i

REFERENCE

GUIDE

THIRD EDITION

SHELDON LEEMON
AND
ARLAN R. LEVITAN

The complete guide and tutorial to
the convenience, flexibility, and
power of AmigaDOS version 1.3.

OMPUTE! BOOs

o~ Vs

. T

COMPUTE!’s

| AmigaDOS

Reference Guide
Third Edition

ooooooooooooo
Radnor, Pennsylvania

Cover design: Anthony Jacobson
Editors: Gregg Keiser and Stephen Levy

Copyright 1986, 1987, 1989, COMPUTE! Publications, Inc. All rights reserved.

Reproduction or translation of any part of this work beyond that permitted by Sections 107
and 108 of the United States Copyright Act without the permission of the copyright owner is
unlawful.

Printed in the United States of America
10987654321

Library of Congress Cataloging-in-Publication Data

Leemon, Sheldon.
AmigaDOS reference guide.

Rev. ed. of: Compute!’s AmigaDOS reference guide /
Arlan R. Levitan and Sheldon Leemon. ¢1986.

Includes index.

1. Amiga (Computer)--Programming. 2. AmigaDOS
(Computer operating system) [. Levitan, Arlan R.
II. Levitan, Arlan R. Compute!’s AmigaDOS reference
guide. III. Title.
QA76.8.A177L36 1989 005.4465 89-42831
ISBN 0-87455-194-3

The authors and publisher have made every effort in the preparation of this book to ensure the accuracy
of the information. However, the information in this book are sold without warranty, either express or im-
plied. Neither the authors nor COMPUTE! Publications, Inc. will be liable for any damages caused or

alleged to be caused directly, indirectly, incidentally, or consequentially by the programs or information in
this book.

The opinions expressed in this book are solely those of the authors and are not necessarily those of
COMPUTE! Publications, Inc.

COMPUTE! Publications Inc., Post Office Box 5406, Greensboro, NC, 27403, (919) 275-9809,
is part of Chilton Company, a Capital Cities/ABC, Inc. company and is not associated with
any manufacturer of personal computers. Amiga is a trademark of Commodore-Amiga,
Incorporated.

Contents

Foreword e v
Part 1. Using AmigaDOS 1
1. Introduction to AmigaDOS 3
Creatinga CLIDisk ot 7
2. The CLI Environment 10
The CLIConsoleccoiiiiviiiii i, 11
Running a Program froma CLI 15
Starting Additional CLI Processes 17
Your Own Windows, 18
Console Enhancements Under Workbench 1.3 21
3. The Filing System 26
Files and Their Characteristics 28
Directories and Subdirectories 35
File Manipulation Commands 40
Pattern Matching (Wildcards) 41
4.Devices 46
Disk Drivesot e 46
The RAM: Diskciuiiiiii i 50
Communications Ports 51
Console and Others 53
Logical Devices i 56
MOUNTable Device Drivers and Handlers 63
Redirection of Input and Output 69
5. Command Sequence Files 72
Batching Simple Commands 72
Startup-Sequence: The Autoexecuting Command File 75
6. Ed, the System Screen Editor 90
Immediate Mode 91
Extended Mode Commands 93
ED Command Summaryoou... 101
7. EDIT, the Line Editor 104

EDIT ... 126

Part 2. AmigaDOS Command Reference 129
Appendix 271

AmigaDOS Error Messages 273

Foreword

Workbench, the graphics-based interface that offers icons, pull-
down menus, and multiple windows, isn’t the only way to operate
Commodore’s Amiga personal computer. A more direct method of
control is also available. Called the CLI (Command Line Interface)
it provides added power and flexibility.

COMPUTE!s AmigaDOS Reference Guide, Third Edition, fully
updated for all versions of AmigaDOS through version 1.3, shows
you how to access this operating environment and how to use its
commands.

How would you like to be able to set aside part of Amiga’s
memory as a RAM disk and electronic disk drive? You can with the
CLIL and virtually eliminate disk swapping.

Learn to create batch files that automate almost any task with
the CLI. You can prompt yourself to enter the date and time at
each startup, or copy files automatically—all with customized com-
mand sequence files.

A full-screen editor (ED) and a traditional line editor (EDIT)
are both at your disposal through the CLI.

COMPUTE!'s AmigaDOS Reference Guide, Third Edition shows
you how, with its clear language and thorough examples. This tu-
torial takes you step by step through the intricacies of AmigaDOS,
offering a comprehensive reference guide you’ll come back to long
after you're a CLI expert.

Part 1

Using

o AmlgaDOS

Chapter 1

Introduction to AmigaDOS

The Workbench environment makes it extremely easy for first-time
users to learn to use the Amiga personal computer. With its pull-
down menus and pictorial representation of files and subdirectories,
Workbench insulates you from the harsh realities of a command-
driven DOS (Disk Operating System) environment. But this ease of
use has its price. In accepting the Workbench environment, you
give up some of the flexibility and power afforded by a command-
driven DOS.

The question of convenience is open to debate since it’s largely
a matter of personal preference. While the Workbench approach
has its share of advocates, many users of the old-style DOS inter-
face insist that they can run a program faster by simply typing its
name on a command line than they could by opening a disk icon
and double-clicking on the program icon. Yet the greater control
offered by a command-driven DOS interface is a matter of sub-
stance, not style. There are some things you just can’t do from the
Workbench . . . at least not yet.

The current Workbench only creates a display for disks, tools
(program files), projects (data files), and drawers (subdirectories) for
which there exists a corresponding disk file whose name ends in
.info (for instance, Preferences.info). These .info files contain infor-
mation about the type of object icon represents and the graphic
representation of the icon itself. But there are many files on the
Workbench disk that are not represented by icons. These files in-
clude a simple sorting utility program and a screen-oriented text
editor. These programs could be well-used by many Amiga owners,
but most don’t even know they’re there since they’re not accessible
from the Workbench.

Another feature of AmigaDOS that the Workbench does not
directly support is the use of command sequence files (known in
the MS/PC-DOS world as batch files). These allow you to automate
a job which requires several programs to be run in sequence, such
as operating a compiler and linker in order to produce an execut-
able program. And while it’s not possible to send the directory of
files on a particular disk to your printer from the Workbench (un-
less you write a program specifically for that purpose), it’s easy to
do so from the CLI (Command Line Interface).

Introduction to AmigaDOS

Fortunately, you're not limited to operating in one restricted
environment, not even one so friendly as the Workbench, when
you have the Amiga in front of you. The Amiga was designed to
provide alternative ways to use the computer, to meet the needs of
as many kinds of people as possible. This philosophy is evident in
the way Amiga programs allow you to substitute control key se-
quences for commands normally carried out by moving and click-
ing the mouse. Even the Workbench lets you use the keyboard
instead of the mouse. It should come as no surprise, then, that the
Amiga also offers the kind of command line interpreter that’s so fa-
miliar to users of MS/PC-DOS and Unix. On the Amiga, this envi-
ronment is known as the CLI. COMPUTE!"s AmigaDOS Reference
Guide, Third Edition will tell you how to find this operating envi-
ronment and how to use its multitude of powerful and flexible
commands.

What’s Here

In addition, you'll find explanations of AmigaDOS’s underlying
concepts. These concepts will be helpful not only when you use
the CLI, but will also expand your understanding of the Work-
bench and how to operate within it. If you have a single-drive sys-
tem, for example, you've probably noticed that when you try to get
a directory of the BASIC disk from BASIC, you're prompted to put
in the Workbench disk. When you swap disks, you receive a direc-
tory of the Workbench disk instead. Knowing a little bit about how
DOS operates and what files it looks for can eliminate a lot of this
disk swapping. The RAM disk also offers computing power impos-
sible through the Workbench alone. With the RAM disk, you'll
have instant access to commands that normally must be read from
the disk, such as the one used to produce a directory listing in
BASIC.

The introductory manual that comes with the Amiga personal
computer assumes AmigaDOS is of interest only to software devel-
opers. That’s simply not true. Thousands of people—people who
don’t write software for a living—are interested in knowing more
about their computers and learning how to get the most out of
them. If you fit that category, this book will help as you explore
the power of your Amiga computer.

The Workbench Versus the CLI

The friendly Workbench environment you see when you boot up
your Workbench disk is actually an application—in other words, a
program—and not part of the operating system. In fact, the com-
puter starts in CLI mode and loads the Workbench program auto-

4

Introduction to AmigaDOS

matically through the use of a command file (you'll hear more
about command files later).

Workbench’s purpose is to interpret the choices you make
when you move the mouse pointer to various icons and click the
button. As such, the Workbench functions often have a close corre-
spondence to DOS concepts. The drawer icons you see on the
Workbench desktop, for instance, represent the normal subdirec-
tories created by DOS. And the Trashcan icon represents a sub-
directory named Trashcan. When you drag an icon to the trashcan,
its corresponding file and that of its icon are transferred to the
Trashcan subdirectory. When you select Empty Trash, the files that
have been moved to the Trashcan subdirectory are deleted.

Some similarities between the Workbench and CLI environ-
ments are more superficial. When you double-click on a tool (pro-
gram file), the Workbench prepares a suitable environment and
runs the program. The same thing happens when you type RUN
program name from the CLI. But some Workbench programs can-
not be run from a CLI, and some CLI programs cannot be run from
the Workbench. In fact, none of the CLI commands found in the ¢
directory of the Workbench disk can be run from the Workbench.
Part of the reason for this is that the Workbench recognizes a file
only if it has a corresponding file of icon information ending in
.info. Since none of the CLI command files has an icon file, none
of them shows up under the Workbench.

But even if these did have icon files, the environment that CLI
prepares for a program is different enough from the environment
provided by the Workbench that these early CLI command pro-
grams still could not run under the Workbench. For one thing,
from the Workbench you may pass instructions to a program to
load a project (a data file that the program uses) by double-clicking
on the project’s icon. Programs that use the CLI expect you to pass
instructions by typing them on the same line with the program
name. The command line

COPY old file TO new file

for instance, tells the program Copy which file to copy and what
name to give the new copy.

Getting to the CLI Environment

In the System drawer of the Workbench disk, there’s a program
that creates a CLI window on the Workbench screen (1.3 Work-
bench disks have an icon for the Shell program as well, which cre-
ates an enhanced CLI window). In its original condition, however,
the Workbench disk that comes with the computer may have the

Introduction to AmigaDOS

icon for this program “turned off.”” If this is the case, the CLLinfo
file in the System subdirectory has been renamed CLI.noinfo. This
means if you open the System drawer, that icon will not appear.
To use the CLI program, you must first turn the CLI icon back on.
This will change the CLI.noinfo file to CLI.info.

The Preferences program contains the controls for turning the
CLI icon off and on. When you start the computer, using the
Kickstart and Workbench disks, an icon representing the Work-
bench disk appears on the screen. Open this disk by double-click-
ing on the icon, or by selecting it and then selecting Open from the
menu. A window will appear with icons representing the programs
on the disk. Start the program called Preferences—its icon looks
like an Amiga with a question mark on top of it (on the Work-
bench 1.3 disk, this file is in its own drawer called Prefs). On the
left side of the Preferences screen, you’ll see a box marked CLI, just
above the Reset Colors box and below the box where you choose
between 60- and 80-column text. The CLI box is divided into two
parts, one marked On, the other Off. The Off box is highlighted in
orange to show that the CLI icon is turned off. Click the On side of
the box so it turns orange. While you're at it, you can set your
other preferences, such as text size and a printer driver, if you've
not done so already. Save your new preferences by clicking on the
Save box at the lower right of the screen. This renames CLI.noinfo
as CLLinfo.

Now, double-click on the System drawer to open its window.
If you've already opened the System drawer before running Prefer-
ences, you must close the drawer and open it again in order to let
your new preferences take effect since the Workbench checks for
icon files only when it opens a drawer. The window that appears
now contains an icon marked CLI (it looks like a box with the char-
acters 1> inside). Double-click on the icon. A window now dis-
plays on the screen, with the title New CLI Window in its title bar
and the prompt 1> awaiting your command. (To get started, see
Chapter 2.)

There’s another, even easier way to get to a CLI window. Dur-
ing the boot-up process, and after you insert your Workbench disk,
the screen turns from white to blue, and a sign-on message appears
which reads Copyright (C) 1985 Commodore-Amiga, Inc. When you
see this message, hold down the CTRL key and press the D key at
the same time. This stops the execution of the command file that
loads the Workbench. *BREAK - CLI shows on the screen, and un-
der this, the familiar 1> prompt.

Introduction to AmigaDOS

Creating a CLI Disk

If you're planning to use the CLI environment often, this process of
opening the Workbench icon, the System drawer, and the CLI icon
to get to the CLI will become time-consuming at best, frustrating at
worst. You can bypass one of these steps by moving the CLI icon
from the System window directly to the Workbench window. Or,
you can remember to press CTRL-D at the right moment during
the boot-up process so the Workbench doesn’t load.

But since computers are supposed to make things easier,
doesn’t it seem reasonable to expect the Amiga to do all this for
you? With a bit of setup work on your part, it can in fact bypass
loading and running the Workbench altogether. In order to make a
working CLI disk, you should make a copy of your Workbench
disk, change the command file that automatically loads the Work-
bench when the disk starts, and delete the unnecessary Workbench
files. To get you through this, the procedure is completely outlined
for you below, step by step.

Make a Copy of Your Workbench Disk

You can do this either from the Workbench or from the CLI. Let’s
assume you’ll use the CLI, since you presumably already know
how to copy a disk with the Workbench. First, bring up the CLI by
double-clicking its icon on the Workbench disk, or by booting the
Workbench disk and then interrupting the loading process with a
CTRL-D key combination when the blue screen appears. From this
point, the procedure is slightly different for single- and dual-drive
systems. :

Single-drive systems. When the CLI prompt (1>) appears,
you may use the DISKCOPY command to copy the Workbench
disk. Get out a blank, new disk for the copy. Remember, any infor-
mation on this disk will be lost when you copy to it. Type:

SYS:SYSTEM/DISKCOPY df@: TO 4df0:

and press RETURN. The copy program will prompt you when to
put in the disk to copy FROM (your original Workbench disk) and
when to put in the disk to copy TO (your blank disk). You'll have
to swap the FROM and TO disks a number of times with a single-
drive system. The copy program will tell you when the copy pro-
cess is complete.

