
COMPUTER First Book of

COMMODORE

Applications, utilities, tutorials,

and general information for users of the

Commodore 64* home computer

A COMPUTE! Books Publication $12.95

COMPUTERS Rrst Book of

COMMODORE

COMPUTE!" Publicationsjnc.^5
One of the ABC Publishing Companies . ^0

Greensboro, North Carolina

Commodore 64 is a trademark of Commodore Electronics, Ltd.

The following article was originally published in COMPUTE! Magazine, copyright 1982,

Small System Services, Inc.:

"Commodore 64 Memory Map" (October)

The following articles were originally published in COMPUTE! Magazine, copyright

1983, Small System Services, Inc.:

"Commodore 64 Architecture" (January)

"All About WAIT Instruction" (January)

"REM Revealed" (January)

"Perfect INPUTs" (January)

"Joysticks and Sprites" (February)

"Data Storage" (March)

"The Confusing Catalog" (March)

"Automatic Program Selector" (March)

"Data Searcher" (June)

"Soft-16" (June)

The following articles were originally published in COMPUTE! Magazine, copyright

1983, COMPUTE! Publications, Inc.:

"Backup 1540/1541 Disks" (July)

"Programmer's Alarm Clock" (July)

The following article was originally published in COMPUTEVs Gazette, copyright 1983,

COMPUTE! Publications, Inc.:

"Alfabug" Quly)

The following article was originally published in COMPUTE! Magazine, copyright 1983,

JimButterfield:

"Commodore 64 Video — A Guided Tour, Parts I-VII"

Copyright 1983, COMPUTE! Publications, Inc. All rights reserved

Reproduction or translation of any part of this work beyond that permitted by Sections

107 and 108 of the United States Copyright Act without permission of the copyright

owner is unlawful.

Printed in the United States of America

ISBN 0-942386-20-5

10 98765432

COMPUTE! Publications, Inc. Post Office Box 5406, Greensboro, NC 27403, (919)

275-9809, is a subsidiary of American Broadcasting Companies, Inc. and is not associated

with any manufacturer of personal computers. Commodore 64 is a trademark of

Commodore Electronics, Ltd.

Dntents

Foreword V

Chapter 1: Starting Out l
More Than Just Another Computer

Sheldon Leemon 3

Making the Computer Do What You Want

Orson Scott Card 11

Chapter 2: BASIC Programming 37
All About the WAIT Instruction

Louis F Sander and Doug Ferguson 39

REM Revealed

John L. Darling 44

From IFs to ANDs

Stephen D. Eitelman 49

Menumaker

Richard L Witkover 54

Data Storage

Ron Gunn 61

Chapter 3: Commodore 64 Video 67
An Introduction to the 6566 Video Chip

Jim Butterfield 69

The 6566 Video Chip

Jim Butterfield 75

Sprites

Jim Butterfield 80

Program Design

Jim Butterfield 86

The Lunar Lander: The 64 in Action

Jim Butterfield 91

Split Screens

Jim Butterfield 96

Son of Split Screens

Jim Butterfield 100

Chapter 4: Creating Games 105
Joysticks and Sprites

Sheldon Leemon 107

Alfabug

Michael Wasilenko 115

Chapter 5: Peripherals 119
The Confusing Catalog

Jim Butterfield 121

Automatic Program Selector

Steven A. Smith 126

ill

64DOSmaker

Charley Kozarski 135

Backup 1540/1541 Disks

Harvey B. Herman 137

Using the User Port

John Heilborn 143

Chapter 6: Utilities 157
Data Searcher

Jerry Sturdivant 159

Music Keyboard

Bryan Kattwinkle 161

Programmer's Alarm Clock

Bruce Jaeger 166

Chapter 7: Memory 169
A Window on Memory

GreggPeele 171

Commodore 64 Architecture

Jim Butterfield 178

Commodore 64 Memory Map

Compiledbyjim Butterfield 183

Soft-16

Douglas D. Nicoll 191

Chapter 8: Advanced Memory .195
Assembler in BASIC

Ronald Thibault 197

Decoding BASIC Statements

John Heilborn 210

Micromon-64

Bill Yee 217

Appendix A: Using the Machine Language

Editor: MLX
Charles Brannon 245

Appendix B: A Beginner's Guide to Typing

In Programs 255

Appendix C: How To Type In Programs 259

Index 263

IV

Foreword

The Commodore 64 computer was introduced in the fall of 1982,

and immediately became the first choice of hundreds of thou

sands of new and experienced computer users. Its music, sound,

and graphics capabilities are remarkable, and its price tag brought
it within the reach of many first time buyers.

COMPUTE! Books is ready to help you make the most of it.

COMPUTEI's First Book of Commodore 64 offers something for

computer users at every level of expertise, from the beginner to

the expert. And as you gain experience and move from one level

to the next, you'll find that this book can provide the key to each

level of computer knowledge.

For beginners, the "Starting Out" section offers an introduc

tion to the Commodore 64 and the step-by-step creation of a

simple program.

If you're interested in graphics, Jim Butterfield's seven-part

"Commodore 64 Video" is the ideal introduction.
Do you use joysticks, printers, disks, cassettes? There are

articles and programs to help you.

To learn your computer from the inside out, the "Memory"

section shows you where everything is — and provides "A Win

dow on Memory" which lets you scroll through all 64K and see

what is happening to memory while the computer is running.

And if you program in machine language, this book includes

a complete monitor, "Micromon-64," and a complete assembler

program, written in BASIC.

Of the articles in this book which originally appeared in

COMPUTE! Magazine or COMPUTERS Gazettefor Commodore,

many have been enhanced since their original publication. Many

other articles and programs, however, are appearing here for the

first time anywhere.

Chapter 1

Starting Out

Starting'
Out

More Than
Just Another
Computer
Sheldon Leemon

Don't let its outward resemblance to the VIC fool you. Inside, the

Commodore 64 is full of brand-new technology. While it retains

certain features of older Commodore computers, the 64 extends

many of those features and at the same time introduces new ones.

The New Chip
Let's start with the microprocessor, the "computer on a chip" that

forms the heart of the system. Every Commodore machine from

the original PET through the VIC has been built around the 6502

chip. The 64, however, uses a 6510 microprocessor. This chip uses

the same machine instructions as the 6502, which aids in software

compatibility, but adds a built-in Input/Output (I/O) Port. The 64

uses this port to manage addressing space.

As its name indicates, the 64 comes with 64K RAM standard.

But it also has an 8K BASIC Interpreter ROM, an 8K Operating

System Kernal ROM, a 4K Character Generator ROM, a 6581

Sound Interface Device (SID), a 6566 Video Interface Controller

(VIC-II), and two 6526 Complex Interface Adapter chips, which

along with the other I/O chips require 4K of addressing space for

their hardware registers. That adds up to 88K, 24K more than the

6510 chip can address at once.

In order to allocate resources, the I/O port allows the user to

determine which segments of RAM and ROM will be addressed

at any one time. The standard configuration allocates 40K of con

secutive RAM for BASIC programming (about 2K of which is

taken up by screen memory and system workspace); 8K to the

BASIC ROM; 4K for addressing graphics, sound, and I/O chips;

8K for the Operating System Kernal ROM, which includes the

screen editor and housekeeping software; with 4K of spare RAM

1 Starting

out

left over for "safe" memory, which can be used for machine lan

guage programs, an I/O buffer, etc.

This default memory allocation can be easily changed by the

user to one of seven other possible memory maps. Any of the

programs in ROM may be switched out and replaced by RAM.

That means a program like a word processor, which needs as

large a storage area as possible, could simply switch out the

BASIC ROM and gain access to 8K more RAM space. As a matter

of fact, all 64K of RAM could be used at once (although some por

tion would have to be devoted to I/O driver routines, like a screen

editor, and the I/O devices would have to be switched back in for

communication with peripherals).

Memory addressing space can be allocated not only between

internal RAM and ROM, but between external ROM cartridges as

well. These cartridges (which are notcompatible with those de

signed for the VIC) can hold up to 16K of ROM and can be made

to operate either in place of the BASIC ROM or along with it to ex

tend its set of commands.

The Same BASIC
The BASIC used in the 64 is the familiar Commodore BASIC 2,

and the Operating System Kernal is generally patterned after its

predecessors. This somewhat represents a compromise. On the

one hand, it allows a high degree of compatibility with the large

body of software currently available for Commodore computers.

Most of the nongraphics type of software, including much

business and educational software, can easily be converted, and

indeed much of it already has been converted for use on the 64. In

fact, Commodore offers a PET emulator program which will allow

the user to run a very high percentage of PET programs on the 64

virtually unchanged.

It would, however, have been nice to have software built-in

that was better adapted to the tremendous new graphics and

sound capabilities of this computer. As it stands, the user must

PEEK and POKE quite a bit more than a user-friendly system

should require. It is some consolation, however, that the system

ROMs can be easily switched out and a whole new Operating

System loaded in from disk, should an easier method for using 64

graphics and sound be developed in the future.

Better Graphics
What makes the 64's color graphics so extraordinary is a separate

starting

Out

integrated circuit chip which processes the video display informa

tion. Just as the VIC has its Video Interface Controller chip (for

which it was named), the 64 has a VIC, too — or to be more exact,

a VIC-II. The 6566 video chip supports a wide range of character

graphics, bitmapped graphics, and sprite graphics. Let's examine

what each of these types of graphics has to offer.

Character Graphics
Character graphics includes the ordinary text characters that ap

pear on the screen when you turn the computer on. The text dis

play consists of 25 lines, each having 40 characters. These charac

ters are formed from data stored in the Character Generator

ROM, which holds the two standard Commodore character sets,

regular and inverse video. One set contains uppercase letters and

graphics characters, and the other has both upper- and lowercase.

However, the user is not limited to the standard character set

stored in ROM. User-defined characters, up to 256 at any one

time, may be displayed from RAM, allowing the programmer to

display foreign language alphabets, math symbols, or custom

graphics characters. Like the VIC, one area of memory on the 64

is set aside for the characters to be displayed, while a separate

area holds the color information for each character. This means

that the user can individually select one of 16 different foreground

colors for each of the 1000 characters that appears on the screen.

Besides the standard character display, there are two other

more specialized text modes. The first is a multicolor character

mode, similar to those found on the VIC and the Atari computers.

In this mode, each character is made up of eight rows, each four

dots across. The color of each dot may be selected from one of two

color registers or from the value stored in color memory for that

particular character, so that each character may display up to

three colors at once, in addition to the background color.

Although the standard character ROM is not set up to accom

modate such characters, by using custom graphics characters the

programmer can take advantage of this feature to create colorful

graphics displays that are easily animated.

To aid in this animation, the 64 has fine-scrolling registers,

which allow both the horizontal and vertical position of charac

ters to be changed one increment at a time, so that they may be

moved smoothly across the screen. In order to create a "buffer"

area for new information to enter the screen as the old informa

tion scrolls off it, the screen size may be shrunk to 24 rows of 38

characters each.

1 Starting

Out

One interesting feature of this mode is that when it is

enabled, only those characters whose color codes are above a cer

tain number will be displayed as multicolored. All other charac

ters will be displayed normally. Thus, multicolor characters may

be mixed freely with normal, high-resolution characters on the

same screen.

The other special mode is the extended background color mode.

When this mode is enabled, only 64 characters may be displayed

at any one time, but the user not only can choose the foreground

color for each letter but may select the background color from one

of four color registers as well. These registers may be set to any of

the 16 colors available on the 64. This allows the screen to be di

vided into different colored "windows," for a split-screen display,

for example. Extended-color mode cannot be combined with

multicolor mode or bitmap mode.

Bitmap Graphics
Bitmap graphics enables the high-resolution plotting of 320 dots

horizontally by 200 dots vertically. As on the VIC, the display

data, or bitmap, is set up in the same format as character graphics.

Each byte of information has eight bits, each of which represents a

horizontal dot. Each group of eight bytes has its rows of dots

stacked one on top of the other, so that the groups of eight bytes

form an 8 x 8 grid. This makes plotting individual points a little

more difficult than a sequential arrangement would, but it also

makes it easier to intermix character data into a bitmap display.

As in the character modes, the foreground color of each 8x8

grid maybe individually selected. Bitmap mode requires 8K of

memory for screen data and another IK for a color memory. The

multicolor option is also available in bitmap mode. Although the

resolution is reduced to 160 dots horizontally, this mode offers the

widest variety of color selection, as it allows each dot within a 4 x 8

grid tobe one of three individually selectable colors.

Sprite Graphics
Sprite graphics is a feature which aids in the animation of

graphics characters, or sprites. It really comprises a completely

separate system for displaying graphics, in addition to the more

normal character or bitmap graphics. A sprite is a special graphics

character whose shape is defined by 63 bytes of data, laid out in a

24 x 21 dot array. This means that each sprite is approximately

three text characters wide by two-and-a-half characters tall. Up to

Starting

Out

eight of these sprites may be displayed on any horizontal line.

Sprites have many interesting attributes that make them use

ful in games and animation. The 16K display area of memory can

hold up to 256 blocks of 64 bytes of sprite data. The shape to be

displayed is indicated by a register which points to the block

number to be used. Changing this number instantly changes the

shape of the sprite. This makes animation as easy as stepping

through a number of shapes. Each sprite has an individual color

register, so that its color may be chosen from one of the 16 stan

dard colors. A multicolor sprite mode, similar to multicolor char

acter and bitmap modes, is available. It reduces the horizontal

resolution to 12 dots across, but allows each sprite to display two

colors from shared multicolor registers, as well as its unique sprite

color. Horizontal and vertical placement of sprites is accom

plished by changing the value of the X and Y position registers.

Movement will occur instantly upon such a change. Each sprite

may be enlarged to double size in either the horizontal or vertical

plane, or both at once. When a sprite is moved to a spot on the

screen already occupied by regular graphics, a priority register

determines which will be displayed. Thus, each sprite may be

selected to move either in front ofor behind other screen graphics.

There is also a system of collision detection to let the user know

when a sprite is positioned in the same spot as character or bit

map graphics, or when two sprites overlap. By checking these

registers, a game program, for example, can tell when an explo

sion is in order.

More Features!
Much more could be said about the VIC-II chip. For instance,

though it can address only 16K of memory at a time, any of four

banks of 16K can be selected. Within a 16K bank, the placement of

the screen display may be easily selected, allowing two or more

screen areas to be set up in memory at once and rapidly alter

nated, a procedure known as pageflipping. Even if the 16K bank

chosen is one in which the 6510 addresses ROM memory, the

VIC-II can address the RAM which shares its memory space, thus

allowing the same memory location to do double duty. Likewise,

the VIC-II can address the character ROM as if it were in RAM,

even though the 6510 cannot tell that it is tljere. The VIC-II also

provides support for input from a light pen. Of great interest to

machine language programmers is the system of raster interrupts.

The VIC-II can generate an interrupt request in synchronization

1 Starting

Out

with the raster scan display. This means that the more advanced

programmer can change any of the VIC registers partway down

the screen, so that two or more character sets can be displayed on

different parts of the screen simultaneously, or that the same

sprite can appear at two different vertical locations at once, there

by increasing the total number of sprites that can be shown.

A Music Chip: SID
Owners of the 64 will be glad to discover that their VIC has a

brother, SID (Sound Interface Device). SID is a musician on a

chip, capable of easily producing sounds more often associated

with expensive keyboard synthesizers than with home com

puters. SID provides a wide range of controls over three musical

voices, including high-resolution control over pitch (frequency),

tone color (timbre), and dynamics (volume). It can even be

used to filter external signals that are fed into its audio input!

Although briefly explaining these features is no substitute for

hearing the effects they produce, it may give you some idea of the

range of sounds available.

The frequency of each voice is controlled by a 16-bit register,

which means that the pitch can be changed in 65536 steps, cover

ing over eight octaves. While pitch is a concept most of us readily

understand, there are other, more subtle sound components

which SID can control. One of these is waveform. Each voice can

be set to one of four waveforms. The Triangle waveform output is

low in harmonics and has a mellow, flute-like quality. The Saw

tooth waveform is rich in even and odd harmonics and has a

bright, brassy quality. The Pulse waveform has a harmonic con

tent that can be adjusted by the Pulse Width registers and can

produce tone qualities ranging from bright, hollow square waves

to a nasal, reedy pulse. And the Noise waveform produces a ran

dom signal which can be varied from a low rumbling to hissing

white noise. This waveform is good for creating explosions, wind,

snare drums, engine noises, etc.

Another important control is the volume shaping of the

Attack/Decay/Sustain/Release (ADSR) registers. These registers

control the sound envelope. This term describes how the sounds

produced by different types of instruments build to peak (attack),

drop to an intermediate level (decay), hold that level for a time

(sustain), and finally fade away (release). Each type of instrument

has its own distinct pattern. When a drum is hit, the sound

reaches full volume and decays rapidly to zero volume, while on

starting

Out

string instruments the note may be sustained for a long time. The

ADSR controls of the SID chip allow it not only to imitate the

sounds of a wide range of instruments, but to synthesize patterns

not found on any existing musical instrument.

There are a number of other controls as well. A Sync control

synchronizes the fundamental frequency of two oscillators, pro

ducing "hard sync" effects. A Ring Modulation control allows the

creation of bell or gong sounds. Individually selected Highpass,

Lowpass, and Bandpass filters are available for all three voices

and can be used singly or in combination.

Though not sound related, this chip also controls the reading

of paddle controllers.

If reading about SID's capabilities doesn't excite you, hearing

them certainly will. The only drawback to all of this power is that

there are no BASIC commands to allow easy access to 64 sound.

After setting up volume and ADSR levels, each note will require

that you POKE at a minimum two frequency bytes and one wave

form byte.

Communicating with the Outside
To round out its complement of support chips, the 64 has two

6526 Complex Interface Adapter (CIA) chips. These chips each

have two 8-bit I/O ports, which are used for reading the keyboard

and joystick ports, as well as for communicating with external

parallel and serial devices over the User Port and the Serial Bus.

