
COMPUTE!'s
Beginner's Guide to

COMMODORE

John Heilborn

How to create music and sound on your

Commodore 64. Includes dozens of type-in-

and-run sound effects and two sound editors.

A COMPUTE! Books Publication $12.95

Ml,

t~J I i

n

COMPUTE! 's
Beginner's Guide to

COMMODORE

64
SOUND

John Heilborn

COMPUTE"Publicatiorclnc©
One of the ABC Publishing Companies y^^

Greensboro, Nortn Carolina
Commodore 64 is a trademark of Commodore Electronics Limited.

Copyright 1984, COMPUTE! Publications, Inc. All rights reserved.

Reproduction or translation of any part of this work beyond that permitted by Sec

tions 107 and 108 of the United States Copyright Act without the permission of the

copyright owner is unlawful.

Printed in the United States of America

ISBN 0-942386-54-X

10 987654321

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919)

275-9809, is one of the ABC Publishing Companies, and is not associated with any

manufacturer of personal computers. Commodore 64 is a trademark of Commodore

Electronics Limited.

Contents
Foreword v

Introduction vii

Chapter 1: SID: The Sound Interface Device 1

Keeping Registers Under Control 4

Making a Sound 9

Volume Adjustments 21

Changing the ADSR 24

Waveforms 27

Getting Fancy 33

Chapter 2: Music and the Sound Editor 37

Playing Notes 40

Timing and Rhythm 41

Pausing Techniques 43

Tools to Put the Music Together 46

A Simple Sound Editor 48

Using the Editor 59

Harmony and Disharmony 63

A Multivoice Chord Editor 69

Chapter 3: Sound Effects 83

Hard Sounds 85

Hard Sounds Using Pulse Waves 89

Hard Sounds Using Sawtooth Waves 97

Hard Sounds Using Triangle Waves 101

Hard Sounds That Use the Noise Waveform 102

Mixing Waveforms 105

Soft Sounds 106

Soft Pulse Sounds 110

Soft Sawtooth Sounds 112

Soft Triangle Sounds 114

Soft Noise 115

Tapered Sounds 117

Tapered Pulse Waveforms 119

Tapered Triangle Waves 122

Tapered Sawtooth Sounds 123

Tapered Noise 124

More Advanced Sound Techniques 125

iii

Chapter 4: Advanced Functions 127

The Initialization Process 129

The Envelope Generator 134

Using the Sound Envelope 140

Test Bit 146

Additive Synthesis 147

Subtractive Synthesis 152

Using Your Filters 155

Resonance 157

Putting It All Together 158

Chapter 5: Putting It All Together 159

Combinations and DATA 162

Mixing Sound and Graphics 162

Sounds Produced as Needed 162

Background Sounds 173

Using Edited Music Files 181

How to Append DATA 188

Putting the DATA to Work 188

POKEing Music into Memory 191

Sound Game 195

Using What You've Learned 202

Appendices 203

A: A Beginner's Guide to Typing In Programs 205

B: How to Type In Programs 207

C: The Automatic Proofreader 209

D: Commodore 64 Sound Memory Map 213

IV

n

H

Foreword

Hidden inside your Commodore 64 are thousands of sounds

and musical compositions. Ranging from arcade-quality sound

effects to full-scale synthesized orchestrations, they can make

your computer "sing" in ways you never thought possible. But

unless you know how to unlock those sounds, they'll stay hid

den, deep within the 64's SID chip.

Until computers became popular, you had to be a mu

sician to create music, or a sound effects expert to produce

natural and artificial sounds. But with a Commodore 64, you

have a versatile machine that can imitate the delicate sound of

a violin, or the crashing roar of an ocean. And it's often just a

matter of a few POKEs and PEEKs.

Finding out what to POKE and what to PEEK can be diffi

cult, especially if you're just beginning to use sound on the 64.

You have to know how to use the 64's amazing SID chip, how

to control its functions, and how to put it all together.

COMPUTERS Beginner's Guide to Commodore 64 Sound

shows you how to use this computer's powerful sound fea

tures to create just the sound you want. More importantly, the

descriptions and explanations are clear and easy to follow,

John Heilborn, noted Commodore author, shows you how to

create simple sounds, how to utilize the SID chip's advanced

features, and even how to combine sound with graphics to en

hance your programs and games. It doesn't matter whether

you're an experienced programmer or just starting. This book

will show you techniques to create your own sounds and

music.

• Use the volume control to create interesting effects.

• Manipulate the sound envelope to produce sounds—

from whistles to sirens to footsteps in the snow.

• Compose three-part harmony.

• Easily add sound to other programs.

• Experiment with ring modulation, synchronization, and

resonance.

u

u

To make it all easier, you can type in and run two complete —'
sound editors:

• A One-Voice Sound Editor j_j
• A Chord Editor

You can even create separate music files and, following a j j

simple method, append them to your other programs and *—*

games. Without having to retype anything.

With the help of COMPUTED Beginner's Guide to Com

modore 64 Sound, you'll quickly be creating your own sounds

and music.

VI

u

LJ

U

U

u

Introduction

' ' A Definition of Terms
One of the most frustrating things new computer users face is

the incredible number of new words that surround computers.

While the new terminology provides the experienced computer

user with a quick and precise way of communicating complex

ideas, it's often intimidating to novices. The unfamiliar words

and their definitions can make it difficult for the beginning

programmer to understand explanations. Without that under

standing, it's hard to make that leap from beginner to experi

enced user.

It's almost a classic Catch-22 situation: You cannot com

prehend the meaning of the terms without first understanding

the technology, but you cannot learn the technology without a

thorough understanding of the terms. To make matters worse,

this book uses terms that are peculiar to two totally different

technologies: computers and sound.

Most reference books have glossaries that define the terms

used throughout the text. Usually, the glossary is at the end of

the book and has a short description of each term. For our

purposes, that is simply not enough. First, the glossary would

be found at the wrong end of the book (you will be needing

these terms before you read the book), and second, a glossary

would not be sufficiently detailed.

In reality, although this introduction is called "A Defi

nition of Terms," it could more accurately be called "A Defi

nition of Concepts," since every word is much more than just

f—j a word: It is the embodiment of an idea. The descriptions of

terms presented here will be covered again in the text of the

book. It can only be hoped that by describing the terms and

en concepts first as individual ideas and then again in the context

of the book, they will be more easily understood. After all, an

understanding of sound on the Commodore 64 is what you're

!—1 looking for.

vn

Introduction

The Terminology of Sound
ADSR
The term ADSR is actually a combination of the first letters of

the words Attack, Decay, Sustain, and Release. They are the

four parts of each sound the Commodore 64 makes.

Figure 1. ADSR Envelope

T

I
I
C

Attack Decay Sustain Release

Time •

Attack
Attack is the first of the four phases of a sound. It is a descrip

tion of the way that a sound begins. For example, a sound that

has a fast attack is one that begins abruptly. Figure 2a shows a

graph of a fast attack. A sound with a slow attack will begin

quietly and gradually increase in volume. Take a look at Fig

ure 2b to see a diagram of a slow attack.

vui

u

u

u

u

U

Introduction

Figure 2. Attack Rates

a. Fast Attack

Fast Attack

b. Slow Attack

Time

Time

Slow Attack

Asymmetrical
The term asymmetrical refers to anything which has been

divided into unequal parts. In the case of the 64's sound func

tions, we'll use the term to describe pulse waves that are

unevenly divided. This is done by programming the selected

voice with a pulse width that is either more than or less than

50 percent of the total wave.

IX

Introduction

Figure 3. Asymmetrical Pulse Wave

Time

Base Line
Sound waves are created when something vibrates. As the

vibrating object pushes out or up, it compresses the air around

it. When it pulls in or down, it creates a very small vacuum.

This process is called compression and rarefaction. You could

think of it as similar to the ripples made when you throw a

pebble into a pool of water. A number of these ripples, or

compressions and rarefactions, make up a sound wave. The

sound's frequency (the number of compressions and rarefac

tions per second) and the amplitude (the size of those com

pressions and rarefactions) may vary. When we represent a

sound wave, the base line is the center line for that waveform.

It's the position where there is no compression or rarefaction.

Look at Figure 4 to see a sample sound wave graphed on its

base line.

U

0

u

u

u

Introduction

Figure 4. Base Line

Maximum Volume

Base line

Minimum Volume

Time

Band Pass Filter
A band pass filter allows a selected portion of a sound's fre

quencies to pass through, reducing the volume of any that

may be higher or lower than the selected filter cutoff fre

quency. Since sounds consist of more than one frequency,

you'll hear only a portion of the sound's frequencies when a

band pass filter is used. Figure 5 illustrates a band pass filter

and its effect on a sound's frequencies.

Figure 5. Band Pass Filtering

Frequency

XI

Introduction

Beats
Two tones that are very close together, yet not exactly the

same, will produce a background sound that rises and falls at

a rate which varies as the two notes become closer together or

farther apart. This background sound is called the beat.

Cycle
Sound waves are complete units, each of which has a begin

ning and an end. One cycle of a sound wave is a measurement

taken from any point on that sound wave to the exact same

position on the next sound wave. Figure 6 shows one cycle of

a square wave.

Figure 6. A Sound Cycle

One Cycle

Base Line

Time

The frequency of a sound can be determined by counting

the number of sound waves (cycles) that occur in one second.

The frequency is then represented by the expression:

number of cycles counted Hz

Note: Hertz (or Hz) is a measurement of frequency. One hertz

is equal to one cycle per second.

xu

u

u

u

u

a

H

H

Introduction

Cutoff Point
Cutoff point is simply the frequency which you have selected

as the point where the filters begin to reject ranges of fre

quencies. The low pass, band pass, and high pass filters use

this point to determine which frequencies to pass and which

to reject.

Chords
Any group of three or more notes which produce a harmonic

sound can be called a chord. While there are mathematical for

mulas for determining the actual frequency values to use, the

word harmony is essentially an aesthetic term. Thus, it's prob

ably better to simply listen to the notes together and deter

mine those sounds you wish to make by experimentation.

Decay
Decay is the part of a sound that follows the attack. It

describes the drops in volume between the end of the attack

phase and the beginning of the sustain phase of a sound. A

quick decay causes the sound's volume to drop much faster to

the sustain level. A slow decay decreases the volume less rap

idly to the sustain setting.

Figure 7. Decay

Time

Decay

Xlll

Introduction

Discord
Any group of three or more notes which, when played, pro

duce a disharmonious sound. As is the case with chords,

although there are mathematical formulas for determining the

actual frequency values to avoid, discord is essentially an aes

thetic term. Because of their applications, disharmonic sounds

are better derived by experimentation.

Envelope
In making sound on the 64, a sound envelope is a specific

combination of the four waveform components (attack, decay,

sustain, and release) as defined for any given sound. For

example, a sound that begins slowly, drops quickly, maintains

a long sustain and then slowly drops off to silence would have

a waveform envelope like this:

Figure 8* Sound Envelope

Time

LJ
Filtering
All filters, whether they are paper filters like the ones we use —■

to make coffee or electronic ones like this one, have basically] I
the same function. They selectively allow one kind of thing to

pass through while blocking others. Coffee filters, for example,

allow the water and any dissolved coffee to pass through them LJ
while they block the coffee grounds. Electronic filters allow

selected frequencies to pass while rejecting or blocking others. t (

xiv

u

Introduction

Flat
A major musical scale consists of the music notes C, D, E, F,

G, A, and B. However, between these notes there are half

steps which are called sharps and flats. The flat notes are

those which are a half step below the note from which they

draw their name.

Frequency
Sound is a series of vibrations conducted through the air. The

frequency of a sound is determined by counting the number of

times that the sound vibrates within a set period of time (typi

cally one second). Frequency is then represented by the

expression:

number of cycles counted Hz

Gate Bit
The gate bit is the sound control that is normally used to turn

the sound on and off. It is found in the same memory location

as the waveform control bits (for pulse waves, triangle waves,

and so on).

Hard Sounds
An aesthetic term, it usually refers to sounds that begin and

end abruptly, with dramatic changes in volume. Beeps, blips,

and clicks can be considered hard sounds.

Harmony

Harmony is an aesthetic description of the way a group of fre

quencies sounds. While the actual combination of frequencies

that would be considered harmonious varies with taste, they

can be calculated using mathematical formulas. However,

since the actual sounds produced are always subject to opin

ion, it is best, at least in most of the applications in this book,

to simply experiment with different sounds.

Hertz
Hertz represents cycles per second and refers to the rate at

which a vibrating object or function oscillates.

xv

Introduction

High Pass Rlter
The high pass filter in the Commodore 64 allows all fre

quencies above the selected cutoff point to pass while reduc

ing the volume of all those frequencies below the selected

cutoff. Figure 9 shows how this works.

Figure 9. High Pass Filter

u

u

u

u

u

«_ Cutoff

Frequency

Frequency

Low Pass Filter
The low pass filter in the 64 allows all frequencies below the

selected cutoff frequency to pass, but reduces the volume of all

frequencies above this cutoff. This function is the opposite of

the high pass filter.

xvi

u

U

LJ

U

a

Introduction

Figure 10* Low Pass Filter

Frequency

Lower Pitch Value
The pitch produced by each of the three voices can be any of

65,536 different frequencies. To produce this number of tones,

the 64 uses two separate memory locations, an upper pitch

register and a lower pitch register. The value in the lower reg

ister is called the lower pitch value.

Noise
Noise is one of the four different waveforms that can be pro

duced using the Commodore 64 computer. Depending on the

selected frequency of the noise, it can sound like anything

from a low rumble to a high-pitched hiss.

Octave
An octave is the distance between two pitches which have a

2/1 ratio with each other. Our musical scale is built around

this relationship. A major scale consists of the pitches from

xvu

Introduction

one octave to the next. Table 1-3 in Chapter 1 shows the

octaves and pitches within each octave available on the 64.

Peak
Peak refers to that point or level which marks the highest part

of a waveform.

Pulse Wave
A pulse wave is one of the four basic waveforms the computer

can produce. Pulse waves rise to a maximum displacement

quickly, maintain that level for a set period, and then fall to

minimum displacement. This gives pulse waves a very clear,

full sound because they are always at one extreme or the

other. The following figure shows a pulse wave.

Figure 11. Pulse Wave

Time

Pulse Width
In using the 64, pulse width refers to the relative proportion of

time that the high and low parts of a pulse wave are at their

farthest distance from a zero point. The pulse width refers to

the proportion of the wave which is high. By using the pulse

width control register, you can program the pulse waves with

widths from 0 percent to 100 percent in 4096 steps. The left

side of Figure 12 shows a pulse width of 10 percent, while the

right side details a pulse width of 50 percent.

u

u

u

LJ
XV1U

u

H

n
Introduction

Figure 12. Pulse Width

n

10% 90%

One Cycle

50%

One Cycle

50%

i
i

Time

Release

Release is the fourth and last part of a sound. It describes the

way the sound finally shuts off. It behaves very much like

decay. A fast release could be illustrated by an almost vertical

line immediately after the sustain portion of the sound

envelope (illustrated by release A in Figure 13), while a slower

release could be shown by a more gradually falling line

(shown as release B in Figure 13).

Figure 13 ♦ Release

Sustain

Time

xix

Introduction

Resonance

Resonance is a special effect that can be used much as a filter,

modifying the sounds that are produced as they are played.

Resonance emphasizes the cutoff point of a filtered sound.

This function, along with synchronization and ring modula

tion, is used to modify the shape of the basic waves produced

by the Commodore 64.

Ring Modulation
Ring modulation is a special effect that can be used much as a

filter, modifying the sounds that are produced as they are

played. Synchronization, resonance, and this function are all

used to modify the shape of the basic waves produced by the

64.

Sawtooth Wave
The sawtooth wave is one of the four basic waveforms the 64

can produce. Sawtooth waves rise to maximum volume

slowly, and then fall again to silence quickly. This quick drop

in volume gives them a very sharp sound. Illustrated, a saw

tooth waveform would look something like this:

Figure 14* Sawtooth Wave

0>

3

Time

U

LJ

LJ

u
xx

Introduction

Sharp
A major musical scale consists of the musical notes: C—D—

E—F—G—A—B. However, between these notes there are half

steps, which are called sharps and flats. The sharps are those a

half step above the note from which they draw their name.

SID
The term SID stands for Sound Interface Device. This is the

name given to the sound synthesizer chip in the Commodore

64. It is the primary circuit used to produce the three voices

(and all their special effects) on the 64.

Soft Sounds
Another aesthetic term that refers to a subjective impression of

a sound. Soft sounds are generally thought of as those which

both rise and fall slowly in volume.

Sound Control Register
The 64 uses 25 memory locations (addresses 54272 through

54296) to control most of the sound functions for its three

voices. The individual control functions are each operated

through sound control registers, which are found in these mem

ory locations. The registers can be manipulated by POKEing

appropriate values into them. These registers are sometimes

called write-only registers, since you can only POKE values

into them, not PEEK to see what value is presently there.

Sustain

After a sound has completed its decay, the 64 begins the third

cycle, sustain. This portion of the sound maintains a specified

volume level until the sound is gated off (using the gate bit in

that voice's control register). Figure 15 illustrates a long sus-

tain. Sustain is not a function of time, as are the other ele

ments of a sound's ADSR. It is a volume level. The length of

the sustain portion of a sound envelope is determined by

other methods, usually a delay loop in a sound routine or pro

gram. In a graphic representation such as Figure 15, however,

shortening the horizontal line between the end of decay and

the beginning of the release would illustrate a decrease in the

sustain time.

xxi

Introduction

Figure 15* Sustain

Time
Sustain

\
Gate Bit

Turned Off

Square Wave

The term square wave refers to a pulse waveform that has been

evenly divided between a high portion and a low portion. This

is accomplished by programming the selected voice with a

pulse width that is exactly 50 percent of the total wave. This

produces the fullest and loudest sound. Sometimes this is

called a symmetrical wave. Refer to the right-hand side of Fig

ure 12 for an illustration of a square wave.

Synchronization (Sync)
Synchronization is one of the special functions used to modify

the shape of one of the basic waveforms (pulse waves, triangle

waves, sawtooth waves, and noise). It's produced by the logi

cal ANDing of two voices.

Tapered Sounds
Tapered, a subjective term, is used to describe sounds that rise

slowly to maximum volume, or that fall gradually from maxi

mum volume to minimum volume.

Test Bit
The test bit is one of the control functions in the sound reg

isters. It turns the sound off when the bit is turned on and

then on again when the bit is off. Although this bit is nor

mally used for special applications such as testing the sound

circuits, it can also be used to control the sound without

manipulating any of the other sound parameters.

u

LJ

XX11

u

Introduction

Triangle Wave
A triangle wave is one of the four basic waveforms the Com

modore 64 can produce. Triangle waves rise to maximum pos

itive displacement and then fall to minimum negative

displacement slowly. This gives them a very soft sound. The

graphic illustration of a triangle waveform is quite simple, as

you can see from Figure 16.

Figure 16* Triangle Wave

Time

Upper Pitch Value
The pitches created by each of the computer's three voices can

be any of 65,536 different frequencies. To produce this num

ber of pitches, the 64 uses two separate memory locations, an

upper pitch register and a lower pitch register. The value in

the upper register is called the upper pitch value.

Waveform
Waveforms are graphic representations of sound. They show

how quickly (or slowly) the sound waves rise and fall, and

optionally, their frequency.

You can use them to analyze the different waves so you

can make better use of the different qualities of each sound

type.

XXUl

Introduction

Getting Comfortable
You'll be seeing these terms quite often in the rest of this ref- jj
erence guide. Although the short definitions here will certainly

help in understanding the terminology of sound on the 64,

oftentimes you can best comprehend sound functions by jj

experimenting yourself. In the next five chapters, you'll see

numerous example programs showing how sound can be cre

ated and manipulated on the Commodore 64. Changing

values and altering parameters in these example programs can

be one of the best ways to see how sound works on this com

puter. It's only a few steps from seeing how a routine creates

sound, to modifying it slightly, to beginning to write such pro

grams yourself. Many people learn to program this way.

Of course, this glossary of terms is available to you as you

read through the rest of the book. You can turn back to this

section and locate the term you've just come across, but don't

quite understand.

Becoming comfortable with these terms is important, for

the following chapters use them extensively. It's a jargon, cer

tainly, but it allows explanations to be simple, yet complete.

Spend the time necessary getting to know these terms, and

you'll find the rest of this reference guide much easier to fol

low, and thus use.

Typing in Programs from This Book
Before you go on, it's a good idea if you first read Appendices

A, B, and C, all found in the back of this book. They'll explain

how to type in the programs listed in this guide and are

especially helpful if you're unfamiliar with COMPUTEI's list

ing conventions, or if you're just starting to use your Com

modore 64.

Appendix A, "A Beginner's Guide to Typing In Pro

grams," and Appendix B, "How to Type In Programs," serve

as an introduction to your 64's editing functions and our list

ing conventions. Appendix C, "The Automatic Proofreader,"

includes a program which will make mistake-free entry of our

listings simple and easy. It will be easier to enter the programs

in this book if you first read the explanation and type in the

Automatic Proofreader found in Appendix C.

If you look at the programs in this book, you'll see a REM

xxiv

n

_ Introduction

n

statement, preceded by a colon and followed by a number, at

the end of each program line. For instance, you might see :rem

127. Do not type in this REM statement or the number as you en

ter the program. This is the checksum number generated by the

Automatic Proofreader program. You'll compare the number

after the :rem with the number displayed on your screen.

Using Automatic Proofreader, you can insure that the program

is entered exactly as shown in the book. It will save you

considerable time.

n

n

XXV

CHAPTER

SID:

The Sound Interface

Device

CHAPTER

•i i 1
SID:

The Sound Interface

Device

The Commodore 64, like other computers, operates on num

bers. It accepts numbers as input, and it produces numbers as

output.

Since the 64 outputs only numbers, you may wonder how

it can make sounds, or even how it produces the video display

(television picture) you see every time you turn it on. The

answer is simple: The pictures and sound that the computer

produces really are numbers. The computer has memory loca

tions that store the numbers that create the picture and sound.

Then it uses some special devices to convert those numbers

into sound and pictures.

There are two such devices which the 64 uses to convert

numbers into sound and pictures. Pictures are processed with

a device called the VIC-II chip, and sounds are created using

the SID (Sound Interface Device) chip.

The SID chip is capable of producing three voices at the

same time and any of 65,536 different pitches within a full

eight-octave range. In addition to that, the SID allows you to

control the actual shape of the sounds it produces using filter

ing and waveform control.

It's almost like having a music synthesizer built into the

computer. Much more sophisticated and versatile than other

computers' sound-creating devices, the Commodore 64's SID

gives you an amazing range of choices when it comes to

producing sounds and music. Because of that, it's somewhat

more complicated creating sounds on the 64. You have to

know how to access and manipulate the various control

1

SID: The Sound Interface Device

registers of the SID chip. It's not difficult, really; it just takes

some time to learn. But you'll soon realize it's worth that time,

for you can make the Commodore 64 "sing" in ways no other

computer can duplicate.

Keeping the Registers Under Control
The way you program the SID to produce sounds is by putting

different values (expressed as numbers) into its sound control

registers. The sound control registers are memory locations,

which store the numbers used to produce sound on the 64.

Table 1-1 shows the name and function of each of the sound

control registers, its location, and the bits that can be set to

manipulate that register.

Table 1-1. The SID Sound Control Registers

Sound Control Register Function

Voice 1 Pitch Value (lower value)

Voice 1 Pitch Value (upper value)

Voice 1 Pulse Width (lower value)

Voice 1 Pulse Width (upper value)

Voice 1 Waveform Output (gate bit)

Voice 1 Sync Bit Enable

Voice 1 Ring Modulation Enable

Voice]

Voice 1

Voice

Voice ',

Voice '.

Voice '

Voice]

Voice '

Voice]

[Test Bit Enable

[Triangle Wave Enable

I Sawtooth Wave Enable

[Pulse Wave Enable

[Noise Enable

[Decay Value

I Attack Value

I Release Value

I Sustain Value

Voice 2 Pitch Value (lower value)

Voice 2 Pitch Value (upper value)

Voice 2 Pulse Width (lower value)

Voice 2 Pulse Width (upper value)

Voice 2 Waveform Output (gate bit)

Voice 2 Sync Bit Enable

Voice 2 Ring Modulation Enable

Voice 2 Test Bit Enable

Voice 2 Triangle Wave Enable

Voice:I Sawtooth Wave Enable

Memory Address

54272

54273

54274

54275

54276

54276

54276

54276

54276

54276

54276

54276

54277

54277

54278

54278

54279

54280

54281

54282

54283

54283

54283

54283

54283

54283

Bit(s)

0-7

0-7

0-7

0-3

0

1

2

3

4

5

6

7

0-3

4-7

0-3

4-7

0-7

0-7

0-7

0-3

0

1

2

3

4

5

fj

) ""(

lj

1

SID: The Sound Interface Device

Sound Control Register Function

Voice 2 Pulse Wave Enable

Voice 2 Noise Enable

Voice 2 Decay Value

Voice 2 Attack Value

Voice 2 Release Value

Voice 2 Sustain Value

Voice 3 Pitch Value (lower value)

Voice 3 Pitch Value (upper value)

Voice 3 Pulse Width (lower value)

Voice 3 Pulse Width (upper value)

Voice 3 Waveform Output (gate bit)

Voice 3 Sync Bit Enable

Voice 3 Ring Modulation Enable

Voice 3 Test Bit Enable

Voice 3 Triangle Wave Enable

Voice 3 Sawtooth Wave Enable

Voice 3 Pulse Wave Enable

Voice 3 Noise Enable

Voice 3 Decay Value

Voice 3 Attack Value

Voice 3 Release Value

Voice 3 Sustain Value

Cutoff Filter (lower value)

Cutoff Filter (upper value)

Voice 1 Filter Enable

Voice 2 Filter Enable

Voice 3 Filter Enable

External Audio Filter Enable

Resonance Filter Value

Volume Control

Low Pass Filter Enable

Band Pass Filter Enable

High Pass Filter Enable

Disable Voice 3

Voice 3 Numeric Output

Envelope Generator

Memory Address

54283

54283

54284

54284

54285

54285

54286

54287

54288

54289

54290

54290

54290

54290

54290

54290

54290

54290

54291

54291

54292

54292

54293

54294

54295

54295

54295

54295

54295

54296

54296

54296

54296

54296

54299

54300

Bit(s)

6

7

0-3

4-7

0-3

4-7

0-7

0-7

0-7

0-3

0

1

2

3

4

5

6

7

0-3

4-7

0-3

4-7

0-2

0-7

0

1

2

3

4-7

0-3

4

5

6

7

0-7

0-7

1

SID: The Sound Interface Device

U

If you were using voice 1, for example, and wanted to use

a pulse waveform, you would set bit 6 of location 54276 (by

placing a value of 64 in that address), as shown in the above

table.

Bits, bytes, and nybbles. The control registers listed in

Table 1-1 are used to access all of the sound functions on the

64. To operate all but the last two registers, you use the

BASIC command POKE. This allows you to change the values

in the registers. The format of a POKE command is:

POKE M,V

where M is a number representing a memory location between

0 and 65535, and V is the value to be stored in that location.

The number to be stored must be between 0 and 255.

To get a better idea of how this works, let's store a num

ber in memory:

POKE 6000,76

Now the location 6000 contains the value 76. If you want to

read that memory location—in other words, see what value is

presently there—you'll need to use the BASIC counterpart of

the POKE command, PEEK.

PRINT PEEK (6000)

PEEK is used to examine the contents of a memory loca

tion. You have to use the PRINT command along with the

PEEK command so the computer will display the value it

found in location 6000. Without the PRINT command, the

computer would not know what to do with the value it found.

When you press RETURN, the computer should display the

value you stored, 76.

By using this method of placing values as well as looking

to see what value is currently in a memory location, you can

store any number in any memory address that is available, as

long as you use values between 0 and 255.

The reason you're restricted to using numbers between 0

and 255 is that the Commodore 64 is an eight-bit computer. In

other words, it can accept only numbers that are eight binary

bits long.

While it is not the purpose of this book to explain how

binary numbers and the 64's memory registers work, it is

important that you be able to use them. If you need a more

detailed explanation of binary numbers than what follows,

1

SID: The Sound Interface Device

you should consult a book on beginning BASIC.

Each memory location in the 64 can store one byte, which

in turn is made up of eight bits (binary digifc). The eight bits

in each byte are numbered, starting with 0 on the far right,

and ending with bit 7 on the far left. A byte, then, would look

something like this:

Figure VI. Byte's Bits

One Byte

Bit

1 0

Each bit in this sample byte has its own individual value.

If the bit is set (the bit has a 1 stored in it), that value is added

to the rest of the on (another term for set) bits in the byte. If

that bit has a 0 stored in it instead, it's said to be off, or not

set. Then the value of that bit is 0. The bits' values in a byte

are given in the following table:

Figure V2. Bit Values

Bit

Bit Value 128

6

64

5

32

4

16

Bit 0's value when it's set (a 1 is stored there) is 1. Bit l's

value is 2 when it's set, bit 2's value is 4, and so on. You'll

notice that each succeeding bit as you move to the left has a

value exactly double that of the previous bit. As long as you

can remember that, the values are easy to recall.

Earlier, we said that the numbers placed in the 64's mem

ory locations had to be between 0 and 255. Remember, that is

the range of possible values on an eight-bit computer like the

Commodore 64. But how are those numbers created? With the

1

SID: The Sound Interface Device

bit values in a byte, by setting (placing a 1 in that bit) some

bits, and leaving other bits off (by placing a 0 in that bit). The

total value of all set bits becomes the value stored in that

memory location's byte.

For example, let's look at the binary number 0:

00000000

This represents a single byte in the 64. All eight bits contain

zeros. Not one of the bits has been set or is on. To show the

binary number 1, all you'd have to do is set one bit, bit 0. Bit

0, you'll recall, had a value of 1 when it was set. Binary num

ber 1 would look like this:

00000001

Setting both bit 0 and bit 1 would give us a different

value. All you have to do is add the bit values (see Figure 1-2)

together for all the bits that have been set. 1 (bit 0) + 2 (bit 1)

= 3. Binary number 3 would thus look like:

00000011

Now let's look at the number 255 (as it is stored

internally in the computer):

11111111

All the bits have been set by storing l's in them. Adding

together all the bit values gives you a total of 255

(128 +64+32+ 16+8+4+ 2+ 1=255). If you tried to add

anything to this number, the number would overflow, since all

the bits are filled. That's why you cannot save a number

greater than 255 in any single memory location.

(Of course, you can store larger numbers in the computer,

but they are stored as several bytes which are then combined

to make larger numbers.)

Clearing the registers. Clearing the sound registers

should be the first step in every sound routine you write. You

do this because there is no way to determine what values are

stored in any of the sound registers. They are sometimes

called write-only registers, for although you can write to (store

numbers in) them, you cannot read them. In other words,

PEEKing to these registers will not give you a correct value.

All you'll see displayed will be 0's. You can try this yourself

by entering the following one-line program and then typing

RUN.

8

1

_ SID: The Sound Interface Device
I i ————————————————————————————

10 FOR 1=54272 TO 54296:PRINT PEEK(I):NEXT

_ A column of 0's will show on the screen. Even if you enter a

M value to one of the registers by POKEing a value into it (such
as POKE 54272,32), the above one-line program will still

_ show that only 0 values are present.

M By clearing all of the registers (POKEing them with zeros),

you make sure that you will not have any incorrect values in

any of the sound registers. It's a good habit to get into when

you're programming sound on the 64.

Making a Sound
Although the process of making sound with the SID is some

what complex, it does not have to be difficult. After you've

cleared the sound registers (see the description earlier for that

process), there are several steps you should follow when you

create any sounds on the 64, even the simplest sound:

Volume. The sound control register at location 54296

controls the volume, which has a range from 0 to 15. Before

you set anything else, you should first set the sound volume.

If you don't, you won't hear anything when the sound is

produced.

Attack, Decay, Sustain, and Release (ADSR). The sixth

and seventh control registers for each of the 64's three voices

(for example, locations 54277 and 54278 for voice 1) deter

mine the setting of the ADSR. Without placing values in these

registers, the sound cannot be created.

Frequency. You also have to select a frequency or pitch

for your sound or note. The first two registers for each voice

control determine the highness or lowness of the pitch of the

sound you produce. One register contains the lower pitch

value, while the other contains the upper pitch value. Com

bined, they allow you to select any of 65,536 frequencies.

[""] Table 1-3 shows the actual numbers you need in order to pro
duce a particular note (the lower and upper POKE values) and

the frequency of that note.

P] Waveform and gate bit enabling. There are four possible
waveforms you can choose from on the Commodore 64 by

POKEing an appropriate value into the fifth register of each

P] voice. Pulse waveforms can create a variety of sounds because
other registers (called the pulse-width control registers) deter-

mine its shape. The triangle waveform produces a soft, almost

\] subdued sound, while sawtooth waveforms create a sharper,

9

H

1

SID: The Sound Interface Device

more twangy sound. The fourth waveform, noise, can vary

from a high hiss to a low rumble. After selecting the wave

form, however, you also have to turn the gate bit on, which is

done simply by setting bit 0 in each waveform control register

to 1. If you don't turn the gate bit on, you won't hear the

sound, no matter which waveform you chose.

Loop to sustain the sound. If you want to hear the note

for any length of time, you'll need to insert a FOR-NEXT

delay loop in the sound routine. This loop keeps the sound or

note playing at the sustain volume for the amount of time you

want.

Gate bit disabling. Finally, to turn the sound off, you'll

disable the gate bit (found in the same register as the wave

form control) by setting bit 0 to 0.

Let's take a look at each of these steps in turn, explaining

what you must do with each in order to create a sound on the

64. Then we'll actually create some sounds, even modifying

them by changing values in some of the sound control

registers.

The volume control on the 64 is handled through the

first four bits of address 54296. Values ranging from 0 to 15

can be POKEd into this location to set different levels of

sound. A value of 0, however, means that the volume has

been turned off. Since there's only one register to control vol

ume, all three voices will play at the same level. One way to

get around that is to set the volume note by note. You'll see

how to do that in this chapter.

Attack, Decay, Sustain, and Release (ADSR) are the

names given to the four sections of the sound envelope. By

altering the registers that control these functions, you can

significantly change the sound produced by the 64. Look at

Figure 1-3 for an illustration of a sound envelope and the pat

tern of attack, decay, sustain, and release. j i

To understand the ADSR of a sound, it's probably easiest

to think of what a sound, such as an explosion, is like. The

sound begins quite loud, and dies down quickly; its volume I |

rapidly increases, stays at that level for a moment or two, and

then falls off dramatically. The explosion sound lasts only a

few seconds. You can think of all this process of getting I j

louder, then eventually softer, as the ADSR of the note. Each

sound, whether natural or artificial, has its own sound

envelope made up of an ADSR. I j

10

u

1

SID: The Sound Interface Device

Figure 1-3* Attack, Decay, Sustain, and Release

15

Gate bit

turned on

Release

Gate bit

turned off

• Attack. A function of time, the attack of a note deter

mines how quickly a sound reaches its selected volume. You

can set the attack to last from two milliseconds to almost eight

seconds. An attack rate of 0 means the sound begins at full

volume.

• Decay. Decay is also a function of time expired.. After

the initial attack, the volume decreases until it reaches the

level specified by the sustain level. Decay indicates how long

this process lasts. A fast rate drops the sound quickly from the

high point of its attack to the sustain, while a slow rate draws

it out.

• Sustain. The only portion of the ADSR that is not time-

oriented, sustain is actually a volume setting. The value you

select for this function determines the volume level reached

after the decay. For instance, if the sustain is set at 12, the

decay will drop the volume from level 15 to level 12. The note

stays at this volume until you clear the gate bit. In other

11

SID: The Sound Interface Device

words, you can sustain a note indefinitely simply by not clear

ing the gate bit. You can use the sustain setting to set different

volume levels for each of the 64's three voices. Since the vol

ume control register at location 54296 is a master control, set

ting the volume for all voices, using the sustain is the easiest

way to control volume when you're creating sounds with mul

tiple voices.

• Release. Yet another function of time, release is the final

descent of the sound's volume. A short release time drops the

note off quickly, while a longer release time lengthens the fall

of the note.

The SID chip is able to control the ADSR separately for

each voice by using two registers. For example, location 54277

controls attack and decay for voice 1, while location 54278

controls the sustain and release. All you have to do is put a

value in the register(s) and the SID chip takes care of the rest.

If you were to look at one of the ADSR control registers

(there are actually six of them—two for each of the Com

modore 64's three voices), you would find the register broken

into several individual control bits, each of which has a spe

cific function. Figure 1-4 shows voice l's control register for

attack and decay at location 54277.

Figure V4. Attack/Decay Control Register

Attack Control Register Decay Control Register

Location

54177

Bit Value

Bit #

128

7

64

6

32

5

16

4

8

3

4

2

2

1

1

0

As you can see, the register is divided into two sections.

The upper section (bits 4-7; also called the high nybble) con

trols the length of the attack and the lower (bits 0-3; also

called the low nybble) controls the length of the decay. Since

there are only four bits in each nybble, the values you can use

range from 0 to 15. The decay, being the low nybble, will

accept those numbers directly as values. Thus to change the

length of the decay, all you need to do is enter a value in the

12

u

u

u

u

u

H

n

n

1

SID: The Sound Interface Device

register that is between 0 and 15 (decimal). The larger the

number, the longer the decay.

PJ You also have a range of 0 to 15 available when it comes

to setting an envelope's attack rate. However, since it's the

high nybble, you have to do some multiplication. To obtain

PI the number to enter, you need to multiply the attack value

(0-15) by 16, then POKE that total value into the register. To

use both an attack and a decay at the same time, add the two

values and POKE in the total. For instance, if you wanted an

attack value of 8 and a decay of 9, you would figure the total

like this:

(8 x 16) + 9 = 137

That's the number you'd POKE into the register.

The sustain and release are set in the same way, only

using the seventh register of each voice. The release rate is set

by the low nybble (bits 0-3), using values from 0 to 15. The

sustain level is set in the same way as attack, by multiplying

the volume level you want by 16. Adding the release and sus

tain values together and POKEing the total into the register set

both functions.

You can eliminate the multiplication necessary for the

attack and sustain rates by referring to Table 1-2. It shows the

values for decay and release as well.

Table 1*2. ADSR POKE Values

Value

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Attack

0

16

32

48

64

80

96

112

128

144

160

176

192

208

224

240

Decay

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Sustain

0

16

32

48

64

80

96

112

128

144

160

176

192

208

224

240

Release

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

13

1

SID: The Sound Interface Device

The pitch registers control the frequency of the note or

sound and consist of the first two memory locations of each

voice. The numbers stored in these locations define a binary

number between 0 and 65535. Each time the count in the first

location (the lower register) reaches 256, the extra count is car

ried over to the second location (upper register). The number

represented in the two registers is equal to the lower value,

plus the upper register multiplied by 256. For instance, if the

lower register contains a 3, and the upper register contains a

10, the value represented would be:

3 + (10 x 256) = 2563

Most of the time you will be able to use the values in

Table 1-3, simply POKEing the first number into the low reg

ister and the second into the high register. If you wanted to

create an A# from the first octave, for example, and use voice

1, you would use something like:

POKE 54272,221:POKE 54273,1

The low register (54272) POKEs the first pitch value, and the

high register (54273) POKEs the second pitch value.

Using the low and high registers for each of the Com

modore 64's voices, along with Table 1-3, you should be able

to create almost any tone or frequency you want. Some

applications, like sweeping the scales, are a bit more difficult,

but that will be covered later in this chapter.

Table 1*3- Musical Note POKE Values

Musical

Note

C

C#

D

D#

E

F

F#

G

G#

A

A#

B

Actual

Frequency

16 Hz

17 Hz

18 Hz

19 Hz

21 Hz

22 Hz

23 Hz

24 Hz

25 Hz

27 Hz

29 Hz

31 Hz

Pitch Value

Lower Half

12

28

45

62

81

101

123

145

169

195

221

250

Pitch Value

Upper Half

1

1

1

1

1

1

1

1

1

1

1

1

LJ

LJ

U

U
14 _

u

1

SID: The Sound Interface Device

n

H

Musical Actual

Note Frequency

C 24 Hz

C # 34 Hz

D 37 Hz

D # 39 Hz

E 41 Hz

F 44 Hz

F # 46 Hz

G 49 Hz

G # 52 Hz

A 55 Hz

A # 58 Hz

B 62 Hz

C 65 Hz

C # 69 Hz

D 73 Hz

D # 76 Hz

E 82 Hz

F 87 Hz

F # 92 Hz

G 98 Hz

G # 104 Hz

A 110 Hz

A# 117 Hz

B 123 Hz

C 131 Hz

C # 139 Hz

D 147 Hz

D # 156 Hz

E 165 Hz

F 175 Hz

F # 185 Hz

G 196 Hz

G # 208 Hz

A 220 Hz

A # 233 Hz

B 247 Hz

C 262 Hz

C # 277 Hz

D 294 Hz

D# 311 Hz

E 330 Hz

F 349 Hz

Pitch Value

Lower Half

24

56

90

125

163

203

246

35

83

134

187

244

48

112

180

251

71

151

237

71

167

12

119

233

97

225

104

247

143

47

218

142

77

24

238

210

195

194

208

238

30

95

Pitch Value

Upper Half

2

2

2

2

2

2

2

3

3

3

3

3

4

4

4

4

5

5

5

6

6

7

7

7

8

8

9

9

10

11

11

12

13

14

14

15

16

17

18

19

21

22

15

Musical

Note

F#

G

G#

A

A#

B

C

C#

D

D#

E

F

F#

G

G#

A

A#

B

C

C#

D

D#

E

F

F#

G

G#

A

A#

B

C

C#

D

D#

E

F

F#

G

G#

A

A#

B

SID: The

Actual

Frequency

370 Hz

392 Hz

415 Hz

440 Hz

466 Hz

494 Hz

523 Hz

554 Hz

587 Hz

622 Hz

659 Hz

698 Hz

740 Hz

784 Hz

831 Hz

880 Hz

932 Hz

988 Hz

1046 Hz

1109 Hz

1175 Hz

1244 Hz

1319 Hz

1397 Hz

1480 Hz

1568 Hz

1661 Hz

1760 Hz

1865 Hz

1976 Hz

2093 Hz

2217 Hz

2349 Hz

2489 Hz

2637 Hz

2794 Hz

2960 Hz

3136 Hz

3322 Hz

3520 Hz

3729 Hz

3951 Hz

1

Sound Interface Device

Pitch Value

Lower Half

180

29

155

48

221

164

134

132

161

221

60

191

104

58

55

97

187

72

12

8

66

187

121

127

209

117

110

194

118

145

24

17

132

119

242

254

163

234

220

132

237

34

Pitch Value

Upper Half

23

25

26

28

29

31

33

35

37

39

42

44

47

50

53

56

59

63

67

71

75

79

84

89

94

100

106

112

119

126

134

142

150

159

168

178

189

200

212

225

238

253

16

u

u

u

LJ

U

H

H

1

SID: The Sound Interface Device

1

n

Waveforms are selected by using one of the waveform

selection bits in conjunction with the enable, or gate, bit. Each

voice on the 64 has its own register to select the waveform, as

well as its own gate bit. For example, voice 1 uses the register

at location 54276 for both waveform selection and enabling

the wave. Refer to Table 1-1 for the other voices' register

addresses.

The four waveforms are selected by setting the appro

priate bit in the waveform control register. If you were to look

at one of these registers (there are three of them—one for each

of the Commodore 64's three voices), you would find that it's

made up of several control bits, each of which has a specific

function. Figure 1-5 shows the waveform control register for

voice 1 at location 54276.

Figure 1-5. Waveform Control Register

Bit # 7

Bit

Value 128

Location 54276. Wave Form Register for Voice 1

6 5 4 3 2

64 32 16 8

Noise

Wave

Enable

Pulse

Wave

Enable

Sawtooth

Wave

Enable

Triangle

Wave

Enable

Test

Bit

Ring

Modula-

tion

Sync

Bit

Enable

Bit

n

In addition to having specific functions, each bit has a

specific bit value. To turn that bit on, you simply POKE the

appropriate bit value into the control register. Bit 4, which has

a value of 16, will turn on the triangle waveform generator. Bit

5, with a value of 32, enables the sawtooth waveform, while

bit 6 turns on the pulse waveform generator if its value of 64

is used. The last waveform, noise, is enabled by setting bit 7,

which has a value of 128. For example, to enable the pulse

waveform bit, you would POKE the register with 64. This will

turn on the pulse waveform generator. However, to get any

sound out of the SID, you must also turn on the gate bit (bit

0). If you don't, you won't hear your sound. So every time

you turn on a waveform bit, you should add 1 (the bit value

of bit 0) to the value you select. Thus to turn on the pulse

17

u
1

SID: The Sound Interface Device , -

LJ

wave generator and enable it, you would POKE the control *—'
register with 65. To turn it off, you would POKE the register

with 64. (Remember that the gate bit's value is 1; 65 — 1 = 64.) j |

Pulse width must be set whenever you select the pulse '—
waveform for any of the three voices. It's controlled in much

the same way as the pitch registers. As with the pitch reg- M

isters, there are two locations used for pulse width selection in '—'
each voice. Voice l's pulse width registers, for instance, are at

addresses 54274 and 54275. However, there are only four bits

available in the second register, so the numbers stored in these

locations define a binary number between 0 and 4095. Just as

in the pitch registers, the number represented by the two reg

isters is equal to the lower value plus the upper value mul

tiplied by 256. For example, if the lower register contains a 0,

and the upper register an 8, the value would be:

0 + (8 x 256) = 2048

This number signifies the proportion of the wave that will

be high. The above value would be exactly 50 percent (2048/

4096 = .50), creating a square waveform. Decreasing or increas

ing the number represented by the values in these registers

will decrease or increase the proportion of the wave that is

high and thus change the sound produced. If you used the

following statement, for instance, the wave would be high

only 25 percent of the time.

POKE 54274,0:POKE 54275,4

A sustain loop is usually added to a sound routine so

that it plays longer. You can force a note to play indefinitely

by simply not turning the gate bit off, or by turning the gate

bit off manually, perhaps with a function key defined else

where in the program. But the easiest way to set the length of

the note's sustain level is to use a FOR-NEXT loop as a delay.

This loop should be inserted between the time you set the \ j

waveform (and thus turn on the gate bit) and the time when

you turn the gate bit off. If you were using the pulse wave

form, and had already set the other sound parameters earlier j j

in the routine, it could look like this:

POKE 54276,65 Set pulse waveform and turn on gate bit ™

FOR T=0 TO 1000:NEXT Lj
Delay loop to play the sound for one

second

POKE 54276,64 Turn off gate bit {J

18 _

LJ

1

SID: The Sound Interface Device

Keep in mind that sustain refers only to a volume level, not to

a function of time, as the other elements of a sound's ADSR

do. That's why you need something like a delay loop in your

routines; it's the simplest way to control the time of the sus

tain part of a note.

Turning the gate bit off is the last thing you'll do in

most of your sound routines. Once the note has played—

having gone through its attack, decay, sustain, and release

steps—you need to turn the gate bit off by POKEing the

waveform control register with a value one less than when

you selected the waveform and turned the gate bit on. If you

earlier POKEd location 54276 with 65 (to turn on the pulse

waveform generator and enable the gate bit), now you'd

POKE the same location with 64. This will turn off the gate

bit, ending the sustain and bringing on the release section of

the note's sound envelope. As soon as the release finishes, the

sound is completed.

Once you understand the process you need to go through

to create sounds with the SID chip, you're ready to produce

your first note. Here's a routine that clears the sound control

registers; sets the volume, ADSR, frequency, and waveform for

the note; enables the gate bit; keeps the note playing; and

turns the gate bit off. It's simple, but it's a start.

Program 1-1 • Simple Sound

For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix G

10 REM CLEAR SOUND REGISTERS :rem 251

20 FOR R=54272 TO 54296:POKER,0:NEXT :rem 25

30 REM - TURN ON VOLUME - :rem 95

40 POKE 54296,15 :rem 47

50 REM - INITIALIZE SPECIAL REGISTERS - :rem 78

60 POKE 54277,0:POKE 54278,240:POKE 54275,8 :rem 3

70 REM - POKE TONE VALUES INTO VOICE 1 :rem 142

80 POKE 54272,48: POKE 54273,28 :rem 55

90 REM - ENABLE TONE REGISTER - :rem 233

100 POKE 54276, 65 :rem 95

110 REM - PLAY TONE FOR 1 SECOND - :rem 16

120 FOR R=0 TO 1000: NEXT :rem 22

130 REM - TURN SOUND REGISTER OFF - :rem 228

140 POKE 54276,64 :rem 98

150 REM - TURN VOLUME OFF - :rem 208

160 POKE 54296,0 :rem 44

19

1

SID: The Sound Interface Device

Let's go through this short routine line by line to see how the

sound is produced. Line 20 clears the 24 sound control reg

isters, using a FOR-NEXT loop to POKE each register with 0.

The volume is turned on in line 40 and is set to its maximum

value, 15. Line 60 initializes the ADSR registers, as well as the

pulse width register. Attack and decay are both set to 0,

indicating the fastest possible rate, by POKEing location 54277

with 0. By POKEing 240 into location 54278, you're signaling

the computer to use a high sustain level, and a low release

rate. The sound will continue after the decay at a high vol

ume, but will end quickly. Because you're using the pulse

waveform in this routine, you also need to set the pulse width

register (location 54275) for voice 1. Frequency values are

POKEd into the address for voice 1, locations 54272 and

54273 in line 80. By looking at Table 1-3, you can see that

these values will create an A note in the fifth octave. Line 100

turns on the gate bit (by setting bit 0 to 1) and selects the

pulse waveform (by setting bit 6). The value POKEd into this

location is the total of those two bits' values (1 + 64). See

Table 1-1 for the bits to set for these registers. A short delay

loop keeps the note playing in line 120, and then the gate bit

is disabled in line 140. The volume register is turned off in

line 160 by POKEing a 0 value into it.

Don't be discouraged if some of this is confusing to you.

Although it may seem complicated, you'll soon see how it all

fits together. But it's nice to hear a created sound, even if

you're not sure how it all was done. It's relatively simple to

modify various registers to change the sound. For instance, by

changing the values in the upper and/or lower pitch registers

(54272 and 54273), you can change the tone played. Program

1-2 does this.

Program 1-2. Modifying Upper/Lower Tones

For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C

10 REM CLEAR SOUND REGISTERS :rem 251

20 FOR R=54272 TO 54296:POKER,0:NEXT :rem 25

30 REM - TURN ON VOLUME - :rem 95

40 POKE 54296,15 :rem 47

50 REM - INITIALIZE SPECIAL REGISTERS - :rem 78

60 POKE 54275,8:POKE 54277,0:POKE 54278,240 :rem 3

70 REM - GET TONE FROM TONE TABLE - :rem 141

75 READ L,H: IF L=999 THEN RESTORE: GOTO 75

:rem 119

20

1

SID: The Sound Interface Device

n

n

H

77 REM - POKE TONE VALUES INTO VOICE 1 :rem 149

80 POKE 54272,L: POKE 54273,H :rem 245

90 REM - ENABLE TONE REGISTER - :rem 233

100 POKE 54276, 65 :rem 95

110 REM - PLAY TONE FOR 1/8 SECOND - :rem 119

120 FOR R=0 TO 125: NEXT :rem 237

130 REM - TURN SOUND REGISTER OFF - :rem 228

140 POKE 54276,64 :rem 98

150 REM - TURN VOLUME OFF - :rem 208

160 GOTO 75 :rem 60

165 POKE 54296,0 :rem 49

170 REM - TONE TABLE - :rem 116

180 DATA 195,16,194,17,208,18,238,19,30,21,95,22,1

80,23,29,25,155,26,48,28,221 :rem 15

190 DATA 29,164,31,134,33,164,31,221,29,48,28,155,

26,29,25,180,23,95,22,30,21 :rem 204

195 DATA 238,19,208,18,194,17,999,999 :rem 83

This program uses a number of DATA statements contain

ing the tone values for a musical scale. Each time a tone is to

be played, a pair of values is READ from the DATA state

ments. These are the values used to POKE into the registers at

locations 54272 and 54273. Notice that there are an even

number of values in the DATA statements beginning in line

180. If you group the numbers in pairs, you will see that the

first is the low pitch value and the second is the high pitch

value. If you modify this routine by entering data of your

own, make sure that there is an even number of values, and

that the low pitch value precedes the high pitch value. Line 80

actually places these values in the registers. When all the

numbers have been READ, the routine in line 75 RESTORES

the DATA and starts again. To stop this routine, press the

RUN/STOP and RESTORE keys at the same time.

Volume Adjustments

In addition to changing the frequency of a tone, you can also

change the volume (loudness) of a tone. The volume for

sounds created by any of the 64's three voices is controlled by

the control register at location 54296. Values ranging from 0 to

15 can be POKEd into this register to set the sound volume

level. You can even POKE a variable, such as V, into the reg

ister and change the sound within the routine. Program 1-3

does this.

21

1

SID: The Sound Interface Device

Program 1-3. Volume Variables

For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

10 REM CLEAR SOUND REGISTERS srem 251

20 FOR R=54272 TO 54296:POKER,0:NEXT :rem 25

25 REM — INITIALIZE VOLUME CONTROL — :rem 234

27 V=15: 1=1 :rem 83

30 REM - TURN ON VOLUME - :rem 95

40 POKE 54296,V :rem 31

50 REM - INITIALIZE SPECIAL REGISTERS - :rem 78

60 POKE 54277,0:POKE 54278,240:POKE 54275,8 :rem 3

70 REM - GET TONE FROM TONE TABLE - :rem 141

75 READ L,H: IF L=999 THEN RESTORE: GOTO 75

:rem 119

77 REM - POKE TONE VALUES INTO VOICE 1 :rem 149

80 POKE 54272,L: POKE 54273,H :rem 245

90 REM - ENABLE TONE REGISTER - :rem 233

100 POKE 54276, 65 :rem 95

105 REM - INCREMENT/TEST VOLUME CONTROL- :rem 225

107 V=V-I:IF V=l OR V=15 THEN I=I*-1 :rem 164

110 REM - PLAY TONE FOR 1/8 SECOND - :rem 119

120 FOR R=0 TO 125: NEXT :rem 237

130 REM - TURN SOUND REGISTER OFF - :rem 228

140 POKE 54276,64 :rem 98

150 REM - TURN VOLUME OFF - :rem 208

160 GOTO 75 :rem 60

165 POKE 54296,0 :rem 49

170 REM - TONE TABLE - :rem 116

180 DATA 195,16,194,17,208,18,238,19,30,21,95,22,1

80,23,29,25,155,26,48,28,221 :rem 15

190 DATA 29,164,31,134,33,164,31,221,29,48,28,155,

26,29,25,180,23,95,22,30,21 :rem 204

195 DATA 238,19,208,18,194,17,999,999 :rem 83

Much the same as Program 1-2, this routine incorporates

a volume control variable (V) and an incremental variable (I)

to change the volume as the tones are played. Line 27 initial

izes these values, and they are incremented in line 107. Note

that instead of POKEing a set value into 54296, in line 40 you

are now POKEing the variable (V) instead.

