COMPUTE!'s

AMIGA Applications

Brian Flynn

Over two dozen practical, powerful applicationsfrom educational games and personal management programs to thinking games and business toois.

COMPUTE!'s AMIGA Applications

Brian Flynn

Copyright 1986, COMPUTE! Publications, Inc. All rights reserved.
Reproduction or translation of any part of this work beyond that permitted by Sections 107 and 108 of the United States Copyright Act without the permission of the copyright owner is unlawful.

Printed in the United States of America
10987654321
ISBN 0-87455-053-X
The author and publisher have made every effort in the preparation of this book to insure the accuracy of the programs and information. However, the information and programs in this book are sold without warranty, either express or implied. Neither the author nor COMPUTE! Publications, Inc., will be liable for any damages caused or alleged to be caused directly, indirectly, incidentally, or consequentially by the programs or information in this book.

The opinions expressed in this book are solely those of the author and are not necessarily those of COMPUTE! Publications, Inc.
COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919) 275-9809, is part of ABC Consumer Magazines, Inc., one of the ABC Publishing Companies, and is not associated with any manufacturer of personal computers. Amiga is a trademark of Commodore-Amiga, Inc.

Contents

Foreword v
Chapter 1. Introduction 1
Chapter 2. Games of Skill 7
Enigma 14
Elementary, Watson 26
Knights Errant 39
Pharaoh's Pyramid 52
Roman Checkers 62
Falstaff 73
Mosaic Puzzle 86
$\mathrm{Hi}-\mathrm{Q}$ 96
Solitaire Checkers 105
Bunny's and Piglet's Tic-Tac-Toe 114
Chapter 3. Stop, Look, and Learn 129
Crazy Critters 135
Let's Add and Subtract 148
Let's Multiply 165
Fun with Fractions 181
Foreign Language Flash Cards 198
Chapter 4. Household Helpers 211
IRA Planner 217
Loan Payments 225
Multifunction Calculator 236
Paycheck Analysis 249
Chapter 5. Business and Finance 259
Electronic Spreadsheet 265
Least-Squares Forecasting 291
Future Worth 305
Computer Cash Register 314
Chapter 6. Science and Math 323
Chemistry Basics 329
Weather Forecasting 352
Simultaneous Equation Solver 366
Matrix Manipulator (MatMan) 377
Chapter 7. Statistics 393
Scatter Diagram 399
Super Curve-Fitter 419
Index 437
Disk Coupon 439

Foreword

COMPUTE!'s Amiga Applications has something for every member of the family. With 29 different applications-from games to finance-it's an instant library of easy-to-use programs for your Amiga.

Game players will enjoy the vivid graphics and challenge of games like "Knights Errant" and "Pharaoh's Pyramid." Children will enjoy learning using "Crazy Critters," "Fun with Fractions," and "Let's Multiply."

COMPUTE!'s Amiga Applications also includes practical programs that help with home and business financial matters, statistics, and science. There's even an easy-to-use spreadsheet program.

Each program is written in Amiga BASIC and takes advantage of the advanced features of the Amiga including pull-down menus and crisp, colorful graphics. We've even included menu programs that make loading programs easy.

Written by an experienced programmer and writer, COMPUTE!'s Amiga Applications includes all the information you need to use each of the applications included here. Each program has been fully tested and is ready to type in and enjoy. It's the perfect introduction to the power within your computer.

All the programs included in COMPUTEI's Amiga Applications are ready to type in and run. All you need is an Amiga computer, a monitor and a copy of Amiga BASIC. Also recommended, but not necessary, are a color monitor and 512 K Random Access Memory. If you prefer not to type in the programs, however, you can purchase a $3-1 / 2$-inch disk which includes all. the programs in this book by calling toll-free 1-800-346-6767 (in NY, call $212-887-8525$), or by using the coupon found in the back of this book.)

CHAPTER 1

Introduction

CHAPTER 1

Introduction

The Amiga is one of the most impressive personal computers ever built. With amazing graphics, sound, color, speed, and mouse and icon operations, it's a computer that's powerful, useful, and fun to run.

This book is designed to take advantage of some of the Amiga's handiest and most entertaining features. The programs use pull-down menus, multicolored high-resolution graphics, icon displays, and mouse selection of program options. The educational programs use multivoice sound to produce some nice tunes.

This book focuses on six different topics, ranging from challenging games to business and scientific applications. The programs have been carefully designed for ease of use, entertainment, and practicality. Even if you don't think you're interested in a particular subject, try some of the programs. You might change your mind.

Equipment Required

Each program is written in Amiga BASIC, and for best results, each should be run on a system with a color monitor and 512K Random Access Memory, or more. Some of the programs will run with just 256K RAM, but the longer ones, such as "Electronic Spreadsheet," require the additional memory. To prevent system crashes, 512 K is recommended.

The Spreadsheet has the capability of producing two types of reports, and you'll need a printer to use this option. None of the other programs requires a printer.

Amiga BASIC and Workbench

None of the programs uses line numbers. Having the option of using or not using line numbers is a fantastic feature. Indeed, the Amiga dialect of BASIC is one of the most powerful versions available on a microcomputer. So, in addition to running the programs in the book, you may want to examine some of the code in detail to pick up ideas for your own projects.

Communications between Amiga BASIC and the disk drives are handled by software known as an operating system. To run the programs in the book, you should have Kickstart 1.1 and Workbench 1.1, or later updates.

Typing In the Programs

Typing in the programs and getting them running can be instructive. Each program is modular in design. Each generally consists of three parts: a definition of shapes, menus, and variables; a main routine; and a series of subroutines.

Once you get used to the modular design, you'll begin to understand the internal structure of the programs. Armed with this knowledge, you should be able to modify any of the routines to suit your fancy.

Table 1-1 is a list of the programs in the book. Save each program to a disk that contains a copy of Amiga BASIC with the filename shown in Table 1-1. You will notice that starting with Chapter 2 each chapter begins with a "Menu Driver" program, selected from Workbench level, which uses these filenames. If you like, you can ignore the Menu Drivers altogether, but they can be really handy. The choice is up to you. Each of the six Menu Driver program listings is printed at the start of the chapter. Most of the code for each of the Menu Driver programs is exactly the same. The only differences appear in three sections of the program: The second line of the SETSCREEN routine contains the title of the chapter; the value for N in the second line of the KEYVALUES routine is set to the number of programs in the chapter; and a list of the programs appears in DATA statements at the very end of the program.

Therefore it's necessary to type the Menu Driver program only once. When you're ready to prepare new Menu Drivers for subsequent chapters, simply load the first copy and make the necessary changes. Once the changes have been made, save the new version with the appropriate filename as in Table 1-1. Be sure to save a copy of the Menu Driver for each chapter before running it. Note: The menu drivers will not operate properly unless Amiga BASIC is also present on the same disk.

Finally, if your disk becomes too cluttered with icon names, such as ENIGMA, WATSON, and so on, simply execute a statement like KILL "ENIGMA.info" from BASIC. This removes the icon from your disk, but not the program.

General Operating Instructions

To load and run a program, use the Menu Driver for each chapter. You can do this in one of two ways. From BASIC, key in RUN, followed by the name of
the Menu Driver, such as "GAMES". Then press the RETURN key. Or from Workbench, simply click the mouse on the appropriate icon, such as SCIENCE.

After you're through with a program, use a pull-down menu to go to (1) BASIC, (2) Menu Driver, or (3) System. If you're in Amiga BASIC and want to go to the Workbench, type in SYSTEM and press RETURN.

The chapters describe how to use each program. Read the instructions before running a program.

Most of the programs use a little white bar on the bottom of the screen. The bar contains two circles, one green with a Y on it and the other red with an N on it. This is a button bar, with the Y standing for Yes and the N for No. Make your selection either by clicking the mouse on the appropriate circle or by simply pressing Y or N .

Many of the programs will display the message Click Mouse or Press any Key. In both cases, you can either click or press to continue program execution.

> Every program in COMPUMEl's Amiga Applications uses 60 columns on your screen. Make sure that the Preferences drawer on the Workbench disk is set to this value rather than to 80 columns.

Table 1-1. Program Names

Program Title	Filename
Games of Skill (Menu Driver)	GAMES
Enigma	ENIGMA
Elementary, Watson	WATSON
Knights Errant	KNIGHTS
Pharaoh's Pyramid	PYRAMID
Roman Checkers	ROMAN
Falstaff	FALSTAFF
Mosaic Puzzle	MOSAIC
Hi-Q	HI-Q
Solitaire Checkers	SOLITAIRE
Bunny's and Piglet's Tic-Tac-Toe	TTT
Stop, Look, and Learn (Menu Driver)	LEARNING
Crazy Critters	CRITTERS
Let's Add and Subtract	ADD
Let's Multiply	MULTIPLY
Fun with Fractions	FRACTIONS
Foreign Language Flash Cards	CARDS

Household Helpers (Menu Driver)
IRA Planner
Loan Payments
Multifunction Calculator
Paycheck Analysis
Business and Finance (Menu Driver)
Electronic Spreadsheet
Least-Squares Forecasting
Future Worth
Computer Cash Register
Science and Math (Menu Driver)
Chemistry Basics
Weather Forecasting
Simultaneous Equation Solver
Matrix Manipulator
Statistics (Menu Driver)
Scatter Diagram
Super Curve-Fitter

HELPERS
IRA
LOAN
CALCULATOR PAYCHECK
FINANCE
SPREADSHEET
LSF
WORTH
REGISTER
SCIENCE
CHEMISTRY
WEATHER
SES
MATMAN
STATISTICS
SCATTER
SUPER

If You Purchased a COMPUTE!'s Amiga Applications Disk

Before you use the programs on a disk purchased directly from COMPUTE! Publications you should do two things:

- Put Amiga BASIC on the disk.
- Make a back-up copy of the disk.

Amiga BASIC is not on the Applications disk simply because it's copyrighted software. But putting it there is easy. Just follow these instructions:

1. Load your Amiga Extras disk, and then click on it.
2. By holding down the left button of the mouse, move the AmigaBASIC icon to any convenient place outside the window. Then close the Extras window to give yourself plenty of space on the screen.
3. Insert your COMPUTE!'s Amiga Applications disk.
4. Using the mouse, move the AmigaBASIC icon on top of the icon that represents the Amiga Applications disk.
5. Follow the Amiga's prompts as it asks you to alternately insert the Extras disk and then the Amiga Applications disk. Two complete swaps are required.
With this accomplished, duplicate COMPUTE!'s Amiga Applications disk. If you don't recall how to do this, follow the instructions on pages 3-14 to 3-16 in your Introduction to Amiga manual. By the way, before duplicating a disk, it's a good idea to always slip the little black tab of the disk to be duplicated to the open position. This write-protects it, thus eliminating all possibility of accidental loss of data.

CHAPTER 2

Games of Skill

CHAPTER 2

Games of Skill

In some of these games you'll play against yourself (examples are "Enigma," "Knights Errant," and "Pharaoh's Pyramid"). The Amiga will present you with some sort of puzzle, contest, or riddle, and you'll have to achieve a goal in as few moves as possible. In other games ("Roman Checkers" and "Falstaff") you'll compete against the computer, and the Amiga is a very formidable opponent.

No matter which type of game you play, however, all have one thread in common. Each challenges your intellect, memory, concentration, and persistence. What you accomplish is up to you rather than to luck.

Enigma. The Amiga scrambles a secret phrase chosen randomly from its library of 75 entries. Your job is to decipher the message as quickly as possible.

Elementary, Watson. The Amiga creates a hidden code consisting of four items chosen from these six: a horse, a monkey, a duck, a rabbit, a witch, and a kitten. Employing your high powers of logic, you've got to deduce the code in short order.

Knights Errant. A dozen Don Quixotes face a legion of harmless windmills. Try to transfer each group of pieces from one side of the board to the other in as few moves as possible.

Pharaoh's Pyramid. On the Giza plateau, ten miles west of the city of Cairo, Egypt, stands the Great Pyramid of Cheops. The Amiga draws Cheops using 14 blocks. Try to remove as many blocks as possible, with a piece lifted from play when it's jumped.

Roman Checkers. Try to line up five of your chariots in a row on an 8×8 board before the Amiga lines up five of its markers.

Falstaff. You're pitted against the Amiga in this version of what's been called one of the most entertaining games of logic ever invented. Place one of your markers on an empty square so that a string of the Amiga's pieces is capped at both ends; then watch as the Amiga's markers turn into yours.

Mosaic Puzzle. A version of the old sliding-squares game. Rearrange the shapes of a 3×3 square, using as few moves as possible. Two levels of
play are available: Easy (with numbers drawn on each piece) and Hard (without the numbers).

Hi-G. The famous European solitaire game of finesse and foresight. Try to remove as many pegs as possible from a cross-shaped board, with only horizontal and vertical jumps allowed.

Solitaire Checkers. Eliminate as many checkers as possible from a standard 8×8 board, filled along the outer two borders with 48 pieces.

Bunny's and Piglet's Tic-Tac-Toe. Play against the Amiga in this delightful version of an old favorite. Kids and grownups will enjoy the lovable bunny and the lively animation.

Games of Skill Menu Driver

Save using the filename GAMES

```
REM GAMES OF SKILL
    GOSUB INITIALIZE
    GOSUB MAIN.MENU
    RUN TITLE.SHORT$(PICK)
END
INITIALIZE:
    GOSUB SETSCREEN
    GOSUB KEYVALUES
    GOSUB SETMENUS
    GOSUB SETCOLORS
    GOSUB SHAPES
RETURN
```


SETSCREEN:

 SCREEN 1,64Ø, 2ØØ, 3,2
 WINDOW 2,"Games of Skill", \(\varnothing, 1\)
 RETURN

KEYVALUES:

```
    DEFINT A-Z
```

 \(\mathrm{N}=1 \varnothing\)
 DIM TITLE.LONG\$ (N) , TITLE.SHORT\$ (N)
 DIM CIRCLES (150)
 CIRCLE.I(1) = 1: CIRCLE.I (2) = 75
 READ CHAPTER\$
 FOR I=1 TO N
 READ TITLE.LONG\$ (I) , TITLE.SHORT\$ (I)
 NEXT
 RETURN

```
SETMENUS:
    FOR I=2 TO 4
    MENU I,\varnothing,\varnothing,""
    NEXT
    MENU 1,ø,1,"STOP"
    MENU 1,1,1," Go to BASIC"
    MENU 1,2,1," Go to System"
    MENU ON
    ON MENU GOSUB GOODBYE
RETURN
GOODBYE:
    WINDOW CLOSE 2: WINDOW 1: MENU RESET
    SCREEN CLOSE l
    ITEM = MENU(1)
    IF ITEM = 2 THEN SYSTEM
    CLS
    PRINT "Bye-Bye"
    STOP
RETURN
SETCOLORS:
    REM TAN, GREEN, & RED
        PALETTE 4,.95,.7,.53
        PALETTE 5,.14,.43,0
        PALETTE 6,.93,.2,0
RETURN
SHAPES:
    X=313: Y=80: Xl=X-7: X2=X+7: Yl=Y-3: Y2=Y+3
    LINE(X1,Y1)-(X2,Y2),4,BF
    FOR I=1 TO 2
        K = 7-I
        CIRCLE(X,Y),7,K: PAINT(X,Y) ,K
        GET(X1,Y1)-(X2,Y2),CIRCLES(CIRCLE.I(I))
    NEXT
RETURN
MAIN.MENU:
CLS
RTN$ = "OFF": PICK = 1
S$ = CHAPTER$: L = LEN(S$)
LINE(313-10*L/2-15,15)-(313+10*L/2+15,27),1,B
PAINT(313,20),6,1
COLOR 1,6: LOCATE 3: PRINT PTAB(313-10*L/2)S$
LINE(135,32)-(495,130),2,B: PAINT(313,80),4,2
COLOR 2,4
FOR I=1 TO N
    IF I = PICK THEN INX = 2 ELSE INX = 1
```

```
        CALL DRAW.CIRCLE(I, INX)
        LOCATE I+4,23: PRINT TITLE.LONG$(I)
        NEXT
        LINE(263,141)-(360,153), 2, B: PAINT(313,145), 3,2
        COLOR 2,3
        LOCATE 17: PRINT PTAB(282)"Return"
        COLOR 1,\varnothing
        LOCATE 19,11: PRINT "Click Mouse on Choice,";
        PRINT " then Click on Return"
        GOSUB CHOOSE
RETURN
SUB DRAW.CIRCLE(R,INX) STATIC
    SHARED CIRCLES(),CIRCLE.I()
    Y = 9*R+27
    PUT(182,Y) , CIRCLES (CIRCLE.I(INX)) ,PSET
END SUB
CHOOSE:
    GOSUB GURGLE
    GOSUB CLICKIT
    IF S$ = "" THEN GOSUB LOCATION
    IF ASC(S$+" ") <> 13 AND RTN$ = "OFF" THEN
        GOTO CHOOSE
    END IF
RETURN
GURGLE:
    FREQ = 30\varnothing
    FOR G=1 TO 5
        FREQ = 5ØØ - FREQ
        SOUND FREQ,1,50
    NEXT
RETURN
CLICKIT:
    S$ = "'"
    WHILE MOUSE(\emptyset) = Ø AND S$ = ""
        S$ = INKEY$
    WEND
        X = MOUSE(1)
        Y = MOUSE(2)
    WHILE MOUSE(\varnothing)<> \emptyset: WEND: REM RESET
RETURN
```


LOCATION:

```
IF \(\mathrm{X}>263\) AND \(\mathrm{X}<360\) AND \(\mathrm{Y}>141\) AND \(\mathrm{Y}<153\) THEN RTN\$ = "ON"
ELSE
```

```
    P}=\operatorname{INT}((Y-35)/9)+
    IF X>17\emptyset AND X<21\varnothing AND P>\emptyset AND P<= N THEN
    CALL DRAW.CIRCLE(PICK,l)
    CALL DRAW.CIRCLE(P,2)
    PICK = P
    END IF
END IF
RETURN
REM PROGRAMS
    DATA Games of Skill
    DATA Enigma, ENIGMA
    DATA "Elementary, Watson", WATSON
    DATA Knights Errant, KNIGHTS
    DATA Pharaoh's Pyramid, PYRAMID
    DATA Roman Checkers, ROMAN
    DATA Falstaff, FALSTAFF
    DATA Mosaic Puzzle, MOSAIC
    DATA Hi-Q, HI-Q
    DATA Solitaire Checkers, SOLITAIRE
    DATA Bunny's Tic-Tac-Toe, TTT
```


Enigma

In this exciting game of cryptography, the Amiga selects a message from its lexicon of 75 famous phrases. Then it garbles the message by interchanging a letter in the expression with a random selection from the alphabet. GOOSE might end up KMMGD, for example.

Your goal is to decipher the scrambled message in fewer than 25 moves by choosing a letter in the garbled code (use the mouse to make your selection) and entering what you think is the correct character.

Figure 2-1 illustrates the setup. The top bar in each group holds the cryptogram, the middle space your entries, and the bottom bar the correct letters that you've identified.

A good place to begin deciphering this message is with the double-letter sequence $Z Z$. Two N^{\prime} s or $S^{\prime \prime}$ s or T^{\prime} s are possibilities here, and on the third try, we find that T is correct.

Next, the two-letter word $B Z$ is ripe for solution. Since the Z is a T, the B must be either an A or an I, giving us $A T$ or $I T$. As it turns out, A is correct.

Now we're somewhat at a loss. Since E is the most popular letter in the English language, however, and since four H 's and three Q 's appear in the garbled message, perhaps the E is one of these. We try the Q, and as luck would have it, the H is actually the E.

Where do we go from here? The second letter in the first word must be a consonant since it's surrounded by E^{\prime} s. Trial and error reveals an N.

We proceed in this fashion for the rest of the code, using commonsense guesses based on our knowledge of the English language. We eventually come up with this translation:

ENEMY ATTACK-NE ROUTE, AT DAWN

Figure 2-1. Enigma

HQHJO	BZZBLX-QH	GAVZH, B	BZ	PBFQ	$\}$	23 guesses remain
T						
	TT -	T ,				
HQHJO	BZZBLX-QH	GAVZH, B	BZ	PBFQ		21 guesses remain
	T		A			
	ATTA -	T , A	AT	A		
HQHJO	BZZBLX-QH	GAVZH, B	BZ	PBFQ		
E	T		A		\}	19 guesses remain
E E	ATTA - E	TE,	AT	A		

[^0]```
SETSCREEN:
 SCREEN 1,640, 200, 3,2
 WINDOW 2,"Enigma" , , , 1
RETURN
KEYVALUES:
 DEFINT A-Z
 RANDOMIZE TIMER
 DIM ALBT(26)
 BK$ = CHR$(32)
 LT$(1) = "Y": LT$(2) = "N"
 REM NUMBER OF PHRASES
 DATA }7
 READ NP
 REM MAXIMUM MOVES
 DATA 25,20,15
 FOR I=1 TO 3
 READ MOVES(I)
 NEXT
RETURN
SETMENUS:
 DATA 2, Rules, Yes, No
 DATA 3, Game, Easy, Medium, Hard
 DATA 2, Secret, Amiga Selects, Player Selects
 DATA 3, Stop, Go to BASIC
 DATA Go to Games Menu, Go to System
 FOR I=1 TO 4
 READ NUMBER
 FOR J=Ø TO NUMBER
 READ TITLE$
 IF J<>\varnothing THEN TITLE$ = SPACE$(3) + TITLE$
 STATUS = l
 IF I<>4 AND J=1 THEN STATUS = 2
 MENU I,J,STATUS,TITLE$
 NEXT J,I
 RULES = 1: GAME = 1: SELECTOR = 1
 MENU ON
 ON MENU GOSUB OPTIONS
RETURN
SETCOLORS:
 REM GREEN AND RED
 PALETTE 5,.14,.43,0
 PALETTE 6,.93,.2,0
RETURN
HEADING:
 LINE(233,78)-(393,108), 2,BF
```

```
 COLOR 6,2
 LOCATE 11: PRINT PTAB(284)"Enigma"
 COLOR 1,0
 LOCATE 17,索:PRINT "Please use menus,"
 LOCATE 19,%:PRINT "Click mouse to play"
 GOSUB CLICKIT
RETURN
OPTIONS:
 ID = MENU(0): ITEM = MENU(1)
 ON ID GOSUB MENU1,MENU2,MENU3,GOODBYE
 ITEM = Ø
RETURN
MENU1 :
 MENU 1,RULES,l: MENU 1,ITEM,2
 RULES = ITEM
RETURN
MENU2 :
 MENU 2,GAME,1: MENU 2,ITEM,2
 GAME = ITEM
RETURN
MENU3:
 MENU 3,SELECTOR,1: MENU 3,ITEM,2
 SELECTOR = ITEM
RETURN
GOODBYE:
 WINDOW CLOSE 2: WINDOW 1: MENU RESET
 SCREEN CLOSE 1
 IF ITEM = 2 THEN RUN "GAMES"
 IF ITEM = 3 THEN SYSTEM
 COLOR 1,0: CLS
 PRINT "Bye-Bye"
 STOP
RETURN
CLICKIT:
 S$ = ""
 WHILE MOUSE(\varnothing) = Ø AND S$ = ""
 S$ = INKEY$
 WEND
 X = MOUSE(1)
 Y = MOUSE(2)
 WHILE MOUSE(\varnothing)<> \emptyset: WEND: REM RESET
RETURN
```


## GAME :

IF RULES $=1$ THEN GOSUB RULES
ON SELECTOR GOSUB AMIGA, HUMAN
GOSUB LABEL
GOSUB PUNCTUATION
GOSUB SCRAMBLE
GOSUB PLAY
COLOR $1, \varnothing$
IF GAME $=$ "WIN" THEN
LOCATE 17,23: PRINT "Congratulations !" SOUND 9øØ,2
ELSE
GOSUB DEFEAT
END IF
RETURN
RULES:
CLS
PRINT
PRINT " Department G2 has intercepted a ";
COLOR 6,2: PRINT "SECRET";: COLOR 1, $\varnothing$
PRINT " enemy transmission."
PRINT
PRINT " Your goal is to decode it by:"
PRINT
PRINT " -- Clicking the mouse on a letter in";
PRINT " the garbled message."
PRINT
PRINT " -- Entering what you think is the";
PRINT " correct character."
LOCATE 2ø, ${ }^{2}$ 娄: PRINT "Click Mouse": 33 GOSUB CLICKIT
RETURN
AMIGA:
RESTORE PHRASES
$\mathrm{Z}=\mathrm{INT}\left(\mathrm{RND}^{*} \mathrm{NP}\right)+\mathrm{l}$
FOR I=1 TO Z
READ SECRET\$
NEXT
RETURN
HUMAN:
CLS
SOUND 44ø,2
LOCATE 2,3: PRINT "Please enter your secret.";
PRINT " Use the Back Space key to"
PRINT " correct a mistake."
ROW=6: L=45: GOSUB ENTER.PHRASE

```
 SECRET$ = PHRASE$
RETURN
ENTER.PHRASE:
 Yø = ROW*9-15
 LINE (16,Y\emptyset)-((L+3)*1\varnothing,Y\emptyset+18),2,BF
 S$ = "": C=3: COLOR 6,2
 GOSUB KEY
RETURN
KEY:
 LOCATE ROW,C: PRINT CHR$(124);
 L$ = INKEY$: IF L$ = "" THEN KEY
 A = ASC(L$)
 IF C = 3 AND (}A=8\mathrm{ OR A = 13) THEN
 SOUND 9øø,2: GOTO KEY
 END IF
 IF A = 8 THEN
 S$ = LEFT$(S$, LEN(S$)-1)
 PRINT CHR$(8);
 C = C - l
 GOTO KEY
 END IF
 IF C=L+3 AND A<>13 THEN SOUND 9Ø\varnothing, 2: GOTO KEY
 IF A <> 13 THEN
 PRINT CHR$(8);UCASE$(L$)
 S$ = S$ + UCASE$(L$)
 C=C + l
 GOTO KEY
 END IF
 PHRASE$ = S$
RETURN
LABEL:
 COLOR 1,\emptyset
 CLS
 LINE(15,5)-(160, 29),1,BF
 COLOR 6,1
 LOCATE 2,3: PRINT "Guesses"
 LOCATE 3,3: PRINT "Remaining:"
RETURN
PUNCTUATION:
 GUESS$ = ""
 L = LEN(SECRET$)
 FOR I=1 TO L
 L$ = MID$(SECRET$,I,l): A = ASC(L$)
 IF A > 64 AND A < 91 THEN L$ = BK$
 GUESS$ = GUESS$ + L$
```

NEXT
RETURN

## SCRAMBLE:

## COLOR $1, \varnothing$

FOR I=1 TO 26: ALBT(I)=Ø: NEXT
LOCATE 10,27: PRINT "Scrambling ..."
SCRAMBLES = GUESS\$
FOR I=1 TO L
LT\$ = MID\$(SECRET\$,I,l)
S\$ = MID\$ (SCRAMBLE $\$, I, 1)$
IF LT\$ <> BK\$ AND S\$ = BK\$ THEN GOSUB RANDOM.LETTER GOSUB SUBSTITUTE
END IF
NEXT I
RETURN
RANDOM.LETTER:
SOUND 2øØ,1
SEARCH\$ = "ON"
WHILE SEARCH\$ = "ON"
$\mathrm{V}=\mathrm{INT}(26 * \mathrm{RND})+\mathrm{l}$
IF ALBT(V) <> 1 THEN SEARCH\$ = "OFF"
WEND
RL\$ $=$ CHR\$ (64+V): ALBT(V) $=1$
RETURN
SUBSTITUTE:
FOR J=I TO L IF MID $(\operatorname{SECRET} \$, \mathrm{~J}, 1)=$ LT $\$$ THEN $\operatorname{MID}($ SCRAMBLES,J,1) $=$ RL\$ END IF
NEXT J
RETURN

## PLAY:

GOSUB DRAWBARS
GOSUB INITIAL.VALUES
WHILE GAME $=$ "ON" AND N < MAX.MOVES GOSUB ENTER.LETTER
GOSUB CHECK.FOR.MATCH
IF GUESS $\$=$ SECRETS THEN GAME\$ = "WIN" IF GAME $\$=$ "ON" AND ANS = "Right" THEN GOSUB ASK.TO.DECODE
END IF
WEND
RETURN

```
INITIAL.VALUES:
 N = Ø: REM NUMBER OF WRONG GUESSES
 MAX.MOVES = MOVES(GAME)
 COLOR 6,1
 LOCATE 3,13: PRINT MAX.MOVES
 GAMES = "ON"
 REM HIGHLIGHT FIRST LETTER
 COL =3: COL.HOLD = 3: P = 1
 COLOR 1,3
 LOCATE 8,3: PRINT MID$(SCRAMBLE$,1,1)
RETURN
DRAWBARS:
 COLOR 1,\emptyset
 LOCATE 10,27: PRINT SPACE$(14)
 LOCATE 6,3: PRINT "Secret Code:"
 LINE(16,57)-(22+L*10,75),3,BF
 COLOR 2,3
 LOCATE 8,3: PRINT SCRAMBLE$
 LINE(16,93)-(22+L*10,111),1,BF
 COLOR Ø,l
 LOCATE 12,3: PRINT GUESS$
RETURN
ENTER.LETTER:
 COLOR 1,\varnothing
 LOCATE 6,16: PRINT "(Click on letter;";
 PRINT " enter guess)"
 ACTION$ = "OK"
 WHILE ACTION$ <> "LETTER"
 GOSUB CLICKIT
 IF S$="" THEN GOSUB LOCATION ELSE GOSUB LETTER
 IF ACTION$ = "BAD" THEN SOUND 9øø,2
 WEND
 COLOR 1,\varnothing
 LOCATE 10,COL: PRINT C$
RETURN
LOCATION:
 ACTION$ = "OK"
 Cl = INT(X/lØ)+1
 IF Y<57 OR Y>75 OR Cl<3 OR Cl > L+2 THEN
 ACTION$ = "BAD"
 ELSE
 COL = Cl: P = COL-2
 COLOR 2,3
 LOCATE 8,COL.HOLD
 PRINT MID$(SCRAMBLE$,COL.HOLD-2,1)
 COLOR 1,3
```

```
 LTR$ = MID$(SCRAMBLES,P,1)
 IF LTR$ = BK$ THEN LTR$ = CHR$(124)
 LOCATE 8,COL: PRINT LTR$
 COL.HOLD = COL
END IF
RETURN
```


## LETTER:

```
 ACTION$ = "LETTER"
 S$ = UCASE$(S$):A = ASC(S$): C$ = CHR$(A)
 L1$ = MID$(GUESS$,P,1)
 L2$ = MID$(SECRET$,P,1)
 IF A<65 OR A>90 OR Ll$<>BK$ OR L2$=BK$ THEN
 ACTION$ = "BAD"
 END IF
RETURN
CHECK.FOR.MATCH:
 IF L2$=CS THEN AN$ = "Right" ELSE AN$ = "Wrong"
 LOCATE 6,16: PRINT SPACES(3\emptyset)
 LOCATE 6,16: PRINT AN$;" Letter."
 GOSUB GURGLE
 IF AN$ = "Right" THEN GOSUB HIT ELSE GOSUB MISS
RETURN
HIT:
 FOR J=1 TO L
 S$ = MID$(SECRET$,J,l)
 IF S$ = C$ THEN MID$(GUESS$,J,1) = C$
 NEXT
 COLOR Ø,1
 LOCATE 12,3: PRINT GUESS$
RETURN
MISS:
 COLOR 6,1
 N = N+l
 LOCATE 3,13: PRINT MAX.MOVES-N
 FOR PAUSE=1 TO 750\emptyset: NEXT
RETURN
GURGLE:
 FREQ = 30\varnothing
 FOR G=1 TO 7
 FREQ = 5\emptyset\emptyset-FREQ
 SOUND FREQ,1,50
 NEXT G
RETURN
```

```
ASK.TO.DECODE:
 COLOR 1,ø
 LOCATE 16,20: PRINT "Decode ?"
 ROW=16: X\varnothing=275: GOSUB DECIDE
 LOCATE 16,20: PRINT SPACE$(8)
 LINE(X\emptyset,Y\varnothing)-(X\varnothing+96,Y\varnothing+14), }\varnothing,B
 IF BUTTON = 1 THEN GOSUB GET.ANSWER
RETURN
DECIDE:
 BUTTON = Ø
 GOSUB DRAWBUTTON
 GOSUB PUSHBUTTON
 COLOR 1,\varnothing
RETURN
DRAWBUTTON:
 YØ = 9*ROW-13
```



```
 LINE (X\varnothing,YØ)-(XØ+96,YØ+14),1,BF
 FOR I=1 TO 2
 CIRCLE (XB(I),YB),12,I+4
 PAINT (XB(I),YB),I+4
 COLOR 1,I+4
 LOCATE ROW: PRINT PTAB(XB(I)-4);LT$(I);
 NEXT I
RETURN
PUSHBUTTON:
 SOUND 440,2
 GOSUB CLICKIT
 S$ = UCASE$(S$)
 IF SS = "Y" THEN BUTTON = 1
 IF S$ = "N" THEN BUTTON = 2
 FOR I=1 TO 2
 XD = ABS(X-XB(I)): YD = ABS(Y-YB)
 IF XD<l3 AND YD<7 THEN BUTTON = I: I=2
 NEXT
 IF BUTTON = Ø THEN PUSHBUTTON
RETURN
GET.ANSWER:
 ROW = 15
 GOSUB ENTER.PHRASE
 IF PHRASE$ = SECRETS THEN
 GAME$ = "WIN"
 ELSE
 COLOR 1,ø
 LOCATE 18,23: PRINT "Wrong translation."
```

```
 SOUND 150,9: SOUND 130,9
 LOCATE 2ø,3634 PRINT "Click Mouse";
 gosub CLICKIT
 LOCATE 18,23: PRINT SPACE$(18)
 LOCATE 2ø,26: PRINT SPACE$(11);
 LINE(16,Yø)-((L+3)*1\varnothing,Yø+18), }0,\textrm{BF
 END IF
RETURN
DEFEAT:
 COLOR 1,\emptyset
 LOCATE 16,16: PRINT "View Secret ?"
 ROW=16: Xø=285: GOSUB DECIDE
 LOCATE 16,16: PRINT SPACE$(13)
 LINE (X\varnothing,Y\varnothing)-(X }\varnothing+96,Y\varnothing+14), \varnothing,B
 IF BUTTON = 1 THEN LOCATE 10,3: PRINT SECRET$
RETURN
PHRASES:
 DATA GOD SAVE THE QUEEN
 DATA "tHE FEW, THE PROUD, THE MARINES !"
 DATA A FEW GOOD MEN
 DATA "I CAME, I SAW, I CONQUERED"
 DATA I SHALL NOT DEAL IN MALICE
 DATA LOVE THY NEIGHBOR
 DATA TAKE IT EASY
 DATA EVERY WHICH WAY BUT LOOSE
 dATA tHE RUSSIANS ARE COMING
 dATA JACK and JIll WENT UP A hill
 DATA THE COW JUMPED OVER THE MOON
 DATA HEY DIDDLE DIDDLE
 DATA THE OLD GRAY MARE
 DATA "TINKER, TAILOR, SOLDIER, SPY"
 DATA THE GRAPES OF WRATH
 DATA GONE WITH THE WIND
 DATA THE GULAG ARCHIPELAGO
 data tie me kangaroo down mate
 dATA MY LItTle ChICKADEE
 DATA THE LAST OF THE MOHICANS
 DATA NICE GUYS FINISH LAST
 DATA THE WHOLE NINE YARDS
 DATA I LOVE NEW YORK
 dATA DON QUIXOTE AND SANCHO PANZA
 DATA HONEST ABE LINCOLN
 DATA "EAST SIDE, WEST SIDE"
 DATA SUGAR AND SPICE AND EVERYTHING NICE
 DATA OF MICE AND MEN
 DATA ALICE IN WONDERLAND
 DATA THERE'S SOMETHING ROTTEN IN DENMARK
```

```
DATA WHAT A REVOLTING PREDICAMENT
DATA A ROLLING STONE GATHERS NO MOSS
DATA BEAM ME ABOARD SCOTTY
DATA IT'S A LONG WAY TO TIPPERARY
DATA THE ANSWER IS BLOWING IN THE WIND
DATA GIVE ME LIBERTY OR GIVE ME DEATH
DATA DIVIDE AND CONQUER
DATA IT'S THE REAL THING
DATA I THINK THEREFORE I AM
DATA A STITCH IN TIME SAVES NINE
DATA THERE'S NO FREE LUNCH
DATA TWAS THE NIGHT BEFORE CHRISTMAS
DATA "RED SKY AT NIGHT, SAILOR'S DELIGHT"
DATA IN THE LONG RUN, WE'RE ALL DEAD
DATA "HAIL TO THE REDSKINS, HAIL VICTORY"
DATA "TO ERR IS HUMAN, TO FORGIVE DIVINE"
DATA THE MOUSE RAN UP THE CLOCK
DATA A CAT HAS NINE LIVES
DATA THE JOLLY GREEN GIANT
DATA THE AMAZING AMIGA
DATA "ELEMENTARY, MY DEAR WATSON"
DATA MARY HAD A LITTLE LAMB
DATA HE WHO HESITATES IS LOST
DATA "COLUMBIA, THE GEM OF THE OCEAN"
DATA THIS LAND IS MADE FOR YOU AND ME
DATA "MOBY DICK, THE GREAT WHITE WHALE"
DATA THE HOUND OF THE BASKERVILLES
DATA THE BRONX BOMBER
DATA I AM THE GREATEST
DATA SLOW AS MOLASSES
DATA THE LAND OF THE RISING SUN
DATA "ALMOST HEAVEN, WEST VIRGINIA"
DATA FROM THE HALLS OF MONTEZUMA
DATA TOO MANY COOKS SPOIL THE BROTH
DATA "HARK THE RAVEN, NEVERMORE !"
DATA TOM SAWYER AND HUCKLEBERRY FINN
DATA WHERE'S THE BEEF ?
DATA "TWINKLE, TWINKLE, LITTLE STAR"
DATA IT'S A GRAND SLAM HOME RUN
DATA E PLURIBUS UNUM
DATA NO TAXATION WITHOUT REPRESENTATION
DATA ONCE UPON A MIDNIGHT DREARY
DATA E EQUALS MC SQUARED
DATA THE HUNCHBACK OF NOTRE DAME
DATA AND THEY LIVED HAPPILY EVER AFTER
```


## Elementary, Watson

Image that you're Watson sitting by the fire. Suddenly the door flies open and Holmes appears along with the Thames fog and the cold night air. "The game's afoot, Watson!" he cries. "This note holds the key to the Farmingdale frame-up."

You leap to your feet and take the page from his hana, and exclaim in utter surprise, "But Holmes, this sheet is blank!"
"That, my dear Watson, is precisely what makes the game interesting."
The secret code in this brain-busting game of logic consists of a column of four items chosen randomly from these six: a horse, a duck, a witch, a rabbit, a kitten, and a monkey. An item might appear more than once or not at all. The code remains invisible while you play, and your goal is to figure it out based on clues that the Amiga provides.

Play begins with the computer asking you to select an item for each of the four positions in the column. You guess a rabbit, a monkey, a duck, and a witch, in that order (Figure 2-2).

The Amiga grades your guess using two kinds of markers, one red and one white. The number of red markers indicates how many objects are of the right kind and in the right location. The number of white markers indicates how many objects are of the right kind but in the wrong location.

Each item in the secret code receives one marker at most. You'll therefore never see more than four circles in your score. Four red markers means victory, and a quartet of white ones means that you've identified all the right objects, but none of them is in the right place. A complete absence of markers, on the other hand, means that none of the objects you've selected is in the hidden code. This is often fortunate, for it eliminates a number of objects from further consideration.

Figure 2-2. Elementary, Watson
Secret
Code
Guess
Guess
$\underset{3}{\text { Guess }}$
$\underset{4}{\text { Guess }}$
(Kitten)



(Rabbit)







(Witch)


Score


Program 2-2. Elementary, Watson
Save using the filename WATSON
REM ELEMENTARY, WATSON GOSUB INITIALIZE
PLAYGAME:
GOSUB PLAY
PLAYAGAIN:
LOCATE 20,21: PRINT "Play Again ? "; GOSUB DECIDE
IF BUTTON = 1 THEN PLAYGAME GOSUB GOODBYE
END

```
INITIALIZE:
 GOSUB SETSCREEN
 GOSUB KEYVALUES
 GOSUB SETMENUS
 GOSUB SETCOLORS
 GOSUB DRAWSHAPES
 GOSUB DRAWCIRCLES
 GOSUB HEADING
RETURN
SETSCREEN:
 SCREEN 1,640,2Ø0,3,2
 WINDOW 2,"Elementary, Watson",,0,1
RETURN
KEYVALUES:
 DEFINT A-Z
 RANDOMIZE TIMER
 DIM SHAPE(1561),MARKER(150)
 REM VECTOR INDICES
 FOR I=1 TO 6
 INDEX(I) = 1 + (I-1)*260
 NEXT
 REM BUTTON HOLES & LETTERS
 XB(1)=364: YB(1)=174
 XB(2)=4ø6: YB(2)=174
 LT$(1) = "Y": LT$(2) = "N"
 REM NAMES
 DATA " Horse "," Duck "," Witch "
 DATA " Bunny "," Monkey"," Kitten"
 FOR I=1 TO 6
 READ NM$(I)
 NEXT
RETURN
SETMENUS:
 DATA 2, Rules, Yes, No
 DATA 2, Game, Easy, Hard
 DATA 3, Stop, Go to BASIC
 DATA Go to Games Menu, Go to System
 FOR I=1 TO 3
 READ NUMBER
 FOR J=Ø TO NUMBER
 READ TITLES
 IF J<>\varnothing THEN TITLES = SPACES (3) + TITLES
 STATUS = 1
 IF I<>3 AND J=1 THEN STATUS = 2
 MENU I,J,STATUS,TITLES
 NEXT J,I
```

```
 MENU 4,ø,1,""
 RULES = 1: GAME = 1
RETURN
SETCOLORS:
 REM PINK, BROWN, RED, GRAY
 PALETTE 4,1,.51,.64
 PALETTE 5,.82,.37,.07
 PALETTE 6,.93,.2,\varnothing
 PALETTE 7,.73,.83,.73
RETURN
DRAWSHAPES:
 MENU ON
 ON MENU GOSUB OPTIONS
 GOSUB HORSE
 GOSUB DUCK
 GOSUB WITCH
 GOSUB BUNNY
 GOSUB MONKEY
 GOSUB KITTTEN
 GOSUB GETSHAPES
RETURN
HORSE:
 XØ=1Ø6: Yø=76
 CALL DRAWLINE(1,XØ,YØ,151)
 PAINT (X\varnothing,Y\emptyset+3)
 CALL DRAWPOINT(\varnothing,X\emptyset,Yø,4)
RETURN
SUB DRAWLINE(K,X.C,Y.C,T) STATIC
 COLOR K
 PSET(X.C,Y.C)
 FOR I=1 TO T
 READ X,Y
 LINE -STEP(X,Y)
 NEXT
END SUB
SUB DRAWPOINT(K,X.C,Y.C,T) STATIC
 COLOR K
 FOR I=1 TO T
 READ X,Y
 PSET(X.C+X,Y.C+Y)
 NEXT
END SUB
```

```
DUCK:
 X\emptyset=183: YØ=8\emptyset
 CALL DRAWLINE(3,XØ,YØ, 73)
 PAINT (XØ-9,YØ+4)
 PAINT (XØ+17,YØ+4)
 CALL DRAWPOINT(2,XØ,YØ,12)
 REM BILL
 COLOR 1
 PSET(X\emptyset+23,YØ+5)
 LINE - STEP(\varnothing,l): LINE -STEP(4,\varnothing)
RETURN
WITCH:
 REM DRESS/SHOES
 X\emptyset=263
 CALL DRAWLINE(2,X\emptyset,YØ,59)
 PAINT (X\varnothing+2,Y\emptyset+4)
 PAINT (XØ-3,YØ-2)
 REM HAIR
 CALL DRAWPOINT(2,XØ,YØ-6,7)
 REM BROOM
 LINE (X\emptyset-15,Y\emptyset+8)-(XØ+3\emptyset,Y\emptyset-5)
 CALL DRAWLINE(2,XØ-15,YØ+8,9)
 REM CAPE
 CALL DRAWLINE(6,XØ+4,YØ-5,26)
 PAINT (XØ-12,YØ-3)
 REM HAT
 CALL DRAWLINE(6,XØ+1,YØ-7,1Ø)
 REM FACE
 CALL DRAWLINE(4,XØ+4,YØ-6,8)
 REM ARMS
 CALL DRAWLINE(4,XØ+11,YØ-1,3)
RETURN
BUNNY:
 X0=343
 CALL DRAWLINE(4,XØ,YØ, 80)
 PAINT (XØ,YØ+3)
 CALL DRAWPOINT(2,XØ,YØ,41)
RETURN
MONKEY:
 X0=423
 CALL DRAWLINE(5,XØ,Y\emptyset, 36)
 CALL DRAWLINE(5,X0,Y\emptyset,68)
 PAINT (XØ+3,YØ+2)
 CALL DRAWLINE(5,XØ+18,Y\emptyset+4,8)
 CALL DRAWPOINT(Ø, X\emptyset,YØ,lØ)
 CALL DRAWPOINT(2,XØ,YØ,6)
RETURN
```

```
KITTEN:
 Xø=5ø3
 CALL DRAWLINE(7,X\emptyset,Y\emptyset,14Ø)
 PAINT(X\emptyset,YØ-3)
 CALL DRAWPOINT(2,XØ,YØ,16)
 CALL DRAWPOINT(6,Xø,Y\emptyset,4)
RETURN
GETSHAPES:
 FOR I=l TO 6
 Xl = 80*I-7: X2 = 80*I+53
 GET(X1,7Ø)-(X2,90),SHAPE(INDEX(I))
 NEXT
RETURN
DRAWCIRCLES:
 X\varnothing=193: Xl=428: Yø=11\varnothing
 COLOR 6: CIRCLE (X\emptyset,Y\emptyset),l\emptyset: PAINT(X\emptyset,Y\emptyset)
 COLOR l: CIRCLE (Xl,Yø),l\emptyset: PAINT(Xl,Y\emptyset)
 GET(X\varnothing-1\varnothing,Y\varnothing-5)-(X }|+1\varnothing,Y\varnothing+5),MARKER(1
 GET(Xl-1\varnothing,Y\emptyset-5)-(Xl+1\varnothing,Y\emptyset+5),MARKER(75)
RETURN
HEADING:
 COLOR 1,ø
 LOCATE 13,23:PRINT "Elementary, Watson"
 LOCATE 17,24:PRINT "Please use menus,"
 LOCATE 19,23:PRINT "Click mouse to play"
 GOSUB CLICKIT
RETURN
OPTIONS:
 ID = MENU(\varnothing): ITEM = MENU(1)
 ON ID GOSUB MENU1,MENU2,GOODBYE
 ITEM = Ø
RETURN
MENU1:
 MENU 1,RULES,1: MENU 1,ITEM,2
 RULES = ITEM
RETURN
MENU2 :
 MENU 2,GAME,1: MENU 2,ITEM,2
 GAME = ITEM
RETURN
GOODBYE:
 WINDOW CLOSE 2: WINDOW l: MENU RESET
```

```
 SCREEN CLOSE l
 IF ITEM = 2 THEN RUN "GAMES"
 IF ITEM = 3 THEN SYSTEM
 COLOR 1,\varnothing: CLS:
 PRINT "Bye-Bye"
 STOP
RETURN
CLICKIT:
 S$ = ""
 WHILE MOUSE(\varnothing) = Ø AND S$ = ""
 S$ = INKEY$
 WEND
 X = MOUSE(1)
 Y = MOUSE(2)
WHILE MOUSE(\varnothing)<> Ø: WEND: REM RESET
RETURN
PLAY:
 IF RULES = l THEN GOSUB RULES
 GOSUB RECORD
 GOSUB DRAWBOARD
 WHILE GAMES = "ON" AND N > Ø
 GOSUB ENTERMOVE
 GOSUB GRADEMOVE
 IF RR = 4 THEN GAME$ = "OVER"
 WEND
 GOSUB GAMEOVER
RETURN
RULES:
 CLS
 PRINT
 PRINT " The game's afoot, Watson ! And your";
 PRINT " job is to guess"
 PRINT " the Amiga's secret code using these";
 PRINT " markers:"
 PUT(1Ø\varnothing,42),MARKER(1),PSET
 LOCATE 6,15:
 PRINT "Right item in the right location"
 PUT(100,69),MARKER(75),PSET
 LOCATE 9,15
 PRINT "Right item in the wrong location."
PRINT: PRINT
PRINT " When play begins, click the mouse on";
PRINT " the name of the"
PRINT " item you'd like to choose (say HORSE or";
PRINT " WITCH)."
LOCATE 20,26:PRINT "Click Mouse";
```

```
GOSUB CLICKIT
RETURN
```

```
RECORD:
 ITEMS = GAME + 4
 FOR I=1 TO 4
 SECRET(I) = INT(ITEMS*RND) + 1
 NEXT
 GAMES = "ON"
 N = 7: REM TURNS LEFT
RETURN
```

DRAWBOARD:
CLS
COLOR 6,1
FOR I=1 TO 4
LOCATE 3*I-1,2: PRINT I
$Y=27 * I-19$
LINE (10, Y)-(39,Y), 1
NEXT
COLOR 2
FOR I=1 TO ITEMS
LOCATE 18,9*I-3
PRINT NMS (I)

NEXT
COLOR 1, $\varnothing$ : $S \$=$ "Score"
FOR I=1 TO 5
LOCATE I+12,3: PRINT MID\$(S\$,I,1)
NEXT
RETURN
ENTERMOVE:
COLOR 1, $\varnothing$
S\$ = STR\$(N) + " turns left."
IF $N=1$ THEN $S \$=$ YOur last chance $!"$
LOCATE 20,32-LEN(S\$)/2: PRINT S\$;
SOUND 44ø,2
$\mathrm{HZ}=(7-\mathrm{N}) * 76+1 \varnothing 2$
FOR I=1 TO 4
GOSUB GUESS
NEXT
RETURN

## GUESS:

    LOCATE 3*I-1: PRINT PTAB(HZ+30)"?";
    GOSUB CLICKIT
    \(\mathrm{P}=\operatorname{INT}((\mathrm{X}-39) / 9 \varnothing)+1\)
    IF \(Y<152\) OR Y>161 OR \(\mathrm{P}<1\) OR \(\mathrm{P}>\) ITEMS THEN
    ```
 SOUND 900,2
 GOTO GUESS
 END IF
 PUT(HZ,27*I-26),SHAPE(INDEX(P)),PSET
 GUESS(I) = P
RETURN
GRADEMOVE:
 GOSUB GURGLE
 FOR I=1 TO 4: CODE(I)=SECRET(I): NEXT
 REM RIGHT ITEM, RIGHT PLACE
 GOSUB RIGHT.RIGHT
 REM RIGHT ITEM, WRONG PLACE
 FOR I=1 TO 4
 IF GUESS(I) <> -9 THEN GOSUB RIGHT.WRONG
 NEXT I
 N = N - l
RETURN
RIGHT.RIGHT:
 Y = 107: RR = Ø
 FOR I=1 TO 4
 IF GUESS(I) = CODE(I) THEN
 PUT(HZ+2\emptyset,Y),MARKER(1),PSET
 Y = Y+ll
 GUESS(I) = -9
 CODE(I) = -9
 RR = RR + l
 END IF
 NEXT
RETURN
RIGHT.WRONG:
 FOR J=1 TO 4
 IF GUESS(I) = CODE(J) THEN
 PUT(HZ+2Ø,Y) ,MARKER(75),PSET
 Y = Y+ll
 CODE(J) = -9: J=4
 END IF
 NEXT J
RETURN
GURGLE:
 FREQ = 3ø\emptyset
 FOR G=1 TO 5
 FREQ = 50\emptyset-FREQ
 SOUND FREQ,1,5\emptyset
 NEXT G
RETURN
```

```
GAMEOVER:
 G = 7-N: REM NUMBER OF GUESSES
 LOCATE 20,23: PRINT SPACES(18);
 LINE(50,152)-(570,161), \varnothing,BF
 IF RR = 4 THEN GOSUB VICTORY ELSE DEFEAT
RETURN
VICTORY:
 RK$ = "Amateur"
 IF G = 6 THEN RK$ = "Scotland Yarder"
 IF G<= 5 THEN RK$ = "Holmes, the Master !"
 S$ = "Rank: " + RK$
 LOCATE 18,32-LEN(S$)/2: PRINT S$
RETURN
DEFEAT:
 LOCATE 20,21: PRINT "View Secret ?";
 GOSUB DECIDE
 IF BUTTON = 1 THEN GOSUB SECRET
RETURN
SECRET:
 LINE (1\varnothing, \varnothing)-(88,1\varnothing5),\varnothing,BF
 LINE(10,\varnothing)-(88,105),6,B
 FOR I=1 TO 4
 S = SECRET(I)
 PUT(20,27*I-26),SHAPE(INDEX(S)),PSET
 NEXT
RETURN
DECIDE:
 BUTTON = Ø
 GOSUB DRAWBUTTON
 GOSUB PUSHBUTTON
 COLOR 1,\varnothing
RETURN
DRAWBUTTON:
 LINE (337,167)-(433,181),1,BF
 FOR I=1 TO 2
 CIRCLE (XB(I),YB(I)),12,I*3
 PAINT (XB(I),YB(I)),I*3
 COLOR 1,I*3
 LOCATE 20: PRINT PTAB(XB(I)-4);LTS(I);
 NEXT I
RETURN
PUSHBUTTON:
 SOUND 440,2
```


## GOSUB CLICKIT

```
S$ = UCASE$(S$)
IF S$ = "Y" THEN BUTTON = l
IF S$ = "N" THEN BUTTON = 2
FOR I=1 TO 2
 XD = ABS(X-XB(I)): YD = ABS(Y-YB(I))
 IF XD<13 AND YD<7 THEN BUTTON = I: I=2
NEXT
IF BUTTON = Ø THEN PUSHBUTTON
RETURN
```


## REM HORSE

```
DATA \(-1 \varnothing, \varnothing, \varnothing,-1,-9, \varnothing, \varnothing, 1,-4, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-2, \varnothing\)
```

DATA $\varnothing,-1,-3, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 2,1, \varnothing, \varnothing, 3,-3, \varnothing, \varnothing, 1$
DATA $1, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,-1, \varnothing$
DATA $\varnothing,-2,4, \varnothing, \varnothing, 2,1, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 3,-1, \varnothing, \varnothing, 1$
DATA $-3, \varnothing, \varnothing, 5,3, \varnothing,-1, \varnothing, \varnothing,-4,2, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1$
DATA $3, \varnothing, \varnothing,-1,3, \varnothing, \varnothing, 2,-1, \varnothing, \varnothing, 2,3, \varnothing, \varnothing, 1,4, \varnothing, \varnothing, 1$
DATA $2, \varnothing, \varnothing, 1,3, \varnothing,-2, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-1$
DATA $-2, \varnothing, \varnothing,-2,1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,1, \varnothing$
DATA $\varnothing,-1,2, \varnothing, \varnothing, 1,1 \varnothing, \varnothing, \varnothing, 2,-1, \varnothing, \varnothing, 4,-1, \varnothing, \varnothing, 1$
DATA $-1, \varnothing, 1, \varnothing, \varnothing, 1,4, \varnothing,-2, \varnothing, \varnothing,-4,1, \varnothing, \varnothing,-1,1, \varnothing$
DATA $\varnothing,-1,1, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-2,3, \varnothing, \varnothing, 1,3, \varnothing, \varnothing, 1$
DATA $1, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1,1, \varnothing$
DATA $\varnothing,-1,2, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1$
DATA $-1, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing,-2,1, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-3$
DATA $2, \varnothing, \varnothing, 2,1, \varnothing, \varnothing, 1,2, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,2, \varnothing$
DATA $\varnothing,-3,-1, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-1,-8, \varnothing, \varnothing, 1,-4, \varnothing$
DATA $\varnothing, 1,-3, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-3, \varnothing$
DATA $-2 \varnothing, 6,-19,7,20,-2,21,-2$

## REM DUCK

```
DATA \(3, \varnothing,-1, \varnothing, \varnothing, 2,-1, \varnothing, \varnothing, 2,3, \varnothing, \varnothing, 1,7, \varnothing, \varnothing,-1\)
```

DATA $2, \varnothing, \varnothing,-1,7, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,1, \varnothing,-2, \varnothing$
DATA $\varnothing, 1,-5, \varnothing, \varnothing,-1,-5, \varnothing, \varnothing, 1,-4, \varnothing, \varnothing, 1,-4, \varnothing$
DATA $\varnothing, 1,-13, \varnothing, \varnothing,-1,-6, \varnothing, \varnothing,-1,-5, \varnothing, \varnothing,-1$
DATA $-4, \varnothing, 9, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-2,1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1$
DATA $1, \varnothing, \varnothing,-2,-1, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-2,-1, \varnothing, \varnothing,-2$
DATA $1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1$
DATA $1, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,2, \varnothing, \varnothing,-2,2, \varnothing, \varnothing, 1,1, \varnothing$
DATA $\varnothing, 1,1, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1$
DATA $-4,-1,-3, \varnothing,-3,1,-2,2,-2,3,-1,4,1,5,2,6$
DATA $1,7,0,7,18,4,19,4$

REM WITCH
DATA $\varnothing, 1,2, \varnothing, 1, \varnothing, 1 \varnothing, \varnothing, \varnothing, 3,-2, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1$
DATA $-2, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing, 2, \varnothing,-1$
DATA $-1, \varnothing, \varnothing,-1,-6, \varnothing, 1, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-2$
DATA $-4, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-3,1, \varnothing, \varnothing,-1,1, \varnothing$

DATA $\varnothing,-1,2, \varnothing, \varnothing,-1,8, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,2, \varnothing$
DATA $-3, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1, \varnothing,-1,-2, \varnothing, \varnothing,-2,-2, \varnothing, \varnothing, 1$
DATA $-1, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1$
DATA $-1, \varnothing, 1, \varnothing, 2, \varnothing, 3, \varnothing, 3,-1,4,-1,5,-1$
DATA $-2, \varnothing, \varnothing, 1,-4, \varnothing, \varnothing, 1,-5, \varnothing, 9, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1$
DATA $-6, \varnothing, \varnothing,-1,-7, \varnothing, \varnothing, 1,-7, \varnothing, \varnothing, 1,-4, \varnothing, \varnothing, 1,-9, \varnothing$
DATA $1, \varnothing, \varnothing, 1,11, \varnothing, \varnothing, 1,3, \varnothing, \varnothing, 1,3, \varnothing, \varnothing,-1,1, \varnothing$
DATA $\varnothing,-1,1, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,3, \varnothing$
DATA $1, \varnothing, \varnothing,-1,8, \varnothing,-3, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing,-1,-2, \varnothing$
DATA $1, \varnothing, \varnothing, 1$
DATA $3, \varnothing, \varnothing, 1,1, \varnothing, \varnothing,-1,2, \varnothing,-2, \varnothing, \varnothing,-1,-1, \varnothing$
DATA $1, \varnothing, 1, \varnothing, \varnothing, 1$

## REM BUNNY

DATA $\varnothing,-1,3, \varnothing, \varnothing,-1,8, \varnothing, \varnothing, 1,4, \varnothing, \varnothing, 1,3, \varnothing, \varnothing, 1,1, \varnothing$
DATA $\varnothing, 1,1, \varnothing, \varnothing, 3,3, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-12, \varnothing$
DATA $\varnothing, 1,-16, \varnothing, 1, \varnothing, \varnothing,-2,-2, \varnothing, \varnothing, 1,-3, \varnothing, 1, \varnothing, \varnothing,-1$
DATA $2, \varnothing, \varnothing,-2,-1, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-1$
DATA $-1, \varnothing, \varnothing,-1,-7, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-1,-1, \varnothing, 1, \varnothing$
DATA $\varnothing,-1,2, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-2,-1, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-2$
DATA $-1, \varnothing, 1, \varnothing, \varnothing,-1,1,0, \varnothing, 1,3, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 3,4, \varnothing$
DATA $\varnothing,-2,1, \varnothing, \varnothing,-1,4, \varnothing, \varnothing,-1,2, \varnothing, \varnothing, 2,-1, \varnothing, \varnothing, 1$
DATA $-2, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 2,2, \varnothing, \varnothing, 1,4, \varnothing,-15,-5$
DATA $-14,-5,-15,-6,-14,-6,-15,-7,-8,-4,-8,-5$
DATA $-7,-6,-6,-6,-15,-1,-14,-1,-13,-1,-14,-2$
DATA $-13,-2,-11,1,-1 \varnothing, 1,-9, \varnothing,-8, \varnothing,-8,8,-3,9$
DATA $-2,7,-1,6,4,8,3,8,2,8,1,7, \varnothing, 6, \varnothing, 5, \varnothing, 4,2,3$
DATA $4,2,8,2,9,2,10,2,12,3,17,6,18,5,19,5$
DATA $-19,1,-18,1,-17,1$

## REM MONKEY

DATA $-4, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 5,-3, \varnothing, \varnothing, 1,-1 \varnothing, \varnothing$
DATA $\varnothing,-1,-4, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-1,-1, \varnothing$
DATA $\varnothing,-4,1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,5, \varnothing, \varnothing, 2,-3, \varnothing, 3, \varnothing$
DATA $\varnothing,-1,1, \varnothing,-1, \varnothing, \varnothing,-1,-5, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1,-1, \varnothing$
DATA $\varnothing, 3,-2, \varnothing, \varnothing,-1,3, \varnothing, \varnothing,-1,3, \varnothing, \varnothing,-1,4, \varnothing, \varnothing,-2$
DATA $2, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,4, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 2,-1, \varnothing, \varnothing, 2$
DATA $-2, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing, 2,1, \varnothing, \varnothing, 2,1, \varnothing, \varnothing, 1,3, \varnothing, \varnothing,-1$
DATA $2, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,3, \varnothing, \varnothing,-1,3, \varnothing, \varnothing, 1,1, \varnothing,-6, \varnothing$
DATA $\varnothing, 1,-2, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 3,-1, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing,-1$
DATA $-2, \varnothing, \varnothing,-1,-4, \varnothing, \varnothing, 2,4, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1,-2, \varnothing$
DATA $\varnothing, 1,-4, \varnothing, \varnothing, 1,6, \varnothing,-2, \varnothing, \varnothing, 1,-8, \varnothing, 1, \varnothing, \varnothing,-2$
DATA $-2, \varnothing, \varnothing, 1,-3, \varnothing, 1, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 2, \varnothing,-1,2, \varnothing, \varnothing, 1$
DATA $1, \varnothing, \varnothing, 5,2,4,3,3,4,3,3,6,5,5,8,4,7, \varnothing, 8,1$
DATA $16,3,12,-5,13,-5,15,-5,16,-5,15,-3,9,-5$
REM KITTEN
DATA $\varnothing, 1,3, \varnothing, \varnothing,-1,2, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 2,1, \varnothing, \varnothing, 3,-2, \varnothing$
DATA $\varnothing, 1,-2, \varnothing, \varnothing, 1,-3, \varnothing, 5, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,2, \varnothing$

DATA $\varnothing,-1,3, \varnothing,-1, \varnothing, \varnothing,-3,2, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 2$
DATA $-1, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-3, \varnothing, 4, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1$
DATA $2, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,1, \varnothing,-1, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-1$
DATA $-1, \varnothing, \varnothing,-4,1, \varnothing, \varnothing,-2,6, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 4$
DATA $-1, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 2,2, \varnothing,-1, \varnothing, \varnothing,-3,1, \varnothing, \varnothing,-1,1, \varnothing$
DATA $\varnothing,-2,-1, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-1,-4, \varnothing$
DATA $\varnothing,-1,-3, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing,-1,-5, \varnothing$
DATA $\varnothing,-1,-7, \varnothing, \varnothing, 1,-6, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1$
DATA $-6, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-1, \varnothing, 1,-7, \varnothing, \varnothing, 1,-5, \varnothing, \varnothing,-1$
DATA $\varnothing, 1,1, \varnothing, \varnothing, 2,1, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1,1, \varnothing$
DATA $\varnothing, 1,1, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 2,1, \varnothing, \varnothing, 3$
DATA $-2, \varnothing, 3, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-3,2, \varnothing, \varnothing, 3,3, \varnothing,-1, \varnothing$
DATA $\varnothing,-3,1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,3, \varnothing,-2, \varnothing$
DATA $-10,3,-11,4,-11,5,13,2,14,1$
DATA $16, \varnothing, 5, \varnothing, 6,-1,5,-2,-17,-1,-16,-1,-15,-1$
DATA $-12,-2,-11,-3,-11,-4,-12,-5,-21,-3,-20,-3$
DATA $-16,-4,-15,-4$

## Knights Errant

"God help us!" exclaimed Sancho, "Did I not tell Your Grace to look well, that those were nothing but windmills, a fact which no one could fail to see unless he had mills of the same sort in his head?"

Don Quixote by Cervantes
A dozen Don Quixotes face a legion of harmless windmills in this solitaire game of logic. Your goal is to transfer each group of pieces from one side of the board (Figure 2-3) to the other in as few moves as possible. Each piece moves as in chess: one square forward or backward and two sideways, or vice versa.

To move a piece, simply click the mouse on the appropriate square of the board. Since there's only one blank position, the Amiga always knows where you want to move.

Completing the game in fewer than 43 moves is genius-level play, worthy indeed of our chivalrous Man from La Mancha.

Figure 2-3. Knights Errant

$8$		\%	成	-
			-	808
$\begin{array}{r} 2 \\ 5 x^{3} \end{array}$			-	5080
	$\begin{gathered} 3 \\ 3 x^{2} \end{gathered}$		Nos	-
$x{ }^{2}$				

```
Program 2-3. Knights Errant
Save using the filename KNIGHTS
REM KNIGHTS ERRANT
 GOSUB INITIALIZE
PLAYGAME:
 GOSUB PLAY
PLAYAGAIN:
 LOCATE 20,21: PRINT "Play Again ?";
 GOSUB DECIDE
 IF BUTTON = l THEN PLAYGAME
 GOSUB GOODBYE
END
INITIALIZE:
 GOSUB SETSCREEN
 GOSUB KEYVALUES
 GOSUB SETMENUS
 GOSUB SETCOLORS
 GOSUB START
RETURN
```


## SETSCREEN:

```
 SCREEN 1,640,200,3,2
 WINDOW 2,"Knights Errant",,ø,1
RETURN
KEYVALUES:
 GOSUB FUNCTIONS
 GOSUB ARRAYS
 GOSUB RANKINGS
 REM DATA FOR SHAPES
 GOSUB MILL
 GOSUB VANE
 GOSUB HORSE
 GOSUB SADDLE
 GOSUB MAN
 GOSUB HELMET
 GOSUB PLUME
RETURN
FUNCTIONS:
 DEFINT A-J,L-Z
 RANDOMIZE TIMER
 DEF FNEVENODD(I,J) = ((I+J)/2=INT((I+J)/2))
 DEF FNX(V) = 75*V - 62
 DEF FNY(V) = 32*V - 77
RETURN
```

```
ARRAYS:
 DIM B(9,9),SQODD(150ø),SQEVEN(150ø)
 DIM MILL.X(45),MILL.Y(45),VANE.X(28),VANE.Y(28)
 DIM HORSE.X(151),HORSE.Y(151),MAN.X(53)
 DIM MAN.Y(53),HELMET.X(13),HELMET.Y(13)
 DIM PLUME.X(13),PLUME.Y(13)
 REM VECTOR INDICES
 DATA 1,50\emptyset,1øø\emptyset
 READ INDEX(\varnothing),INDEX(1),INDEX(2)
 REM BUTTON VALUES
 XB(1)=364: YB(1)=174
 XB(2)=406: YB(2)=174
 LT$(1) = "Y": LT$(2) = "N"
 REM OFF-BOARD SQUARES
 FOR I=1 TO 2
 FOR J=1 TO 9
 B(I,J) = -9: B(I+7,J) = -9
 B(J,I) = -9: B(J,I+7) = -9
 NEXT J,I
REM DELTAS FOR LEGAL MOVES
 N = 8
 DATA -2,1, -2,-1, -1,2, -1,-2
 DATA 2,1, 2,-1, 1,2, 1,-2
 FOR I=1 TO N
 READ DR(I), DC(I)
 NEXT
RETURN
```

RANKINGS:
DATA King l, Duke, Knight, Vassal, Knave, Clown
FOR I=1 TO 6
READ RK\$(I)
NEXT
RETURN
MILL:
DATA $-2, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1$
DATA $-1, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1$
DATA $-1, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 2,-1, \varnothing, \varnothing, 2,27, \varnothing, \varnothing,-2$
DATA $-1, \varnothing, \varnothing,-2,-1, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-1,-1, \varnothing$
DATA $\varnothing,-1,-2, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-1$
DATA $-1, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-1,-3, \varnothing$
FOR I=1 TO 45
READ MILL.X(I),MILL.Y(I)
NEXT
RETURN

## VANE:

DATA $\varnothing,-1,-3, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-1$

```
 DATA \(-1, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-1,-1, \varnothing\)
DATA \(\varnothing, 1,-1, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1,5, \varnothing\)
DATA \(\varnothing, 1,4, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1,3, \varnothing\)
FOR I=1 TO 28
 READ VANE. \(\mathrm{X}(\mathrm{I}), \mathrm{VANE} . \mathrm{Y}(\mathrm{I})\)
NEXT
REM SIGNS \& OFFSETS FOR DRAWING 4 VANES
 DATA 1,1, -1,1, 1,-1, -1,-1
 FOR I=1 TO 4
 READ SX(I),SY(I)
 NEXT
 DATA \(\varnothing, \varnothing, 1, \varnothing, \varnothing, 1,1,1\)
 FOR I=1 TO 4
 READ XFSET(I), YFSET(I)
 NEXT
RETURN
```

HORSE:
DATA $-1 \varnothing, \varnothing, \varnothing,-1,-9, \varnothing, \varnothing, 1,-4, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-2, \varnothing$
DATA $\varnothing,-1,-3, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 2,1, \varnothing, \varnothing, 3,-3, \varnothing, \varnothing, 1$
DATA $1, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,-1, \varnothing$
DATA $\varnothing,-2,4, \varnothing, \varnothing, 2,1, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 3,-1, \varnothing, \varnothing, 1$
DATA $-3, \varnothing, \varnothing, 5,3, \varnothing,-1, \varnothing, \varnothing,-4,2, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1$
DATA $3, \varnothing, \varnothing,-1,3, \varnothing, \varnothing, 2,-1, \varnothing, \varnothing, 2,3, \varnothing, \varnothing, 1,4, \varnothing, \varnothing, 1$
DATA $2, \varnothing, \varnothing, 1,3, \varnothing,-2, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-1$
DATA $-2, \varnothing, \varnothing,-2,1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,1, \varnothing$
DATA $\varnothing,-1,2, \varnothing, \varnothing, 1,1 \varnothing, \varnothing, \varnothing, 2,-1, \varnothing, \varnothing, 4,-1, \varnothing, \varnothing, 1$
DATA $-1, \varnothing, 1, \varnothing, \varnothing, 1,4, \varnothing,-2, \varnothing, \varnothing,-4,1, \varnothing, \varnothing,-1,1, \varnothing$
DATA $\varnothing,-1,1, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-2,3, \varnothing, \varnothing, 1,3, \varnothing, \varnothing, 1$
DATA $1, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1,1, \varnothing$
DATA $\varnothing,-1,2, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1$
DATA $-1, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing,-2,1, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-3$
DATA $2, \varnothing, \varnothing, 2,1, \varnothing, \varnothing, 1,2, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,2, \varnothing$
DATA $\varnothing,-3,-1, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-1,-8, \varnothing, \varnothing, 1,-4, \varnothing$
DATA $\varnothing, 1,-3, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-3, \varnothing$
FOR $\mathrm{I}=1 \mathrm{TO} 151$
READ HORSE. $\mathrm{X}(\mathrm{I})$, HORSE.Y(I)
NEXT
RETURN

SADDLE:
DATA $4, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 2,-13, \varnothing, \varnothing,-3,8, \varnothing$
FOR I=1 TO 7
READ SADDLE.X(I),SADDLE.Y(I)
NEXT
RETURN
MAN :
DATA $2, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 3$

```
 DATA 4, \varnothing, -5, \varnothing, \varnothing, -2,-1, \varnothing, \varnothing, -2,-1, \varnothing, \varnothing, -1, -1, \varnothing
 DATA \varnothing,-1,-2, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing, -1,-3, \varnothing, \varnothing, 1,-1,\varnothing
 DATA \varnothing, 1,-1, \varnothing, \varnothing, 1,-3, \varnothing, 1, \varnothing, \varnothing,-1, 1, \varnothing, \varnothing,-1, 1,\varnothing
 DATA \varnothing, -2,1,\varnothing,\varnothing,-1,1,\varnothing,\varnothing,-3,1,\varnothing,\varnothing,-1, 3, \varnothing, \varnothing,-1
 DATA 3,\varnothing,\varnothing,2,1,\varnothing,\varnothing,2,3,\varnothing,-5,\varnothing,\varnothing,2,1,\varnothing,\varnothing,2
 FOR I=1 TO 53
 READ MAN.X(I),MAN.Y(I)
 NEXT
RETURN
HELMET:
 DATA -3,\varnothing,\varnothing,-1,1,\varnothing,\varnothing,-1, 3, \varnothing, \varnothing, 1, 1, \varnothing,-1, \varnothing, \varnothing,2
 DATA 1, \varnothing, \varnothing,-1,-1, \varnothing,\varnothing,-1
 FOR I=1 TO 13
 READ HELMET.X(I),HELMET.Y(I)
 NEXT
RETURN
```


## PLUME:

```
 DATA -1, \varnothing, \varnothing, -1, -5, \varnothing, \varnothing, 1,-2, \varnothing, 2, \varnothing, \varnothing, 1, \varnothing,-1, 2,\varnothing
 DATA Ø, 1, \varnothing, -1, 1, \varnothing, \varnothing,-1
 FOR I=1 TO 13
 READ PLUME.X(I), PLUME.Y(I)
 NEXT
RETURN
SETMENUS:
 DATA 2, Rules, Yes, No
 DATA 5, Quixote, Brown, Blue, Green
 DATA Purple, Random
 DATA 3, Stop, Go to BASIC
 DATA Go to Games Menu, Go to System
 FOR I=1 TO 3
 READ NUMBER
 FOR J=Ø TO NUMBER
 READ TITLE$
 IF J<>\emptyset THEN TITLE$ = SPACE$(3) + TITLE$
 STATUS = 1
 IF I<>3 AND J=1 THEN STATUS = 2
 MENU I,J,STATUS,TITLE$
 NEXT J,I
 MENU 4,\varnothing,1,""
 RULES = 1: QCOLOR = 1
RETURN
```


## SETCOLORS :

```
REM BROWN, BLUE, DULL GREEN, PURPLE
DATA . 58,.11,.2, . 2,.09,.8
DATA . \(14, .33, .25, . \emptyset 2, \varnothing, .45\)
```

```
 FOR I=1 TO 4
 FOR J=1 TO 3
 READ KOLOR(I,J)
 NEXT J,I
REM GRAY, VIOLET, BROWN, GREEN, & RED
 PALETTE 2,.32,.39,.61
 PALETTE 3,.75,.36,.75
 PALETTE 4,.58,.11,. 2
 PALETTE 5,.14,.43,0
 PALETTE 6,.93,.2,0
RETURN
START:
 MENU ON
 ON MENU GOSUB OPTIONS
 GOSUB DRAWSQUARES
 GOSUB MAKEPIECES
 GOSUB HEADING
RETURN
DRAWSQUARES:
 Xl=201: X2=275: X3=351: X4=425
 Yl=35: Y2=66: Y3=67: Y4=98
 REM EVEN
 LINE (X1,Y1)-(X2,Y2), 2,BF
 GET (X1,Y1)-(X2,Y2),SQEVEN(1)
 CALL DRAWIT (4,6,0)
 CALL DRAWIT(5,5,\varnothing)
 REM ODD
 LINE (X1,Y3)-(X2,Y4), 3,BF
 GET (X1,Y3)-(X2,Y4),SQODD(1)
 CALL DRAWIT(5,6,0)
 CALL DRAWIT(4,5,0)
RETURN
SUB DRAWIT(ROW,COL,Z) STATIC
 SHARED SQEVEN(),SQODD(), INDEX()
 IDX = INDEX(Z)
 X = FNX(COL) - 37
 Y = FNY(ROW) - 16
 V = FNEVENODD(ROW,COL)
 IF V = - 1 THEN
 PUT (X,Y), SQEVEN(IDX) , PSET
 ELSE
 PUT(X,Y),SQODD(IDX), PSET
 END IF
END SUB
```

```
MAKEPIECES:
 REM WINDMILL
 CALL MAKEMILL(238,49)
 GET (X1,Y1)-(X2,Y2),SQEVEN(50\emptyset)
 CALL MAKEMILL(238,81)
 GET (X1,Y3)-(X2,Y4),SQODD(5ø\emptyset)
 REM KNIGHT
 X\varnothing = 392: Yø = 50: GOSUB MAKEKNIGHT
 GET (X3,Y1)-(X4,Y2),SQEVEN(1Ø\varnothing\emptyset)
 YØ = 82: GOSUB MAKEKNIGHT
 GET (X3,Y3)-(X4,Y4),SQODD(1Øø\emptyset)
RETURN
SUB MAKEMILL(X\emptyset,YØ) STATIC
 REM MILL
 SHARED MILL.X(),MILL.Y(),VANE.X(),VANE.Y()
 SHARED SX(),SY(),XFSET(),YFSET()
 PSET (X\varnothing,YØ)
 COLOR l
 FOR J=1 TO 45
 LINE -STEP(MILL.X(J),MILL.Y(J))
 NEXT
 PAINT (X\varnothing,YØ+7)
 REM VANES
 YØ = Yø-3: COLOR 6
 FOR D=1 TO 4
 SX = SX(D): SY = SY(D)
 X = X\emptyset + XFSET(D)
 Y = Yø + YFSET(D)
 PSET (X,Y)
 FOR J=1 TO 28
 LINE -STEP(SX*VANE.X(J),SY*VANE.Y(J))
 NEXT J
 PAINT (X-SX*7,Y-SY*3)
 NEXT D
END SUB
MAKEKNIGHT:
 GOSUB MAKEHORSE
 GOSUB MAKESADDLE
 GOSUB MAKEMAN
 GOSUB MAKEHELMET
 GOSUB MAKEPLUME
 REM LANCE
 COLOR l
 LINE (X\varnothing-2,YØ-1)-(X\varnothing+14,Y\varnothing-13)
RETURN
```

```
MAKEHORSE:
 COLOR 1
 PSET (XØ,YØ)
 FOR J=1 TO 151
 LINE -STEP(HORSE.X(J),HORSE.Y(J))
 NEXT
 PAINT (XØ,YØ+3)
 COLOR Ø
 PSET (XØ-2\emptyset,YØ+6): PSET (XØ-19,YØ+7)
RETURN
MAKESADDLE:
 PSET (X\varnothing,YØ)
 FOR J=1 TO 7
 LINE -STEP(SADDLE.X(J),SADDLE.Y(J))
 NEXT
 PAINT (X\varnothing,YØ+1)
RETURN
MAKEMAN :
 PSET (XØ,YØ)
 COLOR 4
 FOR J=1 TO 53
 LINE -STEP(MAN.X(J),MAN.Y(J))
 NEXT
 PAINT (XØ-3,YØ-3): PAINT (XØ+2,YØ+2)
RETURN
MAKEHELMET:
 COLOR Ø
 PSET (X0,YD-9)
 FOR J=1 TO 13
 LINE -STEP(HELMET.X(J),HELMET.Y(J))
 NEXT
 PAINT (X\varnothing,YØ-1\varnothing)
RETURN
MAKEPLUME:
 COLOR 6
 PSET (X0-1,Y0-12)
 FOR J=1 TO 13
 LINE -STEP(PLUME.X(J),PLUME.Y(J))
 NEXT
RETURN
HEADING :
 COLOR 1,4: LOCATE 18,30:PRINT " then "
 COLOR 1,\emptyset
 LOCATE 13: PRINT PTAB(243)"Knights Errant"
```

```
 LOCATE 17,24:PRINT "Please use menus,"
 LOCATE 19,23:PRINT "Click mouse to play"
 GOSUB CLICKIT
RETURN
OPTIONS:
 ID = MENU(\varnothing): ITEM = MENU(1)
 ON ID GOSUB MENU1,MENU2,GOODBYE
 ITEM = Ø
RETURN
MENU1 :
 MENU l,RULES,1: MENU l,ITEM,2
 RULES = ITEM
RETURN
MENU2:
 K1 = KOLOR(ITEM,1): K2 = KOLOR(ITEM,2)
 K3 = KOLOR(ITEM,3)
 IF ITEM=5 THEN Kl=RND: K2=RND: K3=RND
 PALETTE 4,Kl,K2,K3
 MENU 2,QCOLOR,1: MENU 2,ITEM,2
 QCOLOR = ITEM
RETURN
GOODBYE:
 WINDOW CLOSE 2: WINDOW 1: MENU RESET
 SCREEN CLOSE l
 IF ITEM = 2 THEN RUN "GAMES"
 IF ITEM = 3 THEN SYSTEM
 COLOR 1,0: CLS
 PRINT "Bye-Bye"
 STOP
RETURN
CLICKIT:
 S$ = ""
 WHILE MOUSE(\varnothing) = Ø AND S$ = ""
 S$ = INKEY$
 WEND
 X = MOUSE(1)
 Y = MOUSE(2)
 WHILE MOUSE(\varnothing)<> \emptyset: WEND: REM RESET
RETURN
PLAY:
 IF RULES = l THEN GOSUB RULES
 GOSUB RECORD
 GOSUB DRAWBOARD
```

```
 GOSUB MOVESCARD
 WHILE GAMES = "ON"
 GOSUB ENTERMOVE
 GOSUB MAKEMOVE
 GOSUB CHECK.FOR.END
WEND
GOSUB GAMEOVER
RETURN
RULES:
 CLS
 PRINT
 PRINT " A dozen Don Quixotes face a legion";
 PRINT " of harmless windmills,"
 PRINT " thought to be lawless giants."
 PRINT
 PRINT " Your goal is to transfer each group";
 PRINT " from one side of the"
 PRINT " board to the other in as few moves as";
 PRINT " possible."
 PRINT
 PRINT " Each piece moves as in chess: one";
 PRINT " square forward and two"
 PRINT " sideways, or vice versa."
 LOCATE 20,26:PRINT "Click Mouse";
 GOSUB CLICKIT
RETURN
RECORD:
 REM Ø = VACANT; 1 = WINDMILL; 2 = KNIGHT
 FOR I=3 TO 7
 FOR J=3 TO 7
 V = 2
 IF I=3 OR (I=4 AND J>3) THEN V = 1
 IF (I=5 AND J>5) OR (I=6 AND J=7) THEN V=1
 B(I,J) = V
 NEXT J,I
 B(5,5) = \varnothing: REM CENTER
 GAMES = "ON"
 MOVES = \varnothing
RETURN
DRAWBOARD:
 CLS
 LINE (125,2)-(501,163),1,B
 FOR R=3 TO 7
 FOR C=3 TO 7
 CALL DRAWIT(R,C,B(R,C))
 NEXT C,R
RETURN
```

```
MOVESCARD:
 LINE (21,15)-(95,49),1,BF
 COLOR 6,1: LOCATE 3,4: PRINT "MOVES:"
RETURN
ENTERMOVE:
 COLOR 1,\varnothing
 LOCATE 20,26:PRINT "Select piece ...";
 GOSUB CLICKIT
 REM FIND SQUARE (its Row and Column)
 R1 = INT((Y-3)/32) + 3
 Cl = INT((X-126)/75) + 3
 IF Rl<3 OR Rl>7 OR Cl<3 OR Cl>7 THEN
 SOUND 9øø,2
 GOTO ENTERMOVE
 END IF
 IF B(Rl,Cl)=\varnothing THEN SOUND 9ø\emptyset,2; GOTO ENTERMOVE
 REM CHECK LEGALITY
 MOVE$ = ""
 FOR I=1 TO N
 R2 = Rl + DR(I): C2 = Cl + DC(I)
 IF B(R2,C2) = \varnothing THEN MOVE$ = "OK": I=N
 NEXT
 IF MOVE$ = "" THEN SOUND 90ø,2: GOTO ENTERMOVE
RETURN
MAKEMOVE:
 PIECE = B(Rl,Cl)
 CALL DRAWIT(Rl,Cl,\varnothing)
 GOSUB GURGLE
 CALL DRAWIT(R2,C2,PIECE)
 B(R1,Cl) = Ø: B(R2,C2) = PIECE
 MOVES = MOVES + 1
 COLOR 6,1
 LOCATE 5,5: PRINT MOVES
RETURN
GURGLE:
 FREQ = 30\varnothing
 FOR G=l TO 5
 FREQ = 5Ø\emptyset-FREQ
 SOUND FREQ,1,5\emptyset
 NEXT G
RETURN
CHECK.FOR.END:
 GAME$ = "OVER": R = 3
 WHILE GAME$ = "OVER" AND R<=6
 C = 3
```

```
 WHILE GAMES = "OVER" AND C<=7
 IF B(R,C) = l THEN
 IF R=3 OR (R=4 AND C>3) THEN GAME$="ON"
 IF R=5 AND C>5 THEN GAME }="ON
 IF R=6 AND C=7 THEN GAME$="ON"
 END IF
 C = C+l
 WEND
 R = R+l
 WEND
 IF B(5,5) <> Ø THEN GAMES = "ON"
RETURN
GAMEOVER:
 V = INT(MOVES/10)-2
 IF MOVES > 89 THEN V = 6
 IF MOVES < 43 THEN V = l
 COLOR 6,1
 LINE(533,15)-(609,49),1,BF
 LOCATE 3,55: PRINT "RANK:"
 LOCATE 5,55: PRINT RK$(V)
 COLOR 1,\emptyset
 LOCATE 20,26: PRINT SPACE$(16);
RETURN
DECIDE:
 BUTTON = Ø
 GOSUB DRAWBUTTON
 GOSUB PUSHBUTTON
 COLOR 1,\varnothing
RETURN
DRAWBUTTON:
 LINE (337,167)-(433,181),1,BF
 FOR I=1 TO 2
 CIRCLE (XB(I),YB(I)),12,4+I
 PAINT (XB(I),YB(I)),4+I
 COLOR 1,4+I
 LOCATE 2ø: PRINT PTAB(XB(I)-4);LTS(I);
 NEXT
RETURN
PUSHBUTTON:
 SOUND 440,2
GOSUB CLICKIT
S$ = UCASE$(S$)
IF S$ = "Y" THEN BUTTON = 1
```

```
 IF S$ = "N" THEN BUTTON = 2
 FOR I=1 TO 2
 XD = ABS(X-XB(I)): YD = ABS(Y-YB(I))
 IF XD<13 AND YD<7 THEN BUTTON = I: I=2
NEXT
IF BUTTON = Ø THEN PUSHBUTTON
RETURN
```


## Pharaoh's Pyramid

On the Giza plateau, ten miles west of the city of Cairo, Egypt, stands the Great Pyramid of Cheops. The Amiga reproduces the ancient wonder on your video screen in this solitaire game of skill (Figure 2-4).

Your goal is to remove as many of the 14 square markers as possible. A piece is lifted from play when it's jumped.

To play the game, first choose one of the 14 positions to make blank. Then start to move, with the only legal move a jump.

You're crowned the new pharaoh if you wind up with one piece left at the end of the game. You win a sphinx if two pieces remain. But four left means back to the quarry. And five or more means you've just been entombed.