In addition, each has two independent, linkable 16-bit interval

timers, which can also count external pulses or measure fre

quency, pulse width, and delay times of external signals. Each

chip also has a 24-hour, time-of-day clock with programmable

alarm.

The 64 can use the same 1541 disk drive and 1525 printer as

the VIC, or with an IEEE cartridge it can use the same wide range

of dot-matrix and letter-quality printers, and floppy and hard-

disk systems available for the CBM line.

A lot of software is available for the 64, and many vendors of

Commodore software have made their offerings 64-compatible.

Major producers of arcade-type games have 64 translations com

pleted or in the works. Commodore itself already has or is ready

ing a number of arcade games for release, as well as utilities such

as the VSP cartridge to add graphics and sound commands to

BASIC. The best news of all is that most software for the 64 is be

ing priced well below comparable titles for the older CBM line.

1 Starting

Out

This stands to reason, for even with 64K of RAM and full

blown color graphics and sound capabilities, the Commodore 64

is one of the least expensive computers currently on the market.

With its introduction, the group of people who can afford to own

a powerful computer has suddenly grown much, much larger.

10

Starting

Out 1

Making the
Computer
what You want

•it

Orson Scott Card

Just how do you write a program? Here is an organized method ofdesign

ing and writing a program from the idea to thefinished product. Along

the way, both beginners and intermediate programmers will learn some

new techniques — and a great deal about 64 sound.

What's the hardest thing about programming?

It's not really that hard to learn the commands and what they

do. The words are mostly English, and the rules pretty much

make sense. You had a much harder time with high school Span

ish or French than you'll ever have learning 64 BASIC.

But when you sit down to write your first serious program,

you might run right into a brick wall.

Where do you start? What do you say? With foreign language

study you had dialogues to teach you speech patterns, but you

don't have any memorized dialogues to teach you that you begin

with "Buenos dias, Senor 64." You don't have a friendly partner

who is willing to try to understand what you're saying despite

your accent. The computer won't prompt you and say, "OK,

you've given me the variables. Now you need to start a loop." The

structure, the shape of the program, depends entirely on you.

And if the computer doesn't understand you, too bad.

A Program from the Ground up
One of the best ways to learn programming techniques is to do it

with someone else who explains what each line or technique is

for. That's what the rest of this article is for. Ill create a program, a

simple utility, and describe what I'm doing as I do it. Now, I'm not

an expert on the 64 or any other computer, but I have written a

few fairly complex programs that actually worked, and some

things I've picked up might be useful to you.

11

1 Starting

out

Designing the Program
As long as you're going to create a program, you might as well

create something useful. One of the most interesting features of

the 64 is the way it controls and produces sound. More than any

other home computer, this one puts the power of a synthesizer

into your hands. Unfortunately, the sound commands aren't very

easy to use — it takes a lot of different commands to make even

the simplest sounds. So this program will be a simple utility to

allow you to test sounds, changing them as much as you want,

until you find the right one.

The first step in programming is to decide what you want the

program to do. Here's a list of features I think this sound utility

ought to include:

1. The sound should repeat, over and over, while users can

change the sound right from the keyboard.

2. The computer should report to the users all the numbers

needed to exactly reproduce the sounds that they hear.

3. Users should be able to change all the features of the

sound: waveform, pulse width, pitch, attack, decay, sustain, re

lease, and duration.

4. Users should be able to do all this whether they under

stand anything about sound or not — in other words, their ears

should tell them what they're doing, leaving them free to

experiment.

5. Almost as important as what the program will do is what

the program won't do. It won't use more than one voice at a time.

It won't allow the creation of tunes. It won't directly store the

sound parameters on tape or disk or list them to a printer. And it

won't be fast. All those features, if we had them, would make a

fantastic program/but we're after something simple right now.

A Few words on 64 sound
The best way for you to learn what the different sound features of

the 64 do is to have you type in this program, RUN it, and hear

what each different effect sounds like.

But the numbers in this program won't make any sense to

you without a basic understanding of what the 64 is doing to

create sound. There are eight locations in memory that you need

to change in order to produce a sound for one voice. In this utility

program, I'm going to assign the address of each of these loca

tions to a variable name, so let's use the variable names from the

start:

12

starting

Out 1

PI and P2. These are the "high frequency byte" and "low fre

quency byte." The addresses for voice 1 are 54273 (PI) and 54272

(P2). What they control is the pitch of voice 1 — how high or low

the note is on the musical scale. The higher the number, the high

er the note. PI is the broad control, like the channel selector on

your TV. P2 is fine tuning.

VL. This is the general volume setting for all three voices in

the 64. It can be set from 0 to 15: 0 is off; 15 is maximum. We are

going to set it once, at the beginning of the program, and leave it

alone — there are much better volume controls later in the pro

gram. The address is 54296.

AD. Attack and decay are the first two parts of the sound en

velope, often referred to as ADSR envelope — Attack/Decay/

Sustain/Release. Attack is how quickly the sound gets to full

volume. Decay is how quickly it drops off. Sustain is how loud it

is through the rest of the note. Release is how long it takes for the

sound to die away when the note is stopped. I won't even attempt

to describe the effects of different sound envelopes to you — the

program will do it much better.

Attack and decay are controlled from the same location in

memory: 54277. There are 15 possible levels for attack, and 15 pos

sible levels for decay. And there are eight bits in the number

stored at 54277. Attack is controlled by the four highest bits (the

"high nybble"), and decay by the four lowest. If you don't know

what bits are, don't worry. It's enough to know that the meaning

ful values for attack are multiples of 16, from 16 to 240, while the

meaningful values for decay are the numbers from 1 to 15. To set

up both attack and decay, you choose the numbers you want for

each, add them together, and POKE them in. In other words,

POKE AD,ATTACK+DECAY

SR. The same system works for sustain and release. Sustain

uses the high nybble and release uses the low nybble. The loca
tion in memory is 54278.

WE Waveform is controlled at 54276. There are four options,

represented by the numbers 17, 33, 65, and 129. The lowest num

ber is a fairly pure tone; the highest is noise. You have to hear the
others.

SW. The square waveform, number 65, has another signifi

cant controlling number, the pulse width, controlled at locations

54274 and 54275. In our program, well store 8 in 54275 and allow

the user to modify the number at SW.

13

Starting

Out

Organizing the Program
All the program really has to do is find out what values the user

wants to use and POKE them into the right memory locations.

This is the point where careful programming makes the differ

ence between useful programs and confusing software that is

more trouble than it's worth.

For instance, we could simply have a program like this:

10 POKE 54296,15

20 FOR 1=54272 TO 54278:INPUT N:POKE I,N:

NEXT I

30 FOR 1=1 TO 250: NEXT I:POKE 54276,254:

GOTO 20

There it is. A complete program. Nothing could be simpler. RUN

it, and it will prompt you to put in a number. It will take each

memory address in numerical order, take whatever you type in,

and make the sound. Then it will ask you for another.

Sounds great — until you try to use it. Then you have to re

member the right order for the numbers you type in. If you make

a mistake, there's no way of checking to see what you did wrong.

If you forget where you are, you might as well press RUN/STOP

and start over.

This is not what you would call "user-friendly." One mistake

and the whole thing crashes down around your ears. You can't

tell what's going on, it makes each sound only once, and even if

you doproduce a sound you like, there's no guarantee that you

can remember how to make it again!

User-friendly programming. The principles of user-friendly

programming are simple enough:

1. Tell users what they need to do.

2. Protect them from mistakes.

3. Do something useful.

4. Tell them what they did.

When users sit down to run your program, they shouldn't

face a blank screen with a single question mark on it. They should

have a clear explanation of what to do. If they push the wrong

button or enter the wrong value, it shouldn't hurt a thing. And

when they get a result — in this case, a sound — they should hear

it over and over; and while it is playing they should see the

numbers that are being POKEd for each function, so that they can

jot them down and use them later in a program.

14

Starting

Out 1

Most of the numbers to be POKEd have only a few valid

choices. Why should the user have to remember what those

choices are? Instead of using raw INPUT statements, let's create

some toggles, so that by pushing a single button, the user can

switch from one option to another. For instance, with WF (wave

form) the only valid numbers are 17,33, 65, and 129. In our pro

gram, the space bar will be the toggle. Each time the user presses

the space bar, the program will POKE the next higher value into

WF. If the last value was 129, then pressing the space bar will

make the program start over at 17.

Let's think through how we would like the program to work

— from the user's point of view. Let's say you sit down at the com

puter, load the program from tape or disk, and type RUN. The

screen should display a menu of choices — what result will come

from pushing a certain key.

Keyboard use. The keys we'll use will be the function keys on

the right side of the keyboard, in combination with the shift key.

We can also use the cursor keys (CRSR left/right and CRSR

up/down), the space bar, the RETURN key, and perhaps the up-

arrow key.

Why these keys, instead of letter keys? As long as the choices

are fairly few, the function keys and the major, powerful keys on

the keyboard like RETURN, the space bar, SHIFT, COMMO

DORE, and the cursor keys are the most memorable. If there are

eight or fewer choices, the joystick is even better.

If you have large numbers of functions, however, the letter

keys might be best, especially if you can choose letter keys that

help the user remember what the function is — Wfor waveform,

for instance, A for attack, Dfor decay, and so on. (If you prefer

that method, you'll have no trouble altering this program to fit

your needs.)

Communication
There are two displays this program will need. First, there should

be a continuous display of what key to press in order to change

each value. Second, there should be a display showing what

values are being POKEd to make the sound the user is hearing.

This display needs to be updated every time a value is changed.

Menus. The display of optional choices and how to select

them is the menu. Especially when your program uses toggles,

there must be a display to show what the toggles are. A simple

program, in which there are only a few choices, usually gets by

15

1 Starting

Out

with a simple menu — all the possible choices displayed at once.

Really complex programs, like word-processing programs,

use nestedmenus. This means that they are given one menu of a

few choices. Then, when they make a choice, a new menu is dis

played showing further options. Think of it as a shopping mall.

There are many stores to choose from when you first come in.

Once you choose a store — department store, for instance — you

have many departments to choose from. And once you choose a

department, you still have many items on racks or shelves to

select from. Figure 1 is a diagram of nested menus.

Another menu concept is chainedmenus. After you make a

choice at your first menu, you are presented with a second menu

that was not affected in any way by the first choice. A third,

fourth, and fifth menu may follow in order. Think of it as going

along a cafeteria line. You can select from the salad display, but

then you must move on to the vegetables, and then the main

courses, and then the beverages, always in the same order.

Initialization routines to set up complex software usually use

chained menus. Figure 2 is a diagram of chained menus.

Figure 1. Nested Menus

Main Menu

MeiiuA MenuB

16

Starting

Out1

Figure 2. Chained Menus

You can see that your choice of simple, nested, or chained

menus depends on the needs of the program.

If your program has only a few choices and will return to the

main program after completing each chosen task, then a simple

menu is all you will need.

If your program has many, many choices, you will probably

want to group the choices into meaningful categories. A main

menu will let users choose a category, and the menu for that cate

gory will let them choose which specific item they want. A benefit

of the nested menus is that you can use the same toggles in each

different menu, but the meaningof each toggle will be changed.

If your program goes through a setup phase, or always does

things in a certain order, then you'll want to progress from step to

step, offering users certain choices at each step, and then proceed

ing to the next step. If the choices at each step of a chained menu

system are similar, it's a good idea to have the toggles carry similar

meanings. For instance, if several menus have the option "Enter a

new filename," then it's a good idea to have the same key activate

that choice each time. If E chooses that option on the first menu,

but Fis the toggle for that choice on the next, the user will have a

perfect right to be annoyed at you.

17

1 Starting

Out

Feedback. Just as important as telling users what they can do

is telling them what they did. With really complex programs,

where after a setup the program will take some time performing

several actions, it's not a bad idea to stop and show users exactly

what they chose and give them a chance to go back and make

changes. And when a program will perform irrevocable opera

tions, like wiping out a disk or permanently changing a data file,

it isn't optional any more — you mustgive them a chance to

double-check.

The sound program I'm going to write will have only a simple

menu. Each choice will cause an operation to be performed, and

the program will return to the menu for another selection. There

is no setup, and we don't have enough choices to justify nesting.

And as for feedback, it will be a simple matter to maintain a

display of the current selections being POKEd in to create the cur

rent sound. Each time a change is made, the "current selections"

display will be refreshed. But the menu will always be the same —

it should be printed once and stay on the screen. It would be a

waste of time to print it again and again. That means that part of

the screen will always be the same, and part will be changed from

time to time. Since we have so few choices, it will be a simple mat

ter to keep all the information on the same screen display.

I wouldn't be surprised if a third of the program ended up be

ing devoted to displays. They're so vital to making a program

usable that it's rarely a good idea to scrimp in that area.

Plan for Revision
Every program, no matter how useful, is going to be changed

someday. Even if you think it's perfect for your needs, someone

else might use it and want to make an alteration. It helps you and

it helps future adapters if you plan your program so that it's easy

to figure out what's going on in it. There are some habits that are

almost universal.

For instance, most programmers begin their program with

assignment ofvariables. Even though the variable won't be used un

til later, if every variable in a program is assigned right at the be

ginning, it's far easier to make sure you don't use the same name

twice to mean different things, or assign a variable to carry a value

that is already held by another variable.

Most programmers also put their initialization steps into one

area of the program, so it's easy to follow the initial setup.

18

starting

Out 1

Programs that involve repeated user input are usually con

structed around a main loop, which gets information from the user

over and over again and then branches to subroutines in order to

carry out the user's commands.

And, finally, most programs have an escape sequence, so that

when the user chooses to quit the program, the operating system

of the computer is restored to normal before the program ends.

Outlining the Program
If you take computer programming classes, you will probably

learn a complex system of diagramming programs, with squares,

circles, diamonds, and other shapes carrying definite meanings.

Most of the time, though, I find that a simpler format is good

enough for what I'm doing.

What shape should the program take?

1. Assigning variables
Here are the first two lines of our program:

10 Pl=54273:P2=542 72:VL=54296:AD=54277:S

R=54278:WF=54276:SW=54274

20 SC=653:KD=197

The variables in line 10 should look familiar — they assign the

addresses of the sound memory locations to the variables that we

already discussed.

Keyboard codes. However, line 20 has a few new things. SC,

with the value 653, is the location that the operating system uses

to store the SHIFT and COMMODORE key values. If the value at

653 is zero, neither key is pressed. If the value is 1, the SHIFT key

is pressed. If the value is 2, the COMMODORE key is pressed.

KD, with the value 197, is the location where the operating

system stores the code for the key that is currently being pressed.

This is notthe ASCII code, and it is not the internal character code

— it is a keyboard code that reports on the key, not the character.

The operating system takes the information at 197 and combines it

with the information at 653 in order to translate the keyboard

code into ASCII and internal character codes.

Something you might want to try right now is a simple pro

gram that will let you see the code for individual keys. Just type

this in without a line number, in direct mode. When you press

the RETURN key, the program will run.

19

1 Starting

Out

FOR 1=0 TO 10000:PRINT PEEK(197),PEEK(653

):NEXT I

As long as you aren't pressing any key, the screen will report

values of 64 and 0. Pressing keys will change the values. Notice

that a regular key will return the same code number whether the

SHIFT key is pressed or not. Press the function and cursor keys —

they return the lowest numbers of all, and their codes are all in se

quence. That will be convenient for us later.

2. initialization

The values of the variables assigned so far will never change —

they are permanent. Now, however, we begin to initialize vari

ables that will change. We initialize them so that when the pro

gram begins, it will immediately start creating a sound, and so

that each variable holds a valid value. This will enable our change

routines to work properly from the start.

25 POKE 54275,8:POKE VL,15

30 Sl=22:S2=53:ATTACK=16:DECAY=8:SUSTAIN

=16:RELEASE=8:SQUARE=128

35 WAVE=35:DUR=100:OFF=254:TEN=10

Line 25 POKEs 54275 with the value 8. This is part of the pulse

width assignment, but we won't be changing it in our program.

The same with the volume assignment, POKE VL,15. This sets

the volume at its loudest. The ADSR envelope will make particu

lar changes within the range of possible volumes, however, so

you'll almost never want to set your volume at anything less.

Line 30 initializes the variables that will change. SI and S2 are

the pitch values that will be POKEd into locations PI and P2.

ATTACK is the attack value, and it will be added to DECAY to be

POKEd into address AD. SUSTAIN and RELEASE will be added

together to be POKEd into SR. SQUARE is the square wave pulse

width, and it will be POKEd into location SW.

WAVE is the value of the waveform, and it will be POKEd into

WF to start the sound. OFF will also be POKEd into WF, but only

at the end of the sound, to turn it off. The value of OFF will al

ways be 254. DUR is the duration of the timing loop. It will not be

POKEd anywhere; it will be used as the counter in a FOR-NEXT

loop to decide how long each note will last.

Line 35 has a variable named TEN. This is a toggle that will

have a value of either 10 or 1. Our program will check the value of

20

Starting'
Out

TEN to see whether to change pitch values by ones or tens. This is

because there are 255 possible values for each of the two pitches,

and cycling through those values one at a time will get awfully

tedious, unless there's a way to do it faster. Our program will let

the user choose between fast (by 10) and slow (by 1) stepping

through the pitches.

Notice that I have chosen to use variable names that mean

something - ATTACK, WAVE, DECAY, DUR, TEN. The com

puter doesn't care. It only pays attention to the first two characters

of the variable name — ATTACK looks just like ATTILA and

ATROCIOUS to the computer. The reason for using whole words

is that it's much easier for you to remember what the variable

names are while you're programming, and it's easier for someone

coming afterward to figure out what each variable stands for. Just

be careful that you don't accidentally give two variables names

that the computer thinks are the same. If, instead of SI and S2,

we had used SOUND1 and SOUND2, the computer would see

only SO and treat them as if they were the same variable. We defi

nitely wouldn't get the results we planned on.

