 4760

4680 IF K2=3 THEN M2=4:

:rem 117

:rem 243

:rem 76

GOSUB 3400: GOTO 4560

:rem 48

SE%=1: DV=3: GOSUB 1580: G

:rem 228

IF K2=5 THEN M2=7: SE%=1: DV=4: GOSUB 1580: G

OTO 4560 :rem 223

IF K2=6 THEN M2=7: GOTO 5060 :rem 171

IF K2=7 THEN M3=3: GOTO 4840 :rem 175

IF K2=9 THEN 5960 :rem 83

PRINT "{UP}";: GOTO 4650 :rem 174
: :rem 10

: GOSUB 3190: IF OK=1 THEN M2=2: GOTO 4550

:rem 135

IF OK=2 THEN M2=2: GOTO 4560 :rem 201

M2=4: GOTO 4560 :rem 5

: :rem 14

: :rem 6

REM" OUTPUT OPTIONS MENU—" :rem 40

: :rem 8

: GOSUB 2650 :rem 86

: PRINT "{CLR}{DOWN}{RVS}{5 SPACES}O U T P U
{SPACE}T{4 SPACES}0 P T I O N S{5 SPACES}
{OFF}11 :rem 64

PRINT "{DOWNHRVS} 1 {OFF} {2 SPACES}CHANGE SC

REEN/PRINTER CASE" :rem 93
PRINT n{DOWN}{RVS} 2 {OFF}{2 SPACES}SCREEN OU

4690 IF K2=4 THEN M2

OTO 4550

4700

4710

4720

4730

4740

4750

4760

4770

4780

4790

4800

4810

4820

4830

4840

4850

4860

4870

4880

4890

4900

4910

4920

4930

4940

4950

4960

4970

TPUT ONLY" :rem 125

PRINT "{DOWN}{RVS} 3 {OFF}{2 SPACES}PRINTER O
UTPUT ONLY" :rem 227

PRINT "{DOWNHRVS} 4 {OFF} {2 SPACES}WORDPRO F

ILES ONLY" :rem 112

PRINT "{DOWNHRVS} 5 {OFF} {2 SPACES}WORDPRO A

ND PRINTER" :rem 180

PRINT "{DOWNHRVS} 6 {OFF} {2 SPACES}WORDPRO A

ND SCREEN" :rem 73

PRINT "{2 DOWNHRVS} 7 {OFF} {2 SPACES}RETURN

{SPACE}TO SETUP OPTIONS" : rem 220

PRINT "{DOWNHRVS} 9 {OFF} {2 SPACES}QUIT OR G

O TO MASTER MENU{DOWN}" :rem 189

: PRINT CH$;: K2=M3: GOSUB 3140 :rem 119

IF K2=l THEN GOSUB 2950: GOTO 5020 :rem 4

IF K2=2 THEN M3=2: DV=3: SE%=1: GOTO 5250

:rem 83

IF K2=3 THEN M3=3: DV=4: SE%=1: GOTO 5250
:rem 87

IF K2=4 THEN M3=4: DV=3: SE%=3: GOTO 5250
:rem 91

235

Program Listings

4980 IF K2=5 THEN M3=5: DV=4: SE%=2: GOTO 5250

:rem 94

4990 IF K2=6 THEN M3=6: DV=3: SE%=2: GOTO 5250

:rem 96

5000 IF K2=7 THEN M2=3: GOTO 4560 :rem 165

5010 IF K2=9 THEN 5960 :rem 75

5020 2 PRINT "{UP}";: GOTO 4930 :rem 225

5030 : :rem 2

5040 REM" SAVE THE FORMAT DATA FILE—" :rem 229

5050 : :rem 4

5060 : PRINT "{DOWN}{RVS} READY TO SAVE PRINT FORM

AT FILE {OFF} {DOWN}11 :rem 89

5070 DA$(0)=HA$+HB$: FOR JJ=l TO CC: DA$(0)=DA$(0)

+FH$(JJ): NEXT JJ :rem 159

5080 : PRINT "DELIMITER TO BE USED"; :rem 13

5090 K1$=FD$: GOSUB 3090: FD$=K1$: GOSUB 2090: IF

{SPACE}EF<>0 THEN 5080 :rem 35

5100 SYS SP: IF FT%<2 THEN 5120 :rem 85

5110 PRINT "{RVS} CHARACTER IS USED IN HEADINGS

{OFF}": GOTO 5080 :rem 176

5120 : NA$=FF$: LN=*16: GOSUB 2400: FF$=NA$:rem 116

5130 DR$=DI$: GOSUB' 2280: IF EN<>0 THEN GOSUB 2460

: M2=6: GOTO 4560 :rem 230

5140 PRINT* 9,QT$;FD$;"-«@0:";FF$;CR$; :rem 51

5150 PRINT* 9,QT$;CC;FD$;PN;FD$;B1;FD$;B2;FD$;B3;F

D$;CR$; :rem 12

5160 PRINT* 9,QT$;H1$;FD$;CR$;QT$;H2$;FD$;CR$;: JJ

=0 :rem 143

5170 : JJ=JJ+1: IF JJ>CC THEN 5210 :rem 224

5180 PRINT* 9,QT$;FB(JJ);FD$;NF(JJ);FD$;FJ$(JJ);

:rem 233

5190 PRINT* 9,FD$;FC(JJ);FD$;LH(JJ);FD$;MF$(JJ);FD

$;CR$; :rem 176

5200 PRINT* 9,QT$;FH$(JJ);FD$;CR$;: GOTO 5170

:rem 207

5210 : PRINT* 9,QT$;D1;FD$;DM%;FD$;CR$;: CLOSE 9:

{SPACE}GOTO 4560 :rem 173
5220 : :rem 3

5230 REM" MAIN PRINT ROUTINE—" :rem 171

5240 : :rem 5

5250 : TC%=SE%: SE%=1: GOSUB 1460: SE%=TC%: IF DV=

3 THEN 5290 :rem 104

5260 PRINT "IS PRINTER AT TOP OF FORM"; :rem 234

5270 GOSUB 2720: IF KB$="Y" THEN 5290 :rem 108

5280 PRINT "SET PRINTER AND THEN": GOSUB 2650

:rem 57

5290 : IF SE%<2 THEN 5380 :rem 195

5300 PRINT "{DOWN}{RVS} FOR WORDPRO FILES {OFF}":
{SPACE}PC=0: GOSUB 2030 :rem 142

5310 NA$=FW$: LN=12: GOSUB 2400: FW$=NA$:rem 89

236

Program Listings

n

n

n

n

n

r—i
i \

n

n

5320

5330

5340

5350

5360

5370

5380

5390

5400

5410

5420

5430

5440

5450

5460

5470

5480

5490

5500

5510

5520

5530

5540

5550

5560

5570

5580

5590

5600

5610

5620

5630

GOSUB 2560: IF OK<>0 THEN 4830

IF SF>24 THEN 5360

:rem 34

:rem 148

IF TY<>6 THEN PRINT DC$: GOSUB 2460: GOTO 484

0 :rem 232

:rem 215GOTO 5930

: DR$=DO$: GOSUB 2290: IF EN<>0 THEN GOSUB 24

60: GOTO 4840 :rem 1

GOSUB 1890: GOSUB 1900 :rem 165

: PRINT "{DOWN}{RVS} READY FOR FIRST DATA FIL
E {OFF}" :rem 174

: PRINT : NA$=FI$: LN=16: GOSUB 2400: FI$=NA$

:rem 74

GOSUB 2190: IF ER<>0 THEN GOSUB 2460: CLOSE 9

: SE%=1: GOTO 4840 :rem 43

IF NB=0 THEN GOSUB 1580 :rem 211

NB=0: GOSUB 1270: CLOSE*8 :rem 52

IF KB$="Q" THEN PRINT "{RVS} SOURCE FILE CLOS

ED {OFF} {DOWN}11: GOTO 5480 :rem 130
PRINT "{RVS}{2 SPACES}END OF SOURCE FILE
{OFF}{DOWN}" :rem 176

: :rem 8

REM" CONTINUATION OPTIONS MENU--" :rem 212

: :rem 10

: GOSUB 2650: PRINT "{CLR}{DOWN}{RVS}
{3 SPACES}C O N T I N U E{4 SPACESjO P T I 0
{SPACE}N S{3 SPACES}{OFF}" :rem 60
PRINT "{DOWN}{RVS} 1 {OFF}{2 SPACES}CHANGE SC
REEN/PRINTER CASE" :rem 94
PRINT "{DOWN}{RVS} 2 {OFF}{2 SPACES}CONTINUE

{SPACE}-- NO PAGE BREAK" :rem 96
PRINT "{DOWN}{RVS} 3 {OFF}{2 SPACES}CONTINUE

{SPACE}— AT TOP OF PAGE" :rem 125

PRINT "{DOWN}{RVS} 4 {OFF}{2 SPACES}CHANGE PR

:rem 40

5 {OFF}{2 SPACESjPRINT O

:rem 88

PRINT "{DOWN}{RVS} 9 {OFF}{2 SPACES}QUIT OR G
0 TO MASTER MENU{DOWN}" :rem 188

: PRINT CH$;: K2=M4: GOSUB 3140 :rem 119

IF K2=l THEN GOSUB 2950 :rem 201

2 THEN M4=2: NB=1: GOTO 5390 :rem 231

PN=PN+1:

:rem 123

PN=BP: GOTO 45

:rem 221

:rem 172

:rem 81

INTING SETUP"

PRINT "{2 DOWN}{RVS}

PERATIONS SUMMARY"

IF K2=

IF K2=3 THEN M4=3: NB=0: GOSUB 1460:

GOTO 5640

IF K2=4 THEN M2=3: GOSUB 1830:

60

IF K2=5 THEN M2=2: GOTO 5680

IF K2=9 THEN 5960

PRINT

:

'{UP}";: GOTO 5550 :rem 172

:rem 8

n 237

Program Listings

5640 : PRINT "NEXT PAGE #";: K2=PN: GOSUB 3140: PN

=K2: GOTO 5390 :rem 126

5650 : :rem 10

5660 REM" PRINT OPERATIONS SUMMARY--" :rem 153

5670 : :rem 12

5680 : GOSUB 1830: PN=PN+1: GOSUB 1580 :rem 240

5690 PRINT* DV,CR$;CR$;"NUMBER OF DATA LINES PRINT

ED =";DL%;CR$;: DL%=0 :rem 55

5700 PRINT* DV,"BLANK LINES ABOVE HEADING

{4 SPACES}=";B1;CR$; :rem 224

5710 PRINT* DV,"BLANK LINES BELOW HEADING

{4 SPACES}=";B2;CR$; :rem 238

5720 PRINT* DV,"BLANK LINES ABOVE DATA{7 SPACES}="
;B3;CR$; :rem 14

5730 PRINT* DV,CR$;"PRINTER FORMAT WAS :";CR$;
:rem 190

5740 PRINT* DV,CR$;"PRINT{9 SPACES}FILE{5 SPACES}L
EADING{2 SPACES}FIELD{3 SPACES}";CR$;:rem 178

5750 PRINT* DV,"FIELD#{2 SPACES}-IS-{2 SPACES}FIEL
D#{3 SPACES}SPACES{3 SPACES}WIDTH{3 SPACES}JU
STIFIED";CR$; :rem 164

5760 FOR JJ=1 TO CC :rem 228

5770 TE$=STR$(JJ): PRINT* DV#SPC(1);TE$;SPC(5-LEN(

TE$)); trem 219

5780 PRINT* DV#" n7SPC(2)7 :rem 168

5790 TE$=STR$(NF(JJ)): PRINT* DV,TE$;SPC(9-LEN(TE$

))? :rem 35

5800 TE$=STR$(FB(JJ)): PRINT* DV,TE$7SPC(9-LEN(TE$

)); :rem 15

5810 TE$=STR$(FC(JJ)): PRINT* DV,TE$;SPC(10-LEN(TE

$)); trem 57

5820 TE$=FJ$(JJ): PRINT* DV,TE$;CR$;: NEXT JJ

:rem 11

5830 PRINT* DV#CR$;CR$;: IF DV<>3 THEN PL%=PL%+CC+

13 :rem 108

5840 FOR JJ=1 TO CC: IF OC(JJ)=0 THEN 5880:rem 148

5850 PRINT* DV,OC(JJ);" OVERRUNS IN FIELD";JJ;: OC

(JJ)=0 :rem 229

5860 PRINT* DV," — LONGEST WAS";OL(JJ);"CHARACTER

S";CR$; :rem 55

5870 IF DV<>3 THEN PL%=PL%+1 :rem 244

5880 : OL(JJ)=0: NEXT JJ: GOSUB 1460: IF DV=3 THEN

4550 :rem 94

5890 PN=BP: GOTO 4560 :rem 133

5900 : :rem 8

5910 REM" PROGRAM TERMINATION—" :rem 58

5920 : :rem 10

5930 : PRINT Y1$;DC$;Y0$: PRINT "{DOWN}TRANSFER SO

URCE DATA FILE TO A" :rem 132

238

Program Listings

5940 PRINT "NEW DISKETTE AND RE-RUN THE PROGRAM.

{DOWN}11: GOTO 5980 :rem 247
5950 : PRINT Y1$;"{RVS} OVER 80 CHARACTERS IN DATA

RECORD {OFF}";Y0$: GOTO 5980 trem 144

5960 : GOSUB 1830 :rem 90

5970 : :rem 15

5980 : CLOSE 3: CLOSE 4: CLOSE 8: CLOSE 9: CLOSE 1

4 :rem 131

5990 : PRINT "{DOWN}PRESS {RVS} Q {OFF} TO QUIT OR
—" :rem 86

6000 PRINT "ANY OTHER KEY FOR MASTER MENU":rem 210

6010 GOSUB 2660: IF KB$o"QM THEN 6030 :rem 150

6020 PRINT "{RVS} PROGRAM TERMINATED {OFF}";: CLOS
E 1: CLOSE 15: END :rem 133

6030 : DR$="0:": PS$="DFH BOOT": OPEN 8,8,8,+DR$+P

S$+",P,R" :rem 8

6040 GOSUB 3010: CLOSE 8: IF EN=0 THEN 6060

:rem 186

6050 PRINT "{DOWN}TRYING TO LOAD {RVS} ";PS$;"
{OFF}": GOSUB 2460: GOTO 5990 :rem 66

6060 : CLOSE 1: CLOSE 15: PRINT "{DOWN}{RVS} LOADI

NG ";PS$;" {OFF}" :rem 2

6070 POKE 824#248: LOAD PS$,8 :rem 233

DFH MERGE

For mistake-proof program entry, be sure to use "The Automatic Proofreader," Chapter 9.