Using volume to change the nature of a sound can be

done on a note-by-note basis. If, for example, you change the

volume of a note as it's played, you can create an entirely dif

ferent kind of sound. That's what Program 1-4 does.

22

LJ

U

u

LJ

U

n

1

SID: The Sound Interface Device

n

Program V4. Note-by-Note Volume
For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C

10 REM CLEAR SOUND REGISTERS :rem 251

20 FOR R=54272 TO 54296:POKER,0:NEXT :rem 25

30 REM - TURN VOLUME ON :rem 50

40 POKE 54296,15 :rem 47

50 REM - INITIALIZE SPECIAL REGISTERS - :rem 78

60 POKE 54277,0:POKE 54278,240:POKE 54275,8 :rem 3

70 REM - GET TONE FROM TONE TABLE - :rem 141

75 READ L,H: IF L=999 THEN RESTORE: GOTO 75

:rem 119

77 REM - POKE TONE VALUES INTO VOICE 1 :rem 149

80 POKE 54272,L: POKE 54273,H :rem 245

90 REM - ENABLE TONE REGISTER - :rem 233

100 POKE 54276, 65 :rem 95

110 REM - PLAY TONE FOR 1/8 SECOND AND ADJUST VOLU
ME - :rem 237

120 FOR R=15 TO 0 STEP -1:POKE 54296,R:FORT=1TO5:N

EXT:NEXT :rem 122

130 REM - TURN SOUND REGISTER OFF - :rem 228

140 POKE 54276,64 :rem 98

150 REM - TURN VOLUME OFF - :rem 208

160 GOTO 75 :rem 60

165 POKE 54296,0 :rem 49

170 REM - TONE TABLE - :rem 116

180 DATA 195,16,194,17,208,18,238,19,30,21,95,22,1

80,23,29,25,155,26,48,28,221 :rem 15

190 DATA 29,164,31,134,33,164,31,221,29,48,28,155,

26,29,25,180,23,95,22,30,21 :rem 204

195 DATA 238,19,208,18,194,17,999,999 :rem 83

The main difference between this routine and Program

1-3 is that here we've used a FOR-NEXT loop in line 120 to

adjust the volume each time the routine executes. Set up as

variable R, the volume begins at 15, and each time through

the loop decreases by 1. The second FOR-NEXT loop in that

line is a delay, so that you can hear the changes in volume

more easily.

As each note plays, a different volume level is set. You

can use this technique in your own routines to make a sound

effect begin loudly, fade away, then become loud again. As

you can see, modifying the volume control register on the 64

isn't very hard, and can dramatically alter the sound you hear.

23

1

SID: The Sound Interface Device

Changing the ADSR
We've already looked briefly at the ADSR of a sound

envelope, and even explored the registers that control this

important part of sound creation on the Commodore 64. The

previous example sound routines have included various rates

for the attack, decay, and release, as well as volume levels for

the note's sustain. But there are a few more things that should

be pointed out about sound waves and their ADSRs.

If you graphed the shape of a sound wave, it would look

similar to Figure 1-6. A pure sound wave begins at a base

level, indicated by zero in the graph, rises to its peak, and

falls.

u

y

o

□

u

Figure 1-6* Pure Sound Wave

Valley of Wave

Time

A cycle is measured from one point on the sound wave to

the same position on the next sound wave. The number of

cycles that occur each second is called the frequency.

The volume of a note is determined by looking at how

high or low the wave's peaks and valleys are. The higher the

peaks and the lower the valleys, the louder the sound will be.

Figure 1-7 shows a sound wave that begins loudly and be

comes quiet as time goes on.

u

u

u

24

u

1

SID: The Sound Interface Device

Figure 1-7. Decreasing Sound

Decreasing Volume

Time

In this sound wave, you could say that the attack is very

fast and the decay is relatively slow. Remember that attack

refers to the rate of time it takes the sound to reach maximum

volume, and that decay is the rate of time it takes the sound to

fall to its sustain level. The sound wave shown in Figure 1-7

starts out loud, so its attack is set at a fast rate. On the other

hand, it loses volume gradually; that's because its decay is set

to a rather slow rate. All of this gives the feeling of a sound

that can be called hard. To produce a softer sounding tone,

you could reverse the attack and decay rates, producing a

sound that has a slow attack and a fast decay.

Program 1-5 creates a hard sound, one with a fast attack

rate and a slow decay. Using voice 1, the attack/decay register

at location 54277 is POKEd with a value of 10 in line 40. This

sets attack at 0 (fast) and decay at 10 (relatively slow). See

Table 1-2 for the values you can POKE into this register to

allow for various rates of attack and decay. Note also that

we've used a different waveform for this example. Unlike the

25

1

SID: The Sound Interface Device

previous routines, which used the pulse waveform, Program

1-5 uses the triangle waveform, set in line 60 (and the gate bit

enabled) by POKEing a value of 17 into location 54276.

Program 1-5. Fast Attack—Slow Decay
For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

10

20

25

30

35

40

45

50

55

60

70

80

90

REM CLEAR CHIP

FOR T= 0 TO 24 :POKE54272+T,0:NEXT

REM -

POKE

REM -

POKE

REM -

POKE

REM -

POKE

- SET VOLUME LEVEL

54296,15

- ATTACK/DECAY RATE

54277,10:POKE54278,0

- FREQUENCY SET

54272#40:POKE 54273,95

- TRIANGLE WAVE FORM AND GATE BIT

54276,17

FOR T=l TO 2000:NEXT

POKE

GOTO

54276,16

60

:rem 208

:rem 212

:rem 180

:rem 46

:rem 242

:rem 248

:rem 24

:rem 48

ENABLED

:rem 246

:rem 49

srem 238

:rem 50

:rem 8

Modifying the attack and decay is simple. For instance, if

you want a softer sound, you can change line 40 to:

40 POKE 54277,208:POKE 54278,0

Now the attack is long (indicated by using a value of 208,

which is 16*13), and the decay is very short (since the decay

is set to 0). Remember that the value you finally POKE into

the attack/decay control register is a sum of the attack value

(208) and the decay (0). The sound rises to its maximum vol

ume slowly, and falls rapidly to its sustain level (which has

been set to volume 0 by POKEing location 54278 with 0). An

even softer sound can be created by manipulating the attack

and decay rates so that both are long. Changing line 40 again

does this:) I

40 POKE 54277,172:POKE 54278,0

If you look at Table 1-2 for a moment, you'll see that LJ
we've set the attack to 10 (160) and the decay to 12 (12). Add

ing those values together gives you the total value of 172, r)

which is what is POKEd into the control register. J)

You can even change some of the earlier examples by

POKEing new values in the attack/decay register. For • ,

instance, try replacing line 60 in Program 1-2 with this: \ I

26 _

G

H

n

n

1

SID: The Sound Interface Device

60 POKE 54275,8:POKE 54277,9:POKE 54278,0

This sets the attack to a fast rate (0) and the decay to a

longer rate (9). The sustain and release have both been set to

0 so that you can more easily hear the difference attack and

decay make. Notice how the sound changes as you run this

altered version. Lengthening the rate of the attack should be

simple for you now. All you have to do is add 128 (which is

8*16) to the decay value of 9. The total is 137, which indicates

a longer attack, as well as a long decay rate. Change line 60

again so that it reads:

60 POKE 54275,8:POKE 54277,137:POKE 54278,0

Setting the sustain and release of a note is done in the

same way, by POKEing in values from Table 1-2 to the appro

priate register. All you have to remember is that the sustain

indicates the volume level of the note's sustain, while the

release signals the rate at which a note falls from that level to

volume 0. Experiment with the sound routine examples you've

used so far, changing the sustain/release values POKEd into

location 54278, the control register for voice 1. You'll be

amazed at the different sounds you can create just by chang

ing that one parameter.

Waveforms
In addition to changing the frequency, volume, and ADSR of

the notes you produce, the SID also allows you to produce dif

ferent waveforms. The forms available are pulse waves (which

we've been using in most of the examples), triangle waves,

sawtooth waves, and noise. The control register for waveform

selection in voice 1 is found in location 54276. Changing the

value POKEd into that location changes the waveform used to

produce the note.

The pulse waves, which we've used in most of the exam

ple routines up to now, have all been symmetrical (That's

sometimes called a square waveform.) That is, they rise, remain

at the upper peak for a period of time, fall, and remain at the

valley for exactly the same length of time before repeating.

Figure 1-8 shows a symmetrical waveform.

1

SID: The Sound Interface Device

U

U

Figure 1*8* Square Waveform

Time

Whenever you select a pulse waveform, you must also

place values in the pulse width registers. Read over the earlier

explanation of how to select a pulse width if you've forgotten

how to place values in these two registers. By adjusting the

pulse width of the pulse waves, we can produce sounds that

range from very full to very thin. What you're doing, in effect,

is creating an asymmetrical pulse waveform.

Program 1-6. Synmietrical/Asymmetrical Waveforms
For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

10 REM CLEAR SOUND REGISTERS :rem 251

20 FOR R=54272 TO 54296:POKER,0:NEXT :rem 25

30 REM - TURN ON VOLUME - :rem 95

40 POKE 54296,15 :rem 47

50 REM - INITIALIZE SPECIAL REGISTERS - :rem 78

60 POKE 54275,8 :rem 0

65 POKE 54277,0:POKE 54278,240 :rem 52

70 REM - POKE TONE VALUES INTO VOICE 1 :rem 142

80 POKE 54272,48: POKE 54273,28 :rem 55

90 REM - ENABLE TONE REGISTER - :rem 233

100 POKE 54276, 65 :rem 95

110 REM - PLAY TONE FOR 1 SECOND - :rem 16

120 FOR R=0 TO 1000: NEXT :rem 22

125 IF P=l THEN 130 :rem 168

126 P=1:POKE 54275,14: GOTO 65 :rem 54

130 REM - TURN SOUND REGISTER OFF - :rem 228

140 POKE 54276,64 :rem 98

150 REM - TURN VOLUME OFF - :rem 208

160 POKE 54296,0 :rem 44

28

LJ

Li

U

u

LJ

Lj

n

1

SID: The Sound Interface Device

The first tone produced by this routine is symmetrical, but

the second tone is not. That's because the pulse width is first

\ s set to 50 percent in line 60 by POKEing 8 into the upper half

of the two-byte pulse width register. Remember that tHe total

value of the registers is the lower half value added to the

/ | upper half value multiplied by 256 (Lower value + (Upper

value * 256)). In this routine, only the upper register (location

54275) is used. Then, in line 126, the pulse width is changed,

so that a value of 14 is POKEd into the upper register. That

gives you a total of 3584 (14*256), or a pulse width of 87.5

percent. In other words, that percentage of the wave is high,

or above the base line volume. If you graphed that second

tone, it would look like this:

Figure 1-9. Asymmetrical Pulse Waveform

Time

Triangle waves, as their name implies, look like the tops

and bottoms of triangles, just as symmetrical pulse waves look

like the tops and bottoms of squares. They are always

symmetrical and produce a very soft, almost subdued sound.

Setting bit 4 of the waveform control register turns on the tri

angle waveform generator. Normally, you'll set both the tri

angle waveform and the.gate bit by POKEing 17 into the

control register. Type in and RUN Program 1-7, which dem

onstrates a triangle waveform.

n

29

u
1

SID: The Sound Interface Device r ,

Program 1*7. Triangle Waveform
For mistake-proof program entry, be sure to read "Automatic Proofreader/' Appendix C

10 REM CLEAR SOUND REGISTERS :rem 251 }_j
20 FOR R=54272 TO 54296:POKER,0:NEXT :rem 25

30 REM - TURN VOLUME ON :rem 50

40 POKE 54296,15 :rem 47 j }

50 REM - INITIALIZE SPECIAL REGISTERS - :rem 78 Lj
60 POKE 54275,8:POKE 54277,0:POKE 54278,240 :rem 3

70 REM - GET TONE FROM TONE TABLE - :rem 141

75 READ L,H: IF L=999 THEN RESTORE: GOTO 75

:rem 119

77 REM - POKE TONE VALUES INTO VOICE 1 :rem 149

80 POKE 54272,L: POKE 54273,H :rem 245

90 REM - ENABLE TONE REGISTER - :rem 233

100 POKE 54276,17 :rem 92

110 REM - PLAY TONE FOR 1/8 SECOND AND ADJUST VOLU

ME - :rem 237

120 FOR R=15 TO 0 STEP -1:POKE 54296,R:NEXT:rem 70

130 REM - TURN SOUND REGISTER OFF - :rem 228

140 POKE 54276,16 :rem 95

150 GOTO 75 :rem 59

160 REM - TURN VOLUME OFF - :rem 209

165 POKE 54296,0 :rem 49

170 REM - TONE TABLE - :rem 116

180 DATA 195,16,194,17,208,18,238,19,30,21,95,22,1

80,23,29,25,155,26,48,28,221 :rem 15

190 DATA 29,164,31,134,33,164,31,221,29,48,28,155,

26,29,25,180,23,95,22,30,21 :rem 204

195 DATA 238,19,208,18,194,17,999,999 :rem 83

Figure 1-10 shows a triangle waveform. Note that it's

symmetrical, with equal high and low portions. Unlike the

pulse waveform, however, you can't control the percentage of

the high part of the wave to the low section. A triangle wave

form is always symmetrical.

Sawtooth waves are not symmetrical. They rise slowly

and fall abruptly. They begin like a triangle wave and end like Lj
a pulse wave. Figure 1-11 illustrates a sawtooth waveform.

They produce the sharpest sound of the waveforms avail

able on the Commodore 64. By setting bit 5 of the waveform

control register, you can enable the sawtooth waveform.

POKEing 33 (32 for the waveform, 1 for the gate bit) will turn

30

n

■1 \

1

SID: The Sound Interface Device

on this waveform's generator. If you've already entered and

saved Program 1-7, you can simply change lines 100 and 140

to what you see in Program 1-8. That's all you have to do

to switch waveforms.

Figure 1-10, Triangle Wave

Time

Figure ML Sawtooth Wave

CD

I

Time

31

1

SID: The Sound Interface Device

Program 1-8* Sawtooth Waveform

For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

10 REM CLEAR SOUND REGISTERS :rem 251 M
20 FOR R=54272 TO 54296:POKERf0:NEXT :rem 25

30 REM - TURN VOLUME ON :rem 50

40 POKE 54296,15 :rem 47 j"T

50 REM - INITIALIZE SPECIAL REGISTERS - :rem 78 LJ

60 POKE 54275,8:POKE 54277,0:POKE 54278,240 :rem 3

70 REM - GET TONE FROM TONE TABLE - :rem 141

75 READ L,H: IF L=999 THEN RESTORE: GOTO 75

:rem 119

77 REM - POKE TONE VALUES INTO VOICE 1 :rem 149

80 POKE 54272,L: POKE 54273,H :rem 245

90 REM - ENABLE TONE REGISTER - :rem 233

100 POKE 54276,33 :rem 90

110 REM - PLAY TONE FOR 1/8 SECOND AND ADJUST VOLU

ME - :rem 237

120 FOR R=15 TO 0 STEP -1:POKE 54296,R:NEXT:rem 70

130 REM - TURN SOUND REGISTER OFF - :rem 228

140 POKE 54276,32 :rem 93

150 GOTO 75 :rem 59

160 REM - TURN VOLUME OFF - :rem 209

165 POKE 54296,0 :rem 49

170 REM - TONE TABLE - :rem 116

180 DATA 195,16,194,17,208,18,238,19,30,21,95,22,1

80,23,29,25,155,26,48,28,221 :rem 15

190 DATA 29,164,31,134,33,164,31,221,29,48,28,155,

26,29,25,180,23,95,22,30,21 :rem 204

195 DATA 238,19,208,18,194,17,999,999 :rem 83

Noise is probably the least understood waveform avail

able on the 64. It generates random waves, creating a raspy,

rough sound. It can be used for many different sound effects,

and even as a component in music. Depending on the fre

quencies you select, it can seem like anything from a high hiss

to a low rumbling sound. Often called white noise, it's

especially useful in game sound effects such as explosions, [_J
crowd roars, or sputtering engines.

A noise waveform is certainly not symmetrical, and in fact

can appear in many forms, one of which is shown in Figure LJ
1-12.

Setting bit 7 of the waveform control register enables the

noise generator. You set this bit by POKEing a value of 129 |_J
(128 for the waveform, 1 for the gate bit) into the control reg

ister of the voice you're using. To hear the noise waveform in

U
32

H

n

1

SID: The Sound Interface Device

n

H

n

n

H

n

the example we've been using, just change lines 100 and 140

in Program 1-8 to:

100 POKE 54276,129

140 POKE 54276,128

Figure 1-12. Noise Waveform

Time

Getting Fancy
Now that you've seen how to create single notes, and even

short routines that play a number of notes read from a DATA

table, let's look at two short programs which demonstrate a

sound effect that sounds impressive, yet is simple to create.

It's a good way to get ready for Chapter 2, which will show

you how to produce more intricate, and thus more entertain

ing, sound effects.

Using the frequency registers for voice 1, you can create

an effect which sweeps the scales, starting at the bottom of the

lowest octave and quickly rising to the highest frequency pos

sible. It may sound difficult, but it's not. Take a look at Pro

gram 1-9, which uses this technique.

Program 1-9. Sweeping the Scales
For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

10 FOR R=54272 TO 54296:POKE R,0:NEXT :rem 24

20 POKE 54296,15 :rem 45

33

1

SID: The Sound Interface Device

30 POKE 54275,8:POKE 54277,0:POKE 54278,240 :rem 0

40 FOR H=0 TO 255

50 POKE 54272,0:POKE 54273,H

60 POKE 54276,33

70 NEXT

80 POKE 54276,32

90 POKE 54296,0

:rem 63

:rem 214

:rem 47

:rem 166

:rem 48

:rem 254

Most of this routine should look familiar to you by now.

The FOR-NEXT loop in lines 40-70 generates values from 0 to

255 which are POKEd into the high frequency register. Only

the high register is actually changed. A total of 256 tones play

when you RUN this routine.

You can produce a similar effect by sliding through the

pulse width values quickly. Although it sounds completely dif

ferent from the previous program, Program 1-10 operates

much the same way.

Program 1-10- Pulse Width Values
For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

20 FOR R=54272 TO 54296:POKE R,0:NEXT :rem 25

30 POKE 54296,15 :rem 46

40 POKE 54275,8:POKE 54277,0:POKE 54278,240 :rem 1

50 POKE 54272,48:POKE 54273,28 :rem 52

55 POKE 54276,65 :rem 56

60 FOR T=0 TO 4095 STEP 8:H=INT(T/256):L=T-(H*256)

:rem 182

80 POKE 54274,L:POKE 54275,H :rem 249

90 NEXT :rem 168

95 POKE 54276,64 :rem 59

100 POKE 54296,0 :rem 38

U

U

LJ

U

u

Line 60 may seem confusing. Actually, it's the heart of the

sound routine. It produces the values for the high and low

pulse width registers POKEd in line 80. First of all, a FOR-

NEXT loop, ranging from 0 to 4095, is established, with a

STEP command of 8. The maximum number that the two-byte

pulse width register can contain is 4095. Each time through

the loop, the variable T increments by 8. H, the variable for

the high pulse width register, is the integer of T divided by

256. L, the variable for the low pulse width register, is equal

to T—(H*256). If T equals 256, for instance, H equals 1 and L

equals 0. Note that since we're dealing with pulse width, the

u

u

u

34

H
1

nSID:The Sound Interface Device

n
pulse waveform is enabled by POKEing the control register

with 65.

r"j You're ready to move on to some of the more difficult
aspects of creating sound with the SID chip and the Com

modore 64. If you still don't understand such things as ADSR,

[""] waveform, volume control, and how to select the parameters
for sound effects and individual notes, it would be a good idea

to go through this chapter again, perhaps even glancing

through the glossary in the Introduction. If you don't know

how, or why, simple sounds are created on the 64, the later

chapters in this book may prove difficult.

n

n

n

35

CHAPTER

Music and the
Sound Editor

CHAPTER

2
Music and the

Sound Editor

Musical instruments produce unique sounds that are based on

the design of the instrument. A clarinet sounds like a clarinet

because it's made from wood. The air pushed through it by

the player moves between the reed and the mouthpiece, mak

ing the reed vibrate. As the player presses the keys, the air is

forced through various holes, creating sounds. A trumpet

sounds like a trumpet because it is made of brass. The player

positions his lips and tongue to create sounds, and to stop and

start them. The air blown into the mouthpiece moves past

valves, various distances through tubes, and eventually out its

bell. It's this process that makes the unique sound of the

instrument.

Unlike a musical instrument, the Commodore 64 does not

produce sounds based on its mechanical design. It creates spe

cial sounds by manipulating tones using electronic circuits.

Because of this, the 64 is not limited to producing only one

type of sound. It can mimic almost any instrument by simply

duplicating that instrument's sound patterns. In addition, the

64 can even produce sounds that would be impossible for any

normal musical instrument.

|| Since the 64 makes sounds digitally (using numbers), the
computer can also store the sounds it makes so you can play

them over and over, or mix them with other sounds at will. In

f"i a way, it's like having a musical instrument and a recording
device in one package.

This chapter will show you how to use your 64 in just

fj this way. You'll see how to program music on the 64, how to
use it as a musical instrument, and how to store and play that

_ • music back.

39

2

Music and the Sound Editor

Playing Notes
Chapter 1 showed you how to create simple sounds using the

SID chip in your 64. Most of those were more like sound

effects than actual tunes. Producing more complicated routines

isn't that difficult once you know how to turn the sound on,

and how to set the various control registers in the SID chip.

Well begin to do that in this chapter.

You'll remember that the pitches on the Commodore 64

are defined by using two memory locations for each of the

three available voices. Table 1-1 shows the specific control

registers for each voice and their locations in memory. Placing

values in those locations selects the frequency of the note.

You've already seen how to do this in Chapter 1. Take a look

at Program 1-2 in Chapter 1 for a moment. The READ state

ment in line 75 READs values from the DATA statements in

lines 180 through 195. Every time through the loop, the pro

gram READs two items from the list, a low value and a high

value. These values are then POKEd into the pitch control reg

isters to create the sound. Using this same program, you can

play any tune you like by simply changing the values in the

DATA statements. All you have to remember is that the

values have to be paired: a low pitch value with a high pitch

value. For example, if you replaced the DATA statements with

a different set of values, you could create a tune like the one

that Program 2-1 plays. (If you've previously saved a copy of

Program 1-2 from Chapter 1, you can just replace lines 180-

195 with those that show in the listing below.)

Program 2-1. Yankee Doodle
For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

10 REM CLEAR SOUND REGISTERS :rem 251

20 FOR R=54272 TO 54296:POKER,0:NEXT :rem 25 | j

30 REM - TURN ON VOLUME - :rem 95 LJ
40 POKE 54296#15 :rem 47

50 REM - INITIALIZE SPECIAL REGISTERS - :rem 78

60 POKE 54275,8:POKE 54277,0:POKE 54278,240 :rem 3 > |
70 REM - GET TONE FROM TONE TABLE - :rem 141

75 READ L#H: IF L=999 THEN RESTORE:GOTO 75:rem 119

77 REM - POKE TONE VALUES INTO VOICE 1 :rem 149 i r

80 POKE 54272,L: POKE 54273,H :rem 245 LJ
90 REM - ENABLE TONE REGISTER - :rem 233

100 POKE 54276, 65 :rem 95

110 REM - PLAY TONE FOR 1/8 SECOND - :rem 119 [_J

40

2

Music and the Sound Editor

120 FOR R=0 TO 125: NEXT :rem 237

130 REM - TURN SOUND REGISTER OFF - :rem 228

140 POKE 54276,64 :rem 98

150 REM - TURN VOLUME OFF - :rem 208

160 GOTO 75 :rem 60

165 POKE 54296,0 :rem 49

170 REM - TONE TABLE - :rem 116

180 DATA 195,16,195,16,208,18,30,21,195,16#30,21,2

08,18,142,12,196,16,195,16 : rem 162

185 DATA 208,18,30,21,195,16,0,0,210,15,0,0,195,16

,195,16,208,18,30,21,95,22 :rem 131

190 DATA30,21,208,18,195,16,210,15,142,12,24,14,21

0,15,195,16,0,0,195,16,0,0 :rem 162

195 DATA 999,999 :rem 59

To hear the differences that changes in the attack and

decay rates can introduce, try altering the value in location

54277 in line 60 to 10, 172, or 208. You'll be surprised at the

way the sound is modified by such a simple change.

By comparing the low and high register values in the

DATA statements to Table 1-3, you should be able to see the

actual notes that are being created. The first pair of values, for

instance, is made up of a low value of 195 and a high value of

16. Table 1-3 shows that those values create a C note in the

fifth octave. The second pair is another C, while the third pair

(208 and 18) creates a D in that same octave. It's not too far

from knowing the values that create each note to reading

sheet music and transferring the notes you see there to values

your 64 will understand. If you can read musical notation, it

won't be hard.

Timing and Rhythm

Music isn't just a collection of notes played in sequence. It's

also very much a matter of timing. When you play each note is

as important as which note you play. Whenever you program

a song, you must be aware of both the notes and the timing of

the music; otherwise, you won't be able to duplicate the song

accurately.

The tune you just played after entering and running Pro

gram 2-1 has several pairs of 0's in its DATA statements. The

first pair you see is in line 185. The 0's are placed there to

provide pauses in the music. Without those pauses, the music

would consist of bland notes with no rhythm. You can hear

this yourself by eliminating the 0's, and the commas between

41

2

Music and the Sound Editor

them, from lines 185 and 190 in Program 2-1. There are four

pairs altogether. After you've done that, RUN the program

again and listen for the difference. The first part of the tune is

recognizable, but as it reaches the middle, it starts sounding

strange. The same notes are being played, but the timing and

rhythm are off.

By putting the pauses in different places in your music,

you can change the whole feel of the song. Remember, one of

the main differences in styles of music, such as jazz and rock,

is rhythm.

Program 2-2 uses the framework of Program 2-1, but the

DATA statements have been changed. Additional pairs of 0's

acting as pauses have been placed in the lines. You can simply

enter the new DATA statements into your saved version of

Program 2-1 and rerun it. Although you'll recognize the tune,

it will be distorted by the pauses, slowing it down so that it

sounds like a version you'd hear from a jack-in-the-box toy.

Try it out.

Program 2-2. "Yankee Doodle"—with Pauses

For mistake-proof program entry, be sure to read "Automatic Proofreader/' Appendix C.

10 REM CLEAR SOUND REGISTERS : rem 251

20 FOR R=54272 TO 54296:POKER,0:NEXT :rem 25

30 REM - TURN ON VOLUME - :rem 95

40 POKE 54296,15 :rem 47

50 REM - INITIALIZE SPECIAL REGISTERS - :rem 78

60 POKE 54275,8:POKE 54277,0:POKE 54278,240 :rem 3

70 REM - GET TONE FROM TONE TABLE - :rem 141

75 READ L,H: IF L=999 THEN RESTORE: GOTO 75

:rem 119

77 REM - POKE TONE VALUES INTO VOICE 1 :rem 149

80 POKE 54272,L: POKE 54273,H :rem 245

90 REM - ENABLE TONE REGISTER - :rem 233

100 POKE 54276, 65 :rem 95

110 REM - PLAY TONE FOR 1/8 SECOND - :rem 119

120 FOR R=0 TO 125: NEXT :rem 237

130 REM - TURN SOUND REGISTER OFF - :rem 228

140 POKE 54276,64 :rem 98

150 REM - TURN VOLUME OFF - :rem 208

160 GOTO 75 :rem 60

165 POKE 54296,0 :rem 49

170 REM - TONE TABLE - :rem 116

180 DATA 195,16,0,0,195,16,208,18,0,0,30,21,195

:rem 247

42

Music and the Sound Editor

182 DATA 16,0,0,30,21,208,18,0,0,142,12,196,16,0,0

,195,16 :rem 204

185 DATA 208,18,0,0,30,21,195,16,0,0,0,0,210,15

:rem 220

187 DATA 0,0,0,0,195,16,0,0,195,16,208,18,0,0,30,2

1,95,22,0,0 :rem 133

190 DATA 30,21,208,18,0,0,195,16,210,15,0,0,142

:rem 227

192 DATA 12,24,14,0,0,210,15,195,16,0,0,0,0,195,16

,0,0,0,0,999 :rem 184

195 DATA 999 :rem 100

While you can slow the timing of a song by adding

pauses, there's nothing you can add to speed up individual

notes. To make a tune play faster, you can do one of two

things: begin with faster notes, using shorter rates of attack

and decay, for example, decreasing the length of the sustain

loop, and only then add pauses to notes which require a

longer length; or you can change the timing of the music as it

is running by utilizing separate timing loops.

Pausing Techniques
Several short programs can show you how pausing and delays

work. In this first example, the speed of the drumbeats is

adjusted by maintaining a steady rhythm and adding pauses

wherever necessary.

n

n

n

Program 2-3 ♦ Snare Drums

For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

10 REM CLEAR SOUND REGISTERS ~— :rem 251

20 FOR R=54272 TO 54296:POKER,0: NEXT :rem 25

30 REM - TURN ON VOLUME - :rem 95

40 POKE 54296,15 :rem 47

50 REM - INITIALIZE SPECIAL REGISTERS - :rem 78

60 POKE 54277r0:POKE54278,240 :rem 47

70 REM - GET TONE FROM TONE TABLE - :rem 141

75 READ L,H: IF L=999 THEN RESTORE: GOTO 75

:rem 119

77 REM - POKE TONE VALUES INTO VOICE 1 :rem 149

80 POKE 54272,L: POKE 54273,H :rem 245

90 REM - ENABLE TONE REGISTER - :rem 233

100 POKE 54276, 129 :rem 144

110 REM - PLAY TONE FOR 1/64 SECOND - :rem 169

120 FOR R=0 TO 16: NEXT :rem 188

130 REM - TURN GATE BIT OFF :rem 201

43

2

Music and the Sound Editor

65 REM - POKE TONE VALUES INTO VOICE 1

67 POKE 54272,1: POKE 54273,14

70 REM - GET TIMING FROM RHYTHM TABLE -

75 READ T,TT:IF T=999 THEN RESTORE:GOTO 75:rem 231

90 REM - ENABLE TONE REGISTER -

100 POKE 54276, 129

110 REM - PLAY TONE FOR SPECIFIED TIME-

120 FOR R=0 TO T: NEXT :rem 169

130 REM - TURN GATE BIT OFF

140 POKE 54276,128

165 FOR R=0 TO TT: NEXT:GOTO 75

rem 146

rem 252

rem 197

rem 233

rem 144

rem 222

rem 201

rem 147

rem 229

44

U

U

140 POKE 54276,128:GOTO 75 :rem 114 ^J
170 REM - NOTE TABLE - :rem 116

180 DATA 1,14,1,14,1,14,1,14,0,0,0,0,1,14,0,0,0,0, f

1,14,0,0,0,0,999,999 :rem 25 jj

This program uses the noise waveform, accessed by __.

POKEing the waveform control register with 129 (128 for the [_j
waveform, 1 to enable the gate bit) to duplicate the sound of a

drum. All the notes are played at the same speed, 1/64 sec

ond, by using the FOR-NEXT loop in line 120. The only

things that change are the pauses between the notes. Also, the

notes have the shortest possible attack and decay rates, set by

POKEing 0 into location 54277 in line 60. This makes the

notes seem quite short. You can hear a different sound by

POKEing a value of 10 in this location. That retains a very

short attack rate, but sets a long decay. The effect is still one

of a snare drum, but now the rhythm is slightly different.

The next example shows another technique for altering

rhythm in a tune. It leaves out the pauses, but changes the

timing of the individual notes.

Program 2-4« Timing the Drums

For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

10 REM CLEAR SOUND REGISTERS :rem 251

20 FOR R=54272 TO 54296:POKER,0:NEXT :rem 25

30 REM - TURN ON VOLUME - :rem 95

40 POKE 54296,15 :rem 47

50 REM - INITIALIZE SPECIAL REGISTERS - :rem 78

60 POKE 54277,0:POKE 54278,240 :rem 47

U

U

170 REM - RHYTHM TABLE - :rem 26 ,

180 DATA 8,8,8,8,8,8,8,128,8,128,8,128,999,999 LJ
:rem 14

u

LJ

H

H

H

n

n

2

Music and the Sound Editor

Instead of the pitch values being READ from DATA state

ments, as in Program 2-3, this routine READs the values for

variables T and TT. These are then used in the delay loops

found in lines 120 and 165. It's here that the length of the

notes is established. T sets the length of the sustain portion of

the note to 1/64 second. TT sets the length of the delay

between notes. As you can see from looking over the DATA

statement in line 180, the first three beats play just as long as

the delay between the beats. The next three beats, however,

play only one-sixteenth as long as the delay between them,

for the loop runs from 0 to 128, instead of from just 0 to 8.

This method lets you adjust both the length of time the

note is played and the length of the pause between notes.

Notice, however, that the flexibility of changing pitches has

been given up. Though this poses no major problems while

creating the sound of a snare drum, this inflexiblity can make

a song cumbersome to program.

To be able to manipulate both the rhythm and the pitch,

you'll need to read four different values from the DATA list

for each note (or beat of the drum). In effect, what you're

doing is combining aspects of Programs 2-3 and 2-4. Not only

will values be READ from DATA for rhythm, but there will

also be others READ for the pitch. Program 2-5 combines

these methods.

Program 2-5* Pitches and Pauses in "Yankee Doodle"
For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

n
1 [

n

n

n

10

20

30

40

50

60

70

75

77

80

90

100

110

120

130

140

REM -— CLEAR SOUND REGISTERS s

FOR R=54272 TO 54296:POKER,0:NEXT

REM -

POKE

REM -

POKE

REM -

READ

REM -

POKE

REM -

POKE

REM

FOR

REM

POKE

TURN ON VOLUME -

54296,15

INITIALIZE SPECIAL REGISTERS -

54277,0:POKE 54278,240

GET TIMING FROM RYHTHM TABLE -

L,H,T,TT:IF L=999 THEN END :

POKE TONE VALUES INTO VOICE 1

54272#L: POKE 54273,H i

ENABLE TONE REGISTER -

54276, 33

- PLAY TONE FOR SPECIFIED TIME-

R=0 TO T*3: NEXT

- TURN GATE BIT OFF ;

54276,32

:rem 251

:rem 25

:rem 95

:rem 47

:rem 78

:rem 47

:rem 197

irem 159

irem 149

:rem 245

:rem 233

:rem 90

irem 222

:rem 6

irem 201

:rem 93

45

Music and the Sound Editor

145 FOR R=0 TO TT*3: NEXT:GOTO 75 :rem 64 LJ
170 REM - RHYTHM TABLE - :rem 26

180 DATA 195,16,32,32,195,16,32,32,208,18,32,32,30

,21,32,32,195 Vrem 15 M

182 DATA16,32,32,30,21,32,32,208,18,32,32,142,12,3

2,32,196,16,32,32,195,16,32 :rem 223

185 DATA 32,208,18,32,32,30,21,32,32,195,16,128,32 fi

,210,15 :rem 225 LJ
187 DATA 128,32,195,16,32,32,195,16,32,32,208,18,3

2,32,30,21,32,32,95,22,32,32 :rem 239

190 DATA 30,21,32,32,208,18,32,32,195,16,32,32,210

,15,32,32,142,12,32,32 :rem 172

192 DATA 24,14,32,32,210,15,32,32,195,16,128,32,19

5,16,128,32,999,999,999,999 :rem 10

This program reads several variables in line 75. L and H

are the pitch values POKEd into the frequency control reg

isters, while T and TT set the length of the sustain delay loop

and the delay between notes, respectively. Instead of pairs of

values in the DATA statements then, the values are grouped

in fours. The first value becomes L, the second H, the third T,

and the fourth TT. That's why there are so many more values

in the DATA statements compared to previous examples.

Although the list of numbers in the last six lines of the pro

gram may seem confusing, especially if you're just starting to

use sound on the 64, it is the simplest way to regulate a song's

rhythm, and at the same time be able to produce specific

notes.

If that mass of numbers makes you think creating realistic

music on the Commodore 64 is impossible, don't worry.

There's a way to create those numbers relatively painlessly.

Using a sound editor, you can easily come up with the values

you'll need to hear almost any sound or musical piece you can

think of. And just such an editor follows.

Tools to Put the Music Together 1—1
The song we produced in the last section is actually very sim

ple. Nevertheless, the data required to produce it is fairly com- Pi

plex, and it's easy to see that a more involved song could <—'
make it nearly impossible to keep track of all the note changes

and timing values. j i

One way to simplify this process is to organize the infor- L-*
mation and put it into a chart that you build as you write your

song. Once you have that chart, you could simply translate i j

46

0

n

Music and the Sound Editor

n

n

this table into data. Table 2-1 shows all the DATA for "Yan

kee Doodle" set up in the form of a chart like this:

Table 2-1. "Yankee Poodle" DATA

Lower

Tone

Value

195

195

208

30

195

30

208

142

196

195

208

30

195

210

195

195

208

30

95

30

208

195

210

142

24

210

195

195

Upper

Tone

Value

16

16

18

21

16

21

18

12

16

16

18

21

16

15

16

16

18

21

22

21

18

16

15

12

14

15

16

16

Note

Length

Value

32

32

32

32

32

32

32

32

32

32

32

32

128

128

32

32

32

32

32

32

32

32

32

32

32

32

128

128

Pause

Length

Value

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

n

H

n

If you compare the values in this table with the ones

found in the DATA statements in Program 2-5, you'll see that

they're identical. By listing the values in groups of four, just as

they're READ by the routine, you can more easily see how the

music is constructed. Clearly, this is a much better way of

composing than just building the data as you go. However,

you still need to be familiar with the pitch value table and the

multiples of your timing variables if you are going to take full

47

Music and the Sound Editor

advantage of a chart like this. To make this table more usable

and easier to follow, you can add the names of the notes and

the timing count(s) to the actual data needed for the program.

Now the table is easier to understand.

Table 2-2• Adding Note Values and Timing Counts

U

u

LJ

U

□
Name

of

Note

C

C

D

E

C

E

D

G

C

C

D

E

C

B

C

C

D

E

F

E

D

C

B

G

A

B

C

C

Lower

Tone

Value

195

195

208

30

195

30

208

142

196

195

208

30

195

210

195

195

208

30

95

30

208

195

210

142

24

210

195

195

Upper

Tone

Value

16

16

18

21

16

21

18

12

16

16

18

21

16

15

16

16

18

21

22

21

18

16

15

12

14

15

16

16

Note

Length

Value

32

32

32

32

32

32

32

32

32

32

32

32

128

128

32

32

32

32

32

32

32

32

32

32

32

32

128

128

Pause

Length

Value

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

Timing

Count

Value

1

1

1

1

1

1

1

1

1

1

1

1

4

4

1

1

1

1

1

1

1

1

1

1

1

1

4

4

A Simple Sound Editor
Once you've worked with a sound table like the examples

above for some time, you may decide, although it does afford

you a great deal of flexibility in writing music, that it's a bit

cumbersome. What you want and need is something more

48

LJ

U

U

LJ

D

2

Music and the Sound Editor

akin to a real instrument. A sound editor can give you that

capability.

A good sound editor should make it easy to enter notes.

Although making the 64 play similar to something like a

piano, for instance, is difficult, you should be able to press

keys and hear the note you've selected. The pitch values for

the low and high frequency control registers should display as

you choose notes, and you should even be able to alter the

length of the note's sustain volume, just as you did in earlier

routines with FOR-NEXT loops. Entering pauses between

notes should be simple. And you should be able to save your

creations, as well as load previously composed pieces for

listening and possible revision. The simple sound editor that

follows, although not as complex as something you might buy

from a commercial software house, does meet all those cri

teria. It prc ddes you with the tools that make the Commodore

64 as easy to use as an instrument, and allows you to store

your music, play it back, and even change its tune, tempo

(speed), and overall characteristic sounds. Once you've typed

it in and saved it to tape or disk, you'll be able to avoid much

of the tedium of creating sound on the 64.

Program 2-6. One-Voice Sound Editor

For mistake-proof program entry, be sure to read "Automatic Proofreader/' Appendix G

1 REM ** INITIALIZE SOUND REGISTERS *** :rem 26

2 REM :rem 22

3 FOR R=54272 TO 54296:POKER,0:NEXT:POKE 54275, 8:

POKE 54278, 240 :rem 243

4 LE=100: 1=1: BR$=" - ":PA=0:IC=0 :rem 63

5 DIMII(63),II$(63),K$(63),NO$(99),LO$(99),UP$(99)

,LL$(99),PA$(99),LB$(99) :rem 82

6 K$(16) ="CM:K$(18) = IID":K$(21) = IIEII:K$(22) = MFII:K$(2

5) = HG":K$(28) = I1A":K$(31) = "B" :rem 1

7 DIM DD$(999) :rem 185

8 REM ***** DEFINE MUSICAL KEYS ***** srem 181

9 REM :rem 29

10 C$="{2 D0WN}{3 RIGHT}§3 @3{DOWN}{4 LEFTjN&Gil

gM3M{DOWN}{6 LEFT}gM3 gG3lg2 Mi{DOWN}{6 LEFT}
EMiNg3 T3M{DOWN}{5 LEFT}g5 T3" :rem 0

11 K$(33)="tC":K$(37)=IltDll:K$(42) = lltEM:K$(44)=MtF"
:K$(50)=MtGM:K$(56)="tA" : rem 70

12 K$(63)="tB" :rem 173

13 K$(17) = IIC#M:K$(19) ="D#M:K$(23) =MF#":K$(26)="G#11
() "G#II:K$(35) = II?C#" :rem 76

49

2

Music and the Sound Editor

14 K$(39)="tD#":K$(47)="tF#":K$(53)="tG#":K$(59)="
A#" :rem 124

20 D$=H{2 D0WN}{8 RIGHT}g3 91{DOWN}{4 LEFTjNgGl1
gMlM{D0WN}{6 LEFTjgMl gGl2g2 Ml{DOWN}{6 LEFT}
{RIGHT}Ng3 TiM{D0WN}{5 LEFTjg5 Tl" :rem 16

30 E$="{2 DOWN}{13 RIGHTJg3 @1{DOWNJ{4 LEFT}NgG|#
gMiM{D0WN}{6 LEFTjgMl gGl3g2 M§{D0WN}{6 LEFT}
{RIGHTjNg3 T§M{D0WN}{5 LEFT}g5 Tl" :rem 160

40 F$="{2 DOWN}{18 RIGHTjg3 @l{D0WNj{4 LEFTjNgGl?
gM|M{D0WN}{6 LEFTjgMl gGl4g2 Ml{DOWN}{6 LEFT}
{RIGHT}Ng3 TiM{D0WN}{5 LEFT}g5 Tl" :rem 53

50 G$={2 SPACES^l2 DOWN}{22 RIGHT}" :rem 241
55 G$=G$+"{RIGHT}g3 @!{DOWN}{4 LEFT}NgGl%gMlM

{DOWN}{6 LEFT}gM3 gGl5g2 Ml{D0WN}j6 LEFT}
{RIGHT}Ng3 TlM{D0WN}{5 LEFT}g5 T|" :rem 197

60 A$={2 SPACES}"{2 DOWN} {27 RIGHT}11 : rem 125
65 A$=A$+"{RIGHT}g3 @!{DOWN}{4 LEFTjNgGl&gMlM

{DOV7N}{6 LEFT}gM§ gG§6g2 Ml{D0WN}T6 LEFT}
{RIGHT}Ng3 TlM{D0WN}{5 LEFT}g5 Tl" :rem 188

70 B$={2 SPACES}"{2 DOWN}{32 RIGHT}" :rem 16
75 B$=B$+"{RIGHT}g3 @1{DOWN}{4 LEFTjNgGl'gM§M

{DOWN}{6 LEFT}gM3 gG§7gMl gGl{LEFT}{DOWN}
{6 LEFT}{RIGHT}Ng3 T§MgGl{LEFT}{DOWN}{5 LEFT}
g5 Tl" :rem 158

80 Q$="{8 DOWN} {5 RIGHT} g3 @§{D0iVN}{4 LEFT}NgG!
gMlM{D0WN}{6 LEFTjgMl gGlQg2 Ml{DOWN}{6 LEFT}
gMlNg3 TlM{D0WN}{5 LEFT}g5 Tl" :rem 180

90 W$="{8 DOWN}{10 RIGHT}g3 @§{D0WN}{4 LEFTjNgGl
gMlM{D0WN}{6 LEFT}gMl gGlWg2 Ml{D0\^N}{6 LEFT}
{RIGHT}Ng3 TlM{D0WN}{5 LEFT}g5 Tl" :rem 200

100 EE$="{8 DOWNT{14 RIGHT}" :rem 222

105 EE$=EE$+"{RIGHT}g3 @1{DOWN}{4 LEFTjNgGl gMlM
{DOWN}{6 LEFT}gMl gGlEg2 Ml{DOWN}{6 LEFT}

{RIGHT}Ng3 TlM{D0WN}{5 LEFT}g5 Tl" :rem 98
110 R$="{8 DOWN}{19 RIGHT}" :rem 56
115 R$=R$+"{RIGHT}g3 @!{DOWN}{4 LEFTjNgGl gMlM

{DOWN}{6 LEFTjgMl gGlRg2 Ml{D0WN}T6 LEFT}
{RIGHT}Ng3 TlM{D0WN}{5 LEFT}g5 Tl" :rem 0

120 T$="{8 DOWN}{24 RIGHT}" :rem 204 ---.

125 T$=T$+"{RIGHT}g3 @1{DOWN}{4 LEFTjNgGl gMlM LJ
{DOWN}{6 LEFTjgMl gGlTg2 M!{D0WNjT6 LEFT}
{RIGHT}Ng3 TlM{D0WN}{5 LEFT}g5 Tl" :rem 7 __

130 Y$="{8 DOWNj{29 RIGHT}11 : rem 99) I
135 Y$=Y$+" {RIGHT}g3 @1{DOV7N}{4 LEFTjNgGl gMlM ^

{DOWN}{6 LEFTjgMl gGlYg2 Ml{D0WNjl6 LEFTj
{RIGHTjNg3 TlM{D0WNj{5 LEFTjg5 Tl" :rem 23 —

140 u$="{8 DOWN}{34 RIGHT}" :rem 241 LJ
145 U$=U$+" {RIGHT} g3 @1{DO\7N}{4 LEFTjNgGl gMlM

{DOWN}{6 LEFTjgMl gGlUgMl gGl{LEFT}{DOWNJ

{6 LEFT}{RIGHT}Ng3 TlMgGl{LEFT}{DOWN}{5 LEFT} \ I

g5 Tl" :rem 233 ^

50

LJ

n
2

Music and the Sound Editor

H

n

H

H

150 SP$="{HOME}{12 DOWN}11 : rem 189
160 A$=SP$+A$:B$=SP$+B$:C$=SP$+C$:D$=SP$+D$:E$=SP$

+E$:F$=SP$+F$:G$=SP$+G$:rem 236

170 Q$=SP$+Q$:W$=SP$+W$:EE$=SP$+EE$:R$=SP$+R$:T$=S

P$+T$:Y$=SP$+Y$:U$=SP$+U$:rem 65

171 GR$="{HOME}{RVS} NOTE {OFF}Z LOWER z UPPER z L

EN - PAUSE - #" :rem 170

172 GR$=GR$+i>{HOME}{DOWN}******+*******+*******+**
•*•+*•*»*••+*»*" :rem 107

173 LL$="16 SPACES]-{7 SPACES}-{7 SPACES}^
{5 SPACES}-{7 SPACES}-{3 SPACES}" :rem 41

200 REM :rem 118

203 REM ***** DEFINE REVERSE KEYS ***** :rem 32

205 REM :rem 123

210 XC$="{2 DOWN}{3 RIGHT}g3 @I{D0WN}{4 LEFT}{RVS}
£gGilgMig*i{DOWN}{6 LEFT}{OFF}gMi{RVS} gGil
?2 M§{DOWN}{6 LEFT}{OFF}gMi{RVS}Ng3 TiM{OFF}

{DOWN}{5 LEFT}g5 Ti" :rem 99

220 XD$="{2 DOWN}{8 RIGHT}|3 @!{D0WN}{4 LEFT}{RVS}
£BG3lgMiB*i{DOWN}{6 LEFT}{OFF}§M3tRVS} iG|2

?2 Ml{DOWN}{6 LEFT}{RIGHT}Ng3 T§M{OFF}{DOWN}
{5 LEFT}§5 T3" :rem 207

230 XE$="{2 DOWN}{13 RIGHT}|3 @1{DOWN}{4 LEFT}
{RVS}£gG3#gM3g*3{DOWN}{6 LEFT}{RIGHT} gG|3

g2 M3TDOWN}{6 LEFT}{RIGHT}Ng3 T|M{OFF}{DOWN}
{5 LEFT}g5 T§ :rem 15

240 XF$={2 SPACES} "{2 DOWN} {5 RIGHT}11 :rem 140
245 XF$=XF$+M{13 RIGHT}g3 @I{DOWN}{4 LEFT}{RVS}£

gG3$gM3g*|{DOWN}{6 LEFT}{RIGHT} gG34g2 M|

{DOWN}{6 LEFT}{RIGHT}Ng3 T^M{OFF}{DOWN}

{5 LEFT}g5 Ti :rem 227

250 XG$={2 SPACES} "{2 DOWN} {10 RIGHT}11 :rem 31

255 XG$=XG$+"{13 RIGHT}g3 @1{DOWN}{4 LEFT}{RVS}£
gGi%gM§g*3{DOWN}{6 LEFT}{RIGHT} gG|5g2 Mi

{DOWN}{6 LEFT}{RIGHT}Ng3 T|M{OFF}{DOWN}
{5 LEFT}g5 Ti :rem 232

260 XA$={2 SPACES} "{2 DOWN} {15 RIGHT}11 :rem 171
265 XA$=XA$+M{13 RIGHT}g3 @i{DOWN}{4 LEFT}{RVS}£

gGi&gMig*i{DOWN}{6 LEFT}{RIGHT} gGi6g2 Mi

{DOWN}{6 LEFT}{RIGHT}Ng3 TiM{OFF}{DOWN}

{5 LEFT}g5 Ti :rem 223

270 XB$={2 SPACES}"{2 DOWN}{20 RIGHT}" :rem 62

275 XB$=XB$+"{13 RIGHT}g3 @i{DOWN}{4 LEFT}{RVS}£
gGi'gMig*i{DOWN}{6 LEFT}{RIGHT} gGi7g2 Mi

{DOWN}{6 LEFT}{RIGHT}Ng3 TiM{OFF}{DOWN}
{5 LEFT}g5 Ti :rem 228

290 XC$=SP$+XC$:XD$=SP$+XD$:XE$=SP$+XE$:XF$=SP$+XF

$:XG$=SP$+XG$:XA$=SP$+XA$:rem 219

51

u
2

Music and the Sound Editor , ■

295 XB$=SP$+XB$:rem 75 I-J
310 XQ$="{6 DOWN} {2 RIGHT}11 :rem 130

315 XQ$=XQ$+"{2 D0WN}{3 RIGHT}g3 @1{DOWN}{4 LEFT} ,-,
{RVS}£gGl gMig*i{DOWN}{6 LEFT}{OFF}gMl{RVS} Li
gGlQg2 Ml{DOWN}{6 LEFT}{OFF}gMl{RVS}Ng3 TlM

{OFF}{DOWN}{5 LEFT}g5 Tl" :rem 110

320 XW$="{6 D0WN}_{7_ RIGHT}/1 :rem 26 I I

32~5 XW$=XW$+"{2"DOWNH3 RIGHT}g3 @3{DOWN}{4 LEFT} LJ
{RVS}£gGl gMlg*l{DOWN}{6 LEFT}{OFF}gMl{RVS}
gGlWg2 Ml{DOWN}{6 LEFT}{RIGHT}Ng3 TlM{OFF}
{DOWN}{5 LEFT}g5 Ti" :rem 83

330 ZE$=M{6 DOWN} {12 RIGHT}11 :rem 156

335 ZE$=ZE$+"{2 DOWN}{3 RIGHT}g3 @3{DOWN}{4 LEFT}
{RVS}£gG| gMig*3{DOWN}{6 LEFT}{OFF}gM§{RVS}
BGlEg2 Ml{DOWN}{6 LEFT}{RIGHT}Ng3 TlM{OFF}
{DOWN}{5 LEFT}g5 Tl" :rem 34

340 XR$=M{6 DOWN}{17 RIGHT}" :rem 57

345 XR$=XR$+"{2 DOWN}{3 RIGHT}g3 @3{DOWN}{4 LEFT}

{RVS}£gGl gM!g*§{DOWN}{6 LEFT}{OFF}gMl{RVS}
gGlRg2 Ml{DOWN}{6 LEFT}{RIGHT}Ng3 T!M{OFF}
{DOWN}{5 LEFT}g5 Tl" :rem 70

350 XT$="{6 DOV/N}{22 RIGHT}" : rem 205

355 XT$=XT$+"{2 DOV7N}{3 RIGHT} g3 @§{DOWN}{4 LEFT}
{RVS}£gGl gMlg*l{DOWN}{6 LEFT}{OFF}gMl{RVS}
&G!Tg2 Ml{DOWN}{6 LEFT}{RIGHT}Ng3 TlM{OFF}

