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Foreword 

Machine language (ML) is the native language of any com­
puter. When you program in a high-level language like 
BASIC, each program statement must be translated into ma­
chine language while the program is running. That seriously 
slows up execution speed. 

For many applications, BASIC is the language of choice 
because its slow speed doesn't matter. But if speed is signifi­
cant, ML is the answer. What's more, you'll gain significantly 
more control over your computer when you can give it 
instructions in its own language. You bypass the limitations 
and blind spots of BASIC. 

Unfortunately, many BASIC programmers have come to 
believe that machine language is too complex to be easily 
understood, that it's beyond their reach. This is a popular mis­
conception, but it's a misconception nonetheless. In fact, 
people who learned to program in ML have claimed that 
learning BASIC was about as difficult. What's more, if you al­
ready know BASIC, you already know most of the concepts 
and structures that you'll need to program in ML. 

COMPUTE!'s Beginner's Guide to Machine Language on the 
IBM PC and PCjr makes learning 8088 ML easy. The authors 
introduce you to the tools you'll need and start you off by 
showing you, step by step, how to write simple programs. 
Slowly, with numerous examples, they describe each ML com­
mand. You'll soon be telling your assembler (either MASM or 
the Small Assembler) exactly what you want it to do. And, after 
you've got the basics down, you'll learn everything you need 
to know to write complex programs entirely in ML. 

This book includes more than 15 complete ML programs 
for you to type in and assemble. Each program is more com­
plex than the one before and guides you through new tech­
niques. Many programs contain routines which can be simply 
lifted as is and inserted into your own programs. 

Do you want to use ML and BASIC together? Do you 
want to merge one of your ML routines with a Pascal pro­
gram? COMPUTE!'s Beginner's Guide to Machine Language on 
the IBM PC and PCjr shows you how. You'll even learn about 
Macros: how and why they're used in ML programs, and how 
to create a library of them. 
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Once you've learned the techniques of 8088 ML program- II 

ming on the IBM, you'll find yourself returning to this book 
again and again. It not only teaches, but is also an excellent 
reference for the experienced programmer. II 

For almost every level of 8088 ML programming, from 
rank beginner to veteran programmer, COMPUTEt's Beginner's 
Guide to Machine Language on the IBM PC and PCjr can be _ 
your guide to greater understanding of your machine and 
effective, powerful programming methods. But if you're just 
starting out with ML, you'll soon be writing your first ML pro-
gram and can begin to explore the amazing world in the in-
terior of your machine. 

Richard Mansfield 
Author of Machine Language For Beginners 
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CHAPTER 

1 
Introduction 

The PC is a powerful tool, whether for business uses, math­
ematic calculations, or game playing. It is sometimes astonish­
ing to observe the speed at which some programs work, 
whether spreadsheets, word processors, or flashy videogames. 

Sometimes, however, BASIC is simply too slow. For fast­
moving games, complex calculations, and rapid communica­
tion with external devices, BASIC often fails to perform as you 
might wish. The answer to that problem is the subject of this 
book. Machine language, the computer's native language, ex­
ecutes many times faster than BASIC or even Pascal. 

BASIC is useful in many situations, and is often all you 
need to write a program. BASIC (or Pascal) programs are 
usually much simpler to write, modify, and debug than ma­
chine language. Furthermore, programs written in BASIC can 
be transported from computer to computer almost without 
modification. 

There are times, though, that the benefits of machine lan­
guage outweigh the advantages of BASIC and Pascal. Machine 
language is fast, faster than BASIC or any of the other high­
level languages. Machine language also provides for a greater 
degree of precision and control when dealing with the com­
puter and all its associated hardware. Finally, machine lan­
guage programs are often more compact than BASIC, and 
invariably far shorter than the equivalent programs would be 
in Pascal. When you need speed, precision, or compactness, 
machine language is the best answer. 

What You'll Need 
This book assumes that you are using one of the IBM family 
of personal computers (PC, PC/XT, Portable, or PCjr), or one 
of the many PC compatibles. PCjrs must be the expanded ver­
sion, with a disk drive and at least 128K of RAM. Other 
computers require at least 64K (with DOS 1.10) or 96K (with 
DOS 2.00 and above) and a disk drive. Any programmer using 
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Introduction 

a noncompatible version of MS-DOS can use this book, but 
don't be too surprised if some of the sample programs fail to 
give the proper results. 

That's the hardware needed. Below is a list of the soft­
ware you will need. 

DOS. We assume that you are using either DOS 2.00 or 
2.10 (or their Microsoft equivalent); however, most of the 
explanation applies to DOS 1.10 as well. 

Text editor. Those who have never written a program in 
an assembled or compiled language (like Pascal) may not be 
familiar with text editors or source files. A text editor allows 
you to enter your program (the source file) into the computer 
and store it on disk. Assembly language source files are gen­
erally given the extension .ASM. 

Any editor or word processor which generates standard 
DOS files can be used to enter your programs. A standard 
DOS file, sometimes called a pure ASCII file, doesn't contain 
any special word processor control codes. IBM's assembler will 
assemble only standard DOS files. 

Some word processors (WordStar and WordPerfect, for ex­
ample) don't store their text files in this standard format; 
however, most provide a way to handle DOS files. Word 
processors vary considerably, so check with your manual for 
the specifics. If your word processor doesn't handle DOS files, 
use EDLIN. EDLIN is quite adequate as a program editor; be­
sides, it came on your DOS disk, and you might as well use it. 
If you would prefer a more powerful text editor, IBM sells 
two: the Personal Editor and the Professional Editor. 

The assembler. The most important software requirement 
is an assembler. In this book, we'll assume you have the IBM 
assembler. The assembler is the program which converts your 
assembly language source file into an object file, usually given 
the extension .OBJ. This file contains the actual machine lan­
guage instructions which the computer will execute. We can 
also have the assembler produce a list file. This file, with the 
extension .LST, contains both the original source file and the 
actual machine language program, generated by the assembler, 
in the margin. 

In writing the sample programs and the assembly ex­
amples, we have assumed that you are using the IBM Macro 
Assembler. The Macro Assembler is available from your IBM 
dealer or product center, and is nearly identical to the version 
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of MASM provided free with some MS-DOS computers. Al­
though there are other assemblers available, the IBM Macro 
Assembler is the most popular, as well as standard for IBM 
equipment. 

When you buy the IBM Macro Assembler package, you are 
supplied with two assemblers, MASM.EXE and ASM.EXE. 
MASM requires at least 96K of RAM, while ASM needs only 
64K. If you have the memory, use MASM. There is little dif­
ference in the performance of the two assemblers; however, 
MASM offers additional commands and options, which will be 
detailed in Chapter 15. 

The linker. Before you can execute your object file, you 
must link it using the LINK program provided on your DOS 
disk. The LINK program converts the object file into an ex­
ecutable file (with the extension .EXE). The LINK program can 
also be used to join many object files (IBM calls these object 
modules) together into a large program. These object modules 
can be created with the assembler or other language compilers 
such as the BASIC and the Pascal compilers. 

How to Use This Book 
In order to use this book to its fullest potential, we recom­
mend that you have at least some knowledge of BASIC or 
Pascal, enough so that you can write your own programs. Al­
though a knowledge of BASIC is not essential, there will be 
some sample programs written in BASIC when added clarity is 
necessary. We assume that you know some of the computer 
technical jargon, such as the words loop and subroutine. If you 
are completely in the dark, take some time to read through the 
glossary at the end of this book. 

In addition, we assume that you are familiar with your 
operating system, whether PC-DOS or MS-DOS. By this we 
mean you know how to name files, to copy files from one disk 
to another, and know how to format your own disks. 

Machine language should not be the beginner's first com­
puter language. It's not that it's harder to learn than other 
computer languages-it's just less forgiving of mistakes. High­
level languages perform many error checks while executing 
your program; assembly language performs almost none. 
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Before You Get Started 
Before you go on, make a working copy of the assembler and 
your editor (whether EDLIN. COM, WordStar, or some other 
word processor). You should also copy the assembler to your 
working disk (either ASM.EXE or MASM.EXE; you don't need 
both). You will also need LINK.EXE and DEBUG. COM from 
your DOS program disks. Your work disk does not have to be 
a boot disk, but copy COMMAND. COM onto the disk any­
way, since DOS reloads it after every assembly. If you're using 
a word processor, it's a good idea to copy it and all its asso­
ciated program files onto your work disk, so you don't have to 
trade disks every time you assemble. 

In the next chapter we'll be discussing some of those 
esoteric terms you may have heard from your hacker friends: 
binary, hexadecimal, memory addressing, segments, registers, 
and flags. If you're a hacker yourself, you should at least 
glance through Chapter 2 and be sure you understand it 
before starting on Chapter 3. 
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2 
Fundamentals 

In this chapter we will discuss some of the basic concepts nec­
essary for learning machine language. Most of these concepts 
will be general to all computers, but we will also talk about 
some features specific to the 8088, the microprocessor-the 
brain-of your computer. First we'll discuss the computer's 
numbering system, binary, and some related topics. Then we'll 
examine the basic structure of the computer's microprocessor, 
as well as some of the ideas that must be understood to pro­
gram in machine language. 

Our system of numbering is called decimal. In this sys­
tem, each digit, as we move to the left, has ten times more 
weight than the preceding one. So in the number 4782 we 
have a one's digit, a ten's digit, a hundred's digit, and a thou­
sand's digit, each with a value ten times the preceding one. In 
other words, we have what is called a base 10 numbering 
system. 

The base 10 numbering system is not the system used by 
computers. Microprocessors everywhere use base 2. 

Binary 
A computer is essentially a series of switches. Each switch is 
either on or off. Thus the use of the base 2 numbering system, 
in which each digit, instead of being 0 to 9, is either on or off, 
either a 0 or a 1. This is the system called binary. This binary 
system of numbering is responsible for much of a computer's 
architecture: the size of the largest number it can store in a 
memory location, the amount of memory it can have, even the 
size of the screen. 

As in the decimal system, each digit, as we move to the 
left, has an increased value. But instead of ten times, each 
digit as we move left has a value two times the preceding 
digit: a one's digit, a two's digit, a four's digit, an eight's digit, 
a sixteen's digit, and so on. 
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Look at the binary number I 
10011 

Reading from right to left, it has one 1, one 2, no 4's or 8's, II 
and one 16. Adding them all up (1 + 2 + 0 + 0 + 16), we 
can see that 10011 in binary represents the number 19 in 
decimal. 

Table 2-1 shows the binary values of the decimal num- II 
bers 0 to 9. 

Table 2·1. Binary.Decimal Illustration 

Decimal Binary 
number eight's four's two's one's number 
zero 0 0 0 0 0 
one 0 0 0 1 1 
two 0 0 1 0 10 
three 0 0 1 1 11 
four 0 1 0 0 100 
five 0 1 0 1 101 
six 0 1 1 0 110 
seven 0 1 1 1 111 
eight 1 0 0 0 1000 
nine 1 0 0 1 1001 

Table 2-1 may seem reminiscent of elementary school 
lessons in addition, but in fact an understanding of binary is 
critical to many aspects of 8088 programming and to com-
prehending the structure and workings of the microprocessor. 

Hexadecimal 
As you can see from Table 2-1, even small numbers require 
three and four digits in binary. Long strings of l's and O's may II 
be fine for the computer, but for the human programmer they 
can get a little overpowering. Base 16, or the hexadecimal (hex 
for short) number system, is used to get around this problem. I 
In this system, as you may have guessed, each succeeding 
digit to the left is greater than the last by a factor of 16. Thus, 
we have the l's digit, a 16's digit, a 256's digit, and so forth. II 
For example, the number 47 corresponds to seven l's and four 
16's; (4 X 16) + (7 X 1) = 71. 

But wait. In base 10 (our decimal system), we have ten 
different characters (0-9); in base 2 we have two (0 and 1). For II 
6 _ 
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Fundamentals 

base 16 we need 16 characters. We can understand this need 
more easily by thinking of what 9 and 10 represent in hex: the 
decimal numbers 9 and 16. Therefore, to represent in hex the 
numbers between 9 and 16, the one's place must be able to 
hold more than 9. In fact, we must be able to represent up to 
15 ones in each place. For the first ten we use the base 10 
digits 0 to 9. For the remaining six we use the letters A, B, C, 
D, E, and F, to stand for 10, II, 12, 13, 14, and 15 respec­
tively. This is shown in Table 2-2. 

Table 2,2. Decimal,Binary,Hexadecimal Numbers 

Decimal Binary Hexadecimal 
0 00000000 0 
1 00000001 1 
2 00000010 2 
3 00000011 3 
4 00000100 4 
5 00000101 5 
6 00000110 6 
7 00000111 7 
8 00001000 8 
9 00001001 9 

10 00001010 A 
11 00001011 B 
12 00001100 C 
13 00001101 D 
14 00001110 E 
15 00001111 F 
16 00010000 10 
17 00010001 11 
18 00010010 12 

3A uses both letters and numbers; A represents 10 (10 
ones). This, added to the three 16's, gives us 58 (3 X 16 + 
10) decimal. 

Notice in Table 2-2 there's a correspondence between four 
binary digits and one hexadecimal digit: Four binary digits 
make up one hexadecimal digit. If you think about it, this 
makes sense: The most that four binary digits can represent is 
1111 or 1 + 2 + 4 + 8, which equals decimal 15. And 15 is 
the largest number that one hexadecimal digit can represent (F 
in hex). In fact, any combination of four binary digits can be 
represented by a single hex digit. 
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---------- --- ------

binary 0010 = hex 2 
binary 0000 = hex a 
binary 1111 = hex F 
binary 1011 = hex B 

For this reason hexadecimal is often used for computer 
programming in lieu of binary. It's compact (one digit instead 
of four) and it fits in well with binary. Thus, many aspects of 
machine language are best represented by hex. 

Decimal, on the other hand, doesn't work well with bi­
nary. You would need about three and a third binary digits to 
make up one decimal number, and that's not possible. Deci­
mal, therefore, is often not the numbering system of choice 
when dealing with computers. Some computers do have a 
provision to handle decimal directly, for the benefit of the pro­
grammer; we'll discuss these in "Advanced Arithmetic" 
(Chapter 8) later in the book. 

Another system that works well with binary is base 8, 
octal. In this system three binary digits make up one octal 
digit, and we represent numbers in l's, 8's, 64's, and so forth. 
Although it's not very common, IBM BASIC and the IBM 
assembler provide for it. 

The concept of base 2 and base 16 requires an extension 
to our usual way of thinking about numbers. As you have 
seen, a two-digit number is not merely composed of l's and 
la's, but l's and 2's, or l's and 16's. Now that you have 
gained some understanding of the binary and hexadecimal 
numbering systems, we'll turn our attention to arithmetic. 
Once you've mastered the ideas inherent in using a new base, 
arithmetic in that base is surprisingly simple. 

Arithmetic 
Addition. Since binary arithmetic is somewhat complex 

and rarely used, we'll deal only with hexadecimal in our dis­
cussion of computer arithmetic. Let's begin with a few simple 
two-digit additions: 

47 
+ 26 

6D 

The idea is exactly the same as decimal addition. First you 
add the one's digits. In this case, 7 + 6 = D. (Remember D is 
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the hex symbol for 13.) Then, we add the sixteen's digits, 4 + 
2, and get 6. 

Now for a somewhat more complex example: 

1A 
+ 39 

53 

Here, we have A plus 9 in the one's digit. This would add 
up to hex 13 (decimal 19), which is too big for a single hex 
digit. So we adopt the same strategy we use in decimal: Take 
only the 3 from hex 13, and add the 1 to the next column as a 
carry. Thus, we have 3 in the one's column, and in the six­
teen's column we have 1 plus 3, plus 1 from the carry, to 
equal 5 in all. Here are a few more examples of hex addition 
for you to study: 

31 SA 
+ 48 + SA 

79 B4 

A3 
+ 3A 

DD 

99 
+ 2B 

C4 

Subtraction. Subtraction in hex is also similar to decimal. 

E3 
- 79 

6A 
Here we must subtract 9 from 3. So, just as in decimal, we 
borrow 10 (decimal 16) from the next column. That gives us 
13 hex - 9, which works out to A. (Convert to decimal, if you 
like: 19 - 9 = 10, or hex A.) Now we move to the next col­
umn, the sixteen's. First we subtract 7 from E, to get a result 
of 7 (in decimal, 14 - 7 = 7). However, we must subtract one 
from this result, since we borrowed hex 10 in the one's col­
umn. So, we have six 16's in the final answer. Here are a few 
more practice hex subtractions: 

74 AA 23 
- 42 - 3B - 1A 

32 6F 09 

F2 
- BC 

36 
Multiplication. Multiplication and division in hex are 

easier than you would think. When dealing with computers, 
most multiplying and dividing is in powers of 2 or 16. Thus, 
it's often the case that you have to take some number and 
multiply by 16. To do this, all you have to do is add a 0 to the 
end of the number. 
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or (using computer notation) 

45A9 * 10 = 45A90 
As you can see, multiplying by 10 hex (decimal 16) in hex 

math is much like multiplying by decimal 10 in decimal math. 
Division. Division works the same way; if you need to 

divide a number by 16, just shift it over one digit. Since 
computers rarely use fractions or decimal points, the digit on 
the end just drops off: 

45A9/ 10 = 45A 

Again, you may notice the similarity to decimal: Dividing 
a decimal number by decimal 10 also shifts the number one 
place to the right. 

A calculator that allows hex math can be an important 
tool when programming in machine language. If you plan to 
do any serious programming in ML, you should consider 
purchasing one. 

For the moment there are just a few important concepts 
about these alternate bases to remember: 
• Why it is that computers use binary at the lowest level, and 

why programmers prefer to use hex. 
• How to add (most important) as well as subtract and mul­

tiply in hex. This knowledge is necessary for understanding 
and working with segments, which we shall discuss shortly. 

Notation and Terminology 

II 

II 

II 

I 

In our discussion of arithmetic, you may have been occa­
sionally confused about whether a 10, for example, referred to 
decimal, binary, or hexadecimal. To distinguish between the I 
systems, we sometimes follow the number by the base as a 
subscript. Thus, 

7116 III 
would refer to 71 base 16. Computers can't handle subscripts, 
so the assembler uses a letter suffix to indicate the base. Deci- II 
mal numbers don't have a suffix. Binary numbers have a B 
suffix (110110B); hexadecimal numbers, an H suffix (45H or 
SAH). Since the assembler does not allow a number to begin 
with a letter, any hex number that begins with a letter (A-F) II 
must begin the number with a zero (for example, FFH is repre-
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sen ted as OFFH; AOH becomes OAOH). A more complete dis­
cussion of the assembler's numeric notation can be found in 
Chapter 14. 

Bits, bytes, and nybbles. A bit is one binary digit, a 0 or 
a 1. A byte is two hex digits, eight bits. 

A byte is the basic unit of 8088 memory storage, and so is 
particularly important. A byte can hold values from 0 to 255 
decimal (00 to FF hex, or 00000000 to 11111111 binary). 

A nybble is a four-bit quantity, usually thought of as half a 
byte. A nybble can be represented by a single hex digit. 

Finally, a word is two bytes, four hex digits, 16 bits. A 
word can have a value from 0000 to FFFF hex. 

More and larger units exist, but these are uncommon and 
will be discussed later. 

Most and least significant. Least and most significant are 
terms usually applied to the bits and bytes making up larger 
numbers. For example, in a byte (eight bits) the most signifi­
cant bit (binary digit) is the leftmost one. This is the bit with 
the highest value (128 in decimal) and thus the most signifi­
cant. The least significant bit is the rightmost one (with a 
value of one). The other common use of these terms is in ref­
erence to words. 

As we mentioned above, a word is composed of two bytes 
(each holding up to FF hex). One often refers to the two 
component bytes of words as most significant and least signifi­
cant. For example, in the hex word 03AB, the 03 byte is the 
most significant, and the AB byte is the least significant. 

Computer Fundamentals 
In order to successfully program in machine language, it is 
essential to understand how to store numbers, and how to use 
them when doing math. In this section, we'll discuss the topics 
relating to storing and using numbers, as well as examining 
the 8088's internal registers. 

Addressing. All computers have a certain amount of 
memory, consisting of RAM (read/write memory) and ROM 
(read only memory). In this memory are stored both programs 
and numbers. The computer keeps track of all this data (both 
programs and numbers) by placing it at different addresses, or 
locations, within this memory. This concept may already be 
familiar to those of you who have had a need to use the 
BASIC keywords POKE and PEEK. With the POKE statement, 
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II 
we POKE a number (a byte) into an address. PEEK, the II 
counterpart of POKE, tells us what number is already stored at 
a specified address. 

For example, load up BASIC on your computer and enter II 
POKE 10000,123 

The POKE puts the number 123 at location 10000 (decimal). .. 
We can use PEEK to tell us what is there: • 
PRINT PEEK(10000) 

The computer should display 
123 

Ok 

Try PEEKing around in memory a little more. You'll find 
that addresses range from 0 to 65535 and that the numbers 
that can be placed in an address range from 0 to 255. Above, 
we mentioned that a word can hold 0000 to FFFF hex, which 
corresponds to 0 to 65,535 decimal. 

Memory. From the point of view of PEEK, all that is 
stored in memory is numbers. How then does the computer 
store a program? The answer is simple: as numbers. Most of 
the numbers from 0 to 255 can serve both as numbers and as 
machine language instructions. For example, the five numbers 
198 6 1639 123 (in decimal) represent one machine language 
instruction, telling the computer to put the number 123 into 
location 10000 (as you did above with POKE). Luckily, using 
the assembler, you will never need to know which numbers 
make up which instructions. 

An enormous variety of things are stored in a computer's 
memory (machine language programs, BASIC programs, num­
bers, and text), but in the end, everything is stored as a num­
ber from 0 to 255. Of course, not all of this memory is RAM: 
Some is empty space, some holds the Operating System, some 
is used to display information on the screen, and so on. At 
first, our programs will be using memory only as machine lan­
guage programs and the data accompanying these programs. 
Later, we will discuss storage of large numbers (up to 32 bits 
in length) and of strings of characters. 

Segments. Since the computer uses a word to hold ad­
dresses, and a word can hold only numbers from 0 to 65,535, 
many computers can therefore address only 65,536 bytes. This 
is not true for the IBM's 8088 microprocessor. 
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Instead of using one word to address memory, the 8088 
uses two. To address any particular location, the 8088 adds the 
two words together to find the actual address. However, to in­
crease the amount of memory that can be accessed by a factor 
of 16, the 8088 multiplies one of the words by hexadecimal 10 
before adding it to the other. Multiplying by 16, as you may 
recall, is the same as simply adding a 0 to the end of a hex 
number. So, if one number is 1234 hex and the other (to be 
multiplied) is 5678 hex, the computer would calculate the ac­
tual address as: 

1234 
+ 56780 

579B4 
This segmented memory system, as you can imagine, a]­

lows a huge amount of memory to be addressed. The 8088 
uses its segments to make available (in hex) 10000 ... 10 = 
100000 bytes or (in decimal) 65,536 ... 16 = 1,048,576 bytes. 
This number is known as a megabyte (metricized readers may 
note the mega, or million, prefix). If you wish to put it in truly 
impressive terms, think one thousand K. 

The number that is multiplied by 16 is referred to as the 
segment. The segment is almost always used to define the 
beginning of a block of memory. Then, the offset, a word 
value, is used to address one of 65,536 bytes within that seg­
ment. The segment usually remains the same throughout a 
program, so machine language programs usually only need to 
specify the appropriate offset. Different segments are used for 
the program, the data, and so forth. We'll discuss how seg­
ments are used in more detail in a few moments. 

Figure 2-1 diagrams one possible arrangement of four seg­
ments. Note that the segments can overlap. The shaded areas 
indicate the possible range of the offset values within each 
segment. 

Registers 
Little machine language programming is done directly to 
memory (in fact, some of it cannot be done directly to mem­
ory). To improve performance and to simplify programming, 
the 8088 uses registers. A register is one word that the 8088 
holds within itself, directly available to the microprocessor, not 
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Figure 2·1. Sample Segment Locations 

Memory 

Extra Segment 

Stack Segment 

Code Segment 

in memory. Using a register is always faster than using data in 
memory, because registers are, in a sense, part of the 8088. 
Furthermore, less space is used in program memory to specify 
one register out of, perhaps, eight, as opposed to one address 
out of 65,536. 

General-purpose registers. The most used registers on 
the 8088 are the four general-purpose registers, AX, BX, CX, 
and DX (registers are named, not numbered, to distinguish 
them from memory). Each of these holds a word (O-FFFF hex), 
and each is often used for a different purpose. 

For now, a few mnemonics will suffice to give a necessar­
ily simplified picture. AX is the Accumulator; it often holds (or 
accumulates) the values used by the various functions. As a 
rule, the AX register serves as the pivotal register. BX is the 
Base register (to be explained in Chapter 7, "Addressing 
Modes"). CX is the Count register (as explained in "Program 
Flow," Chapter 5, and "String Instructions," Chapter 9) ; DX is 
the Data register. Most of the time, however, you can use 
these registers interchangeably. 

14 

II 

• 
II 

II 

II 

II 

II 

II 

II 



II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

2 
Fundamentals 

Byte registers. Each of the general-purpose registers can 
also be used as two separate bytes. When we discussed most 
and least significant above, we mentioned that a word is often 
separated into its two component bytes. Likewise, for each 
general-purpose register, there is a high byte (most significant) 
and a low byte (least significant). If AX is holding 487 A, the 
high byte holds 48 and the low byte holds 7 A. The high and 
low byte parts of the registers are symbolized by Hand L; 
thus we have AL and AH, BL and BH, CL and CH, and DL 
and DH. The general-purpose registers are the only registers 
that can be used both as bytes and words. 

Index and pointer registers. The 8088's other registers 
are more specialized, and more time will be devoted to them 
in later chapters. For now, just remember that SI and DI are 
index registers, and SP and BP are pointer registers. Most of 
these registers can be used just like the general-purpose reg­
isters above, but they have other uses, which we'll discuss in 
due course. 

Segment registers. The 8088 also has four specialized 
registers it uses to hold the segment addresses of the different 
parts of your program (code, data, and so forth). These seg­
ment registers are named CS, DS, SS, and ES. CS stands for 
Code Segment. CS holds the segment address for your program 
code. DS is the Data Segment; your program's data is usually in 
this segment. SS is the Stack Segment; this is where the stack 
for the computer is based. If you're a machine language nov­
ice, don't despair; the stack is discussed in detail in Chapter 6. 
Finally, ES, the Extra Segment, is used to address the screen, 
the Operating System, and so forth, as the programmer 
wishes. 

The Instruction Pointer. The IP, or Instruction Pointer, 
holds an offset value that points into the code segment. This 
register can't be directly accessed by your programs. Instead, it 
serves as a pointer into your program. The 8088 uses this 
pointer to execute the instructions one by one. 

Learning machine language is like a giant jigsaw puzzle. 
And parts of the puzzle are easier to find if you can look at 
the entire picture. The problem with ML is that it is difficult to 
see the whole picture before you understand the parts. At this 
point the parts may seem disjointed and abstract. Don't worry 
if this discussion of registers doesn't make sense now; as we 
continue to use these registers throughout the book, their use 
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• 
will become more and more clear as you see the parts fitting • 
in to make the whole picture. 

The flags register. One final word-sized register in the 
8088 is devoted to the so-called flags. A flag is one bit, either • 
on or off; the on and off states of these flags tell the pro-
grammer about various states in the microprocessor. The flags 
are used with conditional jumps, much like IF-THEN state- II 
ments, to make your program take different actions at critical 
points. 

Some of the flags are processor flags, telling the computer 
what to do when certain situations occur (in this group are the 
trap flag, the interrupt enable flag, and the direction flag). The 
other flags are used for arithmetic on the computer. You'll find 
that two of these other flags, the zero flag and the carry flag, 
are very useful when doing math of all kinds. Two other flags 
that are useful when doing signed math are the sign and over­
flow flags. Table 2-3 is a complete list of the 8088's flags. 

Table 2-3. The 8088's Flags 

carry flag 
parity flag 
auxiliary carry flag 
zero flag 
sign flag 

trap flag 
interrupt enable flag 
direction flag 
overflow flag 

Each of these flags will be explained in their appropriate 
chapters. For now, just remember that a flag is a signal that in­
dicates various states in the microprocessor. 

Machine language is no harder to learn than BASIC. 
Many of the operations in machine language are similar to 
those in BASIC: moving information from variable to variable, 
adding, subtracting, multiplying, dividing, dealing with strings, 
and the like. In fact, many early programmers who had to 
learn machine language as their first language had difficulty 
making the transition to BASIC once it became available. Both 
languages seem to require about as much effort to master. 

Now that you have been introduced to the fundamentals 
of the 8088-the numbering system, the uses of memory, seg­
ments, registers, and flags-you are ready to begin your first 
program, and be introduced to your first machine language 
command. 

16 

• 
• 
• 
• 
• 



2 
Fundamentals 

_ Figure 2,2. Registers on the 8088 
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3 
Getting Started 

We'll begin our discussion of the 8088 assembly language with 
the simple MOV instruction and some of the assembler's 
pseudo-ops. You will also learn how to use the utility program 
DEBUG. 

The MOV Instruction 
The MOV instruction is the most used, and often most useful, 
of the 8088 instructions. (Note that, by tradition, most assem­
bly language mnemonics are three letters long.) It allows you 
to move bytes or words between two registers or between reg­
isters and locations in memory. The MOV instruction takes the 
following format: 
MOV destination,source 

MOV takes the source value and moves it to the destination. 
We will examine three variations on the MOV instruction in 
this chapter: MOV immediate to register, MOV between reg­
isters, and MOV with register indirect addressing. 

MOV immediate to register. This first kind of MOV is 
very straightforward-it moves an immediate value into a reg­
ister. An immediate value is a number that's stored with the 
machine language instruction itself, not in a separate data seg­
ment. For example, the instruction 
MOV BX,1234H 

moves the hex number 1234 into the BX register. The immedi­
ate value is stored as part of the instruction and is moved di­
rectly into the register. This is similar to the BASIC LET 
statement BX=&H1234. 

The only limitation on the MOV instruction is that you 
cannot move an immediate value into a segment register (CS, 
OS, ES, or 55). Here are a few examples of valid MOV 
instructions: 
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MOV DX,OA2H ;a hexadecimal number 
MOV BL,4FH ;hexadecimal 
MOV DL,241 ;decimal 
MOV AH,10110101B ;binary 

(See Chapter 2 for a discussion of the notation used to distin­
guish binary, decimal, and hexadecimal.) 

The immediate value must be the same size as the 
destination register. In other words, you cannot move a word 
into a byte register. For example, this is illegal: 
MOV DL,4567H 

DL is a byte register and 4567H is a word-sized number. 
Moving data between registers. Moving a value from 

one register to another is also quite simple. Below are just a 
few of the numerous possible register-to-register moves. No­
tice that the source and the destination registers must be the 
same size (both either words or bytes). 
MOV AX,BX 
MOV DL,AH 
MOV SI,DI 
MOV ES,AX 
MOV AH,CH 

Register indirect addressing. This final kind of MOV 
instruction uses register indirect addressing. This too is easy to 
understand-once you get past the name. With this MOV the 
computer uses the contents of a register as a memory address's 
offset, while the DS register provides the segment. In the first 
example below, the number stored in BX is used as an offset 
into the data segment. (The computer multiplies the value in 
the DS register by 10 hex, 16 decimal, and adds the contents 
of BX. See Chapter 2 for more details on offsets.) 
MOV AX,[BX] 
MOV DL,[SI] 
MOV [BX],AL 
MOV [DI],DX 

The contents of the memory location pointed to by BX are 
moved to AX. The square brackets around BX mean "use the 
quantity stored in BX as an indirect address." As we shall see 
in later chapters, these square brackets are common to all in­
direct addressing modes. 

In the next example above, MOV DL,[SI], 51 is used as the 
offset, and the contents of the memory location pointed to by 
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SI are moved to DL. Notice, in the first example above, that a 
word is movEld, while in the second only a byte is moved. The 
size of the number to be transferred is determined by the size 
of the register involved. In the final two examples the destina­
tion of the data is another register indirect address. The last 
example moves the number in OX to the memory location 
pointed to by 01. 

Only four registers can be used in register indirect 
addressing: BX, BP, SI, and 01. Note that you cannot move a 
number directly from one memory location to another, so 
something like 
MOV [DI],[51] 

is illegal. If you need to move from memory to memory, you 
must use two MOV instructions and a register. As we shall 
see, the sample program "Switch" uses this technique. 

The 8088 offers almost 20 different ways of addressing 
data. In Chapter 8 all of the addressing modes will be brought 
together and examined in detail. However, now that you are 
familiar with at least some aspects of the MOV command, let's 
take a look at the sample program Switch. 

Writing a Program 
The sample program, Switch (Program 3-1), will work with 
any 8088 computer. Switch is accompanied by a brief tutorial 
on the use of DEBUG, the machine language debugging tool 
supplied with your DOS disk. Program 3-2 is a BASIC version 
of Switch which may help improve your understanding of the 
machine language version. 

Switch is a fairly simple program. It copies the contents of 
one eight-byte area (labeled SOURCE) to another eight-byte 
area (labeled DEST, for destination). In the process, it reverses 
the order of the bytes, so that the DEST area becomes a mirror 
image of the SOURCE area. 

Commenting the program. Before you enter Switch, take 
a look at its structure. At the beginning of the program, there 
are a number of lines preceded by semicolons. These are com­
ments, like the single quote (') or REM statements in BASIC 
programs. They are ignored by the assembler, but are crucial 
in documenting your program. The first few lines of any pro­
gram should give the name of the author and explain what 
the program does. You might also want to include a date or 
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version number for your own reference. Remember, each com­
ment line must be preceded by a semicolon. 

Instruction lines. Lines which are not comments (instruc­
tion lines) have a definite format and can be broken down into 
specific fields: 

Symbol 
NO-RESET: 
A-VERY_LONG_LABEL: 

Instruction Comment 
MOV [BX],AH ;store attribute 

ADD AH,16 
MOV AL,34 

;this is a legitimate symbol 

;initialize AL 

The first field contains a name, called a symbol. A symbol 
can be of any length, but only the first 31 characters are rec­
ognized as significant. In other words, the first 31 characters of 
each symbol must be unique. The alphabet characters (the let­
ters A to Z), the digits (the numbers from 0 to 9), and the 
characters ?, @, _, $, and. are all legal characters. Uppercase 
and lowercase letters are considered identical; so the symbols 
"sample", "Sample", and "SAMPLE" are all the same. The 
first character in a symbol cannot be a digit; if it is, the assem­
bler thinks that the symbol should be a number. If a period is 
used in a symbol, it must be the first character. When a sym­
bol is used to identify a position within a program (like 
NO-RESET above), it is called a label. A label must be de­
fined with a colon after its name. When a symbol is used to 
reference data, 'it is called a variable. A variable is never de­
fined with a.colon. 

II 
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The second field is the instruction field and contains the 
operation and the operand. There are basically two kinds of 
operations: those that produce actual machine code (opcodes, 
a cryptic abbreviation for operation codes), and those that are II 
interpreted by the assembler and produce no machine code. 
These operations which produce no code are called pseudo-ops II 
for false operations. Only a small number of the pseudo-ops 
are detailed here. See Appendix C for a list of other pseudo-
ops available with the Macro Assembler. 

The second part of the instruction field is the operand, the _ 
information that the operation acts on. The number of oper-
ands depends on the particular operation. Some operations II 
take only one operand, others take two, and a few take none. 
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Comment field is the last field of the line and is optional. 
Comment must be preceded by a semicolon. 

On an instruction line, only the operation and any asso­
ciated operands are required. The label and the comment are 
optional. Remember that the assembler considers lines which 
start with semicolons comments and it ignores them entirely. 

Pseudo .. Operations 
PAGE pseudo-op. The first operation in Switch is the 

PAGE command. This pseudo-op tells the assembler the width 
and length of a printed page in the list file. In Switch, PAGE 
is used as follows: 
PAGE ,96 

The first parameter is the page length. Since none is specified, 
58 is assumed. The next parameter is the width of the page. 
The second operand, 96, sets the width to 96 characters, 
which corresponds to a standard printed page at 12 characters 
per inch. 

The SEGMENT pseudo-op. The SEGMENT pseudo-op is 
used three times in Switch. Its purpose is to define the various 
segments for the DS, SS, and CS registers. SEGMENT first ap­
pears in the program as: 
DATA SEGMENT 
SOURCE DB 1,3,5,7,11,13,17,19 
DEST DB 0,0,0,0,0,0,0,0 
DATA ENDS 

Here, SEGMENT is used to create a separate segment for 
the program's data. The label preceding the pseudo-op names 
the segment DATA. The name is arbitrary; we could have 
called it PAUL, ALEX, or AXZDFG, but naming the segment 
DATA identifies its purpose. The ENDS pseudo-op at the end 
of the segment declaration tells the assembler that the seg­
ment named by the ENDS command is ending. 

Program data. The source and destination areas, named 
SOURCE and DEST respectively, are within the segment 
DATA. The initial values of these data areas are defined with 
the DB (Define Byte) pseudo-op. The eight bytes at SOURCE 
are filled with the numbers 1, 3, 5, 7, and so forth, and the 
eight bytes at DEST are filled with zeros. 
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Stack segment. The next use of the SEGMENT command _ 

is to assign the stack segment. This is a special kind of seg- -
ment and for now must be included in all your programs. 
STACK SEGMENT STACK _ 

DW 128 DUP (?) 
STACK ENDS 

We will be using this exact format in future programs for the II 
stack segment. Note that we have somewhat arbitrarily as-
signed the stack segment the name STACK. In Chapter 6, we 
will explain how and why to use this segment. 

Code segment. The last segment we define is the code 
segment. This is where the machine language instructions are 
located. This segment has been given the name CODE. Within 
the segment CODE, however, we must define a "FAR proce­
dure." This is accomplished with the SWITCH PROC FAR 
instruction. We have named the procedure SWITCH. This pro­
cedural declaration is necessary if the program is to return to 
DOS properly (right now, don't worry about why). 

The ASSUME pseudo-op. The last pseudo-op before the 
actual machine language instructions is ASSUME. The AS­
SUME command tells the assembler what the segment reg­
isters are supposed to be holding. This is necessary for the 
program to assemble properly. It will be explained in more de­
tail in Chapter 14. 

The Machine Language 
Now, finally, comes the assembly language. The PUSH DS 
instruction stores DS on the stack. DS is stored this way so 
that we can return to DOS. The next operation puts a zero in 
the AX register (MOV AX,O). Then, we PUSH AX onto the 
stack, the same way we pushed DS. This, too, is necessary in _ 
order to return to DOS properly (this will all be explained in 
Chapter 6). 

Next we must set up the data segment, DS, so that we II 
can address our own data. We do this by assigning the DS 
register to the location of our data segment. Unfortunately, the 
8088 cannot move an immediate value directly into a segment II 
register. To overcome this limitation we first move the value 
of DATA (which identifies our data segment's position) to AX 
and then from AX to DS. At this point DS points to the first _ 
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address of our data segment. Note that setting up the DS reg­
ister is much like using the DEF SEC command in BASIC 
(before using PEEKs and POKEs). 

The registers SI (Source Index) and DI (Destination Index) 
are now given their initial values. These registers will act as 
offsets into the segment DATA. SI is set to zero so that it 
points to the first byte of the SOURCE area. DI is assigned the 
value 15 so that it points to the end of the DEST area. The 
next instruction, MOV AL,[SI], moves into AL the byte pointed 
to by SI. This is the so-called register indirect addressing that 
we discussed earlier. Notice, too, that this is the first line with 
a label as well as a machine language instruction. 

SUB DI,l subtracts 1 from the value of DI. DI now points 
to the next lower memory location. At the same time, we add 
1 to the SI register with the ADD SI,l instruction. SI now 
points to the next piece of data in SOURCE. 

Finally, we check to see if all the bytes have been moved. 
If they have not, we jump to MOVE_BYTES ONE, Jump if 
Not Equal). If they have, we execute the RET (RETurn) 
instruction, which returns us to DOS. 

After the RET, we must tell the assembler that the proce­
dure has ended (SWITCH ENDP), that the segment has ended 
(CODE ENDS), and finally, that the program has ended 
(END). The block-ending statements must be in the opposite 
order as the beginnings (that is, you must maintain the correct 
nesting order as with BASIC's nested FOR-NEXT structures). If 
you get the ENDP and the ENDS out of order, the assembler 
will give you a block-nesting error. 

Entering Source Code 
Now that you have at least some idea of how SWITCH works, 
enter the source code into your computer. Below is a short tu­
torial on the use of EDLIN. If you have a line editor or word 
processor which produces DOS-compatible files (see Chapter 
1), use it and skip the EDLIN tutorial. If you're using your 
own word processor, for best results set its formatting options 
as follows: Set the margins at 0 and 79 and the tab stops 
every eight spaces. Remember to press Enter after each line, 
and to save the files as standard DOS (pure ASCII) text files. 
Do not use line numbers. 
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Make sure that EDLIN. COM is in the default disk, and enter 
the command: 
A> EDLIN SAMPLE.TST 

from the DOS prompt. This will load EDLIN and open a file 
named SAMPLE.TST on the default disk. If you want 
SAMPLE.TST somewhere else, enter the appropriate device 
(and path name for DOS 2.00 users); for example, EDLIN 
B:SAMPLE.TST will put SAMPLE.TST on drive B even though 
you are logged onto drive A. 

If SAMPLE.TST is a new file, you will get the message 
New File. On the next line, you will see an asterisk. This is 
EDLIN's prompt. If you get the End of Input File message, 
you already have a file named SAMPLE. TST and EDLIN is 
ready to edit it. Since we want to edit a new file, however, 
leave EDLIN with the Q (Quit) command and answer Y to the 
Abort edit (Y jN)? prompt. Try a new name for the file, one 
that does not already exist on the disk. 

Now that you have opened a new file, you can enter text 
with the I (Insert) command. Type I and press Enter. You will 
see the following: 
*1 

1:*_ 

You may now enter text. You can enter only one line at a 
time, and pressing Enter moves you to the next line. Note that 
the star after the line number tells you that this is the current 
line. 

If you make a mistake while entering a line, the Back­
space key will delete the last character. Pressing the Esc key 
erases the entire line (as in BASIC). Pressing F5 (or Fn-5 on 
the PCjr) allows you to edit the line just as you can edit a 
DOS command string. Try this as an example. 

Type the text shown below and press F5. 
1:* This is a sample line 

An at sign (@) will appear at the end of the line. The message 
"This is a sample line" is now stored as a string template. 
Pressing the cursor-right key copies a character from this tem­
plate to the displayed string. Pressing the Del deletes the next 
character in the template; pressing the Ins key allows you to 
add text without moving the template pointer. If you press 
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cursor right after you insert text, the insert mode will be 
turned off and the next character will be taken from the tem­
plate and displayed. Pressing F3 copies the remainder of the 
template to the input string. Pressing F2, followed by a 
character, copies all of the characters in the template up to the 
specified character into the input string. F4 is similar, except 
that it skips all of the characters in the template up to the 
specified character. This may all seem confusing, but after 
some experimentation and practice, it will become clear. 

For practice, use the same sample line as above and press 
FS. Now press the Del key five times and press F3. The line 
should now read "is a sample line". Now, press FS again, 
press Ins and type "That was ", and press F3. Now the line 
reads "That was is a sample line". To correct our grammar, 
press FS again, press F2 and space, then F2 and space again, 
press F4 and space, and F3. Finally, press Enter to go on to 
line 2. Now the line should read "That was a sample line". 
When you are done, you should have the following on your 
screen: 
l:*This is a sample line@ 

is a sample line@ 
That was is a sample line@ 
That was a sample line 

2:*_ 

You can return to the command level of EDLIN by press­
ing Ctrl-Break (or Fn-Break on the PCjr). The last line is not 
inserted into your text. 

Editing the entire file. Once you have entered a file with 
EDLIN, you can review your work by entering the command 
L (List). This will list the lines immediately before and after 
the line you last entered. If you want to list other lines, pre­
cede the L command with the starting and ending line num­
bers separated by commas. For example, 3,SL will list lines 3 
through S. 

If you need to insert additional lines, use the I (Insert) 
command preceded by the number of the line you want to in­
sert. Remember that EDLIN will insert lines before the line you 
specify. For example, if you want to insert text between lines 4 
and S, use 41 as below: 
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* l,SL 

*41 

1: this 
2: is 
3: a 
4: short 
S: file 

4:*very 
S:*~C 

*l,6L 
1: this 
2: is 
3: a 
4: very 
S: short 
6: file 
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After we inserted the new line 4, all of the lines after the 
old line 3 have been moved down one to make room for the 
new line 4. You can append lines to the end of the file with 
the #1 command. 

To delete lines you merely specify the lines (as you did 
with the List command) to remove and the D (Delete) com­
mand. Specifying only one line number deletes just that line; 
not specifying a line number deletes the current line. For ex­
ample, if we decided that line 4 in the above sample file is not 
needed after all, we can use the command 4D from the * 
prompt. Line 4 will be deleted and lines 5 and 6 will auto­
matically be renumbered to lines 4 and 5. Deleting lines one at 
a time can be confusing because the line numbers are con­
stantly updated. So check the line numbers carefully to avoid 
deleting the wrong lines. 

Editing the text. You can edit a line from the * prompt by 
entering the number of the line you wish to change. The line 
which you specify will be printed on the screen. On the 
following line, EDLIN will print an input prompt. The text of 
the specified line will be placed in the template buffer (as de­
scribed above). You can edit the line just as if you had pressed 
F5. For example ,entering 3 from the * lets you edit line 3 (see 
below). 
*3 

3: This is a sample line 
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There are two ways to leave EDLIN. Use the Q (Quit) 
command if you do not want to save the file you are working 
on. Answer the prompt Abort Edit (YIN)?, with Y if you do 
not want to save your file, or with N if you have second 
thoughts. The E (End) command exits EDLIN and saves your 
file. 

You can reenter EDLIN just as you entered it the first 
time; however, you will receive an End of Input File rather 
than a New File message. You can now list and edit your file. 
Remember to leave EDLIN through the E command if you 
want to save your changes. Your old file is automatically re­
named as a backup file (with a .BAK extension). 

For a more detailed explanation of EDLIN, see your DOS 
manual's section on EDLIN. 

Entering Your Source Code with EDLIN 
Now that you are acquainted with EDLIN, let's enter the 
sample program Switch. From the DOS prompt, enter the 
command EDLIN SWITCH.ASM (or whatever name you wish 
to use). Make sure you are starting a new file (you should get 
a New File message). Enter the I command and type the first 
few lines of SWITCH.ASM. Your screen should look some­
thing like the text below: 
A> EDLIN SWITCH.ASM 

New file 
*1 

1:* ; SWITCH.ASM 
2:* ; 
3:* ; Reverses an eight-byte buffer. DEBUG 
4:* ; must be used to analyze the results. 
5:* ; This program should work in any 
6:*_ 

Enter Program 3-1, Switch. Be certain that you have en­
tered it correctly, editing the text as necessary. When you are 
done, exit EDLIN. If all goes well, you should now be ready to 
assemble your program. 

The Assembler 
After you save your source code file on disk, enter the com­
mand MASM (or ASM, depending on which assembler you 
are using). The computer should respond as follows: 
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The IBM Personal Computer MACRO Assembler 
Version 1.00 (C)Copyright IBM Corp 1981 

Or, if you are using ASM: 
The IBM Personal Computer Assembler 
Version 1.00 (C)Copyright IBM Corp 1981 

Answer the questions as follows (assuming that 
SWITCH.ASM is the name of your source file). The name of 
the source file is SWITCH.ASM, so type SWITCH and press 
Enter. The assembler will automatically use the extension 
.ASM. It will also assume that the name of the object file is 
SWITCH.OBJ, so just press Enter. We want a list file, so type 
SWITCH and press Enter. The assembler will append the .LST 
extension. We do not want a cross-reference file so just press 
Enter. You should have the following on your screen: 
Source filename [.ASM]: SWITCH 
Object filename [SWITCH.OBJ): 
Source listing [NUL.LST]: SWITCH 
Cross reference [NUL.CRF]: 

If you prefer, you can specify different extensions. Also 
note that the name of the .LST file defaults to "NUL.LST"; if 
you do not want a list file, then just press Enter at this 
prompt. 

After you have answered all of the questions, the assem­
bly process will begin. The assembly is done in two passes. 
The assembler reads the source code once, doing a mock 
assembly. This first pass determines the position of all the la­
bels within the program. The second pass produces the actual 
object file. 

After a short while, the assembler should print: 
Warning Severe 
Errors Errors 
o 0 

on the screen. If you received any errors, either Warning or 
Severe, reenter your editor and correct the problems. Re­
assemble the program. Only when you receive no errors are 
you ready to go on. 

The assembler .LST file. Enter the command "TYPE 
SWITCH.LST" to print the list file to the screen. You should 
get a listing much like Program 3-3. If you want to send this 
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to the printer, turn on the printer echo (Ctrl-PrtSc, or Fn-Echo 
on the PCjr) and use the TYPE command. When the entire file 
has been printed, you should turn off the printer echo by 
pressing Ctrl-PrtSc (or Fn-Echo) again. If you prefer, you can 
tell the assembler to output the list file directly to the printer 
by naming the list file PRN (for printer). However, this latter 
method often does not work on non-IBM printers. Now let's 
look at the list file's key components. 

At the top of each page the assembler prints 
The IBM Personal Computer MACRO Assembler 8-18-84 PAGE 1-1 

After the assembler's name comes the date and the page num­
ber. The number before the dash is the chapter number, while 
the number after the dash is the page number. The chapter 
number is not important. 

The numbers which are printed on the left edge of the 
page are the offsets into the current segment. Notice that the 
first offset number does not appear until we define the first 
segment. The numbers to the right of the offset are the data 
which is stored at that offset. The data and the offset values 
are always printed in hexadecimal. Starting about halfway 
across the page is a listing of the source file. Bear in mind that 
long lines will wrap around the edge of the page. This makes 
reading the printout difficult, so use as many columns as pos­
sible (96 is generally sufficient). 

Also notice that on the line which moves DATA (the ad­
dress of our data segment) into AX, there is no hexadecimal 
value for DATA, only four dashes. This means that the assem­
bler does not know where the segment DATA is going to be 
located; the address of the data segment will be calculated 
only when the program is loaded into memory. 

The last page of the assembly listing is the symbol table. It 
has information about the labels and variables used in the 
program. They are in two groups and are arranged alphabeti­
cally within the groups. The first group, titled Segments and 
Groups, is a table of the segments which we defined in the 
program. Their size (again in hexadecimal), alignment, and 
combine class are also given. These last two entries are not 
important until you know more about the assembler. The sec­
ond list, titled Symbols, is a table of the labels and variables 
which are used in the program. For now, don't worry about 
their type and attributes. 
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The LINK Program II 
Once SWITCH assembles without errors, you are ready to link 
the program. From the DOS prompt, execute the LINK pro-
gram by typing LINK and pressing Enter: _ 
A> LINK 
IBM Personal Computer Linker 
Version 2.00 (C)Copyright IBM Corp 1981, 1982, 1983 II 
If you are using DOS 1.10, you will see 
IBM Personal Computer Linker 
Version 1.10 (C) Copyright IBM Corp 1982 

The LINK program will convert the .OBJ file generated by 
the assembler into an executable .EXE file. The .EXE file can 
be loaded and run like any other DOS program. Answer the 
questions as follows. The name of the object file is 
SWITCH.OBJ, so type SWITCH and press Enter. LINK will 
automatically append the .OBJ extension. We want the .EXE 
file to be called SWITCH.EXE, so just press Enter. Since we do 
not want a .MAP file, nor have we defined any Libraries, just 
press Enter to the last two prompts. You should have the 
following on your screen: 
Object Modules [.OBJ]: SWITCH 
Run File [SWITCH.EXE]: 
List File [NUL.MAP]: 
Libraries [.LIB]: 

You can specify a different extension for the object file if you 
desire. However, you can't change the extension of the run 
file, which is always .EXE. It is unlikely that you will receive 
an error from the LINK program other than a Cannot Find File 
error. If you receive such an error, be certain that you have 
entered the name of the object file correctly. 

Running Switch 
Now that we have assembled and lInked SWITCH, you are 
ready to execute it. From the DOS prompt type 
A> SWITCH 

and press Enter. The DOS prompt should return after a mo­
ment or two. If it does not, the computer has probably 
crashed. Try pressing Ctrl-Break (Fn-Break on a PCjr). If this 
does not return you to DOS, you will have to reset the com­
puter with Ctrl-Alt-Del. If the crash is very severe, even this 
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may not revive the computer, in which case you will have to 
turn the computer off and back on again. If your computer 
crashes when you run Switch, you must double-check the 
source program for any typing errors, correct them, and re­
assemble the program. Unfortunately, we still do not know if 
Switch actually works since it does everything internally. How 
can we tell if it is doing anything at all? We must use DEBUG, 
which allows us to examine our program and to watch it exe­
cute instruction by instruction (using the Trace command). It 
can also dump and unassemble memory, as well as change the 
contents of registers and memory locations. DEBUG is sup­
plied on your DOS disk. 

Using DEBUG: the Unassemble Command 
Type the command DEBUG SWITCH.EXE from the DOS 
prompt. The DEBUG prompt, a dash (-), will appear on the 
screen. Type U (for Unassemble) and press Enter. The 
un assembly of the Switch program should be printed as 
below: 
-U 
091B:0000 IE PUSH OS 
091B:000I B80000 MOV AX,OOOO 
091B:0004 50 PUSH AX 
091B:0005 B81F33 MOV AX,0910 our data segment 
091B:0008 8ED8 MOV DS,AX 
091B:000A BEOOOO MOV SI,OOOO start of source 
091B:0000 BFOFOO MOV OI,OOOF end of destination 
091B:00I0 8A04 MOV AL,[SI] 
091B:0012 8805 MOV [DI],AL 
091B:0014 83EFOl SUB 01,+01 
091B:0017 83C601 ADD SI,+OI 
091B:001A 83FE08 CMP SI,+08 
091B:00I0 75Fl JNZ 0010 
091B:00lF CB RETF program ends 

If you are using DEBUG from DOS 1.10, the last line of the 
program will look like this: 
091B:00IF CB RET L OEBUG 1.10 differs 

From now on, DOS 1.10 users should read RET L every time 
RETF is used. Note that the number before the colon (the 
091B) may be different in your computer. 

Let's take a close look at DEBUG's output. The example 
below breaks a typical line down into three fields. 
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Bytes Assembly Instruction 
8805 MOV [DI],AL 

The first field indicates the address of the instruction in hexa­
decimal. The number before the colon is the segment address 
and the number after the colon is the offset into the segment. 
This is known as the segment:offset form of representing an 
address. 

The next field, Bytes, is the group of bytes that make up 
the assembly language instruction. In the example above, the 
two bytes which make up the instruction MOV [DI],AL are 
88H and OSH. 

If you compare the DEBUG output with the source code, 
you will notice that there are no longer any labels. Also notice 
that our JNE Oump if Not Equal) has been turned into a JNZ 
Oump if Not Zero) instruction. These are identical operations. 
The difference in name is for the sake of the human, not the 
computer (all of the conditional jumps will be explained in 
Chapter 5). Our RET has also been changed into a RETF. RETF 
stands for Far Return, and will be explained in Chapter 6. 

Also note how DEBUG shows bytes when a word value is 
part of an operand. For example, the assembler .LST file may 
unassemble an instruction as: 
Assembler: BF OOOF MOV DI,15 

while DEBUG reverses the order of the last two bytes: 
DEBUG: BFOFOO MOV DI,OOOF 

(Remember that it takes two bytes to make up a 16-bit word.) 
In fact, the assembler is actually reversing the bytes, not DE­
BUG. The two bytes which make up a word are stored in a 

II 

I 

II 

II 

II 

low byte/high byte format. This means that the least signifi- II 
cant byte precedes the most significant byte (the byte which 
represents the bigger value comes last). In the actual program, . 
the bytes appear as OF 00, not 00 followed by OF, as the 
assembler .LST file seems to imply. 8 

The purpose of unassembling the file was to find the data 
segment. If you look carefully, DATA has been turned into the 
hex value 091D (this value varies; it depends on how your II 
particular computer is configured). In our case, the data, which 
is a short series of prime numbers, can be found at 91D:0. 

Using the Dump command. To check to see if the data is II 
there, we can instruct DEBUG to display a portion of memory. 
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Enter D followed by the desired segment and the offset. In 
this case we would type (remember to use the segment you 
determined, which might not be the same as the one given 
below): 
- 0 910:0 

DEBUG should print something similar to the following: 

- 0 910:0 
0910:0000 01 03 05 07 OB 00 11 13-00 00 00 00 00 00 00 00 
0910:0010 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
0910:0020 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
0910:0030 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
0910:0040 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
0910:0050 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
0910:0060 46 FE EB 05 C4 IE AO 13-BO 00 26 38 07 75 09 A2 
0910:0070 AC13 26 88 47 01 EB 05-C6 06 AC13 FF BO 00 A2 

F k UO. . O. & 8. U. II 

, . &. C. k. F. , .. 0 . II 

The format of the memory dump can be broken down 
into three sections as shown below. 
Address 0910:0060 

Sixteen bytes of data in hex format 
46 FE EB 05 C4 IE AO 13-BO 00 26 38 07 75 09 A2 

Character format F kUO . . 0.&8.u." 

The first field is the address, much like in the Unassemble 
command. In the next section are the 16 bytes starting from 
the address shown in the first field. In the last field are the 
characters which represent the 16 bytes shown in the previous 
field. Any unprintable characters are represented by a period. 

The Go and Enter commands. The Go command is used 
to execute the program. Type G (for Go) and press Enter. DE­
BUG should print Program Terminated Normally and give you 
the dash prompt. Now reexamine the data segment: 
- 0 910:0 
0910:0000 01 03 05 07 OB 00 11 13-13 11 00 OB 07 05 03 01 ..... 

(Only the first line is shown here; the rest is unimportant.) 
Notice that the eight zero bytes (the DEST data) are now filled 
with the prime numbers in reverse order. 

Now that we know that the program works, let's play 
with it a little. We can use DEBUG to modify the SOURCE 
memory area with the E (Enter) command. Type E 91D:O 
"compute!" (remember to use your data segment address) and 
press Enter. Then display the SOURCE area again: 
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II 
E 91D:0 "compute!" 
- D 91D:0 II 
091D:0000 63 6F 6D 70 75 74 65 21-13 11 OD 08 07 05 03 01 compute! ....... . 

Notice how the ASCII string compute! has filled the eight bytes 
of the SOURCE area. The format of the E command is very II 
simple. The numbers after the E are the location, and the 
string in quotes is the data. The ending quote is required, or 
you will get an error from DEBUG. Now run Switch again, us- 8 
ing the G command, and dump the data in the SOURCE 
buffer area. 
-G 

Program terminated normally 
- D 91D:0 
091D:0000 63 6F 6D 70 75 74 65 21-21 65 74 75 70 6D 6F 63 compute!!etupmoc 

The compute! has been reversed to !etupmoc. 
This has demonstrated one method of entering data into 

memory. See your DOS manual for the other available options 
with this command. 

The Register command. Type R and press Enter. DEBUG 
should respond with something similar to the following: 
-R 
AX=OOOO BX=OOOO CX=0080 OX=OOOO SP=OlFC BP=OOOO S1=OOOO DI=OOOO 
OS=09OB ES=090B SS=091E CS=091B 1P = 0005 NV UP DI PL NZ NA PO NC 
091B:0005 B81009 MOV AX,0910 

(The output on a 40-column screen will be different.) The first 
two lines indicate the current values of the registers. At the 
end of the second line is a list of the flags and their current 
statuses. Table 3-1 gives the abreviations that DEBUG uses to 
indicate the statuses of the 8088's flags (the different flags will 
be explained in the following chapters). 

Table 3~1. DEBUG Flag Status Names 
Name of Flag Set (Flag=l) Clear (Flag=O) 
Overflow OV = overflow NV = no overflow 
Direction DN = decrement UP = increment 
Interrupt EI = enabled DI = disabled 
Sign NG = negative PL = plus 
Zero ZR = zero NZ = not zero 
Auxiliary Carry AC = yes NA = no 
Parity PE = even PO = odd 
Carry CY = carry NC = no carry 

The third line of DEBUG's response shows the address of 
the next instruction, the bytes which make up that instruction, 
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and the unassembled instruction itself (this is the same format 
as the Unassemble command). This is the instruction which 
will be executed first when you enter the G command. 

An option of the R command allows you to change the 
values of the registers. Type R AX and DEBUG will respond: 
-RAX 
AX 0000 

DEBUG is now waiting for you to enter the desired value for 
the register AX. You can enter any word-sized value to be 
placed in AX. Pressing Enter without any other input means 
that you do not want to change the value in AX. Any of the 
registers can be changed in this way. 

The Trace command. Type T (for Trace) and press Enter. 
The format of the output is identical to that of the R com­
mand. If you enter T again, you will step through the next ma­
chine language instruction. You can step through more than 
one instruction at a time by specifying a number after the 
Trace command. For example: 
- T 10 

will trace through the next 16 instructions (remember, DEBUG 
does everything in hexadecimal). 

This feature of DEBUG can be very useful in the debug­
ging of a program. You can go through the program step by 
step and examine the effects of different instructions on the 
flags and the contents of the registers. Note that DEBUG occa­
sionally skips instructions. There is nothing wrong with DE­
BUG; this is perfectly normal. This skipping will be discussed 
in Chapter II. 

For more examples of how to use DEBUG, see Section 5, 
"Sample Programs," or your DOS manual. Play with DEBUG 
and Switch. When you have had enough, you can exit the DE­
BUG utility program with the Q (Quit) command. 

Writing Your Own Programs 
Program 3-4 is a fill-in-the-blank program, a program tem­
plate, which you can use until you are more familiar with the 
assembler and assembly language. Keep in mind that the 
structure of the sample programs is not fixed, nor is it stand­
ardized. You are free to format and structure your programs as 
you will. The examples are simply guides that represent a for­
mat which we like to use. Feel free to devise your own system. 
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CHAPTER 

4 
Arithllletic 

Computers are known for their number-crunching abilities. 
The 8088 is no exception; it is a very powerful microprocessor. 
In this chapter, you will be introduced to the basic mathemat­
ical operations of addition, subtraction, multiplication, and 
division. 

Negative Numbers 
In Chapter 2 you learned that binary digits can be chained to­
gether into eight-bit bytes. You were also told that a byte 
could represent the numbers from 0 to 255 (0 to FF hex). This 
is the unsigned number range of the byte. A byte can also 
represent the signed number from -128 to + 127. There are 
still eight bits to a byte; only the interpretation of the bits is 
different. When a byte is meant to represent a signed number, 
the most significant bit (the bit representing 128) is the sign 
bit. 

When the sign bit is zero, the byte is positive (0 to 127). 
When the sign bit is one, the byte is negative (-128 to -1). 

Signed words are similar to signed bytes. Recall that a 
word is made up of 16 bits and can represent the numbers 
from 0 to 65,535 (0 to FFFF hex). This is a word's unsigned 
range. The signed range of a word is -32,768 to 32,767. The 
sign bit is still the most significant bit of the number (the bit 

II 

II 

• 
• 
II 

representing 32,768). As with signed bytes, a sign bit with the • 
value of zero means that the word is positive (0 to 32,767), 
while a sign bit with the value of one means that the word is 
negative (-32,768 to -1). • 

The actual storage of signed numbers is complex. The 
method which is used is called twos complement. This method 
of representing negative numbers is very similar to the one II 
used by counters on tape players. Most tape recorders have a 
three-digit counter which can represent the numbers from 000 
to 999. Let's pretend that the tape in the recorder is a number II 
line. The tape counter tells us where we are on the line. 
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Try this exercise: Fast-forward the tape to the middle, and 
zero the tape counter. Now, fast-forward the tape some more. 
Note that the counter starts from 0 and counts up. When the 
counter reads 005, we understand that we are five counts 
away from 0 in the positive direction. Now rewind the tape. 
The counter will begin to count down. When it passes 000, it 
will start again from 999. We understand that when the 
counter reads 999, we are one count away from 0; but this 
time we are on the negative side. If we stop the tape when the 
counter reads 990, we know that we are ten counts away from 
O-we are at the position -10 on the tape. 

Negative binary numbers are similar. For the moment, 
consider only signed bytes. A byte can represent the numbers 
from 0 to 255. You can think of a byte as a tape counter 
which can count up only to 255. If we rewind from 0 with this 
byte counter, the first number we will get is 255 (like we get 
999 on a real tape counter), so 255 is like -1. Notice that the 
most significant bit, the sign bit, is 1; thus the number is neg­
ative. 

For words, the only difference is that the maximum count 
is not 255 but 65,535. When our "word counter" counts back­
wards from 0, we get 65,535. 

ADD, SUB, and NEG 
ADD and SUB, add and subtract, are versatile instructions 
which allow you to add to or subtract from registers or mem­
ory addresses. The format of both instructions is the same: 
ADD destination,source 
destination = destination + source 
SUB destination,source 
destination = destination - source 

Notice the mathematical representations of the operations. 
ADD takes the source value, adds it to the destination, and 
places the sum in the destination. SUB does the same, only it 
subtracts rather than adds. 