Dual-drive systems. When the CLI prompt (1>) appears,
leave the Workbench disk in the internal drive, and place a new,
blank disk in the external drive. Type:

SYS:SYSTEM/DISKCOPY df@: TO dfl:

Introduction to AmigaDOS

and press RETURN. You'll be prompted to put the FROM disk in
drive df0: and the TO disk in drive dfl:, but since both disks are
where they should be, merely press RETURN. The copy program
will tell you when the process is completed. Place the disk that
contains the copy of the Workbench into the internal drive.

Getting Going with CLI

Restart the computer with your new disk. Press the CTRL key
and both Commodore/Amiga keys (the closed Amiga or Commo-
dore key—on the left side of the space bar—and the open Amiga
or Commodore key—on the right side of the space bar) at the same
time to restart. Your new disk is now the system disk, which will
save you some disk swapping later.

Bring up the CLI. Use the CTRL-D combination to stop the
Workbench from loading during the boot process, or open the Sys-
tem drawer and click on the CLI icon. If you use the Workbench
CLIL you may find it convenient to size this window to full-screen
by moving it with the drag bar to the top left of the screen and
pulling the sizing gadget down to the bottom right.

Edit the command file. This is used to load the Workbench
automatically when you start the computer. You'll use the system
screen editor program—called ED—to change the startup-sequence
file in the s directory. To start the editor, enter

ed s/startup-sequence

at the 1> prompt (whenever you see text in this font, press the
RETURN key at the end of the line). A new screen appears, show-
ing the contents of this text file. A text cursor shows at the top left
corner. If you haven’t changed the default system colors, it will be
orange. Use the down-arrow cursor key to move this cursor down
until it covers the first letter of the line that reads LoadWB. Press
the ESC key (found in the upper left of the keyboard). An asterisk
appears at the bottom of the screen, and the cursor is now next to
it. Type 8 d ; x. The two lines used to load the Workbench will be
deleted and the new file saved to disk. If you wish to both load the
Workbench and leave the initial CLI window intact, move the
cursor to the last line of the file, press the ESC key, and type d ; x,
instead.

Delete all of the unnecessary Workbench files. Since you've
edited the startup command file, the new disk will not load the
Workbench automatically. But there are still a number of files on
the disk that will run only under the Workbench. The only files
you'll want to save are the contents of these directories:

Introduction to AmigaDOS

Directory

c

1

s

t

devs

libs

(and possibly) fonts

To delete the rest of the files, type in each of the following
lines, just as you see them, pressing the RETURN key at the end of
each. '

delete trashcan demos#? empty utilities all
delete c/loadwb #9

Relabel the disk. Though not strictly necessary, for purposes
of clarity it’s probably better to have the title of the disk read CLI
rather than Copy of Workbench. To change the disk’s volume label,
make sure it’s in the internal drive, then enter

RELABEL dfQ: CLI

There you have it. A Workbench disk without the Workbench. In-
sert this disk in the internal disk drive any time you see the
WORKBENCH prompt screen.

Make a backup copy of the disk right now, and put the original
away so you can make clean copies of the disk in the future (unless
you want to go through these six steps every time). If you have
only one drive, you'll find it particularly convenient to have all of
the CLI commands on the same disk as your application programs.
To make a new disk that contains both the CLI commands and the
application program, simply copy those application programs onto
duplicates of this master CLI disk. If you're really pressed for
space, you may have to delete some of the less useful commands,
printer-driver files for printers you don’t have, character font files,
and so on. To determine which files you can afford to delete, see
Appendix A, which lists all the files on the Workbench disk.

Chapter 2

The CLI Environment

When you insert the Workbench disk into the disk drive, the
Amiga’s operating system sets up a task (one of the programs that
can run simultaneously under a multitasking system such as
AmigaDOS) called a CLI process. The job of the CLI is to accept
commands to run a program. When the CLI finds the program, it
loads the program, prepares its environment, and then passes con-
trol to the program. After the program finishes, control is passed
back to the CLI, which waits for the next command. Although the
system starts up only one CLI, you may start others yourself to run
multiple tasks simultaneously.

First, the initial CLI process checks whether there’s a command
file in the s directory called Startup-Sequence. If there is, the com-
mands listed in that file are executed automatically (see Chapter 5
for more detailed information about command sequence files). On
the standard Workbench disk, this file contains commands to load
and run the Workbench and end the CLI process. But if there’s no
command present to load the Workbench, once the command file is
executed, the CLI process prints its prompt message (1>) and waits
for further orders.

The AmigaDOS CLI process performs the simplest of func-
tions. It starts in interactive mode, which means it prints its 1>
prompt and waits for you to type something. It simply sits, letting
you type until it sees that you've entered a special editing character
or pressed RETURN. The editing characters invoke some minor
screen-editing functions described below. But when you press RE-
TURN, the CLI looks at the whole line you've entered.

It interprets the first word (a series of characters that end with
a space) as a filename. The CLI then tries to load a program file
with that name. An error message and another 1> appear if it can’t
find the file. Assuming it finds the file, the CLI tries to load it as a
program. Since program files have a structure the CLI recognizes, it
can tell whether the file is an executable program. Again, an error
message and the 1> prompt are displayed if the file isn’'t an execut-
able program. If the file exists and is an executable program, the

10

The CL.I Environment

CLI loads the program into memory, prepares a stack area for the
program to use as workspace, tells the program where to find the
rest of the text on the command line in case it wants that text as in-
structions, and passes control to the program. Once this happens,
the CLI cannot accept user input until the program passes control
back to it.

Let’s break this simple task into its component parts and exam-
ine them in detail. We'll start with the process of accepting text
characters that you type in.

The CLI Console

The console device that the CLI uses to accept keyboard input and
display the results operates much like an old-fashioned Teletype
terminal—it can deal with only a single line of text at a time. This
command line may be up to 255 characters long. It's possible, there-
fore, that a single command line can occupy more than one line on
the screen. As far as the console device is concerned, you're still
entering text on the same line until you hit the RETURN key.
When you've typed in 255 characters (more than three or four
screen lines, depending on the column width of the screen), the
console refuses to accept any additional keyboard input.

One of the less pleasant aspects of a line-oriented editor (like
the console device) is that you cannot use the cursor keys to move
to another command line on the screen, edit it, and use the revised
line. Each time you issue a new command you have to enter the
entire command line from scratch. In fact, you can’t even use the
cursor keys to edit the line you're on. If you make a mistake at the
beginning of a line, you have to erase the whole line and start
over. To remedy this situation, Workbench 1.3 added a new con-
sole device called Newcon:, which performs line-editing functions.
We'll discuss this device a little later on.

CLI Editing

Because of its limited line-editing capabilities, the console device
recognizes only a very few special characters as editing commands.
Some of these are useful for working with the CLI, while others
merely enable you to control the color and appearance of the text
the console device prints to the screen (see Chapter 4 for more
about this device). In summary, here are the editing commands:

11

The CLI Environment

Useful Editing Features

Key(s) Function

BACK SPACE or CTRL-H Erases the character to the left of the
cursor

CTRL-X Erases the entire current line (cancels
the line)

CTRL-L Clears the screen (form-feed)

RETURN or CTRL-M Ends the line and executes the
command

CTRL-J Moves the cursor to the next line, but
doesn’t execute the command

; Marks the start of a comment

CTRL- \ End-of-file indicator

Key(s)
TAB or CTRL-I

CTRL-K
CTRL-O

CTRL-N

ESC-[1m
ESC-[2m
ESC-[3m
ESC-[4m
ESC-[7m
ESC-[8m
ESC-[0m
ESC-C

Text Output Features

Function

" Moves the cursor one space to the right (inserts a

tab character)

Moves the cursor up one line (vertical tab)
Switches to the ALTernate character set (shifts
out)

Switches back to the normal character set (shifts
in)

Switches to bold characters

Switches character color (to black)

Italics on

Underline on

Reverse video on

Switches character color (to blue—invisible)
Switches to normal characters

Clears the screen and switches to normal
characters

Note: When using the ESC key combinations, just press the ESC key and then enter
the one to three additional characters.

As you can see, the only way to correct your typing mistakes
is to delete them with the BACK SPACE key (or hold the CTRL
key and press X if you want to erase the whole line) and retype. If
you press the CAPS LOCK key, the red light on the key appears,
and all alphabetic keys will be capitalized. This is of little practical
significance since the CLI does not discriminate between lowercase
and uppercase, or even mixed case.

12

The CLI Environment

The RETURN key is the CLI’s signal to process your command
line. The linefeed character (CTRL-]J) moves the cursor to the begin-
ning of the next line, just like RETURN, but it doesn’t cause the
CLI to process the line until RETURN is pressed. This means you
can type a list of commands separated by CTRL-] and have the CLI
perform them one by one. For example, if you type

DELETE old file <CTRL-J> DIR

the CLI first deletes the file named in old file, then feeds the next
instruction to the following CLI prompt, which displays the new
directory listing.

Though not really an editing character, the semicolon (;) is sig-
nificant to the CLI. The CLI interprets anything following a semi-
colon as a comment and ignores the entire rest of the line.
Comments may not be too useful for immediate mode commands
which you enter at the keyboard, but they can be extremely helpful
in documenting command sequence files (see Chapter 5).

The last character in the summary table of useful commands,
CTRL- \, will probably make more sense after you've read Chapter
4, which covers devices. Briefly, it sends an end-of-file character to
the console device. This is helpful because the Amiga is flexible
about letting you use one device in place of another. For instance,
you can use the COPY command (program) not only to copy one
file to another, but also from one file to another device, such as the
printer. Likewise, you can COPY from the console device (which in
this case means the keyboard) to a disk file. Unlike a disk file, the
console device does not have a natural limit to its input—you can
keep typing and typing until you're too tired to type. The CTRL- \
character, therefore, lets the console device know when you've
come to the end of the “file”” so you can stop using the console as
an output device and start using it for your CLI input again.
PC/MS-DOS users will recognize that this is the equivalent of the
CTRL-Z (or F6) character used by that operating system.

Most of the other special command key combinations represent
output formatting commands that you may find amusing or learn
to avoid. Their functions are really a byproduct of the fact that the
console device supports certain standard codes that are usually ap-
plied to printer devices. The TAB key, for example, moves the
cursor over one space as the space bar does. But it leaves a tab
character in its wake, which the command line interpreter doesn’t
like at all. If you use a tab instead of a space you'll most likely re-
ceive an error message.

CTRL-O acts like an ALT-lock which permanently switches
you to the ALTernate characters (you can think of these as the

13

The CLI Environment

Other, or Oddball, characters to remember the CTRL key combina-
tion). The alternate characters normally appear only when you hold
the ALT key down as you type. These characters, which include
accented vowels and other international symbols, are interesting to
look at if you want to see what characters the standard Amiga set
contains, but they're of little practical use here since the CLI
doesn’t recognize them. If you get into this mode by mistake, press
CTRL-N (for Normal characters) to get out of it. You can also return
to the normal character set by pressing ESC and the C key, which
both clears the screen and changes the character set. When the
screen clears, however, you don’t get your prompt back automati-
cally—you must hit RETURN to get a new command line. If you
just want to clear the screen, CTRL-L (Linefeed) does the job.

The console device also recognizes a series of ESCape codes
which change the typeface of the font printed on the screen. For
example, if you press the ESC key, then the [key, 1 key, and m
key, subsequent screen text is printed in boldface. Likewise, the
ESC-[2m combination changes the color of the printing, ESC-[3m
turns on italics, and ESC-[4m turns on underlining. These special
features are cumulative. In other words, if you change to bold, then
turn italics on, the result is text in bold italics. To disable all these
special features and return to normal text, use the ESC-[0m combi-
nation. Pressing ESC-C clears the screen and also resets the text to
normal characters. Note that although these features affect the dis-
play, CLI pays no attention to special typefaces. This sampling of
escape codes was listed primarily to acquaint you with the fact that
the console device responds in many ways like a standard ANSI
terminal. The codes are by no means the only ones to which the
console device responds. For instance, it also accepts a wide range
of cursor positioning commands. These commands, however, are of
little use to the average CLI user and are of greater interest to pro-
grammers who wish to use the console device in their programs.

Pausing and Restarting

Another aspect of the console device that you should be familiar
with is pausing and restarting screen output. The CLI (and the
command programs that use its console device) constantly watches
the console for input from the keyboard. If you type a character
while one of the command programs is running, the program will
stop its own output to the screen so as not to mix it with your in-
put. Even if the command program prints no messages of its own,
you'll not get the CLI prompt (1>) back until you restart output.
The way to do that is either to erase the line you're typing (by
using the BACK SPACE or CTRL-X keys) or finish the line by en-
tering a RETURN.

14

The CLI Environment

' The pause is really a function of the CLI's type-ahead feature.
The CLI can keep track of up to 255 characters of command instruc-
tions while it’s busy running a command program and will execute
these instructions after it’s finished. In practical terms, however, it
means you can pause a display of, say, a directory listing, by press-
ing the space bar and restart it later by pressing the BACK SPACE
key. This roughly corresponds to the function performed by the
CTRL-S, CTRL-Q combination on MS/PC-DOS machines.

If you use the RETURN key to complete the line rather than
erasing it, you should be aware that the command line you’ve just
entered will be saved by the CLI and will be executed after it fin-
ishes with the current command.

If you prefer to terminate output entirely instead of just paus-
ing it, you can use the BREAK function. Hold down the CTRL key
and press the C key, and you'll see the message **BREAK as the
CLI prompt appears once again. You may also interrupt an EXE-
CUTE command sequence with the CTRL-D combination (see
Chapter 5 for details on command sequence files). AmigaDOS re-
serves the CTRL-C, CTRL-D, CTRL-E, and CTRL-F combinations
for interrupt functions, but the CLI uses only the first two. Other
programs may use the latter two as they see fit.