Figure 2-4. Pharaoh's Pyramid


```
Program 2-4. Pharaoh's Pyramid
Save using the filename PYRAMID
REM PHARAOH'S PYRAMID
 GOSUB INITIALIZE
PLAYGAME:
 GOSUB PLAY
PLAYAGAIN:
 GOSUB DECIDE
 IF BUTTON = l THEN PLAYGAME
 GOSUB GOODBYE
END
INITIALIZE:
 GOSUB SETSCREEN
 GOSUB HOLES
 GOSUB LINES
 GOSUB LEGALMOVES
 GOSUB OUTCOMES
 GOSUB SETMENUS
 GOSUB SETCOLORS
 GOSUB START
RETURN
SETSCREEN:
 SCREEN 1,640,200,3,2
 WINDOW 2,"PHARAOH'S PYRAMID",, Ø,1
RETURN
HOLES:
 DEFINT A,B,D-Z
 N}=1
 DIM X(N),Y(N),R(N),LM(18,3)
 DIM SQ(7\varnothing),SQK(7\emptyset),PYMD(7\varnothing)
 RANDOMIZE TIMER
 REM Y, & X COORDINATES FOR EACH HOLE (BY ROW)
 DATA 25, 310
 DATA 55, 275,345
 DATA 85, 240,310,380
 DATA 115, 205,275,345,415
 DATA 145, 170,240,310,380,450
 HOLE = Ø
 FOR ROW = 1 TO 5
 READ Y
 FOR J=1 TO ROW
 HOLE = HOLE + 1
 READ X(HOLE)
 Y(HOLE) = Y
 NEXT J,ROW
```

```
REM BUTTON HOLES
 XB(1)=136: YB(1)=39
 XB(2)=136: YB(2)=57
RETURN
```


## LINES:

```
DATA 1,11, 3,12, 6,13
DATA 1,15, 2,14, 4,13
DATA 4,6, 7,10, 11,15
FOR I=1 TO 9
READ LINEFROM(I),LINETO(I)
NEXT
RETURN
LEGALMOVES:
```

```
REM (from, to, middle)
```

REM (from, to, middle)
REM POSITIVE SLANT
DATA 1,4,2: DATA 2,7,4
DATA 4,11,7: DATA 3,8,5
DATA 5,12,8: DATA 6,13,9
REM NEGATIVE SLANT
DATA 1,6,3: DATA 3,10,6
DATA 6,15,10: DATA 2,9,5
DATA 5,14,9: DATA 4,13,8
REM HORIZONTAL
DATA 11,13,12: DATA 12,14,13
DATA 13,15,14: DATA 7,9,8
DATA 8,10,9: DATA 4,6,5
FOR I=1 TO 18
FOR J=1 TO 3
READ LM(I,J)
NEXT J,I
RETURN

```
OUTCOMES :
 DATA "You're the new Pharaoh !"
 DATA "You win a sphinx l"
 DATA "Not too shabby."
 DATA "Back to the quarry, slave."
 DATA "You've just been entombed."
 FOR I=1 TO 5
 READ OUTCOME\$ (I)
 NEXT
RETURN
SETMENUS:
DATA 2, Rules, Yes, No
DATA 5, Pyramid, Yellow, Red, Green, Aqua
DATA Random
```

    DATA 2, Initial Hole, Player Chooses
    DATA Amiga Chooses
    DATA 3, Stop, Go to BASIC
    DATA Go to Games Menu, Go to System
    FOR I=1 TO 4
        READ K
        FOR J=Ø TO K
            READ TITLES
            IF J<>\varnothing THEN TITLES = SPACE$(3) + TITLE$
            STATUS = 1
            IF I<>4 AND J=1 THEN STATUS = 2
            MENU I,J,STATUS,TITLE$
            NEXT J,I
            RULES$="ON":PYDCOLOR=1: FIRSTHOLES="PLAYER"
    RETURN
SETCOLORS:
REM YELLOW, RED, GREEN, AQUA
DATA .79,.41,.08,.93,.2Ø,\varnothing ,.50,.50,\varnothing
DATA 0,.93,.87
FOR I=1 TO 4
FOR J=1 TO 3
READ CLR(I,J)
NEXT J,I
REM YELLOW, LIGHT GREEN, \& RED
PALETTE 4,.79,.41,.08
PALETTE 5,.25,.9,0
PALETTE 6,.93,.2,0
RETURN
START:
MENU ON
ON MENU GOSUB OPTIONS
COLOR 4
AREA (315,40): AREA (195,130): AREA (435,130)
AREAFILL
COLOR 2,4
LOCATE 14,24:PRINT "Pharaoh's Pyramid"
COLOR 3,2: LOCATE 18,30:PRINT "then"
COLOR 1,ø
LOCATE l7,24:PRINT "Please use menus,"
LOCATE 19,23:PRINT "Click mouse to play"
GOSUB CLICKIT
RETURN
OPTIONS:
ID = MENU(\varnothing): ITEM = MENU(l)
ON ID GOSUB MENUl, MENU2, MENU3, GOODBYE
ITEM = Ø
RETURN

```
```

MENU1:
IF ITEM = 1 THEN RULES$="ON" ELSE RULES$="OFF"
MENU 1,ITEM, 2: MENU 1,3-ITEM,1
RETURN

```

\section*{MENU2:}
```

    Cl=CLR(ITEM, 1): C2=CLR(ITEM, 2): C3=CLR(ITEM, 3)
    IF ITEM=5 THEN Cl=RND: C2=RND: C3=RND
    PALETTE 4,Cl,C2,C3
    MENU 2,PYDCOLOR,1: MENU 2,ITEM,2
    PYDCOLOR = ITEM
    RETURN
MENU3 :
FIRSTHOLE\$ = "PLAYER"
IF ITEM=2 THEN FIRSTHOLE\$ = "AMIGA"
MENU 3,ITEM, 2: MENU 3,3-ITEM,1
RETURN
GOODBYE :
WINDOW CLOSE 2: WINDOW 1: MENU RESET
SCREEN CLOSE l
IF ITEM = 2 THEN RUN "GAMES"
IF ITEM = 3 THEN SYSTEM
COLOR 1,0: CLS
PRINT "Bye-Bye"
STOP
RETURN
CLICKIT:
WHILE MOUSE(Ø) = Ø: WEND: REM CLICK
X = MOUSE(1)
Y = MOUSE(2)
WHILE MOUSE(\varnothing)<> Ø: WEND: REM RESET
RETURN
PLAY:
IF RULES$="ON" THEN GOSUB RULES
    GOSUB SETBOARD
    WHILE GAME$ = "ON"
GOSUB ENTERMOVE
GOSUB MAKEMOVE
GOSUB CHECKEND
WEND
GOSUB GAMEOVER
RETURN
RULES:
CLS

```
```

        PRINT
    PRINT " On the Giza Plateau, ten miles ";
    PRINT "west of the city of Cairo,"
    PRINT " Egypt, stands the Great ";
    PRINT "Pyramid of Cheops.":PRINT
    PRINT " I'm about to fill this ancient ";
    PRINT "wonder with l4 blocks.":PRINT
    PRINT " Try to remove as many as possible, ";
    PRINT "with a piece lifted"
    PRINT " from play when it's jumped."
    LOCATE 2ø,26:PRINT "Click Mouse";
    GOSUB CLICKIT
    RETURN
SETBOARD:
GOSUB RECORD
GOSUB PYRAMID
GOSUB DRAWHOLES
GOSUB DRAWLINES
GOSUB MARKERS
GOSUB FIRSTHOLE
RETURN
RECORD:
FOR I=1 TO N
R(I) = l
NEXT
TALLY = 14
GAMES = "ON"
RETURN
PYRAMID:
CLS
COLOR 4
AREA (310,3): AREA (110,160): AREA (510,160)
AREAFILL
RETURN
DRAWHOLES:
COLOR 2
FOR I=l TO N
X = X(I): Y = Y(I)
CIRCLE (X,Y),21
PAINT (X,Y)
NEXT
RETURN
DRAWLINES:
FOR I=1 TO 9

```
```

    HOLEl = LINEFROM(I): HOLE2 = LINETO(I)
    LINE (X(HOLE1),Y(HOLE1))- (X(HOLE2),Y(HOLE2))
    NEXT
RETURN
MARKERS :
REM BACKGROUND SQUARE
X1 = 3\varnothing\varnothing: X2 = 32\varnothing
Yl = 20: Y2 = 30
GET (X1,Y1)-(X2,Y2),SQK
REM PYRAMID
COLOR }
AREA (310,20): AREA (301,29): AREA (319,29)
AREAFILL
GET (X1,Y1)-(X2,Y2),PYMD
PUT (3Ø\varnothing,2Ø),SQK,PSET
REM FIRST SQUARE
COLOR 1
LINE (Xl+1,Y1+1)-(X2-1,Y2-1),,BF
GET (X1,Y1)-(X2,Y2),SQ
REM OTHER SQUARES
FOR I=2 TO N
PUT (X(I)-1\varnothing,Y(I)-5),SQ,PSET
NEXT
RETURN
FIRSTHOLE:
HOLE = INT(15*RND) +1
IF FIRSTHOLE\$ = "PLAYER" THEN
LOCATE 2\emptyset,26:PRINT "Initial Hole ? ";
GOSUB USEMOUSE
END IF
PUT (X(HOLE)-1\varnothing,Y(HOLE)-5),SQK, PSET
R(HOLE) = Ø
RETURN
USEMOUSE:
GOSUB CLICKIT
REM FIND HOLE
HOLE = Ø: I=l
WHILE HOLE = Ø AND I <= N
XD = ABS(X-X(I)): YD = ABS(Y-Y(I))
IF XD<15 AND YD<l }5\mathrm{ THEN HOLE=I:X=X(I):Y=Y(I)
I = I+l
WEND
IF HOLE = Ø THEN USEMOUSE
RETURN

```
```

ENTERMOVE:
GOSUB ENTERPIECE
GOSUB ENTERHOLE
GOSUB LEGALITY
IF MOVES = "BAD" THEN
PUT(XFROM, YFROM) ,SQ, PSET
SOUND 900,2
GOTO ENTERMOVE
END IF
RETURN
ENTERPIECE:
LOCATE 20,26:PRINT "Piece to Move ?";
GOSUB USEMOUSE
IF R(HOLE) = Ø THEN ENTERPIECE
XFROM = X-10: YFROM = Y-5: HOLEFROM = HOLE
PUT(XFROM, YFROM), PYMD, PSET
RETURN
ENTERHOLE:
LOCATE 20,26:PRINT "Hole to Fill ? ";
GOSUB USEMOUSE
IF R(HOLE) <> \emptyset THEN ENTERHOLE
XTO = X-1ø: YTO = Y-5: HOLETO = HOLE
RETURN
LEGALITY:
MOVES = "BAD": I = 1
H1 = HOLEFROM: H2 = HOLETO
REM F = From, T = TO, M = Middle
WHILE MOVES = "BAD" AND I < 19
F=LM(I,1):T = LM(I, 2): M = LM(I,3)
IF F=H1 AND T=H2 AND R(M)=1 THEN MOVE\$ = "OK"
IF F=H2 AND T=Hl AND R(M)=1 THEN MOVE\$ = "OK"
I = I+l
WEND
RETURN
MAKEMOVE:
PUT (XFROM,YFROM),SQK, PSET
PUT (X(M)-1\varnothing,Y(M)-5),SQK,PSET
PUT (XTO,YTO),SQ,PSET
R(HOLEFROM) = \varnothing: R(M) = \varnothing: R(HOLETO) = l
TALLY = TALLY - 1
GOSUB GURGLE
RETURN

```

\section*{GURGLE:}

\section*{FREQ = \(3 \varnothing \varnothing\)}

FOR I=1 TO 5
FREQ = 5ØØ-FREQ
SOUND FREQ,1,50
NEXT
RETURN

\section*{CHECKEND:}

REM \(F=\) from; \(T=\) to ; M=middle
GAMES = "OVER": \(\mathrm{I}=1\)
WHILE GAME \(=\) ="OVER" AND \(I\) < 19
\(\mathrm{F}=\mathrm{R}(\mathrm{LM}(\mathrm{I}, 1)): \mathrm{T}=\mathrm{R}(\mathrm{LM}(\mathrm{I}, 2)): \mathrm{M}=\mathrm{R}(\mathrm{LM}(\mathrm{I}, 3))\)
IF \(\mathrm{F}=1\) AND \(T=\varnothing\) AND \(M=1\) THEN GAME \(\$=\) "ON"
IF \(F=\varnothing\) AND \(T=1\) AND \(M=1\) THEN GAME \(\$=" O N "\)
\(I=I+1\)
WEND
RETURN

\section*{GAMEOVER:}

Sl\$ = STR\$(TALLY)+" LEFT:"
IF TALLY \(>5\) THEN TALLY \(=5\)
S2\$ = " " + OUTCOMES(TALLY)
S\$ \(=\mathbf{S l} \$+\mathrm{S} 2 \$: \mathrm{L}=\mathrm{LEN}(\mathrm{S} \$)\)
LOCATE 20,26:PRINT SPACES(14);
COLOR 3,2
LOCATE 20,32-L/2:PRINT Sl\$;
COLOR 1, \(0:\) PRINT S2\$;
FOR PAUSE=1 TO 5øøø: NEXT
RETURN

\section*{DECIDE:}

BUTTON \(=\varnothing\)
GOSUB DRAWBUTTON
GOSUB PUSHBUTTON
COLOR 1, \(\varnothing\)
RETURN
DRAWBUTTON:
LINE (20,15)-(160,66),2,BF
COLOR 3,2
LOCATE 3,4:PRINT "Play Again ?"
COLOR 1,2
LOCATE 5,9:PRINT "Yes"
LOCATE 7,10:PRINT "No"
FOR I=1 TO 2
CIRCLE (XB(I), YB(I)), 12,4+I
PAINT (XB(I),YB(I)),4+I
NEXT
RETURN
```

PUSHBUTTON:
SOUND 440,2
GOSUB CLICKIT
FOR I=1 TO 2
XD = ABS(X-XB(I)): YD = ABS(Y-YB(I))
IF XD<8 AND YD<8 THEN BUTTON = I: I=2
NEXT
IF BUTTON = Ø THEN PUSHBUTTON
RETURN

```

\section*{Roman Checkers}

Your goal in this exciting game of wits is to line up five of your chariots in a row on an \(8 \times 8\) board before the Amiga lines up five of its pieces, which are replicas of the Pantheon.

Either side goes first, and you and the Amiga alternate turns. You're allowed to place a chariot on any vacant square, no matter what color (Figure 25). The first side to get five markers in a row, either vertically, horizontally, or diagonally, wins the contest.

The Amiga plays exceedingly well in this game. After the first couple of turns, it takes about 20 seconds to search the board for an optimal move. You'll have to really think ahead in order to win.

Figure 2-5. Roman Checkers

```

Program 2-5. Roman Checkers
Save using the filename ROMAN
REM ROMAN CHECKERS
GOSUB INITIALIZE
PLAYGAME:
GOSUB PLAY
PLAYAGAIN:
LOCATE 2ø,21: PRINT "Play Again ?";
GOSUB DECIDE
IF BUTTON = 1 THEN PLAYGAME
GOSUB GOODBYE
END
INITIALIZE:
GOSUB SETSCREEN
GOSUB KEYVALUES
GOSUB SETMENUS
GOSUB SETCOLORS
GOSUB START
RETURN
SETSCREEN:
SCREEN 1,640,200, 3,2
WINDOW 2,"Roman Checkers", \varnothing,l
RETURN
KEYVALUES:
GOSUB FUNCTIONS
GOSUB ARRAYS
REM DATA FOR SHAPES
GOSUB PANTHEON
GOSUB CHARIOT
RETURN
FUNCTIONS:
DEFINT A-J,L-Z
RANDOMIZE TIMER
DEF FNEVENODD (I,J) = ( (I+J)/2=INT((I+J)/2) )
DEF FNX(V) = 48*V + 98
DEF FNY(V) = 20*V - 7
RETURN
ARRAYS:
DIM B(10\varnothing),R(10\varnothing),SQODD(60|),SQEVEN(60\varnothing)
DIM PTH.X(54),PTH.Y(54),BODY.X(26),BODY.Y(26)
DIM WHEEL.X(22),WHEEL.Y(22)
REM VECTOR INDICES
DATA 1,200,40Ø

```
```

    READ INDEX(ø), INDEX(1), INDEX(2)
    REM BUTTON VALUES
$\mathrm{XB}(1)=364: \quad \mathrm{YB}(1)=174$
$\mathrm{XB}(2)=406: \mathrm{YB}(2)=174$
LT\$(1) = "Y": LT\$(2) = "N"
REM OFF-BOARD SQUARES
FOR I=1 TO $1 \varnothing$
$B(I)=-9: B(9 \emptyset+I)=-9$
$B(1 \varnothing * I)=-9: B(1 \sigma * I-9)=-9$
NEXT
REM RANDOM FIRST MOVES
DATA $34,37,45,46,55,56,64,67$
FOR I=1 TO 8: READ RM(I): NEXT
REM DIRECTION DELTAS
DATA 1,9,10,11
FOR I=1 TO 4: READ DR(I): NEXT
RETURN

```

PANTHEON:
DATA \(\varnothing, 13,-16, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-8,1, \varnothing, \varnothing, 8,1, \varnothing\)
 DATA \(\varnothing,-8,1, \varnothing, \varnothing, 8,4, \varnothing, \varnothing,-8,1, \varnothing, \varnothing, 8,1, \varnothing, \varnothing,-8\)
 DATA \(1, \varnothing, \varnothing, 8,4, \varnothing, \varnothing,-8,2, \varnothing, \varnothing, 9,16, \varnothing, \varnothing,-1,-1, \varnothing\)
 DATA \(\varnothing,-8,-1, \varnothing, \varnothing, 8,-1, \varnothing, \varnothing,-8,-1, \varnothing, \varnothing, 8,-4, \varnothing\)
 DATA \(\varnothing,-8,-1, \varnothing, \varnothing, 8,-1, \varnothing, \varnothing,-8,-1, \varnothing, \varnothing, 8,-4, \varnothing\)
 DATA \(\varnothing,-9,15, \varnothing,-33, \varnothing, 5, \varnothing, \varnothing,-1,23, \varnothing,-4, \varnothing, \varnothing,-1\)
 DATA \(-15, \varnothing, 4, \varnothing, \varnothing,-1,7, \varnothing\)
 FOR I=1 TO 54
 READ PTH.X(I), PTH.Y(I)
 NEXT
RETURN
CHARIOT:
 REM BODY
 DATA \(\varnothing, 9,16, \varnothing, \varnothing,-2,1, \varnothing, \varnothing, 3,-34, \varnothing, \varnothing,-1,16, \varnothing\)
 DATA \(\varnothing,-1,-15, \varnothing, \varnothing,-1,15, \varnothing, \varnothing,-1,-13, \varnothing, 4, \varnothing\)
 DATA \(\varnothing,-1,9, \varnothing, \varnothing,-1,-4, \varnothing, 2, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1\)
 DATA \(-1, \varnothing, 1, \varnothing, \varnothing,-2\)
 FOR I=1 TO 26
 READ BODY.X(I), BODY.Y(I)
 NEXT
 REM WHEEL
 DATA \(5,1,6,1,7,1,8,1,9,1,10,1,2,2,3,2,4,2\)
 DATA 5,2,10,2,11,2,12,2,13,2,1,3,2,3
 DATA \(6,3,7,3,8,3,9,3,13,3,14,3\)
 FOR I=1 TO 22
 READ WHEEL.X(I),WHEEL.Y(I)
 NEXT
RETURN
```

SETMENUS:
DATA 2, Rules, Yes, No
DATA 5, Chariot, Brown, Blue, Green
DATA Purple, Random
DATA 2, First Move, Amiga, Human
DATA 3, Stop, Go to BASIC
DATA Go to Games Menu, Go to System
FOR I=1 TO 4
READ N
FOR J=Ø TO N
READ TITLE\$
IF J<>\varnothing THEN TITLE\$ = SPACE$(3) + TITLE$
STATUS = l
IF I<>4 AND J=1 THEN STATUS = 2
MENU I,J,STATUS,TITLES
NEXT J,I
RULES = l: CHCOLOR = l: FMOVE = 1
RETURN
SETCOLORS:
REM BROWN, BLUE, DULL GREEN, PURPLE
DATA .58,.ll,.2, .2,.09,.8
DATA .14,.33,.25, .ø2,0,.45
FOR I=1 TO 4
FOR J=1 TO 3
READ KOLOR(I,J)
NEXT J,I
REM GRAY, VIOLET, BROWN, GREEN, \& RED
PALETTE 2,.32,.39,.61
PALETTE 3,.75,.36,.75
PALETTE 4,.58,.11,.2
PALETTE 5,.14,.43,0
PALETTE 6,.93,.2,0
RETURN
START:
MENU ON
ON MENU GOSUB OPTIONS
GOSUB DRAWSQUARES
GOSUB MAKEPIECES
GOSUB HEADING
RETURN
DRAWSQUARES:
REM EVEN
Xl=266: Yl=63: X2=313: Y2=82
LINE (X1,Y1)-(X2,Y2), 2,BF
GET (X1,Y1)-(X2,Y2),SQEVEN(1)
CALL DRAWIT(5,5,ø)

```
```

REM ODD
X3=314: X4=361
LINE (X3,Y1)-(X4,Y2),3,BF
GET (X3,Y1)-(X4,Y2),SQODD(1)
CALL DRAWIT(5,4,0)
RETURN
SUB DRAWIT(ROW,COL,Z) STATIC
SHARED SQEVEN(),SQODD(),INDEX()
IDX = INDEX(Z)
X = FNX(COL) - 24
Y = FNY(ROW) - 10
V = FNEVENODD(ROW,COL)
IF V = -1 THEN
PUT(X,Y),SQEVEN(IDX),PSET
ELSE
PUT(X,Y),SQODD(IDX),PSET
END IF
END SUB
MAKEPIECES:
REM PANTHEON
CALL MAKEPANTHEON(289,66)
GET (X1,Y1)-(X2,Y2),SQEVEN(2Ø\varnothing)
CALL MAKEPANTHEON(289,86)
GET (X1, 83)-(X2,1\varnothing2),SQODD(2ø\varnothing)
REM CHARIOT
CALL MAKECHARIOT(337,66)
GET (X3,Y1)-(X4,Y2),SQODD(4Ø\emptyset)
CALL MAKECHARIOT(337,86)
GET (X3, 83)-(X4,1Ø2),SQEVEN(4Ø\emptyset)
RETURN
SUB MAKEPANTHEON(XØ,Y\emptyset) STATIC
SHARED PTH.X(),PTH.Y()
PSET (XØ,YØ)
COLOR 1
FOR J=1 TO 54
LINE -STEP(PTH.X(J),PTH.Y(J))
NEXT
END SUB
SUB MAKECHARIOT(X\varnothing,YØ) STATIC
SHARED BODY.X(),BODY.Y(),WHEEL.X(),WHEEL.Y()
REM BODY
PSET (XØ,YØ)
COLOR 4
FOR J=1 TO 26
LINE -STEP(BODY.X(J),BODY.Y(J))

```
```

    NEXT
    REM WHEEL (TOP AND BOTTOM)
    COLOR 1
    FOR J=1 TO 22
        X = X\varnothing - 16 + WHEEL.X(J)
        YT= Y\emptyset + 7 + WHEEL.Y(J)
        YB= Y\emptyset + 14 - WHEEL.Y(J)
        PSET (X,YT)
        PSET (X,YB)
    NEXT
    END SUB
HEADING:
COLOR 1,4: LOCATE 18,30:PRINT " then "
COLOR 1,0
LOCATE 13: PRINT PTAB(243)"Roman Checkers"
LOCATE 17,24:PRINT "Please use menus,"
LOCATE 19,23:PRINT "Click mouse to play"
GOSUB CLICKIT
RETURN
OPTIONS:
ID = MENU( }): ITEM = MENU(1
ON ID GOSUB MENU1,MENU2,MENU3,GOODBYE
ITEM = Ø
RETURN
MENUL:
MENU l,RULES,1: MENU l,ITEM,2
RULES = ITEM
RETURN
MENU2 :
Kl = KOLOR(ITEM,l): K2 = KOLOR(ITEM,2)
K3 = KOLOR(ITEM,3)
IF ITEM=5 THEN Kl=RND: K2=RND: K3=RND
PALETTE 4,Kl,K2,K3
MENU 2,CHCOLOR,1: MENU 2,ITEM,2
CHCOLOR = ITEM
RETURN
MENU3 :
MENU 3,FMOVE,l: MENU 3,ITEM,2
FMOVE = ITEM
RETURN
GOODBYE:
WINDOW CLOSE 2: WINDOW l: MENU RESET
SCREEN CLOSE l

```
```

    IF ITEM = 2 THEN RUN "GAMES"
    IF ITEM = 3 THEN SYSTEM
    COLOR 1,0: CLS
    PRINT "Bye-Bye"
    STOP
    RETURN
CLICKIT:
S\$ = ""
WHILE MOUSE(\varnothing) = Ø AND S\$ = ""
S\$ = INKEY\$
WEND
X = MOUSE(1)
Y = MOUSE(2)
WHILE MOUSE(\varnothing)<> Ø: WEND: REM RESET
RETURN
PLAY:
IF RULES = 1 THEN GOSUB RULES
GOSUB RECORD
GOSUB DRAWBOARD
WHILE GAME = Ø AND N <> 64
ON PLAYER GOSUB AMIGA, HUMAN
GOSUB MAKEMOVE
GOSUB CHECK.FOR.END
PLAYER = 3 - PLAYER
WEND
GOSUB GAMEOVER
RETURN
RULES:
CLS
PRINT
PRINT " MY marker is the Pantheon, an ancient";
PRINT " Roman temple. And"
PRINT " yours is Caesar's chariot."
PRINT
PRINT " Try to get five of your pieces in a";
PRINT " row, in any direction,"
PRINT " before I line up five of mine."
LOCATE 20,26:PRINT "Click Mouse";
GOSUB CLICKIT
RETURN
RECORD :
REM Ø = VACANT; l = AMIGA; 2 = HUMAN
FOR I=1 TO lø\emptyset
IF B(I) <> -9 THEN B(I) = Ø
NEXT

```
```

    PLAYER = FMOVE
    GAME = \varnothing
    N = Ø: REM NUMBER OF MOVES
    RETURN
DRAWBOARD:
CLS
LINE (121,2)-(506,163),1,B
FOR R=1 TO 8
FOR C=1 TO 8
CALL DRAWIT(R,C,\varnothing)
NEXT C,R
RETURN
AMIGA:
LOCATE 20,28: PRINT " My turn ... ";
MOVE = Ø
IF N <= 2 THEN GOSUB FIRSTMOVES
IF MOVE=\emptyset THEN GOSUB RANKBOARD
IF MOVE=\varnothing THEN GOSUB CHANCE
R = INT(MOVE/1\varnothing): C = MOVE - R*1| - l
RETURN
FIRSTMOVES:
V = INT(RND*8) + l
MOVE = RM(V)
IF B(MOVE) <> Ø THEN FIRSTMOVES
RETURN
RANKBOARD:
HPTS = -999
FOR I=12 TO }8
IF B(I) = Ø THEN
GOSUB RANKSQUARE
IF PTS = HPTS THEN
IF RND > . 5 THEN MOVE = I
END IF
IF PTS > HPTS THEN HPTS = PTS: MOVE = I
END IF
NEXT I
RETURN
RANKSQUARE:
FOR J=1 TO 2
GOSUB SEARCH
NEXT J
REM COMPARE
PTS = SCR(1)
IF SCR(2) > SCR(1) THEN PTS = SCR(2)
RETURN

```
```

SEARCH:
SCR(J) = -J
FOR D=1 TO 4
T=\emptyset: DLT = DR(D)
REM FIRST HALF
L\$ = "ON": SQ = I
WHILE L\$ = "ON"
SQ = SQ + DLT
IF B(SQ) = J THEN T=T+1 ELSE LS = "OFF"
WEND
Vl = -(B(SQ) = Ø)
REM SECOND HALF
L\$ = "ON": SQ = I
WHILE L\$ = "ON"
SQ = SQ - DLT
IF B(SQ) = J THEN T=T+1 ELSE L\$ = "OFF"
WEND
V2 = -(B(SQ) = \varnothing)
F = -(T>\varnothing)
SCR(J) = SCR(J) + F*V1*V2*3^T - 1\varnothing\varnothing\varnothing*(T>=4)
NEXT D
RETURN
CHANCE:
REM VACANT SQUARES
CNT = Ø
FOR I=12 TO 89
IF B(I)=\emptyset THEN CNT=CNT+l:R(CNT)=I
NEXT
REM CHOOSE
V = INT(RND*CNT) + 1
MOVE = R(V)
RETURN
HUMAN:
LOCATE 20,28:PRINT "Your turn ...";
GOSUB CLICKIT
REM FIND SQUARE (its Row and Column)
R=INT( (Y-3)/2\emptyset ) + l
C = INT( (X-122)/48 ) + l
IF R<l OR R>8 OR C<l OR C>8 THEN HUMAN
MOVE = R*1\emptyset + C + 1
IF B(MOVE) <> Ø THEN SOUND 9øø,2: GOTO HUMAN
RETURN
MAKEMOVE:
CALL DRAWIT(R,C,PLAYER)

```
```

    GOSUB GURGLE
    CALL DRAWIT(R,C,\varnothing)
    FOR PAUSE=1 TO 5ØØ: NEXT PAUSE
    CALL DRAWIT(R,C,PLAYER)
    B(MOVE) = PLAYER
    N = N + l
    RETURN
GURGLE:
FREQ = 3ø\emptyset
FOR G=1 TO 5
FREQ = 5Ø\emptyset-FREQ
SOUND FREQ,1,5\emptyset
NEXT G
RETURN
CHECK.FOR.END:
I = MOVE
J = PLAYER
GOSUB SEARCH
IF SCR(J) > 997 THEN GAME = PLAYER
RETURN
GAMEOVER:
LOCATE 8,55: PRINT "WINNER:"
W\$ = "Cat"
IF GAME = 1 THEN W\$ = "Me"
IF GAME = 2 THEN W\$ = "You"
LOCATE 9,55: PRINT W\$
LOCATE 2\emptyset,28: PRINT SPACE$(13);
RETURN
DECIDE:
    BUTTON = Ø
    GOSUB DRAWBUTTON
    GOSUB PUSHBUTTON
    COLOR 1,\varnothing
RETURN
DRAWBUTTON:
    LINE (337,167)-(433,181),1,BF
    FOR I=1 TO 2
        CIRCLE (XB(I),YB(I)),12,4+I
        PAINT (XB(I),YB(I)),4+I
        COLOR 1,4+I
        LOCATE 20: PRINT PTAB(XB(I)-4);LT$(I);
NEXT
RETURN

```
```

PUSHBUTTON:
SOUND 440,2
GOSUB CLICKIT
S\$ = UCASE$(S$)
IF S\$ = "Y" THEN BUTTON = 1
IF S\$ = "N" THEN BUTTON = 2
FOR I=1 TO 2
XD = ABS(X-XB(I)): YD = ABS(Y-YB(I))
IF XD<13 AND YD<7 THEN BUTTON = I: I=2
NEXT
IF BUTTON = Ø THEN PUSHBUTTON
RETURN

```

\section*{Falstaff}

> Oh, Falstaff! Poor, portly Shakespearean squire; Just when you've almost won this game, Your goodly fortune does expire.

You're pitted against the Amiga in this version of what's been called one of the most entertaining games of logic ever invented. Your marker is the diamond and the Amiga's is the disc. The object of each side is to have more pieces on the board at the end of the game than the opponent.

Either side goes first. To move, place a diamond on any vacant square (of either color) so that a string of discs is sandwiched between two of your markers. The discs will turn into diamonds (Figure 2-6).

Note that each move must be a capture, and that captures in any direction are allowed so long as you're on a straight line. Press the ESCape key if no such move is available when it's your turn. If the Amiga can't move either, the game ends.

What makes "Falstaff" so exciting is that fortunes can change radically in just one move. You might be enjoying a four-point advantage during most of the game, for example, then the Amiga captures five of your pieces. Well, not only does your count go down by five, but the computer's goes up by the same amount, for a total swing in score of ten points. This can be disastrous if only a couple of moves remain.

The Amiga plays well and aggressively. It uses about 20 seconds to search the board for a good move, and you'll have to think ahead to beat it.

Three versions of the game are available: short, medium, and long. These lengths correspond to the maximum number of moves allowed both sides in total (25,40 , and 60). In the long game, the entire board will eventually fill up with discs and diamonds, assuming, of course, that you and the computer never reach the point where neither can move.

Use the pull-down menus to choose the length of the game and who goes first.

Figure 2-6. Capturing Discs in Falstaff

Before

After

Program 2-6. Falstaff
Save using the filename FALSTAFF
REM FALSTAFF
GOSUB INITIALIZE
PLAYGAME: GOSUB PLAY
PLAYAGAIN:
LOCATE 20,21: PRINT "Play Again ?"; GOSUB DECIDE
IF BUTTON \(=1\) THEN PLAYGAME GOSUB GOODBYE
END
INITIALIZE:
GOSUB SETSCREEN
GOSUB KEYVALUES
GOSUB SETMENUS
GOSUB SETCOLORS
GOSUB START
RETURN
SETSCREEN:
SCREEN 1,64Ø,2ØØ, 3,2
WINDOW 2,"Falstaff", \(\varnothing, 1\)
RETURN

KEYVALUES:
GOSUB FUNCTIONS
GOSUB ARRAYS
GOSUB XYOFFSETS
GOSUB DIRECTIONS
RETURN
```

FUNCTIONS:
DEFINT A-J,L-S,U-Z
RANDOMIZE VAL(RIGHT$(TIME$,2))
DEF FNEVENODD(I,J) = ( (I+J)/2=INT((I+J)/2) )
DEF FNX(V) = 48*V + 98
DEF FNY(V) = 20*V - 7
RETURN
ARRAYS:
DIM B (9,9),SQODD(600),SQEVEN(600)
REM VECTOR INDICES
DATA 1,200,4ø\varnothing
READ INDEX(|),INDEX(1),INDEX(2)
REM BUTTON VALUES
XB(1)=364: YB(1)=174
XB(2)=4ø6: YB(2)=174
LT$(1) = "Y": LT$(2) = "N"
REM OFF-BOARD SQUARES
FOR I=\emptyset TO 9 STEP 9: FOR J=\emptyset TO 9
B(I,J) = -9: B(J,I) = -9
NEXT J,I
REM GAME LENGTH
DATA 25,40,60
FOR I=1 TO 3: READ LENGTH(I): NEXT
RETURN
XYOFFSETS:
REM DISC
DATA -9,4, Ø,5, 9,4, 13,\varnothing, 9,-4
DATA Ø, -5, -9,-4
REM DIAMOND
DATA -14,7, Ø,\varnothing, 14,7, 1,\varnothing
DATA 14,-7, Ø, 0, -14,-7
FOR I=1 TO 2
FOR J=1 TO 7
READ X.OFFSET(I,J),Y.OFFSET(I,J)
NEXT J,I
RETURN
DIRECTIONS:
DATA Ø,1, -1,1, -1,\varnothing, -1,-1
DATA Ø,-1, 1,-1, 1,0, 1,1
FOR I=1 TO 8
READ DR(I),DC(I)
NEXT
RETURN

```
```

SETMENUS:
DATA 2, Rules, Yes, No
DATA 5, Diamond, Brown, Blue, Green
DATA Purple, Random
DATA 3, Game, Short, Medium, Long
DATA 2, First Move, Amiga, Human
DATA 3, Stop, Go to BASIC
DATA Go to Games Menu, Go to System
FOR I=1 TO 5
READ N
FOR J=\emptyset TO N
READ TITLES
IF J<>\varnothing THEN TITLES = SPACE$(3) + TITLE$
STATUS = 1
IF I<>5 AND J=1 THEN STATUS = 2
MENU I,J,STATUS,TITLES
NEXT J,I
RULES = 1: DMCOLOR = 1: GAME = 1: FMOVE = 1
RETURN
SETCOLORS:
REM BROWN, BLUE, DULL GREEN, PURPLE
DATA .7,.28,.15, .2,.09,.8
DATA .14,.43,0, .52,0,.57
FOR I=1 TO 4
FOR J=1 TO 3
READ KOLOR(I,J)
NEXT J,I
REM LT. BLUE, VIOLET, BROWN, GREEN, \& RED
PALETTE 2,.29,.66,.94
PALETTE 3,.75,.46,.85
PALETTE 4,.7,.28,.15
PALETTE 5,.14,.43,0
PALETTE 6,.93,.2,0
RETURN
START:
MENU ON
ON MENU GOSUB OPTIONS
GOSUB DRAWSQUARES
GOSUB DRAWPIECES
GOSUB HEADING
RETURN

```

\section*{DRAWSQUARES:}

\section*{REM EVEN}
```

$$
\mathrm{Xl}=266: \mathrm{Y}=63: \mathrm{X} 2=313: \quad \mathrm{Y} 2=82
$$

```
```

    LINE (X1,Y1)-(X2,Y2), 2,BF
    GET (X1,Y1)-(X2,Y2),SQEVEN(1)
    CALL DRAWIT(5,5,\varnothing)
    REM ODD
    X3=314: X4=361
    LINE (X3,Y1)-(X4,Y2),3,BF
    GET (X3,Y1)-(X4,Y2),SQODD(1)
    CALL DRAWIT(5,4,ø)
    RETURN
SUB DRAWIT(ROW,COL,Z) STATIC
SHARED SQEVEN(),SQODD(),INDEX()
IDX = INDEX(Z)
X = FNX(COL) - 24
Y = FNY(ROW) - lø
V = FNEVENODD(ROW,COL)
IF V = -l THEN
PUT(X,Y),SQEVEN(IDX),PSET
ELSE
PUT(X,Y),SQODD(IDX), PSET
END IF
END SUB
DRAWPIECES:
REM DISCS
COLOR Ø: X=283: Y=66: I=1: GOSUB SHAPE
GET (X1,Y1)-(X2,Y2), SQEVEN(2øø)
Y=86: GOSUB SHAPE
GET (X1, 83)-(X2,1Ø2),SQODD( 2øø)
REM DIAMONDS
COLOR 4: X=337: Y=66: I=2: GOSUB SHAPE
GET (X3,Y1)-(X4,Y2),SQODD(4øø)
Y=86: GOSUB SHAPE
GET (X3, 83)-(X4,1ø2), SQEVEN(4ø\emptyset)
RETURN
SHAPE:
AREA (X,Y)
FOR J=1 TO 7
AREA STEP(X.OFFSET(I,J),Y.OFFSET(I,J))
NEXT
AREAFILL
RETURN
HEADING:
COLOR 1,4: LOCATE 18,30:PRINT " then "
COLOR 1,\varnothing

```
```

    LOCATE 13: PRINT PTAB(276)"Falstaff"
    LOCATE 17,24:PRINT "Please use menus,"
    LOCATE 19,23:PRINT "Click mouse to play"
    GOSUB CLICKIT
    RETURN
OPTIONS:
ID = MENU(\varnothing): ITEM = MENU(1)
ON ID GOSUB MENU1,MENU2,MENU3,MENU4,GOODBYE
ITEM = \varnothing
RETURN
MENUl:
MENU l,RULES,1: MENU l,ITEM,2
RULES = ITEM
RETURN
MENU2:
K1 = KOLOR(ITEM,1): K2 = KOLOR(ITEM,2)
K3 = KOLOR(ITEM,3)
IF ITEM=5 THEN Kl=RND: K2=RND: K3=RND
PALETTE 4,Kl,K2,K3
MENU 2,DMCOLOR,1: MENU 2,ITEM,2
DMCOLOR = ITEM
RETURN
MENU3:
MENU 3,GAME,1: MENU 3,ITEM,2
GAME = ITEM
RETURN
MENU4 :
MENU 4,FMOVE,1: MENU 4,ITEM,2
FMOVE = ITEM
RETURN
GOODBYE:
WINDOW CLOSE 2: WINDOW 1: MENU RESET
SCREEN CLOSE l
IF ITEM = 2 THEN RUN "GAMES"
IF ITEM = 3 THEN SYSTEM
COLOR 1,0: CLS
PRINT "Bye-Bye"
STOP
RETURN

```
```

CLICKIT:
S\$ = "": ESC = \emptyset
WHILE MOUSE(\emptyset)=\varnothing AND S\$ = ""
S\$ = INKEY\$
WEND
X = MOUSE(1)
Y = MOUSE(2)
IF S\$ <> "" THEN ESC = ASC(S$)
    WHILE MOUSE(\varnothing)<> Ø: WEND: REM RESET
RETURN
PLAY:
    IF RULES = l THEN GOSUB RULES
    GOSUB SETUP
    WHILE GAME$ = "ON" AND MOVES > Ø
MOVE\$ = "ON"
ON PLAYER GOSUB AMIGA, HUMAN
IF MOVE\$ = "ON" THEN GOSUB MAKEMOVE
SWAP PLAYER, ENEMY
WEND
GOSUB GAMEOVER
RETURN
RULES:
CLS
PRINT
PRINT " I'm the Disc and you're the Diamond."
PRINT
PRINT " To move, place a Diamond on an empty";
PRINT " square of either"
PRINT " color so that a string of my pieces is";
PRINT " sandwiched between"
PRINT " two of yours."
PRINT
PRINT " - My Discs will become your Diamonds."
PRINT
PRINT " In the rare event that no capture is";
PRINT " available when it's"
PRINT " your turn to move, hit the ESCape key."
PRINT
PRINT " I'll try to 'turn' your pieces just";
PRINT " as you try to"
PRINT " 'turn' mine."
PRINT
PRINT " You'll win if you end up with more";
PRINT " markers than me."
LOCATE 2\emptyset,26:PRINT "Click Mouse";
GOSUB CLICKIT
RETURN

```

\section*{CHAPTER 2}

\section*{SETUP:}
```

    GOSUB RECORD
    GOSUB DRAWBOARD
    GOSUB SCORECARD
    GOSUB MOVESCARD
    GOSUB STATUS
    RETURN

```
```

RECORD:
REM $\varnothing=$ VACANT; $1=$ AMIGA; 2 = HUMAN
FOR R=1 TO 8
FOR C=1 TO 8
$B(R, C)=\varnothing$
NEXT C,R
$B(4,4)=1: B(4,5)=2$
$B(5,4)=2: B(5,5)=1$
$\operatorname{SCORE}(1)=2: \operatorname{SCORE}(2)=2$
MOVES = LENGTH(GAME): GAMES = "ON"
PLAYER = FMOVE: ENEMY = 3-PLAYER
FORFEITS $=\varnothing$
RETURN

```
DRAWBOARD:
 CLS
 LINE (121,2)-(5ø6,163),1,B
 FOR R=1 TO 8
 FOR \(C=1\) TO 8
 CALL DRAWIT(R,C,B(R,C))
 NEXT C,R
RETURN
SCORECARD:
 COLOR 6,1
 LINE \((533,15)-(609,54), 1, B F\)
 LOCATE 3,55:PRINT "SCORE:"
 COLOR Ø: LOCATE 5,56: PRINT "Me"
 LOCATE 6,55: PRINT "You"
RETURN
MOVESCARD:
 LINE \((21,15)-(95,54), 1, B F\)
 COLOR 6: LOCATE 3,4: PRINT "MOVES:"
RETURN
STATUS:
 REM SCORE
 FOR I=1 TO 2
```

            COLOR 1,l: LOCATE I+4,58: PRINT SPACE$(2)
            COLOR 6,l: LOCATE I+4,58: PRINT SCORE(I)
        NEXT
    REM MOVES
    COLOR 1,1: LOCATE 5,5: PRINT SPACE$(2)
    COLOR 6,1: LOCATE 5,5: PRINT MOVES
    COLOR 1,\varnothing
    RETURN
AMIGA:
LOCATE 20,28: PRINT " My turn ... ";
TALLYHOLD = -9
FOR I=l TO \&
FOR J=1 TO 8
IF B(I,J) = \oint THEN GOSUB SEARCH
NEXT J,I
IF TALLYHOLD = Ø THEN GOSUB NOMOVE
RETURN
SEARCH:
GOSUB TALLYSCORE
GOSUB ADJUSTSCORE
GOSUB COMPARESCORE
RETURN
TALLYSCORE:
TALLY = Ø
FOR L=l TO \&
CNT = Ø
R = I: C = J: SEQS = "ON"
WHILE SEQS = "ON"
SEQS = "OFF"
R=R + DR(L)
C = C + DC(L)
IF B(R,C) = 2 THEN CNT=CNT+l: SEQ\$="ON"
WEND
IF B(R,C) = 1 THEN TALLY = TALLY + CNT
NEXT L
RETURN
ADJUSTSCORE:
IF $\mathrm{I}=1$ OR $\mathrm{I}=8$ OR $\mathrm{J}=1$ OR $\mathrm{J}=8$ THEN TALLY=2*TALLY
IF I=2 OR I=7 OR J=2 OR J=7 THEN TALLY=TALLY/2
RETURN

```
```

COMPARESCORE:
IF TALLY > TALLYHOLD THEN
TALLYHOLD = TALLY
ROW = I: COL = J
END IF
IF 'rALLY = TALLYHOLD AND RND > . }5\mathrm{ THEN
ROW = I: COL = J
END IF
RETURN
NOMOVE:
IF PLAYER = 1 THEN
LOCATE 20,1\emptyset
PRINT "SORRY: I can't move.";
PRINT " Click mouse to continue.";
SOUND 900,2
GOSUB CLICKIT
LOCATE 20,10: PRINT SPACES(45);
END IF
MOVE\$ = "OFF"
FORFEITS = FORFEITS + l
IF FORFEITS = 2 THEN GAMES = "OVER"
RETURN
HUMAN:
GOSUB ENTERSQUARE
IF ESC = 27 THEN
GOSUB DOUBLECHECK
IF BUTTON = 1 THEN GOSUB NOMOVE
IF BUTTON = 2 THEN GOTO HUMAN
END IF
IF MOVES = "ON" THEN
GOSUB CHECKCAPTURE
IF CAPS="NO" THEN SOUND 9ø\emptyset,2: GOTO HUMAN
END IF
RE'TURN
ENTERSQUARE:
LOCATE 20,28:PRINT "Your turn ...";
GOSUB CLICKIT
REM FIND SQUARE (its Row and Column)
R = INT( (Y-3)/2\varnothing ) + I
C = INT( (X-122)/48 ) + 1
IF ESC = Ø THEN
IF R<l OR R>8 OR C<l OR C>8 THEN ENTERSQUARE
IF B(R,C) <> \emptyset THEN ENTERSQUARE
ROW = R: COL = C
END IF
RETURN

```
```

DOUBLECHECK:
LOCATE 2Ø,28: PRINT SPACE$(l3);
    LOCATE 20,19: PRINT "Forfeit Turn ?";
    GOSUB DECIDE
    LOCATE 20,19: PRINT SPACE$(14);
LINE (337,167)-(433,181),0,BF
RETURN
DECIDE:
BUTTON = \
GOSUB DRAWBUTTON
GOSUB PUSHBUTTON
COLOR 1,\varnothing
RETURN
DRAWBUTTON:
LINE (337,167)-(433,181),1,BF
FOR I=l TO 2
CIRCLE (XB(I),YB(I)),12,4+I
PAINT (XB(I),YB(I)),4+I
COLOR 1,4+I
LOCATE 20: PRINT PTAB(XB(I)-4);LT$(I);
    NEXT
RETURN
PUSHBUTTON:
    SOUND 440,2
    GOSUB CLICKIT
    S$ = UCASES(SS)
IF S\$ = "Y" THEN BUTTON = 1
IF S\$ = "N" THEN BUTTON = 2
FOR I=l TO 2
XD = ABS(X-XB(I)): YD = ABS(Y-YB(I))
IF XD<13 AND YD<7 THEN BUTTON = I: I=2
NEXT
IF BUTTON = \varnothing THEN PUSHBUTTON
RETURN
CHECKCAPTURE:
CAP\$ = "NO": I=l
WHILE CAP\$ = "NO" AND I<9
CNT = Ø: R = ROW: C = COL: SEQ\$ = "ON"
WHILE SEQS = "ON"
SEQS = "OFF"
R = R + DR(I)
C=C + DC(I)
IF B(R,C)=1 THEN CNT=CNT+l: SEQS = "ON"
WEND
IF B(R,C) = 2 AND CNT>D THEN CAPS="YES"

```
```

    I = I+l
    WEND
    RETURN
MAKEMOVE:
REM INITIAL SQUARE
R = ROW: C = COL: GOSUB FLASH
SCORE(PLAYER) = SCORE(PLAYER) + 1
REM OTHERS
FOR I=1 TO 8
CNT = Ø
R = ROW: C = COL: SEQS = "ON"
WHILE SEQS = "ON"
SEQS = "OFF"
R=R + DR(I)
C=C + DC(I)
IF B(R,C)=ENEMY THEN CNT=CNT+1: SEQS="ON"
WEND
IF B(R,C)=PLAYER AND CNT>\emptyset THEN GOSUB FLIP
NEXT I
REM SHOW SCORE/MOVES
MOVES = MOVES - 1: FORFEITS = \varnothing
GOSUB STATUS
RETURN
FLASH:
CALL DRAWIT(R,C,PLAYER)
GOSUB GURGLE
CALL DRAWIT(R,C,\varnothing)
FOR PAUSE=1 TO 5DD: NEXT PAUSE
CALL DRAWIT(R,C,PLAYER)
B(R,C) = PLAYER
RETURN
FLIP:
R = ROW: C = COL
FOR J=1 TO CNT
R=R + DR(I): C = C + DC(I)
GOSUB FLASH
NEXT J
SCORE(PLAYER) = SCORE(PLAYER) + CNT
SCORE(ENEMY) = SCORE(ENEMY) - CNT
RETURN
GURGLE:
FREQ = 30\emptyset
FOR G=1 TO 5
FREQ = 50|-FREQ

```
```

    SOUND FREQ,1,50
    NEXT G
    RETURN
GAMEOVER :
LOCATE 8,55: PRINT "WINNER:"
W\$ = "Cat"
IF SCORE(1) > SCORE(2) THEN W\$ = "Me"
IF SCORE(1) < SCORE(2) THEN W\$ = "You"
LOCATE 9,55: PRINT W\$
LOCATE 20,28: PRINT SPACE\$(13);
RETURN

```

\section*{Mosaic Puzzle}

Sliding-square puzzles have been challenging minds for years. "Mosaic Puzzle" is an electronic version of those rectangular brainteasers that you may have spent hours trying to figure out. Unlike the plastic version, however, this computer game keeps track of the number of moves you make, and it has numerical aids that you can turn on and off with the click of a mouse. You can even save an uncompleted board to disk and return to it later.

The Amiga draws an octagon, on a \(3 \times 3\) board. Then it scrambles the pieces (Figure 2-7). Your job is to make it whole again.

To move, click the mouse on a piece, and it will slide onto the empty gold square. Vertical and horizontal moves are allowed. But reaching your goal isn't easy. You'll constantly have to think ahead, or you will find yourself rearranging pieces endlessly.

To make things easier, you can use a pull-down menu while the game is in progress to number each piece of the puzzle (1-8). After you're oriented, you can then turn off the numbers. And if you despair of finding a solution, you can save the game to disk and resume play later.

Try playing Mosaic Puzzle with your friends. The player using the fewest moves is the winner.

Figure 2-7. Mosaic Puzzle

\section*{Your Goal}

Good Luck!

```

Program 2-7. Mosaic Puzzle
Save using the filename MOSAIC
REM MOSAIC PUZZLE
CLEAR ,4ØØØØ\&
GOSUB INITIALIZE
PLAYGAME:
GOSUB PLAY
PLAYAGAIN:
COLOR 1,\emptyset
LOCATE 20, 26: PRINT SPACE\$(16);
LOCATE 20,21: PRINT "Play Again ?";
XØ=337: YØ=167: GOSUB DECIDE
IF BUTTON = 1 THEN PLAYGAME
GOSUB GOODBYE
END
INITIALIZE:
GOSUB SETSCREEN
GOSUB FUNCTIONS
GOSUB ARRAYS
GOSUB SETMENUS
GOSUB SETCOLORS
GOSUB START
RETURN
SETSCREEN :
SCREEN 1,640,2ø0,3,2
WINDOW 2,"Mosaic Puzzle",,\varnothing,1
RETURN
FUNCTIONS:
DEFINT A-J,L-Z
RANDOMIZE TIMER
DEF FNX(V) = 112*V + 33
DEF FNY(V) = 50%V - 41
RETURN
ARRAYS:
DIM SQ(11Ø71),NR(1531)
REM VECTOR INDICES
FOR I=1 TO 9
INDEX.SQ(I) = 1 + (I-1)*123\emptyset
INDEX.NR(I) = 1 + (I-1)*17\emptyset
NEXT
REM X COORDINATES FOR NUMBERS
XN(1)=158: XN(2)=298: XN(3)=438
REM OFFSETS FOR CIRCLES
FOR I=1 TO 3

```
```

        YFSET(I) = -13: YFSET(I+6) = 13
        XFSET(3*I-2) = - 28: XFSET(3*I) = 28
    NEXT
    REM BUTTON LETTERS
    LT$(1) = "Y": LT$(2) = "N"
    RETURN

```

\section*{SETMENUS:}
```

DATA 2, Rules, Yes, No

```
DATA 2, Rules, Yes, No
DATA 5, Washer, Brown, Blue, Green
DATA Purple, Random
DATA 2, Aid, Numbers On, Numbers Off
DATA 4, Stop, Go to BASIC, Go to Games Menu
DATA Go to System, Save Board
FOR I=1 TO 4
 READ NUMBER
 FOR J=\varnothing TO NUMBER
 READ TITLE$
 IF J<>\varnothing THEN TITLE$ = SPACE$(3) + TITLE$
 STATUS = l
 IF I < 3 AND J = l THEN STATUS = 2
 MENU I,J,STATUS,TITLE$
 NEXT J,I
 MENU 4,4,\varnothing: MENU 3,\varnothing,\varnothing
 RULES = 1: WCOLOR = 1: AID = 2
RETURN
SETCOLORS:
 REM BROWN, BLUE, DULL GREEN, PURPLE
 DATA .58,.11,.2, .2,.09,.8
 DATA .14,.33,.25, .02,0,.45
 FOR I=1 TO 4
 FOR J=1 TO 3
 READ KOLOR(I,J)
 NEXT J,I
 REM VIOLET, GOLD, BROWN, GREEN, & RED
 PALETTE 2,.75,.36,.75
 PALETTE 3,.99,.4,.03
 PALETTE 4,.58,.11,.2
 PALETTE 5,.14,.43,\varnothing
 PALETTE 6,.93,.2,\varnothing
RETURN
START:
 MENU ON
 ON MENU GOSUB OPTIONS
 CALL OCTAGON(246,58,45,18)
 GOSUB HEADING
RETURN
```

```
SUB OCTAGON(XI,Yl,XD,YD) STATIC
 X2 = Xl+3*XD: Y2 = Yl+3*YD
 LINE (X1,Y1)-(X2,Y2),2,BF
 REM WASHER
 COLOR 4
 AREA (Xl +XD,Yl+YD/2)
 AREA STEP(-XD/2,YD/2): AREA STEP(}\varnothing,YD
 AREA STEP(XD/2,YD/2): AREA STEP(XD, }
 AREA STEP(XD/2,-YD/2): AREA STEP(}|,-\textrm{YD}
 AREA STEP(-XD/2,-YD/2): AREAFILL
 REM HOLE
 LINE (Xl+XD,Y1+YD)-(X2-XD,Y2-YD),3,BF
 REM GRID
 COLOR l
 FOR I = Xl TO X2 STEP XD
 LINE (I,Y1)-(I,Y2)
 NEXT
 FOR I = Y1 TO Y2 STEP YD
 LINE (X1,I)-(X2,I)
 NEXT
END SUB
HEADING :
 COLOR 1,4: LOCATE 18,30:PRINT " then "
 COLOR 1,ø
 LOCATE 14: PRINT PTAB(249)"Mosaic Puzzle"
 LOCATE 17,24:PRINT "Please use menus,"
 LOCATE 19,23:PRINT "Click mouse to play"
 GOSUB CLICKIT
RETURN
OPTIONS:
 ID = MENU(\varnothing): ITEM = MENU(1)
 ON ID GOSUB MENUl,MENU2,MENU3,GOODBYE
 ITEM = Ø
RETURN
MENUl :
 MENU 1,RULES,1: MENU 1,ITEM,2
 RULES = ITEM
RETURN
MENU2:
 Kl = KOLOR(ITEM,1): K2 = KOLOR(ITEM,2)
 K3 = KOLOR(ITEM,3)
 IF ITEM=5 THEN Kl=RND: K2=RND: K3=RND
 PALETTE 4,K1,K2,K3
 MENU 2,WCOLOR,1: MENU 2,ITEM,2
 WCOLOR = ITEM
RETURN
```

```
MENU3:
 MENU 3,AID,1: MENU 3,ITEM,2
 AID = ITEM
 INDEX = INDEX.NR(5)
 REM DRAW OR ERASE
 FOR L=1 TO 3
 FOR M=1 TO 3
 V = B(L,M)
 IF AID = 1 THEN INDEX = INDEX.NR(V)
 X.C = FNX(M)+38+XFSET(V)
 Y.C = FNY(L)+17+YFSET(V)
 IF V <> 5 THEN PUT(X.C,Y.C),NR(INDEX),PSET
 NEXT M,L
RETURN
GOODBYE :
 COLOR 1,\emptyset
 IF ITEM = 4 THEN GOSUB ASK.TO.SAVE
 WINDOW CLOSE 2: WINDOW 1: MENU RESET
 SCREEN CLOSE 1
 IF ITEM = 2 THEN RUN "GAMES"
 IF ITEM = 3 THEN SYSTEM
 CLS
 PRINT "Bye-Bye"
 IF ITEM = 4 AND BUTTON = 1 THEN
 PRINT FILE$;'* is saved."
 END IF
 STOP
RETURN
ASK.TO.SAVE:
 CLS
 LOCATE 7,15
 PRINT "Would you like to save your board ?"
 XØ=265: YØ=68: GOSUB DECIDE
 IF BUTTON = 1 THEN GOSUB SAVEGAME
RETURN
DECIDE:
 BUTTON = Ø
 GOSUB DRAWBUTTON
 GOSUB PUSHBUTTON
 COLOR 1,\varnothing
RETURN
DRAWBUTTON:
 ROW = (YØ+13)/9
 XB(1)=X\emptyset+27: XB(2)=X\emptyset+69: YB=Y\emptyset+7
 LINE (X\emptyset,YØ)-(X\emptyset+96,YØ+14),1,BF
```

```
 FOR I=1 TO 2
 CIRCLE (XB(I),YB),12,4+I
 PAINT (XB(I),YB),4+I
 COLOR 1,4+I
 LOCATE ROW: PRINT PTAB(XB(I)-4);LT$(I);
 NEXT
RETURN
PUSHBUTTON:
 SOUND 440,2
 GOSUB CLICKIT
 S$ = UCASE$(S$)
 IF S$ = "Y" THEN BUTTON = 1
 IF S$ = "N" THEN BUTTON = 2
 FOR I=1 TO 2
 XD = ABS(X-XB(I)): YD = ABS(Y-YB)
 IF XD<13 AND YD<7 THEN BUTTON = I: I=2
 NEXT
 IF BUTTON = Ø THEN PUSHBUTTON
RETURN
SAVEGAME:
 SOUND 440,2
 LOCATE 13,15
 INPUT "File name: ";FILES
 IF FILES="" THEN SAVEGAME
 REM SAVE DATA
 OPEN "O",#l,FILES
 WRITE #l,MOVES,RGOLD,CGOLD
 FOR R=1 TO 3
 FOR C=1 TO 3
 WRITE #l,B(R,C)
 NEXT C,R
 CLOSE
RETURN
CLICKIT:
 S$ = ""
 WHILE MOUSE(\varnothing) = Ø AND S$ = ""
 S$ = INKEY$
 WEND
 X = MOUSE(1)
 Y = MOUSE(2)
 WHILE MOUSE(\varnothing)<> Ø: WEND: REM RESET
RETURN
PLAY:
 MENU 3,\varnothing,\varnothing
 IF RULES = 1 THEN GOSUB RULES
```

```
 GOSUB CHECK.FOR.OLD.GAME
 ON BUTTON GOSUB OLDGAME, NEWGAME
 GOSUB DRAWBOARD
 GOSUB MOVESCARD
 WHILE GAMES = "ON"
 GOSUB ENTERMOVE
 GOSUB MAKEMOVE
 GOSUB CHECK.FOR.END
 WEND
RETURN
RULES:
 CLS
 PRINT
 PRINT " This 3x3 square holds an eight-sided";
 PRINT " washer, or octagon."
 PRINT
 PRINT
 PRINT
 PRINT
 PRINT " just like you see here."
 CALL OCTAGON(246,58,45,18)
 LOCATE 15,1
 PRINT " When play begins, 'click' a piece";
 PRINT " and it will slide"
 PRINT " onto the empty (gold) square.";
 PRINT " Vertical and horizontal"
 PRINT " moves are allowed. If you'd like,";
 PRINT " I'll number the squares"
 PRINT " to help you."
 LOCATE 2\emptyset,27:PRINT "Click Mouse";
 GOSUB CLICKIT
RETURN
CHECK.FOR.OLD.GAME :
 CLS
 LOCATE 7,18
 PRINT "Are you resuming an old game ?"
 XØ=265: Yø=68: GOSUB DECIDE
RETURN
OLDGAME:
 SOUND 440,2
 LOCATE 13,18
 INPUT "File name: ";FILE$
 IF FILE$="" THEN OLDGAME
 REM READ DATA
 OPEN "I",#l,FILE$
 INPUT #l,MOVES,RGOLD,CGOLD
```

```
 FOR R=1 TO 3
 FOR C=1 TO 3
 INPUT #1,B(R,C)
 NEXT C,R
 CLOSE
RETURN
NEWGAME:
 LOCATE 12,27: PRINT "Scrambling ..."
 FOR I=1 TO 9: Y(I) = -9: NEXT
 REM RANDOM INTEGERS
 FOR I=1 TO 9
 SEARCH$ = "ON"
 WHILE SEARCH$ = "ON"
 V = INT(9*RND) + l
 IF Y(V) = -9 THEN Y(V) = I: SEARCH$="OFF"
 WEND
 NEXT
 REM RECORD
 CNT = l
 FOR R=1 TO 3
 FOR C=1 TO 3
 B(R,C) = Y(CNT)
 IF Y(CNT) = 5 THEN RGOLD=R: CGOLD=C
 CNT = CNT + l
 NEXT C,R
 MOVES = Ø
RETURN
DRAWBOARD:
 CLS
 CALL OCTAGON(145,9,112,5\emptyset)
 GOSUB GETPIECES
 GOSUB NUMBERS
 COLOR 1,3
 LOCATE 9: PRINT PTAB(295)"Your"
 LOCATE 10: PRINT PTAB(295)"Goal"
 COLOR 1,\varnothing
 LOCATE 2ø,27: PRINT "Click Mouse";
 GOSUB CLICKIT
 GOSUB GAMEBOARD
RETURN
GETPIECES:
 FOR R=1 TO 3
 FOR C=1 TO 3
 X = FNX(C): Y = FNY(R)
 CNT = (R-1)*3 + C
 INX = INDEX.SQ(CNT)
```

```
 GET(X,Y)-(X+112,Y+5\emptyset),SQ(INX)
 NEXT C,R
RETURN
```


## NUMBERS:

```
 REM BLANK SQUARE
 GET(155,13)-(191, 29),NR(INDEX.NR(5))
 FOR R=1 TO 3
 FOR C=1 TO 3
 X\emptyset = FNX(C) + 56: Y\varnothing = FNY(R) + 25
 N = (R-1)*3 + C
 IF N <> 5 THEN
 COLOR }
 X = X }\varnothing+XFSET(N): Y = Y\emptyset+YFSET(N)
 CIRCLE (X,Y),18: PAINT (X,Y)
 COLOR 1,6
 REM NUMBER
 LOCATE 7*R-4: PRINT PTAB(XN(C));N
 GET(X-18,Y-8)-(X+18,Y+8),NR(INDEX.NR(N))
 END IF
 NEXT C,R
RETURN
```


## GAMEBOARD:

```
 CLS
 FOR R=1 TO 3
 FOR C=1 TO 3
 CALL DRAWIT(R,C,B(R,C))
 NEXT C,R
 GAME$ = "ON"
 MENU 3,ø,1: MENU 3,AID,2: MENU 4,4,1
RETURN
```

```
SUB DRAWIT(ROW,COL,Z) STATIC
```

SUB DRAWIT(ROW,COL,Z) STATIC
SHARED SQ(),NR(),INDEX.SQ(),INDEX.NR()
SHARED SQ(),NR(),INDEX.SQ(),INDEX.NR()
SHARED XFSET(),YFSET(),AID
SHARED XFSET(),YFSET(),AID
ISQ = INDEX.SQ(Z)
ISQ = INDEX.SQ(Z)
INR = INDEX.NR(Z)
INR = INDEX.NR(Z)
X = FNX(COL)
X = FNX(COL)
Y = FNY(ROW)
Y = FNY(ROW)
PUT(X,Y),SQ(ISQ),PSET
PUT(X,Y),SQ(ISQ),PSET
IF AID = l AND Z <> 5 THEN
IF AID = l AND Z <> 5 THEN
PUT(X+38+XFSET(Z),Y+17+YFSET(Z)),NR(INR),PSET
PUT(X+38+XFSET(Z),Y+17+YFSET(Z)),NR(INR),PSET
END IF
END IF
END SUB

```
END SUB
```


## MOVESCARD:

```
LINE (21,15)-(95,49),1,BF
COLOR 6,1: LOCATE 3,4: PRINT "MOVES:"
```

LOCATE 5,4: PRINT MOVES RETURN

```
ENTERMOVE:
 COLOR 1,0
 LOCATE 20,26:PRINT "Select piece ...";
 GOSUB CLICKIT
 REM FIND SQUARE (its Row and Column)
 Rl = INT((Y-9)/5\emptyset) + 1
 Cl = INT((X-145)/112) + 1
 IF Rl<l OR Rl>3 OR Cl<l OR Cl>3 THEN
 SOUND 9øø,2
 GOTO ENTERMOVE
 END IF
 IF B(Rl,Cl)=5 THEN SOUND 9øø,2: GOTO ENTERMOVE
 REM CHECK LEGALITY
 MOVES = ""
 RD = RGOLD-Rl: CD = CGOLD-Cl
 IF ABS(RD)=1 AND CD=\varnothing THEN MOVE$="OK"
 IF ABS(CD)=1 AND RD=\varnothing THEN MOVE$="OK"
 IF MOVE$ = "" THEN SOUND 9øø,2: GOTO ENTERMOVE
RETURN
MAKEMOVE:
 PIECE = B(R1,Cl)
 CALL DRAWIT(R1,Cl,5)
 GOSUB GURGLE
 CALL DRAWIT(RGOLD,CGOLD,PIECE)
 B(Rl,Cl) = 5: B(RGOLD,CGOLD) = PIECE
 RGOLD = RI: CGOLD = Cl
 MOVES = MOVES + 1
 COLOR 6,1
 LOCATE 5,4: PRINT MOVES
RETURN
GURGLE:
 FREQ = 3\emptyset\emptyset
 FOR G=1 TO 5
 FREQ = 5Ø\emptyset-FREQ
 SOUND FREQ,1,50
 NEXT G
RETURN
CHECK.FOR.END:
 GAMES = "OVER"
 FOR R=1 TO 3
 FOR C=1 TO 3
 IF B(R,C) <> (R-1)*3+C THEN GAMES = "ON"
 NEXT C,R
RETURN
```


## Hi-Q

"Hi-Q" is a peg game of thought and skillful movement. Thirty-two pegs appear on a cross-shaded board, with only the center position empty (Figure 2-8). By jumping one peg over another, a piece is removed from the board. Your goal is to remove as many pegs as possible.

You get a perfect score in Hi-Q if only one peg remains. It's somewhat like pitching a shutout. The ultimate thrill is leaving the one peg in the center of the board; that's like a no-hitter.

To make a move, click the mouse on the peg of your choice. Then click the mouse on the square where you'd like the peg to go. Every move must be a jump, and only horizontal and vertical leaps are allowed.

One of the nice features of this game is that you can undo your last move simply by using one of the pull-down menus.

Figure 2-8. Hi-G Game Board


Program 2-8. Hi-G
Save using the filename HI-Q
REM HI-Q
GOSUB INITIALIZE
PLAYGAME:
GOSUB PLAY

```
PLAYAGAIN:
 GOSUB DECIDE
 IF BUTTON = l THEN PLAYGAME
 GOSUB GOODBYE
END
INITIALIZE:
 GOSUB SETSCREEN
 GOSUB KEYVALUES
 GOSUB OUTCOMES
 GOSUB SETMENUS
 GOSUB SETCOLORS
 GOSUB START
RETURN
SETSCREEN:
 SCREEN 1,640,200,3,2
 WINDOW 2,"HI-Q", \varnothing,1
RETURN
KEYVALUES:
 DEFINT A-J,L-Z
 RANDOMIZE VAL(RIGHT$(TIME$, 2))
 DEF FNHX(V) = 53*V + 1ØØ
 DEF FNHY(V) = 23*V - 7
 DIM B (9,9), PEG(70),PEGK(7Ø), CROSS (7Ø)
 REM BUTTON HOLES
 XB(1)=81: YB(1)=85
 XB(2)=81: YB (2)=102
 REM OFF-BOARD SQUARES
 FOR R=1 TO 7
 FOR C=1 TO 7
 IF C<3 OR C>5 THEN
 IF R<3 OR R>5 THEN B (R,C) = -9
 END IF
 NEXT C,R
 FOR I=8 TO 9: FOR J=1 TO 9
 B(I,J) = -9: B(J,I) = -9
 NEXT J,I
RETURN
OUTCOMES :
 DATA "You're a genius !"
 DATA "Superb play; I'm impressed l"
 DATA "Not bad."
 DATA "You can do better than that."
 DATA "Gobble, gobble, turkey."
 FOR I=1 TO 5
 READ OUTCOME$ (I)
```

NEXT
RETURN

## SETMENUS:

DATA 2, Rules, Yes, No
DATA 5, Board, Yellow, Violet, Green
DATA Sky Blue, Random
DATA 1, Last Move, Un-do
DATA 3, Stop, Go to BASIC
DATA Go to Games Menu, Go to System
FOR I=1 TO 4
READ K
FOR J=Ø TO K
READ TITLE\$
IF $J<>\varnothing$ THEN TITLE $=$ SPACE $(3)+$ TITLE
STATUS = 1
IF $I<3$ AND $J=1$ THEN STATUS $=2$
IF $I=3$ AND $J=1$ THEN STATUS $=\varnothing$
MENU I,J,STATUS,TITLE\$
NEXT J,I
RULES $=1:$ BRDCOLOR $=1$
RETURN

## SETCOLORS :

REM YELLOW, VIOLET, GREEN, SKY BLUE DATA Ø.79.Ø.41, Ø.Ø8, Ø.97,Ø.32.Ø.96
DATA Ø.5Ø, Ø.5Ø.Ø, Ø.29.Ø.66, Ø.94
FOR I=1 TO 4
FOR J=1 TO 3
READ KOLOR (I,J)
NEXT J,I
REM TAN, YELLOW, LIGHT GREEN, \& RED
PALETTE 3,.95,.7,.53
PALETTE 4,.79,.41,. 08
PALETTE 5,.25,.9, $\varnothing$
PALETTE 6,.93,.2,0
RETURN
START:
MENU ON
ON MENU GOSUB OPTIONS
COLOR 4
LINE $(258,30)-(368,120),, B F$
LINE $(208,53)-(418,97)$, BF
COLOR 2,4
LOCATE 9: PRINT PTAB(296)"Hi-Q"
COLOR 3,2: LOCATE 18,30:PRINT " then "
COLOR $1, \varnothing$
LOCATE 17,24:PRINT "Please use menus,"

```
 LOCATE 19,23:PRINT "Click mouse to play"
 GOSUB CLICKIT
RETURN
OPTIONS:
 ID = MENU(\varnothing): ITEM = MENU(1)
 ON ID GOSUB MENUl, MENU2, MENU3, GOODBYE
 ITEM = Ø
RETURN
MENUl:
 RULES = ITEM
 MENU 1,ITEM,2: MENU 1,3-ITEM,1
RETURN
MENU2:
 Kl = KOLOR(ITEM,1): K2 = KOLOR(ITEM,2)
 K3 = KOLOR(ITEM,3)
 IF ITEM=5 THEN Kl=RND: K2=RND: K3=RND
 PALETTE 4,K1,K2,K3
 MENU 2,BRDCOLOR,1: MENU 2,ITEM,2
 BRDCOLOR = ITEM
RETURN
MENU3:
 CALL XY(RIHOLD,ClHOLD): PUT(X,Y),PEG,PSET
 CALL XY(RMHOLD,CMHOLD): PUT(X,Y),PEG,PSET
 CALL XY(R2HOLD,C2HOLD): PUT(X,Y),PEGK,PSET
 B(RlHOLD,ClHOLD) = 1: B(RMHOLD,CMHOLD) = 1
 B(R2HOLD,C2HOLD) = Ø
 PEGS = PEGS + 1
 MENU 3,1,\varnothing
RETURN
GOODBYE:
 WINDOW CLOSE 2: WINDOW 1: MENU RESET
 SCREEN CLOSE l
 IF ITEM = 2 THEN RUN "GAMES"
 IF ITEM = 3 THEN SYSTEM
 COLOR 1,\varnothing: CLS
 PRINT "Bye-Bye"
 STOP
RETURN
CLICKIT:
 WHILE MOUSE(\varnothing) = \varnothing: WEND: REM CLICK
 X = MOUSE(1)
 Y = MOUSE(2)
 WHILE MOUSE(\varnothing)<> Ø: WEND: REM RESET
RETURN
```

```
PLAY:
 IF RULES = 1 THEN GOSUB RULES
 GOSUB SETBOARD
 WHILE GAME$ = "ON"
 GOSUB ENTERMOVE
 GOSUB MAKEMOVE
 GOSUB CHECKEND
 WEND
 GOSUB GAMEOVER
RETURN
RULES:
 CLS
 PRINT
 PRINT " I'm about to place 32 pegs on a ";
 PRINT "cross-shaped board, with"
 PRINT " the center empty.":PRINT
 PRINT " Try to remove as many pegs as ";
 PRINT "possible, with a peg lifted
 PRINT " from the board when it's jumped."
 LOCATE 20,26:PRINT "Click Mouse";
 GOSUB CLICKIT
RETURN
SETBOARD:
 GOSUB RECORD
 GOSUB DRAWCROSS
 GOSUB DRAWHOLES
 GOSUB DRAWLINES
 GOSUB MARKERS
RETURN
RECORD:
 REM 1 = Filled; \emptyset = Vacant
 FOR R=1 TO 7
 FOR C=1 TO 7
 IF B(R,C) <> -9 THEN B(R,C) = 1
 NEXT C,R
 B(4,4) = \varnothing: REM CENTER
 PEGS = 32
 GAMES = "ON"
RETURN
```

```
DRAWCROSS:
```

DRAWCROSS:
CLS
CLS
COLOR 4
COLOR 4
LINE (219,3)-(407,166),,BF
LINE (219,3)-(407,166),,BF
LINE (124,47)-(502,123),,BF
LINE (124,47)-(502,123),,BF
RETURN

```
RETURN
```

```
DRAWHOLES:
 COLOR 2
 FOR R=1 TO 7
 FOR C=1 TO 7
 X = FN HX(C): Y = FN HY(R)
 IF B(R,C) <> -9 THEN
 CIRCLE (X,Y),19
 PAINT (X,Y)
 END IF
 NEXT C,R
RETURN
DRAWLINES:
 REM VERTICAL
 FOR C=1 TO 7
 ROW1 = 1: ROW2 = 7
 IF B(1,C) = -9 THEN ROW1 = 3: ROW2 = 5
 X = FNHX(C): Y1 = FNHY(ROW1): Y2 = FNHY(ROW2)
 LINE (X,Y1)-(X,Y2)
 NEXT
 REM HORIZONTAL
 FOR R=1 TO 7
 COL1 = l: COL2 = 7
 IF B(R,1) = -9 THEN COLl = 3: COL2 = 5
 Y = FNHY(R): Xl = FNHX(COL1): X2 = FNHX(COL2)
 LINE (X1,Y)-(X2,Y)
 NEXT
RETURN
MARKERS:
 REM BLANK
 X = FNHX(3): Y = FNHY(1)
 Xl=X-12: X2=X+12: Yl=Y-5: Y2=Y+5
 GET (X1,Y1)-(X2,Y2),PEGK
 REM CROSS
 LINE (X-5,Y-5)-(X+5,Y+5),6,BF
 LINE (X-11,Y-2)-(X+11,Y+2),6,BF
 GET (X1,Y1)-(X2,Y2),CROSS
 PUT (XI,Y1),PEGK, PSET
 REM PEG
 CIRCLE (X,Y),10,3: PAINT (X,Y),3
 GET (X1,Y1)-(X2,Y2),PEG
 REM DRAW PEGS
 FOR R=1 TO 7
 FOR C=1 TO 7
 IF B(R,C) = 1 THEN
 CALL XY(R,C): PUT(X,Y),PEG,PSET
 END IF
```

```
 NEXT C,R
 COLOR 1
RETURN
SUB XY(ROW,COL) STATIC
 SHARED X,Y
 X = FNHX(COL) - 12
 Y = FNHY(ROW) - 5
END SUB
ENTERMOVE:
 GOSUB ENTERPIECE
 GOSUB ENTERHOLE
 GOSUB LEGALITY
 IF MOVE$ = "BAD" THEN
 CALL XY(Rl,Cl): PUT(X,Y),PEG,PSET
 BEEP
 GOTO ENTERMOVE
 END IF
RETURN
ENTERPIECE:
 LOCATE 20,26:PRINT "Piece to Move ?";
 GOSUB USEMOUSE
 IF B(R,C) = \varnothing THEN ENTERPIECE
 MENU 3,1,\emptyset: REM TURN OFF 'UN-DO LAST MOVE'
 CALL XY(R,C): PUT (X,Y),CROSS,PSET
 Rl = R: Cl = C
RETURN
USEMOUSE:
 GOSUB CLICKIT
 REM FIND SQUARE (its Row and Column)
 R = INT((Y-4.5)/23) + l
 C = INT((X-126.5)/53) + 1
 REM CHECK FOR ON BOARD
 SQS = "BAD"
 IF C>2 AND C<6 AND R>\emptyset AND R<8 THEN SQ$="OK"
 IF R>2 AND R<6 AND C>\emptyset AND C<8 THEN SQ$="OK"
 IF SQ$ = "BAD" THEN USEMOUSE
RETURN
ENTERHOLE:
 LOCATE 20,26:PRINT "Hole to Fill ? ";
 GOSUB USEMOUSE
 IF B(R,C) <> Ø THEN ENTERHOLE
 R2 = R: C2 = C
RETURN
```

```
LEGALITY:
 MOVE$ = "BAD"
 RM = R1 - (R1-R2)/2
 CM = Cl - (Cl-C2)/2
 IF B(RM,CM) = 1 THEN
 IF Rl=R2 AND ABS(Cl-C2)=2 THEN MOVE$="OK"
 IF Cl=C2 AND ABS(R1-R2)=2 THEN MOVE$="OK"
 END IF
RETURN
MAKEMOVE:
 CALL XY(Rl,Cl): PUT(X,Y),PEGK, PSET
 CALL XY(RM,CM): PUT(X,Y),PEGK,PSET
 CALL XY(R2,C2): PUT(X,Y),PEG,PSET
 B(R1,Cl)=\varnothing: B(RM,CM)=\varnothing: B(R2,C2)=1
 PEGS = PEGS - 1
 GOSUB GURGLE
 REM REMEMBER IT
 R1HOLD=R1: ClHOLD=Cl: R2HOLD=R2: C2HOLD=C2
 RMHOLD=RM: CMHOLD=CM
 MENU 3,1,1
RETURN
GURGLE :
 FREQ = 3\varnothing\emptyset
 FOR I=1 TO 5
 FREQ = 500-FREQ
 SOUND FREQ,1,5\emptyset
 NEXT
RETURN
CHECKEND:
 GAMES = "OVER": R = Ø
 WHILE GAMES = "OVER" AND R < 8
 R=R+1:C=\emptyset
 WHILE GAME$ = "OVER" AND C < 8
 C=C+1
 REM HORIZONTAL CHECK
 IF B(R,C+l) = 1 THEN
 IF B (R,C)=1 AND B (R,C+2)=\varnothing THEN GAME$="ON"
 IF B (R,C)=Ø AND B (R,C+2)=1 THEN GAMES="ON"
 END IF
 REM VERTICAL CHECK
 IF B (R+1,C) = 1 THEN
 IF B (R,C)=1 AND B (R+2,C)=\varnothing THEN GAME$="ON"
 IF B}(R,C)=\emptyset AND B(R+2,C)=1 THEN GAMES="ON"
 END IF
 WEND
 WEND
RETURN
```

```
GAMEOVER:
 MENU 3,1,\emptyset
 Sl$ = STR$(PEGS)+" LEFT:"
 IF PEGS > 5 THEN PEGS = 5
 S2$ = " " + OUTCOME$(PEGS)
 S$ = Sl$+S2$: L = LEN(S$)
 LOCATE 20,26:PRINT SPACE$(14);
 COLOR 3,2
 LOCATE 2Ø,32-L/2:PRINT Sl$;
 COLOR 1,\varnothing: PRINT S2$;
 FOR PAUSE=1 TO 5øø\emptyset: NEXT
RETURN
DECIDE:
 BUTTON = Ø
 GOSUB DRAWBUTTON
 GOSUB PUSHBUTTON
 COLOR 1,ø
RETURN
DRAWBUTTON:
 LINE (10,47)-(105,112),2,BF
 COLOR 3,2
 LOCATE 7,3:PRINT "Play"
 LOCATE 8,3:PRINT "Again ?"
 COLOR 1,2
 LOCATE 10,3:PRINT "Yes"
 LOCATE 12,4:PRINT "NO"
 FOR I=1 TO 2
 CIRCLE (XB(I),YB(I)),12,4+I
 PAINT (XB(I),YB(I)),4+I
 NEXT
RETURN
PUSHBUTTON:
 SOUND 440,2
 GOSUB CLICKIT
 FOR I=1 TO 2
 XD = ABS(X-XB(I)): YD = ABS(Y-YB(I))
 IF XD<l2 AND YD<7 THEN BUTTON = I: I=2
 NEXT
 IF BUTTON = Ø THEN PUSHBUTTON
RETURN
```


## Solitaire Checkers

A challenging contest of logic, "Solitaire Checkers" places 48 pieces around the edges of an $8 \times 8$ board. You try to eliminate as many as possible by leaping over the checkers diagonally, just as in the traditional board game.

Removing all but 11 or 12 checkers is relatively easy. Ending up with only a handful requires the insight of a mathematician and the foresight of a soothsayer.

To make a move, first click the mouse on the piece you want to move. It will change shape before your very eyes. Next, click the mouse on a vacant square. Every move must be a jump, and only diagonal leaps are permitted (Figure 2-9).

If you decide to jump a checker and then change your mind, don't worry. Simply enter an illegal position as the destination square. The Amiga will buzz at you for a few seconds, but that's all. You can then make your desired move. Furthermore, just like in the game of Hi-Q, you can always undo your last move.

Figure 2-9. Jumping in Solitaire Checkers

Before


After


## Program 2-9. Solitaire Checkers

Save using the filename SOLITAIRE
REM SOLITAIRE CHECKERS GOSUB INITIALIZE
PLAYGAME: GOSUB PLAY
PLAYAGAIN:

```
GOSUB DECIDE
IF BUTTON = 1 THEN PLAYGAME
GOSUB GOODBYE
END
INITIALIZE:
 GOSUB SETSCREEN
 GOSUB KEYVALUES
 GOSUB RATINGS
 GOSUB SETMENUS
 GOSUB SETCOLORS
 GOSUB START
RETURN
SETSCREEN:
 SCREEN 1,640,200,3,2
 WINDOW 2,"Solitaire Checkers",,\varnothing,1
RETURN
```

KEYVALUES:
DEFINT A-J,L-Z
RANDOMIZE TIMER
$\operatorname{DEF} \operatorname{FNEVENODD}(I, J)=((I+J) / 2=I N T((I+J) / 2))$
DEF $\operatorname{FNX}(\mathrm{V})=48 * V+98$
DEF $\operatorname{FNY}(V)=2 \varnothing * V-7$
DIM $\operatorname{B}(9,9)$, SQODD (6øø), SQEVEN (6øø)
REM ARRAY INDICES
DATA 1,2øø,4のø
READ INDEX ( $\varnothing$ ), INDEX (1), INDEX (2)
REM BUTTON HOLES
$\mathrm{XB}(1)=81: \quad \mathrm{YB}(1)=85$
$\mathrm{XB}(2)=81: \quad \mathrm{YB}(2)=1 \varnothing 2$
REM OFF-BOARD SQUARES
FOR I=ø TO 9 STEP 9: FOR J=ø TO 9
$B(I, J)=-9: B(J, I)=-9$
NEXT J,I
REM X \& Y OFFSETS FOR CHECKER
DATA $-9,4, \varnothing, 5,9,4,13, \varnothing, 9,-4$
DATA $\varnothing,-5,-9,-4$
FOR I=1 TO 7
READ XFSET(I), YFSET(I)
NEXT
RETURN
RATINGS:
DATA Magician, Master, Journeyman
DATA Apprentice, Novice, Turkey
FOR I=1 TO 6
READ RANK\$ (I)

## NEXT RETURN

```
SETMENUS:
 DATA 2, Rules, Yes, No
 DATA 5, Checker, Brown, Blue, Green
 DATA Purple, Random
 DATA 1, Last Move, Un-do
 DATA 3, Stop, Go to BASIC
 DATA Go to Games Menu, Go to System
 FOR I=1 TO 4
 READ K
 FOR J=Ø TO K
 READ TITLES
 IF J<>\varnothing THEN TITLES = SPACE$(3) + TITLE$
 STATUS = 1
 IF I<3 AND J=1 THEN STATUS = 2
 IF I=3 AND J=1 THEN STATUS = \varnothing
 MENU I,J,STATUS,TITLE$
 NEXT J,I
 RULES = 1: CKCOLOR = 1
RETURN
```

SETCOLORS:
REM BROWN, BLUE, DULL GREEN, PURPLE
DATA .7,.28,.15, .2,.09,. 8
DATA . 14,.43, $0, .52,0, .57$
FOR I=1 TO 4
FOR J=1 TO 3
READ KOLOR(I,J)
NEXT J,I
REM LT. BLUE, VIOLET, BROWN, GREEN, \& RED
PALETTE 2,.29,.66,.94
PALETTE 3,.75,.46,.85
PALETTE 4,.7,.28,.15
PALETTE 5,.14,.43, $\varnothing$
PALETTE 6,.93,.2.ø
RETURN
START:
MENU ON
ON MENU GOSUB OPTIONS
COLOR 4
AREA $269,3 \varnothing): \operatorname{AREA}(208,55): \operatorname{AREA}(208,95)$
AREA 269,120$): \operatorname{AREA}(357,12 \varnothing): \operatorname{AREA}(418,95)$
AREA $(418,55):$ AREA $(357,3 \varnothing)$
AREAFILL
COLOR 1,4
LOCATE 9: PRINT PTAB(224)"Solitaire Checkers"

COLOR 1: LOCATE 18,30:PRINT " then " COLOR $1, \varnothing$
LOCATE 17,24:PRINT "Please use menus,"
LOCATE 19,23:PRINT "Click mouse to play" GOSUB CLICKIT
RETURN
OPTIONS:
ID $=\operatorname{MENU}(\varnothing):$ ITEM $=\operatorname{MENU}(1)$
ON ID GOSUB MENU1, MENU2, MENU3, GOODBYE
ITEM $=\varnothing$
RETURN
MENU1 :
RULES = ITEM
MENU 1,ITEM,2: MENU 1,3-ITEM,1
RETURN
MENU2:
K1 $=\operatorname{KOLOR}(I T E M, 1): K 2=\operatorname{KOLOR}(I T E M, 2)$
K3 $=$ KOLOR (ITEM, 3 )
IF ITEM=5 THEN Kl=RND: K2=RND: K3=RND
PALETTE 4, K1, K2, K3
MENU 2,CKCOLOR,1: MENU 2,ITEM,2
CKCOLOR = ITEM
RETURN
MENU3:
CALL DRAWIT(RIHOLD,ClHOLD, 1)
CALL DRAWIT(RMHOLD, CMHOLD,1)
CALL DRAWIT(R2HOLD,C2HOLD, $\varnothing$ )
$\mathrm{B}($ R1HOLD, ClHOLD $)=1: B($ RMHOLD, CMHOLD $)=1$
$\mathrm{B}($ R2HOLD, $\mathrm{C} 2 \mathrm{HOLD})=\varnothing$
CHECKERS $=$ CHECKERS +1
MENU 3,1,ø
RETURN
GOODBYE:
WINDOW CLOSE 2: WINDOW 1: MENU RESET
SCREEN CLOSE 1
IF ITEM $=2$ THEN RUN "GAMES"
IF ITEM $=3$ THEN SYSTEM
COLOR 1, $0:$ CLS
PRINT "Bye-Bye"
STOP
RETURN
CLICKIT:
WHILE MOUSE( $\varnothing$ ) $=\varnothing$ : WEND: REM CLICK

```
 X = MOUSE(1)
 Y = MOUSE(2)
 WHILE MOUSE(\varnothing)<> Ø: WEND: REM RESET
RETURN
PLAY:
 IF RULES = l THEN GOSUB RULES
 GOSUB SETBOARD
 WHILE GAME$ = "ON"
 GOSUB ENTERMOVE
 GOSUB MAKEMOVE
 GOSUB CHECKEND
 WEND
 GOSUB GAMEOVER
RETURN
RULES:
 CLS
 PRINT
 PRINT " I'm going to place 48 markers";
 PRINT " on the outer two borders"
 PRINT " of a standard-sized checker board."
 PRINT
 PRINT " Try to remove as many pieces as you";
 PRINT " can.": PRINT
 PRINT " A checker is lifted from play";
 PRINT " when it's jumped diagonally,"
 PRINT " just like in the regular game."
 LOCATE 2\emptyset,26:PRINT "Click Mouse";
 GOSUB CLICKIT
RETURN
SETBOARD:
 GOSUB RECORD
 GOSUB EVENSQUARE
 GOSUB ODDSQUARE
 GOSUB DRAWBOARD
RETURN
RECORD:
 REM l = Filled; \emptyset = Vacant
 FOR R=1 TO 8
 FOR C=1 TO 8
 V = l
 IF R>2 AND R<7 AND C>2 AND C<7 THEN V=\varnothing
 B(R,C) = V
 NEXT C,R
 CHECKERS = 48
 GAMES = "ON"
RETURN
```

```
EVENSQUARE:
 CLS
 REM BACKGROUND
 Xl=122: Y1=3: X2=169: Y2=22
 LINE (X1,Y1)-(X2,Y2),2,BF
 GET (X1,Y1)-(X2,Y2),SQEVEN(1)
 REM BOX
 LINE (132,7)-(159,18),6,BF
 LINE (136,9)-(155,16),1,BF
 LINE (142,11)-(149,14),\varnothing,BF
 GET (X1, Y1)-(X2,Y2), SQEVEN (4Ø\emptyset)
 REM CHECKER
 CALL DRAWIT(1,1,\emptyset)
 X=139: Y=6: GOSUB CREATEPIECE
 GET (X1,Y1)-(X2,Y2),SQEVEN(2Ø0)
RETURN
SUB DRAWIT(ROW,COL, Z) STATIC
 SHARED SQEVEN(),SQODD(),INDEX()
 IDX = INDEX(Z)
 X = FNX(COL) - 24
 Y = FNY(ROW) - 10
 V = FNEVENODD(ROW,COL)
 IF V = -l THEN
 PUT(X,Y),SQEVEN(IDX), PSET
 ELSE
 PUT (X,Y),SQODD(IDX) , PSET
 END IF
END SUB
CREATEPIECE:
 COLOR 4: AREA (X,Y)
 FOR I=1 TO 7
 AREA STEP(XFSET(I),YFSET(I))
 NEXT
 AREAFILL
RETURN
ODDSQUARE:
 REM BACKGROUND
 X3=170: X4=217
 LINE (X3,Y1)-(X4,Y2), 3,BF
 GET (X3,Y1)-(X4,Y2),SQODD(1)
 REM BOX
 LINE (180, 7)-(207, 18),6, BF
 LINE (184,9)-(203,16),1,BF
 LINE (190,11)-(197,14),\varnothing,BF
 GET (X3,Y1)-(X4,Y2),SQODD(4Ø\emptyset)
 REM CHECKER
```

```
 CALL DRAWIT(1,2,0)
 X=187: Y=6: GOSUB CREATEPIECE
 GET (X3,Y1)-(X4,Y2),SQODD(2ø\varnothing)
RETURN
DRAWBOARD:
 LINE (121,2)-(506,163),1,B
 FOR R=1 TO 8
 FOR C=1 TO 8
 INDEX = B(R,C)
 CALL DRAWIT(R,C,INDEX)
 NEXT C,R
 COLOR 1
RETURN
ENTERMOVE:
 GOSUB ENTERPIECE
 GOSUB ENTERHOLE
 GOSUB LEGALITY
 IF MOVE$ = "BAD" THEN
 CALL DRAWIT(Rl,Cl,l)
 SOUND 9ø0,2
 GOTO ENTERMOVE
 END IF
RETURN
ENTERPIECE:
 LOCATE 20,26:PRINT "Piece to Move ?";
 GOSUB USEMOUSE
 IF B(R,C) = Ø THEN ENTERPIECE
 MENU 3,l,\emptyset: REM TURN OFF 'UN-DO LAST MOVE'
 CALL DRAWIT(R,C,2)
 Rl = R: Cl = C
RETURN
USEMOUSE:
 GOSUB CLICKIT
 REM FIND SQUARE (its Row and Column)
 R = INT((Y-3)/2ø) + 1
 C = INT((X-122)/48) + 1
 IF R<l OR R>8 OR C<l OR C>8 THEN USEMOUSE
RETURN
ENTERHOLE:
 LOCATE 20,26:PRINT "Hole to Fill ? ";
 GOSUB USEMOUSE
 IF B(R,C) <> Ø THEN ENTERHOLE
 R2 = R: C2 = C
RETURN
```

```
LEGALITY:
 MOVE$ = "BAD"
 RM = Rl - (Rl-R2)/2
 CM = Cl - (Cl-C2)/2
 IF ABS (R1-R2)=2 AND ABS (Cl-C2)=2 THEN
 IF B(RM,CM) = 1 THEN MOVE$ = "OK"
 END IF
RETURN
MAKEMOVE:
 CALL DRAWIT(Rl,Cl,\varnothing)
 CALL DRAWIT(RM, CM,\varnothing)
 CALL DRAWIT(R2,C2,l)
 B(R1,Cl)=\varnothing: B(RM,CM)=\varnothing: B(R2,C2)=1
 CHECKERS = CHECKERS - 1
 GOSUB GURGLE
 REM REMEMBER IT
 R1HOLD=R1: ClHOLD=Cl: R2HOLD=R2: C2HOLD=C2
 RMHOLD=RM: CMHOLD=CM
 MENU 3,1,1
RETURN
GURGLE:
 FREQ = 30Ø
 FOR I=l TO 5
 FREQ = 50\emptyset-FREQ
 SOUND FREQ,1,5Ø
 NEXT
RETURN
CHECKEND:
 GAMES = "OVER": R = 1
 WHILE GAME$ = "OVER" AND R <= 6
 C=1
 WHILE GAME$ = "OVER" AND C <= 8
 REM NEGATIVE SLANT
 IF B (R+1,C+1) = 1 THEN
 IF B}(R,C)=1 AND B (R+2,C+2)=\varnothing THEN GAME$="ON"
 IF B}(R,C)=\varnothing AND B(R+2,C+2)=1 THEN GAME$="ON"
 END IF
 REM POSITIVE SLANT
 IF B (R+1,C-1) = 1 THEN
 IF B (R,C)=1 AND B (R+2,C-2)=\varnothing THEN GAMES="ON"
 IF B(R,C)=\varnothing AND B (R+2,C-2)=1 THEN GAME$="ON"
 END IF
 C=C+1
 WEND
 R=R+1
 WEND
RETURN
```

```
GAMEOVER:
 MENU 3,1,ø
 Sl$ = STR$(CHECKERS) + " LEFT"
 RANK = INT(CHECKERS/2)
 IF RANK > 6 THEN RANK = 6
 S2$ = " Rank: " + RANK$ (RANK)
 S$ = Sl$ + S2$
 LOCATE 20,26: PRINT SPACE$(14);
 COLOR 0,l
 LOCATE 2Ø,32-LEN(S$)/2: PRINT Sl$;
 COLOR 1,0: PRINT S2$;
 FOR PAUSE=1 TO 5øø\emptyset: NEXT
RETURN
DECIDE:
 BUTTON = Ø
 GOSUB DRAWBUTTON
 GOSUB PUSHBUTTON
 COLOR 1,\varnothing
RETURN
DRAWBUTTON:
 LINE (10,47)-(105,112),1,BF
 COLOR Ø,1
 LOCATE 7,3:PRINT "Play"
 LOCATE 8,3:PRINT "Again ?"
 LOCATE 1ø,3:PRINT "Yes"
 LOCATE 12,4:PRINT "NO"
 FOR I=1 TO 2
 CIRCLE (XB(I),YB(I)),12,4+I
 PAINT (XB(I),YB(I)),4+I
 NEXT
RETURN
PUSHBUTTON:
 SOUND 440,2
 GOSUB CLICKIT
 FOR I=1 TO 2
 XD = ABS(X-XB(I)): YD = ABS(Y-YB(I))
 IF XD<12 AND YD<7 THEN BUTTON = I: I=2
 NEXT
 IF BUTTON = Ø THEN PUSHBUTTON
RETURN
```


## Bunny's and Piglet's Tic-Tac-Toe

Play against the Amiga in this delightful version of an old favorite. The computer is the Piglet, and you're the Bunny. Try to get three of your markers in a row, in any direction, before the Piglet gets three of his.

Two versions of the game are available: Easy and Hard. The easy version is recommended for beginners, such as children in grammar school and adults who've never played before.

In the hard version the computer plays a perfect game. This doesn't mean that you'll always lose, but you will have to play perfectly to win.

Use a pull-down menu to select a version. To make a move, simply click the mouse on a vacant square.

Finally, the game uses some nice animation. Both the Piglet and the Bunny dance, and children will love to see this.