The source for these instructions can be a general register 
(any register except the segment registers, the flags, and IP), a 
memory location, or an immediate value. The destination can 
be a general register or a memory location. As with the MOV 
instruction, the source and destination cannot both be memory 
locations. 
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Because the 8088 is a 16-bit microprocessor with an 8-bit 
heritage, the ADD and SUB instructions come in two forms, 
one for 16 bits and the other for 8 bits. The assembler auto­
matically determines which instruction you need to use. Below 
are some examples of the ADD and SUB commands. 
ADD AX,4 ;add 4 to the contents of AX 
ADD BX,DX ;add contents of DX to BX, result in BX 
ADD DL,DH ;8-bit addition 
SUB DX,AX ;subtract AX from DX, result in DX 
SUB [BX],AL ;subtract AL from indirectly addressed memory 

The NEGate instruction changes the sign of a number. If 
the number was positive, it is made negative, and if it was 
negative, it is made positive. NEG takes the form shown below: 
NEG operand 

The operand can be any general byte, word register, or 
memory location. This instruction can be used when you need 
to subtract a register from an immediate value. For example, 
you cannot use SUB to subtract AL from 100: 
SUB tOO,AL 

This is illegal because the destination cannot be an immediate 
value. Instead, you have to use something like: 
NEGAL 
ADD AL,tOO 

First we negate AL (so AL = - AL), then we add it to 100. In 
other words, we have: 
AL = - AL 'negate AL 
AL = tOO + AL 'add (the negated) AL to tOO 

There are three processor flags which are important to 

II 

II 

addition and subtraction. These flags are used for error check- II 
ing and for program decision making. Decision making and 
program flow are the topics of the next chapter. 

The sign flag (abbreviated SF) indicates the sign of the re- _ 
sult of the last operation; however, only certain operations, 
such as addition and subtraction, set this flag. If you are un-
sure whether SF is set by an operation, check Appendix A. If II 
SF is set (has a value of one), the last result was negative. If it 
is clear (has a value of zero), the result was positive. 

The overflow flag (OF) is set whenever a mathematical op- _ 
eration overflows the range for signed numbers. OF is set if 
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the result is greater than 127 or less than -128 for bytes, or 
greater than 32,767 or less than -32,768 for words. If the re­
sult is within the range of signed numbers, the overflow flag is 
clear. 

The last flag which should be mentioned in connection 
with ADD and SUB, is the carry flag (CF). During addition, CF 
is used to hold any carry out of the highest bit. Thus, for byte 
addition, the carry represents the "ninth bit," and for word 
addition, the carry is the "seventeenth bit." With subtraction, 
CF is used to indicate a borrow into the highest bit. CF will be 
important only when we begin to investigate advanced arith­
metic in Chapter 8. 

INC and DEC 
INC (INCrement) and DEC (DECrement) are used to in­
crement and decrement a register or memory location by 1. 
The form of both these instructions is: 
INC memory location 
memory location = memory location + 1 
DEC memory location 
memory location = memory location - 1 

INC and DEC set the sign and overflow flags, but do not set 
the carry flag. Both instructions can operate on bytes or words. 

INC and DEC are useful in addressing memory. We can 
move a pointer up or down one byte within a table. For ex­
ample, in the program "Switch" we could have used INC SI 
and DEC DI rather than the ADD and SUB instructions. They 
can also be used in loops; more about loops later. 

MUL 
The multiply and divide functions are somewhat less versatile 
than their addition and subtraction counterparts. However, the 
8088 is the first microprocessor in wide use which offers mul­
tiply and divide operations. In the past-with 8080, Z80, and 
6502 systems-programmers had to write special subroutines 
to multiply and divide. 

MUL, the multiply instruction, allows you to find the 
product of two numbers. There are two MUL instructions: one 
for multiplying bytes, and another for multiplying words. 

Byte multiplication multiplies the AL register by another 
general byte register or an addressed memory location. You 
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cannot multiply by an immediate value. The format of this 
instruction is: 
MUL source 

Since the product of two bytes can be greater than 255 (in 
fact, it can be as great as 65,025), the 8088 uses all of AX to 
store the result of byte multiplication; so AX = AL * source. 

If the product is greater than 255, OF and CF are set (they 
have the value of 1). For example, if we multiply 57 by 24, 
using byte multiplication, the product is 1368, far too large to 
fit in a single byte. Since all of AX is used to store the result, 
the carry and overflow flags will be set, indicating that the re­
sult uses the high-order byte to store part of the product. If, 
on the other hand, we multiply 45 by 4, the product is only 
180, small enough to fit into one byte. The entire product will 
fit in AL, so the carry and overflow flags are cleared. Note that 
the other arithmetic flags are undefined. 

Word multiplication multiplies the AX register by another 
general word register or an addressed memory location. Again, 
you cannot multiply by an immediate value. The format of 
word multiplication is identical to that of byte multiplication, 
only the source is a word, not a byte. 

The product of two words can be considerably greater 
than 65,535 (the capacity of a word), so the 8088 uses the AX 
and OX registers to hold the result of word multiplication. AX 
holds the least significant word, OX the most significant word. 
In other words, AX and OX hold a 32-bit number. A 32-bit 
number is often referred to as a double word. 

If the result of word multiplication is greater than 65,535, 
CF and OF are set to indicate that the high-order word (OX) is 
used to hold part of the product. 

You select which multiplication you want, either byte or 
word, with the operand. If the operand is byte-sized, then 
byte multiplication is used. If, on the other hand, the operand 
is word-sized, word multiplication is used. For example, if 
you use: 
MUL BL 

BL will be multiplied by AL. However, if you use: 
MULBX 

BX will be multiplied by AX. 
If you wish to square the value in AL (AU), you can use 

MULAL 
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IMUL 
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The IMUL instruction is identical to MUL in every respect, ex­
cept that IMUL takes the sign of the number into consid­
eration before it multiplies. In other words, MUL is used only 
for unsigned numbers, while IMUL is used only for signed 
numbers. It is very important that you make this distinction. If 
MUL is used on signed numbers, or IMUL on unsigned num­
bers, the results are interesting, but entirely meaningless . 

. DIV 
Using the DIV instruction, you can divide two numbers to find 
the quotient and the remainder. 

Byte division is used to divide a word by a byte. The gen­
eral format of byte division is 
DIV source 

The source can be any general byte register or a memory loca­
tion. As with MUL, the source cannot be an immediate value. 
With byte division, the word stored in AX is divided by the 
source byte. The quotient is stored in AL, while the remainder 
is stored in AH. For example, the code: 
MOV AX,97 
MOV BL,13 
DIV BL 

divides 97 by 13. After the division, AL will hold 7 (the quo­
tient) and AH will hold 6 (the remainder). Note that all of the 
arithmetic flags are undefined after division. 

If you want to divide a single byte by another byte, you 
have to set AH to 0 before you divide. For example, if you 
would like to divide a number in AL by BL, you need to clear 
AH first: 
MOV AH,O 
DIV BL 

The second OIV instruction is used to divide a double 
word by a word. The double word is stored in AX and OX, as 
was described in the word multiplication discussion. The for­
mat of word division is identical to that of byte division, only 
the source must be a word, not a byte. Thus, the source must 
be a general word register, or a word-sized variable. 
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With word division the quotient is stored in AX, and the 
remainder in DX. Note that if you are only dividing a word by 
another word, you must set DX to 0 before you divide. For ex­
ample, if you want to divide 15,837 by 1,343, you can use 
something like: 
MOV AX,15837 
MOV DX,O 
MOveX,1343 
DIvex 

After the division, AX will hold 11 (the quotient) and DX 
1064 (the remainder). As with byte division, all of the 
arithmetic flags are undefined after word division. 

When using the DIV instruction you select which division 
you want, byte or word, by the size of the operand. If the 
operand is byte-sized, byte division is used. For example, if 
you use 
DIV BL 

AX will be divided by BL. If, on the other hand, you use a 
word-sized operand, then word division is used: 
DIvex 

Here, the double word stored in AX and DX will be divided 
by CX. 

The 8088 has a rather dramatic way of indicating an error 
in division. If there is a divide overflow, the 8088 generates a 
type zero interrupt (interrupts are discussed in Chapter 11). 
This causes the computer to print the message Divide Over­
flow and exit the program. For example, the code below will 
generate an overflow error: 
MOV AX,900 
MOV BL,3 
DIVBL 

In this example, the quotient is 300 (900 divided by 3). 
This is a byte division (the divisor is a byte quantity), so the 
quotient must fit in the AL register. As you can see, it does 
not. The computer will print the message Divide Overflow and 
program execution will cease. 

One solution to this problem is to use word division even 
though you are dividing by a byte. 
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MOV AX,900 
MOV DX,O 
MoveX,3 
DIvex 

4 
Arithmetic 

DOS 2.00 users note that, because of a bug in DOS 2.00, 
the computer will crash when it tries to print the Divide Over­
flow error message. You will probably be unable to reset the 
computer with the Ctrl-Alt-Del combination. So, you'll have to 
turn the computer off and reboot. This problem has been cor­
rected in DOS 2.10. DOS 1.10 works fine as well. 

IDIV 
As there are signed and unsigned versions of the multiplica­
tion instructions, there are signed and unsigned divisions. DIV 
only works on unsigned numbers. If you are using signed 
numbers, you must use IDlY. In all other respects, IDIV and 
DIV are identical. 

A Sample Program 
The sample program for this chapter, "Primes," finds prime 
numbers. Since it uses a word to store all of its results, it can 
find primes up to only 65535 (there are over 6500 of them). 
Primes was written to demonstrate some of the instructions in­
troduced in this chapter; there are more efficient ways to write 
this program. 

A prime number is a number that is divisible only by one 
and itself. The numbers 2, 3, 5, 7, and 11 are all prime. Prime 
numbers occur at uneven intervals and have been the object of 
much scrutiny in recent years. As you might imagine, 
determining whether or not a number is prime is not very 
difficult; just divide the number in question by all the numbers 
between one and itself. For example, if we were testing the 
number 15, we would divide 15 by the numbers 2 through 14. 
If any of the numbers divided without remainders, we would 
know that 15 is not prime. For smaller numbers this is a good 
system; after all, the computer is very fast. Consider, however, 
what would happen with very large numbers-for instance, 
2003. The computer would have to do 2001 divisions to find 
out whether it is prime. Even for a computer, that would take 
a noticeable amount of time. 
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We must find a way to reduce the length of the search for 
even divisors. To begin with, the search can be shortened by 
remembering that we need only check for possible factors. If a 
number is not prime, its lowest possible factors will be prime 
numbers. For example, 21 has two factors, 7 and 3 (both prime 
numbers). (We could limit our search for factors still further by 
searching up only to the square root of the number, but then 
we would have to write a square root routine.) 

Outlined below is the general flow of a program which 
uses this method to find prime numbers. This is not what pro­
grammers call a flow chart, but an English version of how the 
program is supposed to work. 
1. Divide the number in question by all of the previously 

found primes. 
2. If any of the numbers divide evenly, select a new number 

and start checking to see if it is prime. 
3. If the number is prime, add it to our list of prime numbers, 

print the number, and look for the next prime. 
The only hard part in our algorithm is printing the prime 

numbers on the screen. DOS, however, helps out by providing 
a Print Character routine. This DOS function is called by the 
routine BYTE_OUT towards the end of Primes. DOS function 
calls will be explained in Chapter 13. 

The only difficulty in printing the number is converting 
it from its binary form to a decimal form. The routine which 
conducts this conversion is named DECIMAL-OUT. 
DECIMAL-OUT divides the number it is trying to output 
repeatedly by 10. This routine will be explained in more detail 
in Chapter 6. 

PRIMES.ASM 
The first few lines are the comment header, common to all of 
the sample programs. It identifies the program and its pur­
pose, and gives the name of the author and the last date the 
program was modified. Following these comments is the 
PAGE pseudo-op, which defines the size of the printed page 
as discussed in the last chapter. 

After the PAGE pseudo-op is a constant declaration. De­
claring a constant is much like assigning a value to a variable in 
BASIC. The constant NUMBER-TOJIND is assigned the 
value 6542 through the EQU pseudo-op. NUMBER-TO_FIND 
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represents the index of the last prime number we can find us­
ing unsigned words to store the prime numbers. Constants 
will be discussed in more detail in Chapter 14. 

The SEGMENT pseudo-op which follows sets up the seg­
ment for data. The DUP instruction in the primes declaration 
tells the assembler to repeat what is inside the parentheses the 
number of times specified to the left of the DUP instruction. 
For details about the DUP instruction, see Chapter 14. The 
question mark in the operand section of the DW and DB 
pseudo-ops tells the assembler that it does not matter what is 
stored in these locations during assembly and load. The 
assembler simply makes note that these locations are there 
and must be reserved for the program. Next we define the re­
quired stack segment (as in "Switch"), and finally, the pro­
gram segment. 

Primes uses the 8088's addition, subtraction, multiplica­
tion, and division instructions. It does so largely with unsigned 
numbers. As the program shows, it is not very difficult to con­
vert this particular mathematical procedure into a program 
which the computer can execute. 
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CHAPTER 

5 
Progratn Flow 

Program flow refers to the order in which a program's instruc­
tions are executed. Programs written in BASIC, or any other 
high-level language, tend to loop back on themselves, and to 
skip over portions which do not need to be executed. This is 
also true of machine language programs. 

In this chapter, you will be introduced to ways of chang­
ing program flow, jumps. There are two basic types of jump 
instructions, conditional and unconditional. Both will be ex­
amined in this chapter. This chapter also explains how to cre­
ate machine language versions of BASIC's IF-THEN-ELSE and 
FOR-NEXT structures using assembly's CMP and LOOP 
instructions. 

The CMP Instruction 
In high-level languages, decision making is usually based on 
the IF-THEN-ELSE construction; in machine language it is not 
quite so easy. In machine language, the CMP (compare) 
instruction is used with conditional jumps to change program 
flow. The conditional jumps jump only if a certain condition is 
satisfied. For example, JZ (Jump if Zero) jumps only if the last 
operation resulted in zero; if the result was nonzero, the com­
puter "falls through" the conditional jump and executes the 
next instruction following JZ. The CMP instruction corre­
sponds to the IF part of BASIC's conditional construction, 
while the conditional jumps provide for the THEN and ELSE. 

The general form of the CMP instruction is: 
CMP /irst,second 

CMP compares the values of two numbers. They both must be 
either words or bytes-you can't mix and match. Any operand 
legal with instructions such as MOV, ADD, or SUB is legal 
with CMP. Remember that the 8088 does not allow both the 
operands to be memory locations. 

It is important to remember that there is only one CMP 
instruction. The type of comparison (whether signed or 
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II 

unsigned) depends solely on the operands. Signed and unsigned II 
comparisons are identical to one another. However, the flags 
after signed and unsigned comparisons must be interpreted 
differently. For this reason, there are two sets of conditional II 
jumps, one for unsigned and another for signed comparisons. 

Conditional Jumps After CMP • 
A comparison is often followed by one of the numerous con- -
ditional jumps. The 18 conditional jumps generally used after 
a eMP instruction are summarized in Table 5-1. 

Table 5,1. Conditional Jumps Used after CMP 

Instruction 

JE label 
JNE label 
JA label 
JAE label 
JB label 
JBE label 
JNA label 
JNAE label 
JNB label 
JNBE label 

Instruction 

Jump if ... (unsigned comparisons) 
first equals second 
first not equal to second 
first above second 
first above or equal to second 
first below second 
first below or equal to second 
first not above second 
first not above or equal to second 
first not below second 
first not below or equal to second 

Jump if ... (signed comparisons) 
JC label first greater than second 
JCE label first greater than or equal to second 
JL label first less than second 
JLE label first less than or equal to second 
JNC label first not greater than second 
JNCE label first not greater than or equal to second 
JNL label first not less than second 
JNLE label first not less than or equal to second 

These conditional jumps can be summarized more con­
cisely, as in Table 5-2. Many of the conditional jumps come in 
pairs: one with a positive condition, and another with a neg­
ative. For example, JA (Jump if Above) is identical to JNBE 
(Jump if Not Below or Equal to). Intel provides these alternate 
terms entirely for the programmer's convenience. 

The naming scheme of the jump instructions is very 
consistent. Note that all instructions with below or above in 
their names are used after the comparison of unsigned values, 

64 

II 



-
8 

II 

8 

8 

5 
Program Flow 

while greater or less conditional jumps are used after compar­
ing signed values. The JE and JNE instructions apply to the 
comparison of both signed and unsigned values. 

Table 5·2. Summary of Jumps 

Jump if... Use with 
unsigned operands 

First> Second JA/JNBE 
First ~ Second JAE/JNB 
First = Second JE 
First <> Second JNE 
First:s; Second JBE/JNA 
First < Second JB/JNAE 

Use with 
signed operands 

JG/JNLE 
JGE/JNL 
JE 
JNE 
JLE/JNG 
JL/JNGE 

It is important to remember that the names of the con­
ditional jumps refer to the first operand versus the second. For 
example, JG means jump if the first operand is greater than 
the second. Below are some examples of comparisons and con­
ditional jumping. 
CMP AX,BX 
JA AX_ABOVE_BX 

CMP CX,AX 
JB CX_BELOW _AX 

CMP OX,55 
JE OX_EQUAL5_55 

CMP AL,OL 
JG AL_GREATELTHAN_OL 

CMP BX,156H 
JLE BX_LE55_THAN_OLEQUAL_TO_156H 

Machine Language IF·THEN·ELSE 
The combination of the eMP instruction with conditional 
jumps gives the machine language programmer the equivalent 
of the high-level IF-THEN-ELSE construction. There are a 
number of ways to implement such a structure in machine lan­
guage. Here are two examples: 

CMP AX,10 ;IFAX> 10 ... 
JA THEN 
AOO AX,l ;EL5E AX=AX+1 
JMP CONTINUE 

THEN: MOV AX,O ;THEN AX=O 
CONTINUE: (more code) 
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Notice that, in the above example, the ELSE and THEN parts 8 
of the construction are not placed as they would be in BASIC. 
Unless the condition is satisfied (first is above second), the 
computer falls through JA to the next instruction (ADD AX,l) II 
and then performs a JMP to skip over the THEN portion. 

CMP AX,IO iIFAX>lO 
JNA ELSE i(a negative condition) 8 
MOV AX,O iTHEN AX=O 
JMP CONTINUE 

ELSE: ADD AX,l iELSE AX = AX + 1 
CONTINUE: (more code) 

In this example the THEN and ELSE are placed in the familiar 
order of BASIC, because JNA tests for the condition opposite 
that of JA. Unless this condition is satisfied (first is not above 
second), we fall through JNA to MOV AX,O, and then JMP 
past the ELSE portion. 

Both examples produce the same result, but with reversed 
logic. Some people find the first example easier to follow, be­
cause it tests for a positive rather than a negative condition. 
Others find the second construction more natural. It is im­
portant that you understand both. 

The unconditional jump. JMP is an unconditional jump, 
like the GOTO statement in BASIC; the jump is always per­
formed. It is used to skip over the unneeded parts of the con­
ditional structure. With more complex conditional structures, 
you may begin to feel that your program plays leapfrog with 
itself as it executes the ELSEs and skips the THENs, and vice 
versa. 

Conditional Jumps After Other Instructions 
So far, conditional jumps have always followed a CMP 
instruction; however, they may be placed anywhere within a 
program. There is no rule that says conditional jumps must 
follow the CMP instruction. In fact, they can follow ADD, 
SUB, or any of the other instructions that affect the flags. As 
you may recall, there are six arithmetic flags in the 8088: 

The zero flag is set by certain operations (such as ADD, 
SUB, INC and DEC) when the result of the operation is O. 
Otherwise, this flag is clear. 

The carry flag is used as the overflow flag for unsigned 
arithmetic. It becomes set when the result is less than 0 or 
greater than 255, for bytes, or 65535, for words. This flag is 
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set by operations such as ADD and SUB. Note that INC and 
DEC do not set the carry flag. In addition, the carry flag is 
often used with subroutines in machine language. 

The sign flag indicates the sign of the last result. When the 
flag is set, the last result was negative. If the flag is clear, the 
last result was positive. Again, only certain operations set this 
flag; they include ADD, SUB, INC, and DEC. Essentially, this 
flag mimics the most significant bit (the sign bit) of the result. 

The overflow flag is used to indicate an overflow error. 
When this flag is set, there has been an overflow; otherwise, 
this flag is clear. An overflow error occurs when the result is 
beyond the representable range of signed numbers (-128 to 
127 for bytes or -32768 to 32767 for words). Only certain op­
erations such as ADD, SUB, INC, and DEC set this flag. 

The other two arithmetic flags, the auxiliary carry flag (AF) 
and the parity flag (PF), will not be detailed here (please refer 
to the glossary); they are very rarely important to machine 
language programming. 

Table 5-3 lists the conditional jumps which depend solely 
on the value of one flag: 

Table 5-3. Conditional Jumps Relying on Only One Flag 

Instruction Jump if... Flag status 
IC carry CF = 1 
INC no carry CF = 0 
10 overflow OF = 1 
INO no overflow OF = 0 
IS sign (negative) SF = 1 
INS no sign (positive) SF = 0 
IZ zero ZF = 1 
INZ no zero ZF = 0 
JP IJPE parity PF = 1 
JNP IJPO no parity PF = 0 

These ten conditional jumps can be used after any operation 
(you can even use them after the compare instruction if you 
like). Below are some examples. 

ADD AX,BX 
JO OVERFLOW_ERROR ;if sum >32767 or <-32768 

SUB eX,DX 
JZ RESULT_WAS-ZERO ;if ex and DX are equal 
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MUL BL 
JC WORD_RESULT ;if product uses all of AX 

DEC COUNTER 
JNZ COUNTER_NaT_ZERO ;if counter is not zero 

Instructions which do not affect the flags (such as MOV) 
can be placed between an instruction which does and the con­
ditional jump itself, as shown below. See Appendix A for a 
table detailing which instructions affect which flags. 

CMP AX,BX ;finds which is greater .. . 
MOV CX,AX ; ... AX or BX, and stores .. . 
JG AX_GREATER ; .. .larger value in ex 
MOV CX,BX 

AX_GREATER: (more code) 

MUL BX 
MOV CX,O 

JNO DX_CLEAR 
MOV CX,l 
(more code) 

;perform 16 bit multiply 
;use ex to indicate 
overflow ... 
; .. .into OX register 

Conditional Jumps for Looping 
Another common use of conditional jumps is controlling 
loops. The most familiar looping statements in BASIC are FOR 
and NEXT. In a FOR-NEXT structure, the following operations 
are performed: The index (counter variable) is given an initial 
value; it is incremented (or decremented) for each iteration of 
the loop; and, it is checked against an end value. The BASIC 
structure, FOR 1=1 TO lOO:(do something):NEXT, could be 
coded into machine language, assuming I is a variable in the 
data segment, as: 

MOV 1,1 ;set up the index variable 
LOOP: (do something) ;do the instructions within the loop 

INC I ;increment the loop variable 
CMP 1,100 ;is the index variable lOO? 
JNE LOOP ;if so, end the loop 

A more efficient version of the same loop looks like: 
MOV 1,100 ;set up the index variable 

LOOP: (do something) ;do the instructions within the loop 
DEC I ;decrement the loop variable 
JNZ LOOP ;if it's not zero, continue looping 
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The second example is more efficient because there are 
fewer instructions to accomplish the same task. A decremented 
loop variable is more efficient because the zero flag will be set 
automatically when the index becomes zero. With an in­
cremented variable you must use the eMP instruction to end 
the loop. However, often a loop must increment so both tech­
niques are used. 

There are many ways to structure a loop. You can in­
crement or decrement the index variable. The incrementing or 
decrementing can be at the beginning of the loop or at the 
end. In addition, you can increment or decrement by some 
number other than one. When you use ADD or SUB it might 
be necessary to use a JNe rather than a JNZ. Remember, the 
carry flag acts like an overflow for unsigned operations. 

WOP, WOPE .. WOPZ, and WOPNE .. WOPNZ 
With the loops described above you must do everything, from 
adjusting the index variable to deciding which kind of jump to 
use. There are other, more specialized 8088 machine language 
instructions, which facilitate the looping operation. The three 
loop instructions described below give the programmer a com­
pletely automatic looping system. 

LOOP is the simplest looping instruction. Study the ex­
ample below. Notice that the LOOP instruction uses the ex 
register as its counter. This example does "something" 300 
times. The LOOP instruction automatically decrements the ex 
register and loops back to START_Of_LOOP if ex is not 
zero. 

MOV CX,300 
START_OF_LOOP: (do something) 

LOOP START_OF_LOOP 

Variations of the LOOP instruction, LOOPE-LOOPZ and 
LOOPNE-LOOPNZ, offer added versatility to the LOOP 
instruction. LOOPE (loop if equal), also called LOOPZ (loop if 
zero), loops back if ex is not zero and the zero flag indicates a 
zero status. LOOPNE (loop if not equal), or LOOPNZ (loop if 
not zero), loops back if ex is not zero and the zero flag in­
dicates nonzero status. Thus, LOOPE can be considered loop 
while equal, and LOOPNE, loop while not equal. ex merely 
serves to put a limit to the number of possible loops. Both of 
these instructions will be examined in more detail in the chap­
ter on string instructions. 
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JCXZ and the WOP Instructions _ 
Unfortunately, the LOOP instructions decrement CX before 
checking to see if it is zero. So, if you enter a LOOP structure 
when CX is zero, the loop will be executed 65,536 times. If II 
this is what you intended, this is fine. If, on the other hand, 
you want the loop to be skipped when CX is zero, you can use 
the JCXZ (Jump if CX is Zero). Place the JCXZ instruction a 
before the loop as shown below. Now the loop will be skipped 
when CX is zero. 

JCXZ NO_LOOP 
DO_LOOP: (whatever) 

LOOP DO_LOOP 
NO_LOOP: (continue) 

The Unconditional Jump 
JMP simply transfers control of the program from one place to 
another, just like the BASIC GOTO statement. There is no de­
cision making involved with this instruction; in other words, 
the computer jumps unconditionally. 

There are five kinds of unconditional JMPs. The assembler 
automatically selects the correct JMP on the basis of the op­
erand (the label you are jumping to). 

Near jumps. Near jumping (referred to as an Intra Seg­
ment Direct jump by IBM literature) has the general format as 
shown below. 

JMP label ;displacement to label 
;is calculated by the 
;assembler. 

(some code) 

label: (more code) I 
Near JMPs can jump anywhere within the code segment. 

Near JMPs are called direct jumps because the position of the _ 
next instruction is stored with the JMP instruction. 

Short jumps. A short jump, or an Intra Segment Direct 
Short jump, is identical to a near JMP. A short jump can be II 
only 127 bytes forward or 128 bytes backward. Trying to jump 
too far with a short jump will result in a Relative jump out of • 
range error from the assembler. Note that, whenever possible, • 
the assembler will automatically use short jumps. 
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Short jumps are important because all conditional jumps 
are short jumps, and all LOOP instructions use short jumps. 
The range limitation on short jumps can become a problem 
when you need a conditional jump to skip a very large part of 
your program. You can overcome this limitation by reversing 
the logic of your jump condition and skipping over an un­
conditional (near) jump. For example, if this jump resulted in a 
Relative Jump Out of Range error: 

JGE SOMEJLACE 
(more program) 

You could replace it with: 
JNGE SKIP ; (a negative condition) 
JMP SOME_PLACE 

SKIP: (more program) 

Remember that the unconditional JMP can jump anywhere 
within the current code segment. Unfortunately, there is no 
way to overcome the limitation on LOOP instructions. Just use 
short loops. 

Far jumps. The far jump allows you to transfer control to 
another segment. This kind of jump is also known as an Inter 
Segment Direct Jump. Note IBM's careful use of the prefixes In­
ter (between) and Intra (within). 

The format of the far JMP is identical to that of near JMP; 
however, the operand label must have a far attribute; that is, 
the label must be the name of a far procedure. You will need 
to use this instruction only if you write programs with more 
than one code segment, but the assembler will use far jumps 
automatically if the label has a far attribute. 

Indirect jumps. Indirect jumps are jumps in which the 
address of the next instruction is not coded as the operand of 
the JMP operation, but is held in a data table or in a general 
register. There are two kinds of indirect jumps, one for Intra 
Segment jumps, and another for Inter Segment jumps. Ad­
vanced programmers can use indirect jumps just as BASIC 
programmers use the ON-GOTO construction. 

A Sample Program 
"Flash," as its name implies, flashes the screen several times. 
With a color/graphics screen adapter, the background color of 
the screen is changed as it is flashed. Flash_M (Program 5-1) 
is for IBM PC users who have the monochrome screen 
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adapter. Flash_C (Program 5-2) is designed for a PC computer 
with the color/graphics screen adapter and for the PCjr. They 
should work with any of the compatibles, as long as the 
screen adapters are fully compatible with the IBM boards. If 
you are using a PC with both monochrome and color/graphics 
adapters, try entering both programs. However, DOS 2.00 
users should execute the MODE command to change to the 
appropriate adapter before running the program; otherwise, 
the results are unpredictable. DOS 1.10 users will have to load 
BASIC and change monitors according to the BASIC manual. 
Users of noncompatible systems should still look at these pro­
grams, as they are good examples of short machine language 
programs. 

Flash uses the register DX as a counter; it determines how 
many times the screen should be flashed. The BX register acts 
as a pointer into the screen memory. We will use it to read and 
write the screen attributes. The CX register, the counter for the 
LOOP instruction, is used to determine how many attributes to 
change. It is initialized to the value of the constant 
SCREENSIZE, the size of the screen page. AH is used to hold 
and check the attribute. 

These programs introduce our first use of the SEGMENT 
command. The SEGMENT command is being used to locate 
the screen memory. The AT operand tells the assembler that 
we want the segment to be located at a specific segment ad­
dress; BOOOH for the monochrome screen, and B800H for the 
color graphics screen. Note that these are not absolute ad­
dresses (0 to FFFFF hex), but segment addresses (0 to FFFF 
hex). 

Notice the use of the assembler pseudo-op EQU. This 
pseudo-op is used to assign a constant value to a symbol (not 
a memory location, but an assembler value). The format is 
symbol EQU value 

Symbol is equal to the value. 
At this point it is important to understand how IBM 

computers handle screen memory. There are 2000 characters 
on an 80-column screen. IBM computers use 4000 bytes (note 
that this is 4000 bytes, not 4K bytes) to represent the charac­
ters. The even-numbered bytes (0, 2, 4, etc.) hold the actual 
character. The odd-numbered bytes (I, 3, 5, etc.) hold the 
character's attribute. So the character in byte 0 has the 
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attribute defined by byte 1. The attribute byte of the mono­
chrome screen adapter can be broken down as shown in Fig­
ure 5-1. The F and I symbols show where flashing and 
intensity attributes can be set. 

The attribute byte for the color adapter is used as shown 
in Figure 5-2. 

Figure 5,1. Monchrome's Attribute 

o o o o o o o o - no display 

F o o o I o o 1 - underline 

F o o o I 1 1 1 - white on black 

F 1 1 1 o o o o - black on white 

Figure 5,2. Color Attribute Byte 

F I R I G I B I I I R I G I B I 
~~ 

I 1-1 ---Foreground Color 
. '---------- Intensity 
'------------ Background Color 

'----------------Flashing 

You can combine the different color bits to mix your own col­
ors. For example, if blue and red are on at the same time, the 
screen displays purple. 

Let's look at the basic flow of the program Flash_M. At 
the start of the loop, AH is assigned the value of the normal, 
white on black, screen attribute. AH is compared with the 
attribute pointed to by the BX register. If AH and the attribute 
are different, we use AH as the new attribute, changing the 
screen attribute to normal. 

If AH and the attribute are the same, we move the 
reverse, black on white, attribute, into AH and use this as the 
new attribute. Next, BX, the pointer into screen memory, is in­
cremented and the LOOP instruction executed. As mentioned 
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above, screen memory is set up as a character byte followed 
by an attribute byte, so we must add two to BX. We change 
every other byte to get all of the attributes. Once this inner 
loop is complete, we must manually decrement DX and jump 
to LOOPO if it is not zero. When it is zero, we perform the 
RET operation which returns us to DOS. 

Flash_C is a little more complex. The bulk of the program 
is the same; the only differences lie in the section which 
changes the screen attribute. The first instruction retrieves the 
current screen attribute. Next, 16 is added to the attribute byte. 
This increments the background color by one. However, we do 
not want to change the most significant bit, which controls the 
flashing attribute of the screen. Here we can use a little trick; 
remember that the most significant bit can be considered the 
sign bit. If this sign bit is changed by the ADD operation, the 
Overflow Flag (OF) is set, so if the OF is set, the attribute is 
reloaded and the background color set to black. The rest is the 
same as Flash_M. 

Running FLASH 
Assemble the program as FLASH.ASM. When complete, type 
FLASH from the DOS prompt and press Enter. There may be 
some picture snow or lightning on the color/graphics screen 
when FLASH is executed in 80-column mode. This is normal. 
The static can be eliminated if you use 40 columns. Remember 
to be in a color mode, not a black-and-white mode. Execute 
MODE C040 or MODE C080 before running FLASH just to 
be sure (DOS 1.10 users must enter BASIC and use a SCREEN 
0,1 and a WIDTH 40 or WIDTH 80 command). 

If all goes well, the screen should flash for a few mo­
ments and the DOS prompt should return. If nothing happens, 
and the DOS prompt does not return, the computer has prob­
ably locked up. Try resetting with the Ctrl-Alt-Del combina­
tion. If this does not work, you will have to turn the computer 
off and back on. Check the program carefully before reassem­
bling. If the DOS prompt returns after a few seconds, but the 
screen does not flash, check to be certain you are using the 
correct version of FLASH. Monochrome screen adapter users 
should have assembled Flash_M and color/graphics users the 
Flash_C program. If you have both adapters, use the MODE 
command from DOS to switch between the two displays 
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before you execute the appropriate program. PCjr users should 
have entered the FlasLC program. 

If your compatible computer does not seem to be work­
ing, take a close look at the program before you assume the 
hardware is at fault. Any of the full compatibles should be 
able to execute these programs. If your machine is only 
slightly compatible, the program may not work correctly. 

Once you get the appropriate version of Flash running, 
there are a number of modifications you can make to produce 
your own version of Flash. You can change the number of 
times the screen flashes by changing the constant FLASHES to 
another value. In FlasLM, FLASHES should be an even 
number if you want the screen to return to white on black; in 
FlasLC, FLASHES should be a multiple of eight if you want 
the screen to return to its original color. Try using FlasLM on 
the color screen by changing the SCREEN segment to point to 
the color screen. Try making the program flash only the top 
half of the screen (easy) or only the bottom half (a little 
harder). 

Conditional Jumps 
All 31 different conditional jumps are summarized in Table 5-
4. Note that there are really only 17 different conditional jump 
instructions, but that some of the instructions have been given 
more than one name. Some instructions have obvious aliases; 
for example, JA Gump if Above) is the same as JNBE Gump if 
Not Below or Equal to). Other instructions are less obvious: JC 
is the same as JB. When you use DEBUG to unassemble pro­
grams, all of the conditional jumps will appear as the names 
shown in Table 5-5 (since the instructions are identical, DE­
BUG has no way of knowing if your source code has JA or 
JNBE). 
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* Table 5,4. The Conditional Jump Instructions a ('" indicates conditional jumps for signed comparisons) 

Operation I Name Full Explanation Jump if ... 
JA jump if above CF o and ZF = 0 
JAE jump if above or equal CF 0 II JB jump if below CF 1 
JBE jump if below or equal CF 1 or ZF = 1 
JC jump on carry CF 1 
JCXZ jump if CX zero CX 0 
JE jump if equal ZF 1 

"'JC jump if greater ZF o and SF = OF 
"'JCE jump if greater or equal SF OF 
"'JL jump if less SF <> OF 
"'JLE jump if less or equal ZF lor SF <> OF 
JNA jump if not above CF lor ZF = 1 
JNAE jump if not above or equal CF 1 
JNB jump if not below CF 0 
JNBE jump if not below or equal CF o and ZF = 0 
JNC jump if no carry CF 0 
JNE jump if not equal ZF 0 

"'JNC jump if not greater ZF lor SF<>OF 
"'JNCE jump if not greater or equal SF <>OF 
"'JNL jump if not less SF OF 
"'JNLE jump if not less or equal ZF o and SF = OF 
"'JNO jump if no overflow OF = 0 
JNP jump if no parity PF 0 
JNS jump if no sign (positive) SF = 0 
JNZ jump if not zero ZF = 0 

"'JO jump on overflow OF = 1 
JP jump on parity PF 1 
JPE jump if parity even PF 1 I JPO jump if parity odd PF 0 

"'JS jump on sign (negative) SF 1 
JZ jump on zero ZF 1 

I CF-Carry Flag 
OF-Overflow Flag 
PF-Parity Flag I SF-Sign Flag 
ZF-Zero Flag 
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Table 5-5. Conditional Jumps and Their Aliases 
("-for comparisons of signed values) 

DEBUG names Aliases 

JA 
JB 
JBE 

"'JC 
"JCE 
"'JL 
"'JLE 
JNB 
JNZ 
JPE 
JPO 
JZ 

JNBE 
Je, JNAE 
JNA 
JNLE 
JNL 
JNCE 
JNC 
JAE, JNC 
JNE 
JP 
JNP 
JE 
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CHAPTER 

6 
Subroutines and the 

Stack 
The stack is quite possibly one of the most useful and dy­
namic storage methods available to a computer. Many large 
computers rely solely on stacks for data manipulation. In an 
effort to clarify a stack's design, many analogies have been ap­
plied to its operation. Writers have called on everything from 
dishes at a coffee shop to a programmer's cluttered desk. 

Here we will use the analogy of cafeteria trays. The last 
tray put on the stack is the first tray to come off. This makes 
the pile of trays a last in, first out storage system, or LIFO for 
short. The computer's stack can be thought of as this pile of 
trays. The computer puts trays down one by one, and when it 
needs them again, it takes them back. Notice that a stack re­
verses the order of the trays. 

Computer programmers have given names to the pro­
cesses of putting something onto the stack and of taking it 
back. The putting on is called PUSHing data onto the stack, 
and the taking back, POPping. The 8088 has a variety of 
PUSH and POP operations. 

Implementing the Stack 

• 
II 

• 
II 

II 

Two registers are used to manage the stack, the SP (Stack • 
Pointer) and the SS (Stack Segment). SP always points to the 
last piece of data PUSHed onto the stack. It starts at the high-
est possible stack location and works its way down as infor- • 
mation is added to the stack. SP acts as an offset from the 
base of the segment pointed to by the SS register (Figure 6-1). 
(See Chapter 2 if you are unfamiliar with segment:offset II 
addressing. ) 

• 
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• Figure 6,1. SP Offset from SS 

• 
• 

• 
• 
• 
• 
• 

Higher Memory 

1--...,--------1 _ Top of stack 
, 

Used Stack 
1-___________ -1_ SP points here 

Ofue. [ 

1-________ -1_ SS points here 

Lower Memory 

The microprocessor (the 8088) handles the stack as words, 
not as bytes. Only words can be PUSHed onto and POPped 
off the stack. In a PUSH operation, the 8088 decrements SP 
by two and stores the word at the memory location pointed to 
by SS:SP. When the word needs to be POPped back, the 8088 
retrieves the word pointed to by SS:SP and increments SP by 
two. Generally, it is not very important to know the mechan­
ics of the stack; however, some types of programming require 
a thorough understanding of stack manipulations (especially 
when combining assembly language with Pascal or BASIC). 

The maximum length of a stack is 64K (the addressing 
limit of the SP register). For most machine language programs, 
a stack of 256 bytes is sufficient. The DOS manual recom­
mends that you reserve at least 128 bytes beyond your 
requirements if you use DOS functions (such as character 
print). If the stack is too small, the results are unpredictable. 
The problem is that the computer starts to store the PUSHed 
data in memory that was not reserved for the stack. This 
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II 

II 
memory may have been reserved for something else, probably • 
data, possibly the program itself. More often than not, the 
computer will crash. 

Declaring the Stack Segment • 
Almost all machine language programs require you to declare 
a stack segment. The only exceptions are device drivers and II 
.COM files. You must specifically tell the assembler to declare 
a stack segment, but you cannot have more than one stack 
segment per program. All of the sample programs have de-
fined stack segments. Let's take a closer look. 
stack SEGMENT STACK 

DW xxx DUP (?) ;where xxx can be any number 
stack ENDS 

The name of the stack segment is stack. The operand of 
the pseudo-op SEGMENT, STACK, tells the assembler that we 
are defining a stack segment. OW should be used since the 
stack is defined as word-sized data. The xxx DUP (?) is a spe­
cial command that says to the assembler, "DUPlicate what's 
between the parentheses xxx times." The question mark (?) 
tells the assembler that the value stored at that location is un­
defined. The xxx can be any number which does not exceed 
the maximum stack length. The stack segment can be up to 
65,536 bytes long (or 32,768 words). The stack ENDS ends the 
stack segment definition. In the sample programs we have 
used: 
stack SEGMENT STACK 

DW 128 DUP(?) 
stack ENDS 

Here, we have defined the stack to be 128 words (256 bytes) 
long. 

Now you know how a stack works and how it's defined. 
Its use can be very powerful and convenient. 

Subroutines 

• 
• 

First off, you might ask, "What is a subroutine?" This is diffi- • 
cult to answer, for it depends on your point of view. In a 
sense, DOS considers all programs subroutines to itself, yet 
parts of DOS can act as subroutines to your programs. How-
ever, it is possible to generalize. A subroutine is often a short II 
program which does one task. DOS, for example, includes 
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subroutines which print text to the screen and control disk 
files. These subroutines cannot execute alone. They need a 
program to call them and give them information to work on. 
You can think of these subroutines as helpers. They make the 
task of programming easier and less time-consuming. 

Subroutines are also used to break large programs into 
smaller, more manageable sections. In such a program, each 
subroutine handles a specific task and the main routine calls 
each subroutine as it is needed. Breaking a large program into 
smaller parts makes it easier to find bugs because each sub­
routine is responsible for a specific task. If something is not 
working correctly, you know which routine is to blame. 

It is often useful to include a comment header at the 
beginning of your subroutines. The header should state the 
routine's name and purpose. It should also indicate which reg­
isters are preserved or which are destroyed. This way, you can 
easily determine which registers are being altered and which 
are maintained. Although it is nice to write subroutines which 
alter no registers, this is often unnecessary. For example, if 
your main routine does not use SI and DI, the program's sub­
routines can use them freely without preserving them. If you 
use these subroutines in another program which uses SI and 
DI, however, the subroutines will need to preserve those reg­
isters for your new program to work correctly. 

CALL and RET. The 8088 implements subroutines with 
two instructions, CALL and RET. There are four types of 
CALLs and four types of RETs. Fortunately, the assembler se­
lects the correct commands for us. 

The CALL instruction is the machine language equivalent 
of BASIC's COSUB command. As mentioned above, there are 
four different CALL commands. They all have the same gen­
eral format: 
CALL operand 

where the operand is either a label (direct CALL) or an ad­
dressed memory location (indirect CALL). 

The actual process of CALLing a subroutine is the same in 
all cases. When the 8088 executes a CALL instruction, it 
pushes the current position within the program on the stack, 
and jumps to the specified routine. At the end of the routine, a 
RET undoes the CALL. The computer pops the stack to re­
trieve its previous program position and resume execution 
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where it left off. As routines call other routines, the computer II 
is said to be going into deeper subroutine levels (see Figure 6-
2). As each routine comes to an end, the RET command pops 
the computer up one level. The CALL and RET instructions af- _ 
feet none of the flags and only the SP, IP, and possibly CS -
registers. 

Figure 6-2. Subroutine Levels _ 

Main 
level ------, 

One level 
down L...-_---:~-~ 

Two levels 
down 

The near CALL, or a Direct Intra Segment CALL, is much 
like a near JMP, in that the operand is a 16-bit displacement 
to the called label. The actual calling mechanism works this 
way: The IP (Instruction Pointer) register is pushed onto the 
stack, then the new IP is calculated by adding a displacement 
to the original IP. Program execution continues at this new po­
sition. Since this instruction alters only the IP, you cannot 
move from one segment to another. 

The operand of a near CALL is a label. It must have a 
near attribute. Generally, this refers to the names of near 
procedures (those procedures defined with the PROC NEAR II 
command). For more information about the PROC command, 
see Chapter 14. 

Far CALLs, or Inter Segment Direct CALLs, are very much _ 
like far JMPs. The operand of a far CALL is a double word. 
Note that this CALL is absolute, not relative. Far CALLs push 
both the CS (Code Segment) and IP onto the stack. The con- _ 
tents of the CS register are pushed first. 

With a far CALL it is possible to CALL a subroutine in a 
different code segment: The operand of a far CALL must have _ 
a far attribute; in other words, it must be the name of a far 
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procedure. Far procedures are defined with the PROC FAR 
pseudo-op. See Chapter 14 for more details on the PROC 
pseudo-op. 

Indirect CALLs are similar to indirect JMPs. With indirect 
CALLs, the address of the subroutine is not coded with the 
instruction, but is held in a general register or a data table. 
There are two indirect CALLs, one for Intra Segment CALLs 
and another for Inter Segment CALLs. The indirect Intra Seg­
ment CALL is much like a near CALL since it pushes only IP 
onto the stack. Indirect Inter Segment CALLs push both CS 
and IP onto the stack. Advanced machine language pro­
grammers can use indirect CALLs just as BASIC programmers 
use the ON/COSUB construction. 

There are basically two kinds of CALLs, near CALLs, 
which push only IP onto the stack, and far CALLs which push 
both CS and IP. As you may suspect, there are two kinds of 
RETurns, one for near CALLs, and another for far CALLs. A 
variation of the standard RET will be discussed with param­
eter passing. 

The near RET instruction, also called an Intra Segment RE­
Turn, pops IP off the stack and thus terminates a near sub­
routine. A far RET (also called an Inter Segment RETurn, or a 
long RETurn) pops both CS and IP. 

It is important that subroutines accessed with near CALLs 
end with near RETs, and that routines called with far CALLs 
end with far RETs. Imagine the chaos if a far RET were exe­
cuted after a near CALL. The IP register would be restored 
correctly, but the CS register would take the value of whatever 
was PUSHed onto the stack before the near CALL. The 
microprocessor would begin executing at some random ad­
dress in memory. This would almost definitely crash the com­
puter. Fortunately, the assembler takes care of this detail for 
us. RETs in PROC FAR-ENDP structures are made far RETs, 
and RETs in a PROC NEAR-ENDP structure, near RETs. 

Programs Are Far Procedures 
You may now be wondering why all programs are defined as 
far procedures. Clearly, it's to force the assembler to make the 
RET at the end of the program a far RET; but why? Notice 
that the first instructions in every program are to push the DS 
(the data segment) register and then a zero (via AX) onto the 
stack. The reason for this can be explained as follows. When 
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II 

II 
DOS transfers control of the computer to an .EXE file, it passes II 
some important information. OS and ES hold the base of the 
program segment prefix. This prefix holds some critical data 
for DOS while the program is executing. II 

To return to DOS, IP must be set to zero and CS to the 
base of the program segment prefix. Since neither CS or IP 
can be the destination of a MOV operation, the simplest way _ 
to change them both is with a FAR RET operation. 

The sequence 
PUSH OS 
MOV AX,O 
PUSH AX 

simulates a far CALL to our program. When the far RET is 
performed, the microprocessor pops zero into IP and the base 
of the program segment prefix into CS. It is also possible to 
use an inter segment indirect JMP, but this is more complex 
and requires more programming. 

Our subroutines should all be near procedures. For this 
reason, any program which includes its own subroutines must 
be defined in at least two parts. One, the PROC FAR, is used 
to hold the main program. The other, one or more PROC 
NEARs, is used to hold the subroutines. 

U sing Subroutines 
Before you can use subroutines effectively, there are some 
considerations that need to be examined. For example, how do 
you pass information from the main program to the subroutine 
and from the subroutine back to the main program? How do 
you write subroutines so that they do not affect any registers? 

A subroutine must often use registers to perform its op­
erations. In doing so, the original values contained in the reg­
isters are destroyed. But suppose the program calling the 
subroutine stored some important value in an affected register? 
In addition, some subroutines require that the registers be set 
to certain values before they are called (DECIMAL_OUT from 
"Primes," for example, requires that AX be set to the number 
to print). The original values of the registers must be stored, 
either by the calling program or by the subroutine. You could 
store the values in memory locations, but then you would 
have to declare memory positions for the registers in the data 
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segment. The simplest method is to PUSH the values of the 
affected registers onto the stack, and POP them off afterwards. 

PUSH. The format of the PUSH instruction is shown be­
low. The operand can be any register or memory location. It 
cannot be an immediate value. 
PUSH operand 

Here are some examples of legal PUSH instructions: 
PUSH es 
PUSH AX 
PUSH SI 
PUSH [BX+3] 

Note that the 8088 can push only words onto the stack. No 
provision is made for pushing bytes. 

POP. The POP instruction takes an identical format. 
Again, there is no provision for popping byte quantities from 
the stack. Remember also that the stack returns values back­
wards. If you use 
PUSH AX 
PUSH BX 
PUSH DX 

you have to use 
POPDX 
POPBX 
POP AX 

to restore the registers correctly. To PUSH all of the registers, 
you have to use something like 
PUSH AX 
PUSH BX 
PUSH ex 
PUSH DX 
PUSH SI 
PUSH DI 
PUSH BP 
PUSH DS 
PUSH ES 

All of the registers are pushed except 55, CS, SP, and IP, since 
these must remain the same for the subroutine to work. To re­
store all of the registers, you would use: 
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POP ES 
POPDS 
POPBP 
POPDI 
POP SI 
POPDX 
POPCX 
POP BX 
POP AX 

It is not necessary to POP a value back into the register 
that PUSHed it. You could (if you found it necessary) transfer 
a value via the stack as below. 
(calculate a value in AX) 
PUSH AX 
(do some program) 
POP BX 
(and use the value) 

If you look carefully at the DECIMAL_OUT routine in the 
sample program Primes, you will find that it uses this method 
to move a value from DX to AX. Often you will see programs 
setting the segment registers via the stack. For example to 
MOV DS,CS (an illegal operation), you could use 
PUSH CS 
POPDS 

PUSHF and POPF. There are two specialized PUSH and 
POP instructions. PUSHF pushes the flags register onto the 
stack, and POPF pops it back. Although this may not be a 
commonly used instruction, it is the only way you can store 
the flags. 

PUSHF and POPF are often used to change or examine 
the status of the flags. There is no 8088 instruction to move 
the entire flags register into another register. The only way to 
examine all of the 8088's flags is to PUSHF and POP the flags 
word into another register as below. 
PUSHF ;to get the flags 
POP AX ;AX now holds the flags register 

To move a value from a register to the flags, you could use 
something like 
PUSH AX ;AX holds the new flag values 
POPF ;sets the flags register 

The flags register can be broken down into bits as in Figure 6- 3. 
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Figure 6-3. The Flags Register 

bit 15 bit 0 

The following symbols are used: -, unused bit; A, Auxiliary 
Carry flag (AF); C, Carry flag (CF); D, Direction flag (DF); I, 
Interrupt enable/disable flag (IF); 0, Overflow flag (OF); P, 
Parity flag (PF); S, Sign flag (SF); T, Trap mode (single step) 
flag (TF); Z, Zero flag (ZF). 

Note that, using this technique, you can set several flags 
(CF, DF, IF, etc.) at the same time. Generally, however, you 
will want to set only the trap flag using this method. See 
Chapter 11 for an example of this technique. 

Parameter Passing 
Subroutines often need to receive a value from the main rou­
tine. In addition, the subroutine sometimes needs to return a 
value or indicate an error condition. There are four ways that 
a value or condition can be passed from the main program to 
the subroutine or vice versa. Information can be passed via a 
register, a memory location, the flags, or the stack. All four 
have their own advantages and disadvantages. 

Using registers. Passing parameters via registers is by far 
the simplest approach. You load a register with the value that 
you want to pass and call the routine. For example, Primes 
passes a value in AX to the DECIMAL_OUT routine. Al­
though this approach is simple, it might become difficult to 
remember which routines take which registers. To alleviate 
this problem, it is often convenient to add a list of the 
parameter-passing registers to the comment header of the sub­
routine. This way you know which registers need to be filled 
with what values. 

Flags. Passing parameters via the flags is also very 
convenient. Although you cannot pass a specific value, you 
can pass a condition. The most convenient flag to use is the 
carry flag (CF). There are three instructions that can be used to 
assign a value to the carry flag, CLC, STC, and CMC. CLC 
(CLear Carry) makes the carry flag zero. STC (SeT Carry) 
makes the carry flag one. CMC (CoMplement Carry) NOTs 
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the carry: If it is zero, it is made one; if it is one, it is made 
zero. 

Passing information via the carry flag is most convenient 
when the subroutine must return a condition to the calling 
program. Many DOS functions set the carry flag on return to 
indicate that an error has occurred. Another register holds the 
error number. If the carry flag is clear, there is no error. You 
could do something like this with your subroutines. If the sub­
routine needs to indicate an error condition, it could set the 
carry. The calling program needs only to perform a IC or INC 
to determine if an error was encountered. Remember that 
none of the CALLs or RETs themselves affect any of the flags. 

Memory locations. If you would like to pass a large num­
ber of values, it is most convenient to use memory locations. 
Since it's impossible to pass a table or a string from a register 
to a subroutine, the most common technique is to pass the ad­
dress of the data in one of the registers (usually BX). This al­
lows the subroutine to maintain its independence from the 
main program, while you pass a table or string as a parameter. 
In the comment header of the routine you should include a 
description of the data table. This way, you know how to for­
mat the table when you use the routine in another program. 

Occasionally, it is convenient to pass just a few param­
eters via memory locations, especially when the parameters 
are already stored in memory. Such is the case with OUTPUT 
from Primes. The OUTPUT subroutine could have been writ­
ten to receive the parameters in different registers; however, 
OUTPUT was not meant to be a general-purpose subroutine, 
so it could rely on the Primes structure. DECIMAL_OUT, 
however, which is called by OUTPUT, is a general-purpose 
routine; it can be used anytime we want to print a binary 
number in decimal. 

Using the stack. The last method of transferring values 
from the main program to the subroutine is via the stack. This 
method of passing parameters is probably the most complex, 
but it does offer some advantages over the other two systems. 
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The basic principle is easy to understand: Push all of the 
parameters you want to pass onto the stack before you call the 
subroutine. Unfortunately, the routine which is called cannot 
simply pop the values off the stack because the return address 
is now on top of the stack. You could pop the return address 
off the stack, pop the values, then push the return address 
back onto the stack (as below), but there is a far more elegant 
approach. 
CALLER PUSH PARAM_ONE 

PUSH PARAM_TWO 
CALL ROUTINE 
(more code) 

ROUTINE PROC NEAR 
POP AX 
POP SI 
POP DI 
PUSH AX 
(do whatever) 
RET 

ROUTINE ENDP 

;store parameter one 
;store parameter two 
;call the routine 
;finish the program 

;get return address 
;get parameter two 
;get parameter one 
;restore return address 
;use the parameters 
;return to caller 

The BP (Base Pointer) register has, up to now, been unex­
plained. This register is used to address data in the stack. In its 
default addressing scheme, it acts as an offset into the stack 
segment (the segment pointed to by 55), just as [BX] can be 
used to address memory in the data segment (the segment 
pointed to by D5). To read values from the stack, we move 
the 5P (stack pointer) register into BP, then use BP as an offset 
into the stack (see Figure 6-4). BP must be adjusted to point to II the correct data, however. 
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Figure 6~4. Using BP to Address Data on the Stack 
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As you can see from Figure 6-4, after moving SP into BP 
we must add two to BP to address the last word stored on the 
stack. Remember, the stack grows downward, from higher 
memory locations to lower ones. For each additional word, we 
must increment BP by two (if the addressing modes have you 
confused, be patient; they are all explained in the next chap­
ter). Now examine the code below: 
CALLER PUSH PARAM_ONE 

PUSH PARAM_TWO 
CALL ROUTINE 
(more program) 

ROUTINE MOV BP,SP 
MOV SI,[BP+2] 
MOV DI,[BP+4] 
(do whatever) 
RET 4 

;store parameter one 
;store parameter two 
;call the routine 
;finish up 

;set BP 
;get parameter two 
;get parameter one 
;use the parameters 
;return to caller 

In this example, rather than pop the parameters off the 
stack, we use BP as a pointer, and copy the parameters into SI 
and DI for processing. SP does not change, so the stack 
(including the parameters) remains unaltered. 

Note the RET 4 at the end of this subroutine. Routines 
which are passed parameters via the stack need some way of 
removing them. The calling program could pop them off the 
stack, but this lacks elegance. Instead, Intel has provided us 
with a command which automatically pops parameters from 
the stack when we return from a subroutine. This command, 
RET n, comes in two forms. The first is an Intra Segment and 
Add Immediate to Stack Pointer RET instruction. In other words, 
it is a near RET which also pops off the number of bytes 
specified in the operand 
RET n 

where n is a 16-bit displacement. 
This kind of near RET pops IP off the stack and adds the 

displacement to the stack pointer. For example, RET 2 would 
return from the subroutine and pop two bytes (or one word) 
off the stack. RET 16 would return and pop 16 bytes (or eight 
words) off the stack. 
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The second form of the RET n command works like the 
first, but is used to return from far procedures rather than near 
procedures. The label Inter Segment and Add Immediate to Stack 
Pointer identifies this as a long RETurn. 

Many compiled and interpreted languages (such as Pascal 
and BASIC) use the stack to pass parameters. BASIC also uses 
this method when machine language subroutines are called 
with USR or CALL statements (see Chapter 10). 

Bear in mind that it is also possible to use the stack to re­
turn values to a calling routine. The calling routine would then 
pop the returned values off the stack (in this case, RET n 
might not be used). Note, however, that the calling routine 
must make room on the stack for the returned values if you 
want to avoid popping and pushing the return address. 

You might be wondering what advantages this system of­
fers over the other methods of passing parameters. The great­
est benefit comes in writing recursive routines, routines which 
can call themselves. BASIC programmers will be completely 
unfamiliar with this idea, since BASIC subroutines (unless 
very cleverly written) cannot call themselves. In Pascal or 
Logo, however, this is possible. Recursive routines are not im­
portant to beginning machine language programmers, but they 
are very powerful, and particularly useful when you need to 
analyze a large number of possibilities. The most common ex­
ample of a recursive routine finds the factorial of a number 
(Xl, the product of all the numbers from 1 to X). 

Decimal Output 
Now that you understand the stack and subroutines, look at 
the DECIMALOUT routine in the program PRIMES.ASM 
from Chapter 4. Before we get into the actual code, let's con­
sider how we can convert a binary number into decimal. The 
method used in DECIMAL_OUT is to repeatedly divide the 
number to be printed by 10. This can be made clear with an 
example. 

Suppose we start with the number 567. After the first di­
vision by 10, the quotient will be 56, and the remainder 7. 
Note that the least significant digit of 567 (the one's digit) is 
the remainder. Now, divide by 10 again: The remainder will 
be 6 (the ten's digit of the original number), and the quotient 
5. It's clear what is going on. When we divide by 10 again, the 
quotient is 0, and the remainder 5. The entire number has 
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been converted. The one drawback to this system is that the 
digits are converted from the least significant to the most, but 
we must print the numbers starting from the most significant 
to the least. We can use the stack to reverse the order of the 
digits. 

The comment header at the beginning of this subroutine 
says that it is passed the number to print in AX, and that CX, 
AX, and OX are destroyed. In the first instruction of the rou­
tine, CX is set to zero. CX is used to count the number of dig­
its that must be printed. Then CX is incremented by one. This 
means that we will always print at least one digit. OX is set to 
zero in preparation for the DIV by BASE. BASE is a variable 
which holds the base of the printed number. If we make BASE 
ten, the number will be printed in decimal; if BASE holds 
eight, the number will be printed in octal (base 8). Next we 
push OX onto the stack. Remember that OX holds the remain­
der of the division, the digit that we want to print. Then we 
check AX (the quotient) to see if it's zero. If AX is zero, the en­
tire number has been converted, and we go to the part of the 
routine which actually prints the number. 

The printing part of the routine (labeled PRINT_DIGITS) 
POPs the digits off the stack one by one, adds the ASCII 
value of zero (to convert a number from 0 to 9 to a character 
from 0 to 9), and calls the CHARACTER_OUT routine. Note 
that CX holds the number of digits which were pushed onto 
the stack, so the LOOP instruction will repeat until all of the 
digits have been printed. 

You can use this routine in your programs when you need 
to print a binary number in decimal or some other base. Note 
that you cannot use this routine to print a number in hex be­
cause the characters A through F do not follow character 9 in 
the ASCII character set. See Chapter 7 for a routine to print 
numbers in hex. 

A Few Points to Remember 
When you are using the stack and writing subroutines it is im­
portant to keep the following in mind: 

• All PUSHes should have corresponding POPs (RET n, or an 
adjustment of the SP, such as ADD SP,n, can be substituted). 
In other words, you don't want to leave extra values on the 
stack and you don't want to POP more values off the stack 
than you put on. 
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II 
• The computer uses the same stack for CALL/RET and II 

PUSH/POP. If you leave extra values on the stack, the com-
puter will use these values as the return address when it 
leaves the subroutine. If you POP too many values off the • 
stack, you will lose one level of subroutines. Although you • 
can use this to bypass one level of RETurns by POPping the 
return address off the stack, this style of programming is _ 
risky and needlessly complex. _ 

• It is not necessary to POP a value into the register that 
PUSHed the value. 

Programs which have stack trouble often refuse to stop 
running (they seem to run fine, but then start executing over 
again when they should stop), or they run for a while and 
mysteriously crash the computer. If you seem to have a persis­
tent but elusive problem, check stack manipulations carefully. 
Be particularly wary of PUSHing a register and jumping 
around its POP. Nothing can cause more headaches than a 
poorly managed stack. 
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7 
Addressing Modes 

At first glance, the great variety of addressing modes available 
to the 8088 machine language programmer can be mind­
boggling. To complicate matters further, there are many ways 
to request the same addressing mode of the assembler. You 
will find, however, that the seemingly complex address modes 
are quite straightforward. 

There are six addressing modes available to the 8088. The 
purpose of the different modes is to give the programmer a 
variety of ways to determine an effective address, the address 
of the memory location which is going to be examined. 

An effective address has two components, a segment ad­
dress and an offset. The segment address is stored in one of 
the four segment registers (C5, D5, E5, or 55). Remember, 
these registers hold the addresses of your program's code seg­
ment, data segment, extra segment, and stack segment. The 
offset portion of the effective address can be a constant value, 
the value of a register, the sum of a register and a constant 
value, the sum of two registers, or the sum of two registers 
and a constant value. 

For all of the addressing modes, the segment address 
marks the beginning of the segment, and the offset address 
points to a location within the segment, relative to the 
beginning. 

Direct Mode Addressing 
The first and simplest of the six addressing modes is direct 
mode addressing. In this addressing mode, the offset is a con­
stant value. This constant is usually the address of a variable 
which is calculated by the assembler and is relative to the 
beginning (the base) of the segment it's defined in. For ex­
ample, if the data segment were defined as 
DATA SEGMENT 
SOME_DATA OW 933,9265 
MORE_DATA OW 5543,839 
DATA ENDS 
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the offset address of SOME_DATA would be calculated as O. II 
SOME_DATA is the first variable defined, thus its address is 
at the base of the segment DATA. On the other hand, the off-
set address of the second variable, MORE_DATA, is 4 because II 
MORE_DATA begins four bytes after the base of the segment 
DATA (the pseudo-op DW defines words, which are two bytes 
long). I 

To use direct mode addressing, simply use the name of a 
variable. For example, to move the value of SOME_DATA into 
AX, you could 
MOV AX,SOME_DATA 

Remember that SOME_DATA itself is a symbol that 
represents an address in memory. The above operation moves 
the word pointed to by SOME_DATA into AX. In other 
words, it is something like the BASIC 
AX = PEEK(SOME_DATA) 

If you want to move the actual address of SOME_DATA into 
AX (perform AX = SOME_DATA), you have to use 
MOV AX,OFFSET SOME_DATA 

The OFFSET command tells the assembler that you want AX 
to hold the address of SOME_DATA, not the word 
SOME_DATA points to. 

For tables of data, it is sometimes useful to use this 
format: 
MOV AX,SOME_DATA[O] 

where [0] is a displacement into the SOME_DATA table. Be 
careful; this is not like a BASIC array. In machine language 
the number between the brackets always refers to bytes. Since 
SOME_DATA is made up of words, use 
MOV AX,SOME_DATA[2] 

to access the second word (9265) of the SOME_DATA table. 
If you prefer, you can also use 
MOV AX,SOME_DATA+2 

where the constant 2 is clearly added to the address of 
SOME_DATA. 

For the sake of clarity, the above examples use the 
instruction MOV, and show different addressing modes only 
in the source operand. The same rules apply to any instruction 
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which accepts addressing modes; and various addressing 
modes can be used in the destination operand as well as the 
source. 

Register Indirect Mode Addressing 
Only four of the registers can be used in register indirect 
addressing: 51, DI, BX, and BP (source index, destination in­
dex, base, and base pointer). In register indirect mode address­
ing, the value contained in the register is used as the offset 
address of the data. You must set the register to point to the 
data you want to access. 

Here are examples of this addressing mode, using each of 
the four possible registers: 
MOV AX,[SI] 
MOV AX,[DI] 
MOV AX,[BX] 
MOV AX,[BP] 

Of course, the destination operand can also use register in­
direct addressing: 
ADD [BX],AX 
MOV [DI],DL 
SUB [BP],AH 

It is important to remember that the 8088 cannot perform 
"memory to memory" operations; thus the following com­
mands are illegal: 
MOV [BX],[BP] 
MOV SOME_DATA,[BX] 

Programmers often use register indirect mode addressing 
when they must access a one-dimensional array or table of 
values. The following discussion provides examples of table 
addressing. 

Based Mode and Indexed Mode Addressing 
Based mode addressing and indexed mode addressing are identi­
cal in concept; the only difference is the register used. Based 
mode addressing uses one of the base registers (BX or BP), 
while indexed mode addressing uses one of the index registers 
(51 or DI). The basic principle of based mode/index mode 
addressing is to add a constant to the contents of the register. 
The sum becomes the offset portion of the effective address. 
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The acceptable forms of based mode/indexed mode 
addressing are numerous. The basic format is 
MOV CX,[BXJ + 3 

Another common format is 
MOV CX,[BX + 3J 

Both of these take the value of BX, add 3, and use the sum as 
the address of the data. The different formats are only for the 
convenience of the programmer. The assembler doesn't care 
which format you use. The constant does not have to be a 
positive number; the command 
MOV CL,[BX-1] 

is quite acceptable, and moves the byte below BX to the CL 
register. 

