
AMIGA

REFERENCE

GUIDE
THIRD EDITION

SHELDON LEEMON
AND

ARLAN R. LEVITAN
The complete guide and tutorial to

the convenience, flexibilily, and
power of ArnlgaDOS version 1.3.

I .
,

i

~ .

COMPUTE!'s

AmigaDOS
Reference Guide

Third Edition
Sheldon Leemon

and
Alan R. Levitan

COMPUTEI Books
Radnor, Pennsylvania

Cover design: Anthony Jacobson
Editors: Gregg Keiser and Stephen Levy

Copyright 1986, 1987, 1989, COMPUTE! Publications, Inc. All rights reserved.

Reproduction or translation of any part of this work beyond that permitted by Sections 107
and 108 of the United States Copyright Act without the permission of the copyright owner is
unlawful.

Printed in the United States of America

lO987654321

Library of Congress Cataloging-in-Publication Data

Leemon, Sheldon.
AmigaOOS reference guide.

Rev. ed. of: Compute!'s AmigaOOS reference guide /
Arlan R. Levitan and Sheldon Leemon. c1986.

Includes index.
1. Amiga (Computer)--Programming. 2. AmigaOOS

(Computer operating system) I. Levitan, Arlan R.
II. Levitan, Arlan R. Compute!'s AmigaOOS reference
guide. III. Title.
QA76.8.A177L36 1989 005.4465 89-42831
ISBN 0-87455-194-3

The authors and publisher have made every effort in the preparation of this book to ensure the accuracy
of the information. However, the information in this book are sold without warranty, either express or im­
plied. Neither the authors nor COMPUTE! Publications, Inc. will be liable for any damages caused or
alleged to be caused directlv, indirectly, incidentally, or consequentially by the programs or information in
this book.

The opinions expressed in this book are solely those of the authors and are not necessarily those of
COMPUTE' Publications, Inc.

COMPUTE! Publications Inc., Post Office Box 5406, Greensboro, NC, 27403, (919) 275-9809,
is part of Chilton Company, a Capital Cities/ABC, Inc. company and is not associated with
any manufacturer of personal computers. Amiga is a trademark of Commodore-Amiga,
Incorporated.

Contents

Foreword ... v

Part 1. Using AmigaDOS 1

1. Introduction to AmigaDOS 3
Creating a CLI Disk 7

2. The CLI Environment 10
The CLI Console 11
Running a Program from a CLI 15
Starting Additional CLI Processes 17
Your Own Windows 18
Console Enhancements Under Workbench 1.3 21

3. The Filing System 26
Files and Their Characteristics 28
Directories and Subdirectories 35
File Manipulation Commands 40
Pattern Matching (Wildcards) " 41

4. Devices .. 46
Disk Drives .. 46
The RAM: Disk 50
Communications Ports 51
Console and Others 53
Logical Devices 56
MOUNTable Device Drivers and Handlers 63
Redirection of Input and Output 69

5. Command Sequence Files 72
Batching Simple Commands 72
Startup-Sequence: The Autoexecuting Command File 75

6. Ed, the System Screen Editor 90
Immediate Mode 91
Extended Mode Commands 93
ED Command Summary 101

7. EDIT, the Line Editor 104
EDIT ... 126

Part 2. AmigaDOS Command Reference 129

Appendix ... 271

AmigaDOS Error Messages 273

Index .. 277

Foreword

Workbench, the graphics-based interface that offers icons, pull­
down menus, and multiple windows, isn't the only way to operate
Commodore's Amiga personal computer. A more direct method of
control is also available. Called the CLI (Command Line Interface),
it provides added power and flexibility.

COMPUTE!'s AmigaDOS Reference Guide, Third Edition, fully
updated for all versions of AmigaDOS through version 1.3, shows
you how to access this operating environment and how to use its
commands.

How would you like to be able to set aside part of Amiga's
memory as a RAM disk and electronic disk drive? You can with the
CLI, and virtually eliminate disk swapping.

Learn to create batch files that automate almost any task with
the CLI. You can prompt yourself to enter the date and time at
each startup, or copy files automatically-all with customized com­
mand sequence files.

A full-screen editor (ED) and a traditional line editor (EDIT)
are both at your disposal through the CLI.

COMPUTE!'s AmigaDOS Reference Guide, Third Edition shows
you how, with its clear language and thorough examples. This tu­
torial takes you step by step through the intricacies of AmigaDOS,
offering a comprehensive reference guide you'll come back to long
after you're a CLI expert.

v

I
I
I
I
I
I
I
I
I

I
I
I
I

I
I

I

I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Chapter 1

Introduction to AmigaDOS

The Workbench environment makes it extremely easy for first-time
users to learn to use the Amiga personal computer. With its pull­
down menus and pictorial representation of files and subdirectories,
Workbench insulates you from the harsh realities of a command­
driven DOS (Disk Operating System) environment. But this ease of
use has its price. In accepting the Workbench environment, you
give up some of the flexibility and power afforded by a command­
driven DOS.

The question of convenience is open to debate since it's largely
a matter of personal preference. While the Workbench approach
has its share of advocates, many users of the old-style DOS inter­
face insist that they can run a program faster by simply typing its
name on a command line than they could by opening a disk icon
and double-clicking on the program icon. Yet the greater control
offered by a command-driven DOS interface is a matter of sub­
stance, not style. There are some things you just can't do from the
Workbench ... at least not yet.

The current Workbench only creates a display for disks, tools
(program files), projects (data files), and drawers (subdirectories) for
which there exists a corresponding disk file whose name ends in
.info (for instance, Preferences. info). These .info files contain infor­
mation about the type of object icon represents and the graphic
representation of the icon itself. But there are many files on the
Workbench disk that are not represented by icons. These files in­
clude a simple sorting utility program and a screen-oriented text
editor. These programs could be well-used by many Amiga owners,
but most don't even know they're there since they're not accessible
from the Workbench.

Another feature of AmigaDOS that the Workbench does not
directly support is the use of command sequence files (known in
the MSjPC-DOS world as batch files). These allow you to automate
a job which requires several programs to be run in sequence, such
as operating a compiler and linker in order to produce an execut­
able program. And while it's not possible to send the directory of
files on a particular disk to your printer from the Workbench (un­
less you write a program specifically for that purpose), it's easy to
do so from the CLI (Command Line Interface).

3

Introduction to AmigaDOS

Fortunately, you're not limited to operating in one restricted
environment, not even one so friendly as the Workbench, when
you have the Amiga in front of you. The Amiga was designed to
provide alternative ways to use the computer, to meet the needs of
as many kinds of people as possible. This philosophy is evident in
the way Amiga programs allow you to substitute control key se­
quences for commands normally carried out by moving and click­
ing the mouse. Even the Workbench lets you use the keyboard
instead of the mouse. It should come as no surprise, then, that the
Amiga also offers the kind of command line interpreter that's so fa­
miliar to users of MSjPC-DOS and Unix. On the Amiga, this envi­
ronment is known as the CLI. COMPUTEt's AmigaDOS Reference
Guide, Third Edition will tell you how to find this operating envi­
ronment and how to use its multitude of powerful and flexible
commands.

What's Here
In addition, you'll find explanations of AmigaDOS's underlying
concepts. These concepts will be helpful not only when you use
the CLI, but will also expand your understanding of the Work­
bench and how to operate within it. If you have a single-drive sys­
tem, for example, you've probably noticed that when you try to get
a directory of the BASIC disk from BASIC, you're prompted to put
in the Workbench disk. When you swap disks, you receive a direc­
tory of the Workbench disk instead. Knowing a little bit about how
DOS operates and what files it looks for can eliminate a lot of this
disk swapping. The RAM disk also offers computing power impos­
sible through the Workbench alone. With the RAM disk, you'll
have instant access to commands that normally must be read from
the disk, such as the one used to produce a directory listing in
BASIC.

The introductory manual that comes with the Amiga personal
computer assumes AmigaDOS is of interest only to software devel­
opers. That's simply not true. Thousands of people-people who
don't write software for a living-are interested in knowing more
about their computers and learning how to get the most out of
them. If you fit that category, this book will help as you explore
the power of your Amiga computer.

The Workbench Versus the eLi
The friendly Workbench environment you see when you boot up
your Workbench disk is actually an application-in other words, a
program-and not part of the operating system. In fact, the com­
puter starts in CLI mode and loads the Workbench program auto-

4

Introduction to AmigaDOS

matically through the use of a command file (you'll hear more
about command files later).

Workbench's purpose is to interpret the choices you make
when you move the mouse pointer to various icons and click the
button. As such, the Workbench functions often have a close corre­
spondence to DOS concepts. The drawer icons you see on the
Workbench desktop, for instance, represent the normal subdirec­
tories created by DOS. And the Trashcan icon represents a sub­
directory named Trashcan. When you drag an icon to the trashcan,
its corresponding file and that of its icon are transferred to the
Trashcan subdirectory. When you select Empty Trash, the files that
have been moved to the Trashcan subdirectory are deleted.

Some similarities between the Workbench and CLI environ­
ments are more superficial. When you double-click on a tool (pro­
gram file), the Workbench prepares a suitable environment and
runs the program. The same thing happens when you type RUN
program name from the CLI. But some Workbench programs can­
not be run from a CLI, and some CLI programs cannot be run from
the Workbench. In fact, none of the CLI commands found in the c
directory of the Workbench disk can be run from the Workbench.
Part of the reason for this is that the Workbench recognizes a file
only if it has a corresponding file of icon information ending in
.info. Since none of the CLI command files has an icon file, none
of them shows up under the Workbench.

But even if these did have icon files, the environment that CLI
prepares for a program is different enough from the environment
provided by the Workbench that these early CLI command pro­
grams still could not run under the Workbench. For one thing,
from the Workbench you may pass instructions to a program to
load a project (a data file that the program uses) by double-clicking
on the project's icon. Programs that use the CLI expect you to pass
instructions by typing them on the same line with the program
name. The command line

COPY old file TO new file

for instance, tells the program Copy which file to copy and what
name to give the new copy.

Getting to the eLi Environment
In the System drawer of the Workbench disk, there's a program
that creates a CLI window on the Workbench screen (1.3 Work­
bench disks have an icon for the Shell program as well, which cre­
ates an enhanced CLI window). In its original condition, however,
the Workbench disk that comes with the computer may have the

5

Introduction to AmigaDOS

icon for this program "turned off." If this is the case, the CLI.info
file in the System subdirectory has been renamed CLI.noinfo. This
means if you open the System drawer, that icon will not appear.
To use the CLI program, you must first turn the CLI icon back on.
This will change the CLI.noinfo file to CLI.info.

The Preferences program contains the controls for turning the
CLI icon off and on. When you start the computer, using the
Kickstart and Workbench disks, an icon representing the Work­
bench disk appears on the screen. Open this disk by double-click­
ing on the icon, or by selecting it and then selecting Open from the
menu. A window will appear with icons representing the programs
on the disk. Start the program called Preferences-its icon looks
like an Amiga with a question mark on top of it (on the Work­
bench 1.3 disk, this file is in its own drawer called Prefs). On the
left side of the Preferences screen, you'll see a box marked CLI, just
above the Reset Colors box and below the box where you choose
between 60- and SO-column text. The CLI box is divided into two
parts, one marked On, the other Off. The Off box is highlighted in
orange to show that the CLI icon is turned off. Click the On side of
the box so it turns orange. While you're at it, you can set your
other preferences, such as text size and a printer driver, if you've
not done so already. Save your new preferences by clicking on the
Save box at the lower right of the screen. This renames CLI.noinfo
as CLI.info.

Now, double-click on the System drawer to open its window.
If you've already opened the System drawer before running Prefer­
ences, you must close the drawer and open it again in order to let
your new preferences take effect since the Workbench checks for
icon files only when it opens a drawer. The window that appears
now contains an icon marked CLI (it looks like a box with the char­
acters 1> inside). Double-click on the icon. A window now dis­
plays on the screen, with the title New CLI Window in its title bar
and the prompt 1> awaiting your command. (To get started, see
Chapter 2.)

There's another, even easier way to get to a CLI window. Dur­
ing the boot-up process, and after you insert your Workbench disk,
the screen turns from white to blue, and a sign-on message appears
which reads Copyright (C) 1985 Commodore-Amiga, Inc. When you
see this message, hold down the CTRL key and press the D key at
the same time. This stops the execution of the command file that
loads the Workbench. **BREAK - CLI shows on the screen, and un­
der this, the familiar 1> prompt.

6

Introduction to AmigaDOS

Creating a Cli Disk
If you're planning to use the CLI environment often, this process of
opening the Workbench icon, the System drawer, and the CLI icon
to get to the CLI will become time-consuming at best, frustrating at
worst. You can bypass one of these steps by moving the CLI icon
from the System window directly to the Workbench window. Or,
you can remember to press CTRL-D at the right moment during
the boot-up process so the Workbench doesn't load.

But since computers are supposed to make things easier,
doesn't it seem reasonable to expect the Amiga to do all this for
you? With a bit of setup work on your part, it can in fact bypass
loading and running the Workbench altogether. In order to make a
working CLI disk, you should make a copy of your Workbench
disk, change the command file that automatically loads the Work­
bench when the disk starts, and delete the unnecessary Workbench
files. To get you through this, the procedure is completely outlined
for you below, step by step.

Make a Copy of Your Workbench Disk
You can do this either from the Workbench or from the CLI. Let's
assume you'll use the CLI, since you presumably already know
how to copy a disk with the Workbench. First, bring up the CLI by
double-clicking its icon on the Workbench disk, or by booting the
Workbench disk and then interrupting the loading process with a
CTRL-D key combination when the blue screen appears. From this
point, the procedure is slightly different for single- and dual-drive
systems.

Single-drive systems. When the CLI prompt (1)) appears,
you may use the DISKCOPY command to copy the Workbench
disk. Get out a blank, new disk for the copy. Remember, any infor­
mation on this disk will be lost when you copy to it. Type:
SYS:SYSTEMjDISKCOPY df0: TO df0:

and press RETURN. The copy program will prompt you when to
put in the disk to copy FROM (your original Workbench disk) and
when to put in the disk to copy TO (your blank disk). You'll have
to swap the FROM and TO disks a number of times with a single­
drive system. The copy program will tell you when the copy pro­
cess is complete.

Dual-drive systems. When the CLI prompt (1)) appears,
leave the Workbench disk in the internal drive, and place a new,
blank disk in the external drive. Type:

SYS:SYSTEMjDISKCOPY df0: TO dfl:

7

Introduction to AmigaDOS

and press RETURN. You'll be prompted to put the FROM disk in
drive dfO: and the TO disk in drive dfl:, but since both disks are
where they should be, merely press RETURN. The copy program
will tell you when the process is completed. Place the disk that
contains the copy of the Workbench into the internal drive.

Getting Going with ell
Restart the computer with your new disk. Press the CTRL key
and both Commodore/ Amiga keys (the closed Amiga or Commo­
dore key-on the left side of the space bar-and the open Amiga
or Commodore key-on the right side of the space bar) at the same
time to restart. Your new disk is now the system disk, which will
save you some disk swapping later.

Bring up the CLI. Use the CTRL-D combination to stop the
Workbench from loading during the boot process, or open the Sys­
tem drawer and click on the CLI icon. If you use the Workbench
CLI, you may find it convenient to size this window to full-screen
by moving it with the drag bar to the top left of the screen and
pulling the sizing gadget down to the bottom right.

Edit the command file. This is used to load the Workbench
automatically when you start the computer. You'll use the system
screen editor program-called ED-to change the startup-sequence
file in the s directory. To start the editor, enter

ad s/startup-sequence

at the 1> prompt (whenever you see text in this font, press the
RETURN key at the end of the line). A new screen appears, show­
ing the contents of this text file. A text cursor shows at the top left
corner. If you haven't changed the default system colors, it will be
orange. Use the down-arrow cursor key to move this cursor down
until it covers the first letter of the line that reads LoadWB. Press
the ESC key (found in the upper left of the keyboard). An asterisk
appears at the bottom of the screen, and the cursor is now next to
it. Type 2 d ; x. The two lines used to load the Workbench will be
deleted and the new file saved to disk. If you wish to both load the
Workbench and leave the initial CLI window intact, move the
cursor to the last line of the file, press the ESC key, and type d ; x,
instead.

Delete all of the unnecessary Workbench files. Since you've
edited the startup command file, the new disk will not load the
Workbench automatically. But there are still a number of files on
the disk that will run only under the Workbench. The only files
you'll want to save are the contents of these directories:

8

Introduction to AmigaDOS

Directory
c

s
t
devs
libs
(and possibly) fonts

To delete the rest of the files, type in each of the following
lines, just as you see them, pressing the RETURN key at the end of
each.

delete trashcan demos#? empty utilities all
delete c/loadwb #?

Relabel the disk. Though not strictly necessary, for purposes
of clarity it's probably better to have the title of the disk read CLI
rather than Copy of Workbench. To change the disk's volume label,
make sure it's in the internal drive, then enter

RELABEL dfG: eLI

There you have it. A Workbench disk without the Workbench. In­
sert this disk in the internal disk drive any time you see the
WORKBENCH prompt screen.

Make a backup copy of the disk right now, and put the original
away so you can make clean copies of the disk in the future (unless
you want to go through these six steps every time). If you have
only one drive, you'll find it particularly convenient to have all of
the CLI commands on the same disk as your application programs.
To make a new disk that contains both the CLI commands and the
application program, simply copy those application programs onto
duplicates of this master CLI disk. If you're really pressed for
space, you may have to delete some of the less useful commands,
printer-driver files for printers you don't have, character font files,
and so on. To determine which files you can afford to delete, see
Appendix A, which lists all the files on the Workbench disk.

9

Chapter 2

The ell Environment

When you insert the Workbench disk into the disk drive, the
Amiga's operating system sets up a task (one of the programs that
can run simultaneously under a multitasking system such as
AmigaDOS) called a eLI process. The job of the CLI is to accept
commands to run a program. When the CLI finds the program, it
loads the program, prepares its environment, and then passes con­
trol to the program. After the program finishes, control is passed
back to the CLI, which waits for the next command. Although the
system starts up only one CLI, you may start others yourself to run
multiple tasks simultaneously.

First, the initial CLI process checks whether there's a command
file in the s directory called Startup-Sequence. If there is, the com­
mands listed in that file are executed automatically (see Chapter 5
for more detailed information about command sequence files). On
the standard Workbench disk, this file contains commands to load
and run the Workbench and end the CLI process. But if there's no
command present to load the Workbench, once the command file is
executed, the CLI process prints its prompt message (1)) and waits
for further orders.

The AmigaDOS CLI process performs the simplest of func­
tions. It starts in interactive mode, which means it prints its 1>
prompt and waits for you to type something. It simply sits, letting
you type until it sees that you've entered a special editing character
or pressed RETURN. The editing characters invoke some minor
screen-editing functions described below. But when you press RE­
TURN, the CLI looks at the whole line you've entered.

It interprets the first word (a series of characters that end with
a space) as a filename. The CLI then tries to load a program file
with that name. An error message and another 1> appear if it can't
find the file. Assuming it finds the file, the CLI tries to load it as a
program. Since program files have a structure the CLI recognizes, it
can tell whether the file is an executable program. Again, an error
message and the 1> prompt are displayed if the file isn't an execut­
able program. If the file exists and is an executable program, the

10

The eLi Environment

CLI loads the program into memory, prepares a stack area for the
program to use as workspace, tells the program where to find the
rest of the text on the command line in case it wants that text as in­
structions, and passes control to the program. Once this happens,
the CLI cannot accept user input until the program passes control
back to it.

Let's break this simple task into its component parts and exam­
ine them in detail. We'll start with the process of accepting text
characters that you type in.

The Cli Console
The console device that the CLI uses to accept keyboard input and
display the results operates much like an old-fashioned Teletype
terminal-it can deal with only a single line of text at a time. This
command line may be up to 255 characters long. It's possible, there­
fore, that a single command line can occupy more than one line on
the screen. As far as the console device is concerned, you're still
entering text on the same line until you hit the RETURN key.
When you've typed in 255 characters (more than three or four
screen lines, depending on the column width of the screen), the
console refuses to accept any additional keyboard input.

One of the less pleasant aspects of a line-oriented editor (like
the console device) is that you cannot use the cursor keys to move
to another command line on the screen, edit it, and use the revised
line. Each time you issue a new command you have to enter the
entire command line from scratch. In fact, you can't even use the
cursor keys to edit the line you're on. If you make a mistake at the
beginning of a line, you have to erase the whole line and start
over. To remedy this situation, Workbench 1.3 added a new con­
sole device called Newcon:, which performs line-editing functions.
We'll discuss this device a little later on.

eLi Editing
Because of its limited line-editing capabilities, the console device
recognizes only a very few special characters as editing commands.
Some of these are useful for working with the CLI, while others
merely enable you to control the color and appearance of the text
the console device prints to the screen (see Chapter 4 for more
about this device). In summary, here are the editing commands:

11

The eLi Environment

Useful Editing Features
Key(s) Function
BACK SPACE or CTRL-H Erases the character to the left of the

cursor
CTRL-X

CTRL-L

Erases the entire current line (cancels
the line)

RETURN or CTRL-M
Clears the screen (form-feed)
Ends the line and executes the
command

CTRL-J

CTRL-'\

Moves the cursor to the next line, but
doesn't execute the command
Marks the start of a comment
End-of-file indicator

Text Output Features
Key(s) Function
TAB or CTRL-I Moves the cursor one space to the right (inserts a

CTRL-K
CTRL-O

CTRL-N

ESC-[1m
ESC-[2m
ESC-[3m
ESC-[4m
ESC-[7m
ESC-[8m
ESC-[Om
ESC-C

tab character)
Moves the cursor up one line (vertical tab)
Switches to the ALTernate character set (shifts
out)
Switches back to the normal character set (shifts
in)
Switches to bold characters
Switches character color (to black)
Italics on
Underline on
Reverse video on
Switches character color (to blue-invisible)
Switches to normal characters
Clears the screen and switches to normal
characters

Note: When using the ESC key combinations, just press the ESC key and then enter
the one to three additional characters.

As you can see, the only way to correct your typing mistakes
is to delete them with the BACK SPACE key (or hold the CTRL
key and press X if you want to erase the whole line) and retype. If
you press the CAPS LOCK key, the red light on the key appears,
and all alphabetic keys will be capitalized. This is of little practical
significance since the CLI does not discriminate between lowercase
and uppercase, or even mixed case.

12

The eLi Environment

The RETURN key is the CLI's signal to process your command
line. The linefeed character (CTRL-J) moves the cursor to the begin­
ning of the next line, just like RETURN, but it doesn't cause the
CLI to process the line until RETURN is pressed. This means you
can type a list of commands separated by CTRL-J and have the CLI
perform them one by one. For example, if you type

DELETE old file <CTRL-J> DIR

the CLI first deletes the file named in old file, then feeds the next
instruction to the following CLI prompt, which displays the new
directory listing.

Though not really an editing character, the semicolon (;) is sig­
nificant to the CLI. The CLI interprets anything following a semi­
colon as a comment and ignores the entire rest of the line.
Comments may not be too useful for immediate mode commands
which you enter at the keyboard, but they can be extremely helpful
in documenting command sequence files (see Chapter 5).

The last character in the summary table of useful commands,
CTRL- ", will probably make more sense after you've read Chapter
4, which covers devices. Briefly, it sends an end-of-file character to
the console device. This is helpful because the Amiga is flexible
about letting you use one device in place of another. For instance,
you can use the COPY command (program) not only to copy one
file to another, but also from one file to another device, such as the
printer. Likewise, you can COpy from the console device (which in
this case means the keyboard) to a disk file. Unlike a disk file, the
console device does not have a natural limit to its input-you can
keep typing and typing until you're too tired to type. The CTRL- "
character, therefore, lets the console device know when you've
come to the end of the "file" so you can stop using the console as
an output device and start using it for your CLI input again.
PCjMS-DOS users will recognize that this is the equivalent of the
CTRL-Z (or F6) character used by that operating system.

Most of the other special command key combinations represent
output formatting commands that you may find amusing or learn
to avoid. Their functions are really a byproduct of the fact that the
console device supports certain standard codes that are usually ap­
plied to printer devices. The TAB key, for example, moves the
cursor over one space as the space bar does. But it leaves a tab
character in its wake, which the command line interpreter doesn't
like at all. If you use a tab instead of a space you'll most likely re­
ceive an error message.

CTRL-O acts like an ALT -lock which permanently switches
you to the ALTernate characters (you can think of these as the

13

The eLi Environment

Other, or Oddball, characters to remember the CTRL key combina­
tion). The alternate characters normally appear only when you hold
the ALT key down as you type. These characters, which include
accented vowels and other international symbols, are interesting to
look at if you want to see what characters the standard Amiga set
contains, but they're of little practical use here since the CLI
doesn't recognize them. If you get into this mode by mistake, press
CTRL-N (for Normal characters) to get out of it. You can also return
to the normal character set by pressing ESC and the C key, which
both clears the screen and changes the character set. When the
screen clears, however, you don't get your prompt back automati­
cally-you must hit RETURN to get a new command line. If you
just want to clear the screen, CTRL-L (Linefeed) does the job.

The console device also recognizes a series of ESCape codes
which change the typeface of the font printed on the screen. For
example, if you press the ESC key, then the [key, 1 key, and m
key, subsequent screen text is printed in boldface. Likewise, the
ESC-[2m combination changes the color of the printing, ESC-[3m
turns on italics, and ESC-[4m turns on underlining. These special
features are cumulative. In other words, if you change to bold, then
turn italics on, the result is text in bold italics. To disable all these
special features and return to normal text, use the ESC-[Om combi­
nation. Pressing ESC-C clears the screen and also resets the text to
normal characters. Note that although these features affect the dis­
play, CLI pays no attention to special typefaces. This sampling of
escape codes was listed primarily to acquaint you with the fact that
the console device responds in many ways like a standard ANSI
terminal. The codes are by no means the only ones to which the
console device responds. For instance, it also accepts a wide range
of cursor positioning commands. These commands, however, are of
little use to the average CLI user and are of greater interest to pro­
grammers who wish to use the console device in their programs.

Pausing and Restarting
Another aspect of the console device that you should be familiar
with is pausing and restarting screen output. The CLI (and the
command programs that use its console device) constantly watches
the console for input from the keyboard. If you type a character
while one of the command programs is running, the program will
stop its own output to the screen so as not to mix it with your in­
put.Even if the command program prints no messages of its own,
you'll not get the CLI prompt (1)) back until you restart output.
The way to do that is either to erase the line you're typing (by
using the BACK SPACE or CTRL-X keys) or finish the line by en­
tering a RETURN.

14

The eLi Environment

. The pause is really a function of the CLI's type-ahead feature.
The CLI can keep track of up to 255 characters of command instruc­
tions while it's busy running a command program and will execute
these instructions after it's finished. In practical terms, however, it
means you can pause a display of, say, a directory listing, by press­
ing the space bar and restart it later by pressing the BACK SPACE
key. This roughly corresponds to the function performed by the
CTRL-S, CTRL-Q combination on MSjPC-DOS machines.

If you use the RETURN key to complete the line rather than
erasing it, you should be aware that the command line you've just
entered will be saved by the CLI and will be executed after it fin­
ishes with the current command.

If you prefer to terminate output entirely instead of just paus­
ing it, you can use the BREAK function. Hold down the CTRL key
and press the C key, and you'll see the message **BREAK as the
CLI prompt appears once again. You may also interrupt an EXE­
CUTE command sequence with the CTRL-D combination (see
Chapter 5 for details on command sequence files). AmigaDOS re­
serves the CTRL-C, CTRL-D, CTRL-E, and CTRL-F combinations
for interrupt functions, but the CLI uses only the first two. Other
programs may use the latter two as they see fit.

As you'll soon see, it's possible to have more than one CLI
window open at a time. Using the CTRL-C or other break key
combinations only works for the CLI window that's currently ac­
tive. To interrupt others, you must either make them the active CLI
and use the break keys or use the BREAK command. This com­
mand interrupts the other process just as if you'd made it active
and then used the break keys.

Running a Program from a ell
The next phase of the CLI's task is running a program. Running a
program from a CLI is simple-all you do is type the name of the
program at the prompt, followed by pressing the RETURN key. If
the program needs further input to run, you type that input on the
same line as the filename. For example, to create a duplicate of one
file under another name (on the same disk and in the same direc­
tory as the original), type:

COPY old file TO new file

In this command line, the word COPY is the name of the copy pro­
gram file, and the rest of the line tells that program what to do.

15

The eLi Environment

The Complete Location
Actually, running a program isn't quite as simple as typing its
name. That works only if the program is located in the current di­
rectory of the current disk, or if it's located in the current command
directory. These concepts will be discussed in detail in Chapter 3,
which deals with the directory structure, and Chapter 4, which ex­
plains the use of virtual devices. Generally speaking, however,
when you start up the system, the current directory is the root (top­
most) directory of the CLI disk that's in the internal disk drive
(DFO:), and the command directory is the c subdirectory found on
that disk. If your program is anywhere else, you have to specify its
complete location by typing in the name of the disk and/or the
subdirectory on that disk. For instance, to run a program called
WordWizard, located in the Wordprocessing subdirectory of the exter­
nal floppy drive (DFl:), you would enter

DF 1: WordprocessingjW ord wizard

There are other reasons simply typing the name of the pro­
gram may not run it. There may be typing errors in either the pro­
gram name or the instruction line that the program is to use. The
file may not be in the executable load format AmigaDOS requires,
or the disk itself may be damaged or write-protected. In most cases,
AmigaDOS gives you complete error messages and may even give
you a chance to remedy the error without having to redo the com­
mand. In some cases, however, these messages may not be satisfac­
tory. You can get more information about a failure by using the
WHY command-just type WHY after receiving an error message.
Only rarely will you receive a more cryptic message, such as Error
code 218. To find this error code's meaning, use the FAULT com­
mand. Typing FAULT n, where n is the error code number, will
usually yield a clearer explanation. If all this fails, or if you're sim­
ply curious, consult Appendix B, which explains the various errors
you might receive.

Room to Work
One rare problem you might encounter concerns the environment
that the CLI provides to the program it's running. As mentioned
earlier, after the CLI successfully loads the program, it prepares a
stack area for the program to use as working storage. The initial
allocation for this stack area is 4000 bytes. Usually, this will be
enough, but in some cases there won't be enough stack space for
the program to run. If you try to run the ABasiC program supplied
with the first Amigas from a CLI, for example, you'll receive a mes­
sage that there's not sufficient stack space. If you first increase the

16

The eLi Environment

stack space to 8000 bytes, however, with the STACK command
(STACK 8000), the program runs. Other programs, like the SORT
command-which needs a lot of working space if it's to sort a large
file-may run out of stack space and cause the computer to hang
up. In this case, when in doubt, increase the stack space before
sorting a large file. Though most programs written for the CLI will
not need their stack increased, some programs written for the
Workbench environment may need a stack increase when run from
the CLI. To see the stack size required, click once on the program's
icon; then select the Info item from the Workbench menu. There
will be a number in a box marked "Stack" which will tell you the
required stack size.

A final note about the simple nature of the CLI process. Some
disk operating systems (like MSjPC-DOS) have a set of intrinsic
commands, commands which the DOS recognizes and executes as
soon as the user types them in on the command line. As you've
seen, CLI commands are all disk-based programs, and you must
have the CLI disk containing the program files in the disk drive
before you can use any of them. This is not as inconvenient as you
might expect. For one thing, you can transfer the commands you
use most often to the RAM device and add that directory to the
current search path. Or, you can make the commands resident by
using the Shell and the RESIDENT command (more on these later).
This gives you the equivalent of a custom-tailored set of intrinsic
commands that occupy no more user RAM than is really necessary.
Another nice thing about having all the commands as program files
is that you can rename any command to suit your preference
(though for the sake of compatibility, you'll probably want to make
a copy of the program with a new name, while retaining the file
with the old name as well). For example, if you're used to MSjPC­
DOS, you might want to use the word ERASE instead of DELETE. If
you type COpy a/delete TO a/erase, you'll be able to use either
form of the command. The "alias" feature of the Shell (discussed
below) provides similar capabilities, without requiring multiple
copies of the file.

Starting Additional ell Processes
Though AmigaDOS is a multitasking operating system, each CLI
can run only one program at a time. To run several programs
simultaneously, you must create additional CLI processes. The
command program NEWCLI takes care of this nicely. When you
type NEWCLl, a new interactive CLI window opens up in front of
the current window (the one labeled AmigaDOS). This window is

17

The eLi Environment

titled New eLI and displays the message New eLI task 2, followed
by its prompt, 2>.

This should solve the mystery of why the prompt in the first
eLI window is 1>. The number in the prompt is the task number
of the eLI. By the way, you're free to change the prompt to any­
thing you want, in any eLI window, by using the PROMPT com­
mand. For instance,

PROMPT "What is your wish, 0 Master?"

will change the prompt to this verbose phrase. Even ALT charac­
ters, such as foreign language accented characters, can be used in a
prompt string. In fact, you can use the text output commands (within
quotation marks) to change the color of your prompt, or to make it
appear in reverse video, as with the command shown below.

PROMPT "<ESC>[7mReverse prompt» <ESC>[Om "

When you create a new eLI window, it becomes the active
window. You can tell which window is active by looking at the ti­
tle bars. The title bar of the window that's currently active is a
solid color, while the title bars of the other windows are dotty (or
ghosted, as it's called). To change a window from inactive to active,
just move the mouse pointer inside the window and click the
mouse button. Whenever you type anything at the keyboard, the
printing always appears in the active window. The other rules for
system windows apply to eLI windows as well. You can use the
normal system gadgets to change the size of the new eLI window,
drag it around the screen, and move it in front of or behind other
windows. You can keep opening as many as 20 eLI windows, pro­
vided there's enough available memory.

Your Own Windows
If you just type NEWCLl, the operating system decides at what po­
sition on the screen to create the window and how large the win­
dow will be. These sizes are measured in pixels (picture elements),
which are the individual dots used to create the display. The stand­
ard DOS screen is 640 pixels across and 200 pixels high. Versions
1.3 of AmigaDOS creates new eLI windows that start at the top
left corner of the screen, and are 640 pixels wide by 100 pixels
high. All new eLI windows are created in the same place, in the
same size, unless you specify otherwise. This means the third eLI
window appears atop the second, and you'll have to drag one of
them out of the way to use both.

You can create a new eLI window in a particular location and

18

The eLi Environment

size by describing the console device output window. The descrip­
tion for this device follows the format

CON:hpos / vpos/ width/ height/ windowtitle

where hpos is the horizontal position of the top left corner of the
window (expressed as the number of pixels in from the left edge of
the screen), vpos is the vertical position of the top left corner of the
window (expressed as the number of pixels down from the top
edge of the screen), and width and height give the size of the win­
dow in pixels. The maximum size for a CLI window is the screen
size, which for the default Workbench screen is 640 X 200 pixels.
The minimum is 90 X 25 pixels. The last entry, windowtitle, is op­
tional. It allows you to enter the text of a title to appear in the title
bar. If you don't enter any text, the title is left blank. To create a
new CLI window that occupies the full screen, you would type

NEWCLl CON:0/0/640/200/
Note that the last slash mark is required, even though you didn't
specify the title.

A title can contain special characters, such as the space charac­
ter (which AmigaDOS usually interprets as separating one com­
mand word from another), but if you use them, you must put the
entire device name in quotation marks:

NEWCLl "CON:40/40/200/100/A Standard Window"

There's one more feature of NEWCLI you should know about.
When the first CLI window opens, it automatically executes a com­
mand sequence file called s:startup-sequence. We'll talk all about
command sequence files in Chapter 5, but for now, let's just say
it's a file that executes a series of CLI commands. If you want your
new CLI window to automatically execute a series of commands
when it starts up, you can specify a command sequence file in the
NEWell command:
NEWCLl FROM StartupFile

where "StartupFile" is the name of the command sequence file you
want executed. Under Workbench 1.3, if no FROM file is specified,
the sequence file S:CLI -Startup is automatically executed when a
NEWCLI command is issued.

Going Away
Anytime you want to eliminate one of your CLI windows, make
that window active by clicking the mouse button inside its borders,
and type ENDCLI. The message CLI task n ending (where n is the
number of the CLI task) is briefly printed, and the window closes.

19

The eLi Environment

(In fact, the message prints so quickly that you probably won't see
it.)

Always leave yourself at least one open CLI window-if you
close the final window, you won't be able to issue any commands.
You'll have no choice but to warm-start the computer by pressing
CTRL and both Amiga keys at the same time. In fact, its not a bad
idea to keep an extra CLI around, just in case. There are programs
like the public domain PopCLI which allow you to open a new CLI
window just by pressing a hot-key combination.

If you're using one program and want to start another, you can
switch back to the Workbench screen (the one on which the CLIs
reside), either by using the depth-arrangement gadgets at the top
right of the screen, or by using the Amiga-N key combination to
bring the Workbench screen forward and Amiga-M to send it back.
(The Amiga key combinations move entire screens, not just individ­
ual windows.) This gives you access to your open CLI so you can
run another program or use one of the DOS command programs.

If you have a number of CLI tasks running at the same time,
some whose windows do not appear on the Workbench screen,
you may lose track of them all. The STATUS command prints a list
of all of the current CLI tasks and the command programs they're
running.

Running Programs in a Noninteractive Process
When you want to run a program as a separate task, but don't
need the interactive features (and the memory overhead) of another
CLI window, you can use the RUN command program. When you
type RUN followed by a command you would normally type in a
CLI window, a new CLI process is created which executes the com­
mand. That new process then disappears.

Let's say you want to run a word processor program without
losing your current CLI window. If you normally type
wordprocessor to start the program, type RUN wordprocessor in­
stead. The RUN command prints a message like [CLI nJ (where n is
the next unused CLI number) and then runs the word processor.
This saves you the trouble of typing NEWeLl before entering the
command and of getting rid of the CLI with ENDCLI after you're
finished. It also saves you the memory that would ordinarily be
taken up by the CLI window. When you finish with the word pro­
cessor and exit the program, it leaves nothing behind.

Even though RUN does not provide you with a command win­
dow, it does offer a way to send additional commands to the pro­
cess. At the end of the first command, type a plus sign (+) and
press RETURN. You may then enter a second command on the

20

The eLi Environment

next line. If you want to add a third, type the plus sign and RE­
TURN at the end of the second line and add the new command on
the third line. At the end of your last command line, just type RE­
TURN. The RUN command executes each of the command lines in
sequence, just as if you had typed them in a CLI window, one after
the other. For example, if you want to send a sorted list of BASIC
program files to the printer, enter

RUN LIST S .bas TO ram:temp+
SORT ram:temp TO prt:

This runs the LIST program, which sends a list of all files with
the characters .bas in their filenames to a file on the RAM disk.
After LIST has finished, the CLI runs the SORT program, which
sorts the lines and sends them to the printer. This CLI process
doesn't disappear until the last task is finished.

Console Enhancements Under Workbench 1.3
As noted above, the default console device used by the CLI win­
dow is fairly primative-it doesn't even offer the line-editing ca­
pabilities of the Commodore 64. This situation was remedied by a
new console handler, called NEWCON:, introduced with Work­
bench 1.3. As of version 1.3, this console is not an integral part of
AmigaDOS like the old one was. It resides in a file in the L: direc­
tory called Newcon-Handler, and must be added to the system with
the MOUNT command (though this situation may change under
1.4). However, the default startup-sequence file on Workbench 1.3
mounts this console handler for you automatically. Likewise, to
start a CLI window with the NEWCON: handler, you must specify
it as your console in the NEWCLI command:

NEWCLI NEWCON:0/0/600/100/

Note, however, that if you use the NEWSHELL command (dis­
cussed below), NEWCON: is used as the default console handler.

NEW CON: adds two important enhancements to the standard
console handler. First, it adds line editing features. With the old
console, the only way to move back through a command line is
with the backspace key, which erases everything as you go. The
NEWCON lets you use the left- and right-arrow keys to move left
and right through the line, without erasing any text. Morevoer, any
additional characters you type will push ahead any existing charac­
ters to the right of them, without erasing anything. The Backspace
key can be used to erase the character to the left of the cursor,
while the Delete key erases the character under the cursor. The ex-

21

The eLi Environment

tended editing features of the NEWCON: handler are summarized
below:
Key
DELETE
CTRL-A
(or Shift-LeftArrow)
CTRL-K

CTRL-U

CTRL-W
CTRL-Z
(or Shift-RightArrow)

Function
Erases the character to the left of the cursor
Moves the cursor to the beginning of the line

Erases everything from the cursor forward to the
end of the line
Erases everything from the cursor forward to the
end of the line
Moves the cursor forward to the next tab stop
Moves the cursor to the end of the line

The NEWCON: handler introduces one more subtle editing
change. Control characters are now printed in reverse video, and
are not acted on immediately (though they will be passed through
if the screen output is directed to a file or device). This means that
typing the sequence ESC-c will no longer immediately clear the
screen, although if you press Return after typing it, the screen will
clear when the CLI prints the error message Can't open <ESC-c>.

In addition to enhanced editing functions, the NEWCON: han­
dler provides a command history buffer. This buffer saves each
command line as you entered it, up to a maximum of 2,048 charac­
ters (when the buffer fills, the oldest command line is deleted each
time a new one is entered). To retrieve a previous command line,
merely press the UpArrow key. Each time you press this key, the
next oldest command line appears. If you go past a command line,
you can move forward through the buffer with the DownArrow
key. To move all the way forward to the most recent (bottom) en­
try in the buffer, press CTRL-B (or Shift-DownArrow). This leaves
you on a blank line. The command history also has a search fea­
ture that allows you to find a past command by typing part of it
and then pressing Shift-UpArrow. For example, if you wanted to
repeat the command:

Copy Work:WordprocessingjDocuments/MyDoc to dfl:Backup

and you know you'd typed the command recently, you could just
type:

Co <Shift-UpArrow>

and NEWCON: would display the last line that you typed that
started with those two letters. If the command line you'd like to re­
peat showed up, you could just hit Return to reissue the command.
Note, however, that the search function is case sensitive; if you
type Co <Shift-UpArrow>, NEWCON: won't find a command

22

The eLi Environment

line that starts with "copy."
The command history of NEWCON: can come in very handy

when you're performing repetitive tasks. For example, if you
wanted to format a series of disks, you'd only have to type the For­
mat command once. For each succeeding disk, you'd only have to
press the UpArrow and Return keys.

The Shell
Another CLI enhancement offered by Workbench 1.3 is a slightly
"smarter" command shell. While the normal CLI only executes the
command whose name appears as the first word of the command
line, the Shell knows a few additional tricks. Since the Shell is not
(as of Workbench 1.3) the default command handler, however, it
must be added to the system with a command. To get the system
to load the Shell code in from the file L:Shell-Seg, in which it re­
sides, you must use the command:

RESIDENT eLI L:Shell-Seg SYSTEM pure

Executing this command, however, will not convert the CLI from
which the command was issued into a Shell CLI. Only CLI win­
dows that are opened after the command is given will have the
properties of a Shell. The default Startup-sequence file on Work­
bench 1.3 executes the necessary RESIDENT command, so all CLI
windows that you open from the Workbench have the Shell
characteristics. The command NEWSHELL not only opens a new
Shell process (if the Shell-Seg has been loaded), but opens it with a
NEWCON: window as well.

The first enhancement offered by the Shell is recognition of a
new PROMPT argument. When you use the characters %S in a
prompt string, they will be replaced the name of the current direc­
tory, whatever that happens to be at the time. For example, the
command:
Prompt "%N. %8> "

will lead to a prompt string that looks like this:

1.Workbench 1.3>

Whenever you change your current directory (more about this in
Chapter 3), the prompt will change to reflect the new location.

The second new feature of the Shell is much more substantial.
This is the power to create aliases for commonly used AmigaDOS
commands. An alias is an assumed name for an existing command,
usually shorter than the actual filename of the command. For ex­
ample, you could give the command Makedir the alias md, and
then, whenever you wanted to create a new directory, you'd only

23

The eLi Environment

have to type md, instead of Makedir. To create an alias, you use
the Alias command, which is recognized only by the Shell (it can
be thought of as an instrinsic command, one the Shell knows about
without reading in a command file). The format for this command is:

ALIAS name oommand

where name is the new name by which you wish the command to
be known, and command is the command you want executed when
that name is given. In the example above, you'd give the Makedir
command its alias by saying:

ALIAS md Makedir

Alias is good for more than just changing a command's name,
however. It can be used as a handy shortcut for an entire command
line. For example, you could use it to condense the command For­
mat drive dfO: name Empty noicons down to the command
fmt with the Alias command:

ALIAS fmt Format drive dfO: name Empty noicons

Not only can you enter command parameters into an alias, but you
can even enter in a partial list of parameters, and specify a place
where substitutions will be made with a pair of square brackets [].
For example, if you wanted the above alias to be usable with any
floppy drive, not just the internal one, you could give the
command

ALIAS fmt Format drive df[]: name Empty noicons

When you give the fmt command, the square brackets are replaced
by whatever number you type as a command parameter. For ex­
ample, to format drive I, you would type
FMT 1

There are a few more facts you should know about the ALIAS
command. The command ALIAS entered by itself will list the cur­
rent aliases. To remove an ALIAS, type ALIAS name with no
command, where name is the alias you wish to remove. Finally,
each set of aliases is known only to its own particular shell process.
If you start a new Shell, it won't know about about the old Shell's
aliases. The same is true for the enhanced prompt. If the old Shell
had a prompt that contained the %S character, the new Shell will
inherit a prompt that reflects the directory of the old Shell at the
time the new one was created. This prompt will not automatically
change to reflect the new Shell's path. Since it would be rather in­
convenient to enter a new prompt string and a new set of aliases
for each new Shell you create, AmigaDOS lets you use a startup
file that automatically does it for you. If you start a Shell with the

24

The eLi Environment

NEWSHELL command, it will automatically execute all the com­
mands in the file S:Shell-Startup at the time of its creation.

The last two features of the Shell will be covered in greater
depth later on, since they concern subjects we haven't covered yet.
We'll mention them here, just for the sake of completeness. The
first involves sequence file execution. Normally, you use the EXE­
CUTE command to execute a command sequence file. With the
Shell, however, its possible to execute sequence files just by typing
their names, if the file's S protection bit has been set. The second
feature is a new kind of output redirection. Normally, when you
redirect output to a file, it creates a new file that overwrites the old
file of the same name. With the Shell redirection operator », new
information is appended on to the end of the old file, if any.

Throughout the rest of the book, you'll occasionally come across
lines to be entered on the Amiga which, because of the book's for­
matting, are split on the page. A continued line is indented-do not
press Return at the end of the first physical line, but simply continue
typing with the indented characters.

25

Chapter 3

The Filing System

The Amiga personal computer comes with an internal double­
sided, double-density 31/2-inch disk drive. Each 31/2-inch disk can
hold 880K bytes-in other words, 901,120 characters of infor­
mation. To use a disk for storage, AmigaDOS must first write some
organizational information to the disk that will be used by the
computer's filing system to find the information it stores on the
disk. This is called formatting the disk and is performed by the
FORMAT command. Its syntax is

FORMAT DRIVE df0: NAME Volume name

Volume Names
When you format a disk, the program notifies you as each of the
80 cylinders (tracks) on the disk is formatted (written), then verified
(read) to make sure the formatting information is correct. If you
want to format the disk on a drive other than the internal drive,
just substitute the device name of that drive (for example, df1: re­
fers to the first external 31h-inch drive). Notice that after the name
of the drive, the command specifies NAME Volume name. Amiga­
DOS requires you to give each disk a name, known as the volume
name. You must use the keyword NAME before entering the name.
To name a disk as Wordprocessing, you'd use NAME Word­
processing. It's a good idea to use a name that identifies the disk
as precisely as possible. AmigaDOS is able to identify a disk by its
volume name as well as the device name of the drive in which it
resides. Therefore, if you remove the Wordprocessing disk from the
drive and DOS wants to access something on that disk, it will
prompt you to Please insert volume Wordprocessing in any drive.
(The message is somewhat misleading-sometimes the disk must
be placed in a specific drive, normally the one it was in earlier. If
you put the disk in the wrong drive, the message will reappear.)
You can change the volume label of a disk at any time with the
RELABEL command program. To change the name of the disk in
the above example to Spreadsheet, for instance, you'd type

RELABEL df0: Spreadsheet

26

The Filing System

Identification
Besides the volume name, AmigaDOS also writes an identification
number on each disk. It tries to make each of these ID numbers
unique, so even if two disks both have the same volume name, the
disk operating system can tell them apart. The disk-duplication
programs provided on your Workbench disk don't reproduce the
old ID number on the new disk, so even exact copies can be distin­
guished from the original. Only if a disk is duplicated by a com­
mercial mass-duplicating machine (or special copying programs)
will the IDs on copies match that of the original.

Info
After a disk is formatted, the INFO command shows that it con­
tains 1758 blocks of usable storage space, each containing 512
bytes. Note that this is two blocks short of 880K-the disk operat­
ing system reserves these for its own purposes. In addition, DOS
uses two of these 1758 blocks, leaving you with 1756 free blocks
(878K) on a newly formatted disk. If you want to verify this, you
can use the command program INFO to display the amount of stor­
age used on the disk and the amount of remaining free space. Type
INFO, and you'll see a display that looks like this:

Mounted disks:
Unit Size Used Free
DF1: 880K 1317 441
DFO: 880K 2 1756

Volumes available:
Wordprocessing [Mounted]
Workbench [Mounted]

Full
74%
0%

Errs
o
o

Status
Read/Write
Read/Write

Name
Workbench
Word processing

This display tells you the size of the total storage space on
each disk currently in each drive (mounted), how many blocks
have been used, how many are free, the percentage of disk space
that's used up, how many errors were encountered in reading from
the disk, whether or not the disk is write-protected, and the vol­
ume name of each disk.

Installing
There are a couple of other things you should know about format­
ting a disk. First, it's not necessary to format a disk before you per­
form a DISKCOPY to it-the DISK COPY program both formats the
new disk and copies all the information from the source disk to this
disk. Second, the system will not accept a newly formatted disk if

27

The Filing System

it's inserted at the prompt that tells you to put in the Workbench
disk (it just keeps asking for a Workbench disk). In order to make a
newly formatted disk bootable, you must use the INSTALL pro­
gram. To install the boot information on drive dfO:, for example,
enter

INSTALL df0:
The INSTALL program doesn't prompt you to put the disk

into the drive-it does the installation immediately. This makes it
difficult to use INSTALL on a single-drive system because you
must have the INSTALL program on the disk you want to install. If
you don't want to copy that program to the disk, you can copy it to
the RAM disk instead (we'll be talking about the RAM disk at
greater length in the next chapter).

