
A step-by-step guide to creating your own

arcade game on the VIC; plus four

excellent, finished games which show

the process from the first idea to the

completed program.

Robert Camp

A COMPUTE! Books Publication $12.95

Q

O

O

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

G

o

o

G

G

G

G

G

G

G

CREATING

ARCADE
GAMES

ONTHE

Robert Camp

COMPUTEr Publications,lnc.<
One of the ABC Publishing Companies

Greensbora North Carolina

VIC-20 is a trademark of Commodore Electronics, Ltd.

Copyright 1984, COMPUTE! Publications, Inc. All rights reserved.

Reproduction or translation of any part of this work beyond that permittedby Sections

107 and 108 of the United States Copyright Act without the permission of the copyright
owner is unlawful.

Printed in the United States of America

ISBN 0-942386-25-6

10987654321

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC27403,

(919) 275-9809, is a subsidiary of AmericanBroadcasting Companies, Inc., and is not

associated with any manufacturer of personal computers. VIC and VIC-20 are

trademarks of Commodore Electronics, Ltd.

Contents
Foreword v

Chapter 1: The VIC Is a Game Machine 1

Chapter 2: Game Design 17

Chapter 3: Setting Up Your Screen 41

Chapter 4: Custom Characters 61

Chapter 5: Getting Your Figures Moving 77

Chapter 6: Collisions 99

Chapter 7: Sounds and Music 115

Chapter 8: Introductions, Instructions,

and Farewells 133

Chapter 9: The Shape of the Game 145

Chapter 10: Missiles and "Moonraker" 157

Appendices 167

A. A Beginner's Guide to Typing In Programs 169

B. How to Type In Programs 171

C. Screen Location Table 173

D. Screen Color Memory Table 174

E. Screen Color Codes 175

F. Screen and Border Colors 176

G. ASCII Codes 177

H. Screen Codes 181

Index 183

111

Q

O

O

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

G

o

o

G

G

G

G

G

G

G

Foreword
Most people who play arcade games take them for granted. But

when you try to program such a game on your VIC, you quickly

learn to appreciate the amount of work and creativity behind

every game. Figures on the screen, movements or collisions,

sounds all must be fit together into a complex, yet harmonious

whole. It can easily seem impossible, especially if you're just

starting.

Until now, most game books for personal computers have

been simple listings of programs which could be typed in and

run. Now you can learn the principles and techniques of writing

your own games.

With this book — and your creativity and imagination —

you'll quickly be developing and writing games. Each step of the

process is outlined in clear and detailed language, including ex

amples from the four complete games included in the book. The

VIC-20's sound and graphics capabilities are unlocked in ways

you knew were possible, but learning how to do the program

ming was another matter.

As with all COMPUTE! books, this guide will be useful not

just once (when you write your first game), but again and again,

as you refer back to it for more information and more complex

game ideas and techniques.

Q

O

O

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

G

o

o

G

G

G

G

G

G

G

Dedication

To my wife Susan, who put up with those late nights on the VIC.

Q

O

O

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

G

o

o

G

G

G

G

G

G

G

The vie is a
Game
Machine

Q

O

O

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

G

o

o

G

G

G

G

G

G

G

1

The vie is a
Game Machine
Ilooked for a book to tell me how to plan a game, how to make

figures move across the screen, and how to make things hap

pen when they collided. I wanted to know how to work sound

into the program, how to rack up scores, how to make shapes,

and on and on. I needed a book that would tell me, a new VIC

user, exactly what I needed to know for my specific purpose:

game design.

After spending hundreds of quarters on video arcade games,

I decided it would be a better investment to buy a computer. Then

I could play games as often as I liked at home, without waiting for

other people to finish playing, and without having to spend a lot?

of money before I finally got good enough to beat the machine.

But I had more than convenience in mind. I didn't just want a

videogame machine. I wanted to write my own games, maybe a

game so good that it too would end up in the arcade, among the

others that I had enjoyed so many times.

After sitting down with my VIC-20 for about an hour, I real

ized two things. First, programming wasn't exactly easy. There

were many things to think about, many things to remember, and

the computer wasn't very forgiving of my mistakes. And the sec

ond thing I noticed was that the VIC owner's manual didn't help

as much as I wanted it to.

The story has a happy ending. Eventually I learned how to

program games. And in this book I've done my best to provide

you with exactly the book I had wished for so many times. I'm

assuming that you're reasonably familiar with the basics of BASIC

— how to use PRINT and GOTO, FOR-NEXT loops and GOSUB-

RETURN subroutines. If you aren't comfortable with those, you

might want to scan your owner's manual, or at least keep it handy

in case questions come up while you're creating games. What this

book provides is the specific programming techniques you'll need

for game creation.

1

The Vic is a

Game Machine

I The Design of the Book

The place to start when creating a game is to plan how you want

the game to play. So in Chapter 2, you'll first design what will

actually go on between the computer and the player. When you

have a pretty clear idea of what you want to end up with, ifs

much easier to get the computer to give you exactly the right

results.

Once you have your game in mind, the next few chapters will

introduce all the BASIC programming tools you'll need. How to

set up a screen. How to design custom character sets and make

the characters move. How to set up relationships between differ

ent figures on the screen. The uses of sounds and how to produce

them. And how to help the player understand what he's sup

posed to do.

With the basics covered, you can go on to spend some time

refining certain techniques, polishing your programs, learning

strategies to make your programs use less memory and run faster.

I how to use This Book

I Each chapter will include different problems to solve and ques
tions to answer. Sometimes you won't need to actually try the

sample program — it may be something you've already learned.

But many things can't be explained. They have to be shown. And

since I won't be leaning over your shoulder while you sit at your

computer, the only way I can show you is for you to type in

example programs or work out problems.

If you get stuck on any problem, remember that there are

usually several ways to solve it, and sometimes the sample solu

tion is used because it's the easiest for a beginner to understand,

not because it's necessarily the fastest or most useful way to solve

the problem. If you come up with a solution that works, then

your answer is as right as mine.

The only way to really learn a programming technique is to

try it out. In fact, the most helpful thing you can do for yourself is

to experiment. Once you've tried the example I give you, think of

problems for yourself and try to solve them using the techniques

you've just learned. After all, you're learning a language — and

languages are only learned through practice.

Besides, the fun of programming isn't in reading a book — it's

1

The vic is a

Game Machine

in the programming, giving the computer instructions and seeing

what happens. The point of this book is to help you have fun

making games, so the more creating you do while reading the
book, the more value it will have for you.

Be Patient

Your learning process won't be just like mine. You'll grasp some

things faster than I did; other things may take more effort. One

thing is sure — unless you're already an expert programmer, pro

gramming a game is going to take time. Not only the time to type

the program lines in the first place, but also the time it takes to fig

ure out why the game isn't working. Because unless you're a

miracle worker, your program is going to have some bugs in it,

some places where things aren't happening the way you

planned.

So be patient with yourself. Even with the help of this book,

programming takes a while to learn. Don't expect to learn every

thing in a few hours one night. And don't expect your first pro

gram to run smoothly. If you're like me, there'll be more than a

few nights when you sit there staring at some program lines, try

ing to figure out why the program crashes whenever it gets there,

only to discover that you typed a zero instead of the variable O; or

that you forgot to have your countdown FOR-NEXT loop STEP

-1, so it's only executing once; or that you put the wrong variable

as the subscript of an array; or that your GOSUB refers to a line

that you deleted in your last series of revisions.

That sort of thing happens to everybody. It's just one of the

realities of working with a computer. Your VIC will always do ex

actly what you say — not what you really meant to say.

Look at Other People's Programs

In almost every computer magazine there are programs listed in

full so readers can type them in and use them. At first those pro

grams look like a lot of gibberish to a beginning programmer. But

you've probably already noticed that some of those programs be

gin to make sense to you. You can see at a glance what's going on

in certain subroutines; you can spot where loops begin and end,

and what they're accomplishing.

You can learn quite a bit about programming just by typing in

other people's programs. Besides getting typing practice, you can

see how they solved particular problems.

1

The vic is a

Came Machine

You'll notice recurring patterns, techniques you can use. But

you'll also notice places where they took the long way to solve a

problem, where you know a shortcut. I remember how surprised

I was to see widely published programs using some roundabout,

slow methods that I wouldn't have used.

Then, when you have their program typed in and saved on

tape or disk, experiment with it, just the way you'd experiment

with the exercises in this book. If you don't like the colors they

used, find where the program assigns the color values and

change them. If you want a ghost turned into an octopus, find out

where the program sets up the character set and redefine the

characters. Sometimes your experiments may crash the program,

but then you can figure out why and do better on the next try.

One of the biggest advantages, you see, is that you have a

complete program that already works. It's easier to find out and

learn from your mistakes when you know the error must be in the

two or three lines you changed.

write Down Your ideas

While you're reading this book, especially after an hour or so of

steadily working at the computer, you're going to start getting

some ideas. That's the way creativity works — when your mind is

working hard on something exciting, the ideas start to flow.

Often it will be an idea completely unrelated to the problem

you're working on at the moment. It mightbe an idea for a special

effect, or a game scenario, or a movement pattern — anything

at all.

You should write it down. Because once that creative mood

has passed, it's often as hard to remember a good idea as it is to

remember a dream as it slips away from your conscious mind.

And those ideas are valuable. Not all of them will be fantastic.

Some of them may not even work.

But game design isn't just programming techniques. There

are plenty of excellent programmers who still can't come up with

a game worth spending a single quarter on. Why? They've mas

tered the skills, but they don't know what a player will have fun

with. And yet there are other programmers who are sometimes

clumsy and disorganized in their programming, but their ideas

difference between game design and game programming, and split

the jobs. The game designer writes down, in English, an exact

1

The vic is a

Game Machine

description of every single thing that happens in the game — what

happens when you push the joystick up, down, left, right; what

the button does; what happens when object A and object B col

lide on the screen; how many points each goal should be worth;

how many seconds or fractions of a second each activity should

take; and so on.

When it's all there, on paper, the designed game is given to

the programmers, who do their best to create a program that does

exactly what the designer specified. Sometimes there have to be

compromises, because some ideas just can't be executed within

the available memory or within the available time. And the game

is certainly as much the creation of the programmer as of the

designer.

But it's a different kind of creativity. And even though I can

try to stimulate you with this book, I can't teach you how to think

up good game ideas the way I can teach you how to redefine a

character. That's something you have to develop yourself.

So save every idea you think of. You never know what it

might lead to. And it's your ideas more than your programming

skill that will make the difference between a run-of-the-mill game

and a great game that players can't wait to play again.

I it isn't Done when its Done

What happens when you've taken your game from the first idea

to a working game? All the bugs are out of the program, and it

works just the way you planned it. What now?

Well, if you were creating the game just for yourself, and

you're satisfied with the way it plays, then congratulations —

you're finished.

But if you want to offer the game to commercial software

houses or to magazines that publish games, you still have a few

things to do.

Test the Game

Play the game awhile. How fun is it for you? If you're already

bored with it, it may need some work.

Better yet, invite the world's toughest critics to test the game

for you. They live right in your neighborhood — any kids who

play arcade games will do. Tell them you've got a game you're in

the middle of programming, and you need players to test it. You

probably won't lack for volunteers.

1

The vic is a

Game Machine

Then watch them as they play. Don't ask questions; don't ex

plain; don't ask for their opinion. Friends might tell you a game is

better or worse than it really is — after all, they aren't game de

signers. Just watch them play, and ask yourself these questions:

1. Where in the game do they get puzzled, confused, an

noyed? That's exactly where your directions need to be clearer.

2. Are they excited, or at least interested? If they aren't enjoy

ing themselves, is it because the game is too easy or boring, or is it

because the game is too hard and frustrating?

3. How hard is it for them to get the hang of player move

ment? Howresponsive are your controls?

4. Watch how the scoring goes — are they beating the game

right away, or getting nowhere?

5. How long do they play? Is the game over instantly? When

it's done, do they immediately want to play it again, or do they

ask you if they have to play it again?

The surest test of a successful game is if they don't want to

quit. The surest test of a game with problems is if they come to

you within a few minutes and ask, "Got any other games?"

improve it

Just because the program rims doesn't mean the game is perfect

— it only means the program is perfect. After your own tests and

the neighborhood-kid tests, what can you think of that would

make the game more fun, or make it stay interesting longer?

If you can think of some things, analyze your program and

see how easy it would be to make the changes. If it's feasible, go

ahead and try the improvement. But make sure you save a couple

of tape or disk copies of the program that ran correctly, in case

your improvements go so far off track that it's easier to go back

and start over.

Market it
This might be a little premature, since your game isn't written yet,

but it doesn't hurt to know in advance what the market possibil

ities are.

A lot of commercial software companies are eager for games,

and they're especially eager for games for the VIC. Also, quite a

few magazine andbook publishers have discovered that their

leaders enjoy typing in and playing games. Once your game is

ready, there might well be a software distributor or a publisher

who'll be glad to purchase the publication or software rights from

you.

1

The vic is a

Game Machine

How do you submit the game? With the software houses,

send a letter describing your game, in detail, from the player's

point of view (that is, what happens during the game, how you

win) and listing the memory requirements and machine specifi

cations. You can send such a letter to a lot of different software

houses. Then submit a copy, on tape or disk, to the first dis

tributor that shows an interest. If that doesn't pan out, then send

a copy of the program to the next interested distributor.

If a software company wants the game, they will offer you a

cash advance and a royalty. If they offer a single flat payment, and

no royalty, don't accept — if the game sells a million copies, you

deserve a percentage of the money it earns.

Or you may prefer to submit your game to a magazine or

book publisher. Submit it with complete documentation and two

machine-readable copies of the game (the same tape, front and

back, will do). Magazines will pay you a flat rate for one-time use;

book publishers will usually pay you an advance and a royalty.

Some rules about submitting software:

1. Never send the actual software to two companies at once.

Publishers and software distributors assume, when they go to the

time and expense of paying someone to test and evaluate your

game, that they are the only company being offered the game at

that time. (The letter that you send to many companies at once is

not a submission. It is an inquiry, to find out if they want to see

the game in the first place.)

2. Give them time. You're anxious, of course, to hear whether

they want to use the game or not, but they have dozens or hun

dreds of submissions to look at, and they have no way of knowing

that yours is the greatest videogame of all time until they get

around to testing it. But if you haven't heard anything in six to

eight weeks, it doesn't hurt to send a letter asking if they've had a

chance to look at it.

3. Be flexible. Especially if you're a new programmer, it's quite

possible that the editors will see real possibilities in your game,
but will want improvements. They may make suggestions to you

— it won't hurt you to try to make improvements. If the game

needs to be translated into machine language, they may ask you

' to allow another person to work on your game — it's certainly

worth considering. They may want to buy just the story or ideas,

and incorporate them into a different game — that's high praise

for your creativity, and not at all a slur on your programming

skills. Or they may want to use a compiled version of the game, so

1

The VIC is a

Game (Machine

it plays faster. If you're willing to compromise, your chances of

selling the game are much better.

4; Be professional. Reputable companies deal fairly with peo

ple who submit games — after all, you're the lifeblood of their

business. Don't assume that anyone's going to try to steal your

game — they aren't. Don't assume that a long delay means they

don't like the game — often a delay means that it's getting serious

consideration. And your game will always get serious considera

tion. Publishers and software houses really want your game to be

brilliant. Every time they open a submission, they hope that this

is a blockbuster game like Space Invaders, Asteroids, Pac-Man, or

Donkey Kong.

And who knows? Maybe it will be.

I What You Should Have on Hand

In writing this book, I'm assuming that you have available some

basic resources:

1. A VIC-20.

2. A Datassette or a disk drive. After all the work of program

ming, you certainly want to be able to save the game and play it

again and again.

3. Personal Computing on the VIC-20. It came with your

computer.

4. The VIC-20 Programmer's Reference Guide (published by

Sams) or V7C-20 User Guide (published by Osborne). Available at

most bookstores, and extremely valuable in problem-solving.

5. Plenty of cassettes or disks to save your programs. If you're

using cassettes (as most of us VIC-users do), I suggest that you

use a low-grade, low-noise tape. They're cheap and work better

for computer purposes than high-quality sound cassettes. And

you'll always want to have some extra cassettes on hand, so you

can store different versions of the same program. All it will take is

one time whenyou have to quit in the middle of a revision and

you don't have a single blank cassette to use. You don't want to

wipe out a working program to save a half-finished job — but you

also don't want to have to start that job over again.

6. Graph paper. The best is the kind that emphasizes 8x8

groups of tiny squares.

7:A six-inch ruler. This is very helpful when you're typing in

a program out of a book. By putting it under the line you're

typing, you makesure you don't accidentally skip down into an-

10

1

The VIC is a

Game Machine

other line with similar commands.

8. A pocket calculator. I know, you have a few bucks worth of

computer right there in front of you. But many times it's a lot

simpler to use a calculator, which is designed to do nothing but

arithmetic, than to set up PRINT statements on the VIC in order

to solve a problem.

9. A color TV. How are you going to design color games on a

black-and-white monitor? I paid only $130 for a used 19-inchTV

with remote control — you don't have to break the bank to see

your games in color.

I introducing the VIC-20

If you just got your VIC and aren't really familiar with it, then

let's spend a page or two getting acquainted with the machine. If

you're already familiar with the computer, then you can probably

skim or skip the rest of this chapter and go right on to Chapter 2.

RAM

The more I get to know the VIC, the more I realize what a power

ful computer it really is. Its RAM (Random Access Memory) starts

at 5K (about 5000 bytes) and can be expanded to 32K (32,768

bytes). Every letter or symbol you see on the screen, every pro

gram instruction, every number you use takes up at least one byte

ofRAM. That means that the more RAMyou have, the larger and

more complex the programs you can run.

Even the unexpanded VIC is a powerful computer — on the

original vacuum-tube computers at the beginning of the com

puter age, 5K would have taken 40,960 vacuum tubes. That little

box you have in front of your TV would have looked like a miracle

back then.

But it's only natural that the 5K VIC won't be able to handle as

complex and detailed a game as a VIC with more memory,

especially if the game is written in BASIC, which takes up more

memory than a machine language program. Since we're working

with the basics in this book, well deal exclusively with BASIC

programs, and since I want this book to be valuable to the largest

number of readers, almost everything we do here can be done in

5K.

That means that the sample programs here will be pretty sim

ple. But you'll be learning all the principles of VIC game program

ming, so that if you have more than 5K on your computer, there's

11

1

The Vic is a

Game Machine

nothing to stop you from combining all the things you learn into

really dazzling 32K games.

And if you are working with only 5K, you'll soon find that

while your graphics displays might not be as pretty as those in

the arcade games, and your animation might not be as detailed,

you can make games that play very well and stay fun and interest

ing for a long time.

Besides, limited memory just forces you to be more creative,

finding ways to fit as many features into that 5K as you can. You

don't have to rush out and get an expander right away. It might

even be a good idea to work with the 5K for a while, learning

methods of shortening your programs. It can help you develop

good programming habits that you'll find useful even with larger

memory. You'll know when you really need the expander — and

by then the price will probably be half what it is right now.

The Screen

The VIC screen is 22 columns wide and 23 rows from top to bot

tom. That's fewer rows and columns than many other home com

puters, which is why each letter is bigger and takes up more

space. In effect, this means that each display screen is "smaller"

than with other computers — the screen displays fewer characters

at a time.

But that isn't necessarily a disadvantage. A 22-by-23 screen

means you have 506 squares to work with. That's a lot.

Besides, each square is really an 8-by-8 grid of 64 smaller

squares. That's how letters are made — by putting one color in

some of those squares, and another color in the rest of them. The

pattern makes the letter shape. Since the VIC displays 506 blocks

of 64 pixels, you really have 32,384 pixels at your command.

That's high-resolution graphics!

With the VIC, you can design your own character shapes.

And since each character block is bigger than those on most com

puters, you can change larger areas of the screen display with

each single command. What you may lack in fine-line drawing

you have gained in speed and memory space.

colors

With a color TV or monitor, the VIC can produce 16 different

screen colors and 8 character colors. The background, border, and

characters can have different colors, and in multicolor mode the

characters don't all have to be the same color, either, allowing you

hundreds of possible color combinations.

12

1

The Vic is a

Game Machine

Graphics Characters

You can redefine characters — but that does use up memory.

Don't forget that the VIC provides 62 built-in graphics characters.

You can save a lot of memoryby using as many of those existing

characters as you can before you start defining new ones. Many a

great game can be designed without a single character

redefinition.

Sound

With the VICs four voices, you can get a variety of sounds and

sound effects, from explosions and lasers to a Bach fugue.

Sounds are not really extras in a game. They serve several vital

purposes, and the VIC gives you plenty of sound resources to

work with.

Languages

The VIC has two languages easily available, BASIC and machine

language.

Machine language consists of eight-digit binary codes that

give instructions to the CPU (central processing unit), which is

the real brain of the machine. The binary number 10000101 (deci

mal 133) tells the CPU to store a certain value in a certain location.

Since machine language is the CPU's native tongue, so to

speak, the computer understands it very quickly. That's why

games written in machine language are very fast and run very

smoothly.

The trouble is that numbers like 10000101 aren't too easy for

human beings to work with. Even when they're translated into

hexadecimal (base 16) numbers, they don't carry much meaning.

So machine language programmers usually write their programs

with an assembler program, which uses a series of three-letter

mnemonics which stand for the machine language commands.

STA is the mnemonic for 10000101. The assembler program then

translates symbols like STA into machine language numbers. It's

that translated program that becomes the finished game.

However, machine language programming is very tedious

and very complex. Especially for beginners, BASIC is by far the

t easier language for programming. The commands are more like

English, they're easier to remember, and it takes fewer commands

to perform each operation.

What you get in ease of programming, however, you pay for

in running time. While your BASIC program runs, BASIC has to

13

1

The vic is a

Game Machine

translate each command into machine language every single time

it is used, and that takes up a lot of time. BASIC programs gener

ally run slower.

But BASIC is only slow by comparison with machine lan

guage. It is a very fast and powerful language in its own right, and

the more you work with it, the better you'll do at writing fast,

effective games in BASIC.

Once you are familiar with programming in BASIC and have

a good idea of what you can get the computer to do, it is much

easier to progress to machine language. You'll probablybegin by

writing short machine language routines to include in your

BASIC programs, so that you can get the speed of machine lan

guage in a few places where you really need it. But machine lan

guage is beyond the reach of this book. Once you learn how to

make the VIC play good games, it's up to you to decide what lan

guage to use.

The 6502

The VIC has a brain made of silicon. The CPU (central processing

unit) is the famous 6502 microprocessor. MOS Technology, the

company that created the 6502, is now a subsidiary of Commo

dore, the company that made your VIC. The 6502 is now the CPU

in the Apple, the Atari, and other microcomputers. Because

Commodore owns the 6502 and many of the other special chips

in the VIC, they can offer the VIC at a lower price than if they had

to buy the 6502 from somebody else.

Program Translation

Just because Apple, Atari, and Commodore all use the same CPU

doesn't mean that you can run programs written for those

machines on your VIC.

For one thing, VIC BASIC is different in small but important

ways from the BASIC used by the other machines.

Also, the CPU doesn't control everything going on in the com

puter. Each computer has its own way of communicating with

cassette recorders, disk drives, keyboards, and the screen.

Each memory location can mean different things on different

computers. When the 6502 stores a 1, for instance, at location 50

in RAM, that might tell one computer to turn off the TV screen,

while another computer would take that as a command to erase

memory and start over.

However, as long as a BASIC program sticks to generally

accepted BASIC commands and doesn't PEEK and POKE into

14

1

The vic is a

Game Machine

specific memory locations, it's quite possible to translate a pro

gram written in one computer's BASIC into another computer's

BASIC with some relatively simple changes.

Unfortunately for game designers, however, BASICs often

differ the most in graphics and sound handling, which are vital to

game programming. By the time you finish translating the game,

you've practically created a whole new program. That's why few

people bother to go through the translation process. It's often just

as easy to start programming from scratch.

Which is exactly what we're going to do in Chapter 2.

15

Q

O

O

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

G

o

o

G

G

G

G

G

G

G

Q

O

O

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

G

o

o

G

G

G

G

G

G

G

2
Game Design

1OWIf you don't know where you're going, how will you knc

when you get there?

It's important to plan your game before you start program

ming it. If you have a clear idea of how the finished game should

play, you'll also have a pretty good idea of what needs to happen

in your program.

Some things are obvious. If you're going to use the joystick,

you'll need to have a routine in your program that reads the joy

stick. If not, your program will have to read the keyboard to find

out what the player wants tado.

Some things, however, are more subtle. What will happen if

your player-figure touches the sides of the screen? Will it explode?

Appear on the opposite side? Bounce off? Lose points? Slow

down? Speed up? Get larger? Get smaller? Disappear? Cause five

new enemy creatures to appear? Cause the enemy creatures to

move faster or come closer?

There are hundreds of choices like that, and at some point

you'll need to decide how your game program will handle them.

If you make those choices beforehand, in the planning stage, then

you can design a program that will do everything right — and will

fit together the first time with a minimum of revision.

I The Design of "Joust"

L^t's begin by taking a closer look at one of the most popular

arcade games. My own favorites are Defender and Stargate, but the

same design principles apply to Donkey Kong, Ms. Pac-Man, or

Joust. What is the computer actually doing during the game?

words

Let's look at Joust in detail. Whenyou put in a quarter, what hap

pens? There are words on the screen, telling you what to do next.

When you choose the one- or two-player option, there are more

words. Remember, too, that there are instructions written on the

outside of the game machine. All of these, combined, tell you

how to operate the controls.

This is documentation. If it is written down on paper or on the

machine, it is printed documentation. If it appears as part of the

19

2

Game

Design

video display during the game, it is internal documentation.

Whichever form it takes, though, good documentation is vital to

make a game fun to play. If there's nothing to help a player under

stand what he's expected to do, or if the instructions are inaccurate

or incomplete, playing becomes frustrating instead of fun.

The Display

Then the words disappear from the main display area. What is on

the screen? The playfield — the area where the game action will

take place — consists of brown, rocklike islands. The bottom is

land rises from the base of the screen, with a lake of fire on either

side. The other islands, though, float in midair. Several of them

have white strips near the surface — these, the player will soon

discover, are the platforms where new player-figures and new

enemy knights will appear.

Besides the playfield, there are several other things on the

screen. The score is constantly displayed, for either one or two

players, so you can keep track of how many points you have to

earn before the next bonus knight. Also, there is a little box that

displays how many knights you have left; this lets you see at a

glance how many more turns you'll have.

Movement and Animation

Now the action begins. Your player-figure, a knight mounted on

an ostrich-legged bird, appears on the left side of the bottom is

land. When you hold the joystick to the left, the bird turns and

starts to walk; keep holding it, and it runs in that direction. Then

if you push the joystick right and hold it, the bird screeches to a

halt, pauses, turns right, and then starts walking.

When you push the flap button, your mount's wings flap

once. This makes your knight rise into the air a little, but almost at

once he begins to sink. When you push the button repeatedly,

however, the wings keep flapping and your knight rises higher

and higher.

The realistic flapping of the wings, the motion of the legs, and

the way the legs and wings seem to cause the figure to move are

animation. The overall pattern of movement, the relationship be

tween the player's joystick and button and the motion of figures

on the screen, is player movement.

Collisions

Now other knights start appearing on the screen. They're

computer-controlled characters that fly according to their own

20

2

Game

Design

patterns. As you move your knight around the screen, he starts

bumping into things — islands and other knights.

If you collide with the bottom or edge of an island, or the top

of the screen, you bounce off. If you were going fast when you

hit, you go just as fast when you bounce off. Your bounce also

takes into account the direction you were going when you col

lided — if you were going upward to the right when you hit the

top, you go downward to the right after the bounce.

If you fall down onto the surface of an island, your mount ex

tends its legs and starts to walk — regardless of how fast or how

far you fell. Running into islands or the ceiling will never hurt

you.

One oddity is that if you glide into contact with the surface of

an island along an almost exactly horizontal path, the legs of your

mount won't come down. Youll just bounce along without walk

ing, belly-flopping your way across the screen.

When you collide with another knight, one of three things

can happen. First, if your knight and the other one are on almost

exactly the same level, you will simply rebound from each other

with a loud noise.

If your knight is lower on the screen than the other knight,

your knight will disappear, and a new one will come to life at one

of the creation platforms.

If your knight is higher, it is the enemy that disappears. In his

place, a large egg flies away from the mount, as the mount flaps

quickly off the screen.

Your knight has a certain amount of time in which to go col

lide with the egg before a new enemy knight hatches out of the

egg, and his mount flies out to join him. The egg trembles a bit

before it hatches, and the enemy's mount does take a while to

arrive and get in place, so there's plenty of warning — but if the

new enemy knight gets mounted, he is more formidable than the

one before. And the sooner you get the egg, the more points you

get.

intelligent Enemies

The enemy knights start out relatively slow and stupid, but even

at the start they tend to notice where your knight is and home in

on him. Also, the red and blue enemy knights are faster and

harder to beat. They have a habit of maneuvering right under the

edge of an island, or right along the top of the screen, so that it's

hard for you to get above them. They also use the island and

screen for rebounding — they fly quickly upward and then re-

21

2

Came

Design

bound downward so they come at you faster than you expect and

from a direction you weren't prepared for. If you follow their

strategies, you'll do better against them.

Other Hazards

From the third level onward, the sea of lava at the bottom of the

screen is uncovered. If your knight falls in, he is consumed. If he

comes too dose while moving too slowly, the lava troll reaches up

and seizes him, pulling him downward into the lava. The hand

sometimes seizes the other knights, but, after holding them

awhile, always lets them go. While they are being held, however,

they are vulnerable to you.

Creation

What happens after one of your knights has disappeared? One of

the platforms turns yellow, and your knight rises into view. Un

like the enemy knights, yours does not immediately fly away. If

you don't move, you have a few seconds in which your knight

cannot be harmed, to wait for enemy knights to leave you a clear

section of sky in which to take off.

You'll also notice that usually your new knights arise from a

platform in the area where the fewest enemy knights are flying.

Likewise, when enemy knights are being created, they will not

usually appear at a platform if your knight is hovering too close.

increasing Difficulty

The longer you play, the harder it gets. The most noticeable

change is that at higher levels there are more enemy knights.

Also, the knights move faster and make more erratic, unpredict

able movements. They also get smarter and evade you better.

If you take too long at any one level, a pterodactyl appears

(though I prefer to think of it as a phoenix). The pterodactyl flies

back and forth across the screen and doesn't home in on you very

accurately, but if you're careless it will get you — and then it

doesn't help you to be above it, for the pterodactyl is

''indestructible."

Or is it? The message on the screen says, "Beware the inde

structible (?) pterodactyl." That question mark leaves some doubt,

and you eventually learn that if you meet the pterodactyl head-

on, with your knight's lance exactly at the level of the monster's

mouth, you can kill it. At later stages, the pterodactyl comes on

the screen almost at once, and homes in on you faster and more

accurately.

22

2

Came

Design

At higher levels, the platforms begin to disappear, which

makes the game more of a free-for-all, with fewer places to hide,

until finally you have no more hiding places at all.

increasing interest

If a game stays the same from beginning to end, except for getting
harder, it soon becomes dull. Joust adds some new elements to in

crease interest. There is a Survival Wave. If you can keep the same

knight alive throughout that wave, you get a substantial bonus. If
you are playing with someone else, you have waves of competi

tive play and cooperative play, in which you get bonuses for hit

ting each other or for not hitting each other.

There is also an Egg Wave, in which, instead of enemy

knights, all their eggs are strewn on the platforms. It is difficult

but not impossible to get all the eggs before they hatch. But when

the enemy knights hatch, they are significantly better fighters than
they were in the round before.

The pterodactyl, the lava troll, and the disappearing islands
also serve to change the game and add interest.

incentives

To encourage you to play again, improving each time, Joust gives

you a score for your achievements in the game. Each egg you get

is worth 250 points more than the last one, starting with 250

points and peaking at a maximum of 1000 points per egg. You also

get a bonus if you get the egg quickly.

If your knight is destroyed and a new one appears, the scor

ing starts over at 250. Likewise, the egg scoring starts over with

each new wave.

You get 1000 points for killing a pterodactyl.

Every 20,000 points, you get a bonus knight. This means that

the better you play, the more chances you have to play even
longer.

If your score is higher than the lowest score on the vanity

board (list of best players), you get to enter your initials at the end
of the game.

Sounds

Each event has its own sound. A collision in which you win has a

different sound from a collision in which you lose. Bumping into
different surfaces makes different sounds. There are sounds for
knights arising from platforms, for eggs hatching and birds com-

23

2

Came

Design

ing in, for the pterodactyl's arrival, and for collisions with eggs.

There are different sounds for walking and for flying. There is a

sound to tell you when you get a bonus knight.
Even while you're concentrating on your own knight, trying

to keep him alive, the sounds tell you a lot about what's going on

elsewhere on the screen.

Story

Everything we've analyzed so far is detail, the bits and pieces that

come together to make up the whole effect. But much of the fun

in Joust is the story. You get to be a knight on a fantastic steed, fly

ing rapidly among floating islands, jousting with dangerous

opponents and evading or attacking mythical monsters. It's a fas

cinating world, a fantasy tale that you are acting out as you play.

Whetheryou get a hundred thousand points or a tenth of that,

you still get the pleasure of doing something with the computer

that you could never do in real life. It is a pleasure just to visit the

world of Joust, and that sort of pleasure can also be part of your

game.

I complex programming for Simple Games
I When you analyze a game, the way we have just analyzed Joust,
you can see that the simple, smooth play that you enjoy so much

is actually the result of careful, meticulous planning and pro

gramming. Every single effect, every single rule of the game was

planned and programmed. What happens ifA collides with B, or

with C, or with D? How does the game get harder as it goes

along? All these things go into making a game that plays well the

first time — and keeps on being fun the hundredth time you play.

Your first game doesn't have to be a Joust. It takes machine

language, for one thing, to keep so many different figures moving

around on the screen at those speeds. But even in fairly simple,

slow-moving games, you'll need to take into account every one of

these things in order to create a fun, interesting game.

In fact, it wouldn't be a bad idea to go to an arcade and study

some of the games. Stand behind a game wizard while he plays

and write down the things that happen on the screen. How do

the ghosts respond to the player in Pac-Man? How often do the

girders bounce out during the elevator sequence in Donkey Kong?

How are pickle movements different from frankfurter movements

in Burger Time?