3. Menu and Current value Display

Putting up the display. The last step in initialization is put

ting up the display — the menu and the feedback. We'll do it this

way:

40 GOSUB 300

With this GOSUB, the program will jump to line 300, which

begins a routine that puts up the menu and the display of values

currently being POKEd. How did I choose line 300? Because I

knew I wanted the main loop to begin at line 100 and figured that

it would finish well before 300.1 like to begin my main subrou

tines on even-hundred lines — it's easier to find them again that

way.

As long as we're planning the display subroutine, let's do it

now.

300 PRINT CHR$(147)MFl/2{6 SPACES}= HIGH

FRE DOWN/UP"

310 PRINT nF3/4{6 SPACES}= LOW FRE DOWN/

UP11

320 PRINT MF5/6{6 SPACES}= ATTACK/DECAY11

330 PRINT "F7/8{6 SPACES}= SUSTAIN/RELEA

SE"

21

1 Starting

Out

340 PRINT "SPACE BAR = CHANGE WAVEFORM"

350 PRINT "CRSR U/D{2 SPACES}= DURATION

MORE/LESS"

355 PRINT "CRSR L/r{2 SPACES}= SQUARE WA

VE WIDTH"

360 PRINT "UP-ARROW{2 SPACES}= PITCH INT

ERVAL TOGGLE":PRINT "RETURN

{4 SPACES}= STOP"

365 POKE 214,10:POKE 211,0:PRINT

370 PRINT "HIGH FRE="STR$(SI)"{2 SPACES}

"TAB(20)"LOW FRE="STR$(S2)"

{2 SPACES}"
380 PRINT "ATTACK="STR$(ATTACK)" "TAB(20

);"DECAY="STR$(DECAY)" "

390 PRINT "SUSTAIN="STR$(SUSTAIN)" "TAB(

20);"RELEASE="STR$(RELEASE)" "
400 PRINT "WAVEFORM="STR$(WAVE)" "TAB(20

)"DUR="STR$(DUR)" "

410 PRINT "SQUAREWAVE WIDTH="STR$(SQUARE

)" ":RETURN

Lines 300 through 360 show all the possible choices. But first, in

line 300, the statement PRINT CHR$(147) clears the screen.

What do those cryptic menu entries mean? Fl/2 means that

pressing Fl (function key 1) will give you the first result, and F2

(Fl shifted) will give you the second result. The first result is high

frequency down; shifted, it is high frequency up. F5/6 means that

pressing F5, unshifted, will change the attack; pressing F6,

shifted, willchange the decay.

The layout is reasonably consistent. Whenever a choice in

cludes a down/up option, the unshifted key means down and the

shifted key means up. The ADSR envelope choices are together,

in their proper order — attack, decay, sustain, release — and one

key always controls both halves of a two-nybble choice. The space

bar is used to change the waveform, which has the largest single

effect on the sound. The up/down cursor key controls, not the

quality of the sound, but its duration; the left/right cursor key

controls the most rarely used function, the pulse width of the

square wave. The up-arrow key controls the TEN toggle. And the

RETURN key allows the user to stop the program.

Why provide a key to stop the program? All the user needs to

do is press RUN/STOP and the program will end, won't it? Yes,

22

Starting

Out

but RUN/STOP won't turn off the sound! If you happen to press it

during the middle of a note, the note will keep on sounding for

ever. Pressing RETURN will provide an orderly, quietend for the

program.

Positioning the cursor. Line 365 is the line that enables us to

leave the menu on the screen without ever having to print it

again, even though we will be updating the rest of the display

with every change. If we wanted to start in the upper-left-hand

corner each time, we could replace line 365 with PRINT

CHR$(147). But we don't want to wipe out the menu. So instead

we will tell the cursor to PRINT everything that follows starting at

line 10, column zero. POKEing 10 into location 214 tells the operat

ing system to begin the next PRINT statement on that line; POKE

ing a 0 into location 211 tells the operating system to skip that

many spaces before beginning the PRINT. Once you get the

whole program typed in and saved, you may want to change

these values and see what it does to the display.

Skipping over spaces on a line. Lines 370 through 410 dis

play the current values. Since certain values belong together —

the two pitches, attack and decay, sustain and release — it made

sense to lay out this display with two items on a line. However,

since the length of each entry will change, it wouldn't work to

simply type in a certain number of spaces, the way we did in the

menu to skip from the left-hand column to the right-hand col

umn. After all, sometimes the value of SI will have three digits,

and sometimes only one — as the value changed, the right-hand

column would keep shifting.

So instead, we use the TAB function. Instead of printing

blank spaces between one entry and the next, the TAB function

skips over a number of columns and begins PRINTing everything

after it in the column specified in parentheses. On our display, we

will begin each second entry at the twentieth column — TAB(20).

Everything beforeihe TAB column will be left alone.

Leading and trailing spaces. There's another problem with

displaying numbers that change, however. The 64 automatically

skips a space before and after a number whenever you PRINT a

variable. The leading space leaves room for the minus sign before

negative numbers. The trailing space is provided so that if you

print several variables in a row, you can see where one leaves off

and the next begins. The trouble is, we don't wantthose spaces

this time. Because of skipping a space after the number, when we

23

1 Starting

Out

change the value of WAVE from 129 to 17, it will look like we

changed it from 129 to 179. The 9 will be left hanging.

And it doesn't help just to put a blank space — " " — after the

variable name. That blank space will simply begin afterihe trail

ing space. The 9 will still be left hanging.

The STR$ solution. The solution, then, is to print the vari

ables, not as numerical variables, but as string variables. And 64

BASIC has a built-in function, STR$, that does it very nicely. In

stead of PRINT WAVE, we say PRINT STR$(WAVE). What STR$

does is evaluate the value of WAVE and turn it into the ASCII

string that expresses that value. It's a trivial difference to human

beings — it comes out looking like the same number to us. But to

the computer, they are not the same thing at all.

One result of that difference is that the computer doesn't skip

leading and trailing spaces when it PRINTs strings. When we

change the value of WAVE from 129 to 17 in the statement

PRINT llWAVEF0RM=llSTR$(WAVE)ll{2 SPACES}11

the result, on our screen, is not 129 followed by 179; it is 129 fol

lowed by 17, which is exactly what we want.

Double use of a subroutine. Line 410 ends with the RETURN

statement, which causes the program to jump back to the state

ment after the GOSUB in line 40. You may wonder why the menu

(lines 300-360), which is printed only once, is included as part of

the subroutine that prints the current value display (lines

365-410), which will be updated and rePRINTed often.

It didn't have to be that way. I could have put the menu be

tween lines 40 and 100 and included only 365-410 in the subrou

tine. I did it to show you a technique that you may want to use.

Later in the program, we will reuse that subroutine, but not in a

statement that says GOSUB 300. Instead, the statement will say

GOSUB 365. It will begin executing the subroutine at line 365,

which positions the cursor, and then flow through to line 410,

which RETURNS.

When you have a routine that sometimes includes several

statements and sometimes doesn't, one of the simplest things to

do is group those statements at the beginning of the subroutine,

and then sometimes use an entry point before those statements,

and sometimes use an entry point after them.

There are dangers, though, to having a subroutine do double

duty. Once again, we need to think of revisions. What if you were

24

Starting

Out

doing revisions in a part of the program that entered the subrou

tine at line 300, and you discovered something you wanted to add

to the subroutine. If the program were very complex, or you

hadn't worked on it in a long time, you might forget that other

parts of the program also enter the subroutine at 365. Suppose

that you then made a change at line 380 that will work just fine for

the routines that enter at 300 — but ruin everything for the rou

tines that enter at 365.

In a small program like this one, that sort of thing is pretty

unlikely, and multiple entry points can save time; but the safest

thing is to create each subroutine with one and only one entry

point and one and only one RETURN point. This is one of the

principles of "structured" programming.

4. The Main Loop

Here is the main loop of the program, the things that will be re

peated, over and over, until the program is ended:

100 SH=PEEK(SC):KEY=PEEK(KD):IF KEY<>64

THEN GOSUB 500:GOSUB 365

105 IF KEY=255 THEN 200

110 POKE PI,SI:POKE P2,S2

120 POKE AD,ATTACK+DECAY:POKE SR,SUSTAIN

+RELEASE:POKE WF,WAVE:POKE SW,SQUARE

130 FOR 1=0 TO DUR:NEXT I

140 POKE WF,WAVE AND OFF

150 FOR 1=0 TO 75:NEXT I

160 GOTO 100

Read the keyboard. Line 100 finds out what key, if any, the

user has pressed. The computer finds out the value stored at SC

and assigns it to the variable SH. This will be a 1 if the SHIFT key

is pressed, 2 if the COMMODORE key is pressed, or a 0 if neither

is pressed. Then KD is PEEKed and the value is placed in KEY,

which tells which key has been pressed.

If KEY does not contain a 64, then a key has been pressed,

and we will want the program to do certain things. First, the pro

gram will jump to the subroutine at 500. This is the Change Value

Subroutine that finds out whichkey was pressed and makes

changes accordingly. Then the program will GOSUB to 365 and

update the current value display — this is the second entry point

to that subroutine, which you've already seen.

25

1 Starting

Out

Everything after THEN. Remember that everything that ap

pears on a line after the THEN statement will be executed if the

condition is true, and noneoi it will be executed if the statement is

false. In other words, if KEY equals 64 (meaning that no key was

pressed), the program jumps right to line 105, ignoring every

thing else on line 100.

Internal flag. Line 105 is deceptive. It looks as though it is do

ing part of the job that the subroutine at 500 will do — checking to

see what key was pressed. Actually, however, the keyboard can

not possibly return a value of 255. The pnly way that KEY can

equal 255 is if the program changes it to 255. This serves as a flag.

There is only one way that KEY can ever equal 255, so testing for

255 finds out if that condition has been met. If that flag is set, then

the program will branch to line 200 — and line 200 ends the

program!

Making the sound. Lines 110 and 120 actually make the

sound, line 110 POKEs the correct values into the frequency con

trol locations. Line 120 POKEs the correct values into the ADSR

and waveform locations. Every time this loop repeats, this action

is performed and a sound begins, whether the values have been

changed or not. This is why the sound repeats over and over, re

gardless of whether the user presses a key.

Repeating without waiting. This is why we wrote the pro

gram to get the user's choices by heading KD and SC rather than

using INPUT statements. When you use an INPUT statement, the

program stops and waits until the user enters something, then

presses RETURN. That would make it difficult to make the sound

repeat over and over.

The disadvantage of reading KD and SC, however, is that

there is no regular mathematical relationship between the key

board codes and the characters they stand for. If you actually had

to be able to understand all the possible combinations of SHIFT,

CONTROL, and keys using the keyboard codes, your program

would be terribly slow and unwieldy. This method works best

when only a few keys are meaningful, and it's important not to

stop and wait for input.

Delay loops. Line 130 and line 150 are both delay loops, or

empty loops. They make the computer do nothing over and over

again, for as long as we tell it to. The loop in 130 decides how long

the sound will last, and its duration is controlled by the value of

the variable DUR. IfDUR is a low number, the sound will be

short; if it is a high number, the sound will be long. The user can

26

starting

Out

change this value while the program is running.

The loop in line 150, however, is a constant length. This is be

cause it is the time betzveennotes. Why have any delay at all? Be

cause the release step in the ADSR envelope happens after the

note ends —- it decides how quickly the sound dies down at the

end of the note. If we went straight from the end of one sound to

start a new one, there wouldn't be time for the user to hear the

effect of using different release values.

Notice that both empty loops use the same counter variable,

I. This works fine because the one loop closes before the next be

gins. However, if you nest two loops, one inside the other, you

must use different counter variables or the program will become

completely confused.

Turning off the sound. Line 140 POKEs the value of OFF into

location WF. This turns off the sound we just produced. Why do

we AND the value of OFF with the value of WAVE? To turn off the

Figure 3. Bitwise AND

Notice that ANDing any number with 254 will turn off only the

rightmost (least significant) bit. All other on bits will stay on.

sound, we must make the least significant (lowest-numbered) bit

at WF be a 0. We could just POKE a 0 into WF, but that is like using

a sledgehammer to push a needle.

What does AND do? When you use AND with a number in

stead of a logical expression ("bitwise AND" instead of 'logical"

27

1 Starting

Out

or "Boolean AND"), the computer compares the bits in both

numbers. Any bit that is on (has a value of 1) in both numbers will

be on (1) in the result. But any number that is off (0) in eithernum-

ber will be off (0) in the result. OFF has a value of 254, and in the

number 254 every single bit is on except the least significant bit.

Therefore, no matter what the other number is, that least signifi

cant bit will be a 0 in the result. Any other bit that is on, however,

will stay on, because it will find a match in the number 254. Figure

3 shows how bitwise AND works in the expression WAVE AND

OFF.

Close the loop. Line 160 closes the main loop by sending the

program back to 100. It will keep doing this forever if the user

never ends the program. That's why a loop made with a GOTO is

called an endless loop.

5. Exit Routine

Line 200 is very simple —- it exits from the program. But it does it

cleanly. First, you can get to this line only when the sound is off.

Every time through the main loop, the sound is off after line 140

and does not turn on again until the loop repeats and reaches line

110. The command that can send us to the exit routine is in line

105. Therefore, you can only reach this routine when the sound is

off.

200 POKE 198#0:END

What is POKE 198,0 doing? Every time you press a key on the

64, the value of the key you pressed is automatically put into a

keyboard buffer. This happens even during a program like this

one, where we aren't accessing the keyboard buffer. Location 198

contains the number of characters stored in the buffer. If we didn't

POKE a 0 there, the values of the keys you had last pressed would

be stored there, and when the program ended, those characters

would be printed on the screen. It wouldn't cause any harm, but

it looks funny and forces the user to move down a line or erase

those characters. So POKE 198,0 just tidies up a bit at the end of

the program.

6. Evaluate key

In lines 500 through 530, the program evaluates the value of KEY

and SH and figures out what subroutine to branch to.

28

Starting

Out 1

500 IF KEY=1 THEN KEY=255:RETURN

505 IF KEY=54 THEN TEN=l-9*(TEN<>10)

510 IF KEY=60 THEN 600

520 IF KEY<2 OR KEY>7 THEN RETURN

530 KEY=KEY-1:ON KEY GOSUB 540,550,560,5

70,580,590:RETURN

Exit flag set. Line 500 checks to see if RETURN was pressed.

If so, it changes KEY to 255 and RETURNS. But why not just end

the program right at line 500? We could enter this line:

500 IF KEY=1 THEN POKE 198,0:END

That line would work just fine. The program would end, and be

cause we can't reach line 500 unless the sound is off, we would be

ending very neatly. If you use this line, you can delete line 105 and

line 200. The program is shorter and runs faster.

I simply have a personal aversion to ending programs in the

middle of an unresolved subroutine. We executed a GOSUB to

get to line 500, and I don't like to end unless the program has exe

cuted a RETURN. It's just a quirk of mine. I like to be neat. This is

the sort of thing that programmers do because they feel like it.

That's why if you assign two programmers to do the identical

task, they will come back with very different programs. People do

things differently.

Toggling TEN. Line 505 checks to see if the key pressed was

the up-arrow key. If it was, then TEN will be changed. If it was 1,

it will become 10; if it was 10, it will become 1.

Look carefully at the expression after the equal sign (=) in

line 505. Let's evaluate that expression the way the computer

would, and see what's going on.

We start inside the parentheses, with the expression

TEN <> 10. If this expression is false, then it will return a value of 0.

If it is true, it will return a value of -1. This is very important! True

expressions equal negative one (-1), and false expressions equal

zero (0). Knowing this can help you make your programs run fast

er, with fewer IF statements. In this case, if TEN does notequal 10,

then the expression is true, and returns a value of -1. If TEN does

equal 10, then the expression is false, and returns a value of 0.

The next step is to multiply the result of TEN<> 10 by 9. If the

expression was false, or 0, then the result of this operation is 0. If it

was true, then the result is -9.

29

1 Starting

Out

Now we subtractthat value from 1. If the value was 0, then

1-0=1. TEN will equal 1. If the value was -9, then 1- (-9) is the same

thing as 1 + 9, or 10.

See how it worked? If TEN was already equal to 10, then it

will end up equal to 1. If TEN was already equal to 1, then it will

end up equal to 10. We are simply switching back and forth.

Another way of doing this would have taken two lines and

two IF statements. Please don't enter these lines — they're just an

example:

505 IF KEY=54 AND TEN=1 THEN TEN=10:GOTO

510

506 IF KEY=54 AND TEN=10 THEN TEN=1

Why is the GOTO statement at the end of line 505? Remember

that at the end of the operation in line 505, TEN will be equal to 10

no matter what. If it wasn't already equal to 10, the line changed it.

Then, if it goes right on to 506, TEN will be changed right back to

1. From then on, TEN would always be 1, regardless of whether

the user tried to toggle the value or not. We would add a GOTO at

the end of 505, so that if the value was changedin line 505, it will

skip over 506 and not get changed back.

The way we have it in the program, with a single line, is much

better.

Line 510 checks to see if the space bar was pressed. If it was,

the program jumps to line 600.

Then, in line 520, the program checks to see if the value of

KEY is between 2 and 7. If it isn't, the program RETURNS from the

subroutine and does nothing more. This means that if the user

presses a key that means nothing, the program will simply ignore

it and go back to the main loop.

Setting up a valid ON statement. A quirk of the keyboard

code is very helpful to us right now. It just happens that the two

cursor keys and the four function keys are all in numerical order,

from 2 to 7. And it also happens that an ON statement is the

simplest way to have multiple branches.

We have six possible branches. ON evaluates the expression

that follows it. If the expression has a value of 1, the program will

branch to the first line number following the expression. If ON

finds a value of 2, it will branch to the second line number, and

soon.

But ON is very fussy. It stops the program with an error state

ment if the expression is not an integer, if it is not a positive num-

30

Starting

Out

ber, if it is a zero, or if there is no line number to correspond with

the value. In order to use ON effectively, you have to keep tight

control of the expression following ON.