1000 REM SAVE "@0:DFH MERGE",8 :rem 104

1010 : • :rem 252

1020 REM" A DATA FILE HANDLER PROGRAM FOR MERGING

{SPACE}PRE-SORTED" :rem 81
1030 REM" SINGLE OR MULTI-FIELD SEQUENTIAL DATA FI

LES." :rem 33

1040 : :rem 255

1070 : :rem 2

1080 REM"—ADJUST FOR COMPUTER TYPE—" :rem 8

1090 : :rem 4

1100 IF PEEK (65534)=72 THEN 1140: REM"— C-64 COM

PUTER —" :rem 200

1110 IF PEEK (824)<>248 THEN 1180: REM"— NOT A PR

OG'D LOAD —" :rem 130

1120 POKE 42,PEEK (201): POKE 43,PEEK (202): GOTO

{SPACE}1180 :rem 209
1130 : srem 255

1140 : POKE 53280,14: POKE 53281,14: PRINT CHR$(31

);: REM"—COLORS—" :rem 95

1150 IF PEEK (824)<>248 THEN 1180: REM"— NOT A PR

OG'D LOAD —" :rem 134

239

Program Listings

1160 POKE 45,PEEK (174): POKE 46,PEEK (175)
:rem 176

1170 : :rem 3

1180 2 CLR : POKE 824,0: TY=2: Y0$= IIM: Y1$=M"

:rem 111

1190 IF PEEK (65534)=72 THEN TY=6: Y0$=CHR$(31): Y

1$=CHR$(158) :rem 187

1200 GOTO 2600 :rem 196

1210 : :rem 254

1220 REMM======START OF SUBROUTINES======" :rem 79

1230 : :rem 0

1240 REM11---SUB—LOAD RECORDS--" :rem 25

1250 : :rem 2

1260 : INPUT* 8,DA$(DP): TT=ST: CC=CC+LEN(DA$(DP))

:rem 218

1270 DA$(DP)=DA$(DP)+TG$: RC=RC+1: DP=DP+1 :rem 5

1280 PRINT "{UP}";RC+DC%(LF): IF TT<>0 THEN RETURN
:rem 225

1290 IF CC<CS AND RC<RS% THEN 1260 :rem 25

1300 RETURN :rem 164

1310 : :rem 255

1320 REM11—SUB—DATA OUTPUT—11 :rem 241

1330 : :rem 1

1340 : PRINT TAB(7);"{DOWN}RECORDS OUT TO {RVS} ";

NA$;OF$;" {OFF}" :rem 48

1350 : JO=JO+1 :rem 206

1360 LE=LEN(DA$(JO))-2: PRINT# 9,QT$;LEFT$(DA$(JO)

,LE);CR$; :rem 44

1370 LF=VAL(RIGHT$(DA$(JO),2)): DL%(LF)=DL%(LF)-1

:rem 183

1380 DA$(JO) = IIH: NC=NC+LE: NR=NR+1: PRINT "{UP}M;N
R :rem 191

1390 IF DL%(LF)<1 THEN 1470 :rem 92

1400 : :rem 255

1410 : IF NOCO OR NR=>RO THEN CP=2: RETURN

trem 152

1420 IF JO<FT% THEN 1350 :rem 226

1430 PRINT "{DOWN}{RVS} END OF VALID SORTED DATA.

{2 SPACES}NOW USING {OFF}" :rem 189
1440 PRINT "{RVS} FIELD ZERO SORT FOR REST OF RECO

RDS. {OFF}" :rem 36

1450 SF=0: FS%=SF: SYS SS: JO=-l: GOTO 1340:rem 38

1460 : :rem 5

1470 : IF DD%(LF)>0 THEN CP=l: RETURN :rem 221

1480 FOR JJ=0 TO CT: IF DL%(JJ)>0 THEN JJ=CT+3
:rem 181

1490 NEXT JJ: IF JJ>CT+2 THEN 1410 :rem 37

1500 CP=8: RETURN :rem 232

1510 : srem 1

1520 REM11—SUB—WAIT FOR OPERATOR—" : rem 112

240

Program Listings

1530 : * :rem 3

1540 : PRINT "PRESS ANY KEY TO CONTINUE{DOWN}"
:rem 76

1550 : GET KB?: IF KB$<>"" THEN 1550 :rem 200

1560 : GET KB$: IF KB$="M THEN 1560 :rem 141

1570 RETURN :rem 173

1580 : jrem 8

1590 REM"—SUB-WAIT FOR YES OR NO—" : rem 58

1600 : :rem 1

1610 : KB$="Y": GOTO 1630 :rem 202

1620 : KB$="N" :rem 131

1630 : PRINT CU$;SPC(S1);"? ";KB$;CU$;SPC(Sl+2);
:rem 114

1640 : INPUT# 1,KB$: PRINT : KB$=LEFT$(KB$,1)
:rem 99

1650 IF KB$="Y" OR KB$="N" THEN RETURN :rem 22

1660 PRINT "{RVS} Y {OFF} YES OR {RVS} N {OFF} NO
{SPACE}? ";: GOTO 1640 :rem 116

1670 : :rem 8

1680 REM"—SUB—TEST/PRINT DISK ERROR—" :rem 160

1690 : :rem 10

1700 : EB=1 :rem 247

1710 : INPUT# 15,EN,EM$,ET,ES: IF EN=0 OR EN=63 TH

EN 1730 :rem 227

1720 : IF EB=0 THEN PRINT Y1$;"{DOWN}{RVS} DISK ER

ROR {OFF}";Y0$;CR$;EN;EM$;ET;ES :rem 28

1730 : EB=0: RETURN :rem 19

1740 : :rem 6

1750 REM"—SUB—STRING INPUT—" :rem 84

1760 : :rem 8

1770 : PRINT CU$;SPC(S1);"? ";K1$;CU$;SPC(Sl+2);
:rem 102

1780 INPUT# 1,K1$: PRINT : RETURN :rem 97
1790 : :rem 11

1800 REM"—SUB—NUMBER INPUT—" :rem 66

1810 : :rem 4

1820 : PRINT CU$;SPC(Sl);"?";K2;CU$;SPC(Sl+2);
:rem 63

1830 INPUT* 1,KB$: PRINT : K2=VAL(KB$): RETURN
:rem 71

1840 : :rem 7

1850 REM11—SUB—TEST DELIMITER—" :rem 205
I860 : :rem 9

1870 : EF=0: IF FD$<>"" THEN 1890 :rem 56

1880 PRINT "{RVS} ENCLOSE COMMA/COLON/SPACE IN QUO

TES {OFF}": EF=1: RETURN :rem 198

1890 : IF LEN(FD$)<>1 OR ASC(FD$)<32 THEN EF=1

:rem 100

1900 IF ASC(FD$)>127 AND ASC(FD$)<161 THEN EF=1
:rem 172

241

Program Listings

1910 IF FD$="0" OR VAL(FD$)<>0 THEN EF=l :rem 14

1920 IF EF=1 THEN PRINT Yl$;"{DOWN}{RVS} ILLEGAL D

ELIMITER{3 SPACES}{OFF}";Y0$;QT$;FD$;QT$
:rem 100

1930 RETURN :rem 173

1940 : :rem 8

1950 REM11—SUB—DISK CHANGE—11 :rem 192

1960 : trem 10

1970 : PRINT "{DOWN}INSTALL {RVS} SOURCE DISKETTE

{2 SPACES}#";DN$; " {OFF}11: GOTO 1990 : rem 175
1980 : PRINT "{DOWN}INSTALL {RVS} OUTPUT DISKETTE

{2 SPACES}#";DN$;" {OFF}11 :rem 138

1990 : IF TY<>6 THEN PRINT "{16 SPACES}IN DRIVE

{2 SPACES}* ";DR$:rem 34
2000 PRINT "THEN, "; :rem 41

2010 : GOSUB 1540: PRINT* 15,"I";DR$:rem 69

2020 GOSUB 1710: IF EN=0 THEN RETURN :rem 229

2030 PRINT "CANfT INITIALIZE — TRY AGAIN.": GOTO

{SPACE}2010 :rem 242
2040 : :rem 0

2050 REM11—SUB—OPEN SOURCE FILE—" :rem 10

2060 : :rem 2

2070 : OPEN 8,8,8,DI$+":"+DT$(LF)+",S,R": GOSUB 17

00: :rem 173
2080 IF EN=0 THEN 2120 :rem 77

2090 IF EN<>62 THEN GOSUB 1720: PRINT "TRYING TO O

PEN ";DT$(LF) :rem 223

2100 CLOSE 8: DN$=STR$(DD%(LF)): DR$=DI$: GOSUB 19

70: GOTO 2070 :rem 69

2110 : :rem 254

2120 : INPUT* 8,X1$: IF FP=1 THEN 2210 :rem 132

2130 IF ST<>0 THEN PRINT Yl$;"{RVS} NO DATA {OFF}"
;Y0$: GOTO 2190 :rem 17

2140 FD$=LEFT$(X1$,1): GOSUB 1870: IF EF<>0 THEN 2

190 :rem 223

2150 : :rem 2

2160 IF FF=0 THEN FF=1: TD$=FD§: PRINT : RETURN

:rem 60

2170 IF TD$=FD$ THEN PRINT : RETURN :rem 214

2180 PRINT Yl$;"{DOWN}{RVS} DIFFERENT DELIMITER
{OFF}";Y0$;QT$;FD$;QT$:rem 73

2190 : PRINT "{RVS} IN FILE - {OFF}";QT$;DT$(LF);Q
T$: GOTO 4220 :rem 124

2200 : xrem 254

2210 : PRINT TAB(7);"SPOOLING-UP IN {RVS} ";DT$(LF

);" {OFF}": HC%=DC%(LF)/256 :rem 189
2220 POKE SD+3,HC%: POKE SD+2,DC%(LF)-HC%*256: SYS

SU: RETURN :rem 125

2230 : trem 1

2240 REM11—SUB—LOAD FILE SEGMENT—" xrem 59

242

Program Listings

2250 : srem 3

2260 : GOSUB 2070: CC=0 : RC=0: TG$=MID$(STR$(LF)#2

) :rem 153

2270 IF LEN(TG$)<2 THEN TG$="0"+TG$ srem 64

2280 PRINT TAB(7);"{UP}RECORDS{2 SPACES}FROM

{2 SPACES}{RVS} ";DT$(LF);M {OFF}11 :rem 11

2290 GOSUB 1260: CLOSE 8: IF TT=0 THEN 2310

:rem 209

2300 PRINT "{UP}{RVS}";RC+DC%(LF);"{LEFT} {OFF}11:
{SPACE}DD%(LF)=0 :rem 168

2310 : DC%(LF)=DC%(LF)+RC: DL%(LF)=DL%(LF)+RC: RET

URN :rem 156

2320 : :rem 1

2330 REM"—SUB—TEST #BLOCKS FREE—" :rem 43

2340 : :rem 3

2350 : OPEN 14,8,0, "$"+DR$+11:": GOSUB 1710: IF EN=

0 THEN 2380 :rem 197

2360 CLOSE 14: PRINT Y1$;"{RVS} CAN'T READ OUTPUT

{SPACE}DISK DIRECTORY {OFF}M;Y0$: rem 96
2370 GOSUB 1980: GOTO 2350 :rem 91

2380 : FOR JJ=1 TO 18: GET #14,X1$,X2$: NEXT JJ: C

LOSE 14 :rem 115

2390 BF%=ASC(X1$+ZR$)+ASC(X2$+ZR$)*256 :rem 75

2400 PRINT "{DOWN}";BF%;TAB(6);"BLOCKS FREE FOR
NA$;OF$:rem 81

2410 ER=0: IF BF%>(TB+2*TR)/254/NF+3 THEN RETURN

:rem 141

2420 PRINT Y1$;"{RVS} NOT ENOUGH BLOCKS FREE {OFF}
";Y0$: ER=1: RETURN :rem 254

2430 : :rem 3

2440 REM"—SUB—OPEN/SETUP NEW OUTPUT FILE—"

:rem 215

2450 : :rem 5

2460 : RE$="" xrem 66

2470 : OPEN 9,8,9, RE$+DR$+" : "+NA$+OF$+II,S,W"