{DOWN}{5 LEFT}g5 Tl" :rem 77

360 XY$="{6 DOWN}{27 RIGHT}" :rem 100

365 XY$=XY$+"{2 DOV7N}{3 RIGHT} g3 @!{DOWN}{4 LEFT}
{RVS}£gGl gMlg*l{DOWN}{6 LEFT}{OFF}gMl{RVS}
gGlYg2 Ml{DOWN}{6 LEFT}{RIGHT}Ng3 TlMjOFF}
{DOWN}{5 LEFT}g5 Tl" :rem 93

370 XU$="{6 DOWN}{32 RIGHT}" :rem 242
375 XU$=XU$+"{2 DOV7N}{3 RIGHT}g3 @1{DOWN}{4 LEFT}

{RVS}£gGl gMlg*l{DOWN}{6 LEFT}{OFF}gMl{RVS}

gGlUg2 Ml{DOWN}{6 LEFT}{RIGHT}Ng3 TlM{OFF}
{DOWN}{5 LEFT}g5 Tl" :rem 82

390 XQ$=SP$+XQ$:XW$=SP$+XW$:ZE$=SP$+ZE$:XR$=SP$+XR

$:XT$=SP$+XT$:XY$=SP$+XY$:rem 132

395 XU$=SP$+XU$:rem 114

400 GOSUB 6400 :rem 222

480 REM :rem 128

490 REM ***** GET KEY ROUTINE ***** : rem 20

495 REM :rem 134

500 GET WW$: IFWW$="" THEN 500 :rem 39

502 IF WW$=" " THEN 4710 :rem 116

503 IF WW$="{F3}" THEN 5010 :rem 245

504 IF WW$="{F5}" THEN 5510 :rem 252

505 IF WW$="{RIGHT}" OR WW$="{LEFT}" THEN 4000
:rem 29

52

H

Music and the Sound Editor

506 IF WW$="{F1}" THEN 4410 :rem 250

507 IF WW$="{UP}" OR WW$=M{DOWN}" THEN 4510:rem 13

509 IF ASC(WW$)<40 OR ASC(WW$)>200 THEN 810

:rem 250

510 IF WW$<>"111 THEN 520 :rem 172

512 PRINTXC$;:L=195:H=16:GOSUB 1000 :rem 34

515 PRINTC$;:GOTO500 :rem 210

520 IF WW$oM2" THEN 530 :rem 175

522 PRINTXD?;:L=208:H=18:GOSUB 1000 :rem 33

525 PRINTD$;:GOTO500 : rem 212

530 IF WW$<>"3" THEN 540 :rem 178

532 PRINTXE$;:L=30:H=21:GOSUB 1000 :rem 230

535 PRINTE$;:GOTO500 :rem 214

540 IF WW$oH4H THEN 550 : rem 181

542 PRINTXF$;:L=95:H=22:GOSUB 1000 :rem 244

545 PRINTF$;:GOTO500 :rem 216

550 IF WW$oM5M THEN 560 : rem 184

552 PRINTXG$;:L=29:H=25:GOSUB 1000 :rem 246

555 PRINTG$;:GOTO500 :rem 218

560 IF WW$o"6H THEN 570 :rem 187

562 PRINTXA$;:L=48:H=28:GOSUB 1000 :rem 245

565 PRINTA$;:GOTO500 :rem 213

570 IF WW$<>"711 THEN 580 :rem 190

572 PRINTXB?;:L=164:H=31:GOSUB 1000 :rem 32

575 PRINTB$;:GOTO500 :rem 215

580 IF WW$<>"Q" THEN 590 :rem 218

582 PRINTXQ$;:L=134:H=33:GOSUB 1000 :rem 47

585 PRINTQ$;:GOTO500 :rem 231

590 IF WW$<>"W" THEN 600 :rem 217

592 PRINTXW$;:L=161:H=37:GOSUB 1000 :rem 58

595 PRINTW$;:GOTO500 :rem 238

600 IF WW$<>"Eli THEN 610 :rem 192

602 PRINTZE$;:L=60:H=42:GOSUB 1000 :rem 236

605 PRINTEE$;:GOTO500 :rem 25

610 IF WW$<>MR" THEN 620 :rem 207

612 PRINTXR$;:L=191:H=44:GOSUB 1000 :rem 47

615 PRINTR$;:GOTO500 :rem 226

620 IF WW$<>MT" THEN 630 :rem 211

622 PRINTXT$;:L=58:H=50:GOSUB 1000 :rem 1

625 PRINTT$;:GOTO500 :rem 229

630 IF WW$o"Y" THEN 640 :rem 218

632 PRINTXY?;:L=97:H=56:GOSUB 1000 :rem 16

635 PRINTY?;:GOTO500 :rem 235

640 IF WW$<>"U" THEN 500 :rem 210

642 PRINTXU$;:L=72:H=63:GOSUB 1000 :rem 4

645 PRINTU$;:GOTO500 :rem 232

700 GOTO 500 :rem 101

800 REM :rem 124

805 REM **** SHARP VALUES **** :rem 31

53

Music and the Sound Editor

807 REM :rem 131

810 IF WW$oMl" THEN 820 : rem 162

812 PRINTXC$;:L=194:H=17:GOSUB 1000 :rem 37

815 PRINTC$;:GOTO500 :rem 213

820 IF WW$<>CHR$(34)THEN 830 :rem 248

822 PRINTXD$;:L=238:H=19:GOSUB 1000 :rem 40

825 PRINTD$;:GOTO500 :rem 215

830 IF WW$<>"#M THEN 840 :rem 168

832 PRINTXE$;:L=30:H=21:GOSUB 1000 : rem 233

835 PRINTE$;:GOTO500 :rem 217

840 IF WW$<>"$" THEN 850 :rem 171

842 PRINTXF?;:L=180:H=23:GOSUB 1000 :rem 35

845 PRINTF$;:GOTO500 :rem 219

850 IF WW$<>"%" THEN 860 :rem 174

852 PRINTXG$;:L=155:H=26:GOSUB 1000 :rem 42

855 PRINTG$;:GOTO500 :rem 221

860 IF WW$<>"&" THEN 870 : rem 177

862 PRINTXA$;:L=221:H=29:GOSUB 1000 :rem 34

865 PRINTA$;:GOTO500 :rem 216

870 IF WW$<>HI" THEN 880 :rem 180

872 PRINTXB$;:L=164:H=31:GOSUB 1000 :rem 35

875 PRINTB$;:GOTO500 :rem 218

880 IF WW$o"Q" THEN 890 : rem 96

882 PRINTXQ$;:L=132:H=35:GOSUB 1000 :rem 50

885 PRINTQ$;:GOTO500 :rem 234

890 IF WW$o"W" THEN 900 : rem 95

892 PRINTXW$;:L=221:H=39:GOSUB 1000 :rem 60

895 PRINTW$;:GOTO500 :rem 241

900 IF WW$o"E" THEN 910 : rem 70

902 PRINTZE?;:L=60:H=42:GOSUB 1000 :rem 239

905 PRINTEE$;:GOTO500 :rem 28

910 IF WW$o"R" THEN 920 :rem 85

912 PRINTXR$;:L=104:H=47:GOSUB 1000 :rem 47

915 PRINTR$;:GOTO500 :rem 229

920 IF WW$o"T" THEN 930 : rem 89

922 PRINTXT$;:L=55:H=53:GOSUB 1000 :rem 4

925 PRINTT$;:GOTO500 :rem 232

930 IF WW$o"YM THEN 940 :rem 96

932 PRINTXY$;:L=187:H=59:GOSUB 1000 :rem 70

935 PRINTY$;:GOTO500 :rem 238

940 IF WW$o"U" THEN 500 : rem 85

942 PRINTXU$;:L=72:H=63:GOSUB 1000 srem 7

945 PRINTU$;:GOTO500 :rem 235

950 REM :rem 130

960 REM **** PLAY NOTE ***** :rem 105

970 REM :rem 132

1000 POKE 54272,L: POKE 54273, H :rem 78

1010 POKE 54276f 65: POKE 54296, 15 :rem 149

1020 FOR R=0 TO LE:NEXT :rem 22

54

u

LJ

U

u

D

□

u

D

u

u

I (

Music and the Sound Editor

H

n

1030 POKE 54276,0: POKE 54296, 0 :rem 38

1040 FOR R=0 TO PA:NEXT :rem 24

2000 REM :rem 166

2002 REM ** STORE TONE/TIMING VALUES ** :rem 218

2004 REM :rem 170

2005 NO$(IC)=RIGHT$("{4 SPACES}"+K$(H),5):LO$(IC)=

RIGHT$("{4 SPACES}"+STR$(L)+" ",5) :rem 108

2007 UP$(IC)=RIGHT$("{3 SPACES}"+STR$(H)+M ",5)

:rem 148

2010 LL$(IC)=RIGHT$("{2 SPACES}"+STR$(LE),3):PA$(I

C)=RIGHT$("{2 SPACES}"+STR$(PA)+"{2 SPACES}1',

5) :rem 147

2020 LB$(IC)=RIGHT$(" "+STR$(INT((PA+LE)/25)),2)

:rem 46

3000 REM :rem 167

3002 REM **** DISPLAY VALUES **** :rem 223

3004 DD$(SK)=NO$(IC)+BR$+LO$(IC) :rem 231

3005 DD$(SK)=DD$(SK)+BR$+UP$(IC)+BR$+LL$(IC)+BR$+P

A$(IC)+BR$+LB$(IC) :rem 211

3006 DD$(SK)="i11"+RIGHT$(STR$(IC),2)+"{WHT}"+RIGH

T$(DD$(SK),38) :rem 185

3007 UP$(IC)=RIGHT$(M{3 SPACES}"+STR$(H)+" ",5)

:rem 149

3008 PRINT"{HOME}{2 DOWN}"; :rem 12

3010 IF SK<9 THEN FOR R=0 TO SK:PRINTDD$(R)■;:NEXT:

GOTO 3020 :rem 126

3015 FOR R=SK-9 TO SK:PRINTDD$(R);:NEXT :rem 78

3020 IC=IC+1: SK=SK+1 :rem 133

3030 RETURN :rem 166

4000 REM :rem 168

4002 REM **** SWITCH MODES **** :rem 68

4003 REM :rem 171

4005 IF I=-l THEN 4010 :rem 48

4007 PRINT"{HOME} NOTE {17 RIGHT}{RVS}";RIGHT$("

{5 SPACES}"+STR$(LE),5); :rem 28

4008 PRINT"{OFF}";:1=1*-1:GOTO500 :rem 3

4010 PRINT"{HOME}{RVS} NOTE {OFF}{17 RIGHT} LEN ";

: I=I*-1: GOTO 500 :rem 35

4400 REM :rem 172

4402 REM **** PLAY BACK MUSIC **** : rem 198

4405 REM :rem 177

4410 IF SK=0 THEN GOTO 500 :rem 96

4415 FOR Q=0 TO IC-1 2rem 0

4420 H=VAL(UP$(Q)): L=VAL(LO$(Q)): LE=VAL(LL$(Q)):

PA=VAL(PA$(Q)) :rem 115

4430 POKE 54272,L: POKE 54273, H :rem 88

4440 POKE 54276, 65: POKE 54296, 15 :rem 159

4450 FOR R=0 TO LE:NEXT :rem 32

4460 POKE 54276,0: POKE 54296, 0 :rem 48

4470 FOR R=0 TO PA:NEXT :rem 34

4480 NEXT:GOTO 500 :rem 23

55

Music and the Sound Editor

4500

4502

4505

4507

4508

4510

4515

4517

4520

4522

4525

4530

4540

4550

4555

4557

4560

4570

4575

4580

4585

4700

4702

4705

4710

4720

5000

5010

5020

5025

5030

5040

5050

5055

5060

5070

5080

5090

5100

5200

56

:rem

:rem

:rem

: rem

:rem

:reir

:rem

:rem

173

233

178

105

181

i 59

255

152

R=0 TO SK:PRIN

: rem

IC=0 :rem

:rem

:FOR R=SK-10

500 :rem

:rem

:rem

: rem

: rem

:rem

: rem

VS}";RIGHT?(

i 54

137

158

TO

i 52

155

178

248

185

194

241

REM

REM **** CURSOR UP/DOWN ****

REM

REM SCROLL WINDOW

REM

IF I=-l THEN 4560

PRINT" {HOME} {DOWN}11;

IF SK>10 THEN 4530

IFSK>-1THENSK=SK-1:IC=IC-1:FOR

T"{DOWN}";;NEXT:PRINT LL$;
IF SK<0 THEN SK=0: IF IC<0THENIC

GOTO 500

SK=SK-1:IC=IC-1:PRINT"{DOWN}"

SK-1:PRINT DD$(R);:NEXT:GOTO

GOTO 500

REM

REM CHANGE LENGTH OF TONE

REM

IF WW$="{DOWN}"THEN 4580

IF LE<975THENLE = LE+25

PRINT"{HOME} NOTE {17 RIGHT}{RVS}

{5 SPACES}"+STR?(LE),5);"{OFF}";:GOTO 500

:rem 63

IF LE>=25THENLE = LE-25 :rem 245

PRINT"{HOME} NOTE {17 RIGHT}{RVS}";RIGHT?("

{5 SPACES}"+STR?(LE),5);"{OFF}";:GOTO 500
: rem 64

REM

REM **** ENTER A PAUSE ****

REM

H=0:L=0:PA=LE:LE=0: GOSUB2000

LE=PA: PA=0: GOTO 500

REM

REM **** SAVE ROUTINE ****

REM

PRINT "{CLR}"

INPUT "{HOME}{5 DOWN}[2 SPACES}SAVE ON DISK O
R TAPE (D/T)"; ME? :rem 207

IF ME?="C" THEN GOSUB 6430: GOTO 500 :rem 86

IF ME?o"D" AND ME?o"T" THEN 5060 : rem 166

GOTO 5210 :rem 208

PRINT"{DOWN}{6 SPACES}PLEASE ENTER 'D' FOR DI

SK" :rem 137

PRINT"{19 SPACES}'T1 FOR TAPE" :rem 80

PRINT"{15 SPACES}OR{2 SPACES}'C1 TO CANCEL"

:rem 25

PRINT" SAVE AND RETURN TO THE MAIN PROGRAM

{DOWN}" :rem 83

GOTO 5030 :rem 199

REM :rem 171

:rem 175

:rem 62

:rem 180

:rem 193

:rem 108

:rem 169

:rem 79

:rem 171

:rem 48

U

U

U

LJ

U

H

f I

Music and the Sound Editor

n

5202

5205

5210

5220

5230

5240

5250

5260

5270

5280

5285

5290

5300

5310

5400

5402

5405

5410

5420

5425

5427

5430

5440

5450

5452

5455

5460

5505

5510

5520

5525

5530

5540

5550

5555

5560

5570

5580

5590

:rem

SPACES}

:rem

: rem

:rem

:rem

: rem

:rem

:rem

:rem

220
it

22

153

202

173

175

235

226

184

: rem 2

RE **** ENTER NAME OF SONG **** :rem 104

REM :rem 176

PRINT" {HOME} {13 DOWN} {14 RIGHT}
—" :rem 239

PRINT"{DOWN}(MAX 16 LETTERS)?" :rem 171

INPUT "{4 UP}NAME OF SONG";NM$: rem 201

NM$=LEFT$(NM$,16) :rem 185

PRINT"{HOME}{12 DOWN}{14 RIGHT}{20 SPACES}"
:rem 18

PRINT"{HOME}{12 DOWN}{14 RIGHT}";NM$;"

{10 SPACES}" :rem 140

INPUT"{HOME}{21 DOWN}IS THIS CORRECT (Y/N)";C
r$:rem 27

IF CR$="Y" THEN 5400 : rem 233

IF CR$="C" THEN GOSUB 6430: IC=0:SK=0: GOTO 5

00

PRINT"{HOME}{12 DOWN}{14 RIGHT}{22

PRINT"{14 SPACES}"

GOTO 5210

REM

REM **** SAVE MUSIC ****

REM DISK

IF ME$="T"THEN 5460

OPEN 1,8,4, "<a:"+NM$+ ",W"

FOR Q=0 TO IC-1

H=VAL(UP$(Q)): L=VAL(LO$(Q)): LE=VAL(LL$(Q)):

PA=VAL(PA$(Q)) :rem 123

PRINT#1,H:PRINT*1,L:PRINT#1,LE:PRINT#1,PA: NE

XT :rem 221

CLOSE 1 :rem 116

GOSUB 6430 :rem 27

GOTO 500 :rem 158

REM TAPE :rem 239

OPEN 1,1,1,NM$: GOTO 5425 :rem 26

REM :rem 179

rem **** LOAD ROUTINE **** :rem 69

REM :rem 176

PRINT "{CLR}" :rem 53

INPUT "{HOME}{5 DOWN}{2 SPACES}LOAD FROM DISK
OR TAPE (D/T)"; ME$:rem 92

IF ME$="C" THEN GOSUB 6430: GOTO 500 :rem 91

IF ME$o"D" AND ME$<>"T" THEN 5560 : rem 176

GOTO 5710 :rem 218

PRINT"{DOWN}{6 SPACES}PLEASE ENTER 'D1 FOR DI

SK" :rem 142

PRINT"{19 SPACES}'T1 FOR TAPE" :rem 85

PRINT"{15 SPACES}OR{2 SPACES J'C TO CANCEL"

:rem 30

PRINT" LOAD AND RETURN TO THE MAIN PROGRAM

{DOWN}" :rem 73

57

2

Music and the Sound Editor

5700 REM :rem 176

5702 REM **** ENTER NAME OF SONG **** :rem 109

5705 REM :rem 181

5710 PRINT"{HOME}{13 DOWN}{14 RIGHT}

:rem 244

5720 PRINT"{DOWN}(MAX 16 LETTERS)?" :rem 176
5730 INPUT "{4 UPJNAME OF SONG";NM$:rem 206
5740 NM$=LEFT$(NM$,16) :rem 190

5750 PRINT"{HOME}{12 DOWN}{14 RIGHT}{20 SPACES}"

:rem 23

5760 PRINT"{HOME}{12 DOWN}{14 RIGHT}";NM$;"

{10 SPACES}" :rem 145
5770 INPUT"{HOME}{21 DOWN}IS THIS CORRECT (Y/N)";C

R$:rem 32
5780 IF CR$="Y" THEN 5900 :rem 243

5785 IF CR$="C" THEN GOSUB 6430: GOTO 500 :rem 105

5790 PRINT"{HOME}{12 DOWN}{14 RIGHT}{22 SPACES}"

:rem 27

5800 PRINT"{14 SPACES}" :rem 158

5810 GOTO 5710 :rem 212

5900 REM :rem 178

5902 REM **** LOAD MUSIC **** :rem 165

5905 GOSUB 6430 :rem 32

5910 IF ME$="T"THEN 5960 :rem 236

5920 OPEN 1,8,4,NM$+",R":SK=0:IC=0 :rem 71

5925 BB=ST: IF BB<>0 THEN 5940 :rem 53

5930 INPUT#1,H:INPUT#1,L:INPUT#1#LE:INPUT#1,PA: GO

SUB 1000 :rem 240

5935 GOTO 5925 :rem 228

5940 CLOSE 1 :rem 121

5950 GOTO 500 : rem 161

5955 REM TAPE : rem 244

5960 OPEN 1,1,0,NM$:SK=0:IC=0:GOTO 5925 :rem 155

6400 REM :rem 174

6410 REM **** PRINT DISPLAY SCREEN ***** :rem 140

6420 REM :rem 176

6430 PRINT"{WHT}{CLR}{12 DOWN}|40 U§{HOME}m;

:rem 16

6440 PRINT"{HOME}{2 DOWN}";:FOR 0=0 TO 9:PRINTLL$; j~i

:NEXT :rem 255 LJ
6450 PRINT"{HOME}";GR$;A$;B$;C$;D$;E$;F$;G$;Q$;W$;

EE$;R$;T$;Y$;U$7 :rem 122

6455 PRINT"{HOME}{13 D0WN}{4 RIGHT}"; :rem 68 j j

6460 PRINT"C{4 SPACES}D{4 SPACES}E{4 SPACES}F UJ
{4 SPACES}G{4 SPACES}A{3 SPACES}11; :rem 118

6465 PRINT"B{HOME}{19 DOWN}{5 RIGHT}tC{3 SPACESjtD r
{3 SPACES}tE"; :rem 240 LJ

6470 PRINT"{3 SPACES}tF{3 SPACES}tG{3 SPACES}tA
{3 SPACES}tB{HOME}{3 DOWN}"; :rem 171

6502 RETURN :rem 173 M

58

D

n
2

Music and the Sound Editor

Using the Editor
When you first run the Sound Editor, there will be a short

[""] pause while the program initializes itself and sets up the
arrays for the sound and graphics it uses. When the program

has finished initializing, it displays a screen that is divided

| into two parts. The upper half of the screen looks a great deal

like Table 2-2, where you wrote down the POKE values of

various notes, the note length values, and the pause length

values. The lower half of the screen shows two rows of keys.

The top row displays the keys 1-7 (near the top left corner of

the keyboard), and the lower row contains the keys Q-U

(directly below the previous row).

Notes of the scale. The notes of the scale are labeled

above the keys. The top row is one octave lower than the bot

tom row. To show the difference between the two octaves, the

higher keys (bottom row) are preceded by an up arrow (t).

These arrows also appear in the table in the upper half of the

screen as you enter those notes so you'll be able to determine

what notes are being played. To hear a note play, press the

corresponding key.

Using the table. The table in the program is essentially

the same table you used when you were writing the different

values by hand. The biggest difference is that each of the

values in this table is entered automatically each time you

press a key on the musical keyboard. To help you use the

table more effectively, let's review each of the function

headings.

NOTE. When the program is first turned on, the NOTE

heading is highlighted. This indicates that the computer is

waiting for you to enter a note from the keyboard. This col

umn will display the notes that you enter, and specify which

octave it is using and the number of the entry. The note entry

PI numbers begin with 0. You can only enter a maximum of 99
notes.

^ LOWER/UPPER. These columns show the actual POKE

i I values being entered into the pitch control registers. Press the

1 key, which represents a C note. You'll see the values 195

_, and 16 listed in the LOWER and UPPER columns. By using

<! this editor, you can avoid having to look up the POKE values

for each note you want to play.

PI LEN. The LEN column displays the length of the note be-

I \ ing played. The value displayed in this column is the value

59

u
2

Music and the Sound Editor - -

you would use in the sustain delay loop. To change this value, '—'
press the Cursor Right/Left key at the lower right corner of

the keyboard. This will highlight the LEN column and will VI

display the current timing value. '—'
By pressing the Cursor Up/Down key, you can increase

or decrease this value in increments of 25. Pressing SHIFT and VI

Cursor Up/Down increases the value; pressing the unSHIFTed '—'
Cursor Up/Down key decreases the length value. The highest

possible value is 975, and the lowest is 0.

PAUSE. You can enter a pause as easily as you enter any

note. Use the space bar to enter pauses between notes; the

length of the pause will be the same as the present note

length. To enter longer or shorter pauses, change the LEN

value as you did earlier.

When you enter pauses, you'll see that a space is dis

played in the note column, and zeros are displayed in the

LOWER and UPPER columns.

#. The # column shows the relative length of the notes

entered. This is based on a unit of 25 as the basic increment of

time. In other words, any note that has a length (LEN) of 25

will have a relative length of 1, a note that has a length (LEN)

of 100 has a relative length of 4, and so on. This can help you

determine the length to use in your notes if you are writing

songs that have complex timing.

Playing music back. To play back the notes you have en

tered at any point, all you need to do is press the f1 key. This

will play all of the notes you have entered so far. You can use

this function to check your timing, since the notes are played

using the same timing and pauses you've entered.

Modifying the music. To change any note that you've

entered, you need to delete the old note and enter the new

one as you would enter any new note. The display table

shows you the last ten notes entered. To change a note, use * I
the Cursor Up/Down key (either SHIFTed or unSHIFTed)

when the NOTE column is highlighted. By pressing the key

the correct number of times, you can position the note you I 1

want to delete at the bottom of the table in the upper half of

the screen. Unfortunately, this will delete all of the notes from - ■-,

that entry number on up. What you're doing, in effect, is delet- LJ

ing all the notes to that point. Once you press the Cursor Up/

Down key as a delete, the note is gone for good. If you keep :

60

D

Music and the Sound Editor

pressing the key, you can erase your entire tune. Keep that in

mind as you use it.

If you are beyond the tenth note in your song, the table

will scroll backwards until it gets to the note you want to

change. Remember that as the table scrolls backwards, what is

really happening is that the notes are being erased.

Sharps and flats. In addition to the 14 notes obtained by

pressing the appropriate keys, there are 10 other notes (called

sharps or flats) that can be accessed by pressing the SHIFT

key and a note key together. Figure 2-1 shows the positions of

the sharps on the keyboard.

Figure 2-L Sharp Key Placement

n

n

Notice that the sharps are C#, D#, F#, G# and A#. The

notes E# and B# are not listed on this musical scale. This is

because a sharp note is one that is half a step higher than the

note it follows, and a flat is one-half step lower. Since the

note F is half a step above E and the note B is half a step

below C, there are no corresponding sharps or flats to display.

Figure 2-2 shows the positions of the flats available on

the keyboard. Comparing this figure with Figure 2-1, you'll

notice that the sharps and flats are accessed with the same

keys. Remember that a sharp is a half step up, while a flat is a

half step down. Thus Db is the same note as C#. When you

select a flat, it will show in the table on the screen as a sharp.

To determine the flats, refer to the figure below.

61

Music and the Sound Editor

Figure 2*2, Flat Key Positions

SAVEing music. To save a song that you have written on

the sound editor, press the f3 key. You will then be asked if

you wish to store the song on tape or disk. To save the song

on tape, press T and hit RETURN. To store it on disk, press D,

then press RETURN. The program will then ask you for the

name you wish to store the song as. The name must be less

than 16 characters long.

After the song has been stored, the computer will return

to the edit screen and will be ready to accept a new song.

LOADing songs. To load a song that you have previously

saved to disk or tape, press the f5 key. This will display a

screen that is similar to the SAVE screen. By following the

directions, you'll be able to load a song from either disk or

tape. After the tape or disk drive begins to run, the edit screen

will reappear, and the stored notes will be played and dis

played on the screen as they are read into memory.

A few hints. If you're entering a large number of notes

with the sound editor, there will be times when the last note

key you pressed will stay highlighted. If you press any of the

note keys, or even one of the function keys, nothing will hap

pen. The computer hasn't locked up. There's nothing wrong.

The program is just taking some time to place all the values

you've entered into the computer's memory. Wait patiently for

the highlighted key to return to its normal display. Then you

can continue to add more notes, or play the song, or save it to

tape or disk. If you press a key while the last key is high-

62

u

u

\ i

U

U

2

Music and the Sound Editor

lighted, that note will be read into memory once the program

hands control back to you. It's a good idea to avoid pressing

keys while the program is storing values; otherwise, it will

read the keyboard buffer and place as many notes in the song

as the number of times you hit that key. You'll have to delete

those extra notes if that happens.

If you want to delete a note or notes, but still want a copy

of the song as it exists, be sure to save it to tape or disk. Then

when the screen returns, you can delete notes and listen to the

new tune. If you don't like your alterations, at least you'll

have a backup copy of the original version of the song on tape

or disk. If you liked the original better, you can just load it

and go on from there.

As the Sound Editor is listed, it uses the pulse waveform,

with attack and sustain set to 0, the sustain/release control

register set with a value of 240. You can change the waveform

used by altering lines 1010 and 4440 in the program. Just

change the value POKEd into location 54276. Adding an

attack/decay value in line 3, where the program initializes

several registers, would also change the sound of the notes as

you enter them, as well as when you play back the entire song.

Harmony and Disharmony
To produce harmony in music, it's necessary to play two or

more notes at the same time. Fortunately, the 64 has the abil

ity to play up to three, notes simultaneously. Each of these

three voices has a similar set of control registers, giving you

three groups of seven registers each.

Up to this point you've used only the first voice (control

registers 54272-54278). The examples in the next section will

use both voice 1 and voice 2 (registers 54279-54285).

Playing two notes at once. When two or more notes are

played together, the tones blend and become more than they

were individually. If the sound produced by the combined

tones is pleasant, they are said to be in harmony. Program 2-7

demonstrates a harmonic sound.

Program 2*7. Harmonious Sounds

For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

1 REM *** MUSICAL NOTE DATA *** :rem 111

2 REM :rem 22

3 DATA 195,16,195,16,400,24,14,24,14,200,47,11,47,

11,800 :rem 175

63

2

Music and the Sound Editor

4 DATA 24,14,95,22,700,195,16,30,21,700,95,22,208,
18*1050 :rem 232

5 DATA 999,999,999,999,999 :rem 86

7 REM srem 27

8 REM ** CLEAR AND INITIALIZE SOUND REGISTERS ***

:rem 91

9 FOR R=54272 TO 54296:POKER,0:POKE 54296,15

:rem 124

10 REM SET UP VOICE #1 : rem 174

11 REM .rem 70

12 POKE 54274,8:POKE 54277,0:POKE 54278,240

:rem 255

13 REM .rem 72

14 REM — SET UP VOICE #2 :rem 179

15 REM :rem 74

16 POKE 54282,8:POKE 54284,0:POKE54285,240:rem 254

17 REM :rera 76

18 REM ** GET NOTE VALUES FROM TABLE ** :rem 119

19 REM srem 78

21 READ L1,H1,L2,H2,T:IF H1=999THEN END :rem 161

22 REM srem 72

23 REM — PUT VALUES INTO REGISTERS — :rem 184

24 REM srem 74

25 POKE 54272,LI:POKE 54273,HI srem 86

26 POKE 54279,L2:POKE 54280,H2 :rem 94

27 REM srem 77

28 REM ** TURN ON WAVEFORM ** srem 67

29 REM srem 79

30 POKE 54276,65:POKE 54283,65 :rem 55

45 FOR R=0 TO T:NEXT :rem 127

50 REM :rem 73

55 REM ** TURN OFF GATE BIT ** :rem 26

60 REM :rem 74

70 POKE 54276,64:POKE 54283,64 :rem 57

80 GOTO 21 :rem 4

Notice that both voice 1 and voice 2 are used in this pro

gram; the pitch values are read from the DATA statements in

lines 3 through 5 in groups of four. The first value, LI, is the LJ
pitch value for the low frequency control register of voice 1,

while HI is the value for that voice's high control register. The

third value, L2, is the number POKEd into voice 2's low fre- LJ
quency register, and H2 is used in the high register. Both

voices use the pulse waveform and have the same sustain/ ---

release levels and rates. As with other example programs, it's lJ
not difficult to change the sound by altering the attack/decay

rates (found in line 12 for voice 1 and line 16 for voice 2), or . -:

by using a different waveform. U

64

2

Music and the Sound Editor

A disharmonious sound is easily created by changing the

pitch values found in the DATA statements of lines 3, 4, and

5. Using Program 2-7, change those lines to:

3 DATA 195,16,195,16,400,24,14,24,14,200,47,11,47,

11,800

4 DATA 24,14,95,23,700,195,16,30,22,700,95,22,208,

19,1050

5 DATA 999,999,999,999,999

After making these changes, run the program again. The first

few notes sound the same as in Program 2-7, but you'll

quickly hear the disharmony of the voices.

While you most often expect to find harmonic sounds in

music, it's not unusual to find them in nonmusical sounds,

such as a car horn. Enter and RUN Program 2-8 for an exam

ple of this.

Program 2-8* Car Horn

For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

5 L1=195:H1=16:L2=30:H2=21 :rem 145

Ud FOR R=54272 TO 54296:POKER,0:NEXT :rem 24

20 POKE 54296,15 :rem 45

30 POKE 54275,8:POKE 54277f0:POKE 54278,240 :rem 0

35 POKE 54282,8:POKE 54284,0:POKE 54285,240

:rem 255

40 POKE 54272,LI: POKE 54273,HI :rem 83

50 POKE 54279,L2: POKE 54280,H2 :rem 91

60 POKE 54276,65: POKE 54283,65 :rem 58

70 FOR M=0TO200: NEXT :rem 182

80 POKE 54276,64: POKE 54283,64 :rem 58

90 FOR M=0TO50: NEXT :rem 139

100 POKE 54276,65: POKE 54283,65 :rem 101

110 FOR M=0TO600: NEXT :rem 229

120 POKE 54276,64: POKE 54283,64 :rem 101

130 POKE 54296,0 :rem 41

Voices 1 and 2 are again used together in this program.

Instead of READing pitch values from a table, as in the pre-

vious program, this routine simply initializes the pitch values

in line 5. The various control registers are POKEd with values,

the pulse waveform is enabled in line 60, and a sustain delay

loop executes in line 70. Then the gate bit is turned off in line

80, another delay loop executes as a pause between sounds,

the gate bit is turned back on, and another sound plays, this

65

2

Music and the Sound Editor

time a bit longer, as set by the sustain loop in line 110.

Finally, the gate bit is turned off for good in line 120, which
ends the routine.

Although some sound effects depend on harmony, most

attention-getting sounds use disharmony instead. Program 2-9

demonstrates one such effect. i j

Program 2*9* Siren

For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C

5 L1=40:H1=41:L2=0:H2=46 :rem 40

10 FOR R=54272 TO 54296:POKER,0:NEXT ;rem 24

15 POKE 54296,15 :rem 49

20 POKE 54275#8:POKE 54277,0:POKE 54278,240

:rem 255

30 POKE 54282,8:POKE 54284,0:POKE 54285,240

:rem 250

35 POKE 54276,65:POKE 54283,65 :rem 60

40 FOR T=0 TO 3 :rem 226

50 FOR M=0 TO 25 :rem 16

60 L1=L1+1:H1=H1+1:L2=L2+1:H2=H2+1 :rem 84

70 POKE 54272,LI:POKE 54273,HI :rem 86

80 POKE 54279,L2:POKE 54280,H2 :rem 94

90 NEXT :rem 168

100 FOR M=0 TO 25 :rem 60

110 L1=L1-1:H1=H1-1:L2=L2-1:H2=H2-1 :rem 136

120 POKE 54272,L1:POKE 54273,HI :rem 130

130 POKE 54279,L2:POKE 54280,H2 :rem 138

140 NEXT:NEXT :rem 77

150 FOR R=0 TO 30 :rem 66

160 POKE 54296,15-(R/2) :rem 147

170 POKE 54273,H1-(R/2):POKE 54380,H2-(R/2)

:rem 230

180 NEXT:POKE 54276,64:POKE 54283,64 :rem 228

Much of this program you'll recognize from other exam

ples. The main point of interest is the way FOR-NEXT loops J_j
have been used to make the sound first rise in pitch (lines 50-

90) and then fall (lines 100-140). This pattern repeats itself

four times, as noted by the FOR T=0 TO 3 statement in line jj
40. The siren sound effect is created by this rising and falling

of pitch, as well as by the disharmony of the notes played by

voices 1 and 2. j j
Beats, produced when two pitches close in frequency are

played at the same time, are another way to use the multiple

i

66

2

Music and the Sound Editor

voice capabilities of the 64. The speed of the beat (beat fre

quency) is determined by how close the two pitches are. The

n closer they are to one another, the slower the beat will be. As

) they drift farther and farther apart, the beat gets faster.

r-i

] Program 2-10- Beats
For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

5 REM ** INITIALIZE SOUND REGISTERS *** :rem 30

6 REM :rem 26

10 FOR R=54272 TO 54296:POKER,0:NEXT :rem 24

20 POKE 54296,15 :rem 45

30 POKE 54272,0:POKE 54273,16 :rem 243

40 POKE 54277,0:POKE 54278,170 :rem 47

50 POKE 54284,0:POKE 54285,240 :rem 42

60 POKE 54276,33:POKE 54283,33 :rem 48

70 REM :rem 75

80 REM ** SWEEP SCALES LOOP:VOICE #2 ** :rem 114

90 REM :rem 77

100 FOR H2=14 TO 19 :rem 161

110 FOR L2=0 TO 255 :rem 163

120 POKE 54279,L2:POKE 54280,H2 :rem 137

130 NEXT:NEXT :rem 76

140 REM :rem 121

150 REM ** TURN REGISTERS OFF ** :rem 254

160 REM :rem 123

170 FOR R=0 TO 1500:NEXT :rem 32

180 POKE 54276,32:POKE 54283,32 :rem 97

190 POKE 54296,0 :rem 47

The pitch registers for voice 1 are set in line 30, but those of

voice 2 gradually increase as the two FOR-NEXT loops in lines

100-130 execute. Voice 2 starts off at a lower pitch than voice

1, and as it climbs, eventually equals and finally rises above

voice l's frequency.

r-j Chords, unlike harmony or beats, require three or more

' harmonizing notes played together. It's simplest to just show

you an example:

r—i

! i

Program 2-11. Organ Chords

f^ For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

1 i 5 REM ** INITIALIZE SOUND REGISTERS *** :rem 30
6 REM :rem 26

10 FOR R=54272 TO 54296:POKER,0:NEXT :rem 24

H 11 POKE 54296,10 :rem 40

67

2

Music and the Sound Editor

12 POKE 54277,0:POKE 54278,240 :rem 44 ^
13 POKE 54284,0:POKE 54285,240 :rem 41

14 POKE 54291,0:POKE 54292,240 :rem 38 i 7

17 REM :rem 76 Lj
18 REM ** TURN ON VOICE #1 ** :rem 165

19 REM :rem 78

20 POKE 54272,210:POKE 54273,15:POKE 54276,33 jj

:rem 87 *—
21 FOR G=0 TO 1500:NEXT :rem 224

22 REM :rem 72
23 REM ** TURN ON VOICE #2 ** :rem 162

24 REM srem 74

25 POKE 54279,77:POKE 54280,13:POKE 54283,33

:rem 56

26 FOR R=0 TO 1500:NEXT :rem 240

27 REM ** TURN ON VOICE #3 ** :rem 167

28 REM :rem 78

29 POKE 54286,143:POKE 54287,10:POKE 54290,33

:rem 102

61 REM srem 75

62 REM ** TURN REGISTERS OFF ** :rem 208

63 REM :rem 77

65 FOR R=10 TO 15 STEP .006 :rem 75

70 POKE 54296,R:NEXT :rem 151

80 POKE 54276,32:POKE 54283,32:POKE 54290,32:POKE

54296,0 :rem 253

Each voice is turned on, one at a time, until all three are

producing sound. This three-voice harmony creates the chord.

As you can see from the program listing, once each voice is

turned on, it continues to play until the gate bit is turned off

in line 80. A sound will play indefinitely if the gate bit is

never turned off. Take a look, too, at lines 65 and 70. Here the

volume changes as the program nears its end. Although the

volume control register was earlier set to 15, now it changes to

10, and then gradually increases as the FOR-NEXT loop in

line 65 executes. It gives an interesting effect. j j

Actually, chords don't have to harmonize; if they do not, '—'
they produce a discord. Exchanging lines 20, 25, and 29 in

Program 2-11 for the lines below will give you an idea of j~ "i

what a discord sounds like. ■—'

20 POKE 54272,175:POKE 54273,13:POKE 54276,33 --.-

25 POKE 54279,177:POKE 54280,12:POKE 54283,33 [J
29 POKE 54286,43:POKE 54287,18:POKE 54290,33

68

2

Music and the Sound Editor

A Multivoice Chord Editor
To produce multivoice music, you'll need to program two or

three voices at the same time. The Sound Editor earlier in this

chapter programmed only one of the three voices, and

although you could simply use the data as it is displayed and

POKE the other registers manually, the process can become

tedious.

The "Chord Editor" below maintains the features of the

Sound Editor, but allows you to program all three voices at

once.

Program 2-12. Chord Editor
For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

1 REM ** INITIALIZE SOUND REGISTERS *** :rem 26

2 REM :rem 22

3 FOR R=54272 TO 54296:POKER,0:NEXT :rem 234

4 LE=10: 1=1: BR$=" - " :rem 164
5 DIMII(63),II$(63),K$(63),NO$(99),LO$(99),UP$(99)

,LL$(99),PA$(99),LB$(99) :rem 82

6 V(0)=54276: L(0)=54272: H(0)=54273: POKE 54275,

{SPACE}8: POKE 54278, 240 :rem 232

7 v(l)=54283: L(l)=54279: H(l)=54280: POKE 54282,

{SPACE}8: POKE 54285, 240 :rem 235

8 V(2)=54290: L(2)=54286: H(2)=54287: POKE 54289,

{SPACE}8: POKE 54292, 240 :rem 247

9 NO$(0)="{3 SPACES}":NO$(1)="{3 SPACES}":NO$(2)="
{3 SPACES}":LB$="{4 SPACES}":A3=0 :rem 129

10 FOR R=0 TO 2: L0$(R)=M{3 SPACES}":UP$(R)="

{3 SPACES}11: NEXT :rem 153

25)="GII:K$(28) = IIAII:K$(31) = "B11 :rem 45

12 DIM DD$(999) :rem 229

13 REM ***** DEFINE MUSICAL KEYS ***** :rem 225

14 REM :rem 73

15 C$="{2 D0WN}{3 RIGHT}g3 @i{D0WN}{4 LEFT}NfcG§i
gM3M{DOWN}{6 LEFT}§M3 §G3lg2 M3{DOWN}{6 LEFT}
gM5|Ng3 T§M{D0WN}{5 LEFT}g5 T3" :rem 5

16 K$C33)="tC":K$(37)=lltDM:K$(42)="tE":K$(44) = "tF11

:K$(50) ="tG":K$(56)=lltAM : rem 75

17 K$(63)="tB" :rem 178

18 K$(17) ="C#":K$(19)="D#":K$(23)="F#":K$(26)=MG#"

:K$(29)="G#":K$(35)=lltC#M :rem 81

19 K$(39) =MtD#ll:K$(47) ="tF#":K$(53) = "tG#":K$(59)=11
A#" :rem 129

20 D$="{2 DOWN}{8 RIGHT}g3 @3(DOWN}{4 LEFTjNgGl1

gMiM{DOWN}{6 LEFT}gM| §G|2g2 M3(DOV7N}{6 LEFT}

{RIGHT}Ng3 T3M{DOWN}{5 LEFT}g5 Ti" :rem 16

69

2

Music and the Sound Editor

30 E$="{2 DOWN} {13 RIGHT} g3 @§{D0WN}{4 LEFT}NgG>|#
gM§M{DOWN}{6 LEFT}§Mi gG^3g2 M|{D0WN}{6 LEFT}
{RIGHT}Ng3 T3M{DOWN}{5 LEFT}§5 T§" :rem 160

40 F$="{2 DOWN}{18 RIGHT}g3 @§{D0WN}{4 LEFT}NgG3$
gM3M{DOWN}{6 LEFT}gM3 gG[j4g2 M|{DOWN}{6 LEFT}
{RIGHT}NB3 T3M{DOWN}{5 LEFT}g5 T3" :rem 53

50 G$={2 SPACES}"{2 DOWN}{22 RIGHT}11 : rem 241
55 G$=G$+"{RIGHT}g3 @§{D0WN}{4 LEFT}NgG3%gM|M

{DOWN} {6 LEFT}gMi EGi5g2 Mi{D0WN}T6 LEFT}""
{RIGHT}Ng3 TiM{DO\7N}{5 LEFT}g5 Ti" :rem 197

60 A$={2 SPACES}"{2 DOWN}{27 RIGHT}" :rem 125
65 A$=A$+"{RIGHT}g3 @3{DOWN}{4 LEFT}NgGi&gM3M

{DOWN}{6 LEFT}gM3 gG§6g2 M3{DOWN}T6 LEFT}
{RIGHT}Ng3 T§M{DOWN}{5 LEFT}g5 T|M :rem 188

70 B$={2 SPACES}"""{2 DOWN} {32 RIGHT}" : rem 16
75 B$=B$+"{RIGHT}g3 @§{D0WN}{4 LEFT}NBg3'gM^M

{DOWN} {6 LEFTjgMl gGi7gM| gG| {LEFT} {DOWN}""
{6 LEFT}{RIGHT}Ng3 T|MgG3{LEFT}{DOWN}{5 LEFT}
g5 Ti" srem 158

80 Q$="{8 DOWN}{5 RIGHT}g3 @§{DOWN}{4 LEFT}NgG3
gM§M{DOWN}{6 LEFT}gM3 gG§Qg2 M|{DOWN}{6 LEFT}
gM3Hg3 T§M{DOWN}{5 LEFT}g5 T|" :rem 180

90 W$="fr{8 DOWN} {10 RIGHT} g3 @§{DOWN}{4 LEFT}NgG§

gMjJM{DOWN}{6 LEFT}gM3 gG§Wg2 Mi{DOVJN}{6 LEFT}

{RIGHT}Ng3 T§M{DOWN}{5 LEFT}g5 T3" :rem 200
100 EE$="{8 DOWNT{14 RIGHT}11 :rem 222
105 EE$=EE$+"{RIGHT}g3 @3{DOWN}{4 LEFT}NgG3 gM|M

{DOWN}{6 LEFT}gM§ gG§Eg2 M3{DOWN}{6 LEFT} "
{RIGHT}Ng3 T|M{DOWN}{5 LEFT}g5 Ti" :rem 98

110 R$=fl{8 DOWN}{T9 RIGHT}11 : rem 56

115 R$=R$+"{RIGHT}g3 @§{DOWN}{4 LEFT}N&Ga gM^M

{DOWN}{6 LEFT}gM| gG^Rg2 M|{DOWN}T6 LEFT}
{RIGHT}Ng3 T3M{DOWN}{5 LEFT}g5 T3" :rem 0

120 T$="{8 DOWN}{24 RIGHT}" :rem 204

125 T$=T$+"{RIGHT}g3 @§{DOWN}{4 LEFT}NgGi gM|M

{DOWN}{6 LEFT}gM3 gG^Tg2 M|{DOWN}T6 LEFT}
{RIGHT}Ng3 T3M{DOV7N}{5 LEFT}g5 T§" : rem 7

130 Y$="{8 DOWN}{29 RIGHT}" :rem 99

135 Y$=Y$+"{RIGHT}g3 @i{DOWN}{4 LEFT}NgG3 gM§M

{DOWN}{6 LEFTJgMi gG|Yg2 Ml{DOWN}T6 LEFT}
{RIGHT}Ng3 T3M{DOWN}{5 LEFT}g5 T3" :rem 23

140 U$="{8 DOWN}{34 RIGHT}" :rem 241

145 U$=U$+"{RIGHT}g3 @3{DOWN}{4 LEFT}NgG3 gM§M
{DOWN}{6 LEFT}gM3 gG^UgMi gG§{LEFT}{DOWN}
{6 LEFT}{RIGHT}Ng3 T§MgG3{LEFT}{DOWN}{5 LEFT}
g5 T3" :rem 233

150 SP$="{HOME}{12 DOWN}" : rem 189

160 A$=SP$+A$:B$=SP$+B$:C$=SP$+C$:D$=SP$+D$:E$=SP$

+E$:F$=SP$+F$:G$=SP$+G$:rem 236

70

2

Music and the Sound Editor

H

170 Q$=SP$+Q$:W$=SP$+W$:EE$=SP$+EE$:R$=SP$+R$:T$=S

P$+T$:Y$=SP$+Y$:U$=SP$+U$:rem 65

171 GR$="{H0ME}{RVS}{4 SPACES}N0TE{3 SPACES}{OFF}-

g7i#l{WHT}LO/UPzg7l#2{WHT}LO/UPzg7i#3{WHT}LO/U
PZLENM :rem 64

172 GR$=GR$+"{HOME}{DOWN}***********+*******+*****
+»*»**+*»*»" :rem 80

173 LL$="lll SPACES}z[7 SPACES}-{7 SPACES}-

{7 SPACES}-{4 SPACES}" :rem 76
200 REM :rem 118

203 REM ***** DEFINE REVERSE KEYS ***** :rem 32

205 REM :rem 123

210 XC$="{2 DOWN}{3 RIGHT}g3 @1{DOWN}{4 LEFT}{RVS}
£gGllgMlg*i{DOWN}{6 LEFT}{OFF}gMi{RVS} gGll

J2 M|{DOWN}{6 LEFT}{OFF}gMi{RVS}Ng3 T|M{OFF}
{DOWN}{5 LEFT}g5 Tl" ~:rem 99

220 XD$="{2 DOWN}{8 RIGHT}g3 @3{DOWN}{4 LEFT}{RVS}

£gGilgMig*§{DOWN}{6 LEFT}{OFF}gM|{RVS} gG|2
?2 Ml{DOWN}{6 LEFT}{RIGHT}Ng3 T§M{OFF}{DOWN}
{5 LEFT}g5 T§" :rem 207

230 XE$="{2 DOWN}{13 RIGHT}g3 @i{DOWN}{4 LEFT}
{RVS}£gG3#BMig*|{DOWN}{6 LEFT}{RIGHT} gG|3
g2 MiTDOWN}{6 LEFT} {RIGHT}Ng3 T^M{OFF} {DOWN}
{5 LEFT}g5 Ti :rem 15

240 XF$={2 SPACES}11 {2 DOWN} {5 RIGHT}11 :rem 140
245 XF$=XF$+"{13 RIGHT}g3 @3{DOWN}{4 LEFT}{RVS}£

gG3$gM3g*§{DOWN}{6 LEFT}{RIGHT} gG§4g2 Mi

{DOWN}{6 LEFT}{RIGHT}Ng3 T^M{OFF}{DOWN}
{5 LEFT}g5 Ti :rem 227

250 XG$={2 SPACES}"{2 DOWN}{10 RIGHT}" :rem 31

255 XG$=XG$+"{13 RIGHT}g3 @i{DOWN}{4 LEFT}{RVS}£

gGi%gMig*i{DOWN}{6 LEFT}{RIGHT} gGi5g2 Mi
{DOWN}{6 LEFT}{RIGHT}Ng3 TiM{OFF}{DOWN}
{5 LEFT}g5 Ti :rem 232

260 XA$={2 SPACES}"{2 DOWN}{15 RIGHT}" :rem 171
265 XA$=XA$+"{13 RIGHT}g3 @1{DOWN}{4 LEFT}{RVS}£

gGi&gMlg*i{DOWN}{6 LEFT}{RIGHT} gGi6g2 Mi ""
{DOWN}{6 LEFT}{RIGHT}Ng3 TiM{OFF}{DOWN}
{5 LEFT}g5 Tl :rem 223

270 XB$={2 SPACES}"{2 DOWN}{20 RIGHT}" :rem 62
275 XB$=XB$+"{13 RIGHT}g3 @!{DOWN}{4 LEFT}{RVS}£

gGllgMlg*l{DOWN}{6 LEFT}{RIGHT} gGl7g2 Ml
{DOWN}{6 LEFT}{RIGHT}Ng3 TlM{OFF}{DOWN}
{5 LEFT}g5 Tl "" srem 228

290 XC$=SP$+XC$:XD$=SP$+XD$:XE$=SP$+XE$:XF$=SP$+XF

$:XG$=SP$+XG$:XA$=SP$+XA$:rem 219
295 XB$=SP$+XB$ srem 75

310 XQ$="{6 DOWN}{2 RIGHT}" :rem 130

71

2

Music and the Sound Editor

315 XQ$=XQ$+"{2 DOWN}{3 RIGHT}g3 @i{D0WN}{4 LEFT}

{RVS}£gGi §M|g*i{DOWN}{6 LEFT}{OFF}gMi{RVS}
gGiQg2 Mi {DOWN} {6 LEFT}{OFF}gMi{RVS}Ng3 TiM
{OFF}{DOWN}{5 LEFT}g5 Ti" :rem 110

320 XW$="{6 DOWN} {7 RIGHT}11 : rem 26

325 XW$=XW$+"{2 DOWN} {3 RIGHT}g3 @§{DOV7N}{4 LEFT}

{RVS}£iG| gM§g*i{DOWN}{6 LEFT } {OFF} gMi {RVS}
gGiWg2 M§{DOWN}{6 LEFT}{RIGHT}Ng3 TiM{OFF}
{DOWN}{5 LEFT}g5 Ti" ~~ :rem 83

330 ZE$=M{6 DOWN} {12 RIGHT}'1 : rem 156

335 ZE$=ZE$+"{2 DOWN} {3 RIGHT}g3 @3{DOWN}{4 LEFT}

{RVS}£gGi gMig*i{DOWN}{6 LEFT } {OFF } gMi {RVS }
gGiEg2 Mi{DOWN}{6 LEFT}{RIGHT}Ng3 TiM{OFF}
{DOWN}{5 LEFT}g5 Ti" :rem 34

340 XR$="{6 DOWN} {17 RIGHT}11 : rem 57

345 XR$=XR$+"{2 DOWN}{3 RIGHT}g3 @i{DOWN}{4 LEFT}

{RVS}£gGi gMig*i{DOWN}{6 LEFT}{OFF}gMi{RVS}
gGiRg2 Mi{DOWN}{6 LEFT}{RIGHT}Ng3 TiM{OFF}