24

2

Came

Design

Once you become aware of how game creators have designed

the games in the arcades, you'll he much better prepared to plan

the same kinds of effects in your own games.

I The Story of Your Game

Donkey Kong is the story of Mario trying to save his girlfriend

from the gorilla. In Missile Command you are trying to save cities

from an enemy attack. Defender pits you against alien invaders. In

Robotron, you are trying to rescue little human figures from robot

attackers. In Asteroids, you're in space, threading your way among

asteroids while fighting off enemies. The stories range from al

most abstract games, like Qix and Tempest, to fully developed

stories like Venture and Donkey Kong.

Don't underestimate the importance of having a good story.

For one thing, if your story is too close to the story of an existing

game, you won't ever be able to release your game commercially

— you'd get sued! But more important than just being different is

the fact that a good story will give you ideas for game events that

will make it more fun to play.

Let's say you wanted to design a game that has the same

movement pattern as Centipede — a chain of linked segments

moving back and forth across the screen> getting closer and closer

to the player at the bottom. Naturally you can't just duplicate Cen

tipede — there's no future in plagiarism. But what other story

could explain that movement?

Your player could be a roller coaster repairman, and the mov

ing segments could be a roller coaster. Of course, shooting roller

coaster cars isn't exactly sociable behavior, so you may want to

change the play action be having your player-figure patch holes in

the roller coaster track or remove obstacles that are being put in

the way by a terrorist. A roller coaster doesn't just get to the bot

tom of the screen and disappear, either — unlike Centipede, your

game might have the roller coaster climb slowly to the top again,

during which your player-figure has time to patch some holes.

You see how the game changes as you develop the story. And

that can only improve your game. Even if an arcade game was

your starting point, there's no reason why your game shouldn't

be better than its inspiration. Look how much Galaxians improved

on Space Invaders, only to have Firebird and Galaga improve even

more.

25

2

Game

Design

Nowhere is this clearer than in Iron. What is the cone se

quence except good old Breakout? Here, though, it has a story;

with a character trying to get through the blocks, it takes on a

whole new meaning. Tron also includes a traditional tank shoot-

out, and the light cycles sequence is nothing but a variation on

the old Atari VCS cartridge, Surround. Even the spiders aren't

really new. But the story has changed and reshaped them, and

the result is a game that is new.

Once you start thinking of new stories for games, you'll find

it's hard to stop. You can fill up notebooks full of game ideas and

plans in a very short time. And eventually there'll be one that you

like so much that you can't let it go. You keep thinking about it, re

fining it, coming up with new variations. Thafs the one that you

should program — the game you care about is the one that you'll

have the patience and insight to program well.

I Display: What Does the Player See?
On one level, all that goes on in a videogame is that a bunch of

dots on the video screen are lighting up in various colors, and

sounds are coining from a speaker.

But the dots, or pixels (short for "picture cells"), aren't just

lighting up at random. They form patterns that the human brain

recognizes as meaningful.

If the pixels form a yellow circle that has a wedge cut out of it,
we recognize Vac-Man.

Mix different colored dots in set patterns, and we recognize

the hardworking hero Mario from Donkey Kong, or the magnifi

cent flying mounts from Joust.

Characters

On your VIC, a whole set of shapes already exists. Every char

acter on the screen is a pattern of pixels that you recognize as let

ters or numbers or other symbols. None of them looks like a

spaceship or a gorilla, but that's all right — you can design your

own characters to replace some or all of the regular characters.

When your program PRINTs the letter A, for instance, what ap

pears on the screen will be the pattern you designed. Or several

new characters can be put together to make part of a larger picture

on the screen.

26

2

Came

Design

Keep Memory in Mind as You Design

Every picture your program displays will require one or more

characters, and each character you redefine will use up memory,

first when you actually create the character pattern, and again

when you put that pattern on the screen. Since each character

takes eight bytes of data to define it, and a whole character set

contains 128 characters, you could use up 1024 bytes — a wholeK

— just in the data for a character set. In a 5K VIC, that makes a real

difference in the amount of program space you have left.

So when you're planning the graphics display for your game,

you need to remember that every different shape you show uses

up memory. That's why it's a good idea to repeat shapes whenever

you can. If you are going to have ten aliens on the screen, you can

save a lot of memoryby making them all look alike.

I Animation

The pictures are just pictures until they move. It is when the

wings of your steed start to flap that Joust comes alive. And half

the fun of Donkey Kong Jr. is making Junior climb up or slide down

the ropes and chains.

It is possible to make your animation as smooth and realistic

as the best cartoon movie. But you also face the same problems

that a cartoon animator faces. Each slight movement of a character

requires a new picture of that character. Each direction a character

faces, each action the character performs requires another draw

ing. And that takes memory.

So game designers compromise. They simplify the anima

tion. The gorilla in Donkey Kong stamps his feet and grimaces —

but that requires only two drawings per leg (stamping and not

stamping), two drawings for the face (grimacing and not grimac

ing), and a single drawing for the body. When Kong is rolling bar

rels, there are new drawings to show him doing that. But since he

rolls barrels to only one side, the programmer hadio create the

shape for only that side. And there's no attempt to make the

gorilla walk realistically — he just bounces, without moving his

legs. Ifs far from a classic Disney animated film, but it's good

enough to make a great game.

Remember that anything on the playfield that changes dur

ing a game requires the same sort of memory considerations. If a

trap door opens or a cup of milk empties, you'll need new char

acters for every new shape you show.

27

2

Came

Design

I Player Movement
When players press a key or move a joystick, something needs

to happen on the screen. And here is where the "feel" of a game

comes in. Pushing on the joystick only causes a movement on the

screen when your game program checks the joystick and makes

changes according to what it finds there. If your program checks

the joystick only once every second, the player-figure can't move

any more often than once every second. And that's going to feel

awfully sluggish to players.

As long as you're programming in BASIC, you'll want to de

sign your program so that it checks the joystick and allows move

ment as often as possible. (That isn't so important in machine lan

guage games, however— everything happens so fast that you

often need to insert timer routines to slow down the action.)

So when you're planning your program, you'll probably

build it around a central loop, a series of commands that repeat

over and over. At the heart of that loop will be a joystick-reading

routine. If the player isn't pushing the stick, then you can skip on

to other things. But if some action is requested, your program

needs to be able to perform it as quickly as possible after the

player asks for it.

This means that you want to have as few things happening

on the main loop as possible. If the computer-controlled enemy-

figures move as often as the player, then they will all have to be

moved every time you go through that loop. And in BASIC, that

will make your program crawl.

The solution is to compromise. Either have fewer computer-

controlled opponents, have them move less often, or give them

simple, regular actions. The back-and-forth movement of the

aliens in Space Invaders is a good example of this. They don't aim

when they shoot; they don't have to figure out a path when they

move. They just do the same thing, over and over. Nothing could

be simpler — or faster.

And as you design your program, move as much as possible

off the main loop. Using IF/THEN GOSUB or ON/GOSUB state

ments, you can have the program decide during the main loop

whether a particular routine is necessary. If it is, the program can

jump to the subroutine and then come back; if it isn't, the pro

gram can ignore it and go on, without wasting much time.

Eventually you may even start looking for books on machine

language, so that your gameprograms can perform some of these

functions much faster than BASIC allows. Still, don't despair if

28

2

Game

Design

your first version of a program runs more slowly than you want.

You'll soon learn tricks to streamline your program and make it go

faster. As long as you don't expect the impossible, you'll be able to

get your game to play smoothly and well.

I Relationships on the Screen
The screen display maybe dazzling, but the computer can't see

it. It can't just glance and see whether a player-figure has bumped

into a wall, or moved off the screen, or collided with an opponent.

The computer has to remember where everything is, and

then check to see if there has been a collision. In our roller coaster

variation on Centipede, for instance, the computer won't be able to

see that the roller coaster is passing over a gap in its track. What it

will do, though, is remember that there is a gap in the track at col

umn X, row Y. That information can be stored in an array variable,

GAP. GAP(3,0) gives the column number of the third gap;

GAP(3,1) gives the row number. Each time the roller coaster

moves, then, the program checks all the gap location variables,

and if the roller coaster location is right above a gap location, the

program can make the roller coaster fall through the gap.

You have to program that sort of thing into your game, so that

the computer can do it over and over again. It sounds tedious, but

the computer doesn't mind. In fact, that's one of the greatest

things about videogames. Imagine playing Joust on a game board,

having to calculate all the tiny movements and collisions yourself.

The game would be slow — it wouldn't feel like you were flying.

But the computer does all the drudgery of figuring out where you

should be on the screen and whether you've bumped into any

thing, so that you can simply fly.

I intelligent Opponents
It's one thing to have the aliens in Space Invaders move mind

lessly back and forth across the screen, or a centipede mindlessly

dropping downward according to a set of rules. It's something

else again to have the computer operate seemingly intelligent

opponents that maneuver to try to get the better of you.

In a primitive form, like Berserk, it's a simple homing instinct

— the robots tend to move up if your player-figure moves up.

In Joust, however, the programming is much more complex.

The opponents have a general homing pattern — but they also

have built-in strategy. If you're near, they'll maneuver to gain alti-

29

2

Game

Design

tude on you; they'll hover under the lip of a floating island; they'll

fly upward and rebound down on you. The algorithms to control

that kind of behavior are pretty complex, both as mathematics

and as programming — it verges on artificial intelligence.

But don't worry. Most arcade games aren't nearly so complex.

In Donkey Kong, for instance, the flames do have a tendency to

home in on Mario, but they also follow certain basic patterns.

When you learn them, you realize that the flames are only slightly

more complicated than the robots in Berserk.

There are three levels of intelligence in computer-controlled

figures: the mindless pattern, the homing pattern, and artificial

intelligence.

Mindless Patterns

Here, the figures move in a set pattern, regardless of what the

player does. Examples are the aliens in Space Invaders and the

birds in Donkey Kong Jr. Once you see the pattern, you can plan on

it and work around it. However, the computer usually makes up

for its lack of subtlety by having lots of opponent-figures for you

to cope with. One alien moving back and forth across the screen

would be a picnic; a few dozen, and it's suddenly a challenge.

The Homing Pattern

In this system, the computer-controlled figures change their pat

tern according to where the player-figure is. The response is

pretty simple, as in Berserk or Pac-Man. The monkeys in Kangaroo

seem more intelligent, but they are pretty much the same. They

move up and down the tree according to one of three set paths.

They respond to the player's position by stopping on the same

level as the kangaroo. Then they walk left a certain distance, de

pending on the left-to-right position of the kangaroo, and throw

fruit. Programming this behavior pattern requires some careful

planning and attention to detail, but no math more complicated

than simple arithmetic.

Artificial intelligence

With this kind of opponent, the computer anticipates what you

will do and plans strategies accordingly. Sports simulations often

require this, as the computer lines up a football team in a pattern

that it thinks will cope with whatever you have planned. The

complex knight movements in Joust require some anticipation.

But games that rely heavily on artificial intelligence algorithms are

30

2

Game
Design

relatively rare. Most games rely on mindless or homing patterns,

which are much easier to program and still make excellent game

opponents.

Give the Poor Human a Break

One thing to keep in mind, though, is that even in BASIC the

computer is usually faster than the human player's reflexes. In a

homing pattern, the computer can always recognize, instantly,

any change in the player-figure's movement and respond without

any delay. A human being, however, takes a moment to recognize

the change and respond to it. It's an easy matter to program an

opponent to home in on the player and destroy him every single

time. But that wouldn't be much fun to play.

So you need to build weaknesses into your computer-

controlled characters. Make them slow or dumb — or both. They

can get smarter as the game goes on, but no one enjoys playing a

game of sudden death, in which there's no chance of survival at all.

I Other complications
Besides the computer-controlled opponents, you'll probably

want to have other hazards. Most games have them.

In Vac-Man, for instance, the maze itself is a complication be

cause players have to keep turning and dodging, and can get

trapped in long corridors with ghosts at both ends.

In Joust, the lake of fire and the demon hand make the game a

bit trickier, while the islands make it impossible to have many

long, smooth flights. The eggs are one more thing to worry about

while you try to battle the other knights.

Donkey Kong makes you cope with ladders and elevators and

gaps between girders. Kangaroo makes you climb or leap from

level to level. Rally-X not only has a maze, but also puts random

rocks in the road and keeps you worrying about running out of gas.

The basic principle of complication is to make sure the player

has to think of several things at once. Not only do you have to

dodge the pickles, hot dogs, and fried eggs in Burger Time, but

you also have to make hamburgers and Egg McMuffins. The more

things going on at once, the busier the player has to be.

But, again, don't make it impossible. The complications

should come at a rate a human being can cope with. It isn't fun to

find out that a computer is quicker than you are. What's fun is

feeling like you're a match for the computer, at least for a while.

31

2

Came

Design

I Entrances and Exits
Figures appear or disappear often during a game. But a simple

vanishing and reappearing act isn't very satisfying to the player.

Besides, things are often happening so fast that players need a

bigger effect to help them know what's going on.

For instance, when you eat a ghost in Pac-Man, it doesn't just

vanish and then reappear somewhere else. We can see the eyes of

the now-invisible ghost as it rushes from the site of its untimely

demise to the box in the middle of the screen. There, the ghost

gets back its shape — but it still wanders around inside the box for

a moment or two before reemerging. This gives players some time

without that ghost in the way, and helps them keep track of when

it will come out again.

Even more important than when an opponent disappears

and returns, however, is when the player's own player-figure is

wiped out. It can range from the big explosion in Asteroids and

other shoot-outs to Mario's head-over-heels tumble in Donkey

Kong, but something needs to happen to let players know that

they've been beaten, at least in this round.

However, as a matter of psychology, it helps if the player-

figure's doom isn't too unpleasant. Abusive comments, for in

stance, don't make anybody feel like playing the game again.

Thafs why so many arcade games have a cute ending — funny

sounds and an animated sequence that doesn't suggest death or

terrible pain.

Remember, if you've done well at creating a good player-

figure and an enthralling game, players will be taking events in

the game pretty personally. Your computer should be a good

sport about winning, and not gloat.

I Maintaining interest

One of the elements in games like Monopoly or Poker or Chess or

Go that has made them classics is that they remain a challenge, no

matter how often you play. You may not come up with a Monopoly

your first time, but you certainly don't want to create a game that

people will play once and then discard. So what is it about a

game that brings people back to play again and again?

Unpredictability

No game is completely unpredictable — the rules are designed, in

fact, so that it will play pretty much the same every time. What

32

2

Game

Design

good would baseball be if you never knew what order to run the

bases from one game to the next, or where the bases would be, or

the size of the ball? Yet every baseball game is different because

there are, within the framework of the rules, some things that can

never be predicted. The speed and spin of the pitch, the force and

direction of the bat, the angle and speed of the ball off the bat, the

arrangement of runners on the bases and players in the outfield

and the infield — these are never twice the same, even though the

rules never vary.

You'll notice that all those variables depend on what human

beings do. The trouble with computer games is that the computer

is absolutely predictable — it will always obey your program com

mands. The computer has only two ways of being unpredictable.

One is to generate a random number and use it in your program.

The other is to let the player's input change the way the program acts.

Space Invaders has very little unpredictability. The aliens will

tend to shoot more where the player is, and if you wipe out col

umns of aliens at the edges, it will take longer for them to reach

the edge and drop down to the next level. That's about it.

Missile Command uses the random method of being unpre

dictable. While the enemy always aims at the same targets, the

missiles never start at the same place and in the same pattern at

the top of the screen.

Dig-Dug depends on the player for its unpredictability. The

player, in effect, draws the playfield by carving a maze through

the rock. Even though the placement of the creatures at the be

ginning of each level is always the same, and their movement

starting times never vary, the levels can be as different as the

player wants to make them, because everything they do depends

on where the player has cut the maze and where the player hap

pens to be.

increasing Difficulty

Another way of keeping interest high is to make the game increas

ingly difficult. If you're a tennis player, you know that it's most

fun to play with an opponent who's just a little better than you.

And most arcade games use the same principle — no matter how

good you are, at some point the computer is going to be just a

little better.

How do you make a game harder from level to level? Speed,

accuracy, and complication are the keys.

Speed. At low levels, opponents move slowly and are easy to

catch or evade. Just by changing the timing, however, opponents

33

2

Game
Design

can be made to move faster, bit by bit, until they zip around the
screen. Players can also be allowed to move faster, so they have to

make decisions more quickly. And if opponents throw rocks or
shoot bullets, those projectiles can move faster so they're harder
to dodge.

Accuracy. At low levels, opponents can be programmed to
miss. In Asteroids, for instance, the big enemy ship fires some

where in the space around you — you usually have to practically
try to get hit for it to harm you. But the small ship, which comes

on later, fires much more accurately, predicting your future course
so that it's much harder for you to dodge in time.

Complication. Keeping track of four enemy knights is hard

enough at the beginning of Joust, when you're just starting out.
But in later levels, you have dozens to worry about, and the eggs
and pterodactyls, too.

Most games use a combination of these three, gradually in
creasing the speed, accuracy, and complications from level to

level. It's easy to do if you design your programs with some key
variables, so that you only have to change their values at the be

ginning of a level to have the game get faster and harder to play.
There's a problem, though, with having games get increas

ingly more difficult as you go from level to level. You have to get
through a lot of boring stuff that's easy to do before you can get to
the part of the game thafs challenging.

The solution is to let players choose their starting levels at the
beginning of the game. However, this might cause their total
score to drop, and those who care about high scores will be frus

trated. The designers of Tempest found one solution. If you decide
to start at a higher level, you get a progressively larger bonus

when you successfully complete that starting level. It's impossible
for someone who starts at level 1 to get as high a score as someone

who starts at level 11, even if both players end up at level 15, be

cause the bonus for starting at a high level is so large. In the

arcade, this also serves the purpose of encouraging players to

play harder, shorter games, so the quarters flow faster, but even at

home it's nice not to be penalized for starting out at a high level.

New Scenery

One thing that keeps players going with many games is the desire

to find out what awaits them at the next level. The changes can be

major ones, like the new screens introduced at each new level of

Donkey Kong, or they can be minor, like the succession ofbonus

34

2

Came

Design

vegetables in Dig-Dug. In Galaga, it's fun to see what new crea

tures will appear, and in what pattern they'll fly, in each bonus

round. Later versions of Pac-Man vary the mazes; Tempest has

new and increasingly complex geometric patterns at each level;

Venture has new rooms, new treasures, and new monster

guardians.

Even working in limited memory, it's possible to have small

surprises hidden away for the player who makes it to higher and

higher levels. It turns videogaming into exploration, and that

adds a lot to the fun.

I incentives
Beating the machine and finding out what happens next are cer

tainly incentives to keep playing longer, better, and more often.

But you need to make sure that your game encourages players to

accomplish the tasks the game sets out for them.

Negative incentives are usually the first things people think

of. If you don't shoot the rockets out of the sky in Missile Com

mand, your cities will be blown up and the game will end. If you

don't punch out the monkeys and keep climbing in Kangaroo,

you'll be decked by a piece of fruit or a gorilla.

There need to be positive incentives, too, to keep the player

doing the right things. In Monopoly, for instance, you are encour

aged to buy properties early in the game because, if you do, you

get more rent later. You are encouraged to try for monopolies be

cause your rent is doubled and you can make property improve

ments. You are discouraged from mortgaging property because

you get no rent. That same kind of reward structure will help the

player of your game to do the things your game requires.

Scoring

Scoring is the easiest way to let players know how they are doing.

Each time players accomplish a goal, there should be a reward in

points. It doesn't matter if the players know exactly how the

points are awarded, but they should be given consistently, and

harder accomplishments should be rewarded with more points.

In Pac-Man, for instance, you get points for each dot you eat.

You also get points for each ghost you collide with after eating a

power pill. And each ghost you collide with on the same power

pill is worth progressively more points. The bonus for eating fruit

and keys increases with each screen, too, rewarding you more for

surviving farther and farther into the game.

35

2

Game

Design

But how many points? That's a tricky question, and it's really

up to you. The general rule is that easy things get few points and

hard things get lots of points. But no one accomplishment should
get so many points that it completely overbalances the game.

Point inflation. Also, you should keep "point inflation" in

mind. In Asteroids, you can't get less than ten points for anything.

The score always ends with zero. You could get rid of that last

zero, and it wouldn't affect anything, except that 1000 points

would only be 100 points, and so on. Your score would be just as

accurate.

So why does Asteroids multiply your "real" score by ten? Be

cause it feels a lot better to get 10,000 points than to get 1,000

points. The game inflates your score so that you feel like you've

accomplished more. After Asteroids, a game like Super Breakout,

which rarely lets you get above 4,000 points, feels rather tame, in

part because the score is lower.

But point inflation has limits. It's hard for players to visualize

a billion points, so if scores get into the billions and trillions, and

most of the score is meaningless zeros, players will tend to drop

off the zeros anyway, and talk about getting 15 or 30 instead of
15,000,000,000 or 30,000,000,000.

Vanity board. Part of the fun of scoring is to see if you can get

on the vanity board. Vanity boards began as a record of the high

score. Gradually, games began including the top three or top five

or top ten scores, and allowed the players to enter their initials or

even their names. Players quickly learned to use these for graffiti,

getting exactly the right scores so they could spell out messages of

varying degrees of cleverness. However, the vanity board was

erased when the machine was turned off. Now games often have

methods of storing part or all of a vanity board even when the

power is off. Most such games have split vanity boards. Half the

high scores are permanent and do not disappear; the other half

revert to zero when the game is off.

There are other variations, too. Some machines have default

values when they power up, so that your score won't show on the

vanity board until you get a minimum of, say, 10,000 points.

Others come up with phony initials and plausible but low default

scores, so that it looks like other players have left their initials and

scores even when no one has played the machine that day.

Ifs often a good idea, if your game has scoring at all, to have a

high score display at the end of a game, so that players can keep

track of the top score earned since the program started running.

36

2
ne

Design

You can easily keep the top three or five scores, with initials, or

the top score for each player. And it's not hard to include a perma

nent vanity board as part of the program, which is automatically

saved each time the game ends.

However, vanity boards use up memory, and when things get

tight in your game program, the vanity board is expendable; it

just isn't a vital part of game play, the way scoring can be.

Bonus Turns

Games like Vac-Man and Donkey Kong never allow more than one

bonus turn, but Dig-Dug, Asteroids, Galaxians, Joust, and others re

ward players with bonus turns at regular intervals. Limiting the

number of bonus turns helps the arcade owners because it means

people can't play as long on a single quarter — but people playing

your game at home on their VIC don't need that restriction.

Of course, it can be carried to extremes, too. Endless games of

Asteroids that end up with scores in the millions are the result of

poor planning. The program should have been designed so that at

the higher levels a dozen little enemy ships come on the screen at

once. Then the game would have stayed challenging.

Story Rewards

There are rewards built into the story of the game. In Donkey Kong,

Mario saves the girl; in Donkey Kong Jr., Junior saves Papa. In Kan

garoo, the mother saves her child. In these games, you'll notice

that the objective is often achieved — the girl, Papa, and the baby

kangaroo are saved several times during the game.

In games like Defender, Missile Command, and Asteroids, the

win condition can never be achieved — there are always new

waves of enemies, and never any time when the computer says,

"Congratulations. You saved the earth." That makes these games

more frustrating than the games that allow the main objective of

the story to be achieved.

I Sounds

Sound isn't just decoration. It isn't just music to attract you to

the game when you hear it out on the street — though it does that

very well.

Feedback

Have]

Arcade owners sometimes get so tired of the sounds from popular

e you ever played an arcade game with the sound turned off?

ade owners sometimes get so tired of the sounds from populai

37

2

Came

Design

games that they turn the sound off entirely. When you play a

silent machine for the first time, it throws your timing off com
pletely. You rarely realize how much you depend on sound until
it's gone.

Whenever players do something, your program should pro
vide a sound that lets them know that the computer got the mes
sage. The walking and jumping sounds in Donkey Kong are a real
help — sometimes it takes a moment to realize that Mario isn't do
ing what you told him, especially if you're glancing elsewhere on
the screen at the time, and the sound can make a real difference
in your timing.

News

Sounds also tell you about things happening elsewhere on the
screen. An explosion, a collision, an alarm going off, a sound for

having won a bonus round, a tune that tells you that the enemy is
vulnerable or to warn you that a new enemy is on the screen — all
these things help players keep track of what's going on while
they're concentrating on the player-figure.

Mood

And don't underestimate the importance of music for simply set
ting the mood for the game. Background music is something
chess never had. Videogame makers learned it from the movies.

Mysterious music can increase the suspense in a horror
movie — and in a videogame. Busy, tense music makes a chase
scene more exciting in an action film — and in a videogame. And

bright, cheerful music can be part of the reward for success.
However, unless you know how to put music into interrupts

— which can be done only in machine language — you'll have to
keep in mind that every use of sound takes up memory and slows
down the game. Most of the time, you'll probably use sound only
where it's really necessary — to give information to the player.

I Documentation
This is often one of the last things you'll add to a game program,

but it's the first thing a player will see. By the time you finish pro
gramming, you know your game intimately. You know every
thing that will happen at every level, and you are probably
already pretty good at beating the game. But other players won't
know anything at all, and you need to tell them enough that they
can have fun. If touching a balloon will blow them up, they

38

2

Came

Design

should know that; if they have to pick up a pot of gold in order to

win, they should certainly be infQrmed.

Your documentation, whether written on paper or on the

screen, should tell the player several things:

1. How to use the controllers. What does the joystick do in this

game? What does the fire button do? What will pushing the func

tion keys do (if anything)? Players must know everything that will

happen when they push keys or buttons or move sticks or

paddles.

2. Game options. Beginning or advanced game? One or two

players? Nighttime or daytime screen? Shields, hyperspace, flip-

over, or no defense? All the possible options need to be

explained.

3. Game objectives. What are players supposed to accomplish?

How can they win? What gives them points? What gives them a

bonus?

4. Game hazards. What is going to attack the players? What

dangers can they run into? Anything that can cause players to lose

a player-figure or lose the game should be mentioned. If players

are trying to land a spaceship, they should know that touching

the walls of the landing slip, landing too fast, and not having per

mission from Landing Control can all cause the ship to crash.

5. Game rules. What can and cannot be done? Computer

games tend to be self-enforcing — if you try to do something

illegal, the computer just won't do it. So the game rules docu

mentation usually turns into a tips or hints section, where you let

players know the way something works. If you have a football

player trying to catch a pass, it helps to tell players what condi

tions have to be met for the pass to be caught.

I Start Where you Are
Now you have your brilliant, fantastic videogame designed, and

you discover that there isn't enough computer memory in the

world, let alone in your VIC, to actually carry it out. Or you find

out that some of the things you want to do would make the game

run too slowly. Or you discover that some of the things you want

to do are still out of your reach as a programmer.

That happens to all game designers, no matter how good

they are. As you do the actual programming, you'll find out that

some things in your plan just can't work the way you meant them

to. That's fine. Every videogame you've ever played is the result of

many compromises between the ideal game and the limitations of

39

2

Came
Design

the machine and the programmer. Also, new ideas will occur to
you while you're programming. The plan you make before the
programming begins is to help you, not to limit you — to point

out needs, not to eliminate alternatives. Once the creativity starts
flowing, it can only help the game.

40

Setting up
Your screen

Q

O

O

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

G

o

o

G

G

G

G

G

G

G

3
Setting up
Your Screen

Thevideo display in your game is very important, because that
is where players have to "live" during the time they are playing

your game. If it is comfortable, showing the players all the in

formation they need to have, with attractive design and interest
ing graphics, they'll be glad to come back to that world again and

again. If it is cluttered and confusing and unattractive, the game

will be hard to play and they aren't likely to come back for more.

Changing colors

So let's start getting control of the screen. There are 128 possible
combinations of playfield and border colors. Instead of describing

them, 111 show them to you. Just type in this simple program:

10 FORX = 0TO 255.POKE 36879/X:NEXT

What does this program do? Location 36879 controls the back
ground and border colors. This program changes the number

stored at location 36879 by POKEing 256 different numbers there
— all the numbers from 0 to 255 — so each of the possible combi
nations is shown twice.

But this isn't very helpful. It all happens way too fast. So

here's a program that shows you the color combinations, but
more slowly. And the program will tell you what number is being
POKEd into 36879, so that if you like the colors, you can use them
in your game.

Anything between braces — { } — is the name of a special

VIC character. In line 10, you type the word PRINT, then a space,

then a quotation mark. But then you don't type { CLR }. Instead,
you press the SHIFT key and the CLR/HOME key. In line 30, you

don't type {2 DOWN} {8 RIGHT}. Instead, you type the

CURSORDOWN key three times and the CURSOR RIGHT key

eight times. See Appendix B, "How to Type In Programs" for a
full explanation of all this.

10 PRINT "{CLR}11

20 FOR X=0 TO 255:POKE 36879,X

30 PRINT "{3 DOWN}{8 RIGHT}"X

40 FOR T=0 TO 1000:NEXT:NEXT

43

3

Setting up
Your screen

Now the screen changes more slowly, so you can see what's hap

pening. Also, line 30 shows you the number being POKEd into

36879.

Notice that when a value from 96 to 103 is POKEd in, the

numbers on the screen turn into blue boxes. And from 104 to 111,

the screen seems completely blank. The numbers are still there,

but they're invisible because they're the same color as the rest of

the screen. If you ever PRINT or POKE a character onto the

screen, and it doesn't show up, the first thing to do is POKE a dif

ferent value into 36879 — chances are the character is invisible be

cause it's the same color as the screen.

Invisible objects. That's an important thing to remember —

anything that is the same color as the background disappears on

the screen. That means that you could put invisible objects on the

screen, and then make them suddenly appear by changing their

color or the background color. Magic — with a single POKE.

Here's a program to show you how that works:

10 PRINT "{CLR}"

20 POKE 36879,110+104*(PEEK(36879)=110):GOSUB 30:G

OTO 20

30 FOR 1=0 TO 19:PRINT CHR$(32)"{DOWN}{RIGHT}";:NE
XT:RETURN

Line 20 acts like an on-off switch. It POKEs 36879 with 110 —

unless 36879 already contains 110, in which case it POKEs 36879

with 6. But where does the 6 come from in that line?

On-off switch. It's a good thing to remember, with the VIC

and many other computers, that false has a value of zero and true

has a value of negative one. So the expression (PEEK(36879) = 110)

has a value of 0 if 36879 does not contain 110, and a value of -1 if

36879 does contain 110.

104 times 0 is 0 — so if 36879 holds any number other than 110,

the program POKEs it with 110 + 0, or 110.

104 times -1, however, is -104. So if 36879 does contain 110,

line 20 POKEs it with 110-104, or 6.

We could have done it another way, with two lines:

20 IF PEEK(36879) =110THEN POKE 36879,6:0010 30

25 POKE 36879,110

Remember that in programming, there's usually more than

one way to do the job.

Default color. What color does the screen usually display?

Type RUN/STOP and RESTORE, to get the screen back to normal,

44

3

Setting up
Your screen

and then type PRINT PEEK(36879). The number 27 appears on

the screen. That is the normal, 01; default value of 36879 — the

number that the VIC puts into that memory location when you

first turn it on.

I Hide and Seek

Why did POKEing 36879 change the screen color? Can one

POKE really do that much?

No. That POKE didn't actually change the colors. Color

changes are complex operations, since the VIC has to change its

entire signal to the television. That signal to the TV is handled by

the Video Interface Chip, which does all the communication be

tween the computer and the TV. The Video Interface Chip, or

VIC, is so important that they named the computer for it.

The VIC chip updates the screen display 60 times a second. It

does this automatically — you don't have to worry about it. The

important thing is that the VIC chip looks at certain locations in

memory in order to find out what the TV display should look like.

36879 is the location where the VIC looks — every 1/60 second —

to find out what color the background and border should be. By

putting a different number there, you are telling the VIC chip

what colors you want — and the VIC chip takes care of the rest.

I Screen Memory

That principle applies to everything about screen graphics. The

VIC chip looks at a lot of different locations to find out what you

want the screen to look like. By changing what is in those loca

tions, you can get the VIC chip to display exactly what you want

— as long as you follow the rides.

Besides checking 36879 to get the background andborder

colors, the VIC chip also scans an area called screen memory to

find out which characters to display on the screen, and another

area, called color memory, to find out what foreground and back

ground color each of those characters should have, and still an

other area, the character set, to find out what the character

actually looks like. It checks some other things, too, that we

won't worry about right now. It does all this 60 times a second.

And by changing what the VIC finds when it scans through

these areas of memory, you control what gets displayed on the

television screen.

45

3

setting up
Y&ur Screen

peeks and POKES

If you're already familiar with the rules about using PEEK and
POKE, you can skip this section.

POKE. This command puts a new number into a memory
location. POKE is always followed by two numbers. The first

number is the address that you want to change. The second num

ber is the new value that you want to store there. There is always a
commabetween the two numbers:

POKE 36879,55

Legal POKEs. POKE always has to specify an address that

actually exists in the computer. That means you can't POKE to a

negative address number or to an address higher than 65535.

Also, you can POKE into an address only a number from 0 to 255.

Negative numbers or numbers above 255 will give you an error
message and stop your program.

POKE uses only integers — whole numbers, with no frac

tions. However, using a fraction will not stop your program.

POKE automatically chops off the fraction, both in the address
and the number you are POKEing. If you told the computer

POKE 36879.5,55.3

the computer would act as if you had said

POKE 36879,55

What can you POKE? The numbers you POKE don't always

have to be constants. They can be variables that contain the values
you want:

POKEADDR,NUM

POKEC(I),N(I)

In fact, you can even use expressions, like these:

POKEADDR +X,INT((X*100)/256)

POKE SC +INT(I/256)*256,CHR$(N)

Everything to the left of the comma is calculated to decide the
address, and everything to the right of the comma decides what
value to POKE.

PEEK. You use this function to find out what is stored at a
certain location, without changing it at all. PEEK is not a com

mand — it can't stand alone. You can't just say PEEK 55 — the
computer won't know what to do. You have to have a command

that tells the computer to do something with the number it finds
when it PEEKs at a certain address. The address you are PEEKing

46

3

Setting up
Your Screen

is always in parentheses right after the word PEEK:

X=PEEK(400)

You can use PEEK with many different commands:

PRINT PEEK(756)

IF PEEK(4096) =PEEK(500) THENN =PEEK(9090)

FORX =0TO PEEK(5999)

And PEEK works with expressions, too.