:rem 227

2480 GOSUB 1710: IF EN<>0 THEN 2500 :rem 19

2490 PRINT# 9,QT$;FD$IU@0:";NA$;OF$;CR$;: NR=0: NC
=9+LEN(NA$): RETURN :rem 164

2500 : CLOSE 9: IF EN<>63 THEN RETURN :rem 254

2510 PRINT "{RVS} OUTPUT FILE {OFF}";NA$;OF$;"
{RVS} EXISTS {OFF}" :rem 51

2520 PRINT "WANT TO REPLACE IT"; :rem 75

2530 GOSUB 1610: IF KB$="Y" THEN RE$="@": GOTO 247

0 :rem 81

2540 RETURN :rem 171

2550 : :rem 6

2560 REM"====== START OF MAIN PROGRAM ====="

srem 244

2570 : :rem 8

243

Program Listings

2580 REM"—INITIALIZE—" :rem 157

2590 : :rem 10

2600 : RI=650: CI=13000: MR=650: MC=13000 :rem 24

2610 DIM DT$(50): REM"—DATA FILE TITLES—":rem 58

2620 DIM DD%(50): REM"—DATA FILE DISK #—"

:rem 165

2630 DIM DC%(50): REM"—DATA COUNT FOR SPOOL-UP—"

:rem 6

2640 DIM DL%(50): REM"—DATA LOADED COUNT—"

:rem 115

2650 DIM DA$(RI): REM"—DATA STORAGE ARRAY—"

:rem 0

2660 OPEN 1,0: OPEN 15,8,15 :rem 85

2670 Sl=22: SS=30976: SU=30985: SD=30991 :rem 86

2680 FA$="DA": FT%=0 :rem 231

2690 CR$=CHR$(13): QT$=CHR$(34): CU$=CR$+"{UP}": Z

R$=CHR$(0) :rem 43

2700 PRINT "{cLRHDOWNHRVS} READY TO MERGE FILES
{SPACE}{OFF}" :rem 221

2710 : FP=0: TN=0: OD=l: DI$="0": DO$="l": IF TY=6

THEN DO$="0" :rem 74

2720 RV=0: CT=0: TC=0: FOR JJ=0 TO 50: DT$(JJ)="":

NEXT JJ :rem 239

2730 : srem 6

2740 : FF=0: PRINT "{DOWN}HOW WERE THE SOURCE FILE

S SORTED ?{DOWN}" :rem 131

2750 : PRINT "SORTED ON FIELD #"; :rem 9

2760 K2=SF: GOSUB 1820: SF=K2: IF SF<0 OR SF>20 TH

EN SF=0: GOTO 2750 :rem 82

2770 : PRINT "{DOWN}{RVS} A {OFF} ASCENDING OR";CR

$;"{RVS} D {OFF} DESCENDING ORDER"; :rem 228

2780 K1$=SO$: IF Kl$="" THEN K1$="A" :rem 239

2790 GOSUB 1770: SO$=K1$: IF SO$o"A" AND SO$o"D"

THEN 2770 srem 38

2800 : :rem 4

2810 PRINT "{DOWN}{RVS} ENTER NAMES OF UP TO 50 SO
URCE FILES {OFF}": Kl$="" :rem 36

2820 : PRINT "{DOWN}SOURCE FILE #";TC+1; :rem 101

2830 IF RV=1 THEN K1$=DT$(TC) :rem 34

2840 GOSUB 1770: DT$(TC)=K1$: IF TC<1 THEN 2890

:rem 167

2850 ER=0: FOR JJ=0 TO TC-1: IF Kl$=DT$(JJ) THEN E

R=l srem 8

2860 NEXT JJ :rem 163

2870 IF ER=1 THEN PRINT Y1$;"{RVS} FILENAME ALREAD

Y USED {OFF}";Y0$: GOTO 2820 :rem 141

2880 : srem 12

2890 : TC=TC+1 :rem 212

2900 IF TO49 THEN PRINT "{DOWNHRVS} ONLY 50 FILE

S ALLOWED {OFF}": GOTO 2940 : rem 181

244

Program Listings

2910 PRINT "ANY MORE FILES";: KB$="Y" :rem 43

2920 IF RV=1 AND TOCT THEN KB$="N" :rem 96

2930 GOSUB 1630: IF KB$="YM THEN 2820 :rem 103

2940 : CT=TC-1: PRINT "{DOWNjALL FILENAMES OK";: G
OSUB 1610 :rem 178

2950 IF KB$="Y" THEN 3020 :rem 222

2960 : PRINT "{DOWN}RE-DEFINE THE MERGE";: GOSUB 1

610 :rem 106

2970 IF KB$="Y" THEN RV=1: TC=0: GOTO 2740:rem 175

2980 GOTO 4270 :rem 217

2990 : :rem 14

3000 REM"—DEFINE DRIVE USAGE—" :rem 57

3010 : :rem 254

3020 : RV=0: FC=0: FOR JJ=0 TO CT: DD%(JJ)=0: NEXT

JJ :rem 230

3030 PRINT "{DOWN}{RVS} READY TO LOCATE FILES & CH

ECK SIZES {OFF}{DOWN}" :rem 178

3040 IF TY=6 THEN 3130 :rem 108

3050 : PRINT "SOURCE FILES IN DRIVE"; :rem 99

3060 K1$=DI$: GOSUB 1770: IF K1$<"0" OR K1$>"1" TH

EN 3050 :rem 228

3070 DI$=K1$:rem 88

3080 : PRINT "OUTPUT FILES TO DRIVE"; :rem 146

3090 K1$=DO$: GOSUB 1770: IF K1$<"0" OR K1$>"1" TH

EN 3080 :rem 240

3100 DO$=K1$: TY=2: IF DI$=DO$ THEN TY=1 :rem 102

3110 REM"—FIND FILE LOCATIONS AND SIZES—"

:rem 239

3120 : :rem 0

3130 : DK%=1: DR$=DI$:rem 5

3140 : DN$=STR$(DK%): GOSUB 1970 :rem 162

3150 DE=0: POKE SD+3,254: FOR JA=0 TO CT :rem 55

3160 OPEN 8,8,8,"0:"+DT$(JA)+",SfR": GOSUB 1700

:rem 135

3170 IF EN=62 THEN 3270 :rem 141

3180 IF EN<>0 THEN GOSUB 1720: DE=l: JA=CT: GOTO 3

270 :rem 26

3190 IF DD%(JA)=DK% THEN 3270 :rem 209

3200 IF DD%(JA)=0 THEN INPUT* 8,X1$: SYS SU: GOTO

{SPACE}3240 :rem 90
3210 DE=2: PRINT "{2 DOWN}{RVS} FILE {OFF} ";DT$(J

A) :rem 130

3220 PRINT Y1$;"{RVS} FOUND ON MORE THAN ONE DISK

{SPACE}{OFF}{DOWN}";Y0$: JA=CT: GOTO 3270
:rem 122

3230 : :rem 2

3240 : FR=PEEK (SD)+PEEK (SD+1)*256+1: FB=PEEK (SD

+4)+PEEK (SD+5)*256-FR :rem 43

3250 DD%(JA)=DK%: FC=FC+1: TR=TR+FR: TB=TB+FB

:rem 5

245

Program Listings

3260 PRINT "FOUND ";DT$(JA);TAB(20);INT((FB+FR*2)/

254)+l;TAB(25);"BLOCKS" :rem 76
3270 : CLOSE 8: NEXT JA: IF DE=0 THEN 3310:rem 109

3280 IF DE=2 THEN 4220 :rem 75

3290 PRINT "{RVS}{2 SPACESjTRY AGAIN 1{9 SPACES}
{OFF}": GOTO 3140 :rem 254

3300 : :rem 0

3310 : IF FOCT THEN PRINT "{RVS} ALL FILES LOCATE

D {OFF}": GOTO 3440 :rem 24
3320 PRINT "{DOWN}{RVS} STILL LOOKING FOR: {OFF}"

:rem 10

3330 FOR JJ=0 TO CT: IF DD%(JJ)=0 THEN PRINT DT$(J

J) :rem 16
3340 NEXT JJ :rem 157

3350 IF TYOl THEN DK%=DK%+1: GOTO 3140 :rem 29

3360 FOR JJ=0 TO 50: DD%(JJ)=0: NEXT JJ: FC=0: TR=

0: TB=0 :rem 188

3370 PRINT "{DOWN}{RVS} ALL FILES MUST BE ON THE S

AME DISK {OFF}" :rem 62

3380 PRINT "{RVS} FOR 'SINGLE DRIVE1 OPERATIONS

{6 SPACES}{OFF}{DOWN}" :rem 201
3390 PRINT "NEED A NEW DISK";: GOSUB 1610: IF KB$=

11Y" THEN 3140 :rem 26

3400 GOTO 2960 :rem 209

3410 : :rem 2

3420 REM"—MEMORY & DISK SPACE ALLOCATION—"

:rem 33

3430 : :rem 4

3440 : PRINT "{DOWN}MERGE INFORMATION SUMMARY:"

:rem 5

3450 PRINT FC;TAB(8);"TOTAL DATA FILES" :rem 13

3460 PRINT INT(TR);TAB(8);"TOTAL RECORDS" :rem 236

3470 PRINT INT((TB+TR*2)/254)+l;TAB(8);"TOTAL BLOC

KS" :rem 45

3480 CS=CI/FC: RS%=Rl/FC: RF%=TB/MC+1 :rem 95

3490 IF TR/MR+1>RF% THEN RF%=TR/MR+1 :rem 35

3500 PRINT "{DOWN}{RVS} READY TO DEFINE OUTPUT FIL

ES{8 SPACES}{OFF}" :rem 117
3510 : PRINT "{DOWN}";RF%;"OUTPUT FILES ARE SUGGES

TED." :rem 113

3520 : PRINT "HOW MANY DO YOU WANT"; :rem 253

3530 K2=RF%: GOSUB 1820: IF K2<1 OR K2>99 THEN 352

0 :rem 65

3540 NF=K2: IF NF=>RF% THEN 3580 :rem 174

3550 PRINT Yl$;"{DOWN}{RVS} WARNING {OFF}";Y0$;" F
ILE(S) MAY BE TOO LARGE FOR" :rem 47

3560 PRINT "THE SORTING AND EDITING PROGRAM.{DOWN}

:rem 212

3570 PRINT "DO YOU WANT TO CONTINUE";: GOSUB 1620:

IF KB$="N" THEN 3510 :rem 113

246

Program Listings

3580 : RO=MR: CO=MC: IF NF<>RF% THEN CO=(TB+TR/2)/
NF :rem 142

3590 IF NF>RF% AND CO>MC THEN CO=MC :rem 176

3600 IF NF<RF% THEN RO=99999 :rem 15

3610 : :rem 4

3620 REM"—GET OUTPUT FILE NAME—" :rem 185

3630 : :rem 6

3640 : PRINT M{DOWN}A SEQUENCE NUMBER WILL BE ADDE

D TO" :rem 0

3650 PRINT "EACH OUTPUT FILE NAME.{2 SPACES}WHAT N
AME DO" :rem 248

3660 PRINT "YOU WANT TO USE"; :rem 162

3670 K1$=NA$: GOSUB 1770: NA$=K1$:rem 179

3680 IF LEN(NA$)<12 THEN 3710 :rem 220

3690 PRINT "{RVS} NAME TOO LONG {OFF}": NA$=LEFT$(

NA$,11): GOTO 3640 :rem 213

3700 : :rem 4

3710 : IF TY=2 THEN 3810 :rem 171

3720 NE=0: FOR JJ=0 TO CT :rem 40

3730 IF NA$+"."=LEFT$(DT$(JJ),LEN(NA$)+1) THEN NE=

1 :rem 197

3740 NEXT JJ: IF NE=0 THEN 3810 :rem 101

3750 PRINT Yl$;"{DOWN}{RVS} FILENAME CONFLICT
{OFF}";Y0$:rem 185

3760 PRINT "{DOWN}SOURCE FILENAME CAN'T BE RE-USED

FOR" :rem 116

3770 PRINT "OUTPUT WITH SINGLE DISK DRIVE{DOWN}":
{SPACE}GOSUB 1540: GOTO 3640 :rem 11

3780 : :rem 12

3790 REM"—LOAD & SORT INITIAL FILE SEGMENTS—"

:rem 205

3800 : :rem 5

3810 : DP=0: LF=0: PRINT "{DOWN}{RVS} READY TO LOA

D INITIAL FILE SEGMENTS {OFF}{DOWN}" :rem 217

3820 FOR JJ=0 TO 50: DC%(JJ)=0: DL%(JJ)=0: NEXT JJ

:rem 67

3830 : GOSUB 2260: IF LF<CT THEN LF=LF+1: GOTO 383

0 :rem 173

3840 FP=1: FS%=SF: FO$=SO$: SYS SS :rem 118

3850 IF FT%<1 THEN PRINT Y1$;"{RVS} NO DATA IN SOR
T FIELD {OFF}";Y0$: GOTO 4220 :rem 53

3860 : :rem 11

3870 REM"—MERGE PROCESS CONTROL--" : rem 94

3880 : :rem 13

3890 DN$=STR$(OD): DR$=DO$: JO=-1: IF TY=1 THEN 39

20 :rem 255

3900 GOSUB 1980 :rem 30

3910 : :rem 7

3920 : TN=TN+1: OF$=".": IF TN<10 THEN OF$=OF$+"0"

:rem 12

247

Program Listings

:rem 102

:rem 10

:rem 38

:rem 222

:rem 13

:rem 172

:rem 194

:rem 148

GOSUB 1610

:rem 248

:rem 199

:rem 1

:rem 227

:rem 120

REM"--OPEN

:rem 76

:rem 209

:rem 50

:rem 92

:rem 255

:rem 203

3930 0F$=0F$+MID$(STR$(TN),2)

3940 :

3950 : GOSUB 2350: IF ER=1 THEN 3980

3960 GOSUB 2460: IF EN=0 THEN 4040

3970 :

3980 : IF TY=1 THEN 4010

3990 OD=OD+1: DN$=STR$(OD)

4000 : GOSUB 1980: GOTO 3950

4010 : PRINT "{DOWN}TRY OUTPUT AGAIN11;:
: IF KB$"YM THEN 4000

4020 GOTO 4220

4030 :

4040 : IF TY<>6 THEN 4110

4050 CLOSE 9

4060 : OPEN 9,8,9,DR$+": "+NA$+OF$+",A":

FOR APPEND--"

4070 GOSUB 1700: IF EN=0 THEN 4110

4080 CLOSE 9: IF EN<>62 THEN GOSUB 1720

4090 GOSUB 1980: GOTO 4060

4100 :

4110 : GOSUB 1340: GOSUB 1710

4120 IF EN<>0 THEN PRINT Y1$;"{DOWN}{RVS} FILE NOT

SAVED CORRECTLY {OFF}";Y0$: GOTO 4220

:rem 143

4130 IF CP=8 THEN 4230 :rem 87

4140 IF CP=2 THEN CLOSE 9: GOTO 3920 :rem 121

4150 IF TY=6 THEN CLOSE 9 :rem 87

4160 FS%=0: FO$=SO$: SYS SS: DP=FT%: GOSUB 2260

:rem 25

4170 FS%=SF: SYS SS: JO=-1: IF TY=6 THEN 4060

:rem 143

4180 GOTO 4110 srem 204

4190 : :rem 8

4200 REM11—PROGRAM TERMINATION—" : rem 4

4210 : :rem 1

4220 : EN=0: PRINT "{DOWN}{RVS} PROGRAM OPERATION

{SPACE}HALTED {OFF}11: GOTO 4240 :rem 122
4230 : PRINT "{DOWN} {RVS} MERGE COMPLETED {OFF}"

:rem 150

4240 : CLOSE 8: CLOSE 9: CLOSE 14: PRINT "{DOWN}MO
RE FILES TO MERGE"; :rem 192

4250 GOSUB 1610: IF KB$="Y11 THEN TB=0: TR=0: GOTO

{SPACE}2710 srem 35
4260 CLOSE 1 srem us

4270 : PRINT "{DOWN}PRESS {RVS} Q {OFF} TO QUIT OR

:rem 76

4280 PRINT "ANY OTHER KEY FOR MASTER MENU":rem 218
4290 GOSUB 1550: IF KB$o"Q" THEN 4310 :rem 154

4300 PRINT "{RVS} PROGRAM TERMINATED{2 SPACES}
{OFF}": CLOSE 1: CLOSE 15: END :rem 73

248

Program Listings

4310 : DR$="0": PS$=MDFH BOOT": OPEN 8,8,8,"0:"+PS

$+M,P,RM jrem 150

4320 GOSUB 1710: CLOSE 8: IF EN=0 THEN 4370

:rem 192

4330 PRINT "{DOWN}TRYING TO LOAD {RVS} ";PS$;"
{OFF}" :rem 113

4340 PRINT "INSTALL CORRECT DISK "; :rem 43

4350 IF TY<>6 THEN PRINT "IN DRIVE ";DR$; :rem 249

4360 PRINT CR$;"THEN ";: GOSUB 2010: GOTO 4270

:rem 64

4370 : CLOSE 1: CLOSE 15: PRINT "{DOWN}{RVS} LOADI
NG ";PS$;" {OFF}" :rem 4

4380 POKE 824,248: LOAD PS$,8 :rem 235

DFH SWAP

For mistake-proof program entry, be sure to use "The Automatic Proofreader," Chapter 9.