{DOWN} {5 LEFT}g5 Ti11 :rem 70

350 XT$="{6 DOWN}{22 RIGHT}" :rem 205

355 XT$=XT$+"{2 DOWN}{3 RIGHT}g3 @§{D0WN}{4 LEFT}

{RVS}£gGi gMig*i{DOWN}{6 LEFT}{OFF}gMi{RVS}

gGiTg2 Mi{DOV7N}{6 LEFT} {RIGHT}Ng3 TiM{OFF}

{DOWN}{5 LEFT}g5 Ti" :rem 77

360 XY$="{6 DOWN}{27 RIGHT}" :rem 100

365 XY$=XY$+"{2 DOWN}{3 RIGHT}g3 @i{DOWN}{4 LEFT}

{RVS}£gGi gMig*i{DOWN}{6 LEFT}{OFF}gMi{RVS}

gGiYg2 Mi{DOWN}{6 LEFT}{RIGHT}Ng3 TiM{OFF}

{DOWN}{5 LEFT}g5 Ti" :rem 93

370 XU$="{6 DOWN}{32 RIGHT}" :rem 242

375 XU$=XU$+"{2 DOWN}{3 RIGHT}g3 @§{DOWN}{4 LEFT}

{RVS}£gGi gMig*i{DOWN}{6 LEFT}{OFF}gMi{RVS}

gGiUg2 Mi{DOWN}{6 LEFT}{RIGHT}Ng3 TiM{OFF}

{DOWN}{5 LEFT}g5 Ti" :rem 82

390 XQ$=SP$+XQ$:XW$=SP$+XW$:ZE$=SP$+ZE$:XR$=SP$+XR

$:XT$=SP$+XT$:XY$=SP$+XY$:rem 132

395 XU$=SP$+XU$:rem 114

400 GOSUB 6400 :rem 222

480 REM :rem 128

490 REM ***** GET KEY ROUTINE ***** :rem 20

495 REM :rem 134

500 GET WW$: IFWW$="" THEN 500 :rem 39

502 IF WW$=" " THEN 4710 :rem 116

503 IF WW$="{F3}" THEN 5010 :rem 245

504 IF WW$="{F5}" THEN 5510 :rem 252

505 IF WW$="{RIGHT}" OR WW$="{LEFT}" THEN 4000
:rem 29

506 IF WW$="{F1}" THEN 4410 :rem 250

507 IF WW$="{UP}" OR WW$="{DOWN}" THEN 4510:rem 13

72

Music and the Sound Editor

509 IF ASC(WW$)<40 OR ASC(WW$)>200 THEN 810
:rem 250

510 IF WW$<>"1" THEN 520 :rem 172
512 PRINTXC?;:L=195:H=16:GOSUB 1000 :rem 34

515 PRINTC$;:GOTO500 :rem 210

520 IF WW$<>"2" THEN 530 :rem 175
522 PRINTXD$;:L=208:H=18:GOSUB 1000 :rem 33

525 PRINTD$;:GOTO500 :rem 212
530 IF WW$<>"3" THEN 540 :rem 178

532 PRINTXE$;:L=30:H=21:GOSUB 1000 :rem 230

535 PRINTE$;:GOTO500 :rem 214

540 IF WW^oM" THEN 55€J :rem 181

542 PRINTXF$;:L=95:H=22:GOSUB 1000 :rem 244

545 PRINTF?;:GOTO500 :rem 216

550 IF WW$oM5" THEN 560 : rem 184
552 PRINTXG$;:L=29:H=25:GOSUB 1000 :rem 246

555 PRINTG$7:GOTO500 :rem 218
560 IF WW$<>"6" THEN 570 :rem 187
562 PRINTXA$7:L=48:H=28:GOSUB 1000 :rem 245

565 PRINTA$7:GOTO500 :rem 213
570 IF WW$o"7M THEN 580 : rem 190

572 PRINTXB$7:L=164:H=31:GOSUB 1000 :rem 32

575 PRINTB$7:GOTO500 :rem 215
580 IF WW$o"Q" THEN 590 : rem 218

582 PRINTXQ$7:L=134:H=33:GOSUB 1000 :rem 47

585 PRINTQ$7:GOTO500 :rem 231

590 IF WW$<>"W" THEN 600 :rem 217

592 PRINTXW$7:L=161:H=37:GOSUB 1000 :rem 58

595 PRINTW$7:GOTO500 :rem 238

600 IF WW$<>"E" THEN 610 :rem 192

602 PRINTZE??:L=60:H=42:GOSUB 1000 irem 236

605 PRINTEE$7:GOTO500 :rem 25

610 IF WW$<>MRM THEN 620 :rem 207

612 PRINTXR$7:L=191:H=44:GOSUB 1000 :rem 47

615 PRINTR$?:GOTO500 :rem 226

620 IF WW$o"T" THEN 630 : rem 211

622 PRINTXT$7:L=58:H=50:GOSUB 1000 :rem 1

625 PRINTT$7:GOTO500 :rem 229

630 IF WW$o"Yli THEN 640 :rem 218

632 PRINTXY$7:L=97:H=56:GOSUB 1000 :rem 16

635 PRINTY$7:GOTO500 :rem 235

640 IF WW$o"U" THEN 500 : rem 210

642 PRINTXU$7:L=72:H=63:GOSUB 1000 :rem 4

645 PRINTU$7:GOTO500 :rem 232

700 GOTO 500 :rem 101

800 REM :rem 124

805 REM **** SHARP VALUES **** :rem 31

807 REM :rem 131

810 IF WW$<>nlH THEN 820 :rem 162

73

Music and the Sound Editor

812 PRINTXC$;:L=194:H=17:GOSUB 1000

815 PRINTC$;:GOTO500

820 IF WW$<>CHR$(34)THEN 830

822 PRINTXD$;:L=238:H=19:GOSUB 1000

825 PRINTD$;:GOTO500

830 IF WW$<>"#" THEN 840

832 PRINTXE$;:L=30:H=21:GOSUB 1000

835 PRINTE$;:GOTO500

840 IF WWoMM THEN 850

842 PRINTXF$;:L=180:H=23:GOSUB 1000

845 PRINTF$;:GOTO500

850 IF WW$<>"%" THEN 860

852 PRINTXG?;:L=155:H=26rGOSUB 1000

855 PRINTG$;:GOTO500

860 IF WW$<>"&" THEN 870

862 PRINTXA$;:L=221:H=29:GOSUB 1000

865 PRINTA$;:GOTO500

870 IF WW$o"IM THEN 880

872 PRINTXB$;:L=164:H=31:GOSUB 1000

875 PRINTB$;:GOTO500

880 IF WW$o"Q" THEN 890

882 PRINTXQ$;:L=132:H=35:GOSUB 1000

885 PRINTQ$;:GOTO500

890 IF WW$<>"W" THEN 900

892 PRINTXW$;:L=221:H=39:GOSUB 1000

895 PRINTW$;:GOTO500

900 IF WW$o"EH THEN 910

902 PRINTZE$;:L=60:H=42:GOSUB 1000

905 PRINTEE$;:GOTO500

910 IF WW$o"R" THEN 920

912 PRINTXR$;:L=104:H=47:GOSUB 1000

915 PRINTR$;:GOTO500

920 IF WW$o"T" THEN 930

922 PRINTXT$;:L=55:H=53:GOSUB 1000

925 PRINTT$;:GOTO500

930 IF WW$<>"Y" THEN 940

932 PRINTXY$;:L=187:H=59:GOSUB 1000

935 PRINTY$;:GOTO500

940 IF WW$<>MU" THEN 500

942 PRINTXU$;:L=72:H=63:GOSUB 1000

945 PRINTU$;:GOTO500

950 REM

960 REM **** PLAY NOTE *****

970 REM

1000 POKE L(A3),L: POKE H(A3), H

1010 POKE V(A3), 65: POKE 54296, 15

1020 FOR R=0 TO LE:NEXT

1030 VL=54296

1040 IFA3=2THENFOR R=0 TO LE STEP.05

O 2:POKE V(R),0:NEXT:POKEVL,0

:rem 37

:rem 213

:rem 248

:rem 40

:rem 215

:rem 168

:rem 233

:rem 217

:rem 171

:rem 35

:rem 219

:rem 174

:rem 42

:rem 221

:rem 177

:rem 34

:rem 216

:rem 180

:rem 35

:rem 218

:rem 96

:rem 50

:rem 234

:rem 95

:rem 60

:rem 241

:rem 70

:rem 239

:rem 28

:rem 85

:rem 47

:rem 229

:rem 89

:rem 4

:rem 232

:rem 96

:rem 70

:rem 238

:rem 85

:rem 7

:rem 235

:rem 130

:rem 105

:rem 132

:rem 99

:rem 168

:rem 22

:rem 173

:NEXT:FORR=0 T

:rem 219

74

Music and the Sound Editor

n

n

1100

1102

1104

1110

1120

1130

REM

REM ** STORE TONE/TIMING VALUES

REM

POKE MM+49152,L:POKE MM+49153,H

MM=MM+2: A3=A3+1

NO$(A3-1)=

1140 LO$(A3-1)=RIGHT$("{3

1150 UP$(A3-1)=RIGHT$(

1160

1170

3000

3002

3004

3005

3006

3008

3010

3015

3020

3025

3030

4000

4002

4003

4005

4007

4008

4010

4400

4402

4405

4410

IF A3=3 THEN FOR

OKE QQ,0: NEXT

REM

rem **** DISPLAY

REM

DD$(SK)=NO$(0)+"

:rem 166

** :rem 218

:rem 170

:rem 220

:rem 77

RIGHT$("{3 SPACES}"+K$(H),3)
:rem 175

SPACES}"+STR$(L), 3)

:rem 96

{3 SPACES}"+STR$(H),3)

:rem 103

IF A3=3 THEN POKE MM+49152,LE: MM=MM+1:LB$=RI

GHT$("{3 SPACES}"+STR$(LE),4) :rem 17

QQ=49152+MM TO 49152+MM+6: P

:rem 169

:rem 167

VALUES **** :rem 223

:rem 17i

"+NO$(1)+" "+NO$(2)+ll-"+LO$(

_ :rem 179

DD$ (SK) =DD$ (SK) +LO$ (1) +"/"+UP$ (1) +"-"+LO$ (2) +

"/ll+UP$(2)+"-"+LB$:rem 179

PRINT" {HOME}T2 DOWN}"; :rem 12
IF SK<9 THEN FOR R=0 TO SK:PRINTDD$(R);:NEXT:

GOTO 3020 :rem 126

FOR R=SK-9 TO SK:PRINTDD$(R);:NEXT :rem 78

IF A3=3 THEN NO$(0)="{3 SPACES}":NO$(1)="

{3 SPACES}":NO$(2)="{3 SPACES}":LB$="

{4 SPACES}" :rem 148

IF A3=3 THEN FOR R=0 TO 2: LO$(R)="{3 SPACES}

":UP$(R)="{3 SPACES}": NEXT: A3=0: SK=SK+1

:rem 206

RETURN :rem 166

REM :rem 168

reM **** SWITCH MODES **** :rem 68

REM :rem 171

IF I=-l THEN 4010 :rem 48

PRINT"{HOME}{4 SPACES}NOTE{3 SPACES}-g7§#1

{WHT}LO/UP-:g78#2{WHT}LO/UP::g73#3{WHTTLO/UP::
{RVS}11; :rem 207
PRINTRIGHT$("{3 SPACES}"+STR$(LE),3);"{OFF}";
:I=I*-1: GOTO 500 :rem 254

PRINT"{HOME}{RVS}{4 SPACES}NOTE{3 SPACES}

{OFF}::g7a#l{WHT}LO/UP::g73#2{WHT}LO/UP::g7i#3
{WHTJlO/UP-LEN ";:I=I*-1: GOTO 500 :rem 211
REM :rem 172

REM **** PLAY BACK MUSIC **** :rem 198

REM :rem 177

IF SK=0 THEN GOTO 500 :rem 96

75

2

Music and the Sound Editor

4415 FOR Q=49152 TO 49152+(7*(SK-1)) STEP 7

:rem 141

4420 POKE 54272,PEEK(Q):POKE 54273,PEEK(Q+1)

:rem 173

4425 POKE 54279,PEEK(Q+2):POKE 54280,PEEK(Q+3)

:rem 22

4430 POKE 54286,PEEK(Q+4):POKE 54287,PEEK(Q+5)

:rem 27

4435 NX=PEEK(Q+6) :rem 219

4440 POKE 54276, 65: POKE 54283, 65: POKE 54290, 6

5: POKE 54296, 15 :rem 169

4450 FOR R=0 TO NX STEP.05 :NEXT :rem 4

4460 POKE 54276, 0: POKE 54283, 0: POKE 54290, 0:

{SPACE}POKE 54296, 0 :rem 196
4470 NEXT:GOTO 500 :rem 22

4500 REM :rem 173

4502 REM **** CURSOR UP/DOWN **** :rem 233

4505 REM :rem 178

4507 REM SCROLL WINDOW : rem 105

4508 REM :rem 181

4509 IF A3<>0 THEN 500 :rem 67

4510 IF I=-l THEN 4560 :rem 59

4512 IF SK=0 THEN 500 :rem 42

4515 PRINT"{HOME}{DOWN}"; :rem 255

4517 IF SK>10 THEN 4530 :rem 152

4520 IFSK>-1THENMM=MM-7:IC=IC-1:FOR R=0TOSK-1:PRIN

T"{DOWN}";:NEXT:SK=SK-1:PRINT LL$:rem 104
4522 IF SK<0 THEN SK=0: IF IC<0THENIC=0 :rern 137

4523 FOR QM=49152+MM TO 49152+MM+7: POKE QM, 0: NE

XT :rem 5

4525 GOTO 500 :rem 158

4530 SK=SK-1:MM=MM-7:IC=IC-1:PRINT"{DOWN}";:FOR R=

SK-10 TO SK-1:PRINT DD$(R);:NEXT :rem 59

4540 FOR QM=49152+MM TO 49152+MM+7: POKE QM, 0: NE

XT :rem 4

4545 GOTO 500 :rem 160

4550 REM :rem 178

4555 REM CHANGE LENGTH OF TONE :rem 248

4557 REM : rem 185

4560 IF WW$="{DOWN}"THEN 4580 :rem 194

4570 IF LE<255THENLE = LE+1 :rem 178

4575 PRINT"{HOME}{4 SPACES}NOTE{3 SPACES}-E73#l
{WHT}LO/UPZE73#2{WHT}LO/UPzg73#3{WHTTLO/UP-

{RVS}"; :rem 217

4576 PRINTRIGHT$("{3 SPACES}"+STR$(LE),3);"{OFF}";

: GOTO 500 :rem 119

4580 IF LE>=1THENLE = LE-1 :rem 137

4585 PRINT"{HOME}{4 SPACES}NOTE{3 SPACES}-B73#l
{WHT}LO/UP::E73#2{WHT}LO/UP::g73#3{WHTTLO/UP-:

{RVS}"; srem 218

76

Music and the Sound Editor

4586

4700

4702

4705

4710

4720

5000

5010

5020

5025

5030

5040

5050

5055

5060

5070

5080

5090

5100

5200

5202

5205

5210

5220

5230

5240

5250

5260

5270

5280

5285

5290

5300

5310

5400

5402

5405

5410

5420

PRINTRIGHT$ (" {3 SPACES } "+STR$ (LE), 3) ; " {OFF } " ;

: GOTO 500 :rem 120

REM :rem 175

rem **** ENTER A PAUSE **** :rem 62

REM :rem 180

H=0:L=0: GOSUB 1000 :rem 239

GOTO 500 :rem 155

REM :rem 169

rem **** SAVE ROUTINE **** :rem 79

REM :rem 171

PRINT "{CLR}" :rem 48

INPUT "{HOME}{5 DOWN}{2 SPACES}SAVE ON DISK O

R TAPE (D/T)"; ME$:rem 207

IF ME$="C" THEN GOSUB 6430: GOTO 500 : rem 86

IF ME$o"D" AND ME$o"T" THEN 5060 : rem 166

GOTO 5210 :rem 208

PRINT"{DOWN}{6 SPACES}PLEASE ENTER 'D' FOR DI

SK" :rem 137

PRINT"{19 SPACES}'T1 FOR TAPE" :rem 80

PRINT"{15 SPACES}OR{2 SPACES}'C1 TO CANCEL"

:rem 25

PRINT" SAVE AND RETURN TO THE MAIN PROGRAM

{DOWN}" :rem 83

GOTO 5030 :rem 199

REM :rem 171

REM **** ENTER NAME OF SONG **** :rem 104

REM :rem 176

PRINT"{HOME}{13 DOWN}{14 RIGHT}
:rem 239

PRINT"{DOWN}(MAX 16 LETTERS)?" :rem 171

INPUT "{4 UPjNAME OF SONG";NM$:rem 201

NM$=LEFT$(NM$,16) :rem 185

PRINT"{HOME}{12 DOWN}{14 RIGHT}{20 SPACES}"

:rem 18

PRINT"{HOME}{12 DOWN}{14 RIGHT}";NM$;"

{10 SPACES}" :rem 140

INPUT"{HOME}{21 DOWN}IS THIS CORRECT (Y/N)";C

R$:rem 27

IF CR$="Y" THEN 5400 :rem 233

IF CR$="C" THEN GOSUB 6430: IC=0:SK=0: GOTO 5

00 :rem 220

PRINT"{HOME}{12 DOWN}{14 RIGHT}{22 SPACES}"

:rem 22

PRINT"{14 SPACES}" :rem 153

GOTO 5210 :rem 202

REM :rem 173

**** SAVE MUSIC **** :rem 175

REM DISK

IF ME$="T"THEN 5455

OPEN 1,8,4,"@:"+NM$+",W"

:rem 235

:rem 230

:rem 184

77

2

Music and the Sound Editor

5425 FOR Q=49152 TO 49152 + ((SK)*7) :rem 190

5430 PRINT#1,PEEK(Q): NEXT :rem 25

5440 CLOSE 1 srem 116

5450 GOSUB 6430 :rem 27

5451 PRINT"{HOME}{2 DOWN}";:FOR R=SK-10 TO SK-1:PR

INT DD$(R);:NEXT :rem 85

5452 GOTO 500 :rem 158

5455 REM TAPE : rem 239

5460 OPEN 1,1,1,NM$: GOTO 5425 :rem 26

5505 REM :rem 179

5510 REM **** LOAD ROUTINE **** :rem 69

5520 REM :rem 176

5525 PRINT "{CLR}" :rem 53

5530 INPUT "{HOME}{5 DOWN}{2 SPACESjLOAD FROM DISK
OR TAPE (D/T)"; ME$:rem 92

5540 IF ME$="C" THEN GOSUB 6430: GOTO 500 :rem 91

5550 IF ME$o"D" AND ME$o"T" THEN 5560 :rem 176

5555 GOTO 5710 :rem 218

5560 PRINT"{DOWN}{6 SPACES}PLEASE ENTER 'D' FOR DI

SK" :rem 142

5570 PRINT"{19 SPACES}'T1 FOR TAPE" :rem 85

5580 PRINT"{15 SPACES}OR{2 SPACES}'C TO CANCEL"

:rem 30

5590 PRINT" LOAD AND RETURN TO THE MAIN PROGRAM

{DOWN}" srem 73
5700 REM :rem 176

5702 REM **** ENTER NAME OF SONG **** :rem 109

5705 REM :rem 181

5710 PRINT"{HOME}{13 DOWN}{14 RIGHT}

—" rrera 244

5720 PRINT"{DOWN}(MAX 16 LETTERS)?" :rem 176
5730 INPUT "{4 UPjNAME OF SONG";NM$:rem 206

5740 NM$=LEFT$(NM$,16) :rem 190

5750 PRINT"{HOME}{12 DOWN}{14 RIGHT}{20 SPACES}"

:rem 23

5760 PRINT"{HOME}{12 DOWN}{14 RIGHT}";NM$;"

{10 SPACES}" :rem 145

5770 INPUT"{HOME}{21 DOWN}IS THIS CORRECT (Y/N)";C
r$:rem 32

5780 IF CR$="Y" THEN 5900 :rem 243

5785 IF CR$="C" THEN GOSUB 6430: GOTO 500 :rem 105

5790 PRINT"{HOME}{12 DOWN}{14 RIGHT}{22 SPACES}"
:rem 27

5800 PRINT"{14 SPACES}" :rem 158

5810 GOTO 5710 :rem 212

5900 REM :rem 178

5902 REM **** LOAD MUSIC **** :rem 165

5905 GOSUB 6430 :rem 32

5910 IF ME$="T" THEN 5960 :rem 236

78

n
Music and the Sound Editor

n

n

5912 FOR R=49152 TO 49159: POKE R,0: NEXT :rem 139

5915 REM DISK : rem 241

5920 OPEN 1,8,4,NM$+",R":SK=0:IC=0 : rem 71

5925 GOSUB 6430 :rem 34

5927 INPUT#1,L:BB=ST:INPUT#1,H :rem 103

5928 IF BB<>0 THEN 5940 :rem 150

5929 GOSUB 1000 :rem 26

5930 INPUT#1,L:INPUT#1,H:GOSUB 1000 :rem 58

5931 INPUT#1,L:INPUT#1,H:INPUT#1,LE:GOSUB 1000

:rem 22

5932 BB=ST: IF BB<>0 THEN 5940 :rem 51

5935 GOTO 5927 :rem 230

5940 CLOSE 1: SK=SK+1: IC=IC+1 :rem 115

5950 GOTO 500 :rem 161

5955 REM TAPE : rem 244

5960 OPEN 1,1,0,NM$:SK=0:IC=0:GOTO 5927 srem 157

6400 REM :rem 174

6410 REM **** PRINT DISPLAY SCREEN ***** : rem 140

6420 REM :rem 176

6430 PRINT"{WHT}{CLR}{12 DOWN}g40 U§{HOME}M;
:rem 16

6440 PRINT"{HOME}{2 DOWN}";:FOR 0=0 TO 9:PRINTLL$;

:NEXT :rem 255

6445 DL$="{HOME}{13 DOWN}{4 RIGHT}":DN$=M{HOME}
{19 DOWN}{5 RIGHT}" :rem 196

6450 PRINT"{HOME}II;GR$;A$;B$;C$7D$7E$;F$;G$;Q$7W$7

EE$7R$7T$7Y$?U$?DL$7 *rem 105
6460 PRINT"C{4 SPACES}D{4 SPACES}E{4 SPACESjF

{4 SPACES}G{4 SPACES }A{ 4 SPACES }BllDN$"fc
{3 SPACES}tD{3 SPACES}tE"; :rem 152

6470 PRINT"{3 SPACES}TF{3 SPACES}?G{3 SPACES}?A

{3 SPACES}tB{HOME}{3 DOWN}"? :rem 171
6502 RETURN :rem 173

n

H

n

Notes of the scale. As in the sound editor, the notes of

the scale are labeled above the keys. The top row is one oc

tave lower than the bottom row. To show the difference be

tween the octaves, the keys for the higher notes (bottom row)

are preceded by an up arrow (t). These arrows also appear in

the table in the upper half of the screen as you enter notes so

you'll be able to tell what notes are being played. To play a

note, press the appropriate key.

79

2

Music and the Sound Editor

Using the table. There are a few differences between the

tables in the two editors. The first thing you may notice is that

the column containing the notes is much wider than before.

This is to accommodate the three notes that can be played at

once. Additionally, two of the columns have been deleted.

These are the PAUSE column and the # column. Pauses are

now indicated by a break in the NOTE column (no note des

ignated) and the O's in the LO/UP value columns.

NOTE. When the program is first turned on, the NOTE

heading is highlighted just as before, but now it's three times

as wide. This allows room for three notes to be displayed in

the same column. When you enter the first note of a chord,

that note is played, and the name of the note is displayed in

this column. While the computer is waiting for you to enter

another note from the keyboard, the first note continues to

play. When you enter a second and then a third note, this col
umn shows the notes as you enter them.

After the third note has been played, all three notes will

be turned off. You must enter at least ten chords when you

use this editor.

LO/UP. Each of these three columns shows the actual

POKE values being entered into the pitch control registers.

This editor creates the values for you that you would need to

POKE into the low and high pitch registers; all you need to do

is copy them down as the notes are entered. Then you can

place these values in the appropriate locations in your own

sound routine.

LEN. The value shown in the LEN column is not exactly

the same as it was in the Sound Editor. While the number

shown is indeed the one that is used in the timing loop, the

loop itself has been changed to directly reflect the relative

length of the notes in the Chord Editor. To change this value, t ,

press the Cursor Right/Left key at the lower right corner of I—I
the keyboard. This will highlight the LEN column and will

display the current timing value. I .

Pressing the SHIFTed Cursor Up/Down key increases the LJ
timing value, while using the unSHIFTed Cursor Up/Down

key decreases the value. However, the Chord Editor uses tim- i ,

ing increments of one, allowing you higher timing resolution. I—I
The highest timing value available is 255 and the lowest is 0.

#. Since the LEN value now represents*the relative length i i

of the tone, the # column is not needed, and has been deleted ^
from this editor.

80 y

2

Music and the Sound Editor

Modifying the music. Just as with the Sound Editor, you

can delete old chords and insert new ones. Using the SHIFTed

or unSHIFTed Cursor Up/Down key (when the NOTE column

is highlighted), you can delete chords from the bottom of the

table on up. As in the Sound Editor, what is actually happen

ing as the screen scrolls is that the chords are being erased.

Remember that using this function deletes all of the notes from

the bottom of the table on up to the point where you stop pressing

the Cursor Up/Down key. When you use the delete function,

you're also erasing entire chords, not just single notes. Other

wise, the music may be distorted.

Sharps and flats. Placement and use of sharps and flats

are the same with the Chord Editor as you saw in the Sound

Editor earlier. Refer to Figures 2-1 and 2-2 for the keys which

select sharps and flats. The explanation of their use and dis

play in the table was covered in the documentation for the

Sound Editor. Take a look at that explanation if you've forgot

ten how to access sharps and flats on the keyboard.

SAVEing/LOADing music. The SAVE and LOAD func

tions have not been changed. The computer will ask you the

same questions when you wish to save or load a song, and the

music will be stored in exactly the same way. Since the Chord

Editor saves three notes at a time, however, music stored on it

will not be readable by the Sound Editor. Nor will music

saved by the Sound Editor work with the Chord Editor.

Hints and tips. Keep these things in mind as you're using

the Chord Editor. They're almost identical to the hints listed

under the Sound Editor explanation. If you're entering a large

number of notes, there will be times when the last note key

you pressed will stay highlighted. If you press any of the note

keys, or even one of the function keys, nothing will happen.

n Again, there's nothing wrong. The program is just taking some

time to place all the values you've entered into the computer's

memory. Wait for the highlighted key to return to its normal

—j display. Then you can continue to add more chords, or play

I I the song, or save it to tape or disk. It's a good idea to avoid
pressing keys while the program is storing values; otherwise,

^ it will read the keyboard buffer and place as many notes in

I ! the song as the number of times you hit that key. You'll have
to delete those extra notes if that happens.

If you want to delete a chord or chords, but still want a
n

n
81

2

Music and the Sound Editor

copy of the song as it exists, be sure to save it to tape or disk.

Then when the screen returns, you can delete chords and lis

ten to the new tune. If you don't like your alterations, at least

you'll have a backup copy of the original version of the song

on tape or disk. If you liked the original better, you can just

load it and go on from there.

As the Chord Editor is listed, it uses the pulse waveform,

with attack and sustain set to 0, the sustain/release control

register set with a value of 240. You can change the waveform

used by altering lines 1010 and 4440 in the program. Just

change the value POKEd into the three waveform control reg

isters, locations 54276, 54283, and 54290. You can even add

an attack/decay value in lines 6, 7, and 8, where the program

initializes control registers for the three voices.

You now have two utilities in hand that will make it much

easier to create single or multivoiced sounds on the Com

modore 64. You've even seen how to create harmony and dis

harmony. Now that you have a firm idea of how to create

sound on the 64, what can you do with that knowledge? One

of the most common uses of sound on this computer is creat

ing sound effects, both duplications of natural sounds and new

artificial effects. That's what the next chapter will cover—how

to create sound effects. You'll quickly have a small library of

sound effects. And that's not far from creating your own.

82

CHAPTER

3
n Sound Effects

Up to now, you've been seeing how the features of the Com

modore 64 SID chip operate and how to apply them to create

simple sounds. Using the sound control registers, you've

learned how to set various memory locations with values,

producing sound. The "Sound Editor" and "Chord Editor" in

the previous chapter gave you tools to make that process easier.

In this chapter we'll explore methods of using the SID chip

to manipulate sounds to make them imitate nature. You'll be

using only the functions discussed so far, so if you've read

through the first two chapters, as well as the glossary in the

Introduction, you're ready to begin.

We'll look at and listen to four different sound types: hard

sounds, soft sounds, slowly rising tapered sounds, and slowly

falling tapered sounds. We'll examine a number of examples of

how these sound types can be used to produce special sound

effects, and how they can be combined to make entirely new

sounds—sounds that nature cannot create, but your computer

can.

Hard Sounds
Definitions sometimes have to be somewhat arbitrary. In order

to separate the different kinds of sound effects, we'll do just

that. Let's define hard sounds as those sounds that both begin

and end abruptly. Another way of saying this would be to say

that they have rapid attack, decay, and release rates. The

sounds climb to maximum volume quickly, fall to the sustain

volume level as fast as possible, and drop from that sustain vol

ume rapidly. They may be short, as in Program 3-1, or long, as

shown in Program 3-2. Type in and RUN these two short

routines to hear examples of the characteristics of a hard sound.

n

85

H

3

Sound Effects

Program 3*1. Short Beep

For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

10 FOR R=54272 TO 54296:POKER,0:NEXT :rera 24 j_j
20 POKE 54296,15 :rem 45

30 POKE 54275,8:POKE 54277,0:POKE 54278,240 :rem 0

40 POKE 54272,47:POKE 54273,25 :rem 47 | |

50 POKE 54276,65 :rem 51 ^
60 FOR R=0 TO 300:NEXT :rem 187

70 POKE 54276,64:POKE 54296,0 :rem 3

Program 3-2* Longer Beep

For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

lid FOR R=54272 TO 54296:POKER, 0:NEXT :rem 24

20 POKE 54296,15 :rem 45

30 POKE 54275,8:POKE 54277,0:POKE 54278,240 :rem 0

40 POKE 54272,47:POKE 54273,25 :rem 47

50 POKE 54276,65 :rem 51

60 FOR R=0 TO 1000:NEXT :rem 233

70 POKE 54276,64:POKE 54296,0 :rem 3

You'll notice that the only difference between these two pro

grams is in line 60, which is the sustain delay loop. Program

3-2 plays three times as long only because its delay loop is

longer. The attack/decay rate is set to the fastest possible in

line 30 of both routines by POKEing the attack/decay control

register (location 54277) with 0. The release is also set to the

most rapid rate. POKEing the sustain/release control register

(location 54278) with 240 sets the sustain volume to maximum

(15*16 = 240), but the release is 0, indicating that the sound

falls off quickly after the sustain.

You can even make hard sounds change volume in the

middle of play, as Program 3-3 does.

Program 3-3 ♦ Down and Up Sounds)_j
For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

10 FOR R=54272 TO 54296:POKER,0:NEXT :rem 24 ~

20 PQKE 54296,15 :rem 45 [_j
30 POKE 54275#8:POKE 54277,0:POKE 54278,240 :rem 0

40 POKE 54272,47:POKE 54273,25 :rem 47 ^

50 POKE 54276,65 :rem 51 , ;

55 FOR T=0 TO 300:NEXT :rem 193 LJ
60 FOR R=15 TO 1 STEP -.3:POKE 54296,R:NEXT:rem 74

65 FOR R=l TO 15 STEP .3:POKE 54296,R:NEXT :rem 34

70 POKE 54276,64:POKE 54296,0 :rem 3 JJ

86 _

3

Sound Effects

This routine is almost identical to Program 3-1. Lines 60 and

65 are new, however. They are what make the volume level

first go down, then back up. Note the use of the STEP com

mand in both lines. In line 60, the volume falls in steps of .3,

while it climbs in increments of .3 in line 65.

Often, hard sounds are most interesting when they're

repeated. Type in and RUN Program 3-4 to hear this effect.

Program 3-4. Repeater
For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

10 FOR R=54272 TO 54296:POKER,0:NEXT :rem 24

20 POKE 54296,15 :rem 45

30 POKE54275,8:POKE 54277,0:POKE54278,240 :rem 0

40 POKE 54272#47:POKE 54273,25 :rem 47

45 FOR R=0 TO 10 :rem 19

50 POKE 54296,15 :rem 48

55 POKE 54276,65 :rem 56

60 POKE 54276,64:POKE 54296,0 :rem 2

70 NEXT :rem 166

Changing a few of the control register values will modify the

sound of this significantly. For instance, change line 45 so that

the FOR-NEXT loop has a range from 0 to 100, instead of only

to 10. This simply lengthens the time the sound plays.

Eliminating line 50 and the POKE 54296,0 from line 60 will

also change the sound. Instead of the sound being turned on,

then off, each time through the loop, only the gate bit is

turned on and off. The sound seems faster and more run-

together.

Since the only requirement for a hard sound is that it

begin and end abruptly (use rapid attack, decay, and release

rates), you can use any of the waveforms in producing them.

The single blip in Figure 3-1 illustrates the way that a

hard sound begins at the base line, rises quickly to a high vol

ume, and then falls just as quickly to a low volume. To create

this kind of sound, you can use any waveform available on

the 64, or even switch between them.

Program 3-5* Switching Waveforms

For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

10 FOR R=54272 TO 54296:POKER,0:NEXT :rem 24

20 POKE 54296,15 :rem 45

30 POKE54275,8:POKE 54277,0:POKE54278,240 :rem 0

87

Sound Effects

40 POKE 54272,47:POKE 54273,25

50 POKE 54276,33

60 FOR R=0 TO 20:NEXT:POKE 54276,32

62 POKE 54276,17

65 FOR R=0 TO 20:NEXT:POKE 54276,16

67 POKE 54276,65

69 FOR R=0 TO 20:NEXT:POKE 54276,64

70 FOR R=0 TO 300:NEXT

80 GOTO 50

:rem 47

:rem 46

:rem 140

:rem 51

:rem 147

:rem 59

:rem 154

:rem 188

:rem 6

U

U

U

U

i i

Figure 3-1 ♦ Hard Sound

Time

Notice how the waveforms are changed in this program.

First, the sawtooth waveform is enabled, then the gate bit is

turned off (lines 50 and 60). Next, the triangle waveform is

used (lines 62 and 65), and finally the pulse waveform is

enabled and the gate bit turned off (lines 67 and 69).

Although they almost run together since each waveform plays

for such a short time, if you lengthen the FOR-NEXT loops in

lines 60, 65, and 69, you'll be able to hear the differences in

the sounds the three waveforms make. Try FOR R=0 TO 90

88

G

0

/ 1

Sound Effects

n

in these loops; the separate waveforms will be easier to tell

apart. Eliminate lines 67 and 69 entirely to hear what it

sounds like using only two waveforms. It's quite different.

Because the waveforms do sound so different, we'll divide

each of the sound types into four sections, separately covering

pulse, triangle, sawtooth, and noise waveforms.

Hard Sounds Using Pulse Waves
This combination of sound components produces the hardest

sounds the Commodore 64 can make. This is because the

sounds start very quickly and the waveforms consist of very

abrupt changes.

If we take a simple, hard pulse waveform that is

symmetrical (also called a square wave) and make it very short

in duration, it produces a kind of clicking sound. Figure 3-2

shows this square waveform, while Program 3-6 demonstrates

the sound effect.

n

Figure 3-2. Hard Pulse Waveform (Symmetrical)

Time

Program 3*6- Click

For mistake-proof program entry, be sure to read "Automatic Proofreader/' Appendix C.

10 FOR R=54272 TO 54296:POKER,0:NEXT :rem 24

20 POKE 54296,15 :rem 45

30 POKE 54275,8:POKE 54277,0:POKE 54278,240 :rem 0

40 POKE 54272,47:POKE 54273,65 :rem 51

50 POKE 54276,65 :rem 51

70 POKE 54276,64:POKE 54296,0 :rem 3

89

3

Sound Effects

Ticktock. By putting these clicks together in pairs, using

two different frequencies, you can produce the regular, ticking

sound of a grandfather clock. Enter and RUN Program 3-7 to
hear the sound.

Program 3*7- Ticktock ~

For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C. '—'

10 FOR R=54272 TO 54296:POKER,0:NEXT :rem 24

20 POKE 54296,5 :rem 252

30 POKE 54275#8:POKE 54277,0:POKE 54278,240 :rem 0

40 POKE 54272,51:POKE 54273,90 :rem 44

50 POKE 54276,65:POKE 54296,5 :rem 7

60 POKE 54276,64:POKE 54296,0 :rem 2

70 FOR R=0 TO 400:NEXT :rem 189

80 POKE 54272,47:POKE 54273,81 :rem 53

90 POKE 54276,65:POKE 54296,5 :rem 11

110 POKE 54276,64:POKE 54296,0 :rem 46

120 FOR R=0 TO 400:NEXT :rem 233

130 GOTO 40 :rem 49

The sounds are short because the gate bit is turned on in one

line, then turned off in the very next line. There is no sustain

delay loop between those two steps to keep the note playing

at its sustain level. Like the other hard sounds you've seen,

the attack, decay, and release have been set to their most

rapid rates. The volume level is set to 5 when the gate bit is

turned on (lines 50 and 90), and then set to 0 to turn it off

completely (lines 60 and 110). You can eliminate those POKE

statements which set the volume control register, but the

sound will be different. It won't sound quite so much like a

clock, but more like a beeping noise. Turning the sound on,

then off, in rapid succession makes that clicking sound you

hear in this routine.

You can create some interesting sounds, using this rou- -

tine, by changing a thing or two. For example, changing the LJ

FOR-NEXT loops in lines 70 and 120 (the loops create the

pauses between the two clicking sounds) will produce a dif- - --

ferent sound. Changing other values, such as the pitch values U
in lines 40 and 80, will also make new sounds.

Adding another section to the routine can give you the —

effect of an alarm going off after the clock has been ticking for LJ

a short time. Add the following lines to Program 3-7 and

reRUN it. The clock will ticktock 16 times (indicated by the .

FOR X=0 TO 15 in line 35) before the alarm goes off. L

90

3

Sound Effects

n

n

n

35 FOR X=0 TO 15

130 NEXT

132 REM

134 REM ALARM

135 REM

150 POKE 54272,47:POKE 54273,255

160 FOR R=0 TO 150

170 POKE 54276,65

180 POKE 54296,15

190 POKE 54276,64:POKE 54296,0

200 NEXT

The alarm sound is constructed in the same way as the ticking

noises. The gate bit is turned on and the volume set to 15 in

lines 170 and 180. Then the gate bit is turned off and the vol

ume reset to 0 in line 190. Again, turning the gate bit and vol

ume on and off quickly like this gives the sound its unique

nature.

Ping-Pong. Table tennis is a game that requires great

concentration, quick reflexes, and the ability to stretch just a

bit farther. In return it provides the players and observers with

a very unique sound.

Program 3-8. Ping-Pong

For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

5 REM INITIALIZE REGISTERS :rem 43

6 REM :rem 26

10 FOR R=54272 TO 54296:POKER,0:NEXT :rem 24

11 POKE 54296,15 :rem 45

12 POKE 54275,8:POKE 54277,0:POKE 54278,240 :rem 0

20

21

30

40

50

60

62

63

64

65

66

78

79

80

90

100

REM PING SOUND VALUES

REM

POKE 54272,51: POKE 54273,75

POKE 54276,65

POKE 54296,RND(0)*10+5

POKE 54276,64:POKE 54296,0

REM

REM PAUSE BETWEEN NOTES

REM

FOR R=0 TO RND(0)*100+50:NEXT

REM

REM PONG SOUND VALUES

REM

POKE 54272,47:POKE 54273,55

POKE 54276,65

POKE 54296,RND(0)*10+5

:rem 53

:rem 71

:rem 46

:rem 50

:rem 26

:rem 2

:rem 76

:rem 198

:rem 78

:rem 221

:rem 80

:rem 72

:rem 84

:rera 54

:rem 55

:rem 70

91

3

Sound Effects

110 POKE 54276,64:POKE 54296,0 rrem 46

120 FOR R=0 TO RND(0)*600+300rNEXT :rem 56

130 GOTO 30 :rem 48 f"

LJ
Note the use of the RND function in lines 50, 65, 100,

and 120. It varies the timing and loudness of the pings and —

pongs to add some realism to the illusion of the match. LJ

Creaky door. When a door gets old, its hinges may be

come rusty. They crack and pop as they creak open, and the

faster the door moves, the faster the creaks sound.

Program 3-9, Creaky Door

For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

8 REM INITIALIZE REGISTERS : rem 46

9 REM jrem 29

10 FOR R=54272 TO 54296:POKE R,0:NEXT :rem 24

15 POKE 54296,15 :rem 49

16 POKE 54275,0:POKE 54277#0:POKE 54278,240

:rem 252

20 REM :rem 70

21 REM CREAK OPEN LOOP : rem 129

23 REM :rem 73

25 FOR R=l TO 30 :rem 20

30 POKE 54273,5 :rem 248

33 POKE 54276,65:POKE 54296,15 :rem 57

34 POKE 54276,64:POKE 54296,0 :rem 3

35 FOR T=300 TO 0 STEP-R:NEXT :rem 122

36 NEXT :rem 168

40 REM :rem 72

41 REM CREAK CLOSED LOOP : rem 11

42 REM rrem 74

50 FOR R=l TO 30 rrem 18

60 POKE 54273,53 rrem 46

63 POKE 54276,65:POKE 54296,15 rrem 60

64 POKE 54276,64:POKE 54296,0 rrem 6

65 FOR T=300 TO 0 STEP -(31-R):NEXT :rem 95 ; ,

70 NEXT rrem 166 LJ

This program uses an asymmetrical pulse waveform, r~{

which is part of the reason it sounds like it does. Line 16 I—I
includes a POKE which sets the high pulse width control reg

ister to 0, creating an asymmetrical waveform. All the previous j- -,

examples in this section have used symmetrical, or square, *—1
pulse waveforms. Note the use of timing loops to create the

effect of the notes starting far apart, then getting closer j ,

92

u

Sound Effects

n

n

together. This gives the sensation of the sound beginning

slowly, then picking up speed, just as a creaky door sounds as

it opens and then closes. Figure 3-3 illustrates this method.

Figure 3-3, Timing Loops

Sound bursts

Shifted Timing

Time

n

n

n

n

An alternate method of producing this kind of sound is by

using pitch changes to create the effect. Program 3-9 used the

same pitch value in the high control register throughout the

routine. The clicking sounds of the door opening and closing

were created by the short notes made when the gate bit and

volume were turned on and off rapidly. Program 3-10 uses a

different technique. The pitches change through the course of

the routine, while the gate bit and volume remain on. There's

usually more than one way to create a sound effect on the 64.

Program 3-10* Creaky Door, Revisited
For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix G

5 REM INITIALIZE REGISTERS :rem 43

7 REM :rem 27

10 FOR R=54272 TO 54296:POKE R,0:NEXT :rem 24

15 POKE 54296,15 :rem 49

16 POKE 54275,8:POKE 54277,0:POKE 54278,240 :rem 4

93

3

Sound Effects

17 POKE 54276,65 :rem 54

20 REM :rem 70

21 REM CREAK OPEN LOOP : rem 129 \~~\

23 REM :rem 73 U
25 FOR R=10 TO 195 :rem 128

30 POKE 54272,R:POKE 54273,0 :rem 222

35 FOR T=0 TO 10:NEXT :rem 141 I I
36 NEXT :rem 168

40 REM :rem 72

41 REM —'-- CREAK CLOSED LOOP :rem 11

42 REM :rem 74

50 FOR R=195 TO 10 STEP -1 :rem 24

55 POKE 54272,R:POKE 54273,0 :rem 229

65 FOR T=0 TO 10:NEXT :rem 144

70 NEXT :rem 166

71 REM :rem 76

72 REM TURN SOUND OFF : rem 98

73 REM :rem 78

80 POKE 54276,64:POKE 54296,0 :rem 4

The 64 can produce pitches (frequencies) so low that the

waveform cycles are as much as one second apart (one cycle

per second, or 1 Hz). This program takes advantage of this

feature and simply increases and then decreases the frequency

of the sound to produce the creaks instead of using a timing

loop to place each sound the right distance from the last.

That's what makes it sound as if the clicks are coming slowly

at first, then picking up speed. As the pitches climb in fre

quency, they sound faster and faster.

Compare Figure 3-3 with the one below, which shows

how the incrementing of pitches can cause this type of sound.

94

n

n

n

Sound Effects

Figure 3^4. Incrementing Pitch

Individual Pulses

Increasing Pitch

Time

n

n

Crickets. This sound effect is essentially an exercise in

timing. The cricket sounds are made up of bursts of fast clicks

spaced in pairs, one making the rising sound, the other the

falling sound.

Program 3*11. Crickets
For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

5 REM INITIALIZE REGISTERS :rem 43

7 REM srem 27

10 FOR R=54272 TO 54296:POKE R,0:NEXT :rem 24

15 POKE 54296,15 :rem 49

16 POKE 54275f8:POKE 54277#0:POKE 54278,240 :rem 4

17 POKE 54272,0:POKE 54273,155 :rem 44

18 POKE 54276,65 :rem 55

21 REM :rem 71

22 REM MAIN CRICK LOOP :rem 123

23 REM :rem 73

95

3

Sound Effects

25 FOR K=0 TO 50 :rem 14

30 FOR 1=0 TO 1 :rem 212

40 FOR R=0 TO 15 STEP 5 :rem 132 , ~

41 REM :rem 73 Lj
42 REM SOUND A CRICK :rem 232

43 REM :rem 75

50 POKE 54296,R :rem 28 \ J

60 POKE 54296,0:NEXT :rem 116 ^
70 FOR M=0 TO 30:NEXT :rem 135

90 NEXT :rem 168

91 REM :rem 78

92 REM INTERVAL TIMING LOOP : rem 30

93 REM irem 80

100 FOR D=0 TO RND(0)*1000:NEXT :rem 149

120 NEXT:POKE 54276,64 :rem 217

The various FOR-NEXT loops in the program set the number

of times the sound pairs are heard (line 25), pair the sounds

together (line 30), set the volume to different levels (line 40),

and produce the irregular intervals between sound pairs (line

100). This last loop, in line 100, uses the RND function once

again to remove the mechanical sound that constant timing

might have.

The sounds are actually created in lines 50-70 by turning

the sound on and off quickly, with a very short pause in

between.

Motor boat. This program uses a counter to modify both

the speed of the sound and its volume. The counter keeps

track of how many sounds are produced. By doing this, you're

able to make a motor boat sound that first starts, revs up to

maximum speed, and then putts away down the river. Program

3-12 creates this effect. Type it in and RUN it to hear the sound.

Program 3-12, Motor Boat

For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C. } j

5 REM INITIALIZE REGISTERS : rem 43

7 REM :rem 27

10 FOR R=54272 TO 54296:POKE R,0:NEXT :rem 24 M
15 POKE 54275,8:POKE 54277,0:POKE 54278,240 :rem 3

16 POKE 54273,8:POKE 54272,0 :rem 200

17 POKE 54276,65 :rem 54 ["

41 REM :rem 73 lJ
42 REM BOAT GETTING CLOSER : rem 178

43 REM :rem 75

47 FOR K=0 TO 300 :rem 64 M

96

3

Sound Effects

\ \

I \

50 POKE 54296,(K/25)+3 :rem 90

55 POKE 54296,0 srem 255

57 FOR G=0 TO RND(0)*(150-K/2):NEXT :rem 114

60 NEXT srem 165

61 REM :rem 75

62 REM BOAT GETTING FARTHER AWAY — :rem 163

63 REM *rem 77

70 FOR F=0 TO 450 :rem 61
72 POKE 54296,15-F/30 :rem 57

75 POKE 54296,0 srem 1

77 FOR G=0 TO RND(0)*5:NEXT :rem 233

80 NEXT :rem 167

91 REM :rem 78

92 REM TURN SOUND OFF : rem 100

93 REM :rem 80

100 POKE 54276,64:POKE 54296,0 :rem 45

Line 50 looks at the counter value K (which is increased

by the FOR-NEXT loop in line 47) and determines how loud

the motor should be by varying the volume based on the

value of K. The volume level is never less than 3, and slowly

increases as K gets larger. Line 55 turns the sound off; it's this

familiar on and off pattern that creates the actual hard sound.

In line 57, K is used to modify the RND function. At first,

when K is a lower value, the delay loop is longer (maximum

of 150), but as K increases, the delay loop becomes shorter,

making the motor sound run faster and faster.

As the motor boat gets farther away, the value F in the

second loop, found in line 70, becomes larger. As F increases,

the volume level in line 72 becomes lower (15—F/30). Also,

since the speed of the motor's sounds is already at maximum,

a constant value is used with the RND function in line 77.

Hard Sounds Using Sawtooth Waves
If you want to use a sawtooth waveform instead of the pulse

waveform, you need to change the value POKEd into location

54276 (for voice 1), 54283 (for voice 2), or 54290 (for voice 3)

from 65 to 33. When you listen to a pulse waveform and then

compare it to a sawtooth waveform, you'll find the sawtooth

waveform has a sharper sound. Again, that's an aesthetic term,

but it generally refers to a sound that is composed of higher

frequencies. It has a higher, piercing sound to it. Let's listen to

an example. Type in and RUN Program 3-13.

97

3

Sound Effects

Program 3-13* Comparing Sounds

For mistake-proof program entry, be sure to read "Automatic Proofreader/' Appendix C.

5 REM — INITIALIZE SOUND REGISTERS — :rem 65

6 REM srem 26

10 FOR R=54272 TO 54296:POKER,0:NEXT :rem 24

11 POKE 54296,15 :rem 45

12 POKE 54275,8:POKE 54277,0:POKE 54278,240 :rem 0

17 REM :rem 76

18 REM PULSE WAVE :rem 113

19 REM :rem 78

20 POKE 54272,47:POKE 54273,25 :rem 45

30 POKE 54276,65 :rem 49

40 FOR R=0 TO 300:NEXT :rem 185

50 POKE 54276,64 :rem 50

57 REM :rem 80

58 REM PAUSE BETWEEN TONES : rem 202

59 REM :rem 82

60 FOR R=0 TO 500:NEXT :rem 189

67 REM :rem 81

68 REM SAWTOOTH WAVE : rem 102

69 REM :rem 83

70 POKE 54276,33 :rem 48

80 FOR R=0 TO 300:NEXT :rem 189

90 POKE 54276,64:POKE 54296,0 :rem 5

The first tone you heard was a pulse waveform, and the

second was a sawtooth waveform. Both sounds shared the

same pitch values, which were POKEd into the appropriate

registers in line 20. The only difference was the waveform

selected: pulse in line 30, sawtooth in line 70. This one alter

ation changed the sound quite a bit, didn't it?

Electronic telephone ringer. Because of the sharp sounds

obtainable with sawtooth waves, they lend themselves to the

kind of piercing tones needed to duplicate the sound of

devices like the new electronic telephone ringers.

Program 3-14. Electronic Ringer

For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

5 REM — INITIALIZE SOUND REGISTERS — :rem 0

6 REM :rem 26

10 FOR R=54272 TO 54296:POKER,0:NEXT :rem 24

11 POKE 54296,15 :rem 45

12 POKE 54277,0:POKE 54278,240 :rem 44

20 REM :rem 70

28 REM NUMBER OF TONES :rem 157

98

1—1

Sound Effects

n

n

29 REM :rem 79

30 FOR Y=0 TO 5 :rem 232

40 FOR W=0 TO 12 :rem 21

50 REM :rem 73

60 REM HIGH TONE : rem 8

70 REM :rem 75

80 POKE 54272,0:POKE 54273,125 :rem 41

90 POKE 54276,33 :rem 50

100 FOR X=0 TO 30:NEXT :rem 188

110 REM :rem 118

120 REM LOW TONE : rem 7

130 REM :rem 120

140 POKE 54273,100 :rem 134

150 FOR Z=0 TO 30:NEXT :rem 195

160 NEXT :rem 214

170 REM :rem 124

190 REM PAUSE BETWEEN TONES : rem 247

195 REM :rem 131

200 POKE 54276,32 :rem 90

210 FOR R=0 TO 2000:NEXT :rem 23

220 NEXT:POKE 54296,0 :rem 162

As you run this program, notice the smooth transition

between the two pitches, created by leaving the volume

turned on between the changes.

An old jalopy. This program is a series of five routines

that tell a story through sound. It's simple, yet it's a good

demonstration of a more involved sound effect.

Program 3-15- Old Car
For mistake-proof program entry, be sure to read "Automatic Proofreader/'

5 REM INITIALIZE REGISTERS

6 REM

10 FOR R=54272 TO 54296:POKER,0:NEXT

11 POKE 54296,15

15 POKE 54277,0:POKE 54278,240

20 POKE 54272,0:POKE 54273,18

30 POKE 54276,33

n

35 REM

36 REM TURN IGNITION KEY

37 REM

40 FOR R=0 TO 1

50 POKE 54276,33

60 POKE 54276,32

80 NEXT

82 FOR R=0 TO 200:NEXT

85 REM

" Appendix C.

:rem 43

:rem 26

:rem 24

:rem 45

:rem 47

:rem 244

:rem 44

:rem 76

:rem 72

:rem 78

:rem 222

:rem 46

:rem 46

:rem 167

:rem 190

:rem 81

99

3

Sound Effects

86 REM STARTER MOTOR :rem 112

87 REM :rem 83

190 FOR L=0 TO 10 :rem 62

195 FOR R=0 TO 3 : rem 27

200 POKE 54273,5+R :rem 164

210 POKE 54276,33:POKE 54296,10 :rem 92

220 NEXT :rem 211

230 FOR R=0 TO 3 :rem 17

240 POKE 54273,12-R :rem 216

250 POKE 54276,33:POKE 54296,10 :rem 96

260 NEXT :rem 215

270 NEXT :rem 216

280 POKE 54276,32:POKE 54296,0 :rem 49

285 REM :rem 131

286 REM MOTOR STARTING :rem 233

287 REM :rem 133

290 POKE 54273,5 :rem 48

295 FOR L=50 TO 0 STEP -.5 :rem 20

300 POKE 54276,33:POKE 54296,15 :rem 97

310 POKE 54276,32:POKE 54296,0 :rem 43

315 FOR P=0 TO RND(0)*L:NEXT :rem 52

320 NEXT :rem 212

326 REM MOTOR RUNNING :rem 153

327 REM :rem 128

330 FOR L=0 TO 300 :rem 108

340 POKE 54276,32:POKE 54296,0 :rem 46

350 POKE 54276,33:POKE 54296,15-(L/20) :rem 193

360 FOR P=0 TO RND(0)*3:NEXT :rem 27

370 NEXT :rem 217

The first thing the program does (as do all the other

sound programs) is initialize the sound control registers. Then

it produces the click sound of the ignition key. This effect is

actually two clicks played close together. After the ignition key

clicks, the program pauses for about 1/8 second as the FOR-

NEXT loop in line 82 executes. This pause helps emphasize

the click and separates it from the start-motor routine that [_j

follows.