In our program, it's easy. We have already screened out every

possible value of KEY except the numbers from 2 to 7. Now all we

do is subtract 1 from KEY, and it will consist of a number from 1 to

6. If we make sure we have six line numbers following the

GOSUB command, we're safe. We just have to make sure that the

line numbers are the right ones, and the rest of our choices are

taken care of. (By the way, KEY =KEY-1 isn't really necessary. The

statement could begin 530 ON KEY-1 GOSUB ... and it would

work just as well. Better, in fact, because it would take up less

space and run a bit faster.)

7. value Change Subroutines

Lines 540 and 545 change the value of SQUARE. Lines 550 and

555 control RELEASE and SUSTAIN, depending on whether the

SHIFT key is pressed. Line 560 controls SI, and 570 controls S2.

Lines 580 and 585 change the values of DECAY and ATTACK. 590

and 595 control DUR. 600 and 610 control WAVE.

540 SQUARE=SQUARE-TEN+2*TEN*ABS(SH=1)

545 SQUARE=SQUARE-256*(ABS(SQUARE>255)-A

BS(SQUARE < 0)):RETURN

550 IF SH=1 THEN RELEASE=RELEASE+1-15*AB

S(RELEASE=15):RETURN

555 SUSTAIN=SUSTAIN+16-240*ABS(SUSTAIN=2

40):RETURN

560 S1=S1-TEN+2*TEN*ABS(SH=1):Sl=Sl-256*

(ABS(S1> 2 5 5)-ABS(Sl<0)):RETURN

570 S2=S2-TEN+2*TEN*ABS(SH=1):S2=S2-256*

(ABS(S2 > 2 5 5)-ABS(S2 <0)):RETURN

580 IF SH=1 THEN DECAY=DECAY+1-15*ABS(DE

CAY=15):RETURN

585 ATTACK=ATTACK+16-240*ABS(ATTACK=240)

:RETURN

590 DUR=DUR-25*(ABS(SH=0)-ABS(SH=1)):IF

DUR<25 THEN DUR=25

595 RETURN

600 WAVE=WAVE+16*(INT(WAVE/16)):IF WAVE>

129 THEN WAVE-17

610 RETURN

31

1 Starting

Out

The best way to figure out what is going on in each of these

lines is to carry out the operations exactly the way the computer

does —- the way we did when we evaluated line 505. Always exe

cute the expression inside the innermost parentheses first.

Always multiply and divide before adding and subtracting.

There are several things you want to look for. First, wherever

the value of SH is tested or used, the program is deciding how to

act depending on whether the SHIFT key is pressed or not. A

similar test occurs wherever you see the program testing to see if a

value is greater than 255 or less than 0. Since numbers outside the

range of 0 to 255 cannot be POKEd, it is essential that they be

changed to legal numbers. The simplest method is subtracting

256 from numbers greater than 255, and adding 256 to numbers

less than 0.

Second, notice how TEN and other numbers are used to see

to it that only the correct values result from the operations.

ATTACK, for instance, in line 585, can only end up with a value

that is a multiple of 16. The program sees to this by adding 16 to

the old value of ATTACK. This works every time except when

ATTACK had a previous value of 240 — then the new value is 256,

which is not a legal value. So whenever ATTACK starts out (before

adding 16) at 240, the program adds 16 but then subtracts 240, re

sulting in a value of 16 for ATTACK. From there, the cycle begins

again.

Third, notice the use of the ABS function. Remember that

when an expression is true, it returns a value of -1. But it is often

more useful to turn this into a positive number. There are several

ways to do it. One is simply to put a minus sign in front of the ex

pression: -(-1) is equal to positive 1. Another way is to subtract the

true expression in a situation where you really want to add it. But

I prefer to use ABS, because it's foolproof. If a number is positive

or zero, ABS leaves it alone. If a number is negative, however,

ABS turns it positive.

In all of these, keep in mind the fact that if the expression is

false, its value is 0. So if you add or subtract the result of the ex

pression, a false will have no effect. But if you multiplythe result

of an expression, a false will always give you a zero product.

Notice that lines 595 and 610 consist of a single RETURN

statement. Why weren't these RETURNS put on the end of the

line before, the way it is done in 570 and 580 arid others? Because

both of these lines end with an IF statement, so that a RETURN

on the same line would be executed only if the condition is true.

32

Starting

Out

So even if there were a RETURN on the end of the line, the pro

gram would still need to have a RETURN on the next line to end

the subroutine in case the result is false. Since nothing else but

the RETURN will happen on that line, why type in an extra

RETURN? The one will be enough to end each subroutine.

However, in cases like 550 and 555, where we never want both

lines to execute, we need to have a RETURN at the end of each

line so it can't "fall through" and execute the wrong line. Perhaps

the easiest way to see the result of allowing the program to fall

through is to remove one of the RETURNS and then see what

happens to the values when you press the keys — you get more

than you bargained for.

Does this seem like an awful lot to think about every time you

program? Actually, you have to make about as many decisions

whenever you drive a car. It's just a matter of habit. Once you're

used to thinking this way, it won't occur to you that you're even

doing something difficult. And it won't be very long before you

look back at this program and think, 'Is this all?"

Well, it isn't all — it never is. Because once you're comfortable

with my version of the program, you'll start to think of features

you want to add and slow places that you can speed up. It

wouldn't be hard to have three voices going at once and to use the

COMMODORE key to cycle from one voice to the next. Or to

make the screen change colors every time the waveform is

changed. Or to allow direct keyboard entry of certain pitches in

stead of having to rotate through them 1 or 10 values at a time.

When you start customizing programs like that, you've got it.

The following program repeats what has been given, in parts,

throughout this chapter.

64 sound

10 P1=54273:P2=54272:VL=54296:AD=54277:S

R=54278:WF=54276:SW=54274

20 SC=653:KD=197

25 POKE 54275,8:POKE VL,15

30 S1=22:S2=53:ATTACK=16:DECAY=8:SUSTAIN

=16:RELEASE=8:SQUARE=128

35 WAVE=35:DUR=100:OFF=254:TEN=10

40 GOSUB 300

100 SH=PEEK(SC):KEY=PEEK(KD):IF KEY<>64

THEN GOSUB 500:GOSUB 365

105 IF KEY=255 THEN 200

110 POKE PI,SI 2 POKE P2,S2

33

1 starting

out

120 POKE AD,ATTACK+DECAY:POKE SR,SUSTAIN

♦RELEASE:POKE WF,WAVE:POKE SW,SQUARE

130 FOR 1=0 TO DUR:NEXT I

140 POKE WF,WAVE AND OFF

150 FOR 1=0 TO 75-.NEXT I

160 GOTO 100

200 POKE 198,0:END

300 PRINT CHR$(147)"Fl/2{6 SPACES}= HIGH
FRE DOWN/UP"

310 PRINT "F3/4{6 SPACES}= LOW FRE DOWN/

UP"

320 PRINT "F5/6{6 SPACES}= ATTACK/DECAY"
330 PRINT "F7/8{6 SPACES}= SUSTAIN/RELEA

SE"

340 PRINT "SPACE BAR = CHANGE WAVEFORM"

350 PRINT "CRSR U/D{2 SPACES}= DURATION

MORE/LESS"
355 PRINT "CRSR L/r{2 SPACES}= SQUARE WA

VE WIDTH"

360 PRINT "UP-ARROW{2 SPACES}= PITCH INT

ERVAL TOGGLE":PRINT "RETURN

{4 SPACES}= STOP"

365 POKE 214,10:POKE 211,0:PRINT

370 PRINT "HIGH FRE="STR$(SI)"{2 SPACES}
"TAB(20)"LOW FRE="STR$(S2)"

{2 SPACES}"
380 PRINT "ATTACK="STR$ (ATTACK)" "TAB(20

);"DECAY="STR$(DECAY)" "

390 PRINT "SUSTAIN="STR$(SUSTAIN)" "TAB(

20);"RELEASE="STR$(RELEASE)" "

400 PRINT "WAVEFORM="STR$(WAVE)n "TAB(20

)"DUR="STR$(DUR)" "

410 PRINT "SQUAREWAVE WIDTH="STR$(SQUARE

)" ":RETURN

500 IF KEY=1 THEN KEY=255:RETURN

505 IF KEY=54 THEN TEN=l-9*(TEN<>10)

510 IF KEY=60 THEN 600

520 IF KEY<2 OR KEY>7 THEN RETURN

530 KEY=KEY-1:ON KEY GOSUB 540,550,560,5

70,580,590:RETURN

540 SQUARE=SQUARE-TEN+2*TEN*ABS(SH=1)

545 SQUARE=SQUARE-256*(ABS(SQUARE>255)-A

BS(SQUARE <0)):RETURN

550 IF SH=1 THEN RELEASE=RELEASE+1-15*AB

S(RELEASE=15):RETURN

555 SUSTAIN=SUSTAIN+16-240*ABS(SUSTAIN=2

40):RETURN

560 S1=S1-TEN+2*TEN*ABS(SH=1):Sl=Sl-256*

(ABS(S1>255)-ABS(SK0)):RETURN

34

Starting

Out

570 S2=S2-TEN+2*TEN*ABS(SH=1):S2=S2-256*

(ABS(S2>255)-ABS(S2<0)) -.RETURN

580 IF SH=1 THEN DECAY=DECAY+1-15*ABS(DE

CAY=15):RETURN

585 ATTACK=ATTACK+16-240*ABS(ATTACK=240)

:RETURN

590 DUR=DUR-25*(ABS(SH=0)-ABS(SH=1)):IF

DUR<25 THEN DUR=25

595 RETURN

600 WAVE=WAVE+16*(INT(WAVE/16)):IF WAVE>

129 THEN WAVE=17

610 RETURN

35

Chapter 2

BASIC
Programming

BASIC

Programming 2

All About the
wait instruction
Louis E Sander and Doug Ferguson

WdT is one ofCommodore BASIC'S most mysterious instructions —

seldom seen in programs, rarely mentioned in magazines, and nearly im

possible to understand in manuals. Tofind out how helpful it can befor

all kinds ofapplications (program debugging, single-stepping, even a

superiorform of the common pause GETK$: IFK$=""THEN), read on.

WAIT allows a BASIC program to communicate with hardware

and with certain software external to itself. It causes the computer

to suspend all apparent activity on receipt of a signal from the

keyboard, an external device, or the computer's internal timers.

Normal activity resumes when the signal is removed. Thus,

WAIT provides a simple means of pausing until a key is pressed,

an interval ends, or contacts open or close. Well soon get to some

useful examples.

When executed, WAIT examines a selected memory location

and halts the program if the location contains a specified "trigger

value." The program continues if, or as soon as, any other value

appears in the selected location. Optionally, WAIT can be made to

ignore some of the bits in the location it is testing.

In other words, WAIT halts a program if, and for as long as,

selected bits in a chosen location have one specific pattern. Note

carefully: the program waits if a specific pattern exists, not for a

specific pattern to appear.

WAIT's format is:

WAITADPR, MASK, TRIG

ADDR, MASK, and TRIG can be any numeric constants, expres

sions, or variables in the range 0-65535 for ADDR, and 0-255 for

MASK and TRIG. TRIG and its leading comma maybe left out of

the statement if desired, in which case TRIG defaults to zero.

Technically speaking, the WAIT statement reads the status of

memory location ADDR, exclusive-ORs it with TRIG, then ANDs

the result with MASK, repeating these steps until a nonzero re-

39

2 BASIC

Programming

suit is obtained. Practically speaking, few human minds can follow

such logic, let alone comprehend its effect on their programs. If

you prefer simplicity, think of WAIT as saying this: "Pause if the

MASK bits in the contents of ADDR are the same as those in

TRIG. Otherwise, continue." But let's illustrate some of its specific

uses.

ADDR is the address of the memory location to be tested.

WAIT halts the program ifADDR contains a preselected trigger

value, resuming execution if and when ADDR's contents change.

It follows that ADDR must be a location whose contents can

change independently of the program, or there will be no way to

resume program execution. Relatively few memory locations

meet this criterion — mainly they are associated with the key

board, the user and serial ports, and the computer's internal

timers. Table 1 is a partial listing of such locations.

Table 1. Some useful Memory Locations

Increments every jiffy (1/60 second).

J^^^f|^|^

Unique value for the key pressed at the ciirrent jiffy

^^Kiife^^-^ ^ "■ ■ ■ ■ ■■. .^r ^. v;y^:fe^^^®&

Number of characters in the keyboard buffer

MASK determines whether WAIT tests all, or only some, of

the bits in ADDR. If a given bit in MASK is set to one, the corre

sponding bit in ADDR will be tested. Otherwise, the bit will be

ignored. If the entire contents of ADDR are to be tested, MASK

must equal 255; any lower number will cause WAIT to ignore one

or more bits. The various powers of two are often used in MASK

to monitor a single bit for a one or a zero. Zero is a legal value for

MASK, but should never be used, since it always causes an end

less halt. (Any number AND zero equals zero.)

TRIG is the value that triggers a halt. If WAIT is executed

when ADDR contains TRIG, the program will stop until TRIG is

replaced by another value. Of course, if MASK is blocking out

one or more bits, any number whose unblocked bits are identical

to those in TRIG will have the same effect as TRIG and will cause

40

BASIC

Programming 2

the program to halt. TRIG'S default value is zero, so when TRIG

is omitted from the WAIT statement, a halt occurs whenever all

the unblocked bits are zero.

WAIT has three other notable properties. First, just as PRINT

can be abbreviated as "?", WAIT can be abbreviated as "W shifted

A". You can use this property to save keystrokes and line space.

Second, the STOP key will not terminate a WAIT. That can only

be done by satisfying the logical conditions in the argument or

by using the RUN/STOP-RESTORE combination. So as soon as

you put a WAIT statement into a program, SAVE a copy on tape

or disk; that will save you if you've made an error. Finally, WAIT

does not affect the jiffy clock — TI and TI$ continue counting

during WAITs, even though the computer and the STOP key are

ostensibly dead. So by using the memory locations of the jiffy

clock, you can precisely control WAITs pauses.

Real world Applications
End-of-the-program questions are well suited for the WAIT com

mand. To replay or not to replay is hardly a menu of choices. With

WAIT, the computer "waits" for the replay signal. Even if the

player wants to quit, he can always RUN/STOP-RESTORE or turn

off the power.

Try these three short demos to see the possibilities.

10 FOR X=l TO 20:NEXT X:REM KILL SOME TI

ME

20 WAIT 197,64,64:REM WAITS FOR YOU TO P

RESS A KEY TO MOVE ON

30 PRINT "YOU PRESSED A KEYlIITHANKS"

40 POKE 198#0:REM CLEARS THE KEYBOARD BU

FFER

10 REM WHEN YOU RUN THIS SHORT PROGRAM H

OLD THE <RETURN> KEY DOWN TO WAIT

20 WAIT 197,64:REM WAITS FOR YOU TO TAKE

YOUR FINGER OFF THE KEYBOARD

30 PRINT "YOU TOOK YOUR FINGER OFF THE K

EYBOARD"

40 POKE 198,0:REM CLEARS THE KEYBOARD BU

FFER

41

2 BASIC

Programming

6000 PRINT "YOU WINM":PRINT "PRESS FIRE

-BUTTON TO PLAY AGAIN"

6010 WAIT 145,16:REM IN CASE BUTTON IS A

LSO USED IN THE GAME ITSELF

6020 WAIT 145#16,16

6030 PRINT:RUN

6040 REM PRESS STOP/RUN AND RESTORE TO S

TOP THIS DEMO

Here is a table showing the specific test values for the

joysticks.

This table assumes you want to test if the joystick is pressed a cer

tain way. If you want to test that a certain position is not pressed,

just leave off the last number.

Tracing with wait
Another way to use WAIT is in FOR/NEXT loops in either pro

gram or direct mode. For example, to examine the contents of the

ROM memory containing BASIC, type in the following program:

100 FOR X=10 * 4096 TO X

,PEEK(X)

110 WAIT 197,64

120 NEXT

or the direct statement:

FOR X = 10*4096 TO X+8191:

): WAIT 197,64: NEXT

+ 8191: PRINT X

PRINT X,PEEK(X

A list of memory addresses and contents will begin to scroll

by. To stop printing, press any key (except RESTORE, SHIFT,

CTRL, or the COMMODORE key). Printing resumes when the

key is released. If the WAIT is changed to WATT 653,1,1, the

42

BASIC

Programming 2

SHIFT key alone becomes the control key. This has the advantage

of providing a "hands off pause by using the SHIFT LOCK key.

It is also possible to single-step (go through a program line by

line) using the WAIT command. Simply change the WATT to

WAIT 197,64: WAIT 197,64*64

for "any key" control or

WAIT 653,1,1: WAIT 653,1

for SHIFT key control, although the SHIFT LOCK is of no conse

quence when single-stepping.

Escape from examining memory by hitting the RUN/STOP

key.

There are, of course, many other ways to use the WATT com

mand. A good way to learn is to experiment. The information

contained here should be only a beginning.

43

2 BAS8C

Programming

rem Revealed
John L. Darling

Did you know that you can prevent someonefrom easily LISTing your

program? This is one ofseveral hidden secrets of theREM statement. Did

you ever try putting shifted or reverse video characters behind a REM?

The results you get when you LIST may come as a surprise. Try these ex

periments to learn about the tricks you can play with REMs.

There are quite a few hidden surprises in the REM statement.

Many are just plain fun, but a few can be put to good use. Let's go

exploring.

The REM statement was designed to provide a way to add re

marks or comments in a program. During execution of the pro

gram, all the characters on a line following the REM are ignored.

Thus, the only time the remarks are seen is when the program is

LISTed.

Also note that, for program operation, it doesn't make any

difference whether the characters following the REM are enclosed

in quote marks or not, but it sure can change the results you get

when you LIST the program. First, let's look at the REM when

quotes are not used. The results you get when the program is

LISTed will be determined by the following rules:

1. Nonshifted characters appear as typed in.

2. Shifted characters are converted to BASIC commands if the

ASCII code for the character is equivalent to a BASIC command

token.

3. Reverse fields are stripped from any character.

Before we examine these rules, you should put your com

puter into lowercase mode by hitting the shift-COMMODORE

key. It is easier to discuss upper- and lowercase letters than it is to

describe graphic symbols. Reverse video characters are turned on

with CTRL-9 and turned off with CTRI^O.