To do this, put your CLI disk in the drive, and type

COpy c/install TO ram:
Put the new disk you want to INSTALL to into the internal

drive (it must be formatted first), and type

RAM:INSTALL df0:

Once the INSTALL process is completed, you may put that
disk into the internal drive when the system prompt for the Work­
bench appears on the screen, and the disk will boot and show the
CLI 1> prompt. Unless you put the DOS command files on that
disk, of course, you cannot use the commands just by typing their
names.

Version 1.3 of the Workbench added a new function for the
INSTALL command. If you add the keyword CHECK to the IN­
STALL command line, the program will check to see if the infor­
mation on the boot block of the disk is the standard Commodore­
Amiga code, or some nonstandard code which may indicate that
the disk contains a virus (a hidden program that may adversly af­
fect your computer's performance). Using the INSTALL program to
rewrite the book block to the disk will destroy most virus pro­
grams, but it can also cause some copy-protected programs to cease
functioning.

Files and Their Characteristics
The basic unit of information stored on a disk is called a file. A file
is just a group of characters of information that are stored together
on the disk under a common filename. A file can represent a com­
puter program, or a collection of data used by that program, such
as the text of a document created by a word processing program.

28

The Filing System

To see the contents of a file, use the TYPE command.
To print a text file called document on the screen, for example,

enter the command TYPE document. You may remember from
the previous chapter that you can pause output to the screen at any
time by striking a key, such as the space bar, and restart output by
using the BACK SPACE key to erase that keystroke. TYPE is really
only helpful for seeing the contents of text files. If a file contains
the numeric code for a computer program, the TYPE command will
print out. what seems like a jumble of nonsense characters.

Each file has a number of characteristics associated with it.
These include the name of the file, the number of characters it con­
tains, the number of disk blocks it uses, the protection level, the
date and time of its creation, and comments (if any). If you just
want to see a directory listing of the names of files on a disk,
sorted into alphabetical order, use the DIR command program.

The LIST command displays a list of files and all of their
characteristics. You can LIST all the files in a directory, a selected
portion of the files, or even a single file. There are a number of
variations on this command (see the "Command Reference" section
for details). The simplest form is

LIST

which displays information about the files and directories in the
current directory. As with other displays, you can pause it by
pressing a key, such as the space bar, and resume it by pressing the
BACK SPACE key.

In the sections below, we'll examine in detail each of the file
characteristics displayed by the LIST command program.

Filenames
The most important characteristic of a file is its name, since you
must know the name in order to access the information a file con­
tains. A filename may be up to 30 characters long and may contain
almost any character, with a few exceptions. A filename can't con­
tain a slash (/) or colon (:); DOS uses these to identify the direc­
tory to which a file belongs (see the section below on directories
for more information). A filename cannot use non printing charac­
ters (like TAB) or characters from the alternate character set (which
appear when you hold down the ALT key and type a character).

If you want to use the special characters that the CLI recog­
nizes as command modifiers in a filename, you'll have to jump
through some hoops. To use the space (), plus (+) at the end of a
name, equal (=), or semicolon (;) in a filename, you must put

29

The Filing System

the whole filename in double quotation marks. For instance,

COPY SOB TO "Son of a Blitter Object"
RENAME "3+3" TO Sixpack

If you include the device name and/or directory name as part
of the file specification, the whole file specification must appear in
quotation marks, like this:

"DFl:Programs/My Program"

Not like this:

DFI :Programsj"My Program"

By using the double quotation mark for this purpose, you've
made it an exception to the naming rules. So what if you want to
have a filename that includes quotation marks? You'll have to use
an asterisk (*) in front of the double quotes as an escape character
to tell DOS you want the quotation mark to appear in the name
and not just set off a chunk of text that contains space characters.
This means you would type the filename "So-Called" Facts like this:

"*"So-Called*" Facts"

Confused? It gets worse. Now you've made the asterisk an ex­
ception, too. This means in order to use the asterisk in a name, you
must use another asterisk in front of it. The name *void where pro­
hibited must be typed as
"**void where prohibited"

To summarize:

• Filenames may be up to 30 characters long.
• They may not contain a colon (:), slash (/), nonprinting, or

ALTernate character.
• If you want to use characters like the space, plus (+) at the end

of a name, equal (=), and semicolon (;), all of which have
special Significance to CLI, you must put the entire filename in
double quotation marks ("A Special File").

• If you want to use double quotation marks (") or an asterisk in a
filename, you must precede them with an asterisk ("*"Confu­
sion**l0*"" for "Confusion*lO").

In the examples above, some of the filenames appear in lower­
case characters, some in a combination of upper- and lowercase.
Any combination can be used in naming a file. When you LIST the
filenames, they'll be printed using the same combination of upper­
case and lowercase used when the file was named. The CLI, how­
ever, does not distinguish between cases. You can refer to a file
named CAPITAL as capital or Capital or even CAPital, and the CLI

30

The Filing System

reads them all identically. Since you cannot have two files with the
same name in the same directory, a single directory cannot contain
files named Test and TEST, because to the CLI each name looks the
same.

Filenotes
Though the name of a file is your chief source of information about
its contents, AmigaDOS provides another source as well. Using the
command program FILENOTE, you can attach a comment of up to
80 characters to a file. This comment can be used to note what's in
the file or show how this file differs from other files with similar
names. When you use the LIST command to obtain information
about the files on a disk, the FILENOTE comment is displayed right
beneath the name of the file.

Not all files have filenotes attached. (No filenote is automati­
cally attached to the file when it's created.) You must enter it your­
self with the command FILENOTE, which uses this format:

FILE NOTE filename COMMENT "This comment tells you
about the file"

The use of the keyword COMMENT before the comment is
optional. The rules for using special characters (such as spaces)
within comments are the same as those for using such characters
within filenames. If you use spaces within the text of the comment,
the entire comment must be enclosed within quotation marks, and
if you want to include quotation marks or an asterisk in the com­
ment, you must precede them with an asterisk.

An interesting characteristic of filenotes is that they remain
firmly attached to the file to which they're appended. The com­
ment does not change or disappear when you rename the file. If
you copy the contents of a file to one that has a filenote, the
filenote stays attached, even though its contents have changed. If,
however, you copy a file with a filenote to a new file, the filenote is
not copied along with the contents. It sticks like glue to the origi­
nal. There is no way to delete a filenote alone. If you want to get
rid of it, you have to change the comment to something innocuous,
like blank spaces, or copy the whole file and delete the original.

File Size
The LIST command displays a number after the filename. This
number represents the size of the file in bytes (characters). This
number should not be confused with the number of disk blocks
that the file uses. Even though each block can hold 512 bytes of
information, every file uses a minimum of two disk blocks. This

31

The Filing System

means a file only one character long uses up 1024 characters of
disk space.

To test this, type INFO to see the number of free blocks on
your disk. Now type
COpy * TO test
Press the Return key, and then the CTRL key and the backslash key
(\) at the same time.

This copies from the keyboard of your console device (repre­
sented by the asterisk) to a disk file named test. The CTRL- \ key
combination is the end-of-file character, which signals the end of
output from the console device and stops the copying process. You
end up with a file that contains only one character.

If you enter LIST test, you'll see that the file length is really
one character. But if you type INFO again, the number of free
blocks has decreased by two. Keep this in mind-numerous small
disk files may take up more space than if the same information
were stored as one long file. Even an empty file uses up one block
of storage.

Protection Level
On the display provided by LIST, there's space for eight characters
next to the size of the file. Seven of these characters-sparwed­
represent the seven protection status flags associated with each file.
These flags determine whether or not you can read, execute the file
as a script without using the EXECUTE command, make it resident
with the RESIDENT command, and write, execute, or delete the
file. Read, write, and delete are fairly self-explanatory-if set, these
flags allow you to read from the file, write new information to it,
and delete the file completely. The Execute bit operates only on
program files-it allows DOS to execute (run) the program. If you
set the execute flag on a nonprogram file (a text file, for instance),
you cannot expect DOS to load and run the file. It's important to
note that in all releases of AmigaDOS to date, the read, write, and
execute bits do not perform their intended function. You can set
these flags, but DOS does not act on those settings.

The final three flags were added under AmigaDOS 1.3. The S
(or Script) bit is used to tell the Shell that a file is a script file that
would normally be run with the EXECUTE command. If you type
in the name of a script file at a Shell prompt, the Shell will execute
the script even though you don't type in the EXECUTE command
name.

The P (or Pure) flag is used in conjunction with the RESIDENT
command, which loads a CLI command into memory and uses it as

32

The Filing System

if it were a "built-in" AmigaDOS command. Since only certain
types of programs can be made RESIDENT (those that can be run
from multiple CLI's at the same time, using only one copy of the
program), the pure bit is used to tell the RESIDENT whether the
file in question is a suitable candidate.

The A (or Archive) flag doesn't have any intrinsic meaning to
AmigaDOS, but is provided for the use of backup programs which
are used to create archival copies of data. When the backup pro­
gram copies a file, it sets the A bit to show it has been archived. If
the user later changes that file, the A flag will be removed, so the
next time a backup is performed, the backup program will know
this file has been changed, and must be saved again.

When a file is created, the RWED flags are set. As indicators,
the four characters (rwed) appear in the LISTing of the file name
(along with four dashes, representing unset flag bits). To change
the protection status of a file, use the PROTECT command pro­
gram. The form of this command is

PROTECT filename FLAGS l'wed

where filename is the name of the file whose status you wish to al­
ter, and rwed are the letters for the flags you wish to enable. For
example, if you want to remove just the deletion flag from a file
called LifesWork, you'd enter

PROTECT LifesWork FLAGS rwe

This would allow you to read, write, or execute the file, but not
to delete it. As of Workbench 1.3, the PROTECT command allows
you to use the + and - characters to add or subtract one or more
protection flags. For example, to set the Script flag on a file called
Execute.Me, you'd enter
PROTECT Execute.Me FLAGS +8

File Dating
The final item displayed by the LIST command program is the date
and time the file was created. The Amiga 2000 and 2500 come
equipped with a battery-powered clock/calendar module, from
which the time and date is read at power-on, using the SETCLOCK
command. The Amiga 1000 doesn't come with such a clock mod­
ule. And on the Amiga 500 the clock module is optional. If your
computer does not have a clock/calendar, it's up to you to set the
correct time and date each time you turn on the machine, or reset
the computer. You can find out what time and date the Amiga is
currently using by checking the time setting in the Preferences pro­
gram or by entering the command filename DATE. You can set the

33

The Filing System

time from the Preferences program that comes with the Workbench
disk or by using the DATE command program.

To set the time using the DATE command, use the form

DATE HH:MM:SS

where HH is a two-digit number for the hour, MM is a two-digit
number for the minute, and 55 is a an optional two-digit number
for the second. If you don't specify the seconds, the Amiga uses 00
for you (if you don't specify seconds, you don't need to include the
final colon). Note that hours are expressed in a 24-hour format, in
which 1:00 p.m. is referred to as 13:00, and midnight as 00:00.

The DATE program expects the date in the format DD-MMM­
YY, where DD is a two-digit number representing the day of the
month, MMM is the first three letters of the name of the month,
and YY is the last two digits of the year. For example, to set the
date to September 29, 1989, you'd type

DATE 29-Sep-89

It's possible to set both the date and time with one command:

DATE 16-May-89 14:56

Besides the DD-MMM-YY format, AmigaDOS also understands
some common ways of expressing the date, such as Yesterday, To­
day, Tomorrow, and the days of the week, such as Monday, Tues­
day, Wednesday, and so on. You can use these expressions in place
of the DD-MMM-YY format anytime you want to change the cur­
rent date to one within the coming week. For example, let's say you
just turned on the Amiga and used the DATE command to find out
the current time and date setting. If today is Sunday, November 26,
1989, and you last wrote a file to the disk the day before, you may
find that the setting is Saturday 25-Nov-89-20:20:02. To make the
date current, you need only type

DATE tomorrow

or

DATE Sunday 10:00

Either form advances the setting one day.
Remember that using the name of a day of the week (you can't

use abbreviations here-you must use the full name of the day)
will always set the date forward to that day. In the example above,
if you'd typed DATE Friday, it would have set the date to Friday
01-Dec-89 instead of Friday 27-Nov-89. The only date word that
sets the date backward is Yesterday. The DATE Yesterday command
moves the date back by one day.

34

The Filing System

AmigaDOS also uses these words in its LIST display, so don't
be surprised if you see recent files with dates like Yesterday or To­
day. The meaning of such terms in the LIST display is somewhat
different with the DATE command, however. DATE expects that the
new date you're setting will be later than the current date that's
shown, so if you use day names like Tuesday, it sets the date to the
Tuesday following the current date. LIST, however, assumes that
files on an existing disk must have been created previously, so
when LIST says Tuesday, it means the Tuesday before the current
date. If you put in a disk that wasn't in the drive when you booted
up the Amiga, and there's a file on the disk with a date later than
the current date, LIST will show its date merely as Future. To see
the actual date of such a file, you'd have to change the current date
far enough to the future so it's later than that of the file.

If you've set the correct date, expressions like Today or
Wednesday can be helpful in quickly picking out new files from old
ones. But what date does the Amiga use if you haven't set the cor­
rect date? AmigaDOS sets aside a place on each disk where it
records the latest date and time that a file was created. This latest
date is updated with the current date and time every time you
write to a file (provided that the current date is later than the latest
date). When you boot up the computer, AmigaDOS checks the lat­
est date recorded on the boot disk (and on the disk in the external
drive as well, if one's inserted). It sets the current date and time
just a little later than the latest date found (AmigaDOS appears to
advance it by 11 seconds). That way, even if you forget to set a
new time and date when you boot up, your files will still appear in
correct chronological order. You won't be able to tell the exact date
and time a file was created, but you will be able to tell which was
created most recently.

This time-stamping feature of AmigaDOS can be a great aid
when you're trying to identify one file among several. In fact, it's
so convenient that if your computer doesn't have a clock/calendar,
you may want to alter the startup command file so it prompts you
to enter the correct date and time whenever you turn the computer
on. An example of such a file can be found in Chapter 5, which ex­
plains command sequence files.

Directories and Subdirectories
With 880K of space, it's quite possible to have over a hundred files
on one disk. That many files in a single directory makes disk oper­
ations very clumsy-just scanning a directory listing becomes a
chore. This problem becomes much worse when you start to work

35

The Filing System

with a hard disk that has 20 or 60 million bytes of available storage
space.

AmigaDOS's answer to this is to provide multiple directory
levels, which branch out from the highest directory on down. This
allows you to place several related files into their own directory,
where you can work with them in an environment isolated from
the other, unrelated files on the disk. Your Workbench disk, for ex­
ample, contains directories like c, which contains command pro­
gram files, and devs, which contains files for device drivers like the
one that makes your printer work. Some of these subdirectories,
such as Utilities, have icon files associated with them which make
them appear on the Workbench screen as drawers.

Root and MAKEDIR
When you create a new file structure by formatting a disk, there's
only one directory on the disk. This is the highest leve1, or root, di­
rectory. When you write files to this disk, these files go into the
root directory. If you wish, however, you can create new directories,
known as subdirectories, within the root directory. Let's say you're
going to use part of the disk for storing word processing files and
part of the disk for telecommunications files. You could create sepa­
rate subdirectories for each kind of file by using the MAKEDIR
(make directory) command program. Just type MAKEDIR, followed
by the name of the directory. The rules for naming directories are
the same as for naming files (see above for more information).
Using the names in the example above, you'd type

MAKEDIR Wordprocessing
MAKEDIR Telecommunications

After you put a few files into each of the directories, your di­
rectory structure might look like this:

A Typical Directory Structure

Root

I
Textfile Wordprocessing (dir) Telecommunications (dir)

I I

Textfile Moretext Terminal Downloads

This structure is similar to what you might see if you draw a
family tree. At the top level is the root directory, which contains a
file (a data file called Textfile) and two subdirectories (Word­
processing and Telecommunications). These subdirectories in turn

36

The Filing System

contain their own files. The Wordprocessing directory contains the
files Textfile and Moretext, and the Telecommunications directory
contains the files Terminal and Downloads.

You'll notice that the root directory and the Wordprocessing di­
rectory both contain a file named Textfile. You can't have two files
of the same name in the same directory. If you tried to create a new
file with the same name as an existing one, the new file would
overwrite and replace the existing one. But, there's no problem
having two files of the same name in different directories. Each di­
rectory can be thought of as its own small disk except that a direc­
tory doesn't have a fixed size limit (within the space considerations
of the disk itself). A directory takes up as much space as required
to hold its files and subdirectories.

Just as the root directory can contain either files or subdirec­
tories, the subdirectories themselves may contain files or subdirec­
tories. For instance, if you have a large number of document files
in the Wordprocessing directory, you may wish to group them into
subdirectories, such as Personal Letters, Business Letters, Proposals,
and Speeches. There's no limit to the number of directory levels you
can create-again other than the space available on the disk. Most
people will find, however, that about four or five levels down is as
far as they care to go.

If you want to see the complete contents of a disk, including
files within subdirectories, you can do so by adding the phrase
OPT A (for all) to the DIR command. If you examine the sample
disk illustrated above with the command DIR OPT A, you'll see
the following display:

Telecommunications (dir)
Downloads

Wordprocessing (dir)
Moretext

Textfile

Gaining Access

Terminal

Textfile

You can gain access to files within subdirectories in one of two
ways. If you wish, you can specify complete information about the
file, induding each of the directory levels between it and the root
directory (this is known as the full pathname). Do this by naming
each of the directories, in order, from the root down, separating the
name of each directory with a slash (/). If the disk described
above is in the internal drive, you could refer to the file Textfile in

37

The Filing System

the Wordprocessing directory as DFO:Wordprocessing/Textfile. Speci­
fying the entire path from the top down always works, but it can
be a bit tiresome (particularly with a file like DFO:Wordprocessing/
Personal Letters/Aunt Charlotte-Thank You).

A less burdensome alternative involves the concept of the cur­
rent, or default, directory. If you refer to a file without specifying a
device or directory path, AmigaDOS looks for that file in which­
ever directory is currently the default directory. When you first
start up the computer, AmigaDOS sets the root directory of your
boot disk (the one in the internal drive) as the current directory.
You're free to assign a new current directory at any time. Just type
CD (for the Current Directory command program), followed by the
name of the directory (or directory path, if you're going down more
than one level). Using the same example, you could make the
Wordprocessing directory the current one by typing

CD Wordprocessing
From then on, if you want to use the file Textfile, you could refer to
it by name, instead of as Wordprocessing/Textfile. If you use the
command DIR after changing the current directory to Word­
processing, you'd see only a list of the files in that directory.

Up and Down
It's even possible to skip down more than one level at a time. If
you want to change the current directory from the root directory to
the Business Letters subdirectory of the Wordprocessing directory,
enter
CD "Wordprocessing/Business Letters" (quotes needed for names

with spaces)

The CD command always assumes the name you give it is of a di­
rectory or path that lies below the level of the current directory. To
move up to a higher level, you must use one of two special charac­
ters. The first is the familiar slash (/). A slash in front of a direc­
tory name is the signal to move up a level to the directory that
contains the current directory. The backslash alone works-you
don't have to specify the name of the higher directory-since each
directory has only one directory immediately above it. To change
the current directory to the one immediately above, just type

CD I
You're not limited to a single slash. You can use as many

slashes as there are directories above the current one. Thus,

CD II
moves you up two directories.

38

The Filing System

Nor are you limited to going in one direction at a time with
CD. Assume your current directory is the Letters subdirectory of the
Wordprocessing directory, and you want to change to the Telecommu­
nications subdirectory of the root directory. You could use the com-
mand form .

CD / /Telecommunications

The first slash takes you up to Wordprocessing, the second slash
takes you up to the root directory, and Telecommunications takes
you down one level to make that directory current.

If your goal is to return to the root directory, however, it's not
necessary to enter a slash for each level. You can use the colon (:)
to indicate a move directly up to root level. For instance,

CD:

makes the root directory the current directory, while

CD :Telecommunications

assigns the Telecommunications directory as the current directory, no
matter how far down you were when you entered the command.

CD is not the only command that takes the initial slash as a
signal to move up one directory level, and you can use the colon to
refer to the root directory at any time. Commands such as

DIR:
DIR :Wordprocessing
DIR /
DIR /Wordprocessing
all work, as long as the directories referred to really exist.

If you wish to change the default directory to one located on
another disk, you must specify the device name or volume name
when using CD. To switch to the root directory on the disk in the
external 31/2-inch drive, for example, you'd use

CD dfl:
Note that when you switch the current directory to another

disk, AmigaDOS internally refers to that disk by its volume name
and not by the device name of the disk drive in which it's
mounted. This means when you put a disk with volume name CLI
in drive df1: and type CD DFl:, AmigaDOS changes the current di­
rectory to the root directory of volume CLI. If you take that disk
out of the external drive andreplace it with another, AmigaDOS
will be very unhappy. Use DIR with the new disk in the drive, and
DOS won't comply. It will put up a requester box asking you to re­
place volume CLI in any drive. That's because to AmigaDOS, the
current directory is the root of the specific disk named CLI, not just

39

The Filing System

any disk that happens to be in the external drive. When you wish
to replace that disk with another, you should change the current
directory to one of the disks you'll use. In the example above, once
you replace the CLI volume with another disk, you could issue the
command CD DFl: once again, making the root directory of that
volume the new current directory. Then if you issue the DIR com­
mand, you would not be prompted to swap disks. If you're ever
unsure which is the current directory, simply use the command CD
(and that's all) to display the current directory name. For more
information on device names, logical devices, and volume names,
see Chapter 4.

File Manipulation Commands
Some of the most commonly used CLI commands are those that
copy, delete, rename, and join (combine) files.

COpy
The COpy command is used to create a duplicate of a file in the
same directory, in another directory, or even on another disk.

COPY vitalstuff TO vitalstuff.backup

This creates a backup copy of the file in the same directory with
another name.
COpy programfile Programs/programfile

While this command line creates a copy of the file with the same
name in the subdirectory named Programs.
COPY filename dfl:

And this command makes a copy of the file (with the same name)
in the root directory of the disk in drive df1:.

RENAME
The RENAME command program changes the name of a file or a
directory. When you RENAME a directory, you change its position
in the directory structure:

RENAME program TO program. old

This changes the name of the file program to program. old.

RENAME dfl:c/delete TO dfl:c/erase

While this command line changes the name of the command pro­
gram delete on disk drive df1: to erase, also on disk df1:.

RENAME WordprocessingjLetters TO :WordWiz/Textfiles

40

The Filing System

And this example moves the directory Wordprocessing/Letters and
all of its contents to the directory WordWiz/Textfiles.

DELETE
DELETE removes a file from the disk. Once you delete a file, the
information contained in it is lost forever. DELETE lets you name
up to ten files to delete at a time. Separate each filename with a
space.

DELETE oldfile

This permanently erases the file oldfile.
DELETE oldfile 1 oldfile2 oldfile3

And this sample erases all three of the named files.
DELETE can also be used to erase a directory, but only if it

does not contain any files or subdirectories. You can use the same
DELETE command first to erase the files in the directory, then to
delete the directory, or you can use the keyword ALL.

DELETE Wordprocessing/lonefile Wordprocessing

This first deletes the only file in the Wordprocessing directory, then
deletes the directory. Or you can use

DELETE Wordprocessing ALL

which deletes the directory and all files it contains.

JOIN
The JOIN command file takes the contents of from 2 to 15 files and
combines them into a new and larger file. The original files are
unchanged.
JOIN firsthalf secondhalf AS bothparts

This creates a new file called bothparts which contains all the infor­
mation of both firsthalf and secondhalf.

Pattern Matching (Wildcards)
Sometimes it's possible to specify one or more filenames that have
a common characteristic without typing the entire filename. This
technique, called pattern matching, lets you do such things as list all
files with names ending in the characters .bas or delete every file in
a directory at one time.

AmigaDOS pattern matching is similar to the concept of
wildcard characters used in MS/PC-DOS, but there are important
differences. In PC-DOS, the asterisk ("') can be used to substitute

41

The Filing System

for any string of characters in a filename. In AmigaDOS, the aster­
isk is used as an escape character, to allow quotation marks (and
other asterisks) in a filename. Also, as you'll see in the next chap­
ter, the asterisk is used to refer to the currently active console
device.

PC wildcards can be used with more commands than
AmigaDOS pattern matching, which is mostly confined to COPY,
DELETE, DIR, and LIST. AmigaDOS patterns, however, are much
more flexible. They allow you to match names starting with the
same group of characters, end with the same group of characters,
or have the same characters in the middle, preceded by any num­
ber of characters and followed by any number of characters. Such
flexibility makes the system somewhat complex to learn, but well
worth the time and effort required.

? and #
The most important pattern-matching characters are the question
mark (?) and the pound sign (#). The pound sign followed by a
single character matches any number of repetitions of that charac­
ter (including none). For example, #STUTTER matches STUTTER
(#5 substitutes for one S), SSSSTUTTER (#5 substitutes for four con­
secutive S's), and TUTTER (#5 can also substitute for zero occur­
rences of the letter S). The question mark is used to replace any
single character (but not the null string, or no character). Thus,
?LA?S matches FLATS (first? replaces F, second replaces T) or
2LAPS (first? replaces 2, second replaces P), but not LAPS (first?
must replace an actual character).

When you put these two special characters together (#?), they
become a powerful pattern that can match any number of any char­
acters (or no characters at all). For example, you could use PART#?
if you wanted a pattern to match all filenames starting with the let­
ters PART. If you wanted to LIST all of the icon information files
(whose names always end in .info), you could use the pattern #?INFO
to find them. You could also use a pattern like PART#?INFO to match
any file starting with PART and ending with .INFO, with anything
(or nothing) in between (like PARTICLE.INFO, PARTYANlMAL. INFO,
PART47ZYC-332.INFO, and even PART.INFO). Likewise, you could
use a pattern like #?CAT#? to match a filename that had the letters
CAT anywhere in it (like CATAPULT, SCAT, SCATTER, or "I SNEEZE
AT CAT HAIR").

42

The Filing System

()
In addition to the pound sign and question mark, there are three
other characters that have special meaning when used for pattern
matching. Parentheses () may be used to group a number of char­
acters together into a single pattern element. If you follow a pound
sign with a group of characters within parentheses, for instance,
it will match any number of repetitions of that pattern group (in­
cluding none). Thus, #(YO) matches the filenames YO, YOYO,
YOYOYOYO, and so on. If you didn't use the parentheses, #YO
would match YO and YYYYO, but not YOYO, because the #Y could
substitute only for repetitions of the single letter Y. Parentheses let
you become creative, doing things like using #(P?NG) to match the
filename PINGPONG.

The vertical bar (I), entered by pressing the SHIFTed backslash
key, is used when you want one of two or more patterns to match
the characters in the filename. AlB matches either the letter A or
the letter B. The pattern GOOD 1 BAD matches either a file named
GOOD or one named BAD. And pattern MO(B 1 N)STER matches
both MONSTER and MOBSTER (note how the parentheses were
used to set off the BIN as a distinct pattern). AmigaOOS under­
stands the vertical bar as applying only to one part of the path­
name. For example, the command

COpy dfO:c/COPYIDIRILIST to ram:
would be understood to mean copy any file named COPY, OIR, or
LIST from the C directory on dfO: to the root directory of the RAM
disk, and not copy the file named COPY from the C directory of
dfO:, or OIR or LIST from the current directory to the RAM disk.
This aspect of the vertical bar can be very handy when dealing
with several files in a complicated path at one time. Note that prior
to Workbench 1.3, there was a limit of 31 characters in anyone
wildcard expression, which limited the number of files you could
join with the vertical bar. This limit was removed in 1.3.

%
The percentage sign (%) represents the null string (no character).
You've already seen how a pattern starting with the pound sign
matches any number of repetitions of the following character, in­
cluding none at all. The pattern S#HIN, for example, matches
SHIN, SHHHIN, and SIN. But if you want to match only a single
appearance of the character or none at all, you can use the form
(H 1 %), which stands for either H or the null character (no character

43

The Filing System

at all). Therefore, S(H I %)IN would still match SHIN and SIN, but
would not match SHHHIN, which repeats the H character more
than once.

Combining the percentage sign with the question mark in the
form (? I %) creates an expression that will match any character or
no character at all. Using a previous example, you could substitute
the pattern (? I %)LA?S to match either 2LAPS or just plain LAPS.

There's one final character used to address a problem created by
the other special characters. Since those characters have special
meanings in the language of pattern matching, it makes it difficult
when you want to match a name that contains one of those special
characters as part of the filename. In order to match a filename that
contains a question mark, for example, you must precede the ques­
tion mark with an apostrophe (,) to let the pattern matching
mechanism know that you want to match an actual question mark,
without using the question mark as a substitute for any other char­
acter. For instance, you could use the pattern ?OW,? to match
filenames like HOW? and COW?

Naturally, since the apostrophe is now a special character, you
must use two apostrophes to represent an apostrophe that might be
part of a filename. A pattern like ?ONT"T is needed to match
filenames like DON'T and WON'T. If these rules remind you of the
rules for naming files, all the better. The same rules apply to pat­
tern substitution, too. If you're using a pattern containing space
characters, for example, you must enclose the entire pattern with
double quotation marks.

Pattern Matching Summary
#c Matches any number of repetitions of the character c (including

none)
N#O matches N, NO, NOO, and NOOOOOOOOOOO

#(group) Matches any number of repetitions of group (including none)
#(TOM) matches TOM and TOM TOM

? Matches any single character (but not the null character)
K?NG matches KING and KONG (but not KNG)

#? Matches any number of repetitions of any character (including
none)
#?BAS matches any filename ending in .BAS

PI I P2 Matches either pattern PI or P2
R(A I O)Y matches BAY and BOY
dfO:c/LISTlDIR matches dfO:c/LIST or dfO:c/DIR

% Matches the null string (no character)
(S I %)TOP matches STOP or TOP

44

(? 1%)

()

The Filing System

Matches any character or no character
(? I %)WT matches SWT, CWT, and WT
Used to set off a group of characters as its own distinct pattern
(M I PYA matches MA or PA
M I PA matches M or PA
Used in front of one of the special characters to show that you
want to match it, not invoke its special meaning
?ON"T matches WON'T and DON'T

45

Chapter 4

Devices

The main function of a disk operating system like AmigaDOS is to
let you control disk devices. But there are several other kinds of de­
vices that the Amiga is capable of accessing, and the CLI provides
ways of interacting with them also. Some of these devices are
physical devices, like the console screen and keyboard, hard disks,
printers, and modems. Others are "software" devices like the RAM
disks and pipe handler. As you'll discover later, AmigaDOS even
treats some disk directories as logical devices.

Some of these devices are built-in, and AmigaDOS recognizes
them automatically. Others must have their driver or handler soft­
ware added to the system by use of the MOUNT or BINDDRIVERS
command.

Disk Drives
Every Amiga comes with an internal disk drive. This device is
known as DFO: (for Disk Floppy). Optionally, you can connect an
external 31/2-inch drive (or in the case of the 2000 or 2500, a sec­
ond internal drive), known as DFl:.

Although the Amiga supports up to four floppy drives, the
power supply that comes with the Amiga 500 really only provides
enough power for one external drive. If you want to run more
drives than that, you'll have to find a drive with an independent
power supply, or buy one of the larger replacement power supplies
available for the 500.

The Amiga 2000's power supply is quite sufficient for four
floppies,' and even the 1000 should be able to handle three or four
of the newer drives, which consume much less power than previ­
ous models.

The 5%-inch drive Commodore offers for use with MS-DOS is
self-powered, but is not automatically recognized by AmigaDOS.
The MOUNT command must be used to add this device to the sys­
tem (a sample entry can be found in the DEVS:Mountlist file that
comes with the Workbench for this device, under the name DF2:).
When used this way by AmigaDOS, however, the SIf4-inch drive
can only store 440K, half of the amount stored on a 31h-inch drive.

46

Devices

A disk drive is not a single, indivisible device like a printer.
Rather, its storage area is divided into a number of different direc­
tories and files. Therefore, you'll most often use the device name
OFO: or OF1: only as part of a file or a directory description.

A Complete Description
The most complete kind of file description contains the disk device
name, followed by the names of each succeeding directory level
(separated by slashes), then finally the name of the file. The name
DF1:WordWiz/Letters/Formletter is a good example. The filename is
Formletter, which is in the directory Letters, which in turn is in the
directory WordWiz. All are found on device DF1:, the external (or
second internal) disk drive.

If you refer to a device as simply OF1:, however, AmigaOOS
interprets this as a reference to the root directory of the disk
mounted in that drive. WordWiz may not be the current directory,
and getting to it may take some keystrokes.

Fortunately, you don't always have to give a complete descrip­
tion of a file. AmigaOOS also recognizes references to a file that
are relative to the current directory. One directory is always recog­
nized as the current directory. When you first start the Amiga, it
uses the root directory of the disk in the internal drive as the de­
fault directory. Therefore, when you refer to a file like Myprogram,
AmigaOOS interprets this as DFO:Myprogram. If you change the
current directory to C, for example, using the CO command, a ref­
erence to the file Dir will be taken to mean DFO:C/Dir.

You can also use the colon (:) to indicate the root directory of
the disk on which the current directory is located. Therefore, even
when C is the current directory, you can specify a file in the S di­
rectory with the description :s/startup-sequence, which is equivalent
to DFO:s/startup-sequence (as long as OFO: is the drive holding the
disk on which the current directory is located). Note that AmigaOOS
ignores case in these names. Any combination of uppercase and
lowercase can be used, as long as the letters themselves match.

You may also use the volume name of the disk itself in place
of the device name of the drive in which it's mounted. For example,
if you have a file called program.bas located on a disk whose volume
name is Extras, you could describe the file as Extras:program.bas. In
fact, such a description may be preferable to using the device name
of the drive, since it's valid regardless of which drive is used for
the Extras disk.

In some cases, it's necessary to refer to a disk by its volume
name. Let's say you have only one disk drive and want to list a di­
rectory of a disk that doesn't contain the OIR command program.

47

Devices

The volume name of this disk is Stuff. When you insert the Stuff
disk into the drive and type DIR, the system prompts you to put
the disk containing the commands into the drive. When you do,
the Amiga lists a directory of that disk, not Stuff. But if you enter
DIR Stuff:, you'll be prompted first to put in the disk with the
commands, then to put in Stuff. Now you'll get a listing of the Stuff
disk. Of course, there are other solutions to this problem-you
could copy'the DIR file to Stuff, or you could copy your commands
to the RAM: disk device (see below). But if you want to specify op­
erations on a particular disk, using the volume name assures you of
the correct result. In fact, AmigaDOS keeps track of the disk with
the current directory in just this way. If you take the disk out and
type in a command, DOS prompts you with the volume name of
the disk it wants you to insert.

Hard Disks
Hard disks are fixed (nonremovable) drives that either fit inside the
computer itself, or in a box that sits next to the computer. Although
hard drives are more expensive that floppy drives, they can read
and write information much more quickly, and can store a lot of
information in one place. These advantages are particularly impor­
tant to Amiga owners, since the Amiga floppy drives are relatively
slow, and some of the Amiga system software (such as text fonts)
must be read in from disk. As we'll see in the section on logical de­
vices, software may require files to be read in from the Workbench
disk at any time, so it can be quite handy to have that disk con­
stantly available. With the 1.3 Kickstart ROM, Commodore intro­
duced autobooting to the Amiga, which means it's possible for the
computer to start up from the hard drive, without having to read a
Workbench disk in the floppy drive.

Although hard drives were not well supported by AmigaDOS
until version 1.2, there are now a number of different interfaces
that can be used to add a hard disk to your system. The device
driver software that gives AmigaDOS access to these hard drives is
added to the system through the use of the MOUNT or BIND­
DRIVERS command, or by means of a special mounting program
like SupraMount (for hard drives manufactured by Supra Corpora­
tion) or DJMount (for drives connected to the A2000 via the IBM
compatibility option, or Bridge Board).

In most cases the hard disk 9-evice is addressed as DHO: (for
Hard Drive 0), although SCSI (Small Computer System Interface)
drives connected to Commodore's own hard drive controller are
numbered starting at DH2:. AmigaDOS partitions on a hard drive
that's connected to a PC Bridge Board on the Amiga 2000 are

48

Devices

known to AmigaDOS by names such as JHO: and JH1: (which
stands for Janus Hard drive, after the Janus software that allows the
Amiga and IBM-compatible sides of the computer to work
together).

Hard drives are much larger storage devices than floppy disks,
holding as much information as dozens of the smaller disks. For
this reason, most hard drive interface software allows the user to
partition the drive into smaller, logical drives. A 40 megabyte drive,
for example, might be divided into a 10 megabyte partition called
DHO:, a 13 megabyte partition called DH1:, and a 17 megabyte
partition called DH2:. The details of partitioning depend on how
the device driver software is added to the system. Hard drives that
use the MOUNT command usually have an entry describing each
partition in the devs:MountList file. Hard drives that use BIND­
DRIVERS or custom software may have special software that writes
partition information to the hard drive itself. In the case of IBM
compatible hard drives interfaced through the Bridge Board, there
is a program on the IBM side called ADISK which creates Amiga­
DOS partitions on the MS-DOS hard drive.

Using a hard drive on the Amiga is very similar to having a
large floppy disk drive, so the information found above concerning
floppies (DFO: and DF1:) generally applies to hard disks as well. If
you wish to use a hard disk for loading system files, assign all the
logical devices to the proper directory of DHO: (see below for more
information about the assignment of logical devices). You may
wish to make such assignments part of your startup-sequence file so
they occur automatically whenever the computer is turned on (see
Chapter 5 for more information about command sequence files).
You may also find that some programs may require some logical
device name assignments to be made if they are to be run from a
subdirectory on a hard drive. The instruction manuals for most pro­
grams contain hard drive installation instructions.

Commodore introduced a new piece of system software in
Workbench 1.3, called the Fast File System (FFS). This is a new
AmigaDOS disk software interface that provides much quicker disk
access than the old filing system. The FFS won't work on normal
floppies, because it stores data on disk in a different manner than
the normal AmigaDOS file system. This means if 31h-inch drives
used the new system, they wouldn't be able to read current
AmigaDOS disks. Nonremovable media, however, like hard disks
and RAM disks, don't face this problem. Most hard drives can be
formatted using the new layout, resulting in speed increases of 500
percent or more. The new filing system software is located in a file
called FastFileSystem, located in the L directory of the Workbench

49

Devices

disk. Details of using the Fast File System vary from drive to drive,
so you'll have to consult your hard disk interface manual for in­
structions on installing it on your hard drive.

The RAM: Disk
There's another disk drive available to all Amiga users. AmigaDOS
allows you to reserve a section of memory for use as a super-fast
electronic disk drive, known as the RAM: device. The RAM: device
does not exist when you first start up the computer. You create it
simply by referring to it. For example, when you COpy a file to
RAM:, the device is automatically created. But you don't have to
move any information to RAM: to create the device. Typing a com­
mand like CD RAM:, which changes the current directory to the
root directory of RAM:, works as well.

Though AmigaDOS understands references to RAM:, the ac­
tual device handler for RAM: (the program that routes information
to the device) must be loaded in from disk before the device can be
used. This handler is located in a file called Ram-Handler in the I
directory of the system disk. If this file is not available when the
first reference to RAM: is made, the device cannot be created. Once
it's loaded, however, the system doesn't have to refer to this file
again when using the RAM: device. The startup-sequence file on
Workbench 1.2 and 1.3 disks refer to RAM: in their command se­
quence, so the RAM disk is automatically created when one of
these Workbench disks are used.

You can read, write, execute, and delete files from RAM: just
as from any other disk device. There are, however, a few important
differences. The most significant is that RAM: is a temporary storage
device. Its files disappear when you turn off the power or when you
warm-start the computer with the CTRL-Amiga-Amiga key com­
bination. If you store files to RAM:, remember to copy them to a physi­
cal disk device before you turn the power off or reset the computer.

Another difference between RAM: and the physical disk drives
is capacity. The 31h-inch disks have a fixed storage capacity of
880K, but RAM: is limited to available free memory. Unless you
have substantial expansion memory, you won't be able to store as
much in the RAM: disk as on the physical drives. In fact, you
should avoid storing too much information in the RAM: disk. First
of all, it's possible to crash the system if you take up all available
memory. Even if things don't reach that stage, however, you may
not have enough room to run application programs if your RAM:
disk is too full.

50

Devices

One of the best ways to put the RAM: disk to use is to copy all
or some of your CLI command programs to it and use the ASSIGN
command (explained below) to make it the new command direc­
tory. The simplest way to do this is

COPY C: RAM: ALL
ASSIGN C: RAM:

This is discussed at greater length in the section ilLogical De­
vices," later in the chapter.

Communications Ports
The Amiga personal computer comes with two communications
ports-one serial and one parallel. The serial port can be used for
transferring information to or from a modem (or another com­
puter), a MIDI musical device (with the proper interface), or to a
serial printer. The communication speed for this serial interface can
be set from the Preferences program at speeds ranging from 110 to
19,200 bits per second (bps). The parallel port is initially set up by
the system as a Centronics-type printer interface, which can be
used only to send information to a printer. Application programs
(but not AmigaDOS) can configure this parallel port so it can be
used to input information as well. For example, external devices
like audio digitizers, video digitizers, and clock/calendars, all use
the parallel port for input rather than output.

AmigaDOS allows you to write information to either of these
devices just as you would to a disk file. For example, if you wish to
transfer the contents of a disk file named wordfile to a parallel
printer, you could use the command TYPE wordfile TO PAR: or
COpy wordfile TO PAR:. You could send the contents of the file
to a serial printer or modem with the same commands by substitut­
ing the device name SER: for PAR:. You may also use the redirec­
tion operator (>) to cause the output from one of the disk
commands to be sent to the parallel or serial devices (see the sec­
tion on redirection below).

You should note that the handlers which actually know how
to direct output to the communications ports are not an integral
part of AmigaDOS. They reside on disk files named serial. device
and parallel.device in the devs directory of the Workbench disk. The
first time AmigaDOS tries to open these devices, it must read the
proper handler file from disk. If it can't find the file, it can't open
the device. Once the handler is loaded, DOS doesn't need to access
the file again.

51

Devices

Using PRT:
Although you can control a serial printer directly through the SER:
device and a parallel printer via the PAR: device, there's a better
way. The device called PRT: can be used to send output to the
printer, regardless of whether you have a serial or parallel printer
connected. The PRT: device gets its information about which type
of printer is connected from the system-configuration file in the devs
directory. This is the file the Preferences program uses to store the
preference settings. In order to route information through the
printer device, DOS must first load a handler stored in the disk file
printer. device in the devs directory of the Workbench disk. This
handler itself must refer to a specific printer-driver file in the print­
ers subdirectory of the same devs directory. The PRT: device uses
the information stored there to translate control codes (such as
those used to start and stop underlining) to equivalent codes used
by your printer. In addition, the PRT: device translates the linefeed
character (CTRL-J or ASCII 10) to a carriage-return character
(CTRL-M or ASCII 13), plus a linefeed character. If you wish to use
PRT:, but don't want a carriage return added to the linefeed, you
may specify the device PRT:RAW.

Diagnosing problems with the PRT: device can be difficult, be­
cause there is both a hardware and software component to the de­
vice. Printer problems may be due to the hardware connection
between the printer and the computer, or they could be due to
problems with the printer driver software. When testing a printer,
it's helpful to first try sending output to the PAR: or SER: device
first (depending on whether the printer is connected to the parallel
or serial port). A command like COPY s:Startup-Sequence to
PAR: should print the file to the device. If this procedure doesn't
work, the problem is with the hardware connection between your
printer and computer (either the printer isn't ready to print, or
you've got a bad cable). If it does work, however, you know the
problem lies with the printer driver software.

To summarize the AmigaDOS device names that can be used
to send information to the printer:
Device Name
PAR: or SER:
PRT:RAW

PRT:

52

Function
Sends data directly to the printer, with no translation.
Sends data to the printer, translating printer codes, but
does not add a carriage return to each linefeed.
Sends data to the printer, translating printer codes, and
adds a carriage return to each linefeed.

Devices

Console and Others
The console device is used to accept input from the keyboard and
the mouse, and to print the characters on the screen. Output goes
to a window on the screen, known as the console window. The con­
sole device accepts input from the keyboard a line at a time. At any
point before you press the RETURN key, you may edit the line
using CTRL-H or the BACK SPACE key to delete characters, and
CTRL-X to delete the entire line (see Chapter 2 for more infor­
mation about the editing capabilities of the console device). When
the console receives a line of text, it translates the keystrokes into
ASCII and extended ANSI codes. As noted in Chapter 2, the con­
sole device itself responds like an ANSI terminal to many escape
codes that control things like cursor positioning, screen scrolling,
line insertion and deletion, and the like.

Workbench 1.3 comes with an enhanced console device called
NEWCON:, which introduces new features like line editing and
command history. Since this device is not automatically recognized
by AmigaDOS, but must be added with the MOUNT command,
we'll cover it more fully in the treatment of MOUNTable devices,
below.

Each CLI comes with its own console window (it's the window
in which the >n prompt appears). When you use the NEWCLI
command to start a new CLI process, you may specify the starting
position, size, and title of its console window (see Chapter 2 for
more information on starting a new CLI process). If you don't spec­
ify these characteristics, a default console window is used.

It's possible, however, to create your own console windows
that aren't related to any existing CLI process. To do so, you refer
to the device as

CON:hpos/vpos/width/height/windowtitle

where hpos is the horizontal position of the top left corner of the
window (expressed as the number of pixels in from the left edge of
the screen), vpos is the vertical position of the top left corner of the
window (expressed as the number of pixels down from the top
edge of the screen), and width and height give the size of the win­
dow in pixels. The maximum size for a console window is the
screen size, normally 640 X 200 pixels. The minimum is 81 X 25
pixels. The last entry, windowtitle, is optional and allows you to en­
ter a title that will appear in the title bar. If you don't enter a title,
the title bar is left blank. Note that the final slash is required, even
when you don't specify a title.

Each console window comes with a sizing gadget to change its
size, but the window doesn't redisplay the current data after you

53

Devices

change the window size. This means if you make the window
smaller, the text in the area the window previously occupied is
wiped out. If you later make the window larger again, the new
area of the window will be blank, rather than holding its old con­
tents. Besides the sizing gadget, each console window has the
depth arrangement gadgets in the upper right corner, which let you
send the window to the back of the screen or bring it forward on
top of another window. Console windows also have a drag gadget
(which coincides with the title bar) that lets you change the posi­
tion of the window on the screen.

Like the RAM: device, you create a new console window by
referring to its device name. For instance, to LIST the directory to a
new console window, you could type

LIST TO CON:0/0/640/100/

Try this, and you'll see that although a new console window is
created and the listing prints within it, it disappears as soon as the
command is completed. Though you can pause the display before it
disappears by hitting any key (use the BACK SPACE key to re­
start), the short-lived nature of such a window limits its usefulness
as an output device.

Console as Input
The console window can also be used as an input device. In this
role, it can act as a mini text editor, which can be used to create
small text files or printed documents. For example, you can create a
text file on the RAM: disk by typing

COPY "CON:40/40/200/100/File Creator" TO RAM:text

The new console window appears and is the active window.
Start typing text, using the BACK SPACE key to delete errors.
When you've finished a line, press the RETURN key and that line
is sent to the file. When you finish, enter a CTRL- '\ character to
signal AmigaDOS that you're at the end of the file. Enter this char­
acter by holding down the CTRL key and pressing the backslash
('\) key, located next to the left of the BACK SPACE key. When
you end the file, the window disappears and the disk file is closed.
To see the contents of that file, enter

TYPE RAM:text

The console device gives you a handy way to create a small
file (like the command sequence files discussed later). You can also
send input from a console device to any other device (even another
conso~e window). For example, type

COPY CON:40/40/200/100/Typewriter TO PRT:

54

Devices

and each line that you type in the window is sent to the system
printer (as soon as you press RETURN). Again, use CTRL- " to end
the session.

In addition to the new console windows you create, you can
also use the existing console windows belonging to your CLls. Do
this by referring to the active console device, named * (asterisk).
This use of the asterisk should not be confused with the universal
wildcard character used by MS-DOS or the asterisk used as an es­
cape character before quotation marks in a filename. As an output
device, * is more durable than CON: since the window doesn't
vanish after each command. Unfortunately, it's not much more use­
ful, since most commands output to the current console window
anyway. It, too, can be used as an input device, and as such, it's
even handier to type

COpy * TO textfile

than specifying a long CON: device name. This is a quick and easy
way to create a short text file.

RAW
There's one more window device available to AmigaDOS, but it's
really only suitable for application programs and not for general
use by the CLI command programs. This device is called RAW:, and
it's an apt name. A normal console window heavily filters what
comes through it. You'll notice, for example, that the cursor keys
have no effect when you're typing in a console window. The RAW:
device, on the other hand, doesn't filter anything. Thus, it would
be nice to use if you wanted to create a file that containes charac­
ters other than the standard letters, numbers, and punctuation
marks-such as cursor movement codes. But, alas, RAW: passes
through the CTRL- " without interpreting it as an end-of-file char­
acter. So while a CON: disappears before you're through with it,
there's no way to close a RAW: window from CLI and therefore no
way to close the file to which it's writing. If you really want to play
with RAW:, remember that once you create the window, the only
way to get rid of it is to warm-start the computer by pressing the
CTRL-Amiga-Amiga key combination. A fairly safe experiment for
the incurably curious is to type

COpy RAW:0/0/100/50/Input TO RAW:0/50/640/100/
Output

Click in the Input window to activate it and start typing.
Everything you type shows up in the Output window, including
cursor movement keys. You can now warm-start the computer, se-

55

Devices

cure in the knowledge that you've tried everything at least once
and that RAW: is as useless for ordinary purposes as we say it is.

It's NIL
Speaking of useless, the last device to investigate does absolutely
nothing. True to the British origins of AmigaDOS, it's called NIL:.
When used as an input device, NIL: just sends the end-of-file char­
acter. When used as an output device, NIL: accepts the output, and
does nothing with it. Still, it's not as useless as it may seem at first.
Programmers sometimes have a use for such devices in testing I/O
routines. And even for the casual user, there are occasions where
it's useful to get rid of output without showing it to anybody. For
example, if you examine the command file called startup-sequence
in the s directory, which is normally used to load and run the
Workbench, you'll find that the last line of the file reads endcli >
nil:. (You can look at this file by warm-starting the Amiga, then
putting the Workbench disk in the drive [the Workbench disk, not
the CLI disk you've probably created], opening the System drawer,
double-clicking on the CLI icon, and typing TYPE s/startup-se­
quence.) The ENDCLI command usually prints the message eLi
task n ending (where n is the task number), just before the window
disappears. Apparently, the developers didn't want that message to
print when the Workbench loaded and so used output redirection
(which is discussed at the end of this chapter) to send the offend­
ing character string to limbo. Another practical example of using
the NIL: device is shown in Chapter 5, which deals with command
files, where the output from DATE? is sent to NIL: as a way of al­
lowing you to enter the date without seeing the command template
as a prompt.