## Program 2-10. Bunny's and Piglet's Tic-Tac-Toe

Save using the filename TTT
REM BUNNY'S AND PIGLET'S TIC-TAC-TOE GOSUB INITIALIZE
PLAYGAME: GOSUB PLAY
PLAYAGAIN:
LOCATE 20,21: PRINT "Play Again ? ";
GOSUB DECIDE
IF BUTTON $=1$ THEN PLAYGAME
GOSUB GOODBYE
END

INITIALIZE:
GOSUB SETSCREEN
GOSUB KEYVALUES
GOSUB SETMENUS
GOSUB SETCOLORS
GOSUB DRAWSHAPES
GOSUB HEADING
RETURN
SETSCREEN :
SCREEN 1,640,200,3,2
TITLES = "Bunny's and Piglet's Tic-Tac-Toe"

```
 WINDOW 2,TITLE$,,\varnothing,1
RETURN
KEYVALUES:
 DEFINT A-Z
 RANDOMIZE TIMER
 DEF FNX(V) = V*124 + 31
 DEF FNY(V) = V*52 - 41
 DIM SHAPE(25Ø1),R(49)
 REM VECTOR INDICES
 FOR I=1 TO 4
 INDEX(I) = 1 + (I-1)*625
 NEXT
 REM BUTTON HOLES & LETTERS
 XB(1)=364: YB(1)=174
 XB(2)=406: YB(2)=174
 LT$(1) = "Y": LT$(2) = "N"
 REM OFF-BOARD SQUARES
 FOR I=1 TO 14
 R(I) = -9: R(I+35) = -9
 NEXT
 FOR I=15 TO 29 STEP 7
 R(I) = -9: R(I+1) = -9
 R(I+5) = -9: R(I+6) = -9
 NEXT
 REM DIRECTION DELTAS
 DATA 1,6,7,8
 FOR I=1 TO 4: READ DR(I): NEXT
 REM WINNER
 DATA Nobody, Bunny, Piglet
 FOR I=Ø TO 2: READ W$(I): NEXT
RETURN
SETMENUS:
 DATA 2, Rules, Yes, No
 DATA 2, Game, Easy, Hard
 DATA 2, First Move, Bunny (Amiga), Piglet (You)
 DATA 3, Stop, Go to BASIC
 DATA Go to Games Menu, Go to System
 FOR I=1 TO 4
 READ NUMBER
 FOR J=Ø TO NUMBER
 READ TITLES
 IF J<>\varnothing THEN TITLE$ = SPACE$(3) + TITLE$
 STATUS = 1
 IF I<>4 AND J=1 THEN STATUS = 2
 MENU I,J,STATUS,TITLE$
NEXT J,I
RULES = 1: DIFF.GAME = 1: FMOVE = 1
RETURN
```

```
SETCOLORS :
 REM GRAY, PINK, FLESH, RED, BLUE
 PALETTE 3,.32,.39,.61
 PALETTE 4,1,.51,.64
 PALETTE 5,1,.87,.73
 PALETTE 6,.93,.2,0
 PALETTE 7,.4,.6,1
RETURN
DRAWSHAPES:
 MENU ON
 ON MENU GOSUB OPTIONS
 GOSUB DRAWBOX
 GOSUB BUNNY1
 GOSUB BUNNY2
 GOSUB PIGLETl
 GOSUB PIGLET2
 GOSUB GETSHAPES
RETURN
DRAWBOX:
 LINE (188,30)-(438,13Ø), 3, BF
 LINE(309, 30)-(317,130),1,BF
 LINE(188,78)-(438,82),1,BF
RETURN
BUNNY1:
 REM SHIRT
 XØ=380: YØ=53
 CALL DRAWLINE(4,XØ,YØ, 67)
 PAINT(X\varnothing,YØ+3): PAINT (X\varnothing+12,YØ+1)
 CALL DRAWPOINT(2,X\varnothing,YØ,11)
 REM PANTS
 CALL DRAWLINE(7,XØ+6,YØ+7, 34)
 PAINT(XØ,YØ+1Ø)
 CALL DRAWPOINT(2,X\emptyset,YØ,5)
 REM FEET
 CALL DRAWLINE(5,X\emptyset+8,Y\emptyset+14,17)
 PAINT (X0}+11,Y\emptyset+16
 CALL DRAWPOINT (2,X0,YØ,5)
 CALL DRAWLINE(5,X\emptyset-1,Y\emptyset+15,18)
 PAINT(X0}-16,YØ+15
 CALL DRAWPOINT (2,X\varnothing,YØ, 3)
 REM HANDS
 CALL DRAWLINE(5,X\emptyset+16,Y\emptyset+6,14)
 CALL DRAWLINE(5,X0}-19,Y\emptyset+4,17
 REM FACE
 CALL DRAWLINE(5,XØ,YØ-2,7Ø)
 PAINT(XØ, YØ-7): PAINT(X0-4,YØ-13)
```

CALL DRAWLINE (4, X $\varnothing$ +5, Y $\varnothing$-12,14)
CALL DRAWLINE (4, X $\varnothing-7, Y \varnothing-12,6$ )
CALL DRAWLINE (4, X $\varnothing+2, Y \varnothing-6,4$ )
CALL DRAWPOINT ( $2, \mathrm{X} \varnothing, Y \varnothing, 2$ )
CALL DRAWPOINT ( $2, X \varnothing, Y \emptyset, 2$ )
CALL DRAWPOINT ( $2, X \varnothing, Y \emptyset, 2$ )
CALL DRAWLINE ( $1, \mathrm{X} \varnothing+7, \mathrm{Y} \varnothing+6,9$ )
RETURN
SUB DRAWLINE(K,X.C,Y.C,T) STATIC
COLOR K
PSET(X.C,Y.C)
FOR I=1 TO T
READ X,Y
LINE -STEP(X,Y)
NEXT
END SUB
SUB DRAWPOINT(K,X.C,Y.C,T) STATIC
COLOR K
FOR $\mathrm{I}=1$ TO T
READ X,Y
PSET (X.C+X,Y.C+Y)
NEXT
END SUB
BUNNY2:
$\mathrm{X} \varnothing=246: ~ Y \varnothing=107$
REM SHIRT
CALL DRAWLINE ( $4, \mathrm{X} \varnothing, Y \varnothing, 73$ )
PAINT (Xø +4, Yø) : PAINT (Xø-13, Yø-6)
PAINT (Xø-6, Yø-4)
CALL DRAWPOINT (2,Xø,Yø,4)
REM PANTS
CALL DRAWLINE (7, $\mathrm{X} \varnothing+2, \mathrm{Y} \emptyset+3,42$ )
PAINT (XØ $+6, \mathrm{Y} \emptyset+5$ )
CALL DRAWPOINT ( $2, \mathrm{X} \varnothing, Y \varnothing, 5$ )
REM FEET
CALL DRAWLINE $5, \mathrm{X} \varnothing+12, \mathrm{Y} \varnothing+12,13$ )
CALL DRAWLINE (5, Xø-7, Y $\varnothing+6,29$ )
PAINT (Xø-12, Yø 7 )
CALL DRAWPOINT (2,Xø, Yø,5)
REM HANDS
CALL DRAWLINE (5, Xø $+17, \mathrm{Y} \varnothing-8,36$ )
PAINT (Xø $\mathbf{+ 2 5 , Y \varnothing - 1 3 ) ~}$
CALL DRAWLINE (5, Xø-17, Yø-8, 28)
PAINT (Xø-25,YØ-11)
REM HEAD
CALL DRAWLINE (5, X $\varnothing$-1, Yø-3,51)

```
 PAINT(XØ+3,YØ-6)
REM NOSE
 CALL DRAWLINE(4,X\varnothing-2,Y\varnothing-8,6)
REM MOUTH
 CALL DRAWLINE(2,X\varnothing+1,YØ-5,6)
REM EYE (& EYEBALL)
 CALL DRAWLINE(3,X\varnothing+4,Y\varnothing-8,3)
 CALL DRAWLINE(2,XØ+2,YØ-8,1)
REM EARS
 CALL DRAWLINE (4,X\varnothing+9,Y\varnothing-11,5)
 CALL DRAWLINE(4,X\varnothing+3,Y\varnothing-11,5)
REM TAIL
 CALL DRAWLINE(1,X\emptyset+11,Y\emptyset+4,4)
RETURN
PIGLETl:
 REM BOTTOM
 XØ=246: Yø=56
 CALL DRAWLINE(4,X\varnothing,Yø,7\varnothing)
 PAINT(X\varnothing-6,Y\varnothing+3)
 CALL DRAWPOINT(2,X\varnothing,YØ,13)
 REM TAIL
 CALL DRAWPOINT(1,Xø-21,Yø+3,14)
 REM VEST
 CALL DRAWLINE(7,X\varnothing,YØ-1,53)
 PAINT(X\varnothing+4,Y\emptyset-2)
 CALL DRAWPOINT(2,X0,YØ,4)
 REM ARMS
 CALL DRAWLINE(4,X\varnothing+7,Yø-1,18)
 PAINT(X\emptyset+11,Yø-2)
 CALL DRAWLINE(4,Xø+22,YØ-4,7)
 CALL DRAWPOINT(2,X\varnothing,Y\emptyset,4)
 CALL DRAWPOINT(2,X\varnothing,Y\emptyset,2)
 REM HEAD
 CALL DRAWLINE(4,X\varnothing,Y\varnothing-8,49)
 PAINT(X\emptyset+8,Y\emptyset-11) : PAINT(X\varnothing-3,Y\emptyset-11)
 CALL DRAWLINE(5,XØ+17,Y\emptyset-8,9)
 CALL DRAWPOINT(2,Xø+17,Y\emptyset-8,14)
RETURN
PIGLET2:
 XØ=380: YØ=1Ø7
 REM BOTTOM
 CALL DRAWLINE(4,X\varnothing,YØ+2,84)
 PAINT(X\emptyset,Y\emptyset+5) : PAINT(X\emptyset+13,Y\varnothing+4)
 CALL DRAWPOINT(2,X\varnothing,Y\emptyset,13)
 REM TAIL
 CALL DRAWPOINT(1,X\varnothing-2\varnothing,Y\emptyset+6,14)
 REM VEST
```

```
 CALL DRAWLINE(7,X\emptyset,YØ+1,45)
 PAINT(X\emptyset+4,YØ-1)
 CALL DRAWPOINT(2,X0,YØ,5)
REM ARMS
 CALL DRAWLINE(4,X\varnothing+2,YØ-1,15)
 PAINT(XØ+6,YØ-2)
 CALL DRAWLINE(4,X\emptyset+13,Y\emptyset-6,11)
 CALL DRAWPOINT(2,XØ,YØ,4)
 REM HEAD
 CALL DRAWLINE(4,X0-2,Y0-4,57)
 PAINT(XØ-4,YØ-8): PAINT(XØ-18,YØ-7)
 CALL DRAWPOINT(2,X0,YØ,9)
 REM SNOOT
 CALL DRAWLINE(5,X\varnothing+1,Yø-9,8)
 PAINT(X\varnothing+4,Y\emptyset-9)
 CALL DRAWPOINT(2,XØ,Yø,4)
RETURN
GETSHAPES:
 GET(345,33)-(415,73),SHAPE(INDEX(1))
 GET(211,33)-(281,73),SHAPE(INDEX(2))
 GET(211,87)-(281,127),SHAPE(INDEX(3))
 GET(345,87)-(415,127),SHAPE(INDEX(4))
RETURN
HEADING:
 COLOR 1,\varnothing
 LOCATE 17,24:PRINT "Please use menus,"
 LOCATE 19,23:PRINT "Click mouse to play"
 GOSUB CLICKIT
RETURN
OPTIONS:
 ID = MENU(\varnothing): ITEM = MENU(1)
 ON ID GOSUB MENU1, MENU2, MENU3, GOODBYE
 ITEM = Ø
RETURN
MENU1:
 MENU 1,RULES,1: MENU 1,ITEM,2
 RULES = ITEM
RETURN
MENU2 :
 MENU 2,DIFF.GAME,1: MENU 2,ITEM, 2
 DIFF.GAME = ITEM
RETURN
```

```
MENU3:
 MENU 3,FMOVE,1: MENU 3,ITEM,2
 FMOVE = ITEM
RETURN
GOODBYE:
 WINDOW CLOSE 2: WINDOW l: MENU RESET
 SCREEN CLOSE l
 IF ITEM = 2 THEN RUN "GAMES"
 IF ITEM = 3 THEN SYSTEM
 COLOR 1,0: CLS
 PRINT "Bye-Bye"
 STOP
RETURN
CLICKIT:
 S$ = ""
 WHILE MOUSE(\varnothing) = Ø AND S$ = ""
 S$ = INKEY$
 WEND
 X = MOUSE(1)
 Y = MOUSE(2)
 WHILE MOUSE(\varnothing)<> Ø: WEND: REM RESET
RETURN
PLAY:
 IF RULES = l THEN GOSUB RULES
 GOSUB DRAWBOARD
 GOSUB RECORD
 WHILE GAME = Ø AND N <> 9
 ON PLAYER GOSUB AMIGA, HUMAN
 GOSUB MAKEMOVE
 GOSUB CHECK.FOR.END
 PLAYER = 3 - PLAYER
 WEND
 GOSUB GAMEOVER
RETURN
RULES:
 CLS
 PRINT
 PRINT " I'm the Bunny. And you're the";
 PRINT " Piglet. Try to get"
 PRINT
 PRINT " three in a row before I do."
 LOCATE 20,26:PRINT "Click Mouse";
 GOSUB CLICKIT
RETURN
```

```
DRAWBOARD :
 CLS
 Xl=128: X2=5Ø\emptyset: Y1=5: Y2=161
 LINE(X1,Y1)-(X2,Y2), 3,BF
 REM GRID
 FOR I=1 TO 2
 LINE(I*124+126,Y1)-(I* 124+130,Y2), 1, BF
 LINE(X1,I*52+4)-(X2,I*52+6),l,BF
 NEXT
RETURN
RECORD:
 REM VACANT = Ø: BUNNY = 1: PIGLET = 2
 FOR I=1 TO 49
 IF R(I) <> -9 THEN R(I) = Ø
 NEXT
 DIFFICULTY = DIFF.GAME: MENU 2,\varnothing,\varnothing
 PLAYER = FMOVE: MENU 3,\emptyset,\emptyset
 GAME = Ø
 N = Ø: REM NUMBER OF MOVES
RETURN
AMIGA:
 MOVE = Ø: HPTS = -999
 LOCATE 20,28: PRINT " MY turn ... ";
 FOR I=17 TO 33
 IF R(I) = Ø THEN
 GOSUB RANKSQUARE
 IF PTS = HPTS AND RND > . 8 THEN MOVE = I
 IF PTS > HPTS THEN HPTS = PTS: MOVE = I
 END IF
 NEXT I
 GOSUB CONVERT
RETURN
CONVERT:
 R = INT((MOVE-1)/7) + 1: C = MOVE - (R-1)*7
 R=R-2: C=C-2
RETURN
RANKSQUARE:
 PTS = -999
 FOR J=1 TO 2
 SCORE = -J
 GOSUB SCORE
 IF SCORE > PTS THEN PTS = SCORE
 NEXT J
RETURN
```

```
SCORE:
 FOR D=1 TO 4
 T= Ø: K=\varnothing: DLT = DR(D)
 REM FIRST HALF
 SQ = I
 FOR L=1 TO 2
 SQ = SQ + DLT
 IF R(SQ) = J OR R(SQ) = Ø THEN K = K+1
 IF R(SQ) = J THEN T = T+1
 NEXT L
 REM SECOND HALF
 SQ = I
 FOR L=1 TO 2
 SQ = SQ - DLT
 IF R(SQ) = J OR R(SQ) = Ø THEN K = K+1
 IF R(SQ) = J THEN T = T+l
 NEXT L
 REM RANK
 Sl = -(T=2)*1\emptyset\emptyset\emptyset: REM 3-IN-ROW
 S2 = -(T=1 AND K=2)*1ø\varnothing: REM 2-ON-A-ROW, BLANK
 S2 = -(DIFFICULTY = 2)*S2
 SCORE = SCORE + Sl + S2
 NEXT D
 REM CORNER SQUARE
 S3 = -(I=17 OR I=19 OR I=31 OR I=33)*125
 S3 = -(DIFFICULTY = 2)*S3
 SCORE = SCORE + S3
RETURN
HUMAN:
 SOUND 90Ø,2
 LOCATE 20,28: PRINT "Your turn ...";
 GOSUB CLICKIT
 R = INT((Y-5)/52) + l
 C = INT((X-128)/124) + 1
 IF R<1 OR R>3 OR C<l OR C>3 THEN HUMAN
 MOVE = (R+1)*7 + C+2
 IF R(MOVE) <> \emptyset THEN HUMAN
RETURN
MAKEMOVE:
 GOSUB FLASH
 R(MOVE) = PLAYER
 N = N + l
RETURN
FLASH:
 X = FNX(C)
 Y = FNY(R)
```

```
 FOR FLASH = 1 TO 3
 GOSUB GURGLE
 PUT(X,Y),SHAPE(INDEX(PLAYER+2)), PSET
 FOR PAUSE=1 TO lØø\emptyset: NEXT PAUSE
 PUT(X,Y),SHAPE(INDEX(PLAYER)),PSET
 FOR PAUSE=1 TO 1øø\emptyset: NEXT PAUSE
 NEXT FLASH
RETURN
GURGLE:
 FREQ = 3ØØ
 FOR G=1 TO 3
 FREQ = 5\emptyset\emptyset-FREQ
 SOUND FREQ,1,5\emptyset
 NEXT G
RETURN
CHECK.FOR.END:
 SQUARE(3) = MOVE
 FOR D=1 TO 4
 T=\varnothing: DLT = DR(D)
 REM FIRST HALF
 SQ = MOVE
 FOR L=1 TO 2
 SQ = SQ + DLT
 IF R(SQ) = PLAYER THEN T=T+l: SQUARE(T) = SQ
 NEXT L
 REM SECOND HALF
 SQ = MOVE
 FOR L=1 TO 2
 SQ = SQ - DLT
 IF R(SQ) = PLAYER THEN T=T+1: SQUARE(T) = SQ
 NEXT L
 IF T = 2 THEN GAME = PLAYER: D = 4
 NEXT D
RETURN
GAMEOVER:
 LOCATE 5,54: PRINT "Winner:"
 LOCATE 6,54: PRINT W$(GAME)
 LOCATE 2ø,28: PRINT SPACE$(13);
 MENU 2, }0,1: MENU 3,\varnothing,
 IF GAME <> Ø THEN GOSUB VICTORY.DANCE
RETURN
VICTORY.DANCE:
 REM SORT
 FOR I=1 TO 2
 FOR J=1 TO 2
```

```
 IF SQUARE(J+1) < SQUARE(J) THEN
 SWAP SQUARE(J+1),SQUARE(J)
 END IF
 NEXT J,I
 REM DANCE
 PLAYER = GAME
 FOR I=1 TO 3
 MOVE = SQUARE(I): GOSUB CONVERT
 GOSUB FLASH
 PUT(X,Y),SHAPE(INDEX(PLAYER+2)),PSET
 NEXT I
RETURN
DECIDE:
 BUTTON = Ø
 GOSUB DRAWBUTTON
 GOSUB PUSHBUTTON
 COLOR 1,\varnothing
RETURN
DRAWBUTTON:
 LINE (337,167)-(433,181),1,BF
 FOR I=1 TO 2
 CIRCLE (XB(I),YB(I)),12,8-I
 PAINT (XB(I),YB(I)),8-I
 COLOR 1,8-I
 LOCATE 20: PRINT PTAB(XB(I)-4);LT$(I);
 NEXT I
RETURN
PUSHBUTTON:
 SOUND 440,2
 GOSUB CLICKIT
 S$ = UCASE$(S$)
 IF S$ = "Y" THEN BUTTON = 1
 IF S$ = "N" THEN BUTTON = 2
 FOR I=1 TO 2
 XD = ABS(X-XB(I)): YD = ABS(Y-YB(I))
 IF XD<13 AND YD<7 THEN BUTTON = I: I=2
 NEXT
 IF BUTTON = Ø THEN PUSHBUTTON
RETURN
REM BUNNYI
DATA \(\varnothing,-1,2, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,4, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1,2, \varnothing\)
DATA \(\varnothing, 1,3, \varnothing, \varnothing, 1,3, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1,-4, \varnothing\)
DATA \(\varnothing,-1,-2, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing, 3\)
DATA \(1, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 2,-5, \varnothing, \varnothing, 1,-11, \varnothing, \varnothing,-1,-4, \varnothing\)
DATA \(\varnothing,-1,1, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing, 1\)
```

$$
\begin{aligned}
& \text { DATA }-2, \varnothing, \varnothing, 1,-5, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing,-1,3, \varnothing, \varnothing,-1,3, \varnothing \\
& \text { DATA } \varnothing,-1,4, \varnothing, \varnothing,-1,4, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,3, \varnothing, \varnothing,-1 \\
& \text { DATA } 1, \varnothing, 4, \varnothing, \varnothing, \varnothing, 2,-1,4,-2,-3,-1,-5,-2,-9,2 \\
& \text { DATA }-8,1,-8, \varnothing,-13,3,-13,2,-14,2 \\
& \text { DATA } 1, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 2,-1, \varnothing, \varnothing, 1 \\
& \text { DATA }-2, \varnothing, \varnothing, 1,-\varnothing, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing, 1,-6, \varnothing, \varnothing,-1,-4, \varnothing \\
& \text { DATA } \varnothing,-1,-1, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1 \\
& \text { DATA } 1, \varnothing, \varnothing,-1, \varnothing, 1,13, \varnothing, \varnothing,-1,2, \varnothing, \varnothing, 13, \varnothing, 12, \varnothing, 11 \\
& \text { DATA }-1,1 \varnothing,-2,9,14, \varnothing, \varnothing, 1,4, \varnothing, \varnothing, 1,3, \varnothing,-1, \varnothing, \varnothing, 1 \\
& \text { DATA }-2, \varnothing, \varnothing, 1,-9, \varnothing, \varnothing,-1,-8, \varnothing, \varnothing,-1,-5, \varnothing, \varnothing,-1,-3, \varnothing \\
& \text { DATA } 7, \varnothing, 26,18,25,17,24,1,28,17,27,16 \\
& \text { DATA }-3, \varnothing, \varnothing, 1,-5, \varnothing, \varnothing, 1,-8, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing,-1,-2, \varnothing \\
& \text { DATA } 1, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,7, \varnothing, \varnothing,-1,11, \varnothing, \varnothing, 1, \varnothing, \varnothing \\
& \text { DATA }-27,1,-2,1,-25,1,2, \varnothing, \varnothing, 1,3, \varnothing, \varnothing,-1,1, \varnothing \\
& \text { DATA }-3, \varnothing, \varnothing,-1,2, \varnothing,-1, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing,-1,-1, \varnothing \\
& \text { DATA } 2, \varnothing,-3, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1,-2, \varnothing, 1, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1 \\
& \text { DATA } 3, \varnothing, \varnothing,-1,2, \varnothing,-2, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing,-1,2, \varnothing \\
& \text { DATA } 1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,3, \varnothing, \varnothing,-1,3, \varnothing, \varnothing,-1,3, \varnothing \\
& \text { DATA } \varnothing,-1,1, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-1 \\
& \text { DATA }-1, \varnothing, \varnothing,-2,1, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-2,-1, \varnothing \\
& \text { DATA } \varnothing,-1,-1, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 3 \\
& \text { DATA }-2, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing,-1,-4, \varnothing, \varnothing, 1,-4, \varnothing, \varnothing, 1,-3, \varnothing \\
& \text { DATA } \varnothing, 1,-3, \varnothing, 1, \varnothing, \varnothing, 1,7, \varnothing, \varnothing,-1,3, \varnothing, \varnothing,-1,3, \varnothing, \varnothing, 2 \\
& \text { DATA }-1, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-1, \varnothing, 1, \varnothing, \varnothing, 1,2, \varnothing \\
& \text { DATA } \varnothing, 1,3, \varnothing, \varnothing, 1,1, \varnothing, 2, \varnothing, \varnothing,-2,1, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1 \\
& \text { DATA } 1, \varnothing, \varnothing,-1, \varnothing, 1,-2, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1 \\
& \text { DATA }-3, \varnothing, \varnothing, 1,-4, \varnothing, 2, \varnothing, \varnothing,-1,1, \varnothing \\
& \text { DATA } 1, \varnothing, \varnothing,-1,2, \varnothing,-5, \varnothing, 2,-4,3,-4 \\
& \text { DATA } 7,-9, \varnothing,-9,-1,-9, \varnothing,-9,2, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 2,-1, \varnothing \\
& \text { DATA } \varnothing,-1,-1, \varnothing, \varnothing,-1,-2, \varnothing
\end{aligned}
$$

REM BUNNY2
DATA $\varnothing,-2,3, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,2, \varnothing$
DATA $\varnothing,-1,2, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,5, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,-2, \varnothing$
DATA $\varnothing, 1,-3, \varnothing, \varnothing, 1,-3, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 3,1, \varnothing$
DATA $\varnothing, 1,1, \varnothing, \varnothing, 2,-1, \varnothing, \varnothing,-1,-9, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing,-1$
DATA $-1, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing,-2,1, \varnothing, \varnothing,-2,-3, \varnothing, \varnothing,-1,-3, \varnothing$
DATA $\varnothing,-1,-3, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing,-1,-1, \varnothing, 2, \varnothing$
DATA $\varnothing,-1,1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing, 1,3, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1,4, \varnothing$
DATA $\varnothing, 1,2, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,1, \varnothing,-14,-5,-13,-6,12,-5$
DATA $11,-6,7, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,3, \varnothing, \varnothing, 1,3, \varnothing$
DATA $\varnothing, 1,1, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-8, \varnothing, \varnothing,-1,-1, \varnothing$
DATA $\varnothing,-2,-3, \varnothing, \varnothing,-1,-6, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing, 3,-2, \varnothing, \varnothing,-1$
DATA $-1, \varnothing, \varnothing,-3,-4, \varnothing, \varnothing,-1,-1, \varnothing, 1, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1$
DATA $4, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1,4, \varnothing, \varnothing, 4,1,5,2,6,-3,5,-2,6$
DATA $9, \varnothing, \varnothing, 1,3, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1,-4, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-1$
DATA $-4, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing, 3,1, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-2, \varnothing$
DATA $\varnothing,-1,-2, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-1,-2, \varnothing$
DATA $\varnothing,-1,-1, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-1,-1, \varnothing, 1, \varnothing, \varnothing,-1,4, \varnothing$

DATA $\varnothing, 1,2, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1,3, \varnothing, 25,15,-18,4,-17,3$
DATA -9,6, -9,7
DATA $1, \varnothing, \varnothing,-1,-1, \varnothing, 2, \varnothing, \varnothing,-1,-1, \varnothing, 2, \varnothing, \varnothing,-1,2, \varnothing$
DATA $\varnothing,-1,4, \varnothing, \varnothing, 1,2, \varnothing,-2, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,2, \varnothing$
DATA $\varnothing, 1,2, \varnothing,-2, \varnothing, \varnothing,-2,3, \varnothing,-6, \varnothing, \varnothing,-1,-3 ; \varnothing, \varnothing,-1$
DATA $-1, \varnothing, 1, \varnothing, \varnothing, 2,-1, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1$
DATA $-2, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-2,1, \varnothing, \varnothing,-1,1, \varnothing$
DATA $-1, \varnothing, \varnothing, 1,-4, \varnothing, \varnothing, 1,-5, \varnothing, 2, \varnothing, \varnothing, 2,-2, \varnothing, \varnothing, 1$
DATA $-1, \varnothing, 1, \varnothing, \varnothing,-1,2, \varnothing, \varnothing, 1,1, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,3, \varnothing$
DATA $3, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,2, \varnothing$
DATA $\varnothing,-3,2, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1$
DATA $-2, \varnothing, \varnothing, 1,-3, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-2, \varnothing$
DATA $\varnothing,-1,-1, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-1,-2, \varnothing$
DATA $\varnothing, 1,1, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 2,-1, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 2,-4, \varnothing$
DATA $\varnothing, 1,1, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,2, \varnothing,-1, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing, 1$
DATA $-1, \varnothing, 3, \varnothing,-1, \varnothing, \varnothing,-1,-3, \varnothing, 1, \varnothing, \varnothing, 1$
DATA $1, \varnothing, 1, \varnothing, \varnothing,-1,-1, \varnothing, 1, \varnothing, 2, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,1, \varnothing$
DATA $-1, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-1,-1, \varnothing, 4, \varnothing, \varnothing, 1,1, \varnothing,-4, \varnothing$

## REM PIGLETI

```
DATA 2, },\varnothing,1,3,\varnothing,\varnothing,1,2,\varnothing,\varnothing,2,3,\varnothing,\varnothing,-1,4,\varnothing,\varnothing,-
DATA \varnothing,1,1, },-2,\varnothing,\varnothing,1,-2,\varnothing,\varnothing,2,2,\varnothing,\varnothing,1,-2,\varnothing,\varnothing,
DATA -1, },\varnothing,3,1,\varnothing,-4,\varnothing,\varnothing,-1,-2,\varnothing,1,\varnothing,\varnothing,-4,-7,
DATA \varnothing, 1,-2, \varnothing, },1,-2,\varnothing,\varnothing,1,-2,\varnothing,\varnothing,1,-3,\varnothing,\varnothing,2,1,\varnothing
DATA \varnothing, 1,-3,\varnothing,\varnothing,-1,-1, \varnothing, },-1,-2,\varnothing,1,\varnothing,\varnothing,-1,1,
DATA }\varnothing,-3,-2,\varnothing,\varnothing,-1,-2,\varnothing,\varnothing,-1,-2,\varnothing,\varnothing,-1,-1,
DATA \varnothing, -3,1,\varnothing,\varnothing,-1,1,\varnothing,\varnothing,-1,3,\varnothing,\varnothing,-1,5,\varnothing,\varnothing,-1
DATA 2, \varnothing, \varnothing,2,6,\varnothing,\varnothing,1,2,\varnothing,-2,2,-1,3,\varnothing,4,\varnothing,5,-1,6
DATA -1,7,-11,14,-10,14,8,6,9,5,10,5,11,12
DATA 1\varnothing,12, },\varnothing,-1,\varnothing,-2,\varnothing,-3,\varnothing,-4,\varnothing,-5,-1,-6,-
DATA -7,-1, -8, -1, -9, -2,-7,-2,-6, -3,-5,-3,-4,-2
DATA 3, },\varnothing,1,3,\varnothing,\varnothing,1,2,\varnothing,\varnothing,2,1,\varnothing,\varnothing,-1,4,\varnothing,\varnothing,-
DATA 2, },\varnothing,1,1,\varnothing,\varnothing,1,1,\varnothing,\varnothing,-1,1,\varnothing,\varnothing,-1,1,\varnothing,\varnothing,-
DATA 1, \varnothing, \varnothing, -1,1,\varnothing, },-4,-1,\varnothing,\varnothing,-1,-1,\varnothing,\varnothing,-1,-2,\varnothing
DATA \varnothing, 1, 1, \varnothing, \varnothing,3,-2, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-1,-6, \varnothing, \varnothing,-1
DATA -6, },\varnothing,-1,-4,\varnothing,\varnothing,1,-1,\varnothing,\varnothing,1,-2,\varnothing,\varnothing,1,-2,
DATA Ø,1,-2,\varnothing,\varnothing,1,-2,\varnothing,9,\varnothing,\varnothing,1,14,2,16,1,18,-2
DATA 18,-3, },-1,-1,\varnothing,\varnothing,-1,3,\varnothing,\varnothing,-1,4,\varnothing,\varnothing,1,2,\varnothing
DATA \varnothing,2,3,\varnothing,\varnothing,1,2, },\varnothing,1,-2,\varnothing,\varnothing,-1,-4,\varnothing,\varnothing,-
DATA -6, },\varnothing,-2,1,\varnothing,\varnothing,1,5,\varnothing,\varnothing,1,2,\varnothing,-8,
DATA 2\emptyset,1,21,1,29,-4,30,-4,16,-2,15,-3,1,0,\varnothing,-3
DATA -2, },\varnothing,1,-1,\varnothing,\varnothing,1,-2,\varnothing,\varnothing,1,-1,\varnothing,\varnothing,-2,-2,
DATA }\varnothing,-1,-1,\varnothing,2,\varnothing,\varnothing,-1,4,\varnothing,\varnothing,-1,2,\varnothing,\varnothing,-1,2,\varnothing
DATA \varnothing, -1,12, },\varnothing,-1,6,\varnothing,\varnothing,1,1,\varnothing,\varnothing,1,-1,\varnothing,\varnothing,
DATA -1, },\varnothing,-1,-3,\varnothing,\varnothing,2,1,\varnothing,\varnothing,2,2,\varnothing,\varnothing,1,-2,\varnothing
DATA \varnothing, 1,-1, },\varnothing,3,1,\varnothing,-1,\varnothing,\varnothing,-1,-6,\varnothing,\varnothing,-1,-6,
DATA \varnothing, -1,-3,\varnothing,-3,\varnothing,\varnothing,-1,-2,\varnothing,1,\varnothing,\varnothing,-1,5,\varnothing,\varnothing,1
DATA 1, },-4,\varnothing,-3,-1,-2,-1,\varnothing,-1,1,-1,-12,-
DATA -11, -3,-6,-4,-5,-4,-10,0, -9,1, -8,1,-7,1
DATA -6,1,-16,-3
```

```
REM PIGLET2
 DATA \(4, \varnothing, \varnothing, 1,4, \varnothing, \varnothing, 1,3, \varnothing, \varnothing,-1,3, \varnothing, \varnothing,-1, \varnothing, 1,3, \varnothing\)
 DATA \(-1, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 2,2, \varnothing, \varnothing, 1\)
 DATA \(2, \varnothing, \varnothing, 1,3, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1,1, \varnothing,-2, \varnothing\)
 DATA \(\varnothing,-1,-4, \varnothing, \varnothing,-1,-8, \varnothing, \varnothing,-1,-4, \varnothing, \varnothing,-1,-5, \varnothing, \varnothing, 1\)
 DATA \(-2, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 2,1, \varnothing, \varnothing, 1\)
 DATA \(1, \varnothing,-2, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-3,-1, \varnothing\)
 DATA \(\varnothing,-1,-2, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-1,-1, \varnothing\)
 DATA \(\varnothing,-1,-1, \varnothing, 1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,2, \varnothing\)
 DATA \(\varnothing,-1,1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing, 3,2, \varnothing, \varnothing,-1,4, \varnothing, \varnothing,-1\)
 DATA \(5,0,-5,17,-6,17,-7,17,24,13,25,13,-2,7,-1,8\)
 DATA \(-1,9,-1,10,6,9,7,8,8,8,9,7\)
 DATA \(\varnothing, \varnothing,-1, \varnothing,-2, \varnothing,-3, \varnothing,-4, \varnothing,-5,-1,-6,-1,-7,-1\)
 DATA \(-8,-1,-9,-2,-7,-2,-6,-3,-5,-3,-4,-2\)
 DATA \(-6, \varnothing, \varnothing, 1,-4, \varnothing, \varnothing, 1,-2, \varnothing, 1, \varnothing, \varnothing,-2,1, \varnothing, \varnothing,-1\)
 DATA \(1, \varnothing, \varnothing,-4,1, \varnothing, \varnothing, 1,7, \varnothing, \varnothing,-1,1 \varnothing, \varnothing, \varnothing,-2,-2, \varnothing\)
 DATA \(\varnothing,-1,-1, \varnothing, 2, \varnothing, \varnothing, 1,4, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1\)
 DATA \(1, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 2,1, \varnothing, \varnothing, 2,-3, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing, 1\)
 DATA \(-3, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing,-1,-4, \varnothing, \varnothing,-1,-5, \varnothing, 14,1,15, \varnothing\)
DATA \(15,-1,14,-2,13,-3\)
DATA \(\varnothing,-1,2, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,3, \varnothing, \varnothing, 1\)
DATA \(-1, \varnothing, \varnothing, 3,-2, \varnothing, \varnothing, 1,-5, \varnothing, \varnothing,-1,2, \varnothing, \varnothing, 1,1, \varnothing\)
DATA \(\varnothing,-1,2, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing, 1,-2, \varnothing\)
DATA \(10,-6,11,-6,18,-9,19,-9\)
DATA \(-5, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-1\)
DATA \(-2, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-2, \varnothing\)
DATA \(\varnothing, 1, \varnothing,-2,-1, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-1,-1, \varnothing, 3, \varnothing, \varnothing,-1\)
DATA \(4, \varnothing, \varnothing,-2,1, \varnothing, \varnothing,-1,3, \varnothing, \varnothing,-1,4, \varnothing, \varnothing,-1,2, \varnothing\)
DATA \(\varnothing,-1,1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing, 1,4, \varnothing,-1, \varnothing, \varnothing, 1\)
DATA \(-3, \varnothing, \varnothing, 2,3, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 4,3, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1\)
DATA \(1, \varnothing,-9, \varnothing,-9,-8,-8,-8,-4,-1 \varnothing,-3,-1 \varnothing,-3,-7\)
DATA \(-2,-6,-1,-6, \varnothing,-6,-13,-8\)
DATA \(2, \varnothing, \varnothing,-1,3, \varnothing, \varnothing, 1,1, \varnothing,-1, \varnothing, \varnothing, 1,-4, \varnothing, 3,-8\)
DATA \(4,-8,5,-9,6,-9\)
```


## CHAPTER 3

# Stop, Look, and Learn 

## CHAPTER 3

## Stop, Look, and Learn

Text by John J. Flynn

Learning doesn't have to be hard. With the Amiga it can be easy, as these educational and entertaining programs illustrate. In fact, using them is almost like playing a game. And while there's no pressure to get a right answer, you'll be pleasantly rewarded if you do.

The first four programs deal with some basic operations in math: how to count, how to add and subtract, how to multiply, and how to do fractions. The fifth helps people of all ages learn a foreign language. Here's a quick look at the programs in this chapter.

Crazy Critters. Horses, ducks, witches, bunnies, monkeys, and kittens help a child learn to count to 20 in this delightful game. Age group: preschoolers to first grade.

Let's Add and Subtract. The computer checks the student's skills in adding and subtracting integers. Numbers are drawn large for easy viewing. There's an easy level and a difficult one. Age group: first grade through midelementary school.

Let's Multiply. Youngsters get help with their basic times tables. There's also an option to multiply numbers up to 1000 , so older kids will like it, too. Age group: second grade and on. Adults can use the more difficult problems to sharpen rusty skills.

Fun with Fractions. Fractions don't have to be frustrating. With this program, students are taught not just to add fractions, but to find common denominators as well. Age group: third grade and up.

Foreign Language Flash Cards. A handy program that allows students to create their own vocabulary lists. Students are then tested on the words and their meanings. Age group: first grade and up.

With these programs kids of every age can make learning both fun and rewarding at the same time.
Stop, Look, and Learn Menu Driver
Save using the filename LEARNING
REM STOP, LOOK, AND LEARN
GOSUB INITIALIZE

```GOSUB MAIN.MENURUN TITLE.SHORT\$(PICK)
```

END
INITIALIZE:
GOSUB SETSCREEN
GOSUB KEYVALUES
GOSUB SETMENUS
GOSUB SETCOLORS
GOSUB SHAPES
RETURN
SETSCREEN:
SCREEN 1,640,2ø0,3,2
WINDOW 2,"Stop, Look, and Learn",, Ø,1
RETURN
KEYVALUES:
DEFINT A-Z
$\mathrm{N}=5$
DIM TITLE.LONG\$(N),TITLE.SHORT\$(N),DISCS(250)
DISC.I(1) = 1: DISC.I(2) = 125
READ CHAPTER
FOR I=1 TO N
READ TITLE.LONG (I),TITLE.SHORT\$(I)
NEXT
RETURN
SETMENUS:
FOR I=2 TO 4
MENU I, $\varnothing, \varnothing, " "$
NEXT
MENU 1, Ø,1,"STOP"
MENU 1,1,1," Go to BASIC"
MENU 1,2,1," Go to System"
MENU ON
ON MENU GOSUB GOODBYE
RETURN
GOODBYE:
WINDOW CLOSE 2: WINDOW l: MENU RESET
SCREEN CLOSE 1
ITEM $=$ MENU (1)
IF ITEM $=2$ THEN SYSTEM

```
 CLS
 PRINT "Bye-Bye"
 STOP
RETURN
SETCOLORS :
 REM TAN, GREEN, & RED
 PALETTE 4,.95,.7,.53
 PALETTE 5,.14,.43,0
 PALETTE 6,.93,.2,0
RETURN
SHAPES:
 X=313: Y=80
 LINE(X-12,Y-8)-(X+12,Y+8),4,BF
 FOR I=1 TO 2
 K = 7-I
 CIRCLE(X,Y),12,K: PAINT(X,Y),K
 GET(X-12,Y-8)-(X+12,Y+8),DISCS(DISC.I(I))
 NEXT
RETURN
MAIN.MENU :
 CLS
 RTNS = "OFF": PICK = 1
 S$ = CHAPTER$: L = LEN(S$)
 LINE(313-10*L/2-15,15)-(313+1Ø*L/2+15, 27),1,B
 PAINT(313,20),6,1
 COLOR 1,6: LOCATE 3: PRINT PTAB(313-10*L/2)S$
 LINE(135,35)-(495,13\emptyset), 2, B: PAINT(313, 8\emptyset),4,2
 COLOR 2,4
 FOR I=1 TO N
 IF I = PICK THEN INX = 2 ELSE INX = l
 CALL DRAW.CIRCLE(I,INX)
 LOCATE I*2+4,21: PRINT TITLE.LONG$(I)
 NEXT
 LINE(263,141)-(360, 153), 2, B: PAINT(313,145), 3,2
 COLOR 2,3
 LOCATE 17: PRINT PTAB(282)"Return"
 COLOR 1,\emptyset
 LOCATE 19,11: PRINT "Click Mouse on Choice,";
 PRINT " then Click on Return"
 GOSUB CHOOSE
RETURN
SUB DRAW.CIRCLE(R,INX) STATIC
 SHARED DISCS(),DISC.I()
 Y = 18*R+22
 PUT(162,Y),DISCS(DISC.I(INX)), PSET
END SUB
```

```
CHOOSE:
 GOSUB GURGLE
 GOSUB CLICKIT
 IF S$ = "" THEN GOSUB LOCATION
 IF ASC(S$+" ") <> 13 AND RTN$ = "OFF" THEN
 GOTO CHOOSE
 END IF
RETURN
GURGLE:
 FREQ = 3\emptyset\emptyset
 FOR G=1 TO 5
 FREQ = 50\emptyset - FREQ
 SOUND FREQ,1,5Ø
 NEXT
RETURN
CLICKIT:
 S$ = ""
 WHILE MOUSE(\varnothing) = Ø AND S$ = ""
 S$ = INKEY$
 WEND
 X = MOUSE(1)
 Y = MOUSE(2)
 WHILE MOUSE(\varnothing)<> Ø: WEND: REM RESET
RETURN
LOCATION:
 IF X>263 AND X<360 AND Y> 141 AND Y<l53 THEN
 RTN$ = "ON"
 ELSE
 P = INT((Y-39)/18) + 1
 IF X>155 AND X<195 AND P>\emptyset AND P<= N THEN
 CALL DRAW.CIRCLE(PICK,l)
 CALL DRAW.CIRCLE(P,2)
 PICK = P
 END IF
 END IF
RETURN
REM PROGRAMS
 DATA "Stop, Look, and Learn"
 DATA Crazy Critters, CRITTERS
 DATA Let's Add and Subtract, ADD
 DATA Let's Multiply, MULTIPLY
 DATA Fun with Fractions, FRACTIONS
 DATA Foreign Language Flash Cards, CARDS
```


## Crazy Critters

This introductory program helps preschoolers and first graders learn how to count. It's easy to use, and its high-resolution graphics makes counting fun.

The program displays a random number of critters on the screen-to a total of 20 , depending on the limit you've selected with a pull-down menu.

Six creatures are available: horses, ducks, witches, bunnies, monkeys, and kittens. The child counts the number of times the particular character appears and enters the value into the Amiga. The computer plays "Alouette" when the entry is right. When the entry is incorrect, the Amiga displays the correct number of critters.
"Crazy Critters" introduces the concept of counting. For beginners, limit the total number of characters shown to five. Then gradually increase this value as your child gains proficiency. The colorful creatures keep youngsters' attention and give them something easy and identifiable to tally.

After the rudiments of counting are mastered, the young student can move on to the next program, "Let's Add and Subtract."

Program 3-1. Crazy Critters<br>Save using the filename CRITTERS

```
REM CRAZY CRITTERS
 GOSUB INITIALIZE
PLAYGAME:
 GOSUB PLAY
PLAYAGAIN:
 CLS: LOCATE 10,21: PRINT "Play Again ? ";
 GOSUB DECIDE
 IF BUTTON = 1 THEN PLAYGAME
 GOSUB GOODBYE
END
INITIALIZE:
 GOSUB SETSCREEN
 GOSUB KEYVALUES
 GOSUB ALOUETTE
 GOSUB SETMENUS
 GOSUB SETCOLORS
 GOSUB DRAWSHAPES
 GOSUB HEADING
RETURN
```

```
SETSCREEN:
 SCREEN 1,640,200,3,2
 WINDOW 2,"Crazy Critters",,0,1
RETURN
KEYVALUES:
 DEFINT A-Z
 RANDOMIZE TIMER
 DIM SHAPE(2081),BANNER(500),X(20),Y(20)
 DIM TIMBRE2(255),TIMBRE3(255)
 DIM F(58),L(58)
 REM SHAPE INDICES
 FOR I=1 TO 8
 INDEX(I) = 1 + (I-l)*260
 NEXT
 REM BUTTON HOLES & LETTERS
 XB(1)=364: YB(1)=84
 XB(2)=4ø6: YB(2)=84
 LT$(1) = "Y": LT$(2) = "N"
 REM NAMES
 DATA horses, ducks, witches, bunnies
 DATA monkeys, kittens, critters
 FOR I=1 TO 7
 READ NM$(I)
 NEXT
RETURN
ALOUETTE:
 LOCATE 10,25: PRINT "One moment ..."
 DATA 196,4,220,8,247,4,247,4,220,8,196,8,220,8
 DATA 247,8,196,4,147,4,196,4,220,8,247,4,247,4
 DATA 220,8,196,8,220,8,247,8,196,2,294,8,330,8
 DATA 294,8,262,8,247,8,220,8,196,4,294,8,294,8
 DATA 294,4,147,8,147,8,147,4,294,8,294,8,294,4
 DATA 147,8,147,8,147,4,0,36
 M! = 6.2838/256
 FOR I=Ø TO 255
 TIMBRE2(I) = 48*SIN(2*I*M!)
 TIMBRE3(I) = 48*SIN(3*I*MI)
 NEXT
 WAVE 2,TIMBRE2: WAVE 3,TIMBRE3
 FOR I=1 TO 39
 READ F(I),L: L(I) = 18/L
 NEXT
 FOR I=1 TO 19
 F(I+39) = F(I)
 L(I+39) = L(I)
 NEXT
 REM NOTE GROUPS
```

```
 DATA 19,38,58
 FOR I=1 TO 3: READ NOTE.GROUP(I): NEXT
RETURN
```


## SETMENUS:

```
 DATA 2, Rules, Yes, No
```

    DATA 2, Rules, Yes, No
    DATA 4, Count, Up to 5 Critters
    DATA Up to l\emptyset Critters, Up to 15 Critters
    DATA Up to 20 Critters
    DATA 7, Critters, Horses, Ducks, Witches
    DATA Bunnies, Monkeys, Kittens, Mixed
    DATA 3, Stop, Go to BASIC
    DATA Go to Learning Menu, Go to System
    FOR I=1 TO 4
        READ NUMBER
        FOR J=\emptyset TO NUMBER
        READ TITLES
        IF J<>\emptyset THEN TITLES = SPACE$(3) + TITLES
        STATUS = 1
            IF I<>4 AND J=1 THEN STATUS = 2
        MENU I,J,STATUS,TITLES
    NEXT J,I
    RULES = 1: GAME = 1: CRITTER = 1
    RETURN
SETCOLORS:
REM PINK, BROWN, RED, GRAY
PALETTE 4,1,.51,.64
PALETTE 5,.82,.37,.07
PALETTE 6,.93,.2,\varnothing
PALETTE 7,.73,.83,.73
RETURN
DRAWSHAPES:
CLS
MENU ON
ON MENU GOSUB OPTIONS
GOSUB HORSE
GOSUB DUCKI
GOSUB WITCH
GOSUB BUNNY
GOSUB MONKEY
GOSUB KITTEN
GOSUB DUCK2
GOSUB BANNER
GOSUB GETSHAPES
RETURN

```
```

HORSE:
XØ=1Ø6: YØ=76
CALL DRAWLINE(1,X0,YØ,151)
PAINT (X\varnothing,YØ+3)
CALL DRAWPOINT(\varnothing,X\varnothing,Y\emptyset,4)
RETURN
SUB DRAWLINE(K,X.C,Y.C,T) STATIC
COLOR K
PSET(X.C,Y.C)
FOR I=1 TO T
READ X,Y
LINE -STEP(X,Y)
NEXT
END SUB
SUB DRAWPOINT(K,X.C,Y.C,T) STATIC
COLOR K
FOR I=1 TO T
READ X,Y
PSET(X.C+X,Y.C+Y)
NEXT
END SUB
DUCK1:
XØ=183: YØ=8Ø
CALL DRAWLINE(3,X\varnothing,Y\varnothing,73)
PAINT (X\varnothing-9,Y\emptyset+4)
PAINT (X }\varnothing+17,Y\emptyset+4
CALL DRAWPOINT(2,X\varnothing,Yø,12)
REM BILL
COLOR 1
PSET(X\varnothing+23,YØ+5)
LINE - STEP(\varnothing,1): LINE -STEP(4,\varnothing)
RETURN
WITCH:
REM DRESS/SHOES
Xø=263
CALL DRAWLINE(2,XØ,YØ,59)
PAINT (Xø+2,Y\emptyset+4)
PAINT (XØ-3,YØ-2)
REM HAIR
CALL DRAWPOINT (2,XØ, Yø-6,7)
REM BROOM
LINE(X\varnothing-15,Y\varnothing+8)-(X\varnothing+3\varnothing,Y\varnothing-5)
CALL DRAWLINE(2,X\varnothing-15,Yø +8,9)
REM CAPE
CALL DRAWLINE(6,X\varnothing+4,Yø-5,26)

```
```

    PAINT (XØ-12,YØ-3)
    REM HAT
CALL DRAWLINE(6,X\varnothing+1,Y\varnothing-7,1Ø)
REM FACE
CALL DRAWLINE(4,X\varnothing+4,Y\varnothing-6,8)
REM ARMS
CALL DRAWLINE(4,X\varnothing+11,Y\emptyset-1,3)
RETURN
BUNNY:
Xø=343
CALL DRAWLINE(4,XØ, YØ, 8Ø)
PAINT (X\varnothing,Y\emptyset+3)
CALL DRAWPOINT(2,X\varnothing,Yø,41)
RETURN
MONKEY:
Xø=423
CALL DRAWLINE(5,X\varnothing,Yø,36)
CALL DRAWLINE(5,X\emptyset,Y\varnothing,68)
PAINT (XØ+3,Y\emptyset+2)
CALL DRAWLINE(5,X\varnothing+18,Y\emptyset+4,8)
CALL DRAWPOINT(\varnothing,X\varnothing,Y\emptyset,1\varnothing)
CALL DRAWPOINT(2,X\varnothing,Y\varnothing,6)
RETURN
KITTEN:
X0=5ø3
CALL DRAWLINE(7,X\varnothing,YØ,14Ø)
PAINT(X\emptyset,YØ-3)
CALL DRAWPOINT(2,X\varnothing,YØ,16)
CALL DRAWPOINT(6,X\varnothing,YØ,4)
RETURN
DUCK2:
XØ=35\emptyset: YØ=4Ø
CALL DRAWLINE(3,X\varnothing,YØ,49)
PAINT(X\varnothing-7,YØ-1): PAINT(X\varnothing+15,Y\emptyset-2)
CALL DRAWPOINT(2,X\varnothing,YØ,5)
CALL DRAWLINE(1,X\varnothing+22,Y\varnothing-2,2)
RETURN

```

\section*{BANNER:}
```

XØ=28Ø: YØ=4Ø

```
XØ=28Ø: YØ=4Ø
CALL DRAWLINE(6,X\varnothing,Yø,46)
PAINT(XØ+1,YØ+1)
CALL DRAWLINE(6,X\varnothing+16,YØ-2,5)
REM "Nice !"
 CALL DRAWLINE(1,X\varnothing-31,Yø-4,17)
```

```
 CALL DRAWLINE(1,X\varnothing-19,Yø-3,1)
 CALL DRAWLINE(1,X\varnothing-19,Y\varnothing-1,5)
 CALL DRAWLINE(1,X\emptyset-6,Y\varnothing+1,11)
 CALL DRAWLINE(1,X\varnothing,YØ-1,11)
 CALL DRAWLINE(1,X\varnothing+11,Y\emptyset-5,3)
 CALL DRAWLINE(1,X\emptyset+11,Y\emptyset+1,1)
RETURN
GETSHAPES:
 FOR I=1 TO 6
 Xl = 80*I-7: X2 = 80*I+53
 GET(X1,7\emptyset)-(X2,9\emptyset),SHAPE(INDEX(I))
 NEXT
 REM DUCK2 & BLANK, BANNER & BLANK
 GET(319,30)-(379,50),SHAPE(INDEX(7))
 GET(419,3\varnothing)-(479,5\emptyset),SHAPE(INDEX(8))
 GET(240, 34)-(318,47), BANNER(1)
 GET(10\varnothing,34)-(178,47),BANNER(250)
RETURN
HEADING :
 COLOR 1,\varnothing
 LOCATE 13,25:PRINT "Crazy Critters"
 LOCATE 17,24:PRINT "Please use menus,"
 LOCATE 19,23:PRINT "Click mouse to play"
 GOSUB CLICKIT
RETURN
OPTIONS:
 ID = MENU(\varnothing): ITEM = MENU(1)
 ON ID GOSUB MENU1,MENU2,MENU3,GOODBYE
 ITEM = \varnothing
RETURN
MENUI:
 MENU l,RULES,1: MENU l,ITEM,2
 RULES = ITEM
RETURN
MENU2:
 MENU 2,GAME,1: MENU 2,ITEM,2
 GAME = ITEM
RETURN
MENU3 :
 MENU 3,CRITTER,1: MENU 3,ITEM,2
 CRITTER = ITEM
RETURN
```

```
GOODBYE:
 WINDOW CLOSE 2: WINDOW 1: MENU RESET
 SCREEN CLOSE l
 IF ITEM = 2 THEN RUN "LEARNING"
 IF ITEM = 3 THEN SYSTEM
 COLOR 1,0: CLS
 PRINT "Bye-Bye"
 STOP
RETURN
CLICKIT:
 S$ = ""
 WHILE MOUSE(\varnothing) = Ø AND S$ = ""
 S$ = INKEY$
 WEND
 X = MOUSE(1)
 Y = MOUSE(2)
 WHILE MOUSE(\varnothing)<> \varnothing: WEND: REM RESET
RETURN
PLAY:
 IF RULES = 1 THEN GOSUB RULES
 CNT = \varnothing: GROUP = \varnothing
 FOR Q=1 TO 3
 GOSUB GET.VALUES
 GOSUB DRAW.CRITTERS
 GOSUB GUESS
 GOSUB EVALUATE
 NEXT Q
 IF CNT = 3 THEN GOSUB FLY
RETURN
RULES:
 CLS
 PRINT
 PRINT " I'm going to draw a random";
 PRINT " number of crazy critters."
 PRINT
 PRINT " Count how many there are, and enter";
 PRINT " your guess."
 PRINT
 PRINT " I'll give you three problems per";
 PRINT " game, and you'll enjoy"
 PRINT " a nice surprise if you count";
 PRINT " perfectly."
 LOCATE 2ø,26:PRINT "Click Mouse";
 GOSUB CLICKIT
RETURN
```

```
GET.VALUES:
 N = INT(RND*5*GAME) + l
 IF N = l THEN N = 2
 REM NUMBER OF ROWS
 NR = INT((N-1)/5) + 1
 REM Y-COORDINATES
 FOR I=1 TO N
 R=INT((I-1)/5)+1
 IF NR = 1 THEN Y(I) = 80
 IF NR = 2 THEN Y(I) = 55*R - 1\varnothing
 IF NR = 3 THEN Y(I) = 4\emptyset*R - l\emptyset
 IF NR = 4 THEN Y(I) = 30*R - 5
 NEXT I
 REM X-COORDINATES
 FOR I=1 TO N
 RW = INT((I-1)/5)+1
 CL = I - (RW-1)*5
 X(I) = 90*CL + 43
 NEXT I
 REM CENTER LAST ROW
 E = NR*5 - 4
 FOR I=1 TO CL
 IF CL = 1 THEN X(E+I-1) = 313
 IF CL = 2 THEN X(E+I-1) = 90*I+178
 IF CL = 3 THEN X(E+I-1) = 90*I+133
 IF CL = 4 THEN X(E+I-1) = 90*I+88
 NEXT I
RETURN
DRAW.CRITTERS:
 CLS
 FOR I=1 TO N
 V = CRITTER
 IF CRITTER = 7 THEN V = INT(RND*6) + l
 PUT(X(I)-35,Y(I)-2\emptyset),SHAPE(INDEX(V)),PSET
 NEXT I
RETURN
GUESS :
 GOSUB GURGLE
 LOCATE 16,18
 PRINT "How many ";NM$(CRITTER);" are there";
 INPUT " ? ",S$
 GUESS = VAL(S$)
RETURN
EVALUATE:
ON -(GUESS \(=\mathrm{N})+1\) GOSUB WRONG, RIGHT
 LOCATE 20,26: PRINT "Press any key";
```

```
 GOSUB CLICKIT
RETURN
WRONG :
 SOUND 4øø,3: SOUND 3øØ,3: SOUND 2Ø\emptyset,3
 LOCATE 18,18: PRINT "Sorry, there are";N;
 PRINT NM$(CRITTER);"."
RETURN
RIGHT:
 LOCATE 18,27: PRINT "Very Good !"
 GOSUB MUSIC
 CNT = CNT+1
RETURN
MUSIC:
 GROUP = GROUP + 1
 FIRST = NOTE.GROUP(GROUP-1) + 1
 LAST = NOTE.GROUP(GROUP)
 FOR I = FIRST TO LAST
 SOUND WAIT
 FOR J=2 TO 3
 SOUND F(I),L(I),125,J
 SOUND Ø,.5,,J
 NEXT J
 SOUND RESUME
 NEXT I
RETURN
GURGLE:
 FREQ = 30\varnothing
 FOR G=1 TO 5
 FREQ = 50\varnothing-FREQ
 SOUND FREQ,1,5\emptyset
 NEXT G
RETURN
FLY:
 CLS
 DUCK = 2: YD(2)=81: YD(7) = 74
 LOCATE 18,22: PRINT "You got all 3 right !"
 FOR X=8Ø TO 6lØ STEP 5
 PUT(X,7ø),SHAPE(INDEX(DUCK)), PSET
 PUT(X-76,YD(DUCK)),BANNER(1),PSET
 FOR PAUSE=1 TO 5ø\emptyset: NEXT PAUSE
 PUT(X,70),SHAPE(INDEX(8)),PSET
 PUT(X-76,YD(DUCK)),BANNER(250),PSET
 DUCK = 9-DUCK
 NEXT X
RETURN
```

```
DECIDE:
 BUTTON = Ø
 GOSUB DRAWBUTTON
 GOSUB PUSHBUTTON
 COLOR 1,\varnothing
RETURN
DRAWBUTTON:
 LINE (337,77)-(433,91),1,BF
 FOR I=1 TO 2
 CIRCLE (XB(I),YB(I)),12,I*3
 PAINT (XB(I),YB(I)),I*3
 COLOR 1,I*3
 LOCATE 10: PRINT PTAB(XB(I)-4);LT$(I);
 NEXT I
RETURN
PUSHBUTTON:
 SOUND 440,2
 GOSUB CLICKIT
 S$ = UCASE$(S$)
 IF S$ = "Y" THEN BUTTON = 1
 IF S$ = "N" THEN BUTTON = 2
 FOR I=1 TO 2
 XD = ABS(X-XB(I)): YD = ABS(Y-YB(I))
 IF XD<13 AND YD<7 THEN BUTTON = I: I=2
 NEXT
 IF BUTTON = Ø THEN PUSHBUTTON
RETURN
```

REM HORSE
DATA $-1 \varnothing, \varnothing, \varnothing,-1,-9, \varnothing, \varnothing, 1,-4, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-2, \varnothing$
DATA $\varnothing,-1,-3, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 2,1, \varnothing, \varnothing, 3,-3, \varnothing, \varnothing, 1$
DATA $1, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,-1, \varnothing$
DATA $\varnothing,-2,4, \varnothing, \varnothing, 2,1, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 3,-1, \varnothing, \varnothing, 1$
DATA $-3, \varnothing, \varnothing, 5,-\varnothing,-1, \varnothing, \varnothing,-4,2, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1$
DATA $3, \varnothing, \varnothing,-1,3, \varnothing, \varnothing, 2,-1, \varnothing, \varnothing, 2,3, \varnothing, \varnothing, 1,4, \varnothing, \varnothing, 1$
DATA $2, \varnothing, \varnothing, 1,3, \varnothing,-2, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-1$
DATA $-2, \varnothing, \varnothing,-2,1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,1, \varnothing$
DATA $\varnothing,-1,2, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 2,-1, \varnothing, \varnothing, 4,-1, \varnothing, \varnothing, 1$
DATA $-1, \varnothing, 1, \varnothing, \varnothing, 1,4, \varnothing,-2, \varnothing, \varnothing,-4,1, \varnothing, \varnothing,-1,1, \varnothing$
DATA $\varnothing,-1,1, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-2,3, \varnothing, \varnothing, 1,3, \varnothing, \varnothing, 1$
DATA $1, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1,1, \varnothing$
DATA $\varnothing,-1,2, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1$
DATA $-1, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing,-2,1, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-3$
DATA $2, \varnothing, \varnothing, 2,1, \varnothing, \varnothing, 1,2, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,2, \varnothing$
DATA $\varnothing,-3,-1, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-1,-\varnothing, \varnothing, \varnothing, 1,-4, \varnothing$
DATA $\varnothing, 1,-3, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-3, \varnothing$
DATA $-2 \varnothing, \varnothing,-19,7,2 \varnothing,-2,21,-2$

## REM DUCK \#l

DATA $3, \varnothing,-1, \varnothing, \varnothing, 2,-1, \varnothing, \varnothing, 2,3, \varnothing, \varnothing, 1,7, \varnothing, \varnothing,-1$
DATA $2, \varnothing, \varnothing,-1,7, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,1, \varnothing,-2, \varnothing$
DATA $\varnothing, 1,-5, \varnothing, \varnothing,-1,-5, \varnothing, \varnothing, 1,-4, \varnothing, \varnothing, 1,-4, \varnothing$
DATA $\varnothing, 1,-13, \varnothing, \varnothing,-1,-6, \varnothing, \varnothing,-1,-5, \varnothing, \varnothing,-1$
DATA $-4, \varnothing, 9, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-2,1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1$
DATA $1, \varnothing, \varnothing,-2,-1, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-2,-1, \varnothing, \varnothing,-2$
DATA $1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1$
DATA $1, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,2, \varnothing, \varnothing,-2,2, \varnothing, \varnothing, 1,1, \varnothing$
DATA $\varnothing, 1,1, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1$
DATA $-4,-1,-3, \varnothing,-3,1,-2,2,-2,3,-1,4,1,5,2,6$
DATA $1,7,0,7,18,4,19,4$

## REM WITCH

DATA $\varnothing, 1,2, \varnothing, 1, \varnothing, 1 \varnothing, \varnothing, \varnothing, 3,-2, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1$
DATA $-2, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing, 2, \varnothing,-1$
DATA $-1, \varnothing, \varnothing,-1,-6, \varnothing, 1, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-2$
DATA $-4, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-3,1, \varnothing, \varnothing,-1,1, \varnothing$
DATA $\varnothing,-1,2, \varnothing, \varnothing,-1,8, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,2, \varnothing$
DATA $-3, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1, \varnothing,-1,-2, \varnothing, \varnothing,-2,-2, \varnothing, \varnothing, 1$
DATA -1, $\varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1$
DATA $-1, \varnothing, 1, \varnothing, 2, \varnothing, 3, \varnothing, 3,-1,4,-1,5,-1$
DATA $-2, \varnothing, \varnothing, 1,-4, \varnothing, \varnothing, 1,-5, \varnothing, 9, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1$
DATA $-6, \varnothing, \varnothing,-1,-7, \varnothing, \varnothing, 1,-7, \varnothing, \varnothing, 1,-4, \varnothing, \varnothing, 1,-9, \varnothing$
DATA $1, \varnothing, \varnothing, 1,11, \varnothing, \varnothing, 1,3, \varnothing, \varnothing, 1,3, \varnothing, \varnothing,-1,1, \varnothing$
DATA $\varnothing,-1,1, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,3, \varnothing$
DATA $1, \varnothing, \varnothing,-1,8, \varnothing,-3, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing,-1,-2, \varnothing$
DATA 1, $0, \varnothing, 1$
DATA $3, \varnothing, \varnothing, 1,1, \varnothing, \varnothing,-1,2, \varnothing,-2, \varnothing, \varnothing,-1,-1, \varnothing$
DATA 1, $\varnothing, 1, \varnothing, \varnothing, 1$

## REM BUNNY

DATA $\varnothing,-1,3, \varnothing, \varnothing,-1,8, \varnothing, \varnothing, 1,4, \varnothing, \varnothing, 1,3, \varnothing, \varnothing, 1,1, \varnothing$ DATA $\varnothing, 1,1, \varnothing, \varnothing, 3,3, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-12, \varnothing$ DATA $\varnothing, 1,-16, \varnothing, 1, \varnothing, \varnothing,-2,-2, \varnothing, \varnothing, 1,-3, \varnothing, 1, \varnothing, \varnothing,-1$
DATA $2, \varnothing, \varnothing,-2,-1, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-1$
DATA $-1, \varnothing, \varnothing,-1,-7, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-1,-1, \varnothing, 1, \varnothing$
DATA $\varnothing,-1,2, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-2,-1, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-2$
DATA $-1, \varnothing, 1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing, 1,3, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 3,4, \varnothing$
DATA $\varnothing,-2,1, \varnothing, \varnothing,-1,4, \varnothing, \varnothing,-1,2, \varnothing, \varnothing, 2,-1, \varnothing, \varnothing, 1$
DATA $-2, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 2,2, \varnothing, \varnothing, 1,4, \varnothing,-15,-5$
DATA $-14,-5,-15,-6,-14,-6,-15,-7,-8,-4,-8,-5$
DATA $-7,-6,-6,-6,-15,-1,-14,-1,-13,-1,-14,-2$
DATA $-13,-2,-11,1,-1 \varnothing, 1,-9, \varnothing,-8, \varnothing,-8,8,-3,9$
DATA $-2,7,-1,6,4,8,3,8,2,8,1,7, \varnothing, 6, \varnothing, 5, \varnothing, 4,2,3$
DATA $4,2,8,2,9,2,10,2,12,3,17,6,18,5,19,5$
DATA $-19,1,-18,1,-17,1$

## REM MONKEY

DATA $-4, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 5,-3, \varnothing, \varnothing, 1,-1 \varnothing, \varnothing$
DATA $\varnothing,-1,-4, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-1,-1, \varnothing$
DATA $\varnothing,-4,1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,5, \varnothing, \varnothing, 2,-3, \varnothing, 3, \varnothing$
DATA $\varnothing,-1,1, \varnothing,-1, \varnothing, \varnothing,-1,-5, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1,-1, \varnothing$
DATA $\varnothing, 3,-2, \varnothing, \varnothing,-1,3, \varnothing, \varnothing,-1,3, \varnothing, \varnothing,-1,4, \varnothing, \varnothing,-2$
DATA $2, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,4, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 2,-1, \varnothing, \varnothing, 2$
DATA $-2, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing, 2,1, \varnothing, \varnothing, 2,1, \varnothing, \varnothing, 1,3, \varnothing, \varnothing,-1$
DATA $2, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,3, \varnothing, \varnothing,-1,3, \varnothing, \varnothing, 1,1, \varnothing,-6, \varnothing$
DATA $\varnothing, 1,-2, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 3,-1, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing,-1$
DATA $-2, \varnothing, \varnothing,-1,-4, \varnothing, \varnothing, 2,4, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1,-2, \varnothing$
DATA $\varnothing, 1,-4, \varnothing, \varnothing, 1,6, \varnothing,-2, \varnothing, \varnothing, 1,-8, \varnothing, 1, \varnothing, \varnothing,-2$
DATA $-2, \varnothing, \varnothing, 1,-3, \varnothing, 1, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 2, \varnothing,-1,2, \varnothing, \varnothing, 1$
DATA $1, \varnothing, \varnothing, 5,2,4,3,3,4,3,3,6,5,5,8,4,7, \varnothing, 8,1$
DATA $16,3,12,-5,13,-5,15,-5,16,-5,15,-3,9,-5$

## REM KITTEN

$$
\begin{aligned}
& \text { DATA } \varnothing, 1,3, \varnothing, \varnothing,-1,2, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 2,1, \varnothing, \varnothing, 3,-2, \varnothing \\
& \text { DATA } \varnothing, 1,-2, \varnothing, \varnothing, 1,-3, \varnothing, 5, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,2, \varnothing \\
& \text { DATA } \varnothing,-1,3, \varnothing,-1, \varnothing, \varnothing,-3,2, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 2 \\
& \text { DATA }-1, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-3, \varnothing, 4, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1 \\
& \text { DATA } 2, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,1, \varnothing,-1, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-1 \\
& \text { DATA }-1, \varnothing, \varnothing,-4,1, \varnothing, \varnothing,-2, \varnothing, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 4 \\
& \text { DATA }-1, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 2,2, \varnothing,-1, \varnothing, \varnothing,-3,1, \varnothing, \varnothing,-1,1, \varnothing \\
& \text { DATA } \varnothing,-2,-1, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-1,-4, \varnothing \\
& \text { DATA } \varnothing,-1,-3, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing,-1,-5, \varnothing \\
& \text { DATA } \varnothing,-1,-7, \varnothing, \varnothing, 1,-6, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1 \\
& \text { DATA }-6, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-1, \varnothing, 1,-7, \varnothing, \varnothing, 1,-5, \varnothing, \varnothing,-1 \\
& \text { DATA } \varnothing, 1,1, \varnothing, \varnothing, 2,1, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1,1, \varnothing \\
& \text { DATA } \varnothing, 1,1, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 2,1, \varnothing, \varnothing, 3 \\
& \text { DATA }-2, \varnothing, 3, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-3,2, \varnothing, \varnothing, 3,3, \varnothing,-1, \varnothing \\
& \text { DATA } \varnothing,-3,1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,3, \varnothing,-2, \varnothing \\
& \text { DATA }-1 \varnothing, 3,-11,4,-11,5,13,2,14,1 \\
& \text { DATA } 16, \varnothing, 5, \varnothing, \varnothing,-1,5,-2,-17,-1,-16,-1,-15,-1 \\
& \text { DATA }-12,-2,-11,-3,-11,-4,-12,-5,-21,-3,-2 \varnothing,-3 \\
& \text { DATA }-16,-4,-15,-4
\end{aligned}
$$

## REM DUCK \#2

DATA $5, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,5, \varnothing, \varnothing, 1,7, \varnothing, \varnothing,-1,2, \varnothing$
DATA $-1, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing,-1,-5, \varnothing, \varnothing, 1,-4, \varnothing, \varnothing, 1,-5, \varnothing$
DATA $\varnothing,-1,-5, \varnothing, \varnothing,-1,-1 \varnothing, \varnothing, \varnothing, 1,-5, \varnothing, \varnothing, 1,-11, \varnothing$
DATA $2, \varnothing, \varnothing, 1,6, \varnothing, \varnothing, 1,3, \varnothing, \varnothing, 2,-2, \varnothing, \varnothing, 1,-3, \varnothing$
DATA $\varnothing, 1,-4, \varnothing, \varnothing, 1,-1, \varnothing, 1 \varnothing, \varnothing, \varnothing,-1,5, \varnothing, \varnothing,-1,4, \varnothing$
DATA $\varnothing,-1,3, \varnothing, \varnothing,-1,4, \varnothing, \varnothing,-1,15,-3,16,-3,1, \varnothing$
DATA $-16,0,-15,-1,0,1,5, \varnothing$

## REM BANNER

$$
\begin{aligned}
& \text { DATA } \varnothing,-3,1, \varnothing, \varnothing,-1,5, \varnothing, \varnothing,-1,4, \varnothing, \varnothing,-1,6, \varnothing, \varnothing,-1 \\
& \text { DATA } \varnothing, 6,1, \varnothing, \varnothing, 2,1, \varnothing, \varnothing, 1,1, \varnothing,-2, \varnothing, \varnothing, 1,-3, \varnothing, \varnothing, 1 \\
& \text { DATA }-4, \varnothing, \varnothing, 1,-8, \varnothing, \varnothing, 1,-11, \varnothing, \varnothing,-1,-8, \varnothing, \varnothing,-1 \\
& \text { DATA }-6, \varnothing, \varnothing,-1,-13, \varnothing, 1, \varnothing, \varnothing,-2,1, \varnothing, \varnothing,-3,-1, \varnothing \\
& \text { DATA } \varnothing,-4,-1, \varnothing, 13, \varnothing, \varnothing, 1,5, \varnothing, \varnothing, 1,6, \varnothing, \varnothing, 1,1 \varnothing, \varnothing \\
& \text { DATA } \varnothing,-1,3, \varnothing, 4, \varnothing, \varnothing,-1,7, \varnothing, \varnothing, 1,14, \varnothing \\
& \text { DATA } \varnothing, 6,1, \varnothing, \varnothing,-6,1, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,1, \varnothing \\
& \text { DATA } \varnothing, 1,1, \varnothing, \varnothing, 2,1, \varnothing, \varnothing,-6,-1, \varnothing, \varnothing, 3,1, \varnothing, \varnothing, 4 \\
& \text { DATA }-1, \varnothing, 3, \varnothing,-1, \varnothing, \varnothing,-4,-1, \varnothing, \varnothing,-1,-4, \varnothing, \varnothing, 3,-1, \varnothing \\
& \text { DATA } \varnothing,-2,1, \varnothing, \varnothing, 3,4, \varnothing, \varnothing,-1,1, \varnothing \\
& \text { DATA } 5, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,-6, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing, 2,1, \varnothing, \varnothing, 1 \\
& \text { DATA } 5, \varnothing, \varnothing, 4,1, \varnothing, \varnothing,-4,1, \varnothing
\end{aligned}
$$

## Let's Add and Subtract

This addition and subtraction game is a bit more advanced than Crazy Critters. Instead of counting images and entering the number of creatures, the child is challenged with some easy additions and subtractions using integers.

Since young children may have difficulty in carrying over numbers from one column to the next, this program gives them the option of selecting either simple problems without carrying or more complex ones with carrying.

When entering an answer, the child should enter the digit in the righthand column first, just as in school with pencil and paper. In the example $7+3$, for instance, 0 is keyed in first, followed by 1 .

The Amiga rewards a right answer with a dancing bunny and a few notes from a lively Bach minuet. And for four right answers in a row, it produces something really special.

Finally, the pull-down menus are used to select number size, addition or subtraction, and place-carrying on or off.

Program 3-2. Let's Add and Subtract
Save using the filename ADD

```
REM LET'S ADD & SUBTRACT
 CLEAR ,370øø&
 GOSUB INITIALIZE
PLAYGAME:
 GOSUB PLAY
PLAYAGAIN:
 CLS: LOCATE 10,21: PRINT "Play Again ? ";
 GOSUB DECIDE
 IF BUTTON = 1 THEN PLAYGAME
 GOSUB GOODBYE
```

END
INITIALIZE:
GOSUB SETSCREEN
GOSUB KEYVALUES
GOSUB BACH.MINUET
GOSUB SETMENUS
GOSUB SETCOLORS
GOSUB DRAWSHAPES
GOSUB HEADING
RETURN

```
SETSCREEN:
 SCREEN 1,640,2ø0,3,2
 WINDOW 2,"Let's Add and Subtract",,0,1
RETURN
KEYVALUES:
 DEFINT A-Z
 RANDOMIZE TIMER
 K = 4: REM PROBLEMS IN A SET
 DIM NUMBERS(4181), DUCK(781),BANNER(50\emptyset)
 DIM BUNNY(1250),SIGNS(4ø\varnothing),DISC(250)
 DIM TIMBRE2(255),TIMBRE3(255)
 DIM F(127),L(127),INDEX(11)
 REM DIGIT INDICES
 FOR I=1 TO ll
 INDEX(I) = 1 + (I-1)*38ø
 NEXT
 REM DUCK INDICES
 FOR I=1 TO 3
 DUCK.INDEX(I) = 1 + (I-1)*260
 NEXT
 REM BUTTON HOLES & LETTERS
 XB(1)=364: YB(1)=84
 XB(2)=406: YB(2)=84
 LT$(1) = "Y": LT$(2) = "N"
RETURN
BACH.MINUET:
 DATA 294,4,196,8,220,8,247,8,262,8,294,4,196,4
 DATA 196,4,330,4,262,8,294,8,330,8,370,8,392,4
 DATA 196,4,196,4,262,4,294,8,262,8,247,8,220,8
 DATA 247,4,262,8,247,8,22\emptyset,8,196,8,185,4,196,8
 DATA 220,8,247,8,196,8,247,4,220,2,294,4,196,8
 DATA 220,8,247,8,262,8,294,4,196,4,196,4,330,4
 DATA 262,8,294,8,330,8,370,8,392,4,196,4,196,4
 DATA 262,4,294,8,262,8,247,8,220,8,247,4,262,8
 DATA 247,8,22\emptyset,8,196,8,220,4,247,8,220,8,196,8
 DATA 185,8,196,2,494,4,392,8,440,8,494,8,392,8
 DATA 440,4,294,8,330,8,37\emptyset,8,294,8,392,4,330,8
 DATA 370,8,392,8,294,8,277,4,247,8,277,8,220,4
 DATA 220,8,247,8,277,8,294,8,330,8,370,8,392,4
 DATA 370,4,33ø,4,37\emptyset,4,22\emptyset,4,277,4,294,2,294,4
 DATA 196,8,185,8,196,4,330,4,196,8,185,8,196,4
 DATA 294,4,262,4,247,4,220,8,196,8,185,8,196,8
 DATA 220,4,147,8,165,8,185,8,196,8,220,8,247,8
 DATA 262,4,247,4,220,4,247,8,294,8,196,4,185,4
 DATA 196,2
 LOCATE 10,25: PRINT "One moment ..."
 MI = 6.2838/256
```

```
FOR I=\emptyset TO 255
 TIMBRE2(I) = 48*SIN(2*I*MI)
 TIMBRE3(I) = 48*SIN(3*I*M!)
NEXT
WAVE 2,TIMBRE2: WAVE 3,TIMBRE3
FOR I=1 TO }12
 READ F(I),L: L(I) = 18/L
NEXT
REM NOTE GROUPS
 DATA 33, 65, 97, 127
 FOR I=1 TO 4: READ NOTE.GROUP(I): NEXT
RETURN
SETMENUS:
 DATA 2, Rules, Yes, No
 DATA 2, Problem, Without Place Carrying
 DATA With Place Carrying
 DATA 5, Number Sizes, Up to 9, Up to 20
 DATA Up to 50, Up to 1øø, Up to løø\emptyset
 DATA 2, Operation, Addition, Subtraction
 DATA 3, Stop, Go to BASIC
 DATA Go to Learning Menu, Go to System
 FOR I=1 TO 5
 READ V
 FOR J=\emptyset TO V
 READ TITLE$
 IF J<>\varnothing THEN TITLE$ = SPACE$(3) + TITLE$
 STATUS = l
 IF I<>5 AND J=1 THEN STATUS = 2
 MENU I,J,STATUS,TITLE$
 NEXT J,I
 RULES = 1: CARRY = l: SIZE = l: OPERATION = l
RETURN
SETCOLORS:
 REM PINK, FLESH, RED, BLUE
 PALETTE 4,1,.51,.64
 PALETTE 5,1,.87,.73
 PALETTE 6,.93,.2,0
 PALETTE 7,.4,.6,1
RETURN
DRAWSHAPES:
 CLS
 MENU ON
 ON MENU GOSUB OPTIONS
 FOR Z=1 TO ll
 ON Z GOSUB BK,NØ,N1,N2,N3,N4,N5,N6,N7,N8,N9
```

```
 GOSUB GET.IT
 NEXT Z
 GOSUB SIGNS.CIRCLE
 GOSUB DUCKl
 GOSUB DUCK2
 GOSUB BANNER
 GOSUB BUNNYI
 GOSUB BUNNY2
RETURN
BK:
 XØ=313: YØ=8\emptyset
 Xl=286: X2=340: Yl=65: Y2=95
 GOSUB GET.IT
RETURN
GET.IT:
 GET(X1,Y1)-(X2,Y2),NUMBERS(INDEX(Z))
 PUT(Xl,Yl),NUMBERS(1),PSET: REM ERASE
RETURN
NØ:
 CALL DRAWLINE(3,X\varnothing+26,Y\varnothing-11,8)
 CALL DRAWLINE(3,X\emptyset+15,Y\varnothing-8,8)
 PAINT(X\varnothing+2Ø,YØ)
RETURN
SUB DRAWLINE(K,X.C,Y.C,T) STATIC
 COLOR K
 PSET(X.C,Y.C)
 FOR I=1 TO T
 READ X,Y
 LINE -STEP(X,Y)
 NEXT
END SUB
SUB DRAWPOINT(K,X.C,Y.C,T) STATIC
 COLOR K
 FOR I=1 TO T
 READ X,Y
 PSET(X.C+X,Y.C+Y)
 NEXT
END SUB
Nl:
 CALL DRAWLINE(3,X\varnothing+5,YØ-15,11)
 PAINT (XØ}+1,YØ+1
RETURN
```


## N2:

CALL DRAWLINE ( $3, \mathrm{X} \varnothing+16, \mathrm{Y} \varnothing+2,19$ )
PAINT(X $\varnothing+1, Y \varnothing+1$ )
RETURN
N3:
CALL DRAWLINE ( $3, \mathrm{X} \varnothing+12, \mathrm{Y} \varnothing-3,2 \emptyset$ )
PAINT (XØ+4, YØ-1)
RETURN

## N4:

CALL DRAWLINE (3, XØ-1,YØ,14)
PAINT (X $\varnothing+2, \mathrm{Y} \varnothing$ )
RETURN
N5:
CALL DRAWLINE (3, X $\varnothing$-16, $\mathrm{Y} \varnothing-4,2 \varnothing$ )
PAINT (Xø, Yø-2)
RETURN
N6:
CALL DRAWLINE ( $3, \mathrm{X} \varnothing-12, Y \emptyset+2,8$ )
CALL DRAWLINE (3, Xø-16, Yø-2,13)
PAINT (XØ $+2, \mathrm{Y} \varnothing$ )
RETURN

## N7:

CALL DRAWLINE (3, Xø-27,Yø-15,11) PAINT (Xø,YØ)
RETURN
N8:
CALL DRAWLINE ( $3, \mathrm{X} \varnothing-1 \varnothing, Y \varnothing+2,8$ )
CALL DRAWLINE (3, X $\varnothing-10, \mathrm{Y} \varnothing-11,8)$
CALL DRAWLINE (3, Xø-19, Yø-15,14)
PAINT (Xø,YØ)
RETURN
N9:
CALL DRAWLINE ( $3, \mathrm{X} \varnothing-12, \mathrm{Y} \varnothing-11,8$ )
CALL DRAWLINE (3, X $0-19, Y \varnothing-15,12)$
PAINT (Xø,YØ)
RETURN
SIGNS.CIRCLE:
REM -
$\operatorname{LINE}(293,78)-(333,82), 1, B F$
GET(293,71)-(333,89), SIGNS (2øø)
REM +

```
 LINE(307,71)-(319,89),1,BF
 GET(293,71)-(333,89),SIGNS(1)
 PUT(Xl,Y1),NUMBERS(1),PSET
 REM CIRCLE
 CIRCLE(X\emptyset,Y\varnothing),12,6: PAINT(X\varnothing,Y\varnothing),6
 GET(X\varnothing-12,Y\emptyset-8)-(X\varnothing+12,Y\varnothing+8),DISC
 PUT(Xl,Yl),NUMBERS(1),PSET
RETURN
DUCKl:
 XØ=350: YØ=4\varnothing
 CALL DRAWLINE(3,XØ,YØ,73)
 PAINT (XØ-9,YØ+4)
 PAINT (Xø+17,Yø+4)
 CALL DRAWPOINT(2,XØ,YØ,12)
 REM BILL
 COLOR l
 PSET(XØ+23,YØ+5)
 LINE -STEP(}0,1): LINE -STEP(4,\varnothing
 GET(319,3\varnothing)-(379,5\emptyset), DUCK(1)
 LINE(319,30)-(379,50),0,BF
RETURN
DUCK2:
 CALL DRAWLINE(3,XØ,YØ,49)
 PAINT(X\varnothing-7,YØ-1): PAINT(X\varnothing+15,Y\varnothing-2)
 CALL DRAWPOINT(2,X\varnothing,Yø,5)
 CALL DRAWLINE(1,X\varnothing+22,Y\emptyset-2,2)
 GET(319,30)-(379,50), DUCK(261)
 GET(419,30)-(479,50),DUCK(521): REM BLANK
RETURN
BANNER:
 X\varnothing=280: Y ==40
 CALL DRAWLINE(6,Xø,Yø,46)
 PAINT(XØ+1,YØ+1)
 CALL DRAWLINE(6,X\varnothing+16,Y\varnothing-2,5)
 REM "Nice !"
 CALL DRAWLINE(1,X\varnothing-31,Y\varnothing-4,17)
 CALL DRAWLINE(1,X\varnothing-19,Y\varnothing-3,1)
 CALL DRAWLINE(1,X\varnothing-19,Y\varnothing-1,5)
 CALL DRAWLINE(1,X\varnothing-6,Y\varnothing+1,11)
 CALL DRAWLINE(1,X\varnothing,Y\varnothing-1,11)
 CALL DRAWLINE(1,X\emptyset+11,Y\varnothing-5,3)
 CALL DRAWLINE(1,X\varnothing+11,Yø+1,1)
 GET(240, 34)-(318,47), BANNER(1)
 GET(1ø\emptyset, 34)-(178,47), BANNER(250)
RETURN
```


## BUNNY1:

REM SHIRT
$\mathrm{XD}=313: \quad \mathrm{Y} \varnothing=8 \varnothing$
CALL DRAWLINE (4, XØ, YØ, 67)
PAINT (XØ, YØ +3 ): PAINT ( $\mathrm{X} \varnothing+12, \mathrm{Y} \varnothing+1$ )
CALL DRAWPOINT ( $2, X \varnothing, Y \varnothing, 11$ )
REM PANTS
CALL DRAWLINE ( $7, \mathrm{X} \varnothing+6, Y \emptyset+7,34$ )
PAINT (XØ, YØ+1Ø)
CALL DRAWPOINT ( $2, \mathrm{X} \mathrm{\emptyset}, \mathrm{Y} \emptyset, 5$ )
REM FEET
CALL DRAWLINE (5, Xø $+8, Y \varnothing+14,17$ )
PAINT (Xø $+11, Y \varnothing+16$ )
CALL DRAWPOINT ( $2, \mathrm{X} \mathrm{\emptyset} ,\mathrm{Y} \mathrm{\varnothing,5)}$
CALL DRAWLINE (5, Xø-1, Yø $+15,18$ )
PAINT (Xø-16, Yø +15 )
CALL DRAWPOINT ( $2, \mathrm{X} \varnothing, Y \varnothing, 3$ )
REM HANDS
CALL DRAWLINE ( $5, \mathrm{X} \emptyset+16, Y \emptyset+6,14$ )
CALL DRAWLINE (5,XØ-19,YØ+4,17)
REM FACE
CALL DRAWLINE ( $5, \mathrm{X} \varnothing, Y \varnothing-2,7 \emptyset)$
PAINT (Xø, Yø-7): PAINT (XØ-4, YØ-13)
CALL DRAWLINE (4,XØ+5,YØ-12,14)
CALL DRAWLINE ( $4, \mathrm{X} \varnothing-7, Y \emptyset-12,6$ )
CALL DRAWLINE ( $4, \mathrm{X} \varnothing+2, \mathrm{Y} \varnothing-6,4$ )
CALL DRAWPOINT ( $2, \mathrm{X} \varnothing, Y \emptyset, 2$ )
CALL DRAWPOINT ( $2, X \varnothing, Y \varnothing, 2$ )
CALL DRAWPOINT ( $2, X \varnothing, Y \varnothing, 2$ )
CALL DRAWLINE ( $1, \mathrm{X} \varnothing+7, Y \varnothing+6,9$ )
$\operatorname{GET}(278,6 \varnothing)-(348,1 \varnothing \varnothing), B U N N Y(1)$
LINE $(278,6 \varnothing)-(348,1 \varnothing \varnothing), \varnothing, B F$
RETURN

BUNNY2:
REM SHIRT
CALL DRAWLINE (4, XØ, Yø, 73)
PAINT (Xø+4,YØ): PAINT(XØ-13,YØ-6)
PAINT (XØ-6, Yø-4)
CALL DRAWPOINT ( $2, \mathrm{X} \mathrm{\emptyset}, \mathrm{Y} \emptyset, 4$ )
REM PANTS
CALL DRAWLINE ( $7, \mathrm{X} \emptyset+2, Y \emptyset+3,42$ )
PAINT (XØ+6, Y $\varnothing+5$ )
CALL DRAWPOINT ( $2, \mathrm{X} \emptyset, Y \emptyset, 5$ )
REM FEET
CALL DRAWLINE (5, Xø $+12, Y \varnothing+12,13$ )
CALL DRAWLINE (5, XØ-7,YØ+6, 29)
PAINT (XØ-12, YØ+7)
CALL DRAWPOINT ( $2, \mathrm{X} \varnothing, Y \varnothing, 5$ )

```
 REM HANDS
 CALL DRAWLINE(5,XØ}+17,YØ-8,36
 PAINT(Xø+25,Yø-13)
 CALL DRAWLINE(5,X\varnothing-17,Yø-8,28)
 PAINT(Xø-25,Yø-11)
 REM HEAD
 CALL DRAWLINE(5,XØ-1,YØ-3,51)
 PAINT(XØ+3,YØ-6)
 CALL DRAWLINE(4,X\varnothing-2,Yø-8,6)
 CALL DRAWLINE(2,X\varnothing+1,Y\varnothing-5,6)
 CALL DRAWLINE(}3,\textrm{X}\varnothing+4,Y\varnothing-8,3
 CALL DRAWLINE(2,X\varnothing+2,Y\varnothing-8,1)
 CALL DRAWLINE (4,X0+9,Yø-11,5)
 CALL DRAWLINE(4,X\varnothing+3,Yø-11,5)
 CALL DRAWLINE(1,X\emptyset+11,Y\emptyset+4,4)
 GET(278,60)-(348,1\varnothing\varnothing), BUNNY(625)
RETURN
HEADING:
 COLOR 1,\emptyset
 LOCATE 13,2l:PRINT "Let's Add and Subtract"
 LOCATE 17,24:PRINT "Please use menus,"
 LOCATE 19,23:PRINT "Click mouse to play"
 GOSUB CLICKIT
RETURN
OPTIONS:
 ID = MENU(\varnothing): ITEM = MENU(1)
 ON ID GOSUB MENU1,MENU2,MENU3,MENU4,GOODBYE
 ITEM = \varnothing
RETURN
MENUl:
 MENU 1,RULES,1: MENU 1,ITEM,2
 RULES = ITEM
RETURN
MENU2:
 MENU 2,CARRY,1: MENU 2,ITEM,2
 CARRY = ITEM
RETURN
MENU3:
 MENU 3,SIZE,l: MENU 3,ITEM,2
 SIZE = ITEM
RETURN
```

```
MENU4:
 MENU 4,OPERATION,1: MENU 4,ITEM,2
 OPERATION = ITEM
RETURN
GOODBYE :
 WINDOW CLOSE 2: WINDOW 1: MENU RESET
 SCREEN CLOSE 1
 IF ITEM = 2 THEN RUN "LEARNING"
 IF ITEM = 3 THEN SYSTEM
 COLOR 1,\varnothing: CLS
 PRINT "Bye-Bye"
 STOP
RETURN
CLICKIT:
 S$ = "'"
 WHILE MOUSE(\varnothing) = Ø AND S$ = ""
 S$ = INKEY$
 WEND
 X = MOUSE(1)
 Y = MOUSE(2)
 WHILE MOUSE(Ø)<> Ø: WEND: REM RESET
RETURN
PLAY:
 IF RULES = 1 THEN GOSUB RULES
 CNT = Ø: GROUP = Ø
 FOR Q=1 TO K
 GOSUB GET.VALUES
 GOSUB PROBLEM
 GOSUB GUESS
 GOSUB EVALUATE
 NEXT Q
 IF CNT = K THEN GOSUB FLY
RETURN
RULES:
 CLS
 PRINT
 PRINT " I'll make up some nice addition and";
 PRINT " subtraction problems"
 PRINT " for you."
 PRINT
 PRINT " Please enter your answers just as";
 PRINT " you derive them: from"
 PRINT " right to left."
 LOCATE 9: PRINT " In the problem";TAB(22);
 PRINT ", for example, first enter the \emptyset and"
```

```
 LOCATE 8,19: PRINT "7"
 LOCATE 9,18: PRINT "+3"
 LINE(170,79)-(190,79),3
 LOCATE 10,18: PRINT "lø"
 LOCATE ll,l: PRINT " then the l."
 PRINT: PRINT
 PRINT " I'll give you";K;"problems per";
 PRINT " game, and you'll enjoy a"
 PRINT " nice surprise if you tally";
 PRINT " perfectly."
 LOCATE 2Ø,26:PRINT "Click Mouse";
 GOSUB CLICKIT
RETURN
GET.VALUES:
 CLS
 LOCATE 10,25: PRINT "One moment ..."
 REM HIGHEST NUMBER
 HN = 9
 IF SIZE = 2 THEN HN = 20
 IF SIZE = 3 THEN HN = 5\emptyset
 IF SIZE = 4 THEN HN = 10\emptyset
 IF SIZE = 5 THEN HN = 1\varnothing\varnothing\emptyset
 SEARCH$ = "ON"
 WHILE SEARCH$ = "ON"
 FOR I=1 TO 2
 N(I) = INT(RND*HN) + I
 NEXT I
 SEARCH$ = "OFF"
 IF N(2) > N(1) THEN SWAP N(2),N(1)
 GOSUB DIGITS
 REM CHECK FOR PLACE CARRYING
 IF CARRY = l THEN
 PC$ = "OFF"
 ON OPERATION GOSUB PC.ADD, PC.SUB
 IF PC$ = "ON" THEN SEARCH$ = "ON"
 END IF
 WEND
 REM ANSWER
 IF OPERATION = 1 THEN
 AW = N(1) + N(2)
 ELSE
 AW = N(1) - N(2)
 END IF
RETURN
DIGITS:
FOR I=l TO 2
 S$ = MID$(STR$(N(I)),2): L(I) = LEN(S$)
```

```
 S$ = RIGHT$(".Øøø" + S$,4)
 FOR J=1 TO 4
 D(I,J) = VAL(MID$(S$,5-J,1))
 NEXT J,I
RETURN
```

PC.ADD:
FOR J=1 TO 4
IF $D(1, J)+D(2, J)>9$ THEN PC\$ = "ON"
NEXT J
RETURN
PC.SUB:
FOR J=1 TO 4
IF $D(1, J)-D(2, J)<\emptyset$ THEN PC\$ = "ON"
NEXT J
RETURN
PROBLEM:
LOCATE 10,25: PRINT SPACE\$ (14)
FOR I=1 TO 2
$\mathrm{X}=350: \mathrm{Y}=35 * \mathrm{I}-15$
FOR J=1 TO L(I)
$\mathrm{D}=\mathrm{D}(\mathrm{I}, \mathrm{J})$
PUT ( $\mathrm{X}, \mathrm{Y}$ ) , NUMBERS ( $\operatorname{INDEX}(\mathrm{D}+2)$ ), PSET
$x=x-7 \varnothing$
NEXT J,I
S = OPERATION
PUT (X+6, Y +6 ), SIGNS (199*S-198) , PSET
$\operatorname{LINE}(348-\mathrm{L}(1) * 7 \varnothing, \mathrm{Y}+35)-(4 \varnothing 4, \mathrm{Y}+4 \varnothing), 1, \mathrm{BF}$
RETURN

## GUESS:

GOSUB GURGLE
$\mathrm{X}=350: \mathrm{Y}=100:$ GUESS $\$=$ "ON"
LOCATE 17,11
PRINT "Please enter your answer, then";
PRINT " Hit Return."
$\mathrm{G} \$=\mathrm{l}=$
WHILE GUESS\$ = "ON"
PUT ( $\mathrm{X}+23, \mathrm{Y}+7$ ), DISC, PSET
GOSUB ENTER.DIGIT
IF GUESS $=$ "ON" THEN
PUT ( $\mathrm{X}, \mathrm{Y}$ ) , NUMBERS (INDEX (INX)) , PSET
$\mathrm{G} \$=$ RIGHT\$ $(S T R \$(D I G I T), 1)+G \$$
$\mathrm{X}=\mathrm{X}-7 \varnothing$
END IF
WEND
PUT ( $\mathrm{X}, \mathrm{Y}$ ) , NUMBERS ( 1 ) , PSET
RETURN

```
GURGLE:
 FREQ = 30Ø
 FOR G=1 TO 5
 FREQ = 5\emptyset\emptyset-FREQ
 SOUND FREQ,1,5\emptyset
 NEXT G
RETURN
ENTER.DIGIT:
 S$ = ""
 WHILE S$ = ""
 S$ = INKEY$
 WEND
 A = ASC(S$)
 IF A = 13 THEN GUESS$ = "OFF"
 IF A=8 OR A=3\emptyset THEN
 IF G$ = "" THEN SOUND 9ø\emptyset,2
 IF G$ <> "" THEN GOSUB MOVE.RIGHT
 GOTO ENTER.DIGIT
 END IF
 IF A <> 13 AND (A < 48 OR A > 57) THEN
 SOUND 9øø,2
 GOTO ENTER.DIGIT
 END IF
 DIGIT = A - 48
 INX = DIGIT + 2
RETURN
MOVE.RIGHT:
 G$ = MID$(GS,2)
 PUT(X,Y),NUMBERS(1),PSET
 X = X+7\emptyset
 PUT(X,Y),NUMBERS(1),PSET
 PUT(X+23,Y+7),DISC,PSET
RETURN
EVALUATE:
 LOCATE 17,11: PRINT SPACE$(42)
 GUESS = VAL(G$)
 ON -(GUESS = AW)+1 GOSUB WRONG, RIGHT
 LOCATE 20,26: PRINT "Press any key";
 GOSUB CLICKIT
RETURN
WRONG :
 SOUND 4ø\varnothing,3: SOUND 3ø\varnothing,3: SOUND 2øø,3
 LOCATE 17,21:
 PRINT "Sorry, the answer is";AW;CHR$(8);"."
RETURN
```

```
RIGHT:
 LOCATE 17,27: PRINT "Very Good l"
 X=475: Y=5\emptyset
 PUT(X,Y), BUNNY(1), PSET
 GOSUB MUSIC
 GOSUB DANCE
 CNT = CNT+l
RETURN
MUSIC:
 GROUP = GROUP + l
 IF GROUP = K+l THEN GROUP = 1
 FIRST = NOTE.GROUP(GROUP-1) + 1
 LAST = NOTE.GROUP(GROUP)
 FOR I = FIRST TO LAST
 SOUND WAIT
 FOR J=2 TO 3
 SOUND F(I),L(I),125,J
 SOUND Ø,.5,,J
 NEXT J
 SOUND RESUME
 NEXT I
RETURN
DANCE:
 V = l
 FOR FLASH = l TO 9
 PUT(X,Y), BUNNY(V),PSET
 FOR PAUSE=1 TO 1\varnothing\varnothing\varnothing: NEXT PAUSE
 V = 626-V
 NEXT FLASH
RETURN
FLY:
 CLS
 V = 1: YD(1) = 81: YD(2) = 74
 LOCATE 18,22: PRINT "You got all";K;"right !"
 FOR X=80 TO 6l\varnothing STEP 5
 PUT(X,7ø),DUCK(DUCK.INDEX(V)),PSET
 PUT(X-76,YD(V)),BANNER(1),PSET
 FOR PAUSE=1 TO 5ø\emptyset: NEXT PAUSE
 PUT(X,7ø),DUCK(DUCK.INDEX(3)),PSET
 PUT(X-76,YD(V)),BANNER(250),PSET
 V = 3-V
 NEXT X
RETURN
DECIDE:
 BUTTON = Ø
```

```
 GOSUB DRAWBUTTON
 GOSUB PUSHBUTTON
 COLOR 1,\varnothing
RETURN
```

