0 0 0.0.0.0 0 00

COMPUTE!s First Book of
Commmn (COMMODORE s——

Applications, utilities, tutorials,
and general information for users of the
Commodore 64° home computer.

A COMPUTE! Books Publication S12.95

T EH N ENREREREEEEEEEEEEEEEREEREEEREYN)

20000000 D OO0 0T00IDIVIODIDODTD

DIDESTDID 2B 2B IR B}

COMPUTE!'s First Book of
_CQMMODORE—

COMPUTE' Publlcc‘rlons InC. @

of the ABC Publishing Companies
Greensboro, North Carollna

Commodore 64 is a trademark of Cornmodore Electronics, Ltd.

DIDDD992992723I039957I2D53I2D3D3D32IDD53DD9D)D

The following article was originally published in COMPUTE! Magazine, copyright 1982,
Small System Services, Inc.:

“Commodore 64 Memory Map” (October)

The following articles were originally published in COMPUTE! Magazine, copyright
1983, Small System Services, Inc.:

“Commodore 64 Architecture” (January)

“All About WAIT Instruction” (January)

“REM Revealed” (January)

“Perfect INPUTs” (January)

“Joysticks and Sprites” (February)

“Data Storage” (March)

“The Confusing Catalog” (March)

“Automatic Program Selector” (March)

“Data Searcher” (June)

“Soft-16” (June)

The following articles were originally published in COMPUTE! Magazine, copyright
1983, COMPUTE! Publications, Inc.:

“Backup 1540/1541 Disks” (July)

“Programmer’s Alarm Clock” (July)

The following article was originally published in COMPUTE!’s Gazette, copyright 1983,
COMPUTE! Publications, Inc.:

“Alfabug” (July)

The following article was originally published in COMPUTE! Magazine, copyright 1983,
Jim Butterfield:

“Commodore 64 Video — A Guided Tour, Parts IVII”

Copyright 1983, COMPUTE! Publications, Inc. All rights reserved

Reproduction or translation of any part of this work beyond that permitted by Sections
107 and 108 of the United States Copyright Act without permission of the copyright
owner is unlawful.

Printed in the United States of America
ISBN 0-942386-20-5
1098765432

COMPUTE! Publications, Inc. Post Office Box 5406, Greensboro, NC 27403, (919)
275-9809, is a subsidiary of American Broadcasting Companies, Inc. and is not associated
with any manufacturer of personal computers. Commodore 64 is a trademark of
Commodore Electronics, Ltd.

|

CCCCCCCCCCCCCCCCeeCceceeccecccoooeccoccc

1

DDDD2D7D72797DD2I3D23I3I3ID3I2DI2D9I2ID3D03I3I2I3D23I3I3I3I3II2I0ID

Foreword ... v
Chapter 1: StartingOut 1
More Than Just Another Computer
Sheldon Leemon ...t 3
Making the Computer Do What You Want
Orson Scott Card v 1
Chapter 2: BASIC Programming 37
All About the WAIT Instruction
Louis F. Sander and Doug Fergusonc.coviiiiiinnn 39
REM Revealed
JohnL.Darling ...t 44
From IFs to ANDs
Stephen D. Eitelmanouiiuiiinii .. 49
Menumaker
Richard L. Witkoveroouiuiiii e 54
Data Storage
RonGunn ... 61
Chapter 3: Commodore64 Video 67
An Introduction to the 6566 Video Chip
JimButterfield 69
The 6566 Video Chip
JimButterfield e 75
Sprites
JimButterfield 80
Program Design
JimButterfield e 86
The Lunar Lander: The 64 in Action
JimButterfield e 91
Split Screens
JimButterfield e 96
Son of Split Screens
JimButterfield 100
Chapter 4: CreatingGames 105
Joysticks and Sprites
SheldonLeemon ittt 107
Alfabug
Michael Wasilenko oo 115
Chapter 5: Peripherals 19
The Confusing Catalog
JimButterfield e 121

Automatic Program Selector
Steven A. Smith

64 DOSmaker .
Charley Kozarskittt 135
Backup 1540/1541 Disks
HarveyB.Hermanooiiiiiiiiiiiinninnnenennnns, 137
Using the User Port
JohnHeilbornon i e e e 143
Chapter 6: UtilitiescL. 157
Data Searcher
JerrySturdivant 159
Music Keyboard
BryanKattwinkleot 161
Programmer’s Alarm Clock
Bruce Jaegeroou i e 166
Chapter 72 Memoryooooviiiiiii.. 169
A Window on Memory
GreggPeele........ ..o e 171
Commodore 64 Architecture
JimButterfield 178
Commodore 64 Memory Map
Compiled by Jim Butterfieldcoiiiiiiiiiiinan.. 183
. Soft-16
Douglas D. Nicollottt 191
Chapter 8: Advanced Memory 195
Assembler in BASIC
RonaldThibault, 197
Decoding BASIC Statements
John Heilborno e e 210
Micromon-64
BillYee ..o 217
Appendix A: Using the Machine Language
Editor: MLX
Charles Brannonouuiuii it neens 245
Appendix B: A Beginner’s Guide to Typing
InPrograms ... 255
Appendix C: How To Type In Programs 259
Index ... 263
iv

CcCoCcCcoooooooCcooeo

\
/

ccocccoccoccoeccoccccccccccocw

SRS RS 10 1 1o 15 1o 1o 1o 1o T 1o 100 1o T 1o 150 Tio T T 1o T 1 2 0 T 2 I BN B TN 10 IS }

The Commodore 64 computer was introduced in the fall of 1982,
and immediately became the first choice of hundreds of thou-
sands of new and experienced computer users. Its music, sound,
and graphics capabilities are remarkable, and its price tag brought
it within the reach of many first time buyers.

COMPUTE! Books is ready to help you make the most of it.
COMPUTE!’s First Book of Commodore 64 offers something for
computer users at every level of expertise, from the beginner to
the expert. And as you gain experience and move from one level
to the next, you'll find that this book can provide the key to each
level of computer knowledge.

For beginners, the “Starting Out” section offers an introduc-
tion to the Commodore 64 and the step-by-step creation of a
simple program.

If you're interested in graphics, Jim Butterfield’s seven-part
“Commodore 64 Video” is the ideal introduction.

Do you use joysticks, printers, disks, cassettes? There are
articles and programs to help you.

To learn your computer from the inside out, the “Memory”
section shows you where everything is — and provides “A Win-
dow on Memory” which lets you scroll through all 64K and see
what is happening to memory while the computer is running.

And if you program in machine language, this book includes
a complete monitor, “Micromon-64,” and a complete assembler
program, written in BASIC.

Of the articles in this book which orlgmally appeared in
COMPUTE! Magazine or COMPUTE!’s Gazette for Commodote,
many have been enhanced since their original publication. Many
other articles and programs, however, are appearing here for the
first time anywhere.

20000000 D OO0 0T00IDIVIODIDODTD

;0660060601ocddicvuv@ovoauucwdvd©@diﬁ

1
e
(),
Q
O

out

| i } ; y; | .l “
A L H : y |
3 a; ‘r i 4 | & |] ‘1 |
wtCAEl SEE R

20000000 D OO0 0T00IDIVIODIDODTD

DDI3I3D9D3I335D0DI35D0I3333D03I3D13)133I3D03)D3D3I33I3I3I0I1))D

Starting 1
Out

More Than
Just Another
computer

Sheldon Leemon

Don't let its outward resemblance to the VIC fool you. Inside, the
Commodore 64 is full of brand-new technology. While it retains
certain features of older Commodore computers, the 64 extends
many of those features and at the same time introduces new ones.

The New Chip

Let’s start with the microprocessor, the “computer on a chip” that
forms the heart of the system. Every Commodore machine from
the original PET through the VIC has been built around the 6502
chip. The 64, however, uses a 6510 microprocessor. This chip uses
the same machine instructions as the 6502, which aids in software
compatibility, but adds a built-in Input/Output (I/O) Port. The 64
uses this port to manage addressing space.

As its name indicates, the 64 comes with 64K RAM standard.
But it also has an 8K BASIC Interpreter ROM, an 8K Operating
System Kernal ROM, a 4K Character Generator ROM, a 6581
Sound Interface Device (SID), a 6566 Video Interface Controller
(VIC-II), and two 6526 Complex Interface Adapter chips, which
along with the other I/O chips require 4K of addressing space for
their hardware registers. That adds up to 88K, 24K more than the
6510 chip can address at once.

In order to allocate resources, the I/O port allows the user to
determine which segments of RAM and ROM will be addressed
at any one time. The standard configuration allocates 40K of con-
secutive RAM for BASIC programming (about 2K of which is
taken up by screen memory and system workspace); 8K to the
BASIC ROM,; 4K for addressing graphics, sound, and I/O chips;
8K for the Operating System Kernal ROM, which includes the
screen editor and housekeeping software; with 4K of spare RAM

3

1 Starting
Out

left over for “safe” memory, which can be used for machine lan-
guage programs, an I/O buffer, etc.

This default memory allocation can be easily changed by the
user to one of seven other possible memory maps. Any of the
programs in ROM may be switched out and replaced by RAM.
That means a program like a word processor, which needs as
large a storage area as possible, could simply switch out the
BASIC ROM and gain access to 8K more RAM space. As a matter
of fact, all 64K of RAM could be used at once (although some por-
tion would have to be devoted to I/O driver routines, like a screen
editor, and the I/O devices would have to be switched back in for
communication with peripherals).

Memory addressing space can be allocated not only between
internal RAM and ROM, but between external ROM cartridges as
well. These cartridges (which are not compatible with those de-
signed for the VIC) can hold up to 16K of ROM and can be made
to operate either in place of the BASIC ROM or along with it to ex-
tend its set of commands.

The Same BASIC

The BASIC used in the 64 is the familiar Commodore BASIC 2,
and the Operating System Kernal is generally patterned after its
predecessors. This somewhat represents a compromise. On the
one hand, it allows a high degree of compatibility with the large
body of software currently available for Commodore computers.

Most of the nongraphics type of software, including much
business and educational software, can easily be converted, and
indeed much of it already has been converted for use on the 64. In
fact, Commodore offers a PET emulator program which will allow
the user to run a very high percentage of PET programs on the 64
virtually unchanged.

It would, however, have been nice to have software built-in
that was better adapted to the tremendous new graphics and
sound capabilities of this computer. As it stands, the user must
PEEK and POKE quite a bit more than a user-friendly system
should require. It is some consolation, however, that the system
ROMs can be easily switched out and a whole new Operating
System loaded in from disk, should an easier method for using 64
graphics and sound be developed in the future.

Better Graphics

What makes the 64’s color graphics so extraordinary is a separate

ccccccoccoccocccccccccccccccccccCccoccccccccocccoccacc

I N0 TS TS IS 10 T J0 N0 T 10 JE0 T T 20 I 10 20 T T IR0 IED J0 T I I D TR0 I 1D I T IS IS 10

Starting 1
Oout

integrated circuit chip which processes the video display informa-
tion. Just as the VIC has its Video Interface Controller chip (for
which it was named), the 64 has a VIC, too — or to be more exact,
a VIC-II. The 6566 video chip supports a wide range of character
graphics, bitmapped graphics, and sprite graphics. Let’s examine.
what each of these types of graphics has to offer.

Character Graphics

Character graphics includes the ordinary text characters that ap-
pear on the screen when you turn the computer on. The text dis-
play consists of 25 lines, each having 40 characters. These charac-
ters are formed from data stored in the Character Generator
ROM, which holds the two standard Commodore character sets,
regular and inverse video. One set contains uppercase letters and
graphics characters, and the other has both upper- and lowercase.

However, the user is not limited to the standard character set
stored in ROM. User-defined characters, up to 256 at any one
time, may be displayed from RAM, allowing the programmer to
display foreign language alphabets, math symbols, or custom
graphics characters. Like the VIC, one area of memory on the 64
is set aside for the characters to be displayed, while a separate
area holds the color information for each character. This means
that the user can individually select one of 16 different foreground
colors for each of the 1000 characters that appears on the screen.

Besides the standard character display, there are two other
more specialized text modes. The first is a multicolor character
mode, similar to those found on the VIC and the Atari computers.
In this mode, each character is made up of eight rows, each four
dots across. The color of each dot may be selected from one of two
color registers or from the value stored in color memory for that
particular character, so that each character may display up to
three colors at once, in addition to the background color.
Although the standard character ROM is not set up to accom-
modate such characters, by using custom graphics characters the
programmer can take advantage of this feature to create colorful
graphics displays that are easily animated.

To aid in this animation, the 64 has fine-scrolling registers,
which allow both the horizontal and vertical position of charac-
ters to be changed one increment at a time, so that they may be
moved smoothly across the screen. In order to create a “buffer”
area for new information to enter the screen as the old informa-
tion scrolls off it, the screen size may be shrunk to 24 rows of 38
characters each.

1 Starting
Out

One interesting feature of this mode is that when it is
enabled, only those characters whose color codes are above a cer-
tain number will be displayed as multicolored. All other charac-
ters will be displayed normally. Thus, multicolor characters may
be mixed freely with normal, high-resolution characters on the
same screen.

The other special mode is the extended background color mode.
When this mode is enabled, only 64 characters may be displayed
at any one time, but the user not only can choose the foreground
color for each letter but may select the background color from one
of four color registers as well. These registers may be set to any of
the 16 colors available on the 64. This allows the screen to be di-
vided into different colored “windows,” for a split-screen display,
for example. Extended-color mode cannot be combined with
multicolor mode or bitmap mode.

Bitmap Graphics

Bitmap graphics enables the high-resolution plotting of 320 dots
horizontally by 200 dots vertically. As on the VIC, the display
data, or bitmap, is set up in the same format as character graphics.
Each byte of information has eight bits, each of which represents a
horizontal dot. Each group of eight bytes has its rows of dots
stacked one on top of the other, so that the groups of eight bytes
form an 8 x 8 grid. This makes plotting individual points a little
more difficult than a sequential arrangement would, but it also
makes it easier to intermix character data into a bitmap display.

As in the character modes, the foreground color of each 8 x 8
grid may be individually selected. Bitmap mode requires 8K of
memory for screen data and another 1K for a color memory. The
multicolor option is also available in bitmap mode. Although the
resolution is reduced to 160 dots horizontally, this mode offers the
widest variety of color selection, as it allows each dot withina4 x 8
grid tobe one of three individually selectable colors.

Sprite Graphics

Sprite graphics is a feature which aids in the animation of
graphics characters, or sprites. It really comprises a completely
separate system for displaying graphics, in addition to the more
normal character or bitmap graphics. A sprite is a special graphics
character whose shape is defined by 63 bytes of data, laid outina
24 x 21 dot array. This means that each sprite is approximately
three text characters wide by two-and-a-half characters tall. Up to

6

ccccccccccccccceccceccccccccccecccccccccecceccecco

3I3I3I395)3)3)3D5D55995I393333DDD1D1D3I3D5322I3)3)2)323))

Starting
Out

eight of these sprites may be displayed on any horizontal line.
Sprites have many interesting attributes that make them use-
ful in games and animation. The 16K display area of memory can
hold up to 256 blocks of 64 bytes of sprite data. The shape to be
displayed is indicated by a register which points to the block
number to be used. Changing this number instantly changes the
shape of the sprite. This makes animation as easy as stepping
through a number of shapes. Each sprite has an individual color

‘register, so that its color may be chosen from one of the 16 stan-

dard colors. A multicolor sprite mode, similar to multicolor char-
acter and bitmap modes, is available. It reduces the horizontal
resolution to 12 dots across, but allows each sprite to display two
colors from shared multicolor registers, as well as its unique sprite
color. Horizontal and vertical placement of sprites is accom-
plished by changing the value of the X and Y position registers.
Movement will occur instantly upon such a change. Each sprite
may be enlarged to double size in either the horizontal or vertical
plane, or both at once. When a sprite is moved to a spot on the
screen already occupied by regular graphics, a priority register
determines which will be displayed. Thus, each sprite may be
selected to move either in front of or behind other screen graphics.
There is also a system of collision detection to let the user know
when a sprite is positioned in the same spot as character or bit-
map graphics, or when two sprites overlap. By checking these
registers, a game program, for example, can tell when an explo-
sion is in order.

More Features! :

Much more could be said about the VIC-II chip. For instance,
though it can address only 16K of memory at a time, any of four
banks of 16K can be selected. Within a 16K bank, the placement of
the screen display may be easily selected, allowing two or more
screen areas to be set up in memory at once and rapidly alter-
nated, a procedure known as page flipping. Even if the 16K bank
chosen is one in which the 6510 addresses ROM memory, the
VIC-II can address the RAM which shares its memory space, thus
allowing the same memory location to do double duty. Likewise,
the VIC-II can address the character ROM as if it were in RAM,
even though the 6510 cannot tell that it is there. The VIC-II also
provides support for input from a light pen. Of great interest to
machine language programmers is the system of raster interrupts.
The VIC-II can generate an interrupt request in synchronization

1 Starting
Out

with the raster scan display. This means that the more advanced
programmer can change any of the VIC registers partway down
the screen, so that two or more character sets can be displayed on
different parts of the screen simultaneously, or that the same
sprite can appear at two different vertical locations at once, there-
by increasing the total number of sprites that can be shown.

A Music Chip: SID

Owners of the 64 will be glad to discover that their VIC has a
brother, SID (Sound Interface Device). SID is a musician on a
chip, capable of easily producing sounds more often associated
with expensive keyboard synthesizers than with home com-
puters. SID provides a wide range of controls over three musical
voices, including high-resolution control over pitch (frequency),
tone color (timbre), and dynamics (volume). It can even be
used to filter external signals that are fed into its audio input!
Although briefly explaining these features is no substitute for
hearing the effects they produce, it may give you some idea of the
range of sounds available.

The frequency of each voice is controlled by a 16-bit register,
which means that the pitch can be changed in 65536 steps, cover-
ing over eight octaves. While pitch is a concept most of us readily
understand, there are other, more subtle sound components
which SID can control. One of these is waveform. Each voice can
be set to one of four waveforms. The Triangle waveform output is
low in harmonics and has a mellow, flute-like quality. The Saw-
tooth waveform is rich in even and odd harmonics and has a
bright, brassy quality. The Pulse waveform has a harmonic con-
tent that can be adjusted by the Pulse Width registers and can
produce tone qualities ranging from bright, hollow square waves
to a nasal, reedy pulse. And the Noise waveform produces a ran-
dom signal which can be varied from a low rumbling to hissing
white noise. This waveform is good for creating explosions, wind,
snare drums, engine noises, etc.

Another important control is the volume shaping of the
Attack/Decay/Sustain/Release (ADSR) registers. These registers
control the sound envelope. This term describes how the sounds
produced by different types of instruments build to peak (attack),
drop to an intermediate level (decay), hold that level for a time
(sustain), and finally fade away (release). Each type of instrument
has its own distinct pattern. When a drum is hit, the sound
reaches full volume and decays rapidly to zero volume, while on

8

ccccccccccccccccecccccccccccccccccccecccccecccceccecceccec

DDDI3DD999D99DO39DDD53DD032DD2I2D3DDD03I3D2I3I3D5323D53I3I2I3I2I3I

starting 1
out

‘string instruments the note may be sustained for along time. The
ADSR controls of the SID chip allow it not only to imitate the
sounds of a wide range of instruments, but to synthesize patterns
not found on any existing musical instrument.

There are a number of other controls as well. A Sync control
synchronizes the fundamental frequency of two oscillators, pro-
ducing “hard sync” effects. A Ring Modulation control allows the
creation of bell or gong sounds. Individually selected Highpass,
Lowpass, and Bandpass filters are available for all three voices
and can be used singly or in combination.

Though not sound related, this chip also controls the reading
of paddle controllers.

If reading about SID’s capabilities doesn't excite you, hearing
them certainly will. The only drawback to all of this power is that
there are no BASIC commands to allow easy access to 64 sound.
After setting up volume and ADSR levels, each note will require
that you POKE at a minimum two frequency bytes and one wave-
form byte.

Ccommunicating with the Outside

To round out its complement of support chips, the 64 has two
6526 Complex Interface Adapter (CIA) chips. These chips each
have two 8-bit I/O ports, which are used for reading the keyboard
and joystick ports, as well as for communicating with external
parallel and serial devices over the User Port and the Serial Bus.
In addition, each has two independent, linkable 16-bit interval
timers, which can also count external pulses or measure fre-
quency, pulse width, and delay times of external signals. Each
chip also has a 24-hour, time-of-day clock with programmable
alarm.

The 64 can use the same 1541 disk drive and 1525 printer as
the VIC, or with an IEEE cartridge it can use the same wide range
of dot-matrix and letter-quality printers, and floppy and hard-
disk systems available for the CBM line.

A lot of software is available for the 64, and many vendors of
Commodore software have made their offerings 64-compatible.
Major producers of arcade-type games have 64 translations com-
pleted or in the works. Commodore itself already has or is ready-
ing a number of arcade games for release, as well as utilities such
as the VSP cartridge to add graphics and sound commands to
BASIC. The best news of all is that most software for the 64 is be-
ing priced well below comparable titles for the older CBM line.

1 starting
out

This stands to reason, for even with 64K of RAM and full-
blown color graphics and sound capabilities, the Commodore 64
is one of the least expensive computers currently on the market.
With its introduction, the group of people who can afford to own
a powerful computer has suddenly grown much, much larger.

10

CCCCCCCCCCCCCCCCCCCCCCCCCCCCOLOCCCCcc

233339339393 I3I3939I393I3IDI3I53IDI3I3I0I3I3953DI3I3II3I73D0ID)D

Starting 1
Out

Making the
computer Do
What You want

Orson Scott Card

Just how do you write a program? Here is an organized method of design-
ing and writing a program from the idea to the finished product. Along
the way, both beginners and intermediate programmers will learn some
new techniques — and a great deal about 64 sound.

What's the hardest thing about programming?

It's not really that hard to learn the commands and what they
do. The words are mostly English, and the rules pretty much
make sense. You had a much harder time with high school Span-
ish or French than you'll ever have learning 64 BASIC.

But when you sit down to write your first serious program,
you might run right into a brick wall.

Where do you start? What do you say? With foreign language
study you had dialogues to teach you speech patterns, but you
don't have any memorized dialogues to teach you that you begin
with “Buenos dias, Sefior 64.” You don’t have a friendly partner
who is willing to try to understand what you're saying despite
your accent. The computer won't prompt you and say, “OK,
you've given me the variables. Now you need to start aloop.” The
structure, the shape of the program, depends entirely on you.
And if the computer doesn’t understand you, too bad.

A Program from the Ground Up

One of the best ways to learn programming techniques is to do it
with someone else who explains what each line or technique is
for. That's what the rest of this article is for. I'll create a program, a
simple utility, and describe what I'm doing as I do it. Now, I'm not
an expert on the 64 or any other computer, but I have written a
few fairly complex programs that actually worked, and some
things I've picked up might be useful to you.

11

1 Starting
Out

Designing the Program

Aslong as you're going to create a program, you might as well
create something useful. One of the most interesting features of
the 64 is the way it controls and produces sound. More than any
other home computer, this one puts the power of a synthesizer
into your hands. Unfortunately, the sound commands aren’t very
easy to use — it takes a lot of different commands to make even
the simplest sounds. So this program will be a simple utility to
allow you to test sounds, changing them as much as you want,
until you find the right one.

The first step in programming is to decide what you want the
program to do. Here’s a list of features I think this sound utility
ought to include:

1. The sound should repeat, over and over, while users can
change the sound right from the keyboard.

2. The computer should report to the users all the numbers
needed to exactly reproduce the sounds that they hear.

3. Users should be able to change all the features of the
sound: waveform, pulse width, pitch, attack, decay, sustain, re-
lease, and duration.

4. Users should be able to do all this whether they under-
stand anything about sound or not — in other words, their ears
should tell them what they’re doing, leaving them free to
experiment.

5. Almost as important as what the program will do is what
the program won'tdo. It won't use more than one voice at a time.
It won't allow the creation of tunes. It won't directly store the
sound parameters on tape or disk or list them to a printer. And it
won't be fast. All those features, if we had them, would make a
fantastic program, but we're after something simple right now.

A Few Words on 64 Sound

The best way for you to learn what the different sound features of
the 64 do is to have you type in this program, RUN it, and hear
what each different effect sounds like.

But the numbers in this program won’t make any sense to
you without a basic understanding of what the 64 is doing to
create sound. There are eight locations in memory that you need
to change in order to produce a sound for one voice. In this utility
program, I'm going to assign the address of each of these loca-
tions to a variable name, so let’s use the variable names from the
start:

12

ccccCcceccCccCcCcCcCcCcCccCcCccCccccccccccccCccooocccceccc

SIS I IS IS I I I I I I N IR IR AR IR IR IR IS AR AR ED IS D ED ED ED ED ED RS ED ED RS BB BB)

Starting 1
Out

P1and P2. These are the “high frequency byte” and “low fre-
quency byte.” The addresses for voice 1 are 54273 (P1) and 54272
(P2). What they control is the pitch of voice 1 — how high or low
the note is on the musical scale. The higher the number, the high-
er the note. P1 is the broad control, like the channel selector on
your TV. P2 is fine tuning.

VL. This is the general volume setting for all three voices in
the 64. It can be set from 0 to 15: 0 is off; 15 is maximum. We are
going to set it once, at the beginning of the program, and leave it
alone — there are much better volume controls later in the pro-
gram. The address is 54296.

AD. Attack and decay are the first two parts of the sound en-
velope, often referred to as ADSR envelope — Attack/Decay/
Sustain/Release. Attack is how quickly the sound gets to full
volume. Decay is how quickly it drops off. Sustain is how loud it
is through the rest of the note. Release is how long it takes for the
sound to die away when the note is stopped. I won't even attempt
to describe the effects of different sound envelopes to you — the
program will do it much better.

Attack and decay are controlled from the same location in
memory: 54277. There are 15 possible levels for attack, and 15 pos-
sible levels for decay. And there are eight bits in the number
stored at 54277. Attack is controlled by the four highest bits (the
“high nybble”), and decay by the four lowest. If you don't know
what bits are, don't worry. It’s enough to know that the meaning-
ful values for attack are multiples of 16, from 16 to 240, while the
meaningful values for decay are the numbers from 1 to 15. To set
up both attack and decay, you choose the numbers you want for
each, add them together, and POKE them in. In other words,

POKE AD,ATTACK+DECAY

SR. The same system works for sustain and release. Sustain
uses the high nybble and release uses the low nybble. The loca-
tion in memory is 54278.

WE Waveform is controlled at 54276. There are four options,
represented by the numbers 17, 33, 65, and 129. The lowest num-
bel;r is a fairly pure tone; the highest is noise. You have to hear the
others.

SW. The square waveform, number 65, has another signifi-
cant controlling number, the pulse width, controlled at locations
54274 and 54275. In our program, we'll store 8 in 54275 and allow
the user to modify the number at SW.

13

1 Starting
Out

Organizing the Program
All the program really has to do is find out what values the user
wants to use and POKE them into the right memory locations.
This is the point where careful programming makes the differ-
ence between useful programs and confusmg software that is
more trouble than it’s worth.

For instance, we could simply have a program like this:

10 POKE 54296,15

20 FOR I=54272 TO 54278:INPUT N:POKE I,N:
NEXT I

30 FOR I=1 TO 25@0: NEXT I:POKE 54276,254:
GOTO 20

There it is. A complete program. Nothing could be simpler. RUN
it, and it will prompt you to put in a number. It will take each
memory address in numerical order, take whatever you type in,
and make the sound. Then it will ask you for another.

Sounds great — until you try to use it. Then you have to re-
member the right order for the numbers you type in. If you make
a mistake, there’s no way of checking to see what you did wrong.
If you forget where you are, you might as well press RUN/STOP
and start over.

This is not what you would call “user-friendly.” One mistake
and the whole thing crashes down around your ears. You can't
tell what's going on, it makes each sound only once, and even if
you doproduce a sound you like, there’s no guarantee that you
can remember how to make it again!

User-friendly programming. The principles of user-friendly
programming are simple enough:

1. Tell users what they need to do.

2. Protect them from mistakes.

3. Do something useful.

4. Tell them what they did.

When users sit down to run your program, they shouldn't
face a blank screen with a single question mark on it. They should
have a clear explanation of what to do. If they push the wrong
button or enter the wrong value, it shouldn't hurt a thing. And
when they get a result — in this case, a sound — they should hear
it over and over; and while it is playing they should see the
numbers that are being POKEd for each function, so that they can
jot them down and use them later in a program.

14

ccccocccocCcocoCccoCcocooCccocecCcCc oo ocCcceccec

DI3D323I73I3993D53I23I3I3I393II3I3I3I53III3I9I939I0I3I3I3I3I3I3I3I20D0)

Starting
Out

Most of the numbers to be POKEd have only a few valid
choices. Why should the user have to remember what those
choices are? Instead of using raw INPUT statements, let’s create
some toggles, so that by pushing a single button, the user can
switch from one option to another. For instance, with WF (wave-
form) the only valid numbers are 17, 33, 65, and 129. In our pro-
gram, the space bar will be the toggle. Each time the user presses
the space bar, the program will POKE the next higher value into
WE. If the last value was 129, then pressing the space bar will
make the program start over at 17.

Let’s think through how we would like the program to work
— from the user’s point of view. Let’s say you sit down at the com-
puter, load the program from tape or disk, and type RUN. The
screen should display a menu of choices — what result will come
from pushing a certain key.

Keyboard use. The keys well use will be the function keys on
the right side of the keyboard, in combination with the shift key.
We can also use the cursor keys (CRSR left/right and CRSR
up/down), the space bar, the RETURN key, and perhaps the up-
arrow key.

Why these keys, instead of letter keys? As long as the choices
are fairly few, the function keys and the major, powerful keys on
the keyboard like RETURN, the space bar, SHIFT, COMMO-
DORE, and the cursor keys are the most memorable. If there are
eight or fewer choices, the joystick is even better.

If you have large numbers of functions, however, the letter
keys might be best, especially if you can choose letter keys that
help the user remember what the function is — Wfor waveform,
for instance, Afor attack, Dfor decay, and so on. (If you prefer
that method, you'll have no trouble altering this program to fit
your needs.)

Communication
There are two displays this program will need. First, there should
be a continuous display of what key to press in order to change
each value. Second, there should be a display showing what
values are being POKEd to make the sound the user is hearing.
This display needs to be updated every time a value is changed.
Menus. The display of optional choices and how to select
them is the menu. Especially when your program uses toggles,
there must be a display to show what the toggles are. A simple
program, in which there are only a few choices, usually gets by

15

1 Starting
Out

with a simple menu — all the possible choices displayed at once.

Really complex programs, like word-processing programs,
use nested menus. This means that they are given one menu of a
few choices. Then, when they make a choice, a new menu is dis-
played showing further options. Think of it as a shopping mall.
There are many stores to choose from when you first come in.
Once you choose a store — department store, for instance — you
have many departments to choose from. And once you choose a
department, you still have many items on racks or shelves to
select from. Figure 1is a diagram of nested menus.

Another menu concept is chained menus. After you make a
choice at your first menu, you are presented with a second menu
that was not affected in any way by the first choice. A third,
fourth, and fifth menu may follow in order. Think of it as going
along a cafeteria line. You can select from the salad display, but
then you must move on to the vegetables, and then the main
courses, and then the beverages, always in the same order.
Initialization routines to set up complex software usually use
chained menus. Figure 2 is a diagram of chained menus.

Figure 1. Nested Menus

16

ccoccccccoccccocccococcccccccccccccccccccCceOoCccccc

233333933393 I3I3I3I3I3I3953I3I3I3I3I1I3I5II3II3I2III2DII)

Starting
Out

Figure 2. Chained Menus

You can see that your choice of simple, nested, or chained
menus depends on the needs of the program.

If your program has only a few choices and will return to the
main program after completing each chosen task, then a simple
menu is all you will need.

If your program has many, many choices, you will probably
want to group the choices into meaningful categories. A main
menu will let users choose a category, and the menu for that cate-
gory will let them choose which specific item they want. A benefit
of the nested menus is that you can use the same toggles in each
different menu, but the meaning of each toggle will be changed.

If your program goes through a setup phase, or always does
things in a certain order, then you'll want to progress from step to
step, offering users certain choices at each step, and then proceed-
ing to the next step. If the choices at each step of a chained menu
system are similar, it’s a good idea to have the toggles carry similar
meanings. For instance, if several menus have the option “Enter a
new filename,” then it’s a good idea to have the same key activate
that choice each time. If Echooses that option on the first menu,
but Fis the toggle for that choice on the next, the user will have a
perfect right to be annoyed at you.

17

1 Starting
out

Feedback. Just as important as telling users what they can do
is telling them what they did. With really complex programs,
where after a setup the program will take some time performing
several actions, it’s not a bad idea to stop and show users exactly
what they chose and give them a chance to go back and make
changes. And when a program will perform irrevocable opera-
tions, like wiping out a disk or permanently changing a data file,
it isn’t optional any more — you must give them a chance to
double-check.

The sound program I'm going to write will have only a simple
menu. Each choice will cause an operation to be performed, and
the program will return to the menu for another selection. There
is no setup, and we don’t have enough choices to justify nesting.

And as for feedback, it will be a simple matter to maintain a
display of the current selections being POKEd in to create the cur-
rent sound. Each time a change is made, the “current selections”
display will be refreshed. But the menu will always be the same —
it should be printed once and stay on the screen. It would be a
waste of time to print it again and again. That means that part of
the screen will always be the same, and part will be changed from
time to time. Since we have so few choices, it will be a simple mat-
ter to keep all the information on the same screen display.

I wouldn't be surprised if a third of the program ended up be-
ing devoted to displays. They’re so vital to making a program
usable that it’s rarely a good idea to scrimp in that area.

Plan for Revision

Every program, no matter how useful, is going to be changed
someday. Even if you think it’s perfect for your needs, someone
else might use it and want to make an alteration. It helps you and
it helps future adapters if you plan your program so that it’s easy
to figure out what’s going on in it. There are some habits that are
almost universal.

For instance, most programmers begin their program with
assignment of variables. Even though the variable won't be used un-
til later, if every variable in a program is assigned right at the be-
ginning, it’s far easier to make sure you don't use the same name
twice to mean different things, or assign a variable to carry a value
that is already held by another variable. '

Most programmers also put their initialization steps into one
area of the program, so it’s easy to follow the initial setup.

18

cccccCcccCcccCcowcCccccCcccCccCccCcCccCccccoOCccccceca

R

D239 9373)5I3I3I3I7I3D53I3II3I73I3I3I39I3I3I3I3I3I3I3I3I3I3III)D)

Starting 1
Out

Programs that involve repeated user input are usually con-
structed around a main loop, which gets information from the user
over and over again and then branches to subroutines in order to
carry out the user’s commands.

And, finally, most programs have an escape sequence, so that
when the user chooses to quit the program, the operating system
of the computer is restored to normal before the program ends.

Outlining the Program
If you take computer programming classes, you will probably
learn a complex system of diagramming programs, with squares,
circles, diamonds, and other shapes carrying definite meanings.
Most of the time, though, Ifind that a simpler format is good
enough for what I'm doing.

What shape should the program take?

1. Assigning Variables

Here are the first two lines of our program:

10 P1=54273:P2=54272:VL=54296:AD=54277:S
R=54278:WF=54276:SW=54274
200 SC=653:KD=197

The variables in line 10 should look familiar — they assign the
addresses of the sound memory locations to the variables that we
already discussed.

Keyboard codes. However, line 20 has a few new things. SC,
with the value 653, is the location that the operating system uses
to store the SHIFT and COMMODORE key values. If the value at
653 is zero, neither key is pressed. If the value is 1, the SHIFT key
is pressed. If the value is 2, the COMMODORE key is pressed.

KD, with the value 197, is the location where the operating
system stores the code for the key that is currently being pressed.
This is notthe ASCII code, and it is not the internal character code
— it is a keyboard code that reports on the key, not the character.
The operating system takes the information at 197 and combines it
with the information at 653 in order to translate the keyboard
code into ASCII and internal character codes.

Something you might want to try right now is a simple pro-
gram that will let you see the code for individual keys. Just type
this in without a line number, in direct mode. When you press
the RETURN key, the program will run.

19

1 starting
out

FOR I=0 TO 1@90@:PRINT PEEK(197),PEEK(653
) :NEXT I

Aslong as you aren’t pressing any key, the screen will report
values of 64 and 0. Pressing keys will change the values. Notice
that a regular key will return the same code number whether the
SHIFT key is pressed or not. Press the function and cursor keys —
they return the lowest numbers of all, and their codes are all in se-
quence. That will be convenient for us later.

2. Initialization

The values of the variables assigned so far will never change —
they are permanent. Now, however, we begin to initialize vari-
ables that will change. We initialize them so that when the pro-
gram begins, it will immediately start creating a sound, and so
that each variable holds a valid value. This will enable our change
routines to work properly from the start.

25 POKE 54275,8:POKE VL, 15

30 S1=22:S2=53:ATTACK=16:DECAY=8:SUSTAIN
=16:RELEASE=8:SQUARE=128

35 WAVE=35:DUR=109:0FF=254:TEN=10

Line 25 POKEs 54275 with the value 8. This is part of the pulse
width assignment, but we won't be changing it in our program.
The same with the volume assignment, POKE VL, 15. This sets
the volume at its loudest. The ADSR envelope will make particu-
lar changes within the range of possible volumes, however, so
you'll almost never want to set your volume at anything less.

Line 30 initializes the variables that will change. S1 and S2 are
the pitch values that will be POKEd into locations P1 and P2.
ATTACK is the attack value, and it will be added to DECAY to be
POKEd into address AD. SUSTAIN and RELEASE will be added
together to be POKEd into SR. SQUARE is the square wave pulse
width, and it will be POKEd into location SW.

WAVE is the value of the waveform, and it will be POKEd into
WEF to start the sound. OFF will also be POKEd into WE, but only
at the end of the sound, to turn it off. The value of OFF will al-
ways be 254. DUR is the duration of the timing loop. It will not be
POKEd anywhere; it will be used as the counter in a FOR-NEXT
loop to decide how long each note will last.

Line 35 has a variable named TEN. This is a toggle that will
have a value of either 10 or 1. Our program will check the value of

20

cccoccccccoccccoccccccccccccccccccccocCccoccccccc

3733330303)23)03)323D03)3D3)303)13333D53I3D53I3I3I2I390I)

Starting 1
Out

TEN to see whether to change pitch values by ones or tens. This is
because there are 255 possible values for each of the two pitches,
and cycling through those values one at a time will get awfully
tedious, unless there’s a way to do it faster. Our program will let
the user choose between fast (by 10) and slow (by 1) stepping
through the pitches.

Notice that have chosen to use vanable names that mean
something — ATTACK, WAVE, DECAY, DUR, TEN. The com-
puter doesn't care. It only pays attention to the first two characters
of the variable name — ATTACK looks just like ATTILA and
ATROCIOUS to the computer. The reason for using whole words
is that it's much easier for you to remember what the variable
names are while you're programming, and it’s easier for someone
coming afterward to figure out what each variable stands for. Just
be careful that you don't accidentally give two variables names
that the computer thinks are the same. If, instead of S1 and S2,
we had used SOUND1 and SOUND?2, the computer would see
only SO and treat them as if they were the same variable. We defi-
nitely wouldn't get the results we planned on.

3. Menu and Current Value Display

Putting up the display. The last step in initialization is put-
ting up the display — the menu and the feedback. We'll do it this
way:
4@ GOSUB 300

With this GOSUB, the program will jump to line 300, which
begins a routine that puts up the menu and the display of values
currently being POKEd. How did I choose line 300? Because I
knew I wanted the main loop to begin at line 100 and figured that
it would finish well before 300. I like to begin my main subrou-
tines on even-hundred lines — it’s easier to find them again that

~way.

Aslong as we're planning the display subroutine, let’s do it
now.

300 PRINT CHRS$(147)"Fl1/2{6 SPACES}= HIGH
FRE DOWN/UP"
3109 PRINT "F3/4{6 SPACES}= LOW FRE DOWN/
UPII
320 PRINT "F5/6{6 SPACES}= ATTACK/DECAY"
330 PRINT "F7/8{6 SPACES}= SUSTAIN/RELEA
SE 11}

21

4 1 starting
out

340 PRINT "SPACE BAR = CHANGE WAVEFORM"

350 PRINT "CRSR U/D{2 SPACES}= DURATION
MORE/LESS"

355 PRINT "CRSR L/R{2 SPACES}= SQUARE WA
VE WIDTH"

360 PRINT "UP-ARROW{2 SPACES}= PITCH INT
ERVAL TOGGLE":PRINT "RETURN
{4 sPACES}= sToP"

365 POKE 214,10:POKE 211,@:PRINT

37@ PRINT "HIGH FRE="STRS$(S1)"{2 SPACES}
"TAB(20)"LOW FRE="STRS$(S2)"
{2 SPACES}™"

380 PRINT "ATTACK="STRS (ATTACK)" "TAB(20
) ;: "DECAY="STRS (DECAY)" "

390 PRINT "SUSTAIN="STRS(SUSTAIN)" "TAB(
20) ; "RELEASE="STRS (RELEASE)" "

40@ PRINT "WAVEFORM="STRS (WAVE)" "TAB(20
) "DUR="STRS$ (DUR)" "

41@ PRINT "SQUAREWAVE WIDTH="STRS (SQUARE
)" " :RETURN

Lines 300 through 360 show all the possible choices. But first, in
line 300, the statement PRINT CHR$(147) clears the screen.

