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Foreword

Machine language (ML) is the native language of any com-
puter. When you program in a high-level language like
BASIC, each program statement must be translated into ma-
chine language while the program is running. That seriously
slows up execution speed.

For many applications, BASIC is the language of choice
because its slow speed doesn’t matter. But if speed is signifi-
cant, ML is the answer. What’s more, you'll gain significantly
more control over your computer when you can give it
instructions in its own language. You bypass the limitations
and blind spots of BASIC.

Unfortunately, many BASIC programmers have come to
believe that machine language is too complex to be easily
understood, that it’s beyond their reach. This is a popular mis-
conception, but it’s a misconception nonetheless. In fact,
people who learned to program in ML have claimed that
learning BASIC was about as difficult. What’s more, if you al-
ready know BASIC, you already know most of the concepts
and structures that you’ll need to program in ML.

COMPUTE!’s Beginner’s Guide to Machine Language on the
IBM PC and PCjr makes learning 8088 ML easy. The authors
introduce you to the tools you'll need and start you off by
showing you, step by step, how to write simple programs.
Slowly, with numerous examples, they describe each ML com-
mand. You'll soon be telling your assembler (either MASM or
the Small Assembler) exactly what you want it to do. And, after
you've got the basics down, you'll learn everything you need
to know to write complex programs entirely in ML.

This book includes more than 15 complete ML programs
for you to type in and assemble. Each program is more com-
plex than the one before and guides you through new tech-
niques. Many programs contain routines which can be simply
lifted as is and inserted into your own programs.

Do you want to use ML and BASIC together? Do you
want to merge one of your ML routines with a Pascal pro-
gram? COMPUTE!’s Beginner’s Guide to Machine Language on
the IBM PC and PCjr shows you how. You'll even learn about
Macros: how and why they’re used in ML programs, and how
to create a library of them.




Once you've learned the techniques of 8088 ML program-
ming on the IBM, you'll find yourself returning to this book
again and again. It not only teaches, but is also an excellent
reference for the experienced programmer.

For almost every level of 8088 ML programming, from
rank beginner to veteran programmer, COMPUTE!’s Beginner’s
Guide to Machine Language on the IBM PC and PCjr can be
your guide to greater understanding of your machine and
effective, powerful programming methods. But if you're just
starting out with ML, you'll soon be writing your first ML pro-
gram and can begin to explore the amazing world in the in-
terior of your machine.

Richard Mansfield
Author of Machine Language For Beginners
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1

Introduction

The PC is a powerful tool, whether for business uses, math-
ematic calculations, or game playing. It is sometimes astonish-
ing to observe the speed at which some programs work,
whether spreadsheets, word processors, or flashy videogames.

Sometimes, however, BASIC is simply too slow. For fast-
moving games, complex calculations, and rapid communica-
tion with external devices, BASIC often fails to perform as you
might wish. The answer to that problem is the subject of this
book. Machine language, the computer’s native language, ex-
ecutes many times faster than BASIC or even Pascal.

BASIC is useful in many situations, and is often all you
need to write a program. BASIC (or Pascal) programs are
usually much simpler to write, modify, and debug than ma-
chine language. Furthermore, programs written in BASIC can
be transported from computer to computer almost without
modification.

There are times, though, that the benefits of machine lan-
guage outweigh the advantages of BASIC and Pascal. Machine
language is fast, faster than BASIC or any of the other high-
level languages. Machine language also provides for a greater
degree of precision and control when dealing with the com-
puter and all its associated hardware. Finally, machine lan-
guage programs are often more compact than BASIC, and
invariably far shorter than the equivalent programs would be
in Pascal. When you need speed, precision, or compactness,
machine language is the best answer.

What You’ll Need

This book assumes that you are using one of the IBM family
of personal computers (PC, PC/XT, Portable, or PCjr), or one
of the many PC compatibles. PCjrs must be the expanded ver-
sion, with a disk drive and at least 128K of RAM. Other
computers require at least 64K (with DOS 1.10) or 96K (with
DOS 2.00 and above) and a disk drive. Any programmer using
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a noncompatible version of MS-DOS can use this book, but
don't be too surprised if some of the sample programs fail to
give the proper results.

That’s the hardware needed. Below is a list of the soft-
ware you will need.

DOS. We assume that you are using either DOS 2.00 or
2.10 (or their Microsoft equivalent); however, most of the
explanation applies to DOS 1.10 as well.

Text editor. Those who have never written a program in
an assembled or compiled language (like Pascal) may not be
familiar with text editors or source files. A text editor allows
you to enter your program (the source file) into the computer
and store it on disk. Assembly language source files are gen-
erally given the extension .ASM.

Any editor or word processor which generates standard
DOS files can be used to enter your programs. A standard
DOS file, sometimes called a pure ASCII file, doesn’t contain
any special word processor control codes. IBM’s assembler will
assemble only standard DOS files.

Some word processors (WordStar and WordPerfect, for ex-
ample) don’t store their text files in this standard format;
however, most provide a way to handle DOS files. Word
processors vary considerably, so check with your manual for
the specifics. If your word processor doesn’t handle DOS files,
use EDLIN. EDLIN is quite adequate as a program editor; be-
sides, it came on your DOS disk, and you might as well use it.
If you would prefer a more powerful text editor, IBM sells
two: the Personal Editor and the Professional Editor.

The assembler. The most important software requirement
is an assembler. In this book, we’ll assume you have the IBM
assembler. The assembler is the program which converts your
assembly language source file into an object file, usually given
the extension .OB]J. This file contains the actual machine lan-
guage instructions which the computer will execute. We can
also have the assembler produce a list file. This file, with the
extension .LST, contains both the original source file and the
actual machine language program, generated by the assembler,
in the margin.

In writing the sample programs and the assembly ex-
amples, we have assumed that you are using the IBM Macro
Assembler. The Macro Assembler is available from your IBM
dealer or product center, and is nearly identical to the version
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of MASM provided free with some MS-DOS computers. Al-
though there are other assemblers available, the IBM Macro
Assembler is the most popular, as well as standard for IBM
equipment.

When you buy the IBM Macro Assembler package, you are
supplied with two assemblers, MASM.EXE and ASM.EXE.
MASM requires at least 96K of RAM, while ASM needs only
64K. If you have the memory, use MASM. There is little dif-
ference in the performance of the two assemblers; however,
MASM offers additional commands and options, which will be
detailed in Chapter 15.

The linker. Before you can execute your object file, you
must link it using the LINK program provided on your DOS
disk. The LINK program converts the object file into an ex-
ecutable file (with the extension .EXE). The LINK program can
also be used to join many object files (IBM calls these object
modules) together into a large program. These object modules
can be created with the assembler or other language compilers
such as the BASIC and the Pascal compilers.

How to Use This Book

In order to use this book to its fullest potential, we recom-
mend that you have at least some knowledge of BASIC or
Pascal, enough so that you can write your own programs. Al-
though a knowledge of BASIC is not essential, there will be
some sample programs written in BASIC when added clarity is
necessary. We assume that you know some of the computer
technical jargon, such as the words loop and subroutine. If you
are completely in the dark, take some time to read through the
glossary at the end of this book.

In addition, we assume that you are familiar with your
operating system, whether PC-DOS or MS-DOS. By this we
mean you know how to name files, to copy files from one disk
to another, and know how to format your own disks.

Machine language should not be the beginner’s first com-
puter language. It’s not that it’s harder to learn than other
computer languages—it’s just less forgiving of mistakes. High-
level languages perform many error checks while executing
your program; assembly language performs almost none.
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Before You Get Started

Before you go on, make a working copy of the assembler and
your editor (whether EDLIN.COM, WordStar, or some other
word processor). You should also copy the assembler to your
working disk (either ASM.EXE or MASM.EXE; you don’t need
both). You will also need LINK.EXE and DEBUG.COM from
your DOS program disks. Your work disk does not have to be
a boot disk, but copy COMMAND.COM onto the disk any-
way, since DOS reloads it after every assembly. If you're using
a word processor, it's a good idea to copy it and all its asso-
ciated program files onto your work disk, so you don’t have to
trade disks every time you assemble.

In the next chapter we'll be discussing some of those
esoteric terms you may have heard from your hacker friends:
binary, hexadecimal, memory addressing, segments, registers,
and flags. If you're a hacker yourself, you should at least
glance through Chapter 2 and be sure you understand it
before starting on Chapter 3.
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Fundamentals

In this chapter we will discuss some of the basic concepts nec-
essary for learning machine language. Most of these concepts
will be general to all computers, but we will also talk about
some features specific to the 8088, the microprocessor—the
brain—of your computer. First we’ll discuss the computer’s
numbering system, binary, and some related topics. Then we’ll
examine the basic structure of the computer’s microprocessor,
as well as some of the ideas that must be understood to pro-
gram in machine language.

Our system of numbering is called decimal. In this sys-
tem, each digit, as we move to the left, has ten times more
weight than the preceding one. So in the number 4782 we
have a one’s digit, a ten’s digit, a hundred’s digit, and a thou-
sand’s digit, each with a value ten times the preceding one. In
other words, we have what is called a base 10 numbering
system.

The base 10 numbering system is not the system used by
computers. Microprocessors everywhere use base 2.

Binary

A computer is essentially a series of switches. Each switch is
either on or off. Thus the use of the base 2 numbering system,
in which each digit, instead of being 0 to 9, is either on or off,
either a 0 or a 1. This is the system called binary. This binary
system of numbering is responsible for much of a computer’s
architecture: the size of the largest number it can store in a
memory location, the amount of memory it can have, even the
size of the screen.

As in the decimal system, each digit, as we move to the
left, has an increased value. But instead of ten times, each
digit as we move left has a value two times the preceding
digit: a one’s digit, a two’s digit, a four’s digit, an eight’s digit,
a sixteen’s digit, and so on.
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Look at the binary number
10011

Reading from right to left, it has one 1, one 2, no 4’s or §’s,
and one 16. Adding them allup (1 + 2 + 0 + 0 + 16), we
can see that 10011 in binary represents the number 19 in
decimal.

Table 2-1 shows the binary values of the decimal num-
bers 0 to 9.

Table 2-1. Binary-Decimal Illustration

Decimal Binary
number eight’s four’s two’s one’s number
zero 0 0 0 0 0
one 0 0 0 1 1
two 0 0 1 0 10
three 0 0 1 1 11
four 0 1 0 0 100
five 0 1 0 1 101
six 0 1 1 0 110
seven 0 1 1 1 111
eight 1 0 0 0 1000
nine 1 0 0 1 1001

Table 2-1 may seem reminiscent of elementary school
lessons in addition, but in fact an understanding of binary is
critical to many aspects of 8088 programming and to com-
prehending the structure and workings of the microprocessor.

Hexadecimal
As you can see from Table 2-1, even small numbers require
three and four digits in binary. Long strings of 1’s and 0’s may
be fine for the computer, but for the human programmer they
can get a little overpowering. Base 16, or the hexadecimal (hex
for short) number system, is used to get around this problem.
In this system, as you may have guessed, each succeeding
digit to the left is greater than the last by a factor of 16. Thus,
we have the 1’s digit, a 16’s digit, a 256’s digit, and so forth.
For example, the number 47 corresponds to seven 1’s and four
16’s; (4 X 16) + (7 X 1) = 71.

But wait. In base 10 (our decimal system), we have ten
different characters (0-9); in base 2 we have two (0 and 1). For
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base 16 we need 16 characters. We can understand this need
more easily by thinking of what 9 and 10 represent in hex: the
decimal numbers 9 and 16. Therefore, to represent in hex the
numbers between 9 and 16, the one’s place must be able to
hold more than 9. In fact, we must be able to represent up to
15 ones in each place. For the first ten we use the base 10
digits 0 to 9. For the remaining six we use the letters A, B, C,
D, E, and F, to stand for 10, 11, 12, 13, 14, and 15 respec-
tively. This is shown in Table 2-2.

Table 2-2. Decimal-Binary-Hexadecimal Numbers

Decimal Binary Hexadecimal
0 00000000 0
1 00000001 1
2 00000010 2
3 00000011 3
4 00000100 4
5 00000101 5
6 00000110 6
7 00000111 7
8 00001000 8
9 00001001 9

10 00001010 A
11 00001011 B
12 00001100 C
13 00001101 D
14 00001110 E
15 00001111 F
16 00010000 10
17 00010001 11
18 00010010 12

3A uses both letters and numbers; A represents 10 (10
ones). This, added to the three 16’s, gives us 58 (3 X 16 +
10) decimal.

Notice in Table 2-2 there’s a correspondence between four
binary digits and one hexadecimal digit: Four binary digits
make up one hexadecimal digit. If you think about it, this
makes sense: The most that four binary digits can represent is
1111 or 1 + 2 + 4 + 8, which equals decimal 15. And 15 is
the largest number that one hexadecimal digit can represent (F
in hex). In fact, any combination of four binary digits can be
represented by a single hex digit.
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binary 0010 = hex 2
binary 0000 = hex 0
binary 1111 = hex F
binary 1011 = hex B

For this reason hexadecimal is often used for computer
programming in lieu of binary. It's compact (one digit instead
of four) and it fits in well with binary. Thus, many aspects of
machine language are best represented by hex.

Decimal, on the other hand, doesn’t work well with bi-
nary. You would need about three and a third binary digits to
make up one decimal number, and that’s not possible. Deci-
mal, therefore, is often not the numbering system of choice
when dealing with computers. Some computers do have a
provision to handle decimal directly, for the benefit of the pro-
grammer; we’'ll discuss these in “Advanced Arithmetic”
(Chapter 8) later in the book.

Another system that works well with binary is base 8,
octal. In this system three binary digits make up one octal
digit, and we represent numbers in 1’s, 8’s, 64’s, and so forth.
Although it’s not very common, IBM BASIC and the IBM
assembler provide for it.

The concept of base 2 and base 16 requires an extension
to our usual way of thinking about numbers. As you have
seen, a two-digit number is not merely composed of 1’s and
10’s, but 1’s and 2’s, or 1’s and 16’s. Now that you have
gained some understanding of the binary and hexadecimal
numbering systems, we’ll turn our attention to arithmetic.
Once you’ve mastered the ideas inherent in using a new base,
arithmetic in that base is surprisingly simple.

Arithmetic

Addition. Since binary arithmetic is somewhat complex
and rarely used, we’ll deal only with hexadecimal in our dis-
cussion of computer arithmetic. Let’s begin with a few simple
two-digit additions:

47
+ 26

6D

The idea is exactly the same as decimal addition. First you
add the one’s digits. In this case, 7 + 6 = D. (Remember D is

8
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the hex symbol for 13.) Then, we add the sixteen’s digits, 4 +
2, and get 6.
Now for a somewhat more complex example:

1A
+ 39

53

Here, we have A plus 9 in the one’s digit. This would add
up to hex 13 (decimal 19), which is too big for a single hex
digit. So we adopt the same strategy we use in decimal: Take
only the 3 from hex 13, and add the 1 to the next column as a
carry. Thus, we have 3 in the one’s column, and in the six-
teen’s column we have 1 plus 3, plus 1 from the carry, to
equal 5 in all. Here are a few more examples of hex addition
for you to study:

31 5A A3 99
+ 48 + 5A + 3A + 2B
79 B4 DD C4
Subtraction. Subtraction in hex is also similar to decimal.
E3
— 79
6A

Here we must subtract 9 from 3. So, just as in decimal, we
borrow 10 (decimal 16) from the next column. That gives us
13 hex — 9, which works out to A. (Convert to decimal, if you
like: 19 — 9 = 10, or hex A.) Now we move to the next col-
umn, the sixteen’s. First we subtract 7 from E, to get a result
of 7 (in decimal, 14 — 7 = 7). However, we must subtract one
from this result, since we borrowed hex 10 in the one’s col-
umn. So, we have six 16’s in the final answer. Here are a few
more practice hex subtractions:

74 AA 23 F2
— 42 — 3B — 1A —BC
32 6F 09 36

Multiplication. Multiplication and division in hex are
easier than you would think. When dealing with computers,
most multiplying and dividing is in powers of 2 or 16. Thus,
it's often the case that you have to take some number and
multiply by 16. To do this, all you have to do is add a 0 to the
end of the number.
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45A9 X 10 = 45A90
or (using computer notation)
45A9 * 10 = 45A90

As you can see, multiplying by 10 hex (decimal 16) in hex
math is much like multiplying by decimal 10 in decimal math.

Division. Division works the same way; if you need to
divide a number by 16, just shift it over one digit. Since
computers rarely use fractions or decimal points, the digit on
the end just drops off:

45A9 / 10 = 45A

Again, you may notice the similarity to decimal: Dividing
a decimal number by decimal 10 also shifts the number one
place to the right.

A calculator that allows hex math can be an important
tool when programming in machine language. If you plan to
do any serious programming in ML, you should consider
purchasing one.

For the moment there are just a few important concepts
about these alternate bases to remember:

e Why it is that computers use binary at the lowest level, and
why programmers prefer to use hex.

e How to add (most important) as well as subtract and mul-
tiply in hex. This knowledge is necessary for understanding
and working with segments, which we shall discuss shortly.

Notation and Terminology

In our discussion of arithmetic, you may have been occa-
sipnally confused about whether a 10, for example, referred to
decimal, binary, or hexadecimal. To distinguish between the
systems, we sometimes follow the number by the base as a
subscript. Thus,

7116

would refer to 71 base 16. Computers can’t handle subscripts,
so the assembler uses a letter suffix to indicate the base. Deci-
mal numbers don’t have a suffix. Binary numbers have a B
suffix (110110B); hexadecimal numbers, an H suffix (45H or
8AH). Since the assembler does not allow a number to begin
with a letter, any hex number that begins with a letter (A-F)
must begin the number with a zero (for example, FFH is repre-
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sented as OFFH; AOH becomes 0AOH). A more complete dis-
cussion of the assembler’s numeric notation can be found in
Chapter 14.

Bits, bytes, and nybbles. A bit is one binary digit, a 0 or
a 1. A byte is two hex digits, eight bits.

A byte is the basic unit of 8088 memory storage, and so is
particularly important. A byte can hold values from 0 to 255
decimal (00 to FF hex, or 00000000 to 11111111 binary).

A nybble is a four-bit quantity, usually thought of as half a
byte. A nybble can be represented by a single hex digit.

Finally, a word is two bytes, four hex digits, 16 bits. A
word can have a value from 0000 to FFFF hex.

More and larger units exist, but these are uncommon and
will be discussed later.

Most and least significant. Least and most significant are
terms usually applied to the bits and bytes making up larger
numbers. For example, in a byte (eight bits) the most signifi-
cant bit (binary digit) is the leftmost one. This is the bit with
the highest value (128 in decimal) and thus the most signifi-
cant. The least significant bit is the rightmost one (with a
value of one). The other common use of these terms is in ref-
erence to words.

As we mentioned above, a word is composed of two bytes
(each holding up to FF hex). One often refers to the two
component bytes of words as most significant and least signifi-
cant. For example, in the hex word 03AB, the 03 byte is the
most significant, and the AB byte is the least significant.

Computer Fundamentals

In order to successfully program in machine language, it is
essential to understand how to store numbers, and how to use
them when doing math. In this section, we’ll discuss the topics
relating to storing and using numbers, as well as examining
the 8088’s internal registers.

Addressing. All computers have a certain amount of
memory, consisting of RAM (read /write memory) and ROM
(read only memory). In this memory are stored both programs
and numbers. The computer keeps track of all this data (both
programs and numbers) by placing it at different addresses, or
locations, within this memory. This concept may already be
familiar to those of you who have had a need to use the
BASIC keywords POKE and PEEK. With the POKE statement,

11
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we POKE a number (a byte) into an address. PEEK, the
counterpart of POKE, tells us what number is already stored at
a specified address.

For example, load up BASIC on your computer and enter

POKE 10000,123

The POKE puts the number 123 at location 10000 (decimal).
We can use PEEK to tell us what is there:

PRINT PEEK(10000)
The computer should display

123
Ok

Try PEEKing around in memory a little more. You'll find
that addresses range from 0 to 65535 and that the numbers
that can be placed in an address range from 0 to 255. Above,
we mentioned that a word can hold 0000 to FFFF hex, which
corresponds to 0 to 65,535 decimal.

Memory. From the point of view of PEEK, all that is
stored in memory is numbers. How then does the computer
store a program? The answer is simple: as numbers. Most of
the numbers from 0 to 255 can serve both as numbers and as
machine language instructions. For example, the five numbers
198 6 16 39 123 (in decimal) represent one machine language
instruction, telling the computer to put the number 123 into
location 10000 (as you did above with POKE). Luckily, using
the assembler, you will never need to know which numbers
make up which instructions.

An enormous variety of things are stored in a computer’s
memory (machine language programs, BASIC programs, num-
bers, and text), but in the end, everything is stored as a num-
ber from 0 to 255. Of course, not all of this memory is RAM:
Some is empty space, some holds the Operating System, some
is used to display information on the screen, and so on. At
first, our programs will be using memory only as machine lan-
guage programs and the data accompanying these programs.
Later, we will discuss storage of large numbers (up to 32 bits
in length) and of strings of characters.

Segments. Since the computer uses a word to hold ad-
dresses, and a word can hold only numbers from 0 to 65,535,
many computers can therefore address only 65,536 bytes. This
is not true for the IBM’s 8088 microprocessor.

12




2

Fundamentals

Instead of using one word to address memory, the 8088
uses two. To address any particular location, the 8088 adds the
two words together to find the actual address. However, to in-
crease the amount of memory that can be accessed by a factor
of 16, the 8088 multiplies one of the words by hexadecimal 10
before adding it to the other. Multiplying by 16, as you may
recall, is the same as simply adding a 0 to the end of a hex
number. So, if one number is 1234 hex and the other (to be
multiplied) is 5678 hex, the computer would calculate the ac-
tual address as:

1234
+ 56780

579B4

This segmented memory system, as you can imagine, al-
lows a huge amount of memory to be addressed. The 8088
uses its segments to make available (in hex) 10000 * 10 =
100000 bytes or (in decimal) 65,536 * 16 = 1,048,576 bytes.
This number is known as a megabyte (metricized readers may
note the mega, or million, prefix). If you wish to put it in truly
impressive terms, think one thousand K.

The number that is multiplied by 16 is referred to as the
segment. The segment is almost always used to define the
beginning of a block of memory. Then, the offset, a word
value, is used to address one of 65,536 bytes within that seg-
ment. The segment usually remains the same throughout a
program, so machine language programs usually only need to
specify the appropriate offset. Different segments are used for
the program, the data, and so forth. We’ll discuss how seg-
ments are used in more detail in a few moments.

Figure 2-1 diagrams one possible arrangement of four seg-
ments. Note that the segments can overlap. The shaded areas
indicate the possible range of the offset values within each
segment.

Registers

Little machine language programming is done directly to
memory (in fact, some of it cannot be done directly to mem-
ory). To improve performance and to simplify programming,
the 8088 uses registers. A register is one word that the 8088
holds within itself, directly available to the microprocessor, not

13
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Figure 2-1. Sample Segment Locations

Memory

Extra Segment

Stack Segment

Data Segment

Code Segment

in memory. Using a register is always faster than using data in
memory, because registers are, in a sense, part of the 8088.
Furthermore, less space is used in program memory to specify
one register out of, perhaps, eight, as opposed to one address
out of 65,536.

General-purpose registers. The most used registers on
the 8088 are the four general-purpose registers, AX, BX, CX,
and DX (registers are named, not numbered, to distinguish
them from memory). Each of these holds a word (0-FFFF hex),
and each is often used for a different purpose.

For now, a few mnemonics will suffice to give a necessar-
ily simplified picture. AX is the Accumulator; it often holds (or
accumulates) the values used by the various functions. As a
rule, the AX register serves as the pivotal register. BX is the
Base register (to be explained in Chapter 7, “Addressing
Modes”). CX is the Count register (as explained in “Program
Flow,” Chapter 5, and ““‘String Instructions,” Chapter 9) ; DX is
the Data register. Most of the time, however, you can use
these registers interchangeably.
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Byte registers. Each of the general-purpose registers can
also be used as two separate bytes. When we discussed most
and least significant above, we mentioned that a word is often
separated into its two component bytes. Likewise, for each
general-purpose register, there is a high byte (most significant)
and a low byte (least significant). If AX is holding 487A, the
high byte holds 48 and the low byte holds 7A. The high and
low byte parts of the registers are symbolized by H and L;
thus we have AL and AH, BL and BH, CL and CH, and DL
and DH. The general-purpose registers are the only registers
that can be used both as bytes and words.

Index and pointer registers. The 8088’s other registers
are more specialized, and more time will be devoted to them
in later chapters. For now, just remember that SI and DI are
index registers, and SP and BP are pointer registers. Most of
these registers can be used just like the general-purpose reg-
isters above, but they have other uses, which we'll discuss in
due course.

Segment registers. The 8088 also has four specialized
registers it uses to hold the segment addresses of the different
parts of your program (code, data, and so forth). These seg-
ment registers are named CS, DS, SS, and ES. CS stands for
Code Segment. CS holds the segment address for your program
code. DS is the Data Segment; your program’s data is usually in
this segment. SS is the Stack Segment; this is where the stack
for the computer is based. If you're a machine language nov-
ice, don’t despair; the stack is discussed in detail in Chapter 6.
Finally, ES, the Extra Segment, is used to address the screen,
the Operating System, and so forth, as the programmer
wishes.

The Instruction Pointer. The IP, or Instruction Pointer,
holds an offset value that points into the code segment. This
register can’t be directly accessed by your programs. Instead, it
serves as a pointer into your program. The 8088 uses this
pointer to execute the instructions one by one.

Learning machine language is like a giant jigsaw puzzle.
And parts of the puzzle are easier to find if you can look at
the entire picture. The problem with ML is that it is difficult to
see the whole picture before you understand the parts. At this
point the parts may seem disjointed and abstract. Don’t worry
if this discussion of registers doesn’t make sense now; as we
continue to use these registers throughout the book, their use
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will become more and more clear as you see the parts fitting
in to make the whole picture.

The flags register. One final word-sized register in the
8088 is devoted to the so-called flags. A flag is one bit, either
on or off; the on and off states of these flags tell the pro-
grammer about various states in the microprocessor. The flags
are used with conditional jumps, much like IF-THEN state-
ments, to make your program take different actions at critical
points.

Some of the flags are processor flags, telling the computer
what to do when certain situations occur (in this group are the
trap flag, the interrupt enable flag, and the direction flag). The
other flags are used for arithmetic on the computer. You'll find
that two of these other flags, the zero flag and the carry flag,
are very useful when doing math of all kinds. Two other flags
that are useful when doing signed math are the sign and over-
flow flags. Table 2-3 is a complete list of the 8088’s flags.

Table 2-3. The 8088’s Flags

carry flag trap flag

parity flag interrupt enable flag
auxiliary carry flag direction flag

zero flag overflow flag

sign flag

Each of these flags will be explained in their appropriate
chapters. For now, just remember that a flag is a signal that in-
dicates various states in the microprocessor.

Machine language is no harder to learn than BASIC.
Many of the operations in machine language are similar to
those in BASIC: moving information from variable to variable,
adding, subtracting, multiplying, dividing, dealing with strings,
and the like. In fact, many early programmers who had to
learn machine language as their first language had difficulty
making the transition to BASIC once it became available. Both
languages seem to require about as much effort to master.

Now that you have been introduced to the fundamentals
of the 8088—the numbering system, the uses of memory, seg-
ments, registers, and flags—you are ready to begin your first
program, and be introduced to your first machine language
command.
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Figure 2-2. Registers on the 8088
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3

Getting Started

We'll begin our discussion of the 8088 assembly language with
the simple MOV instruction and some of the assembler’s
pseudo-ops. You will also learn how to use the utility program
DEBUG.

The MOV Instruction

The MOV instruction is the most used, and often most useful,
of the 8088 instructions. (Note that, by tradition, most assem-
bly language mnemonics are three letters long.) It allows you
to move bytes or words between two registers or between reg-
isters and locations in memory. The MOV instruction takes the
following format:

MOV destination,source

MOV takes the source value and moves it to the destination.
We will examine three variations on the MOV instruction in
this chapter: MOV immediate to register, MOV between reg-
isters, and MOV with register indirect addressing.

MOV immediate to register. This first kind of MOV is
very straightforward—it moves an immediate value into a reg-
ister. An immediate value is a number that’s stored with the
machine language instruction itself, not in a separate data seg-
ment. For example, the instruction

MOV BX,1234H

moves the hex number 1234 into the BX register. The immedi-
ate value is stored as part of the instruction and is moved di-
rectly into the register. This is similar to the BASIC LET
statement BX=&H1234.

The only limitation on the MOV instruction is that you
cannot move an immediate value into a segment register (CS,
DS, ES, or SS). Here are a few examples of valid MOV
instructions:
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MOV DX,0A2H ;a hexadecimal number
MOV BL,4FH ;hexadecimal
MOV DL,241 ;decimal

MOV AH,10110101B  ;binary

(See Chapter 2 for a discussion of the notation used to distin-
guish binary, decimal, and hexadecimal.)

The immediate value must be the same size as the
destination register. In other words, you cannot move a word
into a byte register. For example, this is illegal:

MOV DL,4567H

DL is a byte register and 4567H is a word-sized number.

Moving data between registers. Moving a value from
one register to another is also quite simple. Below are just a
few of the numerous possible register-to-register moves. No-
tice that the source and the destination registers must be the
same size (both either words or bytes).

MOV AX,BX
MOV DL,AH
MOV SI,DI
MOV ES,AX
MOV AH,CH

Register indirect addressing. This final kind of MOV
instruction uses register indirect addressing. This too is easy to
understand—once you get past the name. With this MOV the
computer uses the contents of a register as a memory address’s
offset, while the DS register provides the segment. In the first
example below, the number stored in BX is used as an offset
into the data segment. (The computer multiplies the value in
the DS register by 10 hex, 16 decimal, and adds the contents
of BX. See Chapter 2 for more details on offsets.)

MOV AX,[BX]
MOV DL,[S]]
MOV [BX] AL
MOV [DI},DX

The contents of the memory location pointed to by BX are
moved to AX. The square brackets around BX mean ““use the
quantity stored in BX as an indirect address.” As we shall see
in later chapters, these square brackets are common to all in-
direct addressing modes.

In the next example above, MOV DL,[SI], SI is used as the
offset, and the contents of the memory location pointed to by
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SI are moved to DL. Notice, in the first example above, that a
word is moved, while in the second only a byte is moved. The
size of the number to be transferred is determined by the size
of the register involved. In the final two examples the destina-
tion of the data is another register indirect address. The last
example moves the number in DX to the memory location
pointed to by DI.

Only four registers can be used in register indirect
addressing: BX, BP, SI, and DI. Note that you cannot move a
number directly from one memory location to another, so
something like

MOV [DI},[S]]

is illegal. If you need to move from memory to memory, you
must use two MOV instructions and a register. As we shall
see, the sample program “Switch” uses this technique.

The 8088 offers almost 20 different ways of addressing
data. In Chapter 8 all of the addressing modes will be brought
together and examined in detail. However, now that you are
familiar with at least some aspects of the MOV command, let’s
take a look at the sample program Switch.