The constant can also be the name of a variable. Consider 
the following data segment: 
DATA SEGMENT 
BYTE_DATA DB 1,3,3,7,5,2,9,4,9 
WORD_DATA DW 848,664,2258,753,209 
DATA ENDS 

We can use either 
MOV AL,BYTE_DATA[BXJ 

or 
MOV AL,[BYTE_DATA + BX] 

to get the BX byte in the BYTE_DATA table. For example, if 
BX holds 3, AL will hold the fourth byte of BYTE_DATA, or 
the number 7. 

Word-sized data presents a slight problem because all 
addressing is based on bytes, not words. We can use 
MOV AX,WORD_DATA[BXJ 

to address the table WORD_DATA, but BX needs to hold 0 to 
get the first word, 2 to get the second, 4 to get the third, etc. 
After executing 
MOV BX,6 
MOV AX,WORD_DATA[BXJ 

AX holds 753. 
Notice the similarity between based mode/index mode 

addressing and register indirect mode addressing. In register 
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indirect mode addressing, the value of a register alone is used 
as the address of the data. With based mode/indexed mode 
addressing, the value of a register is added to a constant, and 
the sum is used as the address of the data. As with register in­
direct addressing, based mode/indexed mode addressing is 
very useful in accessing a table or a one-dimensional array of 
values. 

Based Indexed Mode Addressing 
You just saw how to form an address by adding a constant to 
a register. You can also form an address by combining the 
contents of two registers. With based indexed addressing the 
contents of a base register (BX or BP) are added to the con­
tents of an index register (51 or DI). The resulting sum is used 
as the address of the data. There are only four possible 
combinations of these registers: BP + 51, BP + DI, BX + 51, 
or BX + DI. However, each combination can be expressed in 
four alternate forms. The assembler interprets these four ex­
pressions as identical: 
MOV AX,[BP][SI] 
MOV AX,[SI][BP] 
MOV AX,[BP+SI] 
MOV AX,[SI + BP] 

The most common use for this kind of addressing is in 
accessing a two-dimensional array (an array with two sub­
scripts). For example, the base register could hold the address 
of the beginning of a row, while the index register could hold 
the number of the column we are trying to access. In Figure 7-
I, BX holds the address of the row, and 51 holds the number 
of the column we are trying to address. 

Based Indexed Mode with Displacement Addressing 
The last addressing mode available to the machine language 
programmer is called based indexed mode with displacement 
addressing. This addressing mode is simply a combination of 
the last two addressing modes. First the contents of two reg­
isters are combined; then a constant is added to the sum of the 
registers to form the effective address. 
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Figure 7 ~ 1. Two~Dimensional Table Access Using Based 
Indexed Addressing 

0 

4 

8 

12 

Values 
for BX 

0 1 2 3 
Values for 
51 

The assembler has a variety of possible formats for based 
indexed mode with displacement addressing: 
MOV AX,[BX + 01 + 12] ;the three can appear in any order 
MOV AX,[BX+12+DI] 
MOV AX,[12 + 01 + BX] ;etc. 
MOV AX,[OI + 12][BX] ;or broken up in a variety of ways 
MOV AX,[BX +12][01] 
MOV AX,8+[BX][DI]+4 ;the constant can be in two parts 
MOV AX,12+[BX][01] ;or just in the beginning 

and they go on and on. To the assembler, all of these instruc­
tions are identical. 

Often, the value of the constant is the address of a 
variable: 
MOV AX,ANY_OATA[BP][OI] 
MOV AX,[ANY_OATA+BP+OI] 

If you like, you can add another constant (beyond the address 
of the variable): 
MOV AX,ANY_OATA[BX][5I]+14 

As with based indexed addressing, based indexed with 
displacement addressing can be useful when accessing a two­
dimensional array. 

108 

II 

II 

II 

II 

a 

I 
I 

II 

II 

II 



II 

II 

II 

7 
Addressing Modes 

The names of the different addressing modes we have 
given here might be called the official Intel names. It is far 
more important to understand how they work than to memo­
rize the names. Table 7-1 at the end of the chapter lists all of 
the addressing modes and their possible register combinations. 
Note that the format of the operand is the one used by 
DEBUG. 

Eliminating Ambiguity: The PTR Instruction 
Remember that any of the addressing modes described above 
can be used as the source or the destination operand of an 
instruction (but not both at the same time). Remember also 
that the source can be an immediate value, and that a register 
can act as either the source or the destination. When one op­
erand is an immediate value, the size of the operation is some­
times ambiguous. For example, in 
CMP [BX],12H 

the assembler has no way of knowing if [BX] points to a word 
or a byte. If you try this, the assembler will respond with error 
35 (Operand must have size). Note that the error for 
CMP [BX],1234H 

is different. If you try this, you will get error 50 (Value is out 
of range), because the word 1234H is too large for the ex­
pected use (comparison with the byte-sized memory location 
addressed by [BX]). 

When the size of an operation is ambiguous, the PTR 
instruction is used to clarify the instruction. Our first statement 
above must be replaced with 
CMP BYTE PTR [BX112H 

if [BX] points to a byte, or with 
CMP WORD PTR [BX],12H 

if [BX] points to a word. However, the assembler can make 
certain assumptions. If we define a variable in our data seg-
ment as 
MORE-INFO DW 5142,3387,9808 

the instruction 
II CMP MORE_INFO[SI],43H 

is not ambiguous. MORE_INFO is defined as word data, so 
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II 

the assembler assumes that [SI] points to a word. If, however, I 
you want to compare 43H to the byte pointed to by [SI], you 
can override the assembler's assumption with 
eMP BYTE PTR MORE_INFO[SI],43H _ 

There is another method which is discussed in Chapter 15. 

LDSjLES and the DD Pseudo .. op I 
There are two very specialized instructions that are used to 
load the DS and ES segment registers with values, LDS (Load 
Data Segment) and LES (Load Extra Segment). The format for 
these instructions is 
LOS destination,source 
LES destination,source 

where destination is any general register and the source is a 
memory location addressed by one of the methods described 
above. The instruction moves the word pointed to by the 
source into the destination register. The following (higher ad­
dressed) word is moved into DS (if LDS is used), or ES (if LES 
is used). Here are some examples: 
LOS SI,DOUBLE_WORD_DATA[BX][DI]+2 
LES DI,DWORD PTR [BP][DI] 
LES BX,DWORD PTR [BX] 
LOS BP,DWORD PTR [BX]+4 

If you do not specify DWORD PTR, the assembler will 
give you error 57 (Illegal size for item). The addressed mem-
ory location must be defined with the DD (Define Double 
word) pseudo-op. The operands of the DD pseudo-op can be a 
label or a constant value. See the examples below. 
DOUBLE_WORD_DATA DD FAILLABEL,FARJROC ;FAR labels 

DD 1343234,432343 ;constants 

LDS and LES can be useful if your program has more 
than one data segment. Remember to include an ASSUME 
statement when DS or ES is changed. 

Segment Overrides 
All memory access is performed using an offset into a seg­
ment. The segments are defined by the four segment registers. 
Machine language programs are addressed using the IP as an 
offset into the segment defined by the CS register. The stack is 
addressed using the SP register as an offset into the segment 
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defined by the 55 register. Most data is addressed using an 
offset into the segment defined by the OS register. All of the 
addressing modes described above are offset into the data seg­
ment, except when BP is involved. When BP is used, the offset 
is added to the 55, not the OS register. In other words, BP is 
generally used to access the stack segment. 

However, it is not mandatory to use OS or 55. You can 
tell the 8088 which segment register to use for addressing data 
with a segment override command. A segment override com­
mand is sometimes called a segment prefix command, or just a 
SEC command. The segment override tells the 8088 to use a 
specific segment register when it addresses memory. There 
are four segment override commands, one for each segment 
register: 
CS: 
SS: 
DS: 
ES: 

The segment override is often included with the addressing 
mode. For example, if the BP register is used to address data 
in the data segment rather than the stack segment, you can 
use something like 
MOV AX,DS:[BP] 
MOV AX,DS:[BP+DI] 

If the PTR command is used, it should appear before any seg­
ment overrides, as in 
MOV BYTE PTR ES:[BX10 
CMP WORD PTR CS:[DI],15H 

Bear in mind that the selection of the segment is generally 
automatic. The assembler uses the ASSUME pseudo-op to 
determine which segment register is used to address specific 
data. Consider the following data segment declarations: 
DATAl SEGMENT 
FIRST DW 1,2,3,4 
SOME DB 'MORE DATA' 
DATAl ENDS 

DATA2 SEGMENT 
SECOND DW OAH,OBH,OCH,ODH 
THIRD DB 'RUNNING OUT OF IDEAS' 
DATA2 ENDS 
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ASSUME ES:DATA1,DS:DATA2 

Now, whenever FIRST or SOME is accessed, the ES register 
will be used as the segment register. All instructions involving 
the FIRST or SOME labels will have an extra segment over­
ride. Any access to DATA2 uses the DS register. For example: 
MOV AX,FIRST[BP] ieven though BP usually uses 55 

If you prefer, you can also use: 
MOV AX,ES:[BP] 
MOV AX,DATA1:[BP] 

All three of these examples use ES as the segment register. 
The following 
MOV AX,SECOND[BP] iBP is now using 05 as segment register 
MOV AX,DS:[BP] 
MOV AX,DATA2:[BP] 

use DS rather than ES. Specifying a label name, a segment 
name, or a segment register tells the assembler which segment 
register to use. However, in 
MOV BP,OFFSET SOME 
MOV AX,[BP] 

MOV AX,[BP] is ambiguous. The assembler has no way of 
knowing if you want to use DS, ES, or SS as the segment reg­
ister; thus the offset held in [BP] might point to an undesired 
location. You must specifically tell the assembler which seg­
ment register to use: 
MOV BP,OFFSET SOME 
MOV AX,ES:[BP] 

If you do not specify a segment register, the assembler will as­
sume the default segment. The default segment register is DS 
unless BP is involved, in which case the default is SS. Again, 
the segment assignment is generally automatic, but you must 
be certain that you are communicating your ideas to the 
assembler correctly, to avoid unpleasant surprises. 

There are many uses for segment overrides. Anytime the 
BP register is used to access data in the data segment, an over­
ride is used. However, there are times when you might want 
to use BX or DI to access the stack segment, or perhaps use BP 
and SI to address something in the ES (Extra Segment). You 
can even store data in the code segment and use the segment 
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override to access the data properly (see "Hexconv/' the 
sample program at the end of this chapter). 

Special Consideration of the Segment Registers 
The segment registers cannot be used as operands in any 
instructions except MOV, PUSH, and POP. In other words, 
the segment registers cannot be used in operations such as 
ADD or SUB. 

When the segment registers are the destination of the 
MOV instruction, the source operand cannot be an immediate 
value. The source can be any other register (except another 
segment register) or an addressed memory location. Perhaps 
this was designed for our safety. We wouldn't want a program 
to haphazardly change the values of a segment register. 

Specialized Addressing 
There are three rather specialized but useful instructions that 
are related to memory addressing. These are LEA (Load Effec­
tive Address), XCHG (eXCHanGe), and XLAT (translate). 

LEA. The Load Effective Address instruction calculates an 
address and moves the calculated address into the specified 
register. LEA takes the general format 
LEA destination,source 
where the destination can be any general word-sized register, 
and the source is any addressed memory location. Remember 
that the address, not the value contained in the addressed 
memory location, is moved into the destination register. For 
example: 
LEA BX,[SI][BP]+10 

moves the quantity SI + BP + 10 into BX. It does not move 
the word pointed to by SI + BP + 10 into BX. The purpose of 
this instruction is to allow offsets to be subscripted with reg­
isters. This is not permitted with the standard MOV instruc­
tion. For example, 
MOV BX,OFFSET SOME_DATA[BX] 

is illegal; you must use instead 
LEA BX,SOME_DATA[BX] ;get the offset 
MOV BX,[BX] ;load the data in BX 

113 



7 
Addressing Modes 

II 
You can also use LEA if more than two subscripting vari- II 

abIes are required. You might use something like 
LEA BX,MORE_DATA[BX][DI] 
MOV AX,[BX][SI] • 

if what you really wanted was MORE_DATA[BX+DI+SI], a 
nonexistent addressing mode. In this case, the LEA instruction _ 
replaces the rather awkward • 
ADD BX,DI 
MOV AX,MORE_DATA[BX][SI] 

which is somewhat unclear. 
You can also use LEA if you need to temporarily adjust 

an offset. For example, you might write a program which 
needs to address the memory around 51-16, in which case, it 
would be to your advantage to use: 
LEA DI,[SI-16] 

and use DI for 51-16. This simplifies the code and may make 
it easier to understand and follow. 

XCHG. The exchange operation is much like the SWAP 
operation in BASIC. XCHG takes the format 
XCHG destination,source 

and switches the contents of the source and destination. The 
source and destination can be any general byte or word reg­
ister, or any addressed memory location. You cannot XCHG 
two memory locations, so one operand of XCHG must always 
be a register. No flags are affected by XCHG. 

Remember that this operation is more complex than 
MOV. MOV copies a value from the source to the destination, 
without destroying the contents of the source. XCHG switches 
the two; what was in the destination is now in the source, and _ 
what was in the source is now in the destination. -

XLAT. XLAT takes the general form 
XLAT source-table II 
It is a one-byte instruction used to retrieve single bytes from a 
table of data. The source-table operand is only for the assem- _ 
bIer. When you use DEBUG, XLAT will appear alone on a _ 
line. XLAT "translates" a byte through a table lookup proce-
dure. The BX register must hold the address of the table, and 
AL the byte which is being translated. AL is used as an offset _ 
into the table, and the byte which is addressed is loaded into 
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AL. The old AL is lost. The closest approximation of XLAT's 
addressing is 
MOV AL,[BX][AL] ;this is illegal, you must use XLAT 

The source-table must be defined as a byte table; other­
wise, an error from the assembler will result. Using XLAT is 
rather cumbersome, but straightforward. 
MOV AL,BYTE_TO_BE_TRANSLATED 
MOV BX,OFFSET TABLE-NAME 
XLAT TABLE_NAME 

;set byte to translate 
;set base of table 
;do translation 

You can use LEA BX,TABLE_NAME, rather than MOV 
BX,OFFSET TABLE_NAME if you so desire. When this code 
fragment is executed, AL will hold the translated value. Note 
that XLAT affects none of the flags. 

XLAT will only translate byte-sized quantities. Because of 
this limitation, the length of the translation table is limited to 
256 bytes. You do not need to create a table which is 256 
bytes long; however, neither the 8088 nor the assembler 
makes any boundary checks on access to the table. Boundary 
checks are the responsibility of the programmer. The sample 
program Hexconv uses XLAT with a short 16-byte table. 

Using XLAT 
Our sample program for this chapter uses the XLAT instruc­
tion in the process of converting a binary word into ASCII hex 
digits. The number is printed on the screen. The routine is 
given the number to print in AX. 

WORD_OUT begins by saving the registers which it uses. 
CH is used to count the number of hex digits that we must 
convert, and CL is set to the number of rotates to perform 
(ROL will be explained in the next chapter). Next, AX is 
stored. We extract the lowest nybble (the nybble to convert) by 
ANDing it with 15, set the base of the ASCII table (notice that 
the table is in the code segment, not the data segment), and 
perform XLAT. AL, which held a number from 0 to 15, now 
holds an ASCII digit. We print the digit, recover AX, and 
check to see if all of the nybbles have been converted. If they 
have, we restore all the stored registers, and return to the call­
ing program. 

The sample calling program is not very complex; it just 
sends WORD_OUT all of the numbers from 0 to FFFFH. If CX 
is 0 after the INC CX command, then we have gone through 
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all of the numbers and CX has cycled back to O. The program II 
can be stopped at any time by pressing Ctrl-Break (or Fn-
Break on the PCjr). 

WORD_OUT can be used in any of your programs which II 
need to output hex numbers-simply extract the routine from 
this program and insert it into yours. Likewise, you can extract 
the DECIMALOUT routine from the "Primes" program if II 
you need to print numbers in decimal. When you do so, don't 
forget to copy the routine CHARACTER-OUT as well. 

Table 7,1. Table of Addressing Modes and Possible 
Register Arrangements 

Addressing Mode Possible arrangements 
Direct (label) 

displacement 
Register Indirect [BX] 

[BP] 
[51] 
[DI] 

Based [BX+n] 
[BP+n] 

Indexed [51 + n] 
[DI+n] 

Based Indexed [BX + 51] 
[BX+DI] 
[BP+SI] 
[BP+DI] 

Based Indexed with Displacement [BX+SI+n] 
[BX+DI+n] 
[BP+SI+n] 
[BP+DI+n] 

n represents a signed 8- or 16-bit displacement 
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8 
Advanced Arithmetic 

As you become a more proficient programmer, you may find 
that 16 bits is not enough room to store all of your data. After 
all, limiting your calculations to the numbers from -32,768 to 
32,767 (or 0 to 65,535 for unsigned numbers) can be constrict­
ing. In this section you will learn how 16-bit words can be 
chained together into 32-bit (or even 64-bit) quantities. 

Adding Multiword Numbers 
To understand how the computer can add two multiword 
numbers together, consider how we add two multidigit num­
bers. For example, when adding the numbers 17 and 25, first 
add the one's digits: 7 plus 5 equals 12. The ten's part of our 
partial sum is the carry into the next digit. In other words, we 
have to carry a 1 into the next (more significant) digit. When 
adding the ten's digits together, remember to include the 
carry. Summing up, the I, the 2, and the extra 1 from the 
carry make 4. Remember, this is four 10's. Our complete sum 
is 42. In our example, we carried from one digit to the next. 
The 8088 uses the carry flag to carry from one word (or byte) 
to the next. 

When the microprocessor performs an ADD, however, it 
does not take the carry flag into account. A second addition 
instruction, ADC (ADd with Carry), is used when the state of 
the carry flag must be considered. In all other respects, such as 
possible operands and resulting flags, ADC is identical to 
ADD. Using ADD with ADC, we can chain bytes or words to­
gether into very large numbers. 

For example, to add a 32-bit number stored in AX:DX (AX 
holds the least significant word, and DX the more significant 
word) to another in BX:CX (BX holds the least significant 
word), you could use the following code (this stores the result 
in BX:CX): 
ADD BX,AX 
ADC CX,DX 

;add the less significant words together ... 
; ... and the more significant words 
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II 
Note that you must start with the least significant and proceed II 
to the most significant word. 

If you need even larger numbers (say 64-bit words), you 
can use a loop to add them together. Consider this example II 
(for MASM only): 

[in your data segment] 
NUMBElLONE DQ 1348176354 ;define a 64-bit word 
NUMBER_TWO DQ 7564627653 ;define another 

;undetermined value for sum SUM DQ? 
[in your code segment] 

U: 

MOV CX,4 ;number of words to add 
;together 

MOV BX,O ;point to least significant word 
CLC ;so first ADC is like an ADD 
MOV AX, WORD PTR NUMBElLONE[BX] 

;add the two ... 
ADC AX, WORD PTR NUMB ElL TWO[BX] 

; ... corresponding ... 
MOV WORD PTR SUM[BX],AX 

INC BX 
INC BX 
LOOP U 

; ... words together 
;point to next significant word 

;finish them all 

The DQ pseudo-op defines a 64-bit word (see Chapter 14 for 
more details). Two INC BX instructions are used to add two to 
BX. The ADD instruction cannot be used because it changes 
the state of the carry flag; INC and DEC do not affect the 
carry flag. Also notice that the carry flag was cleared (CLC) 
before entering the loop. If the carry is clear, ADC is just like 
ADD. 

Subtracting Multiword Numbers 
Subtracting two multiword numbers is just as simple as add­
ing them. In subtraction, however, the carry flag is used to in­
dicate a borrow into the highest bit rather than a carry. 

Consider how we subtract two multidigit numbers. To 
subtract 27 from 50, first subtract the ones. 7 cannot be sub­
tracted from 0, so we borrow a 10 from the next higher digit; 
10 minus 7 equals 3. When subtracting the ten's place, 1 must 
be taken for the 10 borrowed earlier. Thus,S minus 2, minus 
another 1 for the borrow, leaves 2. Remember, this is two 
la's. The difference is 23. The 8088 uses the carry flag to in­
dicate a borrow from one word (or byte) to the next. 
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When we use the SUB instruction, however, the 
microprocessor does not consider the state of the carry flag 
when it subtracts. You must use the SBB (SuBtract with Bor­
row) operation if you want the microprocessor to take the 
state of the carry flag into account. If the carry flag is set (in­
dicating there was a borrow), SBB decrements the resulting 
difference by one to take care of the borrow. SUB and SBB are 
identical in terms of how they set the flags and the operands 
they take. If the carry flag is clear (indicating no borrow), SBB 
is just like SUB. We can subtract two multiword values using 
SUB with SBB. 

For example, if we want to subtract two 32-bit words, one 
stored in AX:DX, the other in BX:CX (AX and BX hold the 
least significant word; the result is stored in BX:CX), we can 
use: 
SUB BX,AX ;subtract the least significant words ... 
SBB CX,OX ; ... and the more significant words 

As with multiword addition, you must begin subtracting with 
the least significant word and proceed to the most significant. 
If you need larger numbers, say 64-bit quantities, you can use 
a loop structure as shown above in the 64-bit word addition; 
just change all of the ADCs to SBBs. 

Comparing Multiword Numbers 
When dealing with multiword numbers it is often convenient 
to compare them with other multiword numbers. The tech­
niques are quite easy to understand. Consider how you would 
compare two multidigit numbers. Suppose you were asked 
which is larger, 52 or 27. Clearly, 52 is larger. All you had to 
do was look at the ten's digit (the most significant digit); you 
didn't need to look at the one's digit to know that 52 is larger 
than 27. Now, suppose you were asked how to compare 29 
and 22. This time, the ten's digits are the same; you have to 
inspect the one's place to determine which is larger. 

The same techniques are used in programs that compare 
two multiword numbers. Start by comparing the most signifi­
cant words. If they are the same, check the next less signifi­
cant words. Clearly, if all of the words are the same, the two 
numbers are equal. The following code can be used to com­
pare two double words; one is stored in AX:DX and the other 
in BX:CX: 
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CMP DX,CX 
JNE DO_CONDITIONAL 
CMP AX,BX 

DO_CONDITIONAL: JA AX_DX_ABOVE_BX_CX 

Converting Between Formats 
When your program uses many different number sizes (bytes, 
words, and double words), it often becomes necessary to con­
vert between them. To convert unsigned numbers, you simply 
put a zero into the more significant part of the number 
(whether byte or word). For example, you would use MOV 
AH,O to convert an unsigned byte in AL into an unsigned 
word in AX. 

For converting signed numbers, the 8088 provides two 
instructions, one to convert a byte to a word (CBW) and an­
other to convert a word into a double word (CWD). Neither 
CBW (Convert Byte to Word) nor CWD (Convert Word to 
Double word) takes an operand. CBW converts the byte in AL 
into a word in AX. CWD converts the word in AX into a 
double word stored in AX and DX (DX holds the more signifi­
cant word). Because their effect is to extend from smaller to 
larger sizes, CBW and CWD are also known as sign extend 
instructions. These operations are most often used before 
signed division, when a signed word is divided by another 
signed word, or a signed byte is divided by another signed 
byte. For example, to divide a signed word in AX by another 
signed word in BX: 
CWO ;sign extend AX into DX 
IDIV BX ;divide AX:DX by the signed word in BX 

You can use the techniques discussed above to perform 
many elaborate mathematical operations. By chaining bytes or 
words together, you can represent extremely large numbers. 
However, there are other ways of representing numbers 
within the 8088 microprocessor. 

Binary,Coded Decimal (BCD) 
The 8088 provides three methods of storing numeric data. We 
have already discussed pure binary. The other two systems are 
powerful extensions of the binary system. 

The basic principle of these "new" numeric data storage 
techniques revolves around the idea of binary-coded decimal 
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(BCD) numbers. In Chapter 2 you learned that computers 
store all of their numbers in binary. While this is convenient 
for the computer, humans generally find it difficult to under­
stand, and even more difficult to convert to decimal. To assist 
the programmer, the 8088 has been designed to use BCD as 
well as pure binary. In BCD, each decimal digit is stored as a 
four-bit binary number. Look, for example, at Figure 8-l. 

Figure 8~ 1. BCD, Hex, and Binary 

Binary Hex BCD 
0000 0 0 
0001 1 1 
0010 2 2 
0011 3 3 

1000 
1001 
1010 
1011 

etc. 

8 
9 
A 
B 

8 
9 
undefined 
undefined 

Notice that only the hex digits 0 to 9 are defined in BCD. 
The hex digits A to F are undefined, and represent no value in 
BCD. This type of numeric storage is convenient because it is 
very easy to convert a BCD number into AS<;II decimal. Each 
four-bit number represents one decimal digit. 

The 8088 uses the BCD storage technique in two ways, 
packed and unpacked. In unpacked storage, each digit is given 
an entire byte, the upper nybble is unused. IBM and Intel refer 
to this kind of numeric storage as ASCII. Using this method, 
you can store the numbers from 0 to 9 in one byte. This is far 
less than is possible using binary (0 to 255), but it is extremely 
easy to convert unpacked BCD into conventional ASCII (just 
add 48, the ASCII code for the zero character, to the number). 

Defining unpacked BCD data in a program is fairly sim­
ple. Since only the digits from 0 to 9 are valid, the simplest 
method is to use the DB pseudo-op. 
UNPACKED_DATA DB 5,3,1 ;defines 135 

Unpacked BCD digits are best defined starting from the least 
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significant digit and ending with the most significant. Unfortu­
nately, it is somewhat confusing because the numbers must be 
read backwards. 

You can also use the DW command, as in: 
UNPACKED_WORD_DATA 
DW 0301h ;defines 31 (unpacked) 

Remember that the assembler automatically places the less 
significant byte of a word first, so the order of the digits will 
be correct if you use DW. 

In packed BCD data, both the upper and lower nybbles 
are used to hold decimal digits-two BCD digits per byte. This 
kind of number storage is referred to as decimal in IBM and 
Intel literature. Packed BCD number storage allows you to 
store the numbers from 0 to 99 in a single byte. This is more 
than unpacked BCD storage, but it is also more difficult to 
convert packed BCD numbers into ASCII for output. The 
methods for this are outlined in the discussion on bit shifting 
later in this chapter. 

There are two data-defining pseudo-ops you can use to 
define packed BCD data. DB can be used as follows: 
PACKED_BCD_DATA DB 12h,43h ;defines 1243 or 4312 

With packed BCD numbers, it is more conventional to have 
the less significant byte follow the more significant. Note that 
this is the opposite to unpacked BCD numbers. 

The DT pseudo-op is designed specifically to define 
packed BCD data. Note that this command is not available 
with ASM, the Small Assembler. DT (for Define Ten bytes) will 
define 18 BCD digits. The first byte is used to hold the sign 
(OOH is positive, 80H is negative); the other nine, the data. 
The data is stored as most significant first; the last byte holds 
the least significant digits. For example: 
LARGE_DATA DT 7893146 

becomes 
000000000000078931 46 

A negative number, defined with 
NEGATIVE_EXAMPLE DT -125368953553 

would assemble as: 
80 00 00 00 12 53 68 95 35 53 
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If you use this command, you will have to write special 
addition and subtraction routines which handle the sign of the 
number. It was actually designed to be used with the 8087 
Numeric Data Processor. Note that you can define only 18 
digits; defining more results in a 29:Division by 0 or overflow 
error from the assembler. 

Using BCD Math 
Unlike some microprocessors (such as the 6502), the 8088 
does not have decimal or ASCII math modes. Instead, an 
adjustment instruction is needed before or after each 
arithmetic operation (ADD, SUB, MUL, DIV, etc.). Note that it 
is the responsibility of the programmer to call these instruc­
tions. There is no way to make the microprocessor perform all 
of the mathematical operations in a BCD mode. There are six 
adjustment instructions available; four pertain to ASCII math, 
and two to decimal math. 

AAA (ASCII Adjust for Addition). The AAA instruction 
performs an ASCII adjustment on the result of an addition. 
The instruction takes no operands and always adjusts the AL 
register. Only the lower nybble of AL is considered. If the 
BCD digit held in AL is valid, the upper nybble is cleared, as 
are CF and AF. If the BCD digit held in AL is not valid (it is 
hex A to F), the digit is adjusted to a valid digit, AH is in­
cremented by one (to handle the carry), CF and AF are set (to 
indicate a carry), and the upper nybble of AL is cleared. 

For example, you would use 
ADD AL,BL 
AAA 

if you are adding two valid unpacked BCD numbers stored in 
AL and BL. If the sum of AL and BL is 9 or less, AAA appears 
to do nothing. If the resulting sum is greater than 9, AAA ad­
justs the sum by adding 6 (AA becomes 0, BH becomes 1, 
etc.), AH is incremented by 1, and CF and AF are set. To 
chain many unpacked BCD additions together you could use: 

[in the data segment] 
SMALL_1 DB 4,0 
SMALL-2 DB 7,0 
SMALL_SUM DB ?,? 
[in the code segment] 
MOV AX,WORD PTR SMALL_1 
ADD AX,WORD PTR SMALL_2 

;4 (least significant digit first) 
;7 as unpacked BCD data 
;undefined variable to hold sum 

;add the two numbers together 
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AAA 
MOV SMALL_SUM[O],AL 
MOV AL,AH 
AAA 

;ASCII adjust lower digit 
;store adjusted digit 
;adjust the other digit 

MOV SMALL_SUM[l ],AL ;store adjusted higher digit 

Notice that 16-bit addition is used. The way the numbers are 
added is unimportant. It is easier to add the numbers together 
first, and then adjust the sum. Any carry resulting from AAA 
is handled automatically because the next higher digit is al­
ready stored in AH. When AAA performs a carry (if the digit 
is not valid), it increments the AH by one. AH is moved into 
AL and then adjusted itself. Any carry resulting from this sec­
ond adjustment indicates an overflow situation, and another 
byte is needed to hold the sum. 

This method is fine for small BCD numbers, but using it 
with larger numbers would require a great deal of code. A 
loop is more efficient, as the example below demonstrates. 
[in the data segment] 

ONE_NUMBER DB 2,5,1,2,5,0 ;52152 in unpacked 
form 

TWO_NUMBER DB 0,4,6,8,0,0 ;8640 in unpacked 
form 

SUM DB 6DUP(?) ;undefined sum of 
two numbers 

[and as your code] 
MOV CX,6 ;number of digits to 

add together 
MOV BX,O ;point to the least 

significant digit 
CLC ;simulate "ADD" for 

first ADC 
U: MOV AL,ONE-NUMBER[BX] ;put one digit in AL 

ADC AL, TWO-NUMBER[BX] ;add other digit to it 
MOV SUM[BX],AL ;store the sum 
INC BX ;point to next higher 

digit 
LOOP U ;do all of the digits 

MOV CX,6 ;number of digits 
MOV BX,O ;point to least signifi-

cant digit 
MOV AL,SUM[BX] ;get least significant 

digit of sum 
L2: MOV AH,SUM[BX+l] ;put next higher digit 

in AH 
AAA ;perform ASCII 

adjust 
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;store the adjusted 
sum 
;move next digit into 
AL 

INC BX ;point to next higher 
digit 

LOOP L2 ;do all of the digits 

This code performs the same operations as the previous ex­
ample, only this time the operations are performed in a loop 
rather than in a straight line. Note that the entire number is 
added together first, then the entire sum is adjusted. This is 
only one illustration of how the AAA instruction can be used 
to sum and adjust multidigit numbers. 

AAS (ASCII Adjust for Subtraction). This instruction· is 
the subtraction equivalent of AAA. Like AAA, AAS does not 
take an operand; it always performs an ASCII adjustment on 
the AL register. If the unpacked BCD digit in AL is legal, AAS 
clears the upper nybble of AL and clears CF and AF. If the 
digit is not legal, AAS sets CF and AF, clears the upper nybble 
of AL, and decrements AH by 1. 

Illegal digits are always the result of an ASCII subtraction 
when the result is negative. AAS is designed to cope with the 
problem of negative BCD numbers. In Chapter 4, we used the 
analogy of a counter on a tape player to explain negative bi­
nary numbers. We said that 999 was like -1 (999 is one count 
behind 0). A similar method is used to store negative numbers 
in BCD. 

Using AAS is just as simple as using AAA. For single­
digit applications, you could use code similar to the following 
if you wanted to subtract an unpacked BCD digit in BL from 
one in AL: 
SUB AL,BL 
AAS 

For larger quantities, you will have to chain AAS instructions 
together, as we chained AAA instructions together in the pre­
vious section. For very large quantities, it is convenient to use 
loops as we did above. Of course, for subtraction you would 
substitute SUB for ADD, SBB for ADC, and AAS for AAA. 

AAM (ASCII Adjust for Multiplication). AAM is used to 
convert the result of a multiplication into two valid BCD dig­
its. This only applies to AL, so it is used after an eight-bit 
multiplication. After AAM is performed, the low~r digit of the 
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product is stored in AL, and the upper digit in AH. The pre­
vious contents of AH are lost. Using AAM is very straight­
forward; for example, to multiply an unpacked BCD digit in 
AL by another in BL, use 
MUL BL ;one of the operands for MUL is always AL 
AAM 

AAM will take the product of the MUL instruction and con­
vert it into two valid BCD digits; the least significant in AL, 
and the more significant in AH. For BCD multiplication, you 
must always use MUL, never IMUL. You can chain MULs to­
gether (like you can chain ADDs and SUBs), but the tech­
niques are rather difficult. 

AAM can also be used anytime you would like to convert 
a binary number from 0 to 99 into two unpacked BCD num­
bers, for a simple decimal output routine for example. An out­
put routine such as this is shown below. If AL does not 
contain a binary number from 0 to 99, AAM returns invalid 
BCD digits; no flags are set to indicate any kind of error. 
AAM ;AL holds the number to print 
ADD AX,'OO' ;add ASCII zero to both unpacked digits 
PUSH AX ;save AX 
MOV AL,AH ;output the more significant digit first 
CALL BYTE_OUT ;print character in AL 
POP AX ;retrieve AX 
CALL BYTE_OUT ;print the less significant digit 

AAD (ASCII Adjust for Division). Unlike the other 
ASCII adjust instructions, AAD is used before the mathemat­
ical operation. AAD converts the two unpacked BCD digits 
stored in AL and AH (AL holds the least significant digit) into 
a binary number in AL. AH is set to O. Using this instruction 
is no more complicated than any of the others. To divide two 
unpacked BCD numbers stored in AL and AH by another in 
BL, use 
AAD ;convert the two BCD digits into a binary number 
DIV BL ;divide AX by BL 
AAM ;convert the quotient (in AL) into a BCD number 

Note that the above example destroys the remainder. If you 
are after the remainder, not the quotient, you will have to 
move AH (which holds the remainder after eight-bit division) 
into AL before performing the AAM command, as in: 
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AAD ;convert the two BCD digits into binary 
DIV BL ;divide AX by BL 
MOV AL,AH ;move the remainder into AL for conversion 
AAM ;convert AL into valid BCD digits. 

Chaining DIVs together is more difficult than chaining 
MULs, although it can be done. 

AAD is much like a converse of AAM. While AAM con­
verts a binary number into two unpacked BCD digits, AAD 
converts two unpacked BCD digits into a binary number. One 
might use AAD in a simple decimal input routine which ac­
cepts two ASCII digits, but requires a binary number for 
calculations. Note that AAD does not check the validity of the 
BCD digits before it performs the conversion. If the digits are 
not valid, AAD will return an erroneous binary number. No 
flags are set to indicate an error. 

DAA (Decimal Adjust for Addition) 
This instruction is similar to AAA above, but is used to adjust 
the result of a packed BCD addition. It takes no operands, but 
always adjusts the AL register. If the number is greater than 
99, the carry is set, indicating that the next more significant 
byte needs to be incremented by one. 

Unlike AAA, which increments AH when a carry is nec­
essary, DAA does not affect the AH register. It is the pro­
grammer's responsibility to adjust the succeeding digits if the 
carry flag is set (the auxiliary carry flag is set only to indicate a 
carry out of the lower nybble). 

You can use DAA just like AAA. For example, the fol­
lowing code adds the two packed BCD numbers stored in AL 
and BL: 
ADD AL/BL 
DAA 

You can also chain decimal additions together, just as we 
chained ASCII additions together. For larger numbers (such as 
those defined with the DT pseudo-op), you would probably 
use loops to sum the numbers together: 
[in the data segment] 

ONEJJUMBER 
TWOJJUMBER 
SUM 

[and as your code] 
MOV CX,9 

DT 346346524 ;using DT command 
DT 687987346 
DT ? ;ten undefined bytes 

;the number of bytes to add 
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U: MOV AL,ONE~UMBER[BX] 
ADC AL,TWO_NUMBER[BX] 
MOV SUM[BX],AL 
DEC BX 
LOOP L1 

MOV CX,9 
MOV BX,10 
MOV AL,SUM[BX] 

L2: DAA 
MOV SUM[BX],AL 
DECBX 
MOV AL,SUM[BX] 

;point to the least significant 
digit 
;simulate ADD for first ADC 
;put one digit in AL 
;add other digit to it 
;store the sum 
;point to next higher digit 
;do all of the digits 
;on exit here, carry set in­
dicates overflow 

;number of bytes to adjust 
;point to least significant digit 
;get least significant digit of 
sum 
;perform decimal adjust 
;store the adjusted sum 
;point to next higher digit 
;move next higher digit into 
AL 

ADC AL,O ;add in possible carry from 
DAA 

LOOP L2 ;do all of the digits 

Note that INC does not affect the state of the carry flag, and 
that DT defines the packed BCD numbers from the most 
significant byte to least significant in increasing memory 
locations. 

DAS (Decimal Adjust for Subtraction) 
DAS is similar to DAA, but is used after subtraction rather 
than after addition. The result of the subtraction must be 
stored in AL. The carry flag is set if the next higher byte needs 
to be adjusted because of a borrow. Like DAA, this instruction 
does not affect the AH register. The succeeding byte must be 
adjusted by the programmer. As with AAS, DAS adjusts the 
difference according to our tape counter analogy for negative 
numbers (see Chapter 4). 

Use DAS just like AAS; to subtract a packed BCD value in 
BL from one in AL, use 
SUB AL,BL 
DAS 

Again, longer numbers can be subtracted just as they can be 
added. For very long packed BCD values, you will want to use 
loops, as we did above. Note that if you are using the DT for­
mat, you must check the sign byte and adjust the result and 
sign as necessary. 
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Comparing BCD Numbers 
Comparing BCD numbers is as easy as comparing normal bi­
nary numbers. There is no need to adjust anything. Just use 
the CMP instruction as you always have. Note that you must 
start comparing with the most significant byte first, as de­
scribed in the section on multiword math in this chapter. 

Boolean Arithmetic 
Boolean arithmetic refers to the logic operators. High-level 
language users will be most familiar with these commands in 
reference to conditional statements. We have all used ex­
pressions like 
IF A>15 AND C=7 THEN ... 

or 
IF J<3 OR K=2 THEN ... 

and, less frequently, 
IF NOT L=4 THEN ... 

AND, OR and NOT are three of the various Boolean 
mathematical functions. When used in conditional statements, 
they serve as logic operators. Programmers who use the 
BASIC graphics GET and PUT commands should also be 
familiar with these operations. With the graphics commands 
(as in machine language), however, their bit-oriented nature is 
more apparent. 

The 8088 has four Boolean arithmetic commands, AND, 
OR, XOR, and NOT. The Boolean operators have the general 
format shown below. The operator is one of the four Boolean 
arithmetic commands. The function is the operation performed 
by the operator. Any source or destination combination legal 
with commands such as ADD or SUB is legal with the Boolean 
operators. Note that the operator NOT has only one operand 
which acts as both the source and the destination. The Bool­
ean commands can perform their operations on either bytes or 
words. 
OPERATOR destination,source 
destination = source FUNCTION destination 

AND. We all understand the logical significance of the 
English word and. In the statement "Send Jack and Jill to the 
well," it is clear that both Jack and Jill are supposed to go to 
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the well. In high-level languages, the AND operator serves a 
similar purpose. It is generally used to link two logical state­
ments together. When both of the logical statements are true, 
the entire statement is true. In machine language, AND is a 
little different. 

The AND operation inspects each bit of its two operands 
and sets the destination as follows: 
o AND 0 = 0 
o AND 1 = 0 
1 AND 0 = 0 
1 AND 1 = 1 

In other words, a bit will be set in the destination only if it is 
set in both the source and the destination. For example, if we 
start with 
11110000B and 11010111B 

after ANDing these two numbers together, we obtain the 
result 

11110000B 
AND 11010111B 

11010000B 

Every time the corresponding bits are both 1, the result is a 1. 
If a 1 and a 0 line up together, then the resulting bit is O. 

The AND operator can also be used to mask off unwanted 
portions of a number. For example, we can isolate the lower 
nybble of a BCD packed byte (held in BL) using the 
instruction: 
AND BL,OFH ;(OFH=OOOOl111B) 

8 

8 

II 

This operation tells the microprocessor to AND the contents of 
BL with OFH, and store the result in BL. For example, if BL _ 
holds 01010011B, 

01010011B contents of BL 
AND 00001111B 8 

00000011B 

The upper nybble of BL has been masked off. This is useful 
when you only want to deal with part of a number. For in­
stance, the sample program in the last chapter used AND to 
extract the low nybble from a number. 
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You can also use this operation to isolate a single bit; you 
simply AND the number you are inspecting with the appro­
priate mask byte. 

For example, if you want to isolate bit 5 (the bit 
representing the decimal value 32), you would use: 
AND destination,32 ;(32D=00100000B) 

This might prove useful in graphics applications. 
Inspecting bits in this way proves so useful that Intel en­

gineers provided the 8088 with another AND instruction 
called TEST. TEST is identical to AND in all respects, except 
that the result of the AND is not stored. For example, if you 
use 
TEST destination,16 

the flags will be set just as in the operation 
AND destination,16 

but the value of the destination will be unchanged. After such 
a TEST, you can JZ (Jump if Zero) or JNZ (Jump if Not Zero) 
to check for either a clear or set bit. 

One often finds code such as 
AND AX,AX 

or 
TEST AX,AX 

This command is used to set the flags (PF, SF, or ZF) accord­
ing to the value of AX. Note that the value of AX is 
unchanged. 

OR. The OR operator is, in a sense, the converse of the 
AND operation. If we change our English example to read 
"Send Jack or Jill to the well," it takes on a new meaning. 
Now we are saying that either Jack or Jill (or both of them, 
making this OR inclusive) should go to the well. 

The OR operation inspects the bits of the source and 
destination. The bits of the result are set according to the 
following rules: 
o OR 0 = 0 
o OR 1 = 1 
lOR 0 = 1 
lOR 1 = 1 

If either (or both) of the bits is I, the resulting bit is also 1. 
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Only when both of the bits are 0 is the result O. For example, 
if we start with the numbers 
01010100B and 11101010B 

and OR them together, we obtain the result 
01010100B 

OR 11101010B 

11111110B 

This operation has combined the two numbers (do not confuse 
this with adding them together). Whereas AND is used to 
separate two numbers, OR is used to put them together. For 
example, we could use OR to overlap two graphics images or 
to pack unpacked BCD digits (see the section on bit shifting in 
this chapter). 

Programmers sometimes use code such as 
OR AX/AX 

when they want to set the flags according to the value of AX. 
AX is not changed, but the SF, ZF, and PF flags are set 
appropriately. 

XOR. The Exclusive OR operation sets the bits of the re­
sult according to the following rules: 
o XOR 0 = 0 
o XOR 1 = 1 
1 XOR 0 = 1 
1 XOR 1 = 0 

A bit in the result is set only if the two bits of the operands 
differ. 

XOR is used to invert specific bits. If we start with the 
two numbers 
11110000B and 10010111B 

in AL and BL respectively, and perform 
XOR AL/BL 

11110000B 
XOR 10010111B 

01100111B 

AL will hold 01100111B. XOR is very useful for graphics 
applications. (See Chapter 12 for a discussion of XOR in ref­
erence to computer graphics.) 

Programmers sometimes use code such as: 
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when they want to zero a register. To zero a register with the 
MOV instruction requires more bytes than with XOR. If you 
need to make a program compact, you can use XOR 
register,register (or SUB register,register) when you need to zero 
a register. (IBM programmers do this in the ROM BIOS; it's a 
fairly common technique.) 

NOT. The NOT instruction has the general format 
shown below. The source can be any general register, or an 
addressed memory location. NOT can be used on both bytes 
and words. After a NOT is performed, the result replaces the 
source value. 
NOT source 

NOT reverses the bits of the operand value. All of the l's 
are made O's, and all of the O's are made l's. In other words, it 
follows the rules 
NOT 0 = 1 
NOT 1 = 0 

Generally, NOT is used to negate a number. The 8088 pro­
vides a negate instruction (NEG), but it can be used only on 
bytes or words. You cannot use NEG, for example, on a 32-bit 
number. To negate a 32-bit number, you must first NOT the 
two words and then add 1 to the result. The sample code be­
low negates a 32-bit number stored in AX:DX (AX holds the 
least significant word). 
NOT AX ;take the ones complement of the number 
NOTDX 
ADD AX,l ;add 1 to the result for twos complement 
ADC DX,O 

Shifting and Rotating 
Bit shifting and rotating refers to the microprocessor's ability to 
move the bits in a number left or right. You can shift or rotate 
by a single bit or by a certain count. These instructions pro­
vide an easy way to multiply or divide a number by a power 
of 2 and for accessing different parts of a packed BCD number. 

All of the bit-shifting instructions have the general format 
shown below. The source can be any general register or an ad­
dressed memory location. It can be either a byte or a word. 
The count is either the number 1 (perform the operation once), 
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or the CL register (where CL holds the number of times to 
perform the shift operation). 
OPERATION source/count 

Shifts. There are four different shift operations, SHL 
(SHift Left), SAL (Shift Arithmetic Left), SHR (SHift Right), 
and SAR (Shift Arithmetic Right). They have the general for­
mat shown below. All of the shifts set the overflow flag, sign 
flag, zero flag, and parity flag accordingly. The source and 
count are explained above. 
SHL source/count 
SAL source,count 
SHR source,count 
SAR source,count 

SHL and SAL are identical instructions. When a number 
is shifted to the left by one count, the most significant bit (the 
sign bit in a signed number) is moved into the carry flag, a 0 
is moved into the least significant bit, and all of the other bits 
are moved one place to the left (see below). In other words, 
bit 7 (the most significant) is moved into the carry flag, bit 6 is 
moved into bit 7, bit 5 to bit 6, and so on. A 0 is moved into 
the least significant bit, bit O. 

7 6 5 4 3 2 I ° 
~~t ~-I I I I I I I I 1-0 

This effectively multiplies the number by 2. For example, after 
the following code is performed 
MOV AL,OllOIOOIB 
SHL AL,I 

AL will hold 11010010B, the overflow flag will be set (because 
the sign changed), and the carry flag will be clear (because bit 
7 was a 0). If 1l010010B is shifted left again, the result will be 
10100100B, the overflow flag will be clear (because the sign 
did not change), and the carry flag will be set. 

SHR is the counterpart to SHL. SHR shifts the source 
quantity to the right. When a number is shifted by one count 
to the right, the least significant bit is moved into the carry 
flag, a 0 is moved into the most significant bit, and all of the 
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other bits are moved one place to the right (see below). This 
effectively divides the number by 2. 

7 6 5 4 3 2 1 0 

SHR 0_1 I I I I I I I 1-0 
Since a 0 is moved into bit 7, the sign of the number is no 

longer meaningful. For this reason, SHR is reserved for un­
signed numbers. If SHR is performed on 10010101B, the result 
will be 01001010B, and the carry flag and the overflow flag 
will be set (notice that the sign of the number changed). 

SAR, the counterpart to SAL, is used to shift signed num­
bers to the right. When SAR is performed, the least significant 
bit is moved into the carry flag, the sign of the number is 
examined and moved into the second most significant bit; the 
other bits are moved once to the right. In other words, if the 
number is positive, SAR operates identically to SHR. If the 
number is negative, SAR moves a 1 (not a 0) into the most 
significant bit. This has the effect of preserving the sign of the 
source value. 

7 6 5 4 3 2 1 0 

SAR rlll.1 I I I I I 1-0 
If SAR is performed on 11010101B (a negative number), the 
result is 11101010B. If, on the other hand, the source value is 
00101011B (a positive number), the result is 00010101B. 

SHL and SHR are used on unsigned numbers, while SAL 
and SAR are used for signed numbers. SAL and SHL are 
identical; there is no need to handle the sign bit specially 
when a number is shifted to the left. The SAL instruction was 
included only to complete the naming scheme. Note that DE­
BUG will not assemble SAL; you must use SHL. 

For the right shifts, however, the sign bit must be handled 
specially. SAR retains the sign bit, while SHR does not. Note 
that whatever bit "fell off" the end of the number is held by 
the carry flag. 
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a 
Rotates. There are four rotate instructions available on the a 

8088, ROR (ROtate Right), ROL (ROtate Left), RCR (Rotate 
through Carry, Right), and RCL (ROtate through Carry, Left). 
They take the general format shown below. Rotates set only _ 
the carry and overflow flags. The other arithmetic flags are not 
affected by these operations. 
ROR source,count 8 
ROL source,count 
RCR source,count 
RCL source,count 

As stated before, the source can be a general register or 
any addressed memory location. The count can be either the 
value 1 or the CL register. If the count is the CL register, it 
must hold the number of rotates to perform. 

ROL rotates the number to the left. The most significant 
bit is moved into the least significant bit and the carry flag. 
The other bits are shifted one position to the left (see below). 
For example, if the source value is 11001101B, the result of a 
ROL operation is 10011011B, and the carry flag is set. 

7 6 5 4 3 2 1 0 

ROL 0Tt...=' ==' ==' ==' ==' ==' ==' '===='------.1J 
ROR is just the opposite of ROL. ROR takes the least 

significant bit and moves it into the most significant bit and 
into the carry flag. All of the other bits are shifted to the right 
one position (see below). If the source value is 10110101B, the 
result of a ROR is 1101101OB, and the carry flag is set. 

7 6 5 4 3 2 1 0 

ROR rI I I I I I I I tr~ 
RCL moves everything to the left one bit. The most 

significant bit is moved into the carry flag, the contents of the 
carry flag is moved into the least significant bit, and the other 
bits are shifted to the left one position (see below). For ex­
ample, if 00101001B is RCLed when the carry flag is set, the 
result is 01010011B, and the carry flag is clear. 
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7 65 4 3 2 1 0 

[~}I I I I I I I I I:J 
RCR is similar to ROR; however, the carry flag is used as 

an additional bit. In a RCR operation, the least significant bit 
is moved into the carry flag, the contents of the carry flag is 
moved into the most significant bit, and the other bits are 
shifted one position to the right (see below). For example, if 
the source value is 10101001B and the carry flag is clear, RCR 
results in 01010100B, and the carry flag is set. 

7 6 5 4 3 2 1 0 

RCR 

Using Bit Shifting and Rotating 
You can use shifts to multiply or divide a number by a power 
of 2. For example, 
SHL AX,l 

multiplies the contents of the AX by 2. Performing the opera­
tion twice multiplies AX by 4; three times, by 8, etc. This type 
of multiplication is considerably faster than the corresponding 
MUL or IMUL instruction. You can, of course, use CL as the 
count for this operation. The code 
MOV CL,3 
SHL BX,CL 

shifts BX three times, or multiplies the contents of BX by 8. 
The operation 
SHR AX,l 

divides the unsigned value in AX by 2. If AX holds a signed 
number, SAR should be used. 

You can also use combinations of SHL and ADD instruc­
tions to multiply a number by other integers. For example, 
MOV CX,AX ;store AX in CX 
SHL AX,2 ;multiply AX by 4 
ADD AX,CX ;add original AX to the product (multiply by 5) 
SHL AX,l ;multiply by 2 again 

effectively multiplies AX by 10. 
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You can also combine rotates and shifts to shift numbers 
larger than 16 bits left and right. For example, 
SHl low_word,! ;shift the lower word once 
RCl high_word,! ;rotate lost bit into the higher word 

shifts a two-word quantity once to the left. The SHL instruc­
tion sets the carry flag to the bit which "fell off" the end of 
the low word. The RCL moves that extra bit stored in the 
carry flag into the least significant bit of the high word. You 
can continue to chain RCLs if you need to shift a large number. 

To shift a large number to the right, use 
SHR high_word,! ;shift the high word once 
RCR low_word,! ;rotate the lost bit into the lower word 

If you are shifting a large signed quantity, remember to use 
SAR rather than SHR. Start with the highest word when you 
shift to the right, while you start with the lowest word when 
you shift to the left. 

You can use shifts and rotates to relocate nybbles from 
one position in a number to another. The procedure 
HEXCONV, in the sample program at the end of the last chap­
ter, uses this technique to determine the values of the different 
nybbles in order to print the correct digit. You can also use 
shifts and rotates to compact or separate (pack or unpack) 
BCD digits. If, for example, AH and AL hold unpacked BCD 
digits (AH is most significant), you can use something like 
MOV Cl,4 ;set shift count 
SHl AH,Cl ;move digit in AH to the upper nybble 
OR Al,AH ;OR the two digits together 

to pack the data into AL. You can reverse the procedure, and 
unpack the data, with the following code: 
MOV AH,Al ;move the digits into the other register 
MOV Cl,4 ;set the shift count 
SHR AH,Cl ;move more significant digit into the lower nybble 
AND Al,OFH ;remove more significant digit from other register 

The AND masks the extra digit from the AL register. AH now 
holds the more significant digit, and AL the lower. 

You have been given some examples of the bit-shifting 
operations. All of the bit shifting and rotating instructions are 
diagrammed in Figure 8-2 below. As you have seen, shifting 
can be used to multiply and divide numbers by powers of 2. 
By combining bit shifts with other instructions, multiplying by 
other integers is possible. This is considerably faster than MUL 
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or IMUL. You can also use these instructions to isolate dif­
ferent sections of a number, and to pack and unpack BCD 
data. 

Figure 8·2. Bit Shifts and Rotates 

7 6 543 2 1 0 

~~t 0-1 1 1 1 1 1 1 1 1_0 
7 6 5 4 3 2 1 0 

SHR 0--1 1 1 1 1 1 1 1 1-0 

7 6 5 4 3 2 1 0 

ROL0rl 1 1 1 1 1 1 1 1= 

7 6 5 4 3 210 

ROR [I 1 1 1 1 1 1 1 IT0 
7 6 5 4 3 2 1 0 

RCL ~--1 1 1 1 1 1 1 1 I:J 

7 6 5 4 3 2 1 0 

RCR ["I 1 1 1 1 1 1 1 I-~ 
C indicates the carry flag. 
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Machine language strings are a little different from BASIC 
strings. There are a number of machine language instructions 
used to move, compare, scan, and otherwise manipulate 
strings. 

In BASIC, strings are generally used to store characters. 
Remember, however, that characters are bytes. In fact, BASIC 
strings are really strings of bytes. A string is similar to a long 
table of bytes. In other words, a string in BASIC is really a 
kind of array. Each element in the array is one character in the 
string. Strings in machine language are no more than arrays of 
bytes. To add versatility to the string-handling abilities of the 
8088, Intel has also provided for word strings. In a word string, 
each element of the string is a word, rather than a byte. 

There are five machine language instructions which are 
used to manipulate strings: LODS, STOS, SCAS, MOVS, and 
CMPS. Before we get into the details of the instructions, let's 
examine some of the general principles of string handling. 

The Direction Flag (DF) 
Direction Flag, DF, is used to determine the directional opera­
tion of the string instructions. If strings are stored in succeed­
ing addresses, you must clear DF before performing any string 
instructions. If your strings are stored in decreasing addresses, 
you must set DF before any string instructions. The CLD 
(CLear Direction flag) instruction is used to clear DF, while 
STD (SeT Direction flag) is used to set DF. Generally, how­
ever, strings are stored in succeeding addresses, so you will 
want to use CLD before any string instructions. 

The REPeat Prefixes 
String instructions have a feature which makes them different 
from the other instructions; string instructions can be repeated 
automatically. The 8088 instruction prefix REP tells the 
microprocessor to repeat the given string operation CX times. 

146 

I 

II 

I 

II 

8 
a 
I 



I 

8 

I 

II ., 
e. 
a 
I 

9 
String Instructions 

For the code below: 
MOV CX,IOO 
REP LODS 

LODS will be executed 100 times (LODS is explained below). 
There are two other REP instruction prefixes. The first, 
REPE/REPZ, repeats if the zero flag indicates a zero result. 
The other, REPNE/REPNZ, repeats if the zero flag indicates a 
nonzero result. Note that the check against the zero flag is an 
extension of the normal REP prefix. 

The LODS Instruction 
The LODS (LOaD String) instruction is used to access one 
byte or word of a string. There are actually two LODS instruc­
tions, one for bytes (LODSB) and another for words (LODSW). 
LODSB transfers the byte pointed to by SI to AL and adjusts 
SI to point to the next byte. LODSW transfers the word 
pointed fO by SI to AX and adjusts SI to point to the next 
word. SI generally acts as an offset into the data segment; 
however, the segment can be changed with segment overrides 
(as described below). 

LODS automatically adjusts SI to point to the next ele­
ment in the string. This adjustment can be either positive (the 
string is stored in increasing addresses) or negative (it is stored 
in decreasing addresses). Remember that the direction flag 
tells the microprocessor which way the strings are stored. If 
the direction flag is clear (0), SI is incremented; if it is set, SI is 
decremented. In other words, after an STD, SI will be 
decremented each time LODS is used; after CLD, SI will be in­
cremented each time LODS is used. Note that SI is adjusted 
(incremented or decremented) by 1 for LODSB and by 2 for 
LODSW. 

The code below performs the same operation as LODSB 
when the direction flag is clear: 
MOV AL,[SI] 
INC SI 

First, the byte pointed to by SI is moved into AL, then SI is 
incremented by 1. 

The assembler accepts two formats for the LODS instruc­
tion. First, you can explicitly specify LODSB or LODSW. The 
other possibility is to use the format 

LODS operand 
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where the operand is the name of the string being accessed. If 
the string is made up of bytes, the assembler will use LODSB; 
if, on the other hand, the string is made up of words, the 
assembler will use LODSW. Note that the LODS instruction it­
self does not take an operand. The operand is used solely by 
the assembler to determine the size of the operand and which 
segment register to use. If you do not have a specific operand, 
you must use the following format to override the segment 
register: 
LODS size PTR segment-register:[SI] 

The size is either byte or word (for LODSB and LODSW) and 
the segment-register is CS, OS, ES, or SS. If you do not specify 
a size (you just use LODS segment-register:[SI]), the assembler 
will assume you want LODSB. 

LODS can be used when you need to sequentially access 
bytes or words in a table. LODS has the advantage that it 
automatically increments or decrements the pointer register. 
For example, you could use LODS to print a string one charac­
ter at a time (the 0 byte indicates the end of the message): 
[in the data segment] 
MESSAGE DB 'This is a sample message',13,lO,O 
[in the code segment] 

Ll: 

DONE: 

MOV SI,OFFSET MESSAGE 
LODSB 
CMP AL,O 
JE DONE 
CALL PRINT_CHARACTER 
JMPLl 

;get the address of the message 
;load one byte of the message 
;is it the end of the message? 
;yes, so we are done 
;print the character 
;get the next byte of the message 

Note that we are using the PRINT_CHARACTER routine 
from the program "Primes." 

Also notice that SI is set to the address of the variable 
MESSAGE. The OFFSET command was discussed briefly in 
Chapter 7. OFFSET is used to determine the location of a vari­
able. In this case, OFFSET will return the position of MES­
SAGE relative to the base of the segment it is in. Remember 
that OFFSET is an assembler command, not an 8088 com­
mand. The command MOV SI,OFFSET MESSAGE will be 
turned into an immediate MOV command, and the immediate 
value will be the address of MESSAGE relative to the base of 
the segment it's defined in. 
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The STOS Instruction 
The STOS (STOre String) instruction is essentially the op­
posite of LODS. STOS is used to store a byte or a word in a 
string. Note that STOS uses ES:DI to address the string, not 
DS:SI. There is no way to override the segment assignment of 
STOS; you must always use ES. 

As with LODS, there are two STOS instructions: STOSB 
(for byte strings) and STOSW (for word strings). STOSB stores 
AL in the memory address pointed to by ES:DI and adjusts DI 
to point to the next byte. STOSW stores AX in the memory 
address pointed to by ES:DI and adjusts DI to point to the 
next word. 

The direction flag is used by STOS in the same way it is 
used by LODS. For STOSB, DI is incremented by one if DF is 
clear and is decremented by one if DF is set. For STOSW, DI 
is incremented or decremented (according to the state of DF) 
by two. 

The ST05 instruction can be repeated a certain number of 
times with the REP prefix. For example, you could use 5TOS 
with REP to fill a portion of memory. The following code fills 
the string TABLE with 100 ASCII spaces. 

[in your extra segment] 
TABLE OB 100 OUP(?) ;undefined table of 100 bytes 

[in your code segment] 
CLO 
MOY AL," 
MOY CX,100 
MOY OI,OFFSET TABLE 
REP STOS TABLE 

;work upwards in memory 
;space character in AL 
;number of times to repeat 
;get the address of TABLE 
;fill TABLE with spaces 

The following code performs the same operation, but without 
the STOS and REP instructions: 

MOY CX,lOO ;number of times to loop 
MOY OI,OFFSET TABLE ;get the address of TABLE 

L1: MOY BYTE PTR ES:[OI]," ;put a space in one byte of TABLE 
INC 01 ;point to next byte in TABLE 
LOOP L1 ;repeat the "fill" 

Note that you can use REP prefixes with LODS as well, 
but doing so is rather pointless. 

As with LODS, the assembler accepts two formats for 
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STOS. You can either explicitly specify STOSB or STOSW, or 
you can use the format 
STOS operand 

where the operand is the name of the string you are using. If 
the string is a string of words, the assembler will use STOSW; 
on the other hand, if the string is a string of bytes, the assem­
bler will use STOSB. 

The SeAS Instruction 
The SCAS instruction (SCAn String) is used to search a string 
for a specific byte or word. As with STOS, SCAS always uses 
ES:DI to address the string. You cannot override the segment, 
so you must always use ES with SCAS. 

There are two SCAS instructions, SCASB for bytes and 
SCASW for words. The SCASB instruction reads the byte 
pointed to by ES:DI and compares it with the byte in AL. In 
addition, DI is adjusted to point to the next byte in the string. 
The SCASW instruction reads the word pointed to by ES:DI, 
compares it with the word in AX, and adjusts DI to point to 
the next word in the string. 

As with the other string instructions, DF is used to deter­
mine whether the pointer, DI in this case, should be in­
cremented (if DF is clear) or decremented (if DF is set). In 
either case, DI is adjusted by one if SCASB is used, and by 
two, if SCASW is used. 

After a SCAS operation, you can use any of the con­
ditional jumps explained in Chapter 5. SCAS is the same as 
the following comparison: 
CMP accumulator,ES:[DI] 

I 

8 

a 

Since SCAS is a decision-making instruction, it is often II 
used with REPE or REPNE. You can use REPE and SCAS, for 
example, to find the first nonzero element in a table of words: 
[in your extra segment] II 
WORDS DW tOO DUP (?) ;undefined table of 100 bytes 

[in your code segment] 
CLD 
MOV CX,tOO 
MOV AL,O 
MOV DI,OFFSET WORDS 
REPE SCAS WORDS 

150 

;work upwards 
;length of table 
;looking for nonzero 
;get address of table 
;repeat until nonzero found 
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JCXZ ALL-ZEROS ;if ex = 0 then table all zeros 
[nonzero was found, and next element pointed to by ES:DI] 

If a nonzero element is found, ES:OI will point to the word 
after the nonzero element. If you want to examine the nonzero 
element, you will have to adjust 01 back one element. 

The following code performs a similar operation, but does 
not use the SCAS instruction (note that, on return, 01 is 
slightly different below): 

MOV CX,lOO ;length of table 
MOV AL,O ;looking for nonzero 
MOV DI,OFFSET WORDS ;get address of table 

L1: CMP AL,ES:[DI] ;is element in table zero? 
JNE L2 ;element is not zero 
ADD DI,2 ;point to next element 
LOOP L1 ;do all 100 elements 
JMP ALL_ZEROS ;table is all zeros 

L2: [nonzero was found, and is pointed to by ES:DI] 

As with the other string instructions, the assembler will 
accept two formats of the SCAS instruction. You can either 
specify SCASB or SCASW (for byte or word scans), or you can 
use the format 
SCAS operand 

where the operand is the name of the string you are scanning. 
If the string is made up of bytes, the assembler will use the 
SCASB operation. If the string is made up of words, it will use 
the SCASW instruction. Note that the operand is solely for use 
by the assembler. SCAS, as a machine language instruction, 
does not take an operand. 

The MOVS Instruction 
The MOVS (MOVe String) instruction and the CMPS (CoM­
Pare String) instruction are probably the most complex of the 
five string instructions. MOVS is used to move a string from 
one place in memory to another. Again, there are really two 
MOVS instructions: MOVSB to move byte strings, and 
MOVSW to move word strings. 

The MOVSB instruction moves the byte pointed to by 
OS:SI to the memory address pointed to by ES: OI. Both SI and 
01 are adjusted to point to the next byte according to OF. 
Remember that if OF is clear, string operations work up in 
memory (so for MOVSB, SI and 01 are incremented by one), 
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and that if DF is set, string operations work down in memory 
(for MOVSB, SI and DI are decremented by one). MOVSW 
moves the word pointed to by DS:SI to the memory location 
pointed to by ES:DI. DI and SI are adjusted to point to the 
next word (SI and DI are incremented or decremented by two 
depending on the state of DF). The segment register used to 
address the destination must always be ES:DI. However, you 
can change the segment register for the source with any of the 
segment overrides as described below. 