What do those cryptic menu entries mean? F1/2 means that
pressing F1 (function key 1) will give you the first result, and F2
(F1 shifted) will give you the second result. The first result is high
frequency down; shifted, it is high frequency up. F5/6 means that
pressing F5, unshifted, will change the attack; pressing F6,
shifted, will.change the decay.

The layout is reasonably consistent. Whenever a choice in-
cludes a down/up option, the unshifted key means down and the
shifted key means up. The ADSR envelope choices are together,
in their proper order — attack, decay, sustain, release — and one
key always controls both halves of a two-nybble choice. The space
bar is used to change the waveform, which has the largest single
effect on the sound. The up/down cursor key controls, not the
quality of the sound, but its duration; the left/right cursor key
controls the most rarely used function, the pulse width of the
square wave. The up-arrow key controls the TEN toggle. And the
RETURN key allows the user to stop the program.

Why provide a key to stop the program? All the user needs to
do is press RUN/STOP and the program will end, won't it? Yes,

22

ccccocccoccccocccccccocccccccccccceccccccccecccecccec

DI23D3233)3733D53I3I33I33I3953I3I322I3D53I3I3I32II3I9I9IIIIII)

starting 1
out

but RUN/STOP won't turn off the sound! If you happen to press it
during the middle of a note, the note will keep on sounding for-
ever. Pressing RETURN will provide an orderly, quietend for the
program.

Positioning the cursor. Line 365 is the line that enables us to
leave the menu on the screen without ever having to print it
again, even though we will be updating the rest of the display
with every change. If we wanted to start in the upper-left-hand
corner each time, we could replace line 365 with PRINT
CHR$(147). But we don’t want to wipe out the menu. So instead
we will tell the cursor to PRINT everything that follows starting at
line 10, column zero. POKEing 10 into location 214 tells the operat-
ing system to begin the next PRINT statement on that line; POKE-
ing a 0 into location 211 tells the operating system to skip that
many spaces before beginning the PRINT. Once you get the
whole program typed in and saved, you may want to change
these values and see what it does to the display.

Skipping over spaces on a line. Lines 370 through 410 dis-
play the current values. Since certain values belong together —
the two pitches, attack and decay, sustain and release — it made
sense to lay out this display with two items on a line. However,
since the length of each entry will change, it wouldn’t work to
simply type in a certain number of spaces, the way we did in the
menu to skip from the left-hand column to the right-hand col-
umn. After all, sometimes the value of S1 will have three digits,
and sometimes only one — as the value changed, the right-hand
column would keep shifting.

So instead, we use the TAB function. Instead of printing
blank spaces between one entry and the next, the TAB function
skips over a number of columns and begins PRINTing everything
after it in the column specified in parentheses. On our display, we
will begin each second entry at the twentieth column — TAB(20).
Everything beforethe TAB column will be left alone.

Leading and trailing spaces. There’s another problem with
displaying numbers that change, however. The 64 automatically
skips a space before and after a number whenever you PRINT a
variable. The leading space leaves room for the minus sign before
negative numbers. The trailing space is provided so that if you
print several variables in a row, you can see where one leaves off
and the next begins. The trouble is, we don’t wantthose spaces
this time. Because of skipping a space after the number, when we

23

change the value of WAVE from 129 to 17, it will look like we
changed it from 129 to 179. The 9 will be left hanging.

And it doesn't help just to put a blank space — “ ” — after the
variable name. That blank space will simply begin afterthe trail-
ing space. The 9 will still be left hanging.

' The STR$ solution. The solution, then, is to print the vari-
ables, not as numerical variables, but as string variables. And 64
BASIC has a built-in function, STR$, that does it very nicely. In-
stead of PRINT WAVE, we say PRINT STR$(WAVE). What STR$
does is evaluate the value of WAVE and turn it into the ASCII
string that expresses that value. It’s a trivial difference to human
beings — it comes out looking like the same number to us. But to
the computer, they are not the same thing at all.

One result of that difference is that the computer doesn't skip
leading and trailing spaces when it PRINTSs strings. When we
change the value of WAVE from 129 to 17 in the statement

PRINT "WAVEFORM="STRS$(WAVE)"{2 SPACES}"

the result, on our screen, is not 129 followed by 179; it is 129 fol-
lowed by 17, which is exactly what we want.

Double use of a subroutine. Line 410 ends with the RETURN
statement, which causes the program to jump back to the state-
ment after the GOSUB in line 40. You may wonder why the menu
(lines 300-360), which is printed only once, is included as part of
the subroutine that prints the current value display (lines
365-410), which will be updated and rePRINTed often.

It didn't have to be that way. I could have put the menu be-
tween lines 40 and 100 and included only 365-410 in the subrou-
tine. I did it to show you a technique that you may want to use.
Later in the program, we will reuse that subroutine, but notin a
statement that says GOSUB 300. Instead, the statement will say
GOSUB 365. It will begin executing the subroutine at line 365,
which positions the cursor, and then flow through to line 410,
which RETURNE.

When you have a routine that sometimes includes several
statements and sometimes doesn’t, one of the simplest things to
do is group those statements at the beginning of the subroutine,
and then sometimes use an entry point before those statements,
and sometimes use an entry point after them.

There are dangers, though, to having a subroutine do double
duty. Once again, we need to think of revisions. What if you were

24

cccccccocccoccCccccccccccccccccccccccecccceccecccecceccecceccecccec

D)J)DIIDIDIIIIIIII3I3I3I73IIII39D93DI7D53II3I2D3I0I3III)

Starting 1
Out

doing revisions in a part of the program that entered the subrou-
tine at line 300, and you discovered something you wanted to add
to the subroutine. If the program were very complex, or you
hadn’t worked on it in along time, you might forget that other
parts of the program also enter the subroutine at 365. Suppose
that you then made a change at line 380 that will work just fine for
the routines that enter at 300 — but ruin everything for the rou-
tines that enter at 365.

In a small program like this one, that sort of thing is pretty
unlikely, and multiple entry points can save time; but the safest
thing is to create each subroutine with one and only one entry
point and one and only one RETURN point. This is one of the
principles of “structured” programming.

4. The Main Loop

Here is the main loop of the program, the things that will be re-
peated, over and over, until the program is ended:

100 SH=PEEK(SC) :KEY=PEEK(KD):IF KEY<>64
THEN GOSUB 503 :GOSUB 365

185 IF KEY=255 THEN 200

1190 POKE P1l,S1:POKE P2,S2

12@ POKE AD,ATTACK+DECAY:POKE SR, SUSTAIN
+RELEASE : POKE WF,WAVE:POKE SW,SQUARE

139 FOR I=@ TO DUR:NEXT I

140 POKE WF,WAVE AND OFF

150 FOR I=@ TO 75:NEXT I

160 GOTO 109

Read the keyboard. Line 100 finds out what key, if any, the
user has pressed. The computer finds out the value stored at SC
and assigns it to the variable SH. This will be a 1if the SHIFT key
is pressed, 2 if the COMMODORE key is pressed, or a 0 if neither
is pressed. Then KD is PEEKed and the value is placed in KEY,
which tells which key has been pressed.

If KEY does not contain a 64, then a key has been pressed,
and we will want the program to do certain things. First, the pro-
gram will jump to the subroutine at 500. This is the Change Value
Subroutine that finds out whichkey was pressed and makes
changes accordingly. Then the program will GOSUB to 365 and
update the current value display — this is the second entry point
to that subroutine, which you've already seen.

25

1 Starting
Out

Everything after THEN. Remember that everything that ap-
pears on a line after the THEN statement will be executed if the
condition is true, and noneof it will be executed if the statement is
false. In other words, if KEY equals 64 (meaning that no key was
pressed), the program jumps right to line 105, ignoring every-
thing else on line 100.

Internal flag. Line 105 is deceptive. It looks as though it is do-
ing part of the job that the subroutine at 500 will do — checking to
see what key was pressed. Actually, however, the keyboard can-
not possibly return a value of 255. The gnly way that KEY can
equal 255 is if the program changes it to 255. This serves as a flag.
There is only one way that KEY can ever equal 255, so testing for
255 finds out if that condition has been met. If that flag is set, then
the program will branch to line 200 — and line 200 ends the
program!

Making the sound. Lines 110 and 120 actually make the
sound. Line 110 POKEs the correct values into the frequency con-
trol locations. Line 120 POKEs the correct values into the ADSR
and waveform locations. Every time this loop repeats, this action
is performed and a sound begins, whether the values have been
changed or not. This is why the sound repeats over and over, re-
gardless of whether the user presses a key.

Repeating without waiting. This is why we wrote the pro-
gram to get the user’s choices by reading KD and SC rather than
using INPUT statements. When you use an INPUT statement, the
program stops and waits until the user enters something, then
presses RETURN. That would make it difficult to make the sound
repeat over and over.

The disadvantage of reading KD and SC, however, is that
there is no regular mathematical relationship between the key-
board codes and the characters they stand for. If you actually had
to be able to understand all the possible combinations of SHIFT,
CONTROL, and keys using the keyboard codes, your program
would be terribly slow and unwieldy. This method works best
when only a few keys are meaningful, and it’s important not to
stop and wait for input.

Delay loops. Line 130 and line 150 are both delay loops, or
empty loops. They make the computer do nothing over and over
again, for as long as we tell it to. The loop in 130 decides how long
the sound will last, and its duration is controlled by the value of
the variable DUR. If DUR is a low number, the sound will be
short; if it is a high number, the sound will be long. The user can

26

ccccocccocccoccccocccccccccccccccecceccccocoocceccceccec

DI JED I IS JN0 T JND D I D R0 TS T I D 2D LD IR0 B0 B0 N0 B0 I JD I I B0 1D I I B0 JND IS D IS

Starting
Out

change this value while the program is running.

The loop in line 150, however, is a constant length. This is be-
cause it is the time between notes. Why have any delay at all? Be-
cause the release step in the ADSR envelope happens after the
note ends — it decides how quickly the sound dies down at the
end of the note. If we went straight from the end of one sound to
start a new one, there wouldn't be time for the user to hear the
effect of using different release values.

Notice that both empty loops use the same counter variable,
1. This works fine because the one loop closes before the next be-
gins. However, if you nest two loops, one inside the other, you
must use different counter variables or the program will become
completely confused.

Turning off the sound. Line 140 POKEs the value of OFF into
location WE. This turns off the sound we just produced. Why do
we AND the value of OFF with the value of WAVE? To turn off the

Figure 3. Bitwise AND

Notice that ANDing any number with 254 will turn off only the
rightmost (least significant) bit. All other on bits will stay on.

sound, we must make the least significant (lowest-numbered) bit
at WF be a 0. We could just POKE a 0 into WE, but that is like using
a sledgehammer to push a needle.

What does AND do? When you use AND with a number in-
stead of a logical expression (“bitwise AND” instead of “logical”

27

1 starting
out

or “Boolean AND"), the computer compares the bits in both
numbers. Any bit that is on (has a value of 1) in both numbers will
be on (1) in the result. But any number that is off (0) in eithernum-
ber will be off (0) in the result. OFF has a value of 254, and in the
number 254 every single bit is on except the least significant bit.
Therefore, no matter what the other number is, that least signifi-
cant bit will be a 0 in the result. Any other bit that is on, however,
will stay on, because it will find a match in the number 254. Figure
3 shows how bitwise AND works in the expression WAVE AND
OFE.

Close the loop. Line 160 closes the main loop by sending the
program back to 100. It will keep doing this forever if the user
never ends the program. That’s why aloop made with a GOTO is
called an endless loop.

5. Exit Routine

Line 200 is very simple — it exits from the program. But it does it
cleanly. First, you can get to this line only when the sound is off.
Every time through the main loop, the sound is off after line 140
and does not turn on again until the loop repeats and reaches line
110. The command that can send us to the exit routine is in line
105. Therefore, you can only reach this routine when the sound is
off.

200 POKE 198,@:END

What is POKE 198,0 doing? Every time you press a key on the
64, the value of the key you pressed is automatically put into a
keyboard buffer. This happens even during a program like this
one, where we aren’t accessing the keyboard buffer. Location 198
contains the number of characters stored in the buffer. If we didn’t
POKE a0 there, the values of the keys you had last pressed would
be stored there, and when the program ended, those characters
would be printed on the screen. It wouldn’t cause any harm, but
it looks funny and forces the user to move down a line or erase
those characters. So POKE 198,0 just tidies up a bit at the end of
the program.

6. Evaluate KEY

In lines 500 through 530, the program evaluates the value of KEY
and SH and figures out what subroutine to branch to.

28

ccccccCcccccccceccccCcccceccecccrcececccccceccccceccecceccecceccecceccecec

DIES T J0 10 J0 T T T 10 T T T T T 0 T T T T R T JD T JD D TS D 10 RS T I I I 0)

Starting
Out

500 IF KEY=1 THEN KEY=255:RETURN

505 IF KEY=54 THEN TEN=1-9*(TEN<>1Q)

510 IF KEY=60 THEN 600

520 IF KEY<2 OR KEY>7 THEN RETURN

530 KEY=KEY-1:ON KEY GOSUB 54#,550,568,5
79,580,590 : RETURN

Exit flag set. Line 500 checks to see if RETURN was pressed.
If so, it changes KEY to 255 and RETURNS. But why not just end
the program right at line 500? We could enter this line:

509 IF KEY=1 THEN POKE 198, @:END

That line would work just fine. The program would end, and be-
cause we can't reach line 500 unless the sound is off, we would be
ending very neatly. If you use this line, you can delete line 105 and
line 200. The program is shorter and runs faster.

I simply have a personal aversion to ending programs in the
middle of an unresolved subroutine. We executed a GOSUB to
get to line 500, and I don't like to end unless the program has exe-
cuted a RETURN. It’s just a quirk of mine. Ilike to be neat. This is
the sort of thing that programmers do because they feel like it.
That’s why if you assign two programmers to do the identical
task, they will come back with very different programs. People do
things differently.

Toggling TEN. Line 505 checks to see if the key pressed was
the up-arrow key. If it was, then TEN will be changed. If it was 1,
it will become 10; if it was 10, it will become 1.

Look carefully at the expression after the equal sign (=) in
line 505. Let’s evaluate that expression the way the computer
would, and see what'’s going on.

We start inside the parentheses, with the expression
TEN <> 10. If this expression is false, then it will return a value of 0.
If it is true, it will return a value of -1. This is very important! True
expressions equal negative one (-1), and false expressions equal
zero (0). Knowing this can help you make your programs run fast-
er, with fewer IF statements. In this case, if TEN does notequal 10,
then the expression is true, and returns a value of -1. If TEN does
equal 10, then the expression is false, and returns a value of 0.

The next step is to multiply the result of TEN <>10 by 9. If the
expression was false, or 0, then the result of this operation is 0. If it
was true, then the result is -9.

29

1 Starting
Out

Now we subtract that value from 1. If the value was 0, then
1-0 =1. TEN will equal 1. If the value was -9, then 1- (-9) is the same
thingas1+ 9, or 10.

See how it worked? If TEN was already equal to 10, then it
will end up equal to 1. If TEN was already equal to 1, then it will
end up equal to 10. We are simply switching back and forth.

Another way of doing this would have taken two lines and
two IF statements. Please don’tenter these lines — they’re just an
example:

505 IF KEY=54 AND TEN=1 THEN TEN=10:GOTO
510
506 IF KEY=54 AND TEN=10 THEN TEN=1

Why is the GOTO statement at the end of line 505? Remember
that at the end of the operation in line 505, TEN will be equal to 10
no matter what. If it wasn't already equal to 10, the line changed it.
Then, if it goes right on to 506, TEN will be changed right back to
1. From then on, TEN would always be 1, regardless of whether
the user tried to toggle the value or not. We would add a GOTO at
‘the end of 505, so that if the value was changedin line 505, it will
skip over 506 and not get changed back. '

The way we have it in the program, with a single line, is much
better.

Line 510 checks to see if the space bar was pressed. If it was,
the program jumps to line 600.

Then, in line 520, the program checks to see if the value of
KEY is between 2 and 7. If it isn't, the program RETURNSs from the
subroutine and does nothing more. This means that if the user
presses a key that means nothing, the program will simply ignore
it and go back to the main loop.

Setting up a valid ON statement. A quirk of the keyboard
code is very helpful to us right now. It just happens that the two
cursor keys and the four function keys are all in numerical order,
from 2to 7. And it also happens that an ON statement is the
simplest way to have multiple branches.

We have six possible branches. ON evaluates the expression

- that follows it. If the expression has a value of 1, the program will
branch to the first line number following the expression. If ON
finds a value of 2, it will branch to the second line number, and
soon.

But ON is very fussy. It stops the program with an error state-
ment if the expression is not an integer, if it is not a positive num-

30

cccccccccccccocccccoccccccccccccccccccccccoccecccoccecec

JJ)IJDIDIIIIIDIIDIIDIIIDIIDIINDIIDIIDIIIIIIII)

Starting
Out

ber, if it is a zero, or if there is no line number to correspond with
the value. In order to use ON effectively, you have to keep tight
control of the expression following ON.

In our program, it’s easy. We have already screened out every
possible value of KEY except the numbers from 2 to 7. Now all we
do is subtract 1 from KEY, and it will consist of a number from 1 to
6. If we make sure we have six line numbers following the
GOSUB command, we're safe. We just have to make sure that the
line numbers are the right ones, and the rest of our choices are
taken care of. (By the way, KEY =KEY-1isn't really necessary. The
statement could begin 530 ON KEY-1 GOSUB ... and it would
work just as well. Better, in fact, because it would take up less
space and run a bit faster.)

7. Value Change Subroutines

Lines 540 and 545 change the value of SQUARE. Lines 550 and
555 control RELEASE and SUSTAIN, depending on whether the
SHIFT key is pressed. Line 560 controls S1, and 570 controls S2.
Lines 580 and 585 change the values of DECAY and ATTACK. 590
and 595 control DUR. 600 and 610 control WAVE.

540 SQUARE=SQUARE-TEN+2*TEN*ABS (SH=1)

545 SQUARE=SQUARE-256* (ABS (SQUARE>255)-A
BS(SQUARE<@)) : RETURN

559 IF SH=1 THEN RELEASE=RELEASE+1-15*AB
S(RELEASE=15) : RETURN

555 SUSTAIN=SUSTAIN+16-240*ABS(SUSTAIN=2
4@) : RETURN

560 S1=S1-TEN+2*TEN*ABS(SH=1):S1=S1-256%*
(ABS(S1>255)-ABS(S1<@)) : RETURN

570 S2=S2-TEN+2*TEN*ABS(SH=1):S2=S2-256%*
(ABS(S2>255)-ABS(S2<@)) : RETURN

580 IF SH=1 THEN DECAY=DECAY+1-15*ABS(DE
CAY=15) : RETURN

585 ATTACK=ATTACK+16-240*ABS (ATTACK=240)
: RETURN

590 DUR=DUR-25*(ABS(SH=@)-ABS(SH=1)):IF
DUR<25 THEN DUR=25

595 RETURN

600 WAVE=WAVE+16*(INT(WAVE/16)):IF WAVE>
129 THEN WAVE=17

610 RETURN

31

Starting
Out

The best way to figure out what is going on in each of these
lines is to carry out the operations exactly the way the computer
does — the way we did when we evaluated line 505. Always exe-
cute the expression inside the innermost parentheses first.
Always multiply and divide before adding and subtracting.

There are several things you want to look for. First, wherever
the value of SH is tested or used, the program is deciding how to
act depending on whether the SHIFT key is pressed or not. A
similar test occurs wherever you see the program testing to see if a
value is greater than 255 or less than 0. Since numbers outside the
range of 0 to 255 cannot be POKE(, it is essential that they be
changed to legal numbers. The simplest method is subtracting
256 from numbers greater than 255, and adding 256 to numbers
less than 0.

Second, notice how TEN and other numbers are used to see
to it that only the correct values result from the operations.
ATTACK, for instance, in line 585, can only end up with a value
that is a multiple of 16. The program sees to this by adding 16 to
the old value of ATTACK. This works every time except when
ATTACK had a previous value of 240 — then the new value is 256,
which is not alegal value. So whenever ATTACK starts out (before
adding 16) at 240, the program adds 16 but then subtracts 240, re-
sulting in a value of 16 for ATTACK. From there, the cycle begins
again.

& Third, notice the use of the ABS function. Remember that
when an expression is true, it returns a value of -1. But it is often
more useful to turn this into a positive number. There are several
ways to do it. One is simply to put a minus sign in front of the ex-
pression: -(-1) is equal to positive 1. Another way is to subtract the
true expression in a situation where you really want to add it. But
I prefer to use ABS, because it’s foolproof. If a number is positive
or zero, ABS leaves it alone. If a number is negative, however,
ABS turns it positive.

In all of these, keep in mind the fact that if the expression is
false, its value is 0. So if you add or subtract the result of the ex-
pression, a false will have no effect. But if you multiplythe result
of an expression, a false will always give you a zero product.

Notice that lines 595 and 610 consist of a single RETURN
statement. Why weren’t these RETURNSs put on the end of the
line before, the way it is done in 570 and 580 arid others? Because
both of these lines end with an IF statement, so that a RETURN
on the same line would be executed only if the condition is true.

32

cccccCcccCccCccccccCccCccccCcCccCcccccccccccCccccCcocCcccceccccec

\

DI3I39I3DI53I73I3I9II93I3I3I3I3I3I3I3I3I53I3I539D5I9I39I5I9I9I3I3I3I3I3IIID

Starting 1
Out

So even if there were a RETURN on the end of the line, the pro-
gram would still need to have a RETURN on the next line to end
the subroutine in case the result is false. Since nothing else but
the RETURN will happen on that line, why type in an extra
RETURN? The one will be enough to end each subroutine.

However, in cases like 550 and 555, where we never want both
lines to execute, we need to have aRETURN at the end of each
line so it can’t “fall through” and execute the wrong line. Perhaps
the easiest way to see the result of allowing the program to fall
through is to remove one of the RETURN’s and then see what
happens to the values when you press the keys — you get more
than you bargained for.

Does this seem like an awful lot to think about every time you
program? Actually, you have to make about as many decisions
whenever you drive a car. It’s just a matter of habit. Once you're
used to thinking this way, it won't occur to you that you're even
doing something difficult. And it won’t be very long before you
look back at this program and think, “Is this all?”

Well, it isn't all — it never is. Because once you're comfortable
with my version of the program, you'll start to think of features
you want to add and slow places that you can speed up. It
wouldn’t be hard to have three voices going at once and to use the
COMMODORE key to cycle from one voice to the next. Or to
make the screen change colors every time the waveform is
changed. Or to allow direct keyboard entry of certain pitches in-
stead of having to rotate through them 1 or 10 values at a time.
When you start customizing programs like that, you've got it.

The following program repeats what has been given, in parts,
throughout this chapter.

64 Sound

10 P1=54273:P2=54272:VL=54296:AD=54277:S
R=54278:WF=54276:SW=54274

20 SC=653:KD=197

25 POKE 54275,8:POKE VL,15

30 S1=22:82=53:ATTACK=16:DECAY=8:SUSTAIN
=16 : RELEASE=8: SQUARE=128

35 WAVE=35:DUR=100:0FF=254:TEN=10

4@ GOSUB 300

100 SH=PEEK(SC):KEY=PEEK(KD):IF KEY<>64

THEN GOSUB 58@0:GOSUB 365
105 IF KEY=255 THEN 200
110 POKE P1l,S1:POKE P2,S2

33

1 starting
out

120 POKE AD,ATTACK+DECAY:POKE SR, SUSTAIN
+RELEASE : POKE WF,WAVE:POKE SW, SQUARE

130 FOR I=@ TO DUR:NEXT I

140 POKE WF,WAVE AND OFF

150 FOR I=@ TO 75:NEXT I

160 GOTO 100

203 POKE 198, :END

399 PRINT CHR$(147)"F1/2{6 SPACES}= HIGH
FRE DOWN/UP"

310 PRINT "F3/4{6 SPACES}= LOW FRE DOWN/
UPll

320 PRINT "F5/6{6 SPACES}= ATTACK/DECAY"

339 PRINT "F7/8{6 SPACES}= SUSTAIN/RELEA
SEII

340 PRINT "SPACE BAR = CHANGE WAVEFORM"

35¢ PRINT "CRSR U/D{2 SPACES}= DURATION
MORE/LESS"

355 PRINT "CRSR L/R{2 SPACES}= SQUARE WA
VE WIDTH"

360 PRINT "UP-ARROW{2 SPACES}= PITCH INT
ERVAL TOGGLE":PRINT "“RETURN
{4 sPACES}= sToP"

365 POKE 214,10:POKE 211,@:PRINT

370 PRINT "HIGH FRE="STR$(S1)"{2 SPACES}
"TAB(20)"LOW FRE="STRS$(S2)"
{2 spacEs}"

380 PRINT "ATTACK="STRS (ATTACK)" "TAB(20
) ; "DECAY="STRS (DECAY)" "

390 PRINT "SUSTAIN="STRS(SUSTAIN)" "TAB(
20) ; "RELEASE="STRS$ (RELEASE)" "

40@ PRINT "WAVEFORM="STR$(WAVE)" "TAB(20
) "DUR="STRS$ (DUR)" "

419 PRINT "SQUAREWAVE WIDTH="STRS$ (SQUARE
)" ":RETURN

5¢@ IF KEY=1 THEN KEY=255:RETURN

505 IF KEY=54 THEN TEN=1-9*(TEN<>10)

519 IF KEY=60 THEN 600

520 IF KEY<2 OR KEY>7 THEN RETURN

530 KEY=KEY-1:0N KEY GOSUB 540,558,568, 5
78,58@,590 : RETURN

540 SQUARE=SQUARE-TEN+2*TEN*ABS (SH=1)

545 SQUARE=SQUARE-256* (ABS (SQUARE>255)-A
BS (SQUARE<®)) : RETURN

55¢ IF SH=1 THEN RELEASE=RELEASE+1-15*AB
S(RELEASE=15) : RETURN

555 SUSTAIN=SUSTAIN+16- 24@*ABS(SUSTAIN—2
40) : RETURN

5680 S1=S1-TEN+2*TEN*ABS(SH=1):S1=S1-256%*
(ABS(S1>255)-ABS(S1<@)) : RETURN

ccccccccCccoccCccCcccccoCccccoCoCcccCcccccccocccccccecce

)))))))))))))))))))))))))))))J)))J.))

570
580
585
590

595
600

610

S§2=82-TEN+2*TEN*ABS (SH=1) : S2=52~-256*
(ABS(S2>255)~-ABS(S2<@)) : RETURN

IF SH=1 THEN DECAY=DECAY+1-15*ABS(DE
CAY=15) : RETURN
ATTACK=ATTACK+16-24@*ABS (ATTACK=240)
: RETURN
DUR=DUR-25* (ABS (SH=0)~ABS(SH=1)) : IF
DUR<25 THEN DUR=25

RETURN

WAVE=WAVE+16* (INT(WAVE/16)):1IF WAVE>
129 THEN WAVE=17

RETURN

Starting
out

1

35

20000000 D OO0 0T00IDIVIODIDODTD

BASIC
Iming

&N
@
K e
@

o
o

B - : B B T w. Y . - - e A e b - ». w w W . 3w . v e oW W N

20000000 D OO0 0T00IDIVIODIDODTD

PIRIBIBIBIBI I IS I IS IR I IS IS IS IR IS IS IR D IR IR IR IR D ER IR IR IR IR ER IR ED ED IS

BASIC 2
Programming

All About the

T Instruction

Louis F. Sander and Doug Ferguson

WAIT is one of Commodore BASIC's most mysterious instructions —
seldom seen in programs, rarely mentioned in magazines, and nearly im-
possible to understand in manuals. To find out how helpful it can be for
all kinds of applications (program debugging, single-stepping, even a
superior form of the common pause GET K$: IF K$=""THEN), read on.

WAIT allows a BASIC program to communicate with hardware
and with certain software external to itself. It causes the computer
to suspend all apparent activity on receipt of a signal from the
keyboard, an external device, or the computer’s internal timers.
Normal activity resumes when the signal is removed. Thus,
WAIT provides a simple means of pausing until a key is pressed,
an interval ends, or contacts open or close. We'll soon get to some
useful examples.

When executed, WAIT examines a selected memory location
and halts the program if the location contains a specified “trigger
value.” The program continues if, or as soon as, any other value
appears in the selected location. Optionally, WAIT can be made to
ignore some of the bits in the location it is testing.

In other words, WAIT halts a program if, and for as long as,
selected bits in a chosen location have one specific pattern. Note

carefully: the program waits if a specific pattern exists, not fora

specific pattern to appear.

WAIT’s format is:

WAIT ADDR, MASK, TRIG
ADDR, MASK, and TRIG can be any numeric constants, expres-
sions, or variables in the range 0-65535 for ADDR, and 0-255 for
MASK and TRIG. TRIG and its leading comma may be left out of
the statement if desired, in which case TRIG defaults to zero.

Technically speaking, the WAIT statement reads the status of
memory location ADDR, exclusive-ORs it with TRIG, then ANDs
the result with MASK, repeating these steps until a nonzero re-

39

2 BASIC
Programming

sult is obtained. Practically speaking, few human minds can follow
such logic, let alone comprehend its effect on their programs. If
you prefer simplicity, think of WAIT as saying this: “Pause if the
MASK bits in the contents of ADDR are the same as those in
TRIG. Otherwise, continue.” But let’s illustrate some of its specific
uses.

ADDR is the address of the memory location to be tested.
WAIT halts the program if ADDR contains a preselected trigger
value, resuming execution if and when ADDR'’s contents change.
It follows that ADDR must be a location whose contents can
change independently of the program, or there will be no way to
resume program execution. Relatively few memory locations
meet this criterion — mainly they are associated with the key-
board, the user and serial ports, and the computer’s internal
timers. Table 1is a partial listing of such locations.

MASK determines whether WAIT tests all, or only some, of
the bits in ADDR. If a given bit in MASK is set to one, the corre-
sponding bit in ADDR will be tested. Otherwise, the bit will be
ignored. If the entire contents of ADDR are to be tested, MASK
must equal 255; any lower number will cause WAIT to ignore one
or more bits. The various powers of two are often used in MASK
to monitor a single bit for a one or a zero. Zero is a legal value for
MASK, but should never be used, since it always causes an end-
less halt. (Any number AND zero equals zero.)

TRIG is the value that triggers a halt. If WAIT is executed
when ADDR contains TRIG, the program will stop until TRIG is
replaced by another value. Of course, if MASK is blocking out
one or more bits, any number whose unblocked bits are identical
to those in TRIG will have the same effect as TRIG and will cause

40

ccccCccccCccCccCccCccCccccccCccCccccCccccCccCccccccCccccccccccccccecceccec

DD 1 T T T T T T T T T I T 1 10 B0 T T I IR T I I T I JD TR0 I JD TS 0 B I I)

sasic)
Programming

the program to halt. TRIG’s default value is zero, so when TRIG
is omitted from the WAIT statement, a halt occurs whenever all
the unblocked bits are zero.

WAIT has three other notable properties. First, just as PRINT
can be abbreviated as “?”, WAIT can be abbreviated as “W shifted
A’. You can use this property to save keystrokes and line space.
Second, the STOP key will not terminate a WAIT. That can only
be done by satisfying the logical conditions in the argument or
by using the RUN/STOP-RESTORE combination. So as soon as
you put a WAIT statement into a program, SAVE a copy on tape
or disk; that will save you if you've made an error. Finally, WAIT
does not affect the jiffy clock — TI and TI$ continue counting
during WAITs, even though the computer and the STOP key are
ostensibly dead. So by using the memory locations of the jiffy
clock, you can precisely control WATT’s pauses.

Real Worid Applications
End-of-the-program questions are well suited for the WAIT com-
mand. To replay or not to replay is hardly a menu of choices. With
WAIT, the computer “waits” for the replay signal. Even if the
player wants to quit, he can always RUN/STOP-RESTORE or turn
off the power.

Try these three short demos to see the possibilities.

10 FOR X=1 TO 2@:NEXT X:REM KILL SOME TI
ME

20 WAIT 197,64,64:REM WAITS FOR YOU TO P
RESS A KEY TO MOVE ON

3@ PRINT "YOU PRESSED A KEY!!!THANKS"

40 POKE 198,0:REM CLEARS THE KEYBOARD BU
FFER

19 REM WHEN YOU RUN THIS SHORT PROGRAM H
OLD THE <RETURN> KEY DOWN TO WAIT

20 WAIT 197,64:REM WAITS FOR YOU TO TAKE
YOUR FINGER OFF THE KEYBOARD

30 PRINT "YOU TOOK YOUR FINGER OFF THE K
EYBOARD"

40 POKE 198,0@:REM CLEARS THE KEYBOARD BU
FFER

41

:!EMSW
Programming

6009 PRINT "YOU WIN!!":PRINT "PRESS FIRE
-BUTTON TO PLAY AGAIN" _

6010 WAIT 145,16:REM IN CASE BUTTON IS A
LSO USED IN THE GAME ITSELF

6020 WAIT 145,16,16

6830 PRINT:RUN

6049 REM PRESS STOP/RUN AND RESTORE TO S
TOP THIS DEMO

Here is a table showing the specific test values for the
joysticks.

2

tain way. If you want to test that a certain position is not pressed,
just leave off the last number.

Tracing with WAIT

Another way to use WAIT is in FOR/NEXT loops in either pro-
gram or direct mode. For example, to examine the contents of the
ROM memory containing BASIC, type in the following program:

100 FOR X=10 * 4096 TO X + 8191: PRINT X
- ,PEEK(X)

1180 WAIT 197,64

120 NEXT

or the direct statement:

FOR X = 192%*4896 TO X+8191: PRINT X,PEEK(X
): WAIT 197,64: NEXT

A list of memory addresses and contents will begin to scroll
by. To stop printing, press any key (except RESTORE, SHIFT,
CTRL, or the COMMODORE key). Printing resumes when the
key is released. If the WAIT is changed to WAIT 653,1,1, the

42

cecccccccccccCccccccCccocccccccccccccccrcccecccceccecceocec

2J3DJI3I32I39I3I3933I392I3II32I3II3I31I32III3II3IIIIII)I)

BASIC 2
Programming

SHIFT key alone becomes the control key. This has the advantage
of providing a “hands off” pause by using the SHIFT LOCK key.

It is also possible to single-step (go through a program line by
line) using the WAIT command. Simply change the WAIT to

WAIT 197,64: WAIT 197,64,64
for “any key” control or
WAIT 653,1,1: WAIT 653,1

for SHIFT key control, although the SHIFT LOCK is of no conse-
quence when single-stepping.
Escape from examining memory by hitting the RUN/STOP
key.
Y There are, of course, many other ways to use the WAIT com-
mand. A good way to learn is to experiment. The information
contained here should be only a beginning.

2 BASIC
Programming

EM Revealed

John L. Darling

Did you know that you can prevent someone from easily LISTing your
program? This is one of several hidden secrets of the REM statement. Did
you ever try putting shifted or reverse video characters behind a REM?
The results you get when you LIST may come as a surprise. Try these ex-
periments to learn about the tricks you can play with REMs.

There are quite a few hidden surprises in the REM statement.
Many are just plain fun, but a few can be put to good use. Let’s go
exploring.

The REM statement was designed to provide a way to add re-
marks or comments in a program. During execution of the pro-
gram, all the characters on aline following the REM are ignored.
Thus, the only time the remarks are seen is when the program is
LISTed.

Also note that, for program operation, it doesn’t make any
difference whether the characters following the REM are enclosed
in quote marks or not, but it sure can change the results you get
when you LIST the program. First, let’s look at the REM when
quotes are not used. The results you get when the program is
LISTed will be determined by the following rules:

1. Nonshifted characters appear as typed in.

2. Shifted characters are converted to BASIC commands if the
ASCII code for the character is equivalent to a BASIC command
token.

3. Reverse fields are stripped from any character.

Before we examine these rules, you should put your com-
puter into lowercase mode by hitting the shift-COMMODORE
key. It is easier to discuss upper- and lowercase letters than it is to
describe graphic symbols. Reverse video characters are turned on
with CTRL-9 and turned off with CTRL-0.

To illustrate these rules, type in the following four lines and
then LIST.

44

ccccccccccccccccccCcccccccccccccccccccccccccccccccceccecceccec

NP EREEEIRIEIEIIRIPIRIEIR IR IR IR IS RIS IS D IS I I I I I I I I

BAQC:Z:
Programming

19 rem a b c d e £

20 rem A BCDEF .
3% rem {RvVS}a b c d e f{OFF}
49 rem {RVS}A B C D E F{OFF}
list

13 rem a bcde £
20 rem atn peek len str$ val asc
30 rema bcdef
49 rem atn peek len str$ val asc

Line 10 demonstrates Rule 1. All the characters are LISTed just
as they were entered. This is the normal effect that we're all used
to.

Line 20 doesn’t look much like the original, does it? It il-
lustrates Rule 2: the shifted letters are interpreted as BASIC com-
mand tokens.

Lines 30 and 40 show Rule 3 in action. They look just like
lines 10 and 20 because the reverse field was stripped when the
lines were entered.

LIST Blocking
Now we get to the question of how to prevent someone from
easily LISTing your program. Let’s examine Rule 2 a little more
closely. Certain characters become “tokens” which cause unusual
effects. One will cause the LIST operation to terminate with a
“syntax error” message when it is encountered. These tokens are
equivalent to a shifted-L.

This can be verified by the following line.

10remL

When you attempt to list the line, the result will be:

10rem
?syntax error
ready.

Up to now, it’s just been fun, but there is a reason you might
want to use this line. If this special REM line is the first line in a
program, it prevents a normal LISTing. Let’s assume that the first
line in a large program is line 100. Inserting this special REM line
ahead of the program causes the LIST operation to terminate as
soon as it encounters the special shifted character. However, LIST

45

2 BASIC
Programming

100- will allow the program to be displayed normally.

Consider the following situation. A quiz program has the
answers in DATA statements at the end of the program listing. In-
serting the special REM line just ahead of these DATA statements
will prevent the answers from being displayed during a LIST.
Don't forget that REM statements are ignored during program
execution, so they won't affect the actual program operation.

Quote Mode
Now, let’s examine the quote mode. A new set of rules applies
when the REM characters are enclosed in quotes:

1. Shifted and nonshifted characters LIST as they were typed
in.

2. Reverse video characters are preserved when inside quotes
(they are not stripped, as is the case in the nonquote mode).

3. Some reverse video characters and combinations of charac-
ters behave as print control commands when LISTed.

Rules 1 and 2 produce results that you would normally expect
during the LIST operation. They LIST exactly as typed in. No ex-
amples are provided for these rules, but try a few experiments to
verify this for yourself.

Here are some interesting examples of Rule 3 in action. (The
comments in brackets are the resultant action produced during
LIST.)

rem "§3 finsertl

rem " freturnl

rem Y& [shifted returnl = ¥
rea "EE ¥ + [homel

rem "[EE ¥ + [clear screenl
rem "REE) ¥ + [cursor downl
rem "[ED- ¥ + {cursor upl

rem "[EE ¥ + {[cursor rightl
rem "ERl ¥ + [cursor leftl

When these characters are inside a REM” statement, strange
things are going to happen.
To enter the following tests, first type the line number, the

REM, the quote symbol, and then RETURN. Next, edit the line by

positioning the cursor past the quote mark, press the RVS ON
key (CTRL-9) and then the letters. This allows you to put the re-
verse video characters on the screen line.

46

ccccccocccCcccccccccccccccccccccccccceccccoccccceccecccec

B IBIB I IS I I I I D IR IR I IR I IS IS IS A NS IS NS EE IR ED ED AR AR ED AR EE ED ED EB I

EMQC:Z
Programming

19 rem"help !EEESI
list
18 rem’he

The four reverse ¢ characters achieve the same thing that
would occur if the DEL key was pressed during an edit operation,
deleting the last four characters. Adding more reverse ¢ characters
(15 total) on the rest line will cause the entire line to disappear after
it is LISTed on the screen.