DRAWBUTTON:
LINE ( 337,77 )-(433,91), 1, BF
FOR I=1 TO 2
CIRCLE (XB(I), YB(I)),12,I*3
PAINT (XB(I), YB(I)),I*3
COLOR 1,I*3
LOCATE 10: PRINT PTAB(XB(I)-4);LTS(I);
NEXT I
RETURN
PUSHBUTTON:
SOUND 440,2
GOSUB CLICKIT
S\$ = UCASES(S\$)
IF $\mathbf{S} \$=$ "Y" THEN BUTTON $=1$
IF $\mathbf{S} \$=$ "N" THEN BUTTON $=2$
FOR I=1 TO 2
$X D=A B S(X-X B(I)): Y D=A B S(Y-Y B(I))$
IF XD<13 AND YD<7 THEN BUTTON = I: I=2
NEXT
IF BUTTON $=\varnothing$ THEN PUSHBUTTON
RETURN

## REM ZERO

DATA $\varnothing, 22,-8,4,-37, \varnothing,-8,-4, \varnothing,-22,8,-4,37, \varnothing, 8,4$
DATA $\varnothing, 16,-6,3,-19, \varnothing,-6,-3, \varnothing,-16,6,-3,19, \varnothing, 6,3$

```
REM ONE
 DATA \(\varnothing, 26,9, \varnothing, \varnothing, 4,-29, \varnothing, \varnothing,-4,9, \varnothing, \varnothing,-21,-7, \varnothing\)
 DATA \(\varnothing,-2,7,-3,11, \varnothing\)
```


## REM TWO

DATA $-26, \varnothing,-6,3, \varnothing, 6,42, \varnothing, \varnothing, 4,-53, \varnothing, \varnothing,-11,12,-6$
DATA $3 \varnothing, \varnothing, \varnothing,-9,-29, \varnothing,-8,4,-5, \varnothing, \varnothing,-4,8,-4,37, \varnothing$
DATA $8,4, \varnothing, 8,-10,5$

## REM THREE

DATA $14,7, \varnothing, 7,-8,4,-37, \varnothing,-8,-4, \varnothing,-3,9, \varnothing, 4,3$
DATA $23, \varnothing, 6,-4, \varnothing,-1,-6,-4,-14, \varnothing, \varnothing,-4,18,-9$
DATA $-4 \varnothing, \varnothing, \varnothing,-4,53, \varnothing, \varnothing, 5,-14,7$

## REM FOUR

DATA $\varnothing, 15,11, \varnothing, \varnothing,-13,16, \varnothing, \varnothing,-4,-16, \varnothing, \varnothing,-13$
DATA $-11, \varnothing, \varnothing, 13,-15, \varnothing, \varnothing,-13,-11, \varnothing, \varnothing, 17,26, \varnothing$

## REM FIVE

DATA $32, \varnothing, 1 \varnothing, 5, \varnothing, 9,-1 \varnothing, 5,-35, \varnothing,-8,-4, \varnothing,-3,9, \varnothing$
DATA $4,3,25, \varnothing, 4,-2, \varnothing,-7,-4,-2,-3 \varnothing, \varnothing,-8,-4$
DATA $\varnothing,-11,53, \varnothing, \varnothing, 4,-42, \varnothing, \varnothing, 7$
REM SIX
DATA $23, \varnothing, 4,2, \varnothing, 5,-4,2,-23, \varnothing,-4,-2, \varnothing,-5,4,-2$
DATA $34, \varnothing, 8,4, \varnothing, 9,-8,4,-37, \varnothing,-8,-4, \varnothing,-17,18,-9$
DATA $35, \varnothing, \varnothing, 4,-28,0,-14,7, \varnothing, 2$

## REM SEVEN

DATA 53, $0,0,5,-1, \varnothing,-34,17,1,0,0,8,-11,0,0,-10$
DATA $32,-16,-4 \varnothing, \varnothing, \varnothing,-4$
REM EIGHT
DATA $19, \varnothing, 6,3, \varnothing, 3,-6,3,-19, \varnothing,-6,-3, \varnothing,-3,6,-3$
DATA $19, \varnothing, 6,3, \varnothing, 3,-6,3,-19, \varnothing,-6,-3, \varnothing,-3,6,-3$
DATA $37, \varnothing, 8,4, \varnothing, 7,-8,4,8,4, \varnothing, 7,-8,4,-37, \varnothing$
DATA $-8,-4, \varnothing,-7,8,-4,-8,-4, \varnothing,-7,8,-4$
REM NINE
DATA $23, \varnothing, 4,2, \varnothing, 5,-4,2,-23, \varnothing,-4,-2, \varnothing,-5,4,-2$
DATA $37, \varnothing, 8,4, \varnothing, 15,-22,11,-31, \varnothing, \varnothing,-4,26, \varnothing$ DATA $16,-9,-34, \varnothing,-8,-4, \varnothing,-9,8,-4$

## REM DUCK \#1

DATA $3, \varnothing,-1, \varnothing, \varnothing, 2,-1, \varnothing, \varnothing, 2,3, \varnothing, \varnothing, 1,7, \varnothing, \varnothing,-1$
DATA $2, \varnothing, \varnothing,-1,7, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,1, \varnothing,-2, \varnothing$
DATA $\varnothing, 1,-5, \varnothing, \varnothing,-1,-5, \varnothing, \varnothing, 1,-4, \varnothing, \varnothing, 1,-4, \varnothing$
DATA $\varnothing, 1,-13, \varnothing, \varnothing,-1,-6, \varnothing, \varnothing,-1,-5, \varnothing, \varnothing,-1$
DATA $-4, \varnothing, 9, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-2,1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1$
DATA $1, \varnothing, \varnothing,-2,-1, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-2,-1, \varnothing, \varnothing,-2$
DATA $1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1$
DATA $1, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,2, \varnothing, \varnothing,-2,2, \varnothing, \varnothing, 1,1, \varnothing$
DATA $\varnothing, 1,1, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1$
DATA $-4,-1,-3, \varnothing,-3,1,-2,2,-2,3,-1,4,1,5,2,6$
DATA 1,7,0,7,18,4,19,4

## REM DUCK \#2

DATA $5, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,5, \varnothing, \varnothing, 1,7, \varnothing, \varnothing,-1,2, \varnothing$ DATA $-1, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing,-1,-5, \varnothing, \varnothing, 1,-4, \varnothing, \varnothing, 1,-5, \varnothing$
DATA $\varnothing,-1,-5, \varnothing, \varnothing,-1,-1 \varnothing, \varnothing, \varnothing, 1,-5, \varnothing, \varnothing, 1,-11, \varnothing$
DATA $2, \varnothing, \varnothing, 1,6, \varnothing, \varnothing, 1,3, \varnothing, \varnothing, 2,-2, \varnothing, \varnothing, 1,-3, \varnothing$
DATA $\varnothing, 1,-4, \varnothing, \varnothing, 1,-1, \varnothing, 1 \varnothing, \varnothing, \varnothing,-1,5, \varnothing, \varnothing,-1,4, \varnothing$
DATA $\varnothing,-1,3, \varnothing, \varnothing,-1,4, \varnothing, \varnothing,-1,15,-3,16,-3,1, \varnothing$
DATA $-16, \varnothing,-15,-1, \varnothing, 1,5, \varnothing$

```
REM BANNER
 DATA \(\varnothing,-3,1, \varnothing, \varnothing,-1,5, \varnothing, \varnothing,-1,4, \varnothing, \varnothing,-1,6, \varnothing, \varnothing,-1\)
 DATA \(\varnothing, 6,1, \varnothing, \varnothing, 2,1, \varnothing, \varnothing, 1,1, \varnothing,-2, \varnothing, \varnothing, 1,-3, \varnothing, \varnothing, 1\)
 DATA \(-4, \varnothing, \varnothing, 1,-8, \varnothing, \varnothing, 1,-11, \varnothing, \varnothing,-1,-8, \varnothing, \varnothing,-1\)
 DATA \(-6, \varnothing, \varnothing,-1,-13, \varnothing, 1, \varnothing, \varnothing,-2,1, \varnothing, \varnothing,-3,-1, \varnothing\)
 DATA \(\varnothing,-4,-1, \varnothing, 13, \varnothing, \varnothing, 1,5, \varnothing, \varnothing, 1,6, \varnothing, \varnothing, 1,1 \varnothing, \varnothing\)
 DATA \(\varnothing,-1,3, \varnothing, 4, \varnothing, \varnothing,-1,7, \varnothing, \varnothing, 1,14, \varnothing\)
 DATA \(\varnothing, 6,1, \varnothing, \varnothing,-6,1, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,1, \varnothing\)
 DATA \(\varnothing, 1,1, \varnothing, \varnothing, 2,1, \varnothing, \varnothing,-6,-1, \varnothing, \varnothing, 3,1, \varnothing, \varnothing, 4\)
 DATA \(-1, \varnothing, 3, \varnothing,-1, \varnothing, \varnothing,-4,-1, \varnothing, \varnothing,-1,-4, \varnothing, \varnothing, 3,-1, \varnothing\)
 DATA \(\varnothing,-2,1, \varnothing, \varnothing, 3,4, \varnothing, \varnothing,-1,1, \varnothing\)
 DATA \(5, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,-6, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing, 2,1, \varnothing, \varnothing, 1\)
 DATA 5, \(\varnothing, \varnothing, 4,1, \varnothing, \varnothing,-4,1, \varnothing\)
REM BUNNYI
 DATA \(\varnothing,-1,2, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,4, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1,2, \varnothing\)
 DATA \(\varnothing, 1,3, \varnothing, \varnothing, 1,3, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1,-4, \varnothing\)
 DATA \(\varnothing,-1,-2, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing, 3\)
 DATA \(1, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 2,-5, \varnothing, \varnothing, 1,-11, \varnothing, \varnothing,-1,-4, \varnothing\)
 DATA \(\varnothing,-1,1, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing, 1\)
 DATA \(-2, \varnothing, \varnothing, 1,-5, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing,-1,3, \varnothing, \varnothing,-1,3, \varnothing\)
 DATA \(\varnothing,-1,4, \varnothing, \varnothing,-1,4, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,3, \varnothing, \varnothing,-1\)
 DATA \(1, \varnothing, 4, \varnothing, \varnothing, \varnothing, 2,-1,4,-2,-3,-1,-5,-2,-9,2\)
 DATA \(-8,1,-8,0,-13,3,-13,2,-14,2\)
 DATA \(1, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 2,-1, \varnothing, \varnothing, 1\)
 DATA \(-2, \varnothing, \varnothing, 1,-6, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing, 1,-6, \varnothing, \varnothing,-1,-4, \varnothing\)
 DATA \(\varnothing,-1,-1, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1\)
 DATA \(1, \varnothing, \varnothing,-1, \varnothing, 1,13, \varnothing, \varnothing,-1,2, \varnothing, \varnothing, 13, \varnothing, 12, \varnothing, 11\)
 DATA \(-1,1 \varnothing,-2,9,14, \varnothing, \varnothing, 1,4, \varnothing, \varnothing, 1,3, \varnothing,-1, \varnothing, \varnothing, 1\)
 DATA \(-2, \varnothing, \varnothing, 1,-9, \varnothing, \varnothing,-1,-8, \varnothing, \varnothing,-1,-5, \varnothing, \varnothing,-1,-3, \varnothing\)
 DATA 7, \(0,26,18,25,17,24,17,28,17,27,16\)
 DATA \(-3, \varnothing, \varnothing, 1,-5, \varnothing, \varnothing, 1,-8, \varnothing, \varnothing, 1,-1 \varnothing, \varnothing, \varnothing,-1,-2, \varnothing\)
 DATA \(1, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,7, \varnothing, \varnothing,-1,11, \varnothing, \varnothing, 1,6, \varnothing\)
 DATA \(-27,17,-26,16,-25,16,2, \varnothing, \varnothing, 1,3, \varnothing, \varnothing,-1,1, \varnothing\)
 DATA \(-3, \varnothing, \varnothing,-1,2, \varnothing,-1, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing,-1,-1, \varnothing\)
 DATA \(2, \varnothing,-3, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1,-2, \varnothing, 1, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1\)
 DATA \(3, \varnothing, \varnothing,-1,2, \varnothing,-2, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing,-1,2, \varnothing\)
 DATA \(1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,3, \varnothing, \varnothing,-1,3, \varnothing, \varnothing,-1,3, \varnothing\)
 DATA \(\varnothing,-1,1, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-1\)
 DATA \(-1, \varnothing, \varnothing,-2,1, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-2,-1, \varnothing\)
 DATA \(\varnothing,-1,-1, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 3\)
 DATA \(-2, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing,-1,-4, \varnothing, \varnothing, 1,-4, \varnothing, \varnothing, 1,-3, \varnothing\)
 DATA \(\varnothing, 1,-3, \varnothing, 1, \varnothing, \varnothing, 1,7, \varnothing, \varnothing,-1,3, \varnothing, \varnothing,-1,3, \varnothing, \varnothing, 2\)
 DATA \(-1, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-1, \varnothing, 1, \varnothing, \varnothing, 1,2, \varnothing\)
 DATA \(\varnothing, 1,3, \varnothing, \varnothing, 1,1, \varnothing, 2, \varnothing, \varnothing,-2,1, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1\)
 DATA \(1, \varnothing, \varnothing,-1, \varnothing, 1,-2, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1\)
 DATA \(-3, \varnothing, \varnothing, 1,-4, \varnothing, 2, \varnothing, \varnothing,-1,1, \varnothing\)
 DATA \(1, \varnothing, \varnothing,-1,2, \varnothing,-5, \varnothing, 2,-4,3,-4\)
 DATA \(7,-9,6,-9,-1,-9, \varnothing,-9,2, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 2,-1, \varnothing\)
 DATA \(\varnothing,-1,-1, \varnothing, \varnothing,-1,-2, \varnothing\)
```


## REM BUNNY2

$$
\begin{aligned}
& \text { DATA } \varnothing,-2,3, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,2, \varnothing \\
& \text { DATA } \varnothing,-1,2, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,5, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,-2, \varnothing \\
& \text { DATA } \varnothing, 1,-3, \varnothing, \varnothing, 1,-3, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 3,1, \varnothing \\
& \text { DATA } \varnothing, 1,1, \varnothing, \varnothing, 2,-1, \varnothing, \varnothing,-1,-9, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing,-1 \\
& \text { DATA }-1, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing,-2,1, \varnothing, \varnothing,-2,-3, \varnothing, \varnothing,-1,-3, \varnothing \\
& \text { DATA } \varnothing,-1,-3, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing,-1,-1, \varnothing, 2, \varnothing \\
& \text { DATA } \varnothing,-1,1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing, 1,3, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1,4, \varnothing \\
& \text { DATA } \varnothing, 1,2, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,1, \varnothing,-14,-5,-13,-6,12,-5 \\
& \text { DATA } 11,-6,7, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,3, \varnothing, \varnothing, 1,3, \varnothing \\
& \text { DATA } \varnothing, 1,1, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-8, \varnothing, \varnothing,-1,-1, \varnothing \\
& \text { DATA } \varnothing,-2,-3, \varnothing, \varnothing,-1,-6, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing, 3,-2, \varnothing, \varnothing,-1 \\
& \text { DATA }-1, \varnothing, \varnothing,-3,-4, \varnothing, \varnothing,-1,-1, \varnothing, 1, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1 \\
& \text { DATA 4, } \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1,4, \varnothing, \varnothing, 4,1,5,2,6,-3,5,-2,6 \\
& \text { DATA } 9, \varnothing, \varnothing, 1,3, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1,-4, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-1 \\
& \text { DATA }-4, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing, 3,1, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-2, \varnothing \\
& \text { DATA } \varnothing,-1,-2, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-1,-2, \varnothing \\
& \text { DATA } \varnothing,-1,-1, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-1,-1, \varnothing, 1, \varnothing, \varnothing,-1,4, \varnothing \\
& \text { DATA } \varnothing, 1,2, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1,3, \varnothing, 25,15,-18,4,-17,3 \\
& \text { DATA }-9,6,-9,7 \\
& \text { DATA } 1, \varnothing, \varnothing,-1,-1, \varnothing, 2, \varnothing, \varnothing,-1,-1, \varnothing, 2, \varnothing, \varnothing,-1,2, \varnothing \\
& \text { DATA } \varnothing,-1,4, \varnothing, \varnothing, 1,2, \varnothing,-2, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,2, \varnothing \\
& \text { DATA } \varnothing, 1,2, \varnothing,-2, \varnothing, \varnothing,-2,3, \varnothing,-6, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing,-1 \\
& \text { DATA }-1, \varnothing, 1, \varnothing, \varnothing, 2,-1, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1 \\
& \text { DATA }-2, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-2,1, \varnothing, \varnothing,-1,1, \varnothing \\
& \text { DATA }-1, \varnothing, \varnothing, 1,-4, \varnothing, \varnothing, 1,-5, \varnothing, 2, \varnothing, \varnothing, 2,-2, \varnothing, \varnothing, 1 \\
& \text { DATA }-1, \varnothing, 1, \varnothing, \varnothing,-1,2, \varnothing, \varnothing, 1,1, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,3, \varnothing \\
& \text { DATA } 3, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,2, \varnothing \\
& \text { DATA } \varnothing,-3,2, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1 \\
& \text { DATA }-2, \varnothing, \varnothing, 1,-3, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-2, \varnothing \\
& \text { DATA } \varnothing,-1,-1, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-1,-2, \varnothing \\
& \text { DATA } \varnothing, 1,1, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 2,-1, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 2,-4, \varnothing \\
& \text { DATA } \varnothing, 1,1, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,2, \varnothing,-1, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing, 1 \\
& \text { DATA }-1, \varnothing, 3, \varnothing,-1, \varnothing, \varnothing,-1,-3, \varnothing, 1, \varnothing, \varnothing, 1 \\
& \text { DATA } 1, \varnothing, 1, \varnothing, \varnothing,-1,-1, \varnothing, 1, \varnothing, 2, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,1, \varnothing \\
& \text { DATA }-1, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-1,-1, \varnothing, 4, \varnothing, \varnothing, 1,1, \varnothing,-4, \varnothing
\end{aligned}
$$

## Let's Multiply

Many people have trouble with multiplication tables when they are first learning to multiply. Since practice is the best method for both learning and understanding how to multiply, this program will be of value in gaining this important basic skill.

As in the previous program, all answers should be entered just as they are derived. For example, the result for $4 \times 3=$ ? would be 12 . First enter the 2 and then the 1.

Students can practice almost any integer problem they like. Acceptable values for the first multiplier range from 1 to 9 , but the second multiplier can be up to 1000 (the pull-down menus are used to make selections). Youngsters can thus practice the easier low numbers and then advance to more complicated problems as they gain experience.

Program 3-3. Let's Multiply
Save using the filename MULTIPLY

```
REM LET'S MULTIPLY
 CLEAR ,370øø&
 GOSUB INITIALIZE
PLAYGAME:
 GOSUB PLAY
PLAYAGAIN:
 CLS: LOCATE 10,21: PRINT "Play Again ? ";
 GOSUB DECIDE
 IF BUTTON = 1 THEN PLAYGAME
 GOSUB GOODBYE
END
```

INITIALIZE:
gosub Setscreen
gosub keyvalues
GOSUB BACH.MINUET
GOSUB SETMENUS
gosub setcolors
GOSUB DRAWSHAPES
gosub heading
RETURN
SETSCREEN:
SCREEN 1,640,200,3,2
WINDOW 2,"Let's Multiply",., 1
RETURN

```
KEYVALUES:
 DEFINT A-Z
 RANDOMIZE TIMER
 K = 4: REM PROBLEMS IN A SET
 DIM NUMBERS(4181),DUCK(781),BANNER(50\emptyset)
 DIM BUNNY(1250),SIGN(20\varnothing),DISC(250)
 DIM TIMBRE2(255),TIMBRE3(255)
 DIM F(127),L(127),INDEX(11)
 REM DIGIT INDICES
 FOR I=1 TO ll
 INDEX(I) = 1 + (I-1)*38\emptyset
 NEXT
 REM DUCK INDICES
 FOR I=1 TO 3
 DUCK.INDEX(I) = 1 + (I-1)*26Ø
 NEXT
 REM BUTTON HOLES & LETTERS
 XB(1)=364: YB(1)=84
 XB(2)=4Ø6: YB(2)=84
 LT$(1) = "Y": LT$(2) = "N"
RETURN
BACH.MINUET:
 DATA 294,4,196,8,220,8,247,8,262,8,294,4,196,4
 DATA 196,4,330,4,262,8,294,8,330,8,370,8,392,4
 DATA 196,4,196,4,262,4,294,8,262,8,247,8,220,8
 DATA 247,4,262,8,247,8,220,8,196,8,185,4,196,8
 DATA 22Ø,8,247,8,196,8,247,4,220,2,294,4,196,8
 DATA 22Ø,8,247,8,262,8,294,4,196,4,196,4,330,4
 DATA 262,8,294,8,330,8,370,8,392,4,196,4,196,4
 DATA 262,4,294,8,262,8,247,8,220,8,247,4,262,8
 DATA 247,8,220,8,196,8,220,4,247,8,220,8,196,8
 DATA 185,8,196,2,494,4,392,8,440,8,494,8,392,8
 DATA 440,4,294,8,330,8,370,8,294,8,392,4,330,8
 DATA 370,8,392,8,294,8,277,4,247,8,277,8,220,4
 DATA 220,8,247,8,277,8,294,8,330,8,370,8,392,4
 DATA 37Ø,4,33\emptyset,4,37\varnothing,4,220,4,277,4,294,2,294,4
 DATA 196,8,185,8,196,4,330,4,196,8,185,8,196,4
 DATA 294,4,262,4,247,4,220,8,196,8,185,8,196,8
 DATA 220,4,147,8,165,8,185,8,196,8,220,8,247,8
 DATA 262,4,247,4,220,4,247,8,294,8,196,4,185,4
 DATA 196,2
 LOCATE 10,25: PRINT "One moment ..."
 Ml = 6.2838/256
 FOR I=Ø TO 255
 TIMBRE2(I) = 48*SIN(2*I*M!)
 TIMBRE3(I) = 48*SIN(3*I*M!)
NEXT
WAVE 2,TIMBRE2: WAVE 3,TIMBRE3
```

$$
\text { FOR I=1 TO } 127
$$

READ $F(I), L: L(I)=18 / L$
NEXT
REM NOTE GROUPS
DATA 33, 65, 97, 127
FOR $I=1$ TO 4: READ NOTE.GROUP(I): NEXT
RETURN
SETMENUS:
DATA 2, Rules, Yes, No
DATA 1, Practice, With Number 1
DATA 5, Size of Other Number, Up to 9, Up to 20
DATA Up to $5 \varnothing$, Up to $1 \varnothing \varnothing$, Up to $1 \varnothing 0 \varnothing$
DATA 3, Stop, Go to BASIC
DATA Go to Learning Menu, Go to System
FOR I=1 TO 4
READ V
FOR J=Ø TO V
READ TITLES
IF $J<>\varnothing$ THEN TITLE $=$ SPACE $(3)+$ TITLE
STATUS = 1
IF $\mathrm{I}<>4$ AND $\mathrm{J}=1$ THEN STATUS $=2$
MENU I,J,STATUS,TITLE\$
NEXT J,I
FOR I=2 TO 9
MENU 2,I,1,SPACES(3)+"With Number"+STRS (I)
NEXT
RULES = 1: PRACTICE = 1: SIZE = 1
RETURN

## SETCOLORS:

REM PINK, FLESH, RED, BLUE
PALETTE 4,1,.51,.64
PALETTE 5,1,.87,.73
PALETTE 6,.93,.2, $\varnothing$
PALETTE 7,.4,.6,1
RETURN
DRAWSHAPES:
CLS
MENU ON
ON MENU GOSUB OPTIONS
FOR $Z=1$ TO 11
ON Z GOSUB BK,Nの,N1,N2,N3,N4,N5,N6,N7,N8,N9
GOSUB GET.IT
NEXT Z
GOSUB SIGN.CIRCLE
GOSUB DUCKI
GOSUB DUCK2

## CHAPTER 3

```
 GOSUB BANNER
 GOSUB BUNNYI
 GOSUB BUNNY2
RETURN
BK:
 X\emptyset=313: Yø=8\emptyset
 Xl=286: X2=340: Yl=65: Y2=95
 GOSUB GET.IT
RETURN
GET.IT:
 GET(X1,Y1)-(X2,Y2),NUMBERS (INDEX(Z))
 PUT(X1,Yl),NUMBERS(1),PSET: REM ERASE
RETURN
N\varnothing:
 CALL DRAWLINE(3,X\varnothing+26,Y\varnothing-11,8)
 CALL DRAWLINE(3,X\varnothing+15,Y\varnothing-8,8)
 PAINT(X\varnothing+2Ø,Y\emptyset)
RETURN
SUB DRAWLINE(K,X.C,Y.C,T) STATIC
 COLOR K
 PSET(X.C,Y.C)
 FOR I=1 TO T
 READ X,Y
 LINE -STEP(X,Y)
 NEXT
END SUB
SUB DRAWPOINT(K,X.C,Y.C,T) STATIC
 COLOR K
 FOR I=1 TO T
 READ X,Y
 PSET(X.C+X,Y.C+Y)
 NEXT
END SUB
N1:
CALL DRAWLINE (\(3, \mathrm{X} \emptyset+5, Y \emptyset-15,11)\)
 PAINT (X\varnothing+1,Y\varnothing+1)
RETURN
N2:
CALL DRAWLINE (\(3, \mathrm{X} \varnothing+16, Y \varnothing+2,19)\)
PAINT (Xø \(+1, Y \varnothing+1\))
RETURN
```

```
N3:
 CALL DRAWLINE(3,X\varnothing+12,YØ-3,2Ø)
 PAINT(X\emptyset+4,YØ-1)
RETURN
N4:
 CALL DRAWLINE(3,XD-1,YØ, 14)
 PAINT(XØ+2,YØ)
RETURN
N5:
 CALL DRAWLINE(3,XØ-16,YØ-4,20)
 PAINT(XØ,YØ-2)
RETURN
N6:
 CALL DRAWLINE(3,X0-12,YØ+2,8)
 CALL DRAWLINE(3,XD-16,Y\emptyset-2,13)
 PAINT(XØ+2,YØ)
RETURN
N7:
 CALL DRAWLINE(3,XØ-27,YØ-15,11)
 PAINT(XØ,YØ)
RETURN
N8:
 CALL DRAWLINE(3,X\emptyset-1\emptyset,Y\emptyset+2,8)
 CALL DRAWLINE(3,XØ-1\varnothing,Y\emptyset-11,8)
 CALL DRAWLINE(3,X0-19,YØ-15,14)
 PAINT(XØ,YØ)
RETURN
N9:
 CALL DRAWLINE(3,X0-12,Y0-11,8)
 CALL DRAWLINE(3,X0-19,YØ-15,12)
 PAINT(XØ,YØ)
RETURN
SIGN.CIRCLE:
 REM X SIGN
 CALL DRAWLINE(3,X0-12,Y0-10,6)
 PAINT(X\varnothing,YØ)
 CALL DRAWLINE(3,X\emptyset+12,YØ-1\varnothing,6)
 PAINT(X0-1\varnothing,YØ+5): PAINT(XØ+1\varnothing,YØ-5)
 GET(290,70)-(336,90),SIGN
 PUT(Xl,Y1),NUMBERS(1), PSET
 REM CIRCLE
 CIRCLE(X0, YØ) , 12,6: PAINT (X0,YØ),6
```

```
 GET(X\varnothing-12,Y\emptyset-8)-(X\varnothing+12,YØ+8),DISC
 PUT(XI,Y1),NUMBERS(1),PSET
RETURN
DUCKI:
 X\emptyset=35Ø: YØ=4\emptyset
 CALL DRAWLINE (3,XØ,YØ,73)
 PAINT (X\varnothing-9,YØ+4)
 PAINT (XØ+17,Y\emptyset+4)
 CALL DRAWPOINT (2,X0,YØ, 12)
 REM BILL
 COLOR 1
 PSET(X\varnothing+23,Y\varnothing+5)
 LINE - STEP(\varnothing,1): LINE - STEP (4,\varnothing)
 GET(319,30)-(379,50), DUCK(1)
 LINE(319, 30)-(379,50),\varnothing,BF
RETURN
DUCK2:
 CALL DRAWLINE(3,XØ, YØ , 49)
 PAINT(X\emptyset-7,YØ-1): PAINT(X\emptyset+15,Y\emptyset-2)
 CALL DRAWPOINT(2,XØ,YØ,5)
 CALL DRAWLINE(1,X\emptyset+22,YØ-2,2)
 GET(319, 30)-(379,5\varnothing), DUCK(261)
 GET(419,30)-(479,50),DUCK(521): REM BLANK
RETURN
BANNER:
 XØ=28Ø: YØ=4\varnothing
 CALL DRAWLINE(6,XØ,YØ,46)
 PAINT(X\emptyset+1,Y\emptyset+1)
 CALL DRAWLINE(6,XØ+16,YØ-2,5)
 REM "Nice !"
 CALL DRAWLINE(1,X0-31,Y0-4,17)
 CALL DRAWLINE(1,X0}-19,Y0-3,1)
 CALL DRAWLINE(1,XØ-19,YØ-1,5)
 CALL DRAWLINE(1,X\varnothing-6,Y\emptyset+1,11)
 CALL DRAWLINE(1,X\varnothing,YØ-1,11)
 CALL DRAWLINE(1,X\emptyset+11,Y\emptyset-5,3)
 CALL DRAWLINE (1,X0+11,YØ+1,1)
 GET(240, 34)-(318,47), BANNER(1)
 GET(1Ø\varnothing, 34)-(178,47),BANNER(250)
RETURN
BUNNY1:
 REM SHIRT
 X0=313: YØ=8Ø
 CALL DRAWLINE (4,X\varnothing,Y\varnothing, 67)
 PAINT(XØ, YØ+3): PAINT(XØ+12,YØ+1)
```

CALL DRAWPOINT ( $2, \mathrm{X} \varnothing, Y \varnothing, 11$ )
REM PANTS
CALL DRAWLINE ( $7, \mathrm{X} \varnothing+6, Y \varnothing+7,34$ )
PAINT (Xø, YØ+1Ø)
CALL DRAWPOINT ( $2, \mathrm{X} \emptyset, Y \emptyset, 5$ )
REM FEET
CALL DRAWLINE ( $5, \mathrm{X} \varnothing+8, Y \varnothing+14,17$ )
PAINT (XØ+11,YØ+16)
CALL DRAWPOINT ( $2, \mathrm{X} \varnothing, Y \varnothing, 5$ )
CALL DRAWLINE (5, Xø-1, Yø $+15,18$ )
PAINT (XØ-16, YØ+15)
CALL DRAWPOINT ( $2, \mathrm{X} \varnothing, Y \varnothing, 3$ )
REM HANDS
CALL DRAWLINE (5, Xø $+16, Y \emptyset+6,14$ )
CALL DRAWLINE (5, XØ-19, YØ+4,17)
REM FACE
CALL DRAWLINE (5,XØ, YØ-2,7Ø)
PAINT (XØ, YØ-7) : PAINT (XØ-4, YØ-13)
CALL DRAWLINE ( $4, X \varnothing+5, Y \varnothing-12,14$ )
CALL DRAWLINE (4, XØ-7, YØ-12,6)
CALL DRAWLINE ( $4, \mathrm{X} \varnothing+2, \mathrm{Y} \varnothing-6,4$ )
CALL DRAWPOINT ( $2, X \varnothing, Y \varnothing, 2)$
CALL DRAWPOINT ( $2, \mathrm{X} \varnothing, Y \varnothing, 2$ )
CALL DRAWPOINT ( $2, X \varnothing, Y \varnothing, 2$ )
CALL DRAWLINE ( $1, \mathrm{X} \varnothing+7, Y \varnothing+6,9$ )
$\operatorname{GET}(278,6 \emptyset)-(348,1 \varnothing \emptyset), B U N N Y(1)$
LINE $(278,6 \varnothing)-(348,1 \varnothing \emptyset), \varnothing, B F$
RETURN

BUNNY2:
REM SHIRT
CALL DRAWLINE (4, Xø, Yø, 73)
PAINT (Xø+4, Yø): PAINT(XØ-13,YØ-6)
PAINT (XØ-6, YØ-4)
CALL DRAWPOINT ( $2, \mathrm{X} \varnothing, Y \varnothing, 4$ )
REM PANTS
CALL DRAWLINE ( $7, \mathrm{X} \emptyset+2, \mathrm{Y} \varnothing+3,42$ )
PAINT (Xø $+6, Y \varnothing+5$ )
CALL DRAWPOINT ( $2, \mathrm{X} \varnothing, Y \varnothing, 5$ )
REM FEET
CALL DRAWLINE ( $5, \mathrm{X} \varnothing+12, \mathrm{Y} \varnothing+12,13$ )
CALL DRAWLINE (5,XØ-7,YØ+6, 29)
PAINT (XØ-12, Yø +7 )
CALL DRAWPOINT ( $2, \mathrm{X} \varnothing, Y \varnothing, 5$ )
REM HANDS
CALL DRAWLINE ( $5, \mathrm{X} \varnothing+17, Y \varnothing-8,36$ )
PAINT (XØ+25, Yø-13)
CALL DRAWLINE (5, X0-17, YØ-8, 28)
PAINT (XØ-25,YØ-11)

```
 REM HEAD
 CALL DRAWLINE(5,X\varnothing-1,Y\varnothing-3,51)
 PAINT(X0+3,Y0-6)
 CALL DRAWLINE(4,X0-2,Y0-8,6)
 CALL DRAWLINE(2,XØ+1,YØ-5,6)
 CALL DRAWLINE(3,X0+4,Y\varnothing-8,3)
 CALL DRAWLINE(2,X\varnothing+2,Y\varnothing-8,1)
 CALL DRAWLINE(4,X\varnothing+9,Y\varnothing-11,5)
 CALL DRAWLINE(4,X\varnothing+3,YØ-11,5)
 CALL DRAWLINE(1,X\varnothing+11,YØ+4,4)
 GET(278,6Ø)-(348,1\varnothing\varnothing),BUNNY(625)
RETURN
HEADING:
 COLOR 1,0
 LOCATE 13,25:PRINT "Let's Multiply"
 LOCATE 17,24:PRINT "Please use menus,"
 LOCATE 19,23:PRINT "Click mouse to play"
 GOSUB CLICKIT
RETURN
OPTIONS:
 ID = MENU(\varnothing): ITEM = MENU(l)
 ON ID GOSUB MENUl,MENU2,MENU3,GOODBYE
 ITEM = Ø
RETURN
MENUl :
 MENU l,RULES,l: MENU l,ITEM,2
 RULES = ITEM
RETURN
MENU2:
 MENU 2,PRACTICE,1: MENU 2,ITEM,2
 PRACTICE = ITEM
RETURN
MENU3 :
 MENU 3,SIZE,1: MENU 3,ITEM,2
 SIZE = ITEM
RETURN
GOODBYE :
 WINDOW CLOSE 2: WINDOW 1: MENU RESET
 SCREEN CLOSE 1
 IF ITEM = 2 THEN RUN "LEARNING"
 IF ITEM = 3 THEN SYSTEM
 COLOR 1,\varnothing: CLS
 PRINT "Bye-Bye"
```


## STOP <br> RETURN

```
CLICKIT:
 S$ = ""
 WHILE MOUSE(\varnothing) = Ø AND S$ = ""
 S$ = INKEY$
 WEND
 X = MOUSE(1)
 Y = MOUSE(2)
 WHILE MOUSE(\varnothing)<> \varnothing: WEND: REM RESET
RETURN
```

PLAY:
IF RULES $=1$ THEN GOSUB RULES
CNT $=\varnothing:$ GROUP $=\varnothing$
FOR $Q=1$ TO K
GOSUB GET.VALUES
GOSUB PROBLEM
GOSUB GUESS
GOSUB EVALUATE
NEXT Q
IF CNT $=\mathrm{K}$ THEN GOSUB FLY
RETURN
RULES:
CLS
PRINT
PRINT " Let's learn to multiply with Bunny";
PRINT " Rabitt."
PRINT
PRINT " Please enter your answers just as";
PRINT " You derive them: from"
PRINT " right to left."
LOCATE 9: PRINT " In the problem";TAB(22);
PRINT ", for example, first enter the 1 and"
LOCATE 8,19: PRINT "7"
LOCATE 9,18: PRINT "x3"
LINE (17ø, 79)-(19Ø, 79), 3
LOCATE 10,18: PRINT "21"
LOCATE 11,1: PRINT " then the 2."
PRINT: PRINT
PRINT " I'll give you";K;"problems per";
PRINT " game, and you'll enjoy a"
PRINT " nice surprise if you multiply";
PRINT " perfectly."
LOCATE 2ø,26:PRINT "Click Mouse":
GOSUB CLICKIT
RETURN

```
GET.VALUES:
 CLS
 LOCATE 10,25: PRINT "One moment ..."
 N(2) = PRACTICE: REM PRACTICE NUMBER
 REM HIGHEST OTHER NUMBER
 HN = 9
 IF SIZE = 2 THEN HN = 2\emptyset
 IF SIZE = 3 THEN HN = 50
 IF SIZE = 4 THEN HN = 1\varnothing\emptyset
 IF SIZE = 5 THEN HN = 100\emptyset
 N(1) = INT(RND*HN) + 1
 GOSUB DIGITS
 REM ANSWER
 AW = N(1)*N(2)
RETURN
DIGITS:
 FOR I=1 TO 2
 S$ = MID$(STR$(N(I)),2): L(I) = LEN(S$)
 S$ = RIGHT$("øøø" + S$,4)
 FOR J=1 TO 4
 D(I,J) = VAL(MID$(S$,5-J,1))
 NEXT J,I
RETURN
PROBLEM:
 LOCATE 10,25: PRINT SPACE$(14)
 FOR I=1 TO 2
 X = 350: Y = 35*I - 15
 FOR J=1 TO L(I)
 D = D(I,J)
 PUT(X,Y),NUMBERS(INDEX(D+2)),PSET
 X = X - 70
 NEXT J,I
 PUT(X+6,Y+6),SIGN,PSET
 LINE(348-L(1)*7\emptyset,Y+35)-(404,Y+4\emptyset),1,BF
RETURN
GUESS:
 GOSUB GURGLE
 X = 350: Y = lø\emptyset: GUESS$ = "ON"
 LOCATE 17,11
 PRINT "Please enter your answer, then";
 PRINT " Hit Return."
 G$ = ""
 WHILE GUESS$ = "ON"
 PUT(X+23,Y+7),DISC,PSET
 GOSUB ENTER.DIGIT
 IF GUESS$ = "ON" THEN
```

```
 PUT(X,Y),NUMBERS(INDEX(INX)),PSET
 G$ = RIGHT$(STR$(DIGIT),l) + G$
 X = X-7Ø
 END IF
 WEND
 PUT(X,Y),NUMBERS(1),PSET
RETURN
GURGLE:
 FREQ = 3Ø\emptyset
 FOR G=1 TO 5
 FREQ = 5\emptyset\emptyset-FREQ
 SOUND FREQ,1,5\emptyset
 NEXT G
RETURN
ENTER.DIGIT:
 S$ = ""
 WHILE S$ = ""
 S$ = INKEY$
 WEND
 A = ASC(S$)
 IF A = 13 THEN GUESS$ = "OFF"
 IF A=8 OR A=3\emptyset THEN
 IF G$ = "" THEN SOUND 900,2
 IF G$ <> "" THEN GOSUB MOVE.RIGHT
 GOTO ENTER.DIGIT
 END IF
 IF A <> 13 AND (A < 48 OR A > 57) THEN
 SOUND 90ø,2
 GOTO ENTER.DIGIT
 END IF
 DIGIT = A - 48
 INX = DIGIT + 2
RETURN
MOVE.RIGHT:
 G$ = MID$(G$,2)
 PUT(X,Y),NUMBERS(1),PSET
 X = X+7\varnothing
 PUT(X,Y),NUMBERS(1),PSET
 PUT(X+23,Y+7),DISC,PSET
RETURN
EVALUATE:
 LOCATE 17,11: PRINT SPACE$(42)
 GUESS = VAL(G$)
 ON -(GUESS = AW)+1 GOSUB WRONG, RIGHT
 LOCATE 2ø,26: PRINT "Press any key";
```

```
GOSUB CLICKIT
RETURN
WRONG :
 SOUND 4øø,3: SOUND 300,3: SOUND 2ø0,3
 LOCATE 17,21:
 PRINT "Sorry, the answer is";AW;CHR$(8);"."
RETURN
RIGHT:
 LOCATE 17,27: PRINT "Very Good !"
 X=475: Y=50
 PUT(X,Y),BUNNY(1),PSET
 GOSUB MUSIC
 GOSUB DANCE
 CNT = CNT+1
RETURN
MUSIC:
 GROUP = GROUP + 1
 IF GROUP = K+l THEN GROUP = l
 FIRST = NOTE.GROUP(GROUP-1) + 1
 LAST = NOTE.GROUP(GROUP)
 FOR I = FIRST TO LAST
 SOUND WAIT
 FOR J=2 TO 3
 SOUND F(I),L(I),125,J
 SOUND Ø,.5,,J
 NEXT J
 SOUND RESUME
 NEXT I
RETURN
DANCE:
 V = l
 FOR FLASH = 1 TO 9
 PUT(X,Y),BUNNY(V),PSET
 FOR PAUSE=1 TO 1\varnothing\varnothing\varnothing: NEXT PAUSE
 V = 626-V
 NEXT FLASH
RETURN
FLY:
 CLS
 V = 1: YD(1) = 81: YD(2) = 74
 LOCATE 18,22: PRINT "You got all";K;"right !"
 FOR X=8ø TO 61Ø STEP 5
 PUT(X,7ø),DUCK(DUCK.INDEX(V)), PSET
 PUT(X-76,YD(V)),BANNER(1),PSET
```

```
 FOR PAUSE=1 TO 500: NEXT PAUSE
 PUT(X,7\varnothing),DUCK(DUCK.INDEX(3)),PSET
 PUT(X-76,YD(V)),BANNER(250), PSET
 V = 3-V
 NEXT X
RETURN
DECIDE:
 BUTTON = Ø
 GOSUB DRAWBUTTON
 GOSUB PUSHBUTTON
 COLOR 1,\emptyset
RETURN
DRAWBUTTON:
 LINE (337,77)-(433,91),1,BF
 FOR I=1 TO 2
 CIRCLE (XB(I),YB(I)),12,I*3
 PAINT (XB(I),YB(I)),I*3
 COLOR 1,I*3
 LOCATE 1\varnothing: PRINT PTAB(XB(I)-4);LTS(I);
 NEXT I
RETURN
PUSHBUTTON:
 SOUND 440,2
 GOSUB CLICKIT
 S$ = UCASE$(S$)
 IF S$ = "Y" THEN BUTTON = 1
 IF S$ = "N" THEN BUTTON = 2
 FOR I=1 TO 2
 XD = ABS(X-XB(I)): YD = ABS(Y-YB(I))
 IF XD<13 AND YD<7 THEN BUTTON = I: I=2
 NEXT
 IF BUTTON = Ø THEN PUSHBUTTON
RETURN
```

REM ZERO
DATA Ø, 22, $-8,4,-37, \varnothing,-8,-4, \varnothing,-22,8,-4,37, \varnothing, 8,4$
DATA $\varnothing, 16,-6,3,-19, \varnothing,-6,-3, \varnothing,-16,6,-3,19, \varnothing, 6,3$
REM ONE
DATA $\varnothing, 26,9, \varnothing, \varnothing, 4,-29, \varnothing, \varnothing,-4,9, \varnothing, \varnothing,-21,-7, \varnothing$
DATA $\varnothing,-2,7,-3,11, \varnothing$
REM TWO
DATA $-26, \varnothing,-6,3, \varnothing, 6,42, \varnothing, \varnothing, 4,-53, \varnothing, \varnothing,-11,12,-6$
DATA $3 \varnothing, \varnothing, \varnothing,-9,-29, \varnothing,-8,4,-5, \varnothing, \varnothing,-4,8,-4,37, \varnothing$
DATA $8,4, \varnothing, 8,-10,5$

## REM THREE

DATA $14,7, \varnothing, 7,-8,4,-37, \varnothing,-8,-4, \varnothing,-3,9, \varnothing, 4,3$
DATA $23, \varnothing, 6,-4, \varnothing,-1,-6,-4,-14, \varnothing, \varnothing,-4,18,-9$
DATA $-4 \varnothing, \varnothing, \varnothing,-4,53, \varnothing, \varnothing, 5,-14,7$
REM FOUR
DATA $\varnothing, 15,11, \varnothing, \varnothing,-13,16, \varnothing, \varnothing,-4,-16, \varnothing, \varnothing,-13$
DATA $-11, \varnothing, \varnothing, 13,-15, \varnothing, \varnothing,-13,-11, \varnothing, \varnothing, 17,26, \varnothing$
REM FIVE
DATA $32, \varnothing, 1 \varnothing, 5, \varnothing, 9,-1 \varnothing, 5,-35, \varnothing,-8,-4, \varnothing,-3,9, \varnothing$
DATA $4,3,25, \varnothing, 4,-2, \varnothing,-7,-4,-2,-3 \varnothing, \varnothing,-8,-4$
DATA $\varnothing,-11,53, \varnothing, \varnothing, 4,-42, \varnothing, \varnothing, 7$
REM SIX
DATA $23, \varnothing, 4,2, \varnothing, 5,-4,2,-23, \varnothing,-4,-2, \varnothing,-5,4,-2$
DATA $34, \varnothing, 8,4, \varnothing, 9,-8,4,-37, \varnothing,-8,-4, \varnothing,-17,18,-9$
DATA $35, \varnothing, \varnothing, 4,-28, \varnothing,-14,7, \varnothing, 2$
REM SEVEN
DATA $53, \varnothing, \varnothing, 5,-1, \varnothing,-34,17,1, \varnothing, \varnothing, 8,-11, \varnothing, \varnothing,-1 \varnothing$
DATA 32,-16,-4ø, $0, \varnothing,-4$
REM EIGHT
DATA $19, \varnothing, 6,3, \varnothing, 3,-6,3,-19, \varnothing,-6,-3, \varnothing,-3,6,-3$
DATA $19, \varnothing, 6,3, \varnothing, 3,-6,3,-19, \varnothing,-6,-3, \varnothing,-3,6,-3$
DATA $37, \varnothing, 8,4, \varnothing, 7,-8,4,8,4, \varnothing, 7,-8,4,-37, \varnothing$
DATA $-8,-4, \varnothing,-7,8,-4,-8,-4, \varnothing,-7,8,-4$
REM NINE

> DATA $23, \varnothing, 4,2, \varnothing, 5,-4,2,-23, \varnothing,-4,-2, \varnothing,-5,4,-2$
> DATA $37, \varnothing, 8,4, \varnothing, 15,-22,11,-31, \varnothing, \varnothing,-4,26, \varnothing$
> DATA $16,-9,-34, \varnothing,-8,-4, \varnothing,-9,8,-4$

## REM X SIGN

DATA $34,17, \varnothing, 3,-11, \varnothing,-34,-17, \varnothing,-3,11, \varnothing$
DATA $-34,17, \varnothing, 3,11, \varnothing, 34,-17, \varnothing,-3,-11, \varnothing$
REM DUCK \#l
DATA $3, \varnothing,-1, \varnothing, \varnothing, 2,-1, \varnothing, \varnothing, 2,3, \varnothing, \varnothing, 1,7, \varnothing, \varnothing,-1$
DATA $2, \varnothing, \varnothing,-1,7, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,1, \varnothing,-2, \varnothing$
DATA $\varnothing, 1,-5, \varnothing, \varnothing,-1,-5, \varnothing, \varnothing, 1,-4, \varnothing, \varnothing, 1,-4, \varnothing$
DATA $\varnothing, 1,-13, \varnothing, \varnothing,-1,-6, \varnothing, \varnothing,-1,-5, \varnothing, \varnothing,-1$
DATA $-4, \varnothing, 9, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-2,1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1$
DATA $1, \varnothing, \varnothing,-2,-1, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-2,-1, \varnothing, \varnothing,-2$
DATA $1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1$
DATA $1, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,2, \varnothing, \varnothing,-2,2, \varnothing, \varnothing, 1,1, \varnothing$
DATA $\varnothing, 1,1, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1$
DATA $-4,-1,-3, \varnothing,-3,1,-2,2,-2,3,-1,4,1,5,2,6$
DATA $1,7,0,7,18,4,19,4$

## REM DUCK \#2

DATA $5, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,5, \varnothing, \varnothing, 1,7, \varnothing, \varnothing,-1,2, \varnothing$ DATA $-1, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing,-1,-5, \varnothing, \varnothing, 1,-4, \varnothing, \varnothing, 1,-5, \varnothing$
DATA $\varnothing,-1,-5, \varnothing, \varnothing,-1,-1 \varnothing, \varnothing, \varnothing, 1,-5, \varnothing, \varnothing, 1,-11, \varnothing$
DATA $2, \varnothing, \varnothing, 1,6, \varnothing, \varnothing, 1,3, \varnothing, \varnothing, 2,-2, \varnothing, \varnothing, 1,-3, \varnothing$
DATA $\varnothing, 1,-4, \varnothing, \varnothing, 1,-1, \varnothing, 1 \varnothing, \varnothing, \varnothing,-1,5, \varnothing, \varnothing,-1,4, \varnothing$
DATA $\varnothing,-1,3, \varnothing, \varnothing,-1,4, \varnothing, \varnothing,-1,15,-3,16,-3,1, \varnothing$
DATA $-16,0,-15,-1,0,1,5,0$

## REM BANNER

DATA $\varnothing,-3,1, \varnothing, \varnothing,-1,5, \varnothing, \varnothing,-1,4, \varnothing, \varnothing,-1,6, \varnothing, \varnothing,-1$
DATA $\varnothing, 6,1, \varnothing, \varnothing, 2,1, \varnothing, \varnothing, 1,1, \varnothing,-2, \varnothing, \varnothing, 1,-3, \varnothing, \varnothing, 1$
DATA $-4, \varnothing, \varnothing, 1,-8, \varnothing, \varnothing, 1,-11, \varnothing, \varnothing,-1,-8, \varnothing, \varnothing,-1$
DATA $-6, \varnothing, \varnothing,-1,-13, \varnothing, 1, \varnothing, \varnothing,-2,1, \varnothing, \varnothing,-3,-1, \varnothing$
DATA $\varnothing,-4,-1, \varnothing, 13, \varnothing, \varnothing, 1,5, \varnothing, \varnothing, 1,6, \varnothing, \varnothing, 1,1 \varnothing, \varnothing$
DATA $\varnothing,-1,3, \varnothing, 4, \varnothing, \varnothing,-1,7, \varnothing, \varnothing, 1,14, \varnothing$
DATA $\varnothing, 6,1, \varnothing, \varnothing,-6,1, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,1, \varnothing$
DATA $\varnothing, 1,1, \varnothing, \varnothing, 2,1, \varnothing, \varnothing,-6,-1, \varnothing, \varnothing, 3,1, \varnothing, \varnothing, 4$
DATA $-1, \varnothing, 3, \varnothing,-1, \varnothing, \varnothing,-4,-1, \varnothing, \varnothing,-1,-4, \varnothing, \varnothing, 3,-1, \varnothing$
DATA $\varnothing,-2,1, \varnothing, \varnothing, 3,4, \varnothing, \varnothing,-1,1, \varnothing$
DATA $5, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,-6, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing, 2,1, \varnothing, \varnothing, 1$
DATA 5, $\varnothing, \varnothing, 4,1, \varnothing, \varnothing,-4,1, \varnothing$

## REM BUNNYI

DATA $\varnothing,-1,2, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,4, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1,2, \varnothing$
DATA $\varnothing, 1,3, \varnothing, \varnothing, 1,3, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1,-4, \varnothing$
DATA $\varnothing,-1,-2, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing, 3$
DATA $1, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 2,-5, \varnothing, \varnothing, 1,-11, \varnothing, \varnothing,-1,-4, \varnothing$
DATA $\varnothing,-1,1, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing, 1$
DATA $-2, \varnothing, \varnothing, 1,-5, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing,-1,3, \varnothing, \varnothing,-1,3, \varnothing$
DATA $\varnothing,-1,4, \varnothing, \varnothing,-1,4, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,3, \varnothing, \varnothing,-1$
DATA $1, \varnothing, 4, \varnothing, \varnothing, \varnothing, 2,-1,4,-2,-3,-1,-5,-2,-9,2$
DATA $-8,1,-8, \emptyset,-13,3,-13,2,-14,2$
DATA $1, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 2,-1, \varnothing, \varnothing, 1$
DATA $-2, \varnothing, \varnothing, 1,-6, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing, 1,-6, \varnothing, \varnothing,-1,-4, \varnothing$
DATA $\varnothing,-1,-1, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1$
DATA $1, \varnothing, \varnothing,-1, \varnothing, 1,13, \varnothing, \varnothing,-1,2, \varnothing, \varnothing, 13, \varnothing, 12, \varnothing, 11$
DATA $-1,1 \varnothing,-2,9,14, \varnothing, \varnothing, 1,4, \varnothing, \varnothing, 1,3, \varnothing,-1, \varnothing, \varnothing, 1$
DATA $-2, \varnothing, \varnothing, 1,-9, \varnothing, \varnothing,-1,-8, \varnothing, \varnothing,-1,-5, \varnothing, \varnothing,-1,-3, \varnothing$
DATA 7, $0,26,18,25,17,24,17,28,17,27,16$
DATA $-3, \varnothing, \varnothing, 1,-5, \varnothing, \varnothing, 1,-8, \varnothing, \varnothing, 1,-1 \varnothing, \varnothing, \varnothing,-1,-2, \varnothing$
DATA $1, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,7, \varnothing, \varnothing,-1,11, \varnothing, \varnothing, 1,6, \varnothing$
DATA $-27,17,-26,16,-25,16,2,0,0,1,3, \varnothing, \varnothing,-1,1, \varnothing$
DATA $-3, \varnothing, \varnothing,-1,2, \varnothing,-1, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing,-1,-1, \varnothing$
DATA $2, \varnothing,-3, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1,-2, \varnothing, 1, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1$
DATA $3, \varnothing, \varnothing,-1,2, \varnothing,-2, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing,-1,2, \varnothing$
DATA $1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,3, \varnothing, \varnothing,-1,3, \varnothing, \varnothing,-1,3, \varnothing$
DATA $\varnothing,-1,1, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-1$
DATA $-1, \varnothing, \varnothing,-2,1, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-2,-1, \varnothing$

DATA $\varnothing,-1,-1, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 3$
DATA $-2, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing,-1,-4, \varnothing, \varnothing, 1,-4, \varnothing, \varnothing, 1,-3, \varnothing$
DATA $\varnothing, 1,-3, \varnothing, 1, \varnothing, \varnothing, 1,7, \varnothing, \varnothing,-1,3, \varnothing, \varnothing,-1,3, \varnothing, \varnothing, 2$
DATA $-1, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-1, \varnothing, 1, \varnothing, \varnothing, 1,2, \varnothing$
DATA $\varnothing, 1,3, \varnothing, \varnothing, 1,1, \varnothing, 2, \varnothing, \varnothing,-2,1, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1$
DATA $1, \varnothing, \varnothing,-1, \varnothing, 1,-2, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1$
DATA $-3, \varnothing, \varnothing, 1,-4, \varnothing, 2, \varnothing, \varnothing,-1,1, \varnothing$
DATA $1, \varnothing, \varnothing,-1,2, \varnothing,-5, \varnothing, 2,-4,3,-4$
DATA $7,-9,6,-9,-1,-9, \varnothing,-9,2, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 2,-1, \varnothing$
DATA $\varnothing,-1,-1, \varnothing, \varnothing,-1,-2, \varnothing$

## REM BUNNY 2

DATA $\varnothing,-2,3, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,2, \varnothing$ DATA $\varnothing,-1,2, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,5, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,-2, \varnothing$ DATA $\varnothing, 1,-3, \varnothing, \varnothing, 1,-3, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 3,1, \varnothing$ DATA $\varnothing, 1,1, \varnothing, \varnothing, 2,-1, \varnothing, \varnothing,-1,-9, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing,-1$ DATA $-1, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing,-2,1, \varnothing, \varnothing,-2,-3, \varnothing, \varnothing,-1,-3, \varnothing$ DATA $\varnothing,-1,-3, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing,-1,-1, \varnothing, 2, \varnothing$ DATA $\varnothing,-1,1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing, 1,3, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1,4, \varnothing$ DATA $\varnothing, 1,2, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,1, \varnothing,-14,-5,-13,-6,12,-5$
DATA $11,-6,7, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,3, \varnothing, \varnothing, 1,3, \varnothing$
DATA $\varnothing, 1,1, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-8, \varnothing, \varnothing,-1,-1, \varnothing$
DATA $\varnothing,-2,-3, \varnothing, \varnothing,-1,-6, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing, 3,-2, \varnothing, \varnothing,-1$
DATA $-1, \varnothing, \varnothing,-3,-4, \varnothing, \varnothing,-1,-1, \varnothing, 1, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1$
DATA $4, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1,4, \varnothing, \varnothing, 4,1,5,2,6,-3,5,-2,6$
DATA $9, \varnothing, \varnothing, 1,3, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1,-4, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-1$
DATA $-4, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing, 3,1, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-2, \varnothing$
DATA $\varnothing,-1,-2, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-1,-2, \varnothing$
DATA $\varnothing,-1,-1, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-1,-1, \varnothing, 1, \varnothing, \varnothing,-1,4, \varnothing$
DATA $\varnothing, 1,2, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1,3, \varnothing, 25,15,-18,4,-17,3$
DATA $-9,6,-9,7$
DATA $1, \varnothing, \varnothing,-1,-1, \varnothing, 2, \varnothing, \varnothing,-1,-1, \varnothing, 2, \varnothing, \varnothing,-1,2, \varnothing$
DATA $\varnothing,-1,4, \varnothing, \varnothing, 1,2, \theta,-2, \theta, \varnothing,-1,1, \varnothing, \varnothing,-1,2, \varnothing$
DATA $\varnothing, 1,2, \varnothing,-2, \varnothing, \varnothing,-2,3, \varnothing,-6, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing,-1$
DATA $-1, \varnothing, 1, \varnothing, \varnothing, 2,-1, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1$
DATA $-2, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-2,1, \varnothing, \varnothing,-1,1, \varnothing$
DATA $-1, \varnothing, \varnothing, 1,-4, \varnothing, \varnothing, 1,-5, \varnothing, 2, \varnothing, \varnothing, 2,-2, \varnothing, \varnothing, 1$
DATA $-1, \varnothing, 1, \varnothing, \varnothing,-1,2, \varnothing, \varnothing, 1,1, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,3, \varnothing$
DATA $3, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,2, \varnothing$
DATA $\varnothing,-3,2, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1$
DATA $-2, \varnothing, \varnothing, 1,-3, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-2, \varnothing$
DATA $\varnothing,-1,-1, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-1,-2, \varnothing$
DATA $\varnothing, 1,1, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 2,-1, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 2,-4, \varnothing$
DATA $\varnothing, 1,1, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,2, \varnothing,-1, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing, 1$
DATA $-1, \varnothing, 3, \varnothing,-1, \varnothing, \varnothing,-1,-3, \varnothing, 1, \varnothing, \varnothing, 1$
DATA $1, \varnothing, 1, \varnothing, \varnothing,-1,-1, \varnothing, 1, \varnothing, 2, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,1, \varnothing$
DATA $-1, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-1,-1, \varnothing, 4, \varnothing, \varnothing, 1,1, \varnothing,-4, \varnothing$

## Fun with Fractions

Fractions are always tougher than they look. How can two fractions like $1 / 4$ and $5 / 9$ possibly be added together? Well, with a little practice and patience, students will quickly find that the above problem is much easier than it looks.
"Fun with Fractions" has two levels of difficulty. The easy level makes the bottom number (denominator) in both fractions the same value. To solve the problem, only the two top numbers (the numerators) must be added together. If the problem was, for example, $1 / 4+2 / 4=$ ?, the answer would be $3 / 4$. Again, only the two top numbers have to be added together. The denominator stays the same.

The more difficult level has different values for the two denominators. Since these numbers are not the same, they cannot be added together without some adjustment. For instance, suppose the problem was $1 / 3+1 / 2=$ ?. To solve this, we will have to find some kind of relationship between the two values, some kind of common denominator.

The best approach is to multiply each fraction by 1 , but with a little twist. First, multiply $1 / 3$ by $2 / 2$, which is the same as multiplying by 1 since 2 divided by 2 equals 1 . The new fraction is $2 / 6$. Now, multiply $1 / 2$ by $3 / 3$, and the result is $3 / 6$.

Our original equation $1 / 3+1 / 2=$ ? has now become $2 / 6+3 / 6=$ ?, which quickly yields the desired result of $5 / 6$. The key to solving an equation with different denominators, then, is to multiply each fraction by 1 , using the denominator of the other fraction divided by itself.

## Program 3-4. Fun with Fractions <br> Save using the filename FRACTIONS

```
REM FUN WITH FRACTIONS
 CLEAR ,35000&
 GOSUB INITIALIZE
PLAYGAME:
 GOSUB PLAY
PLAYAGAIN:
 CLS: LOCATE 10,21: PRINT "Play Again ? ";
 GOSUB DECIDE
 IF BUTTON = 1 THEN PLAYGAME
 GOSUB GOODBYE
END
```

INITIALIZE:
GOSUB SETSCREEN
GOSUB KEYVALUES
GOSUB DIXIE
GOSUB SETMENUS
GOSUB SETCOLORS
GOSUB DRAWSHAPES
GOSUB HEADING
RETURN

## SETSCREEN:

SCREEN 1,640,2ØØ, 3,2
WINDOW 2,"Fun with Fractions", $\varnothing, 1$
RETURN
KEYVALUES:
DEFINT B-F,H-Z
RANDOMIZE TIMER
$K=5:$ REM PROBLEMS IN A SET
DIM NUMBERS (4181), DUCK (781), LITTLE.X(50)
DIM PIGLET (125Ø), SIGNS (4ØØ), CURSOR (75)
DIM TIMBRE(255)
DIM F(113),L(113), INDEX (11)
$T \$(1)=$ "Numerator": T\$(2) = "Denominator"
REM DIGIT INDICES
FOR I=1 TO 11
$\operatorname{INDEX}(I)=1+(I-1) * 38 \emptyset$
NEXT
REM DUCK INDICES
FOR I=1 TO 3
$\operatorname{DUCK} . \operatorname{INDEX}(I)=1+(I-1) * 26 \emptyset$
NEXT
REM BUTTON HOLES \& LETTERS
$\mathrm{XB}(1)=364: \quad \mathrm{YB}(1)=84$
$\mathrm{XB}(2)=406: \quad \mathrm{YB}(2)=84$
LT\$(1) = "Y": LT\$(2) = "N"
RETURN

DIXIE:
DATA $196,1,165,1,131,2,131,2,131,1,147,1,165,1$ DATA $175,1,196,2,196,2,196,2,165,2,220,2,220,2$ DATA 220,2,196,2,220,2,196,2,220,1,247,1,262,1 DATA $294,1,330,6,262,1,196,1,262,6,196,1,165,1$ DATA $196,6,147,1,165,1,131,4,196,1,165,1,131,2$ DATA 131,2,131,1,147,1,165,1,175,1,196,2,196,2 DATA 196,2,165,2,220,2,220,2,220,2,196,2,220,2 DATA $196,2,220,1,247,1,262,1,294,1,330,6,262,1$ DATA $196,1,262,6,196,1,165,1,196,6,147,1,165,1$ DATA $131,4,196,1,196,1,262,2,330,2,294,2,262,2$
DATA 220, 2, 262, 4, 220, 2, 294,6, 220, 2, 294, 6, 196, 2

```
 DATA 262,2,330,2,294,2,262,2,220,2,247,2,262,2
 DATA 220,2,196,2,165,2,262,2,165,2,165,2,147,4
 DATA 165,2,131,6,165,2,147,6,220,2,196,2,165,2
 DATA 262,2,330,2,294,2,262,4,165,2,131,6,165,2
 DATA 146,6,220,2,196,2,165,2,330,3,262,2,294,2
 DATA 262,4
 LOCATE 10,25: PRINT "One moment ..."
 M! = 6.2838/256
 FOR I=\varnothing TO 255
 TIMBRE(I) = 48*SIN(2*I*M!)
 NEXT
 WAVE 2,TIMBRE: WAVE 3,TIMBRE
 FOR I=1 TO 113
 READ F(I),L(I)
 NEXT
 REM NOTE GROUPS
 DATA 32,64,91,102,113
 FOR I=1 TO 5: READ NOTE.GROUP(I): NEXT
RETURN
SETMENUS:
 DATA 2, Rules, Yes, No
 DATA 2, Version, With Common Denominator
 DATA Without Common Denominator
 DATA 2, Operation, Addition, Subtraction
 DATA 3, Stop, Go to BASIC
 DATA Go to Learning Menu, Go to System
 FOR I=1 TO 4
 READ V
 FOR J=\emptyset TO V
 READ TITLES
 IF J<>\varnothing THEN TITLE$ = SPACE$(3) + TITLE$
 STATUS = 1
 IF I<>4 AND J=l THEN STATUS = 2
 MENU I,J,STATUS,TITLE$
NEXT J,I
RULES = 1: VERSION = 1: OPERATION = 1
RETURN
SETCOLORS:
 REM PINK, FLESH, RED, BLUE
 PALETTE 4,1,.51,.64
 PALETTE 5,1,.87,.73
 PALETTE 6,.93,.2,0
 PALETTE 7,.4,.6,1
RETURN
DRAWSHAPES:
 CLS
```

```
 MENU ON
 ON MENU GOSUB OPTIONS
 FOR Z=1 TO ll
 ON Z GOSUB BK,NØ,N1,N2,N3,N4,N5,N6,N7,N8,N9
 GOSUB GET.IT
 NEXT Z
 GOSUB LITTLE.X
 GOSUB SIGNS.CURSOR
 GOSUB DUCKl
 GOSUB DUCK2
 GOSUB PIGLET1
 GOSUB PIGLET2
RETURN
BK:
 XØ=313: YØ=8Ø
 Xl=286: X2=340: Yl=65: Y2=95
 GOSUB GET.IT
RETURN
GET.IT:
 GET(X1,Y1)-(X2,Y2),NUMBERS(INDEX(Z))
 PUT(Xl,Yl),NUMBERS(l),PSET: REM ERASE
RETURN
NØ:
 CALL DRAWLINE(3,X\emptyset+26,YØ-11,8)
 CALL DRAWLINE(3,X\varnothing+15,Yø-8,8)
 PAINT(X\emptyset+2Ø,YØ)
RETURN
SUB DRAWLINE(K,X.C,Y.C,T) STATIC
 COLOR K
 PSET(X.C,Y.C)
 FOR I=1 TO T
 READ X,Y
 LINE -STEP(X,Y)
 NEXT
END SUB
SUB DRAWPOINT(K,X.C,Y.C,T) STATIC
 COLOR K
 FOR I=1 TO T
 READ X,Y
 PSET(X.C+X,Y.C+Y)
 NEXT
END SUB
```

```
N1:
 CALL DRAWLINE(3,XØ+5,YØ-15,11)
 PAINT (XØ}+1,Y\emptyset+1
RETURN
N2:
 CALL DRAWLINE (3,XØ+16,YØ+2, 19)
 PAINT(X\varnothing+1,YØ+1)
RETURN
N3:
 CALL DRAWLINE(3,X0+12,YØ-3, 20)
 PAINT(X\varnothing+4,YØ-1)
RETURN
N4:
 CALL DRAWLINE (3,X0-1, YØ, 14)
 PAINT(X\varnothing+2,Y\varnothing)
RETURN
N5:
 CALL DRAWLINE(3,X0}-16,YØ-4,20
 PAINT(XØ,YØ-2)
RETURN
N6:
 CALL DRAWLINE(3,XØ-12,YØ+2,8)
 CALL DRAWLINE(3,X\varnothing-16,YØ-2,13)
 PAINT(X\varnothing+2,Y\varnothing)
RETURN
N7:
 CALL DRAWLINE(3,X\emptyset-27,YØ-15,11)
 PAINT(XØ,YØ)
RETURN
N8:
 CALL DRAWLINE (3, X\varnothing-1\emptyset,Y\emptyset+2,8)
 CALL DRAWLINE(3,X\varnothing-1\varnothing,Y\emptyset-11,8)
 CALL DRAWLINE(3,X0-19,Yס-15,14)
 PAINT (X\varnothing, YØ)
RETURN
N9:
 CALL DRAWLINE (3,X0-12,Y0-11,8)
 CALL DRAWLINE(3,X0-19,Y0-15,12)
 PAINT(XØ,YØ)
RETURN
```

```
LITTLE.X:
 CALL DRAWLINE(2,X\varnothing-3,YØ-3,3)
 CALL DRAWLINE(2,X\emptyset+3,Y\emptyset-3,3)
 GET(X\varnothing-3,Y\varnothing-3)-(X\varnothing+4,Y\varnothing+3),LITTLE.X
 PUT(XI,Y1),NUMBERS(1),PSET
RETURN
SIGNS.CURSOR:
 REM -
 LINE(293,78)-(333,82),1,BF
 GET(293,71)-(333,89),SIGNS(2øø)
 REM +
 LINE (307,71)-(319,89),1,BF
 GET(293,71)-(333,89),SIGNS(1)
 PUT(XI,Yl),NUMBERS(1),PSET
 REM CURSOR
 LINE (X\varnothing-6,Y\varnothing-8)-(X\varnothing+6,Y\varnothing+8), 6, BF
 GET(X\varnothing-6,Y\varnothing-8) - (X }\varnothing+6,Y\emptyset+8),CURSO
 PUT(XI,Y1),NUMBERS(1),PSET
RETURN
DUCKl:
 XØ=35\emptyset: Yø=4\varnothing
 CALL DRAWLINE(3,X\varnothing,Yø,73)
 PAINT (X\varnothing-9,YØ+4)
 PAINT (XØ+17,YØ+4)
 CALL DRAWPOINT(2,XØ,YØ,12)
 REM BILL
 COLOR 1
 PSET(X\varnothing+23,Y\varnothing+5)
 LINE - STEP(}0,1): LINE - -STEP(4, \varnothing
 GET(319,3\emptyset)-(379,50), DUCK(1)
 LINE(319,30)-(379,50),\varnothing,BF
RETURN
DUCK2:
 CALL DRAWLINE(3,XØ,YØ,49)
 PAINT(X\varnothing-7,Y\varnothing-1): PAINT(X\varnothing+15,Y\varnothing-2)
 CALL DRAWPOINT(2,X\emptyset,YØ,5)
 CALL DRAWLINE(1,X\emptyset+22,Y\emptyset-2,2)
 GET(319,30)-(379,50),DUCK(261)
 LINE(319,3\emptyset)-(379,50),\varnothing,BF
 GET(319,30)-(379,50),DUCK(521): REM BLANK
RETURN
PIGLETl:
 REM BOTTOM
 XØ=313: YØ=8Ø
 CALL DRAWLINE(4,XØ,YØ,7Ø)
```

```
 PAINT(XØ-6,YØ+3)
 CALL DRAWPOINT(2,X\emptyset,YØ, 13)
 REM TAIL
 CALL DRAWPOINT(1,XØ-21,YØ+3,14)
 REM VEST
 CALL DRAWLINE(7,XØ,YØ-1,53)
 PAINT(X\varnothing+4,YØ-2)
 CALL DRAWPOINT(2,XØ,YØ,4)
 REM ARMS
 CALL DRAWLINE(4,XØ+7,YØ-1,18)
 PAINT(XØ+11,YØ-2)
 CALL DRAWLINE(4,XØ+22,YØ-4,7)
 CALL DRAWPOINT(2,X\varnothing,Y\varnothing,4)
 CALL DRAWPOINT(2,X\emptyset,YØ, 2)
 REM HEAD
 CALL DRAWLINE (4, X0,Y0-8,49)
 PAINT(XØ+8,YØ-11): PAINT(XØ-3,YØ-11)
 CALL DRAWLINE(5,X0+17,YØ-8,9)
 CALL DRAWPOINT(2,XØ+17,YØ-8,14)
 GET(278,60)-(348,10\emptyset), PIGLET(1)
 LINE(278, 6Ø)-(348, 1\varnothing\varnothing), Ø, BF
RETURN
PIGLET2:
 REM BOTTOM
 CALL DRAWLINE (4,XØ,YØ+2,84)
 PAINT(XØ, YØ+5): PAINT(XØ+13,YØ+4)
 CALL DRAWPOINT(2,X0,YØ, 13)
 REM TAIL
 CALL DRAWPOINT(1, X\emptyset-2Ø,YØ+6,14)
 REM VEST
 CALL DRAWLINE(7, XØ,YØ+1,45)
 PAINT(XØ+4,YØ-1)
 CALL DRAWPOINT(2,X\emptyset,YØ, 5)
 REM ARMS
 CALL DRAWLINE(4,XØ+2,YØ-1,15)
 PAINT(X\varnothing+6, YØ-2)
 CALL DRAWLINE(4,X0+13,YØ-6,11)
 CALL DRAWPOINT(2,X0,YØ , 4)
 REM HEAD
 CALL DRAWLINE(4, X0-2,Y0-4,57)
 PAINT(XØ-4,YØ-8): PAINT(XØ-18,YØ-7)
 CALL DRAWPOINT(2,XØ,YØ,9)
 REM SNOOT
 CALL DRAWLINE(5,XØ+1,YØ-9,8)
 PAINT(XØ+4,YØ-9)
 CALL DRAWPOINT (2,X0,YØ, 4)
 GET(278,6Ø)-(348, 1ØØ), PIGLET(625)
RETURN
```

```
HEADING:
 COLOR 1,\varnothing
 LOCATE 13,23:PRINT "Fun with Fractions"
 LOCATE 17,24:PRINT "Please use menus,"
 LOCATE 19,23:PRINT "Click mouse to play"
 GOSUB CLICKIT
RETURN
OPTIONS:
 ID = MENU(\varnothing): ITEM = MENU(1)
 ON ID GOSUB MENU1,MENU2,MENU3,GOODBYE
 ITEM = \varnothing
RETURN
MENU1 :
 MENU 1,RULES,1: MENU 1,ITEM,2
 RULES = ITEM
RETURN
MENU2:
 MENU 2,VERSION,1: MENU 2,ITEM,2
 VERSION = ITEM
RETURN
MENU3 :
 MENU 3,OPERATION,1: MENU 3,ITEM,2
 OPERATION = ITEM
RETURN
GOODBYE:
 WINDOW CLOSE 2: WINDOW 1: MENU RESET
 SCREEN CLOSE l
 IF ITEM = 2 THEN RUN "LEARNING"
 IF ITEM = 3 THEN SYSTEM
 COLOR 1,0: CLS
 PRINT "Bye-Bye"
 STOP
RETURN
CLICKIT:
 S$ = ""
 WHILE MOUSE(\varnothing) = Ø AND S$ = ""
 S$ = INKEY$
 WEND
 X = MOUSE(1)
 Y = MOUSE(2)
 WHILE MOUSE(\varnothing)<> \varnothing: WEND: REM RESET
RETURN
```

```
PLAY:
 IF RULES = 1 THEN GOSUB RULES
 CNT = Ø: GROUP = Ø
 FOR Q=l TO K
 GOSUB GET.VALUES
 GOSUB PROBLEM
 IF VERSION = 2 THEN GOSUB RATIO
 GOSUB GUESS
 GOSUB EVALUATE
 NEXT Q
 IF CNT = K THEN GOSUB FLY
RETURN
RULES:
 CLS
 PRINT
 PRINT " Let's learn to add and subtract";
 PRINT " fractions with Little"
 PRINT " Piglet."
 PRINT
 PRINT " Two versions of the game are";
 PRINT " available: one where the"
 PRINT " fractions have a common denominator,";
 PRINT " and the other where"
 PRINT " they don't.";
 PRINT: PRINT
 PRINT " I'll give you";K;"problems per";
 PRINT " game, and you'll enjoy a"
 PRINT " nice surprise if you tally";
 PRINT " perfectly."
 LOCATE 20,26:PRINT "Click Mouse";
 GOSUB CLICKIT
RETURN
GET . VALUES :
 CLS
 LOCATE 10,25: PRINT "One moment ..."
 SEARCH$ = "ON"
WHILE SEARCH$ = "ON"
 FOR I=1 TO 2
 N(I) = INT(RND*8) + 1
 D(I) = INT(RND*8) +1
 NEXT I
 IF VERSION = 1 THEN D(2) = D(1)
 IF NOT(VERSION = 2 AND D(1) = D(2)) THEN
 SEARCH$ = "OFF"
 END IF
WEND
IF N(2)/D(2)>N(1)/D(1) THEN
```

```
 SWAP N(2),N(1): SWAP D(2),D(1)
END IF
REM ANSWER
 IF OPERATION=1 THEN SIGN = l ELSE SIGN = -l
 IF VERSION = 1 THEN
 AW(1) = N(1) + SIGN*N(2)
 AW(2) = D(1)
 ELSE
 AW(1) = N(1)*D(2) + SIGN*N(2)*D(1)
 AW(2) = D(1)*D(2)
 END IF
 IF AW(1) > 99 THEN GET.VALUES
 AW = AW(1)/AW(2)
RETURN
PROBLEM:
 CLS
 FOR I=l TO 2
 X = 21|*I - l60
 PUT(X,35),NUMBERS(INDEX(N(I)+2)),PSET
 PUT(X,79),NUMBERS(INDEX(D(I)+2)),PSET
 LINE(X,7Ø)-(X+54,74),1,BF
 NEXT I
 REM SIGN
 S = OPERATION
 Xl = l61: X2 = 383
 IF VERSION = 2 THEN Xl = 209: X2 = 42\emptyset
 PUT(Xl,63),SIGNS(199*S-198),PSET
 REM =
 LINE (X2,65)-(X2+25,69),1,BF
 LINE (X2,75)-(X2+25,79),1,BF
 REM BAR FOR ANSWER
 LINE(465,70)-(585,74),1,BF
RETURN
RATIO:
 LOCATE 17,15
 PRINT "Please enter a ratio to multiply by."
 FOR I=1 TO 2
 X = 210*I-82
 PUT(X-15,69),LITTLE.X,PSET
 LINE(X,30)-(X+72,114),2,BF
 LINE(X+4,32)-(X+68,112),0,BF
 LINE(X+9,70)-(X+63,74),2,BF
 PUT(X+31,40),CURSOR, PSET
 LOCATE 19,28: PRINT "Ratio: 3": GOSUB GURGLE
 R(I) = \varnothing
 WHILE R(I) < l
 S$ = INKEY$
```

```
 R(I) = VAL(S$)
 WEND
 PUT(X+9,35),NUMBERS(INDEX(R(I) +2)), PSET
 PUT(X+9,79),NUMBERS(INDEX(R(I)+2)), PSET
 NEXT I
 GOSUB CLEAR.LINES
 REM CHECK ENTRY
 IF D(1)*R(1) <> D(2)*R(2) THEN
 GOSUB NOT.COMMON
 GOTO RATIO
 END IF
RETURN
GURGLE:
 FREQ = 3ø\emptyset
 FOR G=1 TO 5
 FREQ = 5\emptyset\emptyset-FREQ
 SOUND FREQ,1,5Ø
 NEXT G
RETURN
CLEAR.LINES:
 LOCATE 17,11: PRINT SPACE$(47)
 LOCATE 19,26: PRINT SPACE$(13)
RETURN
NOT.COMMON:
 SOUND 4øø,3: SOUND 3øø,3: SOUND 2øø,3
 LOCATE 17,16:
 PRINT "WARNING: No common denominator l"
 LOCATE 19,26: PRINT "Press any key"
 GOSUB CLICKIT
 GOSUB CLEAR.LINES
RETURN
GUESS:
 FOR I=1 TO 2
 GOSUB GURGLE
 LOCATE 17,11
 PRINT "Please enter your ";TS(I);", then";
 PRINT " Hit Return."
 X = 465: Y = 44*I - 9
 G$ = "": GUESS$ = "ON"
 WHILE GUESS$ = "ON"
 PUT(X,Y+7) ,CURSOR, PSET
 GOSUB ENTER.DIGIT
 IF GUESS$ = "ON" THEN
 PUT(X,Y),NUMBERS(INDEX(INX)),PSET
 G$ = G$ + RIGHT$(STR$(DIGIT),1)
```

```
 X = X+67
 END IF
 WEND
 PUT (X,Y),NUMBERS (1) , PSET
 G(I) = VAL(G$)
 NEXT I
RETURN
ENTER.DIGIT:
 S$ = ""
 WHILE S$ = ""
 S$ = INKEY$
 WEND
 A = ASC(S$)
 IF A = 13 THEN GUESS$ = "OFF"
 IF A=8 OR A=31 THEN
 IF G$ = "" THEN SOUND 9ø\emptyset,2
 IF G$ <> "" THEN GOSUB MOVE.LEFT
 GOTO ENTER.DIGIT
 END IF
 IF A <> 13 AND (A < 48 OR A > 57) THEN
 SOUND 9ØØ,2
 GOTO ENTER.DIGIT
 END IF
 DIGIT = A - 48
 INX = DIGIT + 2
RETURN
MOVE.LEFT:
 G$ = LEFT$(G$,LEN(G$)-1)
 PUT(X,Y),NUMBERS(1),PSET
 X = X-67
 PUT(X,Y),NUMBERS(1), PSET
 PUT(X,Y+7),CURSOR,PSET
RETURN
EVALUATE:
 GOSUB CLEAR.LINES
 GUESS = Ø
 IF G(2) <> \emptyset THEN GUESS = G(1)/G(2)
 ON -(ABS(GUESS-AW)<.ø\emptyset\emptysetl)+1 GOSUB WRONG,RIGHT
 LOCATE 20,26: PRINT "Press any key";
 GOSUB CLICKIT
RETURN
WRONG:
 SOUND 4ø\varnothing,3: SOUND 3øø,3: SOUND 2ø0,3
 LOCATE 17,21:
 PRINT "Sorry, the answer is";AW(1);CHR$(8);
```

```
 PRINT "/";MIDS(STR$(AW(2)),2);"."
RETURN
RIGHT:
 LOCATE 20,27: PRINT "Very Good l":
 X=280: Y=122
 PUT(X,Y),PIGLET(1) , PSET
 GOSUB MUSIC
 GOSUB DANCE
 CNT = CNT+1
RETURN
MUSIC:
 GROUP = GROUP + 1
 IF GROUP = K+l THEN GROUP = l
 FIRST = NOTE.GROUP(GROUP-1) + 1
 LAST = NOTE.GROUP(GROUP)
 FOR I = FIRST TO LAST
 SOUND WAIT
 FOR J=2 TO 3
 SOUND F(I),L(I),125,J
 SOUND Ø,.5,,J
 NEXT J
 SOUND RESUME
 NEXT I
RETURN
DANCE:
 V = I
 FOR FLASH = 1 TO 9
 PUT(X,Y),PIGLET(V), PSET
 FOR PAUSE=1 TO løø\emptyset: NEXT PAUSE
 V = 626-V
 NEXT FLASH
RETURN
FLY:
 CLS
 V = l
 LOCATE 20,22: PRINT "You got all";K;"right l";
 Y(\varnothing) = 7\varnothing
 FOR I=1 TO 10
 DELTA = 10*I
 IF I/2 <> INT(I/2) THEN DELTA = -1|*I
 Y(I) = 7 + DELTA
 NEXT
 FOR X=60 TO 750 STEP 5
 FOR J=\varnothing TO K-1
 XD = INT((J+1)/2)*7\varnothing
```

```
 PUT(X-XD,Y(J)),DUCK(DUCK.INDEX(V)),PSET
 NEXT J
 FOR PAUSE=1 TO 150: NEXT PAUSE
 FOR J=\varnothing TO K-l
 XD = INT((J+1)/2)*7\emptyset
 PUT(X-XD,Y(J)),DUCK(DUCK.INDEX(3)),PSET
 NEXT J
 V = 3-V
 NEXT X
RETURN
DECIDE:
 BUTTON = Ø
 GOSUB DRAWBUTTON
 GOSUB PUSHBUTTON
 COLOR 1,\varnothing
RETURN
DRAWBUTTON:
 LINE (337,77)-(433,91),1,BF
 FOR I=1 TO 2
 CIRCLE (XB(I),YB(I)),12,I*3
 PAINT (XB(I),YB(I)),I*3
 COLOR 1,I*3
 LOCATE 10: PRINT PTAB(XB(I)-4);LT$(I);
 NEXT I
RETURN
PUSHBUTTON:
 SOUND 44ø,2
 GOSUB CLICKIT
 S$ = UCASE$(S$)
 IF S$ = "Y" THEN BUTTON = 1
 IF S$ = "N" THEN BUTTON = 2
 FOR I=1 TO 2
 XD = ABS(X-XB(I)): YD = ABS(Y-YB(I))
 IF XD<13 AND YD<7 THEN BUTTON = I: I=2
 NEXT
 IF BUTTON = \varnothing THEN PUSHBUTTON
RETURN
REM ZERO
 DATA \varnothing, 22, -8,4,-37,\varnothing,-8,-4,\varnothing,-22,8,-4, 37,\varnothing,8,4
 DATA \varnothing, 16,-6,3,-19,\varnothing,-6,-3,\varnothing,-16,6,-3,19,0,6,3
REM ONE
 DATA }\varnothing,26,9,\varnothing,\varnothing,4,-29,\varnothing,\varnothing,-4,9,\varnothing,\varnothing,-21,-7,\varnothing
 DATA \varnothing,-2,7,-3,11,\varnothing
```


## REM TWO

DATA $-26, \varnothing,-6,3, \varnothing, 6,42, \varnothing, \varnothing, 4,-53, \varnothing, \varnothing,-11,12,-6$
DATA $3 \varnothing, \varnothing, \varnothing,-9,-29, \varnothing,-8,4,-5, \varnothing, \varnothing,-4,8,-4,37, \varnothing$
DATA 8,4, $0,8,-1 \varnothing, 5$

## REM THREE

$$
\begin{aligned}
& \text { DATA } 14,7, \varnothing, 7,-8,4,-37, \varnothing,-8,-4, \varnothing,-3,9, \varnothing, 4,3 \\
& \text { DATA } 23, \varnothing, 6,-4, \varnothing,-1,-6,-4,-14, \varnothing, \varnothing,-4,18,-9 \\
& \text { DATA }-4 \varnothing, \varnothing, \varnothing,-4,53, \varnothing, \varnothing, 5,-14,7
\end{aligned}
$$

## REM FOUR

DATA $0,15,11, \varnothing, \varnothing,-13,16, \varnothing, \varnothing,-4,-16, \varnothing, \varnothing,-13$
DATA $-11, \varnothing, \varnothing, 13,-15, \varnothing, \varnothing,-13,-11, \varnothing, \varnothing, 17,26, \varnothing$

## REM FIVE

DATA $32, \varnothing, 1 \varnothing, 5, \varnothing, 9,-1 \varnothing, 5,-35, \varnothing,-8,-4, \varnothing,-3,9, \varnothing$
DATA $4,3,25, \varnothing, 4,-2, \varnothing,-7,-4,-2,-3 \varnothing, \varnothing,-8,-4$
DATA $\varnothing,-11,53, \varnothing, \varnothing, 4,-42, \varnothing, \varnothing, 7$

## REM SIX

$$
\begin{aligned}
& \text { DATA } 23, \varnothing, 4,2, \varnothing, 5,-4,2,-23, \varnothing,-4,-2, \varnothing,-5,4,-2 \\
& \text { DATA } 34, \varnothing, 8,4, \varnothing, 9,-8,4,-37, \varnothing,-8,-4, \varnothing,-17,18,-9 \\
& \text { DATA } 35, \varnothing, \varnothing, 4,-28, \varnothing,-14,7, \varnothing, 2
\end{aligned}
$$

## REM SEVEN

DATA $53, \varnothing, \varnothing, 5,-1, \varnothing,-34,17,1, \varnothing, \varnothing, 8,-11, \varnothing, \varnothing,-1 \varnothing$
DATA $32,-16,-4 \varnothing, \varnothing, \varnothing,-4$

## REM EIGHT

DATA $19, \varnothing, 6,3, \varnothing, 3,-6,3,-19, \varnothing,-6,-3, \varnothing,-3,6,-3$
DATA $19, \varnothing, 6,3, \varnothing, 3,-6,3,-19, \varnothing,-6,-3, \varnothing,-3,6,-3$
DATA $37, \varnothing, 8,4, \varnothing, 7,-8,4,8,4, \varnothing, 7,-8,4,-37, \varnothing$
DATA $-8,-4, \varnothing,-7,8,-4,-8,-4, \varnothing,-7,8,-4$

## REM NINE

DATA $23, \varnothing, 4,2, \varnothing, 5,-4,2,-23, \varnothing,-4,-2, \varnothing,-5,4,-2$
DATA $37, \varnothing, 8,4, \varnothing, 15,-22,11,-31, \varnothing, \varnothing,-4,26, \varnothing$
DATA $16,-9,-34, \varnothing,-8,-4, \varnothing,-9,8,-4$

## REM LITTLE.X

DATA $6,6,1, \varnothing,-6,-6,-6,6,1, \varnothing, 6,-6$

## REM DUCK \#1

DATA $3, \varnothing,-1, \varnothing, \varnothing, 2,-1, \varnothing, \varnothing, 2,3, \varnothing, \varnothing, 1,7, \varnothing, \varnothing,-1$
DATA $2, \varnothing, \varnothing,-1,7, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,1, \varnothing,-2, \varnothing$
DATA $\varnothing, 1,-5, \varnothing, \varnothing,-1,-5, \varnothing, \varnothing, 1,-4, \varnothing, \varnothing, 1,-4, \varnothing$
DATA $\varnothing, 1,-13, \varnothing, \varnothing,-1,-6, \varnothing, \varnothing,-1,-5, \varnothing, \varnothing,-1$
DATA $-4, \varnothing, 9, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-2,1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1$
DATA $1, \varnothing, \varnothing,-2,-1, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-2,-1, \varnothing, \varnothing,-2$

DATA $1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1$
DATA $1, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,2, \varnothing, \varnothing,-2,2, \varnothing, \varnothing, 1,1, \varnothing$
DATA $\varnothing, 1,1, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1$
DATA $-4,-1,-3, \varnothing,-3,1,-2,2,-2,3,-1,4,1,5,2,6$
DATA 1,7,0,7,18,4,19,4

## REM DUCK \#2

DATA $5, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,5, \varnothing, \varnothing, 1,7, \varnothing, \varnothing,-1,2, \varnothing$
DATA $-1, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing,-1,-5, \varnothing, \varnothing, 1,-4, \varnothing, \varnothing, 1,-5, \varnothing$
DATA $\varnothing,-1,-5, \varnothing, \varnothing,-1,-1 \varnothing, \varnothing, \varnothing, 1,-5, \varnothing, \varnothing, 1,-11, \varnothing$
DATA $2, \varnothing, \varnothing, 1,6, \varnothing, \varnothing, 1,3, \varnothing, \varnothing, 2,-2, \varnothing, \varnothing, 1,-3, \varnothing$
DATA $\varnothing, 1,-4, \varnothing, \varnothing, 1,-1, \varnothing, 1 \varnothing, \varnothing, \varnothing,-1,5, \varnothing, \varnothing,-1,4, \varnothing$
DATA $\varnothing,-1,3, \varnothing, \varnothing,-1,4, \varnothing, \varnothing,-1,15,-3,16,-3,1, \varnothing$
DATA $-16, \varnothing,-15,-1, \varnothing, 1,5, \varnothing$
REM PIGLETI
DATA $2, \varnothing, \varnothing, 1,3, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 2,3, \varnothing, \varnothing,-1,4, \varnothing, \varnothing,-1$
DATA $\varnothing, 1,1, \varnothing,-2, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 2,2, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1$
DATA $-1, \varnothing, \varnothing, 3,1, \varnothing,-4, \varnothing, \varnothing,-1,-2, \varnothing, 1, \varnothing, \varnothing,-4,-7, \varnothing$
DATA $\varnothing, 1,-2, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1,-3, \varnothing, \varnothing, 2,1, \varnothing$
DATA $\varnothing, 1,-3, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-1,-2, \varnothing, 1, \varnothing, \varnothing,-1,1, \varnothing$
DATA $\varnothing,-3,-2, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-1,-1, \varnothing$
DATA $\varnothing,-3,1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,3, \varnothing, \varnothing,-1,5, \varnothing, \varnothing,-1$
DATA $2, \varnothing, \varnothing, 2,6, \varnothing, \varnothing, 1,2, \varnothing,-2,2,-1,3, \varnothing, 4, \varnothing, 5,-1,6$
DATA $-1,7,-11,14,-10,14,8,6,9,5,10,5,11,12$
DATA $1 \varnothing, 12, \varnothing, \varnothing,-1, \varnothing,-2, \varnothing,-3, \varnothing,-4, \varnothing,-5,-1,-6,-1$
DATA $-7,-1,-8,-1,-9,-2,-7,-2,-6,-3,-5,-3,-4,-2$
DATA $3, \varnothing, \varnothing, 1,3, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 2,1, \varnothing, \varnothing,-1,4, \varnothing, \varnothing,-1$
DATA $2, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1$
DATA $1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-4,-1, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-1,-2, \varnothing$
DATA $\varnothing, 1,1, \varnothing, \varnothing, 3,-2, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-1,-6, \varnothing, \varnothing,-1$
DATA $-6, \varnothing, \varnothing,-1,-4, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1,-2, \varnothing$
DATA $\varnothing, 1,-2, \varnothing, \varnothing, 1,-2, \varnothing, 9, \varnothing, \varnothing, 1,14,2,16,1,18,-2$
DATA $18,-3, \varnothing,-1,-1, \varnothing, \varnothing,-1,3, \varnothing, \varnothing,-1,4, \varnothing, \varnothing, 1,2, \varnothing$
DATA $\varnothing, 2,3, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing,-1,-4, \varnothing, \varnothing,-1$
DATA $-6, \varnothing, \varnothing,-2,1, \varnothing, \varnothing, 1,5, \varnothing, \varnothing, 1,2, \varnothing,-8, \varnothing$
DATA $2 \emptyset, 1,21,1,29,-4,30,-4,16,-2,15,-3,1, \varnothing, \varnothing,-3$
DATA $-2, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing,-2,-2, \varnothing$
DATA $\varnothing,-1,-1, \varnothing, 2, \varnothing, \varnothing,-1,4, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,2, \varnothing$
DATA $\varnothing,-1,12, \varnothing, \varnothing,-1,6, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1$
DATA $-1, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing, 2,1, \varnothing, \varnothing, 2,2, \varnothing, \varnothing, 1,-2, \varnothing$
DATA $\varnothing, 1,-1, \varnothing, \varnothing, 3,1, \varnothing,-1, \varnothing, \varnothing,-1,-6, \varnothing, \varnothing,-1,-6, \varnothing$
DATA $\varnothing,-1,-3, \varnothing,-3, \varnothing, \varnothing,-1,-2, \varnothing, 1, \varnothing, \varnothing,-1,5, \varnothing, \varnothing, 1$
DATA $1, \varnothing,-4, \varnothing,-3,-1,-2,-1, \varnothing,-1 ; 1,-1,-12,-3$
DATA $-11,-3,-6,-4,-5,-4,-1 \varnothing, 0,-9,1,-8,1,-7,1$
DATA -6,1,-16,-3

```
REM PIGLET2
DATA \(4, \varnothing, \varnothing, 1,4, \varnothing, \varnothing, 1,3, \varnothing, \varnothing,-1,3, \varnothing, \varnothing,-1, \varnothing, 1,3, \varnothing\)
DATA \(-1, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 2,2, \varnothing, \varnothing, 1\)
DATA \(2, \varnothing, \varnothing, 1,3, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1,1, \varnothing,-2, \varnothing\)
DATA \(\varnothing,-1,-4, \varnothing, \varnothing,-1,-8, \varnothing, \varnothing,-1,-4, \varnothing, \varnothing,-1,-5, \varnothing, \varnothing, 1\)
DATA \(-2, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1,-2, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 2,1, \varnothing, \varnothing, 1\)
DATA \(1, \varnothing,-2, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-3,-1, \varnothing\)
DATA \(\varnothing,-1,-2, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-1,-1, \varnothing\)
DATA \(\varnothing,-1,-1, \varnothing, 1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,2, \varnothing\)
DATA \(\varnothing,-1,1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing, 3,2, \varnothing, \varnothing,-1,4, \varnothing, \varnothing,-1\)
DATA \(5, \varnothing,-5,17,-6,17,-7,17,24,13,25,13,-2,7,-1,8\)
DATA \(-1,9,-1,10,6,9,7,8,8,8,9,7\)
DATA \(\varnothing, \varnothing,-1, \varnothing,-2, \varnothing,-3, \varnothing,-4, \varnothing,-5,-1,-6,-1,-7,-1\)
DATA \(-8,-1,-9,-2,-7,-2,-6,-3,-5,-3,-4,-2\)
DATA \(-6, \varnothing, \varnothing, 1,-4, \varnothing, \varnothing, 1,-2, \varnothing, 1, \varnothing, \varnothing,-2,1, \varnothing, \varnothing,-1\)
DATA \(1, \varnothing, \varnothing,-4,1, \varnothing, \varnothing, 1,7, \varnothing, \varnothing,-1,1 \varnothing, \varnothing, \varnothing,-2,-2, \varnothing\)
DATA \(\varnothing,-1,-1, \varnothing, 2, \varnothing, \varnothing, 1,4, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1\)
DATA \(1, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 2,1, \varnothing, \varnothing, 2,-3, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing, 1\)
DATA \(-3, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing,-1,-4, \varnothing, \varnothing,-1,-5, \varnothing, 14,1,15, \varnothing\)
DATA \(15,-1,14,-2,13,-3\)
DATA \(\varnothing,-1,2, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,2, \varnothing, \varnothing,-1,3, \varnothing, \varnothing, 1\)
DATA \(-1, \varnothing, \varnothing, 3,-2, \varnothing, \varnothing, 1,-5, \varnothing, \varnothing,-1,2, \varnothing, \varnothing, 1,1, \varnothing\)
DATA \(\varnothing,-1,2, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing, 1,-2, \varnothing\)
DATA \(10,-6,11,-6,18,-9,19,-9\)
DATA \(-5, \varnothing, \varnothing,-1,-3, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-1,-2, \varnothing, \varnothing,-1\)
DATA \(-2, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-1, \varnothing, \varnothing, 1,-2, \varnothing\)
DATA \(\varnothing, 1, \varnothing,-2,-1, \varnothing, \varnothing,-1,-1, \varnothing, \varnothing,-1,-1, \varnothing, 3, \varnothing, \varnothing,-1\)
DATA \(4, \varnothing, \varnothing,-2,1, \varnothing, \varnothing,-1,3, \varnothing, \varnothing,-1,4, \varnothing, \varnothing,-1,2, \varnothing\)
DATA \(\varnothing,-1,1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing,-1,1, \varnothing, \varnothing, 1,4, \varnothing,-1, \varnothing, \varnothing, 1\)
DATA \(-3, \varnothing, \varnothing, 2,3, \varnothing, \varnothing, 1,2, \varnothing, \varnothing, 4,3, \varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1\)
DATA \(1, \varnothing,-9, \varnothing,-9,-8,-8,-8,-4,-10,-3,-1 \varnothing,-3,-7\)
DATA \(-2,-6,-1,-6, \varnothing,-6,-13,-8\)
DATA \(2, \varnothing, \varnothing,-1,3, \varnothing, \varnothing, 1,1, \varnothing,-1, \varnothing, \varnothing, 1,-4, \varnothing, 3,-8\)
DATA \(4,-8,5,-9,6,-9\)
```


## Foreign Language Flash Cards

Now your Amiga can teach a foreign language. "Foreign Language Flash Cards" displays a word in either English or the language being practiced, and the student types in its meaning in the other language. For example, if you were studying French and the computer flashed la maison, you would type in its English meaning, the house.