As you’ll soon see, it’s possible to have more than one CLI
window open at a time. Using the CTRL-C or other break key
combinations only works for the CLI window that’s currently ac-
tive. To interrupt others, you must either make them the active CLI
and use the break keys or use the BREAK command. This com-
mand interrupts the other process just as if you’d made it active
and then used the break keys.

Running a Program from a CLI

The next phase of the CLI’s task is running a program. Running a
program from a CLI is simple—all you do is type the name of the
program at the prompt, followed by pressing the RETURN key. If
the program needs further input to run, you type that input on the
same line as the filename. For example, to create a duplicate of one
file under another name (on the same disk and in the same direc-
tory as the original), type:

COPY old file TO new file

In this command line, the word COPY is the name of the copy pro-
gram file, and the rest of the line tells that program what to do.

15

The CLI Environment

The Complete Location

Actually, running a program isn’t quite as simple as typing its
name. That works only if the program is located in the current di-
rectory of the current disk, or if it’s located in the current command
directory. These concepts will be discussed in detail in Chapter 3,
which deals with the directory structure, and Chapter 4, which ex-
plains the use of virtual devices. Generally speaking, however,
when you start up the system, the current directory is the root (top-
most) directory of the CLI disk that’s in the internal disk drive
(DFO0:), and the command directory is the ¢ subdirectory found on
that disk. If your program is anywhere else, you have to specify its
complete location by typing in the name of the disk and/or the
subdirectory on that disk. For instance, to run a program called
WordWizard, located in the Wordprocessing subdirectory of the exter-
nal floppy drive (DF1:), you would enter

DF1l:Wordprocessing/Wordwizard

There are other reasons simply typing the name of the pro-
gram may not run it. There may be typing errors in either the pro-
gram name or the instruction line that the program is to use. The
file may not be in the executable load format AmigaDOS requires,
or the disk itself may be damaged or write-protected. In most cases,
AmigaDOS gives you complete error messages and may even give
you a chance to remedy the error without having to redo the com-
mand. In some cases, however, these messages may not be satisfac-
tory. You can get more information about a failure by using the
WHY command—just type WHY after receiving an error message.
Only rarely will you receive a more cryptic message, such as Error
code 218. To find this error code’s meaning, use the FAULT com-
mand. Typing FAULT n, where n is the error code number, will
usually yield a clearer explanation. If all this fails, or if you're sim-
ply curious, consult Appendix B, which explains the various errors
you might receive.

Room to Work

One rare problem you might encounter concerns the environment
that the CLI provides to the program it’s running. As mentioned
earlier, after the CLI successfully loads the program, it prepares a
stack area for the program to use as working storage. The initial
allocation for this stack area is 4000 bytes. Usually, this will be
enough, but in some cases there won’t be enough stack space for
the program to run. If you try to run the ABasiC program supplied
with the first Amigas from a CLI, for example, you'll receive a mes-
sage that there’s not sufficient stack space. If you first increase the

16

The CLI Environment

stack space to 8000 bytes, however, with the STACK command
(STACK 8000), the program runs. Other programs, like the SORT
command—which needs a lot of working space if it’s to sort a large
file—may run out of stack space and cause the computer to hang
up. In this case, when in doubt, increase the stack space before
sorting a large file. Though most programs written for the CLI will
not need their stack increased, some programs written for the
Workbench environment may need a stack increase when run from
the CLI. To see the stack size required, click once on the program’s
icon; then select the Info item from the Workbench menu. There
will be a number in a box marked “Stack” which will tell you the
required stack size.

A final note about the simple nature of the CLI process. Some
disk operating systems (like MS/PC-DOS) have a set of intrinsic
commands, commands which the DOS recognizes and executes as
soon as the user types them in on the command line. As you've
seen, CLI commands are all disk-based programs, and you must
have the CLI disk containing the program files in the disk drive
before you can use any of them. This is not as inconvenient as you
might expect. For one thing, you can transfer the commands you
use most often to the RAM device and add that directory to the
current search path. Or, you can make the commands resident by
using the Shell and the RESIDENT command (more on these later).
This gives you the equivalent of a custom-tailored set of intrinsic
commands that occupy no more user RAM than is really necessary.
Another nice thing about having all the commands as program files
is that you can rename any command to suit your preference
(though for the sake of compatibility, you'll probably want to make
a copy of the program with a new name, while retaining the file
with the old name as well). For example, if you're used to MS/PC-
DOS, you might want to use the word ERASE instead of DELETE. If
you type COPY c/delete TO c/erase, you'll be able to use either
form of the command. The “alias” feature of the Shell (discussed
below) provides similar capabilities, without requiring multiple
copies of the file.

Starting Additional CLI Processes

Though AmigaDOS is a multitasking operating system, each CLI
can run only one program at a time. To run several programs
simultaneously, you must create additional CLI processes. The
command program NEWCLI takes care of this nicely. When you
type NEWCLI, a new interactive CLI window opens up in front of
the current window (the one labeled AmigaDOS). This window is

17

The CLI Environment

titled New CLI and displays the message New CLI task 2, followed
by its prompt, 2>.

This should solve the mystery of why the prompt in the first
CLI window is 1>. The number in the prompt is the task number
of the CLI. By the way, you're free to change the prompt to any-
thing you want, in any CLI window, by using the PROMPT com-
mand. For instance,

PROMPT “What is your wish, O Master?”

will change the prompt to this verbose phrase. Even ALT charac-
ters, such as foreign language accented characters, can be used in a
prompt string. In fact, you can use the text output commands (within
quotation marks) to change the color of your prompt, or to make it
appear in reverse video, as with the command shown below.

PROMPT “<ESC>[?mReverse prompt>> <ESC>[0Om ”

When you create a new CLI window, it becomes the active
window. You can tell which window is active by looking at the ti-
tle bars. The title bar of the window that’s currently active is a
solid color, while the title bars of the other windows are dotty (or
ghosted, as it’s called). To change a window from inactive to active,
just move the mouse pointer inside the window and click the
mouse button. Whenever you type anything at the keyboard, the
printing always appears in the active window. The other rules for
system windows apply to CLI windows as well. You can use the
normal system gadgets to change the size of the new CLI window,
drag it around the screen, and move it in front of or behind other
windows. You can keep opening as many as 20 CLI windows, pro-
vided there’s enough available memory.

Your Own Windows

If you just type NEWCLI, the operating system decides at what po-
sition on the screen to create the window and how large the win-
dow will be. These sizes are measured in pixels (picture elements),
which are the individual dots used to create the display. The stand-
ard DOS screen is 640 pixels across and 200 pixels high. Versions
1.3 of AmigaDOS creates new CLI windows that start at the top
left corner of the screen, and are 640 pixels wide by 100 pixels
high. All new CLI windows are created in the same place, in the
same size, unless you specify otherwise. This means the third CLI
window appears atop the second, and you’ll have to drag one of
them out of the way to use both.

You can create a new CLI window in a particular location and

18

The CLI Environment

size by describing the console device output window. The descrip-
tion for this device follows the format

CON:hpos / vpos/ width/ height/ windowtitle

where hpos is the horizontal position of the top left corner of the
window (expressed as the number of pixels in from the left edge of
the screen), vpos is the vertical position of the top left corner of the
window (expressed as the number of pixels down from the top
edge of the screen), and width and height give the size of the win-
dow in pixels. The maximum size for a CLI window is the screen
size, which for the default Workbench screen is 640 X 200 pixels.
The minimum is 90 X 25 pixels. The last entry, windowtitle, is op-
tional. It allows you to enter the text of a title to appear in the title
bar. If you don't enter any text, the title is left blank. To create a
new CLI window that occupies the full screen, you would type

NEWCLI CON:0/0/640/200/

Note that the last slash mark is required, even though you didn’t
specify the title.

A title can contain special characters, such as the space charac-
ter (which AmigaDOS usually interprets as separating one com-
mand word from another), but if you use them, you must put the
entire device name in quotation marks:

NEWCLI “CON:40/40/200/100/A Standard Window”

There’s one more feature of NEWCLI you should know about.
When the first CLI window opens, it automatically executes a com-
mand sequence file called s:startup-sequence. We’ll talk all about
command sequence files in Chapter 5, but for now, let’s just say
it’s a file that executes a series of CLI commands. If you want your
new CLI window to automatically execute a series of commands
when it starts up, you can specify a command sequence file in the
NEWCLI command:

NEWCLI FROM StartupFile

where “StartupFile” is the name of the command sequence file you
want executed. Under Workbench 1.3, if no FROM file is specified,
the sequence file S:CLI-Startup is automatically executed when a
NEWCLI command is issued.

Going Away

Anytime you want to eliminate one of your CLI windows, make
that window active by clicking the mouse button inside its borders,
and type ENDCLI. The message CLI task n ending (where n is the
number of the CLI task) is briefly printed, and the window closes.

19

The CLI Environment

(In fact, the message prints so quickly that you probably won't see
it.)

Always leave yourself at least one open CLI window—if you
close the final window, you won'’t be able to issue any commands.
You'll have no choice but to warm-start the computer by pressing
CTRL and both Amiga keys at the same time. In fact, its not a bad
idea to keep an extra CLI around, just in case. There are programs
like the public domain PopCLI which allow you to open a new CLI
window just by pressing a hot-key combination.

If you're using one program and want to start another, you can
switch back to the Workbench screen (the one on which the CLIs
reside), either by using the depth-arrangement gadgets at the top
right of the screen, or by using the Amiga-N key combination to
bring the Workbench screen forward and Amiga-M to send it back.
(The Amiga key combinations move entire screens, not just individ-
ual windows.) This gives you access to your open CLI so you can
run another program or use one of the DOS command programs.

If you have a number of CLI tasks running at the same time,
some whose windows do not appear on the Workbench screen,
you may lose track of them all. The STATUS command prints a list
of all of the current CLI tasks and the command programs they're
running.

Running Programs in a Noninteractive Process

When you want to run a program as a separate task, but don't
need the interactive features (and the memory overhead) of another
CLI window, you can use the RUN command program. When you
type RUN followed by a command you would normally type in a
CLI window, a new CLI process is created which executes the com-
mand. That new process then disappears.

Let’s say you want to run a word processor program without
losing your current CLI window. If you normally type
wordprocessor to start the program, type RUN wordprocessor in-
stead. The RUN command prints a message like [CLI n] (where n is
the next unused CLI number) and then runs the word processor.
This saves you the trouble of typing NEWCLI before entering the
command and of getting rid of the CLI with ENDCLI after you're
finished. It also saves you the memory that would ordinarily be
taken up by the CLI window. When you finish with the word pro-
cessor and exit the program, it leaves nothing behind.

Even though RUN does not provide you with a command win-
dow, it does offer a way to send additional commands to the pro-
cess. At the end of the first command, type a plus sign (+) and
press RETURN. You may then enter a second command on the

20

The CLI Environment

next line. If you want to add a third, type the plus sign and RE-
TURN at the end of the second line and add the new command on
the third line. At the end of your last command line, just type RE-
TURN. The RUN command executes each of the command lines in
sequence, just as if you had typed them in a CLI window, one after
the other. For example, if you want to send a sorted list of BASIC
program files to the printer, enter

RUN LIST S .bas TO ram:temp+
SORT ram:temp TO prt:

This runs the LIST program, which sends a list of all files with
the characters .bas in their filenames to a file on the RAM disk.
After LIST has finished, the CLI runs the SORT program, which
sorts the lines and sends them to the printer. This CLI process
doesn’t disappear until the last task is finished.

Console Enhancements Under Workbench 1.3

As noted above, the default console device used by the CLI win-
dow is fairly primative—it doesn’t even offer the line-editing ca-
pabilities of the Commodore 64. This situation was remedied by a
new console handler, called NEWCON:, introduced with Work-
bench 1.3. As of version 1.3, this console is not an integral part of
AmigaDOS like the old one was. It resides in a file in the L: direc-
tory called Newcon-Handler, and must be added to the system with
the MOUNT command (though this situation may change under
1.4). However, the default startup-sequence file on Workbench 1.3
mounts this console handler for you automatically. Likewise, to
start a CLI window with the NEWCON: handler, you must specify
it as your console in the NEWCLI command:

NEWCLI NEWCON:0/0/600/100/

Note, however, that if you use the NEWSHELL command (dis-
cussed below), NEWCON: is used as the default console handler.
NEWCON: adds two important enhancements to the standard
console handler. First, it adds line editing features. With the old
console, the only way to move back through a command line is
with the backspace key, which erases everything as you go. The
NEWCON lets you use the left- and right-arrow keys to move left
and right through the line, without erasing any text. Morevoer, any
additional characters you type will push ahead any existing charac-
ters to the right of them, without erasing anything. The Backspace
key can be used to erase the character to the left of the cursor,
while the Delete key erases the character under the cursor. The ex-

21

The CLI Environment

tended editing features of the NEWCON: handler are summarized
below:

Key Function

DELETE Erases the character to the left of the cursor

CTRL-A Moves the cursor to the beginning of the line

(or Shift-LeftArrow)

CTRL-K Erases everything from the cursor forward to the
end of the line

CTRL-U Erases everything from the cursor forward to the
end of the line

CTRL-W Moves the cursor forward to the next tab stop

CTRL-Z Moves the cursor to the end of the line

(or Shift-RightArrow)

The NEWCON: handler introduces one more subtle editing
change. Control characters are now printed in reverse video, and
are not acted on immediately (though they will be passed through
if the screen output is directed to a file or device). This means that
typing the sequence ESC-¢ will no longer immediately clear the
screen, although if you press Return after typing it, the screen will
clear when the CLI prints the error message Can’t open <ESC-c>.

In addition to enhanced editing functions, the NEWCON: han-
dler provides a command history buffer. This buffer saves each
command line as you entered it, up to a maximum of 2,048 charac-
ters (when the buffer fills, the oldest command line is deleted each
time a new one is entered). To retrieve a previous command line,
merely press the UpArrow key. Each time you press this key, the
next oldest command line appears. If you go past a command line,
you can move forward through the buffer with the DownArrow
key. To move all the way forward to the most recent (bottom) en-
try in the buffer, press CTRL-B (or Shift-DownArrow). This leaves
you on a blank line. The command history also has a search fea-
ture that allows you to find a past command by typing part of it
and then pressing Shift-UpArrow. For example, if you wanted to
repeat the command:

Copy Work:Wordprocessing/Documents/MyDoc to dfl:Backup
and you know you’d typed the command recently, you could just
type:

Co <Shift-UpArrow>

and NEWCON: would display the last line that you typed that
started with those two letters. If the command line you’d like to re-
peat showed up, you could just hit Return to reissue the command.