A =PEEK(INT(N/256)*256 +X +3)

Whatever number results from all that calculating becomes the

address where PEEK looks to retrieve a value.

PEEKing and POKEing in screen Memory

POKE is the command you will use to directly change one spot

on the screen. You will use the PEEK function to find out what

is stored in a particular location in screen memory. Since the

computer can't actually see what is on the TV screen, this is the

only way your program can find out what is being displayed at

any given spot.

Let's see how that works with a sample program. The value

of ADDR will be 7680 (if you are using a VIC with 8K or more of

expansion memory, use 4096). The variable X will be added to

ADDR to select different locations on the screen:

10 ADDR=7680

If you have memory expansion, line 10 should be: 10

ADDR =4096.

20 POKE 36879,90

30 FOR X=0 TO 505

40 POKE ADDR+X,INT(RND(X)*256):NEXT

50 FOR X=0 TO 505

60 POKE ADDR+X,32:NEXT:GOTO 30

The program is simple, and yet it has a pretty thorough effect on

the screen, doesn't it?

Lines 30 and 40 put random characters on the screen. Lines

50 and 60 fill the screen with blank characters — the same char

acter you get when you press the space bar.

You might notice that wherever there was writing on the

screen before you typed RUN, the characters are blue, and in

verse characters have a blue background. This is because we are

doing nothing to change color memory. Well get to that later.

47

3

setting up
Ybur screen

Getting the Screen under Control

As you can see, changing the screen display is easy. The hard

part is changing it exactly the way you want, to get exactly the

effect you want — but we're getting there.

Codes. Notice that the screen doesn't display the numbers that

resulted from the expression in line 30. Instead, it treats those

numbers as codes for certain characters (letters, numbers, and

symbols), and it prints the characters on the screen. These are not

the same as the ASCII codes that you use with the CHR$ func

tion. You get very different results from these two statements:

PRINT CHR$(94)

POKE 7680,94

The CHR$ function uses the ASCII code. Almost every com

puter understands the ASCII character codes — that's why

BASIC uses them, so that your program can easily be trans

ported to another computer. But your VIC's operating system

has a harder time with them.

So you have two systems of code. But well go over character

sets in more detail in the next chapter.

10 POKE 36879,155:ADDR=7680:S$=MTHIS IS A TEST"

20 PRINT "{CLR}"S$

30 FOR X=l TO 14

40 A=PEEK(ADDR+X-1)

50 A$=MID$(S$,X,1)

60 PRINT A;TAB(5);A$;TAB(8);ASC(A$)

70 NEXT X

This example program puts a test message on the screen. Then

it PEEKs at the first 14 addresses in screen memory, where that

test message appears, and PRINTS the screen code number

stored at that address in memory, then the character, and then

the ASCII value of that character. By comparing the numbers,

you can see how different they are.

But it isn't just a random difference. You'll notice that the

screen code is always exactly 64 less than the ASCII code, except

for the blank character, which is 32 in both lists.

Let's add some lines to the program:

80 FOR X=l TO 14

90 A$=MID$(S$,X,1)

100 A=ASC(A$):IF A>32 THEN A=A-64

110 POKE ADDR+329+X,A

120 NEXT X

48

3

setting up
Your Screen

Line 100 takes the test message apart, one letter at a time, so that

in line 110 the program can convert it to its ASCII numeric value

(ASC(A$)). Then, if the ASCII value is greater than 32, the pro

gram subtracts 64 to get the screen code. This formula doesn't

work with all the characters, though — it's a bit more complex

than that. The character code tables in Appendices G and H show

the ASCII codes and screen codes for every character.

Organization of Screen Memory

Computer memory is one long chain of addresses, one right

after the other. One section of this chain is used as screen mem

ory. The 506 bytes from 7680 to 8185 in the unexpanded 5K VIC

or with 3K expander, or from 4096 to 4601 in VICs with more

memory added, are used as a map of the TV screen.

To convert that memory into 23 rows of 22 characters each,

the VIC chip reads screen memory as if it were cut after every 22

addresses. At every twenty-third address, the VIC chip begins a

new row on the screen. (See the Screen Location Table in

Appendix C.)

In reading screen memory, the VIC chip starts in the upper-

left-hand corner of the screen, moves across the top row to the

right, and then jumps down to the leftmost character in the sec

ond row and moves across that row to the right. When it reaches

the lower-right-hand corner of the screen, it jumps back up to

the top-left corner and starts over.

The upper-left-hand corner is the lowest address of screen

memory (7680 or 4096). The lower-right-hand corner is the high

est address of screen memory (8185 or 4601). It may seem con

fusing that the top of the screen is "lower" in memory than the

bottom of the screen, but that just means that the lowest-

numbered address is at the top of the screen, and the highest-

numbered address is at the bottom. As long as you remember

that the VIC reads from left to right and from top to bottom, just

as we do, and the memory address numbers follow the same
order, it shouldn't be too confusing. Appendix C shows the

address of each screen location.

I Setting up a Screen

I Let's say we want to draw a cross (+) in the center of the screen.
The middle of the screen is character 11 in row 11 (counting from

0). To find x, the exact address in memory, multiply the row

49

3

setting up
Your Screen

number (11) by 22, the total number of memory addresses per

row. The answer is 242. Then add 11, because we want the twelfth

character (the first character is character 0). The answer is 253.

10 ADDR=7680:PRINT "{WHT}{CLR}m

20 POKE 36879,42

30 ROW=11:COLUMN=11:GOSUB 150

140 END

150 POKE ADDR+COLUMN+ROW*22/102:RETURN

If you type that in and RUN it, a small checkered square will ap

pear about the middle of the screen. (RUN this program each

time we add a new line to it, so you can see how each statement

affects the screen display.)

To put a character just to the left of that one, subtract 1 from

the value of COLUMN. Subtracting 1 always moves you to the

left, except when you are already at the left margin.

40 COLUMN=COLUMN-1:GOSUB 150

Now, to add a character to the right, add 2 to the value

COLUMN:

50 COLUMN=COLUMN+2:GOSUB 150

Moving up a row is almost as easy. Remember that each row

is 22 characters long. So the spot directly above our original char

acter on the screen is 22 addresses earlier in memory. However, in

this example program, the subroutine at 150 already takes care of

multiplying by 22. So to move up, we only have to subtract 1 from

ROW. We also want to get COLUMNback to its starting value.

60 ROW=ROW-1:COLUMN=COLUMN-1:GOSUB 150

Now down a row:

70 ROW=ROW+2:GOSUB 150

Borders

Now let's put a border around the screen. First, well fill the first
row:

80 ROW=0:FOR COLUMN=0 TO 21:GOSUB 150:NEXT COLUMN

Now the left-hand margin:

90 COLUMN=0:FOR ROW=0 TO 22:GOSUB 150:NEXT

The bottom row:

100 ROW=22:FOR COLUMN=0 TO 21:GOSUB 150:NEXT

And the right-hand margin:

110 COLUMN=21:FOR ROW=22 TO 0 STEP -1:GOSUB 150:NE
XT

50

3

Setting up
Your screen

Now, to keep the READY message from spoiling the screen, well

make it so the program never ends.

120 GOTO 30

You'll have to press RUN/STOP to end the program.

Random screen Displays

The screen you just created will be the same every time you run

that program. Now let's design a screen that will be different

every time — stars and planets in space.

Program 3-1. starfield

10 ADDR=7680:POKE 36879,8:PRINT "{BLK}{CLR}h

20 Q=80*RND(9)+20:Ql=6*RND(9)+2

30 FOR 1=0 TO Q:X=505*RND(9):N=46:GOSUB 150:NEXT

40 FOR 1=0 TO Q1:X=505*RND(9):N=81:GOSUB 150:NEXT

50 FOR 1=0 TO 999:NEXT:PRINT "{CLR}":GOTO 20

150 POKE ADDR+X,N:RETURN

This program creates a starfield, with distant (small) and near

(large) stars. It waits about a second and then draws another,

completely different one.

There are three random elements: how many near stars, how

many far stars, and where the stars are placed.

Line 20 is where the program decides how many far stars (Q)

and near stars (Ql) there will be. In lines 30 and 40, these random

values are used to decide how many stars of each size will be

placed on the screen.

Lines 30 and 40 also generate a random number, X, which

represents the address on the screen where a particular star will

be placed. So the number of near stars, the number of far stars,

and their placement on the screen are all random.

Controlling the random numbers. How do these random

numbers work? The RND(n) function generates a random frac

tion between 0 and 1. The number in parentheses (the argument)

doesn't affect the range of the numbers. Your program then mul

tiplies the random fraction to get a random number in the range

that you want.

Integers. The number that results will almost always be a

fraction, so to get a whole number you need to use the INT func

tion. A = INT(500*RND(5)) will generate a random number be

tween 0 and 499. A =INT(5*RND(5)) will generate a random

number between 0 and 4.

Minimums. You establish minimums by adding to the

51

3

setting up
Your screen

random number. A =DSJT(5*RND(5) + 3) will generate a random

numberbetween 3 and 7. A simple program like this will let you
experiment with random numbers:

500 A=INT(5*RND(9)+55):PRINT A,:GOTO 500

Hold down the CTRL key to make it print more slowly. You can

type RUN/STOP to stop the program at any time. You might want

to change the 5 and 55 to any value you like and see what

happens.

Random numbers are vital to most games, because they are

the easiest way of making sure that the game never plays the

same twice. But you need to make sure that you control the

values resulting from the RND function by setting the right

minimum and maximum.

Regular patterns. As a general rule, the more regular the pat

tern of your playfield, the simpler the program needed to gener

ate it. A simple checkerboard requires only a few lines:

10 ADDR=7680:POKE 36879,238:PRINT "{CLR}":N=160

20 FOR X=0 TO 20 STEP 2:FOR Y=0 TO 22 STEP 2:GOSUB

150:NEXT:NEXT

140 END

150 POKE ADDR+X+22*Y,N:POKE ADDR+X+1+(Y+1)*22,N:RE

TURN

Variety. Just because you use a regular pattern in your play-

field doesn't mean it has to be dull. You can make simple changes

in a screen setup routine that will make a big difference on the

screen. Add these three lines to the program you just typed:

30 READ N:IF N=0 THEN RESTORE:N=160

40 GOTO 20

200 DATA 102,81,78,86,77,127,255,79,80,0

Now the program reads a "table" of information in the DAIA

statement in line 200. Each new number causes a new character to

be printed to the screen. You can experiment by adding new

numbers to the table. Just make sure the only zero in the list

comes at the very end of the list.

You'll notice that the program keeps cycling through the char

acters, even though each character is listed only once at line 200.

The key to this is in line 30. The program READs the value of N

from the table. Each time it READs one number, BASIC remem

bers where it left off in the table, and on the next READ it will

bring back the next value in order. When it brings back a zero, the

IF-THEN statement notices and the statement RESTORE is

52

3

Setting up
Your screen

executed. RESTORE simply puts the pointer back to the 1 w

of the list. Then the value of Nis set to 160 again, and the whole

loop starts over.

Also, many of the patterns completely conceal the fact that

the screen is divided into little rectangles. Just because the VIC

uses characters for its graphics doesn't mean you have to have

square-looking screens.

And see how much variety comes from changing the screen

color. Change the screen color POKE in line 10 to POKE 36879,8 or

POKE 36879,233 and see how much difference it makes.

Seeing What's on the Screen

Now that you have a checkerboard of characters on the screen,

how can you fill in the spaces between them? All you need is a

line that PEEKs at every location on the screen, and wherever it

finds a spot that meets certain conditions, it POKEs a character

there.

Here's a variation on the checkerboard program that shows

how PEEK can be used. Look at it carefully, because this tech

nique will be vital later, for figuring out whether your player-

figure has bumped into something on the screen.

Program 3-2. Fill in

10 ADDR=7680:POKE 36879,233:PRINT "{CLR}":N=160:P=

81

20 FOR X=0 TO 20 STEP 2:FOR Y=0 TO 22 STEP 2:GOSUB

150:NEXT:NEXT

30 FOR X=0 TO 505:IF PEEK(ADDR+X)<>N THEN POKE ADD

R+X,P

40 NEXT:READ N#P:IF N=0 THEN RESTORE:N=160

50 GOTO 20

150 POKE ADDR+X+22*Y,N:POKE ADDR+X+1+(Y+1)*22,N:RE

TURN

200 DATA 86,78,77,127,255,95,105,79,80,88,74,113,1

12,32,0,81

You'll notice that in line 30, the program scans the entire screen,

from position 0 to position 505, but the P character is POKEd only

if that spot on the screen does not contain the current Ncharacter.

Multiple READs. In line 40, the program READs two

numbers, Nand P. That means that in the DAIA table, the num

bers for N alternate with the numbers for P. If you alter the table,

you need to make sure that your list comes out even, and that

there is a zero in the second-from-last position.

53

3

Setting up
Your Screen

Combining characters. Also, you can see how the alternating
characters combine to create shapes that never existed before.
That's how you'll make larger pictures on the screen — combining
several shapes to make one complete design. The graphics char
acters built into the VIC's character set — screen codes 64-127 and

192-255, and ASCII codes 96-127 and 160-255 - are designed so
that many of them fit together exactly, so you can make continu
ous drawings.

Screen Displays with print

Just because you can POKE to screen memory doesn't mean you

always want to. Sometimes PRINT statements can be even more
effective, since you can print entire strings all at once. Setting up
the strings takes more programming — and more typing — but

once strings are set up they can be PRINTed instantly anywhere

on the screen. This program demonstrates how quickly PRINTIing
a string can make a change on the screen. Think of it as a wiring

diagram, and imagine that you're controlling a spark trying to
escape from the opposite corner of the screen.

Program 3-3. wire

10 DIM A$(6),S$(8):POKE 36879,1 -.PRINT " {CLR} {WHT} "
:GOSUB 500

20 PRINT "{HOME}{DOWN}":FOR 1=0 TO 8:PRINT A$(0):N
EXT I

30 PRINT "{HOME}":GOSUB 150.-PRINT A? (N+3) :PRINT S$
(8)+A$(6-N)

40 PRINT "{HOME}{DOWN}"+S$(S)+A$(0):GOSUB 160:GOSU
B 170:PRINT "{HOME}{DOWN}"+S$(S)+A$(N)

50 FOR 1=0 TO 2000:NEXT:GOTO 30

150 N=INT(2*RND(9)):RETURN

160 N=INT(3*RND(9)):RETURN
170 S=INT(7*RND(9)+1):RETURN

500 FOR X=l TO 20:A$(0)=A$(0)+CHR$(221):NEXT

510 FOR 1=1 TO 5 STEP 4:FOR X=l TO 10:A$(I)=A$(I)+

CHR? (106)+CHR$(107): NEXT .-NEXT

520 FOR 1=2 TO 6 STEP 4:A$(I)=CHR$(221):FOR X=l TO

9

525 A$(I)=A$(I)+CHR$(106)+CHR$(107):NEXT:A$(I)=A$(

l)+CHR$(221):NEXT

530 FOR 1=0 TO 2:A$(l)=A$(l)+CHR?(32)+CHR$(32):NEX

T

540 FOR X=l TO 20:A$(0)=A$(0)+CHR$(221):NEXT

550 FOR 1=1 TO 3 STEP 2:FOR X=l TO 10:A$(I)=A$(I)+

CHR$(117)+CHR$(105):NEXT:NEXT

54

3

setting up
Your screen

560 FOR 1=2 TO 4 STEP 2:A$(I)=A$(I)+CHR$(221):FOR

X=l TO 9

565 A$(I)=A$(I)+CHR$(117)+CHR$(105):NEXT:A$(I)=A$(

I)+CHR$(221):NEXT

570 S$(0)="{2 DOWN}":FOR 1=1 TO 8:S$(I)=S$(i-l) + "

{2 DOWN}11:NEXT: RETURN

As the screen changes, the spark will be forced to follow different

tracks. Right now, the changes are randomly generated, using the

RND(n) function, but in a game you might allow the player to

control the center interruption, moving it up or down and left or

right with the joystick, to counter the randomly shifting top and

bottom strips. You might want to save this program— well be

adding the spark and the player controls later.

Moving the Cursor with print

If you're using PRINT statements to create your screen display,

you need to have some way of starting the PRINT exactly where

you want it. You do this by including the HOME and cursor con

trol characters in the strings you are printing. This is easy to do

with the VIC. Once you have typed the quotation mark that starts

a string, pressing the HOME key or the cursor control keys will

cause their character to be included in the string, instead of caus

ing the cursor to move. Then, when the string is PRINTed, the

cursor will move just as if you were pressing tike cursor control
keys.

The easiest way to make sure the cursor always ends up in

the right place is to PRINT the HOME character, either by making

it the first character in a string or by PRINTing CHR$(19). This will

move the cursor to the upper-left-hand corner of the screen. Then

you can enter as many CURSORDOWN and CURSORRIGHT

commands as you need to get the cursor to the exact position

where you want the next string to start PRINTing.

An alternative to usingHOME and CURSORRIGHT char

acters is to use the TAB function. TAB will move the cursor to an

absolute column position. That means that no matter where you

are on the line, PRINT TAB(IO) will move the cursor to column 10

on that line, even if it means moving backward. In effect, TAB(n)

finds the left edge of the line and counts n columns to the right to

find the new cursor position. If the n in TAB(n) is a number

greater than 22, TAB will move to the next line and keep counting.

A combination of HOME and TAB(rc) can locate the cursor any

where on the screen.

55

3

Setting up
Your Screen

In contrast with TAB, the SPC(n) function starts counting

from the current cursor position and moves n spaces to the right

from there. This is a relative rather than an absolute cursor posi

tioning command, and it is usually not as useful for game

programming.

I Color Memory

Color memory is a map of screen locations, just like screen

memory, only instead of interpreting the numbers stored there as

characters, the VIC chip interprets the numbers in color memory

as color codes.

Color memory is a perfect shadow of screen memory. For

every location in screen memory, there is a matching location in

color memory that controls the color of whatever character is dis

played on the screen. That means that the tenth byte of color

memory controls the color of the tenth character in screen

memory.

Because of this arrangement, you can individually control the

color of every single character on the screen. By changing a partic

ular character to the background color, you make that character

vanish, turning into a blank space. Or you can turn a single char

acter into eight distinctly different characters by giving them dif

ferent colors.

Your computer already allows this with PRINT statements —

all you have to do is enter a COLOR key as part of the string to be

PRINTed. The COLOR keys, on the top row of your keyboard,

number 1 to 8, can be entered into a string by pressing CTRL and

the COLOR key at the same time. Every character PRINTed to the

screen from then on will be that color, until another COLOR key

is pressed.

It is usually better, though, to POKE colors directly into color

memory. It's easy to remember the numbers to POKE: just look at

your VIC keyboard, see which number is on the COLOR key you

want, and subtract I 0 =BLK, 1 =WHT, 2 =RED, and so on.

PEEKing and POKEing color Memory

Color memory is a peculiar area of memory, in that you can't

POKE any number higher than 15 into it. The numbers from 0 to

15 use the lowest four bits of a byte; if you POKE a number higher

than 15 into color memory, the upper four bits of that number are

chopped off. So if you POKEd 255 into a location in color mem

ory, only the number 15 would be stored there.

56

3

setting up
Your Screen

However, if you PEEK at locations in color memory, you can

easily get numbers higher than 15. That's because the VIC is put

ting garbage in those upper four bits. Whenever you PEEK into

color memory, you should AND the value you get with 15, to

wipe out the garbage in the upper four bits:

COLOR =PEEK(LOCATION) AND 15

After this program line, the variable COLOR would contain the

color code stored in that particular LOCATION in color memory.

Finding Screen and Color Memory

Relocatable programs. So far weVe been using the numbers 7680

and 4096 as absolute locations for screen memory. But when you

write a program, you want to be able to RUN it no matter where

screen memory is. So instead of using the number 7680 or 4096,

well write a program line that finds out where screen memory is.

Fortunately, your VIC always stores the address of the start of

screen memory at location 648. It isn't the whole address, how

ever — it's just the "high byte," or the first byte of the two-byte

address in hexadecimal notation. If you don't know how to use

hexadecimal notation, don't worry. A simple program line will

convert it into a decimal number that you — and your program —

can understand.

SC =PEEK(648)*256

From then on, the variable SC (for SCreen) will contain the

address of the upper-left-hand corner of the screen.

The same system works for locating color memory, except

that the address of color memory must be found using a more

complicated formula:

CM =37888 +256*(PEEK(648)AND2)

Or, you can find out both addresses in the same program line:

SC =PEEK(648):CM =37888 +256*(SC AND 2):SC =SC*256

If you include this line at the beginning of your program, SC will

always be the address of the upper-left-hand corner of screen

memory, and CM will always be the address of the upper-left-

hand corner of color memory.

Playing with Color Memory

Here's a short program that will show you how color memory af

fects the screen — and which color code produces each color:

900 SC=PEEK(648):CM=37888+256*(SC AND 2):SC=SC*256

57

3

Setting up

Your screen

920 FOR 1=0 TO 505:N=INT(RND(9)*8):POKE SC+I,N+48:

POKE CM+I,N

930 NEXT:GOTO 920

Line 900 establishes the values of CM and SC. Line 920 first gen

erates a random number in the range 0 to 7. It POKEs the screen

code for that number character (N + 48) into screen memory

(SC +1), and then POKEs the color code into the corresponding

location in color memory (CM +1). The same variable, I, leads us

to the corresponding locations in color and screen memory.

You'll notice that there are some blanks. These are the color

code that is identical to the background color. Whatever character

is being displayed there is invisible because there's no contrast

between the background color and the character color.

To see this working with graphics characters, try adding these

lines to 'Till In" (Program 3-2).

10 SC=PEEK(648):CM=37888+256*(SC AND 2):ADDR=SC*25

6

15 POKE 36879,233:PRINT "{CLR}":N=160:P=81

25 GOSUB 300

45 GOSUB 300

300 Q=INT(RND(9)*8):IF Q=PEEK(36879)AND 7 THEN 300

310 IF Q=PEEK(CM)AND 7 THEN 300

320 FOR 1=0 TO 505:POKE CM+I,Q:NEXT I:RETURN

Now the background color will change with each screen change.

The IF statement in line 300 protects us against having characters

the same color as the background. Line 310 protects us against

having the character color the same twice in a row.

Or start again with the original version of Fill In, and add

these lines:

10 SC=PEEK(648):CM=37888+256*(SC AND 2):ADDR=SC*25
6

15 POKE 36879,233:PRINT "{CLR}":N=160:P=81:GOSUB 3

00

300 FOR 1=0 TO 505:Q=INT(RND(9)*8):POKE CM+I,Q:NEX

T I:RETURN

Now the program assigns each location in color memory its own

random color value. What was once a completely regular, sym

metrical screen now looks completely unpredictable — and char

acters that used to fit together to make combined patterns now are

clearly separate.

If any of the material in this chapter is still unclear to you, it

58

3

Setting up

Your screen

might be a good idea to go back and review it, studying the exam

ple programs to see how they work. Without a clear understand

ing of screen and color memory and how to use them, it will be

harder to make use of the more advanced techniques presented

in the rest of the book.

59

Q

O

O

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

G

o

o

G

G

G

G

G

G

G

Custom

Characters

Q

O

O

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

G

o

o

G

G

G

G

G

G

G

4
Custom
Characters
The VIC comes with a complete character set, consisting of all

the numbers, letters, symbols, and graphics shapes that the

VIC can produce. These standard VIC characters offer plenty of

variety, and they can be combined to create many interesting

shapes and patterns, as weVe already seen in Chapter 3.

But there will be times when you need to draw a shape or a

figure that the character set just can't produce. Perhaps you need

a human figure, someone to live in the game world you've

created, to experience the problems and dangers your game will

present. The standard VIC graphics characters would produce a

stick-figure at best, and you want something better.

That is when you throw out the VIC character set and create

your own.

Creating a custom character set uses up more memory, leav

ing less room for your program, and it can take quite some time to

design the characters and add them to the program. But when

you have exactly the right figure or pattern that you want, you

and the people who play your game will agree that it was worth

the effort.

I Graphing a Character

I Once you've decided what kind of figures or patterns you want
to draw, you need to translate those shapes into a form your com

puter can understand. And your computer understands nothing

but numbers.

To see how shapes can become numbers, look at Figure 4-1.

This is the character matrix, a grid eight dots wide and eight dots

high. The matrix is not quite square because the dots are slightly

wider than they are tall.

Each character on the screen is created in this matrix. Dots, or

pixels, are either on (displaying the character color) or off (trans

parent, so the background color shows through). Figure 4-2

shows the pattern of on and offpixels that make up the @ char

acter on the VIC. If you compare Figure 4-2 to the @ character on

63

4

Custom

Characters

the TV screen, you'll probably be able to pick out the individual

pixels, depending on how sharp your eyes, and the TV image,

are.

Figure 4-1. The Character Matrix

Figure 4-2. The Pattern of the @ Character

Each row of the character is eight pixels across. These are

matched with the eight bits of a byte of memory. A1 in the byte

becomes an on pixel in the character. This means that to produce

the pattern _JC_ __XX_ _we need the binary byte 01001100,

which is the decimal number 76. Each row of a character is stored

in a single byte; eight bytes in memory contain the entire char

acter pattern, in order, from the top row to the bottom row.

Translating Patterns to Numbers

The rightmost pixel has the lowest binary value, 1. If it is on, there

will be a 1 in that position; if it is off, there will be a 0. Each pixel to

the left has a value twice that of the one before. The second pixel

from the right, then, has a value of 2: if there is a 1 in that posi-

64

4

Custom

Characters

tion, it adds 2 to the number; if there is a 0, it adds nothing. The

third pixel has a value of 4; the next is 8; then 16,32,64, and 128.

Figure 4-3 charts these values for you, using the pattern of the

character @. The top row of the character has three pixels on,

forming the binary number 00011100. The values of these three

bits, as you can see from Figure 4-3, are 16, 8, and 4. Add them

together and you get 28. That number must be stored in character

memory to create that row of pixels on the screen.

Figure 4-3. Translating @ to Numbers

0

1

2

Row 3

4

5

6

7

128

Bit Values

64 32 16 8 4 2 1 Total

28

34

74

86

76

32

30

0

The second row has only two pixels on, the third and seventh

from the left, which form the binary number 00100010. The values

of this are 32 and 2, making a total of 34 for the second row. Check

the rest of Figure 4-2 to make sure the totals are correct.

You'll have noticed that the last row is completely empty and

has a value of zero. The reason for this is that the VIC produces

characters in the way outlined in Figure 4-3, but the 8x8 areas of

characters on the screen actually touch the adjoining characters.

This is what makes the screen a continuous field of dots. If you

want your characters to make one continuous pattern, draw them

right up to the edge of the matrix. If you want them to be clearly

separate, however, be sure to include spaces in your character de

sign, or one character will "bleed" into the next. If you leave space

at the bottom of the character, and on the left and/or right sides,

everything will work out fine. If all your characters have their left

column blank, you can fill in the right column and there'll still be

a separation. Note that this is what has been done with the @

character representation in Figure 4-3.

65

4

Custom

Characters

Graphing Your own Character

To draw your own characters, you can either divide graph paper

into 8x8 squares, photocopy Figure 4-5, or simply draw your own

8x8 matrix. With this grid, create the image or images you'll need

for your game by filling in the appropriate boxes.

If you need to draw something larger than one matrix — a

large animal or space station, for instance — simply combine two

or more matrixes. The VIC will treat them as two separate char

acters, but when you put them together on the screen, they'll look

like a single drawing. However, the screen is not that large, and

smaller characters will give the impression of more space in the

playing area, especially when you want those characters to move

about the screen.

You will probably need several custom characters for your

game. Will the figures be throwing or shooting things at targets,

or at each other? What will the projectiles look like? What will be

the result when a figure is hit with one? All of these will need cus

tom characters.

After you have drawn your custom character(s), you might

have something similar to Figure 4-4.

Figure 4-4. Running Figure 1

This running figure has 19 pixels on, while the other 45 are off. To

compute the value of each row of pixels, use the Character Work

Grid provided by Figure 4-5.

66

4

Custom

Characters

Figure 4-5. Character work Grid

0

1

2

Row 3

4

5

6

7

128 64

Bit Values

32 16 8 4 2 1 Total

Figure 4-6 shows the running character laid out on the work

grid, with pixel values totaled on the right.

Figure 4-6. Running Figure 1 on the work Grid

Bit Values

132 64 32 16 8 4 2 1 Total

Row 3

0

1

2

3

4

5

6

7

H LJ■n ■

H wM

m i n

24

24

18

124

88

20

100

0

When you're finished, you should have eight numbers for

each character. These numbers will be placed in DAIA statements

within your program so that the computer can READ them and

put them in character memory.

The two figures we have drawn so far, for example, would

have these DAIA statements.

@ DATA 28,34,7436,76,32,30,0

Running Figure 1 DATA 24>24>18,124>88,20,100,0

67

4

Custom

Characters

I Memory Locations

I In Chapter 3, we worked with screen and color memory. These
are areas of Random Access Memory, or RAM; we could not only

PEEK to see what was stored in each location, but we could also
POKE them to change what was stored there. The character set,
however, is located in Read Only Memory, or ROM. You can PEEK
there, but you can't POKE. The character set is permanently
stored in your VIC.

The VTCs character memory begins at location 32768, with
the top row of the @ character. The second row of that character is
stored at location 32769, the third row at location 32770, and so on.

A formula for finding the location of a particular row for a given
character is:

Location Number =beginning of character memory (32768)

+ row + (8*screencode).

Note that the first row must be numbered 0 for this formula to

work. The screen codes for each character can be found in the Pro

grammer's Reference Guide or the VIC-20 User's Guide.

How can you create custom characters, if the character set

cannot be changed? The memory location that instructs the VIC

where to find the characters is in aRAM location. This can be

changed to point to several sections of memory. In fact, changing

where the VIC looks for character memory changes what is on the

screen at the time. By making the character memory pointer point

to the RAM of your VIC, you can begin to program your character
set.

The location from which the VIC gets its character informa

tion is 36869. Its value is normally 240, or 242, but it can be

changed. Although you can begin any custom character set in a

RAM location ranging from 4096 to 7168, the best place to start is

at 7168. To move the pointer to this RAM location, use the com

mand POKE 36869,255. Now the computer will look at location

7168 for character data, instead of at the location in ROM, 32768.

Doing this, however, presents problems. First of all, creating

your own character set by telling the VIC to get the data from

RAM makes the standard character set unavailable. This may not

be a problem if your game uses only custom characters. Then you

can simply create the necessary figures and PRINT or POKE

them into your game program. The following program does just
that.

68

4

Custom

Characters

Program 4-1. creating Characters

10 POKE 36869,255

20 POKE 52,292 POKE 56f29:CLR

30 FOR C=7168 TO 7183:READ D:POKE C,D:NEXT

40 DATA 24,24,18,124,88,20,100,0

50 DATA 24,24,18,62,88,20,98,0

60 PRINT M{CLR}A@A@A@A@M

70 GOTO 70

Program Explanation

Line Function

10 POKE 36869,255 tells the computer to go to location 7168 to

get the data for characters, rather than looking in ROM

location 32768.

20 Locations 52 and 56 tell the VIC to change the pointers to

the top of the available RAM memory. The normal value in

the unexpanded VIC is 30. A value of 29 takes 256 bytes of

memory from BASIC, the smallest possible block. Ordi

narily, this would be enough for a small custom character

set.

30-50 Tell the VIC to replace the A and @ characters in the stand

ard set with the new figures by READing the DA3A

statements.

60-70 PRINT the new custom characters on the screen and keep

them there.

A program such as this produces only the custom figures you

instruct it to. You do not have any of the letters, numbers, sym

bols, or graphic characters in the VICs standard set. If you elimi

nate line 70, for instance, and press any key but the A or @, only

garbage will show on the screen.

If you need any other characters from the VICs standard set,

you'll have to copy the letters, numbers, or symbols you intend to

use into the new character memory in RAM. When you move

your character set to location 7168, the topmost section of BASIC,

you must also protect it from that program's actions. Fortunately,

both problems can be corrected easily.

The following program copies the first 64 characters ofthe

VIC to RAMlocation 7168 and then protects themfromBASIC.

Program 4-2. copying Characters

10 PRINT "{CLR}":POKE 36869, 255

20 POKE 52,28:POKE 56,28: CLR

69

4

Custom

Characters

30 FOR 1=7168 TO 7679rPOKE I, PEEK (1+25600) :NEXT?

40 Eii>' j

Program Explanation

Line Function

10 Again, POKE 36869,255 tells the computer to go to location

7168 to get the data for characters, rather than looking in

ROM location 32768. (To send the computer back to 32768

for character data, just POKE 36869,240, its normal value.)

20 As in the first program example, locations 52 and 56 change

the pointers to the top address of available RAM memory.

A value of 28 takes 512 bytes of memory from BASIC, just

enough for the data for the 64 characters you are moving to

RAM. This line also protects the character memory from

BASIC.

30 This line may look complicated, but actually it's not. The

VIC is told to look at the data numbers for the first 64 char

acters in ROM (32768 to 33280), look at what's there

(PEEK(I + 25600)), and then POKE those same numbers

into locations beginning at 7168 and ending at 7679. In

other words, the first 64 characters have been copied from

their ROM locations to your new RAM location. The

number 25600 is 32768 minus 7168. Another way of doing

this would be:

30FORX=0 to 511:POKE 7168 +X, PEEK(32768 +X): NEXT

After you run Program 4-2, you'll notice several things. First

of all, the flashing cursor is lost. Second, only the first 64 char

acters are available. If you copied all 512 characters in the VIC, two

kilobytes ofRAM would be used up. Since you will rarely need

more than a dozen custom characters, 64 is usually enough to

give you custom characters and all the letters and numerals.

Try pressing random keys and see what happens. You'll see

that the characters with screen codes from 0 to 63 (refer to the

screen code tables in your reference guide) are available. These are

the characters from the @ character to the ? character. If you press

SHIFT and then another key, you'll often get garbage that means

nothing to you. Continue to press keys and then sit back and

watch. Some of the characters are changing before your eyes.

What is happening here is that the VIC thinks character

memory is 2K, or 256 characters, even if you use only 64. When

you press keys that call for characters with screen codes greater

70

4

Custom

Characters

than 63, the VIC reads their patterns from screen memory, so that

the numbers stored there become patterns of the graphics char

acters. Your screen display is creating itself.