You must prepare and type in your own lists of words. You can get simple vocabulary words from any of the elementary language texts. When you create lists, you'll enter both the English and the foreign meaning. This program uses the word Spanish throughout, but when entering the program, you can change it to the language you're studying. If you've purchased the Amiga Applications disk, simply change the appropriate DATA statement in the KEYVALUES subroutine near the beginning of the listing.

When you practice a list, you have the option of viewing either the English version of the word or the foreign version. Either way, the computer will keep track of the number of right and wrong answers, which allows you to grade yourself and measure your progress.

Students will find this program especially heipful. Say you have a test soon, and you have to know a specified list of vocabulary words. Well, type them in along with their English equivalents and let the flash cards drill you until you know your words inside and out. And since you can save your old lists, you'll always be able to refresh your memory for the final exam.

Travelers can benefit by practicing common words that will help them in everyday situations abroad. Many of these words can be found in pocket dictionaries and phrase books available in many bookstores. You'll get a lot more enjoyment traveling if you try to speak the native tongue and don't assume that everyone around the world speaks English.

Foreign Language Flash Cards also creates a catalog of all the word lists that you generate. This saves you the trouble of remembering names like NOUNS2 or VERBS3. The catalog is accessed each time you run the program.

Program 3-5. Foreign Language Flash Cards<br>Save using the filename CARDS

```
REM FOREIGN LANGUAGE FLASH CARDS
 GOSUB INITIALIZE
 GOSUB PLAY
 GOSUB GOODBYE
END
```

```
INITIALIZE:
 GOSUB SETSCREEN
 GOSUB KEYVALUES
 GOSUB SETMENUS
 GOSUB SETCOLORS
 GOSUB GET.CIRCLE
 GOSUB HEADING
 GOSUB CATALOG
RETURN
SETSCREEN:
 SCREEN 1,640,200,3,2
 HEADING$ = "Foreign Language Flash Cards"
 WINDOW 2,HEADING$,, }0,
RETURN
KEYVALUES:
 DEFINT A-J,L-Z
 RANDOMIZE TIMER
 REM MAX WORDS PER FILE, MAX FILES
 DATA 2ØØ, 1ØØ
 READ MWORDS, MFILES
 DIM R(MWORDS),WORDS$(MWORDS, 2),FILE$(MFILES)
 DIM SHAPE(25Ø)
 REM SHAPE INDICES
 DATA 1,125
 READ INDEX(1), INDEX(2)
 REM LANGUAGES
 DATA English, Spanish
 FOR I=1 TO 2
 READ L$
 LG$(I) = LEFT$(L$,15)
 NEXT
 REM TYPES OF TRANSLATION
 TR$(1) = LG$(1) + " to " + LG$(2)
 TR$(2) = LG$(2) + " to " + LG$(1)
 REM BUTTON VALUES
 XB(1) = 292: XB(2)=334
 LT$(1) = "Y": LT$(2) = "N"
 REM MENU CHOICES
 DATA Practice your words
 DATA Create a new word list
 DATA Delete an old word list, View file names
 DATA Exit
 FOR I=1 TO 5
 READ PICK$(I)
 NEXT
 PICK = 1
 MESSAGE$ = ""
RETURN
```

```
SETMENUS:
 DATA 2, Instructions, Yes, No
 DATA 4, Card Color, Brown, Pink, White, Blue
 DATA 2, Translation, Tl, T2
 DATA 3, Stop, Go to BASIC
 DATA Go to Learning Menu, Go to System
 FOR I=1 TO 4
 READ NUMBER
 FOR J=\emptyset TO NUMBER
 READ TITLE$
 IF I=3 AND J<>\emptyset THEN TITLE$ = TR$(J)
 IF J<>\emptyset THEN TITLE$ = SPACE$(3) + TITLE$
 STATUS = 1
 IF I <> 4 AND J = l THEN STATUS = 2
 MENU I,J,STATUS,TITLE$
 NEXT J,I
 RULES = 1: CARD = 1: TYPE = 1
RETURN
SETCOLORS:
 REM BROWN, PINK, WHITE, BLUE
 DATA .8,.6,.53, 1,.51,.64, 1,1,1, .4,.6,1
 FOR I=1 TO 4
 FOR J=1 TO 3
 READ KOLOR(I,J)
 NEXT J,I
 REM BROWN, GREEN, & RED
 PALETTE 4,.8,.6,.53
 PALETTE 5,.14,.43,\varnothing
 PALETTE 6,.93,.2,ø
RETURN
GET.CIRCLE:
 XØ=313: YØ=8Ø
 FOR I=1 TO 2
 K = I*5-4
 CIRCLE(X\emptyset,Y\varnothing),12,K: PAINT(X\varnothing,Y\varnothing),K
 GET(X\varnothing-12,YØ-8)-(X\varnothing+12,YØ+8),SHAPE(INDEX(I))
 NEXT
RETURN
HEADING:
 MENU ON
 ON MENU GOSUB OPTIONS
 CLS
 COLOR 3,\varnothing: LOCATE 18,30:PRINT "then"
 COLOR 1,0
 LOCATE 10,18: PRINT HEADING$
 LOCATE 17,24:PRINT "Please use menus,"
```

```
 LOCATE 19,23:PRINT "Click mouse to play"
 GOSUB CLICKIT
RETURN
OPTIONS:
 ID = MENU(\varnothing): ITEM = MENU(1)
 ON ID GOSUB MENU1,MENU2,MENU3,GOODBYE
 ITEM = \varnothing
RETURN
MENUL:
 MENU l,RULES,1: MENU 1,ITEM,2
 RULES = ITEM
RETURN
MENU2 :
 Kl = KOLOR(ITEM,1): K2 = KOLOR(ITEM,2)
 K3 = KOLOR(ITEM,3)
 PALETTE 4,K1,K2,K3
 MENU 2,CARD,1: MENU 2,ITEM,2
 CARD = ITEM
RETURN
MENU3 :
 MENU 3,TYPE,1: MENU 3,ITEM,2
 TYPE = ITEM
RETURN
GOODBYE:
 WINDOW CLOSE 2: WINDOW 1: MENU RESET
 SCREEN CLOSE l
 IF ITEM = 2 THEN RUN "LEARNING"
 IF ITEM = 3 THEN SYSTEM
 COLOR 1,0: CLS
 PRINT "Au Revoir, Adios, Bye-Bye"
 STOP
RETURN
CATALOG:
 CLS
 LOCATE 5,16
 PRINT "Do you have word lists on disk ?"
 ROW = 7: GOSUB DECIDE
 NFILES = Ø
 IF BUTTON = 1 THEN
 OPEN "I",#1,"WORDCAT"
 INPUT #l,NFILES
 FOR I=1 TO NFILES
 INPUT #1,FILES(I)
```

```
 NEXT
 CLOSE
 END IF
RETURN
DECIDE:
 BUTTON = Ø
 GOSUB DRAWBUTTON
 GOSUB PUSHBUTTON
 COLOR 1,\emptyset
RETURN
DRAWBUTTON:
 YØ = 9*ROW-13
 YB=YØ+7
 LINE (265,YØ)-(361,YØ+14),1,BF
 FOR I=1 TO 2
 CIRCLE (XB(I),YB),12,4+I
 PAINT (XB (I),YB),4+I
 COLOR 1,4+I
 LOCATE ROW: PRINT PTAB(XB(I)-4);LT$(I);
 NEXT I
RETURN
PUSHBUTTON:
 SOUND 440,2
 GOSUB CLICKIT
 S$ = UCASE$ (S$)
 IF S$ = "Y" THEN BUTTON = 1
 IF S$ = "N" THEN BUTTON = 2
 FOR I=1 TO 2
 XD = ABS(X-XB(I)): YD = ABS(Y-YB)
 IF XD<13 AND YD<7 THEN BUTTON = I: I=2
 NEXT
 IF BUTTON = Ø THEN PUSHBUTTON
RETURN
CLICKIT:
 S$ = ""
 WHILE MOUSE(\varnothing) = Ø AND S$ = ""
 S$ = INKEY$
 WEND
 X = MOUSE(1)
 Y = MOUSE(2)
 WHILE MOUSE(\varnothing)<> Ø: WEND: REM RESET
RETURN
PLAY:
 IF RULES = 1 THEN GOSUB RULES
```

```
 GOSUB MAIN.MENU
 ON PICK GOSUB PRACTICE,CREATE,STRIKE,VIEW
 IF PICK <> 5 THEN PLAY
RETURN
RULES:
 CLS
 PRINT
 PRINT " Practice your words with ";HEADING$;"."
 PRINT
 PRINT " You can create a new list of words,";
 PRINT " play with an old"
 PRINT " one, and delete files."
 PRINT
 PRINT " When you save a list of words to";
 PRINT " disk, I'll add the"
 PRINT " file's name to a permanent catalog."
 PRINT
 PRINT " This will spare you the trouble of";
 PRINT " remembering names"
 PRINT " like NOUNS2 or VERBS3."
 LOCATE 20,27:PRINT "Click Mouse";
 GOSUB CLICKIT
 ITEM = 2: GOSUB MENUl: REM TURN OFF RULES
RETURN
MAIN.MENU:
 CLS
 LOCATE 2,3: PRINT MESSAGES
 LOCATE 5,23: PRINT "Would you like to"
 FOR I=1 TO 5
 IF I = PICK THEN INX = 2 ELSE INX = l
 CALL DRAW.CIRCLE(I,INX)
 LOCATE I* 2+5,25: PRINT PICK$(I)
 NEXT
 LOCATE 2\emptyset,13: PRINT "Click Mouse on Choice,";
 PRINT " then Hit Return";
 GOSUB CHOOSE
 IF NFILES = Ø THEN
 IF PICK=1 OR PICK=3 OR PICK=4 THEN
 MESSAGE$ = "There aren't any lists on file."
 GOTO MAIN.MENU
 END IF
 END IF
 MESSAGE$ = ""
RETURN
SUB DRAW.CIRCLE(R,INX) STATIC
 SHARED SHAPE(),INDEX()
```

```
 Y = 18*R+31
 PUT(2ø2,Y),SHAPE(INDEX(INX)),PSET
END SUB
CHOOSE:
 GOSUB GURGLE
 GOSUB CLICKIT
 IF S$ = "" THEN GOSUB LOCATION: GOTO CHOOSE
 IF ASC(S$) <> 13 THEN CHOOSE
RETURN
LOCATION:
 V = INT((Y-48)/18) + 1
 IF X>195 AND X<235 AND V>\emptyset AND V<6 THEN
 CALL DRAW.CIRCLE(PICK,l)
 CALL DRAW.CIRCLE(V,2)
 PICK = V
 END IF
RETURN
GURGLE:
 FREQ = 30Ø
 FOR G=1 TO 5
 FREQ = 5\emptyset\emptyset-FREQ
 SOUND FREQ,1,50
 NEXT G
RETURN
PRACTICE:
 CLS
 LOCATE 3,25: PRINT "PRACTICE SESSION"
 GOSUB FILENAME
 IF DUP$ = "NO" THEN
 MESSAGE$ = FILE$ + " doesn't exist."
 END IF
 IF DUP$ = "YES" THEN
 GOSUB READ.WORDS
 GOSUB SHUFFLE.WORDS
 GOSUB PAINT.SCREEN
 MENU 3,\varnothing,\varnothing
 GOSUB DRILL
 MENU 3,0,1
 END IF
RETURN
FILENAME:
 FILE$ = ""
 WHILE FILES = ""
 LOCATE 8,3: INPUT "File Name ";FILES
```

```
 WEND
 REM CHECK EXISTENCE
 DUPS = "NO"
 IF NFILES <> Ø THEN
 FOR I=1 TO NFILES
 IF FILE$ = FILE$(I) THEN DUP$="YES": SPOT=I
 NEXT
 END IF
RETURN
READ.WORDS:
 LOCATE 10,26: PRINT "Reading Words"
 OPEN "I",#l,FILE$
 INPUT #l,N
 FOR I=1 TO N
 INPUT #l,WORDS$(I,1),WORDS$(I, 2)
 NEXT
 CLOSE
RETURN
SHUFFLE.WORDS:
 LOCATE 10,25: PRINT "Shuffling Words"
 FOR I=1 TO N: R(I)=\varnothing: NEXT
 FOR I=1 TO N
 LOOK$ = "ON"
 WHILE LOOK$ = "ON"
 V = l+INT(N*RND)
 IF R(V) = Ø THEN LOOK$ = "OFF"
 WEND
 R(V) = I
 NEXT
RETURN
PAINT.SCREEN:
 CLS
 LOCATE 2,25: PRINT "PRACTICE SESSION"
 LOCATE 3,4: PRINT "FILE: ";FILE$
 LOCATE 4,3: PRINT "WORDS: ";N
 LINE (20,43)-(116,53),6,BF
 COLOR 1,6: LOCATE 6,4: PRINT "Word No."
 LINE(425,43)-(556,53),6,BF
 LOCATE 6,44: PRINT "Number Right"
 COLOR 2,4
 FOR I=1 TO 2
 LINE(2ø,27*I+41)-(174,27*I+55),4,BF
 NEXT
 LOCATE 9,18-LEN(LG$(TYPE)): PRINT LG$(TYPE)
 LOCATE 12,18-LEN(LG$(3-TYPE)): PRINT LG$(3-TYPE)
RETURN
```

```
DRILL:
 RS(\varnothing) = "Sorry ...": R$(l) = "Good l"
 NRIGHT = Ø
 FOR I=1 TO N
 GOSUB GURGLE
 COLOR l,ø
 LOCATE 6,13: PRINT I
 LOCATE 9,20: PRINT SPACE$(40)
 LOCATE 12,20: PRINT SPACE$(40)
 LOCATE 9,2ø: PRINT WORDS$(R(I),TYPE)
 LOCATE 12,20: INPUT "",W$
 GOSUB RESULT
 NEXT
RETURN
RESULT:
 V = -(W$ = WORDS$(R(I),3-TYPE))
 LOCATE 15,32-LEN(RS(V))/2: PRINT R$(V)
 IF V = Ø THEN
 SOUND 4ø\varnothing,3: SOUND 3ØØ,3
 LINE(95,142)-(174,152),6,BF
 LOCATE 17,11: COLOR 1,6: PRINT "MEANING";
 COLOR 1,0
 LOCATE 17,20: PRINT WORDS$(R(I),3-TYPE)
 END IF
 IF V = 1 THEN
 NRIGHT = NRIGHT + l
 LOCATE 6,57: PRINT NRIGHT
 END IF
 LOCATE 2Ø,26: PRINT "Press any key";
 GOSUB CLICKIT
 LOCATE 15,27: PRINT SPACE$(10)
 LINE(95,142)-(174,152),\varnothing,BF
 LOCATE 17,20: PRINT SPACE$(40)
 LOCATE 20,26: PRINT SPACE$(13);
RETURN
```

CREATE:
GOSUB NUMBER.OF.WORDS
GOSUB ENTER.NAME
IF CNT\$ = "YES" THEN
GOSUB ENTER.WORDS
GOSUB SAVE.DATA
END IF
RETURN
NUMBER.OF.WORDS:
CLS
LOCATE 3,2ø: PRINT "CREATING A NEW WORD LIST"

```
AS = "ASK"
WHILE AS = "ASK"
 AS = "OK"
 LOCATE 6,25: PRINT SPACE$(20)
 SOUND 9ø0,2
 LOCATE 6,3: INPUT "Number of new words ";N$
 N = VAL(N$)
 IF N < l OR N > MWORDS THEN AS = "ASK"
 IF N > MWORDS THEN
 LOCATE 17,18
 PRINT "Sorry, only";MWORDS;"are allowed."
 SOUND 9øø,2
 END IF
WEND
LOCATE 17,18: PRINT SPACE$(28)
RETURN
ENTER.NAME:
 GOSUB FILENAME
 CNT$ = "YES"
 IF DUPS = "YES" THEN
 LOCATE 10,3: PRINT FILE$;" already exists !"
 LOCATE 13,16
 PRINT "Would you like to write over it ?"
 ROW=15: GOSUB DECIDE
 IF BUTTON = 2 THEN CNT$ = "NO"
 END IF
RETURN
ENTER.WORDS :
 GOSUB FORMAT
 FOR Q=1 TO N
 GOSUB WORDS
 NEXT Q
RETURN
FORMAT:
 CLS
 PRINT
 PRINT TAB(5)"Please enter your ";LG$(1);
 PRINT " words and their"
PRINT TAB(3)LG$(2);" equivalents."
LINE (20, 34)-(116,44),6, BF
COLOR 1,6: LOCATE 5,4: PRINT "Word NO."
COLOR 2,4
FOR I=l TO 2
 LINE(20, 27*I+32)-(174, 27*I+46),4, BF
 LOCATE 3*I+5,18-LEN(LG$(I)): PRINT LG$(I)
```


## NEXT

## RETURN

```
WORDS:
 COLOR 1,0: LOCATE 5,13: PRINT Q
 LOCATE 8,20: PRINT SPACE$ (40)
 LOCATE 11,20: PRINT SPACE$(40)
 FOR J=1 TO 2
 W$ = ""
 WHILE W$ = ""
 LOCATE 3*J+5,20: INPUT "", W$
 WEND
 WORDS$(Q,J) = LEFT$(W$,35)
 NEXT J
 LOCATE 17,28: PRINT "Changes ?"
 ROW = 15: GOSUB DECIDE
 LOCATE 17,28: PRINT SPACE$(9)
 LINE (265,Y\emptyset)-(361,YØ+14), \varnothing, BF
 IF BUTTON = 1 THEN WORDS
RETURN
SAVE.DATA:
 IF DUP$ = "NO" THEN
 NFILES = NFILES + 1
 FILES(NFILES) = FILE$
 END IF
 GOSUB SAVE.WORDS
 GOSUB UPDATE.CAT
 MESSAGE$ = FILE$ + " is saved."
RETURN
```

SAVE.WORDS:
CLS
LOCATE 1ø, 26: PRINT "Saving Words"
OPEN "O",\#l,FILE\$
WRITE \#l,N
FOR $\mathrm{I}=1 \mathrm{TO} \mathrm{N}$
WRITE \#1,WORDS\$(I, 1),WORDS\$(I, 2)
NEXT
CLOSE
RETURN
UPDATE.CAT:
OPEN "O",\#1,"WORDCAT"
WRITE \#l,NFILES
FOR I=1 TO NFILES
WRITE \#1,FILE\$(I)
NEXT
CLOSE
RETURN

```
STRIKE:
 CLS
 LOCATE 3,25: PRIN'T "DELETING A FILE"
 GOSUB FILENAME
 IF DUP$ = "NO" THEN
 MESSAGE$ = FILE$ + " doesn't exist."
 END IF
 IF DUP$ = "YES" THEN
 GOSUB KILL.IT
 IF NFILES > Ø THEN GOSUB UPDATE.CAT
 IF NFILES = \varnothing THEN
 KILL "WORDCAT": KILL "WORDCAT.INFO"
 S$ = "You no longer have any word"
 MESSAGE$ = S$ + " lists on disk."
 END IF
 END IF
RETURN
KILL.IT:
 IF SPOT <> NFILES THEN
 FOR I = SPOT+1 TO NFILES
 FILE$(I-1) = FILES(I)
 NEXT
 END IF
 NFILES = NFILES - 1
 KILL FILES: KILL FILE$+".INFO"
 MESSAGE$ = FILE$ + " is deleted."
RETURN
VIEW:
 FOR I=1 TO NFILES STEP 15
 CLS
 LOCATE 2,23: PRINT "WORD LISTS ON DISK:"
 PRINT
 FOR J = I TO I+l4
 IF J <= NFILES THEN
 L = LEN(FILE$(J))
 PRINT TAB(32-L/2);FILES(J)
 END IF
 NEXT J
 LOCATE 20,26: PRINT "Click Mouse";
 GOSUB CLICKIT
 NEXT I
RETURN
```


## CHAPTER 4

# Household Helpers 

## CHAPTER 4

## Household Helpers

Computers have a reputation for being the perfect devices for doing calculations. In scientific disciplines, computers forecast the weather, explore the structure of atomic particles, and compute satellite orbits. In the business world, they calculate our bank balances, bill our charge cards, and review our tax returns.

Computers have a place in the home, too. Computing the return on an IRA is a good example. Another is performing "what-if" drills in determining how much to borrow for that new home or car. Put your personal computer to work helping you out around the house. Here are short descriptions of the programs:

IRA Planner. Calculate what your Individual Retirement Account (IRA) will be worth at maturity, in both today's dollars and in dollars adjusted for inflation.

Loan Payments. Compute the monthly, quarterly, or yearly payment on a car or home loan, as well as the total payment over the life of the loan.

Multifunction Calculator. Use the mouse or keyboard to perform the basic operations of addition, subtraction, multiplication, division, and exponentiation. Use of parentheses is allowed, so you can compute fairly complex formulas as well.

Paycheck Analysis. Use this handy program to verify the accuracy of your paycheck, to project future take-home pay when that raise comes through, and even to tally a payroll.

```
Household Helpers Menu Driver
Save using the filename HELPERS
REM HOUSEHOLD HELPERS
 GOSUB INITIALIZE
 GOSUB MAIN.MENU
 RUN TITLE.SHORT$(PICK)
END
```

    GOSUB KEYVALUES
    ```
 GOSUB SETMENUS
 GOSUB SETCOLORS
 GOSUB SHAPES
RETURN
```


## SETSCREEN:

```
 SCREEN 1,640,200,3,2
 WINDOW 2,"Household Helpers",,0,1
RETURN
```


## KEYVALUES:

DEFINT A-Z
$\mathrm{N}=4$
DIM TITLE.LONG (N),TITLE.SHORT\$(N), DISCS(250)
DISC.I(1) = 1: DISC.I(2) = 125
READ CHAPTER\$
FOR I=1 TO N READ TITLE.LONG\$(I),TITLE.SHORT\$(I)

## NEXT

RETURN

```
SETMENUS:
 FOR I=2 TO 4
 MENU I,\varnothing,\varnothing,""
 NEXT
 MENU 1,\varnothing,1,"STOP"
 MENU 1,1,1," Go to BASIC"
 MENU 1,2,1," Go to System"
 MENU ON
 ON MENU GOSUB GOODBYE
RETURN
GOODBYE:
 WINDOW CLOSE 2: WINDOW 1: MENU RESET
 SCREEN CLOSE l
 ITEM = MENU(1)
 IF ITEM = 2 THEN SYSTEM
 CLS
 PRINT "Bye-Bye"
 STOP
RETURN
SETCOLORS:
 REM TAN, GREEN, & RED
 PALETTE 4,.95,.7,.53
 PALETTE 5,.14,.43,\varnothing
 PALETTE 6,.93,.2,0
RETURN
```

```
SHAPES:
 X=313: Y=8Ø
 LINE(X-12,Y-8)-(X+12,Y+8),4,BF
 FOR I=1 TO 2
 K = 7-I
 CIRCLE(X,Y),12,K: PAINT(X,Y),K
 GET(X-12,Y-8)-(X+12,Y+8),DISCS(DISC.I(I))
 NEXT
RETURN
MAIN.MENU:
 CLS
 RTN$ = "OFF": PICK = l
 S$ = CHAPTER$: L = LEN(S$)
 LINE(313-10*L/2-15,15)-(313+10*L/2+15,27),1,B
 PAINT(313,20),6,1
 COLOR 1,6: LOCATE 3: PRINT PTAB(313-10*L/2)S$
 LINE(135,35)-(495,130),2,B: PAINT(313,80),4,2
 COLOR 2,4
 FOR I=l TO N
 IF I = PICK THEN INX = 2 ELSE INX = 1
 CALL DRAW.CIRCLE(I,INX)
 LOCATE I*2+4,21: PRINT TITLE.LONG$(I)
 NEXT
 LINE(263,141)-(360,153),2,B: PAINT(313,145),3,2
 COLOR 2,3
 LOCATE 17: PRINT PTAB(282)"Return"
 COLOR 1,0
 LOCATE 19,ll: PRINT "Click Mouse on Choice,";
 PRINT " then Click on Return"
 GOSUB CHOOSE
RETURN
SUB DRAW.CIRCLE(R,INX) STATIC
 SHARED DISCS(),DISC.I()
 Y = 18*R+22
 PUT(162,Y),DISCS(DISC.I(INX)),PSET
END SUB
```


## CHOOSE:

```
GOSUB GURGLE
GOSUB CLICKIT
IF \(\mathrm{S} \$=" \mathrm{~T}\) THEN GOSUB LOCATION
IF ASC(S\$+" ") <> 13 AND RTN\$ = "OFF" THEN GOTO CHOOSE
END IF
RETURN
```

```
GURGLE:
 FREQ = 3\varnothing\varnothing
 FOR G=1 TO 5
 FREQ = 50\emptyset - FREQ
 SOUND FREQ,1,50
 NEXT
RETURN
CLICKIT:
 S$ = ""
 WHILE MOUSE(\varnothing) = Ø AND S$ = ""
 S$ = INKEY$
 WEND
 X = MOUSE(1)
 Y = MOUSE(2)
 WHILE MOUSE(\varnothing)<> Ø: WEND: REM RESET
RETURN
LOCATION:
 IF X>263 AND X<360 AND Y> 141 AND Y<l53 THEN
 RTN$ = "ON"
 ELSE
 P = INT((Y-39)/18) + l
 IF X>155 AND X<195 AND P>\emptyset AND P<= N THEN
 CALL DRAW.CIRCLE(PICK,l)
 CALL DRAW.CIRCLE(P,2)
 PICK = P
 END IF
 END IF
RETURN
REM PROGRAMS
 DATA Household Helpers
 DATA IRA Planner, IRA
 DATA LOan Payments, LOAN
 DATA Multi-Function Calculator, CALCULATOR
 DATA Paycheck Analysis, PAYCHECK
```


## IRA Planner

Individual Retirement Accounts are extremely popular. Not only are they a way to save for retirement, but funds in IRAs are not taxed until they're withdrawn. Also, you can deduct the money placed in an IRA from your federal tax.

You actually reap double benefits from IRAs-you get a tax deduction now and savings for later. If you're in a high tax bracket, IRAs are especially attractive. Since you assume you'll be making less money when you retire, you'll be taxed at a lower rate when you do withdraw the money. For many people, IRAs are a good idea.

There is a catch, however. You can't withdraw money from your IRAs before age $591 / 2$ without suffering a stiff penalty. You must also begin to withdraw the money before age $701 / 2$. And, though IRAs may make many of us millionaires in 35 or 40 years if interest rates are high, inflation may mercilessly erode the buying power of those future dollars.
"IRA Planner" will ask you to enter the interest and inflation rates that you think will prevail, on average, over the life of your IRA. The figures you enter, of course, will only be estimates. There's no way you can gaze into the future. If you could, you probably wouldn't need an IRA. It's best to plot your IRA contributions several times, using different interest and inflation rates. That way, you can get a better idea of what will happen to your money in several different conditions.

Once you've entered your data, the Amiga presents the kind of report similar to that in Figure 4-1. The important figures are near the bottom of the screen.

Current dollars. This is the amount you'd actually see listed in your IRA account after the number of years you specified for contributing have passed.

Constant dollars. This is the amount of money you'll end up with, adjusted for inflation. In other words, this is how much your IRA will be worth in terms of today's dollar value.

Use a pull-down menu to select age 59 or 70 for the life of your IRA. Remember, however, that the program doesn't tell you to invest in an IRA, or even when. Those decisions are up to you.

Figure 4-1. IRA Payoff Through Age 70


## Program 4-1. IRA Planner

Save using the filename IRA

```
REM IRA
 GOSUB INITIALIZE
COMPUTE:
 GOSUB RUN.IRA
COMPUTE.AGAIN:
 LOCATE 20,18: PRINT "Compute again ?";
 GOSUB DECIDE
 IF BUTTON = 1 THEN COMPUTE
 GOSUB GOODBYE
END
```

INITIALIZE:
GOSUB SETSCREEN
GOSUB KEYVALUES
GOSUB SETMENUS
GOSUB SETCOLORS
GOSUB HEADING
RETURN

## SETSCREEN:

SCREEN 1,64ø,2øø,3,2
HEADING\$ = "Individual Retirement Account"
WINDOW 2,HEADING\$,, $\varnothing, 1$
RETURN

## KEYVALUES:

DEFINT A-Z: DEFDBL D,K,R,V REM BUTTON VALUES

```
 XB(1)= 362: XB(2)=404: YB = 174
 LT$(1) = "Y": LT$(2) = "N"
REM RATES
 DATA Interest, Inflation
 READ RATE$(1), RATE$(2)
REM MATURITIES
 DATA 59,70
 FOR I=1 TO 2
 READ MATURITY(I)
 NEXT
RETURN
SETMENUS:
 DATA 2, Instructions, Yes, No
 DATA 2, Compute IRA, Through age 59
 DATA Through age 70
 DATA 3, Stop, Go to BASIC
 DATA Go to Helpers Menu, Go to System
 FOR I=1 TO 3
 READ NUMBER
 FOR J=Ø TO NUMBER
 READ TITLE$
 IF J<>\varnothing THEN TITLE$ = SPACE$(3) + TITLE$
 STATUS = l
 IF I <> 3 AND J = l THEN STATUS = 2
 MENU I,J,STATUS,TITLE$
 NEXT J,I
 MENU 4,\varnothing,\varnothing,""
 INSTRUCTIONS = l: TYPE = 1
RETURN
SETCOLORS:
 REM GREEN, & RED
 PALETTE 5,.14,.43,0
 PALETTE 6,.93,.2,0
RETURN
HEADING:
 MENU ON
 ON MENU GOSUB OPTIONS
 CLS
 COLOR 3,0: LOCATE 18,30:PRINT "then"
 COLOR 1,\varnothing
 LOCATE 10,18: PRINT HEADING$
 LOCATE 17,24:PRINT "Please use menus,"
 LOCATE 19,21:PRINT "Click mouse to compute"
 GOSUB CLICKIT
RETURN
```

```
OPTIONS:
 ID = MENU(\varnothing): ITEM = MENU(1)
 ON ID GOSUB MENU1,MENU2,GOODBYE
 ITEM = Ø
RETURN
MENU1 :
 MENU 1,INSTRUCTIONS,1: MENU 1,ITEM,2
 INSTRUCTIONS = ITEM
RETURN
MENU2 :
 MENU 2,TYPE,1: MENU 2,ITEM,2
 TYPE = ITEM
RETURN
GOODBYE:
 WINDOW CLOSE 2: WINDOW 1: MENU RESET
 SCREEN CLOSE 1
 IF ITEM = 2 THEN RUN "HELPERS"
 IF ITEM = 3 THEN SYSTEM
 COLOR 1,\varnothing: CLS
 PRINT "Bye-Bye"
 STOP
RETURN
CLICKIT:
 S$ = ""
 WHILE MOUSE(\varnothing) = Ø AND S$ = ""
 S$ = INKEY$
 WEND
 X = MOUSE(1)
 Y = MOUSE(2)
 WHILE MOUSE(Ø)<> Ø: WEND: REM RESET
RETURN
RUN.IRA:
 IF INSTRUCTIONS = 1 THEN GOSUB INSTRUCTIONS
 GOSUB CURRENT.AGE
 MENU 2,\varnothing,\varnothing
 GOSUB YEARLY.DEPOSIT
 FOR I=1 TO 2
 GOSUB RATES
 NEXT
 GOSUB CALCULATE
 GOSUB RESULTS
 MENU 2,\varnothing,1
RETURN
```

```
INSTRUCTIONS:
 CLS
 PRINT
 PRINT " This program computes the value of";
 PRINT " your IRA at age 59"
 PRINT " and 70.
 PRINT
 PRINT " Age 59 is the earliest that you can";
 PRINT " start withdrawing"
 PRINT " funds without penalty."
 PRINT
 PRINT " Age 70 is the latest that you can";
 PRINT " delay withdrawing."
 LOCATE 2Ø,27:PRINT "Click Mouse";
 GOSUB CLICKIT
 ITEM = 2: GOSUB MENUl: REM TURN OFF INSTRUCTIONS
RETURN
GURGLE:
 FREQ = 30Ø
 FOR G=1 TO 5
 FREQ = 5ØØ-FREQ
 SOUND FREQ,1,50
 NEXT G
RETURN
CURRENT.AGE:
 CLS
 LOCATE 2,3: PRINT "Pardon my asking, but";
 PRINT " how old are you"
 AGE = Ø
 WHILE NOT (AGE > Ø AND AGE <= 125)
 LOCATE 2,42: PRINT SPACE$(1Ø)
 GOSUB GURGLE
 LOCATE 2,4Ø: INPUT " ";A$
 AGE = VAL(A$)
 IF AGE <= Ø OR AGE > 125 THEN
 LOCATE 19,22: PRINT "Who are you kidding l"
 END IF
 WEND
 MATURITY = MATURITY(TYPE)
 LOCATE 19,22: PRINT SPACE$(21)
 IF AGE >= MATURITY THEN
 GOSUB WARNING
 GOTO CURRENT.AGE
 END IF
RETURN
```

```
WARNING:
 SOUND 40ø,3: SOUND 30\varnothing,2: SOUND 20\varnothing,2
 LOCATE 5,3: PRINT "Sorry: Your IRA matures";
 PRINT " at age";MATURITY;"!"
 LOCATE 19,26: PRINT "Click Mouse"
 GOSUB CLICKIT
RETURN
YEARLY.DEPOSIT:
 CLS
 DEPOSIT = Ø
 WHILE DEPOSIT <= Ø
 LOCATE 2,3: PRINT "Please enter the amount";
 PRINT " of money that you'd like to"
 PRINT " deposit in your IRA each year."
 LOCATE 5,14: PRINT SPACE$(3\emptyset)
 GOSUB GURGLE
 LOCATE 5,2
 INPUT "Deposit = ";D$
 DEPOSIT = VAL(D$)
 WEND
RETURN
RATES:
 CLS
 LOCATE 2,3: PRINT "Please enter the ";RATES(I);
 PRINT " Rate that you expect will"
 PRINT " prevail, on average, over the life";
 PRINT " of your IRA."
 PRINT
 PRINT " For example, enter 7 for 7%, l\emptyset for";
 PRINT " 10 %, and so on."
 LOCATE 7,ll-LEN(RATE$(I))
 PRINT RATE$(I);" Rate"
 RATE(I) = \varnothing
 WHILE RATE(I) <= Ø
 GOSUB GURGLE
 LOCATE 7,21: PRINT SPACE$(30)
 LOCATE 7,17: INPUT "= ";R$
 RATE(I) = VAL(R$)
 WEND
RETURN
CALCULATE:
 REM YEARS UNTIL MATURITY
 N = MATURITY - AGE
 REM CURRENT-DOLLAR VALUES
 VALUE = \varnothing
 FOR I=1 TO N
```

```
 V = DEPOSIT*(1+RATE(1)/1ø\varnothing)^(N-I+1)
 VALUE = VALUE + V
 NEXT
 REM DEFLATE
 DEFLATOR = (1+RATE(2)/1Ø\emptyset)^N
 KVALUE = VALUE/DEFLATOR
RETURN
RESULTS:
 CLS
 LOCATE 2,21: PRINT "IRA PAYOFF THROUGH AGE";
 PRINT MATURITY
 Fl$ = "## years"
 F2S = "##.## %"
 F3$ = "= $$#,#########.##"
 GOSUB DATA.INPUT
 GOSUB DATA.OUTPUT
RETURN
DATA.INPUT:
 LINE(15,25)-(1\varnothing5,35),3,BF
 LINE(15,43)-(1Ø5,53),3,BF
 COLOR 2,3
 LOCATE 4,3: PRINT "Your Age"
 LOCATE 6,3: PRINT "IRA Span"
 COLOR 1,\varnothing
 LOCATE 4,12: PRINT USING Fl$;AGE
 LOCATE 6,12: PRINT USING Fl$;N
 LINE (365,25)-(512,35),3,BF
 LINE(365,43)-(512,53),3,BF
 COLOR 2,3
 LOCATE 4,39: PRINT "Interest Rate"
 LOCATE 6,38: PRINT "Inflation Rate"
 COLOR 1,\varnothing
 LOCATE 4,53: PRINT USING F2$;RATE(1)
 LOCATE 6,53: PRINT USING F2$;RATE(2)
RETURN
DATA.OUTPUT:
 LINE (86,7\emptyset)-(235,8\emptyset),6,BF
 LINE (86,88)-(235,98),6,BF
 COLOR 1,6
 LOCATE 9,10: PRINT "Annual Payment"
 LOCATE ll,1l: PRINT "Total Payment"
 COLOR l,ø
 LOCATE 9,25: PRINT USING F3$;DEPOSIT
 LOCATE ll,25: PRINT USING F3$;N*DEPOSIT
 LINE(15,115)-(235,125),5,BF
 LINE(15,133)-(235,143),5,BF
```

```
COLOR 1,5
LOCATE 14,4: PRINT "Current-Dollar Worth"
LOCATE 16,3: PRINT "Constant-Dollar Worth"
COLOR 1,\varnothing
LOCATE 14,25: PRINT USING F3$;VALUE;
LOCATE 16,25: PRINT USING F3$;KVALUE;
COLOR 3,0
FOR I=14 TO 16 STEP 2
 LOCATE I,44: PRINT "(at maturity)"
NEXT
COLOR 1,\varnothing
RETURN
DECIDE:
 BUTTON = Ø
 GOSUB DRAWBUTTON
 GOSUB PUSHBUTTON
 COLOR 1,\varnothing
RETURN
DRAWBUTTON:
 LINE (335,167)-(431,181),1,BF
 FOR I=1 TO 2
 CIRCLE (XB(I),YB),12,4+I
 PAINT (XB(I),YB),4+I
 COLOR 1,4+I
 LOCATE 20: PRINT PTAB(XB(I)-4);LT$(I);
 NEXT I
RETURN
PUSHBUTTON:
 SOUND 440,2
 GOSUB CLICKIT
 S$ = UCASE$(S$)
 IF S$ = "Y" THEN BUTTON = 1
 IF S$ = "N" THEN BUTTON = 2
 FOR I=1 TO 2
 XD = ABS(X-XB(I)): YD = ABS(Y-YB)
 IF XD<13 AND YD<7 THEN BUTTON = I: I=2
 NEXT
 IF BUTTON = Ø THEN PUSHBUTTON
RETURN
```


## Loan Payments

When you're buying a house or car, there is an array of decisions that must be made, not the least of which is knowing just what you can afford. With "Loan Payments" you can see what payments will be on different amounts of money borrowed.

By using Loan Payments you can play some invaluable what-if games like shortening your mortgage from 30 to 20 years to view the impact on cost. On a moderately priced house, this could save you a bundle of money over the life of your loan. But, remember, the Amiga just does the computing; the deciding is up to you.

By way of example, suppose you're borrowing $\$ 50,000$ at 12.5 percent interest, with payments paid monthly over a 30 -year period. After entering this data (use a pull-down menu to choose frequency of payment), Loan Payments tells you that your constant monthly bill is roughly $\$ 534$. Total payments over the life of the loan are $\$ 192,106$, with $\$ 50,000$ paid to principal and $\$ 142,106$ paid to interest.

Now, the power of the Amiga comes into play. Loan data information is displayed on the left of the screen, and loan payments on the right. To make changes to any of your input values, simply click the mouse on the item of your choice. Then enter the new value, and watch as the Amiga ripples along the right side, displaying updated output.

When you're through making changes, the Amiga will display the details of each loan payment (Figure 4-2).

Figure 4-2. Division of Monthly Payments


```
Program 4-2. Loan Payments
Save using the filename LOAN
REM LOAN PAYMENT
 GOSUB INITIALIZE
COMPUTE:
 GOSUB RUN.LOAN
 LOCATE 18,25: PRINT "Compute Again ?"
 GOSUB DECIDE
 IF BUTTON = 1 THEN COMPUTE
 GOSUB GOODBYE
END
INITIALIZE:
 GOSUB SETSCREEN
 GOSUB KEYVALUES
 GOSUB SETMENUS
 GOSUB SETCOLORS
 GOSUB HEADING
RETURN
SETSCREEN:
 SCREEN 1,640,2\emptyset\emptyset,3,2
 WINDOW 2,"Loan Payments",,0,1
RETURN
KEYVALUES:
 DEFINT A-Z: DEFSNG L,P,R,T,X
 REM BUTTON VALUES
 XB(1) = 292: }\textrm{XB}(2)=334: YB = 174
 LT$(1) = "Y": LT$(2) = "N"
 REM LOAN TITLES & ROWS FOR LEFT BOX
 DATA Amount,5, " Years",10, " Months",12
 DATA Interest Rate,15
 FOR I=1 TO 4
 READ NM$(I), ROW.LEFT(I)
 NEXT
 REM ROWS FOR RIGHT BOX
 DATA 5,7,9,13
 FOR I=1 TO 4
 READ ROW.RIGHT(I)
 NEXT
REM PRINT-FORMATS
 F$(1) = "$$##,#####.##"
 F$(2) = " ### "
 F$(3) = " %##.##"
REM FORMATS FOR LEFT BOX
 DATA 1,2,2,3
 FOR I=1 TO 4
```

```
 READ F(I)
 NEXT
 REM PAYMENT PERIOD
 DATA Year,l, Quarter,4, Month,12
 FOR I=1 TO 3
 READ FREQ$(I), FREQ(I)
 NEXT
 FIRST.RUN$ = "ON"
RETURN
SETMENUS:
 DATA 2, Instructions, Yes, No
 DATA 3, Compute Loan
 DATA For yearly payments, For quarterly payments
 DATA For monthly payments
 DATA 3, Stop, Go to BASIC
 DATA Go to Helpers Menu, Go to System
 FOR I=1 TO 3
 READ NUMBER
 FOR J=Ø TO NUMBER
 READ TITLE$
 IF J<>\emptyset THEN TITLES = SPACE$(3) + TITLE$
 STATUS = 1
 IF I <> 3 AND J = l THEN STATUS = 2
 MENU I,J,STATUS,TITLE$
 NEXT J,I
 MENU 4,\varnothing,\varnothing,""
 INSTRUCTIONS = l: TYPE = 1
RETURN
SETCOLORS:
 REM BROWN, GREEN, & RED
 PALETTE 4,.8,.6,.53
 PALETTE 5,.14,.43,\varnothing
 PALETTE 6,.93,.2,0
RETURN
HEADING:
 MENU ON
 ON MENU GOSUB OPTIONS
 CLS
 COLOR 3,\emptyset: LOCATE 18,30:PRINT "then"
 COLOR 1,0
 LOCATE 10: PRINT PTAB(247)"Loan Payments"
 LOCATE 17,24:PRINT "Please use menus,"
 LOCATE 19,2l:PRINT "Click mouse to compute"
 GOSUB CLICKIT
RETURN
```

```
OPTIONS:
 ID = MENU(|): ITEM = MENU(1)
 ON ID GOSUB MENU1,MENU2,GOODBYE
 ITEM = \varnothing
RETURN
MENUl:
 MENU 1,INSTRUCTIONS,1: MENU 1,ITEM,2
 INSTRUCTIONS = ITEM
RETURN
MENU2:
 MENU 2,TYPE,1: MENU 2,ITEM,2
 TYPE = ITEM
RETURN
GOODBYE:
 WINDOW CLOSE 2: WINDOW l: MENU RESET
 SCREEN CLOSE l
 IF ITEM = 2 THEN RUN "HELPERS"
 IF ITEM = 3 THEN SYSTEM
 COLOR 1,ø: CLS
 PRINT "Bye-Bye"
 STOP
RETURN
CLICKIT:
 S$ = ""
 WHILE MOUSE(\varnothing) = Ø AND S$ = ""
 S$ = INKEY$
 WEND
 X = MOUSE(1)
 Y = MOUSE(2)
 WHILE MOUSE(\varnothing)<> Ø: WEND: REM RESET
RETURN
RUN.LOAN:
 VARIABLE = l
 IF INSTRUCTIONS = 1 THEN GOSUB INSTRUCTIONS
 IF FIRST.RUN$ = "ON" THEN GOSUB ENTER.DATA
 GOSUB COMPUTE.PAYMENT
 GOSUB PAINT.SCREEN
 GOSUB SHOW.SUMMARY
 GOSUB ASK.TO.CHANGE
 GOSUB PAYMENTS.PER.PERIOD
RETURN
INSTRUCTIONS:
 CLS
```

```
PRINT
PRINT " This program computes annual,";
PRINT
PRINT " Total loan payments are on the";
PRINT " right, including the amount"
PRINT " you pay to principal and to interest."
LOCATE 2ø,27:PRINT "Click Mouse";
GOSUB CLICKIT
ITEM = 2: GOSUB MENUl: REM TURN OFF INSTRUCTIONS
RETURN
ENTER.DATA:
 GOSUB AMOUNT
 GOSUB LENGTH
 GOSUB INTEREST.RATE
 FIRST.RUN$ = "OFF"
RETURN
AMOUNT:
 CLS
 PRINT
 PRINT " Please enter the amount of money";
 PRINT " that you'd like to borrow."
 X(1) = \emptyset
 WHILE X(l) <= Ø
 LOCATE 4,12: PRINT SPACE$(20)
 GOSUB GURGLE
 LOCATE 4,3: INPUT "Amount ";S$
 X(1) = VAL(S$)
 WEND
RETURN
LENGTH:
 LOCATE 7,3: PRINT "Please enter the length of";
 PRINT " your loan in years and months."
 X(2) = -9: REM YEARS
 WHILE X(2) < Ø
 LOCATE 9,13: PRINT SPACE$(20)
 GOSUB GURGLE
 LOCATE 9,4: INPUT "Years = ";S$
```

```
 X(2) = INT(VAL(S$))
WEND
X(3) = -9: REM MONTHS
WHILE X(3) < Ø
 LOCATE 10,13: PRINT SPACE$(20)
 GOSUB GURGLE
 LOCATE 10,3: INPUT "Months = ";S$
 X,3) = INT(VAL(S$))
WEND
IF X(2) + X(3) = Ø THEN LENGTH
RETURN
INTEREST.RATE:
 LOCATE 13,3: PRINT "Please enter the interest";
 PRINT " rate on your loan. For example,"
 PRINT " enter 7 for 7%, l\emptyset for l0%, and so on."
 X(4) = \varnothing
 WHILE X(4) <= Ø
 GOSUB GURGLE
 LOCATE 16,12: PRINT SPACE$(20)
 LOCATE 16,3: INPUT "Rate = ";S$
 X(4) = VAL(S$)
 WEND
RETURN
COMPUTE.PAYMENT:
 FREQ = FREQ(TYPE): REM PAYMENTS PER YEAR
 FREQ$ = FREQ$(TYPE)
 REM TOTAL YEARS
 TYEARS = X(2) + X(3)/12
 REM TOTAL NUMBER OF PAYMENTS
 N = TYEARS*FREQ
 REM INTEREST RATE PER PERIOD
 R = (X(4)/1\varnothing\emptyset)/FREQ
 REM PAYMENT PER PERIOD
 REM NUMERATOR
 Pl = X(1)*R* (l+R)^N
 REM DENOMINATOR
 P2 = (l+R)^N - l
 P(4) = Pl/P2
 REM TOTAL PAYMENT
 P(1) = N*P(4)
 REM PRINCIPAL & INTEREST
 P(2) = X(1)
 P(3) = P(1) - P(2)
RETURN
PAINT.SCREEN:
 CLS
```

```
 LINE(10,4)-(306,143),4,BF
 LINE(324,4)-(620,143),1,BF
 REM LEFT BOX
 COLOR 2,4
 LOCATE 2,1l: PRINT "LOAN VALUES"
 FOR I=1 TO 4
 LOCATE ROW.LEFT(I),3: PRINT NM$(I);
 PRINT TAB(l7) USING F$(F(I));X(I)
 NEXT
 LOCATE 8,3: PRINT "Length"
 REM RIGHT BOX
 COLOR Ø,l
 LOCATE 2,42: PRINT "LOAN PAYMENTS"
 LOCATE 5,35: PRINT "Total"
 LINE(355,52)-(452,62),5,BF
 COLOR 1,5
 LOCATE 7,37: PRINT "Principal"
 LINE(355,7\emptyset)-(452,8\emptyset),6,BF
 COLOR 1,6
 LOCATE 9,37: PRINT "Interest"
 COLOR Ø,1
 LOCATE 12,35: PRINT "Payment"
 LOCATE 13,35: PRINT "Per"
RETURN
SHOW.SUMMARY:
 COLOR Ø,l
 LOCATE 3,39: PRINT SPACE$(18)
 S$ = "("+FREQ$+"ly Basis)": L = LEN(S$)
 LOCATE 3: PRINT PTAB(475-10*L/2);S$
 LOCATE 13,39: PRINT FREQ$;SPACE$(2)
 FOR I=1 TO 4
 LOCATE ROW.RIGHT(I),49
 PRINT USING FS(1);P(I)
 NEXT
RETURN
ASK.TO.CHANGE:
 COLOR 1,\varnothing
 LOCATE 18,28: PRINT "Changes ?"
 GOSUB DECIDE
 LOCATE 18,28: PRINT SPACE$(9)
 IF BUTTON = 1 THEN
 CALL HIGHLIGHT(VARIABLE,3)
 COLOR 1,0
 LINE(265,167)-(361, 181), Ø, BF
 LOCATE 19,13: PRINT "Click Mouse on Choice,";
 PRINT " then Hit Return"
 GOSUB CHOOSE
```

```
 GOTO ASK.TO.CHANGE
 END IF
RETURN
SUB HIGHLIGHT(V,KOLOR) STATIC
 SHARED NM$(), ROW.LEFT()
 R = ROW.LEFT(V)
 L = LEN(NM$(V))
 X0 = 15: Xl = L*10 + 25
 Y\varnothing = 9*R - 1l: Yl = Y\varnothing + 1\varnothing
 LINE(X\emptyset, Yø)-(XI,Y1),KOLOR,BF
 COLOR KOLOR-2,KOLOR
 LOCATE R,3: PRINT NM$(V)
END SUB
CHOOSE:
 GOSUB GURGLE
 GOSUB CLICKIT
 IF S$ = "" THEN GOSUB LOCATION: GOTO CHOOSE
 IF ASC(S$) <> 13 THEN CHOOSE
 GOSUB CHANGE
RETURN
GURGLE:
 FREQ = 3Ø\emptyset
 FOR G=1 TO 5
 FREQ = 5ØØ-FREQ
 SOUND FREQ,1,50
 NEXT G
RETURN
LOCATION:
 R = INT(Y/9) + 1
 I=\varnothing: V=\varnothing
 WHILE V=\emptyset AND I <= 4
 I = I + I
 IF ROW.LEFT(I) = R THEN V = I
 WEND
 IF X>14 AND X<175 AND V <> Ø THEN
 CALL HIGHLIGHT(VARIABLE,4)
 CALL HIGHLIGHT(V,3)
 VARIABLE = V
 END IF
RETURN
DECIDE:
 BUTTON = Ø
 GOSUB DRAWBUTTON
 GOSUB PUSHBUTTON
```

```
 COLOR 1,\varnothing
RETURN
DRAWBUTTON:
 LINE (265,167)-(361,181),1,BF
 FOR I=1 TO 2
 CIRCLE (XB(I),YB),12,4+I
 PAINT (XB (I),YB),4+I
 COLOR 1,4+I
 LOCATE 20: PRINT PTAB(XB(I)-4);LT$(I);
 NEXT I
RETURN
PUSHBUTTON:
 SOUND 440,2
 GOSUB CLICKIT
 S$ = UCASE$(S$)
 IF S$ = "Y" THEN BUTTON = 1
 IF S$ = "N" THEN BUTTON = 2
 FOR I=1 TO 2
 XD = ABS(X-XB(I)): YD = ABS(Y-YB)
 IF XD<13 AND YD<7 THEN BUTTON = I: I=2
 NEXT
 IF BUTTON = Ø THEN PUSHBUTTON
RETURN
CHANGE:
 ROW = ROW.LEFT(VARIABLE)
 COLOR 1,ø
 LOCATE 19,13: PRINT SPACE$(38);
 LOCATE 19,26: LINE INPUT; "New Value ? ";S$
 IF VARIABLE = 2 OR VARIABLE = 3 THEN
 X(VARIABLE) = INT(VAL(S$))
 ELSE
 X(VARIABLE) = VAL(S$)
 END IF
 LOCATE 19,26: PRINT SPACE$(30);
 COLOR 4
 COLOR 2,4: LOCATE ROW,17
 PRINT USING FS(F(VARIABLE));X(VARIABLE)
 GOSUB COMPUTE.PAYMENT
 GOSUB SHOW.SUMMARY
RETURN
PAYMENTS.PER.PERIOD:
 LOCATE 18,14: PRINT "Would you like to see";
 PRINT " each payment ?"
 GOSUB DECIDE
 LOCATE 18,14: PRINT SPACE$(36)
```

```
IF BUTTON = 1 THEN
 GOSUB SHOW.DETAILS
 GOSUB PAINT.SCREEN
 GOSUB SHOW.SUMMARY
 COLOR 1,\emptyset
END IF
RETURN
SHOW.DETAILS:
 LOAN = X(l)
 YR=1: QT=1: MT=1
 TITLES = FREQS + "ly" + " Payment Equals: $"
 TITLE$ = TITLE$ + STR$(INT(P(4)*1\varnothing\emptyset+.5)/1Ø\emptyset)
 IF FREQ = 1 THEN PERIOD$ = "Year"
 IF FREQ = 4 THEN PERIOD$ = "Year:Quarter"
 IF FREQ =l2 THEN PERIOD$ = "Year:Month"
 FOR I=1 TO N STEP 12
 GOSUB LABEL
 GOSUB BODY
 NEXT I
RETURN
```

LABEL:
CLS
LOCATE 2,32-LEN (TITLE\$)/2: PRINT TITLE\$
$L=$ LEN (PERIOD\$)
LINE ( $9 \varnothing-1 \varnothing * L / 2,34)-(11 \varnothing+1 \varnothing * L / 2,44), 3, B F$
COLOR 2,3
LOCATE 5,11-L/2: PRINT PERIOD\$
LINE $(230,24)-(340,44), 5, \mathrm{BF}$
COLOR 1,5
LOCATE 4,25: PRINT "Paid to"
LOCATE 5,25: PRINT "Principal"
$\operatorname{LINE}(43 \varnothing, 24)-(53 \emptyset, 44), 6$, BF
COLOR 1,6
LOCATE 4,45: PRINT "Paid to"
LOCATE 5,45: PRINT "Interest"
RETURN
BODY:
COLOR 1, $\varnothing$
ROW = 7
FOR $J=I$ TO Itll
IF $J<=N$ THEN
PTI $=R *$ LOAN : REM PAID TO INTEREST
PTP $=P(4)-P T I:$ REM PAID TO PRINCIPAL
IF FREQ $=1$ THEN GOSUB YEAR
IF $F R E Q=4$ THEN GOSUB QUARTER
IF $F R E Q=12$ THEN GOSUB MONTH

```
 ROW = ROW + 1
 LOAN = LOAN - PTP
 END IF
 NEXT J
 LOCATE 20,26: PRINT "Press any key";
 GOSUB CLICKIT
RETURN
YEAR:
 LOCATE ROW,1\varnothing: PRINT USING "##";YR;
 PRINT TAB(21) USING F$(1);PTP;
 PRINT TAB(40) USING F$(1);PTI
 YR = YR + 1
RETURN
QUARTER:
 LOCATE ROW,9: PRINT USING "##:#";YR,QT;
 PRINT TAB(21) USING F$(1);PTP;
 PRINT TAB(40) USING F$(1);PTI
 IF QT = 4 THEN
 YR = YR + l
 QT = l
 ELSE
 QT = QT + l
 END IF
RETURN
MONTH:
 LOCATE ROW,8
 IF MT <= 9 THEN
 PRINT USING "##:#";YR,MT;
 ELSE
 PRINT USING "##:##";YR,MT;
 END IF
 PRINT TAB(21) USING F$(1);PTP;
 PRINT TAB(40) USING F$(1);PTI
 IF MT = 12 THEN
 YR = YR + l
 MT = l
 ELSE
 MT = MT + l
 END IF
RETURN
```


## Multifunction Calculator

"Multifunction Calculator" (Figure 4-3) helps you evaluate simple arithmetic expressions and highly complex formulas. Enter digits and symbols into the calculator with either the keyboard or the mouse.

You can add, subtract, multiply, divide, and raise numbers to a power. Plus, you can use parentheses for more complex operations. The calculator handles simple operations like $2+3$ and complex expressions like $(7-3)^{*}\left(2^{\wedge} 3+1\right) /(17.9+5)$.

Three special calculator keys to remember are

> C to Clear the display
> M to access Memory
> R to Return (execute an operation)

If you're entering an expression, for example, and want to erase everything you've entered, press the $C$ on the keyboard or click the mouse on the Clear key on the screen. Your display window will clear and only the vertical cursor bar will remain. To delete just the last character entered, use the left arrow.

Try pressing M after clearing the display. The Amiga will retrieve from memory the result of your last calculation and will display it using as many decimal places as you've selected from the pull-down menu.

If you try to perform an illegal mathematical operation, don't worry. The Amiga will let you know what the problem is, such as division by zero. You can then clear the display and enter a new expression.

The calculator evaluates expressions just as Amiga BASIC does. Namely, it computes from left to right according to the following precedence of operations: exponentiation, multiplication and division, addition and subtraction. Use parentheses if you need to change this ordering.

Figure 4-3. Multifunction Calculator


Program 4-3. Multifunction Calculator Save using the filename CALCULATOR

REM MULTI-FUNCTION CALCULATOR
GOSUB INITIALIZE
IF INSTRUCTIONS $=1$ THEN GOSUB INSTRUCTIONS
GOSUB DRAW. CALCULATOR
gosub operate
END

INITIALIZE:
GOSUB SETSCREEN
GOSUB KEYVALUES
Gosub setmenus
gosub setcolors
GOSUB HEADING
RETURN

SETSCREEN:
SCREEN 1,64ø,2øø,3,2
WINDOW 2,"Multi-Function Calculator",.ø,1
RETURN

KEYVALUES:
DEFINT A-J,L-Z: DEFDBL Q,V
RANDOMIZE TIMER

```
 DIM B(28),F(28),S(28),V(25),SYM(25)
 GOSUB KEY.SYMBOLS
 GOSUB KEY.POINTS
 GOSUB ERROR.CODES
 GOSUB LEGAL.VALUES
RETURN
```

KEY.SYMBOLS:
REM SYMBOLS; FOREGROUND \& BACKGROUND COLORS
REM D = DUMMY (NO KEY)
DATA $(, 2,3,7,1,2,8,1,2,9,1,2$
DATA /, 2,3, $-, 2,3, C, 1,5$
DATA ),2,3, 4,1,2, 5,1,2, 6,1,2
DATA *, 2,3, +,2,3, M,1,5
DATA D, $0,0,1,1,2,2,1,2,3,1,2$
DATA ^, 2,3, $D, \varnothing, \varnothing, R, 1,5$
DATA $D, \varnothing, \varnothing, \varnothing, 1,2, \ldots 1,2, D, \varnothing, \varnothing$
DATA D, $, \varnothing,-1,6, \mathrm{D}, \varnothing, \varnothing$
FOR I=1 TO 4
FOR J=1 TO 7
CNT $=(\mathrm{I}-1) * 7+\mathrm{J}$
READ C\$,F(CNT),B(CNT)
$\mathrm{S}(\mathrm{CNT})=\mathrm{ASC}(\mathrm{C} \$)$
NEXT J,I
RETURN
KEY.POINTS:
REM BORDER
DATA $-5,3, \varnothing, 6,5,3,13, \varnothing, 5,-3, \varnothing,-6,-5,-3$
FOR I=1 TO 7
READ KEY.BX(I),KEY.BY(I)
NEXT
REM CENTER
DATA $-4,2, \varnothing, 6,4,2,13, \varnothing, 4,-2, \varnothing,-6,-4,-2$
FOR I=1 TO 7
READ KEY.CX(I), KEY.CY(I)
NEXT
RETURN
ERROR.CODES:
DATA Parentheses, Division by Zero, Syntax
DATA Exponentiation
FOR I=1 TO 4
READ ERROR.CODE\$ (I)
NEXT
RETURN
LEGAL. VALUES:
REM TO THE LEFT OF (

```
 DATA 32,40,42,43,45,47,94
 FOR I=1 TO 7
 READ LEFT(I)
 NEXT
REM TO THE RIGHT OF)
 DATA 32,41,42,43,45,47,94
 FOR I=1 TO 7
 READ RIGHT(I)
 NEXT
RETURN
SETMENUS:
 DATA 2, Instructions, Yes, No
 DATA 5, Calculator, Brown, Blue, Green
 DATA Gray, Random
 DATA 7, Decimals, Ø Places, l Place, 2 Places
 DATA 3 Places, 4 Places, 5 Places, }6\mathrm{ Places
 DATA 3, Stop, Go to BASIC
 DATA Go to Helpers Menu, Go to System
 FOR I=1 TO 4
 READ NUMBER
 FOR J=Ø TO NUMBER
 READ TITLES
 IF J<>\varnothing THEN TITLE$ = SPACE$(3) + TITLE$
 STATUS = l
 IF I < 3 AND J=1 THEN STATUS = 2
 IF I = 3 AND J=3 THEN STATUS = 2
 MENU I,J,STATUS,TITLE$
 NEXT J,I
 INSTRUCTIONS = 1: DP = 2: CAL.COLOR = 1
RETURN
SETCOLORS:
 REM BROWN, BLUE, GREEN, GRAY
 DATA .8,.6,.53,. .36,.57,1
 DATA . 26,.59,.47,.58,.52,.6
 FOR I=1 TO 4
 FOR J=1 TO 3
 READ KOLOR(I,J)
 NEXT J,I
 REM BROWN, GREEN, & RED
 PALETTE 4,.8,.6,.53
 PALETTE 5,0,.39,.19
 PALETTE 6,.93,.2.0
RETURN
```

        CLS
        COLOR 3,\varnothing: LOCATE 18,30:PRINT "then"
        COLOR 1,\varnothing
        LOCATE 10,20: PRINT "Multi-Function Calculator"
        LOCATE 17,24:PRINT "Please use menus,"
        LOCATE 19,21:PRINT "Click mouse to compute"
        GOSUB CLICKIT
    RETURN
OPTIONS:
ID = MENU(\varnothing): ITEM = MENU(1)
ON ID GOSUB MENU1,MENU2,MENU3,GOODBYE
ITEM = Ø
RETURN
MENU1 :
MENU 1,INSTRUCTIONS,1: MENU l,ITEM,2
INSTRUCTIONS = ITEM
RETURN
MENU2:
Kl = KOLOR(ITEM,1): K2 = KOLOR(ITEM,2)
K3 = KOLOR(ITEM,3)
IF ITEM=5 THEN Kl=RND: K2=RND: K3=RND
PALETTE 4,K1,K2,K3
MENU 2,CAL.COLOR,1: MENU 2,ITEM,2
CAL.COLOR = ITEM
RETURN
MENU3:
MENU 3,DP+1,1: MENU 3,ITEM,2
DP = ITEM-1
RETURN
GOODBYE:
WINDOW CLOSE 2: WINDOW 1: MENU RESET
SCREEN CLOSE l
IF ITEM = 2 THEN RUN "HELPERS"
IF ITEM = 3 THEN SYSTEM
COLOR 1,0: CLS
PRINT "Bye-Bye"
STOP
RETURN
CLICKIT:
S\$ = ""
WHILE MOUSE(\varnothing) = \varnothing AND S\$ = ""
S\$ = INKEY\$
WEND

```
```

    X = MOUSE(1)
    Y = MOUSE(2)
    WHILE MOUSE(\varnothing)<> \varnothing: WEND: REM RESET
    RETURN
INSTRUCTIONS:
CLS
PRINT
PRINT " Multi-Function Calculator helps you";
PRINT " evaluate simple"
PRINT " arithmetic expressions and highly";
PRINT " complex formulas."
PRINT
PRINT " Enter digits and symbols into the";
PRINT " calculator with either"
PRINT " the keyboard or mouse."
PRINT
PRINT " You can add, subtract, multiply,";
PRINT " divide, and raise numbers"
PRINT " to a power. And you can use";
PRINT " parentheses."
PRINT
PRINT " Three special calculator keys to";
PRINT " remember are:"
PRINT
PRINT TAB(15)"C to Clear the display"
PRINT TAB(15)"M to access Memory"
PRINT TAB(15)"R to Return (execute an";
PRINT " operation)"
LOCATE 20,27:PRINT "Click Mouse";
GOSUB CLICKIT
RETURN
DRAW.CALCULATOR:
CLS
LINE(93,15)-(533,115),4,BF
LINE(93,15)-(533,115),2,B
LINE(113,25)-(513,35),0,BF: REM DISPLAY
LINE(112,24)-(514,36),2,B
REM DRAW SYMBOLS
FOR I=l TO 4
FOR J=1 TO 7
Y = 18*I + 25
X = 40*J + 145
CNT = (I-1)*7 + J
IF S(CNT) <> }68\mathrm{ THEN GOSUB DRAW.KEY
NEXT J,I
REM DRAW ARROW
COLOR 1,6

```
```

    LINE(391,1ø\emptyset)-STEP(-4, 2)
    LINE - STEP(4,2): LINE - STEP(\varnothing,-4)
    PAINT(389,102)
    LINE(387,1Ø2)-(401,1ø2)
    S(27) = 31: S(21) = 13
    REM SET INITIAL VALUE
COLOR 1,\varnothing
E\$ = "": L = Ø: VALUE = Ø
LOCATE 4,51: PRINT CHR$(124)
RETURN
DRAW.KEY:
    REM BORDER
        COLOR \emptyset
        AREA (X+3,Y-1)
        FOR L=1 TO 7
            AREA STEP(KEY.BX(L),KEY.BY(L))
    NEXT L
    AREAFILL
    REM CENTER
    COLOR B(CNT)
    AREA (X+3,Y)
    FOR L=1 TO 7
        AREA STEP(KEY.CX(L),KEY.CY(L))
    NEXT L
    AREAFILL
    COLOR F(CNT),B(CNT)
    LOCATE I*2+4,J*4+16: PRINT CHR$(S(CNT))
RETURN
OPERATE:
GOSUB GET.INPUT
IF L > Ø THEN GOSUB EVALUATE
GOTO OPERATE
RETURN
GET.INPUT:
GOSUB CLICKIT
KEY\$ = "BAD"
IF S\$ = "" THEN
GOSUB MOUSE.ENTRY
ELSE
GOSUB KEYBOARD
END IF
REM CHECK FOR MAX LENGTH
IF L = 39 THEN
IF A<>13 AND A<>31 AND A<>67 THEN KEY\$="BAD"
END IF
REM NO EXPRESSION

```
```

    IF L = Ø AND A = 31 THEN KEY$ = "BAD"
    REM MEMORY ACCESS
    IF L <> Ø AND A = 77 THEN KEY$ = "BAD"
    IF KEY$ = "BAD" THEN
        SOUND 9øØ,2
        GOTO GET.INPUT
    END IF
    IF A=31 THEN GOSUB BACKSPACE
    IF A=67 THEN GOSUB CLEAR.DISPLAY
    IF A=77 THEN GOSUB MEMORY
    IF NOT ( }A=13\mathrm{ OR A=31 OR A=67 OR A=77) THEN
        GOSUB DISPLAY
    END IF
    IF A <> 13 THEN GET.INPUT
    RETURN
MOUSE.ENTRY:
ROW = INT((Y-40)/18) + 1
COL = INT((X-175)/40) + 1
IF ROW>\emptyset AND ROW<5 AND COL>\emptyset AND COL<8 THEN
KEY\$ = "OK"
END IF
IF KEYS = "OK" THEN
KEY = (ROW-1)*7+COL
IF S(KEY)=68 THEN KEY\$ = "BAD"
A = S(KEY)
END IF
RETURN
KEYBOARD:
A = ASC(UCASE$(S$))
IF A=8 OR A=127 THEN A=31: REM BACKSPACE
IF A=82 THEN A=13: REM RETURN
REM VALIDITY
IF A <> 44 AND A>39 AND A<58 THEN KEY\$ = "OK"
IF A=13 OR A=31 OR A=67 THEN KEY\$ = "OK"
IF A=77 OR A=94 THEN KEY\$ = "OK"
RETURN
BACKSPACE:
E\$ = LEFT$(ES,L-1)
    LOCATE 4,52-L: PRINT " "+E$
L = L-1
IF L=\emptyset THEN LOCATE 4,51: PRINT CHR$(124)
RETURN
CLEAR.DISPLAY:
    E$ = ""
LOCATE 4,52-L: PRINT SPACE\$(L)

```
```

    L=\emptyset
    LOCATE 4,51: PRINT CHR$(124)
    RETURN
MEMORY:

```

```

    ES = STR$(V)
    IF V >= Ø THEN ES = MID$(ES, 2)
    L = LEN(E$)
    LOCATE 4,52-L: PRINT E$
    RETURN
DISPLAY:
ES = ES + CHRS(A)
L = L+l
LOCATE 4,52-L: PRINT E\$
RETURN
EVALUATE:
GOOF = Ø
EXPRESSION\$ = E\$
LOCATE 4,13: PRINT SPACE$(39)
    LOCATE 4,27: PRINT "Calculating"
    GOSUB GURGLE
    GOSUB STRIKE.PARENTHESES
    IF GOOF = Ø THEN GOSUB CALCULATE
    LOCATE 4,27: PRINT SPACE$(11)
IF GOOF = Ø THEN GOSUB MEMORY ELSE GOSUB GOOF
RETURN
GURGLE:
FREQ = 3Ø\varnothing
FOR G=1 TO 5
FREQ = 5Ø\emptyset-FREQ
SOUND FREQ,1,50
NEXT G
RETURN
STRIKE.PARENTHESES:
PL=\emptyset: PR=\emptyset
FOR I=1 TO L
C\$ = MID$(E$,I,I):A = ASC(C\$)
IF A=4Ø THEN PL = I
IF A=41 THEN PR = I: I=L
NEXT
IF PR-PL = 1 THEN GOOF = 1
IF PL=Ø AND PR>\emptyset THEN GOOF = 1
IF PR=Ø AND PL>\emptyset THEN GOOF = 1
IF GOOF = Ø AND PR <> Ø THEN

```
```

        GOSUB REMOVE
        GOTO STRIKE.PARENTHESES
    END IF
    RETURN
REMOVE:
LF\$ = MID$(E$,1,PL-1)
MD\$ = MIDS(E$,PL+1,PR-PL-1)
    RTS = MID$(ES,PR+1,L-PR)
REM CHECK LEFT OF (
LK = ASC(RIGHT$(" " + LF$,l))
GOOF=3: J=1
WHILE GOOF = 3 AND J <= 7
IF LK = LEFT(J) THEN GOOF = \varnothing
J = J+l
WEND
REM CHECK RIGHT OF )
RK = ASC(LEFT$(RT$ + " ",1))
GOOF=3: J=1
WHILE GOOF = 3 AND J <= 7
IF RK = RIGHT(J) THEN GOOF = Ø
J = J+l
WEND
REM CONTINUE
IF GOOF = Ø THEN
E\$ = MD$: GOSUB CALCULATE
        S$ = STR$(VALUE)
        IF VALUE >=\varnothing THEN S$ = MID$(S$,2)
ES = LF\$ + S\$ + RT\$
L = LEN(E$)
    END IF
RETURN
CALCULATE:
    ES = ES + CHRS(32): T=\varnothing: P=\varnothing: SG=1
    GOSUB TAKE.APART
    IF GOOF = Ø THEN
        IF T > 1 THEN GOSUB TALLY
        IF GOOF = Ø THEN VALUE = V(T)
    END IF
    IF SYM(T) <> 32 THEN GOOF = 3
RETURN
TAKE.APART:
    P = P+1
    CS = MIDS(ES,P,l): A=ASC(C$)
REM + OR -
IF A=43 OR A=45 THEN
IF A = 45 THEN SG = - SG

```
```

        NMS = "OFF"
        GOTO TAKE.APART
    END IF
    REM DIGIT OR DECIMAL
IF A=46 OR (A>47 AND A<58) THEN
GOSUB NUMBER
ELSE
IF A <> 32 THEN GOOF = 3
END IF
REM CONTINUE
IF GOOF = Ø AND A <> 32 THEN
SG=1: GOTO TAKE.APART
END IF
IF NMS = "OFF" THEN GOOF = 3
RETURN
NUMBER:
NS = C\$
DEC\$ = "OFF": DGT\$ = "OFF"
IF A=46 THEN DECS = "ON"
IF A>47 AND A<58 THEN DGT\$ = "ON"
LOOP:
REM GET NUMBER
P = P+l
CS = MIDS(ES,P,1): A=ASC(C$)
        IF A=46 AND DEC$ = "ON" THEN GOOF = 3
IF A=46 THEN DECS = "ON"
IF A>47 AND A<58 THEN DGT\$ = "ON"
IF GOOF=\emptyset AND A=46 OR (A>47 AND A<58) THEN
N\$ = N\$ + C\$
GOTO LOOP
END IF
REM CHECK FOR DIGIT
IF DGT\$ = "OFF" THEN GOOF = 3
REM STORE NUMBER
IF GOOF = Ø THEN
T = T+1
V(T) = SG*VAL(N$)
            SYM(T) = A
            NM$ = "ON"
END IF
RETURN
TALLY:
GOSUB EXPONENTIATION
IF GOOF = Ø THEN GOSUB MULT.DIV
IF GOOF = Ø THEN GOSUB ADD.SUB
RETURN

```
```

EXPONENTIATION:
FOR I=1 TO T-1
IF SYM(I) = 94 THEN
IF V(I) < Ø AND V(I+1) < 1 THEN GOOF = 4
IF GOOF = Ø THEN
V(I+1) = V(I) ^V(I+l)
SYM(I) = -9
END IF
END IF
NEXT
RETURN
MULT.DIV:
FOR I=1 TO T-1
S = SYM(I)
IF S = 42 OR S = 47 THEN
Q = V(I)
FOR J = I+1 TO T
IF SYM(J) <> -9 THEN GOSUB MD: J = T
NEXT J
END IF
NEXT I
RETURN
MD :
IF S = 42 THEN V(J)=Q*V(J): SYM(I) = -9
IF S = 47 AND V(J) = Ø THEN GOOF = 2
IF S = 47 AND GOOF = \varnothing THEN
V(J) = Q/V(J)
SYM(I) = -9
END IF
RETURN
ADD.SUB:
FOR I=1 TO T-1
S = SYM(I)
IF S = 43 OR S = 45 THEN
Q = V(I)
FOR J = I+l TO T
IF SYM(J) <> - }9\mathrm{ THEN
IF S = 43 THEN V(J) = Q + V(J)
IF S = 45 THEN V(J) = Q - V(J)
SYM(I) = -9
J = T
END IF
NEXT J
END IF
NEXT I
RETURN

```
```

GOOF:
COLOR 1,6
LINE(95,124)-(155,134),6,BF
LOCATE 15,11: PRINT "Error"
COLOR 1,0
ES = EXPRESSION$: L = LEN(E$)
LOCATE 4,52-L: PRINT E\$
LOCATE 15,17: PRINT ERROR.CODE$(GOOF)
    LOCATE 19,26: PRINT "Press any key"
    GOSUB CLICKIT
    LINE(95,124)-(155,134),\varnothing,BF
    LOCATE 15,17: PRINT SPACE$(16)
LOCATE 19,26: PRINT SPACE\$(13)
RETURN

```

\section*{Paycheck Analysis}

With "Paycheck Analysis" you can verify that your paycheck has been calculated correctly. Furthermore, you can use the program to project future takehome pay when that raise comes through and even to tally a payroll.

Before you use Payroll Analysis, you'll probably want to customize it a bit. As it's listed, the program calculates withholding for a single person. If you're in another classification, such as married filing jointly or married filing separately, you need to change some of the program lines. And the rates are likely to change from year to year.

Nevertheless, all you need is a copy of the tax rate schedules, which you can obtain from the Internal Revenue Service. Ask for Schedule X. You will also need information on your state taxes. Then insert the new data in the STATE.TAX and FEDERAL.TAX subroutines at the very end of the program. These lines compute taxes using the formula

\section*{\(\mathbf{A}+\mathbf{B}^{*}(\mathbf{Y}-\mathbf{C})\)}

The variable \(Y\) is your annual income, or weekly pay times 52; A, B, and C are from the tax tables. For example, your federal tax would be \(\$ 251.3+.14 *(Y-\$ \$ 4580)\)
if \(Y\) is between \(\$ 4,580\) and \(\$ 6,750\). In this case, then, \(A=251.3, B=14\), and \(C=4580\). To change the rates, place the new information in the lines using the same format.

Current state tax rates are from Virginia. The same formula as the federal withholding is used. You can replace these lines with ones that match your own state's tax rates.

As soon as you've made these customizations, you can check your paycheck. The display shows such things as weekly hours, hourly wage, insurance, and retirement fund. The last item, FICA, stands for the Federal Insurance Contributions Act, or Social Security. Presently, 7.15 percent of your paycheck is deducted for this, for up to \(\$ 42,000\) of annual income. If Congress changes these figures, make sure you alter the program appropriately.

To enter your own figures, simply click the mouse on the item of your choice. Then key in the new number. The Amiga will show updated figures on the right side of the screen.