The start-motor routine creates its peculiar sound by vary

ing the pitch rapidly (lines 200 and 240). The motor-starting [_j
routine that follows produces the effect of an unstable motor,

first sputtering, then eventually catching and running. The

RND function (line 315) makes the engine fire somewhat j_j
unevenly. As the motor warms up, however, the randomness

is reduced (because the RND function uses the counter value L

LJ
100

LJ

3

Sound Effects

as the controlling variable, which decreases slowly in line

295), and the motor stabilizes.

The motor-running routine produces a good, stable motor

sound, with a small random value to help maintain the effect

of the broken-down car, that slowly fades away as the car

drives off. As in previous sound effects in this chapter, this is

done by lowering the volume, accomplished in line 350.

As you experiment with this program, you might try

changing the values used in the pitch control register (location

54273) to get slightly different-sounding engines. Also, you

could try removing the RND function for a more solid engine

sound.

Hard Sounds Using Triangle Waves
If you change the value POKEd into the different voices'

waveform control register to 17, the Commodore 64 will pro

duce triangle waves. Triangle waves produce an almost muted

sound, similar to putting a muffler on the sound. Try switch

ing the waveform to a triangle wave in the last program; the

sound will seem like something from a science fiction movie.

This flying saucer effect is simple to recreate. Program 3-16

produces this effect.

Flying saucer. This program uses the start-motor portion

of Program 3-15 and adds a second voice just slightly out of

tune with the first. The program begins with the start up en

gines routine, using both voices. After the engines have been

warmed up for a short time, the running engines routine,

which warbles about twice as fast as the starter, begins, and

then the two pitches gradually fade to simulate flying away.

Program 3*16. Flying Saucer

For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

5

6

10

15

17

20

21

35

36

37

REM -

REM

FOR

POKE

POKE

POKE

POKE

REM

REM

REM

190 FOR

INITIALIZE REGISTERS

R=54272 TO 54296:POKER,0:NEXT

54277,0:POKE 54278,240

54284,0:POKE 54285,240

54273,18:POKE 54280,19

54276,17:POKE 54283,17

START UP ENGINES

L=l TO 15

:rem 43

:rem 26

:rem 24

:rem 47

:rem 45

:rem 45

:rem 49

:rem 76

:rem 241

:rem 78

:rem 68n

m 101

3

Sound Effects

195 FOR R=0 TO 3 STEP .7 :rem 188

200 POKE 54273, 5+R :rem 164

205 POKE 54280,8+R 2rem 170

215 POKE 54296,L :rem 73

220 NEXT :rem 211

230 FOR R=0 TO 3 STEP .7 :rem 178

240 POKE 54273,12-R :rem 216

245 POKE 54280,15-R :rem 222

255 POKE 54296,L :rem 77

260 NEXT :rem 215

270 NEXT :rem 216

335 REM :rem 127

336 REM RUNNING ENGINES : rem 18

337 REM :rem 129

490 FOR L=l TO 45 : rem 74

495 FOR R=0 TO 3 STEP 3 :rem 141

500 POKE 54273,5+R :rem 167

505 POKE 54280,8+R :rem 173

515 POKE 54296,15-L/3 :rem 65

520 NEXT :rem 214

530 FOR R=0 TO 3 STEP 3 :rem 131

540 POKE 54273,12-R :rem 219

545 POKE 54280,15-R :rem 225

555 POKE 54296,15-L/3 :rem 69

560 NEXT :rem 218

570 NEXT :rem 219

580 POKE 54276,16:POKE 54296,0 :rem 54

The sounds get gradually louder by using the variable L as the

value for the volume control. The pitches also change as the

program executes, for the variable R determines the pitch

value POKEd into the control registers. Finally, the volume

decreases, again by using a variable and a FOR-NEXT loop to

create the effect of the saucer flying away.

Hard Sounds That Use the Noise Waveform
Program 3-16 showed how a hard sound pattern may be soft

ened by using a waveform like the triangle wave. This section

will show you the kinds of effects that the fourth waveform,

noise, can produce.

The noise waveform is enabled by POKEing location

54276 for voice 1, 54283 for voice 2, or 54290 for voice 3,

with a value of 129. An example will let you hear the effect of

a noise waveform, perhaps the best way of describing it.

Pencil sharpener. To sharpen a pencil, you insert it in the

102

Sound Effects

i i

sharpener and turn the handle around and around. A sound

duplicating this can be created by using the start-motor rou

tine from the flying saucer sound effect you heard earlier.

Changing the waveform to noise lets you produce the scratchy

rotational sound of a mechanical pencil sharpener.

Program 3-17* Pencil Sharpener
For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

5 REM INITIALIZE REGISTERS

6 REM

10 FOR R=54272 TO 54296:POKER,0:NEXT

15 POKE 54277,0:POKE 54278,240

17 POKE 54284,0:POKE 54285,240

20 POKE 54273,18:POKE 54280,19

21 POKE 54276,129:POKE 54283,129

35 REM

36 REM SHARPEN PENCILS LOOP

37 REM

190 FOR L=l TO 15

195 FOR R=0 TO 3

200 POKE 54273,5+R

205 POKE 54280,8+R

215 POKE 54296,5

220 NEXT

230 FOR R=0 TO 3

240 POKE 54273,12-R

POKE 54280,15-R

POKE 54296,5

245

255

260 NEXT

270 NEXT

277 REM

278 REM —

279 REM

280 POKE 54276,128:POKE 54283,128:POKE 54296,0

:rem 157

TURN OFF SOUND

:rem 43

:rem 26

:rem 24

:rem 47

:rem 45

:rem 45

:rem 153

:rem 76

:rem 14

:rem 78

irem 68

:rem 27

:rem 164

:rem 170

:rem 50

:rem 211

:rem 17

:rem 216

:rem 222

:rem 54

:rem 215

:rem 216

:rem 132

:rem 154

:rem 134

Running horse. In this routine, you'll hear a horse that

starts out at a full gallop. Eventually, the horse slows down,

breaking its pace. Finally, the horse slows to a trot and stops

when it reaches its stall.

Program 3-18. Horse Galloping

For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

5 REM INITIALIZE REGISTERS : rem 43

6 REM :rera 26

10 FOR R=54272 TO 54296:POKER,0:NEXT :rem 24

11 POKE 54296,15 :rem 45

103

3

Sound Effects

15 POKE 54277,0:POKE 54278,240 :rem 47

20 POKE 54272,0:POKE 54273,218:POKE 54276,129

:rem 95 \ ')

30 REM srem 71 LJ

40 REM GALLOPING HORSE LOOP : rem 8

50 REM :rem 73

60 FOR L=l TO 25 :rem 17 I j

70 FOR R=0 TO 3 :rem 227 ^
80 POKE 54296,5 :rem 2

90 POKE 54296,0 :rem 254

110 FOR 1=0 TO 30:NEXT :rem 174

120 NEXT :rem 210

125 FOR V=0 TO 150:NEXT:NEXT :rem 109

135 REM srem 125

140 REM HORSE SLOWING LOOP :rem 191

150 REM :rem 122

160 FOR L=l TO 5 :rem 16

170 FOR R=0 TO 3 :rem 20

180 POKE 54296,5 :rem 51

190 POKE 54296,0 :rem 47

210 FOR 1=0 TO RND(0)*70+80:NEXT :rem 213

220 NEXT :rem 211

225 NEXT :rem 216

235 REM :rem 126

240 REM HORSE TROTTING HOME :rem 7

250 REM :rem 123

260 FOR L=l TO 15 :rem 66

280 POKE 54296,5 :rem 52

300 POKE 54296,0 :rem 40

310 FOR 1=0 TO 200:NEXT :rem 223

320 NEXT :rem 212

330 POKE 54276,128:POKE 54296,0 :rem 99

It's all a process you've seen before. The noise waveform is

selected in line 20, and the sounds are created by turning the

volume on and off rapidly within a loop that specifies the

number of times the sounds occur (line 60, for instance), the —

number of beats (line 70), as well as the length of the pauses | |
between each group of sounds (line 110). A similar design is

used to make the horse seem to slow, but a random function -

is used to create the delays between each group of sounds Lj

(line 210). To make the horse's hoofbeats finally stop, the last

section of the program uses a longer loop (line 260) and a con- -

stant pause length between the single beats (line 310). j_j
When you use sounds in your programs, you can easily

make them tell a story. Your sounds will not be simply

enhancements of the graphics—they can be the story itself. LJ

104

3

Sound Effects

H

Mixing Waveforms
rn In addition to creating sounds that use a single waveform,

| i you'll often find it effective to use several waveforms in one

routine to produce special sounds. The telephone-dialing

fm^ sound effect produced by Program 3-19 is a good example.

' \ Dial telephone. This program uses the noise and pulse

waveforms to create the two very different sounds made by

standard dial telephones. Type in the following program and

RUN it to hear the effect.

Program 3-19* Mixing Waveforms—Dial Phone
For mistake-proof program entry, be sure to read "Automatic Proofreader/' Appendix C.

5 REM INITIALIZE REGISTERS :rem 43

7 REM :rem 27

10 FOR R=54272 TO 54296:POKE R,0:NEXT :rem 24

11 POKE 54275,8:POKE 54277,0:POKE 54278,240

:rem 255

21

22

23

24

25

26

27

28

30

40

45

50

60

70

71

72

73

80

81

82

83

90

95

100

110

120

130

140

150

REM

REM SEVEN NUMBER LOOP

REM

FOR 1=0 TO 6

REM

REM TURN DIAL CLOCKWISE

REM

POKE 54296,3

G=RND(0) * 9 + 1

FOR R=0 TO G*1.5

POKE 54276,129

POKE 54273,14

POKE 54273,0

NEXT

REM

REM PAUSE AFTER DIAL

REM

FOR K=0 TO 200:NEXT

REM

REM AUTOMATIC DIAL RETURN

REM

POKE 54296,5

POKE 54276,65

FOR R=0 TO G

POKE 54273,5

FOR D=0 TO 1:NEXT

POKE 54273,0

FOR 0=0 TO 50:NEXT

NEXT

:rem 71

:rem 52

:rem 73

:rem 220

:rem 75

:rem 187

:rem 77

:rem 2

:rem 11

:rem 178

:rem 104

:rem 42

:rem 246

:rem 166

:rem 76

:rem 191

:rem 78

:rem 181

:rem 77

:rem 87

:rem 79

:rem 3

:rem 60

:rem 33

:rem 39

:rem 120

:rem 36

:rem 185

:rem 213

105

3

Sound Effects

151 REM :rem 123

152 REM-PAUSE BEFORE DIALING NEXT DIGIT :rem 130

153 REM :rem 125 j ■

160 FOR J=0 TO 350:NEXT:NEXT :rem 98 lJ
161 REM :rem 124

162 REM TURN SOUND OFF :rem 146

163 REM :rem 126 [t
170 POKE 54276,64:POKE 54296,0 : rem 52 L-J

Although this program may look complicated to you, it's

actually only a long version of a process you've seen before.

The number of times the telephone is dialed is set in line 24

by the FOR 1=0 TO 6 statement. Seven numbers will be

dialed, the usual number if you are making a local call. The

turning of the rotary dial clockwise is simulated in lines 28-

60. The volume is set at 3, the noise waveform is enabled, and

the length of the sound is calculated using the RND function

in lines 30 and 40. This makes the sound last a random length

of time, just as if you were dialing different numbers. The

movement for dialing a 1 is less than when you dial a 9, for

example. The pitch values are changed by lines 50 and 60

each time through the routine. The sound would lose much of

its characteristics if you deleted line 60, for instance. You can

try it yourself to hear the change.

A pause is inserted between the numbers dialed by the

delay loop in line 80. Then the dial returns to its initial

position, which is duplicated by the section of lines from 90 to

150. The variable G, created in line 30, is used again to set the

length of the dial return sound, so that the time for the return

matches the time of the initial dialing. Another pause in line

160 executes a delay between the digits dialed.

Experimenting with various waveform mixes can produce

some interesting effects. But you're not limited to hard sounds

on the 64. You can also create soft sounds. v ,
i t

Soft Sounds
While hard sounds are those that begin and end abruptly, soft l ,

sounds are those that rise slowly to their maximum volume, LJ

fall slowly to the sustain volume level, and then decrease

gradually from the sustain level to minimum volume. In other , i

words, the sound's attack, decay, and release are set to high lJ
values, and thus slower rates. Illustrated, a soft sound might

look like Figure 3-5. j >

i j

106

Sound Effects

H

n

Figure 3-5* Soft Waveform

J \

Time

As with hard sounds, soft sounds can be created with any

of the available waveforms: pulse, triangle, sawtooth, or noise.

Program 3-20 uses all four waveforms, one after the other,

using the same pitch and the same rates of attack, decay, and

release.

Program 3-20, Soft Sounds—Attack, Decay, and
Release
For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

5 REM INITIALIZE SOUND REGISTERS — : rem 45

6 REM :rem 26

10 FOR R=54272 TO 54296:POKER,0:NEXT :rem 24

11 POKE 54296,15 :rem 45

12 POKE54275,8:POKE 54277,170:POKE54278,250

:rem 105

13 POKE 54272,0:POKE 54273,45 :rem 246

16 REM :rem 75

17 REM SOFT PULSE WAVE :rera 172

18 REM :rem 77

20 POKE 54276,65 :rem 48

30 FOR R=0 TO 500:NEXT :rem 186

40 POKE 54276,64 :rem 49

107

3

Sound Effects

50 FOR P=0 TO 500:NEXT :rem 186 '—'

56 REM srem 79

57 REM SOFT TRIANGLE WAVE :rem 125 , t-

58 REM :rem 81 Lj

60 POKE 54276,17 :rem 49

70 FOR R=0 TO 500:NEXT :rem 190

80 POKE 54276,16 :rem 50 I |

90 FOR P=0 TO 500:NEXT :rem 190 U
96 REM :rem 83

97 REM SOFT SAWTOOTH WAVE :rem 164

98 REM :rem 85

100 POKE 54276,33 :rem 90

110 FOR R=0 TO 500:NEXT :rem 233

120 POKE 54276,32 :rem 91

130 FOR P=0 TO 500:NEXT :rem 233

136 REM :rem 126

137 REM SOFT NOISE WAVE :rem 212

138 REM :rem 128

140 POKE 54276,129 :rem 148

150 FOR R=0 TO 500:NEXT :rem 237

156 REM :rem 128

157 REM TURN SOUND OFF :rem 150

158 REM :rem 130

160 POKE 54276,128:POKE 54296,0 :rem 100

Each of the waveforms is first enabled, then a short delay loop

for the sustain portion of the sound envelope executes, and

finally the gate bit is turned off. Another FOR-NEXT loop cre

ates a pause between the different sounds created by each

waveform. For instance, the pulse waveform is enabled in line

20, the sustain delay loop is in line 30, and the gate bit is

turned off in line 40. The pause between the pulse waveform

and the triangle waveform is in line 50.

The attack and decay rates are set in line 12 by POKEing

a value of 170 into location 54277. This gives an attack rate of

10 (16*10) and a decay rate of 10. Remember that you add the

two values together to arrive at the number to POKE into the]_j
location (160+ 10=170). The sustain level has been set to

maximum (16*15) and the release rate to 10 by POKEing 250

into the control register at location 54278. _j
There's usually more than one way to program a sound

on the 64, however, and this is no exception. Since soft

sounds are those where the volume increases slowly to maxi- _j
mum and then falls gradually to their minimum, you could

also use the volume control register at location 54296 to create

108

LJ

3

Sound Effects

n

n

them. It looks like a bit more programming in this example,

but sometimes it's the only way to create the exact sound you

want. Program 3-21 produces a sound very similar to that

made by Program 3-20; but instead of the attack, decay, and

release rates being used, this routine uses only the volume

control to make a soft style of sound.

Program 3-21, Soft Sounds—Volume Control

For mistake-proof program entry, be sure to read "Automatic Proofreader/' Appendix C.

5 REM INITIALIZE SOUND REGISTERS — :rem 45

6 REM :rem 26

10 FOR R=54272 TO 54296:POKER,0:NEXT :rem 24

12 POKE54275,8:POKE 54277,0:POKE54278,240 :rem 0

13 POKE 54272#0:POKE 54273,45 :rem 246

16 REM :rem 75

17 REM SOFT PULSE WAVE :rem 172

18 REM :rem 77

30 POKE 54276,65 :rem 49

50 FOR R=0 TO 30 :rem 17

60 POKE 54296,R/2:NEXT :rem 247

65 FOR R=30 TO 0 STEP-1 :rem 177

75 POKE 54296,R/2:NEXT :rem 253

80 FOR R=0 TO 100:NEXT :rem 187

116 REM trem 124

117 REM SOFT TRIANGLE WAVE : rem 170

118 REM :rem 126

130 POKE 54276,17 :rem 95

150 FOR R=0 TO 30 :rem 66

160 POKE 54296,R/2:NEXT :rem 40

165 FOR R=30 TO 0 STEP-1 :rem 226

175 POKE 54296,R/2:NEXT :rem 46

180 FOR R=0 TO 100:NEXT :rem 236

216 REM :rem 125

217 REM SOFT SAWTOOTH WAVE :rem 206

218 REM :rem 127

230 POKE 54276,33 :rem 94

250 FOR R=0 TO 30 :rem 67

260 POKE 54296,R/2:NEXT :rem 41

265 FOR R=30 TO 0 STEP-1 :rem 227

275 POKE 54296,R/2:NEXT :rem 47

280 FOR R=0 TO 100:NEXT :rem 237

316 REM :rem 126

317 REM SOFT NOISE WAVE :rem 212

318 REM :rem 128

330 POKE 54276,129 :rem 149

350 FOR R=0 TO 30 :rem 68

360 POKE 54296,R/2:NEXT :rem 42

109

3

Sound Effects

365 FOR R=30 TO 0 STEP-1 :rem 228

375 POKE 54296,R/2:NEXT :rem 48

380 FOR R=0 TO 100:NEXT :rem 238

416 REM :rem 127

417 REM TURN SOUND OFF :rem 149

418 REM :rem 129

420 POKE 54276,128:POKE 54296,0 :rem 99

The attack, decay, and release rates have been set as fast as

possible by the POKEs in locations 54277 and 54278 in line

12. The volume control register is used instead to create the

soft sound.

Take a look at lines 30-80, the routine for playing the

sound using the pulse waveform. (All four waveforms use the

same procedure to create their sounds.) Line 30 enables the

pulse waveform. Line 60 slowly increases the volume by

POKEing the control register with the variable R, which is

established by the FOR-NEXT loop in line 50. The volume

gradually decreases in line 75. Line 80 is the length of the sus

tain portion of the sound. From this point, the program moves

to line 130, where the process begins all over again, only this

time using the triangle waveform. Each waveform produces a

sound that slowly increases, then decreases in volume. It is

this slow rising and falling that creates a soft sound.

Soft Pulse Sounds
As you've seen, there are two ways to produce soft sounds.

You can use the attack, decay, and release controls, or you can

use the volume. Either method can be used with any of the

waveforms available to you. Another example of using the at

tack, decay, and release rates to create a soft sound is shown

in Program 3-22. In this program, only the pulse waveform is

used.

Birds. If you use the pulse waveform, and select pitches

at the top of its frequency range, the notes will be shrill and

chirpy.

Program 3-22* Chirps
For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

5 REM — INITIALIZE SOUND REGISTERS — :rem 0

6 REM : rem 26

10 FOR R=54272 TO 54296:POKER,0:NEXT :rem 24

11 POKE 54296,15 :rem 45

12 POKE 54275,8:POKE 54277,51:POKE 54278,240

:rem 54

110

3

Sound Effects

13 POKE 54276,65 :rem 50

17 REM :rem 76

18 REM CHIRP LOOPS : rem 184
19 REM :rem 78

20 FOR S=0 TO 50 :rem 17

25 POKE 54296,15 :rem 50

37 REM :rem 78

38 REM CHIRP UP : rem 210

39 REM :rem 80

42 FOR C=0 TO 10 STEP RND(0)*2+1 :rem 90

43 POKE 54273,155+5*C:NEXT :rem 168

47 REM :rem 79

48 REM CHIRP DOWN : rem 102

49 REM :rem 81

52 FOR D=10 TO 0 STEP -((RND(0)*2)+1) :rem 43

53 POKE 54273,155+5*D:NEXT :rem 170

54 POKE 54296,0 :rem 254

55 FOR T=0 TO RND(0)*75:NEXT :rem 41

60 NEXT srem 165

70 POKE 54276,64:POKE 54296,0 :rem 3

To give the electronic bird more realism, this program

uses the counter values (the variables C on the up-chirp and D

on the down-chirp) to sweep the top of the frequency scales.

This is done by changing the pitch value each time through

the program in lines 43 and 53. The RND function is also used

to make the chirps slightly different lengths. Note, however,

that the STEP value will never get lower than 1 because lines

42 and 52 add 1 to the randomly generated STEP value. This

keeps the chirps from becoming unreasonably long.

Line 12 sets the attack/decay value to 51, establishing an

attack of 3 (3*16=48) and a decay of 3. You could create a

soft sound effect by using the volume control exclusively,

however. That's what Program 3-23 does.

Squeaky shoes. This program uses an asymmetrical pulse

waveform to create the basic sound. The sound is then broken

up as the volume is tapered to produce the soft effect. This

gives the sound of shoes squeaking and creaking on a floor.

Program 3-23 ♦ Squeaky Shoes

For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

5 REM — INITIALIZE SOUND REGISTERS — :rem 0

6 REM :rem 26

10 FOR R=54272 TO 54296:POKER,0:NEXT :rem 24

11 POKE 54275,1:POKE 54277,0:POKE54278,240:rem 248

12 POKE 54276,65 :rem 49

111

3

Sound Effects

13 REM :rem 72

113 REM :rem 121

114 REM SQUEAKY SHOES : rem 139

115 REM :rem 123

117 FOR H=0 TO 10 :rem 57

130 FOR R=0 TO 6 :rem 19

140 POKE 54296,R:POKE 54273,20-R*3 :rem 36

145 NEXT :rem 217

147 FOR R=6 TO 0 STEP -1 :rem 181

148 POKE 54296,R:POKE 54273,20-R*3 :rem 44

149 NEXT :rem 221

160 POKE 54296,0 :rem 44

165 FOR U=0 TO 350:NEXT :rem 249

170 NEXT:POKE 54276,64 :rem 222

Note the pulse width set in line 11 to a value of 1. This cre

ates the asymmetrical pulse waveform. Instead of using the

attack, decay, and release control registers, this routine uses

the volume to produce a soft sound. The volume is slowly

increased from level 0 to level 6 in line 130 and then

decreased by line 147. The STEP —1 command in the latter

line brings the volume level gradually down. At the same

time, the pitch values are changed, using the variable R to cal

culate the new pitch.

Try changing the pulse width value in line 11 to make the

waveform symmetrical, or square. POKEing 8 into location

54275 will do this. The effect won't sound like squeaky shoes

now.

Soft Sawtooth Sounds
From earlier examples in this chapter, you saw how sawtooth

waveforms produce a shrill, piercing sound. This quality

makes it perfect for reproducing the sounds of many string

instruments when you use a soft sort of sound.

Violin. Using the volume control register to create the

soft effect, this routine includes a counter variable that in

crements each time the pitch goes through the timing loops in

lines 150 and 165 and also causes the volume to rise and fall

as the pitch begins and ends.

Program 3-24* Violins
For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix G

5 REM ~ INITIALIZE SOUND REGISTERS — :rem 0

6 REM :rem 26

112

n

3

Sound Effects

n

10 FOR R=54272 TO 54296:POKER,0:NEXT :rem 24

11 POKE 54277,0:POKE 54278,240 :rem 43

12 POKE 54276,33 :rem 44

13 REM :rem 72

14 REM VIOLIN MUSIC DATA : rem 29

15 REM :rem 74

16 DATA 33,134,42,60,50,58,44,191,42,60,44,191,37,

161,42,60 :rem 81

22 REM :rem 72

23 REM MUSIC LOOPS : rem 191

24 REM :rem 74

25 FOR S=0 TO 2 :rem 227

30 FOR G=0 TO 7 :rem 216

117 REM :rem 125

118 REM VIOLIN BOW STROKE : rem 119

119 REM :rem 127

120 READ H,L :rem 111

125 POKE 54272,L:POKE 54273,H :rem 37

150 FOR R=0 TO 15 STEP .75 :rem 27

160 POKE 54296,R:NEXT :rem 199

165 FOR R=15 TO 0 STEP-.75 :rem 78

175 POKE 54296,R:NEXT :rem 205

197 REM :rem 133

198 REM REPEAT MUSIC LOOP : rem 106

199 REM :rem 135

200 NEXT :rem 209

211 RESTORE :rem 184

216 NEXT :rem 216

217 REM :rem 126

218 REM TURN OFF SOUND :rem 148

219 REM :rem 128

300 POKE 54296,32:POKE 54276,0 :rem 42

As in Program 3-23, this routine produces the soft sound by

manipulating the volume. The volume is increased and

decreased using the variable R, which is obtained from the

loops in line 150 and 165, then POKEd into the control reg

ister in lines 160 and 175. To play the different notes, the pro

gram uses a DATA statement in line 16 that contains all the

pitch values. The high and low pitch register values are READ

from line 120. You can easily change the tune played by sim

ply using different values in the DATA statements. For exam

ple, insert the following new DATA statements in Program

3-24, and the violin will play "Yankee Doodle."

16 DATA 33,134,33,134,37,161,42,60,33,134,42,60,37

,161,25,29

113

3

Sound Effects

17 DATA 33,134,33,134,37,161,42,60,33,134,0,0,31,1

64,0,0

18 DATA 33,134,33,134,37,161,42,60,44,191,42,60,37

,161,33,134,31,164,25,29 !
19 DATA 28,48,31,164,33,134,0,0,33,134,0,0

30 FOR G=0 TO 31

Line 30 has to be changed as well, so that the program knows

how many pitch values to READ. By using pitch values of

your own creation, you can use the violin sound effect to play

almost any tune.

Soft Triangle Sounds
Since triangle waves produce the softest sounds of any of the

waveforms, it makes sense that soft triangle sound effects are

among the softest you can make with the 64.

Heartbeat. Here's a routine you can use as one of the

background sounds to the "Chicken Heart That Ate Cleve

land" videogame you always wanted to write. Or you could

use this sound in any application that needs a suspenseful

effect.

Program 3-25* Heartbeats
For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

5 REM INITIALIZE SOUND REGISTERS — :rem 45

6 REM :rem 26

10 FOR R=54272 TO 54296:POKER,0:NEXT :rem 24

15 POKE 54277,0:POKE 54278,240 :rem 47

20 POKE 54276,17 :rem 45

116 REM :rem 124

117 REM PACEMAKER LOOP : rem 168

118 REM :rem 126

120 FOR P=0 TO 35 :rem 66

126 REM :rem 125

127 REM DOWN BEAT :rem 58

128 REM :rem 127

150 FOR R=0 TO 15 STEP 2 :rem 179

155 POKE 54273,35-(R+20) :rem 192

160 POKE 54296,R/2:NEXT :rem 40

161 REM jrera 124

162 REM UP BEAT : rem 166

163 REM :rem 126

165 FOR R=15 TO 0 STEP-2 :rem 230

170 POKE 54273,35-(R+20) :rem 189

175 POKE 54296,R:NEXT :rem 205

200 REM :rem 118

201 REM CYCLE PACEMAKER LOOP :rem 18

114

3

n Sound Effects
—

H
202 REM :rem 120

205 POKE 54276,16 :rem 97

n206 FOR G=0 TO 300:NEXT :rem 226

207 POKE 54276,17 2rem 100

208 NEXT :rem 217

216 REM :rem 125

I] 217 REM TURN SOUND OFF : rem 147
218 REM :rem 127

220 POKE 54276,16:POKE 54296,0 :rem 45

This program uses a very low pitch and the triangle waveform

to produce the muffled sound of a heartbeat. The pitch fluc

tuates slightly as the sound rises and falls in volume. This is •

accomplished by POKEing different values of R (the volume

variable) into the high tone register in lines 155 and 170.

If you eliminate lines 205 and 207, the heartbeat will

have a peculiar echo. Deleting line 206 as well makes the

sound faster, as if the heartbeat were suddenly increased.

Soft Noise
Soft noise almost sounds like a contradiction in terms. How

ever, there are many sounds that are soft and yet have the

irregular qualities that can best be reproduced using the noise

waveform.

Sawing wood. To produce the sawing sound in this pro

gram, two different pitch values are used with the noise wave

form register. The first pitch is higher than the second and

subtly gives the impression of greater saw speed on the up

stroke. Type it in and RUN it to hear this illusion.

Program 3-26. Sawing Wood
For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

5 REM CLEAR SOUND REGISTERS : rem 41

6 REM :rem 26

10 FOR R=54272 TO 54296:POKER,0:NEXT :rem 24

11 POKE 54277,0:POKE 54278,240 :rem 43

12 POKE 54276,129 :rem 98

13 REM :rem 72

14 REM — NUMBER OF SAW STROKES LOOP — :rem 171

15 REM :rem 74

16 FOR L=0 TO 15 :rem 16

17 REM :rem 76

18 REM UPWARD SAW STROKE : rem 75

19 REM :rem 78

[—] 20 POKE 54273,75 :rem 46

115

n

n

H

Sound Effects

50 FOR R=0 TO 15 STEP .7 : rem 181

60 POKE 54296,R:NEXT :rem 150

65 FOR R=15 TO 0 STEP -.7 :rem 232

75 POKE 54296,R:NEXT :rem 156

116 REM :rem 124

117 REM DOWNWARD SAW STROKE : rem 14

118 REM :rem 126

120 POKE 54273,65 :rem 94

150 FOR R=0 TO 15 STEP .6 :rem 229

160 POKE 54296,R:NEXT :rem 199

165 FOR R=15 TO 0 STEP -.6 :rem 24

175 POKE 54296,R:NEXT :rera 205

190 NEXT :rem 217

216 REM :rem 125

217 REM TURN SOUND OFF : rem 147

218 REM :rem 127

220 POKE 54276,128:POKE 54296,0 :rem 97

This difference in speed would correspond with the way a saw

is used, since the saw's cutting edges are used more on the

down stroke. Since the cutting stroke would apply more resis

tance to the saw, it would be slower. That's why the timing

loop in lines 150 and 165 is longer. The smaller STEP value

gives that part of the sound a longer loop.

The ocean. Similar to Program 3-26, this routine recreates

the sound of the ocean by slowing the effect.

Program 3-27. Ocean Waves
For mistake-proof program entry, be sure to read "Automatic Proofreader/' Appendix C.

5 REM CLEAR SOUND REGISTERS :rem 41

6 REM :rem 26

10 FOR R=54272 TO 54296:POKER,0:NEXT :rem 24

11 POKE54275,8:POKE54278,240 :rem 49

12 POKE 54276,129 :rem 98

13 REM :rem 72

14 REM — NUMBER OF WAVES LOOP — :rem 27

15 REM :rem 74

16 FOR L=0 TO 15 :rem 16

17 REM :rem 76

18 REM WAVE ROUTINE : rem 14

19 REM :rem 78

20 POKE 54273,75 :rem 46

40 IW =RND (0) * .25+.05 :rem 35

45 OW =RND (0) * .02+.01 :rem 37

50 FOR R=l TO 15 STEP IW :rem 241

60 POKE 54296,R:NEXT :rem 150

65 FOR R=15 TO 1 STEP -OW :rem 42

116

LJ

U

U

u

u

u

u

u

u

u

3

n Sound Effects

n
75 POKE 54296,R:NEXT :rem 156

76 NEXT :rem 172

PI 77 REM :rem 82

1 ' 78 REM TURN OFF SOUND : rem 104
79 REM srem 84

_ 80 POKE 54276,128:POKE 54296,0 :rem 53

To make the sound more realistic, the length of the incoming

and outgoing waves is varied by the RND functions in lines

40 and 45. These values then become a part of the STEP com

mand in the timing loops found in lines 50 and 65. The rest of

the program should be familiar to you. The soft sound is cre

ated by increasing and decreasing the volume level; the noise

waveform is enabled by POKEing location 54276 with 129;

and the pitch value is set in line 20. You could simulate faster

waves by altering the values in lines 40 and 45, changing

them to IW=RND(0)*.4+ .l and OW=RND(0)*.05+ .02, for

instance.

Tapered Sounds
Tapered sounds can be defined as sounds that begin at one end

of the volume scale and then slowly rise (or fall) to the other

end. For example, a rising tapered sound would begin quietly

and gradually attain full volume. However, it doesn't fall back

to minimum volume, as does a soft sound. It remains at that

high volume level.

The simplest way to program a tapered sound is to use

the volume control register, as you did when you created soft

sounds. Although you can create tapered sounds using the

attack, decay, and release registers, it becomes difficult at

times, especially when you're dealing with falling tapered

sounds. You can produce a tapered sound by setting the attack

r-> and decay to a slow rate, then setting the release to a fast rate,

! i but coordinating all three may prove complicated. It's almost

impossible to produce a falling tapered sound without some

—. use of the volume control register. And no matter how hard

i I you try, the sounds may not be just right. We'll stick with the
volume control register in the examples, to keep things as sim-

_, pie as possible.

n

n
117

Sound Effects

Program 3-28* Rising Tapered Sound

For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix G

5 REM INITIALIZE SOUND REGISTERS — :rem 45

6 REM :rem 26

10 FOR R=54272 TO 54296:POKER,0:NEXT :rem 24

11 POKE 54275,8:POKE 54277,0:POKE 54278,240

irem 255

12 POKE 54272,0:POKE 54273,45 :rem 245

16 REM :rem 75

17 REM -TAPERED, RISING PULSE WAVE- :rem 95

18 REM :rem 77

30 POKE 54276,65 :rem 49

50 FOR R=0 TO 30 :rem 17

60 POKE 54296,R/2:NEXT :rem 247

70 FOR R=0 TO 500:NEXT :rem 190

80 POKE 54276,64 :rem 53

116 REM :rem 124

117 REM -TAPERED, RISING TRIANGLE WAVE- :rem 93

118 REM :rem 126

130 POKE 54276,17 :rem 95

150 FOR R=0 TO 30 :rem 66

160 POKE 54296,R/2:NEXT :rem 40

170 FOR R=0 TO 500:NEXT :rem 239

180 POKE 54276,16 :rem 99

216 REM :rem 125

217 REM -TAPERED, RISING SAWTOOTH WAVE- :rem 129

218 REM :rem 127

230 POKE 54276,33 :rem 94

250 FOR R=0 TO 30 :rem 67

260 POKE 54296,R/2:NEXT :rem 41

270 FOR R=0 TO 500:NEXT :rem 240

280 POKE 54276,32 :rem 98

316 REM :rem 126

317 REM -TAPERED, RISING NOISE WAVE- :rem 135

318 REM :rem 128

330 POKE 54276,129 :rem 149

350 FOR R=0 TO 30 :rem 68

360 POKE 54296,R/2:NEXT :rem 42

370 FOR R=0 TO 500:NEXT :rem 241

380 POKE 54276,128 :rem 153

416 REM :rem 127

417 REM TURN SOUND OFF : rem 149

418 REM :rem 129

420 POKE 54276,128:POKE 54296,0 :rem 99

Of course, a falling tapered sound would begin loudly and

taper off to silence. Changing four lines in Program 3-28 will

let you hear a falling tapered sound. The changes are:

118

U

LJ

U

U

U

LJ

U

u

u

u

n

n

n

n

3

Sound Effects

50 FOR R=30 TO 0 STEP -1

150 FOR R=30 TO 0 STEP -1

250 FOR R=30 TO 0 STEP -1

350 FOR R=30 TO 0 STEP -1

Now the sounds begin at the highest volume level and

PI decrease slowly through the FOR-NEXT loop using the STEP
— 1 command.

Tapered Pulse Waveforms
As mentioned earlier, there are two different kinds of tapered

sounds—those that rise and those that fall. Let's look at rising

tapered sounds first.

Accordion. Most musical instruments produce sounds that

have a falling tapered sound. That's because they produce

sound by making some element vibrate. As the vibrations die

down, the sound slowly tapers off.

Accordions use vibrating elements also. The elements are

steel reeds. But because the accordion plays the reeds by

pumping air across them, the sounds start slowly as the

accordionist begins pushing the bellows together, and then

gradually rise in volume.

When the accordionist stops pushing the bellows, the air

stops. Because the reeds are fairly rigid, they stop vibrating

quickly, making the sound stop just as fast. Program 3-29

demonstrates a rising tapered sound, simulating an accordion.

Program 3-29* Accordion

For mistake-proof program entry, be sure to read "Automatic Proofreader/' Appendix C.

5 REM — INITIALIZE SOUND REGISTERS — :rem 0

6 REM :rem 26

10 FOR R=54272 TO 54296:POKER,0:NEXT :rem 24

— 11 POKE 54275,3:POKE 54277,0:POKE54278,240:rem 250

• > 12 POKE 54276,65 :rem 49
13 REM :rem 72

14 REM ACCORDION MUSIC DATA :rem 222

15 REM srem 74

16 DATA 33,134,2,33,134,4,44,191,1,44,191,1,42,60,

1,42,60,4,0,0,2,29,221,2,29 :rem 151

_ 17 DATA 221,4,37,161,1,37,161,2,33,134,4 :rem 156

I] 26 REM «rem 76
27 REM MUSIC LOOPS :rem 195
28 REM :rem 78

p| 30 FOR G=0 TO 11 srem 3

119

u
3

Sound Effects -j

u
117 REM :rem 125

118 REM PLAY ACCORDION zrem 129

119 REM :rem 127 i j

120 READ H,L#T :rem 239 LJ
125 POKE 54272,L:POKE 54273,H :rem 37

150 FOR R=0 TO 15 STEP (.5/T) :rem 184 _

160 POKE 54296,R:NEXT :rem 199 _J
175 POKE 54296,0 :rem 50
197 REM :rem 133

198 REM REPEAT MUSIC LOOP :rem 106

199 REM srem 135

200 NEXT :rem 209

210 RESTORE:FOR T=0 TO 1000:NEXT:GOTO 30 :rem 76

This program is similar to the routine which creates a violin's

sound, inasmuch as it reads pitch values from DATA and

plays the notes one at a time. Of course, the sounds are quite

different. Note that this program uses an asymmetrical pulse

waveform, the pulse width set by the value POKEd into mem

ory location 54275. The DATA also includes a timing function

for each note played. The DATA is arranged in groups of

three numbers, the third being the timing variable. This lets

the program play notes of any length.

Piano. Pianos are similar to accordions in that they both

produce asymmetrical pulse waveform sounds. However, pianos

create waves somewhat more symmetrical, and the sound

tapers from loud to soft. Instead of the tapered sound rising,

then, Program 3-30 illustrates a falling tapered sound.

Program 3-30. Piano Player

For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

5 REM — INITIALIZE SOUND REGISTERS — :rem 0

6 REM :rem 26

10 FOR R=54272 TO 54296:POKE R,0:NEXT :rem 24

11 POKE 54275,7:POKE 54277,0:POKE 54278,240:F=24 j i

:rem 33 s—'
12 POKE 54276,65 :rem 49

13 REM :rem 72

14 REM PIANO MUSIC DATA :rem 195 M
15 REM jrem 74

16 DATA 33,134,4,33,134,4,33,134,4,33,134,2,33,134

,4,25,29,2,28,45,2,21,30,2 :rem 110 i j

17 DATA 25,29,2,28,48,2,0,0,2,16,195,4,18,208,2,21 LJ
,30,2,16,195,2,18,208,2,21,30 :rem 6

18 DATA 2,16,195,2,18,208,2,21,30,2,16,195,2,18,20
8,2,0,0,2,16,195,8,33,134,2 :rem 167 jj

120

u

I \

3

p—1 Sound Effects

26 REM :rem 76

27 REM MUSIC LOOPS :rem 195

28 REM srem 78
29 FOR J=0 TO 1 srem 221

30 FOR G=0 TO F :rem 231

117 REM :rem 125

118 REM PLAY PIANO : rem 147

119 REM :rem 127
120 READ H,L,T :rem 239

125 POKE 54272,L:POKE 54273,H :rem 37

150 FOR R=15 TO 0 STEP -(1.5/T) :rem 22

160 POKE 54296,R:NEXT :rem 199

175 POKE 54296,0 jrem 50

197 REM :rem 133

198 REM REPEAT MUSIC LOOP : rem 106

199 REM :rem 135

200 NEXT srem 209

211 RESTORE:F=F-1 :rem 25

212 NEXT :rem 212

217 REM srem 126
218 REM TURN OFF SOUND srem 148

219 REM srem 128

300 POKE 54276,64:POKE 54296,0 srem 47

Another interesting feature of this program is the method

used to READ the pitch values from the DATA statements in

lines 16-18. Initially, the READ loop starting in line 30 READs

25 notes (0-24) because the variable F is given a maximum

value of 24 in line 11. After the music has been READ once,

however, the program decrements F (subtracts one from it),

and the READ routine in line 30 READs only 24 notes. This

was done because the final note in the DATA statements is a

transitional note and should not be played the second time

through the tune.

You can tell that this is demonstrating a falling tapered

sound just by looking at line 150, which establishes the vari

able R. This variable is used in the next line to set the volume

control register.

Harpsichord. Harpsichords are similar to pianos in the

way they are played, but the sound they produce is made by

plucking rather than striking strings. This produces a much

sharper tone which can be achieved by making the pulse

waveform more asymmetrical.

Since this is so much like Program 3-30, you can simply

insert the new lines into that program to hear a harpsichord-

like sound. The lines are:

121

u
3

Sound Effects , -i

122

u

I]
11 POKE 54275,15:POKE 54277,0:POKE 54278,240

:rem 45

14 REM HARPSICHORD MUSIC DATA xrem 131

16 DATA 42,60,1,33,134,1,37,161,1,42,60,1,50,58,1,

44,191,1,44,191,1,56,97,1 :rem 72

17 DATA 50,58,1,50,58,1,67,12,1,63,72,1,67,12,1,50

,58,1,42,60,1,33,134,1,37,161 :rem 10 I j
18 DATA 1,42,60,1,44,191,1,50,58,1,56,97,1,50,58,1 L-J

,44,191,1,42,60,1,37,161,1 :rem 123

19 DATA 42,60,1,33,134,1,31,164,1,33,134,1,37,161,

1,25,29,1,31,164,1,37,161,1 :rem 156

20 DATA 44,191,1,42,60,1,37,161,1 :rem 64

30 FOR G=0 TO 35 :rem 9

118 REM PLAY HARPSICHORD : rem 83

150 FOR R=15 TO 0 STEP -(.5/T) :rem 229

Tapered Triangle Waves
Because they produce softer sounds, triangle waves create very

smooth, tapered sounds. This first group of examples dem

onstrates some rising tapered sounds using triangle

waveforms.

Clinking a glass with a spoon. This is the simplest kind

of tapered sound. The program uses a single loop to control

the length and volume of the sound.

Program 3*31, Clinking

For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

5 REM — INITIALIZE SOUND REGISTERS — :rem 0

6 REM :rem 26

10 FOR R=54272 TO 54296:POKER,0:NEXT :rem 24

12 POKE 54275,1:POKE 54277,0:POKE 54278,240

:rem 249

13 POKE 54273,150:POKE 54276,17 :rem 95

20 REM :rem 70

21 REM CLINK LOOP : rem 90

22 REM :rem 72 U
23 FOR C= 0 TO 2 :rem 209

25 FOR R= 15 TO 0 STEP -.5 :rem 226

30 POKE 54296,R:NEXT :rem 147 I j

35 NEXT :rem 167 U
40 REM srem 72

41 REM TURN SOUND OFF : rem 94

42 REM :rem 74 M
50 POKE 54276,16:POKE 54296,0 :rem 254

u

n

3

Sound Effects

You can use the attack/decay control register to produce

the tapered sound, instead of a FOR-NEXT loop which

P| decreases the volume level. Look at Program 3-32 to see an
example of this.

|—I Program 3-32* Clinking with Attack/Decay

For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

5 REM — INITIALIZE SOUND REGISTERS — :rem 0

6 REM :rem 26

10 FOR R=54272 TO 54296:POKER,0:NEXT jrem 24

11 POKE 54296,15 :rem 45

12 POKE 54275,1:POKE 54277,6:POKE54278,6 :rem 159

13 POKE 54273,150:POKE 54276,17 :rem 95

20 REM :rem 70

21 REM CLINK LOOP : rem 90

22 REM :rem 72

23 FOR C=0 TO 2 :rem 209

24 POKE 54276,17 :rem 49

25 FOR R=0 TO 15 STEP .1:NEXT :rem 42

30 POKE 54276,16 :rem 45

35 NEXT :rem 167

40 REM :rem 72

41 REM TURN SOUND OFF : rem 94

42 REM :rem 74

50 POKE 54276,16:POKE 54296,0 :rem 254

Notice that for this example to work properly, the decay

and release values must be the same. That's why both location

54277 and location 54278 have the value 6 POKEd into them.

Tapered Sawtooth Sounds
Sawtooth sounds are sharp and lend themselves to alarmlike

sounds and similar dramatic effects.

Foghorn. To make this foghorn sound, we'll use the saw-

m tooth waveform and play two different pitches. Notice that the

1 t first pitch tapers the sound approximately halfway down the
volume level, and the second tone takes the sound the rest of

r—(the way to minimum volume as the value of R goes to 0 (line

I ! 47).

Program 3-33. Foghorn

PH For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

5 REM — INITIALIZE SOUND REGISTERS — :rem 0

6 REM srem 26
J—[10 FOR R=54272 TO 54296:POKER,0:NEXT :rem 24

123

U
3

Sound Effects

12 POKE 54275,1:POKE 54277,0:POKE 54278,240 I—'
:rem 249

13 POKE 54273,5:POKE 54272,200 :rem 36 --

14 POKE 54276,33 :rem 46 LJ
20 REM srem 70

21 REM FOG HORN UPPER TONE :rem 132

22 REM srem 72 I j

23 FOR X=0 TO 3 :rem 231 L-J
25 FOR R=15 TO 9 STEP -.1 :rem 231

30 POKE 54273,5:POKE 54272,200 :rem 35

35 POKE 54296,R:NEXT :rem 152

40 REM :rem 72

41 REM FOG HORN LOWER TONE : rem 131

42 REM *rem 74

45 FOR R=9 TO 0 STEP -.1 :rem 179

46 POKE 54273,3 :rem 253

47 POKE 54296,R:NEXT :rem 155

49 NEXT srem 172

50 REM :rem 73

51 REM TURN SOUND OFF :rem 95

52 REM srem 75

60 POKE 54276,32:POKE 54296,0 :rem 253

Tapered Noise
The noise waveform can produce sounds as varied as your

imagination can make them. Since it takes on totally different

characteristics when you change its frequency or length, it's

one of the most versatile waveforms available to you. Below is

an example of how you can use the noise waveform to create

a tapered sound.

Walking in the snow. For every step you take in the

snow, you crush down thousands of snowflakes. That crunch

ing sound can be recreated by using the noise waveform.

Program 3-34* Crunching Snow

For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix G] j

6 REM — INITIALIZE SOUND REGISTERS — :rem 1

10 FOR R=54272 TO 54296:POKER,0:NEXT :rem 24

11 POKE 54277,0:POKE 54278,240 :rem 43 p

12 POKE 54273,85 $rem 48 ^
13 POKE 54276,129 :rem 99

18 REM :rem 77

19 REM STEPS THROUGH SNOW :rem 173 M

20 REM :rem 70

30 FOR H=0 TO 10 jrem 3

65 FOR R=0 TO 10 STEP .5 :rem 180 j j

124

U

n

n

n

n

3

Sound Effects

75 POKE 54296,R:NEXT :rem 156

80 POKE 54296,0 :rem 253

82 FOR W=0 TO 750:NEXT :rem 205

85 NEXT :rem 172

216 REM :rem 125

217 REM TURN SOUND OFF : rem 147

218 REM :rem 127

220 POKE 54276,128:POKE 54296,0 :rem 97

Changing the pitch value in line 12, or the maximum volume

possible in line 65, or the length of the sound in line 82 can

change the sound. Creating a falling tapered sound is simple:

Just reverse the FOR-NEXT loop in line 65 so that it reads

FOR R=10 TO 0 STEP -.5.

More Advanced Sound Techniques
You've seen how to create sounds using the SID chip on the

Commodore 64. Hard sounds, soft sounds, and tapered

sounds are just some of the styles of effects you've seen how

to produce. And now you have a small library of sound effects

ready to use. But there's more to the SID chip. There are such

things as filters, ring modulation, and synchronization avail

able to you. The advanced sound controls can add even more

to the sounds and music you'd like to produce on your com

puter. The next chapter will show you how to use these con

trols as you create impressive sound effects and music.

125

i

a

CHAPTER

! |

H 4
n Advanced

Functions

The first three chapters introduced you to the basic functions

of the Commodore 64 Sound Interface Device (SID). You saw

how to turn the various sound control registers on and off,

how to produce different tones with those sound registers, and

also how to alter the nature of those tones by switching wave

forms. The two sound editors gave you tools to create your

own music. You also saw how to program effects to produce

sounds ranging from imitation musical instruments to

duplicating nonmusical devices such as motors and saws.

But there are other tools of the SID chip available. Filters,

ring modulation, and synchronization are some of those tools.

They can help you create even more impressive sounds and

musical pieces on the 64. This chapter reviews some of the

SID functions already covered, and includes routines and

examples that will help you better utilize them. You'll also see

how to use the advanced sound controls and functions. We'll

put them to good use in the last chapter.

The Initialization Process
One thing you may have noticed is that at the beginning of

r"| every sound program in this book, two or three program lines

' are used to initialize the sound registers. The SID chip's sound
control registers are cleared, and then some of them are

f^ POKEd with values. Chapter 1 gave you an idea of the order

1 in which to set these registers when you want to produce
sounds. The sections that follow further explain the operation

f—j of each of the basic sound functions, how to use them more

1 ' efficiently, and what may happen if you do not program them
correctly.

n

H

129

Advanced Functions

Pitch control registers. The pitch control registers consist

of two memory locations for each voice. The values in each of

these pairs of memory locations are combined by the SID and

are treated as a single value. You'll remember that the values of

the bits turned on in the upper control register are multiplied

by 256, then added to the values of those bits in the lower

control register which are on. This total is the number the SID

chip uses to select a pitch or frequency. The values for each of

the 16 bits in the two registers are detailed by Figure 4-1.

LJ

U

U

U

U

Figure 4-1. Pitch Register Bit Values

Bit

Value

15

32768

14

16384

13

8192

12

4096

11

2048

10

1024

9

512

8

256

7

128

6

64

5

32

4

16

3 2

s|,

1

2

0

1

Upper Control Register

(Normal bit values [1-128] multiplied by 256)

Lower Control Register

The memory locations for the pitch control registers are:

Voice 1: Low Pitch Register 54272

Voice 1: High Pitch Register 54273

Voice 2: Low Pitch Register 54279

Voice 2: High Pitch Register 54280

Voice 3: Low Pitch Register 54286

Voice 3: High Pitch Register 54287

Table 1-3, in Chapter 1, shows the pitch values for a stan

dard musical scale, including sharps and flats. However, you

may find that you need to produce some pitches or fre

quencies not listed in the table. Since every frequency you can

produce on the 64 has a corresponding value between 0 and

65,535, it's possible to calculate the necessary value from the

frequency you want. The formula for determining the total 16-

bit value for any given frequency is:

Value = Frequency/,06097

Of course, you can't POKE this number directly into the upper

and lower register locations. The largest number that any single

LJ

LJ

130

Advanced Functions

n

n

location can hold is 255. To calculate the value for any fre

quency available through the SID chip (0-3995 hertz) and

split it into the two values you can use, RUN this short rou

tine. Enter a frequency from 0 to 3995, and the upper (U) and

lower (L) pitch values will display on the screen. The note will

play, using the sawtooth waveform, until you press any key.

Program 4*1 • Frequency Calculation
For mistake-proof program entry, be sure to read "Automatic Proofreader/' Appendix C.

2 FOR T=54272 TO 54272+24:POKET,0:NEXT:POKE54296,1

5:POKE54277,49:POKE54278,248 :rem 197

10 PRINT"{CLR}":INPUT "FREQUENCY"; F :rem 6

15 N=INT(F/.06097) :rem 214

20 U=INT(N/256) :rem 74

30 L=N-(U*25.6) :rem 212

40 PRINT"U="U,"L="L:POKE54272,L:POKE54273,U:POKE54

276,33 :rem 56

45 PRINT"{2 DOWN}{WHT}PRESS ANY KEY TO RUN AGAIN

g73" :rem 81

50 GETA$:IF A$="" THEN GOTO 50 :rem 38

55 POKE54276,32 :rem 50

60 GOTO 10 :rem 0

You can use this program to calculate the pitch values for the

two registers, at the same time hearing the note you're select

ing. If you compare the values displayed with those in Table

1-3, you'll notice that there are often small differences. If you

ask for the pitch values of the frequency at 16 hertz, for

instance, you'll see a high pitch register value of 1 and a low

pitch register value of 6 on the screen. This is slightly different

from the high value of 1 and the low value of 12 which show

in Table 1-3. Even though the value in the low pitch register is

different, the SID chip plays the bottom C note. The difference

is just too slight for you to hear anything but that note.

It Pulse width control registers. The frequency of a sound

wave can be determined by measuring the time the sound

rn wave begins its rising edge on one wave until it begins rising

j | on the next. Figure 4-2 shows the rising and falling edges of

one cycle of a pulse wave.

As you can see from Figure 4-2, the wave has a falling

edge between the two rising edges. In this figure, the falling

edge is exactly in the middle of the wave. We call this a 50

percent pulse wave because the signal falls at the halfway

131

Advanced Functions

point of the wave. This proportion of pulse widths produces

the loudest and clearest pulse waveform tone. By making the

pulse waves more or less than 50 percent, you'll hear a sound

that becomes thinner and more tinny. Program 4-2 lets you

hear the effect that changing pulse width values can create in

a sound. As the program creates sound, it displays the register
values for the various pulse widths.