Now that your have the character set moved to RAM, avail

able for altering, and protected from BASIC, you can begin to

place your own custom characters in this set.

I Replacing Characters
Glance through the screen code table in either your Program

mer's Reference Guide or your VIC-20 User's Guide for a moment.

Remembering that the first 64 characters are available, decide

which of these you'll need for your game. How many of the letters

will you need for screen titles and other game indicators? If you

have the title "Lunar Lander" on the screen, as well as 'Time"

and "Fuel," you would not replace any of those letter characters

with your new custom characters.

You should make up a data sheet, using the blank provided

by Figure 4-7, to simplify the process of deciding which characters

to save and which to change to custom characters.

In the left columns, list the first 64 characters, then their

screen code values. You can find these values in the screen code

tables in your reference guide. The starting location can be found

by multiplying the screen code value by 8 and adding that to 7168,

the starting location. This gives you the starting location of each

character's eight bytes of data. The next column can be filled in

with the name of the new character, such as "Running figure,"

which will replace the old character of that row. If you wanted to

replace the @ sign with this new custom character, then write the

name in the first row. Next to this, list the eight data numbers for

the new character. In this example, the data numbers would read

24,24,18,124,88,20,100,0.

All this will take time, but it will be a valuable reference later

in your game designing and programming.

Now you're ready to actually replace certain characters with

your new custom characters. What you need to do is POKE your

new numbers where the old values are. The data sheet will make

this job easier, for it details the starting locations of each character,

as well as the new values.

As stated earlier, the most convenient way to replace the old

characters is with DATA and READ statements. You can put all the

numbers into the DATA statements and then have the VIC READ

71

4

Custom

Characters

Figure 4-7. Character Data Sheet

Letter

Screen Code

(POKE) Value

Starting

Location New Name DATA Statement

72

4

Custom

Characters

them. The computer always READs the data in the order that it's

listed, so make sure the numbers are in the proper order, and that

there are eight numbers for each character. The DATA statements

can be anywhere in the program, and for this reason many pro

grammers put them at the end of the program, out of harm's way.

The standard format is:

FOR C(new character) =X to X +7:READ D:POKE C,D:NEXT

where X is the starting location of the new character from the data

sheet.

For example, if you wanted to replace the @ character with

the running figure, you would list it like this:

40 FOR C =7168 to 7175:READ D:POKE C,D:NEXT

50 DATA 24,24,18,124,88,20,100,0

Add these lines to Program 4-2, replacing the END statement

with this line 40. After running this program and typing an @,

you should see the running figure printed on the screen. If you

don't see the custom character, check the DATA statements for

errors.

Using this same format, you can replace characters with your

own set of custom characters. Make sure you insert your data

numbers in the proper locations for all the replacements.

If your new characters are replacing old ones which are right

after each other in the screen code table, you can place more than

one in a READ statement. Figure 4-8 is a character data sheet for

five characters which can replace sequential characters in the

standard set.

Notice that two of the figures are split between two 8x8

squares. One is split between two squares horizontally, the other

is split between two vertically. When both 8x8 squares are

printed on the screen, the figure will appear complete.

To POKE all five figures, and READ all seven DAIA state

ments that make up those figures, you could write:

Program 4-3. Characters in Sequence
40 FOR C=7432 TO 7487:READ D:POKE C,D:NEXT

50 DATA 24,24,18,124,88,20,100,0

60 DATA 1,1,1,3,6,1,3,0

70 DATA 128,128,32,224,128,64,32,0

80 DATA 0,56,56,16,124,16,124,68

90 DATA 56,56,16,124,16,124,68,68

100 DATA 0,0,0,56,56,84,124,16

110 DATA 56,40,40,0,0,0,0,0

73

4

Custom

Characters

Figure 4-a sequential Characters

Letter

!

#

$

%

&

Screen Code

(POKE) Value

33

34

35

36

37

38

39

Starting

Location

7432

7440

7448

7456

7464

7472

7480

New Name

Running

Figure #1

Running

Figure #2 Lft

Running

Figure #2 Rt

Squatting

Figure

Rising

Figure

Jumping

Figure Top

Jumping

Figure Bot.

DATA Statement

24,24,18,124,88,20,100,0

1,1,1,3,6,1,3,0

128,128,32,224,128,

64,32,0

0,56,56,16,124,16,124,68

56,56,16,124,16,124,68,68

0,0,0,56,56,84,124,16

56,40,40,0,0,0,0,0

74

4

Custom

Characters

The standard characters from the ! (POKE 33) to the' (POKE

39) were replaced with this one FOR-NEXT statement. Replace

lines 40 and 50 in Program 4-2 and add the additional lines. After

running this program, you should see the figures printed on the

screen as you press the appropriate keys. Lines 100 and 110 in

clude the values for the figure which would normally be two 8x8

squares high. However, when you press the keys for & and', it

will print a jumbled character, for the screen wUl show the two

sections beside each other instead of one above the other. The

next chapter on movement and animation will show you how to

correctly display this figure on the screen.

If you choose to replace characters that are not next to each

other in the screen code table, you will have to write separate

lines for each character replaced. As you can see, replacing char

acters that are sequential will make it easier to write the program

and will reduce the amount of memory used.

As you begin typing in the lines for your own custom char

acters, remember several things.

Each character needs eight numbers in the DATA statement to

define it, even if one or more of the values are zero. Each character

also needs eight bytes of memory to hold those numbers. If you

don't have all eight bytes, the VIC will go on and read the next

location, and the next, until it has an eight-byte pattern. Of

course, this will not create your expected figures.

Be sure to list the DAIA statements in the same sequence as

the FOR commands to replace the characters. The VIC will read

the first data numbers when it finds the first READ command,

the second group of data numbers when it finds the second

READ command, and so on.

When you are finished replacing characters, RUN the pro

gram to see if it works properly. If some of the custom characters

turn out different from what you had expected, check the DATA

statements. Are they the correct values for the pattern of pixels

turned on? Were they typed in correctly? Also recheck the FOR

C =X TO Y statements to make sure the memory locations are cor

rect for the characters being replaced. Remember that if there is

an error, it is in the program, not in the computer. By examining

your program, you will always be able to solve the problem.

To find out how much memory is still available after building

your custom characters, type in:

PMNTFRE(O)

The number displayed is the number of bytes available for the rest

of your program.

Q

O

O

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

G

o

o

G

G

G

G

G

G

G

Getting Your
Figures
Moving

Q

O

O

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

G

o

o

G

G

G

G

G

G

G

5
Getting Your
Figures Moving
Movement on the television screen is a series of still pictures.

They seem to move because each still picture is only slightly

changed from the one before, and each new picture comes on

the screen so quickly that the eye can't see the jump from one to

the next.

I Speed
Movies change their image 24 times per second — any slower,

and you begin to see flickering.

But the raster scan in your television refreshes the screen

image 60 times per second. That's almost four times faster than

the minimum for smooth animation. If you're programming in

machine language, that leaves you plenty of room to perform all

your calculations and still change the screen image often enough

to have smooth movement. In fact, most machine language

games have to insert delay loops or timing routines to slow them

down so you can see what's happening on the screen.

That's why, in arcade games, no matter how fast the game

goes, it can always go faster when you get to the next level. Even

when the computer is controlling dozens of figures on the screen

at the same time, it is probably marking time to stay slow enough

for you to play it.

Unfortunately, BASIC calculations are slower (but a lot easier

to program) than machine language calculations. It's sometimes

hard to perform all the calculations you need fast enough for

animation to be smooth. You need to make sure that your pro

gram performs as few calculations as possible between move

ments on the screen, or your game will run slower and slower

and slower.

I Movement and Animation

There are really two separate problems in programming move

ment on the screen. One is getting a figure to move from one

79

5

Getting Your

Figures Moving

screen location to another. The other is making the figure's move

ments seem natural. Even though in many cases movement and

animation are pretty much the same thing, in this book I'd like to

use them to mean different things.

Movement is getting figures from one place to another on the

screen.

Animation is making the player seem natural in its

movements.

For instance, in Donkey Kong, movement is getting Mario from

one place to another on the screen — up and down ladders, along

ramps, jumping, and so on. Animation is the way Mario's legs

move, the way he seems to face the direction he's moving in, the

way he moves the hammer up and down — all the things that

make his actions seem human.

Three Steps to Movement

Let's assume that the figure we want to move is already on the

screen. We know he's at location 20 in screen memory. To make

the figure move, we need to carry out three steps:

1. Calculate where the new location should be.

2. Erase the figure at the old location.

3. POKE or PRINT the figure at the new location.

Perform those steps over and over again, and you have

movement.

Here's a program that will show you movement at its simplest:

Program 5-1. Movement Demonstration

10 POKE 36879,45:PRINT"{CLR}M

20 FOR 1=7680 TO 7680+505

30 POKE 1-1,32:POKE I#90

40 NEXT:POKE 1-1,32:GOTO 20

Even in BASIC, this program is so fast you can hardly follow the

movement, and your eyes probably fool you into seeing several

characters in a row instead of just one. So let's add a delay loop to

slow it down:

40 FOR X=0 TO 84:NEXT:NEXT:POKE 1-1,32:GOTO 20

The movement is still jerky, but that's because we are moving

from one character position to the next, with nothing in between.

If you want smooth movement, all you have to do is create custom

characters that, in combination, represent the half-moved figure.

But that requires more memory and more logic to process the

80

5

Getting Your

Figures Moving

movement, and by the time you execute it, things have slowed

down enough that most of the gain in smoothness has been elim

inated. In machine language, of course, the speed problem is

eliminated, and smooth movement is relatively easy For our pur

poses right now, however, the direct character movement is good

enough.

Reading the Keyboard

Movement alone isn't enough, of course. The movement has to be

controlled. And the player-figure must be controlled by the

player. That means you must have some way of getting the

player's instructions and making the figure on the screen respond

to them.

Normal BASIC INPUT and GET statements won't work too

well — they're too slow, for one thing. You'll want to get the play

er's instructions directly from the hardware — either the keyboard

or a joystick. Right now let's use the keyboard.

Every time a key is pressed on the VIC, the operating system

stores a number in location 197. This is the key code, and it has no

relation to ASCII or screen code. Location 653 is similar, except it

holds the code for the SHIFT, Commodore, and CTRL keys. Table

5-1 shows the key code for every key on the VIC that can be read

from these locations.

Stop and go. The simplest player instruction of all is move or

don't move. Using the movement program already in the com

puter, let's add a simple keyboard read line. If any key is pressed,

movement will occur. If no key is pressed, movement will stop.

25 IF PEEK(653)=0 AND PEEK(197)=64 THEN 25

If no key is pressed, line 25 will loop forever; if any key is pressed,

the program will go on from this line. (Pressing RUN/STOP will

stop the program, as usual, even though it also generates a key

code.)

You'll notice that pressing SHIFT and Commodore still shifts

the character set, and turns the diamond shape into a Z. To keep

the computer from switching character sets, POKE 657,128. You

might add this command to the end of line 10. After your program

is through, you'll probably want to POKE 657,0 to allow switching

again.

Control matrix. When your program uses the keyboard for

movement control, you usually want more than a simple stop-

and-go instruction. You want separate keys for left, right, up, and

down, and perhaps keys to perform other functions, the way the

81

5

Getting Your

Figures Moving

joystick button is used in games to cause a figure to jump or shoot

or disappear.

But you can't use just any keys. You want players to be able to

put their fingers on the right keys and then forget about having to

find them again, just like pressing buttons in the arcade. So you

wouldn't want to use 1 for left, * for right, X for up, and fl for

down. There's no sense to that arrangement.

You might want to use the L, R, U, and D keys — but they're

widely spaced, and only touch typists can remember which is

which by reflex. You might want to use the cursor keys and have

them perform their normal functions — but this means that keys

change value depending on whether SHIFT is pressed or not,

which can ruin the player's concentration in the middle of playing.

The most common solution is to set up a control matrix, an

arrangement of keys in which the key that moves up is on top,

down is on the bottom, left is to the left, and right is to the right:

H

/

Here is a single program line that will read the keyboard

using the matrix on the right (@ is up,: is left, = is right, and / is

down). After this line is executed, the variable LR will equal 1 for

right and -1 for left, and the variable UD will equal 1 for down

and -1 for up.

A =PEEK(197):LR =(A =45) -(A =46):UD =(A =53) -(A =30)

Whenever an expression like A = 45 is evaluated, it returns a

value of either 0 or -1. False equals 0, and true equals -1. So if

A = 45, then LR will equal -1, or true (-1) minus false (0). If

A =46, however, LR will equal 1, or false (0) minus true (-1). Re

member that subtracting a negative number is the same as add

ing. If that sounds too much like math to you, just remember it

this way:

Horizontal = (left?) - (right?) Vertical = (up?) - (down?)

Inside the parentheses you put the expression:

Keypress =Directionvalue

82

5

Getting Your

Figures Moving

So the whole formula works like this:

Keypress =PEEK(197)

Horizontal =(Keypress =Leftvalue) -(Keypress =Rightvalue)

Vertical =(Keypress =Upvalue) -(Keypress =Downvalue)

Notice that if none of the four movement keys is pressed, the

value of both LR and UD will be 0.

Allowing diagonals. However, there is a drawback to the

control matrix. Your computer will store only one key code at a

time at location 197. If two keys are pressed at the same time, the

key with the higher code value is the one that will show up. So

you can't press the key that means up and the key that means

right at the same time and get a diagonal movement upward to

the right. You only get either right or up.

In most games that's good enough. Diagonal movements

don't matter much. Or if you assume most players will use joy

sticks, you can let the keyboard users have a slightly inferior

game.

But there is a solution. Use SHIFT, Commodore, and/or

CTRL for horizontal movement, and any two other keys for verti

cal movement (or vice versa). Since SHIFT, Commodore, and

CTRL are read from location 653 and the rest of the keys are read

from 197, your program can read vertical and horizontal move

ment separately, and get diagonals when two keys are pressed at

once.

There is one drawback to this method. SHIFT, Commodore,

and CTRL can be pressed in combination (see Table 5-1), and then

a different value is stored at 653. But this is easy to cope with.

Here's a line that reads location 653 and makes the variable LR

equal 1 if SHIFT is pressed, -1 if Commodore is pressed, and 0 if

both are pressed or if neither is pressed.

LR =PEEK(653):LR=(LR =1) -(LR =2)

Or if you want the movement to be left if Commodore is

pressed, regardless of whether SHIFT is pressed at the same

time or not, use this line:

LR =PEEK(653)AND 3:LR =(LR> 1) -(LR =1)

Notice that this time we ANDed the value at 653 with 3; this was

just to make sure that if the CTRL key was accidentally pressed,

it wouldn't force a leftward movement, too, since the value at 653

will always be 4 or greater if CTRL is pressed.

Ifs just as easy to read the values at location 197. Let's read f5

83

Getting Your

Figures Moving

Table 5-1. Key Codes

Values Stored at Location 197

Code

0

2

3

4

5

6

7

8

9

10

11

12

13

14

15

17

18

19

20

21

22

23

24

26

27

28

29

30

31

32

The following key codes cannot occur: 16,25,38,40.

Values Stored at Location 653

Code Key(s) pressed

(No key pressed)

SHIFT

Commodore

SHIFT and Commodore

CTRL

SHIFT and CTRL

Key pressed

1

3

5

7

9

£
DEL

{left arrow}

W

R

Y

I

P

RETURN

A

D

G

J
L

{cursor left-right}

RUN-STOP

X

V

N

{cursor up-down}

{space bar }

Code

34

35

36

37

39

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55.

56

57

58

59

60

61

62

63

64

Key pressed
7

c

B

M

fl

S

F

H

K
:

=

f3

Q
E

T

U

O

@
{up arrow}

f5

2

4

6

8

0

-

CLR/HOME

f7

{No key pressed}

0

1

2

3

4

5

6

7

Commodore and CTRL

SHIFT, Commodore, and CTRL

84

5

Getting Your

Figures Moving

and f7 as up-and-down controls.

UD =PEEK(197):UD =(UD =55) -(UD =63)

Couldn't be easier. After this program line is executed, UD will

equal 1 if the f7 key is pressed and -1 if the f5 key is pressed.

And since UD and LR are read from separate locations, a

player can be moved diagonally — two directions at once —

instead of horizontally alone or vertically alone.

Horizontal and vertical Movement

Except for erasing the figure in its old location, youVe already

done everything that is involved in horizontal and vertical move

ments, back when we were setting up the screen. To move hori

zontally, you change the screen location by adding or subtracting

1. To move vertically, you add or subtract 22. Subtract to move up

or left; add to move down or right.

The two key-reading routines we used give us values of 1 or

-1. We can use this number directly for left-right movement. For

vertical movement, however, we want to add or subtract a value of

22 or - 22. So the vertical movement lines should be changed.

Here's what it should look like in the diagonal-movement routine:

UD =PEEK(197):UD =22*((UD =55) -(UD =63))

If the value is negative, it will be - 22 (22* -1); if positive, it will

be 22 (22*1); and if an invalid key was pressed, the value will be 0

(22*0).

Staying on the screen. There's one other concern. We don't

want the figure to move off the screen. There are two possible op

tions: we can make the figure stop at the edge of the screen or

keep moving and simply reappear at the opposite edge.

Both methods begin the same way. First, check to see if the

player wants to move the figure. Then calculate the new address

where the figure will be POKEd. If the address is beyond the edge

of the screen, either don't move at all or change the new address

so the figure will appear on the opposite side. Only then do you

erase the figure at the old address and POKE it in at the new

address.

A player-controlled movement routine. This simple pro
gram allows you to move a character around the screen using the

@: = / matrix we already discussed. When the figure reaches the

edge of the screen, it will stop:

85

5

Getting Your

Figures Moving

Program 5-2. Movement with poke

10 POKE 36879,47:PRINT "{CLR}":POKE 657,128

15 SC=PEEK(648):CM=37888+256*(SC AND, 2) :SC=SC*256 :

OL=1:FG=90:POKE SC+OL,FG

20 A=PEEK(197):LR=(A=45)-(A=46):UD=22*((A=53)-(A=3

0))
25 IF LR=0 AND UD=0 THEN 20

30 NL=OL+LR+UD:ON-(LRO0)-2*(UD<>0)GOSUB 100,200

35 IF NL=OL THEN 20

40 POKE SC+OL,32:POKE SC+NL,FG:OL=NL:GOTO 20

100 EH=INT(NL/22):EH=NL-22*EH

110 IF (EH=0 AND LR=l) OR (EH=21 AND LR=-l)THEN NL

=OL

120 RETURN

200 IF NL>505 OR NL<0 THEN NL=OL

210 RETURN

Here's how this program works:

Line Function

10 Set the screen and border colors, clear the screen, and

disable the character set shift.

15 Establish variable values: SC = starting address of screen

memory; OL = old location (initialized at 1); FG = figure

value — the screen code for the character to be moved.

Then POKE FG into SC plus OL, to make the figure ap

pear on the screen in the starting position.

20 Start the main movement loop. Set A to the key code

currently in location 197. Set LR for the horizontal in

struction, UD for the vertical instruction.

25 If both movement instructions (UD and LR) are 0, go

back and look for a new key value.

30 Set NL to the new location for the figure

(OL +LR + UD). Then GOSUB to one of the two edge-

test subroutines, at 100 for the left/right edge test and 200

for the top/bottom edge test.

35 If NL has come back from the subroutines with the same

value as OL, go back to the start of the movement loop

without moving the figure.

40 Erase the figure at the old location (OL) and POKE it into

the new location (NL). Then set OL to equal NL and go

back to the start of the movement loop.

100 Left/right edge-test subroutine. EH is set to a number

from 0 to 21, representing which horizontal position on

the line the figure will be at if the movement is actually

executed.

86

5

Getting Your

Figures Moving

110 If the figure will be in the leftmost position (EH = 0) and

got there by moving right (LR = 1), that means the figure

crossed the right-hand edge of the screen, and the move

won't be allowed. Likewise, if the figure will be in the

rightmost position (EH = 21) and got there by moving left

(LR = -1) that means the figure crossed the left-hand edge

of the screen. The movement is cancelled in either case
by setting NL to equal OL.

120 RETURN to line 35.

200-220 Top/bottom edge test subroutine. This test is easier. If the

new location will be off the top of the screen (NL< 0) or

off the bottom of the screen (NL > 505), then the move
ment is not allowed.

Wrapping around. With this next program, well change

several things. First, instead of POKEing the figure on the screen,

well PRINT it there. Second, instead of reading the control

matrix, well read SHIFT and Commodore for left/right move

ment, and f5 and £7 for up/down movement.

Program 5-3. print Movement Routine

5 DIM V$(22):V$(0)=n{HOME}":FOR 1=1 TO 22:V$(l)=V$
(I-1)+"{DOWN}":NEXT

10 POKE 36879,42 :PRINT"{CLR}{BLK}":POKE 657,128

15 FG$=II^":NV=11:NH=11:GOTO 40

20 A=PEEK(197):B=PEEK(653)AND3

25 H=(B>1)-(B=1):V=(A=55)-(A=63):IF V=0 AND H=0 TH
EN 20

30 NV=OV+V+22*((OV=21 AND V=1)-(OV=0 AND V=-l))

35 NH=OH+H+21*((OH=20 AND H=1)-(OH=0 AND H=-l))

40 PRINT V$(OV);TAB(OH);" ";V$(NV);TAB(NH);FG$

45 OH=NH:OV=NV:GOTO 20

Here's how this program works:

Line Function

5 Set up the string array V$(n), in which each value of V$

PRINTs HOME and the same number of CURSOR-

DOWN characters as the subscript. In other words,

V$(10) PRINTS HOME and ten CURSOR-DOWN char

acters; V$(0) PRINTs HOME and no CURSOR-DOWN

characters.

10 The same as line 10 in Program 5-2, POKE Movement.

15 Set the string FG$ to the character that will be the figure

PRINTed on the screen. Set NV to the row and NH to

87

5

Getting Your

Figures Moving

the column where the figure should first appear. Then

skip the next few lines and execute the PRINT instruc

tions at line 40.

20 The beginning of the movement loop. Set A to the value

of the key pressed; set B to the value from SHIFT, Com

modore, and CONTROL.

25 Set H to -1 (left) if Commodore (or SHIFT and Commo

dore) was pressed (B > 1), or 1 (right) if SHIFT was

pressed (B = 1). Set V to -1 (up) if /5 was pressed, or to

1 (down) if p was pressed. If SHIFT and Commodore

are not pressed, then set H to 0; if /5 and /7 are not

pressed, then set V to 0.

30 Set NV (New Vertical position) to OV (Old Vertical posi

tion) plus V (Vertical movement). If OV is set at the last

valid row, 21, and V calls for a movement down (+1),

then subtract 22; if OV is at 0 and Vcalls for a movement

up (-1), then add 22.

35 Set NH (New Horizontal position) to OH (Old Horizon

tal position) plus H (Horizontal movement). If OH is set

at the last valid column, 20, and H calls for a movement

right (+1), then subtract 21; if OH is set at 0 and H calls

for a movement left (-1), then add 21.

40 Skip down the number of rows from HOME to the row

where the figure is currently located (PRINT V$(OV)),

move right the number of columns to the current figure

location (TAB(OH)), and erase the figure by printing a

blank (" "). Then repeat the process, only using the new

location values (NV and NH) so you can PRINT the

figure (FG$) at the new position.

45 Set OH and OV to the current figure position (NH and

NV), and go back to 20 to get new instructions from the

player.

Dangers of using PRINT. Using PRINT in games is very ef

fective, since it works much faster than POKE, especially when

you're moving large, multicharacter figures. However, the PRINT

statement can have strange effects on the screen. As far as the

computer knows, you want it to format text just the way it usually

does. That text formatting can really get in your way.

If a character is PRINTed in the last column of the line, the

lines below it on the screen are all moved down by one row to

make room for the next character. That can completely destroy

your screen display, unless you're working on a blank screen.

5

Getting Your

Figures Moving

And if a character is PRINTed in the last column of the last

row, or if a CURSOR-DOWN is PRINTed while the cursor is on

the last row, the whole screen will scroll — and there goes the top

row (or rows) of your screen display.

That's why this program treats the screen as if it were only 21

characters wide (column 0 to column 20) and 22 lines high (row 0

to row 21). If you keep the playfield and the border the same

color, the player probably won't notice that the playfield is one

column narrower and one row shorter than normal.

In-line logic. If you aren't an experienced programmer, the

logic in lines 30 and 35 may look complicated to you. Since this

kind of statement saves you from having a lot of IF statements and

extra lines, it might be worthwhile to look more closely at what is

going on. Let's examine line 35:

35 NH =OH +H +21*((OH =20ANDH =1) -(OH =0AND

H=-l))

The first part is pretty clear-cut. We are setting NH to equal OH,

the old horizontal position, plus H, the player's horizontal move

ment instruction. Hmight be zero, of course, in which case this

whole line will do nothing but add zero to OH, so that NH and

OH are the same.

The rest of the line causes the wraparound. Look at the last 17

characters of the line: - (OH = 0 ANDH =-1)). If the figure was

already in column 0 (OH = 0) and the movement called for is left

(H = -1), then both conditions are true and the value within the

parentheses is -1. But we are subtracting that value, so that, in ef

fect, if the result is true we willadd 1. Now look back at the rest of

that expression.

If the second half is true, then the first half (OH =20 AND

H = 1) must be false. It will then equal 0. So the whole expression

within parentheses evaluates as 0 - (-1), or 0 +1.

That number is multiplied by 21, with a result of 21, which is

added to OH + H. Since we know that OH is zero and H is -1,

that means that NH is set to 0 -1 + 21, or 20. Now the PRINT in

struction in line 40 will TAB to column 20, the last legal column.

What the player sees is that he or she instructed the figure to

move left, and the figure jumped from the leftmost column to the

rightmost position on the screen. That's wraparound.

Now you can see that if the first condition is true, the second

will be false, and we'll be setting NH to the value 20 +1 - 21, or 0,

and the figure will jump from the rightmost position to the left

most position.

89

5

Getting Your

Figures Moving

And if neither condition is true, then 21*(0 - 0) gives us 0, and

NH will simply equal OH+H— the normal movement will take

place.

PRINT for speed. PRINT is the fastest way to get characters

on and off the screen in BASIC, provided you link all the PRINT

instructions so they follow a single PRINT statement. The speed

difference between Program 5-2 and Program 5-3 isn't so obvious,

because we're putting only a single character on the screen. But

what happens when you have a multicharacter figure, one that

consists of two or more characters next to each other?

Here's a program that moves a four-character figure around

the screen. If you have already entered and saved Program 5-3, all

you need to do is change lines 15,30,35, and 40 so they are the

same as in this program.

Program 5-4. Multicharacter print Movement

5 DIM V$(22):V?(0)="{HOME}":FOR 1=1 TO 22:V$(l)=V$

(1-1)+"{DOWN}":NEXT
10 POKE 36879,42:PRINT"{CLR}{BLK}II:POKE 657,128

15 PG$="g+i§-3{2 LEFT}{DOWN}|£3E-3
{2 left}{down}B£3B-3{2 left}{down}i-3
i+3":NV=ll:NH=ll:GOTO 40

20 A=PEEK(197):B=PEEK(653)AND3

25 H=(B>1)-(B=1):V=(A=55)-(A=63):IF V=0 AND H=0 TH

EN 20

30 NV=OV+V+19*((OV=18 AND V=1)-(OV=0 AND V=-l))

35 NH=OH+H+20*((OH=19 AND H=1)-(OH=0 AND H=-l))

40 PRINT V$(OV);TAB(OH);"{2 SPACES}{2 LEFT}{DOWN}
{2 SPACES}{2 LEFT}{DOWN}{2 SPACES}{2 LEFT}

{DOWN}{2 SPACES}";V$(NV);TAB(NH);FG$
45 OH=NH:OV=NV:GOTO 20

Now, instead of FG$being a single character, it is eight visible

characters plus nine cursor-movement instructions. Yet all 17

characters are PRINTed so quickly that they seem to appear on

the screen all at once. POKE statements in a FOR-NEXT loop ap

pear on the screen much more slowly, so that you would see each

piece of the eight-character figure appear separately, and it would

move like an inchworm, a part at a time.

For a direct, head-to-head comparison of POKE and PRINT

in screen movement, here's a program that creates a very large fig

ure and gives you the option of moving it either with POKEs or

PRINTs. For simplicity, Program 5-5 allows the ship to move only

left to right.

90

5

Getting Your

Figures Moving

Program 5-5. Laser x Jet

10 PRINT"{CLR}{4 DOWN]{5 RIGHT}{RVS}LASER X JET
{OFF}"

20 PRINT"{5 DOWN}GIVE US A FEW SECONDS.
30 CLR:S=32

40 FOR I=7168TO7679:POKEI,PEEK(1+25600):NEXT

50 FOR 1=7176 TO 7311:READ X:POKE I,X:NEXT

230 DATA0,0,0,0,0,0,63,2

240 DATA0,0,0,0,0,0,255,0

250 DATA0,0,0,0,0,0,252,32

260 DATA4,9,10,19,20,36,64,127

270 DATA0,17,153,149,83,81,0,0

280 DATA16,72,68,66,65,64,0,0

290 DATA0,0,0,0,0,128,64,32

300 DATA195,192,192,223,216,216,216,255

310 DATA255,0,0,255,160,64,160,255

320 DATA240,255,0,255,160,64,191,240

330 DATA0,254,1,252,198,195,255,0

340 DATA0,0,255,15,1,3,252,0

350 DATA0,0,192,248,255,255,0,0

360 DATA0,0,0,0,0,252,0,0

370 DATA224,24,198,192,192,198,24,224

380 DATA3,28,224,7,7,224,28,3

390 DATA0,0,3,60,252,3,0,0

400 DATA 7900,7901,7902,7903,7881,7859,7860,7882,7

904,7905,7883,7861,7862,7884,7906

410 DATA 7885,7907,7908,7909,7910,7911,32,17,16,15

,32,32,1,4,8,9,5,2,3,6,9,7,10,11,12

420 DATA 13,14

430 L$=" ABC{DOWN}{4 LEFT} DEFG{DOWN}{4 LEFTJhIIJK
LMN":FL$=" QPO" :D$=" {HOME} {8 DOWN}11

500 DIML(20):DIMY(20):DIMP(29)

510 FORX=0TO20:READL(X):NEXT?:FORX=0TO20:READY(X):N

EXT

520 PRINT "{CLR}PRESS {RVSJf7{OFF} TO MOVE WITH PO

KES11

530 PRINT "PRESS {RVS}F5{OFF} TO MOVE WITH PRINT"

540 POKE 36879,8

550 A=PEEK(197):ON-(A=63)-2*(A=55) GOTO 700,800:GO

TO 550

560 A=PEEK(197):ON-(A=63)-2*(A=55) GOTO 700,800:GO

TO 560

700 POKE 36869, 255 .-PRINT " {CLR} " :X=L(0)-7900 :FOR I

=0 TO 20:L(I)=L(I)-X:NEXT

710 FORX=4TO20:POKEL(X),Y(X):NEXT

720 A=PEEK(197):IF A=63 THEN GOSUB 750:GOTO 710

730 IF A=55 THEN 800

740 FOR 1=1 TO 3:POKE L(I),32:NEXT:GOTO 710

750 IF L(20)=8184 THEN RETURN

91

5

Getting Your

Figures Moving

760 FOR X=0 TO 20:L(X)=L(X)+1:NEXT:FOR X=0 TO 3:PO

KE L(X),Y(X):NEXT:RETURN

800 POKE 36869,255:PRINT "{CLR}":X=3

810 PRINT D$TAB(X)L$:A=PEEK(197):IF A=63 THEN 700

820 IF A<>55 THEN PRINT D$TAB(X+41) " {4 SPACES}11:GO

TO 810

830 X=X+1:IF X=80 THEN X=3:PRINT "{CLR}"
840 PRINT D$TAB(X+41)FL$:GOTO 810

This program uses another technique — the flame from the

engines is displayed only when the jet is moving. This is done by

treating the flame as a separate figure, which is moved along in

tandem with the jet, but is erased when the jet stops.

Reading the Joystick

The joystick is read by PEEKing two locations. At location 37137,

you read the up, down, and left positions of the joystick and the

joystick button. At location 37152, you read the right position.

If the joystick is pushed in a particular direction, a certain bit

will be set to 0; if the joystick is not being pushed in that direction,

that bit will be set to 1. Here are the tests for each direction:

1. If the joystick is pushed left, PEEK(37137)AND16 = 0.

2. If the joystick is pushed down, PEEK(37137)AND8=0.

3. If the joystick is pushed up, PEEK(37137)AND4=0.

4. If the joystick button is pressed, PEEK(3713?)AND32 = 0.

5. If the joystick is pushed right, PEEK(37152)AND128 = 0.

(Remember that the first four tests use location 37137, while the

last uses location 37152.)

If any of these expressions is true, then the joystick is being

pushed in that direction. Remember, too, that the joystick can be

pushed to a diagonal position — it is possible for both 1 and 2 to

be true, or 1 and 3, and so on. And the joystick button can be

pressed at the same time.

Before you can read the joystick at these locations, however,

you have to first prepare the VIC to read it. To prepare to read

37137 (up, down, left, button), you must POKE a 0 into location

37139. To prepare to read 37152 (right), you must POKE 127 into

location 37154.

Unfortunately, location 37154 also has an effect on the way the

keyboard is read, and if you have POKEd that location to allow

the problem, but it also stops your program. The best solution is

92

5
Getting Your

Figures Moving

to POKE 37154,127 right before you PEEK(37152), and immedi

ately afterward set things back to normal with POKE 37154,255.

Program 5-6 is an adaptation of Program 5-3, which reads the

joystick instead of the keyboard.

Program 5-6. Joystick Movement

5 DIM V$(22):V$(0) = ll{HOME}il:FOR 1=1 TO 22:V$(l)=V$
(1-1)+"{DOWN}":NEXT

10 POKE 36879,42 :PRINT"{CLR}{BLK}":POKE 657,128:F
G$="QM

15 f©KE 3f119,0:DD=37154: Sl»3 71-37 : S2=37152 rGOTO 4f

20 POKE DD,127:B=(PEEK(S2)AND128)=0:POKE DDf255:A=
PEEK(SI)

25 H=((A AND16)=0)-B:V=((A AND4)=0)-((A AND8)=0)
30 IF H=0 AND V=0 THEN 20

35 NV=OV+V+22*((OV=21 AND V=1)-(OV=0 AND V=-l))

40 NH=OH+H+21*((OH=20 AND H=1)-(OH=0 AND H=-l))

45 PRINT V$(OV);TAB(OH);" ";V$(NV);TAB(NH);FG$

50 OH=NH:OV=NV:GOTO 20

In line 15, the program POKEs 37139 with 0 to allow us to read

up, left, down, and the button. But instead of setting 37154 to 127

right here, the variable DD is set to 37154.