MOVS is often used with the REP prefix to move large 
sections of memory from one place to another. The code 
[in your data segment] 
HERE 

[in your extra segment] 
THERE 
[in your code segment] 

DB 150 DUP(?) ;150 undefined bytes 

DB 150 DUP(?) ;another 150 undefined bytes 

CLD ;work up 
LEA SI,HERE ;address of source string 
LEA DI,THERE ;address of destination string 
MOV CX,1S0 ;length of string 
REP MOVS THERE,HERE ;move the string 

copies the byte string HERE to the byte string THERE. Note 
that we can also use REPE or REPNE because MOVS does not 
set the zero flag. 

As with the other string instructions, the assembler will 
accept two formats for MOVS. You can specify MOVSB or 
MOVSW when you want to move byte or word strings, or you 
can use the format 
MOVS destination,source 

where the destination is the string pointed to by ES:DI, and the 
source is the string pointed to by DS:SI. Note that both the 
source and destination strings must be either bytes or words. 
If the operands are byte strings, the assembler will use 
MOVSB. If the operands are word strings, it will use MOVSW. 
If you do not have specific operands the assembler can use to 
determine which segment register to use, you must use the 
following format to override the segment register: 
MOVS size PTR [01], size PTR segment-register:[SI] 

The size is either byte or word (for MOVSB and MOVSW), 
and the segment-register is CS, DS, ES, or SS. Remember that 
you cannot change the segment register for the destination, 
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only the source. Also note that if you do not specify a size 
with the PTR instruction, the assembler will assume you want 
MOVSB . 

The CMPS Instruction 
CMPS is used to compare two strings. As with the other string 
instructions, there are actually two CMPS instructions: CMPSB 
for bytes and CMPSW for words. CMPSB compares the byte 
pointed to by ES:DI with the byte pointed to by DS:SI, and 
adjusts SI and DI to point to the next byte. CMPSW compares 
the word pointed to by ES:DI with the word pointed to by 
DS:SI, and adjusts DI and SI to point to the next word. As 
with all string instructions, DF is used to determine whether SI 
and DI should be incremented or decremented. Note that you 
cannot change the segment used with the DI, you must always 
use ES with DI. You can, however, change the segment used 
with SI with one of the segment overrides. The techniques are 
the same as those used with the MOVS instruction. After a 
CMPS operation, you can use any of the conditional jumps ex­
plained in Chapter 5. CMPS is the same as 
CMP DS:[SI],ES:[DI] 

where SI points to the first operand, while DI points to the 
second. 

REPE or REPNE prefixes are often used with this instruc­
tion. This allows you to compare two strings and stop when 
the two are the same, or are different. Note that this is not like 
SCAS, which looks for only one particular byte or word in a 
string. For example, the following code will compare two word 
strings until there is a difference between them: 
[in the data segment] 
ONE_STRING DW 20 DUP(?) 
, 
[in the extra segment] 
OTHER_STRING DW 20 DUP(?) 
[in the code segment] 
CLD ;work up in memory 
MOV CX,20 ;length of strings 
MOV SI,OFFSET ONE_STRING ;address of first string 
MOV DI,OFFSET OTHER_STRING ;address of second 
REPE CMPS ONE_STRING, OTHER_STRING ;compare the two 

Note that after the CMPS, SI and DI will point to the word 
after they differ, not the word where they differ. 
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As with all of the other string instructions, CMPS can 
take two formats. You can specify CMPSB or CMPSW explic­
itly, or you can use the instruction 
CMPS operand_l,operand_2 

Operand_l is the string pointed to by DS:SI, and 
operand_2 is the string pointed to by ES:DI. 

Note that MOVS and CMPS are the only two machine 
language instructions which perform memory-to-memory 
operations. 

The repeat prefixes can be used with any of the string 
instructions. Also keep in mind that none of the string instruc­
tions (as machine language instructions) take any operands. 
The operands are specified only for the assembler, so that it 
can determine whether it should use the byte or word version 
of the instruction and which segment register to use. 

Be careful using a REPeat prefix and a segment override 
with a string instruction. If an interrupt (see Chapter 11) oc­
curs while the string instruction with a segment override is 
being repeated, the REPeat will not be completed. You must 
do two things to overcome this problem. CX must be zero at 
the end of the REPeated instruction and the interrupts must be 
disabled before the string instruction, and reenabled after­
wards (using the CLI and STI instructions discussed in Chap­
ter 11). 

CLI 
R1: REP MOVS WORD PTR [01], WORD PTR ES:[SI] 

JCXZ R2 
DEC CX 
JMP R1 

R2: STI 

II 

8 , 
• 

Remember, this applies only if the string instruction is being I 
repeated and there is a segment override. If the string instruc-
tion is not being repeated or if there is no segment override, _ 
there is no need to put in this special check (see the sample • 
program from Chapter 10 for an example of this technique). 

String Search Example _ 
The sample program for this chapter is called "SORT.ASM." It 
alphabetically sorts a short list of character strings. The length II 
and number of strings are specified by the constants 
STRING_LEN and NUMBElLSTRINGS. In the example data 
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(called NAMES), the length of each string is 16 characters, and 
there are 10 sample pieces of data. If you decide to change the 
length of the strings or the number of strings, remember to 
change these two constants at the beginning of the program. 

The TEMP_STRING variable is used as a kind of string 
"accumulator." There are three messages which are also de­
fined in the data segment. The first, UNSORTEO_MES, begins 
with a carriage return and linefeed. This puts the cursor at the 
beginning of the next line of the screen. Note that there is a 
carriage return and a linefeed at the end of the string as well. 
The 0 is used to indicate the end of the string; it will not be 
printed. The second string, SORTEO_MES, is similar. Note 
that we can use just linefeeds if we want to move to the next 
line of the screen. The last string defined in the data segment, 
CR-LF, is just a carriage return and a linefeed. 

Next we defined the stack segment, as always. Following 
the stack declaration is the code segment. The first few 
instructions set up the FAR RETurn to DOS. OS and ES are 
set up as the data segment. Remember that some of the string 
instructions (MOVS and CMPS, for example) must use ES. 
The direction flag (OF) is cleared so that all string operations 
are performed going up in memory, not down. The rest of the 
main loop is well commented. 

Notice how the PRINT_MES subroutine uses the LOOSB 
instruction. Since the string is terminated by a zero byte, when 
AL holds 0, we know the entire string has been printed. The 
PRINT_MES routine calls CHARACTER-OUT. This is the 
same CHARACTER-OUT procedure that is used in the pro­
gram in "PRIMES.ASM." The PRINT_STRINGS routine prints 
the data (in this case the names). If you like, you can have it 
print carriage returns between the strings (place the code to do 
this after the LOOP PRINT_ONE_STRING instruction). 

The actual sorting routine comes next. The sort procedure 
searches the string for the lowest string (alphabetically) and 
exchanges it with the first element in the array. Then, it 
searches for the lowest string again (excluding the first one) 
and exchanges it with the second string. This goes on until the 
entire string has been sorted. 

The routine SORT in SORT.ASM calls two other routines. 
The first, FIND_LEAST, searches for the lowest string. When 
the routine is called, BX must point to the first string to be 
checked, and OL must indicate which string it is (first, second, 
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II 
third, etc.). On return, BP points to the lowest string. The sec- _ 
ond, XCHG_STRINGS, exchanges the string pointed to by BP 
with the one pointed to by BX. 

The program SORT.ASM is intended as a demonstration II 
of the use of string instructions and is not very useful in its 
present form because you must reassemble it each time you 
need to sort new data. You must also reconfigure the program _ 
if your strings are a different length from the ones given here. 

II 

II 
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CHAPTER 

10 
U sing Machine 

Language \\lith BASIC 
Why, you may ask, would someone want to use machine lan­
guage with BASIC? Machine language programs have the 
potential to do anything BASIC can manage, and to do it 
much faster. But it is often more convenient to use an existing 
BASIC feature, rather than invent a machine language routine 
to perform the same task. Thus, parts of your program (writ­
ten in BASIC) can use BASIC's special features; parts of your 
program (in machine language) can execute with the necessary 
speed. 

BASIC has many useful features. Here's a brief and in­
complete list: full eight-byte floating-point number handling; 
easy manipulation of strings; an enormous variety of trigo­
nometric and transcendental functions; easy-to-use disk files; 
simple text mode screen handling; extremely powerful graph­
ics control, including DRAW, CIRCLE, PAINT, GET, PUT, 
WINDOW, and VIEW; easy control of joysticks and other 
peripherals; powerful PCjr music control; trapping of events 
(keystrokes, timers, joysticks, light pen, and more). The list 
goes on and on. 

To make use of these features, the usual procedure is to 
write a program in BASIC which communicates with its ma­
chine language subroutine(s) by the CALL or USR statements. 
Theoretically, it is also possible to write an all machine lan­
guage program that directly calls the subroutines in the BASIC 
interpreter ROM. However, BASIC is different on different 
members of the PC family, so this approach is not very fea­
sible. 

In this chapter, we will begin by discussing the difficult 
task of loading a machine language file into memory where it 
can actually run with BASIC. Then we shall explain how 
BASIC and machine language subroutines communicate with 
each other. The sample program included with this chapter is 
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a routine called "Scroll," which allows you to scroll the cur­
rent screen any distance to the right or left. 

Pascal users, don't despair: Appendix F discusses the rel­
atively simple task of using machine language with your Pas­
cal programs. 

Until now, loading a file has always been simple. In 
BASIC, you simply use the LOAD command; from DOS, you 
just type the name of the program, and DOS loads and exe­
cutes it. But to use machine language with BASIC, it is nec­
essary to be rather more devious than with normal DOS 
machine language programs. Don't worry too much, however; 
once a machine language program is installed properly in 
memory, BASIC's BSAVE and BLOAD commands are all that 
is needed to load and save it. 

Where to Put the Program 
One of the most difficult requirements for a machine language 
routine to be used with BASIC is that it must not get in BA­
SIC's way. Almost any location within the BASIC work space 
is fair game to be clobbered without the programmer's knowl­
edge. The BASIC work space typically starts at about the 26K 
mark on the PCjr, and around the 42K mark for the PC's 
BASIC.COM (the work space is what the default DEF SEC 
points to). BASIC takes over the entire 64K segment starting 
from that point, and uses it for 
BASIC's own data area 
COM buffers (for modem communication) 
file buffers (for handling disk files) 
your BASIC program 
scalar data 
array data 
string data 
stack space 
Since the stack and string data grow down from the top of 
memory, and scalar and array data grow up from the bottom 
of memory, it's hard to find a place even relatively safe from 
BASIC. 

There are two ways of getting your machine language 
routine in a safe place. First of all, BASIC provides some areas 
that are safe. If your program doesn't use the disk drives, the 
file buffers are safe places to put programs. See the BASIC 
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manual's appendix on "Technical Information and Tips." It's 
also possible to DIMension an array and then place a machine 
language routine in the space allocated for the array data. You 
can find the addresses of file buffers and variables with 
BASIC's VARPTR function. However, there is a difficulty with 
this approach. Since your programs will be starting at some 
unknown address within BASIC's data area, and not at offset 
zero within a segment, the addresses within your program 
(references to data and the like) will be wrong. You can avoid 
this problem by not using variables in your program, but this 
tends to be somewhat limiting. Simple programs can be used 
in this way (and POKEd in from DATA statements, too), but 
not programs of any complexity. 

Another approach is more promising. Since BASIC has 
such a firm grip on its work-area segment, the easiest place to 
put a machine language subroutine is outside this segment. 
This approach is easier, but there are a few complexities. First 
of all, not all computers have extra space outside of the BASIC 
work area; a 64K Pc, for example, has no room left over once 
BASIC has taken over. Second, the PCjr and the PC have their 
BASIC work areas in different places in memory, making it 
hard to establish a segment address that is outside BASIC's 
work area on all computers. 

As a rule, on 128K PCjrs, the best place to locate a ma­
chine language subroutine is at segment address 1700H (the 
92K mark). This leaves 20K of unused memory between BASIC's 
work area and the screen area (at segment address lCOOH). To 
call a machine language routine at segment 1700H, use the 
BASIC DEF SEG command: 
DEF SEG = &H1700 

and then use the CALL command. 
If you have a PC with more than 96K of memory, any 

segment address of lCOOH or above is okay, up to the limits 
of your memory expansion. Use the DEF SEG command, as 
above, to set the code segment to the right location. 

If your computer has only 64K, don't worry. The BASIC 
CLEAR command has a provision for freeing memory for ma­
chine language. Normally the CLEAR command is used to 
clear out your variable area. However, optional parameters can 
be specified to change the way BASIC handles its work area. 
The particular format of the CLEAR command that we're con­
cerned with is 
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CLEAR ,max size 

The maxsize parameter tells BASIC how many bytes it can use 
for its work area. So, if you have a 64K PC, you can specify 
CLEAR ,16384 

leaving only 16K for your BASIC program. If you're using 
BASIC.COM (not BASICA), that should leave you all the room 
from segment address BOOH to the top of your memory. 

Another way to limit the size of BASIC's work area is by 
specifying a special parameter when you type BASIC from 
DOS. Normally BASIC takes as much memory as it can, up to 
a maximum of 64K, for its work area, but you can force it to 
start out with less memory with the following parameter: 
BASIC jM:maxsize 

This way, BASIC starts out with less memory, and you don't 
need to use the CLEAR command. 

Program 10-1 is a short program that will tell you where 
you can start putting your machine language programs. The 
program is in machine language, and returns to the master 
BASIC program the segment address of BASIC's work area. By 
adding 1000H to that, we can find out where BASIC's 64K 
segment ends. If this program returns a value that's bigger 
than your available memory, you'll have to use CLEAR or the 
1M parameter to set up an area outside of BASIC. The ma­
chine language data statements in Program 10-1 are equivalent 
to this short machine language program. Later in the chapter, 
we'll explain how it works. 
CSEG SEGMENT CODE 
PROGRAM PROC FAR 

PUSH BP 
MOV BP,SP 
MOV SI,[BP+6] 
MOV [SI],DS 
POP BP 
RET 2 

PROGRAM ENDP 
CSEG ENDS 

END 

For PCjr owners and PC owners with the color/graphics 
card, there's one other convenient spot to store programs. If 
your program uses the 80-column text screen, but doesn't 
change pages (see Chapter 12 for a discussion of pages), 
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there's 12K of memory that can be used from segment address 
B900H up to BBFFH. Also, if your PC has both the mono­
chrome and color/graphics boards, you can store machine lan­
guage on one while using the other. But be careful when using 
this area: The SCREEN command can be used to wipe out all 
of graphics memory, and the 16K graphics modes will clear 
the color/graphics memory. 

Loading the Program 
Now we've established where to load programs. The next 
question is how we load them. The easiest way to accomplish 
this is with DEBUG. However, since we're loading our pro­
grams into unusual places (the top of memory instead of the 
bottom), we'll need a special machine language program to 
load the combined BASIC/machine language program wher­
ever we want it to go. Program 10-2 should be typed in and 
used each time you load a program into BASIC for the first 
time (after that, you can use BASIC's BLOAD command). 

Using EXELOAD. Once you've assembled and linked 
"EXELOAD.ASM" (Program 10-2), you're ready to begin 
bringing machine language programs into BASIC. We'll show 
you the technique to load a BASIC/machine language pro­
gram, even though we haven't written any as yet. For now, 
we'll use the name "SCROLL.EXE" as our sample 
BASIC/machine language program, and the segment address 
lCOOH for our load address. To use EXELOAD, enter the 
following: 
A>DEBUG EXELOAD.EXE 
-N SCROLL.EXE (use your filename here) 
-E CS:12 
091B:0012 00.00 17.1C (use your load address here) 
-G 

Program terminated normally 
-Q 

A>_ 

You have to use the N command to specify the name of your 
machine language program for BASIC, and set the segment 
address you want your program to load at with the E com­
mand. Once these two parameters are set, execute EXELOAD 
with the G command, then leave DEBUG with the Q com­
mand. It's also possible just to type 
168 
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A> EXELOAD filename.EXE 

if EXELOAD.ASM was assembled with the correct default seg­
ment load address. So, 128K PCjr users might assemble a ver­
sion with MOV AX,1700H, while PC users with more than 
96K could assemble theirs with MOV AX,lCOOH. 

If you have an expanded PCjr or a PC with more than 
96K, you can just type BASIC (or BASICA). Otherwise, you'll 
have to specify the 1M parameter. For example, if you have a 
64K Pc, you might want to specify . 
A> BASIC /M:32768 

BSAVE and BLOAD. Finally, we're in BASIC, and our 
machine language program is still in memory where the 
EXELOAD program put it. At this point we should save the 
program in BASIC's own format, with the BSAVE command. 
The BSAVE command allows us to store machine language 
programs (or other data) on disk, and then retrieve them with 
the BLOAD command, thus avoiding the DEBUGing and 
EXELOADing. So you should enter 
DEF SEG = &H1700 

(using the address where you loaded your program in place of 
1700 above). Then you save the program with the BSAVE 
command: 
BSAVE "SCROLL.BSV",O,length 

Choose any name for the file you like; a good extension for 
the file might be .BSV to indicate a BSAVEd file. The length of 
the file is approximately the same as the length of the .EXE 
file on your disk. However, if you're in doubt as to how much 
memory to save, always save more than the bare minimum. 

The hassle is finished; from now on, to use your machine 
language program, all you have to do is enter 
DEF SEG = &H address 
BLOAD "filename.ext",O 

using the correct address and filename, and the machine lan­
guage program will be loaded in. Make sure, however, that 
you always use the same segment address, since most pro­
grams can't be relocated to different locations in memory. 

Parameter Passing 
Now that you know how to load a program, you can learn how 
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II 
to interface your machine language program with BASIC. II 
Most machine language subroutines require parameters from 
the BASIC master program. For example, our scroll routine, 
discussed at the end of this chapter, must be told how far to _ 
scroll the screen. Of course, some machine language routines 
always perform the same task, and don't require any param-
eters, which simplifies the task of programming. II 

We'll begin our discussion with BASIC's CALL command. 
The other machine language command, USR, is more complex. 
The CALL command takes the format 
CALL variable[(variable[,variable ] ... )] 

This notation means that you can CALL without any param­
eters, with one, with two, or as many as you like. Since 
BASIC always uses a far CALL, your programs must end with 
a far RETurn, just like normal DOS programs; thus your pro­
gram must be a far PROCedure. 

If there are any parameters after the CALL statement, 
BASIC prepares to pass them by placing a special pointer for 
each variable on the stack before it calls your program. In this, 
it is much the same as the stack parameter-passing we dis­
cussed in Chapter 6. What is difficult, however, is that rather 
than placing the values of the variables on the stack, it places 
the address of the variables on the stack. Here's an example of 
this technique; this short program multiplies two variables to­
gether and leaves the result in a third: 
CSEG SEGMENT 'CODE' 
ADDER PROC FAR 

ASSUME CS:CSEG 

PUSH BP 
MOV BP,SP 
MOV SI,[BP + 10] 
MOV AX,[SI] 
MOV SI,[BP+8] 
MUL [SI] 
MOV SI,[BP + 6] 
MOV [SI],AX 
POP BP 
RET 6 

ADDER ENDP 
CSEG ENDS 

END 

170 

, 
;BP must be saved 
;BP points to stack area 
;SI points to first parameter 
;get value of first parameter 
;SI points to second 
;multiply second by first 
;SI points to third 
;leave answer in third 
;restore BP 
;far RETurn to BASIC 
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This program might be called from BASIC with this: 
100 DEF SEG = &H1COO 'seg. addr. for 128K PCjr 
110 BLOAD II ADDER.BSV",O 'program named II ADDER.ASM" 
120 ADDER=O: A%=3: B%=5 'specify address and parameters 
130 CALL ADDER (A %,B%,C%) 'CALL the machine language 
140 PRINT C% 'print the result 

All parameters must be integers. In this example, if A % holds 
3 and B% holds 5, C% should hold 15 when the subroutine 
returns to BASIC. If your program returns a value (or more 
than one), it's probably easiest to place the value in a BASIC 
variable (like C% above). It is possible to write a program that 
returns a value directly, with the USR command. See the 
BASIC manual for details. 

If you like, you can assemble and link ADDER.EXE, enter 
DEBUG with EXELOAD, use the Nand E commands, execute 
EXELOAD, quit DEBUG and enter BASIC, BSAVE the pro­
gram, and test it. The program serves as a good example of 
the EXELOAD technique, since it would be hard to put a bug 
in an 18-line program. 

Accessing Parameters from the Stack 
You may have been a little puzzled by the displacements used 
with BP to access the addresses of the variables. A closer look 
will help you see the reasoning. Remember, a BASIC CALL 
with parameters pushes a two-byte address for each parameter, 
not a one-byte value. BASIC first pushes the three word­
length addresses onto the stack, and then executes a far CALL, 
leaving two words of the return address (four bytes) on the 
stack. Then, to save BP, we PUSH it onto the stack, depositing 
another two bytes, or six in all. So, to back up to the actual 
parameters, we start with [BP + 6]. This skips over the inter­
vening six bytes, pointing us to the last parameter pushed by 
the CALL statement. We then work our way backwards by 
twos as we load in the parameters nearer to the beginning of 
the CALL parameters. Thus, the sum is put in [BP+6], which 
holds a pointer to the last variable specified. In our example, 
that was C%. [BP+8] holds the pointer to B%, and [BP+I0] 
holds the pointer to A %. 

As a general rule, if you have a total of n arguments, the 
displacement from BP of variable M (I, 2, 3 ... n) is 
2*(n-M)+6. 
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Removing Parameters II 
One other peculiarity about this program is that it ends, not 
with a normal RET, but with a RET pop-value instruction. 
This form of the RET instruction, as we discussed in Chapter II 
6, is used to dispose of PUSHed parameters for a subroutine. 
With BASIC, it's the programmer's responsibility to remove 
the appropriate number of bytes from the stack on exit from II 
the program. Assuming, as above, that n arguments were 
specified in the CALL statement, your program should end 
with 
RET 2 * n 

Types of Parameters 
BASIC has four variable types, but you'll only need to concern 
yourself with two. BASIC saves real numbers, both single- and 
double-precision, in a format difficult to use with 8088 ma­
chine language. However, BASIC's integer types (declared 
with a % suffix) and string types (with the $ suffix) are easier 
to handle. Integers, as you may have deduced from the sample 
program above, are stored by BASIC as normal, word-sized 
signed values, just like machine language. To access one of 
these variables, you must first get its address from the stack, 
and then get the actual value contained in that address. Here 
we're moving the value of the last parameter of the CALL 
statement into OX: 
MOV BX,[BP+6] 
MOV DX,[BX] 

Strings are handled differently. The address on the stack 
doesn't point to the string itself. Instead, it points to a string 
descriptor, three bytes long, with the following format: 
byte 0 length of the string 
bytes 1,2 address of the string in memory (a word value) 

To look at a string in memory, you first load the address of 
the string descriptor off the stack, then load the address of the 
string itself from the string descriptor. BASIC allows you to 
modify the actual string as you please, but you can't change 
its length or its address. The string descriptor should be kept 
intact. 
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Entering and Exiting 
When BASIC gives your subroutine control, the only registers 
that are explicitly set are the segment registers. CS holds the 
current DEF SEG value, and DS, ES, and SS hold the default 
DEF SEG value of BASIC's work area. 

Most .EXE programs immediately begin by setting the DS 
and ES registers to point to their own data segments. This 
may be a mistake if your subroutine takes parameters from 
BASIC, since you must keep at least one segment register 
pointing into BASIC's work area in order to read the values of 
the parameters which were passed. Often the best approach 
for a long program is to begin by setting DS to point to your 
data segment, and use ES as a segment override to read the 
variable parameters. Of course, you could do it the other way 
around, or even use the SS register as a segment override. 

The SS register, however, often has to be changed as well. 
All DOS .EXE files define their own stack, and DOS automati­
cally sets SS and SP to point to the correct part of memory 
when such files begin to execute. However, with BASIC, the 
burden of managing the stack is on the programmer. When 
BASIC gives control to your program, the stack has only room 
for eight word-sized values. If you need more stack space, you 
will have to set SS and SP to point to your own stack. 
Remember, however, to save the initial values, so they can be 
recovered just before returning to BASIC. Unfortunately, most 
DOS and BIOS interrupt routines use more than 16 bytes of 
stack space, so if you use any interrupt routines you will al­
most certainly need to switch the stack registers to point to 
your program's own stack. Of course, if you don't use more 
than 16 bytes of stack space, you don't need to move the 
stack; nor, in fact, do you need to define a stack in your source 
file at all, and you can ignore the Linker's no stack message. 

The only requirement when you leave the program is that 
the segment registers (CS, DS, ES, and SS) have the value 
they had when your subroutine took over. SP and apparently 
BP also need to be reset to their initial values. 

Here's a program framework that you can use for long 
BASIC/machine language programs: 
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SEGMENT STACK 'STACK' SSEG 
STK 
SSEG 

OW 64 DUP(?) ;define a stack area 

DSEG 
SP_STORE 
SS_STORE 

ENDS 

SEGMENT 'DATA' 
OW? 
OW? 

... your data here ... 

DSEG ENDS 

CSEG 

PROGRAM 

SEGMENT 
ASSUME CS:CSEG,DS:DSEG 
PROC FAR 
MOV AX,DSEG 
MOV DS,AX 
PUSH BP 

MOV BP,SP 

MOV SI,[BP+6] 

MOV AX,ES:[SI] 

... read all the parameters in here ... 
MOV SS~TORE,SS 
MOV SP _STORE,SP 
MOV AX,SSEG 
MOV SS,AX 
MOV SP,SIZE STK 

... your program goes here ... 
MOV SS,SS_STORE 

MOV SP,SP _STORE 
MOV DS,SS_STORE 
POP BP 

RET n 
PROGRAM ENDP 
CSEG ENDS 

END 

;store SP here 
;store OS, ES, SS here 

;initialize OS 

;save BP on BASIC 
;stack 
;BP points at BASIC 
;stack 
;read parameters from 
;BASIC stack 
;get a value ... 

;save OS, ES, 55 
;save stack pointer 
;initialize our stack 

;use SIZE operator 

;reload SS with 
;BASIC's segment 
;reset BASIC's stack 
;do the same with OS 
;recover BP from 
;BASIC's stack 
;RET with pop-value 

This program template assumes that you need to set up 
your own stack (whether you use interrupt routines or for 
some other reason), and assumes that you leave ES pointing to 
the BASIC data segment. Just remember, DS, ES, and SS must 
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point to the BASIC work area when your machine language 
routine ends. 

The sample program for this chapter is "SCROLL.ASM." 
Enter it, assemble and link it, then load it into memory with 
EXELOAD. When you enter BASIC, save it (with DEF SEC 
and BSAVE). Then, you can enter and run two short BASIC 
programs written to show off the scroll routine. SCROLL-l 
must be used with the color board for the proper effect; 
SCROLL-2 can be used with color, monochrome, 40- or 80-
columns. Don't forget to change the DEF SEC at the start of 
the two BASIC programs. 

As you have seen, interfacing machine language routines 
with BASIC is substantially unlike DOS programming. You 
don't push a return address onto the stack, because BASIC has 
already done that. You do have to initialize your own stack, 
since BASIC doesn't do that. You have to reset DS, ES, and SS 
for BASIC; DOS doesn't care. However, the programming is 
not that much different from DOS, and the rewards of using 
machine language in conjunction with BASIC are certainly 
substantial enough to justify any added complexity. 
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CHAPTER 

11 
Overvie\V of Interrupts 

In this chapter we'll examine the use of interrupts on the 8088 
microprocessor. You have used interrupts in earlier chapters in 
a cookbook fashion: the DOS function call, INT 21H, for ex­
ample. Here we'll discuss how interrupts work and how the 
8088 and MS-DOS make use of them. (There is an excellent, if 
technical, discussion of interrupt structure on pages 8-30 
through 8-42 of Rector's and Alexy's The 8086 Book, published 
by Osborne/McGraw-Hill.) In the next two chapters, we'll 
continue with the subject of interrupts, focusing on the Pc. 

Why Interrupts? 
First of all, let's discuss what an interrupt is. We all are well­
acquainted with many types of interruptions: the telephone 
ringing, the smoke alarm going off, a young child wanting our 
attention. However, in a computer system, interrupts are pos­
itively advantageous. 

The computer is always connected to a variety of other 
devices. Some of them are clearly separate-disk drives, 
moderns, other microprocessors-and some less so-internal 
clocks and timers, for example. For a computer to handle input 
and output properly, it has to be prepared for information 
from all of these devices at any time. There are only two ways 
for the 8088 to find out what's happening with these external 
devices. 

1. The computer can routinely take time off from its various 
tasks to poll all the attached devices. In other words, the 
8088 checks the appropriate input/output ports to see if 
anything is happening. 

2. The devices let the computer know when something 
happens. 

As you can imagine, this second alternative makes more 
sense. That way, the computer is spared having to spend a 
substantial amount of time checking all the attached 
peripherals. This second method is the interrupt technique. In 
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short, whenever some external device has something to tell 
the microprocessor, it interrupts it. The keyboard, for example, 
interrupts the microprocessor whenever a key is struck. 

The 8088 has a much more powerful system of interrupts 
than most eight-bit microprocessors. Each interrupt on the 
8088 has a priority level, from interrupt 0 (the highest) to 255 
(the lowest). Whenever the 8088 gets two interrupts at the 
same time, the lower-numbered interrupt is handled first. 

Software Interrupts 
In general, external interrupts (interrupts from peripherals) 
won't concern you. Software interrupts (interrupts requested 
by your own program as part of the normal program flow) are 
of more concern to the programmer. The interrupt number 
then becomes not a measure of an interrupt's priority, since 
you can call only one interrupt at a time, but rather a conven­
ient index with which to access specific interrupt routines. 
These software interrupts are designed to give the programmer 
access to all the power of DOS and BIOS. 

Basically, using software interrupts is similar to CALling 
the system routines. However, using the INT command lets 
you call a routine without knowing where it is. You simply use 
the INT command in your program and let the computer fig­
ure out where the requested routine is located. 

The idea of something interrupting itself is most peculiar. 
In fact, as you can imagine, the rationale behind these soft­
ware interrupts is entirely different from the reason for the 
hardware interrupts discussed above. Why not simply have 
your program CALL any DOS or BIOS routines it needs to 
use? There are a few convincing reasons for using interrupts: 

1. Simplicity. Putting INT lOR in your program is obviously 
preferable to, for example, CALL FOOO:ODOB: It takes fewer 
bytes of program memory (two versus five), and it is 
considerably easier to remember. 

2. Portability. A portable program is one that will run without 
modification on a variety of different machines. For ex­
ample, most machine language programs written on the 
IBM PC will run on the PCjr, even though the crucial 
routines in DOS and BIOS are in different places. A CALL 
FOOO:ODOB on one machine, for example, is a CALL 
FOOO:F065 on another. Portable programs thus always use 
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the system INTerrupts and let the computer figure out 
where the appropriate routines are located. 

How Interrupts Work 
No matter whether an interrupt is a software interrupt or a 
hardware interrupt, the basic mechanism used to handle them 
is the same. There are three ways for the computer to know 
which interrupt you want. The number can be specified by an 
external device requesting an interrupt, by the program itself 
(as in INT 21H), or the number can be implicit in the software 
command. 

Once the computer knows which interrupt number is be­
ing requested, it locates the interrupt-handling routine (also 
know as the interrupt service routine). The first 1024 bytes of 
memory (OOOOOH to 003FFH) are given over to storing the 
starting addresses of each interrupt routine in segment:offset 
form. (Thus, 256 interrupt vectors, each four bytes long, add 
up to 1024 or one K.) It is possible to modify these vectors so 
that they point to your routines rather than the computer's, 
but doing so is a rather advanced technique. 

Now the computer knows where the subroutine is located. 
It pushes three words onto the stack: the 16-bit flags register, 
the current code segment (CS), and the current instruction 
pointer (IP). Next it loads the appropriate segment offset value 
from the interrupt vector area. At this point the interrupt rou­
tine is given control. As you can see, this is much like a far 
CALL (such as the CALL FOOO:ODOB mentioned above). The 
only difference is that the flags register is also saved on the 
stack. We'll discuss why in a moment. 

At this point, CS:IP holds the start address of the inter­
rupt routine; the routine begins to execute. When the interrupt 
routine is finished, it executes an IRET instruction (Interrupt 
RETurn). This instruction is like the standard far RETurn, but 
it also pops the flags register off the stack. Now, CS:IP points 
back into the main program at the point where the interrupt 
was called, and the main program continues from where it left 
off. 

Why save the flags register? Saving and then restoring the 
flags register allows a program to be stopped in the middle of 
execution by an external interrupt and then to resume exactly 
where it left off. For example, the clock-updating routine, 
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II 
which is called 18.2 times each second by one of the PC's II 
timers, saves and then restores all the registers that it modi-
fies. (Imagine the registers in your program changing 18.2 
times a second!) II 

For those interrupt routines that are called only with soft­
ware interrupts (and that covers most routines), certain reg-
isters are not saved. These are the registers that are used to II 
pass parameters. For example, the AX register is very rarely 
saved by any of the common interrupts; some interrupts, like 
the absolute disk read and write routines (INT 25H and 26H), 
alter all but the segment registers. Since these routines are al-
ways called predictably from within program code, you don't 
have to worry about registers changing randomly. If you need 
to save registers, simply place PUSH instructions before the 
interrupt call, and POP instructions after it. 

Interrupt Control Opcodes 
We've already discussed the primary interrupt commands, INT 
and IRET. INT allows you to call any of the 256 interrupt 
routines simply by specifying 
INT number 

where number ranges from 0 to 255. IRET (Interrupt RETurn) 
is the instruction used to return from an interrupt. You'll have 
no need to use IRET yourself until you're an advanced pro­
grammer, but you'll need to be able to recognize it to under­
stand interrupt routine program listings, such as those in 
BIOS. 

There are, as we've briefly mentioned, two other interrupt 
generating opcodes. The first of these is INT 3. In appearance 
this is the same as the INT number form above, but in fact the 
INT 3 command is only one byte, as opposed to the standard II 
two-byte INT instruction. INT 3 is used by DEBUG to set 
breakpoints, and will be discussed in more detail below. 

The second specialized interrupt command is INTO. This II 
command (INTerrupt on Overflow) is a conditional interrupt. 
Normally, a program that deals with signed math needs to 
have a way to handle overflow. If INTO is placed after a math II 
operation, it will execute an INT 4 if the overflow flag is set. 
This interrupt opcode, like INT 3, is only one byte. As a rule, 
you won't be needing to use this interrupt. Generating an II 
interrupt on overflow i~ a slight case of overkill for the begin-
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ning to intermediate programmer. Normally, a JO (Jump on 
Overflow) will serve your purpose just as well. 

There are two other interrupt control commands, CLI and 
STI. The CLI command (CLear Interrupt flag) disables (pre­
vents) the microprocessor from responding to external inter­
rupts (such as the clock interrupt mentioned above). 
Conversely, the STI command (SeT Interrupt flag) enables 
interrupts. (6502 programmers, beware! The SEI and CLI com­
mands on the 6502 are exactly the reverse of the seemingly 
equivalent 8088 commands, STI and CLI. SEI, on the 6502, 
SEts the Interrupt disable flag; STI, on the 8088, SeTs the 
Interrupt enable flag.) Bear in mind, though, that when an 
interrupt is actually executed, the computer executes an auto­
matic CLI and also clears the trap flag (discussed below). This 
insures that the interrupt itself will not be interrupted. How­
ever, the interrupt (and trap) flags are reset when the IRET is 
executed, since the flags register, including these two flags, is 
popped from the stack. 

Software interrupts and non-maskable interrupts are both 
exempt from the setting of the interrupt flag. Non-maskable 
interrupts are external interrupts, generally of some urgency, 
and can't wait for the interrupt flag to be cleared. We'll discuss 
the 8088's non-maskable interrupt, INT 2, below. 

The Fixed 8088 Interrupts 
A certain number of 8088 interrupts are preset for all 8088 
systems, regardless of whether they run PC-DOS, MS-DOS, or 
scientific or business systems. These are the first five inter­
rupts, numbers 0 through 4. Each of these interrupts is non­
maskable and therefore will ignore any CLI or STI commands. 

Interrupt 0, Divide Overflow. When specifying a DIV or 
IDIV instruction, it's possible to create a result that is too 
large. For example, requesting 
MOV AX,1234H ;dividend in AX (a word) 
MOV BL,2 ;divisor in BL (a byte) 
DIV BL ;quotient to be in AL (a byte) 

will cause a Divide Overflow interrupt. As you can see, the re­
sult (91AH) is too large to fit into AL. An even more extreme 
case occurs when you put 0 into BL, then execute a DIV BL. 
When a Divide Overflow condition occurs, the divide logic 
automatically calls interrupt O. In PC-DOS, this interrupt calls 
a routine which prints: 
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Divide Overflow 

and drops out of your program back to the command level of 
DOS (the A> prompt). (DOS 2.00 users should note that the 
DOS routine responsible for this will cause the computer to 
crash. DOS 1.10 and 2.10 divide overflow routines work cor­
rectly.) You can, if you wish, rev ector this interrupt to point to 
your own divide overflow routine (an advanced technique). 
This interrupt is the only runtime error message you can get in 
machine language. 

Interrupt 1, Single Step. This interrupt is used only by 
DEBUG. It is triggered after every instruction when the trap 
flag (mentioned above) is set. When the trap flag is set, the 
computer calls interrupt 1 after every program instruction. 
Normally, the trap flag is clear, so the INT l's are not gen­
erated. Furthermore, the INT 1 vector normally points directly 
to an IRET in DOS. This effectively cancels any INT l's, since 
nothing happens and the flags, CS, and IP are immediately re­
stored. 

The trap flag can't be set by a single program instruction. 
Instead, you must follow this procedure: 
PUSHF ;AX holds the flags as follows (bit 15 first) 
POP AX ; O,O,O,O,OF,DF,IF,TF,SF,ZF,O,AF,O,PF,O,CF 
OR AX,100H ;now we set bit 8 (TF) to 1 
PUSH AX ;finally, we return the changed flags register 
POPF ; via the stack 

The interrupts will become enabled after the next instruction. 
The entire 16-bit flags register is moved into the AX register, 
then the appropriate bit (bit 8) is set with the OR instruction. 
Then the modified flags word is transferred back to the flags 
register, again via the stack. Starting with the instruction after 
the POPF instruction, each instruction will be followed by an 
interrupt 1. To turn off single-stepping, you must transfer the 
flags to AX (via the stack), AND AX,OFEFFH, then return the 
flags to the flags register. 

DEBUG uses the Single Step interrupt to handle its Trace 
function. Though you will rarely find a use for this interrupt 
within your programs, you will no doubt be using the DEBUG 
Trace function. A warning about the Trace function: It occa­
sionally appears to drop opcodes during the trace. 

Interrupts are automatically disabled whenever a segment 
register is loaded (with MOV or POP). This exception to the 

194 

II 

II 

II 

II 

II 

II 



II 

II 

II 

II 

II 

11 
Overview of Interrupts 

normal rules of interrupt execution was designed explicitly to 
protect a sequence such as the following: 
MOV SS,AX ;assuming AX has the new stack segment 
MOV SP,lOOH ;100H or whatever SP value you wish 

Without this exception, an external interrupt could be triggered 
between the two stack-setting commands, creating havoc by 
storing information in some area not meant to be a stack at all 
(remember, INT pushes the flags, CS, and IP at the current 
SS:SP). We can see the interrupts being disabled when DE­
BUG occasionally drops opcodes from its trace list. These 
opcodes have been executed; they're just not displayed, since 
loading a segment register turns off all interrupts, including 
Single Step. 

Interrupt 2, NMI (Non-Maskable Interrupt). This is the 
highest priority hardware interrupt (the previous two are 
invariably software interrupts). Furthermore, this is the only 
external interrupt that can override the CLI command. For 
most non-MS-DOS systems, the NMI is used to signal some 
traumatic event within the system: an imminent power failure, 
for example. However, the IBM PC uses the NMI solely to 
handle keyboard input. It's usually a good thing for the user, 
too, since the keyboard Orl-Alt-Del sequence must be non­
maskable if it's to work when interrupts have been disabled 
by CLI. 

As a programmer, you will have little need to involve 
yourself with INT 2 directly. The interrupt handler for inter­
rupt 2 is responsible solely for converting the keyboard data 
into scan codes. We'll discuss the most useful keyboard inter­
rupt, INT 16H, in the next chapter. 

Interrupt 3, Breakpoint. This interrupt, like the Single 
Step interrupt above, is used almost exclusively by and with 
DEBUG. Whenever you specify the Go command with extra 
parameters, like 
G 37,4B 

DEBUG puts the one-byte INT 3 instruction at the specified 
breakpoints (37 and 4B here) and saves their previous con­
tents. Since INT 3 is a one-byte instruction, it can replace any 
one 8088 opcode without interfering with the next. When the 
program hits the breakpoint, DEBUG stops the program's 
execution and restores the old contents of the breakpoint 
byte(s). 
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II 
INT 3 can also be used, with DEBUG, to replace the ini- II 

tial PUSH/PUSH sequence and final RETF. INT 3, if used 
explicitly to end your program, will simply return you to the 
DEBUG command level without restoring OS and the other II 
registers to their initial values (as happens when you use 
RETF). 

When you're not using DEBUG, the interrupt number 3 II 
points directly to an !RET instruction, like INT 1 above. 

Interrupt 4, Overflow. This interrupt has been described 
above in connection with the INTO command. In short, this 
interrupt will execute if INTO is specified and the overflow 
flag is set. INT 4 normally doesn't handle overflow; it defaults 
to an IRET just like INT 1 and INT 3. 

We suggest that you not write any of your own interrupt 
handlers until you are quite advanced. Now that we've examined 
the technical details of interrupts and have begun to under­
stand their structure and general use, we can proceed to dis­
cuss the details of the most useful BIOS and DOS interrupts in 
the next two chapters. 
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CHAPTER 

12 
BIOS Interrupts 

Now that we've discussed the technical side of the inter­
rupts-the interrupt mechanism and structure, the interrupt 
commands, and the predefined 8088 interrupts-we can dis­
cuss the PC-DOS interrupts in more detail. In the next two 
chapters, we'll turn from the technical aspects of interrupts to 
a discussion of the interrupt routines that make up the Disk 
Operating System (DOS) and the Basic Input/Output System 
(BIOS). 

As we discussed in earlier chapters (when you used DOS 
interrupt 21H), one interrupt can often perform more than one 
particular function. For several of the BIOS interrupts, a vari­
ety of functions are available with one interrupt call: interrupt 
10H, for example, has 17 functions. For all the BIOS routines, 
you select a function by placing the number of the function in 
AH prior to calling the routine. So, to call function 8 of inter­
rupt 10H, you would write 
MOV AH,8 ;select function number 8 
INT lOH ;call interrupt 10 hex 

Other parameters also must be specified for many of these 
functions. For example, to output a character with INT 10H, 
you have to put the character in AL as well as the function 
number in AH. Conversely, many functions return values; the 
read keyboard function, for example, returns in AX the value 
of the last key pressed. Registers that are not used for return­
ing values are always preserved by BIOS routines. (AX, how­
ever, is never preserved, and can be any value when the 
routine returns to your program.) 

The Video Handler Interrupt, INT IOH 
This interrupt is very powerful. You will probably be using 
this routine more frequently as your programs begin to use the 
power of the screen for advanced text handling and machine 
language high-resolution graphics. 
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Luckily, the functions provided with this interrupt are 
grouped together fairly logically, but there are some excep­
tions. The table at the end of this section outlines the INT 10H 
functions (in terms of their input and output). 

PC users must make special note of the color/graphics 
functions. Much of the video handler is devoted to the 
color/graphics board, and so the monochrome board can 
make only limited use of this function. When you're using the 
monochrome board, functions 5, 11, 12, and 13 shouldn't be 
used. However, if your PC has both monochrome and 
color / graphics boards, you can switch from one to the other 
with the DOS 2.00 MODE command (MODE COL for 
color/graphics and MODE MONO for monochrome). PCjr 
owners can use all of these functions as they wish. Note also 
that the PCjr BIOS has increased the power of functions 5 and 
11, as well as added an entirely new function, number 16. 

Display Handling Functions (AH = 0, 5, 14 
Decimal) 

Set Video Mode (AH = 0). The first function available 
with INT 10H is very similar to the BASIC SCREEN com­
mand. However, the video modes are numbered differently, 
which can be confusing if you're not careful. To use this func­
tion place the function number, 0, in AH, and the desired 
mode number in AL. Table 12-1 is a list of mode numbers, 
along with the BASIC commands that create the same effect. 
Bear in mind that the set video mode function always clears 
the screen and homes the cursor when called, whereas the 
BASIC SCREEN command won't if the requested mode is the 
same as the current mode. (The set video function also sets 
the active page to 0.) 

The extended graphics modes are available only on the 
PCjr. Also note that the PCjr BASIC command SCREEN for 
SCREENs 3 through 6 is available only with Cartridge BASIC. 
For more detailed information on the graphics modes, see the 
IBM Technical Reference Manual. 

Here's a brief example of how to use this function, setting 
the computer to graphics mode 4 (320 X 200, 4 colors). 
MOV AH,O ;function 0, set mode 
MOV AL,4 ;mode 4, 320 X 200,4 colors 
INT 10H ;call the video I/O routine 

This is the equivalent of the BASIC command SCREEN 1,1,0. 
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II Table 12-1. Video Interrupt Function 0 Mode Settings 

II 

II 

II 

II 

II 

Mode # Name of Mode 
Text Modes ° 40 X 25, black/white 

1 40 X 25, color 
2 80 X 25, b/w 
3 80 X 25, color 

Graphics Modes 

BASIC Equivalent 

SCREEN 0,0,0: WIDTH 40 
SCREEN 0,1,0: WIDTH 40 
SCREEN 0,0,0: WIDTH 80 
SCREEN 0,1,0: WIDTH 80 

4 320 X 200, 4 colors SCREEN 1,1,0 
5 320 X 200, b/w, 4 shades SCREEN 1,0,0 
6 640 X 200, black & white SCREEN 2,0,0 
7 can't set mode 7 (refers to PC's monochrome board) 

Extended Graphics Modes 
8 160 X 200, 16 colors 
9 320 X 200, 16 colors 

10 640 X 200, 4 colors 

SCREEN 3,1,0 
SCREEN 5,1,0 
SCREEN 6,1,0 

Select Active Display Page (AH = 5). This function al­
lows you to choose which of the text pages to display on the 
screen. If you're a fairly advanced BASIC user, you may be 
familiar with this concept. For text modes, the PC family has 
the ability to make more than one screen (or page) available to 
the programmer at one time. Obviously, only one page of 
information can be displayed on the screen. However, you can 
be working on another page at the same time, which you dis­
play only when it's complete. Using multiple pages and page 
flipping eliminates the annoying flicker of putting new infor­
mation directly onto the screen. 

To use this function, AH holds 5, and AL holds the page 
requested. The range for AL is 0 to 7 for 40 columns, and 0 to 
3 for 80 columns. (The video memory area is 16K long, and 
each 40-column screen takes 2K while an 80-column screen 
takes 4K.) The monochrome board does not support this 
function. 

An additional use for this function has been added on the 
PCjr, one which allows you to select which 16K block of 
memory of system RAM to use for display. On the PC, the 
memory used for the color/graphics screen is invariably stored 
at B8000H. • 

On the PCjr, however, the video memory is simply a 
piece of the main system RAM. Normally the 16K at the top 
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end of memory is allocated for screen memory. But, with this 
video function, a 128K PCjr can support eight different 16K 
screen-memory blocks. This becomes useful when you need to 
use one of the computer's extended graphics modes, modes 9 
and 10. Since these modes require 32K, you clearly can't get 
by with just the 16K at the top end of memory. So the PCjr's 
block of screen memory must be moved down one unit (16K), 
to leave a total of 32K available at the top of memory. You 
will also need to move the 16K screen-memory area around 
for graphics page flipping, since the standard graphics modes 
use 16K for one page. 

BASIC also makes use of this function to access the two 
extended 32K modes. Normally, BASIC leaves the screen­
memory area at the top of memory. However, since the two 
32K modes need more than the default 16K, you have to allo­
cate more memory to the screen area with the BASIC com­
mand CLEAR ",32768. To use these modes from machine 
language, you have to do exactly the same thing: make 32K 
available for the screen. Furthermore, BASIC can do page flip­
ping when in graphics mode, if enough memory is allocated to 
it. BASIC moves the 16K screen memory area around to do 
this just as machine language does. 

There are two separate registers controlling this 16K area. 
You can select which 16K block contains the screen you're 
displaying, as well as which 16K block will mirror the B8000 
area of memory. As we mentioned above, the PC's graphics 
screen is at B8000H, while the PCjr's screen can move around. 
For compatibility, the PCjr has a provision to send any MOVes 
in the B8000 area (which is empty memory in the PCjr) to the 
real 16K of screen memory in the system RAM. The register 
controlling which block to display is called CRTREG. The reg­
ister controlling which block to vector B8000 requests to is 
called CPUREG. Normally, both of these registers are changed 
at the same time. To set and read these registers separately or 
in conjunction, pass the following values in AL: 
80H to read CRTREG into BH and CPUREG into BL 
81H to set CPUREG to the value in BL 
82H to set CRTREG to the value in BH 
83H to set CPUREG to BL and CRTREG to BH 

You will almost always be setting CRTREG and CPUREG to­
gether (option 83H). For example, to set both CRTREG and 
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CPUREG down one block, to allow for one of the 32K graph­
ics modes, do the following: 
MOV AU,5 ;function 5, select active page 
MOV AL,80U ;read CRTREG/CPUREG to BH/BL 
INT IOU 
DECBU 
DEC BL 
MOV AU,S 
MOV AL,83U 
INT IOU 

;set CRTREG and CPUREG to ... 
; ... one block lower in memory 
;function 5 again 
;set CRTREG/CPUREG to BH/BL 

And don't forget to repeat this process in reverse (replacing 
DEC with INC) before you exit. The results otherwise are in­
teresting, but not desirable. 

Read Video State (AH = 15). This routine returns the 
information set by functions 0 and 5. You don't need to set 
any parameters except AH = 15. To call this function, use 
MOV AU,15 ;function 15, current video state 
INT IOU ;ca11 video I/O routine 

This routine returns the following information: 

• AL holds the mode currently set. This is the same number 
that you specify when using function 0 (see Table 12-1). 

• AH holds the number of character columns on the screen. 
This value is returned according to the mode: 
decimal80 for modes 2, 3, 6, and A 
40 for modes 0, 1, 4, 5, and 9 
20 for mode 8 

• BH holds the number of the current active display page 
(which page is being displayed on the screen). BH ranges 
from 0 to 7 in 40-column text modes, 0 to 3 for 80-column 
text, and is always 0 for all graphics modes. 

Some of the video functions require you to specify 
which page you want to work with; calling function 15 
beforehand tells you what page is being displayed. Thus, for 
simple applications, you'll usually continue to use the page 
you started on; function 15 tells you the number of that 
page. 

Cursor .. Handling Routines (AH = 1, 2, 3) 
The video handler interrupt, INT 10H, can also be used to 
control the cursor. This is done by placing the proper value in 
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AH for the function you want. (See Table 12-3 for a complete 
list of the INT 10H functions.) 

Set Cursor Type (AH = 1). This rarely used routine al­
lows you to set the size of the cursor. The line to start the 
block shape is placed in CH, and the line it should end is in 
CL. The color/graphics cursor, for example, starts on line 6 
and ends on line 7 (the first line is line 0). To turn off the 
cursor altogether, call this routine with 20H in CH. Note that 
the LOCATE command, in BASIC, can be used to change the 
size of the cursor (see the BASIC manual). To return the cursor 
to its normal shape, call function 0 (set mode). You can, of 
course, also use this function to return the cursor to its original 
shape. 

Set Cursor Position (AH = 2). This routine can place the 
cursor anywhere on a specified display page. DH holds the 
new row for the cursor (from 0 to 24), and DL the column. 
The column can be 0 to 79 in 80-column mode, 0 to 39 in 40 
columns, or 0 to 19 in 20 columns (video mode 8). Since the 
PC keeps separate cursor positions for each of the possible dis­
play pages (up to eight pages in 40-column mode), you also 
have to specify, in BH, the page number of the cursor that 
you're moving. 

For simpler applications, a call to the set cursor routine is 
often preceded by a call to the read video state routine, num­
ber 15. Thus, for example, to set the cursor on the current 
page to the center of the screen: 
MOV AH,15 ;read the current video state 
INT lOH ;video I/O call 

SHR AH,l 
MOV DL,AH 
MOV DH,12 

MOV AH,2 
INT lOH 

;now AL holds mode, AH holds columns, and BH 
;holds display page 
;divide width (columns) by 2 
;and place in columns register 
;put half of 25 in rows register 
;DL holds half width, DH holds half height, BH 
;holds page 
;function 2, set cursor position 
;video I/O call 

Read Cursor Position (AH = 3). This routine returns the 
current settings of the last two routines, 1 and 2. To read the 
cursor position, AH holds 3 and BH holds the page number 
(BH must be 0 for graphics modes). On return from the inter­
rupt call, DH, DL will hold the row and column of the cursor 

202 

II 

II 

II 

II 

II 

II 

II 

II 



II 

II 

II 

II 

II 

II 

II 

II 

II 

12 
BIOS Interrupts 

on the specified page. Additionally, CH, CL will hold the 
cursor type (from function 1 above). This routine can, for ex­
ample, be used to move the cursor to a specific position on the 
current line (equivalent to the BASIC's TAB). If you are unsure 
what screen line the cursor is on, but want to set the column 
to 60, you can use the following code fragment to change only 
the column, on the current page: 
MOV AH,15 ;get current video state 
INT lOH ; ... we need the page number in BH 
MOV AH,3 ;read cursor position (page in BH) 
INT lOH 
MOV DL,60 ;set DL to 60, leave DH (row) alone 
MOV AH,2 ;set cursor position (page in BH) 
INT lOH 

This would be equivalent to the BASIC statement 
PRINT TAB(60); 

Read Light Pen Position (AH = 4) 
This one is very rarely used, so we'll summarize. Call INT 
10H with AH = 4, and AH will return 1 if the light pen was 
triggered; otherwise, it will return o. If AH = 1, DH, DL will 
also hold the row, column being pointed at, and BX, CH will 
hold the graphics mode pixel x,y coordinates. 

Scroll Active Page Up or Down (AH = 6, 7) 
INT 10H can also be used to scroll the active page. These two 
functions can be quite useful. The two have almost the same 
format, so we'll treat them as one command. They allow any 
part of the current active page (a window) to be scrolled up or 
down any number of lines. In addition, you set the attribute to 
be used on the blank line (see the "Flash" program in Chapter 
5 for a description of the attribute byte). Here are the input 
parameters for the two routines: 

(CH,CL) row, column of the upper left corner of the 

(DH,DL) 

(AL) 
(BH) 

window 
row, column of the lower right corner of the 
window 
number of lines to scroll the window up or down 
attribute to be used on blank line(s) 
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One convenient feature of this routine is that you can use 
it to blank any area of the screen simply by specifying 0 for 
AL. If you use 0 for AL, functions 6 and 7 produce identical 
results, and the entire window is set to the attribute in BH. 
Otherwise, function 6 (scroll up) will give you (AL) blank lines 
of attribute (BH) at the bottom of the window, while function 
7 (scroll down) produces blank lines at the top of the window. 

The most common use of the scroll routines is simply to 
blank the entire screen. Here's how to blank the screen: 
MOV CX,O ;CH=O, CL=O for top left of screen 
MOV DL,79 ;for 80 columns; use 39 for 40 columns 
MOV DH,24 ;bottom line of screen 
MOV AL,O ;select clear whole screen option 
MOV BH,7 ;set to standard white-on-black 
MOV AH,6 ;(scroll up) 
INT 10H 

Character Handling Routines (AH = 8, 9, 10, 14 
Decimal) 
There are four useful character handling routines that can be 
accessed using INT lOH. Three of the routines allow you to 
write to any page display. 

Multi-Page Character Handling Routines (AH = 8, 9, 
10). Each of these routines will allow you to write characters to 
any display page depending on which page is specified in BH. 
(However, if you're reading or writing characters in a graphics 
mode, you don't have to specify BH, since there's only one 
graphics page.) These are the only routines that allow placing 
text on a screen other than the current active page, so you will 
no doubt grow quite familiar with them when you start using 
multiple screens in machine language. The thing to remember 
with these routines is that the cursor (on whichever page) is 
not automatically moved when the character is written. If you 
use the character-output routine in this group (AH = 10), and 
try to print a string of characters, they'll all be written to the 
same position, each on top of the last. 

The first of these routines, AH = 8, is the routine to read 
the attribute and character at the current cursor position 
(remember, each text screen has its own cursor position). To 
use this routine, AH holds 8 and BH holds the display page 
before calling INT lOH. On return, AL holds the character and 
AH holds the attribute. Note that characters on graphics 
screens don't have attributes. 
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The other two routines control the writing of characters to 
any page, with the option to write the attribute as well (AH = 

10 for character only, AH = 9 for attribute and character). To 
use these routines, AH holds 9 or 10, BH has the page num­
ber, and the character to write must be in AL. For function 9 
(write attribute/character) in text modes, BL must hold the 
new attribute byte. For function 10 in text modes, BL doesn't 
have to be specified. For either function in graphics modes, BL 
holds the color of the character to be written. (For a discussion 
of the color, as opposed to the attribute, of a character, see the 
write dot function, number 12. Note that setting the high bit 
in BL for graphics causes the character to be XORed onto the 
screen, as in function 12.) The use of BL and BH is outlined in 
Table 12-2. 

Table 12-2. Use of BL and BH with Functions 9 and 10 

Text Modes Graphics Modes 
function 9 BL attribute BL color 

BH display page BH-

function 10 BL - BL color 
BH display page BH-

One other register, ex, must be set to use these two 
routines-it holds the number of characters to write. This lets 
you repeat the character in AL along the same row several 
times. However, you can't wrap around to a new line. Here's 
an example of a routine that puts a string of 80 horizontal 
double-line characters, in light blue on dark blue, at the bot­
tom of 80-column page 2. (This applies, of course, only to the 
color/graphics board; for monochrome, you would use some 
other value in BL, and make sure BH was 0, since only one 
page is provided for monochrome.) 
MOV BH,2 ;page 2 
MOV DH,24 ;bottom row 
MOV DL,O ;first column 
MOV AH,2 ;function 2, set cursor 
INT lOH 
MOV AL,20S 
MOV BL,l*16+9 
MOV BH,2 
MOVeX,So 
MOV AH,9 
INT lOH 

;double horizontal line character 
;light blue (9) on dark blue (1) 
;page 2 
;repeat 80 times (a full row) 
;function 9, write attribute/character 
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II 
The Write Teletype Routine (AH = 14). This is a some- 8 

what more useful routine for most single-page applications-it . 
handles moving the cursor as well as writing the characters. 
(Don't worry about IBM's peculiar name for this function.) 8 
However, it allows writing only to the current active page. 

This routine is similar to the DOS function character out-
put routine you've seen used in other programs ("Primes," for II 
example). However, there are differences between this routine 
and the equivalent DOS function routine (the display output 
function, AH = 2). This function is significantly faster than 
the equivalent DOS functions, in part because it does not echo 
to the printer when Shift-PrtSc (Fn-Echo on the PCjr) is 
pressed, nor does it support the DOS 2.00 "piping" feature 
(see Chapter 13 for a discussion of DOS 2.00 piping). Note 
that this routine is an exception to the usual rule that the con-
tents of AX are destroyed. The teletype function preserves AL. 

The routine itself is simple. It outputs the character in AL 
directly to the active page. For graphics modes, BL must hold 
the color to plot the character in. So, to output an exclamation 
point to the current (text) screen, simply code: 
MOV AL,'!' 
MOV AH,14 
INT 10H 

Several characters are handled specially by this BIOS routine: 

7 ring the bell (beep!) 
8 backspace (go back one space, but don't delete) 

10 linefeed (go down to the next line, same column) 
13 carriage return (go back to the beginning of this line) 

You'll notice that there are some differences from the way 
BASIC handles its special characters: Both the backspace and 
the carriage return are handled differently. BASIC doesn't use 
CHR$(8) for backspace (it prints a graphics character), but 
BIOS does. More significantly, the carriage return character, 
CHR$(13), tells BASIC to go to the beginning of the next line, 
whereas the carriage return makes BIOS go to the beginning 
of the current line. To go to the start of the next line in BIOS, 
you must first print an ASCII 13, and then an ASCII 10 
(linefeed) to go down to the start of the next line. The 13-10 
sequence is often seen in machine language programs. 
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Graphics Interface Functions (AH = 12, 13 
Decimal) 
These routines are both exceedingly simple, yet quite power­
ful. To use the write dot routine, AH = 12, CX, DX must hold 
the x,y coordinates of the pixel to be plotted and AL must 
hold the color to use. The color (technically, the palette reg­
ister) can be any of the legal colors for the graphics mode 
you're in: 
o or 1 mode number 6 
o to 3 mode numbers 4, 5, and A 
o to 15 mode numbers 8 and 9 

One useful capability of the write dot routine is that you 
can XOR the dot onto the graphics screen by setting the high 
bit (bit 7) in AL. This is equivalent to adding 80H to the color 
value you've selected. Usually, this XORing mode is used for 
moving shapes around. Advanced BASIC users may be famil­
iar with this idea from the XOR option of the graphics PUT 
command. In briet the XOR feature of the write dot function 
allows you to plot a shape directly over the background. Then, 
to erase it, simply XOR the shape again. Since two successive 
XORs return a dot to its original state, the XORed shape has 
now disappeared, and you can plot it at some other location. 
See Chapter 8 for more details on XOR. Here's an example of 
plotting a dot of color 2 at 67,31, with XOR mode: 
MOV CX,67 ;x coordinate is 67 
MOV DX,3l ;y coordinate is 31 
MOV BL,2+80H ;color (palette register) is 2, with XOR bit set 
MOV AH,l2 ;function 12, write dot 
INT lOH 

A line-drawing procedure using this function is included 
at the end of the chapter. 

The counterpart of this routine is the read dot function, 
AH = 13. For this, too, you specify CX, DX as the x,y co­
ordinates. The INT 10H call returns with the dot color in AL 
(recall that an off dot will always return with AL = 0). 

Palette Interface Routines (AH = 11, 16 Decimal) 
These INT 10H functions are used to change the screen dis­
play colors. There are differences here between the various 
IBM machines. 

Set Color Palette (AH = 11). This call allows you to se­
lect the colors to be used on the screen. First we'll discuss how 
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II 
this function is used on the Pc. PC and PC/XT owners have I 
distinctly less powerful graphics, as we have seen when 
discussing the set video mode function, and this is reflected in 
this function as well. • 

To choose one of the two different subfunctions available .. 
with the set palette function, set BH to 0 or 1. When BH is 0, 
function 11 will set the border/background color to the value II 
in BL. BL should be a number from 0 to 15. In graphics modes 
4 and 5 (320 X 200 four-color) this function sets the border 
and background colors (the background color is equivalent to 
color 0). In BASIC, the COLOR command can be used to the 
same effect. In the text modes (0 through 3), this call sets the 
border color. The background color in text mode, by contrast, 
is set by the attribute byte of each character. 

The other subfunction, for which BH = 1, allows you to 
choose one of two palettes to use with the 320 X 200 four­
color mode (modes 4 and 5). Two palettes of colors are avail­
able. The palette determines the colors of the pixels on the 
screen. One palette consists of the colors white, magenta, and 
cyan. This palette, number 1, is selected by BIOS when you 
enter mode 4 or 5 with BIOS. The other palette, number 0, 
contains the colors brown, red, and green. To select a palette, 
BH must hold 1, and AL must hold the palette number. The 
available palette colors are summarized below: 
palette 0: green, red, brown for colors 1, 2, 3 
palette 1: cyan, magenta, white for colors 1, 2, 3 

This switchable palette allows you to have either the colors 
green, red, and brown or the colors cyan, magenta, and white, 
on the screen at one time, as well as the background color (set 
by the BH = 0 subfunction). Switching between the palettes II 
immediately changes the colors of all the pixels on the screen. 

The PCjr has extended the power of these two functions 
considerably. On the Pc, the first function, BH = 0, is able to I 
set the graphics background color only for 320 X 200 four-
color mode. On the PCjr, we can set the background color for 
any graphics mode (all seven). If you call the set color palette _ 
function with BH = 0 in a graphics mode, the color specified _ 
in AL becomes the new background color, color 0, as well as 
the border color. 

The second function, BH = 1, is limited on the PC to II 
choosing palette 0 or 1 for graphics modes 4 and 5. The PCjr 
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can use the BH = 1 function to set palette 0 or palette 1 in ex­
tended graphics mode 10. In addition, the PCjr can set a pal­
ette for the 640 X 200 two-color mode. Normally, on the 
PCjr, mode 6 has white characters on whatever background 
color you select. However, you can select black characters on 
the background also. The white foreground is palette 0 (the 
default), while the black foreground is palette 1. But you prob­
ably won't need to concern yourself with palettes if you have 
a PCjr, since the next function allows you to set each palette 
register independently to whatever color you wish. 

Set Palette Registers (AH = 16). This palette control 
function is only for the PCjr. It allows you to select which col­
ors are to be used with which palette registers, for both text 
and graphics modes. When you enter one of the two 16-color 
modes (numbers 8 and 9), or one of the alphanumeric modes 
(numbers 0 through 3), the PCjr makes a one-to-one match 
between the 16 palette registers and the 16 colors. Palette reg­
ister 0 corresponds to color 0 (black), 1 corresponds to 1 
(blue), 2 to 2 (green), and so forth. The four-color modes de­
fault to black, cyan, magenta, white (palette 1) and the two­
color mode to white-on-black (palette 0). 

