

COMPUTE! S

COMMODORE

c

SIXTY FOUR &)

COLLECTION

COMPUTE! Publicationsjnc.^
One ol the ABC Publishing Companies

Greensboro, North Carolina

The following article was originally published in COMPUTE! magazine, copyright

1983, COMPUTE! Publications, Inc.: "Ultrasort" (September—originally titled

"Ultrasort for Commodore").

The following articles were originally published in COMPUTE! magazine, copyright

1985, COMPUTE! Publications, Inc.: "Advanced Sound Effects on the 128" (Feb

ruary—originally titled "Advanced Sound Effects on the 64"); "Mindbusters" (April);

"TurboDisk: High-Speed 1541 Disk Loader" (April—originally titled "TurboDisk:

High-Speed Disk Loader for Commodore 64 and Expanded VIC-20").

The following articles were originally published in COMPUTE!'* Gazette, copyright

1983, COMPUTE! Publications, Inc.: "Disk Defaulter" (November—originally titled

"VIC/64 Disk Defaulter"); "UnNEW: Program Lifesaver" (November—originally ti

tled "VIC/64 Program Lifesaver); "Foolproof INPUT" (December—originally titled

"Foolproof INPUT for VIC and 64").

The following articles were originally published in COMPUTEl's Gazette, copyright

1984, COMPUTE! Publications, Inc.: "Making Calendars" (April); "Ultrafont +"

(July); "Campaign Manager" (August); "Sprite Magic: An All Machine Language

Sprite Editor" (August—originally titled "Sprite Magic: An All-Machine-Language

Sprite Editor"); "Quiz Master" (October—originally titled "Quiz Master for the 64");

"Function Key" (November).

The following articles were originally published in COMPUTEl's Gazette, copyright

1985, COMPUTE! Publications, Inc.:'"Debugging BASIC Programs" (January and Feb
ruary—originally titled "Debugging BASIC: Part 1 and Part 2"); "Trap 'Em" (January);

"Commodore 128 Peripheral Ports" {March—originally titled "Commodore Peripheral

Ports"); "Disk Directory Sort" (March); "Heat Seeker" (March); "Commodore 128

CP/M Plus" (April—originally titled "What Is CP/M?"); "NoZap: Automatic Program

Saver" (April); "Triple 64" (April); "Inside the Commodore 128: A Hands-On Look"

(June—originally titled "Inside the 128: A Hands-On Look at Commodore's Newest

Computer"); "Squares" Oune).

The following article was originally published in COMPUTEl's Machine language

Routines for the Commodore 64, copyright 1984, COMPUTE! Publications, Inc.: "64

Freeze."

The following article was originally published in COMPUTEl's Second Book of Com

modore 64 Games, copyright 1984, COMPUTE! Publications, Inc.: "Writing Text

Adventures for the Commodore 64 and 128" (originally titled "Puzzles, Palaces, and

Pilgrims: Writing Text Adventures for the Commodore 64").

Copyright 1985, COMPUTE! Publications, Inc. All rights reserved

Reproduction or translation of any part of this work beyond that permitted by

Sections 107 and 108 of the United States Copyright Act without the permission of

the copyright owner is unlawful.

Printed in the United States of America

10 987654321

ISBN 0-942386-97-3

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919)

275-9809, is one of the ABC Publishing Companies and is not associated with any

manufacturer of personal computers. Commodore 64 and Commodore 128 are trade

marks of Commodore Electronics Limited.

Contents

Foreword v

Chapter 1. Inside the 128 1

Inside the Commodore 128: A Hands-On Look

Charles Brannon 3

Commodore Peripheral Ports

Ottis R. Cowper 13

Commodore 128 CP/M Plus

Charles Brannon 22

Chapter 2. Programming 27

Debugging BASIC Programs

Todd Heimarck 29

Foolproof INPUT

Charles Brannon 46

Ultrasort

John W. Ross 49

Writing Text Adventures

Gary McGath 55

Chapter 3, Recreation and Education 75

Trap 'Em

Jon Rhees 77

Mindbusters

Ned W. Schultz 82

Squares

Douglas Fish 86

Quiz Master

George W. Miller 90

Making Calendars

Paul C. Liu 102

Heat Seeker

Jeff Wolverton; Version by Tim Victor 121

Campaign Manager

Todd Heimarck 138

Chapter 4. Sound and Graphics 177

Sprite Magic: An All Machine Language Sprite Editor

Charles Brannon 179

Ultrafont +

Charles Brannon 199

Advanced Sound Effects on the 128

Philip I. Nelson 219

Chapter 5. Utilities 231

NoZap: Automatic Program Saver

/. Blake Lambert 233

Disk Directory Sort

N. A. Marshall 240

Disk Defaulter

Eric Brandon 243

UnNEW: Program Lifesaver

Vern Buis 245

Function Key

Willie Brown 248

Triple 64

Feemen Ng 252

Freeze

Dan Carmichael 254

TurboDisk: High-Speed 1541 Disk Loader

Don Lewis 256

Appendices 265

A. A Beginner's Guide to Typing In Programs 267

B. How to Type In Programs 269

C. Automatic Proofreader

Charles Brannon 271

D. MLX: Machine Language Entry Program

Charles Brannon 275

Index 283

Order Coupon for Disk 287

Foreword

COMPUTE'.'s Commodore 64/128 Collection contains programs

that you can type in and run on your Commodore 64 or 128

in its 64 mode. These programs, originally written for the

Commodore 64, are some of the best ever published by COM

PUTE! and COMPUTE'.'s Gazette magazines.

But in addition to great games and utilities, you'll find

discussions of programming in BASIC and writing adventure

games, and a special section on the new features of the 128:

CP/M, BASIC 7.0, 128 mode, and the peripheral ports.

The articles are clearly written and easy to understand.

There are short programs for beginners and fast, commercial-

quality games as well. And as usual, "Automatic Proofreader"

and "MLX" will help you avoid errors as you type in the pro

grams. As with all COMPUTE! books, each program has been

thoroughly tested.

If you prefer, you can purchase a disk with all the pro

grams found in this book from COMPUTE! Publications by

using the coupon found in the back or by calling toll-free

(800) 334-0868, in North Carolina call (919) 275-9809.

rp

1

I
■

\ jfptf

^|

m

m

M

Ik
M

N
W

II

1

1

1
w§mmm

m
fflHIM

1
IS

!i

m
1

i
it is
»«

nai

i
Wafer

1

■H

Charles Brannon

The new Commodore 128 Personal Computer has gen

erated quite a bit of interest, especially by current

owners of the popular Commodore 64. Is the 128 a
significant enhancement or just a warmed-over 128K ver

sion of the 64? A hands-on look at the 128 provides a

new appreciation for this intriguing machine.

The 64's Reign

Soon after it was introduced, the Commodore 64 proved to be
the leader of a new wave of home computers. Even at the orig

inal price of $600, the 64 came equipped with as much mem
ory as $2,000 business machines, along with arcade-quality
graphics, detailed animated sprites, and a unique sound syn

thesizer that brought realism to what was formerly just bleeps
and tones. The 64 became one of the most popular computers

ever, selling over 2,000,000 units worldwide.
The 64 is firmly established, with over 6000 programs to

its credit. But as good as the 64 is, we've been waiting three
years for an encore. Although it's been high time for an
enhancement, no one wants to give up his or her personal
software library. Commodore's answer, the Commodore 128
Personal Computer, provides true 64 compatibility, plus a real
advance in power and flexibility. The Commodore 128 is lit

erally three computers in one: a Commodore 64 with the
familiar 40-column display, sprites, SID chip, and BASIC V2;

an enhanced 64 with 128K and all 64 features, plus 80 col
umns and BASIC 7.0; and a true CP/M-compatible machine,

promising the ability to run off-the-shelf CP/M software. And
all at a price almost anyone would call reasonable: under $400.

Compared with the 64, the 128's console is much bigger,

perhaps to imply more power, but probably necessary to hold

the hardware of three computers. The main part of the key

board is identical to the 64's, except that the function keys

have been moved to the upper-right corner and rearranged

Inside the 128

horizontally. There is a numeric keypad with +,—,., and an
ENTER key (synonymous with the RETURN key). Along the
top of the keyboard are ESC, TAB, ALT, CAPS LOCK, HELP,
LINE FEED, 40/80 DISPLAY, and four separate cursor keys.

None of these additional keys, not even the keypad or
separate cursor keys, functions in the 64 mode, for the sake of

true compatibility. Adding extra programming in ROM to sup

port these keys in 64 mode might be just enough to prevent
some 64 software from working properly. Commodore is

staunch on this; anything less than 100 percent compatibility
isn't good enough.

The New King

In the 128 mode, the 40/80 DISPLAY key selects which
screen mode is used as the default. This key is checked at

power-on, when RUN/STOP-RESTORE is pressed, or when
the RESET button (found next to the power switch) is pressed.
This key has no meaning in 64 mode since 80 columns are not
available, again for the sake of compatibility. In either 128 or
CP/M mode, the same VIC chip used on the 64 displays 40
columns, graphics, and sprites. The 40-column screen can be
seen only on a television or composite monitor, not on the
RGB display.

The RGB monitor displays twice as many pixels and
characters as 40 columns, and achieves color purity since the
signal is separated into the red/green/blue color components.
(A composite signal has all the color information mixed to
gether, which makes it difficult to cleanly separate these
colors.) A special video chip is used for 80 columns, and the
80-column screen can be seen only on the RGB monitor. All

16 colors are available in 80 columns (although the Com

modore-1 color, normally orange, appears as dark purple) as

well as reverse video and underlining. Unlike the 40-column

mode, there are 512 characters available in 80 columns, which
means you can get both uppercase, lowercase, and all key

board graphics simultaneously.

This 80-column chip is for text only—it does not support

bitmapped graphics or sprites. You can redefine the character

set, though, and set up a small 640 X 48 simulated bitmapped

window. The 80-column video chip uses 16K of dedicated

screen memory, but none of the 128K memory is used for 80

Inside the 128

columns, so in effect this machine actually has 144K of total

RAM.

There are three ways to switch between 40 and 80 col
umns: toggle the 40/80 switch and press RUN/STOP-
RESTORE, press ESC-X in BASIC, or enter the command
SCREEN 0 for 40 columns, or SCREEN 5 for 80 columns.

Remember that these screens are independent. If you have

two monitors hooked up, these commands reroute screen

printing to the appropriate monitor (although both screens re

main displayed). Commodore's 1902 monitor is ideal for the
128; it has built-in color composite video, split-signal com

posite video (as used on the rear connections of the 1701/
1702 monitor), IBM-compatible RGB, and analog RGB (for use
with the Amiga). With the 1902, you must manually flip a

switch after you change screen modes.
This can be cumbersome, but Commodore feels that you'll

probably stay in one mode or the other, a reasonable assump

tion. This scheme does let you have two simultaneous dis
plays. Perhaps one screen could show color graphics, while
your program listing is displayed on another. One can en

vision dual-perspective games with players having their own

independent screens.

The 1902 composite/RGB display will probably sell for
under $400. The least expensive route, though, is to use a tele
vision for 40 columns and a monochrome (black and white)

monitor for 80 columns. Commodore will sell a special cable

to connect the RGB port to a monochrome monitor. The cable
can be used with Commodore's inexpensive 1901 mono

chrome display and with other monochrome monitors.

A Smarter, Faster Drive

The new 1571 disk drive further amplifies the power of the

128. In 64 mode, the 1571 behaves just like a 1541. The 1571

we worked with was not quite ROM-compatible with the 1541

(our "TurboDisk" program did not work with it), but we were

assured that 1541 compatibility, a high priority, was being im

proved. In the 128 mode, the 1571 shows its true power,

boosting storage capacity to 360K (as opposed to 170K on the

1541), and transferring data from seven to ten times faster

than the 1541.

The enhanced storage is due to the 1571's double-sided

design (there are two read/write heads), so you'll have to use

Inside the 128

the somewhat more costly double-sided disks. You can still
use a 1541 in the 128 mode, and the 1571 can be programmed

to be 1541-compatible in the 128 mode. So you don't have to
write off your current disk drive when you upgrade to the

128. Other 64 peripherals also work with the 128, so hold on
to your printer and modem if you upgrade.

The 1571 is also optimized for the CP/M mode, although
you can use a 1541 drive in the CP/M mode. In CP/M mode,

the 1571 can store 410K. Commodore has designed a new ver
sion of CP/M called CP/M Plus, which gives newly written

CP/M applications the ability to access VIC-chip graphics and
sprites, RGB color 80 columns, and the SID sound synthesizer—

snazzy features for a CP/M machine. Unlike Commodore 64

CP/M, CP/M Plus is a true native Z80 implementation. The
entire system resources are available to CP/M Plus, since the

Z80 stays in control. Commodore is busy converting CP/M

disks to 1541 format so that they will run both on the 128 and
on 64 CP/M with a 1541 drive. But the new drive can be re-

programmed to read many disk formats. A configuration pro

gram can be used to let the drive read common CP/M formats,

including disks formatted for Osborne and Kaypro machines.
As long as programs conform to CP/M portability guide

lines, you'll be able to insert off-the-shelf CP/M software and
boot it up (though this won't take advantage of the enhanced
options of CP/M Plus). When we visited Commodore to test

prototypes of the 1571, we took some Osborne disks along

with us, but the 1571 drive we used was not modified to read

our disks, so we were unable to verify this. Commodore in

dicated that several CP/M software manufacturers were in
terested in developing new CP/M software for the 128.

Not So BASIC

We were most impressed by BASIC 7.0 in the 128 mode. It's

the most powerful version of BASIC we've seen for personal

computers, topping even IBM's Advanced BASIC. With Com

modore 64 BASIC as its foundation, it combines the best of Si

mons' BASIC, Super Expander, Plus/4, and Disk BASIC 4.0

commands, as well as new commands written especially for

the 128. There are over 80 new commands and functions. At

the time we visited Commodore, programmers were adding

even more commands. And all 128K is available for program

ming: 64K for the length of your BASIC program, and 64K for

Inside the 128

storage of variables, strings, and arrays (minus the memory

used by the operating system and 40-column screen map). The
only thing missing is long variable names; you're still limited

to two significant characters.

All disk commands from BASIC 4.0 are supported,

permitting 128 owners to run some CBM 4032/8032 pro

grams. These commands replace the need for OPEN 15,8,15:
PRINT#15,"command": CLOSE 15. Most disk commands can

be used with a dual-drive disk system (with the drives called 0
and 1), and with several drives addressed with different device

numbers. SHIFT-RUN/STOP defaults to the disk drive, load

ing and running the first program on the disk. DLOAD and
DSAVE are used to retrieve and store BASIC programs. CAT

ALOG or DIRECTORY displays the disk directory without

erasing any program in memory. SCRATCH lets you erase

files from disk, but first asks ARE YOU SURE? The HEADER

command is for formatting disks.

COLLECT performs a validate, freeing up any improperly

allocated sectors. COPY and CONCAT let you copy or com

bine disk files on the same disk or between drives on a dual-
drive system (but not with separate drives addressed with

different device numbers). BACKUP can also be used only
with a dual drive to copy one disk to another. APPEND lets
you add new data to an existing file. DOPEN and DCLOSE
make file handling easier, and RECORD makes relative files a

breeze. The reserved variables DS and DS$ let you examine

the disk error channel. DCLEAR clears all open disk channels.
There's a complete set of programming tools. AUTO starts

automatic line numbering, DELETE erases program lines,

HELP shows the offending statement after an error message,

RENUMBER permits you to renumber any part of a program,

TRON and TROFF toggle trace mode, and KEY lets you dis

play the current function key definitions or define your own

function keys. You can also conveniently convert from hexa

decimal to decimal or vice versa with the functions HEX$ and
DEC. In addition to AND and OR, you can now perform a

bitwise Exclusive OR (XOR).

What ELSE?

Structured programming enthusiasts need never use GOTO
again. IF-THEN now has an ELSE clause, as in IF A=l THEN
PRINT "A IS 1":ELSE PRINT "A IS NOT 1." BEGIN/BEND

Inside the 128

lets you set aside a block of lines that are executed only if a
preceding IF-THEN works out as true. DO.LOOP UNTIL,

DO:LOOP WHILE, DO UNTIL:LOOP, and DO WHILE:LOOP
all execute a block of commands while a certain condition is
true, or until a certain condition proves to be false. EXIT can J
be used to skip out of a loop.

RESTORE can now be followed by a line number to let
you start reading any section of DATA. [_j

TRAP transfers execution to a specified line number when
an error occurs. Your program can examine the error number

in the reserved variable ER, the number of the line that caused
the error in EL, and the error message with the function ERR$.
After you've handled the error, RESUME returns control to the
statement after the error or to any line number.

Text processing is enhanced with INSTR, which finds the
position of a substring within a larger string. PRINT USING

lets you define a format field for printing, making it easy to
set up columnar tables and forms. WINDOW sets up a smaller
screen that scrolls independently from the rest of the screen.

WINDOW can be used to emulate simple Macintosh-style
windowing.

Machine Language Aids

Machine language (ML) programmers will appreciate the built-
in ML monitor, entered from BASIC with the MONITOR com

mand. The monitor pretends that the 128K of memory is

contiguous and permits five-digit hexadecimal addresses. It

makes full use of 80 columns if selected. The monitor works
much like 64 Supermon, with commands to assemble, dis
assemble, fill, go to address, hunt through memory for a hexa
decimal string, load, display memory with ASCII equivalents,
display registers, save, transfer a block of memory, verify a | |
saved program, exit to BASIC, modify memory, modify reg
isters, and display disk error status.

BASIC commands for ML include BLOAD and BSAVE to LJ
load and save ML programs or other binary files, and BOOT
to load and run an ML program. The familiar USR, WAIT,

POKE, PEEK, and SYS commands can now be used to ref- LJ
erence the second 64K of memory with the BANK command.

SYS can be followed by four parameters that are transferred
respectively into the accumulator, X register, Y register, and I |
status flag register. On return from SYS, RREG can be used to

u

Inside the 128

transfer the contents of A, X, Y, and the status register into

four variables. This makes it much easier to pass information

back and forth between BASIC and ML.

The 8502 microprocessor used in the 128 mode is ppcode-

compatible with the 6502 and 6510, but can now function at

two megahertz (MHz), twice the speed of the 6502. All
VIC/64 Kernal routines are supported, making program

translation much easier. New Kernal routines support special
features of the 128, including special routines for memory

management.

A reset switch near the power switch can be used to cold
start the machine. Holding down RUN/STOP with the RESET
key initiates a "lukewarm" start. It's a more thorough reset
than RUN/STOP-RESTORE, but your program is not lost.

This reset puts you into the ML monitor, where you can exit

back to BASIC with no harm done.

Sound and Graphics

No more POKEs for SID chip sound. BASIC 7.0 includes sev

eral commands for music and sound effects. SOUND sets the
frequency, duration, and waveform of a sound effect. You can

also specify a sweeping effect. PLAY is a minilanguage of its

own. You can use it to play strings of notes, specifying note

names, durations, sharps/flats, dotted notes, and rests. You

can use it to synchronize three-voice music, set the filter, and

control individual volume for each voice. Each voice can play
from a set of predefined envelopes that simulate one of ten

musical instruments: piano, accordion, calliope, drum, flute,

guitar, harpsichord, organ, trumpet, and xylophone. You can

customize these preset instruments with ENVELOPE, cus

tomize the programmable filter with FILTER, set the overall

VOLume, and the TEMPO of music.

BASIC 7.0 offers a rich vocabulary of graphics commands.

GRAPHIC is used to enter either the multicolor 160 X 200

graphics screen, the hi-res 320 X 200 graphics screen, the 40-

column text screen, or the 80-column text screen. GRAPHIC

allows you to define a text window and can either clear the

screen or leave previous graphics in place. SCNCLR can also

be used to clear the screen. When you enter a graphics mode,

the start of BASIC is moved beyond the end of the graphics

screen. GRAPHIC CLR is used to deallocate the memory used

Inside the 128

by the graphics screen. RGR returns the number of the current
graphics mode.

DRAW is used to plot a single point, or draw a single or a
connected line to create complex shapes. LOCATE is used to

set the position of the graphics cursor without plotting any (___
point. BOX can draw any rectangle or filled rectangle, at any

angle. CIRCLE is used to draw circles, ovals, arcs, or any regu
lar polygon, at any angle of rotation. You can place text any- | [
where on the graphics screen with CHAR. You can also use

CHAR on the text screen to simulate PRINT AT. COLOR is

used to set any of the color registers, and the function

RCOLOR reads which color is assigned to a color register.

PAINT can fill any shape with any color. GSHAPE can "pick

up" any block of the screen and store it in a string. This shape

can then be copied back to any place on the screen with
SSHAPE.

A pixel can be tested with the function RDOT, which re

turns the color of the pixel at the specified row and column.

The WIDTH command specifies the size of pixels plotted. A

WIDTH of 2 makes all lines double-wide. And finally, the

SCALE command lets you pretend that the screen is actually

1024 X 1024 pixels across and down. You can use this range

in your drawing statements, and the coordinates are automati
cally scaled to fit the actual screen size.

BASIC 7.0 just wouldn't be complete without sprite com

mands. If you've been stymied by POKE and PEEK for sprite

control, as well as the infamous "seam," you'll really appre

ciate the following sprite commands.

Sprites and Gaming

First, BASIC 7.0 includes a simple sprite editor. Just type

SPRDEF, and a box appears on the screen. Enter which sprite j j
you'd like to define, then use the cursor keys and the number

keys 1-4 to draw squares on the grid. When you're through,

the sprite is stored into a reserved section of memory. This j J
memory can be saved to disk with BSAVE, then recalled

within your program with BLOAD, eliminating the need for
DATA statements. [_J

To set up sprite parameters, use SPRITE. This command

turns on the sprite; sets its color, priority, initial X and Y

positions; and sets hi-res or multicolor for that sprite. You can j j
then use MOVSPR to position the sprite anywhere on the

10 jj

Inside the 128

screen. MOVSPR can also be used to set the sprite into mo

tion. After you specify the speed and angle, the sprite moves
on its own. Your program continues in the meantime. (Sprites
are updated in this mode during the IRQ interrupt.) While a
sprite is in motion you can read its position with RSPPOS.
You can transfer the sprite pattern into any string or copy a

sprite pattern from a string into any sprite. In combination
with SSHAPE and GSHAPE, you can "pick up" a block of the
screen and turn it into a sprite, and "stamp" the sprite pattern

anywhere on the graphics screen.

SPRCOLOR sets the multicolor registers shared by all

sprites, and the function RSPRCOLOR reads the sprite multi
color registers. The COLLISION statement transfers control to
a specified line number when two sprites touch or when a
sprite touches part of the screen background. Your collision
routine can see what caused the collision with the function

BUMP.
No longer are PEEKs, POKEs, or ML necessary to read

the game controllers. The function JOY returns the status of
either joystick. POT returns the position of one of the four
paddles, and PEN is used to read the X,Y coordinates of the

light pen.
A few miscellaneous commands: SLEEP is used as a delay

loop, pausing from 1 to 65,535 seconds. GETKEY is like GET,
but waits for a keystroke. GO64 exits to the 64 mode, but first
asks ARE YOU SURE?, since anything in memory in the 128

mode will be lost.
BASIC 7.0 has almost every command a programmer

would need. There are almost too many commands, extending
the time it takes to learn a programming language. However,

you need not memorize every command; just learn commands

as you need them. You'll at least want to be aware of the
commands that are available so that you won't reinvent the

wheel by POKEing your way to sound or graphics.

Memory

Using an external memory cartridge, the 128 can be expanded

up to 512K. This memory is not directly available for pro

grams, though, but is used as a RAM disk, which simulates

the functions of a disk drive, using memory chips as the stor

age medium. This provides faster throughput than a hard disk,

but all information is lost when the power is turned off. You

11

Inside the 128

need to dump the contents of a RAM disk to a more perma
nent form of mass storage at the end of each session with the
computer.

A special memory management unit (MMU), located at
$FF00, is used to control the 128's complicated memory map.
The MMU interprets memory addresses even before the
microprocessor sees them. It permits the programmer to swap
between 64K banks of memory, but can leave a small portion
of memory as common memory. For example, you don't al
ways want zero page and the stack to disappear when you

change banks. The MMU permits you to bank between four
64K banks, and allows multiple banks of 256K, up to one
megabyte of memory.

The MMU controls whether the VIC chip or 80-column
chip controls screen display, and even senses the position of
the 40/80 DISPLAY switch (though the software must inter
pret this switch). The MMU controls access to RAM or ROM,
allowing either to be visible in the memory map. A pro

grammer can set up a series of preset memory configurations

and quickly select them by writing to the MMU. The address
of the VIC chip can be relocated anywhere within the virtual
256K memory space.

The MMU also controls the fast serial port used with the
1571 disk drive (and conceivably with other fast peripherals).
It determines the clock speed of the 8502, and controls which
of the three microprocessors (6510, 8502, Z80) is in control.
And although not supported in ROM, it's possible to have all
three microprocessors running by quickly switching between
them.

The 128 is a logical upgrade of the 64. Without sacrificing
64 compatibility, the 128 fulfills almost anyone's wish list.
BASIC 7.0 gives programmers freedom to program without
POKEs or cumbersome ML routines. The 80-column display,
two-megahertz microprocessor, 128K of memory (theoretically

expandable to a megabyte), CP/M Plus, and fast double-sided

disk drive make the 128 a capable business machine, compet
itive with the much more expensive IBM and Apple comput

ers. As usual, though, we'll still have to wait for software to

be written that takes advantage of these features. Although
you can use existing 64 and CP/M programs, it looks like

you'll have to write your own 128 mode programs for awhile.
But that's not all bad, is it?

12

Ottis R. Cowper

The Commodore 128 has several connectors which allow

you to communicate with disk drives, modems, and other

peripherals. Many of the connectors are compatible with

previous Commodore 64 peripheral ports, but there have

been a few additions and modifications. This introduction

to peripheral ports includes information on the VIC-20, 16,

Plus/4, 64, and 128.

Commodore computers provide their users with a variety of

methods for communicating with the outside world. The de

vices from which the computer receives input or to which it

sends output (or both) are generically called peripherals, and

the connectors where peripherals are attached to the com

puter are referred to as ports. Each of the several ports has

distinctive characteristics that make it suitable for particular

applications.

For some ports, the computer's operating system—the

ROM which controls the machine's functions—provides

routines that handle much or all of the "dirty work" of

communicating with peripheral devices. To use other ports,

you must program all the necessary support routines yourself.

That task can range from very easy (for example, reading a

joystick) to quite complex (interfacing with a parallel printer

through the user port, for example).

The Serial Port

For most users, the serial port is the major data artery of the

computer. As the connection point for disk drives and printers,

it's the port through which most information exchanges take

place. This is the one port that is the same on the Commodore

128, 64, VIC-20, Plus/4, and 16. Well, almost the same—there

are some signal timing differences. (The VIC-20 transfers data

at a slightly faster rate than the others, which is why the VIC

is listed as incompatible with some Commodore printers, and

why the original 1540 disk drive was only for the VIC.) How-

13

Inside the 128

ever, when the 128 is used in either 128 or CP/M mode with

the Commodore 1571 disk drive, its serial port is also capable
of high-speed operation in which data is transferred through
the port many times faster than in any of the other computers.

Obviously, this port is bidirectional—data can flow both
in and out with equal ease. The signal format used to ex

change data serially over the six lines provided through this

port is unique to Commodore. The format should not be con

fused with the more standard RS-232 serial communications
format used by numerous peripherals; RS-232 communication
is handled through the user port (see below). The serial port is

essentially a stripped-down version of the parallel IEEE-488

port used for most data communications in Commodore's

earlier PET/CBM models. As the term serial implies, data can

be transferred only one bit at a time (and in only one direction

at a time, either in or out). Three of the other lines control the

direction of data flow, and whether the signals on the data

line are to be interpreted as data or as commands to the

peripheral device. The computer's RESET line is also present

at this port, which explains why the disk drive resets when
ever the computer is turned on or off.

The operating system fully supports communications

through this port. By addressing a peripheral attached to this
port with a device number, and using OPEN, CLOSE,

PRINT#, INPUT#, and related routines provided by the

operating system, you can avoid worrying with the details of

controlling the individual signal lines. Any peripheral ad

dressed with a device number between 4 and 31 (the highest

device number allowed) is assumed by the computer to be
connected to this port.

Commodore has established several standards for device

numbers: Printers are usually device 4, although some can be LJ
changed to device 5, the 1520 Printer/Plotter is designed to be
device 6, and device numbers 8 and above usually refer to

disk drives. Device 8 is the default number for the disk drive, | |
and almost all software assumes the disk drive will have this

device number; device 9 is the most common choice for a sec- {

ond drive. Commodore 1541 and 1571 drives allow you to se- |_J
lect any device number via software, or numbers 8-11 via
hardware.

The use of a unique signal format for communication with | |
the disk drive is not unusual; almost all computer manufac-

u14

Inside the 128

turers use a proprietary disk interface compatible only with

their own products. What is unusual is that this same non-

standard format is also used for communications with printers.

Since so much software assumes that printers will be con

nected through the serial port (as device 4), most third-party

interfaces for non-Commodore printers also attach to this port.

These interfaces act as interpreters, reading the Commodore-

format serial signal from the port and converting it to the

more standard parallel (eight bits at a time) format used by

most printers.

The Memory Expansion Port

This is often referred to as the cartridge port, since ROM car

tridges are the peripherals most often attached through this

connector. The lines available at this port include most of the

address, data, and control lines of the microprocessor chip that

is the heart of the computer. Thus, any peripheral which

needs to be intimately tied to the workings of the computer—

for example, ROM that must be addressed by the micro

processor—is connected through this port. The operating sys

tem does not support any devices through this port; in

essence, anything attached here is no longer a peripheral, but

part of the computer itself.

Many of the same lines are available on corresponding

pins of the expansion port connectors used in the VIC, 64, and

128, but the connectors themselves are different sizes, so car

tridges designed for the 64 and 128 cannot be used on the

VIC, and vice versa. However, cartridges for the 64 can be

used on the 128, and if a 64 cartridge is installed in the 128

when it is turned on, the 128 will come up in 64 mode and

start executing the program from the cartridge. The Plus/4

and 16 have identical 50-pin connectors for this port (as op

posed to the 44-pin connectors used in the VIC, 64, and 128),

so while there is some compatibility of cartridges between

these two models, no VIC, 64, or 128 cartridges or memory

port peripherals can be used with the Plus/4 or 16.

Commodore has announced a 512K .memory expander for

the 128, which would be connected through this port. The

additional memory is addressable in 64K blocks and can be set

up to act as a RAM disk—allowing lightning-speed saving and

loading. Of course, any programs would have to be transferred

15

Inside the 128

to disk or tape for permanent storage, as all data disappears
from memory when the power is turned off.

The User Port

This port (sometimes called the RS-232 or modem port) was
designed with the experimenter in mind. Just as the memory

expansion port gives you access to a number of the micro

processor's control lines, this port gives you access to many of

the control lines of one of the interface adapter chips. Using

these lines, a wide variety of peripherals could be connected,
since both serial and eight-bit parallel communications are
available.

Unfortunately, most of this flexibility goes unused since it

isn't supported by the operating system. Most home computer

users today are more interested in software than in tinkering

with hardware projects, so this port is most frequently used

for its one function supported by the operating system: RS-232
serial communications.

RS-232 is the name of the most common serial commu

nications standard. If you use the operating system to address

device 2, data directed to that device will be transferred

through the user port in an approximation of RS-232 format.

Actually, the signal format is true RS-232, but the voltage lev

els are different from those prescribed. The RS-232 standard

calls for voltage levels of —12 to +12 volts, and the user port

only provides levels of 0 to +5 volts. Adapters are available—

from Commodore and other sources—to convert the signal
voltage to the proper levels. These adapters are not necessary

if you're going to use Commodore's modems, but they are re
quired to use any standard RS-232 equipment.

The 24 pins of this port have a similar configuration on i i

the VIC, 64, and 128, so many devices designed to interface I I
to this port—the VICmodem and 1650 Automodem, for ex

ample—can be used on any of these models, although the soft- < i

ware to run the devices will generally be different. The Plus/4 lJ
also has the same 24-pin connector, but the computer casing

around the connector is smaller, so neither the VICmodem nor . »

Automodem can be plugged into the Plus/4. (Commodore's LJ
new Modem300 works with the VIC, 64, 128, and Plus/4.)

The Commodore 16 has no user port, so it is as yet unclear ,

how (or if) a modem may be used with that computer. J

16 LJ

Inside the 128

Since eight-bit parallel data communications is available

through this port, it might seem surprising that it's not com

monly used for interfacing with printers. After all, it would ap

pear on the surface to be simpler to write a machine language

program to simulate the commonly used Centronics parallel

format through this port than to go to all the trouble of

designing the hardware interface to convert the data from the

serial port to the proper parallel format.

The reason this isn't often done is that almost all Com

modore software expects the printer to be device 4 on the se

rial port, and in the long run it proves easier to seek a

hardware solution to allow you to use the built-in operating

system routines as provided in ROM. That way, you don't

have to worry about having to load your printer handler rou

tine into memory before you can use it, finding a safe place in

RAM to store the handler routine, and so forth.

For more information on interfacing through the user

port, see the article "Using the User Port" in COMPUTE'S

First Book of Commodore 64.

The Control Ports

These ports (or this port, in the case of the VIC, which has

only one) are usually referred to as the joystick ports, since

they are most commonly used for joysticks. BASIC 2.0—in the

VIC, 64, and 128 in 64 mode—does not support any devices

through these ports, so you must communicate with this port

by using PEEKs and POKEs. However, BASIC 3.5 in the

Plus/4 and 16 and BASIC 7.0 in the 128 in 128 mode both

have built-in statements for reading the status of controllers

connected to these ports.

Joysticks are simple devices consisting of five switches—

one for each of the four principal directions, plus one for the

fire button. The switches are normally open; pushing the joy

stick in one of the principal directions closes one of the

switches, while pushing the stick toward one of the diagonals

closes two switches simultaneously. Pressing the fire button

closes the switch connected to that line. In each case, closing a

switch grounds the associated line at the port, which causes

the value of the bit associated with that line to change from 1

to 0. For example, in the 64 (or the 128 in 64 mode) where the

port must be read with a PEEK, pressing the fire button on a

joystick connected to port 1 causes the value in memory

17

Inside the 128

location 56321 to change from 255 to 239 as bit 4 changes i i

from 1 to 0. Using the 128 in 128 mode, BASIC 7.0 provides a LJ
simpler system. The JOY function returns a value from 1 to 8

indicating toward which of the eight possible directions the j i

stick is being pushed, or 0 if the stick is at the center position. LJ
An extra 128 is added to the direction value if the fire button

is pressed. JOY(l) is used to read the joystick connected to i i

port 1, and JOY(2) reads port 2. LJ
In addition to joysticks, the ports can be used to read any

other device that behaves like a joystick, such as a trackball or

the 128's "mouse" controller (which is essentially a trackball

turned upside-down). Atari and Coleco joysticks are func

tionally identical to Commodore joysticks and can be used

interchangeably. However, owners of other Commodore

computers should avoid controllers designed for the Plus/4 or

Commodore 16. On those computers Commodore has aban

doned the widely used DB-9 joystick connector in favor of a

nonstandard connector, so existing joysticks cannot be used.

In addition to the joystick, these ports in the VIC, 64, and

128 can be used to read paddle controllers. (The Plus/4 and

16 have no circuitry for reading paddles.) Paddle controllers,

which always come in pairs, are actually just variable resistors

which provide variable voltage levels to two lines on the port.

Special circuitry within the computers (in the VIC chip in the

VIC-20, and in the SID chip in the 64 and 128) calculates a

digital value corresponding to the voltage level. The value

ranges from 0 to 255 as the voltage on the lines changes from

0 to 5 volts. With the 128 in 128 mode, BASIC 7.0 provides

the functions POT(1)-POT(4) to read each of the four paddles:

POT(l) and POT(2) from port 1, and POT(3) and POT(4) from

port 2. Other devices which operate like paddles—providing a i \

varying voltage input—can also be read through these ports; LJ
graphics tablets are a good example.

Each paddle usually also has a button, but instead of be- i i

ing read like the joystick buttons, the paddle buttons are con- LJ
nected to the lines for two of the joystick directional switches.

One paddle button corresponds to the joystick's right direc- i i

tional line, and the other to the line for reading joystick left. LJ
By convention, the paddle that uses the right directional line

for its button is called the right paddle, and the one that uses i «

the joystick-left line is the left paddle. In BASIC 7.0, 256 is LJ

18 u

Inside the 128

added to the value returned by the POT function if the fire

button on the paddle is being pressed.

Unlike Atari joysticks, Atari paddles are not completely

interchangeable with those made by Commodore. While Atari

paddles can be used with Commodore computers, they have a

higher resistance and thus are less accurate for Commodore

systems. (A half turn on Atari paddles corresponds roughly to

a full turn on Commodore paddles.)

One additional type of peripheral—the light pen—can

also be connected to this port. (On those models with more

than one joystick port, the light pen can be connected only to

port 1.) The pen contains a phototransistor that switches when

it detects the electron beam of the video display sweeping

past. A line is connected from the phototransistor through the

port to the chip that generates the video signal (the VIC chip

in the VIC, the VIC-II chip in the 64 and 128, and the TED

chip in the Plus/4 and 16).

When the video chip receives the signal from the pen, it

latches (stores) the current position of the raster (electron

beam) in a set of registers (memory locations within the chip).

The stored value can then be read, and the position where the

pen is touching the screen can be calculated. In 128 mode, the

128's BASIC 7.0 provides the functions PEN(O) and PEN(l),

which return the x- and y-coordinates, respectively, of the

light pen's position on the screen.

The Audio/Video Ports

These connectors are not really ports in the true sense of the

word, since data cannot be transferred through them. Instead,

they provide a connection point to the computer's video and

audio signals. With the exception of an audio input line on the

64 and 128, all lines at these ports are outputs only. The

audio/video port of the VIC, 64, Plus/4, and 16, and the

Videol port of the 128 are all compatible, but compatible

doesn't mean identical. The VIC and early models of the 64

used a five-pin socket for this port, while the 128, Plus/4, 16,

and later 64s use an eight-pin socket. In either case, the port

provides a composite video signal and an audio signal.

Corresponding video and audio inputs are found on most

black-and-white or color video monitors. The eight-pin ver

sions of the port also provide separate chrominance (color)

19

Inside the 128

and luminance (brightness) signals. When used with monitors I I

that can accept this signal format (such as the rear connections ^
of Commodore's 1701 and 1702 monitors), the eight-pin ver

sion can provide much sharper color contrast. I I

The audio input line of the 64 and 128 allows you to mix ^
sound from external sources with the sounds created by the

SID chip in the computer. However, this line runs directly to I I

the audio input pin on the SID chip, so you must be careful to '—'
feed in only low-level (unamplified) sound sources. There's no

way to process the incoming sound, but it can be mixed with

the sound of the SID chip, and the SID chip's filters can be

used as a programmable equalizer for the sound coming in.

In addition to the standard audio/video port, the 128

also has a second port, Video2, for 80-column output. This

port is connected to the separate 80-column video chip in the

128. This chip—which can be used only from 128 or CP/M

mode—provides output in RGBI format, which means that it

provides separate control signals for the red, green, and blue

(RGB) electron guns that produce the color video display. This

allows for much sharper displays than the standard video for

mat, where the composite signal is a blend of the RGB signals.

Alternatively, a monitor can be connected to this port using

only the intensity signal (the I in RGBI) for an extremely crisp

monochrome display. It's even possible with two monitors to

have simultaneous displays on 40-column and 80-column

screens, since the two displays are maintained by separate

video chips. However, if you wish to avoid having to purchase

two separate monitors, you'll need a unit such as Commo

dore's 1902 color monitor which can handle both composite
video and RGBI input.

The Cassette Port LJ
This port is designed for one particular peripheral, the Com

modore Datassette recorder. There are now two models of the) I

Datassette, the 1530 (or equivalent C2N) for use with the VIC, ^
64, and 128, and the 1531, for use with the Plus/4 and 16. As

with joysticks, the only difference between the two is the plug I I

on the end of the connecting cable. Commodore has used a '—'
new and incompatible type of connector for this port on the

Plus/4 and 16. j i

Three of the six lines from this port are used for writing a '—'
signal to the tape, reading a signal from the tape, and testing

20 LJ

Inside the 128

whether a button is pushed. Note that since there is only one

line (labeled Cassette Sense) to test the buttons, it's possible to

check only whether any buttons are pressed, not which partic

ular button or buttons are pressed. Thus, if you're supposed to

press PLAY and RECORD and accidentally press only PLAY,

the computer won't be able to detect the mistake. Other lines

supply power to the tape motor (9 volts) and for the electron

ics in the Datassette (5 volts). Some other peripherals—for ex

ample, several brands of printer interfaces—also make use of

the 5-volt power source available here.

Communication through this port is fully supported by

the operating system, with the Datassette being designated as

device 1. Device 1 is the default storage device; unless you

specify otherwise, all your SAVEs and LOADs will be directed

to the Datassette. In addition to SAVE, VERIFY, and LOAD,

the OPEN, CLOSE, PRINT#, and INPUT# statements provide

all the features necessary for storing and retrieving data on

tape, so programmers rarely need to worry about the intimate

details of interfacing to this port, such as what sort of mag

netic pattern is actually used to represent a byte of data on

tape. Nevertheless, it's possible to program several of the in

dividual lines of this port to achieve special effects; for an

example, refer to the "TurboTape" articles in the January and

February 1985 issues of COMPUTE! magazine.

21

Charles Brannon

One of the three operating modes of the Commodore 128

is the CP/M mode, utilizing a Z80 microprocessor. Com

modore owners have generally not paid much attention

to CP/M, and though it has been available for the 64 for

some time now, many people still don't know what it is or

what it does,

The CP/M System

CP/M is an acronym for Control Program for Microcomputers.

In essence, CP/M is merely an operating system, primarily for

controlling disk access. An operating system is the base soft

ware for a computer. It takes care of routine system tasks and

provides a link between the computer and any other software

you may be running.

CP/M began when Gary Kildall, working for Intel, devel

oped a package of compactly written subroutines for the tiny

four-bit 4004 microprocessor. These useful subprograms could

be used by other programs, simplifying the work of a pro

grammer. As technology advanced, CP/M became a full

blown operating system for the Intel 8080 microprocessor, and

was upgraded for the 8080-compatible Zilog Z80 micro

processor. Curiously, Intel, the designer of the 8080, was not

interested in CP/M, and gave Kildall the go-ahead to market

it on his own. He started up a company called Digital Re

search. (Digital is still going strong; they recently developed I I

GEM, the Macintosh-like desktop metaphor and graphics

operating system that runs on the IBM PC series, the new

Atari ST, and most likely will be available for the Commodore I I

Amiga.) l—J
Before CP/M, there was no real operating system for

these early computers, so it was quickly seized upon by most I I

users and manufacturers of Z80 computers. There were no ^
successfully competitive operating systems, and CP/M easily

became a standard. Since almost everyone had CP/M, all the I I

Z80 machines had more in common with each other. CP/M

22 u

Inside the 128

made it possible for one program to run on many different

computers.

Most Z80 computer systems included a keyboard and

monitor (or terminal), one or two disk drives, and 48K or 64K

of memory. These computers were not designed to be compat

ible with each other, but CP/M took care of that.

The BIOS

Built into CP/M is a library of subprograms for performing

such tasks as printing a character to the screen. Each computer

might use a different kind of video display, so some portions

of CP/M, the BIOS (Basic Input/Output Subsystem), were

customized for each machine, but BIOS acted the same way

on every machine. Because of the BIOS, programmers could

write their routines to use these universal subprograms instead

of directly programming their particular computer's video chip.

The program, if written properly, could run on any computer

with CP/M. Machine-specific tasks became standardized

routines.

A CP/M software market thrived, since developers could

write a single program that would run on many different

computers. Woe be to the computer that lacked CP/M. Even

though the TRS-80 used a Z80, it took the efforts of third-

party developers to bring CP/M to this machine. For awhile,

TRS-80 owners were isolated from the mass market, with a

separate, smaller library of software. CP/M was the leader of

the eight-bit world, and most small businesses used Z80

CP/M computers. CP/M machines occupied the niche that the

IBM PC and PC clones control today.

The Debate over Obsolescence

The boom went to bust with the introduction of the IBM PC.

CP/M machines just couldn't keep up with advances in hard

ware and software. Although the IBM PC was not a real

breakthrough, it expanded the memory ceiling from 64K to

640K. Disk storage jumped from 100K to as much as 370K

(double-sided disks). The faster and more powerful 8088

microprocessor made it easier to write better programs in less

time. IBM's open architecture encouraged additional power as

more and more hardware companies enhanced the IBM with

add-ons.

23

Inside the 128

The microprocessor used in the IBM could not run CP/M,

so a whole new standard was forged. (Digital Research's

CP/M-86 was not available in time for the release of the PC, so

it failed to establish itself as a standard. Microsoft's MS-DOS,

which is much like CP/M, beat out CP/M-86, not because it

was better, but because it was first.) The 8-bit Z80 world of

CP/M was replaced by IBM's 16-bit 8088 world. Software

developers jumped on the bandwagon, and CP/M was put on

the back burner.

Since CP/M is no longer the dominant environment for

high-end microcomputing (although CP/M machines are still

selling today), you may wonder why it is an issue on Com

modore machines. It would seem the best bet would be an

IBM MS-DOS emulator, with an 8088 instead of a Z80. Com

modore probably went with CP/M because it is built around

cheap, proven technology. The Z80 simply costs less than the

8088. And CP/M is more generalized and easier to adapt than

the MS-DOS used on IBM PCs. CP/M may be Commodore's

way of crossing over from home computing to small business

computing. Commodore is even translating some IBM soft

ware to CP/M, taking advantage of the similarities between

CP/M and MS-DOS.

Most CP/M programs are written in 8080 or Z80 machine

language. CP/M takes care of the minor differences between

Z80 machines, but you still have to have a Z80 micro

processor. CP/M could be translated to run on any computer,

such as the 6502, but what good is a 6502 version of CP/M if

all the programs that run under CP/M are written in Z80 ma

chine language?

CP/M Plus

Digital Research has developed an enhanced version of CP/M

3.0 for the Commodore 128. This CP/M takes advantage of

the VIC-chip graphics, color, 80-column RGB, and SID chip

available to the 128 in CP/M mode. Unlike CP/M for the 64

(which uses the 6502 for machine-specific tasks, while the Z80

runs the bulk of CP/M), Commodore 128 CP/M runs solely

on the Z80. Commodore's ingenious memory management

unit (MMU) allows the Z80 full access to 128K and the graph

ics and sound chips. Programs written especially for Com

modore CP/M Plus could really shine. Few CP/M computers

in the price range of the 128 can do color graphics and sound

24

Inside the 128

synthesis. And Commodore has indicated that there are a few

veteran CP/M software developers that are quite interested in

a fresh market for their wares.

A Library of Programs

Since the Z80 is always in control, this allows the 128 to run

off-the-shelf CP/M programs. Although the programs won't

take advantage of any special 128 features, these plain vanilla

programs will work just fine.

Getting these programs into memory is another story.

Most CP/M disks are read and written to with the IBM Sys

tem/34 format. This format is not compatible with the 1541

disk drive. So even though the program would run, you can

not load it into memory with the 1541 disk drive. Commodore

has converted a tiny amount of CP/M programs to 1541 for

mat, including the programming languages FORTRAN and

COBOL, and the Perfect productivity series. These programs

will work on both 64 CP/M and 128 CP/M Plus with the

1541. But these few packages are a far cry from the promise of

thousands of programs.

Commodore's new 1571 disk drive solves the problem.

The 1571 runs about ten times faster than the 1541 and can

store 410K in the CP/M mode. It can use 1541 disks and be

have like a 1541 when necessary. The 1571 can also be re-

programmed to read and write several common CP/M disk

formats, including the disk format of the Osborne and Kaypro

portable CP/M machines. So you can theoretically insert any

CP/M disk, turn on the power, and the program will load and

run. Even though you may be able to load the program into

memory, not all programs strictly follow the BIOS guidelines.

Some programs are optimized for a particular CP/M computer.

It can be painfully slow to use the BIOS to fill the screen a

character at a time, so some programs prefer to be machine-

specific for the sake of speed or to take advantage of special

machine features. These programs will not necessarily run on

Commodore CP/M Plus. But there are still thousands of pro

grams, many in the public domain, that will run just fine.

Why bother with CP/M at all? There are many good

CP/M word processors, but there are several word processors

for the 64 mode that are every bit as good. Enterprising pro

grammers will surely write sophisticated word processors and

business software to take advantage of 80 columns and 128K.

25

Inside the 128

There's much more business software available to CP/M ma

chines, but most home computerists won't really want to run

an accounts receivable program. When the 64 was first in

troduced, CP/M looked like an excellent way to get around

the paucity of available software, but now there are almost too

many 64 programs to choose from. Does anyone really need

CP/M on the 128?

A Business Bargain

Many people would say yes. CP/M may make the Com

modore 128 a bargain buy for small businesses. No longer are

the low-end Commodore machines restricted by a slow disk

drive and small memory size. The price of the Commodore

128 with the 1571 disk drive is quite competitive with the IBM

PCjr, which is now no longer being produced anyway. CP/M

software has been around long enough to be time-tested and

bug-free. There's so much CP/M software that there's a good

chance you'll find special-interest programs—those that

wouldn't have mass appeal, but could be just what you're

looking for. For example, some programs are customized for

particular businesses, such as a bookkeeping system designed

especially for a dental practice. You'll likely find special-

interest programs for the home, such as a database that helps

you track your family's roots.

CP/M promises a cornucopia of software. Some of this

software may be useful to you, but unless you're in business,

most of it probably won't be. It remains to be seen, though,

with all the technological advances in hardware and software,

if anyone still wants to run five-year old software.

26

u

u

Todd Heimarck

Program bugs have a thousand faces. No matter how

experienced a programmer might be, there's almost al

ways a time between finishing and really completing a

program—debugging time. In this article, we'll see what

the computer does when you make a mistake, and we'll

look at some useful debugging methods as well as some

of the mistakes a computer can make.

Some program bugs are easy to recognize: The program

crashes and you are told what kind of error you made. Or

worse, the computer locks up. These are the deadly, or fatal

bugs.

Other bugs are sneakier and not as easy to recognize. Per

haps you've made a slight mistake and the program seems to

run, but is actually making incorrect calculations (like figuring

interest rates on a 13-month year). Subtle bugs are sometimes

worse than fatal ones; at least you can recognize something's

wrong when the program crashes.

A bug happens when the programmer says one thing and

the computer either doesn't know how to do it or does some

thing very different.

Some people say that computers never make mistakes,

that all bugs are caused by people. That's not always true.

After all, computers are designed and manufactured by people

who can make mistakes. It may be a hardware bug or one

built into the operating system. Or maybe the programmer just

didn't understand how the computer would interpret a line—

a misunderstanding rather than a mistake. But a computer is

pigheaded. It knows how programs should look and won't

compromise. First, though, let's concentrate on some of the

mistakes we, as programmers, can make and how the com

puter deals with them.

SYNTAX ERROR

There are over two dozen error messages, but SYNTAX ER

ROR seems to appear most often. The line number is always

29

Programming

included. The first thing to do, of course, is to LIST the

offending line. Take a good look at it. If there are parentheses,

make sure they match up. There should be an equal number

of opening and closing parentheses.

Also, check all the BASIC keywords to make sure they're

spelled correctly. You may have mistakenly abbreviated LEN

as L SHIFT-E (which turns out to be the abbreviation for LET,

not LEN). If you are writing to disk or tape files, you should

note that the command PRINT# is distinct from the ordinary

PRINT. The abbreviation for PRINT# is P SHIFT-R (not ?#);

using a question mark won't work when you're working with

tape or disk files.

Look at the punctuation, a common source of errors. It's

easy to accidentally type a period instead of a comma, a semi

colon where you meant to put a colon. Or there may be mis

matched opening and closing quotation marks in a PRINT

statement. If you're copying a program from a book or maga

zine, look closely at the look-alike characters (7 and 1, O and 0).

Tokens, Keywords, and Reserved Variables

When you type a program line and press RETURN, you must

have at least one BASIC keyword (command or function) in the

line for it to be legal. Even the do-nothing REM is a BASIC

keyword. The computer reads the line from the screen and

turns all keywords into tokens before the line is stored in

memory. A token is a single number between 128 and 255

which represents the command or function.

You must avoid including keywords in variable names.

Perhaps you're writing a simple accounting program which

figures out the profit margin you make on different items. You

need a variable for the price you pay (call it COST), another

variable for the amount for which you sell it (call it LIST, for

list price), and one more for the profit (MONEY). Then you

calculate the margin with the formula MONEY = LIST —

COST. Right? Wrong.

All three variables are illegal and will crash the program.

LIST is a keyword used to list a program; you can't use it as a

variable. COST doesn't look like a keyword, but the first three

letters spell COS; your computer will try to find a cosine of an

angle, although it will stop when it can't find parentheses and

an argument. And MONEY is a problem because the keyword

ON (as in ON-GOTO or ON-GOSUB) is embedded in the

30

n

n

j~1 variable name. When you find an embedded keyword in one

-! part of a program, there's a good chance the same variable is
used elsewhere, in other sections. You'll have to find all of

P*l them and change them to something legal.

' In addition to the many keywords, there are three re
served variables which you can't use in your programs. They

|—| are TI, TI$, and ST. The first two are used for timekeeping,

■ and ST is short for STatus, which is used in input/ouput op

erations. Stay away from these variable names, unless you

know you want to check the time or status. You can't define

TI or ST, although you can print them to the screen and use

them in IF-THEN statements and logical operations. You can

define TI$, which is useful for timing programs, but it has to

be a six-digit string (for example, TI$= "103000" sets the

clock to 10:30 a.m.).

A Commodore computer is a little more forgiving with

the reserved variable names than with keywords. You can't

use a variable TIPS because TI is included in the first two let

ters of the name. But you can use a variable name like ITIN,

which has a TI in the middle, because only the first two letters

of a variable name count. ITON, on the other hand, is not

acceptable as a variable name, because there are two BASIC

words in it (TO and ON), and BASIC words cannot appear

anywhere in a variable name.

Program Glue

Need a program line inserted between 10 and 20? No prob

lem. Type a line 15 and press RETURN; the computer auto

matically inserts the line in its proper position. LIST 10-20

will prove that the line is there where you wanted it.

It's almost as if the computer broke the program in two

and pasted the line in its proper place. But this cut-and-paste

feature, usually quite handy, can become a curse which results

in two kinds of program bugs.

The first bug, truncated lines, is relatively easy to find. It

usually occurs when keywords are abbreviated. If, for ex

ample, you use a question mark (?) instead of PRINT, or P

SHIFT-O instead of POKE, you can create logical lines which

are legal when they're entered, but exceed the limit when

listed. Later editing of the line leads to problems.

If you use abbreviations and multistatement lines, the re

sult is sometimes a line which looks longer than should be

31

Programming

u

u

possible when listed. A question mark takes up only one space I I

on a line, but LIST detokenizes and changes that single letter !—'
into five: PRINT. List such a line and you may see two full

screen lines plus a few characters on the third line. And the j i

program runs without errors. But go back to edit the extra- !—'

long line, press RETURN, and the input buffer will read only

the first two screen lines into memory. The result is trun- j i

cated—or chopped off—program lines. You lose the last few !—'
characters. To get around the limit, you have two choices.

Either retype the keywords using abbreviations or break the

long line into two shorter lines.

This limit on line length means it's a good idea to press

RETURN only when you're editing a line. To move around

the screen, use the cursor keys (or SHIFT-RETURN, which

does not enter the line in program memory and is also a way

to get out of quote mode).

The second bug, which is more difficult to find, happens

when your computer seems to glue two program lines to

gether. Say, you're writing a program using 40 columns and

the line is 40 characters long. You type the line, but forget to

press RETURN. The cursor is positioned at the beginning of a

screen line, so you type the next line and press RETURN. The

computer treats the two lines as one because it has received

only one RETURN.

Some Other Common Errors

POKEs and SYSes can wreak havoc if improperly used. Most

lockups are caused by one or the other of these powerful com

mands. When you're debugging, watch for transposed or miss

ing digits in POKEs and SYSes (POKE 53820 instead of POKE

53280, or SYS 59152 instead of SYS 49152, for example). , j

Duplicate variable names can cause all sorts of problems. I—I
You might use a variable called A to hold a value at the begin

ning of the program, and then inadvertently use the same i »

variable name later on. If the program returns to the begin- I I
ning, the value has changed. FOR-NEXT loops sometimes lead

to duplication. When you're using a variable like A, make sure | i

you don't use it as an index in a FOR-NEXT loop. And 1 I
remember, only the first two characters of a variable count;

the computer thinks ALT is the same variable name as ALIEN. , i

U

32

Programming

To avoid doubled variables, it helps to pick certain letters

to be used only in loops and as "temporary" variables. For ex

ample, decide ahead of time that you will always use J, K, and

L in FOR-NEXT loops.

Be careful with additional statements after an IF-THEN. If

the condition (between IF and THEN) is not true, the program

jumps to the next BASIC line; it doesn't fall through to the

next colon. For example, in this line:

55 IF A= 1 THEN B= 15: PRINT "NEXT

QUESTION?" :INPUT Q

the PRINT and INPUT statements will happen only if A

equals 1. If not, everything after the THEN is ignored. This

feature is useful if you want multiple actions under certain

conditions. But it can catch you if you don't know about it.

The error message RETURN WITHOUT GOSUB is

usually the consequence of the common practice of putting

subroutines at the end of a program. The computer finishes

the main routine and continues through to the first subroutine

until it reaches the RETURN statement. The quick fix is to

place an END statement between the main routine and the

first subroutine. For example, if subroutines begin at line 5000,

add a line 4999 END.

NEXT WITHOUT FOR, an infrequent error message, gen

erally comes from improper nesting of loops. Loops are like

onions: You can build layers which completely enclose other

layers. In other words, the first loop to begin has to be the last

to end.

1 FOR J=1TO5: FOR K= 3TO15: NEXT K: NEXT J

2 FOR J=1TO5: FOR K= 3TO15: NEXT J: NEXT K

Line 1 is correct because the K loop is inside the J loop. But

line 2 spells trouble because loops cannot overlap.

The use of arrays can lead to easily rectified errors. It's

best if you DIMension all arrays at the beginning of a program

or in a one-shot subroutine. Once you use DIM, you can't use

it again on the same array name or you'll get a REDIM'D AR

RAY error.

Order of Operation

Most of the mistakes described above will cause your program

to stop with an error message on the screen of your TV or

monitor. They're situations where you tell the computer to do

33

Programming

something and it doesn't recognize what you want. Program-

crashing errors are inconvenient, of course. But it's nice to

have the computer tell you what kind of mistake you made
and which line was wrong.

Less convenient are errors of procedure, where you write

a program to do one thing, but it ends up doing something

completely different. It doesn't crash, but it does strange

things to the screen or gives seemingly impossible results.

You have probably used instructions which you interpret

one way, but the computer interprets another. And you can't

change the way your computer does things, unless you want

to completely rewrite the operating system (even changing the

rules of BASIC means you have to follow the rules of machine

language). Some programmers wish they could have a new

BASIC command DWIM (Do What I Mean), which would in
stantly straighten out procedural errors.

One of the most common problems with mathematical

calculations comes from the way the computer evaluates equa

tions. There is a definite order of operations, sometimes called

the hierarchy of operators (the items at the top of the list
have a higher priority):

() Parentheses

t Exponentiation (up arrow)

+ — Positive and negative signs

* / Multiply and divide

H Add and subtract

= Equals (assignment)

= < > Comparisons: Equals, less than, greater than

NOT Logical NOT

AND Logical AND

OR Logical OR

Note that some operations, like NOT, work on a single I
number; they're called unary. Most need two numbers and are

called binary functions. Plus and minus signs can be either , j

unary (in the number —3, the minus sign works on a single s I

number) or binary (the minus sign connects two numbers in

the expression 10 — 6). , ,

Because the higher operations are calculated first, you can j I
always figure out the results of an equation. For example, J =

4 + 5*3 assigns 19 to J because the multiplication is done ,

first, binary addition second, and assignment-equals third. I I

34 u

Programming

When you're debugging a program and one of the vari

ables is being consistently miscalculated, there's a good chance
you're a victim of the hierarchy. The quickest way to fix such
an error is to liberally sprinkle parentheses throughout the
suspicious equations. Your other choice is to trace through the
line step by step to find how the computer is evaluating the

equation.

There's a slight chance that using too many parentheses

in debugging can lead to one of the more puzzling errors,

stack problems, caused by one of the various limits you have

to live with.

Memory Limits: The Stack

There are two causes of OUT OF MEMORY errors. The first is

programs and variables filling up all available BASIC RAM.

The second is a stack overflow (the likely cause of OUT OF

MEMORY errors).

Let's look at the stack first. The stack is a special section

of memory just above zero page. It takes up most of page 1.

The stack is used by the operating system for notes to itself.
When BASIC begins a FOR-NEXT loop, it writes a note

about where in memory the loop begins, pushes it on the

stack, and forgets about it until it comes across a NEXT state

ment. NEXT tells the computer that somewhere earlier in the

program a FOR started a loop. It then pulls the information it

needs off the stack and jumps back.
Something similar happens when there are parentheses in

an equation and when you use GOSUB. To illustrate, type

NEW and try running the following program:

10 A=A+1: PRINTA

20 GOSUB 10

A very short program with only one variable counts up to

24 and then crashes. How could it possibly run out of mem

ory? The key is the GOSUB. Every time you go to a sub

routine, the return address is saved on the stack. Since there

are no RETURNS in the program, more and more addresses

are saved, until finally there is no stack space left.

Type NEW and enter this program:

10 FORA=lTO20

20FORB=lTO20

30 FORC=lTO20

(and so on, up to 130 FORM=lTO20)

35

Programming

Don't worry about adding any NEXTs, the computer will
never get that far. Run the program and you'll get an OUT OF

MEMORY error after only ten loops have begun. A FOR-

NEXT loop uses up a lot of space on the stack—for a pointer
to beginning of the loop, step size, highest value, and variable
names.

When stack problems pop up, they're often caused by a
GOTO in the middle of a subroutine. It can leave some gar
bage on the stack. The same goes for jumping out of a FOR-
NEXT loop. And too many parentheses can give you either a
FORMULA TOO COMPLEX error or contribute to an OUT OF
MEMORY message. As the garbage on the stack builds up, it
eventually reaches the limit.

Programs and Variables

The other way to run out of memory is fairly straightforward.
You simply use too much BASIC RAM for the program and its
variables. Try the following program:

10 T$=HABCDM:U$=If"

20 L=FRE(0):IFL<0THENL=L+2tl6

30 L=INT((L-30)/3):DIM A$(L)

40 FORJ=1TOL

50 A$(J)=T$+U$

60 PRINT J; LEN(A$(J)), FRE(0)

70 NEXT J

You'll run out of memory almost right away. Now change
line 50:

50 A$(J) = T$

Run it again and there's no loss of memory. It will run all

the way through (press RUN/STOP if you don't want to | I
watch hundreds of strings go by). The first program wasn't '—

able to create even ten four-letter strings; the second created

hundreds. The only difference is that the first program added 1 j

a null string (which has a length of zero); the second did not. '—

The first created dynamic strings; the second created static
strings. \ \

If you define a string by concatenating (adding two strings '—'
together), by dissection (dividing a string with MID$, LEFT$,

or RIGHTS), or by inputting it (from a tape or disk file, or I j

from the keyboard), the string is called dynamic. It has to use —

up part of BASIC memory. If you define it in BASIC, assigning

36 U

Programming

it (A$="ABC") or reading it from DATA statements (READA$),

the computer saves memory by remembering where the defi

nition was in program memory. Your computer doesn't have

to use free memory to store static strings. They're already in

BASIC memory.

If you define a lot of variables (as in the above program),

available memory can dwindle to nothing. When you find

your program running out of memory, you can try a number

of things:

1. Check free memory. If there seems to be a lot left, you

may have a full stack, caused by too many unresolved FOR-

NEXT loops or GOSUBs.

2. Eliminate unnecessary program lines, especially RE-

Marks. Or combine two or more statements on a single line

separated by colons (every line uses five bytes for overhead,

whether it has one statement or eight).

3. Cut back on variables. If you're using arrays, remember

that integer arrays use less than half the space of floating

point arrays.

4. Completely rewrite your program. It sounds drastic, but

once you've figured out the procedures you're using, the

second version of a program is often faster and uses less

memory.

5. Try chaining programs. If you have a lot of instructions in

a game program, you can write a loader program which

prints the instructions and then loads the main program.

We've covered some of the limits which affect memory

and the stack. Variables, too, have limits. They can lead to a

variety of problems. You can employ three types of variables

in a program: string, floating-point, and integer. Certain

restrictions apply to each of the three.

Precision, Accuracy, Magnitude

Floating-point (FP) numbers, so-called because the decimal

point can "float" to either end of the number, use up five

r"] bytes of memory. The variable name needs two additional

1 ' bytes, so an FP variable fits into seven bytes of memory.
Three limits apply to floating-point numbers: precision,

accuracy, and magnitude. Floating-point numbers are allowed

up to nine digits of precision. Go beyond nine, and your com

puter automatically rounds to the nearest nine-digit number.

37

n

n

Programmingb———«

The following program illustrates the limits of precision:

10 A$=M1":B$=A$

20 FOR J=1TO20

30 A$=A$+B$: PRINTA$,VAL(A$)

40 NEXT

Note that we're working with strings, which can be longer j I

than nine characters. But in line 30, the strings are converted i—
to a VALue, which succumbs to the nine-digit limit. After the

loop runs nine times, we see the letter E, which represents expo

nentiation (for example, 10 to the power of X). We've hit one of

the limits. You can make calculations on large numbers, but

they will be rounded to the nearest nine digits of significance.

Another limit, accuracy, sounds like it might be the same

as precision, but it's not. Limits on accuracy are built into al

most any numbering system.

Computers calculate in binary (base two). Fractions which

can be expressed as a combination of halves, fourths, eighths,

sixteenths, and so on, are accurate. Others have to be rounded

to the nearest binary value.

People do the same thing with decimal fractions. The

number 1/3 is translated to a never-ending series of threes,

0.3333333....

The limits on accuracy can sometimes lead to errors of

rounding. Try the following program:

10 x=.l

20 FORJ=0TO50:Y=Y+X:PRINTY:NEXT

A couple dozen times through the loop and the answers

start to vary from what they should be. The number in com

puter memory is just about 1/10, but is a little off. It's only I I

an approximation. As the numbers add up, so does the slight '—
inaccuracy.

Magnitude is the final limit. It's the culprit in OVERFLOW | I

errors. The operating system stores floating-point numbers in '—

five bytes. What happens when all the bytes fill up? The num

ber is a little beyond 10 to the thirty-eighth power, a one fol- j j

lowed by 38 zeros; the computer cannot count any higher.

You can force an OVERFLOW error with this program:
< f

10 X=10: FORJ=1TO50: PRINTJ,X: X=X*10: NEXT '—'

38 u

Programming

The program stops when the computer reaches a number
beyond which it cannot count. Change X=10toX= —10 to

find the limit on the negative side.
How do these limits affect BASIC programs? Precision is

not really a problem, unless you want to count past a billion.
If you sacrifice precision, you can count a little beyond a bil
lion billion billion billion before reaching the highest number
allowed. Accuracy can adversely affect a lot of programs, how
ever. In a financial program, for example, you might add and
subtract some numbers, ending up with a number like
$517.120001 or $517.119999 instead of $517.12. Such pro
grams should include a rounding function, DEF FN R(X) =

INT(X*100 + .5)/100 to strip off those extra numbers.

Integer Limits

Integer variables have their own limits. Integer variables are
always whole numbers and are signified in programs by a
percentage sign (%) suffix. A%, B%, and Y8% are some exam
ples. You can also use them in arrays—A5%(6), YZ%(15),

P%(0), and so on.

Magnitude, rarely a problem with FP numbers, can be a
serious limit on integers. Integers are stored in only two bytes.
The highest integer allowed is 32767, the lowest is -32768.

Accuracy is never a problem with integers, and the limits

of precision never become a problem, either.

String Limits

Strings, collections of characters, are subject to only two limits,

both related to length.
First, when INPUT, a string cannot exceed 80 characters

r-| (two screen lines worth). Second, strings cannot be more than
1 ! 255 characters long. Concatenation (or adding together two

strings) allows strings to exceed the input limit. This program

p—I demonstrates:

10 A$="Z"

20 FORJ=1TO400: B$=B$+A$: PRINTJ,B$: NEXT

- ■' The string variable B$ is not initialized and so begins as a

null string (a string containing nothing) with a length of zero.
rn Each trip through the loop adds the variable A$, which holds
' ' the single letter Z. As B$ grows larger and larger, it reaches

n 39

u
Programming mmMMMssmmssm

u

the limit of 255 characters, and the computer prints an error \ j
message. i I

File Errors { ,

Sequential disk files operate much the same as tape files. You '—'
begin with the first item and continue until you reach the last.
Reading and writing these files can lead to a variety of er- | i
rors—some subtle, others not so subtle. l—I

There are two commands for reading (INPUT# and

GET#) and one for writing (PRINT#). (Note that there is no
space before the number sign.) These three BASIC keywords

differ from the usual INPUT, GET, and PRINT. If you abbre
viate, don't use ?# for PRINT#; it won't work. P SHIFT-R is
the correct short form for PRINT#.

If you open a file for reading and try to write to it, or vice
versa, you'll get a NOT INPUT FILE or NOT OUTPUT FILE

error. If your disk drive is not plugged into the serial port or is
not turned on, the computer will tell you DEVICE NOT

PRESENT. If you press PLAY on a Datassette (to load a pro

gram), and leave it on PLAY, then try to write a file, it will

seem to work, but the file isn't actually there. There's a sensor

that can tell if a button is pressed, but it doesn't distinguish
between PLAY, PLAY/RECORD, or even F.FWD or REWIND.
Writing a file while PLAY (but not RECORD) is pressed won't
write anything.