Logical Devices
In addition to physical devices like the disk drive and printer,
AmigaDOS also supports a variety of pseudodevices known as logi­
cal devices. Logical devices provide a way of giving a short
devicelike name (ending in a colon) to a particular disk directory.
For example, if you assign the logical device name let: to the direc­
tory djO:Wordprocessing/personal/letters, you could refer to a file in
that directory as let:AuntMartha rather than as djO:Wordprocessing/
personal/letters/AuntMartha. This makes it easier to shorten the ref­
erence to a directory, without having to make that directory the
current one.

Logical devices also allow a program to have access to a file
without knowing its exact physical pathname. For example, a word

56

Devices

processing program may need to read a dictionary file in order to
perform spell checking functions. It can assume that the dictionary
is in the current directory, but that makes it difficult to store the
dictionary in RAM: for faster access, or to place it in a directory of
your choosing on your hard drive. If the program looks for the dic­
tionary in a logical device called DT:, however, you can store the
file wherever you want. By assigning the logical device name DT:
to whatever directory you use to store the file, you can make it ac­
cessible to the word processing program, regardless of its actual
physical location.

You can use the ASSIGN command program to assign logical
devices to directories. When used for this purpose, the command
format is ASSIGN devicename directory. The assignment given in
the first example above could be accomplished by the command

ASSIGN let: df0:Wordprocessing/personal/letters

Assigning for Itself
User-created logical devices aren't the only kind found on the
Amiga. AmigaDOS itself makes use of these devices to alleviate a
potential problem of the operating system. Much of the Amiga's
operating system doesn't reside in memory all the time. From time
to time, the operating system must bring in data necessary to sup­
port certain of its features from disk files. You've already seen sev­
eral examples. The most basic is that of the eLI commands, which
all reside on disk and must be loaded before they can be used. The
handlers for the RAM: disk, the parallel, serial, and printer devices,
all must be brought in from disk. As you'll soon see, the list of disk
files that contain information significant to the operating system is
quite long. AmigaDOS recognizes that it would be foolish to as­
sume that each of these files is always in the current directory.
Therefore, it uses logical devices as a means of providing an alter­
nate place to search for these important files. When you start up
the Amiga, DOS assigns a number of logical device names to cer­
tain directories. When DOS needs to find one of the system files, it
first looks in the current directory, but if it doesn't find the file
there, it searches one of the logical devices.

To see a list of the logical devices that DOS creates, use the
ASSIGN command name by itself. This command program dis­
plays a list of all logical devices, both the ones assigned by the sys­
tem and those assigned by you. If you've not assigned any logical
devices, the display produced by ASSIGN looks like this (assuming

57

Devices

a dual-drive system and disks in the drives with volume names of
Extras and Workbench):

s:

Volumes:
Extras [Mounted]
Workbench [Mounted]

Directories:
S Volume: Workbench Dir: s
L Volume: Workbench Dir: I
C Volume: Workbench Dir: c
FONTS Volume: Workbench Dir: fonts
DEVS Volume: Workbench Dir: devs
LIBS Volume: Workbench Dir: libs
SYS Volume: Workbench Dir: Workbench

Devices:
DFI DFO PRT PAR SER
RAW CON RAM

There are seven directories to which DOS assigns logical device
names. S:, the first logical device, is a directory used to hold com­
mand sequence files (batch files). When the EXECUTE command is
told to execute a sequence file, it first looks for the sequence file in
the current directory. If it doesn't find the file, it tries the directory
to which the logical device name S: has been assigned. The Work­
bench disk contains a file called startup-sequence in this directory.
This sequence file is automatically executed when the Workbench
disk is inserted, and it in turn loads the Workbench program and
runs it.

If the Workbench 1.3 Shell has been installed, script files can
be run directly, without using the EXECUTE command, if the S bit
of the file protection flag is set. When you run them that way,
however, AmigaDOS searches for them as if they were commands,
and not scripts. See the description of the logical device named C:,
below, for more information on command searches.

L:
AmigaDOS looks for its own library functions in this file. These are
extensions to AmigaDOS itself, such as the Ram-Handler file which
controls the RAM: device. The most necessary of these is the Disk­
Validator, which is used to check if disks are in the proper Amiga­
DOS format. Many of the MOUNTable devices such as NEWCON:
and SPEAK: have their device handlers stored in the L: directory also.

58

Devices

c:
. The command directory, this is one of the most significant logical

devices, especially to CLI users. Whenever you issue a command to
the CLI, DOS first looks in the current directory for a filename
matching the first word of the command line. If it doesn't find the
command in the current directory, it then searches the C: device di­
rectory. Although C: is in the default search path for commands,
you can extend this search path with the PATH command. For ex­
ample, the command PATH RAM: Sys:System ADD will cause the
two directories named to be searched for commands after the cur­
rent directory, and before the C: directory.

Since the C: directory is always in the command search path, if
you don't keep the disk that contains it in one of your drives, you
may be in for a lot of disk swapping. Every time you issue a CLI
command not found in the current directory, you'll be prompted to
insert the volume that contains the C: directory. One way around
this dilemma (if you have sufficient RAM) is to transfer the com­
mand files to the RAM: disk and assign the C: device to it. The
easiest way to do this is.
COpy C: RAM:
ASSIGN C: RAM:

This copies all the command files to the root directory of the
RAM: device. If you'll be using the RAM: device for other files as
well, you may wish to create a c subdirectory first, move the files
to this directory, and then assign C: to it with
MAKEDIR RAM:c
COpy C: RAM:c
ASSIGN C: RAM:c

You may find it convenient to place this sequence of com­
mands in the batch file startup-sequence on your boot disk. (Re­
member that this file automatically executes every time you turn
the computer on.) Notice, however, that there are 64 command
files in the c directory of the Workbench 1.3 disk. If you copy all of
them, the RAM: disk takes up well over 240K of memory. That's
most of the free memory available on a 512 Amiga system.

This doesn't mean you can't have AmigaDOS search for com­
mands in RAM: if you only have 512K in your Amiga. It just
means you'll have to be a little more selective. Move only the most
frequently used command files, like COPY, DELETE, DIR, and
LIST to RAM:, and use the PATH command to add RAM: to the
search path, so AmigaDOS will look there before assigning the C:
device name. This way, you can create a custom-tailored list of in­
trinsic commands that are always available.

59

Devices

If you have Workbench 1.3, you may want to make some of
the commands RAM-resident, using the RESIDENT command. This
command only works in the Shell, so make sure you're working
from a Shell window, and not a normal CLI window. To make the
DIR command resident, type RESIDENT DIR. This loads the DIR
command into memory, and keeps it there. Then, any time you give
the DIR command, the Shell executes that command from the copy
already in memory. This eliminates the need to read the command
in from disk, eliminates the duplication that can occur when you
keep a command in the RAM disk (where the "disk" copy in RAM:
is loaded into memory a second time in order for the program to
execute), and causes the command program to run instantly.

There are, of course, some drawbacks to making commands
resident. First, just as with storing commands on RAM:, each com­
mand you make resident reduces the amount of free memory you
have. Secondly, not every program can be made resident. Each
time the program is executed, it's run from the same copy that was
initially loaded into memory. Therefore, only programs that are
reexecutable (can be run a second time without being unloaded and
loaded again) and reentrant (can be executed from separate Shell
windows at the same time) qualify as resident programs. Because of
this, the RESIDENT command will only load programs with the P
bit set on the their file protection flag. You will find that most of
the CLI commands in the C directory of the Workbench disk have
the pure bit set, and can be made resident.

FONTS:
This device contains the files for the various text fonts for the
Amiga. These are the disk-loaded fonts that can be used from pro­
grams like Notepad, painting programs, and desktop publishing
programs. When a program calls the system routine OpenFonts,
which must be done whenever a new font is used, the operating
system tries to find the new font in this directory if it's not already
loaded into memory.

DEVS:
This device directory holds handlers for the various devices already
discussed-the serial device, the parallel device, and the printer de­
vice, and the recoverable RAM disk device we'll cover a bit later. It
also contains drivers for devices the CLI commands don't use di­
rectly, like the narrator (speech synthesizer) and the clipboard. A
call to the system routine OpenDevice, made the first time any de­
vice is used, looks in the DEVS: device directory for the device
driver if it's not already loaded. In addition to device drivers,

60

Devices

DEVS: also contains the system-configuration file containing the
preference settings, the Mountlist file used by the MOUNT com­
mand, and the printer drivers for the various printers supported by
the system (these latter files are within the printers subdirectory).

LlBS:
This is the logical device where system library files can be found.
These are used for operating system extensions implemented as a
library of functions. The LIBS: directory contains library files that
support features such as text-to-speech conversion (the translator.
library file), disk-loaded text fonts (diskfont.library), and floating­
point math calculations (mathtrans.library, mathieeedoubbas.library,
and so on). Whenever a program calls the OpenLibrary routine, the
operating system looks to this device for the library file, if the li­
brary is not already resident.

SYS:
The final assignment DOS makes is the SYS: device. This is as­
signed to the root directory of the disk that was used to boot up
the system. Since it's a reasonable assumption that you'll use a disk
which includes all the system files when you boot up, it gives you
a handy way of referring to that system disk. In the example
above, after you'd transferred only some of the CLI command files,
and then assigned C: to RAM:, you used the volume name of the
Workbench disk to access a command located in Workbench/c. You
could also have specified the command directory as SYS:c, without
having to know the volume name of the boot disk. Even if you did
know the volume name of the boot disk, the device name of SYS:
is shorter. The assignment of SYS: has some impact on the Work­
bench, since the program run when one disk icon is dragged over
the other has the default path SYS:System/Diskcopy.

In summary, here are the logical device assignments made by
AmigaDOS:
Device
Name
S

L

C

FONTS

Assignment
Assigned to directory s of the boot disk. AmigaDOS looks for se­
quence files to EXECUTE here if not found in the current
directory.
Assigned to directory I of the boot disk. AmigaDOS looks here
for its own extensions, like the Ram-Handler, if they're not already
loaded.
Assigned to directory c of the boot disk. AmigaDOS looks for
CLI command files here if not found in the current directory.
Assigned to directory fonts of the boot disk. The OpenFonts
operating system routine looks here for fonts if they're not
already loaded.

61

Devices

DEVS Assigned to directory devs of the boot disk. The OpenDevice
operating system routine looks here for device drivers if they're
not already loaded.

LIBS Assigned to directory libs of the boot disk. The OpenUbrary
operating system routine looks here for system library extensions
if not already loaded.

SYS Assigned to the root directory of the boot disk. Can be used as a
short way of referring to the system disk.

File Assignments
Not only can you ASSIGN a device name to volumes and directo­
ries, but you can also ASSIGN a device name to program files. This
allows you to create short "aliases" for program names, without
using the 1.3 Shell. While names like EXECUTE and DELETE may
not seem so hard to type, it's more convenient to type names like
X: and D:. If you ASSIGN X: EXECUTE:, you can type

X: program

instead of

EXECUTE program

It may seem like a small savings in keystrokes, but time saved
by ASSIGNs and Shell ALIASes can add up (particularly if you're
not a crack typist). If you place these ASSIGN statements in the
sjstartup-sequence file, the logical device names you ASSIGN will
always be available to you.

Notes
Before leaving the subject of logical devices, there are a few final
points to note:

• The logical device assignments apply to all eLls, regardless of
which was used to make the assignment (as opposed to Shell
ALIASes, which apply only to one Shell).

• The ASSIGN command can be used to remove an assignment. The
form for this is ASSIGN devioename. Note that it's possible to
delete the assignments the system makes. ASSIGN C:, for ex­
ample, removes the command directory assignment so commands
must be located in the current directory in order to be executed.
Obviously, some caution should be exercised in removing the as­
signments that AmigaOOS has made.

• It's not possible to use the ASSIGN command to change the
names of physical devices like SER.

• Finally, you should note that the T directory, though not a logical
device, is significant to many programs. For instance, the system
screen editor, ED, uses this directory to store a backup of the orig­
inal text file being edited.

62

Devices

MOUNTable Device Drivers and Handlers
One of the most important features added to the 1.2 version of the
Workbench was the MOUNT command. Used in conjunction with
a text file in the DEVS: directory called Mountlist, which describes
various device attributes, and specifies the file that contains the de­
vice driver or handler software, the MOUNT command allows al­
most any type of hardware or software device imaginable to be
added to the system (see the MOUNT entry in the reference sec­
tion for more information on the Mountlist file). Mountable device
drivers can be used to let AmigaDOS interact with external hard­
ware devices like a hard drive. "Devices" may also consist merely
of software drivers that use existing system resources in a new way,
as with the RAM disk device.

The 1.2 Workbench contains only one Mountlist entry for add­
ing the AI020 5%-inch drive as an AmigaDOS device. Workbench
1.3 adds many more new standard devices to the system.

RAD:
Perhaps the most interesting of the new devices is one called RAD:.
RAD: is a RAM disk device, which, like the familiar RAM: device,
uses part of the computer's working memory as an electronic disk
drive. RAD: is an additional device, not a replacement for RAM:, as
there are many important differences between the two.

RAM: is an integral part of the AmigaDOS system; you create
the RAM: device merely by referring to it in an AmigaDOS com­
mand. RAD:, on the other hand, must be added to the system with
the MOUNT command, and its device driver, which is contained in
a file called RAMDRIVE.DEVICE, must be present in the DEVS:
directory.

RAM: automatically adjusts its size according to its contents.
As you add more files to it, it grows in size, and that size is limited
only by the amount of memory available. RAD: has a fixed size,
determined by the Mountlist entry used to MOUNT it.

Because it's of a fixed size, RAD: acts more the Amiga's floppy
disks than its RAM disk. Like the standard 31h-inch floppies, RAD:
is set up as a double-sided drive, with 512 bytes per sector, and 11
sectors per track. This means it uses 11k memory per track (512 X
2 X 11). The number of tracks used for RAD: is determined by the
LowCyl and HighCyl entries in the mountlist. An entry of LowCyl
= 0 ; HighCyl = 21, for example, allocates 22 tracks, at 11K per
track, for a total memory usage of 242K. This is enough to store all
of the files in the C directory on the Workbench. If you have a cou­
ple of megabytes of fast memory on your Amiga, you might even
set the HighCyl value to 79, for an 880K RAD: drive, the exact

63

Devices

same size and layout as a floppy disk. When the RAD: drive is the
same size as a floppy, it's possible to use the Diskcopy command
to copy an entire floppy to RAD:, or vice versa. It's even possible
to format the RAD: drive, something that can't be done with RAM:.

The most important difference between RAD: and RAM:, how­
ever, is their duration. Since both use the computer's memory to
simulate disk storage, the contents of both devices is lost when the
computer is turned off. A warm boot situation is a different story,
however. While RAM: loses its contents whenever you press the
Ctrl-Amiga-Amiga key combination, or your computer takes a trip
to the Guru, RAD: is what's known as a recoverable RAM: disk. As
long as the error that caused the Guru Meditation didn't scramble
the contents of memory as well, with the 1.2 Kickstart ROM you
can MOUNT RAD: again, and it will reappear with its contents in­
tact. Not only can you recover the contents of the RAD: drive after
rebooting, but you can even reboot from the RAD: device itself,
using Kickstart 1.3.

Along with the ability to boot from devices like hard disks and
network, the 1.3 ROM adds the ability to reboot from RAD:, pro­
vided that it has been mounted, and no bootable disk is found in
drive dfO: at warmstart time. Even if a boot disk is used for a
warm-start, Kickstart 1.3 automatically restores RAD: upon warm
boot, with no need to reMOUNT it. Of course, 500 and 2000 own­
ers will have to change Kickstart ROMs to gain this ability, but
1000 owners need only to use the new Kickstart disk. Sometimes,
RAD: can be a little too persistent. Since it doesn't disappear when
you warm boot, like RAM: does, the only way to remove it short of
turning off the power is to use the REMRAD command. This de­
letes the contents of RAD:, shrinks it down to the smallest possible
size, and makes it nonrecoverable, so it disappears at the next
warm boot.

Since RAD: is a MOUNTable device that can be formatted, it
can also take advantage of the new Fast File System (FFS). To use
the FFS on RAD:, you must add two items to the RAD: entry in the
DEVS:MOUNTLIST file. These two lines are:

GlobVec = -1
FileSystem = l:FastFileSystem

These lines can be added anywhere after RAD: and before the #
that ends the entry. In addition, the FastFileSystem file mentioned
in the second line must appear in the 1: directory on your Work­
bench disk. After you've changed the Mountlist entry, you may use
the command MOUNT RAD: to mount the drive. Because you're
using a different filesystem than the default one, you must format
the drive before you use it. You can, however, use the new QUICK

64

Devices

option of the FORMAT command, which shortens the process:

:SYSTEMjFORMAT drive RAD: name Speedy QUICK

Using the FFS on the recoverable RAM disk does speed up op­
erations somewhat, though since it is a RAM drive, those opera­
tions are fairly quick without it. But with the 1.3 Kickstart, you lose
the ability to reboot from the RAM drive if you format it with the
FFS (you should add the line BootPri = -129 to the RAD: entry
in the Mountlist file to tell AmigaDOS not to try rebooting from
this device). In fact, with the 1.3 ROM, you can't even recover the
contents of the RAM drive when you reboot if you have it format­
ted with the FFS, since the drive is automatically mounted on
warmstart as a normal DOS filesystem device. Since Kickstart is ex­
pecting the RAM drive to be in the old AmigaDOS format, it thinks
it's not a DOS disk. Using the 1.2 Kickstart, however, you must
MOUNT the drive again after a warmstart, and so even though you
can't reboot from the RAM drive, you can recover its contents even
if it is formatted with FFS.

PIPE:
Next on the list of device handlers added by Workbench 1.3 is one
called PIPE: This device emulates the pipes feature of UNIX and
MS-DOS, which allows the user to transfer the output of one pro­
gram directly to the input of another. Let's say, for example, that
you wish to display a large disk directory on screen. The DIR com­
mand may not be suitable, since it outputs file names in a continu­
ous stream, and doesn't pause when the screen fill up. By piping
the output of DIR to the MORE program, which displays text a
screen full at a time, you get the information you want, in the for­
mat you prefer. In UNIX or MS-DOS, this can be accomplished
with a command like DIR I MORE. Unfortunately, the Amiga com­
mand shell doesn't recognize the I operator, so it's necessary to sim­
ulate pipes to achieve the same result.

Amiga owners have always been able to get similar results by
using file redirection to a temporary storage area on the RAM: disk.
In the case of the example discussed above, you could use the com­
mand sequence

DIR >ram:temp
MORE ram:temp
DELETE ram:temp

to achieve the same result. Still, there are instances in which you
may not have enough room on the RAM: disk to create the inter­
mediate file. For example, if you create a hex dump of a 25K pro­
gram file using the TYPE OPT H command, you may end up with

65

Devices

a text file that's lOOK or longer. In such a case, you may wish to
MOUNT PIPE:, whose handler is found in the file l:pipe-handler.

The PIPE: devices acts as a conduit, directing the output of one
program to the input of another. One process writes to the pipe,
assigning it an arbitrary file name (such as pipe:temp). Each pipe
name uses a 4K buffer, which means only that much may be writ­
ten to the pipe before the writing process is blocked. When the sec­
ond program reads that 4K buffer (by accessing the same file name
as was written), the first program can write 4K more of data, until
all of the output is transferred. In the example above, you could
pipe the output of OIR to more using the command sequence

RUN DIR >pipe:temp
MORE pipe:temp

assuming, of course, that you had first used the MOUNT PIPE:
command (the normal Startup-Sequence file on Workbench 1.3
mounts this device automatically). Note that in the above example
we used RUN to spin off a separate process for OIR. Both com­
mands can't use the same CLI process because if the directory out­
put is larger than 4K, OIR won't terminate and give back the CLI
prompt until MORE has read all of its output.

The roundabout method that PIPE: uses to simulate pipes may
not be as simple as that available on other systems, but it does
have some unique advantages. In addition to the traditional pipe
situation described above, PIPE: can be used for its buffering ca­
pabilities alone. Many terminal programs, for example, download
files in a synchronous fashion. This means they receive a block of
data, send it to the disk, wait until the disk write is finished, and
then ask to receive the next block. Each intermediate disk write
causes a slight delay in the transmission. You can always avoid this
delay by downloading to a file in RAM:, but in doing so you run
the risk of filling up the RAM disk before the file transfer is com­
pleted, or of forgetting to copy the file to a floppy before turning
off your computer. A better solution is to use the command:

COPY pipe:temp TO dfO:downfile

before running your terminal program, and then downloading to
the file pipe:temp. That way, large amounts of data are buffered
before any writes actually take place, which means fewer delays. At
the same time, you avoid the risks associated with downloading to
RAM:, since when the download process is terminated, your file is
stored safely on disk.

66

Devices

AUX:
Another new device handler that duplicates the function of existing
public domain software is the one called AUX:. The AUX: device,
whose handler is located in the file L:Aux-Handler, transfers data
through the serial port, much like the SER: device. While SER:
buffers its output, however, sending it out only after a 512-byte
block has accumulated, AUX: provides unbuffered communication
with the serial port. The main use for an unbuffered serial device is
to create a CLI window that uses the serial port for its input and
output. Such a window can be set up by MOUNTING the AUX:
device (this is normally done automatically by the Startup-Sequence
file), and typing the command:

NEwell AUX:
This procedure lets you hook up another computer or terminal to
the Amiga, and give AmigaOOS commands from that machine
over the serial port, or even over a modem. While you cannot, of
course, run Intuition-based windowing programs on your remote
terminal (at least not yet), you can use CLI commands like OIR and
INFO to gain information about the Amiga disks, and the TYPE
command to send files to the remote screen (where they can be
captured to a buffer file).

There is even a public domain program called CANCEL! which
automatically hits the Cancel button whenever a system requester
pops up. While serial-port CLI's don't exactly make the Amiga a
multiuser system, they do come pretty close.

SPEAK:
In an effort to make the built-in speech synthesis feature of the
Amiga even more accessible, Commodore has added the SPEAK:
device handler to the 1.3 Workbench. SPEAK: is similar to the SRi
program in the Utilities drawer, in that it converts text input into
speech which is output through the audio channels. Like SRi, it
uses the translator. library file from the LIBS: directory to convert
the text to phonemes, and the narrator.device from OEVS: to output
the phonetic speech. While SRi takes input only from the key­
board, however, SPEAK: is mounted as a device, which means it
can take its input from any source that can write to a disk file. For
example, you can COpy a file to SPEAK: from the CLI, save a file
to SPEAK: from a text editor or word processing program like
MicroEMACS or Notepad, or even open SPEAK: as a capture file for
a terminal program, so output coming in over the modem is spoken.

As with the SRi program, it's possible to adjust SPEAK: in or­
der to vary the spoken output. You may change the pitch and

67

Devices

speed of the speech, choose male or female voice characteristics,
and select natural or robot (monotone) speech inflection. To add a
voice setting, you include it as part of a SPEAK:opt/ path name
when you access the device. For example, to listen to a file with a
female voice at a pitch setting of 200, you could use the command:

COPY filename to SPEAK:optjfjp200

The full list of voice options that can be added to the
SPEAK:opt/ pathname is shown below:
P###
S###
M
F
R
N
00
01
AO
Al
DO
01

Set Pitch. (### is a number from 65 to 320)
Set Speed. (### is a number from 30 to 400)
Use male voice characteristics
User female voice characteristics
Robot speech (uninflected monotone)
Natural speech (natural inflection)
Do not allow option settings in input stream
Allow option settings in input stream
Turn off phoneme input mode
Turn on phoneme input mode
Determine sentence breaks by punctuation alone
Determine sentence breaks from Carriage Return and Line Feed, as
well as punctuation

When option settings are allowed in the input stream, you can
change the voice characteristics with commands given in the data
sent to the device. For example, if you give the command

COpy * to Speak:optjOl

and then type This is a test, the phrase is pronounced in the de­
fault voice. If you then type the lines

optjfjp200
This is a test

the phrase is pronounced in a high female voice.

NEWCON:
One of the major complaints about the CLI command environment
has always been that the console window it uses doesn't support
command line-editing. If you make a typing mistake in the first
word of a command line, you have to erase the whole line and
start over again. A new 1.3 device called NEWCON: finally pro­
vides a console window that not only allows editing with the
cursor keys, but also adds a 2K command history buffer. After you
mount the NEWCON: device, (whose handler is located in the file
L:newcon-handler), you may open a CLI window that uses this

68

Devices

new console device with the command:

NEWCLl NEWCON:xjyjwjhjname

where x and y specify the position of the upper left corner of the
window, wand h specify its width and height in pixels, and name
designates an optional window name. With a NEWCON: window,
you can edit a command line by using the left- and right-arrow
keys to move the cursor back and forth across the line one space at
a time, or in combination with the Shift key to take you to the be­
ginning or end of the line. The up- and down-arrow keys imple­
ment a command history feature. Each time you enter a command
line, that line is stored in a 2K circular buffer. Pressing the up­
arrow key retrieves the previous entry in the buffer, which appears
at the command prompt. Pressing the down-arrow key moves you
forward through the buffer (Shift-down arrow takes you to the bot­
tom of the buffer). If you don't want to cursor through each previ­
ous command, you can use the command history's search feature.
Typing a partial command line, and then pressing Shift-cursor up,
initiates a search for the last command line that matches the partial
string.

Redirection of Input and Output
Ordinarily, AmigaDOS accepts input from the keyboard and out­
puts it to the current console window. These are known as the
standard input and standard output devices. In some cases, you may
redirect input to a program so it comes from a device other than
the console keyboard, and you may redirect output from the pro­
gram so it goes to a device other than the console display. Redirec­
tion of command input/output (I/O) is accomplished through the
use of the redirection operators < and> (the angle brackets-you
may be more familiar with them as the less than and greater than
signs-which are entered by pressing a SHIFTed comma and
SHIFTed period, respectively). The left angle bracket (<) is used to
redirect input, and the right angle bracket (>), to redirect output.
You can easily remember which is which, because the direction in
which the angle bracket is pointing indicates the direction in which
the information is going (from is left, to is right).

You use a redirection operator, followed by the name of the
device or file you wish to use for input or output, directly after the
command name. For example, if you wish to send a directory list­
ing to the printer, you could type

DlR> PRT:

69

Devices

You can use one redirection operator or both for a particular
command, but the operator(s) must come right after the command
name, not after the command parameters:

DIR > PRT: OPT A

is correct, but

DIR OPT A >PRT:

is incorrect because DIR will interpret> PRT: as the root directory
of a volume named> PRT.

Note that several commands, such as COPY and LIST, allow
you to specify a destination device to which output is directed.
Therefore, you don't have to use the redirection operator to specify
the output for those commands.

Redirection of input is a little trickier than redirection of out­
put, since the CLI commands generally take all their input from the
command line rather than waiting for it. One way of getting around
this is to use the question mark (?) as a command parameter.
When you put a question mark after the command name as its only
parameter, AmigaDOS prints out a command template and waits
for you to enter the command parameters. For example, if you first
redirected the output of ECHO to a file named textfile:
ECHO >textfile ""'''This is a test"'''''

you'd end up with a one-line text file that starts and ends with
double quotation marks. Then, you could use ECHO to print the
contents of the file by typing

ECHO <textfile ?

ECHO first prints out a colon (:)-its command template-and
then gets the input to print from textfile. Notice that this works
only with short files, since ECHO can only take a character string
shorter than 256 characters. Another handy use for input redirec­
tion is with commands that require a carriage return to continue. If
you wish to use the DISKCOPY command to automatically copy
your boot disk to the recoverable RAM disk on startup, you'll find
that DISKCOPY prompts you to hit Return to start the copy. To
avoid having to manually enter a Return (and thus defeating the
automatic nature of the script), you could use the command:

DISKCOPY <NIL: DFO: to RAD:

The input from NIL: will satisfy DISKCOPY's desire for a carriage
return.

70

Devices

Redirection applies only to the command in which the oper­
ators are used. Subsequent eLI commands will use standard input
and output.

The 1.3 Workbench Shell provides an additional output re­
direction operation, which uses two angle brackets (») instead of
one. If you use the standard operator to direct output to a file that
already exists, the existing file will be replaced by a file consisting
of the new output. If you use the new redirection operator on an
existing file, however, the new material will be added to the end of
the current file.

71

Chapter 5

Command Sequence Files

Running individual command programs from the CLI is easy-you
just enter the name of the command. You may find, however, that
to accomplish certain tasks, you must enter several CLI commands,
one after the other. You may find that you even use a particular se­
quence of commands again and again. AmigaDOS offers a way to
simplify this process-it allows you to enter each of the commands
into a text file and to use the EXECUTE command whenever you
wish to execute that sequence of commands. Such a text file is
known as a sequence file, a batch file, or a script file. When EXE­
CUTEd, a batch file will run a sequence of commands, one after
the other, just as if it had been typed at the console keyboard. The
sequence will continue to run until all of the commands have been
carried out, or until a command fails, or the user manually breaks
out of the sequence by pressing the CTRL-D key combination.

Sequence files can do more than just execute a fixed series of
commands. There are provisions for testing certain conditions and
for issuing alternative commands depending on the outcome of
those tests. They also allow you to substitute text within the com­
mand file so the commands operate with options you specify in the
EXECUTE command, not just with a fixed set. Finally, the special
command file named startup-sequence lets you automatically exe­
cute a number of commands whenever you turn on the computer.

Batching Simple Commands
In order to use the EXECUTE command, you must first create a text
file containing the command statements you want to execute. You
may use either of the system editors, ED or EDIT, to create the
command file (see Chapters 6 and 7, which explain the use of the
editors). You may also use any word processor or text editor which
can save a text-only file, one without embedded command charac­
ters in the text. (To create such a file using WordPerfect, for in­
stance, you must choose the Save Text File option on the Project

72

Command Sequence Files

menu.) Another handy method of creating short command se­
quence files is to use a console window as a mini text editor. Chap­
ter 4 shows you how to do this.

The file you create should contain one or more lines of CLI
commands, one command to a line, with a RETURN character at
the end of each line. The format should look like this:

ECHO "The current date and time settings are:"
DATE
ECHO "*N*E[3mThe current device assignments are:*E[Om"
ASSIGN
SAY All, done.

Notice that you've just used a new command, ECHO. ECHO
prints out the text string enclosed in quotes. It's really only useful
when included in command sequence files. By placing ECHO state­
ments in command files, you can let the user know what the com­
mand file is doing. Note that ECHO uses the asterisk (...) as a
special escape character. The asterisk causes ECHO to treat subse­
quent characters as formatting commands, rather than as text that it
should print. In the example above, the lioN combination causes
ECHO to skip a line. The "'E combination is used for the ESC char­
acter, so console escape sequences, like the one that changes to
italic print, can be used (see Chapter 2 for more on console escape
sequences).

The SAY command, found in the last line above, is similar to
the ECHO command except that it uses the Amiga Narrator device
and Translator library to actually speak the words typed on the
command line. Notice that with the SAY command, no quotation
marks enclose the text-if you included quotation marks, your
Amiga would try to speak them. Also, notice that punctuation
marks like the comma and period can change the inflection of the
speech.

Let's assume you've created a disk file in the current directory
named Report, which contains the lines of text listed above. You
could then type EXECUTE Report, and each of the commands in
the file would be executed in sequence, producing the following
screen output:

73

Command Sequence Files

The current date and time settings are:
Saturday 15-Nov-86 18:27:01
The current device assignments are:
Volumes:
Extras [Mounted]
Workbench [Mounted]
Directories:
S
L
C
FONTS
DEVS
LIBS
SYS
Devices:

Volume: Workbench Dir: s
Volume: Workbench Dir: 1
Volume: Workbench Dir: c
Volume: Workbench Dir: fonts
Volume: Workbench Dir: devs
Volume: Workbench Dir: libs
Volume: Workbench Dir: Workbench

DF1 DFO PRT PAR SER
RAW CON RAM

In the above example, it's assumed that the file Report is in
the current directory. If it were in another directory, you could use
the full pathname to identify its location (EXECUTE dfl:Utilitiesj
Report). But there's another way to make the EXECUTE command
execute a sequence file that isn't located in the current directory. As
you may remember from the previous chapter, the system assigns
the logical device name S: to the the 5 directory on the boot disk
when you turn on the computer. The EXECUTE command first
looks for the command file in the current directory, but if it doesn't
find it there, it looks in the S: directory. By saving your command
files to the S: device, therefore, you can be sure that EXECUTE will
always be able to find it, regardless of which directory is current.
directory is current.

If you are using the 1.3 Shell window instead of an ordinary
CLI, its possible to execute script files without using the EXECUTE
command. If the script file has the S protection bit set, you may ex­
ecute the sequence just by typing the name of the file. To do this
with the file in the example above, you would first set the file's S
bit with the command:

PROTECT Report + S

Afterwards, you could execute the sequence just by typing Report.
Since the Shell executes script files as if they were CLI commands,
it doesn't use the normal sequence file search path to find them.

74

Command Sequence Files

Instead, it looks for them in the normal command file search path.
If you use a lot of script files from the shell, and these scripts are
stored in the S: directory, you may want to add S: to your com­
mand search path.

Startup-Sequence: The Autoexecuting Command File
As has been mentioned several times already, AmigaDOS recog­
nizes a special command sequence file located in the S: directory
called startup-sequence. The sequence of commands contained in
the startup-sequence file is executed whenever you turn on the ma­
chine or reset it by holding down CTRL and both Amiga keys. To
see the standard command file that comes on the Workbench disk,
enter TYPE S:startup-sequence. For Workbench 1.3, the dis­
played file should look like this:

Addbuffers dfO: 10
c:SetPatch >NIL: ;patch system functions
cd c:
echo" A500 / A2000 Workbench disk. Release 1.3 version 34.20*N"
Sys:System/FastMemFirst ; move coonan memory to last in list
BindDrivers
SetClock load ;load system time from r.eal time clock (A1000 owners should

;replace the SetClock load with Date
FF >NIL: -0 ;speed up Text
resident eLI L:Shell-Seg SYSTEM pure add; activate Shell
resident c:Execute pure
mount new con:
,
failat 11
run execute s:StartupII ;This lets resident be used for rest of script
wait >NIL: 5 mins ;wait for StartupII to complete (will signal when done)
,
SYS:System/SetMap usal ;Activate the ()/* on keypad
path ram: c: sys:utilities sys:system s: sys:prefs add ;set path for Workbench
LoadWB delay ;wait for inhibit to end before continuing
endcli > NIL:

The first command allocates additional disk buffers to speed
up floppy disk access. The second installs software fixes for Kernel
ROM bugs, and the third makes C: the default directory. The next
command uses the ECHO program to send a message to the screen.
The FastMemFirst command is run to give priority to external ex­
pansion memory if any is present.

Next, the BindDrivers command adds in any device drivers in
the expansion drawer, such as the one needed to integrate the PC

75

Command Sequence Files

Bridgeboard into the system. The SetClock is used to set Amiga­
DOS' system clock from the hardware clock in the 2000 and 500's
equipped with the clock option. Next, the FF command is used to
speed up text printing. The first Resident command loads the pro­
gram needed for the 1.3 Shell, and the next makes the Execute
command resident, after which the Newcon: device is mounted to
add enhanced console functions to Shell windows.

The Failat command is used to set the failure level higher, so
the script won't end abruptly if one of the subsequent commands
should fail. Next, Run is used to Execute a separate batch file that
does some Assigns and other startup tasks. A Wait command is
used after this to stop the current script until the other script is
done. This prevents the two scripts from trying to access the same
disk at the same time, a situation which slows down disk access,
and causes a lot of unecessary disk seeks. This Wait command will
wait for five minutes, or until the other script sends it a Break,
whichever comes first. After the other script has signalled that it's
done, the Setmap command is used to install a new keymap, one
which recognizes the extra keypad keys on the 500/2000 that
weren't on the 1000. The Path command is used to set some extra
default search paths for commands. LoadWB is used to start the up
the Workbench environment, and EndCLI is used to terminate the
initial eLI window.

The startup-sequence command file is a powerful tool because
it lets you specify what happens every time you turn on your
Amiga. For instance, you can choose to load the Workbench every
time or stay in eLI mode, or have both interfaces available at the
same time. You've already seen that to stay in eLI mode, all you
have to do is leave out the last two lines of the standard file. But if
you want to load the Workbench and keep a eLI window, you can
insert the line

NEweLl con:20/20/200/100/

or for 1.3 users

NEWS HELL Newcon:20/20/200/100/

right before the LoadWb line. This starts up a smaller CLI window
that will stay on the Workbench screen after the Workbench is
loaded. (See Chapter 6 for details on how to edit a file such as
startup-sequence. Briefly, though, to add this line, type ED
s/startup-sequence, which puts you in the screen editor. Use the
cursor keys to move to the LoadWb line, press RETURN, cursor up
to the empty line, and enter what you see above. Press ESC, then
enter X, and press RETURN. The new startup-sequence file will

76

Command Sequence Files

overwrite the old. Wait until all disk activity has ceased; then
warm-start your Amiga by pressing the CTRL key and both Amiga
keys at the same time. The Workbench should appear, along with a
CLI window.

There are a number of other things you may want to do auto­
matically at startup time. If you're using a hard disk or other other
external peripheral device, you may need to run a program to inte­
grate these resources into the system. One of the most useful se­
quences of commands to include in the startup-sequence file is one
that sets up a RAM disk directory containing a collection of your
most frequently used commands and ASSIGNs it as the default
command directory. The simplest sequence to use is
MAKEDIR RAM:c
COPY SYS:c ram:c ALL
ASSIGN c: RAM:c

This is faster than copying each individual file since DOS
doesn't have to read the COPY program from disk each time. The
disadvantage is that you end up using a lot of RAM to hold com­
mand programs you seldom, if ever, use. Taking up over 128K of
RAM for command programs is wasteful on a 512K system and
prohibitive on a 256K system. The alternative is to copy files selec­
tively. You can do this one of two ways.

First, you can move all of the files from C: which you want to
go to the RAM disk to a new directory called D. Then, replace the
SYS:c reference in the above example to SYS:d. The other choice is
to copy specific files individually. Something like this may be what
you use:
C:CD C:
MAKEDIR ASSIGN D: RAM:c
COpy C:copy RAM:c
D:/copy assignlcdldeleteldirldiskcopy D:
D:/copy echoledlendclilinfoljoinllist D:
D:/copy Makedirl newcli I runltype D:
PATH D: Add

This first copies the COpy program to RAM:, then uses that
version to copy the rest of the files. This reduces the time spent
reading the COpy program from disk. Some other steps are taken
to shorten the time required to execute this script. First, we change
the current directory to C:, to make the CLI look there' first for each
command, instead of wasting time looking in some other default
directory. When a command in another directory is needed, we use
complete path name. Also, the or wildcard (I) is used to allow each

77

Command Sequence Files

COpy command to copy several files, without having to load the
copy program each time. When all the required files are copied, we
add the RAM:c directory to the default command search path with
the PATH command.

Users of the 1.3 Workbench Shell may find it more beneficial
to make often-used commands resident by using the RESIDENT
command instead of copying those files to the RAM disk. A resi­
dent program is always loaded in memory, ready to go, and Shell
windows search the Resident list before looking in any of default
search paths. Resident commands may also be given new, shorter
names, like DEL for Delete, and MD for Makedir.

Another common task you can perform at startup time is setting
the system clock and calendar. If you've purchased an optional hard­
ware clock/calendar for the 1000, it probably came with a program
for setting the system clock from the hardware clock. The com­
mand to run this program should be part of your startup-sequence
file (A SetClock command for 500 and 2000 owners is already in
the default startup file). If you don't have a hardware clock, you
should set the time and date manually each time you start the sys­
tem. The original startup-sequence file on your Workbench disk
prints a message telling you to set the date and time from the Pref­
erences program. If you prefer, you can give yourself the opportu­
nity to set the time and date as part of your startup-sequence file.
The following example demonstrates one technique for doing this:
ECHO" "
ECHO "The ourrent setting of the date and time is:"
DATE
ECHO" "
ECHO "Enter the oorreot date and/or time now."
ECHO "Use the form DD-MMM-YY for the date (format

as 09-Sep-86)."
ECHO "Use the form HH:MM:SS or HH:MM for the time

(format as 14:55)."
ECHO" "

The next command is tricky. It uses the question mark form of DATE to
prompt you with the command template and wait for input. It uses re­
direction to send the prompt text down a black hole. The result is that
it accepts input and sends it to DATE.
DATE> nil:?
ECHO" "
ECHO "The new date and time settings are:"
DATE
DATE >now

78

Command Sequence Files

As the comments in italics explain, this example uses the ques­
tion mark form of DATE. Normally, when you type DATE ?, the
DATE command prints out its command template and waits for
you to enter input in that format. By redirecting the output of the
command to NIL:, which does nothing with it, you suppress the
command template and instead provide more detailed instructions
as reminders to yourself. Redirecting the output to NIL: performs
an additional function as well. If you decide that you don't want to
change the date and just press RETURN, the DATE command
doesn't get any instructions about what date or time is to be set. In
such a case, the command normally prints out the current date or
time. Here, that would be inappropriate and would confuse the dis­
play. Luckily, the redirection to NIL: prevents this text from being
displayed so if you just press RETURN, nothing happens.

Notice that the last command in the new startup-sequence file
redirects the output from DATE to the file now. This kind of date
stamping can be helpful, for the Amiga looks to the most recently
modified or created file to set the time (if you don't do it yourself
manually). Thus, if you haven't altered or created any files since
the last time you booted up the computer, it looks to now for the
current date.

Passing Instructions to Commands
As convenient as it may be to EXECUTE a sequence of fixed com­
mands stored in a file, it limits you to working with the same spe­
cific files and directories every time. That's why AmigaDOS has a
mechanism for passing words from the EXECUTE command line to
the command file and substituting them in the commands. This lets
you create command files which do different things, depending on
what you type in the EXECUTE command line.

Since this concept is much easier to demonstrate than to ex­
plain, let's take a very simple example. Suppose you want to create
a command file that makes a backup copy of a file. You need some
way of specifying the name of the file so you won't be continually
backing up the same file. The following short command file, named
Backup, does just this:

.KEY filename (.K filename is also acceptable)
COPY <filename> TO :Backups

To use this command file, type EXECUTE Backup Mydata.
The result is that the file named Mydata is copied to the Backups di­
rectory (this assumes that the Backups directory already exists in the
root directory of the current disk). If you typed EXECUTE Backup
Program, the file named Program would be copied to Backups. The

79

Command Sequence Files

key to this process is in the first line of the file. The line starts with
the word .KEY, which is not a normal CLI command, but rather a
sequence file directive which tells the EXECUTE command how to
operate. The .KEY directive tells EXECUTE that the command tem­
plate which follows should be used to determine what commands
can be passed to this command file. In this case, .KEY tells EXE­
CUTE that if a word is entered on the EXECUTE command line
after Backup, that word is to be referred to as filename. Anytime
<filename> appears in the Backup file, the word appearing on the
command line after Backup is substituted. Thus, when you type
EXECUTE Backup Mydata, EXECUTE takes the command line
COpy <filename> to :Backups and substitutes Mydata everywhere
<filename> appears. The result is the command line COpy Mydata
TO :Backups.

If you don't enter any command words after the name of the
command sequence file, there's nothing to substitute for the key­
word specified by the .KEY (or .K) directive. In the above example,
the command EXECUTE Backup translates to the command line
COpy TO :Backups, which copies everything in the current directory
to the Backups directory. This may not be the result you wanted.
Fortunately, AmigaDOS provides a way to prevent this. It allows
you to specify a default value to be substituted for the keyword if
the user (yourself, more than likely) doesn't enter a substitution
value. There are two ways of specifying the default value.

You can use the .DEF directive, followed by the substitution
value. When you use this directive, the default value is substituted
wherever the keyword appears in the absence of a normal substitu­
tion. Let's change the Backup command file to look like this:

.KEY filename

.DEF filename #?bas
ECHO "Copying <filename> to the Backups directory"
COpy <filename> TO :Backups

Now, if you type EXECUTE Backup, the pattern expression
#?bas is substituted for the keyword, and the command becomes
COpy #?bas TO :Backups. The pattern matches any file whose
name ends in the characters .bas, so any file fitting that description
is copied to Backups. An ECHO command was added to tell you
what's happening. The default value is substituted in that com­
mand as well, so ECHO prints the message Copying #?bas to the
Backups directory.

The .DEF directive can also be used to substitute every in­
stance of the keyword in the file with the default value. Another
directive, the dollar sign ($), can be used to substitute each occur-

80

Command Sequence Files

rence on a case-by-case basis. Using this directive, the Backup file
now looks like this:

.K name
ECHO "Copying <name$all BASIC program files> to the

Backups directory"
COPY <name$#?bas> to :Backups

Using this version of the Backup command file, the command
EXECUTE Backup still copies all files ending in .bas to the Backups
directory. This time, however, the default value is only substituted
in the COPY command. A different value is substituted in the
ECHO command. The message printed by ECHO is Copying all
BASIC program files to the Backups directory. Notice that you didn't
have to put quotation marks around the phrase all BASIC program
files, even though it contains spaces. The substitution value re­
places the keyword with the exact string of characters which ap­
pears in its definition. The 1.3 version of the Execute command
recognizes one additional substitution directive. Two dollars signs
together ($$) within brackets are substituted by the number of the
current CLI. For example, the string file--11umber<$$> would be
interpreted as "filenumberl" in a batch file that was executed from
CLI 1. This substitution is useful for creating temporary files with
unique names, that won't be overwritten if the same batch file is
run from two separate CLls at the same time.

The EXECUTE command doesn't limit you to substituting a
single word on the command line. The .KEY directive can specify a
template that contains as many keywords as you like (up to a total
of 255 characters). The only restriction is that the template must be
in the same format as the command template that prints when you
type a command name followed by a question mark (see the begin­
ning of the "AmigaDOS Command Reference" section for more
information on command templates). This means, among other
things, that the keywords must be separated by a comma, with no
spaces between them. It also means you can use / A after the name
to show that this argument is required. For example, let's say you
wanted to be able to back up two named files each time you exe­
cuted Backup. The following command file shows how you can
substitute both filenames:

.K namel/a,name2/a
COpy <namel> to :Backups
COpy <name2> to :Backups

Using this Backup command file, if you type EXECUTE Backup
document letter, both the document and letter files will be cop­
ied to the Backups directory. If you don't specify at least two files

81

Command Sequence Files

on the command line, however, the command will fail.
As you've seen from earlier discussions of filenames and pat­

tern matching, naming conventions can cause some problems. The
execute directives are no exception. What if you want to use the
default message Copying files -> thisaway in the above example?
EXECUTE will look at the entered command ECHO "Copying
<name$files -> thisaway> to the Backups Directory, and
print Copying files - thisaway> to the Backups Directory, not Copying
files -> thisaway to the Backups Directory, as you wanted. Since the
angle brackets have a special meaning for EXECUTE, substituting a
string containing these characters is going to pose a problem. A
similar problem occurs when you try to use the redirection opera­
tors (< for input redirection and> for output redirection) in a
script file that contains keyword substitutions. To avoid these prob­
lems, AmigaDOS provides directives that let you redefine the direc­
tive characters. For example, you can change the left angle bracket
character to a left square bracket character with the directive .BRA
[. (the final period after the bracket character is necessary). Like­
wise, to change the right angle bracket to a right square bracket,
use the directive .KET]. (again, the period after the bracket is man­
datory). The .DOLLAR or .DOL directive is used to change the char­
acter that introduces the default substitution value. The directive
.DOL # changes the dollar character to a pound sign, for example.
And finally, the .DOT directive allows you to redefine the period
character that appears in front of most of the directives.

To summarize, the EXECUTE command recognizes the follow­
ing directives:
Directive
.KEY valuel,value2
or
.K valuel, value2
<valuel>
<value1$default>

<$$>
.DEF valuel default

.space

.newline

.BRA character

.KET character

.DOLLAR character
or

82

Function
Uses the command template (valuel,value2) for
substituting command values

Substitutes the first command value here
Substitutes the first command value here, but if none
is given, substitutes default
Substitutes the current CLI number (Workbench 1.3)
If the command value was not entered, substitutes
default for <valuel> everywhere
Comment line (must be a space after the period)
Blank comment line
Replaces the left angle bracket (<) with character
Replaces the right angle bracket (>) with character
Replaces the dollar sign ($) with character

Command Sequence Files

Directive
.DOL character
.DOT character

Function

Replaces the dot (.) with character

Testing Conditions with IF
A command sequence file that always does the same thing is not
very intelligent. For example, the Backup file described above as­
sumes that a directory named Backups exists in the root directory of
the current disk. If it doesn't exist, the COpy command will fail.
One solution is to insert a MAKEDIR command to create the direc­
tory. But if the directory already exists, the MAKEDIR command
will fail.

The solution to this is to let the command sequence file test
whether or not the directory exists, and then act accordingly. If the
directory does exist, the copy can take place. If it doesn't exist, the
MAKEDIR command can first be used to create it. EXECUTE uses
the mechanism IF command to make such decisions. IF can be used
to test a number of conditions. If the condition it tests is true, the
subsequent commands will be executed. If the condition is not true,
none of the subsequent commands in the file will be executed (un­
til the ENDIF command is given).

One of the conditions you can test with IF is whether or not a
disk volume, directory, or file exists (although the EXISTS option of
the 1.3 version of the ASSIGN command is better for testing vol­
umes, since no Insert Volume xxx in any drive requester ap­
pears if the volume doesn't exit). The form of this command is

IF EXISTS name

You can also use the keyword NOT to reverse the test. While
EXISTS name is true if the object called name exists, NOT EXISTS
name is true only if it doesn't exist. Applying these facts to the
problem raised at the beginning of this section, you can come up
with this new, improved Backup command file:

.KEY filename
IF NOT EXISTS :Backups
MAKEDIR :Baokups
ENDIF
COPY <filename$#?bas> to :Backups

Now when you EXECUTE Backup (by typing EXECUTE Baok­
up filename), the command file first checks whether the :Backups
directory exists. If not, it creates the directory. But if it does exist,
the command file skips the MAKEDIR command and copies the
file. Workbench 1.3 users should note that this process isn't neces­
sary using the newer Copy command; it creates the target directory
automatically if it doesn't exist.