Notice that many of the cursor controls shown require the M
(shifted RETURN) character to be the first character. This is im-
portant, for without the shifted RETURN most of the cursor con-
trols or special control codes will not be executed. As soon as this
character is encountered, a shifted RETURN will be generated.
All characters following the shifted-M will be printed as if they
were in a PRINT statement, rather than in a REM. Consequently,
if any of these characters are cursor controls, they will produce a
cursor control action as if they were inside the quotes following a
PRINT statement.

If the reverse t's in the previous example were replaced with
reverse MS characters, then the LIST operation would list that
line up to the ! and then the cursor will go to the top of the screen
since MS is interpreted as a HOME command. If this was listed to
a Commodore printer and the paging mode was on, the printer
would eject a page after LISTing that line.

A Program Within a Program

Let’s try one final example to illustrate how the reverse field
shifted-M works in combination with other characters. To avoid
errors, here is a complete key sequence that will produce the fol-
lowing line:

1,0,SPACE,R,E,M,",",DEL,RVS, SHIFT-M,
SHIFT-S,Q,Q,Q,Q,0FF,I,SPACE,T,H,I,N,K,
SPACE, I,SPACE,A,M,SPACE,S,RVS,Q,O0FF,1
RVS,Q,OFF,C,RVS,Q,OFF,K,RVS,S,OFF, ",
SHIFT-L

i am =@t

47

2 BASIC
Programming

Can you guess the results? If you type the line correctly, the
following will happen after you LIST:

1. 10 REM ” will be printed.

2. A CLEAR SCREEN will be printed, blanking the screen
and also the previous 10 REM”.

3. Four cursor-downs will be printed.

4. The message I THINK I AM SICK will be printed with the
I,C,K characters on different lines.

5. A cursor-home will occur.

6. “ @ will be printed on the top line followed by a ?SYNTAX
ERROR message on the next line. (Note that the special shifted
character is no longer enclosed in quotes.)

7. Finally, the READY message will appear with the cursor
above the ITHINKIAM S line.

The above line could be inserted in most programs, and it will
not affect the program execution performance in the least. You
just can’t get a normal LISTing of the program.

There are a lot more combinations to try, so have fun. It’s like
having a program inside another program. The second program
requires a LIST command for execution instead of a RUN
command.

ccCcccCccccccCccccccccccccccccccccccccccccccccceoccec

IS T T T T 0 T 0 T T T T T T 0 T T T T 0 T I T J0 A0 T I [0 RS T I B0 [0 B I

sasic)
Programming

From IFs to ANDs

Stephen D. Eitelman

Presented here are some efficient ways to program for joysticks.

The Commodore 64 User’s Guide is strangely lacking in information
on programming the joysticks. In “Commodore 64 Memory Map”
(see Chapter 7), Jim Butterfield shows the memory locations for
the joysticks: 56320 and 56321. With this data, a simple program
PEEK to the appropriate location should permit a determination
of the memory contents versus stick direction. With a joystick
plugged into port 1 (plug in the joystick with the power off for
safety), try this program:

19 PRINT PEEK (56321)
20 GOTO 10

Line 10 prints the contents of memory location 56321. Line 20
creates an endless loop to allow viewing of different joystick posi-
tions just by moving the joystick. When the program is RUN, a
column of 255s scrolling upward should appear. Now move the
joystick to the north (up). The number should now read 254.
Moving the joystick to the northeast should produce 246. Table 1
gives the values produced at each joystick position.

A similar table can be generated for port 2. Plug a joystick in-
to port 2, change the memory location in line 10 from 56321 to
56320, and RUN the program. Going around the compass again
produces the data as indicated in Table 2.

49

2 BASIC
Programming

The 64 Sketchpad
With this data, a simple program can be written that moves a
graphics symbol around the screen under control of the joystick
(Program 1). (Be sure to save this program; we will use it again
later.) Pressing the fire button clears the screen and starts a “fresh
page.” The lines in this program perform the following actions:

Line Action

5 Clear screen. ‘

7 Brown border: black background.

10 Variable JM (Joystick Memory) set for port 2. :
20 Set Screen Location and Screen Color to center of screen.

3040 Putaballin center and color it green.

50,60 Setvariables for No Joystick and directions using Table 2.
70-150 Test JM for direction, set X and Y increment.
155 If Fire Button pressed, erase and start over.
160 No motion; start JM test sequence again.

170 Set new SL.

175,177 Keep SL within limits of screen memory.

180 Set new SC.

185,187 Keep SC within limits of screen color memory.
190 Draw aball atnew SL.

200 Color ball green at new SL.

205 Slow it all down.

210 Begin another loop to find next location.

There's an Even Better Way!

Lines 50-155, while pretty straightforward, seem unnecessarily
long. Jim Butterfield gives a better way in an article entitled “VIC
Sticks” in COMPUTE!’s Second Book of VIC. Although this article
deals (very properly) with VIC-20 joystick programming, there
are some valuable lessons worth investigating for applicability to
the 64 joysticks. The first is that horizontal and vertical increments
can be generated in one-line statements using the SGN function
and some logic if the directions have nonoverlapping binary
values. The second lesson is that diagonals are the sum of the

50

cccccccccoCcCcccCcCccCcccccccCccccoCc oG cCoccCccec

DRI IR IR I IS IDEDEDEDED RS IS ED ED IS BB RS

BASIC 2
Programming

vertical and horizontal values on either side, so that it is unneces-
sary to treat diagonals separately. The third lesson is that the
binary values of joystick directions are inverted (bits are set to zero
instead of one when a given direction switch is activated).
Butterfield inverts the values with the logical NOT statement to
convert to “positive” logic. To see if these tricks will work with the
64, try the following modification to the short program at the be-
ginning of this chapter (joystick in port 2):

19 PRINT (NOT PEEK(56320))+128
20 GOTO 20

The addition of 128 in line 10is a “fudge factor” to force the
joystick center position to be zero after the inversion. Going

around the compass again produces results very similar to those
for the VIC-20 as seen in Table 3.

From this table, you can see that the major points of the com-
pass have nonoverlapping binary values and that the diagonals
are the sum of the vertical and horizontal values on either side.
Thus it should be possible to adapt Butterfield’s one-line VIC hor-
izontal and vertical incrementers to the 64.

Direction D =(NOT PEEK(56320)) +128

Horizontal H =East - West; H =0, +1, -1 only
H=SGN(D AND 8)-SGN(D AND 4)

Vertical V =-North +South; V=0, +1, -1 only
V=SGN(D AND 2)-SGN(D AND 1)

Saving Memory
Our sketchpad program can now be shortened considerably with

51

:!!BA&C
Programming

this far more elegant approach. First eliminate lines 50-160 inclu-
sive from Program 1. Then add the following lines:

50 D=(NOT PEEK(56320))+128:REM INVERT DI
RECTION BYTES

55 IF D=16 THEN 5:REM FIRE BUTTON.START
OVER

60 H=SGN(D AND 8)-SGN(D AND 4)

79 V=SGN(D AND 2)-SGN(D AND 1)

In lines 170 and 180, substitute H for X and V for Y. The pro-
gram should perform the same as before with a net saving of nine
lines.

A similar investigation for port 1 reveals that the inverted
directions are the same as for port 2. The only difference is in the
PEEK statement. Substitute the following:

D=(NOT PEEK(56321))+256

Now the Sketchpad program will work for port 1. The Modified
Sketchpad is Program 2.

Program 1. 64 Sketchpad

5 PRINT "{CLR}"

7 POKES53288,9:POKE53281,8

10 JM=5632@:REM JOYSTICK MEMORY,PORT 2

20 SL=1524:SC=55796:REM SCREEN LOCATION
& PIXEL COLOR. START IN MID SCREEN

36 POKE SL,81:REM BALL IN MIDDLE OF SCRE
EN

40 POKE SC,5:REM GREEN BALL

50 NJ=127:N=126:NE=118:E=119:SE=117

60 S=125:SW=121:W=123:NW=122:FB=111

7@ IF PEEK(JM)=NJ THEN X=0:Y=0

80 IF PEEK(JM)=N THEN X=0:Y=-1

9¢ IF PEEK (JM)=NE THEN X=1:Y=-1

10@ IF PEEK (JM)=E THEN X=1:Y=0

116 IF PEEK (JM)=SE THEN X=1l:Y=1

120 IF PEEK (JM)=S THEN X=0:Y=1

133 IF PEEK (JM)=SW THEN X=-1:Y=1

140 IF PEEK (JM)=W THEN X=-1:Y=0

150 IF PEEK (JM)=NW THEN X=-1:Y=-1

155 IF PEEK(JM)=FB THEN GOTO 5 .

160 IF X=0 AND Y=@ THEN 78:REM NO MOTION

170 SL=SL+X+40*Y:REM NEW LOCATION

ccoccccccceCccccCccccccCccccccccccocCccoccccccec

DRI IR IR IP IR IR IR IS IS IS IS RS R

175
177
180
185
187
190
200
205
210
220

BASIC

Programming

IF SL>=2023 THEN SL=2023

IF SL<=1024 THEN SL=1024
SC=SC+X+40@*Y:REM COLOR @ NEW LOC'N
IF SC>=56295 THEN SC=56295

IF SC<=55296 THEN SC=55296

POKE SL,81:REM BALL @ NEW LOC'N
POKE SC,5:REM GREEN BALL)
FOR DL= 1 TO 5@ :NEXT DL:REM DELAY
GOTO 7@:REM DO NEXT BALL LOCATION
END

Program 2. Modified Sketchpad

5 PRINT "{CLR}"
7 POKES5328@,9:POKE53281,0

10
20

30

40
50

55

69

79

170
175
177
180
185
187
190
200
205
210
220

JM=56320:REM JOYSTICK MEMORY,PORT 2
SL=1524:5C=55796:REM SCREEN LOCATION
& PIXEL COLOR. START IN MID SCREEN
POKE SL,81:REM BALL IN MIDDLE OF SCRE
EN

POKE SC,5:REM GREEN BALL

D=(NOT PEEK(56320))+128:REM INVERT DI
RECTION BYTES

IF D=16 THEN 5:REM FIRE BUTTON.START
OVER
H=SGN(D AND 8)-SGN(D AND 4)
V=SGN(D AND 2)-SGN(D AND 1)
SL=SL+H+40*V:REM NEW LOCATION

IF SL>=2023 THEN SL=2023

IF SL<=1024 THEN SL=1024
SC=SC+H+4@*V:REM COLOR @ NEW LOC'N
IF SC>=56295 THEN SC=56295

IF SC<=55296 THEN SC=55296

POKE SL,81:REM BALL @ NEW LOC'N
POKE SC,5:REM GREEN BALL

FOR DL= 1 TO 5@0:NEXT DL:REM DELAY
GOTO 5@0:REM DO NEXT BALL LOCATION
END

2

2 BASIC
Programming

Menumaker

Richard L. Witkover

This easy-to-use utility will help you create attractive, well-formatted
display-screens.

Your newest programming masterpiece is finally done. Itching to
show it off, you find someone to try it out on. Eagerly, you seat
him at the terminal and stand back anticipating his reaction. He
glances at the screen, looks at the keyboard, looks at the screen
again, and then just sits. Finally, he asks, “What am I supposed to
do?” '

“Oh,” you say, “just hit RETURN to activate the laser discom-
bobulator, and use the I, J, K, and M keys to control up ordown
and right or left. The %-key creates a new Zippity and —.’’ By this
time your victim’s eyes are glassy, but he recovers enough to say,
“Let me know when you finish it; I'll try it then.”

Crestfallen, you are about to say, “It is finished,” but catch
yourself and only mumble, “Yeah, I've got to add a few extra mes-
sages.” You sulk for a while but finally have to admit that even
though your new program is the greatest game in the world, it is
no good unless people know how to play it.

The second act of this little scenario shows the programmer
busily typing in a few options such as “... which do you choose, 1,
2, or 3?” We have all done this as beginners, but you can be sure
that the pros would never be satisfied with that.

The Menu

The answer, of course, is a simple, informational display on the
screen. “Menumaker” is a utility that will print a display starting
at any row or column, or will center the text by row, column, or
both. After the longest line, the program will print a dash. All
shorter lines will be filled with dashes to this point. The last col-
umn is used to draw an array of cursor boxes which, along with
the flashing cursor, will move. To allow only a single key to con-
trol its motion, the cursor has a wraparound feature. Selection is
made by moving the cursor to the row desired by means of the
cursor UP/DN key (either way), then hitting any key to select the

54

cccccccccccCccccccccccccccCccccccccccccccccccccceccc

2)3IJ3I3I3I3)3)73I73)79I3I3I3I3I7I3I3I3I3I9I3I3I3I3D9II3I3I3I93I3I3I32I00)

BASIC 2
Programming

row on which the cursor sits. Finally, to dress up the display,
Menumaker draws a round-cornered box around the whole
menu.

Menumaker is presented here as a self-contained program
that you can use to try different layouts to find the one which best
suits the application. The program was written in four parts using
GOSUBs to produce the entire display. In this way the parts can
be fitted into your own programs as needed. For example, you
may wish to place some instructions in one section of the screen
and draw a box around them. No user selection is involved, so
the cursor portion of the program isn't needed.-

The Program

Part 1 extends through line 290. It sets up the various constants
and gets the input values of RI$, CI$, and TE$, which set the posi-
tioning of the rows, the columns, and the text lines, respectively.
The variables RI$ and CI$ are tested to see if the automatic center-
ing option was chosen, and if not, whether the numerical values
are within the allowed ranges. These are set by the screen charac-
ter limits with allowances for the borders of the box, the dash,
and cursor array.

The text input is obtained by lines 170-195, checking that the
maximum character count isn't exceeded. Each line is ended with
a carriage return until a null line ends the loop. As each line is
read in, its length is measured and the largest count is retained as
[W% in line 194.

If the centered option is selected, lines 205-240 will compute
the cursor column number and the text starting column number.

Part 2, lines 320 to 370, prints the text on the screen, and Part
3, lines 510 to 680, draws the bordering box. The final part, lines
800-920, is the cursor routine.

Putting It All Together

Now that you have Menumaker, how can you put it to work? The
straightforward way is to just type it in as needed, leaving out all
the REMs but making sure that all of the required input variables
are satisfied. These are defined in the leader block preceding each
subroutine. :

There are many frills or variations which could be used with
Menumaker. For example, you could make the cursor a different
color. How about changing the color of the selected text line to
highlight the choice? Just making the box different in color from

55

2 BASIC
Programming

the text will add a bit of pizazz. You could use a joystick to move
the cursor or just use the fire button. The variations are endless,
so have some fun and dress up your programs while you make
them easier to use with Menumaker.

Menumaker

7 REM{11 SPACES}MENUMAKER

8 REM{2 SPACES}THIS PROGRAM DISPLAYS UP
TO 22

9 REM{2 SPACES}LINES OF UP TO 35 CHARACT
ERS.

19 REM THE CHOICE IS MADE BY MOVING THE

11 REM CURSOR VERTICALLY (WITH WRAP-

12 REM AROUND) ALONG AN ARRAY IN THE

13 REM LAST COLUMN. HITTING ANY KEY BUT

14 REM THE UP/DN CURSOR WILL ENCODE THE

15 REM THE ROW #.A BOX IS DRAWN AROUND

16 REM THE MENU. THE TOP LEFT-HAND CHAR

17 REM INSIDE THE BOX CAN BE LOCATED

18 REM SPECIFICALLY OR THE BOX CAN BE

19 REM CENTERED IN ROW AND/OR COLUMN.
20 REM***kkkhkhkhkhkhhhhhhhhhhhdhhhhhhhhhhk

40 REM **%kkkhkhkhhhkhhhhkhhhhhkdkkhhkkhhhk
41 REM
42 REM{4 SPACES}THE FOLLOWING ARE COMPUT

ER

43 REM{7 SPACES}DEPENDENT CONSTANTS :

44 REM

45 REM{7 SPACES}CM=4@{2 SPACES}:MAX # CO
LS

46 REM{7 SPACES}RM=24{2 SPACES}:MAX # RO
WS

47 REM{6 SPACES}SC%=1@24:ST OF C-64 SCRE
EN

48 REM{7 SPACES}PN=87{2 SPACES}:NORMAL C
URSOR POKE

49 REM{7 SPACES}PR=215 :REV CURSOR POKE
5¢ REM{7 SPACES}CR=119 :NORMAL CURSOR CH

52 REM

53 REM{2 SPACES}CHANGE AS NEEDED FOR COM
PUTERS

54 REM{2 SPACES}OTHER THAN THE COMMODORE
64.

55 REM

56 REM*********************************

57 REM

CC'CCCC‘CCCCCCC‘C‘CCCC(CC‘CCC(C}CCCC"C'CCCCC

DN I J0 T T T T T 0 TS 0 T T T 0 T T D T T I JD T 2D D T I I I 0 T IS IR I A

100
185

110

115

129
125
130
135

140
145

BASIC 2
pProgramming

CM=40 : RM=24:SC%=1024 : PN=87 : PR=215:CR=
119
REM*********************************
REM

REM{5 SPACES}PARAMETER INPUT ROUTINE
REM

REM{7 SPACES}REQUIRED INPUTS ARE:
REM

REM{6 SPACES}RI$=STARTING TEXT ROW
REM{6 SPACES}CIS$=STARTING TEXT COL
REM{6 SPACES}TE$=UP TO 22 TEXT LINES
REM

REM ROUTINE ACCEPTS A NUMBER FOR RIS
REM AND CI$, OR 'C',IN WHICH CASE IT
REM WILL CENTERS ROWS AND/OR COLS.
REM

REM TEXT STRINGS CAN BE A MAX OF 35
REM CHARACTERS,EACH LINE ENDING WITH
REM A CARRAIGE RETURN. TEXT ENTRY
REM ENDS WITH A NULL LINE.

REM
REM*****,‘****************************
REM

REM{2 SPACES}THE FOLLOWING ARE SCREEN
CHAR

REM{2 SPACES}CODES FOR THE C-64:
REM{8 SPACES}ER$=ERASE SCREEN

REM{8 SPACES}CD$=CURSOR DOWN

REM{8 SPACES}CL$=CURSOR LEFT

REM{8 SPACES}RO$S=REVERSE ON

REM{8 SPACES }HO$=HOME
REM********************************

ER$=CHR$(147) :CD$=CHRS$(17) :CL$=CHRS$ (1
57) :RO$=CHRS$ (18) : HO$=CHR$ (19)

DIM TE$(22)

PRINTERS; CD$; CDS$; "ENTER ROW AND COLU
MN OF START OF TEXT"

PRINT"{7 SPACES}FOR CENTERED TEXT EN
TER 'C'"

INPUT" {2 DOWN} {8 SPACES}ROW,COL=";RI
$,CI$

LW%=0:CS%=0

IFCI$="C"THEN140

CS%=VAL(CIS$)

IFCS$<10RCS%> (CM-5)THEN INPUT"{RVS}C
OL# INVALID- ENTER COL#";CI$:GOTO125
IF RI$S="C"THEN LM=RM-2:GOTO0160
RT%$=VAL(RIS)

57

? snsic
Programming

150

155
le6@

165

178
175
180
185
194

194
195
200
205
225
230
235
240
250
260
270
280

299
300
301
302
303
304
305
306
307
308
309
310
320
330

340
350

360
378
400
401

58

IFRT%$<1 OR RT%$>RM~-2THEN INPUT"{RVS}R
OW# INVALID- ENTER ROW #";RIS$:GOTOl4
7]

LM=RM-1-RT%

PRINTCDS$;CDS$; " ENTER UPTO"LM; "LINES
ENDING EACH WITH A"

PRINT" CARRAIGE RETURN. EXIT WITH A
NULL LINE"

FOR NL=1TO LM

PRINT"LINE #";NL; : INPUTTES (NL)

IF TE$(NL)=""THEN200
L=LEN(TES$ (NL)) :CL=CM-4~CS$%
IFL>CLTHEN PRINTTAB(18);:"{RVS}TOO MA
NY CHAR, MAX="CL:TES$(NL)="":GOTOl75
IF LW$<L THENLWS=L

NEXT NL

LW$=LW%+2 : NL=NL-1
IFRIS="C"THENRT$=INT (RM~-NL) /2+1
IFCIS$S="C"THEN235
C$=CS%+LW%-1:GOT0240
C%=INT(CM+LW%)/2-1:CS%=C%-LW%+1
S$=SC%+C%+CM*RT%

GOSUB 3280 :REM TEXT TYPE-OUT

GOSUB 50@:REM DRAW THE BOX

GOSUB 719:REM MAKE THE CURSOR
PRINT"{HOME} {3 SPACES}THE ROW IS =";
R

END
REM***khkhhhhhhhkhhhhhhhhhhhhbhhhsn
REM

REM{5 SPACES}TEXT TYPE-OUT ROUTINE
REM{6 SPACES}REQUIRED INPUTS ARE:

REM{6 SPACES}RT%=TOP ROW #

REM{6 SPACES}NL =# LINES OF TEXT
REM{6 SPACES]}TE$=TEXT LINE ARRAY

REM :
REM********************************
IFRT$=1THENLF$="":GOT0340
LFS$S="":FORI=1TORT$-1:LF$=LF$+CD$:NEX

T

PRINT ERS§;LF$
FORI=1TONL:ND$="":NC=LW$-LEN(TES$(I))
—l:FORN=1TONC:ND$=ND$+":":NEXT
PRINT TAB(CS%);TE$(I)+ND$:NEXTI
RETURN

REM** %k kkhkhdk sk sk rdhhnhhhhdhshnd

REM

ccccCcccccccCcccccccccccccccccccccccccccccecccceccec

520 10 T T T T T T T T Y0 Yo Yo Yo Y T 1 1 T Yo Yo T T T T Yo T Yo T T A 0 T TN IO

402
403
404

406
487

408

409

BASIC 2
Programming

REM ROUTINE TO MAKE ROUND CORNERED
REM BOXES WITH TOP LEFT-HAND CORNER
REM OF INTERIOR AT DESIRED ROW AND
REM COLUMN.

REM

REM{3 SPACES }WHEN USED AS MERGED CcoD

REM{3 SPACES}THE REQUIRED INPUTS ARE

REM

REM{4 SPACES}RT%=# OF TOP INSIDE ROW
REM{4 SPACESINL =# OF INSIDE LINES
REM{4 SPACES]}LW%=# OF INSIDE CHAR -1
REM{4 SPACES}CS%=# OF LEFT INSIDE CO
L .

REM

REM{4 SPACES}LTS$=LEFT-TOP CHRS$
REM{4 SPACES}RT$=RIGHT-TOP CHRS$
REM{4 SPACES}SD$=SIDE CHRS$

REM{4 SPACES}DAS$=DASH CHRS$

REM{4 SPACES]}LBS$=LEFT-BOT CHR$
REM{4 SPACES}RB$=RIGHT-BOT ,CHRS
ggn********************************
REM THE FOLLOWING ARE FOR THE C-64
LT$=CHR$(117) : RT$=CHRS (105)
RB$=CHR$(107) : LB$=CHRS$ (106)
DAS$=CHRS$ (99) : SD$=CHR$ (125)

IF CS$<>@THENBL%=CS$%:GOT0560
BL$=INT(CM-LW%)/2

BR$=BL%+LW%

PRINTHOS;

LF$=CHRS$ (@) : LN$=CHRS (9)

IF RT$<=1THEN610

FORA=1TORT%-1: LF$—LF$+“{DOWN}"'NEXT
FORA=1TOLW$: LN§=LN$+DA$: NEXT
PRINTLFS;
PRINTTAB(BL%-1);LT$;LNS;RTS
FORA=1TONL

PRINTTAB(BL%-1)SD$; TAB(BR%); SD$
NEXTA

PRINTTAB(BL%-1);LB$;LNS;RBS

RETURN
REM********************************
REM

REM ROUTINE TO PUT ON CURSOR ARRAY
REM WITH FLASHING CURSOR. CURSOR UP
REM /DOWN KEY IS USED TO MOVE WITH
REM WRAP-AROUND. HIT ON ANY OTHER

59

2 BASIC
Programming

786 REM KEY EXITS ROUTINE WITH R$=ROW

787 REM OF CURSOR.

788 REM

789 REM

718 REM{4 SPACES}THE REQUIRED INPUTS ARE

711 REM

712 REM{6 SPACES}RT%=TOP ROW #

713 REM{6 SPACES]INL =# OF ROWS

714 REM{6 SPACES}LW%=COL#-1 OF CURSOR

715 REM{6 SPACES}CS%=COL# OF 1ST CHAR

716 REM{6 SPACES}S% =CURSOR SCREEN LOC

717 REM

718 REM********************************

719 REM

800 RB%=NL+RT%-1:LF$=CHRS(0)

819 IF RT%=1THENS830

820 FORA=1TORT%-1:LF$=LF$+CDS$: NEXT

830 PRINTHOS;LF$

849 FORI=1TONL:PRINTTAB(C%);CHRS(CR);"
{OFF}" :NEXT

850 R%=RT%

860 POKES%,PN:FORI=1TO508 :NEXT

870 POKES%,PR:FORI=1T058 :NEXT

880 GETBS:IFBS$=""THEN86J

899 IFBS$<>CHRS$(145)THEN930

9¢9@ POKE S$%,PN

910¢ IFR%>RT3THENR%=R%-1:S%=SC3+C%+R%*CM:
GOT0980

920 S$=SC%+C%+RB%*CM:GOT0980

930 IFB$<>CDSTHENRETURN

950 POKE S%,PN

960 IFR$<RBETHENR%=R%+1:S%=SC%+C%+R%*CM:
GOTO0980

970 S%=SC%+C3%+RT%*CM

989 R%=INT((S%-SC%)/CM):GOT0860

ccccCcccccccCccccccccccrcccccccccccccccccccccccecceccec

|

2J3DI393I53D5353I3395I3I3D3I3I3I3I3I3I3D3I3I313I3II3II313I3)2)

BASIC 2
Programming

Ron Gunn

Data storage can be the most perplexing aspect of programming for the
novice. Here are some practical tips which just might save you days of
experimentation.

Types of Data

Commodore computers use three kinds of variables, and it is the
values stored in variables that you will be dealing with when you
save and recall data. The first of these is floating point, repre-
sented by a variable like A or A(X). The second is integer, repre-
sented by a variable like A% or A%(X).

The third is the string variable, represented by A$ or A$(X).
Any of these varieties can be single: A; or may have subscripts:
A(X); A(X)Y); or A(X,Y,Z). Part of your sense of power in comput-
ing comes when you realize just how much data you can pack
and organize into those multiple-subscripted arrays.

When you are putting data out on tape or disk and expecting
to read it back in, you must remember two things: 1. The three
variable types are different and are not interchangeable. 2. They
are put onto the recording medium in series without any identifi-
cation and must therefore be read back in, in exactly the same
sequence, to be recovered.

Only the data is recorded, not the variable names them-
selves. You can send it onto the tape as A, and can call it B when
reading it back in. That is fair. But if you read data back as B% or
B$, you will get an error message. Some error messages are really
undeserved, as you know. This one is deserved. Don’t mix your
data types — integer to integer, string to string, and so on.

A Caution about String Variables
String variables, however, are a special case. Let’s see why. In
Commodore BASIC, unlike some other versions, there is a de-
fault value for variables. It is set when the machine is turned on or
when an array is dimensioned. The value is zero.

~ When you write string variables to tape, however, this default
value of zero is not a legitimate representation of anything. A

61

2 BASIC
Programming

string “0” would be ASCII 48, but that is not what is there. What
is there is a binary, octal, decimal, hex 0 — which, in the special
language of strings, represents a null. Neither the cassette nor the
disk will accept null strings. Result: input rejects it and the data
isn't transferred.

The cure is logical, once it is pointed out: load all string vari-
ables, including string arrays, with a string variable that the tape
or disk can recognize. Example: you have dimensioned a string
array A$(20) that may not be filled from your program when you
want to save it. Right after the DIMension statement, do the
following:

11008 DIM A$(29)
11010 FOR I=@ TO 2@:A$(I)="X":NEXT

The array has now been loaded with a recognizable string (“X")
and can be saved. All unused parts of it will be saved as X and will
not confuse things later.

Saving Simple Variables

When the sequence used in saving data is also followed in load-
ing data, then the right variables get put back where they belong,
and the transfer proceeds smoothly. You can safely use the fol-
lowing procedure, and it will work very well indeed on cassette:

12000 OPEN 2,1,1:REM WRITE
12010 PRINT#2,A;",";B%;",";C$
12020 REM WHAT IS THIS?

You should be surprised by line 12010. First the variables are
mixed, but that is OK as long as they are brought back in in the
same order. A floating point, an integer, and a string can be safely
handled on the same line. You can’t just have your other program
trying to bring in a string when a number is next in line to come
off the tape. '

Second, what is all that between the variables? It is instruc-
tions to the computer about what to put on the tape record. Semi-
colons suppress “carriage returns,” but commas are put in to
allow the beginning and end of each separate item of information
to be established. These are delimiters. They are like walls to make
sure that two items are separated. (A carriage return is like moving
the paper up one line when you hit the RETURN key on a normal

62

cccccCcccccccccccccecccecceccccceccccceccceccecccecceccecceccc

DD I TS TID TD TED i Tb JED TN 10 JND JD 2 1D JD 2D 1D 20 JND D I T I 20 T I T I D I I [I I

BASIC 2
Programming

typewriter. Each time you use a PRINT statement in BASIC, it is
followed by a carriage return unless you put a semicolon after it.)

Let's Put It on a Disk

So far we've zeroed in on cassette data operations. What about
the same thing on disk? (Skip this section if you are concerned
now just about cassette data.)

12009 DO$="1:SCORE,S,W"
12019 OPEN 2,8,9,D0S
12029 PRINT#2,A;",";B%;",";CS;CHRS(13);

In line 12000, a record is defined as associated with disk unit
1. itis to be called SCORE and is identified as Sequential. This
will be a Write operation. A later Read operation will be needed to
bring it back in. In line 12010, file 2 is opened to unit 8 (the disk)
with a secondary address of 9. Use 9 for a disk secondary address
unless you specifically want something else. It works. The last
part of the file opening statement is the DO$ that was defined in
line 12000.

Line 12020 contains all of the variables and delimiters used in
the cassette statement, with one addition: a carriage return
CHR$(13) has been added to the disk statement. Note that it is
surrounded by semicolons so no line feeds will be slipped in. You
want a CHR$(13), not a CHR$(13) CHR$(10), there to keep the
records straight. :

Saving Array Variables

While it is clear that mixing variable types on a single line is OK as
long as they are recovered in that same order, this does not seem
to be true if an array is involved. The following is not
recommended:

13000 FOR I=@ TO 20
13010 PRINT#2,A(I)
13020 PRINT#2,B$(I)
13930 NEXT

For reliable records, just don’t mix string and numerical vari-
ables in a FOR/NEXT loop when saving data. Use an entirely
separate loop to handle the strings. Any potential savings by
avoiding the use of another separate loop to handle the strings
can be costly. This works reliably:

2 BASIC
Programming

13000 FOR I=@ TO 20
13910 PRINT#2,A(I)
13020 NEXT

13030 FOR I=@ TO 20
13040 PRINT#2,B$(I)
13050 NEXT

If this were a disk operation, each PRINT #2 statement would end
with:
;CHRS$(13);

A Practical Application

Now let’s define and then write a minor cassette or disk data four-
de-force program. Let’s say you need to input two arrays that con-
tain names and scores for a tournament. NT$ is the name of the
tournament, TP the number of tournament players, N$(TP) their
names, and S(TP) their scores. We are reading data:

15089 OPEN 1,1

15010 INPUT#1,NTS$,TP
15020 CLOSE 1

15030 DIM N$(TP),S(TP)
150408 OPEN 1,1

15050 FOR I=@ TO TP
15060 INPUT#1,N$(I)
15078 NEXT

15080 FOR I=@ TO TP
15090 INPUT#1,S(I)
15100 NEXT

At 15010 the name and size are brought in on the same line.
That’s OK. They were put on the record earlier using the neces-
sary delimiters. The file is then closed to bring all of the informa-
tion in from the buffer.

At 15030, TP is used to dimension the necessary arrays to
hold the data. Then, using loops, the data for names and then for
scores is brought in separately. So, we have stuck to our princi-
ples. Single-line data is mixed because it will mix. Array data is
not mixed even though it seems compellingly simple to do so.

Not that we referred to both cassette and disk in this pro-
gram. The only difference between input of cassette data and in-
put of disk data is the opening statements (i.e., OPEN 1,8 instead
of OPEN 1,1). It is actually practical to have independent opening

64

cccccccccccccccCcccccccccccccccccccccccccccccccceccecceccec

DIJ2DI3I3ID3I3I3I3I3I3I3I3I3II3I3D3I53D53D53I3I3I3III2I3I3I3I3I3I3II)

BASIC 2
Programming

statements, but then GOSUB to the same input loop subroutine
for both cassette and disk. When you are reading data back in,
there are no forced delimiters and no fancy manipulation of the
line feeds. You can easily make your program read either cassette
or disk data with negligible extra programming or complexity.

The Commodore cassette and disk are amazingly reliable in
handling data. I once tried saving and then reloading .5 mega-
bytes (500,000 characters) in the same program, and no errors
occurred.

20000000 D OO0 0T00IDIVIODIDODTD

“‘ 1
N R
B N 4

)

K iy P - " e "’I“' - 5 B -
| A { @ 8 | &8 & ! ' v ' i \ aaf OB
- | 1 B N | |) X | .
4 i | | 0 4 W G ' : | o
H ! i A i -
< & g . : d -
i W d b ¥ 4 i\
O VIU
B A A 4 | '

00O DODOOOOODOOOOOOLOOOOOOOODOONLOONONOOS

20000000 D OO0 0T00IDIVIODIDODTD

DI32DI3I3)53I3I3I3I3I3I3I3I3II3I39I3I3I32I3I3I3I3I3I3I3III3I3I3II0I)

Commodore 64 3
Video

An Introduction

to the

6566 Video Chip

Jim Butterfield

Before setting off on our expedition, we need to establish a few
landmarks which will place the chip within the Commodore 64
architecture.

Memory and Video

The 6566 chip relates to memory in two ways. First, the chip’s con-
trol registers are accessible in addresses 53248 to 53294 or, if you'd
rather, hexadecimal D000 to DO2E. We'll change these registers if
we want to change the behavior of the chip.

The chip itself looks directly into memory as it generates
video. It is usually looking for at least two things: what characters
to display and how to display them. It finds what characters to
display in an area called “screen memory,” or, more formally, the
“video matrix.” It finds out how to display the characters by look-
ing at the Character Generator table, or the Character Base.

Since the chip generates a lot of video, it looks at memory a
great deal. Most of the time, it can do this without interfering
with the processor’s use of memory; but every five hundred
microseconds or so, it needs to stop the processor briefly in order
to get extra information. This doesn’t hurt anything: the pause is
so short that we don’t lose much processing time.

But occasionally, the microprocessor is engaged in timing a
critical event and does not want to be interrupted. In this case, it
shuts off the 6566 chip until the delicate work is over. Ever won-
dered why the screen blanks when you read or write cassette
tape? To give the computer an extra edge while timing tape, that’s
why.

Charting the 64

When the video chip goes to memory for its information, it has a

69

3 Commodore 64
video

special problem: it can reach only 16K of memory. That’s OK for
most work. For example, the screen (or video matrix) is usually
located at 1024 to 2023 (hex 0400 to 07E7), so we'll use it there. But
if we wanted to move screen memory to a new location, say

133792, we would need to work out some details, since the chip
would not normally be able to reach addresses so high in
memory.

We are given some help in doing this by the 64 architecture it-
self. There are two control lines called VA15 and VA14 which allow
us to select which block of 16K memory we want the video chip to
use. Note that once we've selected a block, the chip must get all its
information from that block: we can’t mix and match.

The control lines are available in address 56576 (hex DDQO0) as
the two low-order bits. The memory maps you get are:

¢ POKE 565764 the chip sees RAM from 49152 to 65535. There’s
no Character Generator; you'll have to make your own.

® POKE 56576,5 the chip sees RAM from 32768 to 36863 and from
40960 to 49151. The ROM Character Generator is in the slot from
36864 to 40959.

® POKE 56576,6 the chip sees RAM from 16384 to 32767. No
Character Generator.

® POKE 56576,7 the chip sees RAM from 0 to 4095, and from 8192
to 16383. The ROM Character Generator is in the slot from 4096 to
8191. This is the normal Commodore 64 setup.

Also note that the chip never has access to RAM at addresses 4096
to 8191 and 36864 to 40959. You will not be able to put screen
memory or sprites there.

Be careful with these. If you move the chip’s memory area,
you'd better be sure to move the screen. For example, try the
following:

POKE 648,132:POKE56576,5

You'll find yourself transferred to a new, alternate screen. The
new screen will be “dirty” — it hasn’t been cleaned up. Typing a
screen clear will make things look neat, and you may then play
around with an apparently normal machine. When you're fin-
ished, turn the power off for a moment to restore your machine to
the standard configuration.

70

cceccccoccccoccccccocccccoccccccccCcCccccOoCCcCccc

IR IR IEIEIRIPIEIDED DD NS S ED D I IS I R S

commodore 64 3
Video

The Chip: Video Control
Now for the 6566 chip itself. We'll go through the registers, but
not in strict numeric order.

Location 53265 (hex D011) is an important control location. It
contains many functions; its normal value is 27 decimal.

Values from 24 to 31 control the vertical positioning of the
characters on the screen. Try this:

FOR J=24 TO 31:POKE 53265,J:NEXT J

You'll see the screen move vertically, leaving an empty spot near
the top. POKE 53265 back to 27.

If we subtract 8 from the value in location 53265, the screen
will lose a line: instead of 25 lines we'll have only 24. The best way
to see this is to clear the screen, write TOP on the top line,
BOTTOM on the bottom line (don’t press RETURN!), and then
move the cursor to about the middle of the screen and type:

POKE 53265,19

You'll see the top and bottom trimmed to half a line each.

Think about using these two features together. If we have a
screen full of information, we would normally scroll when we
wanted to write more — the characters would jump up aline. But
if we can switch to 24 lines, slide the characters up gently, and
then switch back to 25 lines, we'd have a smooth scroll.

POKE 53265 back to 27

If we subtract 16 from this location, we'll blank the screen.
This will give the processor a little more accuracy in timing. In
fact, this POKE is the key to allowing us to LOAD a program from
an old-style 1540 disk unit. If the disk hasn't been modified, it will
deliver bits slightly too fast for the computer. But we can bridge
the gap with POKE 53265,11: LOAD and the loading will take
place successfully. When the load is complete, we can get the
screen back with POKE 53265, 27.

High Resolution

The next control bit — value 32 — switches the display to pure
bits. No more characters; the screen will be purely pixels as we
switch to high-resolution mode. We'll use a lot of memory for this
one: memory to feed the screen will be 8000 bytes.

71

3 Commodore 64
Video

High resolution needs to be carefully set up, but let’s plunge
right into it. Type POKE 53265,59 and you'll see an intricate pat-
tern on the screen. What you are looking at now is a bitmap of
RAM memory addresses 0 to 4096, plus the Character Generator
area. The top of the screen will twinkle a little. Some of the page
zero values change constantly — things like the realtime clock and
the interrupt values.

In the bottom half of the screen, we'll see the Character Gen-
erator itself. Oddly enough, the characters are readable. That’s
because of the way high-resolution bitmapping works: each
sequence of eight consecutive bytes maps into a character space,
not across the screen, as you might think.

Now we're going to play around a little. First, clear the screen.
Surprise! It doesn't clear, but the colors change. That’s because
screen memory, into which we are typing, holds color informa-
tion for the high-resolution screen. Now, we'll clean out a band of
hi-res data by typing in a BASIC line. We must do this “blind”; the
screen won't help us. Type:

FOR J=3200 TO 3519:POKE J,3:NEXT J

If you've typed correctly, you'll see a blank band across the
screen. Don’t worry about the color change as you type. Now
we'll enter (blind again):

FOR J=3204T03519 STEP 8:POKE J,255:NEXT J

You should see a high-resolution line drawn across the screen.

That's all the high-resolution fun we’re going to have this ses-
sion, but you may be starting to get an idea of what’s going on.
Turn off the power, and let’s look at other things.

Extended Color '
If we add 64 to the contents of 53265, we'll invoke the extended
color mode. This will allow us to choose both background and
foreground colors for each character. Normally, we may choose
only the foreground: the background stays the same throughout
the screen. You lose some colors, but get better combinations.
Try POKE 53265,91. Nothing happens, except that the cursor
disappears, or at least becomes less visible. Why? We've traded
the screen reverse feature for a new background color. Try typing
characters in reverse font, and see what happens. Try choosing
some of the specialized colors — the ones you generate with the

72

ccccccocccccccccoccccccccccccceccccccccoccccccccocc

)EDED IS D D IS N5 1D I IiD D JiD ID IS JiD IND I JND I IND TN D D D JND JND 1D JND B0 NS IS 1N I D I

Commodore 64 3
Video

COMMODORE key rather than CTRL. See how you like the ef-
fect. Think how you might be able to use it.