Writing a Program

The sample program, Switch (Program 3-1), will work with
any 8088 computer. Switch is accompanied by a brief tutorial
on the use of DEBUG, the machine language debugging tool
supplied with your DOS disk. Program 3-2 is a BASIC version
of Switch which may help improve your understanding of the
machine language version.

Switch is a fairly simple program. It copies the contents of
one eight-byte area (labeled SOURCE) to another eight-byte
area (labeled DEST, for destination). In the process, it reverses
the order of the bytes, so that the DEST area becomes a mirror
image of the SOURCE area.

Commenting the program. Before you enter Switch, take
a look at its structure. At the beginning of the program, there
are a number of lines preceded by semicolons. These are com-
ments, like the single quote (") or REM statements in BASIC
programs. They are ignored by the assembler, but are crucial
in documenting your program. The first few lines of any pro-
gram should give the name of the author and explain what
the program does. You might also want to include a date or
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version number for your own reference. Remember, each com-
ment line must be preceded by a semicolon.

Instruction lines. Lines which are not comments (instruc-
tion lines) have a definite format and can be broken down into
specific fields:

Symbol Instruction Comment
NO_RESET: MOV [BX],AH ;store attribute
A_VERY_LONG_LABEL: ;this is a legitimate symbol
ADD AH,16
MOV AL,34 ;initialize AL

The first field contains a name, called a symbol. A symbol
can be of any length, but only the first 31 characters are rec-
ognized as significant. In other words, the first 31 characters of
each symbol must be unique. The alphabet characters (the let-
ters A to Z), the digits (the numbers from 0 to 9), and the
characters ?, @, —, $, and . are all legal characters. Uppercase
and lowercase letters are considered identical; so the symbols
“sample”’, “Sample”, and “SAMPLE” are all the same. The
first character in a symbol cannot be a digit; if it is, the assem-
bler thinks that the symbol should be a number. If a period is
used in a symbol, it must be the first character. When a sym-
bol is used to identify a position within a program (like
NO_RESET above), it is called a label. A label must be de-
fined with a colon after its name. When a symbol is used to
reference data, it is called a variable. A variable is never de-
fined with a colon.

The second field is the instruction field and contains the
operation and the operand. There are basically two kinds of
operations: those that produce actual machine code (opcodes,
a cryptic abbreviation for operation codes), and those that are
interpreted by the assembler and produce no machine code.
These operations which produce no code are called pseudo-ops
for false operations. Only a small number of the pseudo-ops
are detailed here. See Appendix C for a list of other pseudo-
ops available with the Macro Assembler.

The second part of the instruction field is the operand, the
information that the operation acts on. The number of oper-
ands depends on the particular operation. Some operations
take only one operand, others take two, and a few take none.
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Comment field is the last field of the line and is optional.
Comment must be preceded by a semicolon.

On an instruction line, only the operation and any asso-
ciated operands are required. The label and the comment are
optional. Remember that the assembler considers lines which
start with semicolons comments and it ignores them entirely.

Pseudo-Operations

PAGE pseudo-op. The first operation in Switch is the
PAGE command. This pseudo-op tells the assembler the width
and length of a printed page in the list file. In Switch, PAGE
is used as follows:

PAGE ,96

The first parameter is the page length. Since none is specified,
58 is assumed. The next parameter is the width of the page.
The second operand, 96, sets the width to 96 characters,
which corresponds to a standard printed page at 12 characters
per inch.

The SEGMENT pseudo-op. The SEGMENT pseudo-op is
used three times in Switch. Its purpose is to define the various
segments for the DS, SS, and CS registers. SEGMENT first ap-
pears in the program as:

DATA SEGMENT
SOURCE DB 1,3,5,7,11,13,17,19
DEST DB 0,0,0,0,0,0,0,0
DATA ENDS

Here, SEGMENT is used to create a separate segment for
the program’s data. The label preceding the pseudo-op names
the segment DATA. The name is arbitrary; we could have
called it PAUL, ALEX, or AXZDFG, but naming the segment
DATA identifies its purpose. The ENDS pseudo-op at the end
of the segment declaration tells the assembler that the seg-
ment named by the ENDS command is ending.

Program data. The source and destination areas, named
SOURCE and DEST respectively, are within the segment
DATA. The initial values of these data areas are defined with
the DB (Define Byte) pseudo-op. The eight bytes at SOURCE
are filled with the numbers 1, 3, 5, 7, and so forth, and the
eight bytes at DEST are filled with zeros.
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Stack segment. The next use of the SEGMENT command
is to assign the stack segment. This is a special kind of seg-
ment and for now must be included in all your programs.
STACK SEGMENT STACK

DW 128 DUP (?)
STACK ENDS

We will be using this exact format in future programs for the
stack segment. Note that we have somewhat arbitrarily as-
signed the stack segment the name STACK. In Chapter 6, we
will explain how and why to use this segment.

Code segment. The last segment we define is the code
segment. This is where the machine language instructions are
located. This segment has been given the name CODE. Within
the segment CODE, however, we must define a “FAR proce-
dure.” This is accomplished with the SWITCH PROC FAR
instruction. We have named the procedure SWITCH. This pro-
cedural declaration is necessary if the program is to return to
DOS properly (right now, don’t worry about why).

The ASSUME pseudo-op. The last pseudo-op before the
actual machine language instructions is ASSUME. The AS-
SUME command tells the assembler what the segment reg-
isters are supposed to be holding. This is necessary for the
program to assemble properly. It will be explained in more de-
tail in Chapter 14.

The Machine Language

Now, finally, comes the assembly language. The PUSH DS
instruction stores DS on the stack. DS is stored this way so
that we can return to DOS. The next operation puts a zero in
the AX register (MOV AX,0). Then, we PUSH AX onto the
stack, the same way we pushed DS. This, too, is necessary in
order to return to DOS properly (this will all be explained in
Chapter 6).

Next we must set up the data segment, DS, so that we
can address our own data. We do this by assigning the DS
register to the location of our data segment. Unfortunately, the
8088 cannot move an immediate value directly into a segment
register. To overcome this limitation we first move the value
of DATA (which identifies our data segment’s position) to AX
and then from AX to DS. At this point DS points to the first
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address of our data segment. Note that setting up the DS reg-
ister is much like using the DEF SEG command in BASIC
(before using PEEKs and POKEs).

The registers SI (Source Index) and DI (Destination Index)
are now given their initial values. These registers will act as
offsets into the segment DATA. SI is set to zero so that it
points to the first byte of the SOURCE area. DI is assigned the
value 15 so that it points to the end of the DEST area. The
next instruction, MOV AL,[SI], moves into AL the byte pointed
to by SI. This is the so-called register indirect addressing that
we discussed earlier. Notice, too, that this is the first line with
a label as well as a machine language instruction.

SUB DI, 1 subtracts 1 from the value of DI. DI now points
to the next lower memory location. At the same time, we add
1 to the SI register with the ADD SI,1 instruction. SI now
points to the next piece of data in SOURCE.

Finally, we check to see if all the bytes have been moved.
If they have not, we jump to MOVE_BYTES (JNE, Jump if
Not Equal). If they have, we execute the RET (RETurn)
instruction, which returns us to DOS.

After the RET, we must tell the assembler that the proce-
dure has ended (SWITCH ENDP), that the segment has ended
(CODE ENDS), and finally, that the program has ended
(END). The block-ending statements must be in the opposite
order as the beginnings (that is, you must maintain the correct
nesting order as with BASIC’s nested FOR-NEXT structures). If
you get the ENDP and the ENDS out of order, the assembler
will give you a block-nesting error.

Entering Source Code

Now that you have at least some idea of how SWITCH works,
enter the source code into your computer. Below is a short tu-
torial on the use of EDLIN. If you have a line editor or word
processor which produces DOS-compatible files (see Chapter
1), use it and skip the EDLIN tutorial. If you're using your
own word processor, for best results set its formatting options
as follows: Set the margins at 0 and 79 and the tab stops
every eight spaces. Remember to press Enter after each line,
and to save the files as standard DOS (pure ASCII) text files.
Do not use line numbers.
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Using EDLIN
Make sure that EDLIN.COM is in the default disk, and enter
the command:

A> EDLIN SAMPLE.TST

from the DOS prompt. This will load EDLIN and open a file
named SAMPLE.TST on the default disk. If you want
SAMPLE.TST somewhere else, enter the appropriate device
(and path name for DOS 2.00 users); for example, EDLIN
B:SAMPLE.TST will put SAMPLE.TST on drive B even though
you are logged onto drive A.

If SAMPLE.TST is a new file, you will get the message
New File. On the next line, you will see an asterisk. This is
EDLIN’s prompt. If you get the End of Input File message,
you already have a file named SAMPLE.TST and EDLIN is
ready to edit it. Since we want to edit a new file, however,
leave EDLIN with the Q (Quit) command and answer Y to the
Abort edit (Y/N)? prompt. Try a new name for the file, one
that does not already exist on the disk.

Now that you have opened a new file, you can enter text
with the I (Insert) command. Type I and press Enter. You will
see the following:

*1
1:*_

You may now enter text. You can enter only one line at a
time, and pressing Enter moves you to the next line. Note that
the star after the line number tells you that this is the current
line.

If you make a mistake while entering a line, the Back-
space key will delete the last character. Pressing the Esc key
erases the entire line (as in BASIC). Pressing F5 (or Fn-5 on
the PCjr) allows you to edit the line just as you can edit a
DOS command string. Try this as an example.

Type the text shown below and press F5.

1:* This is a sample line

An at sign (@) will appear at the end of the line. The message
“This is a sample line” is now stored as a string template.
Pressing the cursor-right key copies a character from this tem-
plate to the displayed string. Pressing the Del deletes the next
character in the template; pressing the Ins key allows you to
add text without moving the template pointer. If you press
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cursor right after you insert text, the insert mode will be
turned off and the next character will be taken from the tem-
plate and displayed. Pressing F3 copies the remainder of the
template to the input string. Pressing F2, followed by a
character, copies all of the characters in the template up to the
specified character into the input string. F4 is similar, except
that it skips all of the characters in the template up to the
specified character. This may all seem confusing, but after
some experimentation and practice, it will become clear.

For practice, use the same sample line as above and press
F5. Now press the Del key five times and press F3. The line
should now read “is a sample line”’. Now, press F5 again,
press Ins and type “That was ”, and press F3. Now the line
reads “That was is a sample line”. To correct our grammar,
press F5 again, press F2 and space, then F2 and space again,
press F4 and space, and F3. Finally, press Enter to go on to
line 2. Now the line should read “That was a sample line”.
When you are done, you should have the following on your
screen:

1:*This is a sample line@
is a sample line@
That was is a sample line@
That was a sample line
2%

You can return to the command level of EDLIN by press-
ing Ctrl-Break (or Fn-Break on the PCjr). The last line is not
inserted into your text.

Editing the entire file. Once you have entered a file with
EDLIN, you can review your work by entering the command
L (List). This will list the lines immediately before and after
the line you last entered. If you want to list other lines, pre-
cede the L command with the starting and ending line num-
bers separated by commas. For example, 3,5L will list lines 3
through 5.

If you need to insert additional lines, use the I (Insert)
command preceded by the number of the line you want to in-
sert. Remember that EDLIN will insert lines before the line you
specify. For example, if you want to insert text between lines 4
and 5, use 4I as below:
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*1,5L

1: this

2:is

3:a

4: short

5: file
*41

4:*very

5:*°C
*1,6L

1: this

2:is

3:a

4: very

5: short

6: file

After we inserted the new line 4, all of the lines after the
old line 3 have been moved down one to make room for the
new line 4. You can append lines to the end of the file with
the #I command.

To delete lines you merely specify the lines (as you did
with the List command) to remove and the D (Delete) com-
mand. Specifying only one line number deletes just that line;
not specifying a line number deletes the current line. For ex-
ample, if we decided that line 4 in the above sample file is not
needed after all, we can use the command 4D from the *
prompt. Line 4 will be deleted and lines 5 and 6 will auto-
matically be renumbered to lines 4 and 5. Deleting lines one at
a time can be confusing because the line numbers are con-
stantly updated. So check the line numbers carefully to avoid
deleting the wrong lines.

Editing the text. You can edit a line from the * prompt by
entering the number of the line you wish to change. The line
which you specify will be printed on the screen. On the
following line, EDLIN will print an input prompt. The text of
the specified line will be placed in the template buffer (as de-
scribed above). You can edit the line just as if you had pressed
F5. For example ,entering 3 from the * lets you edit line 3 (see
below).

*3
3: This is a sample line
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There are two ways to leave EDLIN. Use the Q (Quit)
command if you do not want to save the file you are working
on. Answer the prompt Abort Edit (Y/N)?, with Y if you do
not want to save your file, or with N if you have second
thoughts. The E (End) command exits EDLIN and saves your
file.

You can reenter EDLIN just as you entered it the first
time; however, you will receive an End of Input File rather
than a New File message. You can now list and edit your file.
Remember to leave EDLIN through the E command if you
want to save your changes. Your old file is automatically re-
named as a backup file (with a .BAK extension).

For a more detailed explanation of EDLIN, see your DOS
manual’s section on EDLIN.

Entering Your Source Code with EDLIN

Now that you are acquainted with EDLIN, let’s enter the
sample program Switch. From the DOS prompt, enter the
command EDLIN SWITCH.ASM (or whatever name you wish
to use). Make sure you are starting a new file (you should get
a New File message). Enter the I command and type the first
few lines of SWITCH.ASM. Your screen should look some-
thing like the text below:
A> EDLIN SWITCH.ASM

New file
i |

1:* ; SWITCH.ASM

2:*;

3:* ; Reverses an eight-byte buffer. DEBUG

4:* ; must be used to analyze the results.

5:* ; This program should work in any

*

Enter Program 3-1, Switch. Be certain that you have en-
tered it correctly, editing the text as necessary. When you are
done, exit EDLIN. If all goes well, you should now be ready to
assemble your program.

The Assembler

After you save your source code file on disk, enter the com-
mand MASM (or ASM, depending on which assembler you
are using). The computer should respond as follows:
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A> MASM
The IBM Personal Computer MACRO Assembler
Version 1.00 (C)Copyright IBM Corp 1981

Or, if you are using ASM:

The IBM Personal Computer Assembler
Version 1.00 (C)Copyright IBM Corp 1981

Answer the questions as follows (assuming that
SWITCH.ASM is the name of your source file). The name of
the source file is SWITCH.ASM, so type SWITCH and press
Enter. The assembler will automatically use the extension
.ASM. It will also assume that the name of the object file is
SWITCH.OB]J, so just press Enter. We want a list file, so type
SWITCH and press Enter. The assembler will append the .LST
extension. We do not want a cross-reference file so just press
Enter. You should have the following on your screen:

Source filename [.ASM]: SWITCH
Object filename [SWITCH.OB]J]:
Source listing [NUL.LST]: SWITCH
Cross reference [NUL.CRF]:

If you prefer, you can specify different extensions. Also
note that the name of the .LST file defaults to “NUL.LST”; if
you do not want a list file, then just press Enter at this
prompt.

After you have answered all of the questions, the assem-
bly process will begin. The assembly is done in two passes.
The assembler reads the source code once, doing a mock
assembly. This first pass determines the position of all the la-
bels within the program. The second pass produces the actual
object file.

After a short while, the assembler should print:

Warning Severe

Errors  Errors
0 0

on the screen. If you received any errors, either Warning or
Severe, reenter your editor and correct the problems. Re-
assemble the program. Only when you receive no errors are
you ready to go on.

The assembler .LST file. Enter the command “TYPE
SWITCH.LST"” to print the list file to the screen. You should
get a listing much like Program 3-3. If you want to send this
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to the printer, turn on the printer echo (Ctrl-PrtSc, or Fn-Echo
on the PCjr) and use the TYPE command. When the entire file
has been printed, you should turn off the printer echo by
pressing Ctrl-PrtSc (or Fn-Echo) again. If you prefer, you can
tell the assembler to output the list file directly to the printer
by naming the list file PRN (for printer). However, this latter
method often does not work on non-IBM printers. Now let’s
look at the list file’s key components.

At the top of each page the assembler prints

The IBM Personal Computer MACRO Assembler 8-18-84 PAGE 1-1

After the assembler’s name comes the date and the page num-
ber. The number before the dash is the chapter number, while
the number after the dash is the page number. The chapter
number is not important.

The numbers which are printed on the left edge of the
page are the offsets into the current segment. Notice that the
first offset number does not appear until we define the first
segment. The numbers to the right of the offset are the data
which is stored at that offset. The data and the offset values
are always printed in hexadecimal. Starting about halfway
across the page is a listing of the source file. Bear in mind that
long lines will wrap around the edge of the page. This makes
reading the printout difficult, so use as many columns as pos-
sible (96 is generally sufficient).

Also notice that on the line which moves DATA (the ad-
dress of our data segment) into AX, there is no hexadecimal
value for DATA, only four dashes. This means that the assem-
bler does not know where the segment DATA is going to be
located; the address of the data segment will be calculated
only when the program is loaded into memory.

The last page of the assembly listing is the symbol table. It
has information about the labels and variables used in the
program. They are in two groups and are arranged alphabeti-
cally within the groups. The first group, titled Segments and
Groups, is a table of the segments which we defined in the
program. Their size (again in hexadecimal), alignment, and
combine class are also given. These last two entries are not
important until you know more about the assembler. The sec-
ond list, titled Symbols, is a table of the labels and variables
which are used in the program. For now, don’t worry about
their type and attributes.
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The LINK Program

Once SWITCH assembles without errors, you are ready to link
the program. From the DOS prompt, execute the LINK pro-
gram by typing LINK and pressing Enter:

A> LINK
IBM Personal Computer Linker
Version 2.00 (C)Copyright IBM Corp 1981, 1982, 1983

If you are using DOS 1.10, you will see

IBM Personal Computer Linker
Version 1.10 (C)Copyright IBM Corp 1982

The LINK program will convert the .OBJ file generated by
the assembler into an executable .EXE file. The .EXE file can
be loaded and run like any other DOS program. Answer the
questions as follows. The name of the object file is
SWITCH.OB]J, so type SWITCH and press Enter. LINK will
automatically append the .OB]J extension. We want the .EXE
file to be called SWITCH.EXE, so just press Enter. Since we do
not want a .MAP file, nor have we defined any Libraries, just
press Enter to the last two prompts. You should have the
following on your screen:

Object Modules [.OBJ]: SWITCH

Run File [SWITCH.EXE]:

List File [NUL.MAP]:

Libraries [.LIB]:

You can specify a different extension for the object file if you
desire. However, you can’t change the extension of the run
file, which is always .EXE. It is unlikely that you will receive
an error from the LINK program other than a Cannot Find File
error. If you receive such an error, be certain that you have
entered the name of the object file correctly.

Running Switch 4
Now that we have assembled and linked SWITCH, you are
ready to execute it. From the DOS prompt type

A> SWITCH

and press Enter. The DOS prompt should return after a mo-
ment or two. If it does not, the computer has probably

crashed. Try pressing Ctrl-Break (Fn-Break on a PCjr). If this
does not return you to DOS, you will have to reset the com-
puter with Ctrl-Alt-Del. If the crash is very severe, even this
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may not revive the computer, in which case you will have to
turn the computer off and back on again. If your computer
crashes when you run Switch, you must double-check the
source program for any typing errors, correct them, and re-
assemble the program. Unfortunately, we still do not know if
Switch actually works since it does everything internally. How
can we tell if it is doing anything at all? We must use DEBUG,
which allows us to examine our program and to watch it exe-
cute instruction by instruction (using the Trace command). It
can also dump and unassemble memory, as well as change the
contents of registers and memory locations. DEBUG is sup-
plied on your DOS disk.

Using DEBUG: the Unassemble Command

Type the command DEBUG SWITCH.EXE from the DOS
prompt. The DEBUG prompt, a dash (=), will appear on the
screen. Type U (for Unassemble) and press Enter. The
unassembly of the Switch program should be printed as
below:

-U

091B:0000 1E PUSH DS
091B:0001 B80000 MOV AX,0000
091B:0004 50 PUSH AX

091B:0005 B81F33 MOV AX,091D our data segment
091B:0008 8EDS MOV DS,AX

091B:000A BE0000 MOV SI0000 start of source
091B:000D BFOF00 MOV DILO000F end of destination
091B:0010 8A04 MOV ALJSI]

091B:0012 8805 MOV [DI], AL

091B:0014 83EF01 SUB DI, +01

091B:0017 83C601 ADD SI,+01

091B:001A 83FE08 CMP SI,+08

091B:001D  75F1 JNZ 0010

091B:001F CB RETF program ends

If you are using DEBUG from DOS 1.10, the last line of the
program will look like this:
091B:001F CB RET L DEBUG 1.10 differs
From now on, DOS 1.10 users should read RET L every time
RETF is used. Note that the number before the colon (the
091B) may be different in your computer.

Let’s take a close look at DEBUG's output. The example
below breaks a typical line down into three fields.
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Address  Bytes Assembly Instruction
091B:0012 8805 MOV [DI] AL

The first field indicates the address of the instruction in hexa-
decimal. The number before the colon is the segment address
and the number after the colon is the offset into the segment.
This is known as the segment:offset form of representing an
address.

The next field, Bytes, is the group of bytes that make up
the assembly language instruction. In the example above, the
two bytes which make up the instruction MOV [DI],AL are
88H and 05H.

If you compare the DEBUG output with the source code,
you will notice that there are no longer any labels. Also notice
that our JNE (Jump if Not Equal) has been turned into a J]NZ
(Jump if Not Zero) instruction. These are identical operations.
The difference in name is for the sake of the human, not the
computer (all of the conditional jumps will be explained in
Chapter 5). Our RET has also been changed into a RETF. RETF
stands for Far Return, and will be explained in Chapter 6.

Also note how DEBUG shows bytes when a word value is
part of an operand. For example, the assembler .LST file may
unassemble an instruction as:

Assembler: BF 000F MOV DI,15

while DEBUG reverses the order of the last two bytes:
DEBUG: BFOF00 MOV DI,000F

(Remember that it takes two bytes to make up a 16-bit word.)
In fact, the assembler is actually reversing the bytes, not DE-
BUG. The two bytes which make up a word are stored in a

low byte/high byte format. This means that the least signifi-
cant byte precedes the most significant byte (the byte which

represents the bigger value comes last). In the actual program, .

the bytes appear as OF 00, not 00 followed by OF, as the
assembler .LST file seems to imply.

The purpose of unassembling the file was to find the data
segment. If you look carefully, DATA has been turned into the
hex value 091D (this value varies; it depends on how your
particular computer is configured). In our case, the data, which
is a short series of prime numbers, can be found at 91D:0.

Using the Dump command. To check to see if the data is

there, we can instruct DEBUG to display a portion of memory.
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Enter D followed by the desired segment and the offset. In
this case we would type (remember to use the segment you
determined, which might not be the same as the one given
below):

- D 91D:0

DEBUG should print something similar to the following:

- D 91D:0

091D:0000 01 03 05 07 OB OD 11 13-00 00 00 00 00 00 00 00 . ... ............
091D:0010 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 OO0 . ... ............
091D:0020 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 . ...............
091D:0030 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 . ... ............
091D:0040 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 OO0 .. ..............
091D:0050 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 . . ..............
091D:0060 46 FE EB D5 C4 1E A0 13-B0 00 26 38 07 75 09 A2 F kUD 0.&8.u.”
091D:0070 AC13 26 88 47 01 EB 05-C6 06 AC13 FF BO00 A2 , . &.G. k. F.,.. 0.~

The format of the memory dump can be broken down
into three sections as shown below.

Address 091D:0060

Sixteen bytes of data in hex format
46 FE EB D5 C4 1E A0 13-B0 00 26 38 07 75 09 A2

Character format F kUD. .0.&8.u.”

The first field is the address, much like in the Unassemble
command. In the next section are the 16 bytes starting from
the address shown in the first field. In the last field are the
characters which represent the 16 bytes shown in the previous
field. Any unprintable characters are represented by a period.

The Go and Enter commands. The Go command is used
to execute the program. Type G (for Go) and press Enter. DE-
BUG should print Program Terminated Normally and give you
the dash prompt. Now reexamine the data segment:

- D 91D:0
091D:0000 01 03 05 07 0B OD 11 13-13 11 0D 0B 07 05 03 01 .....

(Only the first line is shown here; the rest is unimportant.)
Notice that the eight zero bytes (the DEST data) are now filled
with the prime numbers in reverse order.

Now that we know that the program works, let’s play
with it a little. We can use DEBUG to modify the SOURCE
memory area with the E (Enter) command. Type E 91D:0
“compute!” (remember to use your data segment address) and
press Enter. Then display the SOURCE area again:
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E 91D:0 “compute!”

- D 91D:0

091D:0000 63 6F 6D 70 75 74 65 21-13 11 0D OB 07 05 03 01 compute! ........
Notice how the ASCII string compute! has filled the eight bytes
of the SOURCE area. The format of the E command is very
simple. The numbers after the E are the location, and the
string in quotes is the data. The ending quote is required, or
you will get an error from DEBUG. Now run Switch again, us-
ing the G command, and dump the data in the SOURCE
buffer area.

-G

Program terminated normally

- D 91D:0

091D:0000 63 6F 6D 70 75 74 65 21-21 65 74 75 70 6D 6F 63 computelletupmoc
The compute! has been reversed to etupmoc.

This has demonstrated one method of entering data into
memory. See your DOS manual for the other available options
with this command.

The Register command. Type R and press Enter. DEBUG
should respond with something similar to the following;:
:&l;=0000 BX=0000 CX=0080 DX=0000 SP=01FC BP=0000 SI=0000 DI=0000
DS=090B ES=090B SS=091E CS=091B IP=0005 NV UP DI PL NZ NA PO NC
091B:0005 B81D09 MoV AX,091D
(The output on a 40-column screen will be different.) The first
two lines indicate the current values of the registers. At the
end of the second line is a list of the flags and their current
statuses. Table 3-1 gives the abreviations that DEBUG uses to
indicate the statuses of the 8088’s flags (the different flags will
be explained in the following chapters).

Table 3-1. DEBUG Flag Status Names

Name of Flag Set (Flag=1) Clear (Flag=0)
Overflow OV = overflow NV = no overflow
Direction DN = decrement UP = increment
Interrupt EI = enabled DI = disabled
Sign NG = negative PL = plus

Zero ZR = zero NZ = not zero
Auxiliary Carry  AC = yes NA = no

Parity PE = even PO = odd

Carry CY = carry NC = no carry

The third line of DEBUG's response shows the address of
the next instruction, the bytes which make up that instruction,
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and the unassembled instruction itself (this is the same format
as the Unassemble command). This is the instruction which
will be executed first when you enter the G command.

An option of the R command allows you to change the
values of the registers. Type R AX and DEBUG will respond:

- R AX
AX 0000
DEBUG is now waiting for you to enter the desired value for
the register AX. You can enter any word-sized value to be
placed in AX. Pressing Enter without any other input means
that you do not want to change the value in AX. Any of the
registers can be changed in this way.

The Trace command. Type T (for Trace) and press Enter.
The format of the output is identical to that of the R com-
mand. If you enter T again, you will step through the next ma-
chine language instruction. You can step through more than
one instruction at a time by specifying a number after the
Trace command. For example:

-T10

will trace through the next 16 instructions (remember, DEBUG
does everything in hexadecimal).

This feature of DEBUG can be very useful in the debug-
ging of a program. You can go through the program step by
step and examine the effects of different instructions on the
flags and the contents of the registers. Note that DEBUG occa-
sionally skips instructions. There is nothing wrong with DE-
BUG; this is perfectly normal. This skipping will be discussed
in Chapter 11.

For more examples of how to use DEBUG, see Section 5,
““Sample Programs,” or your DOS manual. Play with DEBUG
and Switch. When you have had enough, you can exit the DE-
BUG utility program with the Q (Quit) command.

Writing Your Own Programs
Program 3-4 is a fill-in-the-blank program, a program tem-
plate, which you can use until you are more familiar with the
assembler and assembly language. Keep in mind that the
structure of the sample programs is not fixed, nor is it stand-
ardized. You are free to format and structure your programs as
you will. The examples are simply guides that represent a for-
mat which we like to use. Feel free to devise your own system.
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CHAPTER

4

Arithmetic

Computers are known for their number-crunching abilities.
The 8088 is no exception; it is a very powerful microprocessor.
In this chapter, you will be introduced to the basic mathemat-
ical operations of addition, subtraction, multiplication, and
division.

Negative Numbers

In Chapter 2 you learned that binary digits can be chained to-
gether into eight-bit bytes. You were also told that a byte
could represent the numbers from 0 to 255 (0 to FF hex). This
is the unsigned number range of the byte. A byte can also
represent the signed number from —128 to +127. There are
still eight bits to a byte; only the interpretation of the bits is
different. When a byte is meant to represent a signed number,
the most significant bit (the bit representing 128) is the sign
bit.

When the sign bit is zero, the byte is positive (0 to 127).
When the sign bit is one, the byte is negative (—128 to —1).
Signed words are similar to signed bytes. Recall that a

word is made up of 16 bits and can represent the numbers
from 0 to 65,535 (0 to FFFF hex). This is a word’s unsigned
range. The signed range of a word is —32,768 to 32,767. The
sign bit is still the most significant bit of the number (the bit
representing 32,768). As with signed bytes, a sign bit with the
value of zero means that the word is positive (0 to 32,767),
while a sign bit with the value of one means that the word is
negative (—32,768 to —1).

The actual storage of signed numbers is complex. The
method which is used is called twos complement. This method
of representing negative numbers is very similar to the one
used by counters on tape players. Most tape recorders have a
three-digit counter which can represent the numbers from 000
to 999. Let’s pretend that the tape in the recorder is a number
line. The tape counter tells us where we are on the line.
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Try this exercise: Fast-forward the tape to the middle, and
zero the tape counter. Now, fast-forward the tape some more.
Note that the counter starts from 0 and counts up. When the
counter reads 005, we understand that we are five counts
away from 0 in the positive direction. Now rewind the tape.
The counter will begin to count down. When it passes 000, it
will start again from 999. We understand that when the
counter reads 999, we are one count away from 0; but this
time we are on the negative side. If we stop the tape when the
counter reads 990, we know that we are ten counts away from
0—we are at the position —10 on the tape.

Negative binary numbers are similar. For the moment,
consider only signed bytes. A byte can represent the numbers
from 0 to 255. You can think of a byte as a tape counter
which can count up only to 255. If we rewind from 0 with this
byte counter, the first number we will get is 255 (like we get
999 on a real tape counter), so 255 is like —1. Notice that the
most significant bit, the sign bit, is 1; thus the number is neg-
ative.

For words, the only difference is that the maximum count
is not 255 but 65,535. When our “word counter’”” counts back-
wards from 0, we get 65,535.

ADD, SUB, and NEG

ADD and SUB, add and subtract, are versatile instructions
which allow you to add to or subtract from registers or mem-
ory addresses. The format of both instructions is the same:

ADD destination,source
destination = destination + source

SUB destination,source
destination = destination — source

Notice the mathematical representations of the operations.
ADD takes the source value, adds it to the destination, and
places the sum in the destination. SUB does the same, only it
subtracts rather than adds.