Figure 4*2. Rising and Falling Edges

One Cycle

First Rising 50% 50%

Falling Edge

Next Rising Edge

Time

Program 4*2* Changing Pulse Widths

For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

5 PRINT"{CLR}{2 DOWN}"; :rem 246

6 REM :rem 26

10 FOR R=54272 TO 54296:POKER,0:NEXT :rem 24

11 POKE 54296,15 :rem 45

12 POKE 54277,0:POKE 54278,240 :rem 44

13 POKE 54272,30:POKE 54273,20 :rem 34

16 POKE 54276,65 :rem 53

U

U

u

132

4

Advanced Functions

17 REM :rem 76

18 REM PULSE LOOP : rem 120

PI 19 FOR P=0 TO 100 STEP 5 :rem 179

I * 20 N=INT(4096/100*P) :rem 54

21 U=INT(N/256) :rem 75

_ 22 PRINT RIGHT$("{2 SPACES } "+STR$ (P)+"%" , 4) ; " : " ;

II :rem 249
23 L=N-(U*256) :rem 214

24 PRINT"LOW:M;L,"HIGH:";U :rem 68

28 REM PULSE WIDTH DATA : rem 217

29 REM :rem 79

30 POKE 54274,L: POKE 54275,U :rem 1

40 FOR R=0 TO 300: NEXT :rem 185

50 NEXT :rem 164

57 REM :rem 80

58 REM TURN SOUND OFF : rem 102

59 REM :rem 82

60 POKE 54276,64:POKE 54296,0 :rem 2

By changing the value in the two-byte pulse width registers,

it's possible to produce waves which pulse anywhere from 0

to 100 percent of the way through the wave cycle. The pulse

width control registers are found in the following memory

locations:

Voice 1: Pulse Width Low Register 54274

Voice 1: Pulse Width High Register 54275

Voice 2: Pulse Width Low Register 54281

Voice 2: Pulse Width High Register 54282

Voice 3: Pulse Width Low Register 54288

Voice 3: Pulse Width High Register 54289

Here's a short program that allows you to enter a percent

age value for any pulse width between 0 and 100. It will then

return the necessary POKE values for the pulse width control

registers, as well as play a note using those values. Press any

I (key to stop the note and to enter another pulse width

percentage.

P Program 4*3- Pulse Width Values
For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

2 FOR T=54272 TO 54272+24:POKET,0:NEXT:POKE54296,1

H 5:POKE54277,49:POKE54278,248 :rem 197
1] 3 POKE 54272,135:POKE 54273,33 :rem 43

10 PRINT" {CLR}11:INPUT"PULSE-WIDTH (PERCENTAGE VALU

r-j E)"; P : rem 64

! \ 15 N=INT(4096/100*P) :rem 58

~ 133

Advanced Functions

20 U=INT(N/256) :rem 74

30 L=N-(U*256) :rem 212

40 PRINT"U="U,"L="L:POKE54274,L:POKE54275,U:POKE54

276,65 :rem 65

45 PRINT"{2 DOWN}{WHT}PRESS ANY KEY TO RUN AGAIN

B73" :rem 81

50 GET A$:IF A$=IIM THEN GOTO 50 :rem 38

55 POKE54276,64 :rem 55

60 GOTO 10 :rem 0

Waveform control registers. The waveform control reg

ister has eight separate functions (only five of which we've

used so far) that are enabled by turning appropriate bits on

and off. The bits and their functions are detailed in Figure 4-3.

Figure 4*3 • Waveform Control Register Bits

Bit 7 6 5 4 3 2 10

Bit

Value 128 64 32 16

Noise

Waveform

Pulse

Waveform

Sawtooth

Waveform

Triangle

Waveform
Test Bit

Ring

Modula

tion

Sync Gate Bit

u

u

LJ

U

U

Remember that to turn the sound on, you also need to set

the gate bit (bit 0) by adding 1 to the bit value for the wave

form you're selecting. When you choose a waveform, then,

you always POKE a total value of the waveform enabling bit,

plus 1. For instance, enabling the noise waveform and turning

the gate bit on requires a total value of 129 POKEd into loca

tion 54276 for voice 1. Keep this in mind later in the chapter

when the other functions of the three waveform control reg

isters are explained.

The Envelope Generator
Throughout this book we've discussed the way that sound can

be changed by modifying the sound envelope. Using the

ADSR (Attack, Decay, Sustain, and Release), you can signifi

cantly change the "shape" of a sound. Highlighting each of

these, and showing in more detail how they can be used, may

be valuable.

134

u

u

\ (

u

LJ

u

Advanced Functions

i i

A sound envelope, complete with the four elements, could
look something like Figure 4-4.

Figure 4*4- Sound Envelope—ADSR

Attack Decay Sustain Release

Time

You'll find the (ADSR) functions for each voice in the follow

ing memory locations:

Voice 1: Attack Control Register

Voice 1: Decay Control Register

Voice 1: Sustain Control Register

Voice 1: Release Control Register

Voice 2: Attack Control Register

Voice 2: Decay Control Register

Voice 2: Sustain Control Register

Voice 2: Release Control Register

Voice 3: Attack Control Register

Voice 3: Decay Control Register

Voice 3: Sustain Control Register

Voice 3: Release Control Register

Attack. Attack refers to the length of time it takes the

sound to reach maximum volume. If the attack rate is fast, the

sound will start abruptly. If it is set to a slower rate, it simply

takes longer for the sound to reach that maximum volume

level. 135

54277 bits 4-7

54277 bits 0-3

54278 bits 4-7

54278 bits 0-3

54284 bits 4-7

54284 bits 0-3

54285 bits 4-7

54285 bits 0-3

54291 bits 4-7

54291 bits 0-3

54292 bits 4-7

54292 bits 0-3

u
4

Advanced Functions ,)

u
Program 44- Attack Rate
For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

U5

6

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

30

47

48

49

50

REM -

REM

FOR

POKE

REM

REM

REM

POKE

REM

REM

REM

REM

POKE

POKE

POKE

REM

REM

REM

FOR

REM

REM

REM

POKE

- INITIALIZE SOUND REGISTERS —

R=54272 TO 54296:POKER,0:NEXT

54296, 15

— SET ATTACK RATE —

54277,0

— SET OTHER REGISTERS —

54275,8:POKE54278,240

54272,0:POKE 54273,21

54276,65

— PLAY NOTE —

D=0 TO 500:NEXT

— TURN OFF SOUND —

54276.64:POKE 54296.0

:rem 0

:rem 26

:rem 24

:rem 45

:rem 71

:rem 204

:rem 73

:rem 250

:rem 75

:rem 76

:rem 39

:rem 78

:rem 49

:rem 239

:rem 50

:rem 73

:rem 106

:rem 75

:rem 172

:rem 79

:rem 177

:rem 81

: rem 1

This program demonstrates a very rapid attack rate. Look at

line 15. Zero is POKEd into the attack/decay control register

at location 54277. This sets both attack and decay (which we'll

get to in a moment) to the fastest possible rate. The sound

rises to maximum volume very quickly.

If the attack is set to a slower rate, however, the sound

will emerge gently. To hear this, replace line 15 in Program

4-4 with the following:

15 POKE 54277,160

You've just set the attack to a rate of 10. (Remember that you

multiply that number by 16 to arrive at a value to POKE into

the register.) Now the sound reaches maximum volume only

after some time has passed. It's become a much softer sound.

You can use the attack and decay of a sound to create hard or

soft sounds, just as you earlier used the volume control.

Some of the programs in other chapters of this book used

the volume control register to turn sounds on and off. When

you're using the ADSR functions, you need to use the gate bit j 1

136

U

j]

! j
! \

4

Advanced Functions

to turn sounds on and off. It's the gate bit that initiates the

ADSR of a sound. Whenever you manipulate the ADSR

(which you will do anytime you create a sound on the 64),

you should use the gate bit to turn the sound on and off. If

you've been following the pattern of programming sound first

established in Chapter 1, you're already doing that. Some

times, in order to create just the type of sound that you want,

you may use the volume control register to turn the sound on

and off. Just be aware that the effect may sound different if

you do that.

The speed at which a note increases in volume (attack) is

determined by the value you POKE into the attack register.

The attack rate can be any number between 0 and 15. Table

4-1 shows the POKE values and actual time that elapsed for

each attack rate.

Table 44. Attack Times

Attack Rate

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

POKE Value

0

16

32

48

64

80

96

112

128

144

160

176

192

208

224

240

Time Elapsed

.002 sec

.008 sec

.016 sec

.024 sec

.038 sec

.056 sec

.068 sec

.080 sec

.100 sec

.250 sec

.500 sec

.800 sec

1.000 sec

3.000 sec

5.000 sec

8.000 sec

For example, if you wanted an attack that lasted 0.1 seconds

you would use an attack rate of 8, but you would POKE 128

into the attack/decay register (8*16=128).

There's one more thing you should keep in mind when

you're setting an attack rate. The sound must last at least as

long as the time it takes the attack to execute, or the sound

will be cut off before it reaches maximum volume. You can

137

u
4

Advanced Functions , ,

M
hear this happen if you change line 30 in Program 4-4. Make

sure that line 15 still reads POKE 54277,160.

30 FOR D=0 TO 150:NEXT LJ

Cutting the length of the sustain's FOR-NEXT delay loop cuts

the sound before it can reach its peak volume. For the purpose \ I

of timing your sounds, a FOR T=0 TO 1000:NEXT loop lasts LJ
approximately one second. Add the two lines below to the

revised Program 4-4 (the version with POKE 54277,160 as line

15). When you rerun the program, you'll be asked how long,

in seconds, you want the sustain delay loop to last.

9 INPUT "HOW MANY SECONDS lf;S

30 FOR R=0 TO S*1000:NEXT

Decay. Decay follows attack in the sound evelope. After a

sound has attained maximum volume, it will decay (go down

in volume) at a rate specified by the value in the attack/decay

control register until it reaches the sustain volume level. The

timing of decay is somewhat slower than the attack timing.

Table 4-2 outlines the decay rates, the POKE values used, and

the time elapsed to execute those rates.

Table 4-2, Decay Times

Decay Rate POKE Value Time Elapsed

0 0 .006 sec

1 1 .024 sec

2 2 .048 sec

3 3 .072 sec

4 4 .114 sec

5 5 .168 sec
6 6 .204 sec

7 7 .240 sec

8 8 .300 sec ji
9 9 .750 sec

10 10 1.500 sec

11 11 2.400 sec j J
12 12 3.000 sec ^
13 13 9.000 sec
14 14 15.000 sec i
15 15 24.000 sec LJ

138

4

Advanced Functions

Note that the decay rates and POKE values are identical.

„ The decay value is POKEd into the lower half of the attack/

'- \ decay register, so it's not multiplied by 16, then POKEd into
the register, as is the attack rate. The decay rate is the POKE

p., value. Add these three lines to the original version of Program

i ! 4-4. By POKEing location 54277, you're setting voice l's decay

to a rate of 9. (Changing line 20 to decrease the sustain vol

ume level lets you hear the decay a bit easier.)

15 POKE 54277,9

20 POKE 54275#8:POKE54278,90

30 FOR D=0 TO 400:NEXT

If you want to produce a sound that uses both an attack

and a decay, you add the POKE value for the attack rate to

that of the decay rate, then POKE the sum into the register. In

the lines below, which you can add to Program 4-4, you're

setting attack to 10 and decay to 9. You also need to set the

total delay time so that the entire sound is heard.

15 POKE 54277,169

20 POKE 54275,8:POKE54278,90

30 FOR D=0 TO 900:NEXT

Sustain. After the attack/decay portions of a sound en

velope, the SID chip implements the sustain. This function is

similar to the volume control. However, instead of determin

ing the absolute volume of the sound, it's a relative level at

tained duing the sound's attack. For example, if the maximum

volume reached by the attack was 10 (as set by the volume

control register in location 54296) and the sustain was set to 8

(half of the 16 possible levels), the resulting volume during

the sustain section of the sound would be 5, or half of 10.

Since the sustain level will be only a portion of the maximum

volume attained during the attack, the volume of the sound

[""! can at best only remain at that level during the sustain. You'd

1 have to set the sustain level to 15 to do that. Volume will
always drop from the maximum unless the sustain is set to

j""| that level.
Replacing lines 20 and 30 of our latest version of Program

4-4 (the one with POKE 54277,169 as line J5) will set the sus-

H tain level to 8 (remember that the actual POKE value is the

result of multiplying the level by 16). The replacement lines

are:

f""j 20 POKE 54275,8:POKE 54278,128
30 FOR D=0 TO 1500:NEXT

139

u
4

Advanced Functions i j

LJ
You can hear the sound increase in volume through its

attack, and then fall to the lower sustain level through its 7

decay. Setting the sustain to an even lower value, such as 48, |_j
will make the distinction greater.

Release. Release is the last of the ADSR functions. It's -{ -t

initiated when the gate bit is turned off. Like attack and decay, I I

release is a timing function. It determines how long it will take

for the volume to drop from its sustain level to the lowest

setting. To set the release rate to 9 and the sustain to 10, all

you would need to do is change line 20 in the previous sound

routine to:

20 POKE 54275,8:POKE 54278,169

When you use the release function, you need to ungate

the sound without deselecting the waveform. In all of our

examples, we did this by POKEing the waveform control reg

ister with the waveform bit value only. This is 1 less than the

value used earlier in the routine, and so turns off the gate bit.

Notice also that after the gate bit is turned off, the volume

control register is set to 0. If you do not do this, there will be

a very low volume residual sound produced until all of the

sound registers have been cleared. Make sure that you've

allotted enough time in the delay loop so that the release is

heard. The elapsed time for various release rates is identical to

the times for the decay. Refer to Table 4-2 for those times.

Using the Sound Envelope
By manipulating the ADSR of a sound's envelope, you can

create distinctive effects, often by altering just one of the

envelope's elements. Changing the shape of the envelope

changes the sound. It's that simple. You can even create simi

lar sounds by changing different portions of the ADSR.

There's usually more than one way to produce a sound on the |_j
64.

Here, for example, is a simple tone burst using the pulse
waveform: ^ j

Program 4-5* Envelope Manipulation
For mistake-proof program entry, be sure to read "Automatic Proofreader/' Appendix G j •

5 REM — INITIALIZE SOUND REGISTERS — : rera 0 LmmJ
7 REM :rem 27
10 FOR R=54272 TO 54296sPOKE R,0:NEXT :rem 24 I '

11 POKE 54296,15 :rem 45 U

140

U

n

H

n

H

n

Advanced Functions

12 REM

13 REM — SET A/D/S/R VALUES —

14 REM

15 POKE 54277,0:POKE 54278,240

16 REM

17 REM — SET OTHER REGISTERS —

18 REM

19 POKE 54275,8

20 POKE 54273,21

21 POKE 54276,65

31 REM

32 REM — TONE TIMING LOOP —

33 REM

40 FOR R=0 TO 500:NEXT

51 REM

52 REM — TURN SOUND OFF —

53 REM

70 POKE 54276,64:POKE 54296,0

:rem 71

:rem 111

:rem 73

:rem 47

:rem 75

:rem 38

:rem 77

:rem 4

:rem 37

:rem 49

:rem 72

:rem 53

:rem 74

:rem 187

:rem 74

:rem 172

:rem 76

:rem 3

The sound envelope for this ADSR setting would look like

Figure 4-5.

Figure 4-5- Tone Burst ADSR

Time

n

141

Advanced Functions

Since the attack, decay, and release are all set to 0, indicating

the fastest possible rate, the only part of the envelope that's

really present is the sustain level, which is set to its maximum

by POKEing 240 into location 54278 in line 15.

If you want the sound to rise slowly, you simply increase

the attack value. Add this line 15 in place of the original in

Program 4-5 and reRUN the routine.

15 POKE 54277,160:POKE 54278,240

Now the envelope looks like Figure 4-6.

Figure 4-6* Longer Attack

Decay
Sustain

u

l;

u

i *
LJ

u

Time

Attack has been set to a rate of 10 (as indicated by POKEing

160 [10*16= 160] into location 54277), but the decay and

release have remained set to 0. Notice the difference—both in

the sound itself and its illustration—from an attack set to the

fastest rate.

Reducing the attack to 0 and increasing the decay gives

you an entirely different kind of sound. For this example, the

sustain has also been set to 0 level. Change line 15 in Program

4-5 to:

15 POKE 54277,9:POKE 54278,0

With this ADSR the envelope is like Figure 4-7.

142

u

U

D

n
Advanced Functions

Figure 4-7 ♦ Decay Increased

Sustain/Release

Time

With this kind of sound, you have to be careful to allow

enough time for the sound to shut off during the decay. If you

are producing programs that have some complex timing, this

can cause problems. In those instances, you may find another

method easier to use. Add the following changed and new

lines to Program 4-5:

15 POKE 54277,0sPOKE 54278,9

32 REM — NO TIMING LOOP —

39 POKE 54276,64

70 POKE 54296,0

Now the routine is not timed by a loop. It simply sets the

sound to full volume and immediately turns the gate bit off,

letting the release function "decay" the sound to 0. The final

timing loop in line 40 is retained because the sound register

maintains a slight residual sound after the release if the reg

isters are not cleared.

Setting the ADSR to these values creates an envelope that

looks like Figure 4-8. Notice how similar it is to the previous

figure, where decay was used instead.

r i

n

n
143

u

Advanced Functions

L'

Figure 4-8. Using Release

u

Time

A third way you can produce this same sound is by

dynamically manipulating the value in the sustain/release reg

ister. Using a FOR-NEXT loop, you can POKE several values

into the register, changing the sustain volume setting. Add

these two lines to Program 4-5 and reRUN it:

40 FOR R=240 TO 0 STEP

41 POKE 54278fR:NEXT

-3

We begin with the maximum value in the sustain register

and then, using a loop in lines 40 and 41, decrease the value

until it's 0. If you looked at the envelope now, it would look

like Figure 4-9.

Figure 4-9* Sustain Manipulation

Release

Time

144

u

LJ

U

4

Advanced Functions

n

n

n

Multivolume sounds. Another feature that makes the

sustain function so valuable is that it can be used to produce

sounds that are lower in volume than the maximum set by the

volume control register. An example of how this might be

done is shown in the program below. By changing the value

in the sustain register, you can make the sound for any of the

registers either louder or softer. By using this feature, you can

produce two tones that are set to different sustain levels and

therefore different volumes.

Program 4-6. Multivolume
For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

5 REM — INITIALIZE SOUND REGISTERS — :rem 0

7 REM :rem 27

10 FOR R=54272 TO 54296:POKE R,0:NEXT :rem 24

11 POKE 54296,15 :rem 45

12 REM :rem 71

13 REM — SET INITIAL A/D/S/R VALUES — :rem 121

14 REM :rem 73

15 POKE 54277,0:POKE 54284,0 :rem 198

16 POKE 54278,240:POKE 54285,240 :rem 149

17 REM :rem 76

18 REM — SET OTHER VALUES — :rem 63

19 REM :rem 78

20 POKE 54273,16:POKE 54272,195 :rem 97

21 POKE 54275,8:POKE 54282,8 :rem 207

22 POKE 54280,21:POKE 54279,30 :rem 40

30 POKE 54276, 65: POKE 54283, 65 :rem 55

31 REM :rem 72

32 REM — VOLUME TIMING LOOP — :rem 215

33 REM :rem 74

37 FOR R=240 TO 0 STEP -1 :rem 227

38 POKE 54285,R :rem 32

47 NEXT :rem 170

51 REM :rem 74

52 REM — TURN SOUND OFF — :rem 172

53 REM :rem 76

54 POKE 54276,64:POKE 54283,0 :rem 1

The routine begins with two harmonizing tones and then,

by reducing the value in the sustain register, gradually turns

one of the tones off while maintaining the other tone at full

volume. You may also note that by reducing the value in the

sustain/release register (decrementing by 1), you're changing

the value in the release register. Since you're not using the

release function in this routine, those values aren't used. In

145

4

Advanced Functions

this application, decrementing by 1 is used to produce a longer

tone.

As you've seen, there are usually several ways available

when you want to produce a specific sound on the Com

modore 64. But the ADSR isn't the only control you can use.

Other, more advanced functions allow you to do even more

with the SID chip.

Test Bit
The test bit, bit 3 of each voice's waveform control register, is

a special bit that turns the output from the register off when

it's turned on by POKEing 8 (value of bit 3) to the memory

location. Ordinarily it's used to test the Commodore 64's SID

chip circuits. However, it can be used for special sound func

tions because it produces a soft on/off sound. To get a better

idea of what this means, you'll need to listen to a sound that

is first turned on and off by the volume control. This produces

a sound that clicks as it switches on or off. If you use the test

bit instead, this clicking will be greatly reduced. To reduce it

even further, you can use the gate bit, turning that on and off

rapidly to produce the sound. As we noted earlier, there are

usually several ways to program a sound effect on the 64.

Program 4*7- Test Bit On/Off

For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

5 REM ~ INITIALIZE SOUND REGISTERS — :rem 0

6 REM :rem 26

10 FOR R=54272 TO 54296:POKER,0:NEXT :rem 24

11 POKE 54275,8:POKE 53277,0:POKE 54278,240

:rem 254

12 POKE 54272,47:POKE 54273,25 :rem 46

13 POKE 54276,65 :rem 50

21 REM :rem 71

22 REM — TURNING SOUND ON/OFF USING — :rem 217

23 REM — THE VOLUME CONTROL REGISTER - :rem 15

24 REM :rem 74

25 FOR M=0 TO 30 :rem 14

50 POKE 54296,15 :rem 48

60 FOR R=0 TO 50:NEXT :rem 141

70 POKE 54296,0:NEXT :rem 117

80 FOR N=0 TO 200:NEXT :rem 184

01 POKE 54296,15 :rem 52

82 REM :rem 78

83 REM — TURNING SOUND ON/OFF USING — :rem 224

84 REM — THE TEST CONTROL REGISTER :rem 216

146

4

_ Advanced Functions

1 85 REM :rem 81
95 FOR M=0 TO 30 :rem 21

p-j 96 POKE 54276,65 :rem 61

I ! 98 FOR R=0 TO 50:NEXT :rem 152
99 POKE 54276,73:NEXT :rem 184

100 FOR N=0 TO 200:NEXT :rera 225

P| 101 REM :rem 118
] 102 REM -- TURNING SOUND ON/OFF USING — :rem 8

103 REM — THE GATE BIT CONTROLS — :rem 129

104 REM :rem 121

105 FOR M=0 TO 30 :rem 61

106 POKE 54276,65 :rem 101

107. FOR R=0 TO 50:NEXT :rem 191

108 POKE 54276,64:NEXT :rem 223

109 POKE 54296,0 :rem 47

Lines 95-100 contain the test bit on/off process. The rest of

the program is similar to other routines you've already seen.

The waveform and gate bit are enabled in line 96, then the

test bit is turned on in line 99 by POKEing 73 to the register.

The test bit's value is 8, so you simply add that to the pre

vious value (65) to turn the bit on. The FOR-NEXT loop then

turns the test bit off by again POKEing the location with 65.

Repeating this process quickly turns the sound on and off in a

new way.

You may want to use other methods of turning sound on

and off in your own routines, but the test bit technique can

come in handy as you're creating specific sounds. Perhaps you

want a bit of a click as the sound is turned on and off—not as

much as when you use the volume control register, but more

than when you use the gate bit function. In that case, the test

bit may work just right.

Additive Synthesis
p-j Creating relatively simple sound effects by using one voice or

' ' by switching rapidly between two voices is just one method of
creating sounds on the Commodore 64. You have other tech-

p-j niques available that can create some amazing sounds quite

' ' different from what you've heard so far. One such technique is
called additive synthesis.

j—■[Additive synthesis, although probably a new term to you,

' is really very simple. It takes two sounds, usually produced by
two voices on the 64, and brings them together to form a

pi totally new sound. It adds sounds to create a unique synthesis

U7

n

4

Advanced Functions

of the two. Both ring modulation and synchronization on the

Commodore 64 are examples of additive synthesis.

Ring modulation. Ring modulation is a form of additive

synthesis that significantly changes the tone quality of two

sounds. Sounds created with ring modulation don't retain their

original pitches. Instead, the sums and remainders of the two

frequencies are kept. For example, if the first sound is a tone

that vibrates at 500 vibrations per second (vps), and the sec

ond tone vibrates at 300 vps, then the ring modulated tone is

a combination of the sum (800 vps) and the difference (200

vps). It would be a sound whose tone vibrates at 1000 vps.

Most of the time, ring-modulated sounds are very dif

ferent from the original tones. In fact, ring modulation can cre

ate some of the most interesting and unusual sounds possible

on your computer. To use ring modulation on the 64, you

have to set bit 2 of the waveform control register (refer to Fig

ure 4-3 for an illustration of one of the three registers), at the

same time enabling the triangle waveform. To do this, just add

4 (bit 2's value) to the value you'd normally POKE to turn on

the gate bit and enable the triangle waveform. In other words,

you'd POKE location 54276 with 21 for voice 1 (1 for the gate

bit, 4 for ring modulation, and 16 for the triangle waveform).

Next, you have to select a frequency for voice 3 by POKEing a

number into one of the two pitch control registers. That's all

you have to do with voice 3; you don't have to set voice 3's

waveform, ADSR, or any other parameters.

The effect of ring modulation is most apparent when the

tones are mixed as they sweep the scales. You can do this in

one of three ways. The first way, shown in Program 4-8,

selects a frequency for the triangle waveform and sets the

pitch registers to that frequency. Then voice 3's frequency is

rapidly changed by sweeping the possible values in the high

pitch control register. i i

Program 4'8* Ring Modulation—Sweeping Voice 3

For mistake-proof program entry, be sure to read "Automatic Proofreader/' Appendix C. I I

5 REM — INITIALIZE SOUND REGISTERS — :rem 0

6 REM :rem 26 . .

10 FOR R=54272 TO 54296:POKER,0:NEXT :rem 24 LJ
11 POKE 54296,15 :rem 45

12 POKE 54277,0:POKE 54278,240 :rem 44

13 POKE 54273,21 :rem 39 M

148

u

n
4

_ Advanced Functions

n

n

n

n

n

n

n

14 REM :rem 73

15 REM ~ TURN ON RING MOD — :rem 244

16 REM :rem 75

17 POKE 54276,21 :rem 46

18 REM :rem 77

19 REM — SWEEP SCALES W/RING MOD — :rem 215

H 20 REM :rem 70
1] 30 FOR R=0 TO 255:POKE 54287,R:NEXT :rem 178

40 POKE 54276,16:POKE 54296,0 :rem 253

Line 17 turns the gate bit on, enables the triangle waveform,

and selects ring modulation (1 + 16+4=21). The FOR-NEXT

loop in line 30 creates values from 0 to 255, which are then

POKEd into the high pitch control register of voice 3 (location

54287). The resulting sound is a combination of the sum and

difference of the two frequencies produced by voices 1 and 3.

It's considerably different than if you simply played the two

voices' pitches together.

The second method of using ring modulation sweeps the

scales with the triangle waveform of voice 1 and leaves the

frequency of voice 3 at a constant value. Program 4-9 shows

this method.

Program 4*9♦ Ring Modulation—Sweeping Voice 1

For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

5 REM — INITIALIZE SOUND REGISTERS — :rem 0

6 REM :rem 26

10 FOR R=54272 TO 54296:POKER,0:NEXT :rem 24

11 POKE 54296,15 :rem 45

12 POKE 54277,0:POKE 54278,240 :rem 44

13 POKE 54287,21 :rem 44

14 REM :rem 73

15 REM — TURN ON RING MOD.— :rem 244

16 REM :rem 75

17 POKE 54276,21 :rem 46

18 REM :rem 77

19 REM ~ SWEEP SCALES TRIANGLE WAVE — :rem 202

20 REM :rem 70

30 FOR R=0 TO 255:POKE 54273,R:NEXT :rem 173

40 POKE 54276,16:POKE 54296,0 :rem 253

Instead of sweeping the scale for voice 3's pitch value, now

you're sweeping the values for voice l's frequency. The

changes in this routine from Program 4-8 are relatively minor;

149

4

Advanced Functions

lines 13 and 30 are the only ones which are different. You can

experiment with the ring-modulated sound by using different

pitch values in line 13. Change it to 50, for instance, and the

sound is even more unusual.

The third method sweeps the scales using both the fre

quency of voice 3 and voice 1.

Program 4"10. Ring Modulation—Sweeping Both

Voices

For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

5 REM — INITIALIZE SOUND REGISTERS — :rera 0

6 REM :rem 26

10 FOR R=54272 TO 54296:POKER,0:NEXT :rem 24

11 POKE 54296,15 :rem 45

12 POKE 54277,0:POKE 54278,240 :rem 44

14 REM :rem 73

15 REM — TURN ON RING MOD — :rem 244

16 REM :rem 75

17 POKE 54276,21 :rem 46

18 REM :rem 77

19 REM — SWEEP BOTH VOICES — :rem 124

20 REM :rem 70

30 FOR R=0 TO 255:POKE 54273,R:POKE 54287,255-R:NE

XT :rem 103

40 POKE 54276,16:POKE 54296,0 :rem 253

Synchronization. Synchronization, another form of ad

ditive sound synthesis, also adds two tones together to create

a new and different effect. It occurs when two waveforms are

linked to make the waveform of voice 1 dependent on whether

it is in sync with the frequency of voice 3. Since the two wave

forms are usually not in sync, the waveform is distorted. This

produces unusual and interesting waveforms. With synchroni

zation in effect, the tone you'll hear depends on the pitch of < ,

voice 3, not of voice 1, as you'd normally find true. If you al- LJ
ter voice 3 and keep voice l's pitch at a constant value, the

pitch changes; however, if you change voice 1, and voice 3's r ,

pitch remains constant, the timbre, or unique characteristics of LJ
the waveform, changes. Each manipulation creates its own

particular effect. > i

To use synchronization, you need to set bit 1 of the wave- LJ
form control register (done by adding 2 to whatever other bit

values you're POKEing into the location), then setting voice 3 i j

150

u

4

_ Advanced Functions
I i -^——^——^—-^^——

! to a selected pitch, and finally manipulating voice l's pitch to

change the resulting sound. Unlike ring modulation, you're

H not restricted to just the triangle waveform; you can use the

1 pulse and sawtooth waveforms with synchronization as well.
If you're using the triangle waveform, for example, you would

[—| POKE 19 into memory location 54276 to turn on the gate bit

' ' (1), enable the waveform (16), and select for synchronization
(2).

This effect results in a sound that resembles the beat fre

quencies used earlier in this book. The difference is that the

only tone you hear is the resultant beat, which may vary from

very slow to very fast.

Take a look at Program 4-11 for an example of

synchronization at work.

Program 4*11. Synchronization
For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

5 REM — INITIALIZE SOUND REGISTERS — :rera 0

6 REM :rem 26

10 FOR R=54272 TO 54296 :POKER, 0:NEXT : rem 24

11 POKE 54296,15 :rem 45

12 POKE 54275,8:POKE 54277,0:POKE 54278,240 :rem 0

13 POKE 54287,9 :rem 2

14 REM :rem 73

15 REM — SET SYNC FUNCTION — :rem 141

16 REM :rem 75

17 POKE 54276,19 :rem 53

21 REM :rem 71

23 REM — SWEEP SCALES W/SYNC — :rem 255

24 REM :rem 74

30 FOR R=0 TO 255:POKE 54273,R:NEXT :rem 173

40 POKE 54276,16:POKE 54296,0 :rem 253

nln this program, voice 3's pitch is set in line 13 and remains

constant as the routine executes. However, in line 30, voice l's

pitch changes as the FOR-NEXT loop increments the values.

j—i Note the value of 19 POKEd into location 54276 in line 17.

• i It's a sum of the values for turning the gate bit on (1),
enabling the triangle waveform (16), selecting the sync func-

p tion (2).

' ! You can change the sound by switching the locations
POKEd in lines 13 and 30. Make the changes indicated by the

p following lines and reRUN the program.

151

4

Advanced Functions

13 POKE 54273,9

30 FOR R=0 TO 255:POKE 54287,RxNEXT

Quite a difference, wasn't it? Experimenting with synchroniza

tion is one of the joys of creating sounds on the 64. You can

play with various parameters and end up with a unique sound

almost every time. For example, try adding this line to Pro

gram 4-11.

30 FOR R=255 TO 0 STEP -1:POKE 54273,R:NEXT

Now the pitch of voice 1 begins at a high frequency and falls

in one-step increments. If you change line 30 again, you can

hear an even stranger sound.

30 FOR R=255 TO 0 STEP -1:POKE 54273,R:POKE 54287,

255-R:NEXT

Both voices' pitch values are altered by the FOR-NEXT loop

now. Play with the sync function on the Commodore 64, and

you'll soon find dozens of uses for it in your own programs

and games.

Subtractive Synthesis
Subtractive synthesis, where sounds are manipulated by

subtracting parts of a single sound, is another advanced func

tion of the Commodore 64's sound capabilities. Filters are the

primary way of altering sounds using subtractive synthesis.

There are three filters you can use when you create sounds

and music on the 64: the low pass filter, the high pass filter,

and the band pass filter.

The filters on the SID chip are similar to filters used for

other purposes, whether it's filtering coffee or filtering oil.

Some things, such as coffee and oil, are allowed to pass

through, while others, such as grounds or dirt, are blocked

out. The filters in your computer let parts of the sounds pass » ,

through, but selectively block others. And unlike filters in LJ
other applications, you can determine what is passed through

and what is blocked. r ■

The low pass filter is designed to remove the higher fre- LJ
quencies, allowing the lower frequencies to pass through. The

high pass filter has the opposite effect—it removes the low fre- ,- .

quencies while letting the higher frequencies pass. The band I I
pass filter allows a band or group of frequencies to pass

through, while frequencies above and below the band are , f

blocked. U
152

U

n

Advanced Functions

n

Filter selection. You select a filter by turning on one of

three bits in memory location 54296 (refer to Table 1-1 for the

chart of the SID chip's control registers and their locations).

Turning on bit 4 enables the low pass filter, setting bit 5 turns

on the band pass filter, and setting bit 6 enables the high pass

filter. Setting these bits is done as with any other bit: Simply

POKE the bit value into the address. POKEing 54296 with 16,

for instance, would select the low pass filter. Take a look at

Figure 4-10 for the contents of location 54296, the bit func

tions, and their values.

Figure 4-10. Location 54296

Bit 7

Bit Value 128

3 Off

6 5

64 32

High

Pass

Filter

Band

Pass

Filter

—"x^—
Filter Selection

4

16

Low

Pass

Filter

3

8

Vol3

V ^

2

4

Vol2

N
Volume

1

2

Vol1

S
Control

0

1

Vol"

You've previously used this location only for a volume con

trol. Note, however, that this function uses only the lower

four bits. When you're selecting a filter, then, you'll have to

add its bit value to the volume level value. For instance, if you

want to use the low pass filter and set the volume at maxi

mum, you'd POKE this location with 31 (16 for the filter, 15

for maximum volume). Keep this in mind as you program

sound using filters.

You can add filters together by POKEing both filter values

into location 54296. For example, adding the low and high

pass filters together will create something called a band reject

filter, where only the higher and lower frequencies are

allowed to pass. The middle frequencies are blocked. To select

something like this, you'd POKE 80, plus the desired volume

value, into the address.

Cutoff point. The amount of sound that's removed by a

filter is determined by the cutoff point. The filter cuts off the

sound beginning at this point. You control the cutoff point by

153

Advanced Functions

setting different bits in an 11-bit register. The lower three bits

of location 54293 and all eight bits in location 54294 make up

this register. The possible values range from 0 to 2047. Figure

4-11 details the two-byte control for the filter cutoff point.

Figure 4-11. Cutoff Controls

Bit

Value

10

1024

9

512

8

156

7

128

6

64

5

32

4

16

3

8

2

4

1

2

0

1

u

u

u

u

Location 54294 Location 54293

Notice that the possible values in location 54293 range from 0

to 7, while those in location 54294 range from 0 to 255. Those

are the number ranges you would actually POKE into the two

addresses. However, since this is considered an 11-bit address

by the SID chip, the bits can be thought of as having the

values listed in Figure 4-11.

The higher the number in the cutoff register, the higher

the cutoff frequency. Ranging from approximately 30 Hz to

12,000 Hz, the cutoff frequency determines which of the

sound's frequencies pass and which are blocked. The number

in the 11-bit address is relative to the sound's frequency. In

other words, if you set the seventh bit of location 54294,

meaning the number in the address is 1024 (see Figure 4-11),

the cutoff frequency is half of the sound's frequencies. If

you're using the high pass filter, for instance, and POKE 128

into location 54294 (to set the seventh bit), the bottom half of

the sound's frequencies is blocked, while the top half is

allowed to pass.

Through experimentation, I've found that by increasing

the number in the 11-bit address by 160 each time the sound's

frequency is doubled, the cutoff point remains in the same rel

ative position. If you increase the sound's frequency from 64

to 128 Hz, for example, increasing the number in the cutoff

point's 11-bit address by 160 will keep the cutoff frequency in

the same place, relative to the sound's frequency.

This may sound confusing at first, but if you experiment

with the filters and various cutoff points, you'll quickly get an

154

u

LJ

U

U

u

n

4

Advanced Functions

idea of how it all works. Setting various cutoff points and

using a variety of filters is probably the best way to learn, and

thus hear, how they operate.

Using Your Filters
To use filters on the Commodore 64, you need to do several

things:

1. First of all, you need to choose which voice you're going to

filter. The voice selection control consists of the lower three

bits in location 54295. To filter voice 1, you'd POKE 54295

with 1; to filter voice 2, POKE 54295,2; and to filter voice 3,

POKE 54295,4. To filter more than one voice, all you have to

do is add the bit values and POKE the total into the location.

Selecting voice 1 and voice 2, for instance, is done by

POKEing 54295 with 3. Refer to Table 1-1, which shows the

SID chip's registers and memory locations.

2. Choose your filter by POKEing the appropriate number into

location 54296.

3. Select the cutoff point by POKEing location 54293 and/or

54294 with the desired value. See the explanation above for

that process.

Now you're ready to filter sounds on the 64. As a ref

erence, these are the locations used on the 64 to enable and

set parameters for filtering:

Cutoff Point (lower value) 54293 bits 0-2

Cutoff Point (higher value) 54294 bits 0-7

Voice 1 Filter Enable 54295 bit 0

Voice 2 Filter Enable 54295 bit 1

Voice 3 Filter Enable 54295 bit 2

Low Pass Filter 54296 bit 4

Band Pass Filter 54296 bit 5

High Pass Filter 54296 bit 6

Here's our first example of filter use on the 64. Type in

and RUN Program 4-12 to hear the low pass filter.

Program 4-12* Low Pass Filtering

Tor mistake-proof program entry, be sure to read "Automatic Proofreader/' Appendix G

5 REM — INITIALIZE SOUND REGISTERS — :rem 0

7 REM :rem 27

10 FOR R=54272 TO 54296:POKE R,0:NEXT :rem 24

11 POKE 54296,31:POKE 54295,1 :rem 250

12 POKE 54275,8:POKE 54277,0:POKE 54278,240 :rem 0

155

u
4

Advanced Functions -

13 POKE 54273,10:POKE 54272,5 :rem 243

14 POKE 54276,65 :rem 51

21 REM :rem 71 \~\

22 REM — VARYING FILTER LOOP — :rem 28 LJ
23 REM :rem 73

24 FOR R=0 TO 255 :rem 75

25 POKE 54294,R:NEXT :rem 149 M
51 REM :rem 74

52 REM — TURN SOUND OFF — :rem 172

53 REM :rem 76

54 POKE 54276,64:POKE 54283,0 :rem 1

Line 11 selects the low pass filter and sets the volume to 15

by POKEing 54296 with 31 (16 for low pass filter plus 15 for

volume), then enables the filter for voice 1 by POKEing 1 into

location 54295. Most of the rest of the program is similar to

other routines you've seen, with the exception of lines 24 and

25. These two lines establish a FOR-NEXT loop to create a

number range from 0 to 255, then POKE those values into the

high byte of the two-byte cutoff point control register. The

cutoff point quickly rises from a low frequency to a high

frequency.

Changing the filter changes the sound you hear. Alter line

11 so that the first statement POKEs 54296 with 47 (for a

band pass filter and volume at 15) or 79 (for a high pass filter

and volume at 15). The frequencies passed and blocked are

now different, which creates a new sound.

You've heard how the different cutoff points affect the

sound. If you use a different waveform you'll get a different

filtered sound, since the filters modify the sound shapes. For

instance, change lines 14 and 54 in Program 4-12 to:

14 POKE 54276,17

54 POKE 54276,16:POKE 54283,0

As you can hear, the triangle wave produces a much M

softer sound than the pulse wave. On the other hand, the

sawtooth waveform makes a much harsher sound. Add these

lines to Program 4-12: if

14 POKE 54276,33

24 FOR R=0 TO 255 STEP ,5

54 POKE 54276,32:POKE 54283,0 M

By changing the filters in each of the last two modifications to

Program 4-12, you can hear different effects. Experimenting ,—

with filters is perhaps the best way to learn exactly what they I 1

156

u

I 1
Advanced Functions

can do for your sounds. Change the filters, the voices that are

used, the cutoff points, and the sound frequencies in Program

] I 4-12 and its modifications. You'll be surprised at the effects

you'll create.

<"] Resonance
The process of filtering is a subtractive one. In other words,

you begin with a complete sound wave and then, by taking

out various parts of it, produce a new kind of sound.

Resonance is a process that adds to the sound wave,

emphasizing those parts that are near to the cutoff frequency.

When you use filters, try adding resonance. The change will

be dramatic.

To use resonance on the 64, you'll need to set additional

bits in location 54295. That location is also used to select the

voices to be filtered, so if you want to use resonance, you

need to add bit values together. Location 54295 looks like Fig

ure 4-12.

Figure 4~12. Resonance and Voice Filter Controls

Bit 7 6 5 4 3 2 10

Bit Value 128 64 32 16 8 1

Resonance Resonance" Resonance Resonance

External

Audio

Filtering

Voice 3

Filtered

Voice 2

Filtered

Voice 1

Filtered

Location 54295

If you want maximum resonance and are filtering voice 1,

you'll POKE location 54295 with 241 (128+64+32+16=240

for maximum resonance and 1 for filtering voice 1). Adding

this line to Program 4-12 will set resonance to the maximum

value, and emphasize the frequencies near the cutoff point:

11 POKE 54296,31:POKE 54295,241

Notice how the volume jumps when the frequency sweeps

past the selected cutoff point. These kinds of effects can be

used very effectively in generating sounds that appear to be

moving past, toward, or away from the listener. As in the

other examples of filtering, changing the type of filter will

157

LJ
4

Advanced Functions y~>

alter the sound. Try using the band pass or high pass filter

with various levels of resonance for even more unusual sound

effects. LJ

Putting It All Together _
Now that you've seen how to program even the more I I

advanced functions of the Commodore 64's SID chip, what

can you do with them? How can you use the sound capabili

ties in your own programs, especially in the games you'd like

to write? After all, that's one of the pleasures of creating

sound and music on the 64: using it to add a professional

touch to your own programs and games. For some people,

creating sound is its own reward, but for most of us, it's only

one portion of our programming techniques.

How can you add sound to other programs? It's not that

difficult once you know how to create the sound routines and

effects. It's only a matter of making the pieces fit. Chapter 5

shows you how to put it all together.

□

U

U

U

158 __

u

CHAPTER

Putting It All

Together

CHAPTER

5
n Putting It All

Together

By now you know how to create sounds and music on the

Commodore 64. You've seen how simple sounds are made,

how to create the exact effect you want, and even how to use

the more advanced functions of the SID chip such as filtering,

ring modulation, and synchronization. Along with the sound

editors in Chapter 2, these techniques allow you to produce

almost any sound or musical piece you can imagine.

Unfortunately, there's not much you can do with sound

effects alone. Sure, they're fun to create and listen to, but

that's probably not the reason why you wanted to learn how

to create sounds on your 64. Most programmers use sound,

not as an end in itself, but as an integral part of larger pro

grams. If you've used any commercial software, or typed in

programs and games from magazines, you know how

important sound is. Many times it's not only an enhancement,

it's a vital part of the program. Sound provides the program

user with information, feedback, and entertainment. Without

it, the program would seem dull. That's especially true of

game programs. Try playing your favorite arcade game with

the sound turned off and you'll see what I mean.

f"j You need a way (or preferably several ways) to add your
own sound effects and music to other, longer programs. It's

not just a matter of sticking them in the program wherever

!j they seem to fit. To successfully insert sound and music
routines in other programs, there are a number of things you

need to know and keep in mind. That's what this chapter will

I | try to show you.

161

5

Putting It All Together

u

u

Combinations and DATA
This chapter explains several ways of combining sound with -----

other programs on your Commodore 64. Most of the time |)
you'll want to put sound together with graphics, the pictures

you create on the screen. We'll concentrate on mixing sound

and graphics for that reason. LJ
We'll cover several methods of combining sound with

graphics. That will work best because combining the two ele

ments is often governed by the particular effect you're trying

to produce. Having a method available for several different

situations will give you a wider variety to choose from when

you begin to mix your own sounds with your own pictures.

In addition to combining sound with graphics, you'll also

see how to enhance the sound editors in Chapter 2. By using a

special DATA-making program, you'll be able to convert the

music produced by the editors into DATA statements that you

can include in your BASIC programs.

Finally, we'll use all this to create a simple videogame

that uses many of these techniques to show you a practical

application of what you've read. By the time you're finished

with this chapter, you'll be able to mix sounds and graphics

with ease.

Mixing Sound and Graphics
There are two major kinds of sounds that you'll want to com

bine with pictures on the Commodore 64. These are:

• Sounds produced as needed

• Sounds produced all the time

The reason to make this distinction is that the nature of

the actual sound is generally not as important as when you

want the sound played. For example, sounds that are pro

duced all the time must be interwoven into the structure of the .—,

program; however, sounds that are needed intermittently can LJ
simply be played at the proper moment by inserting the rou

tine (often called a subroutine) to play the sound and then r--,

returning to the program. I I

Sounds Produced as Needed
Since sounds that interrupt the program as they are needed LJ
are generally easier to program, we'll cover them first. These

sounds are not heard all the time, but are produced only in :■ -

162

U

5

Putting It All Together

response to some action that occurs from within your

program.

The bouncing ball. To show this kind of sound and

graphics combination, let's take a look at a simple program

which calls for sound only at certain times. A crude game

based on Pong, one of the first arcade games, this program cre

ates two barriers and a single bouncing ball. While the ball is

traveling between the two barriers, no sounds are needed. But

each time the ball strikes a barrier, a bounce-style sound effect

should be heard.

This program produces a sound and reverses the ball's

direction after each count of 25. The whole process is cyclic.

Since the ball will never do anything unexpected, you don't

need to concern yourself with actually interrupting the pro

gram to produce the sounds; they're simply planned ahead of

time.

Program 5-1. Bouncing Ball
For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix G

1 REM ** INITIALIZE SOUND REGISTERS ** :rem 240

2 REM :rem 22

3 FOR R=54272 TO 54296:POKER,0:NEXT :rem 234

4 POKE 54296,15:POKE 54275,8:POKE 54277,0:POKE 542

78,240:POKE 54273,50 :rem 213

5 PRINT"{CLR}{9 DOWN}{8 RIGHT}"; :rem 85

7 REM :rem 27

8 REM ** MOVE BALL TO THE RIGHT ** :rem 24

9 REM :rem 29

10 FOR R=0 TO 25 :rem 17

20 PRINT" {RVS} {OFF}{LEFT}"; jrem 175

30 FOR G=0 TO 35:NEXT :rem 130

40 NEXT :rem 163

41 REM :rem 73

42 REM ** PLAY SOUND ** :rem 177

43 REM :rem 75

45 GOSUB 110 :rem 123

46 REM :rem 78

47 REM ** MOVE BALL TO THE LEFT ** :rem 248

48 REM :rem 80

50 FOR R=25 TO 0 STEP -1 :rem 175

60 PRINT"{3 LEFT}{RVS} {OFF} "; :rem 237

70 FOR G=0 TO 35:NEXT :rem 134

80 NEXT :rem 167

81 REM :rem 77

82 REM ** PLAY SOUND ** : rem 181

83 REM :rem 79

163

5

Putting It All Together

85 GOSUB 110 :rem 127

90 GOTO 10 :rem 3

100 REM :rem 117

101 REM ** SOUND SUBROUTINE ** :rem 183

102 REM :rem 119

110 POKE 54276,65:POKE 54276,64 :rem 103

130 RETURN :rem 116

The sound registers are initialized in lines 3 and 4, before the

program sets up the pictures of the ball and barriers. Lines 45

and 85 call the subroutine which actually plays the sound.

Note that the sound is called automatically by the program; it

doesn't react to a particular situation (as in most programs

which use sounds produced as needed), but plays the sound

as soon as the FOR-NEXT loops in lines 10 and 50 have

counted up to or down from 25. The sound routine consists of

lines 110 and 130. Since all the other sound parameters were

set at the beginning of the program, all you have to do is turn

the gate bit on, select a waveform (both done by POKEing

location 54276 with 65), and then turn off the gate bit (POKE

54276,64). The RETURN in line 130 simply sends the program

back to the GOSUB command in line 45 or line 85.

However, adding sounds to pictures is usually more

complicated.

Planning for the unplanned: another bouncing ball. In

the program above, we used the PRINT command to place the

ball and barriers on the screen. Since the program was care

fully planned, it didn't need to check the screen to find the

barriers, but knew where they were and planned for them

ahead of time.

Unfortunately, it's not always so easy to plan for sounds.

Sometimes you'll want the program to be able to look at the

screen and determine whether it needs to play a sound, based

on what's there. This program POKEs the ball and barriers j j

onto the screen and PEEKs the locations that the ball will be (—'
moving to. If the barrier is in the next location, the ball __

bounces and the sound plays. V ~i

Program 5*2, POKEing and PEEKing for Sound

For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C. j j

1 REM ** INITIALIZE SOUND REGISTERS ** :rem 240

2 REM :rem 22

3 FOR R=54272 TO 54296:POKER,0:NEXT :rem 234 j"]

164

LJ

5

Putting It All Together

4 POKE 54296,15:POKE 54275,8:POKE 54278,240:POKE 5

4273,50 :rem 7

p-j 5 LB=1390:LC=55662:RB=1418:RC=55690:BL=1391:BC=556

63:DR=1

6 PRINT"{CLR}";

7 REM

8 REM ** SET UP BARRIERS **

9 REM

10 POKE LB,160:POKE LC,1

20 POKE RB,160:POKE RC,1

30 POKE BL,160:POKE BC,1

41 REM

42 REM ** MOVE BALL **

43 REM

45 POKE BL,32:POKE BC,6

50 IF PEEK(BL+DR)=160 THEN GOTO 110

60 BL=BL+DR:BC=BC+DR

70 POKE BL,160:POKE BC,1

75 FOR G=0 TO 10:NEXT

80 GOTO 45

90 REM

92 REM BOUNCE SUBROUTINE

100 REM

101 REM ** SOUND SUBROUTINE **

102 REM

110 POKE 54276,65:POKE 54276,64

121 REM

122 REM ** REVERSE DIRECTION **

123 REM

130 DR=DR* -1

140 GOTO 45

:rem 223

:rem 213

:rem 27

:rem 175

:rem 29

:rem 54

:rem 67

:rem 46

:rem 73

:rem 68

:rem 75

:rem 7

:rem 135

:rem 194

:rem 50

:rem 132

:rem 10

:rem 77

:rem 55

:rem 117

:rem 183

:rem 119

:rem 103

:rem 120

:rem 222

:rem 122

:rem 133

:rem 55

If you compare this with Program 5-1, it doesn't appear to be

much more versatile. The major changes are those that POKE

and PEEK the various screen memory locations to place the

ball and barriers on the screen, and then to erase the ball as it

moves. The sound is identical to that used in Program 5-1,

and it's called by much the same process. The difference is

that in Program 5-1, the sound was called automatically after

a certain time, while in this routine it's accessed only when a

condition is met.

That condition is established in line 50. If the number

found by PEEKing location BL (the ball's location in screen

memory) plus DR (the direction the ball moves in; a value of

either 1 or —1) is 160, the sound is played by calling the one-

line subroutine in line 110. What's happening here is that line

50 is looking at the space ahead of the path of the ball. That's

165

5

Putting It All Together

0

LJ

because it's PEEKing at the location of the ball (BL) plus or UJ
minus (from DR) 1. If that location contains a character with

screen code 160 (the character which makes up the ball and jj
barriers), then a bounce sound is played. Any other time, the

sound isn't called.

Adding a routine that allows you to move the barriers M

isn't too difficult and will let you hear the bouncing sound no

matter where the barriers are. Take a look at Program 5-3,

which is an expanded version of the previous program.