83

Command Sequence Files

The IF-ENDIF sequence also allows for an ELSE clause. Com­
mands that come after the ELSE command will be executed only
when the IF clause is not true. Let's look at the following sample
command file:

.Key from/a, to/a
IF NOT EXISTS <to>
COPY <from> AS <to>
ELSE
ECHO "Sorry, there's already a file named <to>."
ECHO "If I copy <from> to <to>, it will wipe out

<to>."
ENDIF

Call this command file safecopy. It's a cautious version of the
COPY command. The COPY command is pretty reckless-if you
tell it to copy the file ordinary to another file called important, and
there's already a file important, the contents of ordinary replace the
important file. You've just lost important's contents. This version
first checks to see if there's a file with the target. If not, it executes
the COPY command and then skips from ELSE to ENDIF. But if
the file already exists, it skips the COpy command and instead ex­
ecutes the command sequence starting with ELSE, which politely
explains why it can't make the copy. Note the use of the command
template characters /a after the keywords. These characters indicate
that both keywords are required. If you try EXECUTEing the file
without specifying a from and a to file on the command line, the
sequence will fail.

Another condition IF can test is whether two text strings are
the same. The keyword used for this test is EQ. The format of the
test is IF stringl EQ string2. One use for this test is to determine
what string was substituted for a word designated by the .KEY di­
rective. You can even test it to see whether any substitution was
made. Let's look at an example:

.KEY name
IF <name>q NOT EQ "q" ;if namel was entered, this is true
IF EXISTS <name> ;check to see if the file exists
RUN EXECUTE Backup <name> ;you can nest EXECUTEs
ELSE ;matches IF EXISTS <name>
ECHO "I can't find a file called <name> "
ENDIF ;matches IF EXISTS <name>
ELSE ;matches IF <name>q NOT EQ "q"
ECHO "You did not enter the name of a source file"
ENDIF ;matches IF <name>q NOT EQ "q"

84

Command Sequence Files

As you can see, this is a bit more complicated than the previ­
ous examples. There are two IF statements, one nested within the
other. The first IF tests whether any value was entered on the com­
mand line to be substituted for the keyword name. It does this by
seeing if what was substituted for name, plus the letter q, is equiva­
lent to the letter q alone. If any substitution was made, the two
strings will not be equal, and the condition is true. If no substitu­
tion was made, the EXECUTE command branches to the ELSE
clause, which prints You did not enter the name of a source file.

After the command file has tested to see whether the name of
a source file was entered, it must still test to see whether that file
exists. The second IF statement takes care of that, using the EXISTS
keyword as the test. If the file exists, the EXECUTE Backup command
is run as a background process to back up the file. This demon­
strates that you can both run an EXECUTE sequence as a back­
ground process and that you can use one command file to EXECUTE
another. If the file doesn't exist, execution skips to the ELSE clause,
which prints the message I can't find a file called <name>.

The Workbench 1.3 version of the IF command has several
new capabilities. First, it can test for all possible string comparison
cases, with the addition of GT (greater than) and GE (greater than
or equal) keywords. To test for less than or and less than or equal
conditions, use NOT GE and NOT GT. These string comparisons
normally use alphabetical order to test whether the value of one
string is greater than or less than another. Using the new VAL key­
word, however, it's possible to test the strings by numeric order in­
stead. For example, when you execute the script

IF "044" GT "14"
ECHO "044 is greater"
ELSE
ECHO "14 is greater"
ENDIF

it prints 14 is greater. If you change the script to read
IF VAL "044" GT "14"
ECHO "044 is greater"
ELSE
ECHO "14 is greater"
ENDIF

however, you come up with the correct answer. Another change to
the IF command in Workbench 1.3 is the use of the dollar sign ($)
as a substituion character. A string that starts with a dollar sign will

85

Command Sequence Files

be replaced by an environment variable of the same name. An en­
vironment variable is a string that's stored with the SETENV com­
mand, and can be retrieved with the GETENV command. For
example, the command SETENV name Fred stores the value Fred
in an environment variable called name. If this is the case, the
statement

IF $name EQ "Fred"

will be true.
The last condition that IF tests is the return code left by the

previous command. The return code is a number passed to the CLI
by a program when it finishes. The code indicates whether the pro­
gram was successfully completed or whether an error occurred.
Programs normally use a return code of 5, to, or 20 to indicate that
an error happened. The higher the return code, the more serious
the error. IF lets you test for each of these codes with the keywords
WARN, ERROR, and FAIL. IF WARN is true if the last return code
was 5 or greater, IF ERROR is true if the code was 10 or greater,
and IF FAIL is true if a code of 20 or greater was returned.

Normally, if a serious error occurs during a command sequence,
the entire sequence is immediately terminated. The default cutoff
point forthis is a return code of 10 or higher. Using this default
setting, it's impossible to test for a FAIL or ERROR condition, since
the sequence terminates before the test can take place. It's possible
to change the point at which a command sequence fails, however,
using the FAILAT command. Entering the command FAILAT 25,
for instance, insures that the sequence doesn't terminate unless a
program returns an error code of 25 or higher. The new failure
threshold applies only to the current command sequence. Once it
has finished executing, the default value is restored.

In most circumstances, you'll want to terminate the command
sequence if a serious error is encountered. Changing the FAIL AT
threshold and testing for the error yourself gives you an opportuni­
ty to present the user with a message that clearly explains what
happened. For example, you could change the command file allow­
ing the user to input the date and time to read:
ECHO" "
ECHO "The current setting of the date and time is:"
DATE
ECHO" "
ECHO "Enter the correct date and/or time now."
ECHO "Use the form DD-MMM-YY for the date (09-Sep-

89)."

86

Command Sequence Files

ECHO "Use the form HH:MM:SS or HH:MM for the time
(14:55)."

ECHO" "
FAILAT 25
DATE> nil: ?
IF ERROR
ECHO "You did not enter a correct date and/or time

setting."
ECHO "The current settings remain in effect."
ELSE
ECHO "The new date and time setting are:"
DATE
DATE >now
ENDIF

If this example were part of a larger startup-sequence file,
there's a good chance you wouldn't want the entire sequence to
terminate if the user didn't enter the date or time correctly. Using
FAILAT to reset the failure threshold and IF ERROR to test for er­
rors, you can tell the user that the attempt was not successful and
continue with the rest of the sequence.

Even if you've used FAILAT to change the failure threshold,
you may exit from a command sequence at any time by using the
QUIT command. QUIT also allows you to leave a specific return
code. The command QUIT 20, for example, terminates the com­
mand sequence immediately and leaves a return code of 20.

To summarize, the IF command uses the following keywords
for making its test:
Keyword Function

Is true if the volume, directory, or file exists EXISTS name
stringl EQ string2 Is true if the text of the two strings is the same (ignor­

ing uppercase and lowercase)
stringl GT string2

stringl GE string2

VAL stringl GT
string2

WARN

ERROR

FAIL

NOT

Is true if the ASCII value of string 1 is greater than the
ASCII value of string2 (Workbench 1.3)
Is true if the ASCII value of string 1 is greater than or
equal to the ASCII value of string2 (Workbench 1.3)

Is true if the numeric value of numeric string 1 is
greater than that of numeric string2 (Workbench 1.3)
Is true if the previous program left a return code of 5
or greater
Is true if the previous program left a return code of 10
or greater
Is true if the previous program left a return code of 20
or greater
Reverses the result of the test

Note: Under Workbench 1.3, IF evaluates $VAR as the string contained within the environ­
ment variable named VAR. 87

Command Sequence Files

Branching with SKIP
For most simple cases, IF-ELSE branching is sufficient. But if you're
making a number of tests, the SKIP command can make things easier.
It allows you to use the results of the IF test to jump to a subse­
quent command line. The LAB command is used to designate the line
at which you wish execution to resume. This is the general format:

IF test ;If the results of test are true,
SKIP Next ;Execution jumps ------,
ENDIF
oommand
oommand
oommand
LAB Next ; to here ------------'
oommand

SKIP is particularly useful where you may wish the same thing
to happen after a number of tests. Rather than writing the com­
mands over and over in the body of the IF-ELSE-ENDIF clause,
you can have each command jump to the same labeled line. The
following command file demonstrates this principle. It copies both
a file and its associated icon file to another volume or directory:

.Key from,to
IF <from>q EQ "q"
SKIP Missing
ENDIF

IF <to>q EQ "q"
SKIP Missing
ENDIF

IF NOT EXISTS <from>
SKIP Missing
ENDIF

COpy <from> <to>
IF EXISTS <from>.info
COPY <from>.info <to>
ENDIF
SKIP Done

LAB Missing
ECHO ''you must enter the name of an existing file to

copy,"
ECHO "and the volume or directory to copy it to."
LAB Done
88

Command Sequence Files

Prior to Workbench 1.3, it was not possible to use SKIP to
move backward within the command file. With version 1.3, a new
option, BACK, was added. When the BACK option is used, SKIP
starts searching for the LABEL at the beginning of the file, instead
of at the current line. Even so, you can't use BACK to SKIP past a
prior EXECUTE command.

EXECUTEing from a Command Sequence File
It is possible, and sometimes quite useful, to use the EXECUTE
command from within a command sequence file. A command file
can even EXECUTE itself. This permits a limited form of looping.
For example, let's say you have a number of disks to copy, and you
want to write a command sequence file that continuously prompts
you to insert source and destination disks, and then copies one to
the other. To avoid having to swap the Workbench disk when DOS
wants to read the commands, let's copy them to RAM:

COpy c:DiskCopy to RAM:
COPY c:Execute to RAM:
MAKEDIR RAM:T
CD RAM:

Now let's create a file called RAM:ConCopy that continuously
executes the DiskCopy command:

DiskCopy df0: to dfl:
Execute ConCopy

When we EXECUTE ConCopy, it runs DiskCopy once, then EXE­
CUTEs itself. Note that we created a directory :T in RAM:. The EX­
ECUTE command often needs to create a temporary file, and tries
to store this file in the :T directory. If there is no :T directory, the
error message EXECUTE: Can't open work file ":T /Command-O-TOl"
appears and the command fails. As of Workbench 1.3, however,
EXECUTE will first try to create its temporary files in T: if it is as­
signed, and if not, will then go to :T.

89

Chapter 6

ED, the System Screen Editor

The screen editor program, ED, found in the c directory of the
Workbench disk, can be used like any CLI command program. But
ED is not really a DOS file-management command program. Rath­
er, it's a full-screen text editor which can be used to create a text
file or edit an existing one. It differs from the other text editor pro­
gram included on the Workbench disk, EDIT, in a variety of ways.
EDIT is a line-oriented editor, which means that you must first se­
lect the line you want to change. ED, however, is a screen-oriented
editor, which displays a whole screen of text at a time and lets you
move the cursor around the screen, adding or deleting text as you
see fit. While EDIT can be used to alter files which contain binary
code, ED is designed to edit text-only files. And, finally, ED files al­
ways end with a linefeed character, which ED adds if it doesn't
find one already present.

To start ED, type ED, followed by the name of the file you wish
to edit. If the filename doesn't describe an existing file, ED assumes
that you want to create a new file. To exit the ED program, type
ESC-Q simply to quit or ESC-X to save the current file and exit.

ED starts with a maximum workspace of 40,000 characters.
Unless you change the size of the workspace, you're limited to
editing files of that size. To change the size of the workspace, use
the keyword SIZE on the command line which you use to run ED,
followed by the number of characters you want in the workspace.
For example, entering the command ED Windbag SIZE 100000
lets you edit a file called Windbag which can contain up to 100,000
characters. It's a good idea always to specify a size somewhat
greater than the exact size of the file.

There are two ways of issuing commands to ED-immediate
mode and command mode. In immediate mode, you give ED its com­
mands by pressing nonprinting key combinations. In extended com­
mand mode, you first type the ESC character, which places your
cursor on the command line at the bottom of the screen. You may
then type in one or more command strings. The command is not
executed until you press RETURN.

90

ED, the System Screen Editor

Immediate Mode
The ED program starts in immediate mode. Here, the characters
you type are inserted into the text document. To edit, just move the
cursor to the appropriate place and either erase existing text or add
new text. In addition, there are a number of control commands
which help in editing. These commands are executed by holding
down the CTRL key, then pressing another key. (The notation
CTRL-x will be used to refer to these commands. This indicates
that you're to hold down CTRL, and press the key specified by x.)
All CTRL character commands are executed as soon as you press
the key combination.

Cursor Commands
The cursor is a colored block which indicates the position where
additional characters will enter the text buffer. If you're using the
default set of colors, it appears as an orange block highlighting the
current character. You can move the cursor in any direction by
pressing one of the cursor arrow keys to the right of the RETURN
key. If there's more text in the buffer than appears on the screen,
moving the cursor to any edge of the screen and pressing the corre­
sponding cursor arrow key shifts all text (scrolls) to show part of
the hidden text. For example, if you move the cursor to the bottom
line of the first screen of a long document, then press the down­
arrow key, the cursor moves down to the next line and reveals the
hidden first line of the next screen. What was formerly the top line
scrolls up and out of sight. By using the down and up arrows, you
can move forward and backward through the text file.

Other immediate commands allow you to move the cursor in
larger increments. The CTRL-T combination moves the cursor right
to the first character of the next word. CTRL-R moves the cursor
back to the space at the end of the previous word. CTRL-] moves
the cursor to the end of the current line, scrolling the screen if the
line is longer than the screen width. If the cursor is already at the
end of the line, CTRL-] moves it back to the beginning of the line.
If you press CTRL-] a number of times, the cursor alternates be­
tween the first and last characters of the line. Likewise, CTRL-E
moves the cursor to the beginning of the first line on the screen. If,
however, the cursor is already at the start of the first line, CTRL-E
moves it to the end of the last line on the screen.

The scroll commands don't change the absolute position of the
cursor, but rather move the text itself. CTRL-U scrolls the screen
up, which appears to make the cursor move down toward the end
of the document. CTRL-D scrolls the screen down, which in effect
moves the cursor toward the beginning of the document. Either

91

ED, the System Screen Editor

command causes the whole screen to be redrawn from the top,
making the scrolling action rather slow.

Note that in ED, the TAB key is strictly a cursor movement
key. When you press TAB (or CTRL-I), the cursor moves to the
next TAB position, which is one greater than an even multiple of
the TAB setting. For example, if you're using the default TAB set­
ting 3, the TAB key moves the cursor from column 1 (the left edge
of the screen) to column 4, then column 7, column 10, column 13,
and so on. You can change the size of the TAB stops with the ex­
tended command ST (see below). Unlike some editors, ED doesn't
insert characters into the text when you press TAB. The TAB key
leaves neither a TAB character nor spaces in the text, though if it
passes over a blank portion of the line, the space characters it by­
passes remain in the text. Note also that if you enter a text file
which contains TAB characters into ED, ED replaces each with a
number of spaces.

Character Deletion/Insertion
When you've moved the cursor to the text location you want to
edit, there are several immediate mode commands which you can
use to delete or insert text. The BACK SPACE key (or CTRL-H)
moves the cursor one character to the left, deleting the character.
The DEL key deletes the character under the cursor and moves the
text to the right one position to the left.

You can also delete characters in larger chunks. The CTRL-O
command's actions depend on whether the cursor rests on a char­
acter or a space. If the cursor is on a space, CTRL-O deletes all
spaces it finds until the first character of the next word. Otherwise,
CTRL-O deletes the current character and all characters it finds un­
til the next space between words. Thus, CTRL-O can be used alter­
natively to delete whole words or the spaces between words. CTRL­
Y deletes everything from the current character position to the end
of the line. CTRL-B deletes the entire current line, regardless of the
cursor position.

Unlike most screen editors, ED doesn't let you delete the RE­
TURN character at the end of a line. This means that once you've
split a line with a RETURN, the only way to join it together again
is with the extended command J (see below).

The ED editor is always in insert mode. This means that any
characters typed in push text to the right rather than overwriting
characters. Thus, no special character insertion commands are
needed. ED does have an immediate mode command, CTRL-A,
which allows you to insert a blank line below the current line and
moves the cursor to the beginning of that line.

92

ED, the System Screen Editor

ED supports lines wider than the screen display. To see differ­
ent parts of such lines, scroll the text horizontally by moving the
cursor left or right. Each line has a maximum of 255 characters­
ED won't let you insert characters in a line of maximum length.

Another interesting characteristic of ED is that it supports a
form of word-wrap. This means that if a right margin is set, and
you're typing a word which extends past that margin, ED automati­
cally ends the current line with a RETURN character at the space
before that word and moves the start of the word down to the next
line. This wordwrap feature applies only when you're typing at the
end of a line. If you insert characters into the middle of the line,
forcing the line over the margin, ED won't break the line. You can
also disable this feature by using the extended command EX, which
acts like the margin release on a typewriter (see extended com­
mands below). You may also use extended commands to change the
left and right margins from their default positions of 1 and 77
respectively.

Miscellaneous Immediate Commands
The CTRL-F command flips the case of the current character and
moves the cursor one position to the right. This means that if the
current character is in uppercase, it changes to lowercase and vice
versa. If the current character is not a letter, it doesn't change, but
the cursor still moves to the right. If the cursor is positioned at the
first letter of the word this, and you press CTRL-F four times, the
word changes to THIS.

CTRL-V redraws the screen. Since ED itself refreshes the dis­
play if you size the window or move it or scroll it in any direction,
this command will be useful only on rare occasions.

CTRL-G is used in conjunction with the extended mode com­
mands. It repeats the last extended mode command you issued.
The usefulness of this command will soon become apparent, as the
discussion turns to the extended commands.

Extended Mode Commands
Although immediate mode commands are faster and more conven­
ient to use, the extended mode commands are more powerful. Gen­
erally, you may use extended commands to execute any of the
cursor movement and deletion functions of the immediate com­
mands. In addition, you may use extended mode commands to de­
lete, copy, or move whole blocks of text, to save and load text files,
to find and replace text strings, and to perform various other func­
tions. You can even issue a number of commands at one time or

93

ED, the System Screen Editor

indicate that one or more of these commands is to be executed a·
number of times.

To issue an extended command, you first press the ESC key
(or CTRL-[). When you do, an asterisk appears on the bottom line
of the screen, and the cursor moves to the space following the as­
terisk. This indicates that you've moved to the command line, and
any text you enter is to be interpreted as an editor command, not
as text to be inserted into the document. After entering the com­
mand(s), pressing the RETURN key executes the command. If you
just press RETURN without entering a command, no command is
executed and you return to immediate mode.

For instance, let's say you want to use the T command (ex­
plained below) to go to the top of the file. You first press ESC, and
the line at the bottom of the screen shows an asterisk:

*
You then type T and press RETURN:

*T <CR>

The command line disappears, and the display moves to show
the top of the file.

Extended mode commands are made up of one or two letters.
Case is not important, and you can put more than one command
on a line by separating them with semicolons.

Sometimes a command requires an argument, such as a number
or a text string. A text string must be set off with characters known
as delimiters so that it won't be confused with a command string.
The delimiter character can be anything except letters, numbers,
spaces, semicolons, or brackets. Double quotation marks are the
most common delimiters, though if you want to type a string with
double quotation marks in it, you must use something else (like the
slash or exclamation point). Strings may appear properly in com­
mands in the form "this is a string" or /this is a "string"l or
!c:sub I" so called"!.

Cursor Movement Commands
The CL (Cursor Left) and CR (Cursor Right) commands work just
like the left- and right-arrow keys, moving the cursor one space to
the left or right. As explained below, however, you can add a re­
peat count so that 4CL moves the cursor four spaces to the left.
The N command (Next) moves the cursor to the start of the next
line, while the P command (Previous) moves the cursor to the start
of the previous line.

94

ED, the System Screen Editor

CS (Cursor Start) and CE (Cursor End) move the cursor to the
start and end of the line respectively. T (Top) and B (Bottom) move
the cursor to the top or bottom of the document, while M (Move)
moves the cursor to an absolute line number. For example, M 662
moves the cursor to the start of line 662. This can be extremely
helpful when used with compilers which identify the line numbers
where errors occurred.

Deletion/Insertion Commands
The DC command works just like the DEL key, deleting the char­
acter under the cursor. The D command functions like the immedi­
ate mode command CTRL-B and deletes the entire current line.

I (Insert line) is used to insert a string of text as a new line
above the current line. The string follows the I command, as in

*I"This goes above the current line"
The A (Add after) command is similar to the I command, but

adds the new line after the current line.
S (Split) and J (Join) are used to split one line into two and

join two lines into one. The S command acts just like a RETURN
character, which ends the current line and moves the text to the
right to a new line below. In effect, the J command deletes the RE­
TURN character at the end of the current line, thus joining it with
the next line.

Search and Replace (Find and Exchange)
Another way of scrolling the screen to a particular place in a docu­
ment is with the F (Find) command. The F command is issued
along with the text string you want to find:

*F"Intuition"
Once issued, F searches the document for the exact text speci­

fied, from the current cursor position forward to the end of the file.
A complementary command, BF (Backwards Find), searches from
the current cursor position to the beginning of the file. By default,
both find commands are case-sensitive and will find a match only
if both text strings contain exactly the same combination of upper­
case and lowercase letters. You may, however, change this default
so that searches ignore differences in case by using the UC com­
mand. Once you've issued this command, all searches ignore case
differences until you reset the default with the LC command.

Sometimes you wish both to locate a phrase and replace it
with another. The E (Exchange) command does just this. When

95

ED, the System Screen Editor

using E, you must first specify the phrase to find, then follow it
with the replacement phrase, like this:

"'E"Intuition"User Interface"
This example looks for the word Intuition and replaces it with

the phrase User Interface. The E command only looks forward, so if
you want to catch all occurrences of the search phrase, you should
first move the cursor to the top of the file with the T command.

The EQ (Exchange with Query) command is a variation on E.
Instead of making the substitution automatically, it prints the mes­
sage Exchange? on the command line. If you press the Y key, the
exchange takes place, but if you enter N, the cursor moves past the
string.

Both the find and exchange commands lend themselves well to
the repeat features of ED. For example, once you've set up a search
string with F, it's a simple matter to find the next occurrence of the
string by using the immeditate command CTRL-G. And it's just as
simple to replace every occurrence of a search string with a com­
mand like

"'RP EQ"me"myselt'
which repeatedly replaces the word me with the word myself after
verifying that you want to make each change. For more on repeat­
ing commands, see the section "Multiple and Repeat Commands"
below.

Block Transfers
One of the most powerful groups of extended commands is that
which manipulates an entire block of text at once. With these com­
mands, you can delete, copy, or move an entire block of text.

A block is made up of one or more adjacent lines of text. You
use the BS (Block Start) and BE (Block End) to mark the beginning
and ending of a block of text. When you issue the BS command,
the block is marked as starting at the first character of the current
line, regardless of where the cursor is presently positioned. In order
to complete the marking of a block, you must cursor down to the
last line of the block and issue the BE command. This marks the
end of the block at the end of the current line. Both the BS and BE
commands are needed to mark a block successfully, and the line
you marked as the start of the block must be above the one you
marked as the end. (In other words, you cannot mark the start of
the block near the end of the file, then move the cursor up and

96

ED, the System Screen Editor

mark the end of the block.) You can mark the start and end of the
block on the same line, however, as with the command

*BSjBE

which marks the entire current line as a block.
You can only mark entire lines as blocks. BS always starts mark­

ing at the beginning of the current line, and BE always marks to
the end of the current line. If you want to mark only parts of a line,
you must first use the RETURN key to split the line. Also note that
the block stays marked only so long as you don't make any changes
to the text. Once you make any editing changes to any part of the
text (not just the marked lines), the block markers disappear.

After you've marked a block, you can insert copies of the block
by moving the cursor to where you want the block inserted, then
using the IB (Insert Block) command. You can insert as many
copies as you wish, as long as you perform the inserts immediately
after marking the block and don't edit text in between insertions.

You can delete the entire block with the DB (Delete Block)
command. Unlike some editors which retain a deleted block in a
special buffer and allow you to retrieve it, ED simply discards a de­
leted block. Once you've deleted it, it's gone. You can move a
block of text, however, by first duplicating it with the IB command,
then deleting the original block with the DB command.

The WB (Write Block) command lets you save a marked por­
tion of text to a named file. This allows you to split a large file into
two smaller parts or generally manipulate portions of a file. The
WB command must be followed with the name of the file to which
the marked portion is to be written. This filename must be en­
closed by the normal string delimiters, such as quotation marks:
*WB"RAM:tempfile"

The final block command is SB (Show Block). This command
helps you identify the currently marked block by moving its text to
the top of the screen.

File Management (Save/Load/Exit)
ED really has no load command per se, since you must specify the
file to edit when you start the program. However, it's possible to
insert text from a disk file within the current text file with the IF
(Insert File) command. When you type
*IF "filename"

filename is inserted under the current line, and the rest of the text
in the document is moved down.

97

ED, the System Screen Editor

ED won't let you start editing a file which contains binary
(nontext) characters. If you try this, ED ends with the message File
contains binary. It's interesting to note, however, that you may start
by editing a blank file, then use IF to merge a file which does con­
tain such characters. This isn't recommended, however, as such
characters don't appear correctly on the screen, making it hard to
do accurate editing.

The SA command is used to save a current copy of the docu­
ment to disk. If you don't add a filename, the document is saved to
the file named when you started ED. It's recommended that you
periodically save your work to disk (every half hour or so is best)
to protect yourself against the perils of power outages. Speaking of
backups, you should be aware that ED creates a backup of your
original text file in the T directory of the document disk (if the di­
rectory exists), in a file called ED-Backup.

If you use the SA command with a filename, you can save a
copy of the current document to a file other than the one named
when you started the program. This allows you to keep several
copies of the document, each varying slightly. The format for this
command is

*SA" filename"

There are two ways to exit the ED program. The first is with
the Q (Quit) command. Q just quits, without saving your text. If
you try the Q command after you have changed the text of the
document, however, without saving these changes, you'll receive a
prompt saying Edits will be lost - type Y to confirm:. This gives you
an opportunity to save the changes-press any key and the quit is
stopped. If you press Y, however, the program ends without saving
the changes.

The other way to exit ED is with X (eXit). X both saves the
current document and exits the program. Think of it as first per­
forming an SA, then a Q command.

Tabs and Margins
The SL (Set Left) and SR (Set Right) commands are used to set left
and right margins. As explained above, the right margin is used for
the purpose of wordwrapping. This means that as you add charac­
ters to the end of a line and force it over the right margin, a RE­
TURN character is inserted and the word past the margin is moved
to. a new line below. Word wrapping occurs only when you add
characters to the end of a line. If you insert characters in the mid­
dle of a line, you can cause the end of the line to go past the mar­
gin without wrapping. If you wish to disable the word wrapping

98

ED, the System Screen Editor

feature for the current line, use the EX (EXtend margin) command.
This works like the margin release on a typewriter, allowing you to
add characters to the end of the line past the right margin. The EX
command extends the margin only for the current line, however. If
you wish to extend the margin permanently, change the right mar­
gin setting from its default value of 77.

You can also set a left margin with the SL (Set Left margin)
command. The default setting is 1 (the leftmost column). When you
change this setting, each new line begins at the position indicated.
The preceding character positions will be filled with space charac­
ters. This left margin is not a "hard" margin. You don't have to use
the EX command to move past it. You may use the backspace char­
acter to move to the left of it. The CS command moves you back to
column 1 as well.

The ST (Set Tabs) command is used to set the distance be­
tween tab stops. The default setting is a stop every three characters.

Miscellaneous Commands
The U command (Undo) gives you a very limited undo capability.
When you start to edit a line, ED saves the original contents of the
line. As long as you stay on that line, you can restore its contents
by issuing the U command. However, once you move off that line,
you cannot undo the changes. Moreover, U cannot restore a line
once you remove it completely, either with the immediate com­
mand CTRL-B or with the D command.

The SH (SHow information) command displays information
about the current editing session. When you use the SH command,
a number of lines appear at the top of the editing screen, showing
the name of the file you're editing, the tab setting, the left and
right margins, the first and last few characters in the block(if any
is marked), and the percentage of the edit buffer that's filled. This
display disappears as soon as you type a character.

Multiple and Repeat Commands
When in extended command mode, you're not limited to issuing
one command at a time. Several commands may be placed on the
same command line, separated by semicolons. For example, if you
want to search for the first occurrence of the word Amiga in a text
file, you could use the command sequence

*TjF" Amiga"

which moves the cursor to the top of the document, then starts the
search. In addition, you can specify that a command should be re-

99

ED, the System Screen Editor

peated a number of times by placing that number in front of the
command. For instance, the command

*4D

deletes four lines in a row, starting with the current line. You can
also use the special repetition command RP to specify that you
want the command repeated until an error occurs. Let's say that
you frequently misspell the word separate as seperate. If you want
to change every occurrence of the word seperate to separate, you
could use the following command series:

*T;RP E" seperate" separate"
The first command, T, moves the cursor to the top of the docu­

ment. The next command, RP, specifies that you want to repeat the
following sequence until an error occurs. Finally, the E command
causes the second string to be exchanged for the first. The result of
all this is that ED searches for seperate and replaces it with separate
until it can't find the string any longer. When that happens, an End
of file error is issued, which causes RP to stop. (Notice that you
don't have to separate RP and the following command to be re­
peated with a semicolon.)

You can stop any command or series of commands by pressing
any key. ED always exits the extended command mode as soon as
you press a key and displays the message Commands abandoned on
the command line.

Using a repetition count or the RP command only repeats the
command immediately following. Let's say that you're editing a
double-spaced file, in which every other line is blank, and you
wish to delete all blank lines. One strategy would be to position
the cursor at the top of the file (assuming it's not a blank line),
then repeatedly move the cursor to the next line and delete it. You
might try the command

*T;RP N;D

but this wouldn't work. The cursor first moves to the top, but only
the N command repeats so that the command just moves the cursor
to the last line of the file where it encounters an End of file error.

To counter this problem, ED allows you to group commands
together in parentheses. When you do this, the repetition count ap­
plies to all of the commands enclosed in the parentheses. Thus, the
command

*T;RP (N;D)

does just what you want. It moves the cursor to the top of the doc­
ument and then repeats both the Nand D commands, again and
again.

100

ED, the System Screen Editor

ED Command Summary

Keyboard Commands
Cursor Movement
Cursor keys
TAB, CTRL-I

CTRL-T
CTRL-R
CTRL-]
CTRL-U
CTRL-D
CTRL-E

Move cursor one character up, down, right, or left
Move cursor right to next TAB position (don't insert any
characters into text)
Moves cursor to start of next word
Moves cursor to end of previous word
Moves cursor to end or start of line (alternates)
Scrolls text up (moves cursor down) a page
Scrolls text down (moves cursor up) a page
Moves cursor to top or bottom of screen (alternates)

Insert/Delete
BACK SPACE,
CTRL-H Delete character to left of cursor

Deletes character under cursor DEL
CTRL-O
CTRL-Y
CTRL-B
CTRL-A

Deletes next word or spaces before next word (alternates)
Deletes to end of current line
Deletes entire current line
Inserts a new line below current line

Miscellaneous Commands
CTRL-F

CTRL-V
ESC, CTRL-[
CTRL-G

Flips case of character under cursor (and moves cursor one
character to the right)
Verifies (redraws) the screen
Enter extended command mode
Repeats last extended command

101

ED, the System Screen Editor

Extended Mode Commands (Press ESC to
Enter Command Mode)
Cursor Movement
CL Moves cursor left one character
CR Moves cursor right one character
N Moves cursor to start of next line
P Moves cursor to start of previous line
CS Moves cursor to start of line
CE Moves cursor to end of line
T Moves cursor to top of file
B Moves cursor to bottom of file
Mlinenum Moves cursor to line number linenum

Insert/Delete
DC
o
I/string/
A/string/
S
J

Deletes character under cursor
Deletes entire current line
Inserts string as a new line above current one
Inserts string as a new line below current one
Splits current line at cursor position (same as RETURN)
Joins current line with next line
(deletes RETURN at end of current line)

Find and Exchange (Search and Replace)
F /string/
BF /string/
E/stringl/string2/
EQ/ string1 / string2 /
LC

UC

Finds string in following text (forward search)
Backward find (searches previous text for string)
Exchanges (replaces) string1 with string2
Exchanges (replaces) after query string1 with string2
Requires searches to match both uppercase and
lowercase
Ignores case differences in searches

Block Transfers
BS
BE
DB
IB
WB/filename/
SB

102

Marks a block starting at start of current line
Marks a block ending at end of current line
Deletes current block
Inserts copy of the block below current line
Writes the block to file filename
Shows the block on screen

ED, the System Screen Editor

Save/Load/Exit
IF/filename/ Inserts file filename at the cursor (and moves rest of file

down)
SA/filename/ Saves file to disk (to filename if given; if not, to current

file)
X Exits, saving text file to disk
Q Quits without saving text

Tabs and Margins
SLcolnum
SRcolnum
EX
ST

Sets left margin to column number colnum
Sets right margin to column number colnum
Extends right margin
Sets distance between tab stops

Miscellaneous
SH

U

number
()
RP

Shows information on filename, tab stops, margins, block
markers, and buffer usage
Undoes changes to current line
Executes another command on same command line
Repeats following command number times
Groups commands for purposes of repetition
Repeats following command until an error occurs

103

Chapter 7

EDIT, the Line Editor

EDIT, AmigaDOS's line editor, can be used to change and inspect
just about any kind of AmigaDOS file, including text, source lan­
guage, and program files. Individual lines of text may be edited, in­
serted, or displayed. EDIT can also search for, delete, or replace
selected text within one or more lines.

We often take for granted programs capable of manipulating
text a screenful at a time. Full-screen editors with built-in functions
optimized for producing source text are used everyday by profes­
sional programmers. Word processors that handle multiple win­
dows of text and include integrated spelling checkers and
thesauruses make writing reports and manuscripts a breeze. In the
face of all this "gee-whiz" text processing power, it's easy to look
down one's nose at the lowly line editor, with its seemingly crude
user interface.

Line Editors-A Brief History
In the early 1970s, the most common medium used to get a pro­
gram or other information read into a computer was the punched
card, created on a mechanical device called a keypunch. A separate
punched card was required for every line of information to be read
into the computer. The cards themselves were read with a device
called a card reader. If a single character was mistyped on a card,
the entire card had to be retyped. Add to this the fact that
keypunches were slow and prone to jams that invariably ate the
one card that had finally been typed correctly on the fifteenth at­
tempt. It's easy to understand why programmers who have been
around for a while break out in a cold sweat when some careless
associate evokes the memory of writing a thousand-line program
on punched cards.

The very first programs which allowed programmers to type in
and modify programs electronically were called line editors. Line
editors freed a generation of computer programmers from the
drudgery of keypunch machines. Text could be entered one line at
a time at a cathode ray tube (CRT) equipped with a keyboard. If
you made a mistake, you could actually back up and correct it. Pro-

104

EDIT, the Line Editor

grams could be saved, recalled, and modified at will. Simple as the
first line editors were, it was like handing a gas-powered tractor to
a farmer who had been tilling fields with a hand plow.

The Bottom Line
So why use EDIT? AmigaDOS comes with a fairly powerful full­
screen editor (ED), and reasonably priced word processors for the
Amiga are also available. While most Amiga owners will prefer
either of the latter, some users will find using EDIT comfortable.
AmigaDOS EDIT falls into the "quick and dirty" program category,
much like EDLIN, the line editor of MS-DOS. It's handy, it's al­
ready resident in the c directory, and if you just need to change a
couple of lines in a command file, EDIT is probably as good as
anything else. EDIT's limited number of commands also makes it
relatively easy to master.

EDIT does have two features which ED, its more powerful sib­
ling, does not-EDIT can execute a series of prestored sub­
commands, and it is also marginally suitable for displaying and
modifying compiled programs as well as text.

How EDIT Works
EDIT processes the contents of a source file (we'll call this EDIT's
From file) sequentially-a line at a time-using editing commands
specified by the user.

EDIT keeps track of its place within the material being edited.
When EDIT is first invoked, the current line is the first line of the
From file. As editing commands are executed, the current line
changes. EDIT keeps tabs on the current line by maintaining an in­
ternal pointer called the current line marker.

As the current line marker is moved past a line, the line is
moved into a special area called the output buffer. The output buffer
has a fixed size for the duration of an EDIT session.

When the output buffer becomes filled, data is written to the
file specified as the destination (EDIT's To file), on a first-in, first­
out basis.

During an EDIT session, various informative messages and dis­
plays of the contents of lines are sent to EDIT's verification device
(your Amiga's screen, unless another device is specified when EDIT
is started up).

If EDIT's To file is different than its From file, the contents of
the file used as input to the editor will not be altered. If the To file
is the same as the From file, the original contents of the file will be
moved to a temporary file called :tjedit.backup.

105

EDIT, the Line Editor

Invoking EDIT
An EDIT session is usually started from an active CLI by using
AmigaDOS's EDIT command. What follows is a summary of the
EDIT command's syntax. See the EDIT command section in the
II AmigaDOS Command Reference" for a more detailed explanation.

EDIT [FROM] fromname [TO] toname [WITH] withname [VER]
vername [OPT option]
EDIT's Parameters and Keywords:
FROM fromname-The name of the file whose contents will be
edited. Throughout the rest of this chapter this is referred to as
EDIT's From file.

TO toname-The name of the file which will contain the edited
text after the EDIT session is ended. Throughout the rest of this
chapter, this file is referred to as EDIT's To file.

WITH withname-Lets you specify a file that may optionally be
used as input to the line editor's command processor.

VER vername-Lets you specify where you want messages from
EDIT to be displayed.

OPT Pn or OPT Wn or OPT PnWn-These options let you set the
maximum line length (Wn) and/or number of lines (Pn) that EDIT
will keep in its output buffer.

While you can edit files with more lines than the value of n,
you'll only be able to move backward n lines. If the file to be
edited is not unreasonably large, it's usually a good idea to specify
an n greater than the number of lines in the file to be edited.

Starting an EDIT Session-Examples
Example I-Edit a file called mysource in the current directory,
using EDIT. The edited data is to be stored under the same file­
name. The number of lines is to be set to 40 and line width to 120
(EDIT's default values):

EDIT mysource

Example 2-Edit a file called bigsource. The edited data will be
stored in the file called edited bigsource. The output buffer size is set
to 1000 lines, with a maximum line width of 120:

EDIT bigsource "edited bigsource" OPT P1000

Example 3-Edit a file called universe. When EDIT starts up,
execute the list of EDIT subcommands contained in the file
autocommands located in the myprocess/nebula directory on drive
df1:. The edited data is to be stored under the same filename. Send

106

EDIT, the Line Editor

all messages and verification displays from the line editor to the
system printer. The number of lines in EDIT's output buffer is to be
set to 40 and the maximum line width to 250:

EDIT universe WITH dfl:myprocess/nebula/auto
commands VER PRT: OPT W250

Note: EDIT expects the From file to exist already. Issuing an
edit for a file called newfile which doesn't exist, as in

EDIT FROM newfile

generates the error message Can't open newfile. However, you can
use EDIT to type in a file by creating an empty file first and then
editing the new file:

COPY'" newfile Press CTRL-" after entering this command
EDIT newfile

Example 4-Let's create a sample file which you can type in,
then experiment with using EDIT during the rest of this chapter.
Type:
COpy'" testfile
The door slammed and she stormed
out of the house. Meanwhile, the
toast burned and the eggs hardened.
He stared after her, wondering what
to say. Fortunately, he kept his mouth
shut. Better to say nothing than to
say something now.
Once you've typed this in, press CTRL- " (end-of-file marker),
which will close the file; testfile is now on your disk. You can ac­
cess it by entering

EDIT testfile

Getting Out of EDIT
There are several ways to exit an EDIT session.

The STOP command exits EDIT, leaving the From file intact.
The contents of the To file, if a separate one was specified, are un­
predictable since STOP will not write the contents of the output
buffer to the To file as it exits EDIT.

The W command (Windup) advances the current line marker
to the From file's end-of-file (EOF) marker, moving lines into the
output buffer as it goes. When the EOF is reached, EDIT saves the
contents of the output buffer to EDIT's To file, and the editing ses­
sion terminates.

107

EDIT, the Line Editor

The Q command (Quit) is used within EDIT command files to
return control to the process which invoked the file's execution. If
Q is issued from EDIT's primary command level, it has the same
effect as W. (See the section "EDIT Command Files" later in this
chapter for more information about the use of command files.)

The Current Line
EDIT keeps track of its place within the data and/or text being
edited. When EDIT is first invoked, the current line is the first line
of the From file. As EDIT subcommands are executed, this current
line changes. EDIT keeps tabs on the current line by maintaining
the current line marker, an internal pointer.

At the beginning of each session, EDIT associates sequential
line numbers with all of the original lines of the From file. When
EDIT begins, the current line is line number 1.

Verifying the Current Line
The? and! commands allow you to display the line number (if
any) and contents of the current line.

?

displays the line number and contents of the current line.
Characters which cannot be displayed can be represented by a

question mark. For instance, if issuing a ? command results in a
display of

?
5.
Whom do you trust???

the question marks which appear to be a part of line 5 may not be
question marks at all. In these cases, the! command will display
the hexadecimal value of the characters in question:

!
Whom do you trust?ll

03
The exclamation mark (!) revealed that there's only one genuine
question mark in the line, followed by characters whose ASCII val­
ues are 10 and 13. The! also displays a dash (-) under any upper­
case letters contained in the current line.

Turning Verification On and Off
EDIT often displays a verification of the line number and contents
of the current line in response to many EDIT commands. If the cur­
rent line has no line number, + + + will be displayed instead. Ver-

108

EDIT, the Line Editor

ification displays may be turned on and off with the V (Verify)
command.

v-
turns off automatic line verification, while

v+
turns verification on. Verification is always set to on by EDIT when
an editing session begins.

Trailing Spaces
EDIT normally suppresses all trailing spaces.

TR+

turns EDIT's trailing spaces switch on, allowing trailing spaces on
both input and output lines.

TR-

reinvokes suppression of trailing spaces (EDIT's default).

Operational Windows
When a command is executed which instructs EDIT to operate on
the current line, EDIT normally scans all the characters in the line
from left to right, beginning with the first character.

It's possible to instruct EDIT to begin its scan at a character
other than the first in the line. The current line's operational win­
dow consists of only that portion of the line which will be operated
on. The beginning of the current line's operational window is
pointed to by the operational window pointer.

> moves the operational window pointer of the current line
one character to the right.

< moves the operational window pointer of the current line
one character to the left.

PR (Pointer Reset) sets the operational window pointer line
back to the start of the line.

Whenever EDIT is instructed to display verification of the cur­
rent line (by?, !, or any other command which normally ends with
a verification of the current line), a greater than (» character may
be displayed under the contents of the current line. Everything to
the right of the> is within the current line's operational window.
For instance,

3.
Well this is another fine mess

>
indicates that the operational window pointer of the current line

109

EDIT, the Line Editor

has been moved so that the operational window of the line consists
of the text another fine mess. If you told EDIT to search for the word
this, it would not be found, since only the contents of the current
line's operational window are scanned by the search operation.

Character Operations on the Current Line
EDIT supports four intraline commands which can change the case
of characters, replace characters with a blank, and delete characters:

$ (dollar sign) forces the case of the first character in the cur­
rent line's operational window to lowercase. After a $ command is
executed, the operational window pointer is moved one character
to the right.

% (percentage sign) forces the case of the first character in the
current line's operational window to uppercase. After a % com­
mand is executed, the operational window pointer is moved one
character to the right.

_ (underscore) forces the first character in the current line's
operational window to be replaced by a blank. After an _ com­
mand is executed, the operational window pointer is moved one
character to the right.

(pound sign) deletes the first character in the current line's
operational window. The text remaining in the operational window
is shifted one character to the left.

The intraline commands may be strung together on a single
EDIT command line. Take a look at the following example.

Assume you start with the current line as All the young dudes,
carry the NEWS. Several operations can be carried out on this line
to change its appearance:

1.
All the young dudes, carry the NEWS
%%%####

1.
ALL young dudes, carry the NEWS

>
»»»>%%%%%»

1.
ALL young DUDES, carry the NEWS

>
»»»-->$$

1.
All young DUDES, carry NewS

110

>

EDIT, the Line Editor

You could have strung all the commands in the previous ex­
ample together on one command line. Several command lines were
used to keep things from getting totally confusing.

Moving from One Line to Another
N (Next line). The current line marker can be moved forward by
using the N command. If you attempt to move the current line
marker past EDIT's end-of-file flag, the message Input exhausted
displays, and the current line marker is set at the end-of-file flag.

N

moves the current line marker to the next line of the current From
file. If line verification is on, the line number and text of the new
current line is displayed. The current line marker may be moved
ahead multiple lines by stringing multiple N commands on a single
line or by preceding the command with a number:

N;N;N;N

is the same as

4N

P (Previous line). The current line marker may be moved back­
ward with the P command. If you attempt to move the current line
marker past the first line contained in EDIT's output buffer, the
message No more previous lines displays, and the current line mark­
er is set to the first line in the output buffer.

Remember, the default capacity of EDIT's output buffer is only
40 lines. For example, if you EDIT an SO-line file and the current
line marker is pointing to line 60, EDIT's output buffer contains
only lines 20 through 59 of the From file. Attempting to back up 40
or more lines results in the current line marker pointing to line 20.

P
moves the current line marker back one line. If verification is on,
the line number and text of the new current line is displayed. The
current line marker may be moved back multiple lines by stringing
multiple P commands on a single line or by preceding the com­
mand with a number.

PjP;PjP;P;P
is the same as

6P

Both move the current line marker back six lines.
Ma (Move to line a). The current line marker may be moved

backward or forward to a specific line number by using the M com-

111

EDIT, the Line Editor

mand. Using a period (.) in the a location, the current line marker
is moved to the end-of-file flag of the From file.

If you attempt to move the current line marker back to a line
number not in EDIT's output buffer, the message Line number a too
small displays. If the line number specified is greater than the high­
est line number of the From file, the message Input exhausted dis­
plays, and the current line marker is set to the end-of-file flag.

M17

moves the current line marker to line number 17 (not the seven­
teenth line). If verification is on, the line number and text of the
new current line is displayed.

M.

moves the current line marker to the end-of-file flag of the From
file.

Displaying Your Text
It's often handy to examine the contents of more than one line at a
time. EDIT has four commands which allow you to display multi­
ple lines of the file being edited.

Tn (Type n lines). The T command displays n lines on the
screen (or verification device, if one other than the screen has been
selected), beginning with the current line. The current line marker
is set to the line following the last one typed by the T command. If
n is not specified, all lines following the current line are displayed,
and the current line marker is set to the end-of-file flag.

Assume that the sixth line of a file being edited is the current
line. The command

T5
displays the sixth through tenth lines of the file, and the current
line marker is changed to point to the eleventh line. The line num­
ber and text of the new current line are displayed.

If the current line marker of a lOa-line file is pointing to the
thirty-eighth line, and the current line marker is set to the end-of­
file flag,

T

displays lines 39 through 100, and the current line marker is set to
the end-of-file flag.

TP (Type Previous). The TP command displays the current
contents of EDIT's output buffer. If the buffer is full, the current
line marker remains unchanged. If the output buffer is not full, the
TP command advances the current line marker to the point which

112

EDIT, the Line Editor

fills the buffer and then displays the contents of the buffer, fol­
lowed by verification of the new current line.

For example, assume that EDIT has been invoked with the de­
fault buffer length of 40 lines and that you're editing a 70-line file.
If the current line is the tenth line of the file (which means there
are only nine lines currently in the output buffer) and you issue

TP
EDIT changes the current line marker to point to the forty-first line,
moving lines 10 through 40 into the input buffer (along with the
file's first 9 lines). All 40 lines now residing in the output buffer are
displayed, followed by a verification display of the file's forty-first
line. Any TP commands issued immediately thereafter will have no
effect on the current line marker, since the output buffer has been
filled.

TN (Type Next). The TN command acts exactly like a Ta com­
mand in which the value of a is determined by the number of lines
that the output buffer has been set to hold (OPT Pn). The default
value for a is 40 if no Pn is specified in the EDIT command which
started the current session.

TLn (Type with Line numbers). The TL command displays n
lines preceded by their line numbers, beginning with the current
line. Lines that have been inserted or that are created by splitting a
numbered line in two may have no numbers. If a line has no num­
ber, EDIT displays three asterisks (***) in its place. The current line
marker is set to the line following the last one typed by the T com­
mand. If n is not specified, all the lines following the current line
are displayed, and the current line marker is set to the end-of-file
flag.

Inserting New Text
EDIT allows text to be inserted before the current line or any line
that may be referenced by a line number. The text to be inserted
may be typed in via the keyboard or may be read directly from an­
other AmigaDOS file.

The I command, when used in conjunction with a specific or
relative line number, allows text to be inserted in EDIT's output
stream.

• I or I. is used to insert text before the current line.
• 1* inserts text after the last line of text in the From file.
• la, where a is the line number that EDIT associates with a given

line of the file being edited. An Ia command may search back­
ward into EDIT's output buffer or forward, past the current line,

113

EDIT, the Line Editor

in search of the specified line number. Once the line number is
found, the line associated with it is made the current line.

Insert commands all throw EDIT into insert mode. Any text
typed at the keyboard will be inserted before the current line (into
EDIT's output buffer). Insert mode is terminated by typing a line
containing only the letter z (lowercase or uppercase) in the first col­
umn and hitting the RETURN key. The inserted text will have no
line number. Upon exiting insert mode, the current line will be dis­
played-it will be the same line as when the I command was invoked.

Let's try it out.. Insert several lines before the current line:

I
Well this is a silly little example
of how to insert a couple of lines
and then get out of Input's insert mode.
z

Insert several lines before line number 17:

Il7
Had enough folks?
EDIT can be a barrel of laughs.
z

Note: You may change the input mode terminator to any string of
up to 16 characters by using the Z command. For example,
Zjfinj

changes the input mode terminator from z to fin; fin will remain
the input terminator through the end of the current EDIT session or
until another Z command is issued.

• Iffilenamef (Insert before current line from a file)

or

• laffilenamef (Insert before line a from a file)

Insert also lets you specify an AmigaDOS file as the source for
lines to be inserted. Filenames used in conjunction with insert and
replace commands are normally delimited by slashes (/), although
the colon (:), period (.), comma (,) and asterisk (*) may also be
used. Lines inserted from an AmigaDOS file into EDIT will have
no line numbers associated with them. Here are some examples.