To illustrate these rules, type in the following four lines and

then LIST.

44

BASIC

Programming

10 rem a b c d e f

20 rem A B C D E F

30 rem {RVS}a b c d e f{OFF}

40 rem {RVSJa B C D E F{OFF}

list

10 rem a b c d e f

20 rem atn peek len str$ val asc

30 rem a b c d e f

40 rem atn peek len str$ val asc

Line 10 demonstrates Rule 1. All the characters are LISTed just

as they were entered. This is the normal effect that we're all used

to.

Line 20 doesn't look much like the original, does it? It il

lustrates Rule 2: the shifted letters are interpreted as BASIC com

mand tokens.

Lines 30 and 40 show Rule 3 in action. They look just like

lines 10 and 20 because the reverse field was stripped when the

lines were entered.

LIST Blocking

Now we get to the question of how to prevent someone from

easily LISTing your program. Let's examine Rule 2 a little more

closely. Certain characters become "tokens" which cause unusual

effects. One will cause the LIST operation to terminate with a

"syntax error" message when it is encountered. These tokens are

equivalent to a shifted-L.

This can be verified by the following line.

10 rem L

When you attempt to list the line, the result will be:

10 rem

?syntax error

ready.

Up to now, it's just been fun, but there is a reason you might

want to use this line. If this special REM line is the first line in a

program, it prevents a normal LISTing. Let's assume that the first

line in a large program is line 100. Inserting this special REM line

ahead of the program causes the LIST operation to terminate as

soon as it encounters the special shifted character. However, LIST

45

2 BASIC

Programming

100- will allow the program to be displayed normally.

Consider the following situation. A quiz program has the

answers in DATA statements at the end of the program listing. In

serting the special REM line just ahead of these DATA statements

will prevent the answers from being displayed during a LIST.

Don't forget that REM statements are ignored during program

execution, so they won't affect the actual program operation.

Quote Mode
Now, let's examine the quote mode. A new set of rules applies

when the REM characters are enclosed in quotes:

1. Shifted and nonshifted characters LIST as they were typed

in.

2. Reverse video characters are preserved when inside quotes

(they are not stripped, as is the case in the nonquote mode).

3. Some reverse video characters and combinations of charac

ters behave as print control commands when LISTed.

Rules 1 and 2 produce results that you would normally expect

during the LIST operation. They LIST exactly as typed in. No ex

amples are provided for these rules, but try a few experiments to

verify this for yourself.

Here are some interesting examples of Rule 3 in action. (The

comments in brackets are the resultant action produced during

LIST.)

rem '

rem l

rem J

rem

rem

rem

rem

rem

rem

* E"3

fG3

'ED

'SB

'SB

'SB

'KB

"ED

"EEQ

C

C

C

*

*

*

*

1nsert 3

r e t u r n 3

shifted return] =

+ [hDHIEl

+ Eclear screen!

+ [cursor

+ [cursor

+ [cursor

+ [cursor

down 3

up 3

right 3

left 3

When these characters are inside a REM" statement, strange

things are going to happen.

To enter the following tests, first type the line number, the

REM, the quote symbol, and then RETURN. Next, edit the line by

positioning the cursor past the quote mark, press the RVS ON

key (CTRL-9) and then the letters. This allows you to put the re

verse video characters on the screen line.

46

BASIC

Programming

10 rem"help ? O333

1 ist

1 0 r s sTi " h e

The four reverse t characters achieve the same thing that

would occur if the DEL key was pressed during an edit operation,

deleting the last four characters. Adding more reverse t characters

(15 total) on the rest line will cause the entire line to disappear after

it is LISTed on the screen.

Notice that many of the cursor controls shown require the M

(shifted RETURN) character to be the first character. This is im

portant, for without the shifted RETURN most of the cursor con

trols or special control codes will not be executed. As soon as this

character is encountered, a shifted RETURN will be generated.

All characters following the shifted-M will be printed as if they

were in a PRINT statement, rather than in a REM. Consequently,

if any of these characters are cursor controls, they will produce a

cursor control action as if they were inside the quotes following a

PRINT statement.

If the reverse t's in the previous example were replaced with

reverse MS characters, then the LIST operation would list that

line up to the ! and then the cursor will go to the top of the screen

since MS is interpreted as a HOME command. If this was listed to

a Commodore printer and the paging mode was on, the printer

would eject a page after LISTing that line.

A Program within a Program
Let's try one final example to illustrate how the reverse field

shifted-M works in combination with other characters. To avoid

errors, here is a complete key sequence that will produce the fol

lowing line:

1,0,SPAC$, R# E,M,",",DEL,RVS,SHIFT-M,

SHIFT-S,Q,Q,Q,Q,OFF,I,SPACE,T,H,I,N,K#

SPACE,I,SPACE,A,M,SPACE,S,RVS,Q,OFF ,I

RVSfQ,OFF#C,RVS,Q,OFF,K,RVS,S,OFF,

SHIFT-L

10 rsm " iswrsrtFgtFtL think i am sE3i 0cHkS"

L

47

2 BASIC

Programming

Can you guess the results? If you type the line correctly, the

following will happen after you LIST:

1.10 REM" will be printed.

2. A CLEAR SCREEN will be printed, blanking the screen

and also the previous 10 REM".

3. Four cursor-downs will be printed.

4. The message I THINK IAM SICK will be printed with the

I,C,K characters on different lines.

5. A cursor-home will occur.

6. "@ will be printed on the top line followed by a 7SYNTAX

ERROR message on the next line. (Note that the special shifted

character is no longer enclosed in quotes.)

7. Finally, the READY message will appear with the cursor

above the I THINK I AM S line.

The above line could be inserted in most programs, and it will

not affect the program execution performance in the least. You

just can't get a normal USTing of the program.

There are a lot more combinations to try, so have fun. It's like

having a program inside another program. The second program

requires a LIST command for execution instead of a RUN

command.

48

BASIC
programming 2

From ifs to ands
Stephen D. Eitelman

Presented here are some efficient ways to program forjoysticks.

The Commodore 64 User's Guide is strangely lacking in information

on programming the joysticks. In "Commodore 64 Memory Map"

(see Chapter 7), Jim Butterfield shows the memory locations for

the joysticks: 56320 and 56321. With this data, a simple program

PEEK to the appropriate location should permit a determination

of the memory contents versus stick direction. With a joystick

plugged into port 1 (plug in the joystick with the power off for

safety), try this program:

10 PRINT PEEK (56321)

20 GOTO 10

Line 10 prints the contents of memory location 56321. line 20

creates an endless loop to allow viewing of different joystick posi

tions just by moving the joystick. When the program is RUN, a

column of 255s scrolling upward should appear. Now move the

joystick to the north (up). The number should now read 254.

Moving the joystick to the northeast should produce 246. Table 1

gives the values produced at each joystick position.

A similar table can be generated for port 2. Plug a joystick in

to port 2, change the memory location in line 10 from 56321 to

56320, and RUN the program. Going around the compass again

produces the data as indicated in Table 2.

49

2 BASIC

Programming

fiir,

l^^iil^iili

The 64 Sketchpad
With this data, a simple program can be written that moves a

graphics symbol around the screen under control of the joystick

(Program 1). (Be sure to save this program; we will use it again

later.) Pressing the fire button clears the screen and starts a "fresh

page/' The lines in this program perform the following actions:

Line Action

5 Clear screen.

7 Brown border: black background.

10 Variable JM (Joystick Memory) set for port 2.

20 Set Screen Location and Screen Color to center of screen.

30,40 Put a ball in center and color it green.

50,60 Set variables for No Joystick and directions using Table 2.

70-150 Test JM for direction, set X and Y increment.

155 If Fire Button pressed, erase and start over.

160 No motion; start JM test sequence again.

170 Set new SL.

175,177 Keep SL within limits of screen memory.

180 Set new SC.

185,187 Keep SC within limits of screen color memory.

190 Draw a ball at new SL.

200 Color ball green at new SL.

205 Slow it all down.

210 Begin another loop to find next location.

There's an Even Better way!
Lines 50-155, while pretty straightforward, seem unnecessarily

long. Jim Butterfield gives a better way in an article entitled "VIC

Sticks" in COMPUTED Second Book ofVIC Although this article

deals (very properly) with VIC-20 joystick programming, there

are some valuable lessons worth investigating for applicability to

the 64 joysticks. The first is that horizontal and vertical increments

can be generated in one-line statements using the SGN function

and some logic if the directions have nonoverlapping binary

values. The second lesson is that diagonals are the sum of the

50

BASIC
programming 2

vertical and horizontal values on either side, so that it is unneces

sary to treat diagonals separately. The third lesson is that the

binary values of joystick directions are inverted (bits are set to zero

instead of one when a given direction switch is activated).

Butterfield inverts the values with the logical NOT statement to

convert to "positive" logic. To see if these tricks will work with the

64, try the following modification to the short program at the be

ginning of this chapter (joystick in port 2):

10 PRINT (NOT PEEK(56320))+128

20 GOTO 20

The addition of 128 in line 10 is a "fudge factor" to force the

joystick center position to be zero after the inversion. Going

around the compass again produces results very similar to those

for the VIC-20 as seen in Table 3.

From this table, you can see that the major points of the com

pass have nonoverlapping binary values and that the diagonals

are the sum of the vertical and horizontal values on either side.

Thus it should be possible to adapt Butterfield's one-line VIC hor

izontal and vertical incrementers to the 64.

Direction D =(NOTPEEK(56320)) +128

Horizontal H =East - West; H =0, +1, -1 only

H =SGN(D AND 8)-SGN(D AND 4)

Vertical V =-North +South; V =0, +1, -1 only

V =SGN(DAND 2)-SGN(D AND 1)

Saving Memory
Our sketchpad program can now be shortened considerably with

51

BASIC

Programming

this far more elegant approach. First eliminate lines 50-160 inclu

sive from Program 1. Then add the following lines:

50 D=(NOT PEEK(56320))+128:REM INVERT DI

RECTION BYTES

55 IF D=16 THEN 5:REM FIRE BUTTON.START

OVER

60 H=SGN(D AND 8)-SGN(D AND 4)

70 V=SGN(D AND 2)-SGN(D AND 1)

In lines 170 and 180, substitute H for X and V for Y. The pro

gram should perform the same as before with a net saving of nine

lines.

A similar investigation for port 1 reveals that the inverted

directions are the same as for port 2. The only difference is in the

PEEK statement. Substitute the following:

D=(NOT PEEK(56321))+256

Now the Sketchpad program will work for port 1. The Modified

Sketchpad is Program 2.

Program 1.64 Sketchpad

5 PRINT "{CLR}"

7 POKE53280/9:POKE53281,0

10 JM=56320:REM JOYSTICK MEMORY,PORT 2

20 SL=1524:SC=55796:REM SCREEN LOCATION

& PIXEL COLOR. START IN MID SCREEN

30 POKE SL,81:REM BALL IN MIDDLE OF SCRE

EN

40 POKE SC,5:REM GREEN BALL

50 NJ=127:N=126sNE=118:E=119:SE=117

60 S=125:SW=121:W=123:NW=122:FB=111

70 IF PEEK(JM)=NJ THEN X=0:Y=0

80 IF PEEK(JM)=N THEN X=0:Y=-1

90 IF PEEK (JM)=NE THEN X=1:Y=-1

100 IF PEEK (JM)=E THEN X=1:Y=0

110 IF PEEK (JM)=SE THEN X=1:Y=1

120 IF PEEK (JM)=S THEN X=0:Y=1

130 IF PEEK (JM)=SW THEN X=-1:Y=1

140 IF PEEK (JM)=W THEN X=-1:Y=0

150 IF PEEK (JM)=NW THEN X=-1:Y=-1

155 IF PEEK(JM)=FB THEN GOTO 5

160 IF X=0 AND Y=0 THEN 70:REM NO MOTION

170 SL=SL+X+40*Y:REM NEW LOCATION

52

BASIC

programming2

175 IF SL>=2023 THEN SL=2023

177 IF SL<=1024 THEN SL=1024

180 SC=SC+X+40*Y:REM COLOR @ NEW LOC'N

185 IF SC>=56295 THEN SC=56295

187 IF SC<=55296 THEN SC=55296

190 POKE SL,81:REM BALL @ NEW LOC'N

200 POKE SC,5:REM GREEN BALL

205 FOR DL= 1 TO 50:NEXT DL:REM DELAY

210 GOTO 70:REM DO NEXT BALL LOCATION

220 END

Program 2. Modified Sketchpad

5 PRINT "{CLR}"
7 POKE53280,9:POKE53281,0

10 JM=56320:REM JOYSTICK MEMORY,PORT 2

20 SL=1524:SC=55796:REM SCREEN LOCATION

& PIXEL COLOR. START IN MID SCREEN

30 POKE SL,81:REM BALL IN MIDDLE OF SCRE

EN

40 POKE SC,5:REM GREEN BALL

50 D=(NOT PEEK(56320))+128:REM INVERT DI

RECTION BYTES

55 IF D=16 THEN 5:REM FIRE BUTTON.START

OVER

60 H=SGN(D AND 8)-SGN(D AND 4)

70 V=SGN(D AND 2)-SGN(D AND 1)
170 SL=SL+H+40*V:REM NEW LOCATION

175 IF SL>=2023 THEN SL=2023

177 IF SL<=1024 THEN SL=1024

180 SC=SC+H+40*V:REM COLOR @ NEW LOC'N

185 IF SC>=56295 THEN SC=56295

187 IF SC<=55296 THEN SC=55296

190 POKE SL,81:REM BALL @ NEW LOC'N

200 POKE SC,5:REM GREEN BALL

205 FOR DL= 1 TO 50:NEXT DL:REM DELAY

210 GOTO 50:REM DO NEXT BALL LOCATION

220 END

53

2 BASIC
Programming

Menumaker
Richard L. Witkover

This easy-to-use utility will help you create attractive, well-formatted

display screens.

Your newest programming masterpiece is finally done. Itching to

show it off, you find someone to try it out on. Eagerly, you seat

him at the terminal and stand back anticipating his reaction. He

glances at the screen, looks at the keyboard, looks at the screen

again, and then just sits. Finally, he asks, "What am I supposed to

do?"

"Oh," you say, "just hit RETURN to activate the laser discom-

bobulator, and uSe the I, J, K, andM keys to control up or down

and right or left. The %-key creates a new Zippity and —." By this

time your victim's eyes are glassy, but he recovers enough to say,

"Let me know when you finish it; 111 try it then."

Crestfallen, you are about to say, "It is finished," but catch

yourself and only mumble, "Yeah, I've got to add a few extra mes

sages " You sulk for a while but finally have to admit that even

though your new program is the greatest game in the world, it is

no good unless people know how to play it.

The second act of this little scenario shows the programmer

busily typing in a few options such as "... which do you choose, 1,

2, or 3?" We have all done this as beginners, but you can be sure

that the pros would never be satisfied with that.

The Menu
The answer, of course, is a simple, informational display on the

screen. "Menumaker" is a utility that will print a display starting

at any row or column, or will center the text by row, column, or

both. After the longest line, the program will print a dash. All

shorter lines will be filled with dashes to this point. The last col

umn is used to draw an array of cursor boxes which, along with

the flashing cursor, will move. To allow only a single key to con

trol its motion, the cursor has a wraparound feature. Selection is

made by moving the cursor to the row desired by means of the

cursor UP/DN key (either way), then hitting any key to select the

54

BASIC

Programming 2

sits. Finally, to dress up the display,

id-cornered box around the whole

row on which the cursor sits.

Menumaker draws a round-cornered box around the wf

menu.

Menumaker is presented here as a self-contained program

that you can use to try different layouts to find the one which best

suits the application. The program was written in four parts using

GOSUBs to produce the entire display. In this way the parts can

be fitted into your own programs as needed. For example, you

may wish to place some instructions in one section of the screen

and draw a box around them. No user selection is involved, so

the cursor portion of the program isn't needed.

The Program
Part 1 extends through line 290. It sets up the various constants

and gets the input values of RI$, CI$, and TE$, which set the posi

tioning of the rows, the columns, and the text lines, respectively.

The variables RI$ and CI$ are tested to see if the automatic center

ing option was chosen, and if not, whether the numerical values

are within the allowed ranges. These are set by the screen charac

ter limits with allowances for the borders of the box, the dash,

and cursor array.

The text input is obtained by lines 170-195, checking that the

maximum character count isn't exceeded. Each line is ended with

a carriage return until a null line ends the loop. As each line is

read in, its length is measured and the largest count is retained as

LW% in line 194.

If the centered option is selected, lines 205-240 will compute

the cursor column number and the text starting column number.

Part 2, lines 320 to 370, prints the text on the screen, and Part

3, lines 510 to 680, draws the bordering box. The final part, lines

800-920, is the cursor routine.

Putting it All Together
Now that you have Menumaker, how can you put it to work? The

straightforward way is to just type it in as needed, leaving out all

the REMs but making sure that all of the required input variables

are satisfied. These are defined in the leader block preceding each

subroutine.

There are many frills or variations which could be used with

Menumaker. For example, you could make the cursor a different

color. How about changing the color of the selected text line to

highlight the choice? Just making the box different in color from

55

2BASSC

(Programming

the text will add a bit of pizazz. You could use a joystick to move

the cursor or just use the fire button. The variations are endless,

so have some fun and dress up your programs while you make

them easier to use with Menumaker.

Menumaker

7 REM{11 SPACES}MENUMAKER
8 REM {2 SPACES}THIS PROGRAM DISPLAYS UP

TO 22

9 REM{2 SPACES}LINES OF UP TO 35 CHARACT

ERS.