You can close a file which is already closed, but you can't

open a file which is already open. To be safe, you can precede
an OPEN with a CLOSE. For example, CLOSE2: OPEN2,8,2,
"filename,S,W" will make sure the file is closed before it is
opened.

If you don't close a file before ending the program, you i i
can run into big problems. A disk drive has its own micro- —'

processor, which keeps track of open files. If you open a file,

write to it, and turn off your computer without closing the file, \ f
the result is a "poison" file, which can corrupt other files on i—I
the disk. Poison files are marked in the directory with an as
terisk. You should never scratch a poison file; you have to use j
the Validate command to get rid of it. Before you end a pro- '—'
gram, be certain to close all files.

LJ

40 U

n

n

n STRING TOO LONG
A very common file error is STRING TOO LONG, mentioned
above. For strings in a file which are longer than 80 charac-

H ters, you'll have to use GET# rather than INPUT#. GET#
reads in characters one by one. INPUT* bites off a chunk at a
time. In many cases, GET# is more reliable than INPUT#.

PI Another mistake you can make is writing a file of strings

and then trying to read back numeric variables (for example,
PRINT#1,A$ to write the file followed by INPUT#1,A when

reading it).

Checking Variables

Now let's see how you can track down and eliminate program

bugs. When you type RUN, all variables are cleared. Variable

values then build up as the program runs.

If the program stops, the variables are still intact, but you

lose them the moment you change a line or add a new one.

Even if you simply press RETURN over a line, making no

changes, you'll lose all variable values, until the program is

run again.

Let's imagine a program which stops in the middle and

says ILLEGAL QUANTITY IN 300. The first thing to do is

type LIST300. You might then see something like this:

300 FOR A= S TO E: READ B: POKE A,B: CK% = CK% + B

: NEXT

One of those variables holds an illegal quantity of some

kind. Type PRINT B to discover the value of B. If it's greater

than 255 or less than 0, B is the culprit. When you POKE a

number into memory, it has to be between 0 and 255. If B is

pn 519, for example, the program will crash. In this case, the
! number is coming from a DATA statement. Maybe you left

out a comma, or two lines got stuck together when you forgot

fl to press RETURN after a line. Whatever the cause, you'll have

- to find the incorrect DATA statement.

Testing variables can help you find a good number of

r*| bugs, especially when you have duplicated variable names (for
' example, using the name J in two different sections of a pro

gram). But remember, as soon as you press RETURN over a

line, all variables will be lost.
n

H 41

Programming »^^^p^^:

u

u

If you want to rerun a program and still preserve the j

current variable values, you can choose a line number (call it '—

xxx) and type GOTOra:, as long as you haven't pressed RE

TURN over a line. GOTO does not destroy variable values as
RUN does. _

Simplify and Isolate i ,

The most elusive bugs are the ones which don't happen right '—'
away. Rather, they appear after the program has run 20 or 30

times, seemingly without flaw. Just when you thought it was

all finished, the program crashes—or locks up.

You must simplify and isolate, find the one situation that

causes the problems. If possible, try to duplicate the error. If

you know what happens just before a crash, you're halfway to
finding the bug.

Besides PRINT (to check variables), there are four BASIC

commands which are great aids when you're hunting down an

elusive bug: STOP, CONT, REM, and GET.

Perhaps you've narrowed it down to a certain FOR-NEXT

loop. An important variable, K8, is somehow being changed.

So you add a line PRINT K8:STOP, and every time the pro

gram reaches that line, it prints the value of K8 and stops.

If you want to continue, type CONT. These two com

mands work in tandem, one stopping the program, the other

starting it up again. While the program is temporarily stopped,

you can examine any other variables you want, using PRINT.

STOP Radar

STOP can also be used as a pointer. Start with a 100-line pro
gram with a bug (in this example, let's assume it's straight

forward and doesn't use any subroutines). The first line is 10, , j
the last 1000, in increments of 10. Put a STOP halfway Lj
through the program, just before line 500. Run it, and it

crashes before it even reaches line 500. You now know the \ \

problem—or at least one of them—happens somewhere in the i-J
first half of the program. Now put a STOP in line 250. This
time the program stops, but not because of an error. You type i j

CONT (for CONTinue), and again the computer freezes before '—I
getting to 500. With just a couple of lines, you've zeroed in on

the general area of the bug. It's after 250, but before 500. A ; ;

couple more STOPs and you can narrow the possibilities to '—'
just a few lines. STOP is like radar used to pinpoint the bug.

42 LJ

Programming

Now you suspect the bug is in a certain line. But you

don't know for sure. The line does some calculations followed
by a POKE or two. You can make the line invisible with a RE-
Mark. REM is generally used to add comments because it
makes the computer ignore everything up to the next line. But
it's also good for temporarily removing a line, so the line, as

usual, is ignored.
Finally, GET can sometimes substitute for the STOP-

CONT debugging duo. If you'd rather halt the program tem

porarily instead of stopping it, add a line XXX GET G$: IF G$
=""THEN XXX. Whenever the line is executed, everything

pauses until you press a key.

Timeout to Clean the Blackboard

Have you ever written a program which usually runs well, but
sometimes pauses before starting up again? You don't have a
bug. You can put the blame on a process called garbage collec
tion, especially if the program contains a lot of string variables.

As variables are defined, they are put into memory just

after the end of the program. But strings can contain 1 letter or

5 or 160.
Say, your program has a variable A$ and you define it,

A$ = "HELLO, " + N$ (where N$ is a person's name).

You've created a dynamic string. Later on, the program

changes A$ to "HELLO AGAIN, " + N$. One way to store

this new string on the memory blackboard would be to erase

the old one and put this one in its place. But the new A$ is
longer, so the computer would have to move a lot of memory

around to make room. Instead, the computer marks the old
variable as "garbage," drawing an imaginary line through it,

and puts the new variable into an empty space.

But if memory fills up completely (from all the garbage

strings), it's time to get rid of all the strings no longer being
used. And that takes time. To illustrate, look at this program:

10 DIMA$(255)
20 FORX=1TO255: B=INT(RND(1)*26+65)
30 B$=CHR$(B): A$(X)=A$(X-l)+B$: PRINTB$

40 NEXT:GOTO20

Enter it and type RUN. It takes some time before avail

able string memory fills with garbage. But eventually, you'll
see the program pause while it frees up some space. There's

43

Programming

u

nothing wrong with the computer, it's doing just what it's j j
supposed to. i I

The process of garbage collection is another quirk of the
operating system. Asking the computer how much free mem- i j

ory is left—using FRE(O)—forces garbage collection, so you ^
can force it to occur when it matters least.

Lockup Bugs LJ
If your computer locks up, consider the possibility that your
computer is not locked up. A FOR-NEXT loop that counts to a

million takes a lot of time. So does POKEing a few thousand
numbers into memory. And it's possible to write an inefficient
sorting routine that takes hours, even days, to complete. In

cases like these, you might want to demonstrate that there's
no lockup by printing to the screen or changing border color
once in a while.

Hardware Errors

Hardware should be the last thing you blame. If something is

not going right in a program, it's almost always the program's
fault.

Nevertheless, hardware (especially moving parts as in a

disk drive or printer) occasionally has problems. After many
hours of use, disk drives can become misaligned; they'll read
disks they've written to, but not disks formatted on other

drives (commercial software, for example). And the head on a
cassette drive can become dirty or magnetized.

Two rare bugs you may encounter involve disk access.
The first is a documented problem with relative files. If you
read a short record from a file that begins on a sector bound

ary and then later read a subsequent file that is longer than j <

the first and spans two sectors, the second read may be cor- '—J
rupted because a pointer is not updated. The solution is to set
the record pointer before and after reading a file. i j

The second is undocumented; it's one of those full-moon [—'
bugs. The disk SAVE WITH REPLACE option works almost as
it should. It scratches the old program and saves a good ver- : ■;
sion of the replacement program. But it may corrupt another I—I
file on the disk, especially if the disk is almost full. So far, it
has not been proved without a doubt that on a 1541 SAVE . i

WITH REPLACE (SAVE"@:filename") is flawed. In fact, there LJ

44

Programming

are two people who have offered a reward to the person who

proves the bug exists.

Nevertheless, hardware rarely causes problems, although

sometimes a memory chip burns out or a soldered connection

breaks. Generally, if your computer works for a day or two

after you buy it, it will work for years.

MLX and Proofreader

The two COMPUTE! typing aids, "MLX" and "Automatic

Proofreader," help immensely. But they can miss transposition

errors.

Both programs work by adding up numbers. MLX, used

for entering machine language programs, adds six numbers

(plus the memory location). So you could type 000, 000, 000,

000, 013, 015 to get a total of 28. But 000, 000, 000, 000, 015,

013 also add up to 28. MLX wouldn't know the difference.

The checksum matches, but the numbers are wrong. Unfortu

nately, machine language is extremely sensitive to incorrect

numbers and there could be big problems with the program.

BASIC is more forgiving than machine language—it

usually tells you the type of error and the line number. The
Proofreader is also forgiving. It adds up the ASCII values of
the line and calculates the checksum. So if you type

PRINT+AB, rather than PRINTA+B, the Proofreader

checksum number will come out fine. PRITN is a small prob

lem, because it causes a SYNTAX ERROR. But a POKE with
transposed numbers can lead to trouble, 132 instead of 123,

for example.

45

Charles Brannon

This program overcomes some of the problems of the IN

PUT statement. It's a short machine language routine that

requires no special knowledge of machine language.

Easy to use, it reprograms BASIC'S own INPUT routine.

Problems with INPUT

You are probably familiar with some of the problems with the

INPUT statement. First, it will not properly handle input with

commas and colons. If you entered the previous sentence, the

computer would accept only the word First and would ignore

the rest of the line (as the computer warns you with 7EXTRA

IGNORED). This is because the comma is used to separate

multiple INPUTs on the same line, as in this example:

INPUT "ENTER NAME:FIRST/LAST";A$,B$

The colon, too, triggers an 7EXTRA IGNORED message.

Yet it cannot be used to separate INPUT items, so it appears

to be some kind of bug (error) in the BASIC language itself.

You can get around these problems somewhat, but they

become especially annoying when you are trying to read a file

on tape or disk that contains these characters. In a mailing-list

program, for instance, you need commas for address fields

such as "Greensboro, NC, 27403".

There are other difficulties with the INPUT statement as

well. Quotation marks are not handled correctly. Leading and

trailing spaces are stripped away. INPUT also allows people to

use all the cursor and color control keys. Theoretically, you

can place the cursor anywhere on the screen where there is

something you want to INPUT, and press RETURN. In effect,

this is what happens when you edit a program (the same IN

PUT routine is used by both the system and BASIC). But it

just makes no sense to allow cursor moves all over the screen

when you simply want the user to answer a question. If the

user accidentally presses a cursor key and then tries to move

the cursor back, the entire line, including any prompts, is read.

This can also be a problem when you have carefully laid

out a screen format with blanks or boxes into which a user is

supposed to enter information. You have no way to control

46

LJ

U

u

LJ

n
n^^^^ Programming

n

P~] the number of characters that a user can type, so if your blank
space is only ten characters long, there is nothing to prevent

someone from typing more. Not only that, but also with the

[""] standard INPUT routine, someone can move the cursor out of

the box you want to be used, clear the screen entirely, or

otherwise destroy your carefully planned screen format.

Improving on INPUT

What we need, then, is a new INPUT routine that will not

allow cursor moves. The INST/DEL key should still let the

user delete characters to make corrections, however. Addition

ally, the ideal INPUT routine should let your program limit

the number of characters typed, and allow commas and

colons.

The usual solution is to write your own INPUT routine

using the GET statement, which fetches one key at a time

from the keyboard. With such a simple statement as GET,

however, you have to reinvent the wheel anytime you need

such a protected INPUT routine. And it certainly isn't as easy

to use as a simple INPUT statement.

Well, it certainly wouldn't be fair to bring such gloom to

the scene without presenting a solution. The accompanying

program is the key. It's a machine language routine that re

places the standard Commodore INPUT with a protected IN

PUT such as described above. The beauty of it is that after

you GOSUB 60000, all INPUT (and INPUT#) statements are

redefined. You don't have to understand how the machine

language works in order to use it, and you don't have to re

write any existing programs other than to insert the GOSUB.

You still have all the flexibility of the standard INPUT state-

Pi ment. Just add the subroutine to the end of your program.

~ The machine language program has a couple of niceties.

After you GOSUB 60000, you can change the maximum num-

pn ber of characters allowed by POKEing memory location 252

1 ' with the length (don't POKE with 0 or more than 88). The
cursor is an underline by default, but you can change the

F1 character used for the cursor by POKEing the ASCII value of

- the character you want into memory location 2. For example,

to change the cursor into an asterisk, enter

P] POKE 2,ASC("*")

When you use the routine to INPUT data from files, just

i I 47

Programming ******

remember that it strips away all the control characters from

CHR$(0) to CHR$(31) and from CHR$(128) to CHR$(159).
This includes all special codes such as cursor controls, function

keys, color codes, and so on. You'll rarely write these to a

standard file anyway.

You may be intrigued to find that this special INPUT

routine even works in direct mode. You can still LIST and

RUN, but cursor controls remain disabled. Just press

RUN/STOP-RESTORE if you want the special INPUT routine

out of your way.

Foolproof INPUT

For mistake-proof program entry, be sure to use "Automatic Proofreader"

(Appendix C).

60000 IF PEEK(830)=133 THEN 60020

60010 FORI=828TO977:READA:POKEI,A:NEXT

60020 SYS 828:RETURN

60030 DATA 169,000,133,252,169,080

60040 DATA 133,251,169,164,133,002

60050 DATA 169,083,141,036,003,169

60060 DATA 003,141,037,003,096,152

60070 DATA 072,138,072,165,252,208

60080 DATA 007,032,116,003,169,000

60090 DATA 133,253,166,253,189,000

60100 DATA 002,133,254,198,252,230

60110 DATA 253,104,170,104,168,165

60120 DATA 254,096,160,000,132,252

60130 DATA 165,002,032,210,255,169

60140 DATA 157,032,210,255,032,228

60150 DATA 255,240,251,164,252,133

60160 DATA 254,169,032,032,210,255

60170 DATA 169,157,032,210,255,165

60180 DATA 254,201,013,240,043,201

60190 DATA 020,208,013,192,000,240

60200 DATA 211,136,169,157,032,210

60210 DATA 255,076,118,003,041,127

60220 DATA 201,032,144,196,196,251

60230 DATA 240,192,165,254,153,000

60240 DATA 002,032,210,255,169,000

60250 DATA 133,212,200,076,118,003

60260 DATA 230,252,153,000,002,169

60270 DATA 032,032,210,255,096,013

;rem

: rem

:rem

: rem

: rem

: rem

:rem

: rem

:rem

: rem

: rem

:rem

:rem

: rem

:rem

: rem

:rem

: rem

:rem

:rem

:rem

:rem

:rem

: rem

:rem

: rem

:rem

:rem

145

127

179

135

131

142

127

144

123

143

129

133

127

130

131

135

135

145

119

120

129

132

137

131

120

123

125

129

u

u

u

u

48 U

i John W. Ross

This is one of the fastest sorting programs ever published

for any home computer. It will alphabetize 1000 items in

less than eight seconds. The test generates random

"words" so you can see how the program works.

Sorting programs written in BASIC are generally acceptably

fast for short lists. One method for sorting is the Shell sort,

which is actually quite efficient, certainly far better than a

bubble sort, for instance. Nevertheless, there are better sorts.

C.A.R. Hoarse's Quicksort algorithm, is possibly the fast

est yet developed for most applications. So, here's a machine

language sort program based on the Quicksort algorithm.

Speed Improvements

In order to test the program, I wrote a small sort test program

(Program 2). This program generates a character array contain

ing N items (line 110). Different items are generated depend

ing on the value of the random number seed, SD in line 140;

SD must be a negative number.

To test the sort, we generated six 1000-element arrays and

sorted them using both the "Super Shell Sort" (a previously

published sorting program) and "Ultrasort." Super Shell Sort

required an average of 29.60 seconds to sort all 1000 elements,

while Ultrasort required an average of only 8.32 seconds. The

sorting time increased 72 percent. You probably won't find a

faster sort for an eight-bit machine anywhere.

To run the sort, use:

SYS 49152,N,AA$(K)

Running the Program

Ultrasort can be used either from within a program or in im

mediate mode. Running Ultrasort causes N elements from ar

ray AA$, starting with element K, to be sorted into ascending

order. The sort occurs in place; there is not additional memory

overhead. Elements N and K can be constants or variables,

and any character array name can be substituted for AA$.

Before running the sort, it must be loaded by BASIC. The

49

Programming

u

appropriate loader is supplied in Program 1. The tradeoff for

the increased speed of Ultrasort is increased complexity, es

pecially in machine language. The increased size, of course,

creates a greater possibility of errors when you enter the num

bers. Make sure you read and use "Automatic Proofreader"

(Appendix C). Save a copy of the program before you run it.

You must use the BASIC loader before running the sort

program.

Program 2 demonstrates how fast Ultrasort is. To watch

the demonstration, load and run Ultrasort. Then load and run

"Sort Test" (Program 2). One hundred random strings will be

created, and after you press a key, they will be sorted and

listed. The time required for the sort is displayed at the end of

the list. To change the number of strings created, change the

variable N in line 110 of Program 2.

Program 1. Ultrasort

For mistake-proof program entry, be sure to use "Automatic Proofreader"

(Appendix C).

10 1=49152 :rem 236

20 READA:IFA=256THENEND :rem 169

30 POKEI,A:1=1+1:GOTO20 :rem 130

49152 DATA76,100,192,170,170,170,170 :rem 33

49159 DATA170,170,170,170,170,170,170 :rem 86

49166 DATA170,170,170,170,170,170,170 :rem 84

49173 DATA170,170,170,170,170,170,170 :rem 82

49180 DATA170,170,170,170,170,170,170 :rem 80

49187 DATA170,170,170,170,170,170,170 :rem 87

49194 DATA170,170,170,170,170,170,170 :rem 85

49201 DATA170,170,170,170,170,170,170 :rem 74

49208 DATA170,170,170,170,170,170,170 :rem 81

49215 DATA170,170,170,170,170,170,170 :rem 79

49222 DATA170,170,170,170,170,170,170 :rem 77

49229 DATA170,170,170,170,170,170,170 :rem 84

49236 DATA170,170,170,170,170,170,170 :rem 82

49243 DATA170,170,170,170,170,170,170 :rem 80

49250 DATA170,170,32,253,174,32,158 :rem 244

49257 DATA173,32,247,183,165,20,141 :rem 250

49264 DATA12,192,165,21,141,13,192 :rem 191

49271 DATA32,253,174,32,158,173,56 :rem 205

49278 DATA165,71,233,3,133,75,165 :rem 158

49285 DATA72,233,0,133,76,162,1 :rem 45

49292 DATA173,12,192,157,20,192,173 :rem 252

49299 DATA13,192,157,40,192,169,1 :rem 161

49306 DATA157,60,192,169,0,157,80 :rem 156

49313 DATA192,189,60,192,141,16,192 :rem 255

u

! 1

u

I—I

50

n

n

n

n

n

n

n

n

n

n

49320 DATA189, 80,192 ,141,17 ,192 ,189

49327 DATA20,192,141,18,192,189,40

49334 DATA192,141,19,192,32,47,195

49341 DATA173,11,192,48,4,202,208

49348 DATA221,96,189,60,192,141,16

49355 DATA192,189,80,192,141,17,192

49362 DATA169,1,141,18,192,169,0

49369 DATA141,19,192,32,101,195,189

49376 DATA20,192,141,18,192,141,14

49383 DATA192,189,40,192,141,19,192

49390 DATA141,15,192,32,47,195,173

49397 DATA11,192,48,3,76,167,193

49404 DATA32,131,195,173,16,192,141

49411 DATA3,192,173,17,192,141,4

49418 DATA192,173,14,192,141,5,192

49425 DATA173,15,192,141,6,192,32

49432 DATA132,194,32,180,194,173,11

49439 DATA192,48,218,173,16,192,141

49446 DATA3,192,173,17,192,141,4

49453 DATA192,173,18,192,141,16,192

49460 DATA173,19,192,141,17,192,169

49467 DATA1,141,18,192,169,0,141

49474 DATA19,192,32,101,195,173,16

49481 DATA192,141,18,192,173,17,192

49488 DATA141,19,192,173,3,192,141

49495 DATA16,192,173,4,192,141,17

49502 DATA192,32,47,195,173,11,192

49509 DATA16,35,173,14,192,141,3

49516 DATA192,173,15,192,141,4,192

49523 DATA173,18,192,141,5,192,173

49530 DATA19,192,141,6,192,32,132

49537 DATA194,32,180,194,173,11,192

49544 DATA48,152,32,47,195,173,11

49551 DATA192,16,18,173,16,192,141

49558 DATA3,192,173,17,192,141,4

49565 DATA192,32,132,194,32,31,195

49572 DATA76,241,192,234,189,20,192

49579 DATA141,3,192,189,40,192,141

49586 DATA4,192,173,16,192,141,5

49593 DATA192,173,17,192,141,6,192

49600 DATA32,132 ,194, 32 , 31,195 ,173

49607 DATA16,192,141,18,192,141,3

49614 DATA192,173,17,192,141,19,192

49621 DATA141,4,192,32,81,195,189

49628 DATA20,192,141,18,192,189,40

49635 DATA192,141,19,192,32,101,195

49642 DATA173,11,192,48,15,189,60

49649 DATA192,141,18,192,189,80,192

49656 DATA141,19,192,32,101,195,169

49663 DATA1,141,18,192,169,0,141

Programming

:rem 6

:rem 202

:rem 208

:rem 142

:rem 211

:rem 8

:rem 102

: rem 5

:rem 195

:rem 7

:rem 205

:rem 119

:rem 244

:rem 93

:rem 203

:rem 148

:rem 245

:rem 6

:rem 101

:rem 0

:rem 4

:rem 98

:rem 204

:rem 2

:rem 207

:rem 157

:rem 202

:rem 97

:rem 202

:rem 203

:rem 144

:rem 1

:rem 156

:rem 202

:rem 105

:rem 204

:rem 6

:rem 209

:rem 107

:rem 211

:rem 193

:rem 147

: rem 1

:rem 157

:rem 206

:rem 251

:rem 158

:rem 15

:rem 2

irem 96

51

Programming

49670

49677

49684

49691

49698

49705

49712

49719

49726

49733

49740

49747

49754

49761

49768

49775

49782

49789

49796

49803

49810

49817

49824

49831

49838

49845

49852

49859

49866

49873

49880

49887

49894

49901

49908

49915

49922

49929

49936

49943

49950

49957

49964

49971

49978

49985

49992

49999

50006

50013

52

DATA19,192,173,3,192 ,141,16 : rem 153

DATA192,173,4,192,141,17,192 :rem 212

DATA173,11,192,16,52,189,60 :rem 160

DATA192,232,157,60,192,202,189 :rem 55

DATA80,192,232,157,80,192,32 :rem 215

DATA101,195,173,16,192,157,20 :rem 249

DATA192,173,17,192,157,40,192 :rem 1

DATA32,131,195,32,131,195,202 :rem 246

DATA173,16,192,157,60,192,173 :rem 6

DATA17,192,157,80,192,76,128 :rem 217

DATA194,32,131,195,232,173,16 :rem 250

DATA192,157,60,192,173,17,192 :rem 11

DATA157,80,192,202,189,20,192 :rem 4

DATA232,157,20,192,202,189,40 :rem 249

DATA192,232,157,40,192,202,32 :rem 253

DATA101,195,32,101,195,173,16 :rem 251

DATA192,157,20,192,173,17,192 :rem 6

DATA157,40,192,232,76,162,192 :rem 13

DATA160,3,165,75,133,79,133 :rem 165

DATA81,165,76,133,80,133,82 :rem 156

DATA24,165,79,109,3,192,133 :rem 154

DATA79,165,80,109,4,192,133 :rem 164

DATA80,24,165,81,109,5,192 :rem 107

DATA133,81,165,82,109,6,192 :rem 157

DATA133,82,136,208,223,96,160 :rem 4

DATA0,140,11,192,177,79,141 :rem 152

DATA7,192,177,81,141,8,192 :rem 115

DATA200,152,205,7,192,240,2 :rem 145

DATA176,13,205,8,192,240,21 :rem 153

DATA144,19,238,11,192,76,30 :rem 159

DATA195,205,8,192,240,2,176 :rem 159

DATA62,206,11,192,76,30,195 :rem 163

DATA140,9,192,160,1,177,79 :rem 117

DATA133,77,200,177,79,133,78 :rem 213

DATA172,9,192,136,177,77,141 :rem 220

DATA10,192,140,9,192,160,1 :rem 93

DATA177,81,133,77,200,177,81 :rem 211

DATA133,78,172,9,192,177,77 :rem 181

DATA200,205,10,192,208,3,76 :rem 145

DATA195,194,144,184,76,224,194 :rem 69

DATA96,160,2,177,79,72,177 :rem 124

DATA81,145,79,104,145,81,136 :rem 217

DATA16,243,96,169,0,141,11 :rem 105

DATA192,173,17,192,205,19,192 :rem 8

DATA144,6,240,8,238,11,192 :rem 111

DATA96,206,11,192,96,173,16 :rem 171

DATA192,205,18,192,144,244,208 :rem 56

DATA238,96,173,16,192,24,109 :rem 228

DATA18,192,141,16,192,173,17 :rem 190

DATA192,109,19,192,141,17,192 :rem 241

u

u

u

U

u

u

u

u

Programming

50020 DATA96,169,0,141,11,192,56 :rem 87

50027 DATA173,16,192,237,18,192,141 :rem 245

50034 DATA16,192,173,17,192,237,19 :rem 198

50041 DATA192,141,17,192,176,3,206 :rem 187

50048 DATA11,192,96,238,16,192,208 :rem 202

50055 DATA3,238,17,192,96,170,170 irem 148

50062 DATA170,170,170,170,170,170,170 :rem 71

50069 DATA170,170,170,170,170,170,170 :rem 78

50076 DATA170,170,170,170,170,170,170 :rem 76

50083 DATA170,170,170,170,170,170,170 :rem 74

50090 DATA170,170,170,170,170,170,170 :rem 72

50097 DATA170,170,170,170,170,170,170 irem 79

50104 DATA170,170,170,170,170,170,170 :rem 68

50111 DATA170,170,170,170,170,81,85 :rem 232

50118 DATA73,67,75,83,79,82,84 :rem 21

50125 DATA32,76,79,65,42,32,32 :rem 252

50132 DATA3,255,50,48,44,82,69 :rem 254

50139 DATA65,68,32,69,82,82,79 : rem 21

50146 DATA82,44,49,56,44,48,48 :rem 12

50153 DATA0,170,170,170,170,81,85 :rem 134

50160 DATA73,67,75,83,79,82,84 :rem 18

50167 DATA32,76,79,65,68,69,82 :rem 25

50174 DATA16,255,256 :rem 19

Program 2. Sort Test

For mistake-proof program entry, be sure to use "Automatic Proofreader"

(Appendix C).

100 PRINT"{CLR}" :rem 245

110 N=100 :rem 174

120 DIM AA$(N) :rem 178

130 PRINT"CREATING"N" RANDOM STRINGS" :rem 47

140 SD=-TI:A=RND(SD) :rem 183

150 FOR 1=1 TO N :rem 37

160 PRINT I"{UP}" :rem 66

170 N1=INT(RND(1)*10+1) :rem 221

180 A$="" :rem 127

190 FOR J=l TO Nl :rem 91

200 B$=CHR$(INT(RND(l)*26+65)) :rem 81

210 A$=A$+B$:rem 43

220 NEXT J :rem 29

230 AA$(I)=A$:rem 119

240 NEXTI :rem 30

250 PRINT "HIT ANY KEY TO START SORT" :rem 151

260 GET A$:IF A$="" THEN 260 :rem 83

270 PRINT "SORTING..." :rem 26

280 T1=TI :rem 249

290 SYS 49152,N,AA$(1) :rem 109

300 T2=TI :rem 243

53

Programming

u

u

310 PRINT "DONE" :rem 139 i i

320 PRINT "HIT ANY KEY TO PRINT SORTED STRINGS" LJ
:rem 71

330 GET A$:IF A$="" THEN 330 :rem 79

340 FOR 1=1 TO NrPRINT I,AA$(I):NEXT :rem 27 j I
350 PRINTrPRINT N" ELEMENTS SORTED IN"(T2-T1)/60"S {—'

ECONDS" :rem 180

u

54

U

U

u

LJ

U

Gary McGath

Programming text adventure games, those popular inter

active games where you communicate to the computer

through words, is an art in itself. It's not quite the same

as creating an arcade-style videogame. Here, Gary
McGath, who has written a book on just this subject, ex

plains some of the basics of writing text adventures.

A text adventure is an interactive computer game in which the

player assumes the role of a character in a story. As the

player, you control the character's actions by typing in com

mands, and the computer responds with a text description of

what your character experiences.

The world of most text adventures is composed of a num

ber of rooms, or locations. Your character moves from place to

place, or from room to room, where objects or other characters

may or may not be found. Sometimes these objects and char

acters aid you, other times they're dangerous. By using the

appropriate commands, you can pick up, examine, and even

use these objects and characters.

While professionally written adventure programs often

comprehend complicated sentences as commands, many

adventures get by with simple two-word commands. The

vocabulary of even the best of them is quite limited, and they

have to indicate to you whether they "understand" any

particular command.

The following dialogue is typical of a text adventure.

(Your commands are printed in boldface and the computer's

messages in regular text.)

You are in a small room lined with shelves. There are doors to the

north and west.

There is a gem on the shelf.

Take gem

Your hand is stopped by an invisible shield around the gem.

Examine shield

I don't know the word shield.

55

Programming

North

You are in a north-south hallway.

Writing a text adventure offers you a chance to exercise

your imagination and set up logical puzzles for your friends. It

requires no special screen formatting or sound effects, and the

program is doing nothing between moves; these facts make

text adventure programs easy to debug. And once you've writ

ten your first adventure, you can do more of them just by

changing the rooms and puzzles in your old program.

Mapmaking

While the first steps in designing a text adventure are to create

the story line (what will happen) and the milieu (where things

will happen), we'll assume you've already done that. In this

article, we'll be concerned mainly with the actual program

ming techniques you'll use, as well as some of the more prac

tical design processes.

Once you've decided what your world is, and what will

happen in it, you need to design a map of the rooms.

(Remember that they don't have to actually be rooms—we're

using that as a generic term. They can be places on a road,

paths in a forest, or even corners of a field.) Draw a map with

a box for each room and connecting lines labeled with the

directions that lead from one room to another (north or south,

for instance). Give each room a number and a short descrip

tion. The room in which the character starts should be room 1.

Figure 1 shows the map of an example text adventure game.

Objects, Verbs, and Consequences

In this planning stage, you also need to make several other

decisions. Choose the objects that will be in the adventure and

determine where each will be initially located. Some objects

might not be in any room at all until the player does some

thing to make them appear. You should also assign numbers

to the objects.

Your program also needs a list of the verbs that will be

accepted as commands. Certain verbs (or words that function

as verbs) are almost mandatory, such as NORTH, SOUTH,

EAST, WEST, TAKE, DROP, EXAMINE, LOOK, INVENTORY,

and QUIT. Other verbs that might be helpful include ENTER,

CLIMB, SHAKE, MOVE, TURN, FIGHT, OPEN, EAT, DRINK,

56

Programming

Figure 1. The Adventure's Map

22

Guest

Room 2

Armory

Royal
Treasury

Courtyard E W

20

Queen's

Bedroom

E w

17

North

Hallway

s

N

E W

21

King's

Bedroom

Top of

Stairs

e w

u d

24

Tower

19

South

Hallway

E w

23

Guest

Room 1

E W End of

North

Corridor

E W

E W Art

Gallery

North

Corridor

Castle

Gate

E W

E W

10

Council

Chamber

Entry

Hall

12

Kitchen E W

E W Chapel

South

Corridor

16

Dungeon E W

15

Dungeon

Entrance

E W

13

Dining

Room

Servants'

Quarters

Programming

CLOSE, and READ. Abbreviations, such as I for INVENTORY

and N for NORTH, are easier for the player to remember and

use. Allowing the use of equivalent alternatives, like GET and

TAKE—which should mean the same thing—can reduce

player frustration. Remember, the difficulties in an adventure

should come from the logical puzzles, not from figuring out

how to talk to the program.

What consequences do specific actions have? Will opening

a box reveal a gem, or will it set off an explosion? Will press

ing a switch start a machine? Will magic words transport the

character into a new room? Consequences could include

appearances and disappearances, changes in the character's

abilities, alteration of the paths between rooms, and trans

portation from one location to another.

Some actions may have special consequences only under

restricted circumstances. A special tool may be needed, such as

a crowbar to open a crate. If this tool isn't in the character's

inventory, the action won't have the desired effect and might

even backfire.

Things may happen independently of the player's actions

as well. A troll might be wandering around the adventure's

world. Or the character's lamp might go out after a certain

number of moves.

When you've considered all these things and made your

choices, you know what you want the adventure to do. Only

now should you worry about the details of the program. As

you discover what's easy to program and what isn't, you

might change your mind about which features to include. But

just as when you program any game, you should start with an

overall plan. It will save you countless hours of wasted time

later on.

Assigning Variables

Now you're ready to actually begin programming your text

adventure game. We'll go through the process step by step,

outlining and illustrating exactly how to do it.

The first step is to to assign variables to the important

parameters of the adventure. It's easier to remember what

these variables mean than it is to recall a number; using these

variables also makes it simple to alter the program if you later

decide to change the parameters. One of the first statements of

58

Programming

the program, even before the DIM statements, should look

something like this:

10 NR=21:NV=14:NO=16:NI=10:ND=6

NR is the number of rooms, NV the number of verbs, NO the

number of objects, NI the number of items, and ND the num

ber of different directions the character can move in. (Note:

An object is any word that can be used as the second word of

a command, whether it corresponds to a physical object or

not. An item is an object that is located in a room; it usually

designates a physical object.)

Adventure Arrays

The next step is to translate the layout of your adventure into

a set of data structures. Let's look at each of the required

structures and the purpose it serves.

Access array. This is the translation of your map into

terms the computer can understand. It's defined by the

statement

DIM AC(NR,ND)

To use the access array (AC), the directions in which the

character moves must be translated into numbers. Let's as

sume the following translation:

North = 1 South = 2

East = 3 West = 4

Up =5 Down = 6

The value of AC(NR,ND) specifies which room is reached by

going in direction ND from room NR. If this value is 0, it

means the character can't go that way from that room.

Room description array. This array is defined by

DIM RD$(NR)

Each of its entries is a string that gives the description of the

room—for example, "You are standing on a wide bridge."

Room flag array. Flags are indicators of whether a con

dition is true or false. The array is defined by

DIM RF(NR)

To conserve memory, all the flags for a room are stored as one

(I value. The different flags are defined as powers of 2—1, 2, 4,
8, 16, and so on. A value of 1 might indicate that the room is

n 59

n

n

n

Programming

too cold, 2 that magic works, and 4 that water is present. The

value of RF(R) for room R consists of the sum of all the flag

values that are true for that room. If a room is cold and allows

magic, but doesn't have any water, then its entry in the array

would be a 3 (1 + 2). Flag F for room R can be tested with

the following line:

IF (RF(R) AND F) <> 0 THEN PRINT"FLAG"F"IS TRUE/'

Verb array. This is an array of the possible first words of

commands, defined by

DIM VB$(NV)

You should decide how many letters in a word are going to be

significant and chop the verbs in this array down to that size.

For instance, if two letters are significant, then TAKE must be

stored as TA. It's a good idea to limit the number of signifi

cant letters so that two-fingered typists have less work to do.

Many simple adventure games designate only two letters as

significant.

Object array. This is an array of the possible second

words of commands (objects), defined by

DIM OB$(NO)

Once again, all words in this array should contain only as

many letters as are significant.

Verb token array. This serves to translate verbs into

numbers. It is dimensioned by

DIM VT(NV)

The entries in this array correspond to entries in the verb ar

ray. The values stored consist of numbers from 1 to the num

ber of distinguishable verbs in the game. This number is

normally smaller than NV, since similar verbs such as GET

and TAKE, or NORTH and N, are not distinguishable. If

VB$(2) =N and VB$(3)=NORTH, then VT(2) and VT(3) will

have the same value. This lets the program be indifferent to

the word that was actually typed.

Object token array. This array translates the second word

of a command into a number. It is defined by

DIM OT(NO)

Its elements correspond to the object array. However, the ele

ments can be a little trickier than the verb token array's ele

ments. Remember that not all objects are items. It's convenient

60

Programming

to have the object tokens fall into two series. Items, which are

objects that have a particular location, can be numbered from

1 to NI. Other objects, including directions and magic words,

can be numbered starting with 101. This makes it easy to add

new items without disrupting your numbering system.

Item description array. This contains a text description

for each item. Its definition is

DIM ID$(NI)

The text description of an item could be the same as the word

in the object array for it, but often it's a little more. For in

stance, the object array might have the word LAMP for an ob

ject described in the item description array as "Old oil lamp."

Item location array. This locates each item; it is defined by

DIM IL(NI)

There are three possibilities for where an item is located. It

could be in a room, in the character's inventory, or nowhere at

all. The third case indicates an item that's been destroyed or

one that's not yet available. A positive number in the item

location array indicates which room the item is in. A zero says

that the character is carrying the item. A negative one specifies
that the item isn't to be found.

Item flag array. This is similar to the room flag array in

concept, except that it specifies conditions that are true or false

of items rather than rooms. It is defined by

DIM FI(NI)

(It would make sense to call the array IF, but that's a reserved

word in BASIC.) The flags are used to indicate such properties

as whether the item can be carried or not.

More Variables

Finally, you'll need to set a few more variables, for example:

VB Verb token obtained from the last command entered.

OB Object token obtained from the last command. It can

be 0 if only one word was typed.

RM Room the character occupies.

IC Number of items the character is carrying.

MI Maximum number of items the character may carry.

IC may never exceed MI.

61

Programming

u

LJ

MC Move counter. This indicates how many moves have | \

occurred since the adventure started. It can serve as a timer for i—I

various events.

DF Description request flag. This variable is set to 0 after j \

the current room is described to the player. If a description is I—'
required before the next move (because the character went

into a new room or decided to LOOK around again), it's set to i i

1 to get the description displayed. Leaving it at 0 saves having I—I
the same description repeated every move.

Specific situations will undoubtedly call for a few more

variables, but the arrays and variables listed here will provide

the major part of what a simple adventure needs.

The Main Loop

An adventure program consists of two parts: the initialization

and the main loop. The initialization section includes

dimensioning arrays and setting up data. We've already

looked at some of the initialization section of our example

adventure. It uses READ and DATA statements to set up all

the initial values. Once the initialization is done, however, the

main loop takes over. It runs until the game is completed. The

overall flow of the main loop would be something similar to

that shown in Figure 2.

The major portions of the main loop, as shown in Figure

2, are the room description, the automatic routines, the com

mand INPUT and parsing, and the action routines. Let's con

sider how to program each of these in turn.

Room Description

Whenever the character moves into a new room, the

surroundings change. If the player asks to LOOK at the room j j

again, the room description routine provides this information. L-J
There are two things to be described: the room itself and

whatever items it contains. i i

This routine isn't long and could look like the lines below '—I
(the sections of BASIC presented here are brief examples that

illustrate the concepts at hand, but do not add up to a complete \ \

working program): I—I

400 IF DF=0 THEN 600

410 PRINT RD$(RM) (j
420 F=0 ['
430 FOR 1=1 TO NI

62 U

Programming

440 IF IL(I)<>RM THEN 490

450 IF F=0 THEN PRINT "YOU SEE:":F=1

460 PRINT ID?(I)

490 NEXT I

The description request flag in line 400 determines

whether this section of the program is executed or skipped

over. Remember that 0 indicates the latter. If it is 0, then, this

entire routine is bypassed. If it is executed, describing the

room consists simply of printing the appropriate element of

the room descripion array. That's line 410. Then in line 430, a

FOR-NEXT loop executes, which goes through each item in

the item location array. For each item that's located in the cur

rent room (F=0), it prints the corresponding element of the

item description array (done in line 450 and 460). This way

the player will see what each room contains.

Figure 2. The Main Loop

Room

Description

Automatic

Routines

Command

INPUT and

Parsing

Action

Routines

63

Programming

Automatic Routines

The next section of the main loop takes care of events that

aren't directly caused by the player's commands. We can call

these routines automatic, for they happen independently of

what's typed in. An adventure can be written without any

automatic routines, but having even a few things outside the

player's control gives a much greater sense of realism and

excitement.

Automatic routines can be controlled by the move

counter, random numbers, or a combination of the two. The

commands the player gives can have an effect as well. A pas

sage may close four turns after the character enters a room, or

a wraith may start stalking the character only after a crypt has

been touched. Extra variables can be used to indicate the move

on which something will happen. In the following example

routine, MM is a variable indicating the move in which a wall

collapses, opening a new passage between rooms 8 and 9.

700 MC=MC+1

710 IF MCOMM THEN 800

720 AC(8,3) = 9: AC(9,4) = 8

730 IF RM=8 THEN PRINT "THE EASTERN";

740 IF RM=9 THEN PRINT "THE WESTERN";

750 IF RM=8 OR RM=9 THEN PRINT " WALL COLLAPSES, O

PENING A NEW PASSAGE."

MC is the move counter, our timer, so to speak. Each time

through the main loop, it's incremented by 1 in line 700.

Assuming we earlier set MM to the desired turn number (say,

8), then this automatic routine would not be executed until

MC equals MM—in other words, on turn 8. Line 710 insures

this. Line 720 actually creates the opening between the rooms.

The message then displays, specifying which wall has crum- | (
bled. If the character is in room 8, for instance, the eastern

wall has fallen, and the character can now move in that

direction. j j
The position of automatic routines in the program is im

portant. Usually, they should come after the room description

so that the player finds out where the character is before being (j
told what happens. Some automatic routines, however, are

better placed after the player has completed the move . This

conveys the feeling that what happened immediately followed j |
the move. For instance, if a flock of bats carries the character

out of a room every time he or she tries to enter, the player

64 <—'

Programming

may not even see the room until it's discovered how to get the

bats out.

Command INPUT and Parsing

At this point the program stops talking to the player; instead,

it's the player's turn to communicate with the program. To do

this, the program must accept a command and parse it. To

parse a command simply means to break it up into its compo

nents and identify their relationships—an easy job when it

consists of just two words.

Here's the first section of an INPUT and parsing routine:

1000 input c$

1010 L=LEN(C$):IF L=0 THEN 1000

1020 Cl$=1Ill:C2$=lflf:C2=0:X=0

1030 FOR 1=1 TO L

1040 A$=MID$(C$,I,1)

1050 IF A$<>" " THEN 1080

1060 IF C2$<>nM THEN 1200

1070 X=1:GOTO 1090

1080 IF X=0 THEN C1$=C1$+A$:GOTO 1090

1085 C2$=C2$+A$

1090 NEXT I

The program receives a command through the INPUT

statement. As the player enters words, a string is created.

Then the program separates the two words by looking for one

or more spaces between them. (It's best that it be tolerant of

more than one space between words as well as spaces after

the command. INPUT automatically strips leading spaces, so

they don't pose a problem.) The above program section re

ceives the player's INPUT (line 1000) and creates two strings,

Cl$ and C2$ (lines 1080 and 1085). Spaces between words

are also checked for in line 1050.

The following lines continue the routine:

1200 C1$=LEFT$(C1$,6): C2$=LEFT$(C2$,6)

1210 FOR 1=1 TO NV

1220 IF VB$(I)=C1$ THEN VB=VT(I):GOTO 1250

1230 NEXT I

1240 PRINT "I DON'T KNOW THE VERB M7C1$:GOTO 1000

1250 IF C2$="" THEN OB=0:GOTO 1400

1255 FOR 1=1 TO NO

1260 IF OB$(I)=C2$ THEN OB=OT(I):GOTO 1400

1270 NEXT I

1280 PRINT "I DON'T KNOW THE OBJECT ";C2$:GOTO 100

0

65

Programming

u

u

The two strings, Cl$ and C2$, are the first and second i i

words of the command. The next step is to translate these I—I
strings into the verb token and the object token. This means

looking them up in the verb array and object array and getting j i

the corresponding elements of the verb token array and object I—!
token array. Lines 1220 and 1260 in the section of the routine

above do this for the verb and object respectively. Note the i i

checks and messages displayed if the verb and/or object do '—I
not exist in the appropriate array.

The two strings must be truncated to the number of

significant characters in order to match the strings in the ar

rays. Line 1200 assumes truncation to six characters.

In the case of a one-word command, C2$ will be the

empty string, so the object token will be set to 0 (line 1250).

Action Routines

Once the program has the command in the form of the verb

token and the object token, it's ready to determine what those

commands will do. We can call the parts of the program that

do this the action routines. This section will be the largest por

tion of the program; however, since it consists of many small

pieces, it isn't very difficult to write.

Before figuring out what a specific verb does, the program

should do some general checking to determine whether the

object is reasonable. If the object is an item, it has to be either

in the room or in the character's inventory. If it's somewhere

else, the character can't do anything with it. If the object isn't

an item, then only a few verbs will work with it, so the pro

gram should make sure that the verb is an appropriate one.

NORTH, for example, isn't something the character can TAKE,

EAT, or OPEN. Only GO makes sense. I f

The following routine assumes that the direction object LJ
tokens (NORTH, UP, and so forth) are numbers 101 to 106,

that GO is verb 10, that SHAZAM is object 107, and that SAY (.

is verb 12. i I

(In a language that was more generous with names than

BASIC, we could assign a variable name to each verb. Trying . j

to think of a two-letter name for each verb that would mean I I

anything, though, is a hopeless exercise. So at this point we

resign ourselves to using numbers.) I .

66 u

Programming

1400 IF OB<100 THEN 1600

1405 REM IT'S NOT AN ITEM

1410 IF OB<=106 AND VB<>10 THEN 8000

1420 IF OB=107 AND VB<>12 THEN 8000

1430 GOTO 2000

1599 REM IT IS AN ITEM

1600 IF IL(OB)<>RM AND IL(OB)<>0 THEN PRINT "IT IS

N'T HERE.":GOTO 1000

8000 PRINT "THAT'S SILLY!":GOTO 1000

Line 1400 of the routine checks to see if it's an item (with

an object token less than 100). If it is, the program jumps to

line 1600, where it's determined whether the item is in the

room or in the character's inventory. If neither, then the mes

sage IT ISN'T HERE displays. The program chides the player

with THAT'S SILLY! if a direction (NORTH, UP, and so forth)

is requested and GO isn't used with it. The player will also see

the message if the object is SHAZAM and the verb is not SAY

(line 1420).

Notice that if the command is rejected, the program goes

back to the command INPUT (through the GOTO 1000 state

ments in lines 1600 and 8000) rather than letting anything

happen automatically.

If these checks turn up no problems, the program falls

through to the action routine for the specific verb. The tool

used is the GOTO statement found in line 1430 above. It

sends the program to line 2000, shown below:

2000 ON VB GOTO 3000,3100,3200,3300,3400,3500,3600

,3700

2010 ON VB-8 GOTO 3800,3900,4000,4100,4200,4300,44

00,4500

Several of these statements will usually be necessary be

cause of the 80-character line limitation. Remember that an

ON statement will simply fall through to the next statement if

the variable is out of range. Thus, if the variable is 9, it falls

through line 2000 to line 2010, where it would access the first

line listed, 3800 (9 - 8 = 1). Using this technique, we can

call up to 16 different verb routines in the above example.

Each of the line numbers in lines 2000 and 2010 is the

start of the action routine for a particular verb.

67

Programming

Certain verbs will be standard in most adventures, so they

can be discussed in some detail here. Others will have effects

that are peculiar to the situation. They're the ones that make

your adventure unique. Once you've seen how the standard

verbs work, though, you shouldn't have much trouble adding

your own special ones.

Directional verbs and GO. There are two ways a player

might specify moving in a direction: Either a simple direction

(for instance, EAST or just E) or GO and a direction (GO

EAST) could be entered. It isn't much trouble to include both.

A common area of the program can be used to handle all

directional movement, using a direction variable that the spe

cific commands set before accessing the actual movement.

For a one-word command, the direction acts as the verb.

In this case, it just sets the direction variable and goes to the

common routine. The line below illustrates the one-word com

mand NORTH.

3100 D=1:GOTO 3620

You'll recall that earlier we decided to use 1 as the direc

tional number for NORTH. All that's done in the above line is

to set D (the directional variable) to 1 and then GOTO a line

that checks to see if that direction leads anywhere. (More on

that in a bit.)

However, the GO command has to translate its object into

a direction before going to the common routine. It's easy to do

this if the direction objects are numbered appropriately so that

subtracting a number from the object token gives the right in

dex into the access array. Take a look at the following lines:

3700 IF OB<=100 OR OB>106 THEN 8000 ,

3710 D=OB-100:GOTO 3620] j

Notice that if the object (OB) is not a direction (checked for in

line 3700), then the program jumps to line 8000, where the I |

message THAT'S SILLY! is printed. The direction variable D is L-'
set in line 3710. If OB equals 101, for instance, signifying that

the direction is NORTH, then D equals 1. The program then I j
moves to line 3620. !—'

The common routine uses the access array to determine

where the move will take the character. The next segment is I I

this common routine used by both one- and two-word —'
commands.

68 u

Programming

3620 IF AC(RM,D)=0 THEN PRINT "YOU CAN *T GO THAT W

AY.":GOTO 400

3630 RM=AC(RM,D):DF=1:GOTO 400

A value of 0, as mentioned before, means that a given direc

tion doesn't lead anywhere. If the command does take the

character somewhere, the description request flag is also set so

that the player can see the new room. Both of the lines above

take the program back to the routine that describes the room.

TAKE. This command transfers, or attempts to transfer,

an item from the current room to the character's inventory.

The program has to determine whether the item can be picked

up and whether it can be carried. The character might already

be carrying as much as allowable. Taking an item might also

have side effects, for instance, making another item visible or

setting off a trap. The program doesn't have to check whether

the object is in the room since that has already been deter

mined. However, it does have to check whether the character

is already carrying the item. Take a look at the lines below to

see how that can be programmed:

4200 IF (FI(OB) AND CF)=0 THEN PRINT "YOU CAN'T PI

CK THAT UP.":GOTO 400

4210 IF IL(OB)=0 THEN PRINT "YOU ALREADY HAVE IT 1"

:GOTO 400

4220 IF IC=5 THEN PRINT "YOU'RE CARRYING TOO MUCH

{SPACE}ALREADY.":GOTO 400

4230 IL(OB)=0:IC=IC+1:PRINT "TAKEN."

4240 REM SIDE EFFECTS GO HERE

4290 GOTO 400

This assumes that flag CF (in line 4200) in the item flag

array indicates whether or not an item can be taken. If your

character already has the item, then line 4210 prints a message

to that effect. Note that a limit of five items is set in line 4220.

If IC (the variable keeping track of the numbers of items car

ried) equals 5, the character can't take anything else. Line

4230 actually TAKEs the item by placing it in the character's

inventory (IL(OB) = 0), increments the number of items held,

and prints a message that the TAKE was successful.

DROP. The reverse of TAKE, it's even simpler, since an

item that is being carried can normally be dropped.

4300 IF OB=0 THEN PRINT "DROP WHAT?":GOTO 1000

4310 IF IL(OB)<>0 THEN PRINT "YOU DON'T HAVE IT1":

GOTO 400

69

Programming

4320 IL(OB)=RM:PRINT "DROPPED."

4330 IC=IC-1

4390 GOTO 400

The only question is if the item is in the character's inventory;

this is checked in line 4310. The object is transferred to the

room (line 4320) and the inventory count is decremented (line

4330). Again, side effects are possible.

INVENTORY. All this command does is list the items

the character is carrying. This involves going through all the

items and listing the ones that have a location of 0.

4400 PRINT "YOU ARE CARRYING:"

4410 FOR 1=1 TO NI

4420 IF IL(I)=0 THEN PRINT ID$(I)

4430 NEXT I

4440 IF IC=0 THEN PRINT "NOTHING."

4450 GOTO 400

Line 4420 PRINTs the items the character is carrying. If IC

(the number of items carried) is 0, a message indicating that

the character holds nothing is displayed.

LOOK. This is one of the simplest commands; it just sets

the description request flag with a line such as

4500 DF=1:GOTO 400

QUIT. Even simpler, except that it's nice to make sure

the player really means it:

4600 PRINT "DO YOU REALLY WANT TO QUIT";

4610 INPUT Y$

4620 IF LEFT$(Y$,1)<>"Y" THEN 1000

4630 END

Unusual Commands

Other verbs vary from one adventure game to another. j J
EXAMINE can give you additional information about items.

FEEL, SMELL, and TOUCH might serve a similar purpose.)

The process of examination might also cause other, previously l j
hidden, items to appear. OPEN could be another way to re

veal a hidden item. Words like CUT and BURN might have

interesting effects on items, but unless an appropriate tool is in j |
the character's inventory, these commands would simply re

turn a message like "You can't do that."

70 • ^J

Programming

Having a few commands that do nothing but return a

standard response is useful, just because you can increase the
number of commands that get an interesting answer without

adding much to the programming effort. For instance, the verb
BREAK with any object might get the response "Vandalism

won't help your situation." This will also leave the player

wondering whether there's some object that could be broken

for a useful result.

Commands like CLIMB or ENTER might work on certain

objects to provide a way of getting from one room to another,

in addition to the directional commands. (Don't use GO for
this, please. In spite of what some adventure game pro

grammers think, you don't "go a door.")

Other commands might also surprise the player by

transporting the character from one place to another. For in

stance, taking an item might cause a trap door to open, drop

ping the character into the room below. Magic words can

serve this purpose. A magic word may be restricted in its use

to a certain room, so it provides passage only from that room

to another.

What Goes into It?

The mechanics of writing an adventure program are only part

of the job, just as grammar and spelling are only part of what

goes into writing. The other part is what you actually have to

say. Creating the content of an adventure can't be reduced to

a cookbook approach. Still, some general guidelines are

possible.

Quests and hunts. There are two basic types of adven

ture: the quest and the treasure hunt. In a quest adventure,

you're given a particular goal to achieve, such as solving a

mystery or obtaining a single treasure. In a treasure hunt,

you're trying to find as many treasures as possible to get a

high score.

The quest adventure is an all-or-nothing proposition. The

program can give you a score to indicate how close you've

come to success, but you probably won't be satisfied until you

solve it. The treasure hunt offers more satisfaction to the

beginning adventurer since, if even a few treasures are found,

there's a sense of accomplishment. If a quest is like climbing a

mountain, a treasure hunt can be compared with hiking across

a series of low hills. Each one has its own kind of satisfaction.

71

Programming

Make the pieces fit. In either case, all the pieces should

fit together. This is more obvious for a quest—each step is

part of a developing story. Even in a treasure hunt, though,

everything should be set against a common background and

story line. If your setting is the world of Greek mythology,

Wotan and Brunhilde shouldn't appear without good reason. If

you've chosen a science-fiction setting, it shouldn't have magi

cal elements that don't fit. Humorous events can certainly

liven up an adventure, but they shouldn't be jarringly out of
place.

The puzzles should be interrelated. Otherwise, what

you'll end up with is a series of small puzzles rather than one

complete adventure. Solving one puzzle should provide a tool

that's needed for solving the next one. The various items re

quired should be scattered around so that the character has to

go back and forth among the rooms rather than having every

thing too neatly at hand.

Don't cheat. The puzzles should always be logical. The

solution should make sense, at least once the player has stum

bled upon it. A puzzle that reduces the player to trying actions

at random has failed. If the way to summon a genie in your

adventure is to kiss a coconut, be sure to provide some clue

that will suggest that action. If you don't, you'll have a hard

time getting people to play your second adventure.

Traps should not be sprung unexpectedly. It should be

possible for the player to get a hint of danger ahead before

walking into it, perhaps by requiring the player to examine

things carefully. This doesn't mean that everything should be

so easy that a player can solve it the first time. It means that

at the end of the puzzle or game, the player sees that the pro

gram was "playing fair." One adventure game I've played, for i i

example, requires the character to escape from a passage to LJ
survive, yet there was no indication that the passage was dan

gerous. This forces the player to rely on knowledge gained in i i

a "previous life," something not as realistic as many players LJ
would like.

Just as when you create any game, the art of text adven- j j

ture writing is much like the art of storytelling. To keep the I I
player interested, interesting things have to happen. One

event should follow reasonably from another and lead to a cli- i i

max. Because it is a form of storytelling, the text adventure of- I I

72 u

Programming

fers you, the author, a chance to express yourself, something

not often found in other forms of videogames. When you

write an adventure, you're doing more than creating a game;

p-| you're creating a world.

n

n

n

n

n

H 73

Jon Rhees

Build fences around your opponent without letting your

self get hemmed in. This simple game includes a variety

of options to keep it ever challenging.

Don't Fence Me In

This game puts you in the construction business. Specifically,

you're building fences, and the construction code is straight

forward: Fences may be built horizontally or vertically; your

construction may not touch the outer walls, your previous

work, or your opponent's work; nor can it touch any obstacles

that may be strewn in your path.

You score points by outlasting your rival. If your rival's

fence crashes first, you win the round and a number of points

based on the amount of time consumed by the round. The

first player to reach 100 points wins the game.

You have these choices available in setting up the game:

one or two players; joystick or keyboard input; adding ob

stacles to the playfield; and increasing or decreasing the speed

of the game.

Approximately 30 percent of the program—the game ac

tion itself—is written in machine language. The sound, timing,

and scoring routines are written in BASIC. Accompanying the

article is a line-by-line description of how the program works.

The game is best when played by two people. The one-

player option was added so that players could practice if no

opponent could be found. You race the clock, trying to survive

as long as possible. If you use the practice option, the most

challenging level is nine, with obstacles. You have ten rounds

to rack up as many points as you can.

Commodore 64 Program Description

Lines Description

100-120 Call the option routines and initialize variables.

130 Checks for winner and jumps to win routine.

140-150 Draw screen border.

160 Checks for barrier option; jumps to subroutine.

190 Positions players and directions. (Locations 251-254 hold

low and high bytes of each player's position. Locations

837-838 hold players' directions.)

77

Recreation and Education

Lines Description

200 Initializes time and calls machine language routine, which

returns to BASIC when collision occurs. Score is then

determined based on amount of elapsed time.

210-230 Check value in location 834 for number of player in col

lision, then jump to appropriate routine to update win

ner's score.

245-250 Flash colliding fence.

270-480 Allow player to choose options.

490-510 Randomly place barriers on screen.

520-550 Initialize sound and variables.

560-660 Print scores and totals, then jump to beginning.

670-1350 Load machine language.

Trap 'Em

For mistake-proof program entry, be sure to use "Automatic Proofreader"
(Appendix C).

100 CLR:GOSUB670:GOSUB 520:GOSUB540:GOSUB260:GOSUB

460 :rem 19

110 S1=0:S2=0:GOSUB410:IFFLTHEN100 srem 25

120 PRINT"{CLR}":C=54272 :rem 181

130 R=R+1:IFS1>=100OR(S2>=100ANDNP=2)OR(R=11ANDNP=

DTHEN560 :rem 25

140 FORA=1104TO1143:POKEA,160:POKEA+C,0:POKEA+880,

160:POKEA+880+C,0:NEXT :rem 253

150 FORA=1144TO1944STEP40:POKEA,160:POKEA+C,0:POKE

A+39,160:POKEA+39+C,0:NEXT :rem 67

160 IFB$="Y"THENGOSUB490 :rem 178

170 IFNP=2THENPRINT"{HOME}{7 SPACES}{RVS}{RED}RED"

SI"{OFF}{13 SPACES}{RVS}{BLU}BLUE"S2 :rem 136

180 IFNP=1THENPRINT"{HOME}"TAB(8)"{RVS}{RED}SCORE"

S2;SPC(8)"ROUND"R :rem 226

190 POKE251,194:POKE252,5:POKE253,214:POKE254,5:PO

KE837,7:POKE838,11 :rem 193 i i

200 TI$="000000":SYS49152:SC=INT(Tl/60):IFNP=1THEN LJ
SC=SC*LV srem 230

210 ONPEEK(834)GOTO220,230 :rem 211

220 SP=PEEK(870)+256*PEEK(871):GOSUB245:S2=S2+SC:G 1
OTO120 :rem 46 *—-

230 SP=PEEK(872)+256*PEEK(873):GOSUB245:S1=S1+SC:G

OTO120 :rem 49 ; ,

245 FORA=1TO6:POKESP,PEEK(SP)-2*(PEEK(SP)AND128)+1 [_j
28:FORB=1TO400:NEXT :rem 3

250 NEXT:RETURN :rem 240

260 REM OPTION ROUTINE :rem 123 I I

270 POKE53281,1sPRINT"{CLR}{5 DOWN}"TAB(15)"{RED}T LJ
RAP 'EM":POKE198,0 :rem 96

78 u

Recreation and Education

280 PRINT"{3 DOWN}"TAB(13)"{BLU}{RVS}l{OFF} ONE PL

AYER":PRINT"{2 DOWN} "TAB(13) " {RVS} 2{OFF} TWO P

LAYER" :rem 171
290 PRINTSPC(13)"{2 DOWN}{RVS}3{OFF} QUIT" :rem 67
300 GETA$:IFA$<"l"ORA$>li3"THEN300 :rem 52

310 IFA$="3"THENPRINT"{CLR}":END : rem 224

320 NP=VAL(A$):POKE836,NP:PRINT"{3 DOWN}{BLK}"TAB(
14)"{RVS}j{OFF}OYSTICK OR" :rem 49

330 PRINT"{DOWN}"TAB(8)"{RVS}K{OFF}EYBOARD AND JOY

STICK 2" srem 134

340 GETA$:IFA$="J"THENRETURN :rem 228

350 IFA$<>"K"THEN340 srem 91

360 PRINT"{CLR}{3 DOWN}{7 SPACES}WHICH KEY TO GO U

P?":WAIT198,1:A(1)=PEEK(197):POKE198,0:rem 207

370 PRINT"{DOWN}{7 SPACES}WHICH KEY TO GO DOWN?":W

AIT198,1:A(2)=PEEK(197):POKE198,0 :rem 175

380 PRINT"{DOWN}{7 SPACES}WHICH KEY TO GO LEFT?":W

AIT198,1:A(3)=PEEK(197):POKE198,0 :rem 164

390 PRINT" {DOWN} {7 SPACES}WHICH KEY TO GO RIGHT?11:

WAIT198#1:A(4)=PEEK(197):POKE198,0 :rem 249

400 FORA=1TO4:POKE829+A,A(A):NEXT:RETURN :rem 11

410 PRINT"{CLR}{5 DOWN}"SPC(11)"ENTER SPEED (0-9)"
: rem 1

420 PRINTSPC(7)"{2 DOWN}OR (C) TO CHANGE OPTIONS"
:rem 161

430 GETA$:IF(A$<"0"ORA$>"9")ANDA$<>"C"THEN430

:rem 203

440 IFA$="C"THENFL=1 :rem 127

450 LV=VAL(A$):P=60-LV*6:POKE839,P:POKE840,P:LV=LV

+1:RETURN :rem 168

460 PRINT"{CLR}"SPC(8)"{4 DOWN}DO YOU WANT BARRIER

S?" :rem 88

470 GETB$:IFB$<>"Y"ANDB$<>"N"THEN470 :rem 54

480 RETURN :rem 124

490 FORA=1TO30 :rem 57

500 Q=RND(1)*870+1104:IFPEEK(Q)< > 32OR(Q>1463ANDQ<1

503)THEN500 :rem 238

510 POKEQ,160:POKEQ+C,0:NEXT:RETURN :rem 240

520 REM INITIALIZE :rem 109

530 FORA=54272TO54296:POKEA,0:NEXT:RETURN :rem 71

540 POKE54287,255:POKE54290 f129:POKE54273,1:POKE54

296,15:POKE54277#21 :rem 166

550 POKE54278,240:RETURN :rem 175

560 GOSUB520:IFNP=2THEN600 :rem 77

570 PRINT"{CLR}{10 DOWN}"SPC(15)"{BLU}SCORE:"S2

:rem 229

580 IFS2>HITHENHI=S2 :rem 2

590 PRINTSPC(16)"{DOWN}{RED}HIGH:"HI:GOTO640

:rem 50

79

Recreation and Education

600 W=-(S1>=100)-2*(S2>=100):PRINT"{CLR}{6 DOWN}"S

PC(13)"{RED}PLAYER"W"WINSI" :rem 108

610 PRINT"{2 D0WN}{BLU}{4 SPACES}PLAYER1:"SI:PRINT

SPC(25)"{UP}PLAYER2:"S2 :rem 93
620 WI(W)=WI(W)+1:PRINT"{2 D0WN}{4 SPACESjWINS

{3 SPACES}:"WI(1):PRINTSPC(25)"{UP}WINS

{3 SPACES}:"WI(2) :rem 99

630 T1=T1+S1:T2=T2+S2:PRINT"{2 DOWN}{4 SPACES}TOTA

L{2 SPACES}:"Tl:PRINTSPC(25)"{UP}TOTAL
{2 SPACES}:"T2 :rem 176

640 PRINTSPC(15)"{2 DOWN}HIT ANY KEY":POKE198,0

:rem 71

650 GETA$:IFA$=""THEN650 :rem 89

660 ONNPGOTO100,110 :rem 95

670 1=49152:IFPEEK(I)=32THENRETURN : rem 97

680 PRINT"{CLR}{5 DOWN}"SPC(13)"PLEASE WAIT"
:rem 37

690 READ A: IF A=256 THEN RETURN : rem 239

700 POKE I,A:I=I+1:GOTO 690 :rem 243

710 DATA 32,22,192,32,229,192 :rem 145

720 DATA 173,66,3,240,1,96 :rem 255

730 DATA 32,72,193,165,197,208 :rem 210

740 DATA 237,76,15,192,169,33 irem 162

750 DATA 141,4,212,162,3,181 :rem 87

760 DATA 251,157,102,3,202,16 :rem 137

770 DATA 248,160,100,173,0,220 :rem 185

780 DATA 41,15,201,15,208,3 :rem 38

790 DATA 173,70,3,141,61,3 :rem 251

800 DATA 141,70,3,173,1,220 :rem 30

810 DATA 141,60,3,165,197,205 :rem 146

820 DATA 62,3,208,4,162,254 :rem 45

830 DATA 208,33,205,63,3,208 :rem 94

840 DATA 4,162,253,208,24,205 :rem 144

850 DATA 64,3,208,4,162,251 :rem 47

860 DATA 208,15,205,65,3,208 :rem 99

870 DATA 4,162,247,208,6,173 :rem 106

880 DATA 60,3,76,111,192,138 :rem 103

890 DATA 45,60,3,41,15,201 :rem 247

900 DATA 15,208,3,173,69,3 :rem 255

910 DATA 141,60,3,141,69,3 :rem 247

920 DATA 136,208,166,169,32,141 :rem 253

930 DATA 4,212,206,71,3,208 :rem 40

940 DATA 154,173,72,3,141,71 :rem 98

950 DATA 3,160,0,162,0,185 :rem 245

960 DATA 60,3,74,176,8,169 :rem 15

970 DATA 40,32,199,192,76,190 :rem 165

980 DATA 192,74,176,8,169,40 :rem 120

990 DATA 32,217,192,76,190,192 :rem 214

1000 DATA 74,176,8,169,1,32 :rem 46

1010 DATA 199,192,76,190,192,169 :rem 58

80

Recreation and Education

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

1,32,217,192,232,232

200,204,68,3,208,207

96,141,67,3,181,251

56,237,67,3,149,251

181,252,233,0,149,252

96,24,117,251,149,251

181,252,105,0,149,252

96,160,0,173,68,3

201,1,240,35,165,251

197,253,208,29,165,252

197,254,208,23,173,27

212,16,9,169,1,141

66,3,32,83,193,96

169,2,141,66,3,32

105,193,96,160,0,140

66,3,173,27,212,16

7,32,41,193,32,53

193,96,32,53,193,32

41,193,96,177,251,201

32,240,5,169,1,141

66,3,96,173,68,3

201,1,240,11,177,253

201,32,240,5,169,2

141,66,3,96,32,105

193,173,68,3,201,2

240,1,96,169,219,145

253,165,253,24,105,0

133,106,165,254,105,212

133,107,169,6,145,106

96,160,0,169,214,145

251,165,251,24,105,0

133,106,165,252,105,212

133,107,169,2,145,106

96,256

:rera 179

srem 182

:rem 146

:rem 153

:rem 239

:rem 250

:rem 239

:rem 50

:rem 174

:rem 46

:rem 249

:rem 87

:rem 55

:rem 41

:rem 188

:rem 94

:rem 43

:rem 156

:rem 244

: rem 81

:rem 5

:rem 177

:rem 82

:rem 9 3

:rem 93

:rem 204

:rem 189

:rem 82

srem 240

:rem 194

:rem 180

:rem 75

:rem 240

:rem 27

81

Ned W. Schultz

Here's a graphics puzzle game that is both challenging

and unusually fascinating. Try it on three levels.

Rack Your Brain

Are you ready to pit your brain against the computer's?

"Mindbusters" presents you with three graphics puzzles that

are guaranteed to keep your mind's microprocessors and

memory chips whirring for hours.

After you type, save, and run your copy of Mindbusters,

you can choose to solve one of three puzzles: a mind bender,

a mind bruiser, or a mind blower. Warm up with the mind

bender—it's the easiest. When you're prepared to press your

brain to its limits, you're ready for the mind blower.

Following your selection, the program constructs a puzzle

and displays it at the upper-left corner of the screen. Your job

is to match that puzzle in the workspace at the lower-right

corner of the screen. What's more, you try to solve the puzzle

in as little time as possible. A timer ticks away as you work.

There's no limit to how much time you can take, but the timer

lets you compare your progress with a previous performance

or against another player if you wish. Your fastest time during

the current session will be displayed on the screen.

Each puzzle is composed of several horizontal rows of

odd shapes. A tiny arrow to the right of the workspace points

to the row you're currently working on. To work on different

rows, you can move the arrow up and down with the I and M

keys. To move the row of shapes next to the arrow left or « ,

right, press the J or K key. When you think you've matched a LJ
row to the puzzle pattern, start working on another row.