Insert the contents of the file my text before the current line:

I jmytextj

Insert the contents of the file Wow jWhat a Party on the external
disk drive before line 66:

166 j"DFl:WowjWhat a Party"j

114

EDIT, the Line Editor

Replacing Lines with Inserted Text
EDIT also allows lines of text to be replaced by inserted text typed
in via the keyboard or read directly from an AmigaDOS file.

The R (Replace) commands' syntax is almost identical to that
of the I (Insert) commands.

• R or R. is used to replace the current line with inserted text.
• R* inserts text after the last line of text in the From file.

Ra b replaces a range of lines with inserted text; a and bare
line numbers which EDIT associates with specific lines of the file
being edited. An Ia b command may search backward for the speci­
fied range of lines into EDIT's output buffer, or forward, past the
current line, in search of the specified line numbers. Once the lines
are found, the line associated with it is made the current line. If b
is omitted, only line a will be replaced by the inserted text.

Replace commands all throw EDIT into insert mode. Any text
typed at the keyboard replaces the line(s) specified. Replace's insert
mode is terminated by typing a line that contains only the letter z
in the first column and hitting the RETURN key. The inserted text
will have no line numbers associated with them. Upon exiting in­
sert mode, the current line will be displayed-it will be the first
line following the last replaced line.

As with the I command, you may also replace text from an
AmigaDOS file.

Replace the current line with the phrase One for the Money:
R
One for the Money
z

Replace line 13 with several lines of text entered from the
keyboard:

R13
I am Gosar, the Gosarian, keymaster
of Zuuul.
And many were those who knew what it
was to roast in the depths of the Slor
that day, I tell you
z

Replace lines 3-67 with the text contained in the AmigaDOS
file morestuff / edit:
R3 67.morestuff/edit.

115

EDIT, the Line Editor

Renumbering Lines
As has been pointed out, EDIT normally assigns line numbers only
when a From file is opened. Inserted text has no automatically asso­
ciated line numbers. The renumber command (=) may be used to
assign a line number to the current line and each line that follows
it when the renumber is issued.

=10

renumbers the current line and all lines following. The current line
is assigned a line number of 10.

If the file being edited contained three lines, numbered 1
through 3, and line 1 was the current line, = 10 would change the
line numbers to 10 through 12. Any line numbers associated with
lines in EDIT's output buffer are lost.

Searching for Text
F /string/ (Find text). The find command searches for a specified
text string beginning with the current line and proceeds forward
through the lines of the From file until the text is found or until the
end of the From file is reached. The search operation stops at the
first occurrence of string, and the current line marker is updated to
make the line containing the found string the current line. If verifi­
cation is on, and the line containing the match is other than the
original current line, the line number and contents of the new cur­
rent line are displayed. If the search string is not found, the mes­
sage Input exhausted displays, and the current line marker is set to
the end-of-file flag.

If no search string is specified in an F command, EDIT at­
tempts to use the search argument of the last find command issued.
If no previous find command has been issued, the error message
Nothing to repeat appears.

String expressions used for search (and replace) operations
within EDIT are normally delimited by slashes U), although the
colon (:), period (.), comma (,) and asterisk (*) may also be used.
EDIT searches are case sensitive. The search string AmigaDOS does
not match the text amigados.

Here's an example-find the string disk. Begin the search with
the current line and move forward through the From file:

F/disk/

BF /string/ (Backward Find text). The BF command searches
for a specified text string beginning with the current line and pro­
ceeds backward through the previous lines contained in EDIT's
output buffer until the text is found or until the front end of the
output buffer is reached with no match. The search operation stops

116

EDIT, the Line Editor

at the first occurrence of string, and the current line marker is up­
dated to make the line containing the found string the current line.
If verification is on, and the line containing the match is other than
the original current line, the line number and contents of the new
current line are displayed. If the search string is not found, the
message No more previous lines appears, and the current line mark­
er is set to the line which was at the head of the output buffer.

If no search string is specified in a BF command, EDIT tries to
use the search argument of the last find command issued. If no
previous find command has been issued, the error message Nothing
to repeat displays.

Let's try one. Find the string disk. Begin the search with the
current line and move backward through the output buffer:

BF/disk/

Find Command Qualifiers
There are five qualifiers, or options, which may be used in conjunc­
tion with the find and backward find commands to further restrict
the conditions that will result in a search match.

The F and BF commands normally don't care where in a line
the search string is found. The Band E qualifiers let you specify
whether the text must begin a line (B) or end a line (E).

The P qualifier allows you to restrict matches to those lines
which consist of nothing but the precise (P) text specified by the
search string.

EDIT's searches normally proceed rightward from the first
character of each line. The L qualifier instructs EDIT to search each
line leftward (L) beginning with the last character of each line.

The B, E, P, and L qualifiers are mutually exclusive. EDIT does
not allow any of these four qualifiers to be specified together in an
For BF command.

The U qualifier may be used by itself or in conjunction with
any of the other four. U renders the search string case insensitive­
it causes EDIT to treat both the search string and searched text as if
everything were in uppercase (U). A few examples follow.

Search forward, beginning with the current line, for the line
which ends with the words Natasha Fatale:

F E/Natasha Fatale/
Search backward, beginning with the current line, for the line

that begins with WayBack

BF B/WayBack/

117

EDIT, the Line Editor

Search forward, beginning with the current line, for the line
that is precisely Into the valley of death, rode the six hundred.
F P/lnto the valley of death, rode the six hundred';

Search backward for the phrase I can play CenterField. Each
line is to be searched leftward, beginning with the last character of
each line. The case of the search text is to be ignored:

BF LU/i can play centerfield/
You can also find an empty line (one containing nothing) by

specifying a null string as a search argument:

F P//
Remember, the current line marker is updated to point at the

line containing a found string.

Replacing Text
One of the reasons you may want to find a specific text string is so
that you can make changes to it. EDIT has three commands which
can be used to replace and/or insert text in the current line.

E/stringl/string2/ (Exchange text). The E command lets you
exchange a string of text contained in the current line with another
string of text. E searches rightward for stringl in the current line,
beginning with the first character of the line. If found, stringl is re­
placed by string2, and the entire modified line is displayed. If
stringl is not found in the current line, the message No match dis­
plays. In either case, the current line marker remains unchanged.

More examples-change the phrase too strange to be believed in
the current line to too strange to have happened:
E/too strange to be believed/too strange to have

happened/

B/stringl/string2/ (insert Before text). The B command in­
serts a string of text before a specified string contained in the cur­
rent line. B searches rightward for stringl in the current line,
beginning with the first character of the line. If found, string2 is in­
serted immediately before stringl, and the entire modified line is
displayed. If stringl is not found in the current line, the message
No match appears. In either case, the current line marker remains
unchanged.

A/stringl/string2/ (insert After text). The A command inserts
a string of text after a specified string contained in the current line.
In all other respects, A functions identically to B.

118

EDIT, the Line Editor

The Current String Alteration Command
The previous A, B, or E command executed is known to EDIT as
the current string alteration command. Typing a single quotation
mark (') repeats the current string alteration command.

Checking on the Last-Used Search Expression
The SHD (SHow Data) command displays EDIT's current saved
information values, including the last search expression.

Pointing Variants of Replace Commands
There's a secondary form of the E, B, and A commands which per­
forms text replacement/insertion, and one additional one. This sec­
ondary form of each command is referred to as the pointing variant
of each, and they are respectively EP, BP, and AP.

If the current line is successfully modified, EDIT's character
pointer is left pointing to the first character in the line which fol­
lows string2 in the case of EP or AP, or in the case of a BP com­
mand, the first character in the line that follows stringl.

Using Qualifiers with Replace Commands
The B, E, P, L, and U qualifiers which may be used in conjunction
with find commands may also be used with the replace commands
and their pointing variants. The effect of using the qualifiers and
rules for their use is the same as described in the section entitled
"Find Command Qualifiers."

Deleting Text
D (Delete line). The D command can be used to delete the current
line, a multiple number of lines (beginning with the current line), a
specific line number, or a range of lines delimited by lines having
line numbers. After the requested deletion has taken place, the cur­
rent line marker is advanced to the line immediately following the
last line deleted by the operation, and the line number and con­
tents of the new current line are displayed. If D does not find a
specified line between the current line and the From file's last line,
the message Input exhausted appears, and the current line marker
moves to the end-of-file flag. The D command does not affect the
contents of EDIT's output buffer. An example or two might help.

Delete only the current line. The current line marker is moved
to the next line in the From file:

D

119

EDIT, the Line Editor

Delete the current line and the next three lines. The current
line marker is moved to the line which was four lines after the
original current line:

4D

Delete line 17. If line 17 is found, the current line marker is
moved to the line which follows it after line 17 is deleted. If a line
numbered 17 is not found, no deletion will take place, and the cur­
rent line marker will be updated to point at the end-of-file flag:

D17
Delete the lines numbered 22, 28, and all lines between them.

If line 28 is found, the current line marker is moved to the line
which follows it after the requested lines are deleted. If line 22 is
found, but a line numbered 28 is not, line 22 and all the lines that
follow are deleted. The current line marker is updated to point at
the end-of-file flag:

D2228

Delete the current line and all the lines that follow. The cur­
rent line marker is updated to point at the end-of-file flag:

D*

Delete Commands That Use Search Expressions
DTBjstringlj (Delete Text Before)

and
DTAjstringlj (Delete Text After)

The DTB and DTA commands let you delete text within the
current line that occurs before or after a search expression you
specify. DTA and DTB operate only upon the current line. After ex­
ecution, the line number and new contents of the current line are
displayed. If the search expression is not found, the message No
match is displayed and the current line remains unchanged.

DF /string/ (Delete lines until Find). The DF command search­
es each line, beginning with the current line, for the specified
search expression. If the line searched does not contain the search
string, it's deleted. The search-and-delete process continues until
the search string is found. The line found to contain the search ex­
pression becomes the new current line. If the search string is not
found, a OF command deletes the current line and all lines that follow
until it reaches the end of the From file.

120

EDIT, the Line Editor

Using Qualifiers with OTB, OTA, and OF
The B, E, P, L, and U qualifiers used in conjunction with find and
replace commands may also be used with the DTB and DTA com­
mands. The effect of using the qualifiers and rules for their use are
the same as those described in the previous section "Find Com­
mand Qualifiers." Here are some examples to help.

Delete all text that precedes the word gremlins in the line There
is no reason to suspect gremlins as the cause:
DTBj gremlinsj

Delete all text to the right of the second occurrence of ragged in
the line Around the ragged socks the ragged rascals ran:
DTA Ljraggedj

Delete all lines encountered, beginning with the current line,
until a line beginning with the phrase enough already! is found. Ig­
nore the case of the search argument:

DF BUjenough already!!

Splitting and Joining Lines
EDIT provides two commands which may be used to split the cur­
rent line into two lines, and a command which combines two lines
into one.

SB/string/ (Split line Before string). The SB command search­
es the current line for the specified text string, and if found, splits
the current line in two. The first of the two lines consists only of
the text in the current line that preceded the found string. The sec­
ond line begins with the found string and includes all text that fol­
lowed it in the current line. After SB has executed, the second of
the two new lines is made the current line.

SA/string/ (Split line After string). The SB command searches
the current line for the specified text string, and if found, splits the
current line in two. The first of the two lines consists of the text in
the current line that preceded the found string and the found string
itself. The second line consists solely of the text that followed the
found string in the current line. After SA has executed, the second
of the two new lines is made the current line.

CL/string/ (Combine Lines and string). The CL command
combines the current line and the line which follows it into a single
line; string is optional, and if specified, inserts the text string in the
middle of the combined line. If the length of the combined line ex­
ceeds the current maximum line width allowed by EDIT, the right-

121

EDIT, the Line Editor

most characters of the line are truncated. Take a look at these
examples.

Consider the line of text I would gladly pay you Tuesday for a
hamburger today.
SEI fori

or

SA/sdaYI
results in the line being split in two:
I would gladly pay you Tuesday

for a hamburger today

If you started with a current line Time for all good men, fol­
lowed by the line to aid their lemon lobby:
eLI and clones I
the result is
Time for all good men and clones to aid their lemon lobby

Note: The SA, SB, and CL commands also accept string qualifi­
ers (B, E, L, P, and U). See the previous section "Find Command
Qualifiers" for further information on their uses.

Global Operations
EDIT's global operation commands let you automatically insert and
replace text in lines which match specified search criteria. Global
commands set up editing "phantoms" that constantly look over
EDIT's shoulder as lines of the From file are processed. Multiple
global commands may be in effect during the course of an EDIT
session. The global commands are

• GA/stringl/string2/ (Global insert string2 After stringl)
• GB/stringl/string2/ (Global insert string2 Before stringl)
• GE/stringl/string2/ (Global Exchange string2 with stringl)

Once a global command is issued, EDIT applies the associated
A, B, or E command to every line as it passes the current line
marker.

Canceling Global Operations
When a global command is issued, EDIT displays an identification
number associated with that particular global phantom.

An individual global phantom may be canceled by issuing the
CG (Cancel Global) command followed by the phantom's 10 num-

122

EDIT, the Line Editor

ber. For instance, to cancel a global command that's been issued
the ID number G4, type

OG4

To stop all current global operations, simply type

OG

If you can't remember what the active global operations are,
the SHG (SHow Globals) command will refresh your memory.

Command Groups
EDIT commands that have been strung together on a single line,
separated by semicolons, may be grouped together by enclosing the
commands in parentheses. The resulting expression is called an
EDIT command group. Command groups are normally used when
you wish to repeat a group of commands several times. One com­
mand group may be nested within another, such as in

2(25(E /red(blue/;N);50N)

This replaces the text red with blue in the current line and all lines
within 24 lines of the current line. The current line marker is then
moved ahead 50 lines. Occurrences of the text red are replaced
with blue in the new current line and in the following 24 lines. Fi­
nally, the current line marker is again moved ahead 50 lines.

If you instruct EDIT to execute a command or command group
zero times, the command continues to execute until the end-of-file
is encountered or until CTRL-C is used to issue a BREAK.

EDIT Command Files
When EDIT is invoked, it accepts commands from the keyboard or
from an AmigaDOS file specified by the WITH keyword in the
DOS command line which started the editing session.

You can also dynamically invoke the execution of EDIT com­
mands stored in AmigaDOS files from within EDIT by using the C
command.

o .:my/stored/commands.

starts execution of the EDIT commands contained in the file my /
stored/commands in the root directory of the current drive. Com­
mand execution continues until a Q (Quit) command is encountered
in the command file or until the command file's end-of-file is
reached. The filename must be enclosed by a valid EDIT delimiter.
(Notice that in the above examples, periods were used to delimit
the filename.) Command files may call other command files.

Suppose you want to set up an AmigaDOS command sequence

123

EDIT, the Line Editor

file that will create a nicely sorted list of the contents of the current
directory. The following command sequence file, when used in con­
junction with a simple EDIT command file, does the trick:

LIST> mylist
EDIT mylist WITH df0:unwanted
SORT mylist TO finlist
TYPE finlist TO prt:

The contents of the filename unwanted are

D
M*
D
W

When the above AmigaDOS command sequence file is execut­
ed, an unsorted list of the contents of the current directory is di­
rected to the file called mylist. EDIT is invoked using the WITH
option to pull in the commands in the file unwanted. These com­
mands remove the first and last lines of the LIST output (since they
contain information about the current directory rather than the file
or directory names in it). The edited file is saved and you're re­
turned to the command sequence file. The edited file is then sorted
and sent to the system's printer.

Merging Selected Parts of Files/Outputting Multiple Files
It's also possible to use EDIT to merge selected parts of different
files together and to create multiple versions of the edited text. This
is accomplished in a somewhat roundabout way, using facilities
within EDIT that allow you to change the current From and To files
on the fly from within EDIT.

FROM/filename/. The lines that follow the current line are re­
placed by the contents of the new From file. The original From file
remains open and the lost lines may be accessed again by issuing a
FROM command with no filename. A file opened by FROM may
be closed by the CF (Close File) command, which has a format of
CF /filenamej.

The following sequence of EDIT commands merges the first 15
lines of three different files into one:

EDIT onefile TO myfile
14N
FROM ,twofile,
15N
FROM ,threefile,
16N

124

EDIT, the Line Editor

D*
OF onefile
OF twofile
W

TO/filename/. The TO command lets you dynamically switch
EDIT's destination, or To, file. TO writes EDIT's existing output
buffer to the To file before the switch is made and then clears the
buffer. TO leaves the previous To file open. Issuing a subsequent
TO command with no filename results in the original To file being
reselected.

The following example outputs lines 1-100 of the file bigfile to
a file called firsthundred, and lines 101-200 of bigfile to a file called
secondhundred.
EDIT bigfile TO firsthundred
100N
TO .secondhundred.
100N
OF
D*
W

The Rewind Command
REWIND scans the remaining lines from the current line forward,
executing any global commands in effect as it proceeds, until it
reaches the last line of the From file. The contents of the output
buffer are written, and the To and From files are closed. The To file
is then reopened as a new From file.

The Halt Command
H (Halt) lets you set a line number as a brick wall which the cur­
rent line marker cannot be moved past.

H134

prevents EDIT from moving past line 134 of the From file. If a com­
mand causes line 134 to be reached, the operation is halted and the
message Ceiling reached displays.

Point Before and After
PB (Point Before) and PA (Point After) move the position opera­
tional window pointer in the current line.

PA/string/ moves the operational window pointer immediate­
ly after string in the current line.

PB/string/ moves the operational window pointer immediate­
ly before string in the current line.

125

EDIT, the Line Editor

EDIT Command Reference
Ending an EDIT Session
STOP Quick bailout; From file remains intact
W Windup; advance to EOF, save, and exit EDIT
Q QUIT; return to previous process

Verification Commands
?

V+/V­
TR+/TR-

Verify current line
Verify current line; display codes of un displayable characters
Turn auto verification on/off
Display/suppress trailing spaces

Operational Window Commands
>
<
PR
$
%

PB/string/
PA/string/

Move operational window pointer right
Move operational window pointer left
Reset operational window pointer
Change character at operational window pointer to lowercase
Change character at operational window pointer to
uppercase
Change character at operational window pointer to a blank
Delete character at operational window pointer
Move operational window pointer before string
Move operational window pointer after string

Moving from One Line to Another
N Next line
P Previous line
Ma Move to line a

Displaying Text
Tn Type n lines
TP Type previous lines
TN Type next lines
TL Type with line numbers

Inserting Text
If I. Insert before current line
1* or R* Insert at end-of-file marker
la Insert before line a
Z/string/ Change input mode terminator
I/filename / Insert file before current line
1* /filename / Insert file at end-of-file marker
la/filename/ Insert file before line a
R/R. Replace current line with inserted text
Ra b Replace lines a through b with inserted text

126

EDIT, the Line Editor

Renumbering Lines
=n Renumber; assign n to current line

Search and Replace Commands
F /string/
BF/string/
E/stringl / string2/
B/stringl/string2/
'f"/ stringl / string2 /

Find string
Backward find string
Exchange string2 with stringl
Insert string2 before stringl
Insert string2 after stringl
Repeat string alteration command

String Qualifiers
B Search string must begin line for match
E Search string must end line for match
P Entire line must match search string
L Search from right to left for string
U Ignore case of search string

Deleting Text
Da b
DTB/string/
DTA/string/
DF/string/

Delete lines a through b
Delete text before string
Delete text after string
Delete lines until string found

Splitting and Joining Lines
SB/string/
SA/string/
CL
CL/string/

Split line before string
Split line after string
Join line
Join lines with string

Global Operations
GA/ stringl / string2/
GB/stringl/string2/
GE/stringl/string2/
CGn
CG
SHG

Global insert string2 after stringl
Global insert string2 before stringl
Global exchange string2 with stringl
Cancel global operation n
Cancel all global operations
Show global info

External File Commands
C/filename/
FROM/filename /
TO/filename/
CF /filename /

Execute EDIT commands in filename
Change current From file
Change current To file
Close current From or To file

127

EDIT, the Line Editor

Miscellaneous
SHD Show data
REWIND Close From and To files; open previous To file as new From file
Hn Halt movement past line n of the From file

,

128

AmigaDOS Command
Reference

The CLI accepts command lines up to 255 characters long. It's pos­
sible, therefore, that a single command line will occupy more than
one line on the screen. When you reach 255 characters, the console
will refuse to accept any keyboard input that would cause the line
to expand to 256 characters.

When using the CLI, you cannot use the cursor keys to move
up or down to another command line that appears on the screen,
edit it, and use the revised line for your command. Each time you
issue a new command, you have to enter the entire command line
from scratch. You cannot use the cursor keys to edit the line you
are on. If you make a mistake at the beginning of a line, you have
to erase the whole line and start over.

The NEWCON handler of Workbench 1.3, discussed in detail
in Chapter 2, adds several convenient editing features to the CLI,
including command history.

CON: Editing Features
Key(s)
BACKSPACE or CTRL-H
CTRL-X
CTRL-L
RETURN or CTRL-M
CTRL-J

CTRL-'\

Function
Erases character to left of cursor
Erases entire current line (cancels line)
Clears the screen (form feed)
Ends the line and executes the command
Moves cursor to next line but doesn't ex­
ecute the command
Marks start of a comment
End-of-file indicator

Though not really an editing character, the semicolon (;) is sig­
nificant to the CLI. The CLI interprets anything in a command line
that follows a semicolon as a comment, ignoring the entire rest of
the line.

131

AmigaDOS Command Reference

Other CON: Features
Key(s) Function
TAB or CTRL-I Moves cursor one space to the right (inserts a tab

CTRL-K
CTRL-O
CTRL-N
ESC-[1m
ESC-[2m
ESC-[3m
ESC-[4m
ESC-[7m
ESC-[8m
ESC-[Om
ESC-C

character)
Moves cursor up one line (vertical tab)
Switches to ALTernate character set (shifts out)
Switches back to normal character set (shifts in)
Switches to bold characters
Switches character color (to black)
Italics on
Underline on
Reverse video on
Switches character color (to blue-invisible)
Switches to normal characters
Clears screen and switches to normal characters

AmigaDOS Filename Conventions

• AmigaDOS filenames may be up to 30 characters long.
• Filenames may not contain a colon (:), slash (j), or nonprinting or

ALTernate characters.
• If a filename is to contain special characters, such as spaces, plus

(+), equals (=), and semicolon (;), that have special significance
to CLI, the entire filename must be enclosed in double quotation
marks (").

• If a filename is to contain double quotation marks (") or an aster­
isk (*), each " and * must be preceded by an asterisk.

• Any combination of uppercase and lowercase can be used in nam­
ing a file. When you LIST the filenames, they'll be printed in the
same combination of uppercase and lowercase used when the file­
name was created. The CLI, however, does not distinguish case.
Since CLI ignores case and you cannot have two files with the
same name in the same directory, two files named Test and TEST
cannot reside in the same directory.

Pattern Matching (Wildcards)
Some AmigaDOS commands allow you to reference one or more
files at a time using a technique called pattern matching. Pattern
matching lets you do things like getting a listing of all files whose
names end with the characters .bas, or deleting every file in a direc­
tory at one time. AmigaDOS pattern matching is similar to the con­
cept of the wildcard characters used in MSjPC-DOS, but there are
important differences.

132

AmigaDOS Command Reference

In PC-DOS, the asterisk character can be used to substitute for
any string of characters in a filename. In AmigaDOS, the asterisk is
used as an escape character that allows for the insertion of quota­
tion marks (and other asterisks) in a filename. AmigaDOS also uses
the asterisk to refer to the console device that's currently active.

PC wildcards can be used with more commands than Amiga­
DOS pattern matching, which is mostly confined to the COPY, DE­
LETE, DIR, and LIST commands. AmigaDOS patterns, however,
are much more flexible. They allow you to match names that start
with the same group of characters, end with the same group of
characters, or have the same characters in the middle (preceded by
any number of characters and followed by any number of
characters).

The most important pattern matching characters are the ques­
tion mark (?) and the pound sign (#). The pound sign followed by
a single character will match any number of repetitions of that
character (including none).

For example, #CLUTTER matches:
CLUTTER
CCCCLUTTER
LUTTER

•

The question mark is used to replace any single character (but
not the null string, or no character). For instance, ?LA?S matches:
GLASS
2LABS

but not
LABS

When these two characters are paired together (#?), it creates a
pattern that matches any number of any characters (or no charac­
ters at all).

For example, you could use GLAD#? if you wanted a pattern
that matched all filenames starting with the letters GLAD. If you
wanted to LIST all of the icon information files (whose names al­
ways end in .info), you could use the pattern #?.lNFO to find them.

In addition to the pound sign and question mark, there are
three other characters that have special meaning when used for
pattern matching. Parentheses () may be used to group a number
of characters together into a single pattern element. If a pound sign
is followed by a group of characters within parentheses, it will
match any number of repetitions of that pattern group (including
none). Thus, #(HO) matches these filenames:
HO
HOHO
HOROHOHO

133

AmigaDOS Command Reference

If you didn't use the parentheses, however, #HO would match:
HO
HHO
HHHHO

The #H can only substitute for repetitions of the letter H.
The vertical line (I) is used when you want either of two pat­

terns to match the characters in the filename. For example, Y I Z
matches:
y
Z

while the pattern WARMICOLD matches:
WARM
COLD

and the pattern MO(BIN)STER matches:
MONSTER
MOBSTER

(Note how the parentheses were used to set off the BIN as a dis­
tinct pattern).

Use of the vertical line is particularly handy when you want to
copy a whole list of files with a single command:
COpy LIST IDIR I COpy IDELETE I COpy RAM:

Under 1.2, some commands did not work properly with pat­
terns that were more than 31 characters in length. This limit is no
longer present, starting with version 1.3

The percentage sign (%) is used to represent the null string (no
character). Remember, a pattern starting with the pound sign will
match any number of repetitions of the following character, includ­
ing none at all.

The pattern Z#AP, then, matches:
ZAP
ZAAAP
ZP

If you want to match only a single appearance of the character
or none at all, you can use the form (A I %), which stands for either
A or the null character (no character at all). Using the same ex­
ample, Z(A I %)P would still match:
ZAP
ZP

but would not match:
ZAAAP

which uses the A more than once.

134

AmigaDOS Command Reference

Combining the percentage sign with the question mark in the
form (? I %) forms an expression that matches any character or no
character at all. The pattern (? I %)A?X matches:
LAPX
APX

but not:
MAPPX

There's one final character that addresses a problem created
when using these special AmigaOOS characters. Since these char­
acters have meaning in the language of pattern matching, it makes
it difficult when you want to match a filename containing one of
those characters. In order to match a filename containing a ques­
tion mark, for example, you must precede the question mark with
an apostrophe (') to let the pattern matching mechanism know that
you want to match an actual question mark, not use the question
mark as a substitute for any other character.

The pattern ?OW? matches filenames like:
HOW?
COW?
WOW?

Since you've used the apostrophe itself as a speCial character,
you need to use two apostrophes to represent an apostrophe that is
part of the filename. You would therefore need a pattern like
?ON"T to match filenames like:
DON'T
WON'T

Finally, if a pattern contains space characters, it must be en­
closed by double quotation marks.

Pattern Matching Summary
#c Matches any number of repetitions of the character c (including

none)
N#O matches N, NO, NOO, and NOOOOOOOOOOO

#(group) Matches any number of repetitions of group (including none)
#(TOM) matches TOM and TOM TOM

? Matches any single character (but not the null character)
K?NG matches KING and KONG (but not KNG)

#? Matches any number of repetitions of any character (including
none)
#?BAS matches any filename ending in .BAS

Pll P2 Matches either pattern Pl or P2
B(A IO)Y matches BAY and BOY

135

AmigaDOS Command Reference

% Matches the null string (no character)
(5 I %)TOP matches STOP or TOP

(? I %) Matches any character or no character
(? I %)WT matches SWT, CWT, and WT

() Used to set off a group of characters as its own distinct pattern
(M I PYA matches MA or PA
M I PA matches M or PA
Used in front of one of the special characters to show that you
want to match it, not invoke its special meaning
?ON"T matches WON'T and DON'T

AmigaDOS Templates
AmigaDOS contains a handy feature that can be used to jog your
memory if you forget the command syntax of any AmigaDOS com­
mand (except the SAY command). By typing the command name
followed by a question mark, the command's template is displayed
onscreen. The template is a shorthand summary of the parameters
and keywords associated with the command.

When a command's template is displayed, AmigaDOS treats
the next line entered from the keyboard as if it were preceded by
the command whose template has been called. Hitting RETURN
without typing anything invokes the waiting command with no
arguments.

Let's take a look at the template for the COpy command.
COPY?

displays on the screen:
FROMI A, TO I A/K,ALL/S,QUIET IS:

AmigaDOS command arguments are separated by commas in
command templates. The first part of each argument is either the
argument name or the keyword associated with the argument.
Keywords are followed by qualifiers U A, IK, and IS), which tell
you more information about the argument. When you invoke an
AmigaDOS command, keywords, if used, must be typed exactly as
presented; often you must type additional information following
the keyword (depending on the command).
I A The argument is required.
IK The argument must contain the keyword.
IS The keyword is optional and, if specified, stands by itself.

A keyword in an argument template may have more than one
qualifier associated with it (such as the TO keyword in the example
above).

136

AmigaDOS Command Reference

Some commands allow you to use different keywords to in­
voke the same option. For example,

DATE?

shows
TIME,DATE, TO = VERjK:

TIME and DATE are the parameter names of the first and sec­
ond arguments of the DATE command. Values for these arguments
are set by the user. The TO and VER keywords may be used inter­
changeably and require additional information to be specified after
them.

If the arguments you use with an AmigaDOS command don't
match the template, the message Bad arguments is displayed.

Redirected Output
The characters < and> may be used to redirect the output and in­
put of AmigaDOS commands. AmigaDOS commands normally ex­
pect input to come from the system's keyboard and send output to
the system's screen. Input and output redirection is temporary, last­
ing only until the invoked command completes. Here are some
examples.

LIST the files and directories in what a/silly/mess directory on
drive df1:. Send the output of the LIST command to the system's
printer:

LIST> PRT: "dfl:what a/silly/mess"

Send the output of the DATE command to a file called
tempdate on the system's RAM disk:

DATE> RAM:tempdate

Use the Amiga's line editor (EDIT). Edit the file called myfile
using the commands stored in the file mycommands. Store the
edited data in newfile:
EDIT < mycommands FROM myfile TO newfile

The Shell program on the 1.3 Workbench disk supports not
only the two existing redirection operators, but a third one as well.
The characters » can be used to append information into an exist­
ing file. For example, if you wanted to add a listing of a directory
called MORESTUFF to an existing file called DIRECTORIES, you
could use the command

DIR > > DIRECTORIES MORESTUFF

Note that if a file called DIRECTORIES does not exist, this
command won't create one.

137

AmigaDOS Command Reference

Format of the AmigaDOS Command Reference
The remainder of this section is a command-by-command listing of
AmigaDOS. For the most part, its format is self-explanatory. How­
ever, under the "Format" heading (perhaps the most important
part of each command's listing), there are several typographical de­
vices used to show you what is required and what is optional.

• Keywords that are required are in uppercase boldface roman type.
ASSIGN and COPY are examples.

• Keywords that are optional are in uppercase boldface italics. LIST
is an example.

• Optional entries are enclosed in brackets-[].
• Parameters are in lowercase italics. These denote where you'll en­

ter something. If required, the parameter is not enclosed in brack­
ets. If optional, it is enclosed in brackets.

Thus,
COPY [FROM fromname] [TO toname] [ALL] [QUIET]

indicates that the keyword COPY is required, that the keywords
FROM, TO, ALL, and QUIET are all optional, and that the two pa­
rameters fromname and toname are also optional.

Of course, complete explanations of each keyword and param­
eter are provided under the "Explanation of Parameters and
Keywords" heading.

138

ADDBUFFERS Command

ADDBUFFERS Command

Purpose

Format

Explanation of
Parameters and
Key Words

Sets aside a portion of the system RAM to be used
exclusively as disk buffer space. This disk buffer
keeps information frequently accessed from the disk
in the computer's memory. Thus, the system accesses
the physical disk less often, significantly speeding up
disk operation. The ADDBUFFERS command allo­
cates buffer space in 512-byte increments. Although
additional buffer space increases disk performance
somewhat, floppy disks reach a point of diminishing
returns at the level of about 30 additional buffers
(15K of buffer space). Hard drives that are formatted
using the Fast File System will always benefit from
the addition of more disk buffers, however.

Additional buffer space means that more of the
information read from disk remains in memory
where it can be accessed more quickly. Therefore,
added disk buffer space only speeds up access to
frequently-used files. It won't speed up operations
like a file copy, where the information to be copied
is only used once.

Keep in mind that any memory you allocate for
buffer space will be subtracted from the free memory
you have to run programs. Some programs that re­
quire the full memory of a 512K Amiga may not op­
erate when a significant amount of memory has been
allocated for disk buffer space.

ADD BUFFERS drive n

drive This is the device name of a physical disk
drive, either a floppy drive (dfO:, df1:, and so on) or
a hard drive (dhO: jhO:, and so on). Note that if you
add buffers for an electronic RAM drive, you may
actually slow down the operation of that drive since
all of its information is already stored in RAM.
n The number of 512-byte buffers to add. Floppy
drive performance peaks first at about 30 buffers
(15K of memory), and again at about 100 buffers
(50K of memory).

139

ADDBUFFERS Command

Examples

140

1. Add 30 disk buffers for use by the internal disk
drive:
ADDBUFFERS dfO: 30

2. Add 100 disk buffers for use by the BridgeBoard
hard drive:
ADDBUFFERSjhO: 100

ASK Command

ASK Command

Purpose

Format

Explanation of
Parameters and
Key Words

Example

ASK allows input from the user to control the ac­
tions taken by an interactive sequence file. It prints a
prompt string and then waits for the user to type the
response Y or YES, N or NO, or RETURN (same as
NO). When the user has responded, the command
exits with a return code of 5 for a YES response, or 0
for a NO response. The IF WARN command can
thus be used to detect the results of this operation
and to direct script execution accordingly.

ASK promptstring

promptstring The prompt message that's written to
the current active output stream (usually requesting
a yes or no answer). If this prompt message contains
spaces, promptstring should be contained within quo­
tation marks.

A command file that requests the user to specify a
yes or no answer, and then prints a text string that
indicates what his choice was:
ASK "What is your choice? (yesjNo)"
IF WARN

Echo "Your choice was YES"
ELSE

Echo "Your choice was NO"
ENDIF

141

ASSIGN Command

ASSIGN Command

Purpose

Format

Explanation of
Parameters and
Keywords

142

Builds, removes, and lists associations between logi­
cal device names and filing system directories, physi­
cal devices (DFl:, PRT:, and so on), and disk volume
names.

ASSIGN devname dirname
[LIST][EXISTS][REMOVE]

devname The logical device name that you wish to
assign to a directory, physical device, or disk vol­
ume. After making the assignment, you can use this
device name in place of specifying the entire direc­
tory, device, or volume until you change the assign­
ments or reboot the computer.

Certain assignments are automatically made by
the operating system when DOS is initialized. These
are the logical devices S:, L:, C:, FONTS:, DEVS:,
LlBS:, and SYS:. These correspond to the directories
of the same names, which have special significance
to AmigaDOS (see Chapter 4 for more information
on logical devices). If corresponding directories don't
exist on the boot disk, the assignment is made to the
root directory of the disk. If a specified logical device
name already has a directory, physical device, or vol­
ume name associated with it, the new ASSIGNment
replaces the old. If you try to assign a the same logi­
cal device names as an existing volume, however,
the assignment will fail (for example, you can't as­
sign the logical device MyDisk: when a disk whose
volume name is My Disk is already mounted). Any
associations built by ASSIGN apply to all CLls, and
all are lost when the system is shut off or rebooted.

If you want to remove an assignment without
replacing it, use the command form ASSIGN
devname.

dirname The directory path, physical device, or
disk volume name that will be represented by refer­
ences to the specified devname. For example, if you
used the directory dfO:DavesjWordprocessingj
Documents a lot, you might find it more convenient
to be able to type Docs: instead of the entire phrase

Examples

ASSIGN Command

dfO:Daves/Wordprocessing/ Documents. To make the
assignment, type
ASSIGN docs: df0:DavesjWordprocessingj

Documents

Notice that the full pathname of the directory to
be assigned was specified. ASSIGN searches the di­
rectory path starting with the current directory, so
the path should be fully spelled out if the target di­
rectory is located anywhere but in the current
directory.

If you just want to remove an assignment with­
out replacing it, use the command form ASSIGN
devname with no dirname specified.

[LIST] If you type ASSIGN without specifying a
logical device name, it displays the list of current as­
signments. If you wish to both make or remove as­
signments and show the new assignment list, use the
optional LIST keyword at the end of the command
line.

[EXISTS] If you add the EXISTS keyword after the
name of the logical device, the ASSIGN command
will display assigment information for that device
name only. If the device is not found, the command
exits with a return code of 5 (WARN). This feature
can be used in sequence files that take one action if
the device name is found, and another if it is not
found.

[REMOVE] This optional keyword may be used to
remove a physical device (such as dIO: or prt:) from
the list of mounted devices. It does not free up re­
sources (such as disk buffers) used by that device, so
it cannot be used to release memory, for example,
that could normally be reclaimed by physically dis­
connecting a second disk drive. It is useful mostly
for experimental purposes, like disconnecting the in­
ternal disk drive (dIO:) and MOUNTing it with a dif­
ferent disk format (such as the Fast File System).

1. List the current logical device name/file directory
associations:

ASSIGN or ASSIGN LIST

143

ASSIGN Command

Sample Display:

Volumes: RAM DISK [Mounted]
CLI WorkDisk [Mounted]

Directories:
S CLI WorkDisk:s
L CLI WorkDisk:l
C CLI WorkDisk:c
FONTS CLI WorkDisk:fonts
DEVS CLI WorkDisk:devs
LIBS CLI WorkDisk:libs
SYS CLI WorkDisk:

Devices:
DF1 DFO PRT PAR SER
RAW CON RAM

144

2. Associate the logical device name Rick: with the
directory :AmigaWord / Proposals / RickWork
ASSIGN Rick: :AmigaWord/proposals/RickWork

After executing this ASSIGN statement, a file
called ACME in the AmigaWord/Proposals/RickWork
directory may be referenced by referring to the logi­
cal device name or the full directory specification for
the file.
TYPE Rick:ACME

yields the same result as
TYPE :Amiga Word/proposalsjRickWork/ ACME

If an ASSIGN or ASSIGN LIST was now execut­
ed, the directory association
RICK Volume: CLI WorkDisk Dir: RickWork

would be present in the Directories section of the
table.
3. Remove a logical device/directory assignment.
ASSIGN Rick:

removes the association built by the ASSIGN state­
ment in the second example.
ASSIGN Rick: LIST

removes the association built by the ASSIGN state­
ment in example 2 and lists the remaining logical de­
vice associations still in effect.

ASSIGN Command

4. Check for the existance of a logical device name or
disk volume name in a sequence file.
ASSIGN >nil: empty:EXISTS
IF WARN

ECHO "The directory name doesn't exist"
ELSE

ECHO "The directory name exists"
ENDIF

This script file, when executed, prints a message
telling whether or not a volume named EMPTY: ex­
ists. In your own script, you might take a specified
action at the points where the ECHO command
appears.

145

AVA I L Command

AVAIL Command

Purpose

Format

Explanation of
Parameters and
Keywords

Examples

146

Prints a report of system memory resources, broken
down by memory type. For each type (CHIP, FAST,
and TOTAL), AVAIL reports the amount of available
(free) RAM, the amount in use, the maximum (total)
amount, and the largest contiguous block that is
available for allocation.

AVAIL [FAST or CHIP or TOTAL]

[FAST or CHIP or TOTAL] When one of these
keywords is used with the AVAIL command, the
command returns a single number that indicates the
total number of available bytes of that type of mem­
ory. This value can be used by script files for com­
parisons, using either the EVAL or IF GT commands.

If the AVAIL command is given without any of
the optional keywords, a more complete summary of
available system RAM is printed. This summary in­
cludes a breakdown by RAM type and lists the total
amount, amount used, amount free, and largest con­
tiguous free block.

1. Print a complete summary of system RAM:
AVAIL

The summary is printed in the following format:
Type Available In-Use Maximum Largest
chip 909984 130168 1040152 909952
fast 3442976 751264 4194240 2097120
total 4352960 881432 5234392 2097120

In this summary, the first column shows free
(available memory), the second column shows the
memory in use, and the third shows the total (maxi­
mum) memory, so that the sum of the first two col­
umns should equal the value in the third. The final
column shows the largest contiguous available block
of memory and is a subset of the first column, avail­
able memory.

Contiguous memory is important because if free
memory is highly fragmented (broken up into small
pieces scattered here and there in the memory map),

AVAIL Command

it may not be possible to load and run additional
programs, even if the total amount of free memory
might indicate that it is possible.
2. Show only the total available chip memory:
AVAIL chip

In the example above, the number returned
would be 909984.

147

BINDDRIVERS Command

BINDDRIVERS Command

Purpose Looks for device drivers (software instructions on
how to interact with external hardware devices con­
nected to the Amiga's expansion port) in the Expan­
sion subdirectory of the startup disk (the disk to
which the logical device name SYS: is assigned) and
then integrates these drivers into the operating sys­
tem so that it knows how to control the devices. As
of this writing, devices that are added to the system
in this way include the IBM-compatible Bridgeboard,
and nonautoboot hard drives.

The BINDDRIVERS command is usually issued
in the startup-sequence script file in the s directory, so
that external devices are added as part of the startup
process. If there are no device drivers in the Expan­
sion directory, however, the BINDDRIVERS com­
mand can be omitted from the startup-sequence file.

Format BINDDRIVERS

Explanation of None
Parameters and
Key Words

Example Load device drivers in the Expansion directory of
SYS:
BINDDRIVERS

148

BREAK Command

BREAK Command

Purpose

Format

Explanation of
Parameters and
Keywords

Examples

Sets attention flags, which interrupt a process as if
the user had pressed specified CTRL-key combina­
tions in an active window.

BREAK tasknum [C] [D] [E] [F] [ALL]

tasknum The number assigned by the system to
the CLI process that you wish to interrupt (for more
information, see the STATUS command).

[C] [D] [E] [F] [ALL] The attention flag(s} associ-
ated with the interrupt type that you wish to issue.
You may trigger up to four CTRL-key attention flags.
If the BREAK command is issued with no flag keys
specified, only the CTRL-C flag is enabled. Issuing
the BREAK command simulates selecting a CLI pro­
cess with the mouse and pressing the specified
CTRL-key keystrokes. BREAK may be used to inter­
rupt a background CLI task initiated by the RUN
command.

1. Trigger all valid attention flags (CTRL-C, CTRL-D,
CTRL-E, CTRL-F) for process number 4:
BREAK 4 ALL

2. Trigger the CTRL-C and CTRL-E attention flags
for process number 1:
BREAK 1 C E

3. Trigger the CTRL-C attention flag for process
number 5:
BREAK 5

149

CD Command

CD Command

Purpose

Format

Explanation of
Parameters and
Keywords

Examples

150

Sets or changes the current directory or drive. Also
used to display the current drive and directory.

CD [name]

[name] The name of the directory path or logical
device name that you wish to make the current di­
rectory. A pathname may be fully specified or rela­
tive to the current default directory. Specifying a full
pathname such as :major Iminor Itiny does not make
any assumptions about what the current directory is.
If the current directory was set to major Iminor, the
former pathname could be switched to by a relative
reference, namely CD tiny.

You can also move the current directory back
(up) one level by typing CD followed by single or
multiple slashes U). For instance, if the current di­
rectory is major Iminor Itiny, typing CD II changes the
current directory to major.

You can specify a logical device name in lieu of
a pathname. This lets you change the default disk or
change directories to a directory path associated to a
logical device name (see the ASSIGN command for
more information).

CD specified by itself with no path or device
name lists the current directory setting. The complete
path is specified, starting with the volume name.

1. Change the current directory to the root directory
of the volume mounted in df1:
CD dfl:

Note: AmigaDOS is somewhat different from the
DOS of many other microcomputers in that the way
it treats a default drive is volume- rather than de­
vice-oriented. For instance, assume you had a disk
volume called Hi There in an external Amiga drive,
and you changed the default drive to df1: by typing
CD DFl:. After changing the default drive, typing
DIR would give you a directory listing for Hi There.
If Hi There is ejected from the drive and another vol­
ume called Salutations is inserted and you type DIR

CD Command

again, the system will ask for the Hi There volume to
be reinserted in the drive.

How can you avoid this? Entering another CD
DFl: causes AmigaDOS to read the volume label of
the disk in the external drive again and forget any
volumes it previously defaulted to.
2. Change the current directory to dfO:particle /
quark/charm, and then back to dfO:particle:
CD particle/quark/charm
CD //

3. List the current directory setting:
CD

4. Change the current directory to the the path asso­
ciated with the logical device name Rick:
CD Rick:

5. Change directories to the root directory of the cur­
rent drive:
CD:

151

CHANGETASKPRI Command

CHANGETASKPRI Command

Purpose

Format

Explanation of
Parameters and
Key Words

Examples

152

Changes the multitasking priority of a CLI task and
of subsequent tasks started from that CLI. The
Amiga multitasking operating system is set up so
that each task is assigned a priority number from
-128 to 127. Processor time is divided among the
tasks, with each task executing in turn for a few frac­
tions of a second. Tasks with the same priority num­
ber get an equal "time-slice," but tasks with higher
priority execute more often and end up getting more
of the processor's time. Normally, a CLI has a priori­
ty of zero. Raising its priority makes it (and the pro­
grams that run from it) run at a higher priority than
other CLI tasks, while lowering makes it run at a
lower priority and get less processor time. Under
most circumstances, you shouldn't raise a task's pri­
ority higher than 5, nor lower it to less than -5.
This will ensure that it doesn't preempt important
system tasks like the input handler (which checks
the keyboard and the mouse), nor will it have so low
a priority as to get completely shut out.

CHANGETASKPRI priority [tasknum]

priority The priority number for the task. This
number may range from -128 to 127, but generally
should be kept within the range of - 5 to 5. N ormal­
ly, CLI tasks run at a priority of O.

[tasknum] The task number whose priority is to
be changed. Normally, the CLI prompt of an interac­
tive CLI process shows its task number. You may
also check the task number of a process with the
STATUS command. If no task number is used, the
priority of the current CLI is changed by this
command.

1. Increase the priority of the current CLI task to 5:
CHANGETASKPRI 5

2. Decrease the priority of CLI task number 5 to -1:
CHANGETASKPRI -1 5

COpy Command

COPY Command

Purpose

Format

Explanation of
Parameters and
Keywords

Copies one or more files or directories to a device,
and as an option, lets you give the copy a name dif­
ferent from the orginal. If the destination device al­
ready contains a file of the same name, the new
copy replaces that file. COpy can create duplicate
copies of a file on the same disk as the original if
different names are used for copies in the same di­
rectory, or if the files are copied to different
directories.

COpy [FROM fromname] [TO toname] [ALL]
[QUIET] [BUF or BUFFER =num] [DATE]
[COM] [NOPRO] [CWNE]

[FROM fromname] Specifies the directory or file(s)
you want copied. The keyword FROM is not needed
as long as the source and target files are named in
the correct order (fromfile, then tofile). If you change
the order (COpy TO tofile FROM fromfile), the key­
word FROM is required.

When a directory is specified as the FROM
source, all files within the directory are copied. If no
directory is specified but the TO keyword is used
(for instance COpy TO RAM:), the current directory
is assumed to be the source and all files are copied.
As of version 1.3, a pair of double quotation marks
(" ") can also be used to refer to the current
directory.

When you're copying individual files, and not
an entire directory, you may use pattern matching to
copy every file in the directory that matches the pat­
tern. However, you cannot use pattern matching
with directory names. If you attempt to copy directo­
ries with patterns, nothing actually is done.

If a physical disk drive is specified, the root di­
rectory of the drive is used as the FROM source. If a
logical device name is specified, the directory path
associated with it is used as the FROM source (see
the ASSIGN command for more details).

[TO toname] Secifies the TO target (where you want
to put the FROM files you are copying). The key-

153

COpy Command

154

word TO is necessary only if the TO destination is
listed before the FROM source.

When copying a single file, a device name or di­
rectory or filename can be used as the destination. A
pair of double quotation marks ("") can be used to
specify the current directory as the destination.
When toname is a directory or device name, the
name of the new file will be the same as the old
name. If the target file is in the same directory as
fromname, you must specify a toname that's different
from the original (since you can't copy a file to itself
or have two files of the same name in the same di­
rectory). If the file is to be copied to a directory or a
disk drive different from the one on which fromname
resides, toname may be the same as or different from
the original filename. If a file of the same name al­
ready exists in the target area, the existing file will
actually be deleted· and a new file with the same
name is created and copied to. For this reason, a file
that has been protected from deletion with the PRO­
TECT command cannot be copied to.

If a directory is being copied to the same disk, a
different directory path must be used for toname. In
versions prior to 1.3, AmigaDOS assumes that the
TO directory already exists, and the COpy will fail if
it does not. Version 1.3 creates the new directory if it
doesn't already exist and then copies the file or files.

If a logical device name is specified, the direc­
tory path associated with it is used as toname (see
the ASSIGN command for more details).

If toname is a physical disk drive, the root alrec­
tory of the disk in that drive is assumed to be the
target directory.

toname may be other physical devices known to
the system. For instance, copying files to RAM:
places a copy of the files on a RAM disk (see Chap­
ter 4 for more details on RAM:). The contents of a
file may also be copied to an attached printer by
specifying PRT: as the target.

[ALL] If you use this keyword, any files, subdirec­
tories, and the files in the subdirectories located in
fromname's directory will be copied to the toname di­
rectory. Subdirectory entries corresponding to those
found in the FROM directory will automatically be

Examples

COPY Command

created in the TO directory (you might say that this
command does the MAKEDIRty work for you).

[QUIET] When copying multiple files (due to the
use of pattern matching or the ALL keyword), the
name of t~e files being copied and directories creat­
ed are displayed unless this keyword is specified.

[BUF or BUFFER = num] The BUFFERS option
can be used to set the number of 5l2-byte buffers
that are used during the copy. The default is 200
buffers or lOOK bytes. You may want to use fewer
buffers when copying a large file to the RAM in or­
der to avoid running out of memory. Similarly, you
may want to increase the number of buffers when
copying a large file from one disk to another on a
single-drive system with a lot of RAM, to reduce the
number of disk swaps during the copy.