Note, however, that the search function is case sensitive; if you
type Co <Shift-UpArrow>, NEWCON: won't find a command

22

The CLI Environment

line that starts with “copy.”

The command history of NEWCON: can come in very handy
when you're performing repetitive tasks. For example, if you
wanted to format a series of disks, you'd only have to type the For-
mat command once. For each succeeding disk, you'd only have to
press the UpArrow and Return keys.

The Shell

Another CLI enhancement offered by Workbench 1.3 is a slightly
“smarter”” command shell. While the normal CLI only executes the
command whose name appears as the first word of the command
line, the Shell knows a few additional tricks. Since the Shell is not
(as of Workbench 1.3) the default command handler, however, it
must be added to the system with a command. To get the system
to load the Shell code in from the file L:Shell-Seg, in which it re-
sides, you must use the command:

RESIDENT CLI L:Shell-Seg SYSTEM pure

Executing this command, however, will not convert the CLI from
which the command was issued into a Shell CLI. Only CLI win-
dows that are opened after the command is given will have the
properties of a Shell. The default Startup-sequence file on Work-
bench 1.3 executes the necessary RESIDENT command, so all CLI
windows that you open from the Workbench have the Shell
characteristics. The command NEWSHELL not only opens a new
Shell process (if the Shell-Seg has been loaded), but opens it with a
NEWCON: window as well.

The first enhancement offered by the Shell is recognition of a
new PROMPT argument. When you use the characters %S in a
prompt string, they will be replaced the name of the current direc-
tory, whatever that happens to be at the time. For example, the
command:

Prompt "%N.%S> "
will lead to a prompt string that looks like this:
1. Workbench 1.3>

Whenever you change your current directory (more about this in
Chapter 3), the prompt will change to reflect the new location.
The second new feature of the Shell is much more substantial.
This is the power to create aliases for commonly used AmigaDOS
commands. An alias is an assumed name for an existing command,
usually shorter than the actual filename of the command. For ex-
ample, you could give the command Makedir the alias md, and
then, whenever you wanted to create a new directory, you'd only

23

The CLI Environment

have to type md, instead of Makedir. To create an alias, you use
the Alias command, which is recognized only by the Shell (it can
be thought of as an instrinsic command, one the Shell knows about
without reading in a command file). The format for this command is:

ALIAS name command

where name is the new name by which you wish the command to
be known, and command is the command you want executed when
that name is given. In the example above, you'd give the Makedir
command its alias by saying;:

ALIAS md Makedir

Alias is good for more than just changing a command’s name,
however. It can be used as a handy shortcut for an entire command
line. For example, you could use it to condense the command For-
mat drive dfO: name Empty noicons down to the command
fmt with the Alias command:

ALIAS fmt Format drive dfO: name Empty noicons

Not only can you enter command parameters into an alias, but you
can even enter in a partial list of parameters, and specify a place
where substitutions will be made with a pair of square brackets [].
For example, if you wanted the above alias to be usable with any
floppy drive, not just the internal one, you could give the
command

ALIAS fmt Format drive df[]: name Empty noicons

When you give the fmt command, the square brackets are replaced
by whatever number you type as a command parameter. For ex-
ample, to format drive 1, you would type

FMT 1

There are a few more facts you should know about the ALIAS
command. The command ALIAS entered by itself will list the cur-
rent aliases. To remove an ALIAS, type ALIAS name with no
command, where name is the alias you wish to remove. Finally,
each set of aliases is known only to its own particular shell process.
If you start a new Shell, it won’t know about about the old Shell’s
aliases. The same is true for the enhanced prompt. If the old Shell
had a prompt that contained the %S character, the new Shell will
inherit a prompt that reflects the directory of the old Shell at the
time the new one was created. This prompt will not automatically
change to reflect the new Shell’s path. Since it would be rather in-
convenient to enter a new prompt string and a new set of aliases
for each new Shell you create, AmigaDOS lets you use a startup
file that automatically does it for you. If you start a Shell with the

24

The CLI Environment

NEWSHELL command, it will automatically execute all the com-
mands in the file S:Shell-Startup at the time of its creation.

The last two features of the Shell will be covered in greater
depth later on, since they concern subjects we haven’t covered yet.
We’ll mention them here, just for the sake of completeness. The
first involves sequence file execution. Normally, you use the EXE-
CUTE command to execute a command sequence file. With the
Shell, however, its possible to execute sequence files just by typing
their names, if the file’s S protection bit has been set. The second
feature is a new kind of output redirection. Normally, when you
redirect output to a file, it creates a new file that overwrites the old
file of the same name. With the Shell redirection operator >>, new
information is appended on to the end of the old file, if any.

Throughout the rest of the book, you'll occasionally come across
lines to be entered on the Amiga which, because of the book’s for-
matting, are split on the page. A continued line is indented—do not
press Return at the end of the first physical line, but simply continue
typing with the indented characters.

25

Chapter 3

The Filing System

The Amiga personal computer comes with an internal double-
sided, double-density 3%2-inch disk drive. Each 3%z-inch disk can
hold 880K bytes—in other words, 901,120 characters of infor-
mation. To use a disk for storage, AmigaDOS must first write some
organizational information to the disk that will be used by the
computer’s filing system to find the information it stores on the
disk. This is called formatting the disk and is performed by the
FORMAT command. Its syntax is

FORMAT DRIVE df0: NAME Volume name

Volume Names

When you format a disk, the program notifies you as each of the
80 cylinders (tracks) on the disk is formatted (written), then verified
(read) to make sure the formatting information is correct. If you
want to format the disk on a drive other than the internal drive,
just substitute the device name of that drive (for example, df1: re-
fers to the first external 3%2-inch drive). Notice that after the name
of the drive, the command specifies NAME Volume name. Amiga-
DOS requires you to give each disk a name, known as the volume
name. You must use the keyword NAME before entering the name.
To name a disk as Wordprocessing, you'd use NAME Word-
processing. It’s a good idea to use a name that identifies the disk
as precisely as possible. AmigaDOS is able to identify a disk by its
volume name as well as the device name of the drive in which it
resides. Therefore, if you remove the Wordprocessing disk from the
drive and DOS wants to access something on that disk, it will
prompt you to Please insert volume Wordprocessing in any drive.
(The message is somewhat misleading—sometimes the disk must
be placed in a specific drive, normally the one it was in earlier. If
you put the disk in the wrong drive, the message will reappear.)
You can change the volume label of a disk at any time with the
RELABEL command program. To change the name of the disk in
the above example to Spreadsheet, for instance, you'd type

RELABEL dfQ: Spreadsheet

26

The Filing System

Identification

Besides the volume name, AmigaDOS also writes an identification
number on each disk. It tries to make each of these ID numbers
unique, so even if two disks both have the same volume name, the
disk operating system can tell them apart. The disk-duplication
programs provided on your Workbench disk don’t reproduce the
old ID number on the new disk, so even exact copies can be distin-
guished from the original. Only if a disk is duplicated by a com-
mercial mass-duplicating machine (or special copying programs)
will the IDs on copies match that of the original.

Info

After a disk is formatted, the INFO command shows that it con-
tains 1758 blocks of usable storage space, each containing 512
bytes. Note that this is two blocks short of 880K—the disk operat-
ing system reserves these for its own purposes. In addition, DOS
uses two of these 1758 blocks, leaving you with 1756 free blocks
(878K) on a newly formatted disk. If you want to verify this, you
can use the command program INFO to display the amount of stor-
age used on the disk and the amount of remaining free space. Type
INFO, and you’ll see a display that looks like this:

Mounted disks:

Unit Size Used Free Full Errs Status Name
DF1: 880K 1317 441 74% 0 Read/Write Workbench
DF0: 880K 2 1756 0% 0 Read/Write Wordprocessing

Volumes available:
Wordprocessing [Mounted]
Workbench [Mounted]

This display tells you the size of the total storage space on
each disk currently in each drive (mounted), how many blocks
have been used, how many are free, the percentage of disk space
that’s used up, how many errors were encountered in reading from
the disk, whether or not the disk is write-protected, and the vol-
ume name of each disk.

Installing

There are a couple of other things you should know about format-
ting a disk. First, it's not necessary to format a disk before you per-
form a DISKCOPY to it—the DISKCOPY program both formats the
new disk and copies all the information from the source disk to this
disk. Second, the system will not accept a newly formatted disk if

27

The Filing System

it’s inserted at the prompt that tells you to put in the Workbench
disk (it just keeps asking for a Workbench disk). In order to make a
newly formatted disk bootable, you must use the INSTALL pro-
gram. To install the boot information on drive df0:, for example,
enter

INSTALL dfe:

The INSTALL program doesn’t prompt you to put the disk
into the drive—it does the installation immediately. This makes it
difficult to use INSTALL on a single-drive system because you
must have the INSTALL program on the disk you want to install. If
you don’t want to copy that program to the disk, you can copy it to
the RAM disk instead (we’ll be talking about the RAM disk at
greater length in the next chapter).

To do this, put your CLI disk in the drive, and type

COPY c/install TO ram:

Put the new disk you want to INSTALL to into the internal
drive (it must be formatted first), and type

RAM:INSTALL dfo:

Once the INSTALL process is completed, you may put that
disk into the internal drive when the system prompt for the Work-
bench appears on the screen, and the disk will boot and show the
CLI 1> prompt. Unless you put the DOS command files on that
disk, of course, you cannot use the commands just by typing their
names.

Version 1.3 of the Workbench added a new function for the
INSTALL command. If you add the keyword CHECK to the IN-
STALL command line, the program will check to see if the infor-
mation on the boot block of the disk is the standard Commodore-
Amiga code, or some nonstandard code which may indicate that
the disk contains a virus (a hidden program that may adversly af-
fect your computer’s performance). Using the INSTALL program to
rewrite the book block to the disk will destroy most virus pro-
grams, but it can also cause some copy-protected programs to cease
functioning.

Files and Their Characteristics

The basic unit of information stored on a disk is called a file. A file
is just a group of characters of information that are stored together
on the disk under a common filename. A file can represent a com-
puter program, or a collection of data used by that program, such
as the text of a document created by a word processing program.

28

The Filing System

To see the contents of a file, use the TYPE command.

To print a text file called document on the screen, for example,
enter the command TYPE document. You may remember from
the previous chapter that you can pause output to the screen at any
time by striking a key, such as the space bar, and restart output by
using the BACK SPACE key to erase that keystroke. TYPE is really
only helpful for seeing the contents of text files. If a file contains
the numeric code for a computer program, the TYPE command will
print out, what seems like a jumble of nonsense characters.

Each file has a number of characteristics associated with it.
These include the name of the file, the number of characters it con-
tains, the number of disk blocks it uses, the protection level, the
date and time of its creation, and comments (if any). If you just
want to see a directory listing of the names of files on a disk,
sorted into alphabetical order, use the DIR command program.

The LIST command displays a list of files and all of their
characteristics. You can LIST all the files in a directory, a selected
portion of the files, or even a single file. There are a number of
variations on this command (see the “Command Reference” section
for details). The simplest form is

LIST

which displays information about the files and directories in the
current directory. As with other displays, you can pause it by
pressing a key, such as the space bar, and resume it by pressing the
BACK SPACE key.

In the sections below, we’ll examine in detail each of the file
characteristics displayed by the LIST command program.

Filenames

The most important characteristic of a file is its name, since you
must know the name in order to access the information a file con-
tains. A filename may be up to 30 characters long and may contain
almost any character, with a few exceptions. A filename can’t con-
tain a slash (/) or colon (:); DOS uses these to identify the direc-
tory to which a file belongs (see the section below on directories
for more information). A filename cannot use nonprinting charac-
ters (like TAB) or characters from the alternate character set (which
appear when you hold down the ALT key and type a character).

If you want to use the special characters that the CLI recog-
nizes as command modifiers in a filename, you’ll have to jump
through some hoops. To use the space (), plus (+) at the end of a
name, equal (=), or semicolon (;) in a filename, you must put

29

The Filing System

the whole filename in double quotation marks. For instance,

COPY SOB TO "Son of a Blitter Object”
RENAME "3+3" TO Sixpack

If you include the device name and/or directory name as part
of the file specification, the whole file specification must appear in
quotation marks, like this:

“DF1:Programs/My Program”
Not like this:
DF1:Programs/ My Program”

By using the double quotation mark for this purpose, you've
made it an exception to the naming rules. So what if you want to
have a filename that includes quotation marks? You'll have to use
an asterisk (*) in front of the double quotes as an escape character
to tell DOS you want the quotation mark to appear in the name
and not just set off a chunk of text that contains space characters.
This means you would type the filename “So-Called” Facts like this:

"*“So-Called*” Facts”

Confused? It gets worse. Now you’ve made the asterisk an ex-
ception, too. This means in order to use the asterisk in a name, you
must use another asterisk in front of it. The name *void where pro-
hibited must be typed as

"**yoid where prohibited”
To summarize:

* Filenames may be up to 30 characters long.

* They may not contain a colon (:), slash (/), nonprinting, or
AlLTernate character.

« If you want to use characters like the space, plus (+) at the end
of a name, equal (=), and semicolon (;), all of which have
special significance to CLI, you must put the entire filename in
double quotation marks ("A Special File”).

* If you want to use double quotation marks (") or an asterisk in a
filename, you must precede them with an asterisk ("*"Confu-
sion**10*"” for "Confusion*10”).

In the examples above, some of the filenames appear in lower-
case characters, some in a combination of upper- and lowercase.
Any combination can be used in naming a file. When you LIST the
filenames, they’ll be printed using the same combination of upper-
case and lowercase used when the file was named. The CLI, how-
ever, does not distinguish between cases. You can refer to a file
named CAPITAL as capital or Capital or even CAPital, and the CLI

30

The Filing System

reads them all identically. Since you cannot have two files with the
same name in the same directory, a single directory cannot contain
files named Test and TEST, because to the CLI each name looks the
same.