When you succeed in correctly matching all the rows, the j i

program automatically signals that you've solved the puzzle. lJ
Then you can play again if you like.

Helpful Hints LJ
Because Mindbusters can generate a tremendous number of

different puzzles, there are very few tricks to mastering it. You i i

probably should work from top to bottom or vice versa. The LJ
best tip is to concentrate, concentrate, concentrate.

82 u

n

n

n

Recreation and Education

Important: When typing in the program, be extra careful

with the long strings of characters at the beginning of the list

ing. These strings become the puzzle shapes. If you mistype or

transpose a couple of characters when typing these strings, the

program may still run, but it won't know when you've solved

the puzzle. If you're using COMPUTERS "Automatic Proof

reader" (Appendix C) to enter the listing, remember that the

Proofreader does not catch character-transposition errors.

Mindbusters

For mistake-proof program entry, be sure to use "Automatic Proofreader"

(Appendix C).

10 S=54272:R$="000000":FORI=1TO4:READKE(I):NEXT

:rem 238

20 PRINTCHR$(14)CHR$(8) :rem 48
30 A$="XVAWVBWWAXNAWVBWWAXAWVBWANANAVVWANNNXAWVWAX

WAXCVNVNWAWVBNWCCXVNVAWNW" : rem 57

40 TM$="":FORI=1TO68:TM=ASC(MID$(A$,I,1))+97:TM$=T
M$+CHR$(TM):NEXT:A$=TM$:rem 45

50 B$="12*0Z*Z*,0<2Z/*/00,Z/02ZZ2Z*l,<Z-21,-2*Z<0Z

-210*,Z*Z*1<122Z<Z1*<Z,*Z" :rem 167

60 TM$=" " :FORI=1TO68 :TM=ASC (MID$ (B$, 1,1)) +129 :TM.$=

TM$+CHR$(TM):NEXT:B$=TM$:rem 93
70 C$="ZZ$$$ZZ$$ZZZZZZZZZ$Z$$$Z$$$Z$Z$$$$ZZZ

ZZZZZ$$$Z$ZZZZZZ$$Z$$Z$" :rem 11
80 TM$="":FORI=1TO68:TM=ASC(MID$(C$,I,1))+133:TM$=

TM$+CHR$(TM):NEXT:C$=TM$:rem 92

90 POKE53281,1:PRINT"{CLR}{PUR}*******************
a********************"- :rem 109

100 PRINT "E4]JtRVSj 114 SPACES }MINDBUSTERS

{15 SPACES} {OFF}"; :rem 168

*****":GOSUB460:POKE53280,7 :rem 33

120 PRINT"{HOME}{3 DOWN}{4 RIGHT}g4§&12 P3":PRINT"

{3 RIGHT}iNl"SPC(12)"gH3{2 RIGHT}USE I, J, K A

ND M" :rem 132

130 PRINT"{3 RIGHT}BNl"SPC(12)"gH3ll:PRINT"

{3 RIGHT}BN3"SPC(12)"gH§{2 RIGHT}KEYS TO MATCH

THIS" :rem 84

140 PRINT"{3 RIGHT}gNriSPC(12)I1gH§":PRINT"

{3 RIGHT}BNl"SPC(12)"§Hl{2 RIGHT}PATTERN AS FA

ST" :rem 177

150 PRINT"{3 RIGHT}BNl"SPC(12)"gH3":PRINT"

{3 RIGHT}gNl"SPC(12)ll§H3{2 RIGHT}AS YOU CAN I 11

1" :rem 185

160 PRINT"{3 RIGHT}EN3"SPC(12)"gH3":PRINT"

{4 RIGHT}g12 Yl" :rem 14

83

Recreation and Education

170 POKE214,3:PRINT :rem 132

180 FORN=1TO8:PP(N)=INT(RND(1)*56)+1:PRINT"

{4 RIGHT}"CHR$(Z)MID$(D$,PP(N),12) :rem 60

190 NEXT:PRINT:PRINTTAB(19)"{BLK}gl2 P§" :rem 1

200 FORN=1TO8:PRINTTAB(18)"gNl"SPC(12)"gHl":NEXT:P

RINTTAB(19)"gl2 Y3" irem 146

210 POKE214,13:PRINT :rem 176

220 FORN=1TO8:P(N)=INT(RND(1)*56)+1:PRINTTAB(19)CH

R$(Z)MID$(D$,P(N),12):NEXT :rem 234

230 AL=1616:POKEAL,31:POKEAL+S,0:AC=1:TI$="000000"

:rem 75

240 POKE198,0:KE=PEEK(197):J=0:FORI=1TO4:IFKE=KE(I

)THENJ=I:I=4 :rem 52

250 NEXT:ONJGOTO280,320,300,340 :rem 13

260 POKE214,13:PRINT:PRINT"{4 RIGHT}{RED}{RVS}RECO

RD{OFF}{RIGHT}{BLK}"MID$(R$,3 , 2) + ":"+MID$(R$,5

,2) :rem 136

270 PRINT"{DOWN}{4 RIGHT}{RVS}TIME{OFF}{3 RIGHT}"M

ID$(TI$,3,2)":"MID$(TI$,5,2):GOTO240 :rem 188

280 POKEAL,32:AL=AL-40:AC=AC-1:IFAL<1616THENAL=161

6:AC=1 :rem 57

290 POKEAL,31:POKEAL+S,0:GOTO240 :rem 192

300 POKEAL,32:AL=AL+40:AC=AC+1:IFAL>1896THENAL=189

6:AC=8 :rem 75

310 GOTO290 :rem 104

320 POKE214,12+AC:PRINT:P(AC)=P(AC)-1:IFP(AC)<1THE

NP(AC)=1 :rem 156

330 GOTO350 :rem 103

340 POKE214,12+AC:PRINT:P(AC)=P(AC)+1:IFP(AC)>56TH

ENP(AC)=56 :rem 18

350 PRINTTAB(19)CHR$(Z)MID$(D$/P(AC)#12) :rem 250

360 FORX=1TO8:'IFPP(X)OP(X)THEN240 :rem 107

370 NEXT:SC$=TI$:rem 203

380 POKE214,15:PRINT:PRINT"{4 RIGHT}{BLK}{RVS}TIME

{OFF}{3 RIGHT}"MID$(SC$,3,2)+":"+MID$(SC$,5,2)

:rem 213

390 PRINT"{DOWN}{3 RIGHT}{PUR}PUZZLE SOLVED I":GOSU I i

B570:PRINT"{DOWN}{BLK}{4 RIGHT}PLAY AGAIN?" LJ
:rem 148

400 PRINTSPC(7)"{DOWN}{RVS}Y{OFF}/{RVS}N{OFF}"

:rem 2 I |
410 POKE53280,4:GETK$:IFK$=""THENPOKE53280,3:GOTO4 ^

10 :rem 47

420 IFK$="N"THENSYS2048 :rem 95 i i

430 IFR$="000000"ORSC$<R$THENR$=SC$:rem 230 I I
440 IFK$="Y"THEN90 :rem 8

450 GOTO410 :rem 103

460 PRINTSPC(10)"{3 DOWN}{BLK}DO YOU WANT TO:":PRI I j

NTSPC(ll)"{DOWN}{RVS}1{OFF! BEND YOUR MIND?"
:rem 198

84

Recreation and Education

470 PRINTSPC(ll)"{D0WN}{RVS}2{0FF} BRUISE YOUR MIN

D?" :rem 236

480 PRINTSPC(11)"{DOWN}{RVS}3{OFF} BLOW YOUR MIND?

11 :rem 88

490 POKE53280,3:GETK$:IFK$=""THENPOKE53280,4:GOTO4

90 :rem 63

500 K=VAL(K$):IFK<1ORK>3THEN490 :rem 106

510 IFK=1THEND$=A$:Z=31:GOTO540 :rem 88

520 IFK=2THEND$=B$:Z=28:GOTO540 :rem 97

530 D$=C$:Z=144 :rem 14

540 PRINT"{HOME}{3 DOWN}":FORN=1TO10:PRINT"

{39 SPACES}":NEXT :rem 21

550 RETURN :rem 122

560 DATA 33,37,36,34 :rem 217

570 FORI=STOS+24:POKEI,0:NEXT:POKES+24,15:POKES+5,

48:POKES+6,48 :rem 178

580 POKES+4,33:FORI=20TO80STEP3:POKES+1,I:FORJ=1TO

50:NEXT:NEXT:POKES+4#32 :rem 159

590 POKES+24,0:RETURN :rem 39

n

n

n

n

n 85

Douglas Fish

Teach your snake well: It will remember each move you

make as you try to conquer the board with your squares.

A strategy game for one to four players.

Reptilian Intelligence

At first glance, "Squares" looks a lot like Dots, the paper and

pencil game where opponents take turns connecting dots to

try and complete squares. And, as in the paper game, the basic

objective is to complete more squares than your opponents.

But the similarities end there—in Squares, the dots are con

nected by an intelligent "snake," which you control.

After loading and running Squares, you are asked if each

of the four snakes will be controlled by a player or by the

computer. Moves for the player-controlled snakes are entered

via the keyboard; the computer snakes move around some

what randomly.

You can move your snake up, down, left, or right by

pressing the I, M, J, or K keys respectively (as a reminder, the

directions are printed on the screen during the game). When

you move your snake between two dots, it leaves a trail in

your player's color.

With each move you make, you train your snake to move

in a certain way, depending on the pattern of trails around it.

For example, say, there are trails to the left of and below your

snake, and you move it up. From then on, whenever your

snake encounters a pattern in which there are trails to the left

and below it, it will move up. i i

If the snake encounters a pattern it hasn't learned yet, as LJ
when you first start the game, it will ask you for a direction.

Again, the direction you choose will train the snake for that i i

pattern. ^J

Trapped Snakes , ,

A snake can become trapped, though, if you give it an instruc- I—I
tion which forms a loop with a previous instruction. For in

stance, you tell it to go right, but when it moves right, it r i

enters a pattern where it has been instructed to move left. It LJ
then becomes trapped between those two instructions. A

86 u

n

n

n

n

n

Recreation and Education

trapped snake can be released later, however, if the pattern it's

in is changed by another snake.

When your snake completes a square, it fills in with your

color, and you earn a point. The game is over when all the

squares are filled or all the snakes are trapped. Whoever com

pletes the most squares wins the game.

There are a number of strategies you can develop for

conquering long rows of squares or avoiding getting trapped.

You may find, though, that it's difficult to remember how your

snake has been trained for each possible pattern of trails. Also,

each game that you play will be unique, so what works for one

game may get you trapped early on in the next. It's usually a

combination of strategy and chance that wins the game.

Squares

For mistake-proof program entry, be sure to use "Automatic Proofreader"

(Appendix C).

10 POKE53281,0:POKE53280f0:PRINTiI{WHT}" :rem 198

20 DIMIN(15,4):FORA=984TO1023:POKEA,32:NEXT:rem 75

30 DR(0)=-40:DR(1)=1:DR(2)=40:DR(3)=-1 :rem 235

40 CL(1)=3:CL(2)=4:CL(3)=11:CL(4)=9 :rem 8Z

50 P(1)=1360:P(2)=1358:P(3)=1440:P(4)=1438:CO=5427

2 :rem 150

60 FORX=1TO4:P(X)=1024+INT(RND(1)*15)*2+INT(RND(1)

*10)*80:NEXT :rem 61

70 GOTO560 :rem 59

80 PRINT'^CLR}";:FORX=1TO10:FORY=1TO15:PRINT"Q " ; :

NEXT: PRINT: PRINT: NEXT :rem 122

90 GOSUB630:PRINTTAB(22);"{DOWN} I{DOWN}{2 LEFT}J+
K{D0WN}{2 LEFTjM" :rem 1

100 QF=1:FORPL=1TO4:P=P(PL):CL=CL(PL):Q=0:FL=0
:rem 79

110 P1=P:GOSUB380:P2=SI:LF=0 :rem 195

120 GOSUB470:GOSUB630:PRINT"{2 DOWN}PLAYER"PL"'S T

URN";:POKE646,CL:PRINT"{2 SPACES}Q{WHT}"

:rem 126

130 PRINT "{21 SPACES}11 :rem 101

140 GOSUB380 :rem 176

150 IN=IN(SI,PL):IFIN=0THENGOSUB290 :rem 205

160 GOTO500 :rem 101

170 IFABS(IN)=1THENPOKEP+IN,67:GOTO190 :rem 105

180 POKEP+IN,66 :rem 114

190 POKEP+CO,1:POKEP+CO+IN*2,CL:POKEP+IN+CO,CL

:rem 117

200 P(PL)=P+IN*2:GOSUB410 :rem 201

210 IF(S1=15)AND(PEEK(X+D)=32)THENPOKEX+D,160:POKE

X+D+CO,CL:B(PL)=B(PL)+1 :rem 94

87

Recreation and Education

220 IF(S2=15)AND(PEEK(X-D)=32)THENPOKEX-D,160:POKE

X-D+CO,CL:B(PL)=B(PL)+1 :rem 102

230 P=P(PL):GOSUB520 :rem 176

240 GOSUB380:IFP1=PANDP2=SITHENLF=1:Q=9 irem 230

250 IFQ=>9THEN270 :rem 243

260 Q=Q+1:GOTO140 :rem 219

270 IFLF=0THENQF=0 :rern 90

280 NEXTPL:GOTO640 :rem 130

290 GOSUB630:PRINT"{3 DOWN}WHAT DIRECTION" :POKEP+C

O,CL:POKE198,0 :rem 95

300 IFTY(PL)=2THENGOSUB340:Q=10:GOTO330 :rem 163

310 GETA$:IFA$<>III"ANDA$<>IIM"ANDA$<>1IJ"ANDA$<>"KIIT

HEN310 :rem 149

320 Q=10:D=(A$="J")*-3+ (A$="K")*-l+(A$="M")*-2

:rem 183

330 IN(SI,PL)=DR(D):IN=IN(SI,PL):RETURN : rem 190

340 IFSI=15THEND=INT(RND(1)*4):RETURN :rem 47

350 IFFL=>4THEND=INT(RND(1)*4):RETURN :rem 50

360 D=INT(RND(l)*4):IF(SIAND2tD)=2tDTHEN360:rem 80

370 FL=FL+1:RETURN :rem 113

380 SI=0:FORX=0TO3:I=PEEK(DR(X)+P) :rem 80

390 IFK>32THENSI=SI+2tX :rem 10

400 NEXT:RETURN :rem 237

410 S1=0:S2=0:X=(P(PL)+P)/2:IFABS(X-P)=1THEND=40:G

OTO430 :rem 60

420 D=l :rem 72

430 FORY=0TO3:Z=PEEK(X+DR(Y)+D):IF(Z=66)OR(Z=67)TH

ENSl=Sl+2tY :rem 46

440 NEXT :rem 215

450 FORY=0TO3:Z=PEEK(X+DR(Y)-D):IFZ=(66)OR(Z=67)TH

ENS2=S2+2tY :rem 52

460 NEXT:RETURN :rem 243

470 GOSUB630:PRINT"{19 SPACES}" :rem 191

480 PRINT"{18 SPACES}" :rem 109

490 PRINT"{18 SPACES}":GOTO520 :rem 120

500 IFPEEK(P+IN*2)=81THEN170 :rem 117

510 GOSUB630:PRINT:GOSUB480:GOSUB630:PRINT"{DOWN}I j I
LLEGAL MOVE":GOSUB290:GOTO140 :rem 201 M

520 PRINT"{HOME}":FORX=1TO4 :rem 57

530 PRINT TAB(29);" PLR."X;:POKE646,CL(X):PRINT"Q . ,

{WHT}" :rem 52 | |
540 PRINTTAB(30);B(X):NEXT :rem 80

550 RETURN : rem 122

560 PRINT"{CLR}{6 DOWN} {RVS}gl3"SPC(16) "SQUARES I I

{WHT}" :rem 3 kJ
570 PRINT"{7 DOWN}{10 SPACES}{CYN}1. PLAYER CONTRO

LLED :rem 131

580 PRINT"{WHT}{DOWN}{10 SPACES}{GRN}2. COMPUTER C

ONTROLLED . :rem 69

n

n

n

n

n

590

600

610

620

630

640

650

660

670

680

690

700

710

Recreation and Education

FORX=1TO4 :rem 34

PRINT"tYEL}{HOME}{10 DOWN}{8 SPACESjSNAKE "X"
{SPACE}(CHOOSE 1 OR 2){WHT}" :rem 235

GETA$:IFVAL(A$)>2ORVAL(A$)=0THEN610 :rem 27

TY(X)=VAL(A$):NEXT:GOTO80 :rem 24

PRINT"{HOME}":FORQQ=1TO18:PRINT:NEXT:RETURN
:rem 20

IFQF=0THEN100 :rem 237

PRINT"{CLR}{6 DOWN}"SPC(14)"{RVS}gl3GAME OVER1
{3 DOWN}" :rem 130
FORX=1TO4:POKE 646,CL(X):PRINTTAB(7)"{DOWN}PLA

YERIIX;II....IIB(X)" SQUARES" : rem 183

NEXT srem 220

PRINT"{3 DOWN}"SPC(10)"{WHT}ANOTHER GAME? (Y/N
)":POKE198,0 :rem 123
GETA$:IFA$="Y"THENRUN :rem 16

IFA$="N"THENPRINT"{CLR}":END :rem 254
GOTO690 srem 112

n

n

n

n

n
89

George W. Miller

This two-program package offers an effective and un

complicated way to set up and administer multiple-

choice quizzes. It's menu-driven for ease of use, and ideal

for school or home study.

"Quiz Master," a package of two programs, includes "Quiz

Generator" and "Student Quiz." Together, they can be used to

create and administer quizzes. The first program allows par

ents or teachers to create multiple-choice tests, while the sec

ond presents the tests to the student. The only thing the

student has to do is answer the questions.

Abbreviations Required

Type in Program 1, Quiz Generator, and save it on a new

disk. You'll be using Quiz Generator to generate sequential

files, which can use up disk space rather quickly, so it's best to

start with a fresh disk. f

Typing in the Quiz Master package is simplified when

you use "Automatic Proofreader," the error-checking program

you'll find in Appendix C. Make sure you read the explanation

and have a copy of the Proofreader on disk before you begin

typing in either Quiz Generator or Student Quiz.

Menu Options

Once you've typed in Program 1, Quiz Generator, load and

run it. It begins with a display of the main menu, which in

cludes these categories: Enter New Questions, Review Ques- j >

tions, Change a Question, Load Previous Data, Add to Test in L^J
File, Initialize Disk, and End.

Press the 1 key to enter new questions and create a quiz. i i

You'll then be asked if a file of quiz names exists. If this is the I—I
first time you've used the program or if you're starting a new

group of tests on a new disk, answer by hitting N. Next, pro- i i

vide a name for your quiz. The quiz name is stored in a I—I
SEQuential file called TEST TITLES. Quiz Generator accepts

up to 15 quiz files for each disk (a limitation because of the i .

menu's screen formatting). If you're covering more than one LJ
subject, you may want to have a separate disk for each—for

u

Recreation and Education

instance, a disk for history quizzes, another disk for math

quizzes, and so on.

Just follow the prompts to enter your quiz. You have full

use of all screen editing functions, including the cursor control

keys and the INST/DEL key. Be careful to make changes only

where you intend to, and don't move the cursor to areas

where other text appears.

You shouldn't be concerned about word wraparound, the

breaking of words at the end of the 40-column line. Just type

each sentence, putting spaces where they normally occur, and

use standard punctuation, including commas and colons. Quiz

Generator looks at your sentences and finds the proper place

to break each line. Each question can contain up to 80 charac

ters, counting spaces.

Type in the four answer choices to the question, and give

the correct letter choice when prompted. Each quiz can con

tain up to 100 questions and their answers. To store the quiz,

type the pound symbol (£). The program opens a file with the

quiz name you specified and stores your information. A file to

store the student's grades is also created.

When you return to the menu, type 2 to review the ques

tions. The screen formatting section of the program right jus

tifies your questions, and the screen display ends each line

with the last word which fits without hyphenation.

Follow the screen prompts to review each question. You'll

be shown the questions, answer choices, and the letter of the

correct answer to make sure that you made no errors when

you entered the quiz. If you notice any mistakes, jot down the

number of the question so that you can change it later.

If you want to change any of the questions, enter 3 and

answer the prompts. You'll have to enter the number of the

question you want to change—that's why you jotted them

down when you reviewed the quiz (option 2). The computer

displays the question and answer choices, and you can enter

the correct question and answer choices.

Option 4, Load Previous Data, loads a quiz previously

stored. You can then review this quiz.

Select option 5 if you want to add questions to a quiz al

ready stored on your disk. You'll start entering questions at

the first unused question number in the file.

The Initialize Disk routine, option 6, formats, or NEWs, a

disk and gives you several chances to abort the routine. Make

91

Recreation and Education

certain the disk in the drive is the one you want formatted

since all information on it will be destroyed by the routine.

You can't enter this routine by accident, because you're ac

tually taken out of the program before you can run it.

Exiting Quiz Generator is simple; just select option 7, End.

Student Quiz

Next, type in Program 2, Student Quiz, and save it. (Be sure to

save this program before typing RUN, as any mistakes will

give you a scrambled, tokenized BASIC listing.) If you plan to

use Quiz Generator to give tests to groups of students, save

Student Quiz on a second disk for use by the students. This

will safeguard Quiz Generator from accidental erasure.

When a student loads and runs Student Quiz, RUN/

STOP-RESTORE and LIST are. disabled, as are all cursor con

trols. The student can answer only the prompts from the com

puter. The student is asked which quiz has been assigned, and

that quiz is then loaded and run. With the checks built into

the program, all the student can do is enter A, B, C, or D as

answers.

Because a random number routine is used to scramble the

order of the questions, the quiz will be different each time.

Quiz Generator also uses one question fewer than you've

placed in memory. In effect, each student takes a slightly dif

ferent quiz each time the quiz is given. The more questions

you store in the file, the more variations Quiz Generator has

to work with.

Since the random number generator searches for new

numbers every time, it can take several minutes to generate a

quiz, especially if you have numerous questions in the file.

The screen will be blank during this process, and all keys will

be disabled. Everything will return to normal when the quiz is

ready.

Program 1. Quiz Generator

For mistake-proof program entry, be sure to use "Automatic Proofreader"

(Appendix C).

10 REM QUIZ MASTER :rem 90
20 DIMQ$(100),A$(100),B$(100),C$(100),D$(100),E$(1

00),M$(15) :rem 48

30 PRINTM{WHT}":POKE53280,13:POKE53281/5:GOTO50

:rem 217

92

Recreation and Education

40 POKE198,6:POKE631,30:POKE632,34:POKE633,34:POKE

634,20:POKE635,5:RETURN :rem 110

50 POKE53272#23:GOTO990 :rem 61

60 PRINT"{CLR}":CLR :rem 229

70 DIMQ$(100),A$(100),B$(100),C$(100),D$(100),E$(1

00),M$(15),SN$(400),G(400) :rem 99

80 GOSUB1840:GOSUB1380:GOSUB2060 :rem 189

90 PRINT"ENTER NUMBER OF TEST TO LOAD:":INPUTN

:rem 235

100 IFN<0ORN>XTHENPRINT"INVALID RANGE":GOTO90

:rem 17 5

110 N$=M$(N):PRINTSPC(12)"{CLR}{RVS}{6 DOWN}

{9 RIGHT} {3 SPACES}LOADING DATA{3 SPACES}11

:rem 158

120 GOSUB1840:GOSUB2140:OPEN2,8,2,+N$+" FILE,S,R":

X=0 :rem 21

130 X=X+1 :rem 221

140 INPUT#2,Q$(X):INPUT#2,A$(X):INPUT#2,B$(X)

:rem 119

150 INPUT#2,C$(X):INPUT#2,D$(X):INPUT#2,E$(X)

:rem 112

160 IFST AND64THEN180 :rem 210

170 GOTO130 :rem 101

180 CLOSE2:POKE198,0:L=X:N=X:T=0 :rem 219

190 IFR=1THEN250 :rem 175

200 GOSUB2140:GOSUB2060:GOSUB1690 :rem 229

210 IFH=0THEN990 :rem 168

220 IFH=1THEN250 :rem 159

230 REM INPUT QUESTIONS :rem 212

240 PRINT"{CLR}{DOWN}ENTER NAME FOR QUIZ":INPUTN$:

GOSUB1480:N=0 :rem 18

250 N=N+1:PRINT"{CLR}":PRINTSPC(13)"{RVS} QUIZ MAS
TER {OFF}" Trim 20T

260 PRINT:PRINT"{RVS} WARNING1[2 SPACES}DO NOT EXC

EED 80 CHARACTERS{2 SPACES}11 :rem 115

270 PRINT:PRINT"{RVS}{7 SPACESjENTER £ TO EXIT RO

UTINE{10 SPACES}" :rem 160
280 IFN>=100THENPRINT"{CLR}{5 DOWN}{14 SPACES}FILE

FULL":FORT=1TO2000:NEXT:GOTO1000 :rem 179

290 GOSUB40 :rem 127

300 H=0 :rem 72

310 PRINT"ENTER QUESTION #";N:PRINT :rem 206

320 INPUTQ^(N) :rem 57

330 IFQ$(N)=""THEN320 :rem 126

340 IFQ$(N)=CHR$(92)THENN=N-1:GOTO780 :rem 172

350 IFLEN(Q$(N))>80THENGOSUB1310 :rem 133

360 IFH=1THEN250 :rem 164

370 PRINT"ENTER FIRST ANSWER:":PRINT:GOSUB40:H=0

:rem 207

380 INPUT"A. ";A$(N):IFA$(N)=""THEN380 :rem 53

93

Recreation and Education

390 IFASC(A$(N))=92THENN=N-1:GOTO780 :rem 119

400 A$(N)="A. "+A$(N) :rem 183
410 IFLEN(A$(N))>80THENGOSUB1310 :rem 114

420 IFH=1THENGOTO370 :rem 221

430 PRINT"ENTER SECOND ANSWER:":PRINT:GOSUB40:H=0

"~ : rem 0

440 INPUT"B. ";B$(N):IFB$(N)=""THEN440 :rem 50

450 IFASC(B$(N))=92THENN=N-1:GOTO780 :rem 117

460 B$(N)="B. ft+B$(N) : rem 192
470 IFLEN(B$(N))>80THENGOSUB1310 :rem 121

480 IFH=1THENGOTO430 :rem 224

490 PRINT"ENTER THIRD ANSWER:":PRINT:GOSUB40:H=0

~" :rem 197

500 INPUT"C. ";C$(N):IFC$(N)=""THEN500 :rem 47

510 IFASC(C$(N))=92THENN=N-1:GOTO780 :rem 115

520 C$(N)="C. "+C$(N) :rem 192

530 IFLEN(C$(N))>80THENGOSUB1310 :rem 119

540 IFHN1THENGOTO490 :rem 227

550 PRINT"ENTER FOURTH ANSWER: " :PRINT:GOSUB40 :H=0

:rem 31

560 INPUT"D. ";D$(N):IFD$(N)=""THEN560 :rem 62

570 IFASC(D$(N))=92THENN=N-1:GOTO780 :rem 122

580 D$(N)="D. M+D$(N) :rem 201

590 IFLEN(D$(N))>80THENGOSUB1310 :rem 126

600 IFH=1THENGOTO550 :rem 221

610 PRINT"ENTER LETTER OF CORRECT ANSWER:":PRINT:H

=0 :rem 29

620 INPUTE$(N) :IFE$(N) = flllTHEN620 :rem 73

630 IFASC(E$(N))=92THENN=N-1:GOSUB780:GOTO1010

:rem 244

640 IFLEN(E$(N))<>1THENGOSUB1310 :rem 128

650 IFE$(N)="A"THEN700 :rem 186

660 IFE$(N)="B"THEN700 :rem 188

670 IFE$(N)="C"THEN700 :rem 190

680 IFE$(N)="D"THEN700 :rem 192

690 PRINT"{RVS} ERROR: RE-ENTER":GOTO620 irem 19

700 IFH=1THEN610 :rem 162

710 IFP=1THENRETURN :rem 244

720 L=N:GOSUB2060:IFN=100THEN740 :rem 161

730 GOTO250 :rem 106

740 PRINT:PRINTSPC(7)"FILE CONTAINS 100 ENTRIES."

:rem 249

750 PRINT:PRINT"DATA WILL BE STORED. OPEN NEW TEXT

FILE" :rem 141

760 GOSUB1740:GOSUB780:GOTO1010 :rem 119

770 REM STORE DATA :rem 41

780 GOSUB2060:PRINTSPC(10)"{RVS} WAIT, S5TORING DAT

A ":GOSUB2140 :rem 62

790 GOSUB1840:OPEN2,8,2,"@0:"+N$+" FILE,S,W"

:rem 149

94

Recreation and Education

800 FORX=1TOL:PRINT#2,Q$(X):PRINT#2,A$(X):PRINT#2,

B$(X) srem 71

810 PRINT#2,C$(X):PRINT#2,D$(X):PRINT#2,E$(X):NEXT

:rem 227

820 CLOSE2:POKE198,0:GOSUB2140:GOSUB2060:GOSUB1690

:RETURN :rem 80

830 REM CHANGE ANSWER :rem 245

840 GOSUB2060:P=1:PRINT"{CLR}{3 DOWN}{RVS} ENTER N

UMBER OF QUESTION":INPUTW :rem 180

850 PRINT"{CLR}{2 DOWN}":S$=Q$(W):GOSUB1210:S$=A$ (
W):GOSUB1210:S$=B$(W):GOSUB1210 :rem 159

860 S$=C$(W):GOSUB1210:S$=D$(W):GOSUB1210 :rem 91

870 PRINT"CORRECT ANSWER IS:":PRINTE$(W) :rem 128

880 GOSUB1690:N=W-1:GOSUB250:GOSUB780:RETURN

:rem 46

890 REM REVIEW ROUTINE :rem 125

900 GOSUB2060:Y=1:PRINT"{CLR}{DOWN}" :rem 145

910 PRINT:PRINTTAB(20-LEN(N$)/2);N$:GOSUB1690:PRIN

T"{2 DOWN}" :rem 12

920 FORN=1TOL:PRINT"{CLR}" :rem 203

930 IFQ$(N)=""THENGOTO980 :rem 201

940 S$=STR$(N)+". "+Q$(N):PRINT:GOSUB1210 :rem 46

950 REM ANSWER CHOICES :rem 80

960 S$=A$(N):GOSUB1210:S$=B$(N):GOSUB1210:S$=C$(N)

:GOSUB1210:S$=D$(N):GOSUB1210 :rem 43

970 PRINT:PRINT"CORRECT ANSWER IS: ":PRINTTAB(7)E$

(N):GOSUB206tf :rem 32

980 GOSUB1690:NEXT:RETURN :rem 132

990 REM PROGRAM MENU :rem 211

1000 H=0 :rem 118

1010 PRINT"{CLR}":POKE53280,13:POKE53281/5:rem 238
1020 GOSUB2060 :rem 11

1030 P=0 :rem 129

1040 PRINTSPC(13)"{DOWN}{RVS} QUIZ MASTER "
:rem 105

1050 PRINT:PRINTSPC(5)"ENTER NUMBER OF FUNCTION:"

:rem 198

1060 PRINT:PRINTSPC(8) "1. JENTER NEW QUESTIONS"

~~ "~ :rem 224

REVIEW QUESTIONS"

:rem 204

CHANGE A QUESTION"

:rem 144

LOAD PREVIOUS DATA"

:rem 106

ADD TO TEST IN FILE"

:rem 15

INITIALIZE DISK":rem 203

:rem 135

1130 PRINT:PRINTSPC(5)"NUMBER?" :rem 81

1070 PRINT:PRINTSPC(8)"2«

1080 PRINT:PRINTSPC(8)"3.

1090 PRINT:PRINTSPC(8)"4.

1100 PRINT:PRINTSPC(8)"5.

1110 PRINT:PRINTSPC(8)"6.

1120 PRINT:PRINTSPC(8)"7. END11

95

Recreation and Education

1140 GETG$:IFG$=""THEN1140 :rem 187

1150 G=ASC(G$)-48:IFG<1ORG>8THEN1140 :rem 71

1160 ONGGOSUB240,900,840,60,1660,1750,1190:rem 202

1170 GOTO1010 :rem 196

1180 GOSUB2060 :rem 18

1190 POKE198,0:SYS198 :rem 211

1200 REM PRINT JUSTIFY :rem 98

1210 PRINT :rem 81

1220 IFLEN(S$)<40THENPRINTS$:GOTO1300 :rem 5

1230 X=40:Y=1 :rem 192

1240 X=X-1 :rem 18

1250 IFASC(MID$(S$,X,Y)+CHR$(0))<>32THEN1240

:rem 208

1260 PRINTLEFT$(S$,X) :rem 241

1270 Z=LEN(S$) :rem 8

1280 Z=Z-X :rem 65

1290 PRINTRIGHT$(S$,Z) :rem 73

1300 RETURN :rem 164

1310 PRINT"ENTRY TOO LONG: RE-PHRASE" :rem 11

1320 H=1:FORT=1TO2000:NEXT:RETURN :rem 87

1330 REM TEST TITLE FILE :rem 141

1340 PRINT:PRINT"HAS TEST TITLE FILE BEEN INITIATE

D?(Y/N)":GOSUB2060 :rem 187

1350 GETG$:IFG$=""THEN1350 :rem 193

1360 IF G$="N"THEN1480 :rem 143

1370 IFG$o"Y"THEN1350 :rem 212

1380 PRINT:PRINTSPC(17)"{RVS} WAIT " :rem 74

1390 GOSUB2140:GOSUB1840:OPEN3,8,3,"TEST TITLES,S,

R" :rem 127

1400 X=0 :rem 138

1410 X=X+1:INPUT#3,M$(X) :rem 117

1420 IFST AND64THEN1440 :rem 50

1430 GOTO1410 :rem 199

1440 CLOSE3:POKE198,0:GOSUB2140 :rem 90

1450 IFS1O0THEN2100 :rem 121

1460 PRINT"{CLR}":PRINTSPC(14)"TEST TITLES":PRINT
:rem 178

1470 FORA=1TOX:PRINTA;". ";M$(A):NEXT:RETURN

:rem 227

1480 REM INITIATE TEST FILE :rem 104

1490 IFX=15THENGOSUB1730 :rem 210

1500 IF X=15THENX=1 :rem 69

1510 IFX=1THEN1620 :rem 20

1520 PRINT"{CLR}HAS FILE OF TEST NAMES BEEN STARTE

D?" :rem 97

1530 GETG$:IFG$=""THEN1530 :rem 193

1540 IF G$="N"THEN1620 :rem 139

1550 IFG$="Y"THENGOSUB1390 :rem 27

1560 PRINTX+1". {RVS}"N$:rem 3

1570 PRINT"IS YOUR TITLE ORIGINAL?" :rem 31

96

Recreation and Education

1580

1590

1600

1610

1620

1630

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760

1770

1780

1790

1800

1810

1820

1830

1840

1850

1860

1870

1880

1890

1900

1910

1920

GETG$:IFG$=""THEN1580 : rem 203

IF G$="Y"THEN1620 :rem 155

PRINT"ENTER NEW TITLE FOR TEST:" :rem 99

INPUTN? :rem 202

M$(X+1)=N$:GOSUB2060 :rem 112

PRINT:PRINTSPC(13)"{RVS} SAVING TITLE "
:rem 89

GOSUB1840:OPEN3,8,3,"@0:TEST TITLES,S,W"

:rem 171

FORA=1TOX+1:PRINT#3,M$(A):NEXT:CLOSE3:POKE198

,0:GOSUB2140:RETURN :rem 99

REM TEST ADDITION ROUTINE :rem 99

CLR :rem 17 5

R=1:GOSUB70:R=0:GOTO1010 :rem 222

PRINT:PRINTTAB(5)"{RVS} PRESS SPACE BAR TO CO
NTINUE {OFF}" :rem 191

GETG$:IFASC(G$+CHR$(0))<>32THEN1700 :rem 242

RETURN :rem 169

PRINT"{CLR}" :rem 46

PRINTSPC(10)"{CLR}{10 DOWN}FILE FULL";rem 196

FORT=1TO2000:NEXT:RETURN :rem 109

PRINT"{CLR}{2 DOWN}{RVS}{2 SPACES }DO YOU WANT

TO INITIALIZE A NEW DISK? ":PRINTTAB(17)"

{RVS} (Y/N) " :rem 173

GETG$:IFG$=""THEN1760 :rem 203

IFG$="Y"THENPRINT"TYPE GOTO 1790 AND PRESS RE

TURN":END :rem 64

IFG$o"N"THEN1760 :rem 211

IFG$="N"THENRETURN :rem 169

END :rem 160

PRINT" {CLR} {5 DOWN} {6 SPACES JjENSERT NEW DISK

{SPACE}INTO DRIVE :rem 255
PRINT"{4 DOWN}{2 SPACES}PRESS ANY KEY WHEN RE
ADY TO PROCEED" :rem 10

GETG$:IFG$=""THEN1830 :rem 199

OPEN15,8,15:PRINT#15,"10:":CLOSE15 :rem 228

PRINT"{CLR}{2 DOWN}{15 SPACES}{RVS} WARNING11

1" :rem 95

PRINT" {2 SPACES} {RVS} DISK IN DRIVE JIS ABOUT

{SPACE}TO BE ERASED1" :rem 4

PRINT"{2 SPACESJIRVS}{9 SPACES}ARE YOU SURE?

{SPACE}(Y/N){9 SPACES}"

GETG$:IFG$=""THEN1880

IFG$="Y"THEN1920

IFG$="N"THEN1010

GOTO1880

:rem 45

:rem 209

:rem 161

:rem 132

:rem 213

_ INPUTDN?

:rem 87

1930 IFLEN(DN$)>15THENPRINT"{2 DOWN}NAME TOO LONG"

:FORT=1TO1000:NEXT:GOTO1920 "~0

PRINT"{CLR}{2 DOWN}ENTER DISKNAME"

97

Recreation and Education

u

u

1940 PRINT"{2 DOWNjENTER 2 CHARACTER DISK _I.D.":IN j i

PUTID? :rem 141 I I
1950 POKE53281,2:POKE53280,2:PRINT"{CLR}{5 DOWN}

{10 SPACES}LAST CHANCE TO STOP111" :rem 61

1960 PRINT:PRINTirT9~SPACES}PRESS ANY KEY TO STOP I1 M
1":FORT=1TO1000 :rem 217

1970 GETG$:IFG$o""THEN1010 :rem 255

1980 NEXT :rem 17 i i

1990 PRINT"{CLR}{4 DOWN}DISK IS BEING FORMATTED—W I I
AIT" :rem 220"

2000 OPEN15,8,15:PRINT#15,11N0:"+DN$+lV' +ID$:rem 32

2010 INPUT#15,S1,S$,S2,S3:CLOSE15:IFSK>0THEN2100:

GOSUB2040 :rem 17

2020 PRINT"{CLR}{10 DOWN}{9 SPACES}DISK FORMATTED

{SPACE}":FORT=1TO2000:NEXT :rem 228

2030 POKE53280,13:POKE53281,5:GOTO1010 :rem 136

2040 FORT=1TO1000:NEXT:POKE53280,13:POKE53281,5:RE

TURN :rem 46

2050 REM SOUND ROUTINE :rem 90

2060 S=54272 :rem 92

2070 POKES,100:POKES+1,125:POKES+5,0:POKES+6,240:P

OKES+24,15:POKES+4,17 :rem 201

2080 FORT=0TO100:NEXT :rem 31

2090 POKES+4,0:RETURN :rem 34

2100 PRINT"DISK ERROR ";SI,S$,S2,S3 :rem 142

2110 PRINT:PRINT"CORRECT ERROR CONDITION AND TRY A

GAIN" :rem 209

2120 GOSUB1690 :rem 21

2130 GOTO1000 :rem 192

2140 OPEN15,8,15:INPUT#15,S1,S$,S2,S3:CLOSE15:IFS1

O0THEN2100 :rem 93

2150 PRINT"DISK STATUS: "S$:rem 89

2160 RETURN ~ :rem 169

Program 2. Student Quiz (,

For mistake-proof program entry, be sure to use "Automatic Proofreader" | j
(Appendix C).

10 REM STUDENT QUIZ GENERATOR :rem 92 ,

20 PRINT"{CLR}{WHT}":CLR:POKE53280f16:POKE53281,16 , |
:POKE808,225:POKE649,0:S=54727 :rem 236

30 DIMQ$(100),A$(100),B$(100),C$(100),D$(100),E$(1

00),M$(15),A(100) :rem 128 j
40 GOSUB840:PRINT"{CLR}{N}":PRINTSPC(12)"{RVS} ' •

[2 SPACES}LOADING DATA{3 SPACES}":PRINT"{BLK}"

:rem 22 , ;

45 GOSUB390:PRINT"{WHT}" :rem 149 1 |
50 FORX=1TOA:PRINTX". "M$(X):NEXT :rem 26

98 U

n

n

n

n

n

n

n

n

n

n

Recreation and Education

60 PRINT"{DOWN}ENTER NUMBER OF TEST":POKE649,10:IN

PUTX :rem 159

70 IFX<10RX>ATHENPRINT"INVALID RANGE":GOTO60

:rem 128

80 N$=M$(X):POKE649,0:OPEN15,8,15:PRINT"{CLR}":OPE
N2,8,2,+N$+" FILE,S,R" :rem 180

90 PRINT"{9 DOWN}{5 SPACES}LOADING ";N$;" QUIZ"tPR

INTM{BLK}" srem 97

100 X=0 :rem 86

110 X=X+1 :rem 219

120 INPUT#2,Q$(X):INPUT#2,A$(X):INPUT#2,B$(X)

:rem 117

125 INPUT#2,C$(X):INPUT#2,D$(X):INPUT#2fE$(X)

:rem 114

130 IFST AND64THEN150 :rem 204

140 GOTO110 :rem 96

150 CLOSE2:POKE198,0:L=X:CLOSE15:GOSUB920:PRINT"

{CLR}{WHT}" srem 206

160 REM TEST ROUTINE srem 225
170 Y=l:POKE649f10:GOSUB540 :rem 75
180 FORN=1TOL-1:PRINT"{CLR}{DOWN}":PRINTTAB(20-LEN

(N$)/2);N$:rem 102

190 S$=STR$(N)+". "+Q$(A(N)):PRINT:GOSUB450
:rem 146

200 REM ANSWER CHOICES srem 68
210 S$=A$(A(N)):GOSUB450:S$=B$(A(N)):GOSUB450zS$=C

$(A(N)):GOSUB450 :rem 225

220 S$=D$(A(N)):GOSUB450:S$=E$(A(N)) :rem 188

230 PRINT"{DOWN}ENTER LETTER OF MOST CORRECT ANSWE

R:":POKE198,0 :rem 160

240 INPUTF$:rem 144

250 IFLEN(F$)<>1THENPRINT"ENTER ONE LETTER ONLY":G

OTO240 :rem 102

260 IFASC(F$)<65ORASC(F$)>68THENPRINT"ANSWER MUST

{SPACE}BE A,B,Cf OR D":GOTO240 :rem 151

270 IFASO(F$)=ASC(S$)THENP=P+1 :rem 254

280 IFASC(F$)=ASC(S$)THENPRINTSPC(9)"{RVS}
{2 SPACES}ANSWER IS CORRECT!! ":GOSUB1030

"~ :rem 215

290 IFASC(F$)<>ASC(S$)THEN:GOSUB1060:GOSUB820
:rem 217

300 FORT=1TO4000:NEXT:NEXT :rem 149

310 N=N-1 -rem 203
320 S=INT(P/N*100+.5) :PRINT"{CLR}{DOWN}YOU SCORED

{SPACE}11; S;" %" * rem 149
330 IFS>80ANDS<90THENPRINT"$3TUDY THIS SECTION AGAI

N" :rem 175

340 IFS>90ANDS<100THENPRINT"VERY GOOD, BUT MORE ST

UDY WOULD HELP" srem 153

99

Recreation and Education

350 IFS=100THENPRINT"EXCELLENT I 1{2 SPACES}PERFECT
{SPACE}SCORE 1 I" Trem 245

360 FORT=1TO3000:NEXT :rem 33

370 PRINT"{4 DOWNjENTER RUN TO RE-START PROGRAM":P
OKE808,237:END :rem 17

380 REM PRINT JUSTIFY :rem 58

390 OPEN15,8,15:OPEN3,8,3,"TEST TITLES,S,R":PRINT"

{BLK}" :rem 169
400 X=X+1 :rem 221

410 INPUT#3,M$(X) :rem 193

420 IFSTATUSAND64THEN440 :rem 13

430 GOTO400 :rem 100

440 CLOSE3:POKE198,0:A=X:CLOSE15:PRINT"{CLR}{WHT}"

:RETURN irem 139

450 IFLEN(S$)<40THENPRINTS$:GOTO510 :rem 171

460 X=40sY=l :rem 148

470 X=X-1 srem 230

480 IFASC(MID$(S$,X,Y)+CHR$(0))<>32THEN470srem 120
490 PRINTLEFT$(S$,X) srem 197

500 Z=LEN(S$):Z=Z-X:PRINTRIGHT$(S$,Z) :rem 58
510 RETURN :rem 118

520 PRINT:PRINTSPC(14)"TEST TITLES":PRINT:FORA=1TO

XsPRINTA;". ";M$(A) srem 101

525 NEXT:RETURN srem 245

530 REM DISABLE CURSOR CONTROLS srem 194

540 IFPEEK(830)=133THEN560 srem 215

550 FORI=828TO977:READA:POKEI,A:NEXT srem 34

560 SYS828sRETURN srem 86

570 DATA169,000,133,252,169,080 srem 42

580 DATA133,251,169,164,133,002 srem 38

590 DATA169,083,141,036,003,169 srem 49
600 DATA003,141,037,003,096,152 srem 25

610 DATA072/138,072,165,252,208 srem 42

620 DATA007,032,116,003,169,000 srem 21

630 DATA133,253,166,253,189,000 srem 41

640 DATA002,133,254,198,252,230 srem 36

650 DATA253,104,170,104,168,165 srem 40

660 DATA254,096,160,000,132,252 srem 34

670 DATA165,002,032,210,255,169 srem 37

680 DATA157,032,210,255,032,228 srem 38

690 DATA255,240,251,164,252,133 srem 42
700 DATA254,169,032,032,210,255 srem 33
710 DATA169,157,032,210,255,165 srem 43

720 DATA254,201,013,240,043,201 srem 17
730 DATA020,208,013,192,000,240 srem 18

740 DATA211,136,169,157,032,210 srem 36

750 DATA255,076,118,003,041,127 srem 39
760 DATA201,032,144,196,196,251 srem 44

770 DATA240,192,165,254,153,000 srem 38
780 DATA002,032,210,255,169,000 srem 27

100

Recreation and Education

790 DATA133,212,200,076,118,003 :rem 30
800 DATA230,252,153,000,002,169 :rem 23
810 DATA032,032,210,255,096,013 :rem 27

820 PRINTSPC(10)"{RVS} SORRY ANSWER IS WRONG M
: rem 45

830 PRINT"{DOWN}CORRECT CHOICE IS: ";S$:RETURN

:rem 92

840 PRINT"{CLR}{5 DOWN}":PRINTSPC(13)"{RVS} QUIZ M
ASTER ":POKE53272,23 :rem 31

850 PRINT"{DOWN}{4 SPACES}THESE TESTS ARE MULTIPLE

CHOICE." :rem 40

860 PRINT"ENTER THE BEST ANSWER FROM THE CHOICES"
:rem 95

870 PRINT"GIVEN." :rem 23
880 PRINT"{DOWN}{4 SPACES}ENTER THE NUMBER OF THE

{SPACE}TEST YOU " :rem 221

890 PRINT"HAVE BEEN ASSIGNED WHEN THE PROGRAM "
:rem 41

900 PRINT"CALLS FOR IT." :rem 139

910 FORT=1TO6000:NEXT:RETURN :rem 63

920 REM RANDOM GEN. :rem 72
930 PRINT"{CLR}{DOWN}WAIT-- PREPARING QUIZ":PRINT"

{BLK}" :rem 44

940 FORX=1TOL :rem 57

950 A(X)=INT(RND(.)*L)+1 :rem 54

960 IFX=1THEN1000 :rem 228

970 FORY=1TOX-1 :rem 167

980 IFA(Y)=A(X)THEN950 :rem 15

990 NEXTY :rem 58

1000 NEXTX :rem 88

1010 PRINT" {WHT}":RETURN : rem 178

1020 REM CORRECT ANSWER SOUND :rem 18

1030 S=54272:POKES,150:POKES+1,100:POKES+5,0:POKES

+6,240:POKES+24,15:POKES+4,17 :rem 144

1040 FORT=0TO200:NEXT:POKES+4,0:RETURN :rem 172

1050 REM WRONG ANSWER SOUND :rem 144

1060 S=54272:POKES,150:POKES+1,5:POKES+5,0:POKES+6

,240:POKES+24,15:POKES+4,17 :rem 55

1070 FORT=0TO200:NEXT:POKES+4,0:RETURN :rem 175

101

Put your printer to good use by making a full set of cal

endars. These three programs will give you a wall cal

endar, an appointment calendar, and one for the year at

a glance. For a 1515, 1525, 1526, or MPS-801 printer.

Your Days Are Numbered

A practical use for a computer is making your own calendars.

Here are three calendar-making programs which require the

use of a printer. The programs are written entirely in BASIC

without PEEKs or POKEs, so they can be easily adapted for

other computers or non-Commodore printers.

In calendar making, it is essential to know the correct day

of the week for any given date. If we let Dl be the day of the

week (for Sunday Dl = l, for Monday Dl = 2, and so on), and

let M, D, and Y be the month, day, and year, respectively, Dl

can be calculated by:

Dl=INT(2.6*(M- 2)- 0.2) +D+Y-1900+INT((Y-1900)/4)

Dl =Dl +INT(19/4)-2*19

Dl=Dl-INT(Dl/7)*7+1

Two modifications have to be used with the above for

mula. For M equal to 1 or 2, we have to add 12 and subtract 1

from Y. In other words, we consider the months of January

and February as the thirteenth and fourteenth months of the

previous year. In addition, for M equal to 4 or 9, the cal

culated Dl has to be increased by 1.

Good for More Than 100 Years

This algorithm performs flawlessly for the twentieth and

twenty-first centuries, up to the year 2100. If you really want

to be meticulous beyond that, you can make further modifica

tions by reducing Dl by 1 after March 2100, and repeating

that every 100 years. You must do this because the century

years like 2100 and 2200 which are not divisible by 400 are

not leap years, but the algorithm treats them as if they were.

The programs contain modifications like the one above to

make them accurate for the next five centuries, provided, of

course, that the current calendar system is not reformed. (The

last calendar reform was 1752.)

102

Recreation and Education

Once we know the day of the week for the given date, es

pecially the first day of the month, the rest of the calendar-

making task is just a matter of setting up and getting the

proper format and display.

A Monthly Calendar

After you load one of the programs, type RUN, and press RE

TURN, the computer will briefly explain what the program is

for and will then ask you to input the month and year of the
calendar you wish to see. The numbers should be separated

by a comma, and the year should be the full four digits (1985,

not 85). Then the monthly calendar of your choice will be dis

played on the screen.

Program 1 will give you a copy of a monthly calendar by

printing it on your printer. This is a long program because it

contains a set of enlarged numbers and characters, together

with a blank subroutine to use them. The result is a calendar

that you can hang on the wall. If you have a 1526 printer and
would like a neater printout, try executing the following com

mands before running Program 1:

OPEN 6,4,6:PRINT#6, CHR$(18)

CLOSE6

■ ■

I ■ ■

Mi ■

■ ■

• ■ ■ ■

■ ■ MM ■

■ ■ ■ ■

SUM MOM TUE WED THU

I I

■ ■ ■ ma

■ m ■ ■

■ ■ ■ ■ ■■

■

■

m m

■ 1

■i i

■

M 1

1 ■ I

m i

■i ■

■ ■

■ ■

m

m

a ■

■ ■ ■

■ ■ ■

■ ■

i ■ ■

■ ■

i ■ ■

i ■ m

■ ■ ■ ■

i ■ ■ ■

■ ■ i

■ ■ i

■ ■

■ ■

■ ■

m ■ ■

■ ■

■ ■

■ ■ ■ ■ ■

1 iM ■ ■

1 ■ ■ •

IB MB

■ ■ ■ ■

1 ■■ ■

■ ■ ■

103

Recreation and Education

Program 2 also gives you a printed monthly calendar, but
in a different format. The program tabulates the days of the

month as a list. It can serve as an appointment calendar for

your desk, with room for short notes each day. Along with the

regular date, you are told what day of the year it is.

DEC

MONDAY

TUESDAY

UEDNESDAY

THURSDAY

FRIDAY

SATURDAY

asmsn

MONDAY

TUESDAY

UEDNESDAY

THURSDAY

FRIDAY

SATURDAY

assaanB

MONDAY

TUESDAY

UEDNESDAY

THURSDAY

FRIDAY

SATURDAY

mmsarn

MONDAY

TUESDAY

WEDNESDAY

THURSDAY

FRIOAY

SATURDAY

amaaam

MONDAY

TUESDAY

UEDNESDAY

EME

1

S

3

■«*

S

6

S

9

10

1 1

12

13

UBI

IS

16

17

IS

19

SO

SS

S3

2-*

25

26

27

29

3O

3 1

IER 194 1

< 335)

< 336 >

< 337)

(338)

< 339)

(340 >

■(341 >

< 342)

(343 >

< 344 >

< 345 >

< 346 >

< 347)

■< 348 >

(349)

< 350 >

< 331)

< 332 >

< 333 >

< 334 >

■< 335)

< 356 >

< 357 >

< 358 >

< 359 >

(360)

< 361 >

■< 362)

< 363)

< 364 >

< 365 >

I >

104

Recreation and Education

A Year on One Sheet

Program 3 will give you all 12 months of the year printed on

one sheet. The message HAPPY NEW YEAR is at the top of

the calendar, but you can put a different short message there

by modifying the text in line 7.

=>Y MEUI YEAR X 9-* X

FEBRUARY

9 6

12 13

19 20

26 27

21

28

17

24

31

4

11

18

29

2

8

16

23

3

10

17

24

4

11

18

29

9

12

18

26

6

13

20

27

7

14

21

28

8

19

22

MARCH PlPR IU

2

8

16

23

30

8

4

11

18

29

S

6

13

20

27

8

7

14

21

28

8

2

9

16

23

3

10

17

24

31

M

9

12

19

26

M

7

14

21

28

M

1

8

19

22

28

M

3

10

17

24

4

11

18

29

T

6

13

20

27

9

12

19

26

6

13

20

27

MAY

U

7

14

21

28

T

1

8

19

22

29

JLJL-Y

T

1

8

19

22

28

SEF

T

2

9

16

23

30

Ul

2

8

16

23

30

T

3

10

17

24

31

7

14

21

28

F

2

9

16

23

30

F

4

11

18

29

=»TEMBER

U

3

10

17

24

T

4

11

18

29

NOVEMBER

T

4

11

18

29

U

9

12

18

26

T

6

13

20

27

F

9

12

19

26

F

7

14

21

28

1

8

19

22

28

S

3

10

17

24

31

S

9

12

19

26

S

6

13

20

27

S

1

8

19

22

28

6

13

20

27

S

1

8

19

22

29

S

3

10

17

24

31

S

9

12

19

26

S

7

14

21

28

7

14

21

28

M

2

a

16

23

30

M

4

11

18

29

M

6

13

20

27

M

1

8

19

22

29

1

8

19

22

29

j

T

3

10

17

24

2

9

16

23

30

LJM

Ul

4

11

18

29

3

10

17

24

IE

T

9

12

19

26

AUGUST

T

9

12

18

26

Ul

6

13

20

27

T

7

14

21

28

OCTOBER

T

7

14

21

28

Ul

1

8

19

22

29

DECElv

T

2

9

16

23

30

Ul

3

10

17

24

31

T

2

9

16

23

30

IBER

T

4

11

18

29

4

11

18

29

F

6

13

20

27

F

1

8

19

22

29

F

3

10

17

24

31

9

12

19

26

9

12

18

26

8

7

14

21

28

8

2

9

16

23

30

8

4

11

18

29

8

6

13

20

27

In all three programs, after you input the month and year

as requested, the computer prompts you to turn on the printer.

Before you do this, you should set the perforation of the print

ing paper over the starting postion of the printhead so that the

105

Recreation and Education

calendar will appear entirely on one sheet of paper. The pro

grams are written for the Commodore 1515, 1525, 1526, and

MPS-801 printers. Other printers may require modifications to

the programs.

Program 1. Monthly Calendar

For mistake-proof program entry, be sure to use "Automatic Proofreader"

(Appendix C).

1 GOTO10 :rem 203

5 E1=1:E2=1:E3=1:E4=1:E5=1:E6=1:E7=1 :rem 226

6 GOSUB1109:D8=D7-1:RETURN :rem 103

10 OPEN1,4:SYS65517:A=PEEK(781):IFA=40THENPOKE5328

1,1 :rem 156

20 GOSUB4000:GOSUB3200:PRINT#1,IIM : rem 176

30 ONM0GOSUB3010,3020,3030,3040,3050,3060,3070,308

0,3090r3100,3110,3120 irem 56

40 PRINT#1,"II:PRINT#1,"":GOSUB1610:GOSUB1650:GOSUB

1660 :rem 207

80 OND9GOSUB1811,1821,1831,1841,1851,1861,1871

:rem 172

99 PRINT#1, "M:PRINT#1,IIM : rem 78

100 G1=D8 :rem 194

105 G=G1:GOSUB1720:D1=D:E1=E :rem 120

110 G2=G+1:G=G2:GOSUB1720:D2=D:E2=E :rem 10

115 G3=G+1:G=G3:GOSUB1720:D3=D:E3=E :rem 19

120 G4=G+1:G=G4:GOSUB1720:D4=D:E4=E :rem 19

125 G5=G+1:G=G5:GOSUB1720:D5=D:E5=E :rem 28

130 G6=G+1:G=G6:GOSUB1720:D6=D:E6=E :rem 28

135 G7=G+1:G=G7:GOSUB1720:D7=D:E7=E :rem 37

140 G1=G7+1:GOSUB1109:PRINT#1, "" :PRINT#1, MII:IFG1<=

E9THEN105 :rem 188

155 PRINT#1,M" :rem 236

1000 GOTO5000 :rem 191

1109 GOSUB2000:X=E1:X1=D1:GOSUB11000 :rem 115

1120 X=E2:X1=D2:GOSUB11000 :rem 242

1130 X=E3:X1=D3:GOSUB11000 :rem 245

1140 X=E4:X1=D4:GOSUB11000 :rem 248

1150 X=E5:X1=D5:GOSUB11000 :rem 251

1160 X=E6:X1=D6:GOSUB11000 :rem 254

1170 X=E7:X1=D7:FL=1:GOSUB11000 :rem 59

1209 GOSUB2000:X=E1:X1=D1:GOSUB12000 :rem 117

1220 X=E2:X1=D2:GOSUB12000 :rem 244

1230 X=E3:X1=D3:GOSUB12000 :rem 247

1240 X=E4:X1=D4:GOSUB12000 :rem 250

1250 X=E5:X1=D5:GOSUB12000 :rem 253

1260 X=E6:X1=D6:GOSUB12000 :rem 0

1270 X=E7:X1=D7:FL=1:GOSUB12000 :rem 61

1309 GOSUB2000:X=E1:X1=D1:GOSUB13000 :rem 119

106

Recreation and Education

1320

1330

1340

1350

1360

1370

1409

1420

1430

1440

1450

1460

1470

1509

1520

1530

1540

1550

1560

1570

1600

1610

1611

1612

1613

1614

1615

1616

1620

1621

1622

1623

1624

1625

1626

X=E2:X1=D2:GOSUB13000

X=E3:X1=D3:GOSUB13000

X=E4:X1=D4:GOSUB13000

X=E5:X1=D5:GOSUB13000

X=E6:X1=D6:GOSUB13000

X=E7:X1=D7:FL=1:GOSUB13000
GOSUB2000:X=E1:X1=D1:GOSUB14000

X=E2:X1=D2:GOSUB14000

X=E3:X1=D3:GOSUB14000

X=E4:X1=D4:GOSUB14000

X=E5:X1=D5:GOSUB14000

X=E6:X1=D6:GOSUB14000

X=E7:X1=D7:FL=1:GOSUB14000

GOSUB2000:X=E1:X1=D1:GOSUB15000

X=E2:X1=D2:GOSUB15000

X=E3:X1=D3:GOSUB15000

X=E4:X1=D4:GOSUB15000

X=E5:X1=D5:GOSUB15000

X=E6:X1=D6:GOSUB15000

X=E7:X1=D7:FL=1:GOSUB15000

RETURN

PRINT#1#"{5 SPACES}11; :PRINT#1 ,CHR$ (14) "SUN" ; :

PRINT#1,CHR$(15)"{5 SPACES}"; :rem 69
PRINT#1,CHR$(14)"MON";:PRINT#1,CHR$(15)"

{5 SPACES}"; 'rem 116
PRINT#1,CHR$(14)"TUE";:PRINT#1,CHR$(15)"

{5 SPACES}"; :rem 121

PRINT#1,CHR$(14)"WED";:PRINT*1,CHR$(15)"
:rem 108

:PRINT*1,CHR$(15)"

:rem 126

:rem 246

:rem 249

irem 252

:rem 255

:rem 2

:rem 63

:rem 121

:rem 248

:rem 251

:rem 254

:rem 1

:rem 4

:rem 65

:rem 123

:rem 250

:rem 253

:rem 0

:rem 3

:rem 6

:rera 67

:rem 167

{5 SPACES} .