10 REM THE CHOICE IS MADE BY MOVING THE

11 REM CURSOR VERTICALLY (WITH WRAP-

12 REM AROUND) ALONG AN ARRAY IN THE

13 REM LAST COLUMN. HITTING ANY KEY BUT

14 REM THE UP/ON CURSOR WILL ENCODE THE

15 REM THE ROW #.A BOX IS DRAWN AROUND

16 REM THE MENU. THE TOP LEFT-HAND CHAR

17 REM INSIDE THE BOX CAN BE LOCATED

18 REM SPECIFICALLY OR THE BOX CAN BE

19 REM CENTERED IN ROW AND/OR COLUMN.

20 REM*********************************
40 REM ********************************

41 REM

42 REM{4 SPACES}THE FOLLOWING ARE COMPUT

ER

43 REM{7 SPACES}DEPENDENT CONSTANTS:

44 REM

45 REM{7 SPACES}CM=40{2 SPACES}:MAX # CO

LS

46 REM{7 SPACES}RM=24{2 SPACES}:MAX # RO

WS

47 REM{6 SPACES}SC%=1024:ST OF C-64 SCRE

EN

48 REM{7 SPACES}PN=87{2 SPACES}:NORMAL C

URSOR POKE

49 REM{7 SPACES}PR=215 :REV CURSOR POKE

50 REM{7 SPACES}CR=119 :NORMAL CURSOR CH

R$
52 REM

53 REM{2 SPACES}CHANGE AS NEEDED FOR COM

PUTERS

54 REM{2 SPACES}OTHER THAN THE COMMODORE

64.

55 REM

56 rem*********************************
57 REM

56

BASSC

Programming

60 CM=40:RM=24:SC%=1024 2PN=87:PR=215:CR=

119

69 rem*********************************

70 REM

71 REM{5 SPACES}PARAMETER INPUT ROUTINE

72 REM

73 REM{7 SPACES}REQUIRED INPUTS ARE:

74 REM

75 REM{6 SPACES}RI$=STARTING TEXT ROW

76 REM{6 SPACES}CI$=STARTING TEXT COL
77 REM{6 SPACES}TE$=UP TO 22 TEXT LINES

78 REM

79 REM ROUTINE ACCEPTS A NUMBER FOR RI$

80 REM AND CI$, OR 'C'JN WHICH CASE IT

81 REM WILL CENTERS ROWS AND/OR COLS.

82 REM

83 REM TEXT STRINGS CAN BE A MAX OF 35

84 REM CHARACTERS#EACH LINE ENDING WITH

85 REM A CARRAIGE RETURN. TEXT ENTRY

86 REM ENDS WITH A NULL LINE.

87 REM

88 reM*********************************

89 REM

90 REM{2 SPACES}THE FOLLOWING ARE SCREEN

CHAR

91 REM{2 SPACESjCODES FOR THE C-64:

92 REM{8 SPACES}ER$=ERASE SCREEN

93 REM{8 SPACES}CD$=CURSOR DOWN

94 REM{8 SPACES}CL$=CURSOR LEFT

95 REM{8 SPACES}RO$=REVERSE ON

96 REM{8 SPACES}HO$=HOME
97 REM********************************

98 ER$=CHR$(147):CD$=CHR$(17):CL$=CHR$(1

57):RO?=CHR$(18):HO$=CHR$(19)

100 DIM TE$(22)

105 PRINTER$;CD$;CD$;MENTER ROW AND COLU

MN OF START OF TEXT11

110 PRINT"{7 SPACESjFOR CENTERED TEXT EN

TER 'C'"

115 INPUT"{2 DOWN}{8 SPACES}ROW,COL="7RI

$,CI$

120 LW%=0:CS%=0

125 IFCI$="C"THEN140

130 CS%=VAL(CI$)

135 IFCS%<1ORCS%>(CM-5)THEN INPUT"{RVS}C

OL# INVALID- ENTER COL#";CI$:GOTO125

140 IF RI$="C"THEN LM=RM-2:GOTO160

145 RT%=VAL(RI$)

57

2 BASBC

Programming

150 IFRT%<1 OR RT%>RM-2THEN INPUTn{RVS}R

OW# INVALID- ENTER ROW #";RI$:GOTO14

0

155 LM=RM-1-RT%

160 PRINTCD$;CD$;" ENTER UPTO"LM;"LINES

ENDING EACH WITH A"

165 PRINT" CARRAIGE RETURN. EXIT WITH A

NULL LINE"

170 FOR NL=1TO LM

175 PRINT"LINE #";NL;:INPUTTE$(NL)

180 IF TE$(NL)=""THEN200

185 L=LEN(TE$(NL)):CL=CM-4-CS%

190 IFL>CLTHEN PRINTTAB(10);"{RVS}TOO MA

NY CHAR, MAX="CL:TE$(NL)=""zGOTO175

194 IF LW%<L THENLW%=L

195 NEXT NL

200 LW%=LW%+2:NL=NL-1

205 IFRI$="C"THENRT%=INT(RM-NL)/2+l

225 IFCI$="C"THEN235

230 C%=CS%+LW%-1:GOTO240

235 C%=INT(CM+LW%)/2-1:CS%=C%-LW%+1

240 S%=SC%+C%+CM*RT%

250 GOSUB 320:REM TEXT TYPE-OUT

260 GOSUB 500:REM DRAW THE BOX

270 GOSUB 719:REM MAKE THE CURSOR

280 PRINT"{HOME}{3 SPACESjTHE ROW IS =";

R%

290 END

300 rem********************************

301 REM

302 REM{5 SPACES}TEXT TYPE-OUT ROUTINE

303 REM

304 REM{6 SPACES}REQUIRED INPUTS ARE:

305 REM

306 REM{6 SPACES}RT%=TOP ROW #

307 REM{6 SPACESjNL =# LINES OF TEXT

308 REM{6 SPACES}TE$=TEXT LINE ARRAY

309 REM

310 rem********************************
320 IFRT%=1THENLF$="":GOTO340

330 LF$="":FORI=1TORT%-1:LF$=LF$+CD$:NEX

T

340 PRINT ER$;LF$
350 FORI=1TONL:ND$="":NC=LW%-LEN(TE$(I))

-1:FORN=1TONC:ND$=ND$+"^":NEXT

360 PRINT TAB(CS%);TE$(I)+ND$:NEXTI

370 RETURN

400 rem********************************
401 REM

58

BASIC

programming

402 REM ROUTINE TO MAKE ROUND CORNERED

403 REM BOXES WITH TOP LEFT-HAND CORNER

404 REM OF INTERIOR AT DESIRED ROW AND

405 REM COLUMN.

406 REM

407 REM{3 SPACES}WHEN USED AS MERGED COD

E /

408 REM{3 SPACES}THE REQUIRED INPUTS ARE

409 REM

410 REM{4 SPACES}RT%=# OF TOP INSIDE ROW

411 REM{4 SPACESjNL =# OF INSIDE LINES

412 REM{4 SPACES}LW%=# OF INSIDE CHAR -1

413 REM{4 SPACES}CS%=# OF LEFT INSIDE CO

L

414 REM

415 REM{4 SPACES}LT$=LEFT-TOP CHR$

416 REM{4 SPACES}RT$=RIGHT-TOP CHR$

417 REM{4 SPACES}SD$=SIDE CHR$

418 REM{4 SPACES}DA$=DASH CHR$

419 REM{4 SPACES}LB$=LEFT-BOT CHR$

420 REM{4 SPACES}RB$=RIGHT-BOT CHR$

421 REM

422 rem********************************

500 REM THE FOLLOWING ARE FOR THE C-64

510 LT$=CHR$(117):RT$=CHR$(105)

520 RB$=CHR$(107):LB$=CHR$(106)

530 DA$=CHR?(99):SD$=CHR$(125)

540 IF CS%<>0THENBL%=CS%:GOTO560

550 BL%=INT(CM-LW%)/2

560 BR%=BL%+LW%

570 PRINTHO$-;

580 LF$=CHR$(0):LN$=CHR$(0)

590 IF RT%<=1THEN610

600 FORA=1TORT%-1:LF$=LF$+" {DOWN}11:NEXT

610 FORA=1TOLW%:LN$=LN$+DA$:NEXT

620 PRINTLF?;

630 PRINTTAB(BL%-1);LT$;LN$;RT?

640 FORA=1TONL

650 PRINTTAB(BL%-1)SD$;TAB(BR%);SD$

660 NEXTA

670 PRINTTAB(BL%-1);LB$;LN$;RB$

680 RETURN

700 REM********************************

701 REM

702 REM ROUTINE TO PUT ON CURSOR ARRAY

703 REM WITH FLASHING CURSOR. CURSOR UP

704 REM /DOWN KEY IS USED TO MOVE WITH

705 REM WRAP-AROUND. HIT ON ANY OTHER

59

2 BASIC

Programming

706 REM KEY EXITS ROUTINE WITH R%=ROW

707 REM OF CURSOR.

708 REM

709 REM

710 REM{4 SPACES}THE REQUIRED INPUTS ARE

711 REM

712 REM{6 SPACES}RT%=TOP ROW #

713 REM{6 SPACES}NL =# OF ROWS

714 REM{6 SPACES}LW%=COL#-1 OF CURSOR

715 REM{6 SPACES}CS%=COL# OF 1ST CHAR

716 REM{6 SPACES}S% =CURSOR SCREEN LOC

717 REM

718 rem********************************

719 REM

800 RB%=NL+RT%-1:LF$=CHR$(0)

810 IF RT%=1THEN830

820 FORA=1TORT%-1:LF$=LF$+CD$:NEXT

830 PRINTHO$;LF$

840 FORI=1TONL:PRINTTAB(C%);CHR$(CR);"

{OFF}11: NEXT

850 R%=RT%

860 POKES%,PN:FORI=1TO50:NEXT

870 POKES%,PR:FORI=1TO50:NEXT

880 GETB$:IFB$=""THEN860

890 IFB$<>CHR$(145)THEN930

900 POKE S%,PN

910 IFR%>RT%THENR%=R%-1:S%=SC%+C%+R%*CM:

GOTO980

920 S%=SC%+C%+RB%*CM:GOTO980

930 IFB$<>CD$THENRETURN

950 POKE S%,PN

960 IFR%<RB%THENR%=R%+1:S%=SC%+C%+R%*CM:

GOTO980

970 S%=SC%+C%+RT%*CM

980 R%=INT((S%-SC%)/CM):GOTO860

60

BASIC

Programming 2

Data Storage
Ron Gunn

Data storage can be the most perplexing aspect ofprogrammingfor the

novice. Here are some practical tips which just might save you days of

experimentation.

Types of Data
Commodore computers use three kinds of variables, and it is the

values stored in variables that you will be dealing with when you

save and recall data. The first of these is floating point, repre

sented by a variable like A or A(X). The second is integer, repre

sented by a variable like A% or A%(X).

The third is the string variable, represented by A$ or A$(X).

Any of these varieties can be single: A; or may have subscripts:

A(X); A(X,Y); or A(X,Y,Z). Part of your sense of power in comput

ing comes when you realize just how much data you can pack

and organize into those multiple-subscripted arrays.

When you are putting data out on tape or disk and expecting

to read it back in, you must remember two things: 1. The three

variable types are different and are not interchangeable. 2. They

are put onto the recording medium in series without any identifi

cation and must therefore be read back in, in exactly the same

sequence, to be recovered.

Only the data is recorded, not the variable names them

selves. You can send it onto the tape as A, and can call it B when

reading it back in. That is fair. But if you read data back as B% or

B$, you will get an error message. Some error messages are really

undeserved, as you know. This one is deserved. Don't mix your

data types — integer to integer, string to string, and so on.

A Caution about String variables
String variables, however, are a special case. Let's see why. In

Commodore BASIC, unlike some other versions, there is a de

fault value for variables. It is set when the machine is turned on or

when an array is dimensioned. The value is zero.

When you write string variables to tape, however, this default

value of zero is not a legitimate representation of anything. A

61

2 BASIC

Programming

string "0" would be ASCII 48, but that is not what is there. What

is there is a binary, octal, decimal, hex 0 — which, in the special

language of strings, represents a null. Neither the cassette nor the

disk will accept null strings. Result: input rejects it and the data

isn't transferred.

The cure is logical, once it is pointed out: load all string vari

ables, including string arrays, with a string variable that the tape

or disk can recognize. Example: you have dimensioned a string

array A$(20) that may not be filled from your program when you

want to save it. Right after the DIMension statement, do the

following:

11000 DIM A$(20)

11010 FOR 1=0 TO 20:A$(l)="X":NEXT

The array has now been loaded with a recognizable string ("X")

and can be saved. All unused parts of it will be saved as X and will

not confuse things later.

Saving Simple variables
When the sequence used in saving data is also followed in load

ing data, then the right variables get put back where they belong,

and the transfer proceeds smoothly. You can safely use the fol

lowing procedure, and it will work very well indeed on cassette:

12000 OPEN 2,1,1:REM WRITE

12010 PRINT*2,A;",";B%;",";C$

12020 REM WHAT IS THIS?

You should be surprised by line 12010. First the variables are

mixed, but that is OK as long as they are brought back in in the

same order. A floating point, an integer, and a string can be safely

handled on the same line. You can't just have your other program

trying to bring in a string when a number is next in line to come

off the tape.

Second, what is all that between the variables? It is instruc

tions to the computer about what to put on the tape record. Semi

colons suppress "carriage returns/' but commas are put in to

allow the beginning and end of each separate item of information

to be established. These are delimiters. They are like walls to make

sure that two items are separated. (A carriage return is like moving

the paper up one line when you hit the RETURN key on a normal

62

BASIC

Programming 2

typewriter. Each time you use a PRINT statement in BASIC, it is

followed by a carriage return unless you put a semicolon after it.)

Let's Put It on a Disk

So far we've zeroed in on cassette data operations. What about

the same thing on disk? (Skip this section if you are concerned

now just about cassette data.)

12000 DO$=H1:SCORE,S,WM

12010 OPEN 2,8,9,DO$

12020 PRINT#2,A;",";B%;",";C$;CHR$(13);

In line 12000, a record is defined as associated with disk unit

1: it is to be called SCORE and is identified as Sequential. This

will be a Write operation. A later Read operation will be needed to

bring it back in. In line 12010, file 2 is opened to unit 8 (the disk)

with a secondary address of 9. Use 9 for a disk secondary address

unless you specifically want something else. It works. The last
part of the file opening statement is the DO$ that was defined in

line 12000.

Line 12020 contains all of the variables and delimiters used in

the cassette statement, with one addition: a carriage return

CHR$(13) has been added to the disk statement. Note that it is

surrounded by semicolons so no line feeds will be slipped in. You

want a CHR$(13), not a CHR$(13) CHR$(10), there to keep the

records straight.

Saving Array variables
While it is clear that mixing variable types on a single line is OK as

long as they are recovered in that same order, this does not seem

to be true if an array is involved. The following is not

recommended:

13000 FOR 1=0 TO 20

13010 PRINT#2#A(I)

13020 PRINT#2#B$(I)

13030 NEXT

For reliable records, just don't mix string and numerical vari

ables in a FOR/NEXT loop when saving data. Use an entirely

separate loop to handle the strings. Any potential savings by

avoiding the use of another separate loop to handle the strings

can be costly. This works reliably:

63

2 BASIC

Programming

13000 FOR 1=0 TO 20

13010 PRINT#2,A(I)

13020 NEXT

13030 FOR 1=0 TO 20

13040 PRINT#2,B$(I)

13050 NEXT

If this were a disk operation, each PRINT#2 statement would end

with:

;CHR$(13);

A Practical Application
Now lefs define and then write a minor cassette or disk data tour-

de-force program. Let's say you need to input two arrays that con

tain names and scores for a tournament. NT$ is the name of the

tournament, TP the number of tournament players, N$(TP) their

names, and S(TP) their scores. We are reading data:

15000 OPEN 1,1

15010 INPUT#1#NT$,TP

15020 CLOSE 1

15030 DIM N$(TP),S(TP)

15040 OPEN 1,1

15050 FOR 1=0 TO TP

15060 INPUT#1,N$(I)

15070 NEXT

15080 FOR 1=0 TO TP

15090 INPUT#1#S(I)

15100 NEXT

At 15010 the name and size are brought in on the same line.

That's OK. They were put on the record earlier using the neces

sary delimiters. The file is then closed to bring all of the informa

tion in from the buffer.

At 15030, TP is used to dimension the necessary arrays to

hold the data. Then, using loops, the data for names and then for

scores is brought in separately. So, we have stuck to our princi

ples. Single-line data is mixed because it will mix. Array data is

not mixed even though it seems compellingly simple to do so.

Not that we referred to both cassette and disk in this pro

gram. The only difference between input of cassette data and in

put of disk data is the opening statements (i.e., OPEN 1,8 instead

of OPEN 1,1). It is actually practical to have independent opening

64

BASIC

Programming 2

statements, but then GOSUB to the same input loop subroutine

for both cassette and disk. When you are reading data back in,

there are no forced delimiters and no fancy manipulation of the

line feeds. You can easily make your program read either cassette

or disk data with negligible extra programming or complexity.

The Commodore cassette and disk are amazingly reliable in

handling data. I once tried saving and then reloading .5 mega

bytes (500,000 characters) in the same program, and no errors

occurred.

65

Chapter 3

Commodore
64 video

commodore 64

video 3

An introduction
to the
6566 video Chip
Jim Butterfield

Before setting off on our expedition, we need to establish a few

landmarks which will place the chip within the Commodore 64
architecture.

Memory and Video
The 6566 chip relates to memory in two ways. First, the chip's con

trol registers are accessible in addresses 53248 to 53294 or, if you'd

rather, hexadecimal D000 to D02E. Well change these registers if

we want to change the behavior of the chip.

The chip itself looks directly into memory as it generates

video. It is usually looking for at least two things: what characters

to display and how to display them. It finds what characters to

display in an area called "screen memory/' or, more formally, the

"video matrix." It finds out how to display the characters by look

ing at the Character Generator table, or the Character Base.

Since the chip generates a lot of video, it looks at memory a

great deal. Most of the time, it can do this without interfering

with the processor's use of memory; but every five hundred

microseconds or so, it needs to stop the processor briefly in order

to get extra information. This doesn't hurt anything: the pause is

so short that we don't lose much processing time.