Then when the program actually reads the joystick in line 20,

POKE DD,127 Siables us to read 37154 (joystick right); and im

mediately after we read it, POKE DD,255 sets it back to normal

again.

Line 25 sets H and Vto -1, or 0, depending on which way

the joystick is being pushed. The rest of the program is identical

to Program 5-3.

The joystick button. As long as we're reading the joystick,

let's find a use for the button. By changing lines 10 and 45 in Pro

gram 5-6 and adding line 12, we can make the figure invisible

when the joystick button is pressed, and then make it reappear

when the button is released.

10 POKE 36879, 42: PRINT "{CLR} ".-POKE 657,128

12 DIM FG$(1):FG$(0)=" ":FG$(1)="Q"

45 PRINT V$(OV);TAB(OH);M ";V$(NV);TAB(NH);FG$(-((

A AND 32)=32))

The subscript of FG$(n) at the end of line 45 is equal to 1 if the

joystick is not pressed and 0 if the joystick is pressed. You can

make the figure appear only when the joystick is pressed by

changing line 12 so that FG$(0) = " Q" and FG$(l) = " ".

93

5

Getting Your

Figures Moving

I Animation
Animation — making figures move smoothly and naturally — is

tedious to program and hard to do in BASIC. However, it can

make a great difference in the way your game affects players. The

more real the game world seems, the more intriguing it is to

watch, and the more fun the game is to play.

The movement routines we've used so far have given fairly

good movement, but to make the motion smooth, and especially

to give a lifelike quality to figures, you'll need redefined char

acters. Remember Mario in Donkey Kong? Each different position

he gets into is another character.

Animation in Place

The easiest sort of animation is movement within a single char

acter. This is done by POKEing or PRINTing different characters

in the same location on the screen. If the characters differ only

slightly from each other, the resulting figure will seem to be mov

ing in place. You might try this:

10 SC=256*PEEK(648):POKE 36879,8:PRINT "{CLR}11

20 N=86-5*(N=86):FOR 1=0 TO 50:NEXT

30 POKE SC+76,N:GOTO 20

Other interesting effects are possible with the built-in char

acter set. This program lets you cycle through a series of ten dif

ferent animation sequences. Just press any key to get from one

animation sequence to the next.

10 SC=256*PEEK(648):POKE 36879, 8.-PRINT " {CLR} " : Z=l
:X=Z

20 DIM N(40):FOR 1=1 TO 40:READ N(l):NEXT

30 X=X+1:IF X>Z+3 THEN X=Z

40 POKE SC+76,N(X):IF PEEK(197)<>64 THEN Z=Z+4:X=Z

:IF Z>40 THEN Z=l

50 FOR 1=0 TO 100:NEXT:GOTO 30

100 DATA 123,126,124,108

110 DATA 76,79,80,122

120 DATA 73,75,74,85

130 DATA 115,114,107,113

140 DATA 71 ,66,72;103

150 DATA 103,77,100,100

160 DATA 100,111,121,98

170 DATA 73,93,85,93

180 DATA 126,97,127,226

190 DATA 95,160,223,32

94

5

Getting Your

Figures Moving

If you'd like to see all these at once, change lines 30,40, and 50:

10 SC=256*PEEK(648):POKE 36879,8:PRINT "{CLR}":X=1

20 DIM N(40):FOR 1=1 TO 40:READ N(l):NEXT

30 X=X+1:IF X>4 THEN X=l

40 FOR T=0 TO 36 STEP 4:POKE SC+10+T*11,N(X+T):NEX

T

50 FOR 1=0 TO 20:NEXT:GOTO 30

100 DATA 123,126,124,108

110 DATA 76,79,80,122

120 DATA 73,75,74,85

130 DATA 115,114,107,113

140 DATA 71 ,66,72,103

150 DATA 103,77,100,100

160 DATA 100,111,121,98

170 DATA 73,93,85,93

180 DATA 126,97,127,226

190 DATA 95,160,223,32

Animation and Movement Together

Now lefs take animation within one location and combine it with

a simple movement routine to make an inchworm-like animation

sequence across the screen:

Program 5-7. inchworm

10 SC=256*PEEK(648):POKE 36879,8:PRINT "{CLR}":Z=1
:X=21

20 DIM N(16):FOR 1=1 TO 16:READ N(l):NEXT

30 Z=Z+1:IF Z>16 THEN Z=1:X=X-1:IF X<0 THEN X=21

40 POKE SC+X,N(Z)

50 FOR 1=0 TO 50:NEXT:GOTO 30

100 DATA 103,106,118,225,245,244,229,160,231,234,2
46,97,117,116,101,32

Notice that the entire animation sequence is completed in

one position before moving to the next. Here is a slight modifica

tion of the same program that makes smooth, continuous anima

tion across the screen. This time, however, two characters are

changed every time. At first the left-hand character is fully dark,

and the right-hand character is completely white. Each time

through the loop a bit more of the left-hand character is light and

a bit more of the right-hand character is dark, until the loop is

complete. Then the character address is changed and the cycle be

gins again.

95

5

G6ttln0 Your

Figures Moving

Program 5-a smooth Animation

10 SC=256*PEEK(648):POKE 36879,8:PRINT "{CLR}":Z=l

:X=21:Y=20

20 DIM N(16):FOR 1=1 TO 16:READ N(l):NEXT

30 X=X-1-21*(X<0):Y=Y-1-21*(Y<0)

40 FOR Z=l TO 8:POKE SC+X,N(Z+8):POKE SC+Y,N(Z):NE

XT

50 GOTO 30

100 DATA 103,106,118,225,245,244,229,160,231,234,2

46,97,117,116,101,32

If this isn't slow enough, try it with player control added. In

this program, the Commodore and SHIFT keys control left-right

movement:

Program 5-9. Player-Controlled Animation

10 SC=256*PEEK(648):POKE 36879,8:PRINT "{CLR}":Z=l

:X=20:T=-.125:POKE 657,128

20 DIM N(16):FOR 1=1 TO 16:READ N(l):NEXT

25 DIM Y(22),R(22):FOR 1=1 TO 22:Y(I)=I-1:R(I)=I-2

:NEXT:Y(0)=21:R(0)=20:R(1)=21

30 X=X+T+22*((INT(X+T)=22)-(INT(X+T)=-1))

40 POKE SC+X,N(Z+8):POKE SC+Y(X),N(Z):POKE SC+R(X)

,32

45 A=PEEK(653):ON -(A=l)-2*(A=2) GOSUB 60,70

50 Z=Z-SGN(T):Z=Z+8*((Z=9)-(Z=0)):GOTO 30

60 IF SGN(T)=-1 THEN T=-T

61 RETURN

70 IF SGN(T)=1 THEN T=-T

71 RETURN

100 DATA 103,106,118,225,245,244,229,160,231,234,2

46,97,117,116,101,32

If we checked for player input only once in each cycle, this pro

gram would run faster and be easier to write, but the response to

the player's input would be much slower. Machine language

could do the same thing so fast you could hardly see what was

going on. This is one area where, even though the programming

can be done in BASIC, it just isn't worth the effort to get such

detailed animation.

All these demonstrations have used the abstract built-in

graphics characters. Here's a program that shows how to make

your VIC produce more humanlike motion. We'll use the char

acters we designed in Chapter 4 to create a running and jumping

athlete. To make the athlete run, press the CURSOR LEFT/RIGHT

96

5
Getting Your

Figures Moving

key; to make the athlete jump, press the CURSORUP/DOWN

key.

Program 5-10. Athlete in Action

10 POKE 36869,255:POKE 52,28:POKE 56,29:CLR

20 GOSUB 900 : PRINT"{CLR}11

30 DIM CH$(6)

35 CH$(1)=CHR$(3 3):CH$(0)=CHR$(34)+CHR$(35):CH$(2)

=CHR$(36):CH$(3)=CHR$(37)
40 CH?(4)=CHR?(3*9) + 1I{UP}{LEFT}"+CHR$(38):CH$(5)=CH

R$(37)+"{LEFT}{UP} m:CH$(6)=CHR$(36)

50 S$="{HOME} {DOWN}11: FOR 1=1 TO 16 :S$=S$+H {DOWN} " :
NEXT:T=130

60 GOSUB230

100 A=PEEK(197):ON -(A=23)-2*(A=31) GOSUB 200,250:

GOTO 100

200 PRINT S$TAB(P)CH$(0):FOR X=0 TO T:NEXT

210 Q=P:P=P+1:IF P>20THEN P=0:PRINT S$TAB(Q)"

{2 SPACES}":GOTO 230

220 IF PEEK(197)=64 THEN 220

230 PRINT S$TAB(Q)" "S$TAB(P)CH$(1):FOR X=0 TO T:N

EXT:RETURN

250 FOR 1=2 TO 6:PRINT S?TAB(P)CH$(I):FOR X=0 TO T

/4:NEXT
260 IF PEEK(197)=64 THEN 260

270 NEXT:RETURN

900 FOR C=7424 TO 7487:READ D:POKE C,D:NEXT:RETURN

905 DATA 0,0,0,0,0,0,0/0

910 DATA 24,24,18,124,88,20,100,0

915 DATA 1,1,1,3,6,1,3,0

920 DATA 128,128,32,224,128,64,32,0

925 DATA 0,56,56,16,124,16,124,68

930 DATA 56,56,16,124,16,124,68,68

935 DATA 0,0,0,56,56,84,124,16

940 DATA 56,40,40,0,0,0,0,0

In the initialization routine (lines 10-60) the string array

CH$(n) is set up to hold the characters or groups of characters

that will produce each stage in the figure's movement. Sometimes

a single character will show the full figure, but in midrun and

midjump, two characters must be printed, along with needed

cursor-movement characters and spaces required to erase other

characters. S$ is set up to home the cursor and then drop down

the correct number of lines.

The main loop at line 100 is one line long, doing nothing but

getting keyboard input and deciding whether to make the figure

run or jump.

97

5

Getting Your
Figures Moving

The run subroutine at line 200 is the most complex part of the

program, since the figure must not only be PRINTed, but must

also wrap around when it reaches the end of the line. The delay

loops (FORX=0TO T:NEXT) are present to show how you can

change the smoothness and speed for different effects. By chang

ing the value assigned to T in line 50, you can make the runner's

movement slower but make the individual steps clearer, or you

can speed up the figure to a virtual blur. The value shown here,

130, emphasizes the individual steps. A value of zero will of

course be much faster.

The jump subroutine at line 250 is much simpler; even

though jumping requires five steps (FOR I=2 TO 6), jumping

never has to wrap around the end of a line.

The character set routine at line 900 is the one we used in

Chapter 4 to set up the athlete characters.

If you want to devote the programming time and have the

computer memory to do it, you could add many other intermedi

ate characters to get far more fluid, lifelike motion. Ifs a trade-off.

Especially when you're programming in BASIC, every feature

you decide to add will cost you something somewhere else. To get

speed, you must keep your figures small and your motions fairly

jerky. To get large, detailed figures, you must sacrifice speed,

memory, and smoothness. To get natural-looking animation, you

must give up speed and memory. It should always be decided on

the basis of what is more important for the game. Some games

need animation; with many others it would add nothing.

Q

O

O

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

G

o

o

G

G

G

G

G

G

G

6
CoHsions
When Pac-Man eats dots, points get added to the score and the

dot disappears; when he eats a power dot, the ghosts change

color for a while. When Pac-Man touches a ghost, he dies —

unless he recently ate a power dot. Most of the things that hap

pen in a videogame happen because something on the screen

bumped into something else.

There are other things that can cause changes. In Donkey

Kong, for instance, if it takes you too long to get to the top of the

screen, you run out of time and Mario wipes out. In most games,

if your score reaches a certain level, you get a bonus player-figure,

an extra turn. But these are exceptions: the overwhelming

majority of events are caused by collisions.

Checking for Collisions

Checking for collisions is really very simple. All you have to do to

see if your figure is touching something is PEEK at the address in

screen memory where the figure is about to be PRINTed or

POKEd and see what's there.

Rememberback in Chapter 3 when we created a screen dis

play made of stars? Let's put that display on the screen and move

a spaceship around on it using the wraparound movement rou

tine from Chapter 5. But before we move the spaceship, we'll

check to see if there's a star in the place where the spaceship is

trying to go. If there is, the spaceship can't make the movement.

Use the Commodore and SHIFT keys for left/right movement and

f5 and f7 for up/down movement.

This program isn't quite a game yet, but as you move around

the screen, you'll see that we're getting very, very close.

Program 6-1. spaceship collisions

10 SC=PEEK(648):CM=37888+256*(SC AND2):SC=SC*256:G

OSUB 500

20 FG=90:OC=PEEK(CM)AND15:NC=5

30 POKE 657,128

90 GOTO 280

100 A=PEEK(653)AND3:B=PEEK(197)

190 H=(A>1)-(A=1):V=(B=55)-(B=?63):IF H=0 AND V=0 T

HEN 100

200 NH=OH+H+22*((OH=21 AND H=1)-(OH=0 AND H=-l))

101

6

Collisions

210 NV=OV+V+23*((OV=22 AND V=l)-(OV=0 AND V=-l))

220 A=PEEK(SC+NH+NV*22):IF A<>32 THEN NV=OV:NH=OH:
GOTO 100

280 POKE CM+OH+22*OV,OC:POKE CM+NH+22*NV,NC

290 POKE SC+OH+22*OV,32:POKE SC+NH+22*NV,FG:OH=NH:

OV=NV:GOTO 100

500 POKE 36879,8:PRINT "{BLK}{CLR}":Q=100*RND(9):Q
1=6*RND(9)

510 Q=80*RND(9)+20:Ql=6*RND(9)+2

520 FOR 1=0 TO Q:X=505*RND(9):N=46:GOSUB 540:NEXT

530 FOR 1=0 TO Q1:X=505*RND(9):N=81:GOSUB 540:NEXT

:RETURN

540 POKE SC+X,N:RETURN

Line Function

10-90 This is the program initialization handler. Since pro

grams always start running at the lowest-numbered line,

you always have to have at least one initialization line at

the beginning of the program, even if all it does is say

GOTO 1000, where the real initialization takes place. You

might notice that this section ends with line 90, but there

are no line numbers from 30 to 90. This is so more initial

ization routines can be added later, either with a few

commands or a GOSUB to a more complex routine.

10 Set SC at the start of screen memory and CM at the start

of color memory. GOSUB 500 to draw the screen.

20 Set FG to the screen code of the character that will serve

as our spaceship figure — in this case, the diamond

shape. Set OC to the current color memory value (white)

and NC (new color) to the color of the spaceship, green.

30 Disable character set switching.

90 Go to the end of the movement loop to draw the space

ship on the screen and then wait for the player's
instructions.

100-190 This is the main loop of the program. Any command in

this section of the program will be executed every time

the program passes through the loop, whether the

player has called for movement or not. Opponents'

movements, timing, display changes, and so forth are all

controlled through this loop. As before, there is plenty of
space left for more lines.

100 Set A to show whether SHIFT or Commodore is

pressed. Set B to show if any other key has been pressed.

102

6

Collisions

190 Set Hand Vto their appropriate values if the right keys

have been pressed. If no movement is called for, return

to the beginning of the loop at line 100.

200-290 This is the player-figure movement handler. The pro

gram won't execute these lines unless the player has

commanded a movement. As always, there is plenty of

room left to add other routines. But any routine that is

accessed from this section will be executed only when

the player commands a movement.

200-210 Set NH and NV to the new values if this movement is

executed, including wraparound if necessary.

220 Set A to the value of whatever character is already at the

new player location. If it is not a blank (screen code 32),

cancel the movement by setting NH and NV to equal

OH and OV; then return to the main loop at line 100.

280 Erase the spaceship color at the old location and POKE it

into color memory at the new location.

290 Erase the spaceship at the old location and POKE it into

screen memory at the new location. Return to the main

loop at line 100.

500-540 The screen setup subroutine. This is almost identical to

the random starfield program in Chapter 3.

Making Things Happen

Nowwe have a spaceship moving through the starfield, and our

program notices when it collides with stars. All we need now to

make it a game is to have more things happen, some of them

depending on the player's choices, and some of them happening

automatically.

Let's say that our spaceship is on a fuel-gathering mission. It

needs to visit large nova stars, to gather rare gases from the clouds

surrounding them. Unfortunately, if the spaceship passes too

close to regular, smaller stars, it suffers damage — too many such

incidents before the spaceship reaches a space station will cause

the spaceship to malfunction, and the crew will have to abandon

it.

How does this story translate into programming?

Collision handling. Well allow the player-figure to move

onto the squares occupied by stars and novas. This time, how

ever, we will be keeping score. Every time the ship collides with a

small star, the player loses points. Also, it will come one step

closer to destruction, which is signified by changing the space-

103

6

Collisions

ship's color from red to cyan, purple, green, blue, and yellow.

Every time the ship collides with a nova (large star), the

player wins points, and the nova, all its important gases stripped

away, appears on the screen as a small star.

A new element will be introduced — a space station, which

will be a red checkerboard square (screen code 102). The space

ship changes back to red when it collides with the space station,

but gets no additional points. After a while, the spaceship gets

out into deep space and the space stations stop appearing.

When the spaceship moves onto a small star or the space sta

tion, the program must "pick up" the star and then put it back

when the spaceship leaves. With the novas, however, since the

spaceship has picked up all the gases surrounding them, the pro

gram will put a small star in their place when the spaceship

moves away.

The moving starfield. Obviously, the spaceship will soon get

all the available novas. For the game to continue, the screen has to

be refreshed. One way to do this might be to create a new random

starfield whenever the last nova has been taken. This is what Vac-

Man does, when all the dots have been eaten. But it stops the

game each time, and forces us to make the program keep track of

the number of novas on each screen. A better solution for this

game is to have a scrolling display— every now and then, the

whole starfield moves upward one or more lines, and a new line

of randomly generated stars is added at the bottom of the screen.

As the game goes on, the screen scrolls more often and adds

more lines at a time. Naturally, this means the player will have to

move faster and faster to get the novas before they scroll off the

top of the screen. Also, since the display is moving, it will be pos

sible for the small stars to collide with the spaceship.

How will we do the scrolling? Scrolling is always handled on

the VIC by doing a block move — taking the bytes stored at loca

tions Al through Zl and moving them to locations A2 through

Z2. In BASIC, this would be unbearably slow — the loop to move

all 506 bytes of screen memory and all 506 bytes of color memory

would take several seconds to execute and would slow down the

game far too much.

Fortunately, there is a machine language block-move routine

built right into VIC BASIC. When you PRINT a line at the bottom

of the screen, it makes the whole screen scroll upward to make

room for the cursor to move down to the next line. All we need to

do to make the screen scroll is to PRINT the new line of stars at

104

6

Collisions

the bottom of the screen, and the VIC automatically makes our

scrolling display.

Creating new lines of random stars. One of the problems

now is to create those new lines of stars to PRINT at the bottom of

the screen. They have to be random, and yet they have to appear

almost instantly in order not to slow down the game.

The solution is to create one long string, 255 characters long,

which contains a random assortment of blanks, small stars, and

novas. Then, using the MID$ function, we can choose a segment

of that string to PRINT each time we need a new line of stars. By

generating a random number for the starting position of the

string segment, we can still keep up the randomness — but we

have to generate only one random number each time we scroll,

and then the built-in machine language MID$ function and

PRINT command will take care of the rest. There we have it —

machine language speed in a BASIC program.

Program 6-2. Mission: Nova!

10 SC=PEEK(648):CM=37888+256*(SC AND2):SC=SC*256:G

OSUB 500

20 FG=90:OC=PEEK(CM)AND15:NC=2:PRINT "{WHT}":Q=3:Q

Q=Q+1:GOSUB 800

30 POKE 657,128:GOSUB 400

40 NH=7:NV=7:C=NH+NV*22:W=32:SS=102:CS=2:TS=0

90 GOTO 290

100 A=PEEK(653)AND3:B=PEEK(197)

110 IF VAL(TI$)>Q THEN GOSUB 600

190 H=(A>l)-(A=l):V=(B=55)-(B=63):IF H=0 AND V=0 T

HEN 100

200 NH=OH+H+22*((OH=21 AND H=1)-(OH=0 AND H=-l))

210 NV=OV+V+(OV=22 AND V=1)-(OV=1 AND V=-l)

220 POKE CM+C,OC:POKE SC+C,W:C=NH+NV*22:W=PEEK(SC+

C)

230 IF W<>32 THEN GOSUB 700

280 POKE CM+C,NC:POKE SC+C,FG:IF NC>7 THEN 900

290 OH=NH:OV=NV:GOTO 100

400 FOR 1=0 TO 254:T=32

410 IF INT(RND(9)*5)<1 THEN T=46:IF INT(RND(9)*5)<

1 THEN T=113

420 T$=T$+CHR$(T):NEXT

430 M$=CHR$(19):F0R 1=0 TO 22:M$=M$+CHR$(17):NEXT:

RETURN

500 POKE 36879,8:PRINT "{BLK}{CLR}":Q=100*RND(9):Q

1=6*RND(9)

510 Q=80*RND(9)+20:Ql=6*RND(9)+2

520 FOR 1=0 TO Q:X=505*RND(9):N=46:GOSUB 540:NEXT

105

6

Collisions

530 FOR 1=0 TO Q1:X=505*RND(9):N=81:GOSUB 540:NEXT

:RETURN

540 POKE SC+X,N:RETURN

600 POKE SC+C,W:POKE CM+C,OC:T=1+INT(RND(9)*167)

605 PRINT M$;MID$(T$/T/22*INT(QQ-Q)-1);:P=P-INT(7*

Q):GOSUB 800

610 OC=PEEK(CM+C):W=PEEK(SC+C):IF W<>32 THEN GOSUB

700

615 POKE SC+C,FG:POKE CM+C,NC

620 PRINT "{HOME}"TAB(8)STR$(P)n POINTS{3 SPACES}"

630 TS=TS+1:IF TS>10*(QQ-Q)THEN GOSUB 850

640 IF NO 7 THEN 900

690 RETURN

700 IF W=46 THEN P=P-100:NC=NC+1:RETURN

710 IF W=102 THEN NC=CS:W=104:RETURN

720 IF W=104 THEN RETURN

730 P=P+(8*NH)*INT(QQ-Q):W=46:RETURN

800 TI$="000000n:Q=99*(Q/l00):RETURN

850 TS=0:T2=506-INT(RND(9)*22):POKE SC+T2,SSxPOKE

{SPACE}CM+T2,CS:RETURN

900 FOR 1=0 TO 20:FOR X=0 TO 7:POKE CM+C,X:NEXT:NE

XT

910 PRINT "{CLR}"P" POINTS":PRINT:PRINT:PRINT "THE
END":END

Line Function

10-90 Initialization. Most variables are assigned their starting

value here.

Variables Used

SC = starting address of screen memory

CM = starting address of color memory

FG = screen code of the character used for the player-figure

OC = the original color of every square in color memory

NC = the current color of the player-figure

Q = the difficulty level. This starts at 3, then decreases steadily

throughout the game.

QQ = the original difficulty level +1; Q is subtracted from QQ

several times during the game to set certain values that

must get larger rather than smaller as the game gets

harder.

NH = the new horizontal position (column number) of the

player-figure

NV = the new vertical position (row number) of the player-

figure

OH = the old horizontal position of the player-figure

OV=the old vertical position of the player-figure

C = the number of bytes to add to SC and CM to find the

player-figure's current location in memory

106

6

collisions

W = the character that was stored at the new player position

before the player-figure moved there; it is usually put back
after the player-figure moves on.

SS = the screen code of the character that represents the space
station

CS = the color of the space station

TS = the variable used to time the appearance of the space
station

Subroutines Called
GOSUB 400 sets up the long random string that will create the

new lines added to the bottom of the screen.
GOSUB 500 sets up the screen display.

GOSUB 800 initializes the timer function that controls how
often the screen will scroll.

100-190 Main loop. Everything that happens constantly, whether
the player moves the player-figure or not, is controlled in
this section.

100 Set A and B to show what keys, if any, are pressed.
110 Check the timer to see if it's time to scroll the screen.

(The variable H$ is automatically changed by the operat
ing system to show how much time has passed since it

was last set to equal 0. If you don't know how to use H$

and can't figure it out from this line and the subroutine

at 800, see Programmer's Reference Guide to the VIC.) If it
is, jump to the scroll routine at 600.

111-189 Open lines, where other routines can be added.

190 Set Hand Vto equal the horizontal and vertical move
ment called for by the player. If no movement is called
for, go back to line 100.

200-290 Movement loop. This is where player movement is carried

out, along with any other routines that happen only

when the player moves.

200-210 Set NH and NV to the new player-figure location.

220 Set the old player-figure location back to its previous

values. POKE color memory with the nonplayer-figure

color, OC, and POKE screen memory with W, the char

acter that should be left behind when the player leaves

that spot. Then set C to equal the new player-figure off

set, and set Wto equal the character currently stored at

the new location.

230 If the character stored at the new location is something

other than a blank (32), go to the collision routine at line

700.

107

6

Collisions

231-279 Lines available for other routines.

280 POKE the player-figure and its color into screen memory

and color memory. If the color is greater than 7, then the

player-figure has collided with too many small stars —

jump to the end routine at line 900.

290 Set OH and OV to equal NH and NV; then jump to the

main loop at line 100.

400-430 Random line generator. This routine creates the

255-character string 1$, assigning each character in the

string the value T; Thas a randomized chance of being

32 (a blaijk), 46 (a small star), or, the least likely chance,

113 (a nova). Then the string M$ is set up to equal the

right number of CURSOR-DOWN characters to PRINT

the random segment of 1$ at the bottom of the screen.

500-540 Screen setup. The same routine we've used before to gen

erate a random starfield.

600-690 Scroll routine. This section controls everything that hap

pens whenever the screen scrolls.

600 Erase the player-figure by POKEing OC and Winto color

and screen memory. Since we don't want the player-

figure to move upward when the rest of the screen

scrolls, we will erase the player-figure, execute the scroll,

and then POKE the player-figure back into the same

location in memory. The starfield will seem to move,

while the spaceship will seem to hold still.

Then set T to a random numberbetween 0 and 166.

605 Scroll the screen by PRINTing M$ and the segment of 1$

starting at position T. At the easiest level, PRINT a seg

ment only one screen line in length. At harder levels,

PRINT up to four screen lines at a time.

Then subtract from the player's score a number of

points equal to seven times the difficulty level, so that at

harder levels of play, fewer points will be subtracted each

time the screen scrolls. This subtraction is included so

that players will have a greater incentive not to simply sit

there avoiding the moving stars.

Then jump to the timer subroutine at line 800.

610 Set OC and Wto the values that are now, after the scroll,

in the player's location in color memory and screen

memory. If W is not a blank, jump to the collision rou

tine at line 700.

615 POKE the spaceship and spaceship color into memory.

108

6

Collisions

620 PRINT the updated score at the top of the screen. Notice

that the program PRINTs STR$(P) instead of simply

PRINTing P. This is because the VIC automatically skips

a space after PRINTing numeric variables. If a number

was already in that space, it will be left there, which

makes the score inaccurate if the number of digits in the

score changes. Perhaps the best way to see how this

works is to change the statement to PRINT

"{HOME }"1AB(8)F' POINTS " and see what

happens.

630 Add one to the Space Station Timer (TS); depending on

the difficulty level, if TS is beyond the limit, jump to the

space station routine at line 850.

700-730 Collision routine. There are four possible collisions.

If the spaceship has collided with a small star (46),

the score (P) is decreased by 100, and NC, the space

ship's color, is increased by one.

If the spaceship has collided with a new space sta

tion (102), NC, the spaceship's color, is set back to 2.

Then W is set to 104, a "used" space station, so that it

can't be used again.

If the spaceship has collided with a used space sta

tion (104), nothing happens.

If the spaceship has collided with a nova (the only

other possibility), the score is increased, with greater in

creases at the higher difficulty levels and at lower posi

tions on the screen. W is then set to 46, a small star, so

that it becomes another obstacle to the spaceship.

800 Timer reset routine. The variable 11$ is set back to 000000,

which starts it over again. Also, the difficulty level Q is

set to a slightly lower number. To make the game get

harder faster, change the 99 to a lower number; to make

it stay easy longer, change the 99 to 99.5 or 99.8 — any

number greater than 99 but less than 100.

850 Space station routine. This one-line subroutine puts a

space station in a random location on the bottom line of

the screen and sets its color to red.

900 End routine. This routine makes the spaceship flash

through the colors, prints the final score, and exits the

game.

109

6

Collisions

I star-Eater

I Here's a simple gobble game. You are a hungry dot, out to eat
stars (asterisks). You get points for eating them. The trouble is,

each one you eat turns into a plus — and if you accidentally eat a

plus, you lose points. Also, every plus you eat turns into a block of

stone, which you can't get past. Your task is to eat as many stars as

you can before time runs out. You can wrap around the screen

both horizontally and vertically; left-right movement is done with

the SHIFT and Commodore keys, and up-down movement is
done with f5 and f7.

With what you already know about game programming, you

should have little trouble figuring out exactly what's going on.

lines 0-99 are initialization; lines 100-199 are the main loop; lines

200-299 are the movement loop; lines 300-399 are the end routine;

lines 600-699 are the set level subroutine; and lines 700-799 are the
collision routine. It is all familiar ground.

Let me just call your attention to a few details.

Notice the variable M. During initialization, it is set to the

total number of stars on the screen by adding 1 to M each time a

star is POKEd to the screen (that is, each time the random num

ber X is a 3). Then, during the collision routine, M is decreased

by 1 each time the player eats a star. This means that when the last

star is eaten, M will equal zero — and that is one of the conditions

that will end the game. Upon entering the end routine at line 300,

you get different messages, depending on whether or not you ate

all the stars.

Another new feature is the choice of levels. At the beginning

of the game, you are asked what level you want. This is accom

plished in the subroutine starting at line 600. If you choose "easy,"

the variable N is set to 300; 200 if you choose "hard"; and 100 if

you choose "superhuman."

Notice how this variable is used throughout the program. In

the Collision Routine, the score is added toby an amount equal to

Nminus the current value of the timer (11$), but when the player

eats a plus, the score is subtractedfrom by an amount equal to TI$.

That means that the later you get in the game, the fewer points

you get for each star you eat, and the more points you lose for

each plus you eat.

Also, the TIME message at the top of the screen (see line 100)

tells you how much time you have left. The countdown is created

by subtracting TI$ from N. And if you don't eat all the stars before

no

6
Collisions

the timer reaches the value of N, the game ends — with a dif
ferent message at line 300.

Program 6-3. Star-Eater

5 DIM CH(3):CH(0)=102:CH(1)=32:CH(2)=43:CH(3)=42
10 DIM CL(3):CL(0)=2:CL(1)=1:CL(2)=5:CL(3)=7
15 SC=PEEK(648):CM=37888+256*(SC AND2):SC=SC*256
20 PRINT H{CLR}":FG=81:CF=0:M=0:GOSUB 600
25 FOR 1=22 TO 505:X=INT(RND(1)*4):M=M-(X=3)
30 POKE SC+I,CH(X):POKE CM+I,CL(X):NEXT

35 TI$="000000U:OH=10:OV=10:FL=OH+OV*22:OC=CL(1):W
=CH(1)

40 POKE SC+FL,FG:POKE CM+FL,CF

100 PRINT "{HOME}SCORE "STR$(P)n TIME "STR$(N-VAL(
TI$))M "

110 A=PEEK(653)AND3:B=PEEK(197)
120 IF VAL(TI$)>N OR M=0 THEN 300

190 H=(A>1)-(A=1):V=(B=55)-(B=63):IF H=0 AND V=0 T
HEN 100

200 NH=OH+H+22*((OH=21 AND H=1)-(OH=0 AND H=-l))

210 NV=OV+V+22*((OV=22 AND V=1)-(OV=1 AND V=-l))

220 POKE SC+FL,W:POKE CM+FL,OC:FL=NH+NV*22:E=W
230 W=PEEK(SC+FL):OC=PEEK(CM+FL):IF W<>32 THEN GOS

UB 700

280 POKE CM+FL,CF:POKE SC+FL,FG

290 OH=NH:OV=NV:GOTO 100

300 PRINT M{CLR}":IF M=0 THEN 320

305 IF M=0 THEN PRINT "{2 DOWN}YOU GOT ALL THE STA
RSI"

310 PRINT "TIME'S UPi":PRINT "STARS LEFT: "M:GOTO
{SPACE}325

320 PRINT "YOU GOT ALL THE STARS!":PRINT "TIME LEF
T: "N-VAL(TI$)

325 PRINT "SCORE: "P

330 PRINT"{3 DOWNjPLAY AGAIN? (Y OR N)"
340 B=PEEK(197):IF B=28 THEN END

345 IF B=ll THEN RUN

350 GOTO 340

600 PRINT "{6 SPACES}STAR-EATER":PRINT "{2 DOWNjCH
OOSE YOUR LEVEL:"

605 PRINT "1 - EASY":PRINT "2 - HARD":PRINT "3 - S

UPERHUMAN"

610 N=PEEK(197):IF N=64 THEN 610

620 N=300+100*(N=56)+200*(N=1):PRINT "{CLR}":RETUR

N

700 IF W=CH(0) THEN 730

710 IF W=CH(2) THEN P=P-VAL(TI$):W=CH(0):OC=CL(0):

RETURN

111

6

Collisions

720 P=P+INT(N-VAL(TI$))zW=CH(2):OC=CL(2):M=M-l:RET

URN

730 NH=OH:NV=OV:FL=OH+OV* 2 2:W=E:OC=PEEK(FL+CM):RET

URN

3345 IF B=ll THEN RUN

Collision Tracking

So far we have only used PEEKs to see whether a collision is tak

ing place. There is a good reason for this. Most of the time, you

will be creating games where there are random elements, things

on the screen that your program won't be keeping track of.

There'll be no way for the computer to know there's been a colli

sion without PEEKing.