PRINT#1,CHR$(14)"THU

{5 SPACES}
PRINT#1,CHR$(14)"FRI";:PRINT#1,CHR$(15)'

{5 SPACES}"; : rem 111
PRINT*1,CHR$(14)"SAT":PRINT*1,CHR$(15)" "

:rem 1

PRINT#1,"{5 SPACES}";:PRINT*1,CHR$(14)" ";:

PRINT#1,CHR$(15)"{5 SPACES}"; :rem 215

PRINT*1,CHR$(14)" ";:PRINT#1,CHR$(15)"
{5 SPACES}"; : rem 18

PRINT*1,CHR$(14)" ";:PRINT*1,CHR$(15)"

{5 SPACES}"; :rem 19

PRINT#1,CHR$(14)"—";:PRINT#1,CHR$(15)"
:rem 20

:PRINT#1#CHR$(15)"

:rem 21

{5 SPACES}"

PRINT#1,CHR$(14)" '

{5 SPACES}";

PRINT#1,CHR$(14)" ";:PRINT#1,CHR$(15)"

{5 SPACES}"; :rem 22

PRINT*1,CHR$(14)" ":PRINT*1,CHR$(15)" ":RET
URN :rem 187

107

u
Recreation and Education < . ■

u

1650 IFM0=1ORM0=3ORM0=5ORM0=7ORM0=8ORM0=10ORM0=12T
HENE9=31 rrem 81

1652 IFM0=4ORM0=6ORM0=9ORM0=11THENE9=30 :rem 122

1654 IFM0=2ANDY/4<>INT(Y/4)THENE9=28 :rem 160
1656 IFM0=2ANDY/4=INT(Y/4)THENE9=29 :rem 102 I I
1658 RETURN :rem 180 I I
1660 IFM0=1THENM0=13:Y=Y-1:GOTO1670 rrem 92
1665 IFM0=2THENM0=14:Y=Y-1 :rem 34

1670 M=M0-2 :rem 52 I 1
1675 D9=INT(2.6*M-0.2)+D+Y-1900+INT((Y-1900)/4)

rrem 232

1680 D9=D9+INTU9/4)-2*19 s rem 45
1685 P9=D9-INT(D9/7)*7+l :rem 20
1690 IFM0=4ORM0=9THEND9=D9+1 .rem 163

1695 IFM0=13THENM0=1:Y=Y+1:GOTO1710 :rem 93

1700 IFM0=14THENM0=2:Y=Y+1:D9=D9+1 :rem 227

1705 IFD9=8THEND9=1 :rem 104

1710 IF(Y=2100ANDM0>=3)OR(Y>2100)THEND9=D9-lrIFD9=
0THEND9=7 :rem 227

1711 IF(Y=2200ANDM0>=3)OR(Y>2200)THEND9=D9-lrIFD9=
0THEND9=7 :rem 230

1712 IF(Y=2300ANDM0>=3)OR(Y>2300)THEND9=D9-1:IFD9=
0THEND9=7 rrem 233

1715 RETURN rrem 174

1720 IFOE9THENGOTO1740 rrem 144

1722 IFG<10THENGOTO1742 rrem 117

1726 IFG>=10ANDG<20.THENGOTO1746 rrem 116

1728 IFG>=20ANDG<30THENGOTO1748 rrem 122

1730 IFG>=30THENGOTO1750 rrem 180

1740 D=lrE=lrGOTO1755 rrem 176

1742 D=G+2rE=lrGOTO1755 rrem 37

1746 D=G-10+2rE=2rGOTO1755 rrem 184

1748 D=G-20+2rE=3rGOTO1755 rrem 188

1750 D=G-30+2rE=4 rrem 114

1755 RETURN srem 178

1811 Dl=lr D2=3 r D3=4 r D4=5 r D5=6 r D6=7 r D7=8 r GOSUB5 r RET

URN rrem 149 j I

1821 Dl=lr D2=lr D3=3 r D4=4 r D5=5 r D6=6 r D7=7 r GOSUB5 r RET •—'
URN rrem 143

1831 Dl=lrD2=lrD3=lrD4=3rD5=4rD6=5rD7=6rGOSUB5rRET
URN rrem 138 M

1841 Dl=l r D2=l r D3=l r D4=l r D5=3 r D6=4 r D7=5 r GOSUB5 r RET

URN rrem 134

1851 Dl=lrD2=lrD3=lrD4=lrD5=lrD6=3rD7=4rGOSUB5rRET j I
URN rrem 131 U

1861 Dl=l r D2=l r D3=l r D4=l r D5=l r D6=l r D7=3 r GOSUB5 r RET

URN rrem 129

1871 Dl=3rD2=4rD3=5rD4=6rD5=7rD6=8rD7=9rGOSUB5rRET
URN srem 163 l—J

2000 PRINT#1,"{4 SPACES}";rRETURN rrem 104

108 LJ

Recreation and Education

2001 PRINT*1," E2 +3 "7rRETURN
2002 PRINT#l,"E+3{2 SPACES}E+3"7rRETURN

2003 PRINT*1,"E+3(2 SPACES}g+3"7rRETURN

2004 PRINT*1,"g+3(2 SPACES}g+3";:RETURN

2005 PRINT#1," g2 +3 "7rRETURN

2011 PRINT*1," g+3(2 SPACES}"?rRETURN

2012 PRINT*1," g+3{2 SPACES}"7rRETURN

2013 PRINT*!," g+3{2 SPACES}"7rRETURN
2014 PRINT*1," g+3(2 SPACES}"7rRETURN
2015 PRINT*1," g+3{2 SPACES}"?rRETURN

2021 PRINT*1," g2 +3 "7rRETURN

2022 PRINT*1,"g+3(2 SPACES}g+3"7:RETURN

2023 PRINT*1,"{2 SPACES}g+3 "?rRETURN
2024 PRINT#1," g+3(2 SPACES}"?rRETURN

2025 PRINT#l,"g4 +3"7rRETURN

2031 PRINT#l,"g3 +3 "?rRETURN

2032 PRINT#1,"{3 SPACES}g+3"7rRETURN

2033 PRINT*1," g2 +3 "?rRETURN

2034 PRINT*1,"{3 SPACES}g+3"7rRETURN

2035 PRINT#1,"E3 +3 "7rRETURN

2041 PRINT#1,"{2 SPACES}g+3 "7rRETURN
2042 PRINT*!," g2 +3 "?rRETURN

2043 PRINT#l,"g+3 E+3 "?rRETURN
2044 PRINT#l,"g4 +3"?rRETURN

2045 PRINT#1,"{2 SPACES}g+3 "?rRETURN

2051 PRINT#l,"g4 +3"?rRETURN

2052 PRINT*1,"E+3{3 SPACES}"?rRETURN

2053 PRINT#1,"E3 +3 "?rRETURN

2054 PRINT*1,"{3 SPACES}E+3"7rRETURN

2055 PRINT#1,"E3 +3 "?rRETURN

2061 PRINT#1," g2 +3 "?rRETURN

2062 PRINT*1,"g+3{3 SPACES}"?rRETURN

2063 PRINT#l,"g3 +3 "7rRETURN

2064 PRINT*1,"g+3{2 SPACES}g+3"7rRETURN

2065 PRINT#1," g2 +3 "?rRETURN

2071 PRINT#1,"E4 +3"?rRETURN

2072 PRINT#1,"{3 SPACES}g+3"7rRETURN

2073 PRINT#1,"{2 SPACES}g+3 "?rRETURN
2074 PRINT*1," g+3(2 SPACES}"?rRETURN

2075 PRINT*1," g+3(2 SPACES}";rRETURN

2081 PRINT#1," g2 +3 ";rRETURN

2082 PRINT*1,"E+3(2 SPACES}E+3";rRETURN

2083 PRINT#1," E2 +3 ";rRETURN

2084 PRINT*1,"E+3(2 SPACES}g+3";rRETURN

2085 PRINT#1," g2 +3 ";rRETURN

2091 PRINT#1," g2 +3 ";rRETURN

2092 PRINT*1,"g+3{2 SPACES}g+3";rRETURN
2093 PRINT*1," g3 +3";rRETURN

2094 PRINT#1,"{3 SPACES}g+3";rRETURN

2095 PRINT#1," E2 +3 ";rRETURN

rrem 181

rrem 182

rrem 183

rrem 184

rrem 185

rrem 16

rrem 17

r rem 18

rrem 19

rrem 20

rrem 183

rrem 184

rrem 19

rrem 20

rrem 7

rrem 94

rrem 19

rrem 186

rrem 21

rrem 98

rrem 19

rrem 186

rrem 187

rrem 8

rrem 23

rrem 6

rrem 21

rrem 98

rrem 23

rrem 100

rrem 187

rrem 22

rrem 99

rrem 190

rrem 191

rrem 8

rrem 23

rrem 24

rrem 25

r rem 26

rrem 189

rem 190

rrem 191

rem 192

rem 193

rrem 190

rem 191

rem 102

rrem 27

rem 194

109

Recreation and Education m

7:RETURN

;:RETURN

;:RETURN

;:RETURN

;:RETURN

:rem

:rem

:rem

:rem

:rem

17

18

19

20

21

2111 PRINT#1,"{2 SPACES}g+3
2112 PRINT#1,"{2 SPACES}g+3

2113 PRINT#1,"{2 SPACES}g+3

2114 PRINT#1,"{2 SPACES}g+3

2115 PRINT#1,"{2 SPACES}g+3

3010 GOSUB2000:PRINT*1," g3 +3(3 SPACES}g3 +3

(2 SPACES}g+3(3 SPACES}g+3" :rem 193
3011 GOSUB2000:PRINT#1,"{2 SPACES}g+3(3 SPACES}g+3

(3 SPACES}g+3 g2 +3(2 SPACES}g+3" :rem 118
3012 GOSUB2000:PRINT#1,"(2 SPACES}6+3(3 SPACES}g+3

(3 SPACES}g+3 g+3 g+3 g+3" :rem 119
3013 GOSUB2000:PRINT#1,"g+3 g+3(3 SPACES}g5 +3 g+3

(2 SPACES}g2 +3" :rem 16
3014 GOSUB2000:PRINT#1,"g3 +3(3 SPACES}g+3

(3 SPACES}g+3 g+3(3 SPACES}g+3" :rem 31
3015 RETURN srem 169

3020 GOSUB2000:PRINT#l,"g5 +3 g5 +3 g4 +3 "

:rem 166

3021 GOSUB2000:PRINT#l,"g+3(5 SPACES}g+3(5 SPACES}

g+3(3 SPACES}g+3" srem 43
3022 GOSUB2000:PRINT#l,"g3 +3(3 SPACES}g4 +3

(2 SPACES}64 +3 " srem 182
3023 GOSUB2000:PRINT*1,"6+3(5 SPACES}6+3(5 SPACES}

6+3(3 SPACES}6+3" srem 45
3024 GOSUB2000:PRINT*1,"6+3(5 SPACESJ65 +3 64 +3 "

:rem 18

3025 RETURN : rem 170

3030 GOSUB2000:PRINT#l,"g+3{3 SPACES}g+3(2 SPACES}

g3 +3(2 SPACES}64 +3 " srem 105

3031 GOSUB2000:PRINT*1,"62 +3 62 +3 g+3(3 SPACES}

g+3 g+3(3 SPACES}g+3" srem 196

3032 GOSUB2000:PRINT#l,"g+3 g+3 6+3 6+3(3 SPACES}
6+3 64 +3 " srem 107

3033 GOSUB2000:PRINT*1,"g+3 g+3 g+3 g5 +3 g+3
(2 SPACES}g+3 " srem 18

3034 GOSUB2000:PRINT#l/"g+3(3 SPACES}g+3 g+3

(3 SPACES}g+3 g+3(3 SPACES}g+3" srem 123
3035 RETURN srem 171

3040 GOSUB2000:PRINT*1," g3 +3(2 SPACES}g4 +3

(2 SPACES}g4 +3 " srem 182

3041 GOSUB2000:PRINT#l,"g+3(3 SPACESjg+3 6+3
(3 SPACES}g+3 g+3(3 SPACES}g+3" srem 121

3042 GOSUB2000:PRINT#l#"g+3(3 SPACES}g+3 g4 +3
(2 SPACES}g4 +3 " srem 18

3043 GOSUB2000:PRINT#1,"g5 +3 g+3(5 SPACES}g+3

(2 SPACES}g+3 " srem 199
3044 GOSUB2000:PRINT#l/"g+3(3 SPACES}g+3 g+3

(5 SPACES}g+3(3 SPACES}g+3" srem 214
3045 RETURN srem 172

110

Recreation and Education

3050 GOSUB2000:PRINT#l,"E+3{3 SPACES}g+3{2 SPACES}
B3 +3(2 SPACES}B+3{3 SPACES}B+3" :rem 31

3051 GOSUB2000:PRINT#1,"B2 +3 E2 +3 g+l{3 SPACES}
E+3 i+3{3 SPACES}B+3" :rem 198

3052 GOSUB2000:PRINT*1,"E+3 E + 3 E+3 1+3{3 SPACES}
E+3 {2 SPACES}E+3 E+3 " :rem 33

3053 GOSUB2000:PRINT*l,"E+3 E+3 E + 3 §5 +3
{3 SPACES}B+3{2 SPACES}11 :rem 110

3054 GOSUB2000:PRINT#l,"B+3{3 SPACESjg+3 §+3
{3 SPACES}B+3{3 SPACES}B+3(2 SPACES}":rem 215

3055 RETURN :rem 173

3060 GOSUB2000:PRINT*1," §3 +3(2 SPACES}E+3

{3 SPACES}B+3 E+3(3 SPACES}E+3" :rem 32
3061 GOSUB2000:PRINT#1,"{2 SPACES}E+3{3 SPACES}E+3

{3 SPACESJE+3 E2 +3(2 SPACESJE+3" :rem 123
3062 GOSUB2000:PRINT*1,"{2 SPACES}E+3{3 SPACES}E+3

{3 SPACESJE+3 E+3 E+3 E+3" :rem 124
3063 GOSUB2000:PRINT*1,"E+3 E+3{3 SPACES}E+3

{3 SPACES}E+3 E+3{2 SPACES}E2 +3" :rem 35
3064 GOSUB2000:PRINT#1,"E3 +3{4 SPACES}E3 +3

{2 SPACES}E+3(3 SPACES}E+3" :rem 202
3065 RETURN : rem 174

3070 GOSUB2000:PRINT*1," E3 +3(2 SPACES}E+3

{3 SPACES} E+3 E+3 {4 SPACES}11 :rem 123
3071 GOSUB2000:PRINT#1,"{2 SPACES}E+3{3 SPACES}E+3

{3 SPACES}E+3 E+3 (4 SPACES}11 :rem 48
3072 GOSUB2000:PRINT#1#"{2 SPACES}E+3{3 SPACESJE+3

{3 SPACES}E+3 E+3(4 SPACES}" :rem 49

3073 GOSUB2000:PRINT#l/"E+3 E+3{3 SPACES}E+3
{3 SPACES}E+3 E+3(4 SPACES}" :rem 216

3074 GOSUB2000:PRINT#1#"E3 +3(4 SPACESJE3 +3

{2 SPACES}E5 +3" :rem 189

3075 RETURN :rem 175

3080 GOSUB2000 : PRINT* I,11 E3 +3(2 SPACES} E+3
{3 SPACES}E+3{2 SPACES}E3 +3 " :rem 200

3081 GOSUB2000:PRINT#l,"E+3{3 SPACESJE+3 E+3
{3 SPACES}E+3 E+3(4 SPACES}" :rem 215

3082 GOSUB2000:PRINT#l#"E+3{3 SPACES}E+3 E+3
{3 SPACES}E+3 E+3(2 SPACES}E2 +3" :rem 36

3083 GOSUB2000:PRINT#1,"E5 +3 E+3{3 SPACES}E+3 E+3

{3 SPACES}E+3"
3084

{3 SPACES}E+3"
GOSUB2000:PRINT*1,"E+3{3 SPACES}E+3{2

E3 +3(3 SPACES}E3 +3 "

3085 RETURN

3090 GOSUB2000:PRINT#1," E4 +3 E5 +3 E4 +3
3091 GOSUB2000:PRINT#l#"E+3{5 SPACES}E+3(5

E+3{3 SPACES}E+3"
3092 GOSUB2000:PRINT*1," E3 +3{2 SPACESJE4

{2 SPACES}B4 +3 "

:rem 113

SPACES}

:rem 204

!rem 176

":rem 7

SPACES}

50rem

rem 189

111

Recreation and Education

3093 GOSUB2000:PRINT#1,"{4 SPACES}g+3 g + 3

{5 SPACES}g+3{4 SPACES}11 : rem 142
3094 GOSUB2000:PRINT#1,"g4 +§{2 SPACES}g5 +3 g + 3

{4 SPACES}" :rem 25
3095 RETURN :rem 177

3100 GOSUB2000:PRINT*1," g3 +3{3 SPACES}g3 +3

{2 SPACES}g5 +3" :rem 179
3101 GOSUB2000:PRINT#l,"g+3{3 SPACES}g+3 £+3

{3 SPACES}g+3{3 SPACES}g+3{2 SPACES}":rem 208

3102 GOSUB2000:PRINT#l,"g+3{3 SPACES}g+3 g+3
{7 SPACES}g+3{2 SPACES}" :rem 43

3103 GOSUB2000:PRINT*1,"g+3{3 SPACES}g+3 g+3

{3 SPACES}g+3{3 SPACES}g+3{2 SPACES}":rem 210
3104 GOSUB2000:PRINT*1," g3 +3(3 SPACES}g3 +3

{4 SPACES}g+3{2 SPACES}" :rem 31
3105 RETURN :rem 169

3110 GOSUB2000:PRINT*1,"i+3{3 SPACES}g+3{2 SPACES}

g3 +3{2 SPACES}g+3{3 SPACES}g+3" :rem 28
3111 GOSUB2000:PRINT#l#"g2 +3(2 SPACES}g+3 g+3

{3 SPACES}g+3 g+3{3 SPACES}B+3" :rem 29
3112 GOSUB2000:PRINT#l,"g+3 g+3 g+3 g+3{3 SPACES}

g+3 g+3 {3 SPACES}g+311 :rem 30
3113 GOSUB2000:PRINT#l,"g+3{2 SPACES}g2 +3 g+3

{3 SPACES}g+3{2 SPACES}g+3 g+3 " :rem 31
3114 GOSUB2000:PRINT#l,"g+3{3 SPACES}g+3{2 SPACES}

g3 +3{4 SPACES}g+3{2 SPACES}" :rem 122
3115 RETURN .rem 170

3120 GOSUB2000:PRINT#l,"g4 +3{2 SPACES}g5 +3
{2 SPACES}g3 +3 " :rem 91

3121 GOSUB2000:PRINT#l,"g+3{3 SPACES}g+3 g+3

{5 SPACES}g+3{3 SPACES}g+3" :rem 210
3122 GOSUB2000:PRINT#l,"g+3{3 SPACES}g+3 g4 +3

{2 SPACES}g+3{4 SPACES}" :rem 31

3123 GOSUB2000:PRINT#l#"g+3{3 SPACES}g+3 g+3

{5 SPACES}g+3{3 SPACES}g+3" :rem 212
3124 GOSUB2000;ERINT#1,"E4 +3t2 SPACES}g5 +3

{2 SPACES}g3 +3 " :rem 95 I J
3125 RETURN :rem 171 —

3200 I1=INT(Y/1000):J1=Y-I1*1000:I2=INT(Jl/100):J2

=J1-I2*100:I3=INT(J2/10) :rem 83 i |

3210 I4=J2-I3*10 :rem 48 I I
3211 IFI2=0THENI2=10 :rem 134

3212 IFI3=0THENI3=10 :rem 137

3213 IFI4=0THENI4=10 :rem 140 I I
3214 GOSUB2000:X=I1:GOSUB6000:GOSUB2000:X=I2:GOSUB '—'

6000:GOSUB2000:X=I3:GOSUB6000 :rem 98

3215 GOSUB2000:X=I4:FL=1:GOSUB6000 :rem 19 ,

3314 GOSUB2000:X=I1:GOSUB7000:GOSUB2000:X=I2:GOSUB | j
7000:GOSUB2000:X=I3:GOSUB7000 :rem 102

112 u

Recreation and Education

3315 GOSUB2000:X=I4:FL=1:GOSUB7000 :rem 21

3414 GOSUB2000:X=I1:GOSUB8000:GOSUB2000:X=I2:GOSUB

8000:GOSUB2000:X=I3:GOSUB8000 :rem 106

3415 GOSUB2000:X=I4:FL=1:GOSUB8000 :rem 23

3514 GOSUB2000:X=I1:GOSUB9000:GOSUB2000:X=I2:GOSUB

9000:GOSUB2000:X=I3:GOSUB9000 :rem 110

3515 GOSUB2000:X=I4:FL=1:GOSUB9000 :rem 25

3614 GOSUB2000:X=I1:GOSUB10000:GOSUB2000:X=I2:GOSU

B10000:GOSUB2000:X=I3 :rem 60
3615 GOSUB10000:GOSUB2000:X=I4:FL=1:GOSUB10000:RET

URN ' rem 7

4000 PRINT"{CLR}{DOWN}{2 SPACES}THIS IS A PROGRAM"

:PRINT"{5 RIGHT}T0 PRINT A" :rem 115

4020 PRINT"{2 SPACES}{PUR}MONTHLY CALENDAR{BLU}":P

RINT"{3 RIGHTjON THE PRINTER" :rem 187

4030 PRINT"{DOWN}{2 RIGHT}PLEASE TYPE IN THE":PRIN

T"{3 RIGHT}{RED}MONTH{BLU} AND {RED}YEAR{BLU}
11 :rem 185

4035 PRINT" THAT YOU WISH TO SEE":PRINT"{2 SPACES}
(EXAMPLE: {RED}12,1983{BLU}){PUR}{DOWN}":PRIN

TTAB(5); :rem 211

4060 INPUTM0,Y :rem 92

4080 PRINT"{2 DOWN}{2 SPACES}{BLU}THANK YOU! NOW—

":PRINT" PLEASE {PURjTURN ON{BLU} THE" :rem 7

4085 PRINT"PRINTER AND THEN TYPE":PRINTTAB(8)"

{PUR}OK{DOWN}":INPUTR$:rem 252

4110 IFR$o"OK"THEN4080 : rem 30

4130 PRINT"{BLU}PRINTING{ DOWN} ":FORI=1TO800:NEXT:R

ETURN :rem 218

4999 PRINT#1,CHR$(15)" " :rem 232

5000 GOSUB1620 :rem 14

5001 CLOSE1:END :rem 126

6000 ONXGOSUB2011,2021,2031,2041,2051,2061,2071,20

81.2091.2001 :rem 146

6010 IFFL<>1THENPRINT#1," ";:RETURN :rem 104

6020 PRINT#1,"":FL=0:RETURN :rem 108

7000 ONXGOSUB2012,2022,2032,2042,2052,2062,2072,20

82.2092.2002 :rem 157

7010 IFFL<>1THENPRINT#1," ";:RETURN :rem 105

7020 PRINT#1,"":FL=0:RETURN :rem 109

8000 ONXGOSUB2013,2023,2033,2043,2053,2063,2073,20

83.2093.2003 :rem 168

8010 IFFL<>1THENPRINT#1," ";:RETURN :rem 106

8020 PRINT#1,"":FL=0:RETURN :rem 110

9000 ONXGOSUB2014,2024,2034,2044,2054,2064,2074,20

84.2094.2004 :rem 179

9010 IFFL<>1THENPRINT#1," ";:RETURN :rem 107

9020 PRINT*1,"":FL=0:RETURN irem 111

10000 ONXGOSUB2015,2025,2035,2045,2055,2065,2075,2

085,2095,2005 :rem 229

113

u
Recreation and Education ^^^»^^^M

u

10010 IFFL<>1THENPRINT#1#" ";:RETURN :rem 147 I I

10020 PRINT*1,"":FL=0:RETURN :rem 151 I—I
11000 ONXGOSUB2000,2111,2021,2031:PRINT#1," ";

:rem 195 , ,

11010 ONX1GOSUB2000,2001,2011,2021,2031,2041,2051,

2061.2071.2081.2091 :rem 222

11020 IFFL<>1THENPRINT#1,"{2 SPACES}";:RETURN

:rem 149 i i

11030 FL=0:PRINT*1,"":RETURN :rem 153 I I
12000 ONXGOSUB2000,2112,2022,2032:PRINT#1,"

:rem 199

12010 ONX1GOSUB2000,2002,2012,2022,2032,2042,2052,

2062.2072.2082.2092 :rem 233

12020 IFFL<>1THENPRINT#1,"{2 SPACES)";:RETURN

:rem 150

12030 FL=0:PRINT#1,"":RETURN :rem 154

13000 ONXGOSUB2000,2113,2023,2033:PRINT#1,M ";

:rem 203

13010 ONX1GOSUB2000,2003,2013,2023,2033,2043,2053,

2063.2073.2083.2093 :rem 244

13020 IFFL<>1THENPRINT#1,"{2 SPACES}";:RETURN

:rem 151

13030 FL=0:PRINT#1,M":RETURN :rem 155

14000 ONXGOSUB2000#2114,2024,2034:PRINT#1," ";

:rem 207

14010 ONX1GOSUB2000,2004,2014,2024,2034,2044,2054,

2064.2074.2084.2094 :rem 255

14020 IFFL<>1THENPRINT#1,"{2 SPACES}";:RETURN

:rem 152

14030 FL=0:PRINT#1,"M:RETURN :rem 156

15000 ONXGOSUB2000,2115,2025,2035:PRINT#1,"

:rem 211

15010 ONX1GOSUB2000,2005,2015,2025,2035,2045,2055,

2065.2075.2085.2095 :rem 10

15020 IFFLO1THENPRINT#1,"{2 SPACES }";: RETURN

:rem 153

15030 FL=0:PRINT#1,"":RETURN :rem 157 (j

Program 2. Appointment Calendar i i

For mistake-proof program entry, be sure to use "Automatic Proofreader" '—'
(Appendix C).

80 DIMM$(12),W$(7):FORI=1TO12:READM$(I):NEXTI:FORI I I

• =1TO7:READW$(I) :NEXTI :rem 118 *—'

90 SYS65517:A=PEEK(781):IFA=40THENPOKE53281,1

:rem 167 < .

100 PRINT"{CLR}{DOWN}{2 SPACES}THIS IS A PROGRAM": | |
PRINT"{6 RIGHT}TO SHOW A" :rem 17

114 LJ

Recreation and Education

105 PRINT"{2 RIGHT}{PUR}MONTHLY CALENDAR!BLU}":PRI
NT"{3 RIGHT}ON THE PRINTER{DOWN}" :rem 214

110 PRINT"{RIGHT}PLEASE TYPE IN THE":PRINT"

{3 RIGHT}{RED}MONTH{BLU} AND {RED}YEAR{BLU}"
:rem 86

111 PRINT"THAT YOU WISH TO SEE":PRINT"{RIGHT}(EXAM
PLE: {RED}12,1983{BLU}){PUR}{2 DOWN}11 : rem 105

120 PRINTTAB(5);:INPUTM0,Y :rem 132

130 PRINT"{2 DOWN}{2 SPACES}{BLU}THANK YOU1 NOW—"

:PRINT" PLEASE {PURjTURN ON{BLU} THE" :rem 207

131 PRINT"PRINTER AND THEN TYPE":PRINTTAB(9)"{PUR}
OK{DOWN}":INPUTR$: rem 193

151 IFR$o"OK"THEN130 :rem 183

154 PRINT"{BLU}PRINTING{DOWN}":FORI=1TO800:NEXT:GO

SUB1292:OPEN1,4 :rem 23

202 PRINT#1,CHR$(14)"{3 SPACES}";M$(M0);" ";Y:GOSU

B1600:GOSUB1700:FORD=1TOE1:J1=J1+1 :rem 225

210 GOSUB1050:IFD<10THENG$=" " :rem 158

213 IFD>=10THENG$="" :rem 96

214 IFD1=1THENPRINT#1,CHR$(15)"{3 SPACES}"W$(D1);C
HR$(14)G$7"{RVS}"D"{OFF}"7CHR$(15)"(" Jl;")"

:rem 71

215 IFD1=1THENGOSUB1600 :rem 128

217 IFD1=1THENGOTO220 :rem 8

219 PRINT#1,CHR$(15)"{3 SPACES}"W$(D1);CHR$(14)G$;

D7CHR$(15)"(";Jl7")M:GOSUB1600 :rem 0

220 NEXTD :rem 23

1000 CLOSE1:END :rem 121

1050 IFM0=1THENM0=13:Y=Y-1:GOTO1080 :rem 80

1060 IFM0=2THENM0=14:Y=Y-1 :rem 23

1080 M=M0-2 :rem 47

1100 Dl=INT(2,6*M-0.2)+D+Y-1900+INT((Y-1900)/4)

:rem 207

1150 D1=D1+INT(19/4)-2*19 :rem 21

1200 Dl=Dl-INT(Dl/7)*7+l :rem 235

1210 IFM0=4ORM0=9THEND1=D1+1 :rem 135

1230 IFM0=13THENM0=1:Y=Y+1:GOTO1245 :rem 81

1240 IFM0=14THENM0=2:Y=Y+1:D1=D1+1 :rem 210

1244 IFD1=8THEND1=1 :rem 86

1245 IF(Y=2100ANDM0>=3)OR(Y>2100)THEND1=D1-1:IFD1=

0THEND1=7 srem 198

1247 IF(Y=2200ANDM0>=3)OR(Y> 2200)THEND1=D1-1:IFD1=

0THEND1=7 :rem 202

1249 IF(Y=2300ANDM0>=3)OR(Y>2300)THEND1=D1-1:IFD1=

0THEND1=7 :rem 206

1250 RETURN :rem 168

1292 IFM0=1ORM0=3ORM0=5ORM0=7ORM0=8ORM0=10ORM0=12T

HENE1=31 :rem 75

1293 IFM0=4ORM0=6ORM0=9ORM0=11THENE1=30 :rem 115

1294 IFM0=2ANDY/4<>INT(Y/4)THENE1=28 :rem 152

115

Recreation and Education c

u

u

1295 IFM0=2ANDY/4=INT(Y/4)THENGOSUB1400 :rem 132 i i

1296 RETURN : rem 178 I I
1400 IF(Y/100=INT(Y/100))AND(Y/400<>INT(Y/400))THE

NE1=28:GOTO1410 :rem 231

1405 El=29 :rem 232 j
1410 RETURN :rem 166

1600 FORI=1TO20:PRINT#1,CHR$(15)" ";:NEXTI:rem 170

1605 FORK=1TO18:PRINT#1," . " ; " ";" ";:NEXTK:PRINT*1 , j

,"." :rem 231 [_)
1610 RETURN :rem 168

1700 IFM0=1THENJ1=0 :rem 89

1702 IFM0=2THENJ1=31 :rem 144

1704 IFM0=3THENJ1=59 :rem 157

1706 IFM0=4THENJ1=90 :rem 155

1707 IFM0=5THENJ1=120 :rem 199

1709 IFM0=6THENJ1=151 :rem 206

1711 IFM0=7THENJ1=181 :rem 203

1713 IFM0=8THENJ1=212 :rem 201

1715 IFM0=9THENJ1=243 :rem 208

1717 IFM0=10THENJ1=273 :rem 253

1719 IFM0=11THENJ1=304 zrem 251

1721 IFM0=12THENJ1=334 :rem 248

1723 IFY/4<>INT(Y/4)THENGOTO1730 :rem 189

1725 IF(Y/100=INT(Y/100))AND(Y/400OINT(Y/400))THE

NGOTO1730 srem 159

1727 IF(Y/4=INT(Y/4))AND(M0>=3)THENJ1=J1+I:rem 175
1730 RETURN :rem 171

2000 DATA "{2 SPACES}JANUARY"," FEBRUARY11,"

{4 SPACES}MARCH","{4 SPACES}APRIL","

{6 SPACES}MAY" :rem 36
2010 DATA "{5 SPACES}JUNE","{5 SPACES}JULY","

{3 SPACES}AUGUST","SEPTEMBER","{2 SPACES}OCTO
BER" :rem 229

2020 DATA " NOVEMBER"," DECEMBER" :rem 39

2030 DATA "{4 SPACES}{RVS}SUNDAY{OFF}","{4 SPACES}

MONDAY","{3 SPACES}TUESDAY"," WEDNESDAY","

{2 SPACES}THURSDAY" :rem 90 I j
2040 DATA "{4 SPACES}FRIDAY","{2 SPACES}SATURDAY" '—!

:rem 192

u
Program 3. Yearly Calendar

For mistake-proof program entry, be sure to use "Automatic Proofreader" ,

(Appendix C).

3 SYS65517:A=PEEK(781):IFA=40THENPOKE53281,1

:rem 113 . ,

5 OPEN1,4:DIMW4(3):GOSUB1510:1=1:J=2 :rem 128 [
7 PRINT#1,CHR$(14)SPC(13)"HAPPY NEW YEAR ";Y:PRINT

#1 :rem 38

u

Recreation and Education

10 PRINT#1,CHR$(14)SPC(8)"JANUARY"SPC(13)"FEBRUARY

11 :rem 49

12 GOSUB1009 :GOSUB1000 :GOSUB1012 :C0=6 :GOSUB1019 :G0

SUB1000:GOSUB1022 :rem 69

15 M0=I:M8=1:GOSUB292:GOSUB20:GOTO35 :rem 228

20 D=1:GOSUB1050:W2=8-D1:W4(M8)=W2+1:GOSUB321

:rem 123

22 IFD1=7THENGOTO30 :rem 167

25 K)RD=2TOW2:GOSUB1050:GOSUB331:NEXTD :rem 187

30 RETURN :rem 67

35 GOSUB990:M0=J:M8=2:GOSUB292:GOSUB20 :rem 105

44 W3=l :rem 96

45 M0=I:M8=1:GOSUB292:GOSUB200 :rem 60

46 IFW4(2)=9THENPRINT#1,CHR$(15)SPC(1); :rem 20

50 GOSUB991:M0=J:M8=2:GOSUB292:GOSUB200 :rem 151

56 IFW3=1ANDW4(1)>9THENPRINT#1,CHR$(15)SPC(0);

:rem 223

57 IFW3=1ANDW4(1)<10THENPRINT#1,CHR$(15)SPC(1);

:rem 7

58 IFW3=4ANDW4(2)> 30THENPRINT#1,CHR$(15)SPC(0);

:rem 15

65 W3=W3+1 :rem 24

70 IFW3<C0THENGOTO45 :rem 0

71 PRINT*!," " :rem 185

72 IFI=1THENGOTO86 :rem 133

73 IFI=3THENGOTO96 :rem 137

74 IFI=5THENGOTO106 :rem 180

75 IFI=7THENGOTO116 :rem 184

76 IFI=9THENGOTO126 :rem 188

77 IFI=11THENGOTO199 :rem 240

86 PRINT#1,CHR$(14)SPC(9)"MARCH"SPC(16)"APRIL"

:rem 171

88 I=3:J=4:GOTO12 :rem 244

96 PRINT#1,CHR$(14)SPC(10)"MAY"SPC(17)"JUNE"

:rem 11

98 I=5:J=6:GOTO12 :rem 249

106 PRINT*1,CHR$(14)SPC(9)"JULY"SPC(16)"AUGUST"

:rem 14

108 I=7:J=8:GOTO12 :rem 37

116 PRINT*1,CHR$(14)SPC(7)"SEPTEMBER"SPC(13)"OCTOB

ER" :rem 162

118 I=9:J=10:GOTO12 :rem 81

126 PRINT#1,CHR$(14)SPC(7)"NOVEMBER"SPC(13)"DECEMB

ER" :rem 131

128 I=11:J=12:GOTO12 :rem 125

199 PRINT#1,CHR$(15)SPC(1):CLOSE1:END :rem 194

200 D4=W4(M8):D7=W4(M8)+6 :rem 92

205 D=D4:GOSUB1050 :rem 16

210 IFDK>1THENPRINT"WHY D1=";D1 : rem 156

212 IFM8=1AND(D+1)<10THENGOSUB528 :rem 198

117

Recreation and Education

213 IFM8=1AND(D+1)>9THENGOSUB530 :rem 154

214 IFM8=2AND(D+1)<10THENGOSUB428 :rem 200

215 IFM8=2ANDD4>=30ANDD4<=E1THENGOSUB433:GOTO217

:rem 212

216 IFM8=2AND(D+1)>9THENGOSUB430 :rem 157

217 FORD=D4+lTOD7:GOSUB1050:GOSUB331:NEXTD:rem 130

220 W4(M8)=D7+1 :rem 9

225 RETURN :rem 121

292 IFM0=1ORM0=3ORM0=5ORM0=7ORM0=8ORM0=10ORM0=12TH

ENE1=31 :rem 26

293 IFM0=4ORM0=6ORM0=9ORM0=11THENE1=30 :rem 66

294 IFM0=2ANDY/4<>INT(Y/4)THENE1=28 :rem 103

295 IFM0=2ANDY/4=INT(Y/4)THENGOSUB1400 :rem 83

296 RETURN :rem 129

321 IFD1=7THENPRINT#1,CHR$(15)SPC(36);D;:GOTO330

:rem 101

322 IFD1=6THENPRINT#1,CHR$(15)SPC(31);D;:GOTO330

:rem 96

323 IFD1=5THENPRINT#1,CHR$(15)SPC(26);D;:GOTO330

:rem 100

324 IFD1=4THENPRINT#1,CHR$(15)SPC(21);D;:GOTO330

:rem 95

325 IFD1=3THENPRINT#1,CHR$(15)SPC(16);D;:GOTO330

:rem 99

326 IFD1=2THENPRINT#1,CHR$(15)SPC(11);D;:GOTO330

:rem 94

327 IFD1=1THENPRINT#1,CHR$(15)SPC(6);D;:GOTO330

:rem 50

328 PRINT#1,CHR$(15)SPC(3)?D;:GOTO330 :rem 143

329 PRINT#1,CHR$(15)SPC(2);D; :rem 134

330 RETURN :rem 118

331 IFD>E1THENPRINT#1,CHR$(15)SPC(5);:GOTO350

:rem 196

332 IFD1=1ANDD<=9THENPRINT#1,D;:GOTO350 :rem 153

333 IFD1=1ANDD>9THENPRINT#1,D;:GOTO350 :rem 95

335 IFD<=9THENPRINT#1,CHR$(15)SPC(2);D?:GOTO350

:rem 66

336 PRINT#1,CHR$(15)SPC(1);D; :rem 131

350 RETURN srem 120

428 IFD>E1THENPRINT#1,CHR$(15)SPC(9);:GOTO435

srem 211

429 GOTO328 :rem 117

430 IFD>E1THENPRINT#1,CHR$(15)SPC(9);:GOTO435

:rem 204

431 GOTO329 srem 111

433 PRINT#1#CHR$(15)SPC(1);D; :rem 129

435 RETURN :rem 124

528 IFD>E1THENPRINT#1,CHR$(15)SPC(9);:GOTO535

:rem 213

118 u

Recreation and Education

529 GOTO532

530 IFD>E1THENPRINT#1,CHR$(15)SPC(9)

:rem 115

:GOTO535

:rem 206

:rem 109

:rem 149

:rem 133

:rem 125

:rem 3 5

:rem 16

:rem 132

:rem 47

:rem 162

:rem 52

531 GOTO533

532 PRINT#1/CHR$(15)SPC(5);D;:GOTO535

533 PRINT#1,CHR$(15)SPC(4);D;

535 RETURN

990 PRINT#1,CHR$(15)SPC(3);:GOTO992

991 PRINT#1,CHR$(15)SPC(6);

992 RETURN

1000 PRINT#1,CHR$(15)SPC(7);

1001 RETURN

1009 PRINT#1,CHR$(15)SPC(3);

1010 PRINT#1,"{4 SPACES}S{4 SPACES}M{4 SPACESjT
{4 SPACES}W{4 SPACESjT{4 SPACES}F{4 SPACES}S"

:rem 134

1011 RETURN :rem 163

1012 PRINT#1,"{4 SPACES}S{4 SPACES}M{4 SPACESjT

{4 SPACES}W{4 SPACES}T{4 SPACES}f{4 SPACESjS"

:rem 77

1013 RETURN :rem 165

1019 PRINT#1,CHR$(15)SPC(3); :rem 53

1020 PRINT#1,"{4 SPACES}gT§{4 SPACES}gT3{4 SPACES}

gT3{4 SPACES }{CT§{4 SPACES }BT§ {4 SPACES}gT§

{4 SPACES}gT§"; :rem 196

1021 RETURN :rem 164

1022 PRINT#1,H{4 SPACES}&T§{4 SPACES} gT}} {4 SPACES}

gT§{4 SPACES}ET§{4 SPACES}BT§{4 SPACES}|T3

{4 SPACES}gT§" :rem 139

1023 RETURN :rem 166

1050 IFM0=1THENM0==13:Y=Y-1:GOTO1080 : rem 80

1060 IFM0=2THENM0=14:Y=Y-1 :rem 23

1080 M=M0-2 :rem 47

1100 Dl=INT(2.6*M-0.2)+D+Y-1900+INT((Y-1900)/4)

:rem 207

1150 D1=D1+INT(19/4)-2*19 :rem 21

1200 Dl=Dl-INT(Dl/7)*7+l :rem 235

1210 IFM0=4ORM0=9THEND1=D1+1 :rem 135

1230 IFM0=13THENM0=1:Y=Y+1:GOTO1250 :rem 77

1240 IFM0=14THENM0=2:Y=Y+1:D1=D1+1 :rem 210

1244 IFD1=8THEND1=1 :rem 86

1245 IF(Y=2100ANDM0>3)OR(Y>2100)THEND1=D1-1:IFD1=0

THEND1=7 :rem 137

1247 IF(Y=2200ANDM0>3)OR(Y>2200)THEND1=D1-1:IFD1=0

THEND1=7 :rem 141

1249 IF(Y=2300ANDM0>3)OR(Y>2300)THEND1=D1-1:IFD1=0

THEND1=7 irem 145

1250 RETURN :rem 168

1400 IF(Y/100=INT(Y/100))AND(Y/400<>INT(Y/400))THE

NE1=28:GOTO1410 :rem 231

119

Recreation and Education m

1405 El=29 :rem 232

1410 RETURN :rera 166

1510 PRINT" {CLR} {DOWN}{2 RIGHT}THIS IS A PROGRAM":

PRINT"{6 RIGHTjTO SHOW A" :rem 129

1520 PRINT"{3 RIGHT}{PUR}YEARLY CALENDAR{BLU}":PRI

NT"{3 RIGHT}ON THE PRINTER{DOWN}" :rem 208

1530 PRINT"{RIGHT}PLEASE TYPE IN THE":PRINT"

{3 RIGHT}YEAR THAT Y0U":PRINT"{4 RIGHTjWISH T

O SEE" :rem 38

1535 PRINT"{3 RIGHT}(EXAMPLE:{PUR}1984{BLU})

{2 DOWN}":PRINTTAB(6);:INPUTY :rem 195

1570 PRINT"{DOWN}{3 RIGHT}THANK YOU I NOW—":PRINT"

{RIGHT}PLEASE TURN ON THE" :rem 145

1573 PRINT"PRINTER AND THEN TYPE" :rem 9

1575 PRINTTAB(8)"{PUR}OK{BLU}{DOWN}" :rem 105

1580 INPUTR$:rem 212

1585 IFR$o"OK"THEN1570 : rem 44

1590 PRINT"PRINTING{DOWN}":FORI=1TO800:NEXT:RETURN

:rem 194

120

u

u

u

u

u

a Jeff Wolverton

Version by Tim Victor

Your jet climbs upward to avoid the missile, then dives

for the ground. You can't shake the programmed missiles

as they home in on your plane. You'll have to out-

maneuver them or shoot them before they launch. But

you'd better be fast. Joystick required.

The Heat Is On

Heat-seeking missiles are dangerous. They sense the heat from

your jet engine and home in on you. They'll catch you, too—

they're faster than a jet.

Your assignment: Eliminate the heat-seeker base. It's easy

enough to strafe the missiles on the ground, but if any are

launched, you'll have to take evasive action.

Piloting the Jet

Use the joystick to control the movement of the plane. The

controls may seem a little confusing at first. You pull back to

loop upward (counterclockwise) and push forward to loop

down (clockwise), like a real airplane. The jet moves at a con

stant velocity—you can't speed up or slow down. Press the

fire button to launch a missile at the heat seekers on the

ground.

If you manage to eliminate all the heat seekers, you get to

start all over again, with a new group of heat seekers. You

have eight jets to work with—the number remaining is dis

played on the screen, next to the score. To pause the game,

press SHIFT LOCK.

The jets and missiles are sprites (rather than redefined

characters), so the movement is smoother. And the program is

written entirely in machine language, so it plays much faster.

You can fire at heat seekers on the ground. But it does no

good to fire at a moving heat seeker. They're equipped with

an Improved Electronic Evasion (IEE) circuit which makes

them impossible to hit. The only way to get rid of a seeker is

to make it crash into the ground.

When you're being pursued, dive for the ground and pull

up at the last second. Seekers are faster, but they can't turn as

121

Recreation and Education

u

u

quickly. Don't worry about dodging your shots since the plane J |

is protected. If your jet is destroyed, all missiles reappear. •—'
A two-player mode is available as well, but it's not

competitive: Instead, the players take turns flying the plane, i j

trying for the highest possible score. The game reads both joy- '—l
stick ports, so if you're using two joysticks, the inactive player

should put down the joystick to avoid interfering. I j

There are three levels of difficulty: Novice, Intermediate, '—'
and Expert. The higher levels have faster action and tighter

curves. A flight-time bonus of ten points is awarded every few

seconds, just for staying in the air.

Special Instructions

"Heat Seeker" is written in machine language and loads into

the area generally used by BASIC programs. You'll need

"MLX," the machine language entry program (Appendix D), to

enter it, but first you'll have to move the start of BASIC up.

Follow these directions:

1. If you don't have a copy of MLX (Appendix D), type it in

and save to tape or disk.

2. Turn the computer off and then on, and type

POKE642,32:SYS58260. If you omit the POKE and SYS,

you'll get an error in line 550 of MLX.

3. Load MLX and type RUN.

4. Answer these prompts:

Starting Address: 2049

Ending Address: 6470

5. When you've finished typing in Heat Seeker—and have

saved a copy to tape or disk—turn off the computer, then

turn it back on and go to 64 mode. . j

6. The enabling SYS is built into the program. After loading LJ
Heat Seeker, type RUN.

Heat Seeker bj
For mistake-proof program entry, be sure to use "MLX" (Appendix D).

2049 :011,008,001,000,158,050,229 | I
2055 :048,054,049,000,000,000,158 ^J
2061 :076,027,008,000,000,000,124

2067 :000,000,000,000,000,000,019 , ,

2073 :000,000,169,014,141,033,126 M
2079 :208,169,002,141,032,208,023

2085 :160,024,169,000,153,255,030

122 u

n

n

n

n

n

Recreation and Education

n

n

n

n

n

2091 :211,136,208,250,169,002,251

2097 .-141,023,212,169,031,141, 254

2103 :024,212,169,008,141,022,119

2109 :212,169,003,141,008,212,038

2115 :169,061,141,012,212,169,063

2121 :000,141,015,212,141,014,084

2127 :212,169,032,141,019,212,096

2133 :169,127,141,020,212,169,155

2139 :129,141,018,212,169,001,249

2145 :141,003,212,169,025,141,020

2151 :005,212,169,000,141,025,143

2157 :008,032,244,020,032,108,041

2163 :019,169,048,160,006,153,158

2169 -.200,007,136,208,250,140,038

2175 -.021,008,172,248,020,048,132

2181 :018,160,006,153,225,007,190

2187 :136,208,250,169,050,141,069

2193 :198,007,169,049,141,223,164

2199 :007,169,252,141,017,008,233

2205 :169,011,162,004,157,050,198

2211 :017,232,232,224,016,208,068

2217 :247,032,141,013,169,008,011

2223 :141,022,008,141,023,008,006

2229 :076,075,011,169,000,141,141

2235 :066, 017,141,067,017,032,015

2241 :111,013,173,084,017,201,024

2247 :255,208,034,032,074,013,047

2253 :173,212,014,201,008,144,189

2259 :004,201,248,144,020,173,233

2265 :213,014,201,008,144,004,033

2271 :201,248,144,009,032,084,173

2277 :013,032,135,013,076,034,020

2283 :011,173,066,017,240,003,233

2289 :032,145,010,120,169,253,202

2295 :141,000,220,173,001,220,234

2301 :041,128,240,243,169,247,041

2307 :141,000,220,088,169,004,113

2313 :141,018,008,162,000,189,015

2319 :068,017,201,127,144,006,066

2325 :173,018,008,032,122,010,128

2331 :014, 018,008, 232, 224, 006, 017

2337 :208,235,165,161,205,020,003

2343 :008, 240,006,141,020, 008, 206

2349 :032,127,012,173,084,017,234

2355 :016,033,201,192,240,029,250

2361 :201,255,240,025,032,002,044

2367 :012,144,007,169,192,141,216

2373 :084,017,208,013,169,255,047

2379 :141,084,017,169,128,141,243

2385 :212,014,141,213,014,160,067

123

Recreation and Education

2391 :009,169,255,217,074,017,060

2397 :240,013,136,208,248,173,087

2403 :084,017,201,192,208,003,036

2409 :076,018,011,173,031,208,110

2415 :141, 016, 008, 041, 001, 240, 046

2421 :009,032,071,010,032,084,099

2427 :013,076,075,011,173,016,231

243 3 :008,041,002,240,003,032,199

2439 :033,010,173,016,008,041,160

2445 :252,208,003,076,192,008,112

2451 :141,016,008,169,004,141,114

2457 :019,008,170,173,019,008,038

2463 :045,016,008,240,003,032,247

2469 :179,009,014,019,008,232,114

2475 :232,224,016,208,236,076,139

2481 :192,008,045,016,208,240,118

2487 :002,056,036,024,189,000,234

2493 :208,106,056,233,008,176,208

2499 :002,169,000,201,160,144,103

2505 :002,169,144,074,074,074,226

2511 :074,168,185,074,017,201,158

2517 :255,208,072,169,192,153,238

2523 :074,017,169,000,157,034,158

2529 :017,157,035,017,169,226,078

2535 :157,001,208,189,000,208,226

2541 :056,233,016,041,224,024,063

2547 :105,028,157,000,208,032,005

2553 :154,012,138,074,170,169,198

2559 :064,157,066,017,169,255,215

2565 :157,248,007,138,010,170,223

2571 :032,063,013,152,010,010,035

2577 :168,169,096,153,113,007,211

2583 :153,114,007,153,153,007,098

2589 :153,154,007,096,173,084,184

2595 :017,201,255,208,030,032,010

2601 :181,012,032,063,013,169,255

2607 :000,141',036,017,141,037,163

2613 :017,141,084,017,169,226,195 L~J
2619 :141,003,208,169,002,141,211

2625 :040,208,032,084,013,096,026 I |

2631 :169,000,141,034,017,141,061 LJ
2637 :035,017,169,226,141,001,154

2643 :208r169,002,141,039,208,082

2649 :169,001,013,028,208,141,137 I I
2655 :028,208,032,135,013,032,031 ^
2661 :063,013,160,192,132,162,055

2667 :173,031,208,041,002,240,034 i i

2673 :003,032,033,010,164,162,005 I I
2679 :208,242,096,013,017,008,191

2685 :141,017,008,173,018,008,234

124 • " LJ

n

n

n

n

n

Recreation and Education

n

n

n

n

n

2691 :073, 255,045,021,208,141,106

2697 :021,208,169,254,157,250,172

2703 :007,096,173,067,017,201,192

2709 ;028,176,006,169,000,141,157

2715 :066,017,096,173,017,008,020

2721 :208,001,096,169,000,141,008

2727 :066,017,141,067,017,169,132

2733 :004,170,168,045,017,008,073

2739 :208,010,152,010,168,232,191

2745 :232,224,016,208,242,096,179

2751 :141,018,008,013,021,208,088

2757 .-141,021,208,173,018,008,254

2763 :073,255,168,045,017,008,001

2769 :141,017,008,173,016,208,004
2775 :041,001,240,012,173,018,188

2781 .-008,013,016, 208,141,016, 111

2787 .-208,076,238,010,152,045,188
2793 :016,208,141,016,208,173.227

2799 :034,017,157,034,017,173,159

2805 :035,017,157,035,017,173,167

2811 :000, 208,157, 000, 208,173, 229

2817 :001,208,157,001,208,138,202

2823 :074,168,169,000,153,066,125

2829 :017,088,076,090,013,174,215

2835 :021,008, 254,022,008,160, 236

2841 :010,032,181,012,136,208,092

2847 :250,240,041,169,000,141,104

2853 .-034,017,141,036,017,141,167

2859 :035,017,141,037,017,032,066

2865 :063,013,173,028,208,009,031

2871 :001,141,028,208,169,002,09 2

2877 :141,039,208,141,040,208,070

2883 :169,192,133,162,165,162,026

2889 :208,252,120,169,100,141,039

2895 :000, 208,169,100,141,001,186

2901 :208,169,000,141,016,208,059

2907 2169,001,141,021,208,169,032

2913 :240,141,248,007,169,015,149

2919 :141,039,208,169,254,045,191

2925 :028,208,141,028,208,169,123

2931 :000,133,160,133,161,133,067

2937 :162,141,020,008,032,111,083

2943 :019,162,009,169,255,157,130

2949 :074,017,202,016,250,169,093

2955 :000,141,084,017,173,031,073

2961 :208,17 3,030,208,044,248,032

2967 :020,048,028,160, 009,185, 089

2973 :197,007,170,185,222,007,177

2979 :153,197,007,138,153,222,009

2985 :007,136,208,239,169,001,161

125

Recreation and Education

2991 :056, 231,021,008 , 141,021,147

2997 :008,174,021,008,189,022,091

3003 :008, 208, 019,160, 000,044,114

3009 :248,020,048,001,200,185,127

3015 :022,008,208,202,136,016,023 I I
3021 :248,076,188,012,222,022,205 ^
3027 :008,189,022,008,024,105, 055

3033 :049,141,214,007,173,001,034 i i

3039 :220,045,000,220,041,016,253 LJ
3045 :208,246,173,001,220,045,098

3051 :000,220,041,016,240,246,230

3057 :169,000,141,035,017,141,232

3063 :036,017,169,085,141,034,217

3069 :017,088,076,184,008,160,018

3075 :009,185,074,017,201,255,232

3081 :240,013,136,016,246,169,061

3087 :253,045,021,208,141,021,192

3093 :208,056,096,169,192,153,127

3099 :074,017,152,010,010,168,202

3105 :169,096,153,113,007,153,212

3111 :114,007,153,153,007,153,114

3117 :154,007,152,010,010,010,132

3123 :072,144,010,169,002,013,205

3129 :016,208,141,016,208,208,086

3135 :008,169,253,045,016,208,250

3141 :141,016,208,104,024,105,155

3147 :028,141, 002, 208,169, 226,081

3153 :141,003,208,169,247,141,222

3159 : 249,007,169,171,141,037,093
3165 :017,173,031,208,044,017,071

3171 :208,048,251,173,018,208,237

3177 :201,242,208,244,169,007,152

3183 :141,040, 208,169, 002 , 013 ,172

3189 2021,208,141,021,208,173,121

3195 :031,208,024,096,072,138,180

3201 :072,162,005,254,200,007,061

3207 :169,058,221,200,007,208,230 I I
3213 :008,169,048,157,200,007,218 U"J
3219 :202,208,238,104,170,104,149

3225 :096,072,138,072,173,205,141 « i

3231 :007,024,105,005,201,058,047 LJ
3237 :176,005,141,205,007,208,139

3243 : 234, 233 , 010,141, 205 ,007, 233

3249 :162,004,208,207,072,138,200 I I

3255 :072,162,004,208,200,120,181 UJ
3261 :169,049,141,020,003,169,228

3267 :234,141,021,003,088,169,083 (,

3273 :048,141,214,007,032,132,007 [
3279 :255,160,016,185,046,013,114 ^
3285 -.201,064,144,003,056,233,146

u

n

n

n

n

n

Recreation and Education

n

n

n

n

n

3291 :064,153,011,004,169,003,111

3297 :153,011,216,136,208,235,160

3303 :200,140,026,008,173,026,036

3309 :008,208,012,169,045,141,052

3315 :025,004,169,062,141,026,158

3321 :004,208,010,169,060,141,073

3327 :025,004,169,045,141,026,153

3333 :004,173,000,220,045,001,192

3339 :220,074,074,074,176,005,122

3345 :160,001,140,026,008,074,170

3351 :176,005,160,000,140,026,018

3357 :008,074,176,202,032,129,138

3363 :255,173,026,008,240,003,228

3369 :076,027,008,133,198,000,227

3375 :080,076,065,089,032,065,198

3381 :071,065,073,078,063,032,179

3387 :089,032,032,078,169,128,075

3393 :141,011,212,169,129,141,100

3399 :011,212,096,169,255,056,102

3405 :237,003,208,141,015,212,125

3411 :096,169,000,141, 015, 212 , 204

3417 :096,169,024,141,025,008,040

3423 :165,162,141,024, 008,169, 252

3429 :064,141,004,212,169,065,244

3435 :141,004,212,096,165,162,119

3441 :205,024,008,240,016,141,235

3447 :024,008,173,025,008,201,046

3453 :048,176,007,141,001,212,198

3459 :238,025,008,096,169,000,155

3465 :141,001,212,096,076,153,048

3471 :013, 011,000,000,000,000,167

3477 :000,000,000,000,120,169,182

3483 :171,141,020,003,169,013,160

3489 :141,021,003,169,014,141,138

3495 :005,220,088,096,173,000,237

3501 :220,045,001,220,141,146,178

3507 :013,173,034,017,013,035,208

3513 :017,208,003,076,195,014,186

3519 :173,146, 013,041, 016, 208,020

3525 :003,238,066,017,173,146,072

3531 :013,041,003,201,003,208,160

3537 .-003,076,195,014,173,144,046
3543 :013,141,145,013,173,034,222
3549 :017,141,149,013,048,003,080

3555 :169,000,044,169,255,141,237
3561 :150,013,160,008,136,014,202

3567 :145,013,144,250,192,000,215

3573 :240,037,014,149,013,046,232
3579 :150, 013,014,145,013,144,218

3585 :023,024,173,149,013,109,236

127

Recreation and Education

3591 :034,017,141,149 , 013,144,249

3597 :003,238,150,013,173,034,112

3603 :017,016,003,206,150,013,168

3609 :136,208,219,173,146,013,152

3615 :041,002,208,022,056,173,021

3621 :148,013,237,149,013,141,226

3627 :148,013,173,035,017,237,154

3633 :150,013,141,035,017,076,225

3639 :076,014,024,173,148,013,247

3645 :109,149,013,141,148,013,122

3651 :173,035,017,109,150,013,052

3657 -.141,035,017,173,144,013,084

3663 :141,145,013,173,035,017,091

3669 :141,151,013,048,003,169,098

3675 :000,044,169,255,141,152,084

3681 :013,160,008,136,014,145,061

3687 :013,144,250,192,000,240,174

3693 :037,014,151,013,046,152,010

3699 :013,014,145,013,144,023,211

3705 :024,173,151,013,109,035,114

3711 :017,141,151,013,144,003,084

3717 :238,152,013,173,035,017,249

3723 :016,003,206,152,013,136,153

3729 :208,219,173,146,013,041,177

3735 :002,208,022,024,173,147,215

3741 :013,109,151,013,141,147,219

3747 :013,173,034,017,109,152,149

3753 :013,141,034,017,076,195,133

3759 :014,056,173,147,013,237,047

3765 :151,013,141,147,013,173,051

3771 :034,017,237,152,013,141,013

3777 :034,017,076,198,014,076,096

3783 :216,014,008,000,000,000,181

3789 :000,000,000,000,000,000,205

3795 :000,000,000,000,000,173,128

3801 :000,208,056,237,002,208,160

3807 :144,002,024,036,056,106,079

3813 :141,212,014,173,001,208,210

3819 :056,237,003,208,144,002,117

3825 :024,036,056,106,141,213,049

3831 :014,169,003,045,016,208,190

3837 :240,046,201,003,240,042,001

3843 :201,001,240,019,173,212,081

3849 :014,056,233,128,201,165,038

3855 :176,003,024,105,172,141,124

3861 :212,014,076,069,015,173,068

3867 :212,014,024,105,128,201,199

3873 :085,144,003,056,233,172,214

3879 :141,212,014,076,069,015,054

3885 :173,212,014,048,009,201,190

128

Recreation and Education

3891 :085,048,012,056,233,172,145

3897 :144,007,201,165,016,003,081

3903 :024,105,172,141,212,014,219

3909 :173,084,017,048,003,076,214

3915 :012,017,169,000,044,037,098

3921 :017,048,009,044,036,017,252

3927 :016,014,169,001,208,010,249

3933 :044,036,017,016,003,169,122

3939 :002,044,169,003,141,210,156

3945 :014,169,000,044,213,014,047

3951 :048,009,044,212,014,016,198

3957 :014,169,001,208,010,044,051

3963 :212,014,016,003,169,002,027

3969 :044,169,003,141,211,014,199

3975 :173,210,014,056,237,211,012

3981 :014,074,144,008,041,001U67

3987 :141,203,014,076,034,016,119

3993 .-240,018,169,000,056,237,105

3999 :212,014,141, 212, 014,169,153

4005 :000,056,237,213,014,141,058

4011 :213,014,169,000,141,214,154

4017 :014,141,215,014,173,212,178

4023 :014,013,213,014,208,003,136

4029 :076,012,017,173,214,014,183

4035 :024,109,212,014,141,214,141

4041 :014,173,215,014,024,109,238

4047 :213,014,141,215,014,173,209

4053 :214,014,056,237,036,017,019

4059 :077,036,017,016,014,173,040

4065 :215,014,056,237,037,017,033

4071 :077, 037, 017,048, 212, 016,126

4077 :023,173,215,014,056,077,027

4083 :037,017,048,011,172,210,226

4089 :014,204,211,014,208,003,135

4095 :076,012,017,169,000,044,061

4101 :169,001,044,212,014,016,205

4107 :002,073,001,044,213,014,102

4113 :016,002,073,001,172,210,235

4119 :014,204,211,014,240,005,199

4125 :073,001,141,203,014,173,122

4131 :201,014,141,202,014,173,012

4137 :036,017,141,206,014,048,247

4143 :003,169,000,044,169,255,175

4149 :141,207,014,160,008,136,207

4155 :014,202,014,144,250,192,107

4161 :000,240,037,014,206,014,064

4167 :046, 207 , 014, 014, 202 , 014,056

4173 :144,023,024,173,206,014,149

4179 :109,036,017,141,206,014,094

4185 :144,003,238,207,014,173,100

129

Recreation and Education

4191 :036, 017 , 016,003 , 206, 207 , 068

4197 :014,136,208,219,173,203,030

4203 :014, 208,022, 056,173 , 205 , 017

4209 :014,237,206,014,141,205,162

4215 :014,173,037,017,237,207,036

4221 :014,141,037,017,076,151,049

4227 :016,024,173,205,014,109,160

4233 :206,014,141,205,014,173,122

4239 :037,017,109,207,014,141,156

4245 :037,017,173,201,014,141,220

4251 :202,014,173,037,017,141,227

4257 :208,014,048,003,169,000,091

4263 :044,169,255,141,209,014,231

4269 :160,008,136,014,202,014,195

4275 :144,250,192,000,240,037,018

4281 :014,208,014,046,209,014,178

4287 :014,202,014,144,023,024,100

4293 :173,208,014,109,037,017,243

4299 :141,208,014,144,003,238,183

4305 :209,014,173,037,017,016,163

4311 .-003,206,209,014,136,208,223

4317 :219,173,203,014,208,022,036

4323 :024,173,204,014,109,208,191

4329 :014,141,204,014,173,036,047

4335 :017,109,209,014,141,036,253

4341 :017,076,012,017,056,173,084

4347 :204,014,237,208,014,141,045

4353 .-204,014,173,036,017, 237,170

4359 : 209, 014,141, 036, 017 , 076, 244

4365 :015,017,076,108,017,000,246

4371 :000, 000, 000, 000, 000, 000, 019

4377 :000,000,000,000,000,000,025

4383 :000,000,000,000,000,000,031

4389 :000,000,000,000,000,000,037

4395 :000,000,000,000,000,000,043

4401 :000,000,000,000,000,000,049

4407 :000,000,000,000,000,000,055

4413 :000,000,000,000,000,000,061

4419 :000, 000, 000, 000, 000, 000, 067

4425 :000,000,000,000,000,000,073

4431 :000, 000, 000, 000, 000, 000, 079

4437 :001,254,002,253,004,251,082

4443 :008, 247, 016, 239, 032 , 223 , 088

4449 :064,191,128,127,000,000,095

4455 :000,000, 000,000,000,162,009

4461 :000,189,050,017,141,101,095

4467 :017,189,034,017,141,102,103

4473 :017,048,003,169,000,044,146

4479 :169,255,141,103,017,189,233

4485 :035,017,141,104,017,048,239

130

Recreation and Education

4491 -.003,169,000,044,

4497 :141,105,017,160,

4503 :014,101,017,144,

4509 :000,240,066,014,

4515 :046,103,017,014,

4521 :046,105,017,014,

4527 :144,046,024,173,

4533 :125,034,017,141,

4539 :144,003,238,103,

4545 :034,017,016,003,

4551 :017,024,173,104,

4557 :035,017,141,104,

4563 :003,238,105,017,

4569 :017,016,003,206,

4575 :136,208,190,169,

4581 :106,017,189,085,

4587 :016,208,240,003,

4593 :017,024,189,018,

4599 :102,017,157,018,

4605 :000,208,109,103,

4611 :000,208,144,003,

4617 :017,044,103,017,

4623 :206,106,017,044,

4629 :016,014,169,001,

4635 :017,024,189,000,

4641 :088,157,000,208,

4647 :205,106,017,208,

4653 :000,208,201,088,

4659 :206,106,017,056,

4665 :208,233,088,157,

4671 :173,106,017,208,

4677 :086,017,045,016,

4683 :016,208#076,089,

4689 .-085,017,013,016,

4695 :016,208,024,189,

4701 :109,104,017,157,

4707 .-189,001,208,109,

4713 .-201,029,176,002,

4719 :201,250,144,002,

4725 :157,001,208,232,

4731 :016,240,003,076,

4737 :044,067,017,048,

4743 :067,017,162,005,

4749 :017,202,016,250,

4755 :017,048,003,238,

4761 :173,036,017,208,

4767 :037,017,208,008,

4773 :141,249,007,076,

4779 :169,000,141,107,

4785 :036,017,048,012,

169,255,011

008,136,200

250,192,101

102,017,084

104,017,208

101,017,213

102,017,169

102,017,105

017,189,113

206,103,060

017,125,147

017,144,151

189,035,030

105,017,069

000,141,043

017,045,176

238,106,022

017,109,103

017,189,235

017,157,079

238,106,190

016,003,209

106,017,255

141,106,212

208,105,058

169,001,144

019,189,015

144,012,186

189,000,113

000,208,183

012,189,000

208,141,070

018,189,159

208,141,049

019,017,048

019,017,004

105,017,216

169,029,199

169,250,103

232,224,147

110,017,073

003,238,034

254,068,196

173,084,115

084,017,042

013,173,005

169,255,085

001,019,146

017,173,010

201,032,011

131

Recreation and Education

4791

4797

4803

4809

4815

4821

4827

4833

4839

4845

4851

4857

4863

4869

4875

4881

4887

4893

4899

4905

4911

4917

4923

4929

4935

4941

4947

4953

4959

4965

4971

4977

4983

4989

4995

5001

5007

5013

5019

5025

5031

5037

5043

5049

5055

5061

5067

5073

5079

5085

132

: 144, 017,169,004,141,107, 253

:017,076,202,018,201,224,159

:176,005,169,006,141,107,031

:017,173,037,017,048,016,253

: 201,032,144,025,024,169, 034

••008,109,107,017,141,107,190

:017,076,236,018,201,224,223

:17 6,009,024,169,009,109,209

:107,017,141,107,017,173,025

: 107,017,201,004,208,002,008

: 169, 010, 201,006, 208,002 ,071

:169,011,024,105,238,141,169

:249,007,173,034,017,208,175

:013,173,035,017,208,008,203

:169,255,141,248,007,076,139

:105,019,169,000,141,107,046

:017,173,034,017,048,012,068

: 201,035,144,017,169,004,087

:141,107,017,076,050,019,189

:201,224,176,005,169,006,054

: 141,107, 017,173 ,035 , 017 , 025

.-048,016,201,032,144,025,007

:024,169,008,109,107,017,237

:141,107,017,076,084,019,253

:201,224,176,009,024,169,106

:009,109,107,017,141,107,055

:017,173,107,017,201,004,090

:208,002,169,010,201,006,173

:208,002,169,011,024,105,102

:230,141,248,007,076,049,084

:2 34,076,114,019,076,219,077

:020,032,181,255,120,173,126

: 022 , 208,009,016,141, 022 , 025

: 208,169,029,141,024,208,136

:169,007,141,035,208,169,092

:000,141,037,208,169,007,18 7

:141,038,208,169,015,141,087

:039,208,169,147,13 3,254,075

:169,022,133,255,169,128,007

:133,252,169,059,133,253,136

:160,000,177,254,208,024,222

.-230,254,208,002,230,255,072

: 177, 254,170,169,000,145 , 070

: 252,230,252,208,002,230,079

: 253 , 202, 208, 243, 240, 008, 065

:145,252,230,252,208,002,006

:230,253,230,254,208,002,100

:2 30,255,165,25 2,201,064,096

:208,208,169,254,141,028,199

:208,165,001,041,251,133,252

u

u

u

u

u

n

n

n

n

n

Recreation and Education

n

n

n

n

n

5091 :001,160, 000,185 , 000, 220 ,025

5097 :153,000,048,185,000,221,072

5103 :153 ,000, 049, 200, 208, 241, 066

5109 :165,001,009,004,133,001,046

5115 :160,000,185,154,020,153,155

5121 :000,050,200,192,032,208,171

5127 :245,160,000,152,153,000,205

5133 :051,200,192,008,208,248,152

5139 :169,004,133,255,169,216,197

5145 :133,253,169,000,133,254,199

5151 :133,252,168,169,096,145,226

5157 :254,169,008,145,252,200,041

5163 :208,245,230,255,230,253,184

5169 :165,255,201,007,208,235,096

5175 :169,096,153,000,007,169,137

5181 :008,153,000,219,200,192,065

5187 :192,208,241,032,219,020,211

5193 :160,000,169,254,153,250,035

5199 :007,169,002,153,041,208,147

5205 : 200,192,006,208,241,169,077

5211 :255,141,248,007,141,249,108

5217 :007,160,000,185,186,020,143

5223 :201,064,144,003,056,233,036

5229 :064,153,192,007,169,003,185

5235 :153,192,219,200,044,248,147

5241 :020,016,006,192,024,208,075

5247 :228,240,004,192,033,208,008

5253 :222,169,003,153,192,219,067

5259 : 200,192,040, 208, 248, 088, 091

5265 :096,096,066,064,096,096,147

5271 :067 , 065 , 096,000, 000,000,123

5277 :000,000,003,003,003,003,169

5283 :003,011,011,043,043,040,058

5289 :040,000,000,000,000,000,209

5295 :192,192,192,192,192,224,079

5301' : 224, 232 , 232,040,040,080,005

5 307 :076,065,089,069,082,049,105

5313 :058,032,032,032,032,032,155

5319 :032,032,032,083,072, 073,011

5325 :080,083,058,032,032,032,010

5331 :080, 076, 065,089, 069, 082 ,160

5337 .-050,058,160,000,162,004,139

5343 :189,145,020,153,112,007,081

5349 :189,149,020,153,152,007,131

5355 :200,202,208,240,192,040,037

5361 :208,234,096,076,249,020,100

5367 :000,000,169,000,141,247,036

5373 :020,160,110,162,172,169,022

5379 :021,032,073,022,173,247,059

5385 :020,010,170,189,231,004,121

133

Recreation and Education

5391 :073,128,157, 231,004,032 ,128

5397 :086,022,240,030,189,231,051

5403 :004,073,128,157,231,004,112

5409 :152,024,109,247,020,201,018

5415 : 255,208,002,169,000,201,106

5421 :003,208,002,169,001,141,057

5427 :247,020,208,208,173,247,130

5433 :020,024,105,004,141,050,145

5439 :017,105,002,141,052,017,141

5445 :105,003,141,201,014,105,126

5451 :001,141,144,013,169,002,033

5457 :205,247,020,208,003,238,234

5463 :144,013,169,255,141,248,033

5469 :020,160,025,162,026,169,143

5475 :022,032,073,022,173,248,157

5481 :020,010,170,232,232,189,190

5487 :044,005,073,128,157,044,050

5493 :005,032,086,022,240,035,025

5499 :024,109,248,020,189,044,245

5505 :005,073,128,157,044,005,029

5511 :152,024,109,248,020,201,121

5517 :254,208,002,169,255,201,206

5523 :001, 208,002,169, 000,141,156

5529 :248,020,076,103,021,160,013

5535 :021,162,051,169,022,032,104

5541 .-073,022,032,086,022,208,096

5547 : 251, 096,197 ,032, 201,032 ,212

5553 :206,032,058,084,082,069,196

5559 :080, 088, 069, 032 , 044, 069, 053

5565 :084,065,073,068,069,077,113

5571 :082,069,084,078,073,032,101

5577 .-044,069,067,073,086,079,107

5583 :078,032,017, 013,045,084, 220

5589 :067,069,076,069,083,032,097

5595 :079,084,032,078,079,084,143

5601 :084,085,066,032,068,078,126

5607 :065,032,075,067,073,084,115

5613 :083,089,079,074,032,069,151

5619 :083,085,032,017,013,053,014

5625 :056,057,049,032,033,069,033

5631 :084,085,080,077,079,195,087

5637 .-032,044,210,197,203,197,120

5643 :197, 211,032,212,193,197,029

5649 :200,032,032,032,032,032,121

5655 :155,017,147,014,050,032,182

5661 .-049,032,058,083,082,069,146

5667 -.089,065,076,080,032,070,191

5673 :079,032,082,069,066,077,190

5679 :085,078,032,017,013,078,094

5685 :073,071,069,066,032,079,187

134

n

n

n

n

n

Recreation and Education

n

n

n

n

n

5691 :084, 032 , 069,082 , 073,070, 213

5697 :032,083,083,069,082,080,238

5703 :017,013,134,254,133,255,109

5709 :177,254,032,210,255,136,117

5715 :208,248,096,173,000,220,004

5721 :045,001,220,041,028,201,113

5727 :028,208,244,169,000,133,109

5733 :162,169,028,197,162,208,003

5739 :252,173,000,220,045,001,030

5745 :220,041,004,208,003,160,237

5751 : 255 ,096,173 , 000, 220,045,140

5757 :001,220,041,008,208,003,094

5763 :160, 001, 096,173 , 000, 220, 013

5769 :045,001,220,041,016,208,156

5775 :220,160,000,096,000,008,115

5781 :192,000,001,027,192,000,049

5787 :001,063,192,000,001,063,219

5793 :128,000,001,062,000,002,098

5799 :060, 000, 002, 060, 000, 002 , 035

5805 :060,000,002,062,000,002,043

5811 :063,000, 002 ,063,000,002 , 05 3

5817 :063,000,002,062,000,002,058

5823 :062,000,002 , 060,000, 002 , 061

58 29 :060,000,002,056,000,002,061

5835 :048,000,009, 012 , 000, 002 , 018

5841 :028,000,002,060,000,002,045

5847 :060,000,002,124,000,002,147

5853 :124,000,002,252,000,002,089

5859 :252,000,002,252,000,002,223

5865 :124,000,002,060,000,002,165

5871 :060, 000, 002, 060,000,002 ,107

5877 :124,000,001,001,252,000,111

5883 :001,003,252,000,001,003,255

5889 :216,000,001,003,000,027,248

5895 :224,000,002,248,000,002,227

5901 :126,003,224,063,255,252,168

5907 :127,255,255,063,255,255,205

5913 :000,055,255,255,252,255,073

5919 :255,254,063,255,252,007,093

5925 :192,126,000,002,031,000,132

5931 :002,007,000,022,003,000,077

5937 :002,007,000,002,015,000,075

5943 :002,015,000,002,063,000,137

5949 :002,063,128,000,001,015,014

5955 :224,000,001,003,248,000,031

5961 :002,255,128,000,001,063,010

5967 :224,000,001,015,224,000,031

5973 :001,003,248,000,002,248,075

5979 z 000,002,060,000,002,012,167
5985 :000,032,003,252,000,001,129

135

Recreation and Education
u

u

5991 :015,252,000,001,031,240,130 ,

5997 :000,001,031,192,224,127,172 |
6003 :000,001,249,2 52,000,001,106

6009 :127,240,000,001,127,192,040

6015 :000,001,063,000,002,060,253 | I

6021 :000,002,016,000,035,008,194 l—I
6027 :000,002,060,000,002,252,199

6033 :000,001,003,254,000,001,148 .