The source for these instructions can be a general register
(any register except the segment registers, the flags, and IP), a
memory location, or an immediate value. The destination can
be a general register or a memory location. As with the MOV
instruction, the source and destination cannot both be memory
locations.
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Because the 8088 is a 16-bit microprocessor with an 8-bit
heritage, the ADD and SUB instructions come in two forms,
one for 16 bits and the other for 8 bits. The assembler auto-
matically determines which instruction you need to use. Below
are some examples of the ADD and SUB commands.

ADD AX/4 ;add 4 to the contents of AX

ADD BX,DX ;add contents of DX to BX, result in BX

ADD DL,DH ;8-bit addition

SUB DX,AX ;subtract AX from DX, result in DX

SUB [BX], AL ;subtract AL from indirectly addressed memory

The NEGate instruction changes the sign of a number. If
the number was positive, it is made negative, and if it was
negative, it is made positive. NEG takes the form shown below:

NEG operand

The operand can be any general byte, word register, or
memory location. This instruction can be used when you need
to subtract a register from an immediate value. For example,
you cannot use SUB to subtract AL from 100:

SUB 100,AL

This is illegal because the destination cannot be an immediate
value. Instead, you have to use something like:

NEG AL
ADD AL,100

First we negate AL (so AL = —AL), then we add it to 100. In
other words, we have:

AL = —AL ‘negate AL
AL = 100 + AL ’add (the negated) AL to 100

There are three processor flags which are important to
addition and subtraction. These flags are used for error check-
ing and for program decision making. Decision making and
program flow are the topics of the next chapter.

The sign flag (abbreviated SF) indicates the sign of the re-
sult of the last operation; however, only certain operations,
such as addition and subtraction, set this flag. If you are un-
sure whether SF is set by an operation, check Appendix A. If
SF is set (has a value of one), the last result was negative. If it
is clear (has a value of zero), the result was positive.

The overflow flag (OF) is set whenever a mathematical op-
eration overflows the range for signed numbers. OF is set if
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the result is greater than 127 or less than —128 for bytes, or
greater than 32,767 or less than —32,768 for words. If the re-
sult is within the range of signed numbers, the overflow flag is
clear.

The last flag which should be mentioned in connection
with ADD and SUB, is the carry flag (CF). During addition, CF
is used to hold any carry out of the highest bit. Thus, for byte
addition, the carry represents the “ninth bit,” and for word
addition, the carry is the “seventeenth bit.” With subtraction,
CF is used to indicate a borrow into the highest bit. CF will be
important only when we begin to investigate advanced arith-
metic in Chapter 8.

INC and DEC

INC (INCrement) and DEC (DECrement) are used to in-
crement and decrement a register or memory location by 1.
The form of both these instructions is:

INC memory location
memory location = memory location + 1

DEC memory location
memory location = memory location — 1

INC and DEC set the sign and overflow flags, but do not set
the carry flag. Both instructions can operate on bytes or words.

INC and DEC are useful in addressing memory. We can
move a pointer up or down one byte within a table. For ex-
ample, in the program “Switch” we could have used INC SI
and DEC DI rather than the ADD and SUB instructions. They
can also be used in loops; more about loops later.

MUL

The multiply and divide functions are somewhat less versatile
than their addition and subtraction counterparts. However, the
8088 is the first microprocessor in wide use which offers mul-
tiply and divide operations. In the past—with 8080, Z80, and

6502 systems—programmers had to write special subroutines

to multiply and divide.

MUL, the multiply instruction, allows you to find the
product of two numbers. There are two MUL instructions: one
for multiplying bytes, and another for multiplying words.

Byte multiplication multiplies the AL register by another
general byte register or an addressed memory location. You
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cannot multiply by an immediate value. The format of this
instruction is:

MUL source

Since the product of two bytes can be greater than 255 (in
fact, it can be as great as 65,025), the 8088 uses all of AX to
store the result of byte multiplication; so AX = AL * source.

If the product is greater than 255, OF and CF are set (they
have the value of 1). For example, if we multiply 57 by 24,
using byte multiplication, the product is 1368, far too large to
fit in a single byte. Since all of AX is used to store the result,
the carry and overflow flags will be set, indicating that the re-
sult uses the high-order byte to store part of the product. If,
on the other hand, we multiply 45 by 4, the product is only
180, small enough to fit into one byte. The entire product will
fit in AL, so the carry and overflow flags are cleared. Note that
the other arithmetic flags are undefined.

Word multiplication multiplies the AX register by another
general word register or an addressed memory location. Again,
you cannot multiply by an immediate value. The format of
word multiplication is identical to that of byte multiplication,
only the source is a word, not a byte.

The product of two words can be considerably greater
than 65,535 (the capacity of a word), so the 8088 uses the AX
and DX registers to hold the result of word multiplication. AX
holds the least significant word, DX the most significant word.
In other words, AX and DX hold a 32-bit number. A 32-bit
number is often referred to as a double word.

If the result of word multiplication is greater than 65,535,
CF and OF are set to indicate that the high-order word (DX) is
used to hold part of the product.

You select which multiplication you want, either byte or
word, with the operand. If the operand is byte-sized, then
byte multiplication is used. If, on the other hand, the operand
is word-sized, word multiplication is used. For example, if
you use:

MUL BL
BL will be multiplied by AL. However, if you use:
MUL BX

BX will be multiplied by AX.

If you wish to square the value in AL (AL2?), you can use
MUL AL
52




4
Arithmetic

This also works with AX.
IMUL

The IMUL instruction is identical to MUL in every respect, ex-
cept that IMUL takes the sign of the number into consid-
eration before it multiplies. In other words, MUL is used only
for unsigned numbers, while IMUL is used only for signed
numbers. It is very important that you make this distinction. If
MUL is used on signed numbers, or IMUL on unsigned num-
bers, the results are interesting, but entirely meaningless.

DIV

Using the DIV instruction, you can divide two numbers to find
the quotient and the remainder.

Byte division is used to divide a word by a byte. The gen-
eral format of byte division is

DIV source

The source can be any general byte register or a memory loca-
tion. As with MUL, the source cannot be an immediate value.
With byte division, the word stored in AX is divided by the
source byte. The quotient is stored in AL, while the remainder
is stored in AH. For example, the code:

MOV AX,97

MOV BL,13

DIV BL

divides 97 by 13. After the division, AL will hold 7 (the quo-
tient) and AH will hold 6 (the remainder). Note that all of the
arithmetic flags are undefined after division.

If you want to divide a single byte by another byte, you
have to set AH to 0 before you divide. For example, if you
would like to divide a number in AL by BL, you need to clear
AH first:

MOV AH,0
DIV BL

The second DIV instruction is used to divide a double
word by a word. The double word is stored in AX and DX, as
was described in the word multiplication discussion. The for-
mat of word division is identical to that of byte division, only
the source must be a word, not a byte. Thus, the source must
be a general word register, or a word-sized variable.
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With word division the quotient is stored in AX, and the
remainder in DX. Note that if you are only dividing a word by
another word, you must set DX to 0 before you divide. For ex-
ample, if you want to divide 15,837 by 1,343, you can use
something like:

MOV AX,15837
MOV DX, 0
MOV (CX,1343
DIV CX

After the division, AX will hold 11 (the quotient) and DX
1064 (the remainder). As with byte division, all of the
arithmetic flags are undefined after word division.

When using the DIV instruction you select which division
you want, byte or word, by the size of the operand. If the
operand is byte-sized, byte division is used. For example, if
you use

DIV BL

AX will be divided by BL. If, on the other hand, you use a
word-sized operand, then word division is used:

DIV CX

Here, the double word stored in AX and DX will be divided
by CX.

d The 8088 has a rather dramatic way of indicating an error
in division. If there is a divide overflow, the 8088 generates a
type zero interrupt (interrupts are discussed in Chapter 11).
This causes the computer to print the message Divide Over-
flow and exit the program. For example, the code below will
generate an overflow error:

MOV AX,900
MOV BL,3
DIV BL

In this example, the quotient is 300 (900 divided by 3).
This is a byte division (the divisor is a byte quantity), so the
quotient must fit in the AL register. As you can see, it does
not. The computer will print the message Divide Overflow and
program execution will cease.

One solution to this problem is to use word division even
though you are dividing by a byte.
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MOV AX,900
MOV DX,0
MOV CX,3
DIV CX

DOS 2.00 users note that, because of a bug in DOS 2.00,
the computer will crash when it tries to print the Divide Over-
flow error message. You will probably be unable to reset the
computer with the Ctrl-Alt-Del combination. So, you'll have to
turn the computer off and reboot. This problem has been cor-
rected in DOS 2.10. DOS 1.10 works fine as well.

IDIV

As there are signed and unsigned versions of the multiplica-
tion instructions, there are signed and unsigned divisions. DIV
only works on unsigned numbers. If you are using signed
numbers, you must use IDIV. In all other respects, IDIV and
DIV are identical.

A Sample Program

The sample program for this chapter, “Primes,” finds prime
numbers. Since it uses a word to store all of its results, it can
find primes up to only 65535 (there are over 6500 of them).
Primes was written to demonstrate some of the instructions in-
troduced in this chapter; there are more efficient ways to write
this program.

A prime number is a number that is divisible only by one
and itself. The numbers 2, 3, 5, 7, and 11 are all prime. Prime
numbers occur at uneven intervals and have been the object of
much scrutiny in recent years. As you might imagine,
determining whether or not a number is prime is not very
difficult; just divide the number in question by all the numbers
between one and itself. For example, if we were testing the
number 15, we would divide 15 by the numbers 2 through 14.
If any of the numbers divided without remainders, we would
know that 15 is not prime. For smaller numbers this is a good
system; after all, the computer is very fast. Consider, however,
what would happen with very large numbers—for instance,
2003. The computer would have to do 2001 divisions to find
out whether it is prime. Even for a computer, that would take
a noticeable amount of time.
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We must find a way to reduce the length of the search for
even divisors. To begin with, the search can be shortened by
remembering that we need only check for possible factors. If a
number is not prime, its lowest possible factors will be prime
numbers. For example, 21 has two factors, 7 and 3 (both prime
numbers). (We could limit our search for factors still further by
searching up only to the square root of the number, but then
we would have to write a square root routine.)

Outlined below is the general flow of a program which
uses this method to find prime numbers. This is not what pro-
grammers call a flow chart, but an English version of how the
program is supposed to work.

1. Divide the number in question by all of the previously
found primes.

2. If any of the numbers divide evenly, select a new number
and start checking to see if it is prime.

3. If the number is prime, add it to our list of prime numbers,
print the number, and look for the next prime.

The only hard part in our algorithm is printing the prime
numbers on the screen. DOS, however, helps out by providing
a Print Character routine. This DOS function is called by the
routine BYTE_OUT towards the end of Primes. DOS function
calls will be explained in Chapter 13.

The only difficulty in printing the number is converting
it from its binary form to a decimal form. The routine which
conducts this conversion is named DECIMAL_OUT.
DECIMAL_OUT divides the number it is trying to output
repeatedly by 10. This routine will be explained in more detail
in Chapter 6.

PRIMES.ASM

The first few lines are the comment header, common to all of
the sample programs. It identifies the program and its pur-
pose, and gives the name of the author and the last date the
program was modified. Following these comments is the
PAGE pseudo-op, which defines the size of the printed page
as discussed in the last chapter.

After the PAGE pseudo-op is a constant declaration. De-
claring a constant is much like assigning a value to a variable in
BASIC. The constant NUMBER_TO_FIND is assigned the
value 6542 through the EQU pseudo-op. NUMBER_TO_FIND
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represents the index of the last prime number we can find us-
ing unsigned words to store the prime numbers. Constants
will be discussed in more detail in Chapter 14.

The SEGMENT pseudo-op which follows sets up the seg-
ment for data. The DUP instruction in the primes declaration
tells the assembler to repeat what is inside the parentheses the
number of times specified to the left of the DUP instruction.
For details about the DUP instruction, see Chapter 14. The
question mark in the operand section of the DW and DB
pseudo-ops tells the assembler that it does not matter what is
stored in these locations during assembly and load. The
assembler simply makes note that these locations are there
and must be reserved for the program. Next we define the re-
quired stack segment (as in “Switch”), and finally, the pro-
gram segment.

Primes uses the 8088’s addition, subtraction, multiplica-
tion, and division instructions. It does so largely with unsigned
numbers. As the program shows, it is not very difficult to con-
vert this particular mathematical procedure into a program
which the computer can execute.
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CHAPTER

5

Program Flow

Program flow refers to the order in which a program’s instruc-
tions are executed. Programs written in BASIC, or any other
high-level language, tend to loop back on themselves, and to
skip over portions which do not need to be executed. This is
also true of machine language programs.

In this chapter, you will be introduced to ways of chang-
ing program flow, jumps. There are two basic types of jump
instructions, conditional and unconditional. Both will be ex-
amined in this chapter. This chapter also explains how to cre-
ate machine language versions of BASIC’s [F-THEN-ELSE and
FOR-NEXT structures using assembly’s CMP and LOOP
instructions.

The CMP Instruction
In high-level languages, decision making is usually based on
the IF-THEN-ELSE construction; in machine language it is not
quite so easy. In machine language, the CMP (compare)
instruction is used with conditional jumps to change program
flow. The conditional jumps jump only if a certain condition is
satisfied. For example, JZ (Jump if Zero) jumps only if the last
operation resulted in zero; if the result was nonzero, the com-
puter “falls through” the conditional jump and executes the
next instruction following JZ. The CMP instruction corre-
sponds to the IF part of BASIC’s conditional construction,
while the conditional jumps provide for the THEN and ELSE.
The general form of the CMP instruction is:

CMP first,second

CMP compares the values of two numbers. They both must be
either words or bytes—you can’t mix and match. Any operand
legal with instructions such as MOV, ADD, or SUB is legal
with CMP. Remember that the 8088 does not allow both the
operands to be memory locations.

It is important to remember that there is only one CMP
instruction. The type of comparison (whether signed or
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unsigned) depends solely on the operands. Signed and unsigned
comparisons are identical to one another. However, the flags
after signed and unsigned comparisons must be interpreted
differently. For this reason, there are two sets of conditional
jumps, one for unsigned and another for signed comparisons.

Conditional Jumps After CMP

A comparison is often followed by one of the numerous con-
ditional jumps. The 18 conditional jumps generally used after
a CMP instruction are summarized in Table 5-1.

Table 5-1. Conditional Jumps Used after CMP

Instruction Jump if...(unsigned comparisons)

JE label first equals second

JNE  label first not equal to second

JA label first above second

JAE  label first above or equal to second
IB label first below second

JBE label first below or equal to second

JNA label first not above second
JNAE label first not above or equal to second
JNB  label first not below second
JNBE label first not below or equal to second

Instruction Jump if...(signed comparisons)

]G label  first greater than second

JGE  label first greater than or equal to second
JL label first less than second

JLE label first less than or equal to second

JNG  label first not greater than second

JNGE label first not greater than or equal to second
JNL label first not less than second

JNLE label first not less than or equal to second

These conditional jumps can be summarized more con-
cisely, as in Table 5-2. Many of the conditional jumps come in
pairs: one with a positive condition, and another with a neg-
ative. For example, JA (Jump if Above) is identical to JNBE
(Jump if Not Below or Equal to). Intel provides these alternate
terms entirely for the programmer’s convenience.

The naming scheme of the jump instructions is very
consistent. Note that all instructions with below or above in
their names are used after the comparison of unsigned values,
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while greater or less conditional jumps are used after compar-
ing signed values. The JE and JNE instructions apply to the
comparison of both signed and unsigned values.

Table 5-2. Summary of Jumps

Jump if... Use with Use with
unsigned operands signed operands

First > Second JA/JNBE JG/JNLE

First = Second JAE/JNB JGE/JNL

First = Second JE JE

First <> Second JNE JNE

First < Second JBE/JNA JLE/ING

First < Second JB/JNAE JL/INGE

It is important to remember that the names of the con-
ditional jumps refer to the first operand versus the second. For
example, JG means jump if the first operand is greater than
the second. Below are some examples of comparisons and con-
ditional jumping.

CMP AX,BX
JA AX_ABOVE_BX

CMP CX,AX
JB CX_BELOW_AX

CMP DX,SS
JE DX_EQUALS_SS

CMP AL,DL
JG AL_GREATER_THAN_DL

CMP BX,156H
JLE BX_LESS_THAN_OR_EQUAL_TO_156H

Machine Language IF-THEN-ELSE

The combination of the CMP instruction with conditional
jumps gives the machine language programmer the equivalent
of the high-level IF-THEN-ELSE construction. There are a
number of ways to implement such a structure in machine lan-
guage. Here are two examples:

CMP AX,10 JIF AX>10 ...
JA THEN
ADD AX,1 ;ELSE AX=AX+1
JMP CONTINUE

THEN: MOV AX,0 ;THEN AX=0

CONTINUE: (more code)
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Notice that, in the above example, the ELSE and THEN parts
of the construction are not placed as they would be in BASIC.
Unless the condition is satisfied (first is above second), the
computer falls through JA to the next instruction (ADD AX,1)
and then performs a JMP to skip over the THEN portion.

CMP AX,10 ;IF AX>10
JNA ELSE ;(a negative condition)
MOV AX,0 ;THEN AX=0
JMP CONTINUE
ELSE: ADD AX1 ;ELSE AX=AX+1

CONTINUE: (more code)

In this example the THEN and ELSE are placed in the familiar
order of BASIC, because JNA tests for the condition opposite
that of JA. Unless this condition is satisfied (first is not above
second), we fall through JNA to MOV AX,0, and then JMP
past the ELSE portion.

Both examples produce the same result, but with reversed
logic. Some people find the first example easier to follow, be-
cause it tests for a positive rather than a negative condition.
Others find the second construction more natural. It is im-
portant that you understand both.

The unconditional jump. JMP is an unconditional jump,
like the GOTO statement in BASIC; the jump is always per-
formed. It is used to skip over the unneeded parts of the con-
ditional structure. With more complex conditional structures,
you may begin to feel that your program plays leapfrog with
itself as it executes the ELSEs and skips the THENS, and vice
versa.

Conditional Jumps After Other Instructions
So far, conditional jumps have always followed a CMP
instruction; however, they may be placed anywhere within a
program. There is no rule that says conditional jumps must
follow the CMP instruction. In fact, they can follow ADD,
SUB, or any of the other instructions that affect the flags. As
you may recall, there are six arithmetic flags in the 8088:

The zero flag is set by certain operations (such as ADD,
SUB, INC and DEC) when the result of the operation is 0.
Otherwise, this flag is clear.

The carry flag is used as the overflow flag for unsigned
arithmetic. It becomes set when the result is less than 0 or
greater than 255, for bytes, or 65535, for words. This flag is
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set by operations such as ADD and SUB. Note that INC and
DEC do not set the carry flag. In addition, the carry flag is
often used with subroutines in machine language.

The sign flag indicates the sign of the last result. When the
flag is set, the last result was negative. If the flag is clear, the
last result was positive. Again, only certain operations set this
flag; they include ADD, SUB, INC, and DEC. Essentially, this
flag mimics the most significant bit (the sign bit) of the result.

The overflow flag is used to indicate an overflow error.
When this flag is set, there has been an overflow; otherwise,
this flag is clear. An overflow error occurs when the result is
beyond the representable range of signed numbers (—128 to
127 for bytes or —32768 to 32767 for words). Only certain op-
erations such as ADD, SUB, INC, and DEC set this flag.

The other two arithmetic flags, the auxiliary carry flag (AF)
and the parity flag (PF), will not be detailed here (please refer
to the glossary); they are very rarely important to machine
language programming.

Table 5-3 lists the conditional jumps which depend solely
on the value of one flag:

Table 5-3. Conditional Jumps Relying on Only One Flag

Instruction  Jump if... Flag status
JC carry CF =1
JNC no carry CF =0
JO overflow OF =1
JNO no overflow OF =0
JS sign (negative) SF =1
JNS no sign (positive) SF =0
]Z zero ZF =1
JNZ no zero ZF =0
JP/JPE parity PF =1
JNP/JPO no parity PF =0

These ten conditional jumps can be used after any operation
(you can even use them after the compare instruction if you
like). Below are some examples.

ADD AX,BX

JO OVERFLOW_ERROR ;if sum >32767 or <—32768
SUB CX,DX

JZ RESULT_WAS_ZERO ;if CX and DX are equal
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MUL BL —
JC WORD_RESULT ;if product uses all of AX

DEC COUNTER
JNZ COUNTER_NOT_ZERO ;if counter is not zero

Instructions which do not affect the flags (such as MOV)
can be placed between an instruction which does and the con-
ditional jump itself, as shown below. See Appendix A for a
table detailing which instructions affect which flags.

CMP AX,BX ;finds which is greater...
MOV CX,AX ;...AX or BX, and stores...
JG AX_GREATER ;..larger value in CX
MOV CX,BX

AX_GREATER: (more code)
MUL BX ;perform 16 bit multiply
MOV CX,0 ;use CX to indicate

overflow...

JNO DX_CLEAR ;..into DX register
MOV CX1

DX_CLEAR: (more code)

Conditional Jumps for Looping

Another common use of conditional jumps is controlling
loops. The most familiar looping statements in BASIC are FOR
and NEXT. In a FOR-NEXT structure, the following operations
are performed: The index (counter variable) is given an initial
value; it is incremented (or decremented) for each iteration of
the loop; and, it is checked against an end value. The BASIC
structure, FOR I=1 TO 100:(do something):NEXT, could be
coded into machine language, assuming [ is a variable in the
data segment, as:

MOV I1 ;set up the index variable
LOOP: (do something) ;do the instructions within the loop
INCI ;increment the loop variable
CMP [,100 ;is the index variable 100?
JNE LOOP ;if so, end the loop
A more efficient version of the same loop looks like:
MOV L,100 ;set up the index variable
LOOP: (do something) ;do the instructions within the loop
DECI ;decrement the loop variable
JNZ LOOP ;if it’s not zero, continue looping
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The second example is more efficient because there are
fewer instructions to accomplish the same task. A decremented
loop variable is more efficient because the zero flag will be set
automatically when the index becomes zero. With an in-
cremented variable you must use the CMP instruction to end
the loop. However, often a loop must increment so both tech-
niques are used.

There are many ways to structure a loop. You can in-
crement or decrement the index variable. The incrementing or
decrementing can be at the beginning of the loop or at the
end. In addition, you can increment or decrement by some
number other than one. When you use ADD or SUB it might
be necessary to use a JNC rather than a JNZ. Remember, the
carry flag acts like an overflow for unsigned operations.

LOOP, LOOPE-LOOPZ, and LOOPNE-LOOPNZ

With the loops described above you must do everything, from
adjusting the index variable to deciding which kind of jump to
use. There are other, more specialized 8088 machine language
instructions, which facilitate the looping operation. The three
loop instructions described below give the programmer a com-
pletely automatic looping system.

LOORP is the simplest looping instruction. Study the ex-
ample below. Notice that the LOOP instruction uses the CX
register as its counter. This example does “‘something’ 300
times. The LOOP instruction automatically decrements the CX
register and loops back to START_OF_LOOP if CX is not
zero. ‘

MOV CX,300

START_OF_LOOP: (do something)
LOOP START_OF_LOOP

Variations of the LOOP instruction, LOOPE-LOOPZ and
LOOPNE-LOOPNZ, offer added versatility to the LOOP
instruction. LOOPE (loop if equal), also called LOOPZ (loop if
zero), loops back if CX is not zero and the zero flag indicates a
zero status. LOOPNE (loop if not equal), or LOOPNZ (loop if
not zero), loops back if CX is not zero and the zero flag in-
dicates nonzero status. Thus, LOOPE can be considered loop
while equal, and LOOPNE, loop while not equal. CX merely
serves to put a limit to the number of possible loops. Both of
these instructions will be examined in more detail in the chap-
ter on string instructions.
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JCXZ and the LOOP Instructions

Unfortunately, the LOOP instructions decrement CX before
checking to see if it is zero. So, if you enter a LOOP structure
when CX is zero, the loop will be executed 65,536 times. If
this is what you intended, this is fine. If, on the other hand,
you want the loop to be skipped when CX is zero, you can use
the JCXZ (Jump if CX is Zero). Place the JCXZ instruction
before the loop as shown below. Now the loop will be skipped
when CX is zero.

JCXZ NO_LOOP
DO_LOOP: (whatever)

LOOP DO_LOOP
NO_LOOP: (continue)

The Unconditional Jump

JMP simply transfers control of the program from one place to
another, just like the BASIC GOTO statement. There is no de-
cision making involved with this instruction; in other words,
the computer jumps unconditionally.

There are five kinds of unconditional JMPs. The assembler
automatically selects the correct JMP on the basis of the op-
erand (the label you are jumping to).

Near jumps. Near jumping (referred to as an Intra Seg-
ment Direct jump by IBM literature) has the general format as
shown below.

JMP label ;displacement to label
;is calculated by the
. ;assembler.
(some code)

label: (more (:.ode)

Near JMPs can jump anywhere within the code segment.
Near JMPs are called direct jumps because the position of the
next instruction is stored with the JMP instruction.

Short jumps. A short jump, or an Intra Segment Direct
Short jump, is identical to a near JMP. A short jump can be
only 127 bytes forward or 128 bytes backward. Trying to jump
too far with a short jump will result in a Relative jump out of
range error from the assembler. Note that, whenever possible,
the assembler will automatically use short jumps.
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Short jumps are important because all conditional jumps
are short jumps, and all LOOP instructions use short jumps.
The range limitation on short jumps can become a problem
when you need a conditional jump to skip a very large part of
your program. You can overcome this limitation by reversing
the logic of your jump condition and skipping over an un-
conditional (near) jump. For example, if this jump resulted in a
Relative Jump Out of Range error:

JGE SOME_PLACE
(more program)

You could replace it with:
JNGE SKIP ; (a negative condition)

JMP SOME_PLACE
SKIP: (more program)

Remember that the unconditional JMP can jump anywhere
within the current code segment. Unfortunately, there is no
way to overcome the limitation on LOOP instructions. Just use
short loops.

Far jumps. The far jump allows you to transfer control to
another segment. This kind of jump is also known as an Inter
Segment Direct Jump. Note IBM’s careful use of the prefixes In-
ter (between) and Intra (within).

The format of the far JMP is identical to that of near ]MP;
however, the operand label must have a far attribute; that is,
the label must be the name of a far procedure. You will need
to use this instruction only if you write programs with more
than one code segment, but the assembler will use far jumps
automatically if the label has a far attribute.

Indirect jumps. Indirect jumps are jumps in which the
address of the next instruction is not coded as the operand of
the JMP operation, but is held in a data table or in a general
register. There are two kinds of indirect jumps, one for Intra
Segment jumps, and another for Inter Segment jumps. Ad-
vanced programmers can use indirect jumps just as BASIC
programmers use the ON-GOTO construction.

A Sample Program

“Flash,” as its name implies, flashes the screen several times.
With a color/graphics screen adapter, the background color of
the screen is changed as it is flashed. Flash_M (Program 5-1)
is for IBM PC users who have the monochrome screen
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adapter. Flash_C (Program 5-2) is designed for a PC computer
with the color/graphics screen adapter and for the PCjr. They
should work with any of the compatibles, as long as the
screen adapters are fully compatible with the IBM boards. If
you are using a PC with both monochrome and color/graphics
adapters, try entering both programs. However, DOS 2.00
users should execute the MODE command to change to the
appropriate adapter before running the program; otherwise,
the results are unpredictable. DOS 1.10 users will have to load
BASIC and change monitors according to the BASIC manual.
Users of noncompatible systems should still look at these pro-
grams, as they are good examples of short machine language
programs.

Flash uses the register DX as a counter; it determines how
many times the screen should be flashed. The BX register acts
as a pointer into the screen memory. We will use it to read and
write the screen attributes. The CX register, the counter for the
LOOP instruction, is used to determine how many attributes to
change. It is initialized to the value of the constant
SCREENSIZE, the size of the screen page. AH is used to hold
and check the attribute.

These programs introduce our first use of the SEGMENT
command. The SEGMENT command is being used to locate
the screen memory. The AT operand tells the assembler that
we want the segment to be located at a specific segment ad-
dress; BOOOH for the monochrome screen, and B8OOH for the
color graphics screen. Note that these are not absolute ad-
dresses (0 to FFFFF hex), but segment addresses (0 to FFFF
hex).

Notice the use of the assembler pseudo-op EQU. This
pseudo-op is used to assign a constant value to a symbol (not
a memory location, but an assembler value). The format is

symbol EQU value

Symbol is equal to the value.

At this point it is important to understand how IBM
computers handle screen memory. There are 2000 characters
on an 80-column screen. IBM computers use 4000 bytes (note
that this is 4000 bytes, not 4K bytes) to represent the charac-
ters. The even-numbered bytes (0, 2, 4, etc.) hold the actual
character. The odd-numbered bytes (1, 3, 5, etc.) hold the
character’s attribute. So the character in byte 0 has the

72




«

Program Flow

attribute defined by byte 1. The attribute byte of the mono-
chrome screen adapter can be broken down as shown in Fig-
ure 5-1. The F and I symbols show where flashing and
intensity attributes can be set.

The attribute byte for the color adapter is used as shown
in Figure 5-2.

Figure 5-1. Monchrome’s Attribute

o(f0]JO0OfO|jO]O[|[O]O - no display

F 0 0 0 I 0 0 1 - underline

F 0 0 0 I 1 1 1 - white on black

F 1 1 1 0 0 0 0 J - black on white

Figure 5-2. Color Attribute Byte

F R|G|B I R|G]|B

\/\/\/ \/—V\/

l [ Foreground Color
Intensity

Background Color
Flashing

You can combine the different color bits to mix your own col

ors. For example, if blue and red are on at the same time, the

screen displays purple.
Let’s look at the basic flow of the program Flash_M. At

the start of the loop, AH is assigned the value of the normal,

white on black, screen attribute. AH is compared with the

attribute pointed to by the BX register. If AH and the attribute

are different, we use AH as the new attribute, changing the
screen attribute to normal.
If AH and the attribute are the same, we move the

reverse, black on white, attribute, into AH and use this as the
new attribute. Next, BX, the pointer into screen memory, is in-
cremented and the LOOP instruction executed. As mentioned
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above, screen memory is set up as a character byte followed
by an attribute byte, so we must add two to BX. We change
every other byte to get all of the attributes. Once this inner
loop is complete, we must manually decrement DX and jump
to LOOPO if it is not zero. When it is zero, we perform the
RET operation which returns us to DOS.

Flash_C is a little more complex. The bulk of the program
is the same; the only differences lie in the section which
changes the screen attribute. The first instruction retrieves the
current screen attribute. Next, 16 is added to the attribute byte.
This increments the background color by one. However, we do
not want to change the most significant bit, which controls the
flashing attribute of the screen. Here we can use a little trick;
remember that the most significant bit can be considered the
sign bit. If this sign bit is changed by the ADD operation, the
Overflow Flag (OF) is set, so if the OF is set, the attribute is
reloaded and the background color set to black. The rest is the
same as Flash_M.