In some games, however, the only things on the playfield be

sides the player-figure will be computer-controlled figures, and

your program will therefore be keeping track of the location of

every single item on the screen. Then you can find out about colli

sions by comparing the locations of the various items. The game

//Moonraker," Program 10-3, uses this method. But it only works

when there are few figures on the screen and no possibility of

random items to run into.

I Spark: combining PRINT with POKES and peeks

One last game before we move on to sound and music. One

thing we haven't done yet is make the computer control a figure

moving around the screen. In the game "Spark," we'll use a

screen display we created in Chapter 3, except that it is in reverse

video. You have a spark on a wire, racing around and around. It's

your job to get the spark off the end of the wire. But you don't

control the spark— instead, you control an interruption in the

wire. The spark will keep moving at a steady pace, controlled by

the computer.

Using f5 (up) and f7 (down), you control the vertical position

of the break in the circuit. The SHIFT and Commodore keys con

trol its horizontal position. Press SHIFT and it has one horizontal

position; press Commodore and it has the other; press SHIFT

and Commodore together and the break completely disappears.

But this is one case where a picture is worth more than words —

you have to practice the game to really understand what your

controls will do.

The top and bottom of the wire also shift randomly, con

stantly undoing your work. You have a time limit — your score is

112

6

Collisions

how much time you had left when you got the spark off the wire.

As you examine the program, youll see that the spark never

exists in screen memory at all — it is only POKEd into color mem

ory. But the spark's movement routine in the main loop from lines

100 to 190 PEEKs into screen memory in order to see in what

direction it is supposed to go next. Using PRINT for screen

changes gives this game machine language speed in its response

to the player's keyboard input. This method won't work for all

programs, of course, but for this one, the computer is running a

fairly fast-moving figure through a fairly complex movement pat

tern, all in BASIC. If you program carefully enough, you can get

real speed in BASIC games.

Program 6-4. spark

10 DIM A$(6),S$(8):POKE 36879,1:PRINT "{CLR}{WHT}"

:GOSUB 500

20 FOR 1=0 TO 7:PRINT S$(I)A$(0);NEXT I

30 SM=PEEK(648):CM=37888+256*(SM AND 2):SM=SM*256

40 OC=PEEK(CM):NC=2:OL=32:NL=54

50 DIM MV(4,4)xGOSUB 700:FR=0:CH=4:P=300:POKE 657,

128

60 Y=1:GOSUB 310:A=2:PL=6:GOSUB 200

100 IF VAL(TI$)>1 THEN GOSUB 300

110 POKE CM+NL-MV(CH,FR),OC:POKE CM+NL,NC

120 A=PEEK(653)AND3:B=PEEK(197):IF A>0 THEN GOSUB

{SPACE}200

130 IF B<64 THEN GOSUB 250

140 E=PEEK(SM+NL):GOSUB 400:CH=E

145 IF CH=4 AND YY<>0 THEN GOSUB 450

150 E=PEEK(SM+OL):GOSUB 400:FR=E:IF CH=FR THEN FR=

4+(FR=4)+D

160 IF CH<4 THEN OL=NL

170 IF CH<0 THEN 600

180 NL=NL+MV(CH,FR):D=SGN(MV(CH,FR))=-1

190 YY=0:GOTO 100

200 PH=A:IF A=3 THEN PH=0:GOTO 290

250 PRINT S$(PL)A$(0):YY=SGN(MV(CH,FR))

260 PL=PL+(B=55)-(B=63):PL=PL+8*(PL>7)-8*(PL<0)

290 PRINT S$(PL)A$(PH):RETURN

300 Y=INT(RND(9)*2)?P=P-10

310 PRINT "{HOME}{2 SPACES}TIME LEFT{3 SPACES}"STR

$(P)" "

320 PRINT "{HOME}{DOWN}"A$(3+Y)S$(8)A$(6-Y)
330 IF P=0 THEN 600

340 TI$=n000000M:RETURN

400 E=E-128-73:IF E>2 THEN E=E-9:IF E>3 THEN E=E-7

410 RETURN

113

6

Collisions

450 IF YY=-1 THEN OL=CH-22*INT(CH/22)+396:RETURN
460 OL=CH-22*INT(CH/22)+22:RETURN
500 FOR 1=0 TO 6:A$(I)=CHR$(18):NEXT I

520 FOR X=l TO 20:A$(0)=A$(0)+CHR$(221):NEXT
530 FOR 1=1 TO 5 STEP 4:FOR X=l TO 10:A$(I)=A$

CHR$(106)+CHR$(107):NEXT:NEXT

540 FOR 1=2 TO 6 STEP 4:A$(I)=CHR$(221):FOR X=l TO
9

545 A$(I)=A$(I)+CHR$(106)+CHR$(107):NEXT:A$(I)=A$(
I)+CHR$(221):NEXT

550 FOR 1=0 TO 2:A$(l)=A$(l)+CHR$(13)+CHR$(18):NEX
T

560 FOR X=l TO 20:A$(0)=A$(0)+CHR$(221):NEXT

570 FOR 1=1 TO 3 STEP 2:FOR X=l TO 10:A$(I)=A$(I)+

CHR$(117)+CHR$(105):NEXT:NEXT

580 FOR 1=2 TO 4 STEP 2:A$(I)=A$(I)+CHR$(221):FOR
{SPACE}X=1 TO 9

585 A$(I)=A$(I) +CHR$ (117)+CHR$ (105) .-NEXT: A$ (I)=A$ (

l)+CHR$(221):NEXT

590 S$(0)=CHR$(18)+"{HOME}{2 DOWN}":FOR 1=1 TO 8:S

$(l)=S$(l-l)+"{2 DOWN}":NEXT:RETURN
600 PRINT "THE END":END

700 FOR 1=0 TO 4:FOR X=0 TO 4:READ MV(I,X):NEXT:NE

XT:RETURN

710 DATA 0,-1,-1,22,-1,1,0,-22,1,1,-1,-22,0,-1,-1

720 DATA 22,1,1,0,1,22,-22,-22,22,0

114

Sounds
and Music

Q

O

O

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

G

o

o

G

G

G

G

G

G

G

7
Sounds and
Music
Just how important is sound in a videogame? Try playing a fa

vorite game with the sound turned off. You'll be amazed at

how much you'll miss the various tones, noises, and melodies

that you are accustomed to hearing while you play the game. Your

timing will probably be off, your score will be lower, and most

important, you won't enjoy the game as much. Why?

I uses of Sound

Sounds help you while you play a videogame by providing feed

back of your game actions. As you play Joust, for example, there

are sounds which give you information on almost every event

that occurs. A collision in which you defeat the other knight is dif

ferent from one in which you are defeated. Colliding with dif

ferent surfaces results in different sounds. When you receive a

bonus knight, there is yet another sound. These sounds aid you

as you play, for as you concentrate on keeping your own knight

alive, the sounds tell you what's going on elsewhere on the

screen. Vac-Man also provides sounds as information, although

to a lesser degree. Each dot that is eaten, and thus each point that

is awarded, produces a sound. You know you are gaining points

without having to actually look to check. When a power dot is

eaten, another sound is made which signals that ghosts can now

be chased. Sound as information is a valuable aid in a game.

Sounds also affect your mood as you play, drawing you into

the game's unique world. Imagine the loss you feel when your

Pac-Man is caught by one of the ghosts and the short "Sorry"

sound routine plays. The fierce stamping sounds at the opening

of Donkey Kong only urge you on to the top. Never mind the anger

of the ape, you tell yourself. Part of this mood is generated by the

pace of the sounds and music.

One of the most successful arcade games, Space Invaders, uses

a repetitive sound as the aliens move across the screen. As their

numbers decrease, the sounds become louder and faster. The

effect is one of increasing excitement and anxiety.

117

7

Sounds

and Music

t levels of difficulty; Perhaps your

game will, too. Often the screen alters slightly when a new level
of difficulty is reached. A faster background sound or a higher-

pitched noise can increase the pace of the action. The high-

pitched, modulating drone that seems to yell "Danger! Danger!"

as the ghosts in Pac-Man chase you is a good example.

Pay close attention to the sounds you hear the next time you

play a video arcade game. What sounds are used for what effects?

What do those sounds do to and for the player? Howwould the

game be less enjoyable or harder to play if the sounds were elimi

nated? Seeing how other game creators use sound will help you

decide how and when to use sound in your own games.

I Creating sounds
The VIC creates sounds by addressing five memory locations,

called sound registers. The sound output is created and con

trolled by POKEing values to these memory locations. The

memory locations and corresponding sound registers are:

Memory Location

36874

36875

36876

36877

36878

Sound Register

Low tone register

Middle tone register

High tone register

Noise register

Volume control register

Each tone register can produce 128 tones or notes, simply by

using a POKE command in this way:

POKEy,x

where y is one of the five sound register memory locations and x

equals a numberbetween 128 and 255. For example, using the

command POKE 36874,128 produces the lowest possible tone,

approximately a low B.

The noise register can be addressed in the same way, but in

stead of producing a tone, it will create "white noise." Varying the

value will change the noise generated from a bass roar (128) to a

piercing hiss (255).

The fifth sound register controls the volume of the sound

produced on the VIC. There are 16 volume settings, ranging from

0 to 15. Zero, however, turns the sound off, so you must enter a

value between 1 and 15. Setting the volume register alone will not

118

7

sounds

and Music

produce a sound. You also must set one or more of the tone regis

ters for sound to be created.

There are numerous sources for small routines that duplicate

various sounds or sound effects. One such source is Personal Com

puting on the VLC-20, the manual that came with your computer.

Appendix G in the back of the manual has a number of sound

effects already worked out. In COMPUTED Second Book of VIC,

John Heilborn's article, "Making Sound with Blips/7 shows you

how to do really convincing sound effects and includes some

excellent examples. Such prewritten routines are useful if you

experiment with them, changing values or adding time delays to

slow the sounds down.

The two following routines can be used in just this way. Type

each in and save, so you can later load them for alteration.

Program 7-1. zap

10 L=36874

20 M=36875

30 Hl=36876

40 N=36877

50 Vl=36878

100 POKE N,175

110 FOR Bl=l TO 15

120 POKE VI,Bl

130 FOR T=l TO 5

140 NEXT T

150 NEXT Bl

160 POKE N,0

170 POKE VI,0

This program produces a short "zap" sound, something you

may find useful in a game that has objects moving quickly, or per

haps for firing projectiles. Notice that the values for the memory

locations have been placed at the start of the routine and given a

variable name. This just makes it simpler to type in a program,

which may use a memory location several times. See what hap

pens when you change the numbers in line 100, where the noise

register is being used; in line 110, which changes the volume from

1 to 15; and in line 130, which is a short delay. Try it for yourself.

Replace lines 100-170 in the first program with these lines.

Remember to keep lines 10-50, or there will be no memory loca

tions available for the routine.

119

7

Sounds

and Music

PTOgran

100

110

120

130

140

150

160

170

POKE

17-2. Blip

VI, 15

FOR Bl=l TO 5

FOR B2=250 TO 240

POKE

NEXT

POKE

NEXT

POKE

H1,B2

B2

H1,0

Bl

VI, 0

This routine creates a short "blip," another sound effect you

may find useful in your own game. Again, by altering the num

bers in lines 100,110, and 120, you can change the sound

produced.

Notice in these sample routines that values of zero are

POKEd in for both the sound (or noise) and volume registers.

This is the easiest way to turn off the sound. If you do not place a

POKE statement such as these in your sound routines, the sound

will continue until you press RUN/STOP-RESTORE.

Another thing that may help when you are trying sounds on

your VIC is to place this line at the beginning of your program:

POKE 36879,8:PRINT " {CLR}"

This both darkens the screen and clears it before any sounds are

produced. Sometimes the VIC makes static noise when the

screen is filled with printing in a bright display.

I Writing a Sound Program

Although you may have experimented with the sample rou

tines, or others you found, it would be useful to work on a pro

gram in more detail:

Program 7-3. Keysound

10 POKE 36879,8: PRINT "{CLR}11

20 POKE 36878,15:HI=36876

30 GET A?: IF A$=1IU THEN 30

40 FOR Y=128 TO 255

50 POKE HI,Y:NEXT

60 POKE HI,0

70 GOTO 20

Program Explanation

Line Function

10 Create a dark, cleared screen

120

7

sounds

and Music

20 Memory location 36878 sets the volume. Maximum

volume is 15. HI is established as equalling 36876 (high

tone register) so it won't have to be typed in each time it

is used.

30 Wait until the user presses a key.

40-50 Play each tone of the high sound register, from 128 to

255.

60 Turn off sound register HI.

With this one simple program, you can quickly see several

different applications and create varying effects, just by altering a

line or two. For example, by changing line 50 to:

50 POKE HI,Y:FOR T=0 TO 1:NEXT:NEXT Y

you will create a slight delay after each of the sound increments.

Changing it to read T = 0 TO 1000 will separate the notes even

more. Can you think of an application in a game (preferably your

own)?

Change line 50 back to its original state and then alter line 40

to read:

40 FOR Y=128 TO 255 STEP 2

This would use the original sound, but it would be shorter by •

half.
Making the pitch drop from highest to lowest is also quite

simple. To do this, change line 40 to:

40 FOR Y=255 TO 128 STEP -1

An even more elaborate sound can be created with this pro

gram by changing and adding these lines:

Program 7-4. Keysound UFO

40 FOR Y=128 TO 255 STEP 5

50 POKE HI,Y:NEXT

60 FOR Y=255 TO 128 STEP -5

70 POKE HI,Y:NEXT

80 GOTO 40

This new program will keep running until you hit the RUN/

STOP key. At that point you'll hear another tone which you can

stop only by pressing the RUN/STOP key along with the RESTORE

key. This resets the volume value to zero.

The sound made by this program is a type of noise often

made by games using spacecraft, such as a UFO. To get even

121

7

Sounds

and Music

closer to such a sound, change both 128 values to 240. A good Pac-

Man imitation can be obtained by changing the value in line 40

from 128 to 210.

You'll notice that most of the changes made were in the lines

containing the FOR-NEXT loops. These loops are essential in

most sound effects, and you should be familiar with this com

mand's operation before you attempt to write any detailed sound

effects routines. Once you are comfortable with the format of a

sound routine, you should be able to create almost any sound you

want.

You now have the background needed to create sound effects.

What do you do with them? Place them in a game program, your

game program.

I Background Sound

One possible use for sound or music in a game program is as

background, which can be useful as a mood producer. Remember

the importance of sound in affecting the mood of a player during

a game. It is important, and your game will certainly be better for

its inclusion. Although the music you choose for your game will

probably be different from the following example, once youVe

looked through this section, you should be able to apply its
techniques.

If you want this sound to be continuous throughout your

game, the routine will have to be included as part of the main

loop of the game program. If you want a high-pitched drone that

alternates between two pitches during the game, for example,

you might set up something like this:

Program 7-5. Background Sound

10 POKE 36879,8:PRINT "{CLR}":POKE 36878,15

20 HI=36876:A=248:B=250

30 POKE HI,A:GOSUB 100

40 POKE HI,B:GOSUB 100

50 GOTO 30

100 FOR T=0 TO 300:NEXT:RETURN

The A and B values in line 20 represent the two alternating

pitches, while line 100 slows the routine. Adding a delay to the

main loop of the program simply to slow the sound would be

wasteful, since it would also slow down the game. Inserting a

necessary delay, then, is better done in the sound routine.

122

7

sounds

and Music

This routine has yet to be added to a main loop of a program,

however. If this background sound of alternating pitches is to be
used, there must also be a way for the pitches to change. A simple
way to accomplish this is to alter the pitch each time the main
loop of the program executes. By adding this sound routine to the
main loop of the "Mission: Nova!" game program from Chapter 6,
you can hear a constant background sound as you play.

program 7-6. Main Loop Background sound
101 POKE 36878,10

102 S1=S1=0

103 IF S1<>0 THEN POKE 36874,170:GOTO 110

104 POKE 36874,190

The main loop of the Mission: Nova! programbegins on line
100. Line 101 POKEs in the volume setting for your background
sound. Line 102 determines if SI is either -1 or 0. The first time

through the main loop, SI is 0, so the POKE command in line 104
is executed. The second time through the main loop, SI is -1, so

the POKE in line 103 executes. Each time it alternates, creating the
two sounds. Notice that there is no delay loop to slow the sound
down. Add a delay, such as FOR Tl = 0 TO 300:NEXT as new line
105. The game slows down, doesn't it? In fact, it slows down far

too much, so the line should be removed.

Using a format such as this in another game, perhaps your

own, you could make the sound correspond to the movements of

the characters. Because game characters can make location

changes each time through the main loop, the pitch would
change with every character movement. This is difficult to see in

the Mission: Nova! program, but this background sound tech

nique can be quite useful, especially in a short game which has a

small number of characters moving on the screen.

I Sound Subroutines

I Many sounds in a game will not occur throughout the entire
game program, but will instead be heard only at the time of a cer

tain event. The music which plays when a game character is lost,

for example, would fit in this category. Perhaps you want sound

when the fire button on the joystick is pressed, or a loud tone

from the noise register when a target is hit. In these situations,

the sounds are called upon as subroutines.

Unfortunately, when a program goes to a subroutine, it leaves

123

7

Sounds

and Music

the main loop and everything comes to a stop until the program

returns. Sometimes this is very noticeable, for you can see the

characters on the screen stop as a noise or sound is executed by

the subroutine. Although this is a drawback, it is often used be

cause of the complexity of incorporating a sound routine into the

main program loop. Many programmers use the subroutine tech

nique since it is relatively simple to program. Perhaps in some

games the visual delay will not be as noticeable. As the game

designer and programmer, you must make the decision. Will the

delay harm the overall game execution? Will it lessen the player's

enjoyment of the game? If you think not, try the subroutine
technique.

The following example program uses a subroutine to access

the sound only when it is called for. A character moves back and

forth on the screen, which also displays a time clock. Every five

seconds the sound subroutine is called, and you will see the char

acter stop as the routine is performed.

Program 77. Subroutine Sound

10 POKE 36878,15:POKE 36879,8

20 L=7680:H=83:TI$="000000M

30 D=1:S=32:X=36876

40 PRINT "{CLR}11

50 POKE L,H:PRINT "{HOME}{5 DOWN} "TI$:REM
BEGIN MAIN LOOP

60 IF TI$="000005" THEN G=l

70 IF TI$="000010" THEN G=l

80 IF TI$= "00001511 THEN G=l

90 IF TI$="000020" THEN GOSUB 150:GOTO 20

0

100 ON G GOSUB 150

110 IF D=l THEN L=L+1:POKE L-l,S

120 IF D=-l THEN L=L-1:POKEL+1,S

130 IF L=7701 THEN D=-l

140 IF L<7680 THEN D=l

145 GOTO 50:REM END OF MAIN LOOP

150 FOR F=255 TO 127 STEP -1:POKE X,F:NEX

T

160 G=0:RETURN

200 PRINT "{CLR}{5 DOWN} THE DEMO IS OVER

Program Explanation

Line Function

10 Volume control is set to maximum, and the screen is

124

7

sounds

and Music

darkened. Again, this makes the character POKEd in

more visible and reduces the monitor noise interference.

20 Establish the variables. L is the location of the character;

H is the POKE number for the "heart" character. The

time clock is set at 0.

30 Set the variables for the character's direction. When

D = 1 it will move from left to right as per line 110. When

D =-1 it will move from right to left as per line 120.

40-50 First the screen is cleared, and then the main loop begins

by POKEing in the character at its first location and

printing the time clock five lines below so that it is out of

the way.

60-80 The clock is checked and compared with the values of 5,

10, and 15. If it is one of these values, then G is assigned

the value of 1.

90 The clock is checked to see if it is to the 000020 mark yet.

If it is, the sound routine is played and the program will

GOTO line 200, where it will end.

100 The ON G GOSUB command means, in effect, that if G

does not equal 0, the program will GOSUB 150, the be

ginning of the sound routine. This is actually a shortcut

in programming, for if this line was not included, lines

60-80 would each need a THEN GOSUB 150.

130-140 Change the direction of the moving character when it

reaches the end of the row. If this was deleted, the char

acter would keep moving off the screen.

145-160 Line 145 is the end of the program's main loop. It also

returns the program to line 50 for a repeat of tfie pro

gram. Lines 150 and 160 are the sound subroutine.

Notice that the value of F goes below 128, which auto

matically turns off the sound at the end of the loop. Line

160 also resets the value of G to 0 so the sound will not

keep repeating. Make sure the RETURN is included at

the end of every subroutine, so it will go back to the

main loop of the program.

You could easily insert other conditional statements to make

sounds at any number of events. One example would be creating

a sound each time the character reached the end of a line and

changed direction. All you have to do is eliminate lines 60-80 and

line 100 and add :GOSUB 150 to the end ofboth lines 130 and 140.

It should look like this:

125

7

Sounds

and Music

Program 7-a Subroutine Sound #2

10 POKE 36878,15:POKE 36879,8

20 L=7680:H=83:TI$=II000000"

30 D=1:S=32:X=36876

40 PRINT "{CLR}"

50 POKE L,H:PRINT "{HOME}{5 DOWN}"TI$:REM
BEGIN MAIN LOOP

90 IF TI§="000020" THEN GOSUB 150:GOTO 20
0

110 IF D=l THEN L=L+1:POKEL-1,S

120 IF D=-l THEN L=L-1:POKEL+1,S

130 IF L=7701 THEN D=-l:GOSUB 150

140 IF L<7680 THEN D=1:GOSUB 150

145 GOTO 50:REM END OF MAIN LQOP

150 FOR F=255 TO 127 STEP -1:POKE X,F:NEX

T

160 G=0:RETURN

200 PRINT "{CLR}{5 DOWN} THE DEMO IS OVER
ii

• • •

Eliminating lines 60-80 stops the sound subroutine from exe
cuting every five seconds, and instead executes it only with the

GOSUB commands in lines 130 and 140. The soxmd still occurs at
the end of the program, when the clock reads 000020.

Experiment with the program to see what kind of changes

you can make to add more sounds. Spend some time with your

own game design, and decide if this kind of sound subroutine
will work in your game program.

INo-stop Subroutines

Although adding sound to your game by using subroutines does
stop the action for a short moment, it is a simple way to program.

Some games, however, would benefit from having sound which

does not cause the game action to stop. It is more difficult to add
sound using this technique, but it is often preferable to using sub
routines which halt a character every time they are executed.

Remember that each time a routine is added into a program's

main loop, the game action will slow down. Sometimes this will

have little or no effect on the game's appearance and play. Other
times it will be noticeable. Again, as game designer and program
mer, you must make the decision.

The example program which follows uses this subroutine
technique. The sound executes without stopping the game
action, and in fact is heard only when the two characters on the

126

7

sounds

and Music

screen come in contact. One character moves randomly about the

screen, while the other is user-controlled through the keyboard.

The @ key moves the character up, the: key moves it to the left,

the = to the right, and the space bar moves it down.

Program 7-9. Sound Game

10 POKE 36878t15:POKE 36879,8

20 L=7680:M=7900:H=83:S=32:P=42:X=36876:N

=125

30 PRINT "{CLR}11
40 POKE L,H:POKE M,P:N=N-5:POKE X,N:REM B

EGIN MAIN LOOP

50 IF PEEK(197)=53 THEN M=M-22:POKE M+22,

S

60 IF PEEK(197)=46 THEN M=M+1:POKE M-l,S

70 IF PEEK(197)=45 THEN M=M-1:POKE M+1,S

80 IF PEEK(197)=32 THEN M=M+22:POKE M-22#

S

90 IF M>8185 THEN M=8185

100 IF M<7680 THEN M=7680

110 R=INT(RND(1)*4)

120 POKE L,S

130 IF R=0 THEN L=L-22

140 IF R=l THEN L=L+22

150 IF R=2 THEN L=L-1

160 IF R=3 THEN L=L+1

170 IF L>8185 THEN L=8185

180 IF L<7680 THEN L=7680

190 IF L=M THEN N=255

200 IF N<1 THEN N=125

300 GOTO 40:REM END MAIN LOOP

Program Explanation

Line Function

10 This program starts out much like the other examples in

this chapter. The screen is changed, and the volume is

set to the maximum level of 15.

20 Variables are set as follows:

L = starting location of randomly moving character

M = starting location of user-controlled character

H =POKE value for the random character

S =POKE value for a character space to erase any

previous images of moving characters

P=POKE value for user-controlled character

X = sound register value

N = tone value of the sound register. Note that this starts

127

7

Sounds

and Music

as less than 128 so that it cannot be heard. When you

want the sound to execute, you need only assign a

value higher than 128, which is done in line 190.

30-40 Clear the screen and POKE in the two characters at their
starting locations. The value of Nis also reduced by five.

This is necessary in the main loop when the sound is
called for. Although the value of N decreases by five

each time through the main loop, note that line 200

reestablishes N as 125 when its value falls below 1. This
prevents the VIC from trying to POKE a negative

number into location 36876. The sound register is then

set to tone N. Again, you won't hear this until the value

is greater than 128, so it will be silent at the beginning of
the program.

50-80 The keyboard is checked and the character moved

accordingly. The last portion of each line erases the
previous image.

90-100 Keep the user-controlled character on the screen.

110-170 Establish a value between 0 and 3 for R. The random

character moves according to which number was

chosen. This is a simple way to create random

movement. Line 120 erases the random character just

before it moves. The timing for POKEing in characters
and erasing them has an impact on how smoothly the

characters move. Lines 170 and 180 keep the random

character from leaving the screen.

190 The sound executes when the two characters meet; in

other words, when L =M. The value for Nis then set to

255, the highest possible value. You will hear a descend

ing sound; each time the main loop is executed/ line 40

reduces Nby five.

300 End the main loop and send the program back to line 40.

As with the other sound routines, it would be just as easy to

set up a modulating tone, or to insert a clock so that the sound

plays for a specified number of seconds before stopping. There

are a variety of sounds you can create and applications to use

them in.

I Mission: Nova! sounds

Using these techniques for sound subroutines, you can add

additional effects to the game program Mission: Nova! You

128

7

Sounds

and Music

already have a background sound in the program's main loop,

and now you want to hear something when objects meet on the

screen. Not only will this add to the enjoyment of the game, but it

will also provide feedback as you play. You'll know certain things

are happening without having to visually check them every

moment.

To add sound subroutines to Mission: Nova!, you first have to

locate the lines which test for contact between objects on the

screen. This is done in the section of lines 700-730.

Line 700 tests to see if the starship is in contact with a small

star. If it is, your score decreases and the ship changes color.

Line 710 tests to see if the ship is on the large space station.

Remember that your ship is then renewed and brought back up to

full power.

Line 720 tests to find out if the spacecraft is on the small space

station. Nothing is awarded for this in the game.

Line 730 tests for the only remaining possibility, that the

spacecraft is in contact with a large, nova star. Points are given for
this.

You'll want four separate sound effects, then, for these four

possibilities. Each sound should somehow indicate a positive or

negative result during the game, providing player feedback.

Obviously, then, four sound subroutines are necessary.

All four lines must include a GOSUB command so that the

VIC refers to the proper sound subroutine. They could look like
this:

700 IF W=46 THEN P=P-100:NC=NC+1:GOSUB 11

00:RETURN

710 IF W=102 THEN NC=CS:W=104:GOSUB 1200:

RETURN

720 IF W=104 THEN GOSUB 1250:RETURN

730 P=P+(8*NH)*INT(QQ-Q):W=46:GOSUB 1150:
RETURN

■ Note that each GOSUB is placed before the RETURN

command.

Now the separate sound subroutines can be written and

placed at the end of the program.

Program 710. Small Star Collision

1100 POKE 36878,10

1110 POKE 36877,200

1120 FOR ET=1 TO 100:NEXT

1130 POKE 36878,0:POKE 36877,0:RETURN

129

7

Sounds

and Music

Program 7-10 creates a short buzz or zap sound to indicate that

points have been lost and your starship has been damaged. The

noise register is used and a short delay is added so that the sound

can be heard. After that, both the volume and noise registers are

turned off, so they won't interfere with other sound effects later.

Notice the RETURN command at the end of line 1130. It must be

included to send the programback to line 700.

Program 7-11. Meeting the Large Space Station

1200 POKE 36878,10

1210 Sl=36876

1220 FOR SY=128 TO 255

1230 POKE S1,SY:NEXT

1240 POKE 35878,0:POKE SI,0:RETURN

As the spaceship meets a large space station, this subroutine

plays a quick scale, using the high tone register. Because it rises

from the lowest to the highest tone, it sounds like something fill

ing up, which is what the station does for the starship, returning it

to its original power level.

Again, the volume level is set, values for the high tone regis

ter and its tones established, and then POKEd in. Finally, the vol

ume and high tone registers are turned off, and the subroutine

RETURNS to line 710.

program 712. Landing on the small space Station

1250 POKE 36878,10

1260 FOR SMT=1 TO 5:NEXT

1270 FOR SMY=250 TO 240

1280 POKE 36876,SMY:NEXT

1290 POKE 36876,0

1295 POKE 36878,0:RETURN

Since there is no effect when the spacecraft touches the small

space station, this blip sound will work well. However, a sound is

useful, if only to tell the player that the small station does not give

the spacecraft an increase in power, as the large station does.

Program 7-12 is very similar to the Blip routine used earlier in

the chapter. The volume is set, as are variables for the short delay

and the sliding tones. Then the high tone and volume registers

are turned off, and the subroutine RETURNS to line 720.

Program 7-13. Meeting a Nova Star

1150 POKE 36878,10

1160 LS=36876

130

7

sounds

and Music

1170 FOR LY=128 TO 255 STEP 2

1180 POKE LS,LY:NEXT

1190 POKE 36878,0:POKE LS,0:RETURN

Program 7-13 creates a sound almost identical to the one used

when the spaceship lands on the large space station. The major
difference is that in line 1170, the STEP 2 command is included.
This simply shortens the sound to half of what it was in the large
space station subroutine. Again, the sound is one of filling up, be

cause points are awarded. Making it only half as long fits in well

with the game, for it is less beneficial to the player. Points are
awarded, true, but the ship remains at the same power level.

Adding these subroutines to the game program does increase
the player's enjoyment. Note the difference in the game after
you've added these routines. It should be more exciting, more
entertaining, and easier to play with sound.

I Make use of sound

As you've seen, sound can make a program more complex. It

also complicates your decision-making process as you determine
what kind of game you want to create and what sound effects you
want to use. Yet it is worth the time and the effort to include

sound, simply for the impact it has on a game. A game without

sound is simply not a game to most players. Something vital is
missing.

You have several techniques available to you as you plan the
sound for your game. Background sound or music can be used,

or a subroutine can be inserted into the main program. Action can

stop for a moment when sound is played, or it can continue,
depending on the complexity of the program.

131

Q

O

O

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

G

o

o

G

G

G

G

G

G

G

introductions,
instructions,
and Farewells

Q

O

O

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

G

o

o

G

G

G

G

G

G

G

ells

8

introductions,
instructions,
and Farewells
Introductions, instructions, and farewells add an element that
every player appreciates, another dimension to the game world

youVe created. Just like sound effects or custom characters,
they are not absolutely necessary, but without them your game
will seem pale and one-dimensional. Introductions and farew<
make the game more interesting, entertaining a player while a
screen display is set up, or providing incentive to play again for a

higher score at game's end. Without instructions, a player could
be confused or frustrated at the outset while trying to discover
cursor directions, scoring procedures, or the goals of the game.

Even though introductions and instructions appear at the
opening of a game, this part of game design is best approached

after your program has been written. It is only then that you know
the amount of remaining memory available for these extras.

Through the constant changing and revising of your program, it

is probably not until this point that you know exactly how your

game will appear. Of course, there are exceptions, for you may

have your design well-outlined before you begin to program.

I Memory

After your program is completed, and before the introductions

and instructions are written, you have to find out how much

memory is still available. This is important with the unexpanded

VIC, for its 3583 available bytes can be quickly used in a program

with a custom character set, sound effects, and animation. It is

little use to create a complex introduction, with involved music

and graphics, if it will not run because of memory limitations. At

times you'll be forced to use every available byte, for you may

have only several hundred bytes left after the program. You need

an accurate idea of what you have to work with.

After you have your program written and loaded, use the

135

8
introductions, instructions,

and Farewells

command PRINT FRE(O) to find out how much memory is avail

able. If you have a small amount to work with, use the command
frequently, checking as you get closer and closer to the end of
memory. It could save you considerable anguish.

I introductions

Introductions can take many forms and shapes. Perhaps you
want another sound effect, or a short piece of music, to entertain

the players while they wait for the game screen to set up. If the
memory is available, a brief description of the game situation can

be inserted. This can heighten the player's involvement in the

world youVe created. At the very least, you'll want to display the

title before the game begins.
Since you've already written your program, you probably

won't be able to place the introduction at the beginning without
renumbering the entire program. A simple way to solve this prob
lem is to place the introduction in a subroutine that is called by
the first line of the program. In the sample game from Chapter 6,

Mission: Nova!, it would look like this:

5GOSUB1300

The program would then move to the subroutine and execute the

introduction, returning to the opening of the program. The fol

lowing example subroutine can be inserted into the Mission:

Nova! program to serve as an introduction.

Program 8-1. introduction

1300 PRINT "{CLR}":POKE 36879,122

1305 PRINT "{2 DOWN}{4 RIGHT}{BLK}MISSION

: NOVA I"
1310 PRINT "{2 DOWN}{RIGHT}{BLU}MANEUVER

{SPACE}YOUR STAR"
1315 PRINT "{RIGHT}SHIP ACROSS THE"

1320 PRINT "{RIGHT}GALAXY."

1325 PRINT "{2 DOWN}{RIGHT}AVOID THE STAR

S AND"

1330 PRINT "{RIGHT}REFUEL AT NOVAS."
1335 PRINT "{2 DOWN}{RIGHT}LAND AT THE SP

ACE"

1340 PRINT "{RIGHT}STATION FOR FULL"

1345 PRINT "{RIGHT}POWER."
1350 PRINT "{4 DOWN}{RIGHT}HIT ANY KEY"

1355 GET A$:IF A$="" THEN 1355

136

8

introductions, instructions,

and Farewells

As the program runs, notice that the screen changes color.

This is a nice effect achieved simply by POKEing a different value

into location 36879. The only thing to be careful of, however, is

that the screen will still display your words. If the screen back

ground color is the same as the character color, the words will

seem invisible.