6039 :015,254,000,001,063,159,131 M
6045 :000,001,254,007,003,248,158

6051 :000,001,015,248,000,001,17 2

6057 :063,240,000,001,063,192,216

6063 :000,032,048,000,002,060,061

6069 :000,002,031,000,002,031,247

6075 :192,000,001,007,240,000,115

6081 :001,007,252,000,001,001,199

6087 :255,000,002,031,192,000,167

6093 :001,007,240,000,001,001,199

6099 :252,000,002,252,000,002,207

6105 :240,000,002,240,000,002,189

6111 :224,000,002,192,000,019,148

6117 :040,040,000,001,040,040,134

6123 :000,001,041,104,000,001,126

6129 :041,104,000,001,009,096,236

6135 :000,001,009,096,000,001,098

6141 :001,064,000,001,001,064,128

6147 :000,001,001,064,000,001,070

6153 .-001,064,000,001,001,064,140

6159 :000,032, 001,064,000, 001,113

6165 :001,064,000,001,001,064,152

6171 :000,001,001,064,000,001,094

6177 :001,064,000,001,009,096,204

6183 :000,001,009,096,000,001,146

6139 :041,104,000,001,041,104,080

6195 :000,001,040,040,000,001,133

6201 :040,040,000,035,170,000,086

6207 :002,170,128,000,001,021,129 i i

6213 :085,000,001,021,085,000,005 1 (
6219 :001,021,085,000,001,170,097

6225 :128,000,001,170,000,046,170

6231 :170,000,001,002,170,000,174 I j

6237 :001,085,084,000,001,085,093 '—»
6243 :084,000,001,085,084,000,097

6249 :001,002,170,000,002,170,194 ,

6255 :000,044,008,000,002,010,175 | j
6261 :000,002,006,128,000,001,254

6267 :021,128,000,001,165,064,246

6273 :000,001,041,080,000,001,252 I j

6279 :010,084,000,002,021,000,252 1—I
6285 :002,005,000,039,005,000,192

136 [J

n

n

n

n

n

Recreation and Education

6291 :002 ,021, 000,001, 010,084, 009

6297 :000,001,041,080,000,001,020

6 303 :165,064,000,001,021,128,026

6309 1000,001,006,128,000,001,045

6315 :010,000,002,008,000,040,231
6321 :032,000,002,160,000,001,116

63 27 :002,144,000,001,002,084,160

6333 :000,001,001,090,000,001,026

63 39 :005,104,000,001,021,160,230

6345 1000,001,084,000,002,080,112

6351 :000,039,080,000,002,084,156

6357 :000,002,021,160,000,001,141

6363 :005,104,000,001,001,090,164

6369 :000,001,002,084,000,001,057

6375 :002,144,000,002,160,000,027

6381 :002,032,000,026,008,128,177

6387 :000,001,010,168,000,001,167
6393 :043,224,000,001,011,224,240

6399 :000,001,011,232,000,001,244
6405 :042,160,000,001,002,032,242

6411 :000, 051,136,000,001,002, 201
6417 :170,000,001,002,174,000,108

6423 :001,002,238,128,010,255,145
6429 :160,010,255,224,011,254,175

6435 :168,011,255,224,042,255,222

6441 :168,043,255,224,043,255,005

6447 :232,011,255,224,047,255,047
6453 :160,042,255,224,047,255,012

6459 :248,043,187,224,010,170,173

6465 :168,255,013,013,013,013,028

n

n

n

n

n 137

u

u

I. j

Todd Heimarck I |

Campaign, advertise, poll regions, take stands on issues, 1 1
and learn about the electoral process in this two-player

national election simulation. The right strategy and a (

good candidate can lead you and your candidate to the 1 I
White House.

Countdown to November

The Democratic delegates are gathered in Moscone Center,

wearing straw hats, carrying balloons and signs. The floor

fights are done. The time has come to nominate.

"Maryland?"

"Mister Chairman—the great state of Maryland, the Free

State, Home of the World Champion Baltimore Orioles, casts

all of its votes for the senator from Arizona."

The chairman pounds his gavel. The din of cheers and

jeers subsides. The convention is deadlocked. And you control

a large block of uncommitted delegates. It's all up to you.

The vice president from Rhode Island has good charisma

and intelligence, but you know his health is poor. The rev

erend from Arkansas is attractive, but a bit conservative. Al

though the senator from Arizona is experienced, he's not very

smart. Perhaps the New Jersey doctor? No, the Ohio senator

has the best combination of personality and issues, plus you'll

get a home region advantage in the populous Heartland.

Now it's the Republicans' turn. Of the five choices, the

woman from South Carolina is the best all-around candidate.

She has high charisma and fundraising appeal, which trans- i i
lates well into television ads. I I

It's time for the candidates and their campaign managers
to hit the trail. < ,

On the Road

The Democratic senator starts with $9 million and 59 health < •

points. He rests two days (to build up his health), then spends I i
two days fundraising. Campaign stops in Illinois and Texas

sway the voters slightly to the Democratic side. , ,

The Republican campaigns in her home state of South I I

138 (J

Recreation and Education

Carolina. She then moves on to North Carolina, Virginia, and

Florida, followed by a couple of days resting.

As the campaign progresses, the Democrat concentrates on

personal appearances in the industrial Northeast, plus forays

into the larger states of Texas, California, and Florida. The
Republican candidate does less actual campaigning, preferring

to spend more time on fundraising to pay for the (expensive)

television ads.

In the crucial eighth week, both candidates rest and

fundraise in preparation for the last-minute campaigning. The
Democrat does a media blitz in the Pacific, Southern, and At

lantic states. The Republican hits the Heartland, Arklatex, and

the Urban Northeast.

Initial returns from New England show the Republicans

sweeping the region, but the large states of New York and

Pennsylvania go Democratic. The Republicans win most states

from Ohio to the Great Plains, but the Democrats pick up the

Southern Atlantic states (except Florida). Texas votes for the

GOP, while the rest of the region goes Democratic. The Rocky
Mountain states are solid Republican. The Democrats win the

Pacific States.

The final results show the Republicans winning six of
nine regions and capturing the presidency, with 315 electoral
votes to the Democrats' 223. Three of the four biggest states

voted Democratic, but Ohio and Illinois (with 47 electoral
votes between them) made the difference. The TV ads in the

last week moved these two key states into the Republican

camp.

Managing the Candidate

Written entirely in machine language, "Campaign Manager"

pits you against an opponent. Each of you manages the cam
paign of your candidate. The player who makes the right de

cisions gets his or her candidate elected.
You have nine weeks to campaign. Each week you plan

your moves and enter them via the menu on the itinerary.

You have two defensive moves, resting and fundraising, and
two ways to gain votes, campaigning (personal appearances)

and advertising on television.

At the beginning of each turn you see a medium-resolution

map of the U.S. which indicates which way each state is lean

ing. The MAP option allows you to move a cursor around the

139

Recreation and Education

country, to identify which states are which. If the Republicans

are ahead, the state is red. Democratic states are cyan (light

blue). If you're using a black-and-white television, the Repub
lican states are the darker ones. You may notice that states
occasionally switch back and forth, even though neither candi

date campaigned or advertised there. This indicates that the

voters in that state are split down the middle, and because of

slight errors in polling, seem to be leaning one way or the other.

Since you have only 63 days (nine weeks), you have

enough time to campaign in each state once or twice. But in

terms of electoral votes, California (with 47) is far more im

portant than some of the smaller, three-vote states like North

Dakota or Vermont. Generally, it makes sense to campaign

more heavily in the ten biggest states, sometimes called
"megastates."

State Electoral Votes

CA 47

NY 36

TX 29

PA 25

IL 24

OH 23

FL 21

MI 20

NJ 16

NC 13

Winning the election requires 270 electoral votes (of a

possible 538). The ten biggest states account for 254, just 16
short of a majority.

At the beginning of the campaign, each state has a large

pool of undecided voters. As the game progresses, they make

up their minds and the pool diminishes. It's possible, but un
likely, for all of a state's voters to decide before the end of the

campaign. You would have to go to the state at least eight

times before the undecided points were used up.

Each state has a built-in bias toward one party, based on
past elections for president, senator, governor, and so on. The

District of Columbia, for example, is staunchly Democratic, so

the Democratic candidate will automatically get seven cam
paign points there, compared with a Republican's two.

Since the Republicans have won four of the last five elec
tions (including landslide victories in 1972 and 1984), you

140

Recreation and Education

might expect them to begin the game with a huge advantage.

But if you look at nonpresidential elections, you will find a lot

of states that elect Democratic governors, senators, and repre

sentatives and then vote for a Republican president. And a lot
of those basically Democratic states were split by third-party

campaigns (Wallace in 1968, Anderson in 1980).

To even things up, and make the game more playable, the

Democrats begin with an electoral vote advantage of 282 to

256, although four of the megastates (Pennsylvania, Ohio,

Florida, and North Carolina) are barely leaning to the Demo

cratic side. The Republicans have the advantage of beginning

with 29 of the 51 states (since DC has three electoral votes, it

counts as a state). Most of the states west of the Mississippi

are Republican, while the Democrats have most of the indus

trial Northeast and the South.

In addition to the natural political leanings, each state be

lieves certain things about five general issues:

1. Unemployment/Inflation

2. Poverty/Crime

3. Agriculture

4. Education

5. Defense

(The issues are based on census reports, almanacs, and so

forth.) A very urban state might be conservative on crime, for

example, but not care much about agriculture. Each candidate

has certain stands on these issues. When you campaign or ad

vertise in a state, you can get up to three extra campaign

points for each issue if you agree with the citizens there.

Finally, the candidate you choose has a campaign effec

tiveness rating based on charisma and intelligence. This factor

translates to votes each time you campaign in a state.

Starting the Bandwagon

To start the game, choose which party will go first. You might

want to flip a coin, the winner choosing either a party, or the

first turn or second turn. In testing, we found that the second

player has the very slight advantage of making the last move.

Next, decide if one of you will start out as the campaign man

ager for the president running for a second term. Being incum

bent gives you some extra campaigning strength and is not

recommended if you want an even game.

141

Recreation and Education

Note that all choices can be made with a joystick in either

port. Move the pointer to a menu item and press the fire but

ton twice to make your choice. If you don't own a joystick,

use I, J, K, and L for up, left, down, and right respectively.

Press M in place of the fire button.

Players then pick which candidate will represent their

party. Five randomly chosen candidates are available. To the

right of the candidate's stats is the YES/NO counter. Before

making your choice, pick NO for each possibility until you

have seen all five. They will cycle around again so you can

make your choice.

Although the heart of the game is the actual campaign, in

some ways the convention is more important. Nominate a ter

rible candidate and you'll spend most of your campaign trying
to catch up.

A candidate's personality greatly affects the outcome of

the election. In the lower-left corner you'll see a list of five

attributes, each associated with a number from one (worst) to

eight (best). With a couple of exceptions, the ideal candidate is

the one with straight eights.

First is charisma (CHAR), which is personal magnetism,

panache, the ability to influence and excite people. This is the

most important personality trait because it is part of both cam

paign effectiveness and advertising effectiveness.

Stamina (STAM) rates your candidate's health. A can

didate with low stamina will have to rest frequently to regain

health and strength.

Intelligence (INTL) adds points to campaign effectiveness

and last-minute campaigning.

Experience (EXPR) helps you with fundraising. If your

candidate has lots of experience, he or she has more contacts . ,

and connections for raising money. Since experience comes i 1
with age, it counts against your health, although stamina

counts for more health points. I ,

Appeal (APPL) also contributes to fundraising appeals. I 1
But if you have maximum appeal (eight) you may be tainted

by your affiliations with special interest groups, and there is a , .

backlash when you advertise. It's best to have an appeal of six I I
or seven.

The candidates' attributes are generated by adding three , »

random numbers, so candidates are more likely to have a mid- I 1
die number (four or five) than one of the extremes.

142 u

Recreation and Education

The personality traits translate into these five campaign

factors:

Campaign Effectiveness (CHAR*2 + INTL): the key fac

tor in campaign stops.

Strength/Health (STAM*4 + 9 - EXPR): determines the

effectiveness of a rest day.

Fundraising Appeal (EXPR*3 + APPL): determines how

much money can be raised in a day.

TV Ads (APPL OR 8 + CHAR): translates into votes

when advertising.

Last-Minute Campaigning (INTL + STAM): wins last-

minute votes to your side after the ninth week.

The significance of each factor is discussed later.

Taking a Stand

Next to the personality factors are the candidate's stands on

various issues. You see five issues, each with a sliding scale of

one (at the far left, representing liberal) to six (conservative). A

Republican who wants to get tough on crime, for example,

will have a rank of six. A Democrat who wants to solve the

unemployment problem will have a rating of one.

Candidates will range from two to five on the issues of

agriculture and education. On the other three issues, the

Democrats will have stands from one to four; the Republicans

will go from three to six.

You will generally get more votes with middle-of-the-road

beliefs. Look for a candidate with twos or threes if you're the

Democrat. Fours and fives are best for the Republican. The

exceptions are agriculture and education, where you do best

with a three or a four.

Common sense tells you which issues are important in

most states. Agriculture is a major issue in the farming states.

Your stand on defense makes a difference in states with a lot

of military-related industry.

The candidate's personality is generally more crucial than

the stands on issues. If you have a lot of charisma, intelli

gence, and appeal, it doesn't matter that you may have radical

views on one or two issues.

If you have five very bad candidates, press RUN/STOP-

RESTORE and try again. It's not much fun to run a campaign

you are destined to lose.

143

Recreation and Education

Strategies

After the nominees have been chosen, the first week begins.

You may notice that some states have changed colors. That's

because each nominee gets the equivalent of campaigning

once in each state. Some people make up their minds before

the campaign even starts. If one candidate is much more

charismatic or happens to hit the right issues, a state may

jump over to his or her side. In addition, each gets a home

state and home region advantage.

You should develop a strategy. If your appeal and cha

risma are strong, concentrate on television ads. If your can

didate has a strong anticrime stance, visit the more urban

states. At the very least, you should plan to visit each of the

megastates.

You begin in your home state where it is traditional to

campaign once (but not twice). And the first week usually

means some fundraising and resting as purely defensive

moves.

Under the week's itinerary are two numbers representing

money and health. At the beginning of each week, your trea

surer tells you how much money you have, up to a maximum

of $25 million. Your personal physician figures out how

healthy you are. At most you'll have 255 health points.

If you fall below $4 million any time during the week,

television advertising will be useless until you replenish the

campaign coffers. If you have less than one million, you won't

be able to pay the pollster (the bar graph to the left of the

map will disappear). When your bank account falls to zero,

the campaign is paralyzed until you sponsor a fundraiser. You

can't even afford to pay your doctor or staff.

It takes time away from campaigning, but you have to

raise money once in a while. Each fundraising point (expe

rience times three plus appeal) is worth $200,000.

Campaigning takes a lot out of you, so you have to occa

sionally take a day to rest and relax. When you decide to catch

some Z's, the itinerary will be filled with (you guessed it) Z's.

Each day of rest adds double your strength factor, plus cam

paign effectiveness, plus the number of states you are winning

to the health you have. A high campaign effectiveness gives

you optimism; you rest better. If you're behind, you lose sleep

worrying about it. Resting two days in a row gets you 16 extra

health points.

144

Recreation and Education

There are two reasons to keep your health up. First, when

you campaign in a state, you get an extra campaign point for

every 32 health points you possess. Second, if your health

falls below eight you look haggard and stutter; campaigning

does you no good.

Polls

The treasurer counts dollars, the doctor counts your health,

and your pollster counts votes.

The pollster does three things. First, you get a bar chart

that shows how many electoral votes would go to the Demo

crats and Republicans if the election were held at that time.

You can see it to the left of the map. the gray bar marked U

represents undecided states too close to call. Second, you have

a map of the U.S. to show you, at a glance, which way each

state is leaning. Republican states are red; Democratic states

are blue. These first two services are part of the pollster's con

tract and cost you nothing. Of course, if your money drops

lower than $1 million, you have to stop paying the pollster; all

you get is the map.

The third service is the most important—regional polls.

To get a poll of all states in a region, move to POLL on the

main menu and press the fire button twice. You'll see a bar

chart showing which way each state in the region is leaning,

from one (half a character wide) to four (two characters). The

poll reflects the political situation at the beginning of the

week; whatever campaigning you have planned for the week

is not included. A state with a thin bar can usually be taken

with a single campaign stop.

Don't use polls in the first couple of weeks, because most

states start out fairly even and you won't learn much. But poll

ing can be a powerful tool toward the end of the game. If

New York is firmly committed to you, forget about further ef

forts in that state. And if you find a whole region weakly

supporting your opponent, you can hit them with TV ads and

score a few dozen electoral votes.

Regional polls cost $100,000 and are not available if you

begin the week with less than $1 million.

More Campaigning Options

The final character (although transparent) in your entourage

is the jet pilot. Your jet can carry you on short hops within a

145

Recreation and Education

region for almost nothing. But if you travel to a new region,

you shell out $100,000 for fuel, maintenance, and so on. As

long as you're in a region, you might as well stay there a few

days to avoid a lot of travel expenses. Again, you don't ac

tually move to a new region until you have campaigned in

one of the states. You can use the travel option to conduct re

gional polls; you'll pay $100,000 for the poll, and another

$100,000 if you decide to campaign in a region. If you travel

to a region to poll and decide not to campaign, you won't be

charged for traveling.

Benjamin Franklin once said that after three days, guests

and fish begin to smell. The same principle applies to

campaigning.

Campaign once and you gain some votes. Stay for a sec

ond day, and the voters of a state are flattered; you gain a

couple of bonus votes. But stick around for a third or fourth

day and you have overstayed your welcome. Do not campaign

in a state more than two days in a row.

Each state begins with 255 undecided voter points. Your

main goal is to use campaigning and television advertising to

sway the undecided. And you have to maintain your health

and money.

The effects of a personal appearance can vary. You get up

to three points for each issue (if the state agrees with you),

one point for every 32 health points, and up to 24 for your

campaign effectiveness (intelligence plus double charisma),

and a two-point bonus if it's your second day in the state.

If your money is down to zero, you get no campaign

points. If your health is below eight, you get a single vote.

Each campaign stop decreases your health and money. It's

possible to run out in the middle of the week, making each

succeeding visit ineffective until you rest or raise money. Let's

say you go to Connecticut and impress 23 of the 255

undecideds. The pool of available voters is reduced by that

number. Half of 23 (11 points) is charged against your health.

Half again (5 points) times $100,000 is subtracted from your

money. In addition, each state has some people who don't

agree with you, so a quarter of your total (five points) goes to

your opponent as a reaction against your speech. If you had

previously been in a different region, travel expenses of

$100,000 are subtracted.

146

Recreation and Education

Television advertising is a little different. It affects every

state in the region and quickly swings voters to your side. To

advertise, first travel to the region and make at least one cam

paign stop to establish your presence.You can then place the

cursor on TV ADS and press the fire button twice. After

campaigning once, advertise as much as you like.

Unlike resting and campaigning, the effects of advertising

do not accumulate from day to day. If you advertise two days

in a row, you don't get bonus points. Advertising does grow in

strength from week to week, however, and will be more effec

tive toward the end of the campaign.

If you flood the region with ads, it's possible to bring a

whole section of the country to your side. But it is costly. In

each state, advertising credits you with half your campaign

effectiveness, half your TV ad effectiveness rating, points for

issues, plus two times the week number (in the seventh week,

for example, you get 14 extra campaign points).

The cost is the usual one-fourth of campaign points

gained, plus double the TV ad effectiveness. The large regions

can cost a lot. Going on TV in the Atlantic States (all nine) or

in the Rocky Mountains (eight states) can easily deplete your

treasury.

On the day you plan to advertise, you must have at least

$4 million. If you don't, you waste the day and gather no new

votes. So, if you begin the week with $5 million and campaign

in six states, it's likely you'll have less than $4 million by Sat

urday. Your ad campaign will do you no good.

There is one more item you can choose: RECONSIDER. If

you make a mistake, this option wipes your itinerary clean so

that you can start the week anew. Your choices are not perma

nent until you fill out the seventh day and press the fire but

ton. (If you pull down on the joystick, your slate will be

wiped clean—a quicker way to reconsider.)

The ninth week is usually the most hectic. If you spon

sored some fundraisers in the eighth week, you will want to

spend a lot on TV advertising in the regions where you have a

chance. Polls can tell you which states are most vulnerable.

After both candidates have finished their last week of

campaigning, a couple of things happen. The last region to be

visited by a candidate gives a few extra votes to him or her.

And the last-week routine goes into action, as all the

147

Recreation and Education

undecided voters make up their minds. Both candidates get

their last-minute campaigning points (intelligence plus stam

ina) added to each state in the country. The undecided voters

are split between the candidates, and ties are resolved (based

on the built-in bias to one party or the other).

Main Menu Command Summary

CAMPAIGN-—allows you to inake a personal
appearance in one of the states bf the region you're

visiting. Results depend on campaign effectiveness,

built-in jparty bias of the state, health, and i|£ues« Does

not work if you have zero health or money, or, if all un

decided voters have been claimed. Gains votes; costs

health and money.

. TV ADS—blankets the region with.adveirtising. Re

duces health and costs a lot of-money, but can quickly

deliver a big chunk of votes. Net votes based on TV

advertising effectiveness, campaign effectiveness, and is

sues. Does not work if you have less than $4 million.
FUNDRAIS—raises money for your campaign based

on fundraising ability. Takes a day, gains no votes, costs

titi / V' "y \titiing., / . , \ . ;.. V;\; * ,; y \ .; v

; REST—builds up your health points, according to

strength factor. Extra points if you rest two days, in a

row. Gams nonew votes, costs nbthing.;; ;

'. MAP--~moyes the cursor abound the; Map,prints the

state name, electoral votes, and,region number. For

information only; costs nothing. ; : : ,,

POLL—provides a bar graph showing which way

the states in the region are leaning. Costs $100,000 (im

mediately). Not available if money falls below $1
million. :

RECONSIDER—erases the week's itinerary if you

make a mistake.

TRAVEL—takes you to a new region of the country.

Costs $100,000 (not charged to you until you actually

campaign there).

U

148

Recreation and Education

Election Night Coverage

The map is drawn for the final time. The final bar chart ap

pears to the left, which should indicate at a glance which can

didate won. (If you want a suspenseful end to the game, hide

the bar chart.) Beginning with region 1 (New England), the

electoral votes are displayed, with region totals below.

The winner is the candidate with the most electoral votes.

There is a slight chance that there will be a tie, in which case

you'd have to flip a coin. If you want to play again, press

RUN/STOP-RESTORE and type RUN.

Finally, here are a few rules of etiquette which help to

make a fairer game. First, if you're playing with two joysticks,

try to avoid interfering with your opponent's choices. This is

like rudely interrupting during a debate. Remember, the joy

stick routine reads both joysticks.

Second, when you have filled out your itinerary and the

prompt PRESS FIRE BUTTON TO CONTINUE appears, let

your opponent study what moves you made, and he or she

can then press the fire button. It is a courtesy to let your

opponent know where you will be so that you don't acci

dentally meet on the campaign circuit.

Third, since polls cost money, they should be kept pri

vate. When the other player is taking a poll, avoid looking at

the screen. Let's hope we all learned from Watergate.

Special Instructions for Entering Campaign

Manager

Since the program is written entirely in machine language,

you must use the "MLX" machine language editor (Appendix

D) to enter it. Before loading MLX, you have to protect part of

BASIC memory by typing the following line:

POKE 642,50: SYS 58260

You'll then see the usual startup message, but you'll notice

less than the normal 39K RAM. Next, load MLX, using a start

ing address of 2049 and ending address of 9518, and begin

typing. The program uses about 10K, which was crunched

down to about 7K to make typing it in a little easier. Since it's

such a long program, you may want to enter it in parts. If you

choose to do so, make sure you follow the MLX instructions

for loading and saving, and always enter the above POKE

149

Recreation and Education

and SYS before loading MLX. The newest version of MLX

has a numeric keypad, which should save you some time.

When you have finished typing Campaign Manager, make

sure to save it to tape or disk (maybe a couple of backup

copies as well). Turn your computer off and then on, go to 64

mode, load the program, and type RUN.

Campaign Manager

See special instructions in article before entering this program. For mistake-

proof program entry, be sure to use "MLX" (Appendix D).

2049 :011,008,010,000,158,050,238

2055 :048,054,049,000 000,000,158

2061 :032,110,012,032,241,012,196

2067 :032,122,017,032,108,031,105

2073 :069,250,204,204,204,204,136

2079 :2 20,192,000,000,000,005,192

2085 :229,255,167,255,255,255,173

2091 :255,178,030,128,000,000,122

2097 :219,095,250,031,255,255,130

2103 :255,255,143,045,000,004,245

2109 :245,037,255,255,031,255,115

2115 :255,255,241,197,250,076,061

2121 :255,248,095,095,255,255,252

2127 2 255,255,143,191,175,245,063

2133 :255,115,037,245,255,255,223

2139 :255,252,204,254,250,247,017

2145 :035,076,032,015,247,255,245

2151 :255,255,255,250,254,162,254

2157 :250,047,018,000,095,021,028

2163 :255,255,227,255,092,252,171

2169 :204,060,204,000,000,127,204

2175 :175,255,255,255,250,255,036

2181 :204,060,207,176,000,001,013

2187 :242,255,255,191,255,239,040

2193 :175,250,247,224,000,000,017

2199 :000,001,051,127,255,255,072

2205 :242,255,255,240,000,000,125

2211 :079,160,128,000,119,255,136

2217 :047,225,035,127,000,000,091

2223 :013 , 255,000,096,000,007,034

2229 :176,000,000,000,126,000,227

2235 :000,211,058,000,112,000,056

2241 :002,000,000,000,001,250,190

2247 :000,016,000,160,000,000,119

2253 :000,000,000,000,000,001,206

2259 :032 , 000, 000, 000, 000,000, 243

2265 :032,227,008,032,041,009,054

2271 :032,078,009,096,173,014,113

150

n
Recreation and Education

n

n

n

n

n

n

n

n

2277

2283

2289

2295

2301

2307

2313

2319

2325

2331

2337

2343

2349

2355

2361

2367

2373

2379

2385

2391

2397

2403

2409

2415

2421

2427

2433

2439

2445

2451

2457

2463

2469

2475

2481

2487

249 3

2499

2505

2511

2517

2523

2529

2535

2541

2547

2553

2559

2565

2571

:220,

:165,

:169,

:133,

:132,

:136,

:254,

:239,

:001,

: 141,

:041,

:208,

:133,

:169,

:009,

:216,

:039,

:016,

:003,

:056,

:162,

:251,

:032,

:208,

:041,

:160,

:251,

:251,

:133,

:168,

:096,

:056,

:032,

:009,

:009,

:208,

:200,

:169,

:169,

:144,

:001,

:185,

:136,

:009,

:032,

:032,

:032,

: 087,

:255,

:169.

041,254,

001,041,

209,133,

254,160,

253,177,

208,249,

169,055,

165,001,

173,014,

014,220,

240,009,

096,169,

254,169,

208,133,

169,024,

133,253,

177,251,

249,096,

056,169,

169,015,

000,142,

138,032,

114,009,

243,096,

003,168,

003,145,

230,251,

230,251,

252,169,

170,224,

189,025,

106,074,

181,009,

032,145,

232,208,

004,009,

192,025,

000,145,

026,101,

002,230,

003,002,

212,009,

016,247,

064,141,

247,009,

185,010,

210,255,

010,169,

169,171,

163,032,

141,014

251,133

252,169

000,132

251,145

198,252

197,254

009,004

220,009

173,024

014,141

057,133

080,133

253,032

133,251

198,254

145,253

169,255

240,141

141,001

000,056

117,009

232,224

234,074

185,000

251,136

230,251

096,169

000,133

188,208

008,072

074,145

104,041

251,032

224,201

192,145

240,001

251,168

251,133

252,096

014,160

153,032

173,017

017,208

032,110

096,169

160,003

144,032

032,210

101,010

,220,095

,001,059

,057,206

,251,153

,253,184

,198,220

,208,122

,133,054

,001,183

,208,039

,024,246

,252,186

,251,041

,068,146

,169,044

,160,253

,136,046

,141,233

,002,180

,056,013

,134,075

,138,016

,016,220

,074,016

,056,058

,016,066

,230,036

,054,162

,251,055

,001,082

,074,105

,251,097

,015,035

,181,053

,032,059

,251,224

,096,175

,024,184

,251,108

,012,175

,004,141

,208,250

,208,254

,096,254

,010,165

,147,114

,032,173

,210,139

,255,073

,169,143

151

Recreation and Education

2577 :167,032,210,255,162,015,090

2583 : 160,003,032,082,010,169,223

2589 :170,032,210,255,169,154,251

2595 :032,210,255,169,160,032,125

2601 :101,010,169,144,032,210,195

2607 :255,169,165,032,210,255,109

2613 :202,208,223,160,003,032,113

2619 :082,010,169,174,032,210,224

2625 :255,169,172,032,101,010,036

2631 :169,173,032,210,255,169,055

2637 :146,032,210,255,096,169,217

2643 :013,032,210,255,169,032,026

2649 :032,210,255,136,208,250,156

2655 :169,018,032,210,255,096,107

2661 :160,025,032,210,255,136,151

2667 :208,250,096,169,004,133,199

2673 :254,169,044,133,253,169,111

2679 :054,133,252,169,000,133,092
2685 :251,169,000,168,162,015,122

2691 :177,251,208,007,032,160,198

2697 :010,202,208,246,096,145,020
2703 :253,200,208,240,041,063,124

2709 :170,189,192,055,041,192,220

2715 :017,247,145,247,096,024,163
2721 :169,026,101,251,133,251,068

2727 :144,002,230,252,169,040,236

2733 :024,101,253,133,253,144,057

2739 :002,230,254,160,000,096,153

2745 :169,015,133,249,169,216,112

2751 :133,254,169,044,133,253,153
2757 :133,247,169,004,133,248,107

2763 :169,034,133,252,169,173,109

2769 :133,251,160,024,177,251,181

2775 :201,000,240,043,133,002,066
2781 :041,063,170,189,192,055,163

2787 :041,015,145,253,169,192,018

2793 :036,002,240,025,048,008,080

2799 :189,120,034,032,147,010,003
2805 :208,015,080,007,169,192,148
2811 :032,155,010,208,006,189,083

2817 :121,034,032,147,010,234,067

2823 :136,016,203,169,025,024,068
2829 :101,251,133,251,144,002,127

2835 :230,252,198,249,208,001,133

2841 :096,169,040,024,101,247,190

2847 :133,247,144,002,230,248,011

2853 :169,040,024,101,253,133,245

2859 :253,144,165,230,254,208,017

2865 :161,173,018,208,072,101,014

152

Recreation and Education

2871 :162,074,074,074,168,104,199

2877 :229,162,074,141,032,208,139

2883 :140,036,208,096,031,067,133

2889 :065,077,080,065,073,071,248

2895 :078,032,077,065,078,065,218

2901 :071,069,082,013,000,162,226

2907 :018,160,008,024,032,240,061

2913 .-255,162,000,189,071,011,017

2919 : 240,006,032, 210, 255, 232,054

2925 :208,245,160,005,169,001,129

2931 :141,134,002 ,169, 018,032,099

2937 :210,255,162,040,173,134,071

2943 :002,073,003,141,134,002,226

2949 :169,163,032,210,255,202,140

2955 :208,250,136,208,235,169,065

2961 :146,076,210,255,169,146,123

2967 :133,254,169,000,133,253,069

2973 :162,000,232,236,137,036,192

2979 :240,047,189,137,036,133,177

2985 :249,041,007,133,247,165,243

2991 :249,074,074,074,074,041,249

2997 :007,133,248,160,002,032,251

3003 :230, 011,165,247,160,001,233

3009 :032,230,011,169,255,160,026

3015 :005,145,253,169,005,024,032

3021 :101,253,133,253,076,159,156

3027 :011,169,000,170,168,185,146

3033 :068,034,157,000,120,232,060

3039 : 232, 200,192 ,052 , 208, 243 ,070

3045 :096,145,253,200,200,145,244

3051 :253,096,169,145,133,248,255

3057 :169,000,133,247,230,247,243
3063 :133,254,170,162,000,189,131
3069 :189,036,133,249,074,074,240

3075 :074,074,133,250,189,240,195

3081 :036,133,251,074,074,133,198

3087 :252,074,074,133,253,160,193
3093 :004,162,004,181,249,072,181

3099 :041,003,024,105,001,145,090

3105 :247,104,074,074,041,003,064
3111 :024,105,003,010,010,010,201
3117 .-010,017,247,145, 247,136,079
3123 : 202 , 016, 226, 230, 247,160,108

3129 :002,169,015,049,247,170,197

3135 :232,138,010,010,010,010,217
3141 :133,002,138,005,002,145,238
3147 :247,136,208,235,230,247,098

3153 :230,247,230,247,230,247,232
3159 :230,254,166,254,224,051,242

3165 :208,157,096,169,255,141,095

153

Recreation and Education

3171 ;015,212,169,128,141,018,014

3177 :212,141,024,212,096,162,184

3183 :064,169,000,157,000,143,132

3189 :157,064,143,202,208,247,114

3195 :169,128,141,138,002,169,102

3201 :008,032,210,255,032,149,047

3207 :011,032,250,026,032,108,082

3213 :027,032,128,023,032,139,010

3219 :009,032,030,028,032,217,239

3225 :008,032,237,011,032,217,178

3231 .-009,032,237,009,169,158,005

3237 :032,210,255,032,090,011,027

3243 :032,030,020,032,050,011,090

3249 :032,026,031,173,107,031,065

3255 :240,245,032,217,009,032,190

3261 :096,012,162,004,160,005,116

3267 :032,163,028,141,021,143,211

3273 :141,035,037,162,007,160,231

3279 :009,032,163,028,162,000,089

3285 :160,000,201,000,240,007,053

3291 :041,001,240,002,202,200,137
3297 :136,142,015,143,140,079,112

3303 :143,032,046,017,208,003,168
3309 :076,157,012,096,169,000,235

3315 :141,036,037,169,128,133,119

3321 :247,169,143,133,248,169,078
3327 :005,133,002,160,005,162,210
3333 :003,173,027,212,041,003,208

3339 :149,249,202,208,246,169# 210
3345 1001,037,250,024,105,001,179

3351 :101,251,101,252,145,247,096
3357 :136,208,228,160,006,173,172

3363 :027,212,041,003,170,192,168
3369 :008,240,010,192,009,240,228

3375 :006,173,021,143,240,002,120

3381 :232,232,232,138,145,247,255

3387 : 200,192 , 011, 208, 226,173 ,045
339 3 :027,212,041,063,240,249,129
3399 :201,052,176,245,145,247,113
3405 :200,173,015,143,145,247,232

3411 :208,009,173,027,212,041,241

3417 :007,010,010,145,247,032,028
3423 :220,014,198,002,208,157,126

3429 :160,000,140,045,017,169,120

3435 :128,133,247,169,143,133,036
3441 :248,173,045,017,201,005,034

3447 :176,236,170,240,006,032,211

3453 : 220,014,202,208,250,238,233

3459 :045,017,160,005,177,247,014

154

Recreation and Education

3465 :153,01s,143,136,208,248,016

3471 :160, 006,162,000,177, 247 ,127

3477 :157,027,143,200,232,224,108

3483 :005,208,245,177,247,141,154

3489 :012,143,141,010,143,200,042

3495 :177,247,141,013,143,032,152

3501 :228,014,032,238,014,208,139

3507 :003,076,106,013,032,046,199

3513 :017,240,169,162,000,134,139

3519 :248,160,006,024,032,240,133

3525 :255,173,021,143,205,035,005

3531 :037,240,002,162,012,134,022

3537 :247,189,158,020,240,006,045

3543 :032,210,255,232,208,245,117

3549 :169,063,032,210,255,166,092

3555 :247,160,010,169,044,157,246

3561 :158,020,232,136,208,249,212

3567 :032,228,255,240,251,201,166

3573 :013,240,039,201,032,240,242

3579 :008,201,065,144,239,201,085

3585 :091,176,235,230,248,166,123

3591 :248,224,011,240,019,164,145

3597 :247,153,158,020,041,063,183

3603 :157,005,004,230,247,169,063

3609 :047,157,006,004,208,208,143

3615 :032,038,015,032,046,017,211

3621 :240,149,173,015,143,041,030

3627 :002,024,109,016,143,010,091

3633 :109,018,143,141,022,143,113

3639 :173,017,143,010,010,105,001

3645 :009,056,237,019,143,141,154

3651 :023,143 ,173 ,027, 212 ,041,174

3657 :031,010,109,023,143,105,238

3663 :032,141,008,143,173,015,079

3669 :143,041,004,109,019,143,032

3675 :010,109,019,143,109,020,245

3681 :143,141,024,143,010,109,155

3687 :018,143,105,048,141,009,055

3693 :143,173,020,143,009,008,093

3699 :109,016,143,141,025,143,180

3705 :173,015,143,041,007,024,012

3711 :109,018,143,109,017,143,154

3717 :141,026,143,162,000,173,010

3723 :012,143,232,221,127,036,142

3729 :176,250,142,032,143,142,006

3735 :011,143,142,033,143,032,143

3741 :132,027,173,021,143,205,090

3747 :035,037,240,003,076,241,027

3753 :012,173,015,143,041,003,044

3759 :141,129,143,032,243,027,122

155

Recreation and Education

3765 :169,000,141,129,143,174,169

3771 :033,143,189,127,036,168,115

3777 :202,189,127,036,170,202,095

3783 :032,247,027,032,132,027,184

3789 :173,021,143,205,035,037,051

3795 :208,213,032,250,026,032,204

3801 :108,027,096,169,016,024,145

3807 :101,247,133,247,096,032,055

3813 :237,009,032,205,021,032,253

3819 :038,015,096,169,015,133,189

3825 :253,169,022,133,254,169,217

3831 :029,133,167,162,240,160,114

3837 .-016,032,184,020,173,021,187

3843 :143 , 240, 013 ,162 ,010,189, 248

3849 :117,020,041,063,157,156,051

3855 :006,202,208,245,173,021f102

3861 :143,205,035,037,240,003,172

3867 :238,125,006,162,020,160,226

3873 :021,032,163,028,096,174,035

3879 :021,143,189,040,037,032,245

3885 :210,255,169,017,133,253,058

3891 :169,025,133,254,169,000,033

3897 :133,167,162,081,160,016,008

3903 :032,184,020,169,031,032,019

3909 :210,255,169,020,133,253,085

3915 :169,025,133, 254,169,009,066

3921 :133,167,162,171,160,016,122

3927 :032,184,020,162,019,232,224

3933 :160,015,024,032,240,255,051

3939 :162,049,138,032,210,255,177

3945 :232,224,055,208,247,056,103

3951 :032,240,255,224,024,208,070

3957 :230,173,012,143,010,170,087

3963 :189, 220,033,041,063,141,042

3969 -171,006,232,189,220,033,212

3975 :041,063,141,172,006,162 , 208

3981 :018,160,002,024,032,240,10s (
3987 :255,174,021,143,189,040,201 ^
3993 :037,032,210,255,174,013,106

3999 :143,048,014,160,004,189,205 i i

4005 :049,016,032,210,255,232,191 LJ
4011 :136,208,246,240,013,162,152

4017 :000,189,228,016,240,006,088

4023 :032,210,255,232,208,245,085 I I
4029 :169,158,133,247,169,020,061 L—J
4035 .-133,248,160,000, 173,021,162

4041 .-143,205,035,037,240,002,095 , ,

4047 :160,012,177,247,240,006,025 LJ
4053 :032,210,255,.200,208,246,084

4059 :173,021,143,240,032,162,222

u

Recreation and Education

n

n

n

n

n

4065 :010,189,117,020,041.063,153

4071 :157,248,006,202,208,245,017

4077 :169,020,133,253,169,022,235

4083 :133,254,169,009,133,167,084

4089 :162,210,160,016,032,184,245

4095 :020,162,004,160,160,189,182

4101 :016,143,009,048,153,039,157

4107 :007,152,056,233,040,168,155

4113 :202,016,240,162,004,160,033

4119 :160,152,024,125,027,143,142

4125 :168,185,046,007,009,064,252

4131 :153 ,046 ,007,152 , 056, 233 ,170

4137 :040,041,248,168,202,016,244

4143 :232,096,083,069,078,032,125

4149 :071,079,086,032,082,069,216

4155 :080,032,082,069,086,032,184

4161 :032,077,083,032,068,082,183

4167 :062,032,086,061,080,032,168

4173 :071,069,078,032,027,044,142

4179 :000,027,044,000,255,044,197

4185 :068,069,077,079,067,082,019

4191 :065,084,073,067,032,067,227

4197 :065,078,068,073,068,065,006

4203 :084,069,032,044,044,044,168

4209 :044,044,044,000,255,156,144

4215 :047,032,067,072,065,082,228

4221 :032,088,000,25 5,047,032,067

4227 :083 , 084,065,077,032,088,048

4233 .-000,255,047,032,073,078,110

4239 :084,076,032,088,000,255,166

4245 :047,032,069,088,080,082,035

4251 :032,088,000,255,047,032,097

4257 :065,080,080,076,032,088,070

4263 :000,000,000,000,255,031,197

4269 :085,078,069,077,080,000,050

4275 :255,080,079,086,084,089,084

4281 :000,255,065,071,082,073,219

4287 :067,000,255,069,068,085,223

4293 :067,078,000,255,068,070,223

4299 :069,078,083,000,000,000,177

4305 :000,255,031,073,078,070,204

4311 :076,078,000,255,067,082,005

4317 :073,077,069,000,000,000,184

4323 :000,157,080,082,069,083,186

4329 :073,068,069,078,084,032,125

4335 :000,255,151,080,076,065,098

4341 :089,069,082,032,091,049,145

4347 :000,255,068,069,077,079,031

4353 :067,082,065,084,073,067,183

4359 :000,255,067,079,078,086,060

157

Recreation and Education

4365 :069,078,084,073,079,078,21s

4371 :000,010,166,000,005,032,232

4377 :000,255,030,032,047,032,165

4383 :078,079,000,255,032,047,010

4389 :032,089,069,083,000,000,054

4395 :000,000,000,173,005,004,225

4401 :072,169,000,133,162,133,206

4407 :198,169,032,197,162,208,253

4413 :252,162,023,189,098,017,034

4419 :041,063,157,004,004,202,026

4425 :016,245,032,026,031,17 3,084

4431 :107,031,240,248,162,023,122

4437 :104,157,004,004,202,016,060

4443 :250,173,107,031,041,016,197

4449 :096,058,070,073,082,069,033

4455 :066,085,084,084,079,078,067

4461 :032,084,079,032,067,079,226

4467 :078,084,073,078,085,069,070

4473 :058,173,035,037,205,021,138

4479 :143,208,011,238,036,037,032

4485 :173,036,037,201,010,208,030

4491 :001,096,032,237,009,032,034

4497 :205,021,032,038,015,169,113

4503 :007,141,000,143,032,244,206

4509 :020,162,005,160,012,032,036

4515 :163,028,170,208,003,076,043

4521 :003,018,202,208,003,076,167

4527 :147,018,202,208,003,076,061

4533 :197,018,202,208,003,076,117

4539 :239,018,202,208,006,032,124

4545 :043,029,076,155,017,202,203

4551 :208,008,032,022,019,208,184

4557 :205,076,003,018,202,208,149

4563 :014,032,046,017,240,197,245

4569 :173,011,143,141,032,143,092

4575 :076,141,017,202,240,003,134

4581 :076,155,017,076,200,019,004 |
4587 :162,000,169,128,024,109,059 ^
4593 :032,143,168,169,000,133,118

4599 :253,169,014,133,254,169,215 i i

4605 :030,133,167,076,184,020,095 LJ
4611 :032,235,017,174,032,143,124

4617 :189,127,036,202,056,253,104

4623 :127,036,072,105,003,168,014 I
4629 :162,003,032,163,028,201,098 ^
4635 :000,208,007,032,043,029,090

4641 :104,076,006,018,133,002,116 j t

4647 :104,197,002,176,003,076,085 LJ
4653 :155,017,198,002,174,032,111

158 u

Recreation and Education

4659 :143,202,189,127,036,024,004

4665 :101,002,174,000,143,157,122

4671 :000,143,133,251,134,252,208

4677 :032,250,019,169,030,032,089

4683 :210,255,165,251,010,170,112

4689 :189,220,033,032,210,255,252

4695 :189,221,033,032,210,255,003

4701 :169,032,032,210,255,189,212

4707 :000,120,072,170,169,000,118

4713 :032,205,189,104,201,010,078

4719 :176,005,169,032,032,210,223

4725 :255,169,032,032,210,255,046

4731 :169,152,032,210,255,173,090

4737 :032,143,009,048,032,210,091

4743 :255,206,000,143,208,003,182

4749 :076,007,020,076,006,018,088

4755 :174,000,143,169,240,157,006

4761 :000,143,134,252,032,250,196

4767 :019,169,129,032,210,255,205

4773 :162,000,189,112,021,240,121

4779 :006,032,210,255,232,208,090

4785 :245,173,032,143,009,048,059

4791 :032,210,255,206,000,143,005

4797 :208,003,076,007,020,076,067

4803 :155,017,174,000,143,169,085

4809 :255,157,000,143,134,252,118

4815 :032,250,019,169,154,032,095

4821 :210,255,162,000,189,125,130

4827 :021,240,006,032,210,255,215

4833 :232,208,245,206,000,143,235

4839 :208,003,076,007,020,076,109

4845 :155,017,174,000,143,169,127

4851 :000,157,000,143,134,2 52,161

4857 .-032,250,019,169,155,032,138

4863 :210,255,169,090,162,005,122

4869 :032,210,255,202,208,250,138

4875 :206,000,143,208,003,076,135

4881 :007,020,076,155,017,173,209

4887 : 009 ,143 , 201, 010,176,001, 051

4893 :096,206,009,143,032,153,156

4899 :033 ,174, 032,143 ,189,127 , 221

4905 :036,133,248,202,189,127,208

4911 :036,133,247,169,150,133,147

4917 :249,169,004,133,250,169,003

4923 :047,133,251,133,252,166,017

4929 :247,228,248,208,003,076,051

4935 :046,017,165,249,024,105,165

4941 :040,133,249,144,002,230,107

4947 :250,189,000,144,133,253,028

4953 :133,254,162,004,006,254,134

159

Recreation and Education

4959 : 202 , 208, 251, 006 , 254,176,168

4965 :028,169,037,133,251,006,213

4971 .-254,176,020,169,032,133,123

4977 :251,006,254,176,012,169,213

4983 :037,133,252,006,254,176,209

4989 :004,169,032,133,252,160,107

4995 :000,169,032,145,249,200,158

5001 :165,251,145,249,200,165,032

5007 :252,145,249,169,047,133,114

5013 :251,133,252,006,253,176,196

5019 :028,169,042,133,252,006,017

5025 :253,176,020,169,032,133,176

5031 :252,006,253,176,012,169,011

5037 :042,133,251,006,253,176,010

5043 :004,169,032,133,251,160,160

5049 :007,165,251,145,249,200,178

5055 :165,252,145,249,230,247,199

5061 :076,058,019,032,103,023,252

5067 :174,032,143,232,232,232,224

5073 :160,031,024,032,240,255,183

5079 :169,058,032,210,255,162,077

5085 :003,160,013,032,163,028,108

5091 :201,000,208,006,032,043,205

5097 :029,076,200,019,201,010,000

5103 :208,003,076,155,017,141,071

5109 :032,143,076,155,017,169,069

5115 :022,056,229,252,170,160,116

5121 :032,024,032,240,255,096,168

5127 :032,046,017,208,003,076,133

5133 :217,017,032,104,025,032,184

5139 :250,026,032,108,027,032,238

5145 :132,027,076,122,017,169,056

5151 :000,133,253,169,010,133,217

5157 :254,169,030,133,167,162,184

5163 :049,160,020,076,184,020,040

5169 :255,018,144,160,213,211,026

5175 :197,160,202,207,217,189,203 | I
5181 :160,000,255,160,211,212,035 '—'
5187 : 201,195,203,160,207,210,219

5193 :160,000,255,201,202,203,070 , ,

5199 :204,146,205,018,160,203,247 LJ
5205 :197,217,211,000,255,018,215

5211 :155,080,076,091,049,032,062

5217 :080,065,082,084,089,146,131 I I

5223 :000,255,031,068,069,077,091 '—'
5229 :079,067,082,065,084,073,047

5235 :067,000,255,082,069,080,156 ,

5241 2085,066,076,073,067,065,041 ||
5247 :078,000,255,018,155,032,153

5253 :07 3,078,067,085,077,066,067

160 u

n
Recreation and Education

n

n

n

n

n

n

n

n

5259 :069,078,084,146,000, 255 ,003

5265 :031,032,032,032,078,079,173

5271 :078,069,032,032,032,000,138

5277 :255,032,080,076,065,089,242

5283 :069,082,032,049,032,000,171

5289 :255,032,080,076,065,089,254

5295 :069,082,032,050,032,000,184

5301 :000,000,000,134,251,132,186

5307 :252,208,011,200,152,024,010

5313 :101,251,133,251,144,002,051

5319 :230,252,166,253,228,254,046

5325 :208,001,096,230,253,164,133

5331 :167,024,032,240,255,160,065

5337 .-000,162,255,177, 251,016,054

5343 :016, 200,177,251,240,217,044

5349 :032,210,255,202,016,250,170

5355 :240,209,200,208,241,170,223

5361 :200,208,237,169,000,133,164

5367 :253,169,014,133,254,169,215

5373 :146,032,210,255,169,144,18 5

5379 :032,210,255,169,030,133,064

5385 :167,162,072,160,021,032,111

5 391 :184,020,174, 021,143,189, 234

5397 .-037,037,041,063,141,071,155

5403 :004,173 , 036 , 037 , 009,048, 078

5409 :141,078,004,173,032,143,092

5415 :010,010,010,024,109,032,234

5421 :143,170,173,032,143,009,203

5427 :048,141,150,004,160,000,042

5433 :189,037,036,041,063,240,151

5439 :007,153,152,004,232,200,043

5445 :208,242,096,009,058,000,170

5451 :255,032,032,032,087,069,070

5457 :069,075,032,032,032,000,065

5463 :009,058,000,009,032,000,195

5469 :009,032,000,255,031,032,196

5475 :032,067,065,077,080,065,229

5481 :073,071,078,000,255,032,102

5487 :032,084,086,032,065,068,222

5493 :083,032,032,15 7,000,25 5,164

5499 :032,032,070,085,078,068,232

5505 :082,065,073,083,000,255,175

5511 :032,032,082,069,083,084,005

5517 :032,032,032,032,000,255,012

5523 :018,155,032,077,065,080,062

5529 :032,032,032,032,032,032,089

5535 :000,255,032,080,079,076,169

5541 :076,032,032,032,032,032,145
5547 :000,255,146,150,082,069,105

5553 :067,079,078,083,073,068,113

161

Recreation and Education

5559 :069,082,000,255,084,082,243

5565 :065, 086,069, 076, (332 ,032,037

5571 :032,032,154,000,009,032,198

5577 :000,000,000,000,169,014,128

5583 :133,253,169,025,133,254,150

5589 :169,028,133,167,169,030,141

5595 :032,210,255,162,034,160,048

5601 :023,032,184,020,169,043,184

5607 :141,076,006,169,046,141,042

5613 :140,007,173,036,037,208,070

5619 :011,169,020,162,008,032,133

5625 :210,255,202,208,250,096,190

5631 :174,008,143,169,000,032,013

5637 .-205,189,162,023,160,030,006

5643 :024,032,240,255,169,030,249

5649 :032,210,255,174,009,143,072

5655 :224,100,176,022,169,032,234

5661 :032,210,255,224,010,176,168

5667 :013,032,210,255,032,210,019

5673 :255,138,009,048,032,210,221

5679 :255,096,169,000,032,205,036

5685 :189,173,184,007,141,185,164

5691 :007,162,006,173,027,212,134

5697 :041,015,201,010,176,247,243

5703 :009,048,157,185,007,202,167

5709 :208,239,169,060,141,184,054

5715 :007,141,188,007,032,122,068

5721 :022,169,052,133,248,169,114

5727 :000,133,247,168,162,002,039

5733 :149,252,202,016,251,032,235

5739 :166,022,169,032,162,002,148

5745 :149,249,202,016,251,032,244

5751 :211,022,096,169,017,133,255

5757 :252,169,000,133,251,166,072

5763 :2 51,228,252,208,001,096,143

5769 :160,000,024,032,240,255,080

5775 :162,000,189,040,037,032,091 I I

5781 :210,255,169,037,032,210,038 U-J
5787 :255,232,224,003,208,240,037

5793 :230,251,076,130,022,166,012 .

5799 :247,232,232,134,247,200,179 LJ
5805 :196,248,208,001,096,189,087

5811 :000,120,074,133,002,185,181

5817 :000,144,162,002,041,238,004 I j

5823 :240,006,202,041,014,240,166 LJ
5829 :001,202,181,252,024,101,190

5835 :002,176,216,149,252,076,050 .

5841 :166,022,169,004,133,248,183 M
5847 :169,000,133,247,160,002,158

5853 :169,015,133,002,185,037,250

162 u

Recreation and Education

5859

5865

5871

5877

5883

5889

5895

5901

5907

5913

5919

5925

5931

5937

5943

5949

5955

5961

5967

5973

5979

5985

5991

5997

6003

6009

6015

6021

6027

6033

6039

6045

6051

6057

6063

6069

6075

6081

6087

6093

6099

6105

6111

6117

6123

6129

6135

6141

6147

6153

:037

:016

:247

:248

:002

:149

:145

:198

:169

:074

:076

:255

:042

:032

:087

:000

:255

:044

:048

:048

:032

:072

:169

:000

:254

:000

:096

:000

:250

:253

:032

:004

:200

:162

:230

:208

:255

:145

:247

:145

:247

:145

:175

:000

:202

:162

:025

:054

:001

:200

,041,

,246,

,252,

,247,

,002,

,037,

,074,

,007,

,042,

,032,

,084,

,000,

,255,

,042,

,000,

,060,

,048,

,072,

,032,

,028,

,133,

,169,

,160,

,169,

,133,

,133,

,133,

,241,

,189,

,232,

,008,

,253,

,003,

,145,

,247,

,200,

,247,

,200,

,247,

,023,

,162,

,208,

,001,
,145,

,025,

,189,

,232,

063,145

169,040

247,169

248,160

016,024

176,013

202,136

016,218

149,249

041,001

023,011

032,083

077,000

000,255

255,042

042,032

032,083

255,092

048,048

048,000

069,065

000,000

032,210

253,169

030,133

128,032

128,133

247,169

249,169

254,168

023,162

037,036

224,008

172,054

165,253

076,225

247,200

200,169

165,253

200,169

232,189

208,247

032,002

004,145

250,076

160,000

247,200

208,244

089,025

236,089

,247,136,128

,024,101,061

,000,101,112

,002,162,174

,117,252,063

,181,249,253

,016,239,224

,096,072,103

,104,074,033

,009,036,004

,035,000,183

,000,255,192

,255,042,235

,042,032,238

,032,084,043

,070,000,204

,000,011,234

,032,048,032

,048,060,135

,255,154,126

,076,084,233

,000,000,201

,255,169,198

,015,133,044

,167,162,006

,184,020,133

,248,169,046

,000,133,047

,000,133,049

,162,001,092

,000,160,001

,145,247,047

,208,245,000

,025,136,214

,201,010,007

,023,169,117

,169,028,207

,042,145,117

,009,048,097

,031,145,118

,037,036,128

,200,076,060

,024,169,136

,247,200,219

,017,024,244

,189,054,039

,232,236,052

,096,162,018

,145,247,187

,025,208,231

163

Recreation and Education

6159 :244,096,169,001,133,253,143

6165 :133,254,208,009,230,253,084

6171 :165,253,201,010,208,001,097

6177 :096,230,248,169,009,024,041

6183 :101,249,133,249,169,000,172

6189 :101,250,133,250,032,241,028

6195 :023,166,249,160,004,165,050

6201 :253,073,048,145,247,200,255

6207 :200,189,037,036,240,006,003

6213 :145,247,232,200,208,245,066

6219 :166,253,189,127,036,133,211

6225 :250,172,054,025,136,165,115

6231 :254,010,170,169,048,133,103

6237 :251,133,252,169,255,145,018

6243 :247,200,169,028,145,247,111

6249 :200,169,042,145,247,200,084

6255 :169,154,145,247,200,165,167

6261 :254,201,010,144,007,230,195

6267 :252,233,010,076,118,024,068

6273 :101,251,133,251,165,252,002

6279 :145,247,200,165,251,145,008

6285 :247,200,169,032,145,247,157

6291 :200,169,151,145,247,200,235

6297 :189,220,033,145,247,200,163

6303 :232,189,220,033,145,247,201

6309 .-200,202,169,032,145,247,136

6315 : 200,169,048,133, 251,133, 081

6321 :252,189,000,120,201,010,181

6327 :144,007,230,252,233,010,035

6333 :076,181,024,101,251,133,187

6339 .-251,165,252,145,247,200,175

6345 :165,251,145,247,200,169,098

6351 :032,145,247,200,169,000,232

6357 :145,247,200,230,254,165,174

6363 :254,197,250,240,003,076,215

6369 :086,024,032,002,024,165,046

6375 :250,133,254,166,253,202,209

6381 :189,127,036,133,002,232,188

6387 :189,127,036,056,229,002,114

6393 : 133,002,169,008,229,002,024

6399 :133,002,048,038,169,009,142

6405 :145,247,200,169,035,145,178

6411 :247,200,169,000,145,247,251

6417 :200,198,002,048,019,169,141

6423 :009,145,247,200,169,032,057

6429 :145,247,200,169,000,145,167

6435 :247,200,198,002,016,237,167

6441 :169,000,162,004,145,247,000

6447 :200,202,208,250,076,025,240

6453 :024,035,009,035,000,255,155

164

u

u

u

u

u

u

u

u

u

u

Recreation and Education

n

n

n

n

n

6459

6465

6471

6477

6483

6489

6495

6501

6507

6513

6519

6525

6531

6537

6543

6549

6555

6561

6567

6573

6579

6585

6591

6597

6603

6609

6615

6621

6627

6633

6639

6645

6651

6657

6663

6669

6675

6681

6687

6693

6699

6705

6711

6717

6723

6729

6735

6741

6747

6753

:032

:032

:044

:144

:160

:014

:078

:032

:000

:001

:000

:026

:025

:076

:010

:169

:203

:127

:143

:142

:104

:025

:026

:133

:010

:251

:252

:173

:005

:169

:168

:010

:096

:002

:133

:143

:074

:026

:026

:096

:208

:026

:209

:032

:232

:240

:255

:056

,032,032

,032,032

,000,255

,205,193

,160,160

,255,028

,085,032

,000,000

,032,143

,143,206

,096,174

,143,208

,032,208

,016,023

,166,027

,109,009

,255,141

,025,172

,072,162

,036,176

,240,009

,011,143

,032,207

,032,093

,076,115

,251,198

,010,024

,133,253

,169,145

,008,143

,169,001

,003,024

,177,251

,143,016

,197,002

,032,087

,002,165

,173,008

,136,208

,173,022

,160,006

,185,026

,007,169

,208,238

,253,208

,087,026

,138,209

,240,024

,096,160

,229,255

,032,

,032,

,018,

,208,

,160,

,042,

,032,

,173,

,169,

,000,

,000,

,009,

,026,

,.106,

,173,

,143,

,009,

,009,

,000,

,250,

,142,

,206,

,025,

,026,

,025,

,251,

,101,
,169,

,133,

,041,

,133,

,109,

,133,

,003,

,208,

,026,

,002,

,143,

,252,

,143,

,136,

,143,

,003,

,170,

,007,

,208,

,253,

,101,
,005,

,176,

032,032,251

000,009,202

154,037,067

160,160,123

146,000,101

077,069,062

032,032,130

011,143,204

008,141,229

143,208,0-45

143,189,210

032,177,182

076,115,102

176,003,230

024,143,240

144,002,054

143,076,180

143,240,097

232,221,033

236,011,241

032,143,120

009,143,071

032,233,056

032,140,033

133,002,068

165,251,178

251,133,232

146,133,026

254,096,252

248,208,030

255,096,130

021,143,202

255,173,128

230,255,146

009,169,176

169,255,072

141,010,216

160,005,145

032,087,052

032,087,008

208,001,068

209,253,193

032,087,049

202,138,019

169,001,146

224,232,114

208,217,056

255,133,054

177,251,011

004,198,247

165

Recreation and Education

6759 :255 ,208,243,145,251,165,090

6765 :255,170,172,021,143,200,046

6771 :024,113,251,144,002,169,050

6777 :255,145,251,152,073,003,23 2

6783 .-168,138,074,074, 113,251,177

6789 :144,002,169,255,145,251,075

6795 :096,070,255,208,001,096,097

6801 :173,008,143,056,229,255,241

6807 :176,002,169,000,141,008,135

6813 :143,070,255,208,001,096,162

6819 :173,009,143,056,229,255,004

6825 :176,002,169,000,141,009,154

6831 :L43,096,160,000,162,015,239

6837 :173,021,143,240,002,162,154
6843 : 240,134,251,162,052,202,204

6849 :208,003,132,002,096,189,055

6855 :000,144,037,251,240,243,090

6861 :200,208,240,165,002,024,020

6867 :109,023,143,010,109,022,115
6873 :143,109,008,143,144,003,255

6879 :024,169,255,141,008,143,195

6885 :173,010,143,208,010,169,174

6891 :016,109,008,143,176,003,178

6897 z141,008,143,169,000,141,075

6903 :010,143,096,169,146,133,176

6909 :252,169,000,133,251,169,203

6915 :000,170,2 40,007,160,005,073

6921 :230,251,136,208,251,232,037

6927 :224,052,208,001,096,160,244

6933 :001,177,251,200,056,241,179

69 39 .-251,208,006,032,088,027,127

6945 :076,007,027,176,010,234,051

6951 :073,255,024,105,001,160,145
6957 :128,208,002,160,008,133,17 2

6963 :253,132,254,041,224,240,171

6969 :002,208,020,070,254,165,008 i ,

6975 :253,041,016,240,002,208,055 U
6981 :010,070,254,165,253,041,094
6987 :008,208,002,070,254,165,014

6993 :254,157,000,144,076,007,207 I I
6999 :027,173,000,144,041,240,200 '—'
7005 :240,004,169,001,208,002,205

7011 :169,016,141,000,144,157,214 . ,

7017 :000,144,096,162,052,202,249 | |
7023 :240,018,189,000,144,041,231

7029 :015,240,004,169,067,208,052

7035 :002,169,130,157,192,055,060 I I

7041 :208,235,096,173,021,143,237 "—'
7047 :072,162,063,189,064,143,060

166 u

Recreation and Education

7053

7059

7065

7071

7077

7083

7089

7095

7101

7107

7113

7119

7125

7131

7137

7143

7149

7155

7161

7167

7173

7179

7185

7191

7197

7203

7209

7215

7221

7227

7233

7239

7245

7251

7257

7263

7269

7275

7281

7 287

7293

7299

7305

7311

7317

7323

7329

7335

7341

7347

:157#

:157,

:157,

:104,

:096,

:144,

:127,

:127,

:173,

:025,

:165,

:032,

:093,

:189,

:237,

:025,

:162,

:132,

:197,

:143,

:032,

:093,

:032,

:096,

:000,

:000,

:157,

:157,

:200,

:010,

:001,

:018,

:252,

:012,

:250,

:169,

:004,

:002,

:208,

:002,

:034,

:009,

:031,

:169,

:032,

:032,

128,143

064,143

000,143

073,001

173,009

067,174

036,133

036,133

036,037

143,133

249,197

023,028

026,032

027,173

025,143

143,176

009,143

000,160

250,230

250,240

134,255

044,026

026,076

207,025

162,000

063,202

170,168

000,063

064,063

192,007

031,157

063,157

031,157

141,248

249,007

157,039

169,001

001,141

141,000

001,208

208,169

169,000

031,136

141,007

006,031

031,169

096,169

004,141

250,030

250,030

,189,

,189,

,202,

,141,

,143,

,032,

,250,

,249,

,010,
,255,

,250,

,070,

,140,

,009,

,144,

,002,

,076,

,052,

,249,

,019,

,032,

,070,

,251,

,032,

,169,

,208,

,185,

,185,

,232,

,208,

,000,

,002,

,064,

,007,

,162,

,208,

,141,

,016,

,208,

,169,

,056,

,160,

,016,

,031,

,169,

,000,

,000,

,000,

,133,

,133,

000,143,133

128,143,203

208,235,074

021,143,130

201,040,059

143,189,152

202,189,090

198,249,151

024,109,066

230,249,206

240,014,036

255,032,135

026,076,094

143,056,048

005,237,248

169,001,235

115,025,234

134,249,232

165,249,244

174,129,240

023,028,108

255,032,214

027,096,074

038,026,127

000,157,101

250,169,159

010,031,093

018,031,245

232,232,009

236,185,063

063,157,227

063,185,030

063,169,067

169,253,129

007,169,056

202,016,217

029,208,131

208,169,043

169,050,173

054,141,065

141,003,192

004,153,057

250,169,229

169,173,186

054,141,179

141,008,001

133,253,075

208,152,073

252,138,240

251,141,248

167

Recreation and Education

7353 .-001,208,169,012,141,039 ,243

7359 :208, 173,016,208,009,001,038

7365 :141,016,208,173,021,208,196

7371 :009,001,141,021,208,032,103

7377 :026,031,173,107,031,240,049

7383 :248,041,019,240,244,170,153

7389 :041,016,208,039,138,041,192

7395 :001,240,017,173,001,208,099

7401 :197,251,240,227,198,253,063
7407 :056,233,008,141,001,208,118

7413 :208,217,173,001,208,197,225

7419 :252,240,210,230,253,024,180

7425 :105,008,141,001,208,208,160

7431 :200,169,000,141,039,208,252
7437 :032,026,031,173,107,031,157

7443 :240,248,041,016,208,007,011

7449 :169,012,141,039,208,208,034

7455 :176,173,021,208,041,254,136

7461 :141,021,208,165,253,096,153
7467 :162,007,189,002,031,149,071

7473 :247,202,016,248,169,001,164

7479 :141,040,208,173,021,208,078

7485 :009,002,141,021,208,032,218
7491 :026,031,173,107,031,240,163

7497 :248,106,176,020,106,176,137

7503 :067,106,176,110,106,176,052
7509 :005,106,176,005,144,231,240

7515 :076,240,029,076,231,030,005

7521 :165,248,240,221,173,003,123

7527 :208,056,233,004,141,003,236

7533 :208,198,248,165,248,106,002

75 39 :176,003,076,036,030,165,089

7545 :253,233,026,133,253,176,171
7551 :002,198,254,165,251,056,029

7557 :233,025,133,251,144,003,154
7563 :076,036,030,198,2 52,076,039

7569 :036,030,165,248,201,029,086
7575 :240,169,173,003,208,024,200 '—'
7581 :105,004,141,003,208,230,080

7587 :248,165,248,106,176,123,205 , ,
7593 :165,253,105,026,133,253,080 M
7599 :144,002,230,254,165,251,197

7605 :024,105,025,133,251,144,095
7611 :104,230,252,076,036,030,147
7617 :165,247,208,003,076,066,190 '—'

7623 :029,173,002,208,056,233,132

7629 :004,141,002,208,198,247,237 , ,
7635 :165,247,106,144,076,165,090 II
7641 :253,233,001,133,253,176,242

168 U

Recreation and Education

7647

7653

7659

7665

7671

7677

7683

7689

7695

7701

7707

7713

7719

7725

7731

7737

7743

7749

7755

7761

7767

7773

7779

7785

7791

7797

7803

7809

7815

7821

7827

7833

7839

7845

7851

7857

7863

7869

7875

7881

7887

7893

7899

7905

7911

7917

7923

7929

7935

7941

:002

:233

sl98

:247

:066

:105

:247

:076

:001

:254

:133

:076

:249

:006

:106

:000

:249

:192

:002

:034

:080

:076

:063

:002

:032

:210

:032

:169

:255

:208

:063

:032

:032

:210

:201

:032

:205

:255

:169

:160

:041

:127

:176

:032

:173

:021

:157

:096

:105

:000

,198,254

,001,133

,252,076

,201,049

,029,173

,004,141

,165,247

,036,030

,133,253

,165,251

,251,144

,036,030

,165,248

,249,006

,176,002

,177,251

,049,253

,036,002

,041,063

,133,002

,007,169

,106,030

,170,189

,162,015

,240,255

,255,169

,210,255

,157,162

,202,016

,003,076

,010,170

,210,255

,210,255

,255,189

,010,176

,210,255

,189,169

,169,144

,018,032

,032,210

,063,162

,036,176

,032,210

,210,255

,021,208

,208,162

,002,031

,234,010

,050,096

,000,000

,165,

,251,

,036,

,208,

,002,

,002,

,106,

,165,

,144,

,024,

,005,

,169,

,074,

,249,

,006,

,133,

,208,

,048,

,170,

,076,

,000,

,165,

,121,

,160,

,169,

,032,

,202,

,007,

,250,

,066,

,189,

,189,

,169,

,000,

,005,

,169,

,029,

,032,

,210,

,255,

,000,

,250,

,255,

,076,

,041,

,007,

,202,

,010,
,000,

,000,

251,056,125

176,057,056

030,165,224

003,076,001

208,024,237

208,230,175

144,003,147

253,105,162

002,230,010

105,001,053

230,252,018

001,133,222

144,004,155

165,247,199

249,160,238

002,165,017

038,169,005

013,165,013

189,120,148

106,030,206

133,002,222

002,041,001

034,133,041

016,024,228

149,032,220

162,007,184

016,250,064

032,210,098

165,002,001

029,041,052

220,033,064

221,033,069

032,032,121

120,170,085

169,032,252

000,032,107

032,210,249

210,255,230

255,169,024

165,002,001

232,221,158

138,105,021

169,146,183

066,029,125

253,141,044

181,247,039

016,248,131

010,024,121

000,000,250

000,192,197

169

Recreation and Education

7947

7953

7959

7965

7971

7977

7983

7989

7995

8001

8007

8013

8019

8025

8031

8037

8043

8049

8055

8061

8067

8073

8079

8085

8091

8097

8103

8109

8115

8121

8127

8133

8139

8145

&151
8157

8163

8169

8175

8181

8187

8193

8199

8205

8211

8217

8223

8229

8235

8241

170

:192 , 224,240,224,192,200,003

: 255,255,153,129,195,195,175

:129,153,255,169,000,141,102

:107,031,173,000,220,041,089

:031,073,031,208,045,173,084

:001,220,041,031,073,031,182

.-208,036,032,228,255,208,246

:001,096,056,233,073,144,144

: 222,170,232,233,005,176,073

: 216,138,041,002,240,004,194

:138,073,001,170,169,000,110
: 141,107,031,056,042,202,144

:208,252,141,107,031,173,227

:000,220,045,001,220,041,104
:016,240,246,169,006,101,105

:162,197,162,208,252,096,154

:000,032,250,026,032,177,112

:026,16 5,002,201,026,144,165

:003,032,132,027,032,122,211

:033,032,13 2,027,032,122,247

:033,169,001,032,207,025,086

: 160,005,177,251,074,074,110

: 170, 160, 002 ,138, 024,113 , 238

: 251,144,002,165,255,145,087

:251,136,208,243,160,002,131

:209,251,208,019,160,003,243

.-177,251,200,056,241,251,063
: 169,128,042,168,200,177,033

:251,233,001,145,251,165,201

: 251,024,105,005,133,251,186

:201,255,208,198,032,250,055

:026,032,177,026,162,051,159
:189,000,144,041,017,240,066

:003,030,000,144,202,208,028

:243,032,108,027,032,237,126
:009,032,087,022,032,090,237

:011,032,205,021,162,015,161
: 134,002,160,029,024,032,102

.-240,255,169,152,032,210,017

: 255,169,032,162,011,032,138
:210,255,202,208,250,230,070
:002,166,002,224,024,208,115
:227,173,100,007,141,140,027

:007,141,180,007,141,220,197
:007,169,032,162,011,157,045
:220,007,202,208,250,169,057

:020,141,226,007,169,000,082
:162,003,149,003,202,016,060

.-251,169,009,133,174,169,180

:000,141,032,143,238,032,12 3

u

u

u

u

u

H

n

n

n

n

Recreation and Education

n

n

n

n

n

8247 :143,173,032,143 ,201,010,245
8253 :208,003,076,048,032,032,204

8259 :153,033,169,000,133,178,221

8265 :133,179,162,004,134,251,168

8271 :160,031,132,2 52,169,190,245

8277 :133,247,133,249,169,004,252

8283 :133,248,133,250,166,167,164
8289 :160,003,169,032,145,247,085

8295 :136,016,251,165,247,024,174
8301 :105,040,133,247,144,002,012

8307 :230,248,202,208,233,174,130

8313 :032,143,189,127,036,133,013

8319 :254,202,189,127,036,133,044
8325 :253,166,251,164,252,024,219

8331 :032,240,255,166,253,189,250

8337 :000,144,041,015,208,003,044

8343 :076,111,033,189,068,034,150
8349 :170,024,101,178,133,178,173

8355 :138,201,010,176,005,169,094

8361 :032,032,210,255,169,154,253

8367 :032,210,255,169,000,032,105
8373 :205,189,166,251,160,037,165

8379 :024,032,240,255,160,003,133

8385 :169,032,032,210,255,136,003

8391 :208,250,230,251,230,253, 085
8397 :198,167,208,181,165,174,018

8403 :208,003,076,105,033,173,041

8409 :032,143,024,105,014,170,193

8415 :160,031,024,032,240,255,197

8421 :169,154,032,210,255,165,190

8427 :178,170,201,010,176,005,207

8433 :169,032,032,210,255,169,084

8439 :000,032,205,189,169,156,230

8445 :032,210,255,169,032,072,255

8451 :032,210,255,173,032,143,080

8457 :009,048,032,210,255,104,155

8463 :032,210,255,032,210,255,241

8469 :165,179,170,201,010,176,154

8475 :005,169,032,032,210,255,218

8481 :169,028,032,210,255,169,128

8487 :000,032,205,189,162,024,139

8493 :160,030,024,032,240,255,018

8499 :169,152,032,210,255,165,010

8505 :178,024,101,003,133,003,243

8511 :169,000,101,004,133,004,218

8517 :165,179,101,005,133,005,145

8523 :169,000,101,006,133,006,234

8529 :166,003,165,004,032,205,144

8535 :189,162,024,160,036,024,170

8541 :032,240,255,166,005,165,188

171

Recreation and Education

8547 :006,032,205,189,198,174,135

8553 :032,046,017,076,053,032,105

8559 .-189,068,034,024,101,179,194
8565 :133,179,076,201,032,173,143

8571 :026,143,141,129,143,032,225

8577 :243,027,169,000,141,129,070

8583 :143,174,032,143,189,127,175
8589 :036,168,202,189,127,036,131

8595 .-170,202,032,247,027,096,153

8601 :169,156,032,210,255,032,239
8607 : 235,017,162 ,003 ,160, 030, 254

8613 :024,032,240,255,032,193,173
8619 :033,174,032,143,189,127,101

8625 :036,202,056,253,127,036,119
8631 :133,167,105,003,170,160,153
8637 :030,032,240,255,162,000,140

8643 :189,207,033,208,001,096,161

8649 .-032,210,255,232,208,244,102
8655 :154,068,069,077,032,032,127
8661 :032,032,028,082,069,080,024
8667 :000,032,032,077,069,078,251

8673 :072,086,084,077,065,082,179
8679 :073,067,084,078,089,078,188

8685 :074,080,065,079,072,073,168
8691 :078,073,076,077,073,087,195
8697 :073,077,078,073,065,077,180
8703 :079,078,068,083,068,078,197

8709 :069,075,083,068,069,077,190
8715 :068,068,067,086,065,087,196
8721 :086,078,067,083,067,071,213

8727 :065,070,076,075,089,084,226

8733 :078,065,076,077,083,065,217

87 39 :082,076,065,079,075,084,240

8745 :088,077,084,073,068,087,006
8751 :089,067,079,078,077,065,246

8757 :090,085,084,078,086,087,051
8763 :065,079,082,067,065,065,226
8769 :075,072,073,000,004,004,037
8775 :003,013,004,008,036,016,151
8781 :025,023,012,024,020,011,192
8787 :010,008,011,003,003,005,123

8793 .-007,003,010,003,012,006,130
8799 :013,008,012,021,009,011,169
8805 :009,007,006,010,008,029,170

8811 :004,004,003 ,008 ,005 , 007 ,138

8817 :005,004,010,007,047,003,189
8823 :004,000,001,003,003,004,134
8829 :005,008,009,008,010,026,191
8835 :031,011,014,016,014,012,229
8841 :037,012,019,016,017,020,002

172

u

u

u

u

u

u

u

u

u

u

\

a
u

g
g

g
h
u
d

g
g

V
O
v
O
v
O
v
O
V
O
v
0
V
O
v
0
V
O
v
O
v
O
v
0
v
0
v
0
V
0
V
0
V
O
v
O
V
0
v
0
V
O
v
0

V
0

V
0
0
0
0
0
0
0
0
0
0
0
0
0
O
O
C
O
C
O
O
O
O
O
O
O
C
O
O
O
O
O
C
O
O
O
O
O
C
O
O
O
O
O
C
O
O
O
C
O
O
O
O
O

h
h
h
h
h
h
h
q
S
q
q
q
q
q
S
q
s
q
(
s
i
q
q
q
(
s
i
q
v
o
^
^
v
o
\
o
v
o
^
^
^
^
^
^
v
o
^
v
o
v
o
v
o
(
»
o
o
©

H
U
1
V
O
W
n
1
H
U
1
V
O
W
v
]
H
U
1
V
O
W
n
J
H
U
1
V
O
(
j
J
n
1
H
U
1
V
O
W
n
1
H
U
1
V
O
W
>
J
H
U
1
V
O
W
n
J
H
U
1
V
O
U
}
n
I
H
U
1
V
O
W
v
J
H
U
1
V
O
W
n
4

Q
Q
W
W
^
W

i
Q
H
H
H
H
H
l
S
I
N
J
W
G
l
H
H
B
I
i
S
l

»
t
o

o
j

tv
)
»
^

c*
)
c
n

(S
)

0"
^
w

(
D

i
q
q

o
o

t
o

**
J
m

o
o

i*
)
o
o

n
j

^
\ I I

Recreation and Education c

9147 :029,000,000,000,000,000,216

9153 :242,050,242,000,243,000,202

9159 :000,000,230,230,038,038,223

9165 :230,036,228,226,225,222,092

9171 :222,030,000,000,000,000,207

917 7 :000,242,050,050,000,000,047

9183 :243,000,000,000,000,230,184

9189 :230,000,000,000,000,000,203

9195 :000,000,222,222,000,000,167

9201 :000,000,242,242,242,242,185

9207 :000,000,243,000,000,000,2 34

9213 :000,230,000,000,000,000,227

9219 :000,000,000,222,030,222,221

9225 :000,000,242,000,000,000,251

9231 :242,000,000,000,000,000,001

9237 :000,000,000,000,000,000,021

9243 :000,000,000,000,000,222,249

9249 :222,000,000,255,032,082,112

9255 .-069,071,073,079,078,083,236

9261 :000,078,069,087,032,069,124

9267 :078,071,076,000,085,082,187

9273 :066,065,078,032,078,069,189

9279 :000,072,069,065,082,084,179

9285 :076,078,068,000,071,032,138

9291 :080,076,065,073,078,083,018

9297 :000,065,084,076,065,078,193

9303 :084,073,067,000,083,079,217

9309 :085,084,072,069,082,078,051

9315 :000,065,082,075,076,065,206

9321 :084,069,088,000,077,079,246

9327 :085,078,084,065,073,078,062

9333 :000,080,065,067,073,070,216
9339 :073,067,032,000,001,007,047

9345 :010,015,022,031,035,039,025

9351 :047,052,052,220,243,243,224

9357 :047,063,220,078,228,077,086
9363 :077,228,227,206,092,062,015 I I
9369 :243,092,227,242,227,243,147 '—>
9375 :099,063,047,228,063,069,216

9381 :100,190,069,070,100,077,003 , ,
9387 :077,070,070,212,078,212,122

9393 :243,243,197,212,228,243,007
9399 :197,235,242,228,242,047,094

9405 :033,059,033,246,104,126,022 j 1

9411 :202,189,036,097,089,189,229 I I
9417 :220,052,118,122,081,038,064
9423 .-003,171,186,238,254,204,239

9429 .-171,002,080,070,070,235,073 j
9435 :000,145,069,001,001,134,057

174 u

n

n

n

n

n

Recreation and Education

9441 :087,203,097,096,

9447 :066,234,170,246,

9453 :158,124,254,111,

9459 :067,159,211,066,

9465 :029,104,164,179,

9471 :052,233,044,056,

9477 2017,210,066,230,

9483 :175,077,154,057,

9489 :140,062,047,120,

9495 :059,005,145,213,

9501 :187,242,011,230,

9507 :000,000,068,082,

9513 :028,152,000,000,

119,223,026

245,234,146

247,057,164

027,095,100

005,065,027

004,136,012

063,169,248

061,092,115

216,037,127

145,243,065

131,193,255

085,159,173

013,013,247

n

n

n

n

n
175

$WZ^^

Charles Brannon

Sprites make animation on the 64 fun and easy to pro

gram. But actually drawing and creating sprites with

graph paper can be tedious. "Sprite Magic'' simplifies

their creation and lets you concentrate on the artistic as

pects of sprite design. You can even animate minimovies!