But occasionally, the microprocessor is engaged in timing a

critical event and does not want to be interrupted. In this case, it

shuts off the 6566 chip until the delicate work is over. Ever won

dered why the screen blanks when you read or write cassette

tape? To give the computer an extra edge while timing tape, that's

why.

Charting the 64

When the video chip goes to memory for its information, it has a

69

Commodore 64

video

special problem: it can reach only 16K of memory. That's OK for

most work. For example, the screen (or video matrix) is usually

located at 1024 to 2023 (hex 0400 to 07E7), so well use it there. But

if we wanted to move screen memory to a new location, say

33792, we would need to work out some details, since the chip

would not normally be able to reach addresses so high in

memory.

We are given some help in doing this by the 64 architecture it

self. There are two control lines called VA15 and \A14 which allow

us to select which block of 16K memorywe want the video chip to

use. Note that once we've selected a block, the chip must get all its

information from that block: we can't mix and match.

The control lines are available in address 56576 (hex DD00) as

the two low-order bits. The memory maps you get are:

• POKE 56576,4 the chip sees RAM from 49152 to 65535. There's

no Character Generator; you'll have to make your own.

• POKE 56576,5 the chip sees RAM from 32768 to 36863 and from

40960 to 49151. The ROM Character Generator is in the slot from

36864 to 40959.

• POKE 56576,6 the chip sees RAM from 16384 to 32767. No

Character Generator.

• POKE 56576,7 the chip sees RAM from 0 to 4095, and from 8192

to 16383. The ROM Character Generator is in the slot from 4096 to

8191. This is the normal Commodore 64 setup.

Also note that the chip never has access to RAM at addresses 4096

to 8191 and 36864 to 40959. You will not be able to put screen

memory or sprites there.

Be careful with these. If you move the chip's memory area,

you'd better be sure to move the screen. For example, try the

following:

POKE 648,132:POKE56576,5

You'll find yourself transferred to a new, alternate screen. The

new screen will be "dirty" — it hasn't been cleaned up. Typing a

screen clear will make things look neat, and you may then play

around with an apparently normal machine. When you're fin

ished, turn the power off for a moment to restore your machine to

the standard configuration.

70

commodore 64

video

The Chip: video control
Now for the 6566 chip itself. Well go through the registers, but

not in strict numeric order.

Location 53265 (hex D011) is an important control location. It

contains many functions; its normal value is 27 decimal.

Values from 24 to 31 control the vertical positioning of the

characters on the screen. Try this:

FOR J=24 TO 31:POKE 53265,J:NEXT J

You'll see the screen move vertically, leaving an empty spot near

the top. POKE 53265 back to 27.

If we subtract 8 from the value in location 53265, the screen

will lose a line: instead of 25 lines we'll have only 24. The best way

to see this is to clear the screen, write TOP on the top line,

BOTTOM on the bottom line (don't press RETURN!), and then

move the cursor to about the middle of the screen and type:

POKE 53265,19

Youil see the top and bottom trimmed to half a line each.

Think about using these two features together. If we have a

screen full of information, we would normally scroll when we

wanted to write more — the characters would jump up a line. But

if we can switch to 24 lines, slide the characters up gently, and

then switch back to 25 lines, we'd have a smooth scroll.

POKE 53265 back to 27

If we subtract 16 from this location, well blank the screen.

This will give the processor a little more accuracy in timing. In

fact, this POKE is the key to allowing us to LOAD a program from

an old-style 1540 disk unit. If the disk hasn't been modified, it will
deliver bits slightly too fast for the computer. But we can bridge

the gap with POKE 53265,11:LOAD and the loading will take

place successfully. When the load is complete, we can get the

screen back with POKE 53265,27.

High Resolution
The next control bit — value 32 — switches the display to pure

bits. No more characters; the screen will be purely pixels as we

switch to high-resolution mode. Well use a lot of memory for this

one: memory to feed the screen will be 8000 bytes.

71

t Commodore 64

1 Video

High resolution needs to be carefully set up, but let's plunge

right into it. Type POKE 53265,59 and you'll see an intricate pat

tern on the screen. What you are looking at now is a bitmap of

RAM memory addresses 0 to 4096, plus the Character Generator

area. The top of the screen will twinkle a little. Some of the page
zero values change constantly — things like the realtime clock and

the interrupt values.

In the bottom half of the screen, well see the Character Gen

erator itself. Oddly enough, the characters are readable. That's

because of the way high-resolution bitmapping works: each

sequence of eight consecutive bytes maps into a character space,

not across the screen, as you might think.

Now we're going to play around a little. First, clear the screen.

Surprise! It doesn't clear, but the colors change. That's because

screen memory, into which we are typing, holds color informa

tion for the high-resolution screen. Now, well clean out a band of

hi-res data by typing in a BASIC line. We must do this "blind"; the

screen won't help us. Type:

FOR J=3200 TO 3519:POKE J,0:NEXT J

If you've typed correctly, you'll see a blank band across the

screen. Don't worry about the color change as you type. Now

we'll enter (blind again):

FOR J=3204TO3519 STEP 8:POKE J,255:NEXT J

You should see a high-resolution line drawn across the screen.

That's all the high-resolution fun we're going to have this ses

sion, but you may be starting to get an idea of what's going on.

Turn off the power, and let's look at other things.

Extended Color
If we add 64 to the contents of 53265, well invoke the extended

color mode. This will allow us to choose both background and

foreground colors for each character. Normally, we may choose

only the foreground: the background stays the same throughout

the screen. You lose some colors, but get better combinations.

Try POKE 53265,91. Nothing happens, except that the cursor

disappears, or at least becomes less visible. Why? We've traded

the screen reverse feature for a new background color. Try typing

characters in reverse font, and see what happens. Try choosing

some of the specialized colors — the ones you generate with the

71

commodore 64

video

COMMODORE key rather than CTRL. See how you Uke the ef
fect. Think how you might be able to use it.

Extended color is purely a screen display phenomenon.

POKE 53265,27 will bring all the characters you have typed back

to their normal appearance.

Table 1.
6566 Video Chip:

Control and Miscellaneous Registers

D016 unused Reset
Multi-

Color
. Col
Select

53267

53268

53270

D018

D019

D01A

VM13

IRQ

.->.." Screen >* ,!* J-z$$}

VM12 * * , VMtl , VMBx'w

unused . ~ *t-

unused

Interrupt sfeftse ;

f - ~ Interrupt-Enable" *,
tight Colliswntwfil Raster

, , Sprite., .Back t| ■

53272

53273

53274

D020

D021

D022

D023

D024

D025

D026

unused

unused

„. unused

/ unused

unused

unused

, 1 unused

Color Registers

Background^

,^..; ,' Backgrou^S^ .-•.

- SpriteivIulticorof^ffO

• t .* < jcjr,f ^,. ^.v i: SpritejMulticolor #1 ^

53280

53281

53282

53283

53284

53285

53286

73

Commodore 64

video

Sprite Sprite

0 7

1 1
D000 DOOE

D001 DOOF

D027 D02E

Table 2.
6566 Video Chip:
Sprite Registers

Sprite Sprite

0 7

1 1
53248 53262

53249 53263

53287 53294

X-PositionHigh

Sprite Enable

Background Priority

• ";<--:;-,' ' r' " - TVft^olbr " - . "•_.'-1"";'-' "

<- xixpamd

r - Interrupt: Sprite Gollision

Interrupt: Background Collision; :

53264

53269

53271

53275

53276

53277

53278

53279

D010

D015

D017

D01B

D01C

D01D

D01E

D01F

The High Bit
There's one more bit in location 53265, the one we would get if we

added 128. Don't do this now: this bit is part of a value we'll dis

cuss later: the "raster value." You won't use this one out of BASIC,

but it can be handy at machine language speeds.

There's Much More
We've done a lot of things so far, using only one control location.

It's a big chip. It will take a lot of time to digest all its possibilities.

It's fun, and it can create remarkable effects.

74

Commodore 64
video 3

The 6566 Video
Chip —
The Raster Register,
interrupts, Color
and More.
Jim Butterfield

In the introduction we began touring the 6566 chip, which gives

the Commodore 64 its video. We saw the variety of important

controls that we can reach in location 53265: vertical screen posi

tioning, screen blank, bitmapping, and extended color. There's a

second control location, at 53270 (hexadecimal D016); let's look

at it.

The first thing we should note about this location is that the

two high bits are not used. That means that we can usefully

POKE only values from 0 to 63 in there. It happens that if we

PEEK 53270, well probably see a number that is 192 too big; if you

want to see the working value, use PEEK(53270) AND 63, which

will throw away the unused part of the number.

We saw a vertical fine scroll in location 53265. Location 53270

has a horizontal fine scroll that works exactly the same way. Type:

FOR J= 8 TO 15:POKE 53270,J:NEXT J

You'll see the screen characters slide over horizontally. As

with the vertical fine scroll, we also have facilities for trimming

the size of the screen. Restore the screen to its original form with

POKE 53270,8. Then shrink the screen by typing POKE 53270,0.

You'll see a character disappear from each end. In other words,

you now have a 38-character screen instead of 40 characters. Don't

forget that fine scroll and shrink can be used effectively together.

If you add 16 to the contents of 53270, you'll switch to multi

color mode. This is not the same as extended color which we dis

cussed previously. Multicolor allows selected characters to be

shown on the screen in a combination of colors. Extended color

75

Commodore 64

video

allows screen background and foreground to be set individually

for each character.

If you're familiar with the VIC-20, you'll find that setting the

multicolor mode makes the Commodore 64 behave in the same

way. Here's the trick: we invoke multicolor on an individual char

acter by giving that character a color value greater than 7. This

way, the regular colors (red, blue, black) behave normally, but the

new pastels (gray, light red) switch to multicolor mode.

You'll need to create a new character base to exploit the ad

vantages of multicolor, since the old characters weren't drawn

with color in mind. However, we can get a quick idea of the fea

ture by invoking it: POKE 53270,24 sets up multicolor; the screen

characters may turn a little muddy, but don't worry about them.

Set a primary color such as cyan and type a line. Normal, right?

Next, set up one of the alternate colors (hold down the COM

MODORE key and press a key from 1 to 8). Type some more;

you'll get multicolor characters. They won't make much sense,

since the Character Generator isn't building the colors suitably;

but you can see that something new is going on.

Adding 32 to the contents of 53270 gives chip reset. You won't

want to do this very often —• it's done on your behalf when you

turn the power on. If you do use chip reset, remember that to

make it work, you must turn reset on and then off again. POKE

53270,32:POKE 53270,8 will clear you out of multicolor mode.

Setting screen and Characters
Location 53272 sets the location of screen RAM (the video matrix)

and the Character Generator (the Character Base). Don't forget

that they must be in the same 16K block, as determined by the

low bits of address 56576.

You can get the BASIC address of screen RAM in this way:

take the contents of 53272 and divide by 16; then throw away the

remainder and multiply by 1024, and you have the screen

address. You can get the BASIC address of the Character Base in

this way: take the contents of 53272 and divide by 16. Then take

the remainder, subtracting one if it's odd, and multiply by 1024;

that's the Character Base address. Both addresses will need to be

adjusted to allow for the 16K quadrant we have selected.

If we are in bitmap mode, we get the Character Base address

in a slightly different way. If we divide the contents of 53272 by 16,

take the remainder and divide by 8, discarding the remainder, and

76

commodore 64

video3

finally, multiply by 8192, we will have the bit image; it should be

either 0 or 8192.

How does this work out in the standard Commodore 64? We

may PEEK 53272 and see a value of 21. That means the screen is at

INT(21/16)* 1024, or address 1024. Right on target. The character

matrix works out: the remainder of 21/16 is 5, so drop one for the

odd number, giving 4; multiply by 1024 to get address 4096. In the

introduction I indicated that RAM was replaced by the Character

Generator ROM at this video chip address. And when we flipped

to bitmapping in the last episode, we still got remainder 5; divide

by 8, giving 0, then multiply by 8192 — you still get 01 high-

resolution screen from address 0.

If you'd like to try your hand at the arithmetic, flip to upper-/

lowercase mode (hold down SHIFT and press the COM

MODORE key) and see what addresses have changed. Or if

you'd rather, try typing in FOR J =1 TO 100:POKE 53272,21:POKE

53272,23:NEXT J and watch the action.

The Raster Register
Location 53266 (hex D012) and the high bit of the previous loca

tion are not of much use to the BASIC programmer, but can be

very valuable to the machine language beginner. Here's the idea:

by looking at these locations, you can tell exactly where the screen

is being scanned at that moment. This allows you to change the

screen as it's being scanned. Halfway down, you could switch

from characters to bitmap, or change to multicolor, or move a

sprite that has already been displayed.

If you're really interested in machine language, you may want

to take an extra step: instead of watching where the screen is, you

can leave the message //Wake me when you get to scan line 100."

ML beginners will recognize this as an interrupt request. How do

you set the identity of the desired scan line? By placing it into the

same locations, that's how. We have a dual function here: when

we read, we recall the scan location; when we write, we store an

interrupt value.

Light Pen
Locations 53267 and 53268 (hex D013 and D014) are the light pen

registers. An Atari-style light pen can be plugged into the joystick

port number one; if it sees a suitable signal from the screen, the X

and Y values will be latched into these registers. The light pen can

77

Commodore 64

video

be used on an interrupt basis: we can "stop the music" and get

immediate action if we choose to set things up that way.

This is the second time we've mentioned interrupts; per

haps we'd better discuss them a little more closely.

interrupts
Interrupts are for machine language experts — things happen too

fast for BASIC to cope in this area. There are four types of inter

rupts: raster, light pen, and two kinds of sprite collision. (Well

talk about sprites in the next section.) We may use all of them or

none; and even when these signals are not used for interrupt, we

can check them.

Location 53273 (hex D019) tells us which of the four events has

occurred. We don't need to make the interrupts "live"; they will

signal us anytime the particular event happens. The weights are

as follows:

1 (bit 0) — the raster has matched the preset line value;

2 (bit 1) — a sprite has collided with the screen background;

4 (bit 2) — a sprite has collided with another sprite;

8 (bit 3) — the light pen has sensed a signal;

128 (bit 7) — one of the above has triggered a live interrupt.

Once any of the above takes place, the bit will remain stuck

on until you turn it off. How do you turn it off? This may sound

goofy, but you turn an interrupt signal off by trying to turn it on.

Hmmm, let me try that again. Suppose that we have both a raster

and a light pen signal; well see a value of 9 (8 +1) in the interrupt

register. Now suppose further that we are ready to handle the

light pen, so we want to turn its signal off. We do this by storing 8

into location 53273. Huh? Wouldn't that turn it on? Nope, it turns

it off, and leaves the other bit alone. So after storing 8, we look at

the register again, and (you guessed it) we see a value of 1 there.

Honest.

Location 53274 (hex D01A) is the interrupt enable register: it

sets the above signals for "live interrupt." Select bits 0 to 3 corre

sponding to the interrupts you want. Whatever live interrupt you

select will now trigger a processor interrupt and also light up that

high bit of 53273. Don't forget to shut the interrupt flag off when

you service the interrupt, using the method indicated in the

previous paragraph. Otherwise, when you finish the job and re

turn from the interrupt (with KIT), it will reinterrupt you all over

again.

78

commodore 64

video 3

A Little Color
Some of the colors we have mentioned and some we have yet to

discuss are neatly stored in addresses 53280 to 53286 (hex D020 to

D026). We may store only values 0 to 15 here, for the 16 Com

modore 64 colors.

The chart in the previous article shows it all: the exterior

(border) color; then four background colors (they may be selected

as part of multicolor characters or bits); and finally, two colors re

served especially for sprites.

79

Commodore 64

video

Sprites
JimButterfield

So far we have looked through the functions of the nonsprite

video control words at 53265 to 53286 (hex D011 to D026). Sprites

are completely separate from the conventional video circuitry.

You can lay a sprite on top of just about anything. But first, what's

a sprite and how do we define it?

MOBS
Sprites are sometimes called Movable Object Blocks (MOBs) —

and that's what they are, movable objects. The nice thing about

them is that they appear on the screen independently of the main

screen image, so that we can have a sprite airplane flying across

the screen, and, after it passes a background object, the object re

appears. This can save a lot of programming.

We noted earlier that the video chip can reach only 16K for its

information. This includes three things: the screen memory (or

video matrix), the Character Generator (or Character Base), and

the sprite information. It all has to come out of the same 16K section.

When we learn how to draw sprites, well discover that each

sprite occupies 63 bytes and uses a 64-byte block. So within 16K,

we could draw up to 128 sprites. We can't use more than eight at a

time, but we can have up to 128 drawings waiting to be used. The

sprite positions number from 0 at address 0, through 1 at address

64, up to 127 at address 8128.

We cannot use all of the 128 sprite positions, of course. For

one thing, the video matrix and the Character Base will use up a

total of 3K of memory, and this space won't be available for us to

use. That cuts us down to 80; and, depending on the 16K block

we have chosen, there may be other forbidden locations.

The normal configuration is for the video chip to access 0 to

16383, and there's a lot of forbidden territory in there. Many of the

first 1024 bytes are busy as the BASIC work area; the screen is

normally 1024 to 2023 (more on that later); the Character Base ap

pears in addresses 4096 to 8191, since there are two complete

character sets; and everything above 2048 that isn't used by the

Character Base is used to store your BASIC program. We haven't

started, but we seem to be out of sprite memory!

80

commodore 64

Video 3

If we want to draw lots of sprite pictures, we would need to

do one of two things: move BASIC RAM so that it starts at a much

higher location, or move to another 16K block that is not so busy.

For the moment, we can find room for a few sprites in the existing

space. I find the following sprite areas available: sprite 11 at 704 to

766; sprite 13 at 832 to 894; sprite 14 at 896 to 958; and sprite 15 at

960 to 1022. These last three use the cassette tape buffer; if we use

cassette tape during the program run, the sprites will become

very strange.