However, it is possible to select any combination of colors 
to be used with any of the palette registers. They could all be 
set to black (thus making a picture invisible while, perhaps, 
it's being drawn or loaded), or they could be set to change 
appropriately during a game to show the passage of time, 
strength, points, or whatever. To change one palette register 
independently of the others, you call INT lOH with AH = 16 
and AL = O. Then palette number (BL) is set to color (BH), 
which you have specified. These commands are similar to the 
BASIC command PALETTE. For example, to duplicate the 
BASIC command PALETTE 4,15, which sets palette register 4 
to bright white, code: 
MOV AL,O ;select subfunction to set palette register 
MOV BL,4 ;set palette register 4 ... 
MOV BH,l5 ; ... to color 15 (bright white) 
MOV AH,16 ;select function 16, set palette registers 
INT lOH 

There is a similar function to change the border color. Call the 
set palette register function with AL = I, and put the border 
color in BH. 
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There is one other, more specialized option with this I 

function. This option allows you to set all 16 of the palette 
registers, as well as the background, just as PALETTE USING 
does in BASIC. To use this option, set AL to 2 (and AH to 16); • 
DS:DX should point to a list of colors. The first 16 bytes (num- • 
bers 0 through 15) are the colors to be assigned to palette reg-
isters 0 through 15. The seventeenth byte, at offset 16 within II 
the table, sets the color of the border. 

Table 12-3. Functions Available with INT lOR 

(AH) function name 
o set mode 

input (AL) 
1 set cursor type 

input (CH) 

2 set cursor position 
input (BH) 

= new mode number 

= start line for cursor, (CL) = 
end line 

= display page, (OH,OL) = new 
row, column 

3 read cursor position 
input 
output 

(BH) = display page 
(OH,OL) = row, column, (CH,CL) = 

cursor mode 
4 read light pen position 

output (AH) = 0 if light pen switch not 
down/not triggered 

(AH) 

(OH,OL) 

= 1 if valid light pen values in 
registers 
= row, column, (BX,CH) = pixel 
x,y 

5 select active page 

210 

input (AL) 
or (for PCjr): 

(AL) 

(AL) 

(AL) 

(AL) 

= page value (valid 0-3 or 0-7) 

= SOH, read CRT/CPU registers 
(see output) 
= 81H, (BL) = new CPU page 
register 
= 82H, (BH) = new CRT page 
register 
= S3H, (BL) = CPU register, 
(BH) = CRT register 

if bit 7 (80H) of AL is set, then 
output (BL) = CPU register, (BH) = CRT 

register 
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6 scroll active page up, lines blanked at bottom 
input (AL) = number of lines, or (AL) = a 

to blank window 
(CH,CL) = upper left corner of window 

(row,column) 
(DH,DL) = lower right corner of window 

(row, column) 
(BH) = attribute to use on blank line(s) 

7 scroll active page down, lines blanked at top 
input as above for function 6 

8 read attribute/character at current cursor position 
input (BH) = display page (for text modes) 
output (AL) = character read, (AH) = 

attribute (text only) 
9 write attribute/character at cursor position 

input (BH) = display page (for text modes) 
(AL) = character, (BL) = attribute or 

color 
(CX) = count of characters to write 

10 write character only at cursor position 
input as above, but (BL) used only in graphics modes 

11 set color palette 
input (BH) 

(BH) 

12 write dot 

= a for background, (BL) = 
background color 
= 1 to select palette, (BL) = 

palette number 

input (CX,DX) = pixel x,y, (AL) = palette 

13 read dot 
input (CX,DX) 
output (AL) 

14 write teletype to active page 
input (AL) 

15 return current video state 
output (AL) 

16 set palette registers (PCjr only) 

register 

= pixel x,y 
= dot read 

= character, (BL) = color (graph­
ics modes only) 

= display mode, (AH) = 
columns, (BH) = page 

input (AL) = 0, (BL) = palette register, (BH) 

(AL) 
(AL) 

= color 
= 1, (BH) = border color 
= 2, (DS:DX) points to a 17-byte 
color buffer holding 16 register 
colors + border color 
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Keyboard I/O, INT 16H 
This interrupt allows communications with the keyboard with 
a minimum of difficulty and a maximum of control. However, 
before we get into the details of how to use this interrupt, it is 
necessary to discuss how the PC reads the keyboard. 

Scan Codes and ASCII Codes 
Many computers have a separate chip that controls the key­
board. This chip converts keypresses to standard ASCII codes, 
taking into account the status of other keys, such as the Caps 
Lock or Ctrl keys. For example, if the keyboard chip sensed 
key number 25 being pushed (scan code 25) while the Shift 
key was down, it might send ASCII code 80 (an uppercase P) 
to the system microprocessor. 

The PC, on the other hand, does all the translating from 
scan codes to ASCII under software control. This allows a pro­
gram to get much more information from the keyboard than 
would be possible if the system had access only to the ASCII 
codes. Using INT 16H, the program can sense when the Ins, 
Caps Lock, Num Lock, or Scroll Lock key is pushed, as well as 
the toggled (on or off) state of each one. Additionally, it can 
sense whether the Right Shift, Left Shift, Ctrl, or Alt key is be­
ing depressed. 

The keyboard function that reads a key always returns 
two values. One of these values is the ASCII code for the key 
pressed, taking into account the Shift, Ctrl, or Alt key concur­
rently pressed. This value is usually most useful. The other 
value is the scan code. This code reflects, in most cases, the 
key that was pressed, and not the Shift, Ctrl, or Alt key 
simultaneously pressed. Sometimes, the ASCII code is re­
turned as 0, and you have to use the scan code to identify the 
actual key. IBM refers to these ASCII zero codes as extended 
codes. BASIC users may be familiar with extended codes. 
When the INKEY$ statement returns an ASCII zero as the first 
byte, the zero marks an extended code, and the second byte, 
the scan code, is used to identify the key. 

Table 12-4 shows the scan code for each key on the key­
board, as well as the ASCII code and character associated with 
it. In the three columns following are listed the ASCII codes 
you get by pressing Shift, Ctrl, or Alt with the listed key; the 
scan code usually stays the same no matter what Shift key you 
press. For most keys, we've given the character in quotes, and 
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the ASCII code in parentheses. Some keys (like Enter) don't 
produce a printable character; therefore, just the ASCII code is 
given. You may also notice that some combinations of keys 
(like Alt-Esc) are listed with a long dash (-). This means that 
this combination doesn't return anything with INT 16H. 

There is one exception. Normally, as we mentioned above, 
the scan code stays the same no matter what Shift keys you 
press. However, the PC keyboard identifies certain combina­
tions of keys as representing "new keys." These are always ex­
tended codes, as mentioned above. For example, the 5 key on 
the top row of the keyboard is normally scan code 6. But 
when you press Alt-5, the keyboard creates a new scan code 
for the key, 124, and gives it an ASCII code of zero. When an 
extended code with a new scan code is generated, the notation 
<O,n> is used to identify the new scan code: n is the value of 
the new scan code, and the 0 refers to the ASCII code of zero. 

Some keys and combinations of keys normally return an 
ASCII code of zero (and are thus extended codes), but the scan 
code remains the standard scan code given in the leftmost col­
umn. These are indicated simply by placing a 0 in the appro­
priate column. The standard A to Z keys, for example, 
normally return an ASCII code. But when you use the Alt key 
with one of these keys, they return an ASCII code of zero, al­
though the scan code stays the same. 

All key names given are those for the PC's 83-key key­
board; PCjr owners see the PCjr Conversions Table (Table 12-
5) following. Keys not directly available on the PCjr keyboard 
are marked with a star. 

Certain keys change the values listed in Table 12-4. The 
Caps Lock key reverses the base and uppercase values listed 
for the A to Z keys each time it is pressed. The Num Lock key 
reverses the base and uppercase values for the numeric pad 
keys (scan codes 71 through 83) each time it is pressed. On 
the PCjr, Num Lock mode also makes the top row of numeric 
keys look like the PC's numeric pad. 

One other feature is available through the keyboard rou­
tine. If you hold down the Alt key and enter a decimal num­
ber, you can enter any character code from 0 to 255. To enter 
character 234, you would hold down the Alt key, enter 234, 
then release the Alt key. The keyboard routine treats this as 
ASCII 234 but scan code O. On the PC, you use the numeric 
keypad; on the PCjr, you use Alt-Fn-N and the top row of nu­
meric keys. 
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a 
Table 12,4. Key Codes on the 83,key Keyboard II 
All codes given in decimal 

Scan Code Base Case Uppercase Clrl- Alt- a 1 Esc 27 27 27 
2 top row 1 "1'1 (49) II!" (33) <0,120> 
3 top row 2 112" (50) "@" (64) <0,3> <0,121> 

II 4 top row 3 1/3" (51) 11#" (35) <0,122> 
5 top row 4 "4'1 (52) 11$" (36) <0,123> 
6 top row 5 //5/1 (53) "%" (37) <0,124> 
7 top row 6 1'6" (54) 11"" (94) 30 <0,125> 
8 top row 7 "7" (55) '1&11 (38) <0,126> 
9 top row 8 "8" (56) 1/*11 (42) <0,127> 

10 top row 9 "9" (57) II (" (40) <0,128> 
11 top row 0 1'0" (48) 11)" (41) <0,129> 
12 top row- II " (45) II " (95) 31 <0,130> 
13= " =" (61) "+" (43) <0,131> 
14 Backspace 8 8 127 
15 Tab 9 <0,15> -
16 Q "q'l (113) "Q" (81) 17 0 
17 W "w" (119) "W" (87) 23 0 
18 E "e" (101) liE" (69) 5 0 
19 R "r" (114) "R" (82) 18 0 
20 T "t" (116) IIT'I (84) 20 0 
21 Y Ily" (121) "Y" (89) 25 0 
22 U "u" (117) IIU" (85) 21 0 
23 I "i" (105) J'I" (73) 9 0 
240 "0" (111) "0" (79) 15 0 
25 P lip" (112) IIp'l (80) 16 0 
26 [ 11[" (91) 1/ {" (123) 27 
27 ] I']" (93) II} " (125) 29 
28 Enter 13 13 10 
30 A "a" (97) "A'l (65) 1 0 
31 S "s" (115) 115" (83) 19 0 I 32 D I'd" (100) liD" (68) 4 0 
33 F Ilf'l (102) 'IF" (70) 6 0 
34 G "gIl (103) "Gil (71) 7 0 II 35 H "h'l (104) "H'I (72) 8 0 
36 J 1/ j' I (106) IIJ'I (74) 10 0 
37 K Ilk" (107) "K" (75) 11 0 -38 L 111" (108) IIL'I (76) 12 0 
39 ; 11.'1 (59) 11./1 (58) , 
40 ' (39) (34) a 41 \ * (96) "",," (126) 
43,* "'\' (92) "I" (124) 28 I 

44 Z liZ" (122) "Z" (90) 26 0 
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II Scan Code Base Case Uppercase Ctrl- Alt-
45 X "x" (120) flX '1 (88) 24 0 

II 
46 C "e" (99) "C" (67) 3 0 
47 V ilv" (118) flV" (86) 22 0 
48 B lib" (98) IIB'I (66) 2 0 
49 N lin" (110) "N" (78) 14 0 

fI 50 M "m" (109) I'M" (77) 13 0 
51 , , (44) "<" (60) 
52. II II (46) 1/>" (62) 
53/ 1'/" (47) I/?" (63) 
55 PrtSc * "*" (42) <0,114> 
57 (space bar) (32) (32) " " (32) " " (32) 
59 F1 * 0 <0,84> <0,94> <0,104> 
60 F2* 0 <0,85> <0,95> <0,105> 
61 F3* 0 <0,86> <0,96> <0,106> 
62 F4* 0 <0,87> <0,97> <0,107> 
63 F5* 0 <0,88> <0,98> <0,108> 
64 F6* 0 <0,89> <0,99> <0,109> 
65 F7* 0 <0,90> <0,100> <0,110> 
66 F8* 0 <0,91> <0,101> <0,111> 
67 F9* 0 <0,92> <0,102> <0,112> 
68 F10* 0 <0,93> <0,103> <0,113> 
71 Home* 0 117'1 (55) <0,119> see text 
72 (cursor up) 0 1'8" (56) see text 
73 Pg Up* 0 1'9" (57) <0,132> see text 
74 numeric pad - * "-" (45) II " (45) 
75 (cursor left) 0 Ii 4" (52) <0,115> see text 
76 numeric pad 5* 1'5" (53) see text 
77 (cursor right) 0 "6" (54) <0,116> see text 
78 numeric pad + * "+" (43) 11+" (43) 
79 End* 0 "1" (49) <0,117> see text 
80 (cursor down) 0 1'2" (50) see text 

II 81 Pg Dn* 0 113" (51) <0,118> see text 
82 Ins 0 .1'0" (48) see text 
83 Del 0 (46) 

II Table 12-5 lists all of the conversions for the PCjr's 62-
key cordless keyboard. The cordless keyboard can access every 

II key on the 83-key PC keyboard, although some of the conver-
sions are rather odd. 

-
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Table 12,5. PCjr Conversions 

F1 through FlO 
Ctrl-Break 
Ctrl-PrtSc 
Shift-PrtSc 
Ctrl-Num Lock 
Scroll Lock 
Num Lock 
Pg Up 
PgDn 
Home 
End 
numeric keypad -
numeric keypad + 
numeric keypad. 
numeric keypad numbers 
backslash ( " ) 
open quote (') 
vertical bar (:) 
tilde (Iv) 
asterisk (*) from PrtSc 

Fn-1, 2, 3, 4, 5, 6, 7,8,9,0 
Fn-B (Break), or, Ctrl-Fn-S 
Fn-E (Echo), or, Ctrl-Fn-P 
Fn-P (PrtSc) 
Fn-Q (Pause) 
Fn-S (Sc Lock) 
Alt-Fn-N 
Fn-cursor left (Pg Up) 
Fn-cursor right (Pg On) 
Fn-cursor up (Home) 
Fn-cursor down (End) 
Fn-minus 
Fn -equals (" = / + II key) 
Shift-Del 
top row numbers in Num Lock mode 
Alt-slash (/) 
Alt-single quote (') 
Alt-open bracket ([) 
Alt-close bracket (]) 
Alt-period 

The Keyboard Interrupt Functions (INT 
16H) 
Now that we have run through the scan codes available on 
the PC and PCjr, let us turn our attention to the interrupt it­
self. To use this interrupt, as always, place the function num­
ber in AH, then issue INT 16H. 

Read Keyboard (AH = 0) 

II 

a 
II 

II 

al 

This is the workhorse of the keyboard interrupt routine. When II 
you call this routine, the computer checks to see if a key has 
been pressed; if not, it waits for one. Then, the computer re-
turns the scan code in AH and the standard ASCII code in AL. 
However, if the ASCII code (AL) holds 0, AH will hold the ex- II 
tended code for the key that was pressed. For example, if we 
want to write a routine that waits until Alt-Q is pressed, we 
write it as follows: II 
NO_ALT_Q: MOV AH,O 

INT 16H 
CMP AL,O 
JNE NO_ALT_Q 
CMP AH,10 

216 JNE NO_ALT_Q 

;read keyboard function 
;keyboard I/O 
;test for an extended code 
;not Alt-Q 
;test for Q's scan code 
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Get Keyboard Status (AH = 1) 
This function sets the zero flag depending on whether the key­
board buffer is empty or not. If the keyboard buffer is empty, 
the zero flag indicates 0; if the flag is not 0, then a code is 
waiting to be read. The key waiting to be read is echoed into 
the AX register (ASCII in AL, scan code in AH). However, the 
key still has to be read to clear the buffer. This fragment of 
code calls a keyboard-handling routine whenever a key is 
pressed: 

MOV AHt 1 
INT 16H 
JZ NO_CODE 
CALL READ-KBD 

;get status function 
;keyboard I/O 
;ZF is set, so buffer empty 
;character ready: go process 
;continue with program 

Get Current Shift Status (AH = 2) 
This function allows you to check the status of the keyboard. 
The status byte is returned in AL. Each bit relates the status of 
a "shift key." Some of the bits are set only when the key is ac­
tually being held down. Some are set to 0 or 1 depending on 
whether the function selected by that key is on or off (for ex­
ample, normally the bit that tests for Caps Lock on is 0; when 
you push Caps Lock once the bit becomes I, then 0 when you 
push it again). 

Here is the status byte returned in AL: 
bit 0 Right Shift key depressed 
bit 1 Left Shift key depressed 
bit 2 Ctr! key depressed 
bit 3 Alt key depressed 
bit 4 Scroll Lock is on 
bit 5 Num Lock is on 
bit 6 Caps Lock is on 
bit 7 Insert mode is on 

An additional byte contains more status flags. This byte, 
called KB_FLAG_l, is at the same location on the pc, PC/XT, 
and PCjr. One can hope that it will not be moved in later 
members of the PC family. Regardless, it is inadvisable to use 
this byte in a program meant for public use, since IBM gives 
us no guarantee that it will remain in the same place in later 
PC generations. In any event, the byte is at location 0040:0018 
(or 00418 absolute). You can read it with the following 
sequence: 
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a 
MOV AX,40H ;set segment DS to 0040 _ 
MOV DS,AX -
MOV AL,BYTE PTR DS:[18H] ;get byte from offset 0018 

This byte returns the following: _ 
bit 0 (unused) 
bit 1 Ctrl-Alt-Caps Lock is depressed (PCjr only) 
bit 2 audio feedback (click) is on (PCjr only) II 
bit 3 (used internally by BIOS, always 0) 
bit 4 Scroll Lock key is depressed 
bit 5 Num Lock key is depressed 
bit 6 Caps Lock key is depressed 
bit 7 Insert key is depressed 

A third keyboard byte exists on the PCjr, holding the status of 
the Fn key and keypress repeat rate, at 0040:0088. This byte is 
of little use. 

The data obtained through BIOS, as well as from 
KB_FLAG_l (if necessary), may be used to give you a greater 
degree of control over the keyboard, should one of your pro­
grams need it. 

Set Key Repeat Rate (AH = 3) 
This function is valid only for the PCjr. The key repeat rate is 
the rate at which the keys repeat when you hold them down, 
as well as the initial delay before they begin to repeat. The 
INT 16H interrupt function can set them as follows: 
AL = 0 restore rate to normal 
AL = 1 increase initial delay 
AL = 2 slow repeat speed by one-half 
AL = 3 combine effects of AL = 1 and AL = 2 
AL = 4 turn off repeat 

Set Keyboard Click (AH=4) 
This function is also new to the PCjr. The keyboard click can 
be controlled with Alt-Ctrl-Caps Lock, or it can be controlled 
from software as follows: 

AL = 0 turn off keyboard click 
AL = 1 turn on keyboard click 

DOS provides a variety of keyboard input routines which 
are good for some purposes, as we shall discuss in the next 
chapter. INT 16H, however, gives you finer control over key­
board input, and for that reason is often used in preference to 
the DOS functions. 
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Table 12,6. Functions Available with INT 16H 

(AH) Function name 

o read character from keyboard 
output (AL) = ASCII, (A H) = scan code 

1 get keyboard status 
output (ZF) = 0 if buffer empty, = 1 if key ready 

if key ready, a copy is placed in (AX) 
2 get shift status 

output (AL) = shift status 
bit 0 Right Shift key depressed 
bit 1 Left Shift key depressed 
bit 2 Orl key depressed 
bit 3 Alt key depressed 
bit 4 Scroll Lock is on 
bit 5 Num Lock is on 
bit 6 Caps Lock is on 
bit 7 Insert Mode is on 

3 set key repeat rates 
input (AL) = new setting for repeat 

o restore default rate 
1 increase initial delay 
2 slow repeat speed by one-half 
3 combine effects of AL = 1 and AL = 2 
4 turn off repeat 

4 set keyboard click 
input (AL) = 0 for off, (AL) = 1 for on 

Other BIOS Interrupts 
We'll take up where we left off in the last chapter, and briefly 
run through the interrupts from 5 to FH . 

Low~ Level Interrupts 
Interrupt 5-Print Screen is called whenever you push Ctrl­
PrtSc (Fn-PrtSc on the junior). As you no doubt know, this 
routine dumps the contents of the screen to the printer. If you 
need to dump the screen from within a program, you can call 
this routine by simply inserting 
INT 5 

in your program. No registers are affected, but the routine re­
turns its status in a byte at segment 50, offset 0 (50:0, absolute 
00500): 
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II 
50:0 = 0 successful print screen _ 

= 1 print screen in progress (during operation) 
= OFFH error encountered during printing 

Interrupts 6 and 7 are unused in the PC, PCjr, and II 
PC/XT. 

The 8259A Interrupts, 8 through OFH, are all handled by 
the 8259A chip. Interrupt 8 is the clock tick interrupt that trig- II 
gers about 18.2 times per second. This interrupt updates the 
clock and then calls INT 1CH, which normally points to an 
IRET (see the discussion of INT 1CH in this chapter). 

There are two other interrupts in this group, INT 9 and 
INT OEH. The first is one of the low-level keyboard decoding 
routines, the second, a routine which is triggered by disk er­
rors. The rest of the routines in this group (A through 0, and 
F) are unused and reserved in the PC, PC/XT, and PCjr. 

The Equipment Determination Routines 
(INT IlH and 12H) 
These two routines are useful for writing programs meant to 
run on a variety of PC models. The first interrupt, INT I1H, 
returns a word in AX which describes attached equipment bit 
by bit. Note that where two bits select an option, the bit pairs 
are given as binary numbers (that is, 002, 01 2, 102, and 11 2 ). 

bits description 
o 1 = disk drive(s) are attached (see bits 6, 7) 
1 (unused) 
2, 3 system board RAM size (not including added memory): 

002 = 16K, 012 = 32K, 102 = 48K, 112 = 64K 
4, 5 initial video mode: 

002 (unused) 
01 2 = 40 X 25 b/w, color/graphics (PCjr default) 
102 = 80 X 25 b/w, color/graphics 
112 = 80 X 25 b/w, using b/w card (PC default) 

6, 7 number of disk drives, if bit 0 = 1: 
002 =1,01 2 =2, 102=3, 112=4 

8 0 = the system allows direct memory access (OMA) 
9-11 number of RS-232 cards (0-7) 
12 1 = game I/O (joysticks, etc.) is attached 
13 1 = a serial printer is attached (PCjr only) 
14, 15 number of printers attached (0-3) 

The other interrupt, INT 12H, returns the amount of memory 
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available on the system board. The value is returned in in­
crements of one K byte in AX. However, this value only repre­
sents the amount of memory on the system board, and doesn't 
take into account any add-on memory. So, for most purposes, 
this interrupt is useless. The word at segment 40H, offset ISH 
(absolute address 0041SH), holds the actual size of memory in 
K bytes on the PC, XT, and PCjr. 

Disk I/O (INT 13H) 
This interrupt is the lowest level of disk access available 
through the operating system. Rather than dealing with files, 
or with relative sectors, this routine deals directly with the 
track, sector, and head of the sector you want to load or save. 
It's unlikely that you'd want to use this interrupt, unless you 
were writing your own personal DOS, or writing a disk-repair 
utility. However, the available functions are summarized in 
Table 12-7. 

Table 12~7. Functions Available with INT 13H 
(AH) Name of function and input/output parameters 
o reset disk system (do this for errors, then try again) 
1 read the status of the disk system into AL (see below) 

DOH = operation successful 
01H = bad command given to disk I/O 
02H = address mark not found 
03H = write attempted on write-protected disk 
D4H = requested sector not found 
D8H = OMA overrun on operation 
09H = attempt to OMA across 64K boundary 
lOH = bad CRC (checksum) on disk read 
20H = controller has failed 
40H = seek operation failed 
80H = attachment failed to respond (time-out error) 

2 read the desired sectors into memory 
input (OL) = drive number (0 to 3) 

(OH) = head number (0 or 1) 
(CH) = track number (0 to 39) 
(CL) = sector number (1 to 8, or 1 to 9) 
(AL) = number of sectors (1 to 8, or 1 to 9) 
(ES:BX) = address of buffer for data 

output (AH) = error number (as above) 
carry flag set if (A H) does not equal zero 

(AL) = number of sectors read (PCjr only) 
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3 write the desired sectors from memory 
input and output parameters identical to function 2 

4 verify the desired sectors (check CRC and so forth) 
parameters identical, but ES:BX is not required 

5 format the desired track 
input the same, but (CL) and (AL) are not needed 
ES:BX must point to a format-information buffer. 

This format-information buffer holds a series of fields of 
data, one for each sector on the track. Each field is four bytes 
long, holding track number, head number, and sector number, 
followed by a byte indicating how long the sector is (0 = 128 
bytes, 1 = 256 bytes, 2 = 512 bytes, 3 = 1024 bytes). There 
must be one field for each sector on the track. 

RS .. 232 I/O, INT 14H 
Should you need to use this interrupt (to write a modem­
handling program, for example), we recommend that you refer 
to the Technical Reference Manual. 

Cassette I/O, INT 15H 
Since cassette drives are becoming less popular (and since you 
must have a disk drive for your assembler disk if you're read­
ing this), we'll skim briefly through this topic. For the in­
terested, however, Table 12-8 contains a brief summary of the 
cassette I/O functions. 

Table 12,8. Cassette I/O Functions 

(AH) Function name and input/output 
o turn cassette motor on 
1 turn cassette motor off 
2 read data from the cassette 

input (CX) = number of bytes to read 
(ES:BX) = pointer to data buffer 

output (OX) = number of bytes actually read 
(A H) = error condition if carry is set: 
01 = CRC (checksum) error detected 
02 = data transitions are lost 
04 = no data was found 

3 write data to cassette 
input as above; on output, no error returns 
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Printer IjO-INT 17H 
This function is useful for controlling any printers attached to 
your system. The available options, summarized in Table 12-9, 
are largely self-explanatory. 

Table 12,9. Printer I/O Functions 

(AH) Function name and input/output 
o print character 

input (AL) = character to be printed 
(OX) = number of printer to be used (0, 1, or 2) 

output (AH) = status byte (below) 
(bit 0 set indicates character not printed) 

1 initialize the printer port 
input (OX) = printer to be initialized (0-2) 
output (AH) = status byte 

2 read the printer status byte into AH 
input (OX) = printer number (0-2) 
output (AH) = status byte: 

bit 0 time-out 
bits 1, 2 (unused) 
bit 3 I/0 error 
bit 4 printer selected (on-line) 
bit 5 out of paper 
bit 6 acknowledge 
bit 7 not busy 

BASIC Start, System Warm Boot, and Time .. of .. Day 
Routines (INT ISH, 19H, lAH) 
INT 18H will start up BASIC; INT 19H will reboot from disk. 
It's unlikely that you'll ever need either of these. 

INT lAH, on the other hand, is convenient for timing 
applications. The time-of-day clock in the PC family is in­
cremented 18.2 times per second by the 8253 timer. This inter­
rupt provides a way to read and set this counter. The counter 
is in two words, and all the time-of-day functions use DX as 
the low word, and CX as the high word. The functions avail­
able are listed in Table 12-10. 
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Table 12-10. Functions for the Time-of-Day Routine 

(AH) Function name and input/output 
o read the current clock setting 

output (DX,eX) = low word, high word of counter 
(AL) = 0 if less than 24 hours since timer read 

1 set the clock 
input (DX,eX) = low word, high word of new setting 

80H set the sound source on the PCjr (beeper, sound chip, etc.) 
input (AL) = 00 to 03 

To insert a specific delay into your program, you might write a 
procedure like the following: 
, 
; pass in BX the number of 18.2's you wish to wait 
; AX, BX, ex, and DX are destroyed by this routine 
, 
WAIT PROC NEAR 

MOV AH,O 
INT lAH 
ADD BX,DX 

W_LOOP: MOV AH,O 
INT lAH 
CMP DX,BX 
JNE W_LOOP 
RET 

WAIT ENDP 

;read the clock setting 
;time-of-day interrupt 
;find out when time is up 
;read the clock again 

;is time up yet? 
; no, so loop back 
; yes, so return 

Generally, it's wise to avoid using the set clock option, since 
the clock used by this interrupt is the same clock that you set 
when you start up your Pc. Setting the clock to 0 with this 
interrupt will reset the system clock to 12:00 a.m. 

There is another way to read the time clock. This ap­
proach goes through DOS, and returns to you the year, 
month, day and date, as well as the time in hours, minutes, 
seconds, and hundredths of seconds. We'll discuss this in the 
next chapter. 

The User Interrupts-INT IBH and INT lCH 
We touched lightly on the subject of revectoring interrupts in 
the last chapter. These two interrupts are made expressly to be 
revectored, but this technique is best left to advanced pro­
grammers. Both interrupts normally point to an IRET instruc­
tion (one in DOS, one in BIOS). INT lBH is called whenever 
the Break key is struck. INT 1CH is called 18.2 times a second 
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by the routine which updates the clock. By revectoring these 
interrupts, you can divert the computer to your own routine 
whenever the Break key is struck, or every time the clock is 
updated; but such methods go beyond the scope of this book. 

The Parameter Table Interrupts, IDH and lEH 
These, too, we'll only touch on. These two interrupt locations 
do not contain genuine interrupt vector addresses. Instead, 
they point to data. The vector at interrupt location 1DH points 
to a table of parameters for the video display. The vector for 
1EH points to a table of parameters for the disk drive. Both 
tables should be left alone, along with their vector pointers. 
Modifying these tables requires extremely advanced techniques. 

The Upper 128 Character Display Data, INT IFH 
This interrupt location also contains a pointer to data. The 
data pointed to is the character generator graphics that allow 
the PC to put characters on the screen when in graphics 
modes, simply by plotting the appropriate pixels on the 
screen. Advanced programmers can revector this to point to 
their own tables (in RAM) and thus redefine characters 
80H-OFFH. Thus, you could replace character 128 with an 
alien, character 129 with a spaceship, and so forth. Or you 
could replace the standard characters with foreign language 
characters or special scientific symbols relevant to your pro­
grams. However, you must be in a graphics mode to use these 
new symbols; and the use of redefined character sets is a com­
plex subject, better suited to a book devoted to games and 
graphics or an advanced programmer's manual. 

BIOS Interrupt Vectors-Summary Table 
In these pages we have covered the most useful BIOS inter­
rupts. You will find that INT lOH and INT 16H are the two 
most frequently used routines in BIOS (and thus we have dis­
cussed them at some length). The other routines are generally 
of less use. Enough has been said about them here, however, 
to allow you to understand what is available to you. Further 
information can, in many cases, be obtained from the com­
mented BIOS listing in the Technical Reference Manual. Serious 
machine language programmers would do well to acquire a 
copy of this manual. Separate versions exist for the PC, the 
PC/XT, and the PCjr. 
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Table 12,11. BIOS Interrupt Vectors 

Interrupt vectors listed where identical in PC/XT /ir 

Int Num Name of Routine DOS or BIOS 
8088 predefined interrupts 
o divide overflow 
1 single-step 
2 non-maskable 
3 breakpoint 
4 overflow 

BIOS interrupts 
5 print screen 
6-7 reserved 

External 8259A interrupts 
8 8253 clock tick 
9 keyboard interrupt 
A-D reserved 
E disk error 

Standard BIOS interrupts 

DOS (IRET) 
DOS (IRET) 
BIOS 
DOS (IRET) 
DOS (IRET) 

BIOS (FOOO:FF54) 
BIOS 

BIOS (FOOO:FEA5) 
BIOS 
BIOS 
BIOS (FOOO:EF57) 

10 video handler BIOS 
11 equipment determination BIOS (FOOO:F84D) 
12 memory size determination BIOS (FOOO:F841) 
13 disk I/O BIOS (FOOO:EC59) 
14 RS-232 I/O (serial port) BIOS (FOOO:E739) 
15 cassette I/O BIOS (FOOO:F859) 
16 keyboard I/O BIOS 
17 printer I/O BIOS (FOOO:EFD2) 
18 BASIC start vector BIOS (F600:0000) 
19 boot-strap loader BIOS 
lA time-of-day BIOS 
IB user keyboard break DOS (IRET) 
lC user clock interrupt BIOS (IRET) 
ID video parameters table BIOS (FOOO:FOA4) 
IE disk parameters table DOS (data) 
IF characters 80H-OFFH BIOS (data) 

Interrupt vectors for the unlisted entries can be found by using 
DEBUG and examining 0000:0000 through 0000:03FF, but IBM 
discourages using ROM addresses directly in your programs. 
Note that the BASIC start vector for the PCjr refers to the Cas­
sette BASIC; INT I8H for the junior's Cartridge BASIC points 
to E800:0I77. 
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13 
The DOS Function 

Interrupt 
In the last chapter we discussed the entire range of BIOS inter­
rupts. In this chapter, by contrast, we will focus our attention 
entirely on one interrupt: the DOS function interrupt, 21H. 
This single interrupt routine adds enormously to the power of 
your programs, allowing advanced file-handling, directory 
control, memory management, and an enormous variety of 
other functions. There are a variety of other DOS interrupts, 
summarized in Table 13-1. Most of these, however, will not be 
discussed here; we'll concentrate our discussion on INT 21H, 
the DOS function interrupt. 

Table 13,1. DOS Interrupts 

INT 20H terminate program 
INT 21H the DOS function call 
INT 22H address for program termination 
INT 23H Ctrl-Break exit address 
INT 24H critical error handler 
INT 25H absolute disk read 
INT 26H absolute disk write 
INT 27H terminate but stay resident 

Those curious about the other DOS interrupts can consult 
DOS 2.00's DOS manual or DOS 2.1O's Technical Reference 
Manual (in this chapter, when we refer to the DOS manual, 
DOS 2.10 users should substitute the DOS Technical Reference 
Manual). 

Like BIOS, each function is selected by placing its number 
in AH. The DOS manual groups these functions into seven 
broad categories, each including a wide variety of functions. 
Table 13-2 outlines these categories. Since we will be referring 
to the DOS functions by their hexadecimal number throughout 
this chapter, the table below lists the interrupt numbers in hex. 
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DOS 1.10 users should note that only function numbers OH II 
through 2EH are available; the others are new to DOS 2.00. 

Table 13-2. DOS Breakdown of Functions (in Hex) II 
O-C traditional character device I/O 
0-24, 27-29 traditional file management group II 
25-26, 2A-2E traditional nondevice functions 
2F-38,4C-57 extended function group 
39-3B, 47 directory group 
3C-46 extended file management group 
48-4B extended memory management group 

A list of the DOS functions discussed in this book can be 
found at the end of this chapter. 

Note that all DOS function calls, like BIOS interrupt calls, 
preserve the registers, unless information is returned in them. 
AX is sometimes preserved, and sometimes not, depending on 
the particular function. 

Character Device I/O Functions 
These functions provide support for those devices which op­
erate on a character-by-character basis, like the screen, the 
keyboard, or the printer. Most of these functions are carried 
over to MS-DOS from CP 1M. The main group in this category 
is those functions which deal with the screen and keyboard 
(together, the console). Also included in this group are the 
Asynchronous Communications Adapter (modem) support 
functions, which we won't discuss, and the printer function, 
which we will. 

Redirection of Input and Output with DOS 2.00 
and Above 
In DOS 2.00 and 2.10, every reference to the keyboard ac­
tually means the standard input device, and every reference to 
the screen means the standard output device. These names are 
used because DOS 2.00 has the ability to redirect the normal 
input and output to disk files instead of to the keyboard and 
screen. So you can write a DOS-standard file containing all 
your replies to a program that normally accepts keyboard in­
put. Here we'll use DEBUG as an example: 
A> DEBUG < INPUT.FIL 
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This would pipe the contents of INPUT.FIL to DEBUG in lieu 
of normal keyboard input. The parallel ability to send all of 
DEBUG's output to OUTPUT.FIL (continuing our example) is 
also allowed: 
A>DEBUG> OUTPUT.FIL 

Both can be used at once: 
A>DEBUG < INPUT.FIL > OUTPUT.FIL 

Furthermore, one program's output can serve as another pro­
gram's input, using the vertical bar character: 
A>PROGRAMll PROGRAM2 

In this case, all of PROGRAMl's output would become PRO­
GRAM2's input. For more information, see the DOS 2.00 
manual; but, for the moment, bear in mind that all these DOS 
functions can be piped-and remember that BIOS functions 
can't be. DOS 1.10 users need not concern themselves with 
piping, since DOS 1.10 doesn't allow for it. 

The other unique feature supported by DOS is the printer 
echo feature. The Echo key (Ctrl-PrtSc on the PC and PC/XT, 
and Fn-Echo on the Junior) is used to turn this feature on and 
off. When printer echo is turned on, all output to the screen 
(for DOS 2.00, the standard output device) will be echoed to 
the printer. This can be a very useful feature for keeping 
documented copies of a program's output. For example, you 
could copy a DEBUG Unassembly to printer simply by typing 
Ctrl-PrtSc, followed by the U command. 

Keyboard Input Functions 
In the last chapter we discussed the BIOS keyboard Input 
command, which allows a key to be read from the keyboard 
(as ASCII and a scan code). The DOS keyboard input func­
tions add a variety of additional features to this simple BIOS 
Input command. However, the DOS functions don't handle ex­
tended codes well. (Extended codes were discussed in the last 
chapter.) If the user presses an extended key (such as cursor 
left), the DOS input routines return 0, and you must call the 
routine again to get the distinguishing scan code. 

Keyboard Input (AH = 1). This DOS command works 
somewhat like the BIOS Input command; it waits for a key to 
be pressed and then returns its ASCII code to AL. However, 
this function also echoes keys to the screen as they are 
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pressed, thus simplifying the programmer's job. Furthermore, 
function 1 handles Ctrl Break and Ctrl-PrtSc apart from usual 
keys. If your program uses this function, the user can press 
Ctrl-Break to return directly to the DOS prompt (aborting from 
your program), and Ctrl-PrtSc to turn the DOS printer echo 
feature on and off. 

One problem with function 1 is that any extended codes 
will be printed on the screen, which can be very awkward. As 
a rule, this function should be avoided if extended codes are to 
be used. 

Console Input Without Echo (AH = 8). Identical to 
function 1 above, except that this function does not echo back 
to the screen. This can be useful for "Hit any key" messages, 
where you don't want random characters to be echoed to the 
screen. It can also be useful for input routines that are meant 
to handle extended codes, since DOS doesn't automatically 
echo the key to the screen. 

Direct Console Input (AH = 7). This function is like 
function 8 above. However, not only does it not echo the 
character to the screen, it also doesn't handle Ctrl-Break or 
Ctrl-PrtSc separately. Consequently, the user can't abort back 
to DOS with this function, nor can he or she turn printer echo 
on (or off). 

Direct Console I/0 (AH = 6). A bit more complex, this 
function neither echoes input back to the screen, nor does it 
check for Ctrl-Break or Ctrl-PrtSc. Furthermore, this function 
can handle both input and output. To use it for input, DL 
must hold FFH (255 decimal). However, rather than waiting 
for a key to be pressed, this function always returns to the 
calling program immediately. If a key has been struck, the zero 
flag will indicate "not zero" and AL will hold the input 
character's ASCII code. If no key has been struck, the zero flag 
will return reading O. 

This function can be useful for games in which the key­
board must be checked each turn to see whether a key has 
been struck. Rather than using BIOS once to check the key­
board status, then again to read the character, you can simply 
call this function. 

If DL holds any value other than FFH, the contents of DL 
are printed to the screen. We'll discuss the output routines 
below. 
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Check Keyboard Status (AH = B hex). This routine 
checks to see if a character is available from the keyboard. If 
one is, AL will hold FFH on return. If not, AL will hold O. 
Note that this function, like functions 1 and 8 above, makes 
special checks for Ctrl-Break and Ctrl-PrtSc. 

Buffered Keyboard Input (AH = A hex). Similar to BA­
SIC's INPUT statement, this function, rather than returning 
one character at a time, reads in a whole string of edited 
characters from the keyboard. To call this function, DS:DX 
must point to a special input buffer. Then, when TNT 21H is 
called, DOS reads characters from the keyboard into the 
buffer. A final Enter (ASCII 13) from the keyboard marks the 
end of the input. Here's how the buffer is set up: 

Byte 0 This byte contains the maximum number of characters 
the buffer can hold (including the final Enter). Byte 0 
obviously can't hold zero. 

Byte 1 On return from the function, DOS loads this byte with 
the number of characters entered. DOS, inconsistent as 
always, sets this byte to the number of characters read, 
excluding the ASCII 13 (Enter). 

Byte 2 Starting with this byte, you must have a buffer of the 
length specified in byte O. 

When the buffer fills to one less than the maximum num­
ber of characters (in byte 0), further characters are ignored, 
and DOS sounds the bell each time a new key is struck. The 
only character that can be read into the last byte is an Enter. 
You can, of course, input fewer characters than requested; this 
will be reflected in byte 1 on return. Here's a program frag­
ment that reads data into a buffer, then loads AL with the first 
byte of the string. (Note the use of the DUP command below. 
This command DUPlicates what's inside the parentheses how­
ever many times requested. See Chapter 14 for a discussion of 
DUP.) 
... in the current data segment 
BUFFER DB lO,?,lO DUP(' ') 

... in the code segment 
MOV OX,OFFSET BUFFER 
MOV AH,OAH 
INT 21H 
MOV AL,BUFFER + 2 

jthe DOS input buffer 

jset DS:DX to buffer address 
JDOS function: input string 
;ca11 DOS function interrupt 
jget first byte of text 
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This function often proves useful for entering filenames, 
for entering data for a data base program, for entering numeric 
values (which must be converted to binary), and the like. 

Clear Buffer and Call Function (AH = C). This routine 
first clears the keyboard buffer, then calls one of the other 
routines described above. To use this option, place OCH in 
AH, and one of the other function numbers in AL (only 1, 6, 
7, 8, and A allowed). Usually this function is used in conjunc­
tion with some message that must be read and acknowledged. 
Since this routine clears the buffer of any previously typed 
characters, the user is forced to read any messages previously 
printed before pressing a key and going on. 

Screen Output Functions 
We continue our discussion of the use of INT 21H with func­
tions that allow printing to the screen. 

Display Output (AH = 2). The counterpart of function 1 
above, this function prints the character in DL (not AL) on the 
screen. It also checks for Break and Echo. 

There is one subtle difference between this function and 
the BIOS teletype function, which we discussed in the last 
chapter. With BIOS, you can't use the Tab character, ASCII 9; 
all you get is a graphics character. The DOS function handles 
the Tab character specially by advancing the cursor to the next 
tab-column (tabs are set every eight characters). 

Direct Console I/O (AH = 6). We discussed this function 
above. As you may recall, neither Break nor Echo is checked 
when this function is called. Furthermore, direct console I/O 
does not perform any Tab expansion, nor does it echo to the 
printer. However, it will pipe characters to a disk file, under 
DOS 2.00 and above. To use this function, place the desired 
character in DL (any character except 255). 

Print String (AH = 9). One of the more useful of the 
DOS console functions, Print String, unlike the previous func­
tions (which print one character at a time), will print an entire 
string with one function call. To use the function, DS:DX must 
hold the address of the character string. Oddly (a relic from 
CP /M), the string must be terminated with a dollar sign ($). 
Below is an example of how to use this function; there are 
more examples in the sample DOS program, "DUMP.ASM," 
in "Sample Programs," Chapter 16. Notice that we use the 
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assembler's OFFSET command to get the address of the start 
of the string, rather than the contents of the string's first byte . 
... in the current data segment 
HIT_KEY DB 'Hit any key to begin the program.',13,lO,'$' 
GET_DISK DB 'Please put your disk in drive A.',13,lO,'$' 

... in the code segment 
MOV DX,OFFSET HIT_KEY 
MOV AH,9 
INT 21H 
MOV AH,C 
MOV AL,S 
INT 21H 
MOV DX,OFFSET GET_DISK 
MOV AH,9 
INT 21H 

;string's address in DS:DX 
;the print-string function 

;clear buffer and ... 
;wait for a key to be struck 

;another string's address 
;the print-string function 

As you can see, we used the Clear Buffer function, so that 
the user can't press a key before the program asks him to. 
Also, note that we used DOS function 8 above (MOV AL,S), 
not function 1, since we didn't want whatever character was 
struck to be echoed. 

The Printer Function (AH = 5) 
This function simply outputs the character in DL to the stan­
dard printer device (printer number 0, if you have more than 
one). As a rule, however, you should use the BIOS printer 
interrupt (INT 17H) rather than DOS. Function 5 is included 
in DOS for CP 1M compatibility; the printer interrupt, INT 
17H, is much more powerful, allowing for multiple printers as 
well as printer error-checking. 

DOS 2.00 File Handling 
In this section, we will discuss how to handle files with INT 
21H and the newer versions of DOS (2.00 and 2.10). Many of 
the functions have counterparts in the older DOS 1.10 disk file 
functions. However, the new functions are, as a rule, simpler 
and more powerful. Of course, if you're writing a program that 
must be used both with DOS 2.00 and DOS 1.10, you'll have 
to use the older file-handling functions. 

DOS 2.00 File .. Handling Conventions 
Handles. DOS 2.00 uses a system of file handles to keep 

track of all the files that are open. Whenever you open an 
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existing file or create a new file, DOS assigns a unique handle, 
from 0 to 65,535, to the file. Once this is done, you can read 
or write to a particular file just by specifying its handle. DOS 
takes care of the rest. DOS predefines a few handles for your 
use; these handles are always set up, and no special files have 
to be opened. 

o standard input device (input can be redirected) 
1 standard output device (output can be redirected) 
2 standard error output device (always goes to screen) 
3 standard auxiliary device (the serial port/modem) 
4 standard printer device (printer number 0) 

Thus, the first file that your program opens will most 
likely have a handle of 5, and subsequent files will have 
higher numbers. 

ASCIIZ. You'll find that several of the new DOS func­
tions accept a simple string as a filename. The older version 
of DOS requires a specific format for the filename. DOS 2.00 
accepts a filename just as you would type it at the keyboard, 
including a drive specifier (such as B:), a directory path (such 
as" LEVELl \ LEVEL2\), and, of course, a filename (such as 
FILE1.MSS). The only condition DOS puts on this name is 
that it must end with an ASCII O. So, to open, create, delete, 
or rename a file (for example), you might specify a name like 
this: 
FILE_NAME DB 'B: WORD WP EST.MSS',O 

DOS refers to this sort of string as an ASClIZ string (the Z for 
the zero byte at the end). Remember, only the filename itself 
is required; the drive number, the path, and the extension 
need not be specified if they don't apply. 

Errors. Many of the functions can return an error code. 
On return from these functions, the carry flag will indicate 
whether or not an error occurred. If the carry flag is clear, the 
operation was successful. If the carry flag is set, however, 
there was an error, and AX holds the error code. Only the ex­
tended functions return specific error numbers in this fashion. 
As we discuss each function below, we will note which errors 
it can potentially return to the calling program. Table 13-3 
contains a complete list of the possible error numbers. 
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-----------------

Table 13-3. Error Numbers for Extended Functions 

1 invalid function number 
2 file not found 
3 path not found 
4 too many open files (no handles left) 
5 access denied (general error) 
6 invalid handle 
7 memory control blocks destroyed 
8 insufficient memory 
9 invalid memory block address 

10 invalid environment 
11 invalid format 
12 invalid access code 
13 invalid data 
15 invalid drive was specified 
16 attempted to remove the current directory 
17 not same device 
18 no more files 

As a rule, you won't have to worry about errors 7 through 
13, which refer to the advanced, extended memory manage­
ment functions. 

DOS 2.00 File-Handling Functions 
Open a File (AH = 3D). This call is used to open an al­

ready existing file. The name (an ASCIIZ string) must be 
pointed to by DS:DX, and AL must contain the access code: 

AL = 0 file is opened for reading 
AL = 1 file is opened for writing 
AL = 2 file is opened for both reading and writing 

When DOS returns, AX will hold the new handle for the file. 
This handle should be saved and used for all subsequent read­
ing and writing to the file. If the carry flag is set on return, AX 
will hold the error number (2, 4, 5, or 12). This function can 
open any normal or hidden file (like IBMBIO.COM on system 
disks). It's also possible to open a file to a device (printer 2, 
for example), a technique best left to advanced programmers. 

Create a File (AH = 3C). This call will create a new file 
in the appropriate directory, or truncate an existing file to zero 
length, in preparation for writing data to it. To create a file, 
DS:DX should point to its ASCIIZ name, and CX should hold 

239 



13 
The DOS Function Interrupt 

the file attribute, which is bitwise significant (each bit handles 
a different function). Normally you will set ex to O. 
bit 0 mark file as read only 
bit 1 mark file as hidden 
bit 2 mark file as system 

Bits 3 and 4 are used by the system to mark the volume name 
and a subdirectory, respectively. 

On return from this function, AX holds the handle for the 
file, or the error code (3, 4, or 5), depending on the carry flag. 
Note that error 5, Access Denied, means that you are either 
trying to truncate a read-only file, or that the directory is full. 
If the routine is successful, the file is created with a read/write 
access code (see the Open File function, above). 

Close a File (AH = 3E). To close a file, put the file's 
handle in BX, and call this function. The only possible error 
you can get (in AX) is number 6, Invalid Handle. It's necessary 
to close an output file when you're finished so that all the 
data is written to disk. It's also a good idea to close input files, 
both for readability and to avoid overloading DOS. 

Read from a File (AH = 3F). Use this function to read 
data from a file that you've opened or created. BX must con­
tain the handle, DS:DX must point to a buffer to hold the data 
being read, and ex must hold the number of bytes to read. 
On return, if there was no error, AX holds the number of 
bytes actually read. If AX is 0, you tried to read past the end 
of the file. Possible error returns are 5 and 6. This call can also 
read from devices like the keyboard. If you set BX to 0 (the 
handle for the standard input device), calling this function will 
read characters from the keyboard, somewhat like the input 
function (number A). 

Write to a File (AH = 40H). The parameters for writing 
are the same as for reading. BX holds the handle, DS:DX 
points to the data to write, and ex holds the number of bytes 
to write. On return, AX will hold the number of bytes actually 
written. Note that if AX does not equal ex on return, some er­
ror has occurred (the usual cause is a full disk). Possible error 
returns in AX are 5 and 6. Remember, you can use this call to 
write to a device, such as the screen or a printer, by using a 
predefined handle. 

Delete a File (AH = 4tH). On entry, DS:DX holds the 
address of the ASeIIZ name of the file to be deleted. The 
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name must not have any global filename characters in it, the 
asterisk (*) or question mark (?). Error returns from this func­
tion are 2 and 5. Note that DOS 1.10 traditional file handling 
is capable of deleting more than one file at a time, using 
global filename characters, so you may find that DOS 1.10 can 
be more useful sometimes. 

Rename a File (AH = 56H). To use this function, DS:DX 
points to the current name of the file; ES:DI points to the file's 
new name. Both names, of course, are ASCIIZ. The drives 
specified must be the same, but you can specify different 
directory paths, allowing the file to be moved from one direc­
tory to another and renamed in the process. Error returns are 
3, 5, and 17. Again, note that DOS 1.10 can handle multiple 
file renaming. 

Get Disk Free Space (AH = 36H). To use this call, DL 
must hold the drive: 0 = default, 1 = A:, 2 = B:, and so 
forth. On return, AX holds FFFFH if the specified drive num­
ber was invalid. Otherwise, the registers will be set as follows: 

BX the number of available clusters 
DX the total number of clusters on the disk 
CX the number of bytes per sector (usually 512) 
AX the number of sectors per cluster (one or two) 

To get the number of bytes remaining on the disk, you have to 
multiply BX by AX, and then again by CX. 

Other DOS Functions 
There are a wide variety of other new DOS 2.00 disk functions 
that we'll just summarize here. 

• When dealing with files, you can change your position 
within the file with function 42H, and can change the file 
attribute with function 43H. DOS also allows you to scan 
through a directory searching for filenames that match a 
global filename (with * and ?). The calls to do this are 4E 
and 4F for DOS 2.00, and llH and 12H for DOS 1.10. It's 
also possible to set and retrieve a file's date and time with 
function 57. 

• Functions 39H through 3BH allow you to handle 
subdirectories just as do the DOS commands MKDIR (make 
directory), RMDIR (remove directory), and CHDIR (change 
directory). You can also have DOS create an ASCIIZ string 
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containing the full path name of the current directory, using II 
function 47H . 

• One very powerful DOS function, 44H, allows you to read 
and write data, get and set information, and get various sta- _ 
tus flags for any file or device. _ 

Complete descriptions of all these commands are in the 
DOS manual. For most normal file-handling uses, however, a I 

the functions described in the text will be more than sufficient. 

DOS 1.10 File Handling 
DOS 1010's handling of files is more complex and harder to 
understand than DOS 2.00's. This is understandable, since 
DOS 1.10 was designed in part for compatibility with the 
much older CP 1M-based systems. Thus, the DOS designers 
were constrained to use conventions already growing cumber­
some at the time DOS 1.10 was written. However, even DOS 
2.00 users may find DOS 1.10 useful from time to time (es­
pecially for deleting or renaming files). 

DOS 1.10 File Control Blocks 
Standard FCBs. All file handling is done not with simple 

ASCIIZ names, but rather with the more complex file control 
blocks (usually referred to as FCBs) that are traditional from 
CP 1M. Each file control block represents one file, and all the 
data necessary to handle the file is stored with the 37 bytes of 
the FCB. DOS sets up the file control blocks as shown in Table 
13-4. 

Table 13~4. FeB Organization 

Offset Size 
o 1 byte 
1 8 bytes 
9 3 bytes 

12 1 word 
14 1 word 
16 2 words 
20 1 word 
22 10 bytes 
32 1 byte 
33 2 words 
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Description 
drive number (0 = default, 1 = A:, 2 = B:, etc.) 
filename (padded on the left with spaces) 
filename extension (also padded with spaces) 
current block number (a block is 128 records) 
size of one record (normally 128 bytes) 
file size, in bytes 
date of file, holding year, month, and date 
<reserved for system use> 
current record (0-127) within block 
random file's record number (random files only) 
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The only information that usually need concern you is the 
filename (the first 12 bytes), as well as the size of one record 
(at offset 16 from the start of the FCB), and the current record 
number (at offset 32). The rest is filled in by DOS. 

DOS Initialization of the Program Segment Prefix 
Although using this file control block may sound extremely 
cumbersome, in fact there are a few aspects of DOS that make 
using it easier than you might expect. One of these aspects, a 
function call to convert a standard human-readable filename 
to FCB form, is discussed below (the Parse Filename function): 
The other aspect necessitates a slight diversion into the pro­
gram loading and initializing techniques of DOS. 

The Program Segment Prefix. When any program is 
loaded, a new segment is assigned to it (the Program Seg­
ment). However, the program doesn't start at the beginning of 
this segment; the first 100H bytes are used by DOS for a vari­
ety of purposes. These first 256 bytes are called the Program 
Segment Prefix, or PSP for short. To accommodate this prefix, 
.EXE files start off with their code segment 100H above the 
Program Segment. The data and extra segments, however, 
point to the Program Segment when your program begins. A 
large variety of DOS information is placed in the PSP, some 
important, some advanced and technical. Of particular interest 
are the following areas within the PSP: 

offset 0 The location of an INT 20H command, which is 
used to end the program. 

offset 5CH An FCB area, set up by DOS (filename 1). 
offset 6CH Another FCB area set up by DOS (filename 2). 
offset 80H The "unformatted parameter area" and default 

disk transfer area (to be explained). 

DOS Default FCBs. Notice that DOS automatically cre­
ates an FCB at offset 5CH. This FCB contains the drive, name, 
and extension of any filename specified after the program 
name itself. For example, when we invoke DEBUG with 
PROGRAM.EXE: 
A>DEBUG PROGRAM.EXE 

DOS creates an FCB at DS:5CH with the name 
PROGRAM.EXE. In this case, the drive number byte is set to 0 
(default). DEBUG can now open the file without any further 
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difficulty. The second FCB area, starting at 6CH, holds the • 
name of the second file that was specified on the initial com- _ 
mand line (in the example above we specified only one file). 
However, since this second FCB area is in the middle of the _ 
first one, if you open FCB 1 you'll obliterate FCB 2. It's nec- _ 
essary to move FCB 2 (the formatted name and drive number 
in particular) somewhere safe before opening FCB 1. • 

The unformatted parameter area. Yet another area holds _ 
the actual characters specified on the command line after the 
program name. This area, the unformatted parameter area, is 
located at 80H in the Program Segment Prefix. DOS places 
anything that you typed after the filename itself in this area. 

offset 80H The number of characters specified, not including 
the final Enter (ASCII 13). 

offset 81H The characters themselves, terminated with ASCII 
13. 

So, if you typed 
A>MASM TEST.ASM,,; 

the 13 characters (space) TEST.ASMII ; and Enter (ASCII 13) 
would appear, starting at 81H, and SOH would hold the num­
ber 12. DOS 2.00 users should note that piping is transparent 
to your program, so you'll never see any of the piping charac­
ters, <, >, or I, nor the filenames that accompany them. 

Remember, even programs that don't use disk files at all 
can read parameters from the unformatted parameter area. 

The disk transfer area. The 128 bytes at offset 80H have 
an additional use. DOS normally uses this area as the disk 
transfer area, or DTA, for DOS 1.10 file handling. In DOS 2.00, 
you specify the area you wish to read and write disk data to in 
DS:DX. With DOS 1.10 function calls, by contrast, you must II 
set the address of the disk buffer area (the DTA) with a sepa-
rate function call. Of course, you can also use the initial DOS 
DTA default, which is the 128-byte buffer at offset 80H rel- I 
ative to the current DS. 

If you use the default FCB at SCH and the default DTA at 
80H, the last byte of the FCB will be overwritten by disk data. 8 
However, this is only of significance for random file handling. 

We'll discuss the function calls to set the DTA's address 
below, as well as the technique to set its length. Note that the II 
same DTA is used for all your files, unless you explicitly 
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change it-which you must do if you want to read two files at 
the same time. 

The DOS 1.1 0 File~ Handling Functions 
Parse Filename (AH = 29H). This command is very use­

ful if filenames are to be entered from the keyboard. Filenames 
in an FCB must appear without the usual period between 
filename and extension, and they must be padded with spaces. 
Since most people don't enter filenames that way, the parse 
filename routine allows a filename to be parsed, or translated, 
into the format used in an FCB. However, since DOS 1.10 
does not allow subdirectories, the parse function does not 
allow any path names. 

To use this command, DS:SI must point to the human­
readable version of the filename, and ES:DI must point to the 
FCB to be filled in. AL is a command byte, bitwise significant: 

bit 0 (01) ignore leading separators (see below) 
bit 1 (02) don't change drive number if drive not specified 
bit 2 (04) don't change filename if filename not specified 
bit 3 (08) don't change extension if extension not specified 
bits 4-7 (unused) 
The filename separators are (space) (Tab) : . ; , = and +. 
Filename terminators include all the separators plus < > : / 
" [ ] and control characters, including Enter. 

Normally, you'll be setting AL = 1, to make the parse 
routine ignore any initial spaces and so forth. Bits 1-3 are 
more specialized and normally less useful; they allow parts of 
the filename (drive, filename, extension) to be already speci­
fied at ES:DI, and only have certain parts of it changed. Note 
that the parse function handles changing the * characters into 
a string of ? characters. 
AL is returned with one of the following: 
01 if the ? or * appeared in the filename extension 
FF if the drive specifier is invalid 
00 drive number valid, no global characters 

DS:SI returns pointing to the first character after the filename 
and ES:DI points to the first byte of the formatted FCB. If no 
filename was specified, ES:DI + 1 will contain a space. 

Remember, if filename(s) were specified on the command 
line, the FCBs at SC and 6C in the PSP are already formatted, 
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and only need to be opened (though one of the FCBs would 
have to be moved if you were going to use both of them). 

Open File (AH = F). On entry, DS:DX points to an FCB. 
If the specified file is found, AL will hold 0 on return; other­
wise, AL will hold FFH. If the file is found, the FCB will be 
filled in with the special system data. If no drive was specified 
(the default drive assumed), DOS replaces it with the actual 
drive used. However, for some reason DOS does not initialize 
the current record (the byte at offset 32). It is the pro­
grammer's responsibility to set it to 0 before doing any read­
ing or writing. 

Create File (AH = 16H). This call works just like the 
open file call. AL returns 0 if the file was created successfully 
(either a new file created or an old one set to zero length). If 
AL returns FFH, there wasn't enough room in the directory. 

Close File (AH = 10H). On entry, DS:DX points to the 
FCB of an already opened file. On exit, AL holds 0 if the file 
has been properly closed; if the disk has been changed (and 
thus the file can't be closed), AL returns FFH. 

Set Disk Transfer Address (AH = lA). This call simply 
puts the DTA at the address in DS:DX. Remember, for mul­
tiple files you will have to change the DTA for each file. Use 
this call to select the appropriate DTA before reading or writ­
ing the file's data. This function call takes the place of the 
(DS:DX) parameter required for DOS 2.00 reads and writes. 

To change the size of the DTA from the initial DOS de­
fault of 80H, you have to write the appropriate size, as a word 
value, into offset 14 in the FCB. This is the equivalent of the 
(CX) parameter for DOS 2.00 reads and writes. Note that you 
must always set the size after opening the file. Remember that 
you must set the record size in each FCB that uses a given 
DTA. To set the DTA size to 512 bytes in an example FCB, 
named FCB_l, do the foHowing: 
MOV FCB_1 +14, 512 ;address of record size in FeB 

The new size of the DTA cannot be larger than the space 
remaining in its segment. Furthermore, we recommend that 
you keep the DTA to 512 bytes or less, or DOS may have 
difficulty reading the file. 

Read Sequential Data (AH = 14H). DS:DX must point to 
the FCB on entry. This call reads the next record from the file 
and puts it in the DTA. All the FCB variables are updated to 
point to the next record in the file. AL returns the status: 
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o the transfer was completed successfully 
1 no more data in the record (end of file) 
2 not enough room in the OTA segment to read one record 
3 only a partial record read (end of file) 

Write Sequential Data (AH = ISH). DS:DX points to the 
FCB. The information in the DTA is written out to disk. AL re­
turns the status of the operation as follows: 
o transfer completed successfully 
1 diskette is full 
2 specified OTA size larger than room left in segment 

Delete Files (AH = I3H). DS:DX points to an FCB con­
taining the name of the file to be deleted. Multiple entries can 
be deleted by using global filename characters. If no files are 
deleted, AL returns FFH; otherwise, it returns O. Deleting mul­
tiple files is not allowed with the DOS 2.00 file-handling func­
tions, so DOS 2.00 users may wish to use this function call on 
certain occasions. 

Rename Files (AH = I7H). For this function, DS:DX 
points to a modified FCB. The first 12 bytes of the FCB con­
tain the original name, with or without global filename charac­
ters. The new name appears at offset 17 within the FCB. Every 
filename in the directory that matches the first name in the 
FCB is changed to the second. If ?'s appear in the second 
name, DOS doesn't change the corresponding character in the 
filename. AL returns FFH if no match is found, or if the new 
filename already exists in the current directory; otherwise, AL 
returns O. 

Get File Size (AH = 23H). One further call can be of 
some use for DOS 1.10 file handling. To find the file size of a 
file, set up an FCB, and as usual, point to it with DS:DX. If the 
specified file isn't found, this function returns FFH in AL; 
otherwise, 0 is returned. The size of the file is returned in the 
two words at offset 33-36, in terms of the FCB's record size. 
You can set the record size (at offset 14) to one byte (MOV 
FCB_l + 14,1) tc;> get the length in bytes, or to the length of 
your DTA to get the number of records (rounded up). 

There are a number of other DOS 1.10 disk functions 
(which can, of course, be used with all versions of DOS). 
Some of the more useful ones allow you to select or retrieve 
the current default drive number (functions E and 19H). Also 
included for DOS 1.10 file handling are routines to read and 
write random records to a file, or to write and read an entire 
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II 
block of records. You can also retrieve the allocation table a 
information from any disk (including the disk identification 
byte, the number of clusters, the number of sectors per cluster, 
and the number of bytes per sector). This parallels the DOS 8 
2.00 Disk Size function. 

More DOS Functions Using INT 21H a 
In the last chapter we discussed the time-of-day interrupt, INT 
lAH. We said that there is a method which is often superior 
for reading the time, and we will describe it here. 

Time and Date Handling 
Get/Set Date (AH = 2A, 2B). The Get Date function, AH 

= 2AH, returns information on the year, month, and day. On 
return from this function, CX and DX are set as follows: 
CX holds the year (as a binary number from 1980 to 2099) 
DH has the month (1 to 12, January to December) 
DL holds the date (1 to 31) 

If the time-of-day clock goes past 24 hours, DOS adjusts the 
date, taking into account the number of days per month and 
leap years. 

The counterpart to this function, for which AH = 2BH, 
allows you to set the date from within your programs. CX and 
DX must hold the date, as above. On return, if the date you 
specified was valid, AL = 0; otherwise, AL = FFH. 

Get/Set Time (AH = 2e, 20). The Get Time function, 
AH = 2CH, returns the time of day in CX and DX, and the 
day of the week in AL. Here are the parameters returned: 
AL day of the week (0 = Sun, 1 = Mon, etc.) PC DOS 2.10 only 
CH hour (0-23) 
CL minute (0-59) 
DH second (0-59) 
DL hundredths of a second (0-99) 

Since the time-of-day clock is updated only 18.2 times per sec­
ond, DL is not, in fact, accurate to within 1/100 second. 

The counterpart of this operation is the Set Time function, 
AH = 2D. To set the time, load CX and DX appropriately. The 
Set Time function, like the Set Date function, returns AL hold­
ing 0 for a valid time or FFH for an invalid time. 
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Memory' Allocation Functions 
A variety of other DOS functions are available. Some of the 
most powerful DOS functions allow for reallocating portions of 
memory for various purposes. When your program begins to 
run, it is allocated all of memory, but there are some DOS 
functions to change the size of a currently allocated block of 
memory, to allocate a new block of memory, and to free al­
ready allocated memory. 