1000 REM SAVE "@0:DFH SWAP",8 :rem 51
1010 : :rem 252

1020 REM" A DATA FILE HANDLER PROGRAM TO RE-STRUCT

URE" :rem 180

1030 REM" MULTI-FIELD SEQUENTIAL DATA FILES,"
:rem 190

1040 : :rem 255

1070 : :rem 2

1080 REM" SET TOP OF BASIC IF REQUIRED--"

:rem 152

1090 : :rem 4

1100 IF PEEK (65534) =72 THEN 1140: REM"— C-64 COM

PUTER —" :rem 200

1110 IF PEEK (824)<>248 THEN 1180: REM"— NOT A PR

OG'D LOAD —" :rem 130

1120 POKE 42,PEEK (201): POKE 43,PEEK (202): GOTO

{SPACE}1180 :rem 209

1130 : :rem 255

1140 : POKE 53280,14: POKE 53281,14: PRINT CHR$(31

);: REM"— COLORS —" :rem 95

1150 IF PEEK (824)<>248 THEN 1180: REM"— NOT A PR

OG'D LOAD —" :rem 134

1160 POKE 45,PEEK (174): POKE 46,PEEK (175)
:rem 176

1170 : :rem 3

1180 : CLR : POKE 824,0: TY=2: Y0$= "": Yl$="fl

:rem 111

1190 IF PEEK (65534)=72 THEN TY=6: Y0$=CHR$(31): Y

1$=CHR$(158) :rem 187

1200 GOTO 2330 :rem 196

1210 : :rem 254

249

Program Listings

1220 REM"=========== START OF SUBROUTINES ========

==" :rem 116

1230 : :rem 0

1240 REM "--SUB—INPUT, RE-STRUCTURE, AND OUTPUT DA

TA LINES—11 :rem 189

1250 : :rem 2

1260 : RC=0 :rem 5

1270 : PRINT TAB(7);"{DOWN}DATA RECORDS CONVERTED"

:rem 86

1280 : INPUT* 8,OD$(0): TT=ST: PR$=QT$: SYS SP: FO

R JJ=1 TO NF :rem 86

1290 ON FC(JJ) GOTO 1310,1340,1330,1350,1370

:rem 168

1300 : :rem 254

1310 : IF FT%=>OP(JJ) THEN PR$=PR$+OD$(OP(JJ))

:rem 251

1320 GOTO 1390 :rem 204

1330 : IF FT%=>OP(JJ) THEN PR$=PR$+OD$(OP(JJ))

:rem 253

1340 : PR$=PR$+AD$(JJ): GOTO 1390 :rem 196

1350 : PR$=PR$+AD$(JJ): IF FT%=>OP(JJ) THEN PR$=PR

$+OD$(OP(JJ)) :rem 187

1360 GOTO 1390 :rem 208

1370 : IF FT%=>OP(JJ) THEN PR$=PR$+OD$(OP(JJ))

:rem 1

1380 IF FT%=>CP(JJ) THEN PR$=PR$+OD$(CP(JJ))

:rem 176

1390 : PR$=PR$+DE$: NEXT JJ: PRINT* 9,PR$;CR$;: RC

=RC+1: PRINT "{UP}M;RC :rem 98
1400 LP=LEN(PR$)-1 :rem 242

1410 IF LP>75 THEN PRINT Y1$;"{RVS} LONG RECORD

{OFF}";Y0$;LP;MCHARACTERS" :rem 53

1420 IF TT<>0 THEN RETURN :rem 183

1430 IF LP>75 THEN 1270 :rem 150

1440 GOTO 1280 :rem 205

1450 : :rem 4

1460 REM"—SUB—GET OLD DATA FIELD NUMBER—"

:rem 241

1470 : :rem 6

1480 : PRINT "{DOWN}WHICH OLD DATA FIELD";: K2=OP(

NF): GOSUB 2200 :rem 234

1490 IF K2<1 OR K2>20 THEN PRINT Y1$;"{RVS} ILLEGA
L # {OFF}";Y0$: GOTO 1480 :rem 215

1500 OP(NF)=K2: RETURN :rem 30

1510 : :rem 1

1520 REM"—SUB—GET NEW FIXED DATA ENTRY—"

:rem 206

1530 : :rem 3

1540 : PRINT "{DOWN}ENTER NEW FIXED DATA";CR$;QT$;

AD$(NF);CU$; :rem 203

250

Program Listings

1550

1560

1570

1580

1590

1600

1610

1620

1630

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760

1770

1780

1790

1800

1810

1820

1830

1840

1850

1860

1870

1880

1890

1900

1910

1920

INPUT* 1,AD$(NF): PRINT : RETURN

REM"—SUB—TEST DELIMITER—"

:rem 74

:rem 6

:rem 204

: :rem 8

: EF=0: IF FD$<>"" THEN 1610 :rem 45

PRINT "{RVS} ENCLOSE COMMA/COLON/SPACE IN QUO

TES {OFF}": EF=1: RETURN :rem 188
: IF LEN(FD$)<>1 OR ASC(FD$)<32 THEN EF=1

jrem 90

IF ASC(FD$)>127 AND ASC(FD$)<161 THEN EF=1

:rem 171

IF FD$="0" OR VAL(FD$)<>0 THEN EF=l :rem 13

IF EF=1 THEN PRINT Y1$;"{RVS} ILLEGAL DELIMIT

ER {OFF} ";Y0$;FD$:rem 74

RETURN :rem 172

: :rem 7

REM"—SUB—WAIT FOR OPERATOR—" :rem 118

: :rem 9

: PRINT "{DOWN}PRESS ANY KEY TO CONTINUE"
:rem 82

: GET KB$: IF KB$<>"" THEN 1700 :rem 194

: GET KB$: IF KB$="" THEN 1710 :rem 135

RETURN :rem 170

: :rem 5

REM"—SUB—WAIT FOR YES OR NO ANSWER—":rem 7

: :rem 7

: KB$="Y": GOTO 1780 :rem 214

: KB$="N" :rem 137

: PRINT CU$;SPC(S1);"? ";KB$;CU$;SPC(Sl+2);

:rem 120

: INPUT* 1,KB$: PRINT : KB$=LEFT$(KB$,1)
:rem 105

IF KB$="Y" OR KB$="N" THEN RETURN :rem 19

PRINT "{RVS} Y {OFF} YES OR {RVS} N {OFF} NO"

;CU$;SPC(S1)"? ";: GOTO 1790 :rem 168

: :rem 5

REM"—SUB—DISK CHANGE / INITIALIZATION—"

:rem 20

: :rem 7

: KB$="N": GOTO 1870 :rem 203

: KB$="Y" :rem 148

: PRINT "{DOWN}NEED A NEW DISK";: GOSUB 1780
:rem 35

IF KB$="N" THEN ER=1: RETURN :rem 46

: IF TY=6 THEN DR$="0": GOTO 1920 :rem 148

PRINT "WHICH DRIVE";: K1$=DR$: GOSUB 2150: DR

$=K1$:rem 231

IF DR$<"0" OR DR$>"1" THEN 1890 :rem 211

: PRINT "{DOWN}INSTALL NEW DISK — THEN{UP}":

GOSUB 1690 :rem 184

251

Program Listings

1930 PRINT* 15,MI";DR$: GOSUB 1980: IF EN=0 THEN R

ETURN :rem 245

1940 PRINT "CAN'T INITIALIZE — TRY AGAIN.11: GOTO

{SPACE} 1890 :rem 10

1950 : :rem 9

1960 REM"—SUB—TEST / PRINT DISK ERROR—":rem 161

1970 : :rem 11

1980 : INPUT* 15,EN,EM$,ET,ES: IF EN=0 OR EN=63 TH

EN RETURN :rem 1

1990 : PRINT Yl$;"{DOWN}{RVS} DISK ERROR {OFF}";Y0
$;CR$;EN;EM$;ET;ES: RETURN :rem 141

2000 : :rem 252

2010 REM"—SUB—TEST #BLOCKS FREE—" :rem 38

2020 : :rem 254

2030 : ER=0: OPEN 14,8,0,"$"+DO$+":": GOSUB 1980:

{SPACE}IF EN=0 THEN 2070 :rem 0

2040 CLOSE 14: PRINT Y1$;"{RVS} CAN'T READ OUTPUT

{SPACE}DISK DIRECTORY {OFF}";Y0$:rem 91

2050 GOSUB 1860: IF ER=1 THEN RETURN :rem 243

2060 GOTO 2030 :rem 198

2070 : FOR JJ=1 TO 18: GET #14,X1$,X2$: NEXT JJ: C

LOSE 14 :rem 111

2080 BF%=ASC(X1$+ZR$)+ASC(X2$+ZR$)*256 :rem 71

2090 PRINT "{DOWN}";BF%;TAB(6);"BLOCKS FREE"

:rem 141

2100 IF BF%>(MC+2*MR)/254+2 THEN RETURN :rem 122

2110 ER=1: PRINT Y1$;"{RVS} NOT ENOUGH BLOCKS FREE

{OFF}";Y0$: RETURN :rem 250

2120 : :rem 255

2130 REM"—SUB—STRING INPUT—" :rem 77

2140 : :rem 1

2150 : PRINT CU$;SPC(Sl);"? ";K1$;CU$;SPC(Sl+2);

:rem 95

2160 INPUT* 1,K1$: PRINT : RETURN :rem 90

2170 : :rem 4

2180 REM"—SUB—NUMERIC INPUT—" :rem 142

2190 : :rem 6

2200 : PRINT CU$;SPC(SI);"?";K2;CU$;SPC(Sl+2);

:rem 56

2210 INPUT* 1,KB$: PRINT : K2=VAL(KB$): RETURN

:rem 64

2220 : :rem 0

2230 REM"—SUB—CHANGE CASE—" :rem 169

2240 : :rem 2

2250 : CV=PEEK(LC) :rem 222

2260 IF (CV AND 2)=2 THEN POKE LC, (CV AND 253): RE

TURN :rem 65

2270 POKE LC,(CV OR 2): RETURN :rem 140

2280 : :rem 6

2290 REM"========= START OF MAIN PROGRAM =========

:rem 159

252

Program Listings

2300

2310

2320

2330

2340

2350

2360

2370

2380

2390

2400

2410

2420

2430

2440

2450

2460

2470

2480

2490

2500

2510

2520

2530

2540

2550

2560

2570

2580

2590

2600

2610

2620

REM» INITIALIZE—"

:rem 255

:rem 193

• :rem 1

: MR=700: MC=14000: REM"—MAX RECORDS & CHR'S

:rem 252

DIM OD$(21): REM" —PARTITIONING ARRAY-11

:rem 14

DIM FC(21): REM11—MENU CHOICE SELECTION—M

zrem 125

DIM OP(21): REM11—FIRST OLD FIELD NUMBER—11

:rem 162

DIM CP(21): REM11—SECOND OLD FIELD NUMBER—"

:rem 203

DIM AD$(21): REM"—NEW FIXED DATA—" :rem 142

DIM CO$(21): REM"—MORE FIELDS PROMPTING—"