You can compute paychecks for the following periods: one week, two weeks, four weeks, and one year. By using a pull-down menu, you can perform
weekly and yearly analyses without having to enter your basic data more than once.
```

Program 4-4. Paycheck Analysis
Save using the filename PAYCHECK
REM PAYCHECK ANALYSIS
GOSUB INITIALIZE
ANALYZE:
GOSUB DO.PAY
LOCATE 20,11: PRINT "Compute Again ?";
GOSUB DECIDE
IF BUTTON = l THEN ANALYZE
GOSUB GOODBYE
END

```
INITIALIZE:
 GOSUB SETSCREEN
 GOSUB KEYVALUES
 GOSUB BASE.PAY
 GOSUB SETMENUS
 GOSUB SETCOLORS
 GOSUB HEADING
RETURN
SETSCREEN:
 SCREEN 1,64ø,2øø,3,2
 WINDOW 2,"Paycheck Analysis",, 0,1
RETURN
KEYVALUES:
 DEFINT A-Z: DEFSNG M,P,T,X,Y
 DIM NMS (2ø), X(2ø),F(2б)
 DEF FNTAX(X1,X2,X3) = X1 + X2/1øø*(Y-X3)
 REM BUTTON VALUES
 \(\mathrm{XB}(1)=292: \mathrm{XB}(2)=334: \mathrm{YB}=174\)
 LT\$(1) = "Y": LT\$(2) = "N"
 REM NUMBER OF ITEMS
 DATA 9
 READ N
 REM PRINT-FORMATS
 F\$(1) = "\$\$\#\#\#\#\#\#.\#\#"
 F\$(2) = " \#\#\#.\#\#"
 F\$(3) = " \%\#\#.\#\#"
 F\$(4) = "\$\$\#\#,\#\#\#\#\#.\#\#"
 REM FORMATS FOR LEFT BOX
 DATA 2,1,2,1,2,1,1,1,3
 FOR I=1 TO N
 READ \(F(I)\)
```

NEXT
REM PAY PERIODS
DATA One Week,1, Two Weeks,2, Four Weeks,4
DATA 52 Weeks, }5
FOR I=l TO 4
READ PERIOD$(I), PERIOD(I)
    NEXT
REM ROWS FOR RIGHT BOX (PAY RESULTS)
    DATA 5,8,10,12,16,18
    FOR I=1 TO 6
            READ ROW(I)
    NEXT
RETURN
BASE.PAY:
    DATA Weekly Hours, 40
    DATA Hourly Wage, 10
    DATA Overtime Hours, \varnothing
    DATA Overtime Wage, 15
    DATA Fed. Exemptions, l
    DATA Insurance, 15
    DATA Charity, 1\varnothing
    DATA Retirement Fund, 50
    DATA F.I.C.A, 7.15
    FOR I=1 TO N
        READ NMS(I),X(I)
    NEXT
RETURN
SETMENUS:
    DATA 2, Instructions, Yes, No
    DATA 4, Compute Paycheck
    DATA For one week (5 days), For two weeks
    DATA For four weeks, For }52\mathrm{ weeks
    DATA 3, Stop, Go to BASIC
    DATA Go to Helpers Menu, Go to System
    FOR I=1 TO 3
        READ NUMBER
        FOR J=\varnothing TO NUMBER
        READ TITLE$
IF J<>\varnothing THEN TITLE\$ = SPACE$(3) + TITLE$
STATUS = l
IF I <> 3 AND J = l THEN STATUS = 2
MENU I,J,STATUS,TITLE\$
NEXT J,I
MENU 4,\varnothing,\varnothing,""
INSTRUCTIONS = 1: LENGTH = l
RETURN

```
```

SETCOLORS:
REM BROWN, GREEN, \& RED
PALETTE 4,.8,.6,.53
PALETTE 5,.14,.43,ø
PALETTE 6,.93,.2,0
RETURN
HEADING:
MENU ON
ON MENU GOSUB OPTIONS
CLS
COLOR 3,0: LOCATE 18,30:PRINT "then"
COLOR 1,\varnothing
LOCATE 10: PRINT PTAB(224)"Paycheck Analysis"
LOCATE 17,24:PRINT "Please use menus,"
LOCATE 19,21:PRINT "Click mouse to compute"
GOSUB CLICKIT
RETURN
OPTIONS:
ID = MENU(\emptyset): ITEM = MENU(1)
ON ID GOSUB MENU1,MENU2,GOODBYE
ITEM = \varnothing
RETURN
MENUL :
MENU 1,INSTRUCTIONS,1: MENU 1,ITEM,2
INSTRUCTIONS = ITEM
RETURN
MENU2 :
MENU 2,LENGTH,1: MENU 2,ITEM,2
LENGTH = ITEM
RETURN
GOODBYE:
WINDOW CLOSE 2: WINDOW l: MENU RESET
SCREEN CLOSE l
IF ITEM = 2 THEN RUN "HELPERS"
IF ITEM = 3 THEN SYSTEM
COLOR 1,0: CLS
PRINT "Bye-Bye"
STOP
RETURN

```
```

CLICKIT:

```
CLICKIT:
 S$ = ""
 S$ = ""
 WHILE MOUSE(\varnothing) = Ø AND S$ = ""
 WHILE MOUSE(\varnothing) = Ø AND S$ = ""
 S$ = INKEY$
```

        S$ = INKEY$
    ```
```

    WEND
        X = MOUSE(1)
        Y = MOUSE(2)
    WHILE MOUSE(\varnothing)<> Ø: WEND: REM RESET
    RETURN
DO.PAY:
ACCOUNT = 1
IF INSTRUCTIONS = l THEN GOSUB INSTRUCTIONS
GOSUB COMPUTE.PAY
GOSUB PAINT.SCREEN
GOSUB SHOW.PAY
GOSUB ASK.TO.CHANGE
RETURN
INSTRUCTIONS:
CLS
PRINT
PRINT " This program computes a paycheck."
PRINT
PRINT " It shows how much of your base pay";
PRINT " goes to Federal and"
PRINT " State taxes, and how much to Social";
PRINT " Security."
PRINT
PRINT " Use the program to verify the";
PRINT " accuracy of your paycheck,"
PRINT " to project future take-home pay when";
PRINT " that raise comes"
PRINT " through, and even to tally a payroll."
PRINT
PRINT " In the display that follows,";
PRINT " paycheck underpinnings are"
PRINT " on the left; these are always weekly";
PRINT " figures."
PRINT
PRINT " Paycheck results are on the right,";
PRINT " and these can be"
PRINT " for l, 2, 4, or }52\mathrm{ weeks."
LOCATE 2ø,27:PRINT "Click Mouse";
GOSUB CLICKIT
ITEM = 2: GOSUB MENUL: REM TURN OFF INSTRUCTIONS
RETURN
COMPUTE.PAY:
P(1) = X(1)*X(2) + X(3)*X(4): REM GROSS
REM FEDERAL TAXES
REM TAXABLE INCOME PER WEEK
Y = P(1) - (1040/52)*X(5)

```
```

    GOSUB FEDERAL.TAX
    \(P(2)=\) TAX/52
    REM FICA; MX = MAX WEEKLY SALARY
    \(\mathrm{MX}=42 \varnothing \varnothing \varnothing \& / 52\)
    IF \(\mathrm{P}(1)>\mathrm{MX}\) THEN
        \(P(3)=M X * X(9) / 1 \varnothing \varnothing\)
    ELSE
        \(P(3)=P(1) * X(9) / 1 \varnothing \varnothing\)
    END IF
    REM STATE OF VIRGINIA TAXES
    REM TAXABLE INCOME PER WEEK
        \(Y=P(1)-(6 \varnothing \varnothing / 52) * X(5)\)
        GOSUB STATE.TAX
        \(P(4)=T A X / 52\)
    REM OTHER DEDUCTIONS
    \(P(5)=X(6)+X(7)+X(8)\)
    REM TAKE-HOME PAY
    \(P(6)=P(1)-P(2)-P(3)-P(4)-P(5)\)
    REM ADJUST FOR PAY PERIOD
    FOR I=1 TO 6
        \(P(I)=P(I) * P E R I O D\) (LENGTH)
    NEXT
    RETURN
PAINT.SCREEN:
CLS
$\operatorname{LINE}(10,4)-(3 \varnothing 6,163), 4, \mathrm{BF}$
LINE $(324,4)-(620,163), 1, B F$
REM LEFT BOX (RAW DATA)
COLOR 2,4
FOR I=1 TO 9
LOCATE I*2,3: PRINT NM\$(I);
PRINT TAB(19) USING F ( $\mathrm{F}(\mathrm{I})$ ); $\mathrm{X}(\mathrm{I})$
NEXT
REM RIGHT BOX
COLOR Ø, 1
LOCATE 2,42: PRINT "TAKE-HOME PAY"
LOCATE 5,35: PRINT "Gross Pay"
COLOR 6
LOCATE 8,35: PRINT "Federal Taxes"
LOCATE 10,35: PRINT "F.I.C.A"
LOCATE 12,35: PRINT "State Taxes"
COLOR $\varnothing$
LOCATE 15,35: PRINT "Other"
LOCATE 16,35: PRINT "Deductions"
$\operatorname{LINE}(335,151)-(474,161), 5, B F$
COLOR 1,5
LOCATE 18,35: PRINT "Take-Home Pay"
RETURN

```
```

SHOW.PAY:
COLOR Ø,1
LOCATE 3,40: PRINT SPACE$(15)
    S$ = "("+PERIOD$(LENGTH)+")": L = LEN(S$)
LOCATE 3: PRINT PTAB (475-10*L/2); S\$
FOR I=1 TO 6
LOCATE ROW(I), 49: PRINT USING F$(4);P(I)
    NEXT
RETURN
ASK.TO.CHANGE :
    COLOR 1,\emptyset
    LOCATE 20,17: PRINT "Changes ?";
    GOSUB DECIDE
    IF BUTTON = 1 THEN
        CALL HIGHLIGHT(ACCOUNT, 3)
        COLOR 1,0
        LINE (265, 167)-(361, 181),0,BF
        LOCATE 20,17: PRINT SPACE$(9);
LOCATE 20,13: PRINT "Click Mouse on Choice,";
PRINT " then Hit Return";
GOSUB CHOOSE
GOTO ASK.TO.CHANGE
END IF
RETURN
SUB HIGHLIGHT(ACNT,KOLOR) STATIC
SHARED NM$()
    L = LEN(NM$ (ACNT))
X\emptyset = 15: X1 = L*1\varnothing + 25
Y\emptyset = 18*ACNT - 11: Yl = Y\emptyset + 1\emptyset
LINE (XØ, YØ ) - (Xl, Y1 ) ,KOLOR , BF
COLOR KOLOR-2,KOLOR
LOCATE ACNT*2,3: PRINT NM$(ACNT)
END SUB
CHOOSE:
    GOSUB GURGLE
    GOSUB CLICKIT
    IF S$ = "" THEN GOSUB LOCATION: GOTO CHOOSE
IF ASC(S\$) <> 13 THEN CHOOSE
GOSUB CHANGE
RETURN
GURGLE :
FREQ = 3ØØ
FOR G=1 TO 5
FREQ = 5Ø\emptyset-FREQ
SOUND FREQ,1,50

```
```

NEXT G RETURN

```

LOCATION:
\(\mathrm{V}=\operatorname{INT}((\mathrm{Y}-3) / 18)+1\)
IF \(X>14\) AND \(\mathrm{X}<175\) AND \(V>\emptyset\) AND \(V<1 \varnothing\) THEN CALL HIGHLIGHT (ACCOUNT,4)
CALL HIGHLIGHT(V,3)
ACCOUNT \(=\mathrm{V}\)
END IF
RETURN
DECIDE:
BUTTON \(=\varnothing\)
GOSUB DRAWBUTTON
GOSUB PUSHBUTTON
COLOR \(1, \varnothing\)
RETURN

\section*{DRAWBUTTON:}

LINE (265,167)-(361,181), 1, BF
FOR I=1 TO 2
CIRCLE (XB (I) , YB) , 12, 4+I PAINT (XB(I),YB),4+I
COLOR 1,4+I
LOCATE 2ø: PRINT PTAB(XB(I)-4);LT\$(I);
NEXT I
RETURN
PUSHBUTTON:
SOUND 44ø, 2
GOSUB CLICKIT
\(\mathbf{S} \$=\) UCASES \((S \$)\)
IF \(\mathbf{S} \$=\) "Y" THEN BUTTON \(=1\)
IF \(\mathbf{S} \$=\) "N" THEN BUTTON \(=2\)
FOR I=1 TO 2
\(X D=A B S(X-X B(I)): Y D=A B S(Y-Y B)\)
IF XD<13 AND YD<7 THEN BUTTON = I: \(\mathrm{I}=2\)
NEXT
IF BUTTON \(=\varnothing\) THEN PUSHBUTTON
RETURN
CHANGE:
ROW \(=2 *\) ACCOUNT
COLOR \(1, \varnothing\)
LOCATE 2ø,13: PRINT SPACES (38);
LOCATE 20,26: LINE INPUT; "New Value ? ";
\(\mathrm{X}(\mathrm{ACCOUNT})=\mathrm{VAL}(S \$)\)
LOCATE 2ø,26: PRINT SPACES(3ø);
```

    COLOR 4
    COLOR 2,4: LOCATE ROW,19
    PRINT USING F$(F(ACCOUNT));X(ACCOUNT)
    GOSUB COMPUTE.PAY
    GOSUB SHOW.PAY
    RETURN
STATE.TAX:
Y = Y*52
TAX = FNTAX(\varnothing,2,\varnothing)
IF Y > 3øø\emptyset THEN TAX = FNTAX(60,3,3\emptyset\emptyset\emptyset)
IF Y > 5øø\emptyset THEN TAX = FNTAX(120,5,50\varnothing\emptyset)
IF Y > 12ø\varnothing\emptyset THEN TAX = FNTAX(470,5.75,12\emptyset\emptyset\emptyset)
RETURN
FEDERAL.TAX:
Y = Y*52
TAX = FNTAX(\varnothing, \varnothing,\varnothing)
IF Y > 2390 THEN TAX = FNTAX(\emptyset,11,2390)
IF Y > 3540 THEN TAX = FNTAX(126.5,12,3540)
IF Y > 4580 THEN TAX = FNTAX(251.3,14,4580)
IF Y > 6760 THEN TAX = FNTAX(556.5,15,6760)
IF Y > 8850 THEN TAX = FNTAX (870,16,8850)
IF Y > 11240 THEN TAX = FNTAX(1252.4,18,11240)
IF Y > 13430 THEN TAX = FNTAX(1646.6,20,13430)
IF Y > 15610 THEN TAX = FNTAX(2082.6,23,15610)
IF Y > 18940 THEN TAX = FNTAX(2848.5,26,18940)
IF Y > 24460 THEN TAX = FNTAX(4283.7,30,24460)
IF Y > 29970 THEN TAX = FNTAX(5936.7,34,29970)
IF Y > 35490\& THEN TAX = FNTAX(7813.5,38,35490\&)
IF Y > 43190\& THEN TAX = FNTAX(10739.5,42,43190\&)
IF Y > 57550\& THEN TAX = FNTAX(16770.7,48,57550\&)
IF Y > 85130\& THEN TAX = FNTAX(30009.1,50,85130\&)
RETURN

```

\section*{CHAPTER 5}

\title{
Business and Finance
}

\section*{CHAPTER 5}

\section*{Business and Finance}

This chapter presents a series of programs designed to help manage finances. The programs can be used by corporate planners, small-company executives, and budding entrepreneurs to better manage their financial resources. Indeed, since scarcity of goods and services is a problem faced by all, you may want to use some of these routines to help manage your personal finances, too. Here are the four programs:

Electronic Spreadsheet. This program turns your Amiga into a onepage worksheet that's easy to use, yet highly capable. With it, you can create a screenful of numbers, labels, and formulas to represent a problem you're trying to solve or a situation you're trying to track. When you tally the sheet, the Amiga computes values for the formulas and nicely formats the results to your specification. You can save your spreadsheet on disk, and you can dump reports to a printer.

Least-Squares Forecasting. For centuries, many have tried to peer into the future. Soothsayers, oracles, palm readers, and even economists try to foretell what will be. You can join this elite group of mystics by using this program to forecast the future value of a variable through the use of simple linear regression analysis.

Future Worth. Questions about buying or leasing or return on investments often involve determining the future value of money. This program assists with this type of analysis.

Computer Cash Register. Turn your Amiga into a fast-working and easy-to-use cash register with this program. It automatically figures sales tax and even tallies the receipts at the end of the day.
```

Business and Finance Menu Driver
Save using the filename FINANCE
REM BUSINESS AND FINANCE
GOSUB INITIALIZE
GOSUB MAIN.MENU
RUN TITLE.SHORT$(PICK)
END
INITIALIZE:
    GOSUB SETSCREEN
    GOSUB KEYVALUES
    GOSUB SETMENUS
    GOSUB SETCOLORS
    GOSUB SHAPES
RETURN
SETSCREEN:
    SCREEN 1,640,200,3,2
    WINDOW 2,"Business and Finance",,\varnothing,l
RETURN
KEYVALUES:
    DEFINT A-Z
    N = 4
    DIM TITLE.LONG$(N),TITLE.SHORT$(N),DISCS(250)
    DISC.I(1) = l: DISC.I(2) = 125
    READ CHAPTERS
    FOR I=1 TO N
        READ TITLE.LONG$(I),TITLE.SHORT\$(I)
NEXT
RETURN
SETMENUS:
FOR I=2 TO 4
MENU I,\varnothing,\varnothing,""
NEXT
MENU 1,ø,l,"STOP"
MENU 1,1,l," Go to BASIC"
MENU 1,2,1," Go to System"
MENU ON
ON MENU GOSUB GOODBYE
RETURN
GOODBYE:
WINDOW CLOSE 2: WINDOW l: MENU RESET
SCREEN CLOSE l
ITEM = MENU(1)
IF ITEM = 2 THEN SYSTEM

```
```

CLS
PRINT "Bye-Bye"
STOP
RETURN
SETCOLORS:
REM TAN, GREEN, \& RED
PALETTE 4,.95,.7,.53
PALETTE 5,.14,.43,0
PALETTE 6,.93,.2,\varnothing
RETURN
SHAPES:
X=313: Y=80
LINE (X-12,Y-8)-(X+12,Y+8),4,BF
FOR I=1 TO 2
K = 7-I
CIRCLE(X,Y),12,K: PAINT(X,Y),K
GET(X-12,Y-8)-(X+12,Y+8),DISCS(DISC.I(I))
NEXT
RETURN
MAIN.MENU:
CLS
RTN\$ = "OFF": PICK = 1
S\$ = CHAPTER$: L = LEN(S$)
LINE (313-10*L/ 2-15,15)-(313+10*L/2+15,27),1,B
PAINT(313,20),6,1
COLOR 1,6: LOCATE 3: PRINT PTAB(313-10*L/2)S\$
LINE(135,35)-(495,130),2,B: PAINT(313,80),4,2
COLOR 2,4
FOR I=1 TO N
IF I = PICK THEN INX = 2 ELSE INX = 1
CALL DRAW.CIRCLE(I,INX)
LOCATE I*2+4,21: PRINT TITLE.LONG\$(I)
NEXT
LINE (263,141)-(360,153),2,B: PAINT(313,145),3,2
COLOR 2,3
LOCATE 17: PRINT PTAB(282)"Return"
COLOR 1,0
LOCATE 19,11: PRINT "Click Mouse on Choice,";
PRINT " then Click on Return"
GOSUB CHOOSE
RETURN
SUB DRAW.CIRCLE(R,INX) STATIC
SHARED DISCS(),DISC.I()
Y = 18*R+22
PUT(162,Y),DISCS(DISC.I(INX)),PSET
END SUB

```
```

CHOOSE:
GOSUB GURGLE
GOSUB CLICKIT
IF S\$ = "" THEN GOSUB LOCATION
IF ASC(S$+" ") <> 13 AND RTN$ = "OFF" THEN
GOTO CHOOSE
END IF
RETURN
GURGLE:
FREQ = 30Ø
FOR G=1 TO 5
FREQ = 50\emptyset - FREQ
SOUND FREQ,1,5\emptyset
NEXT
RETURN
CLICKIT:
S\$ = ""
WHILE MOUSE(\varnothing) = Ø AND S\$ = ""
S\$ = INKEY\$
WEND
X = MOUSE(1)
Y = MOUSE(2)
WHILE MOUSE(\varnothing)<> \varnothing: WEND: REM RESET
RETURN
LOCATION:
IF X>263 AND X<360 AND Y> 141 AND Y<l53 THEN
RTN\$ = "ON"
ELSE
P = INT((Y-39)/18) + l
IF X>155 AND X<195 AND P>\emptyset AND P<= N THEN
CALL DRAW.CIRCLE(PICK,l)
CALL DRAW.CIRCLE(P,2)
PICK = P
END IF
END IF
RETURN
REM PROGRAMS
DATA Business and Finance
DATA Electronic Spreadsheet, SPREADSHEET
DATA Least-Squares Forecasting, LSF
DATA Future Worth, WORTH
DATA Amiga Cash Register, REGISTER

```

\section*{Electronic Spreadsheet}

Spreadsheets are programs that manipulate rows and columns of numbers. They can be used for applications ranging from simple record keeping to sophisticated modeling and forecasting.

This program turns your Amiga into a one-page electronic spreadsheet. With it, you can create a screenful of numbers, labels, and formulas to represent a problem you're trying to solve or a situation you're trying to track. Use it to keep track of utility bills, to compute simple statistics, and to tally bowling averages, to name just a few of an almost endless string of possible applications.

When you tally the spreadsheet, the Amiga computes values for the formulas and nicely formats the results to your specification. You can save your spreadsheet on disk, and you can dump reports to a printer.

\section*{Spreadsheet Labels}

The best way to learn how to use the spreadsheet is to run it. Many of its statements are self-explanatory, and after a few minutes of experimenting, you'll know most of the tricks.

Suppose, then, that we purchase an Individual Retirement Account (IRA) for \(\$ 2,000\), paying 10 percent interest per annum. We want to know what our investment will be worth in 25 years.

To find out, we invoke the Make a new spreadsheet option in the main menu of the program. The Amiga paints row numbers and column headings on the screen and positions the long cursor, or bar, in the upper left corner (Figure \(5-1)\). Notice that columns are denoted by letters and rows by numbers. The intersections of columns and rows are called cells, with A1 denoting column A and row 1.

Let's type in a title for our spreadsheet, say, "IRA Account." That's right, first enter an \(I\), then an \(R\), and so on. As soon as you press a letter, the Amiga knows that you're producing a label, or a string of up to nine characters.

After keying in IRA Accou, hit the rightward arrow. Cell A1 now holds the label, and the cursor moves to cell B1. Now type \(n t\) followed by seven blank spaces. The spaces are to make sure that the \(n t\) is left-justified in the cell.

That's all there is to creating spreadsheet labels. Move the cursor anywhere you want by using the arrows or mouse, and then type in your letters.

Now it's your turn. Try producing the labels in Figure 5-2. If you hit a wrong letter, press the BACKSPACE or DELete key to erase it. And press ESCape to delete the entire contents of a cell.
Figure 5-1. Spreadsheet Setup
```

FIN: Example

```

Figure 5-2. Spreadsheet Example

```

    \(===A===\)
    1 IRA Account

```


\section*{Entering Values}

With the labels entered, let's now tackle values, or numbers. To enter 2000 under the column heading "Amount," for example, first move the cursor to cell A6 (the column is always written first and the row second). Next, enter the four digits: \(2,0,0\), and 0 . As soon as you hit the 2 , the Amiga realizes that your entry is a value instead of a label or formula. The spreadsheet allows 15 digits for a number at the bottom of the screen, including spaces for a decimal point and a minus sign. Only the nine leftmost characters will be displayed in the cell, however.

Now, enter \(10 \%\) for the interest rate on the IRA account and 25 years for time to maturity.

\section*{Spreadsheet Formulas}

Without computational capability, an electronic spreadsheet is little better than an accountant's pile of paper generated a decade ago. That's why the Amiga lets us use formulas to calculate key values.

The worth of our IRA investment at maturity, for example, is \(\$ 2000^{*} 1.10^{\wedge} 25\). That is, a 10 percent interest rate (1.10 in index form) compounded annually gives a multiplier of \(1.10^{\wedge} 25\) after a quarter century. This figure times our principal, \(\$ 2,000\), is the desired answer.

To have the spreadsheet calculate this value, first move the cursor to cell D6. Next, hit one of the Function keys, labeled F1 to F10. This tells the Amiga that you're entering a formula. Now, key in

\section*{\(\mathrm{A} 6^{*}(1+\mathrm{B} 6 / 100){ }^{\text {² }} \mathbf{C} 6\)}

Believe it or not, this expression represents the future worth of our \(\$ 2,000\). When the Amiga tallies the spreadsheet, the values 2000, 10, and 25 are substituted for cells A6, B6, and C6 in the formula. The rest is just pure arithmetic.

In general, the Amiga allows formulas with up to 35 characters, 9 of which are displayed in a cell. It evaluates formulas just as in the "Calculator" program of the last chapter.

\section*{Tallying the Spreadsheet}

With labels, values, and formulas entered for our IRA computation, we now ask the Amiga to tally our spreadsheet. Give the go-ahead by using a pulldown menu.

The Amiga quickly works its way through the sheet. Beginning in the upper left corner, it shimmies down column A, rows 1 to 14. It skips over cells that are blank and cells that are labels. When it finds a value, it formats the number to however many decimal places you've chosen, also using a pulldown menu. And when it encounters a formula, it evaluates the expression and likewise formats the result.

After dispensing with column A, the Amiga tackles columns B, C, and so on, through the end of the sheet. We'll see nicely formatted numbers when it's finished. The formula in cell D6, by the way, yields a value of \(\$ 21,669.42\) for the worth of our IRA at maturity.

\section*{Printing Reports}

After the Amiga tallies your sheet, you might want a nicely formatted hardcopy record. The program produces two reports: spreadsheet formulas and calculated values. The former is a handy reference, and the latter is identical to screen output.

A word of warning. It's always a good idea to tally your spreadsheet just before printing a report. This is because the Amiga relies on the latest set of values that it has calculated. Hence, if you change your spreadsheet and omit the tally step, bizarre results are likely to occur.

\section*{Saving Data}

To save your spreadsheet to disk, use the appropriate pull-down menu and then enter a commonsense filename, such as IRA. A nice feature of this program is that it creates a catalog of all the spreadsheet files that you generate. This saves you the trouble of remembering names like IRA1986 or IRA1987. The catalog is accessed each time you run the program, and the only thing you have to recall is whether you do in fact have any spreadsheets on disk.

\section*{Program 5-1. Electronic Spreadsheet \\ Save using the filename SPREADSHEET}

REM ELECTRONIC SPREADSHEET

> CLEAR , 3øøøø
gosub initialize
gosub play
GOSUB GOODBYE

\section*{END}

INITIALIZE:
gosub setscreen
gosub keyvalues
Gosub setmenus
GOSUB SETCOLORS
GOSUB ShAPES
GOSUB HEADING
gosub rules
GOSUB TURN.ON.PRINTER
gosub catalog
RETURN

\section*{SETSCREEN:}
```

    SCREEN 1,640,200,3,2
    HEADING$ = "Electronic Spreadsheet"
    WINDOW 2,HEADING$,,\varnothing,1
    RETURN

```
KEYVALUES:
 RANDOMIZE TIMER
 DEFINT A-Z: DEFDBL K,Q,V
 DIM DISC(250), BAR(450), FILES(50)
 DIM \(\mathrm{K}(14,6), \mathrm{S}(14,6), \mathrm{D}(14,6), \mathrm{V}(30), \operatorname{SYM}(3 \varnothing)\)
 REM SHAPE INDICES
```

        DISC.I(1) = 1: DISC.I(2) = 125
        BAR.I(1) = 1 : BAR.I(2) = 225
    REM BUTTON VALUES
        XB(1) = 292: XB(2) = 334
        LT$(1) = "Y": LT$(2) = "N"
    GOSUB MAIN.MENU.CHOICES
    GOSUB PRINT.CHOICES
    GOSUB ERROR.CODES
    GOSUB SCREEN.DATA
    GOSUB LEGAL.VALUES
    PICK = 1
    MESSAGE$ = ""
    DASH.LINE$ = STRING$(57,"=")
    RETURN
MAIN.MENU.CHOICES:
DATA Load a spreadsheet
DATA Make a new spreadsheet
DATA Delete an old spreadsheet
DATA View spreadsheet names
FOR I=1 TO 4
READ PICK$(I)
    NEXT
RETURN
PRINT.CHOICES:
    DATA Print formulas, Print calculated values
    DATA Return to spreadsheet
    FOR I=1 TO 3
        READ CHOICE$(I)
NEXT
RETURN
ERROR.CODES:
DATA Parentheses, Cell Code, Division by Zero
DATA Syntax, Exponentiation
FOR I=1 TO 5
READ ERROR.CODE$(I)
    NEXT
RETURN
SCREEN.DATA:
    REM COLUMN HEADING
        CH$ = ""
FOR I=1 TO 6
CH\$ = CH\$ + "====" + CHR\$(64+I) + "====="
NEXT
REM COLORS FOR CELL
DATA 2,3,1,0

```
```

    FOR I=1 TO 2
    READ C.F(I),C.B(I)
    NEXT
    REM ROW \& COL DELTAS FOR ARROWS
DATA -1, },1,\varnothing,\varnothing,1,\varnothing,-
FOR I=1 TO 4
READ RD(I),CD(I)
NEXT
REM FIELDS (LENGTH \& NAME)
DATA "Formula:",35, " Value:",15
DATA " Label:",9
FOR I=1 TO 3
READ T$(I),LN(I)
    NEXT
REM FORMATS
    F$(\varnothing) = "\#\#\#\#\#\#\#\#\#"
F$(1) = "#######.#"
    F$(2) = "\#\#\#\#\#\#.\#\#"
RETURN
LEGAL.VALUES:
REM TO THE LEFT OF (
DATA 32,40,42,43,45,47,94
FOR I=1 TO 7
READ LEFT(I)
NEXT
REM TO THE RIGHT OF )
DATA 32,41,42,43,45,47,94
FOR I=1 TO 7
READ RIGHT(I)
NEXT
RETURN
SETMENUS:
DATA 5, Color, Yellow, Blue, Green, Violet
DATA Random
DATA 3, Decimals, Ø Places, l Place, 2 Places
DATA 4, Actions, Tally the Spreadsheet
DATA Print a Report, Save the Spreadsheet
DATA Return to Main Menu
DATA 3, Stop, Go to BASIC
DATA Go to Finance Menu, Go to System
FOR I=1 TO 4
READ NUMBER
FOR J=Ø TO NUMBER
READ TITLES
IF J<>\varnothing THEN TITLE\$ = SPACES(3) + TITLE\$
STATUS = l
IF I=l AND J=1 THEN STATUS = 2

```
```

            IF I=2 AND J=3 THEN STATUS = 2
            MENU I,J,STATUS,TITLE$
    NEXT J,I
    MENU 3,Ø,\emptyset
    KOLOR% = 1: DP = 2
    RETURN
SETCOLORS:
REM YELLOW, BLUE, GREEN, VIOLET
DATA .95,.65,.19, . 36,.57,1
DATA .17,.73,.Ø7,.95,.07,.93
FOR I=1 TO 4
FOR J=1 TO 3
READ KOLOR(I,J)
NEXT J,I
REM YELLOW, GREEN, \& RED
PALETTE 4,.95,.65,.19
PALETTE 5,.14,.43,\varnothing
PALETTE 6,.93,.2,\varnothing
RETURN
SHAPES:
REM DISCS
XØ=313: YØ=8\emptyset
FOR I=1 TO 2
K% = I*5-4
CIRCLE(XØ, YØ) , 12,K%%: PAINT(XØ,YØ) ,K%
GET (XØ-12,YØ-8)-(XØ+12,YØ+8),DISC(DISC.I(I))
NEXT
CLS
REM BARS
X1 = X\emptyset-45: X2 = X\emptyset+44: Y1 = YØ-4: Y2 = YØ+6
FOR I=1 TO 2
K% = 6-3*I
LINE(X1,Y1)-(X2,Y2),K%,BF
GET(X1,Y1)-(X2,Y2),BAR(BAR.I(I))
NEXT
RETURN
HEADING :
MENU ON
ON MENU GOSUB OPTIONS
CLS
LINE (163,60)-(463,90),4, BF
LINE (163,60)-(200,160),4,BF
COLOR 2,4
LOCATE 9,25: PRINT "Amiga Spreadsheet"
COLOR 3,0: LOCATE 14,31:PRINT "then"
COLOR 1,\emptyset

```
```

    LOCATE 13,25:PRINT "Please use menus,"
    LOCATE 15,23:PRINT "Click mouse to start"
    GOSUB CLICKIT
    RETURN
OPTIONS:
ID = MENU(\varnothing): ITEM = MENU(1)
ON ID GOSUB MENUl,MENU2,MENU3,GOODBYE
ITEM = Ø
RETURN
MENUl:
Kl = KOLOR(ITEM,1): K2 = KOLOR(ITEM,2)
K3 = KOLOR(ITEM,3)
IF ITEM=5 THEN Kl=RND: K2=RND: K3=RND
PALETTE 4,Kl,K2,K3
MENU 1,KOLOR%,1: MENU 1,ITEM,2
KOLOR% = ITEM
RETURN
MENU2:
MENU 2,DP+1,1: MENU 2,ITEM,2
DP = ITEM-1
RETURN
MENU3 :
ACTION = ITEM
RETURN
GOODBYE:
WINDOW CLOSE 2: WINDOW 1: MENU RESET
SCREEN CLOSE l
IF ITEM = 2 THEN RUN "FINANCE"
IF ITEM = 3 THEN SYSTEM
COLOR 1,0: CLS
PRINT "Bye-Bye"
STOP
RETURN

```

\section*{RULES:}
```

    CLS
    PRINT
    PRINT " This little program turns your";
    PRINT
    PRINT " electronic spreadsheet."
    PRINT
    PRINT " Use the arrows or mouse to move the";
    PRINT " cursor (bar) from"
    PRINT " cell to cell."
    ```
```

    PRINT
    PRINT " Enter numbers and labels simply";
    PRINT " by keying them in."
    PRINT " For formulas, hit one of the Function";
    PRINT " Keys (Fl to Flø)"
    PRINT " before entering your expression."
    PRINT
    PRINT " When you save a spreadsheet to";
    PRINT " disk, I'll add the"
    PRINT " file's name to a permanent catalog."
    PRINT
    PRINT " This will spare you the trouble of";
    PRINT " remembering names"
    PRINT " like SPREAD2 or SPREAD3."
    LOCATE 2ø,27: PRINT "Click Mouse";
    GOSUB CLICKIT
    RETURN
CLICKIT:
S\$ = "": ACTION = \varnothing
WHILE MOUSE(\varnothing) = \emptyset AND S\$ = "" AND ACTION = \emptyset
S\$ = INKEY\$
WEND
X = MOUSE(1)
Y = MOUSE(2)
WHILE MOUSE(\varnothing)<> \emptyset: WEND: REM RESET
RETURN
TURN.ON.PRINTER:
REM ASK TO TURN ON PRINTER
CLS
LOCATE 2,2\varnothing
PRINT "Are you using a printer ?"
ROW = 4: GOSUB DECIDE
IF BUTTON = 2 THEN
MENU 3,2,ø
ELSE
LOCATE 7,12: PRINT "PLEASE:": PRINT
PRINT TAB(14)"(1) Insert Workbench"
PRINT TAB(14)"(2) Turn on your printer"
PRINT TAB(14)"(3) Press any key"
GOSUB CLICKIT
LPRINT
LOCATE 14,13: PRINT "FINALLY:": PRINT
PRINT TAB(14)"(l) Re-insert your";
PRINT " Applications Disk"
PRINT TAB(14)"(2) Press any key"
GOSUB CLICKIT
END IF
RETURN

```
```

CATALOG:
CLS
LOCATE 5,15
PRINT "DO you have spreadsheets on disk ?"
ROW = 7: GOSUB DECIDE
NFILES = Ø
IF BUTTON = 1 THEN
OPEN "I",\#l,"SPREADCAT"
INPUT \#1,NFILES
FOR I=1 TO NFILES
INPUT \#l,FILE$(I)
        NEXT
        CLOSE
    END IF
RETURN
DECIDE:
    BUTTON = Ø
    GOSUB DRAWBUTTON
    GOSUB PUSHBUTTON
    COLOR 1,\varnothing
RETURN
DRAWBUTTON:
    YØ = 9*ROW-13
    YB=Y\varnothing+7
    LINE (265,YØ)-(361,YØ+14),1,BF
    FOR I=1 TO 2
        CIRCLE (XB(I),YB),12,4+I
        PAINT (XB(I),YB),4+I
        COLOR 1,4+I
        LOCATE ROW: PRINT PTAB(XB(I)-4);LT$(I);
NEXT I
RETURN
PUSHBUTTON:
SOUND 440,2
GOSUB CLICKIT
S\$ = UCASE$(S$)
IF S\$ = "Y" THEN BUTTON = 1
IF S\$ = "N" THEN BUTTON = 2
FOR I=1 TO 2
XD = ABS(X-XB(I)): YD = ABS(Y-YB)
IF XD<l3 AND YD<7 THEN BUTTON = I: I=2
NEXT
IF BUTTON = Ø THEN PUSHBUTTON
RETURN

```
```

PLAY:
GOSUB MAIN.MENU
ON PICK GOSUB LOAD.SHEET,CREATE,PURGE,VIEW
GOTO PLAY
RETURN
MAIN.MENU:
CLS
LOCATE 2,3: PRINT MESSAGE\$
LOCATE 5,23: PRINT "Would you like to"
FOR I=1 TO 4
IF I = PICK THEN INX = 2 ELSE INX = 1
CALL DRAW.CIRCLE(I,INX)
LOCATE I*2+5,25: PRINT PICK$(I)
    NEXT
    LOCATE 19,13: PRINT "Click Mouse on Choice,";
    PRINT " then Hit Return"
    GOSUB CHOOSE
    IF NFILES = Ø THEN
        IF PICK=1 OR PICK=3 OR PICK=4 THEN
            S$ = "There aren't any spreadsheets"
MESSAGES = S\$ + " on file."
GOTO MAIN.MENU
END IF
END IF
MESSAGE\$ = ""
RETURN
SUB DRAW.CIRCLE(R,INX) STATIC
SHARED DISC(),DISC.I()
Y = 18*R+31
PUT(2Ø2,Y),DISC(DISC.I(INX)),PSET
END SUB
CHOOSE:
GOSUB GURGLE
GOSUB CLICKIT
IF S\$ = "" THEN GOSUB LOCATION
IF ASC(S\$+" ") <> 13 THEN CHOOSE
RETURN
LOCATION:
P = INT((Y-48)/18) + 1
IF X>195 AND X<235 AND P>\emptyset AND P<5 THEN
CALL DRAW.CIRCLE(PICK,1)
CALL DRAW.CIRCLE(P,2)
PICK = P
END IF
RETURN

```
```

GURGLE:
FREQ = 30Ø
FOR G=1 TO 5
FREQ = 5ØØ-FREQ
SOUND FREQ,1,5Ø
NEXT G
RETURN
LOAD.SHEET:
CLS
LOCATE 3,25: PRINT "LOADING A FILE"
GOSUB FILENAME
IF DUPS = "NO" THEN
MESSAGE\$ = FILE\$ + " doesn't exist."
END IF
IF DUPS = "YES" THEN
GOSUB READ. CONTENTS
GOSUB PAINT.SCREEN
GOSUB SHOW.VALUES
GOSUB RUN.SHEET
END IF
RETURN
FILENAME:
FILE\$ = ""
WHILE FILE\$ = ""
LOCATE 8,3: INPUT "File Name ";FILES
WEND
REM CHECK EXISTENCE
DUP\$ = "NO"
IF NFILES <> Ø THEN
FOR I=1 TO NFILES
IF FILES = FILES(I) THEN DUPS="YES": SPOT=I
NEXT
END IF
RETURN
READ.CONTENTS:
LOCATE 10,24: PRINT "Reading Contents"
OPEN "I",\#l,FILE\$
FOR R=1 TO 14
FOR C=1 TO 6
INPUT \#1,S(R,C),DS(R,C)
NEXT C,R
CLOSE
RETURN
PAINT.SCREEN:
CLS

```
```

    LOCATE l,2: PRINT "File: ";FILES;
    PRINT TAB(44)"ESC: Erase Cell"
    LINE(7,8)-(585,17),4,BF
    LINE(7,17)-(32,152),4,BF
    COLOR 2,4
    LOCATE 2,5: PRINT CH$
    FOR I=1 TO 14
    LOCATE 3+I,2: PRINT USING "##";I
    NEXT
GOSUB BOTTOM
RETURN
BOTTOM:
LINE(7,160)-(50,170),6,BF
COLOR 1,6: LOCATE 19,2: PRINT "Cell";
RETURN
SHOW.VALUES:
FOR C=1 TO 6
FOR R=1 TO 14
INX = 1: GOSUB CURSOR
INX = 2: GOSUB CURSOR
NEXT R,C
RETURN
CURSOR:
X = 90*C - 50
Y = R*9 + 16
PUT(X,Y),BAR(BAR.I(INX)),PSET
COLOR C.F(INX),C.B(INX)
S\$ = LEFT$(DS(R,C),9)
    LOCATE R+3,9*C-LEN(S$)+5: PRINT S\$
RETURN
CELL:
COLOR 1,ø
LOCATE 19,7
PRINT CHR$(64+C);MID$(STR$(R), 2);SPACE$(50)
LOCATE 19,12
T = S(R,C)
IF T <> Ø THEN PRINT T$(T);" ";D$(R,C)
RETURN
RUN.SHEET:
MENU 3,0,1
R=1: C=1: INX=1: ACTION=\varnothing
WHILE ACTION <> 4
GOSUB CURSOR
GOSUB CELL

```
```

    GOSUB GET.INPUT
    IF ACTION = 1 THEN GOSUB TALLY.SHEET
    IF ACTION = 2 THEN GOSUB WRITE.REPORT
    IF ACTION = 3 THEN GOSUB SAVE.SHEET
    IF ACTION = 5 THEN GOSUB RUB.OUT
    IF ACTION = 6 THEN GOSUB MOVE.BAR
    IF ACTION = 7 THEN GOSUB MAKE.ENTRY
    WEND
RETURN
GET.INPUT:
GOSUB CLICKIT
IF ACTION = Ø THEN
IF S$="" THEN GOSUB MOUSEY ELSE GOSUB KEY.BD
    END IF
RETURN
MOUSEY:
    ROW = INT((Y-25)/9) + l
    COL = INT((X-4\emptyset)/9\emptyset) + 1
    IF COL>\emptyset AND COL<7 AND ROW>\emptyset AND ROW<15 THEN
        ACTION = 6
    END IF
RETURN
KEY.BD:
    A = ASC(S$)
REM MOVE CURSOR
IF A>27 AND A<32 THEN
V = A-27
ACTION = 6
ROW = R + RD(V)
COL = C + CD(V)
IF ROW=Ø OR ROW=15 OR COL=Ø OR COL=7 THEN
ROW = R: COL = C
END IF
END IF
REM ERASE
IF A=27 THEN ACTION = 5
REM FORMULA
IF A>128 AND A<l39 THEN
ACTION = 7: TYPE = 1
END IF
REM NUMBER
IF A=45 OR A=46 OR (A>47 AND A<58) THEN
ACTION = 7: TYPE = 2
END IF
REM LABEL
IF (A>31 AND A<43) OR (A>58 AND A<129) THEN

```
```

    ACTION = 7: TYPE = 3
    END IF
    RETURN
RUB.OUT:
S(R,C) = Ø: D$(R,C) = ""
RETURN
MOVE.BAR:
    INX=2: GOSUB CURSOR
    R = ROW: C = COL: INX=1
RETURN
MAKE.ENTRY:
    S$ = ""
IF TYPE <> l THEN S\$ = CHR$(A)
    LN = LN(TYPE)
    LOCATE 19,12: PRINT T$(TYPE);SPACES(35)
COLOR Ø,1: LOCATE 19,21: PRINT SPACE$(LN)
    LOCATE 19,21: PRINT S$;:L = LEN(S$)
    GOSUB KEY
    COLOR 1,0: LOCATE 19,12: PRINT SPACE$(45)
RETURN
KEY:
C\$ = "": ROW = R: COL = C
WHILE C\$ = "": C\$ = INKEY$: WEND
    A = ASC(C$)
IF A = 127 THEN A = 8
REM ARROWS
IF A>27 AND A<32 THEN
GOSUB ARROWS
IF M\$ = "BAD" THEN GOTO KEY ELSE A = 13
END IF
REM CHECK FOR MAX LENGTH
IF L = LN THEN
IF A <> 13 AND A <> 8 THEN
SOUND 9øø,2
GOTO KEY
END IF
END IF
REM BACKSPACE
IF A = 8 THEN GOSUB BACKSPACE
REM CHECK VALIDITY
IF A <> 13 AND A <> 8 THEN
CK\$ = "BAD"
ON TYPE GOSUB CK.FORMULA, CK.VALUE, CK.LABEL
IF CK\$ = "OK" THEN
PRINT C\$;

```
```

        S$ = S$ + C$
        L = L+1
        END IF
    END IF
    REM CONTINUE
    IF A <> 13 THEN KEY
    REM EXIT
    IF S$ <> "" THEN
        S(R,C) = TYPE: D$(R,C) = S$
    END IF
    INX = 2: GOSUB CURSOR
    R = ROW: C = COL: INX = l
    RETURN
ARROWS:
M\$ = "OK"
V = A-27
ROW = R+RD(V)
COL = C+CD(V)
IF ROW=\emptyset OR ROW=15 OR COL=\varnothing OR COL=7 THEN
SOUND 9øØ,2: M\$ = "BAD"
ROW = R: COL = C
END IF
RETURN
BACKSPACE:
IF L > Ø THEN
PRINT CHR$(8);
        S$ = LEFT$(S$,L-1)
L = L-l
ELSE
SOUND 9ØØ,2
END IF
RETURN
CK.FORMULA:
IF A > 96 THEN A = A-32: C\$ = CHR$(A)
    IF A>39 AND A<58 AND A<>44 THEN CK$ = "OK"
IF A=94 THEN CK\$ = "OK"
IF A>64 AND A<71 THEN CK\$ = "OK"
RETURN
CK.VALUE:
IF A=45 OR A=46 THEN CK\$ = "OK"
IF A>47 AND A<58 THEN CK\$ = "OK"
RETURN
CK.LABEL:
IF A > 31 THEN CK\$ = "OK"
RETURN

```
```

TALLY.SHEET:
INX = 2: GOSUB CURSOR
GOOF = \varnothing
GOSUB CLEAR.BOTTOM
GOSUB TRANSFER.VALUES
REM COMPUTE
FOR C=1 TO 6
FOR R=1 TO l4
INX = l: GOSUB CURSOR
IF S(R,C) = l THEN GOSUB FORMULA
IF S(R,C) = 2 THEN
VALUE = VAL(D$(R,C))
                GOSUB DISPLAY.VALUE
            END IF
            IF GOOF > Ø THEN
                R.HOLD = R: C.HOLD = C
                R = 14: C = 6
            END IF
            IF GOOF=\emptyset AND S(R,C)=\emptyset OR S(R,C)=3 THEN
                INX = 2: GOSUB CURSOR
            END IF
        NEXT R,C
    REM CONTINUE
        COLOR 2
        LOCATE 20,26: PRINT "Press any key";
        COLOR 1
        GOSUB CLICKIT
        GOSUB CLEAR.BOTTOM
        GOSUB BOTTOM
        R=1: C=1: INX = l
        IF GOOF>\emptyset THEN R = R.HOLD: C = C.HOLD
RETURN
CLEAR.BOTTOM:
    COLOR 1,\varnothing
    LINE(7,160)-(50,170),0,BF
    LOCATE 19,7: PRINT SPACES(50)
    LOCATE 2Ø,26: PRINT SPACE$(13);
RETURN
TRANSFER.VALUES:
LOCATE 19,20: PRINT "Tallying the Spreadsheet"
FOR R=1 TO 14
FOR C=1 TO 6
K(R,C) = \varnothing
IF S(R,C) = 2 THEN K(R,C) = VAL(DS(R,C))
NEXT C,R
RETURN

```
```

FORMULA:
GOOF = \varnothing
ES = D$(R,C): L = LEN(E$)
GOSUB STRIKE.PARENTHESES
IF GOOF = Ø THEN GOSUB CALCULATE
IF GOOF = Ø THEN
K(R,C) = VALUE
GOSUB DISPLAY.VALUE
ELSE
GOSUB GOOF
END IF
RETURN
STRIKE.PARENTHESES:
PL=\emptyset: PR=\varnothing
FOR I=1 TO L
C\$ = MID$(E$,I,l): A = ASC(C$)
        IF A=4\emptyset THEN PL = I
        IF A=41 THEN PR = I: I=L
    NEXT
    IF PR-PL = 1 THEN GOOF = 1
    IF PL=\emptyset AND PR>\emptyset THEN GOOF = 1
    IF PR=\emptyset AND PL>\emptyset THEN GOOF = 1
    IF GOOF = Ø AND PR <> Ø THEN
        GOSUB REMOVE
        GOTO STRIKE.PARENTHESES
    END IF
RETURN
REMOVE:
    LF$ = MIDS (E$,1,PL-1)
    MDS = MIDS(ES,PL+1,PR-PL-1)
    RT$ = MIDS(ES,PR+1,L-PR)
REM CHECK LEFT OF (
LK = ASC(RIGHT$(" " + LF$,l))
GOOF=4: J=1
WHILE GOOF = 4 AND J <= 7
IF LK = LEFT(J) THEN GOOF = Ø
J = J+1
WEND
REM CHECK RIGHT OF )
RK = ASC(LEFT$(RT$ + " ",l))
GOOF=4: J=1
WHILE GOOF = 4 AND J <= 7
IF RK = RIGHT(J) THEN GOOF = \varnothing
J = J+l
WEND
REM CONTINUE
IF GOOF = Ø THEN

```
```

    E$ = MD$: GOSUB CALCULATE
    S\$ = STR$(VALUE)
IF VALUE >=\varnothing THEN S$ = MID$(S$,2)
ES = LF\$ + S\$ + RT\$
L = LEN(E$)
END IF
RETURN
CALCULATE:
    ES = ES + CHRS(32): T=\varnothing: P=\varnothing: SG=1
    GOSUB TAKE.APART
    IF GOOF = Ø THEN
        IF T > l THEN GOSUB TALLY
        IF GOOF = Ø THEN VALUE = V(T)
    END IF
    IF SYM(T) <> 32 THEN GOOF = 4
RETURN
TAKE.APART:
    P = P+1
    C$ = MIDS(E$,P,1): A=ASC(C$)
REM + OR -
IF A=43 OR A=45 THEN
IF A = 45 THEN SG = - SG
NM\$ = "OFF"
GOTO TAKE.APART
END IF
REM CELL CODE
IF A > 64 AND A < }71\mathrm{ THEN
GOSUB CELL.CODE
GOTO CONTINUE
END IF
REM DIGIT OR DECIMAL
IF A = 46 OR (A > 47 AND A < 58) THEN
GOSUB NUMBER
GOTO CONTINUE
END IF
REM BAD CHARACTER
IF A <> 32 THEN GOOF = 4
CONTINUE:
IF GOOF = Ø AND A <> 32 THEN
SG=1: GOTO TAKE.APART
END IF
IF NM\$ = "OFF" THEN GOOF = 4
RETURN
CELL.CODE:
ROW = VAL(MID$(E$,P+1,2)): COL = A-64
IF ROW<l OR ROW>14 THEN GOOF = 2

```
```

    REM SYMBOL FOLLOWING CELL
    IF GOOF = Ø THEN
        P = P + 2 + - |*(ROW > 9)
        C$ = MID$(ES,P,1): A = ASC(C$)
        GOOF = 4
        IF A=32 OR A=42 OR A=43 THEN GOOF = \varnothing
        IF A=45 OR A=47 OR A=94 THEN GOOF = Ø
    END IF
    REM STORE VALUE
IF GOOF = Ø THEN
T = T+1
V(T) = SG*K(ROW,COL)
NM\$ = "ON"
SYM(T) = A
END IF
RETURN
NUMBER:
N\$ = C\$
DEC\$ = "OFF": DGT\$ = "OFF"
IF A=46 THEN DEC\$ = "ON"
IF A>47 AND A<58 THEN DGT\$ = "ON"
LOOP:
REM GET NUMBER
P = P+l
C\$ = MID$(E$,P,1): A=ASC(C$)
        IF A=46 AND DEC$ = "ON" THEN GOOF = 4
IF A=46 THEN DECS = "ON"
IF A>47 AND A<58 THEN DGT\$ = "ON"
IF GOOF=\varnothing AND A=46 OR (A>47 AND A<58) THEN
N\$ = N\$ + C\$
GOTO LOOP
END IF
REM CHECK FOR DIGIT
IF DGTS = "OFF" THEN GOOF = 4
REM SYMBOL FOLLOWING NUMBER
IF GOOF = Ø THEN
GOOF = 4
IF A=32 OR A=42 OR A=43 THEN GOOF = Ø
IF A=45 OR A=47 OR A=94 THEN GOOF = Ø
END IF
REM STORE NUMBER
IF GOOF = Ø THEN
T = T+1
V(T) = SG*VAL(N$)
        SYM(T) = A
        NM$ = "ON"
END IF
RETURN

```
```

TALLY:
GOSUB EXPONENTIATION
IF GOOF = Ø THEN GOSUB MULT.DIV
IF GOOF = Ø THEN GOSUB ADD.SUB
RETURN
EXPONENTIATION:
FOR I=1 TO T-l
IF SYM(I) = 94 THEN
IF V(I) < Ø AND V(I+1) < I THEN GOOF = 5
IF GOOF = Ø THEN
V(I+l)= V(I)^V(I+l)
SYM(I) = -9
END IF
END IF
NEXT
RETURN
MULT.DIV:
FOR I=1 TO T-1
S = SYM(I)
IF S = 42 OR S = 47 THEN
Q = V(I)
FOR J = I+1 TO T
IF SYM(J) <> -9 THEN GOSUB MD: J = T
NEXT J
END IF
NEXT I
RETURN
MD :
IF S = 42 THEN V(J)=Q*V(J):SYM(I) = - = S
IF S = 47 AND V(J) = Ø THEN GOOF = 3
IF S = 47 AND GOOF = Ø THEN
V(J) = Q/V (J)
SYM(I) = -9
END IF
RETURN
ADD.SUB:
FOR I=1 TO T-1
S = SYM(I)
IF S = 43 OR S = 45 THEN
Q = V (I)
FOR J = I+l TO T
IF SYM(J) <> - }9\mathrm{ THEN
IF S = 43 THEN V (J) = Q + V (J)
IF S = 45 THEN V(J) = Q - V (J)
SYM(I) = -9

```
```

        J = T
        END IF
        NEXT J
        END IF
    NEXT I
    RETURN
GOOF:
SOUND 4ø\varnothing,3: SOUND 3ø\varnothing,3: SOUND 2ø\emptyset,3
GOSUB CLEAR.BOTTOM
COLOR 1,6
LINE(7,16\varnothing)-(50,17\emptyset),6,BF
LOCATE 19,2: PRINT "GOOf"
COLOR 1,\varnothing: LOCATE 19,7: PRINT ERROR.CODE$(GOOF)
RETURN
DISPLAY.VALUE:
    PUT(X,Y),BAR(225),PSET: REM ERASE
    COLOR 1,\varnothing
    LOCATE R+3,9*C-4
    PRINT USING F$(DP);VALUE
RETURN
WRITE.REPORT:
MENU 3,\varnothing,\varnothing
R.HOLD = R: C.HOLD = C
CHOICE = l
GOSUB SELECT.REPORT
GOSUB PAINT.SCREEN
GOSUB SHOW.VALUES
INX = l: R = R.HOLD: C = C.HOLD
MENU 3,0,1
RETURN
SELECT.REPORT:
COLOR 1,\varnothing
CLS
LOCATE 5,23: PRINT "Would you like to"
FOR I=1 TO 3
IF I = CHOICE THEN INX = 2 ELSE INX = l
CALL DRAW.CIRCLE(I,INX)
LOCATE I*2+5,25: PRINT CHOICE$(I)
    NEXT
    LOCATE 14,13: PRINT "Click Mouse on Choice,";
    PRINT " then Hit Return"
    SELECT$ = "ON"
WHILE SELECT\$ = "ON"
GOSUB GURGLE
GOSUB CLICKIT

```
```

        IF S$ = "" THEN GOSUB POSITION
        IF ASC(S$ + " ") = 13 THEN
        ON CHOICE GOSUB PRINT.FORMULAS,PRINT.VALUES
    IF CHOICE = 3 THEN SELECT$ = "OFF"
        END IF
    WEND
    RETURN
POSITION:
P = INT((Y-48)/18) + l
IF X>195 AND X<235 AND P>\emptyset AND P<4 THEN
CALL DRAW.CIRCLE(CHOICE,l)
CALL DRAW.CIRCLE(P,2)
CHOICE = P
END IF
RETURN
PRINT.FORMULAS:
GOSUB SET.PRINTER
LPRINT "Formulas (Column,Row):"
LPRINT
LPRINT DASH.LINE\$
FOR I=1 TO 6
FOR J=1 TO 14
IF S(J,I) = 1 THEN
LPRINT "(";CHR$(64+I);
            LPRINT USING "##) ";J;
            LPRINT D$(J,I)
END IF
NEXT J,I
LPRINT DASH.LINE\$
LPRINT: LPRINT: LPRINT
RETURN
SET.PRINTER:
LOCATE 17,17
PRINT "Press any key to begin printing"
GOSUB CLICKIT
LOCATE 17,17: PRINT SPACE$(31)
    LPRINT "File: ";FILE$
LPRINT
RETURN

```

\section*{PRINT.VALUES:}
```

GOSUB SET.PRINTER
LPRINT "Spreadsheet Calculations:"
LPRINT
LPRINT TAB(4)CH\$
FOR I=1 TO 14

```
```

    LPRINT USING "## ";I;
    FOR J=1 TO 6
    REM NUMBER; LABEL OR BLANK
        IF S(I,J)=1 OR S(I,J)=2 THEN
        LPRINT USING F$(DP);K(I,J);
        ELSE
        S$ = STRING$(9," ") + D$(I,J)
        LPRINT RIGHT$(S$,9);
        END IF
    NEXT J
    LPRINT
    NEXT I
LPRINT DASH.LINES
LPRINT: LPRINT: LPRINT
RETURN
SAVE.SHEET:
GOSUB CLEAR.BOTTOM
IF DUP\$ = "NO" THEN
NFILES = NFILES + l
FILES(NFILES) = FILES
END IF
GOSUB SAVE.DATA
GOSUB UPDATE.CAT
LOCATE 19,26
PRINT FILE$;" is saved.";SPACE$(5)
LOCATE 2Ø,26: PRINT "Press any key";
GOSUB CLICKIT
GOSUB CLEAR.BOTTOM
GOSUB BOTTOM
RETURN
SAVE.DATA:
LOCATE 19,26: PRINT "Saving Sheet"
OPEN "O",\#1,FILE\$
FOR I=1 TO 14
FOR J=1 TO 6
WRITE \#l,S(I,J),D\$(I,J)
NEXT J,I
CLOSE
RETURN
UPDATE.CAT:
OPEN "O",\#1,"SPREADCAT"
WRITE \#l,NFILES
FOR I=1 TO NFILES
WRITE \#1,FILES(I)
NEXT
CLOSE
RETURN

```
```

CREATE:
CLS
LOCATE 3,19: PRINT "CREATING A NEW SPREADSHEET"
GOSUB ENTER.NAME
IF CNT\$ = "YES" THEN
GOSUB PAINT.SCREEN
GOSUB INITIAL.VALUES
GOSUB RUN.SHEET
END IF
RETURN
ENTER.NAME:
GOSUB FILENAME
CNT\$ = "YES"
IF DUP\$ = "YES" THEN
LOCATE lØ,3: PRINT FILE$;" already exists !"
        LOCATE 13,16
        PRINT "Would you like to write over it ?"
        ROW=15: GOSUB DECIDE
        IF BUTTON = 2 THEN CNT$ = "NO"
END IF
RETURN
INITIAL.VALUES:
FOR R=1 TO 14
FOR C=1 TO 6
K(R,C)=\varnothing: S(R,C)=\emptyset: D ( R,C)=""
NEXT C,R
RETURN
PURGE:
CLS
LOCATE 3,25: PRINT "DELETING A FILE"
GOSUB FILENAME
IF DUPS = "NO" THEN
MESSAGE\$ = FILE\$ + " doesn't exist."
END IF
IF DUP\$ = "YES" THEN
GOSUB KILL.IT
IF NFILES > Ø THEN GOSUB UPDATE.CAT
IF NFILES = Ø THEN
KILL "SPREADCAT": KILL "SPREADCAT.INFO"
S\$ = "You no longer have any spread"
MESSAGES = S\$ + "sheets on disk."
END IF
END IF
RETURN

```
```

KILL.IT:
IF SPOT <> NFILES THEN
FOR I = SPOT+1 TO NFILES
FILE$(I-1) = FILE$(I)
NEXT
END IF
NFILES = NFILES - l
KILL FILES: KILL FILES+".INFO"
MESSAGE\$ = FILE\$ + " is deleted."
RETURN
VIEW:
FOR I=1 TO NFILES STEP 15
CLS
LOCATE 2,22: PRINT "SPREADSHEETS ON DISK:"
PRINT
FOR J = I TO I+14
IF J <= NFILES THEN
L = LEN(FILE\$(J))
PRINT TAB(32-L/2);FILES(J)
END IF
NEXT J
LOCATE 19,26: PRINT "Press any key";
GOSUB CLICKIT
NEXT I
RETURN

```

\section*{Least-Squares Forecasting}

For centuries, many have tried to peer into the future. Soothsayers, oracles, palm readers, bone throwers, and even economists try to foretell what will be. You can join this elite group of mystics by using your Amiga and "LeastSquares Forecasting."

Let's try some elementary forecasting and make a prediction about stock prices next year. First, we'll hypothesize that the stock market rises when interest rates fall, and that it falls when interest rates rise. We can test this supposition using the data of Table 5-1.

Standard and Poor's Index is called the dependent variable in our forecasting exercise, or the variable we want to explain or predict. The Treasury Bill rate is called the explanatory variable, or the term to do the explaining. These variables are usually denoted \(Y\) and \(X\), respectively.

After keying our data into the Amiga, we're rewarded with the regression results of Figure 5-3. The coefficient is also called the slope of our line, and it measures the change in \(Y\) over the change in \(X\). That is, the value of almost -7.9 means that if interest rates were to increase by 1 percentage point, stock prices would be expected to fall by almost 7.9 points. The inverse relationship between stock prices and interest rates holds, as suspected.

You can use estimates of the constant term and the coefficient to draw a trend line between \(Y\) and \(X\), as Figure 5-4 shows.

R-squared, or the coefficient of determination, is the proportion of variation in \(Y\) (stock prices) explained by \(X\) (interest rates). The statistic ranges from 0 to 1 . As Figure \(5-5\) shows, the higher the value, the better the regression line fits the data.

To forecast stock prices next year, enter a Treasury Bill rate that you think will prevail, say, 5 percent. The Amiga will respond with a point on the trend line (predicted Y) and with a 95 percent confidence interval:
Value of \(X \quad=5\)
Predicted \(Y=181.696\)
Lower bound \(=123.853\)
Upper bound \(=239.540\)
In other words, you're forecasting a Standard \& Poor's Index of roughly 182. And the 95 percent confidence interval means that you're 95 percent sure that the true Index will be covered by the range 124 to 240 . This band, by the way, is computed under the strict assumption that the value of \(X\), or the level of interest rates next year, is known with perfect certainty.

Finally, try forecasting some of your own business's figures, such as sales or production. You may be surprised at how accurate your estimates are.

\section*{Table 5-1. Stock Prices and Interest Rates}
\begin{tabular}{|ccc|}
\hline Year & Standard and Poor's & 3-Month \\
and & Index of 500 & T-Bi11 \\
Quarter & Leading Stocks & Rate, \(\%\) \\
\(82: 1\) & 114.2 & 12.8 \\
\(82: 2\) & 114.2 & 12.4 \\
\(82: 3\) & 113.8 & 9.3 \\
\(82: 4\) & 136.7 & 7.9 \\
\(83: 1\) & 147.7 & 8.1 \\
\(83: 2\) & 162.7 & 8.4 \\
\(83: 3\) & 165.5 & 9.1 \\
\(83: 4\) & 165.7 & 8.8 \\
\(84: 1\) & 160.4 & 9.2 \\
\(84: 2\) & 155.8 & 9.8 \\
\(84: 3\) & 160.5 & 10.3 \\
\hline
\end{tabular}

Figure 5-3. Regression Results
\begin{tabular}{|lcc|}
\hline Term & Estimated Value & t-Statistic \\
Constant & 220.978 & 6.273 \\
Coefficient & -7.856 & -2.179 \\
RSquared & \(=0.345\) & \\
FStatistic & \(=4.747\) \\
\hline
\end{tabular}

Figure 5-4. Trend Line
Index of Stock Prices

Interest Rates, \%

Figure 5-5. Goodness-of-Fit

Program 5-2. Least-Squares Forecasting
Save using the filename LSF
REM LEAST-SQUARES FORECASTING
GOSUB INITIALIZE
GOSUB ENTER.DATA
CONTINUE:
GOSUB EDIT.DATA
GOSUB COMPUTE
IF GOOF \(=\varnothing\) THEN
GOSUB SHOW.RESULTS
GOSUB FORECAST
ELSE
IF CNT\$ = "YES" THEN CONTINUE
END IF

GOSUB GOODBYE
END
INITIALIZE:
GOSUB SETSCREEN
GOSUB KEYVALUES
GOSUB SETMENUS
GOSUB SETCOLORS
GOSUB SHAPES
GOSUB HEADING
IF INSTRUCTIONS \(=1\) THEN GOSUB INSTRUCTIONS
RETURN

\section*{SETSCREEN:}

SCREEN 1,640,2Ø0,3,2
WINDOW 2,"Least-Squares Forecasting", , 0,1
RETURN

\section*{KEYVALUES:}

RANDOMIZE TIMER
DEFINT A-Z: DEFDBL A,B,D-F,M,P,S
REM make \(X\) DBL for VERY big or small raw data DEFSNG K, T, X
REM MAXIMUM NUMBER OF OBSERVATIONS
DATA 15ø
READ NX
OPTION BASE 1
DIM X(NX, 2), CIRCLE.SHAPE(150)
V\$(1) = "Y": V\$(2) = "X"
REM BUTTON VALUES
\(\mathrm{XB}(1)=292: \mathrm{XB}(2)=334: \mathrm{YB}=165\)
\(\operatorname{LT} \$(1)=" Y ": \operatorname{LT}(2)=" N "\)
REM SHAPE INDICES
\(\operatorname{INDEX}(1)=1: \operatorname{INDEX}(2)=75\)
REM VALUES IN APPROXIMATION FORMULA FOR \(t\)
DATA 1.96, .60033, .9591, -.90259, . 115
READ T1, T2, T3, T4, T5
REM ACTUAL \(t\) VALUES FOR \(V<=3\)
DATA 12.7ø6, 4.3ø3, 3.182
FOR I=1 TO 3
READ T.ACTUAL(I)
NEXT
REM FORMATS FOR OUTPUT
FOR I=2 TO 8
FS(I) \(=\) STRING\$(18-I,"\#")

NEXT
RETURN
```

SETMENUS:
DATA 2, Instructions, Yes, No
DATA 5, Color, Lt. Brown, Blue, Green, Gray
DATA Random
DATA 7, Decimals, 2 Places, 3 Places, 4 Places
DATA 5 Places, }6\mathrm{ Places, }7\mathrm{ Places, }8\mathrm{ Places
DATA 3, Stop, Go to BASIC
DATA Go to Finance Menu, Go to System
FOR I=1 TO 4
READ NUMBER
FOR J=Ø TO NUMBER
READ TITLE\$
IF J<>\emptyset THEN TITLE\$ = SPACES(3) + TITLE\$
STATUS = l
IF I < 3 AND J = 1 THEN STATUS = 2
IF I = 3 AND J = 2 THEN STATUS = 2
MENU I,J,STATUS,TITLE\$
NEXT J,I
INSTRUCTIONS = 1: KOLOR = 1: DP% = 3
F\$ = F$(DP%)
    F.SHORT$ = MIDS(FS,5)
RETURN
SETCOLORS:
REM BROWN, BLUE, GREEN, GRAY
DATA .95,.7,.53, . 36,.57,1
DATA . 22,.76,.68,.72,.7,.86
FOR I=l TO 4
FOR J=1 TO 3
READ KOLOR(I,J)
NEXT J,I
REM BROWN, GREEN, \& RED
PALETTE 4,.95,.7,.53
PALETTE 5,.14,.43,\varnothing
PALETTE 6,.93,.2,0
RETURN
SHAPES:
X=313: Y=80
Xl = X-7: X2 = X+7: Yl = Y-3: Y2 = Y+3
LINE(X1,Y1)-(X2,Y2),4,BF
CIRCLE(X,Y),7,2: PAINT(X,Y),6,2
GET(X1,Y1)-(X2,Y2),CIRCLE.SHAPE(1)
CIRCLE(X,Y),7,2: PAINT(X,Y),1,2
GET(X1,Y1)-(X2,Y2),CIRCLE.SHAPE(75)
RETURN
HEADING:
MENU ON

```
```

    ON MENU GOSUB OPTIONS
    CLS
    COLOR 3,0: LOCATE 18,30:PRINT "then"
    COLOR 1,\varnothing
    LOCATE 10,20: PRINT "Least-Squares Forecasting"
    LOCATE 17,24:PRINT "Please use menus,"
    LOCATE 19,21:PRINT "Click mouse to start"
    GOSUB CLICKIT
    RETURN
OPTIONS:
ID = MENU(\varnothing): ITEM = MENU(1)
ON ID GOSUB MENU1,MENU2,MENU3,GOODBYE
ITEM = Ø
RETURN
MENUl:
MENU l,INSTRUCTIONS,1: MENU l,ITEM,2
INSTRUCTIONS = ITEM
RETURN
MENU2 :
K1 = KOLOR(ITEM,1): K2 = KOLOR(ITEM,2)
K3 = KOLOR(ITEM,3)
IF ITEM=5 THEN Kl=RND: K2=RND: K3=RND
PALETTE 4,Kl,K2,K3
MENU 2,KOLOR,1: MENU 2,ITEM,2
KOLOR = ITEM
RETURN
MENU3 :
MENU 3,DP%-1,1: MENU 3,ITEM,2
DP% = ITEM + 1
FS = F$(DP%)
    F.SHORT$ = MIDS(F$,5)
RETURN
GOODBYE:
    WINDOW CLOSE 2: WINDOW l: MENU RESET
    SCREEN CLOSE l
    IF ITEM = 2 THEN RUN "FINANCE"
    IF ITEM = 3 THEN SYSTEM
    COLOR 1,0: CLS
    PRINT "Bye-Bye"
    STOP
RETURN
CLICKIT:
    S$ = ""

```
```

WHILE MOUSE(\varnothing) = Ø AND S\$ = ""
S\$ = INKEY\$
WEND
X = MOUŚE(1)
Y = MOUSE(2)
WHILE MOUSE(\varnothing)<> \varnothing: WEND: REM RESET
RETURN
INSTRUCTIONS:
CLS
PRINT
PRINT " This program estimates a simple";
PRINT " linear regression"
PRINT " equation.
PRINT
PRINT " Future values of the dependent";
PRINT " variable (Y) are predicted"
PRINT " based on the value of X that you enter."
PRINT
PRINT " A 95% confidence interval is";
PRINT " generated for the forecast."
LOCATE 2ø,27:PRINT "Click Mouse";
GOSUB CLICKIT
RETURN
ENTER.DATA:
REM Y
CLS
PRINT
PRINT " Please enter observations on the";
PRINT " dependent variable, Y."
PRINT " Hit RETURN when you're through."
GOSUB ON.Y
REM X
GOSUB ON.X
RETURN
ON.Y:
GOSUB GURGLE
N = NX
FOR J=1 TO NX
LOCATE 5,14: PRINT SPACE$(3Ø)
    LOCATE 5,3: PRINT "Y(";J
    LOCATE 5,9: PRINT ")= ? ";
    INPUT "",X$
IF X\$ = "" THEN
N = J-l
J = NX
ELSE

```
```

        X(J,l) = VAL(X$)
    END IF
    NEXT
    REM DEGREES OF FREEDOM
    V = N-2
    IF V < l THEN
    LOCATE 18,8: PRINT "At least 3 observations";
    PRINT " are needed | Try again."
    GOTO ON.Y
    END IF
    RETURN
ON.X:
CLS
GOSUB GURGLE
PRINT
PRINT " Please enter data on the explanatory";
PRINT " variable, X."
FOR J=1 TO N
LOCATE 4,14: PRINT SPACE$(3Ø)
    LOCATE 4,3: PRINT "X(";J
    LOCATE 4,9: PRINT ")= ? ";
    INPUT "",X$
X(J,2) = VAL(X$)
    NEXT
RETURN
GURGLE:
    FREQ = 3ø\emptyset
    FOR G=1 TO 5
        FREQ = 5\emptyset\emptyset-FREQ
    SOUND FREQ,1,50
    NEXT G
RETURN
EDIT.DATA:
    FOR I=1 TO 2
    FOR J=1 TO N STEP 1\varnothing
        GOSUB DISPLAY
        GOSUB CORRECT
    NEXT J,I
RETURN
DISPLAY:
    CLS
    LINE (20\varnothing, 7) - (430, 17),1,BF
    COLOR 6,1
    LOCATE 2,22
    PRINT "These are values of " + V$(I)

```
```

    LINE (40, 25)-(590,116),4,BF
    COLOR 2,4
    R = Ø: HOLD.ROW = Ø
    FOR L = J TO J+9
    IF L <= N THEN
        R = R+l
        CALL DRAW.IT(R,l)
        LOCATE R+3,10: PRINT V$(I);"(";MID$(STR$(L),2)
        LOCATE R+3,15: PRINT ")= ";X(L,I)
    END IF
    NEXT L
    RETURN
SUB DRAW.IT(RW,INX) STATIC
SHARED CIRCLE.SHAPE(),INDEX()
Y = (RW+3)*9 - 9
PUT(65,Y),CIRCLE.SHAPE(INDEX(INX)),PSET
END SUB
CORRECT:
COLOR 1,\emptyset
LOCATE 16,24: PRINT "To make changes,"
LOCATE 17,13: PRINT "Click mouse on circle,";
PRINT " then hit Return"
GOSUB CHOOSE
IF HOLD.ROW <> Ø THEN
GOSUB CHANGE: GOTO CORRECT
END IF
RETURN
CHOOSE:
GOSUB GURGLE
GOSUB CLICKIT
IF S\$ = "" THEN GOSUB LOCATION: GOTO CHOOSE
IF ASC(S\$) <> 13 THEN CHOOSE
RETURN
LOCATION:
ROW = INT(Y/9) - 2
IF ROW > Ø AND ROW <= R AND X>55 AND X<9\varnothing THEN
IF HOLD.ROW <> Ø THEN
CALL DRAW.IT(HOLD.ROW, 1)
END IF
CALL DRAW.IT(ROW, 2)
HOLD.ROW = ROW
END IF
RETURN

```
```

CHANGE:
LOCATE 16,24: PRINT SPACE$(16)
    LOCATE 17,13: PRINT SPACE$(38)
LINE(65,133)-(185,143),5,BF
COLOR 1,5
LOCATE 16,8: PRINT "New Value ?"
COLOR 1,ø
LOCATE 16,21: INPUT "",VS
X(J+HOLD.ROW-1,I) = VAL(V$)
    COLOR 2,4
    LOCATE HOLD.ROW+3,18: PRINT SPACE$(30)
LOCATE HOLD.ROW+3,18: PRINT X(J+HOLD.ROW-1,I)
CALL DRAW.IT(HOLD.ROW,1)
HOLD.ROW = Ø
LINE(65,133)-(185,143),0,BF
COLOR 1,\varnothing
LOCATE 16,21: PRINT SPACE\$(3Ø)
RETURN
COMPUTE:
GOOF = \varnothing
CLS
LOCATE 10,26: PRINT "Computing ..."
GOSUB KEYSUMS
IF GOOF = Ø THEN GOSUB EQUATION
IF GOOF = \emptyset THEN GOSUB ANOVA
IF GOOF = Ø THEN
GOSUB TSTATISTIC
GOSUB XTERMS
ELSE
GOSUB GOOF
END IF
RETURN
KEYSUMS:
SX=\varnothing: SY=\varnothing: SQ.X=\varnothing: SQ.Y=\varnothing: PROD=\varnothing
FOR I=l TO N
SX = SX + X(I, 2)
SY = SY + X(I,1)
SQ.X = SQ.X + X(I, 2)^2
SQ.Y = SQ.Y + X(I,l)^^2
PROD = PROD + X(I,l)*X(I,2)
NEXT
DMT = N*SQ.X - SX*SX
IF DMT = Ø THEN GOOF = 1
RETURN
EQUATION:
B = (N*PROD - SX*SY)/DMT

```
```

    A=(SY - B*SX)/N
    RETURN
ANOVA:
REM SUMS OF SQUARES
SS.TOTAL = SQ.Y - SY*SY/N
SS.REGRN = B*(PROD - SX*SY/N)
SS.RESDL = SS.TOTAL - SS.REGRN
REM ERROR VARIANCE
EV = SS.RESDL/V
IF EV = Ø THEN GOOF = l
REM STANDARD ERRORS OF ESTIMATES OF A \& B
SB = SQR(N*EV/DMT)
SA = SQR(EV*SQ.X/DMT)
RETURN
TSTATISTIC:
IF V <= 3 THEN
T = T.ACTUAL(V)
ELSE
T.NUMERATOR = Tl*V + T2 + T3/V
T.DENOMINATOR = V + T4 + T5/V
T = T.NUMERATOR/T.DENOMINATOR
END IF
RETURN
XTERMS:
REM X-BAR
SUM = Ø
FOR I=1 TO N
SUM = SUM + X(I,2)
NEXT
MEAN = SUM/N
REM SUM OF SQUARED DEVIATIONS
SD = SQ.X - SX*SX/N
RETURN
GOOF:
CLS
LINE(82,79)-(150,89),6,BF
COLOR 1,6
LOCATE 10,10: PRINT "Sorry:"
COLOR 1,\varnothing
LOCATE 10,l7: PRINT "I can't estimate";
PRINT " a regression equation"
LOCATE ll,17: PRINT "with the data you've";
PRINT " entered."
LOCATE 17,28: PRINT "Continue ?"
GOSUB GURGLE

```
```

    GOSUB DECIDE
    CNT$ = "NO"
    IF BUTTON% = l THEN CNT$ = "YES"
    RETURN
SHOW.RESULTS:
GOSUB PAINT.SCREEN
GOSUB SHOW.EQUATION
GOSUB SHOW.ANOVA
RETURN
PAINT.SCREEN:
CLS
LINE (35,3)-(595,120),4,BF
COLOR 2,4
LOCATE 2,23: PRINT "REGRESSION RESULTS"
COLOR 1,6
LINE (65,34)-(115,44),6,BF
LOCATE 5,8: PRINT "Term"
LINE(215,34)-( 375,44),6,BF
LOCATE 5,23: PRINT "Estimated Value"
LINE(455,34)-(575,44),6,BF
LOCATE 5,47: PRINT "t-Statistic"
RETURN
SHOW.EQUATION:
COLOR 2,4
LOCATE 7,6: PRINT "Constant";
PRINT TAB(19) USING FS; A;
PRINT TAB(39) USING F$; A/SA
    LOCATE 8,6: PRINT "Coefficient";
    PRINT TAB(19) USING F$; B;
PRINT TAB(39) USING F$; B/SB
RETURN
SHOW.ANOVA:
    LOCATE 1l,6: PRINT "R-Squared =";
    PRINT USING F.SHORT$;SS.REGRN/SS.TOTAL
LOCATE 13,6: PRINT "F-Statistic =";
PRINT USING F.SHORT\$;SS.REGRN/EV
RETURN
DECIDE:
BUTTON% = Ø
GOSUB DRAWBUTTON
GOSUB PUSHBUTTON
COLOR 1,\varnothing
RETURN

```
```

DRAWBUTTON:
LINE (265,158)-(361,172),1,BF
FOR I=1 TO 2
CIRCLE (XB(I),YB),12,4+I
PAINT (XB(I),YB),4+I
COLOR 1,4+I
LOCATE 19: PRINT PTAB(XB(I)-4);LT$(I);
    NEXT I
RETURN
PUSHBUTTON:
    SOUND 440,2
    GOSUB CLICKIT
    S$ = UCASES(S$)
    IF S$ = "Y" THEN BUTTON% = 1
IF S\$ = "N" THEN BUTTON% = 2
FOR I=1 TO 2
XD = ABS(X-XB(I)): YD = ABS(Y-YB)
IF XD<l3 AND YD<7 THEN BUTTON% = I: I=2
NEXT
IF BUTTON% = Ø THEN PUSHBUTTON
RETURN
FORECAST:
GOSUB ASK.TO.FORECAST
IF BUTTON% = l THEN GOSUB LABEL.SCREEN
WHILE BUTTON% = l
GOSUB PREDICT
GOSUB ASK.TO.FORECAST
WEND
RETURN
ASK.TO.FORECAST:
COLOR 1,\varnothing
LOCATE 16,17
PRINT "Would you like to forecast Y ?"
GOSUB DECIDE
RETURN
LABEL.SCREEN:
CLS
LINE (35,3)-(595,120),4,BF
COLOR 2,4
LOCATE 2,21: PRINT "LEAST-SQUARES FORECASTS"
LOCATE 3,2\varnothing: PRINT "(95% Confidence Interval)"
COLOR 1,5
LINE (45,43)-(175,53),5,BF
LOCATE 6,6: PRINT " Value of X"
COLOR 1,6

```

\section*{CHAPTER 5}
```

    LINE(45,70)-(175,80),6,BF
    LOCATE 9,6: PRINT "Predicted Y"
    COLOR 2,4
    LOCATE 11,7: PRINT "Lower Bound ="
    LOCATE 12,7: PRINT "Upper Bound ="
    RETURN
PREDICT:
LINE (265,158)-(361,172),\varnothing,BF
COLOR 1,\emptyset
LOCATE 16,17: PRINT SPACE$(30)
    LOCATE 16,6: PRINT "Value of x ? ";
    GOSUB GURGLE
    INPUT "",X$
XV = VAL(X$)
    P = A + B*XV
    LOCATE 16,6: PRINT SPACES(45)
    COLOR 2,4
    LOCATE 6,20: PRINT USING F.SHORT$;XV
LOCATE 9,2ø: PRINT USING F.SHORT$;P
    GOSUB INTERVAL
RETURN
INTERVAL:
    REM FORECAST VARIANCE
        FV = EV* (1 + 1/N + (XV-MEAN )^2/SD)
    REM INTERVAL
        LOCATE 1l,2Ø
        PRINT USING F.SHORT$;P - T*SQR(FV)
LOCATE 12,2ø
PRINT USING F.SHORT\$;P + T*SQR(FV)
RETURN

```

\section*{Future Worth}

Program 5-3, "Future Worth," computes the future value of an investment. The investment might be for yourself or for a business. We'll illustrate both cases.

First, suppose you buy a money-market certificate from the local Savings and Loan for \(\$ 5,000\). It pays 9 percent per annum and matures in ten years. If you enter this data into the Amiga, you'll see that your certificate will be worth \(\$ 12,298\) at maturity, assuming that interest is compounded continuously. To change the compounding to annually, quarterly, or daily, use the pull-down menu.

Second, suppose you now buy some prime commercial real estate for \(\$ 10,000\). You expect it to appreciate in value 15 percent each year, and you'd like to hold onto it for five years. The Amiga computes that your land will be worth \(\$ 20,114\) in half a decade, given yearly compounding of interest.

On the other hand, however, perhaps your acreage will grow in value at only 10 percent per year. But, then again, maybe a 20 percent per annum figure is within the realm of possibility. When you're faced with this kind of uncertainty, the power of the Amiga can help. Instead of reentering all of your data, simply click the mouse on the item you want to change, like the rate of interest, and then enter in a new number. For interest rates of 10 to 20 percent, you'll discover that the spread of plausible future worths of your land is roughly \(\$ 16,000\) to \(\$ 25,000\).

\section*{Program 5-3. Future Worth \\ Save using the filename WORTH}
```

REM FUTURE WORTH
GOSUB INITIALIZE
COMPUTE:
GOSUB FUTURE.WORTH
LOCATE 18,25: PRINT "Compute Again ?"
GOSUB DECIDE
IF BUTTON = 1 THEN COMPUTE
GOSUB GOODBYE
END

```
INITIALIZE:
 GOSUB SETSCREEN
 GOSUB KEYVALUES
 GOSUB SETMENUS
 GOSUB SETCOLORS
```

    GOSUB HEADING
    RETURN
SETSCREEN:
SCREEN 1,640,2Ø0,3,2
WINDOW 2,"Future Worth",,0,1
RETURN
KEYVALUES:
DEFINT A-Z: DEFSNG E,T,X,Y
REM EFFECTIVE INTEREST RATE
DEF FN EFFRT(V) = ( 1 + (X(4)/l\emptyset\emptyset)/V )^V
REM BUTTON VALUES
XB(1) = 292: XB(2) = 334: YB = 174
LT$(1) = "Y": LT$(2) = "N"
REM TITLES \& ROWS FOR LEFT BOX
DATA Amount,5, " Years",10, " Months",12
DATA Interest Rate,l5
FOR I=1 TO 4
READ NM\$(I), ROW.LEFT(I)
NEXT
REM ROWS FOR RIGHT BOX
DATA 6,8,10,14
FOR I=1 TO 4
READ ROW.RIGHT(I)
NEXT
REM PRINT-FORMATS

        F$(1) = "$$##,#####.##"
        F$(2) = " ####
        F$(3) = " %%#.##"
    REM FORMATS FOR LEFT & RIGHT BOXES
    DATA 1,2,2,3
    DATA 1,1,1,3
    FOR I=1 TO 4: READ F.LEFT(I) : NEXT
    FOR I=l TO 4: READ F.RIGHT(I): NEXT
    REM FREQUENCIES OF INTEREST COMPOUNDING
    DATA Annual, Quarterly, Daily, Continuous
    FOR I=1 TO 4
        READ S$
        FREQ$(I) = "(" + S$ + " Compounding)"
    NEXT
    FIRST.RUN$ = "ON"
    RETURN
SETMENUS:
DATA 2, Instructions, Yes, No
DATA 4, Interest Compounding, Annual
DATA Quarterly, Daily, Continuously
DATA 3, Stop, Go to BASIC

```
```

    DATA Go to Finance Menu, Go to System
    FOR I=1 TO 3
    READ NUMBER
    FOR J=Ø TO NUMBER
        READ TITLE$
        IF J<>\varnothing THEN TITLES = SPACE$(3) + TITLE$
        STATUS = l
        IF I <> 3 AND J = l THEN STATUS = 2
        MENU I,J,STATUS,TITLE$
    NEXT J,I
    MENU 4,\varnothing,\varnothing,""
INSTRUCTIONS = l: TYPE = l
RETURN
SETCOLORS:
REM BROWN, GREEN, \& RED
PALETTE 4,.8,.6,.53
PALETTE 5,.14,.43,0
PALETTE 6,.93,.2,0
RETURN
HEADING:
MENU ON
ON MENU GOSUB OPTIONS
CLS
COLOR 3,0: LOCATE 18,30:PRINT "then"
COLOR 1,ø
LOCATE 10: PRINT PTAB(247)"Future Worth"
LOCATE 17,24:PRINT "Please use menus,"
LOCATE 19,21:PRINT "Click mouse to start"
GOSUB CLICKIT
RETURN
OPTIONS:
ID = MENU(\varnothing): ITEM = MENU(1)
ON ID GOSUB MENUL,MENU2,GOODBYE
ITEM = Ø
RETURN
MENU1:
MENU 1,INSTRUCTIONS,1: MENU 1,ITEM,2
INSTRUCTIONS = ITEM
RETURN
MENU2:
MENU 2,TYPE,1: MENU 2,ITEM,2
TYPE = ITEM
RETURN

```
```

GOODBYE:
WINDOW CLOSE 2: WINDOW l: MENU RESET
SCREEN CLOSE l
IF ITEM = 2 THEN RUN "FINANCE"
IF ITEM = 3 THEN SYSTEM
COLOR 1,\varnothing: CLS
PRINT "Bye-Bye"
STOP
RETURN
CLICKIT:
S\$ = ""
WHILE MOUSE(\varnothing) = Ø AND S\$ = ""
S\$ = INKEY\$
WEND
X = MOUSE(1)
Y = MOUSE(2)
WHILE MOUSE(\varnothing)<> Ø: WEND: REM RESET
RETURN
FUTURE.WORTH:
VARIABLE = l
IF INSTRUCTIONS = l THEN GOSUB INSTRUCTIONS
IF FIRST.RUNS = "ON" THEN GOSUB ENTER.DATA
GOSUB COMPUTE.FW
GOSUB PAINT.SCREEN
GOSUB SHOW.SUMMARY
GOSUB ASK.TO.CHANGE
RETURN
INSTRUCTIONS:
CLS
PRINT
PRINT " This program computes how much";
PRINT " an investment will be"
PRINT " worth in the future."
PRINT
PRINT " In the display that follows, basic";
PRINT " investment values are"
PRINT " on the left. Change these to play";
PRINT " what-if games like"
PRINT " tallying the dollar impact of holding";
PRINT " a security for an"
PRINT " extra year."
PRINT
PRINT " The future worth of your investment";
PRINT " is on the right."
LOCATE 20,27:PRINT "Click Mouse";
GOSUB CLICKIT

```
```

    ITEM = 2: GOSUB MENUl: REM TURN OFF INSTRUCTIONS
    RETURN
ENTER.DATA:
GOSUB AMOUNT
GOSUB LENGTH
GOSUB INTEREST.RATE
FIRST.RUN\$ = "OFF"
RETURN
AMOUNT:
CLS
PRINT
PRINT " Please enter the amount of money";
PRINT " that you'd like to invest."
X(1) = Ø
WHILE X(1) <= Ø
LOCATE 4,12: PRINT SPACES(20)
GOSUB GURGLE
LOCATE 4,3: INPUT "Amount ";S\$
X(l) = VAL(S$)
    WEND
RETURN
LENGTH:
    LOCATE 7,3: PRINT "Please enter the length of";
    PRINT " your investment in years and"
    PRINT " months."
    X(2) = -9: REM YEARS
    WHILE X(2) < Ø
        LOCATE 10,13: PRINT SPACE$(20)
GOSUB GURGLE
LOCATE 10,4: INPUT "Years = ";S\$
X(2) = INT(VAL(S$))
    WEND
    X(3) = -9: REM MONTHS
    WHILE X(3) < Ø
        LOCATE 11,13: PRINT SPACE$(20)
GOSUB GURGLE
LOCATE 11,3: INPUT "Months = ";S\$
X(3) = INT(VAL(S\$))
WEND
IF X(2) + X(3)=\emptyset THEN LENGTH
RETURN
INTEREST.RATE:
LOCATE 14,3: PRINT "Please enter the interest";
PRINT " rate on your investment. For"
PRINT " example, enter 7 for 7%, 10 for 10%,";

```
```

    PRINT " and so on."
    X(4) = Ø
    WHILE X(4) <= Ø
    GOSUB GURGLE
    LOCATE 17,12: PRINT SPACE$(20)
    LOCATE 17,3: INPUT "Rate = ";S$
    X(4) = VAL(S$)
    WEND
RETURN
COMPUTE.FW:
REM EFFECTIVE INTEREST RATE
IF TYPE = 1 THEN EFF.RATE = FN EFFRT(1)
IF TYPE = 2 THEN EFF.RATE = FN EFFRT(4)
IF TYPE = 3 THEN EFF.RATE = FN EFFRT(365)
IF TYPE = 4 THEN EFF.RATE = EXP(X(4)/l\emptyset\emptyset)
Y(4) = (EFF.RATE-1)*1Ø\varnothing
FREQ\$ = FREQ$(TYPE)
    REM TOTAL YEARS
    TYEARS = X(2) + X(3)/12
    REM FUTURE WORTH
        Y(1) = X(1)*EFF.RATE*TYEARS
    REM PRINCIPAL & INTEREST
    Y(2) = X(1)
    Y(3) = Y(1) - Y(2)
RETURN
PAINT.SCREEN:
    CLS
    LINE(10,4)-(306,143),2,B
    PAINT (150,60),4,2
    LINE (324,4)-(620,143), 2, B
    PAINT (450,60),1,2
    REM LEFT BOX
        COLOR 2,4
        LOCATE 2,11: PRINT "INVESTMENT"
        FOR I=1 TO 4
        LOCATE ROW.LEFT(I),3: PRINT NM$(I);
PRINT TAB(17) USING FS(F.LEFT(I));X(I)
NEXT
LOCATE 8,3: PRINT "Length"
REM RIGHT BOX
COLOR Ø,1
LOCATE 2: PRINT PTAB(4l5)"FUTURE WORTH"
LOCATE 6,35: PRINT "Total"
LINE ( 355,61)-(452,71),5,BF
COLOR 1,5
LOCATE 8,37: PRINT "Principal"
LINE ( 355,79)-(452, 89) , 6, BF

```
```

    COLOR 1,6
    LOCATE 10,37: PRINT "Interest"
    COLOR Ø,1
    LOCATE l3,35: PRINT "Effective"
    LOCATE 14,35: PRINT "Interest Rate"
    RETURN
SHOW.SUMMARY:
COLOR Ø,I
LOCATE 3,36: PRINT SPACES(25)
L = LEN(FREQ$)
    LOCATE 3: PRINT PTAB(475-10*L/2);FREQS
    FOR I=1 TO 4
        LOCATE ROW.RIGHT(I),49
        PRINT USING F$(F.RIGHT(I));Y(I)
NEXT
RETURN
ASK.TO.CHANGE:
COLOR l,ø
LOCATE 18,28: PRINT "Changes ?"
GOSUB DECIDE
LOCATE 18,28: PRINT SPACE$(9)
    IF BUTTON = l THEN
        CALL HIGHLIGHT(VARIABLE,3)
        COLOR 1,\varnothing
        LINE(265,167)-( 361,181),0, BF
        LOCATE 19,13: PRINT "Click Mouse on Choice,";
        PRINT " then Hit Return"
        GOSUB CHOOSE
        GOTO ASK.TO.CHANGE
    END IF
RETURN
SUB HIGHLIGHT(V,KOLOR) STATIC
    SHARED NM$(), ROW.LEFT()
R = ROW.LEFT(V)
L = LEN(NM$(V))
    X0 = 15: Xl = L*10 + 25
    Y\emptyset = 9*R - 1l: Yl = Y + 1|
    LINE(X\varnothing,Y\emptyset)-(X1,Y1) ,KOLOR,BF
    COLOR KOLOR-2,KOLOR
    LOCATE R,3: PRINT NM$(V)
END SUB
CHOOSE:
GOSUB GURGLE
GOSUB CLICKIT
IF S\$ = "" THEN GOSUB LOCATION: GOTO CHOOSE

```
```

    IF ASC(S$) <> }13\mathrm{ THEN CHOOSE
    GOSUB CHANGE
    RETURN
GURGLE:
FREQ = 30Ø
FOR G=1 TO 5
FREQ = 50Ø-FREQ
SOUND FREQ,1,50
NEXT G
RETURN
LOCATION:
R = INT(Y/9) + 1
I=\varnothing: V=\emptyset
WHILE V=\emptyset AND I <= 4
I = I + l
IF ROW.LEFT(I) = R THEN V = I
WEND
IF X>14 AND X<175 AND V <> Ø THEN
CALL HIGHLIGHT(VARIABLE,4)
CALL HIGHLIGHT(V,3)
VARIABLE = V
END IF
RETURN
DECIDE:
BUTTON = \varnothing
GOSUB DRAWBUTTON
GOSUB PUSHBUTTON
COLOR 1,\varnothing
RETURN
DRAWBUTTON:
LINE (265,167)-(361,181),1,BF
FOR I=1 TO 2
CIRCLE (XB(I),YB),12,4+I
PAINT (XB(I),YB),4+I
COLOR 1,4+I
LOCATE 20: PRINT PTAB(XB(I)-4);LTS(I);
NEXT I
RETURN
PUSHBUTTON:
SOUND 44ø,2
GOSUB CLICKIT
S\$ = UCASE$(S$)
IF S\$ = "Y" THEN BUTTON = 1
IF S\$ = "N" THEN BUTTON = 2

```
```

    FOR I=1 TO 2
        XD = ABS(X-XB(I)): YD = ABS(Y-YB)
        IF XD<13 AND YD<7 THEN BUTTON = I: I=2
    NEXT
IF BUTTON = Ø THEN PUSHBUTTON
RETURN
CHANGE:
ROW = ROW.LEFT(VARIABLE)
COLOR 1,0
LOCATE 19,13: PRINT SPACES(38);
LOCATE 19,26: LINE INPUT; "New Value ? ";S\$
IF VARIABLE = 2 OR VARIABLE = 3 THEN
X(VARIABLE) = INT(VAL(S$))
    ELSE
        X(VARIABLE) = VAL(S$)
END IF
LOCATE 19,26: PRINT SPACES(30);
COLOR 4
COLOR 2,4: LOCATE ROW,17
PRINT USING F\$(F.LEFT(VARIABLE));X(VARIABLE)
GOSUB COMPUTE.FW
GOSUB SHOW.SUMMARY
RETURN

```

\section*{Computer Cash Register}

If you have a small business, and you're tired of looking at sales-tax tables when you ring up purchases, you'll find this program a joy to use. All you have to do is enter the price of the item, and the computer responds with the total payment due, including tax. After you enter the amount of money received from the customer, the program tells you how much change to give. It's as easy as that.

Before you run the program, however, enter the sales tax of your area into the KEYVALUES subroutine at the beginning of the program. The default value of 4 percent is for the state of Virginia.

When you run the program, the Amiga will paint a colorful cash register on your screen. You can then begin. Enter the price of the item and then press the RETURN key. A total of this transaction, tax included, is displayed. Now, enter the amount given to you by the customer; the Amiga shows how much change to return.

If you make a mistake entering the transaction, don't fret. Just press R for Redo last entry (or click on the appropriate circle at the bottom of the register), and you'll have another chance. No more scratching out entries on the cash register slip. You can even view total sales through any point in time by pressing or clicking on T .

\section*{Program 5-4. Computer Cash Register Save using the filename REGISTER}
```

REM COMPUTER CASH REGISTER
GOSUB INITIALIZE
GOSUB REGISTER
GOSUB GOODBYE
END
INITIALIZE:
GOSUB SETSCREEN
GOSUB KEYVALUES
GOSUB SETMENUS
GOSUB SETCOLORS
GOSUB SHAPES
GOSUB HEADING
RETURN

```
```

SETSCREEN:
SCREEN 1,640,2ø0,3,2
WINDOW 2,"Cash Register",,\varnothing,1
RETURN
KEYVALUES:
DEFINT A-Z: DEFSNG D,K,P,S,T
DIM CIRCLES(750)
RANDOMIZE TIMER
REM SALES TAX (IN PERCENTAGE FORM)
DATA 4.Ø
READ SALES.TAX
TAX.INDEX = l+SALES.TAX/1ø\emptyset
REM BUTTON VALUES
XB(1) = 292: XB(2) = 334: YB = 174
LT$(1) = "Y": LT$(2) = "N"
REM CHOICES
DATA Continue, Redo last entry, Tally totals
FOR I=1 TO 3
READ CHOICE$(I)
            CH$(I) = LEFT$(CHOICE$(I),I)
NEXT
REM ROWS FOR REGISTER'S DISPLAY
DATA 3,4,6,7
FOR I=1 TO 4
READ R(I)
NEXT
REM INITIAL VALUES
SALES = \varnothing: N = \varnothing: TAXES = \varnothing: C = \varnothing
REM SHAPE INDICES
FOR I=1 TO }
INDEX(I) = (I-1)*125 + 1
NEXT

    F$ = "= $$#,#######.##"
    RETURN
SETMENUS:
DATA 2, Instructions, Yes, No
DATA 5, Register, Brown, Blue, Green
DATA Lt. Red, Random
DATA 3, Stop, Go to BASIC
DATA Go to Finance Menu, Go to System
FOR I=1 TO 3
READ NUMBER
FOR J=Ø TO NUMBER
READ TITLES
IF J<>\emptyset THEN TITLES = SPACES(3) + TITLES
STATUS = 1
IF I <> 3 AND J = 1 THEN STATUS = 2

```
```

        MENU I,J,STATUS,TITLE$
    NEXT J,I
    MENU 4,\varnothing,\varnothing,""
    INSTRUCTIONS = 1: REGISTER = 1
    RETURN
SETCOLORS:
REM BROWN, BLUE, GREEN, LT. RED
DATA .67,.45,.33,.36,.57,1
DATA . 26,.59,.47,.78,.4,.43
FOR I=1 TO 4
FOR J=1 TO 3
READ KOLOR(I,J)
NEXT J,I
REM BROWN, GREEN, \& RED
PALETTE 4,.67,.45,.33
PALETTE 5,.14,.43,\varnothing
PALETTE 6,.93,.2,\varnothing
RETURN

```

\section*{SHAPES:}
```

    X\varnothing = 325: Yø = 84
    X1 = Xø-12: X2 = X\emptyset+12: Y1 = Yø-5: Y2 = Yø+5
    REM GREEN & RED
        FOR I=1 TO 2
            FOR J=1 TO 3
            LINE(X1,Y1)-(X2,Y2), 1,BF
            CIRCLE(X\varnothing,Y\emptyset),12,4+I: PAINT(X\varnothing,YØ),4+I
            COLOR 1,4+I
            LOCATE 10,33: PRINT CH$(J)
            V = (I-1)*3 + J
            GET(X1,Y1)-(X2,Y2),CIRCLES(INDEX(V))
        NEXT J,I
    RETURN
HEADING:
MENU ON
ON MENU GOSUB OPTIONS
COLOR 1,\varnothing
CLS
COLOR 3,0: LOCATE 18,30:PRINT "then"
COLOR 1,\varnothing
LOCATE 10,21: PRINT "Computer Cash Register"
LOCATE 17,24:PRINT "Please use menus,"
LOCATE 19,21:PRINT "Click mouse to continue"
GOSUB CLICKIT
RETURN

```
```

OPTIONS:
ID = MENU(\varnothing): ITEM = MENU(1)
ON ID GOSUB MENU1,MENU2,GOODBYE
ITEM = \varnothing
RETURN
MENUl:
MENU 1,INSTRUCTIONS,1: MENU 1,ITEM,2
INSTRUCTIONS = ITEM
RETURN
MENU2:
Kl = KOLOR(ITEM,1): K2 = KOLOR(ITEM,2)
K3 = KOLOR(ITEM,3)
IF ITEM=5 THEN Kl=RND: K2=RND: K3=RND
PALETTE 4,Kl,K2,K3
MENU 2,REGISTER,1: MENU 2,ITEM,2
REGISTER = ITEM
RETURN
GOODBYE:
WINDOW CLOSE 2: WINDOW l: MENU RESET
SCREEN CLOSE l
IF ITEM = 2 THEN RUN "FINANCE"
IF ITEM = 3 THEN SYSTEM
COLOR 1,0: CLS
PRINT "Bye-Bye"
STOP
RETURN
CLICKIT:
S\$ = ""
WHILE MOUSE(\varnothing) = Ø AND S\$ = ""
S\$ = INKEY\$
WEND
X = MOUSE(1)
Y = MOUSE(2)
WHILE MOUSE(\varnothing)<> Ø: WEND: REM RESET
RETURN
REGISTER:
IF INSTRUCTIONS = 1 THEN GOSUB INSTRUCTIONS
GOSUB DRAW.REGISTER
GOSUB OPERATE
RETURN
INSTRUCTIONS:
CLS
PRINT

```
```

    PRINT " This program turns your Amiga into";
    PRINT " a cash register."
    PRINT
    PRINT " A sales tax of";SALES.TAX;CHR$(8);
    PRINT "% is used in computing the price of"
    PRINT " an item."
    PRINT
    PRINT " For a different value, go to";
    PRINT " BASIC and change the"
    PRINT " Data statement in the KEYVALUES";
    PRINT " subroutine."
    LOCATE 20,26: PRINT "Click Mouse";
    GOSUB CLICKIT
    RETURN
DRAW.REGISTER:
CLS
LINE(113,5)-(513,180), 2, B
LINE(153,14)-(474,65),2,B
PAINT(313,80),4,2
LOCATE 3,20: PRINT "Price = \$"
LOCATE 4,l7: PRINT "With Tax = \$"
LOCATE 6,18: PRINT "Payment = \$"
LOCATE 7,19: PRINT "Change = $"
    GOSUB BOTTOM
RETURN
BOTTOM:
    COLOR 6,1
    LINE(153,12Ø)-(474,174), 2,B
    PAINT(313,130),1,2
    FOR I=1 TO 3
        ROW = 13+I*2
        Y = ROW*9-11
        PUT(233,Y),CIRCLES(INDEX(I)), PSET
        LOCATE ROW, 29: PRINT CHOICE$(I)
NEXT
RETURN
OPERATE:
GOSUB TRANSACTION
GOSUB NEXT.ACTION
REM REDO
IF R\$ = "R" THEN OPERATE
GOSUB ADD.TO.TOTALS
REM CONTINUE
IF RS = "C" THEN OPERATE
REM DISPLAY TOTALS
IF R\$ = "T" THEN GOSUB SHOW.TOTALS

```
```

    REM CONTINUE OPERATING
    IF BUTTON = l THEN
        GOSUB DRAW.REGISTER
        GOTO OPERATE
    END IF
    RETURN
TRANSACTION:
REM BLANK-OUT LINES
COLOR 1,\varnothing
FOR I=1 TO 4
LOCATE R(I),30: PRINT SPACE$(18)
    NEXT
REM ENTER PRICE
    PRICE = \varnothing
    WHILE PRICE <= \varnothing
        SOUND 9øø,2
        LOCATE 3,30: PRINT SPACE$(18)
LOCATE 3,30: LINE INPUT D\$
PRICE = VAL(D$)
    WEND
    PWT = INT((PRICE*TAX.INDEX + .ø\emptyset5)*1\varnothing\varnothing)/1\varnothing\varnothing
    LOCATE 4,29: PRINT PWT
REM PAYMENT
    PAYMENT = \emptyset
    WHILE PAYMENT < PWT
        SOUND 9ø0,2
        LOCATE 6,30: PRINT SPACE$(18)
LOCATE 6,30: LINE INPUT D\$
PAYMENT = VAL(D$)
    WEND
REM CHANGE
    DELTA = INT((PAYMENT - PWT + . Ø\varnothing5)*1\varnothing\varnothing)/1\varnothing\varnothing
    LOCATE 7,29: PRINT DELTA
RETURN
NEXT.ACTION:
    COLOR 2,4
    LOCATE 13,23: PRINT "PRESS"
    REM RE-SET CIRCLE
    IF C <> Ø THEN
        PUT(233,C*18+1Ø6),CIRCLES(INDEX(C)),PSET
    END IF
RS = ""
WHILE R$ = ""
GOSUB GURGLE
GOSUB CLICKIT
IF S\$ = "" THEN GOSUB MOUSEY ELSE GOSUB BOARD
WEND

```
```

LOCATE 13,23: PRINT SPACES(5)
REM HIGHLIGHT ACTION
Y = C*18 + 106
PUT(233,Y),CIRCLES(INDEX(3+C)),PSET
RETURN
GURGLE:
FREQ = 3ø\emptyset
FOR G=1 TO 5
FREQ = 5Ø\emptyset-FREQ
SOUND FREQ,1,5\emptyset
NEXT G
RETURN
MOUSEY:
C = INT( (Y-120)/18 ) + 1
IF X > 230 AND X < 260 THEN
IF C = 1 THEN R\$ = "C"
IF C = 2 THEN RS = "R"
IF C = 3 THEN RS = "T"
END IF
RETURN
BOARD:
S\$ = UCASE$(S$)
IF S\$ = "C" THEN C = 1: R\$ = S\$
IF S\$ = "R" THEN C = 2: R\$ = S\$
IF S\$ = "T" THEN C = 3: R\$ = S\$
RETURN

```
ADD.TO.TOTALS:
 SALES = SALES + PRICE
 TAXES \(=\) TAXES \(+(\) PWT - PRICE \()\)
 \(\mathrm{N}=\mathrm{N}+\mathrm{l}\)
RETURN
SHOW.TOTALS :
 COLOR \(1, \varnothing\)
 CLS
 \(\operatorname{LINE}(135,5)-(495,1 \varnothing \varnothing), 2, B: \operatorname{PAINT}(313,5 \varnothing), 1,2\)
 COLOR \(\varnothing, 1\)
 LOCATE 2,27: PRINT "TOTAL SALES"
 LOCATE 4,18: PRINT "Number \(=\) ";N
 LOCATE 7,18: PRINT "Total Sales";
 PRINT TAB(30) USING FS;SALES+TAXES
 \(\operatorname{LINE}(225,7 \varnothing)-(285,8 \emptyset), 5, B F\)
 COLOR 1,5
 LOCATE 9,24: PRINT "Store";
 COLOR \(\varnothing, 1\)
```

    PRINT TAB(30) USING F$;SALES
    LINE(225,88)-(285,98),6,BF
    COLOR 1,6
    LOCATE 1l,24: PRINT "Taxes";
    COLOR Ø,l
    PRINT TAB(30) USING F$;TAXES
    COLOR 1,0
    LOCATE 17,12: PRINT "Would you like to keep";
    PRINT " the register on ?"
    GOSUB DECIDE
    C = Ø
    RETURN
DECIDE:
BUTTON = \varnothing
GOSUB DRAWBUTTON
GOSUB PUSHBUTTON
COLOR 1,\varnothing
RETURN
DRAWBUTTON:
LINE (265,167)-(361,181),1,BF
FOR I=1 TO 2
CIRCLE (XB(I),YB),12,4+I
PAINT (XB(I),YB),4+I
COLOR 1,4+I
LOCATE 20: PRINT PTAB(XB(I)-4);LT$(I);
    NEXT I
RETURN
PUSHBUTTON:
    SOUND 440,2
    GOSUB CLICKIT
    S$ = UCASE$(S$)
IF S\$ = "Y" THEN BUTTON = l
IF S\$ = "N" THEN BUTTON = 2
FOR I=1 TO 2
XD = ABS(X-XB(I)): YD = ABS(Y-YB)
IF XD<l3 AND YD<7 THEN BUTTON = I: I=2
NEXT
IF BUTTON = Ø THEN PUSHBUTTON
RETURN

```

\section*{CHAPTER 6}

\section*{Science and Math}

\section*{CHAPTER 6}

\section*{Science and Math}

The Amiga's number-crunching capability, colorful graphics, and marvelous mouse make these four programs fun to use. And that's the way it should be, for why make science dull and dreary when it's really entertaining and exciting.