In addition, the very powerful EXEC function call (4BH) 
allows for loading overlays or for loading and executing an­
other program. (The EXEC function is used in Chapter 10 to 
load files into BASIC's memory prior to BSAVEing them.) The 
memory-allocation functions are very useful for advanced 
programming. 

The DOS function interrupt is unquestionably the most 
powerful single interrupt routine of MS-DOS. The DOS 
character device I/0 functions (keyboard input, screen output, 
and so forth) are often useful, though the BIOS functions 
themselves are sometimes best for a job. However, interrupt 
21H is useful primarily for its disk- and memory-management 
functions. 

Table 13,5. DOS Functions 

(AH) Function Name and Description 
Character Device I/O 
1 keyboard input (echo, Break/Echo checking) 

output (AL) = character typed 
2 display output, with Break/Echo checking 

input (OL) = character to print 
5 printer output 

input (OL) = character to print 
6 direct console I/O (no echo, no wait, no Break/Echo checking) 

input (OL) = FFH 
output (ZF) = 1 if no key was struck 

(ZF) = 0 and (AL) = character if a key was hit 
input (OL) = anything but FFH, character to print 

7 direct keyboard input without echo (no echo, no checking) 
output (AL) = character typed 

8 console input without echo (no echo, Break/Echo checking) 
output (AL) = character typed 
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9 print string 
input (DS:DX) = address of string (terminated with $) 

A buffered keyboard input 
input (DS:DX) = address of DOS input buffer 

output buffer is filled with input line 
B check standard input status 

output (AL) = 0, no character available 
(AL) = FF, character waiting 

C clear buffer and invoke a function 
input (AL) = 1, 6, 7, 8, A 

in addition to other parameters as appropriate 

DOS 2.00 File Handling 
36 get disk free space 

input (DL) = disk number (0 = default, 1 = A, 2 = B) 
output (AX) = FFFF if disk number invalid 

(AX) = number of sectors per cluster 
(BX) = number of clusters available 
(CX) = number of bytes per sector 
(DX) = number of clusters on drive 

3C create a file 
input (DS:DX) = address of ASCIIZ name of file 

(CX) = file's attribute 
output (AX) = handle or error (if CF = 1, AX = error) 

3D open a file 
input (DS:DX) = address of ASCIIZ name of file 

(AL) = file access code (0, 1, 2) 
output (AX) = handle or error 

3E close a file 
input (BX) = handle 
output (AX) = error if CF = 1 

3F read from a file or device 

II 

II 

II 

input (DS:DX) = address of buffer area _ 
(BX) = handle number -
(CX) = number of bytes to read 

output (AX) = number of bytes read or error • 
40 write to a file or device .. 

input (DS:DX) = address of buffer area 
(BX) = handle number 
(CX) = number of bytes to write 8 

output (AX) = number of bytes written or error 

41 delete a file 
input (DS:DX) = address of ASCnZ name of file II 
output (AX) = error number if CF = 1 
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rename a file 
input (DS:DX) 

(ES:DI) 
output (AX) 

- ------ -----

= address of old ASCIIZ filename 
= address of new ASCIIZ filename 
= error if CF = 1 

DOS 1.10 File Handling 
F open file 

input (DS:DX) = starting address of FCB area 
output (AL) = 0 if file found, FF if not 

10 close file 
input (DS:DX) = FCB address 
output (AL) = 0 if file closed, FF if not on disk 

13 delete file 
input (DS:DX) = FCB address 
output (AL) = FF if no files deleted, 0 otherwise 

14 sequential read 
input (DS:DX) = FCB address 
output (AL) = 0, 1, 2, 3 depending on read status 

15 sequential write 
input (DS:DX) = FCB address 
output (AL) = 0, 1, 2, 3 depending on write status 

16 create file 
input (DS:DX) = FCB address 
output (AL) = 0 if file created, FF if directory full 

17 rename file 
input (DS:DX) = modified FCB address 

lA set disk transfer address (DTA) 
input (DS:DX) = new DTA address 

23 get file size 
input (DS:DX) = FCB address 
output (AL) = 0 if file found, FF otherwise 

random record field = number of records in file 
29 parse filename 

input (DS:SI) = address of command line to parse 
(ES:DX) = starting address of area for a new FCB 
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Time and Date Handling 
2A get date 

output (CX) 
(DH) 
(DL) 

2B set date 

= year (1980-2099) 
= month (1-12) 
= day (1-31) 

input parameters as above for get date 
output (AL) = 0 for valid date, FF otherwise 

2C get time 
output (CH) 

(CL) 
(DH) 
(DL) 
(AL) 

= hours (0-23) 
= minutes (0-59) 
= seconds (0-59) 
= hundredths of seconds (0-99) 
= day of the week (0 = Sun), PC DOS 2.10 

only 
2D set time 

input parameters as above for get time 
output (AL) = 0 for valid time, FF otherwise 
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14 
Basic AsseIllbler 

Control 
This chapter is the first of two introducing the assembly lan­
guage programmer to the IBM Macro Assembler. In previous 
chapters, you have been introduced to some of the commands, 
or pseudo-ops, used by the assembler. In this section, we will 
examine the entire range of pseudo-ops used by the assem­
bler, and you will encounter a variety of new commands as 
well as learning more about the ones you already know. 

This chapter was written to describe the features (and 
flaws) of IBM's Macro Assembler Version 1.00. Certain pseudo­
ops are defective in this implementation. Version 2.00, re­
leased in the fall of 1984, has fixed certain errors (the XOR, 
SHL, and SHR pseudo-ops work in Version 2.00, for example), 
and has increased the speed of assembly by a factor of four 
or five. 

We recommend that you read the material in each chapter 
first, and then use the Assembler Reference Manual to review 
what you have learned. In many cases the manual will tell 
you more than you want to know; just skip over material that 
doesn't immediately make sense. Occasionally, we've made a 
note of an assembler manual error; more often, however, we 
have simply documented the actual behavior of the assembler, 
and not made a note of the manual's error. 

In this chapter we will discuss the more often used com­
mands of the Macro Assembler. The chapter is divided into 
four sections: program structure commands, arithmetic op­
erators and numeric format, assembler operators, and listing 
control pseudo-ops. For reference, the pseudo-ops appearing 
in this chapter are listed in Table 14-1. 
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Table 14-1. Pseudo-ops 

SEGMENT ENDS ASSUME 
PROC ENDP END 
EQU DB 
DW DT DQ 
. RADIX PAGE TITLE 
SUBTTL 

In addition, we will be discussing in this chapter most of 
the assembler operators, given below in Table 14-2. 

Table 14-2. Assembler Operators 

DUP +,-,*,f,MOD SHL,SHR 
relational operators OFFSET 
SEG TYPE SIZE 
LENGTH seg. override PTR 

Program Structure Pseudo .. ops 
We'll begin by reviewing the pseudo-ops used for structuring 
programs and data. All of these have been discussed earlier, 
but here we'll discuss them in a little more detail. 

The SEGMENT and ENDS Pseudo-ops 
In the sample programs presented in this book, SEGMENT 
and ENDS have been used primarily for three purposes: set­
ting up an area for data, for code (the actual program), or for 
the stack. These separate areas are addressed by the DS reg­
ister, the CS register, and the SS register, respectively. When 
using string commands, or addressing the screen directly, 
you've set the ES register to point to the appropriate segment 
as well. 

The SEGMENT command precedes each segment that you 
set up, and the ENDS pseudo-op serves to mark its end. The 
format of the SEGMENT command is as follows: 
segname SEGMENT [align type][combine type]['class'] 

(Note that the brackets, here and later, are meant to show that 
the item is optional. Don't actually put brackets in your 
program.) 

The segname (CSEG, DSEG, or what have you) simply 
identifies the segment you've defined. Each segment must 
have a legal assembler name. The name serves to identify the 
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segment for the ASSUME statement or for any segment over­
rides. Both the ASSUME statement and the use of segment 
overrides will be discussed further in this chapter. 

The items following SEGMENT are optional; none, all, or 
any of them can be specified. The align type is usually used 
only when linking object modules together, so we won't dis­
cuss it here. In our sample programs, the align type is left un­
specified. 

The combine type is also optional. For most segments you 
will be working with, it too is left out. The combine type in­
dicates in what fashion the segment can combine with other 
segments of the same name (in other object modules, typi­
cally). Leaving this option out means the segment won't be 
combined with other segments of the same name in other 
modules. For single modules such as the ones we are working 
with, it doesn't matter how the segments can be combined, so 
generally we leave this option out. 

However, there are two common and useful combine 
types. The combine type STACK serves to define a segment as 
the program stack area. Only one stack segment per program 
should be defined. Another useful SEGMENT combine type is 
AT expression, which functions somewhat like the DEF SEG 
command in BASIC. This combine type tells the assembler to 
place the segment at the address specified by an expression (a 
segment value, not an absolute address). This option is nor­
mally used to locate variables in the interrupt vector area, the 
BIOS ROM, the DOS data area, or the screen. You can't ac­
tually place data or code in a segment defined with AT ex­
pression. The following definition sets up a segment at the 
color/graphics screen on the PC series: 
SCREEN SEGMENT AT OB800H 
SCREEN ENDS 

This is equivalent to the BASIC statement 
DEF SEG = &HB800 

Finally, the SEGMENT 'class' name (also optional), speci­
fied with single quotes, is used to group segments together 
when the program is LINKed. For our purposes, the class 
name is useful as a note to the purpose of the segment; thus a 
segment named CSEG might be put in the class 'CODE'. 

The ENDS pseudo-op is placed at the end of each seg­
ment. Its format is simply: 
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segname ENDS 

The segname, of course, must be the same name as the one 
specified for the matching SEGMENT command. If a SEG­
MENT and the following ENDS have different segnames, the 
assembler will return 
O:Block nesting error 

Note that one of the more complex data storage pseudo-ops, 
STRUC, also uses the ENDS command as a terminator, so 
don't always assume ENDS marks the end of a segment. 

The ASSUME Pseudo~op 
The ASSUME pseudo-op can, in some ways, be difficult to 
understand. The usual format for the ASSUME command is 
ASSUME segment register:segment name,segreg:segname ,etc 

This tells the assembler what to expect from each segment ref­
erence. A typical ASSUME command might be 
ASSUME CS:CSEG,DS:DSEG,SS:SSEG 

where CSEG, DSEG, and SSEG had already been defined by 
the SEGMENT command. 

Without the ASSUME command (or if ASSUME NOTH­
ING has been specified), the computer doesn't know which 
segment register to use (CS, DS, SS, or ES) when it needs to 
make a reference to a segment in your program. For the 
assembler to assemble a MOV from some data in DSEG, it has 
to know which segment register should be used for DSEG. 
Normally, DS is used for data, but if ES is the only segment 
register pointing to DSEG, the assembler has to be informed 
(with ASSUME ES:DSEG), so it can insert the appropriate seg-

I , 
• 
II 

ment register override. Similarly, it has to know which seg- II 
ment is being used for the current program area. In other 
words, whenever you reference a location in a segment, the 
assembler has to know what segment register to use for that II 
segment. 

If you don't tell the assembler what to ASSUME, you 
have to use a segment override every time you address mem- II 
ory. Often the assembler errors 62 (No or unreachable CS) and 
68 (Can't reach with segment reg) indicate some problem with 
your use of the ASSUME statement (and it's easy to forget the II 
ASSUME command altogether). 
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However, one irritating problem for programmers is that 
telling the assembler what to ASSUME doesn't mean that the 
segment registers will automatically point to the correct seg­
ments. When your program begins, DS and ES always point to 
the Program Segment Prefix (discussed in the DOS Interrupts 
chapter). So, even if you've told the assembler to ASSUME 
that DS is to be used for DSEG, your program still has to be 
responsible for putting the location of DSEG into DS: 
MOV AX,DSEG ;note: MOV DS,DSEG is illegal 
MOV DS,AX 

The PROC and ENDP Pseudo~ops 
PROC (PROCedure) and ENDP surround a section of code in 
much the same way that SEGMENT and ENDS surround a 
segment. The PROC command establishes whether a routine 
is NEAR or FAR for CALLs, JMPs, and RETurns. The format 
for PROC is 

procedure-name PROC [NEAR] 

or 
procedure-name PROC FAR 

The NEAR attribute is the default for a procedure, so it 
doesn't need to be specified (as the brackets above indicate). 
The attribute of the procedure (NEAR or FAR) determines if a 
RET encountered in the code is a far RETurn (inter segment) 
or a near RETurn (intra segment). It also sets the type (NEAR 
or FAR) of the PROC label. 

As with SEGMENT, PROC requires an END pseudo-op to 
mark the end of the procedure. Simply place the ENDP com­
mand at the end of the procedure, with the following format: 
procedure-name ENDP 

DOS requires a far RETurn, so the main program is de­
fined as a FAR procedure and the appropriate far return ad­
dress is pushed onto the stack at the beginning of the 
program. Therefore, most assembly programs have the follow­
ing structure: 
segname SEGMENT 

ASSUME CS:segname, etc. 
program PROC FAR 

PUSH DS ;set up far return for CS 
MOV AX,O 
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PUSH AX ;set up IP = 0 for return 
... program code ... 

RET ;pop CS:IP as a far return 
program ENDP 
segname ENDS 

END program 

Note that we push DS, not CS, since only DS and ES are 
guaranteed to point to the Program Segment Prefix, which 
contains the INT 20H command (discussed in the chapter on 
MS-DOS interrupts) at location DS:OOOO. You could simply 
place an INT 20H at the end of your program, but the far 
RETurn is standard for the assembler. 

By contrast, procedures called from the main program 
(subroutines) are declared NEAR. Since these subroutines are 
in the same segment as the main program, the PROC should 
be NEAR. Sometimes object module subroutines are defined 
as FAR PROCs in different segments, but as a rule, your sub­
routines should be NEAR PROCs. 

The END Pseudo,op 
This command is required at the end of the source program. 
An optional expression can follow the command: 
END [expression] 

The expression tells the assembler where the computer should 
begin executing your program. A typical example is END BE­
GIN. If you don't use the expression, your program will begin 
at the beginning of the code segment. But sometimes it's use­
ful to start your program at some other address than the start 
of the code segment. (For example, if your program has a 
lengthy section of initialization code, and you need as much 
data storage space as possible, you can put the initialization 
code at the end of the program and then overwrite it during 
the course of the main program.) 

Symbols 
A label is a name that marks a location in your program code. 
You have already encountered and used labels many times in 
your programs. A label is limited to code (you can't define a 
label with data, for example), and a label is usually used only 
as the operand of a jump or CALL. 

All of the labels must end with a colon. This tells the 
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assembler that the label should always be used with NEAR 
commands, thus IMPs and CALLs to those labels will be intra­
segment. The exception to the colon rule is the PROC pseudo­
op, in which the NEAR or FAR attribute is explicitly stated, 
and thus using a colon is prohibited. 

A FAR attribute means that JMPs and CALLs to that label 
will specify the segment as well as the offset value. In other 
words, they will be inter-segment. A label can be FAR only if 
it is the name of a FAR procedure, or if it has been defined 
with the LABEL pseudo-op, discussed in the next chapter. FAR 
labels, however, are not particularly useful for most small 
assembly language tasks. 

Variables are the counterpart to labels. Rather than defin­
ing a location in code, they define a location in data. The type 
of a label is always NEAR or FAR; a variable, by contrast, can 
have a type of WORD, BYTE, DWORD, or one of the less 
common types. A variable gets its type from the data pseudo­
op it's associated with; for example, a variable with a DB 
pseudo-op is a BYTE variable. We will discuss the data 
pseudo-ops in a moment. 

SMALL DB 13,14,15,16 ;SMALL is a BYTE variable 
LARGE OW 1314,1516 ;LARGE is a WORD variable 

Remember that a label is defined as a symbol with NEAR 
or FAR type, whereas a variable is a symbol with type BYTE, 
WORD, and the like. 

A constant is a number without any attribute or type; 
usually it's just a value. Constants are typically used to replace 
hard to remember values, such as interrupt function numbers. 
They're also used for the sake of clarity and documentation. A 
constant can be defined either with the EQU (equate) pseudo­
op, or with the = (equal sign) pseudo-op. Normally, constants 
are defined with the EQU pseudo-op; the = pseudo-op is or­
dinarily used for macros and conditionals (advanced program­
ming techniques found in the next chapter). The format for the 
EQU pseudo-op is 
name EQU expression 

The expression can be one of five things-a number (a 
signed or unsigned word), an EQU symbol (if your expression 
is some other symbol, plus or minus some quantity), an alias 
(another name for some other symbol), an opcode (thus allow­
ing you to rename 8088 instructions), or text of any kind. The 
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constant name can then be used anywhere the expression is 
valid. But once defined with EQU, it cannot then be redefined. 
The following are all legitimate uses of the EQU pseudo-op: 

VIDEO EQU lOH ;a constant numeric value 
BNE EQU JNZ ;an opcode 
STACK2 EQU [BP+6] ;an index reference (text) 
LOCATN EQU ES:[DI] ;a segment prefix and operand 

(text) 
ALIAS_l EQU LABEL_l ;an alias for a symbol 
LABEL-2 EQU LABEL_l + 5 ;an EQU symbol 
TEXT_l EQU WORD PTR [BX] ;simple text 

Now, having defined BNE as EQUal to JNZ, we could legally 
write: 
BNE LABEL-2 ;this would assemble to a JNZ 

However, by far the most common use of EQU is for constant 
numeric values, such as VIDEO above. 

Data Storage Commands 
In this section we turn to the structure of data. Most of the 
commands discussed here should be familiar to you from earlier 
chapters. 

II 

II 

II 

Data storage pseudo-ops. The DB (Define Byte) and DW 
(Define Word) pseudo-ops are the most commonly used data 
storage commands. The DB command allows you to store byte 
values. (As you will recall, a byte is any value from 0 to 255 
unsigned, including character data, or -128 to 127 signed.) 
The OW command stores words (values from 0 to 65535 un­
signed or -32768 to 32767 signed). The OW command can 
also be used to store the offset of a variable or label. Most DB 
and DW areas are used as variables, as we discussed above. 
The DB pseudo-op gives its associated variable the type BYTE; I 
DW, the type WORD. 

There are three other, less common types of data storage 
pseudo-ops. These include DO, Define Doubleword (type • 
DWORD), which can store values from 0 to almost 4.3 billion. 
Additionally, DD can store variables and labels in 
segment:offset four-byte form (refer to Chapter 5). The DQ • 
command, Define Quadword, is used for storing quad words 
(type QWORD), 64 bits long (if you ever need to store values 
of up to 18 billion billion ... ). The DT pseudo-op, Define _ 
Tenbytes, is used for storing lO-byte, 18-digit BCD numbers, 
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type TBYTE (see Chapter 8). Note that with the Small Assem­
bler, DO can store only symbol segment:offset values, not num­
bers, and DQ and DT can't be used. 

An entry after a data storage pseudo-op can take many 
forms: 
• a simple number or a constant, signed or unsigned. The 

range of the number depends, of course, on the particular 
pseudo-op. 

• a variable or label. For OW, the symbol's offset is stored; for 
DO, the full segment:offset form. DB, DQ, and DT cannot be 
used to store variable or symbol addresses. 

• a string of ASCII characters, with the DB pseudo-op only. 
These characters must be enclosed with single or double 
quotes. 

• a question mark, ?, meaning that the assembler places no 
value there, but reserves that location for use by the 
program. 

All of the following are valid expressions: 
NU~BASE DB 16 
FILLER DB ? ;initialize with in­

determinate value 
NAMES 
LARGE_NMS 
OFFSETS 
SEG_OFFS 

PLBCD 

DB 'STEVE JOHN MARY' 
OW 3498,-4590,20000,0,-32767,10 
OW FILLER,NAMES,LARGE_NMS ;2-byte offsets here 
DO FILLER,NAMES,LARGE-NMS ;4-byte 

segment:offset form 
DT -314159265357989324 ;lO-byte BCD format 

(MASM) 
DQ 18446744073709551615 ;max. number with 

DQ (MASM) 

Any combination of these forms is legal: 
BUFFER DB to,?,' 

The DUP command. One very useful command for all of 
the above storage pseudo-ops is the DUP command. In a 
situation where you would like to initialize a 1000-byte table 
with the value 73, it's clearly not very practical to type out 
1000 DB entries of value 73. Instead, using the DUP com­
mand, you can simply specify 
DB tOOO DUP(73) 

and the assembler will create the appropriate table. The DUP 
command can be used with any of the data pseudo-ops, and 
with more than one operand: 
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OW 512 DUP(-5467,993) ;creates 1024 words 
DT 2 DUP(764851298612348971) ;2 lO-byte BCD numbers (MASM) 
DO 5 DUP(ADDRESS1,ADDRESS2,ADDRESS3) 

;creates 5 copies of three 4-byte 
addresses 

The DUP command can be nested: 
TABLE1 DB 2 DUP(4,2 DUP(2,3),12) 

;i.e., 4,2,3,2,3,12,4,2,3,2,3,12 
TABLE2 DB 10 DUP(16,?,16 DUP(' ')) 

;10 copies of a 16-byte DOS input buffer 

Two assembler operators are used with DUP: SIZE and 
LENGTH. These will be discussed later. For some of the more 
esoteric uses of the DUP command (for example, creating an 
uninitialized block of data), see your assembler manual. 

Arithmetic Operators and Numeric 
Format 
In this section we will discuss the arithmetic operators, such as 
+, -, /, and *, as well as all the different ways of entering 
numeric quantities: decimal, hexadecimal, characters, and 
others. 

Arithmetic Operators 
The most common of these operators, and the easiest to use 
and understand, are the standard arithmetic operators, +, -, 
*, and j. Of these, the addition operator is the most com­
monly used. So if, using MASM, you had a two-word variable 
in the data segment: 
LONG_WORD DO 12345678H 

you could get the first word with a MOV AX,LONG_WORD 
and the second word with a MOV DX,LONG_WORD+2. 
Similarly, elements in a table are often accessed with the + 
operator: 
BYTABLE DB 67,68,77 

To get the second element, you specify BYTABLE + 1. 
The subtraction operator is also frequently used: some­

times to make a negative offset (LONG_WORD-2, perhaps), 
and sometimes to find the offset difference between two vari­
ables. For example, if we had these messages in the data area: 
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MESSAGE_1 DB 'Place disk in drive . 
MESSAGE_2 DB 'Thank you!' 

the command 
MOV CX,MESSAGE_2-MESSAGE_1 

would subtract the offset of MESSAGE_I from that of 
MESSAGE_2, returning the value into CX; that difference 
would be the length of MESSAGE_I. 

The multiplication (*) and integer division U) operators 
are used for a variety of reasons: sometimes to access an ele­
ment in a table, sometimes simply to create an entry for a con­
stant or data item. One example mentioned above gives the 
idea: 
INCHES_PER._MILE DW 5280*12 

What is crucial to bear in mind when using arithmetic op­
erators is that they are calculated when the program is assem­
bled, not .when it is executed. So, specifying 
MOV AX,TIME/60 

would not return the value of TIME divided by 60. In fact, the 
assembler would return error 42 (Constant expected). 

Only in one situation is an arithmetic operator calculated 
when the program executes: when you use positive or neg­
ative offsets to an address, such as MOV AX,[DI + 2]. The off­
set is calculated when the program is executed. See Chapter 6 
for a full description of these offsets. 

A number of other arithmetic operators are available. 
Most of these are not used very frequently, so we'll just skim 
through them. The first of these is MOD. This returns the 
remainder of an integer division, much as the / operator re­
turns the quotient. The following example should help to 
make the use of MOD clearer: 
PLQUOT DW 31416 / 10000 ;this equals 3 
PLREM DW 31416 MOD 10000 ;this equals 1416 

There is another class of arithmetic operators, the logical 
operators, which consist of the Boolean AND, OR, NOT, and 
XOR functions. These are used in precisely the same way as 
the other operators. For example: 
COMMAND_BYTE EQU LOW ~YBBLE OR HIGH_NYBBLE 

This sets COMMAND_BYTE to the logical OR of LOW_ 
NYBBLE and HIGH_NYBBLE. The NOT operator, however, 
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II 
takes the format NOT value. It's the only arithmetic operator • 
that takes only one operand: 
BIT_5_MASK EQU NOT 20H 

Remember that these arithmetic operators are quite different • 
from the 8088 opcodes of the same name. These operators are 
all calculated at the time of assembly; the opcodes are exe-
cuted at runtime. (Assembler Version 1.00 owners note that II 
the XOR operator doesn't work properly.) 

Several other operators do exist. There are the two shift 
operators, SHL and SHR, but these are defective in Version 
1.00 of the assembler, so we won't discuss them here. The fi­
nal class of operators is the relational operators. These are, 
however, fairly complex, and not often used. In brief, they are 
used to compare two operands for greater than, less than, 
equal, and the like. They return only true (0) or false 
(OFFFFH). These operators are so obscure that the IBM manual 
doesn't even discuss them, and we shall follow its lead. 

Operator Precedence 
One question that users of BASIC and Pascal may ask con­
cerns operator precedence. Operator precedence refers to the 
order in which the computer performs the operators. The con­
cept of precedence should be familiar to users of high-level 
languages. It means simply that the computer selects the most 
important operators and calculates them first, rather than 
performing each operation in left to right order. For example, 
the expression 
14 + 2 * 3 

evaluates out to 14 + (2 ole 3) = 14 + 6 = 20, since ole has a 
higher precedence than +, not simply to 14 + 2 ole 3 = 16 ole 3 
= 48. However, also like BASIC and Pascal, it is possible to 
use both parentheses (like this) and square brackets [like this 1 
to establish precedence. For example, to force the expression 
above to be equal to 48 instead of 20, you would specify 
(14 + 2) ole 3 

The IBM Assembler Manual has an extensive precedence 
list, some of which concerns terms we have not yet discussed. 
A simplified order of precedence is given below in Table 14-3; 
the complete table is given on pages 4-20 and 4-21 of the 
assembler manual. 

266 

II 

• 
• 
II 

II 



II 

II 

II 

II 

II 

II 

• 
II 

II 

14 
Basic Assembler Control 

Table 14,3. Operator Precedence 

1. entries within parentheses and square brackets 
2. the assembler operators (to be discussed) 
3. multiplication and division: *, /' MOD; SHL, SHR 
4. addition and subtraction: +, -
5. relational operators 
6. logical NOT 
7. logical AND 
8. logical OR, XOR 

Entries at the same level are calculated left to right, but always 
before lower-level entries. However, for the most under­
standable code, it's always best to use parentheses to indicate 
explicitly the desired order of precedence. 

Alternate Forms of Numeric Entry 
At different points in the book we have put numbers in hex or 
binary directly into the program. Now, let us look systemati­
cally at the different forms of entering numeric values with the 
Macro Assembler. Any of these can be either positive or neg­
ative (you can even have negative characters). 

• Decimal is usually the default for entering numbers, but 
when necessary (see the .RADIX command below), the suffix 
o is used to identify the number as decimal. For example, 65 
and 650 are both legitimate decimal numbers. 

• Hexadecimal is frequently used. The hexadecimal number 
must begin with one of the digits 0-9 and end with the letter 
H for hex (thus OH, 45H, 9AH, OA1H, and OFFH are legal; 
FF, OFF, and FFH are not). 

• Binary is also used, primarily for I/O and graphics purposes. 
A valid binary number consists of a sequence of 1's and O's 
followed by the letter B, as in 01101001B. 

• Character entries are also legal; they are enclosed within 
single or double quotes. More than two characters are legal 
for DB only. "$", 'Testing ... ', and "It's time" are all legal. If 
you wish to put single quotes in your string, surround the 
string with double quotes; the reverse is true for double 
quotes. However, you cannot use both in one string. 

Other options are available from the assembler, but are 
infrequently used. Octal can be entered with a suffix of 0 or 
Q. Decimal Scientific Real numbers, used with the DO 
pseudo-op, can be entered as floating-point decimal digits 
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(2.997E + 8), which are stored in four-byte format, like IBM's 
BASIC. Hexadecimal Real numbers, which are identical to 
standard hexadecimal, can be entered with a suffix of R. The 
last two types above are available only with MASM and are 
intended to support the 8087 numeric coprocessor. Some 
information on all of these types is available in the Assembler 
Reference Manual, pages 4-4 and 4-5. 

We mentioned above that decimal is usually the default 
base for entering numbers. It's possible to use the .RADIX 
command to change the default to another number base. (.RA­
DIX never affects DD, DQ, or DT, which always default to 
decimal.) For example, to use hexadecimal as your default base 
(perhaps to practice thinking in hex), you would begin your 
program with 
.RADIX 16 

(the operand of .RADIX is always in decimal). Once you have 
done this, all numbers without a suffix would be interpreted 
by the assembler as hexadecimal (base 16). If you were writing 
an I/O-intensive program, you might use 

.RADIX 2 

for binary (base 2). 
Any radix between 2 and 16 is allowed. 
You can change the default base back to decimal at any 

point in your program by inserting the .RADIX 10 command 
in your program. However, if you change the base to some­
thing other than decimal, remember to use the D suffix when 
you want base 10. 

Assembler Operators 

III 

III 
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At this point we begin to look at the more detailed and com- • 
plex assembler commands. First let us recall how the IBM 
assembler keeps track of all its variables and labels (collec-
tively called symbols) in a source program. Each symbol is • 
associated with a segment, an offset (how many bytes it is 
from the beginning of the segment), and a type. For a label, 
the type refers to whether the label was specified as NEAR or • 
FAR, and for a variable, whether the variable addresses DB, 
DW, DD, DQ, or DT data, or one of the advanced data 
pseudo-ops. All assembler symbols are defined by segment, III 
offset, and type. 
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Value~ Returning Operators 
The value-returning operators can be very useful. You have al­
ready encountered and used one of them: the OFFSET com­
mand. In this section we will discuss the OFFSET command, 
as well as the two commands that are its counterparts, SEG 
and TYPE, and two commands useful with variables defined 
with OUP: LENGTH and SIZE. 

The OFFSET command. IBM allows the access to each of 
the defined characteristics of a symbol separately. The OFFSET 
command returns the offset of a variable within its segment. 
Normally, when you specify the name of a variable (for ex­
ample, as an operand of the MOV command), the assembler 
assumes you want the contents of the variable. However, if 
you want to reference the variable indirectly, it is necessary 
that you know its offset. For example, 
OSEG SEGMENT 
VAR_l OW 303 
VAR_2 OW 450 

OSEG ENDS 
CSEG SEGMENT 

ASSUME CS:CSEG,OS:OSEG 
BEGIN: MOV DI,VAR_2 

MOV SI,OFFSET VAR_2 

When this program fragment is executed, OI will hold 450 (the 
value stored at VAL2), but SI will hold 2, the location (or off­
set) of the variable VAR_2 within the OSEG segment. 

For more information about, and examples ot the OFF­
SET command, see Chapters 9 and 13. 

The SEG operator. The next operator, SEG, is used less 
often. It returns the segment value of the symbol (variable or 
label). Thus, in the above example, MOV AX,SEG VAR_l 
would put the segment register value for OSEG into AX. Like­
wise, MOV BX,SEG BEGIN would put the value for CSEG into 
BX. However, these same operations can be done with MOV 
BX,CSEG and MOV AX,OSEG. The SEG operator is used 
mainly for self-documenting code (as below): 
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• 
• MOV AX,SEG VAR-.2 ;equivalent to MOV AX,DSEG 

MOV ES,AX 
MOV DI,OFFSET VAL2 

The TYPE operator. The last operator, TYPE, is useful for • 
making code more easily modified (as we shall see in a mo-
ment), as well as more self-documenting. The TYPE operator 
returns different values for variables and for labels. For vari- • 
ables, TYPE returns a value equal to the number of bytes in 
the variable's type (1 for BYTE, 2 for WORD, 4 for DWORD, 
and so forth). The possible values are given in Table 14-4. For 
labels, TYPE returns NEAR or FAR as appropriate; this is not 
usually very useful. 

Table 14~4. Values Returned with TYPE 

BYTE = 1 (with DB) WORD = 2 (with OW) 
DWORD = 4 (with DO) QWORD = 8 (with DQ) 
TBYTES = 10 (with DT) 

Advanced data ops return TYPE as appropriate to their defi­
nition. Constants and segment names always return O. 

A common use of TYPE is to access elements in a table 
without explicitly using the number of bytes per entry. If we 
declare a table of numbers as below: 
TABLE DB 0,1,8,27,64,125,216 

containing the cubes of numbers from 0 to 6, we can access, 
for example, the cube of 3 with 
MOV AL, TABLE + 3 

But if we wanted to extend the table to include the cubes 
of 7 to 10, we would have a problem; the values 343, 512, 
729, and 1000 don't fit into bytes. The solution is to redeclare 
TABLE as a WORD table, then double all the offset references 
within it (for example, to get the cube of 3, we now need 
MOV AX,TABLE + 6). If we had specified the instruction as 
MOV AL,TABLE + 3 * TYPE TABLE 

changing the type of TABLE from DB to OW would automati­
cally change the offset from 3 to 6 above. It is thus easier to 
change from byte entries to word entries. 

The other reason to use TYPE for variables is that it 
greatly improves the readability of the program. If you saw, 
for example, 
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INC TABLE+4 

you could have no way of knowing whether it referred to the 
third word entry, the fifth byte entry, or the second double­
word entry, without going back to the definition of TABLE it­
self. Using the form 
INC TABLE+4*TYPE TABLE 

however, makes it clear that what is referred to is the fifth en­
try in the table, regardless of the actual type. 

The SIZE and LENGTH operators. The SIZE and 
LENGTH operators can also prove useful in a program. They 
return values for variables defined with the DUP command. 
The LENGTH operator returns the length of a DUP table is, 
that is, how many DUPlicates were made. If the variable 
wasn't created with the DUP command, LENGTH returns one. 
Thus, for this entry, LENGTH returns 16: 
TABLE_16 DW 16 DUP(DUMMY_RETURN) 

;16 of DUMMY_RETURN's offset 

SIZE tells you how long the table is in bytes. So, for the 
above entry, SIZE returns 32. For this entry, TYPE returns 2 
(for a WORD); and, as a rule, the assembler always uses 
LENGTH * TYPE to calculate SIZE. This means that the SIZE 
and LENGTH operators are useful when there's only one en­
try for DUP. Entries such as 
DB 10 DUP(16,?,16 DUP(' I)) 

will not return the correct SIZE value; since LENGTH is 10 
and TYPE is ]; SIZE will be 10 * I, or only 10. 

Attribute Operators 
The counterpart of the variable-returning operators is the 
attribute operators. Instead of returning the segment, offset or 
type identification of a symbol, they allow you to override the 
segment or type of the symbol. 

Segment override. The segment identification of a vari­
able can be overridden by use of a segment prefix. As well as 
overriding a variable or label, the segment override operator 
can also be used to override an address expression, such as 
ES:[BX + SIlo Bear in mind that the ASSUMEd segment prefix 
can be overridden not only by the segment registers (CS, OS, 
ES, and SS), but also by the names of the segments (CSEG, 
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II 
DSEG, or whatever). Remember, if you don't tell the assem- _ 
bIer what to ASSUME, you must use a segment override op- _ 
erator for each variable. 

The PTR command. The type identification of a variable II 
or label can also be overridden with PTR. Its format is 
type PTR expression 

The expression is a variable or label, and the type should be _ 
BYTE, WORD, or DWORD for variables; for labels, NEAR or 
FAR. If, for example, you want to jump to a procedure that has 
been defined as FAR, but you're in the same segment, you can 
say: 
IMP NEAR PTR procedure-name 

Or, if you should wish to access a WORD array in memory by 
BYTE (for example), you could use the form 

MOV AL,BYTE PTR table-flame + 4 

to get the fifth byte of the table. (See the next chapter, LABEL 
and THIS, for another way to do this.) 

Sometimes PTR is required. When you reference some in-
direct memory address, you must tell the assembler whether ~,) 
you are dealing with a byte or a word. For example, 
MOV [OI + BX],lOO 

In this expression, [DI + BX] could be pointing to a byte or a 
word with equal ease. The assembler has no way of knowing 
(so you get an error message, 35:0perand must have size). For 
this sort of expression you must specify the type explicitly: 
MOV WORD PTR [01 + BX],lOO 

The offset cannot be overridden (a strange idea that 
would be), but a few more attribute operators exist (SHORT, 
THIS, HIGH, and LOW). THIS will be discussed in the next 
chapter along with the LABEL command; the other attribute 
operators are abstruse, and unnecessary for most programming. 

Common Listing Pseudo .. ops 
A few of the assembler pseudo-ops give the assembler instruc­
tions about the format of the list file. Three of these in particu­
lar are quite useful and will be discussed below. 
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The PAGE Pseudo~op 
This pseudo-op is used to control the length and width of a 
logical page in the assembler .LST file. In addition, the com­
mand can be used to force a new page. The first command in 
a file will often be 
PAGE [operand l][,operand 2] 

The first operand is the number of lines per page. Normally, 
this is 66 (the default for six lines per inch for II-inch paper). 
However, if you have especially long or short paper, this op­
erand can take any value from 10 to 255. Usually it's not 
specified, and left to default to 66 lines per page. 

The second operand is used more often. It controls the 
width of the page. The assembler defaults to the normal 80-
column width of most printers, but any number from 60 to 
132 can be specified. Wide, 132-column printers should set the 
page width to 132 with 
PAGE ,132 

Typically, 80-column dot-matrix printers can set character 
widths to 10 cpi (characters per inch), 12 cpi, or about 17 cpi. 
For our work, we use the 
PAGE ,96 

command, and set the printer to print in 12 cpi. If you need 
more room for comments, however, PAGE ,132 and 17 cpi 
may be better. 

The PAGE command can also be used without any oper­
ands, in which case the printer advances to the next page and 
the listing continues from there. If you use the format PAGE 
+ , the chapter number is incremented and the page number 
is reset to one. 

The TITLE and SUBTTL Pseudo,ops 
The TITLE pseudo-op is often specified immediately after the 
PAGE ,width command. It takes the format 

TITLE text 

and the specified text (up to 60 characters) becomes the title, 
going at the top of each page in the listing, below the assem­
bler title and page number. This command can be used only 
once in the source file. 
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------------

The 5UBTTL command is similar to TITLE, but defines a 
subtitle, which appears below the title. The format is 5UBTTL 
text. As many subtitles as you wish can be defined in a single 
file. The new subtitle takes effect on the following page, so the 
5UBTTL command is often used in conjunction with the 
PAGE command: 
SUB TTL (whatever subtitle you wish goes here) 
PAGE ;make subtitle immediately effective 

Once you understand these commands, you can write 
quite complex assembly language programs. In the next chap­
ter, you will be introduced to some even more powerful 
assembler commands, including macros, conditionals, and 
cross-referencing. 
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In this chapter we will discuss the more advanced commands 
available with IBM's assembler. Most of our discussion will be 
centered on the use of macros, as well as on the use of the 
conditional assembly pseudo-ops. At the end of this chapter, 
we will discuss the use of the cross-referencing facility CREF, 
which comes with the assembler, as well as the assembler 
pseudo-ops that control it. 

Not all of the remaining assembler commands will be dis­
cussed in this chapter. Some of the commands are very ob­
scure; some of them are powerful but useful only at the most 
advanced level. In this latter category, for the curious, fall the 
advanced data-structuring commands, STRUC and RECORD, 
as well as the very powerful external assembly pseudo-ops. A 
brief description of the excluded material appears at the end of 
the chapter. 

In Table 15-1 below is a list of those commands discussed 
in this chapter. Appendix C has a table briefly describing all 
the assembler pseudo-ops discussed in this book. 

Table 15,1. Assembler Commands 

MACRO 
&,%,;; 
IRP 
.LALL 
ELSE 
THIS 
.CREF 

ENDM 
INCLUDE 
IRPC 
.sALL 
ENDIF 
LABEL 
.XCREF 

MACROS 

LOCAL 
REPT 
.XALL 
IF <condition> 
SHORT 
ORG 

One of the most versatile commands available on the Macro 
Assembler is the MACRO command (not available with the 
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Small Assembler). A macro, generally speaking, is any utility 
that allows you to execute a series of standard commands with 
only one macro command. Users of some of the newer word 
processors may be familiar with this concept; WordPerfect, for 
example, allows the user to key in a single macro command, 
such as Alt-L, that signals the program to execute a series of 
predefined commands. 

For those who know DOS well, the DOS batch files are 
also similar to assembler macros. First, you set up a file 
containing all the commands you want to have executed. 
Then, to execute them, you simply type the name of the batch 
file. Macros work the same way: Specify the commands that 
make up the macro, then to use those commands in your pro­
gram, just specify the name of the macro. 

Thus, the Macro Assembler allows you to define a single 
command (with a name of your choosing) in terms of other 
Macro Assembler commands and opcodes. One simple macro 
might be used to print an often used message in your pro­
gram. The code to print this message might be as follows: 
MOV OX,OFFSET MSG_l ;address of message start 
MOV AH,9 ;DOS print string command 
INT 21H ;invoke the DOS function interrupt 

This fragment of code could be defined, by the MACRO 
statement, to be the PRINT_MESSAGE command. Defining a 
macro is really quite simple: The name of the command-to-be, 
followed by the MACRO pseudo-op, is placed before the code 
(the code is the body of the macro). The ENDM command (for 
END Macro) is placed at the end of the code. To define 
PRINT_MESSAGE, then, we would place the following in our 
source code: 
PRINT_MESSAGE MACRO 

MOV OX,OFFSET MSG_l 
MOV AH,9 
INT 21H 
ENDM 

II 

II 

II 

(Note that, unlike ENDS and ENDP, you don't specify the 
name of the macro with ENDM.) Once the macro command II 
has been defined in this way, it can be used later at any point 
in the program, and as often as you wish, simply by specify-
ing PRINT_MESSAGE. _ 
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However, a macro does not function in the same way as a 
subroutine. It is critical to understand the difference. The code 
of a subroutine appears in the final object code in only one 
location. Whenever you need to use the subroutine, you CALL 
it, then RETurn from it. A macro, by contrast, is not called by 
the main program when it is used. Instead, every time the 
name of the macro appears in the program, the code constitut­
ing the macro is substituted directly for the name. 

As an example, if PRINT_MESSAGE_2 were a sub­
routine, the assembler statements 
CALL PRINT_MESSAGE_2 
CALL PRINT_MESSAGE_2 

would appear in a DEBUG list as, perhaps, 
091C:0200 E84201 CALL 0345 
091C:0203 E83FOI CALL 0345 

However, the parallel macro statements 
PRINT_MESSAGE 
PRINT_MESSAGE 

(assuming the macro PRINT_MESSAGE had been defined as 
above) would appear in DEBUG as 
091 C:0200 BAI000 MOV OX,0010 
091 C:0203 B409 MOV AH,09 
091C:0205 C021 INT 21 
091C:0207 BAI000 MOV OX,0010 
091C:020A B409 MOV AH,09 
091C:020C C021 INT 21 

(offset of MSG_l) 
(print function) 
(DOS call) 
(and again) 

Macros are not, however, limited to repeating the same 
sequence of instructions each time they're invoked. A macro 
can be given a list of operands, much as regular 8088 opcodes 
are given operands. These operands are then substituted into 
the expansion of the macro according to its initial definition. 

To allow a macro to have operands, the first line of the 
macro definition must be enlarged to include a list of so-called 
dummy parameters. These dummy parameters appear immedi­
ately following the MACRO statement, separated by commas. 
There can be as many of them as fit on one line. For example: 
SAMPLE_MACRO MACRO Pl,P2,P3,P4 

You might invoke SAMPLE_MACRO with 
SAMPLE_MACRO AX,BX,AOO,SUM 
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Now, when the macro is expanded by the assembler, the 
operands (AX, BX, ADD, and SUM in this case) will be sub­
stituted for the dummy parameters (PI, P2, P3, and P4): 
PI is replaced with AX 
P2 is replaced with BX 
P3 is replaced with ADD 
P4 is replaced with SUM 

So, if we code SAMPLE_MACRO like this: 
SAMPLE_MACRO MACRO PI,P2,P3,P4 

P3 PI,P2 
MOV P4,PI 
ENDM 

and called it with 
SAMPLE_MACRO AX,BX,ADD,SUM 

the assembler would expand it as follows: 
ADD AX,BX 
MOV SUM,AX 

As you can see, each of SAMPLE_MACRO's operands has 
been substituted for the corresponding dummy parameter. If 
SAMPLE_MACRO were invoked elsewhere in the program, 
with, perhaps, 
SAMPLE_MACRO DX,DSEG,MOV,DS 

the assembler would expand it as 
MOV DX,DSEG 
MOV DS,DX 

Dummy parameters have to follow the usual rules for 
variables; they don't have to be named PI, P2, P3, and so 
forth, but can take more descriptive names if your macro has a 
more specific purpose than the one above. Also, as you have 
seen, the dummy parameters can play any role in the macro 
definition, from variables, labels, and registers to opcodes and 
pseudo-ops. 

Another macro might use these dummy parameters more 
usefully-for example, to handle the multiply operation. This 
macro would be defined in terms of moving data to the AX 
register, multiplying it by some other data, then placing the 
answer in a specified register or variable. 
MULTIPLY MACRO VAR_I,VAR_2,TARGET_REG 
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PUSH OX ;DX is changed by word 
;multiply 

MOV AX,VAR_2 
MUL VALl 

;AX = VAR_l * VAR_2 

MOV TARGET_REG,AX 

POP OX 
ENOM 

;TARGETJEG can be 
;register or variable 

This could be called with any of the following: 
MULTIPLY BX,3,CX ;this gives CX = BX * 3 
MULTIPLY TRACKS,SECTORSJER_ TRACK,BLOCKS_PELDISK 

;this might be only variables, no 
;registers or constants 

MULTIPLY SEG_SIZE,17,OS ;DS = 17 * SEG_SIZE 

There is an additional feature involved in macro param­
eter passing that makes the process even more flexible. Al­
though a certain number of parameters are defined on the first 
line of the macro definition, it is possible, in fact, to pass the 
macro as few or as many parameters as you like. If fewer 
parameters are specified than there are dummy parameters, 
the remaining parameters are simply made blank (see the IFB 
conditional below). If more parameters are specified than are 
defined in the macro, the extra ones are simply ignored. Thus, 
you can have a multipurpose macro which accepts a different 
number of parameters, depending upon (let's say) the value of 
the first parameter. (See the sample macro program at the end 
of this chapter.) How to change the expansion of the macro, 
however, is a subject we shall cover later, in the section on 
Conditionals. 

Now let us look over some of the reasons for you to use 
macros in your programs. Generally, macros are not useful for 
making object code as efficient as possible. Instead, they are 
used because: 

• Macros are dynamic. As we have seen, parameters can be 
passed to a macro in a much more all-encompassing fashion 
then parameters passed via the stack or registers to a 
subroutine. 

• Macros usually help to streamline and simplify the program 
source code by making it more understandable both for the 
initial programmer and for later readers. 
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• Macros, as we shall see, can be entered into a macro library II 

that can be stored on disk and easily accessed. 
• Macros are, in general, faster. Since the subroutine is placed 

directly in the object code by a macro expansion, the com- II 
puter is not delayed by CALL and RETurn. Typically, the de-
lay is all of 35 clock cycles, or well over 0.000007 seconds. 

The WeAL Special Macro Operator _ 
One problem with invoking the same macro in several places 
occurs when there is a label in the macro. You might, for ex-
ample, define a short macro that incremented a double word. 
INC_DWORD MACRO DWORD_ VAR 

INC DWORD_ VAR 
JNZ NO_INC 
INC DWORD_ VAR + 2 

ENDM 

The macro as written will serve to increment a double word. 
(There are simpler methods, but the above example illustrates 
the point at hand.) However, consider what happens when we 
use this macro command twice in the same program: 
INC_DWORD DWORD_l 
INC_DWORD DWORD-2 

This will result in the following macro expansion by the 
assembler: 

NO_INC: 

INC DWORD_l 
JNZ NO_INC 
INC DWORD_l + 2 

INC DWORD_2 
JNZ NO_INC 
INC DWORD-2+2 

As you can see, the same label name is being used in two 
places. When the assembler tries to assemble this code, quite a 
few errors will be generated: 
Err 0 r 4:Redefinition of symbol 
Err 0 r -- 26:Reference to multidefined 
Err 0 r -- 5:Symbol is multidefined 

However, there is a macro command that allows this 
problem to be circumvented: the LOCAL pseudo-op. This 
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command tells the assembler which labels would be 
multidefined (like NO_INC above), and the assembler re­
names them to avoid the problem. The format of the com­
mand is 
LOCAL labeLl,labeL2,labeL3, etc. 

You can specify as many label names as can fit on one 132-
column assembler line. But one warning about this command: 
The LOCAL command must be the very first command after 
the MACRO command, preceding even any comments. 

In our example above (INC_DWORD), the LOCAL 
pseudo-op would be used as follows: 
INC_DWORD MACRO DWORD_ VAR 

LOCAL NO_INC 
INC DWORD_VAR 
JNZ NO_INC 
INC DWORD_ VAR + 2 

ENDM 

Now, each time INC_DWORD is invoked and expanded by 
the assembler, the assembler will assign a new name to 
NO_INC. The assembler's naming system is simply to create 
label names of the format ??OOOO to ??FFFF. This gives us over 
65,000 possible labels for use with LOCAL macro labels. Note 
that the manual erroneously states that LOCAL labels start 
with ??0001. 

Program 15-1 is a listing from the Macro Assembler of the 
appropriate sections of a program which uses INC_DWORD. 

Notice that expanded macro code has a plus sign (+) on 
column 31 of the listing to help you tell it apart from normal 
code. Also, there is an additional entry in the SYMBOLS sec­
tion of the assembler. This entry, Macros, lists each defined 
macro in alphabetical order. 

The Ampersand (&) Macro Special Operator 
A variety of further operators are provided for use with the 
MACRO command. The ampersand (&) operator allows you to 
concatenate symbols together with text or with other symbols. 
(More technically, it serves as a flag to warn the assembler 
that the following name is a dummy parameter where there 
wouldn't normally be a parameter.) 
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For example, we can make a macro which allows us to 
conditionally CALL a subroutine: 
BAD_COND MACRO COND,ROUTINE 

LOCAL DO_CALL,SKIP 
JCOND DO_CALL 
JMP SKIP 

DO_CALL: CALL ROUTINE 
SKIP: ENDM 

Unfortunately, the COND parameter in the macro above won't 
be replaced by our macro parameter when the macro is ex­
panded. The assembler sees the expression JCOND as entirely 
different from the dummy parameter COND (and, in fact, a 
syntax error). The ampersand operator allows you to concat­
enate the COND operand onto the J: 
CALL_COND MACRO COND,ROUTINE 

LOCAL DO_CALL,SKIP 
J&COND DO_CALL 
JMP SKIP 

DO_CALL: CALL ROUTINE 
SKIP: 

ENDM 

Now, the assembler will recognize the COND in the macro as 
the dummy parameter. When CALL_COND is invoked, 
CALL_COND NZ,READ_KEYBOARD 

it will be expanded by the assembler to 
JNZ ??OOOO 
JMP ??0001 

??0000: CALL READ_KEYBOARD 
??0001: 

The ampersand operator is also needed with some of the 
conditionals, since the parameters that conditionals use are 
sometimes embedded in other text. 

The Percent (%) Operator 
There is another useful macro special operator, the percent op­
erator. Until now all of the parameters we have passed to 
macros have been simply names. It is also possible to pass the 
value of a constant to a macro. For example, if we had the 
following code: 

282 

II 

II 

II 

II 

II 

II 

II 



I 

II 

II 

II 

II 

-
II 

II 

15 
Advanced Assembler Control 

BDOS EQU 21H 

MAKE_MSG MACRO MSG~UM 
DB 'This is interrupt number &MSG_NUM' 
ENDM 

we could invoke the macro with MAKE_MSG BDOS. How­
ever, that would expand to 
DB 'This is interrupt number BDOS' 

This is not what we intended. To make the macro create a 
message with the actual number (21H in this case), it is nec­
essary to use the percent operator. Invoking the macro with 
MAKE_MSG %BDOS 

gives us 
DB 'This is interrupt number 33' 

Note that the percent operator returns the number in the 
current radix (see the .RADIX command), no matter whether 
the number was defined as decimal, hexadecimal, binary, or 
anything else. 

The INCLUDE Pseudo,op 
When dealing with a large number of macros, it is often 
convenient to keep them separate from the main program. The 
macros can then be included in the file at assembly time by 
the INCLUDE pseudo-op. This command takes the format 
INCLUDE filename. ext 
where the filename.ext is the DOS filename of the file in which 
the macros are stored. Thus if you have a file containing noth­
ing but six or eight of your favorite macros (a macro library), 
you can use them in another program. For example, you can 
put an INCLUDE at the beginning of your program, using the 
traditional name for a macro library, MACRO.LIB: 
INCLUDE MACRO.LIB 

(Usually the INCLUDE pseudo-op is used with the IFI-ENDIF 
construction that we'll be discussing shortly.) Note, by the 
way, that this is only one use for the INCLUDE command. It 
can be used to include anything into your source file, and the 
included file will be assembled at the point that the INCLUDE 
statement appeared. 
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Listing of Macros in the Assembler's List File 
Normally, when a macro is invoked within a program, all that 
appears in the assembler list output is the lines that create ac­
tual 8088 code. Thus, assembler directives, equates, and the 
like will not appear except in the original definition of the 
macro. Separate comment lines will likewise not appear, al­
though comments appended to the ends of lines will appear as 
usual. 

However, this can be changed with some of the macro 
listing pseudo-ops, .XALL, .LALL, and SALL. .XALL is the 
default state of the assembler for macro listing: list only lines 
that create valid code (discussed above). When a .LALL com­
mand is encountered, all the macro expansions following the 
command appear in full: all comments, assembler directives, 
and so forth, appear in the list file each time the macro is in­
voked and expanded. 

Even in .LALL mode, however, it is possible to suppress 
the listing of certain comments with the use of the "two semi­
colons" operator. If you use two semicolons (;;) instead of one 
(;) for a comment in a macro, the comment will not appear in 
the expanded macro in the assembler list file. Use two semi­
colons when the comment is meant to appear only in the defi­
nition of the macro or when it contains extra descriptive detail 
not needed in the usual macro expansion. 

The other macro list mode is SALL (Suppress ALL). This 
has the effect of suppressing the listing of the entire macro 
expansion. All that appears in the assembler list file is the in­
vocation of the macro, not the expansion. This can be useful 
when large macros are involved, or when you want to shorten 
the listing. 

Bear in mind that these three commands don't affect the 
object file at all, only the list file. Also note that these com­
mands can be sprinkled as you wish throughout the source 
file; each affects only the macros following it. 

With all of these commands (plus a few others that are 
very obscure), you can control powerful functions very simply 
with the macro operator. One fairly powerful macro, for ex­
ample, appears in the sample listing at the end of this chapter. 
Our treatment of macros has stopped short of some of the 
more esoteric aspects of the macros. For example, macros can 
be nested one within the other if you so desire. Or (even 
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worse) a macro can redefine itself during the course of its 
expansion (for an example of this confusing technique, see 
page 5-52 in the assembler manual). But without going to 
these extremes, macros can be easy to use and good for your 
programming style. Now we'll turn from macros to a related 
set of commands, the repeat commands. 

The Repeat Commands 
The Macro Assembler includes three additional macro com­
mands. These commands appear directly in the source code 
and serve to repeat the given expression. 

The REPT (REPeaT) pseudo-op is the most straight­
forward. To use it, simply put 
REPT expression 

before the statements to be repeated, and ENDM after them. 
Thus, 
REPT 4 
SHL AL,I 
ENDM 

repeats the shift left command four times, generating 
SHL AL,I 
SHL AL,I 
SHL AL,I 
SHL AL,I 

The repeat commands need not be within a macro. It was 
evidently in the interests of conciseness (as well as of confus­
ing the programmer) that IBM chose to use the ENDM com­
mand to end both macros and the repeat commands. 

The second repeat command is IRP, for Indefinite Repeat. 
This command is closer in spirit to a macro than REPT. The 
format is 
IRP dummy,<argument list> 

The dummy plays the same role as the dummy parameters 
in a MACRO, but the IRP dummy takes its values from the 
IRP command's argument list. An example will serve to make 
this clear: 
IRP REGISTER,<AX,BX,CX,DX,DI,SI,BP,ES,DS> 
PUSH REGISTER 
ENDM 
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I 
REGISTER takes on the values AX, BX, ex, etc., repeating un- • 
til the last argument is used. Note that the argument list must -
be enclosed in the so-called angle brackets, known to most of 
us as the less than «) and greater than (» signs. The ex- • 
ample above will generate the following object code: • 
PUSH AX 
~H~ II· 

PUSH CX 
PUSH OX 
PUSH 01 
PUSH SI 
PUSH BP 
PUSH ES 
PUSH OS 

This, as you can see, can prove useful when you have to make 
quite sure that no registers are changed by a subroutine. 

The final repeat command is IRPC. This is similar to the 
IRP command, but instead of a list of arguments within angle 
brackets, the format is simply 
IRPC dummy,string 

The string is a string of characters, not enclosed in quotes, 
although you may, if you wish, enclose it in angle brackets. 
The repeat loop begins by assigning the first character of the 
string to the dummy, then the second on the next pass, until 
the entire string is finished. This is, perhaps, the least useful of 
the repeat commands. One example of its use might be: 
IRPC X,0123456789 
OW X*X*X 
ENOM 

This would create a WORD table of the cubes of 0 to 9. 

The EXITM Pseudo~op 
One final macro command exists, EXITM. This command al­
lows you to exit from a macro or repeat structure early, abort­
ing the macro expansion. The EXITM command cannot, 
however, take the place of ENDM. Every macro must have 
one and only one ENDM. EXITM can occur anywhere within 
the macro, as often as necessary. However, we will put off its 
discussion until we have mastered the concept of conditionals, 
without which EXITM has very little use. 
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Conditionals 
Conditional pseudo-ops can, in many respects, be considered 
an extension of the macro commands (most conditionals ap­
pear within macros). Conditional pseudo-ops allow for dif­
ferent paths to be taken at assembly time by the assembler. 
They are similar to the conditional jumps, which control what 
part of the program to execute under what conditions. The 
conditional pseudo-ops, however, control what part of the pro­
gram to assemble. As you may imagine, this is primarily use­
ful with macros: different sections of one macro can be 
expanded depending on one (or more) of the parameters of 
the macro. However, a few uses exist outside of macros, and 
these will be described in due course. Small Assembler users 
should note that most of the conditional pseudo-ops can be 
used both with Small Assembler and the Macro Assembler. 

The Structure of a Conditional 
First let's discuss the structure of a conditional pseudo-op. All 
conditionals begin with the IF statement or some variation of 
it (for example, IFl, IFDEF, IFIDN, etc.). Furthermore, all 
conditionals must end with the ENDIF statement. An optional 
ELSE statement can also be included. 

The syntax is similar to BASIC, but with some differences. 
For example, the IF statement does not, with the assembler, go 
at the beginning of a line of commands. Instead, the IF state­
ment, with any operands, goes separately on the first line of 
the conditional structure. The body of the IF-clause (state­
ments to be executed should the IF be true) follows. Then, if 
desired, comes the ELSE statement, on a line by itself, fol­
lowed by the body of statements in the event the IF is false. 
Finally, on yet another line comes the (required) ENDIF state­
ment to mark the end of the conditional. So, where BASIC re­
quires that the IF clause be held entirely on one line, the 
assembler insists that every statement be on a separate line. 
The format is therefore: 
IF <condition> 

;body of statements IF true 

ELSE ;( optional) 

;(optional statements IF false) 
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ENDIF ;required terminator 

It's often necessary to insure that two or more conditions 
be true before taking one path or another in the assembly. For 
this reason, nested conditionals are allowed to any depth. You'll 
see some examples of nested conditionals in Program 15-2 
below. 

The Conditional Pseudo~ops 
The first and most elementary IF command is simply the word 
IF itself: 
IF expression 

The IF is true if the expression is not O. This, incidentally, 
corresponds with the relational operators, discussed briefly in 
the last chapter, for which true is OFFFFH and false is O. There 
is an example of the IF command in Program 15-2. 

The counterpart to the IF pseudo-op is the IFE command, 
which is true if the expression is 0 (IF Equal). In effect, this 
statement reverses the logic of the IF command. 

Two other IF statements are used to control conditional 
assembly on pass 1 and pass 2. These statements are IFI and 
IF2, and are true on, respectively, pass 1 and pass 2. The IF1 
statement often occurs with the INCLUDE statement, de­
scribed above. The statements 
1Ft 

INCLUDE MACRO.LIB ;or whatever name 
ENDIF 

will read in the library on the first pass only, thus saving time 
(the disk drive is accessed only once) and list file space (since 
source code is printed only on pass 2). The INCLUDE state­
ment is usually seen in this format. 

There are four IF statements of roughly similar use which 
we will summarize briefly. These fall into pairs. First is the 
IFDEF jIFNDEF pair: These take one operand (a symbol) and 
are true if, respectively, the symbol is DEFined (IFDEF) or Not 
DEfined (IFNDEF). 
IFDEF symbol 

or 
IFNDEF symbol 
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Second is the IFBjIFNB pair. The operand for these 
conditionals is an argument enclosed in angle brackets: 
IFB <symbol> 

or 
IFNB <symbol> 

These commands return true if the argument is Blank (IFB) or 
Not Blank (IFNB), respectively. Their primary use is to detect 
the blank parameters that occur when a parameter is not speci­
fied in a macro expansion. If a macro is designed to accept a 
variable number of parameters, an IFB <dummy_parameter> 
test can be made to assemble different sections of code. These 
four conditionals are the only ones not supported by the Small 
Assembler. 

In general, the most useful IF commands are the IFIDN 
(IF IDeNtical) and IFDIF (IF DIfferent) commands. These take 
two operands and compare them: 
IFIDN <argument l>,<argument 2> 

or 
IFDIF <argument l>,<argument 2> 

As with the IFBjIFNB conditionals, the arguments for IFIDN 
and IFDIF must be enclosed in angle brackets. As you have no 
doubt guessed, these commands return true if (for IFIDN) the 
arguments are identical or if (for IFDIF) they are different. 
These commands are almost always used within a macro. 
Typically, one of the arguments is a parameter for the macro, 
and the other is a constant to compare the parameter with. 
There are examples of both of these conditionals in Program 
15-2. 

The Equal Sign (=) Pseudo .. op 
The equal sign pseudo-op is often useful in conjunction with 
the IF and IFE conditionals. A constant may be defined with 
the = command much as with the EQU command, but only 
numeric values may be used with the = command (the EQU 
command, you may recall, accepted almost anything as an op­
erand). The flexibility and usefulness of the = command lies 
in the fact that a constant can be defined and then redefined, 
and what's more, redefined in terms of its previous value. 
(The use of the word constant to refer to a changeable quantity 
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is amusing, but follows assembler naming conventions.) The 
following, therefore, are all valid uses of the = pseudo-op: 
CONST = -3 
CONST = 0 
CONST = CONST + 1 
FALSE = 0 
TRUE = NOT FALSE ;this is a logical NOT 
DE_BUG = TRUE 

If you need to define constants for use with a macro, it's 
convenient to define them with the = pseudo-op, rather than 
EQU. That way, you can avoid the assembler Redefinition of 
symbol error each time the macro is expanded. 

One of the possible uses for the = pseudo-op outside a 
macro is to choose whether or not debugging sections of the 
program are to be included. For example, you might write a 
subroutine that displays the values of the registers, and call it 
periodically during the course of the program. Naturally, this 
would be less than desirable during actual trial runs of the 
program, so it should operate only when you were attempting 
to debug the program. 

Here is one way to execute a routine only part of the 
time. We would write the debugging subroutine as follows: 
DUMP -REGISTERS PROC NEAR ;procedure 
IFE DE_BUG ;true if debug is 0 (false) 
RET ;don't dump the registers 
ELSE ;else, if debug is true 

;execute the main body 
;to dump the registers 

-
II 

a 
I 
I 

RET ;then return 
ENDIF ;end of condition II 
DUMP_REGISTERS ENDP ;end of procedure 

When you want to assemble the program with a register 
dump, you would set DE_BUG = 1 (or TRUE above); to dis- _ 
able register dump, you would reset it to 0, or FALSE. Other 
uses of the = pseudo-op exist for use with conditionals, but I 
these are rather obscure. 

EXITM, Again 
Before we plunge into the sample program, let's review the II 
EXITM command. Normally the EXITM command occurs only 
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with conditionals, and serves as a way to abort the macro 
quickly if the parameters are misspecified. For example, if a 
macro with several parameters was invoked with none, you 
might wish to abort the macro expansion early. To do so, you 
might code: 
IFB <parameter_I> 
EXITM 
ENDIF 

If parameter 1 is blank (not specified), the macro would abort. 
Unfortunately, as far as the assembler is concerned, the IF 
statement opened with IFB was never closed with an ENDIF. 
We aborted out of the middle of a conditional. There's no way 
around this problem/however, so when a macro aborts con­
ditionally from a macro expansion, you will be stuck with an 
Open conditionals message from the assembler. However, the 
Open conditionals message is usually not important (unless 
you didn't use the EXITM command, in which case some of 
your conditionals really are open). Bearing all this in mind, 
examine Program 15-2, the sample macro program. 

More Commands 
A few more operators are of use to the advanced assembler 
user. We will discuss first the SHORT operator, and then LA­
BEL and THIS, which are logically connected. 

The SHORT Operator 
The SHORT operator is used to instruct the assembler that the 
label of a forward JMP command is within 127 bytes: 
IMP SHORT label 

This may appear at first as rather confusing, since we know 
that the assembler is responsible for making jumps short or 
near. However, the assembler has to make assumptions about 
the labels and variables it encounters on its first pass through 
the source code. For example: 

IMP LABEL_l 

;intermediate code 
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The assembler has no way of knowing whether a jump ahead 
(like the JMP to LABEL_1 above) is going to need a two-byte 
offset (if it's further than 127 bytes), or whether one byte will 
do. So it simply sets up two bytes for the offset. When it 
makes its second, code-generating pass, it gives the JMP a 
one-byte offset if possible, and then puts a NOP in the other, 
unused byte. (NOP is one of the 8088's simpler instructions: 
It's a do-nothing command, No OPeration.) You can see the 
NOP in the DEBUG unassembly, as well as in hex form in the 
assembler list file (90H). 