Filenotes
Though the name of a file is your chief source of information about
its contents, AmigaDOS provides another source as well. Using the
command program FILENOTE, you can attach a comment of up to
80 characters to a file. This comment can be used to note what'’s in
the file or show how this file differs from other files with similar
names. When you use the LIST command to obtain information
about the files on a disk, the FILENOTE comment is displayed right
beneath the name of the file.

Not all files have filenotes attached. (No filenote is automati-
cally attached to the file when it’s created.) You must enter it your-
self with the command FILENOTE, which uses this format:

FILENOTE filename COMMENT “This comment tells you
about the file”

The use of the keyword COMMENT before the comment is
optional. The rules for using special characters (such as spaces)
within comments are the same as those for using such characters
within filenames. If you use spaces within the text of the comment,
the entire comment must be enclosed within quotation marks, and
if you want to include quotation marks or an asterisk in the com-
ment, you must precede them with an asterisk.

An interesting characteristic of filenotes is that they remain
firmly attached to the file to which they’re appended. The com-
ment does not change or disappear when you rename the file. If
you copy the contents of a file to one that has a filenote, the
filenote stays attached, even though its contents have changed. If,
however, you copy a file with a filenote to a new file, the filenote is
not copied along with the contents. It sticks like glue to the origi-
nal. There is no way to delete a filenote alone. If you want to get
rid of it, you have to change the comment to something innocuous,
like blank spaces, or copy the whole file and delete the original.

File Size

The LIST command displays a number after the filename. This
number represents the size of the file in bytes (characters). This
number should not be confused with the number of disk blocks
that the file uses. Even though each block can hold 512 bytes of
information, every file uses a minimum of two disk blocks. This

31

The Filing System

means a file only one character long uses up 1024 characters of
disk space.

To test this, type INFO to see the number of free blocks on
your disk. Now type

COPY * TO test

Press the Return key, and then the CTRL key and the backslash key
(\) at the same time.

This copies from the keyboard of your console device (repre-
sented by the asterisk) to a disk file named test. The CTRL- \ key
combination is the end-of-file character, which signals the end of
output from the console device and stops the copying process. You
end up with a file that contains only one character.

If you enter LIST test, you'll see that the file length is really
one character. But if you type INFO again, the number of free
blocks has decreased by two. Keep this in mind—numerous small
disk files may take up more space than if the same information
were stored as one long file. Even an empty file uses up one block
of storage.

Protection Level
On the display provided by LIST, there’s space for eight characters
next to the size of the file. Seven of these characters—sparwed—
represent the seven protection status flags associated with each file.
These flags determine whether or not you can read, execute the file
as a script without using the EXECUTE command, make it resident
with the RESIDENT command, and write, execute, or delete the
file. Read, write, and delete are fairly self-explanatory—if set, these
flags allow you to read from the file, write new information to it,
and delete the file completely. The Execute bit operates only on
program files—it allows DOS to execute (run) the program. If you
set the execute flag on a nonprogram file (a text file, for instance),
you cannot expect DOS to load and run the file. It's important to
note that in all releases of AmigaDOS to date, the read, write, and
execute bits do not perform their intended function. You can set
these flags, but DOS does not act on those settings.

The final three flags were added under AmigaDOS 1.3. The S
(or Script) bit is used to tell the Shell that a file is a script file that
would normally be run with the EXECUTE command. If you type
in the name of a script file at a Shell prompt, the Shell will execute
the script even though you don’t type in the EXECUTE command
name.

The P (or Pure) flag is used in conjunction with the RESIDENT
command, which loads a CLI command into memory and uses it as

32

The Filing System

if it were a “’built-in” AmigaDOS command. Since only certain
types of programs can be made RESIDENT (those that can be run
from multiple CLI’s at the same time, using only one copy of the
program), the pure bit is used to tell the RESIDENT whether the
file in question is a suitable candidate.

The A (or Archive) flag doesn’t have any intrinsic meaning to
AmigaDOS, but is provided for the use of backup programs which
are used to create archival copies of data. When the backup pro-
gram copies a file, it sets the A bit to show it has been archived. If
the user later changes that file, the A flag will be removed, so the
next time a backup is performed, the backup program will know
this file has been changed, and must be saved again.

When a file is created, the RWED flags are set. As indicators,
the four characters (rwed) appear in the LISTing of the file name
(along with four dashes, representing unset flag bits). To change
the protection status of a file, use the PROTECT command pro-
gram. The form of this command is

PROTECT filename FLAGS rwed

where filename is the name of the file whose status you wish to al-
ter, and rwed are the letters for the flags you wish to enable. For
example, if you want to remove just the deletion flag from a file
called LifesWork, you'd enter

PROTECT LifesWork FLAGS rwe

This would allow you to read, write, or execute the file, but not
to delete it. As of Workbench 1.3, the PROTECT command allows
you to use the + and — characters to add or subtract one or more
protection flags. For example, to set the Script flag on a file called
Execute.Me, you'd enter

PROTECT Execute.Me FLAGS +s

File Dating

The final item displayed by the LIST command program is the date
and time the file was created. The Amiga 2000 and 2500 come
equipped with a battery-powered clock/calendar module, from
which the time and date is read at power-on, using the SETCLOCK
command. The Amiga 1000 doesn’t come with such a clock mod-
ule. And on the Amiga 500 the clock module is optional. If your
computer does not have a clock/calendar, it’s up to you to set the
correct time and date each time you turn on the machine, or reset
the computer. You can find out what time and date the Amiga is
currently using by checking the time setting in the Preferences pro-
gram or by entering the command filename DATE. You can set the

33

The Filing System

© time from the Preferences program that comes with the Workbench
disk or by using the DATE command program.
To set the time using the DATE command, use the form

DATE HH:MM:SS

where HH is a two-digit number for the hour, MM is a two-digit
number for the minute, and SS is a an optional two-digit number
for the second. If you don’t specify the seconds, the Amiga uses 00
for you (if you don’t specify seconds, you don’t need to include the
final colon). Note that hours are expressed in a 24-hour format, in
which 1:00 p.m. is referred to as 13:00, and midnight as 00:00.

The DATE program expects the date in the format DD-MMM-
YY, where DD is a two-digit number representing the day of the
month, MMM is the first three letters of the name of the month,
and YY is the last two digits of the year. For example, to set the
date to September 29, 1989, you'd type

DATE 29-Sep-89
It’s possible to set both the date and time with one command:
DATE 16-May-89 14:56

Besides the DD-MMM-YY format, AmigaDOS also understands
some common ways of expressing the date, such as Yesterday, To-
day, Tomorrow, and the days of the week, such as Monday, Tues-
day, Wednesday, and so on. You can use these expressions in place
of the DD-MMM-YY format anytime you want to change the cur-
rent date to one within the coming week. For example, let’s say you
just turned on the Amiga and used the DATE command to find out
the current time and date setting. If today is Sunday, November 26,
1989, and you last wrote a file to the disk the day before, you may
find that the setting is Saturday 25-Nov-89-20:20:02. To make the
date current, you need only type

DATE tomorrow
or
DATE Sunday 10:00

Either form advances the setting one day.

Remember that using the name of a day of the week (you can’t
use abbreviations here—you must use the full name of the day)
will always set the date forward to that day. In the example above,
if you'd typed DATE Friday, it would have set the date to Friday
01-Dec-89 instead of Friday 27-Nov-89. The only date word that
sets the date backward is Yesterday. The DATE Yesterday command
moves the date back by one day.

34

The Filing System

AmigaDOS also uses these words in its LIST display, so don't
be surprised if you see recent files with dates like Yesterday or To-
day. The meaning of such terms in the LIST display is somewhat
different with the DATE command, however. DATE expects that the
new date you're setting will be later than the current date that’s
shown, so if you use day names like Tuesday, it sets the date to the
Tuesday following the current date. LIST, however, assumes that
files on an existing disk must have been created previously, so
when LIST says Tuesday, it means the Tuesday before the current
date. If you put in a disk that wasn’t in the drive when you booted
up the Amiga, and there’s a file on the disk with a date later than
the current date, LIST will show its date merely as Future. To see
the actual date of such a file, you’d have to change the current date
far enough to the future so it’s later than that of the file.

If you've set the correct date, expressions like Today or
Wednesday can be helpful in quickly picking out new files from old
ones. But what date does the Amiga use if you haven't set the cor-
rect date? AmigaDOS sets aside a place on each disk where it
records the latest date and time that a file was created. This latest
date is updated with the current date and time every time you
write to a file (provided that the current date is later than the latest
date). When you boot up the computer, AmigaDOS checks the lat-
est date recorded on the boot disk (and on the disk in the external
drive as well, if one’s inserted). It sets the current date and time
just a little later than the latest date found (AmigaDOS appears to
advance it by 11 seconds). That way, even if you forget to set a
new time and date when you boot up, your files will still appear in
correct chronological order. You won’t be able to tell the exact date
and time a file was created, but you will be able to tell which was
created most recently.

This time-stamping feature of AmigaDOS can be a great aid
when you're trying to identify one file among several. In fact, it’s
so convenient that if your computer doesn’t have a clock/calendar,
you may want to alter the startup command file so it prompts you
to enter the correct date and time whenever you turn the computer
on. An example of such a file can be found in Chapter 5, which ex-
plains command sequence files.

Directories and Subdirectories

With 880K of space, it’s quite possible to have over a hundred files
on one disk. That many files in a single directory makes disk oper-
ations very clumsy—just scanning a directory listing becomes a
chore. This problem becomes much worse when you start to work

35

The Filing System

with a hard disk that has 20 or 60 million bytes of available storage
space.

d AmigaDOS’s answer to this is to provide multiple directory
levels, which branch out from the highest directory on down. This
allows you to place several related files into their own directory,
where you can work with them in an environment isolated from
the other, unrelated files on the disk. Your Workbench disk, for ex-
ample, contains directories like ¢, which contains command pro-
gram files, and devs, which contains files for device drivers like the
one that makes your printer work. Some of these subdirectories,
such as Utilities, have icon files associated with them which make
them appear on the Workbench screen as drawers.

Root and MAKEDIR

When you create a new file structure by formatting a disk, there’s
only one directory on the disk. This is the highest level, or root, di-
rectory. When you write files to this disk, these files go into the
root directory. If you wish, however, you can create new directories,
known as subdirectories, within the root directory. Let’s say you're
going to use part of the disk for storing word processing files and
part of the disk for telecommunications files. You could create sepa-
rate subdirectories for each kind of file by using the MAKEDIR
(make directory) command program. Just type MAKEDIR, followed
by the name of the directory. The rules for naming directories are
the same as for naming files (see above for more information).
Using the names in the example above, you’'d type

MAKEDIR Wordprocessing
MAXEDIR Telecommunications

After you put a few files into each of the directories, your di-
rectory structure might look like this:

A Typical Directory Structure

Root
I
| | 1
Textfile Wordprocessing (dir) Telecommunications (dir)
I I
I | |]
Textfile Moretext Terminal Downloads

This structure is similar to what you might see if you draw a
family tree. At the top level is the root directory, which contains a
file (a data file called Textfile) and two subdirectories (Word-
processing and Telecommunications). These subdirectories in turn

36

The Filing System

contain their own files. The Wordprocessing directory contains the
files Textfile and Moretext, and the Telecommunications directory
contains the files Terminal and Downloads.

You'll notice that the root directory and the Wordprocessing di-
rectory both contain a file named Textfile. You can’t have two files
of the same name in the same directory. If you tried to create a new
file with the same name as an existing one, the new file would
overwrite and replace the existing one. But, there’s no problem
having two files of the same name in different directories. Each di-
rectory can be thought of as its own small disk except that a direc-
tory doesn’t have a fixed size limit (within the space considerations
of the disk itself). A directory takes up as much space as required
to hold its files and subdirectories.

Just as the root directory can contain either files or subdirec-
tories, the subdirectories themselves may contain files or subdirec-
tories. For instance, if you have a large number of document files
in the Wordprocessing directory, you may wish to group them into
subdirectories, such as Personal Letters, Business Letters, Proposals,
and Speeches. There’s no limit to the number of directory levels you
can create—again other than the space available on the disk. Most
people will find, however, that about four or five levels down is as
far as they care to go.

If you want to see the complete contents of a disk, including
files within subdirectories, you can do so by adding the phrase
OPT A (for all) to the DIR command. If you examine the sample
disk illustrated above with the command DIR OPT A, you’ll see
the following display:

Telecommunications (dir)

Downloads Terminal
Wordprocessing (dir)

Moretext Textfile
Textfile

Gaining Access

You can gain access to files within subdirectories in one of two
ways. If you wish, you can specify complete information about the
file, including each of the directory levels between it and the root
directory (this is known as the full pathname). Do this by naming
each of the directories, in order, from the root down, separating the
name of each directory with a slash (/). If the disk described
above is in the internal drive, you could refer to the file Textfile in

37

The Filing System

the Wordprocessing directory as DF0:Wordprocessing / Textfile. Speci-
fying the entire path from the top down always works, but it can
be a bit tiresome (particularly with a file like DF0:Wordprocessing/
Personal Letters /Aunt Charlotte—Thank You).

A less burdensome alternative involves the concept of the cur-
rent, or default, directory. If you refer to a file without specifying a
device or directory path, AmigaDOS looks for that file in which-
ever directory is currently the default directory. When you first
start up the computer, AmigaDOS sets the root directory of your
boot disk (the one in the internal drive) as the current directory.
You're free to assign a new current directory at any time. Just type
CD (for the Current Directory command program), followed by the
name of the directory (or directory path, if you're going down more
than one level). Using the same example, you could make the
Wordprocessing directory the current one by typing

CD Wordprocessing

From then on, if you want to use the file Textfile, you could refer to
it by name, instead of as Wordprocessing /Textfile. If you use the
command DIR after changing the current directory to Word-
processing, you'd see only a list of the files in that directory.