It is also simple to change the character color of the title, as is

done in the above sample subroutine in line 1305. Again, it may

be difficult to see the different color unless youVe chosen one

considerably different from the background. Experimenting with

several variations takes only a little time and cannot harm your

program. To turn the character color back to the original, simply

insert the proper keystrokes within the next PRINT statement. In

line 1310 this is done by hitting the [control] and [blue] keys at the

same time.

Since the VICs screen is relatively small, only 23 lines by 22

columns, it's a good idea to double-space between each line, or

between short paragraphs, as is done in the sample subroutine.

This makes it easier to read. Notice, too, that the lines are justified

on the left. This can be done several ways. First of all, you can just

print the lines from the leftmost column. Sometimes, if you have

short lines, you will want to indent. You can use the cursor com

mands within the quotation marks, or you can use the TAB com

mand to indent every line the same distance. The statement

PRINT TAB(1)"MANEUVERYOUR STAR"

would print the line one column from the left, in the second col

umn. You could replace line 1310 in the sample subroutine with

this line, for instance.

Although you have only one screen so far, often you'll use a

lengthy introduction, with several screens of print. Instead of

scrolling the introduction or printing it one line at a time at a slow

speed, it may be easier to display each screen full of print

separately. At the end of each screen, as in Program 8-1, you could

add the line:

PRINT "HIT ANY KEY"

followed by:

GET A$:IF A$ ="" THENXXX

where XXX is the line number of the GET A$ command.

This will hold the screen until the player presses a key, then

137

8

introductions, instructions,
and Farewells

will display the next screen. At the end of the PRINT statements

for the last screen, be sure to include a RETURN command.

Our sample subroutine takes up only one screen so far. If that

is all you're using, to return to the game program you need only

add a line such as this:

1346 FOR 11 =0 TO 5000:NEXT:RETURN

and eliminate lines 1350 and 1355.

The delay is to give the player enough time to read the intro

duction. If your introduction is longer or shorter, you can alter the

delay loop accordingly.

Adding sound is quite easy. Before the program RETURNS,

insert the POKE statements for whatever effect you want. The

sound will then play before the game begins and while the intro

duction is still on the screen. You can include several effects if

memory is still available.

I instructions
Depending on the memory still left, you maybe restricted to

using a short introduction in order to include instructions. Of the

two, the instructions are more important to the player's under

standing of the game. At the very least, you'll want to tell the

player how to move user-controlled characters. If it's a joystick-

controlled game, a note that a joystick is needed would be suffi

cient. If the keyboard is used to control the character, more expla

nation is necessary.

Program 8-2. instructions

1360 PRINT n{CLR}{3 DOWN}{RIGHT}HIT F5 KE

Y FOR 'UP'"

1370 PRINT "{2 DOWN}{RIGHT}HIT F7 KEY FOR

1 DOWN'"

1380 PRINT "{2 DOWN}{RIGHT}HIT COMMODORE

{SPACE}KEY"

1390 PRINT "{RIGHT}FOR 'LEFT111

1400 PRINT "{2 DOWN}{RIGHT}HIT SHIFT KEY

{SPACE}FOR"
1410 PRINT "{RIGHT}'RIGHT'"
1415 PRINT "{3 DOWN}{RIGHT}HIT ANY KEY"

1420 GET A$:IF A$="" THEN 1420

If the keys are not next to each other, this may be the best way

to tell the player which keys move the character each direction.

Note that the GET A$ statement is used again to hold the screen

138

introductions, instn

8

ctlons,

and Farewells

until the player is ready to continue.

Your game may use keys that are placed next to each other on

the keyboard. For example, your game may use a diamond-

shaped pattern for character control. If thafs the case, then you

may want to display something like Figure 8-1 on the screen,

showing the corresponding directions and making it easier for

the player to understand.

Figure 8-1. Keyboard Display

H or

V /

The TAB command makes it easy to set up a screen like this

by positioning the lines of explanation in the right place.

Scoring is another item you may want to include in the in

structions. Every player wants to know how points are scored, by

what criteria, and toward what goal. These instructions do not

have to be lengthy, as the following routine for Mission: Nova!
shows:

Program 8-3. More instructions

1430 PRINT "{CLR}{2 DOWN}{RIGHT}SCORE POI

NTS BY"

1440 PRINT "{RIGHT}REFUELING AT NOVAS"

1445 PRINT "{2 DOWN}{RIGHT}POINTS DEDUCTE
D FOR"

1450 PRINT "{RIGHT}CRASHING INTO STARS"
1455 PRINT "{RIGHTjAND TAKING YOUR TIME"
1460 PRINT "{2 DOWN}{RIGHT}YOU CAN CRASH

{SPACE}INTO"
1465 PRINT "{RIGHT}ONLY SIX STARS"

1470 PRINT "{RIGHT}BEFORE LANDING ON"

1475 PRINT "{RIGHTjTHE SPACE STATION."

1480 PRINT "{2 DOWN}{RIGHT}THE GAME ENDS"
1485 PRINT "{RIGHTjWHEN YOUR SHIP'S"

139

8

introductions, instructions,
and Farewells

1490 PRINT "{RIGHT}POWER IS GONE."

1495 PRINT "{3 DOWN}{RIGHT}HIT KEY TO STA

RT."

1496 GET A?:IF A$="" THEN GOTO 1496

1497 RETURN

If your game is quite complex, more than one screenful of

print may have to be seen by the player. Again, the GET A$ state

ment lets the player read at his or her own pace, then move on.

Note that at the end of this routine, in line 1497, the RETURN

statement finally appears, sending the program to begin the

game's screen setup.

Setting Difficulty

At times, you'll want to allow the player to set the level of diffi

culty in the game. If your game lends itself to this, a player can be

gin at the easiest level and progress to the more difficult. A game

such as Tempest, which lets the player choose the starting level, is

a good example. It will seem that there are actually several games

in one if the levels are considerably different. An ideal place to do

this is in the instructions, before the game begins. The INPUT or

INPUT #1 commands can be used to do this.

Again, a subroutine called at the program's outset is one way

to do this. The game "Spark" from Chapter 6 is one in which

levels could be set using the statement:

5CLR:GOSUB800

and the following subroutine:

Program 8-4. spark Levels

800 PRINT "{CLR}":POKE 36879,122

810 PRINT "{3 DOWN}{RIGHT}{BLU}CHOOSE LEV

EL OF PLAY"

820 PRINT "{RIGHT}BY HITTING KEY:"

830 PRINT "{2 DOWN}{RIGHT}1"TAB(8)"EASIES
m '•

840 PRINT "{2 DOWN}{RIGHT}2"TAB(8)"HARDER
it

850 PRINT "{2 DOWN}{RIGHT}3"TAB(8)"DIFFIC

ULT":PRINT:PRINT:PRINT

860 OPEN 1,0

870 INPUT#1,A$:CLOSE 1,0

880 IF A$="l" THEN P=300:RETURN

890 IF A$="2" THEN P=200:RETURN

900 IF A$="3" THEN P=100:RETURN

140

8

introductions, instructions,
and Farewells

Line Function

800 Clear the screen and POKE in a screen color change.

810-850 Print the instructions for setting the different levels of

play. Note the [control] [blue] keystroke in line 810. This

sets the character color back to blue. The program will

alter the character color after it has run once if this is

omitted.

860 Used to create the INPUT#1 command in the next line so

that a ? prompt will not appear on the screen.

870 The INPUT#1 command delays the program until the

player provides a response. This command is very useful

when asking for information from the player. The

CLOSE #1,0 statement completes the instruction begun

in line 860.

880-900 Test for the number pressed by the player, and then set

the value ofP accordingly. P is the time remaining before

the game ends. In other words, the most difficult level

begins with less time for the player to complete the

game. Notice that each line has a RETURN statement at

its end. The program then moves back to line 5, and the

game program begins setting up its screen.

As you program more involved games, you'll find uses for

this method of setting levels of difficulty. Even if you are now

designing a game that does not lend itself to this, keep it in mind

for later.

I Farewells
Assuming that memory is available, the final addition to your

game should be a farewell, or end routine. As with the introduc

tions and instructions, this can be as elaborate or simple as you

want. Some farewells are strictly entertaining, nudging the player

back into the game, persuading the player to try it again, perhaps

just to see the end routine. Other farewells are more informative,

giving the final score, showing a high score, ranking the player, or

asking if another game is wanted. Just as with the introductions

and instructions, you can insert this as a subroutine.

A simple farewell, which records the final score, prints a

short message, and allows the player to begin a new game, would

take only a few lines in a program. In the example game Spark,

the score was assigned the variable P in the program. If the player

141

8

introductions, instructions,
and Farewells

won, the user-controlled character exited the maze, and the game

was over. Running out of time caused P to equal 0, and so ended

the game. There were only two possible ways to end. Placing a

GOTO command at both program lines could be done this way:

170 IFCHG < 4THEN GOTO 610

and

330 IF P =0THEN GOTO 600

When the character exits the maze, then, the program shifts

to line 610. If the player loses the game by running out of time, the

program goes to line 600. At that point, the following routine

could be used:

Program 8-5. Spark End

600 PRINT:PRINT "TOO LATEl{2 SPACESjSCORE
IS 0":GOTO 620

610 PRINT:IF P>0 THEN PRINT "YOU MADE IT1

[2 SPACES}SCORE IS":PRINT P
620 PRINT "{2 DOWN}TO PLAY AGAIN, HIT ANY

KEY."

625 POKE 198,0

630 GET A$:IF A$="" THEN 630

640 GOTO 5

Line Function

600 Print the message that the player ran out of time and

scored 0 points. The first PRINT command is used to

force the message to print below the maze. Program

then shifts to line 620.

610 If P > 0, then the player has won and this message is

printed on the screen, along with the final score.

620 Drop two lines to display the message allowing the

player to try again.

625 This POKE is necessary to clear the keyboard buffer of

any characters typed in during the preceding game. If

this is omitted, the next line will execute immediately, for

the VIC will read the buffer and assume a key was

pressed for line 630.

630 GET A$ simply waits for a key to be pressed by the

player before continuing.

640 Return the program to the beginning. Notice that the

player is returned to the level-setting routine, so that the

level of difficulty can be changed.

142

8

introductions, instructions,

and Farewells

A more complex end routine could include sound, as well as

display a final score and ask the player whether another game is

wanted. Inserting sound into an end routine can be difficult at

times, depending on how your game program is organized and

where you want the sound to play. One way to create sound in an

end routine is by using READ and DAIA statements. The game

Mission: Nova! could use this technique, and the routine could

appear as:

8-6. Nova! Bid

900 POKE 36878,15:RESTORE

910 READ N1,D1:X=7+7*(X=7):POKE CM+C,X:IF

N1=0 THEN 930

920 POKE 36874,N1:FOR EI=1 TO 150*D1:NEXT

:POKE 36874,0:FOR EI=1 TO 20:GOTO 910

930 PRINT "{CLRr'P11 POINTS" :PRINT:PRINT"P

RESS ANY KEY TO{2 SPACES}PLAYAGAIN"

940 FOR 1=0 TO 3000:A=PEEK(197):IF A<>64

{SPACE}THEN:GOSUB 450:GOTO 280

945 NEXT I:END

950 DATA 191,4,191,3,191,1,191,4,201,3,19

9,1,199,3,191,1,191,3,188,1,191,4,0,0

Line Function

900 Set the volume register to maximum.

910 The values in the READ statement are set and the space

ship is flashed by the POKE CM + C,X. IF Nl = 0 (the

sound register is then turned off), the music ends and

the program shifts to line 930.

920 POKEs the high tone register with the values in the

DAIA statement in line 950, and holds the tones at vary

ing lengths (El = 1 TO 150*Dl). The program then moves

back to line 910 to READ the next values in the DAIA

statement.

930 Print final score and ask the player whether another

game is to be played.

940 The delay allows the player time to decide if he or she

wants to play another game. If so, the PEEK command

reads the keyboard and sends the program to the appro

priate lines. If another game is not wanted, the program

will end in line 945 after the delay.

950 The DAIA statement creates the dirge music which plays

at the end of a game.

143

8

introductions, instructions,

and Farewells

I Design Notes

Programming introductions, instructions, and farewells can be

challenging and exciting, for each addition to your game will

make it that much more professional in appearance, as well as

more playable and entertaining. As long as the memory is avail

able, use it to your advantage to enhance your game. Although

we've considered a number of different concepts to include in

your game introductions, instructions and farewells, there are a

few more suggestions for your use.

Be personal. If the player is asked to INPUT his or her name

and then sees it printed in the instructions, or even beside the

user-controlled character, the player will be drawn deeper into the

game's world. Within the farewell, the player's name could also

be printed alongside the final score. These human touches add to

any game, as you've probably noticed when you've played video

arcade games.

Make use of the color abilities of the VIC. Changing screen

colors certainly adds to the game, but reversed or colored char

acters will add even more, especially in the introduction and in

structions. With memory available, you can alter the screen and

character colors with every new screen display.

Urge the player to play another game by including a friendly

ending. It doesn't have to be something cute, just enough to make

another game worth the time. Proclaim the player's victory, hand

out promotions or rankings. Your imagination as the game de

signer can come into play here. Creativity is what makes one

game stand above all others.

Your game program is almost completed. You've gone from

the idea to writing the end routine. There are a few more things to

consider, however, in the next chapters.

144

The Shape
of the Came

Q

O

O

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

G

o

o

G

G

G

G

G

G

G

9

The Shape of
the Game
We've gone through most of the techniques you'll need to

create your own games. Now all you really need to do is hack

through the actual programming. The word "hack" is pretty

accurate for most of our programming. No matter how logical you

are, chances are pretty good that the computer is even more logi

cal, and you'll write many a routine that should work — but

doesn't. At least I certainly program that way sometimes, like a

clumsy woodcutter taking one hack after another until finally he
splits the log.

And it works. Eventually, even the most stubborn program

ming problem will yield to your constant work.

There are ways you can make things easier for yourself, and
in the meantime make your programs run as smoothly and

quickly as possible. However, the programming techniques in

this chapter are not "rules" — the/re just advice. Good advice, I

think, that has helped me in my programming, but remember:

any game that plays well is a good game, even if the programming

isn't pretty. So don't be concerned if you fudge a bit here and

there. If it works, it's correct.

I Program structure

In most of the programs in this book, I've tried to structure my

code with three purposes in mind:

1. Make it easy to understand.

2. Make it run fast.

3. Use up the least possible memory.

Ease of understanding

Why should you make your programs easy to follow? After all,

you're writing a game for yourself, not example programs in a

book. Nobody's ever going to see your programming, just the
results.

There's one exception. You.

You will look at your program again and again. Sometimes

147

9

The Shape

of the Came

there'll be days, weeks, or months between programming ses

sions. You'll look at your own program then and wonder what in

the world is going on. You'll forget where the value of obscure

variables was set. YouTl forget why line 55 had to come before

GOSUB 590. You'll forget that there are three different ways to get

into the routine at 400.

That's inevitable. It happens to everybody. And you can't pre

vent it entirely. What you can do, though, is follow several simple

programming rules.

Establish patterns and habits. Start routines on even hun

dred lines —100,200,300,400, and so on. That way you'll be able

to look at an entire routine just by typing LIST 300-399. Some

times I bend this rule by starting a very short routine at an even

fifty — 450 or 550. And in this book I have sometimes put at line

990 a single-line loop that is used many, many times throughout a

program. For instance, a loop that reads the keyboard and waits

for the player to press a key.

The important thing is to have habits. For instance, in this

book you always know that if I have a GOSUB or GOTO 100,200,

300,400, and so on, the program is going to a main routine. You

can quickly scan through each routine, see what each one does,

and then know instantly which routine is being called at each

GOSUB and GOTO. You know that if a GOSUB or GOTO ends in

50, it's a small routine. A GOSUB or GOTO a line ending in 90 is a

one-line routine called many, many times.

Of course, you may prefer to develop different programming

customs. But whatever habit you follow, the more consistent you

are, the more easily you'll be able to follow your own programs.

Put similar things together. If all your collision handling rou

tines are located together, you won't have to spend half an hour

poring over your program to find out where a particular collision

is taken care of. You'll know that it's between 700 and 799. If all

your DIM statements are in the first line of the program, then

you'll never have to hunt around to find out why you're getting a

BAD SUBSCRIPT error.

This principle extends even to tiny matters. If you're creating

variables to control ten different onscreen figures, why not give

their location in screen memory and in color memory and their

color value and character code the same variable name? In "Moon-

raker" I used L for my player-figure's location and LI, L2, L3, L4,

and so on for the computer-controlled figures. An even better

practice might be to use arrays: L(n) is the address of the screen

148

The Shape

of the Game

location of each of the ten figures; CL(n) is their address in color

memory; FG(n) is the character to be POKEd to the screen; and

C(n) is the color to be POKEd into color memory.

You can even use M(n) to hold the number that should be

added to L(n) for each computer-controlled character's move

ment. The variable S(n) can hold each figure's new starting

address. And E(n) can hold the ending address.

Think how easily and economically you can program all the

movements then. Line 300 starts the loop and erases each figure

at the old location in screen and color memory:

300 FOR I =0 TO 9:POKE L(I),32:POKE CL(I),OC

Line 310 changes the locations:

310 L(I) =L(I) +M(I):CL(I) =CL(I) +M(I)

Line 320 checks for collisions with the player-figure and checks to

see if the figure has reached the end of its journey:

320 ON -(PEEK(L(I)) =FG) -2*(L(D =E(I))GOSUB 400,490

Line 330 actually carries out the movement by POKEing the

figures onto the screen in the new locations:

330 POKE L(I),FG(I):POKE CL(I),C(I):NEXT

Vital parts of this are the subroutines at 400 and 490. Since we

haven't created an entire program here, I won't try to create the

collision subroutine, but the routine at 400 would need to change

the score, decide whether the player-figure should win or lose the

encounter, and assign new addresses, if necessary, to both the

player-figure and the computer-controlled figure.

We can be more specific with the miniroutine at 490. Remem

ber that the program only reaches this line if the figure's screen

location matches its ending location. Therefore, all we need is:

490CL(I) =CL(I) -(L(I) -S(I)):L(I) =S(I):RETURN

And that's it. By giving all your onscreen figures the same

name, with subscripts, you can assign all their values in loops

using DAIA statements, and you can handle their movements

and their collisions in a single routine. You have saved memory,

you have probably saved running time, but above all you have

kept the routine simple and easy to follow.

Label your work. Just because you're using a computer

doesn't mean you can't write things down on paper. It's a good

idea to keep a list of what each variable is used for in each pro

gram you work on. That way you won't accidentally use a variable

149

9

The Shape

of the Came

youVe already got doing something else somewhere else in the

program.

You can write down where each major subroutine is. You can

write down key line numbers or areas where you plan to put

subroutines.

Most important of all, however, is simply to label your tapes

and disks, both externally and internally. There's nothing more

frustrating than working for hours on a program only to realize

that the version you're working on is not the most recent one, that

all of the improvements from your last programming session are

saved somewhere else. I've made it a habit to put the date at the

beginning of my program. Some people put the date in REM

statements, so you'll see it when you LIST the program. I put it

right in a PRINT statement, so the date of this version will be

flashed on the screen. That way I can keep track of which version

of my game I am working on.

Programming for Speed

With game playing, it is not real speed that is important, but the

illusion of speed. The game has to feel fast. A game with figures

that only inch along the screen can feel fast to the player as long as

his own player-figure responds quickly and moves fairly fast.

This means that your program, to feel fast, should check for

player input as often as possible, and should have as few things

as possible happen between player-figure movements.

The main loop. The key is to keep the main loop as tight as

possible. The fewer things the program has to do every time it

goes through the loop, the better. The main loop is really there

just to perform tests, to see what should happen next.

You keep the main loop tight by testing for minimal condi

tions and then jumping to subroutines to check the details. Many

things can be kept out of the main loop entirely. For instance, col

lisions should almost never be checked in the main loop. Why?

Because collisions can only happen when something moves into

the same space as something else. Therefore, why check for colli

sions unless something has moved? Collision checking always

belongs in movement loops.

Main loops generally need to do the following:

• Check the timer for all timed events (a timer countdown,

regular screen changes, etc.).

• Check the keyboard or joystick for the player's instructions.

• Control the computer-controlled figures' actions.

• Control any continuing background sound.

150

9

The Shape

of the Came

Be selective. That's a short list, but it can still be far too long.

To keep up the illusion of speed, you need to be selective — not all

those things need to happen every time through the loop.

For instance, suppose you wanted to control the ten

computer-figures whose movement we just programmed. In

stead of putting them in a FOR-NEXT loop and moving all ten of

them every time, why not access 300 as a subroutine with a ran

dom value? If the main loop contained this line, you'd get a very

interesting effect:

1201 =INT(RND(9)*10):GOSUB 300

With this line as the only access to the computer-controlled fig

ures, only one computer-figure will move each time the player-

figure has a chance to move. There won't be such a long delay be

tween the player-figure's movements. Even though each

computer-controlled figure moves in the same pattern every time,

you never know which one will move next. The computer-figures

will actually move much more slowly, but because the player-

figure will move faster and the computer-figures will be more ran

dom, the game will feel much faster and more exciting.

Use a single timer. If you try to control lots of events using a

separate timer, you'll fill up your main loop with statements like

A =A + l:IFA>10 THENA =0:GOSUB 500. Every arithmetic

operation slows down your program, and so does every IF state

ment. Why not share a single timer?

Let's say you have three events to control. Subroutines 500

and 700 should happen only rarely; subroutine 800 must happen

often; and subroutine 900 has to happen every other time

through the main loop. That timer variable A can do triple duty:

120 A =A +1:ONAGOSUB 900,700,900,800,900,500,900,800:1?

A =8THENA =0

There it is — one mathematical operation and one GOSUB each

time through the loop. Subroutines 700 and 500 will be executed

only once in every eight passes through the main loop. Subrou

tine 800 will be executed twice as often, and subroutine 900 will

be executed every second pass. Yet a single handler accesses them
all.

This kind of timer routine, however, is not regular. Anything

that stops the main loop from executing will also delay those sub

routines. A missile firing or a collision that stops the action will

also keep line 120 from executing, so it will be longer before the

next action occurs. Regular movements (like the scrolling of the

151

9

The Shape

of the Game

screen in our Mission: Nova! game) and countdowns that should

reflect realtime must be controlled using the TI$ function.

Remember, though, not to use equal signs with 11$. For instance,

this line could be a disaster:

IF VAL(TI$) =7THEN TI$ ="000000":GOSUB 500

What's wrong with it? Well, TI$ will have a value of 7 for only

a second. What if this line executes once when TI$ = 6, but then

the program happens to carry out a time-consuming collision

routine before the next pass through the main loop? TI$ will have

a value of 9 or 10 by then, so this line will never execute again. In

stead, you'll want to use this statement:

IF VAL(TI$)> 6THENTI$ ="000000":GOSUB 500

Now, whether TI$ is 7 or 70, this line will snag the program and

send it out to 500 at nearly the right time.

Stop the action. Sometimes you can stop the action com

pletely to carry out some task, and the player won't feel that the

game has been slowed down at all. For instance, when the player-

figure collides with something, you can stop for an elaborate colli

sion routine, with animation and sounds, and the player won't

feel like it slows down the game — it will actually make it more ex

citing, and it will feel faster. Likewise, when the player fires a

missile, or when an opposing figure first comes on the screen,

you can take some time with it.

Stopping the action is fine; what you must avoid is a long

time-lag between the player giving an instruction and the player-

figure carrying it out. If the player is getting a quick response dur

ing the action phases of the game, you can take as long as you like

in the other sections.

Memory: The upper Limit
Ifs going to happen to you: you'll be working at your game, you'll

type in a line, and all of a sudden the OUT OFMEMORY error

will flash on the screen. What can you do?

There are three primary solutions:

1. Buy more memory.

2. Chain your program.

3. Crunch your program.

Buying memory. This is a financial decision, of course. I can

promise you that your life will be easier with more memory in

your VIC, but you can still program some excellent games with no

152

9

The Shape

of the Game

additional memory. Remember, though, that when you get any

thing more than the 3K expander, certain key memory locations

change. In this book I've almost always used relocatable code: the

program does not assume that screen and color memory are in a

certain place, but rather finds out where they are. Even if you

don't plan to get more memory anytime soon, it's a good idea to

write programs that will adapt themselves to whatever memory

setup they might find. After all, you may change your mind six

months from now and buy more memory, and then you'd have to

go back and change all your programs to fit.

Chaining programs. Chaining means that you LOAD and

RUN only part of your program, and that part of the program

contains instructions to automatically LOAD and RUNthe next

part.

When a program is being LOADed, any old program is com

pletely erased. However, any values POKEd by the old program

will stay in place until the power is turned off or the new program

changes them. That means that you could write your game in two

parts. Part 1 would contain the instructions and all the character

set DATA. Once the instructions were through and the character

set was in place, you would end Part 1 with this command:

PRINT "{CLEAR }LOADING PART 2":POKE 631,131:POKE

198,1

Be sure, though, that you don't put anything in Part 1 that

you will want to RUN again in Part 2 — a screen-drawing subrou

tine in Part 1 just won't be there where you can get to it during

Part 2.

Crunching. Without chaining or buying more memory, you

can still pack a lot more program into the unexpanded VIC than

you might suppose. All you need to dp is crunch your program —

remove excess bytes.

Which bytes are excess?

• Spaces between words. Almost the only places where you

need to leave spaces are at the ends of numeric variable names

and within messages that will be PRINTed on the screen. To the

VIC, these two lines are exactly the same:

FOR I =9 TO 16 STEP 5: GET A$: IF A$ <> 45 THEN GOSUB 500:

NEXT

FORI =9TO16STEP5:GETA$:IFA$ <> 45THENGOSUB500:NEXT

Each space you leave out is one byte saved. The trouble is, it

makes the program harder to read.

153

9

The Shape

of the Game

• REM statements. REMs are nice because they help you label

what's going on in sections of a program— they make it easier for

you or someone else to understand what your program is doing.

But when you're dealing with limited memory, REMs are all

expendable.

• Multiple statements per line. Each new line number is extra

bytes used up in memory. You can save some memory by putting

several statements per line, separated by colons (:). However,

remember that everything on a line after an IF statement will be

executed only if the condition is true. However, anything after an

ON-GOSUB statement will be executed whether the condition is

true or not. Anything on a line after an unconditional GOTO will

never be executed at all.

• Use short variable names. Since the first two characters of a

variable name are all that count, you might as well use only those
two characters and save bytes.

• Change numbers to variables. Numbers take several bytes

to store in memory, because the computer reserves enough mem

ory for each number to store large numbers in that space. Thus a 0

uses up as much memory as 33999. However, a short variable

takes up less space. Remember that you have to use up some

bytes assigning a value to the variable — A = 55. That statement

takes up some bytes, too, so you'll only save memory by assigning
variable names to numbers that are used more than once. The

most commonly used numbers are 0 and 1 — it's often a good idea

to use ZO and Zl or NO and Nl as the variable names for these
numbers.

• Use arrays, loops, and ON. The program used as an exam

ple in the discussion of speed also saves memory because of the
use of an array. You can do ten operations in a single FOR-NEXT
loop instead of using ten separate lines. You can make five tests
on a single ON statement instead of using five separate IF state

ments. By programming carefully, you can develop tighter code.

• Trim introductions and farewells. Important as they are,

introductions, instructions, and farewell comments do eat up
bytes. You may have to choose between having a really explicit in
troduction and having some important features in a game.
Remember that you can often give the same amount of informa
tion in fewer words.

• Use subroutines for any operation performed more than

e. If you have line after line that does almost the same thing
except that a few numbers are different, you might consider using

once

154

9

TheShape

of the Came

a subroutine for the meat of the operation, and having each of the

other lines set variable values and access that subroutine in order

to perform the operation. This can sometimes slow down a game

by adding extra GOSUBs and implied LETs, but if you're up

against the end of memory, you sometimes have no choice.

• Don't use redefined characters. If you can make do with the

built-in character set, you will save hundreds of bytes.

• Delete features. Sometimes a feature just isn't going to fit in

an unexpanded VIC. If you can't or don't want to expand mem

ory, you may just have to accept a limitation on what your game

can include.

After all this talk of crunching memory, it's good to remember

this: there are a lot of fantastic games that run on the unexpanded

VIC. Yours can be one of them.

155

Q

O

O

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

G

o

o

G

G

G

G

G

G

G

Missiles and
"Moonraker

Q

O

O

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

G

o

o

G

G

G

G

G

G

G

10
Missiles and
"Moonraker

There is a kind of figure that is partly under the player's control
and partly under the computer's. When a baseball player in a
videogame throws the ball, the player might control when the

ball is released and the angle at which it is thrown, but rarely will
the player control the ball's actual trajectory, its path across the
screen. That is almost always controlled by the computer.

The same thing happens with missiles in Asteroids, bombs
and bullets in Scramble, the juggler's ball in Mr. Do, and the air
hose in Dig-Dug. They all seem to emerge from the player-figure,
but once they are launched, their path and the distance they
travel are usually controlled by the computer.

The principle of firing missiles is simple enough: when the
player presses the joystick button or a designated key on the key
board, the program jumps to a missile subroutine. A missile-
figure is put on the screen one character away from the player-

figure in the direction in which the player is shooting, then the
missile is moved across the screen as far as you want it to go.

In machine language games, the missile is moved in steps

along with the player-figure, so that the player-figure can keep
going after it shoots. In BASIC, however, it is usually better to let
the whole game freeze until the shot is completed. That way
when the other objects on the screen move at all, they move as

quickly as ever. Trying to move a missile along with everything

else will tend to slow down the program.

Add a Laser

Here are some lines to add to Program 6-2, "Mission: Nova!" If

you have added in the new lines for sound routines in Chapter 7

and for introductions and farewells in Chapter 8, this missile rou

tine won't fit in an unexpanded VIC. Just delete the introductory

display and you'll have no problem. If you have an expanded
VIC, you can add these lines directly to the full program.

159

10

Missiles
and "Moonraker"

Program 10-1. Starshot

40 NH=7:NV=7:C=NH+NV*22:W=32:SS=102:CS=2:TS=0:DI=-

100 A=PEEK(653)AND7:B=PEEK(197):IF B<55 THEN GOSUB
300

285 IF NH<>OH THEN DI=H

300 IF (OH=0 AND DI=-l)0R(0H=21 AND DI=1) THEN RET
URN

305 MH=OH:MV=22*OV:BB=32:EM=0:IF DI>0 THEN EM=21

310 FOR I=MH+DI TO EM STEP DI:MM=SC+I+MV:X=PEEK(MM
):IF X<>32 THEN EM=I-DI:GOTO 330

315 POKE MM,70:NEXT

320 FOR I=MH+DI TO EM STEP DI:MM=SC+I+MV:POKE MM,B
B:NEXT I:RETURN

330 FOR 1=0 TO 7:POKE MM,77:POKE MM,93:POKE MM,78:
POKE MM,67:NEXT

340 IF X=46 THEN NN=81:BB=46:GOTO 370

350 IF X=81 THEN NN=46:P=P+(8*NV)*INT(QQ-Q)
360 IF X<>46 AND X<>81 THEN NN=104:P=P-1000

370 POKE MM,NN:GOTO 320

Line Function

40 Set the intial value of DI to -1, for a leftward shot.

100 If a key with a value less than 55 (f5) has been pressed,
jump to the subroutine at 300.

285 If a horizontal move has been made, set DI to show the

direction of the move. DI will therefore always show the

direction of the last horizontal movement — and this will
be the direction of the next laser shot.

300 If the player-figure is at the edge of the screen, shooting
off the edge, return without doing anything.

305 SetMV and MH to the current vertical and horizontal

location of the player-figure, plus one step in the direc

tion of the shot, so that the laser beam will appear be

side, not on top of, the player-figure. Then set EM to 0

for leftward shots, 21 for rightward shots.

310-315 If the next character in the direction of the shot is a blank

(32), POKE the laser character (70) into that place. If the

next character is not a blank, set EM to the last location

where a 70 was POKEd and jump to the explosion sub

routine at line 330.

160

10

Missiles
and "Moonraker

320 Replace the laser with blanks (BB = 32) and return to the

main loop of the program.

330 Show an animated, twirling explosion.

340 If the laser hit a small star, turn it into a nova, but set BB

to 46, so that all the spaces between the player-figure and

the new nova are small stars. We wouldn't want the

player to rack up a million points by changing small stars

to novas and moving right over to them without any

obstacles.

350 If the laser hits a nova, add the appropriate number of

points and replace the nova with a small star.

360 If the laser hit anything else, change it to a used-up

space station (104) and subtract 1000 from the score. This

is because the only thing the laser can hit, besides a

blank, a small star, and a nova, is the space station itself.

Not the sort of thing that earns many points.

370 POKE the new character into place and go back to line

330 to erase the laser (or replace it with small stars).

A Missile version

If you don't like the continuous beam of the laser, it's a simple

matter to replace it with a missile. Basically, all you have to do is

erase the last missile character as soon as you POKE in the new

one. The tricky part with missiles is how to handle the end of their

flight. It has to be different if the flight ends with a collision or

simply with the edge of the screen. The virtue of this routine is

that it's very quick, very dartlike in its movement, in spite of being

in BASIC. This version still preserves the feature of not allowing

the player to change small stars right next to the ship into novas.

However, if you want to remove that feature, just replace line 340
with

340 IFX =46THEN 380

Otherwise, use lines 40,100, and 285 from Program 10-1, and
replace lines 300-370 with this program:

Program 10-2. starshot with Missiles

300 IF (OH=0 AND DI=-1)OR(OH=21 AND DI=1) THEN RET
URN

305 MH=OH:MV=22*OV:BB=32:EM=0:IF DI>0 THEN EM=21

161

10

Missiles
and'Moonraker

310 FOR I=MH+DI TO EM STEP DI:MM=SC+I+MV:X=PEEK(MM

):IF K>MH+DI THEN POKE MM-DI,32

315 IF X<>32 THEN EM=I:GOTO 330

320 POKE MM,70:NEXT:POKE MM, 32

325 RETURN

330 FOR 1=0 TO 7:POKE MM,77:POKE MM,93:POKE MM,78:

POKE MM,67:NEXT

340 IF X=46 THEN NN=46:IF EM<>MH+DI THEN 380

350 IF X=81 THEN NN=46:P=P+(8*NV)*INT(QQ-Q)

360 IF X<>46 AND X<>81 THEN NN=104:P=P-1000

370 POKE MM,NN:GOTO 325

380 NN=81:IF EM<>MH+DITHEN FOR I=EM TO MH+DI STEP

{SPACE}-DI:POKE SC+MV+I,46:NEXT:GOTO 390

385 POKE MM,46

390 GOTO 370

I Your First Game — and Mine

We've been through all the principles of programming arcade

games in BASIC on the VIC. Using other reference books, you'll

be able to pick up some more sophisticated programming tech

niques, and if you're serious about game design, you'll eventually

turn to machine language. But for now, you're certainly ready to

write a game. Your first attempt mightbe simple, but if you pro

gram it carefully, leaving plenty of line numbers for adding new

subroutines to improve the game, your first game will turn out

-pretty well. And with practice, you'll gain skill and confidence.