:rem 210

: :rem 0

LC=59468: IF TY=6 THEN LC=5 3272 :rem 138

CR$=CHR$(13): QT$=CHR$(34): ZR$=CHR$(0): FA$=

"OD": FT%=0: DR$="0" :rem 58

CU$=CR$+"{UP}": Sl=22: SP=30979: OPEN 1,0: OP

EN 15,8,15 :rem 193

SC$="N": MF$="N": DI$="0": DO$="l": IF TY=6 T

HEN DO$="0" :rem 210

FOR JJ=1 TO 20: FC(JJ)=1: OP(JJ)=JJ: CP(JJ)=J

J+l: CO$(JJ)="Y" :rem 236

NEXT JJ: CP(20)=1 :rem 141

PRINT "{CLR}{DOWN}{RVS} READY TO RE-STRUCTURE

DATA RECORDS {OFF}{DOWN}": GOTO 2560 :rem 16
: :rem 8

REM» OPEN, TEST, AND CLOSE INPUT FILE—"
:rem 155

: :rem 1

: CLOSE 8: PRINT "{DOWNjPRESS {RVS} E {OFF} T
O EXIT, OR —" :rem 70

PRINT "ANY OTHER KEY TO RE-DEFINE": GOSUB 170
0 :rem 129

IF KB$="E" THEN 3620 :rem 202

: PRINT "{2 DOWN}{RVS} RE-DEFINE THE CONVERSI

ON {OFF}" :rem 242

: GOSUB 1850 :rem 84

: PRINT "{DOWNjCHANGE DISPLAY CASE";: GOSUB 1

770 :rem 133

IF KB$="Y" THEN GOSUB 2250 :rem 96

IF TY=6 THEN DI$="0": GOTO 2630 :rem 77

: PRINT "{DOWNjSOURCE FILE IN DRIVE"; :rem 41

K1$=DI$: GOSUB 2150: IF K1$<"0" OR K1$>"1" TH

EN 2590 :rem 228

DI$=K1$:rem 87
. :rem 4

253

Program Listings

2630 : PRINT "SOURCE FILE NAME";: K1$=FI$: GOSUB 2

150: FI$=K1$. :rem 57

2640 OPEN 8,8,8,DI$+":"+FI$+",S,R": GOSUB 1980: IF

EN<>0 THEN 2510 :rem 87

2650 INPUT# 8,X1$: IF ST=0 THEN 2670 :rem 108

2660 PRINT Y1$;"{RVS} NO DATA RECORDS IN THE FILE

{SPACE}{OFF}";Y0$: GOTO 2510 :rem 176

2670 : DL$=LEFT$(X1$,1): FD$=DL$: GOSUB 1590: IF E

F=l THEN 2510 :rem 191

2680 INPUT# 8,FL$: CLOSE 8: PRINT :rem 76

2690 CF=0: FOR JJ=l TO LEN(FL$): IF MID$(FL$,JJ,1)

=DL$ THEN CF=CF+1 :rem 41

2700 NEXT JJ :rem 156

2710 : :rem 4

2720 REM" DEFINE, CHECK, AND CLOSE OUTPUT FILE—

:rem 143

2730 : :rem 6

2740 : IF TY=6 THEN K1$="0": GOTO 2770 :rem 121

2750 PRINT "OUTPUT FILE TO DRIVE"; :rem 8

2760 K1$=DO$: GOSUB 2150: IF K1$<"0" OR K1$>"1" TH

EN 2740 :rem 238

2770 : DO$=K1$: IF PO$="" THEN FO$=FI$:rem 121

2780 : :rem 11

2790 : PRINT "OUTPUT FILE NAME";: K1$=FO$: GOSUB 2

150: FO$=K1$:rem 108

2800 IF LEN(FO$)<14 THEN RE$="": GOTO 2830:rem 142

2810 PRINT Y1$;"{RVS} NAME TOO LONG {OFF}";Y0$: FO

$=LEFT$(FO$#13): GOTO 2790 :rem 178
2820 : :rem 6

2830 : GOSUB 2030: IF ER=1 THEN ER=0: GOTO 2540

:rem 139

2840 OPEN 9,8,9,RE$+DO$+":"+FO$+",S,R" :rem 196

2850 INPUT# 15,EN,EM$,ET,ES: CLOSE 9: IF EN=62 THE

N 2980 :rem 254

2860 IF EN<>0 THEN GOSUB 1990: GOTO 2510 :rem 89

2870 IF FO$<>FI$ THEN 2940 :rem 68

2880 PRINT Y1$;"{DOWN}{RVS} CAUTION {OFF}";Y0$;H I

F YOU USE THIS PROGRAM TO" :rem 39

2890 PRINT "ADD FIXED DATA IT IS POSSIBLE TO CREAT

E" :rem 232

2900 PRINT "RECORDS OVER 75 CHARACTERS LONG WHICH"

:rem 217

2910 PRINT "CAN'T BE HANDLED BY 'DFH1 PROGRAMS."

:rem 181

2920 PRINT "{DOWN}REPLACING YOUR SOURCE FILE COULD

CAUSE" :rem 108

2930 PRINT "EFFECTIVE LOSS OF ACCESS TO THAT DATA.

:rem 212

2940 : PRINT "{DOWN}REPLACE EXISTING FILE";

:rem 173

254

Program Listings

2950 GOSUB 1760: IF KB$=MNM THEN 2510 :rem 94

2960 RE$="@" :rem 77

2970 : :rem 12

2980 : PRINT " {DOWN} DELIMITER TO BE USED11;: K1$=DL

$: GOSUB 2150: DE$=K1$:rem 53

2990 FD$=DE$: GOSUB 1590: IF EF=1 THEN 2980

:rem 185

3000 : :rem 253

3010 FD$=DL$: IF RD=1 OR FP=0 THEN FP=l: GOTO 3040

:rem 65

3020 PRINT "{DOWNjSAME CONVERSION11;: KB$=SC$: GOSU

B 1780: SC$=KB$:rem 92

3030 IF SC$="Y" THEN 3390 :rem 231

3040 : NF=1: GOTO 3130 :rem 61

3050 : :rem 2

3060 REM" SET UP NEW FILE STRUCTURE—M :rem 62

3070 : :rem 4

3080 : IF NF>19 THEN PRINT "{DOWN}{RVS} 20 FIELDS
{SPACE}MAX. {OFF}11: GOTO 3390 :rem 244

3090 PRINT "{DOWN}MORE FIELDS"; :rem 211

3100 KB$=CO$(NF): GOSUB 1780: CO$(NF)=KB$: IF KB$=
"N11 THEN 3390 :rem 225

3110 NF=NF+1 :rem 134

3120 : :rem 0

3130 : PRINT "{CLRjFIRST RECORD (";CF;"FIELDS) IN"

:rem 142

3140 PRINT "SOURCE FILE {RVS} ";FI$;" {OFF} IS:";C
R$;FL$:rem 86

3150 PRINT "{DOWNjNEW DATA FIELD {RVS} #";NF;"
{LEFT} {OFF} TO CONTAIN:" :rem 174

3160 PRINT "{RVS} 1 {OFF}{2 SPACES}DATA FROM AN OL

D DATA FIELD" :rem 170

3170 PRINT "{DOWN}{RVS} 2 {OFF}{2 SPACES}NEW FIXED
DATA" :rem 247

3180 PRINT "{DOWN}{RVS} 3 {OFF}{2 SPACES}OLD DATA
{SPACE}FIELD + NEW FIXED DATA" :rem 129

3190 PRINT "{DOWN}{RVS} 4 {OFF}{2 SPACESjNEW FIXED
DATA + OLD DATA FIELD" :rem 131

3200 PRINT "{DOWN}{RVS} 5 {OFF}{2 SPACESjDATA FROM

TWO OLD DATA FIELDS" :rem 120

3210 PRINT "

-•• :rem 114

3220 PRINT "{RVS} 9 {OFF}{2 SPACES}RE-DEFINE OR EX

IT" :rem 191

3230 : RD=0: PRINT "YOUR CHOICE "; :rem 38

3240 K2=FC(NF): GOSUB 2200: IF K2=9 THEN RD=1: GOT

O 2510 :rem 153

3250 FC(NF)=K2: IF FC(NF)=1 THEN GOSUB 1480: GOTO

{SPACE}3080 :rem 81

255

Program Listings

3260 IF FC(NF)=2 THEN GOSUB 1540: GOTO 3080

:rem 238

3270 IF FC(NF)=3 THEN GOSUB 1480: GOSUB 1540: GOTO

3080 :rem 119

3280 IF FC(NF)=4 THEN GOSUB 1540: GOSUB 1480: GOTO

3080 :rem 121

3290 IF FC(NF)=5 THEN 3320 :rem 52

3300 PRINT "{2 UP}11: GOTO 3230 :rem 244
3310 : :rem 1

3320 : PRINT "{DOWNjFIRST OLD DATA FIELD";: K2=OP(
NF): GOSUB 2200 :rem 250

3330 IF K2<1 OR K2>20 THEN PRINT Y1$;"{RVS} ILLEGA

L # {OFF}";Y0$: GOTO 3320 :rem 205
3340 OP(NF)=K2 :rem 8

3350 s PRINT "{DOWNjSECOND OLD DATA FIELD11;: K2=CP
(NF): GOSUB 2200 :rem 37

3360 IF K2<1 OR K2>20 THEN PRINT Y1$;"{RVS} ILLEGA

L # {OFF}";Y0$: GOTO 3350 :rem 211
3370 CP(NF)=K2: GOTO 3080 :rem 61

3380 : :rem 8

3390 : PRINT "{2 DOWN}{RVS} READY TO CONVERT FILE:
{OFF}{DOWN}" :rem 68

3400 PRINT "{RVS} ";FI$;" {OFF} -TO- {RVS} ";FO$;"
{OFF}" :rem 189

3410 PRINT "{DOWN}PRESS {RVS} R {OFF} TO RE-DEFINE
OR{UP}": GOSUB 1690 :rem 251

3420 IF KB$="R" THEN 2540 :rem 214

3430 IF KB$="Q" THEN 3610 :rem 213

3440 : :rem 5

3450 REM" OPEN INPUT AND OUTPUT FILES AND DO CON

VERSION--" :rem 58

3460 : :rem 7

3470 OPEN 8,8,8,DI$+II:"+FI$+",S,R": GOSUB 1980: IF

EN<>0 THEN 2510 :rem 89

3480 INPUT* 8#X1$:rem 147

3490 OPEN 9,8,9,RE$+DO$+":"+FO$+",S,W": GOSUB 1980

:rem 87

3500 IF EN<>0 THEN CLOSE 9: GOTO 2510 :rem 173

3510 : :rem 3

3520 PRINT# 9,QT$;DE$;"*@0:";FO$;CR$; :rem 59

3530 GOSUB 1260: GOSUB 1980: CLOSE 8: CLOSE 9: IF

{SPACE}EN=0 THEN 3550 :rem 54
3540 PRINT Y1$;"{RVS} CONVERSION NOT SUCCESSFUL

{OFF}";Y0$: GOTO 2510 :rem 68
3550 : PRINT CR$;"{RVS} CONVERSION COMPLETE {OFF}"

:rem 207

3560 PRINT "ANY MORE FILES11;: KB$=MF$: GOSUB 1780:

MF$=KB$:rem 176

3570 IF MF$="Y" THEN 2550 :rem 234

3580 : :rem 10

256

Program Listings

3590 REM" PROGRAM TERMINATION—" :rem 60

3600 : :rem 3

3610 : CLOSE 8: CLOSE 9 :rem 155

3620 : PRINT "{DOWN}PRESS {RVS} Q {OFF} TO QUIT, O

R —M :rem 118

3630 PRINT "ANY OTHER KEY FOR MASTER MENUM:rem 216

3640 GOSUB 1700$ IF KB$o"Q" THEN 3660 :rem 156

3650 PRINT "{RVS} PROGRAM TERMINATED{2 SPACES}
{OFF}": CLOSE 1: CLOSE 15: END :rem 80

3660 : PS$="DFH BOOT": OPEN 8,8,8f"0:"+PS$+",P,R"

:rem 248

3670 GOSUB 1980: CLOSE 8: IF EN=0 THEN 3690

:rem 212

3680 PRINT "{DOWN}TRYING TO LOAD {RVS} ";PS$;"
{OFF}": GOSUB 1860: GOTO 3620 :rem 63

3690 : CLOSE 1: CLOSE 15: PRINT "{DOWN}{RVS} LOADI

NG ";PS$;" {OFF}" :rem 8

3700 POKE 824,248: LOAD PS$,8 :rem 230

DFH SPLIT

For mistake-proof program entry, be sure to use "The Automatic Proofreader," Chapter 9.

1000 REM SAVE "@0:DFH SPLIT",8 :rem 132

1010 : :rem 252

1020 REM" A DATA FILE HANDLER PROGRAM TO SPLIT OR

{SPACE}EXTRACT RECORDS FROM" :rem 173

1030 REM" MULTI-FIELD SEQUENTIAL DATA FILES."
:rem 190

1040 : :rem 255

1080 : :rem 3

1090 REM"—SET TOP OF BASIC IF REQUIRED—":rem 108

1100 : :rem 252

1110 IF PEEK (65534) = 72 THEN 1150: REM"~C-64 COMP

UTER—" :rem 202

1120 IF PEEK (824)<>248 THEN 1190: REM"—NOT A PRO

G'D LOAD—" :rem 132

1130 POKE 42,PEEK(201): POKE 43,PEEK (202):rem 149

1140 : :rem 0

1150 : POKE 53280,14: POKE 53281,14: PRINT CHR$(31
);: REM"—COLORS—" :rem 96

1160 IF PEEK (824)0 248 THEN 1190: REM"—NOT A PRO

G'D LOAD—" jrem 136

1170 POKE 45,PEEK(174): POKE 46,PEEK(175) :rem 177

1180 : :rem 4

1190 : CLR : POKE 824,0: TY=2: Y0$="": Yl$=""
:rem 112

1200 IF PEEK (65534)=72 THEN TY=6: Y0$=CHR$(31): Y
1$=CHR$(158) :rem 179

1210 : srem 254

257

Program Listings

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

1360

1370

1380

1390

1400

1410

1420

1430

1440

1450

1460

1470

1480

1490

1500

1510

1520

1530

1540

1550

1560

1570

1580

1590

PRINT "{CLR}{RVS} READY TO SPLIT FILES OR EXT

RACT DATA {OFF}{DOWN}": GOTO 2970 srem 16
REM"========== START OF SUBROUTINES =========

===" :rem 178

: :rem 1

REM"—SUB—INPUT NEXT RECORD—" : rem 118

: :rem 3

: INPUT* 8,RC$(0) :rem 85

: INPUT* 8,RC$(0): TT=ST: CE=CE+1: SYS SP: IF

FT%<CF THEN RC$(CF)="" :rem 107

RETURN :rem 172

: :rem 254

REM"—SUB—MATCH AND STORE—" :rem 178

: :rem 0

: IF ME=2 THEN TT=1: ME=0: RETURN :rem 41

GOSUB 1280: LS=BB: IF PD$="A" THEN LS=LEN(RC$

(CF))-LE+1 :rem 216

FOR JJ=BB TO LS: IF RM$=MID$(RC$(CF),JJ,LE) T

HEN FS=1: JJ=LS :rem 79

NEXT JJ: IF FS=1 THEN FS=0: KS=KS+l: GOTO 140

0 :rem 233

IF SE$="E" THEN 1420 :rem 210

IF TT<>0 THEN ME=2: TT=0 :rem 44

RETURN :rem 173

: IF Ml=2 OR CO=2 THEN 1440 :rem 21

: CS=CS+1: BC=BC+LEN(RC$(0)): IF RS$="N" THEN

PR$(CS)=RC$(0) :rem 143

: IF SE$="E" THEN KE=KE+1: PRINT "{2 UP}";KE;

CR$;KS :rem 191

IF CS>=MR OR BOMB THEN PRINT MF$: ME=1: RETU

RN :rem 193

. if TT<>0 THEN RETURN

GOTO 1330

:rem 243

:rem 202

:rem 5

:rem 75

:rem 7

REM"—SUB—SPOOL-UP—"

:

: GOSUB 2160: GOSUB 2400: IF EN<>0 THEN 1490

:rem 212

INPUT* 8,RC$(0): IF CE<2 THEN 1530 :rem 206

PRINT "{DOWN}SPOOLING UP IN "QT$;0F$;QT$: RP%
=(CE-l)/256 :rem 82

POKE HB,RP%: POKE LB,CE-1-RP%*256: SYS SU

:rem 25

:rem 77

:rem 4

:rem 232

• :rem 6

: IF D1$="Y" THEN 1600 :rem 255

: CLOSE 8 :rem 182
: GOSUB 2170 :rem 83

: GOSUB 1280: CE=CE-1: RETURN

REM"—SUB—SAVE TO DISK—"