Up and Down

It’s even possible to skip down more than one level at a time. If
you want to change the current directory from the root directory to
the Business Letters subdirectory of the Wordprocessing directory,
enter

CD “Wordprocessing/Business Letters” (quotes needed for names
with spaces)

The CD command always assumes the name you give it is of a di-
rectory or path that lies below the level of the current directory. To
move up to a higher level, you must use one of two special charac-
ters. The first is the familiar slash (/). A slash in front of a direc-
tory name is the signal to move up a level to the directory that
contains the current directory. The backslash alone works—you
don’t have to specify the name of the higher directory—since each
directory has only one directory immediately above it. To change
the current directory to the one immediately above, just type

CDh/

You're not limited to a single slash. You can use as many
slashes as there are directories above the current one. Thus,

CD //
moves you up two directories.

38

The Filing System

Nor are you limited to going in one direction at a time with
CD. Assume your current directory is the Letters subdirectory of the
Wordprocessing directory, and you want to change to the Telecommu-
nications subdirectory of the root directory. You could use the com-
mand form

CD //Telecommunications

The first slash takes you up to Wordprocessing, the second slash
takes you up to the root directory, and Telecommunications takes
you down one level to make that directory current.

If your goal is to return to the root directory, however, it’s not
necessary to enter a slash for each level. You can use the colon (:)
to indicate a move directly up to root level. For instance,

CD:
makes the root directory the current directory, while
CD :Telecommunications

assigns the Telecommunications directory as the current directory, no
matter how far down you were when you entered the command.

CD is not the only command that takes the initial slash as a
signal to move up one directory level, and you can use the colon to
refer to the root directory at any time. Commands such as

DIR :
DIR :Wordprocessing
DIR /
DIR /Wordprocessing

all work, as long as the directories referred to really exist.

If you wish to change the default directory to one located on
another disk, you must specify the device name or volume name
when using CD. To switch to the root directory on the disk in the
external 3%2-inch drive, for example, you'd use

CD df1l:

Note that when you switch the current directory to another
disk, AmigaDOS internally refers to that disk by its volume name
and not by the device name of the disk drive in which it’s
mounted. This means when you put a disk with volume name CLI
in drive df1: and type CD DF1:, AmigaDOS changes the current di-
rectory to the root directory of volume CLI. If you take that disk
out of the external drive and replace it with another, AmigaDOS
will be very unhappy. Use DIR with the new disk in the drive, and
DOS won'’t comply. It will put up a requester box asking you to re-
place volume CLI in any drive. That’s because to AmigaDOS, the
current directory is the root of the specific disk named CLI, not just

39

The Filing System

any disk that happens to be in the external drive. When you wish
to replace that disk with another, you should change the current
directory to one of the disks you'll use. In the example above, once
you replace the CLI volume with another disk, you could issue the
command CD DF1: once again, making the root directory of that
volume the new current directory. Then if you issue the DIR com-
mand, you would not be prompted to swap disks. If you're ever
unsure which is the current directory, simply use the command CD
(and that’s all) to display the current directory name. For more
information on device names, logical devices, and volume names,
see Chapter 4.

File Manipulation Commands

Some of the most commonly used CLI commands are those that
copy, delete, rename, and join (combine) files.

COPY

The COPY command is used to create a duplicate of a file in the
same directory, in another directory, or even on another disk.

COPY vitalstuff TO vitalstuff.backup

This creates a backup copy of the file in the same directory with
another name.

COPY programfile Programs/programfile

While this command line creates a copy of the file with the same
name in the subdirectory named Programs.

COPY filename df1:

And this command makes a copy of the file (with the same name)
in the root directory of the disk in drive dfl:.

RENAME

The RENAME command program changes the name of a file or a
directory. When you RENAME a directory, you change its position
in the directory structure:

RENAME program TO program.old
This changes the name of the file program to program.old.
RENAME dfl:.c/delete TO dfl:c/erase

While this command line changes the name of the command pro-
gram delete on disk drive dfl: to erase, also on disk dfl:.

RENAME Wordprocessing/Letters TO :WordWiz/Textfiles

40

The Filing System

And this example moves the directory Wordprocessing/Letters and
all of its contents to the directory WordWiz/Textfiles.

DELETE

DELETE removes a file from the disk. Once you delete a file, the
information contained in it is lost forever. DELETE lets you name
up to ten files to delete at a time. Separate each filename with a
space.

DELETE oldfile
This permanently erases the file oldfile.
DELETE oldfilel oldfileR oldfile3

And this sample erases all three of the named files.

DELETE can also be used to erase a directory, but only if it
does not contain any files or subdirectories. You can use the same
DELETE command first to erase the files in the directory, then to
delete the directory, or you can use the keyword ALL.

DELETE Wordprocessing/lonefile Wordprocessing

This first deletes the only file in the Wordprocessing directory, then
deletes the directory. Or you can use

DELETE Wordprocessing ALL
which deletes the directory and all files it contains.

JOIN

The JOIN command file takes the contents of from 2 to 15 files and
combines them into a new and larger file. The original files are
unchanged.

JOIN firsthalf secondhalf AS bothparts

This creates a new file called bothparts which contains all the infor-
mation of both firsthalf and secondhalf.

Pattern Matching (Wildcards)

Sometimes it's possible to specify one or more filenames that have
a common characteristic without typing the entire filename. This
technique, called pattern matching, lets you do such things as list all
files with names ending in the characters .bas or delete every file in
a directory at one time.

AmigaDOS pattern matching is similar to the concept of
wildcard characters used in MS/PC-DOS, but there are important
differences. In PC-DOS, the asterisk (*) can be used to substitute

41

The Filing System

for any string of characters in a filename. In AmigaDOS, the aster-
isk is used as an escape character, to allow quotation marks (and
other asterisks) in a filename. Also, as you'll see in the next chap-
ter, the asterisk is used to refer to the currently active console
device.

PC wildcards can be used with more commands than
AmigaDOS pattern matching, which is mostly confined to COPY,
DELETE, DIR, and LIST. AmigaDOS patterns, however, are much -
more flexible. They allow you to match names starting with the
same group of characters, end with the same group of characters,
or have the same characters in the middle, preceded by any num-
ber of characters and followed by any number of characters. Such
flexibility makes the system somewhat complex to learn, but well
worth the time and effort required.

? and #

The most important pattern-matching characters are the question
mark (?) and the pound sign (#). The pound sign followed by a
single character matches any number of repetitions of that charac-
ter (including none). For example, #STUTTER matches STUTTER
(#S substitutes for one S), SSSSTUTTER (#S substitutes for four con-
secutive S’s), and TUTTER (#S can also substitute for zero occur-
rences of the letter S). The question mark is used to replace any
single character (but not the null string, or no character). Thus,
?LA?S matches FLATS (first ? replaces F, second replaces T) or
2LAPS (first ? replaces 2, second replaces P), but not LAPS (first ?
must replace an actual character).

When you put these two special characters together (#?), they
become a powerful pattern that can match any number of any char-
acters (or no characters at all). For example, you could use PART#?
if you wanted a pattern to match all filenames starting with the let-
ters PART. If you wanted to LIST all of the icon information files
(whose names always end in .info), you could use the pattern #?.INFO
to find them. You could also use a pattern like PART#?.INFO to match
any file starting with PART and ending with .INFO, with anything
(or nothing) in between (like PARTICLE.INFO, PARTYANIMAL. INFO,
PART47ZYC-332.INFO, and even PART.INFO). Likewise, you could
use a pattern like #?CAT#? to match a filename that had the letters
CAT anywhere in it (like CATAPULT, SCAT, SCATTER, or "I SNEEZE
AT CAT HAIR").

42

The Filing System

()

In addition to the pound sign and question mark, there are three
other characters that have special meaning when used for pattern
matching. Parentheses () may be used to group a number of char-
acters together into a single pattern element. If you follow a pound
sign with a group of characters within parentheses, for instance,
it will match any number of repetitions of that pattern group (in-
cluding none). Thus, #(YO) matches the filenames YO, YOYO,
YOYOYOYO, and so on. If you didn’t use the parentheses, #YO
would match YO and YYYYO, but not YOYO, because the #Y could
substitute only for repetitions of the single letter Y. Parentheses let
you become creative, doing things like using #(P?’NG) to match the
filename PINGPONG.

The vertical bar (l), entered by pressing the SHIFTed backslash
key, is used when you want one of two or more patterns to match
the characters in the filename. A | B matches either the letter A or
the letter B. The pattern GOOD | BAD matches either a file named
GOOD or one named BAD. And pattern MO(B | N)STER matches
both MONSTER and MOBSTER (note how the parentheses were
used to set off the BIN as a distinct pattern). AmigaDOS under-
stands the vertical bar as applying only to one part of the path-
name. For example, the command

COPY df0:¢c/COPYIDIRILIST to ram:

would be understood to mean copy any file named COPY, DIR, or
LIST from the C directory on df0: to the root directory of the RAM
disk, and not copy the file named COPY from the C directory of
df0:, or DIR or LIST from the current directory to the RAM disk.
This aspect of the vertical bar can be very handy when dealing
with several files in a complicated path at one time. Note that prior
to Workbench 1.3, there was a limit of 31 characters in any one
wildcard expression, which limited the number of files you could
join with the vertical bar. This limit was removed in 1.3.

%

The percentage sign (%) represents the null string (no character).
You've already seen how a pattern starting with the pound sign
matches any number of repetitions of the following character, in-
cluding none at all. The pattern S#HIN, for example, matches
SHIN, SHHHIN, and SIN. But if you want to match only a single
appearance of the character or none at all, you can use the form

(H | %), which stands for either H or the null character (no character

43

The Filing System

at all). Therefore, S(H | %)IN would still match SHIN and SIN, but
would not match SHHHIN, which repeats the H character more
than once.

Combining the percentage sign with the question mark in the
form (? | %) creates an expression that will match any character or
no character at all. Using a previous example, you could substitute
the pattern (? | %)LA?S to match either 2LAPS or just plain LAPS.

There’s one final character used to address a problem created by
the other special characters. Since those characters have special
meanings in the language of pattern matching, it makes it difficult
when you want to match a name that contains one of those special
characters as part of the filename. In order to match a filename that
contains a question mark, for example, you must precede the ques-
tion mark with an apostrophe (") to let the pattern matching
mechanism know that you want to match an actual question mark,
without using the question mark as a substitute for any other char-
acter. For instance, you could use the pattern ?OW’? to match
filenames like HOW? and COW?.

Naturally, since the apostrophe is now a special character, you
must use two apostrophes to represent an apostrophe that might be
part of a filename. A pattern like ?°ONT”’T is needed to match
filenames like DON'T and WON'T. If these rules remind you of the
rules for naming files, all the better. The same rules apply to pat-
tern substitution, too. If you're using a pattern containing space
characters, for example, you must enclose the entire pattern with
double quotation marks.

Pattern Matching Summary

#e Matches any number of repetitions of the character ¢ (including
none)
N#0 matches N, NO, NOO, and NOOOOOOOOOOO

#(group) Matches any number of repetitions of group (including none)
#(TOM) matches TOM and TOMTOM

? Matches any single character (but not the null character)
K?NG matches KING and KONG (but not KNG)

#? Matches any number of repetitions of any character (including
none)

#?.BAS matches any filename ending in .BAS
P11P2 Matches either pattern P1 or P2

B(A | O)Y matches BAY and BOY

df0:c /LISTIDIR matches df0:c/LIST or df0:c/DIR
% Matches the null string (no character)

(S| %)TOP matches STOP or TOP

44

@1 %)
0

The Filing System

Matches any character or no character

(?1 %)LOT matches SLOT, CLOT, and LOT

Used to set off a group of characters as its own distinct pattern
(M| P)A matches MA or PA

M1 PA matches M or PA

Used in front of one of the special characters to show that you
want to match it, not invoke its special meaning

?ON"T matches WON'T and DON'T

45

Chapter 4

Devices

The main function of a disk operating system like AmigaDOS is to
let you control disk devices. But there are several other kinds of de-
vices that the Amiga is capable of accessing, and the CLI provides
ways of interacting with them also. Some of these devices are
physical devices, like the console screen and keyboard, hard disks,
printers, and modems. Others are “’software” devices like the RAM
disks and pipe handler. As you'll discover later, AmigaDOS even
treats some disk directories as logical devices.

Some of these devices are built-in, and AmigaDOS recognizes
them automatically. Others must have their driver or handler soft-
ware added to the system by use of the MOUNT or BINDDRIVERS
command.

Disk Drives

Every Amiga comes with an internal disk drive. This device is
known as DFO: (for Disk Floppy). Optionally, you can connect an
external 3%2-inch drive (or in the case of the 2000 or 2500, a sec-
ond internal drive), known as DF1:,

Although the Amiga supports up to four floppy drives, the
power supply that comes with the Amiga 500 really only provides
enough power for one external drive. If you want to run more
drives than that, you’ll have to find a drive with an independent
power supply, or buy one of the larger replacement power supplies
available for the 500.

The Amiga 2000’s power supply is quite sufficient for four
floppies, and even the 1000 should be able to handle three or four
of the newer drives, which consume much less power than previ-
ous models.

The 5%-inch drive Commodore offers for use with MS-DOS is
self-powered, but is not automatically recognized by AmigaDOS.
The MOUNT command must be used to add this device to the sys-
tem (a sample entry can be found in the DEVS:Mountlist file that
comes with the Workbench for this device, under the name DF2:).
When used this way by AmigaDOS, however, the 5%-inch drive
can only store 440K, half of the amount stored on a 3%:-inch drive.

46

Devices

A disk drive is not a single, indivisible device like a printer.
Rather, its storage area is divided into a number of different direc-
tories and files. Therefore, you'll most often use the device name
DFO: or DF1: only as part of a file or a directory description.

A Complete Description

The most complete kind of file description contains the disk device
name, followed by the names of each succeeding directory level
(separated by slashes), then finally the name of the file. The name
DF1:WordWiz /Letters /Formletter is a good example. The filename is
Formletter, which is in the directory Letters, which in turn is in the
directory WordWiz. All are found on device DF1:, the external (or
second internal) disk drive.

If you refer to a device as simply DF1:, however, AmigaDOS
interprets this as a reference to the root directory of the disk
mounted in that drive. WordWiz may not be the current directory,
and getting to it may take some keystrokes.