Using the SHORT prefix merely tells the assembler that 
the JMP will need only one byte as an offset. If the jump is 
more than 128 bytes, you get an assembler error message. 
This operator need never occur in your own programs, unless 
for some reason one program must be particularly short; how­
ever, many DOS and BIOS routines use this command, so it is 
useful to be familiar with it. 

The LABEL and THIS Operators 
These two assembler commands play virtually identical roles. 
They are, however, different types of instructions. The com­
mand THIS falls under the category of Attribute Operators, 
along with PTR, segment overrides, and the SHORT command 
above. LABEL, however, is a pseudo-op in its own right. 

Normally, the assembler knows the type of a symbol: 
Variables are defined with DB, DW, DD, and the like, while la­
bels are either NEAR or FAR. LABEL and THIS provide a 
method of declaring a variable without a data pseudo-op, or a 
label without PROC or a colon. You can therefore put a sym­
bol wherever you please, then instruct the assembler what its 
type should be. Although their formats are different 
name LABEL type 
name EQU THIS type 

both set name equal to the type specified, at the current seg­
ment and offset. The LABEL pseudo-op creates a standard la­
bel or variable; the THIS operator creates a symbol marked 
with an E (an EQU symbol) in the symbol table. The type can 
be any of the standard label or variable types (NEAR, FAR, 
BYTE, WORD, DWORD, QWORD, or TBYTE). 

A few uses for these commands are given below: 
BYTE_TABLE EQU THIS BYTE 
WORD_TABLE DW 5678,4321,50000,123,0 
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Here the table can be accessed either as words (with 
WORD_TABLE) or as bytes (with BYTE_TABLE). This elimi­
nates the need for the rather clumsy form: 
MOV AH,BYTE PTR WORD_TABLE+4 

For those adventuresome enough to write self-modifying 
programs, the ability to set a symbol to a different type comes 
in very handy: 
MOV CMP_VALUE+1,AL ;modify the a in CMP AL,O 

CMP _VALUE EQU THIS BYTE 
CMP AL,O ;this a is modified above 

The LABEL command is often used to make locations in 
program code FAR so they can be JMPed to from other object 
modules (this is another advanced technique). 

Cross .. Referencing 
One feature of the assembler can prove very useful when you 
begin to write long programs. You will no doubt find that 
remembering where each of your labels and variables is ref­
erenced can be a hassle. As a solution to that problem, the 
assembler comes with a cross-reference utility. When you start 
MASM, the prompt comes up for Cross-reference; until now 
you have always hit Return. To create the cross-ref file, enter 
the name for the file and hit Return. Below, we have included 
a sample from the "Switch" program from the first program­
ming chapter. 
A>MASM [or ASM depending on which assembler you are using] 
The IBM Personal Computer MACRO Assembler 
Version 1.00 (C)Copyright IBM Corp 1981 

Source filename [.ASM]: SWITCH [name of the source file] 
Object filename [SWITCH.OBJ]: [Enter if you want object code] 
Source listing [NUL.LST]: SWITCH if you want a source listing 
Cross-reference [NUL.CRF]: SWITCH for the cross-reference 

Note that whenever you select the cross-reference option, the 
assembler will automatically include line numbers in the .LST 
file. 

One would not generally make a cross-reference of a pro­
gram this short, but we will, just so you can see how it's done. 
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--------- ---------------

The cross-reference file (with .CRF extension) produced by the 
assembler is not in human-readable form. We must run a 
translation program on the .CRF file. This utility is named 
CREF and is discussed in Chapter 3 of the Assembler Reference 
Manual. Type CREF from the DOS prompt and answer the 
questions as shown below, assuming that the name of the 
.CRF file is SWITCH.CRF: 
A>CREF 
Cref filename [.CRF]: SWITCH [The name of the .CRF file] 
List filename [SWITCH.REF]: [Enterj default to SWITCH.REF] 

When CREF is done, the DOS prompt will return. You can 
examine the cross-reference file by entering the command: 
A> TYPE SWITCH.REF 

A cross-reference file which looks like the one printed as Table 
15-2 should scroll up your screen. As you know, you can use 
Ctrl PrtSc to get a hard copy of the cross-reference; or you can 
specify PRN at the "List filename" prompt. 

Table 15~2. Cross~Reference of SWITCH 

Symbol Cross-reference (# is definition) Cref-l 
CODE .......... . . . . 26# 28 50 
DATA. . . . . . . . . . . . .. 12# 17 28 34 

DEST .............. 15# 

MOVE_BYTES ...... 39# 45 

SOURCE ........... 13# 
STACK ............. 19# 24 28 
SWITCH ............ 27 49 

A cross-reference for a program this short is not terribly 
useful; however, with longer programs, you may find it in­
dispensable. The cross-reference tells you where each symbol 
is used, and where it is defined. The names of the symbols are 
along the left, in alphabetical order. The line numbers are in 
ascending order from left to right and refer to the source list­
ing produced by the assembler. The line numbers with the 
number signs (#) after them are the lines in which the symbol 
is defined (remember, with = pseudo-op a constant can be re­
defined as often as you like). For example, SOURCE was first 
defined in line 13 of the source file. 

The assembler provides pseudo-ops to turn the output to 
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the .CRF file on and off. If your program is in two almost 
separate halves, for example, with few references between 
them, you might want to get a cross-reference only of the first 
half. To do so, put the .CREF command (enable .CRF output) 
at the beginning of the program, and the .XCREF command 
(disable .CRF output) at the appropriate midpoint. The assem­
bler defaults to .CREF unless specifically overridden. 

With the contents of this chapter under your belt, you will 
be able to program for a long time without recourse to any of 
the further capabilities of the IBM Macro Assembler. This ma­
terial is ample to provide a full understanding of almost all 
source code, as well as to allow you to utilize much of the 
power of the assembler. 

However, the assembler has much more to it than what 
we have gone through in the last two chapters. Many power­
ful and useful commands still remain to master (as well as a 
scattering of less important commands). A brief outline will 
suffice to give you an idea of what else remains: 

• The ability to link together two or more assembly files, as 
well as optionally combining two or more logical segments 
together into a GROUP. Normally, one program is contained 
in one source file, but if you have some general-purpose sub­
routines, or if parts of your program are error-free, you can 
assemble them separately and combine them only at LINK 
time, in object-module form. A master program might call an 
external subroutine by specifying 
EXTRN subroutine: NEAR 

while the subroutine specified PUBLIC subroutine. At LINK 
time you would simply respond master + subroutine. 

• The ability to link not only to other machine language pro­
grams, but to high-level languages like Pascal and Compiled 
BASIC. Linking to high-level languages allows you to com­
bine the breadth of a high-level language with the speed and 
compactness of machine language. 

• The possibility of compacting your data (bit packing). The 
RECORD pseudo-op allows you to define, for example, three 
variables in a single word. To access one of these variables, 
you load the appropriate word, mask off unwanted bits with 
the MASK operator, and shift it right shift count times, leav­
ing the data ready to be used. 
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• The use of structured data. The STRUC command allows you 
to specify a variable in terms of subvariables; for example, a 
STRUC variable named TEMPERATURE might have a 
sub variable named HIGH, and the assembler allows you to 
access the subvariables with TEMPERATURE.HIGH. This 
feature is very much like the powerful Pascal RECORD 
command. 

All these commands are enough to provide continuing 
pleasure as you master them and put them to use. The di­
versity and power of the assembler, however, are such that it 
will be a long time before using it becomes a chore. 

296 

II 

II 

II 

I 
I 

II 

II 



• 
• 

• 
• 

• 
P

ro
g

ra
m

 1
5

,1
. 

B
IT

S
.L

S
T

 

0
0

0
0

 
0

0
0

0
 

0
0

 
0

0
 

0
0

 
0

0
 

0
0

0
4

 
0

0
 

0
0

 
0

0
 

0
0

 
0

0
0

8
 

0
0

0
0

 
0

0
0

0
 

1
0

 
[ 

5
3

 
54

 
4 

1 
43

 
4B

 
2

0
 

2
0

 
2

0
 

0
0

8
0

 

0
0

0
0

 

N
 

\0
 

~
 

0
0

0
0

 

• 
1 

• 
• 

;s
a
m

p
le

 
li

s
ti

n
g

 
1

5
-1

 

p
a
g

e
 

,9
6

 
ti

tl
e
 

T
h

is
 

p
ro

g
ra

m
 

c
o

u
n

ts
 

th
e
 

o
n

 
an

d
 

o
ff

 
b

it
s
 

in
 

D
S 

B
IT

S
.A

S
M

 
I in

c
_

d
w

o
rd

 
m

a
c
ro

 
d

w
o

rd
_

v
a
r 

lo
c
a
l 

n
o

_
in

c
 

le
t 

A
ss

e
m

b
le

r 
g

e
n

e
ra

te
 

?
?
n

n
n

n
 

th
is

 
m

ac
ro

 
in

c
re

m
e
n

ts
 

a 
d

o
u

b
le

w
o

rd
 

in
c
 

d
w

o
rd

_
v

a
r 

; 
in

c
re

m
e
n

t 
lo

w
 

w
o

rd
 

jn
z
 

n
o

 
in

c
 

;n
o

 
o

v
e
rf

lo
w

 
w

ra
p

a
ro

u
n

d
, 

e
n

d
 

in
c
 

d
w

o
rd

_
v

a
r+

2
 

; 
if

 
z
e
ro

, 
in

c
re

m
e
n

t 
h

ig
h

 
w

o
rd

 
no

 
In

c
: 

en
d

m
 

d
se

g
 

se
g

m
e
n

t 
p

a
ra

 
'D

A
T

A
' 

o
f
f
b

it
s
 

dd
 

0 
o

n
b

i 
ts

 
dd

 
0 

d
se

g
 

e
n

d
s 

ss
e
g

 

ss
e
g

 

c
se

g
 

se
g

m
e
n

t 
p

a
ra

 
s
ta

c
k

 
db

 
16

 
d

u
p

C
'S

T
A

C
K

 

e
n

d
s 

se
g

m
e
n

t 
p

a
ra

 
'C

O
D

E
' 

;h
e
re

 
w

e 
s
to

re
 

th
e
 

n
u

m
b

er
 

o
r 

1
s 

la
n

d
 

h
e
re

 
th

e
 

n
u

m
b

er
 

o
f 

O
s 

'S
T

A
C

K
' 

'J
 

;1
6

 
c
o

p
ie

s
 

o
f 

'S
T

A
C

K
 

as
su

m
e 

c
s
:c

s
e
g

,d
s
:d

s
e
g

,s
s
:s

s
e
g

 

c
o

u
n

te
r 

p
ro

c
 

fa
r 

• 
• >­ :t
 

~ (1
) C
L >- fJ

> 
fJ

> 
(
1

)
-
"
 

S
\J

l 
2:

 
(1

) ... (
)
 

o ::l
 

r
t
 ... £.
 



IV
 

0
0

0
0

 
IE

 
p

u
sh

 
d

s 
; s

e
t 

up
 

fa
r 

R
E

T
u

rn
 

to
 

O
S:

O
O

O
O

 
\0

 
0

0
0

1
 

B
8 

0
0

0
0

 
m

ov
 

a
x

,O
 

0
0

 

0
0

0
4

 
5

0
 

p
u

sh
 

ax
 

0
0

0
5

 
B

8 
R

 
m

ov
 

a
X

,d
se

g
 

; 
lo

a
d

 
O

SE
G

 
in

to
 

O
S 

0
0

0
8

 
8E

 
0

8
 

m
ov

 
d

S
,a

x
 

O
O

O
A

 
in

it
ia

li
z
e
: 

O
O

O
A

 
BB

 
0

0
0

0
 

m
ov

 
b

x
,O

 
;B

X
 

w
i 

II
 

b
e 

th
e
 

in
d

ir
e
c
t 

re
g

. 
0

0
0

0
 

m
a
in

_
lo

o
p

: 
0

0
0

0
 

8A
 

07
 

m
ov

 
a
l,

[b
x

l 
; 

g
e 

t 
a 

b
y

te
 

fr
o

m
 

se
g

m
e
n

t 
O

O
O

F 
8

9
 

0
0

0
8

 
m

ov
 

c
x

,8
 

,w
e 

w
i 

II
 

lo
o

p
 

th
ro

u
g

h
 

8 
b

it
s
 

;p-
0

0
1

2
 

b
it

_
lo

o
p

: 
0.

-
0

0
1

2
 

DO
 

E
8 

sh
r 

II
 I

 , 
1 

;p
u

sh
 

lo
w

 
b

it
 

in
to

 
C

a
rr

y
 

fl
a

g
 

Pi 
0

0
1

4
 

73
 

0
0

 
jn

c
 

o
ff

 
; 

i 
f 

no
 

c
a
rr

y
, 

lo
w

 
b

it
 

w
as

 
z
e
ro

 
::l

 
n 

0
0

1
6

 
o

n
: 

i n
C

_d
w

or
 d

 
o

n
b

 i
ts

 
,u

s
e
 

m
a
c
ro

 
to

 
in

c
re

m
e
n

t 
c
o

u
n

t 
rt

l 0.
-

0
0

1
6

 
F

F
 

0
6

 
0

0
0

4
 

R
 

+
 

in
c
 

o
n

b
i 

ts
 

; 
in

c
 r

 e
m

e 
n 

t 
lo

w
 

w
o

rd
 

;p-
0

0
1

A
 

7
5

 
04

 
+

 
jn

z
 

??
O

O
O

O
 

;n
o

 
o

v
e
rf

lo
w

 
w

ra
p

a
ro

u
n

d
, 

en
d

 
V

> 

0
0

1
C

 
FF

 
0

6
 

0
0

0
6

 
R

 
+

 
in

c
 

o
n

b
it

s+
2

 
, 

i 
f 

z
e
ro

, 
in

c
re

m
e
n

t 
h

ig
h

 
w

o
rd

 
~
C
;
 

0
0

2
0

 
+

 
??

O
O

O
O

: 
S 

0
0

2
0

 
EB

 
O

B 
9

0
 

jm
p 

e
n

d
_

lo
o

p
 

g:
 

rt
l .... n 

0
0

2
3

 
o

ff
: 

i n
 c

_
d

w
o

 r 
d 

0 
f 

fb
i 

t 
s 

; 
in

c
 r

 e
m

e 
n 

t 
o

f 
o

ff
 

b
it

 s
 

0 
c
o

u
n

t 
::l

 
0

0
2

3
 

FF
 

06
 

0
0

0
0

 
R

 
in

c
 

o
ff

b
it

s
 

,i
 n

c
re

m
e
n

t 
lo

w
 

w
o

rd
 

.... 
+

 
.... 

0
0

2
7

 
75

 
04

 
+

 
j n

 z
 

??
O

O
O

I 
; 

n
o

 
o

v
e
rf

lo
w

 
w

ra
p

a
ro

u
n

d
, 

en
d

 
2.-

0
0

2
9

 
FF

 
0

6
 

0
0

0
2

 
R

 
+

 
in

c
 

o
ff

b
it

s
+

2
 

; 
i 

f 
z
e
ro

, 
in

c
re

m
e
n

t 
h

ig
h

 
w

o
rd

 
0

0
2

0
 

+
 

?
?
0

0
0

1
: 

0
0

2
0

 
e
n

d
_

lo
o

p
: 

0
0

2
0

 
E

2 
E

3 
lo

o
p

 
b

it
_

lo
o

p
 

;c
o

m
p

le
te

 
8 

S
H

R
s 

0
0

2
F

 
43

 
in

c
 

bx
 

;g
o

 
to

 
n

e
x

t 
b

y
te

 
0

0
3

0
 

7
5

 
D

B 
j n

 z
 

m
a 

in
_

I 
0

0
 p

 
, 

i 
f 

BX
 

is
 

n
o

n
-z

e
ro

, 
k

e
e
p

 
g

o
in

g
 

;o
th

e
rw

is
e
, 

BX
 

g
o

n
e
 

p
a
s
t 

O
F

F
F

F
h 

0
0

3
2

 
C

B
 

re
t 

;b
a
c
k

 
to

 
D

E
B

U
G

, 
le

a
v

in
g

 
v

a
lu

e
s
 

0
0

3
3

 
c
o

u
n

te
r 

en
d

p
 

; e
n

d
 

o
f 

p
ro

c
e
d

u
re

 

• 
• 

• 
• 

• 
• 

• 
• 

• 
• 



• 
• 

• 
• 

• 
• 

• 
• 

• 
• 

0
0

3
3

 
c
se

g
 

en
d

s 
le

n
d

 
o

f 
se

g
m

e
n

t 
en

d
 

c
o

u
n

te
r 

le
n

d
 

o
f 

p
ro

g
ra

m
 

T
h

e 
IB

M
 

P
e
rs

o
n

a
l 

C
o

m
p

u
te

r 
M

A
CR

O
 

A
ss

e
m

b
le

r 
0

1
-0

1
-8

0
 

PA
G

E 
S

y
m

b
o

ls
-l

 
T

h
is

 
p

ro
g

ra
m

 
c
o

u
n

ts
 

th
e
 

on
 

an
d

 
o

ff
 

b
i 

ts
 

in
 

O
S 

M
a
c
ro

s:
 

N
 a

 
m

 
e 

L
en

g
th

 

I N
C

_D
W

O
R

D
. 

0
0

0
5

 

>-
S

e
g

m
e
n

ts
 

an
d

 
g

ro
u

p
s:

 
0.

.. 
<: 

N
 a

 
m

 
e 

S
iz

e
 

a 
I 

i g
 n

 
co

m
b

in
e 

c
la

s
s
 

P-
l 

;:l
 

n rt
l 

C
SE

G
 

0
0

3
3

 
PA

R
A

 
N

O
N

E 
'C

O
D

E
' 

0.
.. 

D
SE

G
 

0
0

0
8

 
PA

R
A

 
N

O
N

E 
'D

A
T

A
' 

>-
SS

E
G

 
0

0
8

0
 

PA
R

A
 

ST
A

C
K

 
'S

T
A

C
K

' 
[/

; ¥D
 
~
 

3 
V

1
 

S
y

m
b

o
ls

: 
cr

 
N

 a
 

m
 

e 
T

y
p

e 
V

a
lu

e
 

A
tt

r 
~
 ... n 

B
IT

_L
O

O
P

 
L

 
N

EA
R

 
0

0
1

2
 

C
SE

G
 

0 

C
O

U
N

T
E

R
. 

F
 

PR
O

C
 

0
0

0
0

 
C

SE
G

 
L

e
n

g
th

 
=

0
0

3
3

 
;:l

 '"' ... 
E

N
D

_L
O

O
P 

L
 

N
EA

R 
0

0
2

0
 

C
SE

G
 

£.
. 

IN
IT

IA
L

IZ
E

 
L

 
N

EA
R

 
O

O
O

A
 

C
SE

G
 

M
A

IN
_L

O
O

P.
 

L
 

N
EA

R
 

0
0

0
0

 
C

SE
G

 
O

F
F

. 
L

 
N

EA
R

 
0

0
2

3
 

C
SE

G
 

O
F

F
B

IT
S

. 
L

 
D

W
O

RD
 

0
0

0
0

 
D

SE
G

 
O

N
 

L
 

N
EA

R
 

0
0

1
6

 
C

SE
G

 
O

N
B

IT
S

 
L

 
D

W
O

RD
 

0
0

0
4

 
D

SE
G

 
??

O
O

O
O

 
L

 
N

EA
R

 
0

0
2

0
 

C
SE

G
 

??
O

O
O

I 
L

 
N

EA
R

 
0

0
2

0
 

C
SE

G
 

W
a
rn

in
g

 
S

e
v

e
re

 
N

 
E

rr
o

rs
 

E
rr

o
rs

 
\0

 
\0

 
0 

0 



V
.l o o • P

ro
g

ra
m

 1
5~

2.
 I

N
P

U
T

.L
S

T
 

• 
• 

• 
• 

p
a

g
e

 
,9

6
 

t
it

le
 

T
h

is
 

m
a

c
ro

 
s
im

p
l 
if

ie
s
 

y
o

u
r 

c
o

n
s
o

le
 

In
p

u
t 

re
q

u
e

s
ts

 

IN
P

U
T

.A
S

M
 

in
p

u
t 

m
a 

c 
r 

0 
s 

t 
r 

i 
n 

g
_

m
o

 d
e

, 
s 

t 
r 

i 
n 

g 
, 

s 
t 

r 
i 

n 
g

_
1

 e
n

 
lo

c
a

l 
q

u
e

ry
,s

k
ip

 

T
w

o
 

fo
rm

a
 t 

s 
a

re
 

a 
v 

a 
i 

I 
a 

b 
le

w
 i 

t 
h 

t 
h

is
 

m
a

 c
 r

 0
 

: 

(
1

)
 

in
p

u
t 

s
tr

in
g

_
m

o
d

e
,s

tr
in

g
 

o
r 

( 
2

) 
i 

n 
p

u
t 

s 
t 

r 
i 

n 
g

_
m

o
 d

e
, 

s 
t 

r 
i 

n 
g 

, 
s 

t 
r 

i 
n 

g
_

1
 e

n
 

S
T

R
IN

G
 

w
i 
II

 
b

e
 

in
te

r
p

r
e

te
d

 
in

 
I 
ig

h
t 

o
f 

S
T

R
IN

G
_

M
O

D
E

. 
I
f
 

S
T

R
IN

G
_

M
O

D
E

 
is

 
'i
m

m
e

d
ia

te
' 

th
e

 
S

T
R

IN
G

 
m

u
s
t 

b
e

 
a 

q
u

o
te

d
 

s
tr

in
g

 
( 

e 
i 
th

e
 r

 
"s

 t
 r

 i
 n

 g
" 

0 
r 

's
 t

 r
 i

 n
 g

 ,
 )

 .
 

I
f
 

S
 T

 R
 I 

N
 G

_M
O

 0
 E

 
i
s
'
 i

 n
 d

 i
r
e

 c
 t

 '
 

th
e

n
 

S
T

R
IN

G
 

m
u

s
t 

b
e

 
a 

v
a

li
d

 
v
a

r
ia

b
le

 
n

a
m

e
 

in
 

th
e

 
e
u
~
r
1
!
n
t
 

d
a

ta
 

s
e

g
m

e
n

t.
 

In
 

e
it

h
e

r
 

c
a

s
e

, 
th

e
 

s
tr

in
g

 
m

u
s
t 

e
n

d
 
w

it
h

'S
'.

 

T
h

e
 
f
ir

s
t
 

fo
rm

a
t 

a
b

o
v
e

 
u

ti
li
z
e

s
 

D
O

S
 

fu
n

c
ti

o
n

 
c
a

ll
 

to
 

re
a

d
 

a 
s
in

g
le

 
c
h

a
ra

c
te

r.
 

In
p

u
t:

 
s
tr

in
g

. 
O

u
tp

u
t:

 
A

L
, 

h
o

ld
in

g
 

th
e

 
c
h

a
ra

c
te

r 
re

a
d

. 
A

H
, 

O
X 

d
e

s
tr

o
y
e

d
, 

a
l 

I 
e

ls
e

 
p

re
s
e

rv
e

d
. 

T
h

e
 

s
e

c
o

n
d

 
fo

rm
a

t 
a

ll
o

w
s
 

fo
r 

a 
f
u

ll
 

li
n

e
 

o
f 

in
p

u
t 

to
 

b
e

 
re

tu
rn

e
d

 
to

 
th

e
 

c
a

ll
 i

n
g

 
p

ro
g

ra
m

 
v
ia

 
D

O
S

 
fu

n
c
t 

io
n

 
c
a

ll
 

O
A

h
. 

T
h

e
 

p
ro

g
ra

m
 

is
 

re
q

u
ir

e
d

 
to

 
s
p

e
c
if

y
 

th
e

 
le

n
g

th
 

o
f 

th
e

 
s
tr

in
g

 
I 

n
e

e
d

e
d

 
(n

o
t 

in
c
lu

d
in

g
 

th
e

 
fi

n
a

l 
c
a
r
~
i
a
g
e
 

r
e

tu
r
n

)
. 

T
h

e
 

v
a

lu
e

 
o

f 
S

T
R

IN
G

_
L

E
N

 
m

u
s
t 

n
o

t 
b

e
 

z
e

ro
. 

F
o

r 
th

is
 

fo
rm

a
t 

o
n

ly
, 

a
n

 
a

re
a

 
in

 
th

e
 

c
u

rr
e

n
t 

d
a

ta
 

s
e

g
m

e
n

t 
m

u
s
t 

b
e

 
s
e

t 
u

p
, 

n
a

m
e

d
 

IN
P

U
T

_
B

U
F

F
E

R
. 

In
p

u
t:

 
S

T
R

IN
G

, 
S

T
R

IN
G

_
L

E
N

. 
O

u
tp

u
t:

 
D

S
:S

I 
p

o
in

ts
 

to
 

s
tr

in
g

 
te

x
t;

 
A

L
 

h
o

ld
s
 

le
n

g
th

; 
O

X
 

d
e

s
tr

o
y
e

d
 .

 

• 
• 

• 
• 

;p
 ~ ~ n (1

) 
Q

..
 

;p
 

V
> 

V
> (
1

)
-

S
V

l 
r::r

 ro "' n o g "' i2..
 • 



• w
 

o .....
. 

• 
• 

• 
• 

• 
• 

• 
; 

N
ow

 
w

e 
d

e
fi

n
e
 

o
u

r 
c
o

n
s
ta

n
ts

 
(w

i 
th

 
=

 t
o

 
a
v

o
id

 
re

d
e
fi

n
e
) 

b
d

o
s 

2
1

h
 

;D
O

S
 

fu
n

c
ti

o
n

 
in

te
rr

u
p

t 
c
o

n
_

i 
n 

1 
p 

r 
in

 t
_

s 
9 

g
e
t 

o
n

e 
c
h

a
ra

c
te

r 
fr

o
m

 
C

O
N

: 
p

ri
n

t 
s
tr

in
g

 
fu

n
c
ti

o
n

 
in

p
u

t_
s 

10
 

in
p

u
t 

a 
s
tr

in
g

 
fr

o
m

 
C

O
N

: 

F
ir

s
t 

w
e 

te
s
t 

to
 

se
e
 

if
 

p
a
ra

m
e
te

rs
 

w
e
re

 
p

a
ss

e
d

 
a
t 

a
l 

I.
 

if
b

 
<

st
ri

n
g

_
m

o
d

e
>

 
;n

o
 

p
a
ra

m
e
te

rs
 

p
a
s
s
e
d

 
· 

I a
 I

 I
 

a 
I 

I o
w

 
u

s 
t
o

r
 e

 t
 u

rn
 

a 
c 

om
m

e 
n 

t 
: 

no
 

p
a
ra

m
e
te

rs
 

s
p

e
c
if

ie
d

 
fo

r 
IN

PU
T

 
m

a
c
ro

! 
M

ac
ro

 
a
b

o
rt

e
d

 
.x

a
l 

I 
re

su
m

e
 

s
ta

n
d

a
rd

 
I 
is

t 
s
ta

te
 

ex
 i 

tm
 

e
n

d
if

 
a
b

o
rt

 
fr

o
m

 
m

a
c
ro

 
w

it
h

 
E

X
IT

M
 

I 
N

ow
 

w
e 

te
s
t 

fo
r 

'i
m

m
e
d

ia
te

' 
o

r 
'i

n
d

ir
e
c
t'

 
an

d
 

s
e
t 

up
 

D
S

:D
X

 
a
c
c
o

rd
in

g
 

to
 

r
e
s
u

lt
s
. 

If
 

ST
R

IN
G

_M
O

D
E

 
is

 
n

e
it

h
e
r,

 
w

e 
a
b

o
rt

. 
If

 
in

d
ir

e
c
t 

w
e 

c
h

e
c
k

 
to

 
se

e
 

if
 

S
T

R
IN

G
 

is
 

d
e
fi

n
e
d

; 
e
ls

e
 

a
b

o
rt

. 
F

in
a
ll

y
, 

w
e 

p
ri

n
t 

e
it

h
e
r 

S
T

R
IN

G
 

o
r 

Q
U

E
R

Y
. 

T
h

e 
a
m

p
e
rs

a
n

d
s 

b
e
lo

w
 

a
re

 
n

e
e
d

e
d

 
so

 
th

e
 

A
ss

e
m

b
le

r 
ca

n
 

re
c
o

g
n

iz
e
 

a 
p

a
ra

m
e
te

r.
 

if
id

n
 

<
&

st
r 

in
g

_
m

o
d

e
>

,<
 i

n
d

i 
re

c
t>

 
if

n
d

e
f 

s
tr

in
g

 
; 

m
ak

e 
su

re
 

S
T

R
IN

G
 

is
 

d
e
fi

n
e
d

 
· 

I 
a 

I 
I 

S
T

R
IN

G
 

m
u

st
 

b
e 

a 
d

e
fi

n
e
d

 
v

a
ri

a
b

le
 

fo
r 

in
d

ir
e
c
t 

m
o

d
e!

 
· s

a
 I 

I 
ex

 i 
tm

 
en

d
 i

 f 
m

o 
v 

d 
x 

,o
f 

f 
s
e
t 

s 
t 

r 
i n

 g
 

if
 

it
 

IS
 

d
e
fi

n
e
d

, 
th

e
n

 
s
e
t 

up
 

D
S

:D
X

 
fo

r 
S

T
R

IN
G

 
e
ls

e
 

<
&

st
r 

ln
g

_
m

o
d

e
>

, 
<

 im
m

e
d

ia
te

>
 

i 
f 

d 
i 

f 
· 

I a
 I

 I
 

p
a
ss

 
th

is
 

m
e
ss

a
g

e
 

to
 

M
u

st
 

s
p

e
c
if

y
 

"
Im

m
e
d

ia
te

"
 

o
r 

"
in

d
ir

e
c
t"

 
a
s 

p
a
rm

. 
.x

a
 I

I 
re

su
m

e
 

s
ta

n
d

a
rd

 
I 

1
S

t 
ex

 i 
tm

 
a
b

o
rt

 
m

a
c
ro

 

p
ro

g
ra

m
 

11
1 

! 

m
o

d
e 

• 
• )­ ~
 ~ 0.

-
)- '" '" (1

) 
...

...
. 

S
V

1 
cr

 
ro

 
.... (
)
 

o " .... .... S 



c.
.J

 
o N

 • 
• 

• 
• 

• 

q
u

e
ry

 
s
k
i 

p 
: 

T
e

s
t 

e 
Is

 e
 

) m
p 

s
k
i 

P 
d

b
 

s
tr

in
g

 
p

u
s
h

 
d

s
 

p
u

s
h

 
c
s
 

p
o

p
 

d
s
 

m
o

v
 

d
X

,o
ff

s
e

t 
q

u
e

ry
 

e
n

d
if

 
e

n
d

 i
f
 

m
o

v
a

h
,p

r
in

t_
s
 

in
t 

b
d

o
s
 

E
L

S
E

 
S

T
R

IN
G

_
M

O
D

E
 

IS
 

Im
m

e
d

ia
te

 
s
k
ip

 
o

v
e

r 
D

B
 

a
re

a
 

s
tr

in
g

 
IS

 
In

 
m

e
m

; 
s
a

v
e

 
O

S
 

tr
a

n
s
fe

r
 

C
S

 
to

 
O

S
 

.
.
.
 

v
ia

 
th

e
 

s
ta

c
k
! 

s
e

t 
u

p
 

O
S

:O
X

 
fo

r 
Q

U
E

R
Y

 
e

n
d

 
th

e
 

IF
O

IF
 

le
n

d
 

th
e

 
IF

IO
N

 
;O

O
S

 
fu

n
c
ti

o
n

 
9 

=
 
p

r
in

t 
s
tr

in
g

 
,D

O
S

 
fu

n
c
ti

o
n

 
c
a

ll
 

In
t 

i 
f 

i 
d 

n 
(&

 s
 t

 r
 I

 n
 g

_
m

o
 d

e
) 

, 
( 

I m
m

e 
d 

i 
a

te
>

 
p

o
p

 
d

s
 

; 
if

 
w

e
 

p
u

s
h

e
d

 
it

,
 

p
o

p
 

it
 

b
a

c
k
 

e
n

d
 i
f
 

h
e

re
 

fo
r 

S
T

R
IN

G
 

L
E

N
 

if
b

 
<

&
s
tr

in
g

_
le

n
>

 
m

o
v
 

a
h

, 
c
o

n
_

i 
n 

in
t 

b
d

o
s
 

I
f
 

it
's

 
b

la
n

k
, 

w
e

 
d

o
 

fo
rm

a
t 

o
n

e
. 

I
f
 

S
T

R
IN

G
 

L
E

N
 

b
la

n
k
: 

fo
rm

a
t 

.1
 

g
e

t 
a 

c
h

a
ra

c
te

r 
In

to
 

A
L

 
a

n
d

 
th

a
t'

s
 

th
a

t 

I 
f 

it
's

 
n

o
t 

b
la

n
k
, 

a
n

d
 

S
T

R
IN

G
_

L
E

N
>

 
0

, 
w

e
 

d
o

 
fo

rm
a

t 
tw

o
. 

e
ls

e
 

i 
f 
e

s
t
 r

 i
 n

 g
_

 le
n

 
. 

I 
a 

I 
I 

q
u

e
ry

 
s
tr

in
g

 
p

r
in

te
d

, 
. 

x
a

 I
 I

 

,S
T

R
IN

G
_

L
E

N
 

n
o

n
b

la
n

k
: 

fo
rm

a
t 

*
2

 
if

 
S

T
R

IN
G

_
L

E
N

 
is

 
z
e

ro
 
.
.
.
 

a
ll
o

w
 

a 
c
o

m
m

e
n

t 
to

 
p

ro
g

ra
m

: 
c
a

n
't

 
in

p
u

t 
a 

s
tr

in
g

 
o

f 
le

n
g

th
 

O
! 

re
s
u

m
e

 
n

o
rm

a
l 

li
s
t
 

m
o

d
e

 
e

x
it

m
 

a
b

o
rt

 
fr

o
m

 
m

a
c
ro

 
e

n
d

if
 

S
T

R
IN

G
_

L
E

N
 

v
a

l 
id

, 
>

 
0 

m
o

v
 

d
X

,o
ff

s
e

t 
in

p
u

t_
b

u
ff

e
r
 

;D
S

:O
X

 
a

d
d

r.
s
 

IN
P

U
T

 
B

U
F

F
E

R
 

m
o

 v
 

i 
n 

p
u

t 
_

b
 u

 f
 f

e
r
, 

s 
t 

r 
ln

g
_

I 
e

n
 +

 1
 

; 
s
e

t 
b

y
 t
e

O
 
t
o

.
 

0 
f 

c 
h 

a 
r 

s 
m

o
v
a

h
"
n

p
u

t_
s
 

D
O

S
 

fu
n

c
ti

o
n

 
to

 
in

p
u

t 
s
tr

in
g

 
in

t 
b

d
o

s
 

g
o

 
in

p
u

t 
it

 
m

o
 v

a
l,

 i
 n

 p
u

t 
_

b
 u

 f
 f

e
r 

+
 1

 
g

e
t 

le
n

 g
 t
h

o
 f
i
n

 p
u

t • 
• 

• 
• >- ~ n (1

) 0
. ;;;- V>
 

(
1

)
-

au
-. 

;2
: 

(1
) 

-;
 n o ;:l
 

r
t
 

.... 2.
. • 



• 
I!

 
• 

• 
• 

0
0

0
0

 

0
0

0
0

 
??

 
19

 
[ 

?
?
 

..
 

0
0

1
B

 
?
?
 

0
0

1
C

 
??

 
0

0
1

0
 

4
8

 
6

F
 

1
7

 
2

0
 

6F
 

6C
 

6
4

 
2

0
 

61
 

7
2

 
6

5
 

2
0

 
7

9
 

6F
 

7
5

 
2

0
 

2
8

 
3

0
 

2
0

 
7

4
 

6
F

 
2

0
 

3
9

 
3

9
 

3
9

 
2

9
 

3F
 

2
0

 
2

4
 

0
0

3
A

 
?
?
 

0
0

3
B

 
5

4
 

7
9

 
7

0
 

6
5

 
2

0
 

7
4

 
6

8
 

6
5

 
2

0
 

6
4

 
6

9
 

67
 

6
9

 
74

 
2

0
 

6
6

 
6

F
 

72
 

2
0

 
7

9
 

6
F

 
7

5
 

7
2

 
2

0
 

6
8

 
6

5
 

6
9

 
6

7
 

6
8

 
74

 
2

0
 

6
9

 
6E

 
2

0
 

6
6

 
6

5
 

6
5

 
7

4
 

3A
 

2
0

 
2

4
 

0
0

6
4

 
?
?
 

0
0

6
5

 

0
0

0
0

 
0

0
0

0
 

10
 

[ 

w
 

5
3

 
5

4
 

41
 

43
 

0 
4B

 
2

0
 

2
0

 
2

0
 

w
 

d
se

g
 

m
o 

v 
s 

i 
,o

f 
f 
s
e
t 

en
d

 i
f 

en
d

m
 

• 
• 

in
p

u
t_

b
u

ff
e
r+

2
 

;g
e
t 

a
d

d
re

s
s
 

o
f 

te
x

t 
le

n
d

 
o

f 
IF

B
 

<
&

S
T

R
IN

G
_L

E
N

>
 

le
n

d
 

o
f 

IN
PU

T
 

m
a
c
ro

 

se
g

m
e
n

t 
p

a
ra

 
'D

A
T

A
' 

• 

;n
o

te
 

fo
r 

IN
P

U
T

_B
U

F
F

E
R

 
n

o
 

n
e
e
d

 
to

 
s
e
t 

i 
t 

lo
n

g
e
r 

th
a
n

 
n

e
c
e
s
s
a
ry

 
in

p
u

t_
b

u
ff

e
r 

d
b

 
?
,?

,2
5

 
d

u
p

e
?
) 

io
u

r 
m

a
c
ro

's
 

in
p

u
t 

b
u

ff
e
r 

n
a
m

e
_

le
n

 
d

b
 

? 
fa

m
i 

I y
_

s 
i z

e
 

d
b

 
? 

a
g

e
 

d
b

 
'H

o
w

 
o

ld
 

a
re

 
y

o
u

 
(0

 
to

 
9

9
9

)?
 
. ' 

a
g

e
_

d
ig

it
s
 

d
b

 
? 

h
e
ig

h
t 

d
b

 
'T

y
p

e
 

th
e
 

d
ig

 i
 t

 
fo

r 
y

o
u

r 
h

e
ig

h
t 

in
 

fe
e
 t

 :
 
. ' 

h
e
ig

h
t_

a
n

sw
e
r 

d
b

 
? 

d
se

g
 

e
n

d
s 

ss
e
g

 
se

g
m

e
n

t 
p

a
ra

 
s
ta

c
k

 
'S

T
A

C
K

' 
db

 
16

 
d

u
p

 (
 '

S
T

A
C

K
 

' 
) 

• 
• 

')
- 0.
.. 

<: ~
 

::l
 

n ~
 

0.
.. 

)- '" ~ 
V;

 
cr

 
ro ..., n 0 ::l

 
~
 

..., 2-



V
J 

0
0

8
0

 
0 "'" 

0
0

0
0

 

0
0

0
0

 
0

0
0

0
 

1 
E

 
0

0
0

1
 

B
8 

0
0

0
0

 
0

0
0

4
 

5
0

 
0

0
0

5
 

B
8 

R
 

0
0

0
8

 
8E

 
0

8
 

+
 

+
 

+
 

+
 

O
O

O
A

 
EB

 
1 

5 
9

0
 

+
 

0
0

0
0

 
57

 
6

8
 

61
 

7
4

 
2

0
 

6
9

 
+

 
0

0
2

1
 

1 
E

 
+

 
0

0
2

2
 

O
E 

+
 

0
0

2
3

 
1 

F 
+

 
0

0
2

4
 

BA
 

0
0

0
0

 
R

 
+

 
0

0
2

7
 

B
4 

0
9

 
+

 
0

0
2

9
 

CO
 

21
 

+
 

0
0

2
B

 
lF

 
+

 
0

0
2

C
 

BA
 

0
0

0
0

 
R

 
+

 
0

0
2

F
 

C
6 

0
6

 
0

0
0

0
 

R
 

15
 

+
 

0
0

3
4

 
B

4 
O

A
 

+
 

0
0

3
6

 
CO

 
21

 
+

 

• 
• 

• 
• 

• 

s
s
e
g

 
e
n

d
s 

c
se

g
 

se
g

m
e
n

t 
p

a
ra

 
'C

O
D

E
' 

a
ss

u
m

e
 

c
s
:c

s
e
g

,d
s
:d

s
e
g

,s
s
:s

s
e
g

 
in

p
u

t_
te

s
t 

p
ro

c
 

fa
r 

?
?
0

0
0

2
 

?
?
0

0
0

3
: 

p
u

sh
 

d
s 

;s
e
t 

up
 

re
tu

rn
 

a
d

d
re

s
s
 

m
ov

 
a
x

,O
 

p
u

sh
 

ax
 

m
ov

 
a
x

,d
s
e
g

 
m

o
v

 
d

s
,a

x
 

la
n

d
 

O
SE

G
 

in
to

 
O

S 

s
u

b
tt

l 
A

c
tu

a
l 

te
s
ti

n
g

 
o

f 
m

a
c
ro

 
o

c
c
u

p
ie

s
 

re
s
t 

o
f 

p
ro

g
ra

m
 

p
a
g

e
 

in
p

u
t 

. 
I a

 I
 I

 
;t

e
s
t 

e
rr

o
r 

fo
r 

no
 

p
a
ra

m
e
te

rs
 

a
ll

o
w

 
u

s 
to

 
re

tu
rn

 
a 

c
o

m
m

e
n

t:
 

no
 

p
a
ra

m
e
te

rs
 

s
p

e
c
if

ie
d

 
fo

r 
IN

PU
T

 
m

a
c
ro

! 
M

a
c
ro

 
a
b

o
rt

e
d

 

in
p

u
t 

im
m

e
d

ia
te

,'
W

h
a
t 

jm
p 

?
?
0

0
0

3
 

i 
s 

y
o

u
 r

 
n

am
e?

 
S

',
 2

0
 

; 
i m

m
 . 

I 
b 

u 
f 
fe

r 
s
k

ip
 

o
v

e
r 

D
B 

a
re

a
 

db
 

'W
h

at
 

is
 

y
o

u
r 

n
am

e?
 

S
' 

p
u

S
h

 
d

s 
s
tr

in
g

 
is

 
in

 
m

em
; 

sa
v

e
 

O
S 

p
u

sh
 

c
s 

tr
a
n

s
fe

r 
C

S 
to

 
O

S 
p

o
p

 
d

s 
..

 
v

ia
 

th
e
 

s
ta

c
k

! 
m

ov
 

d
X

,o
ff

s
e
t 

?
?
0

0
0

2
 

s
e
t 

u
p

 
O

S
:O

X
 

fo
r 

Q
U

ER
Y

 
m

o
v

a
h

,p
ri

n
t_

s
 

;O
O

S
 

fu
n

c
ti

o
n

 
9 

=
 p

ri
n

t 
s
tr

in
g

 
in

t 
b

d
o

s 
;O

O
S

 
fu

n
c
ti

o
n

 
c
a
ll

 
in

to
 

p
o

p
 

d
s 

; 
if

 
w

e 
p

u
sh

e
d

 
it

, 
p

o
p

 
it

 
b

a
c
k

 
m

ov
 

d
X

,o
ff

s
e
t 

In
p

u
t_

b
u

ff
e
r 

;O
S

:O
X

 
a
d

d
r.

s
 

IN
PU

T
 

B
U

F
F

E
R

 
m

o 
v 

i n
 p

u
t _

b
 u

 f 
fe

r,
 2

0
+

 1
 

; s
e
t 

b
y

 t
e
O

 
t
o

.
 

0 
f 

c 
h 

a 
r 

s 
m

o
v

a
h

,l
n

p
u

t_
s
 

D
O

S 
fu

n
c
ti

o
n

 
to

 
in

p
u

t 
s
tr

in
g

 
in

t 
b

d
o

s 
; 

g
o

 
in

p
u

t 
it

 

• 
• 

• 
• 

>- ~ ::l
 ~ 0
- >- '" '" (1
)
-

a
V

1 
cr

 
ro

 
.....

 n o ::l
 

r
t
 

.....
 Q..
. • 



• 
• 

• 
• 

• 
• 

• 
• 

• 
• 

0
0

3
8

 
AO

 
0

0
0

1
 

R
 

+
 

m
ov

 
a
i,

 i
n

p
u

t_
b

u
ff

a
r+

l 
; 

g
e
t 

le
n

g
th

 
o

f 
in

p
u

t 
0

0
3

B
 

B
E 

0
0

0
2

 
R

 
+

 
m

ov
 

s
i,

o
f
f
s
e
t 

in
p

u
t_

b
u

ff
e
r+

2
 

;g
e
t 

a
d

d
re

s
s
 

o
f 

te
x

t 
0

0
3

E
 

A
2 

0
0

 1
6

 
~
 

m
ov

 
n

a
m

e
_

le
n

,a
l 

fu
s

e
 

le
n

g
th

 
re

tu
rn

e
d

 
In

 
A

L 
in

p
u

t 
im

m
e
d

ia
te

,'
H

o
w

 
m

an
y

 
in

 
y

o
u

r 
fa

m
i 

I y
: 
. ' ;si

n
g

le
 

0
0

4
1

 
EB

 
lB

 
9

0
 

+
 

jm
p 

?
?
0

0
0

5
 

; 
s
k

ip
 

o
v

e
r 

D
B 

a
re

a
 

0
0

4
4

 
4

8
 

6F
 

7
7

 
2

0
 

6
0

 
61

 
+

 
?
?
0

0
0

4
 

db
 

'H
o

w
 

m
an

y
 

in
 

y
o

u
r 

f 
am

 i
 I

 y
: 
. ' 

0
0

5
E

 
IE

 
+

 
?
?
0

0
0

5
: 

p
u

sh
 

d
s 

s
tr

in
g

 
is

 
in

 
m

e
m

; 
sa

v
e
 

O
S 

0
0

5
F

 
O

E 
+

 
p

u
sh

 
c
s 

tr
a
n

s
fe

r 
C

S 
to

 
O

S 
0

0
6

0
 

IF
 

+
 

p
o

p
 

d
s 

..
. 

v
ia

 
th

e
 

s
ta

c
k

! 
0

0
6

1
 

BA
 

0
0

4
4

 
R

 
+

 
m

ov
 

d
X

,o
ff

s
e
t 

?
?
0

0
0

4
 

s
e
t 

up
 

O
S

:O
X

 
fo

r 
Q

U
ER

Y
 

0
0

6
4

 
B

4 
0

9
 

+
 

m
ov

 
a
h

,p
ri

n
t_

s
 

;O
O

S
 

fu
n

c
ti

o
n

 
9 

=
 p

ri
n

t 
s
tr

in
g

 
;J>

 
0

0
6

6
 

CD
 

21
 

+
 

in
 t 

b
d

o
s 

;o
O

S
 

fu
n

c
ti

o
n

 
c
a
 I

 I
 

i n
 t 

. 
0

..
 

0
0

6
8

 
IF

 
+

 
p

o
p

 
d

s 
; 

i 
f 

w
e 

p
u

sh
e
d

 
it

, 
p

o
p

 
i 

t 
b

a
c
k

 
<: po

 
0

0
6

9
 

B
4 

01
 

+
 

m
ov

 
a
h

,c
o

n
_

in
 

; 
g

e
t 

a 
c
h

a
ra

c
te

r 
in

to
 

A
L 

:l
 

n 
0

0
6

B
 

CD
 

21
 

+
 

i n
 t 

b
d

o
s 

; 
an

d
 

th
a
t'

s
 

th
a
t 

r1
l 

fa
m

i 
Iy

_
s
iz

a
,a

l 
A

SC
 I

 I
 

in
p

u
t 

c
h

a
ra

c
te

r 
0.

. 
0

0
6

0
 

A
2 

0
0

1
C

 
R

 
m

ov
 

;s
a

v
e
 

;J>
 

in
p

u
t 

in
d

ir
e
c
t,

a
g

e
,3

 
; 
in

d
ir

e
c
t/

b
u

ff
e
re

d
 

'" 
0

0
7

0
 

BA
 

0
0

1
0

 
R

 
+

 
m

ov
 

d
X

,o
ff

s
e
t 

a
g

e
 

; 
s
e
t 

up
 

o
S

:o
X

 
fo

r 
S

T
R

IN
G

 
~V

; 
0

0
7

3
 

B
4 

0
9

 
+

 
m

ov
 

a 
h 

, P
 r 

in
 t

_
s
 

;D
O

S
 

fu
n

c
ti

o
n

 
9 

=
 p

ri
n

t 
s
tr

in
g

 
0

0
7

5
 

CD
 

21
 

+
 

in
t 

b
d

o
s 

;O
O

S
 

fu
n

c
ti

o
n

 
c
a
 I

 I
 

in
 t 

. 
r:r

 
ro

 
0

0
7

7
 

BA
 

0
0

0
0

 
R

 
+

 
m

ov
 

d
X

,o
ff

s
e
t 

in
p

u
t_

b
u

ff
a
r 

;O
S

:O
X

 
a
d

d
r.

s
 

IN
P

U
T

_B
U

F
F

E
R

 
... 

00
7A

 
C

6 
0

6
 

0
0

0
0

 
R

 
0

4
 

+
 

m
ov

 
in

p
u

t_
b

u
ff

e
r,

3
+

1
 

; 
s
e
t 

b
y

te
 

0 
to

 
• 

o
f 

c
h

a
rs

 
n 

0
0

7
F

 
8

4
 

OA
 

+
 

m
ov

 
a
h

,i
n

p
u

t_
s
 

; 
D

O
S 

fu
n

c
ti

o
n

 
to

 
in

p
u

t 
s
tr

in
g

 
0 :l

 
0

0
8

1
 

CD
 

21
 

+
 

in
t 

b
d

o
s 

g
o

 
in

p
u

t 
i 

t 
.... ... 

0
0

8
3

 
A

O
 

0
0

0
1

 
R

 
+

 
m

ov
 

a
i,

 i
n

p
u

t_
b

u
ff

e
r+

l 
g

e
t 

le
n

g
th

 
o

f 
in

p
u

t 
8..

. 
0

0
8

6
 

B
E 

0
0

0
2

 
R

 
+

 
m

ov
 

s
i,

o
f
f
s
e
t 

in
p

u
t_

b
u

ff
e
r+

2
 

;g
e
t 

a
d

d
re

s
s
 

o
f 

te
x

t 
0

0
8

9
 

A
2 

0
0

3
A

 
R

 
m

ov
 

a
g

e
_

d
 i

 g
 i

ts
, 

a 
I 

;u
s
e
 

le
n

g
th

 
re

tu
rn

e
d

 
in

 
A

L 
in

p
u

t 
in

d
ir

e
c
t,

h
e
ig

h
t 

;i
n

d
ir

e
c
t/

s
in

g
le

 
0

0
8

C
 

BA
 

0
0

3
8

 
R

 
+

 
m

ov
 

d
X

,o
ff

s
e
t 

h
e
ig

h
t 

; 
s
e
t 

up
 

O
S

:O
X

 
fo

r 
S

T
R

IN
G

 
0

0
8

F
 

B
4 

0
9

 
+

 
m

ov
 

a
h

,p
ri

n
t_

s
 

;o
O

S
 

fu
n

c
ti

o
n

 
9 

=
 p

ri
n

t 
s
tr

 i
n

g
 

0
0

9
1

 
CD

 
21

 
+

 
in

t 
b

d
o

s 
;O

O
S

 
fu

n
c
ti

o
n

 
c
a
l 

I 
i n

 t 
. 

0
0

9
3

 
B

4 
01

 
+

 
m

ov
 

a
h

, 
c
o

n
_

i 
n 

; 
g

e
t 

a 
c
h

a
ra

c
te

r 
in

to
 

A
L 

w
 

0 (J
1

 



V
J 

0 0
\ • 0

0
9

5
 

CO
 

21
 

0
0

9
7

 
A

2 
0

0
6

4
 

R
 

0
0

9
A

 
EB

 
0

8
 

9
0

 
0

0
9

0
 

54
 

6
8

 
61

 
00

A
7 

1 
E

 
0

0
A

8
 

O
E 

0
0

A
9

 
IF

 
O

O
A

A
 

BA
 

0
0

9
0

 
R

 
O

O
A

D
 

B
4 

0
9

 
O

O
A

F 
CD

 
21

 
O

O
B

I 
IF

 

0
0

B
2

 
C

B
 

0
0

B
3

 
0

0
B

3
 

6E
 

6B
 

2
0

 

O
p

e
n

 
c
o

n
d

it
io

n
a

ls
: 

7 

• 
• 

• 
• 

+
 

+
 

+
 

+
 

+
 +
 

+
 

+
 

+
 

+
 

+
 +
 

+
 

+
 

+
 

+
 

+
 

+
 

+
 

+
 

+
 

??
O

O
O

A
 

??
O

O
O

B
: 

; ; ; 

in
t 

b
d

o
s
 

m
o

v
 

h
e

ig
h

t_
a

n
s
w

e
r,

a
l 

i 
n 
p

u
t 

i m
m

e 
d 

i 
a

te
, 

' 
T

 h
a

n
 k

 
jm

p
 

?
?
0

0
0

8
 

d
b

 
'T

h
a

n
k
 

y
o

u
.'

 
p

u
s
h

 
d

s
 

p
u

s
h

 
c
s
 

p
o

p
 

d
s
 

m
o

v 
d

X
,o

ff
s
e

t 
??

O
O

O
A

 
m

o
v
a

h
,p

ri
n

t_
s
 

in
t 

b
d

o
s
 

p
o

p
 

d
s
 

· 
I a

 I
 I

 

a
n

d
 

th
a

t'
s
 

th
a

t 
; 

s 
a 

v 
e 

A
S

C
 I

 I
 

y
o

u
.'

 ,
0

 
It

e
s
t 

e
r
r
. 

fo
r 

s
k
ip

 
o

v
e

r 
D

B
 

a
re

a
 

le
n

g
th

 
0 

s
tr

in
g

 
is

 
in

 
m

e
m

l 
s
a

v
e

 
O

S
 

tr
a

n
s
fe

r
 

C
S

 
to

 
O

S
 

.
.
.
 

v
ia

 
th

e
 

s
ta

c
k
! 

s
e

t 
u

p
 

D
S

,D
X

 
fo

r 
Q

U
E

R
Y

 
; 

D
O

S
 

fu
n

 c
 t

 i
o

n
 

9 
=

 p
 r

 i
 n

 t 
s 

t 
r 

i 
n 

g 
I 

D
O

S
 

fu
n

 c
 t

 i
o

n
 

c 
a 

I 
l
i
n

 t 
. 

I 
if

 
w

e
 

p
u

s
h

e
d

 
it

,
 

p
o

p
 
it

 
b

a
c
k
 

a 
I 

I 
o

w
 

a 
c 

om
m

e 
n 

t 
t
o

p
 r

 0
 g

ra
m

, 

q
u

e
ry

 
s
tr

in
g

 
p

r
in

te
d

; 
c
a

n
't

 
in

p
u

t 
a 

s
tr

in
g

 
o

f 
le

n
g

th
 

O
! 

in
p

u
t 

'T
h

a
n

k
 

y
o

u
' 

· 
I 

a 
I 

I 
;t

e
s
t 

fo
r 

w
ro

n
g

 
S

T
R

IN
G

_
M

O
D

E
 

p
a

s
s
 

th
is

 
m

e
s
s
a

g
e

 
to

 
p

ro
g

ra
m

 

M
u

s
t 

s
p

e
c
if

y
 

"i
m

m
e

d
ia

te
" 

o
r 

"
in

d
ir

e
c
t"

 
a

s
 

p
a

rm
 .
•
 1

! 

in
p

u
t 

in
d

ir
e

c
t,

q
u

e
s
ti

o
n

 
;t

e
s
t 

fo
r 

u
n

d
e

fi
n

e
d

 
in

d
ir

e
c
t 

· 
I 

a 
I 

I 
S

T
R

IN
G

 
m

u
s
t 

b
e

 
a 

d
e

fi
n

e
d

 
v
a

r
ia

b
le

 
fo

r 
in

d
ir

e
c
t 

m
o

d
e

! 

re
t 

in
p

u
t_

te
s
t 

e
n

d
p

 
;d

o
n

e
 

c
s
e

g
 

e
n

d
s
 

e
n

d
 

in
p

u
t_

te
s
t 

• 
• 

• 
• 

>- g (
)
 

(1
) 

Q
..

 >- '" '" (1
) 

..
..

. 

S
V

1 
cr

 
ro >-

1 n o :::3
 

r
t
 

>-
1 s.. • 



• 
• 

• 
• 

• 
• 

• 
• 

• 
• 

T
h

e 
IB

M
 

P
e
rs

o
n

a
l 

C
o

m
p

u
te

r 
M

A
CR

O
 

A
ss

em
b

le
r 

0
1

-0
1

-8
0

 
PA

G
E 

S
y

m
b

o
ls

-l
 

T
h

is
 

m
ac

ro
 

si
m

p
 I

 i
f 

i e
 s

 
y

o
u

r 
c
o

n
so

le
 

in
p

u
t 

re
q

u
e
s
t.

 

M
a
c
ro

s:
 

N
 

a 
m

 e
 

le
n

g
th

 

IN
P

U
T

. 
0

0
7

3
 

S
e
g

m
e
n

ts
 

an
d

 
g

ro
u

p
s:

 
;:t>

 
0

..
 

<: 
N

 a
 

m
 e

 
S

iz
e
 

a
l 

i g
n 

co
m

b
in

e 
c
la

s
s
 

P-
' ::1
 

n 
C

SE
G

 
00

B
3 

PA
R

A
 

N
O

N
E 

'C
O

D
E

' 
(1

) 0
..

 
D

SE
G

 
0

0
6

5
 

PA
R

A
 

N
O

N
E 

'D
A

T
A

' 
;:t>

 
SS

E
G

 
0

0
8

0
 

PA
R

A
 

ST
A

C
K

 
'S

T
A

C
K

' 
rr>

 ~
U
;
 

S
y

m
b

o
ls

: 
I~

 
r0

-
N

 a
 

m
 e

 
T

y
p

e 
V

a
lu

e
 

A
t 

t 
r 

'1
 

()
 

0 
A

G
E

. 
l 

B
Y

TE
 

0
0

1
0

 
D

SE
G

 
::1

 ,... 
A

G
E

_D
IG

IT
S

 
l 

B
Y

TE
 

00
3A

 
D

SE
G

 
'1

 

B
O

O
S 

N
um

be
r 

0
0

2
1

 
£.

 
C

O
N

_I
N

 
N

um
be

r 
0

0
0

1
 

F
A

M
il

Y
_

S
IZ

E
. 

l 
B

Y
TE

 
0

0
1

C
 

D
SE

G
 

H
E

IG
H

T
 

l 
B

Y
TE

 
00

3B
 

D
SE

G
 

H
E

IG
H

T
_A

N
SW

E
R

. 
l 

B
Y

TE
 

0
0

6
4

 
D

SE
G

 
IN

PU
T

_B
U

FF
E

R
 

l 
B

Y
TE

 
0

0
0

0
 

D
SE

G
 

IN
P

U
T

_S
. 

N
um

be
r 

O
O

O
A

 
IN

P
U

T
_T

E
S

T
 

F 
PR

O
C

 
0

0
0

0
 

C
SE

G
 

le
n

g
th

 
=

0
0

8
3

 
N

A
M

E
_l

E
N

 
l 

B
Y

TE
 

0
0

1
B

 
D

SE
G

 
w

 
P

R
IN

T
_

S
. 

N
um

be
r 

0
0

0
9

 
0 '-

1
 

1
1

0
0

0
2

 
l 

B
Y

TE
 

0
0

0
0

 
C

SE
G

 



V
J 

?
?
0

0
0

3
 

L
 

N
EA

R
 

0 
?
?
0

0
0

4
 

L
 

B
Y

T
E

 
0

0
 

?
?
0

0
0

5
 

L
 

N
EA

R
 

??
O

O
O

A
 

L
 

B
Y

T
E

 
??

O
O

O
B

 
L

 
N

EA
R

 

W
a
rn

in
g

 
S

e
v

e
re

 
E

rr
o

rs
 

E
rr

o
rs

 
0 

0 

• 
• 

• 
• 

• 

0
0

2
1

 
C

SE
G

 
0

0
4

4
 

C
S

E
G

 
0

0
5

E
 

C
SE

G
 

0
0

9
0

 
C

S
E

G
 

0
0

A
7

 
C

SE
G

 

• 
• 

• 
• >

 
~
 

~
 ~ (1

) Q
...

 >
 

'" '" (1
) 

..
..

..
 

a 
V

1
 

cr
 

ro
 

.... n g r
t
 

.... :2..
. • 





-
II 

II 

II 

II 

II 

II 

II 

-
II 



II 

II 

II 

II 

II 

II 

II 

II 

CHAPTER 

16 
Sample Programs 

The first sample program, "DUMP.ASM" (Program 16-1) is a 
utility that allows you to examine a file as a hexadecimal list­
ing (like DEBUG's 0 command). It's a good example of simple 
disk input/output handling with DOS 2.00 (DOS 1.10 pro­
grammers should convert it to DOS 1.10 file handling; it will 
be good practice). To use this program once it's assembled, 
simply type "DUMP filename. ext" and the file will be dis­
played in hexadecimal. Any errors that occur will be dis­
played, with the appropriate error number, and the program 
will stop. 

The second sample program, "REBOUND.ASM" (Pro­
gram 16-2), uses only BIOS functions to control the screen, so 
it should be usable on any PC-DOS computer. Note that, as 
printed, the program will work best in a PC with 
color/graphics board. One set of modifications should be 
made if you're using a PCjr. Another set should be made if 
you're using a PC with a monochrome board. Any version 
will work in any computer, but speed or color use varies. 

To use the program, simply type "REBOUND" from the 
DOS prompt. The game will prompt you to hit the Enter key; 
when you do, the game begins. Use the Shift keys to move 
the paddle back and forth; the goal is to knock down all the 
bricks forming the wall. However, you have a limited number 
of balls. A few convenience features were added to the game; 
the space bar will pause the game until another key is hit, and 
the Esc key will reset to the initial message. You can add a 
variety of improvements to the game. For example, you can 
allow the player to pick a level of difficulty, or to select the 
number of balls or the number of rows of bricks. 

The third sample program, called "UFE.ASM" (Program 
16-3), is a BIOS version of the game of Ufe. It uses many 
macros (see Chapter 15) and provides some examples of how 
macros can be used in the normal course of programming. The 
game of Ufe allows you to watch the generations of a one-
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16 
Sample Programs 

celled life form pass across the screen. Each cell on the screen 
can, in each turn, die, remain stable, or give rise to new cells. 
The changing patterns formed by the successive generations 
can be an intriguing sight if the initial pattern of cells is cho­
sen carefully. 

To begin the game, type "LIFE" from the DOS prompt. 
To enter the initial pattern of cells, hit any key wherever you 
want a cell to be. The space bar is used to erase mistaken en­
tries, the cursor keys to maneuver the cursor around the 
screen, and the Enter key to end the entry of cells. 
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Sample Programs 

--------------- ----------------------

0 ... ... Q) 

Q) 

N 
II 

Q) U 
01 
II 0 
Co -- c:: 
u ., ::I -., Q) ., ... 

0 0 
Q) &nO., 
'0 . .'0 

.r;.-
> II II > Co 

'0 ., -> :> -- c:: '0 '0 
c:: 0 0 c:: ., ., c:: c:: 

E E ... Q) Q) ., ., 
c:: -Q) 

::I '0 
0 0 ..... u 
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APPENDIX A 
-------------------

The 8088 Instruction 
Set 

We will discuss two aspects of the 8088 instruction set here. 
First we will present a table of the execution times for each 
instruction to execute, then a table of what flags each instruc­
tion sets when it executes. 

Execution Time 
If you are trying to write a time-effiden t program, it can be 
very helpful to know how long each instruction takes to exe­
cute. The time is given in clock cycles. The microprocessor 
paces itself with clock pulses at a rate of 4.77 million per sec­
ond (or 4.77 megahertz, 4.77 MHz). However, on some 
computers, such as the PCjr, the computer's RAM is shared 
with the video controller, so it takes extra clock cycles to read 
the program from memory, thus slowing everything down. 

There are a few strange notations in Table A-2. Every 
time the 8088 reads data from memory, it takes an additional 
quantity of time depending on the addressing mode. This extra 
time is called EA, for Effective Address, and adds the number 
of clock cycles to memory addressing, as shown in Table A-I. 

Notice that it takes longer to use [BP] with [SI] or [DI] 
than it does to use [BX]. Also, you must add yet another two 
clock cycles if your operand takes a segment override. 

On the 8088, words often take a different length of time 
to handle than bytes. This is shown below by putting the time 
for a word in parentheses after the time for a byte. Notice also 
that for string commands, the time to execute once is followed 
by the time to execute using the REP prefix. Additionally, no­
tice that when rotating or shifting a value by eL, it takes four 
cycles per bit (as shown in the table). 