[[DATE] If the optional DATE keyword is used,
the creation date of the original file is copied to the
new file. By default, a new creation date is set when
a file is copied.

[COM] If the optional COM keyword is used, the
FILENOTE comments from the original file are cop­
ied to the new file. Normally, the new file is created
without comments.

[NOPRO] By default, a copy of a file retains the
same protection bits of the original. The NOPRO
keyword can be used to create a copy that has only
the default protection bits (read, write, execute, and
delete) set.
[CWNE] The ClDNE keyword can be used to
make the file copy an exact duplicate of the original,
with the same creation date, comments, and protec­
tion bits set. Its the same using both DATE and
COM keywords.

1. Copy a file called myfilel to myfile2 in the same
directory:
COPY FROM myfilel TO myfile2

or
COPY TO myfile2 FROM myfile 1

or
COPY myfilel myfile2

155

COpy Command

156

Note that the FROM and TO keywords are op­
tional, unless you reverse the order of the filenames
(by putting the name of the destination file before
that of the source).

2. Copy all files in the root directory of floppy disk 0
(dfO:) to disk drive 1 (dfl:):
COpy df0: dfl:

3. Copy all files on disk drive 1 to disk drive 2, in­
cluding subdirectories. Don't display the status of
each copy operation:
COPY dfl: df0: ALL QUIET

4. Copy a file called burgers in the current directory
to a file of the same name in a different directory
called fast ffood, which is on the same disk:
COpy burgers fast/food

5. Copy all files in the current directory to a RAM
disk, retaining the original creation date of each file:
COpy TO RAM: DATE

or
COPY" " RAM: DATE

6. Copy all files ending in .bas from the current di­
rectory to the directory Basicfiles on dfl:.
COPY #?bas TO dfl:Basicfiles

Note that if the root directory of the volume in
dfl: does not already contain the directory Basicfiles,
the copy will fail. If it isn't present, you must use
MAKEDIR first to create the directory.

7. Copy selected files from the C: directory to the
current directory.
COpy C:DIRIDELETEICOPYILISTIRUN "n

DATE Command

DATE Command

Purpose

Format

Explanation of
Parameters and
Keywords

Used to display, change, or store the current setting
of the system date and time. If you haven't bought
and connected a separate clock/calendar accessory,
AmigaDOS checks the boot-up disk for the date of
the most recently modified or created file and sets
the system date a bit in advance of that.

DATE [date] [time] [TO or VER name]

[date] The day of the month, the month, and the
year to which the system date will be set. A specific
desired date is typed in as DD-MMM-YY. DD is a
two-digit number, with a leading zero if necessary,
representing the day of the month to be set. MMM is
the first three letters of the desired month, and YY is
the last two digits of the year.

AmigaDOS also allows indirect references for
setting the date. YESTERDAY, TODAY, and TO­
MORROW are valid values for date. YESTERDAY
moves the present system date back by one day, TO­
MORROW moves the present value of the system
date forward one day, and TODAY leaves the date
unchanged.

The days of the week, SUNDAY through SAT­
URDAY, can also be used as values for date. If the
day specified is different from the current day of the
week setting, the system date is advanced to match
the specified day of the week. For instance, specify­
ing WEDNESDAY when the current system day of
the week is SUNDAY advances the system date by
three days.

Specifying date does not alter the current system
time.

[time] The time of day to which the system clock
is to be set. The time should be entered in the form
HH:MM:SS, representing hours, minutes, and sec­
onds of the desired clock setting. All three are typed
as two-digit numbers, with leading zeros if necessary
(as of version 1.3, the leading zero became optional,
but it is still required with all earlier versions). If sec­
onds, or minutes and seconds are omitted, they are
set to zero. System time is kept in 24-hour format,

157

DATE Command

Examples

158

also referred to as military time. Thus, 1 :00 p.m. is
expressed as 13:00, and midnight as 00:00. Specify­
ing time does not alter the current system date.

[TO or VER name] The TO and VER options
allow you to store the present system date and time
to name, which may be a disk file or a physical de­
vice such as a printer. TO and VER are equivalent
keywords and may be used interchangeably. If TO
or VER is used when setting the time and/or date
rather than just reading its current status, a blank file
overwrites the specified file since the DATE com­
mand sends no output when used to change a set­
ting. AmigaDOS does remember the date and time
the blank file was written, however.

1. Display the current system date and time:
DATE

2. Set the system date and time to September 8,
1987, 10:05 a.m.:
DATE 08-Sep-87 10:05:00

3. Change the current system date to the next day,
and change the current system time to 4:00 p.m.:
DATE TOMORROW 16:00

4. If the current system day of the week is not
Wednesday, change the system date to that of the
next Wednesday. Leave the time alone:
DATE WEDNESDAY

Note: If the current system day of the week is
Wednesday, the date remains unchanged.

5. Copy the current system date and time to a file
named Timestamp:
DATE TO Timestamp

6. Change the system date and time to August 19,
2001, 2:00 a.m.:
DATE 2: 19-Aug-01

Note: Since date and time have different for­
mats, the order in which they are specified may be
reversed. Also, AmigaDOS treats year references
from 78 to 99 as 1978 to 1999, and from 00 to 77 as
2000 to 2077.

DATE Command

If you accidentally set the year to a number
from 0 to 77, all files you subsequently create in that
session will have a date stamp from the twenty-first
century. The next time you set the clock to the cor­
rect date-say, 14-JUN-89-all files stamped 2077
will appear on the directory with the date-stamp Fu­
ture since 2077 is in the future from the point of
view of 1989. This renders the date-stamp useless
since you won't even be able to tell the order in
which the files were created. Version 1.3 of the
Workbench introduced the SETDATE command in
order to help you get rid of bogus date stamps.

159

DELETE Command

DELETE Command

Purpose

Format

Explanation of
Parameters and
Keywords

Examples

160

Removes files and directories from the designated
drive. If no drive is designated, the current default
drive is assumed. If no directory path is specified,
the files and/or directories are deleted from the cur­
rent directory. DELETE accepts patterns as well as
specific filenames, and as of version 1.3, the 31-
character limit for wildcards has been removed. See
"Pattern Matching (Wildcards)" in Chapter 3 for
more information.

DELETE name"""",[ALL] [Q or QUIET]

name The name of the file(s) or directory entry(s)
to be removed. Up to ten file or directory names
may be entered within a single DELETE command.
A pattern may be used in lieu of specific file or di­
rectory names. When an attempt to delete an item is
unsuccessful, DELETE continues until it has attempt­
ed to process all specified items.

[ALL] When this keyword is used, DELETE erases
all files and subdirectories contained within the di­
rectory as well as the directory itself. Attempts to
DELETE directories that contain any files or sub­
directories will fail unless those files and subdirec­
tories are deleted first or the ALL keyword is used.

[Q or QUIET] Suppresses the status reports that
are issued as each file's deletion is attempted during
a DELETE that erases more than one file.

1. Erase the file unwanted:
DELETE unwanted

2. Erase the files oranges, kiwi, peaches, and herbs:
DELETE oranges kiwi peaches herbs

3. Erase the directory phone book and all files and
subdirectories within it. Don't report on the status of
each deletion attempt:
DELETE phonebook ALL QUIET

DELETE Command

4. Erase the current directory and all the files and
subdirectories within it:
DELETE #? ALL

5. Delete all files in the current directory that start
with the letter a, b, or c:

DELETE Calblc)#?

161

DIR Command

DIR Command

Purpose

Format

Explanation of
Parameters and
Keywords

162

Lists the file and subdirectories with the present di­
rectory or another specified directory. The list is nor­
mally grouped into a list of subdirectories, followed
by a sorted list of files. Options available for use
with this command allow you to use a special inter­
active mode and/or ask for an extended listing that
lists the contents of subdirectories as well. The direc­
tory listing may be aborted at any time by the
CTRL-C key combination (hold down CTRL and
press C).

DIR dirname [OPT A or OPT D or OPT I or OPT
AI] [ALL] [DIRS] [FILES] [INTER]

dirname The name of the directory or logical de-
vice whose contents you want displayed. An Amiga­
DOS pattern may also be used to display multiple
directories. If no directory or AmigaDOS pattern is
specified, the current directory is displayed.

[OPT A or OPT D or OPT I or OPT AI] When
the OPT A keyword is used, the display includes the
contents of any subdirectories residing in the directo­
ry being listed. This lets you see everything in a di­
rectory with a single command. OPT D displays only
the names of subdirectories within the specified di­
rectory, and not those of the files.

OPT I invokes the special interactive mode of
DIR. In interactive mode, your system pauses as
each subdirectory entry or file is listed, displaying a
question mark to the right of the entry. When in in­
teractive mode, you may use any of the following
subcommands:
Key(s)

<RETURN>

T <RETURN>

Function
Doesn't do anything with the current
item. Goes on to the next item in the
DIR listing.
Types (lists) the file. To pause the dis­
play while listing, hit the space bar or
any key. To resume after pausing, press
the BACKSPACE key or CTRL-X.
When you want to abandon the listing

Examples

DIR Command

of the file contents before the complete
file has been listed, type CTRL-C.
You'll be returned to the interactive
mode. T is an invalid option for
subdirectories.

DEL <RETURN> Erases the file. Subdirectories may be
erased only if they're empty.

E <RETURN> Enters a subdirectory. Displays the files
and subdirectories within a subdirec­
tory. The listing remains in interactive
mode. Not a vaild option for a file.

B<ENTER> Moves back to the previous directory
after you have descended into a new
directory with the E command.

Q<ENTER> Quit. Abandons the DIR listing and
goes back to the CLI prompt.

As of Workbench 1.3, a new "COMMAND ="
option was added to interactive mode, which allows
almost any AmigaDOS command to be executed
from interactive directory mode.

OPT AI combines both the A and I options, re­
sulting in an interactive listing of all files and direc­
tories within the specified directory.

[ALL] As of Workbench 1.3, this is an acceptable
synonym for OPT A.

[DIRS] Starting with version 1.3, this may be used
instead of OPT D.

[FILES] This is a new option that was added with
Workbench 1.3. It allows you to display only the
files within a directory and not the subdirectories.

[INTER] As of Workbench 1.3, this is an accept-
able synonym for OPT I.

1. List the current directory:
DIH

2. List all files and directories on disk drive df1: in
interactive mode:
DIH dfl: OPT AI

3. List all files and directories in directories begin­
ning with the letter Z:
DIH Z#? OPT A

163

DIR Command

164

4. Display all directories and subdirectories that are
contained within the root directory of the current
disk:
DIR : ALL DIRS

DISKCHANGE Command

DISKCHANGE Command

Purpose

Format

Explanation of
Parameters and
Key Words

Example

Lets AmigaDOS know when you've changed the
disk in a S%-inch disk drive. With version 1.2,
AmigaDOS added support for S %-inch drives as
DOS devices, using the MOUNT command. Unlike
the normal 31f2-inch drives, however, these disk
drives don't have a sensing mechanism that can tell
the Amiga when a disk has been removed or insert­
ed. Therefore, when the system issues a prompt like
Please insert volume Programs in drive 1, it has no
way of telling if you've complied. You must enter
the DISK CHANGE command to let AmigaDOS
know you've changed the disk so that, in turn, it can
check to make sure you've compiled, and then
continue.

See the MOUNT command for more infor­
mation about mounting S1f4-inch drives as DOS
devices.

DISKCHANGE can also be used for
removeable-media drives that are not yet supported
by AmigaDOS, such as high-density floppies,
removeable hard drives, and floppies that use the
Fast File System. This is only a temporary measure,
however-hopefully there will be better support for
such devices in version 1.4. Another use of
DISKCHANGE is to notify Workbench of a change
in the volume name of a disk that was made using
the CLI RELABEL command.

DISK CHANGE drive

drive The device name of the 5 %-inch disk drive.
Since the internal drive is always dfO:, the 5 %-inch
drive will usually be df1: (if there's no external 31/2-
inch drive), or df2: (if there is an external 31h-inch
drive).

Inform DOS that you've changed the disk in the sole
external disk drive, which happens to be a 5 %-inch
drive:
DISKCHANGE dfl:

165

DISK COPY Command

DISKCOPY Command
(moved to SYSTEM drawer in Workbench 1.2)

Purpose

Format

Explanation of
Parameters and
Keywords

166

Makes duplicates of the entire contents of 31f2-inch
floppy disks. DISKCOPY can be used to make copies
of your work to new disks or to used disks contain­
ing files that are no longer needed. When you use
DISKCOPY, any information previously stored on
the destination disk is erased. While many other
computer systems require that new disks be specially
prepared before use, AmigaDOS DISKCOPY auto­
matically prepares, or formats, disks as the infor­
mation from the original disk is copied. In fact,
copying an existing disk takes about the same
amount of time as formatting a new one. Use
DISK COpy regularly to make backup copies of your
work and non-copy-protected program disks.

Though DISKCOPY copies entire disks, it takes
about the same amount of time to copy a disk full of
data as to copy one which has only a few short files
on it. If the amount of data you want to copy is rela­
tively small, using the COpy command may be fast­
er than DISK COPY.

While DISKCOPY is usually used to copy the
contents of one floppy disk to another, it can be
used with other devices, as long as the source and
the destination disks are of identical format and stor­
age capacity. Thus, it's possible to use DISKCOPY to
copy the contents of the RAD: RAM disk to or from
a floppy, if that disk has been set to 80 tracks, 11
blocks per track (the same as a floppy).

DISK COPY [FROM] source drive TO destination
drive [NAME volname] [NOVERIFY] [MULTI]

[FROM] source drive The name of the drive in
which the disk you wish to copy will be mounted. If
your system has only one drive, this will be dfO:. If
you have two drives, you may use dfO: or dfl:.
(Technically AmigaDOS supports up to four drives­
dfO:, dfl:, df2:, and df3:. The production version of
the Amiga 500, introduced in 1987, supplies only the
power required by a total of two drives. While heavi-

DISKCOPY Command

er-duty external power supplies are available for the
500 as well as drives requiring less power, most
users will find two 31f2-inch disk drives to be fully
adequate. If source drive is the first argument of the
DISKCOPY command, the FROM keyword is optional.

TO destination drive The TO keyword must be
used with the DISKCOPY command. This is the
name of the drive in which the disk to be copied to
will be mounted. If your system has only one drive,
this will be dfO: (the same as your FROM device).
Single-drive DISKCOPY operations require that both
the source and destination disks be removed and re­
inserted multiple times. If you have 5I2K, each disk
must be inserted three times. On an old 256K Amiga
1000 system, DISKCOPY requires eight insertions of
each disk-lOOO owners are strongly advised to up­
grade memory, and/or get a second disk drive. If
your system has two drives, no disk swapping dur­
ing the copy process is required as long as you speci­
fy different drives for the FROM and TO devices.

[NAME volname] The volume name that will be
given to the copy of the original disk. If the volume
name contains spaces, it must be enclosed by quota­
tion marks. If volname is not specified, the copy will
have the same name as the original. AmigaDOS can
still distinguish between volumes with the same
name based upon information stored on the dupli­
cate disk. The NAME keyword is required if a vol­
ume name is specified.

When DISK COPY is invoked, you'll be prompt­
ed to insert the disks required to complete the copy
operation. Status messages keep you advised as each
track is copied. A standard AmigaDOS formatted
31f2-inch disk requires 80 tracks of information to be
read and written.

You can stop the copy process after issuing the
command-when the system is waiting for the
disk(s) to be inserted-by pressing CTRL-C followed
by the RETURN key. You'll then be returned to the
CLI prompt. If you press CTRL-C after the copy pro­
cess has started, the copy is abandoned, and all
information already on the destination disk is lost.

167

DISK COpy Command

Examples

168

[NOVERIFY] The NOVERIFY option, added in
Workbench 1.3.1, allows you to copy the disk with­
out verifying writes. The default condition is that
each track is verified as it is written.

[MULTI] The MULTI keyword, added in Work-
bench 1.3.1, allows you to make multiple copies of
the disk.

1. Make a copy of a disk with a single-drive system.
The copy is to have the same volume name as the
original:
DISKCOPY FROM dfel: TO df0:

2. Make a copy of a disk on a dual-drive system,
copying the original from the external drive to the
Amiga's internal drive. The copy is to have the same
volume name as the original:
DISKCOPY FROM dfl: TO df0:

3. Make a copy of a disk with a dual-drive system,
copying the original from the internal drive to the
external drive. The copy is to be named King Keizers
Lament:
DISKCOPY df0: TO dfl : NAME "King Keizers

Lament"

Note: In this example the optional FROM key­
word has been omitted. Quotation marks enclose the
copy's volume name since it includes spaces.

DISKDOCTOR Command

DISKDOCTOR Command

Purpose

Format

Explanation of
Parameters and
Key Words

Example

Reconstructs the directory and file structure of cor­
rupted disks. A disk can become corrupted because
of a defect in the media, exposure to magnetic fields,
or operator error (such as removing the disk while
the red drive light is still on). When this happens,
AmigaDOS is unable to read the disk correctly and it
displays a system message, such as Volume Programs
has a Read/Write error, Volume Programs is not vali­
dated, Disk is unreadable, Checksum error, or even Not
a DOS Disk.

Since each directory item contains duplicate
information about the preceding and following en­
tries, it's sometimes possible to reconstruct the cor­
rupted disk information. DISKDOCTOR restores as
much information as can be salvaged. Since it cannot
correct media defects or magnetic damage, however,
you should always use the COPY command to copy
all of the files onto another disk, and you shouldn't
use the damaged disk until it's been formatted again.

As of version 1.3, DISKDOCTOR can be used to
salvage disks that have been formatted with the Fast
File System, but only if the DOSTYPE keyword in
the file DEVS:Mountlist has been set to Ox444F5301.

DISKDOCTOR drive

drive The device name of the drive containing the
damaged disk. Note that DISKDOCTOR may be
used with hard drives or hard drive partitions (dhO:
or dhl:), as well as with floppy disk drives (dfO: or
df1:), but should be used only as a last resort on
hard disks.

Attempt to restore the data on a damaged floppy
disk in the external disk drive:
DISKDOCTOR dfl:

169

DISKDOCTOR Command

170

Note: After DISKDOCTOR is finished with the
disk, copy the files onto a new disk. Do not use
DISKCOPY to transfer the files since it will copy cor­
rupted information as well. Instead, use the FOR­
MAT command to initialize a new disk; then use the
COpy command in the form:
COPY dfO: TO dfl: ALL

where dfO: contains the "doctored" disk, and dfl:
contains the newly formatted disk. If the corrupted
disk was bootable, you may use the INSTALL com­
mand on the new disk to also make it bootable.

ECHO Command

ECHO Command

Purpose

Format

Explanation of
Parameters and
Keywords

ECHO is used in command files to display a mes­
sage on the system screen. This is most often helpful
when the RUN command is being used to carry out
a background operation whose completion would
otherwise not be readily apparent to the user. See
Chapter 5 for more information on using ECHO.

ECHO string [NOLINE] [FIRST num] [LEN num]

string The message to be written to the currently
active output stream. While the current output
stream will usually be the system display, it may
also be a file or device. If it contains spaces, string
should be contained within quotation marks.

There are special characters that ECHO recog­
nizes as output controls. *N can be used to designate
a new line character, while *E specifies the ESCAPE
character.

[NOLINE] Normally, the ECHO command ap-
pends a new line character to the end of the string.
The NOLINE option, introduced in Workbench 1.3,
allows you to omit the new line after printing the
string, so that the next word that is output to the
CLI console appears on the same line as the text that
was ECHOed.

[FIRST num] Workbench 1.3 also introduced a
substring capability that allows you to print only a
selected part of the text string. The FIRST keyword is
used to designate the first character within the string
that is to be printed. For example, if the echo string
is "This is a test," FIRST 3 designates character 3, the
"i" in "This," as the first letter to be printed.

[LEN num] Another substring option introduced
in version 1.3. The LEN keyword is used to desig­
nate the length of the substring that is to be printed.
In the above example, FIRST 5 LEN 4 would print
the "is a" portion of the string. If no FIRST keyword
is used to indicate the starting position of the
substring, LEN backs up "num" number of characters
from the end of the string. In the example above, if
there were no FIRST, LEN 4 would print "test".

171

ECHO Command

Examples

172

1. A command file that executes a background SORT
of a file called sortsource on the external drive to a
file called sortdest on the same drive, and notifies
you when the operation is complete:
RUN SORT FROM dfl :sortsource TO dfl:

sortdest + ECHO "Sort Complete"

2. A command file that executes a background COpy
of all files and subdirectories in a directory called
work/mydir on the current default drive to a direc­
tory called storage/archive on the same drive:
RUN COpy FROM :work/mydir TO :storage/

archive ALL QUIET + ECHO "That's All Folks"

3. Create a one-line file called :loey that contains the
text string I have the power:
ECHO> :Joey "I have the power"

4. Print the "middle" portion of the string "stuck in
the middle with you":
ECHO "Stuck in the middle with you." FIRST 14 LEN

6"

ED Command

ED Command

Purpose

Format

Explanation of
Parameters and
Keywords

Examples

The ED command is used to edit the contents of a
file using AmigaDOS's full-screen editor. See Chap­
ter 6 for complete information on using the full­
screen editor.

ED [FROM] name [SIZE] n

[FROM] name The name of the AmigaDOS file
which you wish to edit using the full-screen editor.
If name is the first argument in an ED command
statement, the FROM keyword need not be specified.
If the file already exists, its contents are loaded into
the editor's workspace. If the file doesn't already ex­
ist, it is dynamically created by the editor.

[SIZE] n SIZE n is used to set the size of the edi-
tor's workspace. If n is the second argument in an
ED command statement, the SIZE keyword need not
be given. If no value for n is specified, the editor's
default workspace is 40,000 bytes. To edit files larger
than that, specify SIZE n with a value for n larger
than the size of the file to be edited. If the work­
space size selected is not large enough, the editor
will display the message SIZE of n too small.

1. Invoke AmigaDOS's full-screen editor to edit a file
called WorkInProgress in the Current/Stuff directory:
ED :Current/StuffjWorkInProgress

2. Invoke AmigaDOS's full-screen editor to edit a
90,000-byte file called Big in the root directory of
drive df1:.
ED dfl:Big SIZE lC21C21C21C21C21

173

EDIT Command

EDIT Command

Purpose

Format

Explanation of
Parameters and
Keywords

174

The EDIT command is used to edit the contents of a
file using AmigaDOS's line editor.

Unless you're a real fan of line editors, give
AmigaDOS's full-screen editor (ED) a try first. The
full-screen editor is both more flexible and easier to
use than EDIT. In all fairness, EDIT does have the
ability to edit binary files and can execute a
prestored list of line editor commands, which may
be handy features for some users. See Chapter 7 for
detailed information on EDIT.

EDIT [FROM] fromname [TO] toname [WITH]
withname [VER] ver'name [OPT option]

[FROM] fromname The name of the file whose
contents will be edited. If fromname is the first argu­
ment in the EDIT command, the FROM keyword is
optional. EDIT requires fromname, and it must al­
ready exist.

[TO] toname The name of the file to which the
edited text is saved when a Q or W subcommand is
executed from within the line editor. If toname is the
second argument in an EDIT command (following
fromname), the TO keyword is optional.

If toname is different from fromname, the con­
tents of the file used as input to the editor will not
be replaced by a save from within the line editor. If
toname is not specified and a save is executed from
within EDIT, the contents of the original file will be
moved to a temporary file called :t/edit.backup, and
EDIT will rename its work file (where it temporarily
holds edited data) to fromname.
[WITH] with name This option lets you specify a
file that will be used as input to the line editor's
command processor. The contents of withname
should be a series of valid line editor subcommands.
If with name is the third argument in an EDIT com­
mand (following fromname and toname), the WITH
keyword is optional. IF withname is not specified, the
line editor expects manual input from the keyboard.

Examples

EDIT Command

[VER] verna me Lets you specify where you want
messages and verification output produced by the
line editor sent; vername may be a file or logical de­
vice. If verna me is the fourth argument in an EDIT
command (following fromname, toname, and with­
name), the VER keyword is optional.

[OPT Pn or OPT Wn or OPT PnWn] These op-
tions let you set the maximum line length (Wn) and
number of lines (Pn) that EDIT will keep memory
resident. The default maximum line length is 120.
The default number of lines is 40. Multiplying the
value for Pn by Wn yields the amount of memory
that EDIT reserves as a temporary work area. If
either Pn or Wn is to be specified, the OPT keyword
must be used.

1. Edit a file called mysource in the current directory,
using AmigaDOS's line editor. The edited data, if
saved, will be stored under the same filename. The
number of lines is to be set to 40 and line width to
120 (EDIT's default values):
EDIT mysource

2. Edit a file called bigsource in the current directory,
using AmigaDOS's line editor. The edited data, if
saved, will be stored under the filename edited
bigsource. The number of lines is to be set to 1000
and line width to 120:
EDIT FROM bigsource TO "edited bigsource"

OPT P1000

3. Edit a file called universe in the current directory,
using AmigaDOS's line editor. When EDIT starts up,
execute the list of line editor commands contained in
a file called autocommands in the myprocessjnebulaj
directory on drive dfl:. The edited data, if saved,
will be stored under the same filename. Send all
messages and verification displays from the line edi­
tor to the system printer. The number of lines is to
be set to 40 and line width to 250:
EDIT universe WITH dfl:myprocess/nebula/

autocommands VER PRT: OPT W250

175

ENDCLI Command

ENDCLI Command

Purpose ENDCLI terminates the current Command Line In­
terpreter. ENDCLI should be issued only to a CLI or
Shell that has been created with the NEWCLI or
NEWSHELL command or to a CLI or Shell that has
been opened from the Amiga Workbench environ­
ment by double-clicking a CLI or SHELL icon.

Format ENDCLI

Explanation of None
Parameters and
Keywords

Example Open a new CLI window and issue a directory com­
mand within the new CLI. Close the CLI window
with the ENDCLI command, returning to the CLI
from which the NEWCLI command was issued:

176

NEWCLl

Note: A new CLI window will appear on your
screen. The next two commands will appear within
the new window as they're typed:
DIR
ENDCLI

ENDSKIP Command

ENDSKIP Command

Purpose ENDSKIP was added to Workbench 1.3 to designate
the end of a SKIP clause in a batch file. When
ENDSKIP is encountered within a SKIP clause, exe­
cution continues at the line following the ENDSKIP,
and the condition flag is set to WARN.

Format ENDSKIP

Explanation of None
Parameters and
Keywords

177

EVAL Command

EVAL Command

Purpose·

Format

Explanation of
Parameters and
Keywords

178

The EVAL command, added in Workbench 1.3, is
used to evaluate simple integer expressions with one
or two arguments, and to print the resulting expres­
sion in a user-specified format. It is mainly used to
perform calculations in scripts, to aid in chores such
as counting loops.

EVAL value1 lOP = operator] [VALUE2 = value]
[TO filename] [LFORMAT = string]

value1 The first value in the expression to be
evaluated. This value may be expressed as a decimal
number (the default), a hexadecimal number (indi­
cated with a leading OX or #X) or an octal number
(indicated by a leading 0 or a leading #, followed by
other digits). You may also use the ASCII value of a
text character, by prefacing it with a single apostro­
phe (for example 'a for 97, the ASCII value of the
letter "a").

lOP = operator] A symbol that indicates the
mathmatical operation to be performed on the value
or values. The supported operations and their sym­
bols are:
+ Addition

Subtraction
Multiplication

/ Division
*

mod Modulus
& Bitwise AND
I Bitwise OR

Bitwise NOT
< < Bitwise shift left
» Bitwise shift right

Negation
xor Bitwise exclusive or
eqv Bitwise equivalence

The keywords OP = do not have to be included
if the values and operator are presented in the cor­
rect order (valuel operator value2). If you change
this order, the OP = and VALUE2 = keywords
must be included to indicate which is the operator
and which the second value.

Examples

EVAL Command

[VALUE2 = value] The second value in the ex-
pression that is to be evaluated. It may be expressed
in any of the forms mentioned above. The keywords
VALUE2 = do not have to be included if the values
and operator are in the correct order (value 1 opera­
tor value2). They only need to be included if you
change the order in which they're presented.

[TO filename] This optional keyword is used to
send the output of this command to the file whose
name is indicated by filename.

[LFORMAT = string] This optional keyword is
used to specify the format of the text string that this
command prints. By default, the program prints the
answer in decimal format, but through the use of a
text string, you may specify hexadecimal (%X), octal
(%0), decimal (%N), or ASCII character (%C). The
hexadecimal and octal format strings require a num­
ber after the letter, indicating how many digits
should be printed (such as a string of "%X8" indi­
cates that the answer should be printed as eight hex
digits). You may also include any additional text you
want in the format string. The command option
LFORMAT = "The answer is %N"

will cause the command to print the words "The an­
swer is" in front of the value that it calculated. Note
that by default, EVAL does not terminate its output
with a new line character. If you want the cursor to
skip to a new line after the output is printed, you
should include the characters "*N" within the format
string and put the format string in quotes. If there
are any spaces within the format string, the entire
string should be placed within quotes as well.

1. Calculate the value of 10,000 divided by 9, and
print the answer as four hexadecimal digits followed
by a new line character.
EVAL 10000 / 9 LFORMAT = "%X4*N"

179

EVAL Command

180

2. Use EVAL in a command sequence file to decre­
ment a loop counters, causing the script to execute
exactly five times:
setenv temp 1
lab loop
echo "Loop #" NOLINE
type env:temp
eval <env:temp >nil: to = ram:temp value2 = 1
op = +?
copy ram:temp env:temp
if val $temp NOT GT 5
skip loop back
endif
echo "·N I'm done. Five loops is my limit. ·N"

EXECUTE Command

EXECUTE Command

Purpose

Format

Explanation of
Keywords and
Parameters

Examples

The EXECUTE command is used to invoke Amiga­
DOS command sequence files. Command sequence
files contain a prestored series of commands that are
executed sequentially once the command file has
been started by EXECUTE. EXECUTE can also pass
information to the command sequence file to be used
as arguments for the commands contained therein.

Command files may be nested by issuing an EX­
ECUTE as one of the commands in the command se­
quence file. See Chapter 5 for more information on
sequence files.

EXECUTE name [argl arg2",,]

name The name of the command sequence file to
be invoked, name is a required parameter and may
be any valid AmigaDOS filename.

EXECUTE sometimes needs to create temporary
files in the course of executing a script. Under ver­
sion 1.2, these files were created in the :T directory.
The version on Workbench 1.3 uses the T: directory
if one has been ASSIGNed, otherwise it uses :T.
Also, as of version 1.3, EXECUTE will substitute the
characters <$$> with the task number of the CLI
from which it is run. This feature is helpful in creat­
ing unique temporary filenames.

[argl arg2",,] Arguments to be passed to the com-
mand sequence file. Arguments may be any valid
AmigaDOS string (including filenames and logical
and physical devices).

1. Invoke a command sequence file called commikazi
on drive df1:.
EXECUTE dfl:commikazi

2. Invoke a command sequence file called games.
Pass the arguments lacrosse, bowling, prt: and
dfl:what/the/heck to the command sequence file:
EXECUTE games lacrosse bowling prt: dfl:

what/thejheck

181

EXECUTE Command

Directives

182

Note: The command sequence file being called
must be written so that it will receive passed argu­
ments. Before the command file is started up, EXE­
CUTE examines the file for special directives and
characters that tell it how to insert the passed infor­
mation in the command sequence file's command
stream.

Command sequence lines that contain directives
for EXECUTE begin with a period (.).

.K subnamel subname2 or .KEY subnamel sub­
name2.... defines substitution names for passed ar­
guments. EXECUTE scans for these names, delimited
by the angle bracket « and » characters in subse­
quent lines of the command file, and substitutes
passed arguments in their stead. Each substitution
argument may be further qualified by I A, IK, or IS
(see" AmigaDOS Templates" earlier in this reference
section for information on these qualifiers) .
. BRA n Substitutes character n for the < charac­
ter. This comes in handy if < is to be part of a sub­
stitution name, or if you want to use the reduction
operator.

.KET n Substitutes character n for the> charac-
ter. This comes in handy if > is to be part of a sub­
stitution name, or if you want to use the reduction
operator .

. DOL n or .DOLLAR n Substitutes character n for
the command file's normal default delimiter ($). Sub­
stitution arguments may assume a default if no cor­
responding argument is given to EXECUTE by the
user. For instance, <animal$squirrel> substitutes the
string squirrel for the substitution argument animal.
.space Defines a comment line .

. DEF subname string Assigns the value string to
all occurrences of the substitution argument subname.

Examples

EXECUTE Command

1. When the following EXECUTE command is
issued:
EXECUTE sortvar ingress egress

and the contents of the command sequence file
sortvar is:
.KEY SFILE/A TFILE/A HEX/S
IF HEX EQ ""
SORT <SFILE$mysource> <TFILE$mysorted>
ELSE
SORT <SFILE#mysoul'ce> <TFILE#mysorted

> OPTH
ENDIF

EXECUTE will substitute ingress everywhere it finds
the substitution argument SFILE enclosed within <
and >, and it will substitute egress everywhere it
finds the substitution argument TFILE enclosed with­
in < and >. Note that in this example, the dollar
sign ($) is used to provide default filenames in case
SFILE and TFILE are not specified. If the HEX key­
word is passed with EXECUTE, the H option of
SORT is used.

2. The following example illustrates how using vari­
ous dot commands can affect the appearance of the
same command file. The function of the command
file remains unchanged:
.DOT!
IKEY SFILE/A TFILE/A HEX/S
!BRA(
!KET)
IDOL #

IF HEX EQ ""
SORT (SFILE#mysource) (TFILE#mysorted)
ELSE
SORT (SFILE#mysource) (TFILE#mysorted)

OPTH
ENDIF

183

FAILAT Command

FAILAT Command

Purpose

Format

The FAILAT command is used within command se­
quence files and RUN command statements to alter
the failure level threshold of the system.

When AmigaDOS commands encounter an error
upon execution, a numeric return code is set (usually
5, 10, or 20). The higher the return code, the greater
the severity of the error. If a return code that exceeds
the current failure level threshold is encountered
during execution of a command sequence file or
multiple command task set up by a RUN, execution
stops. The default failure level threshold of
AmigaDOS command sequence files and RUN back­
ground tasks is 10.

Resetting the current failure level threshold can
come in handy. By setting FAILAT very high, you
can test return codes with the IF command in a com­
mand sequence file and react according to the return
code encountered without aborting script execution
when a relatively high return code is encountered.

Once the command sequence file or RUN se­
quence has ended, the current failure level threshold
is reset to 10.

See Chapter 5, "Command Sequence Files," and
the RUN command for more information.

FAILAT n

Explanation of n The new failure level threshold. If n is not spec-
Parameters and ified, FAILAT displays the current failure level
Keywords threshold.

Examples

184

1. Display the current failure level threshold:
FAlLAT

2. Temporarily set the current failure level threshold
to 55:
FAlLAT 55

FAULT Command

FAULT Command

Purpose

Format

Explanation of
Parameters and
Keywords

Examples

The FAULT command provides English-language ex­
planations for many of the error codes that
AmigaDOS generates. When AmigaDOS runs into a
problem, it usually displays a description of the
problem or a requester box telling you what needs to
be done. In some cases, nothing appears but a fault
code. Further questioning of the system using the
WHY command might produce a message like Last
command failed with error 220. In these cases, the
FAULT command can give you more information
about the nature of the problem.

FAULT n"""",

n""""" The error number (fault code) that you
want explained. Up to ten error numbers may be
specified within one FAULT command. If no infor­
mation is available on the error, the system simply
repeats the error number. For instance, entering
FAULT 999 results in the display:

Fault 999: Error 999

1. Display the error message corresponding to fault
code 216:
FAULT 216

AmigaDOS responds with:
Fault 216: directory not empty.
2. Display the error messages associated with fault
codes 220, 103, and 226:
FAULT 220 103226

AmigaDOS responds with:

Fault 220: comment too big
Fault 103: insufficient free store
Fault 226: no disk in drive

185

FF Command

FF Command

Purpose

Format

Explanation of
Parameters and
Keywords

Examples

186

FF (Fast Fonts) is a program that was written by
Charlie Heath of Microsmiths and was originally in­
cluded with his TxEd text editor. It was first included
on the Workbench disk with release 1.3. This pro­
gram is used to speed up the display of text to the
screen when a standard 8 X 8 pixel or 10 X 9 pixel
fixed-width font is used. It can also be used to re­
place the standard system fonts with custom fonts as
long as they are of the proper size, and are fixed
width (not proportional).

FF [-0] [-N] [fontname]

[- 0] This optional switch is used to turn the fast-
text routines on. The command FF, without this op­
tional switch, serves exactly the same purpose.

[-N] This optional switch is used to temporarily
disable the fast-text routines, which can be turned on
again by running FF once more.

[fontname] The name of the font descriptor file of
the fonts to replace the TOPAZ80 and TOPAZ60
fonts. This file has a name like Siesta.font. The direc­
tory that corresponds this font descriptor file (in the
example given, the fonts:Siesta directory) should
contain either a file named 8, a file named 9, or
both. These files should contain the font information
for a fixed width 8 - X - 8 pixel font and a fixed
width 10- X -9 pixel font respectively. If fonts of
the correct type are found in this directory, they will
be substituted for the default system fonts. If not, the
system Topaz font will be used.

1. Turn on the fast text routines:
FF-O

2. Turn on the fast text routines using the Siesta/8
and Siesta 9 fonts:

FF Siesta. font

FILENOTE Command

FILENOTE Command

Purpose

Format

Explanation of
Parameters and
Keywords

FILENOTE lets you store comments about
AmigaDOS files. Any comments stored using
FILENOTE remain distinct and separate from the ac­
tual contents of the file. When files are first created,
there are no comments associated with them. When
a file with comment attached by FILENOTE is dupli­
cated using the COPY command, the comment is not
associated with the new file. When a file is RE­
NAMED, comments attached to the file are attached
to the new filename. When the contents of a file
with a comment are updated, comments remain un­
changed. If a comment is already attached to a file
and a FILENOTE command with a new comment is
issued, the new comment replaces the old.

Comments stored using FILENOTE may be
viewed by using the LIST command. Any comments
about the file appear on the screen beneath the file's
name and are preceded by a colon (:). If the file is
accompanied by an icon (.info) file, it's possible to
read and edit the comment field from the workbench
by clicking on the icon and selecting the "Info" item
from the Workbench menu.

FILENOTE [FILE] filename [COMMENT] string

[FILE] filename The name of the file that is to
have a comment attached. The FILE keyword is op­
tional if filename is the first argument of a
FILENOTE statement. Only one filename may be
specified. FILENOTE does not support AmigaDOS
patterns.
[COMMENT] string Defines the comment as-
signed to the specified file. The COMMENT key­
word is optional if string is the second argument of a
FILENOTE statement (following filename); string, the
comment to be attached to the file, can be up to 80
characters in length (79 characters for version 1.3
and up), and must be enclosed in quotation marks if
it contains spaces.

187

FILENOTE Command

Examples 1. Attach the comment Don't delete this file until Sep­
tember 8, 2001 to the file fedtax86:
FILE NOTE FILE fedtax86 COMMENT "Don't

delete this file until September 8, 2001"

2. Attach the comment Lattice C Object Code - Almost
Works to the file named PinBallDemo in the directory
Lattice/Code/Work on drive df1:.
FILENOTE dfl:Lattice/Code/Work/pinBall Demo

"Lattice C Object Code - Almost Works"

FORMAT Command
(moved to SYS:SYSTEM directory in Workbench 1.2)

Purpose

188

Initializes a floppy disk as a blank AmigaDOS disk.
A volume name, which must be specified by the
user, is assigned to the disk after the initialization
process is complete. Caution: If a used disk is format­
ted, all information on it will be erased.

FORMAT prompts you to insert the disk to be
formatted in the desired drive and hit the RETURN
key. This is your last chance to change your mind
about the FORMAT request. Hitting CTRL-C and
then RETURN aborts the process at this point. Once
the disk is inserted and the RETURN key is pressed,
the FORMAT process cannot be interrupted.

A status display reports as each cylinder on the
disk (0-79) is initialized. After initialization, another
display appears as each cylinder is verified. After
verification is complete, the volume name is assigned.

It's not necessary to FORMAT a disk before
using the DISKCOPY command-DISK COPY for­
mats as it copies. Thus, if all you want to do is copy
the contents of a disk, it's much faster to use DISK­
COPY than to first format the destination disk, IN­
STALL the system information on the formatted
disk, and use the COPY ALL command to copy all
of the files one by one. In fact, it's even faster to use
DISKCOPY to duplicate a blank formatted disk than
it is to format a new one. One situation in which
you may wish to copy a disk using the FORMAT­
COpy ALL approach is where the files on the source
disk have been deleted and rewritten so many times

Format

Explanation of
Parameters and
Keywords

FORMAT Command

that the contents of the disk have become scattered.
When this occurs, the time required to access each
file may increase noticeably. By copying each file to
a newly formatted disk, the contents of the disk will
be consolidated.

FORMAT DRIVE drivename NAME string
[NOICONS] [QUICK] [FFS]

DRIVE drivename The disk drive in which you
will insert the disk to be formatted. The DRIVE key­
word must be used. The valid values for drivename
are dfO:, df1:, df2:, and df3:. The values used most
often will be dfO: (your Amiga's internal disk drive)
and df1: (the optional Amiga 1010 external disk
drive).

NAME string The volume name assigned to the
formatted disk. The NAME keyword is mandatory.
string is the name you want to call the disk, and it
must also be specified. string can be up to 30 charac­
ters long and must be enclosed in quotation marks if
it contains spaces.

[NOICONS] The NOICONS option allows you to
create a disk that is totally blank. If you don't use
this option, a Trashcan drawer and icon will be
placed on the newly formatted disk.
[QUICK] The QUICK option (new for Workbench
1.3) can be used to quickly reformat a disk that has
already been formatted once. Using this option,
FORMAT only formats the tracks containing the root
block, the boot block, and the bitmap blocks.

[FFS] This keyword is used for MOUNTed drives,
to override the DosType setting in the Mountlist.
Thus, if the DosType was set for the old file system,
or no DosType was specified, you could still format
the drive with the Fast File System by using the FFS
keyword. This option should be sparingly used,
since it's much safer to set the DosType correctly in
the first place.

189

GETENV Command

Examples 1. Format a disk in drive dfO:, naming the volume
Backup9:
FORMAT DRIVE df0: NAME Backup9

2. Format a completely blank disk in drive df1:, with
the volume name Just Another Blank Disk:
FORMAT DRIVE dfl: NAME "Just Another

Blank Disk" NOICONS

GETENV Command

Purpose

Format

Explanation of
Parameters and
Keywords

Example

GETENV prints the value of an environment vari­
able. An environment variable is a named text string
stored in an environment space that is accessible to
all tasks. As of Workbench 1.3, there is no formal
environment handler; rather, it is simulated through
the use of an ENV: directory that is created on the
RAM: disk. For now, "GETENV test" is really the
same as "TYPE ENV:test". In future versions, how­
ever, the environment variables will be stored in sys­
tem RAM and manipulated by their own device
handler.

GETENV varname

varname The name of the environment variable to
get. Under the Workbench 1.3 system, this is the
name of a text file that is stored in the ENV: directory.
Using the GETENV command prints the contents of
this text file.

Print the contents of an environment variable named
Cubby:
GETENV Cubby

ICONX Command

Purpose

190

ICONX allows you to execute a script file of CLI
commands from a Workbench icon. In order to use
ICONX, you must create a text file that contains the
CLI commands you want executed, and create a
PROJECT icon for that file whose default tool is set

ICONX Command

to the correct path for ICONX (for instance
C:ICONX). The Notepad program may be used for
creating both the text file and t.he icon, as long as
you stick the default text font and style. You will
have to change the default tool in the icon from
Notepad to ICONX, by selecting the icon, and then
using the INFO menu item from the Workbench
menu.

ICONX changes the current directory to the one
containing the project icon before it executes the
script. It also opens a console window on the Work­
bench screen which can be used for receiving input
or displaying output. You can specify the size of this
window in the project icon's TOOL TYPES field, by
entering a line in the format

"WINDOW=CON:10/10/300/100/Name"
If you don't wish the window to be visible, set the
width and height to one pixel. If you don't want the
script window to close immediately after the script
has finished executing, perhaps so the user can read
some text in the window, you may specify a delay
by entering a line in the icon's TOOL TYPES field
using the format "DELAY=3". The delay number in­
dicates how many seconds the window should re­
main open. A delay number of 0 indicates that the
window should remain open until the user enters
the CTRL-C key combination.

It is possible to pass filenames as parameters to
the script file by using the Workbench's extended se­
lection facility. By holding down the Shift key, se­
lecting the file icons, and then double-clicking the
script file icon, the names of the files will be passed
to the script. In order to receive these names, how­
ever, the script must use the .key keyword at the be­
ginning of the script.

Format None (this is a CLI command designed to run from a
Workbench icon).

Explanation of None
Parameters and
Keywords

191

IF-ELSE-ENDIF Commands

IF-ELSE-ENDIF Commands

Purpose

Format

Explanation of
Parameters and
Keywords

192

The IF command and its associates (the ELSE and
ENDIF commands) are used within AmigaDOS com­
mand sequence files to carry out groups of com­
mands within the command sequence file if one or
more conditions are met. If an IF statement is satis­
fied, the commands following the statement are exe­
cuted sequentially until an ELSE or ENDIF statement
is encountered. If the IF conditional is not satisfied
and an ELSE statement is encountered before an
END IF, the commands between ELSE and ENDIF
are executed.

The IF command allows multiple conditionals to
be specified. If any of the conditional keywords
(with the exception of NOT) is satisfied, the IF is
held to be true.

For every IF command there must be an associ­
ated ENDIF.

The ELSE command, if used, must appear be­
tween IF and ENDIF commands.

IF [NOT] [VAL] [WARN] [ERROR] [FAlL] [stringl EQ
string2] [stringl GT string2] [stringl GE
string2] [EXISTS name]

[NOT] Reverses the results of the IF test. If any of
the conditionals is true and NOT is also used, the IF
statement will not be satisfied. If all the other speci­
fied conditionals are false and NOT is used, the IF
statement will be satisfied.

[WARN] Is satisfied (true) if the return code of
the previous command is greater than or equal to 5.

[ERROR] Is satisfied (true) if the return code of
the previous command is greater than or equal to 10.

[FAIL] Is satisfied (true) if the return code of the
previous command is greater than or equal to 20.

[stringl EQ string2] Is satisfied (true) if stringl is
identical to string2. Case is ignored in the compari­
son. This test can be reversed to test inequality by
use of the NOT keyword. It can be changed to a nu-

IF-ELSE-ENDIF Commands

meric comparison by placing the VAL keyword in
front of the first string. stringl.and string2. are nor­
mally text strings that are enclosed in double quota­
tion marks if there is a space character in the string.
However, under version 1.3, either or both strings
may be substituted by the contents of an environ­
ment variable by using a dollar sign ($) in front of
the variable name. Thus, the IF command substitutes
the expression $TEST with the text string that is con­
tained within the environment variable named TEST.

[stringl GT string2] This option was introduced in
Workbench 1.3. The test is satisfied (true) if the char­
acters in stringl come after the characters in string2
in alphabetical order. Case is ignored in the compari­
son. This test can be reversed to test the LESS
THAN OR EQUAL condition by use of the NOT
keyword. It can be changed to a numeric comparison
by placing the VAL keyword in front of the first
string. As with EQ, the strings may be text strings in
quotes or the name of an environment variable pref­
aced with a dollar sign.

[stringl GE string2] This option was introduced in
version 1.3. The test is satisfied (true) if the charac­
ters in stringl come after the characters in string2 in
alphabetical order, or if the two strings are identical.
Case is ignored in the comparision. This test can be
reversed to test the LESS THAN condition by use of
the NOT keyword. It can be changed to a numeric
comparison by placing the VAL keyword in front of
the first string. As with EQ, the strings may be text
strings in quotation marks or the name of an envi­
ronment variable prefaced with a dollar sign.

[VAL] This option was introduced in Workbench
1.3. When this keyword is placed in front of a com­
parison expression (EQ, GT, GE), it is changed to a
numeric rather than a string comparison. Normally,
these tests compare each character of the string in al­
phabetical order. Thus, the string "91" is shown to
be greater than the string "099", since the leading "9"
of the first string comes after the leading "0" of the
second string. If you compare VAL "91" and "099"
however, "099" is correctly shown to be greater.

193

IF-ELSE-ENDIF Commands

Examples

194

[EXISTS name] Is satisfied if name exists; name
may be any AmigaDOS file, directory or logical
device.

1. Using IF-ENDIF statements, build a command se­
quence file that deletes any file except the file
DontDoIt:
.KEY nerf/a
IF <nerf> EQ DontDoIt
ECHO "I refuse to delete that File"
QUIT
ENDIF
DELETE <nerf>

Note: Actually this example will delete DontDoIt
if the value :DontDoIt or DFO:DontDoIt is passed to
the command file as the value of nerf when the com­
mand sequence file is executed. The EQ option of IF
compares the text strings, not the internal block IDs
of the files. Multiple EQ statements could have been
added to the IF statement to check for filename
variants.

IF-ELSE-ENDIF sequences may be nested with­
in one another.
2. Using nested IF-ELSE-ENDIF statements, build a
command sequence file that attempts to delete the
file broccoli. If any errors are encountered, report on
their severity.