Extended color is purely a screen display phenomenon.
POKE 53265,27 will bring all the characters you have typed back
to their normal appearance.

D011
D012
D013

D014

D016

D018

D019

DO1A

D020
D021
D022
D023
D024
D025

D026

Table1.
6566 Video Chip:
Coritrol and Miscellaneous Registers

73

3 Commodore 64
Video
Table2. '

Sprite Sprite 6566 Video Chip: Sprite Sprite
i 1 Sprite Registers l l
D000 DOGE| x| 5348 53262
D001 DOOF| | 53249 53263
D02 DOZE | ; unused -~ Color |s53287 53294

TN

| 53264

D010

D015 53269

D017

DO1B | 53275

DoIC | | 53276

poID | 53277

DO1E 53278

DO1F | 53279

The High Bit

There’s one more bit in location 53265, the one we would get if we
added 128. Don't do this now: this bit is part of a value we'll dis-
cuss later: the “raster value.” You won't use this one out of BASIC,
but it can be handy at machine language speeds.

There's Much More

We've done alot of things so far, using only one control location.
It's a big chip. It will take a lot of time to digest all its possibilities.
It’s fun, and it can create remarkable effects.

74

cccoccccccccccocccccoccCcccccCccccccccccoccccccccccec

2333333333333 I3I3I33I3I3I3I3I393I3I3I393I3I3I3D0)D0I)D

Commodore 64 3
video

The 6566 Video
Chip —

The Raster Reglster
interrupts, Color
and Nore.

Jim Butterfield

In the introduction we began touring the 6566 chip, which gives
the Commodore 64 its video. We saw the variety of important
controls that we can reach in location 53265: vertical screen posi-
tioning, screen blank, bitmapping, and extended color. There’s a
second control location, at 53270 (hexadecimal D016); let’s look
atit.

The first thing we should note about this location is that the
two high bits are not used. That means that we can usefully
POKE only values from 0 to 63 in there. It happens that if we
PEEK 53270, we'll probably see a number that is 192 too big; if you
want to see the working value, use PEEK(53270) AND 63, which
will throw away the unused part of the number.

We saw a vertical fine scroll in location 53265. Location 53270
has a horizontal fine scroll that works exactly the same way. Type:

FOR J= 8 TO 15:POKE 5327@,J:NEXT J

~ You'll see the screen characters slide over horizontally. As
with the vertical fine scroll, we also have facilities for trimming
the size of the screen. Restore the screen to its original form with
POKE 53270,8. Then shrink the screen by typing POKE 53270,0.
You'll see a character disappear from each end. In other words,
you now have a 38-character screen instead of 40 characters. Don't
forget that fine scroll and shrink can be used effectively together.
If you add 16 to the contents of 53270, you'll switch to multi-
color mode. This is not the same as extended color which we dis-
cussed previously. Multicolor allows selected characters to be
shown on the screen in a combination of colors. Extended color

75

3 Ccommodore 64
Video

allows screen background and foreground to be set individually
for each character.

If you're familiar with the VIC-20, you'll find that setting the
multicolor mode makes the Commodore 64 behave in the same
way. Here's the trick: we invoke multicolor on an individual char-
acter by giving that character a color value greater than 7. This
way, the regular colors (red, blue, black) behave normally, but the
new pastels (gray, light red) switch to multicolor mode.

You'll need to create a new character base to exploit the ad-
vantages of multicolor, since the old characters weren’t drawn
with color in mind. However, we can get a quick idea of the fea-
ture by invoking it: POKE 53270,24 sets up multicolor; the screen
characters may turn a little muddy, but don’t worry about them.
Set a primary color such as cyan and type a line. Normal, right?

Next, set up one of the alternate colors (hold down the COM-
MODORE key and press a key from 1 to 8). Type some more;
you'll get multicolor characters. They won't make much sense,
since the Character Generator isn't building the colors suitably;
but you can see that something new is going on.

Adding 32 to the contents of 53270 gives chip reset. You won't
want to do this very often — it’s done on your behalf when you
turn the power on. If you do use chip reset, remember that to
make it work, you must turn reset on and then off again. POKE
53270,32: POKE 53270,8 will clear you out of multicolor mode.

Setting Screen and Characters

Location 53272 sets the location of screen RAM (the video matrix)
and the Character Generator (the Character Base). Don't forget
that they must be in the same 16K block, as determined by the
low bits of address 56576.

You can get the BASIC address of screen RAM in this way:
take the contents of 53272 and divide by 16; then throw away the
remainder and multiply by 1024, and you have the screen
address. You can get the BASIC address of the Character Base in
this way: take the contents of 53272 and divide by 16. Then take
the remainder, subtracting one if it's odd, and multiply by 1024;
that’s the Character Base address. Both addresses will need to be
adjusted to allow for the 16K quadrant we have selected.

If we are in bitmap mode, we get the Character Base address
in a slightly different way. If we divide the contents of 53272 by 16,
take the remainder and divide by 8, discarding the remainder, and

76

cccccccccCcccCcccCccccccccccccccCcccccccccccecca

DEBED IS D DD 1D IS IS IS JND 2D D TS J0 JND JN0 JD 1D I 2 I I B0 D I I JD I I B B I I NS |

Commodore 64 3
Video

finally, multiply by 8192, we will have the bit image; it should be
either 0 or 8192.

How does this work out in the standard Commodore 64? We
may PEEK 53272 and see a value of 21. That means the screen is at
INT(21/16)* 1024, or address 1024. Right on target. The character
matrix works out: the remainder of 21/16 is 5, so drop one for the
odd number, giving 4; multiply by 1024 to get address 4096. In the
introduction I indicated that RAM was replaced by the Character
Generator ROM at this video chip address. And when we flipped
to bitmapping in the last episode, we still got remainder 5; divide
by 8, giving 0, then multiply by 8192 — you still get 01 high-
resolution screen from address 0.

If you'd like to try your hand at the arithmetic, flip to upper-/
lowercase mode (hold down SHIFT and press the COM-
MODORE key) and see what addresses have changed. Or if
you'd rather, try typing in FOR] =1 TO 100:POKE 53272,21: POKE
53272,23:NEXT] and watch the action.

The Raster Register

Location 53266 (hex D012) and the high bit of the previous loca-
tion are not of much use to the BASIC programmer, but can be
very valuable to the machine language beginner. Here's the idea:
by looking at these locations, you can tell exactly where the screen
is being scanned at that moment. This allows you to change the
screen as it’s being scanned. Halfway down, you could switch
from characters to bitmap, or change to multicolor, or move a
sprite that has already been displayed.

If you're really interested in machine language, you may want
to take an extra step: instead of watching where the screen is, you
can leave the message “Wake me when you get to scan line 100.”
ML beginners will recognize this as an interrupt request. How do
you set the identity of the desired scan line? By placing it into the
same locations, that’s how. We have a dual function here: when
we read, we recall the scan location; when we write, we store an
interrupt value.

Light Pen

Locations 53267 and 53268 (hex D013 and D014) are the light pen
registers. An Atari-style light pen can be plugged into the joystick
port number one; if it sees a suitable signal from the screen, the X
and Y values will be latched into these registers. The light pen can

77

3 Commodore 64
Video

be used on an interrupt basis: we can “stop the music” and get
immediate action if we choose to set things up that way.

This is the second time we've mentioned interrupts; per-
haps we'd better discuss them a little more closely.

interrupts

Interrupts are for machine language experts — things happen too
fast for BASIC to cope in this area. There are four types of inter-
rupts: raster, light pen, and two kinds of sprite collision. (We'll
talk about sprites in the next section.) We may use all of them or
none; and even when these signals are not used for interrupt, we
can check them.

Location 53273 (hex D019) tells us which of the four events has
occurred. We don't need to make the interrupts “live”; they will
signal us anytime the particular event happens. The weights are
as follows:

1 (bit 0) — the raster has matched the preset line value;

2 (bit 1) — a sprite has collided with the screen background;
4 (bit 2) — a sprite has collided with another sprite;

8 (bit 3) — the light pen has sensed a signal;

128 (bit 7) — one of the above has triggered a live interrupt.

Once any of the above takes place, the bit will remain stuck
on until you turn it off. How do you turn it off? This may sound
goofy, but you turn an interrupt signal off by trying to turn it on.
Hmmm, let me try that again. Suppose that we have both a raster
and alight pen signal; we'll see a value of 9 (8 +1) in the interrupt
register. Now suppose further that we are ready to handle the
light pen, so we want to turn its signal off. We do this by storing 8
into location 53273. Huh? Wouldn't that turn it on? Nope, it turns
it off, and leaves the other bit alone. So after storing 8, we look at
the register again, and (you guessed it) we see a value of 1 there.
Honest.

Location 53274 (hex D01A) is the interrupt enable register: it
sets the above signals for “live interrupt.” Select bits 0 to 3 corre-
sponding to the interrupts you want. Whatever live interrupt you
select will now trigger a processor interrupt and also light up that
high bit of 53273. Don't forget to shut the interrupt flag off when
you service the interrupt, using the method indicated in the
previous paragraph. Otherwise, when you finish the job and re-
turn from the interrupt (with RTI), it will reinterrupt you all over
again.

78

cccccccccccccccccccccccccaccccccccocccccc

DJ3DJDI3D2I3I3D53I3I3I53I3I9II3I3I3I3II3I53I3I32III3III3I3I3III)

commodore 64 3
Video

A Little Color

Some of the colors we have mentioned and some we have yet to
discuss are neatly stored in addresses 53280 to 53286 (hex D020 to
D026). We may store only values 0 to 15 here, for the 16 Com-
modore 64 colors.

The chart in the previous article shows it all: the exterior
(border) color; then four background colors (they may be selected
as part of multicolor characters or bits); and finally, two colors re-
served especially for sprites.

79

3 Commodore 64
Video

Sprites

So far we have looked through the functions of the nonsprite
video control words at 53265 to 53286 (hex D011 to D026). Sprites
are completely separate from the conventional video circui

You can lay a sprite on top of just about anything. But first, what’s
a sprite and how do we define it?

MOBs
Sprites are sometimes called Movable Object Blocks (MOBs) —
and that’s what they are, movable objects. The nice thing about
them is that they appear on the screen independently of the main
screen image, so that we can have a sprite airplane flying across
the screen, and, after it passes a background object, the object re-
appears. This can save a lot of programming.

We noted earlier that the video chip can reach only 16K for its
information. This includes three things: the screen memory (or
video matrix), the Character Generator (or Character Base), and

the sprite information. It all has to come out of the same 16K section.

When we learn how to draw sprites, we'll discover that each
sprite occupies 63 bytes and uses a 64-byte block. So within 16K,
we could draw up to 128 sprites. We can’t use more than eight at a
time, but we can have up to 128 drawings waiting to be used. The
sprite positions number from 0 at address 0, through 1 at address
64, up to 127 at address 8128.

We cannot use all of the 128 sprite positions, of course. For
one thing, the video matrix and the Character Base will use up a
total of 3K of memory, and this space won't be available for us to
use. That cuts us down to 80; and, depending on the 16K block
we have chosen, there may be other forbidden locations.

The normal configuration is for the video chip to access 0 to
16383, and there’s a lot of forbidden territory in there. Many of the
first 1024 bytes are busy as the BASIC work area; the screen is
normally 1024 to 2023 (more on that later); the Character Base ap-
pears in addresses 4096 to 8191, since there are two complete
character sets; and everything above 2048 that isn't used by the
Character Base is used to store your BASIC program. We haven't
started, but we seem to be out of sprite memory!

80

cccccccccccccccccccccccccccccccccccc

JJ)DJDI3DI3I3I3I3I3I3I3I3I3I3I3I53I3I3I3I93I0II3I3I939I3II3IIII)

Commodore 64 3
Video

If we want to draw lots of sprite pictures, we would need to
do one of two things: move BASIC RAM so that it starts at a much
higher location, or move to another 16K block that is not so busy.
For the moment, we can find room for a few sprites in the existing
space. I find the following sprite areas available: sprite 11 at 704 to
766; sprite 13 at 832 to 894; sprite 14 at 896 to 958; and sprite 15 at
960 to 1022. These last three use the cassette tape buffer; if we use
cassette tape during the program run, the sprites will become
very strange.

The Hard Way

There are quite a few utility programs around that will help us
draw sprites. You should use them; they will help make life
easier. In the meantime, we can draw a sprite the hard way by
using a sheet of squared paper. Let’s draw a target reticule. First,
we'll sketch it:

XXX XXXXX ¢« o o o o o o XXXXXXXX
X ¢ o o o o o o o o o o o o s o s s s s o s 0 X
X o o o o o o o o o o s o o o s o s s 0 o o 0 X
............ X o o o o o o o o o o
............ X o o o o o o o o o o
.......... XX o XX o ¢ 0o o o o s o
............ X o o o o o o o o o o
............ X o o o o o o o o s o
X o ¢ o o o o o o o s s o o o o o o o o o s X
X o o o o o o o o s s o o o s o o s o o s o X
XX XXXXXX o o o o o o o XXXXXXXX

There are 24 pixels across (that takes three bytes of eight bits
each) and 21 down. We may analyze the pixel pattern eight at a
time, using a binary system to describe each byte. We end up with
a DATA statement something like:

19 DATA 255,4,255,128,0,1,128,0,1,128,0,
1,128,0,1,128,0,1,128,0,1

20 DATA 0,8,90,9,8,9,0,8,0,9,52,9,9,8,90,9
.8,0,0,8,0

30 DATA 128,90,1,128,0,1,128,90,1,128,90,1,
128,0,1,128,0,1,255,0,255

Now we place the sprite into slot 13 by:
49 FORJ=@TO62:READ X:POKEJ+832,X:NEXT J

81

3 commodore 64
video

Good. Running the program this far will place the sprite into
slot 13, but it won't do anything. It's just a picture, and nobody is
using it. That’s OK. In fact, you'll often want to have dozens of
pictures available, even though you might end up using only one
or two at a time.

Let’s tell a sprite to use this drawing. We do it in an odd way:
we don't use the video chip control registers at all. Instead, we use
the video matrix, or “screen memory.” You may recall that 1024
addresses are set aside for the video memory, but the screen
holds only 1000 characters. What about the extras? At least some
of them are used to designate which sprite picture to use for a
given sprite. The last “live” screen address is 2023. We could point
sprite 0 to sprite drawing 13 (the one we have just done) by POKE
2040,13. Better yet, let’s point all the sprites at this drawing:

50 FOR J=@ TO 7:POKE 2040+J,13:NEXT J

We're almost ready to energize the sprite. But, first, let’s giveita
position on the screen. For sprite 0, we set the position by
POKEing to 53248 and 53249. Let’s put a value of 99 in each, and
then turn the sprite on. If you've run the above program, you may
do this with a direct command, or give it a program line:

60 POKE53248,99:POKE53249,99:POKE53269,1

Either way, you should get your sprite on the screen. Now we
can play with it and see how easy some things are to do. Notice
how you can see right through the transparent portions of the
sprite to the program listing behind. Now you can try changing
the sprite color as desired by POKEing a value from 0 to 15 into
location 53287. One color will be the same as the background, so
that the sprite will be almost invisible, but not quite, since we can
see when it covers part of the text.

You can move the sprite around at will by changing the values
you have POKEd into 53248 and 53249. Try playing with the
values; you may find that (vertically, at least) you can move the
sprite partly or completely off the screen. If you like, try the fol-
lowing command:

FOR J= 99 TO 150:POKE 53248,J:NEXT J

and then substitute 53249 for 53248 and try it again. Neat? You
bet. And there’s more to come. But first, a small problem to be
resolved.

82

ccccCccCccCccCccccCcccccccccccccccccccccccccccceccec

D20 10 1o 6 T T0 T 2o 2 A A T T T T T T I i I A Ib [0 TR0 J0 1 N N0 0 0 i B B B0 B

Commodore 64 3
Video

Moving Left or Right

We can move the sprite vertically anywhere we like — including
partly or completely off the screen. But the screen is wider than it
is high; and we can’t reach the whole screen with the range of
values (0 to 255) that we can POKE in 53248. We need a high bit to
cover the extra distance. You'll find this in 53264; POKEing 53264
with a value of one causes sprite zero to be moved to the right —
perhaps off screen.

Let’s stop for a moment and look at video registers. When we
set the X and Y position for sprite zero by changing 53248 and
53249, we recognized that we would need a different set of loca-
tions for sprite one — 53250 and 53251, as it happens. And when
we set sprite zero's color to any one of the 16 combinations by
changing address 53287, we see that we'll need a new color
address for sprite one — 53288.

But the other sprite registers use a different system. One
register controls sprites: so that address 53269 allows us to turn
on one sprite, or all eight. We use a bitmap to arrange this; the
pattern is:

Sprite 0 — value 1
Sprite 1 — value 2
Sprite 2 — value 4
Sprite 3 — value 8
Sprite 4 — value 16
Sprite 5 — value 32
Sprite 6 — value 64
Sprite 7— value 128

We use addition to signal a combination of sprites. If we
wished to turn on sprites zero and three, we would POKE 53269,9
(nine is the sum of eight and one). All other sprites would be
turned off.

That’s how the X-position high bit works: we set sprite zero to
the right-hand sector of the screen by POKE 53264,1. All the other
registers we will discuss work the same way.

You may be pleased by the way that the sprite moves over the
top of the text on the screen — it would move over a background
picture just as easily, of course. But we have another option: you
can make the sprite move behind the main screen if you wish. Do
this with location 53275. For example, POKE 53275,1 will place the
sprite behind the screen text.

The sprite that we have drawn isn't very big. We can make it
larger in the X and Y directions with addresses 53277 and 53271

83

3 Commodore 64
Video

respectively. These addresses are often used together; when an
object is drawn bigger it looks closer, and we often want this effect
in games and animations. Try, separately or individually, POKE
53277,1 and POKE 53271,1.

Four-color Sprites

Our sprite is only one color, the color we selected in 53287. The
other color is “transparent,” so it isn't really a color at all. We may
code our sprite in four colors (or three plus transparent, to be ex-
act), but we would need to draw it slightly differently. Instead of
one bit representing either “color” or “transparent,” a grouping of
two bits will be needed to describe four conditions: the sprite
color (as before), special color #1, special color #2, and trans-
parent. These extra special colors, by the way, are kept at 53285
and 53286: they are the same for all sprites; only the sprite color is
individual.

Now we come to the last two registers, which tell you about
collisions. PEEK(53279) will tell you if any sprites have collided
with the background since you last checked. One certainly has, of
course, if you've been messing around with the screen as sug-
gested. PRINT PEEK(53279) will yield a value of one: checking
the bit table above tells us that sprite zero has hit the background.
Now, checking this location clears it; but if the sprite is still touch-
ing some of the screen text, it will flip right back on again. Move
the sprite to a clear part of the screen. Print the PEEK again — it
will likely still say one, since the sprite has hit characters since it
was last checked. If the sprite is safely in a clear screen area, the
next PEEK will yield a zero.

We've activated only one sprite, so that we won'’t see any colli-
sions between sprites. You would see this in location 53278, but
right now PEEK(53278) will yield zero; unless you have activated
more sprites, there would not have been any collision. Again,
when you get a signal here, you'll know which sprites have
bumped; and testing the location clears it, so that only new
“touches” will be shown on the next test.

A small comment here: these two PEEK locations are marked
“Interrupt.” Yet when such collisions occur, they are logged —
they don't do anything. As we discussed earlier, the word inter-
rupt has a special meaning to machine language programmers;
and no interrupts seem to be happening. The machine language
programmer who wants interrupt to happen must enable the in-
terrupt by storing the appropriate value into address DO1A hexa-

84

ccccccccCcccCcccccccccccccccccccccccccceccceccecccc

2J3IJ2DID393I3I3I3I3D5I3I3I3I3I3I3I3I3I3D03I3I3I39D53I3I3I3I3I3I3I3IID))

commodore 64 3
Video

decimal, and then write the appropriate extra coding to make it all
work.

This completes our roster of registers, but the plain mechani-
cal facts don’t convey the remarkable things that you can do with
the Commodore 64. There’s more to come.

3 Commodore 64
Video

Program Design

Jim Butterfield

We've examined all the bits in the video chip control registers.
Now let’s ease back and look at the 64's video structure. We'll talk
a bit about program design considerations.

A Single 16K Slice
We have discussed how the video chip gets its screen information
directly from memory. We indicated that the chip must dig out all
of its information from a single 16K slice. We might draw this as a

diagram (see the figure).

The video chip obtains its screen information
from one of four 16K memory "slices.’ Two of the
slices contain the ROM Character Generator.

We can control which slice we want by manipulating the two
low bits in address 56576 (hex DD00). Normally, the processor
picks the slice from 0 to 16383.

Once we've picked a 16K block, we must get all screen data
from this block: the screen memory, the character set, and the
sprites. We cannot get the screen data from one block, the Charac-

86

ccocccococcccccococccccccccccccccccccoccccCccOoOeCcccCcc

I ID IR IR IDID IR IBID D IR ID I IS D ED IS D ED ED EDED ED EDEDED RS RN D ED S RS ED D S

Commodore 64 3
Video

ter Base from another, and sprites from still another. Because we
are restricted, we must do a little planning and design our video
information into our program.

After we have picked the 16K slice, we must set the video
matrix (screen memory) to some point within it. We may pick any
multiple of 1024 as a starting address. The normal 64 configura-
tion is set to a value of one, meaning we take the screen informa-
tion from memory starting at address 1024. The video matrix, you
may remember, is stored in the high nybble (that means multiply
it by 16) of 53272 (hex D018).

We must pick our Character Base next. If we're in normal
resolution, we may pick any even multiple of 1024 as a starting
address: i.e., 0, 2048, 4096, etc. If we're in high-resolution mode,
we must pick only values of zero and eight, meaning that the hi-
res starting address will be either 0 or 8192. The normal 64 config-
uration is set to four or six for either uppercase/graphics or upper-/
lowercase mode, meaning we take our character set from 4096 to
6144. The Character Base is stored in the low nybble of 53272.

So we'd expect a normal 64 to place into address 53272: a
video matrix of one, times 16, plus a Character Base of four or six,
yielding a total of 20 or 22. You may in fact see 21 or 23 if you PEEK
the location, but the extra bit doesn’t matter — it’s not used. And
if we switch to high-resolution without changing anything else,
our Character Base of four or six will be trimmed back to zero —
explaining why we saw zero page when we tried POKE 5326548
in the first article of this series.

Let’s try a few specific design jobs.

Task 1: Simple Graphics

We're quite satisfied with the screen and character set, but we'd
like to add a few sprites to liven things up. Fine, the normal 64
configuration leaves room for about four sprite drawings (num-
bers 11, 13, 14, and 15), provided we don’t need to use cassette
tape during the program run. This may be enough for alot of ani-
mation; all eight sprites could use a single drawing, if that suited
the task. '

If we needed more than four drawings, we might be tempted
to move the start-of-BASIC pointer to a higher location, making
room for the extras. That can work quite well, but it will probably
call for two programs: a configuring program and a final pro-
gram. It’s hard for a program to reconfigure itself and survive.

87

3 commodore 64
Video

Task 2: New Character Sets

If we wish to use the regular character set as well as new charac-
ters that we might devise, we'll want to stay in the memory blocks
from 0 to 16383 or 32768 to 49151. These two blocks contain the
ROM Character Generator at offset 4096 to 8191. If we don’t need
regular characters at all (if we intend to use our own), it may be
more convenient to switch to either of the other two blocks: 16384
to 32767 or 49152 to 65535. Since there’s nothing but RAM in these
two, we may find more room.

Note that some of these RAM addresses are “hidden” be-
neath ROMs — BASIC from 40960 to 49151, and the Kernal from
57344 to 65535. The video chip sees only the RAM; butin a
normally configured 64 system, programs will see only the ROM.
You can POKE or store to the RAM beneath, but when you PEEK
or load from these addresses, you'll get the ROM. That’s OK; the
video chip sees the RAM locations you have POKEd. Result:
something for nothing! You can build a Character Base into RAM,
and not lose any memory from your system.

Task 3: Emulating a PET

This is a clear-cut task. We want to move the screen to the same
place that the PET uses the screen. That's very straightforward
from a video chip standpoint. (Note: If you type the following
POKEs in one at a time, you may have to type blind for some of
them.) The PET screen belongs at 32768, so we must select that
slice with:

POKE 56576,5

so that we'll pick up RAM starting at 32768. The ROM Character
Generator is still in place.

Since we want the screen (video matrix) to be positioned
right at the start of the block, we must set it to a value of zero. The
Character Base can stay at its value of four (for graphics mode), so
we must set up address 53272 with zero times 16 plus four:

POKE 53272,4

That completes the video, but we have a few other things to do to
make BASIC work in a sound manner. We must tell BASIC where
the new screen is located:

POKE 648,128

88

cccccccccccccccccccccccCcccccCccccaocccccc

b0 T0 T Y0 T T T T T TN T 0 T T T T T o T T D I 1 I 2D T T 0 I I T T I A

Commodore 64 3
Video

And finally, we should set the start and end of BASIC to corre-
spond with a 32K PET:

POKE 1024,0:POKE 44,4:POKE56,128:NEW

Clear the screen, and the job’s done. Zero page usage is still differ-
ent, so not all PEEKs and POKEs will automatically work on this
reconfigured system; but BASIC and screen now match the PET.

Task 4: High-resolution Plotting

There are only eight places in memory that we can place a high-
resolution screen: 0, 8192, 16384, 24576, 32768, 40960, 49152, and
57344. We tend to choose the two 16K blocks that don’t have the
Character Generator, 16384 to 32767 and 49152 to 65535. That way,
we'll have more clear RAM to use; there will be more space left for
our video matrix and any sprites we need.

If we want to write characters on the hi-res screen, we'll have
to generate them ourselves or steal them from the Character Gen-
erator. Here’s an odd thing — the video chip sees the character
ROM at two different addresses, but the processor chip (and that
includes your program) sees the same 4K ROM only at a third
location, 53248 to 57343. Most of the time, the processor can’t see
the ROM anyway, since the addresses are overlaid with the
I/O chips.

So if our program wants to see the character set, it must flip
away the I/O chip with POKE 1,51 — stop, don’t do it yet! There
are two problems. First, once the I/O chips are moved out —
sound, video, interface, everything — you won't be able to type
on the keyboard; so you'll never be able to type the POKE to put
everything back. Second, the interrupt program uses these I/O
chips for quite a few things, and it will go berserk the moment
you take them out of action. So we must use a program or a multi-
ple direct command to do the job, and we must temporarily lock
out the interrupt activity. Type the following statements as a
single line:

POKE 56333,127: (lock out the interrupt)
POKE 1,51: (flip out I/O)
X =PEEK(53256): (read part of character)
POKE 1,55: (restore I/O)
POKE 56333,129 (restore interrupt)

X will contain the top row of pixels for the letter A. If you like,
you can draw a character’s shape with the following program:

89

3 Ccommodore 64
Video

100
119
120
130
140
150
160
170
180
190
200
210
220

INPUT "CHARACTER NUMBER";A
IF A<@ OR A>255 THEN STOP
B=53248+8*A

C=56333

FOR J=@ TO 7

POKE C,127:POKE 1,51:X=PEEK(B+J)/128
POKE 1,55:POKE C,129

FOR K=1 TO 8
X$=X:X=(X-X%)*2

PRINT CHRS(32+X%*3);

NEXT K:PRINT

NEXT J

GOTO 100

To terminate this program, enter a number over 255. You'll
note that most of the characters are drawn with “double width”
lines. A video technician would tell you that this reduces the
video frequencies and is likely to cause less picture smear.

Arranging the video areas is almost an art. It takes a little
practice, but you'll get the knack of it fairly quickly.

ccccccccocccocccccccccccccccccccc coccccoccecc

2J)IJI3I3I3I3II3I3I3I9II33I3I3I3I3I3I3I5I3I3I3I3I3I3I3I73I3I3I3D03D0)

commodore 64 3
Video

Jim Butterfield

Now we'll write a small lunar lander program that demonstrates
some of the features of the 64’s video chip.

First, the Craft

First, let’s draw the sprites for the rocket:

160 DATA 0,24,0,0,60,0,0,198,94,1,131,0,1
,131,06,3,1,128,3,1,128,3,1,128
119 DATA 3,1,128,3,1,128,3,1,128,3,1,128
,1,131,6,1,131,9,1,131,0
120 DATA ©¢,102,0,0,126,0,0,9,0,9,0,0,0,0
.9,0,90,0
A fairly crude craft — you can improve it if you like. We have
drawn the sprite into 63 bytes of memory; one more and we can
continue to the next sprite.

130 DATA O:REM GAP BETWEEN SPRITES

Then the Flame

Now we're going to draw the rocket flame as a separate sprite.
Why? Because later, when we look for collisions, we don'’t care
what the flame hits, just what the rocket hits. There's another rea-
son: when we're not thrusting, we can simply turn this sprite off,
and the flame disappears.

140 DATA 0,0,0,0,0,9,0,9,9,9,0,0,0,8,0
.9,9,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0

150 DATA 0,0,0,0,0,9,0,9,9,9,0,9,0,8,0
.9,9,0,066,0,9,36,0,0,24,0,0,24,9

Mostly zeros. The flame is only at the bottom of the sprite. OK,
we're ready to go. Let’s clear the screen and print instructions:

9
)

’

91

' commodore 64

168 PRINT CHR$(147)

178 PRINT "LUNAR LANDER"

180 PRINT

199 PRINT "PRESS 'SPACE' FOR MAIN THRUST
"

200 PRINT "PRESS 'Fl'{4 SPACES}FOR LEFT
THRUST"

210 PRINT "PRESS 'F7'{4 SPACES}FOR RIGHT
THRUST"

220 PRINT

230 PRINT "WATCH OUT FOR THE MINES."

240 PRINT

250 PRINT "LAND GENTLY OR YOU'LL BOUNCE!
"

While the user is reading the instructions, we can read in the
sprites and put them into slots 13 and 14. We can also set our
sprite “position” addresses as variables, and identify sprites 0 and
1 as using pictures 13 and 14.

260 REM SET UP

279 FOR J=@ TO 126:READ X:POKE 832+J,X:N
EXT J

280 X@=53248:Y0=53249:C0=53279

290 X1=53250:Y1=53251:E=53269

300 POKE 2040,13:POKE 2041,14

We'll make the rocket exhaust go behind the main screen.
This way, as we land, the exhaust will go behind the background.
We'll also give it color to distinguish it from the rocket ship itself
(you can pick your own).

310 POKE 53275,2

32@ POKE 53288, 3:REM THRUST COLOR
330 PRINT "READY TO START":

340 X$="Y":INPUT XS$

Variable E is used to enable the sprites. When we're ready,
we'll turn them on; for now they can stay off.

350 POKE E,9
360 IF X$<>"Y" AND X$<>"YES" THEN END

We're ready to fly. Let’s put the sprite high on the left part of
the screen. Then we'll draw a screen with mines for the player to
avoid.

92

ccccccCccccCccccCccccCccccccccccccccccccccccccccoecccccecec

DIND JND JED TN IS JND JN0 T T I I 20 B TN I T I T D D D B D D I B HD 0 T I R B0 I I I

Commodore 64 5
Video

370 V=100 :H=100:V0=0:H0=0

380 POKE 54296,15:POKE54278, 240

390 REM DRAW SCREEN

40@ PRINTCHRS$(147)

410 FOR J=1 TO 18:PRINT:NEXT J

420 FOR J=1 TO 4:FOR K=1 TO 30

43@ C$="":IF RND(1)<.1l AND (K<20 OR K»>25
) THEN C$="4"

440 PRINT CS$;:NEXT K:PRINT:NEXT J

450 FOR J=1 TO 3@:PRINT"="; :NEXT J

Keyboard Checks

Let’s place the sprite, and start the main play by checking the key-
board. We check for two different things: a new key (K$), or an
old key still being held down (K):

469 POKE X@,H:POKE Y@,V:POKE X1,H:POKE Y
1,v

470 K=PEEK(203):GET K$

480 REM MAIN FLIGHT LOOP-TEST KEYS

499 IF K$=""GOTO 550

500 K@=ASC(KS$):V1=.1:H1=0

Let’s check for the space bar. If it's on, we want to energize the
rocket and the rocket flame. Our vertical thrust will be upwards
(-.5), and we'll want to enable the flame video with a note that
EO0 =3. We'll spot lateral thrust as keys F1 and F7, and set value H1
accordingly.

510 E@=1:IF KO@=32 THEN V1=-.5:E@0=3
512 REM

520 IF K@=133 THEN Hl=-.2

530 IF K@=136 THEN Hl=.2

548 GOTO 569

550 IF K=64 THEN V1=.1l:H1=0:E0=1

Here’s where we turn on our sprites — either rocket only
(EO =1) or both rocket and flame (EQ =3). As long as we're turning
rockets on and off, we might as well add sound effects, too:

560 IF PEEK(E)=E@ GOTO 600

57@ REM THRUST SOUND

580 POKE E,E@:IF E0=1 THEN POKE 54276,9:
GOTO 600

93

3 commodore 64
Video

590 POKE 54273,8:POKE 54276,129

600 IF H1=H9 GOTO 630

610 H9=H1:K=SGN(ABS(H9))*129:POKE 54273,
99:POKE 54276,K

Gravity, thrust, or lateral thrust — they all involve accelera-
tion. We add acceleration to our speed to get new speed; then we
add speed to position to get new position.

620 REM LET'S MOVE IT!
630 V@=VO+V1:HI=HO+H1

To prevent the player going off screen, we'll invent a force
field around the screen boundary. If you hit it, you'll bounce; that
is, your speed will flip to the opposite direction. We'll fudge a bit.
The high bit of the X position is tricky to set in BASIC; there’s
often a flicker during the moment that we set the low and high
values. So let’s limit the player’s travel to the left-hand three-
quarters of the screen and avoid the problem.

640 REM FIELD FORCE BOUNDARIES
650 IF V<50 THEN V@=ABS(V0Q)
660 IF H<20 THEN HO=ABS(HOQ)
670 IF H>24@ THEN H@=-ABS(HO)
680 V=V+V@:H=H+HO

We move the craft simply by changing its coordinates. Then
we check the collision register to see if we've hit anything.

There's a problem here. It seems that collision is noted when
the screen is drawn, not when you set the coordinates. BASIC
isn't super fast, but it could be fast enough to miss that collision. If
you watch the program closely, you will see that the rocket some-
times bounces after it goes below ground level.

There'’s an additional contributing factor. BASIC, being slow,
may need to move the rocket several pixels in distance at a time.
So, rather than just touching the ground and stopping, the rocket
may leap from just above the ground to well into it, if it's going
quite fast.

690 REM MOVE CRAFT, CHECK COLLISION

70@ POKE X@,H:POKE Y@,V:POKE X1,H:POKE Y
1l,v

719 C=PEEK(C@):IF(C AND 1)=@ GOTO 479

Collision says we've hit something. We can look at our height
(Y position) to see if it's the ground. If not, it must be a mine.

94

ccccccccceCccccccccccccCcccccccccceCcecccoccccccccceccac

D3I2D3I3I3I3I3I3DI3I3D5395D53I3D53I3I3IDD53I3I3IDI3I39I9I3I3I9I3I9I3I3ID)

Commodore 64 3
Video

7208 IF V>218 GOTO 780
730 1IF V+V@<218 GOTO 470

We could do a sensational explosion here, but we’d need to
define more sprites, or modify the ones we’ve got. Try your hand
at it if you like. For the moment, hitting a mine will cause the
rocket to disappear.

748 REM WE SEEM TO HAVE HIT A MINE
750 PRINT CHR$(19);"CRASHED!":POKE E, @
760 GOTO 820

Bounce and Overshoot
I arbitrarily decided to make the craft bounce if it hits too fast. If
you'd rather crash, go ahead. See the previous note.

778 REM HIT THE DECK...TOO FAST?

788 IF V@>1 OR V@<@ THEN V@=-ABS(V@):GOT
0 479

790 PRINT CHR$(19);"LANDED!":POKE E,1

Because we may overshoot the ground and dig alittle hole,
we'll reset the vertical position of a successfully landed rocket to
look neat. Then we wind up the game or play another one.

800 POKE Y@,219

814 REM ALL DONE-SHUT DOWN
820 POKE 54276,83:POKE 54296,0
830 PRINT "WANT TO TRY AGAIN";
840 GOTO 340

There are many features you can add — such as a fuel supply.

We could have done a pretty background in high-resolution
graphics, but this would make it difficult to add features (if you
wish) like meter readouts. In fact, I've used very dull graphics,
but you may consider that a challenge.

That'’s it. We've done a simple sprite exercise. It’s really not
hard, even in BASIC. In machine language, it’s almost too easy;
you'll find that you need to slow your program down, or every-
thing will happen too fast.

The graphics capability is there, and it’s not hard to use. A lit-
tle experimentation and practice, and you too can animate a pic-
ture that’s worth a thousand words.

95

3 commodore 64
Video

Split Screens

Jim Butterfield

In this section we will deal with a fairly advanced technique: split
screens. It’s a new aspect of the computer, combining things we have
already learned into a new set of capabilities. We'll demonstrate, viaa
machine language program, an amazing visual display.

WEe'll need to venture into more technical waters now, but with a
little effort we can perform some minor miracles on the screen.
All the limitations we have learned may be set aside with a little
creative “cheating.” We'll have a venture into machine language;
but even if you're not an ML fanatic, it’s worth knowing that the
job can be done.
We have learned a number of limitations, largely based on the

idea that the screen can do a lot of things, but only one at a time:

¢ We can have only one background color, unless we are in
multicolor mode; and even in that case, we're restricted in our
choice of colors.

* We can obtain information only from one 16K memory
quadrant.

¢ We can use only one character set.

® We can be in character mode or bitmap (hi-res) mode, but
not both.

* We may have only eight sprites on the screen at one time.

In fact, we have a more general set of rules. We may be in only
one mode at a time — multicolor is either on or off; extended
color is either on or off, and so on. It seems impossible to mix
screen modes and have the best of both worlds, but we can do it.

Here's the trick: the Raster Register, address $D012 together
with the high bit of $D011, can do more than tell us where the
screen is being painted at this instant. We may store an interrupt
value there and tell the computer: “Advise me when you get to
this part of the screen.” At this point, we can switch screen char-
acteristics: color mode, high resolution, background color, char-
acter set, memory bank — whatever you want. Of course, we
need to put it all back when we return to the top of the screen.

9%

ccccaoLecccccocccocceccccoccccccccccccccc

2J2IJ3I3I3I3I3)53I3953I9I39I9I9I93I93I3I3I3I3I3II3I3I39I3I3I3I3IIIIDII

commodore 64 3
Video

The Task

We're going to write a quick program to split the screen into two
parts, each with a different characteristic. It won't be perfect;
we're just trying to show the technique, not polish up all the
loose ends. The fine points will come later. First, let’s plan.

If we set a new interrupt into our machine, well need to make
some careful distinctions. First, when an interrupt happens, we
must establish: who caused this one? Was it the raster, or the tra-
ditional interrupt source of 1/60 second timing? Second, if it was a
raster, which part of the screen is involved — the top or the
“switch” point?

The Interrupt '
Let’s start to lay out the machine language program. All interrupts
will come here, and we'll need to sort them out. We'll put the pro-
gram into the cassette buffer.

033C AD 19 DO INT LDA $D019
033F 29 01 AND #$01
0341 FO 19 BEQ REGULR

The interrupt has happened and has come here. Check the Raster
Interrupt Bit in $D019 — was this one caused by the raster? We'll
need to mask out the bit we want with an AND. If we get nothing,
it's a regular interrupt — go there.

0343 8D 19 DO STA $D019

Itis indeed a raster interrupt, and we must shut off the alarm. We
do this by storing the bit back where it came from (there’sa1in
the A register right now). Amazingly, this turns the bit off.

0346 A2 92 LDX #$92
0348 A0 15 LDY #$15

We'll prepare the registers, assuming we are doing the top-of-
screen work. The hex 92 is decimal 146 — the scan line that hits
about mid-screen; that’s where we will want the next interrupt to
take place. Note that hex 92 is considered a “negative” byte; we
will use this fact in just a moment. Now, let’s see if we are correct
about being at mid-screen:

034A AD 12 DO LDA #3D012
034D 10 04 BPL MID

We look at the raster scan. If it’s less than 127, we're near the
top of the screen, and we don't see the negative byte. So we skip
ahead. If, however, we are at the middle of the screen, we'll see a

97

3 Commodore 64
Video

negative value. We won't branch; instead, we'll fix up the registers
for mid-screen work:

034F A2 01 LDX #$01
0351 A0 17 LDY #$17

Both streams join again at this point. X contains the raster
location where we will want the next interrupt: if we're at the top,
we want to be interrupted at the middle (hex 92); if we're at the
middle, we will want to be interrupted at the top (hex 01). Y con-
tains information on the character set we want to choose:
graphics or text. Let’s proceed:

0353 8E 12 DO MID STX $D012

Place the next interrupt point into the raster register. The next in-
terrupt will now hit at the right time.