What Is a Sprite Editor?

Most of what you've read about sprites covers how to pro

gram them: setting them up, protecting memory, moving and

animating them, and using them in games. But sprite design is

usually left up to you.

A sprite is defined by 63 binary numbers. The one bits

(on) represent solid pixels. Zeros (off) represent blank areas,

through which the screen background is visible. Normally,

you sketch a sprite on a grid 24 squares across and 21 squares

high. This is 3 bytes per row (8 bits * 3 bytes = 24 bits) and

21 rows of bytes (3 * 21 = 63 bytes). But after you've drawn

the sprite, you have to convert the squares into binary, and

then into decimal so that you can put the numbers in DATA

statements.

There are utility programs that will do the conversion for

you, even editors that let you clear and set squares with a joy

stick. Since you're using a computer, other functions can be

supported to let you clear, invert, reflect, reverse, shift, and

test out your sprite. The more work the computer does, the

less you have to think in terms of binary numbers.

"Sprite Magic" offers the best features of most sprite edi

tors, including true multicolor mode, and pulls it off with the

speed and power of an all machine language program. Sprite

Magic's style (and even some of the coding) is similar to "Ultra-

font +," an all machine language character editor also in this

book. Many of the commands are the same, so you can get up

to speed quickly. If you've learned how to use Ultrafont +, it

won't take much to become comfortable with Sprite Magic.

179

Sound and Graphics

Typing It In

Since Sprite Magic is an all machine language program, you

cannot enter it as you do a BASIC program. Machine language

is basically a bunch of numbers: The numbers make no sense

in and of themselves. Only the 6510-compatible micro

processor in your 128 can interpret and execute these num

bers. Since typing in numbers is no fun, we've tried to make it

as painless as possible with "MLX," the machine language

editor. You'll find MLX and the explanation of its use and

commands in Appendix D of this book. If you haven't already

typed in MLX, do so before you try to enter Sprite Magic.

Since MLX is used with other programs in this book, as well

as in COMPUTE! magazine, COMPUTERS Gazette, and other

books from COMPUTE! Publications, be sure to save it for fu

ture use.

After you've typed in MLX, run it, and answer the

prompts of Starting Address and Ending Address:

Starting Address: 49152

Ending Address: 51875

You're ready to start typing in Sprite Magic. Enter each

line from the program listing at the end of this article. The last

number in each line is a checksum, so type it carefully. If the

checksum you've typed matches the checksum computed from

the line you typed, a pleasant bell tone tells you you've typed

the line correctly. If the number doesn't match, a buzzer

warns you to reenter the line. This way, you should be able to

type in Sprite Magic correctly the first time.

Assuming you've typed and saved Sprite Magic, here's

how you get it up and running. If you used the filename

"SPRITE MAGIC", type

LOAD "SPRITE MAGIC",8,1 (for disk) LJ
or

LOAD "SPRITE MAGIC',1,1 (for tape) |_|

Be sure to add the ,1 to the end. Type NEW and press RE

TURN. This resets some important memory locations, but , .

leaves Sprite Magic in its protected cubbyhole at $C000. LJ

Doodle ,

Activate Sprite Magic with SYS 49152. Instantly, the main 1 1
screen should appear, with a large 24 X 21 grid. The grid is a

180 u

Sound and Graphics

blowup of the sprite you're editing. The actual sprite will be

seen to the right of the grid. The flashing square within the

large grid is your cursor. Move the cursor with either the

cursor keys or with a joystick plugged into port 2. To light up

a blank spot (in other words, to turn that pixel on), press

either the space bar or the joystick fire button. If the square is

already lit, it will turn dark. This signifies that the pixel has

been turned off. The button or space bar thus toggles points on

or off. You can draw your sprite quite easily in this manner.

One fine point: With the joystick, you can hold down the fire

button and move the cursor. If the first point you change was

set, then the fire button will continue to set points as you

move the joystick, regardless of the other points' original

states. If the first point you change was empty, then you can

hold down the fire button and move about, clearing anything

the cursor passes over. Notice how any changes are immedi

ately visible in the actual sprite.

If you've just entered Sprite Magic, the grid is probably

full of garbage pixels. To clear out the grid for a new picture,

press SHIFT-CLR/HOME. You now have an empty area (a

fresh canvas, so to speak) to draw upon. You can press CLR/

HOME without holding down SHIFT to home the cursor to

the upper-left corner of the grid.

Does the cursor move too slow or too fast? To change the

velocity of the cursor, press V. Answer the prompt with a

number key from 0 (slow) to 9 (very fast).

Shift, Expansion, and Symmetry

Sometimes when you're drawing, it's necessary to reposition

the shape within the grid. The first two function keys let you

shift the sprite shape around within the grid. If you shift

something out of the grid, it wraps around to the opposite

side. The fl key shifts right; f3 shifts down. Use the SHIFT

key along with the function key to move in the opposite direc

tions: (2 moves the sprite shape left; f4, up.

After you've drawn something, press F. Instantly, the

sprite is flipped upside down. Press it again to flip it back

over. Remember F as the command for Flip. Now try M, for

Mirror. The shape you've drawn is mirrored left to right. Of

course, if you've drawn something symmetrical, you may not

see any change.

181

Sound and Graphics

Now try CONTROL-R or CONTROL-9. The sprite will

become reversed. Every square that was on is now turned off,

and vice versa.

A sprite can also be expanded or contracted either hori

zontally or vertically, or both horizontally and vertically. The X

and Y keys on the keyboard let you do this. Press X to switch

from wide to narrow, or vice versa. Press Y to switch from tall

to short, or vice versa. The main grid will not change size or

proportion (there's not enough room on the screen).

An unusual command is Symmetry. I added this com

mand after some suggestions that many shapes are symmetri

cal from left to right, as if a mirror were put in the middle of

the grid. To enter the Symmetry mode, press the back-arrow

(<-) key (found in the upper-left corner of the keyboard, right

above the CONTROL key). Now, every square drawn on one

side will be instantly mirrored to the left. Blank squares are

not copied over, though, so you cannot erase in this mode.

This command is not only quite useful, but it's also fun to

play with. To return to normal editing, press the back-arrow

key again.

Notice the number in the upper-right corner of the screen.

This is the sprite page number, which can range from 0 to

255. You start out at the top of the sprite memory. The plus

(+) and minus (—) keys are used to go forward or backward

through the sprite shapes. Press the minus key and see how

you now have a new shape in the grid.

There's a limit to how far back you can go. If you have no

BASIC program in memory, you can step back to sprite page

36. However, character information resides in sprite pages be

low 128. You can still clear the page and draw a sprite shape

on pages below 128, but it won't really register. To be safe,

use only the sprite pages from 128 up. If you have a program

in memory, Sprite Magic will not let you step back past its

end. This protects your program from being accidentally

overwritten by a sprite shape. If you want maximum space

available for sprite shapes, be sure to NEW out any BASIC

program before you SYS 49152. Sometimes, though, you'll

want to keep a program in memory. You'll see why a bit later.

Programming note: The sprite page number, when mul

tiplied by 64, gives you the starting memory location for the

63 numbers representing the sprite.

182

mmMmmmmmmmmmmmimii Sound and Graphics

Put It in the Buffer

You might use Flip to design two views of a shape, such as a

spaceship pointing in two directions. Draw one freehand, then

do the other with Flip. Mirror can be used to design separate

left and right views as well. But what you first need is a way

to copy the original shape to another sprite area. One way to

do this is to copy the sprite shape to an area of memory (a

buffer). You can use + or — to step to another sprite page,

then copy the buffer to the sprite. This is the same way you

copy characters with Ultrafont.+. The same keys are used in

Sprite Magic. Press il to copy the sprite to the buffer. The grid

flashes to affirm this. Then go to the sprite page where you

want to put the copy and press f8 (SHIFT-f7). The shape in

the buffer replaces any shape already in the sprite grid. You

can also use the buffer as a fail-safe device. Before modifying

an existing sprite, press f7 to save it in the buffer. Then, if you

mangle the sprite or accidentally erase it, you can recall the

previous shape from the buffer.

Computer Disney?

The buffer is also useful for animation. Since you can change

sprite pages so easily, you can also use Sprite Magic as an

animation design tool. Cartoons make only minor changes be

tween frames. Too much change makes the animation jerky.

So put the first frame into the buffer, copy it to the next area,

then make a change. Put the new image into the buffer, copy

it again to a new area, then make another small change. Con

tinue in this fashion as you build up a whole series of frames.

Put different but similar shapes on adjacent pages, then hold

down + or — to step through the shapes. As with cartoon

animation, you'll get the illusion of motion. Use a cursor

velocity of 9 for maximum speed. Even if you don't care to

program sprites, Sprite Magic is a fun tool for making moving

cartoons.

A Bit of Color

The normal drawing mode lets you set or clear points, but in

only one color. If you're willing to give up half as many hori

zontal points, you can have four colors to work with. Multi

color mode lets any square be one of four colors, but gives

you only 12 pixels across instead of 24. This is because two

183

Pattern

00

01

10

11

Color Location

53281

53285

53287-53294

53286

u
Sound and Graphics i»¥^f*««*«^^

u

dots are grouped together to give four combinations. The col- j j

ors come from four memory locations: ^

Background color register I I
Sprite multicolor register 0

Sprite color registers

Sprite multicolor register 1 | j

There are two multicolor sprite registers, which are shared

among all sprites (in programming, but not in Sprite Magic,

you can have eight sprites on the screen at the same time).

The bit pattern marked 10 is unique to each sprite and comes

from that sprite's own color register. Pattern 00 is blank, and

whatever is underneath the sprite shape will show through.

The reason for this sojourn into bits and addresses is that

only the bit pattern marked 10 has a unique color for that

sprite. If you're designing several sprites for a game, remem

ber that anything drawn in that color can be changed individ

ually for each sprite. Squares drawn with bit pattern 01 or 11

will be colored from two locations shared by all sprites.

Many sprite editors let you see how the sprite would look

in multicolor, but you still have to pair up the pixels yourself

and keep track of binary bit pairs. No fun! Instead, Sprite

Magic offers a multicolor mode. When you press f5, the screen

instantly changes. Each square in the grid is now rectangular,

two squares wide. The cursor has also been enlarged and can

be moved about as before in the new grid. But the way you

set and clear points has been changed, since you're now work

ing with four colors.

Multicolor Palette

The fire button or the space bar always sets a point, but you | j
have to tell Sprite Magic which color you are currently draw

ing in. The number keys 1 to 4 select the drawing color. The

number you press is one number higher than the binary value |
of the bit pairs in the table above. The 1 key, for instance,

chooses the 00 bit pair, which represents the background

color. In practice, you're choosing from a palette of four colors. I j
The 1 key can be used when you want to erase, although the

fire button can still be used to toggle points on and off.

When you press a number key from 1 to 4, the small col- I \
ored block beside the sprite number changes to remind you

u

Sound and Graphics

which color you're drawing with. If you want to change one

of the four colors, hold down SHIFT while you type the num

ber. The prompt ENTER COLOR KEY appears. Now you have
to enter another key combination. Press CONTROL and one

of the number keys from 1 to 8, or hold down the Com

modore key and one of the number keys from 1 to 8. These

are the same key combinations you use to change the text

color in BASIC. You can also change the screen background

color by pressing B on the keyboard until the color you want
appears.

Some Sprite Magic commands act strangely in multicolor

mode. For example, a shift left or shift right (done with the f1

and f2 keys respectively) moves the sprite over by only one

bit, which changes the color assignments. In general, you must
press fl or f2 twice to preserve the same colors. Pressing the

M key (for Mirror) reverses the bit pairs so that every 01 be

comes a 10. The effect is that colors 2 and 3 are exchanged.

The CONTROL-R and CONTROL-9 key combinations

(Reverse) also invert the bits so that 01 becomes 10, 10 be

comes 01, 00 becomes 11, and 11 becomes 00. Colors 2 and 3

are switched as well as colors 1 and 4. Flip, however, works

identically in multicolor and normal (nonmulticolor) modes.

If you want to go back to normal mode, press the f6 key

(SHIFT-f5). There's nothing to prevent you from designing

both normal and multicolor sprites on different pages.

If you changed colors in the multicolor mode, some of the

colors in the normal mode may have been changed. You can

alter these colors as in multicolor mode. Press SHIFT-1 to

change the color of the empty pixels, and SHIFT-2 to change

the color of the on pixels. (You'll be prompted to press a color

number key after each SHIFT-1 or SHIFT-2 combination.

Remember to press either CONTROL or the Commodore key

simultaneously with the color key.)

Mobilizing Your Sprite

If you want to try out your sprite in action, press J (for Joy

stick). You can now move the actual sprite around with the

joystick. The speed of movement depends on the current

cursor velocity. When you've finished putting your sprite

through its paces, press the fire button to return to Sprite

Magic. Also, if you want to test the animation while you are

moving about, hold down the SHIFT key to step forward

185

Sound and Graphics

u

u

through the pages of your defined sprites or the Commodore j)

key to step backward. You can lock the SHIFT key to keep the '—'
animation happening while you move around.

Saving Your Sprites ^—
After all your work, you surely want to save your creations on

tape or disk for future use. You can save an individual shape j j

or all the sprites. Press S (for Save), then either D (Disk) or L—'
T (Tape). Next, enter the filename. You'll be asked if you want

to "Save all from here?" If you press N (No), then only the

sprite you're currently working on will be saved. If you press

Y (Yes), then every sprite from the current sprite to sprite 255

will be saved. Thus, if you want to save a range of sprites, be

sure to use the minus key to step back to the first sprite you

want saved.

If you use a filename already present on the disk, Sprite

Magic first scratches the old file, then saves the new file using

the same name. This insures that your disk will not be dam

aged in any way. However, make sure you want only the

newest version of the sprite information if you use the same

filename. If you're not sure, simply call it something else.

To recall your sprites, press L. The Load command loads

everything that was saved. If you're loading in more than one

sprite, be sure you step backward far enough with the minus

key so that all the sprites will fit between the current sprite

and sprite 255. The sprites load starting at the current sprite

page number. After you press L, enter T or D for tape or disk.

Let There Be DATA

If you're a programmer, you're probably more interested in

DATA statements. That way, you can use BASIC to READ and i \

POKE the numbers into memory. If you have some kind of LJ
DATA maker, you can run it on the memory used by the

sprite in Sprite Magic (again, the memory location is the sprite i j

number times 64). But Sprite Magic has a special DATA maker Lj
of its own. It's similar to the Create DATA option in Ultrafont

+ , but it's been enhanced. i i

Press CONTROL-D to create a series of DATA statements I—I
from the current sprite in memory. Just tap the key, or you'll

get hundreds of DATA statements as the key repeats. Sprite i j

Magic will create eight DATA statements, with eight bytes per 1—I
line. The last byte is not strictly used. Sprite shapes are made

186 LJ

n

n

Sound and Graphics

from 63 bytes, but the sprite areas are padded so that they'll

conveniently fall in 64-byte ranges. To create DATA state

ments for another sprite, use the + or — key to move to the

correct sprite page; then press CONTROL-D again.

If you have a program already in memory, the DATA

statements are appended to the end of the program, starting

with the next available line number. To add DATA statements

to an existing program, then, first load Sprite Magic. Type

NEW, load your BASIC program, and SYS 49152 to enter

Sprite Magic. You can then load in sprite shapes and use

CONTROL-D to add those DATA statements to the end of the

BASIC program in memory.

You can check to see that these DATA statements were

added by exiting Sprite Magic (press CONTROL-X) and typing

LIST. Your program should have eight new DATA lines for

each sprite pattern. If there was no program in memory, the

DATA statements form a program all their own, starting with

line 1. If you want, you can save just the DATA statements to

tape or disk, using the normal SAVE command.

To exit Sprite Magic and return to BASIC, press CON

TROL-X. You can also use RUN/STOP-RESTORE.

187

Sound and Graphics

u

u

Quick-Reference Chart

B Cycles through background colors

F Flips sprite upside-down

J Moves sprite with joystick; press button when done

L Loads sprite(s) from tape or disk

M Mirrors sprite from left to right

S Saves sprite(s) to tape or disk

V Sets cursor velocity

X Toggles X expansion on/off

Y Toggles Y expansion on/off

CONTROL-D

CONTROL-R or

CONTROL-9

CONTROL-X

Creates DATA statements

Reverses sprite

Exits to BASIC

CLR/HOME

SHIFT-CLR/HOME

Space bar or

fire button

CRSR keys or

joystick in port 2

Back arrow

Keys 1-4

SHIFT 1-4

CONTROL 1-8 or

Commodore 1-8

Next sprite page

Previous sprite page

Homes sprite editing cursor

Erases grid

Sets/clears points

Moves cursor

Symmetry mode

Select drawing color for multicolor mode

Change a drawing color

Chooses new color

£1 Shifts right

f2 Shifts left

f3 Shifts down

f4 Shifts up

f5 Multicolor mode

£6 Normal mode

f7 Stores sprite to buffer

f8 Recalls sprite from buffer

188

u

u

Sound and Graphics

Sprite Magic

For mistake-proof program entry, be sure to use "MLX" (Appendix D).

49152 :076,050,195,000

49158 :004,032,198,192

49164 :133,252,169,000

49170 :133,167,169,216

49176 :169,021,141,040

49182 .-003,141,041,002

49188 :177,253,170,173

49194 .-240,003,076,152

49200 :207,145,251,138

49206 :176,008,173,003

49212 :167,076,069,192

49218 :192,145,167,200

49224 :208,221,024,165

49230 :008,133,251,133

49236 :252,105,000,133

49242 .-212,133,168,230

49248 :002,230,254,206

49254 .-173,041,002,208

49260 :165,251,105,016

49266 :133,167,165,252

49272 :133,252,105,212

49278 :206,040,002,173

49284 :240,003,076,029

49290 :160,141,026,004

49296 :002,189,003,192

49302 :216,096,134,097

49308 :141,042,002,006

49314 :042,002,006,097

49320 :002,174,042,002

49326 :145,251,200,169

49332 :251,136,189,003

49338 .-167,200,145,167

49344 :008,208,215,076

49350 :169,000,133,254

49356 :002,133,253,006

49362 .-254,006,253,038

49368 :253,038,254,006

49374 :254,006,253,038

49380 :253,038,254,096

49386 :192,160,000,177

49392 :255,145,253,200

49398 :208,245,096,032

49404 :160,062,136,136

49410 :010,008,200,200

49416 :177,253,040,042

49422 :253,136,202,208

49428 :192,255,208,230

,001,003,069

,169,004,093

,133,251,182

,133,168,236

,002,169,054

,160,000,121

,048,002,091

,192,169,106

,010,170,201

,192,145,239

,173,004,229

,192,008,202

,251,105,022

,167,165,167

,252,105,163

,253,208,014

,041,002,063

,183,024,221

,133,251,005

,105,000,168

,133,168,099

,040,002,077

,192,169,073

,174,051,182

,141,026,185

,169,000,094

,097,046,234

,046,042,141

,169,207,252

,247,145,051

,192,145,072

,200,192,233

,074,192,197

,173,043,202

,253,038,121

,254,006,253

,253,038,034

,254,006,009

,032,198,075

,253,073,065

,192,064,069

,198,192,193

,177,253,152

,162,003,073

,008,145,161

,245,040,074

,096,032,009

189

Sound and Graphics

49434 :198,192,160,000,200,200,208
49440 :177,253,074,008,136,136,04s

49446 :162,003,177,253,040,106,011
49452 :008,145,253,200,202,208,036

49458 :245,040,192,063,208,230,004
49464 -.096,032,198,192,160,000,222

49470 :177,253,153,227,202,200,250
49476 :192,003,208,246,177,253,123

49482 :136,136,136,145,253,200,056

49488 :200,200,200,19 2,063,208,119

49494 : 241,162 ,000,160 ,060,189,130

49500 :227,202,145,253,200,232,071

49506 :224,003,208,245,096,032,138
49512 :198,192,160,060,162,000,108

49518 :177 , 253 ,157 , 227 , 202, 200,046

49524 :232,224,003,208,245,160,164

49530 :060,177,253,200,200,200,188

49536 :145,253,136,136,136,136,046

49542 :016,243,160,000,185,227,197

49548 :202,145,253,200,192,003,111

49554 :208,246,096,032,198,192,094

49560 :160,000,152,170,232,232,074

49566 :169,003,133,097,169,008,225

49572 :141,055,002,177,253,074,098

49578 :145,253,062,227,202,206,241

49584 :055,002,173,055,002,208,159

49590 :240, 200 , 202 ,198, 097 ,165 ,004
49596 :097,208,227,192,063,144,095

49602 : 215 ,160,000 ,185 , 227, 202 ,159

49608 :145,253,200,192,063,208,237

49614 :246,096,169,147,032,210,082

49620 :255,173,000,220,133,097,066

49626 :041,015,073,015,170,173,193

49632 :000,208,024,125,080,194,087

49638 :141,000,208,173,016,208,208

49644 :125,091,194,141,016,208,243

49650 :173,001,208,024,125,102,107

49656 :194,141,001,208,032,036,092

49662 :195,173,141,002,041,001,039

49668 :024,109,248,007,141,248,013

49674 :007,173,141,002,041,002,120

49680 :074,073,255,056,109,248,063

49686 :007,141,248,007,165,097,175

49692 :041,016,208,181,173,000,135

49698 :220,041,016,240,249,173,205

49704 :043,002,141,248,007,032,001

49710 :082,196,169,255,141,000,121

49716 :208,169,000,141,016,208,026

49722 :169,128,141,001, 208,076,013

49728 :195,194,032,198,192,160,011

190

u

u

u

u

u

u

u

u

u

U

Sound and Graphics

49734 :000,152,145,253,200,192,244

49740 :063,208,249,096,000,000,180

49746 :000,000,255,255,255,000,079

49752 :001,001,001,000,000,000,091

49758 :000, 255 ,255 , 255 ,000,000,091

49764 :000,000,000,255,001,000,100

49770 :000,255,001,000,000,255,105

49776 :001,018,083,080,082,073,193

49782 :084,069,032,077,065,071,004

49788 :073,067,032,050,046,048,184

49794 :146,095,069,082,082,079,171

49800 :082,032,079,078,032,083,010

49806 :065,086,069,047,076,079,052

49812 :065,068,095,018,084,146,112

49818 :065,080,069,032,079,082,049

49824 :032,018,068,146,073,083,068

49830 :075,063,095,070,073,076,106

49836 1069,078,065,077,069,058,076

49842 :095,080,082,069,083,083,158

49848 :032,067,079/076,079,082,087

49854 :032 ,075 ,069, 089, 095,169,207

49860 :113,160,194,133,251,132,155

49866 :252,160,040,169,032,153 ,240

49872 :191,007,136,208,250,177,153

49878 :251,200,201,095,208,249,138

49884 :136,132,097,152,074,073,116

49890 : 255 ,056 ,105 , 020,168 , 162 , 224

49896 :024,024,032,240,255,169,208

49902 :146 ,032 , 210, 255 ,160,000 ,017

49908 :177,251,032.210,255.200,089

49914 :196,097,144,246,096,133,138

49920 :251,132,252,160,040,169,236

49926 :032,153,191,007, 136,208,221

49932 :250,162,024,160,000,024,120

49938 :032,240,255,160,000,177,114

49944 :251,201,095,240,006,032,081

49950 :210,255,200,208,244,096,219

49956 :174,053,002,240,008,160,161

49962 :000,200,208,253,202,208,089

49968 :250,096,169,147,032,210,184

49974 :255,169,000,141,134,002,243

49980 :141,056,002,169,008,032,212

49986 :210,255,169,128,141,138,083

49992 :002,169,048,141,053,002,231

49998 :169, 255,141,043 ,002,169,089

50004 :000,141,048,002,173,006,198

50010 :192,141,038,208,173,004,078

50016 :192,141,037,208,141,039,086

50022 :208,169,001,141,051,002,162

50028 :032,007,192,169,255,141,136

191

Sound and Graphics

50034

50040

50046

50052

50058

50064

50070

50076

50082

50088

50094

50100

50106

50112

50118

50124

50130

50136

50142

50148

50154

50160

50166

50172

50178

50184

50190

50196

50202

50208

50214

50220

50226

50232

50238

50244

50250

50256

50262

50268

50274

50280

50286

50292

50298

50304

50310

50316

50322

50328

:000

:208

:007

:169

:012

:208

:002

:196

:196

:015

:104

:032

:005

:036

:003

:196

:141

:240

:080

:001

:141

:002

:002

:162

:023

:162

:044

:162

:045

:140

:192

:140

:076

:172

:164

:005

:169

:209

:024

:032

:142

:205

:255

:045

:133

*074

:173

:007

:169

:174

,208,169,128,141,001,249

,173,043,002,141,248,167

,169,001,141,021,208,161

,000,141,028,208,169,079

,141,033,208,141,032,193

,141,044,002,141,045,213

,032,195,194,032,082,175

,032,007,192,032,053,156

,173,000,220,072,041,096

,073,015,141,046,002,204

,041,016,141,047,002,013

,228,255,240,006,032,205

,197,076,157,195,032,080

,195,173,047,002,208,085

,032,112,196,032,053,114

,173,047,002,073,016,199

,052,002,173,046,002,114

,195,174,046,002,189,038

,194,172,048,002,240,190

,010,024,109,044,002,162

,044,002,024,173,045,151

,125,102,194,141,045,081

,174,044,002,016,017,245

,000,142,044,002,162,252

,173,048,002,240,002,234

,022,142,044,002,174,042

,002,224,024,144,005,201

,000,142,044,002,172,030

, 002 ,016,005 ,160,020,018

,045,002,172,045,002,18 2

,021,144,005,160,000,048

,045,002,032,053,196,000

,157,195,174,045,002,187

,044,002,032,240,255,033

,211,173,048,002,208,100

,169,032,145,209,096,212

, 032 ,145 , 209, 200,145 , 206

,096,162,000,160,030,225

,032,240,255,169,018,056

,210,255,174,043,002,040

,248,007,169,000,032,184

,189,169,032,032,210,173

,096,032,198,192,173,032

,002,010,109,045,002,073

,097,173,044,002,074,133

,074,024,101,097,168,154

,044,002,041,007,073,218

,170,232,134,097,056,068

,000,042,202,208,252,251

,048,002,208,047,133,252

u

u

u

u

u

192

u

u

u

u

u

1
3

:
D
D

I
]
3

u
i
c
j
i
u
i
c
n
u
i
u
i
c
j
i
u
i
u
i
u
i
u
i
u
i
u
i
u
i
u
i
u
i
u
i
u
i
u
i
u
i
u
i
u
i
u
i
u
^

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
<
a
(
S
}
Q
Q
G
t
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
<
9
G
t
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
<
S
Q
Q
Q
Q
Q
5
l
Q
Q
Q
G
)
Q

O
N
O
N
O
N
O
N
O
N
u
i
i
n
u
i
u
i
t
n
u
i
u
i
u
i
u
i
L
n
u
i
u
i
u
i
u
i
u
i
u
i
v
i
^
^
^
i
^
^
^
^
i
^
^
^

I
O
M
H
H
Q
v
O
V
O
O
O
O
O
>
4
^
^
U
i
(
J
l
^
W
W
M
W
H
Q
S
l
^
^
O
O
N
l
N
l
^
^
U
l
^
^
(
J
W
W
H
H
Q
Q
v
O
a
3
0
0
^
N
j
O
\
W
U
l
^
^
W

(
»
t
o
o
^
Q
4
^
(
X
)
^
o
o
^
Q
4
*
a
)
^
J
O
^
Q
.
^
C
0
^
J
O
\
Q
.
^
O
O
^
J
O
^
Q
4
^
O
O
t
o
O
^
Q
•
^
O
O
^
J
O
^
Q
.
^
O
O
^
^

1
v
o

\
o

t
o

e
n
^
^
i
s
^
h
^
s
i
^

I
1—

^
vJ

O
i[
^-

^
^

O
N

N
J

O
i

O
J

N
^

0
0

V
D

I
O

\
iS
)
t
O

H
^

S
)

I—
1
t
o

^
S

h"
1
H
^

(S
i

*S
l
t
o

!
v
D
U
>
t
O
0
0
C
A
}
Q
^
J
4
^
U
l
U
i
t
O
0
0

I
n
J
^
O
B
I
^
^
^
^
^
h

i
q
q
h
h
q
i
j
i
h
h
q
h
h
h
h

£
)

Sound and Graphics

50634

50640

50646

50652

50658

50664

50670

50676

50682

50688

50694

50700

50706

50712

50718

50724

50730

50736

50742

50748

50754

50760

50766

50772

50778

50784

50790

50796

50802

50808

50814

50820

50826

50832

50838

50844

50850

50856

50862

50868

50874

50880

50886

50892

50898

50904

50910

50916

50922

50928

194

:208

:096

:169

:051

:004

:005

:006

:044

:002

:051

:039

:048

:173

:051

:076

:044

:192

:007

:007

:000

:200

:032

:163

:064

:028

:129

:154

:032

:162

:008

:076

:002

:003

:009

:208

:192

:192

:192

:194

:160

:228

:248

:097

:010

:076

:083

:076

,029,208

,073,001

,169,016

,001,141

,002,032

,192,141

,192,141

,192,141

,002,041

,076,192

,048,002

,028,208

,002,173

,208,076

,002,208

,050,002

,002,170

,007,192

,002,141

,197,032

,192,032

,192,032

,177,253

,192,064

,198,192

,202,145

,208,246

,159,156

,149,150

,155,169

,199,194

,000,221

,232,224

,195,194

,233,033

,192,173

,173,004

,076,190

,141,037

,141,039

,141,038

,076,007

,198,032

,255,056

,201,010

,056,169

,010,010

,195,194

,079,082

,079,067

,096,

,141,

,141,

,028,

,007,

,037,

,039,

,038,

,254,

,197,

,141,

,169,

,004,

,007,

,001,
,233,

,189,

,169,

,045,

,232,

,232,

,198,

,153,

,208,

,160,

,253,

,096,

,030,

,151,

,179,

,032,

,106,

,016,

,056,

,168,

,048,

,192,

,198,

,208,

,208,

,208,

,192,

,199,

,233,

,176,

,009,

,141,

,067,

,032,

,073,

173,023,104

023,208,094

048,002,174

208,141,140

192,173,171

208,173,219

208,173,228

208,173,234

141,044,008

169,000,124

032,208,066

001,141,188

192,141,069

192,173,207

096,056,185

049,141,172

003,192,137

000,141,121

002,076,108

192,032,169

192,032,241

192,160,085

163,202,002

246,096,066

000,185,089

200,192,227

144,005,097

031,158,158

152,153,230

160,194,107

157,202,174

198,240,035

208,246,048

173,050,120

138,153,109

002,208,014

141,039,208

173,004,249

173,005,162

173,006,171

032,195,224

169,231,037

194,032,245

048,048,048

244,133,198

229,097,105

053,002,192

085,082,159

086,069,153

084,089,196

u

u

u

u

Sound and Graphics

n

n

n

n

50934

50940

50946

50952

50958

50964

50970

50976

50982

50988

50994

51000

51006

51012

51018

51024

51030

51036

51042

51048

51054

51060

51066

51072

51078

51084

51090

51096

51102

51108

51114

51120

51126

51132

51138

51144

51150

51156

51162

51168

51174

51180

51186

51192

51198

51204

51210

51216

51222

51228

:032

:063

:255

:032

:002

:197

:002

:160

:164

:032

:172

:032

:032

:013

:169

:034

:144

:165

:210

:200

:153

:231

:032

:162

:162

:104

;054

:032

:194

:199

:201

:002

:083

:022

:002

:055

:200

:208

:162

:015

:186

:231

:014

:002

:055

:021

:169

:065

,040,

,095,

,240,

,082,

,032,

,254,

,096,

,000,

,032,

,210,

,055,

,032,

,210,

,240,

,192,

,157,

,199,

,196,

,097,

,255,

,076,

,000,

,255,

,199,

,001,
,008,

,104,

,002,

,186,

,032,

,208,

,084,

,201,

,141,

,021,

,002,

,153,

,002,

,173,

,026,

,020,

,162,

,255,

,255,

,200,

,153,

,002,

,160,

,160,

,086,

048,045

173,043

006,238

196,096

198,192

144,004

032,082

140,055

210,255

255,032

002,133

210,255

255,165

043,201

000,240

032,210

041,127

192,020

153,000

169,000

034,199

002,152

169,151

194,032

201,084

201,068

076,195

160,000

255,169

255,194

007,173

208,237

068,208

020,002

002,169

160,000

023,002

208,244

050,002

152,072

032,189

008,160

032,192

104,168

160,000

021,002

208,244

002,032

133,178

069,032

,057,041,253

,002,201,061

,043,002,018

,206,043,151

,165,046,137

,238,043,132

,196,096,018

,002,169,046

,169,157,001

,157,202,164

,097,169,166

,169,157,143

,097,201,254

,020,208,025

,211,136,098

,255,076,211

,201,032,208

,240,192,052

,002,032,035

,133,212,059

,169,095,115

,096,032,039

,160,194,002

,157,202,176

,240,011,065

,240,005,056

,194,141,192

,169,001,026

,169,160,105

,032,032,135

,054,002,045

,173,054,109

,069,169,131

,169,048,139

,058,141,214

,185,000,057

,200,204,022

,200,200,097

,201,083,159

,160,002,076

,255,169,033

,015,032,116

,255,032,170

,136,076,194

,185,000,045

,200,204,074

,152,162,065

,189,255,163

,096,083,073

,065,076,165

195

Sound and Graphics

51234

51240

51246

51252

51258

51264

51270

51276

51282

51288

51294

51300

51306

51312

51318

51324

51330

51336

51342

51348

51354

51360

51366

51372

51378

51384

51390

51396

51402

51408

51414

51420

51426

51432

51438

51444

51450

51456

51462

51468

51474

51480

51486

51492

51498

51504

51510

51516

51522

51528

196

: 076,032,070, 082 ,079, till, 194

:032,072,069,082,069,063,171

:032,040,089,047,0 78,041,117

:095,032,121,199,032,198,217

:192,169,027,160,200,032,070

: 199,194,032,157,202,201,025

:089,208,007,162,000,160,184

:064,076,091,200,024,165,184

:253,105,064,170,165,254,069

:105,000,168,165,253,133,144

:251,165,254,133,2 52,032,157

:249,200,169,251,032,216,193

: 255 ,176 , 011,032 ,183 , 255 , 250

: 208,006,032,003,201,076,126

:195,194,032,003,201,032,007

: 231,255,173,054,002,201,016

.-068,240,013,169,132,160,144

:194,032,199,194,032,157,176

:202,076,195,194,169,000,210

:032,189,255,169,015,162,202

: 008,160,015 ,032 ,186, 255 ,042

:032,192,255,162,015,032,080

:198,255,160,000,032,207,250

:255,201,013,240,007,153,017

: 000,002 , 200,076,170, 200,058

: 169,095,153,000,002,032,123

: 204, 255 ,169,000,160 ,002 , 212

:032,199,194,162,015,032,062

:201,255,169,073,032,210,118

.-255,169,013,032,210,255,118

: 032, 231, 255,076,140,200,124

:032,121,199,032,249,200,029

:032,198,192,169,000,166,215

:253,164,254,032,213,255,123

:176,136,076,003,201,169,231

:004,141,136,002,000,169,184

:000,141,021,208,169,147,168

:076,210,255,169,001,141,084

:021,208,169,147,032,210,025

:255,032,082,196,032,007,104
: 192,076,195,194,248,169,068

:000,141,000,001,141,001,052

: 001, 224,000, 240 ,021, 202 , 206

:024,173,000,001,105,001,084

:141,000,001,173,001,001,103

:105,000,141,001,001,076,116

:031,201,216,173,001,001,165

:009,048,141,002,001,173,178
:000,001,041,240,074,074,240

:074,074,009,048,141,001,163

u

u

u

u

u

Sound and Graphics

n

n

n

n

n

51534

51540

51546

51552

51558

51564

51570

51576

51582

51588

51594

51600

51606

51612

51618

51624

51630

51636

51642

51648

51654

51660

51666

51672

51678

51684

51690

51696

51702

51708

51714

51720

51726

51732

51738

51744

51750

51756

51762

51768

51774

51780

51786

51792

51798

51804

51810

51816

51822

51828

:001,173,

:009,048,

:056,165,

:045,165,

:046,169,

:008,133,

:057,133,

:097,200,

:160,002,

:200,177,

:000,177,

:097,133,

:076,117,

;105,001,

:105,000,

:192,160,

:000,024,

:145,045,

:000,145,

••145,045,

:045,200,

:200,132,

:098,177,

:201,164,

:145,045,

:145,045,

:145,045,

:045,200,

:200,152,

:132,098,

:000,145,

:045,072,

:046,104,

: 208,002,

:192,064,

:152,145,

:024,165,

:045,165,

:046,076,

:193,173,

:045,002,

:227,202,

:232,224,

:149,193,

:109,045,

:177,253,

:253,200,

:243,096,

:001,141,

:198,192,

000,001

141,000

045,233

046,233

001,133

098,169

058,160

017,097

177,097

097,133

097,072

098,104

201,024

133,057

133,058

000,132

165,045

200,165

045,200

200,165

169,131

097,164

253,170

097,173

173,001

173,000

200,169

132,097

041,007

164,097

045,160

200,177

133,045

230,058

208,143

045,200

045,105

046,105

094,166

045,002

168,162

157,035

003,208

173,045

002,168

029,035

232,224

173,056

056,002

160,000

,041,015,053

,001,096,123

,002,133,212

,000,133,206

,097,169,205

,000,133,137

,000,177,187

,240,027,030

,133,057,240

,058,160,189

,200,177,093

,133,097,038

,165,057,022

,165,058,163

,032,198,176

,098,160,142

,105,037,038

,046,105.118

,165,057,030

,058,145,182

,145,045,165

,098,132,003

,032,022,194

,002,001,086

,001,200,019

,001,200,024

,044,145,214

,164,098,208

,208,213,043

,136,169,024

,000,177,017

,045,133,168

,230,057,117

,164,098,012

,160,000,025

,145,045,252

,002,133,000

,000,133,026

,032,149,101

,010,109,076

,000,185,112

,203,200,068

,244,032,249

,002,010,140

,162,000,060

,203,145,166

,003,208,194

,002,073,235

,096,032,182

,162,060,120

197

Sound and Graphics

51834 :169,003,133,097,177,253,186

51840 :157,227,202,200,232,198,064

51846 :097 ,165 ,097 , 208,243 ,138, 058

51852 :056,233,006,170,016,232,085

51858 :160,062,185,227,202,145,103

51864 :253,136,016,248,096,032,165

51870 :228,255,240,251,096,013,217

198

u

u

u

u

u

i Charles Brannon

This fast, feature-packed, machine language utility

makes custom characters a breeze. Its unique features let

you concentrate on your artwork instead of programming.

Anyone who has used graph paper to plot out characters, then

tediously converted the rows into decimal numbers can appre

ciate a character editor. Instead of drawing and erasing on

paper, you can draw your characters freehand with a joystick.

"Ultrafont +" has been written to offer almost every con

ceivable aid to help you design whole character sets.

Typing It In

Ultrafont + is written entirely in machine language, giving

you speed and efficiency that BASIC can't match. While this

gives you a product of commercial quality, it does carry the

liability of lots of typing. The program is actually rather short,

using less than 4K of memory at hexadecimal location $C000

(49152), which is reserved for programs like this one. There

fore, you don't lose one byte of BASIC programming space.

However, 4000 characters require three times as much

typing, since each byte must be represented by a three-digit

number (000-255). With that much typing, mistakes are in

evitable. To make things manageable, we've prepared Ultra-

font + to be typed in using "MLX," the machine language

editor. Full instructions are provided in Appendix D. So, de

spite the typing, rest assured that a few afternoons at the key

board will yield a substantial reward.

f""| Once you've entered, saved, and run MLX, answer the
two questions, starting address and ending address:

-_. Starting Address: 49152

I J Ending Address: 52505

After you've saved the program with MLX, you can load

|-~> it with LOAD "filename",1,1 for tape, or LOAD "filename",8,1

L J for disk. After it's loaded, enter NEW, then SYS 49152.

n
The Display

At the bottom of the screen are eight lines of characters. These

are the 256 characters you can customize, arranged in eight

n 199

Sound and Graphics

32-character rows. A flashing square rests on the at symbol

(@), the home position of the character set. Above the eight

rows is the main grid, a blown-up view of ten characters. The

bottom row of the screen is reserved for messages. The first , v

time you SYS to Ultrafont +, you'll be asked whether you LJ

want to edit the uppercase/graphics character set, or the

lowercase set. .

About the Grid

The grid is like a large window on the character set. You see

the first five characters and the five beneath them. A large red

cursor shows you which character you're currently editing,

and a smaller flashing square is the cursor you use to set and

clear pixels in order to draw a character.

Moving Around

You can use the cursor keys (up, down, left, right) to move the

large red cursor to any character you want to edit. If you move

to a character not on the large grid (out of the window), the

window automatically scrolls to make the character appear.

You can also look at the bottom of the screen to move the

larger cursor, since the flashing square on the character set

moves with the main grid.

The HOME key moves the small cursor to the upper-left

corner of the screen. If you press it twice, it takes you back to

the top of the character set—to @.

A joystick plugged into port 2 moves the small cursor

within the grid. If you move the cursor out of the current

character, the red cursor jumps to the next character in what

ever direction you want to move. The display at the bottom

adjusts, and the grid scrolls as necessary. This means that you

can ignore the traditional boundaries between characters and LJ
draw shapes as big as the entire character set (256 X 64

pixels—a pixel is a picture element, or dot). You still edit one

character at a time or make a shape within a 2 X 2 box of j^J
characters. There is no wraparound for the cursor in the bot

tom section of the screen. When it hits an edge, it will go no

further in that direction. |^J
The joystick's fire button is used to set and clear points. If

you press it when the cursor is resting on a solid square, the

pixel is turned off. If the square is currently off, it's turned on. [_J
Holding down the button while you move the joystick keeps

200 lj

Sound and Graphics

n

n

n

you in the same drawing mode. If you set a point, you will

continue to draw as you move. If you clear a point, you can

move around and erase points all over the screen.

If the drawing cursor is too fast or too slow, just press V

to set the cursor velocity. Answer the prompt with a speed

from 0 (slow) to 9 (too fast for practical use).

Manipulations

There are several functions that affect the current character

(where the red box is). You can rotate, shift, mirror, reverse,

erase, replace, and copy characters. The best way to learn is to

play with the functions. It's really a lot of fun. The following

keys control each function.

Function Keys

fi

f2

f3

f4

R

M

CLR (SHIFT-CLR/HOME)

CONTROL-R or

CONTROL-9

CONTROL-back arrow

Scrolls character right. All pixels move right.

The rightmost column of pixels wraps around

to the left.

Scrolls character left. Wraparound is like fl.

Scrolls character down. All pixels move down.

The last row of pixels wraps around to the top.

Scrolls character up. Wraparound is like f3.

Rotate. Rotates the character 90 degress. Press

twice to flip the character upside down.

Mirror. Creates a mirror image of the character

left to right.

Erases the current character.

Reverses the character. All set dots are clear,

and all empty dots are set. The bottom half of

the character set is the reversed image of the

top half.

Copies upper half of the character set, reverses

it, and places it in the lower half. This way,

you have to redraw only the normal charac

ters, then use CONTROL-back arrow to create

the reverse set.

Fix. Use this if you want to restore the normal

pattern for the character. If you've redefined A

and press F while the red cursor is on the

character, the Commodore pattern for A will

be copied back from ROM.

Type. This lets you try out your character set.

The screen clears, with a copy of the character

set provided for reference. You can type and

201

Sound and Graphics

u

move the cursor around, just as in BASIC. This

is handy for envisioning sample screens and

fitting together multiple-character shapes. ^
Press the RUN/STOP key to exit from Type

and return to Ultrafont + . i i

Saving and Loading Character Sets

To save your creation to tape or disk, press S, then either T for P [

tape or D for disk. When requested, enter the filename, up to ^
16 characters. Don't use the 0: prefix if you're using a disk

drive (it's added for you). The screen clears, displays the

appropriate messages, and then returns to the editing screen if

there are no errors. If there are errors, such as the disk being

full, Ultrafont + will read the disk error message and display

it at the bottom of the screen,

Press a key after you've read the message and try to cor

rect the cause of the error before you save again. The com

puter cannot detect an error during a tape SAVE.

To load a character set previously saved, press L and an

swer the TAPE OR DISK message. Enter the filename. If

you're using tape, be sure the tape is rewound and ready.

After the LOAD, you'll be returned to the editing screen; a

glance is all it takes to see that the set is loaded. If an error is

detected on a tape LOAD, you'll see the message ERROR ON

SAVE/LOAD. Once again, if you are using disk, the error

message will be displayed. Press a key to return to editing so

that you can try again.

Copying and Moving Characters

You can copy one character to another with function keys 7

and 8. When you press f7, the current character flashes briefly,

then is copied into a buffer. Ultrafont + remembers that | j

character pattern. You can position the cursor where you want ^
to copy the character before pressing f8. The memorized

character replaces the character the cursor is resting on. You I j

can also use the buffer as a fail-safe device. Before you begin '—'
to edit a character you've already worked on, press f7 to store

it safely away. That way, if you accidentally wipe it out or j I

otherwise garble the character, you can press f8 to bring back ^
your earlier version.

U

202 U

Sound and Graphics

Creating DATA Statements

A very useful command, CONTROL-D, allows you to create

DATA statements for whatever characters you've defined.

Ultrafont + doesn't make DATA statements for all the charac

ters, just the ones you've changed. After you press CON

TROL-D, Ultrafont + adds the DATA statements to the end
of whatever program you have in BASIC memory. If there is

no program, the DATA statements exist alone.

You can load Ultrafont +, enter NEW to reset some

BASIC pointers, load a program you're working on, then SYS
49152 to Ultrafont + to add DATA to the end of the program.

The DATA statements always start at line 63000, so you may

want to renumber them. If you press CONTROL-D twice, an

other set of DATA statements will be appended, also num

bered from line numbers 63000 and up. Since the keys repeat

if held down, just tap CONTROL-D. If you hold it down, you

may find a hundred DATA statements have been created! See

the notes at the end of this article for more details on using

DATA statements in your own programs.

Exiting Ultrafont +

After you create the DATA, you'll still be in Ultrafont +. If
you want to exit to see the DATA statements or go on to other

things, press CONTROL-X. The screen will reset to the normal

colors and you'll see the READY, prompt. If you've made

DATA, a LIST dramatically reveals it. It's best to enter the
command CLR to make sure BASIC is initialized properly after

creating DATA statements. One thing to watch out for: Don't
use RUN/STOP-RESTORE to exit Ultrafont +. The program

moves screen memory from the default area at address 1024,

p-1 and the RUN/STOP-RESTORE combination does not reset

1 I the operating system pointers to screen memory. If you do
press it, you won't be able to see what you're typing. To fix it,

j—* blindly type POKE 648,4 or SYS 49152 to reenter Ultrafont +

LI so you can exit properly.

— Reentering Ultrafont +

I I To restart Ultrafont + within the program, press SHIFT-
RUN/STOP. After you've exited to BASIC, you can rerun

—, Ultrafont + with SYS 49152. You'll see the character set you

L! were working on previously, along with the message USE

203

Sound and Graphics ^^^^^^^^m ^

u
ROM SET? (Y/N). Usually, Ultrafont + will copy the ROM

character patterns into RAM where you can change them. If [_J
you press N, however, the set you were previously working

on is untouched. Press any other key, like RETURN, to reset

the characters to the ROM standard. You can copy either the I I
uppercase/graphics set from ROM, or the lowercase set.

A Whole New World of Multicolor jj

You're not finished yet. There's yet another mode of operation

within Ultrafont +, the multicolor mode. In multicolor mode,

any character can contain up to four colors (one has to be

used for the background) simultaneously. Multicolor changes

the way the computer interprets character patterns. Instead of

a one bit representing a solid pixel and a zero representing a

blank, the eight bits are organized as four pairs of bits. Each

pair can represent four possibilities: 00, 01, 10, and 11. Each

pair is also a number in decimal from 0 to 3, and represents

one of the four colors.

Ultrafont + makes multicolor easy. You don't have to

keep track of bit pairs any more than you have to convert bi

nary to decimal. Just press the f5 key. Presto—the whole

screen changes. The normal characters are rather un

recognizable, and the drawing cursor is twice as wide (since

eight bits have been reduced to four pixel-pairs, making each

dot twice as wide). You have only four dots horizontally per

character, but you can easily combine several characters to
form larger shapes.

Multicolor redefines the way the joystick and fire button

work. The fire button always lays down a colored rectangle in

the color you're currently working with. That color is shown

in the center of the drawing cursor. Press the number keys 1,

2, 3, or 4 to choose different colors to draw with. The number j |
of the key is one more than the bit pattern, so color 1 is bit

pattern 00, and color 4 is bit pattern 11. When you first SYS to

Ultrafont +, the four colors show up distinctly on a color TV I j
or monitor. ^

You can easily change the colors. Just hold down SHIFT

and press the appropriate number key to change that num- j I
ber's color. You will see the message PRESS COLOR KEY. ^
Now press one of the color keys from CONTROL-1 to CON-

TROL-8, or from Commodore-1 to Commodore-8. Hold down j |
the CONTROL or Commodore key as you do this. Instantly,

204
u

Sound and Graphics

that color, and everything previously drawn in that color, is

changed.

Three of the colors (including 1, the background color)

can be any of the 16 colors. But because of the way multicolor
works, color 4 (represented by bit pattern 11, or 3 in decimal)
can only be one of the 8 CONTROL colors. Assigning it one

of the Commodore logo colors just picks the color shown on

the face of the color key. Incidentally, it's the color of bit pat

tern 3 (color 4) that changes according to the character color as

set in color memory. The other colors are programmed in

multicolor registers 1 and 2 (locations 53282 and 53283), so all
characters share these two colors. When you want to vary a

certain color without affecting the rest of the characters, you'll

want to draw it in color 4.

Some of the commands in the multicolor mode aren't as

useful as others. You have to press fl and f2 twice to shift a
character, since they only shift one bit, which causes all the

colors to change. You can use CONTROL-R or CONTROL-9

(Reverse) to reverse all the colors (color 1 becomes color 4,

color 2 becomes color 3, color 3 becomes color 2, and color 4

becomes color 1). R (Rotate) changes all the colors and is

rather useless unless you press it twice to just turn the charac

ters upside down. M (Mirror), works as it did before except

that colors 2 and 3 are switched. And you can still copy

characters using i7 and f8 (see above).

Returning to Normal

You can switch instantly back to the normal character mode

by pressing f6. If you were drawing in multicolor, you can see

the bit patterns that make up each color. Multicolor characters

look just as strange in normal mode as normal characters look

in multicolor.

If you changed colors in the multicolor mode, some of the

colors in the normal mode may have been altered. You can

change these colors just as you did in multicolor mode. Press

SHIFT-1 to change the color of the empty pixels, and SHIFT-2

to change the color of the on pixels. Use SHIFT-4 to change

the color of the eight rows of characters.

Notes: How to Use the DATA Statements

The DATA statements are created from lines 63000 and up, as

many as necessary. Each line of data has nine numbers. The

205

Sound and Graphics

first number is the internal code of the character (the code you

use when POKEing to the screen). It represents an offset into

the table of character patterns. The eight bytes that follow are

the decimal numbers for the eight bytes needed to define any

character. Here's a sample program to read them and display

them:

10 POKE 56,48:CLR :rem 174

50 READ A:IF A=-l THEN 70 :rem 253

60 FORI=0 TO 7:READ B:POKE 12288+A*8+I,B:NEXT:GOTO

50 :rem 228

70 PRINT CHR$(147) ;"{10 DOWN}11: REM TEN CURSOR DOWN

S :rem 121

80 FOR I=0TO7:FORJ=0TO31:POKE 1028+J+I*40,I*32+J:P

OKE55300+J+I*40,1:NEXT:NEXT :rem 14

90 POKE 53272,(PEEK(53272)AND240)OR 12:END :rem 15

You'll also need to add the following line to the end of

your DATA statements:

63999 DATA -1

If you want to have your cake and eat it, too—that is, also

have the normal ROM patterns—copy them from ROM down

to RAM by adding:

20 POKE 56334,PEEK(56334)AND254:POKE 1,PEEK(1)AND

{SPACE}251

30 FOR 1=0 TO 2047:POKE 12288+1,PEEK(53248+1):NEXT

40 POKE 1,PEEK(1)OR4:POKE 56334,PEEK(56334)OR1

206

Sound and Graphics

n

—i

Quick Reference: Ultrafont + Commands

Cursor keys

HOME (CLR/HOME)

v

fl

f2(SHIFT-fl)

f3

f4(SHIFT-f3)

R '

M

CLR (SHIFT-CLR/HOME)

CONTROL-R, CONTROt-9

CONTROL-back arrow <<-),

CONTROL F

F

L

S

- ■■'T. - ■ .- ' *

'V'f7- ' ' •
f8 (SHIFT-47)

f5

f6 (SHIFT-f5)

CONTROL-D

SHIFT-RUN/STOP

CONTROL-X

Move to next character

Moves the cursor to upper-left corner.

Press twice to go back to start

Cursor velocity; answer from 0 (slow)

to 9 (fast)

Scrolls right with wraparound

Scrolls left

Scrolls down

Scrolls up

Rotates 90 degrees; press twice to

Mirror image

Erases current character

Reverse pixels

Copy first four rows of characters, re

versed, to bottom four

Fix characters from ROM pattern

Load. Tape or Disk, Filename

Save. Tape or Disk, Filename

Typing mode: RUN/STOP to exit

Memorizes character (keep)

Recalls character (put)

Switches to multicolor character mode

Returns to normal character mode

Makes DATA statements

Restarts Ultrafont +

Exits Ultrafont + to BASIC

Ultrafont +

For mistake-proof program entry, be sure to use "MLX" (Appendix D).