Fortunately, you don’t always have to give a complete descrip-
tion of a file. AmigaDOS also recognizes references to a file that
are relative to the current directory. One directory is always recog-
nized as the current directory. When you first start the Amiga, it
uses the root directory of the disk in the internal drive as the de-
fault directory. Therefore, when you refer to a file like Myprogram,
AmigaDOS interprets this as DF0:Myprogram. If you change the
current directory to C, for example, using the CD command, a ref-
erence to the file Dir will be taken to mean DF0:C/Dir.

You can also use the colon (:) to indicate the root directory of
the disk on which the current directory is located. Therefore, even
when C is the current directory, you can specify a file in the S di-
rectory with the description :s/startup-sequence, which is equivalent
to DFO0:s/startup-sequence (as long as DFO: is the drive holding the
disk on which the current directory is located). Note that AmigaDOS
ignores case in these names. Any combination of uppercase and
lowercase can be used, as long as the letters themselves match.

You may also use the volume name of the disk itself in place
of the device name of the drive in which it's mounted. For example,
if you have a file called program.bas located on a disk whose volume
name is Extras, you could describe the file as Extras:program.bas. In
fact, such a description may be preferable to using the device name
of the drive, since it’s valid regardless of which drive is used for
the Extras disk.

In some cases, it's necessary to refer to a disk by its volume
name. Let’s say you have only one disk drive and want to list a di-
rectory of a disk that doesn’t contain the DIR command program.

47

Devices

The volume name of this disk is Stuff. When you insert the Stuff
disk into the drive and type DIR, the system prompts you to put
the disk containing the commands into the drive. When you do,
the Amiga lists a directory of that disk, not Stuff. But if you enter
DIR Stuff:, you'll be prompted first to put in the disk with the
commands, then to put in Stuff. Now you'll get a listing of the Stuff
disk. Of course, there are other solutions to this problem—you
could copy the DIR file to Stuff, or you could copy your commands
to the RAM: disk device (see below). But if you want to specify op-
erations on a particular disk, using the volume name assures you of
the correct result. In fact, AmigaDOS keeps track of the disk with
the current directory in just this way. If you take the disk out and
type in a command, DOS prompts you with the volume name of
the disk it wants you to insert.

Hard Disks

Hard disks are fixed (nonremovable) drives that either fit inside the
computer itself, or in a box that sits next to the computer. Although
hard drives are more expensive that floppy drives, they can read
and write information much more quickly, and can store a lot of
information in one place. These advantages are particularly impor-
tant to Amiga owners, since the Amiga floppy drives are relatively
slow, and some of the Amiga system software (such as text fonts)
must be read in from disk. As we’ll see in the section on logical de-
vices, software may require files to be read in from the Workbench
disk at any time, so it can be quite handy to have that disk con-
stantly available. With the 1.3 Kickstart ROM, Commodore intro-
duced autobooting to the Amiga, which means it’s possible for the
computer to start up from the hard drive, without having to read a
Workbench disk in the floppy drive.

Although hard drives were not well supported by AmigaDOS
until version 1.2, there are now a number of different interfaces
that can be used to add a hard disk to your system. The device
driver software that gives AmigaDOS access to these hard drives is
added to the system through the use of the MOUNT or BIND-
DRIVERS command, or by means of a special mounting program
like SupraMount (for hard drives manufactured by Supra Corpora-
tion) or D]Mount (for drives connected to the A2000 via the IBM
compatibility option, or Bridge Board).

In most cases the hard disk device is addressed as DHO: (for
Hard Drive 0), although SCSI (Small Computer System Interface)
drives connected to Commodore’s own hard drive controller are
numbered starting at DH2:. AmigaDOS partitions on a hard drive
that’s connected to a PC Bridge Board on the Amiga 2000 are

48

Devices

known to AmigaDOS by names such as JHO: and JH1: (which
stands for Janus Hard drive, after the Janus software that allows the
Amiga and IBM-compatible sides of the computer to work
together).

Hard drives are much larger storage devices than floppy disks,
holding as much information as dozens of the smaller disks. For
this reason, most hard drive interface software allows the user to
partition the drive into smaller, logical drives. A 40 megabyte drive,
for example, might be divided into a 10 megabyte partition called
DHO:, a 13 megabyte partition called DH1:, and a 17 megabyte
partition called DH2:. The details of partitioning depend on how
the device driver software is added to the system. Hard drives that
use the MOUNT command usually have an entry describing each
partition in the devs:MountList file. Hard drives that use BIND-
DRIVERS or custom software may have special software that writes
partition information to the hard drive itself. In the case of IBM
compatible hard drives interfaced through the Bridge Board, there
is a program on the IBM side called ADISK which creates Amiga-
DOS partitions on the MS-DOS hard drive.

Using a hard drive on the Amiga is very similar to having a
large floppy disk drive, so the information found above concerning
floppies (DFO: and DF1:) generally applies to hard disks as well. If
you wish to use a hard disk for loading system files, assign all the
logical devices to the proper directory of DHO: (see below for more
information about the assignment of logical devices). You may
wish to make such assignments part of your startup-sequence file so
they occur automatically whenever the computer is turned on (see
Chapter 5 for more information about command sequence files).
You may also find that some programs may require some logical
device name assignments to be made if they are to be run from a
subdirectory on a hard drive. The instruction manuals for most pro-
grams contain hard drive installation instructions.

Commodore introduced a new piece of system software in
Workbench 1.3, called the Fast File System (FFS). This is a new
AmigaDOS disk software interface that provides much quicker disk
access than the old filing system. The FFS won’t work on normal
floppies, because it stores data on disk in a different manner than
the normal AmigaDOS file system. This means if 3%2-inch drives
used the new system, they wouldn't be able to read current
AmigaDOS disks. Nonremovable media, however, like hard disks
and RAM disks, don't face this problem. Most hard drives can be
formatted using the new layout, resulting in speed increases of 500
percent or more. The new filing system software is located in a file
called FastFileSystem, located in the L directory of the Workbench

49

Devices

disk. Details of using the Fast File System vary from drive to drive,
so you'll have to consult your hard disk interface manual for in-
structions on installing it on your hard drive.

The RAM: Disk

There’s another disk drive available to all Amiga users. AmigaDOS
allows you to reserve a section of memory for use as a super-fast
electronic disk drive, known as the RAM: device. The RAM: device
does not exist when you first start up the computer. You create it
simply by referring to it. For example, when you COPY a file to
RAM;, the device is automatically created. But you don’t have to
move any information to RAM: to create the device. Typing a com-
mand like CD RAM:, which changes the current directory to the
root directory of RAM:, works as well.

Though AmigaDOS understands references to RAM:, the ac-
tual device handler for RAM: (the program that routes information
to the device) must be loaded in from disk before the device can be
used. This handler is located in a file called Ram-Handler in the [
directory of the system disk. If this file is not available when the
first reference to RAM: is made, the device cannot be created. Once
it's loaded, however, the system doesn’t have to refer to this file
again when using the RAM: device. The startup-sequence file on
Workbench 1.2 and 1.3 disks refer to RAM: in their command se-
quence, so the RAM disk is automatically created when one of
these Workbench disks are used.

You can read, write, execute, and delete files from RAM: just
as from any other disk device. There are, however, a few important
differences. The most significant is that RAM: is a temporary storage
device. Its files disappear when you turn off the power or when you
warm-start the computer with the CTRL-Amiga-Amiga key com-
bination. If you store files to RAM:, remember to copy them to a physi-
cal disk device before you turn the power off or reset the computer.

Another difference between RAM: and the physical disk drives
is capacity. The 3%:-inch disks have a fixed storage capacity of
880K, but RAM: is limited to available free memory. Unless you
have substantial expansion memory, you won'’t be able to store as
much in the RAM: disk as on the physical drives. In fact, you
should avoid storing too much information in the RAM: disk. First
of all, it’s possible to crash the system if you take up all available
memory. Even if things don’t reach that stage, however, you may
not have enough room to run application programs if your RAM:
disk is too full.

50

Devices

One of the best ways to put the RAM: disk to use is to copy all
or some of your CLI command programs to it and use the ASSIGN
command (explained below) to make it the new command direc-
tory. The simplest way to do this is

COPY C: RAM: ALL
ASSIGN C: RAM:

This is discussed at greater length in the section “Logical De-
vices,” later in the chapter.

Communications Ports

The Amiga personal computer comes with two communications
ports—one serial and one parallel. The serial port can be used for
transferring information to or from a modem (or another com-
puter), a MIDI musical device (with the proper interface), or to a
serial printer. The communication speed for this serial interface can
be set from the Preferences program at speeds ranging from 110 to
19,200 bits per second (bps). The parallel port is initially set up by
the system as a Centronics-type printer interface, which can be
used only to send information to a printer. Application programs
(but not AmigaDOS) can configure this parallel port so it can be
used to input information as well. For example, external devices
like audio digitizers, video digitizers, and clock/calendars, all use
the -parallel port for input rather than output.

AmigaDOS allows you to write information to either of these
devices just as you would to a disk file. For example, if you wish to
transfer the contents of a disk file named wordfile to a parallel
printer, you could use the command TYPE wordfile TO PAR: or
COPY wordfile TO PAR:. You could send the contents of the file
to a serial printer or modem with the same commands by substitut-
ing the device name SER: for PAR:. You may also use the redirec-
tion operator (>) to cause the output from one of the disk
commands to be sent to the parallel or serial devices (see the sec-
tion on redirection below).

You should note that the handlers which actually know how
to direct output to the communications ports are not an integral
part of AmigaDOS. They reside on disk files named serial.device
and parallel.device in the devs directory of the Workbench disk. The
first time AmigaDOS tries to open these devices, it must read the
proper handler file from disk. If it can’t find the file, it can’t open
the device. Once the handler is loaded, DOS doesn’t need to access
the file again.

51

Devices

Using PRT:

Although you can control a serial printer directly through the SER:
device and a parallel printer via the PAR: device, there’s a better
way. The device called PRT: can be used to send output to the
printer, regardless of whether you have a serial or parallel printer
connected. The PRT: device gets its information about which type
of printer is connected from the system-configuration file in the devs
directory. This is the file the Preferences program uses to store the
preference settings. In order to route information through the
printer device, DOS must first load a handler stored in the disk file
printer.device in the devs directory of the Workbench disk. This
handler itself must refer to a specific printer-driver file in the print-
ers subdirectory of the same devs directory. The PRT: device uses
the information stored there to translate control codes (such as
those used to start and stop underlining) to equivalent codes used
by your printer. In addition, the PRT: device translates the linefeed
character (CTRL-J or ASCII 10) to a carriage-return character
(CTRL-M or ASCII 13), plus a linefeed character. If you wish to use
PRT:, but don’t want a carriage return added to the linefeed, you
may specify the device PRT:RAW.

Diagnosing problems with the PRT: device can be difficult, be-
cause there is both a hardware and software component to the de-
vice. Printer problems may be due to the hardware connection
between the printer and the computer, or they could be due to
problems with the printer driver software. When testing a printer,
it’s helpful to first try sending output to the PAR: or SER: device
first (depending on whether the printer is connected to the parallel
or serial port). A command like COPY s:Startup-Sequence to
PAR: should print the file to the device. If this procedure doesn’t
work, the problem is with the hardware connection between your
printer and computer (either the printer isn’t ready to print, or
you've got a bad cable). If it does work, however, you know the
problem lies with the printer driver software.

To summarize the AmigaDOS device names that can be used
to send information to the printer:

Device Name Function
PAR: or SER: Sends data directly to the printer, with no translation.

PRT:RAW Sends data to the printer, translating printer codes, but
does not add a carriage return to each linefeed.
PRT: Sends data to the printer, translating printer codes, and

adds a carriage return to each linefeed.

52

Devices

Console and Others

The console device is used to accept input from the keyboard and
the mouse, and to print the characters on the screen. Output goes
to a window on the screen, known as the console window. The con-
sole device accepts input from the keyboard a line at a time. At any
point before you press the RETURN key, you may edit the line
using CTRL-H or the BACK SPACE key to delete characters, and
CTRL-X to delete the entire line (see Chapter 2 for more infor-
mation about the editing capabilities of the console device). When
the console receives a line of text, it translates the keystrokes into
ASCII and extended ANSI codes. As noted in Chapter 2, the con-
sole device itself responds like an ANSI terminal to many escape
codes that control things like cursor positioning, screen scrolling,
line insertion and deletion, and the like.

Workbench 1.3 comes with an enhanced console device called
NEWCON:, which introduces new features like line editing and
command history. Since this device is not automatically recognized
by AmigaDOS, but must be added with the MOUNT command,
we’ll cover it more fully in the treatment of MOUNTable devices,
below.

Each CLI comes with its own console window (it’s the window
in which the >n prompt appears). When you use the NEWCLI
command to start a new CLI process, you may specify the starting
position, size, and title of its console window (see Chapter 2 for
more information on starting a new CLI process). If you don't spec-
ify these characteristics, a default console window is used.

It’s possible, however, to create your own console windows
that aren’t related to any existing CLI process. To do so, you refer
to the device as
CON:hpos/vpos/width/height/windowtitle
where hpos is the horizontal position of the top left corner of the
window (expressed as the number of pixels in from the left edge of
the screen), vpos is the vertical position of the top left corner of the
window (expressed as the number of pixels down from the top
edge of the screen), and width and height give the size of the win-
dow in pixels. The maximum size for a console window is the
screen size, normally 640 X 200 pixels. The minimum is 81 X 25
pixels. The last entry, windowtitle, is optional and allows you to en-
ter a title that will appear in the title bar. If you don’t enter a title,
the title bar is left blank. Note that the final slash is required, even
when you don't specify a title.

Each console window comes with a sizing gadget to change its
size, but the window doesn’t redisplay the current data after you

53

Devices

change the window size. This means if you make the window
smaller, the text in the area the window previously occupied is
wiped out. If you later make the window larger again, the new
area of the window will be blank, rather than holding its old con-
tents. Besides the sizing gadget, each console window has the
depth arrangement gadgets in the upper right corner, which let you
send the window to the back of the screen or bring it forward on
top of another window. Console windows also have a drag gadget
(which coincides with the title bar) that lets you change the posi-
tion of the window on the screen.