For example, if you program 
MOV AX, CS:TABLE [BP] 

you must first find the time to move memory into a register. 
Table A-2 gives the time for MOV register, memory as 
8(12)+EA. Since AX is a word register, we take the 12-cycle 
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II 
value. The addressing mode is base with displacement, so the II 
Effective Address calculation time is 9 clock cycles. To this we 
add 2 clock cycles for the segment override, to get 12+9+2, 
or 23 clock cycles in all. 8 
Table A,I. Effective Address Calculation Time 

Addressing Mode 

displacement addressing 
base/index addressing 

base/index with displacement 

base and index 

base, index, displacement 

Operands 

label 
[BX] 
[BP] 
[DI] 
[SI] 
[BX]+disp 
[BP]+disp 
[DI]+disp 
[SI]+disp 
[BX][SI] 
[BX][DI] 
[BP][SI] 
[BP][DI] 
[BX][SI] + disp 
[BX][DI] + disp 
[BP][SI] + disp 
[BP][DI]+ disp 

Clock Cycles 

6 
5 

9 

7 

8 

11 

12 

Table A,Z. Execution Time for 8088 Instructions 

Instruction Clock Cycles 

AAA 4 
AAD 63 
AAM 80 
AAS 4 
ADC, ADD accumulator, data 4 

register,data 4 
register ,register 3 
register,memory 9(13)+EA 
memory,data 17(25)+EA 
memory,register 16(24)+EA 

CALL near 23 
far 36 
indirect register near 24 
indirect memory near 29+EA 
indirect memory far 57+EA 

CBW 2 
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II 

II Instruction Clock Cycles 
CLC 2 
CLD 2 

III CLI 2 
CMC 2 
CMP accumulator,data 4 

8 register,data 4 
register, register 3 
register,memory 9(13)+EA 
memory, data 10(14)+EA 
memory,register 9(13)+EA 

CMPS 22(30) / 9 + 22(30) per rep 
CWD 5 
DAA 4 
DAS 4 
DEC register 3(2) 

memory 15(23)+EA 
DlV register 80 to 90 (144 to 162) 

memory 86 to 96 (154 to 172) + EA 
ESC number,register 2 

number,memory 8(12)+ EA 
HLT 2 
IDIV register 101 to 112 (165 to 184) 

memory 107 to 118 (175 to 194)+EA 
IMUL register 80 to 98 (128 to 154) 

memory 86 to 104 (138 to 164)+EA 
IN accumulator, port 10(14) 

accumulator,DX 8(12) 
INC register 3(2) 

memory 15(23)+EA 
INT number 51 
INT 3 52 

II 
INTO 53 or 4 
IRET 32 
JCXZ short label 18 or 6 
Jcond short label 16 or 4 

II JMP direct 15 
indirect register near 11 
indirect memory near 18+EA 

8 indirect memory far 24+EA 
LAHF 4 
LDS register,dword memory 24+EA 

II 
LEA register, word memory 2+EA 
LES register,dword memory 24+EA 
LOCK 2 
LaDS 12(16) / 9+13(16) per rep 
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Instruction Clock Cycles -LOOP short 17 or 5 
LOOPZ short 18 or 6 

II LOOPNZ short 19 or 5 
MOV accumulator,memory 10(14) 

memory,accumulator 10(14) 
register,data 4 II register,register 2 
register ,memory 8(12)+ EA 
memory, data 10(14)+EA 
memory,register 9(13)+EA 
segment, word register 2 
segment, word memory 12+EA 
word register,segment 2 
word memory,segment 13+EA 

MOVS 18(26) / 9+17(25) per rep 
MUL register 70 to 77 (118 to 133) 

memory 76 to 83 (128 to 143) + EA 
NEG register 3 

memory 16(24)+ EA 
Nap 3 
NOT register 3 

memory 16(24)+ EA 
OR accumulator,data 4 

register,data 4 
register,register 3 
register ,memory 
memory,data 

9(13)+EA 
17(25)+EA 

memory,register 16(24)+EA 
OUT port,accumulator 10(14) 

DX,accumulator 8(12) 
POP register 12 

segment 12 
II memory 25+EA 

POPF 12 
PUSH register 12 

segment 12 II memory 24+EA 
PUSHF 14 
RCL,RCR register, 12 8 register,CL 8 + 4 per bit 

memory,1 15(23)+EA 
memory,CL 20(28)+ EA + 4 per bit II REP 2 

REPE 2 
REPNE 2 
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II RET (near) 20 
(far) 32 
pop (near) 24 

II pop (far) 31 
ROL, ROR register, 12 

register,CL 8 + 4 per bit 

a memory,l 15(23)+EA 
memory,CL 20(28) + EA + 4 per bit 

SAHF 4 
SAL,SAR register, 12 

register,CL 8 + 4 per bit 
memory,l 15(23)+ EA 
memory,CL 20(28) + EA + 4 per bit 

SBB, SUB accumulator,data 4 
register,data 4 
regis ter ,regis ter 3 
register, memory 9(13)+EA 
memory,data 17(25)+EA 
memory,register 16(24)+EA 

SCAS 15(19) / 9 + 15(19) per rep 
SHL,SHR register,12 

register,CL 8 + 4 per bit 
memory,l 15(23)+ EA 
memory,CL 20(28) + EA + 4 per bit 

STC 2 
STD 2 
STI 2 
STOS 11(15) / 9+ 10(14) per rep 
SUB (see SBB) 
TEST accumulator,data 4 

register,data 5 
register,register 3 
register,memory 9(13)+EA 

II memory,data 11+EA 
WAIT 3 + wait period 
XCHG AX,register 3 

8 register ,memory 17(25)+ EA 
register,register 4 

XLAT 11 

II 
XOR accumulator,data 4 

register,data 4 
register,register 3 

8 
register,memory 9(13)+EA 
memory,data 17(25)+ EA 
memory, register 16(24)+EA 
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Opcodes and Flags _ 
As a rule, most instructions either set all of the arithmetic 
flags, or else don't set any of them. The following instructions 
set all the arithmetic flags: I 
ADD, ADC, SUB, SBB, NEG, CMP, CMPS, SCAS 

All of the flags are set in accordance with the result of the op- _ 
eration (remember, the comparisons-CMP, CMPS, and -
SCAS-are really subtractions). For a discussion of how the 
flags are set, see the discussion of conditional jumps in Chap-
ter 5. 

Some instructions don't set any of the flags. Basically 
these instructions fall into two categories: move instructions 
and jump instructions. Neither of these alters any flags. 

Move instructions: 
MOV, LEA, LaDS, STOS, MOVS, PUSH, pop, IN, OUT, 
XCHG, XLAT, LDS, LES 

Jump instructions: 
JMP, jump-on-condition, LOOP, CALL, RET 
There are also a handful of other opcodes that are very 
specialized and don't have any effect on the flags: 
CBW, CWD, ESC, HLT, LAHF, PUSHF, LOCK, Nap, NOT, 
REP, WAIT 

Take special note of CBW, CWD, and NOT, since these 
instructions might well be expected to set flags, but in fact do 
not. 

Several instructions affect the flags in a self-apparent 
fashion. The CLC, STC, and CMC instructions, for example, 
clearly affect only the carry flag; likewise for CLI and STI, and 
CLD and STD. 

The following table lists other opcodes that affect the flags 
in different ways. The asterisk (*) means that the flag is 
changed purposefully by the instruction, the question mark (?) 
means the flag is randomly changed, and the dash (-) means 
not changed. Where there's a zero (0), the instruction always 
clears the flag. 

ZF = zero flag, result is 0 
SF = sign flag, result is negative (high bit is 1) 
CF = carry flag, unsigned result too large 
OF = overflow flag, signed result too large 
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AF = auxiliary carry flag 
PF = parity flag 

Appendix A 

DF = direction flag, clear = increment string pointer 
IF = interrupt flag, enable external interrupts 
TF = trap flag, enable interrupt 1 after each instruction 

Bit-Positions of Flags in Flags Register 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

OF DF IF TF SF ZF - AF - PF - CF 

Table A-3. Flag Setting 

Instruction ZF SF CF OF AF PF DF IF TF 
ADC, ADD, eMP, CMPS, NEG, * 

SBB, SCAS, SUB 
CALL, CBW, CWD, ESC, HLT, IN, -

JMP, jump-on-condition, LAHF 
LDS, LEA, LES, LOCK, LODS, 
LOOP, LOOPE, LOOPNE, 
MOV, MOVS, NOP, NOT, 
OUT, POP, PUSH, PUSHF, 
REP, REPE, REPNE, RET, 
STOS, WAIT, XCHG, XLAT 

DEC and INC 
AND, OR, XOR, TEST 
SHR, SHL, SAL, SAR 
ROL, ROR, RCL, RCR 
DlV and IDIV 
MUL and IMUL t 
AAA and AAS 
AAD and AAM 
DAA and DAS 
INT and INTO :j: 

* 
* 
* 

? 
? 
? 

• 

• 

• 
* 
* 

? 
? 
? 
* 
* 

o 
* 
• 
? 
* 
* 
? 
* 

• 
o 
* 
• 
? 
• 
? 
? 
? 

* 

* 
? 
? 

? 
? 
• 
? 
* 

* 

* 
* 
* 

? 
? 
? 
* 
* 

o 
IRET 
POPF 
SAHF 

restores all nine flags from stack 
restores all nine flags from stack 
restores ZF, SF, CF, AF, PF from AH 

CLC, STC, CMC, STD, CLD, 
SrI, CLI affects one flag, as appropriate 

o 

t The MUL instruction sets CF and OF if the result of the multiplication is larger than 
a byte (for byte multiplication) or a word (for word multiplication). 

:j: INT and INTO clear the trap and interrupt flags so that interrupts won't interrupt 
each other. However, the IRET instruction at the end of the interrupt routine restores 
IF and TF. 
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Addressing Modes 
and Possible Register 

Arrangements 

Addressing Mode Name Possible Arrangements 
Direct mode (label) 

displacement 
Register Indirect mode [BX] 

[BP] 
[51] 
[DI] 

Based mode [BX+n] 
[BP+n] 

Indexed mode [51 + n] 
[DI +n] 

Based Indexed mode [BX + 51] 
[BX+OI] 
[BP+SI] 
[BP+ 01] 

Based Indexed mode with Displacement [BX +51 +n] 
[BX+DI+n] 
[BP+51+n] 
[BP+DI+n] 

where n represents a signed 8- or 16-bit displacement. 

Table of Registers 
The 8088 has 14 word-sized registers. There are four general­
purpose accumulators, four index registers, four segment reg­
isters, one program counter, and one status register. The four 
general-purpose accumulators are named as follows: 

Primary accumulator : AX 
Base register : BX 
Counter : CX 
Data register : DX 
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Each of these word-sized accumulators can be referred to 
as two separate byte-sized accumulators: 

AX = AH,AL 
BX = BH,BL 
CX = CH,CL 
DX = DH,DL 

BX is the only general-purpose register that can be used in 
register indirect addressing. The AX:DX pair is frequently used 
to store double words. CX, the counter, is used to hold the 
number of iterations for the LOOP command, the number of 
times to repeat a string command. CL is also used to hold the 
number of times to perform a shift or rotate command. 

The four word-sized index registers are as follows: 

Stack Pointer : SP 
Base Pointer : BP 
Source Index : SI 
Destination Index : DI 

The four segment registers are as follows: 

Code Segment : CS 
Data Segment : DS 
Stack Segment : SS 
Extra Segment : ES 

The instruction pointer (IP) and the status registers are the 
remaining two registers. The IP points to the current instruc­
tion in the machine language program. It is an offset value 
from the CS register. 

The status register can be broken down into the following 
bits: 
bit 
~OH 
01H 
02H 
03H 
04H 
OSH 
06H 
07H 

use 
carry flag 
parity flag 
unused 
auxiliary carry flag 
unused 
zero flag 
sign flag 
trap mode (single-step) 
flag 

bit 
08H 
09H 
OAH 
OBH 
OCH 
ODH 
OEH 
OFH 

use 
interrupt enable/disable 
flag 
direction flag 
overflow flag 
unused 
unused 
unused 
unused 
unused 
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MASM Pseudo~ops 

Brief Descriptions of MASM Pseudo,ops 
Pseudo-ops marked with a star (*) can't be used with ASM. 

*% 
*& 
.CREF 
.LALL 
.RADIX 
.SALL 
.XALL 

* .. 
" 
ASSUME 

DB 
DO 

*OQ 
*DT 
DUP 
OW 
ELSE 

END 
ENDIF 

*ENDM 

ENDP 

ENDS 

EQU 
*EXITM 
IF 
IFl 
IF2 

*IFB 
*IFDEF 

372 

use value of constant, not name 
force assembler to recognize next word as parameter 
turn on Cross REFerence output at this point 
list complete macro/repeat expansions 
set default base to decimal number following .RADIX 
suppress all output of macro/repeat expansions 
only output code-producing lines of macros/repeat 
blocks 
comment line: the assembler ignores everything 
following 
macro comment, never expanded into the list file 
dynamic assignment pseudo-op for constants 
which segment registers are pointing at which 
segments 
define a byte value 
define a double word value (four bytes) 
define a quad word value (eight bytes) 
define a ten-byte value for packed decimal format 
duplicate the operand the specified number of times 
define a word (two bytes) 
precedes a block of code to be executed if an IF is 
false 
marks the end of the source file; can specify start 
marks the end of a conditional block of statements 
marks the end of a macro (don't precede with macro 
name) 
marks the end of a procedure (preceded with PROC 
name) 
marks the end of a segment (preceded with SEG­
MENT name) 
equate a symbol to a value, a symbol, an alias, or text 
abort a macro early 
assemble following statements if operand <> 0 
assemble following statements if assembler on pass 1 
assemble following statements if assembler on pass 2 
assemble following statements if operand is blank 
assemble following statements if operand is defined 

II 

• 
II 

II 

II 

a 
a 
II 



II 

I 
II 

II 

II 

II 

a 
II 

IFDIF 

IFE 
IFIDN 

*IFNB 
*IFNDEF 

INCLUDE 
*IRP 
*IRPC 
LABEL 

LENGTH 

*LOCAL 

*MACRO 
OFFSET 

PAGE 

PROC 
PTR 

*REPT 
SEG 
SEGMENT 
SHORT 

SIZE 
SUBTTL 
THIS 
TITLE 
TYPE 

Appendix C 

assemble following statements if operand 1 <> 
operand 2 
assemble following statements if operand = 0 
assemble following statements if operand 1 = 
operand 2 
assemble following statements if operand is not blank 
assemble following statements if operand is not 
defined 
include the "filename. ext" file in the assembly process 
repeat loop once for each parameter specified 
repeat loop Once for each character in specified string 
define the symbol preceding LABEL as the type 
following it 
return the length in units (bytes, words, etc.) of the 
operand 
macro operator to make assembler rename operand 
labels 
define a macro with specified name and operands 
return the offset of the symbol from the start of its 
segment 
define the length and width of a page, or force a new 
page 
begin a procedure with the specified name and type 
override the type of the expression with the specified 
type 
repeat the specified block of codes "operand" times 
return the segment address of the specified segment 
define the start of a segment with the specified name 
make the jump statement assume a forward jump is 
short 
return the size in bytes of a DUPlicated entry 
specify a new subtitle for the list file 
used with EQU to define a symbol with specified type 
specify the title of the list file 
return the type (that is, length in bytes) of the 
operand 

373 



APPENDIX D 
II 

-
Binary Infortnation II 

8 
Hex Binary Decimal 
Number Number XOOO OXOO ooxo ooox 8 0 0000 0 0 0 0 

1 0001 4096 256 16 1 
2 0010 8192 512 32 2 
3 0011 12288 768 48 3 
4 0100 16384 1024 64 4 
5 0101 20480 1280 80 5 
6 0110 24576 1536 96 6 
7 0111 28672 1792 112 7 
8 1000 32768 2048 128 8 
9 1001 36864 2304 144 9 
A 1010 40960 2560 160 10 
B 1011 45056 2816 176 11 
C 1100 49152 3072 192 12 
D 1101 53248 3328 208 13 
E 1110 57344 3584 224 14 
F 1111 61440 3840 240 15 

X is the hex digit 

II 

II 
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II ASCII Values 

• Hex ASCII Character Hex ASCII Character - 0 000 (null) 20 032 (space) 
1 001 Q 21 033 ! 
2 002 • 22 034 
3 003 • 23 035 # 
4 004 • 24 036 $ 
5 005 + 25 037 % 
6 006 + 26 038 & 
7 007 (beep) 27 039 
8 008 • 28 040 
9 009 (tab) 29 041 
A 010 (linefeed) 2A 042 * 
B 011 (home) 2B 043 + 
C 012 (form feed) 2C 044 
D 013 (carriage return) 2D 045 
E 014 n 2E 046 
F 015 ~ 2F 047 / 

10 016 .. 30 048 0 
11 017 .... 31 049 1 
12 018 ~ 32 050 2 
13 019 !! 33 051 3 
14 020 'IT 34 052 4 
15 021 § 35 053 5 
16 022 - 36 054 6 
17 023 1 37 055 7 
18 024 - 38 056 8 
19 025 - 39 057 9 

II 1A 026 t 3A 058 
1B 027 ~ 3B 059 
1C 028 (cursor right) 3C 060 < 

II 
1D 029 (cursor left) 3D 061 
1E 030 (cursor up) 3E 062 > 
IF 031 (cursor down) 3F 063 ? 

8 

i8 
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Hex ASCII Character Hex ASCII Character • 40 064 @ 60 096 
41 065 A 61 097 a 
42 066 B 62 098 b • 43 067 C 63 099 c 
44 068 D 64 100 d 
45 069 E 65 101 e 

II 46 070 F 66 102 f 
47 071 G 67 103 g 
48 072 H 68 104 h 
49 073 I 69 105 
4A 074 J 6A 106 j 
4B 075 K 6B 107 k 
4C 076 L 6C 108 1 
4D 077 M 6D 109 m 
4E 078 N 6E 110 n 
4F 079 0 6F 111 0 

50 080 P 70 112 P 
51 081 Q 71 113 q 
52 082 R 72 114 r 
53 083 S 73 115 s 
54 084 T 74 116 t 
55 085 U 75 117 u 
56 086 V 76 118 v 
57 087 W 77 119 w 
58 088 X 78 120 x 
59 089 Y 79 121 Y 
5A 090 Z 7A 122 z 
5B 091 [ 7B 123 { 
5C 092 \. 7C 124 I 

I 

5D 093 I 7D 125 } 
5E 094 A 7E 126 
5F 095 7F 127 Q 

II 

II 

-
8 
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----------~----- ---, 
I Hex ASCII Character Hex ASCII Character 

80 128 ~ AO 160 a 
81 129 u Al 161 

• 82 130 e A2 162 0 
83 131 a A3 163 U 
84 132 a A4 164 n 

• 85 133 a A5 165 N 
86 134 a A6 166 ~ 

87 135 \ A7 167 Q 

88 136 A A8 168 <.. e 
89 137 e A9 169 ,--

8A 138 e AA 170 --, 

8B 139 1 AB 171 1/2 
8C 140 AC 172 % 
80 141 1 AD 173 
8E 142 A AE 174 « 
8F 143 A AF 175 » 
90 144 E BO 176 ...... 
91 145 ce B1 177 ~ 

92 146 ,..£ B2 178 IE 

93 147 '" B3 179 1 0 

94 148 0 B4 180 ---j 

95 149 0 B5 181 =9 
96 150 '" B6 182 -11 u 
97 151 u B7 183 --" 

98 152 Y B8 184 =1 

99 153 b B9 185 ~I 

9A 154 0 BA 186 
9B 155 ¢ BB 187 =i1 

9C 156 £ BC 188 ~ 

90 157 l BO 189 -.lJ 

9E 158 Pt BE 190 d 

9F 159 f BF 191 ---, -i-
II 
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Hex ASCII Character Hex ASCII Character , 
CO 192 L EO 224 ex 
C1 193 ...L. E1 225 13 
C2 194 I E2 226 I' II C3 195 f- E3 227 71'" 

C4 196 E4 228 ~ 

C5 197 + E5 229 0-

C6 198 ~ E6 230 JJ • C7 199 I~ E7 231 T 

C8 200 l!, E8 232 9 
C9 201 Ii" E9 233 -e-
CA 202 :!b EA 234 n 
CB 203 'ii" EB 235 6 
CC 204 I~ EC 236 00 

CD 205 ED 237 0 
CE 206 .JL EE 238 E ..,r 
CF 207 --'- EF 239 n 
DO 208 .JL FO 240 -
D1 209 =;= F1 241 ± 
D2 210 -.r F2 242 ~ 

D3 211 u.... F3 243 ~ 

D4 212 b F4 244 r 
D5 213 F F5 245 J 
D6 214 rr F6 246 
D7 215 11- F7 247 ~ 

D8 216 ,., F8 248 0 

D9 217 ..J F9 249 • 
DA 218 r FA 250 
DB 219 • FB 251 -J 
DC 220 - FC 252 n 
DD 221 • FD 253 1 

DE 222 • FE 254 • DF 223 - FF 255 (blank) 

II 

-
II 

II 
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APPENDIX F 

Linking Pascal to 
Machine Language 

If you are a Pascal programmer, you may often wish that you 
could write part of your program in Pascal and another part in 
machine language. IBM's implementation of Pascal is very 
powerful and quite complete; however, it lacks some desirable 
machine-specific commands, especially where the screen is in­
volved. For example, there is no way to clear the screen or do 
graphics in Pascal. In this appendix, you will learn how to 
combine Pascal and machine language programs. 

The LINK Program 
Up to now, you have used the "LINK.EXE" program to con­
vert .OB] files into .EXE files. The abilities of the LINK pro­
gram go far beyond this: It can also join different object 
modules (your .OB] files) together into a large program. The 
.OB] files can come from any source, from the assembler, the 
Pascal compiler, even the FORTRAN compiler; the LINK pro­
gram doesn't care where the object files come from. In this 
appendix, we will use the LINK program to combine Pascal 
and machine language programs. 

The Rules of Pascal 
There are a number of rules that must be followed to combine 
machine language with Pascal. You must follow these rules to 
the letter when you write your machine language routines if 
you hope to make Pascal and machine language work together 
in harmony. The rules pertain to parameter passing and af­
fected registers (if you haven't already done so, we suggest 
that you read through Chapter 6 before continuing). 

To begin with, Pascal treats all machine language object 
modules as procedures or functions. When you write your Pas­
cal program, you must use the EXTERN command to tell the 
Pascal compiler that the procedure or function will be added to 
the program when it is linked. Let's consider a simple proce­
dure which we will call a machine language routine: 
PROCEDURE SAMPLE(VAR PARAM:INTEGER); EXTERN; 
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Notice how the EXTERN command is used. The name of the 
example procedure is sample. Sample takes one value, an 
integer. 

When your Pascal program uses this procedure, the value 
of the parameter must be passed to the routine SAMPLE. This 
is done via the stack in what is referred to as a FRAME. Pascal 
uses the BP register as a Frame Pointer to access data in the 
frame. The frame constructed when SAMPLE is used takes the 
following format: 

Address of the parameter (relative to DS) 
RET address (to return to the caller) 

The RET at the end of the routine must remove any param­
eters put onto the stack by the calling program. The routine 
can modify any of the registers except BP and DS. In other 
words, it is free to change AX, BX, CX, DX, 51, DI, and ES; but 
BP and DS must be preserved. 

When a function is used, the rules are a little different. 
For example, ton sider the following function declaration: 

FUNCTION TEST(VAR PARAM:INTEGER):WORD; EXTERN; 

The function's name is TEST. As with SAMPLE, our ex­
ample procedure, TEST takes one value. TEST, however, must 
also return a word to the calling program. This word must be 
stored in AX on return from the function. 

The rules for returning values from a function can be 
summarized as follows: 

• If the function returns a 16-bit quantity (an INTEGER, 
WORD, or ADR value), the number must be in AX when on 
return from the subroutine. 

• If the function returns a two-word quantity (a four-byte 
INTEGER or an ADS value), the number must be stored in 
the register pair AX:DX, where AX holds the less significant 
word. 

However, returning other values is more complicated: 
• If the function returns anything else (a four-byte REAL, an 

eight-byte REAL, an ARRAY, a RECORD, a SET, or a pointer 
to a SUPER ARRAY type), then the value/values are ex­
pected in a temporary variable set up by the calling routine. 
The address of the temporary variable is the last value 
pushed onto the stack before the function is called:On re­
turn from the function, AX must point to the temporary 
variable. 
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This rule slightly changes the format of the frame. Now there 
is another word pushed onto the stack before the function is 
called. The frame now looks like 

Address of the parameter (relative to DS) 
Address of temporary variable (relative to DS) 
RET address (to return to the caller) 

Note that the RET at the end of functions must still remove all 
of the parameters pushed onto the stack by the calling routine. 
Remember that, as with functions, only BP and DS need to be 
preserved. 

In general, unlike routines written to be used by BASIC, 
there are no restrictions on the amount of stack space you 
can use. 

Writing the Machine Language Routine 
Now that you have Pascal's rules at hand, we can examine the 
general structure of a machine language procedure and func­
tion. The segment declarations are slightly different when you 
are writing machine language programs to be linked with Pas­
cal. If your object module needs a data segment, you must de­
fine it like this. The segment MUST be named DATA. 
DATA SEGMENT PUBLIC 'DATA' 

[put any needed data here] 
DATA ENDS 
DGROUP GROUP DATA 

When the Pascal program calls your routine, the DS register 
will already be pointing at this data segment, so there is no 
need to change DS. You define the code segment as you al­
ways have: 
segment name SEGMENT 

The PROCedure declaration is also the same: 
proc name PROC FAR 

But you must add the command 
PUBLIC proc name 

after the procedure declaration. The name of the procedure 
here must be the same as the name of the function or proce­
dure you declare in your Pascal program (see the example pro­
grams at the end of this appendix). 
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Your ASSUME statement must also be a little different. It 
should look something like 
ASSUME OS:OGROUP,SS:OGROUP,CS:segment name 

Note that DGROUP is used as the name of the DS and SS 
segments, not DATA. 

Now you must write your machine language routine. The 
first two instructions are generally 
PUSH BP 
PUSH OS 

Remember that BP and DS must be preserved by the routine; 
all other registers can be changed as required. 

Generally, the next step is to access the parameters that 
are stored on the stack. The simplest method is to use BP as 
an offset register into the stack. For procedures, the last 
parameter pushed onto the stack will be at SP + 8 (after you 
push BP and DS onto the stack). If there is more than one 
parameter passed, they will be stored on the stack at SP + 10, 
SP + 12, etc. Remember that the calling program passes the 
addresses (relative to DS) of the data, not the data itself. For 
our example procedure SAMPLE, the beginning of the code 
might look something like 
PUSH BP 
PUSH OS 
MOV BP,SP 
MOV BX,[BP+8] 
MOV AX,[BX] 

AX now holds the parameter passed by the calling program. 
At the end of this example procedure, we must remember to 
POP BP and DS from the stack, and we must use the RET 2 

-

command. This will remove the one parameter passed by the • 
calling program. 

Functions are slightly different. If the function returns a 
byte, word, or double-word value, that value must be stored in _ 
AL, AX, or the AX:DX pair on return from the subroutine. 
Remember that for more complex data structures, the last 
parameter passed by the calling program is the address of a _ 
temporary variable set up to hold the value(s) returned by the 
function. On return, AX must hold the address of the tem-
porary variable. The beginning of the code for our sample • 
function, TEST, might look something like 
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PUSH BP 
PUSH DS 
MOV BP,SP 
MOV DI,[BP + 8] 
MOV BX,[BP + 10] 
MOV AX,[BX] 

Appendix F 

;get the address of the return variable 
;get the passed parameter 

As with procedures, remember to POP BP and DS from the 
stack before returning to the calling program. Also, remember 
that you must remove any passed parameters before returning; 
this means that the function TEST must end with the RET 4 
command. 

In general, machine language subroutines written to be 
linked to Pascal will take the following format: 
iComment Header 

DATA SEGMENT PUBLIC 'DATA' 
[put any needed data/variables here] 

DATA ENDS 
DGROUP GROUP DATA 

cseg 
program 

SEGMENT 
PROC FAR 
PUBLIC program 
ASSUME DS:DGROUP, SS:DGROUP, CS:cseg 
PUSH BP 
PUSH OS 
MOV BP,SP 
[access the passed parameters and perform the 
procedure/function] 
[For functions only: set AL/ AX/ AX:OX to value to 
return to calling program, or set AX to address of 
temporary variable (for procedures, AX and OX can 
hold any value)] 
POP DS 
POP BP 
RET n 

You can substitute your own segment and program names for 
cseg and program. The value of n for the RET n command de­
pends on two things: whether you are writing a procedure or a 
function, and how many parameters are passed to the machine 
language routine. Generally, n will be 

(number of parameters passed) * 2 
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for procedures, and 

(number of parameters passed) * 2 + 2 

for functions. 

An Example Procedure 
There are two sample routines included here. The first is a 
procedure that changes the screen attribute of the entire 
screen. Notice that this sample procedure requires some vari­
ables, so the data segment is used. Also notice that the name 
of the procedure defined in the machine language program is 
SCREEN (Program F-l). This is the name we must use when 
we declare the procedure in Pascal. Notice that we use the 
code 
MOV BP,SP 
MOV SI,[BP+8] 
MOV AL,[SI] 
MOV ATTRIB,AL 

to get the value of the passed parameter (a byte in this case) 
into the machine language variable ATTRIB. The rest of the 
machine routine is fairly easy to understand, and it is well­
commented. 

Now turn to the Pascal program called "USESCRN.PAS" 
(Program F-2). The line 
PROCEDURE SAMPLE(VAR PARAM:BYTE); EXTERN; 

declares the procedure for the Pascal compiler. The name of 
the variable (the PARAM) is arbitrary; we could have used 
anything. The name of the procedure, however, must be the 
same as the name of the procedure you declare in your ma-

• 
II 

II 

chine language program. The rest of the Pascal program is 
straightforward. It inputs a value from the keyboard, and uses II 
this value as the parameter for the machine language program. 
If you enter 255 for the attribute, that attribute will fill the 
screen, and the program will be terminated. II 

Now that you understand how these programs work, en­
ter and run the Pascal compiler on the Pascal program, and 
the assembler on the machine language program. Do not link II 
either program. Now that you have the two object files, run 
the LINK program. We must now tell LINK the names of the 
object modules we want to link together. II 

From the Object Modules [.OBJ]: prompt, enter: 
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USESCRN + SCREEN 

LINK will automatically add the .OBJ extensions to the 
filenames. Enter the desired names for the .EXE, .MAP, and 
.LIB files as always. LINK will now join the Pascal object 
module (with its associated routines from the Pascal library 
file) with the machine language routine SCREEN. If all goes 
well, you should have a working version of USESCRN. 

An Example Function 
The second example program for this appendix is a function 
which gives you easy access to the BIOS video input/output 
interrupt (lOH). The name of the function is VIDEO_IO. It 
passes a record which holds the values to be used in the AX, 
BX, CX, and DX registers. The function returns an identical 
record which holds the values of the registers returned by the 
BIOS function which was called. 

For ease of use, the record was defined as the byte reg­
isters (using AH, AL, BH, BL, etc., not AX, BX, etc.). The ma­
chine language routine VIDEOIO accepts a record defined this 
way, and returns a record like that. Thus, video functions 
which return parameters can also be used. Notice how the 
routine places the contents in the temporary variable. This 
variable is addressed with DI (of course, you can use any base 
or index register). There are some example procedures and 
functions using VIDEOIO in the sample Pascal program 
"VIDEO .PAS." 

You link the object module for the program 
VIDEO_IO.ASM and VIDEO.PAS just as you linked the ex­
ample procedure. Answer the link program's first question 
with VIDEO + VIDEO_IO. When the linking is complete, exe­
cute the "VIDEO.EXE" program. 

It is important to keep two things in mind when you link 
files. First, there is no limit to the number of object files you 
can link together. Second, when linking a Pascal file to ma­
chine language routines, the Pascal file must be the first one 
named. 

This appendix has explained only one method of joining 
Pascal with machine language. This is one of the simplest. The 
manual from Pascal Version 2.00 has a complete discussion of 
this process (See Chapter 11, "Interface of Pascal with Assem­
bler and FORTRAN," in the Pascal Compiler, Fundamentals 
book). 
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Glossary 
Absolute addressing: In absolute addressing, the desired 

memory location is loaded directly into the appropriate 
addressing register. It is not a displacement value, but a 
true position in memory. 

Addressing mode: A method of obtaining an effective 
address. 

Assembler: A program which converts your assembly source 
code into machine executable object code. 

Assembly time: When something happens at assembly time, 
it happens while the program is being assembled. Certain 
calculations are performed only during assembly and not 
while the program is executed. 

Auxiliary carry flag: This flag indicates a carry out of the 
third bit into the fourth. It is provided on the 8088 
primarily for compatibility with the 8080 microprocessor. 

Backspace key: On the PC keyboard, the Backspace key is the 
gray key above the Enter key. On it is an arrow pointing 
to the left. Do not confuse this key with the Delete key. 

Based addressing: Addressing in which the offset is the sum 
of a base register (BX or BP) and a displacement stored 
with the instruction. This is nearly identical to indexed 
addressing and is similar to register indirect addressing. 

Based indexed addressing: Addressing in which the offset is 
the sum of a base register (BX or BP) and an index reg­
ister (51 or DI). This is similar to based indexed address­
ing with displacement. 

Based indexed addressing with displacement: Addressing in 
which the offset is the sum of a base register (BX or BP), 
an index register (51 or DI), and a displacement stored 
with the instruction. This is similar to based indexed 
addressing. 

Base register: Either BX (base register) or BP (Base Pointer 
register). 

BASIC: Beginner's All-purpose Symbolic Instruction Code. 
This is probably the most used computer language in the 
personal computer field. BASIC was designed as a simple 
language which people could use to learn to program. It 
is generally an interpreted language, although there are 
many BASIC compilers available for the IBM Pc. 
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Batch files: These files are executed by the DOS command 
program. DOS reads the file and executes the commands 
in it as if they were typed from the keyboard. Batch files 
make using the computer easier since one instruction is­
sued to DOS can mean a long chain of commands. 

Binary: The system of base 2 numbering. It is the numbering 
system used internally by all digital computers. 

Binary Coded Decimal (BCD): Refers to a method of storing 
numbers in which four bits are used to hold one decimal 
digit. See Chapter 8 for a complete explanation. 

BIOS: Basic Input Output System. BIOS handles the simpler 
tasks of running the computer, such as printing to the 
screen and reading the keyboard. This is the lowest level 
at which you can access the computer without actually 
managing the hardware yourself. 

Bit: Binary Digit. This is the smallest representable piece of 
information available on a digital computer. A bit can exist 
in one of two possible states (hold a lora 0 value). 

Buffer: A First In, First Out, or FIFO, storage system. Buffers 
are frequently used during data transmission, particularly 
when one of the devices is slower than the other. The 
buffer holds the data which is about to be sent or was 
just received. DOS uses buffers to hold data coming from 
the disk drive. 

Byte: A chain of eight bits, representing a binary number to 
the computer. It is a standard unit of information, large 
enough to hold the numbers 0 to 255 (unsigned). A single 
typewritten character can be contained in a byte. The 
terms characters and bytes are often used interchangeably 
when referring to memory or disk storage size. 

Carry flag: Used to indicate a carry out of the highest bit after 
addition or a borrow into the highest bit after subtraction. 
If the flag is set, there was a carry or borrow; otherwise, 
the flag is clear. 

Central Processing Unit (CPU): Often referred to as the brain 
of the computer. The CPU is the part of the computer 
which runs all of the programs. The CPU in the IBM PC 
is an 8088, designed by Intel. There is another CPU in 
the keyboard, and probably one in your printer as well. 

Clear: When a flag is clear, it has the value of O. 
Clock cycle: The microprocessor paces itself with clock pulses 

at a rate of 4.77 MHz. One pulse is the same as one clock 
cycle. 
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Color Graphics Adapter: This printed circuit board gives IBM 
PCs and compatibles the ability to drive an RGB or 
composite monitor. This card supports color and graphics. 
The PCjr has a built-in display driver which is compatible 
with the PC's Color Graphics Adapter. 

Compatibility: The ability of one kind of computer to execute 
programs intended for another. There are many IBM PC 
compatibles which claim the ability to run most, if not all, 
of the software intended for IBM Personal Computers. 

Compiler: A program which translates a high-level computer 
language source file into a machine language object file. 
Compiled languages include Pascal, FORTRAN, and 
COBOL. 

Default: The assumed value, or state which exists if you do 
not make any changes. 

Delete key: On the PC's keyboard, the Delete key is on the 
bottom row of the keyboard. It has a decimal point on it. 
Do not confuse this with the Backspace key. 

Device driver: A program which DOS loads to handle (drive) 
some special peripheral (or device) installed in your com­
puter. DOS calls this program whenever a program re­
quests the device. The DOS 2.00 manual gives an 
example of a device driver which creates a RAM disk (a 
floppy disk emulated in RAM). The RAM disk is only one 
example of a device driver. 

Direct addressing: Addressing in which only a displacement, 
stored with the instruction, is used as the offset to locate 
the data. 

Direction flag: This flag indicates whether string operations 
should be performed up in memory or down in memory 
(whether the pointer registers should be incremented or 
decremen ted). 

Displacement: A byte or word which is stored with an 
instruction. It can act as an address or is added to the 
contents of other registers to find the address of data. A 
displacement can represent a positive or negative number. 

Documentation: The material which accompanies a program. 
It tells you what the program does and how it should be 
run. The term documentation also refers to notes within 
the program source code. There has been a push in recent 
years for program self-documentation. Essentially, this 
means that the labels and symbols used in the program 
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should have clear and significant names. A well­
documented program should be clear enough so that any 
person familiar with the language can read and under­
stand the source code. This applies to all languages, not 
just machine language. 

DOS: The Disk Operating System, a set of programs which 
allow the computer to communicate with the disk drives. 
DOS has many features and subroutines available to the 
machine language programmer through the DOS function 
call. 

DOS-compatible files: Files which have no special control 
codes (such as those added by many word processors for 
formatting purposes) and are terminated by a Ctrl-Z. 
Only DOS-compatible files (often called pure ASCII files) 
can be assembled using the IBM Macro Assembler. 

Editors: Programs which allow you to manipulate program 
source files. They are often thought of as simple word 
processors. 

Effective address: The effective address is the calculated 
memory location of a piece of data. It has two compo­
nents, a segment, and an offset. 

Extension: Refers to the three letters which appear after the 
filename. For example, in the filename SAMPLE.EXP, 
EXP is the extension. 

Far: Refers to certain kinds of IMPs and CALLs. Far IMPs or 
CALLs are inter segment. 

Flags: These are bits within the status register of the 
microprocessor which indicate the result of an operation. 

Floating-point numbers: These are numbers which have deci­
mal points and a fractional portion. 

General register: Any register in the 8088 except a segment 
register (CS, DS, ES, or SS) or the flags. It generally refers 
to a word register, but not always. 

Hexadecimal: The preferred number system for machine lan­
guage. It refers to a base 16 system. It is convenient be­
cause each hexadecimal digit corresponds to four binary 
digits. 

High-level computer languages: COBOL, FORTRAN and 
Pascal, BASIC, Logo, and APL are all examples of high­
level languages. They are separate from the machine in 
which they operate. The user of a high-level computer 
language writes programs with word like instructions such 
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as PRINT or GOTO. These high-level instructions must 
then be interpreted or compiled into machine language 
instructions which the microprocessor can execute di­
rectly. High-level languages are often defined by national 
or international organizations. 

Immediate value: A value which is stored with the machine 
language instruction. 

Indexed addressing: Addressing in which the offset is the 
sum of an index register (SI or DI) and a displacement 
stored with the instruction. It is nearly identical to based 
addressing and is similar to register indirect addressing. 

Indexing: Refers to the use of a subscript variable in an array. 
Index register: Refers to either SI (Source Index register) or DI 

(Destination Index register). 
Indirect addressing: In indirect addressing, the location of the 

data is stored in memory, not with the instruction itself. 
Interpreter: An interpreter is a program which translates high­

level source code into machine code for the microproc­
essor. For example, BASIC interprets as it executes a 
BASIC program. 

Interrupt: A way of stopping the microprocessor so that it can 
check for some event (such as a keypress) in the system. 

Interrupt enable flag: When this flag is set, the micro­
processor accepts all software- and hardware-generated 
interrupts. If this flag is clear, all hardware-generated 
interrupts, except the NMI (Non-Maskable Interrupt), are 
ignored. Software-generated interrupts (those called with 
the INT command) are always processed. 

Inter segment: Between two segments; this refers to a jump or 
call to a label in a different code segment. Jumps or calls 
of this kind load new values into the IP and CS registers. 

Intra segment: Within a segment; this refers to a jump or call 
to a label within the same code segment. Jumps or calls 
of this kind change only the IP register. The CS is not 
changed. 

Labels: Used to identify locations within a program for jumps 
or calls. 

LIFO: The storage method used by a stack. It stands for Last 
In, First Out. See Stack for more details. 

Long: Another term for FAR or Inter segment. 
Loop: A structure for repeating a set of commands. In BASIC, 

a loop is often performed with the FOR-NEXT commands. 
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Machine language: The native (binary) language of the com- _ 

puter; the instructions which the microprocessor can exe-
cu te directly. 

Macro: A shorthand way of referring to a larger piece of code. II 
Main loop: See Main routine. 
Main routine: The uppermost level in a program. It is the part 

of the program which calls other subroutines. II 
Microprocessor: See Central Processing Unit. 
ML: An abbreviation for machine language. 
Mnemonic: A symbol used to help the programmer remember 

something. For example, DIV is the three-letter mnemonic 
for the machine language divide instruction. 

Modems: Devices which allow two computers to communicate 
with one another over a phone line. There are many 
modems on the market. Some plug directly into the IBM 
PC (using up one of the expansion slots), while others 
plug into an RS-232 serial port. IBM offers an internal 
modem for the PCjr. 

Monochrome Screen Adapter: This printed circuit board can 
be installed in an IBM PC or hardware-compatible com­
puter. It drives the IBM monochrome display. It does not 
support graphics, but has the ability to display normal, 
flashing, underlined, and high-intensity text. The adapter 
board includes a parallel printer interface. This product 
cannot be used in the PCjr. 

Near: Refers to intra segment jumping or calling. 
Nybble: Half a byte. In other words, a nybble is one hexa­

decimal digit, or a chain of four bits. It can represent the 
numbers from 0 to 15. 

Object code: The program which the LINK program will con-
vert into an executable file. It's basically the machine lan- III 
guage version of your source file. • 

Octal: Similar to hexadecimal, except that octal is base 8 
numbering. There are three bits per digit rather than four. II 

Operand: The part of the instruction which is operated upon. 
In the example ADD AX,3, the operands are AX and 3. 

Operation: The instruction itself. In the instruction DIV BL, II 
DIV is the operation. 

Overflow flag: This flag is set when an addition or subtrac-
tion unintentionally changes the sign of the result. This is II 
often the case when two large positive numbers are 
added together. This flag is also used to indicate the size 
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of a product after multiplication. If the flag is set, then 
both the lower and upper halves of the product are rele­
vant. The flag is clear if the upper half is only a sign 
extension of the number. 

Parameter passing: Refers to transferring values from a calling 
program to a routine (or vice versa). 

Parameters: The values that are passed between a calling pro­
gram and a routine. 

Parity flag: The parity flag (PF) is set to one if the result of an 
operation has an even number of 1 bits in the lower byte; 
otherwise, this flag is cleared. The parity flag's primary 
use is in communications software. 

Pascal: A highly structured and standardized language, created 
by N. Wirth and named in honor of Pascal, a French 
mathematician. 

Pass 1 and 2: The assembler assembles your source file in two 
passes, once to locate all of the variables, and again to 
produce the actual code. 

Path names: Refers to the names of the subdirectories where a 
file can be found. Since you can have subdirectories 
within subdirectories, DOS needs some way of finding 
files. A path name describes to DOS how to find the file 
by naming the different directories it must trace through 
to find the directory with the file in it. 

Program Segment Prefix: This is set up by DOS each time a 
file is loaded and executed. It contains information DOS 
needs to run the program. 

Pseudo-operations: Commands in the source code which are 
interpreted by the assembler, but don't actually produce 
any machine language instructions. 

Real numbers: See Floating-point numbers. 
Recursive routines: Routines which call themselves. 
Register indirect addressing: Addressing in which the offset 

is the quantity stored in a base register (BX or BP) or an 
index register (SI or DI). 

Registers: Special locations within the microprocessor which 
can hold word-sized data. There are a number of special 
registers which are used to address the program, data, 
and the stack. See also General register. 

Relative addressing: In relative addressing the location of the 
address is not stored directly, but a displacement value 
(added to some register) is used. 
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Runtime: Refers to the execution of the program. If something 
happens during runtime, it happens while the program is 
executing. 

Segment registers: Used to define memory segments, these 
are CS (code segment), DS (data segment), ES (extra seg­
ment), and SS (stack segment). 

Segments: 64K blocks of RAM pointed to by one of the seg­
ment registers. 

Set: When a flag is set, it has the value of 1. 
Short: A SHORT JMP uses one byte as an offset for IP. Short 

JMPs are limited to 127 bytes forward and 128 bytes 
backward. All conditional jumps and LOOP commands 
use short jumps. 

Sign bit: The highest bit of a number. For an eight-bit num­
ber, it is the bit with the value of 128. It is also used to 
indicate the sign of a binary number; if the highest bit is 
I, the number is negative; otherwise, the number is 
positive. 

Sign extended: A number which has been expanded or ex­
tended into a higher byte or word. If the number is neg­
ative the extension is all binary l's. If the number is 
positive, the extension is O. 

Sign flag: This flag indicates the resulting sign of the last op­
eration. It reflects the status of the sign bit of the result. If 
this flag is set, the last result was negative. If this flag is 
clear, the last result was positive. 

Source code: The file that you type into the computer. It is the 
human-readable form of your program. The process of 
assembly converts this into actual machine language 
instructions. 

Stack: The stack is a Last In, First Out (LIFO) storage system. 
Values are PUSHed onto the stack, and POPped off 
when needed again. The stack is used to store return ad­
dresses during subroutine calls, and can be used by the 
programmer to temporarily store registers or pass param­
eters to subroutines. 

Stack-oriented computer: Computers of this type use a stack 
much like the 8088 uses its registers. The stack is used to 
hold and manipulate data. The Forth computer language 
and all HP calculators are stack-oriented. 
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Glossary 

Subroutine levels: Refers to how many times subroutines call 
other subroutines. In other words, if a program calls a 
subroutine, which in turn calls another routine, which in 
turn calls another, you are three levels down in 
subroutines. 

Subroutines: Called with the GOSUB command in BASIC. 
They are similar to PROCedures and FUNCtions in Pas­
cal. In machine language, subroutines are activated with 
the CALL command. 

Symbols: A generic term for labels and variables. 
Trap flag: When this flag is set, the microprocessor enters its 

trap or single-stepping mode. An INT 1 is automatically 
performed after every instruction (with the exception of 
instructions which affect the segment registers). DEBUG 
uses this mode of the microprocessor to perform the 
TRACE operation. 

Word processors: Programs which let you enter, edit, and 
print text. 

Words: A word is a 16-bit number (there are two bytes per 
word). In some circumstances, however, word can refer to 
any number larger than a byte. 

Zero flag: This flag is set when the result of an operation is O. 
It is used to indicate equality after a CMP command. This 
flag is sometimes confusing because it is set (has a value 
of 1) when the result is 0, and is clear (has a value of 0) 
when the result is nonzero. 

403 



II 

I 

II 

-
II 

• 
• -
II 

II 



• 
II 

• 
II 

II 

II 

II 

Index 
AAA (ASCII Adjust for Addition) instruc­

tion 129-31 
AAD (ASCII Adjust for Division) instruc­

tion 132-33 
AAM (ASCII Adjust for Multiplication) 

instruction 131-32 
AAS (ASCII Adjust for Subtraction) 

instruction 131 
absolute addressing 395 
absolute disk read interrupt (INT 25H) 

231 
absolute disk write interrupt (INT 26H) 

231 
active page display, selecting 199-200 
ADC (ADd with Carry) instruction 

123-24 
ADD Instruction 49-51, 67,69, 123-24, 

129, 133 
addition 8-9 
address for program interrupt (INT 22H) 

231 
addressing 11-12, 36 
addressing modes 103-19, 395 

based indexed mode with displacement 
107-9 
based mode 105-7 
direct mode 103-5 
indexed mode 105-7 
register indirect mode 22-23, 104 
table 116, 273 

AH register 15, 197-219, 231-36 
ampersand (&) macro special operator 

281-82 
AND instruction 135-37, 144, 265 
arithmetic 48-62, 123-45 
arithmetic operators 264-68 
ASCII 127-33, 212-16, 263 

table 377-80 
ASCIIZ strings 238-42 
assembler 2-3, 395 
assembler operators 268-72 
assembling 31-39 
assembly time 395 
ASSUME pseudo-op 112, 258-59, 

271-72,382 
attribute byte, color 73 
auxiliary carry flag 16, 67, 395 
AX register (accumulator) 14, 15, 26, 

49-52,91,94, 126, 192 
Backspace key 395 
based indexed mode with displacement 

addressing 107-9, 395 
based mode addressing 105-7, 395 
BASIC computer language v, 1, 3, 395 

machine language and 164-75 

Basic Input/Output System. See BIOS 
BASIC start interrupt (INT 18H) 223 
batch file, DOS 276, 396 
binary coded decimal 126-45, 396 

BCD math 129-45 
binary numbering 5-8, 376, 396 
BIOS 396 
BIOS interrupts 173, 197-230,311 

INT lOH 197-211, 210-11, 385 
INT llH and 12H 220-21 
INT 16H 212-19 

BIOS interrupt vectors-summary table 
225-26 

bit 11, 396 
rotating 139-45 
shifting 139-45 

"BITS.LST" program 297-300 
BLOAD BASIC command 165,169 
Boolean arithmetic 135-39 
BP register 23, 105, 382 
branching 63-77 
Break key interrupt (INT 1 BH) 224 
breakpoint interrupt 195-96 
BSAVE BASIC command 165, 169 
buffer 396 
buffered keyboard input, DOS 235-36 
BX register (base register) 14, 21, 23, 74, 

105 
byte 11, 396 
byte registers 15 
calculator, hexadecimal 10 
CALL BASIC statement 164, 170 
CALL instruction 89-91, 102, 171,261, 

277 
carry flag 16, 66, 96, 123-25, 396 
cassette I/O (INT ISH) 222 
CBW (Convert Byte to Word) instruction 

126 
central processing unit (CPU) 396 
character handling routines 204-5 
check keyboard status, DOS 235 
CLEAR BASIC command 167 
clear buffer and call function, DOS 236 
CLI (Clear Interrupt Flag) instruction 193 
clock 191-92, 365-66, 396 
clock interrupt (INT lCH) 224-25 
close file (DOS 1.10) 246 
close file (DOS 2.00) 240 
CL regis ter 140 
CMP instruction 63-70, 109, 135 
CMPS (Compare Strings) instruction 

153-54 
CMPSB instruction 153-54 
CMPSW instruction 153-54 
colon 24 
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color palette 207-9 
COMMAND.COM DOS program 4 
commenting 23-24 
conditional jumps 64-70, 75-77 
conditional pseudo-ops 287-89 
console input without echo, DOS 234 
CP/M 242 
create a file (DOS 1.10) 246 
create a file (DOS 2.00) 239-40 
critical error handler interrupt (INT 24H) 

231 
cross-referencing 293-96 
CS (Code Segment) register 15, 21, 90, 

110, 152, 173, 191 
CTRL-BREAK exit address interrupt (INT 

23H) 231 
cursor handling 201-3 
cursor position 203 
CWD (Convert Word to Double word) 

instruction 126 
CX register (Count Register) 14, 69, 72, 

146, 205 
DAA (Decimal Adjust for Addition) 

instruction 133-34 
DAS (Decimal Adjust for Subtraction) 

instruction 134 
data storage commands 262-64 
data storage pseudo-ops 262-64 
DB (Define Byte) pseudo-op 262 
DD (Define Doubleword) pseudo-op 

262-63 
DD pseudo-op 110 
DEBUG DOS program 4, 23, 168, 194-97 
debug flag status names 38-39 
decimal numbering 5-6, 267 
decrement instruction 51, 67 
default 397 
DEF SEG BASIC command 27, 166, 257 
delete file (DOS 1.10) 247 
delete file (DOS 2.00) 240-41 
DF index register 151-52 
DI index register 15, 23, 27, 105, 151-52 
direct console input, DOS 234 
direct console I/O, DOS 236 
direction flag 16, 146, 397 
direct mode addressing 103-5, 397 
directory functions (DOS 2.00) 241-42 
disk I/O 311 
disk I/O (INT 13H) 221-22 
displacement 397 
display output, DOS 236 
divide overflow interrupt 193-94 
DIV instruction 53-55, 132, 193 
division 10 
DOS 1, 2, 26, 398 

batch file 276 
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buffered keyboard input 235-36 
check keyboard status 235 
clear buffer and call function 236 
console input without echo 234 
direct console input 234 
direct console I/O 236 
display output 236 
files, standard 2, 27 
function call interrupt (INT 21H) 231 
function calls 56 
function table 249-52 
printer function 237 
print string 236-37 
returning to 92 

DOS interrupts 173, 231-51 
INT 20H, terminate program 231 
INT 21 H, DOS function call 231 
INT 22H, address for program ter­
mination 231 
INT 23H, CTRL-BREAK exit address 
231 
INT 24H, critical error handler 231 
INT 25H, absolute disk read 231 
INT 26H, absolute disk write 231 
INT 27H, terminate but stay resident 
231 
INT instruction 192 
time and date handling 248 

DOS 1.00 
close file 246 
create file 247 
delete file 247 
file control blocks 242-43 
file handling 242-48 
get file size 247-48 
open file 246 
parse filename 245-46 
read sequential 246-47 
rename file 247 
write sequential 247 

DOS 2.00 2, 72 
close a file 240 
create a file 239-40 
delete file 240-41 
directory functions 241-42 
file handling 237-41 
get disk free space 241 
open file 239 
read from file 240 
rename file 241 
write to file 240 

DOS 2.10 2 
DQ (Define Quadword) pseudo-op 124, 

262-63 
DS (Data Segment) register 15, 26, 91, 

152, 173 
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dummy parameters 277-78 
"DUMP.ASM" program 311, 313-20 
DUMP DEBUG command 36-37 
DUP command 263-64 
DW (Define Word) pseudo-op 128, 262 
DX register (data register) 14, 52, 72, 74, 

94 
editors 398 
EDLIN DOS program 2, 4, 27-31 
effective address 103, 105, 107, 398 
8088 microprocessor v-vi, 5 
8086 Book, The 189 
ENDM pseudo-op 276 
ENDP pseudo-op 259-60, 276 
END pseudo-op 27, 260 
ENDS pseudo-op 256-58, 276 
entering source code 31 
equal sign (=) pseudo-op 289-90 
equipment determination routines (INT 

11H AND 12H) 220-21 
EQU pseudo-op 72, 261-62, 291, 292 
ES (Extra Segment) register 15, 21, 152, 

173 
execution times 363-67 
EXITM macro command 286, 290-91 
extension 398 
far call 90, 191 
far jumps 71, 90, 398 
far procedures 170 
programs as 91-92 
file buffer 165-66 
file handles 237-38 
file handling, DOS 1.10 242-48 
file handling, DOS 2.00 237-41 
fixed interrupts 193-96 
flags 1, 95-96, 369, 398 
flags register 16, 94-95, 191 
"Flash" program 71-85 
FOR-NEXT structure 68 
function table, DOS 249-52 
general-purpose registers 14, 398 
get disk free space (DOS 2.00) 241 
get file size (DOS 1.10) 247-48 
GO DEBUG command 37 
graphics interface functions 207 
hardware requirements 1-2 
hexadecimal numbering 6-10, 267, 398 
IBM Macro Assembler 2-3, 255-96 
IDIV instruction 55, 193 
IF-THEN -ELSE 65-66 
IMUL instruction 53 
INCLUDE pseudo-op 283 
INCREMENT instruction 51, 67 
indexed mode addressing 105-7, 399 
index registers, defined 15 
indirect call 91 

indirect jumps 71, 91 
"INPUT.LST" program 300-308 
instruction field 24 
instruction lines 24-25 
instruction set, 8088 363-69 
interpreter 399 
interrupt enable flag 16, 399 
interrupt priority 190 
interrupts 

Break key (INT IBH) 224 
breakpoint 195-96 
cassette I/O (INT 15H) 222 
clock (lNT lCH) 224-25 
disk I/O (INT 13H) 221-22 
divide overflow 193-94 
equipment determination (INT I1h and 
12H) 220-21 
fixed 193-96 
overflow 197 
printer I/O (INT 17H) 223 
RS-232 I/O (INT 14H) 222 
single step 194-95 
system warm start (lNT 19H) 223 
time-of-day (INT lAH) 223-24 
video handler (INT 10H) 197-211 

interrupt service routine 191 
INTO (INTerrupt on Overflow) instruc­

tion 192 
IP (Instruction Pointer) register 15-16, 

90, 191 
IRET (Interrupt RETurn) instruction 192 
IRP instruction 285-86 
IRPC instruction 286 
JA instruction 76 
J AE instruction 76 
JB instruction 76 
JBE instruction 76 
JC instruction 67, 76 
JCXZ instruction 70, 76 
JE instruction 76 
J G instruction 76 
J GE instruction 76 
JL instruction 76 
JLE instruction 76 
JMP instruction 65, 66, 70-77, 261, 291 
JNA instruction 76 
JNAE instruction 76 
JNB instruction 76 
JNBE instruction 76 
JNC instruction 67, 69, 76 
JNE instruction 36, 76 
JNG instruction 76 
JNGE instruction 76 
JNL instruction 76 
JNLE instruction 76 
JNO instruction 67, 76 
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JNP instruction 76 
JNP fJPO instruction 67 
JNS instruction 67, 76 
JNZ instruction 36, 67, 69, 76 
JO instruction 67, 76 
JP instruction 76 
JP fJPE instruction 67 
JPE instruction 76 
JPO instruction 76 
JS instruction 67, 76 
jump, unconditional 70-71 
JZ instruction 67, 76 
keyboard click 218 
keyboard input (DOS) 233-36 
keyboard interrupt functions 216-19 
keyboard I/O interrupt (INT 16H) 

212-19 
key repeat rate 218 
key shift status 21-18 
label 24, 260-62, 401 
label operator 292 
LOS (Load Data Segment) instruction 

110 
LEA (Load Effective Address) instruction 

113-14 
least significant 11 
length operator 271 
LES (Load Extra Segment) instruction 

110 
"LIFE.ASM" program 311-12, 345-61 
light pen 203 
"Line Draw Procedure" program 227-30 
LINK DOS program 3, 4, 34-35, 379 
listing pseudo-ops 272-74 
loading ML programs 168-69 
LOCAL special macro operator 280-81 
LOCATE BASIC command 202 
LODS (Load String) instruction 146, 

147-48 
LODSB instruction 147 
LODSW instruction 147 
LOOP instruction 69-70 
LOOPE instruction 69 
looping 63, 68-70, 401 
LOOPNE instruction 69 
LOOPNZ instruction. See LOOPNE 
LOOPZ instruction. See LOOPE 
Macro Assembler, special features of 

275-96 
MACRO command 275-87 
macros v, 275-91, 311, 400 

defined 276 
different from subroutines 277 

memory locations, parameters and 96 
Microsoft Corp. 2 
mnemonic 21 
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monochrome 71-72 
most significant 11 
moving data between registers 22 
MOV Instruction 21-23, 26-27, 49, 

53-55, 104, 105-8, 113 
MOVS (Move String) instruction 151-53 
MOVSB instruction 151-53 
MOVSW instruction 151-53 
MUL (MULtiply) instruction 51-53, 

278-79 
mUlti-page character handling 204-5 
multiplication 9-10 
multiword numbers 123-26 

adding 123-24 
comparing 125-26 
subtracting 124-25 

near jumps 70, 400 
near RET instruction 91 
NEG (NEGate) instruction 49, 50-51 
NMI (Non-Maskable Interrupt) 195 
NOT instruction 139, 265 
numeric entry 267-68 
nybble 11, 400 
object file 2, 400 
octal numbering 8, 267, 400 
offset 13, 103, 110, 272 
OFFSET command 269 
open file (DOS 1.10) 246 
open file (DOS 2.00) 239 
operand 24, 400 
operation 24 
operator precedence 266-67 
OR operation 137-38, 265 
overflow flag 16, 400 
overflow interrupt 197 
packed numbers 127-28, 139-45 
PAGE pseudo-op 2, 273 
palette interface routines 207-10 
palette registers 209-10 
parameters 95-100, 169-75, 401 

Pascal and 379-81 
types of 172 

parity flag 16, 67, 401 
parse filename (DOS 1.10) 245-46 
Pascal computer language v, 1, 2, 3, 165, 

403 
machine language and 379-85 

PEEK BASIC function 11-12 
percent (%) macro special operator 

282-83 
Personal Editor program 2 
POKE BASIC statement 11-12 
POPF instruction 94 
POP operation 86-87, 93-94, 101, 113 
prime numbers 55 
"Primes" program 55-62, 100-101 
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printer echo 33 
printer function, DOS 237 
printer I/O interrupt (INT 17H) 223 
print screen 219 
print string, DOS 236-37 
PROC FAR 92, 259 
PROC NEAR 92 
PROC pseudo-op 259-60 
Professional Editor program 2 
program flow 63-85 
program segment prefix 243, 401 
program template 46-:47 
pseudo-op 24, 25-26, 255-62, 401 

MASM table 372-73 
Table 256 

PTR instruction 109-10,272 
pure ASCII files. See standard DOS files 
PUSHF instruction 94 
PUSH instruction 26, 86-87, 93-94, 101, 

113, 171,382 
.RADIX command 268 
RCL (Rotate through Carry, Left) instruc­

tion 142-45 
RCR (Rotate through Carry, Right) 

instruction 142-45 
read from file (DOS 2.00) 240 
reading the keyboard 212, 216 
read sequential (DOS 1.10) 246-47 
"REBOUND.ASM" program 311, 321-44 
recursive routines 100 
redirection of I/O 232-33 
register 13, 14, 15-17, 21, 23, 26, 27, 

49-52, 69, 70, 72, 74, 86, 90, 91, 
94-95, 104, 105, 110, 113-15, 126, 
146, 151-52, 173, 191, 192,205, 
209-10,380 

REGISTER DEBUG command 38 
register indirect mode addressing 22-23, 

104,401 
rename file (DOS 1.10) 247 
rename file (DOS 2.00) 241 
REP prefix 146-49, 153 
REPT (REPeaT) pseudo-op 285 
reserving space for stack 87-88 
RET (RETurn) instruction 27, 36, 89-92, 

102,277 
RETF instruction 36 
returning to DOS 92 
ROL (Rotate Left) instruction 142-45 
ROR (Rotate Right) instruction 142-45 
RS-232 I/O interrupt (INT 14H) 222 
running an ML program 34-35 
safe locations for ML programs 165-68 
SAR (Shift Arithmetic Right) instruction 

140-45 
SBB (SuBtract with Borrow) instruction 125 

scan codes, keyboard 212-16 
SCAS (SCAn String) instruction 150-51 
SCASB instruction 150-51 
SCASW instruction 150-51 
screen 15, 318 
screen memory 72 
screen output functions, DOS 236-37 
"SCREEN.ASM" program 386-88 
"SCROLL.ASM" program 175-85 
scrolling 203-4 
segment 12-13, 103 
SEGMENT command 72 
segment override 110-13, 271-72 
SEGMENT pseudo-op 25-26, 256-58 
segment registers 15, 113-15, 173, 402 
SEG operator 269-70 
SHL (SHift arithmetic Left) instruction 

140-45,255 
short jumps 70-71, 402 
SHORT operator 291 
SHR (SHift Right) instruction 140-45, 

255 
sign flag 16, 402 
signs, numeric 48 
SI index register 15, 23, 27, 105, 151-52 
single step interrupt 194-95 
SIZE operator 271 
software requirements 2 
"SORT.ASM" program 154-63 
source code 27-31, 402 
source file 2 
SS (Stack Segment) register 15, 21, 86 

152, 173 
stack 26, 86-102, 171,256,402 
stack segment 88 
STI (SeT Interrupt flag) instruction 193 
STOS (STOre String) instruction 146, 

149-50 
STOSB instruction 149 
STOSW instruction 149 
string instructions 146-63 
SUB instruction 49-51, 67, 69, 104, 125, 

131, 134 
subroutines 86-102, 403 

different from macros 277 
locating 166 

subtraction 9 
SUBTTL pseudo-op 274 
"Switch" program 23-41 
"SWITCH.ASM" program listing 40-41 
"SWITCH. BAS" program listing 42-43 
"SWITCH.LST" program listing 44-46 
symbol 24, 403 
symbol table 33 
system warm start interrupt (INT 19H) 

223 

409 



T (Trace) DEBUG command 39 
terminate but stay resident interrupt (INT 

27H) 231 
terminate program interrupt (INT 20H) 

231 
terminology, of numbering systems 1-11 
TEST instruction 137 
text editor 2 
text pages 199-200 
THIS operator 292 
time and date handling (DOS) 248 
time-of-day interrupt (INT 1AH) 223-24 
TITLE pseudo-op 273 
trap flag 16, 194, 403 
twos complement 48-49 
TYPE operator 270-71 
U (Unassemble) DEBUG command 35 
"USESCRN.PAS" program 391 
using the assembler 255-73 
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USR BASIC statement 164 
variables 24, 261-62 
VARPTR BASIC function 166 
video handler interrupt (INT lOH) 

197-211 
video mode, setting 198-99 
video state, reading 201 
"VIDEO-IO.ASM" program 392-96 
word 11, 13, 55, 87, 403 
word strings 146 
WordPerfect word processor 2 
WordStar word processor 2, 4 
write sequential (DOS 1.10) 247 
write teletype routine 206 
write to file (DOS 2.00) 240 
XCHG instruction 114 
XLAT (translate) instruction 114-19 
XOR operation 138-39, 255, 265 
zero flag 16, 66, 69, 403 
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