Program 5-3* Moving Barriers

For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

1 REM ** INITIALIZE SOUND REGISTERS ** :rera 240

2 REM :rem 22

3 FOR R=54272 TO 54296:POKER,0:NEXT :rem 234

4 POKE 54296,15:POKE 54275,8:POKE 54278,240:POKE 5

4273,50 :rem 7

5 LB=1390:LC=55662:RB=1418:RC=55690:BL=1391:BC=556

63:DR=1 :rem 223

6 PRINT"{CLR}"; :rera 213

7 REM :rem 27

8 REM ** SET UP BARRIERS ** :rem 175

9 REM :rem 29

10 POKE LB,160:POKE LC,1 :rem 54

20 POKE RB,160:POKE RC,1 :rem 67

30 POKE BL,81:POKE BC,1 :rem 0

42 REM ** MOVE BALL ** :rem 68

43 REM :rem 75

45 OL=BL:OC=BC :rem 93

60 BL=BL+DR:BC=BC+DR :rem 194

61 IF PEEK(BL)=160ORBL<LB+1ORBL>RB-1THEN BL=OL:BC=

OC:GOTO91 :rem 130

63 POKEBL,81:POKEBC,1:POKEOL,32:POKEOC,6:POKELB,16

0:POKELC,1 :rem 7

64 POKERB,160:POKERC,1 :rem 75

75 FOR G=0 TO 10:NEXT :rem 132 jj
78 REM :rem 83

79 REM **** MOVE BARRIER ROUTINE **** :rem 8

81 OB=LB:OC=LC : rem 93 f]

82 GETA$:IF A$=""THEN42 : rem 243 LJ
83 IF A$="{F1}"THEN 150 :rem 42

84 IF A$="{F3}"THEN 160 : rem 45

85 IF A$="{F5}"THEN 170 :rem 48 I I
86 IF A$="{F7}IITHEN 180 : rem 51

90 GOTO42 :rem 8

91 POKELB, 160:POKELC,1:POKERB, 160:POKERC,1 : rem 90 i ']

166

U

5

Putting It All Together

; 92 REM BOUNCE SUBROUTINE :rem 55

100 REM :rem 117

_ 101 REM ** SOUND SUBROUTINE ** : rent 183

![102 REM :rem 119
110 POKE 54276,65:POKE 54276,64 :rem 103

130 DR=DR* -1 :rem 133

PI 140 GOTO 42 :rem 52

! 150 REM :rem 122
151 REM ** MOVE LEFT BARRIER TO LEFT ** :rem 90

152 REM :rem 124

153 OB=LB:OC=LC :rem 141

154 LB=LB+1:LC=LC+1 :rem 64

155 POKE LB,160:POKE LC,1:POKEOB,32:POKEOC,6

:rem 88

159 GOTO 42 :rem 62

160 REM :rem 123

161 REM * MOVE LEFT BARRIER TO RIGHT ** :rem 132

162 REM :rem 125

163 OB=LB:OC=LC :rem 142

164 LB=LB-1:LC=LC-1 :rem 69

165 POKE LB,160:POKE LC,1:POKEOB,32:POKEOC,6

:rem 89

169 GOTO 42 :rem 63

170 REM :rem 124

171 REM * MOVE RIGHT BARRIER TO LEFT ** :rem 133

172 REM :rem 126

173 BR=RB:CR=RC :rem 161

175 RB=RB+1:RC=RC+1 :rem 91

176 POKERB,160:POKERC,l:POKEBR,32:POKECR,6:rem 109

179 GOTO 42 :rem 64

180 REM :rem 125

181 REM * MOVE RIGHT BARRIER TO RIGHT * :rem 175

182 REM :rem 127

183 BR=RB:CR=RC :rem 162

185 RB=RB-1:RC=RC-1 :rem 96

186 POKERB,160:POKERC,l:POKEBR,32:POKECR,6:rem 110

189 GOTO 42 :rem 65

; ; Now you can move the barriers left and right by pressing the

function keys (the keys on the far right of the keyboard). The

f1 key moves the left barrier to the right, while the f3 key

I I moves it to the left. Pressing the f5 key moves the right barrier

to the right, and the f7 key moves it to the left. If you press

the f3 or f5 key enough times, the barrier will move to the line

\ \ above or below, respectively. If you do this, the ball has to

travel even further before it bounces off.

Although much of this program is similar to Program 5-2,

167

u
5

Putting It All Together

LJ

there are some obvious differences. First of all, the program —l

can read the function keys when you press them. Lines 82-86

do this. If one of the four function keys is pressed, then the | j

program goes to the appropriate subroutine in line 150, 160, 1—

170, or 180 to move the barrier in the right direction. In those

subroutines, the old locations of the barriers (both in screen | 1

and color memory) are changed to the new locations, the new *—^
locations have 1 or — 1 added to them (signifying movement

to the right or left), and then the new positions are POKEd

into memory. The old location is erased with a space (screen

POKE code 32), and then the routine returns to line 42.

The sound routine is identical to that in Program 5-2. It's

called in much the same way, by PEEKing into the next loca

tion and seeing if there's anything there. If there is, that

means a collision is about to happen, and the sound is played.

The statements in line 61 check for collisions, no matter where

they are on the screen, and access the sound effect if it's

needed. That line is rather involved, so let's take a closer look

at its logic. It's important to our discussion of mixing sound

and graphics, for this is the line that actually decides if sound

should be played.

If the location of the ball character (BL) contains 160,

meaning the barrier character, or if the ball's location is less

than the left barrier's location plus one, then the sound will

play. That's expressed by the part of the line which reads IF

PEEK(BL)=160ORBL<LB+l. In other words, if the ball is

moving to the left, it will "see" the barrier character as it tries

to occupy the same location. If the ball character is in the loca

tion just to the right of the left barrier (LB + 1) and is trying to

move even further to the left (trying to make BL less than

LB+1), it will also "see" the barrier. Either of those con

ditions, if true, will access the sound because the THEN por

tion of line 61 will execute. The part of the first statement j »

which reads ORBL>RB—1 does the same thing, only when <—'
the ball is moving to the right and trying to go even further in

that direction when it is next to the right barrier. If that con- f /

dition exists, the program detects the right barrier and again '—'
calls for the bouncing sound to play.

As you can see, the process of PEEKing and POKEing can []

be involved. Its versatility usually outweighs the complicated u-j

programming you have to go through, however.

168

u

LJ

5

Putting It All Together

Music box. Another application for this kind of program

is to use the ball character as a cursor on the screen and use

P^ the barriers to call DATA. For example, we could place musi

cal notes on the screen and use the cursor to play the notes as

it passes over them, much like the way a music box plays

f""| notes as the tines of the musical drum pick them.

Program 5-4* Music Box
For mistake-proof program entry, be sure to read "Automatic Proofreader/' Appendix C.

1 REM ** INITIALIZE ** :rem 175

2 REM :rem 22

3 FOR R=54272 TO 54296:POKER,0:NEXT:POKE 54275,8:P

OKE 54278,240 :rem 243

4 POKE 54296,15:POKE 54275,8:POKE 54278,240 :rem 8

9 CR=1024 :rem 210

20 REM :rem 70

25 REM *** MUSICAL NOTE DATA *** :rem 165

27 REM :rem 77

29 DIM U(12),L(12) :rem 122

30 U(3)= 33{2 SPACES}: L(3)= 134 :rem 190

32 U(4)= 37{2 SPACES}: L(4)= 161. :rem 198

34 U(5)= 42{2 SPACES}: L(5)= 60 :rem 148

35 U(6) = 44{2 SPACES}: L(6)= 191 :rem 206

37 U(7)= 25{2 SPACES}: L(7)= 29 :rem 161

39 U(l)= 28{2 SPACES}: L(l)= 48 :rem 155

41 U(2)= 31{2 SPACES}: L(2)= 164 :rem 191

50 REM :rem 73

55 REM **** CREATE MUSIC DISPLAY **** :rem 233

57 REM :rem 80

58 PRINT"{CLR}";:FOR M=0 TO 5 :rem 191

60 PRINT"{4 SPACES}C{3 SPACES}C{3 SPACES}D

{3 SPACES}E{3 SPACES}C{3 SPACES}E{3 SPACES}D"

:rem 18

61 PRINT "C{3 SPACES}C{3 SPACES}D{3 SPACES^

{3 SPACES}C{10 SPACES}B" :rem 204

— 62 PRINT"C{3 SPACES}C{3 SPACES}D{3 SPACES}E

I ! {3 SPACES}F{3 SPACES}E{3 SPACES}D{3 SPACES}C
{3 SPACES}B{3 SPACES}G{3 SPACES}A{3 SPACES}B

{3 SPACES}C{11 SPACES}C" :rem 236

H 63 NEXT srem 168
1 : 112 REM :rem 120

115 REM *** MOVE CURSOR/PLAY MUSIC *** :rem 114

r-, 117 REM :rem 125

} \ 120 N=PEEK(CR) :rem 41

125 POKE CR,N+128 :rem 156

130 IF N>7THEN 150 :rem 171

n 145 GOTO 205 :rem 106

169

5

Putting It All Together

150 POKE CR,N :rem 212

160 CR=CR+1:IF CR=2023 THEN CR=1024 :rem 132

165 GOTO 120 :rem 104

200 REM :rem 118

201 REM ** SOUND SUBROUTINE ** :rem 184

202 REM :rem 120

205 POKE 54273,U(N):POKE 54272,L(N) :rem 111

210 POKE 54276,65 :rem 97

220 FOR R=0 TO 40:NEXT :rem 186

230 POKE 54276,64 :rem 98

240 GOTO 150 :rem 101

This program uses some rather elaborate ways to create the

song. Notice the upper and lower pitch values that are initial

ized in lines 30-41. These are the pitch values that will later

be POKEd into the appropriate control registers to actually

produce the individual notes as the cursor moves across them.

The notes, as initialized, are: C, D, E, F, G, A, and B. Line 30,

for instance, establishes the pitch values for the C note.

Lines 58-63 PRINT the notes on the screen. Using this

program and the pitch values set up earlier, you could alter

these lines to PRINT any combination of notes on the screen,

letting the cursor "play" the tune. The next major section of

the program moves the cursor and plays the musical notes

when the cursor passes over them. This is done through a pro

cess of PEEKing and POKEing to screen memory, seeing

where the cursor is (line 120), and checking to see that the

location is a space and not a letter from A to G (line 130). If

the screen POKE code in the location isn't greater than 7, it

means there's a note character there, and the program goes to

line 205 to play the note. Line 160 moves the cursor one loca

tion to the right, and if it's at the bottom right-hand corner, it

wraps around to the upper left-hand corner and starts all over

again.

The sound routine isn't much longer than in the previous M

routines in this chapter. The pitch values initialized earlier are

now POKEd into the correct upper and lower control registers,

the pulse waveform is enabled and the gate bit turned on, a j^J

short sustain delay loop plays the note, and then the gate bit

is turned off.

To change the musical notes or the timing, you can ij
change the notes that are PRINTed on the screen in lines 60

through 62, adding as many additional lines as you need to

put your whole song on the screen. While this program is not

170

5

Putting It All Together

the most practical way of producing music, it does dem

onstrate how the screen and the music can interact.

Bouncing sprites. Sprites, like characters, can be put any

place on the screen. However, since sprites do not use screen

memory locations for placement, you can't PEEK to find them.

Sprites can be detected in another way, which is actually eas

ier to use than PEEKing and POKEing. By looking at two

memory locations called sprite collision registers, which signal

collisions between two sprites, or between a sprite and a

character, you can tell if a sprite has bumped into something.

You don't really need to know how this works, since it's a

matter of sprite control, not sound. The important thing is that

you can use the sprite collision registers to combine sound and

graphics.

Program 5-5. Sprite Collisions and Sound
For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

1 REM ** INITIALIZE SOUND REGISTERS ** :rem 240

2 REM :rem 22

3 FOR R=54272 TO 54296:POKER,0:NEXT:POKE54275,8:PO

KE54278,240 :rem 243

4 POKE 54296,15:POKE 54275,8:POKE 54278,240:POKE 5

4273,50 :rem 7

5 REM :rem 25

6 REM ** PUT OBSTACLES ON SCREEN ** :rem 184

7 REM :rem 27

10 PRINT"{CLR}{WHT}{9 DOWN}{6 RIGHT}{RVS} {OFF}

{25 RIGHT}{RVS} {OFF}":F=-7 :rem 79

11 REM :rem 70

12 REM ** PROGRAM SPRITE DATA ** :rem 248

13 REM :rem 72

15 FOR R=3200 TO 3262 :rem 17

17 POKE R,0:NEXT :rem 190

20 POKE 53269,1:POKE 2040,50 :rem 183

30 FOR R=3218 TO 3239 STEP 3 :rem 138

40 POKE R,255 :rem 173

50 NEXT :rem 164

70 POKE 53249,116:R=70:POKE 53248,R :rem 126

71 REM :rem 76

72 REM ** MOVE SPRITE ROUTINE ** :rem 41

73 REM srem 78

80 R=R+F srem 186

100 POKE 53264,ABS(256<R):POKE53248,RAND255

:rem 158

101 REM :rem 118

171

5

Putting It All Together

102 REM ** CHECK FOR COLLISIONS ** :rem 99 '—'
103 REM :rem 120

105 A=PEEK(53279): IP (AAND1=1) THEN 210 : rem 35 , • -,
110 GOTO 80 :rem 51 Sj
115 FOR R=0 TO 500:NEXT :rem 238

120 FOR R=350 TO 0 STEP -1 :rem 14

130 POKE 53264,ABS(256<R):POKE53248,RAND255 \ i

:rem 161 ^
140 NEXT srem 212

150 FOR R=0 TO 500:NEXT :rem 237

160 GOTO 80 srem 56

170 REM srem 124

180 REM ** BOUNCE SUBROUTINE ** srem 241

1^0 REM srem 126

210 POKE 54276,65:POKE 54276,64 srem 104

225 F=F*-1:R=R+(F*4):POKE53264,ABS(256<R):POKE5324
8,RAND255:K=PEEK(53279) :rem 174

230 GOTO 80 srem 54

In many ways, this is similar to the bouncing ball programs

you've already seen. The sound registers are initialized and

then two obstacles are placed on the screen. Lines 12-70 set

up the sprite that moves across the screen and bounces off the

barriers. Sprite 0 is used in this routine; it's enabled in line 20

by the POKE 53269,1 statement and then created by the next

three lines. Its X and Y positions are set to 70 and 116 in line

70.

The sprite is moved by lines 80 and 100. Collision check

ing, the vital part of this sound and graphics mixture, takes

place in lines 105-160. The important line is line 105. Loca

tion 53279 checks for collisions between sprites and other

characters on the screen (location 53278 checks for collisions

between sprites). When a collision occurs, the sprite involved

has its bit in location 54279 set to 1. Since we're using sprite

0, bit 0 is the one that will be set on collision. First the col

lision register is PEEKed. If the value found there is 1, mean- j!

ing a collision has happened, then the statement A AND1 = 1

is true and the program calls the sound subroutine to produce

the bouncing sound. If the value in that bit is 0, no collision ^J

has occurred, and no sound is played.

The sound subroutine you've seen before. The waveform

and gate bit are turned on, then off. The rest of the program Hj
resets several variables and moves the sprite. The last state

ment in line 225, K=PEEK(53279), is necessary to clear the

172

5

Putting It All Together

collision register so that the next time it's looked at it won't

give a wrong value.

[""] For more detailed information on how to create sprites
and use them in your programs, refer to such books as Com

modore 64 Programmer's Reference Guide or COMPUTERS Ref-

r"| erence Guide to Commodore 64 Graphics. The thing to keep in
mind concerning sound is that you can easily use the sprite-to-

sprite or sprite-to-character collision registers to call sound at

specific points in your program or game. In many ways, it's

easier than checking for character locations using POKEs and

PEEKs. As with most programming techniques, experimenta

tion is important.

Background Sounds
Though each of the examples so far has been different in some

way, they all have had one thing in common: The sounds

were produced as a result of some timing function or an event

occurring on the screen. In this section, we'll concentrate on

sounds that are produced while something else is going on.

Such sounds come in many forms and are used for dif

ferent reasons and effects. Perhaps you want a continuous

sound playing in the background as the game runs. Or even

background music that you've composed. You could use back

ground sound for other effects, too, such as a sound effect

that's connected to an action on the screen. It plays all the

time, however, instead of just once in a while, as when you

call a sound subroutine. Engine noises, footsteps, or wind

noise might be some of the effects you'll want to use to

emphasize onscreen actions. These kinds of continuous sounds

are sometimes simple, other times more complicated. You can

create effects that start with one spund and then change later.

They're more complex, but still not too difficult to program.

PJ Sounds connected to an action. The first background
sound we'll look at begins and continues while the action

takes place onscreen. In this first example, we'll take advan-

[""] tage of the fact that the Commodore 64's SID chip continues
making a sound as long as it's not turned off.

f"j Program 5-6, Lawn Mower

For mistake-proof program entry, be sure to read "Automatic Proofreader/' Appendix C.

1 REM ** INITIALIZE SOUNDS & SCREEN ** :rem 113

H 2 REM :rem 22H

173

5

Putting It All Together

3 FOR R=54272 TO 54296:POKER,0:NEXT :rem 234

4 POKE 54296,15:POKE 54275,8:POKE 54278,240 :rem 8

5 POKE 54273,1:POKE 54272,1:POKE 54276,65 :rem 152

6 PRINT" {CLR}11 :rem 154

10 REM :rem 69

20 REM **** LAWN/GRASS SHAPE TABLE **** :rem 80

30 REM :rem 71

40 LM$="g53&A§MRED}{DOWN}{2 LEFT}N{DOWN}
{2 LEFT}N{DOWN}{3 LEFT}{BLK}WW{WHT}g*§{RVS}
{2 SPACES}{OFF}g7i" :rem 64

42 NM$="g5|{2 SPACES}{RED}{DOWN}{2 LEFT} {DOWN}
{2 LEFT} {DOWN}{3 LEFT}{BLK}{2 SPACES}{WHT}
{3 SPACES}g7|" srem 7

45 CG$="{GRN}{UP}{2 LEFT}:.:.{UP}{3 LEFT}:{2 DOWN}

•••" :rem 159
47 NG$="{GRN}{UP}{2 LEFT}{4 SPACES}{UP}{3 LEFT}

{2 DOWN}::." :rem 186

50 GR$="{GRN}{5 SPACES}-GTY-TYGH-TYG-GHT-GHT—GHHG

52

55

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

245

250

260

270

290

GC$="{GRN}{UP}{2 LEFT}:."

PO$="{HOME}{23 DOWN}"

REM

:rem

:rem

:rem

:rem

REM **** DISPLAY LAWN & MOWER **** :rem

REM

PRINT PO$;GR$;"{3 UP}{2 RIGHT}";

{HOME}"

REM

:rem

rLM$,-"g7|
:rem

:rem

REM **** REV UP LAWN MOWER **** :rem

REM

POKE 54276,65

FOR R=l TO 3 STEP.3

POKE 54273,R

FOR T=0 TO R*30:NEXT

POKE 54276,64

FOR T=0 TO R*30:NEXT

POKE 54276,65:NEXT

REM

REM **** Mow LAWN ****

REM

FOR R=0 TO 30

PRINT PO$;GR$;"{3 UP}{2 RIGHT}1

FOR T=0 TO 20: NEXT

PRINT PO$;GR$;"{3 UP}{2 RIGHT}1

GR$=LEFT$(GR$,LEN(GR$)-1)

NEXT

POKE 54276,64:POKE 54296,0

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

I;LM$;CG$;

:rem

:rem

•;NM$;NG$;

:rem

srem

:rem

:rem

212

231

72

74

147

76

65

117

20

119

98

175

72

58

101

60

225

118

236

120

65

102

193

116

102

216

55

LJ

LJ

174

LJ

n
5

Putting It All Together

n
300 PRINT P0$;GR$;"{3 UP}{2 RIGHT}";LM$;GC$;"%73

{HOME}" :rem 84

■—I 310 PRINTTAB(14)"LAWN MOWED I" :rem 193

(• 320 GOTO 320 : rem 99

rn The lawn mower motor sound in this program is created

I I by selecting a very low pitch. The pitch values are first set to 1

in line 5 for both the upper and lower control registers. Later,

in line 150, the value of the upper register changes slightly.

Turning the gate bit on, then off, then on again in lines 130-

190, produces the sound effect.

The lawn mower moves across the lawn, and when it

stops, the sound is turned off. A simple message displays at

the top of the screen, and by continually going to line 320, the

program prevents the READY message from spoiling the pic

ture. As you can see, the program initializes the sound control

registers and starts the sound by enabling the pulse waveform

and turning on the gate bit. The sound continues as the rest of

the program executes. When the program has run, the sound

is turned off in line 290. Simple, isn't it?

Changing sounds on the fly. As you can see, some

sounds need only be turned on and they'll run without further

instructions. In some applications, however, you may want to

use sounds that change while the program is in the middle of

animating a figure. Since these sounds are changed during the

program, there must be a way to update the picture and sound

as the animation occurs. It's best to alternate the two opera

tions, updating one, then the other, each time the program

goes through a loop. Program 5-7 uses this method of mixing

sound and graphics.

Program 5-7 • Helicopter Sound and Animation
^^ For mistake-proof program entry, be sure to read "Automatic Proofreader/' Appendix C.

! i 1 REM ** INITIALIZE SOUND REGISTERS ** :rem 240
2 REM :rem 22
3 FOR R=54272 TO 54296:POKER,0:NEXT :rem 234

H 4 POKE 54296,15:POKE 54275,8:POKE 54278,240 :rem 8
5 POKE 54273,1:POKE 54272,1:POKE 54276,65 :rem 152

6 REM :rem 26

— 7 REM *** HELICOPTER DISPLAY SHAPES *** :rem 224

II 8 REM :rem 28
10 REM :rem 69
11 REM HELICOPTER (BLADE LEFT) :rem 23

n 12 REM srem 71

~ 175

5

Putting It All Together

15 A$="{8 SPACES}g5 OigP3gF3{25 SPACES}"

irem 83

20 A$=A$+"{13 SPACES}g@igJ3{3 SPACES}g3 @1
gAlj:{l7 SPACES}11 :rem 150

30 A$=A$+M{12 SPACES}{RVS}£{6 SPACES}{OFF}£ J
gXi{l7 SPACES}" " ":rem 86

40 A$=A$+"{12 SPACES}{RVS}{4 SPACES}{OFF}£g2 T|
{21 SPACES}" ~":rem 109

50 A$=A$+"{12 SPACES}g4 T^ :rem 69

60 REM :rem 74

61 REM HELICOPTER (BLADE RIGHT) :rera 111

62 REM :rem 76

80 B$="{14 SPACES }gD>|gPig5 O§{19 SPACES}"

:rem 71

90 B$=B$+"{13 SPACES}g@igJi{3 SPACES}g3 @lU
gSi{l7 SPACES}" Trem 169

100 B$=B$+"{12 SPACES}{RVS}£{6 SPACES}{OFF}£
gZ3K{17 SPACES}" :7em 119

110 B$=B$+"{12 SPACES}{RVS}{4 SPACES}{OFF}£

g2 T§{21 SPACES}" :rem 157

111 B$=B$+"{12 SPACES}g4 Ti :rem 117

112 REM :rem 120

113 REM HELICOPTER (BOTH -FAST-) — :rem 79

114 REM :rem 122

122 C$="{8 SPACES}g5 OigPigIigPig5 Oi

{19 SPACES}" :rem 183
123 C$=C$+"{13 SPACES}g@§gJi{3 SPACES}g3 @3U

gS|{l7 SPACES}" :rem 216

124 C$=C$+"{12 SPACES}{RVS}£{6 SPACES}{OFF}£

gZ3K{l7 SPACES}" :rem 127
125 C$=C$+"{12 SPACES}{RVS}{4 SPACES}{OFF}£

g2 T^{21 SPACES}" :rem 165

126 C$=C$+"{12 SPACES}g4 Tl :rem 125

127 REM :rem 126

128 REM **** DISPLAY HELICOPTER **** :rem 212

129 REM :rem 128

130 PRINT"{WHT}{CLR}":SP$="{HOME}{18 DOWN}

{8 RIGHT}" :rem 172

131 REM :rem 121

132 REM **** REV UP HELICOPTER **** :rem 75

133 REM :rem 123

140 FOR G=0 TO 255 STEP 5 :rem 224

150 POKE 54272,G :rem 60

160 PRINTSP$;A$:PRINTSP$;B$:NEXT :rem 51

171 REM :rem 125

172 REM **** HELICOPTER TAKE OFF **** :rem 189

173 REM :rem 127

240 PRINTSP$;C$:rem 140

250 FOR R=30 TO 0 STEP -.75 :rem 70

176

5

Putting It All Together

255 POKE 54296,R/2 :rem 180

260 PRINT:FOR P=0TO10:NEXT:NEXT :rem 239

r-| 270 PRINT TAB(15) "TAKE OFF!11 :rem 25

i i 280 GOTO 280 :rem 109

_-. Most of this program listing is used to create the picture of the

i helicopter. The parts that update the sound and graphics each

time through the loop are relatively short. Look at the Rev Up

Helicopter routine in lines 140-160 and the Helicopter Takeoff

routine in lines 240-260. This is where the updating takes

place. For instance, as the helicopter's motor speeds up (lines

140 and 150), the picture is changed accordingly in line 160.

Each time through the FOR-NEXT loop, the sound and then

the graphics are altered. The order of execution is reversed

when the helicopter takes off, for the picture is first changed

in line 240, and the sound in line 255. Even though the two

operations are done in separate lines, it happens so fast that it

seems they're taking place at the same time.

Background music. Music is one of the most noticeable

aspects of sound in many programs, especially in games. The

type of music and its pace have an important effect on what

the player thinks of the game. What would Pac-Man be with

out its background musical score? When you're creating graph

ics that move about the screen, music can add a professional

touch to the display. It's not necessary, but it will certainly

enhance the program.

Music played as background to animation can be syn

chronized to that animation or it can play independently. Of

course, it's easier to create a musical piece that's synchronized

to the animation, because it requires no additional timing. All

you need to do is change the notes each time you update the

animation, much like we did in the helicopter demonstration.

r~\ Synchronizing music and animation can be very effective

r i because both components become tightly interwoven. One
easy way to do this is by simply marking time with the dis-

r-i play as the music is played. Program 5-8 is a good example.

Program 5-8. Title Screen
For mistake-proof program entry, be sure to read "Automatic Proofreader/' Appendix C.

90 REM **** MUSIC DATA **** :rem 56

95 REM :rem 82

100 FOR L=0 TO 25:PRINT:NEXT :rem 123

H 200 DATA 33,134,100,0,33,134,100,0,37,161,100,0,42
' ' ,60,100,0,33,134,100,0,42,60 :rem 161

177

H

Putting It All Together

210

220

230

240

250

251

252

253

260

261

270

271

272

273

280

290

300

310

320

321

322

323

360

361

362

363

370

371

372

373

380

390

400

410

411

412

413

420

430

178

DATA 100,0,37,161,100,0,25,29,100,0,33,134,100

,0,33,134,100,0,37,161,100,0 :rem 161

DATA 42,60,100,0,33,134,100,0,0,0,0,100,31,164

,100,0,0,0,0,100,33,134,100,0 :rem 175

DATA 33,134,100,0,37,161,100,0,42,60,100,0,44,

191,100,0,42,60,100,0,37,161 :rem 173

DATA 100,0,33,134,100,0,31,164,100,0,25,29,100

,0,28,48,100,0,31,164,100,0 :rem 118

DATA 33,134,100,0,0,0,0,100,33,134,100,0,999,9

99,999,999 srem 144

REM :rem 124

REM ** INITIALIZE SOUND REGISTERS * :rem 46

REM :rem 126

FOR R=54272 TO 54296:POKER,0:NEXT :rem 79

POKE 54296,15:POKE 54275,8:POKE 54278,240:POKE

54276,65 :rem 117

DIM A$(31)

REM

REM ** SCREEN TITLE DATA TABLE **

REM

FOR R=0 TO 31:A$(R)="*":NEXT

A$ (9) = "YH :A$ (10) = IIA" :A$ (11) = "Nn :A$ (12

13) = "E" :A$ (14) = MEM :A$ (15)=" M

IL":A$(21) = IIEM

A$(8)=" M:A$(22)=" "

PRINTM{CLR}{7 DOWN} {4 RIGHT}11;

REM

REM **** GET MUSIC DATA ****

REM

READ H,L,LE,P:IF H=999 THEN 420

REM

REM *** DISPLAY NEXT CHARACTER ***

REM

PRINTA$(I);:I=I+1

REM

REM *** PLAY NEXT NOTE ***

REM

POKE 54272,L:POKE 54273,H

FOR R=0 TO 3*(P+LE):NEXT

POKE 54276,64:POKE 54276,65

GOTO 360

REM

REM ** TURN OFF SOUND/CLR SCREEN **

REM

POKE 54276,64:POKE 54296,0

GOTO 430

:rem 141

:rem 126

:rem 235

:rem 128

:rem 173

= "K" :A$ (

: rem 195

l:A$(19)="DM:A$

:rem 29

:rem 216

:rem 31

:rem 122

:rem 70

:rem 124

:rem 108

:rem 126

:rem 93

:rem 128

:rem 198

:rem 127

:rem 39

:rem 129

:rem 40

:rem 24

:rem 105

:rem 103

rrera 122

:rem 160

:rem 124

:rem 50

:rem 103

LJ

U

U

u

u

5

Putting It All Together

Once the music DATA, the sound registers, and the title

_^ screen DATA are established, the program begins putting

f ■ characters on the screen and playing notes. Storing the charac

ters in an array allows you to use a single line to print the

fmmi various letters and symbols on the screen. Line 370 does this.

I | As each character is placed on the screen, the appropriate note

plays. Lines 380-410 play the notes, using the values obtained

from the DATA statements near the top of the program. Line

360 actually READs the DATA, while line 380 POKEs the

upper and lower pitch values into the register.

This program's loops are similar to those in Program 5-7

in that the sound and picture are alternately updated to give

the impression of happening simultaneously.

Nonsynchronized music produces a more casual effect

than synchronized music. The idea is to produce a picture that

runs at a rate which appears to be unrelated to the music.

Since music is generally rhythmic, it will require a continuous

clock while the program is running if it is to play all the time.

While the music is running, it's possible to use the same clock

to trigger events on the screen. By doing this, it might seem

that the sound and picture could be synchronized. However,

by running the clock at a very fast rate and triggering at dif

ferent times, the picture and sound can appear to be running

at unrelated rates. Type in and RUN Program 5-9 to hear and

see this nonsynchronization.

Program 5*9. Nonsynchronized Sound and Graphics

For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

90 REM **** MUSIC DATA **** :rem 56

95 REM :rem 82

99 FOR L=0 TO 25:PRINT:NEXT :rem 92

100 DATA 33,134,100,0,33,134,100,0,37,161,100,0,42

j—| ,60,100,0,33,134,100,0,42,60 :rem 160

i I 105 DATA 100,0,37,161,100,0,25,29,100,0,33,134,100
,0,33,134,100,0,37,161,100,0 :rem 164

110 DATA 42,60,100,0,33,134,100,0,0,0,0,100,31,164

F; ,100,0,0,0,0,100,33,134,100,0 :rem 173
115 DATA 33,134,100,0,37,161,100,0,42,60,100,0,44,

191,100,0,42,60,100,0,37,161 :rem 175

I—I 120 DATA 100,0,33,134,100,0,31,164,100,0,25,29,100

I ,0,28,48,100,0,31,164,100,0 :rem 115
125 DATA 33,134,100,0,0,0,0,100,33,134,100,0,0,0,0

,100,999,999,999,999 :rem 98

!"""] 252 REM :rem 125

179

Putting It All Together

253 REM ** INITIALIZE SOUND REGISTERS * :rem 47

254 REM :rem 127

260 FOR R=54272 TO 54296:POKER,0:NEXT :rem 79

261 POKE 54296,15:POKE 54275,8:POKE 54278,240:POKE

54276,65 :rem 117

270 DIM A$(200) :rem 187

271 REM :rem 126

272 REM ** SCREEN TITLE DATA TABLE ** :rem 235

273 REM :rem 128

280 FOR R=0 TO 31:A$(R)="*M:NEXT :rem 173

285 FOR R=32 TO 200:A$(R)=M ":NEXT :rem 235

290 A$(9)="Yn:A$(10)="A":A$(11)=MNM:A$(12)=HK":A$(

13) = "E":A$(14) = IIE":A$(15) = M " :rem 195

300 A$(16)="DM:A$(17)="O":A$(18)=MOH:A$(19)="DM:A$

(20)="LM:A$(21)=ME" :rem 29

310 A$(8)=M ":A$(22)=" " :rem 216

320 PRINT"{CLR}{7 DOWN} {4 RIGHT}11; :rem 31

321 REM :rem 122

322 REM **** GET MUSIC DATA **** :rem 70

323 REM :rem 124

355 GOTO 480 :rem 114

360 READ H,L,LE,P:IF H=999 THEN 420 :rem 108

361 GOTO 380 :rem 110

362 REM :rem 127

363 REM *** DISPLAY NEXT CHARACTER *** :rem 94

364 REM :rem 129

370 PRINTA$(I);:I=I+1 :rem 198

371 RETURN :rem 123

372 REM :rem 128

373 REM *** PLAY NEXT NOTE *** :rem 40

374 REM :rem 130

380 POKE 54272,L:POKE 54273,H :rem 40

390 FOR R=0 TO 3*(P+LE):NEXT :rem 24

400 POKE 54272,0:POKE 54273,0 :rem 237

410 RETURN :rem 117

411 REM :rem 122

412 REM ** PLAY TUNE AGAIN ** :rem 245

413 REM :rem 124

420 RESTORE :rem 186

440 GOTO 360 :rem 106

450 REM **** SYSTEM TIMER **** :rem 51

460 REM :rem 126

480 IF X/2=INT(X/2) THEN GOSUB 360 :rem 94

485 IF X/2=INT(X/2) THEN X=X+1:GOTO 480 :rem 162

490 IF X/3=INT(X/3) THEN GOSUB 370 :rem 98

495 IF X/3=INT(X/3) THEN X=X+1:GOTO 480 :rem 165

500 X=X+1:GOTO 480 :rem 237

u

u

u

LJ

u

180

n

H

5

Putting It All Together

In Program 5-9, the music and the characters appear at

different times because the system timer (lines 450-500)

causes the program to jump to the Display Next Character

routine at lines 362-371 and the Play Next Note routine in

lines 372-410 at different counts of the timer. Of course, by

using a faster clock, one that incorporated fewer or faster sub

routines, you could introduce much more complex timing,

creating the illusion of totally nonsynchronized timing.

In order for the song to last as long as it takes the display

to appear, it has to be played more than once. The RESTORE

command in line 420 lets the program use the same DATA

statements over again to play the notes. Without this com

mand, you would have to enter the DATA statements at least

three times to make the sound and graphics end at the same

time.

Using Edited Music Files
You've got a better idea now of how to merge sound with

graphics on the screen. Using sound that's called either for

specific events, or for continuous background sound or music,

you can get impressive results. If you've already created sound

effects or music, however, you have to retype it all when you

add the sound to an existing program. If you're using DATA

statements to play notes, probably the most efficient method

of programming sound, that can be a chore.

You've probably already used the two sound editors in

Chapter 2 to create music. But all you could do with that

music, and the DATA numbers which would produce those

notes and pauses, is store it on tape or disk. You could later

load it to modify the notes, but that was all. There was no

way to take those DATA numbers and add them directly to

another program. Not without retyping them all.

The next program allows you to take those music files

and append them with any other programs simply and easily.

Program 5-10. Disk File Merger

For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

10000 REM GET/OPEN DATA FILE : rem 184

10001 REM :rem 214

10005 PRINT"{3 RIGHT}{WHT}{CLR}":INPUT"FILE NAME

§71";F$:rem 68

10010 OPEN 1,8,4,F$+".MUS,R" :rem 191

181

LJ
5

Putting It All Together , >

10011 REM :rem 215

10012 REM - FIRST LINE/LINE INCREMENTS- :rem 49

10013 REM :rem 217 . i

10015 INPUT "{WHT}STARTING LINE NUMBERB7>|" ; X LJ
:rem 90

10022 INPUT "{WHT}LINE INCREMENTSi7§"; LI :rem 88 _

10023 X$=STR$(X) :rem 117 j |
10030 L$=RIGHT$(X$,LEN(X$)-1)+" DATA " :rem 207

10032 REM :rem 218

10033 REM GET MUSIC DATA 2rem 190

10034 REM :rem 220

10040 INPUT#1,A$:BB=ST:CT=CT+1 :rem 13

10050 IF BB<>0 THEN 10090 :rem 220

10060 L$=L$+LEFT$(A$,LEN(A$)-1)+CHR$(44) :rem 72

10061 REM :rem 220

10062 REM DISPLAY DATA LINE :rem 157

10063 REM :rem 222

10070 IF LEN(L$)>76 THEN L$=LEFT$(L$,LEN(L$)-l):PR

INTL$:X=X+LI:GOTO10023 :rem 111

10080 GOTO 10040 :rem 39

10090 L$=LEFT$(L$,LEN(L$)-1):PRINTL$:rem 24

10100 CLOSE 1 :rem 153

If you're using a Datassette instead of a disk drive, replace

line 10010 in Program 5-10 with the following line:

10010 OPEN 1,1,0,F$+".MUS"

Note: You must use the extension .MUS on all of the music

files you create with either of the sound editors if you want to

read them using this program.

LOADing and line numbering. To allow you some

flexibility in appending the DATA statements with your own

programs, this routine doesn't insert the DATA statements in

your BASIC programs. Instead, it simply displays the DATA

statements on the screen. This allows you the option of chang

ing them before you put them into the other program. I j

After you've typed in and run Program 5-10, you'll first

be asked to enter the name of the music file. Make sure the

disk or tape which includes your music files is inserted in the | I

drive or Datassette. Do not include the extension .MUS in the

name when you enter it at this point. The program automati

cally adds the extension to the filename. This .MUS extension | j

is included so that you won't accidentally try to use a file

which does not contain music data created by the sound

editors. ' |

182

LJ

5

r— Putting It All Together

H
After you've entered the filename, the program asks you

to supply a starting line number. This should be the beginning

P| line number you want the DATA statements to have once
they're appended to your other program. Make sure that you

select line ranges that are vacant in the other program, or the

f"[DATA statements will overwrite sections when you put the
two pieces together. The line numbers for the DATA state

ments also need to be higher than the last line of the program

you'll append them to. For example, if your program runs

from line 100 to line 5000, make sure the first DATA state

ment is higher than 5000. You'll see why you have to do this

in a bit. Remember that if you have a program which READs

more than one set of DATA, the DATA needs to be in the

same order as the READ statements. In other words, if the

DATA statements which include the music values are at the

end of the program (as they should be; see above), the line

which READs those values should be the last such statement

in the program.

Finally, Program 5-10 asks you to enter the line increment

value. This will determine the numbering sequence. If you

enter 5010 for your starting line number and an increment

value of 10, the DATA statements will be numbered 5010,

5020, 5030, and so on.

Appending DATA. RUN Program 5-10, specify the mu

sic filename, the beginning line number, and the increment

value. The DATA statements will begin to appear on the

screen. Once nine DATA lines are displayed, which is the safe

maximum to have on the screen at one time, press the RUN/

STOP key. This will stop the program and give you the

opportunity to create a new program file consisting only of

DATA statements. To do this, first type NEW. This erases

everything in the computer's memory. Don't worry; you

[""} haven't lost the DATA lines. As long as they're on the screen,
you can still retrieve them. To do this, move the cursor key to

the beginning of the first DATA line and press RETURN. Re-

[""[peat this for all nine displayed lines. Next, SAVE these nine
lines to tape or disk, making sure to use a new filename. A

good idea would be to use the same name as the file created

[""] by the sound editor, but dropping the .MUS extension. The
program is now a program file, not a sequential file, and so

can be appended to yet another program.

!""! If you have more than nine lines of DATA statements,

183

u
5

Putting It All Together

U

you'll have to repeat the process. LOAD Program 5-10 again,

call the same music file (the one that had the .MUS extension)

from tape or disk, and specify the same beginning and M

increment values as you did earlier. When the program begins

to display the DATA lines, let the first nine scroll off the

screen so that you're looking at the next group of nine lines. I I

Type NEW again, LOAD the program file you've created

which has the first nine DATA lines in it, move the cursor up

to the first line you see on the screen (which is actually the

tenth DATA line), and hit RETURN to add the next nine lines

to the first nine. SAVE this longer version of your DATA pro

gram file by using SAVE''@0:jfUename",8 if you have a disk

drive. If you're using a Datassette, create another file called

filename. 1, or something like that. Now the program file has

18 lines of DATA. You can LIST it to make sure.

Repeat this process as often as necessary, adding nine

lines to the DATA program file in each step. When you finish,

you should have a program file on tape or disk that is a num

ber of DATA lines.

Let's go through an example. It may make it easier to

understand.

You've used the "One-Voice Sound Editor" program from

Chapter 2 and created a music file consisting of seventy-odd

notes. Using the SAVE option in the program, you saved the

note, length, and pause values to disk. SCALE.MUS is the

music file's name. (Remember that when you save music files

and want to later append them to other programs using Pro

gram 5-10, you must use the .MUS extension.)

After LOADing and RUNning Program 5-10, you enter

SCALE as the filename, line 20000 as the starting line, and 10

as the increment value. You picked 20000 as the starting line

because you know that the program you want to append the

DATA statements to runs from lines 100 to 19000. The DATA | j

lines will begin to display on the screen. As soon as line —'

20080 (the ninth line) shows on the screen, hit the RUN/

STOP key. The screen should look something like Figure 5-1. I j

All you see on the screen now is a series of DATA statements.

You first type NEW, which erases the program in the 64's

memory. The screen scrolls up, but all nine DATA lines are M

still on the screen. Move the cursor key up to line 20000 and

hit RETURN. The cursor moves down to line 20010. Repeat

this until all nine lines have been entered. Type LIST, and the j I

184

D

Z
l

Z
I

1
1
3

F
i
g
u
r
e

5
-
1
.
A
p
p
e
n
d
i
n
g

F
i
r
s
t
N
i
n
e
L
i
n
e
s

F
I
L
E
N
A
M
E

?
S
C
A
L
E

S
T
A
R
T
I
N
G
L
I
N
E
N
U
M
B
E
R

?
2
0
0
0
0

L
I
N
E
I
N
C
R
E
M
E
N
T
S

?
1
0

2
0
0
0
0
D
A
T
A

1
6
,
1
9
5
,
1
0
0
,
0
,
1
8
,
2
0
8
,
1
0
0
,
0
,
2
1
,

3
0
,
1
0
0
,
0
,
2
2
,
9
5
,
1
0
0
,
0
,
2
5
,
2
9
,
1
0
0
,
0
,
2
8
,
4
8

2
0
0
1
0
D
A
T
A

1
0
0
,
0
,
3
1
,
1
6
4
,
1
0
0
,
0
,
3
1
,
1
6
4
,
1
0
0

,
0
,
2
8
,
4
8
,
1
,
0
,
2
5
,
2
9
,
1
0
0
,
0
,
2
2
,
9
5
,
1
0
0

2
0
0
2
0
D
A
T
A

0
,
2
1
,
3
0
,
1
0
0
,
0
,
1
8
,
2
0
8
,
1
0
0
,
0
,
1
6

,
1
9
5
,
1
0
0
,
0
,
1
6
,
1
9
5
,
1
0
0
,
0
,
1
8
,
2
0
8
,
1
0
0
,
0

2
0
0
3
0
D
A
T
A

2
1
,
3
0
,
1
0
0
,
0
,
2
2
,
9
5
,
1
0
0
,
0
,
2
5
,
2
9

,
1
0
0
,
0
,
2
8
,
4
8
,
1
0
0
,
0
,
3
1
,
1
6
4
,
1
0
0
,
0
,
3
1
,
1
6
4

2
0
0
4
0
D
A
T
A

1
0
0
,
0
,
2
8
,
4
8
,
1
0
0
,
0
,
2
5
,
2
9
,
1
0
0
,
0

,
2
2
,
9
5
,
1
0
0
,
0
,
2
1
,
3
0
,
1
0
0
,
0
,
1
8
,
2
0
8
,
1
0
0
,
0

2
0
0
5
0
D
A
T
A

1
6
,
1
9
5
,
1
0
0
,
0
,
1
6
,
1
9
5
,
1
0
0
,
0
,
1
8
,

2
0
8
,
1
0
0
,
0
,
2
1
,
3
0
,
1
0
0
,
0
,
2
2
,
9
5
,
1
0
0
,
0
,
2
5

2
0
0
6
0
D
A
T
A

2
9
,
1
0
0
,
0
,
2
8
,
4
8
,
1
0
0
,
0
,
3
1
,
1
6
4
,
1

0
0
,
0
,
3
1
,
1
6
4
,
1
0
0
,
0
,
2
8
,
4
8
,
1
0
0
,
0
,
2
5
,
2
9
,
1
0
0

2
0
0
7
0
D
A
T
A

0
,
2
2
,
9
5
,
1
0
0
,
0
,
2
1
,
3
0
,
1
0
0
,
0
,
1
8
,

2
0
8
,
1
0
0
,
0
,
1
6
,
1
9
5
,
1
0
0
,
0
,
1
6
,
1
9
5
,
1
0
0
,
0
,
1
8

2
0
0
8
0
D
A
T
A

2
0
8
,
1
0
0
,
0
,
2
1
,
3
0
,
1
0
0
,
0
,
2
2
,
9
5
,
1

0
0
,
0
,
2
5
,
2
9
,
1
0
0
,
0
,
2
8
,
4
8
,
1
0
0
,
0
,
3
1
,
1
6
4
,
1
0
0

B
R
E
A
K
I
N
1
0
0
7
0

R
E
A
D
Y
.

••
o i

Putting It All Together

DATA lines 20000-20080 appear on the screen. Now you can

save this program file to tape or disk, using the name SCALE

(without the .MUS extension).

But there was more DATA than the nine lines could con

tain. So you have to repeat the process. LOAD Program 5-10

again, enter SCALE.MUS as the filename, 20000 as the line

number, and 10 as the increment value, just as you did before.

This time, however, let the DATA lines scroll up until line

20090 is near the top of the screen. It should look like Figure

5-2.

Type NEW to erase Program 5-10 from memory. LOAD

SCALE from tape or disk, and cursor up to line 20090. Hitting

the RETURN key six times completes the process. LIST the

program and you should see all the DATA lines, from 20000

to 20140.

Figure 5-2. Next Nine Lines

20090 DATA 0,31,164,100,0,28,48,100,0,25

,29,100,0,22,95,100,0,21,30,100,0,18

20100 DATA 208,100,0,16,195,100,0,16,195

,100,0,18,208,100,0,21,30,100,0,22,95

20110 DATA 100,0,25,29,100,0,28,48,100,0

,31,164,100,0,31,164,100,0,28,48,100

20120 DATA 0,25,29,100,0,22,95,100,0,21,

30,100,0,18,208,100,0,16,195,100,0,16

20130 DATA 195,100,0,18,208,100,0,21,30,

100,0,22,95,100,0,25,29,100,0,28,48,100

20140 DATA 0,31,164,100,0,31,164,100,0,2

8,48,100,0,25,29,100,0,25,29,100

186

5

Putting It All Together

To complete your creation of the program file SCALE,

type SAVE"@0:SCALE",8 for disk or SAVE"SCALE.l" if

P] you're using a Datassette. You've now got a program file
called SCALE (or SCALE. 1) which is a 15-line set of DATA

statements.

P] But you can't use this program file on its own to produce
music. You have to somehow append it to a longer program.

This last step is easy, even though it involves a number of

steps.

First of all, LOAD the program you want to append the

DATA statements to. Remember that this program's highest

line number should be lower than the lowest line number of

the DATA statement program file. Then, in direct mode (with

out line numbers), enter the following commands, hitting

RETURN after each line:

POKE 43,PEEK(45)-2

POKE 44,PEEK(46)

LOAD'"filename",8 (or just "filename" if using tape)

POKE 44,8:POKE 43,1

Substitute the name of your DATA program file for filename.

Make sure the disk or tape that includes the DATA program

file is in the drive or Datassette before you hit RETURN for

the third line of commands. The drive or Datassette will run

for a while. Then enter the last two POKE commands.

As long as the second program's line numbers are all

higher than the highest line number of the first program, this

method of appending programs will work. That's why we

used line numbers starting at 20000 for the DATA program

file example discussed earlier. After you've entered the above

commands, SAVE the appended program to tape or disk. Your

music DATA values are now part of your longer program or

n game.

1 { For instance, continuing with our example of SCALE, you

would load the longer program (say "GAME", with line num-

|—| bers from 1000 to 19000), then enter the first two lines of

1 ' commands. The third line would read LOAD"SCALE",8 for

disk, LOAD"SCALE.l" for tape. Once you've entered the last

r-j two POKEs, you could save the appended program as

! ' "GAME.2", or something like that.

187

5

Putting It All Together

How to Append DATA
As a handy reference, here are the steps you need to go

through to turn the music files created by your sound editors

into sections of another program.

1. LOAD and RUN Program 5-10. Specify filename (with

out .MUS extension), starting line, and line increment.

2. Let Program 5-10 display nine lines of DATA, then hit

RUN/STOP.

3. Type NEW. Cursor up to first line, then hit RETURN.

Repeat for all nine lines onscreen.

4. SAVE nine lines as the program file.

5. If you have more than nine lines of DATA, LOAD Pro

gram 5-10 again, using the same filename, starting line, and

increment. Let the screen scroll until the next nine lines are

displayed.

6. Type NEW.

7. LOAD DATA program file created in the fourth step,

cursor up to the first line displayed on screen, then hit

RETURN. Repeat for all other lines onscreen.

8. SAVE DATA program file again, using "@0\filename",%

or "filename.!".

9. When all the DATA statements are in the program file,

append it to your other program by LOADing the first pro

gram and entering the four lines of direct mode commands.

10. SAVE the appended version using SAVE and RE

PLACE or a new filename.

Putting the DATA to Work
If the music DATA that you're retrieving and appending to

other programs was made using the One-Voice Sound Editor,

the DATA is in the following order:

• TONE (High Pitch Value)

• TONE (Low Pitch Value)

• LENGTH (Of Note)

• LENGTH (Of Pause—if any)

You have to have a way to play the music, however. You

can either refer to the many examples earlier in this book that

READ DATA to create sounds and music, or you can use

a routine such as this one to READ the DATA statements and

play them back.

188

n
Putting It All Together

n

n

h
I

n

n

n

Program 5-11- READing Routine

For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

1000 REM :rem 165

1010 REM * INITIALIZE SOUND REGISTERS * :rem 45

1020 REM :rem 167

1030 FOR R=54272 TO 54296:POKER,0:NEXT :rem 123

1040 POKE 54296,15:POKE 54275,8:POKE 54278,240

:rem 153

1060 POKE 54276,65 :rem 149

1070 REM :rem 172

1080 REM **** READ MUSIC DATA **** :rem 180

1090 REM srem 174

1100 READ H,L,LE,P:IF H=999 THEN 1210 :rem 195
1110 REM :rem 167

1120 REM **** PLAY MUSIC **** :rem 175

1130 REM :rem 169

1140 POKE 54272,L:POKE 54273,H :rem 83

1150 FOR R=0 TO 1*(P+LE):NEXT :rem 65

1160 POKE 54272,0:POKE 54273,0 :rem 33

1170 GOTO 1100 :rem 196

1180 REM :rem 174

1190 REM **** TURN OFF SOUND **** :rem 172

1200 REM :rem 167

1210 POKE 54276,64:POKE 54296,0 :rem 96

1300 REM **** SAMPLE DATA **** :rem 212

1306 REM :rem 174

1310 DATA 33,134,100,0,33,134,100,0,37,161,100,0,4

2,60,100,0,33,134,100,0,42,60 :rem 212

1320 DATA 100,0,37,161,100,0,25,29,100,0,33,134,10

0,0,33,134,100,0,37,161,100,0 :rem 212

1330 DATA 42,60,100,0,33,134,100,0,0,0,0,100,31,16

4,100,0,0,0,0,100,33,134,100 :rem 134

1340 DATA 0,33,134,100,0,37,161,100,0,42,60,100,0,

44,191,100,0,42,60,100,0,37 :rem 120

1350 DATA 161,100,0,33,134,100,0,31,164,100,0,25,2

9,100,0,28,48,100,0,31,164 :rem 84

1360 DATA 100,0,33,134,100,0,0,0,0,100,33,134,100,

0 :rem 128

1370 REM :rem 175

1380 REM *** DUMMY DATA TO END SONG *** :rem 3

1390 REM :rem 177

1393 DATA 999,999,999,999 :rem 26

The DATA statements at the end of this routine (lines

1310-1360) are there to demonstrate the way the program

works. Ordinarily, your music DATA numbers would be here.

The part of the program that reads and plays the music is in

lines 1100-1210. Notice that line 1393 contains four extra

189

5

Putting It All Together

DATA numbers (999,999,999,999). These are used by the pro

gram to indicate the end of the song. When the program finds

the 999's, it jumps to the routine in line 1210.

To use the "Chord Editor," and append DATA program

files, follow the directions given earlier. Use Program 5-10,

create the DATA program file, and append it to the other pro

gram. You'll use the same set of direct mode commands to

append the two.

Playing back music created by the Chord Editor from

Chapter 2 is similar to the process you used above. However,

now the DATA is in a seven-number grouping:

• Voice 1 (Low Pitch Value)

• Voice 1 (High Pitch Value)

• Voice 2 (Low Pitch Value)

• Voice 2 (High Pitch Value)

• Voice 3 (Low Pitch Value)

• Voice 3 (High Pitch Value)

• Length (Of Note)

The following program has seven dummy values (999's).

Remember that this program will not play music that was cre

ated using the One-Voice Sound Editor because the two

DATA formats are incompatible.

Program 5-12. Chord Editor READer

For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

10 REM ** INITIALIZE SOUND REGISTERS **

20 REM

30 FOR R=54272 TO 54296:POKER,0:NEXT

39 POKE 54296,15

40 POKE 54275,8:POKE 54278,240

41 POKE 54282,8:POKE 54285,240

42 POKE 54289,8:POKE 54292,240

44 REM

45 REM *** GET DATA ***

46 REM

50 READ L1,H1,L2,H2,L3,H3,LE

60 IP Ll=999 THEN 140

64 REM

65 REM *** PLAY NOTE ***

66 REM

70 POKE 54272,L1:POKE 54273,HI

80 POKE 54279,L2:POKE 54280,H2

90 POKE 54286,L3:POKE 54287,H3

190

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

32

70

26

55

51

48

54

76

67

78

:rem 2

: rem

:rem

30

78

:rem 183

:rem

:rem

:rem

80

86

94

:rem 102

5

Putting It All Together

101 POKE 54290,65 :rem 92

102 POKE 54283,65 :rem 95

103 POKE 54276,65 :rem 98

104 REM :rem 121

105 REM *** PLAY FOR LENGTH OF NOTE ** :rem 246

106 REM :rem 123

110 FOR R=0 TO LE*15:NEXT :rem 117

114 REM :rem 122

115 REM *** TURN OFF NOTE *** :rem 209

116 REM :rem 124

120 POKE 54290,64 :rem 92

121 POKE 54283,64 :rem 95

122 POKE 54276,64 :rem 98

130 GOTO 50 :rem 50

134 REM :rem 124

135 REM *** END SONG *** :rem 135

136 REM :rem 126

140 POKE 54290,64 :rem 94

141 POKE 54283,64 :rem 97

142 POKE 54276,64 :rem 100

1305 REM **** DUMMY TONE VALUES **** :rem 143

1306 REM :rem 174

1307 DATA 999,999,999,999,999,999,999 :rem 154

To hear this routine play music, you have to create a music

file with the Chord Editor, change it to a program file, and

finally append it to this. Of course, you'd replace the seven

dummy values with your own set of DATA statements. Since

the values will be in the proper format, all you have to do is

append the DATA statements to the end of this program, and

you'll hear the chord combinations.