Running FLASH

Assemble the program as FLASH.ASM. When complete, type
FLASH from the DOS prompt and press Enter. There may be
some picture snow or lightning on the color/graphics screen
when FLASH is executed in 80-column mode. This is normal.
The static can be eliminated if you use 40 columns. Remember
to be in a color mode, not a black-and-white mode. Execute
MODE CO40 or MODE CO80 before running FLASH just to
be sure (DOS 1.10 users must enter BASIC and use a SCREEN
0,1 and a WIDTH 40 or WIDTH 80 command).

If all goes well, the screen should flash for a few mo-
ments and the DOS prompt should return. If nothing happens,
and the DOS prompt does not return, the computer has prob-
ably locked up. Try resetting with the Ctrl-Alt-Del combina-
tion. If this does not work, you will have to turn the computer
off and back on. Check the program carefully before reassem-
bling. If the DOS prompt returns after a few seconds, but the
screen does not flash, check to be certain you are using the
correct version of FLASH. Monochrome screen adapter users
should have assembled Flash_M and color/graphics users the
Flash_C program. If you have both adapters, use the MODE
command from DOS to switch between the two displays
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before you execute the appropriate program. PCjr users should

‘have entered the Flash_C program.

If your compatible computer does not seem to be work-
ing, take a close look at the program before you assume the
hardware is at fault. Any of the full compatibles should be
able to execute these programs. If your machine is only
slightly compatible, the program may not work correctly.

Once you get the appropriate version of Flash running,
there are a number of modifications you can make to produce
your own version of Flash. You can change the number of
times the screen flashes by changing the constant FLASHES to
another value. In Flash_M, FLASHES should be an even
number if you want the screen to return to white on black; in
Flash_C, FLASHES should be a multiple of eight if you want
the screen to return to its original color. Try using Flash_M on
the color screen by changing the SCREEN segment to point to
the color screen. Try making the program flash only the top
half of the screen (easy) or only the bottom half (a little
harder).

Conditional Jumps

All 31 different conditional jumps are summarized in Table 5-
4. Note that there are really only 17 different conditional jump
instructions, but that some of the instructions have been given
more than one name. Some instructions have obvious aliases;
for example, JA (Jump if Above) is the same as JNBE (Jump if
Not Below or Equal to). Other instructions are less obvious: JC
is the same as JB. When you use DEBUG to unassemble pro-
grams, all of the conditional jumps will appear as the names
shown in Table 5-5 (since the instructions are identical, DE-
BUG has no way of knowing if your source code has JA or
JNBE).
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Table 5-4. The Conditional Jump Instructions
(* indicates conditional jumps for signed comparisons)

Operation
Name Full Explanation Jump if...

JA jump if above CF = 0and ZF = 0
JAE jump if above or equal CF =0

JB jump if below CF =1

JBE jump if below or equal CF = lorZF=1
j[@ jump on carry CF =1

JCXZ jump if CX zero X =0

JE jump if equal ZF = 1

*IG jump if greater ZF = 0 and SF = OF
*JGE jump if greater or equal SF = OF

*JL jump if less SF <> OF

*JLE jump if less or equal ZF = 1 or SF <> OF
JNA jump if not above CF = lorZF =1
JNAE jump if not above or equal CF = 1

JNB jump if not below CF =0

JNBE jump if not below or equal CF = 0 and ZF = 0
JNC jump if no carry CF =0

JNE jump if not equal ZF = 0

*ING jump if not greater ZF = 1 or SF<>OF
*INGE jump if not greater or equal SF <> OF

*INL jump if not less SF = OF

*INLE jump if not less or equal ~ZF = 0 and SF = OF
*INO jump if no overflow OF = 0

JNP jump if no parity PF = 0

JNS jump if no sign (positive) SF = 0

JNZ jump if not zero ZF = 0

*JO jump on overflow OF = 1

P jump on parity PF = 1

JPE jump if parity even PF = 1

JPO jump if parity odd PF = 0

*IS jump on sign (negative) SF =1

1Z jump on zero ZF = 1

CF—Carry Flag
OF—Overflow Flag
PF—Parity Flag
SF—Sign Flag
ZF—Zero Flag
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Table 5-5. Conditional Jumps and Their Aliases

(*—for comparisons of signed values)

DEBUG names Aliases

JA JNBE
JB JC, INAE
JBE JNA
*G JNLE
*JGE JNL
*JL JNGE
*JLE ING
JNB JAE, INC
INZ JNE
JPE P
JPO JNP
JZ JE
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CHAPTER

6

Subroutines and the

Stack

The stack is quite possibly one of the most useful and dy-
namic storage methods available to a computer. Many large
computers rely solely on stacks for data manipulation. In an
effort to clarify a stack’s design, many analogies have been ap-
plied to its operation. Writers have called on everything from
dishes at a coffee shop to a programmer’s cluttered desk.

Here we will use the analogy of cafeteria trays. The last
tray put on the stack is the first tray to come off. This makes
the pile of trays a last in, first out storage system, or LIFO for
short. The computer’s stack can be thought of as this pile of
trays. The computer puts trays down one by one, and when it
needs them again, it takes them back. Notice that a stack re-
verses the order of the trays.

Computer programmers have given names to the pro-
cesses of putting something onto the stack and of taking it
back. The putting on is called PUSHing data onto the stack,
and the taking back, POPping. The 8088 has a variety of
PUSH and POP operations.

Implementing the Stack

Two registers are used to manage the stack, the SP (Stack
Pointer) and the SS (Stack Segment). SP always points to the
last piece of data PUSHed onto the stack. It starts at the high-
est possible stack location and works its way down as infor-
mation is added to the stack. SP acts as an offset from the
base of the segment pointed to by the SS register (Figure 6-1).
(See Chapter 2 if you are unfamiliar with segment:offset
addressing.)
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Figure 6-1. SP Offset from SS

Higher Memory

«— Top of stack

Used Stack
«— SP points here

Offset {
«— SS points here

Lower Memory

The microprocessor (the 8088) handles the stack as words,
not as bytes. Only words can be PUSHed onto and POPped
off the stack. In a PUSH operation, the 8088 decrements SP
by two and stores the word at the memory location pointed to
by SS:SP. When the word needs to be POPped back, the 8088
retrieves the word pointed to by SS:SP and increments SP by
two. Generally, it is not very important to know the mechan-
ics of the stack; however, some types of programming require
a thorough understanding of stack manipulations (especially
when combining assembly language with Pascal or BASIC).

The maximum length of a stack is 64K (the addressing
limit of the SP register). For most machine language programs,
a stack of 256 bytes is sufficient. The DOS manual recom-
mends that you reserve at least 128 bytes beyond your
requirements if you use DOS functions (such as character
print). If the stack is too small, the results are unpredictable.
The problem is that the computer starts to store the PUSHed
data in memory that was not reserved for the stack. This
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memory may have been reserved for something else, probably
data, possibly the program itself. More often than not, the
computer will crash.

Declaring the Stack Segment

Almost all machine language programs require you to declare
a stack segment. The only exceptions are device drivers and
.COM files. You must specifically tell the assembler to declare
a stack segment, but you cannot have more than one stack
segment per program. All of the sample programs have de-
fined stack segments. Let’s take a closer look.

stack SEGMENT STACK
DW xxx DUP (?) ;where xxx can be any number
stack ENDS

The name of the stack segment is stack. The operand of
the pseudo-op SEGMENT, STACK, tells the assembler that we
are defining a stack segment. DW should be used since the
stack is defined as word-sized data. The xxx DUP (?) is a spe-
cial command that says to the assembler, “DUPlicate what’s
between the parentheses xxx times.” The question mark (?)
tells the assembler that the value stored at that location is un-
defined. The xxx can be any number which does not exceed
the maximum stack length. The stack segment can be up to
65,536 bytes long (or 32,768 words). The stack ENDS ends the
stack segment definition. In the sample programs we have
used:
stack SEGMENT STACK

DW 128 DUP(?)
stack ENDS

Here, we have defined the stack to be 128 words (256 bytes)
long.

Now you know how a stack works and how it’s defined.
Its use can be very powerful and convenient.

Subroutines

First off, you might ask, “What is a subroutine?”” This is diffi-
cult to answer, for it depends on your point of view. In a
sense, DOS considers all programs subroutines to itself, yet
parts of DOS can act as subroutines to your programs. How-
ever, it is possible to generalize. A subroutine is often a short
program which does one task. DOS, for example, includes
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subroutines which print text to the screen and control disk
files. These subroutines cannot execute alone. They need a
program to call them and give them information to work on.
You can think of these subroutines as helpers. They make the
task of programming easier and less time-consuming.

Subroutines are also used to break large programs into
smaller, more manageable sections. In such a program, each
subroutine handles a specific task and the main routine calls
each subroutine as it is needed. Breaking a large program into
smaller parts makes it easier to find bugs because each sub-
routine is responsible for a specific task. If something is not
working correctly, you know which routine is to blame.

It is often useful to include a comment header at the
beginning of your subroutines. The header should state the
routine’s name and purpose. It should also indicate which reg-
isters are preserved or which are destroyed. This way, you can
easily determine which registers are being altered and which
are maintained. Although it is nice to write subroutines which
alter no registers, this is often unnecessary. For example, if
your main routine does not use SI and DI, the program’s sub-
routines can use them freely without preserving them. If you
use these subroutines in another program which uses SI and
DI, however, the subroutines will need to preserve those reg-
isters for your new program to work correctly.

CALL and RET. The 8088 implements subroutines with
two instructions, CALL and RET. There are four types of
CALLs and four types of RETs. Fortunately, the assembler se-
lects the correct commands for us.

The CALL instruction is the machine language equivalent
of BASIC’s GOSUB command. As mentioned above, there are
four different CALL commands. They all have the same gen-
eral format:

CALL operand

where the operand is either a label (direct CALL) or an ad-
dressed memory location (indirect CALL).

The actual process of CALLing a subroutine is the same in
all cases. When the 8088 executes a CALL instruction, it
pushes the current position within the program on the stack,
and jumps to the specified routine. At the end of the routine, a
RET undoes the CALL. The computer pops the stack to re-
trieve its previous program position and resume execution
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where it left off. As routines call other routines, the computer
is said to be going into deeper subroutine levels (see Figure 6-
2). As each routine comes to an end, the RET command pops
the computer up one level. The CALL and RET instructions af-
fect none of the flags and only the SP, IP, and possibly CS
registers.

Figure 6-2. Subroutine Levels
Main CALL

N
level >
One level ~ CALL
down - RET
Two levels >
down RET

The near CALL, or a Direct Intra Segment CALL, is much
like a near JMP, in that the operand is a 16-bit displacement
to the called label. The actual calling mechanism works this
way: The IP (Instruction Pointer) register is pushed onto the
stack, then the new IP is calculated by adding a displacement
to the original IP. Program execution continues at this new po-
sition. Since this instruction alters only the IP, you cannot
move from one segment to another.

The operand of a near CALL is a label. It must have a
near attribute. Generally, this refers to the names of near
procedures (those procedures defined with the PROC NEAR
command). For more information about the PROC command,
see Chapter 14.

Far CALLs, or Inter Segment Direct CALLs, are very much
like far JMPs. The operand of a far CALL is a double word.
Note that this CALL is absolute, not relative. Far CALLs push
both the CS (Code Segment) and IP onto the stack. The con-
tents of the CS register are pushed first.

With a far CALL it is possible to CALL a subroutine in a
different code segment: The operand of a far CALL must have
a far attribute; in other words, it must be the name of a far
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procedure. Far procedures are defined with the PROC FAR
pseudo-op. See Chapter 14 for more details on the PROC
pseudo-op.

Indirect CALLs are similar to indirect JMPs. With indirect
CALLs, the address of the subroutine is not coded with the
instruction, but is held in a general register or a data table.
There are two indirect CALLs, one for Intra Segment CALLs
and another for Inter Segment CALLs. The indirect Intra Seg-
ment CALL is much like a near CALL since it pushes only IP
onto the stack. Indirect Inter Segment CALLs push both CS
and IP onto the stack. Advanced machine language pro-
grammers can use indirect CALLs just as BASIC programmers
use the ON/GOSUB construction.

There are basically two kinds of CALLs, near CALLs,
which push only IP onto the stack, and far CALLs which push
both CS and IP. As you may suspect, there are two kinds of
RETurns, one for near CALLs, and another for far CALLs. A
variation of the standard RET will be discussed with param-
eter passing.

The near RET instruction, also called an Intra Segment RE-
Turn, pops IP off the stack and thus terminates a near sub-
routine. A far RET {(also called an Inter Segment RETurn, or a
long RETurn) pops both CS and IP.

It is important that subroutines accessed with near CALLs
end with near RETs, and that routines called with far CALLs
end with far RETs. Imagine the chaos if a far RET were exe-
cuted after a near CALL. The IP register would be restored
correctly, but the CS register would take the value of whatever
was PUSHed onto the stack before the near CALL. The
microprocessor would begin executing at some random ad-
dress in memory. This would almost definitely crash the com-
puter. Fortunately, the assembler takes care of this detail for
us. RETs in PROC FAR-ENDP structures are made far RETs,
and RETs in a PROC NEAR-ENDP structure, near RETs.

Programs Are Far Procedures

You may now be wondering why all programs are defined as
far procedures. Clearly, it’s to force the assembler to make the
RET at the end of the program a far RET; but why? Notice
that the first instructions in every program are to push the DS
(the data segment) register and then a zero (via AX) onto the
stack. The reason for this can be explained as follows. When
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DOS transfers control of the computer to an .EXE file, it passes
some important information. DS and ES hold the base of the
program segment prefix. This prefix holds some critical data
for DOS while the program is executing.

To return to DOS, IP must be set to zero and CS to the
base of the program segment prefix. Since neither CS or IP
can be the destination of a MOV operation, the simplest way
to change them both is with a FAR RET operation.

The sequence

PUSH DS
MOV AX,0
PUSH AX

simulates a far CALL to our program. When the far RET is
performed, the microprocessor pops zero into IP and the base
of the program segment prefix into CS. It is also possible to
use an inter segment indirect JMP, but this is more complex
and requires more programming.

Our subroutines should all be near procedures. For this
reason, any program which includes its own subroutines must
be defined in at least two parts. One, the PROC FAR, is used
to hold the main program. The other, one or more PROC
NEAREs, is used to hold the subroutines.

Using Subroutines
Before you can use subroutines effectively, there are some
considerations that need to be examined. For example, how do
you pass information from the main program to the subroutine
and from the subroutine back to the main program? How do
you write subroutines so that they do not affect any registers?
A subroutine must often use registers to perform its op-
erations. In doing so, the original values contained in the reg-
isters are destroyed. But suppose the program calling the
subroutine stored some important value in an affected register?
In addition, some subroutines require that the registers be set
to certain values before they are called (DECIMAL_OUT from
“Primes,” for example, requires that AX be set to the number
to print). The original values of the registers must be stored,
either by the calling program or by the subroutine. You could
store the values in memory locations, but then you would
have to declare memory positions for the registers in the data
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segment. The simplest method is to PUSH the values of the
affected registers onto the stack, and POP them off afterwards.

PUSH. The format of the PUSH instruction is shown be-
low. The operand can be any register or memory location. It
cannot be an immediate value.

PUSH operand
Here are some examples of legal PUSH instructions:

PUSH CS
PUSH AX
PUSH SI
PUSH [BX +3]

Note that the 8088 can push only words onto the stack. No
provision is made for pushing bytes.

POP. The POP instruction takes an identical format.
Again, there is no provision for popping byte quantities from
the stack. Remember also that the stack returns values back-
wards. If you use

PUSH AX
PUSH BX
PUSH DX

you have to use

POP DX
POP BX
POP AX

to restore the registers correctly. To PUSH all of the registers,
you have to use something like

PUSH AX
PUSH BX
PUSH CX
PUSH DX
PUSH SI

PUSH DI
PUSH BP
PUSH DS
PUSH ES

All of the registers are pushed except SS, CS, SP, and IP, since
these must remain the same for the subroutine to work. To re-
store all of the registers, you would use:
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POP ES
POP DS
POP BP
POP DI
POP SI

POP DX
POP CX
POP BX
POP AX

It is not necessary to POP a value back into the register
that PUSHed it. You could (if you found it necessary) transfer
_a value via the stack as below.

(calculate a value in AX)
PUSH AX

(do some program)

POP BX

(and use the value)

If you look carefully at the DECIMAL_OUT routine in the
sample program Primes, you will find that it uses this method
to move a value from DX to AX. Often you will see programs
setting the segment registers via the stack. For example to
MOV DS,CS (an illegal operation), you could use

PUSH CS
POP DS

PUSHF and POPF. There are two specialized PUSH and
POP instructions. PUSHF pushes the flags register onto the
stack, and POPF pops it back. Although this may not be a
commonly used instruction, it is the only way you can store
the flags.

PUSHF and POPF are often used to change or examine
the status of the flags. There is no 8088 instruction to move
the entire flags register into another register. The only way to
examine all of the 8088’s flags is to PUSHF and POP the flags
word into another register as below.

PUSHF ;to get the flags
POP AX ;AX now holds the flags register

To move a value from a register to the flags, you could use
something like

PUSH AX ;AX holds the new flag values
POPF ;sets the flags register

The flags register can be broken down into bits as in Figure 6-3.
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Figure 6-3. The Flags Register

bit 15 bit 0

-l-(-1-10|D|I|T|S|Z|-|A|-|P] -|C

The following symbols are used: -, unused bit; A, Auxiliary
Carry flag (AF); C, Carry flag (CF); D, Direction flag (DF); I,
Interrupt enable/disable flag (IF); O, Overflow flag (OF); P,
Parity flag (PF); S, Sign flag (SF); T, Trap mode (single step)
flag (TF); Z, Zero flag (ZF).

Note that, using this technique, you can set several flags
(CF, DF, IF, etc.) at the same time. Generally, however, you
will want to set only the trap flag using this method. See
Chapter 11 for an example of this technique.

Parameter Passing

Subroutines often need to receive a value from the main rou-
tine. In addition, the subroutine sometimes needs to return a
value or indicate an error condition. There are four ways that
a value or condition can be passed from the main program to
the subroutine or vice versa. Information can be passed via a
register, a memory location, the flags, or the stack. All four
have their own advantages and disadvantages.

Using registers. Passing parameters via registers is by far
the simplest approach. You load a register with the value that
you want to pass and call the routine. For example, Primes
passes a value in AX to the DECIMAL_OUT routine. Al-
though this approach is simple, it might become difficult to
remember which routines take which registers. To alleviate
this problem, it is often convenient to add a list of the
parameter-passing registers to the comment header of the sub-
routine. This way you know which registers need to be filled
with what values.

Flags. Passing parameters via the flags is also very
convenient. Although you cannot pass a specific value, you
can pass a condition. The most convenient flag to use is the
carry flag (CF). There are three instructions that can be used to
assign a value to the carry flag, CLC, STC, and CMC. CLC
(CLear Carry) makes the carry flag zero. STC (SeT Carry)
makes the carry flag one. CMC (CoMplement Carry) NOTs
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the carry: If it is zero, it is made one; if it is one, it is made
zero.

Passing information via the carry flag is most convenient
when the subroutine must return a condition to the calling
program. Many DOS functions set the carry flag on return to
indicate that an error has occurred. Another register holds the
error number. If the carry flag is clear, there is no error. You
could do something like this with your subroutines. If the sub-
routine needs to indicate an error condition, it could set the
carry. The calling program needs only to perform a JC or JNC
to determine if an error was encountered. Remember that
none of the CALLs or RETs themselves affect any of the flags.

Memory locations. If you would like to pass a large num-
ber of values, it is most convenient to use memory locations.
Since it’s impossible to pass a table or a string from a register
to a subroutine, the most common technique is to pass the ad-
dress of the data in one of the registers (usually BX). This al-
lows the subroutine to maintain its independence from the
main program, while you pass a table or string as a parameter.
In the comment header of the routine you should include a
description of the data table. This way, you know how to for-
mat the table when you use the routine in another program.

Occasionally, it is convenient to pass just a few param-
eters via memory locations, especially when the parameters
are already stored in memory. Such is the case with OUTPUT
from Primes. The OUTPUT subroutine could have been writ-
ten to receive the parameters in different registers; however,
OUTPUT was not meant to be a general-purpose subroutine,
so it could rely on the Primes structure. DECIMAL_OUT,
however, which is called by OUTPUT, is a general-purpose
routine; it can be used anytime we want to print a binary
number in decimal.

Using the stack. The last method of transferring values
from the main program to the subroutine is via the stack. This
method of passing parameters is probably the most complex,
but it does offer some advantages over the other two systems.
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The basic principle is easy to understand: Push all of the
parameters you want to pass onto the stack before you call the
subroutine. Unfortunately, the routine which is called cannot
simply pop the values off the stack because the return address
is now on top of the stack. You could pop the return address
off the stack, pop the values, then push the return address
back onto the stack (as below), but there is a far more elegant
approach.

CALLER PUSH PARAM_ONE ;store parameter one
PUSH PARAM_TWO ;store parameter two

CALL ROUTINE ;call the routine
(more code) ;finish the program

ROUTINE PROC NEAR

POP AX ;get return address
POP SI ;get parameter two
POP DI ;get parameter one
PUSH AX ;restore return address
(do whatever) ;use the parameters
RET ;return to caller

ROUTINE ENDP

The BP (Base Pointer) register has, up to now, been unex-
plained. This register is used to address data in the stack. In its
default addressing scheme, it acts as an offset into the stack
segment (the segment pointed to by SS), just as [BX] can be
used to address memory in the data segment (the segment
pointed to by DS). To read values from the stack, we move
the SP (stack pointer) register into BP, then use BP as an offset
into the stack (see Figure 6-4). BP must be adjusted to point to
the correct data, however.
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Figure 6-4. Using BP to Address Data on the Stack

-—Top of stack

first word

second word

Used
stack
next to last word BP (SP + 2)
last word SS points here
Offset

SS points here
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As you can see from Figure 6-4, after moving SP into BP
we must add two to BP to address the last word stored on the
stack. Remember, the stack grows downward, from higher
memory locations to lower ones. For each additional word, we
must increment BP by two (if the addressing modes have you
confused, be patient; they are all explained in the next chap-
ter). Now examine the code below:

CALLER PUSH PARAM_ONE ;store parameter one
PUSH PARAM_TWO ;store parameter two

CALL ROUTINE ;call the routine

(more program) ;finish up
ROUTINE MOV BP,SP ;set BP

MOV SIL[BP+2] ;get parameter two

MOV DI,[BP+4] ;get parameter one

(do whatever) ;use the parameters

RET 4 ;return to caller

In this example, rather than pop the parameters off the
stack, we use BP as a pointer, and copy the parameters into SI
and DI for processing. SP does not change, so the stack
(including the parameters) remains unaltered.

Note the RET 4 at the end of this subroutine. Routines
which are passed parameters via the stack need some way of
removing them. The calling program could pop them off the
stack, but this lacks elegance. Instead, Intel has provided us
with a command which automatically pops parameters from
the stack when we return from a subroutine. This command,
RET n, comes in two forms. The first is an Intra Segment and
Add Immediate to Stack Pointer RET instruction. In other words,
it is a near RET which also pops off the number of bytes
specified in the operand
RET n
where 1 is a 16-bit displacement.

This kind of near RET pops IP off the stack and adds the
displacement to the stack pointer. For example, RET 2 would
return from the subroutine and pop two bytes (or one word)
off the stack. RET 16 would return and pop 16 bytes (or eight
words) off the stack.
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The second form of the RET n command works like the
first, but is used to return from far procedures rather than near
procedures. The label Inter Segment and Add Immediate to Stack
Pointer identifies this as a long RETurn.

Many compiled and interpreted languages (such as Pascal
and BASIC) use the stack to pass parameters. BASIC also uses
this method when machine language subroutines are called
with USR or CALL statements (see Chapter 10).

Bear in mind that it is also possible to use the stack to re-
turn values to a calling routine. The calling routine would then
pop the returned values off the stack (in this case, RET n
might not be used). Note, however, that the calling routine
must make room on the stack for the returned values if you
want to avoid popping and pushing the return address.

You might be wondering what advantages this system of-
fers over the other methods of passing parameters. The great-
est benefit comes in writing recursive routines, routines which
can call themselves. BASIC programmers will be completely
unfamiliar with this idea, since BASIC subroutines (unless
very cleverly written) cannot call themselves. In Pascal or
Logo, however, this is possible. Recursive routines are not im-
portant to beginning machine language programmers, but they
are very powerful, and particularly useful when you need to
analyze a large number of possibilities. The most common ex-
ample of a recursive routine finds the factorial of a number
(X!, the product of all the numbers from 1 to X).

Decimal Output

Now that you understand the stack and subroutines, look at
the DECIMAL_OUT routine in the program PRIMES.ASM
from Chapter 4. Before we get into the actual code, let’s con-
sider how we can convert a binary number into decimal. The
method used in DECIMAL_OUT is to repeatedly divide the
number to be printed by 10. This can be made clear with an
example.

Suppose we start with the number 567. After the first di-
vision by 10, the quotient will be 56, and the remainder 7.
Note that the least significant digit of 567 (the one’s digit) is
the remainder. Now, divide by 10 again: The remainder will
be 6 (the ten’s digit of the original number), and the quotient
5. It’s clear what is going on. When we divide by 10 again, the
quotient is 0, and the remainder 5. The entire number has
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been converted. The one drawback to this system is that the
digits are converted from the least significant to the most, but
we must print the numbers starting from the most significant
to the least. We can use the stack to reverse the order of the
digits.

The comment header at the beginning of this subroutine
says that it is passed the number to print in AX, and that CX,
AX, and DX are destroyed. In the first instruction of the rou-
tine, CX is set to zero. CX is used to count the number of dig-

" its that must be printed. Then CX is incremented by one. This

means that we will always print at least one digit. DX is set to
zero in preparation for the DIV by BASE. BASE is a variable
which holds the base of the printed number. If we make BASE
ten, the number will be printed in decimal; if BASE holds
eight, the number will be printed in octal (base 8). Next we
push DX onto the stack. Remember that DX holds the remain-
der of the division, the digit that we want to print. Then we
check AX (the quotient) to see if it's zero. If AX is zero, the en-
tire number has been converted, and we go to the part of the
routine which actually prints the number.

The printing part of the routine (labeled PRINT_DIGITS)
POPs the digits off the stack one by one, adds the ASCII
value of zero (to convert a number from 0 to 9 to a character
from 0 to 9), and calls the CHARACTER_OUT routine. Note
that CX holds the number of digits which were pushed onto
the stack, so the LOOP instruction will repeat until all of the
digits have been printed.

You can use this routine in your programs when you need
to print a binary number in decimal or some other base. Note
that you cannot use this routine to print a number in hex be-
cause the characters A through F do not follow character 9 in
the ASCII character set. See Chapter 7 for a routine to print
numbers in hex.

A Few Points to Remember

When you are using the stack and writing subroutines it is im-

portant to keep the following in mind:

« All PUSHes should have corresponding POPs (RET 7, or an
adjustment of the SP, such as ADD SP,n, can be substituted).
In other words, you don’t want to leave extra values on the
stack and you don’t want to POP more values off the stack
than you put on.
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» The computer uses the same stack for CALL/RET and
PUSH/POP. If you leave extra values on the stack, the com-
puter will use these values as the return address when it
leaves the subroutine. If you POP too many values off the
stack, you will lose one level of subroutines. Although you
can use this to bypass one level of RETurns by POPping the
return address off the stack, this style of programming is
risky and needlessly complex.

¢ It is not necessary to POP a value into the register that
PUSHed the value.

Programs which have stack trouble often refuse to stop
running (they seem to run fine, but then start executing over
again when they should stop), or they run for a while and
mysteriously crash the computer. If you seem to have a persis-
tent but elusive problem, check stack manipulations carefully.
Be particularly wary of PUSHing a register and jumping
around its POP. Nothing can cause more headaches than a
poorly managed stack.
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CHAPTER

7

Addressing Modes

At first glance, the great variety of addressing modes available
to the 8088 machine language programmer can be mind-
boggling. To complicate matters further, there are many ways
to request the same addressing mode of the assembler. You
will find, however, that the seemingly complex address modes
are quite straightforward.

There are six addressing modes available to the 8088. The
purpose of the different modes is to give the programmer a
variety of ways to determine an effective address, the address
of the memory location which is going to be examined.

An effective address has two components, a segment ad-
dress and an offset. The segment address is stored in one of
the four segment registers (CS, DS, ES, or SS). Remember,
these registers hold the addresses of your program’s code seg-
ment, data segment, extra segment, and stack segment. The
offset portion of the effective address can be a constant value,
the value of a register, the sum of a register and a constant
value, the sum of two registers, or the sum of two registers
and a constant value.

For all of the addressing modes, the segment address
marks the beginning of the segment, and the offset address
points to a location within the segment, relative to the
beginning.

Direct Mode Addressing

The first and simplest of the six addressing modes is direct
mode addressing. In this addressing mode, the offset is a con-
stant value. This constant is usually the address of a variable
which is calculated by the assembler and is relative to the
beginning (the base) of the segment it’s defined in. For ex-
ample, if the data segment were defined as

DATA SEGMENT
SOME_DATA DW 933,9265
MORE_DATA DW 5543,839
DATA ENDS
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the offset address of SOME_DATA would be calculated as 0.
SOME_DATA is the first variable defined, thus its address is
at the base of the segment DATA. On the other hand, the off-
set address of the second variable, MORE_DATA, is 4 because
MORE_DATA begins four bytes after the base of the segment
DATA (the pseudo-op DW defines words, which are two bytes
long).

gTo use direct mode addressing, simply use the name of a
variable. For example, to move the value of SOME_DATA into
AX, you could

MOV AX,SOME_DATA

Remember that SOME_DATA itself is a symbol that
represents an address in memory. The above operation moves
the word pointed to by SOME_DATA into AX. In other
words, it is something like the BASIC

AX = PEEK(SOME_DATA)

If you want to move the actual address of SOME_DATA into
AX (perform AX = SOME_DATA), you have to use

MOV AX,OFFSET SOME_DATA

The OFFSET command tells the assembler that you want AX
to hold the address of SOME_DATA, not the word
SOME_DATA points to.

For tables of data, it is sometimes useful to use this
format:

MOV AX,SOME_DATA[0]
where [0] is a displacement into the SOME_DATA table. Be
careful; this is not like a BASIC array. In machine language

the number between the brackets always refers to bytes. Since
SOME_DATA is made up of words, use

MOV AX,SOME_DATA[2]

to access the second word (9265) of the SOME_DATA table.
If you prefer, you can also use
MOV AX,SOME_DATA +2
where the constant 2 is clearly added to the address of
SOME_DATA.

For the sake of clarity, the above examples use the
instruction MOV, and show different addressing modes only
in the source operand. The same rules apply to any instruction
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which accepts addressing modes; and various addressing
modes can be used in the destination operand as well as the
source.

Register Indirect Mode Addressing
Only four of the registers can be used in register indirect
addressing: SI, DI, BX, and BP (source index, destination in-
dex, base, and base pointer). In register indirect mode address-
ing, the value contained in the register is used as the offset
address of the data. You must set the register to point to the
data you want to access.