0356 8C 18 DO STY $D018

Place the “character set” value — hex 15 for graphics, hex 17 for
text — into the appropriate register.

0359 4C BC FE JMP $FEBC

We've done our job. We may now exit. Don’t give an RTI; instead,
go to a routine that cleans things up nicely, at SFEBC. And what
of our regular interrupt?

035C 4C 31 EA REGULR JMP $EA31

It goes to the normal address ($EA31), to which regular interrupts
go. We have more to do after we get this program into memory.
We must also detour the interrupt vector to our new program and
fire up the raster interrupt control.

Back to BASIC
Ready to put all this in BASIC? Here we go:

99 POKE 53265,27

100 FOR J=828 TO 862:READ X

110 T=T+X:POKE J,X

120 NEXT J

130 IF T<>3958 THEN STOP

200 DATA 173,25,208,41,1,240,25,141,25,2
#8,162,146,160,21,173,18

210 DATA 208,16,4,162,1,160,23,142,18,20
8,140,24,208,76,188,254,76,49,234

300 POKE 56333 127

313 POKE 788,60:POKE 789, 3

320 POKE 56333,129:POKE 53274,129

98

ccccceccCccccCccccCccccCccccccccccccccccccccccccccceccecceccecc

JIJIJ3I3I3I3I3I3I9I3I3I393I3I3I53I3I3I3II3II3I3I3I3I3II3DIIIII)

Commodore 64 3
Video

Let’s look at the last three lines. Line 300 kills the interrupt for a
moment, so that we can mess with the interrupt vector without
running into disaster. Line 310 changes the interrupt vector to
point at our newly POKEd program. Line 320 restores the inter-
rupt and adds an extra one: the raster interrupt.

An Amazing Split

When the program is run, an amazing thing happens: the screen
becomes graphic at the top and text at the bottom. Impossible,
you say? Not for us clever — and careful — people. The effect is
permanent: you may NEW the program and start something
else, and the split screen will still be there. You shouldn’t use
cassette tape with program in place — it’s there in the buffer.
And you may find that LOAD and SAVE don’t work quite right.
RUN-STOP/RESTORE will put everything back to its former
state. (Please save this program for use in the next section.)

The Unsolved Problem

But it’s not perfect (I warned you). Every once in a while, the bar-
rier seems to creep slightly, and then correct itself. Maybe it’s
computer hiccups. It seems worse when you are using the key-
board. What’s happening? And how can we fix it? Read “Son of
Split Screens.”

3 Commodore 64
Video

son of
Split Screens

Jim Butterfield

In the section called “Split Screens,” we had a program similar
but not identical to the one below. Either type this in or load the
earlier version and make the necessary changes in lines 130, 200,
and 210. :

99 POKE 53265,27

190 FOR J=828 TO 862:READ X

116 T=T+X:POKE J,X

120 NEXT J

130 IF T<>3929 THEN STOP

200 DATA 173,25,208,41,1,249,25,141,25,2
#8,162,146,160,6,173,18

219 DATA 208,16,4,162,1,160,0,142,18, 208
.140,33,208,76,188,254,76,49,234

3009 POKE 56333,127

319 POKE 788,60:POKE 789,3

320 POKE 56333,129:POKE 53274,129

Our previous example split the screen into two sections:
graphics and text. This one splits the screen into two background
color areas. It makes it easier for us to see the glitch — the hiccup
that occasionally disturbs our screen split. By the way, it's easier
to see the problem when you are using the keyboard.

Why the Problem?

Here’s where the problem comes from: the timer interrupt strikes
about every 1/60 second. The screen display, too, runs at a

rate of about 60 times a second. But they are not synchronized.
The two processes run at similar, but not identical, speeds.

Every once in a while, the timer interrupt hits just before the
raster interrupt. The timer interrupt has quite a few jobs to do:
update the TI$ clock, check the cassette motor, flash the cursor,
and check the keyboard. It takes time to do these jobs, and extra
time is required if a key is being pressed.

100

cccccccccccCccCccccccccccccccccccccccccecceccecca

2J3I2IJ3D23I3D23I3D3I3I3I39I3953I39II9I3I93I3I2I3I3I3I3I3I93I3II3I32IIDI)D

Commodore 64 3
Video

Suppose we have just started on the timer interrupt, and the
raster scan says, “I'm ready!” Sorry, raster, we're already into an
interrupt routine, and other interrupts are locked out until we
have finished. By that time, the screen scan might have moved
along a few lines, and our split screen has crept from its normal
position.

Some Possible Fixes

There are several possible approaches to fixing this jitter. The
ones that come to mind first are complex; in a moment, we'll
move on to an easy one.

When the timer interrupt strikes, we could ask it to look at the
raster and see if the scan was close to the interrupt point. If so, we
might wait things out or skip part of the timer interrupt jobs.
Messy. »

The timer interrupt could unlock the interrupt very quickly,
using a CLI command. That way, we could interrupt the interrupt
program itself to do the split screen job. Better — but some pro-
grammers feel it’s dangerous to allow this kind of thing to happen.

A Better Way

There is an easier way: shut the timer interrupt off completely,
and do its various jobs with our own programs. This seems com-
plex, but it’s not. We can call the timer interrupt routines our-
selves, whenever it’s time.

Let’s look a little more closely into the timing of these inter-
rupts. We expect to cause a raster scan interrupt about 120 times a
second. That’s twice as often as the timer interrupt needs to be
handled. So our raster program could occasionally call in the
timer interrupt program.

It seems that we could accomplish the task easily by calling
the timer interrupt routines every second raster interrupt. That
would certainly do the job, but there’s a better way.

Even though we've shut off the timer interrupt, it’s still signal-
ing when the time is ready. Let’s review: the timer leaves a signal
in hex address $DCOD (56333) whenever it counts down to zero.
Normally, this signal triggers the interrupt line (IRQ) and causes
the processor to be interrupted. But we may “break” the connec-
tion between the timer signal and the interrupt line. In this case,
the timer will not cause an interrupt, but the signal bit will still
flash when the appropriate time has come.

We can see the plan in Figures 1 and 2. We will disconnect the
timer from interrupt and service it ourselves when it flashes.

101

3 Commodore 64
Video

Easier done than said. Let’s look at the machine language coding:

033C A9 01 INTR LDA #5301

033 8D 19 DO STA $D019
Raster interrupt is now the only game in town, so we don’t need
to test for it. We must, of course, turn off the raster interrupt flag.

0341 A2 92 LDX #$92

0343 A0 06 LDY #$06
Setup for top of screen. Next interrupt, line 92 hex; new color,
number 6.

0345 AD 12 DO LDA $D012

0348 10 04 BPL MID

If it’s really the top of screen, we can skip ahead. Otherwise, we
change for mid-screen — line 1, new color, number 0:

034A A2 01 LDX #§01
034C A0 00 LDY #$00
Now we're ready to do the job, wherever the screen is:
034E S8E 12 D0 MID STX $D012
0351 8C 21 DO STY $D021

The job is done. Now let’s see if the timer interrupt is calling for
action:

0354 AD 0D DC LDA $DCOD
0357 29 01 AND #$01
0359 FO 03 BEQ SKIP
If we didn’t skip, the timer wants attention. Call it in:
035B 4C 31 EA JMP $EA31

If we did skip, the timer isn't needed. Quit with:
035E 4C BC FE SKIP JMP $FEBC

We must remember, of course, to turn off the timer interrupt,
set the IRQ vector to our new code, and turn on the raster inter-
rupt. We'll do all that in BASIC.

BASIC-ally Yours
Here's the same program in BASIC.

99 POKE 53265,27

199 FOR J=828 TO 864:READ X
110 T=T+X:POKE J,X

120 NEXT J

13@ IF T<>4@77 THEN STOP

102

cccccccccocccCcccccccccccceccccccccccccccccccceccecceccc

1L

1553595332295 93D533)3D53233)5223D13D533DI3)1313I3D3I3I133D13I3DI))

200
210

229
300
310
320

commodore 64 3
video

DATA 169,1,141,25,208,162,146,1640,6,
173,18,208,16,4,162,1

DATA 160,9,142,18,208,140,33,208,173
13,220

DATA 41,1,2490,3,76,49,234,76,188,254
POKE 56333,127

POKE 788,60:POKE 789,3

POKE 53274,129

Now we have a rock-solid color change at the appropriate

screen point. No creeping, no jittering, no hiccups.

We've only touched upon the techniques of raster interrupt.

A whole host of new possibilities open up with its use.

But we've shown it can be done — and some of the tech-

niques that can be used to do it.

Figure 1. Conventional coding requires the
program to distinguish between the two live
timing sources. It may also cause timing jitter.

Raster Timer
Interrupt Interrupt

Return Return
From Interrupt From Interrupt

103

% commodore 64
it \"deo

Figure 2. Single interrupt coding gives priority to
thge time-sengsitive raster job.

Raster
Interrupt
Only

’

Return
From Interrupt

Return From Interrupt

104

ccococccocococcoocccocccocccocccococcccc

Y ' . { : N v) ¢ .] 9
N i [N . : ' s v H £ . . . 8 ¢ |
3 A N B/ - .4 d W W _4 . B CEEA .)

20000000 D OO0 0T00IDIVIODIDODTD

2J32I73I3I73I3I39539I3I3I3953I3I2I3I3I9I3I3I3I3I3I3I3I3I3I3I3I3II3DIIID

Creating a
Games

Joysticks

Sheldon Leemon

Fast movement of sprites can increase the appeal of any game. Try the
demonstration programs here and learn how to add this technique to
your games.

As the owner of an Atari 800 computer, I welcomed Commodore’s
announcement of the 64, because it closely parallels the Atariin
its consumer orientation. One example is the inclusion of two
ports for Atari-type joystick controllers. These controllers provide
a simple way for the user to interact with any type of program, in-
cluding, of course, arcade games.

A Fascinating Chip

When I bought the computer, however, I discovered, to my
dismay, that the consumer-oriented design approach did not
seem to carry through to the BASIC interpreter and User’s Guide.
Not only was there no BASIC command for reading the joystick
controllers, but the BASIC manual also made no mention
whatever of these ports! This meant that if I discovered how to
use these sticks any time soon, I would have to play hardware
detective.

Fortunately, the 64 is 31m11ar to the VIC-20 in a number of
ways. Since the VIC reads the joystick through a VIA (Versatile
Interface Adapter) chip, it stands to reason that the 64 would read
its joystick through the analogous CIA (Complex Interface
Adapter) chip. An early memory map from Commodore shows
CIA #1 to be addressed at location $DC00, or 56320 decimal. The
CIA is a fascinating I/O chip and could well serve as the basis for
an article in itself, but here I'll focus attention on the registers that
read the joysticks.

Like the VIC, the 64 uses Peripheral Data Registers A and B to
read these sticks, and I/O (input/output) through these registers is
controlled by Data Direction Registers A and B. These registers are

107

4Creatlng
Games

addressed at the chip's first four locations, so that on the 64 Data

Register A is addressed at 65320, Register B is addressed at 56321,
and Data Direction Registers A and B are addressed at 56322 and
56323, respectively.

Reading the Joysticks

Knowing this, with a bit of trial and error I was able to figure out
how to read the joysticks. A quick try seémed to indicate that it
was not necessary to write to the Data Direction Registers before
reading the sticks, as must be done on the VIC-20. Checking the
values of Registers A and B while moving joysticks connected to
Control Ports 1 and 2 revealed that the data from the stick con-
nected to Control Port 1 appeared in Register B, and that the data
from the stick in Port 2 showed up in Register A.

The relationship of the data returned in the register to the
direction of stick movement is exactly the same as on the Atari.
Each of the low bits (0-3) corresponds to one of the switches that
is closed by moving the stick in one of the four primary directions.
These bits are normally set to 1, but are reset to 0 when the corre-
sponding switch is closed. Bit 0 corresponds to the up switch, bit
1 corresponds to the down switch, bit 2 is left, and bit 3 right. Bit 4
is used to read the joystick trigger button. It is set to 1 normally
and reset to 0 if the button is pushed.

What this means to the hardware-weary reader who has
borne with me thus far, patiently waiting for an explanation in
plain English of how to use the Commodore 64 joysticks, is that it
takes only a couple of BASIC statements to do the job. Those
familiar with the Atari system of numbering the joystick positions
(as Tam) may want to use the following statements:

S1=PEEK(56321) AND 15:REM READS STICK 1
S2=PEEK(56320) AND 15:REM READS STICK 2

Because these registers can contain irrelevant information in bits
4-7, the logical AND is used to mask (block out) those bits. The
figure on the next page shows the way in which the number
returned in variable S1 or S2 corresponds to the direction in
which the stick is pushed.

To read the trigger buttons, the following statements will re-
turn a 1if a button is pressed, and a 0 if it is not:

Tl=-((PEEK(56321) AND 16)=0)
T2=-~((PEEK(56320) AND 16)=9)

108

ccccCcccCccccccecCccCcCcccccccecCcccccccccccccoccoccoc

DI IR IR IR IR IR ID IR IR IR B D ED IS NS N TS N T 1 10 Tho TS T N5 Jb J0 B0 JND I N N N0

Creating
Games

14
11 7

13

Of course, if you prefer a system where the variable will be 0
when the stick is not pressed, you can use the logical operator
NOT to adjust the values accordingly.

S1=NOT PEEK(56321) AND 15
S2=NOT PEEK(56320) AND 15

This will produce the following pattern:

1

G

A Keyboard Bonus

The variations on these basic schemes are limited only by your
applications. If you are using the joystick for an action game, for
example, you may want to read the changes in horizontal position
and vertical position separately. You can do this with the follow-
ing formulas:

Hl=((PEEK(56321) AND 4)=8)-((PEEK(56321)
AND 8)=0)

H2=((PEEK(56329) AND 4)=0)-((PEEK(56320)
AND 8)=0) .

109

4 Creating
Games

V1i=((PEEK(56321) AND 1)=@)-((PEEK(56321)
AND 2)=0)

V2=((PEEK(56320) AND 1)=0)-((PEEK(56320)
AND 2)=0)

The value of H1 will be 1 if the stick is pressed to the right, -1 if
the stick is pressed to the left, and 0 if centered. Likewise, the
value of V1 will be -1 for an upward press, 1 for a downward press,
and 0 if the stick is centered. If you wish, you can even read each
switch separately. Program 1, short and not exciting, demon-
strates the technique.

One interesting sidelight demonstrated with this program is
the fact that some CIA registers that are used to read the joysticks
are used also to read the keyboard. The four keys at the top left of
the keyboard (Control, Left Arrow, 1, and 2) are read exactly the
same as joystick switches 0-3. While you are running Program 1,
try pressing these keys, and you will see what I mean.

Pressing the Control key has the same effect as moving the
stick to the left, while the Left Arrow, 1, and 2 keys function like a
joystick moved down, up, and to the right, respectively.

Sprite Movement

Program 2 sets up a sprite and moves it around based on the posi-
tion of the joystick. The initialization routine, which I have put
out of the way at the back of the program, starting with line 1000,
sets up a flying saucer in double width, and then RETURNS to
the movement loop at line 2. The ON-GOSUB routes the pro-
gram to the proper line number without having to test each stick
position, which would slow down the loop.

There are a couple of points to note. First, the registers that
designate sprite horizontal and vertical positions are not write-
only registers, as are the Atari horizontal position registers. This
means that you can find out the current position of the sprite just
by reading those registers, without having to set up separate
RAM variables to keep track of them as must be done on the
Atari. I set up variables X % and Y % in Program 2 only for pur-
poses of readability.

To move a sprite one position to the right, we need only read
the current horizontal position, add 1, and POKE that number
back into the horizontal position register. Of course, you must
keep in mind that you can’t POKE in a value less than 0 or greater
than 255. If you examine the move-down and move-up

110

cccoccoccoccoccoccccocccccccccccccccceccccccccccccccccCcccccc

DI IR IR IR IR I IR IR I IR IBED ED IS S RD D IS I D TS I JD JD D I D I D I

Creating 4
Games

subroutines at lines 80 and 90, you will see that I have incorpo-
rated logical statements to move the sprite to the bottom of the
screen if it hits the upper limit, and which will move it to the top if
the value tries to get below 0. This wraparound feature
guarantees that no errors will result from trying to POKE in an
illegal quantity.

The Horizontal “Seam” ,

A more complicated situation arises when we deal with hori-
zontal movement. Because there are 320 horizontal positions
available, but only 256 combinations which can be accessed from
the horizontal position register, we need to set the Most Signifi-
cant Bit in the register located at 53264 whenever we wish to use a
horizontal position between 256 and 320. Anytime the sprite
moves into or out of this zone, therefore, special handling of this
bit will be required.

Accordingly, the horizontal movement routines (lines 40-45
and 70-75) have to test to see if this “seam” is encountered before
moving the sprite. If the horizontal position register reads 0, for
example, we don't know whether the sprite is located at the left
edge of the screen or at the “seam” (i.e., location 256) until we
check the MSB register. This extra checking is time-consuming,
and as a result the saucer moves noticeably faster up and down
than it does right and left.

Because of the slowness of the motion in BASIC I'have multi-
plied all motion by the factor WUN, which is defined in line 1005,
and which can be set from 1 to 3. When its value is 1, the motion is
very smooth, but extremely slow. When it is 3, each push of the
stick changes the position of the sprite by three places, speeding
up the motion, but making it somewhat jerky.

Machine Language Motion

The best solution to the problem of achieving quick, smooth mo-
tion is the use of a machine language subroutine which will read
ajoystick and move the sprite accordingly. Program 3 uses just
such a subroutine. Though I POKE it into memory starting at
$C000 (49152 decimal), it is completely relocatable.

If it later proves that this large block of free RAM can be better
used otherwise, you will be able to move the routine with no re-
writing. You should be aware, however, that, as written, the rou-
tine checks only the joystick in Port 1, and moves only Sprite 0 in
response to movement of that stick. Since some lines of Program

11

4 Creating
Games

3 duplicate those of Program 2, you may want to edit the latter
program rather than typing in Program 3 from scratch.

One difference that you will notice immediately is that this
program asks you to select a speed (you should respond with a
value from 1-5). The reason for this is that I wanted to demon-
strate the degree to which even a machine language subroutine is
slowed down by BASIC. At Speed 1, each time through the loop
the program calls the subroutine once and returns to BASIC.
Though this produces smooth motion, it is still somewhat slow.
At Speed 2, the program calls the subroutine twice in a row before
returning, and so on up to Speed 4, which produces rather quick
motion. At Speed 5, the machine language subroutine goes into a
continuous loop, without ever returning to BASIC. At this speed,
if you push on the stick diagonally, it will appear as if there are
dozens of saucers on the screen at once!

Though my examples may seem most applicable to game pro-
grams, do not overlook the joysticks as input devices for more
mundane tasks. Because each stick has only four switches, it
limits the number of choices available to the user. It therefore re-
duces the number of mistakes that can be made, as compared
with a keyboard, which has over 60 keys, each key having both a
shifted and nonshifted value.

Program 1. Joystick Demonstration

18 FOR I=1 TO 25:DOWNS$S=DOWNS$+CHRS$(17):NE

?T:HOME$=CHR$(19):PRINTCHR$(147);CHR$
, 5)

15 PRINT" THIS PROGRAM READS STICK #1":P
RINT" INSERT JOYSTICK, AND MOVE IT AR
OUND!"

20 S=NOT PEEK(56321) AND 15

3@ UP=S AND 1:IF UP THEN PRINT HOMES$;LEF
T$ (DOWNS,18) ; TAB(15); "UP{3 SPACES}";:
GOTO 50 :

40 DOWN=S AND 2:IF DOWN THEN PRINT HOMES$
;s LEFTS$ (DOWNS, 10) ; TAB(15); "DOWN ";

5¢ LEFT=S AND 4:IF LEFT THEN PRINT HOMES$
: LEFTS (DOWNS, 10) ; TAB(25) ; "LEFT "; :GOT
079

60 RIGHT=S AND 8:IF RIGHT THEN PRINT HOM
E$;LEFT$ (DOWNS, 10) ; TAB(25) ; "RIGHT";

78 IF S=@0 THEN PRINT HOMES$;LEFTS$ (DOWNS,1
@);TaB(15);"{16 SPACES}"

80 GOTO 20

112

¢ccoccceccccccCcccccccccccccccccccccccccccccccceccccec

3I3I3I3D53I3I3I32I3I3I3I2I3I3I73I3I93I3I3I3I3I3I3I3I3I3I3D0II3I3II3D)

Creating 4
Games

Program 2. Moving Sprites in BASIC

1 GOTO 1009
2 S=PEEK(S@)AND15:0NSGOSUB3, 3,3, 3,29, 39,
409,3,50,60,79,2,88,99,3:GO0T02
3 RETURN
2@ GOSUB 4@:GOSUB 80 :RETURN
30 GOSUB 4@:GOSUB 94 : RETURN
40 X3%=X%$+WUN :IF X%$>255 THEN X%=0:POKE S
P+16,1
43 IF X%>65 AND PEEK(SP+16)=1 THEN POKE
SP+16,0:X%=0
45 POKEHP, X% : RETURN
50 GOSUB 8@ :GOSUB 7@ :RETURN
60 GOSUB 98:GOSUB 78 :RETURN
70 X3%=X%-WUN:IF X%<1 AND PEEK(SP+16)=1 T
~ HEN X%=255:POKE SP+16,9
73 IF X%< 1 AND PEEK(SP+16)=0 THEN X%=65
:POKE SP+16,1
75 POKEHP,X$%:RETURN
80 Y¥=YR+WUN+HI * (Y¥>HI):POKEVP,Y$:RETU
RN
90 Y$=Y3-WUN-HI * (Y$<WUN):POKEVP,Y%:RET
URN
1000 FORI=871T0895:POKEI,d:NEXT:FOR I=83
2T0870 : READA : POKEI, A:NEXT:SP=53248
1005 HP=SP:VP=SP+1:X%=160:Y%=100 :WUN=3:H
I=252:50=56321
1010 POKESP+21,1:POKE2040,13:POKESP+39,6
:POKESP+29, 1 : POKEHP, X% : POKEVP, Y%
1020 POKESP+32,0:POKESP+33,@:PRINTCHRS (1
47)
1930 FORI=1 TO 50:R=10@24+INT(RND(Q)*1000
) :POKE R,46:POKE R+54272,1:NEXT
1940 DATA 9,56,0,0,124,0,8,254,9,0,170,0
,1,171,0,15,255,224,15,255,224,13,8
5,96
1950 DATA 13,85,96,15,255,224,15,255,224
,0,254,0,8,124,9
1968 GOTO 2

Program 3. Moving Sprites in Machine Language

19 PRINTCHRS$(147);CHR$(5): INRUT"SPEED "
:S:GOTO 1000

20 ON S GOTO 39,40,50,69,79

30 SYS(49409):GOTO 30

4@ sYS(49406):GOTO 40

50 SYS(49403):GOTO 50

113

4 Creating
Games

60 SYS(49400):GOTO 64
78 SYS(49413):GOTO 70

1000

1010

1020
1030

1040

1045
1050
1055
1060
1070
1080
1090
1100

1110
1200

114

FORI=871T0895: POKEI,d:NEXT:FOR I=83
2T0870 : READA : POKEI , A: NEXT: SP=53248
POKESP+21,1:POKE2040,13 : POKESP+39,6
: POKESP+29, 1 : POKESP, 160 : POKESP+1, 19
1)

POKESP+32, @ : POKESP+33,0:PRINT CHRS (
147)

FORI=1 TO 50:R=1@24+INT(RND(9Q)*1000
) :POKE R,46:POKE R+54272,1: NEXT
DATA 9,56,0,0,124,9,9,254,0,08,170,9
,1,171,0,15,255,224,15,255,224,13,8
5,96

DATA 13,85,96,15,255,224,15,255,224
,9,254,0,0,124,0

FOR I=1 TO 191:READ A:POKE 49151+I,
A:NEXT

FOR I=1 TO 19:READ A:POKE 49399+I,A
:NEXT:GOTO 20

DATA 173,1,220,74,176,3,206,1,208,7
4,176,3,238,1,208,74,176,38,173
DATA @,208,208,15,173,16,208,41,1,2
49,12,173,16,208,41,254,141, 16

DATA 208,206,d,208,96,173,16,2088,9,
1,162,63,141,16,208,142,0,208,96
DATA 74,176,32,238,0,208,240,28,173
,16,208,41,1,240,20,169,64, 2085

DATA 0,208,208,13,173,16,208,41,254
,162,0,141,16,208,142,0,208,96

DATA 173,16,208,9,1,141,16,208,96
DATA 32,0,192,32,08,192,32,9,192,32,
2,192,96,32,8,192,76,5,193

ccccCccccccCccoccccccccccccccccccccccccccccccccccccceccocec

D2J3J3IJ3I3I3I33I3I3I3I3I3I39II3I3II3I32II33I3I3I32IIII2III)I)

Creating
Games

Michael Wasilenko

Preschoclers will love this simple game. The child is required to press the
correct letter in order to start the race.

"’Alfabug’’ is for relatively young people, three to six years old.
To a child learning the alphabet, the accomplishment of pressing
the correct key to initiate a bug race is quite exhilarating.

The object of the game is to press the same letter of the alpha-
bet on the keyboard that the computer displays on the screen.
When the correct letter is pressed, a bug race starts: five bugs of
different colors race across the screen. If the wrong letter is
pressed, the computer responds with an unpleasant sound and
then waits for the correct letter. The order in which the bugs finish
is marked at the end of each lane, so the player(s) can also com-
pete for points by guessing the winner. Upon completion of each
race, the player is asked if another race is desired. At this point, a
Y or N for yes or no is expected. Again, anunpleasantsound is
heard when an invalid answer is given.

In the following program, the computer will select the letters
alphabetically beginning with A (of course) and will reset to A
after Z isreached. By simply deleting the remark statement -
(REM) from line 76, the program will select the letters randomly.
You could also modify the program so it asks the player for the
method of letter selection. But I have found that the fewer the
prompts, the easier it is for the child. Remember, this is for young
children who are just learning their alphabet or who are just
learning to read. For instance, with the selection method fixed in
the code, my five-year-old daughter can load and run the pro-
gram without any assistance.

This simple program can provide hours of fun for young
children while helping them practice the alphabet. But watch out!
You may not get to use your computer again, unless they're all
asleep.

115

4 Creating
Games

Alfabug

PRINT"{CLR}INITIALIZING"
POKE52,48:POKE56,48:CLR: POKE56334, PEEK
(56334)AND254: POKE1 , PEEK (1)AND251
FORN=0TO01279 ; POKEN+12288, PEEK (N+53248)
:NEXTN : POKE1l, PEEK (1)OR4
POKE56334, PEEK(56334)0R1
PRINT"{BLK}{CLR}":POKE53281,1
DIMY(5),K(5),0(5),co(5):AB=64
Co(@)=0:CO0(1)=3:C0(2)=4:C0(3)=5:C0(4)
=7

Z=05:A=45:CR=42: IN=-1:WX=54272
§5=12288+(41*8) : FORI=0TOL5 : READQ : POKE
SS+I,Q:NEXTI

DATA 36,72,123,254,254,123,72,36,144,
72,123,254,254,123,72,144
FORN=@TO4 : READY (N) : NEXTN

DATA 1306,1386,1466,1546,1626
FORW=0TO04 :K (W)=Y (W) : NEXTW

PRINT" {WHT} {CLR} " : FORP=0TO04:0(P)=48:N
EXTP:X=1264:F=48

FORL=@TO5 : FORI=0T039 : POKEX+I , A: POKEX+
I+WX,@:{2 SPACES}NEXTI
POKEX+I-1,115 :X=X+80 : NEXTL

FORG=0TO04 : POKEY (G) ~1+WX, @ : POKEY (G) +WX
, CR:NEXTG

FORG=0TO04 : POKEY(G)~1,49+G:POKEY(G),CR
:NEXTG

REM{3 SPACES}AB=INT(RND(1)*26)+64
AB=AB+1 : IFAB> 90 THENAB=65

PRINT" {HOME} { BLK} { DOWN}PRESS ";CHR$(1
8)CHRS$ (AB)CHR$(146);" TO START"

GETA$: IFAS$=""THEN79
IFASC(AS$)<>ABTHENGOSUB174:GOTO78
POKE53272, (PEEK(53272)AND248)+12: M=3
5:FORC=0TO04:IFK(C)=Y(C)+35THEN1@5
POKEK(C), 32
E=INT(RND(@2)+.5)+1.5:K(C)=K(C)+E:IFK(
C)=>Y(C)+M-1.5THENK(C)=Y(C)+M:F=F+1

108 POKEK(C),CR:POKEK(C)+WX,CO(C):FOR J=

10

@TOZ:NEXTJ: IFK(C)=Y(C)+MTHEN195
2 GOTO1l19

195 IFO(C)<>1THENPOKEK(C)+1,F:POKEK(C)+1

+WX, @ : POKEK(C) ,42:0(C)=1:GOSUB20@9

118 NEXTC

11

5 CR=CR+IN:IN=IN*-1:IFF<53THENS81

118 POKE53272,21

116

cccococcccccccccccccccccccccCcCceCcCccccccccoeccecc

D5DI3I)3D533D539I3533DI3DD093D2313D03I3D13D5339233D3I3I3I32II3232I3)

120

130
140
145
150
174

175
176
177
178
200

205

215
220

PRINT"{HOME} {BLK} {19 DOWN}AGAIN? 'Y’
OR lNl“

GETY$: IFY$=""THEN130
IFY$="Y"THENCR=42:IN=-1:GOTO055

IFY$ <> "N"THENGOSUB174 : GOTO120

END

S0=54272 : FORGH=SOTOSO+24 : POKEGH, @ : NE
XT : POKESO+24,15 : POKESO+1, 34 : POKESO, 7
5

POKESO+5, 72 : POKESO+6, 72
POKESO+4,129 : FORT=1TO500@ : NEXT
FORGH=10TO@STEP-1 : POKESO+24, GH: NEXT
RETURN

S0=54272 : FORGH=SOT0S0+24 : POKEGH, @ : NE

XT : POKESO+24, 15 : POKESO+1, 34 : POKESO, 7
5

POKESO+5, 72 : POKESO+6, 72
POKESO+4,17 : FORT=1T050@ : NEXT
FORGH=10TO@STEP~1 : POKESO+24, GH: NEXT
RETURN

Creating
Games

i |

117

20000000 D OO0 0T00IDIVIODIDODTD

20000000 D OO0 0T00IDIVIODIDODTD

DJE5 10 1 T T T T T T T 0 T 0 D T T 0 T D T T 0 T 0 T 0 0 I 0 T [0 I T 0 N

Peripherals 5

Jim Butterfield

Hawe you ever wanted to have a program gain control of the disk catalog?
There are a number of ways to use directory information, but getting hold
of it is not as simple as it might seem at first glance.

On Commodore machines with 4.0 BASIC, you just type CATA-
LOG or DIRECTORY to see a list of the programs on a disk. On
other Commodore machines, you must LOAD “$”,8 and then
LIST. Either way, you get a directory with your disk header, infor-
mation on the programs, and the number of blocks free. Very
handy indeed.

Here’s the problem: you would like your program to be able
toread a directory. It seems simple: just OPEN it as a file and
bring in the items. Unfortunately, it doesn’t work that way.

TWO Types

When you command LOAD “$"8 you are bringing in a directory
with a LOAD command; it arrives in a certain format. If you
OPEN 1,8,2,"$” within your program, you'll get an entirely differ-
ent format. Why?

When you say LOAD, the disk manufactures a directory that
imitates a BASIC program. After all, the next thing you'll say is
LIST, and the only thing that can be listed is BASIC. If you say
OPEN, however, the disk will give you its directory, in binary, just
as it is stored on the disk surface. That seems to be a little better —
until you realize that BASIC has a devil of a time understanding
binary.

You can do an OPEN and get the imitation program. The trick
is to use secondary address 0 — usually reserved for LOADing.

Another Problem

Either way, you get binary. You'll need to translate it and interpret
it; and you'll need to cope with that annoying BASIC glitch, in-

121

5 Peripherals

putting a CHR$(0). Whenever BASIC GETs a CHR$(0), it changes
it to a null string (“ ”), and you'll need to detect this and change it
back.

The coding for this is fairly easy. After we get a character with
GET A$, we may take its binary value with A =ASC(A$) — except
that the null string won't work right. So,.we say, A =ASC(A$ +
CHRS$(0)) and everything works out.

Imitation BASIC

This is the easiest and most standard way of obtaining directory
information; it works the same way with all Commodore disk
drives. To understand it, we must see how a BASIC line is
constructed:

Firsttwo bytes: forward chain or zero (dummy on directory)
Next two bytes: binary number

Then: text of line

Ending with: binary zero

Program 1 prints the directory. Big deal: you could do that
anyway. But since it’s a program, you can change it to do what-
ever functions you need. For example, you could dig into the text
part in more detail, extracting the program name and type; that
way, your program would know if a given data file were on the
disk.

It's handy to be able to check how many blocks are free on the
disk. Our program already does this: the last number that line
230 calculates will be the blocks-free value. You can abbreviate this
procedure by making the program skip all the file names. Change
the OPEN statement to read:

100 OPEN 1,8,0,"$0:5%Q"
Now, the program will catalog only those programs whose

name happens to be exactly $%Q. Chances are you won't have
many of these. Your directory is now shortened down to the
header line and the BLOCKS FREE line. Let’s telescope our pro-
gram into a simple block-free checker. Try Program 2.

We've only scratched the surface. Try your hand at program-

ming some directory search function of your choice.

Bit-image Directories

You can get more information from a bit-image directory than
from a BASIC-imitator. For example, you can read the length
parameter of relative files, see deleted files, and view file track
and sector values.

122

cccccccococcCcccCcoCceCcCcCcCcoCccoCc OO CCcC

)>D773333)3)))))D5D333323333)3)3D130D13I3I3I311I2ID

Peripherals 5

But this comes with considerable difficulty. You might get any
one of several different formats, depending on the disk. We won't
do the whole job here: you can chase after some of the details for
yourself. Look at Program 3.

Yes, you can go in there and drag out the BAM. Yes, you can
dig useful data out of the stuff we skipped in lines 360-380. Check
your disk manual for details.

It's not easy either way. The “imitation BASIC” is the shortest
and works on all disks: use it when you can. But if you need the
extra power of the bitmap, don’t hesitate to go for it.

Program 1. Print Directory

95 REM GET THE DIRECTORY FOR DRIVE @

100 OPEN 1,8,0,"s@"

105 REM NULL STRING REPLACEMENT

118 N$=CHR$(9)

185 REM SKIP THE "LOAD ADDRESS" AT FILE S
TART

190 GET#1,AS,AS

195 REM SKIP THE FORWARD CHAIN

200 GET#1,AS$,AS$

205 REM EXCEPT ZERO CHAIN MEANS END

210 IF A$=""GOTO 400

215 REM GET THE BINARY NUMBER

220 GET#1,AS$,B$

225 REM PRINT "NUMBER OF BLOCKS"

230 PRINT ASC(A$+N$)+ASC(B$+N$)*256;

295 REM LET'S GET TEXT

300 GET#1,AS$

385 REM END OF THIS LINE:GO BACK

310 IF A$="" THEN PRINT:GOTO 200

315 REM PRINT ONE CHARACTER

320 PRINT AS;

325 REM GET SOME MORE

330 GOTO 300

490 CLOSEl

Program 2. Block-free Checker

95 REM ANOTHER UNLIKELY NAME

100 OPEN 1,8,0,"S$0:E7IN"

116 N$=CHR$(9)

195 REM THROW AWAY LOAD ADDRESS, LINK, N
UMBER

200 GET#1,AS$,AS$,AS$,AS$,AS$,AS

205 REM THROW AWAY THE HEADER LINE

123

5 Peripherals

210
215

220
225
230
4090
410

GET#1,AS$:IF A$<>""GOTO 210

REM THROW AWAY THE LINK,GET THE NUMB
ER

GET#1,AS$,AS$,AS$,BS

REM HERE'S OUR BLOCK-FREE COUNT
F=ASC(AS$S+NS$)+ASC(BS+NS$S) *256

CLOSE1l

PRINT F

Program 3. Bit-image Directory
95 REM WE MUST INITIALIZE FOR THIS ONE

100
185
110
120
125
130
135
140
145
146
150
160
170
195
200
210
220
225
230
240
2508
260
295
300
305
310
320
325
330
340
350
355

360
370
380
385

124

OPEN 1,8,15,"1@":CLOSEl

REM HERE COMES THE BIT DIRECTORY
OPEN 1,8,2,"$@"

NS=CHRS (@)

REM DISK WILL IDENTIFY ITSELF
GET#1,A$

REM HERE'S THE IDENTITY
A=ASC(AS+NS)

REM JUST TO PROVE WE IDENTIFIED IT.
REM 825@'S WILL GIVE TROUBLE HERE
IF A=67 THEN PRINT "8050"

IF A=65 THEN PRINT "15408/1541/4040"
IF A=1 THEN PRINT "20408"

REM SKIP THE(BIT) BAM

FOR J=1 TO 253

GET #1,A$

NEXT J

REM THE 805¢ HAS A BIG BAM TO SKIP
IF A<>67 GOTO 300

FOR J=1 TO 254%*2

GET#1,A$

NEXT J

REM EIGHT FILES PER BLOCK

FOR J=1 TO 8

REM FILE TYPE, TRACK,SECTOR
GET#1,F$,T$,S$

F=ASC(F$+NS)

REM GET 16-CHARACTER NAME
P$="":FOR K= 1 TO 16
GET#1,XS$:PS=P$+X$

NEXT K

REM THERE'S USEFUL STUFF HERE, BUT WE
'LL SKIP IT

FOR K= 1 TO 9

GET#1,X$

NEXT K

REM FILE LENGTH

cccccCccccCccCccCccccCccCccccCccccccccccccccocCcoccccecceccec

2J3IJ3232I3D23I3I2I3I3D23I2I3I3I9I3I53I3I3I32I3I3I3II3I2I3II3I3I0IDID

Peripherais 5

390 GET#1,L1$,L2$

395

REM WEIRD; 254 BYTLES/8 LEAVES US TWO
BYTES SHORT

400 IF J<8 THEN GET#1,X$,X$

405

410
415
420
425
430
480
500
900

REM TO ALLOW US TO TEST END-OF-DIRECT
ORY

SW=ST

REM NOT A REAL FILE

IF F<129 OR F>132 GOTO 480

REM NAME AND LENGTH

PRINT P$;ASC(L1$+N$)+ASC(L2S+N$)*256
NEXT J

IF SW=@ GOTO 304

CLOSEl

125

5 Perlpherals

Automatic
Program
Selector

Steven A. Smith

Here are several ways to make disks easier to use. A disk menu program
that will run your programs automatically is included.

If you want to be able to choose from among a number of options
within a program, one of the best methods available is a menu.
The computer displays a list of items with numbers or letters as-
signed to each, and you press the number or letter corresponding
to the option you want. This way, you don't have to worry about
which responses are allowed or about how to spell a particular re-
sponse, and it's much faster.

All this applies to disk drives, as well. Also, someone who is
not familiar with the operating system of the computer can call up
any of a number of programs without having to know about
diskette directories or about LOADing or RUNning programs.

You can choose between two ways of automating program
selection from a disk. The first one we'll describe uses specific,
predefined menus for each diskette or function. The second can
be used with any diskettes, determining at runtime which pro-
grams are available on the disk.

Predefined Menus

A predefined menu is written right into the BASIC menu pro-
gram. Because of this, a new program must be written for each
diskette for which you want a menu. However, there are several
advantages to using a predefined menu. First, it’s fast. As soon as
you RUN it, the menu program knows what programs should be
on the diskette and can go about the business of displaying the
menu. Also, you can add program descriptions to the menu
screens to show more information about the programs than just
their names.

126

cococococococcoooccoccccccoccaooccacccc

DJI2I3I3I9I3I93I3I39I3I3I3D5I3II3I7I3I3II3II3II3I9I3I3IIIIIJIJ)I)

Peripherals 5

Another, less obvious advantage to predefined menus is that
you can set up a menu for just a few of the programs on a diskette,
have another menu for some others, and have other programs
that are not accessed by any menus. This way, you can let some-
one have access to only the programs that a particular application
requires.

Program 11is a sample of a predefined menu for an inventory
file maintenance system. Although it is short, it is surprising how
impressive it can be in operation, especially to someone who is
used to having to load and run individual programs via the tradi-
tional directory method.

Lines 120-130 set up an array of program names, one per array
element.

Lines 140-230 display the actual menu. The numbers 1
through 8 are displayed in reverse, with a description of the
associated programs next to them. The number of items on the
menu is not significant — eight just happened to fit well on this
menu.