POKEing Music into Memory
There's another method of using the music data to create

sound, however. Instead of changing the music file produced

by one of the two sound editors into a DATA program file,

then appending the DATA statements to another program,

you can POKE the values into the 64's memory, and then

have the program PEEK those locations for you. Once you've

PEEKed those addresses, you can POKE the values back into

the correct sound control registers. This method may not be

appropriate for every program you write that uses sound, but

it is an interesting technique. It sounds harder than it is.

You have to be careful where you place the music DATA,

however. If you POKE it into an area of memory that is used

191

5

Putting It All Together

by your BASIC program, for example, it can be overwritten. A

safe place for this DATA begins with location 49152. BASIC

will never harm this area. Be aware, however, that many

machine language programs and routines use 49152 as a start

ing point for placing values. If your program includes some

machine language routines, make sure you're not trying to use

these locations for two purposes.

Program 5-13 takes the music files you created with a

sound editor and POKEs the DATA into memory, starting at

location 49152. You don't have to change the music files to

DATA program files. Nor do you have to actually append

them to your program. The process is much simpler.

First of all, type in and RUN Program 5-13. When it asks

you for the filename, supply it, making sure not to include the

.MUS extension. (As with the first method of using music files,

this technique requires that they be originally created with the

extension when you SAVE them using the sound editors.) The

program will load the music file and POKE the values into

memory, beginning at location 49152. It will also display the

last location it used to store the values. You'll need this num

ber later. Without turning off the computer, LOAD the other

program, the one that will actually play the music. We'll see

an example of this kind of program in a moment. First, here's

Program 5-13:

Program 5-13 • POKEing Music
For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

1000 PRINT "{WHT}{CLR}M: INPUT "FILE NAMEfc7:j ";F$

:rem 184

1010 OPEN 1,8,4,F$+".MUS,R" :rem 143

1020 CT=49152 :rem 156

1040 INPUT#1,A:BB=ST :rem 184

1050 POKE CT,A :rem 249

1060 CT=CT+1 :rem 142

1070 IF BB<>0 THEN 1100 :rem 118

1080 GOTO 1040 :rem 199

1100 CLOSE 1:PRINT CT :rem 199

If you're using a Datassette instead of a disk drive, change line

1010 in this program to:

1010 OPEN 1,1,0,F$+U.MUS"

Program 5-13 POKEs the music values into the available

192

Putting It All Together

H

memory space starting at location 49152 and then shows the

last address used. If you wanted, you could include this rou

tine as part of a longer program and have it load and POKE

the values directly. All you would have to do is set the final

address as another variable, and then later use that variable to

stop the music. As long as both the longer program and the

music file are on the same disk (this technique would be too

difficult to use with tape), the program would automatically

load and POKE the values, then use them to play the tune.

Program 5-14 is an example of a routine you could use

that would actually play the music. This program will play

only music you created through the One-Voice Sound Editor.

Note that you'll have to change the XXXXX characters in line

1105 to your own final address (as displayed for you by Pro

gram 5-13), in order to stop the music. If you don't put a

value here (and eliminate line 1105 entirely), you will first

hear your tune, then a series of random notes. What's happen

ing here is that the program is reading all of the computer's

memory from location 49152 on, PEEKing the values that are

normally there, and POKEing them into the higher and lower

pitch control registers. The computer is playing its own

memory.

n

n

n

Program 5-14. PEEKing Values—One-Voice Sound
Editor

For mistake-proof program entry, be sure to read "Automatic Proofreader/' Appendix C.

1000 REM :rem 165

1010 REM * INITIALIZE SOUND REGISTERS * :rem 45

1020 REM :rem 167

1030 FOR R=54272 TO 54296:POKER,0:NEXT :rem 123

1040 POKE 54296,15:POKE54275,8:POKE54278,240:CT=49

152 :rem 172

1060 POKE 54276,65 :rem 149

1070 REM :rem 172

1080 REM **** READ MUSIC DATA **** :rem 180

1090 REM :rem 174

1100 H=PEEK(CT):L=PEEK(CT+1):LE=PEEK(CT+2):P=PEEK(

CT+3):CT=CT+4 :rem 40

1105 IF CT>XXXXX THEN 1210 :rem 214

1110 REM :rem 167

1120 REM **** PLAY MUSIC **** :rem 175

1130 REM :rem 169

1140 POKE 54272,L:POKE 54273,H :rem 83

1150 FOR R=0 TO 1*(P+LE):NEXT :rem 65

193

5

Putting It All Together

1160 POKE 54272,0:POKE 54273,0 :rem 33

1170 GOTO 1100 :rem 196

1180 REM :rem 174

1190 REM **** TURN OFF SOUND **** :rem 172

1200 REM :rem 167

1210 POKE 54276,64:POKE 54296,0 :rem 96

Program 5-15 is a similar program for the Chord Editor. It

demonstrates how to play the music using the values earlier

POKEd into memory. The main difference between this pro

gram and the previous routine is that seven values are

PEEKed instead of four to play the notes and a pause. Again,

make sure you change line 1105 to the highest address dis

played by Program 5-13 so that the music stops.

Program 5-15. PEEKing Values—Chord Editor

For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

1000 REM :rem 165

1010 REM * INITIALIZE SOUND REGISTERS * :rem 45

1020 REM :rem 167

1030 FOR R=54272 TO 54296:POKER,0:NEXT :rem 123

1040 POKE 54296,15 :rem 144

1045 POKE 54275,8:POKE 54278,240 :rem 153

1050 POKE 54282,8:POKE 54285,240 :rem 145

1055 POKE 54289,8:POKE 54292,240 :rem 155

1065 CT=49152 :rem 165

1070 REM :rem 172

1080 REM **** READ MUSIC DATA **** :rem 180

1090 REM :rem 174

1100 L1=PEEK(CT):H1=PEEK(CT+1):L2=PEEK(CT+2):H2=PE

EK(CT+3) :rem 157

1102 L3=PEEK(CT+4):H3=PEEK(CT+5):LE=PEEK(CT+6):CT=

CT+7 s rem 200

1105 IF CT>XXXXX THEN 1210 :rem 214

1110 REM :rem 167 r—.

1120 REM **** PLAY MUSIC **** :rem 175 LJ
1130 REM :rem 169

1140 POKE 54272,L1:POKE 54273,HI :rem 181

1141 POKE 54279,L2:POKE 54280,H2 :rem 189 j j

1142 POKE 54286,L3:POKE 54287,H3 :rem 197 *—'
1150 POKE 54276,65 :rem 149

1151 POKE 54283,65 :rem 148 ---

1152 POKE 54290,65 :rem 147 [J
1158 REM srem 179

1159 REM ** PLAY FOR LENGTH OF NOTE ** : rem 6

1160 REM srem 172 M

194

0

5

Putting It All Together

1165 FOR R=0 TO 100*LE:NEXT :rem 219

1167 REM :rem 179

j—t 1169 REM ** TURN OFF NOTE ** :rem 183

I 1170 REM :rem 173

1171 POKE 54276,64:POKE 54283,64:POKE 54290#64

:rem 159

H 1172 GOTO 1100 :rem 198
1180 REM :rem 174

1190 REM **** TURN OFF SOUND **** :rem 172

1200 REM :rem 167

1210 POKE 54276,64:POKE 54283,64:POKE 54290,64:POK

E 54296,0 :rem 104

With two methods of using the sound editors' values

available to you, it shouldn't be difficult to append music to

your own programs. Whatever technique you decide to use

depends on the circumstances of your own programming

situation. Either one might work, or one might be easier than

the other.

Adding sound, even complex musical pieces, isn't hard.

And mixing sound with graphics is almost as easy. The last

program in this chapter shows an example of how it all works

together.

Sound Game
To illustrate the way that some of the components of sound

and animation can work together, here's a simple game that

uses many of the features we've covered. After you've typed it

in and run it, take a closer look at the program listing. You're

certain to find ways to use sound, or ways to modify the exist

ing sounds, that I haven't thought of. That's half the fun of

programming sound (or anything) on the Commodore 64. You

can learn almost as much from experimenting with other peo-

_ pie's programs as you can by writing your own.

n

Program 5-16. A Sound Game
n For mistake-proof program entry, be sure to read "Automatic Proofreader," Appendix C.

1 REM ** INITIALIZE SOUND REGISTERS ** :rem 240

2 REM :rem 22

f-| 3 FOR R=54272 TO 54296:POKE R,0:NEXT:POKE 54275,8:

' POKE 54278,240:POKE 54282,8 srem 197

4 POKE 54285,240:POKE 54289,8:POKE 54292,240

:rem 55

n

195

u

Putting It All Together

5 REM

6 REM **** SET UP DISPLAY SCREEN ****

7 REM

10 PRINT"{CLR}":F=5: SH=53262: TN=1

11 POKE 53280,0:POKE 53281,0

:rem 25

:rem 209

:rem 27

:rem 21

:rem 183

12 PRINT"{HOME}{RVS}{12 DOWN}{7 RIGHT}S PACE

{4 SPACESjS H O O T E R{OFF}" :rem 18

13 REM :rem 72

14 REM ** PROGRAM SPRITE DATA ** :rem 250

15 REM :rem 74

16 FOR R=12800 TO 13311:READA:POKER,A:NEXT:rem 172

17

18

REM

REM — PUT SPRITES ON SCREEN —

19 REM

20 POKE 53269,255

21 FOR P=0TO7:POKE P+2040, P+200: NEXT

25 FOR G=53287 TO 53295: POKE G,14:NEXT

26 REM

27 REM SPRITE POSITIONS

28 REM

30 POKE 53248,

31 POKE 53248,

32 POKE 53250,

33 POKE 53252,

34 POKE 53254,

160: POKE 53249,229

160: POKE 53249,229

160: POKE 53251,229

POKE 53253,116

POKE 53255,110

30 :

240:

35 POKE 53256, 240: POKE 53257,110

36 POKE 53258, 30 : POKE 53259,116

POKE 53260, 255: POKE 53261,116

30 : POKE 53263,116

37

38 POKE 53262,

39 R=70

40 REM

41 REM SPRITE COLORS

42 REM

43 POKE 53287, 1

44 POKE 53288, 14

45 POKE 53289, 5

46 POKE 53290, 2

47 POKE 53291, 7

48 POKE 53292, 1

49 POKE 53293, 12

50 POKE 53294, 12

55 REM

56 REM EXPAND RINGED PLANET

57 REM

58 POKE 53271, 24: POKE 53277, 24

60 GOTO 1800

REM

REM **** M0VE SHIP ROUTINE ****

REM

71

72

73

:rem 76

:rem 129

:rem 78

:rem 98

:rem 61

:rem 64

:rem 76

:rem 84

:rem 78

:rem 148

:rem 149

:rem 136

:rem 84

:rem 134

:rem 139

:rem 99

:rem 143

:rem 91

:rem 98

:rem 72

:rem 90

:rem 74

:rem 252

:rem 50

:rem 4

:rem 250

:rem 1

:rem 253

:rem 49

:rem 42

:rem 78

:rem 244

:rem 80

:rem 51

:rem 104

:rem 76

:rem 46

:rem 78

U

U

u

u

196

G

u

D

U

D

5

Putting It All Together

1 74 POKE SH,PEEK(SH)+F :rem 227

75 IF NT=3 THEN TN=TN*-1:NT=0 :rem 142

r-n 76 MU=150+(50*TN) :rem 143

i i 77 POKE 54286,MU: NT=NT+1 :rem 139

78 IF ((SH=53260) AND (PEEK(SH)<30)) THEN:SH=53262

:F=5:POKE 53260,255:GOTO 89 :rem 150

H 79 IF ((SH=53262) AND (PEEK(SH)>250)) THEN:SH=5326
0:POKE 53262,30:F=-5 :rem 223

81 REM srem 77

82 REM — CHECK FOR FIRED LAUNCHER — : rem 3

83 REM :rem 79

89 IFFR=1THENPOKE53251,PEEK(53251)-10:POKE54276,12

9:POKE54296,15:POKE 54276,128 :rem 10

91 REM :rem 78

92 REM - CHECK IF ROCKET IS OFF SCREEN- :rem 149

93 REM :rem 80

95 IF PEEK(53251)<20 THEN FR=0: POKE 53251,225: PO

KE 54276,0 :rem 64

101 REM :rem 118

102 REM — MOVE ROCKET LAUNCHER — :rem 124

103 PP=53250 :rem 112

104 GET A$:rem 218

106 IF A$="{RIGHT}"ANDPEEK(PP)<225THENPOKE53248,PE

EK(53248)+5:POKEPP,PEEK(PP)+5 :rem 254

107 IFA$="{LEFT}"ANDPEEK(53248)>50THENPOKE53248,PE

EK(53248)-5:POKEPP,PEEK(PP)-5 :rem 183

108 IF A$="{F1}"THEN FR=1 :rem 200

170 REM :rem 124

180 REM * CHECK FOR ROCKET/COLLISION ** :rem 227

190 REM :rem 126

195 A=PEEK(53278):IF A=254 THEN 220 :rem 65

210 GOTO 74 :rem 55

220 POKE 54296,15: POKE 54280,10:POKE54283,129

:rem 143

222 FOR R=0 TO 25:POKE 53281,R: POKE 54280, R: NEX

T:POKE 54283,128 :rem 201

225 POKE 54280, 2: POKE 53281, 0 :rem 241

— 230 FR=0: POKE 53251,225: POKE 54276,0 :rem 149

! ! 370 REM :rem 126
380 REM ** SCORE SUBROUTINE ** :rem 179

390 REM :rem 128

j—[430 SR=SR+1:PRINT"{HOME}{2 DOWN}{2 RIGHT}SCORE=";S
R :rem 141

435 IF SR=5 THEN 2200 :rem 53

_ 440 GOTO 74 :rem 60

{ i 1000 REM **** SPRITE #1 **** :rem 32
1010 REM :rem 166

1020 DATA 0,60,0,0,36,0,0,36,0,0,36,0,0,36,0,0,36,

n 0,0,36,0,0,66,0,0,255,0,0,66 :rem 141

H
197

5

Putting It All Together

1030 DATA 0,0,255,0,0,66,0,0,255,0,0,66,0,0,255,0,

0,66,0,0,255,0,255,255,255 :rem 86

1040 DATA 248,0,31,255,0,255,255,255,255,0 :rem 9

1050 REM :rem 170

1060 REM **** SPRITE #2 **** :rem 39

1070 REM :rem 172

1080 DATA 0,24,0,0,24,0,0,24,0,0,24,0,0,24,0,0,24

:rem 23

1090 DATA 0,0,24,0,0,52,0,0,110,0,0,110,0,0,110,0,

0,110,0,0,110,0,0,110,0,0,110 :rem 135

1100 DATA 0,0,110,0,0,110,0,0,110,0,0,239,0,1,239,

128,1,153,128,0 :rem 35

1110 REM irem 167

1120 REM **** SPRITE #3 **** :rem 37

1130 REM :rem 169

1140 DATA 0,255,0,3,255 :rem 91

1150 DATA 192,13,252,112,30,115,248,63,143,252,127

,255,250,127,127,118,190,119 :rem 252

1160 DATA 207,239,233,63,255,206,255,255,223,191,2

47,159,31,127,191,158,119,207 :rem 75

1170 DATA 206,63,243,252,31,253,248,15,62,240,3,25

5,64,0,255,128,0,0,0,0,0,0 :rem 114

1171 DATA 255 :rem 128

1180 REM :rem 174

1190 REM **** SPRITE #4 **** :rem 45

1200 REM :rem 167

1210 DATA 0,0,0,0,0,8,0,0,20,0,0,40,0,70,80,1,143,

160,3,30,64,2,60,96,4,120,224 :rem 201

1220 DATA 0,241,192,1,227,144,3,199,48,1,142,96,1,

124,192,2,185,128,5,0,0,10,0 :rem 221

1230 DATA0,20,0,0,40,0,0,16,0,0,0,0,0,0 :rem 89

1240 REM :rem 171

1250 REM **** SPRITE #5 **** :rem 43

1260 REM :rem 173

1270 DATA 0,0,0,0,0,12,0,0,28,0,0,56,0,126,112

:rem 145

1280 DATA 1,255,224,3,255,192,3,255,224,7,255,240,

7,255,240,7,255,240,3,255,240 :rem 44

1290 DATA 1,255,224,1,255,192,3,191,0,7,0,0,14,0,0

,28,0,0,56,0,0,48,0,0,0,0,0,0 :rem 211

1300 REM :rem 168

1310 REM **** SPRITE #6 **** :rem 41

1320 REM :rem 170
1480 DATA 0,255,0,3,255,192,15,255,240,31,255,248,

63,255,252,127,255,254,127 :rem 165

1340 DATA 255,254,255,255,255,255,255,255,255,255,

255,255,255,255,255,255,255 :rem 253

1350 DATA 127,255,254,127,255,254,63,255,252,31,25

5,248,15,255,240,3,255,192,0 :rem 12

1360 DATA 255,0,0,0,0,0,0,0,255 :rem 204

1370 REM srem 175

198

Putting It All Together

1380 REM **** SPRITE #7 **** :rem 49

1390 REM :rem 177

1400 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,31,135,255

,63,207 :rem 142

1410 DATA 254,71,239,254,199,231,128,255,255,0,255

,254,0,127,224,0,63,192,0,31 :rem 254

1420 DATA 128,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0 :rem 28

1430 REM :rem 172

1440 REM **** SPRITE #8 **** :rem 47

1450 REM :rem 174

1460 DATA 0,0,0,0,0,0,0,0 :rem 153

1470 DATA 0,0,0,0,0,0,255,225,248,127,243,252,127,

247,226,1,231,227,0,255,255 :rem 176

1480 DATA 0,127,255,0,7,254,0,3,252,0,1,248,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0 :rem 74

1490 DATA 0,0,0,0,0,0 :rem 228

1790 REM :rem 181

1795 REM **** PLAY OPENING THEME **** :rem 195

1799 REM :rem 190

1800 POKE 56276, 65:POKE 54283, 65:POKE 54290, 65:

POKE 54296,15 :rem 168

1805 READ U1,L1,U2,L2,U3,L3,L :rem 77

1810 IF Ll=999 THEN POKE 54276,0:POKE 54283,0:POKE

54287,2:POKE54273,99:GOTO 74 :rem 6

1815 POKE 54273,Ul: POKE 54272, LI :rem 203

1820 POKE 54280,U2: POKE 54279, L2 :rem 206

1830 POKE 54287,U3: POKE 54286, L3 :rem 214

1840 FOR M=0 TO L/2 :rem 190

1850 PRINT"{WHT}.{BLK}";:FORH=0TORND(0)*39:PRINT"

{RIGHT}";:NEXT:NEXT:PRINT"g71";: GOTO 1805

:rem 135

1900 REM :rem 174

1910 REM **** OPENING MUSIC DATA **** :rem 170

1920 REM :rem 176

2000 DATA 97,56,97,56,97,56,100,60,42,60,42,60,42,

100,58,50,58,50,58,50,100,161 :rem 46

2010 DATA 37,161,37,97,56,100,30,21,30,21,48,28,10

0,0,0,0,0,0,0,50,29,25,208 :rem 97

2020 DATA 18,208,18,50,95,22,48,28,95,22,50,134,33

,191,44,97,56,50,58,50,161 :rem 169

2030 DATA 37,191,44,50,134,33,58,50,195,16,50,30,2

1,48,28,97,56,50,999 :rem 139

2040 DATA 999,999,999,999,999 :rem 231

2100 REM :rem 167

2105 REM ****** WINNER'S FANFARE ****** :rem 228

2110 REM :rem 168

2200 POKE 56276, 65:POKE 54283, 65:POKE 54290, 65:

POKE 54296,15 :rem 163

2205 READ L1,U1,L2,U2,L3,U3,L :rem 72

199

5

Putting It All Together

2210 IF Ll=999 THEN POKE 54276,0:POKE 54283,0:POKE

54287,2:POKE54273,99:GOTO4000 :rem 90

2215 POKE 54272,LI: POKE 54273, Ul :rem 198

2220 POKE 54279,L2: POKE 54280, U2 :rem 201

2230 POKE 54286,L3: POKE 54287, U3 :rem 209

2240 FOR M=0 TO L*5: NEXT :rem 48

2250 GOTO 2205 :rem 203

3000 REM :rem 167

3002 REM FANFARE DATA : rem 120

3003 REM :rem 170

3005 DATA 195,16,134,33,195,16,10,208,18,208,18,16

1,37,10,95,22,95,22,191,44 :rem 161

3010 DATA 10,30,21,30,21,60,42,10,208,18,208,18,16

1,37,10,29,25,29,25,58,50,10 :rem 212

3020 DATA 29,25,29,25,58,50,2,58,50,58,50,29,25,2,

58,50,58,50,29,25,20,0,0,0 :rem 139

3030 DATA 0,0,0,20,58,50,29,25,58,50,10,97,56,48,2

8,48,28,10,195,16,134,33,134 :rem 245

3040 DATA 33,10,72,63,164,31,164,31,10,48,28,97,56

,48,28,10,161,37,161,37,208 :rem 207

3050 DATA 18,10,161,37,161,37,208,18,2,161,37,208,

18,161,37,2 :rem 178

3060 DATA 999,999,999,999,999,999,999 :rem 152

4000 PRINT"{HOME}{2 DOWN}{2 RIGHT}YOU WIN Ml": POK

E 54296,0 :rem 33

4010 GOTO 4010 :rem 195

Use the Left/Right Cursor key and the SHIFT key to move the

missile base at the bottom of the screen. Pressing the SHIFT

key at the same time as the cursor key moves the base to the

left; an unSHIFTed cursor key moves the base right. To fire a

missile at the gray target ship, hit the f1 key.

Much of the program is taken up in the creation of the

sprites which move across the screen. Since we're mainly con

cerned with sound, we'll describe the sound sections in more

detail than the graphics.

Once the sound control registers are initialized in lines 3

and 4, the program creates the screen display and the sprites

that will move across that display. As soon as the sprites are

set up, the program shifts to line 1800, which starts the open

ing music routine.

Using all three voices, a series of DATA statements (lines

2000-2040) are READ (line 1805), and the values POKEd into

the appropriate pitch control registers (lines 1815-1830). The

length of the pause between chords is set in line 1840 by the

FOR-NEXT loop. The pulse waveform is enabled for all three

voices and the volume is set to maximum in line 1800. Once

200

5

Putting It All Together

' the tune has played, the program returns to line 74 to move

the target ship between the planets.

["T The background sound you hear as the ship moves back

1 and forth is created in lines 76 and 77. Both the sound and the
sprite movement take place in the same loop, so it seems as if

f^ they're happening simultaneously. The variable MU is set to a

v value of 100 or 200 by line 76. Every third time though the
loop, MU switches from 100 to 200, or from 200 to 100. Line

77 takes this value and POKEs it into the high pitch control

register for voice 3. What all this does is make the background

sound alternate quickly between a high and low frequency

producing the droning sound you hear.

When you press the fl key, the missile is launched. As it

moves, it makes yet another sound. This is created in line 89

by simply turning on and off the noise waveform in voice 1.

You don't have to set ADSR or frequency values for this

sound, because values are still stored in those control registers.

Line 1810, for instance, includes a pitch value for voice 1, and

since the sound registers aren't cleared in the middle of the

program, the ADSR values initialized in lines 3 and 4 are still

available. Leaving some registers with values can be conve

nient at times, although it may give you problems if you think

they've been cleared when you're trying to debug a program.

Use the technique carefully.

When the missile hits the ship, a short explosion sound,

created by lines 220 and 222, plays. Using voice 2 and the

noise waveform, the sound plays for only a brief moment. As

soon as the FOR-NEXT loop in line 222 completes, the sound

falls off.

When you've destroyed five ships, the game ends.

Another piece of music plays, this time accessed from lines

2200-2250. All the Commodore 64's voices are used. The

r> DATA in lines 3005-3060 is READ in line 2205 and then

POKEd into the pitch control registers. A delay loop in line

2240 sets the length of each group of notes.

P^ As you can hear, the sounds fit well into the theme of the
game. Explosions, movement sounds, and opening and closing

music add much to the game's "feel." It's not a complicated,

p^ arcade-style game, but it's not meant to be. The important
thing to remember is that adding sound to movement and

graphics doesn't have to be difficult. Even the simplest sound

P? and music make a program seem more professional, and more
fun to use.

201

5

Putting It All Together

Using What YouVe Learned
Your Commodore 64 is important to you. If it wasn't, you

probably wouldn't have bought it. You enjoy playing games

on it and using it for home applications. It may even be an

educational tool. But if you're like many 64 users/you enjoy

programming on it most of all.

Now you've got yet another tool to use—sound and

music. You've seen how simple sounds can be created, how

sound editors can help you produce more elaborate sound

effects, and even how to use some of the advanced functions

of the SID chip.

But you're probably just beginning to use sound and

music on your 64. Getting comfortable with this new tool

takes time, and especially practice. Just like any other skill,

you'll get better as you spend time programming sound and

music on your computer. But there are some things you can

do that may help.

Look at other programs published in magazines or books

and see if you can find how the programmer used sound and

music. Oftentimes, someone else will think of a way to create

or use sound that you haven't thought of. On the other hand,

you may look at a published program and wonder why the

programmer used such an inefficient technique. Change the

sound and music you see in other programs and see what

effects you can create. You may end up with a better program

or game than was originally published.

Don't be afraid to experiment. As long as you have a copy

of your program on tape or disk, you can't lose anything in

trying. You may find an interesting sound by accident.

Above all, listen to other programs and games, especially

commercial software. You probably can't change anything, but

it may give you ideas of ways to use sound and music that

you or I haven't considered.

Sound is an important aspect of our lives that we often

take for granted. It's somewhat like that in computer program

ming, too. Sound and music are sometimes secondary to other

programming skills. It doesn't have to be like that. With this

book, the knowledge you now have, and your own imagina

tion, you can make sound an important and impressive part of

any program.

202

A

Appendix

n
A Beginner's Guide to

H Typing In Programs

What Is a Program?
A computer cannot perform any task by itself. Like a car with

out gas, a computer has potential, but without a program, it

isn't going anywhere. Most of the programs published in this

book are written in a computer language called BASIC. BASIC

is easy to learn and is built into all Commodore 64s.

BASIC Programs
Computers can be picky. Unlike the English language, which

is full of ambiguities, BASIC usually has only one right way of

stating something. Every letter, character, or number is signifi

cant. A common mistake is substituting a letter such as O for

the numeral 0, a lowercase 1 for the numeral 1, or an upper

case B for the numeral 8. Also, you must enter all punctuation

such as colons and commas just as they appear in the book.

Spacing can be important. To be safe, type in the listings

exactly as they appear.

Braces and Special Characters
The exception to this typing rule is when you see the braces,

such as {DOWN}. Anything within a set of braces is a special

character or characters that cannot easily be listed on a printer.

When you come across such a special statement, refer to

Appendix B, "How to Type In Programs."

About DATA Statements
i | Some programs contain a section or sections of DATA state

ments. These lines provide information needed by the pro

gram. Some DATA statements contain actual programs (called

| i machine language); others contain graphics codes. These lines
are especially sensitive to errors.

If a single number in any one DATA statement is

\\ mistyped, your machine could lock up, or crash. The keyboard

and STOP key may seem dead, and the screen may go blank.

Don't panic—no damage is done. To regain control, you have
H

205

A

Appendix

to turn off your computer, then turn it back on. This will erase

whatever program was in memory, so always SAVE a copy of

your program before you RUN it If your computer crashes, you

can load the program and look for your mistake.

Sometimes a mistyped DATA statement will cause an

error message when the program is RUN. The error message

may refer to the program line that READs the data. The error

is still in the DATA statements, though.

Get to Know Your Machine
You should familiarize yourself with your computer before

attempting to type in a program. Learn the statements you use

to store and retrieve programs from tape or disk. You'll want

to save a copy of your program, so that you won't have to

type it in every time you want to use it. Learn to use your

machine's editing functions. How do you change a line if you

made a mistake? You can always retype the line, but you at

least need to know how to backspace. Do you know how to

enter reverse video, lowercase, and control characters? It's all

explained in your computer's manuals.

A Quick Review
1. Type in the program a line at a time, in order. Press

RETURN at the end of each line. Use the DEL key to correct

mistakes.

2. Check the line you've typed against the line in the book.

You can check the entire program again if you get an error

when you run the program.

U

Lj

u

206

U

B

r—* Appendix

How to Type In Programs

To make it easy to know exactly what to type when entering

[—! one of these programs into your computer, we have estab

lished the following listing conventions.

Generally, Commodore 64 program listings will contain

words within braces which spell out any special characters:

{DOWN} would mean to press the cursor down key. {5

SPACES} would mean to press the space bar five times.

To indicate that a key should be shifted (hold down the

SHIFT key while pressing the other key), the key would be

underlined in our listings. For example, S would mean to type

the S key while holding the SHIFT key. This would appear on

your screen as a heart symbol. If you find an underlined key

enclosed in braces (e.g., {10 N}), you should type the key as

many times as indicated (in our example, you would enter ten

shifted N's).
If a key is enclosed in special brackets, fo], you should

hold down the Commodore key while pressing the key inside

the special brackets. (The Commodore key is the key in the

lower left corner of the keyboard.) Again, if the key is pre

ceded by a number, you should press the key as many times

as necessary.

Rarely, you'll see a solitary letter of the alphabet enclosed

in braces. These characters can be entered by holding down

the CTRL key while typing the letter in the braces. For exam

ple, {A} would indicate that you should press CTRL-A.

About the quote mode: You know that you can move the

cursor around the screen with the CRSR keys. Sometimes a

programmer will want to move the cursor under program con-

r^ trol. That's why you see all the {LEFT}'s, {HOME}'s, and

r > {BLU}'s in our programs. The only way the computer can tell

the difference between direct and programmed cursor control

r—\ is the quote mode.

! Once you press the quote (the double quote, SHIFT-2),
you are in the quote mode. If you type something and then try

/—[to change it by moving the cursor left, you'll only get a bunch

l ! of reverse-video lines. These are the symbols for cursor left.

The only editing key that isn't programmable is the DEL key;

f—| you can still use DEL to back up and edit the line. Once you
/ \

207

B

Appendix

type another quote, you are out of quote mode.

You also go into quote mode when you INSerT spaces

into a line. In any case, the easiest way to get out of quote

mode is to just press RETURN. You'll then be out of quote

mode, and you can cursor up to the mistyped line and fix it.

Use the following table when entering cursor and color

control keys:

See:

When You

Read:

u

Li

U

\ I
i i

u

208

c

Appendix

The Automatic Proofreader
n

Charles Brannon

"The Automatic Proofreader" will help you type in program

listings without typing mistakes. It is a short error-checking

program that hides itself in memory. When activated, it lets

you know immediately after typing a line from a program list

ing if you have made a mistake. Please read these instructions

carefully before typing any programs in this book.

Preparing the Proofreader
1. Using the listing below, type in the Proofreader. Be

very careful when entering the DATA statements—don't type

an 1 instead of a 1, an O instead of a 0, extra commas, etc.

2. SAVE the Proofreader on tape or disk at least twice

before running it for the first time. This is very important

because the Proofreader erases part of itself when you first

type RUN.

3. After the Proofreader is saved, type RUN. It will check

itself for typing errors in the DATA statements and warn you

if there's a mistake. Correct any errors and SAVE the corrected

version. Keep a copy in a safe place—you'll need it again and

again, every time you enter a program from this book, COM-

PUTEl's Gazette, or COMPUTE! magazine.

4. When a correct version of the Proofreader is run, it

activates itself. You are now ready to enter a program listing.

If you press RUN/STOP-RESTORE, the Proofreader is dis

abled. To reactivate it, just type the command SYS 886 and

press RETURN.

f Using the Proofreader
All listings in this book have a checksum number appended to

r-^ the end of each line—for example, :rem 123. Don't enter this

! ' statement when typing in a program. It is just for your infor

mation. The rem makes the number harmless if someone does

ntype it in. It will, however, use up memory if you enter it, and

it will confuse the Proofreader, even if you entered the rest of

the line correctly.

I—I When you type in a line from a program listing and press

I \

209

n

c

Appendix

RETURN, the Proofreader displays a number at the top of

your screen. This checksum number must match the checksum

number in the printed listing. If it doesn't, it means you typed

the line differently than the way it is listed. Immediately

recheck your typing. Remember, don't type the rem statement

with the checksum number; it is published only so you can

check it against the number which appears on your screen.

The Proofreader is not picky with spaces. It will not

notice extra spaces or missing ones. This is for your conve

nience, since spacing is generally not important. But occa

sionally proper spacing is important, so be extra careful with

spaces, since the Proofreader will catch practically everything

else that can go wrong.

There's another thing to watch out for: If you enter the

line by using abbreviations for commands, the checksum will

not match up. But there is a way to make the Proofreader

check it. After entering the line, LIST it. This eliminates the

abbreviations. Then move the cursor up to the line and press

RETURN. It should now match the checksum. You can check

whole groups of lines this way.

Special Tape SAVE Instructions
When you're done typing a listing, you must disable the

Proofreader before SAVEing the program on tape. Disable the

Proofreader by pressing RUN/STOP-RESTORE (hold down

the RUN/STOP key and sharply hit the RESTORE key). This

procedure is not necessary for disk SAVEs, but you must dis

able the Proofreader this way before a tape SAVE.

SAVE to tape erases the Proofreader from memory, so

you'll have to load and run it again if you want to type

another listing. SAVE to disk does not erase the Proofreader.

Hidden Perils
The Proofreader's home in the 64 is not a very safe haven.

Since the cassette buffer is wiped out during tape operations,

you need to disable the Proofreader with RUN/STOP-RE

STORE before you save your program. This applies only to

tape use. Disk users have nothing to worry about.

Not so for 64 owners with tape drives. What if you type

in a program in several sittings? The next day, you come to

your computer, load and run the Proofreader, then try to load

the partially completed program so you can add to it. But

210

c

Appendix

since the Proofreader is trying to hide in the cassette buffer, it

is wiped out!

What you need is a way to load the Proofreader after

you've loaded the partial program. The problem is, a tape

LOAD to the buffer destroys what it's supposed to load.

After you've typed in and run the Proofreader, enter the

following lines in direct mode (without a line number) exactly

as shown:

A$="PROOFREADER.!": B$ = "{10 SPACES}": FOR X=l

TO 4: A$=A$+B$: NEXTX

FOR X=886 TO 1018: A$=A$+CHR$ (PEEK(X)): NEXTX

OPEN 1,1,1,A$:CLOSE1

After you enter the last line, you will be asked to PRESS

RECORD & PLAY on your cassette recorder. Put this program

at the beginning of a new tape. This gives you a new way to

load the Proofreader. Anytime you want to bring the Proof

reader into memory without disturbing anything else, put the

cassette in the tape drive, rewind, and enter:

OPEN1:CLOSE1

You can now start the Proofreader by typing SYS 886. To

test this, PRINT PEEK (886) should return the number 173. If

it does not, repeat the steps above, making sure that A$

("PROOFREADER.T") contains 13 characters and that B$ con

tains 10 spaces.

You can now reload the Proofreader into memory when

ever LOAD or SAVE destroys it, restoring your personal typ

ing helper.

Incidentally, you can protect the cassette buffer on the

Commodore 64 with POKE 178,165. With this POKE, the 64

will not wipe out the cassette buffer during tape LOADs and

SAVEs.

Replace Original Proofreader
If you typed in the original version of the Proofreader from

the October 1983 issue of COMPUTE!'s Gazette, you should

replace it with the improved version below.

Automatic Proofreader

100 PRINT"{CLR}PLEASE WAIT...":FORI=886TO1018:READ

A:CK=CK+A:POKEI,A:NEXT

211

u
c

Appendix

110 IF CKO17539 THEN PRINT" {DOWN}YOU MADE AN ERRO

R":PRINT"IN DATA STATEMENTS.":END

120 SYS886:PRINT"{CLR}{2 DOWN}PROOFREADER ACTIVATE , >■

D.":NEW Lj
886 DATA 173,036,003,201#150,208

892 DATA 001,096,141,151,003,173

898 DATA 037,003,141,152,003,169 I I

904 DATA 150,141,036,003,169,003 LJ
910 DATA 141,037,003,169,000,133

916 DATA 254,096,032,087,241,133

922 DATA 251,134,252,132,253,008

928 DATA 201,013,240,017,201,032

934 DATA 240,005,024,101,254,133

940 DATA 254,165,251,166,252,164

946 DATA 253,040,096,169,013,032

952 DATA 210,255,165,214,141,251

958 DATA 003,206,251,003,169,000

964 DATA 133,216,169,019,032,210

970 DATA 255,169,018,032,210,255

976 DATA 169,058,032,210,255,166

982 DATA 254,169,000,133,254,172

988 DATA 151,003,192,087,208,006

994 DATA 032,205,189,076,235,003

1000 DATA 032,205,221,169,032,032

1006 DATA 210,255,032,210,255,173

1012 DATA 251,003,133,214,076,173

1018 DATA 003

LJ

212

U

U

u

D

Appendix

n
Commodore 64 Sound

Memory Map

This appendix is a memory map of the Commodore 64's SID

(Sound Interface Device) chip. Like any other map, it shows

you where things are. This memory map includes descriptions

of all the sound functions explained in this book and shows

you their locations.

This is intended as a quick reference guide. If you need

additional information on any of the functions, refer to the

description of that feature in the text of the book.

(—1

li

n

n

n

Memory Location

54272

54273

54274

54275

54276

54276

54276

54276

54276

54276

54276

54276

54276

54277

Function Description

Voice 1 Pitch

Lower Value

Voice 1 Pitch

Upper Value

Voice 1 Pulse Width

Lower Value

Voice 1 Pulse Width

Upper Value

Voice 1 Waveform

Control Register

Voice 1: Gate Bit

Initiates start of all

voice 1 sounds

Voice 1: Sync Function

control bit

Voice 1: Ring Modulation

control bit

Voice 1: Test Bit

Voice 1: Triangle Wave

control bit

Voice 1: Sawtooth Wave

control bit

Voice 1: Pulse Wave

control bit

Voice 1: Noise control

bit

Voice 1 Decay Control

Register

Bit(s)

0-7

0-7

0-7

0-3

0-7

0

1

2

3

4

5

6

7

0-3

213

Memory Location

54277

54278

54278

54279

54280

54281

54282

54283

54283

54283

54283

54283

54283

54283

54283

54283

54284

54284

54285

54285

54286

54287

D

Appendix

Function Description

Voice 1 Attack Control

Register

Voice 1 Release

Control Register

Voice 1 Sustain

Control Register

Voice 2 Pitch

Lower Value

Voice 2 Pitch

Upper Value

Voice 2 Pulse Width

Lower Value

Voice 2 Pulse Width

Upper Value

Voice 2 Waveform

Control Register

Voice 2: Gate Bit

Initiates start of all

voice 2 sounds

Voice 2: Sync Function

control bit

Voice 2: Ring Modulation

control bit

Voice 2: Test Bit

Voice 2: Triangle Wave

control bit

Voice 2: Sawtooth Wave

control bit

Voice 2: Pulse Wave

control bit

Voice 2: Noise control

bit

Voice 2 Decay Control

Register

Voice 2 Attack Control

Register

Voice 2 Release

Control Register

Voice 2 Sustain

Control Register

Voice 3 Pitch

Lower Value

Voice 3 Pitch

Upper Value

Bit(s)

4-7

0-3

4-7

0-7

0-7

0-7

0-3

0-7

0

1

2

3

4

5

6

7

0-3

4-7

0-3

4-7

0-7

0-7

U

u

u

I i

Lj

M

u

LI

LJ

U

214

H

n

H

p
! i

! I

n

n

n

r

Memory Location

54288

54289

54290

54290

54290

54290

54290

54290

54290

54290

54290

54291

54291

54292

54292

54293

54294

54295

54295

54295

54295

54295

D

Appendix

Function Description

Voice 3 Pulse Width

Lower Value

Voice 3 Pulse Width

Upper Value

Voice 3 Waveform

Control Register

Voice 3: Gate Bit

Initiates start of all

voice 3 sounds

Voice 3: Sync Function

control bit

Voice 3: Ring Modulation

control bit

Voice 3: Test Bit

Voice 3: Triangle Wave

control bit

Voice 3: Sawtooth Wave

control bit

Voice 3: Pulse Wave

control bit

Voice 3: Noise control

bit

Voice 3 Decay Control

Register

Voice 3 Attack Control

Register

Voice 3 Release

Control Register

Voice 3 Sustain

Control Register

Cutoff Point: Lower

Value

Cutoff Point: Upper

Filter Control Register

Voice 1: Filter control

bit

Voice 2: Filter control

bit

Voice 3: Filter control

bit

External Filter control

bit

Bit(s)

0-7

0-3

0-7

0

1

2

3

4

5

6

7

0-3

4-7

0-3

4-7

0-2

0-7

0-3

0

1

2

3

215

Memory Location

54295

54296

54296

54296

54296

54296

D

Appendix

Function Description

Resonance Control

Register

Volume Control Register

Low Pass Filter control

bit

Band Pass Filter

control bit

High Pass Filter

control bit

Voice 3 Output

disable bit

Bit(s)

4-7

0-3

4

5

6

7

U

u

u

u

216

u

LJ

U

U

U

n

Index
n ''Accordion'' program 119-20

additive synthesis 147-48

ADSR envelope i, vii, 10-12, 134-46

changing 24-27

POKE values 13

registers 9, 135

asymmetrical ii

attack i, 11,25, 135-37

times 137

attack/decay control register 12-13

"Attack Rate" program 136

"Automatic Proofreader" program

xvii-xviii, 209-12

background music 179-81

background sounds 173-75

band pass filter iv, 152

base line iii-iv

beats v

"Beats" program 66-67

bit 6-8

"Bouncing Ball" program 163-64

byte 7-8

"Car Horn" program 65-66

"Changing Pulse Widths" program

132-33

"Chirps" program 110-11

"Chord Editor" program 69-79

instructions 79-82

"Chord Editor READer" program 88-89

"Click" program 89

"Clinking with Attack/Decay" program

123

"Clinking" program 122-23

Commodore 64 Programmer's Reference

Guide 173

"Comparing Sounds" program 98

compression iii

COMPUTEl's Reference Guide to

Commodore 64 Graphics 173

"Creaky Door" programs 92-94

pitch changes and 93

"Crickets" program 95-96

"Crunching Snow" program 124-25

cutoff point (filters) vi, 153-55

cycle v, 24

DATA statement 21, 206

decay i, vi, 11, 25, 138-39

times 138

"Dial Phone" program 105-6

discord vii

disharmony 63-65

"Disk File Merger" program 181-88

instructions 182-88

"Down and Up Sounds" program 86-87

eight-bit computer 6

"Electronic Ringer" program 98-99

envelope (see ADSR envelope)

"Envelope Manipulation" program

140-41

experimentation, value of 202

"Fast Attack - Slow Decay" program 26

modifying 26-27

filters vii, 152-58, 161

cutoff point 153-55

selection 153

using 155

flat viii

"Flying Saucer" program 101-2

"Foghorn" program 123-24

FOR-NEXT loop 23

"Frequency Calculation" program 131

frequency vii, 24

sound registers for 9, 13

function keys 167-68

gate bit viii, 18-19, 68, 88, 137, 149

disabling 10, 19

enabling 9-10

hard sounds viii, 25, 85-106

defined 85

noise waveform and 102-5

pulse waves and 89-97

sawtooth waves and 97-101

triangle waves and 101-2

"Harmonious Sounds" program 63-65

harmony viii, 63-65

harpsichord 121-22

"Heartbeats" program 114-15

"Helicopter Sound and Animation"

program 175-77

hertz v, viii-ix

high pass filter ix, 152

"Horse Galloping" program 103-4

Hz (see hertz)

"Lawn Mower" program 173-75

"Longer Beep" program 86

lower pitch value x

low pass filter ix-x, 152

"Low Pass Filtering" program 155-56

memory map, sound 213-16

"Modifying Upper/Lower Tones"

program 20-21

"Motor Boat" program 96-97

"Moving Barriers" program 166-68

"Multivolume Sounds" program 145

"Music Box" program 169-71

music files 181-91

217

Index

musical instruments 39

noise x, 32-33, 102-5

nonsynchronized music 179

"Nonsynchronized Sound and Graphics"

program 179-81

"Note-by-Note Volume" program 23

nybble 12

octave x-xi

"Ocean Waves" program 116-17

"Old Car" program 99-101

"One-Voice Sound Editor" program

48-59

"Organ Chords" program 67-68

pausing 42-46

peak xi

PEEK command 6

music data and 191-95

"PEEKing Values—One-Voice Sound

Editor" program 193-94

"PEEKing Values—Chord Editor"

program 194-95

"Pencil sharpener" program 103

"Piano Player" program 120-21

"Ping-Pong" program 91-92

pitch control registers 14, 40, 130-31

table 14-16

"Pitches and Pauses in 'Yankee Doodle'"

program 45-46

POKE command 6

music data and 191-95

"POKEing and PEEKing for Sound"

program 164-65

"POKEing Music" program 192-93

pulse wave viii, xi, 88, 97

pulse width xi-xii, 18

pulse width control registers 131-32

"Pulse Width Values" program 135-36

READ and DATA statement 21

rhythm and pitch and 45-46

"READing Routine" program 189-90

release i, xii, 12, 140, 146

REM statement xvii-xviii

"Repeater" program 87

resonance xiii, 157-58

rhythm 41-42, 45-46

ring modulation xiii, 128, 148-50, 161

"Ring Modulation—Sweeping Both

Voices" program 150

"Ring Modulation—Sweeping Voice 1"

program 149

"Ring Modulation—Sweeping Voice 3"

program 148-49

"Rising Tapered Sound" program 118-19

"Sawing Wood" program 115-16

sawtooth wave xiii, 30-32, 88, 97

"Sawtooth Waveform" program 32

218

sharp xiv

"Short Beep" program 86

SID chip xiv, 3-35, 40, 85, 129-31, 156,

161, 173

"Simple Sound" program 19-20

"Siren" program 66

"Snare Drums" program 43-44

soft sounds xiv, 85, 106-25

noise waveform and 115-16

pulse waveform and 110-12

sawtooth waveform and 112-14

triangle waveform and 114-18

"Soft Sounds—Attack, Decay, Sustain

and Release" program 107-9

"Soft Sounds—Volume Control"

program 109-11

sound control registers xiv, 4-5

clearing 8-9

initializing 129-30

table 4-5

sound effects 85-125

software and 161

sound envelope (see ADSR envelope)

"Sound Game" program 195-201

Sound Interface Device (see SID)

sounds

altering 175-77

continuous 173

variably in programs 162-73

sound wave, pure 24

sprite collision registers 171, 172

"Sprite Collisions and Sound" program

171-73

sprites 171-73

square wave xv, 27-28

"Squeaky Shoes" program 111-12

subtractive synthesis 152-58

sustain i, xiv-xv, 11-12, 139-40, 145

sustain loop 18-19

"Sweeping the Scales" program 33-34

"Switching Waveforms" program 87-88

symmetrical wave (see square wave)

"Symmetrical-Asymmetrical Waveforms"

program 28-29

synchronization xv, 127, 150-52, 161

"Synchronization" program 151

system clock 179, 181

tapered sounds xv, 116

noise waveform and 124-25

pulse waveform and 119-22

sawtooth waveform and 123-24

slowly falling 85

slowly rising 85

triangle waveform and 122-23

test bit xv, 146

"Test Bit On/Off" program 144

LJ

U

U

U

u

u

0

D

LJ

U

n

r-^ Index

"Ticktock" program 90-91 waveform xvi, 27-34

"Timing the Drums" program 44-45 mixing waveforms 105-6

"Title Screen" program 177-78 selecting 17-18

triangle wave viii, xvi, 29-30, 31, 88, 101 waveform control bit viii

"Triangle Waveform" program 30 enabling 9-10

typing in programs xvii-xviii, 205-8 waveform control registers 134, 146

upper pitch value xvi white noise (see noise)

VIC-II chip 3 "Yankee Doodle"

"Violins" program 112-14 data chart 47

volume 10, 24 note values and timing counts chart 48
adjusting 21-23 "Yankee Doodle" program 40-41

sound control register of 9 "Yankee Doodle" program with pauses

"Volume Variables" program 22 42-43

r

r

n

219

n

Notes

rr

n

n

n

n

n

n

n

n

Notes

u

0

a

u

D

n.
Notes

n

n

n

R

r?

n

n

n

G
Notes

D

0

D

D

U

U

D

Li

D

If you've enjoyed the articles in this book, you'll find the
same style and quality in every monthly issue of COMPUTE!
Magazine. Use this form to order your subscription to
COMPUTE!.

For Fastest Service,

Call Our Toll-Free US Order Line

800-334-0868
In NC call 919-275-9809

COMPUTE!
P.O. Box 5406
Greensboro, NC 27403

My Computer Is:

□ Commodore 64 QTI-99/4A □ Tlmex/Sinclair DVIC-20

□ Radio Shack Color Computer □ Apple □ Atari □ Other
□ Don't yet have one...

□ $24 One Year US Subscription
□ $45 Two Year US Subscription
□ $65 Three Year US Subscription

Subscription rates outside the US:

$30 Canada
i2 Europe, Australia New Zealand/Air Delivery

2 Middle East North Africa Central America/Air Mail
Elsewhere/Air Mail

International Surface Mail (lengthy, unreliable delivery)

Name

Address

City State Zip

Country

Payment must be in US Funds drawn on a US Bank International Money

Order, or charge card.

n Payment Enclosed □ VISA

□ MasterCard □ American Express

Ace t. No. Expires /

If you've enjoyed the articles in this book you'll find

the same style and quality in every monthly issue of

COMPUTERS Gazette for Commodore.

For Fastest Service

Call Our Toil-Free US Order Line

800-334-0868
In NC call 919-275-9809

computers®Mmmwwm
P.O. Box 5406

Greensboro, NC 27403

My computer is:

□ Commodore 64 □ VIC-20 □ Other _
03

$20 One Year US Subscription
$36 Two Year US Subscription
$54 Three Year US Subscription

Subscription rates outside the US:

□ $25 Canada
□ $45 Air Mail Delivery

□ $25 International Surface Mail

Name

Address

City State Zip

Country

Payment must be in US Funds drawn on a US Bank International Money

Order, or charge card. Your subscription will begin with the next avail

able issue. Please allow 4-6 weeks for delivery of first issue. Subscription

prices subject to change at any time.

□ Payment Enclosed □ VISA

□ MasterCard □ American Express

Acct. No. Expires /

The COMPUTED Gazette subscriber list is made available to carefully screened organiza

tions with a product or service which may be of interest to our readers. If you prefer notto

receive such mailings, please check this box □.

COMPUTE! Books
P.O. Box 5406 Greensboro, NC 27403

Ask your retailer for these COMPUTE! Books. If he or she

has sold out order directly from COMPUTE!

For Fastest Service

Call Our TOLL FREE US Order Line

800-334-0868
In NC call 919-275-9809

Quantity Title

_ Machine Language for Beginners

. Home EnergyApplications

_ COMPUTEI's First Book of VIC

. COMPUTEI's Second Book of VIC

_ COMPUTEI's First Book of VIC Games

_ COMPUTEI's First Book of 64

_ COMPUTED First Book of Atari

_ COMPUTED Second Book of Atari

_ COMPUTED First Book of Atari Graphics

_ COMPUTED First Book of Atari Games

.Mapping The Atari

.InsideAtari DOS

_ The Atari BASIC Sourcebook

_ Programmer's Reference Guide for TI-99/4A

_ COMPUTED First Book of Tl Games

_ Every Kid's First Book of Robots and Computers

. The Beginner's Guide to Buying A Personal

Computer

Price

$14.95*

$14.95*

$12.95*

$12.95*

$12.95*

$12.95*

$12.95*

$12.95*

$12.95*

$12.95*

$14.95*

$19.95*

$12.95*

$14.95*

$12.95*

$4.95t

$ 3.95t

* Add $2 shipping and handling. Outside US add $5 air mail; $2

surface mail,

t Add $1 shipping and handling. Outside US add $5 air mail; $2

surface mail.

Please add shipping and handling for each book

ordered.

Total enclosed or to be charged.

Total

All orders must be prepaid (money order, check or charge). All

payments must be in US funds. NC residents add 4% sales tax.

□ Payment enclosed Please charge my: □ VISA □ MasterCard

□ American Express Acc't. No. Expires /

Name

Address

City State Zip

Country

Allow 4-5 weeks for delivery.

Thousand So

One of the most powerful features of the Commodore 64 com

puter is its ability to create sound. Its SID chip, perhaps the most

advanced sound creation device in any personal computer, can

create natural and artificial sound effects, as well as "sing" in

three-part harmony. But creating and controlling sound on the 64

can be confusing, especially if you're just starting out.

COMPUTEl's Beginner's Guide to Commodore 64 Sound shows

you how to use the impressive sound and music features of your

computer. Whether you're an experienced programmer or a

beginner, you'll find that the clear and detailed explanations

make it simple to produce sound and music on the 64. To help

you compose your own music, we've even included complete

single-voice and chord editor programs that will turn your com
puter into a keyboard.

Learn how to change the sound envelope to produce just

the sound or effect you want.

Dozens of example sound effects that you can type in and

run, or use in your own programs and games.

Change waveforms and create sound, from sirens to
sawing wood.

Use ring modulation, synchronization, and resonance to

produce unusual artificial sounds.

All terms are explained in an easy-to-follow glossary.

Figures, charts, and tables are included for quick

reference.

John Heilborn, author of the best-selling COMPUTEl's Ref

erence Guide to Commodore 64 Graphics, returns with clear writing

and complete explanations to help you understand and master

sound programming. If you want to program sound for musical

compositions, arcade-s|yle games, or just for fun, everything you

need to get you started is right here.

ISBN 0-942386-54-X