Here are examples of this addressing mode, using each of
the four possible registers:

MOV AX,[SI]
MOV AX,[DI]
MOV AX,[BX]
MOV AX,[BP]

Of course, the destination operand can also use register in-
direct addressing:

ADD [BX],AX

MOV [DI],DL

SUB [BP,AH

It is important to remember that the 8088 cannot perform
“memory to memory’’ operations; thus the following com-
mands are illegal:

MOV [BX],[BP]
MOV SOME_DATA,[BX]

Programmers often use register indirect mode addressing
when they must access a one-dimensional array or table of
values. The following discussion provides examples of table
addressing.

Based Mode and Indexed Mode Addressing

Based mode addressing and indexed mode addressing are identi-
cal in concept; the only difference is the register used. Based
mode addressing uses one of the base registers (BX or BP),
while indexed mode addressing uses one of the index registers
(SI or DI). The basic principle of based mode/index mode
addressing is to add a constant to the contents of the register.
The sum becomes the offset portion of the effective address.
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The acceptable forms of based mode/indexed mode
addressing are numerous. The basic format is

MOV CX,[BX]+3
Another common format is
MOV CX,[BX+3]

Both of these take the value of BX, add 3, and use the sum as
the address of the data. The different formats are only for the
convenience of the programmer. The assembler doesn’t care
which format you use. The constant does not have to be a
positive number; the command

MOV CL,[BX-1]

is quite acceptable, and moves the byte below BX to the CL
register.
The constant can also be the name of a variable. Consider
the following data segment:
DATA SEGMENT
BYTE_DATA DB 1,3,3,7,5,2,94,9
WORD_DATA DW 848,664,2258,753,209
DATA ENDS
We can use either

MOV ALBYTE_DATA[BX]

or
MOV AL,[BYTE_DATA +BX]
to get the BX byte in the BYTE_DATA table. For example, if
BX holds 3, AL will hold the fourth byte of BYTE_DATA, or
the number 7.

Word-sized data presents a slight problem because all
addressing is based on bytes, not words. We can use

MOV AX,WORD_DATA[BX]
to address the table WORD_DATA, but BX needs to hold 0 to

get the first word, 2 to get the second, 4 to get the third, etc.
After executing

MOV BX,6
MOV AX,WORD_DATA|[BX]

AX holds 753.
Notice the similarity between based mode/index mode
addressing and register indirect mode addressing. In register
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indirect mode addressing, the value of a register alone is used
as the address of the data. With based mode/indexed mode
addressing, the value of a register is added to a constant, and
the sum is used as the address of the data. As with register in-
direct addressing, based mode/indexed mode addressing is
very useful in accessing a table or a one-dimensional array of
values.

Based Indexed Mode Addressing

You just saw how to form an address by adding a constant to
a register. You can also form an address by combining the
contents of two registers. With based indexed addressing the
contents of a base register (BX or BP) are added to the con-
tents of an index register (SI or DI). The resulting sum is used
as the address of the data. There are only four possible
combinations of these registers: BP + SI, BP + DI, BX + SI,
or BX + DI. However, each combination can be expressed in
four alternate forms. The assembler interprets these four ex-
pressions as identical:

MOV AX,[BP][SI]
MOV AX,[SI][BP]
MOV AX,[BP-+SI]
MOV AX,[SI+BP]

The most common use for this kind of addressing is in
accessing a two-dimensional array (an array with two sub-
scripts). For example, the base register could hold the address
of the beginning of a row, while the index register could hold
the number of the column we are trying to access. In Figure 7-
1, BX holds the address of the row, and SI holds the number
of the column we are trying to address.

Based Indexed Mode with Displacement Addressing
The last addressing mode available to the machine language
programmer is called based indexed mode with displacement
addressing. This addressing mode is simply a combination of
the last two addressing modes. First the contents of two reg-
isters are combined; then a constant is added to the sum of the
registers to form the effective address.
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Figure 7-1. Two-Dimensional Table Access Using Based
Indexed Addressing

Values for
0 1 2 3 SI

12

Values
for BX

The assembler has a variety of possible formats for based
indexed mode with displacement addressing:
MOV AX,[BX+DI+12] ;the three can appear in any order
MOV AX,[BX+12+DI]
MOV AX,[12+DI+BX] jetc.
MOV AX,[DI+12][BX] ;or broken up in a variety of ways
MOV AX,[BX+12][DI]
MOV AX,8+[BX][DI]+4 ;the constant can be in two parts
MOV AX,12+[BX][DI] ;or just in the beginning
and they go on and on. To the assembler, all of these instruc-
tions are identical.

Often, the value of the constant is the address of a
variable:

MOV AX,ANY_DATA[BP][DI]
MOV AX,[ANY_DATA +BP+DI]

If you like, you can add another constant (beyond the address
of the variable):

MOV AX,ANY_DATA[BX][SI]+14

As with based indexed addressing, based indexed with

displacement addressing can be useful when accessing a two-
dimensional array.
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The names of the different addressing modes we have
given here might be called the official Intel names. It is far
more important to understand how they work than to memo-
rize the names. Table 7-1 at the end of the chapter lists all of
the addressing modes and their possible register combinations.
Note that the format of the operand is the one used by
DEBUG.

Eliminating Ambiguity: The PTR Instruction
Remember that any of the addressing modes described above
can be used as the source or the destination operand of an
instruction (but not both at the same time). Remember also
that the source can be an immediate value, and that a register
can act as either the source or the destination. When one op-
erand is an immediate value, the size of the operation is some-
times ambiguous. For example, in

CMP [BX],12H
the assembler has no way of knowing if [BX] points to a word

or a byte. If you try this, the assembler will respond with error
35 (Operand must have size). Note that the error for
CMP [BX],1234H
is different. If you try this, you will get error 50 (Value is out
of range), because the word 1234H is too large for the ex-
pected use (comparison with the byte-sized memory location
addressed by [BX]).

When the size of an operation is ambiguous, the PTR
instruction is used to clarify the instruction. Our first statement
above must be replaced with

CMP BYTE PTR [BX],12H
if [BX] points to a byte, or with
CMP WORD PTR [BX},12H

if [BX] points to a word. However, the assembler can make
certain assumptions. If we define a variable in our data seg-
ment as

MORE_INFO DW 5142,3387,9808

the instruction

CMP MORE_INFOI[SI},43H

is not ambiguous. MORE_INFO is defined as word data, so
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the assembler assumes that [SI] points to a word. If, however,
you want to compare 43H to the byte pointed to by [SI], you
can override the assembler’s assumption with

CMP BYTE PTR MORE_INFOI[SI},43H
There is another method which is discussed in Chapter 15.

LDS/LES and the DD Pseudo-op

There are two very specialized instructions that are used to
load the DS and ES segment registers with values, LDS (Load
Data Segment) and LES (Load Extra Segment). The format for
these instructions is

LDS destination,source
LES destination,source

where destination is any general register and the source is a
memory location addressed by one of the methods described
above. The instruction moves the word pointed to by the
source into the destination register. The following (higher ad-
dressed) word is moved into DS (if LDS is used), or ES (if LES
is used). Here are some examples:

LDS SL,DOUBLE_WORD_DATA[BX][DI]+2

LES DL,DWORD PTR [BP][DI]

LES BX,DWORD PTR [BX]

LDS BP,DWORD PTR [BX]+4

If you do not specify DWORD PTR, the assembler will
give you error 57 (Illegal size for item). The addressed mem-
ory location must be defined with the DD (Define Double
word) pseudo-op. The operands of the DD pseudo-op can be a
label or a constant value. See the examples below.

DOUBLE_WORD_DATA DD FAR_LABEL,FAR_PROC ;FAR labels
DD 1343234,432343 ;constants

LDS and LES can be useful if your program has more

than one data segment. Remember to include an ASSUME
statement when DS or ES is changed.

Segment Overrides

All memory access is performed using an offset into a seg-
ment. The segments are defined by the four segment registers.
Machine language programs are addressed using the IP as an
offset into the segment defined by the CS register. The stack is
addressed using the SP register as an offset into the segment
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defined by the SS register. Most data is addressed using an
offset into the segment defined by the DS register. All of the
addressing modes described above are offset into the data seg-
ment, except when BP is involved. When BP is used, the offset
is added to the SS, not the DS register. In other words, BP is
generally used to access the stack segment.

However, it is not mandatory to use DS or SS. You can
tell the 8088 which segment register to use for addressing data
with a segment override command. A segment override com-
mand is sometimes called a segment prefix command, or just a
SEG command. The segment override tells the 8088 to use a
specific segment register when it addresses memory. There
are four segment override commands, one for each segment
register:

CS:
SS:
DS:
ES:

The segment override is often included with the addressing
mode. For example, if the BP register is used to address data
in the data segment rather than the stack segment, you can
use something like

MOV AX,DS:[BP]

MOV AX,DS:[BP+DI]

If the PTR command is used, it should appear before any seg-
ment overrides, as in

MOV BYTE PTR ES:[BX],0
CMP WORD PTR CS:[DI],15H

Bear in mind that the selection of the segment is generally
automatic. The assembler uses the ASSUME pseudo-op to
determine which segment register is used to address specific
data. Consider the following data segment declarations:

DATA1 SEGMENT

FIRST DW 1,2,34

SOME DB 'MORE DATA’
DATA1 ENDS

DATA2 SEGMENT

SECOND DW 0AH,0BH,0CH,0DH

THIRD DB ‘RUNNING OUT OF IDEAS’
DATA2 ENDS
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and the ASSUME:
ASSUME ES:DATA1,DS:DATA2

Now, whenever FIRST or SOME is accessed, the ES register
will be used as the segment register. All instructions involving
the FIRST or SOME labels will have an extra segment over-
ride. Any access to DATA2 uses the DS register. For example:

MOV AXFIRST[BP] ;even though BP usually uses SS
If you prefer, you can also use:

MOV AX,ES:[BP]
MOV AX,DATA1:[BP]

All three of these examples use ES as the segment register.
The following

MOV AX,SECONDI[BP] ;BP is now using DS as segment register
MOV AX,DS:[BP]

MOV AX,DATA2:[BP]

use DS rather than ES. Specifying a label name, a segment
name, or a segment register tells the assembler which segment
register to use. However, in

MOV BP,OFFSET SOME
MOV AX,[BP]

MOV AX,[BP] is ambiguous. The assembler has no way of
knowing if you want to use DS, ES, or SS as the segment reg-
ister; thus the offset held in [BP] might point to an undesired
location. You must specifically tell the assembler which seg-
ment register to use:

MOV BP,OFFSET SOME
MOV AX,ES:[BP]

If you do not specify a segment register, the assembler will as-
sume the default segment. The default segment register is DS
unless BP is involved, in which case the default is SS. Again,
the segment assignment is generally automatic, but you must
be certain that you are communicating your ideas to the
assembler correctly, to avoid unpleasant surprises.

There are many uses for segment overrides. Anytime the
BP register is used to access data in the data segment, an over-
ride is used. However, there are times when you might want
to use BX or DI to access the stack segment, or perhaps use BP
and SI to address something in the ES (Extra Segment). You
can even store data in the code segment and use the segment
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override to access the data properly (see “Hexconv,” the
sample program at the end of this chapter).

Special Consideration of the Segment Registers
The segment registers cannot be used as operands in any
instructions except MOV, PUSH, and POP. In other words,
the segment registers cannot be used in operations such as
ADD or SUB.

When the segment registers are the destination of the
MOV instruction, the source operand cannot be an immediate
value. The source can be any other register (except another
segment register) or an addressed memory location. Perhaps
this was designed for our safety. We wouldn’t want a program
to haphazardly change the values of a segment register.

Specialized Addressing

There are three rather specialized but useful instructions that

are related to memory addressing. These are LEA (Load Effec-

tive Address), XCHG (eXCHanGe), and XLAT (translate).
LEA. The Load Effective Address instruction calculates an

address and moves the calculated address into the specified

register. LEA takes the general format

LEA destination,source

where the destination can be any general word-sized register,
and the source is any addressed memory location. Remember
that the address, not the value contained in the addressed
memory location, is moved into the destination register. For
example:

LEA BX,[SI][BP]+10

moves the quantity SI + BP + 10 into BX. It does not move
the word pointed to by SI + BP + 10 into BX. The purpose of
this instruction is to allow offsets to be subscripted with reg-

isters. This is not permitted with the standard MOV instruc-
tion. For example,

MOV BX,OFFSET SOME_DATA[BX]
is illegal; you must use instead

LEA BX,SOME_DATA[BX] ;get the offset
MOV BX,[BX] ;load the data in BX
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You can also use LEA if more than two subscripting vari-
ables are required. You might use something like

LEA BX,MORE_DATA[BX][DI]
MOV AX,[BX][SI]

if what you really wanted was MORE_DATA[BX+DI+SI], a
nonexistent addressing mode. In this case, the LEA instruction
replaces the rather awkward

ADD BX,DI
MOV AX,MORE_DATA[BX][SI]

which is somewhat unclear.

You can also use LEA if you need to temporarily adjust
an offset. For example, you might write a program which
needs to address the memory around SI-16, in which case, it
would be to your advantage to use:

LEA DI,[SI-16]

and use DI for SI-16. This simplifies the code and may make
it easier to understand and follow.

XCHG. The exchange operation is much like the SWAP
operation in BASIC. XCHG takes the format

XCHG destination,source

and switches the contents of the source and destination. The
source and destination can be any general byte or word reg-
ister, or any addressed memory location. You cannot XCHG
two memory locations, so one operand of XCHG must always
be a register. No flags are affected by XCHG.

Remember that this operation is more complex than
MOV. MOV copies a value from the source to the destination,
without destroying the contents of the source. XCHG switches
the two; what was in the destination is now in the source, and
what was in the source is now in the destination.

XLAT. XLAT takes the general form

XLAT source-table

It is a one-byte instruction used to retrieve single bytes from a
table of data. The source-table operand is only for the assem-
bler. When you use DEBUG, XLAT will appear alone on a
line. XLAT “translates” a byte through a table lookup proce-
dure. The BX register must hold the address of the table, and
AL the byte which is being translated. AL is used as an offset
into the table, and the byte which is addressed is loaded into
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AL. The old AL is lost. The closest approximation of XLAT’s
addressing is

MOV AL,[BX][AL] ;this is illegal, you must use XLAT

The source-table must be defined as a byte table; other-
wise, an error from the assembler will result. Using XLAT is
rather cumbersome, but straightforward.

MOV ALBYTE_TO_BE_TRANSLATED ;set byte to translate
MOV BX,OFFSET TABLE_NAME ;set base of table
XLAT TABLE_NAME ;do translation

You can use LEA BX,TABLE_NAME, rather than MOV
BX,OFFSET TABLE_NAME if you so desire. When this code
fragment is executed, AL will hold the translated value. Note
that XLAT affects none of the flags.

XLAT will only translate byte-sized quantities. Because of
this limitation, the length of the translation table is limited to
256 bytes. You do not need to create a table which is 256
bytes long; however, neither the 8088 nor the assembler
makes any boundary checks on access to the table. Boundary
checks are the responsibility of the programmer. The sample
program Hexconv uses XLAT with a short 16-byte table.

Using XLAT
Our sample program for this chapter uses the XLAT instruc-
tion in the process of converting a binary word into ASCII hex
digits. The number is printed on the screen. The routine is
given the number to print in AX.

WORD_OUT begins by saving the registers which it uses.
CH is used to count the number of hex digits that we must
convert, and CL is set to the number of rotates to perform
(ROL will be explained in the next chapter). Next, AX is
stored. We extract the lowest nybble (the nybble to convert) by
ANDing it with 15, set the base of the ASCII table (notice that
the table is in the code segment, not the data segment), and
perform XLAT. AL, which held a number from 0 to 15, now
holds an ASCII digit. We print the digit, recover AX, and
check to see if all of the nybbles have been converted. If they
have, we restore all the stored registers, and return to the call-
ing program. ‘

The sample calling program is not very complex; it just
sends WORD_OUT all of the numbers from 0 to FFFFH. If CX
is 0 after the INC CX command, then we have gone through
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all of the numbers and CX has cycled back to 0. The program
can be stopped at any time by pressing Ctrl-Break (or Fn-
Break on the PCjr).

WORD_OUT can be used in any of your programs which
need to output hex numbers—simply extract the routine from
this program and insert it into yours. Likewise, you can extract
the DECIMAL_OUT routine from the “Primes” program if
you need to print numbers in decimal. When you do so, don’t
forget to copy the routine CHARACTER_OUT as well.

Table 7-1. Table of Addressing Modes and Possible
Register Arrangements

Addressing Mode Possible arrangements

Direct (label)

displacement
Register Indirect [BX]

[BP]

[SI]

[D1]
Based BX+n]
BP +n]
Indexed SI+n]
DI+n]
Based Indexed BX+SI]
BX+DI]
BP+SI]
BP+DI]
Based Indexed with Displacement [BX+SI+n]
BX+DI+n]
[BP+SI+n]
[BP+DI+n]

n represents a signed 8- or 16-bit displacement
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8

Advanced Arithmetic

As you become a more proficient programmer, you may find
that 16 bits is not enough room to store all of your data. After
all, limiting your calculations to the numbers from —32,768 to
32,767 (or 0 to 65,535 for unsigned numbers) can be constrict-
ing. In this section you will learn how 16-bit words can be
chained together into 32-bit (or even 64-bit) quantities.

Adding Multiword Numbers

To understand how the computer can add two multiword
numbers together, consider how we add two multidigit num-
bers. For example, when adding the numbers 17 and 25, first
add the one’s digits: 7 plus 5 equals 12. The ten’s part of our
partial sum is the carry into the next digit. In other words, we
have to carry a 1 into the next (more significant) digit. When
adding the ten’s digits together, remember to include the
carry. Summing up, the 1, the 2, and the extra 1 from the
carry make 4. Remember, this is four 10’s. Our complete sum
is 42. In our example, we carried from one digit to the next.
The 8088 uses the carry flag to carry from one word (or byte)
to the next.

When the microprocessor performs an ADD, however, it
does not take the carry flag into account. A second addition
instruction, ADC (ADd with Carry), is used when the state of
the carry flag must be considered. In all other respects, such as
possible operands and resulting flags, ADC is identical to
ADD. Using ADD with ADC, we can chain bytes or words to-
gether into very large numbers.

For example, to add a 32-bit number stored in AX:DX (AX
holds the least significant word, and DX the more significant
word) to another in BX:CX (BX holds the least significant
word), you could use the following code (this stores the result
in BX:CX):

ADD BX,AX ;add the less significant words together...
ADC CX,DX ;...and the more significant words
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Note that you must start with the least significant and proceed
to the most significant word.

If you need even larger numbers (say 64-bit words), you
can use a loop to add them together. Consider this example
(for MASM only):

[in your data segment]

NUMBER_ONE DQ 1348176354  ;define a 64-bit word
NUMBER_TWO DQ 7564627653  ;define another
SUM DQ? ;undetermined value for sum
[in your code segment]
MOV CX,4 ;number of words to add
;together
MOV BX,0 ;point to least significant word
CLC ;80 first ADC is like an ADD
L1: MOV AX,WORD PTR NUMBER_ONE|[BX]
;add the two...
ADC AX,WORD PTR NUMBER_TWO[BX]
;...corresponding...

MOV WORD PTR SUM[BX],AX
;...words together

INC BX ;point to next significant word
INC BX
LOOP L1 ;finish them all

The DQ pseudo-op defines a 64-bit word (see Chapter 14 for
more details). Two INC BX instructions are used to add two to
BX. The ADD instruction cannot be used because it changes
the state of the carry flag; INC and DEC do not affect the
carry flag. Also notice that the carry flag was cleared (CLC)
before entering the loop. If the carry is clear, ADC is just like
ADD.

Subtracting Multiword Numbers
Subtracting two multiword numbers is just as simple as add-
ing them. In subtraction, however, the carry flag is used to in-
dicate a borrow into the highest bit rather than a carry.
Consider how we subtract two multidigit numbers. To
subtract 27 from 50, first subtract the ones. 7 cannot be sub-
tracted from 0, so we borrow a 10 from the next higher digit;
10 minus 7 equals 3. When subtracting the ten’s place, 1 must
be taken for the 10 borrowed earlier. Thus, 5 minus 2, minus
another 1 for the borrow, leaves 2. Remember, this is two
10’s. The difference is 23. The 8088 uses the carry flag to in-
dicate a borrow from one word (or byte) to the next.

124




8
Advanced Arithmetic

When we use the SUB instruction, however, the
microprocessor does not consider the state of the carry flag
when it subtracts. You must use the SBB (SuBtract with Bor-
row) operation if you want the microprocessor to take the
state of the carry flag into account. If the carry flag is set (in-
dicating there was a borrow), SBB decrements the resulting
difference by one to take care of the borrow. SUB and SBB are
identical in terms of how they set the flags and the operands
they take. If the carry flag is clear (indicating no borrow), SBB
is just like SUB. We can subtract two multiword values using
SUB with SBB.

For example, if we want to subtract two 32-bit words, one
stored in AX:DX, the other in BX:CX (AX and BX hold the
least significant word; the result is stored in BX:CX), we can
use:

SUB BX,AX ;subtract the least significant words...
SBB CX,DX ;..and the more significant words

As with multiword addition, you must begin subtracting with
the least significant word and proceed to the most significant.
If you need larger numbers, say 64-bit quantities, you can use
a loop structure as shown above in the 64-bit word addition;
just change all of the ADCs to SBBs.

Comparing Multiword Numbers

When dealing with multiword numbers it is often convenient
to compare them with other multiword numbers. The tech-
niques are quite easy to understand. Consider how you would
compare two multidigit numbers. Suppose you were asked
which is larger, 52 or 27. Clearly, 52 is larger. All you had to
do was look at the ten’s digit (the most significant digit); you
didn’t need to look at the one’s digit to know that 52 is larger
than 27. Now, suppose you were asked how to compare 29
and 22. This time, the ten’s digits are the same; you have to
inspect the one’s place to determine which is larger.

The same techniques are used in programs that compare
two multiword numbers. Start by comparing the most signifi-
cant words. If they are the same, check the next less signifi-
cant words. Clearly, if all of the words are the same, the two
numbers are equal. The following code can be used to com-
pare two double words; one is stored in AX:DX and the other
in BX:CX:
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CMP DX,CX

JNE DO_CONDITIONAL

CMP AX,BX
DO_CONDITIONAL: JA AX_DX_ABOVE_BX_CX

Converting Between Formats

When your program uses many different number sizes (bytes,
words, and double words), it often becomes necessary to con-
vert between them. To convert unsigned numbers, you simply
put a zero into the more significant part of the number
(whether byte or word). For example, you would use MOV
AH,0 to convert an unsigned byte in AL into an unsigned
word in AX.

For converting signed numbers, the 8088 provides two
instructions, one to convert a byte to a word (CBW) and an-
other to convert a word into a double word (CWD). Neither
CBW (Convert Byte to Word) nor CWD (Convert Word to
Double word) takes an operand. CBW converts the byte in AL
into a word in AX. CWD converts the word in AX into a
double word stored in AX and DX (DX holds the more signifi-
cant word). Because their effect is to extend from smaller to
larger sizes, CBW and CWD are also known as sign extend
instructions. These operations are most often used before
signed division, when a signed word is divided by another
signed word, or a signed byte is divided by another signed
byte. For example, to divide a signed word in AX by another
signed word in BX:

CWD ;sign extend AX into DX
IDIV BX ;divide AX:DX by the signed word in BX

You can use the techniques discussed above to perform
many elaborate mathematical operations. By chaining bytes or
words together, you can represent extremely large numbers.
However, there are other ways of representing numbers
within the 8088 microprocessor.

Binary-Coded Decimal (BCD)

The 8088 provides three methods of storing numeric data. We
have already discussed pure binary. The other two systems are
powerful extensions of the binary system.

The basic principle of these “new” numeric data storage
techniques revolves around the idea of binary-coded decimal
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(BCD) numbers. In Chapter 2 you learned that computers
store all of their numbers in binary. While this is convenient
for the computer, humans generally find it difficult to under-
stand, and even more difficult to convert to decimal. To assist
the programmer, the 8088 has been designed to use BCD as
well as pure binary. In BCD, each decimal digit is stored as a
four-bit binary number. Look, for example, at Figure 8-1.

Figure 8-1. BCD, Hex, and Binary

Binary Hex BCD
0000 0 0

0001 1 1

0010 2 2

0011 3 3

1000 8 8

1001 9 9

1010 A undefined
1011 B undefined
etc.

Notice that only the hex digits 0 to 9 are defined in BCD.
The hex digits A to F are undefined, and represent no value in
BCD. This type of numeric storage is convenient because it is
very easy to convert a BCD number into ASCII decimal. Each
four-bit number represents one decimal digit.

The 8088 uses the BCD storage technique in two ways,
packed and unpacked. In unpacked storage, each digit is given
an entire byte, the upper nybble is unused. IBM and Intel refer
to this kind of numeric storage as ASCII. Using this method,
you can store the numbers from 0 to 9 in one byte. This is far
less than is possible using binary (0 to 255), but it is extremely
easy to convert unpacked BCD into conventional ASCII (just
add 48, the ASCII code for the zero character, to the number).

Defining unpacked BCD data in a program is fairly sim-
ple. Since only the digits from 0 to 9 are valid, the simplest
method is to use the DB pseudo-op.

UNPACKED_DATA DB 5,3,1 ;defines 135
Unpacked BCD digits are best defined starting from the least
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significant digit and ending with the most significant. Unfortu-
nately, it is somewhat confusing because the numbers must be
read backwards.

You can also use the DW command, as in:

UNPACKED_WORD_DATA
DW 0301h ;defines 31 (unpacked)

Remember that the assembler automatically places the less
significant byte of a word first, so the order of the digits will
be correct if you use DW.

In packed BCD data, both the upper and lower nybbles
are used to hold decimal digits—two BCD digits per byte. This
kind of number storage is referred to as decimal in IBM and
Intel literature. Packed BCD number storage allows you to
store the numbers from 0 to 99 in a single byte. This is more
than unpacked BCD storage, but it is also more difficult to
convert packed BCD numbers into ASCII for output. The
methods for this are outlined in the discussion on bit shifting
later in this chapter.

There are two data-defining pseudo-ops you can use to
define packed BCD data. DB can be used as follows:
PACKED_BCD_DATA DB 12h,43h ;defines 1243 or 4312
With packed BCD numbers, it is more conventional to have
the less significant byte follow the more significant. Note that
this is the opposite to unpacked BCD numbers.

The DT pseudo-op is designed specifically to define
packed BCD data. Note that this command is not available
with ASM, the Small Assembler. DT (for Define Ten bytes) will
define 18 BCD digits. The first byte is used to hold the sign
(O0OH is positive, 80H is negative); the other nine, the data.
The data is stored as most significant first; the last byte holds
the least significant digits. For example:

LARGE_DATA DT 7893146

becomes

00 00 00 00 00 00 07 89 31 46

A negative number, defined with
NEGATIVE_EXAMPLE DT -125368953553
would assemble as:

80 00 00 00 12 53 68 95 35 53
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If you use this command, you will have to write special
addition and subtraction routines which handle the sign of the
number. It was actually designed to be used with the 8087
Numeric Data Processor. Note that you can define only 18
digits; defining more results in a 29:Division by 0 or overflow
error from the assembler.

Using BCD Math

Unlike some microprocessors (such as the 6502), the 8088
does not have decimal or ASCII math modes. Instead, an
adjustment instruction is needed before or after each
arithmetic operation (ADD, SUB, MUL, DIV, etc.). Note that it
is the responsibility of the programmer to call these instruc-
tions. There is no way to make the microprocessor perform all
of the mathematical operations in a BCD mode. There are six
adjustment instructions available; four pertain to ASCII math,
and two to decimal math.

AAA (ASCII Adjust for Addition). The AAA instruction
performs an ASCII adjustment on the result of an addition.
The instruction takes no operands and always adjusts the AL
register. Only the lower nybble of AL is considered. If the
BCD digit held in AL is valid, the upper nybble is cleared, as
are CF and AF. If the BCD digit held in AL is not valid (it is
hex A to F), the digit is adjusted to a valid digit, AH is in-
cremented by one (to handle the carry), CF and AF are set (to
indicate a carry), and the upper nybble of AL is cleared.

For example, you would use

ADD ALBL
AAA

if you are adding two valid unpacked BCD numbers stored in
AL and BL. If the sum of AL and BL is 9 or less, AAA appears
to do nothing. If the resulting sum is greater than 9, AAA ad-
justs the sum by adding 6 (AA becomes 0, BH becomes 1,
etc.), AH is incremented by 1, and CF and AF are set. To
chain many unpacked BCD additions together you could use:

[in the data segment]

SMALL_1 DB 4,0 ;4 (least significant digit first)
SMALL_2 DB 7,0 ;7 as unpacked BCD data
SMALL_SUM DB?? ;undefined variable to hold sum

[in the code segment]
MOV AX,WORD PTR SMALL_1 ;add the two numbers together
ADD AX,WORD PTR SMALL_2
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AAA ;ASCII adjust lower digit
MOV SMALL_SUM]0] AL ;store adjusted digit

MOV AL AH ;adjust the other digit
AAA

MOV SMALL_SUM]J1] AL ;store adjusted higher digit

Notice that 16-bit addition is used. The way the numbers are
added is unimportant. It is easier to add the numbers together
first, and then adjust the sum. Any carry resulting from AAA
is handled automatically because the next higher digit is al-
ready stored in AH. When AAA performs a carry (if the digit
is not valid), it increments the AH by one. AH is moved into
AL and then adjusted itself. Any carry resulting from this sec-
ond adjustment indicates an overflow situation, and another
byte is needed to hold the sum.

This method is fine for small BCD numbers, but using it
with larger numbers would require a great deal of code. A
loop is more efficient, as the example below demonstrates.

[in the data segment]

ONE_NUMBER DB 2,5,1,2,50 ;52152 in unpacked
form

TWO_NUMBER DB 0,4,6,8,0,0 ;8640 in unpacked
form

SUM DB 6 DUP(?) ;undefined sum of

two numbers
[and as your code]

MOV CX,6 ;number of digits to
add together

MOV BX,0 ;point to the least
significant digit

CLC ;simulate “ADD” for
first ADC

L1: MOV AL,ONE_NUMBER[BX] ;put one digit in AL

ADC AL, TWO_NUMBER[BX] ;add other digit to it

MOV SUM|BX], AL ;store the sum

INC BX ;point to next higher
digit

LOOP L1 ;do all of the digits

MOV CX,6 ;number of digits

MOV BX,0 ;point to least signifi-
cant digit

MOV AL,SUM[BX] ;get least significant
digit of sum

L2: MOV AH,SUM|BX+1] ;put next higher digit

in AH

AAA ;perform ASCII
adjust
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MOV SUM[BX] AL ;store the adjusted
sum

MOV AL AH ;move next digit into
AL

INC BX ;point to next higher
digit

LOOP L2 ;do all of the digits

This code performs the same operations as the previous ex-
ample, only this time the operations are performed in a loop
rather than in a straight line. Note that the entire number is
added together first, then the entire sum is adjusted. This is
only one illustration of how the AAA instruction can be used
to sum and adjust multidigit numbers.