Like the RAM: device, you create a new console window by
referring to its device name. For instance, to LIST the directory to a
new console window, you could type

LIST TO CON:0/0/640/100/

Try this, and you'll see that although a new console window is
created and the listing prints within it, it disappears as soon as the
command is completed. Though you can pause the display before it
disappears by hitting any key (use the BACK SPACE key to re-
start), the short-lived nature of such a window limits its usefulness
as an output device.

Console as Input

The console window can also be used as an input device. In this
role, it can act as a mini text editor, which can be used to create
small text files or printed documents. For example, you can create a
text file on the RAM: disk by typing

COPY “CON:40/40/200/100/File Creator” TO RAM:text

The new console window appears and is the active window.
Start typing text, using the BACK SPACE key to delete errors.
When you've finished a line, press the RETURN key and that line
is sent to the file. When you finish, enter a CTRL- \ character to
signal AmigaDOS that you're at the end of the file. Enter this char-
acter by holding down the CTRL key and pressing the backslash
(\) key, located next to the left of the BACK SPACE key. When
you end the file, the window disappears and the disk file is closed.
To see the contents of that file, enter

TYPE RAM:text

The console device gives you a handy way to create a small
file (like the command sequence files discussed later). You can also
send input from a console device to any other device (even another
console window). For example, type

COPY CON:40/40/200/100/Typewriter TO PRT:

54

Devices

and each line that you type in the window is sent to the system
printer (as soon as you press RETURN). Again, use CTRL- \ to end
the session.

In addition to the new console windows you create, you can
also use the existing console windows belonging to your CLIs. Do
this by referring to the active console device, named * (asterisk).
This use of the asterisk should not be confused with the universal
wildcard character used by MS-DOS or the asterisk used as an es-
cape character before quotation marks in a filename. As an output
device, * is more durable than CON: since the window doesn’t
vanish after each command. Unfortunately, it’s not much more use-
ful, since most commands output to the current console window
anyway. It, too, can be used as an input device, and as such, it’s
even handier to type

COPY * TO textfile

than specifying a long CON: device name. This is a quick and easy
way to create a short text file.

RAW

There’s one more window device available to AmigaDOS, but it’s
really only suitable for application programs and not for general
use by the CLI command programs. This device is called RAW:, and
it’s an apt name. A normal console window heavily filters what
comes through it. You'll notice, for example, that the cursor keys
have no effect when you're typing in a console window. The RAW:
device, on the other hand, doesn't filter anything. Thus, it would
be nice to use if you wanted to create a file that containes charac-
ters other than the standard letters, numbers, and punctuation
marks—such as cursor movement codes. But, alas, RAW: passes
through the CTRL- \ without interpreting it as an end-of-file char-
acter. So while a CON: disappears before you're through with it,
there’s no way to close a RAW: window from CLI and therefore no
way to close the file to which it’s writing. If you really want to play
with RAW:, remember that once you create the window, the only
way to get rid of it is to warm-start the computer by pressing the
CTRL-Amiga-Amiga key combination. A fairly safe experiment for
the incurably curious is to type

COPY RAW:0/0/100/50/Input TO RAW:0/50/640/100/
Output

Click in the Input window to activate it and start typing.
Everything you type shows up in the Output window, including
cursor movement keys. You can now warm-start the computer, se-

55

Devices

cure in the knowledge that you've tried everything at least once
and that RAW: is as useless for ordinary purposes as we say it is.

I's NIL

Speaking of useless, the last device to investigate does absolutely
nothing. True to the British origins of AmigaDOS, it’s called NIL..
When used as an input device, NIL: just sends the end-of-file char-
acter. When used as an output device, NIL: accepts the output, and
does nothing with it. Still, it’s not as useless as it may seem at first.
Programmers sometimes have a use for such devices in testing 1/O
routines. And even for the casual user, there are occasions where
it’s useful to get rid of output without showing it to anybody. For
example, if you examine the command file called startup-sequence
in the s directory, which is normally used to load and run the
Workbench, you’ll find that the last line of the file reads endcli >
nil:. (You can look at this file by warm-starting the Amiga, then
putting the Workbench disk in the drive [the Workbench disk, not
the CLI disk you've probably created], opening the System drawer,
double-clicking on the CLI icon, and typing TYPE s/startup-se-
quence.) The ENDCLI command usually prints the message CLI
task n ending (where n is the task number), just before the window
disappears. Apparently, the developers didn’t want that message to
print when the Workbench loaded and so used output redirection
(which is discussed at the end of this chapter) to send the offend-
ing character string to limbo. Another practical example of using
the NIL: device is shown in Chapter 5, which deals with command
files, where the output from DATE ? is sent to NIL: as a way of al-
lowing you to enter the date without seeing the command template
as a prompt.

Logical Devices
In addition to physical devices like the disk drive and printer,
AmigaDOS also supports a variety of pseudodevices known as logi-
cal devices. Logical devices provide a way of giving a short
devicelike name (ending in a colon) to a particular disk directory.
For example, if you assign the logical device name let: to the direc-
tory df0:Wordprocessing/personal /letters, you could refer to a file in
that directory as let:AuntMartha rather than as df0:Wordprocessing/
personal /letters /AuntMartha. This makes it easier to shorten the ref-
erence to a directory, without having to make that directory the
current one.

Logical devices also allow a program to have access to a file
without knowing its exact physical pathname. For example, a word

56

Devices

processing program may need to read a dictionary file in order to
perform spell checking functions. It can assume that the dictionary
is in the current directory, but that makes it difficult to store the
dictionary in RAM: for faster access, or to place it in a directory of
your choosing on your hard drive. If the program looks for the dic-
tionary in a logical device called DT:, however, you can store the
file wherever you want. By assigning the logical device name DT:
to whatever directory you use to store the file, you can make it ac-
cessible to the word processing program, regardless of its actual
physical location.

You can use the ASSIGN command program to assign logical
devices to directories. When used for this purpose, the command
format is ASSIGN devicename directory. The assignment given in
the first example above could be accomplished by the command

ASSIGN let: df@:Wordprocessing/personal/letters

Assigning for Itself

User-created logical devices aren’t the only kind found on the
Amiga. AmigaDOS itself makes use of these devices to alleviate a
potential problem of the operating system. Much of the Amiga’s
operating system doesn’t reside in memory all the time. From time
to time, the operating system must bring in data necessary to sup-
port certain of its features from disk files. You've already seen sev-
eral examples. The most basic is that of the CLI commands, which
all reside on disk and must be loaded before they can be used. The
handlers for the RAM: disk, the parallel, serial, and printer devices,
all must be brought in from disk. As you’ll soon see, the list of disk
files that contain information significant to the operating system is
quite long. AmigaDOS recognizes that it would be foolish to as-
sume that each of these files is always in the current directory.
Therefore, it uses logical devices as a means of providing an alter-
nate place to search for these important files. When you start up
the Amiga, DOS assigns a number of logical device names to cer-
tain directories. When DOS needs to find one of the system files, it
first looks in the current directory, but if it doesn’t find the file
there, it searches one of the logical devices.

To see a list of the logical devices that DOS creates, use the
ASSIGN command name by itself. This command program dis-
plays a list of all logical devices, both the ones assigned by the sys-
tem and those assigned by you. If you've not assigned any logical
devices, the display produced by ASSIGN looks like this (assuming

57

Devices

a dual-drive system and disks in the drives with volume names of
Extras and Workbench):

Volumes:
Extras [Mounted]
Workbench [Mounted]

Directories:

S Volume: Workbench Dir: s
L Volume: Workbench Dir: 1
C Volume: Workbench Dir: ¢

FONTS Volume: Workbench Dir: fonts
DEVS Volume: Workbench Dir: devs

LIBS Volume: Workbench Dir: libs
SYS Volume: Workbench Dir: Workbench
Devices:

DF1 DF0O PRT PAR SER
RAW CON RAM

S:

There are seven directories to which DOS assigns logical device
names. S:, the first logical device, is a directory used to hold com-
mand sequence files (batch files). When the EXECUTE command is
told to execute a sequence file, it first looks for the sequence file in
the current directory. If it doesn’t find the file, it tries the directory
to which the logical device name S: has been assigned. The Work-
bench disk contains a file called startup-sequence in this directory.
This sequence file is automatically executed when the Workbench
disk is inserted, and it in turn loads the Workbench program and
runs it.

If the Workbench 1.3 Shell has been installed, script files can
be run directly, without using the EXECUTE command, if the S bit
of the file protection flag is set. When you run them that way,
however, AmigaDOS searches for them as if they were commands,
and not scripts. See the description of the logical device named C:,
below, for more information on command searches.

L:

AmigaDOS looks for its own library functions in this file. These are
extensions to AmigaDOS itself, such as the Ram-Handler file which
controls the RAM: device. The most necessary of these is the Disk-
Validator, which is used to check if disks are in the proper Amiga-
DOS format. Many of the MOUNTable devices such as NEWCON:
and SPEAK: have their device handlers stored in the L: directory also.

58

Devices

C:

- The command directory, this is one of the most significant logical
devices, especially to CLI users. Whenever you issue a command to
the CLI, DOS first looks in the current directory for a filename
matching the first word of the command line. If it doesn’t find the
command in the current directory, it then searches the C: device di-
rectory. Although C: is in the default search path for commands,
you can extend this search path with the PATH command. For ex-
ample, the command PATH RAM: Sys:System ADD will cause the
two directories named to be searched for commands after the cur-
rent directory, and before the C: directory.

Since the C: directory is always in the command search path, if
you don’t keep the disk that contains it in one of your drives, you
may be in for a lot of disk swapping. Every time you issue a CLI
command not found in the current directory, you'll be prompted to
insert the volume that contains the C: directory. One way around
this dilemma (if you have sufficient RAM) is to transfer the com-
mand files to the RAM: disk and assign the C: device to it. The
easiest way to do this is,

COPY C: RAM:
ASSIGN C: RAM:

This copies all the command files to the root directory of the
RAM: device. If you'll be using the RAM: device for other files as
well, you may wish to create a c subdirectory first, move the files
to this directory, and then assign C: to it with

MAXEDIR RAM:c
COPY C: RAM:c
ASSIGN C: RAM:c

You may find it convenient to place this sequence of com-
mands in the batch file startup-sequence on your boot disk. (Re-
member that this file automatically executes every time you turn
the computer on.) Notice, however, that there are 64 command
files in the ¢ directory of the Workbench 1.3 disk. If you copy all of
them, the RAM: disk takes up well over 240K of memory. That’s
most of the free memory available on a 512 Amiga system.

This doesn’t mean you can’t have AmigaDOS search for com-
mands in RAM: if you only have 512K in your Amiga. It just
means you'll have to be a little more selective. Move only the most
frequently used command files, like COPY, DELETE, DIR, and
LIST to RAM:, and use the PATH command to add RAM: to the
search path, so AmigaDOS will look there before assigning the C:
device name. This way, you can create a custom-tailored list of in-
trinsic commands that are always available.

59

Devices

If you have Workbench 1.3, you may want to make some of
the commands RAM-resident, using the RESIDENT command. This
command only works in the Shell, so make sure you're working
from a Shell window, and not a normal CLI window. To make the
DIR command resident, type RESIDENT DIR. This loads the DIR
command into memory, and keeps it there. Then, any time you give
the DIR command, the Shell executes that command from the copy
already in memory. This eliminates the need to read the command
in from disk, eliminates the duplication that can occur when you
keep a command in the RAM disk (where the “disk”” copy in RAM:
is loaded into memory a second time in order for the program to
execute), and causes the command program to run instantly.

There are, of course, some drawbacks to making commands
resident. First, just as with storing commands on RAM:, each com-
mand you make resident reduces the amount of free memory you
have. Secondly, not every program can be made resident. Each
time the program is executed, it’s run from the same copy that was
initially loaded into memory. Therefore, only programs that are
reexecutable (can be run a second time without being unloaded and
loaded again) and reentrant (can be executed from separate Shell
windows at the same time) qualify as resident programs. Because of
this, the RESIDENT command will only load programs with the P
bit set on the their file protection flag. You will find that most of
the CLI commands in the C directory of the Workbench disk have
the pure bit set, and can be made resident.

FONTS:

This device contains the files for the various text fonts for the
Amiga. These are the disk-loaded fonts that can be used from pro-
grams like Notepad, painting programs, and desktop publishing
programs. When a program calls the system routine OpenFonts,
which must be done whenever a new font is used, the operating
system tries to find the new font in this directory if it’s not already
loaded into memory.

DEVS:

This device directory holds handlers for the various devices already
discussed—the serial device, the parallel device, and the printer de-
vice, and the recoverable RAM disk device we’ll cover a bit later. It
also contains drivers for devices the CLI commands don’t use di-
rectly, like the narrator (speech synthesizer) and the clipboard. A
call to the system routine OpenDevice, made the first time any de-
vice is used, looks in the DEVS: device directory for the device
driver if it’s not already loaded. In addition to device drivers,

60

Devices

DEVS: also contains the system-configuration file containing the
preference settings, the Mountlist file used by the MOUNT com-
mand, and the printer drivers for the various printers supported by
the system (these latter files are within the printers subdirectory).

LIBS:

This is the logical device where system library files can be found.
These are used for operating system extensions implemented as a
library of functions. The LIBS: directory contains library files that
support features such as text-to-speech conversion (the translator.
library file), disk-loaded text fonts (diskfont.library), and floating-
point math calculations (mathtrans.library, mathieeedoubbas.library,
and so on). Whenever a program calls the OpenLibrary routine, the
operating system looks to this device for the library file, if the li-
brary is not already resident.

SYS:

The final assignment DOS makes is the SYS: device. This is as-
signed to the root directory of the disk that was used to boot up
the system. Since it’s a reasonable assumption that you'll use a disk
which includes all the system files when you boot up, it gives you
a handy way of referring to that system disk. In the example
above, after you'd transferred only some of the CLI command files,
and then assigned C: to RAM:, you use