In this menu, the programs are grouped by type of operation
to make things clearer for the user. Inventory file operations,
transaction file operations, and setup operations are each
grouped together and separated from the others by a line. Of
course, you can display and group items on your menus any way
you wish, remembering to have your item numbers and array ele-
ments correspond properly.

Lines 240-260 accept your menu item choice, making sure it is
between one and the maximum item number on the menu. On
this menu, choice number 8 simply ends the program.

Lines 270-300 are the heart of the menu program. Using the
dynamic keyboard technique (where the computer enters its own
instructions), the computer types the LOAD and RUN instruc-
tions on the screen, and then forces RETURNS into the keyboard
buffer to make it execute them. To accomplish this dynamic effect,
you need to POKE a value of 13 into the first two keyboard buffer
bytes, and a value of two into the byte which contains the number
of characters in keyboard buffer (line 300).
~ This sample menu program will expect to find a “Library In-
ventory System” diskette in drive 0 containing programs with the
filenames stored in the array C$ (lines 120-130). To use Program 1
with your own disks, substitute the names of your own programs
in lines 120-130 and short descriptions in lines 140-230. You may
need to change the DIM statement in line 110 and the entry num-

127

S Peripherals

ber checking in lines 250-260 if you have more or fewer than eight
menu items.

Increasing Menu items

Nine items can be placed on this menu before the screen begins to
look crowded. There are two ways to improve on this number:
the first is simply to use several menus and let each menu chain
(call in) the next. You can let one menu item be the next menu
program, or add aline:

245 IF A$=CHR$(13) THEN C$(@)="MENU2":AS$=
"1":GOTO 270

This line will call the next menu program (here named MENU2) if
RETURN, rather than one of the options shown, is pressed.

While this works quite well, you do have to wait for the new
menu to be loaded each time you chain from one to the next. A
faster way is shown in Program 2. Several menus can be stored in
the same program. By pressing RETURN, you can go from one
menu to the next without waiting to load a new menu program. A
message is added to the bottom of the screen indicating that you
can press RETURN to go on to the next menu. After the last menu
is shown, pressing RETURN again will bring you back to the first
menu. Of course, going to the next menu could itself be made a
menu option, instead of being automatic.

To make menus especially useful to people unfamiliar with
computers, you can make the programs called by the menu call
the menu back when they finish. To do this, find where your pro-
gram ends, whether by an END statement or by reaching the last
of the line numbers. Change your END statements to GOTO
62000 and add the following lines:

62000 PRINT "{CLR}{4 DOWN}"

62010 PRINT"LOAD"CHRS$(34)"9:MENU"CHRS$ (34
)",8{4 DOwWN}"

62020 PRINT"RUN":PRINT"{9 UP}")

62030 POKE 631,13:POKE 632,13:POKE 198,2
: END

This assumes that your menu program is named “MENU",

Once you load the menu program, you don’t need to worry
about loading any more programs. Each time you finish one pro-
gram, the machine will take you back to your menu. This is why
menus are especially helpful for inexperienced operators. A

128

cccccCcccCecCcCcCcCcCcCcCcCccCcCcCcCcCccccccCccccccccoccc

3I33)33I3233DI3)3)3)3332333333I3I3I3I3I3I3I3II3I)IIIJ)

Peripherals 5

menu also works well at parties — you set it up with games which
call back the menu, and you don’t have to worry about being
around to show people how to LOAD and RUN their choices.

Fully Automatic Menus

Program 3 is a different method of generating menus, a fully auto-
matic diskette menu. When you run this program, you can put
any disk in the drive and it will find out what programs are on the
disk and build a menu around them. Although you can’t add de-
scriptions to the program names, with disk files you do have
16-character names to work with, and you can make them quite
descriptive.

This method is slower than using predefined menus because,
before the program can generate the menus, it must read the
diskette directory and fill its own array of program names. How-
ever, you don't have to write a new menu program for each
diskette or change a menu program when you change the con-
tents of a diskette.

The following is a description of the variables used in Pro-
gram 3:

AE$:Filename Array

AN :Array Entry Number
A0 :Files From Drive 0
C$:Character Read In
DE :Directory Entry

DR$:Drive Number

ER :Disk Error Number
F$:Filename Found

FL :Filename Length

I : Iteration Variable

J : Iteration Maximum
MM :Maximum #On Menu
MN :MenuNumber

Lines 190-210 set up the variables and the program name
array used by the program. Line 220 initializes the diskette in the
drive currently being checked. This sets things up for line 230,
which checks to see if a diskette was found in the drive. If not, the
program prints an error message.

Lines 240-250 are in the program mostly to let you know
something is happening. While the program is reading the disk
directory, it lets you know how many programs it has found on
that drive.

129

5 Peripherals

In lines 260-390, the diskette directory is opened and read as a
sequential file. After skipping over the directory header, each
directory block of eight file entries is checked for programs until
the last entry is reached.

Line 310 skips entries which have their first byte equal to any-
thing other than 130. That would indicate that the file was not a
program file. You could use this line to create menus which dis-
played only USR or SEQ files if you wished. Line 330 puts the
program name into string F$. Line 340 keeps the DOS support
program from showing up on the menus. Line 340 also shows
how a program can be excluded from the menu if you don’t want
it displayed. Line 350 updates your screen to tell you how many
program entries have been found, and line 360 puts this program
name and drive number into the array of filenames found. Lines
370-380 then read past the proper number of bytes to be ready to
read in the next file entry.

Line 410 finishes up the work. If no programs were found, the
program ends with line 430. Otherwise, the first menu is ready to
be displayed.

Entering Your Choices

Line 440 prints the menu heading. The heading will include a
menu number starting with 1 and going as high as necessary to
show all of the program names found, in groups of nine. Line 450
checks to see if there are enough program names left in the array
to display nine menu items. If not, the menu is shortened. Line
460 displays the menu item itself, and lines 470-480 display the
message at the bottom of the screen.

Lines 490-530 check for your choice of menu item. It must be
between 1 and the maximum number on the menu, or it can be
RETURN, in which case the program will display the next menu.
If there are no more items in the program name array, the first
menu is redisplayed.

If the key you pressed was one of the menu items shown, the
program continues to line 540. Variable AE$ is now the drive
number, a colon, and the 16-character name of the program you
have chosen. Any blanks in the name are stored in the directory
as shifted spaces, with an ASCII value of 160.

Lines 560-580 check to see how long the program name is by
looking backwards from the end for the first character that is not a
shifted space. When one is found, variable FL contains the length
of the name plus the drive number. Then, the LOAD and RUN in-

130

cocccocccocccccocccCccCccCcccccccccccccccccecc

DD TED JND JND IS JND 1D TN JND I ID 2D R0 0 2D [I 2 D 20 B0 D 20 B0 D I J0 I I I I I B I N

Peripherals 5

structions are displayed, and the keyboard buffer is POKEd with
RETURN:S to load the chosen program, just as in the predefined
menu programs.

Program 1. Predefined Disk Menu

100

110
120

130
140
150
160
170
180
190
200
210
220
230
249
250
260
270
280

290
300

REM ** LIBRARY INVENTORY SYSTEM DRIVE
R MENU **

DIMCS$ (6) : PRINT CHR$(14)
C$(@)="SLIB":C$(1)="SLIBPRINT":C$(2)=
"SLIBINQ":C$(3)="STRANPRINT"
C$(4)="STRANPURGE":C$(5)="SLIBSETUP":
C$(6)="FORMAT"

PRINT"{CLR}{2 DOWN}{1@¢ SPACES}{Rvs} P
ROGRAM CHOICE MENU {OFF}{2 DOwWN}"
PRINT" {7 SPACES}{RVS}1{OFF} INVENTORY
FILE MAINTENANCE{DOWN}" -
PRINT"{7 SPACES}{RVS}2{OFF} INVENTORY
FILE LISTING{DOWN}"

PRINT"T7 SPACES}{RVS}3{OFF} INVENTORY
FILE INQUIRY{2 DOWN}"

PRINT"{7 SPACES}{RVS}4{OFF} TRANSACTI

ON FILE LISTING{DOWN}" -
PRINT"{7 SPACES}{RVS}5{OFF} TRANSACTI

ON FILE PURGE{2 DOWN}"

PRINT" {7 SPACES}{RVS}6{OFF} FIRST-TIM

E FILE SETUP{DOWN}" -
PRINT"{7 SPACES}{RVS}7{OFF} FORMAT A

DISKETTE{2 DOWN}" -

PRINT"{7 SPACES}{RVS}8{OFF} END OF LI

BRARY WORK{DOWN}"

PRINT"{8 SPACES}{RVS} CHOOSE ONE OF T

HE ABOVE {OFF}";

GETAS : IFA$=""THEN240

IFA$<"1"ORAS$> "8"THEN240
IFAS$="8"THENEND

PRINT" {CLR} {6 DOWN}"

PRINT"LOAD"CHRS$ (34)"@:"C$(VAL(AS)-1)C

HRS$(34)",8"

PRINT" {4 DOWN}RUN":PRINT"{9 UP}"

POKE631,13:POKE632,13:POKE198, 2 : END

Program 2. Multiple Predefined Menus

100

110
1208

REM ** INVENTORY SYSTEM DISK MENU #1
* %

DIMC$(9) :PRINT CHR$(14)
C$(1)="SLIB":C$(2)="SLIBPRINT":C$(3)=
"SLIBINQ":C$(4)="STRANPRINT"

131

Peripherals

130 C$(5)="STRANPURGE":C$(6)="SLIBSETUP":
C$(7)="FORMAT":C$(8)="DIRECT"

149 PRINT"{CLR}{DOWN}{7 SPACES}{RVS} LIBR
ARY INVENTORY MENU 1 {OFF}{2 DOWNT"

150 PRINT"{7 SPACES}{RVS}1{OFF} LIBRARY F
ILE MAINTENANCE{DOWN}" - -

160 PRINT"{7 SPACES}{RVS}2{OFF} LIBRARY F
ILE LISTING{DOWN}" - -

170 PRINT"{7 SPACES}{RVS}3{OFF} LIBRARY F
ILE INQUIRY{2 DOWN}" - -

180 PRINT"{7 SPACES}{RVS}4{OFF} TRANSACTI
ON FILE LISTING{DOWN}" -

190 PRINT"{7 SPACES}{RVS}5{OFF} TRANSACTI
ON FILE PURGE{2 DOWN}"

208 PRINT"{7 SPACES}{RVS}6{OFF} SETUP INV
ENTORY FILES{DOWN}" - -

210 PRINT"{7 SPACES}{RVS}7{OFF} FORMAT A
DISKETTE{DOWN}" - -

220 PRINT"{7 SPACES}{RVS}8{OFF} PRINT A D
ISKETTE DIRECTORY{2 DOWN}" -

239 PRINT"{5 SPACES}{RvVS}{4 SPACES}CHOOSE
ONE OF THE ABOVE{4 SPACES}{OFFJ"

240 PRINT"{5 SPACES}{RVS} OR PRESS RETURN

FOR NEXT MENU {OFF}";™

250 GETAS$: IFAS=""THEN250

260 IFA$=CHRS(13)THEN290

270 IFA$<"1"ORAS$>"8"THEN250

280 GOT0459

299 C$(1)="SLIBPRT1":C$(2)="SLIBPRT2":CS$(
3)="SLIBPRT3":C$(4)="SLIBPRT4"

308 C$(5)="SLIBPRT5":C$(6)="SLIBPRT6":CS$(
7)="SLIBPRT7":C$(8)="SLIBPRT8"

310 PRINT"{CLR}{DOWN}{7 SPACES}{RVS} LIBR
ARY INVENTORY MENU 2 {OFF}{2 DOWNT"

320 PRINT"{7 SPACES}{RVS}1{OFF} PRINT SAL
ES REPORT{DOWN}"

330 PRINT"{7 SPACES}{RVS}2{OFF} PRINT BAC
KORDER REPORT{DOWN}"

340 PRINT"{7 SPACES}{RVS}3{OFF} PRINT DEL
INQUENT ACCOUNTS{DOWN}"

350 PRINT"{7 SPACES}{RVS}4{OFF} PRINT HIS
TORICAL REPORT{DOWN}"

360 PRINT"{7 SPACES}{RVS}5{OFF} PRINT HIS
TORICAL SUMMARY{DOWN}"

370 PRINT"{7 SPACES}{RVS}6{OFF} PRINT SAL
ES TAX REPORT{DOWN}" - -

380 PRINT"{7 SPACES}{RVS}7{OFF} PRINT MON
THLY REPORTS{DOWN}"

132

¢ccccccCccCcecCcCccCcCccCcCccCcCccCcccccccccccccccccecceccec

DD T 25 T T T T T T I I I T T I T 1 T T 1D T T 0 0 B0 D T [B0 T B B0 I D I

390
400
410

420
430
440
459
460

470
480

Peripherals 5

PRINT"{7 SPACES}{RVS}8{OFF} PRINT YEA
RLY REPORTS{DOWN}"
PRINT"{5 SPACES}{RvVS}{4 SPACES}CHOOSE
ONE OF THE ABOVE{4 SPACES}{OFFJ"
PRINT" {5 SPACES}{RVS} OR PRESS RETURN
FOR NEXT MENU {OFF}";
GETAS$:IFAS=""THEN420
IFA$=CHRS (13)THEN120
IFAS<"1"ORAS$>"9"THEN420
PRINT"{CLR}{6 DOWN}"
PRINT"LOAD"CHRS$(34)"0:"C$(VAL(AS))CHR
$(34)ll’8ll
PRINT" {4 DOWN}RUN":PRINT"{9 UP}"
POKE631,13:POKE632,13:POKE198,2: END

Program 3. Automatic Disk Menus

100
190
200
210
220
230
240

250
260
2708
280
290
300
310
320
330
340

350
360
370
380
390
400

410
430

440

450

REM * AUTOMATIC DISKETTE MENU *

AES$="":AN=0:A0=0:C$="":DE=0 :DR$="Q"

ER=@:F$="":FL=0:1I=0:J=0:MM=0 : MN=0

DIM AES$(150)

OPEN15,8,15:PRINT#15, "I"+DR$

INPUT#15, ER: IFER=21THEN400

PRINT" {CLR} { DOWN}READING DIRECTORY OF
DRIVE ";DR$

PRINT" { DOWN}PROGRAMS FOUND: @"

OPENS, 8,8, "$"+DR$+", SEQ"

FORI=1T0254 :GET#8, C$: NEXT

FORDE=1TO8:F$="":GET#8,C$

IFC$=CHRS (199)THEN410

IFC$=""THENJ=29:G0TO0370

IFASC(CS$)<>13@THENJ=29:GOT0O370
=AN+1:J=11:GET#8,CS$:GET#8,C$

FORI=1TO16:GET#8,C$:F$=F$+CS$:NEXT

IFLEFTS$ (F$,3)="DOS"THEN AN=AN-1:GOTO3

79

PRINT"{UP}"TAB(15)AN-AQ

AES (AN)=DRS+":"+F$

FORI=1TOJ :GET#8,CS$: NEXT

IFDE<>8THENGET#8,C$:GET#8,C$

NEXT : GOT0O280

PRINT" {DOWN}NO DISKETTE FOUND IN DRIV

E "DR$ " {DOWN} "

CLOSE8:CLOSE15 .

IFAN=@THENPRINT" {2 DOWN}{RVS} NO PROG

RAMS FOUND {OFF}{2 DOWN]}":END

MM=9 : PRINT" {CLR} {DOWN}"TAB(12)"{RVS}P

ROGRAM MENU #"STR$(MN+1)"{OFF}{DOWN}"

FORI=1TO9:IFAES (MN*9+I)=""THENMM=I-1:

I=9:GOT0470

133

B Peripherals

460
470

480

499
500
510
520
530
540
550

560
57@
580

590
600

134

PRINTTAB(12)"{RVS}"RIGHTS$ (STRS$(I),1)"
{OFF} "MIDS$(AES(MN*9+I),3,16)"{DOWN}"
NEXT:PRINT"{4 SPACES}{RvVS}{4 SPACES}C
HOOSE ONE OF THE ABOVE OR{3 SPACES}
{oFF}"
PRINT" {4 SPACES}{RVS} PRESS RETURN TO
GO TO NEXT MENU {OFF}"
GETCS$: IFC$=""THEN490
IFC$<>CHRS (13) THEN530

=MN+1 : IFMN*9+1 > ANTHENMN=0
GOT0440
IFVAL(C$)<1 OR VAL(CS$)>MM THEN490
AES=AES$ (MN*9+VAL(CS$))
PRINT:PRINT" {CLR} {4 DOWN}MENU ITEM CH
OSEN: #"CS$" - "MIDS$(AES$,3,16)
FORI=18TOl1STEP-1:FL=I
IFASC(MIDS (AES$,I,1))<>16@THENI=1
NEXT:PRINT" {4 DOWN}LOAD"CHRS (34)LEFTS$
(AES$,FL)CHRS(34)",8{4 DOwWN}"
PRINT"RUN":PRINT"{9 UP}"
POKE631,13:POKE632,13:POKE198,2:END

caoccccccCcccccCceCccCccCccCcccCccccccccccccccccccccceccec

DD IS IS T D TIN5 JND J0 2D TND IS I N0 HD IS ID I 20 JD T I I B B0 0 I B0 I I I I D D IS

-
64 DOSmaker

Chérley Kozarski

Changing disks to load DOS 5.1 can at times be inconvenient. You can
use these short programs to save time — by putting the Wedge on your
own disks.

If you've bought a 1541 disk drive for your Commodore 64, you've
probably noticed that the Test/Demo disk which comes with it
contains several useful programs. In particular, there is a program
called ““DOS 5.1"" which simplifies many disk-handling opera-
tions for you. For example, you can just use the symbol for divi-
sion (/) followed by the name of a file, and the file will be
LOADed in for you.

Despite the misleading name, DOS 5.1 is not a Disk Operat-
ing System (DOS) for the 1541. Like all Commodore disk drives,
the 1541 is “intelligent,” which means that its DOS is contained in
ROM inside the drive itself. DOS 5.1 is actually a DOS support pro-
gram which makes the built-in DOS easier to use.

All of the helpful functions of the DOS support program,
however, are available only on that disk. If, for some reason, you

' need to turn off power, you've got to reload DOS 5.1 from the

demo disk. Wouldn't it be nice to be able to put this useful pro-
gram on any of your disks?

Program 1 must be saved onto each disk on which you want
to put DOS 5.1. It is the “wedge,” which ties DOS 5.1 into BASIC.
Type Program 1in and SAVE it on a disk. Then type NEW and
type in Program 2 which is the DOS 5.1 Creator. SAVE Program 2
to the same disk. It is necessary to SAVE Program 2 to only one of
your disks because after it creates DOS 5.1, it serves no further
purpose. You'll only need Program 1and DOS 5.1 on each disk.

Now replace your disk with the Test/Demo disk. (Program 2
will get DOS 5.1 from the demo disk.) RUN Program 2 and, after a
few seconds, it will ask if you have replaced the demo disk with
your own. Make that replacement and you're halfway through
creating a new DOS 5.1. When your disk is in the drive, type Y for
yes and hit RETURN. The Creator program will now SAVE DOS
5.1 onto your disk and then erase itself from memory. If you forgot

135

5 Peripherals

to remove the demo disk, there will be no problem because the
tab on the disk prevents anything from being SAVEd onto it. Pro-
gram 2, however, will have erased itself and you'll need to start
over. :

After you've got a copy of DOS 5.1 on one of your disks,
you're all set to use it anytime you use that disk. Simply load in
the Wedge (Program 1) from that disk and RUN it.

Program 1. DOS Wedge

10 REM DOS WEDGE FOR C-64

20 PRINT "{CLR}"

30 IF IM=YOU THEN YOUR=1:LOAD"DOS 5.1",8
1
’

49 IF YOUR=1 THEN SYS 52224

58 NEW

Program 2. DOS Creator

10 REM DOS WITHOUT LOADING DEMO DISK
20 IF IM=YOU THEN YOUR=1:LOAD"DOS 5.1",8
1

’

30 IF YOUR=1 THEN SYS 52224

49 INPUT "{CLR}DEMO DISK REPLACED YET? (
Y OR N)";I$:IF I$<>"Y" THEN 40

50 POKE 43,255:POKE 44,203:POKE 45,90:PO
KE 46,207

60 SAVE"DOS 5.1",8,1

79 POKE 43,1:POKE 44,8:POKE 46,8:NEW

136

cccccCcccccCccccCccccCccccccccccccccccccccccccwccccccocec

DEDED D EDTES 5 D T I T 15 1 T T T T T T B B T T 2 I T JD B T I I IR D T I BN

Peripherals 5

Backup ,
1540/1541 Disks

Harvey B. Herman

LOAD, switch disks, SAVE, LOAD, switch, SAVE — it can be cumber-
some and tedious to make backups of disks when you don’t have a dual
disk drive. What's worse, you need to go through special extra steps to
transfer machine language programs. This utility makes creating safe
backups on single disk drives nearly automatic.

Irecently purchased a 1541 disk drive. The diskette that came
with it included a few sample programs. Conspicuous by its
absence, however, was a program to make duplicate copies of
diskettes for backup purposes. I have learned the hard way that
diskettes do not last forever, and it is foolish to have only one copy
of important programs.

What to do? Well, I was lucky to have acquired an excellent
backup program for the Commodore 2031 single disk drive (writ-
ten by Jim Law and Keith Hope and distributed by the Toronto
PET Users Group). I adapted this program to work on the Com-
modore 64. The modifications in the original program were quite
modest — a few PEEKs and POKEs were changed, and the
machine language portion was relocated to the cassette buffer
and POKEd in from DATA statements.

Using the Program
The program is quite easy to use; no knowledge of machine lan-
guage is necessary. First, the destination diskette is formatted, a
good idea if you will be using it later on the same drive. Please be
careful to format only blank diskettes, or ones that are no longer
needed. Next, the diskettes are swapped and the source diskette
is read to determine how much to copy. Successive blocks are
then read from the source into the available computer memory. (I
can read 124 blocks on the Commodore 64.) The diskettes are
swapped again, and identical blocks on the destination disk are
written from data saved in memory. The swapping of source and
destination diskette continues until the entire diskette has been
copied.

137

5 Peripherals

Of course, it would be easier (but not much faster) if a second

drive were available. However, this program is the next best thing.

It surely beats loading and saving BASIC programs, one at a time,
or finding the loading address of machine language files. Try that
sometime if you doubt it.

Disk Backup

1 FORI=828T0883:READA:POKEI,A:NEXTI

19 REM"D=DSAVE"@BACK2",D@:?DS$: CATALOGD@

20 BB=PEEK(44)+27:POKE995, BB

30 POKE998,PEEK(55) : POKE999, PEEK (56) : POKE
55,0 :POKE56, BB: CLR

40 BB=PEEK(995)

50 N=PEEK(999)-BB-1:BA=BB*256:MA=828

60 DIMBM%(35,24)

78 FORJI=@TO7:TA(J)=21J:NEXT

80 ?RIN¥"{CLR}{3 RIGHT} {RVS}BACKUP 1541
OFF}"

99 PRINT"{DOWN}'GOTOld900' IF PROGRAM QUI
TS ABNORMALLY"

100 PRINT"{DOWN}"N"BUFFERS AVAILABLE"

119 OPEN1, 8,15

208 REM *** MAIN FUNCTIONS ***%*

219 GOSUB10@%

220 D$="S":GOSUB3200:I2$=IRS$

23@ IFDR$<>"2A"THENPRINT"{RVS}ILLEGAL DOS

1.0 DISK{OFF}":GOT010000

240 IFI2$=I1S$THENPRINT"{RVS}SOURCE AND DE
STINATION HAVE SAME ID CODE{OFF}":GOT
010299 .

250 GOSUB2590

260 T=TS:S=@:NU=1:T1=T:S1l=S

278 PRINT#1,"I@":0PEN3,8,3,"#"

280 PRINT"READING BLOCK #";

290 IFBM%(T1l,S1)=@THENGOSUB2000 :NU=NU+1:1I
FNU>NTHEN320

300 S1=S1+1:IFS1>2@THENS1=@:T1=T1+1

310 IFT1<TF+1THEN29@

320 PRINT"{DOWN}"

330 CLOSE3
340 D$="D":GOSUB320@:IFIR$<>I1$THENGOTO34
2

350 PRINT#1l,"IQ":0PEN3,8,3,"#"

360 PRINT"WRITING BUFFER #";

370 NU=1:T1=T:S1=S

380 IFBM%(Tl,S1)=0THENGOSUB220@:NU=NU+1:1
FNU>NTHEN410

390 S1=S1+1:IFS1>2@0THENS1=0:T1=T1+1

ccocccocccccccccccccoccccCcCccccccccoccoccec

233223353333)DI3I3I333I3I3D3I3I3I3I3I3I3I0))

J

DADEBESEB ES R RS

630

640
650
660
670
1000
1010

1020

1030

1040
1858

1060
1070
1089
1090

1100

Peripherals 5

IFT1<TF+1THEN380

PRINT" {DOWN}"

CLOSE3
S=S1+1:IFS>2@THENS=@:T1=T1+1
T=T1:IFT>TFTHEN500
D$="S":GOSUB320@: IFIR$<>I2$STHEN450
NU=1:T1=T:S1=S:G0OT0270

REM FINISHED XFERS

CLOSE1l

POKES55, PEEK(998) : POKE56 , PEEK (999) : CLR
PRINT"{2 DOWN}BACKUP COMPLETE"
OPENL,8,9,"$0"
GET#1,A$:IFAS$S<>"{RVS}"THEN550
PRINTAS; :GOTO61@

GET#1,A$:SS=ST:A=LEN(A$) : IFATHENA=ASC

(A$)

?E'g;}l ,B$:SS=ST:B=LEN(BS$) : IFBTHENA=ASC
(B .

IFSSTHEN660
IFA=1ANDB=1THENGOSUB6 30
GET#1,A$: IFAS=""THENPRINT : GOTO570
PRINTAS; : GOTO610
?Eg#l,A$:SS=ST:A=LEN(A$):IFATHENA=ASC
A
GET#1,B$:SS=ST:B=LEN(B$) : IFBTHENB=ASC
(B$) ‘
N=B*256+A: PRINTN; : RETURN
CLOSELl
END
REM HEADER DEST DISK
PRINT" { DOWN} INSERT DESTINATION DISK
TO BE FORMATTED"
INPUT"{2 DOWN}DISK NAME{3 RIGHT}
{SHIFT-SPACE} {16 SPACES}{19 LEFT}";D
N$
IFDN$="{ SHIFT-SPACE} "THENPRINT"
{3 uP}";:GoTO1020
IFLEN(DN$) > 16 THENCLR : GOTO40
F=0 : FORJ=1TOLEN (DN$) : S1$=MID$ (DNS,J,
1)
IFS1$="{SHIFT-SPACE}"ORS1$=CHRS$(34)T
HENF=1
NEXTJ : IFFTHENPRINT" {3 UP}"; :GOTO1920
INPUT" {DOWN}UNIQUE DISK ID{3 RIGHT}
{SHIFT-SPACE} {20 SPACES}{23 LEFT}";I
18
IFI1$="{SHIFT~-SPACE}"THENPRINT"
{2 urPl}";:G0TO01080
IFLEN(I1$)<>2THENPRINT"{2 UP}"; :GOTO
1980

139

g Peripherals

1119
1120
1130
1140
2000
2010
2029
2030
2040
2050

2060
2070
2080

2085
2090

2100
22090

2210
2220

2230

PRINT#1,"N@:"+DNS+", "+I1$

GOSUB3000

IFERTHENPRINTERS : GOTO10009

RETURN

REM READ BLOCK T1,S1 TO BUFFER # NU
c=.

PRINT#1,"Ul1";3;9;T1;S1
GOSUB3000 : IFNOTERTHEN2069

C=C+1 : IFC<3GOT02020

PRINTERS : FORJ=(BB+NU) *256TO (BB+NU) *2
56+255 : POKEJ, . : NEXTJ : GOT02100
PRINT#1,"B-P";3;0
IFNU<>@THENPRINT" {3 SPACES}{3 LEFT}"
; RIGHTS (" {2 SPACES}"+STR$(NU),3);"
{3 LEFT}";

POKE996, PEEK(3) : POKE997, PEEK(4) : POKE
4,BB+NU:SYSMA

POKE3, PEEK(996) : POKE4, PEEK(997)
IFST<> .ANDST<>64THENGOSUB3@@4d : GOTO2d
50

RETURN

REM WRITE BLOCK Tl1l,S1 FROM BUFFER #
NU

c=.
PRINT#1,"B-A";@;T1;S1:PRINT#1,"B~-P";
3:0

PRINT"{3 SPACES}{3 LEFT}";RIGHT$ ("
{2 SPACES}"+STR$(NU),3);"{3 LEFT}";
POKE996, PEEK(3) : POKE997, PEEK(4) : POKE
4 ,BB+NU:SYSMA+3

POKE3, PEEK (996) : POKE4, PEEK(997)
IFST<> .ANDST<>64THENPRINT" { RVS } IEEE
WRITE ERROR"ST"{OFF}":G0TO10000
PRINT#1,"U2";3;0;T1;S1
GOSUB3009 : IFNOTERTHEN2 300

C=C+1 : IFC<3THEN2260

PRINT" {RVS}UNRECOVERABLE WRITE ERROR

"ERS$:GOTO10000

RETURN

REM GET BAM TO BM%(T,S)
TS=1:TF=.
PRINT#1,"I0":0PEN3,8,3,"#"
S9=0

PRINT" {DOWN}TRACK #{3 SPACES}BLOCKS
TO XFER"

PRINT"E24 T3I"
NU=@:T1=18:S1=0:C@$=CHRS (.) : GOSUB20d
2

BY=4

cccccccccCccCccccCccCcccCcccoccccccccccccccccccccccecceccec

D)D) D)233)3)3I33I3I3I33I3I333D1D5D1313D13D3I3I313131313I3D2I)

Peripherals 5

2580 T%=(BY-4)/4+1

259¢9 PRINT"{2 SPACES}";T%;

2600 IFPEEK (BA+BY)=.THENFORJ=.TO20 :BM%2(T%
,J)=.:NEXT:BY=BY+4:GOT02650

2610 S=0

2620 BY=BY+l :A@=PEEK (BA+BY) : FORJ=.TO7 : BM%
(T%,S)=AQGANDTA(J) : S=S+1 : NEXT

2630 IFS<22THEN2620

2640 BY=BY+1

2650 ES=21:IFT%>17THENES=19

2660 IFT%>24THENES=18

2670 IFT%>30THENES=17

2680 FORJ=ESTO024:BM%(T%,J)=-1:NEXT

2690 SM=.:FORJ=.TO20:IFBM%(T%,J)=.THENSM=
SM+1

2789 NEXT:PRINTTAB(12);SM:S9=S9+SM

271@ IFSM=.ANDTS=T$THENTS=TS+1:GOT02730

272@ IFSM<>.THENTF=T$%

27309 IFBY<143THEN2580

2749 CLOSE3

275¢ PRINT"START =";TS;" FINISH =";TF

2768 PRINT"{DOWN}A TOTAL OF";S9;"BLOCKS T
O XFER"

2770 S8=90+25+(.650+.980)*S9

2780 S7=INT(S8/60) :PRINT"APPROX";S7":"INT
(s8-87*64); "FOR COPY"

2790 RETURN

3093 REM READ ERR CH TO ER,ER$

3910 INPUT#1,E@$,E1$,E2$,E3$:ERS=EQS$+", "+
E1$+","+E2$+", "+E3$

3920 ER=LEN(E@$) : IFERTHENER=VAL(E@$)

3930 RETURN

3208 REM INSTRUCT TO SWAP TO DISK GIVEN I
N D$.

3219 IFD$="D"THENS1$="DESTINATION":GOTO32
39

3220 S1$="SOURCE"

3239 PRINT" {DOWN}INSERT ";S1$;" DISK, PRE
Ss {RVS}SPACE{OFF}"

3240 GETAS:IFAS$<>" "THEN3240

3250 OPEN2,8,d,"$@"

3260 GOSUB309@:IFER>JTHEN10000

3270 FORJ=1T026:GET#2,A$:NEXTJ

3280 GET#2,A$:GET#2,BS$:IR$S=AS$+BS

3290 GET#2,A$:GET#2,AS$:GET#2,B$:DR$=AS+BS

3399 CLOSE2:RETURN

10099 REM DROP OUT

19018 POKE55,PEEK(998) : POKE56,PEEK(999):C
LR:STOP

141

5 peripherals

15000 DATA 76,66,3,76,91,3,162,3,32,198,2
55,160,0,132,3,32,207,255,145

15019 DATA 3,165,144,208,3,200,208,244,32
,204,255,96,162,3,32,201,255,160

15020 DATA 94,132,3,177,3,32,210,255,165,1
44,208,3,200,208,244,32,204,255,96

142

"\

rcccccocccecccccccccCcceccceccCcccccccccccccccccceccecccecccecccc

J)I2I3DII39II99I9I3D2I3II3I3I9II3I3I2I3I3I3I3I2I3I3IIIIIIIJIJ)

Peripherals 5

Using the
User Port

John Heilborn

The User Port on the 64 gives you direct access to your computer. This
article explains exactly how to program for and connect to this port.

Located on the back and side of the 64 are several different con-
nectors (see Figure 1). Each of them (except one) has a specific
purpose. For example, the video port connects to a television or
monitor; the game ports on the side of the computer connect to
various kinds of game controllers such as paddles or joysticks; the
serial plug on the back of the computer connects to a Commodore
printer or disk drive; and the expander slot accepts program
cartridges. ‘

Figure 1. 64 Ports

—Cassette Port
Serial Port
Audio/Video

TV. Video Out

—Expansion Port

/
Game Controllers

Power In

143

s Peripherals

There is one connector, however, that was designed to be
used by you, the user, and is called (appropriately enough) the
User Port.

What Is the User Port?

To get an idea of what the User Port is, let’s take a look at the 64
system as a whole. Figure 2 is a block diagram of the major com-
ponents of the 64. As you can see, the 64 consists of a Central
Processing Unit (CPU), some memory (lots of memory), and
some I/O (Input/Output) devices. The television (or monitor),
the printer, disk drive, and even the keyboard are connected to
the 64 through the I/O devices.

The following is a brief description of each of the major com-
ponents of the 64.

The Central Processing Unit (CPU)

This is the device that performs all of the logical and numerical
functions for the 64. The central processor in the 64 is a micro-
processor called a 6510.

Random Access Memory (RAM)

This part of memory is used to store all of your programs and
data. Whenever you write a program and/or enter data, the com-
puter stores it here.

Read Only Memory (ROM)

This is where the 64's control programs reside. Some of the pro-
grams stored in ROM are the Operating System, the Kernal, and
the BASIC interpreter.

The I/0 Devices
These are the devices that the 64 uses to send information to or re-
ceive it from any external equipment. The I/O devices are:

The VIC-II chip. This is the Video Interface Chip. It converts
the data for screen memory into video signals so they can be
viewed on the monitor or television screen.

The SID chip. The SID (Sound Interface Device) chip is the
device that generates all of the sounds for the 64. These signals
can be sent to the television or monitor, or to an external ampli-
fier, such as your home stereo system.

The CIA chips. CIA means Complex Interface Adapter. The
CIAs allow the keyboard, the serial port, the game ports, and the
User Port to communicate with the CPU.

144

cccccCcccCcccCccccccCcccccccCcccccccccccccccccccccecceccc

DDA A A A R IS S I I S I A S S AR A A R AR A D D ED EDEDED D RS D RS RS IR BN

Figure 2. 64 Computer System

Peripherals 5

Central
Processing
Unit (CPU)

6510

Microprocessor

=

Video
Interface To Video
Chip Portion of
(VIC-II) Television
or
Monitor
To Sound
SID Portion of
Chip Television
or
Monitor
Read-Only Memory
(ROM)
Operating
System
Kernal Routines
BASIC
Character Set
Random-
Access
Memory
(RAM)
<: Keyboard
CIA #1
<: Game Controls
Serial
K= Port
CIA #2 User
Port
Expansion
Port
145

5 Peripherals

How the User Port Works

The User Port can be controlled directly from BASIC by using the
commands PEEK and POKE. Remember that the User Port is an
I/O device. When the port is set up for input, PEEK is used to read
data that is coming in. When the port is set up for output, POKE
is used to write the data going out.

The User Port as an Output Device
The User Port operates much like a typical memory location, and
while we’re using it as an output device, data can be sent to the
port using the POKE command. Before we examine the specific
features of the User Port, however, let’s review the process of
POKEing using some ordinary RAM locations.

Enter and RUN the following routine:

10 A=6000

20 GET AS$: IF A$="" THEN 20
30 IF A$="*" THEN 70

40 PRINT AS:;

50 POKE A, ASC(AS)

60 A=A+l: GOTO 20

7@ PRINT

80 FOR R = 6000 TO A

9@ PRINT CHRS$(PEEK(R)):

100 NEXT

This program demonstrates how data can be stored and re-
called from memory using PEEKs and POKEs. Here is what it
does:

First, in line 20 the program waits for characters to be entered
from the keyboard. In line 50, these characters are converted into
their ASCII number equivalents and are POKEd into memory
starting at location 6000. Note: ASCII codes are numeric values that
the computer uses to represent text.

Memory location 6000 was chosen in this routine because
data that is stored there will not interfere with this program or
with any other computer operations we'll be using in this
example.

In line 30, the program checks for a special character. (This
program uses the asterisk [*] because it isn't often used in text.
Any character or symbol on the keyboard could have been used.)

When the special character is detected, data entry will end. At

146

ccceccc

2J2IJ3I9I393I393I393I93I3I3I3D2I3I3I3I3I3I3I3I3I3I3I0I3DI3I3II3IID)

Peripherals 5

that point the program will skip to line 70, which starts PEEKing
memory locations beginning with location 6000. The characters
stored there will be displayed, one character at a time, up to the
last character we stored.

When Memory Is Not Memory

Not every memory location in the 64 is used to store information.
Some memory locations are actually control registers for the 1/O
chips which perform special functions. For example, location
53280 is one of the VIC-II chip control registers. POKEing differ-
ent numbers into that location will change the color of the screen
border. To look at this, enter and RUN the following program:

19 FOR R=0 TO 15

20 POKE 53280, R

30 FOR G=@ TO 50@: NEXT
4@ NEXT

50 GOTO 19

This routine displays all of the 16 possible screen border
colors. It does this by POKEing numbers between 0 and 15 into
the control register (at memory location 53280) which controls
this function.

A Closer Look at the Control Numbers
Normally, when the 64 displays the contents of PEEKed memory
locations, it displays them as decimal numbers. This is because
BASIC converts the numbers it finds in memory into their deci-
mal equivalents before displaying them. The values are actually
stored in memory as binary numbers.

Binary numbers are made up of only 1's and 0’s instead of the
decimal numbers 0-9 that we are used to. The reason they are
stored that way is because digital circuits (like the ones in the 64)
are actually tiny electronic switches. Each switch (like a light
switch) can be either on or off. Numerically, these conditions cor-
respond to the numbers 1 and 0. By using these 1's and 0’s, we can
represent any character we want.

Every memory location in the 64 contains eight of these tiny
switches. In computer jargon, the switches are called bits.

“Bit Display,” the program at the end of this article, looks at
the number stored in a memory location (we can use 6000 again)
and displays the bits in that memory location as black and white
squares. We'll use a light square to represent a binary 1and a
black square to represent a binary 0.

147

@ Peripherals

The keys numbered 1-8 will be used as toggle switches for
each of the eight bits. Pressing a number once will turn the switch
on and pressing it again will turn it off.

In lines 10-240, the program sets up the variables and bit dis-
plays. Program control is then transferred to the subroutine in
lines 330-380 which reads the number stored in our memory loca-
tion and displays its binary value as black and white squares.

The program jumps to line 260 and GETs a keyboard entry.
Line 270 checks it to make sure it is a number between 1 and 8,
and if it is, its value is assigned to the variable B and lines 290-300
POKE the new value into memory location 6000.

With the new data in variable B, the program jumps to the
subroutine at location 330 again, which converts the number to its
binary value and displays them on the screen. After that, the pro-
gram returns to line 260, awaiting another keystroke.

The number in the upper left-hand corner of the screen is the
decimal value of the binary number being displayed.

It should be noted that the numbers 1 to 8 do not represent
the number of the bit, but rather the keys to be pressed in order to
turn the bits on and off. Bit patterns are usually numbered from
the right starting with zero. Thus, the bit toggled by pressing the 8
key would normally be called bit 0, while the bit toggled by press-
ing the 1 key would be called bit 7.