AAS (ASCII Adjust for Subtraction). This instruction-is
the subtraction equivalent of AAA. Like AAA, AAS does not
take an operand; it always performs an ASCII adjustment on
the AL register. If the unpacked BCD digit in AL is legal, AAS
clears the upper nybble of AL and clears CF and AF. If the
digit is not legal, AAS sets CF and AF, clears the upper nybble
of AL, and decrements AH by 1.

Illegal digits are always the result of an ASCII subtraction
when the result is negative. AAS is designed to cope with the
problem of negative BCD numbers. In Chapter 4, we used the
analogy of a counter on a tape player to explain negative bi-
nary numbers. We said that 999 was like —1 (999 is one count
behind 0). A similar method is used to store negative numbers
in BCD.

Using AAS is just as simple as using AAA. For single-
digit applications, you could use code similar to the following
if you wanted to subtract an unpacked BCD digit in BL from
one in AL:

SUB AL,BL
AAS

For larger quantities, you will have to chain AAS instructions
together, as we chained AAA instructions together in the pre-
vious section. For very large quantities, it is convenient to use
loops as we did above. Of course, for subtraction you would
substitute SUB for ADD, SBB for ADC, and AAS for AAA.
AAM (ASCII Adjust for Multiplication). AAM is used to
convert the result of a multiplication into two valid BCD dig-
its. This only applies to AL, so it is used after an eight-bit
multiplication. After AAM is performed, the lower digit of the
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product is stored in AL, and the upper digit in AH. The pre-
vious contents of AH are lost. Using AAM is very straight-
forward; for example, to multiply an unpacked BCD digit in
AL by another in BL, use

MUL BL ;one of the operands for MUL is always AL
AAM

AAM will take the product of the MUL instruction and con-
vert it into two valid BCD digits; the least significant in AL,
and the more significant in AH. For BCD multiplication, you
must always use MUL, never IMUL. You can chain MULs to-
gether (like you can chain ADDs and SUBs), but the tech-
niques are rather difficult.

AAM can also be used anytime you would like to convert
a binary number from 0 to 99 into two unpacked BCD num-
bers, for a simple decimal output routine for example. An out-
put routine such as this is shown below. If AL does not
contain a binary number from 0 to 99, AAM returns invalid
BCD digits; no flags are set to indicate any kind of error.

AAM ;AL holds the number to print

ADD AX,'00 ;add ASCII zero to both unpacked digits
PUSH AX ;save AX

MOV AL,AH ;output the more significant digit first
CALL BYTE_OUT ;print character in AL

POP AX ;retrieve AX

CALL BYTE_OUT ;print the less significant digit

AAD (ASCII Adjust for Division). Unlike the other
ASCII adjust instructions, AAD is used before the mathemat-
ical operation. AAD converts the two unpacked BCD digits
stored in AL and AH (AL holds the least significant digit) into
a binary number in AL. AH is set to 0. Using this instruction
is no more complicated than any of the others. To divide two
unpacked BCD numbers stored in AL and AH by another in
BL, use
AAD ;convert the two BCD digits into a binary number

DIV BL ;divide AX by BL
AAM ;convert the quotient (in AL) into a BCD number

Note that the above example destroys the remainder. If you
are after the remainder, not the quotient, you will have to
move AH (which holds the remainder after eight-bit division)
into AL before performing the AAM command, as in:
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AAD ;convert the two BCD digits into binary
DIV BL ;divide AX by BL

MOV AL,AH ;move the remainder into AL for conversion
AAM ;convert AL into valid BCD digits.

Chaining DIVs together is more difficult than chaining
MULs, although it can be done.

AAD is much like a converse of AAM. While AAM con-
verts a binary number into two unpacked BCD digits, AAD
converts two unpacked BCD digits into a binary number. One
might use AAD in a simple decimal input routine which ac-
cepts two ASCII digits, but requires a binary number for
calculations. Note that AAD does not check the validity of the
BCD digits before it performs the conversion. If the digits are
not valid, AAD will return an erroneous binary number. No
flags are set to indicate an error.

DAA (Decimal Adjust for Addition)

This instruction is similar to AAA above, but is used to adjust
the result of a packed BCD addition. It takes no operands, but
always adjusts the AL register. If the number is greater than
99, the carry is set, indicating that the next more significant
byte needs to be incremented by one.

Unlike AAA, which increments AH when a carry is nec-
essary, DAA does not affect the AH register. It is the pro-
grammer’s responsibility to adjust the succeeding digits if the
carry flag is set (the auxiliary carry flag is set only to indicate a
carry out of the lower nybble).

You can use DAA just like AAA. For example, the fol-
lowing code adds the two packed BCD numbers stored in AL
and BL:

ADD ALBL
DAA

You can also chain decimal additions together, just as we
chained ASCII additions together. For larger numbers (such as
those defined with the DT pseudo-op), you would probably
use loops to sum the numbers together:

[in the data segment]

ONE_NUMBER DT 346346524 ;using DT command
TWO_NUMBER DT 687987346
SUM DT ? ;ten undefined bytes

[and as your code]

7

;the number of bytes to add
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MOV BX,10

CLC
L1: MOV ALONE_NUMBER[BX]

ADC AL, TWO_NUMBER([BX]

MOV SUM[BX],AL

DEC BX

LOOP L1

MOV CX,9
MOV BX,10
MOV AL,SUM[BX]

L2: DAA
MOV SUM[BX],AL
DEC BX
MOV AL,SUM[BX]
ADC AL,0

LOOP L2

;point to the least significant
digit

;simulate ADD for first ADC
;put one digit in AL

;add other digit to it

;store the sum

;point to next higher digit
;do all of the digits

;on exit here, carry set in-
dicates overflow

’

;number of bytes to adjust
;point to least significant digit
;get least significant digit of
sum

;perform decimal adjust
;store the adjusted sum
;point to next higher digit
;move next higher digit into
AL

;add in possible carry from
DAA

;do all of the digits

Note that INC does not affect the state of the carry flag, and
that DT defines the packed BCD numbers from the most
significant byte to least significant in increasing memory
locations.

DAS (Decimal Adjust for Subtraction)
DAS is similar to DAA, but is used after subtraction rather
than after addition. The result of the subtraction must be
stored in AL. The carry flag is set if the next higher byte needs
to be adjusted because of a borrow. Like DAA, this instruction
does not affect the AH register. The succeeding byte must be
adjusted by the programmer. As with AAS, DAS adjusts the
difference according to our tape counter analogy for negative
numbers (see Chapter 4).

Use DAS just like AAS; to subtract a packed BCD value in
BL from one in AL, use

SUB AL,BL
DAS

Again, longer numbers can be subtracted just as they can be
added. For very long packed BCD values, you will want to use
loops, as we did above. Note that if you are using the DT for-
mat, you must check the sign byte and adjust the result and
sign as necessary.

134




8
Advanced Arithmetic

Comparing BCD Numbers

Comparing BCD numbers is as easy as comparing normal bi-
nary numbers. There is no need to adjust anything. Just use
the CMP instruction as you always have. Note that you must
start comparing with the most significant byte first, as de-
scribed in the section on multiword math in this chapter.

Boolean Arithmetic

Boolean arithmetic refers to the logic operators. High-level
language users will be most familiar with these commands in
reference to conditional statements. We have all used ex-
pressions like

IF A>15 AND C=7 THEN...
or

IF J<3 OR K=2 THEN...
and, less frequently,

IF NOT L=4 THEN ...

AND, OR and NOT are three of the various Boolean
mathematical functions. When used in conditional statements,
they serve as logic operators. Programmers who use the
BASIC graphics GET and PUT commands should also be
familiar with these operations. With the graphics commands
(as in machine language), however, their bit-oriented nature is
more apparent.

The 8088 has four Boolean arithmetic commands, AND,
OR, XOR, and NOT. The Boolean operators have the general
format shown below. The operator is one of the four Boolean
arithmetic commands. The function is the operation performed
by the operator. Any source or destination combination legal
with commands such as ADD or SUB is legal with the Boolean
operators. Note that the operator NOT has only one operand
which acts as both the source and the destination. The Bool-
ean commands can perform their operations on either bytes or
words.

OPERATOR destination,source
destination = source FUNCTION destination

AND. We all understand the logical significance of the
English word and. In the statement “Send Jack and Jill to the
well,” it is clear that both Jack and Jill are supposed to go to
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the well. In high-level languages, the AND operator serves a
similar purpose. It is generally used to link two logical state-
ments together. When both of the logical statements are true,
the entire statement is true. In machine language, AND is a
little different.

The AND operation inspects each bit of its two operands
and sets the destination as follows:

0 AND 0
0 AND 1
1 AND 0
1 AND 1

In other words, a bit will be set in the destination only if it is
set in both the source and the destination. For example, if we
start with

11110000B and 11010111B

after ANDing these two numbers together, we obtain the
result

11110000B
AND 11010111B

11010000B

Every time the corresponding bits are both 1, the result is a 1.
If a1 and a 0 line up together, then the resulting bit is 0.

The AND operator can also be used to mask off unwanted
portions of a number. For example, we can isolate the lower
nybble of a BCD packed byte (held in BL) using the
instruction:

AND BL,0FH ;(0FH=00001111B)

This operation tells the microprocessor to AND the contents of
BL with OFH, and store the result in BL. For example, if BL
holds 01010011B,

01010011B contents of BL
AND 00001111B
00000011B

The upper nybble of BL has been masked off. This is useful
when you only want to deal with part of a number. For in-

stance, the sample program in the last chapter used AND to
extract the low nybble from a number.

[ T

- 0o

136




8
Advanced Arithmetic

You can also use this operation to isolate a single bit; you
simply AND the number you are inspecting with the appro-
priate mask byte.

For example, if you want to isolate bit 5 (the bit
representing the decimal value 32), you would use:

AND destination, 32 ;(32D=00100000B)

This might prove useful in graphics applications.

Inspecting bits in this way proves so useful that Intel en-
gineers provided the 8088 with another AND instruction
called TEST. TEST is identical to AND in all respects, except
that the result of the AND is not stored. For example, if you
use

TEST destination,16
the flags will be set just as in the operation
AND destination,16

but the value of the destination will be unchanged. After such
a TEST, you can JZ (Jump if Zero) or JNZ (Jump if Not Zero)
to check for either a clear or set bit.

One often finds code such as

AND AX,AX

or
TEST AX,AX

This command is used to set the flags (PF, SF, or ZF) accord-
ing to the value of AX. Note that the value of AX is
unchanged.

OR. The OR operator is, in a sense, the converse of the
AND operation. If we change our English example to read
“Send Jack or Jill to the well,” it takes on a new meaning.
Now we are saying that either Jack or Jill (or both of them,
making this OR inclusive) should go to the well.

The OR operation inspects the bits of the source and
destination. The bits of the result are set according te the
following rules:

OOR0=0
0OR1=1
10R0=1
10R1=1

If either (or both) of the bits is 1, the resulting bit is also 1.
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Only when both of the bits are 0 is the result 0. For example,
if we start with the numbers

01010100B and 11101010B

and OR them together, we obtain the result
010101008

OR 11101010B
11111110B

This operation has combined the two numbers (do not confuse
this with adding them together). Whereas AND is used to
separate two numbers, OR is used to put them together. For
example, we could use OR to overlap two graphics images or
to pack unpacked BCD digits (see the section on bit shifting in
this chapter).

Programmers sometimes use code such as
OR AX,AX
when they want to set the flags according to the value of AX.
AX is not changed, but the SF, ZF, and PF flags are set
appropriately.

XOR. The Exclusive OR operation sets the bits of the re-
sult according to the following rules:

0XORO0 =0
0XOR1=1
1XOR0 =1
1XOR1=0

A bit in the result is set only if the two bits of the operands
differ.

XOR is used to invert specific bits. If we start with the
two numbers

111100008 and 10010111B
in AL and BL respectively, and perform
XOR ALBL

111100008
XOR 10010111B

01100111B
AL will hold 01100111B. XOR is very useful for graphics
applications. (See Chapter 12 for a discussion of XOR in ref-

erence to computer graphics.)
Programmers sometimes use code such as:

138




Advanced Arithmetic

XOR AX,AX

when they want to zero a register. To zero a register with the
MOV instruction requires more bytes than with XOR. If you
need to make a program compact, you can use XOR
register,register (or SUB register,register) when you need to zero
a register. (IBM programmers do this in the ROM BIOS; it’s a
fairly common technique.)

NOT. The NOT instruction has the general format
shown below. The source can be any general register, or an
addressed memory location. NOT can be used on both bytes
and words. After a NOT is performed, the result replaces the
source value.

NOT source

NOT reverses the bits of the operand value. All of the 1’s
are made 0’s, and all of the 0’s are made 1’s. In other words, it
follows the rules

NOTO0 =1
NOT1=0

Generally, NOT is used to negate a number. The 8088 pro-
vides a negate instruction (NEG), but it can be used only on
bytes or words. You cannot use NEG, for example, on a 32-bit
number. To negate a 32-bit number, you must first NOT the
two words and then add 1 to the result. The sample code be-
low negates a 32-bit number stored in AX:DX (AX holds the
least significant word).

NOT AX ;take the ones complement of the number

NOT DX

ADD AX,1 ;add 1 to the result for twos complement

ADC DX,0

Shifting and Rotating
Bit shifting and rotating refers to the microprocessor’s ability to
move the bits in a number left or right. You can shift or rotate
by a single bit or by a certain count. These instructions pro-
vide an easy way to multiply or divide a number by a power
of 2 and for accessing different parts of a packed BCD number.
All of the bit-shifting instructions have the general format
shown below. The source can be any general register or an ad-
dressed memory location. It can be either a byte or a word.
The count is either the number 1 (perform the operation once),
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or the CL register (where CL holds the number of times to
perform the shift operation).

OPERATION source,count

Shifts. There are four different shift operations, SHL
(SHift Left), SAL (Shift Arithmetic Left), SHR (SHift Right),
and SAR (Shift Arithmetic Right). They have the general for-
mat shown below. All of the shifts set the overflow flag, sign
flag, zero flag, and parity flag accordingly. The source and
count are explained above.

SHL source,count
SAL source,count
SHR source,count
SAR source,count

SHL and SAL are identical instructions. When a number
is shifted to the left by one count, the most significant bit (the
sign bit in a signed number) is moved into the carry flag, a 0
is moved into the least significant bit, and all of the other bits
are moved one place to the left (see below). In other words,
bit 7 (the most significant) is moved into the carry flag, bit 6 is
moved into bit 7, bit 5 to bit 6, and so on. A 0 is moved into
the least significant bit, bit 0.

7 6 5 4 3 2 1 0

SAL | | «—0
SHL

This effectively multiplies the number by 2. For example, after
the following code is performed

MOV AL,01101001B
SHL AL

AL will hold 11010010B, the overflow flag will be set (because
the sign changed), and the carry flag will be clear (because bit
7 was a 0). If 11010010B is shifted left again, the result will be
10100100B, the overflow flag will be clear (because the sign
did not change), and the carry flag will be set.

SHR is the counterpart to SHL. SHR shifts the source
quantity to the right. When a number is shifted by one count
to the right, the least significant bit is moved into the carry
flag, a 0 is moved into the most significant bit, and all of the
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other bits are moved one place to the right (see below). This
effectively divides the number by 2.

7 6 5 4 3 2 1 0

Since a 0 is moved into bit 7, the sign of the number is no
longer meaningful. For this reason, SHR is reserved for un-
signed numbers. If SHR is performed on 10010101B, the result
will be 01001010B, and the carry flag and the overflow flag
will be set (notice that the sign of the number changed).

SAR, the counterpart to SAL, is used to shift signed num-
bers to the right. When SAR is performed, the least significant
bit is moved into the carry flag, the sign of the number is
examined and moved into the second most significant bit; the
other bits are moved once to the right. In other words, if the
number is positive, SAR operates identically to SHR. If the
number is negative, SAR moves a 1 (not a 0) into the most
significant bit. This has the effect of preserving the sign of the
source value.

7 6 5 4 3 2 1 0

SAR [ Lle

If SAR is performed on 11010101B (a negative number), the
result is 11101010B. If, on the other hand, the source value is
00101011B (a positive number), the result is 00010101B.

SHL and SHR are used on unsigned numbers, while SAL
and SAR are used for signed numbers. SAL and SHL are
identical; there is no need to handle the sign bit specially
when a number is shifted to the left. The SAL instruction was
included only to complete the naming scheme. Note that DE-
BUG will not assemble SAL; you must use SHL.

For the right shifts, however, the sign bit must be handled
specially. SAR retains the sign bit, while SHR does not. Note
that whatever bit “fell off” the end of the number is held by
the carry flag.
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Rotates. There are four rotate instructions available on the
8088, ROR (ROtate Right), ROL (ROtate Left), RCR (Rotate
through Carry, Right), and RCL (ROtate through Carry, Left).
They take the general format shown below. Rotates set only
the carry and overflow flags. The other arithmetic flags are not
affected by these operations.

ROR source,count
ROL source,count
RCR source,count
RCL source,count

As stated before, the source can be a general register or
any addressed memory location. The count can be either the
value 1 or the CL register. If the count is the CL register, it
must hold the number of rotates to perform.

ROL rotates the number to the left. The most significant
bit is moved into the least significant bit and the carry flag.
The other bits are shifted one position to the left (see below).
For example, if the source value is 11001101B, the result of a
ROL operation is 10011011B, and the carry flag is set.

7 6 5 4 3 2 1 0

ROL CT <—|

ROR is just the opposite of ROL. ROR takes the least
significant bit and moves it into the most significant bit and
into the carry flag. All of the other bits are shifted to the right
one position (see below). If the source value is 10110101B, the
result of a ROR is 11011010B, and the carry flag is set.

7 6 5 4 3 2 1 0

ROR |_. T C

RCL moves everything to the left one bit. The most
significant bit is moved into the carry flag, the contents of the
carry flag is moved into the least significant bit, and the other
bits are shifted to the left one position (see below). For ex-
ample, if 00101001B is RCLed when the carry flag is set, the
result is 01010011B, and the carry flag is clear.
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7 6 5 4 3 2 1 0
RCL |C |« -—
Y

RCR is similar to ROR; however, the carry flag is used as
an additional bit. In a RCR operation, the least significant bit
is moved into the carry flag, the contents of the carry flag is
moved into the most significant bit, and the other bits are
shifted one position to the right (see below). For example, if
the source value is 10101001B and the carry flag is clear, RCR
results in 01010100B, and the carry flag is set.

7 6 5 4 3 2 1 0
T’ Y
Using Bit Shifting and Rotating

You can use shifts to multiply or divide a number by a power
of 2. For example,

SHL AX1

multiplies the contents of the AX by 2. Performing the opera-
tion twice multiplies AX by 4; three times, by 8, etc. This type
of multiplication is considerably faster than the corresponding
MUL or IMUL instruction. You can, of course, use CL as the
count for this operation. The code

MOV CL,3
SHL BX,CL

shifts BX three times, or multiplies the contents of BX by 8.
The operation

SHR AX,1

divides the unsigned value in AX by 2. If AX holds a signed
number, SAR should be used.

You can also use combinations of SHL and ADD instruc-
tions to multiply a number by other integers. For example,
MOV CX,AX ;store AX in CX
SHL AX,2 ;multiply AX by 4
ADD AX,CX ;add original AX to the product (multiply by 5)
SHL AX1 ;multiply by 2 again

effectively multiplies AX by 10.

RCR
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You can also combine rotates and shifts to shift numbers
larger than 16 bits left and right. For example,

SHL low_word,1 ;shift the lower word once
RCL high_word,1 ;rotate lost bit into the higher word

shifts a two-word quantity once to the left. The SHL instruc-

tion sets the carry flag to the bit which “fell off” the end of

the low word. The RCL moves that extra bit stored in the

carry flag into the least significant bit of the high word. You

can continue to chain RCLs if you need to shift a large number.
To shift a large number to the right, use

SHR high_word,1 ;shift the high word once
RCR low_word,1 ;rotate the lost bit into the lower word

If you are shifting a large signed quantity, remember to use
SAR rather than SHR. Start with the highest word when you
shift to the right, while you start with the lowest word when
you shift to the left.

You can use shifts and rotates to relocate nybbles from
one position in a number to another. The procedure
HEXCONY, in the sample program at the end of the last chap-
ter, uses this technique to determine the values of the different
nybbles in order to print the correct digit. You can also use
shifts and rotates to compact or separate (pack or unpack)
BCD digits. If, for example, AH and AL hold unpacked BCD
digits (AH is most significant), you can use something like
MOV CL,4 ;set shift count
SHL AH,CL  ;move digit in AH to the upper nybble
OR AL,AH ;OR the two digits together

to pack the data into AL. You can reverse the procedure, and
unpack the data, with the following code:

MOV AH,AL ;move the digits into the other register

MOV CL4 ;set the shift count

SHR AH,CL  ;move more significant digit into the lower nybble
AND AL,0FH ;remove more significant digit from other register

The AND masks the extra digit from the AL register. AH now
holds the more significant digit, and AL the lower.

You have been given some examples of the bit-shifting
operations. All of the bit shifting and rotating instructions are
diagrammed in Figure 8-2 below. As you have seen, shifting
can be used to multiply and divide numbers by powers of 2.
By combining bit shifts with other instructions, multiplying by
other integers is possible. This is considerably faster than MUL
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or IMUL. You can also use these instructions to isolate dif-
ferent sections of a number, and to pack and unpack BCD
data.

Figure 8-2. Bit Shifts and Rotates

7 6 5 4 3 2 1 0

SAL | C |- 0
SHL

SHR 00—+ C

SAR (¢

ROL| ¢

ROR r _T. C

RCL | C |-

RCR C

C indicates the carry flag.
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String Instructions

Machine language strings are a little different from BASIC
strings. There are a number of machine language instructions
used to move, compare, scan, and otherwise manipulate
strings.

In BASIC, strings are generally used to store characters.
Remember, however, that characters are bytes. In fact, BASIC
strings are really strings of bytes. A string is similar to a long
table of bytes. In other words, a string in BASIC is really a
kind of array. Each element in the array is one character in the
string. Strings in machine language are no more than arrays of
bytes. To add versatility to the string-handling abilities of the
8088, Intel has also provided for word strings. In a word string,
each element of the string is a word, rather than a byte.

There are five machine language instructions which are
used to manipulate strings: LODS, STOS, SCAS, MOVS, and
CMPS. Before we get into the details of the instructions, let’s
examine some of the general principles of string handling.

The Direction Flag (DF)

Direction Flag, DF, is used to determine the directional opera-
tion of the string instructions. If strings are stored in succeed-
ing addresses, you must clear DF before performing any string
instructions. If your strings are stored in decreasing addresses,
you must set DF before any string instructions. The CLD
(CLear Direction flag) instruction is used to clear DF, while
STD (SeT Direction flag) is used to set DF. Generally, how-
ever, strings are stored in succeeding addresses, so you will
want to use CLD before any string instructions.

The REPeat Prefixes

String instructions have a feature which makes them different
from the other instructions; string instructions can be repeated
automatically. The 8088 instruction prefix REP tells the
microprocessor to repeat the given string operation CX times.
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For the code below:

MOV CX,100
REP LODS

LODS will be executed 100 times (LODS is explained below).
There are two other REP instruction prefixes. The first,
REPE/REPZ, repeats if the zero flag indicates a zero result.
The other, REPNE/REPNZ, repeats if the zero flag indicates a
nonzero result. Note that the check against the zero flag is an
extension of the normal REP prefix.

The LODS Instruction

The LODS (LOaD String) instruction is used to access one
byte or word of a string. There are actually two LODS instruc-
tions, one for bytes (LODSB) and another for words (LODSW).
LODSB transfers the byte pointed to by SI to AL and adjusts
SI to point to the next byte. LODSW transfers the word
pointed to by SI to AX and adjusts SI to point to the next
word. SI generally acts as an offset into the data segment;
however, the segment can be changed with segment overrides
(as described below).

LODS automatically adjusts SI to point to the next ele-
ment in the string. This adjustment can be either positive (the
string is stored in increasing addresses) or negative (it is stored
in decreasing addresses). Remember that the direction flag
tells the microprocessor which way the strings are stored. If
the direction flag is clear (0), SI is incremented; if it is set, SI is
decremented. In other words, after an STD, SI will be
decremented each time LODS is used; after CLD, SI will be in-
cremented each time LODS is used. Note that SI is adjusted
(incremented or decremented) by 1 for LODSB and by 2 for
LODSW.

The code below performs the same operation as LODSB
when the direction flag is clear:

MOV AL,[SI]

INC SI

First, the byte pointed to by SI is moved into AL, then SI is
incremented by 1.

The assembler accepts two formats for the LODS instruc-
tion. First, you can explicitly specify LODSB or LODSW. The
other possibility is to use the format

LODS operand
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where the operand is the name of the string being accessed. If
the string is made up of bytes, the assembler will use LODSB;
if, on the other hand, the string is made up of words, the
assembler will use LODSW. Note that the LODS instruction it-
self does not take an operand. The operand is used solely by
the assembler to determine the size of the operand and which
segment register to use. If you do not have a specific operand,
you must use the following format to override the segment
register:

LODS size PTR segment-register:[SI]

The size is either byte or word (for LODSB and LODSW) and

the segment-register is CS, DS, ES, or SS. If you do not specify
a size (you just use LODS segment-register:[SI]), the assembler
will assume you want LODSB.

LODS can be used when you need to sequentially access
bytes or words in a table. LODS has the advantage that it
automatically increments or decrements the pointer register.
For example, you could use LODS to print a string one charac-
ter at a time (the 0 byte indicates the end of the message):

[in the data segment]
MESSAGE DB ‘This is a sample message’,13,10,0

[in the code segment]
MOV SI,OFFSET MESSAGE ;get the address of the message

L1: LODSB ;load one byte of the message
CMP AL,0 ;is it the end of the message?
JE DONE ;yes, so we are done
CALL PRINT_CHARACTER ;print the character
JMP L1 ;get the next byte of the message
DONE:

Note that we are using the PRINT_CHARACTER routine
from the program “Primes.”

Also notice that SI is set to the address of the variable
MESSAGE. The OFFSET command was discussed briefly in
Chapter 7. OFFSET is used to determine the location of a vari-
able. In this case, OFFSET will return the position of MES-
SAGE relative to the base of the segment it is in. Remember
that OFFSET is an assembler command, not an 8088 com-
mand. The command MOV SI,OFFSET MESSAGE will be
turned into an immediate MOV command, and the immediate
value will be the address of MESSAGE relative to the base of
the segment it’s defined in.
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The STOS Instruction

The STOS (STOre String) instruction is essentially the op-
posite of LODS. STOS is used to store a byte or a word in a
string. Note that STOS uses ES:DI to address the string, not
DS:SI. There is no way to override the segment assignment of
STOS; you must always use ES.

As with LODS, there are two STOS instructions: STOSB
(for byte strings) and STOSW (for word strings). STOSB stores
AL in the memory address pointed to by ES:DI and adjusts DI
to point to the next byte. STOSW stores AX in the memory
address pointed to by ES:DI and adjusts DI to point to the
next word.

The direction flag is used by STOS in the same way it is
used by LODS. For STOSB, DI is incremented by one if DF is
clear and is decremented by one if DF is set. For STOSW, DI
is incremented or decremented (according to the state of DF)
by two.

The STOS instruction can be repeated a certain number of
times with the REP prefix. For example, you could use STOS
with REP to fill a portion of memory. The following code fills
the string TABLE with 100 ASCII spaces.

[in your extra segment]
TABLE DB 100 DUP(?) ;undefined table of 100 bytes

[in your code segment]
CLD ;work upwards in memory

MOV AL/’ ;space character in AL
MOV CX,100 ;number of times to repeat
MOV DI OFFSET TABLE ;get the address of TABLE
REP STOS TABLE ;fill TABLE with spaces

The following code performs the same operation, but without
the STOS and REP instructions:

MOV CX,100 ;number of times to loop
MOV DI OFFSET TABLE ;get the address of TABLE

L1: MOV BYTE PTR ES:[DI],* ;put a space in one byte of TABLE
INC DI ;point to next byte in TABLE
LOOP L1 ;repeat the “fill”

Note that you can use REP prefixes with LODS as well,
but doing so is rather pointless.
As with LODS, the assembler accepts two formats for
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STOS. You can either explicitly specify STOSB or STOSW, or
you can use the format

STOS operand

where the operand is the name of the string you are using. If
the string is a string of words, the assembler will use STOSW;
on the other hand, if the string is a string of bytes, the assem-
bler will use STOSB.

The SCAS Instruction

The SCAS instruction (SCAn String) is used to search a string
for a specific byte or word. As with STOS, SCAS always uses
ES:DI to address the string. You cannot override the segment,
so you must always use ES with SCAS.

There are two SCAS instructions, SCASB for bytes and
SCASW for words. The SCASB instruction reads the byte
pointed to by ES:DI and compares it with the byte in AL. In
addition, DI is adjusted to point to the next byte in the string.
The SCASW instruction reads the word pointed to by ES:D],
compares it with the word in AX, and adjusts DI to point to
the next word in the string.

As with the other string instructions, DF is used to deter-
mine whether the pointer, DI in this case, should be in-
cremented (if DF is clear) or decremented (if DF is set). In
either case, DI is adjusted by one if SCASB is used, and by
two, if SCASW is used.

After a SCAS operation, you can use any of the con-
ditional jumps explained in Chapter 5. SCAS is the same as
the following comparison:

CMP accumulator,ES:[DI]
Since SCAS is a decision-making instruction, it is often

used with REPE or REPNE. You can use REPE and SCAS, for
example, to find the first nonzero element in a table of words:

[in your extra segment]
WORDS DW 100 DUP (?)  ;undefined table of 100 bytes

’

[in your code segment]

CLD ;work upwards

MOV CX,100 ;length of table

MOV AL,0 ;looking for nonzero

MOV DI, OFFSET WORDS ;get address of table

REPE SCAS WORDS ;repeat until nonzero found
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JCXZ ALL_ZEROS ;if CX = 0 then table all zeros
[nonzero was found, and next element pointed to by ES:DI]

If a nonzero element is found, ES:DI will point to the word
after the nonzero element. If you want to examine the nonzero
element, you will have to adjust DI back one element.

The following code performs a similar operation, but does
not use the SCAS instruction (note that, on return, DI is
slightly different below):

MOV CX,100 ;length of table
MOV AL,0 ;looking for nonzero
MOV DI, OFFSET WORDS ;get address of table

L1: CMP ALES:[DI] ;is element in table zero?
JNE L2 ;element is not zero
ADD DI,2 ;point to next element
LOOP L1 ;do all 100 elements
JMP ALL_ZEROS ;table is all zeros

L2: [nonzero was found, and is pointed to by ES:DI]

As with the other string instructions, the assembler will
accept two formats of the SCAS instruction. You can either
specify SCASB or SCASW (for byte or word scans), or you can
use the format

SCAS operand

where the operand is the name of the string you are scanning.
If the string is made up of bytes, the assembler will use the
SCASB operation. If the string is made up of words, it will use
the SCASW instruction. Note that the operand is solely for use
by the assembler. SCAS, as a machine language instruction,
does not take an operand.