But no matter how good you eventually become, you'll prob

ably always feel kind of proud of your first game. I know I feel that

way about mine. //Moonraker" was the result of my first struggle

with game programming. It went through a lot of versions, but I

finally settled on this one.

There are some features of the game that reflect my situation

at the time. For one thing, I used POKE 36864,4 to move the

screen display to the right. I had to — my old TV didn't scan cor

rectly, and without that POKE I couldn't see the whole screen. In

fact, you might enjoy playing around with POKEs at 36864 to see

the effect it has. Try entering this one-line program and RUNning

it:

10 FORX =0 TO 20:POKE 36864,X:NEXT:FOR

X =20TO 0 STEP -1:POKE 36864,X:NEXT:GOTO 10

To get your screen back to normal, press RUN/STOP and then

POKE 36864,5.

, You'll notice that this program doesn't skip any line numbers.

162

10

Missiles
ancTMoonraker"

No, I didn't write it that way. I left plenty of extra line numbers
while I was programming. But when I was through, I used a line-
renumbering utility to tighten down my program.

Since I was using an unexpanded VIC, I used 7680 directly as

the starting address of screen memory. I also found that I was
running out of memory with all my title screens. So I used a fairly
sophisticated technique for fooling BASIC into erasing the intro
ductory part of the program after it was entered. But that's a pro
gramming technique, not a game technique — the sort of thing
you'll want to start learning as you get better at game program

ming, but certainly not essential when you're just starting out.

So here's my first full-fledged game. I hope you like it. Who
knows? Maybe 111 get to play yours someday.

program 10-3. Moonraker

1 PRINT"{CLR}{8 DOWN}{6 SPACESjMOON RAKER":PRINT

2 PRINT"{7 DOWN}{RVS}HIT ANY KEY TO CONT-{OFF})
3 GETA$:IFA$=""THEN3

4 GOTO87

6 PRINT"{CLR}{HOME}{2 DOWN}(6 RIGHT}CONTROLS:
7 PRINT:PRINT"{CYN}{4 RIGHT}UP= {RVS}@{OFF}":PRINT

:PRINT"{4 RIGHT}DOWN= {RVS}SPACE BAR{OFF}":PRINT
:PRINT"{4 RIGHT}RIGHT= {RVS}={OFF}

8 PRINT:PRINT"{4 RIGHT}LEFT={RVS}:{OFF}":PRINT:PRI
NT"{4 RIGHT}FIRE= {RVS}a{OFF}":PRINT:PRINT"

{2 RIGHT}YOU HAVE 2 MINUTES"

9 PRINT:PRINT:PRINT"{3 RIGHT}HIT A * TO BEGIN"

10 GETA$:IFA$=""THEN10

11 POKE52,28:POKE56,28:POKE36864,7

12 CS=7168:X=0

13 FORI=CSTOCS+511:POKEI,PEEK(1+25600):NEXT

14 FORI=0TO7:READJ:POKECS+I,J:NEXT

15 FORI=16TO39:READJ:POKECS+I,J:NEXT

16 FORI=48TO87:READJ:POKECS+I,J:NEXT

17 FORI=96TO103:READJ:POKECS+I,J:NEXT

18 FORI=128TO143:READJ:POKECS+I,J:NEXT

19 FORI=152TO255:READJ:POKECS+I,J:NEXT

20 DATA102,153,153,102,102,153,153,102

21 DATA254,60,29,15,15,29,60,254,0,56,124,198,198,

124,56,0

22 DATA15,3,1,0,0,1,3,15,224,195,215,252,252,215,1

95,224

23 DATA0,128,192,96,96,192,128,0,0,0,0,0,254,60,29

,15

24 DATA0,0,0,0,0,56,124,198,15,29,60,254,0,0,0,0,1

98,124,56,0,0,0,0,0

163

10

Missiles
and "Moonraker

25 DATA48,72,180,207,207,180,72,48,0,0,0,255,255,0
,0,0

26 DATA136,73,74,42,165,90,189,126,34,132,88,61, 60
,154,33,72

27 DATA36,36,24,24,60,60,36,24,6,136,152,124,62,25
,17,96

28 DATA0,0,0,0,36,36,24,24,8,8,28,34,62,62,85,85
29 DATA60,60,36,24,0,0,0,0,0,0,0,0,0,0,255,0,255,0

,0,0,0,0,0,0

30 DATA128,64,32,16,8,4,3,0,1,2,4,8,16,32,192,0,0,

128,127,0,0,0,0,0,0,1,254,0,0,0,0,0

31 PRINT"{CLR}":POKE36869,255:CLR:POKE36879,8
32 PRINT"{RED}{20 DOWNjz]T«£ZZZ]T«£][[[Ull£ Z"

33 L=7900:V=36878:S=36877::L1=7788:L2=7723:L3=7718
:L4=8112:L5=8116:TI$=II000000":U=32

34 M=22:O=23

35 PRINT" {HOME} {RVSHyEL,} {3 RIGHT}MOONRAKER{WHT}
{RIGHT}";X

36 POKEL3,21:POKEL3-M,U:POKEL1,0:POKEL2,M:POKEL4,2
4:POKEL5,24:POKEL,2:POKEL+1,3

37 POKEL2,U:N=255:IFL2=>8054THENL2=L2-M
38 IFL2<=7702THENL2=L2+M

39 P=INT(RND(1)*4):IFP=0THENL2=L2-44
40 IFP=lTHENL2=L2+44

41 IFP=2THENL2=L2+2

42 IFP=3THENL2=L2-2 ^

43 IFL3=L4ORL3=L5THENX=X-500:GOTO75
44 IFL3=>8098THEN75

45 POKEL3,O:POKEL3+M,25:L3=L3+M:F=Ll+21:POKEF,0:PO
KEL1,U:L1=F

46 IFF=>8098THENPOKEF,U:Ll=INT(RND(l)*O)+7702
47 IFL=L1ORL=L2ORL=L3THENX=X-250:GOTO77

48 IFL+l=LlORL+l=L2ORL+l=L3THENX=X-250:GOTO77

49 IFL>8076THENPOKEL,U:POKEL+1,U:L=L-M:GOTO35 ;

50 IFL<7724THENPOKEL,U:POKEL+1,U:L=L+M:GOTO35
51 IFPEEK(197)=46THEN59

52 IFPEEK(197)=45THEN60

53 IFPEEK(197)=53THEN63

54 IFPEEK(197)=UTHEN61

55 IFPEEK(197)=17THEN65

56 IFE<0THEN80

57 IFTI$>"000120"THEN79

58 GOTO35

59 POKEL,4:POKEL+1,6:POKEL+2,7:POKEL,U:POKEL+1,2:P

OKEL+2,3:L=L+1:GOTO35

60 POKEL-1,4:POKEL,6:POKEL+1,7:POKEL-1,2:POKEL,3:P

OKEL+1,U:L=L-1:GOTO3 5

61 POKEL,8:POKEL+1,9:POKEL+M,10:POKEL+O,12

62 POKEL,U:POKEL+1,U:POKEL+M,2:POKEL+O,3:L=L+M:GOT

035

164

10

Missiles

ancT'Moonraker

63 POKEL, 10:POKEL+1,12:POKEL-M,8:POKEL-21,9
64 POKgL,U:POKEL+1,U:POKEL-M,2:POKEL-21,3:L=L-M:GO

TO.3V ^
65 Poicl2L+2,16:POKEV,15:POKE36877,N

66 FORF=0TO18:POKEL+3+F,17:POKEC+F+3,2:POKEL+2+F,U

:POKEL+2,U:POKE3687 7,N

67 L6=L+3+F:IFL6=LlTHEN X=X+150:GOTO71

68 IFL6=L2THENX=X+250:GOTO73

69 IFL6=L3ORL6=L3-MTHENX=X+50:GOTO75

70 N=N-12:NEXT:POKEL+21,U:POKEV,0:GOTO35

71 POKEV,15:POKES,130:POKELl,20:FORT=0TO600:NEXT
72 POKEL1,U:POKEV,0:L1=INT(RND(1)*O)+7702:GOTO35

73 POKEV,15:POKES,130:POKEL6,20:FORT=0TO600:NEXT

74 POKEL6,U:POKEV,0:GOTOQS> }£

75 POKEV,15:POKES,130:POKEL3,20:FORT=0TO600:NEXT

76 POKEL3,U:POKEL3-M,U:L3=INT(RND(1)*O)+7702:POKEV

,0:GOTO35

77 POKEL,20:POKEL+1,20:POKEV,15:POKES,130:FORT=0TO

600:NEXT

78 POKEV,0:GOTO35
79 POKE198,0:POKE36869,240:PRINT"{CLR}{5 DOWNTIME

IS UP:YOUR SCORE IS:";X

81 PRINT-.PRINT "HIT THE * TO TRY AGAINOR THE RUN/ST

OP TO END

82 GETA$:IFA$=""THEN82

83 GOTO11
84 A=PEEK(61)+256*PEEK(62)+3:POKE2,INT(A/256):POKE

1,A-256*PEEK(2)
85 A=PEEK(61)+256*PEEK(62)+3:POKE2,INT(A/256):POKE

1,A-256*PEEK(2)
86 IFERTHENPOKEA-2,0:POKEA-1,0:POKE45,PEEK(1):POKE

46,PEEK(2):CLR:GOTO6

87 PRINT11 {CLR} AS COMMANDER OF MOON-{DOWN}RAKER YO
U ARE TO{2 SPACES}PRO-{DOWN}TECT THE 2 RESEARCH

88 PRINT"{DOWN}PODS ON THE MOON'S{4 SPACES}{DOWN}S
URFACE. HITS BY ALIEN{DOWN}TO YOU OR YOUR

{2 SPACES}PODS
89 PRINT"{DOWN}CAUSES LOSS OF POINTS.{DOWN}BLAST T

HE ALIENS WITH {DOWN}YOUR LASER FOR POINTS
90 PRINT"{3 DOWN}{RVS}HIT ANY KEY TO CONT.{OFF}
91 GETA$:IFA$=""THEN91

92 PRINT"{CLR}BEWARE OF THE RANDOM{2 SPACES}{DOWN}
MOVING TWIRLER WHICH{2 SPACES}{DOWN}STRIKES WIT

HOUT NOTICE

93 PRINT"AND ROBS YOU OF POINTS{DOWN}YOU WILL HAVE

120 SEC-{DOWN}ONDS TO GET AS MANY
94 PRINT"{DOWN}POINTS AS YOU CAN.{4 SPACES}

{2 DOWN} GOOD LUCK COMMANDER11

95 PRINT"{2 DOWN}{RVS}HIT ANY KEY TO CONT.{OFF}
96 GETA$:IFA$=""THEN96

97 ER=1:GOTO84

165

Q

O

O

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

G

o

o

G

G

G

G

G

G

G

Q

O

O

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

G

o

o

G

G

G

G

G

G

G

A

Beginner's Guide to

Typing m Programs

A Beginner's
Guide to Typing
m Programs
what is a Program?

A computer cannot perform any task by itself. Like a car without
gas, a computer has potential, but without a program, it isn't going

anywhere. Most of the programs published in COMPUTE! Books

are written in a computer language called BASIC. BASIC is easy

to learn and is built into all VIC-20s.

basic Programs

Computers can be picky. Unlike the English language, which is

full of ambiguities, BASIC usually has only one right way of
stating something. Every letter, character, or number is signifi
cant. A common mistake is substituting a letter such as O for the

numeral 0, a lowercase 1 for the numeral 1, or an uppercase B for

the numeral 8. Also, you must enter all punctuation such as co

lons and commas just as they appear in the book. Spacing can be

important. To be safe, type in the listings exactly as they appear.

Braces and Special Characters

The exception to this typing rule is when you see the braces, such

as {DOWN }. Anything within a set of braces is a special

character or characters that cannot easily be listed on a printer.

When you come across such a special statement, refer to "How to

Type In Programs/'

About data Statements

Some programs contain a section or sections of DAIA statements.

These lines provide information needed by the program. Some

DAIA statements contain actual programs (called machine

language); others contain graphics codes. These lines are

especially sensitive to errors.

If a single number in any one DAIA statement is mistyped,

your machine could lock up, or crash. The keyboard and STOP

key may seem dead, and the screen may go blank. Don't panic —

169

A

Beginner's Guide to
Typing in Programs

no damage is done. To regain control, you have to turn off your

computer, then turn it back on. This will erase whatever program

was in memory, so always S/¥E a copy ofyourprogram before you

RUN it. If your computer crashes, you can LOAD the program

and look for your mistake.

Sometimes a mistyped DA3A statement will cause an error

message when the program is RUN. The error message may refer

to the program line that READs the data. The error is still in the

DATA statements, though.

Get to Know Your Machine

You should familiarize yourself with your computer before at

tempting to type in a program. Learn the statements you use to

store and retrieve programs from tape or disk. You'll want to save

a copy of your program, so that you won't have to type it in every

time you want to use it. Learn to use the VICs editing functions.

How do you change a line if you made a mistake? You can always

retype the line, but you at least need to know how to backspace.

Do you know how to enter reverse characters, lowercase, and

control characters? Ifs all explained in your VlC-20's manual, Per

sonal Computing on the VIC.

A Quick Review

1) Type in the program a line at a time, in order. Press RETURN at

the end of each line. Use the INST/DEL key to erase mistakes.

2) Check the line you've typed against the line in the book. You

can check the entire program again if you get an error when you

RUN the program.

3) Make sure you've entered statements in braces as the ap

propriate control key (see "How to Type In Programs").

170

B

How to Type

in Programs

How to Type
m Programs
Many of the programs listed in COMPUTE! Books contain special

control characters (cursor control, color keys, reverse characters,

etc.). To make it easy to know exactly what to type when entering

one of these programs into your computer, we have established

the following listing conventions.

Generally, any VIC-20 program listings will contain words in

braces which spell out any special characters: {DOWN} would

mean to press the cursor down key. {5 SPACES } would mean to

press the space bar five times.

To indicate that a key should be shifted (hold down the SHIFT

key while pressing the other key), the key would be underlined in

our listings. For example, S would mean to type the S key while

holding the shift key. This would appear on your screen as a heart

symbol. If you find an underlined key enclosed in braces (e.g.,

{10 N}), you should type the key as many times as indicated (in

our example, you would enter ten shifted N's).

If a key is enclosed in special brackets, [<>], you should hold

down the Commodore key while pressing the key inside the special

brackets. (The Commodore key is the key in the lower-left corner

of the keyboard.) Again, if the key is preceded by a number, you

should press the key as many times as necessary.

Rarely, you'll see a solitary letter of the alphabet enclosed in

braces, such as {A }. You should never have to enter such a

character on the VIC-20, but if you do, you would have to leave

the quote mode (press RETURN and cursor back up to the posi

tion where the control character should go), press CTRL-9 (RVS

ON), the letter in braces, and then CTRL-0 (RVS OFF).

About the quote mode: youknow that you can move the cursor

around the screen with the CRSR keys. Sometimes a programmer

will want to move the cursor under program control. That's why

you see all the {LEFT }'s, {HOME }7s, and {BLU }7s in our pro

grams. The only way the computer can tell the difference be

tween direct and programmed cursor control is the quote mode.

Once you press the quote (the double quote> SHIFT-2), you

are in the quote mode. If you type something and then try to

change it by moving the cursor left, you'll only get a bunch of

171

How to Type
In Profjrdms

reverse-video lines. These are the symbols for cursor left. The

only editing key that isn't programmable is the DEL key; you can

still use DEL to back up and edit the line. Once you type another

quote, you are out of quote mode.

You also go into quote mode when you INSerT spaces into a

line. In any case, the easiest way to get out of quote mode is to just

press RETURN. Youll then be out of quote mode and you can

cursor up to the mistyped line and fix it.

Use the following table when entering cursor and color con

trol keys:

When You

Read:

{CLEAR}

{home}

{up}

{DOWN}

I LEFT}

{RIGHT}

{RVS}

{off}

Iblk}

{whtJ

{red}

{cyn}

{pur}

When You

See: Read:

CTRL

CTRL

CTRL

LlJ
[3

4

Press: See:

CTRL || 6

[CTRL || 7

CTRL || 8

(3

f4

f5

f6

f7

f8

SHIFT

172

Screen Location

Table

Screen Location Table
Row

0 7680(4096)

7702(4118)

7724(4140)

7746 (4162)

7768(4184)

5 7790(4206)

7812(4228)

7834(4250)

7856(4272)

7878(4294)

10 7900(4316)

7922(4338)

7944(4360)

7966(4382)

7988(4404)

15 8010(4426)

8032(4448)

8054(4470)

8076(4492)

8098(4514)

20 8120(4536)

8142(4558)

22 8164(4580)

10 15 20

Column

Note: Numbers in parentheses are for VICs with 8K or more of memory

expansion.

173

screen Color

Memory Table

Screen color Memory
Table
Row

10

15

20

22

38400(37888)

38422(37910)

38444(37932)

38466(37954)

38488(37976)

38510(37998)

38532(38020)
38554(38042)

38576(38064)

38598(38086)
38620(38108)

38642

38664

38686

38708

38130)

38152)

38174)

38196)

38730 38218)

38752(38240)
38774(38262)

38796(38284)

38818(38306)

38840(38328)

38862(38350)

38884(38372)

10 15 20

Column

Note: Numbers in parentheses are for VICs with 8K or more of

memory expansion.

174

sereen color

codes

screen color codes

Color:

Code:

BLK

0

WHT

1

RED

2

CYN

3

PUR

4

GRN

5

BLU

6

YEL

7

175

Screen and

Border colors

Screen and Border Colors

Screen

Black

White

Red

Cyan

Purple

Green

Blue

Yellow

Orange

Light Orange

Pink

Light Cyan

Light Purple

Light Green

Light Blue

Light Yellow

Black

8

24

40

56

72

88

104

120

136

152

168

184

200

216

232

248

White

9

25

41

57

73

89

105

121

137

153

169

185

201

217

233

249

Border

Red

10

26

42

58

74

90

106

122

138

154

170

186

202

218

234

250

Cyan

11

27

43

59

75

91

107

123

139

155

171

187

203

219

235

251

Purple

12

28

44

60

76

92

108

124

140

156

172

188

204

220

236

252

Green

13

29

45

61

77

93

109

125

141

157

173

189

205

221

237

253

Blue

14

30

46

62

78

94

110

126

142

158

174

190

206

222

238

254

Yellow

15

31

47

63

79

95

111

127

143

159

175

191

207

223

239

255

176

G

ASCII

codes

ascii codes

ASCII CHARACTER ASCII CHARACTER

5

8

9

13

14

17

18

19

20

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

WHITE

DISABLE

SHIFT COMMODORE

ENABLE

SHIFT COMMODORE

RETURN

LOWERCASE

CURSOR DOWN

REVERSE VIDEO ON

HOME

DELETE

RED

CURSOR RIGHT

GREEN

BLUE

SPACE

I

#

$

%

&
i

(

)
*

+

-

.

/

0

1

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

2

3

4

5

6

7

8

9

:

<

>

?

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q
R

177

c

ASCII
codes

ASCII

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

IB

114

115

116

117

118

119

CHARACTER

S

T

U

V

w

X

Y

Z

m

D

□

□

S
0

□

1
□

ASCII

120

121

122

123

124

125

126

127

133

134

135

136

137

138

139

140

141

142

144

145

146

147

148

156

157

158

159

160

161

162

163

164

165

166

167

168

169

CHARACTER

E

fi

f3

f5

f7

£2

f4

£6

f8

SHIFTED RETURN

UPPERCASE

BLACK

CURSOR UP

REVERSE VIDEO OFF

CLEAR SCREEN

INSERT

PURPLE

CURSOR LEFT

YELLOW

CYAN

SPACE

Q
n

a

E

178

c

ASCII
codes

ASCII

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

CHARACTER

n
H

U
H
H
H

□

g

□

a
H
E
B

B

m
B

1 '

B
D

1

□

D
S

ASCII

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

CHARACTER

□
m

B

□

a

m

SPACE

I

n

□

a

B
a

■

H

H

179

c

ASCII

codes

ASCII

244

245

246

247

248

249

250

251

252

253

254

CHARACTER

D

C
[J

n
□

a
Q
H
H
E

255

1. 0-4, 6-7,10-12,15-16,21-27,128-132,143, and 149-155 have no effect.

2.192-223 same as 96-127, 224-254 same as 160-190, 255 same as 126.

180

H

Screen

codes

screen codes

POKE

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Uppercase and

Full Graphics Set

@

A

B

C

D

E

F

G

H

I

J
K

L

M

N

O

P

Q
R

S

T

U

V

W

X

Y

Z

[

£

]

t

Lower- and

Uppercase

@

a

b

c

d

e

f

g

h

i

j
k

1

m

n

o

P

q
r

s

t

u

V

w

X

y

z

[

£

]

t

POKE

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Uppercase and

Full Graphics Set

Lower- and

Uppercase

—

-space-

i

"

#

$

%

&

1

(

)
*

+

-

/

0

1

2

3

4

5

6

7

8

9

;

)

<

=

#

$

%

&

'

(

)
*

+

-

.

/

0

1

2

3

4

5

6

7

8

9

;

<

=

181

H

Screen

Codes

POKE

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

Uppercase and

Full Graphics Set

B

B
B
□
□
D
a

□
□

D

0
□
□

D

m

Lower- and

Uppercase

B
A

B

C

D

E

F

G

H

I

J
K

L

M

N

O

P

Q
R

S

T

U

V

W

X

Y

Z

m

POKE

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

Uppercase and

Full Graphics Set

H

Lower- and

Uppercase

- -space- -

■ i
y y

□ □

B n
a

B

□
a
u

□
D
B
H
B

a

a

E
Q
H
H
U

B
H

H

□

a

r

H
H
H
B

128-255 are reverse video of 0-127.

182

index
animation 4,20

animation in place routine 94-95

defined 80

memory considerations 27

minimum speed for smooth 79

player-controlled 96-97

smooth 96

with movement 95

Apple computer 14

arrays, for program crunching 154

artificial intelligence 30-31

ASCII code 48,49

table 177-80

Asteroids 25, 32,36,37,159

Atari computer 14

'Athlete in Action" program 97-98

background sound 122-23

in main loop of game 123

BASIC 3

relatively slow 13-14

Berserk 29-30

"Blip" program 120

border colors 176

Breakout 26

Burger Time 24,31

cassettes, cheap ones work better 10

Centipede 25,29

central processing unit see CPU

chaining programs 152-53

character matrix 63-64

character memory 65

characters 26

replacing 71-73

sequential 73-74

character set 45

copying into RAM for customization 68-75

stored in ROM 68

character work grid 67

children, and game testing 7-8

CHR$ function 48

clock, in "Subroutine Sound" program

125

collisions 101-14

detection of 101,129

color key 56

color memory 45,102

example program and discussion 57-59

finding 57

limitation on POKE 56

manipulating 56-59

table 174

colors, border, manipulating 43-45

colors, playfield, manipulating 43-45

colors on VIC 12

combining characters 54

Commodore 14

Commodore 64 Programmer's Reference Guide

107

complications, theory of 31

COMPUTED Second Book ofVIC 119

control matrix 82

"Copying Characters" program 69-71

CPU 13

"Creating Characters" program 69

crunching programs 152,153-55

custom characters 27

creating 63-75

memory considerations 27

program crunching and 155

custom character sets 4,13,26-27

DATA statements 169-70

defeat, psychology of 32

Defender 19,25,37

delay loop 98

Dig-Dug 37,159

documentation 19-20, 38-39,150-51

Donkey Kong 19,24,25,26,29,31,32,35,37,

80,117

Donkey Kong Jr. 27,30,37

existing games, improvement of 25-26

experimentation 5-6

extras 135-44

farewells 135,141-43

personalizing 144

"Fill In" program 53

Firebird 25

FOR-NEXTloops3,5

FRE function 75,136

Galaga 25,35

Galaxians 25,36

game design, different from programming

6

discussion 19-40

game story 25-26

importance of originality 25

GOSUB3,5/28,136

GOTO 3

graph paper 10

graphics characters 13

habits, important in good programming

148

homing pattern 29,30

horizontal movement 85

ideas 6-7

in-line logic 89

"Inchworm" program 95

183

instructions 135,138-41

interest-maintaining techniques 23, 32-38

bonus turns 37

complication 34

incentives 35

increasing accuracy 34

increasing difficulty 33-34

in Joust 20

new scenery 34-35

scoring 35-36

story rewards 37

introductions 135-38

invisible objects 44

Joust 19,26,30,31,34,37,117

game analyzed 20-24

joystick 19,20,28

reading 92-93

joystick button 93

Kangaroo 30,35,37

keyboard reading 81-85

key code 81, 83

table 84

"Keysound" program 120 -

discussion 120-21

"Keysound UFO" program 121

discussion 121-22

"Laser XJet" program 91-92 }
loops, for program crunching 154

machine language 13, 28

and animation 79

magazines, programs in 5-6

main loop, proper function of 150

marketing 8-10

memory, economical use of 135

memory locations 14

MID$ function 105

missile routines 159-65

Missile Command 25, 33, 35, 37

"Mission: Nova!" program 105-6 j
discussion 106-9

farewell code 143

instructions code 139-40

introduction code 136

laser routine in 159-61

missile routine in 161-62

modified by GOSUBs 136

sounds, in code and discussion, 128-31

Monopoly 32, 35

"Moonraker" program

discussion 162-63

program 163-65

movement 79-81

defined 80

demonstration program 80-81

with animation 95

with POKE program 86-87

Mr. Do 159

Ms. Vac-Man 19

"Multicharacter PRINT Movement"

routine 90

noise register 118

ON statement, for program crunching 154

opponents, intelligent 29-30

opponents, mindless 30

originality, in game story 25

Vac-Man 24,26, 30, 31, 32,35, 37,101,117,

118

PEEK 14

explained 46-47

Personal Computing on the VIC-201,119

pixel 12,26,64

"Player-Controlled Animation" routine

96-97

player movement 20

trade off speed and complexity 28

point inflation 36

POKE 14

explained 46-47

PRINT 3,48

combined with POKE 112-14

dangers of 88-90

faster than POKE 88

moving cursor with 55-56

screen displays with 54-55

"PRINT Movement Routine" 87-88

programming techniques 147-55

program translation 14-15

Qix 25

Rally-X 31

RAM 11

5K basic option on VIC-2011-12

random access memory see RAM

random screen displays 51-53

raster 79

READ statement 52

in character replacement 72-73

REM statement 154

RESTORE statement 52

RND function 51-52

Robotron 25

Scramble 159

screen, VIC-2012

screen codes 48-49

table 181-82

screen color codes 175,176

screen color memory table 174

screen design 4,43-58

screen location table 173

screen memory 45,102

finding 57

manipulating with PEEK and POKE 47

organization 49

184

screen relationships 29

scrolling 104-5

6502 chip 14

not all machines using it compatible

14-15

sound 4

importance of 37-38

in Joust 23-24

in "Mission: Nova!" 128-31

in subroutines 123-27

turning off 120

uses of 117-18

"Sound Game" program 127

discussion 127-28

sound registers 118

Space Invaders 28,30, 33,117

"Spaceship Collisions" program 101-2

discussion 102-3

"Spark" program U3-14

discussion 112-13

farewell code 42

setting difficulty in 140-41

SPC function 56

speed, real and apparent 150-51

"Star-Eater" program 110-12

"Starfield" program 51-53

STEP function 5

submission to publishers 9-10

subroutines, program crunching and

154-55

subroutines, sound 123-31

halt game action 124

no-stop subroutines 126-28

"Subroutine Sound" programs 124,126

discussion 124-25,126

Super Breakout 36

Surround 26

TAB function 55

Tempest 25,34,35

testing 7

timer, common 151-52

timer reset routine 109

TI$ variable 107,109,110

Iron 26

true/false test 44

unpredictability 33

programming 33

vanity board 36-37

in Joust 23

variables, take less space than numbers

154

Venture 25, 35

vertical movement 85

VIC-20

colors 12

languages available 13

RAM 11-12

screen 12

sound 13

specifications 11-15

V7C-20 Programmer's Reference Guide 10, 68

VIC-20 User's Guide 10,68

Video Interface Chip (VIC) 45

volume control register 118

weaknesses, need for in computer

opponents 31

"Wire" program 54-55

wraparound 89-90

"Zap" program 119

185

Q

O

O

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

G

o

o

G

G

G

G

G

G

G

If you've enjoyed the articles in this book, you'll find the

same style and quality in every monthly issue of COMPUTE!

Magazine. Use this form to order your subscription to

COMPUTE!.

For Fastest Service,

Call Our Toil-Free US Order Line

800-334-0868
In NC call 919-275-9809

COMPUTE!
PO. Box 5406

Greensboro, NC 27403

My Computer Is:

□ Commodore 64 □TI-99/4A □ Timex/Sinclair DVIC-20 Q PET

□ Radio Shack Color Computer □ Apple □ Atari □ Other

□ Don't yet have one...

□ $24 One Year US Subscription
□ $45 Two Year US Subscription
□ $65 Three Year US Subscription

Subscription rates outside the US:

$30 Canada
$42 Europe, Australia, New Zealand/Air Delivery

$52 Middle East North Africa, Central America/Air Mail
$72 Elsewhere/Air Mail
$30 International Surface Mail (lengthy, unreliable delivery)

Name

Address

City

Country

State Zip

Payment must be in US Funds drawn on a US Bank; International Money

Order, or charge card.

□ Payment Enclosed □ VISA

□ MasterCard □ American Express

Ace t. No. Expires /

25-6

Q

O

O

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

G

o

o

G

G

G

G

G

G

G

If you've enjoyed the articles in this book, you'll find

the same style and quality in every monthly issue of

COMPUTERS Gazette for Commodore.

For Fastest Service

Call Our Toil-Free US Order Line

800-334-0868
In NC call 919-275-9809

computersmmmmwwm
P.O. Box 5406

Greensboro, NC 27403

My computer is:

□ Commodore 64 □ VIC-20 □ Other.

□ $20 One Year US Subscription
□ $36 Two Year US Subscription
□ $54 Three Year US Subscription

Subscription rates outside the US:

□ $25 Canada
□ $45 Air Mail Delivery

□ $25 International Surface Mail

Name

Address

City State Zip

Country

Payment must be in US Funds drawn on a US Bank International Money

Order, or charge card. Your subscription will begin with the next avail

able issue. Please allow 4-6 weeks for delivery of first issue. Subscription

prices subject to change at any time.

□ Payment Enclosed

□ MasterCard

Acct. No.

□ VISA

□ American Express

Expires

25-6

The COMPUTED Gazette subscriber list is made available to carefully screened organiza

tions with a product or service which may be of interest to our readers. If you prefer not to

receive such mailings, please check this box □.

Q

O

O

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

G

o

o

G

G

G

G

G

G

G

COMPUTE! Books
P.O. Box 5406 Greensboro, NC 27403

Ask your retailer for these COMPUTE! Books. If he or she

has sold out order directly from COMPUTE!

For Fastest Service

Call Our TOLL FREE US Order Line

800-334-0868
In NC call 919-275-9809

Quantity Title

I Machine Language for Beginners

Home Energy Applications

COMPUTED First Book of VIC -

I COMPUTED Second Book of VIC •

COMPUTED First Book of VIC Games *

| COMPUTED First Book of 64

COMPUTERS First Book of Atari

COMPUTED Second Book of Atari

COMPUTED First Book of Atari Graphics

COMPUTED First Book of Atari Games

Mapping The Atari

Inside Atari DOS

The Atari BASIC Sourcebook

Programmer's Reference Guide for TI-99/4A

COMPUTED First Book of Tl Games

Price Total

$14.95*

$14.95*

$12.95*

$12.95* I2o?f

$12.95*

$12.95* I2,9f

$12.95*

$12.95*

$12.95*

$12.95*

$14.95*

$19.95*

$12.95*

$14.95*

$12.95*

.Every Kid's First Book of Robots and Computers $ 4.95t

_ The Beginner's Guide to Buying A Personal

Computer $ 3.95t

* Add $2 shipping and handling Outside US add $5 air mail; $2

surface mail,

t Add $1 shipping and handling Outside US add $5 air mail; $2

surface mail

Please add shipping and handling for each book

ordered.

Total enclosed or to be charged.

All orders must be prepaid (money order, check, or charge). All

payments must be in US funds. NC residents add 4% sales tax.

Kf Payment enclosed Please charge my: □ VISA □ MasterCard

□ American Express Acc't. No. Expires /

Name i

Address

City

Country

HLUIV

psc

flPo

L . C

SOX

Dfas /) /?p 5

9,79

State M K Zip

Allow 4-5 weeks for delivery.

25-6

Q

O

O

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

G

o

o

G

G

G

G

G

G

G

Q

O

O

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

G

o

o

G

G

G

G

G

G

G

me

You want to create your own games, but you're not sure just how

to begin. After all, game writing can be one of the most demand

ing programming tasks. Whether you already know programming

or are just starting, it may seem almost impossible to create a

successful game. This book — a guide for anyone who has thought

of designing and writing a game program — shows you how.

Robert Camp's Creating Arcade Games on the VIC is a step-by-step

guide through the process of writing your own game on a home

computer. From developing a game design concept to writing a

complete game, you'll find every method and technique you need

for creating VIC games. Detailed and clear explanations make it
easy to follow along.

Here are just a few of the topics covered:

• Sound

• Custom characters

• Animation

• Missile graphics

• How to develop an idea

• How to market a game program

Along the way, you'll be able to follow the step-by-step creation

of four games, and see how the principles work out in real pro

gramming situations.

Using an unexpanded VIC-20, you'll see the power of a home

computer as a game-writing tool. With this book, and your imagi

nation, you'll soon be writing that game you only hoped you

could write.

ISBN 0-942386-25-6 $12.95