Rerouting the Data

The program (“Bit Display”) will display and toggle the contents
of any memory location except one that contains ROM. ROM
means Read Only Memory, and by definition, cannot be
changed. If we had used a location that was a control register in-
stead of a RAM location, however, the numbers being stored and
displayed would have also affected the device controlled by the
register, just as it did in the program that changed the screen
border colors.

To see how this works, replace all references to memory loca-
tion 6000 in the program with 53280 (the screen border color con-
trol register we used in the earlier example). These references oc-
cur in lines 290, 300, 330, and 350.

299 IF(PEEK(53280)ANDA(B))=0THENPOKE53280
,PEEK(53280)+A(B) : GOTO310

30@ POKE53280,PEEK(5328@)-A(B)

330 PRINT"{HOME}{2 DOwN}{4 SPACES}{HOME}
{2 DOWN}";PEEK(53280)

148

ccccCcccccccCcccccccCccCcccccccccccccccccccccccccecc

DI T T T T T T 0 T T 0 T T 0 T TS A T T T D T T 0 0 T I I I I T I B0 BN N

Peripherals 5

350 IF((21J)AND(PEEK(53280)))=0THENPRINTB
$(7-J3):G0TO37@

When you run the program now, it will behave quite differ-
ently. To begin with, the four left-hand bits (numbered 1-4) are all
on, and cannot be changed by pressing the corresponding keys.

Look at what happens when you toggle the four right-hand
bits. Each time a bit is changed, the screen border changes to an-
other color. Notice that the control register limits us to only 16 dif-
ferent number combinations — one for each color that can be gen-
erated for the screen border. You will find that many of the control
registers have rules such as this governing their use.

Sending Data to the User Port

In the previous example, we sent data to the control register at
memory location 53280 which controls the color of the screen
border. This is not the only control register for the VIC-II chip,
however. In order to control the screen display, the VIC-II chip
has several control registers at various memory locations. An-
other memory location that controls the functions of the VIC-II
chip is 53281. It controls the screen background color. If you re-
place the number 53280 with 53281 in the previous example, you
will be able to manipulate the screen color instead of the border
color.

The User Port is also controlled by several memory locations.
One of the memory locations is 56577. Numbers that you POKE
into that location will appear as data on pins of the User Port
connector.

Figure 3. User Port Edge Connector

/NN

1’7”7”?7”4“7’5’7'6’7“3“Hl‘ﬂ’m o ar

L M N

149

Perlpherals

Figure 3. User Port Edge Connector

*Assorted serial input/output and ;‘handsﬁakmg” functions. See Chapter 6 of the
Programmer’s Reference Guide for further details.

A Simple Peripheral Device
For those of you who are inclined to build circuits, here is a simple
device you can plug into the User Port that will receive and dis-
play the data sent there by the computer. It can be built on a small
circuit board about 12 inches wide by 3 inches long. The board
used here is called “perf board.” That’s because it is perforated
with a pattern of holes which allow the components to be in-
serted. The components you'll need are eight 3.3K ohm resistors,
eight LEDs, and a 24-pin edge-card connector that fits onto the
User Port. (Bring your computer with you when you buy the con-
nector so you can be sure its contacts match the contacts on the
User Port.) Most electronic supply stores carry these parts.
Figure 4 is a picture of the top of the circuit board, showing
where all of the components go.

150

ccocCcocoCcCccccCcoccccCcCcoCcCcCccCcCcCcocccccccoccec

DD TED T T T T T T T T T T T T D N b TS IS D D D J0 D D 0 I I IS I B0 I BN IR IS

Figure 4. Top of Circuit Board
NOTE: Position Flat Surface on Flange of LED Toward

Peripherais 5

Connector

_--__.___-.-.__—_--__—_-.-_.._..--____.._

N/C NIC NI/IC NIC NIC NIC NIC NIC NIC NIC

(N/C

L0 0]

1 10 9 8 7 6

Figure 5 is a picture of the bottom of the board,
connections that need to be made there.

Figure 5. Bottom of Circuit Board

showing the

F3 AL 3T 2T aC L)
() () (o) (o) o) (o0
TN W \.f&/ AN '\j../ s S \NJfo v
)
Yoo W oW
r,ll1 I-Il.I I..II1 rll.l rli.] r.'.l r||1 rll1
[I R I R I I g
[| O | 1 | [[
b P | [I
LA L:J LA L“_l L”J L, L“.J I..:.l
" l
’ ! ¢

[(i

\\-

J‘.
X==
—_ =33

~

L MN

151

DEDEDEDEDEDEDED IR EDEDEDED IS EDEDEDEDEDED ED ED ED ED EDED D ED KD ED R DEDEDEDED

I/
AN
[
I
L]
T~
e
I
e
™~
l/
I}
LA
™S
l/‘
AN

Figure 6 is a schematic diagram of the circuit.
Figure 6. Circuit Board

24-Pin

Edge Connector
1
N
71
|
| 33K
I 33K
| 33K
l 33K
I
AN
|

5 Peripherals

DJ3DIJIII3I3I3I7II3I3I3I3I3I3II3I3I3I3I3I3I3I3I3I3I3I3I3IIID)

Peripherals 5

When you install this device, be sure you turn off power to
the 64 first, and push the connector all the way onto the User
Port, making sure it fits securely.

Running the Port
The purpose of building the device above is to demonstrate how
an external device can be connected to and controlled by the 64. If
you choose not to build the device, leave the bit display program
in the computer and make the following changes to it:

1) Delete lines 250-320 and line 380,

2) And change these lines:

19 POKE 53280,0:POKE 53281,3:POKE 56579,2
55
330 PRINT"{HOME}{2 DOWN}{4 SPACES}{HOME}
{2 DOWN}";PEEK(56577)
350 IF((21J)AND(PEEK(56577)))=@THENPRINTB
$(7-J) :GOTO370

With these changes to the program, the video display will
show the output just like the external device.

Programming the User Port

As was mentioned earlier, the User Port can be either an input de-
vice or an output device. In this article we'll be using it as an out-
put device, so we'll need to program it to receive data from the
computer and send it out. Memory location 56579 is called the
data direction register for the User Port. By changing the number
in this register, you can control each bit on the port, making it
either an input or an output bit. To make a bit on the User Port an
output, the corresponding bit in the data direction register must
contain a 1. To make all of the bits equal to 1in the data direction
register, we’ll need to POKE memory location 56579 (the data
direction register) with the binary number 11111111. This is equal
to the decimal number 255.

5 POKE 56579,255
Experimenting with the User Port

The examples that follow show various method of controlling the
LEDs (or lighted squares on the video screen). More practical
applications would suggest connecting the User Port to real appli-
ances such as the lights in your home, a radio, or perhaps your
coffee maker. However, interfacing with such appliances presents

153

5 Peripherals

arisk of serious electric shock or damage to the computer, and
should not be attempted by the inexperienced.

Keeping this philosophy in mind, enter the examples and
think of how you might apply them to your needs.

Binary Counter
Video Version. Remember to make the changes to Program 1 as
outlined above before adding the following routine:

500 IF A=255 THEN A=0
510 POKE 56577, A

520 A=A+l

530 GOTO 339

External Board Version. This routine has exactly the same
function as the one above, but because the 64 can send data
directly to the port much faster than it can change the screen dis-
play, a delay loop was added at line 520 to allow you to see the
counter. Additionally, the LEDs are the reverse of the screen; that
is, a one is represented by a dark LED and a zero by alit LED. To
compensate for this, line 510 inverts the number.

500 IF A=255 THEN A=0
510 POKE 56577, 255-A
520 FOR G=@ TO 10@: NEXT
530 A=A+l

5490 GOTO 500

Sequential Lights
This program is similar to the previous program, but instead of
performing a full count, it lights the lamps individually.

Video Version.

500 A(Q)=128: A(1)=64: A(2)=32:A(3)=16: A
(4)=8: A(5)=4: A(6)=2: A(7)=1

519 IF B>7 THEN B=0

528 POKE 56577, A(B)

530 B=B+1l

549 GOTO 339

External Board Version.

500 A(2)=128: A(1)=64: A(2)=32:A(3)=16: A
(4)=8: A(5)=4: A(6)=2: A(7)=1

519 IF B>7 THEN B=0#

154

ccocccccccccccccccCcccccccccCcccoCccccccccccccccccccec

D20 0 T T T 10 T T T T 0 T 0 o T T T 0 T T 0 T 0 T T N 0 D 0 A0 I [0 0 IO IR

Peripherals 5

528 POKE 56577, 255-A(B)
530 B=B+1
54@ GOTO 500

Incidentally, to make the lights flash in the other direction, all
you need to do is change line 520 to:

520 POKE 56577, A(7-B)

for the video version, or:

520 POKE 56577, 255-A(7-B)
if you are using the external board.

Random Lights
This program lights the LEDs (or screen lights) randomly.
Video Version.

500 A(9)=128: A(1)=64: A(2)=32:A(3)=16: A
(4)=8: A(5)=4: A(6)=2: A(7)=1

510 B = INT(RND(Q)*8) '

520 POKE 56577, A(B)

538 GOTO 330

External Board Version.

500 A(@)=128: A(1)=64: A(2)=32:A(3)=16: A
(4)=8: A(5)=4: A(6)=2: A(7)=1

510 B = INT(RND(@)*8)

520 POKE 56577, 255-A(B)

530 GOTO 518

Bit Display

10 POKE 53280,9: POKE53281,0

20 A(1)=128:A(2)=64:A(3)=32:A(4)=16:A(5)=
8:A(6)=4:A(7)=2:A(8)=1

21 As$="{HOME}{12 DOwN}"

22 B$="EkG3 EMI{pOwWN}{3 LEFT}EGI EM3I"

23 c$="{RVS}EG3{2 sSPACES}{pDowN}{3 LEFT}
kG3{2 spacEs}"

24 p$="kMIEG] EMIEGI EMIEGI EMIKG3 EMIEKG3I
EMIKGY EMIEGY EMIKGI EMIEGI"

30 B$(9)=A$+"{7 RIGHT}"+B$

40 C$(9)=A$+"{7 RIGHT}"+C$

50 B$(1)=A$+" {10 RIGHT}"+B$

60 C$(1)=AS$+"{10 RIGHT}"+C$

78 B$(2)=A$+"{13 RIGHT}"+BS

155

5 Peripherals

80 C$(2)=A$+"{13 RIGHT}"+C$

9¢ B$(3)=AS$+"{16 RIGHT}"+B$

199 C$(3)=A$+"{16 RIGHT}"+C$

110 B$(4)=A$+"{19 RIGHT}"+B$

120 C$(4)=A$+"{19 RIGHT}"+C$

130 B$(5)=A$+"{22 RIGHT}"+B$

140 Cc$(5)=A$+"{22 RIGHT}"+C$

150 B$(6)=AS$+"{25 RIGHT}"+B$

160 Cc$(6)=A$+"{25 RIGHT}"+C$

170 B$(7)=A$+"{28 RIGHT}"+B$

180 C$(7)=A$+"{28 RIGHT]}"+C$

199 PRINT"{WHT}{CLR}{19 DOWN}{8 RIGHT}1
{2 spPAaCES}2{2 SPACES}3{2 SPACES}4
{2 sPACES}5{2 SPACES}6{2 SPACES}7
{2 spPACEs}8{powN}";

208 PRINT"{23 LEFT}";

210 PRINT"E24 @3I{powN}{25 LEFT}";

220 PRINT D$;"{DOWN}{26 LEFT}";

230 PRINT D$;"{DOwN}{29 LEFT}";

240 PRINT"{DOWN}{36 LEFT}E24 T3"

250 GOSUB330

260 GETKS : IFKS$=""THEN260

270 IFASC(K$)>570RASC(KS)<49THEN269

280 B=VAL(KS)

290 IF(PEEK(6000)ANDA(B))=0THENPOKE60Q0, P
EEK (6000)+A(B) :GOTO310

300 POKE600J, PEEK(6000)-A(B)

310 GOSUB330

320 GOTO269

336 PRINT"{HOME}{2 DOWN}{4 SPACES}{HOME}
{2 DOWN}";PEEK(6000)

340 FORJ=0QTO7 .

35@ IF((21J)AND(PEEK(6000)))=0THENPRINTBS
(7-J) :GOTO379

368 PRINTCS$(7-J)

378 NEXT

380 RETURN

156

cccccccCcccccCccoccCccCccccCccCcoccCccccCcCcCcCcCcCcccoccccecceccecceccec

- ; , | | ‘ , , ..
. - . . K N | | - « .
R al) N ’ R E . A A) . ; ‘ » | x ‘ ;,. | .

[(o
-
Q
©
(&

vI\

IKies

I
| i
i i
i i

20000000 D OO0 0T00IDIVIODIDODTD

JI2I2I3I32I9II3I3I3I7II3I3I3III3I3III3I3I3I3III3I3I3I3I3I3ID)

Utilities 6
Data Searcher

Jerry Sturdivant

Programmers are always looking for ways to make their programs more
“friendly,” easier to use.

This special search routine will accept all kinds of wrong input and
still come up with the right match.

Have you ever searched through a file for something but just
couldn’t find it? You know it’s in there, but your spelling may be
off by one letter and the strings just won’t match?

Or you know the city of Albuquerque is in the program, but
you can't spell it? Or you don’t know if you're supposed to add
the state? And if you do need to type the state, should you use the
two-letter abbreviation? Is New Mexico supposed to be NE or
NM?

In short, if a program has to search for a string match, you can
solve all these problems by adding a Truncating Search Routine.

Let’s look at the example program. Here a user enters the
name of a city, and the program gives the elevation. If no match is
found for the user’s request, rather than having line 120 report
“CITY NOT FOUND"”: GOTO 70, the program performs a trun-
cating search (lines 160 to 210).

The routine searches only that first part of each City string
equal to the length of the Request string. If there is no match, it
shortens the end of the Request string by one letter and searches
the shorter portion of each City string. It will continue to shorten
and search until it finds a match or runs down to two letters. It
will print all matches found for that length Request string.

Suppose the user gets the two-letter abbreviation of Maine
wrong. If the user requests PORTLAND MA rather than ME or
types out the complete word “MAINE”, it will still find PORT-
LAND ME. If the user requests just PORTLAND, the search will
print both PORTLANDs. As for our Albuquerque problem, the
word can be badly misspelled and still be found. A user who
understands the Truncating Search would just enter ALBU. It's a
very handy and user-friendly routine, especially for poor
spellers.

159

qE;Uﬂ"ﬂes

Data Search Demonstration

159

le0
170
180

190
200
210
220
250
260
270
280

REM PICK CITY ~- PRINT CITY AND ELEVAT
ION
NUMBER OF CITIES=5
DIM CITYS$(NUMBER OF CITIES),ELEVS (NUM
BER OF CITIES)
FOR I=1 TO NUMBER OF CITIES
READ CITYS$(I),ELEVS(I)
NEXT
T=@ :PRINT”ENTER CITY NAME"
INPUT REQUESTS$
FOR I=1 TO NUMBER OF CITIES
IF REQUESTS$=CITYS$(I) THEN PRINT CITY
$(1I),ELEVS$(I):GOTO 790
NEXT
REM{7 SPACES}NOTHING FOUND
REM{2 SPACES}SEARCH SIMILAR SPELLING
REM
PRINT"SEARCHING FOR SOMETHING SIMILA
Rll
FOR Z=LEN(REQUESTS$) TO 2 STEP -1
FOR I=1 TO NUMBER OF CITIES
IF LEFTS$(REQUESTSS,Z)=LEFTS${(CITYS$(I)
,Z) THEN PRINT CITY$(I),ELEVS$(I):T=1
NEXT I
IF T THEN 70
NEXT 2
PRINT"CITY NOT FOUND":GOTO 70
DATA ALBUQUERQUE NM, 4500
DATA BISHOP CA, 4100
DATA PORTLAND MA, 45
DATA PORTLAND OR, 37

290 DATA THE DALLES OR, 85

160

ccccccccccCccCccccCccCcccccccccccccccccccccteceCcCcccacocw

L

JIJ2DI3I3I3D53D5I3I3I3I3I23I7I3I3I3I93I53I3I3I393I7II3I3953I3I3I3I3I2I0D)

Utilities 6

Music Kevyboard

Bryan Kattwinkle

The 64 has amazing sound capabilities. This program will allow you to
experiment with sound by creating a music synthesizer with your 64.

“Music Keyboard” allows convenient experimentation with the
64's built-in synthesizer, the SID chip. With this program, the 64's
synthesizer becomes almost as easy to adjust as a professional
synthesizer with knobs to control and buttons to push.

Using the computer’s keyboard as your control panel, the top
two rows become the piano keys, while the function keys contro
the octave and waveform. The attack, decay, sustain, release,
length, filter, band pass, resonance, and pulse functions are con-
trolled by pressing the appropriate key as showr on the screen.
The program will inform you of the present value of any of the
functions you may wish to change.

The Functions i
The filter and pulse rates can vary from 1 to 4095, The band pass
can be varied between 1 and 7 and will interact with the filter. All
the other functions will have a value from 1 to 15.

A quick review of each function:

o Attack is the rate at which a note rises to its maximum

volume.,

¢ Decay is the rate at which a note falls to the sustain level.

¢ Sustain allows you to extend a note. _

* Release allows you to free a note once it is sustained.

¢ Length is the number of seconds before a note is released
(use .5 for ¥» second). .

¢ Pulse affects only the pulse waveform (F6) by changing its
tone quality.

e Filter will cut off the highs orlows of a wave.

¢ Band pass cuts off both the highs and lows of a wave.

¢ Resonance has little audible effect.

161

1‘5;Ut“ﬂk5

Waveform refers to the shape of the sound wave: triangle
(F2), sawtooth (F4), pulse (F6), or noise (F8).

Try experimenting with the different functions to see what
kinds of sound you can create with your 64. Try changing the
functions to simulate different instruments such as a piano, flute,
or drum. When you really feel you've got the hang of it, try com-
posing a tune.

Music Keyboard

99 REM -----— MUSIC KEYBOARD -—----

100 GOSUB 10@@{4 SPACES}:REM SET UP DISP
LAY

192 PRINT TAB(12); "...THINKING..."

118 S=13*4096+1024 :REM BASE FOR POKES

120 FOR I=@ TO 28 :POKE S+I,d :NEXT

130 DIM F(26) :REM FREQUENCY TABLE

140 F1=7040 :Tw=21(1/12) :REM CONSTANTS

150 FOR I=1 TO 26 :F(27-I)=F1*5.8+30 :Fl
=F1/TW :NEXT

160 DIM K(255) :REM KEY TABLE

170 K$="Q2W3ER5T6Y7UIQ00P@-*&T"

180 FOR I=1 TO LEN(K$) :K(ASC(MIDS$(KS,I)
))=I :NEXT I

208 GOSUB 1200{4 SPACES}:REM SET UP ADSR

210 FOR I=0 TO 14 STEP 7 :POKE S+I+5,0 :
POKE S+I1+6,8{2 SPACES}:REM TONES OFF

220 WV=32:W=1:M=2:0C=3:HB=256:Z=0:PY=1

225 PRINT "{uP}"; TAB(12); "{14 SPACES}"

235 REM ENTER HERE AFTER PARAM CHANGE

240 FOR I=@ TO 2{4 SPACES}:REM PULSE PAR
AMS

245 POKE S+2+1I*7,P(8) AND 255

25@0 POKE S+3+I*7,P(8)/256

255 NEXT I

260 POKE S+24,P(7)*16 + 15 :REM BP,VOL

270 POKE S+23,P(9)*16 + 7 :REM RES,FV

275 POKE S+22,P(6)/16 :REM FILTER HI

276 POKE S+21,P(6) AND 15 :REM LO

280 AV = P(1) * 16 + P(2) :REM ATT/DEC

285 SV = P(3) * 16 + P(4) :REM SUS/REL

309 GET A$:IF A$="" THEN 300

310 FR=F(K(ASC(A$)))/M :T=V*7+S
{9 SPACES}:IF FR=Z THEN 500

315 IF PY=1 THEN V=V+1 :IF V=3 THEN V=0

320 POKE T+6,Z :REM CLEAR SUSTAIN/REL

325 POKE T+5,% :REM CLEAR ATTACK/DECAY

330 POKE T+4,9 :REM TURN OFF SOUND

162

cCcCcCccCccCccCccCcCccCcrccccrcccrcccecccccccccccccccecccecccccecceccec

DIJ2D3D5D3D5D3D53)33I3)3I3D53I3D533I3DI3D23I3I3D533I3I3)1)I3)3)D)

Uﬂ"ﬂes‘ii

340 POKE T,FR-HB*INT(FR/HB) :REM LOW FR

350 POKE T+1,FR/HB :REM SET HI FREQ

360 POKE T+6,SV{4 SPACES}:REM SET SUS/RE
L

365 POKE T+5,AV{4 SPACES}:REM SET ATT/DE
C

370 POKE T+4,WV+l :FOR I=1 TO 16@*P(5)

375 GET A$:IF AS$="" THEN NEXT I

380 POKE T+4,WV :IF A$<>"" THEN 310

385 FOR I=1 TO 1+(P(4)/2.2)14

390 GET AS$:IF AS$<>"" THEN 310

395 NEXT I :POKE S+4,%Z :POKE S+11,%Z :POK
E S+18,%

409 GOTO 300

508 IF A$="{F1l}" THEN M=1 :0C=4 :GOTO 30

510 ?F A$="{F3}" THEN M=2 :0C=3 :GOTO 30
520 ?F A$="{F5}" THEN M=4 :0C=2 :GOTO 30
530 ?F A$="{F7}" THEN M=8 :0C=1 :GOTO 30
540 ?F A$="{F2}" THEN W=0 :WV=16 :GOTO 3
550 ?g A$="{F4}" THEN W=1 :WV=32 :GOTO 3
560 ?g A$="{F6}" THEN W=2 :WV=64 :GOTO 3
579 gggA$="{F8}" THEN W=3 :WV=128 :GOTO

580 IF A$<>" " THEN 640

585 PY=1-PY :IF PY<>@ THEN 300
590 POKE S+11,@ :POKE S+18,0 :V=0
595 GOTO 399

600 N=0

610 IF A$="A" THEN N=1 :MX=15
620 IF AS$="D" THEN N=2 :MX=15
630 IF A$="S" THEN N=3 :MX=15
640 IF A$="Z" THEN N=4 :MX=15
650 IF A$="L" THEN N=5 :MX=15

660 IF A$="F" THEN N=6 :MX=4095

670 IF A$="B" THEN N=7 :MX=7

680 IF A$="K" THEN N=8 =4095

690 IF AS$="N" THEN N=9 :MX=15

783 IF N=0 THEN 300

758 PRINT "{uP} "; PS$(N); " ="; P(N);
755 PRINT "{2 SPACES}NEW VALUE "“;

760 GET A$:I=P(N) :INPUT I

778 PRINT "{urp}{38 SPACES}"

163

‘iiuﬂﬂﬂes

786 IF (1<@) OR (I>MX) THEN PRINT "{UP}
MAXIMUM =";MX; :GOTO 755

785 P(N) = I

790 GOTO 248 :REM RE-CALCULATE PARAMS

1000
1002
1063
10@5
10887

1010

1815

1020

1830

1040

1250
1069

1065
1874
1875
1080
1082
1084
1485
1890

1200
1210

164

REM ---DISPLAY SETUP SUBROUTINE---
C=29{2 SPACES}:REM COLUMN

POKE 53280,PEEK(53281) :REM BORDER
PRINT"{CLR} " : PRINT " "~

PRINT "{2 SPACES}2 3{3 SPACES}5 6 7
{3 sSPACES}9 @{3 SPACES}- &"; TAB(C
); "{4 SPACES}F1cCEksi"

PRINT " {Rvs} {RIGHT} {RIGHT]} B
{RIGHT} {RIGHT} {RIGHT} B {RIGHT}
{RIGHT} B {RIGHT} {RIGHT]J "; TAB(C)
; "{oFr}Ea3icr2{3 SPACES}B"

PRINT " {RVS} {RIGHT} {RIGHT]} B
{RIGHT} {RIGHT} {RIGHT} B {RIGHT}
{RIGHT} B {RIGHT} {RIGHTJ} "; TAB(C)
;: "{oFF}B{3 SPACES}F3CEW3"

PRINT " TRvs} {RiGHT} {RIGHT] B
{RIGHT} {RIGHT} {RIGHT} B {(RIGHT}
{rRIGHT} B {RIGHT} {RIGHTJ] "; TAB(C)
; "{OFF}EQ3ICF4{3 SPACES}B"

PRINT " {RVS} BB BBRBBBBBBB
B "; TAB(C); “{OFF}B{3 SPACESIF5C
Ewg n

PRINT " {RVS}QBWBEBRBTBYBUBIBOBPR@B

{3 spPacEs}B"
PRINT TAB(C); "B{3 SPACES}F7CEw3"
PRINT "{4 SPACES}{RVS} SOLO / POLYP
HONIC {OFF}": TAB(C): "EQ3ICF8

{3 SPACES}B"

PRINT TAB(C); "B{3 SPACES}OCTAVE"
PRINT "{RVS}A{OFF} ATTACK{5 SPACES}
{RVS}S{OoFF} SUSTAIN"; TAB(C-4)}; "WA
VEFORM"

PRINT " {RVS}D{OFF} DECAY{6 SPACES}
{RVS}IL{OFF} LENGTH"

PRINT “{2 SPACES}{RVS}Z{OFF} RELEAS
E{4 SPACES}{RVSIN{OFF} RESONANCE"
PRINT "{3 SPACES}{RVS}F{OFF} FILTER
{5 SPACES}{RVS]}K{OFF} PULSE RATE"
PRINT "{4 SPACES]}{RvVS}B{OFF} BAND P
ASS"

PRINT "“{3 DOWN}"

RETURN

REM -- SETUP A-D-S-R SUBROUTINE --
DIM P(9) :DIM P$(9)

‘_C/CCCCC‘lCCCCCCCCCCCCCCCCCCCC»CCCCCCCCCC‘

'))))))))))))))))))))))))))))))))))))

1212
1214
1216
1218
1220
1222
1224
1226
1228
1230

Utilities 6

P$(1)="ATTACK" :P(1)=2
PS$S(2)="DECAY" :P(2)=4
P$(3)="SUSTAIN" :P(3)=4
P$(4)="RELEASE" :P(4)=10
P$(5)="LENGTH" :P(5)=1
P$(6)="FILTER" :P(6)=500
PS$S(7)="BAND PASS" :P(7)=7

P$(8)="PULSE RATE" :P(8)=400
P$(9)="RESONANCE" :P(9)=1
RETURN

165

6 Utilities

Programmer’s
Alarm Clock

Bruce Jaeger

Translated for the 64 by Gregg Peele

You'll never work too long on your 64 if you use “Programmer’s Alarm
Clock.”

Have you ever sat down at your computer after dinner to “touch -
up that program a bit,” only to find again that you've lost all no-
tion of time and you've just missed the first half of that movie
you've waited for all week? Or you're supposed to pick someone
up at 6:00, and by the time you look up from the screen it’s 7:30?
Me too!

That’s why “Programmer’s Alarm Clock” came about. When
you first sit down at your computer, LOAD and RUN the pro-
gram. It will ask you for the alarm time and current time of day.
You must enter the time based on a 24-hour clock. The following
chart will help you in entering the times.

HHMMSS

000500 12:05AM (and no seconds)

010030 1:00AM (and 30 seconds)

103045 10:30AM (and 45 seconds)

120000 12 noon (and no seconds)

133030 1:30PM (and 30 seconds)

180000 6:00PM (and no seconds)

233000 11:30PM (and no seconds)

As soon as you set the time of day, the clock begins counting
toward the alarm time. When the time of day equals the alarm
time you selected, a beep will sound and the word “QUIT” will be
printed on the screen.

Since the internal clock is affected by using the cassette, the
program will give unpredictable results if you use the cassette

unit. Disk operation and TOOLKIT do not seem to affect the clock.

This program is a good one to study if you are interested in

166

ccccCccocCccccccCccCccCccccCcoCcCcCcCcccccoccccaccccccccec

D53D3I339I33)33)3)3)3I3I3I33I3I3I3I3I3I3I33I3I353I3I3I3)3I3I)D)

Utllitles 6

learning about simple machine language and interrupt-driven
routines. Since the program is so short, it is fairly simple to
understand and adapt for use in other programs.

Programmer’s Alarm Clock

80 S=54272:FORR=STOS+24 :POKER, @ : NEXT

95 GOSUB195

100 PRINT"{CLR}SET ALARM TIME"

110 PRINT"{DOWN}(HHMMSS)"

120 INPUT"{DOWN}{2 SPACES}090000{8 LEFT}
"7TI$

130 POKE956,PEEK(160)

140 POKE957,PEEK(161)

150 PRINT" {DOWN}INPUT TIME OF DAY"

160 PRINT"{DOWN}(HHMMSS)"

178 INPUT"{DOWN}{2 SPACES}@00000{8 LEFT}
"’TI$

180 PRINT"{CLR}":SYS49152:END

195 FORG=49152T049284: READE: POKEG, E : NEXT
: RETURN

200 DATA 120, 173, 20, 3, 141, 186, 3, 1
73, 21, 3, 141

219 DATA 187, 3, 169, 25, 141, 20, 3, 16

9, 192, 141
220 DATA 21, 3, 88, 96, 173, 160, @, 285
., 188, 3
239 DATA 208, 92, 173, 161, @, 205, 189,
3, 208, 84
249 DATA 169, 145, 141, 17, 4, 169, 149,
141, 18, 4
250 DATA 169, 137, 141, 19, 4, 169, 148,
141, 20, 4

260 DATA 169, 161, 141, 21, 4, 169, 15,
141, 24, 212

270 DATA 169, 9, 141, 5, 212, 169, 6, 14
‘1, 6, 212

280 DATA 169, 34, 141, 1, 212, 169, 74,
141, 9, 212

290 DATA 169, 33, 141, 4, 212, 169, 255,

led, 255, 136

309 DATA 208, 253, 202, 208, 248, 169, 0
., 141, 24, 212

310 DATA 124, 173, 186, 3, 141, 20, 3, 1

73, 187, 3

320 DATA 141, 21, 3, 88, 76, 49, 234, 13
4, 223, 32

330 DATA 223, @, 223, 32, 223, 32, 223,
32, 223, @

167

20000000 D OO0 0T00IDIVIODIDODTD

0000000000000 0000000000000O0O0O0COCPOKPROOY

20000000 D OO0 0T00IDIVIODIDODTD

DIED T 15 T T T T T 2 T TN T I B T I IS I IR0 D D I I B0 T N0 ID R0 I I I I I IO IR

A Window
on Memory

Gregg Peele

Ready to actually look at the 64 memory? This article will take you on a
visual tour of your computer’s memory.

Our brain’s memory is where we store information for future use.
Like the human brain, a computer has memory also. And like the
human brain, a computer stores information for future use. But
unlike our memory, a computer does not forget what it has in its
ROM memory. The computer will forget what it has in its RAM
memory when you turn it off.

Computers’ memories allow them to store data and pro-
grams. Computers are designed so we can manipulate and
change much of the data. One of the most significant features of
the Commodore 64 is its large memory capacity. On power-up,
the 64 allows the user 38,000 bytes to use with BASIC and over
40,000 bytes for use with machine language. It is this memory that
we will be actually looking at in this article.

The Nature of Memory
Nybbiles, Bits, and Bytes

Memory is organized into several structural levels, each based on
the binary (base two) number system. At the lowest level, a com-
puter’s memory consists of units called bits (from binary digits).
Bits can be in only one of two states — on or off: One bit can thus
define only two possible conditions. This seems extremely
limited until you consider that two bits can define four different
conditions (two to the second power), three bits can define eight
different combinations (two to the third power), and four bits can
describe 16 different combinations.

Four bits seen as a unit are called a nybble. If you want to
change the color of the screen border or background on the 64,
you can choose from among 16 different colors. The POKE com-

171

7 Memory

mand in BASIC allows you to alter a nybble in location 53281 for
screen and a nybble in location 53280 for background. Altering
these two nybbles provides the necessary color combinations for
all 16 colors.

If you utilize eight bits as a unit — called a byte — you can de-
scribe a total of 256 unique numbers. The byte is the most useful
unit within the Commodore 64. Each letter, number, or graphics
symbol has its own pattern of eight bits. This pattern provides the
unit for most functions which occur within the 64. For instance,
the keyboard initiates the pattern 00000001 when you press the
letter A. This pattern of bits travels through the computer and is
stored in a byte of screen memory. This byte is then decoded into
the familiar symbol A which appears on the screen.

A single byte can hold any number from zero to 255. A
unique character can be made with each of these values; thus it is
possible to represent a value within a byte by using a single char-
acter. This ability will come in handy as we try to decipher the
contents of memory in our memory view program.

Pages and Kilobytes

The next structural level within memory consists of collections of
bytes. One such level is the page, consisting of 256 bytes. There are
256 pages of memory within the Commodore 64 (256*256 =65536
bytes). Four pages (2564 =1024) make up one K or kilobyte. The
word kilobyte refers to 1024 rather than 1000 bytes since 1024 is two
to the tenth power. A 64K computer has 64*1024 bytes or 65536
bytes.

Kinds of Memory

Memory may have many different functions. From a practical
point of view, these functions can be separated into three differ-
ent categories: memory available for user program space, mem-
ory used exclusively by the operating system (unavailable to the
user), and memory which provides a connection between the
computer’s operating system and the user or his or her programs.
The 64 has the unique ability to “shift” function of its memory
space from one of these functions to the other. (See Jim
Butterfield’s “Commodore 64 Architecture,” the next article in
this book.) This chapter will be concerned with the memory func-
tions of the computer in its normal configuration.

172

ccccccccccccccccCcccoccCccccccccccccccccccccccccceccecceccec

ED DI TS TS D 15 T N0 15 T T 10 T T T T TS 0 T T T T T T b T T T A N A0 T T T I

Memory 7

A Picture in Memory

Before embarking on our tour of the Commodore 64's memory,
type in, SAVE, and RUN the program at the end of this section. .
The screen should be blank except for the words “LOADING
MAZE? While the maze is loading, get a pencil or pen and pre-
pare to take a few notes. In about one minute you will see a screen
full of what may appear to be random characters.

These characters represent bytes in memory. In the upper-left
corner of the screen is the decimal number of the first location
shown; this number should be flashing. For example, if the flash-
ing number is 100, then the first character shown is the character
equivalent to what is stored in byte 100. Notice that the first few
characters in the upper-left corner share the same space with the
decimal number.

If you press the F1 or F3 keys, you can scroll backward and
forward through memory. Use the screen display codes on pages
132-34 in your user’s manual to decipher the numbers which rep-
resent the characters on the screen.

The Journey

Our journey begins at page zero. Move the display up or down
until the number at the upper-left corner of the screen is at or near
zero. Page zero takes up about one-fourth of the screen. Locations
161 and 162 are the most active locations visible in this area. These
locations provide the internal clock for the system. Location 162
cycles through 256 times for each time that 161 changes.

Just below locations 161 and 162 on the screen are the loca-
tions which hold the value for the last key pressed: locations 197
and 203. These locations will change if you press a key. Press a
few keys and watch the values change. The characters produced
do not match the characters on the keys, but they do produce
unique values for each key pressed.

Location 198 contains the number of keystrokes in the key-
board buffer. If you press many keys at one time, then this num-
ber increments to hold the keystroke values until they can be pro-
cessed. Then, as the keystrokes are processed, the buffer grad-
ually empties, and the value in location 198 returns to zero.

Page zero contains many locations specifically used by the
operating system. Caution should be the rule when changing
locations in this area.

173

7 Memory

The Stack

As you move forward within memory, the next activity that you
see occurs in an area known as the stack. This area holds impor-
tant information for both BASIC and machine language pro-
grams. The BASIC command GOSUB sends a program to the line
indicated. The stack is where the computter stores the necessary
information it needs to RETURN to the proper part in the pro-
gram. Since this program contains subroutines which are repeat-
edly executing, the contents of the stack also display a pattern of
repeated values.

Continue forward until the screen contains no activity. When
the value in the upper-left corner is around 820, you are looking at
the cassette buffer. The cassette buffer provides a good place for
machine language programs. Since it is unused by the operating
system except for tape input and output, values can be safely
stored in and retrieved from this section of memory. If you scroll
past the cassette buffer, you will find screen memory. Screen
memory provides an interesting phenomenon: like a mirror,
screen memory is now looking at itself. This phenomenon pro-
duces a delayed reaction time while the program copies the new
contents of screen memory to itself.

Past screen memory, the contents of the BASIC program are
visible. If you look closely in this area, you can see bits and pieces
of the BASIC program. The BASIC commands are unrecognizable
in their normal form but are “tokenized” into unique numbers.

At the end of our relatively small BASIC program, a pattern of
characters continues until it ceases around 32768. Here,] have
placed a simple interface between the user and memory. Hit the
CLR key. The screen should freeze for a few moments. Continue
forward in memory until you find a clear screen. Now type a few
words and watch them appear on the screen. If you wish to de-
lete, merely use the delete key. The cursor control keys work, but
no visible cursor can be found. This display of typed characters
demonstrates how memory is used to store data. Word processors
utilize memory in just this fashion.

The Journey Continues

Continue forward in memory until the pattern of memory
changes to random characters. This is the end of free memory for
user BASIC programs. The next area in memory contains the
BASIC ROM. This area begins at 40960 and contains the machine
language program which runs the BASIC language. If you hit

174

ccccccccCccoccCccCcccCccccCcCccCcCcCccCccCccoCcCcccoccCccec

DI R D S D IS A IS I RS IS S N AR A ED ED ED A ED D RS RS RS ED ED RS RN RS RO RS NS ED BB

Memory 7

SHIFT and the COMMODORE key simultaneously to put the
machine into lowercase mode, then you may even see some of the
error messages that BASIC utilizes.

Continue even further to around 49152, and you will see the
maze that was generated while you were wgiting for the program
to begin. Use the lower two function keys to center the maze and
then scroll through it. After 49152 ($C000) there are four kilobytes
of user area available to the programmer. The first part of this area
is where the machine language for this program resides. The rest
of it is used for the maze. Since the 64 contains large quantities of
RAM available for programs or other data, you can place any sort
of design or playfield into memory and scroll through it. Think of
the fantastic adventure games you could create.

Nearing the End of the Journey

Continue past 50000 and we enter the area of input/output de-
vices. First, the 6566 chip with its periodic raster scans which con-
stantly change. Further within the code, the next obvious area of
change is the color RAM. The first nybble of each byte in this area
contains the color for the screen, while the other nybble contains
random values. This produces an almost hypnotic effect on the
screen as the values change continuously. (Due to a change in
operating systems, some 64s may not contain random values in
the upper nybble of color memory.) The last area of memory is
the Kernal ROM (57344-). Change to lowercase and you can see
the Commodore logo which is on the screen upon power-up. I/O
(Input/Output) messages are also found in this area.

If you continue further than 65536, then your trip begins
again back at zero page.

We have made the journey through over 65,000 bytes of mem-
ory and have seen how the operating system interacts with the
user and how the user can use the memory as a palette for his or
her own designs. I hope our trip has provided you with new
ideas for better use of the vast quantities of memory on the Com-
modore 64.