The MOVS Instruction

The MOVS (MOVe String) instruction and the CMPS (CoM-
Pare String) instruction are probably the most complex of the
five string instructions. MOVS is used to move a string from
one place in memory to another. Again, there are really two
MOVS instructions: MOVSB to move byte strings, and
MOVSW to move word strings.

The MOVSB instruction moves the byte pointed to by
DS:SI to the memory address pointed to by ES:DI. Both SI and
DI are adjusted to point to the next byte according to DF.
Remember that if DF is clear, string operations work up in
memory (so for MOVSB, SI and DI are incremented by one),
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and that if DF is set, string operations work down in memory
(for MOVSB, SI and DI are decremented by one). MOVSW
moves the word pointed to by DS:SI to the memory location
pointed to by ES:DI. DI and SI are adjusted to point to the
next word (SI and DI are incremented or decremented by two
depending on the state of DF). The segment register used to
address the destination must always be ES:DI. However, you
can change the segment register for the source with any of the
segment overrides as described below.

MOVS is often used with the REP prefix to move large
sections of memory from one place to another. The code

[in your data segment]

HERE DB 150 DUP(?) ;150 undefined bytes

[in your extra segment]

THERE DB 150 DUP(?)  ;another 150 undefined bytes
[in your code segment]

CLD ;work up

LEA SIL,HERE ;address of source string
LEA DI, THERE ;address of destination string
MOV CX,150 ;length of string

REP MOVS THERE HERE ;move the string

copies the byte string HERE to the byte string THERE. Note
that we can also use REPE or REPNE because MOVS does not
set the zero flag.

As with the other string instructions, the assembler will
accept two formats for MOVS. You can specify MOVSB or
MOVSW when you want to move byte or word strings, or you
can use the format

MOVS destination,source

where the destination is the string pointed to by ES:DI, and the
source is the string pointed to by DS:SI. Note that both the
source and destination strings must be either bytes or words.
If the operands are byte strings, the assembler will use
MOVSB. If the operands are word strings, it will use MOVSW.
If you do not have specific operands the assembler can use to
determine which segment register to use, you must use the
following format to override the segment register:

MOVS size PTR [DI], size PTR segment-register:[SI]

The size is either byte or word (for MOVSB and MOVSW),
and the segment-register is CS, DS, ES, or SS. Remember that
you cannot change the segment register for the destination,
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only the source. Also note that if you do not specify a size
with the PTR instruction, the assembler will assume you want
MOVSB.

The CMPS Instruction

CMPS is used to compare two strings. As with the other string
instructions, there are actually two CMPS instructions: CMPSB
for bytes and CMPSW for words. CMPSB compares the byte
pointed to by ES:DI with the byte pointed to by DS:SI, and
adjusts SI and DI to point to the next byte. CMPSW compares
the word pointed to by ES:DI with the word pointed to by
DS:SI, and adjusts DI and SI to point to the next word. As
with all string instructions, DF is used to determine whether SI
and DI should be incremented or decremented. Note that you
cannot change the segment used with the DI, you must always
use ES with DI. You can, however, change the segment used
with SI with one of the segment overrides. The techniques are
the same as those used with the MOVS instruction. After a
CMPS operation, you can use any of the conditional jumps ex-
plained in Chapter 5. CMPS is the same as

CMP DS:[SI},ES:{DI]

where SI points to the first operand, while DI points to the
second.

REPE or REPNE prefixes are often used with this instruc-
tion. This allows you to compare two strings and stop when
the two are the same, or are different. Note that this is not like
SCAS, which looks for only one particular byte or word in a
string. For example, the following code will compare two word
strings until there is a difference between them:

[in the data segment]
ONE_STRING DW 20 DUP(?)

’[in the extra segment]
OTHER_STRING DW 20 DUP(?)
[in the code segment]

CLD ;work up in memory
MOV CX,20 ;length of strings
MOV SI,OFFSET ONE_STRING ;address of first string
MOV DI, OFFSET OTHER_STRING ;address of second

REPE CMPS ONE_STRING,OTHER_STRING ;compare the two

Note that after the CMPS, SI and DI will point to the word
after they differ, not the word where they differ.
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As with all of the other string instructions, CMPS can
take two formats. You can specify CMPSB or CMPSW explic-
itly, or you can use the instruction

CMPS operand_1,0perand_2

Operand_1 is the string pointed to by DS:SI, and
operand_2 is the string pointed to by ES:DI.

Note that MOVS and CMPS are the only two machine
language instructions which perform memory-to-memory
operations.

The repeat prefixes can be used with any of the string
instructions. Also keep in mind that none of the string instruc-
tions (as machine language instructions) take any operands.
The operands are specified only for the assembler, so that it
can determine whether it should use the byte or word version
of the instruction and which segment register to use.

Be careful using a REPeat prefix and a segment override
with a string instruction. If an interrupt (see Chapter 11) oc-
curs while the string instruction with a segment override is
being repeated, the REPeat will not be completed. You must
do two things to overcome this problem. CX must be zero at
the end of the REPeated instruction and the interrupts must be
disabled before the string instruction, and reenabled after-
wards (using the CLI and STI instructions discussed in Chap-
ter 11).

CLI
R1: REP MOVS WORD PTR [DI], WORD PTR ES:[SI]

JCXZ R2

DEC CX

JMP R1
R2: STI

Remember, this applies only if the string instruction is being
repeated and there is a segment override. If the string instruc-
tion is not being repeated or if there is no segment override,
there is no need to put in this special check (see the sample
program from Chapter 10 for an example of this technique).

String Search Example

The sample program for this chapter is called “SORT.ASM.” It
alphabetically sorts a short list of character strings. The length
and number of strings are specified by the constants
STRING_LEN and NUMBER_STRINGS. In the example data
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(called NAMES), the length of each string is 16 characters, and
there are 10 sample pieces of data. If you decide to change the
length of the strings or the number of strings, remember to
change these two constants at the beginning of the program.

The TEMP_STRING variable is used as a kind of string
“accumulator.” There are three messages which are also de-
fined in the data segment. The first, UNSORTED_MES, begins
with a carriage return and linefeed. This puts the cursor at the
beginning of the next line of the screen. Note that there is a
carriage return and a linefeed at the end of the string as well.
The 0 is used to indicate the end of the string; it will not be
printed. The second string, SORTED_MES, is similar. Note
that we can use just linefeeds if we want to move to the next
line of the screen. The last string defined in the data segment,
CR_LF is just a carriage return and a linefeed.

Next we defined the stack segment, as always. Following
the stack declaration is the code segment. The first few
instructions set up the FAR RETurn to DOS. DS and ES are
set up as the data segment. Remember that some of the string
instructions (MOVS and CMPS, for example) must use ES.
The direction flag (DF) is cleared so that all string operations
are performed going up in memory, not down. The rest of the
main loop is well commented.

Notice how the PRINT_MES subroutine uses the LODSB
instruction. Since the string is terminated by a zero byte, when
AL holds 0, we know the entire string has been printed. The
PRINT_MES routine calls CHARACTER_OUT. This is the
same CHARACTER_OUT procedure that is used in the pro-
gram in “PRIMES.ASM.” The PRINT_STRINGS routine prints
the data (in this case the names). If you like, you can have it
print carriage returns between the strings (place the code to do
this after the LOOP PRINT_ONE_STRING instruction).

The actual sorting routine comes next. The sort procedure
searches the string for the lowest string (alphabetically) and
exchanges it with the first element in the array. Then, it
searches for the lowest string again (excluding the first one)
and exchanges it with the second string. This goes on until the
entire string has been sorted.

The routine SORT in SORT.ASM calls two other routines.
The first, FIND_LEAST, searches for the lowest string. When
the routine is called, BX must point to the first string to be
checked, and DL must indicate which string it is (first, second,
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third, etc.). On return, BP points to the lowest string. The sec-
ond, XCHG_STRINGS, exchanges the string pointed to by BP
with the one pointed to by BX.

The program SORT.ASM is intended as a demonstration
of the use of string instructions and is not very useful in its
present form because you must reassemble it each time you
need to sort new data. You must also reconfigure the program
if your strings are a different length from the ones given here.
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CHAPTER

10

Using Machine
Language with BASIC

Why, you may ask, would someone want to use machine lan-
guage with BASIC? Machine language programs have the
potential to do anything BASIC can manage, and to do it
much faster. But it is often more convenient to use an existing
BASIC feature, rather than invent a machine language routine
to perform the same task. Thus, parts of your program (writ-
ten in BASIC) can use BASIC's special features; parts of your
program (in machine language) can execute with the necessary
speed.

BASIC has many useful features. Here’s a brief and in-
complete list: full eight-byte floating-point number handling;
easy manipulation of strings; an enormous variety of trigo-
nometric and transcendental functions; easy-to-use disk files;
simple text mode screen handling; extremely powerful graph-
ics control, including DRAW, CIRCLE, PAINT, GET, PUT,
WINDOW, and VIEW; easy control of joysticks and other
peripherals; powerful PCjr music control; trapping of events
(keystrokes, timers, joysticks, light pen, and more). The list
goes on and on.

To make use of these features, the usual procedure is to
write a program in BASIC which communicates with its ma-
chine language subroutine(s) by the CALL or USR statements.
Theoretically, it is also possible to write an all machine lan-
guage program that directly calls the subroutines in the BASIC
interpreter ROM. However, BASIC is different on different
members of the PC family, so this approach is not very fea-
sible.

In this chapter, we will begin by discussing the difficult
task of loading a machine language file into memory where it
can actually run with BASIC. Then we shall explain how
BASIC and machine language subroutines communicate with
each other. The sample program included with this chapter is
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a routine called “Scroll,” which allows you to scroll the cur-
rent screen any distance to the right or left.

Pascal users, don’t despair: Appendix F discusses the rel-
atively simple task of using machine language with your Pas-
cal programs.

Until now, loading a file has always been simple. In
BASIC, you simply use the LOAD command; from DOS, you
just type the name of the program, and DOS loads and exe-
cutes it. But to use machine language with BASIC, it is nec-
essary to be rather more devious than with normal DOS
machine language programs. Don’t worry too much, however;
once a machine language program is installed properly in
memory, BASIC’s BSAVE and BLOAD commands are all that
is needed to load and save it.

Where to Put the Program

One of the most difficult requirements for a machine language
routine to be used with BASIC is that it must not get in BA-
SIC’s way. Almost any location within the BASIC work space
is fair game to be clobbered without the programmer’s knowl-
edge. The BASIC work space typically starts at about the 26K
mark on the PCjr, and around the 42K mark for the PC’s
BASIC.COM (the work space is what the default DEF SEG
points to). BASIC takes over the entire 64K segment starting
from that point, and uses it for

BASIC’s own data area

COM buffers (for modem communication)
file buffers (for handling disk files)

your BASIC program

scalar data

array data

string data

stack space

Since the stack and string data grow down from the top of
memory, and scalar and array data grow up from the bottom
of memory, it’s hard to find a place even relatively safe from
BASIC.

There are two ways of getting your machine language
routine in a safe place. First of all, BASIC provides some areas
that are safe. If your program doesn’t use the disk drives, the
file buffers are safe places to put programs. See the BASIC
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manual’s appendix on ““Technical Information and Tips.” It’s
also possible to DIMension an array and then place a machine
language routine in the space allocated for the array data. You
can find the addresses of file buffers and variables with
BASIC’s VARPTR function. However, there is a difficulty with
this approach. Since your programs will be starting at some
unknown address within BASIC’s data area, and not at offset
zero within a segment, the addresses within your program
(references to data and the like) will be wrong. You can avoid
this problem by not using variables in your program, but this
tends to be somewhat limiting. Simple programs can be used
in this way (and POKEd in from DATA statements, too), but
not programs of any complexity.

Another approach is more promising. Since BASIC has
such a firm grip on its work-area segment, the easiest place to
put a machine language subroutine is outside this segment.
This approach is easier, but there are a few complexities. First
of all, not all computers have extra space outside of the BASIC
work area; a 64K PC, for example, has no room left over once
BASIC has taken over. Second, the PCjr and the PC have their
BASIC work areas in different places in memory, making it
hard to establish a segment address that is outside BASIC's
work area on all computers.

As a rule, on 128K PCjrs, the best place to locate a ma-
chine language subroutine is at segment address 1700H (the
92K mark). This leaves 20K of unused memory between BASIC’s
work area and the screen area (at segment address 1CO0H). To
call a machine language routine at segment 1700H, use the
BASIC DEF SEG command:

DEF SEG = &H1700

and then use the CALL command.

If you have a PC with more than 96K of memory, any
segment address of 1COOH or above is okay, up to the limits
of your memory expansion. Use the DEF SEG command, as
above, to set the code segment to the right location.

If your computer has only 64K, don’t worry. The BASIC
CLEAR command has a provision for freeing memory for ma-
chine language. Normally the CLEAR command is used to
clear out your variable area. However, optional parameters can
be specified to change the way BASIC handles its work area.
The particular format of the CLEAR command that we’re con-
cerned with is
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CLEAR ,maxsize

The maxsize parameter tells BASIC how many bytes it can use
for its work area. So, if you have a 64K PC, you can specify

CLEAR ,16384

leaving only 16K for your BASIC program. If you're using
BASIC.COM (not BASICA), that should leave you all the room
from segment address BOOH to the top of your memory.

Another way to limit the size of BASIC’s work area is by
specifying a special parameter when you type BASIC from
DOS. Normally BASIC takes as much memory as it can, up to
a maximum of 64K, for its work area, but you can force it to
start out with less memory with the following parameter:

BASIC /M:maxsize

This way, BASIC starts out with less memory, and you don'’t
need to use the CLEAR command.

Program 10-1 is a short program that will tell you where
you can start putting your machine language programs. The
program is in machine language, and returns to the master
BASIC program the segment address of BASIC’s work area. By
adding 1000H to that, we can find out where BASIC’s 64K
segment ends. If this program returns a value that’s bigger
than your available memory, you'll have to use CLEAR or the
/M parameter to set up an area outside of BASIC. The ma-
chine language data statements in Program 10-1 are equivalent
to this short machine language program. Later in the chapter,
we'll explain how it works.

CSEG SEGMENT CODE
PROGRAM PROC FAR
PUSH BP
MOV BP,SP

MOV SI,[BP+6]
MOV [SI},DS

POP BP

RET 2
PROGRAM ENDP
CSEG ENDS

END

For PCjr owners and PC owners with the color/graphics
card, there’s one other convenient spot to store programs. If
your program uses the 80-column text screen, but doesn’t
change pages (see Chapter 12 for a discussion of pages),
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there’s 12K of memory that can be used from segment address
B900H up to BBFFH. Also, if your PC has both the mono-
chrome and color/graphics boards, you can store machine lan-
guage on one while using the other. But be careful when using
this area: The SCREEN command can be used to wipe out all
of graphics memory, and the 16K graphics modes will clear
the color/graphics memory.

Loading the Program
Now we’ve established where to load programs. The next
question is how we load them. The easiest way to accomplish
this is with DEBUG. However, since we're loading our pro-
grams into unusual places (the top of memory instead of the
bottom), we’ll need a special machine language program to
load the combined BASIC/machine language program wher-
ever we want it to go. Program 10-2 should be typed in and
used each time you load a program into BASIC for the first
time (after that, you can use BASIC’s BLOAD command).
Using EXELOAD. Once you’'ve assembled and linked
“EXELOAD.ASM"” (Program 10-2), you're ready to begin
bringing machine language programs into BASIC. We'll show
you the technique to load a BASIC/machine language pro-
gram, even though we haven’t written any as yet. For now,
we’ll use the name “SCROLL.EXE” as our sample
BASIC/machine language program, and the segment address
1COOH for our load address. To use EXELOAD, enter the
following:
A>DEBUG EXELOAD.EXE
-N SCROLL.EXE (use your filename here)
-E CS:12
091B:0012 00.00 17.1C (use your load address here)
-G

Program terminated normally

-Q
A>_

You have to use the N command to specify the name of your
machine language program for BASIC, and set the segment
address you want your program to load at with the E com-
mand. Once these two parameters are set, execute EXELOAD
with the G command, then leave DEBUG with the Q com-
mand. It’s also possible just to type
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A>EXELOAD filename.EXE

if EXELOAD.ASM was assembled with the correct default seg-
ment load address. So, 128K PCjr users might assemble a ver-
sion with MOV AX,1700H, while PC users with more than
96K could assemble theirs with MOV AX,1CO0H.

If you have an expanded PCjr or a PC with more than
96K, you can just type BASIC (or BASICA). Otherwise, you'll
have to specify the /M parameter. For example, if you have a
64K PC, you might want to specify

A>BASIC /M:32768

BSAVE and BLOAD. Finally, we're in BASIC, and our
machine language program is still in memory where the
EXELOAD program put it. At this point we should save the
program in BASIC’s own format, with the BSAVE command.
The BSAVE command allows us to store machine language
programs (or other data) on disk, and then retrieve them with
the BLOAD command, thus avoiding the DEBUGing and
EXELOADing. So you should enter

DEF SEG = &H1700

(using the address where you loaded your program in place of
1700 above). Then you save the program with the BSAVE
command:

BSAVE “SCROLL.BSV”,0,length

Choose any name for the file you like; a good extension for
the file might be .BSV to indicate a BSAVEd file. The length of
the file is approximately the same as the length of the .EXE
file on your disk. However, if you're in doubt as to how much
memory to save, always save more than the bare minimum.

The hassle is finished; from now on, to use your machine
language program, all you have to do is enter

DEF SEG = &H address

BLOAD “filename.ext”,0

using the correct address and filename, and the machine lan-
guage program will be loaded in. Make sure, however, that
you always use the same segment address, since most pro-
grams can’t be relocated to different locations in memory.

Parameter Passing
Now that you know how to load a program, you can learn how
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to interface your machine language program with BASIC.
Most machine language subroutines require parameters from
the BASIC master program. For example, our scroll routine,
discussed at the end of this chapter, must be told how far to
scroll the screen. Of course, some machine language routines
always perform the same task, and don’t require any param-
eters, which simplifies the task of programming.

We’ll begin our discussion with BASIC’s CALL command.

The other machine language command, USR, is more complex.

The CALL command takes the format
CALL variable[(variable[,variable]...)]

This notation means that you can CALL without any param-
eters, with one, with two, or as many as you like. Since
BASIC always uses a far CALL, your programs must end with
a far RETurn, just like normal DOS programs; thus your pro-
gram must be a far PROCedure.

If there are any parameters after the CALL statement,
BASIC prepares to pass them by placing a special pointer for
each variable on the stack before it calls your program. In this,
it is much the same as the stack parameter-passing we dis-
cussed in Chapter 6. What is difficult, however, is that rather
than placing the values of the variables on the stack, it places
the address of the variables on the stack. Here’s an example of
this technique; this short program multiplies two variables to-
gether and leaves the result in a third:

CSEG SEGMENT ‘CODE’
ADDER PROC FAR
ASSUME CS:CSEG

PUSH BP :'BP must be saved

MOV BP,SP ;BP points to stack area
MOV SI,[BP+10] ;SI points to first parameter
MOV AX,[SI] ;get value of first parameter
MOV SI,[BP+38] ;SI points to second

MUL [SI] ;multiply second by first
MOV SI,[BP+6] ;SI points to third

MOV [SI],AX ;leave answer in third

POP BP ;restore BP

RET 6 ;far RETurn to BASIC
ADDER ENDP '
CSEG ENDS

END
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This program might be called from BASIC with this:

100 DEF SEG = &H1C00 ‘seg. addr. for 128K PCjr

110 BLOAD “ADDER.BSV”,0  ’program named “ADDER.ASM”
120 ADDER=0: A%=3: B%=5 ’specify address and parameters
130 CALL ADDER (A%,B%,C%) 'CALL the machine language
140 PRINT C% ‘print the result

All parameters must be integers. In this example, if A% holds
3 and B% holds 5, C% should hold 15 when the subroutine
returns to BASIC. If your program returns a value (or more
than one), it’s probably easiest to place the value in a BASIC
variable (like C% above). It is possible to write a program that
returns a value directly, with the USR command. See the
BASIC manual for details.

If you like, you can assemble and link ADDER.EXE, enter
DEBUG with EXELOAD, use the N and E commands, execute
EXELOAD, quit DEBUG and enter BASIC, BSAVE the pro-
gram, and test it. The program serves as a good example of
the EXELOAD technique, since it would be hard to put a bug
in an 18-line program.

Accessing Parameters from the Stack
You may have been a little puzzled by the displacements used
with BP to access the addresses of the variables. A closer look
will help you see the reasoning. Remember, a BASIC CALL
with parameters pushes a two-byte address for each parameter,
not a one-byte value. BASIC first pushes the three word-
length addresses onto the stack, and then executes a far CALL,
leaving two words of the return address (four bytes) on the
stack. Then, to save BP, we PUSH it onto the stack, depositing
another two bytes, or six in all. So, to back up to the actual
parameters, we start with [BP+6]. This skips over the inter-
vening six bytes, pointing us to the last parameter pushed by
the CALL statement. We then work our way backwards by
twos as we load in the parameters nearer to the beginning of
the CALL parameters. Thus, the sum is put in [BP+6], which
holds a pointer to the last variable specified. In our example,
that was C%. [BP+ 8] holds the pointer to B%, and [BP+10]
holds the pointer to A%.

As a general rule, if you have a total of n arguments, the
displacement from BP of variable M (1, 2,3 ... n) is
2*(n—M)+e6.
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Removing Parameters

One other peculiarity about this program is that it ends, not
with a normal RET, but with a RET pop-value instruction.
This form of the RET instruction, as we discussed in Chapter
6, is used to dispose of PUSHed parameters for a subroutine.
With BASIC, it’s the programmer’s responsibility to remove
the appropriate number of bytes from the stack on exit from
the program. Assuming, as above, that n arguments were
specified in the CALL statement, your program should end
with

RET 2*n

Types of Parameters

BASIC has four variable types, but you’ll only need to concern
yourself with two. BASIC saves real numbers, both single- and
double-precision, in a format difficult to use with 8088 ma-
chine language. However, BASIC’s integer types (declared
with a % suffix) and string types (with the $ suffix) are easier
to handle. Integers, as you may have deduced from the sample
program above, are stored by BASIC as normal, word-sized
signed values, just like machine language. To access one of
these variables, you must first get its address from the stack,
and then get the actual value contained in that address. Here
we’re moving the value of the last parameter of the CALL
statement into DX:

MOV BX,[BP+6]

MOV DX,[BX]

Strings are handled differently. The address on the stack
doesn’t point to the string itself. Instead, it points to a string
descriptor, three bytes long, with the following format:

byte 0  length of the string
bytes 1,2 address of the string in memory (a word value)

To look at a string in memory, you first load the address of
the string descriptor off the stack, then load the address of the
string itself from the string descriptor. BASIC allows you to
modify the actual string as you please, but you can’t change
its length or its address. The string descriptor should be kept
intact.
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Entering and Exiting

When BASIC gives your subroutine control, the only registers
that are explicitly set are the segment registers. CS holds the

current DEF SEG value, and DS, ES, and SS hold the default
DEF SEG value of BASIC’s work area.

Most .EXE programs immediately begin by setting the DS
and ES registers to point to their own data segments. This
may be a mistake if your subroutine takes parameters from
BASIC, since you must keep at least one segment register
pointing into BASIC’s work area in order to read the values of
the parameters which were passed. Often the best approach
for a long program is to begin by setting DS to point to your
data segment, and use ES as a segment override to read the
variable parameters. Of course, you could do it the other way
around, or even use the SS register as a segment override.

The SS register, however, often has to be changed as well.
All DOS .EXE files define their own stack, and DOS automati-
cally sets SS and SP to point to the correct part of memory
when such files begin to execute. However, with BASIC, the
burden of managing the stack is on the programmer. When
BASIC gives control to your program, the stack has only room
for eight word-sized values. If you need more stack space, you
will have to set SS and SP to point to your own stack.
Remember, however, to save the initial values, so they can be
recovered just before returning to BASIC. Unfortunately, most
DOS and BIOS interrupt routines use more than 16 bytes of
stack space, so if you use any interrupt routines you will al-
most certainly need to switch the stack registers to point to
your program’s own stack. Of course, if you don’t use more
than 16 bytes of stack space, you don’t need to move the
stack; nor, in fact, do you need to define a stack in your source
file at all, and you can ignore the Linker’s no stack message.

The only requirement when you leave the program is that
the segment registers (CS, DS, ES, and SS) have the value
they had when your subroutine took over. SP and apparently
BP also need to be reset to their initial values.

Here’s a program framework that you can use for long
BASIC/machine language programs:

173



10
Using Machine Language with BASIC

SSEG SEGMENT STACK ‘STACK’

STK DW 64 DUP(?) ;define a stack area
SSEG ENDS

DSEG SEGMENT ‘DATA’ '

SP_STORE DW? ;store SP here
SS_STORE DW? ;store DS, ES, SS here
.. your data here...

DSEG ENDS

CSEG SEGMENT '

ASSUME CS:CSEG,DS:DSEG
PROGRAM PROC FAR

MOV AX,DSEG ;initialize DS
MOV DS,AX
PUSH BP ;save BP on BASIC
;stack
MOV BP,SP ;BP points at BASIC
;stack
MOV SL,[BP+6] ;read parameters from
;BASIC stack
MOV AX,ES:[SI] ;get a value...
... read all the parameters in here...
MOV SS_STORE,SS ;save DS, ES, SS
MOV SP_STORE,SP ;save stack pointer
MOV AX,SSEG ;initialize our stack
MOV SS,AX
MOV SP,SIZE STK ;use SIZE operator
... your program goes here...
MOV SS,SS_STORE ;reload SS with
;BASIC’s segment
MOV SP,SP_STORE ;reset BASIC's stack
MOV DS,SS_STORE ;do the same with DS
POP BP ;recover BP from
;BASIC'’s stack
RET n ;RET with pop-value
PROGRAM ENDP
CSEG ENDS
END

This program template assumes that you need to set up
your own stack (whether you use interrupt routines or for
some other reason), and assumes that you leave ES pointing to
the BASIC data segment. Just remember, DS, ES, and SS must
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point to the BASIC work area when your machine language
routine ends.

The sample program for this chapter is “SCROLL.ASM.”
Enter it, assemble and link it, then load it into memory with
EXELOAD. When you enter BASIC, save it (with DEF SEG
and BSAVE). Then, you can enter and run two short BASIC
programs written to show off the scroll routine. SCROLL-1
must be used with the color board for the proper effect;
SCROLL-2 can be used with color, monochrome, 40- or 80-
columns. Don'’t forget to change the DEF SEG at the start of
the two BASIC programs.

As you have seen, interfacing machine language routines
with BASIC is substantially unlike DOS programming. You
don’t push a return address onto the stack, because BASIC has
already done that. You do have to initialize your own stack,
since BASIC doesn’t do that. You have to reset DS, ES, and SS
for BASIC; DOS doesn’t care. However, the programming is
not that much different from DOS, and the rewards of using
machine language in conjunction with BASIC are certainly
substantial enough to justify any added complexity.
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11

Overview of Interrupts

In this chapter we’ll examine the use of interrupts on the 8088
microprocessor. You have used interrupts in earlier chapters in
a cookbook fashion: the DOS function call, INT 21H, for ex-
ample. Here we'll discuss how interrupts work and how the
8088 and MS-DOS make use of them. (There is an excellent, if
technical, discussion of interrupt structure on pages 8-30
through 8-42 of Rector’s and Alexy’s The 8086 Book, published
by Osborne/McGraw-Hill.) In the next two chapters, we'll
continue with the subject of interrupts, focusing on the PC.

Why Interrupts?

First of all, let’s discuss what an interrupt is. We all are well-
acquainted with many types of interruptions: the telephone
ringing, the smoke alarm going off, a young child wanting our
attention. However, in a computer system, interrupts are pos-
itively advantageous.

The computer is always connected to a variety of other
devices. Some of them are clearly separate—disk drives,
modems, other microprocessors—and some less so—internal
clocks and timers, for example. For a computer to handle input
and output properly, it has to be prepared for information
from all of these devices at any time. There are only two ways
for the 8088 to find out what’s happening with these external
devices.

1. The computer can routinely take time off from its various
tasks to poll all the attached devices. In other words, the
8088 checks the appropriate input/output ports to see if
anything is happening.

2. The devices let the computer know when something
happens.

As you can imagine, this second alternative makes more
sense. That way, the computer is spared having to spend a
substantial amount of time checking all the attached
peripherals. This second method is the interrupt technique. In

189



11

Overview of Interrupts

short, whenever some external device has something to tell
the microprocessor, it interrupts it. The keyboard, for example,
interrupts the microprocessor whenever a key is struck.

The 8088 has a much more powerful system of interrupts
than most eight-bit microprocessors. Each interrupt on the
8088 has a priority level, from interrupt 0 (the highest) to 255
(the lowest). Whenever the 8088 gets two interrupts at the
same time, the lower-numbered interrupt is handled first.

Software Interrupts

In general, external interrupts (interrupts from peripherals)
won't concern you. Software interrupts (interrupts requested
by your own program as part of the normal program flow) are
of more concern to the programmer. The interrupt number
then becomes not a measure of an interrupt’s priority, since
you can call only one interrupt at a time, but rather a conven-
ient index with which to access specific interrupt routines.
These software interrupts are designed to give the programmer
access to all the power of DOS and BIOS.

Basically, using software interrupts is similar to CALLing
the system routines. However, using the INT command lets
you call a routine without knowing where it is. You simply use
the INT command in your program and let the computer fig-
ure out where the requested routine is located.

The idea of something interrupting itself is most peculiar.
In fact, as you can imagine, the rationale behind these soft-
ware interrupts is entirely different from the reason for the
hardware interrupts discussed above. Why not simply have
your program CALL any DOS or BIOS routines it needs to
use? There are a few convincing reasons for using interrupts:

1. Simplicity. Putting INT 10H in your program is obviously
preferable to, for example, CALL F000:0DO0B: It takes fewer
bytes of program memory (two versus five), and it is
considerably easier to remember.

2. Portability. A portable program is one that will run without
modification on a variety of different machines. For ex-
ample, most machine language programs written on the
IBM PC will run on the PCjr, even though the crucial
routines in DOS and BIOS are in different places. A CALL
F000:0D0B on one machine, for example, is a CALL
F000:F065 on another. Portable programs thus always use
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the system INTerrupts and let the computer figure out
where the appropriate routines are located.

How Interrupts Work

No matter whether an interrupt is a software interrupt or a
hardware interrupt, the basic mechanism used to handle them
is the same. There are three ways for the computer to know
which interrupt you want. The number can be specified by an
external device requesting an interrupt, by the program itself
(as in INT 21H), or the number can be implicit in the software
command.

Once the computer knows which interrupt number is be-
ing requested, it locates the interrupt-handling routine (also
know as the interrupt service routine). The first 1024 bytes of
memory (00000H to 003FFH) are given over to storing the
starting addresses of each interrupt routine in segment:offset
form. (Thus, 256 interrupt vectors, each four bytes long, add
up to 1024 or one K.) It is possible to modify these vectors so
that they point to your routines rather than the computer’s,
but doing so is a rather advanced technique.