Note: The commands of this example have been
indented to highlight the IF-ENDIF command
groupings.
FAILAT 100
IF EXISTS broccoli

DELETE broccoli
IF WARN
IF NOT EXISTS broccoli

ECHO "File deleted - error encountered"
QUIT

ELSE
ECHO "Fatal error - file not deleted"
QUIT

ENDIF

IF-ELSE-ENDIF Commands

ELSE
ECHO "File deleted"
QUIT

ENDIF
ELSE

ECHO "File not found"
ENDIF

3. Using IF-ELSE-ENDIF statements, build a com­
mand sequence file that will copy all files in the di­
rectory mywork/text/AmigaProject on drive df1: to
the directory my work/text/backup on the same disk
drive. If the AmigaProject subdirectory does not exist,
create it. Start up the program called Textcraft in the
root directory of drive dfO:.
FAILAT 100
ASSIGN MYDIR: TO dfl:mywork/text
IF EXISTS MYDIR:AmigaProject
ECHO "Copying Documents to Backup Area"
COPY MYDIR:AmigaProject TO MYDIR:

backup ALL
SAY backup completed boss
SKIP STARTUP
ELSE
MAKEDIR MYDIR:AmigaProject
ECHO "AmigaProject Directory Created"
ENDIF
LABEL STARTUP
RUN df0:Textcraft

4. For an example of the VAL and GT keywords, see
example 2 under the EVAL command.

195

INFO Command

INFO Command

Purpose

196

Display information about disk volumes and the sys­
tem RAM disk. A typical INFO display shows the
following information about each disk volume cur­
rently mounted on a physical drive attached to the
Amiga. INFO will also report on the status of RAM:,
the Amiga's memory-based RAM disk, if it's being
used. A typical INFO display might look like this:

Mounted disks:

Unit Size Used
DFl: 880K 1089
DFO: 880K 740
RAM: 22K 43

Volumes Available:

Free Full Errs Status Name
669 61% 0 Read Only Graphics Demos
1018 42% 0 Read/Write CLI Disk
o 100% 0 Read/Write

Graphics Demos [Mounted]
CLI Disk [Mounted]

INFO tells you what disk volumes are in use
and the amount of storage currently allocated to
them. Amiga 31f2-inch disks have a capacity of 880K
(901,120 bytes) of information. Each AmigaDOS disk
contains 1758 usable sectors with each sector hold­
ing 512 bytes of information. INFO reports the num­
ber of sectors already used on each disk, the number
of free sectors available for use, and the percentage
of the disk used. The size of RAM: will vary depend­
ing upon how much information has been copied to
it. Storage used for RAM: reduces the amount of real
memory available for programs to run in. When
RAM: is used, it will always show as being 100-
percent full.

INFO also reports on the number of "soft" disk
errors encountered in using the disk volume during
the current session. Soft errors are those of a tempo­
rary nature. An example of a soft error is a tempo­
rary failure in reading some information from a disk.
When the error is first encountered, many systems
will try to read the information again for a
predefined number of times. If one of the retries is
successful, the original read error is considered a
temporary, or soft, failure. If all retries fail, the error
is considered a permanent, or hard, failure.

Format

Explanation of
Parameters and
Keywords

INFO Command

The status of each volume will be either
Read/Write or Read Only. Read/Write indicates that
the volume may be read or written to. New files
may be added and existing files on the disk may be
read, updated, and deleted. A volume is made Read
Only when its write-protect window has been un­
covered. The write-protect window is located on the
front left of a 31/2-inch disk and is usually uncovered
by sliding a small plastic shutter toward the front
edge of the disk.

Write-Protect Window

D -- Write Protect Window

3'j,-Inch Disk

0
The files on Read Only volumes can be read,

but not updated or deleted. New files may not be
added. Any attempt to write to a Read Only disk
will result in an error. While RAM: cannot be write­
protected, all files residing in RAM: can be protected
from deletion by using the PROTECT command.

INFO also displays the name of the disk cur­
rently residing in each physical disk drive: RAM:
never has a volume name associated with it. A list of
Volumes Available is also presented, indicating the
status (mounted or unmounted) of disk known to the
AmigaOOS filing system during the present session.

INFO [devicename]

[devicename] This option was added in Work-
bench 1.3. It allows you to obtain information on a
single device or volume by typing its name after the
info command.

197

INFO Command

Examples

198

1. Display information about the disk volumes
known to the filing system:
INFO

2. Redirect the INFO display to an attached printer:
INFO> PRT:

3. Display information about the disk in the internal
disk:
INFO DFO:

INSTALL Command

INSTALL Command

Purpose

Format

Explanation of
Parameters and
Keywords

The INSTALL command makes a formatted disk ca­
pable of a minimal startup of the AmigaDOS envi­
ronment (assigning SYS: to the booted disk). The
key words to keep in mind here are minimal startup.
While a blank formatted disk that has had an IN­
STALL command issued to it will bring up the
AmigaDOS window and command line prompt,
none of the AmigaDOS commands will function un­
less invoked with their full pathnames.

If you wish to copy a bootable disk by format­
ting a new disk and copying each file from it one by
one, you'll have to INSTALL the system information
on the new disk in order for it to be accepted at the
Insert Workbench Disk prompt.

With Workbench 1.3, additional functions were
added to INSTALL to help the user identify and de­
stroy "viruses", self-replicating computer programs
that may be stored on the initial (boot) block of the
disk without the user's knowlege.

INSTALL [DRIVE] drive [NOBOOT] [CHECK]

[DRIVE] drive The disk drive in which the disk
you wish to make bootable resides. The DRIVE key­
word is optional. Valid values for drive are dfO:, dfl:,
df2:, and df3:.

[NOBOOT] This keyword, added in version 1.3,
can be used to clear the boot block but not make the
disk bootable. This can be used to get rid of unwant­
ed information stored by viruses on the boot block
without making the disk bootable. Note that the
NOBOOT option will write out a new boot block
even if the disk is not set up in the standard DOS
format.

[CHECK] This option, added in Workbench 1.3, is
used to check if the disk is bootable, and if it con­
tains the standard Commodore-Amiga boot code.
When the CHECK keyword is used, the command
prints the message "No bootblock installed" if the
disk is not bootable, "Appears to be normal
V1.2jV1.3 bootblock" if the disk is bootable and

199

INSTALL Command

Examples

200

contains standard boot code, or "May not be stand­
ard V1.2/1.3 bootblock" if the disk is bootable and
contains nonstandard boot code. The command also
sets a return code of zero if the disk is not bootable
or has standard boot code, and a code of 5 (WARN)
if it contains nonstandard boot code.

1. Install boot files on the disk presently inserted in
disk drive df1:.
INSTALL DRIVE dfl:

2. Install boot files on the disk currently residing in
the internal system drive dfO:.
INSTALL df0:

Note: INSTALL, as implemented in AmigaDOS,
does not prompt you for the disk to be inserted. For
most owners of single-drive systems, this makes a
direct INSTALL to drive dfO: difficult. Typically, the
place where AmigaDOS commands are found by the
system (the C: command directory) is assigned to
dfO:. If you insert the disk you wish to install to
ahead of time and then type INSTALL DRIVE df0:,
you'll be prompted to insert the disk with the com­
mand library on it in any disk drive. Once you do
so, INSTALL puts boot files on the disk with the
command library, which was not where you wanted
the files installed and was bootable to begin with.

The following procedure will get single-drive
users around this limitation. Put your Workbench or
CLI disk into the drive and type:
INSTALL?

When the command template (DRIVEl A etc.)
appears, eject that disk from the internal drive and
insert the disk you want to install or check. Type
DF0:

3. Check the boot code on the disk that is currently
in drive df1:.
INSTALL DRIVE dfl: CHECK

JOIN Command

JOIN Command

Purpose

Format

Explanation of
Parameters and
Keywords

Examples

JOIN lets you merge the contents of up to 15 files
into one file. The files are merged in the order given
to JOIN.

JOIN namel name2 """""'" AS or TO destname

namel name2 """""'" The names of the files you
want merged together. A minimum of two files must
be given, with a space between each name. Up to 15
files may be merged by a single JOIN command.

AS or MDBOTO destfile The name of the file that
the contents of all files preceding the AS or TO key­
word (one of which is required) will be merged into;
destname can be a new or old file but it cannot be
any of the files that precede the AS or TO keyword.
If destname already exists, its previous contents will
be replaced. The TO keyword was added in Work­
bench 1.3.

1. Merge two files (Dick and Jane) in the current di­
rectory into a file (HusbandAndWife) in the same
directory:
JOIN Dick Jane AS HusbandAndWife

2. Merge four files, from various drives, devices, and
directories into one:
JOIN myparty :spritzers/white/chablis dfl:soft

drinks/cola/moxie RAM:mydate AS ":party/
animal/March 25 1986"

201

LAB Command

LAB Command

Purpose

Format

Explanation of
Parameters and
Keywords

Example

202

LAB is used within command sequence files to de­
fine a location in the command file that may be
jumped to by the SKIP command. See Chapter 5 for
complete information on command sequence files.

LAB string

string A "signpost" that can be used by a SKIP
command to jump to the spot in the command file
where a specific LAB statement is located. Once
jumped to, command file execution continues with
the commands following the LAB statement.

Define a location called DontDo that may be jumped
to by a SKIP instruction:
IF EXISTS work. backup
SKIP DontDo
COPY work work. backup
LAB DontDo
RENAME work work. old ".

LIST Command

LIST Command

Purpose

Format

Display the name, size, protection status, time and
date of creation, and the Amiga filing system block
numbers of (a) a directory, (b) a selected portion of a
directory, or (c) a single file. LIST also displays any
comments attached to a file by a FILENOTE
command.

Here's an example of a typical LIST output:

Directory":" on Wednesday 12-Dec-85
bagel 20 rwed Today
c Dir rwed Yesterday
fonts Dir rwed Yesterday
lox 1921 rwe- 10-Dec-85
: A history of Nova Scotia's Finest
libs Dir rwed Yesterday
t Dir rwed Yesterday
2 files - 4 directories - 7 blocks used

00:57:23
23:49:01
23:49:01
14:29:54

23:49:01
23:49:01

The file and directory names are listed at the
left. To the right of each name is additional infor­
mation about the file. The first number indicates
each file's size in bytes (directories are shown by the
letters Dir).

The protection flags currently turned on for each
item (see the PROTECT command for further infor­
mation) are listed next, and then finally, the date
and time the item was created or last updated. Any
comment attached to a file or directory by the
FILENOTE command appears directly beneath the
file's information line in the LIST display and is pre­
ceded by a colon (:).

With 1.3, a formatting option was added that al­
lows you to output the directory listing in a custom­
ized text display.

LIST listname [P or PAT pattern] [KEYS]
[DATES] [NODATES] [TO device or filename]
[SUB string] [SINCE date] [UPTO date] [QUICK]
[BWCK] [NOHEAD] [FILES] [DIR]
[LFORMAT = string]

203

LIST Command

Explanation of
Parameters and
Keywords

204

listname This can be the device name or volume
name of a disk, a directory, or the name of a specific
file. With Workbench 1.3, this name may include a
pattern. Thus, "LIST #?.info" gives a list of all the
files ending in those five characters. This eliminates
the need for the PAT option, below.

[P or PAT pattern] When you use this option, the
P or PAT keyword must precede the pattern. A pat­
tern allows you to specify a number of files, each of
which has some common characteristic (see Chapter
3 for more information on creating AmigaDOS pat­
terns). Since the 1.3 version of LIST allows you to
use patterns in listname, this option is no longer
needed.

[KEYS] Specifying this option includes the block
number associated with each file and directory dis­
played. The AmigaDOS filing system automatically
assigns and uses block numbers to keep track of
things. Each file and directory has a single, unique
block number. The block number on the display ap­
pears to the left of the file length (or Dir).
[DATES] Includes file and directory creation date
and time information in the LIST display. DATES is
usually optional since LIST defaults to displaying
creation dates and times unless either QUICK or
NODATES is used.

[NODATES] Instructs LIST to suppress the dis-
play of file and directory creation date and time
information. NODATES is optional.

[TO device or filename] Selects where the output
of LIST is to be sent; device or filename may be any
valid AmigaDOS filename or a logical device known
to the system. If a file of the same name already ex­
ists, the existing file will be deleted and a new file
with the same name is created. For this reason, if TO
device or filename is a file that has been protected
from deletion with the PROTECT command, LIST
will fail. If TO device or filename is not specified,
LIST's output is displayed on the system screen.

[S string] To use this option, the SUB keyword
must precede string, which can be any character
string. LIST then displays only those filenames or di-

LIST Command

rectories that include string. If spaces are included in
string, quotation marks must enclose it. Since the 1.3
version allows patterns in the listname, this option is
rendered unncessary.

[SINCE date] Displays information only for those
files and directories created or modified on or after
date; date may be specified in the format DD-MMM­
YY, or as an indirect reference of YESTERDAY, TO­
DAY, or TOMORROW. The days of the past week,
SUNDAY through SATURDAY, can also be used as
date. See the DATE command for more information.

[UPTO date] Instructs LIST to display information
only for those files and directories created or modi­
fied on or before date, which is subject to the same
restrictions as the SINCE keyword.

[QUICK] Instructs LIST to display only file and
directory names. However, if the DATES and/or
KEYS keywords are specified as well, LIST displays
file and directory names along with the information
associated with DATES and/or KEYS.

[BWCK] This option, added in version 1.3, speci-
fies that the file sizes be displayed in terms of 512-
byte blocks, rather than bytes.

[NOHEAD] This option, new in Workbench 1.3,
allows you to suppress the "Directory ... " heading on
the first line, and the "x files -x directories -x blocks
used" footnote on the last line of the listing.
[FILES] This option, added in version 1.3, allows
you to list only files and not directories.

[DIR] This option, also added in version 1.3, al-
lows you to list only the directories and not the files.

[LFORMAT = string] The LFORMAT option was
added in Workbench 1.3 to allow you to customize
the text output of the LIST command. This feature
lets you use LIST to quickly generate script files. In
order to send the output to a script file, however,
you must use the redirection operator (» instead of
the TO option.

When you use LFORMAT, the output of the
LIST command is totally controlled by the format
string that appears after the keyword. This format

205

LIST Command

Examples

206

string can contain any text you want to appear in the
listing.

At the place in the text string that you want the
listing to appear, you use the substitution string %S.
This substitution string may be used more than once
in the text, allowing you to use the listing name
more than once per line. If you use the string twice,
the first time the pathname will be substituted for
%S, and the second time the file or subdirectory
name will be substituted. If you use it three times,
the first occurrence will be replaced by the path­
name, and the second and third by the file or sub­
directory name. If you use it four times, the first and
third will be replaced by the pathname, and the sec­
ond and fourth by the file or subdirectory name.

1. Display standard LIST information about the con­
tents of the current directory on the screen:
LIST

2. Output all standard LIST information and the
block number of each item in the current directory to
the system printer:
LIST KEYS TO PRT:

or
LIST> PRT: KEYS

3. Display standard LIST information about each file
in directory water/sports whose name contains the
character string skin:
LIST water/sports SUB skin

or
LIST water/sports/#?skin#?

Note: Information for both Snorkel & Skin Diving
and SkinnyDipping would be displayed by this
example.

4. Output just the names and date information for
items in the current directory beginning with the let­
ters compute that were created or last updated on or
before November 4, 1985. Send the output to a file
called MySelections:
LIST compute#? QUICK DATES UPTO 04-

Nov-85 TO MySelections

LIST Command

5. Create a script file that, when executed, will set
the pure bit of every file in the C: directory:
LIST >RAM:TEMP C:#? LFORMAT "protect %S +p"

This creates a script file called RAM:TEMP that
contains a PROTECT command for each file in the
C: directory. To set the pure bit in each file, you
need only EXECUTE RAM:TEMP.

207

LOADWB Command

LOADWB Command

Purpose

Format

. Explanation of
Parameters and
Keywords

Examples

208

LOADWB is used to start the Workbench program.
This command is usually issued automatically at
boot time, as part of the s:startup-sequence batch file.
When the Workbench is started, it notes the search
paths that are currently in effect, and sets these same
paths for each CLI or Shell that is started from a
Workbench icon.

LOADWB [DELAY or -DEBUG]

[DELAY or -DEBUG] The DELAY option was
added in version 1.3 to create a three-second pause
before the program returned. This pause allows the
floppy disk activity that LOADWB initiates to stop
before the next command in the script is executed. If
there is no pause and the next command starts
before LOADWB finishes using the disk, both com­
mands have to share the floppy disk, which causes
disk access to slow down and the disk heads to
make a loud "thrashing" noise.

The -DEBUG option enables a new Workbench
menu, which is normally not displayed. This menu
contains two items of interest to programmers. The
first item, Debug, executes the ROMWACK
debugger, a program that communicates through a
9600-baud terminal connected to the serial port. If
no such terminal is connected, you cannot make use
of this command. The second item, Flushlibs, causes
Workbench to expunge any libraries, devices, fonts,
or other resources that are resident in memory but
are not currently being used. This frees up the mem­
ory used by these resources.

Either DELAY or -DEBUG may be used, but not
both at the same time.

1. Load the Workbench environment and close the
CLI window:
LOADWB DELAY
ENDCLI > NIL:

2. Load the Workbench environment with the
DEBUG menu activated:
LOADWB -DEBUG

LOCK Command

LOCK Command

Purpose

Format

Explanation of
Parameters and
Keywords

Example

LOCK was added to Workbench 1.3 to enable or dis­
able write protection of a hard drive parition that
uses the Fast File System. Once write protection is
set, it remains in force until reset with another
LOCK command, or until the system is rebooted. If
an optional password is used to lock the drive, the
same password must be used to unlock the drive.

WCK drive [ON or OFF] [password]

drive The device name of a disk or disk partition
that is formatted with the Fast File System. It isn't
possible to LOCK a hard disk that is formatted with
the old file system.

[ON or OFF] These optional keywords can be
used to write-protect the disk (LOCK ON) or write­
enable the disk (LOCK OFF). If neither is specified,
the disk will be write-enabled.

[password] An optional four-character password of
the user's choosing. If a password is used as part of
the LOCK ON command, the same password must
be used in the LOCK OFF command in order for the
disk to be write-enabled.

1. Write-protect hard drive DHO:, which uses the fast
file system, with a password of fish.
LOCK dhO: ON fish

To turn off the write protection, you would use the
command:
LOCK dhO: OFF fish

or just
LOCK dhO: fish

209

MAKEDIR Command

MAKEDIR Command

Purpose

210

MAKEDIR creates directory entries, allowing you to
divide an AmigaDOS disk into a type of multileveled
filing cabinet.

Suppose you wanted to separate your written
correspondence by category and recipients. Your
business correspondence usually deals with accounts
payable and receivable, with some occasional miscel­
laneous letters. Your personal correspondence is
mostly letters to your family and friends, letters con­
cerning your bills, and some other occasional things.
You might decide that you want things organized
like this:

Planned Directory Form
Root

Business

Receivables Payables

86 87

Misc.

Family Friends

I
I

Larry Moe Curly

Personal
I

Bills Misc.

MAKEDI R Command

Assuming that you begin with the root directory
of an AmigaDOS disk, this is one of the possible se­
quences of AmigaDOS commands that will set up
such a directory structure:
MAKEDIR Business
MAKEDIR Business/Reeei vables
MAKEDIR Business/Reeeivables/88
MAKEDIR Business/Reeei vables/89
MAKEDIR Business/payables
MAKEDIR Business/Mise
MAKEDIR Personal
CD Personal
MAKEDIR Family
MAKEDIR Friends
MAKEDIR Bills
MAKEDIR Mise
CD Family
MAKEDIR Larry
MAKEDIR Moe
MAKEDIR Curly
CD II

Let's examine how this was created, starting
with the business correspondence. Note the top­
down order in which the directories were created.
MAKEDIR builds only one subdirectory at a time.
When you type MAKEDIR BusinessjReceivables/
88, the only directory entry created is 88, the
rightmost portion of the specified directory path. For
the command to execute successfully, both the Busi­
ness directory and a subdirectory within it called Re­
ceivables must have already been created.

As the business correspondence MAKEDIR com­
mands illustrate, you can expend a lot of keystrokes
typing pathnames. Just look at all the times you had
to type Business. You can use the CD command to
cut down significantly the number of keystrokes re­
quired. Look at the sequence of commands again,
paying particular attention to the last half-that used
to build the personal correspondence directories.
After the MAKEDIR Personal used to create the di­
rectory for personal letters, a CD Personal changed
the current directory so that the pathname Personal
could be omitted from all subsequent MAKEDIRs.

211

MAKEDIR Command

Format

Explanation of
Parameters and
Keywords

Examples

212

CD was used again to "drop down" into the Family
subdirectory and keep unnecessary keystrokes to a
minimum. Note that once again, care has been taken
to ensure that the directories are built from the top
down. A final CD II at the end backs you up two
levels to your starting point (see the CD command
for more information on its use).

For information on removing directory entries,
see the DELETE command; for more information on
directory structures, see Chapter 3, "The Filing
System."

MAKEDIR name

name The name of the directory to be created;
name must be specified. MAKEDIR fails if name is
the name of a file or subdirectory that already exists
in the "parent" directory (the next highest directory
in the hierarchy). MAKEDIR also fails if a nonexis­
tent pathname is specified.

1. Create a subdirectory called YeliowPages in the
current directory:
MAKEDIR YellowPages

2. Create a subdirectory called Dictionary in the root
directory of the disk inserted in drive dfl:.
MAKEDIR dfl :Dictionary

3. Create a subdirectory called Encyclopedias in the
root directory of the current drive, create five sub­
directories within Encyclopedias, and then change the
default directory to the root of the current drive:
MAKEDIR :Encyclopedias
CD :Encyclopedias
MAKEDIR "World Book"
MAKEDIR Grolier
MAKEDIR Britannica
MAKEDIR "World Book"
MAKEDIR "Funk Be Wagnals"
CD:

MAKEDIR Command

4. Create a subdirectory call Lightning on the
Amiga's RAM disk:
MAKEDIR RAM:Lightning

5. ASSIGN a logical device name QWIK: to the direc­
tory created in example 4, and create a subdirectory
called WarpSpeed in it:
ASSIGN QWIK: RAM:Lightning
MAKEDIR QWIK:WarpSpeed

Note: This results in creating the same subdirec­
tory as
MAKEDIR RAM:LightningjWarpSpeed

213

MOUNT Command

MOUNT Command

Purpose

214

Makes AmigaDOS recognize an external hardware
device (such as a S1f4-inch disk drive or a second se­
rial port) as a DOS device. It can also be used to add
a virtual device like a recoverable RAM disk, or a
speech output device. This command is most often
issued as part of the startup-sequence script file in the
s directory of the Workbench disk, so that the device
is automatically configured each time that the Amiga
boots up.

MOUNT looks for a description of the device re­
quested in the file DEVS:Mountlist, or an optional
FROM file. The Mountlist file is a text file that de­
scribes various attributes of the device. This file
shares some of the traits of C language source code
files; if more than one description appears on a line,
they must be separated by semicolons; hexadecimal
numbers must start with the characters Ox; and com­
ments must start with the characters /* and end with
* l Each entry in the Mountlist ends with the pound
sign character (#).

The standard Workbench disk comes with a
sample Mountlist file that can be used to mount an
external SIf4-inch drive as device DF2:. This device
description looks like:
DF2: Device = trackdisk.device

Unit = 2

Flags = 1
Surface = 2
BlocksPerTrack = 11
Reserved = 2
Interleave = 0
LowCyl = 0; HighCyl = 39
Buffers = 20
BufMemType = 3

The most important line is the first, which tells
AmigaDOS that the device driver for this device is
trackdisk.device. Since this device driver is an intrin­
sic part of the operating system, it need not be load­
ed in from disk. External device drivers can be
loaded from disk if necessary, however. AmigaDOS
will look for such drivers in the path specified, or in

MOUNT Command

the DEVS: directory if no path is included in the de­
vice driver name.

The rest of the information tells AmigaDOS
what kind of disk drive this is-it's double-sided
(Surface = 2), has 40 tracks per side (LowCyl = 0;
HighCyl = 39), with 11 sectors of 512 bytes per
sector (BlocksPerTrack = 11). This means that the
total available storage on the drive is 440K
(.5K X 2 X 11 X 40).

As configured, this list assumes you have an ex­
ternal 31h-inch drive, so it mounts the external drive
as DF2:. If you don't have a 31f2-inch drive as DF1:,
you'll want to mount the 5%-inch drive as DF1: (it
should always be last in the chain). To do this, make
two changes to the Mountlist file.

First, change the device name from DF2: to
DFl:. Second, change the unit number from 2 to 1.
Now the command MOUNT DF2: mounts the 5%­
inch drive as DF2:.

The MOUNT command can also be used to
mount devices other than file storage devices. The
Mountiist file in the DEVS: directory contains a sam­
ple mountlist for an additional serial device name
AUX:
AUX: Handler = L:aux-handler

Stacksize = 1000
Priority = 5

Instead of describing the storage capacity of the
device, this list merely shows where to find the han­
dler (a program whose purpose is similar to that of
the device driver), the size of the stack used by that
program, and the priority at which it runs. Note that
this Mountlist example by itself can't be used to
mount an external serial device. For one thing, there
really isn't a handler file in the L: directory called
aux-handler. For another, you'd still need a hardware
interface for the serial device.

The 1.2 and greater versions of CLI commands
such as FORMAT and DISKCOPY have been altered
so that they work with devices that have been
mounted. Note, however, that you still can't use
DISKCOPY between devices that aren't identical in
storage size and layout. Thus, while you can use

215

MOUNT Command

Format

Explanation of
Parameters and
Key Words

216

DISKCOPY between two S 1/4-inch drives, two hard
disk partitions of equal size, or two 31f2-inch drives,
you can't use DISKCOPY from a S1/4-inch drive to a
31f2-inch drive.

MOUNT device [FROM filename]

device This is an AmigaDOS device name, such as
DF2:, DHO:, or AUX:, which refers to either a hard­
ware device like a disk drive or serial port, or a logi­
cal device such as a RAM disk. The device name
should be the same as the label given an entry in the
Mountlist file, and the device driver or handler file
indicated by that Mountlist should be available to the
system. Some of the standard MOUNTable devices
are described in Chapter 4.

There are a number of keyword options that can
be used in the MOUNTLIST file to describe a device.
Not all of them are required for all devices-in fact,
most are optional. Keywords include:
Handler =
FileSystem =

Device =

Priority =

Unit =
Flags =

The name of the device handler file.
The name of the filesystem file.
The name of the device driver file.
The task priority of the process; 5 is
customary for handlers, 10 for file
systems.
The unit number of the device.
Flags setting for Open Device call
(usually 0).

Surfaces = Number of write surfaces.
BlocksPerTrack = The number of disk blocks (sectors) per

Reserved =

PreAlloc =

Interleave =

Loweyl =
Higheyl =

Stacksize =

track (cylinder).
The number 9f blocks used for boot
block (usually 2).
The number of blocks reserved at the
end of a partition; used with a few
IBM-style hard drives. Usually set to O.
Interleave value (controls DOS inter­
leave, not physical hard drive
interleave).
Starting cylinder to use for this device.
Ending cylinder to use for this device.
Total number of
cylinders = Higheyl - Loweyl + 1.
The amount of working memory to al­
locate to the process.

Example

MOUNT Command

Buffers = Number of cache buffers to use with
the device.

BufMem Type = Type of memory to use for cache
buffers.

o or 1 = Any
2 or 3 = CHIP
4 or 5 = FAST

Mount = If this value is positive, MOUNT loads
the handler or driver software as soon
as the device is MOUNTed, rather than
the first time the device is accessed.

MaxTransfer = The maximum number of blocks trans­
ferred at one time; used with Fast File
System devices.

Mask = Address mask that specifies the memo­
ry range that can be used for DMA
transers; used with Fast File System.

GlobVec = If the handler is written in BCPL, it
needs a global vector. A value of 0 sets
up a private global vector; anything
else indicates that the handler is writ­
ten in C or assembly language and no
global vector is needed. If this keyword
isn't used, the shared AmigaDOS glob­
al vector is used.

Startup = A string passed to the handler, device,
or file system on startup. This string is
passed as a BPTR to a BSTR.

BootPri = The boot priority of a boot able device,
expressed as a number between -129
and 127. A value of -129 indicates
that the device isn't bootable, as is ap­
propriate for use with the recoverable
RAM disk if you don't want to boot
from that device on reset.

DosType = Indicates the format of the file system
used. If the Fast File System is used,
this value should be set to Ox444F5301.

[FROM filename] This option, added in version
1.3, allows you to specify a file other than
DEVS:Mountlist as the place to look for the descrip­
tion of the device to be MOUNTed.

Mount an external SIf4-inch disk drive as device DFl:

MOUNT DFl:

217

NEWCLI Command

NEWCll Command

Purpose

218

NEwell opens a newell window on the system
display. The new window sports the same gadgets
(drag gadget, back gadget, front gadget, and sizing
gadget) as a eLI process that's started either by
double-clicking the eLI icon from the Amiga Work­
bench or booting up a specially prepared eLI disk. A
window created by NEWell becomes the current ac­
tive window immediately after NEWell is executed.
It will have the same default directory as the eLI
from which NEWell was executed.

Every eLI window represents an independent
eLI environment. You may change the active eLI
window by moving the mouse pointer within any
eLI window and clicking.

The default window title of eLI windows
opened by NEWell with no title specified is New
CLI. The newell's prompt line will be preceded by
the message New CLI task n, where n is the task
number assigned to the newell window.

The task number associated with the newell
window is different from all other eLI windows cur­
rently open on the screen. For instance, if two eLI
windows are created by issuing one NEWell com­
mand, the command-line prompt of the first eLI is
1> and the command-line prompt of the second is
2>. The eLI prompt of a window created by issuing
another NEwell is 3>. A newell (task 3) can be
created by issuing a NEWell from either of the two
original eLI windows.

The resolution of the AmigaDOS screen display
is 640 pixels (picture elements) wide and 200 pixels
high. Think of an invisible 640 X 200 grid superim­
posed over your Amiga's display. AmigaDOS creates
newell windows in a location that starts at the top
left edge of the screen and extends 640 pixels
wide X 100 pixels high. All newell windows are
created in the same place-in the same size-unless
you specify otherwise. This means that the third eLI
window appears on top of the second, and you'll
have to drag one out of the way if you want to use
both.

Format

Explanation of
Parameters and
Keywords

NEWCLI Command

The obvious question is, aside from impressing
your friends and running a computerized version of
a three-ring circus, what good is NEWCLI? One ob­
vious use is preventing a helpful display of infor­
mation from scrolling off the screen. If you're
attempting to clean up or reorganize a directory full
of files, having to issue repetitive DIR commands to
refresh your memory can be tedious, especially con­
sidering AmigaDOS's less than speedy directory
searches. Opening a new window with NEWCLI and
issuing a DIR command brings up a directory display
that can be sent out of sight and recalled at will by
using the front and back gadgets of the two active
windows. Your file maintenance commands can be
issued from the original CLI, whose scrolling display
will not affect the directory display in the new CLI
window.

You can even start a process in one CLI window
and, while it's executing, make another existing CLI
the active environment and start up another process
in it. Multiple AmigaDOS functions can be set
churning away in separate windows. While this
multitasking is somewhat similar to the facilities of­
fered by the RUN command, opened CLI windows
remain available until closed by the ENDCLI
command.

AmigaDOS currently supports a maximum of 20
open CLI windows.

NEwell [AUX: or CON: hpos/vpos/width/height/
windowtitle] [FROM filename]

[AUX: or CON: hpos/vpos/width/height/
windowtitle] CON: lets you specify the size, posi-
tion, and title of the new CLI window (if the
NEWCON: device has been MOUNTed, NEWCON:
can be substituted for CON:). CON: is required if
any of the following parameters are specified.

• hpos is the horizontal position of the top left corner
of the window (expressed as the number of pixels
in from the left edge of the screen). If a value for
hpos is omitted, it's assumed to be zero.

219

NEWCLI Command

220

• vpos is the vertical position of the top left corner of
the window (expressed as the number of pixels
down from the top edge of the screen). If a value
for vpos is omitted, it's assumed to be zero.

• width and height, which must be specified, give the
size of the window in pixels. The maximum size for
a CLI window is the screen size, 640 X 200 pixels.
The minimum is 90 X 25 pixels. Unless a window
of exact size is required, it's usually easier to resize
and drag a default size NEWCLI window (200 X 100
pixels) to a desired size and screen location rather
typing the required size parameters.

• window title, which is optional, allows you to enter
the text of a title to appear in the title bar. If you
want to set window title, all preceding parameters
must also be set. If you don't enter any text for
window title, the title bar is left blank. Even if you
want the title bar to be blank, the last slash U) fol­
lowing height is required. Titles with spaces can be
entered, but quotation marks must enclose the en­
tire list of NEWCLI parameters-see example 3 be­
low. (The default title, if you do not specify any
parameters, is New CLI.)

Although CON: and NEWCON: windows are
the most likely targets of a NEWCLI window, you
may also direct the input and output of a CLI win­
dow out the serial port by mounting the AUX: device
and then issuing a "NEWCLI AUX:" command. Such
a CLI will only be able to effectively run text-based
programs that direct their output to the CLI window
and cannot be used to cancel requesters like Insert
volume Workbench in any drive.
[FROM filename] This option allows you to speci-
fy a batch file that is to be executed automatically
when the CLI opens, just like the s:startup-sequence
file executes when the initial CLI window opens. As
of version 1.3, if you do not specify a startup file,
NEWCLI attempts to execute a default startup file,
s:CLI-Startup, if such a file is present in the s: direc­
tory. Use of the default startup file allows you to re­
tain settings like the CLI prompt that do not carry
over from one CLI to the next.

Examples

N EWCLI Command

1. Create a new CLI window using AmigaDOS's de­
faults. The upper left corner of the new 200 X 100
window will be located at the top left corner of the
screen. The new window will be titled New CLI:
NEWCLl

2. Create a 250 X 125 pixel CLI window in the up­
per left corner of the screen. The new window is to
have no title:
NEWCLl CON://250/125/

3. Create a new CLI window 450 X 40 pixels, locat­
ed 25 pixels to the right and 30 pixels below the up­
per left corner of the screen. The new window is to
have the title Flying High with CLI:
NEWCLl "CON:25/30/450/40jFlying High

with CLI"

4. Create a new CLI that uses the serial port for in­
put and output:
NEWCLlAUX:

221

NEWSHELL Command

NEWSHELL Command

Purpose

Format

Explanation of
Parameters and
Keywords

222

NEWSHELL opens an interactive Shell using a
NEWeON: console window if the Shell-Seg has
been made resident and the NEWeON: device
MOUNTed. This Shell is an enhanced eLI that was
introduced in version 1.3. It supports features such
as command aliases, resident commands, and a
prompt that reflects the current directory.

In order to open a Shell window, the Shell-Seg
program must have been made resident with the
command
RESIDENT eLI L:Shell-Seg SYSTEM pure

If Shell-Seg has not been made resident, the
NEWSHELL command will open a normal eLI win­
dow instead of a Shell window, but will still try to
use a NEWeON: window. If the NEWeON: device
hasn't been MOUNTed, NEWSHELL will use a
eON: window instead.

NEWSHELL [AUX: or NEWCON: hposjvposjwidthj
heightjwindowtitle] [FROM filename]

[AUX: or NEWCON: hposjvposjwidthjheightj
windowtitle] NEWeON: lets you specify the size,
position, and title of the new Shell window (if the
NEWeON: device has not been MOUNTed, CON:
can be substituted for NEWCON:). See NEWCLI,
above, for details.

As with NEWCLI, NEWSHELL can be used to
open an interactive Shell through the serial port,
with the command "NEWSHELL AUX:".

[FROM filename] This option allows you to speci-
fy a batch file that is to be executed automatically
when the Shell opens, just like the s:startup-sequence
file executes when the initial CLI window opens. If
you do not specify a startup file, NEWSHELL at­
tempts to execute a default startup file, s:Shell­
Startup, if such a file is present in the s: directory.
Use of the default startup file allows you to retain
settings such as command aliases that do not carry
over from one Shell to the next.

Example

NEWSHELL Command

Create a new Shell window 450 X 100 pixels, locat­
ed 25 pixels to the right and 30 pixels below the up­
per left corner of the screen. Shell-Seg has already
been made RESIDENT and NEWCON: has been
MOUNTed. The new window is to have the title My
Shell:

NEWS HELL "NEWCON:25/30/450/100/My Shell"

223

PATH Command

PATH Command

Purpose

Format

Explanation of
Parameters and
Key Words

224

Changes or displays the search path used by
AmigaDOS to locate a command file. When you type
a command at the CLI prompt, AmigaDOS first
looks for the command file in the current directory­
if the file is not there, DOS looks for it in whatever
directory was assigned as the C: directory. (See
Chapter 2 for more information on search paths.)
The PATH command allows the user to specify addi­
tional directories to be searched after the current di­
rectory but before the C: directory.

It also can be used to display the current search
path.

PATH [SHOW] [ADD] dir [,dir, dir ...]
[RESET dir, dir, dir ...] [QUIET]

[SHOW] This optional key word displays the
search path that AmigaDOS is currently using. Typ­
ing the command PATH accomplishes the same
thing. The current search path is displayed in the
following format:
Current directory
Workbench 1.3:System
C:

[ADD] dir The optional ADD key word allows
you to add from one to ten additional directories to
the current search path. The same effect may be
achieved by typing PATH, followed by one or more
directory names. The dir parameter is the name of
the directory or directories to add. This directory
may be specified relative to the current directory, or
the entire pathname may be used to specify it. If
more than one directory is added, each directory
name is separated by a space. Each new directory
that's added gets searched after the other user­
specified directories, but before the C: directory.

[RESET dir] The optional RESET key word is used
to delete the current search path and optionally to
replace it with one or more directories. The optional
dir parameter is the name of the directory to be
added to the search path. This directory may be

Examples

PATH Command

specified relative to the current directory, or the en­
tire path name may be used to specify it. If more
than one directory is added, each directory name is
separated by a space. If no directory names are spec­
ified, the default search path is reset to the current
directory and the C: directory.

[QUIET] This optional keyword was added in ver-
sion 1.3. It can be used in combination with the
SHOW option to supress the "Please insert volume
xxx" requester for disks that aren't currently mount­
ed. When the QUIET option is used, only the vol­
ume name will be diplayed for paths in unmounted
volumes.

1. Add the System and Utilities directories on the root
directory to the current search path:
PATH ADD :System :Utilities

or
PATH :System :Utilities

2. Display the current search path, suppressing the
"Please insert volume" requester for unmounted
disks:
PATH SHOW QUIET

or
PATH QUIET

3. Reset the search path to the current directory and
the C: directory:
PATH RESET

4. Replace the current search path with the Demos
and Utilities directories in the root directory of the
disk in the external 31h-inch disk drive:
PATH RESET dfl:Demos dfl:Utilities

225

PROMPT Command

PROMPT Command

Purpose

Format

Explanation of
Parameters and
Keywords

Examples

226

The PROMPT command changes the prompt for the
currently active CLl or Shell. The default prompt for
any given CLl is n>, where n is the task number as­
sociated with that CLl. For instance, if only one CLl
has been started, its prompt is 1>. If two more CLl
windows are then started with the NEWCLl com­
mand, their prompts will be 2> and 3>. When used
with a Shell window, PROMPT can automatically
display the current directory as part of the command
prompt.

PROMPT prompt

prompt The string you want to substitute for the
active CLl's prompt. If no value for prompt is speci­
fied, the CLl prompt will be changed to >. prompt
may be a maximum of 59 characters. If it contains
spaces, the entire prompt must be enclosed by dou­
ble quotation marks. Note the ANSI escape se­
quences shown in the table in Chapter 2 can be used
in the prompt string to change the prompt to a dif­
ferent color, or italics.

There's a special substitution string allowed with
the value specified for prompt. If prompt contains the
two-character combination %N, the task number as­
sociated with the current CLl is substituted for those
two characters. The Workbench 1.3 Shell adds an­
other substitution string. When the characters %S
are used in a Shell prompt, they are replaced with
the current directory path.

1. Change the current CLl prompt to Ready]:
PROMPT Ready]

2. Change the current CLl prompt to Really Ready
(with a trailing space):
PROMPT "Really Ready"

PROMPT Command

3. Change the current CLI prompt to eLI n Ready
(with a trailing space, and where n is the current
CLI's task number):
PROMPT "eLI %N Ready "

4. Change the current Shell prompt to show the
Shell task number and current directory, separated
by angle brackets (»:

PROMPT "%N»%S» "

5. Change the current CLI prompt to >:
PROMPT

227

PROTECT Command

PROTECT Command

Purpose

228

PROTECT allows you to alter the attributes of
AmigaDOS files and directory entries. Originally,
there were protection flags associated with each of
four attributes. These flags are r, W, e, and d; they
tell the system if the file or directory entry may be
read (r), written over (w), executed (e), or deleted
(d). In Workbench 1.3, three more flags were added.
These flages are s, p, and a. They indicate whether
the file is a script that may be directly executed from
a Shell (s), a pure command file that may be made
resident (p), or if the file has remained unchanged
since the last archival backup (a).

The LIST command is used to examine the sta­
tus of a file or directory entry. In the display provid­
ed by the LIST command, there's room for eight
characters to the left of the date information. Seven
of these characters, sparwed, correspond to the seven
protection status flags. When a file or directory entry
is first created, the last four flags are turned on and
they can be modified thereafter using PROTECT. The
three new bits must be set either by the user or by a
backup program.

If a flag character is present in the LIST display,
it is said to be on, and the operation may be carried
out. The Read flag lets you read from a file or direc­
tory entry, the Write flag lets you update the file or
directory with new information, the Delete flag al­
lows the file or directory entry to be removed alto­
gether, and the Execute flag is meaningful only for
files that are actual programs for the Amiga. The Ex­
ecute flag allows DOS to execute (run) the program.
If you set the Execute flag on a non program file (like
a text file, for instance), you cannot expect DOS to
load and run the file. The Script bit will allow you to
execute a script file just by typing the name of the
file at the Shell prompt. Remember, this only works
with a Shell window, not a CLI, and the file name
must be of a valid script file. The Pure bit is used in
connection with the Resident Shell command, and
indicates that a command is suitable for being made
resident. The Archive bit is used mostly by back-up

Format

Explanation of
Parameters and
Keywords

PROTECT Command

programs, to indicate which files have not changed
since the last back up.

If a flag is off, the LIST display shows a dash (-)
in place of the flag character.

It is important to note that of the initial four bits
(rwed), only the Delete and Execute flags work. You can
set the others, but DOS does not act on those settings.

PROTECT [FILE] name [FLAGS] [SHP][A HRHw]
[EHDHADD or +] [SUB or -]

[FILE] name The name of the file whose protec-
tion flags are to be modified; name, which is manda­
tory, may be any valid AmigaDOS filename or
directory name. The FILE keyword is optional.

[FLAGS] [S][PHA][R][W][E][D] The protection flags
that will be turned on by PROTECT. The FLAGS
keyword does not have to be entered-it's optional.
The protection flags to be turned on must be speci­
fied as a single string in any desired order. Remem­
ber that if a flag is set to on, the operation associated
with the flag can be carried out. If no flags are speci­
fied, all flags are turned off. These are the operations
associated with each flag:

S-Script
P-Pure
A-Archive
R-Read
W-Write
E-Execute
D-Delete

Note: Some AmigaDOS commands (notably
COPY) will actually delete an existing file and create
a new one with the same name rather than overwrit­
ing a file. For this reason, COpy and other com­
mands that behave in this manner will fail for files
that are protected from deletion.

[ADD or +]
[SUB or -] Version 1.3 of the Protect command now
allows you to add or subtract individual bits rather
than requiring you to set all of a file's flags at once.
To set specific flags, you can name the flags and fol­
low them with the keyword ADD, or just put a plus

229

PROTECT Command

Examples

230

sign (+) in front of the initials. To turn off specific
flags, follow the list with the keyword SUB, or pre­
cede it with a minus sign (-).

1. Make the file S:Script executable directly from a
Shell window:
PROTECT FILE Script S ADD

or
PROTECT Script + S

2. Protect the file Public Knowledge in subdirectory
: info / expose from being deleted. If it's a program, let
it be executed. The file may be read but not written
to:
PROTECT ":info/exposejPublic Knowledge" RE

3. Protect a file called transitory on the system's
RAM disk from being read, written to, deleted, or
executed:
PROTECT RAM:transitory

4. Reset a file called Enough Already on drive df1: to
the protection attributes it had upon creation:
PROTECT "dfl:Enough Already" DWER

5. Protect a directory entry called shuttle/columbia
from being deleted:
PROTECT shuttle/columbia WER

QUIT Command

QUIT Command

Purpose

Format

The QUIT command is used within command se­
quence files (see Chapter 5 for complete information
on command files). The QUIT command allows you
to exit a command sequence file and, optionally, to
set the return code.

QUIT [returncode]

Explanation of returncode The return code that is reported when
Parameters and the command sequence file is terminated by a QUIT.
Keywords f I returncode is nonzero, the message

Examples

quit failed returncode returncode
is displayed on the screen, with the number specified
substituted for returncode. If returncode is set to zero
or is not specified, no message is displayed on termi­
nation of the command sequence file by QUIT.

1. Exit a command sequence file using the QUIT
command. The QUIT in the following example is ex­
ecuted only if the file wolfbane is found on drive
df1:. No return code is to be set:
IF dfl :wolfbane EXISTS
ECHO "Get the silver bullets"
QUIT
ENDIF
TYPE :Transylvania/here/I/come

2. Exit a command sequence file using the QUIT
command. A return code of 88 is to be set:
ECHO "This is just a silly example"
QUIT 88
LIST

The LIST command in the above example will
never be executed. The message quit failed returncode
88 will be sent to the system display when the QUIT
88 is executed.

231

RELABEL Command

RELABEL Command

Purpose

Format

Explanation of
Parameters and
Keywords

232

RELABEL lets you change the volume name associ­
ated with a floppy disk. Volume names are initially
assigned when a disk is formatted by the FORMAT
command or created by a DISK COPY operation.

Note: RELABEL does not prompt you for the
disk to be inserted. If you have a single-drive system
and insert the disk you want to relabel ahead of time
and then issue the RELABEL command, you'll be
prompted to insert the disk with the command li­
brary on it in any disk drive. Once you do so, RE­
LABEL promptly renames the volume with the com­
mand library on it. The following procedure will
work for single-drive system owners.

COpy :C/RELABEL TO RAM:

Change disk now.
RAM:RELABEL df0: NewName

RELABEL [DRIVE] drive [NAME] name

[DRIVE] drive The disk drive in which the disk to
be relabled is mounted. The DRIVE keyword is op­
tional if drive precedes the volume name in the RE­
LABEL statement.
[NAME] name The volume name which will re-
place whatever name is currently associated with the
target disk; name may be up to 30 characters long. If
the volume name contains spaces, quotation marks
must enclose it. The NAME keyword is optional if
name follows drive.

Note: Under AmigaDOS Versions 1.0 and 1.1,
RELABEL fails if no drive is specified or if name is
omitted. However, RELABEL does succeed (in a
strange kind of way) if the NAME keyword and
name are specified, and if anything else is entered on
the line. For instance,
RELABEL gorko NAME "This is Weird"

and
RELABEL NAME "This is Weird" garbage

Examples

RELABEL Command

both relabel the volume located in the present de­
fault drive with the specified name This is Weird.
Life-and AMigaDOS-can be strange. (It's the
opinion of the authors that this is either a bug or a
feature of AmigaDOS with deep transcendental
meaning.)

1. Relabel the disk in drive dfl: as Various Programs:
RELABEL DFl: "Various Programs"

2. Relabel the disk in drive dfO: as Home on the
Range:
RELABEL NAME "Home on the Range"

DRIVE DF0:

Notice that in this example, both NAME and
DRIVE were specified since their order was switched
in the RELABEL statement.

233

REMRAD Command

REMRAD Command

Purpose Allows you to remove the recoverable RAM disk de­
vice, RAD:, from the system without turning off the
power. Although this device's ability to survive a
warm boot can be very handy, it also presents a
problem when you decide to deallocate the memory
set aside for the RAM disk. REMRAD commands the
device to delete all of its files and release most of its
memory. The next time the system reboots, the re­
coverable RAM disk is removed entirely.

Format REMRAD

Explanation of None
Parameters and
Keywords

234

RENAME Command

RENAME Command

Purpose

Format

Explanation of
Parameters and
Keywords

RENAME allows you to change the name of
AmigaDOS files and directories. AmigaDOS's RE­
NAME function also lets you move files from one di­
rectory to another on the same disk and reorganize
directory structures at will.

RENAME [FROM] fromname [TO or AS] toname

[FROM] fromname The file or directory that's to
be renamed. The FROM keyword is not required if
fromname is the first argument of a RENAME
statement.

[TO or AS] toname The new name to be given to
the file or directory specified by from name. The TO
and AS keywords may be used interchangeably and
are optional if toname is the second argument of a
RENAME statement. If fromname already exists, RE­
NAME will fail.

Note: fromname and toname must reside on the
same disk volume.

RENAME's ability to manipulate AmigaDOS di­
rectory structures makes this one of the most power­
ful AmigaDOS commands and, consequently, a com­
mand that should be used with great care. An entire
directory, including all files, subdirectories, and files
within its subdirectories may be moved to another
location in the volume's directory tree structure with
a single RENAME.

For instance, suppose the directory structure of a
disk volume looks like this:

235

RENAME Command

Animals, Part One

Root

Birds Reptiles Fish

South North East
Gills Eels

...--___1..-----. Guppies Catfish

Snakes Lizards

Cobra Bull

Issuing the following RENAME command:
RENAME :FISH/GILLS :REPTILES/SNAKES/BULL

/pETS

results in a new directory structure.

Animals, Part Two

South

236

Root

Birds Reptiles

North East

Snakes Lizards

Cobra Bull

Guppies

Pets
I

Catfish

Fish

Eels

Examples

RENAME Command

1. Rename a file called birddog to hounddog:
RENAME birddog hounddog

2. Move a file called Lights Out to a directory called
HeavyMetal//Geils. The filename is to remain the
same:
RENAME "Lights Out" ":HeavyMetal/JGeils/

Lights Out"

3. Move a directory called LaserDiscs and all the files
and subdirectories within it to a directory called
Phils/Video. The directory name is to remain the
same:
RENAME LaserDiscs Phils/Video/LaserDiscs

4. Move a file called Apple in the fresh/fruits directo­
ry to a directory called Desserts/Light. The filename
is to be changed to Rome:
RENAME fresh/frui ts/ Apple Desserts/Ligh t/

Rome

5. Move a directory called Ancient Computers and all
the files and subdirectories within it to a directory
called 8-Bit Processors. The directory name is to be
changed to Ancient History:
RENAME "Ancient Computers" "8-Bit

Processors/Ancient History"

237

RESIDENT Command

RESIDENT Command

Purpose

Format

Explanation of
Parameters and
Keywords

238

The RESIDENT command is used to load programs
into memory and to keep them resident there where
they may be executed without having to load them
from disk each time. This not only saves the time re­
quired for loading the command, but also can save
memory in a multitasking environment, since several
Shell windows can execute the same program code
simultaneously without having to load a separate
copy of the program for each Shell. Note, however,
that commands may be made resident only from a
Shell window and not from a regular CLI.

RESIDENT name filename [REMOVE] [ADD]
[REPLACE] [PURE] [SYSTEM]

name An optional resident name for the program.
For example, you may choose to call your resident
version of the DIR program by the letter D. If no res­
ident name is specified, the filename is used as the
resident name.
filename The name of the file to be made resi-
dent. The full pathname should be used.