258

Program Listings

1600 : OPEN 14,8,0,"$"+OD$+":": GOSUB 1940: IF EN=

0 THEN 1630 :rem 193

1610 CLOSE 14: PRINT M{RVS}CAN'T READ DIRECTORY ON

DRIVE # ";OD$;" {OFF}" :rem 27

1620 GOTO 1590 :rem 209

1630 : FOR JJ=1 TO 18: GET #14,X1$#X2$: NEXT JJ: C

LOSE 14 :rem 112

1640 BF=ASC(X1$+ZR$)+ASC(X2$+ZR$)*256 :rem 35

1650 PRINT "{DOWN}M;BF;M BLOCKS FREE": IF BF>(BC+C
S*2)/254+2 THEN 1710 :rem 113

1660 PRINT Y1$;"{DOWN}{RVS} NOT ENOUGH BLOCKS FREE
{OFF}";Y0$:rem 187

1670 : IF TY=2 OR D1$="N" THEN 1590 :rem 186

1680 D1$="N": PRINT "{DOWN}REMAINDER OF OUTPUT FIL
ES WILL11 :rem 27

1690 PRINT "BE ON A SEPERATE DISKETTE 1": GOTO 158

0 :rem 30

1700 : :rem 2

1710 : SF$=YN$+SC$+",S,W" :rem 30

1720 : OPEN 9,8,9,RE$+OD$+":"+SF$: GOSUB 1940: IF

{SPACE}EN=0 THEN 1860 :rem 225

1730 CLOSE 9: IF EN<>63 THEN GOSUB 2820: GOTO 1590

:rem 118

1740 PRINT M{DOWN}{RVS} FILE {OFF} ";QT$;YN$;SC$;Q

T$;" {RVS} EXISTS {OFF}11 :rem 120

1750 PRINT "{DOWN}WANT TO REPLACE IT"; :rem 96

1760 GOSUB 2640: IF KB$="Y" THEN RE$="@": GOTO 172

0 :rem 86

1770 PRINT "{DOWN}OPTIONS AVAILABLE:{DOWN}"
:rem 169

1780 IF SQ$="I" THEN PRINT "{RVS} R {OFF} RENAME O
UTPUT FILE" :rem 176

1790 PRINT "{RVS} C {OFF} CHANGE DISKETTES"
:rem 223

1800 : PRINT "{RVS} Q {OFF} QUIT"; :rem 71

1810 K1$=OP$: GOSUB 2720: OP$=K1$: IF OP$="Q" THEN

4590 :rem 40

1820 IF OP$="C" THEN 1670 :rem 222

1830 IF OP$="R" AND SQ$="I" THEN GOSUB 2480: GOTO

{SPACE}1710 :rem 15

1840 PRINT "{UP}";: GOTO 1800 :rem 166
1850 : :rem 8

1860 : PRINT* 9,FD$"-«@" ;OD$; " : ";YN$;SC$:rem 85

1870 PRINT TAB(6);"{DOWN}RECORDS OUT TO ";QT$;YN$+

SC$;QT$: FOR JJ=1 TO CS :rem 71

1880 PRINT "{UP}{RVS}";JJ;"{LEFT} {OFF}": PRINT# 9

#PR$(JJ): PR$(JJ)="": NEXT JJ :rem 47

1890 GOSUB 1940 : CLOSE 9: IF EN=0 THEN BC=0: CS==0

: RE$="": RETURN :rem 192

259

Program Listings

1900 PRINT Y1$;"{DOWN}{RVS} FILE NOT SAVED PROPERL

Y {OFF}";Y0$: GOTO 4590 :rem 103

1910 : :rem 5

1920 REMM~SUB—-TEST/PRINT DISK ERROR--" :rem 157

1930 : :rem 7

1940 : INPUT* 15,EN,EM$,ET,ES: IF EN=0 OR EN=63 TH

EN RETURN :rem 253

1950 PRINT Y1$;"{DOWN}{RVS} DISK ERROR {OFF}";Y0$;

CR$;EN;EM$;ET;ES: RETURN :rem 79

1960 : :rem 10

1970 REM"—SUB—TEST DELIMITER--11 :rem 208

1980 : :rem 12

1990 : INPUT* 8, RC$(0): TT=ST: FD$=LEFT$(RC$(0),1

) :rem 128
2000 EF=0: IF FD$<>"" THEN 2020 :rem 226

2010 PRINT "{RVS}ENCLOSE COMMA, COLON OR SPACE IN
{SPACE}QUOTES": EF=1: RETURN :rem 149

2020 : IF LEN(FD$)<>1 OR ASC(FD$)<32 THEN EF=1

:rem 86

2030 IF ASC(FD$)>127 AND ASC(FD$)<161 THEN EF=1

:rem 167

2040 IF FD$="0" OR VAL(FD$)<>0 THEN EF=l :rem 9

2050 IF EF=1 THEN PRINT Yl$;"{DOWN}{RVS} ILLEGAL D

ELIMITER {OFF}{2 SPACES}";Y0$;FD$:rem 87

2060 RETURN :rem 168

2070 : :rem 3

2080 REM"—SUB—INCREMENT SEQ. NAME--" :rem 199

2090 : :rem 5

2100 : SN=SN+1: SC$="": IF SN>99 THEN 2120 srem 91

2110 SC$="0": IF SN<10 THEN SC$=SC$+"0" :rem 181

2120 : SC$="."+SC$+MID$(STR$(SN),2): RETURN:rem 78

2130 : :rem 0

2140 REM"—SUB—DISK CHANGE/INITILIZATION—"

:rem 206

2150 : :rem 2

2160 : DR$=SD$: DT$="{RVS} SOURCE {OFF}": GOTO 218

0 :rem 223
2170 : DR$=OD$: DT$="{RVS} OUTPUT {OFF}" :rem 190
2180 : PRINT "{DOWN}INSTALL ";DT$;" DISKETTE"

:rem 209

2190 IF TY<>6 THEN PRINT TAB(17);"IN DRIVE # ";DR$

:rem 172

2200 PRINT "THEN, "; :rem 43

2210 : GOSUB 2560: PRINT* 15,"I";DR$: GOSUB 1940:

{SPACE}IF EN=0 THEN RETURN :rem 170
2220 PRINT "CAN'T INITIALIZE — TRY AGAIN.": GOTO

{SPACE}2180 :rem 251
2230 : :rem 1

2240 REM"—SUB—PREVIEW TO PRINTER—" : rem 209

2250 : :rem 3

260

Program Listings

2260

2270

2280

2290

2300

2310

2320

2330

2340

2350

2360

2370

2380

2390

2400

2410

2420

2430

2440

2450

2460

2470

2480

2490

2500

2510

2520

2530

2540

2550

2560

2570

2580

2590

2600

2610

2620

2630

2640

: PRINT* 4,CR$;CR$;"SPLIT PREVIEW OF FILE: ";

OF$;CR$;PF$;CF :rem 126

PRINT* 4,CR$;"FILE";SPC(3);"NO. OF";SPC(4);"N

O. OF";SPC(3); :rem 28

PRINT* 4,"DATA";CR$;SPC(7);"RECORDS";SPC(3);"

BYTES";SPC(4); :rem 244

PRINT* 4,"STRING";CR$: RETURN :rem 6

: :rem 255

: PRINT* 4,CA$;SC$;SPC(8-LEN(STR$(CS)));CS;SP

C(9-LEN(STR$(BC)));BC; :rem 127

PRINT* 4,SPC(3);QT$;LEFT$(RM$,50); :rem 175

IF LEN(RM$)>50 THEN PRINT* 4,CR$;CA$;SPC(26);

MID$(RM$,51);: PL=PL+1 :rem 199

PRINT* 4,QT$;CR$;: PL=PL+1: IF PL<60 THEN RET

URN :rem 242

: FOR JJ=1 TO 66-PL: PRINT* 4,CR$;: NEXT JJ:

{SPACE}PL=0: RETURN :rem 109

: :rem 5

:rem 206

:rem 7

:rem 84

:rem 153

:rem 248

:rem 168

:rem 3

:rem 94

: :rem 5

: PRINT "SOURCE FILE NAME";: K1$=TF$: GOSUB 2

720: TF$=K1$: RETURN :rem 109

: :rem 7

: PRINT "{DOWNjOUTPUT FILE NAME";: K1$=YN$: G
OSUB 2720: YN$=K1$:rem 160

IF YN$=OF$ THEN PRINT NE$: GOTO 2480 :rem 211

IF LEN(YN$)<13 THEN RETURN :rem 0

PRINT "{DOWNHRVS} FILE NAME TOO LONG {OFF}":
YN$=LEFT$(YN$,12): GOTO 2480 :rem 46

: :rem 3

:rem 114

:rem 5

:rem 35

:rem 62

:rem 206

:rem 147

:rem 176

* :rem 2

REM"—SUB—WAIT FOR YES OR NO ANSWER—" : rem 4

: :rem 4

: KB$="Y": GOTO 2650 :rem 208

: KB$="N" srem 134

REM"—SUB—OPEN INPUT FILE—"

:

: GOSUB 2460

: OPEN 8,8,8,SD$+":II+TF$+II,S11

GOSUB 1940: IF EN<>0 THEN CLOSE 8

RETURN

:

REM"—SUB—-GET FILENAMES--"

REM"—SUB—WAIT FOR OPERATOR—"

:

: PRINT "{DOWN}";

: PRINT "PRESS ANY KEY TO CONTINUE"

: GET KB$: IF KB$<>"" THEN 2570

: GET KB$: IF KB$="" THEN 2580

RETURN

261

Program Listings

2650 : PRINT CU$;SPC(S1);M? ";KB$;CU$;SPC(Sl+2);

:rem 117

2660 : INPUT* 1,KB$: PRINT : KB$=LEPT$(KB$,1)

:rem 102

2670 IF KB$=MY" OR KB$=MN" THEN RETURN :rem 25

2680 PRINT "{RVS} Y {OFF} YES OR {RVS} N {OFF} NO

{SPACE}? ";: GOTO 2660 :rem 122
2690 : :rem 11

2700 REM"—SUB—STRING INPUT—" :rem 80

2710 : srem 4

2720 : PRINT CU$;SPC(Sl);"? ";K1$;CU$;SPC(Sl+2);
:rem 98

2730 INPUT# l,Kl$s PRINT : RETURN :rem 93

2740 : srem 7

2750 REM11—SUB—NUMERIC INPUT—" srem 145

2760 : srem 9

2770 s PRINT CU$;SPC(SI);"?";K2;CU$;SPC(Sl+2);

srem 68

2780 INPUT# l,KB$s PRINT s K2=VAL(KB$)s RETURN
srem 76

2790 s srem 12

2800 REM"—SUB—QUIT OR CONTINUE—" srem 51

2810 s srem 5

2820 s PRINT "{DOWN}PRESS {RVS} E {OFF} TO EXIT# O
r —•• srem 98

2830 PRINT "ANY OTHER KEY TO CONTINUE" s GOSUB 2570

srem 129

2840 IF KB$="E" THEN 4590 srem 213

2850 RETURN srem 175

2860 s srem 10

2870 REM"—SUB—CHANGE CASE—" srem 179

2880 s srem 12

2890 s CV=PEEK(LC) srem 232

2900 IF (CV AND 2)=2 THEN POKE LC,(CV AND 253)s CA
$=■■": RETURN srem 165

2910 POKE LC,(CV OR 2)8 CA$="{DOWN}"s RETURNsrem 1

2920 s srem 7

2930 REM"====== START OF MAIN PROGRAM ======"

srem 50

2940 s srem 9

2950 REM"—INITIALIZE—" srem 158

2960 s srem 11

2970 s SP=30979s LB=30993s HB=30994s SU=30985s MR=

650s MB=13000 srem 226

2980 DIM RC$(20)#PR$(MR)s LC=59468s IF TY=6 THEN L

C=53272 srem 248

2990 CA$=""s IF (PEEK (LC) AND 2)<>0 THEN CA$="

{DOWN}" srem 52

3000 CR$=CHR$(13)s QT$=CHR$(34)s ZR$=CHR$(0)s CU$=

CR$+"{UP}" srem 29

262

Program Listings

3010 FA$="RC_": FT%=0: OPEN 1,0: OPEN 15,8,15

:rem 172

3020 MF$="{ DOWN} {RVS } MEMORY FULL. MUST OUTPUT FIL

E {OFF}" :rem 70

3030 PF$="BASED ON CONTENTS OF FIELD:11 :rem 158

3040 NE$=Y1$+"{RVS} CONFLICT WITH SOURCE FILENAME

{ SPACE }{ OFF }"+Y0$:rem 244

3050 SD$="0": OD$=M1M: OP$="C": SE$="S": CF=l: Sl=

23: ME=0: PD$=MBM :rem 225

3060 AN$=ME": BB=1: LE=2: SQ$="S": D1$="Y": AU$="O

11: GOTO 3080 :rem 45

3070 : CLOSE 4: PRINT "{CLR}{DOWN}{RVS}{4 SPACES}R
EDEFINE JOB SETUP{4 SPACES}{OFF}" :rem 175

3080 : Ml=l: BC=0: CS=0: SS$="": SL$=M": SN=0: CE=

0: SC$="": PL=8 :rem 148

3090 KS=0: KE=0 :rem 14

3100 : PRINT "{DOWN}{RVS} S {OFF} SPLIT OR";CR$;"
{RVS} E {OFF} EXTRACT";: K1$=SE$: GOSUB 2720

:rem 14

3110 IF Kl$o"E" AND K1$O"S" THEN PRINT "{3 UP}11;

: GOTO 3100 :rem 160

3120 IF K1$<>SE$ AND K1$="E" THEN RM$="" :rem 215

3130 SE$=K1$: IF SE$="S" THEN PRINT "{DOWN}PREVIEW

TO PRINTER";: GOTO 3150 :rem 42

3140 PRINT "{DOWN}PREVIEW # OF EXTRACTS";::rem 103
3150 : GOSUB 2640: RS$=KB$: IF TY=6 THEN OD$="0":

{SPACE}GOTO 3180 :rem 255
3160 : PRINT "{DOWN}SOURCE FILES ON DRIVE";: K1$=S

D$: GOSUB 2720: SD$=K1$:rem 165

3170 IF SD$<"0" OR SD$>"1" THEN PRINT "{2 UP}";: G
OTO 3160 :rem 110

3180 : GOSUB 2390: IF EN<>0 THEN GOSUB 2820: GOSUB

2160: GOTO 3070 :rem 149

3190 OF$=TF$: GOSUB 1990: IF EF=1 THEN 4590

:rem 209

3200 IF TT<>0 THEN PRINT "{DOWN}{RVS} NO DATA IN F

ILE {OFF}": GOTO 4590 :rem 14

3210 GOSUB 1280: CE=0: CLOSE 8 :rem 40

3220 IF RS$="Y" THEN AU$="A": OPEN 4,4: GOTO 3300

:rem 221

3230 IF TY<>6 THEN 3260 :rem 174

3240 PRINT "{DOWN}SOURCE AND OUTPUT";CR$;"FILES ON
SAME"; :rem 36

3250 PRINT " DISKETTE";: KB$=D1$: GOSUB 2650: Dl$=

KB$: GOTO 3300 :rem 117

3260 : PRINT "{DOWN}OUTPUT FILES TO DRIVE";: K1$=O
D$: GOSUB 2720: OD$=K1$:rem 196

3270 IF OD$<"0" OR OD$>"1" THEN PRINT "{2 UP}";: G

OTO 3260 :rem 104

3280 IF SD$=OD$ THEN TY=1 :rem 85

263

Program Listings

3290 : :rem 8

3300 : PRINT "{2 DOWN}FIRST RECORD IN {RVS} ";OF$;
11 {OFF} IS:{DOWN}";CR$;RC$(0) :rem 56

3310 PRINT "{DOWN}CHANGE PRINT CASE11;: GOSUB 2640:
IF KB$=IIY" THEN GOSUB 2890 :rem 143

3320 IF SE$="E" THEN SQ$="I": GOTO 4190 :rem 219

3330 : PRINT "{DOWNjSPLIT ON WHICH FIELD11;: K2=CF:

GOSUB 2770: CF=K2 :rem 164

3340 IF CF<1 OR CF>20 THEN PRINT "{2 UP}";: GOTO 3
330 :rem 178

3350 PRINT "{DOWN}FIELD";CF;" = ";QT$;RC$(CF);QT$

:rem 103

3360 PRINT "{2 DOWN}SPLIT AT CHANGES IN:";CR$;"

{DOWN}{RVS} E {OFF} ENTIRE FIELD, OR" :rem 15
3370 : PRINT "{RVS} S {OFF} SELECTED POSITIONS";:

{SPACE}K1$=AN$: GOSUB 2720 :rem 106
3380 IF AN$OK1$ AND K1$="S" THEN BB=1: LE=2

:rem 204

3390 AN$=K1$: IF AN$="E" THEN BB=1: LE=80: GOTO 34

40 :rem 112

3400 IF AN$o"S" THEN PRINT "{UP}";: GOTO 3370

:rem 38

3410 PRINT "{DOWNjSTART POSITION";: K2=BB: GOSUB 2

770: BB=K2 :rem 98

3420 PRINT "# OF CHARACTERS";: K2=LE: GOSUB 2770:

{SPACE}LE=K2 :rem 1
3430 PRINT "{DOWN}SELECTED FROM FIELD";CF;"{LEFT}:

";QT$;MID$(RC$(CF),BB,LE);QT$:rem 57

3440 : IF RS$="Y" THEN 3570 :rem 53

3450 : :rem 6

3460 PRINT "{2 DOWN}SPLITTING/SAVING PROCESS TO BE

:" :rem 248

3470 : PRINT "{DOWN}{RVS} A {OFF} AUTOMATIC, OR";C

R$;"{RVS} O {OFF} OPERATOR'S CHOICE"; :rem 117
3480 K1$=AU$: GOSUB 2720: AU$=K1$: IF AU$="A" THEN

SQ$="S": GOTO 3540 :rem 11

3490 IF AU$<>"0" THEN PRINT "{3 UP}";: GOTO 3470

:rem 85

3500 PRINT "{2 DOWN}SELECT OUTPUT FILENAMES:";CR$;

11 {DOWN} {RVS} I {OFF} INDIVIDUALLY OR":rem 218
3510 : PRINT "{RVS} S {OFF} SEQUENTIALLY";: K1$=SQ

$: GOSUB 2720: SQ$=K1$:rem 233

3520 IF SQ$="I" THEN 3570 :rem 233

3530 IF SQ$o"S" THEN PRINT "{UP}";: GOTO 3510

:rem 59

3540 : PRINT "{DOWN}A 3-DIGIT SEQUENCE NUMBER WILL

" :rem 84

3550 PRINT "BE ADDED TO THE NAME YOU ENTER": GOSUB

2480 :rem 31

264

Program Listings

3560 IF YN$+"."=LEFT$(OF$,LEN(YN$)+1) THEN PRINT N

E$: GOTO 3540 :rem 144

3570 : PRINT " {DOWN}SPLIT DEFINED OK11?: GOSUB 2630

: IF KB$o"Y" THEN 3070 :rem 74

3580 : GOSUB 2400: IF EN<>0 THEN GOSUB 2160: GOTO

{SPACE}3580 :rem 17

3590 GOSUB 1270: IF AU$="A" THEN RM$=MID$(RC$(CF)f

BB,LE): GOTO 4090 :rem 30

3600 : :rem 3

3610 REM"--MENU--" :rem 219

3620 : :rem 5

3630 : IF SE$="E" THEN PRINT "{CLR}EXTRACTING FROM

FILE11?: GOTO 3650 :rem 115

3640 : PRINT "{CLR}SPLITTING FILE"7 :rem 132

3650 : PRINT " {RVS} ";OF$;" {OFF}117 CR$;PF$;CF
:rem 157

3660 IF RS$=MYM THEN BC=0: CS=0: PRINT M{2 DOWN}11:
GOTO 3680 :rem 208

3670 PRINT "{DOWN}"?CS7"RECORDS ("7BC?"BYTES) IN M

EMORY" :rem 155

3680 : IF CS=0 OR AU$="A" OR SE$="E" THEN PRINT "

{3 DOWN}": GOTO 3700 :rem 77

3690 PRINT "{DOWN}"7QT$7SS$7QT$?CR$7H—THRU—"?CR$

7QT$?SL$7QT$:rem 37

3700 : PRINT "

:rem 41

3710 IF TT<>0 THEN CLOSE 8: PRINT "{DOWN}{RVS} END

OF FILE {OFF} M7OF$: GOTO 3750 :rem 11

3720 PRINT "NEXT RECORD GROUP IS:"?CR$?QT$7RC$(CF)

?QT$:rem 200

3730 PRINT "{DOWN}{RVS} 1 {OFF}{2 SPACESjADD NEXT

{SPACE}RECORD GROUP TO MEMORY" :rem 84
3740 PRINT "{DOWN}{RVS} 2 {OFF}{2 SPACES}DISREGARD

NEXT RECORD GROUP" :rem 166

3750 : IF CS>0 THEN PRINT "{DOWN}{RVS} 3 {OFF}

{2 SPACES}SAVE RECORDS IN MEMORY TO DISK"
:rem 3

3760 IF TT<>0 THEN PRINT "{DOWN}{RVS} 4 {OFF}

{2 SPACES}CONTINUE TO NEXT SOURCE FILE"
:rem 210

3770 PRINT "{2 DOWN}{RVS} 8 {OFF}{2 SPACESjDEFINE
{SPACE}NEW JOB SETUP" :rem 161

3780 PRINT "{DOWN}{RVS} 9 {OFF}{2 SPACES}QUIT OR G
O TO MASTER MENU" :rem 175

3790 IF TT<>0 AND CS>0 THEN M1=3: GOTO 3820

:rem 232

3800 IF TT<>0 THEN M1=4: GOTO 3820 :rem 10

3810 IF Ml=4 THEN Ml=l :rem 101

3820 : PRINT "{DOWN}YOUR CHOICE "7: K2=M1: GO
SUB 2770: M1=K2 :rem 109

265

Program Listings

3830 IF Ml=l AND TT=0 THEN CO=l: GOTO 3940:rem 163

3840 IF Ml=2 AND TT=0 THEN CO=2: GOTO 3980:rem 170

3850 IF Ml=3 AND CS>0 THEN CO=3: GOTO 4000:rem 140

3860 IF Ml=4 AND TT<>0 THEN CE=0: GOTO 4460

:rem 217

3870 IF RS$="Y" AND SN>0 THEN GOSUB 2350 :rem 95

3880 IF Ml=8 THEN CLOSE 8: GOTO 3070 :rem 111

3890 IF Ml=9 THEN 4590 :rem 88

3900 PRINT "{2 UP*}";: GOTO 3820 :rem 58
3910 : :rem 7

3920 REM"—OPERATOR CHOICE—" :rem 193

3930 : :rem 9

3940 : RM$=MID$(RC$(CF),BB,LE): SL$=RC$(CF): IF CS

<1 THEN SS$=SL$:rem 235

3950 GOSUB 1410 :rem 23

3960 : IF ME=1 THEN GOSUB 1280: GOTO 4000 :rem 76

3970 GOTO 3630 :rem 216

3980 : RM$=MID$(RC$(CF),BB,LE) :rem 93

3990 : GOSUB 1330: GOTO 3630 :rem 149

4000 : IF SQ$="I" THEN GOSUB 2480: GOTO 4020

:rem 213

4010 IF AU$="O" THEN GOSUB 2100 :rem 80

4020 : GOSUB 1570: IF D1$="Y" OR TT<>0 THEN GOSUB

{SPACE}2550
4030 SS$="": SL$="": Ml=l: IF D1$="NI

N GOSUB 1490

IF ME=1 THEN ME=0: GOTO 3940

GOTO 3630

4040

4050

4060

4070

4080

4090

4100

4110

4120

4130

4140

4150

4160

4170

4180

4190

4200

4210

REM"—AUTOMATIC MODE—"

:rem 247

AND TT=0 THE

:rem 76

:rem 200

:rem 206

:rem 4

:rem 115

: rem 6

:rem 178

THEN GOS

:rem 12

:rem 68

:rem 9

: IF RS$="Y" THEN GOSUB 2260

: GOSUB 1410: GOSUB 2100: IF RS$="YM

UB 2310: BC=0: CS=0

: IF TT<>0 THEN CE=0: GOTO 3630

IF ME=1 THEN GOSUB 1280: ME=0

RM$=MID$(RC$(CF),BB,LE): IF RS$="Y" THEN 4100

:rem 119

GOSUB 1570: IF D1$="N" THEN GOSUB 1490: ME=0
:rem 253

GOTO 4100 :rem 200

• :rem 5

REM"—EXTRACT MODE--" :rem 232

• :rem 7

: PRINT "{2 DOWNjWHAT DATA ARE YOU LOOKING FO

R";CR$;"AND WHERE IS IT "; :rem 77

PRINT "LOCATED:";CR$;"{DOWN}WHAT DATA STRING"

;: K1$=RM$: GOSUB 2720 :rem 16

RM$=K1$: LE=LEN(RM$): PRINT "{DOWN}IN WHICH F

IELD";: K2=CF: GOSUB 2770 :rem 46

266

Program Listings

4220 CF=K2: PRINT "{2 DOWN}FIELD";CF;" = ";QT$;RC$

(CF);QT$:rem 242

4230 PRINT "{DOWN}SEARCH FOR STRING AT:" :rem 238

4240 PRINT "{DOWN}{RVS} B {OFF} BEGINNING OF FIELD

";CR$;"{RVS} S {OFF} SPECIFIED POSITION"

:rem 135

4250 : PRINT "{RVS} A {OFF} ANYWHERE IN FIELD";: K

1$=PD$: GOSUB 2720: PD$=K1$:rem 119

4260 IF PD$="A" OR PD$="B" THEN BB=1: GOTO 4290

:rem 84

4270 IF PD$o"S" THEN PRINT "{UP}";: GOTO 4250
:rem 47

4280 PRINT "{DOWNjWHAT POSITION";: K2=BB: GOSUB 27

70: BB=K2 :rem 14

4290 : PRINT "{DOWN}EXTRACT DEFINED OK";: GOSUB 26

30 :rem 79

4300 IF KB$="N" THEN 3070 :rem 207

4310 : GOSUB 2400: IF EN<>0 THEN GOSUB 2160: GOTO

{SPACE}4310 :rem 1

4320 INPUT* 8,RC$(0) :rem 26

4330 : PRINT "{2 DOWN}EXTRACTING FROM FILE {RVS} "
;OF$;" {OFF}";CR$;PF$;CF :rem 8

4340 PRINT TAB(7);"RECORDS EXAMINED";CR$;TAB(7);"R

ECORDS EXTRACTED" :rem 86

4350 IF LE=0 THEN LE=l :rem 135

4360 GOSUB 1330: IF TT<>0 THEN 4390 :rem 46

4370 IF RS$="N" THEN GOSUB 2480: GOSUB 1570

:rem 249

4380 ME=0: GOTO 4330 :rem 11

4390 : IF ME=0 THEN GOSUB 2550: GOTO 3630 :rem 82

4400 IF RS$="Y" THEN GOSUB 2550: GOTO 4420:rem 178

4410 GOSUB 2480: GOSUB 1570 :rem 158

4420 : ME=0: GOTO 3630 :rem 66

4430 : :rem 5

4440 REM"—CONTINUATION OPTIONS—" :rem 111

4450 : :rem 7

4460 : GOSUB 2460: GOSUB 2160: GOSUB 2400: IF EN<>

0 THEN 4480 :rem 92

4470 OF$=TF$: GOSUB 1990: IF EF=0 THEN 4490

:rem 209

: GOSUB 2550: GOTO 3630 :rem 149

: IF SE$="E" THEN 4330 :rem 21

IF AU$="O" THEN 4530 :rem 221

IF CS>0 THEN GOSUB 1330: GOTO 4110 :rem 12

4480

4490

4500

4510

4520 GOSUB 1280: RM$=MID$(RC$(CF),BB,LE): GOTO 410

4530

4540

4550

4560

0

: IF CO=1 THEN GOSUB 1330: GOTO 3960

IF 00=2 THEN 3990

GOSUB 1280: GOTO 3640

:rem 215

:rem 80

:rem 97

:rem 89

srem 9

267

Program Listings

4570 REM11—PROGRAM TERMINATION—" : rem 14

4580 : :rem 11

4590 : CLOSE 9: CLOSE 8: CLOSE 4 :rem 135

4600 : PRINT "{DOWN}PRESS {RVS} Q {OFF} TO QUIT OR
—" :rem 73

4610 PRINT "ANY OTHER KEY FOR MASTER MENU":rem 215

4620 GOSUB 2570: IF KB$<>IIQ" THEN 4640 :rem 160

4630 PRINT "{RVS} PROGRAM TERMINATED {OFF}";: CLOS
E 1: CLOSE 15: END :rem 138

4640 : PS$="DFH BOOT": OPEN 8#8,8,"0:"+PS$+",P,R"