49152

49158

49164

49170

49176

49182

49188

49194

49200

49206

49212

49218

49224

:076,

:004,

:173,

:002,

:002,

:048,

:169,

:169,

:042,

:002,

:002,

:162,

019,197

000,001

048,002

141,048

032,047

002,169

000,133

216,133

040,002

002,169

174,003

205,048

002,142

,000,001

,003,004

,072,173

,002,141

,193,104

,100,133

,251,133

,168,169

,169,002

,005,141

,192,173

,002,208

,080,002

,003,040

,000,018

,045,013

,079,175

,141,031

,252,222

,167,121

,008,137

,141,031

,041,198

,079,171

,002,021

,160,108

207

Sound and Graphics

49230

49236

49242

49248

49254

49260

49266

49272

49278

49284

49290

49296

49302

49308

49314

49320

49326

49332

49338

49344

49350

49356

49362

49368

49374

49380

49386

49392

49398

49404

49410

49416

49422

49428

49434

49440

49446

49452

49458

49464

49470

49476

49482

49488

49494

49500

49506

49512

49518

49524

208

: 000,177, 253,170,173,063,146

:002,240,003,076,233,192,062

:169,207,145,251,138,010,242

: 170,176,008,173,080,002,193

:145,167,076,112,192,173,199

:004,192,145,167,200,192,240

:008,208,221,024,165,251,223

:105,008,133,251,133,167,149

:165,252,105,000,133,252,009

:105,116,133,168,024,165,075

:253,105,008,133,253,165,031

:254,105,000,133,254,056,178

:238,079,002,206,041,002,206

: 173,041,002,208,156,056,024

: 173, 079,002 , 233 ,005 ,141, 027

:079,002,056,165,253,233,188

:039,133,253,165,254,233,227

:000,133,254,206,040,002,047

:173,040,002,240,003,076,208

:056,192,206,042,002,173,095

: 042 ,002 , 240,030,169,008,177

:141,040,002,024,173,079,151

:002,105,032,141,079,002,059

:024,165,253,105,248,133,120

:253,165,254,105,000,133,108

:254,076,056,192,096,134,012

:097,169,000,141,043,002,174

.•006,097,046,043,002,006,184

:097,046,043,002,174,043,139

:002,169,207,145,251,200,202

.-169,247,145,251,136,189,115

:003,192,145,167,200,145,092

:167,200,192,008,208,215,236

:076,117,192,169,000,141,203
:026,208,165,001,041,251,206

:133,001,096,165,001,009,181

:004,133,001,169,001,141,231

:026,208,096,169,000,133,164

:254,173,048,002,010,133,158

:253,038,254,006,253,038,130
:254,006,253,038,254,169,012

: 112,005,254,133,254,096,154
:032,047,193,160,000,177,171
:253,073,255,145,253,200,235

:192,008,208,245,032,012,015

:192,096,169,102,133,252,012
:169,218,133,168,173,058,249

:002,174,063,002,240,002,075
:009,008,141,080,002,169,007

:132,133,251,133,167,162,070

u

u

u

u

u

u

u

u

u

Sound and Graphics

n

n

n

n

n

49530

49536

49542

49548

49554

49560

49566

49572

49578

49584

49590

49596

49602

49608

49614

49620

49626

49632

49638

49644

49650

49656

49662

49668

49674

49680

49686

49692

49698

49704

49710

49716

49722

49728

49734

49740

49746

49752

49758

49764

49770

49776

49782

49788

49794

49800

49806

49812

49818

49824

:008,169

:000,165

:097,173

:200,192

:165,251

:133,167

:133,252

:202,208

:203,173

:208,169

:141,022

:032,208

:094,193

:063,002

:141,134

:243,024

:133,244

:073,128

:072,173

:032,228

:164,211

:238,032

:201,134

:141,082

:201,135

:002,145

:002,072

:073,128

:243,138

:225,255

:203,169

:169,012

:169,196

:112,133

:133,254

:133,253

:253,145

:230,254

:242,165

:007,169

:.072,194

:004,189

:192,202

:112,133

:254,169

:251,168

:073,255

:247,230

:208,240

:160,000

,000,133

,097,145

,080,002

,032,208

,105,040

,165,252

,105,116

,216,096

,044,002

,200,013

,208,169

,141,033

,173,058

,240,002

,002,165

,165,210

,164,211

,145,209

,134,002

,255,240

,201,133

,208,238

,208,008

,002,076

,208,012

,209,104

,162,029

,145,209

,032,210

,208,165

,000,141

,141,032

,032,023

,252,173

,162,008

,133,251

,251,200

,230,252

,252,201

,208,133

,032,035

,006,192

,208,247

,252,169

,000,133

,162,004

,145,253

,254,230

,096,032

,177r253

,097,160,177

,251,230,248

,145,167,030

,240,024,012

,133,251,067

,105,000,206

,133,168,041

,032,169,063

,141,024,245

,063,002,063

,000,141,095

,208,032,074

,002,174,120

,009,008,012

,209,133,222

,105,116,051

,177,209,076

,177,243,175

,145,243,231

,251,170,132

,208,006,141

,033,208,181

,177,209,167

,026,194,013

,173,082,053

,173,134,015

,177,209,161

,104,145,064

,255,032,176

,032,201,102

,134,002,183

,208,076,178
,193,169,072

,083,002,051

,169,000,028

,168,177,167

,208,249,108

,202,2&8,184

,128,240,042

,254,076,179

,193,162,026

,157,002,150

,096,169,208

,116,133,015

,253,133,048

,177,251,125

,200,208,252

,252,202,027

,047,193,202

,010,008,000

209

Sound and Graphics

49830 :074,040,042,145,253,200,152

49836 :192,008,208,242,076,012,142

49842 :192,032,047,193,160,000,034

49848 :177,253,074,008,010,040,234

49854 :106,145,253,200,192,008,070

49860 :208,242,076,012,192,032,190

49866 :047,193,160,000,177,253,008

49872 :133,097,200,177,253,136,180

49878 :145,253,200,200,192,008,188

49884 :208,245,165,097,136,145,192

49890 :253,076,012,192,032,047,070

49896 :193,160,007,177,253,133,131

49902 :097,136,177,253,200,145,222

49908 :253,136,016,247,200,165,237

49914 :097,145,253,076,012,192,001

49920 :032,047,193,160,000,169,089

49926 :000,133,097,162,008,177,071

49932 :253,010,102,097,202,208,116

49938 :250,165,097,145,253,200,104

49944 :192,008,208,233,076,209,182

49950 :200,032 ,.047,193 ,160,008,158

49956 :169,000,153,048,002,136,032

49962 :208,250,169,007,133,097,138

49968 :152,170,169,000,133,007,167

49974 :177,253,074,145,253,038,226

49980 :007,202,016,251,166,097,031

49986 :165,007,029,049,002,157,219

49992 .-049,002,198,097,165,097,168

49998 :016,224,200,192,008,208,158

50004 :215,136,185,049,002,145,048

50010 :253,136,016,248,076,012,063

50016 :192,032,047,193,160,000,208

50022 :152,145,253,200,192,008,028

50028 .-208,249,076,012,192,120,197

50034 :169,127,141,013,220,169,185

50040 :001,141,026,208,169,177,074

50046 :141,018,208,169,027,141,062

50052 :017,208,169,146,141,020,065

50058 :003,169,195,141,021,003,158

50064 :088,096,173,018,208,201,160

50070 :177,208,039,169,242,141,102

50076 :018,208,173,044,002,141,230

50082 :024,208,173,022,208,041,070

50088 :239,013,063,002,141,022,136

50094 :208,173,057,002,141,033,020

50100 :208,169,001,141,025,208,164

50106 :104,168,104,170,104,064,132

50112 :169,177,141,018,208,169,050

50118 :158,141,024,208,173,032,166

50124 :208,141,033,208,169,200,139

u

u

210

Sound and Graphics

n

n

n

n

n

50130 :141,022,208,238,037,208,040

50136 :169,001,141,025,208,076,068

50142 :049,234,085,064,000,064,206

50148 :064,000,076,064,000,076,252

50154 :064,000,076,064,000,076,002

50160 :064,000,064,064,000,085,005

50166 :064,000,000,000,085,080,219

50172 :000,064,016,000,064,016,156

50178 :000,064,016,000,064,016,162

50184 :000,064,016,000,064,016,168

50L90 :000,064,016,000,064,016,174

50196 :000,085,080,000,000,000,185

50202 :000,255,255,255,000,001,024

50208 :001,001,000,255,001,000,034

50214 :000,255,001,000,000,255,037

50220 :001,018,085,076,084,082,134

50226 :065,070,079,078,084,032,202

50232 .-043,032,086,046,050,146,203

50238 :095 ,069,082 ,082,079,082 ,039

50244 :032,079,078,032,083,065,181

50250 :086,069,047,076,079,065,240

50256 :068,095,018,084,146,065,044

50262 :080,069,032,079,082,032,204

50268 :018,068,146,073,083,075,043

50274 :063,095,070,073,076,069,032

50280 :078,065,077,069,058,095,034

50286 :069,078,084,069,082,032,012

50292 :067,079,076,079,082,032,019

50298 :075,069,089,095,085,083,106

50304 2 069,032,082,079,077,032,243

50310 :083,069,084,063,032,040,249

50316 1089,047,078,041,095,018,252

50322 :085,146,080,080,069,082,176

50328 :067,065,083,069,032,079,035

50334 :082,032,018,076,146,079,079

50340 :087,069,082,063,095,169,217

50346 :045,160,196,133,251,132,063

50352 :252,160,040,169,032,153,214

50358 :191,103,136,208,250,177,223

50364 :251,200,201,095,208,249,112

50370 :136,132,097,152,074,073,090

50376 :255,056,105,020,168,162,198

50382 :024,024,032,240,255,160,173

50388 :000,177,251,032,210,255,113

50394 : 200,196,097,144,246 ,096,173

50400 :133,251,132,252,160,040,168

50406 j169,032,153,191,103,136,246

50412 :208,250,162,024,160,000,016

50418 :024,032,240,255,160,000,185

50424 :177,251,201,095,240,006,194

211

Sound and Graphics

50430

50436

50442

50448

50454

50460

50466

50472

50478

50484

50490

50496

50502

50508

50514

50520

50526

50532

50538

50544

50550

50556

50562

50568

50574

50580

50586

50592

50598

50604

50610

50616

50622

50628

50634

50640

50646

50652

50658

50664

50670

50676

50682

50688

50694

50700

50706

50712

50718

50724

212

: 032, 210, 255, 200, 208, 244,123

:096,174,076,002,240,008,08s

: 160,000, 200, 208, 253 , 202 ,009

.•208,250,096,173,002,221,198

:009,003 ,141,002 , 221,173 ,059

:000,221,041,252,009,002,041

: 141,000, 221,169,100,141,038

: 136,002,169,147,032,210,224

: 255 ,169,000,141,134,002 , 235

: 169,008,032,210,255,160,118

: 000,152 ,153 ,128,099, 200,022

:016,250,168,185,224,195,078

: 153,128,099,200,192,023,097

:208,245,160,000,185,247,097

:195,153,192,099,200,192,089

:032,208,245,169,156,141,015

:044,002,169,012,141,032,238

:208,169,128,141,138,002,118

: 032,113 ,195,169,048,141,036

:076,002,169,011,141,057,056

: 002 ,169 ,007 ,169,000,141,094

:048,002,141,045,002,141,247

:063,002,173,006,192,009,063

:008,141,058,002,173,004,010

: 192,141,034,208,173,005,127

: 192,141,035,208,032,012,000

: 192,032,094,193,169,203,013

: 205,011,192,240,017,141,198

:011,192,162,208,142,083,196

:002,032,060,194,032,012,248

.-192,076,198,197,169,126,112

:160,196,032,173,196,032,205

:228,255,240,251,201,078,163

:240,029,169,145,160,196,111

:032,173,196,032,228,255,094

:240,251,162,208,201,076,066

:208,002,162,216,142,083,003

:002,032,060,194,032,012,040

:192,032,169,196,169,142,102

:141,248,103,169,143,141,153

.-249,103,169,003,141,021,156
:208,169,024,141,000,208,226

:169,000,141,016,208,169,185

.-051,141,001,208,169,176,234

: 141,003 , 208,169,053,141, 209

:002,208,169 ,000,141,029,049

:208,141,023,208,141,038,009

:208,169,003,141,028,208,013

:169,000,141,059,002,141,030

:060,002,173,000,220,072,051

u

u

u

u

u

Sound and Graphics

n

n

n

n

n

50730 :041,015,073,015,141,061,132

50736 :002,104,041,016,141,062,158

50742 :002,032,228,255,240,006,049

50748 :032,197,199,076,03s,198,032

50754 :032,005,197,173,062,002,025

50760 :208,003,032,088,199,173,007

50766 :062,002,073,016,141,075,191

50772 :002,173,061,002,240,204,254

50778 :174,061,002,189,023,196,223

50784 :172,063,002,240,001,010,072

50790 :024,109,059,002,141,059,240

50796 .-002,024,173,060,002,125,238
50802 :034,196,141,060,002,174,209

50808 :059,002,016,027,162,000,130

50814 :142,059,002,173,048,002,040

50820 :041,031,240,015,206,045,198

50826 :002,162,007,173,063,002,035

50832 :240,002,162,006,142,059,243

50838 :002,174 ,059, 002 , 224,040,139

50844 :144,022,162,039,142,059,212

50850 :002,173,048,002,041,031,203

50856 :201,031,240,008,238,045,163

50862 :002,162,032,142,059,002,061

50868 :172,060,002,016,026,160,104
50874 :000,140,060,002,173,048,097

50880 :002,201,032,144,014,056,129

50886 :173,045,002,233,032,141,056

50892 :045,002,160,007,140,060,106

50898 :002,172,060,002,192,016,142

50904 :144,026,160,015,140,060,249

50910 :002,173,048,002,201,224,104

50916 :176,014,024,173,045,002,150

50922 :105 , 032,141,045 ,002 ,160, 207

50928 :008,140,060,002,173,059,170

50934 :002,172,060,002,074,074,118

50940 :074,192,008,144,002,105,009
50946 :031,109,045,002,141,048,122

50952 .-002,041,224,074,074,105,016

50958 :176,141,003,208,173,048,251

50964 :002,041,031,010,010,010,124

50970 :105,053,141,002,208,169,192

50976 :000,105,000,133,097,173,028

50982 :060,002,010,010,010,105,235

50988 :051,141,001,208,173,059,165

50994 :002,010,010,010,038,097,217

51000 :105,024,141,000,208,165,187

51006 :097,105,000,141,016,208,117

51012 :173,048,002,205,081,002,067

51018 :240,009,032,012,192,173,220

51024 :048,002,141,081,002,076,174

213

Sound and Graphics

51030 :038,198,032,047,193,173,255
51036 :060,002,041,007,168,173,031

51042 :059,002,041,007,073,007,031

51048 :170,232,134,097,056,169,194

51054 :000,042,202,208,252,174,220

51060 :063,002,208,048,133,097,155

51066 :173,075,002,208,022,169,003

51072 :000,141,064,002,141,038,002

51078 :208,177,253,037,097,208,090
51084 :008,169,001,141,064,002,013

51090 :141,038,208,165,097,073,100

51096 :255,049,253,174,064,002,181

51102 :240,002,005,097,145,253,132

51108 :032,012,192,096,133,098,215

51114 :074,005,098,073,255,049,212

51120 -.253,166,097,202,133,097,100

51126 :173,066,002,074,042,202,229

51132 :208,252,005,097,145,253,124

51138 :076,012,192,141,065,002,170

51144 :174,225,199,221,225,199,163

51150 :240,004,202,208,248,096,180

51156 -:202,138,010,170,189,006,159

51162 :200,072,189,005,200,072,188

51168 :096,035,133,137,134,138,129

51174 :077,082,147,018,145,017,204

51180 :157,029,070,135,139,049,047

51186 2 050,051,052,019,136,140f178

51192 :033,034,035,036,086,083,043

51198 :076,024,004,006,131,084,067

51204 :005,178,194,156,194,229,192

51210 :194,200,194,255,194,030,053

51216 :195,096,195,073,193,083,083

51222 :200,105,200,127,200,149,235

51228 :200,173,200,246,200,025,048

51234 :201,042,201,042,201,042,251

51240 -.201,042,201,065,201,090,072

51246 :201,112,201,130,201,130,253

51252 :201,130,201,130,201,204,095

51258 :201,002,203,142,203,162,203

51264 :203,035,204,122,194,074,128

51270 :200,167,193,216,200,162,184

51276 :255,154,032,129,255,076,209

51282 :019,197,173,060,002,041,062

51288 :007,133,097,056,173,060,102

51294 :002,233,008,056,229,097,207

51300 :141,060,002,076,169,200,236

51306 :173,060,002,041,007,133,010

51312 :097,024,173,060,002,105,061

51318 :008,056,229,097,141,060,197

51324 :002,076,169,200,173,059,035

214

u

u

u

u

u

u

u

u

u

u

Sound and Graphics

n

n

n

n

n

51330 :002 ,041,007,133 , 097 ,056 , 210

51336 :173,059,002,233,008,056,15s

51342 : 229, 097 ,141, 059 ,002 , 076 , 234

51348 :169,200,173,059,002,041,024

51354 :007,133,097,024,173,059,135

51360 :002,105,008,056,229,097,145

51366 :141,059,002,104,104,076,140

51372 :119,198,032,047,193,032,025

51378 :023,193,160,007,024,173,246

51384 :083,002,101,254,105,143,104

51390 :133,252,165,253,133,251,097

51396 :177,251,145,253,136,016,150

51402 :249,032,035,193,076,012,031

51408 :192,173,063,002,208,003,081

51414 :076,012,192,032,047,193,254

51420 :160,007,177,253,162,004,215

51426 :074,008,074,102,097,040,109

51432 :102,097,202,208,245,165,227

51438 :097,145,253,136,016,234,095

51444 :076,012,192,169,016,141,082

51450 :063,002,169,001,141,029,143

51456 :208,032,012,192,032,094,058

51462- :193,169,050,141,065,002,114

51468 :032,043,201,173,059,002,010

51474 :041,254,141,059,002,076,079

51480 :169,200,169,000,141,063,254

51486 :002,141,029,208,169,001,068

51492 :032,055,201,032,012,192,048

51498 :096,173,063,002,208,001,073

51504 :096,056,173,065,002,233,161

51510 :049,141,066,002,170,189,159

51516 :003,192,141,038,208,096,226

51522 :173,059,002,013,060,002,119

51528 :208,003,141,045,002,169,128

51534 :000,141,059,002,141,060,225

51540 :002,032,012,192,076,169,055

51546 .-200,032,074,193,032,074,183

51552 :193,032,047,193,160,000,209

51558 :177,253,153,067,002,200,186

51564 :192,008,208,246,096,032,122

51570 :047,193,160,000,185,067,254

51576 :002,145,253,200,192,008,152

51582 :208,246,076,012,192,169,005

51588 :110,160,196,032,17 3,196,231

51594 :032,228,255,240,251,162,026

51600 :000,221,218,232,240,008,039

51606 :232,224,016,208,246,076,128

51612 :169,196,056,173,065,002,049

51618 :233,033,168,138,153,003,122

51624 :192,192,003,240,010,192,229

215

Sound and Graphics

51630 :000, 240,022,153,033 , 208,062

51636 :076,199,201,174,063,002,127

51642 :240,002,041,007,141,058,163

51648 :002,153,003,192,032,094,156

51654 :193,032,012,192,076,169,104

51660 :196,169,241,160,201,032,179

51666 :173,196,032,228,255,056,126

51672 :233,048,048,248,201,010,236

51678 :176,244,133,097,056,169,073

51684 :009,229,097,010,010,010,081

51690 :010,141,076,002,076,169,196

51696 :196,067,085,082,083,079,064

51702 :082,032,086,069,076,079,158

51708 :067,073,084,089,032,040,125

51714 :048,045,057,041,063,095,095

517 20 :160,000,140,078,002,169,045

51726 :164,032,210,255,169,157,233

517 32 :032,210,255,032,228,255,008

51738 :240,251,172,078,002,133,134

51744 :097,169,032,032,210,255,059

51750 :169,157,032,210,255,165,002

51756 :097,201,013,240,039,201,067

51762 :020,208,013,192,000,240,211

51768 :209,136,169,157,032,210,201

51774 :255,076,010,202,041,127,005

51780 :201,032,144,194,192,020,083

51786 :240,190,165,097,153,000,151

51792 :002,032,210,255,200,076,087

51798 :010,202,169,095,153,000,203

51804 :002,152,096,032,231,255,092

51810 :169,082,160,196,032,173,142

51816 :196,032,228,255,240,251,026

51822 :162,001,201,084,240,011,041

51828 :162,008,201,068,240,005,032

51834 :104,104,076,169,196,141,144

51840 :077,002,160,000,169,001,025

51846 :032,186,255,169,100,160,012

51852 :196,032,224,196,032,008,060

51858 .-202,208,007,173,077,002,047

51864 :201,084,208,237,173,077,108

51870 :002,201,068,208,069,169,107

51876 :083,141,020,002,169,048,115

51882 :141,021,002,169,058,141,190

51888 :022,002,160,000,185,000,033

51894 :002,153,023,002,200,204,254

51900 .-078,002,208,244,200,200,096

51906 :200,173,065,002,201,083,150

51912 :208,026,152,072,160,002,052

51918 :162,020,032,189,255,169,009

51924 :015,162,008,160,015,032,092

216

u

u

u

u

Sound and Graphics

n

n

n

n

n

51930 :186 , 255 , 032 ,192 , 255 ,032 ,146

51936 :231,255,104,168,136,076,170

51942 :246,202,160,000,185,000,255

51948 :002,153,021,002,200,204,050

51954 :078, 002 , 208, 244,152 ,162 ,064

51960 :021,160,002,032,189,255,139

51966 :169,160,133,178,096,032,254

51972 :095,202,032,169,203,169,106

51978 .-000,133,253,133, 251,169,181

51984 :112,133,252,162,255,160,066

51990 :119,169,251,032,216,255,040

51996 :176,011,032,183,255,208,125

52002 :006,032,201,203,076,169,209

52008 .-196,032,201, 203,032,231,167

52014 : 255 ,173 ,077 ,002 , 201,068,054

52020 :240,015,169,063,160,196,127

52026 :032,173,196,032,228,255,206

52032 :240,251,076,169,196,169,141

52038 :000,032,189,255,169,015,218

52044 :162,008,160,015,032,186,127

52050 :255,032,192,255,162,015,225

52056 :032,198,255,160,000,032,253

52062 :207,255,201,013,240,007,249

52068 :153,000,002,200,076,093,112

52074 :203,169,095,153,000,002,216

52080 :032,204,255,169,000,160,164

52086 :002,032,173,196,162,015,186

52092 :032,201,255,169,073,032,118

52098 :210,255,169,013,032,210,251

52104 :255,032,231,255,076,061,022

52110 : 203 ,032 ,095 , 202 ,032,169,107

52116 :203,169,000,162,000,160,074

52122 .-112,032,213,255,176,137,055

52128 :076,201,203,169,004,141,186

52134 :136,002,000,120,169,000,081

52140 :141,026,208,169,255,141,088

52146 :013,220,169,049,141,020,022

52152 :003,169,234,141,021,003,243

52158 :169,000,141,021, 208,169,130

52164 :147,088,076,210,255,169,117

52170 :147,032,210,255,032,113,223

52176 :195,169,003,141,021,208,177

52182 :032,012,192,032,094,193,001

52188 :076,169,196,248,169,000,054
52194 :141,000,001,141,001,001,255

52200 :224,000,240,021,202,024,175
52206 :173,000,001,105,001,141,147

52212 :000,001,173,001,001,105,013
52218 :000,141,001,001,076,232,189

52224 :203,216,173,001,001,009,091

217

Sound and Graphics

52230

52236

52242

52248

52254

52260

52266

52272

52278

52284

52290

52296

52302

52308

52314

52320

52326

52332

52338

52344

52350

52356

52362

52368

52374

52380

52386

52392

52398

52404

52410

52416

52422

52428

52434

52440

52446

52452

52458

52464

52470

52476

52482

52488

52494

52500

:048,141,002,001,173,000,115

:001,041,240,074,074,074,004

:074,009,048,141,001,001,036

:173,000,001,041,015,009,007

:048,141,000,001,096,096,156

:056,165,045,233,002,133,158

:045,165,046,233,000,133,152

:046,169,024,133,057,169,134

.-246,133,058,169,000,141,033

;079,002,133,251,133,253,143

:169,112,133,254,173,083,222

:002,133,252,032,023,193,195

:160,000,177,251,209,253,104

: 208,062,200,192,008,208,194

:245,238,079,002,024,165,075

:253,105,008,133,253,133,213

:251,165,254,105,000,133,242

:254,109,083,002,105,143,036

:133,252,173,079,002,208,193

:213,169,000,168,145,045,092

:200,145,045,024,165,045,238

: 105,002,133,045,165,046,116

:105,000,133,046,032,035,233

: 193,076,051,165,160,000,021

:024,165,045,105,041,145,163

:045,200,165,046,105,000,205

: 145 ,045 , 200 ,165 ,057 ,145 ,151

:045,200,165,058,145,045,058

: 200,169,131,145 ,045 ,174, 014

:079,002,032,223,203,200,151

:173,002,001,145,045,200,240

: 173,001,001,145,045,200,245

:173,000,001,145,045,200,250

.-132,097,160,000,132,098,055

: 177, 253,170,032, 223, 203, 244

:164,097,169,044,145,045,112

:200,173,002,001,145,045,020

-.173,001,001,200,145,045,025

:173,000,001,200,145,045,030

:200,132,097,164,098,200,107

:192,008,208,214,164,097,105

: 169,000,145,045,160,000,003

: 177 ,045 ,072 , 200 ,177 ,045 , 206

:133,046,104,133,045,230,187

:057,208,002,230,058,076 ,133

:091,204,013,013,013,013,111

218

u

u

u

u

u

Advanced Sound

Effects on the 128
Philip I. Nelson

Here are some secrets to creating unusual sound effects

with the Commodore 128's built-in synthesizer chip. Using

the accompanying program, you can experiment with

different sounds without programming.

The Commodore 128's SID (Sound Interface Device) chip is

capable of creating rich, extraordinarily complex sounds—but

its power doesn't come without a price. There aren't any

sound commands in Commodore BASIC 2.0, the BASIC avail

able in the computer's 64 mode, so everything must be done

with POKEs. It's tedious to look up all those POKE values and

easy to get sidetracked, since you must define several param

eters (controlling values) to make even a simple sound. Many

programmers, including professionals, grow frustrated and

settle for crude beeps and whooping noises, wasting the ma

chine's classiest sound features.

The program at the end of this article is designed to help

beginners learn about two of the SID chip's advanced sound

effects: ring modulation and synchronization. It lets you pro

duce a tone with two sound channels, and also switch either

effect on and off just by pressing one of the 128's special func

tion keys. Don't worry if the following explanations seem

confusing at first; they'll make more sense after you've tried

rmms the program.

! I
Independent Voices

Any sound can be visualized as a waveform, like the cross sec-

(1 tion of a ripple on a pond. When in the 64 mode, the Com

modore 128 is capable of reproducing four different waveforms.

Three of them (the triangle, sawtooth, and pulse waves) pro-

M duce clear tones, and the fourth (the noise wave) makes a

rushing or hissing sound. Figure 1 represents each of these

waveforms. You can assign any one of the four waveforms to

i I any of the 128's three sound channels, or voices.

Sound and Graphics

Figure 1. SID Chip Waveforms

Triangle

u

u

u

u

u

Sawtooth

\

Pulse

Noise

Each of the computer's three voices normally plays in

dependently. That is, each voice sounds the same, no matter

what the other two are doing. If you make voice 1 beep and

voice 2 growl, voice 1 always makes the same beep even if
you change voice 2's growl to a screech. For a simple analogy,

220

u

u

u

LJ

U

Sound and Graphics

If picture each voice as playing through a separate channel, like

the two channels on a home stereo system.

Ring modulation and synchronization go beyond this to

ij create interactive effects, in which a parameter controlling one

1— voice also affects the sound produced by a second voice. In

both cases, the special effect is created by a difference in the

j| frequencies (pitches) of the two voices.

Synchronization

Synchronization is the simpler of the two effects. You could

imagine it as mixing two voices in one channel so that their

waveforms intermingle. The result is often a rhythmic or beat

ing effect, produced as the peaks and valleys of the two waves

move in and out of step with each other.

When the two waves are more nearly in step, their com

bined sound is more pronounced. When their peaks and val

leys are more nearly opposed, they tend to cancel each other

out, and the combined sound is quieter. Figure 2 shows a sim

plified diagram of both extremes.

Figure 2. Synchronization

Waves nearly in step

U

i Waves far out of step

If you program both voices so that their frequencies are

always identical, synchronization produces no audible effect.

In addition to the original tones each waveform produces

by itself, synchronization adds nonharmonic overtones (also

221

Sound and Graphics

called sidebands). The overtones are entirely new waveforms

which would not exist without synchronization. For instance,

imagine someone pounding a huge gong. Gong sounds are

full of nonharmonic overtones, which are created as different

areas of the big, flexible metal plate vibrate in and out of

phase.

In simplest terms, synchronizing two voices gives you

both original tones plus new overtones. However, the original

tones predominate.

Ring Modulation

Ring modulation is a special type of synchronization in which
overtones almost completely suppress the original tones. What

you're left with is a sound composed chiefly of nonharmonic

overtones. The results are often surprising and bear little if

any resemblance to so-called natural sounds.

Used with care, ring modulation can produce haunting,

beautiful effects. However, it works through a complex inter

action of two waveforms, largely suppressing what you'd hear

without the feature. So it can be difficult to handle if you

don't know how it works in the first place.

Experimenting with Effects

Let's hear how these effects sound. Type in the program

"Sound Effects," save it, and type RUN. The program is set up

with several default parameters, so to hear a quick example,
just press RETURN at every prompt. The default parameters

will be displayed in each case.

You should hear a flutey tone sweeping up the scale, over

and over. To pause the tone during its upward sweep, press

the CONTROL key. (Don't worry about accidentally hitting j j

the RUN/STOP key; it's been disabled.)
To switch on synchronization, press the f7 function key.

The f5 key switches on ring modulation, and the f3 key ac- { I

tivates both effects at once.

When synchronization is selected, you'll hear the beating

effect as the tone ascends in pitch and the two voices move in I j

and out of phase with each other. Ring modulation creates a

rich, spacey sound. Note that you can pause the tone with
CONTROL while pressing a function key. As you'll hear, the j j

sounds are far less exciting when both frequencies remain

Sound and Graphics

fixed. The most interesting effects are made by changing

parameters in realtime.

In these two-voice effects, one of the voices is called the

carrier; the other, the program voice. These terms are derived

from electronics, meaning that the first voice carries the signal

(produces the basic sound), and the second voice programs

(modulates) it. In this example program, voice 1 produces the

carrier tone, and voice 3 programs voice 1.

In both synchronization and ring modulation, it is the fre

quency of the program voice which affects the carrier voice. The

other program voice parameters have no effect on the carrier

(of course, they will affect the program voice if it is turned on).

Shifting Frequencies

Now that you've heard these special effects with the program

voice set for a fixed frequency, let's try changing the frequency

while the tone is being produced. To raise the frequency of the

program voice, press either SHIFT key. To lower it, press the

Commodore logo key (next to the SHIFT on the left side of

the keyboard). The most pronounced effects are produced by

decreasing the program frequency during a rising tone, and

vice versa.

Now let's hear a descending tone. Press the fl key to stop

the sound, and enter the following values when prompted:

Rising/falling?

Carrier waveform

Program waveform

Hear program voice?

Program frequency

Starting frequency

Ending frequency

Loop rate

F

T

(any waveform works)

N

9

200

5

6u
Experiment with the program for a while, trying out dif-

j j ferent parameters. For example, try producing the same sound

l|—^ with a smaller loop rate. Press fl to enter edit mode, then
press RETURN after the first seven prompts. Now enter 0.75

j j for the loop rate. Pressing RETURN at a prompt preserves the

old value, so you need to type in only the parameters you

want to change (however, you must always enter the loop rate

f i for a falling tone).

—■ When picking the waveforms, press T for a triangle wave,
P for the pulse waveform, and so on. When you select a rising

I—J . 223

Sound and Graphics

tone, the starting frequency must be smaller than the ending

frequency. To create a falling tone, the first value must be larger

than the second. If you make a mistake, use the INST/DEL

key to back up. The program signals an error if you enter il

legal values. If you accidentally type in a letter when a num

ber is required, the computer prints ?REDO FROM START. No

harm is done; just enter the number you want.

The loop rate controls how fast the carrier frequency is

changed as the tone moves up or down the scale. It corre

sponds to the STEP value in the FOR-NEXT loop that creates

the tone (see lines 13-17 in the program). The smaller the

loop rate (fractions are allowed), the slower the frequency will

change, and vice versa. When the starting and ending fre

quencies are far apart, you can specify a large value for the

loop rate; however, if you specify a starting frequency that is

close to the ending frequency, you must keep the loop rate

small to avoid causing an error in the program.

Programming Your Own Sounds

You can use this program to start building a library of sound

effects. Just play around until you find a sound you like, copy

down the values from the screen, and plug them into your

own program.

As you'll discover by experimenting, these special effects

work well with certain combinations, and poorly (or not at all)

with others. Ring modulation works only when you set the

carrier voice to the triangle waveform. Synchronization works

with any waveform, but synchronizing any frequency with the

noise waveform (a nearly random combination of many fre

quencies) doesn't accomplish much. The sawtooth and pulse

waves often sound similar. | I

Most of the time, you'll want to keep the program voice ' '
silent, using only its frequency to control the carrier (in which

case its other parameters are irrelevant). However, you can I 1

press Y when prompted to hear the program voice. If you '
have trouble understanding how an effect works, try listening

to the program voice for awhile. I

Ring modulation and synchronization are most pro

nounced when the program frequency is considerably lower

than the carrier frequency and remains fixed, as in the above r—1

examples. Changing the program frequency to a higher fixed ' '
value makes the two voices move in and out of phase more

224 I '

Sound and Graphics

rapidly. Run the last example, and change the program fre

quency from 9 to 22. Now select synchronization, and you'll

hear a sharp, meow-meow sound.

Controlling Voices with Voices

You can use ring modulation or synchronization with any of

the 128's three voices, but the voice relationships are fixed:

voice 1 modulates voice 2, voice 2 modulates voice 3, and

voice 3 modulates voice 1.

Thus, if you want to synchronize or ring modulate voice

1, you must use voice 3 as the program voice, and so on.

Again, it is the frequency of the program voice which affects

the result. This simple tutorial program uses only the high-

byte frequency register for each voice; of course, you can

achieve much finer frequency control by using both the high

and low bytes.

To select these special effects in BASIC, simply add 2, 4,

or 6 to the normal POKE value for the waveform register of

the voice you want to affect. For instance, POKE 54276,17 se

lects the triangle waveform for voice 1. POKE 54276,19 adds

synchronization to the triangle wave (17+2 = 19). POKE

54276,21 enables a ring-modulated triangle wave; and POKE

54276,23 turns on both effects at once. Use POKE 54276,67 to

select synchronization with the pulse waveform, and so forth.

Naturally, you can use these effects with more than one

voice at a time. If you select synchronization in voices 1 and 3,

then voice 1 will be affected by voice 3's frequency, and voice

3 will be affected by voice 2's frequency. However, because

multivoice modulation creates so many overtones, it's easy for

things to get out of hand. If you create a three-note musical

PI chord with triangle waves in every voice, and then switch

each to ring modulation, the result will be anything but

musical.

I"—j Play with those frequencies for awhile, though, and you'll

find you can push the overtones into complex chords. Such

chords have a ringing, live sound and contain more than three

p"j notes. Interesting effects can also be created by tuning one or

more voices slightly off-key.

pi Hints for Programmers

This program employs a few tricks you might find useful.

Many programmers use a long series of individual POKEs to

p

'--1 225

Sound and Graphics

set up the SID chip at the beginning of a program. Line 1020

shows how to do this with a FOR-NEXT loop that READs the

values from DATA statements and POKEs them into the SID

chip. This makes your program easier for others to read and

for you to modify. Note, however, that Commodore BASIC

2.0 (the BASIC used in the 64 mode) recommends POKEing

attack/decay registers before waveform registers; the program

follows this rule by POKEing the desired waveform values

later on, in line 370.

To detect a single keypress, you can PEEK location 197 as

is done in lines 14 and 15 (Z=197). Sometimes, however, you

want to let the user do two things at once from the keyboard.

In this program, for instance, you can select effects with a

function key and simultaneously change the program fre

quency or pause the sound.

By PEEKing location 653, you can tell whether the CON

TROL, SHIFT, or Commodore key is pressed with another key

(see line 16; Y=653). Location 653 holds the following values

when the indicated key is pressed:

1 = SHIFT

2 = Commodore

4 = CONTROL

You can also detect combinations of these keys. Location

653 contains a 3 when both SHIFT and the Commodore key

are pressed, 5 when SHIFT and CONTROL are pressed, and

so on. Checking for these keys gives you great flexibility in

designing keyboard input. However, it's prudent to disable the

RUN/STOP key when using them.

The program disables the RUN/STOP key in line 1010

with POKE 788,52. However, you can still exit the program by

hitting RUN/STOP and RESTORE together. In the same line, | (
POKE 657,128 prevents the computer from flipping the entire

screen display from uppercase to lowercase if the SHIFT and

Commodore keys are pressed simultaneously. j |

u

u

226 u

H

n

n

n

n

Sound and Graphics

Sound Effects

For mistake-proof program entry, be sure to use "Automatic Proofreader"

(Appendix C).

0 REM SOUND MODULATION DEMONSTRATOR :rem 59

1 GOSUB 1000:GOTO100 :rem 118
2 PRINTCHR$(145)C$:FORJ=1TO400:NEXT:PRINTER?CHR?(1

45) : RETURN s rem 35
4 Z1=UN:ZZ=ED:RETURN :rem 109

5 ZZ=ZZ-LR:RETURN :rem 191

6 POKEW1,V1+TU: RETURN :rem 142

7 POKEW1,V1+FR:RETURN :rem 126

8 P0KEW1,VI+SX: RETURN :rem 14b
9 PF=PF+UN:IFPF>FFTHENPF=FF :rem 39

10 RETURN srem 65
11 PF=PF-UN:IFPF<UNTHENPF=UN :rem 126

12 RETURN srem 67

13 Z1=ZR:FORZZ=BGTOEDSTEPLR :rem 121

14 IFPEEK(Z)=NNTHENPOKEW1,V1:GOTO16 :rem 16

15 ONPEEK(Z)GOSUB10,10,6,4,8,7 :rem 202

16 ONPEEK(Y)GOSUB9,11,10,5 :rem 8
17 POKEH1,ZZ:POKEH3,PF:POKEBF,ZR:NEXT:IFZ1=UNTHEN1

9 :rem 165

18 GOTO13 srem 6
19 POKEH1,ZR:POKEH3,ZR:POKEW1,ZR:POKEW3,ZR:POKE198

, ZR :rem 29

100 PRINTFL$;:INPUTFF$:rem 137

110 IFFF$<> IIR"ANDFF$<> "F"THENFF?=" " :GOSUB2 :GOTO100
:rem 184

120 PRINTULFF:PRINTCV$; :INPUTW$: rem 238

130 IFVV$ < >"T MANDVV$ < >"S"ANDVV$ < >"P"ANDVV$< >"N"THE

NGOSUB2:GOTO120 :rem 0

140 FORJ=1TO4:IFW$=VL$(J)THENV1=VC(J) :rem 105

150 NEXT :rem 213

160 PRINTUL?VV?:PRINTPV?;:INPUTVW? :rem 32

170 IFVW$ < > "T "ANDVW? < > "S "ANDVW$ <> " P "ANDVW? < > "N "THE

NGOSUB2:GOTO160 :rem 12

180 FORJ=1TO4:IFVW$=VL$(J)THENV3=VC(J) :rem 112

190 NEXT :rem 217

200 PRINTULVW:PRINTNF$; :INPUTYS$:rem 9

210 IFYS$ < >"Y"ANDYS?< >"N"THENGOSUB2:GOTO200

:rem 158

220 IF YS?="N"THENV3=V3-UN :rem 16

230 PRINTUL?YS?:PRINTPF?;:INPUTPF :rem 211

240 IFPF<UNORPF>FFTHENGOSUB2:GOTO230 :rem 132

250 PRINTNL?PF:PRINTBG?;:INPUTBG :rem 122

260 IFBG<ZRORBG>FFTHENGOSUB2:GOTO250 :rem 119

270 PRINTNL?BGPRINTED?;:INPUTED :rem 111

280 IFED<ZRORBG=EDORED>FFTHENGOSUB2:GOTO270

:rem 107

227

Sound and Graphics

290 IFFF$="R"ANDED<BGTHENGOSUB2sGOTO270 srem 187

300 IFFF$="F"ANDED>BGTHENGOSUB2sGOTO270 srem 169

310 PRINTNL$EDsPRINTLR$;sINPUTLR srem 148

320 IFLR<=ZRORLR>FFTHENGOSUB2:GOTO310 :rem 216

330 IFFF$="R"ANDLR>ED-BGTHENGOSUB2sGOTO310:rem 126

340 IFFF$="F"ANDLR>BG-EDTHENGOSUB2sGOTO310srem 115

350 IFFF$="F"THENLR=-LR srem 115

360 PRINTNL$ABS(LR):PRINTCHR$(158)A$sPRINTB$sPRINT

F$:PRINTCHR$(158)A$ srem 63

370 POKEH3,PF:POKEW1,V1:POKEW3,V3 srem 82

380 G0T013 srem 56

999 REM INITIALIZE srem 129

1000 PRINTCHR$(147)CHR$(5)CHR$(142)sPOKE53281,0sPO

KE53280,0:Z=197sBF=198:Y=653 srem 188

1010 POKE657,128:POKE788,52 sS=54272:VM=S+24:FORJ=S

TOVMsPOKEJ,0sNEXT srem 146

1020 FORJ=STOVM:READQsPOKEJ,QsNEXT srem 26

1025 FF$="R"sBG=5 :ED=125 :LR=2 :W$="T" sVW$="T" sPF=l

lsYS$="N" srem 102

1030 ZR=0sUN=lsTU=2:FR=4sSX=6:NN=64:FF=255sHl=S+l:
W1=S+4:H3=S+15:W3=S+18 srem 63

1040 R$=CHR$(18) srem 51

1050 A$=R$+"{37 SPACES}" srem 77

1060 PRINTA$ srem 185

1070 PRINTR$"{4 SPACES}SOUND MODULATION DEMONSTRAT
OR{4 SPACES}" srem 54

1080 PRINTA$ srem 187

1090 B$=R$+CHR$(158)+" F7=SYNCH F5=RING F3=BOTH Fl

=RESTART "+CHR$(159) srem 108

1095 F$=R$+CHR$(158)+" CTRL=PAUSE COM=FREQ DN SHFT

=FREQ UP "+CHR$(159) srem 163

1100 C$=CHR$(158)+"{31 SPACES}"+R$+"ERROR "+CHR$(1

59) srem 123
1105 ER$="{8 LEFT}{5 SPACES}" srem 235

1110 BL$=R$+CHR$(159) srem 68

1115 UL$=CHR$(145):FORJ=1TO31sUL$=UL$+CHR$(29)sNEX

TsUL$=UL$+"{2 SPACES}" srem 104 j I
1118 NL$=UL$+CHR$(157) srem 165 !—'
1120 FL$=BL$+" RISING OR FALLING TONE? (R,F) "+CHR

$(146) srem 228 i ,

1130 BG$=BL$+" STARTING FREQUENCY{4 SPACES}(0-255) (|
"+CHR$(146) srem 80

1140 ED$=BL$+" ENDING FREQUENCY{6 SPACES}(0-255) "

^FCHR$(146) srem 154 I }

1150 LR$=BL$+" LOOP RATE{13 SPACES}(1-255) "+CHR$('—'

146) srem 176

1160 CV$=BL$+" CARRIER WAVEFORM{4 SPACES}(T,S,P,N) i ,

"+CHR$(146) srem 132 {_j
1170 PV$=BL$+" PROGRAM WAVEFORM{4 SPACES}(T#S#P#N)

"+CHR$(146) srem 162

228 LJ

n

n

n

n

n

n

Sound and Graphics

1180 PF$=BL$+" PROGRAM FREQUENCY{5 SPACES}(1-255)

{SPACE}"+CHR$(146) :rem 15

1190 NF$=BL$+" HEAR PROGRAM VOICE?{5 SPACES} (Y,N)
{SPACE}"+CHR$(146) :rem 10

1200 FORJ=1TO4:READQ:VC(J)=Q:NEXT :rem 85

1210 FORJ=1TO4:READQ$:VL$(J)=Q$:NEXT :rem 203

1300 RETURN :rem 164

2000 DATA 5,0,128,7,0,15/240:REMVOICE1 :rem 12

2010 DATA 0,0,0,0,0,0,0:REMVOICE2 :rem 251

2020 DATA 5,0,128,7,0,15,240:REMVOICE3 :rem 16

2030 DATA 0,0,0,15:REMFILTERS#VOLUME :rera 148

2040 DATA 17,33,65,129:REMWAVEFORMS :rem 17

2050 DATA T,S,P,N :rem 170

229

n

Automatic Program Saver
J. Blake Lambert

This short, useful disk routine automatically saves up

dated versions of the BASIC program you're working on.

It also works with some ML assemblers, and is especially

useful for those who live in areas where power dropouts

frequently occur.

If you've ever been zapped by a power dropout or a loose

power plug and have seen the ominous reset message, you

know how it feels. The cost is high—your time and your

work. It's easy to say always make periodic backup copies as you

type in or write programs. But when the ideas are flowing, it's

also easy to forget or procrastinate. "NoZap" does more than

remind you—it does the SAVE for you, periodically and

automatically.

NoZap is not a surge protector (it won't protect your com

puter from hardware damage resulting from a power spike),

but it will protect you from momentary electric dropouts and

loose connections that can cost you time and effort. Once

you've run NoZap and entered a filename, it will save the cur

rent version of the program every ten minutes with an up

dated filename. You don't have to do anything—the operation

is totally transparent. Every ten minutes, NoZap waits until

you finish the line you're working on, and when you press

RETURN to enter the line, it automatically saves.

n NoZap even works with some programming utilities and

typing aids. For example, it works with the "Automatic Proof

reader," but not with "MLX." (Since MLX is a BASIC pro-

ngram, NoZap will back up the MLX program rather than the

ML program you're entering.) It works with the DOS 5.1

Wedge, as well as with some assemblers, such as PAL and

LADS.

NoZap keeps track of the size of the program you're

working on, as well as automatically stamps a version number

nonto the beginning of the filename. NoZap can accommodate

as many as 100 versions, numbered 01-99. After 99, the ver

sion number rolls over to 00.

M 233

Utilities

There are a couple of limits which NoZap cannot work

around: disk space and directory space. If not enough blocks

are free, the program won't be saved. And the directory can't

hold more than 144 filenames.

Using NoZap

After typing in NoZap, load and run it; it's a BASIC loader.

The program POKEs a machine language program into the

current top of BASIC memory and protects it from BASIC

variables. NoZap uses memory locations 739-767, so avoid

putting any ML routines there.

After you've run NoZap, the title line appears, then this

prompt:

FILENAME?

Enter a filename (without quotes) from 0 to 14 characters long

and press RETURN. Don't try to use a filename longer than 14

characters, as this can cause your computer to lock up. You

don't need to include the version number, since NoZap adds

that for you. Next, type NEW and press RETURN. From this

point on, simply program as you normally would. NoZap is in

charge of your SAVEs, although you may continue to use the

normal SAVE command. The first time NoZap saves, it uses a

version number of 01. For example, if you enter THOR as the

filename, the first version will be 01THOR; the second,

02THOR; and so on. NoZap reports the disk status, but won't

try to save again if there's an error.

Forced SAVEs and Toggling

Occasionally, you may want to save a new version before the

next NoZap SAVE. Or you may want to turn off NoZap for

awhile. To do so, use these commands: j J

SYS 739 (forced SAVE)

SYS 745 (toggle off and on)

Typing SYS 739 increments the version number and saves the Lj
program. NoZap resets its timer so the next SAVE will occur

ten minutes later. , ,

If you want to turn NoZap off, just enter SYS 745. This LJ
acts as a toggle, so if you SYS 745 again, NoZap restarts as if it

had been run for the first time. , ,

234 [J

Utilities

Zapping NoZap

NoZap has been written to prevent it from interfering with
your programming— RUN/STOP-RESTORE does not deacti

vate it. To do that, turn the computer off, then on again, or

SYS 64738.
There are also ways to trick NoZap to your advantage.

For example, if you stop at 04THOR one evening, the next

time you program, run NoZap and use the filename THOR
again. To defeat SAVEs, open the gate on the disk drive (and
remove the disk if you like). To bump the version number up,
SYS 739 repeatedly until you reach the desired number. Leav

ing the gate open will also help you avoid saving something
in memory that you don't wish to save (like the disk direc

tory). You may have to initialize the drive (or turn it off and
on) to get it to respond after this, since the drive protects itself
by not repeatedly trying to operate with the gate open.

Wild Cards and Pattern Matches

Since the version numbers are at the beginning of the file

name, you can list all the versions of THOR with

LOAD"$0:??THOR",8

LIST

or by using the wedge command:

@$0:??THOR

If the program name is long, you may want to use pattern

matching as well. For example, versions of a filename such as

THORSREVENGE could be viewed with the wedge command:

@$0:??THORS*

This is subject to the normal rules of pattern matching.

f"] When you have a final version, you may want to do a
normal SAVE of the program, using a unique name, like

FINALTHOR. You can then scratch all the NoZap-saved ver-

f"! sions of THOR with the following wedge command:

@S0:??THOR

r^ Remember that it's usually best not to use pattern matching

1 • when scratching files so that you won't erase files accidentally.

n

R 235

Utilities

How NoZap Works

NoZap takes advantage of the fact that many BASIC and

Kernal routines are vectored. A vector is like a road sign that

tells the computer the location of a routine. Since the vector is
in RAM, it can be changed to point to your own routine, the

same way a detour sign guides you when traffic is rerouted. A

program that uses such a detour is called a wedge.

NoZap sets up a detour in the Main BASIC Loop, the part

of BASIC that takes in program lines as they are entered (in
direct mode). As a result, BASIC will take the NoZap detour

each time you press RETURN. When you run NoZap and en

ter a filename, the name is placed in a filename buffer, just

after the current version number. The vector at locations

$302-303 (decimal 770-771), which points to the Main BASIC
Loop, is altered, and one of the computer's internal timers is

set to 0. It's this timer that NoZap checks as you enter each

program line. The timer used is the TOD (time of day) clock at

locations $DC08-DC0A (56328-56330). If the timer has not
counted to ten minutes, NoZap sends the computer back to

the Main BASIC Loop at $A483 (42115). This completes the
NoZap detour.

Since NoZap wedges into the Main vector at $302-303, it

is not compatible with programming utilities which use the

same technique. You may have to experiment to find out

which utilities will work with NoZap in place. Another source

of conflict is programs that want to use the same section of
memory.

Clock Strikes Ten

If the timer has counted far enough, NoZap continues, adding

one to the version number in the filename buffer, then uses ,

the Kernal SETNAM, SETLFS, and SAVE routines. NoZap LJ
determines which area of memory to save by looking at the

pointers to the start and end of BASIC program text—$2B-2C (,

(43-44) and $2D-2E (45-46), respectively. Then it checks the LJ

error channel and finishes the SAVE routine, returning to the
Main Loop again.

The above description is brief, so use a machine language | I
monitor to disassemble NoZap if you wish to look at all the

details. In addition, the BASIC loader POKEs in two short

routines. The first, which starts at location 739, sets the timer (|

236

Utilities

to trick NoZap into thinking the time is up. This forces an ear

lier SAVE.

The second routine is a NoZap pointer. Located at 745,

the routine consists of a JuMP to the starting address of the

NoZap initialization routine. When you run the BASIC loader,

this address is placed in its correct form in addresses 746-747.

This means that no matter where NoZap locates, you can tog

gle it on and off with SYS 745.

Customizing NoZap

After you've typed in, saved, and tested the BASIC loader, you

may want to customize it to suit your preferences. One easy

modification is to change the interval between SAVEs. While

the normal value is 10 minutes, NoZap maintains a counter

which allows you to use an interval of 20 minutes or more. To

change the time between SAVEs to 20 minutes, for example,

change the 1 in line 42 to a 2. Change it to 3 for 30 minutes,

and so on. You must also increase the checksum number in

line 102 by the same amount as you increase the counter

value.

One side effect of changing the interval is that you must

SYS 739 repeatedly to do a forced SAVE. For example, if you

change the counter value to 2, you must SYS 739 twice to do

a forced SAVE, and three times if the counter is set to 3. To

avoid this problem, here's a simpler way to force a SAVE

when the counter is set to 2 or higher:

POKE 750,1: SYS 739

It's even possible to force NoZap into starting at a version

number other than 01. This is handy when you want to type

in a program in several sessions. If you add the following four

jl lines to NoZap, you can start at any version number from 00
to 99.

To use the addition, load but don't run NoZap. Add these

|) lines and save under a new name (like NOZAPX, for ex
tended) before running the new NoZap.

15 PRINT "RUN 200 TO ALTER THE VERSION NUMBER."

:rem 215

200 INPUT "LAST VERSION NUMBER{3 SPACES}00{4 LEFT}
";N$:IFLEN(N$) O2THEN200 :rem 226

[) 202 H$=LEFT$(N$,1):L$=RIGHT$(N$,1):IFH$<H0"ORH$>"9
"ORL$<"0IIORL$>"9"THEN200 :rem 80

204 POKE751,ASC(H$):POKE752#ASC(L$):NEW :rem 17

n

n 237

Utilities

To use the new version, just load and run it, and you'll be

asked for the filename as usual. As before, don't include the

version number. If you want to start at a number other than

01, type RUN 200. You'll see the prompt, LAST VERSION

NUMBER?, which means you should enter one less than the

number at which you wish to start. From that point on, use

NoZap as you would normally. The program dears itself from

BASIC memory, so if you toggle NoZap off and back on,

you'll have to start at version 01 (unless you use the POKEs

below or reload the extended version).

Here are the version number POKEs if you want to do it

manually (H represents the ten's digit and L the one's digit):

POKE 751, ASCC'jy")

POKE 752, ASCC'Z")

If you've toggled NoZap off, for instance, and want to resume

with version 35, you would

POKE 751, ASC("3")

POKE 752, ASC("4")

Remember that you're specifying the version one less than the

number at which you want to start.

NoZap can be a lifesaver. It can take the worry out of los

ing files unexpectedly and let you concentrate on programming.

NoZap

For mistake-proof program entry, be sure to use "Automatic Proofreader"

(Appendix C)

1 REM NOZAP FOR THE 64 :rem 207

2 POKE56,PEEK(56)-1:CLR:I=256*PEEK(56)+PEEK(55):S=

I :rem 216

4 DEFFNH(X)=INT(X/256) :rem 37

6 DEFFNL(X)=X-FNH(X)*256 :rem 156 I I

8 DATA169,16,141,10,220,96,76 :rem 200 kJ
10 FORJ=739TO745:READK:POKEJ,K:NEXT :rem 249

12 POKE746,PEEK(55):POKE747,PEEK(56) :rem 87 , .

14 PRINT "SYS 739=FORCED SAVE. SYS 745=TOGGLE." (J
:rem 241 w

16 READ A:B=B+A:IF A=256 THEN 102 :rem 209

18 POKE I,A:I=I+1:GOTO 16 :rem 141 i j

20 DATA 173,236,2,73,1,141 :rem 241 I I
22 DATA 236,2,208,13,169,131 :rem 90

24 DATA 141,2,3,169,164,141 :rem 40

26 DATA 3,3,76,131,164,169 :rem 1 I
28 DATA 48,141,239,2,141,240 :rem 94 !—!

238 u

Utilities

H

n

n

n

30 DATA 2,169,7,160,7,32 :rem 149
32 DATA 30,171,32,249,171,160 :rem 139

34 DATA 2,185,254,1,153,239 :rem 48

36 DATA 2,240,3,200,208,245 :rem 33

38 DATA 140,237,2,162,7,160 :rem 43

40 DATA 7,142,2,3,140,3 :rem 85
42 DATA 3,169,1,141,238,2:REM CHANGE THE 1 FOR A L

ONGER INTERVAL 2rem 239
44 DATA 169,0,141,8,220,141 :rem 38

46 DATA 9,220,141,10,220,173 :rem 83
48 DATA 10,220,41,240,240,117 :rem 129

50 DATA 206,238,2,208,233,238 :rem 145

52 DATA 240,2,173,240,2,201 :rem 27

54 DATA 58,208,20,169,48,141 :rem 106

56 DATA 240,2,238,239,2,173 :rem 49

58 DATA 239,2,201,58,208,5 :rem 2

60 DATA 169,48,141,239,2,173 :rem 105

62 DATA 237,2,162,239,160,2 :rem 44

64 DATA 32,189,255,169,1,162 :rem 109

66 DATA 8,160,0,32,186,255 :rem 1

68 DATA 169,43,166,45,164,46 :rem 118

70 DATA 32,216,255,169,141,32 :rem 146

72 DATA 210,255,169,0,32,189 :rem 101

74 DATA 255,169,15,162,8,160 :rem 107

76 DATA 15,32,186,255,32,192 :rem 106

78 DATA 255,162,15,32,198,255 :rem 163

80 DATA 32,207,255,201,13,240 :rem 133

82 DATA 6,32,210,255,56,176 :rem 51

84 DATA 243,32,210,255,169,15 :rem 149

86 DATA 32,195,255,32,204,255 :rem 155

88 DATA 76,7,7,76,131,164 :rem 222

90 DATA 18,78,79,90,65,80 :rem 227

92 DATA 146,32,66,89,32,66 :rem 15

94 DATA 76,65,75,69,32,76 :rem 232

96 DATA 65,77,66,69,82,84 :rem 239

98 DATA 13,70,73,76,69,78 :rem 231

100 DATA 65,77,69,0,256 :rem 112

102 IF B<>28715THENPRINT"ERROR IN DATA STATEMENTS.

11: END :rem 103

104 POKE S+32,FNL(S+210):POKES+34,FNH(S+210)

:rem 205

106 POKE S+58,FNL(S+83):POKES+60,FNH(S+83):rem 134

108 POKE S+205,FNL(S+67):POKES+206,FNH(S+67)

:rem 232

110 SYS745 :rem 49

239

Disk Directory Sort
N. A. Marshall

This short program can help you better organize your

disks by alphabetically sorting each of your disk

directories.

An alphabetized disk directory can be a timesaver, especially if

you have a variety of disks. It's particularly helpful when

you're looking for a filename in a long directory.

"Disk Directory Sort" is a short (35 lines) BASIC program.

Type in the program and save it. To use it, first load it, then

insert the 1541-format disk you wish to sort alphabetically.

Type RUN, and the directory is read into memory and sorted.

You will see the sort happening onscreen. Note that all de

leted files are written to the end of the sort. After all files have

been sorted, you're prompted to press the space bar to write

the newly sorted directory (still sorted only in memory) back

to disk. If you change your mind at this point, remove the

disk before pressing the space bar. No damage is done, and

your original directory remains intact.

Caution: The program reads the directory, alphabetizes it,

and writes it back to disk. If you make any typing mistakes

while entering it, the program could ruin the directories on

your disks. There's a chance you would lose some programs.

After entering and saving it, you should test it on a backup

disk in case you incorrectly typed a line. (If you wouldn't

mind the disk being run over by a lawn mower, it is okay to

test this program with it.)

The program works on any size directory (up to 144 * ,

filenames are allowed on 1541-format disks). Here's a brief LJ
summary of the program routines:

Lines Description i i

20-140 the sort LJ
150-210 read in the file entries

220-290 write the directory , |

300-310 process the directory header I]
320-330 read a block

340-350 initialize the program

240 u

n

n

n

n

n

Utilities

Disk Directory Sort

For mistake-proof program entry, be sure to use "Automatic Proofreader"

(Appendix C).

10 GOSUB340:GOTO150 :rem 129

20 PRINTII{DOWN}£ORTING":SK=K1:L%(K1)=K1:R%(1)=NF

:rem 176

30 L1=L%(SK):R1=R%(SK):SK=SK-1 :rem 238

40 L2=Ll:R2=Rl:KE$=NS$(INT((Ll+Rl)/2)) :rem 116

50 KE$=MID$(KE$,31)+MID$(KE$,4,M%(INT((Ll+Rl)/2)))

:rem 127

60 IFMID$(NS$(L2),31)+MID$(NS$(L2),4,M%(L2))<KE$TH

ENL2=L2+K1:GOTO60 :rem 27

70 IFKE$<MID$(NS$(R2),31)+MID$(NS$(R2),4,M%(R2))TH

ENR2=R2-K1:GOTO70 :rem 61

80 IFL2>R2THEN110 :rem 248

90 N$=NS$(R2):H=M%(R2):NS$(R2)=NS$(L2):M%(R2)=M%(L

2) :rem 92

100 NS$(L2)=N$:M%(L2)=H:L2=L2+1:R2=R2-1:GOTO60

:rem 89

110 IFL2<R1THENSK=SK+1:L%(SK)=L2:R%(SK)=R1 :rem 23

120 R1=R2:IFLKR1THEN40 :rem 111

130 IFSKTHEN30 :rem 83

140 RETURN :rem 117

150 NF=0:GOSUB300 :rem 228

160 GOSUB320:FORPP=1TO8:R$="":FL=0:M%(NF+l)=16:FOR

X=1TO30:GET#5,I$:rem 169

170 IFI$=CHR$(160)ANDFL=0THENM%(NF+1)=X-4:FL=1

:rem 158

180 R$=R$+LEFT$(I$+C0$,1):NEXT:IFPP<>8THENGET#5,1$

, 1$:rem 70

190 X$=C0$:IFMID$(R$,1,1)=C0$THENX$=CHR$(255):PRIN

TDD$; :rem 138

200 NF=NF+1:NS$(NF)=R$+X$:PRINTMID$(R$,4,16):NEXTP

P:IFYS<>255THEN160 :rem 122

210 CLOSE5:GOSUB20 :rem 90

220 PRINT"{DOWN}PRESS SPACE BAR TO REWRITE DIRECTO

RY" :rem 62

230 GETA$:IFA$<>" "THEN230 :rem 138

240 GOSUB300:NN=0 :rem 236

250 GOSUB320:FORPP=1TO8:NN=NN+1 :rem 193

260 PRINT#5,MID$(NS$(NN),1,30);:IFMID?(NS$(NN)# 31)

=CHR$(255)THENPRINTDD$; :rem 249

270 PRINTMID$(NS$(NN)#4#16):IFPP<>8THENPRINT#5,C0$

;C0$; :rem 25

280 NEXTPP:PRINT#15#"U2M;5;0;LT;LS:IFYS<>255THEN25

0 :rem 161

290 CLOSES:END :rem 87

241

Utilities

300 OPEN5,8,5,M#n:YT=18:YS=0:GOSUB320:PRINT#15,"B-

P";5;143:PRINTCHR$(14) :rem 193

310 PRINTRN$;:FORX=1TO24:GET#5,I$:PRINTI$;:NEXT:PR

INTRF$:RETURN :rem 160

320 PRINT#15/"U1";5;07YT7YS:LT=YT:LS=YS:GET#5#T$#S

$:YT=ASC(T$+C0$) :rem 16

330 YS=ASC(S$+C0$):RETURN :rem 250

340 X=150:DIM L%(X),M%(X),R%(X),NS$(X):K1=1:0PEN15

,8,15,"I":C0$=CHR$(0):NF=0 :rem 141

350 DD$="::::::::::::::DELETEDB+iH:RN$=CHR$(18):RF

$=CHR$(146):RETURN :rem 190

u

u

u

u

242 U

i Eric Brandon

This useful utility saves typing for people who regularly

use a disk drive instead of a cassette recorder. The ma

chine language routine is in the form of an easy-to-use

BASIC loader.

Faulty Default

When Commodore designed the operating system used in the

64, the designers assumed that most people would be using a

cassette recorder for storage instead of the more expensive

disk drive. That's why, when you type LOAD or SAVE, the

computer responds by prompting PRESS PLAY ON TAPE or

PRESS RECORD & PLAY ON TAPE. It defaults to the tape

recorder.

Along the way, many 64 owners, and especially 128 own

ers, have opted to use a disk storage system. If you use a disk

drive, though, you have to type the device number—,8—after

each command (as in LOAD'filename",8). This can become

bothersome after awhile.

"Disk Defaulter" is a short utility, written in machine lan

guage, that modifies the computer's operating system to rec

ognize the disk drive as the default device instead of the

cassette recorder. As long as the utility is activated, you no

longer have to append ,8 to the LOAD, SAVE, and VERIFY

commands.

To use Disk Defaulter, enter the program. When you type

RUN, this BASIC loader will POKE the machine language into

some free memory space and activate the utility. To turn it off

(for instance, if you want to use cassette), press RUN/STOP-

RESTORE. To turn it back on, type SYS 679.

To load machine language programs, you still must type

LOAD "filename",*,!. Also, pressing SHIFT-RUN/STOP will

not access the disk drive because it results in a MISSING

I—| FILENAME ERROR. But otherwise, all LOAD, SAVE, and

i I VERIFY commands will refer to disk.

Programs that use the same area of memory as Disk De-

nfaulter will interfere. One of these is the PAL Assembler for the

Commodore 64. After saving and testing the original,

adventurous programmers can remedy this interference with

n
243

Utilities

PAL by changing the value 679 in lines 10, 1020, and 1030 to

the value 703. Also, change the 188 in line 679 to 212, and

the 195 in line 686 to 219.

Disk Defaulter

For mistake-proof program entry, be sure to use "Automatic Proofreader"

(Appendix C).

10 1=679 :rem 141

20 READ A:IF A=256 THEN 1000 :rem 147

30 POKE I,A:I=I+1:GOTO 20 :rem 130

679 DATA 169,188,141,48,3,169,2 :rem 16

686 DATA 141,49,3,169,195,141,50 irem 54

693 DATA 3,169,2,141,51,3,96 :rem 103

700 DATA 162,8,134,186,76,165,244 :rem 100

707 DATA 162,8,134,186,76,237,245,256 :rem 53

1000 PRINT"{CLR}DISK DEFAULTER ACTIVATED" :rem 129

1010 PRINT"USE RUN/STOP-RESTORE TO DEACTIVATE"

:rem 184

1020 PRINT"TYPE SYS 679 TO REACTIVATE" :rem 6

1030 SYS 679 :rem 105

u

244

u

u

u

u

_ UnNEW: Program

Lifesaver
Vern Buis

If you have ever lost a BASIC program by accidentally

typing NEW, then read on. This short machine language

routine provides an easy means of recovering BASIC pro

grams that have been "erased"—and it loads and exe

cutes in only ten seconds.

Sooner or later practically every programmer does it. Thinking

a program has been saved, you type NEW to clear out the

memory, and a split second after pressing RETURN, you wind

up screaming.

But typing NEW does not really erase the program from

memory. NEW just makes the computer (and the programmer)

think the program is gone. As long as you don't start typing

another program or switch off the machine, the program is

still there. To get it back, all you have to do is fool the com

puter into remembering where in its memory the program be

gins and ends.

That's what "UnNEW" does. By loading and running this

short machine language utility immediately after committing

the grievous error, you can save your lost program, save your

hours of work, and even save your sanity.

Entering UnNEW

UnNEW is listed as a BASIC loader, a BASIC program that

pi creates a machine language program. Be sure to read the

following special instructions before typing the program. The

procedure is somewhat different from most and requires that

|—] certain steps be followed precisely.

- First, if you are using tape instead of disk, enter line 60 as

follows:

[H 60 CLR:SAVE"UNNEW",1,1

After typing the listing, do not run it. Instead, save it on

ndisk or tape with a filename such as UNNEW/BASIC. Do not

use the filename UNNEW. This filename must be reserved.

Now enter RUN. The BASIC loader creates the machine

n

Utilities

language program and automatically saves it on disk or tape

under the filename UNNEW. This is what you'll actually use

to rescue lost programs; the BASIC loader can be set aside as a

backup in case you need to create another copy. Now reset the

computer by turning it off and back on.

Using UnNEW

To test UnNEW, you can load a short BASIC program and

erase it with NEW. Recovering it is easy.

To load UnNEW from tape, enter LOAD"UNNEW",1,1

To load UnNEW from disk, enter LOAD"UNNEW",8,1

Remember the ,1 at the end of these commands. Either

way, it loads pretty fast, because the program is short. Now,

to activate UnNEW, enter

SYS 525

CLR

Incidentally, CLR means to type the keyword CLR followed

by pressing the RETURN key, not to press the CLR/HOME

key.

That's all there is to it. When you enter LIST, the BASIC

program you thought was forever lost at sea is back, safe and

sound.

UnNEW itself also remains in memory, but probably not

for long. It's tucked away in memory which is unprotected

(locations used by the input buffer and BASIC interpreter), so

you'll have to load it again each time you want to use it. But

unless you're either very unlucky or (shall we say) prone to

inadvertent actions, UnNEW isn't something you should be

needing often. If you find you often lose programs due to

power failures, yanked-out power cords, or forgetfulness, see i i

"NoZap: Automatic Program Saver" elsewhere in this book. UJ

Why UnNEW Works i i

Instead of erasing the program in memory when you type LJ
NEW, the computer simply resets two key pointers in such a

way that the operating system doesn't "see" that the program i i

is still there. These pointers keep track of where in memory a LJ
BASIC program begins and ends. NEW moves the top-of-

program pointer down to the bottom of BASIC memory, and i i

the first two bytes of BASIC memory are set to zero. These LJ
first two bytes serve as a pointer to the address for the second

246 u

Utilities

H

G

G

G

G

line of BASIC code. When they are set to zero, the operating

system believes that no program is in memory.

UnNEW works by skipping the first two bytes of BASIC

memory (the address pointer) and the next two bytes (the

BASIC line number). It scans upward for a zero byte—the

end-of-line indicator. Upon finding the zero byte, the routine

POKEs its address, plus one, into the second-line-of-BASIC

address pointer. One of the erased pointers is thereby restored.

Next, UnNEW scans byte by byte through the BASIC

memory area until it finds three consecutive zero bytes. This is

the end-of-program indicator. Once it locates these zeros, the

routine POKEs the address of the third zero, plus one, into the

top-of-BASIC/start-of-variables pointer at locations 45-46.

This completely restores the erased program.

For those who might want to relocate UnNEW to a safer

memory area—to preserve it for frequent use or to combine it

with other utility routines, the machine language program is

written to be fully relocatable. It uses no absolute JMP or JSR

instructions. The area used here was chosen to make it load

easily and to minimize the danger of loading over a BASIC

program.

UnNEW

For mistake-proof program entry, be sure to use "Automatic Proofreader"

(Appendix C).

10 1=525

20 READ A:IF A=256 THEN 40

30 POKE I,A:I=I+1:GOTO 20

40 POKE 43#525 AND 255:POKE 44,2

50 POKE 45,578 AND 255:POKE 46,2

60 CLR :SAVE H0:UNNEW",8

70 REM FOR TAPE USE SAVE "UNNEW11, lf

60000 DATA 160,003,200,177,043,208,

,160,000

60002 DATA 145,043,165,044,200,145,

,000,132

60004 DATA 059,162,000,200,208,002,

,208,245

60006 DATA 232,224,003,208,242,200,

,132,045

60008 DATA 164,060,132,046,096,256

:rem 131

:rem 54

:rem 130

:rem 96

:rem 109

:rem 79

1 :rem 3

251,200,200,152

:rem 251

043,133,060,160

:rem 8

230,060,177,059

:rem 26

208,002,230,060

:rem 6

:rem 145

247

i Willie Brown

The function keys can be extremely useful if you know

how to program them. This short utility program for the

128 allows you to define each function key and save

your newly defined keyboard to tape or disk.

Turn your computer on, type some letters, and you'll see them

appear on the screen. But press one of the function keys and

you'll see nothing. They're mentioned almost in passing in

most documentation. Often all that's said is that they can be

programmed to perform many different functions. The ques

tion is, how do you program them?

The most common method of using the function keys is

to set up a GET statement followed by an IF-THEN. The keys

can be used in a program to start a game, change the border

color, or almost any other function you can think of, as long

as you type them in quote mode.

It would be nice, though, if they could be used outside a

program, in direct (or immediate) mode. You might want fl to

LIST the program, f3 to run it, f5 to save, and so on—a collec

tion of eight one-stroke commands.

"Function Key" lets you decide how you want to define

the keys and use them.

Defining New Functions

After entering the program and saving it, type RUN. A short

machine language program is then POKEd into memory. To

turn it on, type SYS 52115. j i

The program is now activated. To assign a value to one of LJ
the function keys, simply type ix=(BASIC command), where x

is a number from one to eight and any legal BASIC statement i i

follows the equal sign. Press RETURN and the computer LJ
should respond with OK. If you get a SYNTAX ERROR, check

the logic of the BASIC line. For example, fl = LIST defines the i i

fl key as LIST. Any time you press fl, LIST is printed on the LJ
screen. Of course, LIST won't be activated until you press RE

TURN. To activate the command without having to press RE- « i

TURN, add a left arrow (the key directly above CONTROL) so LJ
that the syntax looks like fl=LIST<-.

248 LJ

Utilities

You can define all eight function keys with whatever

commands you find most useful. But there are a few items to

note. First, each key is limited to a maximum of 16 characters.

If you exceed the limit, the extra letters will be ignored. Sec

ond, if you want a BASIC command to be executed, the last

character has to be a left arrow. RUN/STOP-RESTORE resets

the computer and eliminates the function key definitions.

Simply use SYS 52115 to return to Function Key. Finally, this

utility is disabled whenever you run a program. It works only

in immediate mode. This allows you to use the function keys

from within your program and still have your favorite com

mands available with one keystroke while editing the program.

Note that Function Key will not work with other

programming utilities which use the same locations in mem

ory, in other words locations 52115 and up.

Creating a Mini-Toolkit

It would be tedious to have to define all eight function keys

every time you want to use this utility. You can create your

own mini-toolkit with an f9 option, which allows you to save

your function key definitions to tape or disk. You can then

load your selected functions into memory at the beginning of

a programming session.

When you have all the keys defined and want to keep
them for future use, type f9=filename^ (for disk) or
f9=filename,! (for tape), where filename is anything of your

choice. Just don't put filename in quotes. If you want to save

another set of function definitions, be sure to use a different
filename.

To load the functions back into memory, type

P| LOAD "filename"fl,\

for disk or

pj LOW"filename",!}

for tape. The secondary address of 1 is crucial: It tells the com
puter to load the program into the same area of memory it

p originally occupied. After the program is loaded, type NEW,

then SYS 52115. The eight functions you previously saved will
be available for use whenever you need them.

n

Utilities

Function Key

For mistake-proof program entry, be sure to use "Automatic Proofreader"

(Appendix C).