Chemistry Basics. Enables you to review and analyze a wealth of intriguing information on the earth's 103 basic elements. Data items include atomic number, atomic weight, boiling and melting points, density, and date of discovery. You can display elements individually or by family, and you can sort them a number of different ways.

Weather Forecasting. Everybody complains about the weather, but nobody ever does anything about it. Although this program won't change that adage, it will help you make accurate short-range forecasts.

Simultaneous Equation Solver. Solves a set of simultaneous equations for each unknown.

Matrix Manipulator. There are many routines around for adding, subtracting, multiplying, and even inverting matrices. But what if you want to do several operations in succession? "MatMan" is your answer.

\section*{Science and Math Menu Driver \\ Save using the filename SCIENCE}
```

REM SCIENCE AND MATH
GOSUB INITIALIZE
GOSUB MAIN.MENU
RUN TITLE.SHORT\$(PICK)
END

```
INITIALIZE:
 GOSUB SETSCREEN
 GOSUB KEYVALUES
 GOSUB SETMENUS
 GOSUB SETCOLORS
 GOSUB SHAPES
RETURN

\section*{CHAPTER 6}
```

    WINDOW 2,"Science and Math",,\varnothing,1
    RETURN
KEYVALUES:
DEFINT A-Z
N = 4
DIM TITLE.LONG$(N),TITLE.SHORT$(N),DISCS(250)
DISC.I(1) = 1: DISC.I(2) = 125
READ CHAPTERS
FOR I=1 TO N
READ TITLE.LONG$(I),TITLE.SHORT$(I)
NEXT
RETURN
SETMENUS:
FOR I=2 TO 4
MENU I,\varnothing,\varnothing,""
NEXT
MENU 1,ø,1,"STOP"
MENU l,1,1," Go to BASIC"
MENU 1,2,1," Go to System"
MENU ON
ON MENU GOSUB GOODBYE
RETURN
GOODBYE:
WINDOW CLOSE 2: WINDOW l: MENU RESET
SCREEN CLOSE 1
ITEM = MENU(1)
IF ITEM = 2 THEN SYSTEM
CLS
PRINT "Bye-Bye"
STOP
RETURN
SETCOLORS:
REM TAN, GREEN, \& RED
PALETTE 4,.95,.7,.53
PALETTE 5,.14,.43,0
PALETTE 6,.93,.2,ø
RETURN
SHAPES:
X=313: Y=80
LINE(X-12,Y-8)-(X+12,Y+8),4,BF
FOR I=1 TO 2
K = 7-I
CIRCLE(X,Y),12,K: PAINT(X,Y),K
GET(X-12,Y-8)-(X+12,Y+8),DISCS(DISC.I(I))

```
```

NEXT
RETURN
MAIN.MENU:
CLS
RTNS = "OFF": PICK = 1
S\$ = CHAPTER$: L = LEN(S$)
LINE( 313-10*L/2-15,15)-(313+10*L/2+15,27),1,B
PAINT(313,20),6,1
COLOR 1,6: LOCATE 3: PRINT PTAB(313-10*L/2)S\$
LINE(135,35)-(495,130),2,B: PAINT(313,80),4,2
COLOR 2,4
FOR I=1 TO N
IF I = PICK THEN INX = 2 ELSE INX = 1
CALL DRAW.CIRCLE(I,INX)
LOCATE I*2+4,21: PRINT TITLE.LONG$(I)
    NEXT
    LINE(263,141)-(360,153),2,B: PAINT(313,145),3,2
    COLOR 2,3
    LOCATE 17: PRINT PTAB(282)"Return"
    COLOR 1,\varnothing
    LOCATE 19,ll: PRINT "Click Mouse on Choice,";
    PRINT " then Click on Return"
    GOSUB CHOOSE
RETURN
SUB DRAW.CIRCLE(R,INX) STATIC
    SHARED DISCS(),DISC.I()
    Y = 18*R+22
    PUT(162,Y),DISCS(DISC.I(INX)),PSET
END SUB
CHOOSE:
    GOSUB GURGLE
    GOSUB CLICKIT
    IF S$ = "" THEN GOSUB LOCATION
IF ASC(S$+" ") <> 13 AND RTN$ = "OFF" THEN
GOTO CHOOSE
END IF
RETURN
GURGLE:
FREQ = 30\varnothing
FOR G=1 TO 5
FREQ = 50\emptyset - FREQ
SOUND FREQ,1,50
NEXT
RETURN

```
```

CLICKIT:
S\$ = ""
WHILE MOUSE(\varnothing) = Ø AND S\$ = ""
S\$ = INKEY\$
WEND
X = MOUSE(1)
Y = MOUSE(2)
WHILE MOUSE(\varnothing)<> \emptyset: WEND: REM RESET
RETURN
LOCATION:
IF X>263 AND X<360 AND Y> 141 AND Y<l53 THEN
RTN\$ = "ON"
ELSE
P = INT((Y-39)/18) + 1
IF X>155 AND X<195 AND P>\emptyset AND P<= N THEN
CALL DRAW.CIRCLE(PICK,l)
CALL DRAW.CIRCLE(P,2)
PICK = P
END IF
END IF
RETURN
REM PROGRAMS
DATA Science and Math
DATA Chemistry Basics, CHEMISTRY
DATA Weather Forecasting, WEATHER
DATA Simultaneous Equation Solver, SES
DATA Matrix Manipulator (MatMan), MATMAN

```

\section*{Chemistry Basics}

Radium is dangerously radioactive. It was discovered in 1898 by Marie and Pierre Curie, and weighs 1783.3 percent more than one carbon atom. Barium is used to coat the stomach for X-rays, gives fireworks a green color, and has a melting point of 714 degrees Celsius (1317 degrees Fahrenheit).

These are a few of the items that you'll have at your fingertips in "Chemistry Basics," a program that enables you to review and analyze a wealth of intriguing information on the earth's 103 elements.

An element, incidentally, is a unique building block in nature which can't, through chemical means, be reduced into a more basic substance. There are 88 natural elements and 15 artificial ones. Together they form compounds which make up all the objects on the earth, including the Amiga computer. Two-thirds of the human body, by the way, is the element oxygen.

Chemistry Basics is what computer scientists call a table-lookup program. It enables you to view a family of elements, view an element in detail, and sort the elements.

An example of the first option is a display of the six inert gases in Figure 6 -1. If you'd like the details on an element, just click on a box when you run the program. And to view a different family, use one of the pull-down menus.

In the second option you can select an element by its symbol, number, or name. For example, H, 1, and Hydrogen all represent the same element. Figure 6-2 is a closer look at hydrogen.

The third option lets you sort elements by atomic number, atomic weight, boiling point, melting point, density, and year of discovery. If you experiment with this function, you'll learn, among other things, that carbon possesses the highest known melting point of all the elements (3727 degrees Celsius).

Figure 6-1. The Inert Gases

When you run the program, click the mouse on one of the boxes and the Amiga will give you an "up close and personal" view of that element.

Figure 6-2. Facts About Hydrogen
UP CLOSE AND PERSONAL
Boiling Point : - 252.7 Celsius
Melting Point : -259.2 Celsius
Density : 0.071 Grams/Milliliter
(1)

HYDROGEN (H)
- Lightest element
- The sun and stars are almost pure hydrogen
- Discovered in 1766
- One \((\mathrm{H})\) atom weighs \(91.6 \%\) less than one carbon atom

Finally, you may want to make a game of Chemistry Basics. For example, try to recall which elements belong in a family, or which element is lightest or densest, or has the lowest boiling point. You'll probably find that Chemistry Basics is a lot more fun than staring at a dull table in a textbook.

\section*{Basic Chemistry Terms}

Atom. From the Greek word atoma meaning indivisible. The smallest part of an element capable of existing alone. An atom consists of protons, neutrons, and electrons. The protons and neutrons dwell in a nucleus, and the electrons hover about.

Atomic number. The number of protons in the nucleus of an atom and the numeric value assigned to the corresponding element. An atom of tin, for example, contains 50 protons. Hence, the atomic number for tin is 50.

Atomic weight. The weight of an atom of an element relative to that of an atom of carbon, with the latter taken as 12.011 . Hence, an aluminum atom with an atomic weight of 26.982 is slightly more than twice the weight of a carbon atom.

Density. The mass of a substance per unit of volume. In Chemistry Basics the density of an element is measured in grams per milliliter.

Element. A unique building block in nature which can't, through chemical means, be reduced into a more basic substance.

\section*{Chemistry Basics Database}

Program 6-1A, "Chemistry Basics Database," creates a data file on disk called ELEMENTS for the Chemistry Basics program to run. If you're keying this data in from scratch, a good strategy is to take a break after every 20 or 30 elements you enter. This will cut down on mistakes. Be sure to save the program to disk before running it.

Run Program 6-1A first and only once. Then, whenever you want to use Chemistry Basics, just run Program 6-1B. You don't have to run Program 6-1A again.
```

Program 6-1A. Chemistry Basics Database
Save using the filename CHEMISTRY.DATA
REM CHEMISTRY DATA BASE
GOSUB SETSCREEN
GOSUB SETMENUS
GOSUB INSTRUCTIONS
GOSUB CREATE.FILE
GOSUB GOODBYE
END

```

\section*{SETSCREEN :}
 SCREEN \(1,640,2 \varnothing 0,2,2\)
 WINDOW 2,"Chemistry Data Base", , 0,1
RETURN
SETMENUS:
 FOR I=2 TO 4
 MENU \(工, \varnothing, \varnothing, " "\)
 NEXT
 MENU 1, \(\varnothing, 1, " S T O P "\)
 MENU \(1,1,1, "\) Go to BASIC"
 MENU 1,2,1," Go to System"
 MENU ON
 ON MENU GOSUB GOODBYE
RETURN
GOODBYE :
 WINDOW CLOSE 2: WINDOW 1: MENU RESET
 SCREEN CLOSE 1
 ITEM = MENU (1)
 IF ITEM \(=2\) THEN SYSTEM
 CLS
 PRINT "Bye-Bye"
 STOP
RETURN
INSTRUCTIONS:
 CLS
 PRINT
 PRINT " This program creates a data base";
 PRINT " for use in Chemistry"
 PRINT " Basics."
 PRINT
 PRINT " You need to run this program only";
```

    PRINT " once."
    LOCATE 17,26: PRINT "Click Mouse"
    GOSUB CLICKIT
    RETURN
CLICKIT:
S\$ = ""
WHILE MOUSE(\varnothing) = Ø AND S\$ = ""
S\$ = INKEY\$
WEND
X = MOUSE(1)
Y = MOUSE(2)
WHILE MOUSE(\varnothing)<> Ø: WEND: REM RESET
RETURN
CREATE.FILE:
DEFINT I,J,N
N = 103
DIM SYM$(N),NM$(N),X(N,5),CMS(N,2)
GOSUB READ.DATA
GOSUB SAVE.DATA
RETURN
READ.DATA:
REM SYMBOL, NAME, ATOMIC WEIGHT, BOILING
REM \& MELTING POINTS, DENSITY, YEAR OF
REM DISCOVERY, \& TWO ONE-LINE COMMENTS
CLS
LOCATE 10,24: PRINT "Reading data ..."
FOR I=1 TO N
READ SYM\$ (I),NM\$ (I)
FOR J=1 TO 5
READ X(I,J)
NEXT J
READ CMS (I,1),CM\$ (I, 2)
NEXT I
RETURN
SAVE.DATA:
LOCATE 10,24: PRINT " Saving data ..."
FILE\$ = "ELEMENTS"
OPEN "O",\#1,FILES
FOR I=1 TO N
WRITE \#1,SYMS(I),NM$(I)
        FOR J=1 TO 5
        WRITE #l,X(I,J)
        NEXT J
        WRITE #l,CM$(I,l),CM\$(I,2)
NEXT I

```
CLOSE
KILL FILES + ".info"
LOCATE 12,23: PRINT "Your file is saved."
LOCATE 19,26: PRINT "Click Mouse"
GOSUB CLICKIT
RETURN
REM ELEMENTS (\(9999=\) unknown)
DATA H, Hydrogen, 1.ØØ8,-252.7,-259.2,0.071,1766
DATA Lightest element
DATA The sun \& stars are almost pure hydrogen
DATA He, Helium, 4.ØØ26,-268.9,-269.7,0.126,1868
DATA Lighter than air
DATA Used in blimps and ballons
DATA Li, Lithium, 6.939,1330,1Ø8.5,0.53,1817
DATA From 'Lithos' or stoneDATA Used in treating gout and depressionDATA Be, Beryllium, 9.0122,2770,1277,1.85,1798
DATA Note the high melting point
DATA Used in making rocket nose cones
DATA B, Boron, 10.811,9999,2030,2.34,1808
DATA Serves as plant food and weed killer
DATA From Bor (ax) and (Carb)on
DATA C, Carbon, 12.Ø11,483Ø,3727,2.26,9999
DATA Used in endless products (like Nylon)
DATA Found in all organic substances
DATA N,Nitrogen, 14.øØ7,-195.8,-21Ø, Ø.81,1772
DATA "Odorless, colorless, gaseous"
DATA Compounds include TNT and laughing gas
DATA O,Oxygen,15.999,-183,-218.8,1.14,1774
DATA The most abundant element
DATA Makes up \(2 / 3\) of the human body
DATA F,Fluorine,18.998,-188.2,-219.6,1.11,1771
DATA "Pale, greenish-yellow, pungent"
DATA It corrodes even tough platinum
DATA Ne,Neon, 20.183,-246,-248.6,1.2,1898
DATA Famous in electrical display signs
DATA Gives off orange-red light
DATA Na,Sodium,22.99Ø, 892,97.8,Ø.97,1807
DATA Silver-white and highly reactive
DATA Useful compounds include table salt
DATA Mg, Magnesium,24.312,11Ø7,650,1.74,1775
DATA From Magnesia in ancient Asia Minor
DATA Used as a powder in firecrackers
DATA Al, Aluminum, 26.982,2450,66Ø, 2.7,1827
DATA The earth's most abundant metal
DATA Widely used in alloys
DATA Si,Silicon, 28.086, 2680,1410,2.33,1823
DATA The second most abundant element

\footnotetext{
DATA Makes up \(1 / 4\) of the earth's crust
DATA P, Phosphorus,30.974,280,44.2,1.82,1669
DATA Glows in the dark
DATA Is highly flammable
DATA S,Sulfur, 32.064,444.6,119,2.07,9999
DATA Pale yellow and nonmetallic
DATA Used in matches and gunpowder
DATA Cl,Chlorine,35.453,-34.7,-1ø1,1.56,1774
DATA A greenish-yellow poison
DATA Used as a bleach and disinfectant
DATA Ar,Argon, 39.948,-185.8, -189.4,1.4,1894
DATA Most abundant of the Noble Gases
DATA Used in incandescent lamps
DATA K,Potassium,39.102,760,63.7,0.86,18ø7
DATA 7th most abundant element
DATA Yields many valuable compounds
DATA Ca,Calcium, 40.08,1440,838,1.55,18ø8
DATA Vital to healthy teeth and bones
DATA Found with chalk and limestone
DATA Sc,Scandium,44.956,2730,1539,3,1879
DATA From Scandinavia
DATA Of little practical use
DATA Ti,Titanium,47.9,3260,1668,4.51,1791
DATA Lightweight yet strong
DATA Used in jet aircraft
DATA V,Vanadium,50.942,3450,1900,6.1,1830
DATA Very tough when added to steel
DATA Used in axles and piston rods
DATA Cr, Chromium,51.996,2665,1875,7.19,1797
DATA Forms tough alloys
DATA Chrome plate on cars
DATA Mn,Manganese,54.938,2150,1245,7.43,1774
DATA Adds toughness to bones
DATA Helps harden steel
DATA Fe, Iron,55.847,3øøø,1536.7,7.86,9999
DATA From the Old English 'Iren'
DATA Used by early man
DATA Co, Cobalt,58.933,2900,1495,8.9,1735
DATA From 'Kobold' or evil spirit
DATA Alloys used in jet engines
DATA Ni,Nickel,58.71,2730,1453,8.9,1751
DATA Hard and durable
DATA Used in coins and plating
DATA Cu, Copper,63.54,2595,1ø83,8.96,9999
DATA Great conductor of heat \& electricity
DATA Also used in the arts
DATA \(\mathrm{Zn}, \mathrm{Zinc}, 65.37,906,419.5,7.14,9999\)
DATA Excellent coating metal
DATA Used in batteries
}

DATA Ga,Gallium, 69.72,2237,29.8,5.91,1875
DATA Melts in the hand (86 F.)
DATA Expands as it freezes
DATA Ge,Germanium, 72.59,2830,937.4,5.32,1886
DATA Named for Germany
DATA First element used for transistors
DATA As,Arsenic, 74.922,613,817,5.72,1250
DATA Famed as poison
DATA But also used in medicine
DATA Se, Selenium, \(78.96,685,217,4.79,1817\)
DATA Its electrical resist. varies with light
DATA Used in TV cameras
DATA Br, Bromine, 79.909,58,-7.2,3.12,1826
DATA Reddish brown with a foul smell
DATA From 'bromos' or stench
DATA Kr, Krypton, 83.8,-152,-157.3,2.6,1898
DATA A by-product of nuclear reactors
DATA Helps us track Soviet atomic production
DATA Rb, Rubidium, \(85.47,688,38.9,1.53,1861\)
DATA Slightly radioactive
DATA Used to locate brain tumors
DATA Sr,Strontium, 87.62,1380,768,2.6,179ø
DATA Present in atomic fallout
DATA Destroys bone marrow
DATA Y,Yttrium, 88.905,2927,1509,4.47,1794
DATA From Ytterby in Sweden
DATA Used in surgical needles
DATA Zr, Zirconium,91.22,3580,1852,6.49,1780
DATA Unaffected by neutrons
DATA Used as inner lining for nuclear reactors
DATA Nb,Niobium,92.9ø6,33øø,2415,8.4,18ø1
DATA From 'Niobe' of Greek myth
DATA Used in jet engines and rockets
DATA Mo, Molybdenum, \(95.94,5560,2610,10.2,1778\)
DATA The world's 5th highest-melting metal
DATA Used in rifle barrels
DATA TC,Technetium,99,9999,220ø,11.5,1937
DATA The first man-made element
DATA A fission product of uranium
DATA Ru, Ruthenium, 1ø1.07,49ø0,25ø0,12.2,1844
DATA From the Latin 'Ruthenia' for Russia
DATA A first-class hardener
DATA Rh, Rhodium,1ø2.9ø5,45øø,1966,12.4,18ø3
DATA From 'rhodon' or rose
DATA Used in electroplating
DATA Pd, Palladium,1ø6.4,3980,1552,12,18ø3
DATA Corrosion resistant
DATA Used in surgical instruments
DATA Ag,Silver,1ø7.87,2210,960.8,10.5,9999

\footnotetext{
DATA From the Old English 'seolfor'
DATA Best conductor of heat \& electricity
DATA Cd,Cadmium,112.4,765,320.9,8.65,1817
DATA Found in zinc ores
DATA Used to control atomic fission
DATA In, Indium,114.82,2øøø,156.2,7.31,1863
DATA Rare
DATA Soft and malleable
DATA Sn, Tin,118.69,2270,231.9,7.3,9999
DATA Does not rust or corrode
DATA Used to coat cans
DATA Sb,Antimony,121.75,1380,630.5,6.62,1450
DATA "Silver-white, hard, crystalline"
DATA Used in chemistry and in the arts
DATA Te,Tellurium,127.6,989.8,449.5,6.24,1782
DATA From 'tellus' or earth
DATA Its vapor smacks of garlic
DATA I, Iodine,126.9,183,113.7,4.94,1811
DATA Famous as an antiseptic
DATA Supplements the human diet
DATA Xe, Xenon,131.3,-1ø8,-111.9,3.06,1898
DATA Rarest gas in the atmosphere
DATA Produces an intense light
DATA Cs,Cesium,132.9Ø5,690,28.7,1.9,1860
DATA The world's softest metal
DATA Liquid at room temperature
DATA Ba, Barium, 137.34,1640,714,3.5,1808
DATA Used to coat the stomach for \(X\)-rays
DATA Gives fireworks a green color
DATA La, Lanthanum,138.91,3470,920,6.17,1839
DATA Dark lead-gray
DATA Used in high-priced camera lenses
DATA Ce, Cerium, 140.12,3468,795,6.67,18ø3
DATA The most abundant of the rare-earths
DATA Used in alloys for jet-engine parts
DATA Pr, Praseodymium,140.91,3127,935,6.77
DATA 1885
DATA Yellowish white
DATA Used in goggles for glass blowing
DATA Nd, Neodymium,144.24,3ø27,1624,7,1885
DATA Forms the only bright-purple glass known
DATA Used to take the color out of glass
DATA Pm, Promethium,147,9999,1027,9999,1947
DATA Used in atomic batteries
DATA Named for Prometheus
DATA Sm,Samarium,150.35,1900,1072,7.54,1879
DATA "Hard, brittle, yellowish gray"
DATA Used in lasers
DATA Eu,Europium,151.96,1439,826,5.26,1896
}

DATA The most reactive of the rare earths DATA Used in atomic-reactor control rods
DATA Gd,Gadolinium,157.25,3øøø,1312,7.89,1880
DATA Named for John Gadolin- chemist
DATA Divides lightweight rare earths from heavy
DATA Tb, Terbium,158.92,2800,1356,8.27,1843
DATA From Ytterby in Sweden
DATA Bursts into flame when heated
DATA Dy, Dysprosium, 162.5,26øø,14ø7,8.54,1886
DATA Highly magnetic
DATA Used to 'eat' neutrons
DATA Ho, Holmium, 164.93,2600,1461,8.80,1879
DATA Latinized name of Stockholm
DATA Used to absorb neutrons
DATA Er,Erbium,167.26,29øø,1497,9.05,1843
DATA From Ytterby in Sweden
DATA Used for pink glaze in ceramics
DATA Tm, Thulium,168.93,1727,1545,9.33,1879
DATA From 'Thule' or Northland
DATA Gives off X-rays
DATA Yb,Ytterbium, 173.04,1427,824,6.98,1907
DATA From Ytterby in Sweden
DATA "Rare, and of little practical use"
DATA Lu, Lutetium, \(174.97,3327,1652,9.84,1907\)
DATA Heaviest of the rare earths
DATA "Expensive, and of no practical use"
DATA Hf,Hafnium,178.49,540ø,2222,13.1,1923
DATA Wonder metal of the atomic age
DATA Absorbs neutrons
DATA Ta, Tantalum, 180.948,5425, 2996,16.6,1802
DATA Almost immune to corrosion
DATA Vital in human surgery
DATA W, Tungsten, 183.85,5930, 3410,19.3,1783
DATA Highest melting of metals
DATA Used in high-speed drills
DATA Re, Rhenium, 186.2,5900, 3180, 21, 1925
DATA Has second-highest melting point
DATA Used in electrical contact points
DATA Os,Osmium,19ø.2,55ø0,27ø0,22.6,18ø4
DATA World's densest metal
DATA Used to produce very hard alloys
DATA Ir, Iridium, 192.2,53øø, 2454,22.5,18ø4
DATA A very hard metal
DATA Used in standard weights/measures
DATA Pt, Platinum,195.09,4530,1769,21.4,9999
DATA From platina or 'little silver'
DATA Used in jewelry
DATA Au, Gold,196.97,297Ø, 1ø63,19.3,9999
DATA The most malleable metal
```

DATA Costs hundreds of dollars per ounce
DATA Hg,Mercury,2ø\emptyset.59,357,-38.4,13.6,9999
DATA Used in thermometers
DATA Liquid at ordinary temperatures
DATA Tl,Thallium,204.37,1457,303,11.85,1861
DATA Odorless and tasteless
DATA Its salts are used in rat poison
DATA Pb,Lead,207.19,1725,327.4,11.4,9999
DATA Very durable
DATA Used by Romans for plumbing
DATA Bi,Bismuth,208.98,1560,271.3,9.8,9999
DATA Lustrous and reddish white
DATA Used in medicine and makeup
DATA Po,Polonium,210,9999,254,9.2,1898
DATA Named for Poland
DATA The scarcest natural element
DATA At,Astatine,21\varnothing,9999,302,9999,1940
DATA Radioactive
DATA Maximum half life is 8 hours
DATA Rn,Radon, 222,-61.8,-71,9999,190Ø
DATA The heaviest gaseous element
DATA Used in cancer therapy
DATA Fr,Francium,223,9999,27,9999,1939
DATA For France
DATA Discovered by one of Marie Curie's helpers
DATA Ra,Radium,226,9999,70Ø,5,1898
DATA Dangerously radioactive
DATA Found by Pierre and Marie Curie
DATA Ac,Actinium,227,9999,1Ø50,9999,1899
DATA The second rarest element
DATA Found in pitchblende
DATA Th,Thorium,232.04,3850,1750,11.7,1828
DATA From the war god 'Thor'
DATA Used to generate atomic energy
DATA Pa,Protactinum,231,9999,1230,15.4,1917
DATA The third rarest element
DATA Radioactive and metallic
DATA U,Uranium,238.03,3818,1132,19.07,1789
DATA Named after the planet Uranus
DATA Used to generate atomic energy
DATA Np,Neptunium,237,9999,637,19.5,1940
DATA Named after the planet Neptune
DATA Artificially produced from uranium
DATA Pu,Plutonium,242,3235,640,9999,1940
DATA Named after the planet Pluto
DATA Used in the first atomic bombs
DATA Am,Americium, 243,9999,9999,11.7,1944
DATA Unstable and radioactive
DATA Produced by bombarding plutonium

```

DATA Cm, Curium, 247,9999,9999,9999,1944
DATA Named for Pierre and Marie Curie
DATA A decay product of americium
DATA Bk, Berkelium, 247 ,9999,9999,9999,1949
DATA Named after Berkeley Calif.
DATA Unstable and radioactive
DATA Cf,Californium, 249,9999,9999,9999,1950
DATA Named for the state
DATA Produced by bombarding curium
DATA Es,Einsteinium, 254,9999,9999,9999,1952
DATA Named for Albert Einstein
DATA Found in 1952 H-bomb test debris
DATA Fm, Fermium, 253,9999,9999,9999,1953
DATA Named for Enrico Fermi
DATA Produced by bombarding Einsteinium
DATA Md,Mendelevium, 256,9999,9999,9999,1955
DATA Named after inventor of the Periodic Table
DATA Short-lived and radioactive
DATA No,Nobelium, 254,9999,9999,9999,1957
DATA Named for Alfred Noble
DATA Unstable and radioactive
DATA Lw, Lawrencium,257,9999,9999,9999,1961
DATA Named for the U.S. physicist
DATA Latest of the artificial elements

Program 6-1B. Chemistry Basics
Save using the filename CHEMISTRY
REM CHEMISTRY BASICS
CLEAR , 32ØøØ
GOSUB INITIALIZE
GOSUB MAIN.MENU
END
INITIALIZE:
GOSUB SETSCREEN
GOSUB KEYVALUES
GOSUB SETMENUS
GOSUB SETCOLORS
GOSUB SHAPES
GOSUB HEADING
GOSUB GREETING
GOSUB READ.DATA
RETURN
SETSCREEN:
SCREEN 1,640,2ø0,3,2
```

    WINDOW 2,"Chemistry Basics",.\emptyset,1
    RETURN
KEYVALUES:
RANDOMIZE TIMER
DEFINT I-Z: DEFSNG K,S,X
N = 103: M = 10
DIM SYM$(N),NMS(N),X(N,5),CMS (N, 2),NF(M)
    DIM FE(M,15),R(M),C(M),SV(N),DISCS(250)
    REM SHAPE INDICES
        DISC.I(1) = 1: DISC.I(2) = 125
    GOSUB MENU.CHOICES
    GOSUB FAMILY.NAMES
    GOSUB FAMILY.ELEMENT.NUMBERS
    GOSUB BOX.COORDINATES
    GOSUB FORMATS
RETURN
MENU.CHOICES:
    REM MAIN MENU
        DATA View a family of elements
        DATA View an element in detail
        DATA Sort the elements
    REM ELEMENT SELECTION
        DATA By its atomic number
        DATA By its symbol { letter(s) }
        DATA By its full name
        FOR I=1 TO 2
            FOR J=1 TO 3
                READ PICK$(I,J)
NEXT J,I
REM SORT BY
DATA Atomic Number, Atomic Weight
DATA Boiling Point, Melting Point, Density
DATA Year Discovered
FOR I=1 TO 6
READ SORT\$(I)
NEXT
RETURN
FAMILY.NAMES:
DATA Alkali \& Alkaline Earths
DATA First Transition Metals, The Triads
DATA Third Transition Metals
DATA Boron \& Carbon Families
DATA Nitrogen \& Oxygen Families
DATA Hydrogen \& the Halogens, The Inert Gases
DATA The Rare Earths, Actinide Metals
FOR I=1 TO M

```
```

    READ FMS(I)
    NEXT
    REM ROW & COLUMNS IN EACH FAMILY
    DATA 2,6,2,7,3,3,2,3,2,5,2,5,1,6,1,6,3,5,3,5
    FOR I=1 TO M
        READ R(I),C(I)
        NF(I) = R(I)*C(I)
    NEXT
    RETURN
FAMILY.ELEMENT.NUMBERS:
DATA 3,11,19,37,55,87,4,12,20,38,56,88
DATA 21,22,23,24,25,39,40,41,42,43,72,73,74,75
DATA 26,44,76,27,45,77,28,46,78
DATA 29,47,79,30,48,80
DATA 5,13,31,49,81,6,14,32,50,82
DATA 7,15,33,51,83,8,16,34,52,84
DATA 1,9,17,35,53,85
DATA 2,10,18,36,54,86
DATA 57,58,59,60,61,62,63,64,65,66,67,68,69
DATA 70,71
DATA 89,90,91,92,93,94,95,96,97,98,99,10\emptyset
DATA 101,102,103
FOR I=1 TO M
FOR J=1 TO NF(I)
READ FE(I,J)
NEXT J,I
RETURN
BOX.COORDINATES:
REM X
DATA 164,284,404,\varnothing,\varnothing,\varnothing,\varnothing
DATA 104,194,284,374,464,0,\varnothing
DATA 84,164,244,324,404,484,0
DATA 54,134,214,294,374,454,534
FOR J=1 TO 7: READ X.C(3,J): NEXT
FOR I=5 TO 7
FOR J=1 TO 7
READ X.C(I,J)
NEXT J,I
REM Y
DATA 73,0,0
DATA 46,91,0
DATA 37,73,109
FOR I=l TO 3
FOR J=1 TO 3
READ Y.C(I,J)
NEXT J,I
RETURN

```
```

FORMATS:
REM CARD
DATA "Boiling Point :","Melting Point :"
DATA "Density :"
FOR I=1 TO 3
READ ITEMS(I)
NEXT
F.CARD$(1) = "####.# Celsius"
        F.CARD$(2) = F.CARD$(1)
        F.CARDS(3) = "####.# Grams/Milliliter"
    REM SORT
        F.SORT$(1) = SPACES(4) + "\#\#\#"
F.SORT$(2) = SPACE$(2) + "\#\#\#.\#\#\#"
F.SORT$(3) = "#####.# C."
        F.SORT$(4) = "\#\#\#\#\#.\# C."
F.SORT$(5) = "#####.# g/ml"
    F.SORT$(6) = SPACE\$(3) + "\#\#\#\#"
RETURN

```

\section*{SETMENUS:}
```

    DATA 5, Color, Tan, Blue, Green, Gray, Random
    DATA l, Family, Alkali & Alkaline Earths
    DATA 1, Sort, By Atomic Number
    DATA 3, Stop, Go to BASIC
    DATA Go to Science Menu, Go to System
    FOR I=1 TO 4
        READ NUMBER
        FOR J=\emptyset TO NUMBER
        READ TITLE$
        IF J<>\varnothing THEN TITLES = SPACE$(3) + TITLE$
            STATUS = l
            IF I <> 4 AND J = 1 THEN STATUS = 2
        MENU I,J,STATUS,TITLE$
    NEXT J,I
    REM MENU 2
        FOR J=2 TO M
            MENU 2,J,1,SPACE$(3) + FM$(J)
        NEXT
    REM MENU 3
        FOR J=2 TO 6
            MENU 3,J,1,SPACE$(3) + "By " + SORT$(J)
    NEXT
    KOLOR% = 1: FAMILY = 1: SORT% = 1
    RETURN

```

\section*{SETCOLORS:}
```

    REM TAN, BLUE, GREEN, GRAY
    DATA .95,.7,.53,. 36,.57,1
    DATA .22,.76,.68,.72,.7,.86
    ```
```

        FOR I=1 TO 4
    FOR J=1 TO 3
        READ KOLOR(I,J)
    NEXT J,I
    REM TAN, GREEN, & RED
    PALETTE 4,.95,.7,.53
    PALETTE 5,.14,.43,0
    PALETTE 6,.93,.2,ø
    RETURN
SHAPES:
X=313: Y=80
LINE(X-12,Y-8)-(X+12,Y+8),4,BF
FOR I=1 TO 2
K% = 7-I
CIRCLE(X,Y),l2,K%: PAINT(X,Y),K%
GET(X-12,Y-8)-(X+12,Y+8),DISCS(DISC.I(I))
NEXT
RETURN
HEADING:
MENU ON
ON MENU GOSUB OPTIONS
CLS
LOCATE 9,24: PRINT "Chemistry Basics"
COLOR 3,\emptyset: LOCATE 14,3\emptyset: PRINT "then"
COLOR 1,\varnothing
LOCATE 13,24: PRINT "Please use menus,"
LOCATE 15,22: PRINT "Click mouse to start"
GOSUB CLICKIT
RETURN
OPTIONS:
ID = MENU( }): : ITEM = MENU(1
ON ID GOSUB MENU1,MENU2,MENU3,GOODBYE
ITEM = \varnothing
RETURN
MENU1 :
Kl = KOLOR(ITEM,1): K2 = KOLOR(ITEM, 2)
K3 = KOLOR(ITEM,3)
IF ITEM = 5 THEN Kl=RND: K2=RND: K3=RND
PALETTE 4,Kl,K2,K3
MENU l,KOLOR%,l: MENU 1,ITEM,2
KOLOR% = ITEM
RETURN
MENU2:
MENU 2,FAMILY,1: MENU 2,ITEM,2

```
```

    FAMILY = ITEM
    RETURN
MENU3:
MENU 3,SORT%,1: MENU 3,ITEM, 2
SORT% = ITEM
RETURN
GOODBYE :
WINDOW CLOSE 2: WINDOW 1: MENU RESET
SCREEN CLOSE l
IF ITEM = 2 THEN RUN "SCIENCE"
IF ITEM = 3 THEN SYSTEM
COLOR 1,\varnothing: CLS
PRINT "Bye-Bye"
STOP
RETURN

```
GREETING:
 CLS
 PRINT
 PRINT " This program enables you to review";
 PRINT " and analyze a wealth"
 PRINT " of intriguing information on the";
 PRINT " earth's 103 basic"
 PRINT " elements."
 LOCATE 18,27: PRINT "Click Mouse";
 GOSUB CLICKIT
RETURN
```

CLICKIT:
S\$ = ""
WHILE MOUSE(\varnothing) = Ø AND S\$ = ""
S\$ = INKEY\$
WEND
X = MOUSE(1)
Y = MOUSE(2)
WHILE MOUSE(Ø)<> Ø: WEND: REM RESET
RETURN
READ.DATA:
CLS
LOCATE 1\varnothing,26: PRINT "Reading data"
OPEN "I",\#1,"ELEMENTS"
FOR I=1 TO N
INPUT \#l,SYM$(I),NM$(I)
FOR J=1 TO 5
INPUT \#l,X(I,J)
NEXT J

```
```

        INPUT #1,CM$(I, 1),CM$(I, 2)
    NEXT I
    CLOSE
    RETURN
MAIN.MENU:
CLS
LOCATE 3,23: PRINT "Would you like to"
Z = l
GOSUB SHOW.CHOICES
GOSUB CHOOSE
ON PICK GOSUB VIEW.FAMILY,VIEW.ELEMENT,SORT
GOTO MAIN.MENU
RETURN
SHOW.CHOICES :
PICK = 1: RTN\$ = "OFF"
LINE(135,35)-(495,120), 2,B: PAINT(313,80),4,2
COLOR 2,4
FOR I=1 TO 3
IF I = PICK THEN INX = 2 ELSE INX = 1
CALL DRAW.CIRCLE(I,INX)
LOCATE I*2+5,2l: PRINT PICK$(Z,I)
    NEXT
    LINE(263,141)-(360,153),2,B: PAINT(313,145),3,2
    COLOR 2,3
    LOCATE 17: PRINT PTAB(282)"Return"
    COLOR 1,\varnothing
    LOCATE 19,11: PRINT "Click Mouse on Choice,";
    PRINT " then Click on Return"
RETURN
SUB DRAW.CIRCLE(R,INX) STATIC
    SHARED DISCS(),DISC.I()
    Y = 18*R+31
    PUT(162,Y),DISCS(DISC.I(INX)), PSET
END SUB
CHOOSE:
    GOSUB GURGLE
    GOSUB CLICKIT
    IF S$ = "" THEN GOSUB LOCATION
IF ASC(S$+" ") <> 13 AND RTN$ = "OFF" THEN
GOTO CHOOSE
END IF
RETURN
GURGLE:
FREQ = 300

```
```

FOR G=1 TO 5
FREQ = 5Ø\emptyset-FREQ
SOUND FREQ,1,5\emptyset
NEXT G
RETURN

```
LOCATION:
 IF \(\mathrm{X}>263\) AND \(\mathrm{X}<36 \emptyset\) AND \(\mathrm{Y}>141\) AND \(\mathrm{Y}<153\) THEN
 RTN\$ = "ON"
 ELSE
 \(\mathrm{P}=\mathrm{INT}((\mathrm{Y}-48) / 18)+1\)
 IF X>155 AND X<195 AND P>ø AND P<4 THEN
 CALL DRAW.CIRCLE(PICK,1)
 CALL DRAW.CIRCLE \((P, 2)\)
 PICK \(=P\)
 END IF
 END IF
RETURN
VIEW.FAMILY:
 MENU 2, \(0, \varnothing\)
 RTN\$ = "OFF"
 WHILE RTNS = "OFF"
 GOSUB DISPLAY
 GOSUB SELECT
 IF BOXS \(=\) "ON" THEN
 \(\mathrm{V}=\mathrm{FE}(\) FAMILY, ELEMENT)
 GOSUB SHOW.ELEMENT
 END IF
 WEND
 MENU 2, Ø, 1
RETURN
DISPLAY:
 COLOR \(1, \varnothing\)
 CLS
 S\$ = FMS (FAMILY): GOSUB PAINT.NAME
 \(\mathrm{RW}=\mathrm{R}(\) FAMILY \(): \mathrm{CL}=\mathrm{C}(\) FAMILY \(): \mathrm{E}=\varnothing\)
 FOR I=1 TO RW
 FOR J=1 TO CL
 \(E=E+1\)
 ELEMENT \(=\mathrm{FE}(\) FAMILY,E)
 GOSUB DRAW.BOX
 NEXT J,I
 \(\operatorname{LINE}(263,150)-(360,162), 2, B: \operatorname{PAINT}(313,155), 3,2\)
 COLOR 2,3
 LOCATE 18: PRINT PTAB(282)"Return"
 COLOR \(1, \varnothing\)
 LOCATE 2ø,22: PRINT "Click Mouse on Choice";
RETURN
```

PAINT.NAME:
L = LEN(S$)
    LINE(313-10*L/2-15,15)-(313+10*L/2+15,27),1,B
    PAINT(313,20),6,1
    COLOR 1,6: LOCATE 3: PRINT PTAB(313-1\varnothing*L/2)S$
RETURN
DRAW.BOX:
X = X.C(CL,J): Y = Y.C(RW,I)
LINE(X,Y)-(X+52,Y+22),6,B
PAINT(X+25,Y+11),4,6
R=(Y+17)/9: C = (X+26)/lø
COLOR 2,4
LOCATE R,C: PRINT SYMS(ELEMENT)
RETURN
SELECT:
BOX\$ = "OFF"
GOSUB GURGLE
GOSUB CLICKIT
IF ASC(S$+" ") = 13 THEN RTN$ = "ON"
IF S\$ = "" THEN
GOSUB FIND.BOX
IF BOX\$ = "OFF" AND RTN\$ = "OFF" THEN SELECT
END IF
RETURN
FIND.BOX:
IF X>263 AND X<36Ø AND Y> 150 AND Y<162 THEN
RTN\$ = "ON"
ELSE
FOR I=1 TO RW
FOR J=1 TO CL
Xl = X.C(CL,J): X2 = Xl + 53
Yl = Y.C(RW,I): Y2 = Yl + 23
IF X>Xl AND X<X2 AND Y>Y1 AND Y<Y2 THEN
BOX\$ = "ON"
ELEMENT = (I-1)*CL + J
J = CL: I = RW
END IF
NEXT J,I
END IF
RETURN
SHOW.ELEMENT:
CLS
GOSUB TOP.ITEMS
GOSUB ELEMENT.NAME
GOSUB CARD

```
```

GOSUB CARD.LINES
RETURN

```
```

TOP.ITEMS:

```
TOP.ITEMS:
 COLOR 1,\varnothing
 COLOR 1,\varnothing
 FOR I=1 TO 3
 FOR I=1 TO 3
 LOCATE I+1,6: PRINT ITEM$(I);CHR$(32);
 LOCATE I+1,6: PRINT ITEM$(I);CHR$(32);
 IF X(V,I+l) <> }9999\mathrm{ THEN
 IF X(V,I+l) <> }9999\mathrm{ THEN
 PRINT USING F.CARD$(I);X(V,I+l)
 PRINT USING F.CARD$(I);X(V,I+l)
 ELSE
 ELSE
 PRINT "Unknown"
 PRINT "Unknown"
 END IF
 END IF
 NEXT
 NEXT
RETURN
RETURN
ELEMENT .NAME:
 S$ = NM$(V): L = LEN(S$)
 LINE(385-10*L/ 2-15,51)-(385+1Ø*L/2+15,63),1,B
 PAINT(400,56),6,1
 COLOR 1,6: LOCATE 7: PRINT PTAB(385-10*L/2)S$
RETURN
CARD:
 COLOR 2
 PSET(213,47)
 LINE -STEP(-16\varnothing,\varnothing): LINE -STEP(\varnothing,93)
 LINE -STEP(52\varnothing,\varnothing): LINE -STEP(\varnothing, -74)
 LINE -STEP(-36\varnothing,\varnothing): LINE -STEP(\varnothing,-19)
 PAINT(313,10Ø),4,2
RETURN
CARD.LINES:
 LINE(73,51)-(193,63), 2, B
 PAINT(10Ø,56),5,2
 COLOR 1,5
 SS = " <" + MIDS(STRS(V), 2) + ">"
 LOCATE 7,11: PRINT SYM$(V);S$
 COLOR 2,4
 REM COMMENTS
 FOR I=1 TO 2
 LOCATE I*2+7,8: PRINT CM$(V,I)
 NEXT
 REM YEAR OF DISCOVERY
 S$ = "Year of discovery is unknown"
 IF X(V,5) <> 9999 THEN
 S$ = "Discovered in" + STR$(X(V,5))
 END IF
 LOCATE 13,8: PRINT S$
 REM WEIGHT
```

```
 IF X(V,l)<>9999 AND V<>6 THEN GOSUB WEIGHT
 REM CONTINUE
 COLOR 1,\varnothing
 LOCATE 20,26: PRINT "Click Mouse";
 GOSUB CLICKIT
RETURN
WEIGHT:
 K = (X(V,1)-12)*1ø\varnothing/12
 K = INT(K*10+.5)/1\varnothing
 S$ = "1 " + SYMS(V) + " atom weighs"
 S$ = S$ + STR$(ABS(K)) + "% "
 AS = "less": IF K > Ø THEN AS = "more"
 S$ = S$ + A$ + " than 1 carbon atom"
 LOCATE 15,8: PRINT S$
RETURN
VIEW.ELEMENT:
 GOSUB METHOD.OF.SELECTION
 IF V > Ø AND V <= N THEN
 GOSUB SHOW.ELEMENT
 ELSE
 GOSUB GOOF
 GOTO VIEW.ELEMENT
 END IF
RETURN
METHOD.OF.SELECTION:
 CLS
 V = Ø
 LOCATE 3,17
 PRINT "Method of selecting an element"
 Z = 2
 GOSUB SHOW.CHOICES
 GOSUB CHOOSE
 GOSUB ENTER.ELEMENT
RETURN
ENTER.ELEMENT:
 LINE(263,141)-(360,153),0,BF
 LOCATE 19,11: PRINT SPACE$(43)
 GOSUB GURGLE
 LOCATE 16,15: INPUT "Element = ";E$
 ES = UCASE$(E$)
 REM FIND NUMBER
 V = VAL(E$)
 ON PICK - l GOSUB SYMBOL,FULL.NAME
RETURN
```


## SYMBOL:

```
 FOR I=l TO N
 IF E$ = UCASE$(SYM$(I)) THEN V = I: I = N
 NEXT
RETURN
```


## FULL.NAME:

FOR I=1 TO N
IF ES = UCASES(NMS(I)) THEN V = I: I = N NEXT
RETURN

## GOOF :

SOUND 4øø,3: SOUND 3øø,3: SOUND 2øø,3
LINE (136,151)-(195,161),6,BF
COLOR 1,6: LOCATE 18,15: PRINT "Sorry"
COLOR 1, $\varnothing$
LOCATE 18,22: PRINT "There's no such element l"
LOCATE 2ø,26: PRINT "Press any key";
GOSUB CLICKIT
RETURN

## SORT:

MENU 3, $\varnothing, \varnothing$
GOSUB REARRANGE
REM DISPLAY
F \$ $=\mathrm{F} \cdot \mathrm{SORT}$ (SORT\%)
FOR I=1 TO N STEP 10
GOSUB TITLE GOSUB BODY
NEXT I
MENU 3, 0,1
RETURN

## REARRANGE:

CLS
LOCATE 10,29: PRINT "Sorting"
$Q=$ SORT\% - 1
FOR I=1 TO N
$X(I, \varnothing)=I$
$S V(I)=X(I, Q)$
NEXT
SWITCH\$ = "ON"
WHILE SWITCH\$ = "ON"
SWITCH\$ = "OFF"
FOR I = 1 TO N-1
IF $\operatorname{SV}(I)>S V(I+1)$ THEN
SWAP SV(I), SV(I+1)
SWAP $X(I, \varnothing), X(I+1, \varnothing)$

```
 SWITCH$ = "ON"
 END IF
 NEXT
 WEND
RETURN
TITLE:
 CLS
 S$ = "Elements by " + SORT$(Q+1)
 GOSUB PAINT.NAME
 LINE(60,38)-(570,157),2,B: PAINT(313,1\varnothing\varnothing),4,2
 COLOR 2,4
 LOCATE 6,14: PRINT "Symbol"
 LOCATE 6,28: PRINT "Name"
 L = LEN(SORT$(Q+1))
 LOCATE 6,52-L: PRINT SORT$(Q+1)
RETURN
BODY:
 ROW = 8
 FOR J = I TO I+9
 IF J <= N THEN
 E = X(J, \varnothing)
 LOCATE ROW,16: PRINT SYMS(E)
 LOCATE ROW, 27: PRINT NM$(E)
 X = SV(J)
 IF X = 9999 THEN
 LOCATE ROW,43: PRINT "Unknown"
 ELSE
 LOCATE ROW,40: PRINT USING F$;X
 END IF
 ROW = ROW + l
 END IF
NEXT J
COLOR 1,\varnothing
LOCATE 20,26: PRINT "Click Mouse";
GOSUB CLICKIT
RETURN
```


## Weather Forecasting

It's easy to look at a threatening sky and predict that it will rain. But it's not always that easy to tell what the weather will be tomorrow or even later that same day. The National Weather Service has been trying for years, and still, it's impossible to predict with 100 percent accuracy what the weather will be.

You don't have the facilities and huge computers of the National Weather Service, but you do have a computer that you can use to help forecast the weather.

The underlying principle of all weather-prediction computer models, which use hundreds of observations and scores of intricate equations, is simple. If we know what the current weather is and can correlate it with some past experience, then we can use our knowledge of what was to foretell what may be.

This program uses the same idea, but on a much smaller scale. The National Weather Service uses a network of reporting stations and satellites to gather its information. Since you don't have access to these, the best device available to you is a barometer. Barometric pressure along with the wind direction will allow you to make a fairly accurate local forecast.

You can buy an inexpensive barometer at most hardware stores, and a simple wind vane is easy to make. If you don't want to go to this trouble and expense, you can get the same information from the weather report on TV or from your local NOAA Weather Radio Station.

## Making Forecasts

To forecast the weather, you'll need to know the current wind direction, the barometric pressure, and whether the barometer is rising or falling. Enter the wind direction by clicking the mouse on one of the points of the weather vane that the Amiga draws on the screen. Then enter barometric pressure using the keyboard, and enter barometric trend with the mouse. For winds out of the south, with barometric pressure 29.7 inches and falling fast, you'll receive this forecast:
Severe storm warning: Windy, with rain in summer and snow in winter.

## Local Conditions

The program will work fine as is. But you may want to fine-tune it to reflect weather conditions in your area. This information does not change the operation of the program, but it will change the forecasts.

First, look at the DATA statements near the end of the program under the title MONTHLY WEATHER NORMS. The first three numbers for each month are temperatures in degrees Fahrenheit: the normal high, low, and average for the month. The last two numbers are normal monthly rainfall and snowfall in inches.

Contact a local TV station, newspaper, or National Weather Service reporting station to get the values for your area. Or write NOAA, National Environmental Satellite, Data, and Information Service, National Climatic Data Center, Federal Building, Asheville, NC 28801, and request a copy of the "Local Climatological Data Annual Summary" for your area. Almanacs sometimes include this information as well. The Weather Almanac, edited by James A. Ruffner and Frank E. Blair (Avon Books), is available in most libraries.

Changes in barometric pressure and wind direction can imply different forecasts for different parts of the country. See the following technical note if you want to fine-tune the program even more to fit your area.

## Technical Note

The subroutine PREDICT does the forecasting, with three variables used:
B = Barometric pressure
$\mathrm{W}=$ Wind direction
$\mathrm{T}=$ Barometric trend
Barometric trend, in turn, takes on any one of five values:
1 = Steady
2 = Rising slowly
3 = Rising rapidly
4 = Falling slowly
5 = Falling rapidly
The forecasts that appear on the screen are in the DATA statements at the very end of the program. The figure preceding each forecast ( 1 or 2 ) represents the number of lines on the screen that the prediction will use. The array variables F.PART1\$(i) and F.PART2\$(i) store the forecasts.

There are 18 predictions in all, numbered 0 to 17 . The variable $P$ in the PREDICT subroutine matches the corresponding prediction in the group of DATA statements. You'll have to do some research at the local library or contact the National Weather Service if you want to modify these forecasts.

```
Program 6-2. Weather Forecasting
Save using the filename WEATHER
REM WEATHER FORECASTER
 GOSUB INITIALIZE
 GOSUB MAIN.MENU
END
INITIALIZE:
 GOSUB SETSCREEN
 GOSUB KEYVALUES
 GOSUB SETMENUS
 GOSUB SETCOLORS
 GOSUB READ.DATA
 GOSUB SHAPES
 GOSUB HEADING
 GOSUB GREETING
RETURN
SETSCREEN:
 SCREEN 1,640,2ø0,3,2
 WINDOW 2,"Weather Forecaster",,0,1
RETURN
KEYVALUES:
 RANDOMIZE TIMER
 DEFINT I-Z: DEFSNG B,K,M
 REM NUMBER OF FORECASTS
 DATA 17
 READ N
 DIM MONTH$(12),MW(12,5)
 DIM F.PARTl$(N),F.PART2$(N)
 REM SHAPE INDICES
 DIM DISCS(250)
 DISC.I(1) = 1: DISC.I(2) = 125
 REM MENU CHOICES
 DATA Forecast the weather
 DATA Display monthly weather norms
 FOR I=1 TO 2
 READ PICK$(I)
 NEXT
 PICK = 1
 REM VANE COORDINATES
 DATA 386,76,361,51,301,40,241,51,216,76
 DATA 241,1ø1,301,112,361,1ø1
 FOR I=1 TO 8
 READ X(I),Y(I)
 NEXT
 REM DIR. SYMBOLS & COORDINATES (ROW & PTAB)
```

```
 DATA E,10,393, N,6,308, W,10,223, S,14,308
 FOR I=1 TO }7\mathrm{ STEP 2
 READ W$(I),ROW(I),PT(I)
 NEXT
 Fl$ = "= ##.# inches"
 F2$ = "= ### degrees F."
 F3$ = "= ###.# inches"
RETURN
```


## SETMENUS:

```
 DATA 5, Color, Tan, Blue, Green, Gray
 DATA Random
 DATA 3, Stop, Go to BASIC
 DATA Go to Science Menu, Go to System
 FOR I=1 TO 2
 READ NUMBER
 FOR J=\varnothing TO NUMBER
 READ TITLE$
 IF J<>\varnothing THEN TITLES = SPACE$(3) + TITLE$
 STATUS = l
 IF I=1 AND J=1 THEN STATUS = 2
 MENU I,J,STATUS,TITLE$
 NEXT J,I
 MENU 3,\varnothing,\varnothing,""
 MENU 4,\varnothing,\varnothing,""
 KOLOR% = 1
RETURN
SETCOLORS:
 REM TAN, BLUE, GREEN, GRAY
 DATA .95,.7,.53,. .36,.57,1
 DATA .22,.76,.68,.72,.7,.86
 FOR I=1 TO 4
 FOR J=1 TO 3
 READ KOLOR(I,J)
 NEXT J,I
 REM TAN, GREEN, & RED
 PALETTE 4,.95,.7,.53
 PALETTE 5,.14,.43,0
 PALETTE 6,.93,.2,ø
RETURN
READ.DATA:
 REM MONTHLY WEATHER NORMS
 FOR I=1 TO l2
 READ MONTHS(I)
 FOR J=1 TO 5
 READ MW(I,J)
 NEXT J,I
```


## CHAPTER 6

```
 REM WIND DIRECTION
 FOR I=l TO 8
 READ D$(I)
 NEXT
REM BAROMETER TREND
 FOR I=1 TO 5
 READ BT$(I)
 NEXT
REM FORECASTS
 FOR I=Ø TO N
 READ V, F.PARTl$(I)
 IF V = 2 THEN READ F.PART2$(I)
 NEXT
RETURN
SHAPES:
 X=313: Y=8Ø
 FOR I=1 TO 2
 K% = I*5-4
 CIRCLE(X,Y),12,K%: PAINT(X,Y),K%
 GET(X-12,Y-8)-(X+12,Y+8),DISCS(DISC.I(I))
 NEXT
RETURN
HEADING:
 MENU ON
 ON MENU GOSUB OPTIONS
 CLS
 LOCATE 9,23: PRINT "Weather Forecaster"
 COLOR 3,\varnothing: LOCATE 14,30: PRINT "then"
 COLOR 1,\emptyset
 LOCATE 13,24: PRINT "Please use menus,"
 LOCATE 15,22: PRINT "Click mouse to start"
 GOSUB CLICKIT
RETURN
OPTIONS:
 ID = MENU(\varnothing): ITEM = MENU(1)
 ON ID GOSUB MENUl,GOODBYE
 ITEM = Ø
RETURN
MENU1 :
 K1 = KOLOR(ITEM,1): K2 = KOLOR(ITEM, 2)
 K3 = KOLOR(ITEM, 3)
 IF ITEM=5 THEN Kl=RND: K2=RND: K3=RND
 PALETTE 4,K1,K2,K3
 MENU 1,KOLOR%,1: MENU 1,ITEM,2
 KOLOR% = ITEM
RETURN
```

```
GOODBYE:
 WINDOW CLOSE 2: WINDOW 1: MENU RESET
 SCREEN CLOSE l
 IF ITEM = 2 THEN RUN "SCIENCE"
 IF ITEM = 3 THEN SYSTEM
 COLOR 1,D: CLS
 PRINT "Bye-Bye"
 STOP
RETURN
GREETING :
 CLS
 PRINT
 PRINT " This program helps you to make";
 PRINT " accurate, short-range"
 PRINT " weather forecasts."
 PRINT
 PRINT " You'll need to know the current";
 PRINT " wind direction,"
 PRINT " barometric pressure, and whether the";
 PRINT " barometer is rising"
 PRINT " or falling."
 PRINT
 PRINT " I'll do the rest."
 LOCATE 18,27: PRINT "Click Mouse";
 GOSUB CLICKIT
RETURN
CLICKIT:
 S$ = ""
 WHILE MOUSE(\varnothing) = Ø AND S$ = ""
 S$ = INKEY$
 WEND
 X = MOUSE(1)
 Y = MOUSE(2)
 WHILE MOUSE(\varnothing)<> Ø: WEND: REM RESET
RETURN
MAIN . MENU :
 CLS
 RTNS = "OFF"
 LOCATE 5,23: PRINT "Would you like to"
 FOR I=1 TO 2
 IF I = PICK THEN INX = 2 ELSE INX = 1
 CALL DRAW.CIRCLE(I,INX)
 LOCATE I*2+5,21: PRINT PICK$(I)
 NEXT
 LINE (263, 115)-(360, 125),5,BF
 COLOR 1,5
```

```
 LOCATE 14,29: PRINT "Return"
 COLOR 1,ø
 LOCATE 18,11: PRINT "Click Mouse on Choice,";
 PRINT " then Click on Return"
 GOSUB CHOOSE
 GOTO MAIN.MENU
RETURN
SUB DRAW.CIRCLE(R,INX) STATIC
 SHARED DISCS(),DISC.I()
 Y = 18*R+31
 PUT(162,Y),DISCS(DISC.I(INX)),PSET
END SUB
```


## CHOOSE:

```
 GOSUB GURGLE
 GOSUB CLICKIT
 IF S$ = "" THEN GOSUB LOCATION
 IF ASC(S$+" ") <> 13 AND RTN$ = "OFF" THEN
 GOTO CHOOSE
 END IF
 ON PICK GOSUB FORECAST,MONTHLY.NORMS
RETURN
GURGLE:
 FREQ = 30\emptyset
 FOR G=1 TO 5
 FREQ = 5ØØ-FREQ
 SOUND FREQ,1,50
 NEXT G
RETURN
LOCATION:
 IF X>263 AND X<360 AND Y>114 AND Y<125 THEN
 RTN$ = "ON"
 ELSE
 P = INT((Y-48)/18) + l
 IF X>155 AND X<195 AND P>\emptyset AND P<3 THEN
 CALL DRAW.CIRCLE(PICK,1)
 CALL DRAW.CIRCLE(P,2)
 PICK = P
 END IF
 END IF
RETURN
FORECAST:
 GOSUB DRAW.VANE
 GOSUB GET.WIND
 GOSUB BAROMETRIC.PRESSURE
```

```
 GOSUB BAROMETRIC.TREND
 GOSUB PREDICT
 GOSUB SHOW.FORECAST
RETURN
DRAW.VANE:
 CLS
 WIND = 3
 LOCATE 3,25: PRINT "WIND DIRECTION"
 XØ=313: YØ=84
 CIRCLE(X\varnothing,YØ),50,4: PAINT(XØ,YØ),4
 LINE(X\varnothing-1,Y\varnothing-26)-(X\varnothing+1,Y\emptyset+26),2,BF
 LINE(X\varnothing-6\emptyset,Y\varnothing)-(X\varnothing+6\emptyset,Y\varnothing), 2
 REM SATELLITES
 FOR I=1 TO 8
 IF I = WIND THEN INX = 2 ELSE INX = l
 CALL DRAW.SAT(I,INX)
 NEXT
 REM RETURN BAR
 LINE(263,133)-(360,i43),5,BF
 COLOR 1,5
 LOCATE 16,29: PRINT "Return"
 RTN$ = "OFF"
RETURN
SUB DRAW.SAT(V,INX) STATIC
 SHARED X(),Y(),DISCS(),DISC.I()
 SHARED ROW(),PT(),W$()
 PUT(X(V),Y(V)),DISCS(DISC.I(INX)),PSET
 COLOR 11-5*INX,5*INX-4
 IF V=1 OR V=3 OR V=5 OR V=7 THEN
 LOCATE ROW(V): PRINT PTAB(PT(V));W$(V)
 END IF
END SUB
GET.WIND:
 COLOR 1,\varnothing
 LOCATE 19,18:
 PRINT "Click mouse on the direction"
 PRINT TAB(2Ø)"the wind is blowing from";
 WHILE RTN$ = "OFF"
 GOSUB GURGLE
 GOSUB CLICKIT
 IF S$ = "" THEN GOSUB COMPUTE
 IF ASC(S$+" ") = 13 THEN RTN$ = "ON"
 WEND
RETURN
```

```
COMPUTE:
 IF X>262 AND X<361 AND Y>132 AND Y<144 THEN
 RTNS = "ON"
 ELSE
 FOR I=1 TO 8
 XD = X - X(I)
 YD = Y - Y(I)
 IF XD>\emptyset AND XD<26 AND YD>\emptyset AND YD<18 THEN
 WIND.NEW = I: I = 8
 GOSUB CHANGE.DIR
 END IF
 NEXT
 END IF
RETURN
```

CHANGE.DIR:
REM ERASE OLD
CALL DRAW.SAT(WIND,1)
REM DRAW NEW
WIND = WIND.NEW
CALL DRAW.SAT(WIND,2)
RETURN
BAROMETRIC.PRESSURE:
COLOR 1, $\varnothing$
CLS
LOCATE 2,23: PRINT "BAROMETRIC PRESSURE"
$\mathrm{BP}=\varnothing$
LOCATE 4,3
PRINT "What is the barometric pressure ? "
WHILE BP <= Ø OR BP > 5
GOSUB GURGLE
LOCATE 4,37: PRINT SPACE\$(15)
LOCATE 4,37: INPUT "", S\$
BP $=$ VAL(S\$)
WEND
RETURN
BAROMETRIC.TREND:
TREND = 1: RTN\$ = "OFF"
LOCATE 6,24: PRINT "Barometric Trend:"
LINE ( 213,58 )-(413,145),4, BF
COLOR 2,4
FOR I=1 TO 5
IF I $=$ TREND THEN K\% $=6$ ELSE $\mathrm{K} \%=4$
CALL HIGHLIGHT(I,K\%)
NEXT
LINE ( 263,151 )-(360,161),5,BF
COLOR 1,5

```
LOCATE 18,29: PRINT "Return"
COLOR 1,\varnothing
LOCATE 2\emptyset,22: PRINT "Click Mouse on Choice";
GOSUB SELECT
RETURN
SUB HIGHLIGHT(V,K%) STATIC
 K.F% = 4-. 5* K%
 COLOR K.F%,K%
 SHARED BT$()
 ROW = V*2 + 6
 L = LEN(BT$(V))
 X\varnothing = 245: Xl = L*10 + 255
 Y\emptyset = 9*ROW-11: Yl = Y
 LINE(X\varnothing,Y\varnothing)-(XI,Y1) ,K%,BF
 LOCATE ROW,26: PRINT BT$(V)
END SUB
SELECT:
 GOSUB GURGLE
 GOSUB CLICKIT
 IF S$ = "" THEN GOSUB POSITION
 IF ASC(S$+" ") <> 13 AND RTN$="OFF" THEN SELECT
RETURN
POSITION:
 IF X>263 AND X<36\emptyset AND Y> 150 AND Y<162 THEN
 RTNS = "ON"
 ELSE
 HORZ = INT(Y/9) + 1
 T = (HORZ-6)/2
 IF X>245 AND X<395 AND T>\emptyset AND T<6 THEN
 CALL HIGHLIGHT(TREND,4)
 CALL HIGHLIGHT(T,6)
 TREND = T
 END IF
 END IF
RETURN
PREDICT:
 B = BP: W = WIND: T = TREND: P = \varnothing
 IF B >= 30.2 THEN
 IF T=4 AND W>=4 AND W<=6 THEN P = 1
 IF T=1 AND W>=4 AND W<=6 THEN P = 2
 END IF
 IF B >= 30.1 AND B < 30.2 THEN
 IF T=1 AND W>=4 AND W<=6 THEN P = 3
 IF T=4 AND W>=4 AND W<=6 THEN P = 4
 END IF
```

```
IF B >= 30.1 THEN
 IF T=3 AND W>=4 AND W<=6 THEN P = 5
 IF T=5 AND W>=4 AND W<=6 THEN P = 6
 IF T=4 AND W=7 THEN P = 7
 IF T=5 AND W=7 THEN P = 8
 IF T=4 AND (W=2 OR W=1 OR W=8) THEN P = 9
 IF T=5 AND W=8 THEN P = 1\varnothing
 IF T=5 AND (W=1 OR W=2) THEN P = ll
END IF
IF B <= 29.8 THEN
 IF T=5 AND W>=1 AND W<=3 THEN P = 12
 IF T=5 AND (}\textrm{W}=8\mathrm{ OR W=7) THEN P = 13
 IF T=3 THEN P = 14
END IF
IF B < 30.1 THEN
 IF T=4 AND (W=2 OR W=1 OR W=8) THEN P = 15
END IF
IF B > 29.8 AND B < 30.1 THEN
 IF T=5 AND (W=2 OR W=1 OR W=8) THEN P = 16
END IF
IF B <= 30.1 THEN
 IF T=2 AND (W=7 OR W=6) THEN P = 17
END IF
 FT.l$ = F.PARTl$(P): FT. 2$ = F.PART2$(P)
RETURN
SHOW.FORECAST:
 COLOR 1,ø
 CLS
 LINE(219,15)-(400,27),1,B: PAINT(313,20),5,1
 COLOR 1,5
 LOCATE 3,24: PRINT "Weather Forecast"
 LINE (35,35)-(595,135), 2, B: PAINT(313,80),4,2
 COLOR 2,4
 LOCATE 6,10: PRINT "Barometric Pressure";
 PRINT TAB(32) USING Fl$;B
 LOCATE 8,10: PRINT "Barometric Trend";
 PRINT TAB(32)"= ";BT$(T)
 LOCATE 10,10: PRINT "Wind Direction";
 PRINT TAB(32)"= From the ";D$(W)
 LINE(85,1Ø6)-(175,116),6,BF
 COLOR 1,6
 LOCATE 13,10: PRINT "FORECAST"
 COLOR 2,4: LOCATE 13,20: PRINT FT.l$
 LOCATE 14,20: PRINT FT.2$
 COLOR 1,\varnothing
 LOCATE 2\emptyset,26: PRINT "Click Mouse";
 GOSUB CLICKIT
RETURN
```

```
MONTHLY.NORMS:
 GOSUB ENTER.MONTH
 GOSUB DISPLAY.NORMS
RETURN
ENTER.MONTH:
 COLOR 1,\varnothing
 CLS
 MN% = l: RTN$ = "OFF"
 LOCATE 2,22: PRINT "Monthly Weather Norms"
 LINE (163,21)-(463,129),4,BF
 COLOR 2,4
 FOR I=1 TO l2
 IF I = MN% THEN K% = 6 ELSE K% = 4
 CALL MONTH(I,K%)
 NEXT
 LINE(263,151)-(360,161),5,BF
 COLOR l,5
 LOCATE 18,29: PRINT "Return"
 COLOR 1,\varnothing
 LOCATE 2ø,22: PRINT "Click Mouse on Choice";
 GOSUB GET.MONTH
RETURN
SUB MONTH(V,K%) STATIC
 K.F% = 4-.5*K%
 COLOR K.F%,K%
 SHARED MONTH$()
 IF V < 7 THEN HALF = 1 ELSE HALF = 2
 IF HALF = l THEN ROW = V*2 + 2: COL = 2l
 IF HALF = 2 THEN ROW = (V-6)*2 + 2: COL = 36
 L = LEN(MONTH$(V))
 XØ = COL*10-15: Xl = XØ + L*10 + 1\varnothing
 Yø = 9*ROW-ll: Yl = Yø+l\emptyset
 LINE(X\varnothing,Y\varnothing)-(XI,Y1),K%,BF
 LOCATE ROW,COL: PRINT MONTH$(V)
END SUB
GET.MONTH:
 GOSUB GURGLE
 GOSUB CLICKIT
 IF S$ = "" THEN GOSUB NEW.MONTH
 IF ASC(S$+" ") <> 13 AND RTN$="OFF" THEN
 GOTO GET.MONTH
 END IF
RETURN
NEW.MONTH:
 HALF = Ø
```

```
 IF X>263 AND X<36\emptyset AND Y> 15\emptyset AND Y<162 THEN
 RTN$ = "ON"
 ELSE
 IF X>194 AND X<306 THEN HALF = 1
 IF X>344 AND X<456 THEN HALF = 2
 ROW = INT((Y-21)/18) + 1
 IF HALF <> \emptyset AND ROW > Ø AND ROW < 7 THEN
 M% = ROW: IF HALF = 2 THEN M% = ROW + 6
 CALL MONTH(MN%,4)
 CALL MONTH(M%,6)
 MN% = M%
 END IF
 END IF
RETURN
DISPLAY.NORMS:
 COLOR 1,ø
 CLS
 N = MN%
 S$ = MONTH$(N): L = LEN(S$)
 LINE(313-1\varnothing*L/2-15,15)-(313+10*L/2+15,27),1,B
 PAINT(313,20),6,1
 COLOR 1,6: LOCATE 3: PRINT PTAB(313-10*L/2)S$
 LINE(135,35)-(495,150),2,B: PAINT(313,80),4,2
 LINE (144,43)-(288,53),5,BF
 LINE(144,106)-(288,116),5,BF
 COLOR 1,5
 LOCATE 6,16: PRINT "Temperature"
 LOCATE 13,16: PRINT "Precipitation"
 COLOR 2,4
 LOCATE 8,17: PRINT "Normal high";
 PRINT TAB(33) USING F2$;MW(N,1)
 LOCATE 9,17: PRINT "Normal average";
 PRINT TAB(33) USING F2$;MW(N,3)
 LOCATE lØ,l7: PRINT "Normal low";
 PRINT TAB(33) USING F2$;MW(N,2)
 LOCATE 15,17: PRINT "Normal rainfall";
 PRINT TAB(33) USING F3$;MW(N,4)
 LOCATE 16,17: PRINT "Normal snowfall";
 PRINT TAB(33) USING F3$;MW(N,5)
 COLOR 1,\varnothing
 LOCATE 2ø,26: PRINT "Click Mouse";
 GOSUB CLICKIT
RETURN
REM MONTHLY WEATHER NORMS
REM Normal High, Low, \& Average; Rain \& Snow
 DATA January ,38,23,30,2.8,9.1
 DATA February ,41,24,32,2.7,9.6
```

DATA March	$, 51,31,41,3.2,6.5$
DATA April	$, 64,42,53,3.0, \varnothing .3$
DATA May	$, 75,52,63,3.6, \varnothing . \varnothing$
DATA June	$, 83,61,72,3.6, \varnothing . \varnothing$
DATA July	$, 87,65,76,3.6, \varnothing . \varnothing$
DATA August	$, 85,63,74,3.8, \varnothing . \varnothing$
DATA September $, 78,56,67,3.2, \varnothing . \varnothing$	
DATA October $, 67,45,56,2.8, \varnothing .1$	
DATA November $, 53,35,44,2.7,2.1$	
DATA December $, 40,25,33,2.9,7.7$	

REM WIND DIRECTIONS
DATA East, Northeast, North, Northwest
DATA West, Southwest, South, Southeast
REM BAROMETER TREND
DATA Steady, Rising slowly, Rising fast DATA Falling slowly, Falling fast

REM FORECASTS
REM Number $=$ Lines for forecast
DATA 2, "Fair, little change in temperature" DATA for the next couple of days
DATA l, Fair and warmer for the next 48 hours
DATA 2, Continued fair with little or no change
DATA in temperature
DATA 2, "Fair, little change in temperature" DATA for the next day or two
DATA 1, "Warmer, rain within 24 to 36 hours"
DATA 2, "Fair today, rainy and warmer within" DATA 48 hours
DATA 1, "Warmer, rain within 18 to 24 hours"
DATA 1, Rain within 24 hours
DATA 1, "Windy, rain within 12 to 24 hours"
DATA 1, Rain in 12 to 18 hours
DATA 1, "Windy, rain within 12 hours"
DATA 2, "In summer, rain within 12 to 24 hours."
DATA "In winter, rain or snow, and windy"
DATA 2, "Heavy rain in summer. In winter," DATA heavy snow followed by a cold wave.
DATA 2, "Severe storm warning: Windy, with"
DATA rain in summer and snow in winter
DATA 1, Clearing and colder
DATA 1, Rain for the next day or two
DATA 2, Rain with high winds; clearing and DATA cooler within 24 hours
DATA 2, Clearing within a few hours; fair for
DATA the next several days

## Simultaneous Equation Solver

Remember those math problems where you have to solve $N$ equations for $N$ unknowns? Well, worry no more, this Amiga program does the solving for you.

While it's important to be able to solve simultaneous equations manually, it's much easier to use this program once you understand the principles involved. Here are two simultaneous equations:

```
5*(X1) + 2* (X2) = 16
3*(X1)+4*(X2) = 18
```

After telling the Amiga that you have two equations, you enter the column of constants ( 16 and 18). Then you key in the coefficients on the variable X1 ( 5 and 3 ) followed by those on X2 ( 2 and 4 ).

The Amiga computes the solution: $\mathrm{X} 1=2$, and $\mathrm{X} 2=3$. It's quick and easy with your Amiga, and you're free to interpret the meaning of the numbers and go to the next problem.

Program 6-3. Simultaneous Equation Solver
Save using the filename SES

```
REM SIMULTANEOUS EQUATION SOLVER
 CLEAR ,35ØØØ&
 GOSUB INITIALIZE
 GOSUB ENTER.NO.EQUATIONS
 GOSUB ENTER.DATA
CONTINUE:
 GOSUB EDIT.DATA
 GOSUB COMPUTE
 IF GOOF = Ø THEN GOSUB SHOW.RESULTS
 IF BUTTON = 1 THEN CONTINUE
 GOSUB GOODBYE
END
INITIALIZE:
 GOSUB SETSCREEN
 GOSUB KEYVALUES
 GOSUB SETMENUS
 GOSUB SETCOLORS
 GOSUB SHAPES
 GOSUB HEADING
 GOSUB INSTRUCTIONS
RETURN
```

```
SETSCREEN:
 SCREEN 1,640,200,3,2
 WINDOW 2,"Simultaneous Equation Solver",,0,l
RETURN
KEYVALUES:
 RANDOMIZE TIMER
 DEFINT A-Z: DEFDBL C,Q,R,S
 REM make X DBL for VERY big or small raw data
 DEFSNG K,X
 REM MAXIMUM NUMBER OF EQUATIONS
 DATA }2
 READ NX
 DIM X(NX,NX),XT(NX,NX),Q(NX,NX),R(NX,NX)
 DIM C(NX),S(NX),V$(NX),CIRCLE.SHAPE%(15\emptyset)
 V$(\varnothing) = "Y"
 FOR I=1 TO NX
 V$(I) = "X" + MID$(STR$(I),2)
 NEXT
 REM BUTTON VALUES
 XB(1) = 292: XB(2) = 334: YB = 165
 LT$(1) = "Y": LT$(2) = "N"
 REM SHAPE INDICES
 INDEX(1) = l: INDEX(2) = 75
 REM FORMATS FOR OUTPUT
 FOR I=Ø TO 6
 F$(I) = STRING$(16-I,"#")
 IF I <> Ø THEN
 FS(I) = F$(I) + "." + STRING$(I,"#")
 END IF
 NEXT
RETURN
SETMENUS:
 DATA 5, Color, Tan, Blue, Green, Gray
 DATA Random
 DATA 7, Decimals, Ø Places, l Place, 2 Places
 DATA 3 Places, 4 Places, 5 Places, 6 Places
 DATA 3, Stop, Go to BASIC
 DATA Go to Science Menu, Go to System
 FOR I=1 TO 3
 READ NUMBER
 FOR J=Ø TO NUMBER
 READ TITLE$
 IF J<>\emptyset THEN TITLE$ = SPACE$(3) + TITLE$
 STATUS = 1
 IF I = l AND J = l THEN STATUS = 2
 IF I = 2 AND J = 4 THEN STATUS = 2
 MENU I,J,STATUS,TITLES
```

NEXT J,I
MENU 4, $\varnothing, \varnothing, " "$
KOLOR\% = $1: D P=3$
$F \$=F \$(D P)$
RETURN
SETCOLORS:
REM TAN, BLUE, GREEN, GRAY DATA .95,.7,.53,. $36, .57,1$ DATA . 22,.76,.68, .72,.7,. 86
FOR I=1 TO 4
FOR J=1 TO 3
READ KOLOR (I,J)
NEXT J,I
REM TAN, GREEN, \& RED
PALETTE 4,.95,.7,.53
PALETTE 5,.14,.43, 0
PALETTE 6,.93,.2, $\varnothing$
RETURN
SHAPES:
$\mathrm{X}=313$ : $\mathrm{Y}=8 \emptyset$
$\mathrm{X} 1=\mathrm{X}-7: \mathrm{X} 2=\mathrm{X}+7: \mathrm{Y} 1=\mathrm{Y}-3: \mathrm{Y} 2=\mathrm{Y}+3$
LINE (X1, Y1) -(X2,Y2), 4, BF
FOR I=1 TO 2
$K=11-5 * I$
$\operatorname{CIRCLE}(X, Y), 7,2: \operatorname{PAINT}(X, Y), K, 2$
GET(X1,Y1)-(X2,Y2), CIRCLE.SHAPE\% (INDEX(I))
NEXT
RETURN
HEADING:
MENU ON
ON MENU GOSUB OPTIONS
CLS
COLOR 3, 0 : LOCATE 18,30:PRINT "then"
COLOR $1, \varnothing$
LOCATE 10,18
PRINT "Simultaneous Equation Solver"
LOCATE 17,24:PRINT "Please use menus,"
LOCATE 19,21:PRINT "Click mouse to start"
GOSUB CLICKIT
RETURN
OPTIONS:
ID $=\operatorname{MENU}(\varnothing): \operatorname{ITEM}=\operatorname{MENU}(1)$
ON ID GOSUB MENU1,MENU2,GOODBYE
ITEM $=\varnothing$
RETURN

```
MENU1 :
 Kl = KOLOR(ITEM,1): K2 = KOLOR(ITEM, 2)
 K3 = KOLOR(ITEM,3)
 IF ITEM=5 THEN Kl=RND: K2=RND: K3=RND
 PALETTE 4,K1,K2,K3
 MENU 1,KOLOR%,1: MENU 1,ITEM,2
 KOLOR% = ITEM
RETURN
MENU2 :
 MENU 2,DP+1,1: MENU 2,ITEM,2
 DP = ITEM-1
 F$ = F$(DP)
RETURN
GOODBYE:
 WINDOW CLOSE 2: WINDOW l: MENU RESET
 SCREEN CLOSE l
 IF ITEM = 2 THEN RUN "SCIENCE"
 IF ITEM = 3 THEN SYSTEM
 COLOR l,\emptyset: CLS
 PRINT "Bye-Bye"
 STOP
RETURN
CLICKIT:
 S$ = ""
 WHILE MOUSE(\varnothing) = Ø AND S$ = ""
 S$ = INKEY$
 WEND
 X = MOUSE(1)
 Y = MOUSE(2)
 WHILE MOUSE(\varnothing)<> \emptyset: WEND: REM RESET
RETURN
INSTRUCTIONS:
 CLS
 PRINT
 PRINT " This program solves up to";NX;
 PRINT "equations for";NX;"unknowns."
 PRINT
 PRINT " Your equations should be independent";
 PRINT " of each other, and"
 PRINT " if they're not, I'll be sure to let";
 PRINT " you know."
 LOCATE 19,27:PRINT "Click Mouse"
 GOSUB CLICKIT
RETURN
```


## CHAPTER 6

```
ENTER.NO.EQUATIONS:
 CLS
 PRINT
 PRINT " Please enter the number of equations";
 PRINT " that you'd like"
 PRINT " to solve. Up to";NX;"are allowed."
 LOCATE 6,2: PRINT "Number = ? ";
 N = Ø
 WHILE N < l OR N > NX
 LOCATE 6,13: PRINT SPACE$(20)
 GOSUB GURGLE
 LOCATE 6,13: INPUT "",N$
 N = VAL(N$)
 WEND
RETURN
ENTER.DATA:
 REM ON Y
 CLS
 PRINT
 PRINT " Please enter observations on the";
 PRINT " 'Y' variable in each"
 PRINT " equation."
 PRINT
 PRINT " If 3*(X1) + 5*(X2) = 7, for";
 PRINT " example, then enter 7."
 GOSUB ON.Y
 REM ON COEFFICIENTS
 GOSUB COEFFICIENTS
RETURN
ON.Y:
 GOSUB GURGLE
 LINE(5,52)-(115,62),6,BF
 COLOR 1,6: LOCATE 7,2: PRINT "Value of Y"
 COLOR 1,\varnothing
 FOR J=1 TO N
 LOCATE 9,3 : PRINT "Equation";J
 LOCATE 9,14: PRINT "=";SPACE$(35)
 LOCATE 9,16: INPUT "",X$
 x(J,\varnothing) = VAL(X$)
 NEXT
RETURN
COEFFICIENTS:
 FOR I=1 TO N
 CLS
 GOSUB GURGLE
 PRINT
```

```
 PRINT " Please enter the coefficient of";
 PRINT " the ";V$(I);" term in each"
 PRINT " equation."
 LINE(7, 34)-(193,44),6,BF
 COLOR 1,6
 LOCATE 5,2: PRINT "Coefficient of ";V$(I)
 COLOR 1,\varnothing
 FOR J=1 TO N
 LOCATE 7,3 : PRINT "Equation";J
 LOCATE 7,14: PRINT "=";SPACE$(35)
 LOCATE 7,16: INPUT "",X$
 X(J,I) = VAL(X$)
 NEXT J,I
RETURN
GURGLE:
 FREQ = 30\emptyset
 FOR G=1 TO 5
 FREQ = 5\emptyset\emptyset-FREQ
 SOUND FREQ,1,5\emptyset
 NEXT G
RETURN
EDIT.DATA:
 FOR I=Ø TO N
 FOR J=1 TO N STEP l|
 GOSUB DISPLAY
 GOSUB CORRECT
 NEXT J,I
RETURN
DISPLAY:
 CLS
 AS = "values"
 IF I > Ø THEN AS = "coefficients"
 S$ = "These are " + A$ + " of " + V$(I)
 L = LEN(S$)
 LINE(313-1\varnothing*L/2-5,7)-(313+1\varnothing*L/ 2+5,17),6,BF
 COLOR 1,6
 LOCATE 2: PRINT PTAB(313-L*10/2)S$
 LINE(40,23)-(590,118),4,BF
 COLOR 2,4
 R% = Ø: HOLD.ROW = Ø
 FOR L = J TO J+9
 IF L <= N THEN
 R% = R%+l
 CALL DRAW.IT(R%,1)
 LOCATE R%+3,1\varnothing: PRINT "Equation";L
 LOCATE R%+3,22: PRINT "= ";X(L,I)
```

```
 END IF
 NEXT L
RETURN
SUB DRAW.IT(RW%, INX) STATIC
 SHARED CIRCLE.SHAPE%(), INDEX()
 Y = (RW%+3)*9 - 9
 PUT(65,Y), CIRCLE.SHAPE%(INDEX(INX)),PSET
END SUB
CORRECT :
 COLOR 1,\emptyset
 LOCATE 16,24: PRINT "To make changes,"
 LOCATE 17,13: PRINT "Click mouse on circle,";
 PRINT " then hit Return"
 GOSUB CHOOSE
 IF HOLD.ROW <> Ø THEN
 GOSUB CHANGE: GOTO CORRECT
 END IF
RETURN
CHOOSE :
 GOSUB GURGLE
 GOSUB CLICKIT
 IF S$ = "" THEN GOSUB LOCATION
 IF ASC(S$+" ") <> 13 THEN CHOOSE
RETURN
LOCATION:
 ROW% = INT(Y/9) - 2
 IF ROW%>\emptyset AND ROW%<=R% AND X>55 AND X<9\emptyset THEN
 IF HOLD.ROW <> Ø THEN
 CALL DRAW.IT(HOLD.ROW,l)
 END IF
 CALL DRAW.IT(ROW%,2)
 HOLD.ROW = ROW%
 END IF
RETURN
CHANGE:
 LOCATE 16,24: PRINT SPACE$(16)
 LOCATE 17,13: PRINT SPACE$(38)
 LINE(65,133)-(185,143),5,BF
 COLOR 1,5
 LOCATE 16,8: PRINT "New Value ?"
 COLOR 1,0
 LOCATE 16,21: INPUT "",V$
 X(J+HOLD.ROW-1,I) = VAL(V$)
 COLOR 2,4
```

```
 LOCATE HOLD.ROW+3,24: PRINT SPACE$(30)
 LOCATE HOLD.ROW+3,24: PRINT X(J+HOLD.ROW-1,I)
 CALL DRAW.IT(HOLD.ROW,l)
 HOLD.ROW = Ø
 LINE(65,133)-(185,143),\varnothing,BF
 COLOR 1,ø
 LOCATE 16,21: PRINT SPACE$(30)
RETURN
COMPUTE:
 CLS
 LOCATE 1\varnothing,26: PRINT "Computing ..."
 GOOF = Ø
 GOSUB TRANSFER.DATA
 FOR Z=l TO N
 GOSUB KEY.ELEMENT.OF.R
 IF GOOF = Ø THEN
 GOSUB COLUMN.OF.Q
 IF Z <> N THEN GOSUB COLUMN.OF.R
 GOSUB ELEMENT.OF.C
 IF Z <> N THEN GOSUB REVISE.X
 ELSE
 GOSUB GOOF
 Z = N
 END IF
 NEXT Z
 IF GOOF = \varnothing THEN
 S(N) = C(N)/R(N,N)
 IF N <> l THEN GOSUB BACKSOLVE
 END IF
RETURN
TRANSFER.DATA:
 FOR I=1 TO N
 FOR J=Ø TO N
 XT(I,J) = X(I,J)
 NEXT J,I
RETURN
KEY.ELEMENT.OF.R:
 R = Ø
 FOR I=1 TO N
 R=R + XT(I,Z)*XT(I,Z)
 NEXT I
 R(Z,Z) = SQR(R)
 IF R(Z,Z) = \varnothing THEN GOOF = 1
RETURN
```

```
COLUMN.OF.Q:
 FOR I=1 TO N
 Q(I,Z)= XT(I,Z)/R(Z,Z)
 NEXT I
RETURN
COLUMN.OF.R:
 FOR L = Z+l TO N
 R(Z,L)=\varnothing
 FOR I=1 TO N
 R(Z,L)=R(Z,L) + XT(I,L)*Q(I,Z)
 NEXT I,L
RETURN
ELEMENT.OF.C:
 C(Z) = Ø
 FOR I=1 TO N
 C(Z)=C(Z) + XT(I, Ø)*Q(I,Z)
 NEXT I
RETURN
REVISE.X:
 FOR I=1 TO N
 FOR L = Z+1 TO N
 XT(I,L) = XT(I,L) - Q(I,Z)*R(Z,L)
 NEXT L,I
RETURN
GOOF:
 CLS
 LINE (82,79)-(150,89),6,BF
 COLOR 1,6
 LOCATE 10,10: PRINT "Sorry:"
 COLOR 1,\emptyset
 LOCATE 10,18: PRINT "I can't solve your";
 PRINT " equations with"
 LOCATE 11,18: PRINT "the data you've";
 PRINT " entered."
 LOCATE 17,28: PRINT "Continue ?"
 GOSUB GURGLE
 GOSUB DECIDE
RETURN
DECIDE:
 BUTTON = \varnothing
 GOSUB DRAWBUTTON
 GOSUB PUSHBUTTON
 COLOR 1,\varnothing
RETURN
```

```
DRAWBUTTON:
 LINE (265,158)-(361,172),1,BF
 FOR I=1 TO 2
 CIRCLE(XB(I),YB),12,4+I
 PAINT(XB(I),YB),4+I
 COLOR 1,4+I
 LOCATE 19: PRINT PTAB(XB(I)-4);LT$(I);
 NEXT I
RETURN
PUSHBUTTON:
 SOUND 440,2
 GOSUB CLICKIT
 S$ = UCASE$(S$)
 IF S$ = "Y" THEN BUTTON = l
 IF S$ = "N" THEN BUTTON = 2
 FOR I=1 TO 2
 XD = ABS(X-XB(I)): YD = ABS(Y-YB)
 IF XD<13 AND YD<7 THEN BUTTON = I: I=2
 NEXT
 IF BUTTON = \varnothing THEN PUSHBUTTON
RETURN
```

```
BACKSOLVE:
 FOR I = N-l TO l STEP -l
 REM LEFT-SIDE SUM
 S = Ø
 FOR J = I+l TO N
 S = S + R(I,J)*S(J)
 NEXT J
 REM SOLUTION
 S(I) = (C(I)-S)/R(I,I)
 NEXT I
RETURN
SHOW.RESULTS:
 FOR I=l TO N STEP l\emptyset
 GOSUB PAINT.SCREEN
 GOSUB SHOW.VALUES
 COLOR 1,ø
 LOCATE 17,26: PRINT "Press any key"
 GOSUB CLICKIT
 NEXT I
 LOCATE 17,25: PRINT "Compute again ?"
 GOSUB DECIDE
RETURN
PAINT.SCREEN:
 CLS
```


## CHAPTER 6

```
LINE(10\varnothing,30)-(530,130),2,B
PAINT(313,80),4,2
LINE(264,6)-(356,18),1,B
PAINT(313,10),6,1
COLOR 1,6
LOCATE 2,28: PRINT "SOLUTION"
RETURN
SHOW.VALUES:
 COLOR 2,4
 ROW% = \varnothing
 FOR J = I TO I+9
 IF J <= N THEN
 ROW% = ROW% + 1
 LOCATE 4+ROW%,21: PRINT V$(J)
 LOCATE 4+ROW%,25: PRINT "= ";
 PRINT USING FS;S(J)
 END IF
 NEXT J
RETURN
```


## Matrix Manipulator

If you've ever wanted to add two matrices, multiply the sum by a third, and invert the product, you'll be pleased with "Matrix Manipulator" (MatMan). MatMan can add, subtract, transpose, and invert any two matrices, $X$ and $Y$. It stores the result in Z . MatMan can even perform further operations using $X$ or Y or Z.

The example in Figure 6-3 is quite complex. Three distinct operations are required to evaluate this expression: addition, scalar multiplication (multiplying by a single number rather than by a matrix), and matrix multiplication.

When you run Program 6-4, use a pull-down menu to place values in both matrix $X$ and matrix Y. Notice that the Amiga lets you edit your entries. And notice that other pull-down menus allow you to view intermediate results and to change the number of decimal places in an answer.

Now ask MatMan to add matrices $X$ and $Y$. Figure 6-4 shows the response you'll get.

You're not through yet, however. Ask MatMan to scalar-multiply matrix Z by 3. As before, you'll see the results of this computation, and you'll continue to see answers as long as the Results Menu is set to Show.

Here's the tricky part. You need to multiply what is now in matrix Z by the vector at the far right ( 2 's). No problem. First store the 2 's in matrix $X$, then ask MatMan to compute the product $Z^{*} X$. Remember that the $Z$ should come first in this case. Figure 6-5 shows the final answer.