Now the computer knows where the subroutine is located.
It pushes three words onto the stack: the 16-bit flags register,
the current code segment (CS), and the current instruction
pointer (IP). Next it loads the appropriate segment:offset value
from the interrupt vector area. At this point the interrupt rou-
tine is given control. As you can see, this is much like a far
CALL (such as the CALL F000:0D0B mentioned above). The
only difference is that the flags register is also saved on the
stack. We'll discuss why in a moment.

At this point, CS:IP holds the start address of the inter-
rupt routine; the routine begins to execute. When the interrupt
routine is finished, it executes an IRET instruction (Interrupt
RETurn). This instruction is like the standard far RETurn, but
it also pops the flags register off the stack. Now, CS:IP points
back into the main program at the point where the interrupt
was called, and the main program continues from where it left
off.

Why save the flags register? Saving and then restoring the
flags register allows a program to be stopped in the middle of
execution by an external interrupt and then to resume exactly
where it left off. For example, the clock-updating routine,
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which is called 18.2 times each second by one of the PC’s
timers, saves and then restores all the registers that it modi-
fies. (Imagine the registers in your program changing 18.2
times a second!)

For those interrupt routines that are called only with soft-
ware interrupts (and that covers most routines), certain reg-
isters are not saved. These are the registers that are used to
pass parameters. For example, the AX register is very rarely
saved by any of the common interrupts; some interrupts, like
the absolute disk read and write routines (INT 25H and 26H),
alter all but the segment registers. Since these routines are al-
ways called predictably from within program code, you don't
have to worry about registers changing randomly. If you need
to save registers, simply place PUSH instructions before the
interrupt call, and POP instructions after it.

Interrupt Control Opcodes

We’ve already discussed the primary interrupt commands, INT
and IRET. INT allows you to call any of the 256 interrupt
routines simply by specifying

INT number

where number ranges from 0 to 255. IRET (Interrupt RETurn)
is the instruction used to return from an interrupt. You'll have
no need to use IRET yourself until you're an advanced pro-
grammer, but you'll need to be able to recognize it to under-
stand interrupt routine program listings, such as those in
BIOS.

There are, as we've briefly mentioned, two other interrupt
generating opcodes. The first of these is INT 3. In appearance
this is the same as the INT number form above, but in fact the
INT 3 command is only one byte, as opposed to the standard
two-byte INT instruction. INT 3 is used by DEBUG to set
breakpoints, and will be discussed in more detail below.

The second specialized interrupt command is INTO. This
command (INTerrupt on Overflow) is a conditional interrupt.
Normally, a program that deals with signed math needs to
have a way to handle overflow. If INTO is placed after a math
operation, it will execute an INT 4 if the overflow flag is set.
This interrupt opcode, like INT 3, is only one byte. As a rule,
you won'’t be needing to use this interrupt. Generating an
interrupt on overflow is a slight case of overkill for the begin-
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ning to intermediate programmer. Normally, a JO (Jump on
Overflow) will serve your purpose just as well.

There are two other interrupt control commands, CLI and
STI. The CLI command (CLear Interrupt flag) disables (pre-
vents) the microprocessor from responding to external inter-
rupts (such as the clock interrupt mentioned above).
Conversely, the STI command (SeT Interrupt flag) enables
interrupts. (6502 programmers, beware! The SEI and CLI com-
mands on the 6502 are exactly the reverse of the seemingly
equivalent 8088 commands, STI and CLI. SEI, on the 6502,
SEts the Interrupt disable flag; STI, on the 8088, SeTs the
Interrupt enable flag.) Bear in mind, though, that when an
interrupt is actually executed, the computer executes an auto-
matic CLI and also clears the trap flag (discussed below). This
insures that the interrupt itself will not be interrupted. How-
ever, the interrupt (and trap) flags are reset when the IRET is
executed, since the flags register, including these two flags, is
popped from the stack.

Software interrupts and non-maskable interrupts are both
exempt from the setting of the interrupt flag. Non-maskable
interrupts are external interrupts, generally of some urgency,
and can’t wait for the interrupt flag to be cleared. We'll discuss
the 8088’s non-maskable interrupt, INT 2, below.

The Fixed 8088 Interrupts

A certain number of 8088 interrupts are preset for all 8088

systems, regardless of whether they run PC-DOS, MS-DOS, or

scientific or business systems. These are the first five inter-

rupts, numbers 0 through 4. Each of these interrupts is non-

maskable and therefore will ignore any CLI or STI commands.
Interrupt 0, Divide Overflow. When specifying a DIV or

IDIV instruction, it’s possible to create a result that is too

large. For example, requesting

MOV AX,1234H ;dividend in AX (a word)

MOV BL,2 ;divisor in BL (a byte)

DIV BL ;quotient to be in AL (a byte)

will cause a Divide Overflow interrupt. As you can see, the re-

sult (91AH) is too large to fit into AL. An even more extreme

case occurs when you put 0 into BL, then execute a DIV BL.

When a Divide Overflow condition occurs, the divide logic

automatically calls interrupt 0. In PC-DOS, this interrupt calls

a routine which prints:
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Divide Overflow

and drops out of your program back to the command level of
DOS (the A> prompt). (DOS 2.00 users should note that the
DOS routine responsible for this will cause the computer to
crash. DOS 1.10 and 2.10 divide overflow routines work cor-
rectly.) You can, if you wish, revector this interrupt to point to
your own divide overflow routine (an advanced technique).
This interrupt is the only runtime error message you can get in
machine language.

Interrupt 1, Single Step. This interrupt is used only by
DEBUG. lt is triggered after every instruction when the trap
flag (mentioned above) is set. When the trap flag is set, the
computer calls interrupt 1 after every program instruction.
Normally, the trap flag is clear, so the INT 1’s are not gen-
erated. Furthermore, the INT 1 vector normally points directly
to an IRET in DOS. This effectively cancels any INT 1’s, since
nothing happens and the flags, CS, and IP are immediately re-
stored.

The trap flag can’t be set by a single program instruction.
Instead, you must follow this procedure:

PUSHF ;AX holds the flags as follows (bit 15 first)
POP AX ; 0,0,0,0,0F,DEIFTFESFZF,0,AF,0,PF,0,CF
OR AX,100H ;now we set bit 8 (TF) to 1

PUSH AX ;finally, we return the changed flags register
POPF ; via the stack

The interrupts will become enabled after the next instruction.
The entire 16-bit flags register is moved into the AX register,
then the appropriate bit (bit 8) is set with the OR instruction.
Then the modified flags word is transferred back to the flags
register, again via the stack. Starting with the instruction after
the POPF instruction, each instruction will be followed by an
interrupt 1. To turn off single-stepping, you must transfer the
flags to AX (via the stack), AND AX,0FEFFH, then return the
flags to the flags register.

DEBUG uses the Single Step interrupt to handle its Trace
function. Though you will rarely find a use for this interrupt
within your programs, you will no doubt be using the DEBUG
Trace function. A warning about the Trace function: It occa-
sionally appears to drop opcodes during the trace.

Interrupts are automatically disabled whenever a segment
register is loaded (with MOV or POP). This exception to the
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normal rules of interrupt execution was designed explicitly to
protect a sequence such as the following;:

MOV S5,AX  ;assuming AX has the new stack segment
MOV SP,100H ;100H or whatever SP value you wish

Without this exception, an external interrupt could be triggered
between the two stack-setting commands, creating havoc by
storing information in some area not meant to be a stack at all
(remember, INT pushes the flags, CS, and IP at the current
SS:SP). We can see the interrupts being disabled when DE-
BUG occasionally drops opcodes from its trace list. These
opcodes have been executed; they’re just not displayed, since
loading a segment register turns off all interrupts, including
Single Step.

Interrupt 2, NMI (Non-Maskable Interrupt). This is the
highest priority hardware interrupt (the previous two are
invariably software interrupts). Furthermore, this is the only
external interrupt that can override the CLI command. For
most non-MS-DOS systems, the NMI is used to signal some
traumatic event within the system: an imminent power failure,
for example. However, the IBM PC uses the NMI solely to
handle keyboard input. It's usually a good thing for the user,
too, since the keyboard Ctrl-Alt-Del sequence must be non-
maskable if it’s to work when interrupts have been disabled
by CLL

As a programmer, you will have little need to involve
yourself with INT 2 directly. The interrupt handler for inter-
rupt 2 is responsible solely for converting the keyboard data
into scan codes. We'll discuss the most useful keyboard inter-
rupt, INT 16H, in the next chapter.

Interrupt 3, Breakpoint. This interrupt, like the Single
Step interrupt above, is used almost exclusively by and with
DEBUG. Whenever you specify the Go command with extra
parameters, like

G 37,4B

DEBUG puts the one-byte INT 3 instruction at the specified
breakpoints (37 and 4B here) and saves their previous con-
tents. Since INT 3 is a one-byte instruction, it can replace any
one 8088 opcode without interfering with the next. When the
program hits the breakpoint, DEBUG stops the program’s
execution and restores the old contents of the breakpoint
byte(s).
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INT 3 can also be used, with DEBUG, to replace the ini-
tial PUSH/PUSH sequence and final RETF. INT 3, if used
explicitly to end your program, will simply return you to the
DEBUG command level without restoring DS and the other
registers to their initial values (as happens when you use
RETE).

When you're not using DEBUG, the interrupt number 3
points directly to an IRET instruction, like INT 1 above.

Interrupt 4, Overflow. This interrupt has been described
above in connection with the INTO command. In short, this
interrupt will execute if INTO is specified and the overflow
flag is set. INT 4 normally doesn’t handle overflow; it defaults
to an IRET just like INT 1 and INT 3.

We suggest that you not write any of your own interrupt
handlers until you are quite advanced. Now that we’ve examined
the technical details of interrupts and have begun to under-
stand their structure and general use, we can proceed to dis-
cuss the details of the most useful BIOS and DOS interrupts in
the next two chapters.
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BIOS Interrupts

Now that we’ve discussed the technical side of the inter-
rupts—the interrupt mechanism and structure, the interrupt
commands, and the predefined 8088 interrupts—we can dis-
cuss the PC-DOS interrupts in more detail. In the next two
chapters, we’ll turn from the technical aspects of interrupts to
a discussion of the interrupt routines that make up the Disk
Operating System (DOS) and the Basic Input/Output System
(BIOS).

As we discussed in earlier chapters (when you used DOS
interrupt 21H), one interrupt can often perform more than one
particular function. For several of the BIOS interrupts, a vari-
ety of functions are available with one interrupt call: interrupt
10H, for example, has 17 functions. For all the BIOS routines,
you select a function by placing the number of the function in
AH prior to calling the routine. So, to call function 8 of inter-
rupt 10H, you would write

MOV AH,8 ;select function number 8
INT 10H ;call interrupt 10 hex

Other parameters also must be specified for many of these
functions. For example, to output a character with INT 10H,
you have to put the character in AL as well as the function
number in AH. Conversely, many functions return values; the
read keyboard function, for example, returns in AX the value
of the last key pressed. Registers that are not used for return-
ing values are always preserved by BIOS routines. (AX, how-
ever, is never preserved, and can be any value when the
routine returns to your program.)

The Video Handler Interrupt, INT 10H

This interrupt is very powerful. You will probably be using
this routine more frequently as your programs begin to use the
power of the screen for advanced text handling and machine
language high-resolution graphics.

197



12
BIOS Interrupts

Luckily, the functions provided with this interrupt are
grouped together fairly logically, but there are some excep-
tions. The table at the end of this section outlines the INT 10H
functions (in terms of their input and output).

PC users must make special note of the color/graphics
functions. Much of the video handler is devoted to the
color/graphics board, and so the monochrome board can
make only limited use of this function. When you're using the
monochrome board, functions 5, 11, 12, and 13 shouldn’t be
used. However, if your PC has both monochrome and
color/graphics boards, you can switch from one to the other
with the DOS 2.00 MODE command (MODE COL for
color/graphics and MODE MONO for monochrome). PCjr
owners can use all of these functions as they wish. Note also
that the PCjr BIOS has increased the power of functions 5 and
11, as well as added an entirely new function, number 16.

Display Handling Functions (AH = 0, 5, 14
Decimal)

Set Video Mode (AH = 0). The first function available
with INT 10H is very similar to the BASIC SCREEN com-
mand. However, the video modes are numbered differently,
which can be confusing if you're not careful. To use this func-
tion place the function number, 0, in AH, and the desired
mode number in AL. Table 12-1 is a list of mode numbers,
along with the BASIC commands that create the same effect.
Bear in mind that the set video mode function always clears
the screen and homes the cursor when called, whereas the
BASIC SCREEN command won't if the requested mode is the
same as the current mode. (The set video function also sets
the active page to 0.)

The extended graphics modes are available only on the
PCjr. Also note that the PCjr BASIC command SCREEN for
SCREENSs 3 through 6 is available only with Cartridge BASIC.
For more detailed information on the graphics modes, see the
IBM Technical Reference Manual.

Here’s a brief example of how to use this function, setting
the computer to graphics mode 4 (320 X 200, 4 colors).

MOV AH,0 ;function 0, set mode
MOV AL,4 ;mode 4, 320 X 200, 4 colors
INT 10H ;call the video I/O routine

This is the equivalent of the BASIC command SCREEN 1,1,0.
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Table 12-1. Video Interrupt Function O Mode Settings

Mode # Name of Mode BASIC Equivalent
Text Modes
0 40 X 25, black/white SCREEN 0,0,0: WIDTH 40
1 40 X 25, color SCREEN 0,1,0: WIDTH 40
2 80 X 25, b/w SCREEN 0,0,0: WIDTH 80
3 80 X 25, color SCREEN 0,1,0: WIDTH 80
Graphics Modes
4 320 X 200, 4 colors SCREEN 1,1,0

5 320 X 200, b/w, 4 shades SCREEN 1,0,0
6 640 X 200, black & white SCREEN 2,0,0
7 can’t set mode 7 (refers to PC’s monochrome board)

Extended Graphics Modes

8 160 X 200, 16 colors SCREEN 3,1,0
9 320 X 200, 16 colors SCREEN 5,1,0
10 640 X 200, 4 colors SCREEN 6,1,0

Select Active Display Page (AH = 5). This function al-
lows you to choose which of the text pages to display on the
screen. If you're a fairly advanced BASIC user, you may be
familiar with this concept. For text modes, the PC family has
the ability to make more than one screen (or page) available to
the programmer at one time. Obviously, only one page of
information can be displayed on the screen. However, you can
be working on another page at the same time, which you dis-
play only when it’s complete. Using multiple pages and page
flipping eliminates the annoying flicker of putting new infor-
mation directly onto the screen.

To use this function, AH holds 5, and AL holds the page
requested. The range for AL is 0 to 7 for 40 columns, and 0 to
3 for 80 columns. (The video memory area is 16K long, and
each 40-column screen takes 2K while an 80-column screen
takes 4K.) The monochrome board does not support this
function.

An additional use for this function has been added on the
PCjr, one which allows you to select which 16K block of
memory of system RAM to use for display. On the PC, the
memory used for the color/graphics screen is invariably stored
at BSOOOH.

On the PCjr, however, the video memory is simply a
piece of the main system RAM. Normally the 16K at the top
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end of memory is allocated for screen memory. But, with this
video function, a 128K PCjr can support eight different 16K
screen-memory blocks. This becomes useful when you need to
use one of the computer’s extended graphics modes, modes 9
and 10. Since these modes require 32K, you clearly can’t get
by with just the 16K at the top end of memory. So the PCjr’s
block of screen memory must be moved down one unit (16K),
to leave a total of 32K available at the top of memory. You
will also need to move the 16K screen-memory area around
for graphics page flipping, since the standard graphics modes
use 16K for one page.

BASIC also makes use of this function to access the two
extended 32K modes. Normally, BASIC leaves the screen-
memory area at the top of memory. However, since the two
32K modes need more than the default 16K, you have to allo-
cate more memory to the screen area with the BASIC com-
mand CLEAR ,,,32768. To use these modes from machine
language, you have to do exactly the same thing: make 32K
available for the screen. Furthermore, BASIC can do page flip-
ping when in graphics mode, if enough memory is allocated to
it. BASIC moves the 16K screen memory area around to do
this just as machine language does.

There are two separate registers controlling this 16K area.
You can select which 16K block contains the screen you're
displaying, as well as which 16K block will mirror the B8000
area of memory. As we mentioned above, the PC’s graphics
screen is at BBOOOH, while the PCjr’s screen can move around.
For compatibility, the PCjr has a provision to send any MOVes
in the B800O area (which is empty memory in the PCjr) to the
real 16K of screen memory in the system RAM. The register
controlling which block to display is called CRTREG. The reg-
ister controlling which block to vector B8000 requests to is
called CPUREG. Normally, both of these registers are changed
at the same time. To set and read these registers separately or
in conjunction, pass the following values in AL:
80H to read CRTREG into BH and CPUREG into BL
81H to set CPUREG to the value in BL
82H to set CRTREG to the value in BH
83H to set CPUREG to BL and CRTREG to BH
You will almost always be setting CRTREG and CPUREG to-
gether (option 83H). For example, to set both CRTREG and

200




12
BIOS Interrupts

CPUREG down one block, to allow for one of the 32K graph-
ics modes, do the following:

MOV AH,5 ;function 5, select active page
MOV AL,80H ;read CRTREG/CPUREG to BH/BL
INT 10H

DEC BH ;set CRTREG and CPUREG to...
DEC BL ;... one block lower in memory
MOV AH,5 ;function 5 again

MOV AL,83H ;set CRTREG/CPUREG to BH/BL
INT 10H

And don't forget to repeat this process in reverse (replacing
DEC with INC) before you exit. The results otherwise are in-
teresting, but not desirable.

Read Video State (AH = 15). This routine returns the
information set by functions 0 and 5. You don’t need to set
any parameters except AH = 15. To call this function, use

MOV AH,15 ;function 15, current video state
INT 10H ;call video 1/0 routine

This routine returns the following information:

e AL holds the mode currently set. This is the same number
that you specify when using function 0 (see Table 12-1).

* AH holds the number of character columns on the screen.
This value is returned according to the mode:
decimal 80 for modes 2, 3, 6, and A
40 for modes 0, 1, 4, 5, and 9
20 for mode 8

* BH holds the number of the current active display page
(which page is being displayed on the screen). BH ranges
from 0 to 7 in 40-column text modes, 0 to 3 for 80-column
text, and is always 0O for all graphics modes.

Some of the video functions require you to specify
which page you want to work with; calling function 15
beforehand tells you what page is being displayed. Thus, for
simple applications, you'll usually continue to use the page
you started on; function 15 tells you the number of that

page.

Cursor-Handling Routines (AH = 1, 2, 3)
The video handler interrupt, INT 10H, can also be used to
control the cursor. This is done by placing the proper value in
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AH for the function you want. (See Table 12-3 for a complete
list of the INT 10H functions.)

Set Cursor Type (AH = 1). This rarely used routine al-
lows you to set the size of the cursor. The line to start the
block shape is placed in CH, and the line it should end is in
CL. The color/graphics cursor, for example, starts on line 6
and ends on line 7 (the first line is line 0). To turn off the
cursor altogether, call this routine with 20H in CH. Note that
the LOCATE command, in BASIC, can be used to change the
size of the cursor (see the BASIC manual). To return the cursor
to its normal shape, call function 0 (set mode). You can, of
course, also use this function to return the cursor to its original
shape.

Set Cursor Position (AH = 2). This routine can place the
cursor anywhere on a specified display page. DH holds the
new row for the cursor (from 0 to 24), and DL the column.
The column can be 0 to 79 in 80-column mode, 0 to 39 in 40
columns, or 0 to 19 in 20 columns (video mode 8). Since the
PC keeps separate cursor positions for each of the possible dis-
play pages (up to eight pages in 40-column mode), you also
have to specify, in BH, the page number of the cursor that
you’re moving.

For simpler applications, a call to the set cursor routine is
often preceded by a call to the read video state routine, num-
ber 15. Thus, for example, to set the cursor on the current
page to the center of the screen:

MOV AH,15 ;read the current video state

INT 10H ;video 1/0 call
;now AL holds mode, AH holds columns, and BH
;holds display page

SHR AH,1 ;divide width (columns) by 2

MOV DL,AH ;and place in columns register

MOV DH,12 ;put half of 25 in rows register
;DL holds half width, DH holds half height, BH
;holds page

MOV AH,2 ;function 2, set cursor position

INT 10H ;video I/0O call

Read Cursor Position (AH = 3). This routine returns the
current settings of the last two routines, 1 and 2. To read the
cursor position, AH holds 3 and BH holds the page number
(BH must be 0 for graphics modes). On return from the inter-
rupt call, DH, DL will hold the row and column of the cursor
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on the specified page. Additionally, CH, CL will hold the
cursor type (from function 1 above). This routine can, for ex-
ample, be used to move the cursor to a specific position on the
current line (equivalent to the BASIC’s TAB). If you are unsure
what screen line the cursor is on, but want to set the column
to 60, you can use the following code fragment to change only
the column, on the current page:

MOV AH,15 ;get current video state

INT 10H ;... we need the page number in BH
MOV AH,3 ;read cursor position (page in BH)
INT 10H

MOV DL,60 ;set DL to 60, leave DH (row) alone
MOV AH,2 ;set cursor position (page in BH)
INT 10H

This would be equivalent to the BASIC statement
PRINT TAB(60);

Read Light Pen Position (AH = 4)

This one is very rarely used, so we’ll summarize. Call INT
10H with AH = 4, and AH will return 1 if the light pen was
triggered; otherwise, it will return 0. If AH = 1, DH, DL will
also hold the row, column being pointed at, and BX, CH will
hold the graphics mode pixel x,y coordinates.

Scroll Active Page Up or Down (AH = 6, 7)

INT 10H can also be used to scroll the active page. These two
functions can be quite useful. The two have almost the same
format, so we’'ll treat them as one command. They allow any
part of the current active page (a window) to be scrolled up or
down any number of lines. In addition, you set the attribute to
be used on the blank line (see the “Flash” program in Chapter
5 for a description of the attribute byte). Here are the input
parameters for the two routines:

(CH,CL) = row, column of the upper left corner of the
window

(DH,DL) = row, column of the lower right corner of the
window

(AL) = number of lines to scroll the window up or down

(BH) = attribute to be used on blank line(s)
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One convenient feature of this routine is that you can use
it to blank any area of the screen simply by specifying 0 for
AL. If you use 0 for AL, functions 6 and 7 produce identical
results, and the entire window is set to the attribute in BH.
Otherwise, function 6 (scroll up) will give you (AL) blank lines
of attribute (BH) at the bottom of the window, while function
7 (scroll down) produces blank lines at the top of the window.

The most common use of the scroll routines is simply to
blank the entire screen. Here’s how to blank the screen:

MOV CX,0 ;CH=0, CL=0 for top left of screen
MOV DL,79 ;for 80 columns; use 39 for 40 columns
MOV DH,24 ;bottom line of screen

MOV AL,0 ;select clear whole screen option

MOV BH,7 ;set to standard white-on-black

MOV AH,6 ;(scroll up)

INT 10H

Character Handling Routines (AH = 8, 9, 10, 14
Decimal)

There are four useful character handling routines that can be
accessed using INT 10H. Three of the routines allow you to

write to any page display.

Multi-Page Character Handling Routines (AH = 8, 9,
10). Each of these routines will allow you to write characters to
any display page depending on which page is specified in BH.
(However, if you're reading or writing characters in a graphics
mode, you don’t have to specify BH, since there’s only one
graphics page.) These are the only routines that allow placing
text on a screen other than the current active page, so you will
no doubt grow quite familiar with them when you start using
multiple screens in machine language. The thing to remember
with these routines is that the cursor (on whichever page) is
not automatically moved when the character is written. If you
use the character-output routine in this group (AH = 10), and
try to print a string of characters, they’ll all be written to the
same position, each on top of the last.

The first of these routines, AH = 8, is the routine to read
the attribute and character at the current cursor position
(remember, each text screen has its own cursor position). To
use this routine, AH holds 8 and BH holds the display page
before calling INT 10H. On return, AL holds the character and
AH holds the attribute. Note that characters on graphics
screens don’t have attributes.
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The other two routines control the writing of characters to
any page, with the option to write the attribute as well (AH =
10 for character only, AH = 9 for attribute and character). To
use these routines, AH holds 9 or 10, BH has the page num-
ber, and the character to write must be in AL. For function 9
(write attribute/character) in text modes, BL must hold the
new attribute byte. For function 10 in text modes, BL doesn’t
have to be specified. For either function in graphics modes, BL
holds the color of the character to be written. (For a discussion
of the color, as opposed to the attribute, of a character, see the
write dot function, number 12. Note that setting the high bit
in BL for graphics causes the character to be XORed onto the
screen, as in function 12.) The use of BL and BH is outlined in
Table 12-2.

Table 12-2. Use of BL and BH with Functions 9 and 10

Text Modes Graphics Modes
function 9  BL attribute BL color

BH display page BH —
function 10 BL — BL color

BH display page BH —

One other register, CX, must be set to use these two
routines—it holds the number of characters to write. This lets
you repeat the character in AL along the same row several
times. However, you can’t wrap around to a new line. Here’s
an example of a routine that puts a string of 80 horizontal
double-line characters, in light blue on dark blue, at the bot-
tom of 80-column page 2. (This applies, of course, only to the
color/graphics board; for monochrome, you would use some
other value in BL, and make sure BH was 0, since only one
page is provided for monochrome.)

MOV BH,2 ;page 2

MOV DH,24 ;bottom row

MOV DL,0 sfirst column

MOV AH,2 sfunction 2, set cursor

INT 10H

MOV AL,205 ;double horizontal line character
MOV BL,1*16+9 ;light blue (9) on dark blue (1)
MOV BH,2 ;page 2

MOV CX,80 ;repeat 80 times (a full row)
MOV AH,9 ;function 9, write attribute /character
INT 10H
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The Write Teletype Routine (AH = 14). This is a some-
what more useful routine for most single-page applications—it
handles moving the cursor as well as writing the characters.
(Don’t worry about IBM’s peculiar name for this function.)
However, it allows writing only to the current active page.

This routine is similar to the DOS function character out-
put routine you've seen used in other programs (“Primes,” for
example). However, there are differences between this routine
and the equivalent DOS function routine (the display output
function, AH = 2). This function is significantly faster than
the equivalent DOS functions, in part because it does not echo
to the printer when Shift-PrtSc (Fn-Echo on the PCjr) is
pressed, nor does it support the DOS 2.00 “piping’ feature
(see Chapter 13 for a discussion of DOS 2.00 piping). Note
that this routine is an exception to the usual rule that the con-
tents of AX are destroyed. The teletype function preserves AL.

The routine itself is simple. It outputs the character in AL
directly to the active page. For graphics modes, BL must hold
the color to plot the character in. So, to output an exclamation
point to the current (text) screen, simply code:

MOV ALY
MOV AH,14
INT 10H

Several characters are handled specially by this BIOS routine:

7 ring the bell (beep!)
8 backspace (go back one space, but don’t delete)
10 linefeed (go down to the next line, same column)
13 carriage return (go back to the beginning of this line)

You'll notice that there are some differences from the way
BASIC handles its special characters: Both the backspace and
the carriage return are handled differently. BASIC doesn’t use
CHR$(8) for backspace (it prints a graphics character), but
BIOS does. More significantly, the carriage return character,
CHR$(13), tells BASIC to go to the beginning of the next line,
whereas the carriage return makes BIOS go to the beginning
of the current line. To go to the start of the next line in BIOS,
you must first print an ASCII 13, and then an ASCII 10
(linefeed) to go down to the start of the next line. The 13-10
sequence is often seen in machine language programs.
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Graphics Interface Functions (AH = 12, 13
Decimal)
These routines are both exceedingly simple, yet quite power-
ful. To use the write dot routine, AH = 12, CX, DX must hold
the x,y coordinates of the pixel to be plotted and AL must
hold the color to use. The color (technically, the palette reg-
ister) can be any of the legal colors for the graphics mode
you're in:
0O or1 mode number 6
0to3 mode numbers 4, 5, and A
0 to 15 mode numbers 8 and 9

One useful capability of the write dot routine is that you
can XOR the dot onto the graphics screen by setting the high
bit (bit 7) in AL. This is equivalent to adding 80H to the color
value you've selected. Usually, this XORing mode is used for
moving shapes around. Advanced BASIC users may be famil-
iar with this idea from the XOR option of the graphics PUT
command. In brief, the XOR feature of the write dot function
allows you to plot a shape directly over the background. Then,
to erase it, simply XOR the shape again. Since two successive
XORs return a dot to its original state, the XORed shape has
now disappeared, and you can plot it at some other location.
See Chapter 8 for more details on XOR. Here’s an example of
plotting a dot of color 2 at 67,31, with XOR mode:

MOV CX,67 ;x coordinate is 67

MOV DX,31 ;y coordinate is 31

MOV BL,2+80H ;color (palette register) is 2, with XOR bit set
MOV AH,12 sfunction 12, write dot

INT 10H

A line-drawing procedure using this function is included
at the end of the chapter.

The counterpart of this routine is the read dot function,
AH = 13. For this, too, you specify CX, DX as the x,y co-
ordinates. The INT 10H call returns with the dot color in AL
(recall that an off dot will always return with AL = 0).

Palette Interface Routines (AH = 11, 16 Decimal)
These INT 10H functions are used to change the screen dis-
play colors. There are differences here between the various
IBM machines.

Set Color Palette (AH = 11). This call allows you to se-
lect the colors to be used on the screen. First we’ll discuss how
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this function is used on the PC. PC and PC/XT owners have
distinctly less powerful graphics, as we have seen when
discussing the set video mode function, and this is reflected in
this function as well.

To choose one of the two different subfunctions available
with the set palette function, set BH to 0 or 1. When BH is 0,
function 11 will set the border/background color to the value
in BL. BL should be a number from 0 to 15. In graphics modes
4 and 5 (320 X 200 four-color) this function sets the border
and background colors (the background color is equivalent to
color 0). In BASIC, the COLOR command can be used to the
same effect. In the text modes (0 through 3), this call sets the
border color. The background color in text mode, by contrast,
is set by the attribute byte of each character.

The other subfunction, for which BH = 1, allows you to
choose one of two palettes to use with the 320 X 200 four-
color mode (modes 4 and 5). Two palettes of colors are avail-
able. The palette determines the colors of the pixels on the
screen. One palette consists of the colors white, magenta, and
cyan. This palette, number 1, is selected by BIOS when you
enter mode 4 or 5 with BIOS. The other palette, number 0,
contains the colors brown, red, and green. To select a palette,
BH must hold 1, and AL must hold the palette number. The
available palette colors are summarized below:

palette 0: green, red, brown for colors 1, 2, 3
palette 1: cyan, magenta, white for colors 1, 2, 3

This switchable palette allows you to have either the colors
green, red, and brown or the colors cyan, magenta, and white,
on the screen at one time, as well as the background color (set
by 