10 1=51712:SH=INT(1/256):SL=I-SH*256 :rem 56

20 READ A:CK=CK+A:IF A=256 THEN 40 :rem 53
25 IF A<0 THEN 100 *rem 99
30 POKE I,A:1=1+1:GOTO 20 :rem 130
40 IFCK<>28195THENPRINT"ERROR IN DATA":STOP

:rem

50 PRINT"USE SYSMSH*256+SL+403"TO START" :END
:rem 150

100 IF A<-255 THEN A=ABS(A+256)+SH:GOTO 30:rem 223

110 A=ABS(A+1)+SL:GOTO30 "*

49152 DATA 0,0,0,0,0,0

49158 DATA 0,0,0,0,0,0

49164 DATA 0,0,0,0,0,0

49170 DATA 0,0*0,0,0,0

49176 DATA 0,0,0,0,0,0

49182 DATA 0,0,0,0,0,0

49188 DATA 0,0,0,0,0,0

49194 DATA 0,0,0,0,0,0

49200 DATA 0,0,0,0,0,0

49206 DATA 0,0,0,0,0,0

49212 DATA 0,0,0,0,0,0

49218 DATA 0,0,0,0,0,0

49224 DATA 0,0,0,0,0,0

49230 DATA 0,0,0,0,0,0

49236 DATA 0,0,0,0,0,0

49242 DATA 0,0,0,0,0,0

49248 DATA 0,0,0,0,0,0

49254 DATA 0,0,0,0,0,0

49260 DATA 0,0,0,0,0,0

49266 DATA 0,0,0,0,0,0

49272 DATA 0,0,0,0,0,0

49278 DATA 0,0,0,173,-1,-256

49284 DATA 240,30,166,198,224,11

49290 DATA 176,24,168,185,-1,-256

49296 DATA 240,15,157,119,2,230

49302 DATA 198,238,-1,-256,173,-1

49308 DATA -256,41,15,208,3,141

49314 DATA -1,-256,108,-146,-257,32

49320 DATA 72,235,173,-1,-256,208

49326 DATA 34,165,157,240,30,165

49332 DATA 212,208,26,166,198,202

49338 DATA 189,119,2,201,133,144

49344 DATA 16,201,141,176,12,56

49350 DATA 233,133,10,10,10,10

49356 DATA 9,1,141,-1,-256,96

49362 DATA 166,122,189,0,2,201

250

191

:rem 116

:rem 27

:rem 33

:rem

:rem

:rem

:rem

: rem

:rem 33

:rem 21

:rem 27

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem 87

:rem 51

:rem 103

:rem 255

:rem 88

:rem 246

:rem 180

:rem 88

:rem 51

:rem 101

:rem 51

:rem 250

:rem 174

:rem 152

:rem 199

30

27

33

30

36

24

30

27

24

30

27

33

30

27

33

30

u

u

u

u

u

Utilities

n

n

n

n

n

49368

49374

49380

49386

49392

49398

49404

49410

49416

49422

49428

49434

49440

49446

49452

49458

49464

49470

49476

49482

49488

49494

49500

49506

49512

49518

49524

49530

49536

49542

49548

49554

49560

49566

49572

49578

49584

49590

49596

49602

49608

49614

49620

49626

49632

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

70, 208, 68, 232 ,189,0

2,201,49,144,60,201

57,176,59,41,15,168

185,-135,-257,168,232,189

0,2,201,61,240,5

162,11,108 ,,0,3,232

189,0,2,2011,13,240

15,201,95,208,2,169

13,153,-1,-256,200,152

41,15,208,233,169,0

153,-1,-256,160,107,32

47,241,108,2,3,108

-144,-257,208,251,232,189

0,2,201,61,208,202

232,138,72,160,0,189

0,2,201,44,240,8

232,200,192,15,208,243

240,182,192,0,208,4

162,8,208,176,232,189

0,2,201,49,240,8

201,56,240,4,162,9

208,160,41,15,170,152

72,160,0,138,32,186

255,104,168,104,170,152

160,2,32,189,255,162

-1,134,251,169,-256,133

252,160,-257,169,251,162

-227,32,216,255,169,13

32,210,255,76,116,164
0,1,65,17,81,33

97,49,113,124,165,49

234,162,-256,173,5,3
201,-2 56,240,17,141,-145

-257,173,4,3,141,-144

-257,169,-211,141,4,3

142,5,3,173,21,3

201, -256 , 240,19,141, -147

-257,173,20,3,141,-146

-257,169,-130,120,141,20

3,142,21,3,88,173

144,2,201,-256,240,19

141,-170,-256,173,143,2

141,-169,-256,169,-168,120
141,143,2,142,144,2
88,96,256

:rem 220

:rem 197

:rem 224

:rem 11

: rem 40

:rem 149

:rem 140

:rem 203

: rem 7 7

:rem 200

:rem 86

:rem 151

:rem 247

:rem 139

:rem 3

:rem 47

:rem 95

:rem 201

:rem 70

:rem 49

:rem 161

:rem 48

:rem 200

:rem 147

:rem 0

:rem 144

:rem 202

:rem 97

:rem 53

:rem 1

:rem 22

:rem 0

:rem 182

:rem 45

:rem 42

:rem 55

:rem 192

srem 90

:rem 190

:rem 102

:rem 41

:rem 136

:rem 39

:rem 195

:rem 246

251

Feemen Ng

This seven-line program creates three independent 12K

blocks which can be accessed very simply. An excellent

tool for program development and comparison.

Have you ever wished you could work on two or three pro

grams at once and compare them? Or view a disk directory

without erasing a program in memory? This short machine

language program lets you do just that.

"Triple 64" is a machine language program (in the form

of a BASIC loader) which divides memory into three indepen

dent 12K workspaces. You can work in any of the areas with

out disturbing the others. You can even save and load from

any of the three work areas without affecting the others. The

program starts at 40004 ($9C44) and uses only 71 bytes. Also,

a favorite area of many machine language programmers,

49152 ($C000), is unaffected.

Accessing Three Computers

After entering and saving Triple 64, type RUN. To access any

of the three areas, type SYS 40004. Notice that the cursor dis

appears immediately after you press RETURN. Now, press 1,

2, or 3, the identification numbers of the three independent

work areas, and you're ready to begin programming. If you've

found that you don't recall which area you're in, type PRINT

PEEK(40061). This will return a 1, 2, or 3.

Techniques and Applications j j

The most obvious use of Triple 64 is to partition the computer ^
to hold three BASIC programs. These could be games, utilities,
or applications—or any combination. And switching between I j

them involves only a SYS and a single keypress. Each work '—*
area holds up to 12288 bytes, space enough for a fairly sophis

ticated program. I I
Triple 64 may prove even more useful, however, in the '—'

development of your own programs. Since the three work
spaces are separate, this means one of them could hold a i \
working version of your program, another might contain a test U-'
version you're enhancing, and the third section could provide

252

Utilities

a scratchpad area where you can try out new ideas and write

short programs to test them. These testing routines could even

examine the other two memory areas for the effects on the

programs residing there. When you've got something working

well, you can transfer it to another area with this simple

procedure:

1. List it to the screen.

2. Select the desired Triple 64 workspace.

3. Cursor up to the lines you want to transfer, and press RE

TURN over each of them. They'll immediately be inserted

into the BASIC program in the new workspace.

Triple 64 offers a wide range of possibilities—it's almost

like having three instant 12K disk drives at your disposal. And

if you have a disk drive as well, you can maintain its directory

in one workspace while you work in the others. This is very

useful if your programs will be using files on the disk cur

rently in your drive.

Triple 64

For mistake-proof program entry, be sure to use "Automatic Proofreader"
(Appendix C).

10 FORY=40004TO40071:READA:POKEY,A:NEXT :rem 180

20 FORY=14336TO14338:POKEY,0:NEXT :rem 29

30 PORY=26624TO26626:POKEY,0:NEXT:NEW :rem 72

40 DATA174,125,156,165 , 45 ,157,129,156,165,46,157,1

32,156,32,228,255,41,15,240 :rem 19

50 DATA249,201,4,176,245,170,142,125,156,189,125,1

56,133,44,189,126,156,133,56 :rem 71

60 DATA189,129,156,133,45,133,47,133,49,189,132,15
6,133,46,133,48,133,50,96,1 :rem 24

70 DATA8,56,104,152,3,3,3,8,56,104 :rem 174

253

i Dan Carmichael

Freezing a BASIC program, stopping it in midframe, is a

handy feature, especially in game programs. Players get

exhausted, want to answer the telephone, or make a

sandwich, but don't want to give up that high score.

"Freeze" lets you stop and start programs with single

keypresses.

It's happened. You're playing a fast-action arcade game, and

your hand is cramped from being too tightly wrapped around

the joystick. Or your back is giving you spasms again. Or the

phone rings and you just have to answer it. But you've got the

highest score ever, and if you get up, the game will continue.

Unfortunately, the joystick can't run itself, and you'll lose the

game.

If you've placed "Freeze" in memory, however, you can

stop the program at any time by pressing one key. Nothing

will be lost; the program simply freezes. Anything on the

screen still shows; it just doesn't move. Hitting another key

unfreezes the program and restarts it. You can continue with

the program from where you left off.

Freeze Keys

Type in Freeze and save it to tape or disk. The "Automatic

Proofreader" in Appendix C makes it simple to enter the pro

gram correctly the first time.

After loading and running the program, you'll see a dis

play list. You can customize Freeze by selecting your own key

combination for freeze and unfreeze. If you want to use the

default keys, just hit RETURN twice. The fl key then freezes

the action, and the f3 key restarts the program. To choose

your own keys, enter the appropriate number before hitting

RETURN.

The SYS command to access the routine also shows on

the screen. Whenever you want to use Freeze, just enter SYS

679 in either direct mode or as a program line within your

own program or game. If you use the last method, make sure

that Freeze has been loaded into memory before you try to

call it.

Once you've selected the two control keys, try the freeze

254

Utilities

function. Load and run a BASIC program. Let it run a bit, then

hit the freeze key (fl if you chose the default setting). The

program immediately pauses. Press the unfreeze key (f3 if the

default was used) to restart the program. That's it.

Interrupting Danger

Freeze uses a machine language interrupt by calling the IRQ

interrupt vectors at $314-$315 (788-789 decimal). Because of

this, if your program also uses interrupts, Freeze may not

work. Programs which use machine language in other ways

should still be able to access Freeze; it's only interrupts that

interfere. Any completely BASIC program can call this routine.

We've used this program at COMPUTE! to freeze programs so

that we can take photographs of the monitor screen. We've

had difficulties with only a few, and all of them used machine

language interrupts.

Freeze

For mistake-proof program entry, be sure to use "Automatic Proofreader"

(Appendix C).

10 FORA=679TO714:READB:POKEA,B:NEXT :rem 212

20 PRINT"{CLR}{WHT}{DOWN}{15 RIGHT}64 FREEZE"
:rem 186

31 PRINT"{YEL}{DOWN}KEY ASSIGNMENTS:":PRINT"{CYN}

{DOWN}F1= 4{4 SPACES}F3= 5{4 SPACES}F5= 6

{3 SPACES}F7= 3{6 SPACES}" :rem 188
32 PRINT"{DOWN}£ = 48{3 SPACES}= = 53{3 SPACES}<

{SPACE}= 47{3 SPACES}> = 44" :rem 245

33 PRINT"{DOWN}* = 57{3 SPACESjf = 54{3 SPACESJ+ =
40{3 SPACES}- = 43" :rem 241

34 PRINT"{DOWN}? = 55{3 SPACES}CRSR{5 SPACESjCRSR"

:rem 163

35 PRINT"{9 SPACES}UP = 7{3 SPACES}RIGHT =2"

:rem 63

36 PRINT"{DOWN}ENTER THE KEY YOU WISH TO FREEZE TH
E C64":PRINT"{UP}WITH (SEE TABLE)" :rem 43

40 INPUT"{3 RIGHT}4{3 LEFT}";K1:POKE715,K1:rem 255

45 PRINT"{DOWN}ENTER THE KEY YOU WISH TO UNFREEZE

{SPACE}THE":PRINT"C64 WITH (SEE TABLE)" :rem 61

50 INPUT"{3 RIGHT}5{3 LEFT}";K2:POKE716,K2 :rem 4

60 PRINT"{DOWN} TO START PR0GRAM{2 SPACES}* SYS679

*&73" :rem 36
100 DATA120,169,180,141, 20, 3, 169, 2 :rem 168

110 DATA141,21,3,88, 96, 165, 197, 205 :rem 191

120 DATA203, 2, 240, 3, 76, 49, 234, 32 :rem 73

130 DATA159,255,165,197,205,204, 2, 240 :rem 79

140 DATA243,76,190,2,234, 234, 234, 234 :rem 25

255

i Don Lewis

If you are frustrated by your slow 1541 disk drive, here is

the solution. "TurboDisk" improves the speed of the 1541

by as much as 300 percent.

If you've ever used a really fast disk drive, you know that the

Commodore 1541 drive leaves something to be desired—

namely, speed. True, it's much faster than a normal

Datassette, but it's still annoyingly slow compared with other

floppy disk drives with high-speed parallel interfaces.

Now there's a stunning solution: "TurboDisk." Once you

start using TurboDisk, you'll wonder how you got along with

out it. It turbocharges the loading process by a factor of three

times or more. In fact, the longer the program, the more

improvement you'll see!

TurboDisk requires no modifications to your disk drive or

computer. It loads programs saved in the usual manner; no

special Turbosave is required. It works with most BASIC and

machine language programs, including the DOS Wedge. It

doesn't compromise reliability, and you can switch it on or off

at any time by typing a single command.

If you're still skeptical, give TurboDisk a trial—it delivers

what it promises.

Preparing TurboDisk

You'll need to type in two programs to prepare TurboDisk: a

BASIC program that creates a machine language file on disk

(the actual TurboDisk utility), and a short two-line BASIC

loader that calls up and activates TurboDisk.

Program 1 is the BASIC program that creates TurboDisk.

Notice all the numbers in DATA statements; these represent

the machine language portion of the utility. Be extra careful

when typing these lines. We recommend using the "Automatic

Proofreader" to prevent as many errors as possible (see

Appendix C).

256

u

u

u

LJ

u

Utilities

Save Program 1 on disk before running it for the first

time. That way, if an error causes your computer to lock up,

you can switch it off to clear the memory, reload the program,

and search for the typing mistake. Otherwise you could lose

all of your typing effort.

When Program 1 runs, it prints the message INSERT

DISK AND HIT RETURN WHEN READY. Insert a formatted

program disk and press RETURN. Program 1 creates a file on

the disk with the name TURBODISK.OBJ and then prints the

message, TURBODISK.OBJ CREATED. You'll probably want

copies of TurboDisk on all of your program disks, so rerun the

program as many times as necessary.

Program 1 will print an error message if it detects a disk

error or a typing mistake in the DATA statements. In addition,

the partially written TURBODISK.OBJ file will be scratched

from the disk if an error is detected in the DATA.

Finally, you must type in Program 2 and save it on all your

program disks with the filename TURBODISK. To load and run

TurboDisk, all you have to do is enter LOAD TURBODISK,8

and RUN. The short loader will call TURBODISK.OBJ off the

disk, place it safely in high memory, and activate it

automatically.

Turbocharged Loads

Once TurboDisk is activated, no special commands are nec

essary. Simply type LOAD "filename",* or LOAD "file-

name",%,\ as usual. You'll be amazed at the difference.

One thing you will notice immediately is that the red light

on the disk drive doesn't come on at all during a Turboload.

Don't panic; this is normal. It's also normal for the screen to

blank out as TurboDisk works. When the program is loaded,

the screen reappears unaltered.

You may occasionally find it necessary to deactivate

TurboDisk and use a normal LOAD instead. For example,

1541 disk drives are prone to head alignment problems, so if

you have a disk formatted on a drive other than your own,

you may find that your drive has difficulty loading programs

from it. Since the Turboload routine gives up more easily on

difficult LOADs, you may have to switch to the more forgiv

ing standard LOAD to get the program into your computer.

You can switch off TurboDisk at any time without erasing it

from memory by entering SYS 49155. To reactivate Turbo
Disk, enter SYS 49152.

257

Utilities

You'll also find it necessary to use the SYS to reactivate

TurboDisk after pressing RUN/STOP-RESTORE. Using that

key combination to reset the computer effectively disconnects

TurboDisk.

There are a few cautions to observe. TurboDisk resides in

the 4K block of free memory starting at address 49152 (hex

$C000), so it's completely safe from BASIC. However, many

machine language programs or subroutines also use this mem

ory space and may overwrite TurboDisk. Don't attempt to use

TurboDisk to load any program which occupies locations

49152-50431 ($C000-$C4FF).

TurboDisk speeds up LOADs—even LOADs from within

programs, as are common in multipart programs—but it can't

speed up SAVEs or VERIFYs. It also doesn't affect the speed of

disk file handling with OPEN, PRINT#, GET#, and so forth.

It's not compatible with certain features of some programs,

such as saving text files with the SpeedScript word processor

(available from COMPUTE! Publications), although you can

use TurboDisk to load SpeedScript in the first place. It also may

not work with some commercial software.

How TurboDisk Works

The machine language for TurboDisk is unusual in that only

half of it works within your computer—the rest is actually exe

cuted within the 1541 drive itself. Unlike disk drives for most

other computers, Commodore's are intelligent units, containing

their own microprocessors, RAM, and ROM. This means that

they can be programmed for special effects, like Turboloading.

During the brief delay you notice between the time you

enter the LOAD command with TurboDisk and the time the

drive starts spinning, 444 bytes of machine language code are

transferred from the computer to the drive's RAM. This is the

portion in the second set of DATA statements in Program 1.

It's stored in locations 49664-50107 ($C200-$C3BB). This re

quired transfer of data before each Turboload adds a certain

amount of overhead time, which explains why TurboDisk

gives less speed improvement for short programs.

258

Utilities

TurboDisk operates by changing the ILOAD vector at

locations 816-817 ($330-$331) to point to itself, bypassing the

normal LOAD routines in ROM. (These locations are reset to

their normal values during the RUN/STOP-RESTORE se

quence, which explains why the program must be reactivated

after that key combination is pressed.) TurboDisk first checks

to see whether a disk directory (LOAD "$",8) or a VERIFY

was requested. In either of these cases, control is returned to

the ROM routines for normal processing. If a program LOAD

was requested, the routine adds the filename to the code for

the disk drive portion, then transfers that data to the drive's

memory.

The portion of TurboDisk in the disk drive uses routines

in the drive's ROM to locate the desired program and read it

from the disk, sector by sector. To improve speed, drive ROM

routines like the one that turns on the red light are omitted,

and only the essential ones are used. The 256 bytes of data

from each disk sector are transferred two bits at time to a 256-

byte buffer within the computer. This buffer is at locations

50176-50431 ($C400-$C4FF).

TurboDisk machine language in the computer reads the

incoming data from the serial port's DATA and CLK lines, in

stead of just the DATA line as in normal serial data transfers.

Thus, TurboDisk temporarily converts your serial drive into a

two-bit parallel drive. When the entire 256 bytes from a disk

sector have been transferred into the computer's buffer, data

from the buffer is added to the program in memory while the

drive is reading the next sector from the disk.

Just How Fast Is It?

Despite a few limitations, TurboDisk is one of the most valu

able general-purpose utilities a disk user can own. To discover

exactly how fast it is, we ran tests with some programs re

cently published in COMPUTE! publications. The test results,

shown below, demonstrate how TurboDisk yields the most

improvement with medium to long programs. (Results with

different disk drives may vary.)

259

Utilities

Program

Acrobat

Space Caverns

64 Paintbox

Unicopy 64

SpeedScript

SpeedScript

source code

Blocks

31

17

45

8

25

122

Normal LOAD

21 sec

13 sec

31 sec

7 sec

18 sec

75 sec

Turboload

7 sec

5 sec

9 sec

5 sec

6 sec

17 sec

Factor

3.0

2.6

3.4

1.4

3.0

4.4

Program 1. 64 TurboDisk Creator

100 PRINT"{CLR}"TAB(206)"{WHT}TURBODISK PROGRAM GE

NERATOR":PRINT:PRINT :rem 2

110 PRINT"{CYN}INSERT DISK AND HIT {RVS} RETURN

{OFF} WHEN READY":PRINT:PRINT :rem 115

120 GET A$:IF A$<>CHR$(13) THEN 120 :rem 248

130 OPEN 2,8,2,"TURBODISK.OBJ,P,W":GOSUB 1000

:rem 100

140 PRINT#2,CHR$(0)CHR$(192); :rem 78

150 FOR 1=0 TO 435:READ A:CK=CK+A:PRINT#2,CHR$(A);

:NEXT I :rem 224

160 IF A<>96 OR CKO55976 THEN PRINT" {RVS}ERROR IN

DATA LINES 49152-49584":GOTO 300 :rem 23

170 FOR 1=0 TO 75:PRINT#2,CHR$(234);:NEXT I

:rem 116

180 CK=0:FOR 1=0 TO 443:READ A:CK=CK+A:PRINT#2,CHR

$(A);:NEXT I :rem 23

190 IF AO160 OR CK<>45825 THEN PRINT" {RVS}ERROR I
N DATA LINES 49664-50102":GOTO300 :rem 44

200 CLOSE 15:CLOSE 2:PRINT TAB(9)"g7§TURBODISK.OBJ

CREATED":PRINT:PRINT TAB(10); :rem 96

210 INPUT "ANOTHER COPY (Y/N)";A$:IF A$o"Y" THEN

{SPACE} END :rem 197

220 RUN :rem 137

300 CLOSE 2:CLOSE 15:OPEN 15,8,15,"S0:TURBODISK.OB

J":CLOSE 15:END :rem 45

1000 CLOSE 15:OPEN 15,8,15:INPUT#15,E,E$,T,S:IF E=

0 THEN RETURN :rem 71

1010 PRINT"DISK ERROR"E": "E$;T;S :rem 145

1020 CLOSE 15:OPEN 15,8,15,"10:":CLOSE 15:END

:rem 177

49100 REM ** 64 TURBODISK ML :rem 240

49152 DATA 24,144,24,169,165,141 :rem 50

49158 DATA 48,3,169,244,141,49 :rem 221

49164 DATA 3,160,0,185,41,192 :rem 151

49170 DATA 240,6,32,22,231,200 :rem 184

49176 DATA 208,245,96,169,84,141 :rem 71

49182 DATA 48,3,169,192,141,49 :rem 220

260

=g*raa Utilities

49188

49194

49200

49206

49212

49218

49224

49230

49236

49242

49248

49254

49260

49266

49272

49278

49284

49290

49296

49302

49308

49314

49320

49326

49332

49338

49344

49350

49356

49362

49368

49374

49380

49386

49392

49398

49404

49410

49416

49422

49428

49434

49440

49446

49452

49458

49464

49470

49476

49482

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

3,160,21,208,230,13

84,85,82,66,79,68

73,83,75,32,68,73

83,65,66,76,69,68

13,0,13,84,85,82

66,79,68,73,83,75

32,65,67,84,73,86

65,84,69,68,13,0

133,147,165,147,208,30

160,0,177,187,201,36

240,22,162,16,169,160

157,172,195,202,16,250

177,187,153,172,195,200

196,183,144,246,176,11

165,147,76,165,244,77

45,87,0,0,32,169

16,133,255,169,0,133

251,169,194,133,252,169

0,133,253,169,5,133

254,165,186,32,177,255

169,111,32,147,255,165

253,164,254,141,128,192

140,129,192,160,0,185

125,192,32,168,255,200

192,6,208,245,160,0

177,251,32,168,255,200

192,32,144,246,165,251

105,31,133,251,165,252

105,0,133,252,165,253

105,32,133,253,165,254

105,0,133,254,32,174

255,198,255,208,180,165

186,32,177,255,169,111

32,147,255,169,85,32

168,255,169,67,32,168

255,32,174,255,120,169

11,141,17,208,32,125

193,44,0,196,48,83

164,195,166,196,165,185

240,6,172,2,196,174

3,196,132,174,134,175

162,4,173,0,196,240

21,32,101,193,32,125

193,173,0,196,48,50

240,6,32,99,193,24

144,240,162,2,160,0

189,0,196,145,174,200

232,236,1,196,144,244

189,0,196,145,174,200

32,112,193,24,72,169

:rem 196

:rem 142

:rem 115

:rem 135

:rem 51

:rem 137

:rem 124

:rem 64

:rem 102

:rem 253

:rem 50

:rem 102

:rem 158

:rem 114

srem 71

:rem 65

:rem 2

:rem 164

:rem 209

:rem 110

:rem 106

:rem 152

:rem 42

:rem 100

:rem 201

:rem 106

:rera 104

:rem 89

:rem 45

:rem 97

:rem 253

:rem 170

:rem 112

:rem 19

:rem 77

:rem 115

:rem 242

:rem 164

:rem 175

:rem 207

:rem 59

:rem 204

:rem 239

:rem 218

irem 164

:rem 197

:rem 59

:rem 52

:rem 62

:rem 6

261

Utilities

49488

49494

49500

49506

49512

49518

49524

49530

49536

49542

49548

49554

49560

49566

49572

49578

49584

49600

49664

49670

49676

49682

49688

49694

49700

49706

49712

49718

49724

49730

49736

49742

49748

49754

49760

49766

49772

49778

49784

49790

49796

49802

49808

49814

49820

49826

49832

49838

49844

49850

262

DATA 27,141,17,208,104,166

DATA 174,164,175,88,96,169

DATA 4,44,169,0,56,176

DATA 235,162,2,160,0,189

DATA 0,196,145,174,200,232

DATA 208,247,24,152,101,174

DATA 133,174,165,175,105,0

DATA 133,175,96,160,0,173

DATA 0,221,48,251,169,23

DATA 141,0,221,173,0,221

DATA 16,251,169,7,141,0

DATA 221,162,4,202,234,208

DATA 252,162,4,173,0,221

DATA 10,8,10,38,149,40

DATA 38,149,202,208,242,165

DATA 149,73,255,153,0,196

DATA 200,208,204,96

REM ** 1541 TURBODISK ML

DATA 32,66,208,120,169,21

DATA 141,7,28,169,18,160

DATA 1,141,0,3,140,1

DATA 3,32,205,5,169,3

DATA 133,60,162,0,134,75

DATA 240,43,160,0,177,59

DATA 41,191,201,130,208,25

DATA 200,200,200,185,169,6

DATA 201,42,240,66,201,63

DATA 240,4,209,59,208,7

DATA 200,192,18,240,53,208

DATA 234,230,75,166,75,224

DATA 8,240,7,189,110,5

DATA 133,59,208,206,173,0

DATA 3,240,6,172,1,3

DATA 76,19,5,169,255,141

DATA 0,3,32,150,5,169

DATA 58,141,7,28,88,76

DATA 69,217,2,34,66,98

DATA 130,162,194,226,230,59

DATA 160,0,177,59,141,0

DATA 3,200,177,59,141,1

DATA 3,32,205,5,32,150

DATA 5,173,0,3,208,245

DATA 169,58,141,7,28,96

DATA 160,0,185,0,3,133

DATA 133,169,2,141,0,24

DATA 173,0,24,41,4,240

DATA 249,169,0,141,0,24

DATA 162,4,169,0,6,133

DATA 42,10,6,133,42,10

DATA 141,0,24,202,208,240

:rem 58

:rem 87

:rem 109

:rem 204

:rem 42

:rem 100

:rem 48

:rem 0

:rem 207

:rem 185

:rem 160

:rem 42

:rem 196

:rem 107

:rem 108

:rem 20

:rem 221

:rem 86

:rem 4

:rem 215

:rem 246

:rem 58

:rem 211

:rem 215

:rem 34

:rem 42

:rem 244

:rem 167

:rem 47

:rem 56

:rem 113

:rem 2

:rem 3

:rem 225

:rem 51

:rem 135

:rem 130

:rem 113

:rem 160

:rem 156

:rem 104

:rem 101

:rem 182

:rem 95

:rem 146

:rem 99

:rem 155

:rem 112

:rem 94

:rem 240

u

u

u

u

u

Utilities

n

n

n

n

n

49856 DATA 72,104,72,104,169,0

49862 DATA 141,0,24,200,208,204

49868 DATA 96,172,1,3,132,7

49874 DATA 173,0,3,197,6,8

49880 DATA 133,6,40,240,16,169

49886 DATA 176,133,0,88,36,0

49892 DATA 48,252,120,165,0,201

49898 DATA 1,208,78,169,238,141

49904 DATA 12,28,169,6,133,50

49910 DATA 169,0,133,51,133,48

49916 DATA 169,3,133,49,32,82

49922 DATA 6,80,254,184,173,1

49928 DATA 28,153,0,3,200,208

49934 DATA 244,160,186,80,254,184

49940 DATA 173,1,28,153,0,1

49946 DATA 200,208,244,32,224,248

49952 DATA 165,56,197,71,240,4

49958 DATA 169,34,208,20,32,233

49964 DATA 245,197,58,240,4,169

49970 DATA 35,208,9,169,236,141

49976 DATA 12,28,96,24,105,24

49982 DATA 133,68,169,255,141,0

49988 DATA 3,32,150,5,169,58

49994 DATA 141,7,28,165,68,76

50000 DATA 200,193,32,88,6,76

50006 DATA 148,6,165,18,133,22

50012 DATA 165,19,133,23,165,6

50018 DATA 133,24,165,7,133,25

50024 DATA 169,0,69,22,69,23

50030 DATA 69,24,69,25,133,26

50036 DATA 32,52,249,162,90,32

50042 DATA 148,6,80,254,184,173

50048 DATA 1,28,217,36,0,208

50054 DATA 6,200,192,8,208,240

50060 DATA 96,202,208,233,169,32

50066 DATA 208,170,169,208,141,5

50072 DATA 24,169,33,44,5,24

50078 DATA 16,158,44,0,28,48

50084 DATA 246,173,1,28,184,160

50090 DATA 0,96,160,160,160,160

50096 DATA 160,160,160,160,160,160

50102 DATA 160,160,160,160,160,160

:rem 210

:rem 241

:rem 67

:rem 19

:rem 209

:rem 119

:rem 253

:rem 25

:rem 159

:rexn 205

:rem 169

:rem 162

:rem 152

:rem 115

:rem 48

:rem 103

:rem 221

:rem 9

:rem 25

:rem 15

:rem 167

:rem 13

:rem 124

:rem 183

:rem 146

:rem 196

:rem 194

:rem 194

:rem 104

:rem 152

:rem 198

:rem 255

:rem 95

:rem 192

:rem 43

:rem 46

:rem 99

:rem 109

:rem 253

:rem 239

:rem 132

:rem 120

Program 2. 64 TurboDisk Loader

10 IF A=0 THEN A=1:LOAD "TURBODISK.OBJ",8,1

:rem 155

20 SYS 49152:NEW :rem 138

263

A

A Beginner's Guide

to Typing In

Programs

What Is a Program?

A computer cannot perform any task by itself. Like a car with

out gas, a computer has potential, but without a program, it

isn't going anywhere. Most of the programs published in this

book are written in a computer language called BASIC. BASIC

is easy to learn and is built into the Commodore 128 in both

128 and 64 modes.

BASIC Programs

This book includes programs for the Commodore 128 and 64.

If you have a 128, note that these programs work only in 64

mode. To enter 64 mode, turn on the computer and type GO 64.

Computers can be picky. Unlike the English language,

which is full of ambiguities, BASIC usually has only one right

way of stating something. Every letter, character, or number is

significant. A common mistake is substituting a letter such as

O for the numeral 0, a lowercase / for the numeral 1, or an

uppercase B for the numeral 8. Also, you must be sure to enter

all punctuation marks, such as colons and commas, just as

they appear in the book. Spacing can be important. To be safe,

type in the listings exactly as they appear.

Braces and Special Characters

The exception to this typing rule is when you see the braces,

such as {DOWN}. Anything within a set of braces is a special

character or characters that cannot easily be listed on a printer.

When you come across such a special statement, refer to

"How to Type In Programs" (Appendix B).

About DATA Statements

Some programs contain a section or sections of DATA state

ments. These lines provide information needed by the pro

gram. Some DATA statements contain actual programs (in

267

Appendix A

machine language), while others may contain graphics codes.

These lines are especially sensitive to errors.

If a single number in any one DATA statement is

mistyped, your machine could lock up, or crash. The keyboard

and RUN/STOP key may seem dead, and the screen may go

blank. But don't panic. No damage has been done. To regain

control, turn off your computer and then turn it back on. This

will erase whatever program was in memory, so always save a

copy of your program before you run it. If your computer

crashes, you can load the program and look for your mistake.

Sometimes a mistyped DATA statement will cause an er

ror message when the program is run. The error message may

refer to the program line that READs the data. However, the

error is still most likely in the DATA statements.

Get to Know Your Machine

You should familiarize yourself with your computer before

attempting to type in a program. Learn the statements you use

to store and retrieve programs from tape or disk. You'll want

to save a copy of your program so that you won't have to type

it in every time you want to use it. Learn to use your ma

chine's editing functions. How do you change a line if you

made a mistake? You can always retype the line, but you

should at least know how to delete characters. Do you know

how to enter reverse-video, lowercase, and control characters?

It's all explained in your manual.

In order to insure accurate entry of each program line, we

have included a checksum program. Please read "Automatic

Proofreader" (Appendix C) before typing in any of the pro

grams in this book.

A Quick Review

1. Type in the program a line at a time in order. Press RE

TURN at the end of each line. Use the INST/DEL key to

correct mistakes.

2. Check the line you've typed against the line in the book.
You can check the entire program again if you get an error

when you run the program.

268

B

How to Type In

Programs

Many of the programs in this book contain special control

characters (cursor controls, color keys, reverse video, and so

on). To make it easy to know exactly what to type when enter

ing one of these programs into your computer, we have estab

lished the following listing conventions.

Generally, program listings will contain words within

braces which spell out any special characters: {DOWN} would
mean to press the cursor-down key, and {5 SPACES} would

mean to press the space bar five times.

To indicate that a key should be shifted (hold down the

SHIFT key while pressing the other key), the key would be

underlined in our listings. For example, S would mean to

type the S key while holding down the SHIFT key. This would

appear on your screen as a heart symbol. If you find an under

lined key enclosed in braces (for example, {10 N}), you should

type the key as many times as indicated. In that case, you

would enter ten shifted N's. To type {SHIFT-SPACE} hold
down SHIFT and press the space bar.

If a key is enclosed in special brackets, fo], you should
hold down the Commodore key while pressing the key inside

the special brackets. (The Commodore key is the key at the

bottom-left corner of the keyboard.) Again, if the key is pre

ceded by a number, you should press the key the number of
times indicated.

Rarely, you'll see a solitary letter of the alphabet enclosed
in braces. These characters can be entered by holding down the

CONTROL key while typing the letter in the braces. For ex
ample, {A} would indicate that you should press CONTROL-A.

Quote Mode

You know that you can move the cursor around the screen

with the CRSR keys. Sometimes a programmer will want to

move the cursor under program control. That's why you see

all the {LEFT}'s, {DOWNj's, and {HOME}'s in our programs.
The only way the computer can tell the difference between di
rect and programmed cursor control is the quote mode.

269

Appendix B

Once you press the quote (the double quote, SHIFT-2),

you are in the quote mode. If you type something and then try

to change it by moving the cursor left, you'll only get a bunch

of reverse-video lines. These are the symbols for cursor left.

The only editing key that isn't affected by quote mode is the

INST/DEL key; you can still use INST/DEL to back up and

edit the line. Once you type another quote, you are out of

quote mode.

You also go into quote mode when you insert spaces into

a line with INST/DEL. In any case, the easiest way to get out

of quote mode is just to press RETURN. You'll then be out of

quote mode and you can cursor up to the mistyped line and

fix it.

In order to insure accurate entry of each program line, we

have included a checksum program. Please read "Automatic

Proofreader" (Appendix C) before typing in any of the pro

grams in this book.

Refer to the following table when entering cursor and

color control keys:

When You

Read:

ICLR}

(HOME)

{UP}

{DOWN}

ILEFT}

{RIGHT}

{RVS}

{OFF}

IBLK}

{WHT}

{RED}

{CYN}

{PUR}

{GRN}

{BLU}

lYEL}

Press: See:

When You

Read:

COMMODORE

COMMODORE

COMMODORE

COMMODORE

Li.
s

6

7

E
■I
□

EK

270

c

Automatic

Proofreader
Charles Brannon

"Automatic Proofreader" will help you type in program list

ings without typing mistakes. It is a short error-checking pro

gram that hides itself in memory. When activated, it lets you

know immediately after you type a line from a program listing

if you have made a mistake. Please read these instructions

carefully before typing any programs in this book.

Preparing the Proofreader

1. Using the listing below, type in the Proofreader. Be very

careful when entering the DATA statements—don't type

an / instead of a 2, an O instead of a 0, extra commas, and
so on.

2. Save the Proofreader on tape or disk at least twice before

running it for the first time. This is very important because

the Proofreader erases part of itself when you first type RUN.

3. After the Proofreader is saved, type RUN. It will check itself

for typing errors in the DATA statements and warn you if

there's a mistake. Correct any errors and save the corrected

version. Keep a copy in a safe place—you'll need it again

and again, every time you enter a program from this book,

COMPUTED Gazette, or COMPUTE! magazine.

4. When a correct version of the Proofreader is run, it activates

itself. You are now ready to enter a program listing. If you

press RUN/STOP-RESTORE, the Proofreader is disabled.

To reactivate it, just type the command SYS 886 and press

RETURN.

Using the Proofreader

Some of the listings in this book have a checksum number ap

pended to the end of each line, for example, :rem 123. Don't

enter this statement when typing in a program. It is just for

your information. The rem makes the number harmless if

someone does type it in. It will, however, use up memory if

you enter it, and it will confuse the Proofreader, even if you

entered the rest of the line correctly.

271

Appendix C

When you type in a line from a program listing and press

RETURN, the Proofreader displays a number at the top of

your screen. This checksum number must match the checksum

number in the printed listing. If it doesn't, it means you typed

the line differently from the way it is listed. Immediately re-

check your typing. Remember, don't type the rem statement

with the checksum number; it is published only so you can

check it against the number which appears on your screen.

The Proofreader is not picky about spaces. It will not no

tice extra spaces or missing ones. This is for your convenience,

since spacing is generally not important. But occasionally

proper spacing is important, so be extra careful with spaces, es

pecially within quote marks.

Due to the nature of the checksums, the Proofreader will

not catch all errors. Since 1 + 3 + 5 = 3 + 1+ 5, the

Proofreader cannot catch errors of transposition. Thus, the

Proofreader will not notice if you type GOTO 385 where you

mean GOTO 835. In fact, you could type in the line in any or

der and the Proofreader wouldn't notice. The Proofreader

should help you catch most typing mistakes, but keep this in

mind if a program that checks out with the Proofreader still

seems to have errors.

There's another thing to watch out for: If you enter a line

by using abbreviations for commands, the checksum will not

match up. But there is a way to make the Proofreader check

the line. After entering the line, LIST it. This eliminates the

abbreviations. Then move the cursor up to the line and press

RETURN. It should now match the checksum. You can check

whole groups of lines this way.

Special Tape SAVE Instructions

When you're through typing in a listing, you must disable the |)
Proofreader before saving the program on tape. Disable the

Proofreader by pressing RUN/STOP-RESTORE (hold down , .

the RUN/STOP key and sharply hit the RESTORE key). This LJ
procedure is not necessary for disk SAVEs, but you must disable

the Proofreader in this way before a tape SAVE. -, .

SAVE to tape erases the Proofreader from memory, so | [
you'll have to load and run it again if you want to type an

other listing. SAVE to disk does not erase the Proofreader. t

272 u

Appendix C

Hidden Perils

Tape users have an additional problem to overcome. What if

you type in a program in several sittings? The next day, you

come to your computer, load and run the Proofreader, then try

to load the partially completed program so that you can add to

it. But since the Proofreader is trying to hide in the cassette

buffer, it is wiped out!

What you need is a way to load the Proofreader after

you've loaded the partial program. The problem is, a tape

LOAD to the buffer destroys what it's supposed to load.

After you've typed in and run the Proofreader, enter the

following three lines in direct mode (without line numbers) ex

actly as shown:

A$ = "PROOFREADER.!1": B$= "{10 SPACES}": FORX=1 TO

4: A$=A$+B$: NEXTX

FOR X=886 TO 1018: A$=A$+CHR$(PEEK(X)): NEXTX

OPEN 1,1,1,A$: CL0SE1

After you enter the last line, you will be asked to press

RECORD and PLAY on your cassette recorder. Put this pro

gram at the beginning of a new tape. This gives you a new

way to load the Proofreader. Anytime you want to bring the

Proofreader into memory without disturbing anything else, put

the cassette in the tape drive, rewind, and enter:

OPEN1.CLOSE1

You can now start the Proofreader by typing SYS 886.

To test this, PRINT PEEK(886) should return the number 173.

If it does not, repeat the steps above, making sure that A$

("PROOFREADER.!") contains 13 characters and that B$ con

tains ten spaces.

You can now reload the Proofreader into memory when

ever LOAD or SAVE destroys it, restoring your personal typing

helper.

Automatic Proofreader

100 PRINT"{CLR}PLEASE WAIT...":FORI=886TO1018:READ
A:CK=CK+A:POKEI,A:NEXT

110 IF CKO17539 THEN PRINT" {DOWN}YOU MADE AN ERRO

R":PRINT"IN DATA STATEMENTS.":END

120 SYS886:PRINT"{CLR}{2 DOWN}PROOFREADER ACTIVATE
D.":NEW

273

Appendix C

886 DATA 173,036,003,201,150,208

892 DATA 001,096/141,151,003,173

898 DATA 037,003,141,152,003,169

904 DATA 150,141,036,003,169,003

910 DATA 141,037,003,169,000,133

916 DATA 254,096,032,087,241,133

922 DATA 251,134,252,132,253,008

928 DATA 201,013,240,017,201,032

934 DATA 240,005,024,101,254,133

940 DATA 254,165,251,166,252,164

946 DATA 253,040,096,169,013,032

952 DATA 210,255,165,214,141,251

958 DATA 003,206,251,003,169,000

964 DATA 133,216,169,019,032,210

970 DATA 255,169,018,032,210,255

976 DATA 169,058,032,210,255,166

982 DATA 254,169,000,133,254,172

988 DATA 151,003,192,087,208,006

994 DATA 032,205,189,076,235,003

1000 DATA 032,205,221,169,032,032

1006 DATA 210,255,032,210,255,173

1012 DATA 251,003,133,214,076,173

1018 DATA 003

274

D

MLX: Machine

Language Entry
Program

■Charles Brannon

Remember the last time you typed in the BASIC loader for a

long machine language program? You typed in hundreds of

numbers and commas. Even then, you couldn't be sure if you

typed it in right. So you went back, checked the lines, tried to

run the program, crashed, went back again to proofread, cor

rected a few typing errors, ran again, crashed again, rechecked

your typing....

Frustrating, wasn't it?

Now, "MLX" comes to the rescue. MLX makes it easy to

enter all those long machine language programs with a mini

mum of fuss. It lets you enter the numbers from a special list

that looks similar to DATA statements, and it checks your typ

ing on a line-by-line basis. It won't let you enter illegal

characters when you should be typing numbers. It won't let

you enter numbers greater than 255. It will prevent you from

entering the numbers on the wrong line. In short, MLX will

make proofreading obsolete.

Tape or Disk Copies

In addition, MLX will generate a ready-to-use tape or disk

copy of your machine language program. You can then use

the LOAD command to read the program into the computer,

just like you would with a BASIC program. Specifically, you

enter LOAD "filename",\,\ (for tape) or LOAD "filename"$,\

(for disk).

To start the program, you need to enter a SYS command

that tranfers control from BASIC to your machine language

program. The starting SYS will always be given in the article

which presents the machine language program in MLX format.

Using MLX

Type in and save MLX (you'll want to use it in the future).

When you're ready to type in the machine language program,

275

Appendix D

run MLX. MLX will ask you for two numbers: the starting ad

dress and the ending address. You'll get a prompt showing the

specified starting address. Then type in the corresponding first

line of the program.

Subsequent prompts will ask you to type in subsequent

lines from the MLX listing. Each line is six numbers plus a

checksum. If you enter any of the six numbers wrong or the

checksum wrong, the computer will sound a buzzer and

prompt you to reenter the entire line. If you enter the line cor

rectly, a pleasant bell tone will sound and you may go on to

enter the next line.

A Special Editor

You are not using the normal BASIC editor with MLX. For ex

ample, it will only accept numbers as input. If you make a

typing error, press the INST/DEL key; the entire number will

be deleted. You can press it as many times as necessary, back

to the start of the line. If you enter three-digit numbers as

listed, the computer automatically prints the comma and goes

on to accept the next number. If you enter less than three dig

its, you can press either the space bar or the RETURN key to

advance to the next number. The checksum automatically ap

pears in reverse video for emphasis.

To make it even easier to enter these numbers, MLX re

defines part of the keyboard as a numeric keypad (lines

581-584).

H

U

J
M

I

K

O

L becomes 0

7

4

1

8

5

2

9

6

3

When testing it, I've found MLX to be an extremely easy

way to enter long listings. With the audio cues provided, you

don't even have to look at the screen if you're a touch-typist.

Done at Last!

When you get through typing, assuming you type your ma

chine language program all in one session, you can then save

the completed and bug-free program to tape or disk. Follow

the instructions displayed on the screen. If you get any error

messages while saving, you probably have a bad disk, a full

disk, or a typo in MLX. Sorry, MLX can't check itself!

276

Appendix D

Command Control

What if you don't want to enter the whole program in one sit

ting? MLX lets you enter as much as you want, save the com

pleted portion, and then reload your work from tape or disk

when you want to continue. MLX recognizes these commands:

SHIFT-S: Save

SHIFT-L: Load

SHIFT-N: New Address

SHIFT-D: Display

Hold down SHIFT while you press the appropriate key.

You will jump out of the line you've been typing, so I recom

mend that you type in the SHIFT key commands at a prompt.

Use the Save command to store what you've been working

on. It will write the tape or disk file as if you've finished.

Remember what address you stop on. Then, the next time you

run MLX, answer all the prompts as you did before and insert

the disk or tape containing the stored file. When you get the

entry prompt, press SHIFT-L to reload the file into memory.

You'll then use the New Address command (SHIFT-N) to re

sume typing.

New Address and Display

After you press SHIFT-N, enter the address where you pre

viously stopped. The prompt will change and you can con

tinue typing. Always enter a New Address that matches up

with one of the line numbers in the special listing or else the

checksums won't match up. You can use the Display com

mand to display a section of your typing. After you press

SHIFT-D, enter two addresses within the line-number range of

the listing. You can stop the display by pressing any key.

Tricky Stuff

You can use the Save and Load commands to make copies of

the complete machine language program. Use the Load com

mand to reload the tape or disk, then insert a new tape or disk

and use the Save command to create a new copy.

One quirk about tapes made with the MLX Save com

mand: When you load them, the message FOUND filename

may appear twice. The tape will load just fine, however.

Programmers will find MLX to be an interesting program

which protects the user from most typing mistakes. Some

277

Appendix D

screen formatting techniques are also used. Most interesting is

the use of ROM Kernal routines for loading and saving blocks

of memory. Any error code for the SAVE or LOAD can be

found in location 253 (an error would be a code less than ten).

I hope you will find MLX to be a true labor-saving pro

gram. Since it has been tested by entering actual programs,

you can count on it as an aid for generating bug-free machine

language. Be sure to save MLX; it will be used for future

applications in other COMPUTE! books.

MLX

10 REM LINES CHANGED FROM MLX VERSION 2.00 ARE 750

,765,770 AND 860 :rem 50

20 REM LINE CHANGED FROM MLX VERSION 2.01 IS 300

:rem 147

30 REM LINE CHANGED FROM MLX VERSION 2.02 IS 763

:rem 162

100 PRINT"{CLR}B61";CHR$(142);CHR$(8);:POKE53281,1

:POKE53280,1 :rem 67

101 POKE 788,52:REM DISABLE RUN/STOP :rem 119

200 PRINT"[2 DOWN}{PUR}{BLK} MACHINE LANGUAGE EDIT

OR VERSION 2.03{5 DOWN}" :rem 239

210 PRINT"§53{2 UPjSTARTING ADDRESS?{8 SPACES}

{9 LEFT}"; :rem 143

215 INPUTS:F=1-F:C$=CHR$(31+119*F) :rem 166

220 IFS<256OR(S>40960ANDS<49152)ORS>53247THENGOSUB

3000:GOTO210 :rem 235

225 PRINT:PRINT:PRINT :rem 180

230 PRINT"g53{2 UP}ENDING ADDRESS?{8 SPACES}
{9 LEFT}";:INPUTE:F=1-F:C$=CHR$(31+119*F)

:rem 20

240 IFE<256OR(E>40960ANDE<49152)ORE>53247THENGOSUB

3000:GOTO230 :rem 183

250 IFE<STHENPRINTC$;"{RVS}ENDING < START

{2 SPACES}":GOSUB1000:GOTO 230 :rem 176

260 PRINT:PRINT:PRINT :rem 179

300 PRINT"{CLR}";CHR$(14):AD=S :rem 56

310 A=l:PRINTRIGHT$("0000"+MID$(STR$(AD),2),5);":"

; :rem 33

315 F0RJ=AT06 :rem 33

320 GOSUB570:IFN=-1THENJ=J+N:GOTO320 :rem 228

390 IFN=-211THEN 710 :rem 62

400 IFN=-204THEN 790 :rem 64

410 IFN=-206THENPRINT:INPUT"{DOWN}ENTER NEW ADDRES

S";ZZ :rem 44

415 IFN=-206THENIFZZ<SORZZ>ETHENPRINT"{RVS}OUT OF

{SPACE}RANGE":GOSUB1000:GOTO410 :rem 225

278

n

n

n

Appendix D

417 IFN=-206THENAD=ZZ:PRINT:GOTO310 :rem 238

420 IF No-196 THEN 480 : rem 133
430 PRINT:INPUT"DISPLAY:FROM";F:PRINT,"TO";:INPUTT

:rem 234

440 IFF<SORF>EORT<SORT>ETHENPRINT"AT LEAST";S;"

{LEFT}, NOT MORE THAN";E:GOTO430 :rem 159

450 FORI=FTOTSTEP6:PRINT:PRINTRIGHT$("0000"+MID$(S

TR$(I),2),5);":"; :rem 30

451 FORK=0TO5:N=PEEK(I+K):PRINTRIGHT$("00"+MID$(ST

R$(N),2),3);","; :rem 66
460 GETA$:IFA$>""THENPRINT:PRINT:GOTO310 :rem 25

470 NEXTK:PRINTCHR$(20);:NEXTI:PRINT:PRINT:GOTO310
:rem 50

480 IFN<0 THEN PRINT:GOTO310 :rem 168

490 A(J)=N:NEXTJ :rem 199
500 CKSUM=AD-INT(AD/256)*256:FORI=1TO6:CKSUM=(CKSU

M+A(I))AND255:NEXT :rem 200

510 PRINTCHR$(18);:GOSUB570:PRINTCHR$(146);:rem 94

511 IFN=-1THENA=6:GOTO315 :rem 254

515 PRINTCHR$(20):IFN=CKSUMTHEN530 :rem 122

520 PRINT:PRINT"LINE ENTERED WRONG : RE-ENTER":PRI

NT:GOSUB1000:GOTO310 :rem 176

530 GOSUB2000 :rem 218

540 FORI=1TO6:POKEAD+I-1,A(I):NEXT:POKE54272,0:POK

E54273,0 :rem 227

550 AD=AD+6:IF AD<E THEN 310 :rem 212

560 GOTO 710 :rem 108

570 N=0:Z=0 :rem 88

580 PRINT"g£3"; 2rem 81
581 GETA$:IFA$=""THEN581 :rem 95

582 AV=-(A$="M")-2*(A$=",")-3*(A$=".")-4*(A$="J")-

5*(A$="K")-6*(A$="L") :rem 41

583 AV=AV-7*(A$="U")-8*(A$="I")-9*(A$="O"):IFA$="H

"THENA$="0" :rem 134

584 IFAV>0THENA$=CHR$(48+AV) :rem 134

585 PRINTCHR$(20);:A=ASC(A$):IFA=13ORA=44ORA=32THE

N670 :rem 229

590 IFA>128THENN=-A:RETURN :rem 137

600 IFAO20 THEN 630 : rem 10
-—, 610 GOSUB690:IFI=1ANDT=44THENN=-1:PRINT"{OFF}

I j {LEFT} {LEFT}";:GOTO690 :rem 62
620 GOTO570 :rem 109

630 IFA<48ORA>57THEN580 :rem 105

640 PRINTA$;:N=N*10+A-48 :rem 106

650 IFN>255 THEN A=20:GOSUB1000:GOTO600 :rem 229

660 Z=Z+1:IFZ<3THEN580 :rem 71

670 IFZ=0THENGOSUB1000:GOTO570 :rem 114

680 PRINT",";:RETURN :rem 240

690 S%=PEEK(209)+256*PEEK(210)+PEEK(211) :rem 149

691 FORI=1TO3:T=PEEK(S%-I) :rem 67

1i ' 279

Appendix D

695 IFT<>44ANDT<>58THENPOKES%-I,32:NEXT :rem 205

700 PRINTLEFT$("{3 LEFT}",I-1);:RETURN :rem 7

710 PRINT"{CLR}{RVS}*** J3AVE ***{3 DOWN}" :rem 236
715 PRINT"{2 DOWN}(PRESS {RVS}RETURN{OFF} ALONE TO

CANCEL SAVE){DOWN}" :rem 106

720 F$="":INPUT"{DOWN} FILENAME";F$:IFF$=""THENPRI

NT:PRINT:GOTO310 :rem 71

730 PRINT:PRINT"{2 DOWN}{RVS}T{OFF}APE OR {RVS}D
{OFFjlSK: (T/D)" :rem 228

740 GETA$:IFA$<>"T"ANDA$<>"D"THEN740 :rem 36

750 DV=1-7*(A$="D"):IFDV=8THENF$="0:"+F$:OPEN15,8,

15,"S"+F$:CLOSE15 :rem 212

760 T$=F$:ZK=PEEK(53)+256*PEEK(54)-LEN(T$):POKE782

,ZK/256 :rem 3

762 POKE781,ZK-PEEK(782)*256:POKE780,LEN(T$):SYS65

469 :rem 109

763 POKE780,l:POKE781,DV:POKE782,0:SYS65466:rem 68

765 K=S:POKE254,K/256:POKE253,K-PEEK(254)*256:POKE

780,253 :rem 17

766 K=E+1:POKE782,K/256:POKE781,K-PEEK(782)*256:SY
S65496 :rem 235

770 IF(PEEK(783)AND1)OR(191ANDST)THEN780 :rem 111

775 PRINT"{DOWN}DONE.{DOWN}":GOTO310 :rem 113
780 PRINT" {DOWN}ERROR ON JSAVE.{2 SPACES}TRY AGAIN.

":IFDV=1THEN720 :rem 171

781 OPEN15,8,15:INPUT#15,E1$,E2$:PRINTE1$;E2$:CLOS

E15:GOTO720 :rem 103

790 PRINT" {CLR} {RVS}*** LOAD ***{2 DOWN}" :rem 212
795 PRINT"{2 DOWN}(PRESS { RVS}RETURN{OFF} ALONE TO

CANCEL LOAD)" :rem 82

800 F$="":INPUT"{2 DOWN} FILENAME";F$:IFF$=""THENP
RINT:GOTO310 :rem 144

810 PRINT:PRINT"{2 DOWN}{RVS}T{OFF}APE OR {RVSjD

{OFFjlSK: (T/D)" :rem "227
820 GETA$:IFA$o"T"ANDA$<>"D"THEN820 :rem 34

830 DV=1-7*(A$="D"):IFDV=8THENF$="0:"+F$:rem 157

840 T$=F$:ZK=PEEK(53)+256*PEEK(54)-LEN(T$):POKE782 I I.
,ZK/256 :rem 2 UJ

841 POKE781,ZK-PEEK(782)*256:POKE780,LEN(T$):SYS65
469 :rem 107 . .

845 POKE780,l:POKE781,DV:POKE782,l:SYS65466:rem 70
850 POKE780#0:SYS65493 :rem 11 ^
860 IF(PEEK(783)AND1)OR(191ANDST)THEN870 :rem 111
865 PRINT"{DOWN}DONE.":GOTO310 :rem 96 1 |

870 PRINT"{DOWN}ERROR ON LOAD.{2 SPACES}TRY AGAIN. I J
{DOWN}":IFDV=1THEN800 :rem 172

880 OPEN15,8,15:INPUT#15,E1$,E2$:PRINTE1$;E2$:CLOS
E15:GOTO800 :rem 102 I I

1000 REM BUZZER :rem 135 ^

280 U

n
Appendix D

IT

n

n.

1001

1002

1003

2000

2001

2002

2003

3000

POKE54296,15 : POKE54277 , 45 : POKE54278,165

:rem 207

POKE54276,33:POKE 54273,6:POKE54272,5 :rem 42

FORT=1TO200:NEXT:POKE54276,32:POKE54273,0:POK

E54272,0:RETURN :rem 202

REM BELL SOUND :rem 78

POKE54296,15:POKE54277,0:POKE54278,247

:rem 152

POKE 54276,17:POKE54273,40:POKE54272,0:rem 86

FORT=1TO100:NEXT:POKE54276,16:RETURN :rem 57

PRINTC$;"{RVS}NOT ZERO PAGE OR ROM":GOTO1000

:rem 89

H

n

n

n

n 281

Index

Amiga computer 5

animation 183, 185-86

APPEND BASIC 7.0 command 7

"Appointment Calendar" program 104,

114-16

arrays 49

text adventures and 59-61

audio/video ports 19-20

AUTO BASIC 7.0 command 7

"Automatic Proofreader, The" 45,

271-74

BACKUP BASIC 7.0 command 7

BASIC 2.0 3, 17, 219

BASIC 3.5 17

BASIC 4.0 6

BASIC 7.0 3, 6-7, 17

BASIC 7.0 commands 7-11

binary files 8

BIOS (Basic Input/Output System) 23, 25

BLOAD BASIC 7.0 command 8, 10

BOOT BASIC 7.0 command 8

BOX BASIC 7.0 command 10

BSAVE BASIC 7.0 command 8, 10

calendars 102-6

"Campaign Manager" program 138-75

command summary 148

cartridge port. See memory expansion

port

cartridges 15-16

cassette port 20-21

CATALOG BASIC 7.0 command 7

character sets, saving and loading 202

CHAR BASIC 7.0 command 10

chrominance 19

CIRCLE BASIC 7.0 command 10

CLOSE statement 14, 21, 40

COLLECT BASIC 7.0 command 7

COLOR BASIC 7.0 command 10

Commodore CP/M Plus 24-25

compatibility, 128/64 3, 4

composite monitors 4-5

CONCAT BASIC 7.0 command 7

console layout, 128 3-4

control port 17-19

CONT statement 42

COPY BASIC 7.0 command 7

CP/M 3, 6, 22-26

CP/M mode 4, 20, 22-26

C2N cassette recorder 20

Datassette 20-21, 40

DATA statement 186, 205-6

DCLEAR BASIC 7.0 command 7

DCLOSE BASIC 7.0 command 7

DEC BASIC 7.0 function 7

debugging BASIC programs 29-45

DELETE BASIC 7.0 command 7

device number 14, 21

DIRECTORY BASIC 7.0 command 7

"Disk Defaulter" program 243-44

"Disk Directory Sort" program 240-42

disk drive, double-sided 5-6

disk loads, fast 254-60

display, 40-column 3, 4

display, 80-column 3, 4-5

display modes, switching between 5

DLOAD BASIC 7.0 command 7

DOPEN BASIC 7.0 command 7

DRAW BASIC 7.0 command 10

DSAVE BASIC 7.0 command 7

DS BASIC 7.0 reserved variable 7

DS$ BASIC 7.0 reserved variable 7

duration, sound 9

8088 microprocessor 23

8502 microprocessor 9, 12

EL BASIC 7.0 reserved variable 8

ELSE BASIC 7.0 clause 7-8

ENVELOPE BASIC 7.0 sound command

9

ER BASIC 7.0 reserved variable 8

ERR$ BASIC 7.0 function 8

EXIT BASIC 7.0 command 8

external memory 11-12

EXTRA IGNORED error message 46

1540 disk drive 13

1541 disk drive 5-6, 14, 25, 254-60

128 mode 6

1571 disk drive 5-6, 12, 14, 25

1530 Datassette 20

1531 Datassette 20

1520 Printer/Plotter 14

file errors 40

FILTER BASIC 7.0 command 9

floating-point numbers 37-39

"Foolproof Input" program 46-48

"Freeze" program 254-55

freezing program execution 254-55

FRE function 44

frequency, sound 219, 223

"Function Key" program 248-51

function keys, redefining 248-50

garbage collection 43-44

GET statement 40, 42, 47, 248

GET# statement 41, 258

GETKEY BASIC 7.0 command 11

283

GO64 BASIC 7.0 command 11

GOTO statement 42

GRAPHIC BASIC 7.0 command 9

GRAPHIC CLR BASIC 7.0 command 9

GSHAPE BASIC 7.0 command 10, 11

hardware errors 44-45

HEADER BASIC 7.0 command 7

"Heat Seeker" program 121-37

HELP BASIC 7.0 command 7

HEX$ BASIC 7.0 function 7

IBM Advanced BASIC 6

IBM PC computer 23

ILLEGAL QUANTITY error message 41

illegal variable names 30-31

incoming sound, mixing with SID-

generated sound 20

INPUT statement 40

limitations 46-47

INPUT# statement 14, 21, 40, 41, 47

INST/DEL key 47

INSTR BASIC 7.0 function 8

integers, limitations in use of 39

IRQ interrupt 11

JOY BASIC 7.0 function 11, 18

joystick 11, 17-18, 77, 121

non-Commodore 18

joystick port. See control port

Kaypro computers 6

Kernal routines, VIC/64 9

KEY BASIC 7.0 command 7

keys 3-4

keywords, BASIC 30-31

LEN statement 30

LET statement 30

light pen 11

listing conventions 267-70

LOAD command 21, 257, 258

LOCATE BASIC 7.0 command 10

luminance 20

machine language, BASIC 7.0 and 8-9

Macintosh computer 8

memory expander cartridge 15-16

memory expansion port 15-16

Memory Management Unit (MMU) 12

"Mindbusters" program 82-85

ML monitor 8

"MLX: Machine Language Entry

Program" 45, 275-81

Modem300 16

MONITOR BASIC 7.0 command 8

monitors, monochrome 5

"Monthly Calendar" program 103,

106-14

mouse 18

MOVSPR BASIC 7.0 command 10-11

MS-DOS 24

multicolor mode

custom characters 204-5

sprites 183-85

NEW command, recovering from 245-47

NEXT WITHOUT FOR error message 33

1902 monitor 5, 20

non-Commodore equipment 15, 18

NOT INPUT FILE error message 40

NOT OUTPUT FILE error message 40

"NoZap" program 233-39

128 mode 4

OPEN statement 14, 21, 40, 258

order of operations 34

Osborne computer 6

OUT OF MEMORY error message 35-37

paddles 11

PAINT BASIC 7.0 command 10

parsing, text adventure 65-66

partitions in memory 252-53

pattern matching, disk directory 235

PEN BASIC 7.0 function 11, 19

peripheral ports 13-21

pixel 10

PLAY BASIC 7.0 sound command 9

PLUS/4 computer 6

POT BASIC 7.0 function 11, 18-19

PRINT AT BASIC 7.0 command 10

printer interfaces, non-Commodore 15

printers 14-15

PRINT statement 30, 40

PRINT# statement 14, 21, 30, 40, 41, 258

PRINT USING BASIC 7.0 command 8

quest 71

"Quicksort" algorithm 49

"Quiz Generator" program 92-98

"Quiz Master" program package 90-101

quote mode 269-70

RAM disk 11-12, 15-16

RCOLOR BASIC 7.0 command 10

RDOT BASIC 7.0 command 10

RECORD BASIC 7.0 command 7

relative files

BASIC 7.0 and 7

hardware bug 44

REM statement 42

RENUMBER BASIC 7.0 command 7

RESTORE BASIC 7.0 command 8

RETURN WITHOUT GOSUB error

message 33

RGBI signal format 20

RGB monitor 4-5

analog 5

IBM-compatible 5

RGR BASIC 7.0 function 10

ring modulation 219, 222

RREG BASIC 7.0 reserved variable 9

284

RSPPOS BASIC 7.0 function 11

RSPRCOLOR BASIC 7.0 function 11

RS-232 serial communications format 14,

16-17

RUN command 43

SAVE command 21, 258

automatic 233-37

replace option, hardware bug 44-45

SCALE BASIC 7.0 command 10

SCNCLR BASIC 7.0 command 9

SCRATCH BASIC 7.0 command 7

sequential files 40

serial port 12, 13-15

SID chip 3, 6, 9-11, 18, 219-26

Simons' BASIC 6

1650 automodem 16

6502 microprocessor 9, 12, 24

6510 microprocessor 9, 12

64 Supermon 8

SLEEP BASIC 7.0 command 11

small businesses 26

sorting 49-50

"Sort Test" program 53-54

sound and graphics 9-11, 179-229

SOUND BASIC 7.0 command 9

sound effects 219-29

"Sound Effects" program 222-29

SPRCOLOR BASIC 7.0 command 11

SPRDEF BASIC 7.0 command 10

SPRITE BASIC 7.0 command 10

sprite editor 10-11

"Sprite Magic" sprite editor program

179-98

sprites 3, 4, 10-11, 121, 179-87

"Squares" program 86-89

SSHAPE BASIC 7.0 command 10, 11

stack 35-36

STOP statement 42

ST reserved variable 31

strings, limitations of 39-40

STRING TOO LONG error message 41

structured programming 7-8

"Student Quiz" program 98-101

Super Expander cartridge 6

synchronization, sound 219, 221-22

SYNTAX ERROR error message 2-30

SYS command (BASIC 7.0) 8

TEMPO BASIC 7.0 sound command 9

text adventure games 55-73

TI reserved variable 31

TI$ reserved variable 31

tokens, BASIC 30-31

TRAP BASIC 7.0 command 8

"Trap 'Em" program 77-81

"Triple 64" program 252-53

TROFF BASIC 7.0 command 7

TRON BASIC 7.0 command 7

TRS-80 computer 23

truncated program lines 31-32

"TurboDisk" program 254-63

cautions 258

typing in programs 267-70

"Ultrafont +" program 179, 199-218

command summary 207

"Ultrasort" program 49-54

"UnNEW" program 245-47

user port 13, 14, 16-17

variable names, duplicate 32

vector 236

VERIFY command 21, 258

VIC chip 4, 6, 18

VICmodem 15

Video2 port (128) 20

VOL BASIC 7.0 sound command 9

voltage levels, RS-232 standard 16

waveform 9, 219-21

wedge 236

WIDTH BASIC 7.0 command 10

window, text 9

WINDOW BASIC 7.0 command 8

XOR BASIC 7.0 function 7

"Yearly Calendar" program 105-6,

116-20

Z80 microprocessor 22, 24

28E

To order your copy of the Commodore 64/128 Collection

Disk, call our toll-free US order line: 1 -800-334-0868 (in NC call

919-275-9809) or send your prepaid order to:

Commodore 64/128 Collection Disk

COMPUTE! Publications

P.O. Box 5058

Greensboro, NC 27403

All orders must be prepaid (check, charge, or money order). NC

residents add 4.5% sales tax.

Send copies of the Commodore 64/128 Collection Disk at

$12.95 per copy.

Subtotal $

Shipping & Handling: $2.00/disk $

Sales tax (if applicable) $

Total payment enclosed $

□ Payment enclosed

Charge d Visa □ MasterCard □ American Express

Acct. No. Exp. Date
(Required)

Signature

Name

Address

City State Zip

Please allow 4-5 weeks for delivery.

466697B

287

n
Notes

n

n

n

o ■

n

n

n

Notes

y

u

u

y

y

y

n
Notes

n

n

n

o ■

n

n

n

Notes

y

u

u

y

y

y

n
Notes

n

n

n

o ■

n

n

n

COMPUTE! Books

Ask your retailer for these COMPUTES Books or order

directly from COMPUTE!.

Call toll free (in US) 800-334-0868 (in NC 919-275-
9809) or write COMPUTE! Books, P.O. Box 5058,
Greensboro, NC 27403.

Quantity Title Price* Total

SpeedScript: The Word Processor for the

Commodore 64 and VIC-20 (94-9) $ 9.95

Commodore SpeedScript Book Disk $12.95

COMPUTEI's Commodore 64/128 Collection

(97-3) $12.95

All About the Commodore 64, Volume Two

(45-0) $16.95

All About the Commodore 64, Volume One

(40-X) $12.95

Programming the Commodore 64:

The Definitive Guide (50-7) $19.95

COMPUTED Data File Handler for the

Commodore 64 (86-8) $12.95

Kids and the Commodore 64 (77-9) $12.95

COMPUTED Commodore Collection,
Volume 1 (55-8) $12.95

COMPUTED Commodore Collection,

Volume 2 (70-1) $ 12.95

COMPUTED VIC-20 and Commodore 64
Tool Kit: BASIC (32-9) $16.95

Programming the VIC (52-3) $24.95

VIC Games for Kids (35-3) $12.95

COMPUTED First Book of VIC (07-8) $12.95

COMPUTED Second Book of VIC (16-7) $12.95

COMPUTEI's Third Book of VIC (43-4) $12.95

Mapping the VIC (24-8) $14.95

•Add $2.00 per book for shipping and handling.

Outside US add $5.00 air mail or $2.00 surface mail.

NC residents add 4.5% sales tax.

Shipping & handling: $2.00/book
Total payment

All orders must be prepaid (check, charge, or money order).

All payments must be in US funds.

□ Payment enclosed.

Charge □ Visa □ MasterCard □ American Express

Acct. No Exp. Date

Name

Address

City State Zip

•Allow 4-5 weeks for delivery.

Prices and availability subject to change.

Current catalog available upon request.

456697B

If you've enjoyed the articles in this book, you'll find

the same style and quality in every monthly issue of

COMPUTEB's Gazette for Commodore.

For Fastest Service

Call Our Toil-Free US Order Line

800-334-0868
In NC call 919-275-9809

COMPUTEI's ©azefte
P.O. Box 5058

Greensboro, NC 27403

My computer is:

□ Commodore 64 □ VIC-20 □ Other.

□ $24 One Year US Subscription
□ $45 Two Year US Subscription
□ $65 Three Year US Subscription

Subscription rates outside the US:

D $30 Canada
□ $65 Air Mail Delivery
□ $30 International Surface Mail

Name

Address

City State Zip

Country

PI Payment must be in US funds drawn on a US bank, international
1 ' money order, or charge card. Your subscription will begin with the

next available issue. Please allow 4-6 weeks for delivery of first issue.

r-j Subscription prices subject to change at any time.

' □ Payment Enclosed □ Visa
D MasterCard □ American Express

'- ' Acct. No. Expires /
(Required)

n
The COMPUTERS Gazette subscriber list is made available to carefully screened
organizations with a product or service which may be of interest to our readers. If you

|] prefer not to receive such mailings, please check this box a
756199