As you can see, MatMan is versatile, fast, and easy to use.
Figure 6-3. Complex Operations

$$
\left[3^{*}\left\{\left[\begin{array}{rr}
7 & 17 \\
-20 & 512
\end{array}\right]+\left[\begin{array}{rr}
32 & 9 \\
1 & 18
\end{array}\right]\right\} *\left[\begin{array}{l}
2 \\
2
\end{array}\right]\right.
$$

Figure 6-4. MatMan Adds

$$
\underset{X}{\left[\begin{array}{rr}
7 & 17 \\
-20 & 512
\end{array}\right]+\left[\begin{array}{rr}
32 & 9 \\
1 & 18
\end{array}\right]+\left[\begin{array}{rr}
39 & 26 \\
-19 & 530
\end{array}\right]}
$$

Figure 6-5. Final Result

```
390
3066
```

Program 6-4. Matrix Manipulator
Save using the filename MATMAN
REM MATMAN
CLEAR , 3ØøØØ
GOSUB INITIALIZE
GOSUB MAIN.MENU
END
INITIALIZE:
GOSUB SETSCREEN
GOSUB KEYVALUES
GOSUB SETMENUS
GOSUB SETCOLORS
GOSUB SHAPES
GOSUB HEADING
GOSUB GREETING
RETURN
SETSCREEN:
SCREEN 1,640,200,3,2
WINDOW 2,"MatMan",, 0,1
RETURN

```
KEYVALUES:
 RANDOMIZE TIMER
 DEFINT A-J,L-Z: DEFDBL F,S,Z
 REM make W,X,Y DBL for VERY big or small data
 DEFSNG W,X,Y
 REM MAX. MATRIX ORDER (ROWS & COLUMNS)
 DATA }1
```

```
 READ MAX.SIZE
 V = MAX.SIZE
 DIM X(V,V),Y(V,V),Z(V,V),F(V,2*V),S(V,V)
 DIM DISCS(250),CIRCLES(150)
REM SHAPE INDICES
 DISC.I(1) = 1: DISC.I(2) = 125
 CIRCLE.I(1) = 1: CIRCLE.I(2) = 75
M$(1) = "Matrix X"
M$(2) = "Matrix Y"
GOSUB OUTPUT.FORMATS
GOSUB MENU.CHOICES
GOSUB ERROR.CODES
ZERO$ = STRING$(10,"\emptyset")
REM INITIAL MATRIX SIZES (X,Y,Z)
 FOR I=1 TO 3
 R(I)=\varnothing: C(I)=\varnothing
 NEXT
RETURN
OUTPUT.FORMATS:
 FOR I=\varnothing TO 6
 FS(I) = STRING$(16-I,"#")
 IF I <> Ø THEN
 F$(I) = F$(I) + "." + STRING$(I,"#")
 END IF
 NEXT
RETURN
MENU.CHOICES:
 DATA Add, Subtract, Multiply, Scalar-multiply
 DATA Invert, Transpose
 FOR I=1 TO 6
 READ PICK$(I)
 NEXT
RETURN
ERROR.CODES:
 DATA I can't add different-sized matrices
 DATA I can't subtract different-sized matrices
 DATA I can't multiply your matrices
 DATA I can't invert a non-square matrix
 DATA Your matrix has no dimension
 DATA I can't invert a singular matrix
 FOR I=1 TO }
 READ ERROR.CODE$(I)
 NEXT
RETURN
```

```
SETMENUS:
 DATA 5, Color, Tan, Blue, Green, Gray
 DATA Random
 DATA 4, "Data", "Enter Data on X"
 DATA "Enter Data on Y", ** Edit X **
 DATA ** Edit Y **
 DATA 2, Results, Show, Don't Show
 DATA 7, Decimals, Ø Places, 1 Place, 2 Places
 DATA 3 places, 4 Places, 5 Places, }6\mathrm{ Places
 DATA 3, Stop, Go to BASIC
 DATA Go to Science Menu, Go to System
 FOR I=1 TO 5
 READ NUMBER
 FOR J=\varnothing TO NUMBER
 READ TITLE$
 IF J<>\emptyset THEN TITLE$ = SPACE$(3) + TITLE$
 STATUS = 1
 IF I=1 AND J=1 THEN STATUS = 2
 IF I=3 AND J=1 THEN STATUS = 2
 IF I=4 AND J=4 THEN STATUS = 2
 MENU I,J,STATUS,TITLE$
 NEXT J,I
 MENU 2,\varnothing,\varnothing
 KOLOR% = 1: RESULTS = l: DP = 3
 FT$ = F$(3)
RETURN
SETCOLORS:
 REM TAN, BLUE, GREEN, GRAY
 DATA .95,.7,.53,.46,.57,1
 DATA . 22,.76,.68, .72,.7,. 86
 FOR I=1 TO 4
 FOR J=1 TO 3
 READ KOLOR(I,J)
 NEXT J,I
 REM TAN, GREEN, & RED
 PALETTE 4,.95,.7,.53
 PALETTE 5,.14,.43,\varnothing
 PALETTE 6,.93,.2,0
RETURN
SHAPES:
 REM DISCS
 X=313: Y=80
 FOR I=1 TO 2
 K% = I*5-4
 CIRCLE(X,Y),12,K%: PAINT(X,Y),K%
 GET(X-12,Y-8)-(X+12,Y+8),DISCS(DISC.I(I))
 NEXT
```

```
 REM CIRCLES
 CLS
 Xl =X-7: X2 = X+7: Y1 = Y-3: Y2 = Y+3
 LINE(X1,Y1)-(X2,Y2),4,BF
 FOR I=1 TO 2
 K% = 11-5*I
 CIRCLE(X,Y), 7, 2: PAINT(X,Y),K%,2
 GET(X1,Y1)-(X2,Y2),CIRCLES(CIRCLE.I(I))
 NEXT
RETURN
HEADING:
 MENU ON
 ON MENU GOSUB OPTIONS
 CLS
 LINE(193,60)-(213,90),6,BF
 LINE(2Ø5,65)-(213,85),0,BF
 LINE(413,60)-(433,90),6,BF
 LINE(413,65)-(421,85),\varnothing,BF
 LOCATE 9: PRINT PTAB(223)"Matrix Manipulator"
 COLOR 3,\varnothing: LOCATE 14: PRINT PTAB(295)"then"
 COLOR 1,0
 LOCATE 13: PRINT PTAB(232)"Please use menus,"
 LOCATE 15: PRINT PTAB(215)"Click mouse to start"
 GOSUB CLICKIT
RETURN
OPTIONS :
 ID = MENU(\varnothing): ITEM = MENU(1)
 ON ID GOSUB MENU1,MENU2,MENU3,MENU4,GOODBYE
 ITEM = Ø
RETURN
MENUl :
 Kl = KOLOR(ITEM,1): K2 = KOLOR(ITEM,2)
 K3 = KOLOR(ITEM,3)
 IF ITEM=5 THEN Kl=RND: K2=RND: K3=RND
 PALETTE 4,K1,K2,K3
 MENU l,KOLOR%,1: MENU 1,ITEM,2
 KOLOR% = ITEM
RETURN
MENU2 :
 ACTION = ITEM
 PICK = ITEM + 6
 S$ = CHR$(13)
RETURN
```

```
MENU3 :
 MENU 3,RESULTS,1: MENU 3,ITEM,2
 RESULTS = ITEM
RETURN
MENU4 :
 MENU 4,DP+1,1: MENU 4,ITEM,2
 DP = ITEM-1
 FT$ = F$(DP)
RETURN
GOODBYE :
 WINDOW CLOSE 2: WINDOW 1: MENU RESET
 SCREEN CLOSE l
 IF ITEM = 2 THEN RUN "SCIENCE"
 IF ITEM = 3 THEN SYSTEM
 COLOR 1,\varnothing: CLS
 PRINT "Bye-Bye"
 STOP
RETURN
GREETING :
 CLS
 PRINT
 PRINT " MatMan adds, subtracts,";
 PRINT " multiplies, transposes, and"
 PRINT " inverts any two matrices."
 PRINT
 PRINT " He stores the result in Z.";
 PRINT " Further operations using"
 PRINT " X, Y, and Z are then allowed."
 LOCATE 18,27: PRINT "Click Mouse";
 GOSUB CLICKIT
RETURN
CLICKIT:
 S$ = "": ACTION = Ø
 WHILE MOUSE(\varnothing)=\varnothing AND S$ = "" AND ACTION = Ø
 S$ = INKEY$
 WEND
 X = MOUSE(1)
 Y = MOUSE(2)
 WHILE MOUSE(\varnothing)<> Ø: WEND: REM RESET
RETURN
MAIN . MENU:
 MENU 2,\varnothing,1
 PICK = 1: GOOF=\emptyset
 CLS
```

```
 LOCATE 3,23: PRINT "Would you like to"
 FOR I=1 TO 6
 IF I = PICK THEN INX = 2 ELSE INX = 1
 CALL DRAW.CIRCLE(I,INX)
 LOCATE I*2+3,28: PRINT PICK$(I)
NEXT
LOCATE 19,13: PRINT "Click Mouse on Choice,";
PRINT " then Hit Return"
GOSUB CHOOSE
GOTO MAIN.MENU
RETURN
SUB DRAW.CIRCLE(R,INX) STATIC
 SHARED DISCS(),DISC.I()
 Y = 18*R+13
 PUT(232,Y),DISCS(DISC.I(INX)),PSET
END SUB
CHOOSE:
 GOSUB GURGLE
 GOSUB CLICKIT
 IF S$ = "" THEN GOSUB LOCATION
 IF ASC(S$+" ") <> 13 THEN CHOOSE
 MENU 2,\varnothing,\varnothing
 IF PICK <= 6 THEN GOSUB CALCULATE
 IF PICK=7 OR PICK=8 THEN GOSUB ENTER.DATA
 IF PICK=9 OR PICK=1\emptyset THEN GOSUB EDIT.DATA
RETURN
GURGLE:
 FREQ = 30\emptyset
 FOR G=1 TO 5
 FREQ = 5\emptyset\emptyset-FREQ
 SOUND FREQ,1,5\emptyset
 NEXT G
RETURN
LOCATION:
 P = INT((Y-3ø)/18) + 1
 IF X>225 AND X<265 AND P>\emptyset AND P<7 THEN
 CALL DRAW.CIRCLE(PICK,1)
 CALL DRAW.CIRCLE(P,2)
 PICK = P
 END IF
RETURN
ENTER.DATA:
 M = PICK - 6
 GOSUB MAT.SIZE
```

```
IF N <> -9 THEN GOSUB OBSERVATIONS
RETURN
MAT.SIZE:
 CLS
 LOCATE 2,3
 PRINT "Please enter the size of ";MS(M)".";
 PRINT " Enter -9 to exit."
 LINE(125,25)-(510,35),1,BF
 COLOR Ø,1
 LOCATE 4,14: PRINT "Current Size: ";
 PRINT "Rows =";R(M);TAB(37)", Columns =";C(M)
 LINE (17,52)-(95,62),5,BF
 LINE(17,7Ø)-(95,80),5,BF
 COLOR 1,5
 LOCATE 7,6: PRINT "Rows"
 LOCATE 9,3: PRINT "Columns"
 COLOR 1,0
 FOR I=1 TO 2
 N=\varnothing
 WHILE (N<1 OR N>MAX.SIZE) AND N <> -9
 GOSUB GURGLE
 LOCATE I*2+5,12: PRINT SPACE$(30)
 LOCATE I*2+5,12: INPUT "",V$
 N = VAL(V$)
 WEND
 IF N = -9 THEN I = 2
 N(I) = N
 NEXT I
 IF N <> -9 THEN R(M) = N(1): C(M) = N(2)
RETURN
OBSERVATIONS:
 FOR I=1 TO C(M)
 CLS
 GOSUB GURGLE
 PRINT
 PRINT " Please enter data on ";M$(M);"."
 LINE (7, 34)-(149,44),6,BF
 COLOR 1,6
 LOCATE 5,2: PRINT "Column No.";I
 COLOR 1,\varnothing
 FOR J=1 TO R(M)
 LOCATE 7,4 : PRINT "Row No.";J
 LOCATE 7,14: PRINT "=";SPACE$(35)
 LOCATE 7,16: INPUT "",V$
 IF M = 1 THEN
 X(J,I) = VAL(V$)
 ELSE
```

```
 Y(J,I) = VAL(V$)
 END IF
 NEXT J,I
RETURN
EDIT.DATA:
 M = PICK - 8
 FOR I=1 TO C(M)
 FOR J=1 TO R(M) STEP 1\varnothing
 GOSUB DISPLAY
 GOSUB CORRECT
 NEXT J,I
RETURN
DISPLAY:
 CLS
 LINE(106,7)-(510,17),6,BF
 COLOR 1,6: LOCATE 2,12
 PRINT "These are values of ";M$(M);
 PRINT ", Column";I
 LINE(40, 23)-(590,118),4,BF
 COLOR 2,4
 R = Ø: HOLD.ROW = Ø
 FOR L = J TO J+9
 IF L <= R(M) THEN
 R = R+l
 CALL DRAW.IT(R,1)
 LOCATE R+3,10: PRINT "Row No.";L
 LOCATE R+3,21: PRINT "= ";
 IF M = 1 THEN
 PRINT X(L,I)
 ELSE
 PRINT Y(L,I)
 END IF
 END IF
 NEXT L
RETURN
SUB DRAW.IT(RW,INX) STATIC
 SHARED CIRCLES(),CIRCLE.I()
 Y = (RW+3)*9 - 9
 PUT(65,Y),CIRCLES(CIRCLE.I(INX)),PSET
END SUB
```


## CORRECT:

```
COLOR \(1, \varnothing\)
LOCATE 16,24: PRINT "To make changes,"
LOCATE 17,13: PRINT "Click mouse on circle,";
PRINT " then hit Return"
```

```
 GOSUB SELECT
 IF HOLD.ROW <> Ø THEN
 GOSUB CHANGE: GOTO CORRECT
 END IF
RETURN
SELECT:
 GOSUB GURGLE
 GOSUB CLICKIT
 IF S$ = "" THEN GOSUB POSITION
 IF ASC(S$+" ") <> 13 THEN SELECT
RETURN
POSITION:
 ROW = INT(Y/9) - 2
 IF ROW>\emptyset AND ROW<=R AND X>55 AND X<9\emptyset THEN
 IF HOLD.ROW <> Ø THEN
 CALL DRAW.IT(HOLD.ROW,l)
 END IF
 CALL DRAW.IT(ROW, 2)
 HOLD.ROW = ROW
 END IF
RETURN
CHANGE:
 LOCATE 16,24: PRINT SPACE$(16)
 LOCATE 17,13: PRINT SPACE$(38)
 LINE(65,133)-(185,143),5,BF
 COLOR 1,5
 LOCATE 16,8: PRINT "New Value ?"
 COLOR 1,\varnothing
 Q = J + HOLD.ROW - 1
 LOCATE 16,21: INPUT "",V$
 IF M=1 THEN X(Q,I)=VAL(V$) ELSE Y(Q,I)=VAL(V$)
 COLOR 2,4
 LOCATE HOLD.ROW+3,23: PRINT SPACE$(30)
 LOCATE HOLD.ROW+3,23: PRINT VAL(V$)
 CALL DRAW.IT(HOLD.ROW,l)
 HOLD.ROW = Ø
 LINE(65,133)-(185,143),\varnothing,BF
 COLOR 1,\varnothing
 LOCATE 16,21: PRINT SPACE$(30)
RETURN
CALCULATE:
 GOSUB MATRIX.NAMES
 GOSUB DIMENSIONS
 GOSUB CONFORMABILITY
 IF GOOF <> Ø THEN
```

```
 GOSUB GOOF
 ELSE
 GOSUB TRANSFER.VALUES
 LOCATE l2,28
 IF PICK <> 4 THEN PRINT "Computing"
 ON PICK GOSUB MAT1,MAT1,MAT2,MAT3,MAT4,MAT5
 IF RESULTS=1 AND GOOF=\varnothing THEN GOSUB RESULTS
 END IF
RETURN
MATRIX.NAMES:
 AS = "matrix"
 IF PICK < 4 THEN AS = "matrices"
 CLS
 LOCATE 2,3: PRINT "Please enter the ";A$;
 PRINT " to ";PICK$(PICK);"."
 LOCATE 5,3: PRINT "Matrices: X, Y, or Z"
 REM FIRST
 LOCATE 7,4: PRINT "First = ? _";
 GOSUB ENTER.NAME
 FIRST% = A
 REM SECOND
 IF PICK < 4 THEN
 LOCATE 9,3: PRINT "Second = ? _";
 GOSUB ENTER.NAME
 SECOND% = A
 END IF
RETURN
ENTER.NAME:
 A = Ø
 WHILE A < 88 OR A > 90
 GOSUB GURGLE
 S$ = ""
 WHILE S$ = "": S$ = INKEY$: WEND
 A = ASC(UCASE$(S$) + " ")
 WEND
 PRINT CHR$(8);CHR$(A)
RETURN
DIMENSIONS:
 REM FIRST
 RF = R(FIRST%-87)
 CF = C(FIRST%-87)
 REM SECOND
 IF PICK < 4 THEN
 RS = R(SECOND%-87)
 CS = C(SECOND%-87)
 END IF
RETURN
```

```
CONFORMABILITY:
 REM + AND
 IF PICK = 1 OR PICK = 2 THEN
 IF RF<>RS OR CF<>CS THEN GOOF = PICK
 END IF
 REM *
 IF PICK = 3 THEN
 IF CF <> RS THEN GOOF = 3
 END IF
 REM INVERSION
 IF PICK = 5 THEN
 IF RF <> CF THEN GOOF = 4
 END IF
 REM ZERO DIMENSION
 IF RF=Ø OR CF=\emptyset THEN GOOF = 5
RETURN
GOOF :
 CLS
 SOUND 4Ø\varnothing,3: SOUND 3ØØ,3: SOUND 2Ø0,3
 COLOR 1,6
 LINE (283,61)-(335,71),6, BF
 LOCATE 8,30: PRINT "GOOf"
 S$ = ERROR.CODE$ (GOOF)
 COLOR 1,\emptyset
 LOCATE 10: PRINT PTAB(313-1\varnothing*LEN(S$)/2)S$
 LOCATE 17.26: PRINT "Press any key"
 GOSUB CLICKIT
RETURN
TRANSFER.VALUES:
 REM DOUBLE PRECISION
 REM FIRST
 FOR I=1 TO RF
 FOR J=1 TO CF
 IF FIRST% = 88 THEN W = X (I,J)
 IF FIRST% = 89 THEN W = Y(I,J)
 IF FIRST% = 90 THEN W = Z (I,J)
 IF W < Ø THEN SG% = -1 ELSE SG% = 1
 F(I,J) = SG%*VAL(ZERO$+STR$(ABS(W)))
 NEXT J,I
 REM SECOND
 IF PICK < 4 THEN
 FOR I=1 TO RS
 FOR J=1 TO CS
 IF SECOND% = 88 THEN W = X (I,J)
 IF SECOND% = 89 THEN W = Y(I,J)
 IF SECOND% = 90 THEN W = Z (I,J)
 IF W < Ø THEN SG% = - 1 ELSE SG% = 1
```

```
 S(I,J) = SG%*VAL(ZERO$+STR$(ABS(W)))
 NEXT J,I
 END IF
RETURN
MATl:
 FOR I=1 TO RF
 FOR J=1 TO CF
 IF PICK=1 THEN Z(I,J) = F(I,J) + S(I,J)
 IF PICK=2 THEN Z(I,J) = F(I,J) - S(I,J)
 NEXT J,I
 R(3) = RF: C(3) = CF
RETURN
MAT2:
 FOR I=1 TO RF
 FOR J=1 TO CS
 Z(I,J)=\varnothing
 FOR L=1 TO CF
 Z(I,J) = Z(I,J) + F(I,L)*S(L,J)
 NEXT L,J,I
 R(3) = RF: C(3) = CS
RETURN
MAT3:
 CLS
 GOSUB GURGLE
 LOCATE 2,3
 INPUT "What is the value of your scalar ";S$
 SK = VAL(S$)
 LOCATE 1\varnothing,26: PRINT "Computing ..."
 FOR I=1 TO RF
 FOR J=1 TO CF
 Z(I,J) = F(I,J)*SK
 NEXT J,I
 R(3) = RF: C(3) = CF
RETURN
MAT4:
 GOSUB TACK.ON.I
 GOSUB INVERT
 IF GOOF = Ø THEN
 GOSUB MOVE.MATRIX
 ELSE
 GOSUB GOOF
 END IF
RETURN
```

```
TACK.ON.I:
 FOR I=1 TO RF
 FOR J=1 TO RF
 F(I,RF+J) = \varnothing
 IF J = I THEN F(I,RF+J) = I
 NEXT J,I
RETURN
INVERT:
 FOR I=1 TO RF
 S = F(I,I)
 IF S = Ø THEN
 GOOF = 6: I = RF
 ELSE
 REM ADJUST KEY ROW
 FOR J = I TO 2*RF
 F(I,J) = F(I,J)/S
 NEXT J
 REM ADJUST REMAINING ROWS
 FOR J=1 TO RF
 Z = F(J,I)
 FOR L = I TO 2*RF
 IF J <> I THEN F(J,L) = F(J,L) - Z*F(I,L)
 NEXT L,J
 END IF
 NEXT I
RETURN
MOVE.MATRIX:
 FOR I=1 TO RF
 FOR J=1 TO CF
 Z(I,J) = F(I,RF+J)
 NEXT J,I
 R(3) = RF: C(3) = CF
RETURN
MAT5:
 FOR I=l TO CF
 FOR J=1 TO RF
 Z(I,J) = F(J,I)
 NEXT J,I
 R(3) = CF: C(3) = RF
RETURN
RESULTS:
 R=R(3): C = C(3)
 FOR Q=1 TO R STEP l\varnothing
 FOR I=l TO C STEP 2
 GOSUB PAINT.SCREEN
```

```
 GOSUB BODY
 NEXT I,Q
RETURN
PAINT.SCREEN:
 CLS
 LINE(265,6)-(355,18),1,B: PAINT(313,10),6,1
 COLOR 1,6: LOCATE 2,28: PRINT "Matrix Z"
 LINE(35,30)-(595,147),4,BF
 REM COLUMN HEADING
 COLOR 2,4
 COL = 27
 FOR L = I TO I+l
 IF L <= C THEN
 LOCATE 5,COL: PRINT "Column";L
 COL = COL + 23
 END IF
 NEXT L
RETURN
BODY:
 ROW = 7
 FOR J = Q TO Q+9
 IF J <= R THEN
 LOCATE ROW,7: PRINT USING "Row##";J;
 COL = 18
 FOR L = I TO I+l
 IF L <= C THEN
 LOCATE ROW,COL
 PRINT USING FTS;Z(J,L)
 COL = COL + 23
 END IF
 NEXT L
 END IF
 ROW = ROW + 1
 NEXT J
 COLOR 1,\varnothing
 LOCATE 20,26: PRINT "Press any key";
 GOSUB CLICKIT
RETURN
```


## CHAPTER 7

Statistics

## CHAPTER 7

## Statistics

We all see a large quantity of numerical information each day, everything from batting averages to stock market prices to monthly utility bills. Here are a couple of programs that will help you transform your raw data into useful, understandable form.

Scatter Diagram. This program draws a line of best fit through a set of observations plotted on an X-Y grid. With "Scatter Diagram" you can view all the quadrants of the graph or just the first, you can predict $Y$ for any value of $X$, and you can estimate four types of curves. And you can do all this without having to enter data more than once.

Super Curve-Fitter. With this program, you can perform multiple linear regression analysis on a set of data. Edit your entries by using the mouse. With "Super Curve-Fitter" you get some of the same capability normally found on much bigger statistical packages for mainframe computers, and you'll find Curve-Fitter far easier to use.

## Statistics Menu Driver

Save using the filename STATISTICS
REM STATISTICS GOSUB INITIALIZE GOSUB MAIN.MENU RUN TITLE.SHORT\$ (PICK)
END

INITIALIZE:
GOSUB SETSCREEN
GOSUB KEYVALUES
GOSUB SETMENUS
GOSUB SETCOLORS
GOSUB SHAPES
RETURN
SETSCREEN :
SCREEN 1,640,2ø0,3,2
WINDOW 2,"Statistics", 0,1
RETURN

```
KEYVALUES:
 DEFINT A-Z
 N = 2
 DIM TITLE.LONG$(N),TITLE.SHORT$(N),DISCS(25\emptyset)
 DISC.I(1) = 1: DISC.I(2) = 125
 READ CHAPTER$
 FOR I=1 TO N
 READ TITLE.LONG$(I),TITLE.SHORT$(I)
 NEXT
RETURN
SETMENUS:
 FOR I=2 TO 4
 MENU I,\varnothing,\varnothing,""
 NEXT
 MENU 1,ø,1,"STOP"
 MENU l,l,l," Go to BASIC"
 MENU 1,2,1," Go to System"
 MENU ON
 ON MENU GOSUB GOODBYE
RETURN
GOODBYE:
 WINDOW CLOSE 2: WINDOW 1: MENU RESET
 SCREEN CLOSE 1
 ITEM = MENU(1)
 IF ITEM = 2 THEN SYSTEM
 CLS
 PRINT "Bye-Bye"
 STOP
RETURN
SETCOLORS:
 REM TAN, GREEN, & RED
 PALETTE 4,.95,.7,.53
 PALETTE 5,.14,.43,0
 PALETTE 6,.93,.2,\varnothing
RETURN
SHAPES:
 X=313: Y=80
 LINE(X-12,Y-8)-(X+12,Y+8),4,BF
 FOR I=1 TO 2
 K = 7-I
 CIRCLE(X,Y),12,K: PAINT(X,Y),K
 GET(X-12,Y-8)-(X+12,Y+8),DISCS(DISC.I(I))
 NEXT
RETURN
```

```
MAIN.MENU:
 CLS
 RTNS = "OFF": PICK = l
 S$ = CHAPTERS: L = LEN(S$)
 LINE(313-10*L/2-15,15)-(313+10*L/2+15,27),1,B
 PAINT(313,20),6,1
 COLOR 1,6: LOCATE 3: PRINT PTAB(313-10*L/2)S$
 LINE(135,35)-(495,130),2,B: PAINT(313,80),4,2
 COLOR 2,4
 FOR I=1 TO N
 IF I = PICK THEN INX = 2 ELSE INX = 1
 CALL DRAW.CIRCLE(I,INX)
 LOCATE I*2+4,21: PRINT TITLE.LONG$(I)
 NEXT
 LINE(263,141)-(36Ø,153),2,B: PAINT(313,145),3,2
 COLOR 2,3
 LOCATE 17: PRINT PTAB(282)"Return"
 COLOR 1,ø
 LOCATE 19,ll: PRINT "Click Mouse on Choice,";
 PRINT " then Click on Return"
 GOSUB CHOOSE
RETURN
SUB DRAW.CIRCLE(R,INX) STATIC
 SHARED DISCS(),DISC.I()
 Y = 18*R+22
 PUT(162,Y),DISCS(DISC.I(INX)),PSET
END SUB
CHOOSE:
 GOSUB GURGLE
 GOSUB CLICKIT
 IF S$ = "" THEN GOSUB LOCATION
 IF ASC(S$+" ") <> 13 AND RTN$ = "OFF" THEN
 GOTO CHOOSE
 END IF
RETURN
GURGLE:
 FREQ = 30\emptyset
 FOR G=1 TO 5
 FREQ = 5\emptyset\emptyset - FREQ
 SOUND FREQ,1,5Ø
 NEXT
RETURN
CLICKIT:
 S$ = ""
WHILE MOUSE(\emptyset)=\varnothing AND S$= ""
```


## CHAPTER 7

```
 S$ = INKEY$
WEND
 X = MOUSE(1)
 Y = MOUSE(2)
WHILE MOUSE(\varnothing)<> Ø: WEND: REM RESET
RETURN
LOCATION:
 IF X>263 AND X<36Ø AND Y> 141 AND Y<l53 THEN
 RTN$ = "ON"
 ELSE
 P = INT((Y-39)/18) + 1
 IF X>155 AND X<l195 AND P>\varnothing AND P<= N THEN
 CALL DRAW.CIRCLE(PICK,1)
 CALL DRAW.CIRCLE(P,2)
 PICK = P
 END IF
 END IF
RETURN
REM PROGRAMS
 DATA Statistics
 DATA Scatter Diagram, SCATTER
 DATA Super Curve-Fitter, SUPER
```


## Scatter Diagram

Almost everyone sometimes has the urge to do it. You see a plot of points between two variables and you want to draw a line of best fit through them to depict the apparent trend.

With Scatter Diagram this urge is easy to satisfy. Namely, enter and edit your data. Then gape admiringly as Scatter Diagram draws an $\mathrm{X}-\mathrm{Y}$ grid on your screen, then scales and labels axes, plots your points, and computes and draws a least-squares regression line.

And this is just the beginning. For with Scatter Diagram you can zoom in on the first quadrant of the graph, scale axes to fit your fancy, compute $Y$ for any value of $X$, and estimate three other curves besides the commonplace straight line. And you can do all this without having to enter data more than once.

Perhaps a good way to introduce Scatter Diagram is with an example. You'll see how to choose an equation to estimate, select a quadrant to view, and display regression results.

## Victories and Turnovers

Pro football coaches, sportscasters, and Sunday afternoon armchair quarterbacks are concerned about turnovers. To win football games, the adage says, "don't beat yourselves." In other words, force the opponent to make a mistake while playing error-free football on offense.

But is this conventional wisdom right? To find out, let's use Scatter Diagram to explore the statistical relationship between victories and turnovers.

Table 7-1 presents grist for our curve-plotting mill. Percent wins is denoted by Y and net turnovers by X .

After you enter this data into the Amiga, Scatter Diagram asks which type of equation you'd like to estimate. Figure 7-1 presents the choices. Let's select the popular linear equation since this is the easiest to estimate. Since some of our observations are negative, use the pull-down menu to tell the Amiga to show all four quadrants of the $X-Y$ grid.

Based on the range of observations on $Y$ and $X$, Scatter Diagram automatically computes tick intervals for our plot and uses these in Figure 7-2. As suspected, the most successful teams in the NFL tend to be those with the most net turnovers per game.

## Regression Results

Now the real power of Scatter Diagram comes into play. With points plotted and curve fitted, we can repeatedly exercise a host of handy options simply by using the pull-down menu labeled Options. Three of the choices enable us to see and use the results of our regression run: Show Equation, Show R-Squared, and Predict Value of Y .

Showing the equation, for example, gives the result $Y=50.000+$ $10.743^{*}$ X. Hence, a team with a net turnover figure of zero should win half its games, or 50 percent. And every one-unit increase in net turnovers per game should lead to 10.743 percent more victories during the season.

Exploring some more, we find that the R-squared value of our equation is 0.302 . This means that 30 percent of the variation in victories is explained by turnovers.

In predicting percent victories, we simply enter a value for net turnovers. One net turnover per game, for example, suggests that a team will win 60.7 percent of the time.

## Embellish the Picture

To embellish our plot, try the Show Title and Draw Grid options. In the latter, the Amiga draws little dashes across the screen. This is particularly useful for very precise work, that is, when we're interested in knowing exactly where an observation or regression line lies.

## X and Y Axes Tick Marks

If you don't like the values the Amiga chooses for intervals along the $X$ and $Y$ axes, don't worry. Simply choose the menu option for changing tick marks.
Then enter any new value you like, up to half a million. The Amiga will automatically redraw your graph.

This option can be useful in determining what an equation will look like for values of $X$ that are much larger than those used to estimate the regression equation.

## Selecting an Equation

If a plot of your data suggests that the association between $Y$ and $X$ is nonlinear, use the Estimate a New Equation option to return to the main menu. You can then choose to fit a power, exponential, or reciprocal equation to your data. It's usually a good idea to begin with the commonplace linear function, however. This is the simplest case, and gives a good baseline for further analysis.

A word of warning. The reciprocal equation always generates a rectangular hyperbola. Hence, two separate curves that are asymptotic with respect to
the Y axis will appear when you plot a full picture. In most cases you'll probably want to ignore the curve on the left. Finally, don't worry about values of $X$ for which a curve is undefined. Scatter Diagram jumps over these.

Scatter Diagram is a powerful statistical tool for plotting points and drawing trend lines. With it you can scale axes, view all the quadrants of a graph or just the first, and compute several types of regression equations. You may want to use Scatter Diagram as a prelude to a full-blown multiple linear regression analysis, covered next in this chapter.

Table 7-1. Victories and Turnovers
(First 10 Games of the 1983 Season)

Team	Percent Wins	Net Turnovers   Per Game
Washington	80	2.5
Seattle	60	1.8
Minnesota	60	1.7
Miami	70	1.0
Dallas	90	0.9
Baltimore	60	0.7
Kansas City	40	0.7
San Francisco	60	0.7
Pittlburgh	80	0.5
Atlanta	40	0.4
Denver	60	0.3
Tampa Bay	10	0.3
Cincinnati	40	0.2
Buffalo	60	0.1
New England	50	-0.1
Detroit	50	-0.4
New Orleans	60	-0.4
L.A. Rams	60	-0.5
N.Y. Jets	40	-0.5
Philadelphia	40	-0.5
Cleveland	50	-0.7
N.Y. Giants	25	-0.7
Chicago	30	-1.0
St. Louis	35	-1.0
Green Bay	50	-1.3
L.A. Raiders	70	-1.4
San Diego	30	-1.6
Houston	0	-1.7

Note: Net Turnovers $=$ fumbles and interceptions recovered minus number committed.

Figure 7-1. Equation to Estimate


Figure 7-2. Scatter Diagram


Program 7-1. Scatter Diagram
Save using the filename SCATTER
REM SCATTER DIAGRAM GOSUB INITIALIZE GOSUB ENTER.DATA GOSUB EDIT.DATA GOSUB SCALE.AXES GOSUB MAIN.MENU RETURN

```
INITIALIZE:
 GOSUB SETSCREEN
 GOSUB KEYVALUES
 GOSUB SETMENUS
 GOSUB SETCOLORS
 GOSUB SHAPES
 GOSUB HEADING
 GOSUB INSTRUCTIONS
RETURN
SETSCREEN:
 SCREEN 1,640,200,3,2
 WINDOW 2,"Scatter Diagram",,\varnothing,1
RETURN
KEYVALUES:
 RANDOMIZE TIMER
 DEFINT A-J,L-W: DEFDBL A,B,M,S
 REM MAXIMUM NUMBER OF OBSERVATIONS
 DATA 1\varnothing\emptyset
 READ NX
 OPTION BASE l
 DIM X(NX,2),XT(NX),YT(NX)
 DIM DISCS(2Ø\varnothing),CIRCLES(150)
 REM SHAPE INDICES
 DISC.I(1) = 1: DISC.I(2) = 1Ø\emptyset
 CIRCLE.I(1) = 1: CIRCLE.I(2) = 75
 GOSUB OUTPUT.FORMATS
 GOSUB MENU.CHOICES
 GOSUB ERROR.CODES
 GOSUB GRID.DATA
 V$(1) = "Y": V$(2) = "X"
 REM MAX VALUE FOR AXIS INCREMENTS
 MAX.VALUE = 5ØØØ\emptyset\emptyset&
RETURN
OUTPUT.FORMATS.
 FOR I=2 TO 6
 S$ = STRING$(12-I,"#")
 F$(I) = S$ + "." + STRING$(I,"#")
 NEXT
RETURN
MENU.CHOICES:
 REM EQUATIONS
 DATA Y = a + b*X, Linear, Y = a* X^b
 DATA Y = a*e^(b*X), Exponential
 DATA Y = a + b/X, Reciprocal
 FOR I=1 TO 4
```

```
 READ PICK.EQS(I), PICK.NM$(I)
 NEXT
REM GRAPH
 DATA Show Title, Draw Grid
 DATA Change Axis Intervals
 DATA Show Equation, Show R-Squared
 DATA Predict Value of Y
 DATA Estimate a New Equation
 FOR I=1 TO 7
 READ GRAPH$(I)
 NEXT
RETURN
ERROR.CODES :
 DATA I can't take the log of zero
 DATA I can't divide by zero
 DATA I can't estimate your equation
 FOR I=1 TO 3
 READ ERROR.CODE$(I)
 NEXT
RETURN
GRID.DATA:
 REM ORIGIN
 DATA 110,138
 DATA 305,84
 FOR I=1 TO 2
 READ CX(I),CY(I)
 NEXT
 REM PLOT VALUES
 DATA 12,156,18,45,565,65
 READ YF%%, YL%%, YT%%, XF%%, XL%% , XT%%
 REM ACTUAL-TO-SCREEN COORDINATES
 DEF FN YS(V!) = CY - 18/YD*V!
 DEF FN XS(V\) = CX + 65/XD*V!
RETURN
SETMENUS:
 DATA 5, Color, Tan, Blue, Green, Gray
 DATA Random
 DATA 2, Quadrant, View the First
 DATA View them All
 DATA l, Options, Show Title
 DATA 5, Decimals, 2 Places, 3 Places, }4\mathrm{ Places
 DATA 5 Places, }6\mathrm{ Places
 DATA 3, Stop, Go to BASIC
 DATA Go to Statistics Menu, Go to System
 FOR I=1 TO 5
 READ NUMBER
```

```
 FOR J=Ø TO NUMBER
 READ TITLES
 IF J<>\varnothing THEN TITLES = SPACES(3) + TITLES
 STATUS = 1
 IF I=1 OR I=2 OR I=4 THEN
 IF J = l THEN STATUS = 2
 END IF
 MENU I,J,STATUS,TITLE$
 NEXT J,I
 FOR I=2 TO 7
 MENU 3,I,1,SPACE$(3) + GRAPH$(I)
NEXT
MENU 3,0,\varnothing
KOLOR% = l: QUADRANT = 1: DP = 2
FS = F$(DP)
RETURN
SETCOLORS:
 REM TAN, BLUE, GREEN, GRAY
 DATA .95,.7,.53, . 36,.57,1
 DATA . 22,.76,.68,.72,.7,.86
 FOR I=1 TO 4
 FOR J=1 TO 3
 READ KOLOR(I,J)
 NEXT J,I
 REM TAN, GREEN, & RED
 PALETTE 4,.95,.7,.53
 PALETTE 5,.14,.43,0
 PALETTE 6,.93,.2,0
RETURN
SHAPES:
 REM DISCS
 X=313: Y=80
 LINE(X-12,Y-5)-(X+12,Y+5),4,BF
 FOR I=1 TO 2
 K% = 7-I
 CIRCLE(X,Y),12,K%: PAINT(X,Y),K%
 GET(X-12,Y-5)-(X+12,Y+5),DISCS(DISC.I(I))
 NEXT
REM CIRCLES
 CLS
 X1 =X-7: X2 = X+7: Y1 = Y-3: Y2 = Y+3
 LINE(X1,Y1)-(X2,Y2),4,BF
 FOR I=1 TO 2
 K% = ll-5*I
 CIRCLE(X,Y),7,2: PAINT(X,Y),K%,2
 GET(X1,Y1)-(X2,Y2),CIRCLES(CIRCLE.I(I))
 NEXT
RETURN
```

```
HEADING:
 MENU ON
 ON MENU GOSUB OPTIONS
 CLS
 COLOR 3,\varnothing: LOCATE 18,30:PRINT "then"
 COLOR 1,\varnothing
 LOCATE 10,24: PRINT "Scatter Diagram"
 LOCATE 17,24: PRINT "Please use menus,"
 LOCATE 19,21: PRINT "Click mouse to start"
 GOSUB CLICKIT
RETURN
OPTIONS:
 ID = MENU(\emptyset): ITEM = MENU(1)
 ON ID GOSUB MENU1,MENU2,MENU3,MENU4,GOODBYE
 ITEM = Ø
RETURN
MENUL:
 Kl = KOLOR(ITEM,1): K2 = KOLOR(ITEM,2)
 K3 = KOLOR(ITEM,3)
 IF ITEM=5 THEN Kl=RND: K2=RND: K3=RND
 PALETTE 4,K1,K2,K3
 MENU 1,KOLOR%,1: MENU 1,ITEM,2
 KOLOR% = ITEM
RETURN
MENU2:
 MENU 2,QUADRANT,1: MENU 2,ITEM,2
 QUADRANT = ITEM
 ACTION% = 8
RETURN
MENU3 :
 ACTION% = ITEM
RETURN
MENU4 :
 MENU 4,DP-1,1: MENU 4,ITEM,2
 DP = ITEM + 1
 FS = F$(DP)
RETURN
GOODBYE :
 WINDOW CLOSE 2: WINDOW 1: MENU RESET
 SCREEN CLOSE 1
 IF ITEM = 2 THEN RUN "STATISTICS"
 IF ITEM = 3 THEN SYSTEM
 COLOR 1,\varnothing: CLS
```

```
 PRINT "Bye-Bye"
 STOP
RETURN
CLICKIT:
 S$ = ""
 WHILE MOUSE(\varnothing) = Ø AND S$ = ""
 S$ = INKEY$
 WEND
 X = MOUSE(1)
 Y = MOUSE(2)
 WHILE MOUSE(Ø)<> Ø: WEND: REM RESET
RETURN
INSTRUCTIONS :
 CLS
 PRINT
 PRINT " Scatter Diagram draws a line of";
 PRINT " best-fit through a set"
 PRINT " of observations plotted on an";
 PRINT " X-Y grid."
 PRINT
 PRINT " And this is just the beginning.";
 PRINT " For with Scatter Diagram"
 PRINT " you can"
 PRINT
 PRINT TAB(12)
 PRINT "-- View all the quadrants or just";
 PRINT " the first,"
 PRINT TAB(12)
 PRINT "-- predict Y for any value of X, and"
 PRINT TAB(12)
 PRINT "-- Estimate four types of curves."
 PRINT
 PRINT " And you can do all this without";
 PRINT " having to enter data"
 PRINT " more than once."
 LOCATE 19,27:PRINT "Click Mouse"
 GOSUB CLICKIT
RETURN
ENTER.DATA:
 REM Y
 CLS
 PRINT
 PRINT " Please enter observations on the";
 PRINT " dependent variable, Y."
 PRINT " Hit RETURN when you're through."
 GOSUB ON.Y
```

```
 REM X
 GOSUB ON.X
RETURN
ON.Y:
 GOSUB GURGLE
 N = NX
 FOR J=1 TO NX
 LOCATE 5,14: PRINT SPACE$(30)
 LOCATE 5,3: PRINT "Y(";J
 LOCATE 5,9: PRINT ")= ? ";
 INPUT "",X$
 IF X$ = "" THEN
 N = J-l
 J = NX
 ELSE
 X(J,1) = VAL(X$)
 END IF
 NEXT
 REM DEGREES OF FREEDOM
 IF N < 2 THEN
 LOCATE 18,10: PRINT "I need at least 2";
 PRINT " observations l Try again."
 GOTO ON.Y
 END IF
RETURN
GURGLE:
 FREQ = 30\varnothing
 FOR G=1 TO 5
 FREQ = 5ØØ-FREQ
 SOUND FREQ,1,50
 NEXT G
RETURN
ON.X:
 CLS
 GOSUB GURGLE
 PRINT
 PRINT " Please enter data on the explanatory";
 PRINT " variable, X."
 FOR J=1 TO N
 LOCATE 4,14: PRINT SPACES(30)
 LOCATE 4,3: PRINT "X(";J
 LOCATE 4,9: PRINT ")= ? ";
 INPUT "",X$
 X(J,2) = VAL(X$)
 NEXT
RETURN
```

```
EDIT.DATA:
 FOR I=1 TO 2
 FOR J=1 TO N STEP 10
 GOSUB DISPLAY
 GOSUB CORRECT
 NEXT J,I
RETURN
DISPLAY:
 CLS
 LINE(2ø\varnothing,7)-(430,17), 6, BF
 COLOR 1,6
 LOCATE 2,22
 PRINT "These are values of " + V$(I)
 LINE (40,22)-(590,119),2,B: PAINT(313,80),4,2
 COLOR 2,4
 R = Ø: H.ROW = \varnothing
 FOR L = J TO J+9
 IF L <= N THEN
 R = R+l
 CALL DRAW.IT(R,1)
 LOCATE R+3,10: PRINT V$(I);"(";MID$(STR$(L), 2)
 LOCATE R+3,15: PRINT ")= ";X(L,I)
 END IF
 NEXT L
RETURN
SUB DRAW.IT(RW,INX) STATIC
 SHARED CIRCLES(),CIRCLE.I()
 Y = (RW+3)*9 - 9
 PUT(65,Y),CIRCLES(CIRCLE.I(INX)),PSET
END SUB
CORRECT:
 LINE(262,132)-(360,144),2,B: PAINT(313,137),3,2
 COLOR 2,3
 LOCATE 16: PRINT PTAB(282)"Return"
 COLOR l,ø
 LOCATE 19,9: PRINT "Click on Circle to";
 PRINT " Edit, then Click on Return."
 GOSUB CHOOSE
 IF H.ROW <> Ø THEN
 GOSUB CHANGE: GOTO CORRECT
 END IF
RETURN
CHOOSE:
RTN$ = "OFF"
GOSUB GURGLE
```

```
GOSUB CLICKIT
IF S$ = "" THEN GOSUB LOCATION
IF ASC(S$+" ") <> 13 AND RTN$ = "OFF" THEN
 GOTO CHOOSE
END IF
RETURN
LOCATION:
 IF X>263 AND X<360 AND Y> 131 AND Y<145 THEN
 RTN$ = "ON"
 ELSE
 ROW = INT(Y/9) - 2
 IF ROW>\emptyset AND ROW<=R AND X>55 AND X<9\emptyset THEN
 IF H.ROW <> \emptyset THEN CALL DRAW.IT(H.ROW,l)
 CALL DRAW.IT(ROW,2)
 H.ROW = ROW
 END IF
 END IF
RETURN
```


## CHANGE:

$\operatorname{LINE}(262,132)-(36 \varnothing, 144), \varnothing, B F$
LINE $(65,133)-(185,143), 5, \mathrm{BF}$
COLOR 1,5
LOCATE 16,8: PRINT "New Value ?"
COLOR $1, \varnothing$
LOCATE 16,21: INPUT "",V\$
X(J+H.ROW-1,I) = VAL(V\$)
COLOR 2,4
LOCATE H.ROW+3,18: PRINT SPACE (3ø)
LOCATE H. ROW+3,18: PRINT X(J+H.ROW-1,I)
CALL DRAW.IT(H.ROW, 1)
H. ROW $=\varnothing$
$\operatorname{LINE}(65,133)-(185,143), \varnothing, B F$
COLOR $1, \varnothing$
LOCATE 16,21: PRINT SPACE (30)
RETURN

```
SCALE.AXES:
 GOSUB HIGH.LOW
 Q = QUADRANT
 GOSUB TIC.MARKS
RETURN
```

HIGH.LOW:
HY! = -lE+lø: HX! = HY!
LY! = LE+1ø: LX! = LY!
FOR J=1 TO N
IF $\mathrm{X}(\mathrm{J}, \mathrm{l})$ > HY! THEN HY! $=\mathrm{X}(\mathrm{J}, \mathrm{l})$

```
 IF X(J,2) > HX! THEN HX! = X(J,2)
 IF X(J,l) < LY! THEN LY! = X(J,1)
 IF X(J,2) < LX! THEN LX! = X(J,2)
 NEXT
RETURN
TIC.MARKS:
 IF Q = 1 THEN D = 6 ELSE D = 3
 REM Y AXIS
 H! = ABS(HY!): L! = ABS(LY!)
 IF H! >= L! THEN Y = H!
 IF L! > H! THEN Y = L!
 YD = INT(Y/D + .5)
 REM X AXIS
 H! = ABS(HX!): L! = ABS(LX!)
 IF H! >= L! THEN X = H!
 IF L! > H! THEN X = L!
 XD = INT(X/D + .5)
 GOSUB CHECK.BOUNDS
RETURN
CHECK.BOUNDS:
 IF YD = Ø THEN YD = . 5
 IF YD > MAX.VALUE THEN YD = MAX.VALUE
 IF XD = Ø THEN XD = . 5
 IF XD > MAX.VALUE THEN XD = MAX.VALUE
RETURN
MAIN.MENU:
 PICK = l: RTN$ = "OFF": GOOF = \varnothing
 GOSUB SHOW.CHOICES
 GOSUB SELECT
 IF Q <> QUADRANT THEN GOSUB SCALE.AXES
 GOSUB COMPUTE
 GOTO MAIN.MENU
RETURN
SHOW.CHOICES:
 COLOR 1,\varnothing
 CLS
 LOCATE 3: PRINT PTAB(215)"Equation to Estimate"
 LINE(135,35)-(495,120),2,B: PAINT(313,80),4,2
 COLOR 2,4
 FOR I=1 TO 4
 IF I = PICK THEN INX = 2 ELSE INX = 1
 CALL DRAW.CIRCLE(I,INX)
 LOCATE I* 2+4,21: PRINT PICK.EQS(I);
 PRINT TAB(37)PICK.NMS(I)
 NEXT
```

```
LINE(262,141)-(360, 153), 2, B: PAINT(313,145), 3, 2
COLOR 2,3
LOCATE 17: PRINT PTAB(282)"Return"
COLOR 1,0
LOCATE 19,11: PRINT "Click Mouse on Choice;";
PRINT " then Click on Return"
RETURN
```

```
SUB DRAW.CIRCLE(R,INX) STATIC
```

SUB DRAW.CIRCLE(R,INX) STATIC
SHARED DISCS(),DISC.I()
SHARED DISCS(),DISC.I()
Y = 18*R+22
Y = 18*R+22
PUT(162,Y),DISCS(DISC.I(INX)),PSET
PUT(162,Y),DISCS(DISC.I(INX)),PSET
END SUB

```
END SUB
```

SELECT:
GOSUB GURGLE
GOSUB CLICKIT
IF $S \$=" "$ THEN GOSUB POSITION
IF ASC(S\$+" ") <> 13 AND RTN\$ = "OFF" THEN
GOTO SELECT
END IF
RETURN
POSITION:
IF $X>263$ AND $X<36 \emptyset$ AND $Y>141$ AND $Y<153$ THEN
RTN\$ = "ON"
ELSE
$P=\operatorname{INT}((Y-39) / 18)+1$
IF X>155 AND X<195 AND P>Ø AND P<5 THEN
CALL DRAW.CIRCLE (PICK, 1)
CALL DRAW.CIRCLE (P,2)
PICK = P
END IF
END IF
RETURN
COMPUTE:
COLOR 1, $\varnothing$
CLS
LOCATE 10,27: PRINT "Computing"
REM TRANSFORM DATA
ON PICK GOSUB LINEAR, POWER, EXPNL, RECPRL
REM ESTIMATE EQUATION \& SHOW RESULTS
IF GOOF $=\varnothing$ THEN GOSUB ESTIMATE
IF GOOF $=\varnothing$ THEN GOSUB DRAW.GRAPH
IF GOOF $=\varnothing$ THEN GOSUB NEXT.ACTION
REM ERROR
IF GOOF <> Ø THEN GOSUB GOOF
RETURN

```
LINEAR:
 FOR I=1 TO N
 YT(I) = X(I,I)
 XT(I) = X(I,2)
 NEXT
RETURN
```


## POWER:

```
 FOR I=l TO N
 IF X(I,l) > Ø THEN
 YT(I) = LOG(X(I,I))
 ELSE
 GOOF = l: I = N
 END IF
 IF X(I,2) > Ø THEN
 XT(I) = LOG(X(I,2))
 ELSE
 GOOF = l: I = N
 END IF
 NEXT
RETURN
GOOF:
 CLS
 SOUND 40ø,3: SOUND 3ø0,3: SOUND 2øø,3
 COLOR 1,6
 LINE(283,61)-(335,71),6,BF
 LOCATE 8,30: PRINT "GOOf"
 S$ = ERROR.CODE$(GOOF)
 COLOR 1,\varnothing
 LOCATE 10: PRINT PTAB(313-10*LEN(S$)/2)S$
 LOCATE 17,26: PRINT "Press any key"
 GOSUB CLICKIT
RETURN
EXPNL:
 FOR I=l TO N
 XT(I) = X(I,2)
 IF X(I,l) > Ø THEN
 YT(I) = LOG(X(I,I))
 ELSE
 GOOF = 1: I = N
 END IF
 NEXT
RETURN
RECPRL:
 FOR I=1 TO N
 YT(I) = X(I,l)
```

```
 IF X(I,2) <> Ø THEN
 XT(I) = 1/X(I, 2)
ELSE
 GOOF = 2: I = N
 END IF
 NEXT
RETURN
ESTIMATE:
 REM KEY SUMS
 SX=\varnothing: SY=\varnothing: SQ.X=\emptyset: SQ.Y=\varnothing: CP# = Ø
 FOR I=1 TO N
 SX = SX + XT(I)
 SY = SY + YT(I)
 SQ.X = SQ.X + XT(I ^^2
 SQ.Y = SQ.Y + YT(I)^2
 CP# = CP# + XT(I)*YT(I)
 NEXT
 REM KEY DENOMINATOR
 DMT# = N*SQ.X - SX*SX
 IF DMT# = Ø THEN GOOF = 3
 REM EQUATION
 IF GOOF = Ø THEN
 B = (N*CP# - SX*SY)/DMT#
 A = (SY - B*SX)/N
 IF PICK = 2 OR PICK = 3 THEN A = EXP(A)
 END IF
 REM R-SQUARED
 SS.TOTAL = SQ.Y - SY*SY/N
 SS.REGRN = B*(CP# - SX*SY/N)
 IF SS.TOTAL <> Ø THEN
 RSQ! = SS.REGRN/SS.TOTAL
 ELSE
 GOOF = 3
 END IF
RETURN
DRAW.GRAPH:
 GOSUB DRAW.AXES
 GOSUB LABEL.AXES
 GOSUB PLOT.POINTS
 GOSUB DRAW.CURVE
RETURN
DRAW.AXES:
 CLS
 LINE(6,3)-(620,160),6,B: PAINT(313,80),4,6
 CX = CX(Q): CY = CY(Q)
 REM Y AXIS
```

```
 COLOR 2,4
 FOR I = CX-1 TO CX+1
 LINE(I,YF%)-(I,YL%)
 NEXT
 FOR I = YF% TO YL% STEP YT%
 LINE(CX-2,I)-(CX+2,I)
 NEXT
 REM X AXIS
 LINE(XF% , CY)-(XL% , CY)
 FOR I = XF% TO XL% STEP XT%
 FOR J = I-1 TO I+1
 LINE(J,CY-1)-(J,CY+1)
 NEXT J,I
RETURN
LABEL.AXES:
 REM Y AXIS
 YD = ABS(YD)
 FOR I=1 TO 10-3*Q
 Y = YD*I
 L = LEN(STR$(Y))
 LOCATE 22-6*Q-2*I,19*Q-9-L: PRINT Y
 NEXT
 REM X AXIS
 XD = ABS(XD)
 FOR I=1 TO 7-2*Q STEP 2
 X = XD*I
 L = LEN(STR$(X))
 IF Q = 1 THEN
 LOCATE 17: PRINT PTAB(105+65*I-L*1ø/2);X
 ELSE
 LOCATE 11: PRINT PTAB(3Ø\emptyset+65*I-L*1Ø/2);X
 END IF
 NEXT
 LOCATE 22-6*Q: PRINT PTAB(570)"x"
 LOCATE 17: PRINT PTAB(CX-2Ø)"y"
RETURN
PLOT.POINTS:
 FOR I=l TO N
 Y = FN YS(X(I,l))
 X = FN XS(X(I, 2))
 X$ = "OFF": Y$ = "OFF"
 IF X >= XF% AND X <= XL% THEN X$ = "OK"
 IF Y >= YF% AND Y <= YL% THEN Y$ = "OK"
 IF X$ = "OK" AND Y$ = "OK" THEN
 CIRCLE(X,Y),3,6: PAINT(X,Y),6
 END IF
 NEXT
RETURN
```

```
DRAW.CURVE:
 XB = XD* (XF'% - CX)/65
 XE = XD* (XL% - CX)/65
 DL! = (XE-XB)/2\emptyset\emptyset
 HOLD$ = "OFF"
 FOR X = XB TO XE STEP DL!
 COLOR 1,\varnothing: LOCATE 20,29: PRINT "X =";
 PRINT INT(X*1\emptyset+.5)/10;SPACE$(7);
 COLOR 0.4
 ES = "OFF"
 ON PICK GOSUB EQ1,EQ2,EQ3,EQ4: REM Y-HAT
 Xl = FN XS(X): Yl = FN YS(Y)
 IF ES = "ON" OR Yl < YF% OR Y1 > YL% THEN
 HOLD$ = "OFF"
 ELSE
 IF HOLD$ = "ON" THEN LINE(HX!,HY!)-(Xl,Y1)
 IF HOLD$ = "OFF" THEN PSET(XI,YI)
 HX! = XI: HY! = Yl: HOLD$ = "ON"
 END IF
NEXT X
RETURN
EQ1 :
 Y = A + B*X
RETURN
EQ2 :
 IF X <= Ø THEN ES = "ON" ELSE Y = A*X^B
RETURN
EQ3 :
 Y = A*EXP(B*X)
RETURN
EQ4 :
 IF X = Ø THEN E$ = "ON" ELSE Y = A + B/X
RETURN
NEXT.ACTION :
 MENU 3,0,1
 COLOR 1,\varnothing
 LOCATE 20,23: PRINT "Use the Options Menu";
 ACTION% = Ø
 WHILE ACTION% = Ø: WEND
 GOSUB CLEAR.BOTTOM
 IF ACTION% = 1 THEN GOSUB TITLE
 IF ACTION% = 2 THEN GOSUB GRID
 IF ACTION% = 3 THEN GOSUB AXES
 IF ACTION% = 4 THEN GOSUB EQUATION
```

```
 IF ACTION% = 5 THEN GOSUB RSQUARED
 IF ACTION% = 6 THEN GOSUB PREDICT
 IF ACTION% = 8 THEN GOSUB NEW.QUADRANT
 IF ACTION% <> }7\mathrm{ THEN NEXT.ACTION
 MENU 3,0,0
RETURN
CLEAR.BOTTOM:
 FOR I=1 TO 2
 LOCATE 18+I,3: PRINT SPACE$(40);
 NEXT I
RETURN
TITLE:
 IF Q = 2 THEN
 LINE(3Ø3,12)-(307,29),4,BF
 END IF
 S$ = PICK.NMS(PICK) + " Function: "
 S$ = S$ + PICK.EQS(PICK)
 L = LEN(S$)
 LINE(313-1\varnothing*L/2-15,6)-(313+10*L/2+15,18), 2,B
 PAINT(313,12),6,2
 COLOR 1,6: LOCATE 2: PRINT PTAB(313-1\varnothing*L/2)S$
RETURN
GRID:
 IF Q = 1 THEN
 Xl% = XF% + 2*XT%
 Y2% = YL% - 2*YT%
ELSE
 XI% = XF%
 Y2% = YL%
END IF
FOR I = YF%+YT% TO Y2% STEP YT%
 FOR J = Xl% TO XL% STEP XT%
 LINE(J-2,I)-(J+2,I),2
 NEXT J,I
RETURN
AXES:
 FOR I=1 TO 2
 S$ = "New " + CHR$(87+I)
 S$ = S$ + "-Axis Increment = "
 GOSUB GURGLE
 LOCATE 20,5: PRINT S$;
 LINE INPUT ;"? ";S$
 LOCATE 20,30: PRINT SPACE$(15);
 IF I = l THEN XD = VAL(S$) ELSE YD = VAL(S$)
NEXT I
```


## CHAPTER 7

```
 GOSUB CHECK.BOUNDS
 GOSUB DRAW.GRAPH
RETURN
EQUATION:
 LOCATE 19,3: PRINT "a =";
 PRINT USING F$;A
 LOCATE 20,3: PRINT "b =";
 PRINT USING F$;B;
RETURN
```

```
RSQUARED:
 LOCATE 20,3: PRINT "RSq =";
 PRINT USING MID$(F$,5);RSQ!;
RETURN
```

```
PREDICT:
```

PREDICT:
LOCATE 19,3: PRINT "Value of X = ";
LOCATE 19,3: PRINT "Value of X = ";
GOSUB GURGLE
GOSUB GURGLE
LINE INPUT ;"? ";X\$
LINE INPUT ;"? ";X\$
X = VAL(X$)
    X = VAL(X$)
E\$ = "OFF"
E\$ = "OFF"
ON PICK GOSUB EQ1,EQ2,EQ3,EQ4
ON PICK GOSUB EQ1,EQ2,EQ3,EQ4
IF E\$ <> "ON" THEN
IF E\$ <> "ON" THEN
LOCATE 20,3: PRINT "Y =";
LOCATE 20,3: PRINT "Y =";
PRINT USING F$;Y;
        PRINT USING F$;Y;
ELSE
ELSE
LOCATE 2ø,3: PRINT "Y is undefined !";
LOCATE 2ø,3: PRINT "Y is undefined !";
END IF
END IF
RETURN
RETURN
NEW.QUADRANT:
NEW.QUADRANT:
GOSUB SCALE.AXES
GOSUB SCALE.AXES
GOSUB DRAW.GRAPH
GOSUB DRAW.GRAPH
RETURN

```
RETURN
```


## Super Curve-Fitter

Super Curve-Fitter is a multiple linear regression routine that enables you to estimate, in numerical form, the cause-and-effect relationship between variables.

Suppose, for example, that we want to explain the volume of immigration to the United States from 1889 to 1918, as shown in Table 7-2. Our hypothesis is twofold: (1) that immigration depends upon income, and (2) that World War I may have affected the flow of citizens from foreign nations into America.

To test these suppositions, first key in data on the three variables: Immigration, Gross National Product (GNP), and Wartime. The yearly volume of immigration is called the dependent variable in the equation and is denoted by Y .

Enter 444 for the year 1889, 455 for 1890 , and so on. Then enter observations on the two explanatory variables, GNP and Wartime, denoted by X1 and X 2 , respectively.

After all of the observations are entered, the computer asks us to edit the data. Click the mouse on the circle beside each number you see when you run the program. Then enter the corrected value. When you don't have any more entries to edit, click the mouse on the Return bar at the bottom of the screen or simply press RETURN on the keyboard.

The Amiga estimates the regression equation and displays the results (Figure 7-3).

The estimated values 9.779 and -901.862 are called regression coefficients. They measure the impact on Y of a one-unit change in the value of an explanatory variable, with all other X's held constant. Since X1 is the variable on GNP, the 9.779 means that each $\$ 1$ billion increase in real income in the U.S. induced roughly 9.8 thousand more immigrants to enter America per annum.

Similarly, the figure - 901.862 means that the war induced roughly 901 thousand would-be immigrants to stay home. In short, then, immigration increased when the U.S. economy was healthy and decreased when the country was embattled.

A $t$-ratio is the value of a term divided by its estimated standard error. As a rough rule of thumb, a t-value of 2 or more means that an explanatory variable is statistically significant in explaining changes in Y , as are GNP and Wartime in the example.

The total variation in the dependent variable about its mean is called the Total Sum of Squares. It equals the regression sum of squares (the variation in Y explained by the regression equation) plus the residual sum of squares (the unexplained variation in Y ).

The next three figures are called goodness-of-fit statistics. The coefficient of determination, or $R$-squared, is the proportion of variation in the dependent variable explained by the regression equation. In the example, roughly 70 percent of the fluctuation in yearly immigration is explained by changes in real GNP and by World War I.

The F-Statistic measures the power of the regression equation in explaining $Y$. As a rough rule of thumb, an $F$ value of 4 or more means that the $X$ 's explain Y well.

The Standard Error of the Estimate is, roughly speaking, the average error made in predicting immigration based on X1 and X2. That is, the predictions are off by roughly 192 thousand persons per year on average.

Finally, the Durbin-Watson statistic is used in testing for something called first-order serial correlation, or for linear association between successive regression residuals (a residual is the observed minus the predicted value of Y ).

Figure 7-3. Regression Equation


Table 7-2. Immigration Data

Year	Number of Immigrants (thousands)	Gross National Product (billions \$)	Wartime Variable ( $0=$ peace and $1=$ war)
1889	444	49.1	0
1890	455	52.7	0
1891	560	55.1	0
1892	580	60.4	0
1893	440	57.5	0
1894	286	55.9	0
1895	259	62.6	0
1896	343	61.3	0
1897	231	67.1	0
1898	229	68.6	0
1899	312	74.8	0
1900	449	76.9	0
1901	488	85.7	0
1902	649	86.5	0
1903	857	90.8	0
1904	813	89.7	0
1905	1026	96.3	0
1906	1101	107.5	0
1907	1285	109.2	0
1908	783	100.2	0
1909	752	116.8	0
1910	1042	120.1	0
1911	879	123.2	0
1912	838	130.2	0
1913	1198	131.4	0
1914	1218	125.6	0
1915	327	124.5	1
1916	299	134.3	1
1917	295	135.2	1
1918	111	151.8	1

Note: GNP, or national income, is in constant 1958 prices.

```
Program 7-2. Super Curve-Fitter
Save using the filename SUPER
REM SUPER CURVE-FITTER
 CLEAR ,32ØØØ
 GOSUB INITIALIZE
 GOSUB ENTER.DATA
CONTINUE:
 GOSUB EDIT.DATA
 GOSUB COMPUTE
 IF GOOF = Ø THEN
 GOSUB SHOW.RESULTS
 ELSE
 IF CNT$ = "YES" THEN CONTINUE
 END IF
 GOSUB GOODBYE
END
INITIALIZE:
 GOSUB SETSCREEN
 GOSUB KEYVALUES
 GOSUB SETMENUS
 GOSUB SETCOLORS
 GOSUB SHAPES
 GOSUB HEADING
 IF INSTRUCTIONS = 1 THEN GOSUB INSTRUCTIONS
RETURN
SETSCREEN:
 SCREEN 1,640,2ø0,3,2
 WINDOW 2,"Super Curve-Fitter",,ø,1
RETURN
KEYVALUES:
 RANDOMIZE TIMER
 DEFINT A-Z: DEFDBL B-F,Q-W
 REM make X DBL for VERY big or small raw data
 DEFSNG X
 REM MAXIMUM NUMBER OF OBSERVATIONS & X'S
 DATA 75,6
 READ NX,KX
 M = KX + I
 DIM B(M),C(M),B$(M),V$(M),R(M,M),V(M,M)
 DIM Q(NX,M),X(NX,M),XT#(NX,M)
 DIM CIRCLES%(150)
 REM BUTTON VALUES
 XB(1) = 292: XB(2) = 334: YB = 165
 LT$(1) = "Y": LT$(2) = "N"
 REM SHAPE INDICES
```

```
 INDEX(1) = 1: INDEX(2) = 75
 GOSUB CREATE.SYMBOLS
 GOSUB OUTPUT.FORMATS
 ZERO$ = STRING$(1\varnothing,"\varnothing")
RETURN
CREATE.SYMBOLS:
 V$(\varnothing) = "Y": B$(\varnothing) = "B\emptyset"
 FOR I=1 TO KX
 V$(I) = "X" + MID$(STR$(I),2)
 B$(I) = "B" + MID$(STR$(I),2)
 NEXT
RETURN
OUTPUT.FORMATS:
 FOR I=2 TO 6
 F$(I) = STRING$(14-I,"#")
 F$(I) = F$(I) + "." + STRING$(I,"#")
 NEXT
RETURN
SETMENUS:
 DATA 2, Instructions, Yes, No
 DATA 5, Color, Tan, Blue, Green, Gray
 DATA Random
 DATA 5, Decimals, 2 Places, }3\mathrm{ Places, 4 Places
 DATA 5 Places, 6 Places
 DATA 3, Stop, Go to BASIC
 DATA Go to Statistics Menu, Go to System
 FOR I=1 TO 4
 READ NUMBER
 FOR J=\emptyset TO NUMBER
 READ TITLES
 IF J<>\varnothing THEN TITLE$ = SPACE$(3) + TITLE$
 STATUS = 1
 IF I < 3 AND J = 1 THEN STATUS = 2
 IF I = 3 AND J = 2 THEN STATUS = 2
 MENU I,J,STATUS,TITLES
 NEXT J,I
 INSTRUCTIONS = 1: KOLOR = 1: DP% = 3
 FS = F$(DP%)
 F.SHORT$ = MID$(F$,5)
RETURN
SETCOLORS:
 REM TAN, BLUE, GREEN, GRAY
 DATA .95,.7,.53,.36,.57,1
 DATA . 22,.76,.68,.72,.7,.86
 FOR I=1 TO 4
```

```
 FOR J=1 TO 3
 READ KOLOR!(I,J)
 NEXT J,I
 REM TAN, GREEN, & RED
 PALETTE 4,.95,.7,.53
 PALETTE 5,.14,.43,\varnothing
 PALETTE 6,.93,.2,0
RETURN
SHAPES:
 X=313: Y=80
 X1 = X-7: X2 = X+7: Y1 = Y-3: Y2 = Y+3
 LINE(X1,Y1)-(X2,Y2),4,BF
 CIRCLE(X,Y), 7, 2: PAINT(X,Y), 6, 2
 GET(X1, Y1)-(X2, Y2) ,CIRCLES% (1)
 CIRCLE(X,Y),7,2: PAINT(X,Y),1,2
 GET(X1,Y1)-(X2,Y2),CIRCLES% (75)
RETTURN
HEADING :
 MENU ON
 ON MENU GOSUB OPTIONS
 CLS
 COLOR 3,0: LOCATE 18,30:PRINT "then"
 COLOR 1,\varnothing
 LOCATE 10,23: PRINT "Super Curve-Fitter"
 LOCATE 17,24: PRINT "Please use menus,"
 LOCATE 19,21: PRINT "Click mouse to compute"
 GOSUB CLICKIT
RETURN
OPTIONS:
 ID = MENU(\varnothing): ITEM = MENU(1)
 ON ID GOSUB MENU1,MENU2,MENU3,GOODBYE
 ITEM = Ø
RETURN
MENU1:
 MENU 1,INSTRUCTIONS,1: MENU 1,ITEM, 2
 INSTRUCTIONS = ITEM
RETURN
MENU2:
 Kl! = KOLOR\(ITEM,1): K2! = KOLOR\(ITEM, 2)
 K3! = KOLOR!(ITEM, 3)
 IF ITEM = 5 THEN Kl |=RND: K2l=RND: K3l=RND
 PALETTE 4,Kl\,K2l,K3!
 MENU 2,KOLOR,1: MENU 2,ITEM, 2
 KOLOR = ITEM
RETURN
```

```
MENU3:
 MENU 3,DP%-1,1: MENU 3,ITEM,2
 DP% = ITEM + 1
 FS = F$(DP%)
 F.SHORT$ = MID$(F$,5)
RETURN
GOODBYE:
 WINDOW CLOSE 2: WINDOW 1: MENU RESET
 SCREEN CLOSE l
 IF ITEM = 2 THEN RUN "STATISTICS"
 IF ITEM = 3 THEN SYSTEM
 COLOR 1,\emptyset: CLS
 PRINT "Bye-Bye"
 STOP
RETURN
CLICKIT:
 S$ = ""
 WHILE MOUSE(\varnothing) = Ø AND S$ = ""
 S$ = INKEY$
 WEND
 X = MOUSE(1)
 Y = MOUSE(2)
 WHILE MOUSE(\varnothing)<> \emptyset: WEND: REM RESET
RETURN
INSTRUCTIONS:
 CLS
 PRINT
 PRINT " This program estimates a multiple";
 PRINT " linear regression"
 PRINT " equation.
 PRINT
 PRINT " The maximum numbers of";
 PRINT " observations and explanatory"
 PRINT " variables allowed are:"
 LOCATE 9,10 : PRINT "Observations =";NX
 LOCATE 1\varnothing,10: PRINT "Variables (X's) =";KX
 LOCATE 19,27:PRINT "Click Mouse";
 GOSUB CLICKIT
RETURN
ENTER.DATA:
 GOSUB EQUATION.SIZE
 REM DEPENDENT VARIABLE
 CLS
 PRINT
 PRINT " Please enter observations on the";
```

```
 PRINT " dependent variable, Y."
 PRINT " Hit RETURN when you're through."
 GOSUB ON.Y
REM EXPLANATORY VARIABLES
 FOR I=1 TO K
 GOSUB ON.X
 NEXT I
RETURN
EQUATION.SIZE:
 CLS
 PRINT
 PRINT " Please enter the number of";
 PRINT " explanatory variables (X's)"
 PRINT " in your regression equation. Up to";
 PRINT KX;"are allowed."
 K=\emptyset
 WHILE K < 1 OR K > KX
 LOCATE 6,13: PRINT SPACES(10);
 GOSUB GURGLE
 LOCATE 6,2: INPUT "Number = ";K$
 K = VAL(K$)
 WEND
RETURN
GURGLE :
 FREQ = 30Ø
 FOR G=1 TO 5
 FREQ = 500-FREQ
 SOUND FREQ,1,5\emptyset
 NEXT G
RETURN
ON.Y:
 GOSUB GURGLE
 N = NX
 FOR J=1 TO NX
 LOCATE 5,14: PRINT SPACE$(3Ø)
 LOCATE 5,3: PRINT "Y(";J
 LOCATE 5,9: PRINT ")= ? ";
 INPUT "",X$
 IF X$ = "" THEN
 N}=\textrm{J}-
 J = NX
 ELSE
 X(J,\varnothing) = VAL(X$)
 END IF
NEXT
REM DEGREES OF FREEDOM
```

```
 P = N - K - l
 IF P < l THEN
 LOCATE 18,7: PRINT "I need at least 1";
 PRINT " degree of freedom l Try again."
 GOTO ON.Y
 END IF
RETURN
ON.X:
 CLS
 GOSUB GURGLE
 PRINT
 PRINT " Please enter data on ";V$(I);"."
 FOR J=1 TO N
 LOCATE 4,16: PRINT SPACE$(30)
 LOCATE 4,3: PRINT V$(I);TAB(6)"(";J
 LOCATE 4,11: PRINT ")= ? ";
 INPUT "",X$
 X(J,I) = VAL(X$)
 NEXT J
RETURN
EDIT.DATA:
 FOR I=\emptyset TO K
 FOR J=1 TO N STEP 1\emptyset
 GOSUB DISPLAY
 GOSUB CORRECT
 NEXT J,I
RETURN
DISPLAY:
 CLS
SYM$ = V$(I)
SYM$ = STRING$(2-LEN(SYM$)," ") + SYM$
S$ = "These are values of " + V$(I)
L = LEN(S$)
LINE(313-10*L/2-15,6)-(313+10*L/ 2+15,18),1,B
PAINT(313,10),6,1
COLOR 1,6: LOCATE 2: PRINT PTAB(313-10*L/2)S$
LINE (40, 25)-(590,116),4,BF
COLOR 2,4
R% = Ø: H.ROW = \emptyset
FOR L = J TO J+9
 IF L <= N THEN
 R% = R% + 1
 CALL DRAW.IT(R%,1)
 LOCATE R%+3,10: PRINT SYM$;"(";MID$(STR$(L),2)
 LOCATE R%+3,16: PRINT ")= ";X(L,I)
 END IF
```

```
 NEXT L
RETURN
SUB DRAW.IT(RW%,INX) STATIC
 SHARED CIRCLES%(), INDEX()
 Y = (RW%+3)*9 - 9
 PUT(65,Y),CIRCLES% (INDEX (INX)), PSET
END SUB
CORRECT:
 LINE(262,132)-(360,144), 2, B: PAINT(313,137), 3, 2
 COLOR 2,3
 LOCATE 16: PRINT PTAB(282)"Return"
 COLOR 1,\emptyset
 LOCATE 19,9: PRINT "Click on Circle to";
 PRINT " Edit, then Click on Return."
 GOSUB CHOOSE
 IF H.ROW <> Ø THEN
 GOSUB CHANGE: GOTO CORRECT
 END IF
RETURN
CHOOSE:
 RTNS = "OFF"
 GOSUB GURGLE
 GOSUB CLICKIT
 IF S$ = "" THEN GOSUB LOCATION
 IF ASC(S$+" ") <> 13 AND RTN$ = "OFF" THEN
 GOTO CHOOSE
 END IF
RETURN
LOCATION:
 IF X>263 AND X<360 AND Y> 131 AND Y<l45 THEN
 RTN$ = "ON"
 ELSE
 ROW% = INT(Y/9) - 2
 IF ROW%>\emptyset AND ROW%<=R% AND X>55 AND X<9\emptyset THEN
 IF H.ROW <> Ø THEN CALL DRAW.IT(H.ROW,l)
 CALL DRAW.IT(ROW%, 2)
 H.ROW = ROW%
 END IF
 END IF
RETURN
CHANGE:
 LINE (262,132)-(360, 144),0,BF
 LINE(65,133)-(185,143),5,BF
 COLOR 1,5
```

```
 LOCATE l6,8: PRINT "New Value ?"
 COLOR 1,ø
 LOCATE 16,21: INPUT "",V$
 X(J+H.ROW-1,I) = VAL(V$)
 COLOR 2,4
 LOCATE H.ROW+3,19: PRINT SPACE$(30)
 LOCATE H.ROW+3,19: PRINT X(J+H.ROW-1,I)
 CALL DRAW.IT(H.ROW,l)
 H.ROW = Ø
 LINE(65,133)-(185,143),\varnothing,BF
 COLOR 1,0
 LOCATE 16,21: PRINT SPACE$(30)
RETURN
COMPUTE:
 GOOF = Ø
 COLOR 1,ø
 CLS
 LOCATE 1\varnothing,26: PRINT "Computing ..."
 GOSUB TRANSFER.DATA
 GOSUB ORTHOGONALIZATION
 IF GOOF = \emptyset THEN GOSUB BACKSOLVE
 IF GOOF = Ø THEN GOSUB VAR.COV.MATRIX
 IF GOOF = Ø THEN GOSUB OTHER.STATISTICS
RETURN
TRANSFER.DATA:
 REM CONSTANT TERM
 FOR I=1 TO N
 XT#(I,l) = 1
 NEXT
 REM X'S (MAKE ROOM FOR CONSTANT TERM)
 FOR I=l TO K
 FOR J=1 TO N
 W = X(J,I)
 IF W < Ø THEN SG% = -1 ELSE SG% = 1
 XT#(J,I+1) = SG%*VAL(ZERO$+STR$(ABS(W)))
 NEXT J,I
 M=K+1
RETURN
ORTHOGONALIZATION:
 FOR Z=1 TO M
 GOSUB KEY.ELEMENT.OF.R
 IF GOOF = Ø THEN
 GOSUB COLUMN.OF.Q
 IF Z <> M THEN GOSUB COLUMN.OF.R
 GOSUB ELEMENT.OF.C
 IF Z <> M THEN GOSUB REVISE.X
```

```
 ELSE
 GOSUB GOOF
 Z = M
 END IF
NEXT Z
RETURN
KEY.ELEMENT.OF.R:
 R=\varnothing
 FOR I=l TO N
 R = R + XT# (I, Z)*XT#(I,Z)
 NEXT I
 R(Z,Z)=SQR(R)
 IF R(Z,Z) = Ø THEN GOOF = 1
RETURN
COLUMN.OF.Q:
 FOR I=l TO N
 Q(I,Z)= XT#(I,Z)/R(Z,Z)
 NEXT I
RETURN
COLUMN.OF.R:
 FOR L = Z+1 TO M
 R(Z,L) = \varnothing
 FOR I=1 TO N
 R(Z,L) = R(Z,L) + XT#(I,L)*Q(I,Z)
 NEXT I,L
RETURN
ELEMENT.OF.C:
 C(Z)}=
 FOR I=1 TO N
 C(Z)}=C(Z)+X(I,\varnothing)*Q(I,Z
 NEXT I
RETURN
REVISE.X:
 FOR I=l TO N
 FOR L = Z+1 TO M
 XT#(I,L) = XT#(I,L) - Q(I,Z)*R(Z,L)
 NEXT L,I
RETURN
GOOF:
 CLS
 LINE(82,79)-(150,89),6,BF
 COLOR 1,6
 LOCATE 10,10: PRINT "Sorry:"
```

```
 COLOR 1,\varnothing
 LOCATE 10,17: PRINT "I can't estimate";
 PRINT " a regression equation"
 LOCATE ll,l7: PRINT "with the data you've";
 PRINT " entered."
 LOCATE l7,28: PRINT "Continue ?"
 GOSUB GURGLE
 GOSUB DECIDE
 CNT$ = "NO"
 IF BUTTON% = l THEN CNT$ = "YES"
RETURN
DECIDE:
 BUTTON% = }
 GOSUB DRAWBUTTON
 GOSUB PUSHBUTTON
 COLOR 1,\varnothing
RETURN
DRAWBUTTON:
 LINE (265,158)-(361,172),1,BF
 FOR I=1 TO 2
 CIRCLE (XB(I),YB),12,4+I
 PAINT (XB(I),YB),4+I
 COLOR l,4+I
 LOCATE 19: PRINT PTAB(XB(I)-4);LT$(I);
 NEXT I
RETURN
PUSHBUTTON:
 SOUND 440.2
 GOSUB CLICKIT
 S$ = UCASE$(S$)
 IF S$ = "Y" THEN BUTTON% = 1
 IF S$ = "N" THEN BUTTON% = 2
 FOR I=1 TO 2
 XD = ABS(X-XB(I)): YD = ABS(Y-YB)
 IF XD<13 AND YD<7 THEN BUTTON% = I: I=2
 NEXT
 IF BUTTON% = Ø THEN PUSHBUTTON
RETURN
```


## BACKSOLVE:

```
\(B(M)=C(M) / R(M, M)\)
```

$B(M)=C(M) / R(M, M)$
FOR I $=\mathrm{M}-1$ TO 1 STEP -1
FOR I $=\mathrm{M}-1$ TO 1 STEP -1
REM LEFT-SIDE SUM
REM LEFT-SIDE SUM
$S=\varnothing$
$S=\varnothing$
FOR $\mathrm{J}=\mathrm{I}+1 \mathrm{TO} \mathrm{M}$
FOR $\mathrm{J}=\mathrm{I}+1 \mathrm{TO} \mathrm{M}$
$S=S+R(I, J) * B(J)$

```
 \(S=S+R(I, J) * B(J)\)
```

```
 NEXT J
 REM SOLUTION
 B(I)=(C(I)-S)/R(I,I)
 NEXT I
RETURN
VAR.COV.MATRIX:
 GOSUB ERROR.VARIANCE
 GOSUB INVERT.R
 GOSUB UNSCALED.VAR.COV.MAT
RETURN
ERROR.VARIANCE:
 REM RESIDUALS = Y - Q*C
 FOR I=1 TO N
 S=\varnothing
 FOR J=1 TO M
 S = S + Q(I,J)*C(J)
 NEXT J
 Q(I,\varnothing) = X(I,\varnothing) - S
 NEXT I
 REM ERROR VARIANCE
 ESS = Ø
 FOR I=1 TO N
 ESS = ESS + Q(I, Ø)*Q(I,\varnothing)
 NEXT
 EV = ESS/P
RETURN
INVERT.R:
 FOR I=1 TO M
 V(I,I) = I/R(I,I)
 NEXT
 FOR I = M-1 TO l STEP -1
 FOR J = I+l TO M
 S = Ø
 FOR L = I+1 TO J
 S =S + R(I,L)*V (L,J)
 NEXT L
 V(I,J)=-S/R(I,I)
 NEXT J,I
RETURN
UNSCALED.VAR.COV.MAT:
 FOR I=1 TO M
 FOR J=1 TO M
 R(I,J)=\emptyset
 FOR L=1 TO M
 R(I,J)=R(I,J) +V(I,I)*V(J,L)
```

```
 NEXT L,J,I
RETURN
OTHER.STATISTICS:
 GOSUB ANOVA
 GOSUB DW.STATISTIC
 GOSUB RHO
RETURN
ANOVA:
 REM TOTAL SUM OF SQUARES
 S = Ø: SS = Ø
 FOR I=l TO N
 S = S + X(I,\emptyset)
 SS = SS + X(I,\emptyset)^2
 NEXT
 TSS = SS - S*S/N
 REM REGRESSION SUM OF SQUARES
 RSS = TSS - ESS
 REM GOODNESS-OF-FIT STATISTICS
 RSQ = RSS/TSS
 F = RSS/(M-1.)/EV
RETURN
DW.STATISTIC:
 S = Ø
 FOR I=2 TO N
 S = S + (Q(I, \varnothing)-Q(I-1, \varnothing)) 2
 NEXT
 DW = S/ESS
RETURN
RHO :
 REM NUMERATOR
 S = Ø
 FOR I=2 TO N
 S =S + Q(I, })*Q(I-1,\varnothing
 NEXT
 REM DENOMINATOR
 D = \varnothing
 FOR I=2 TO N-1
 D=D +Q(I, D ^^2
 NEXT
 RHO = S/D
RETURN
SHOW.RESULTS:
GOSUB SCREEN.EQUATION
GOSUB SHOW.EQUATION
```

```
GOSUB SCREEN.ANOVA
GOSUB SHOW.ANOVA
GOSUB DW.RHO
RETURN
SCREEN.EQUATION:
 CLS
 LINE(35,3)-(595,60+9*M),2,B
 PAINT(313,50),4,2
 COLOR 2,4
 LOCATE 2,23: PRINT "REGRESSION RESULTS"
 COLOR 1,6
 LINE(65,25)-(115,35),6,BF
 LOCATE 4,8: PRINT "Term"
 LINE(215,25)-(375,35),6,BF
 LOCATE 4,23: PRINT "Estimated Value"
 LINE (455,25)-(575,35),6,BF
 LOCATE 4,47: PRINT "t-Statistic"
RETURN
SHOW.EQUATION:
 COLOR 2,4
 LOCATE 6,1
 FOR I=1 TO M
 SE = SQR(EV*R(I,I))
 PRINT TAB(9);B$(I-1);TAB(21) USING F$;B(I);
 PRINT TAB(41) USING F$;B(I)/SE
 NEXT
 COLOR 1,ø
 LOCATE 19,26: PRINT "Click Mouse"
 GOSUB CLICKIT
RETURN
SCREEN.ANOVA:
 CLS
 LINE (35, 3)-(595,160), 2,B
 PAINT(313,50),4,2
 COLOR 2,4
 LOCATE 2,25: PRINT "SUMMARY VALUES"
 LINE(115,25)-(266,35),5,BF
 COLOR 1,5
 LOCATE 4,13: PRINT "Sum of Squares"
 LINE(115,88)-(385,98),5,BF
 COLOR 1,5
 LOCATE ll,13: PRINT "Goodness-of-Fit Statistics"
 COLOR 2,4
RETURN
```

```
SHOW.ANOVA:
 LOCATE 6,15: PRINT "Total";TAB(31)"=";
 PRINT USING FS;TSS
 LOCATE 7,15: PRINT "Regression";TAB(31)"=";
 PRINT USING FS;RSS
 LOCATE 8,15: PRINT "Residual";TAB(31)"=";
 PRINT USING FS;ESS
 LOCATE 13,15: PRINT "R-Squared =";
 PRINT USING F$;RSQ
 LOCATE 14,15: PRINT "F-Statistic =";
 PRINT USING F$;F
 LOCATE 16,15: PRINT "Standard Error"
 LOCATE 17,15: PRINT "of the Estimate =";
 PRINT USING F$;SQR(EV)
 COLOR 1,\varnothing
 LOCATE 20,26: PRINT "Click Mouse";
 GOSUB CLICKIT
RETURN
DW.RHO:
 CLS
 LINE(35,3)-(595,1Ø\varnothing), 2,B
 PAINT(313,50),4,2
 COLOR 2,4
 LOCATE 2,17:
 PRINT "SERIAL CORRELATION STATISTICS"
 LOCATE 5,14: PRINT "Durbin-Watson Statistic =";
 PRINT USING F$;DW
 LOCATE 8,14: PRINT "First-Order Serial"
 LOCATE 9,14: PRINT "Correlation Coefficient =";
 PRINT USING F$;RHO
 COLOR l,ø
 LOCATE 17,26: PRINT "Click Mouse"
 GOSUB CLICKIT
RETURN
```


## Index

addition 148
Amiga BASIC 3, 5
Amiga Extras disk 6
atom 330
atomic number 330
atomic weight 330
barometer 352
barometric pressure 352
"Bunny's and Piglet's Tic-Tac-Toe" program 10, 114-27
business and finance 261
"Business and Finance Menu Driver" program 262-64
button bar 5
calculator, multifunction 236
cells 265
"Chemistry Basics" program 325, 329, 331-51
Program A (Chemistry Basics Database) 331-39
Program B (Chemistry Basics) 339-51
coefficient of determination 420
columns, sixty 5
common denominators 131, 181
"Computer Cash Register" 261, 314-21
COMPUTE!'s Amiga Applications disk 4
using the disk 6
constant dollars 217
counting 135
"Crazy Critters" program 131, 135-47
cryptography 14
current dollars 217
DATA statements 4
definition of shapes, menus, and variables 4
denominator 181
density 330
dollars
constant 217
current 217
Durbin-Watson statistic 420
electron 330
"Electronic Spreadsheet" program 3, 261, 265, 268-90
element 330
"Elementary, Watson" program 9, 26, 27-38
elements 325,329
"Enigma" program 9, 14, 15-25
equation, selecting 400
equipment required 3
exponential equation 400,402
"Falstaff" program 9, 73, 74-85
FICA (Federal Insurance Contributions Act) 249
first-order serial correlation 420
"Foreign Language Flash Cards" program 131, 198-209
fractions 131, 181
f-statistic 420
"Fun with Fractions" program 131, 181-97
future worth 305
"Future Worth" program 261, 305-13
games of skill 9, 10
"Games of Skill Menu Driver" program 10-13
goodness-of-fit statistics 420
"Hi-Q" program 10, 96-104
household helpers 213
"Household Helpers Menu Driver" program 213-16 icon names 4
individual retirement account. See IRA
investment 305
IRA 213, 217, 265
"IRA Planner" program 213, 217, 218-24
KEYVALUES routine 4
Kickstart 1.1 disk 3
"Knights Errant" program 9, 39, 40-51
"Least-Squares Forecasting" program 261, 291, 293-304
least-squares regression line 399
"Let's Add and Subtract" program 131, 148-64
"Let's Multiply" program 131, 165-80
linear equation 399
line of best fit 395, 399
loading a program 4, 5
"Loan Payments" program 213, 225, 226-35
"Local Climatological Data Annual Summary" 353
main routine 4
matrices 325,377
"Matrix Manipulator" program 325, 377, 378-91
"Menu Driver" program 4
modular design 4
money-market certificate 305
"Mosaic Puzzle" program 9, 86, 87-95
"Multifunction Calculator" program 213, 236, 237-48
multiple linear regression analysis 395
multiple linear regression routine 419
multiplication tables 131, 165
multiply 131
National Weather Service 353
neutron 330
NOAA 353
nucleus 330
numerator 181
operating system 3
"Paycheck Analysis" program 213, 249, 250-57
"Pharaoh's Pyramid" program 9, 52, 53-61
power equation 400, 402
PREDICT subroutine 353
Preferences drawer 5
program names (table) 5
programs typing in 4
loading and running 4,5
proton 330
pull-down menu 5
rainfall 353
RAM (random access memory) 3
reciprocal equation 400,402
rectangular hyperbola 400, 402
regression 400
regression coefficients 419
regression sum of squares 420
residuals 420
residual sum of squares 420
"Roman Checkers" program 9, 62, 63-72
R-squared 420
running a program 4, 5
sales tax 314
scalar multiplication 377
"Scatter Diagram" program 395, 399, 402-18
science and math 325
"Science and Math Menu Driver" program 325-28
SETSCREEN routine 4
"Simultaneous Equation Solver" program 325, 366-76
sliding-square puzzles 86
slope 291
snowfall 353
Social Security 249
"Solitaire Checkers" program 10, 105-13
spreadsheet 265
formulas 267
labels 265
printing 267
saving 268
tallying 267

Standard and Poor's Index 91
standard error of the estimate 420
statistics 395
"Statistics Menu Driver" program 395-98, 419, 422-35
stock market 291
stock prices and interest rates (table) 292
"Stop, Look, and Learn Menu Driver" program 132-34
string 265
subroutines, series of 4
subtraction 148
"Super Curve-Fitter" 395
temperature 353
tick intervals 399
tick marks 400
total sum of squares 420
t-ratio 419
Treasury Bill rate 291
typing in programs 4
variables 419
vocabulary lists 131
Weather Almanac, The 353
"Weather Forecasting" program 325, 352, 354-65
white bar 5
wind direction 352
Workbench disk 3, 5

# To order your copy of Amiga Applications Disk, call our tollfree US order line: 1-800-346-6767 (in NY 212-887-8525) or send your prepaid order to: <br> Amiga Applications Disk COMPUTEI Publications <br> P.O. Box 5038 <br> F.D.R. Station <br> New York, NY 10150 <br> Send ___ copies of Amiga Applications Disk at $\$ 15.95$ per copy. <br> All orders must be prepaid (check, charge, or money order). NC residents add $4.5 \%$ sales tax. 

Subtotal \$ $\qquad$

Shipping and Handling: \$2.00/disk \$ $\qquad$

Sales tax (if applicable) \$ $\qquad$

Total payment enclosed \$ $\qquad$

ם Payment enclosed $\square$ Charge $\square$ Visa $\square$ MasterCard $\square$ American Express

Acct. No. Exp. Date (Required)

Name

Address $\qquad$
City
State $\qquad$ Zip $\qquad$
Please allow 4-5 weeks for delivery.

## COMPUTE! Books

## Ask your retailer for these COMPUTEI Books or order directly from COMPUTEI. <br> Call toll free (in US) 1-800-346-6767 (in NY 212-8878525) or write COMPUTE! Books, P.O. Box 5038, F.D.R. Station, New York, NY 10150.

Quantily	Tille	Price*	Total
	COMPUTEI's Beginner's Guide to the Amiga $(025-4)$	\$16	
	COMPUTEI's AmigaDOS Reference Guide (047-5)	\$14.95	
	Elementary Amiga BASIC (041-6) COMPUTEI's Amiga Programmer's Guide (028-9)	\$14.95	
		\$16.95	
	COMPUTEI's Kids and the Amiga (048-3)	\$14.95	
	Inside Amiga Graphics (040-8)	\$16.95	
	Advanced Amiga BASIC (045-9)	\$16.95	
	COMPUTEI's Amiga Applications (053-X)	\$16.95	
	-Add $\$ 2.00$ per book for shipping and handling. Outside US add $\$ 5.00$ air mail or $\$ 2.00$ surface mail.		
	NC residents add 4.5\% sales tax Shipplng \& handlling: \$2.00/book Total payment		



## A Library of Applications

Most people have a favorite application for their computers. For some, it's writing; for others, it's personal finance management or games. But a computer as powerful as the Amiga can perform hundreds of other useful and entertaining tasks for its owner.

COMPUTE!'s Amiga Applications has over two dozen programs for people of all ages. Here's a sample of what you'll find inside:

- Household Management programs, including "IRA Planner" and "Paycheck Analysis."
- Games that help children enjoy learning, such as "Fun with Fractions," Let's Multiply," and Foreign Language Flash Cards."
- Two financial forecasting applications and a simple spreadsheet program.
- Games of skill like "Bunny's and Piglet's Tic-Tac-Toe," "Roman Checkers," and "Mosaic Puzzle."
- "Chemistry Basics," to help you with the fundamentals of chemistry.
- Menu programs that make loading each application easy.

COMPUTE!'s Amiga Applications is a library of programs which take advantage of the power of the Amiga. With extraordinary applications for education, recreation, and business, COMPUTE!'s Amiga Applications can make your computer even more valuable.

All the programs in this book are available on a companion disk. See the coupon in the back for details.


[^0]:    Program 2-1. Enigma
    Save using the filename ENIGMA
    REM ENIGMA
    GOSUB INITIALIZE
    PLAYGAME: GOSUB GAME
    PLAYAGAIN: LOCATE 20,21: PRINT "Play Again ? "; ROW=2Ø: XØ=337: GOSUB DECIDE
    IF BUTTON $=1$ THEN PLAYGAME GOSUB GOODBYE
    END

    ## INITIALIZE:

    GOSUB SETSCREEN
    GOSUB KEYVALUES
    GOSUB SETMENUS
    GOSUB SETCOLORS
    GOSUB HEADING
    RETURN