:rem 247

4650 GOSUB 1940: CLOSE 8: IF EN=0 THEN 4700

:rem 200

4660 PRINT "{DOWNjTRYING TO LOAD {RVS} ";PS$;"
{OFF}" :rem 119

4670 PRINT "{DOWN}INSTALL CORRECT DISK "; :rem 66
4680 IF TY<>6 THEN PRINT "IN DRIVE # ";SD$;:rem 35

4690 PRINT CR$;"THEN, ";: GOSUB 2210: GOTO 4600

:rem 234

4700 : CLOSE 1: CLOSE 15: PRINT "{DOWN}{RVS}LOADIN

G ";PS$;" {OFF}" :rem 1
4710 POKE 824,248: LOAD PS$,8 :rem 232

268

Index

;AD (add a character) DFH EDITOR

function 6, 84, 85-86, 134

adding a line 31

alphabetic character 23

& (Append to Memory) DOS shorthand

command 11, 95, 97, 107-8

application examples 113-28

;AU (auto line numbering) DFH EDITOR

command 11, 84, 86

"Automatic Proofreader, The" program

169-72

BAM 19-22

BASIC 3.0 ROM 4

BASIC 4.0 ROM 4

Block Allocation Map. See BAM

block, disk 19-20, 54

bootstrap program. See DFH BOOT

] DOS shorthand command 10, 97, 110

CBM computer 4

character data 13

combining records 137-38

Commodore disk system, errors and

19-23

Commodore Dual Disk Drive 4

Commodore screen editor 78

contamination, data 19-22

"Converting Files 1" program 138

"Converting Files 2" program 141-42

Copy command 20

Copy Disk File, DOS shorthand com

mand 10, 97, 99-100

creating files 29, 31-32

cross-linked files 21-22

;CS (change screen case) DFH EDITOR

command 11, 84

customization 4

daisywheel printer 4

data capacity 5-6

data field 42, 62-63

Data File Handler. See DFH

data records 14

data sets 14

DATA statements 165-66, 173-74

;DE (delete lines) DFH EDITOR

command 11, 84, 87

deactivating DFH EDITOR 83-84

deleting a record 6, 33-34

delimiter 6, 16, 17-18, 30, 31, 45, 61,

134-35, 149

design considerations, file structure and

13-15

device numbers, required 4

"DFH BOOT" program 4-5, 8-9, 22,

27-28, 177, 209-14

"DFH ED.C64$90" program 4, 181

"DFH ED.GEN" DATA statement set

181, 189-99

"DFH ED.6 GEN" DATA statement set

181, 199-208

"DFH ED.PET$70" DATA statement set

4, 181

"DFH EDITOR" 5, 9, 22-23, 28, 77-92,

132-41, 149

commands 83-90, 107, 133, 134, 136,

137

DFH files, minimum requirements for

131

"DFH MERGE" program 4, 53-59,

239-49

"DFH PRINT" program 4, 40-49, 224-39

"DFH SORT" program 4, 27, 29-39, 54,

59, 214-24

"DFH SPLIT" program 4, 66-73, 117,

257-68

"DFH SUBS GEN" DATA statement set

181, 184-89

"DFH SUBS$79" program 4, 5, 27, 147,

154, 181

"DFH SWAP" program 4, 60-65, 249-57

disk 4, 19-20, 40, 54, 59, 97, 99-100,

101, 132

disk drive controller 20

disk error channel 97

disk ID 19-20

disks, maximum number of 6

disk space 47

disk use 95-110

display case 80

Display Directory, DOS shorthand

command 10, 97

Display Menu and Set Repeat, DFH

EDITOR function 85

DOS commands list 10-11

DOS initialization 19-20

DOS shorthand command set (DFH

EDITOR) 5, 95-110

dot-matrix printer 4

dual disk systems 20, 29, 40, 59

Duplicate Disk, DOS shorthand

command 1, 20, 97, 100

;ED (erase screen down) DFH EDITOR

command 11, 84, 87-88

edit function 6

editing files 29, 32-33,

8050 model disk drive 20

8058 model disk drive 20

equipment, required 4

errors 19-23

269

;EU (erase screen up) DFH EDITOR

command 11, 84, 88-89

"EX.CONVERT" program 160-61

"EX.CREATE" program 155-56

"EX.PARTITION" program 158-59

"EX.SORT" program 156-58

"EX.SPOOL" program 161-62

extracting records 66-73

EXTRACT option of DFH SPLIT 71-73

;FC (find and change) DFH EDITOR

command 11, 84, 88-89, 133, 134, 137

;FI (find string) DFH EDITOR command

11, 85, 89, 133, 136

field heading 43-44

fields v, 6, 30-31, 40, 60-65

1541 model disk drive 4, 20

file conversion 30-31, 130-43

file edit commands list 11-12

file manipulation 53-73

filename 45, 47

files

editing 29, 32-33

loading 30-31, 78-81, 154

maximum size of 6

maximum number of 6

open 20-22

program 77-79, 104-6, 109

relative 107

restructuring 60-65

saving 36-38, 174

scratching 20-22, 97, 102, 103

sequential v, 77-92, 104, 109

splitting 66-73

user 107

file size management 54

file splitting 7

file structures 13-18

first line 17-18

Format Disk, DOS shorthand command

10, 97, 101

4040 model disk drive 20

genealogy file 121-24

GET# statement 15

> DOS shorthand command 10, 97

>C DOS shorthand command 10, 97,

99-100

>D DOS shorthand command 10, 97,

100

>I DOS shorthand command 10, 97,

100-101

>L DOS shorthand command 10, 97,

103-6

>N DOS shorthand command 10, 97,

101

># DOS shorthand command 10, 97, 98

270

>R DOS shorthand command 10, 97,

102

>S DOS shorthand command 10, 97,

102, 103

>V DOS shorthand command 10, 97,

102-3

header record 135

Heapsort algorithm 150, 152

initialization, DOS 19-20

Initialize Disk, DOS shorthand command

10, 97, 100-101

INPUT statement 22-23

INPUT# statement 15, 131

justification 40

keyword 116

♦-DOS shorthand command 10, 97,

108-10

limitations, computer 15-16

line number, BASIC 78

line numbers 16

link pointer (program line) 78

listing 6, 29, 38, 78-81

listing conventions, COMPUTE! 167

Load and Run, DOS shorthand command

10, 97, 106-7

LOAD command 95

Load File, DOS shorthand command 10,

97, 103-6

loading files 30-31, 78-81, 154

load pointer (program line) 78

long records 136-37

machine language 3, 5, 8, 54, 56, 147-62,

176-77

magazine cardfile system 114-20

main menu 9

maximum file size 39

;MB (set BASIC mode) DFH EDITOR

command 11, 85, 89-90

menu 27-28, 40, 41, 44, 45, 62

merging 7, 53-59

merging techniques 58-59

;MK (kill) DFH EDITOR command 11,

83-84, 90

ML convert routine 148

ML partition routine 148, 152-53

"ML PROG GEN" program 173-84

ML sort routine 147, 148, 150-52

ML spool routine 148

;MT (set text mode) DFH EDITOR

command 11, 85, 90

multifield records 148-50

multifield sorting 64

next-block pointer 21

next-file linkage, WordPro 47-48

null fields 34, 35, 37

u

u

u

u

u

u

u

u

LJ

LJ

LJ

U

null input 22-23

number 23

numeric data 13-14

open files 20-22

operating DFH 27-49

operations (OP) code 123-25

operator errors 22-23

page headings 40

page length 40

partial save 37-38

PET emulator 9

phantom field 140-41

printer setup options 44-46

print field 42-44

print format 41, 42-46

printing 6-7, 40-49

print options 40, 46-48

program features 6-7

program files 77-79, 104-6, 109

program organization 4-5

;QT (insert leading quote) DFH EDITOR

command 11, 79-81, 85, 90-91, 133,

136

quotation mark 1-17, 32, 79-82, 131,

149

quote mode 79-82

Read Error Channel, DOS shorthand

command 10, 97

recipes 14-15

record extraction 7

record length, maximum 6

records

combining 137-38

deleting 33-34

extracting 66-73

long 136-37

multifield 148-50

splitting 139-43

reference manual 3

relative files 107

Rename File, DOS shorthand command

10, 97, 102

replacement mode save 17, 19

restructuring 7, 118-19

applications 64-65

files 60-65

;RN (renumber lines) DFH EDITOR

command 12, 85, 91-92

RUN/STOP key 23

"Sample Auxiliary Printing Program"

125-28

SAVE command 17-18, 95

saving files 36-38, 174

Scratch File, DOS shorthand command

10, 97, 102, 103

scratching files 20-22

sector 19

; DFH EDITOR command 11, 84, 85

sequential files v, 77-91, 104, 109

Set Default Device Number, DOS short

hand command 10, 97, 98

simplicity 114

simplified operation 8-12

sorting v, vii, 6, 29, 34-36, 57, 117

special characters 16-17

SPLIT operation of DFH SPLIT 66-71

split points 67-68

splitting files 66-73

splitting long records 139-43

spool subroutine, machine language 54,

56

string arrays 147, 153

strings 15

subroutine examples 155-62

subroutine protection 154

subroutines, machine language 5, 8, 54,

56, 147-62, 176-77

SYS command 83

time saving 114

tokenizing 78-79

tokens, BASIC 78-80

top-of-form 41, 45

2040 model disk unit 132

TY (type) program variable 4

typing in programs 165-68

;UN (unnew) DFH EDITOR command

12, 85, 92

unique disk ID 19-20

-» DOS shorthand command 10, 97,

106-7

user system design considerations

114-15

user-written programs, ML routines and

5

USR files 107

Validate disk command 20

Validate File, DOS shorthand command

10, 20, 97, 102-3

variable length fields 15-16

Verify File, DOS shorthand command 10,

94, 97, 110

wild card characters 107

WordPro word processing package 6-7, 40,

46-48, 148, 159

written instructions, doing without 8

271

M.

n

To order your copy of the DFH Disk call our toll-free US

order line: 1-800-334-0868 (in NC call 919-276-9809) or send

your prepaid order to:

DFH Disk

COMPUTE! Publications

P.O. Box 5406

Greensboro, NC 27403

All orders must be prepaid (check, charge, or money order). NC

residents add 4.5% sales tax.

Send copies of the DFH Disk at $12.95 per copy.

Subtotal $

Shipping & Handling: $2.00/disk# $

Sales tax (if applicable) $_

Total payment enclosed $

•Outside US and Canada, add $3.00 per disk for shipping and handling. All
payments must be in US funds.

□ Payment enclosed

Charge a Visa □ MasterCard □ American Express

Acct. No. Exp. Date

Name _^_

Address

City State Zip

Please allow 4-5 weeks for delivery.

763686B

u

u

u

u

u

u

LJ

U

U

U

u

u

If you've enjoyed the articles in this book, you'll find

the same style and quality in every monthly issue of

COMPUTERS Gazette for Commodore.

For Fastest Service

Call Our Toll-Free US Order Line

800-334-0868
In NC call 919-275-9809

COMPUTERS Gazette
P.O. Box 5406

Greensboro, NC 27403

My computer is:

□ Commodore 64 □ VIC-20 □ Other.

□ $24 One Year US Subscription

□ $45 Two Year US Subscription

□ $65 Three Year US Subscription

Subscription rates outside the US:

□ $30 Canada

□ $65 Air Mail Delivery

□ $30 International Surface Mail

Name

Address

City State Zip

Country

Payment must be in US funds drawn on a US bank, international

money order or charge card. Your subscription will begin with the

next available issue. Please allow 4-6 weeks for delivery of first is

sue. Subscription prices subject to change at any time.

□ Payment Enclosed □ Visa

□ MasterCard □ American Express

Acct. No. Expires /

The COMPUTEI's Gazette subscriber list Is made available to carefully screened

organizations with a product or service which may be of interest to our readers. If you

prefer not to receive such mailings, please check this box a

752199

u

u

u

u

u

u

u

u

G

U

LJ

U

COMPUTE! Books

Ask your retailer for these COMPUTE! Books or order

directly from COMPUTE!.

Call toll free (in US) 800-334-0868 (in NC 919-275-
9809) or write COMPUTE! Books, P.O. Box 5406,
Greensboro, NC 27403.
Quantity Title Price* Total

COMPUTED Commodore Collection, Volume 1 $12.95

Commodore Peripherals: A User's Guide $ 9.95

Creating Arcade Games on the
Commodore 64 $14.95

Machine Language Routines for the
Commodore 64 $14.95

Mapping the Commodore 64 $14.95

COMPUTED First Book of VIC $12.95

COMPUTED Second Book of VIC $12.95

COMPUTED Third Book of VIC $12.95

COMPUTED First Book of VIC Games $12.95

COMPUTED Second Book of VIC Games $12.95

Creating Arcade Games on the VIC $12.95

Programming the VIC $24.95

VIC Games for Kids $12.95

Mapping the VIC $14.95

The VIC and 64 Tool Kit: BASIC $16.95

Machine Language for Beginners $14.95

The Second Book of Machine Language $14.95

Computing Together: A Parents & Teachers
Guide to Computing with Young Children $12.95

BASIC Programs for Small Computers $12.95

•Add $2.00 per book for shipping and handling.

Outside US add $5.00 air mail or $2.00 surface mail.

Shipping & handling: $2.00/book
Total payment

All orders must be prepaid (check, charge, or money order).

All payments must be in US funds.

NC residents add 4.5% sales tax.

D Payment enclosed.

Charge □ Visa □ MasterCard □ American Express

Acct. No Exp. Date.

Name

Address

City State Zip

•Allow 4-5 weeks for delivery.

Prices and availability subject to change.

Current catalog available upon request.

u

u

u

u

u

u

u

u

G

U

LJ

U

If you've enjoyed the articles in this book, you'll find the

same style and quality in every monthly issue of COM

PUTE! Magazine. Use this form to order your subscription

to COMPUTE!.

For Fastest Service

Call Our Toil-Free US Order Line

800-334-0868
In NC call 919-275-9809

COMPUTE!
P.O. Box 6406

Greensboro, NC 27403

My computer is:
□ Commodore 64 □ TI-99/4A □ Timex/Sinclair □ VIC-20 □ PET
□ Radio Shack Color Computer □ Apple □ Atari □ Other
□ Don't yet have one...

□ $24 One Year US Subscription
□ $45 Two Year US Subscription
□ $65 Three Year US Subscription

Subscription rates outside the US:

□ $30 Canada and Foreign Surface Mail
□ $65 Foreign Air Delivery

Name

Address

City State Zip

Country

Payment must be in US funds drawn on a US bank, international

money order or charge card.

□ Payment Enclosed □ Visa

□ MasterCard □ American Express

Acct. No. Expires /

Your subscription will begin with the next available issue.

Please allow 4-6 weeks for delivery of first issue. Subscription

prices subject to change at any time.

752199

u

u

u

u

u

u

u

u

G

U

LJ

U

u

u

u

u

u

u

u

u

G

U

LJ

U

	data-front.jpg
	data-back.jpg