A Look at Memory

1 POKE53281,1:GOSUB190:GOSUB30d

2 X=@:POKE191,0:POKE55,0:POKE56,128:R=33
924

3 IFPEEK(191)=2550RPEEK(191)=@THENPOKE19
1,PEEK(191)

175

7 Memory

5 GOSUB10@0
19 A=PEEK(197):IFA=4THENX=X+40:1FX+40>25
5THENX=X+40-256 : F1=1 : GOTO20
11 A=PEEK(197):IFA=3THENX=X+1:IFX+1>255T
HENX=X+1-256:F1=1:GOT020
12 A=PEEK(197):IFA=6THENX=X-1:IFX+1<@THE
NX=X+1+256 : F1=1: GOT0O20
13 A=PEEK(197) :IFA=5THENX=X-40:IFX-40<8T
HENX=256+X-40:B1=1:G0T025
20 IFPEEK(191)<>255THENIFA=4ANDF1=1THENZ
=1:POKE191,PEEK(191)+%:F1=0:G0TO28
21 IFPEEK(191)=255THENIFA=4ANDF1=1THENZ=
1:POKE191,PEEK(191)-256+Z:F1=0:GOT028
22 IFPEEK(191)=@THENIFA=5ANDBl=1THENZ=-1
:POKE191,PEEK(191)+256+%:B1=0:GOT028
25 IFPEEK(191)<>@THENIFA=5ANDBl1=1THENZ=-~
1:POKE191,PEEK(191)+Z%:Bl=0
28 IFPEEK(191)=255ANDPEEK(2)=255THENPOKE
191,@:POKE2,0
35 IFX>255THENX=255
36 IFX<@THENX=0
39 POKE2,X:SYS49152
4@ PRINT"{HOME}";PEEK(191)*256+PEEK(2);:
GOTO3
199 FORR=49152T049152+65 :READJ : POKER, J:N
EXT : RETURN
200 DATA 165, 2, 133, 251, 165, 191, 133
, 252, 169, @, 133
210 DATA 253, 169, 4, 133, 254, 162, 4,
177, 251, 145
220 DATA 253, 200, 208, 249, 230, 252, 2
39, 254, 202, 208
239 DATA 242, 169, @, 133, 251, 169, 216
, 133, 252, 162
240 DATA 4, 169, @, 145, 251, 200, 208,
251, 230, 252
25¢ DATA 202, 208, 246, 96, @, 255, 255,
g, 9, 255
260 DATA 255, 44, 1@, 255, 255
39@ DIMA(3)
319 A(B)=2:A(1)=-80:A(2)=-2:A(3)=80
320 WL=160:HL=32:5C=49658:A=SC+81
330 PRINT"{CLR}{BLK}LOADING MAZE (C. BON
D) "
340 FORZ=SCTOSC+40 :POKEZ, 160 :NEXT
35¢0 FORM=SCTOSC+3072:POKEM, 164 :NEXT
360 FORM=SCTOSC+3072STEP40 :POKEM, 32 : NEXT
370 FORM=SC+39TOSC+3072STEP40:POKEM, 32:N
EXT

176

GeccccccccccccocccCcccccccccccCccccccccccocccccccccceccecceccec

D IPIBIRIR IR IR IR IR IR IR I P ED D D NS TS 10 T I I T Jb b J0 TN0 JD I [0 D ID IR0 D I

410
420
430

440
450

500
510
10006
1010
1011

1012
1013
1014
1015
1916

1817

1020
1938

1040

POKEA, 4
J=INT(RND(1)*4):X=J
B=A+A(J) : IFPEEK(B) =WLTHENPOKEB, J : POK
EA+A(J)/2,HL:A=B:GOT0420
J=(J+1)*-(J<3) : IFJ<>XTHEN430
J=PEEK(A) : POKEA, HL : IFJ<4THENA=A-A(J)
:GOT0420
J=2
RETURN
REM
GETDS : IFDS=""THEN1040
IFD$=CHRS (20) THENPOKER, 32 : POKER+1, 3
2:R=R~-1:GOTO1040
IF D$=CHRS$ (157)THEN:R=R-1:G0OT01040
IF D$=CHRS (29)THENR=R+1:GOTO1040
IF D$=CHRS$(145)THENR=R-41:G0T01240
IF D$=CHR$(17)THENR=R+39:GO0T01040
IF D$=CHR$(133)ORD$=CHR$ (134)THEN1g
40
IF D$="{CLR}"THENFORT=RTOR+1%24:POK
ET,32:NEXT:GOT01040
E=ASC(D$) : IFE>64THENE=E-64
R=R+1 : IFR<40959ANDR> 3276 8STHENPOKER,
E
RETURN

177

: 7 Memory

Commodore 64
Architecture

Jim Butterfield

This article allows you a peek inside the structure of the Commodore 64
and demonstrates some of its extraordinary features.

Let’s build a Commodore 64 — at least in principle. We'll put the
memory elements together and see how they all fit.

RAM — 64K
We start with a full 64K of RAM. That’s the maximum amount of
memory that the 6510 microprocessor chip can address.

If we stopped at this point, we'd have problems. First of all,
the screen is fed from memory, but it would contain nonsense.
We'll need to put in two extra things: a video chip, and a character
generator for the video chip to use. Then again, we have no pro-
grams of any sort, and no way to get them into RAM.

Building It Out
Here’s what we will do: we'll add the extra features we need by
piling them on top of RAM. That way, RAM will be “hidden” — if
we look at that part of memory, we will see the new elements. But
we'll include a set of switches which will allow us to “flip away”
the overlaying material and expose the RAM beneath any time we
choose. More about these later.

Keep in mind: the RAM is still there, but it's hidden behind
the new chips.

Input/Output
We'll take the block of memory at hexadecimal D000 to DFFF and
reserve it for our interface chips. These include two CIAs for
timing and input/output, a SID chip for sound, and a video chip
to deliver a screen to the television set.

About the 6566 video chip: its “registers” are located at hex
D000 to DO2E; these locations control how the chip works. But
when the video chip needs information to put on the screen, it

178

cccoccccccccCcccccccccccccccccCcccccccccccrccccccccceecccoc

SIS D 15 X5 TS T5 T 15 T 15 J5 5 T 1 T 20 T 20 N T JD T0 20 T JD B0 10 L I T I D I I

Memory 7

gets it directly from RAM memory. For example, the usual place
for the screen characters is hex 0400 to 07E7. There’s a distinction
here: we control or check the chip by using its register addresses,
but the chip gets display information from almost anywhere it
likes.

The video chip needs to look at RAM to get characters for the
screen. It also needs to look somewhere else to get a “picture” of
each character; this allows it to light up the individual dots, or
“pixels,” that make up a character. There needs to be a table which
gives details of each character: what it looks like, and how to draw
it. This table is called the Character Base Table; hardware types
may just call it the character generator.

We could put this Character Base Table in RAM and point the
video chip to it. In fact, we are likely to do this if we want to define
our own graphics. But on a standard 64, we'd just as soon have
these characters built-in, in other words, we'll put the Character
Base Table into ROM memory.

Now comes the tricky bit. We will put our ROM character
base (it’s 4K long when we allow for both graphics and text) into
locations hex D000 to DFFE. Wait a minute! We just put our inter-
face chips there!

No problem. We just pile the memory elements higher. The
ROM character base sits above the RAM, and then we put the I/O
on top. Any time we PEEK these locations, we'll see the I/O. The
video chip, by the way, has a special circuit allowing it to go direct-
ly to the ROM character base, so there’s no confusion there.

If you wanted to look at the character ROM, you'd have to flip
it to the top somehow. It turns out you are allowed to do this:
clearing bit two of address one will do the trick. But be sure you
disable the interrupt first, or you're in serious trouble. After all,
the interrupt routines expect the I/O to be in place. Bit 2 of
address 0 is called the CHAREN control line.

Let’slook at a small part of the character base — in BASIC! Be
sure to do this on a single line, or as part of a program. First, to

- turn the interrupt off and back on again:

Now, while the interrupt is disabled, flip in the character
base:

POKE 56333,127:POKE 1,51:..tPOKE 1,55:POK
E 56333,129

179

7 Memory

Finally, let's PEEK at part of a character:

POKE 56333,127:POKEl, 51 :X=PEEK(53248) : POK
E 1,55:POKE 56333,129:PRINT X

You should see a value of 60; this is the top of the @ character.
To see its pixels, we would write it in binary as 00111100 and to see
the next line of pixels we would repeat the above code with
X =PEEK(53249).

Remember that this is ROM; we can PEEK but can't POKE. If
we wanted a new character set, we would point the video chip to
some new location.

Kernal ROM

To allow the computer to work at all, we must have an operating
system in place. The 64's system is called the Kernal: it's in ROM,
and placed above RAM at addresses $E000 to $FFFF.

We can flip the Kernal away and expose the RAM beneath by
clearing bit one of address one. Be very careful! The computer
can't exist for long without an operating system. Either put one
into the RAM or be prepared for a crash.

Even if you flip out the Kernal for a moment, you must be
sure to disable the interrupt. The interrupt vectors themselves are
in the Kernal; if the interrupt strikes while the Kernal is flipped
away, we'll have utter confusion.

Flipping out the Kernal automatically flips out BASIC as well.
So bit one of address one, called the HIRAM control bit, switches
out both ROMs. We can switch BASIC alone, however, by using
bit zero — the LORAM control bit.

BASIC ROM

To run BASIC, we have another ROM which is placed above RAM
at addresses $A000 to $BFFF. We may flip it out by clearing bit zero
(mask one) of address one.

This is a very useful thing to do. When a word processor,
spreadsheet calculator, or other program is in the computer, we
may not need BASIC at all. Flip it away, and we have extra mem-
ory for our program.

Do Your Own BASIC

We can do even more. If we copy BASIC — carefully! — from its
ROM into the RAM behind i, we can get BASIC-in-RAM — a
BASIC we can change to meet our own needs.

180

cccceccoccCccccccccccrccceccccccccccccccccccccccceccccccceccecceccc

37)5)5)59393)395D53)393I3I3DD1DI33I3I313D3I3I3I3I33I3I2I2D0)0)

Memory 7

Let’s do this, just to show how. Type the following program
into your Commodore 64:

100 FOR J=4096@ TO 49151
110 POKE J, PEEK(J)
120 NEXT J

Run the program. It will take a minute or so. While it's run-
ning, let’s talk about that curious line 110. What's the point in
POKEing a value into memory identical to what's already there?
Here's the secret: when we PEEK, we see the BASIC ROM; but
when we POKE, we store information into the RAM beneath.

The program should say READY; now we have made a copy
of BASIC in the corresponding RAM. Flip the ROM away with
POKE 1,54. If the cursor is still flashing, we're there. BASIC is
now in RAM. How can we prove this?

Let’s try to fix one of my pet peeves (PET peeves?). Whenever
I try to take the ASC value of a null string, BASIC refuses. Try it:

PRINT ASC(” ")
.. will yield an 2ILLEGAL QUANTITY ERROR.

Now, it’s my fixation that you should be able to take the ASCII
value of a null string, and have BASIC give you a value of zero.
(Don't ask why; that would take a couple more pages.) By peering
inside BASIC, I have established that the situation can be
changed by modifying the contents of address 46991. There is
usually a value of eight there. Normally, we couldn’t change it: it’s
in ROM. But now BASIC is in RAM, and well change the ASC
function slightly by:

POKE 46991,5

Now try PRINT ASC(” ”); it will print a value of zero. In every
other way, BASIC is exactly the same.

Just for fun: you can change some of BASIC's keywords or
error messages to create your own style of machine. For example,
POKE 41122,69 changes the FOR keyword ; you must type the
new keyword to get the FOR action. Say LIST and see how line
100 has changed. Alternatively, POKE 41230,85; now you must
say LUST instead of LIST.

You may go back to ROM BASIC at any time with a POKE
1,55.

181

7 Memory

Combination Switch

When we use the HIRAM control to flip out the Kernal, BASIC
ROM is also removed. Is there any point in flipping both HIRAM
and LORAM? If you do, the I/O and Character Generator also dis-
appear, giving you a solid 64K of RAM. You can't talk to anybody,
since you have no I/O, but you can do it.

We have named three control lines: CHAREN, which flips
1/O with the Character Base; HIRAM, which flips out Kernal and
BASIC ROMs; and LORAM, which controls BASIC. In my
memory maps I've called them D-ROM switch, EE-RAM switch,
and AB-RAM switch in an attempt to make them more
descriptive.

But there are two other control lines, and your program can-
not get to them. They are called EXROM and GAME and may be
changed only by plugging a cartridge into the expansion slot.
When these lines are switched by appropriate wiring inside the
cartridge, the memory map changes once again.

But that’s another story.

For the first time, the machine’s architecture is at your
disposal. If you don’t like BASIC, throw it out and replace it with
your own. The same is true of the Kernal operating system; it's ac-
cessible or replaceable.

New horizons are opening. We'll need to do a lot of traveling
to reach them.

Commodore 64 Memory

Addresses shown in hexadecimal.

182

gccccccccccCccccCccccccrccccccccccccrccccccceccccccecceccecceccecc

93325D22232)5D2D5D03939393D3D2)13)33I32D253I333I3I3I3I3I)I)

Memory 7

commodore 64
Memory Map

Compiled by Jim Butterfield

Hex Decimal
0000 0
0001 1
0003-0004 3-4
0005-0006 5-6
0007 7
0008 8
0009 9
000A 10
000B 11
000C 12
000D 13
000E 14
000F 15
0010 16
0011 17
0012 18
0013 19
0014-0015 20-21
0016 22
0017-0018 23-24
0019-0021 25-33
0022-0025 34-37
0026-002A 38-42
002B-002C 43-44
002D-002E 45-46
002F-0030 47-48
0031-0032 49-50
0033-0034 51-52
0035-0036 53-54
0037-0038 55-56
0039-003A 57-58
003B-003C 59-60
003D-003E 61-62
003F-0040 63-64

Description
Chip data direction register
Chip I/O; memory and tape control
Float-Fixed vector
Fixed-Float vector
Search character
Scan-quotes flag
TAB column save
0=LOAD, 1=VERIFY
Input buffer pointer/ #subscript
Default DIM flag
Type: FF =string, 00 =numeric
Type: 80 =integer, 00 =floating point
DATA scan/LIST quote/memory flag
Subscript/FNx flag
0 =INPUT; $40 =GET; $98 =READ
ATN sign/Comparison eval flag
Current I/O prompt flag
Integer value
Pointer: temporary string stack
Last temporary string vector
Stack for temporary strings
Utility pointer area
Product area for multiplication
Pointer: Start-of-BASIC
Pointer: Start-of-Variables
Pointer: Start-of-Arrays
Pointer: End-of-Arrays
Pointer: String-storage (moving down)
Utility string pointer
Pointer: Limit-of-memory
Current BASIC line number
Previous BASIC line number
Pointer: BASIC statement for CONT
Current DATA line number

183

7 Memory

0041-0042

0043-0044

0045-0046
.0047-0048

0049-004A

004B-004C

004D

004E-0053

0054-0056

0057-0060

0061

0062-0065

0066

0067

0068

0069-006E

006F

0070

0071-0072

0073-008A

007A-007B

008B-008F

0090

0091

0092

0093

0094

0095

0096

0097

0098

0099

009A

009B

009C

009D

009E

009F

00A0-00A2

00A3

00A4

00A5

00A6

00A7

00A8

00A9

184

65-66
67-68
69-70
71-72
73-74
75-76
77
78-83
84-86
87-96
97
98-101

102

103

104

105-110

111

112

113-114

115-138

122-123

139-143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160-162

163

164

165

166

167

168

169

Current DATA address

INPUT vector

Current variable name

Current variable address

Variable pointer for FOR/NEXT
Y-save; op-save; BASIC pointer save
Comparison symbol accumulator
Miscellaneous work area, pointers, etc.
Jump vector for functions
Miscellaneous numeric work area
Accum#1: Exponent

Accum #1: Mantissa

Accum#1: Sign

Series evaluation constant pointer
Accum #1 hi-order (overflow)

Accum #2: Exponent, Mantissa, sign
Sign comparison, Acc#1 vs #2
Accum #1 lo-order (rounding)
Cassette buffer length/Series pointer
CHRGET subroutine; get BASIC character
BASIC pointer (within subroutine)
RND seed value

Status word ST

Keyswitch PIA: STOP and RVS flags
Timing constant for tape

LOAD =0, VERIFY =1

Serial output: deferred character flag
Serial deferred character

Tape EOT received

Register save

Number of open files

Input device, normally 0

Output CMD device, normally 3
Tape character parity

Byte-received flag

Run =0, Direct mode = $80

Tape Pass 1 error log/character buffer
Tape Pass 2 error log corrected

Jiffy clock HML

Serial bit count/EOI flag

Cycle count

Countdown, tape write/bit count
Tape buffer pointer

Tp Wrt ldr count/Rd pass/inbit

Tp Wrt new byte/Rd error/inbit count
Wrt start bit/Rd bit err/stbit

cocoeccoccococcececccoCcoCCoCcoCcoCcoe

DOCCCC

)EB AN DI ED IS D EDED RS RS ED EDEB EDEDEDEDED EDED RS ED ED ED D IS ED I ID ED ND RS D IS

00AA
00AB
00AC-00AD
00AE-00AF
00B0-00B1
00B2-00B3
00B4

00B5

00B6

00B7

00B8

00B9

00BA
00BB-00BC
00BD

00BE

00BF

00Co
00C1-00C2
00C3-00C4
00C5

00Cé6

00C7

00Cs8
00C9-00CA
00CB
00CC
00CD
00CE

00CF

00D0
00D1-00D2
00D3

00D4

00D5

00D6

00D7

00D8
00D9-00F2
00F3-00F4
00F5-00F6
00F7-00F8
00F9-00FA
0100-010A
0100-013E
0100-01FF

170
171
172-173
174-175
176-177
178-179
180
181
182
183
184
185
186
187-188
189
190
191
192
193-194
195-196
197
198
199
200
201-202
203
204
205
206
207
208
209-210
211
212
213
214
215
216
217-242
243-244
245-246
247-248
249-250
256-266
256-318
256-511

iiemory 7

Tp Scan; Count; Ld; End/byte assembly
Wr lead length/Rd checksum/parity
Pointer: tape buffer, scrolling

Tape end address/End of program
Tape timing constants

Pointer: start of tape buffer

1 =Tape timer enabled; bit count
Tape EOT/RS-232 next bit to send
Read character error/outbyte buffer
Number of characters in filename
Current logical file

Current secondary address
Current device N
Pointer to filename

Wr shift word/Rd input character

blocks remaining to Wr/Rd

Serial word buffer

Tape motor interlock

I/O start address

Kernal setup pointer

Last key pressed

Number of characters in keyboard buffer
Screen reverse flag

Pointer: end of line for INPUT
Input cursor log (row, column)
Which key: 64 if no key

0 =flash cursor

Cursor timing countdown
Character under cursor

Cursor in blink phase

Input from screen/from keyboard
Pointer to screen line

Position of cursor on above line
Quote mode flag, 0 = off

Current screen line length

Row where cursor lives

Last inkey/checksum/buffer
Number of INSERTs outstanding
Screen line link table

Screen color pointer

Keyboard pointer

Pointer: RS-232 input buffer
Pointer: RS-232 output buffer
Floating point to ASCII work area
Tape error log ‘

Processor stack area

185

7 Memory

0200-0258
0259-0262
0263-026C
026D-0276
0277-0280
0281-0282
0283-0284
0285

0286

0287

0288

0289

028A

028B

028C
028D

028E
028E-0290
0291

0292

0293

0294
0295-0296
0297

0298
0299-029A
029B

029C
029D

029E
029F-02A0
02A1
02A2
02A3
02A4
02A5
02C0-02FE
0300-0301
0302-0303
0304-0305
0306-0307
0308-0309
030A-030B
030C
030D
030E

186

512-600
601-610
611-620
621-630
631-640
641-642
643-644
645
646
647
648
649
650
651
652
653
654
655-656
657
658
659
660
661-662
663
664
665-666
667
668
669
670
671-672
673
674
675
676
677
704-766
768-769
770-771
772-773
774-775
776-777
778-779
780
781
782

BASIC input buffer

Logical file table

Device #table

Secondary address table
Keyboard buffer

Start of BASIC Memory

Top of BASIC Memory

Serial bus time-out flag
Current color code

Color under cursor

Screen memory page
Maximum size of keyboard buffer
Repeat all keys

Repeat speed counter

Repeat delay counter
Keyboard Shift/Control flag
Last shift pattern

Pointer: keyboard table setup
Keyboard shift mode

0 =scroll enable

RS-232 control register
RS-232 command register

Bit timing

RS-232 status register
Number of bits to send
RS-232 speed/code

RS-232 end of input buffer index
RS-232 start of input buffer
RS-232 start of output buffer
RS-232 end of output buffer index
IRQ save during tape I/O
CIA2 (NMI) Interrupt Control
CIA1 Timer A control log
CIAlInterrupt Log

CIA1 Timer A enabled flag
Screen row marker

(Sprite 11)

Error message link

BASIC warm start link
Crunch BASIC tokens link -
Print tokens link

Start new BASIC code link
Get arithmetic element link
6510 accumulator store

6510 X-register store

6510 Y-register store

coccccccCcCccCcCcCccCcoCccCcccCcCccCccccCccCcccccccccccccccccceccecc

DB EDEDEDEDESEDEDEDEDESEDED RS EDEDEDED RS ESESED RS RS EDEDEDED RS ED ED ED ED ED NS

030F

0310
0311-0312
0313
0314-0315
0316-0317
0318-0319
031A-031B
031C-031D
031E-031F
0320-0321
0322-0323
0324-0325
0326-0327
0328-0329
032A-032B
032C-032D
032E-032F
0330-0331
0332-0333
0334-033B
033C-03FB
0340-037E
0380-03BE
03C0-03FE
0400-07FF
0800-9FFF
8000-9FFF
AO000-BFFF
A000-BFFF
C000-CFFF
D000-D02E
D400-D41C
D800-DBFF
DC00-DCOF
DDO00-DDOF
D000-DFFF
EO000-FFFF
EO000-FFFF
FE81-FFF5

783
784
785786
787
788789
790-791
792-793
794-795
796-797
798-799
800-801
802-803
804-805
806-807
808-809
810-811
812-813
814-815
816-817
818-819
820-827
828-1019
832-894
896-958
960-1022
1024-2047
2048-40959
32768-40959
40960-49151
49060-49151
49152-53247
53248-53294
54272-54300
55296-56319
56320-56335
56576-56591
53248-57294
57344-65535
57344-65535
65409-65525

Memory 7

6510 status register store

USR function jump instruction
USR function jump address
Unused

Hardware interrupt vector
Break interrupt vector

NMIl interrupt vector

OPEN vector

CLOSE vector

Set-input vector

Set-output vector

Restore I/O vector

INPUT vector

Output vector

Test-STOP vector

GET vector

AbortI/O vector

Warm start vector

LOAD vector

SAVE vector

Unused

Cassette buffer

(Sprite 13)

(Sprite 14)

(Sprite 15)

Screen memory

BASIC RAM memory
Alternate: ROM plug-in area
ROM: BASIC

Alternate: RAM

RAM memory, including alternate
Video Chip (6566)

Sound Chip (6581 SID)

Color nybble memory
Interface chip 1, IRQ (6526 CIA)
Interface chip 2, NMI (6526 CIA)
Alternate: Character set

ROM: Operating System
Alternate: RAM)

Jump Table, Including:

FFC6 - SetInputchannel

FFC9 - Set Output channel

FFCC - Restore default I/O channels
FFCF -INPUT
FFD2 -PRINT

FFE1 - Test Stop key
FFE4 - GET

(4C)
(B248)

(EA31)
(FE66)
(FE47)
(F34A)
(F291)
(F20E)
(F250)
(F333)
(F157)
(FICA)
(F6ED)
(FI3E)
(F32F)
(FE66)
(F4A5)

- (FSED)

187

[7 Memory

Figure 1. 6510 Processor 1/0 Port

$0000 IN | IN | IN : Out Out ' Out DDR 0
$0001 Tape Tape | DRom EFRAM ABRaM | PR
Sense Write | Switch Switch
i R | _
Figure 2. 6566 SID Chip
Vi V2 V3 Vi V2 V3
D400 D407 D4OE | e | 5427254279 54286
D401 D408 D4OF Frequency 54273 54280 54287
D402 D409 D410 54274 54281 54288
D403 D40A D411 | 54275 54282 54289
D404 D40B D412 54276 54283 54290
D405 D40C D413 54277 54284 54291
D406 D40D D414 | 54278 54285 54292
Voices
(Write Only)
D415 54293
D416 [54294
D417 54295
D418 | 3 54296

188

Filter & Volume
(Write Only)

ccccocccoccccccccccccccccccccccccccccccccccccccecceccec

DIEDIND IND 1D D I I B0 I BN JND 0 I IS IS I TR I I I D 2D B T IS B0 I B B IS I B0 BB IR T

D419

D41A

D41B

D41C

Sense

(Read Only)

54297
54298
54299
54300

Special voice features (TEST, RING MOD, SYNC) are omitted from the above diagram.

Figure 3. 6526 CIA1 Chlp

Paddle SEL|’
A ‘B

$DCO0 | — o —_d
- Keybo

$DCO01

$DC02

$DC03
$DC04
$DC05

$DC06
$DCO07

$DCOD panE

$DCOE

$DCOF

PRA 56320

PRB 56321

DDRA 56322
DDRB 56323

| TAL 56324

ICR 56333

CRA 56334

| CRB 56335

189

7 Memory

PRA 56576

PRB 56577

DDRA 56578

DDRB 56579

TAL 56580
TAH 56581

TBL 56582
TBH 56583

1ICR 56589

CRA 56590

CRB 56591

Figure 4. 6526 CIA2 Chip
T T T T 1 T
$DD00 | Serial Clock Serial Clock ATN RS-232
In In Ou Ou Out, Out 6,
DSRETCTST - | DCD* | RI* | DTR | RTS* | RS-232
$DDO1 | In 1 In In 1In ! Out | Out In
Parallel User Port
$DD02 [IN : IN 'Out. Out' Out Out Out Out
$DDO03 $06 For RS-232
$DD04 o A —
$DDO05 - TimerA
$DD06 Timer B —
$DD07
~ ~
$DDOD ‘ '”RS-23‘27:' g Timer Timer
| m |~ | B] A
$DDOE o ’ ~ Timer
. AStart
$DDOF o
Timer
. B Start
*Connected but not used by system.
190

cccccoccoccoccccoccccccoccccccccccccccoccCccccccccccccoccc

DD 1D TS TS 15 D 0 T T 20 JND T T N0 1D T T D 1D 10 TR0 T I I 20 I I D [0 JN0 10 I J0 I I

Soft-16

Douglas D. Nicoll

This program, “USR(PEEK)’; demonstrates several interesting concepts
about managing the memory of the 64. BASIC programs can be run
essentially without BASIC, and you can switch between ROM and RAM
during a program RUN to access an additional 16K of RAM for data
storage. You'll also see how to use the USR() statement.

An inexpensive 16K RAM expansion for the Commodore 64? Run
BASIC programs without BASIC or the Kernal? Well, almost. The
6510 microprocessor has the three ROM banks (BASIC [AB]
$A000-$BFFF; characters [D] $D000-$DFFF; and Kernal [EF]
$E000-$F000) with blocks of RAM. It switches between ROM and
RAM with the control port located at $0001. Bit zero in $0001 con-
trols AB, bit one controls EF, and bit two controls D. Setting the bit
to one switches in ROM (the normal state), and zero switches in
RAM memory.

In normal BASIC operation, it is possible to POKE values to
the RAM at the AB and EF locations, but PEEKing these locations
will show only the ROM data. POKEs and PEEKs to the RAM at D
work fine, but you can’t PEEK the character ROM without setting
a number of switches so the system won't crash. Thus, without
the ability to PEEK the hidden RAM memory, AB and EF loca-
tions are effectively eliminated from use in BASIC programs.

“USR(PEEK)” is a valuable machine language utility program
that opens up the hidden RAM for use in BASIC programs, giv-
ing the user 16K of additional memory for data storage. The pro-
gram is loaded into $C001-$COE4 and uses $C000 as a temporary
storage cell. The vector for the USR() function is set (POKE
785,1:POKE 786,192). BASIC programs are loaded normally, and
any RAM location can be PEEKed by using X =USR(N), where X
is any variable and N is any number from 1 to 65535. Any number
less than 0.5 will set X to -1, 0.5 to 1.9 evaluate as 1, and all other
decimal numbers are truncated to the integer. If a negative num-
ber is given for N, the value returned is for ABS(N). If a number is
greater than 65535, then X is -1. If N is between 53248 and 57343, X
is the value of data stored in character ROM (D).

191

7 miemory

Automatic Switching

How does USR(PEEK) work? The statement X =USR(N) in a
BASIC program loads N into the floating point accumulator and
sends the computer to the machine language program pointed to
by the USR vector. The machine language program evaluates the
number in the FP accumulator, switches out BASIC and Kernal
ROM, loads the desired RAM data into the FP accumulator,
switches BASIC and Kernal ROM back in, and finally sets up the
FP accumulator so that X contains the values on return to the
BASIC program. When character ROM is desired, it is switched in
for the manipulation.

The techniques used to dynamically switch between RAM
and ROM have many other uses for programmers who use both
BASIC and machine language. For example, machine language
programs can be LOADed under BASIC or Kernal ROM and run
with BASIC programs — this leaves more space for BASIC pro-
grams and variable storage. It is possible to envision LOADing a
BASIC program editor under BASIC ROM and calling it for re-
numbering, searching, etc.

Type in the program and, after saving a copy, RUN it to see a
demonstration of how easy it is to use. Then eliminate lines 10-540
and SAVE it with the name USR(PEEK). To use with your pro-
grams, LOAD and RUN USR(PEEK) and then LOAD and RUN
your own BASIC programs that can be constructed to utilize the
additional 16K of RAM data storage.

USR (PEEK)

1 GOSUBl@@@:REM SET UP USR(PEEK)

5 REM**{9 SPACES}USR(PEEK){12 SPACES}**

10 PRINT"{CLR}USR(PEEK) AT CHARACTER ROM
"

20 v$="{HOME}{24 DOwWN}"

30 H$=""+"{39 RIGHT}"

4@ UC=53248:LC=55296:GC=53760

50 H=@:V=10@:L=83*8+UC:GOSUB500

60 H=8:V=10:L=3*8+UC:GOSUB500

70 H=14:V=5:1,=85*8+UC:GOSUB50@:H=14:V=14

:L=74*8+UC:GOSUB500

80 H=22:V=10:L=54*8+UC:GOSUB5J0

90 H=30:V=10:L=52*8+UC:GOSUB500

109 PRINTLEFTS$ (V$,5);LEFTS$(HS,18);"sC
{ur}u{2 DOwN}{LEFT}J{UP}64";LEFTS (VS
,22)

119 PRINT"PRESS ANY KEY TO CONTINUE";

192

cccccccccccccccccccCcccccCcccccccccccccccccccccccec

DD I IS IND JED D JND JED IND I JND JND IND TD IS I D B0 2D I I B0 IS I D IS I B0 I D I I D B I

120
130

140
150
le0
170

180
190

200

205
210

220

230
240

250

260
279
280

290
300

31@

320
330

340
500
510

520
530
540

GETAS : IFA$=""THEN120

PRINT" {CLR}USR(PEEK) INTO BASIC HIDD
EN RAM"

PRINTLEFTS$(V$,5); "INPUT 19 NUMERS(0-
255) TO STORE IN $AQQQTO $AQQA :"
FORI=1TO10Q

PRINT"NUMBER ";I;": ";:INPUT"";X
IFINT(X)<>XORX<@ORX>255THENPRINT" INV
ALID ENTRY...":GOTO169
POKE40959+1I, X : NEXT

PRINT" {CLR}USR(PEEK) INTO HIDDEN BAS
IC RAM"

PRINT:PRINT:PRINT"LOCATION{3 SPACES}
PEEK{3 SPACES}USR(PEEK)"

PRINT" === mm e e e e "
FORI=1TO10:PRINTI+40959,PEEK(I+40959
) ,USR(I+4@959) : NEXT

PRINTLEFTS$ (V$,22); "PRESS ANY KEY TO
CONTINUE ";

GETAS$: IFAS=""THEN230
PRINT"{CLR}USR(PEEK) INTO KERNAL HID
DEN RAM"

PRINTLEFTS$ (V$,5); "INPUT 1@ NUMERS(@-
255) TO STORE IN S$FO@QTO $FPQA :"
FORI=1TO10

PRINT"NUMBER ";I;": ";:INPUT"";X
IFINT(X)<>XORX<@ORX>255THENPRINT "INV
ALID ENTRY...":GOTO160
POKE61439+1I,X:NEXT

PRINT" {CLR}USR(PEEK) INTO HIDDEN KER
NAL RAM"
PRINT:PRINT:PRINT"LOCATION{3 SPACES}
PEEK{3 SPACES}USR(PEEK)"

FORI=1TO1@:PRINTI+61439,PEEK(I+61439
) ,USR(I+61439) :NEXT

END

FORJ=LTOL+7 :X$="":X=USR(J)
FORI=7TO@STEP-1:IFX=>2TITHENX=X-21T1:
x$=xX$+"{wHT}{RVS} {OFF}":GOT0530
X$=X$+" {RIGHT}"

NEXTI : IFJ=LTHENPRINTLEFTS$ (V$,V);
PRINTLEFTS (H$, H) ; X$: NEXT : RETURN

1008 POKE785,1:POKE786,192:REM USR VECTO

R

1610 FORI=49153T049380:READX:POKEI,X:NEX

T

1015 RETURN

193

7 Memory

1920

1030
1040
1050
1060

1070

1080

1090
1100

1110

1120

194

DATAl173,97,90,201,144,208,3,76,188,1
92,56,201,128,176,3,76,163,192,201,
145
DATA144,3,76,163,192,73,128,141,97,
9,56,169,16,237,97,90,240,13,170,24
DATA78,98,0,1106,99,0,2082,224,0,208,
244,173,98,0,141,78,192,173,99,0
DATAl141,77,192,173,1,0,141,0,192,12
9,73,7,141,1,0,173,255,255,141,98,0
DATAl173,08,192,141,1,9,88,173,98,4,2
¢1,9,208,3,76,140,192,162,8,173,98,
)
DATA24,42,176,5,202,224,0,208,247,1
¢6,141,98,0,73,128,141,1062,0,138
DATA9,128,141,97,0,169,8,141,99,0,1
41,100,0,141,101,9,96,169,0,141,97,
]
DATA141,99,0,141,100,0,141,101,0,14
1,102,0,169,128,141,98,0,96,169,129
DATA141,97,0,169,128,141,98,9,141,1
02,0,169,0,141,99,0,141,100,0,141,1
21,0
DATA96,56,173,98,0,201,224,144,3,76
,223,192,201,208,176,3,76,223,192,1
69,4
DATAl141,72,192,173,97,9,32,26,192,1
69,7,141,72,192,96,173,97,9,76,11,1
92

ccocccccocccoococccccCccCcoCccccoCcccCcccccccccec

20000000 D OO0 0T00IDIVIODIDODTD

DEDESEBEDEDES IR EDEDEDEDED ED EDEDEDEDEDEDEDEDEDEDEDEDED EDED ED ED ED ED D ED IS

Advanced 8
fMemory

Assembler
BASIC

Ronald Thibault

Here is a symbolic Assembler in BASIC for the Commodore 64.
The original version of this was written by Eric Brandon for the
PET. I modified this Assembler because there were none available
for the 64 and no symbolic assemblers that use only a cassette (I
have no disk). [Disk users need only make the changes shown in
lines 12025 and 13025 — Editor.] In addition, being cheap, this
Assembler is good for those who are just starting out in machine
language programming.

A symbolic assembler is one that allows the use of variable
names in the label and operand fields. This Assembler could also
be used on many other machines using the 6502 with slight modi-
fications, most notably the LOAD and SAVE commands.

Since the Assembler is in BASIC, it does have a couple of dis-
advantages. The first is that it is slow. The other is that, because it
resides in memory and needs the BASIC Interpreter, the amount
of memory available for machine language programs is reduced.

The major additions to the Assembler from the original are:

1. Bounds checking on the commands that affect the line
numbers.

2. The LOAD and SAVE commands modified for cassette.

3. Compact Command eliminates blank lines between code.
4. 40-column screen printout.

5. Instructions internal to the program.

The Assembily Listing

The assembled listing is broken into two segments: the first seg-
ment is the memory locations of the variables and labels; the sec-
ond is the actual code. The format is as follows:

Column Value

0-5 Line #

6-10 Start of Instruction Address
1113 Opcode Value

197

8 Advanced
Memory

1416 & 1719 Other Bytes of Instruction

20-26 Label Field
27-30 Opcode Field
31-40 Operand Field

A note about this program specifically and all Commodore 64
programs in general. This listing (except where all code would not
fit on the line) has spaces between code elements to make it more
readable. Now that we have more memory available there is no
longer a need to compact the code just to fit it in memory. The
spaces and REM statements (remember them?) can be taken out
later for speed. It is much easier to type in and correct/modify
readable code instead of 80-character strings. So start putting in
spaces and REM statements.

Also, you will notice that in the instructions portion of the
program there is code that stops the printing of the instructions
after the screen is full, until any key is hit. This is of great help to
those of us without printers who cannot read 800 characters per
minute. ’

Typing in the Assembler in BASIC
I have left spaces between the code elements to make the code
more readable. I have omitted the spaces when the line would not
fit otherwise. If you wish to save typing and memory space, the
spaces and REM statements can be removed. The instructions
come at the end of the listing. With the proper adjustments to the
code, the instructions can also be removed.

Well, there it is. You are now ready to begin writing your
machine language routines using this BASIC Assembler.

BASIC Assembler/Editor

1 REM ASSEMBLER/EDITOR 2.8 -MODIFIED FOR
{sPACE}C-64

2 MEM=5@:M2=20

5 PRINT"{CLR}{WHT}":POKE 53281,8:POKE 532
80,11

6 PRINT"INTRUCTIONS ? (Y/N)";

8 GET Z$:IF Z$="" OR (Z$<>"Y" AND Z$<>"N"
) THEN 8

9 IF 2$="Y" THEN GOSUB 11000

19 PRINT"{CLR}"

11 DIM AS$(MEM),S$(M2),Vv(M2),LI(3)

15 H$="@123456789ABCDEF"

100 LN=1

110 PRINT LN; :TB=5:LT=6:G0SUB 400@:IF INS$

="EXIT" THEN 300 :

198

cccccccococcccoCccCcCCceCccCcCcoeCcCcoccccccocceocc

1525395555152 9335353533353923I3I33333I2I3D1I3I1I))

120

125
126

130

1600
178

190

200
300

3085

310
320
325
340
345
350
360
379
410
420
421
423
424

425
427

430
460
474
475

476

Advanced

IF IN$="FIX" THEN LN=LN-1:PRINT CHRS$ (
-13*(ASC(GTS$)<>13));:GOTO 110

IF GT$=CHRS$(13) THEN PRINT"{UP}":

IF LN>MEM THEN PRINT" {DOWN}{RIGHT}
{RVS}LINE LIMIT EXCEEDED":GOTO 300
AS(LN)=INS$S+" ":TB=13:LT=3:GOSUB 4009:
AS(LN)=A$(LN)+INS+" "

IF GT$=CHR$(13) THEN 200
TB=18:LT=10:GOSUB 400@:AS$(LN)=AS$(LN)+
INS

IF GT$<>CHR$(13) THEN PRINT
LN=LN+1:GOTO 118

PRINT" { DOWN} {RVS}C{OFF}OMPACT {RVS}1I
{OFF}INPUT {RVS}D{OFF}ELETE I{RVS}IN

{ OFF} SERT"

PRINT" {RVS}L{OFF}IST {RVS}S{OFF}AVE L
{RVS}O{OFF}AD {RVS}A{OFF}SSEMBLE
{RvS}Q{OFF}UIT"

PRINT"COMMAND ?2";

GET CM$:IF CM$="" THEN 320

PRINT CM$:IF CM$<>"I" THEN 360
INPUT"LINE ";LN:IF LN>MEM THEN PRINT"
{RVS}LINE NUMBER TO LARGE":GOTO 300
IF LN<=@ THEN PRINT"{RVS}LINE NUMBER
{SPACE}TO SMALL" :GOTO 300

GOTO 110

IF CM$="0" THEN 12000

IF CM$="S" THEN 13000

IF CM$<>"D" THEN 460
INPUT" { DOWN}LINES - FROM,TO ";FL,LL
IF FL>LL THEN PRINT"{RVS}INCORRECT LI
NE NUMBERS" :GOTO 300

IF FL>MEM OR LL>MEM THEN PRINT"{RVS}L
INE NUMBER TO LARGE":GOTO 308

IF FL<=0 OR LL<=@ THEN PRINT"{RVS}LIN
E NUMBER TC SMALL":GOTO 300

IF FL<>LL THEN 439

FOR T=FL TO MEM-1:A$(T)=A$(T+1) :NEXT
{SPACE}T:GOTO 309

FOR T=LL TO MEM:A$(T-LL+FL)=AS$(T) :A$(
T)="":NEXT T:GOTO 300

IF CM$<>"N" THEN 500

INPUT"FIRST LINE,NUMBER";FL,LL

IF FL>MEM THEN PRINT"{RVS}LINE NUMBER
TO LARGE" :GOTO 300

IF FL<=@ OR LL<=@ THEN PRINT"{RVS}INC
ORRECT DATA" :GOTO 300 _
MARK=@:FOR T=1 TO MEM:IF LEN(AS$(T))>2
THEN MARK= T

iemory

199

8 Advanced
Memory !

477 NEXT T
478 IF LL+MARK>MEM THEN PRINT" { RVS}NUMBER
OF INSERTIONS TO LARGE":GOTO 300
480 FOR T=MEM-LL TO FL STEP-1:A$(T+LL)=A$
(T):NEXT T

49¢ FOR T=FL TO FL+LL-1:AS$(T)="":NEXT T:G
OTO 309

500 IF CM$<>"L" THEN 580

519 INPUT"LINES FIRST,LAST";FL,LL

512 IF FL>LL THEN PRINT"{RVS}INCORRECT LI
NE NUMBERS" :GOTO 300

515 IF FL>MEM OR LL>MEM THEN PRINT"{RVS}L
INE NUMBER TO LARGE":GOTO 300

517 IF FL<=@ OR LL<=@ TH?EN PRINT"{RVS}LIN
E NUMBER TO SMALL":GOTO 300

521