Not all commands may be made resident. Resi­
dent commands must be reexecutable, which means
that they must be able to be run a number of times
in a row without being reloaded or reinitialized.
They must also be reentrant, which means that the
same copy of the program must be able to be execut­
ed from different Shells simultaneously. Many of the
programs in the C directory of Workbench 1.3 can
be made resident, and their files have the pure pro­
tection bit set to indicate this fact.

[REMOVE] This keyword is used to remove the
indicated resident name from the resident list. This
operation will succeed only if the resident command
is not currently in use.

[ADD]
[REPLACE] Either of these keywords acts like the
default RESIDENT command with no options speci­
fied. That is, if these keywords are used without a

RESIDENT Command

filename (RESIDENT ADD or RESIDENT RE­
PLACE), the command lists the programs on the res­
ident list. If either is used with a filename, the
RESIDENT command tries to place that file on the
resident list. If there is another file with the same
filename or resident name already on the list, the
new command will replace the old one, unless the
old one is already in use and cannot be deleted.

[PURE] Normally, a command cannot be made
resident unless its file has the pure bit set (see PRO­
TECT). When the PURE keyword is used however,
RESIDENT is forced to load the program whether or
not the pure bit is set, and to print the warning mes­
sage "Pure bit not set". Of course, the file still must
be an executable program-RESIDENT can't make a
data file resident.

Using the PURE option to make a possibly un­
suitable command resident is a hazardous proposi­
tion that can lead to a system crash. Therefore, if
you wish to experiment with making commands res­
ident, try to do so under conditions that won't lead
to catastrophic data loss. Don't experiment with
RESIDENT and then go to work on your most im­
portant project.

[SYSTEM] This option is used to add a command
to the system porition of the resident list. Once
added, this command cannot be deleted by the user.
The most common use of this keyword is to add the
Shell-Seg program that enables Shell windows in
place of ordinary CLI windows. The command you
use to make the Shell-Seg resident is:
RESIDENT eLI L:Shell-Seg SYSTEM

If used without a filename, the SYSTEM key­
word can be used to list the resident system com­
mands along with the resident user commands.

239

RESIDENT Command

Examples

240

1. Make the DIR command resident, using the resi­
dent name D:
RESIDENT D C:DIR

2. Remove the EXECUTE command from the resi­
dent list:
RESIDENT execute REMOVE

3. List all of the commands (including the system
commands) on the resident list:
RESIDENT SYSTEM

RUN Command

RUN Command

Purpose

Format

Explanation of
Parameters and
Keywords

The RUN command may be used to create a system
eLI task that executes in the Amiga's background (in
other words, the task doesn't present you with an in­
teractive eLI window). RUN allows multiple
AmigaOOS commands to be executed in sequence.
Once all commands given to a RUN statement are
executed, the background task disappears.

When RUN is initiated the system prints the
message

[eLI nJ
where n is the task number assigned to the back­
ground task. Immediately after the message is is­
sued, control is returned to the eLI from which RUN
was issued. The background task keeps running until
all commands are completed or until the task is in­
terrupted by the BREAK command. The commands
are executed sequentially. If any command fails with
an error code, the background task terminates and
removes itself.

As of Workbench 1.3, RUN checks the resident
list before looking in the current directory for a com­
mand so that it uses the resident copy if available.
Also, if the output of the RUN command is redirect­
ed to the NIL: device, the existence of a background
task will no longer prevent the closing of the eLI
window from which that task was launched.

RUN command + command""",

command + command""", This is the AmigaOOS
command you want executed in the background.
More than one command may be strung together in
a RUN sequence. To build a RUN with multiple
commands, end each command line with a plus sign
(+) and press RETURN. RUN treats the plus sign as
a command delimiter. The cursor will jump to the
beginning of the next line, at which point you may
enter another command. Keep ending each com­
mand line with a + until you've entered the last one
for this RUN sequence. End the last command line
with a RETURN (without a + preceding it). RUN

241

RUN Command

Examples

242

then begins processing the commands-one by
one-in the background. You may receive messages
and requester boxes from background tasks.

1. Print a complete directory and file listing of the
current drive to the printer. The print operation is to
be executed in the background:
RUN DIR > PRT: OPT A

2. Format a blank disk in drive dfl: and then install
boot files on the newly formatted volume. Print a
message on the screen when the format and install
are done. The operations are to be executed in the
background by a single task:

RUN FORMAT DRIVE DFl:NAME EMPTY +
INSTALL DFl: +
ECHO "Format and Install Finished"

3. Execute the command sequence file My Command
File located on the system RAM disk. The command
file is to be executed in the background by a single
task:
RUN EXECUTE "RAM:My Command File"

4. Start the Clock program as a background task and
redirect the output of the RUN command to NIL: so
that you can close the eLI while Clock is still
running:
RUN> NIL: Clock

SAY Command

SAY Command
(Moved to SYS:SYSTEM drawer in Workbench 1.2, and to
SYS:UTILITIES in Workbench 1.3)

Purpose

Format

Explanation of
Keywords and
Parameters

The SNi command is used to invoke the Amiga's
built-in speech synthesis capabilities. The quality
and speed of speech may be controlled by the user.
SNi has two modes-interactive and direct.

In direct mode, the text to be spoken or an
AmigaDOS file containing the text to be spoken is
specified on the command line with the keyword
SAY.

Interactive mode is entered by typing SAY by it­
self. Two windows will appear on the system screen.

The Phoneme window initially displays the op­
tion codes that may be used to control the quality
and speed of the synthesized voice. As text is spo­
ken, the phoneme codes that SNi uses are displayed.

The Input window is where text you wish spo­
ken is displayed as it's typed in. The text is passed to
SNi when the RETURN key is pressed. The interac­
tive mode is exited by typing a line consisting only
of a RETURN keystroke.

The SNi command was added to AmigaDOS in
Release 1.1.

SAY [options] [text]"""""

[options] Control the quality, pitch, speed, and
source of the text to be spoken. SNi identifies option
by a leading dash (-). These are valid options for
SAY:
Option Function
-m
-f
-r
-n
-s###
-p###

-x file

Use male voice.
Use female voice.
Use robot voice (monotone).
Use natural voice.
Set speech rate to ### (valid values are 40-400).
Set pitch of voice to ### (valid values are
65-320).
Say contents of file. The -x option may not be
invoked in the interactive mode of SAY; file
must be an AmigaOOS file in the current direc­
tory and may not contain any spaces or be en­
closed in parentheses.

243

SAY Command

Examples

244

Multiple options, separated by spaces, may be
specified at one time.
[text] The text to be spoken.

Try all these examples in interactive mode.

1. SRi a phrase using a high female voice at a rela­
tively slow rate:
SAY -f -p250 -s130 Why don't you come up

and see me sometime

2. SRi the contents of the file gettysburg:
SAY -x gettysburg

3. Have your Amiga carryon a conversation with
itself:
SAY -f -p250 -s130 Hi blitter -n -p140 -s175 Hi

workbench -f -p250 -s130 What's up -n -p140
-s175 Oh just talking to myself -f -p250 -s130
Not a bad idea blitter be seeing you around

Note: You'll soon discover that the options,
when used in both direct and interactive modes, pro­
duce significantly different sounds.

SEARCH Command

SEARCH Command

Purpose

Format

Explanation of
Parameters and
Keywords

SEARCH lets you scan AmigaDOS files for a speci­
fied string of characters. You may SEARCH a single
file, all files matching an AmigaDOS pattern, all files
within a directory, and optionally, all files within a
directory's subdirectories.

SEARCH displays the name of the AmigaDOS
file currently being searched and, if the search text is
found, all lines containing the search text. Each dis­
played line is preceded by a line number. As of
Workbench 1.3, the command returns a code of zero
if the object is found, and 5 (WARN) if it isn't,
which makes the command more useful in scripts.
The CTRL-C key combination may be used to stop
the search.

AmigaDOS treats the carriage return character
as an end-of-line character. SEARCH examines only
the first 205 characters of each line. If SEARCH
comes across a line longer than 205 characters, the
message LINE n truncated displays, and SEARCH
continues.

SEARCH [FROM] name [SEARCH] string [ALL]
[NONUM] [QUIET][QUICK] [FILE]

[FROM] name The file or directory that you want
searched; name may also be an AmigaDOS pattern.
(See Chapter 3, liThe Filing System," for detailed
information on patterns and their uses). If name is
the first argument in the SEARCH command, the
FROM keyword is optional.

[SEARCH] string The text string that will be
searched for. If string is the second argument in the
SEARCH command, this second SEARCH keyword
is optional. If string contains any spaces, it must be
enclosed in quotation marks. Case (uppercase, lower­
case) within string is ignored by SEARCH. A search
string of RUBBER DUCKY, for instance, will match
the text found in a file that contains the phrase Ernie
bought his rubber ducky an Amiga.

245

SEARCH Command

Examples

246

[ALL] If the ALL keyword is specified and name is
an AmigaDOS directory, all files within the directory
and its subdirectories are searched.

[NONUM] This option, added in version 1.3,
supresses the output of line numbers along with the
strings.

[QUIET] This option, added in version 1.3,
supresses all output to facilitate the use of the com­
mand in scripts.
[QUICK] The QUICK option, introduced in ver-
sion 1.3, uses a more compact format for the output.

[FILE] The FILE option, new for version 1.3,
searches for a file whose name is exactly the same as
string, rather than searching for the string within the
contents of the file. If the file is found, its name is
printed but, unfortunately, not its full pathname.
Thus, SEARCH will let you know if the file exists.

1. Search all files within the directory called
Mayan/Civilization and all files within its subdirec­
tories for the phrase ancient astronauts:
SEARCH Mayan/Civilization "ancient

astronauts" ALL

2. Search a file called MyLetters for the word gorilla:
SEARCH MyLetters gorilla

3. Search all files that end with .bills in the current
directory for the phrase blank disks. Redirect the
QUICK output to the system printer:
SEARCH> PRT: #?bills "blank disks" QUICK

; (Semicolon) Command

; (Semicolon) Command

Purpose

Format

The semicolon (;) command allows the insertion of
informational comments in command sequence files.
The comments may be on the same line as other
AmigaDOS commands or they may stand by them­
selves on separate lines. Anything to the right of a
semicolon in an AmigaDOS command line is consid­
ered a comment.

; [comment]

Explanation of [comment] May be any text string, up to 254 char-
Parameters and acters in length (if the; is the first character of a
Keywords line).

Example Here is a simple example of a command sequence
file with comments, using the; command. Remem­
ber, everything to the right of a semicolon is consid­
ered a comment.
; Niagra Falls Routine
IF Curly EXISTS ; Test for a stooge
SAY Slowly I turned ; Set em up for the gag
WAIT 5 SECS ; Dramatic pause
SAY Inch by Inch
ELSE
;Sign off without gag
SAY th th th thats all folks
ENDIF

247

SETCLOCK Command

SETCLOCK Command

Purpose

Format

Explanation of
Parameters and
Key Words

Example

248

SETCLOCK is used to copy the time and date from
the hardware clock on the 2000 (optional on the
500) to the AmigaDOS software clock, or vice versa.
It only works with Commodore's own clock/calendar.

SETCWCK WAD or SAVE or RESET

WAD or SAVE or RESET One of these three
keywords must be used with SETCLOCK. If the
SAVE option is used, the current AmigaDOS system
time and date (the one set with the DATE command)
is copied to the hardware clock. If the LOAD option
is used, the stored time and date is copied from the
hardware clock to the system clock (this is usually
performed in the startup sequence). The RESET op­
tion is used to start the clock up again if it has been
turned off by some runaway program that accidently
wrote to its hardware registers.

Set the system time and date from the hardware
clock:
SETCLOCK LOAD

SETDATE Command

SETDATE Command

Purpose

Format

Explanation of
Parameters and
Key Words

Changes the date or time associated with a file or di­
rectory. The time and date of the file creation can be
displayed with the LIST command.

SETDATE is useful when the date and time as­
sociated with a directory or file doesn't reflect its
true creation date, either because the date and time
wasn't set correctly when the file was created or be­
cause the file was copied from another disk, in
which case the date-stamp reflects the date of the
copy, not the date of creation. It can also be use to
manipulate a "make" type program, which directs a
C compiler to compile files based on the date-stamp.

SETDATE name [date] [time]

name The name of the directory or file whose
date stamp you want to change. As of version 1.3, if
no date or time is included with the filename, the
file is set to the current system time and date.

[date] The day of the month, month, and the year
associated with the file. The date is usually specified
as DD-MMM-YY, where DD is a two-digit number
representing the day, MMM is a three-letter abbrevi­
ation of the month (such as FEB or JUN), and YY is
the last two digits of the year. The SETDATE com­
mand, like the DATE command, also allows indirect
references for setting the date, such as YESTERDAY
or WEDNESDAY. For more complete details, see the
DATE command.
[time] The optional time-stamp for the file, ex­
pressed in the format HH:MM:SS, where each is a
two-digit number representing the hours, minutes,
and seconds. Hours are set in 24-hour format, where
1:00 p.m. is referred to as 1300 hours. If minutes or
seconds are omitted, they're set to zero. If this op­
tional parameter is omitted, the time-stamp on the
file is set to 00:00:00.

249

SETDATE Command

Examples

250

1. Change the date-stamp of the Printers subdirec­
tory of the Devs directory on the Workbench disk to
show a creation date of January 5, 1987 at 1:56 p.m.:
SETDATE Workbench:DevsjPrinters 05-jan-87

13:56

2. Change the date-stamp of the file Mydata in the
current directory to midnight yesterday:
SETDATE Mydata Yesterday

3. Change the date-stamp of the file "Au Courrant"
in the current directory to the current time and date:
SETDATE Au Courant

SETENV Command

SETENV Command

Purpose

Format

Explanation of
Parameters and
Keywords

Example

SETENV is used to assign a text string to an environ­
ment variable, or to delete a text string already as­
signed to such a variable. An environment variable is
a named text string that is stored in an environment
space that is accessible to all tasks. As of Workbench
1.3, there is no formal environment handler; rather,
it is simulated through the use of an ENV: directory
that is created on the RAM: disk. For now,
"SETENV test TestString" is really the same as
"ECHO >ENV:test TestString". In future versions,
the environment variables may be stored in system
RAM, and manipulated by their own device handler.

SETENV varname [string]

varname The name of the environment variable to
set. Under the Workbench 1.3 system, this is the
name of a text file that is stored in the ENV: directo­
ry. Using the SETENV command copies the text
string to this file.

[string] The text string to assign to the environ-
ment variable. Like all such strings, if there are
spaces in the text, the entire string must be enclosed
in quotes. If no string is specified, an empty string
will be copied to the variable, effectively removing
the text string currently associated with it.

1. Copy the name Darlene to an environment vari­
able named Cubby:
SETENV Cubby Darlene

2. Remove the text string associated with the envi­
ronment variable named Annette:
SETENV Annette

251

SETMAP Command

SETMAP Command
(located in SYS:SYSTEM drawer)

Purpose

252

Changes the default key map of the keyboard, al­
lowing the use of different keyboard layouts for for­
eign countries.

The key map is a data table to which the Amiga
refers when a key is pressed. By changing this key
map, you can change which character is printed
when you press a particular key. For example, the
French keyboard has the letter Q reversed with the
letter A, so when you use the SETMAP command to
install the French key map, every time you press A,
a q appears, and vice versa. Key maps can also be
used to assign strings to the function keys.

The SETMAP command looks for its key map
data files in the Keymaps subdirectory of the directo­
ry designated as the logical device DEVS: (usually
the Devs directory of the startup disk). The standard
key map files on the 1.2 Workbench disk include:
cdn French Canadian
d German
dk Danish
e Spanish
f French
gb Great Britain

Italian
is Icelandic
n Norwegian
s Swedish
usaO Emulates the standard key mapping of the 1.1

Workbench.
usal Includes maps for additional numeric pad keys on

500/2000
usa2 Dvorak

Note that the usaO key map is provided for pur­
poses of compatibility with the 1.1 version of the
AmigaDOS. Since some changes were made to the
default key map in 1.2, some programs (such as the
commerical telecommunications program Online!) re­
quire that you install the usaO key map before run­
ning them.

Format

Explanation of
Parameters and
Key Words

Examples

SETMAP Command

Some of the new key maps implement a new
feature known as dead keys. A dead key is one that
prints out a character only when struck preceding
another character. It's often used for accented vow­
els. In order to produce an a with an accent mark
over it, for example, you might hit the accent key
first (the dead key). Nothing prints on the screen
when you hit the accent key, but if the next key you
press is an a, an accented a appears.

Complete information about the layout of the
various foreign keyboards is included in Introduction
to the Amiga. The Key toy program included on the
Extras disk in the Tools directory displays a graphics
representation of the current key map as well.

SETMAP mapfile

mapfile A key map data file describing the key-
board layout to be used. This file should be located
in the Keymaps subdirectory of the directory desig­
nated as DEVS:. In order to restore the default key
map, use the name usa for the mapfile. This key
map is part of the operating system, and need not be
read from a disk file.

1. Install the French language key map:
SETMAP f

2. Restore the default system key map:
SETMAP usa

253

SETPATCH Command

SETPATCH Command

Purpose

Format

Explanation of
Parameters and
Key Words

Example

254

SETPATCH is used to fix a few of the known bugs
in the Kickstart 1.2 and Kickstart 1.3 ROMs. It
should be run as the first command in the startup­
sequence file. The command prints a list of the patch­
es made.

SETPATCH [r]

[r] This optional switch is used to allow the re-
coverable RAM disk (RAD:) to recover sucessfully on
machines with one megabyte of CHIP RAM. It need
only be used with systems that include the 1 Mb
Agnus chip (on which AVAIL shows over 512K of
CHIP RAM). Note that the letter r should be in low­
ercase, as this command is case sensitive.

Patch the 1.3 Kickstart routines without printing a
list of the patches:
SETPATCH >nil:

SKIP Command

SKIP Command

Purpose

Format

Explanation of
Parameters and
Keywords

Examples

The SKIP command is used within command se­
quence files to jump to a specified label. If a SKIP is
executed, command execution continues immediately
after the label which was skipped to.

If SKIP is executed with no label specified, com­
mand execution continues with the commands fol­
lowing the next LAB command in the command file.

If a SKIP is executed and the label specified is
not found, or if a SKIP with no label searches to the
end of the command file without encountering a
LAB command, command file execution is terminat­
ed and the message label label not found by SKIP is
displayed.

As of Workbench 1.3, an option was added that
allows skipping backward in the file.

SKIP [string] [BACK]

[string] The string attached to a LAB command,
which SKIP searches for in the currently executing
command file. The search starts at the command fol­
lowing SKIP and continues downward toward the
end of the command file. If the matching LAB string
command precedes the SKIP command, SKIP will
not find it, and the command file terminates with an
error.

If string is not specified, the first LAB command
following SKIP will be skipped to.
[BACK] This option, added in Workbench 1.3,
starts the search for the specified label at the begin­
ning of the file, not at the line following the SKIP
command. You still may not SKIP backward past an
EXECUTE statement, however.

1. Transfer control to the commands immediately
following the next LAB filecontrol command in the
current command sequence file:
SKIP file control

255

SKIP Command

256

2. Transfer control to the commands immediately
following the next LAB command in the current
command sequence file:
SKIP

3. Transfer control to the commands immediately
following the preceding LAB Jumpback command in
the current command sequence file:
SKIP Jumpback BACK

SORT Command

SORT Command

Purpose SORT performs an alphabetic sort on contents of an
AmigaDOS text file. SORT is line-oriented.

Within a file, AmigaDOS treats any string of
characters that ends with a linefeed character as a
single line. SORT compares lines beginning with the
first character, unless a different sort start position is
specified via the COLSTART keyword. Lines that be­
gin with numbers will precede those that begin with
alphabetic characters in the sorted version of the
original file. Lines with numbers will be in ascending
order. Case is ignored by SORT. For instance, a
SORT of a file containing these lines:
1,234,576
a sunny spring day
AOK
rags to riches
.Hiya.
1
R2D2 and C3PO
3.14159
.0000000001

results in this output:
.0000000001
.Hiya.
1
1,234,576
3.14159
a sunny spring day
AOK
R2D2 and C3PO
rags to riches

SORT is not particularly fast, especially when
the size of the file to be sorted is longer than 50
lines. When operating on files close to 200 lines long
(approximately the largest file that can be sorted
using the CLl's default 4000-byte stack), SORT tends
to be downright slothlike. See the STACK command
description for details on how to change CLl's stack
size to accommodate sorts of larger files. SORT fails
if the file to be sorted is larger than the system's
available free memory.

257

SORT Command

Format

Explanation of
Parameters and
Keywords

Examples

258

SORT [FROM] fromname [TO] toname
[COLSTART n]

[FROM] fromname The name of the AmigaDOS
file whose contents are to be sorted. If fromname is
the first argument of a SORT command, the FROM
keyword is optional.

[TO] toname The name of the AmigaDOS file or
logical device that the sorted lines from from name
will be sent to. If toname is the second argument of a
SORT command, the TO keyword is optional;
toname must be different from fromname or the SORT
will fail.

[COLSTART n] Lets you specify that SORT will
compare lines beginning with the nth character in
each line. If n is given, the COL START keyword
must be used. If cOLSTART n has been specified
and lines are found to be equal, SORT attempts a
secondary sort of the equal lines, starting with the
first character of each line.

1. Sort the contents of a file called Mixed Up to a file
called InOrder:
SORT "Mixed Up" InOrder

2. Sort the contents of a file called Inventory in the
majorappliance/washers directory. Print the sorted
output on the system printer:
SORT :majorappliance/washers/lnventory PRT:

3. Sort the contents of a file called widgets located on
the system RAM disk, comparing lines beginning
with the fifth character of each. Display the sorted
output on the system screen:
SORT RAM:widgets ... COLSTART 5

STACK Command

STACK Command

Purpose

Format

Explanation of
Parameters and
Keywords

Examples

The STACK command may be used to display or set
aside the amount of stack space for the currently ac­
tive CLI. The stack space is used by AmigaDOS
commands and all other programs as a sort of inter­
mediate work area. The default stack size for a CLI
environment is 4000 bytes, which is large enough to
execute the vast majority of AmigaDOS commands
successfull y.

Two AmigaDOS commands may require a stack
size greater than 4000 bytes. If a SORT command is
executed on a file with more than 200 lines, or if a
DIR is issued against a file structure with more than
six levels of directories, the stack size should be in­
creased. The exact size is open to question. Accord­
ing to the developers of AmigaDOS, optimum stack
sizes for a specific heavy SORT or DIR are a matter
of trial and error.

You can also check the stack size of all active
system tasks with the STATUS command.

STACK [n]

[n] The amount of space, in bytes of memory, that
you wish to assign as stack space for the currently
active CLI. If n is omitted, the current stack size is
displayed.

1. Display the stack size of the currently active CLI:
STACK

2. Change the stack size of the currently active CLI
to 12,000 bytes:
STACK 12Q)Q)Q)

Footnote: Fun with STACK
Interestingly enough, STACK will let you specify an
amount (n) greater than the total amount of memory
in your system and will not crash the computer. You
might as well have crashed, though, since doing so
leaves no room in memory for any further Amiga­
DOS commands to be loaded for execution.

259

STACK Command

260

If you're really feeling adventurous and want to
see what a stack failure and subsequent system crash
looks like, make a copy of a CLI disk and boot it up.
Type
STACK 400
DIH

You'll be presented with a rather scary looking
requester box that tells you your disk has been cor­
rupted. Click the cancel button and you can watch
your Amiga give up the ghost. Don't worry, it's only
temporary. Reboot with CTRL-Amiga-Amiga and
you're back in business.

STATUS Command

STATUS Command

Purpose

Format

Explanation of
Parameters and
Keywords

The STATUS command displays system information
about active tasks. STATUS displays the stack size,
global vector size, priority, and segment list section
names associated with active tasks. A discussion of
these system variables is beyond the scope of this
book. For a complete explanation, see the AmigaDOS
Technical Reference Manual.

While STATUS information will normally be of
interest only to advanced programmers, there are
some uses of STATUS that may come in handy to
users of the RUN command. The CLI STATUS key­
word can be used to check what command is cur­
rently active in both foreground and background CLI
environments-something you may forget once you
execute a RUN. It can also be used to find the task
number of the task you wish to send a BREAK.

STATUS [tasknum] [FULL] [TCB] [SEGS] [CLlor
ALL] [COMMAND = filename]

[tasknum] The number of the task that STATUS is
to report on. If tasknum is not specified, all active
tasks are reported.
[FULL] FULL displays all the information normal-
ly reported by STATUS if the TCB, SEGS, and ALL
keywords were all specified. The FULL keyword is
optional.

[TCB] Causes STATUS to display information
dealing with the stack size, global vector size, and
priority of each active task known to the system. The
TCB keyword is optional.

[SEGS] Causes STATUS to display each active
task's segment list section names. The SEGS key­
word is optional.

[CLI or ALL] Specifying either CLI or ALL causes
STATUS to report on all currently active CLI tasks
and display the section names of all commands cur­
rently loaded within the CLls. The CLI and ALL
keywords are interchangeable and optional.

261

STATUS Command

Examples

262

[COMMAND = filename] This new option, added
in Workbench 1.3, prints the task number of the eLI
from which the program named in filename was run.
This allows you to send that program a BREAK-for
example, using a script file.

1. Display an abbreviated status report on all active
tasks:
STATUS

2. Display the segment list section names of task 3:
STATUS 3 SEGS

3. Print the stack size, global vector size, priority,
and segment list section names of each active task
known to the system on the system printer:
STATUS> PRT: FULL

4. Send a BREAK to the task running the WAIT
command:
STATUS >ram:temp COMMAND=Wait
BREAK <ram:temp > NIL: ?

TYPE Command

TYPE Command

Purpose

Format

Explanation of
Parameters and
Keywords

The TYPE command lets you output the contents of
any AmigaDOS file to the screen, a disk file, or any
AmigaDOS physical device.

TYPE is most often used to examine the con­
tents of a file, although it may actually be used to
copy a file. TYPE also has the capability of reformat­
ting its output to a special hexadecimal dump format
or of including line numbers at the beginning of
each output line.

TYPE's output may be paused by hitting the
space bar (or any other key) and resumed by hitting
the RETURN key, BACKSPACE key, or holding
down the CTRL-X key combination. Its output may
be canceled by breaking the command with CTRL-C.

TYPE [FROM] fromname [[TO] toname] [OPT Nor
NUMBER or OPT H or HEX]

[FROM] fromname The name of the file you want
TYPEd; fromname is required and may be any valid
AmigaDOS filename. The FROM keyword is option­
al and need not be specified if fromname immediately
follows TYPE.

[[TO] toname] The name of the file or device you
want the output of the TYPE operation sent to. The
TO keyword is optional if the first argument of
TYPE is fromname and the second argument is
toname. If no destination for TYPE's output is speci­
fied, the output is displayed on the screen. toname
may be an AmigaDOS file or an AmigaDOS device,
such as the printer (PRT:). If toname is an existing
file, its contents are overwritten; if toname is a file
that does not exist, it will be created by the TYPE
operation. If toname is a directory with files in it,
TYPE fails; if toname is an empty directory, the direc­
tory will be deleted and a file called toname created.

[OPT N or NUMBER or
OPT H or HEX] Adding OPT N or NUMBER to

a TYPE command instructs the system to precede

263

TYPE Command

Examples

264

each line output by TYPE with a line number.
AmigaDOS treats any number of characters within a
file ending with a linefeed as one line.

Specifying OPT H or HEX instructs TYPE to pro­
duce a formatted hexadecimal dump of the fromname
file's contents. The Nand H options are mutually ex­
clusive-only one can be specified. If either option is
specified using the initial instead of the full word,
the OPT keyword must be used.

1. Output the contents of a file in the current directo­
ry called textwiz on the screen:
TYPE textwiz

2. Copy a file called copyclone in a directory called
qwikbuck to a file of the same name in the directory
called copies on dfl:.
TYPE :qwikbuckjcopyclone dfl:jcopiesj

copyclone

3. Produce a formatted hexadecimal dump of a file
called objectcode on the printer:
TYPE objectcode PRT: OPT H

or
TYPE> PRT: objectcode HEX

4. List the contents of the file namelist with line
numbers before each line to a file on the system
RAM disk called tempname:
TYPE namelist RAM:tempname OPT N

VERSION Command

VERSION Command

Purpose

Format

Explanation of
Parameters and
Key Words

Displays the internal version number of the Kickstart
and Workbench disks used to start the computer. This
provides a eLI equivalent of the Version selection on
the Workbench's Special menu. The internal version
numbers give much more precise information about
which release is in use than the mere 1.2 identifier.
Programs that open one or more operating system li­
braries may specify the release required so that the
program doesn't try to use certain features not avail­
able with earlier versions of the system. With the of­
ficial 1.3 release, the VERSION command returns the
following information:
Kickstart version 34.5 Workbench

version 34.20

As of Workbench l.3, VERSION can also be
used to find the version and revision number of any
library or device, and to test for a particular version
in a script file.

VERSION libraryname or devicename [versionnum]
[revisionnum] [unitnum]

libraryname or devicename
[unitnum] This optional parameter can be used to
specify the library or device whose version you wish
to check. A library name ends in the letters ".li­
brary" (for example "graphics.library"), while a de­
vice name ends in the letters II .device" (for example
"trackdisk.device"). In the case of a device, an op­
tional unitnumber may be specified if the device has
more than one unit.

[versionnum]
[revisionnum] These optional parameters may be used
to verify that the version number (or revision num­
ber) is greater than the number specified. If the ver­
sion number (and possibly revision number) is
greater than or equal to the one specified, the com­
mand returns a code of zero. Otherwise, it returns a
code of 5 (WARN).

265

VERSION Command

Examples

266

1. Display information about the Kickstart and Work­
bench disks used to start the computer:
VERSION

2. In a script, check to see if the version of the
graphics library is greater than or equal to 34. Print a
warning message if it isn't.
VERSION graphics. library version=34
IF WARN
ECHO "Wrong version of graphics"
ENDIF

WAIT Command

WAIT Command

Purpose

Format

Explanation of
Parameters and
Keywords

Examples

WAIT can be used to put a task in a state of sus­
pended animation for a user-definable period of time
or until a specified time of day. WAIT can be used in
command sequence files or in conjunction with a
RUN command.

When WAIT is encountered by the system, the
task sits in a seemingly idle state for the specified
period of time and then continues with the next
command. Sending a BREAK to a WAITing task
causes the WAIT to conclude.

WAIT [n] [SEC or SECS] [MIN or MINS]
[UNTIL time]

[n] [SEC or SECS] [MIN or MINS] The amount of
time, in minutes or seconds, that the system will
wait. If n is omitted and the SEC or MIN keyword is
specified, n defaults to one (1). Using the SEC or
SECS keyword tells AmigaDOS to wait n seconds,
while using MIN or MINS causes the CLI task to
wait n minutes before continuing. SEC/SECS and
MIN/MINS keywords are optional. If they're omit­
ted, the default unit of time is seconds.

[UNTIL time] The time of day you want the cur-
rent process to wait until before continuing. If time is
specified, the UNTIL keyword is required; time must
be stated in the format HH:MM, where HH and MM
are the hour and minute of the day in military (24-
hour) time. If UNTIL time is used, the system will
"wake up" sometime between HH:MM:OO and
HH:MM:59.

1. Wait for one second:
WAIT

2. Wait for one minute:
W.AlT MIN

3. Wait for three minutes:
WAIT 3 MIN

or
WAIT 180

267

WAIT Command

268

4. Wait until 10:15 a.m.:
WAIT UNTIL 10:15

5. Set up a background process using the RUN com­
mand that will wait until 11 :00 p.m.; then copy all
the files in a directory called documents to a directory
on dfl: called backupdir:
RUN WAIT UNTIL 23:00 + COPY :documents/

#? to dfl:backupdir

WHICH Command

WHICH Command

Purpose

Format

Explanation of
Parameters and
Keywords

Example

The WHICH command, new for Workbench 1.3, can
be used to display the path for a particular com­
mand. The command in question must be on the res­
ident list, or in the current directory or search path.
If there is more than one version of the command
available to AmigaDOS, this command will tell you
WHICH version will be found first.

WHICH filename [NORES or RES]

filename The name of the file or directory or logi-
cal device to find. WHICH searches in the resident
list, the current directory, and the search path. If a
directory or logical device is specified, the ASSIGN
list is also checked.

[NORES or RES] If the NORES option is selected,
the resident list is not checked for the command. If
the RES option is selected, only the resident list is
checked.

1. Display the directory in which the Setmap pro­
gram is stored. Don't check the resident list:
WHICH SETMAP NORES

2. Display the directory to which the logical device
WP: is ASSIGNed:
WHICH WP:

269

WHY Command

WHY Command

Purpose WHY can be used to obtain additional information
about failing commands. AmigaDOS is relatively
friendly compared with most other computers' disk
operating systems. Most DOS systems will give no
error messages or, at best, minimal messages when a
command fails. Even when an error message is dis­
played, it's often a cryptic numeric that sends you
scurrying for the appendix of a DOS manual. When
AmigaDOS runs into a problem, it will usually dis­
playa message telling you that the command failed,
an English language description of the problem or a
requester box telling you what needs to be done. Is­
suing a WHY immediately after a command failure
can provide more detailed information on the reason
for the failure.

In some instances, WHY will indicate a numeric
return code as the reason for the failure. When this
happens, the FAULT command can be used to inves­
tigate the error code.

WHY can provide meaningful information only
if the previous command fails with a nonzero return
code. A WHY issued after a successful command, or
after a failed command which has already given you
all information available, results in the message The
last command did not set a return code.

Format WHY

Explanation of None
Parameters and
Keywords

Example A WHY command is issued after an EXECUTE com­
mand fails to get more information about the failure:
l>EXECUTE nowherefile
EXECUTE: Can't open nowherefile
l>WHY
Last oommand failed beoause objeot file not found

270

Appendix

AmigaDOS
Error Messages

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Appendix

AmigaDOS Error Messages

Eventually, you'll see an AmigaDOS error message. The code num­
bers and short messages listed below will appear when you use the
FAULT or WHY command. A short, albeit more detailed, explana­
tion of each is included here for your information.

103: insufficient free store
There's not enough contiguous free memory available to run the
invoked task. Additional memory may be freed by closing down
any unnecessary active tasks. Reboot the system and try again. If
this message still appears, consider installing additional memory in
your system.

104: task table full
You've attempted to run more than 20 concurrent tasks. Close
down any unnecessary active tasks and try again.

120: argument line invalid or too long
The arguments you've specified with an AmigaDOS command are
incorrect or do not apply. For a quick check of the argument tem­
plate for any AmigaDOS command (with the exception of the SRi
command), type a space and question mark (?) immediately follow­
ing the command and hit RETURN. See the "AmigaDOS Command
Reference" for complete specifications.

121: file is not an object module
The file you've attempted to run is not a binary program (remem­
ber, all AmigaDOS commands are actually programs extrinsic to
the CLI interpreter). AmigaDOS command sequence files are not bi­
nary programs. Use the EXECUTE command to start up a com­
mand sequence file.

202: object in use
The directory or file specified as an argument in the invoked
AmigaDOS command is being used by another active task. Wait
until the task using the file or directory has freed the object, then
try again.

203: object already exists
You've attempted to create a directory or file that already exists.
Rename or delete the existing object if you wish to use the speci­
fied name for a new file or directory.

273

Appendix

204: directory not found
You've referred to a directory which does not exist. Check the com­
plete pathname and spelling of the specified directory. LIST and
DIR may be used to get a complete listing of all the directories on a
disk. See the "AmigaDOS Command Reference" sections on the
LIST and DIR commands for complete information.

205: object not found
You've referred to a file or device which does not exist. Check the
spelling of the specified object. directory. LIST and DIR may be used
to get a complete listing of all the files on a disk. The ASSIGN
command can be used to check on the name of all logical and
physical devices known to the system. See the "AmigaDOS Com­
mand Reference" sections on the LIST, DIR, and ASSIGN com­
mands for complete information.

206: invalid window
You've attempted to open a new window on the screen with invalid
width, height, or position, or you've specified a physical device
which does not support display windows (for instance, SER: or
PAR:).

210: invalid stream name
The filename you've specified contains one or more invalid charac­
ters (control characters) or is longer than 30 characters.

212: object not of required type
The type of the object you've specified is incompatible with the in­
voked AmigaDOS command or options, for example, attempting an
operation on an AmigaDOS file that's normally associated with a
directory. See the" AmigaDOS Command Reference" for complete
information on the command and its options.

213: disk not validated
An error has occurred during the validation of a disk. The disk may
be bad or the validation process was interrupted before it was com­
pleted. If the disk was in use, try copying all of the existing infor­
mation on it to another disk. You cannot write to an unvalidated
disk.

214: disk write-protected
You've attempted to write to a disk whose write-protection tab is in
the write-protected position. If you're sure you want to write to the
disk, slide the write-protect tab so the small, square cut-out is com­
pletely covered.

274

AmigaDOS Error Messages

215: rename across devices attempted
You've specified different devices in the FROM and TO (or AS) ar­
guments of the RENAME command. Both arguments must reside
on the same device. See the" AmigaDOS Command Reference"
section on the RENAME command for further information.

216: directory not empty
You've attempted to DELETE a directory that's not empty. See the
"AmigaDOS Command Reference" section on the DELETE com­
mand for further information.

218: device not mounted
You've referenced a disk volume not currently in a disk drive.
Check the name specified, or locate the desired volume and insert
it in one of the system's drives, then try again.

220: comment too big
You've specified a comment which exceeds 80 characters in con­
junction with the FILE NOTE command. Try again with a shortened
version of the comment.

221: disk full
The disk that you've attempted to write to does not have enough
free space to complete the specified command. Free up enough
space by deleting any unneeded files and/or directories, or use an­
other disk.

222: file is protected from deletion
You've attempted to delete a file which has been protected from
being deleted by the PROTECT command. The status of a file's
protection flags may be examined using the LIST command. See
the" AmigaDOS Command Reference" sections on the PROTECT
and LIST commands for complete information.

223: file is protected from writing
You've attempted to write to a file which has been protected from
being written to by the PROTECT command. The status of a file's
protection flags may be examined using the LIST command. See
the" AmigaDOS Command Reference" sections on the PROTECT
and LIST commands for complete information.

224: file is protected from reading
You've attempted to read a file which has been protected from be­
ing read by the PROTECT command. The status of a file's protec­
tion flags may be examined using the LIST command. See the
"AmigaDOS Command Reference" sections on the PROTECT and
LIST commands for complete information.

275

Appendix

225: not a DOS disk
You've inserted a disk that is not an AmigaDOS format disk into
one of the system's drives.

226: no disk in drive
You've referenced a disk drive which does not contain a disk. In­
sert an AmigaDOS format disk in the specified drive and proceed.

276

Index

ABasiC program 16
ADDBUFFERS command 139-40
additional CLI processes, starting 17-20
ALIAS command 24
alternate character set, CLI and 14
ASK command 141
ASSIGN command 51, 57-58, 59, 62,

142-45
assignments, removing 62
autobooting 48
AUX: logical device 67
AVAIL command 146-47
background tasks 20-21, 76, 241-42
batch files. See command sequence files
BINDDRIVERS command 46, 48, 75, 148
block transfer commands, ED 96-97
.BRA directive 82
branching, command sequence files and

88-89
BREAK command 149
break function 15
bridge board 48-49
buffers, disk 75, 139-40
C: directory 59-60
CD command 38-40, 150-51
CHANGETASKPRI command 152
character deletion/insertion, ED and 92-93,

95
character operations, EDIT and 110
CLI 3, 7-9, 53

alternate character set and 14
command sequence files and 72-89
console 11
disk, creating 7-9
editing commands 11-14
environment 10-25
environment, accessing 5-6
esca pe cod es 14
icon, activating 5-6
linefeed and 13
pausing and restarting and 14-15
prompt, modifying 18, 226-27
starting additional processes 17-20
tasks, background 20-21, 76,241-42
tasks, keeping track of 20
window on Workbench 5, 76
window, importance of keeping at least

one open 20
window, opening 17-20, 67, 76, 218-21

clock, system 33, 76, 248, 249-50
third-party 78-79

command alias 23-25
command files, EDIT 123-24

command groups, EDIT 123
command history buffer, NEWCON: and 22
command line 11
command-line editing 68-69
commands, making resident 60
command sequence files 3, 58, 72-89

branching, and 88-89, 255-56
condition testing and 83-87
error threshold 87
interactive 141

command shell, Workbench 1.3 and 23-25
command summary, ED 101-3
command summary, EDIT 126-28
communication speed 51
communica tions ports 51
CON: command 19,131-32
condition testing, command sequence files

and 83-87, 192-95
console 53-56

CLI 11
console device 42

as input 54-55
output window 19-20, 53-54

COPY command 40, 59, 153-56
current line, EDIT 105, 108, 111-12
cursor movement, ED 91-92, 94-95
DATE command 33-34, 78-79, 157-59
.DEF directive 80-82
DELETE command 41, 160-61
device

description 47-48
handlers 58

devices 46-71
hardware 46, 63-69
sending files to 51
standard input and output 69

DEVS: logical device 60-61
DIR command 37, 70
directories 5, 35-40, 162-64, 150-51

as logical devices 58-62
creating 36-37, 59, 77,210-13

directory path 37-40
directory

structure 36-37
disk listing 29

disk 26-45
block 31-32, 203-7
buffers 75
changing 165
CLI, creating 7-9
copying 27, 64, 166-68
corrupted 169-70
directory, listing 29, 162-64

277

drives 46-47
formatting 26-28, 189-90
identification number 27
Kickstart 6, 48, 64
making bootable 28
volume information 26, 196-98
volume name, changing 232-33

DISKCHANGE command 165
DISKCOPY command 27, 64, 166-68
DISKDOCTOR command 169-70
DJmount 48
.DOLLAR directive 82-83
DOS directories 5
DOS, command-driven 3
drawer icons 5
ECHO command 70, 73, 171-72
ED system screen editor 72, 90-103, 173

character deletion/insertion 92-93, 95
command summary 101-3
cursor movement and 91-92, 94-95
extended mode 90, 93-100
file management 97-98
immediate mode 90, 91-93

EDIT system line editor 72, 90, 104-28,
174-75

character operations and 110
command files and 123-24
command groups and 123
command summary 126-28
current line and 105, 108, 111-12
file merging and 124-25
from file 105
HALT command 125
leaving 107-8
lines, renumbering 116
lines, splitting and joining 121-22
operational windows 109-10
parameters and keywords 106
REWIND command 125
starting 106-7
to file 105
verification and 108-9

editing commands, CLI 11-14
ELSE statement 84
ENDCLI command 19-20, 56, 76, 176
ENDIF statement 84
ENDS KIP command 177
environment variable 86, 191,251
ERROR

keyword 86
messages 185, 273-76
threshold, command sequence files 87

escape codes, CLI and 14
EVALcommand 178-80
EXECUTE command 25, 32, 58, 72-89,

181-83
avoiding using 74-75
from a command sequence file 89

extended mode, ED 90, 93-100

278

FAILAT command 76, 87, 184
FAIL keyword 86
FastMemFirst command 75
FAULT command 16, 185
FF command 76, 186
FFS (Fast File System) 49-50, 64-65
file

dating 33-35
handler 51
management, ED and 97-98
manipulation commands 40-41
merging, EDIT and 124-25
merging, JOIN command and 201, 124-25
name, changing 40-41, 235-37
protection level, file 32-33, 228-30
size 31-32
specifications 30

filenames, characteristics of 29-31, 132
FILENOTE command 31, 187-88
files 28-45

copying 40, 59, 153-56
deleting 41, 160-61
in subdirectories, accessing 37-40
RAM: disk and 50
saving additional notes about 31
sending to devices 51
sorting 17, 257-58
text 72-73

filing system 26-45
FONTS: logical device 60
FORMAT command 26-28, 189-90
formatting disk 26-28
GETENV command 86, 190
global operations, EDIT 122-23
HALT command, EDIT 125
hard disks 48-50

interfaces 48-49
hard drive, partitioning 49
hardware devices 46

adding to system 63-69
IBM compatibility option see bridge board
icons 3
ICONX Command 191
identification number disk 27
IF command, command sequences and

83-87, 192-95
IF EXISTS command 83-84
immediate mode, ED 90, 91-93
INFO command 27, 32, 196-98
input

redirection of 69-71
unfiltered 55-56

INSTALL command 28, 199-200
integer expressions, evaluating 178-80
introduction 3-9
JOIN command 41, 201
kernel rom bugs 75
.KET directive 82
.KEY directive 79-82

keyboard layout, changing 252-53
Kickstart disk 6, 48, 64
Kickstart rom 64
L: directory 58
LAB command 202
leaving EDIT 107-8
LIBS: logical device 61
limbo 56
line-editing, CLI and 11-15
line editors, history of 104-5
linefeed 52

CLI and 13
lines

renumbering, EDIT and 116
splitting and jOining, EDIT and 121-22

LIST command 21, 29, 31, 32, 203-7
LOADWB command 76, 208
LOCK command 209
logical devices 46, 56-62

as directory aliases 56-57
assignment summary 61-62

MAKEDIR command 36-37, 59, 77, 210-13
memory, available 146-47
memory-resident programs 17, 23, 32, 60,

78,238-40
Midi musical device 51
modem 51
MOUNTable device drivers and handlers

63-69
MOUNT command 21, 46, 48, 53, 58,

63-69, 214-17
mountlist 63, 64
MSjPC DOS 3, 4, 16, 17

Commodore disk drive for 46
multiple commands, CLI and 13
multitasking 10, 152
NEWCLI command 17-20, 67, 76, 218-21
NEWCON: console device 11, 21-23, 53, 58

68-69
NEWSHELL command 23, 76, 222-23
NIL: logical device 56, 79
non interactive running of programs, CLI an<

20-21
operational windows, EDIT and 109-10
output redirection, 56, 65-66, 69-71
parallel port 51
parameters

and keywords, EDIT 106
CLI command and 79-83

PAR: logical device 51, 52
partitioning hard drive 49
PATH command 76, 224-25
path, directory 37-40
pattern matching 41-45, 132-36

differences from MSjPC DOS 41-42
summary 44-45

pausing and restarting, CLI and 14-15
PIPE: logical device 65-66

downloading and 66

PopCLI program 20
power supply 46
Preferences program 6, 51, 52
printer, testing 52
program

files, assigning device name to 62
location, specifying 16
running from CLI 15-17

PROMPT command 18, 226-27
PROTECT command 33, 74, 228-30
protection level, file 32-33
PRT: logical device 52
QUIT command 87, 231
RAD: logical device 63-65
ram disk 4

directory, making default 77
RAM: disk 50-51, 58

creating 50
RAW: logical device 55-56
redirection

of input 69-71
of output 56, 65-66, 69-71, 137
operators 69-71

RELABEL command 26, 232-33
remote machine 67
REMRAD command 234
RENAME command 40-41, 235-37
RESIDENT command 17, 23, 32, 60, 78,

238-40
REWIND command, EDIT 125
root 36-37
RUN command 20-21, 76, 241-42
S: directory 58
SAY command 67, 73, 243-44
script files see command sequence files
SEARCH command 245-46
search and replace commands, ED 95-96
; (semicolon) command 247
SER: logical device 51, 52
serial port 51

unbuffered communication through 66
SETCLOCK command 76, 248
SETDATE command 249-50
SETENV command 86, 251
SETMAP command 76, 252-53
SETPATCH command 254
shell aliases 62
SKIP command 88-89, 255-56
software devices 46
SORT command 17, 257-58
SPEAK: logical device 58, 67-68
speech synthesis 67-68, 73, 243-44
STACK command 17, 259-60
stack space, specifying more 16-17, 259-60
starting EDIT 106-7
startup-sequence file 75-79

modifying 76-79
STATUS command 20, 261-62
subdirectories 35-40

279

Supra Mount 48
SYS: logical device 61
system clock 76

third-party 78-79
system library files 61
tabs and margins, ED and 98-99
task 10,20,261-62
task number 18
template, AmigaDOS 136-37
text files 72-73

converting to speech 67-68
deleting, EDIT and 119-21
displaying, EDIT and 112-13
inserting, EDIT and 113-14
printing to screen with AmigaDOS 29
replacing, EDIT and 115, 118-19

text, searching for, EDIT and 116-18
toolS
tree 36-37
TYPE command 29,51,263-64
typeface, screen, CLI and 14
UNIX 4
utilities, not accessible from Workbench 3
verification, EDIT and 108-9

280

VERSION command 265-66
virtual disk

fixed -size 63-65
recoverable 64

volume name, disk 26
WAIT command 76, 267-68
warm start 50
WARN keyword 86
WHICH command 269
WHY command 16, 270
wildcards. See pattern matching
WordPerfect 72
Workbench 3-9, 49

bypassing at boot-up time 7-9
eLI window on 4-5, 76
command shell 23-25
concepts, DOS and 4-5
disk 6, 48
environment, starting 76
starting 76, 208
utilities, not accessible from 3
version 1.3, console enhancements under

21-25

$21.95

HIgher In Canedo

IS BN 0-874 55-194- 3

Th is best-selling reference to AmigoDOS has
been completely revised and updated to cover
all current versions. Including 1.3. Written by two
we ll-known Amiga authorities. COMPUTE!'s
AmigoOOS Reference Guide. Third Edition is the
only book that is both an easily understood Mo­
rial and a comprehensive reference.

The CLI. similar to IBM-styte command-driv­
en environment. allows the user to customize al­
most any disk operating system function of the
Amiga. With it. the user can:

• Create command-sequence files to auto­
mate almost any task. from startup to copying
files

• Set up customized file d irecto ries and
subdirectories

• Directly control the printer. screen. hard disk.
and console devices

• Use a RAM disk to set aside portions of memory
as an electronic disk drive

• Access two text editors - ED. a full-screen edi­
tor. and EDIT. a line editar - for text and pro­
gram entry

Leemon and Levitan take the reader. step
by step. through the intricacies of AmigaDOS.
from creating a CLI disk to building a personal­
ized command sequence file. Thoroughly illus­
trated with practical examples. this book covers
every AmigaDOS command. detailing its pur­
pose. format. and parameter. Perfect for both
experienced Amlga users and those Just starting
out.

Sheldon Leemon is a noted Amiga authority.
His byline appears regularly in Amigo World
magazine and Amazing Computing. Leemon is
the author of more than half a dozen computer
books. including the best-selling Mopping the
Commodore 64 and Inside Amigo Graphics.
Arlan Levitan Is a regular columnist for several
magazines. Both authors are currently columnists
for COMPUTErs Amigo Resource and hove previ­
ously co-authored other computer books.