The Hard way
There are quite a few utility programs around that will help us

draw sprites. You should use them; they will help make life

easier. In the meantime, we can draw a sprite the hard way by

using a sheet of squared paper. Let's draw a target reticule. First,

well sketch it:
xxxxxxxx xxxxxxxx

X X

X X

. . X . .

. . X . .

X X . X X

. . X . .

. . X . .

X X

xxxxxxxx xxxxxxxx

There are 24 pixels across (that takes three bytes of eight bits

each) and 21 down. We may analyze the pixel pattern eight at a

time, using a binary system to describe each byte. We end up with

a DATA statement something like:

10 DATA 255,0,255,128,0,1,128,0,1,128,0,

1,128,0,1,128,0,1,128,0,1

20 DATA 0,8,0,0,8,0,0,8,0,0,52,0,0,8,0,0

,8,0,0,8;0

30 DATA 128,0,1,128,0,1,128,0,1,128,0,1,

128,0,1,128,0,1,255,0,255

Now we place the sprite into slot 13 by:

40 FORJ=0TO62:READ X:POKEJ+832,X:NEXT J

81

Commodore 64

Video

Good. Running the program this far will place the sprite into

slot 13, but it won't do anything. It's just a picture, and nobody is

using it. That's OK. In fact, you'll often want to have dozens of

pictures available, even though you might end up using only one

or two at a time.

Let's tell a sprite to use this drawing. We do it in an odd way:

we don't use the video chip control registers at all. Instead, we use

the video matrix, or "screen memory." You may recall that 1024

addresses are set aside for the video memory, but the screen

holds only 1000 characters. What about the extras? At least some

of them are used to designate which sprite picture to use for a

given sprite. The last 'live" screen address is 2023. We could point

sprite 0 to sprite drawing 13 (the one we have just done) by POKE

2040,13. Better yet, let's point all the sprites at this drawing:

50 FOR J=0 TO 7:POKE 2040+J,13:NEXT J

We're almost ready to energize the sprite. But, first, let's give it a

position on the screen. For sprite 0, we set the position by

POKEing to 53248 and 53249. Let's put a value of 99 in each, and

then turn the sprite on. If you've run the above program, you may

do this with a direct command, or give it a program line:

60 POKE53248,99:POKE53249,99:POKE53269,1

Either way, you should get your sprite on the screen. Now we

can play with it and see how easy some things are to do. Notice

how you can see right through the transparent portions of the

sprite to the program listing behind. Now you can try changing

the sprite color as desired by POKEing a value from 0 to 15 into

location 53287. One color will be the same as the background, so

that the sprite will be almost invisible, but not quite, since we can

see when it covers part of the text.

You can move the sprite around at will by changing the values

you have POKEd into 53248 and 53249. Try playing with the

values; you may find that (vertically, at least) you can move the

sprite partly or completely off the screen. If you like, try the fol

lowing command:

FOR J= 99 TO 150:POKE 53248,J:NEXT J

and then substitute 53249 for 53248 and try it again. Neat? You

bet. And there's more to come. But first, a small problem to be

resolved.

82

commodore 64

Video 3

Moving Left or Right
We can move the sprite vertically anywhere we like — including

partly or completely off the screen. But the screen is wider than it

is high; and we can't reach the whole screen with the range of

values (0 to 255) that we can POKE in 53248. We need a high bit to

cover the extra distance. You'll find this in 53264; POKEing 53264

with a value of one causes sprite zero to be moved to the right —

perhaps off screen.

Let's stop for a moment and look at video registers. When we

set the X and Y position for sprite zero by changing 53248 and

53249, we recognized that we would need a different set of loca

tions for sprite one — 53250 and 53251, as it happens. And when

we set sprite zero's color to any one of the 16 combinations by

changing address 53287, we see that well need a new color

address for sprite one — 53288.

But the other sprite registers use a different system. One

register controls sprites: so that address 53269 allows us to turn

on one sprite, or all eight. We use a bitmap to arrange this; the

pattern is:

Sprite 0 —value 1

Sprite 1 —value 2

Sprite 2 —value 4

Sprite 3 —value 8

Sprite 4 —value 16

Sprite 5 — value 32

Sprite 6— value 64

Sprite 7—value 128

We use addition to signal a combination of sprites. If we

wished to turn on sprites zero and three, we would POKE 53269,9

(nine is the sum of eight and one). All other sprites would be

turned off.

That's how the X-position high bit works: we set sprite zero to

the right-hand sector of the screen by POKE 53264,1. All the other

registers we will discuss work the same way.

You may be pleased by the way that the sprite moves over the

top of the text on the screen — it would move over a background

picture just as easily, of course. But we have another option: you

can make the sprite move behind the main screen if you wish. Do

this with location 53275. For example, POKE 53275,1 will place the

sprite behind the screen text.

The sprite that we have drawn isn't very big. We can make it

larger in the X and Y directions with addresses 53277 and 53271

83

Commodore 64

video

respectively. These addresses are often used together; when an

object is drawn bigger it looks closer, and we often want this effect

in games and animations. Try, separately or individually, POKE

53277,1 and POKE 53271,1.

Four-color Sprites
Our sprite is only one color, the color we selected in 53287. The

other color is "transparent," so it isn't really a color at all. We may

code our sprite in four colors (or three plus transparent, to be ex

act), but we would need to draw it slightly differently. Instead of

one bit representing either "color" or "transparent," a grouping of

two bits will be needed to describe four conditions: the sprite

color (as before), special color #1, special color #2, and trans

parent. These extra special colors, by the way, are kept at 53285

and 53286: they are the same for all sprites; only the sprite color is

individual.

Now we come to the last two registers, which tell you about

collisions. PEEK(53279) will tell you if any sprites have collided

with the background since you last checked. One certainly has, of

course, if you've been messing around with the screen as sug

gested. PRINT PEEK(53279) will yield a value of one: checking

the bit table above tells us that sprite zero has hit the background.

Now, checking this location clears it; but if the sprite is still touch

ing some of the screen text, it will flip right back on again. Move

the sprite to a clear part of the screen. Print the PEEK again — it

will likely still say one, since the sprite has hit characters since it

was last checked. If the sprite is safely in a clear screen area, the

next PEEK will yield a zero.

We've activated only one sprite, so that we won't see any colli

sions between sprites. You would see this in location 53278, but

right now PEEK(53278) will yield zero; unless you have activated

more sprites, there would not have been any collision. Again,

when you get a signal here, you'll know which sprites have

bumped; and testing the location clears it, so that only new

"touches" will be shown on the next test.

A small comment here: these two PEEK locations are marked

'Interrupt." Yet when such collisions occur, they are logged —

they don't do anything. As we discussed earlier, the word inter

rupt has a special meaning to machine language programmers;

and no interrupts seem to be happening. The machine language

programmer who wants interrupt to happen must enable the in

terrupt by storing the appropriate value into address D01A hexa-

84

Commodore 64

Video i

decimal, and then write the appropriate extra coding to make it all

work.

This completes our roster of registers, but the plain mechani

cal facts don't convey the remarkable things that you can do with

the Commodore 64. There's more to come.

85

Commodore 64

video

Program Design
Jim Butterfield

We've examined all the bits in the video chip control registers.

Now let's ease back and look at the 64's video structure. Well talk

a bit about program design considerations.

A Single 16K Slice
We have discussed how the video chip gets its screen information

directly from memory. We indicated that the chip must dig out all

of its information from a single 16K slice. We might draw this as a

diagram (see the figure).

The video chip obtains its screen information
from one of four 16K memory "slices." Two of the
slices contain the ROM Character Generator.

We can control which slice we want by manipulating the two

low bits in address 56576 (hex DDOO). Normally, the processor

picks the slice from 0 to 16383.

Once we've picked a 16K block, we must get all screen data

from this block: the screen memory, the character set, and the

sprites. We cannot get the screen data from one block, the Charac-

86

Commodore 64

video

ter Base from another, and sprites from still another. Because we

are restricted, we must do a little planning and design our video

information into our program.

After we have picked the 16K slice, we must set the video

matrix (screen memory) to some point within it. We may pick any

multiple of 1024 as a starting address. The normal 64 configura

tion is set to a value of one, meaning we take the screen informa

tion from memory starting at address 1024. The video matrix, you

may remember, is stored in the high nybble (that means multiply

it by 16) of 53272 (hex D018).

We must pick our Character Base next. If we're in normal

resolution, we may pick any even multiple of 1024 as a starting

address: i.e., 0, 2048,4096, etc. If we're in high-resolution mode,

we must pick only values of zero and eight, meaning that the hi

res starting address will be either 0 or 8192. The normal 64 config

uration is set to four or six for either uppercase/graphics or upper-/

lowercase mode, meaning we take our character set from 4096 to

6144. The Character Base is stored in the low nybble of 53272.

So we'd expect a normal 64 to place into address 53272: a

video matrix of one, times 16, plus a Character Base of four or six,

yielding a total of 20 or 22. You may in fact see 21 or 23 if you PEEK

the location, but the extra bit doesn't matter — it's not used. And

if we switch to high-resolution without changing anything else,

our Character Base of four or six will be trimmed back to zero —

explaining why we saw zero page when we tried POKE 53265,48

in the first article of this series.

Let's try a few specific design jobs.

Task 1: Simple Graphics
We're quite satisfied with the screen and character set, but we'd

like to add a few sprites to liven things up. Fine, the normal 64

configuration leaves room for about four sprite drawings (num

bers 11,13,14, and 15), provided we don't need to use cassette

tape during the program run. This may be enough for a lot of ani

mation; all eight sprites could use a single drawing, if that suited

the task.

If we needed more than four drawings, we might be tempted

to move the start-of-BASIC pointer to a higher location, making

room for the extras. That can work quite well, but it will probably

call for two programs: a configuring program and a final pro

gram. It's hard for a program to reconfigure itself and survive.

87

. commodore 64

1 video

Task 2: New Character sets
If we wish to use the regular character set as well as new charac

ters that we might devise, well want to stay in the memory blocks

from 0 to 16383 or 32768 to 49151. These two blocks contain the

ROM Character Generator at offset 4096 to 8191. If we don't need

regular characters at all (if we intend to use our own), it may be

more convenient to switch to either of the other two blocks: 16384

to 32767 or 49152 to 65535. Since there's nothing but RAM in these

two, we may find more room.

Note that some of these RAM addresses are "hidden" be

neath ROMs — BASIC from 40960 to 49151, and the Kernal from

57344 to 65535. The video chip sees only the RAM; but in a

normally configured 64 system, programs will see only the ROM.

You can POKE or store to the RAMbeneath, but when you PEEK

or load from these addresses, you'll get the ROM. That's OK; the

video chip sees the RAM locations you have POKEd. Result:

something for nothing! You can build a Character Base into RAM,

and not lose any memory from your system.

Task 3: Emulating a PET

This is a clear-cut task. We want to move the screen to the same

place that the PET uses the screen. That's very straightforward

from a video chip standpoint. (Note: If you type the following

POKEs in one at a time, you may have to type blind for some of

them.) The PET screen belongs at 32768, so we must select that

slice with:

POKE 56576#5

so that well pick up RAM starting at 32768. The ROM Character

Generator is still in place.

Since we want the screen (video matrix) to be positioned

right at the start of the block, we must set it to a value of zero. The

Character Base can stay at its value of four (for graphics mode), so

we must set up address 53272 with zero times 16 plus four:

POKE 53272#4

That completes the video, but we have a few other things to do to

make BASIC work in a sound manner. We must tell BASIC where

the new screen is located:

POKE 648#128

commodore 64

Video i

And finally, we should set the start and end of BASIC to corre

spond with a 32K PET:

POKE 1024,0:POKE 44, 4-.POKE56 ,128 :NEW

Clear the screen, and the job's done. Zero page usage is still differ

ent, so not all PEEKs and POKEs will automatically work on this

reconfigured system; but BASIC and screen now match the PET.

Task 4: High-resolution Plotting
There are only eight places in memory that we can place a high-

resolution screen: 0, 8192,16384, 24576, 32768,40960,49152, and

57344. We tend to choose the two 16K blocks that don't have the

Character Generator, 16384 to 32767 and 49152 to 65535. That way,

well have more clear RAM to use; there will be more space left for

our video matrix and any sprites we need.

If we want to write characters on the hi-res screen, well have

to generate them ourselves or steal them from the Character Gen

erator. Here's an odd thing — the video chip sees the character

ROM at two different addresses, but the processor chip (and that

includes your program) sees the same 4K ROM only at a third

location, 53248 to 57343. Most of the time, the processor can't see

the ROM anyway, since the addresses are overlaid with the

I/O chips.

So if our program wants to see the character set, it must flip

away the I/O chip with POKE 1,51 — stop, don't do it yet! There

are two problems. First, once the I/O chips are moved out —

sound, video, interface, everything — you won't be able to type

on the keyboard; so youll never be able to type the POKE to put

everything back. Second, the interrupt program uses these I/O

chips for quite a few things, and it will go berserk the moment

you take them out of action. So we must use a program or a multi

ple direct command to do the job, and we must temporarily lock

out the interrupt activity. Type the following statements as a

single line:

POKE 56333,127: (lock out the interrupt)

POKE 1,51: (flip out I/O)

X =PEEK(53256): (read part of character)

POKE 1,55: (restore I/O)

POKE 56333,129 (restore interrupt)

X will contain the top row of pixels for the letter A. If you like,

you can draw a character's shape with the following program:

89

Commodore 64

video

100 INPUT "CHARACTER NUMBER";A

110 IF A<0 OR A>255 THEN STOP

120 B=53248+8*A

130 C=56333

140 FOR J=0 TO 7

150 POKE C,127:POKE 1,51:X=PEEK(B+j)/l28

160 POKE 1,55:POKE C,129

170 FOR K=l TO 8

180 X%=X:X=(X-X%)*2

190 PRINT CHR$(32+X%*3);

200 NEXT K:PRINT

210 NEXT J

220 GOTO 100

To terminate this program, enter a number over 255. You'll

note that most of the characters are drawn with "double width"

lines. A video technician would tell you that this reduces the

video frequencies and is likely to cause less picture smear.

Arranging the video areas is almost an art. It takes a little

practice, but you'll get the knack of it fairly quickly.

90

commodore 64

video

The Lunar
Lander: The 64

Jim Butterfield

Now well write a small lunar lander program that demonstrates

some of the features of the 64's video chip.

First, the Craft
First, lefs draw the sprites for the rocket:

100 DATA 0,24,0,0,60,0,0,198,0,1,131,0,1

,131,0,3,1,128,3,1,128,3,1,128

110 DATA 3,1,128,3,1,128,3,1,128,3,1,128

,1,131,0,1,131,0,1,131,0

120 DATA 0,102,0,0,126,0,0,0,0,0,0,0,0,0

,0,0,0,0

A fairly crude craft — you can improve it if you like. We have

drawn the sprite into 63 bytes of memory; one more and we can

continue to the next sprite.

130 DATA 0:REM GAP BETWEEN SPRITES

Then the Flame
Now we're going to draw the rocket flame as a separate sprite.

Why? Because later, when we look for collisions, we don't care

what the flame hits, just what the rocket hits. There's another rea

son: when we're not thrusting, we can simply turn this sprite off,

and the flame disappears.

140 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

150 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

,0,0,0,66,0,0,36,0,0,24,0,0,24,0

Mostly zeros. The flame is only at the bottom of the sprite. OK,

we're ready to go. Let's clear the screen and print instructions:

91

> commodore 64

1 video

160 PRINT CHR$(147)

170 PRINT "LUNAR LANDER"

180 PRINT

190 PRINT "PRESS ' SPACE' FOR MAIN THRUST
n

200 PRINT "PRESS 'Fl'{4 SPACESjFOR LEFT

THRUST"

210 PRINT "PRESS 'F7'{4 SPACESjFOR RIGHT
THRUST"

220 PRINT

230 PRINT "WATCH OUT FOR THE MINES."

240 PRINT

250 PRINT "LAND GENTLY OR YOU'LL BOUNCE 1
II

While the user is reading the instructions, we can read in the

sprites and put them into slots 13 and 14. We can also set our

sprite "position" addresses as variables, and identify sprites 0 and

1 as using pictures 13 and 14.

260 REM SET UP

270 FOR J=0 TO 126:READ X:POKE 832+J,X:N

EXT J

280 X0=53248:Y0=53249:C0=53279

290 X1=53250:Y1=53251:E=53269

300 POKE 2040,13:POKE 2041#14

Well make the rocket exhaust go behind the main screen.

This way, as we land, the exhaust will go behind the background.

Well also give it color to distinguish it from the rocket ship itself

(you can pick your own).

310 POKE 53275,2

320 POKE 53288,3:REM THRUST COLOR

330 PRINT "READY TO START";

340 X$="Y":INPUT X$

Variable E is used to enable the sprites. When we're ready,

well turn them on; for now they can stay off.

350 POKE E,0

360 IP X$<>"Y" AND X$<>"YES" THEN END

We're ready to fly. Let's put the sprite high on the left part of

the screen. Then we'll draw a screen with mines for the player to

avoid.

92

commodore 64

video

370 V=100:H=100:V0=0:H0=0

380 POKE 54296,15:POKE54278,240

390 REM DRAW SCREEN

400 PRINTCHR$(147)

410 FOR J=l TO 18:PRINT:NEXT J

420 FOR J=l TO 4:FOR K=l TO 30

430 C$=IIM:IF RND(1)<.1 AND (K<20 OR K>25

) THEN C$=M#"

440 PRINT C$;:NEXT K:PRINT:NEXT J

450 FOR J=l TO 30:PRINTII=11; :NEXT J

Keyboard Checks
Let's place the sprite, and start the main play by checking the key

board. We check for two different things: a new key (K$), or an

old key still being held down (K):

460 POKE X0,H:POKE Y0,V:POKE XI,H:POKE Y

1,V

470 K=PEEK(203):GET K$

480 REM MAIN FLIGHT LOOP-TEST KEYS

490 IF K$=IMIGOTO 550

500 K0=ASC(K$):V1=.1:H1=0

Let's check for the space bar. If it's on, we want to energize the

rocket and the rocket flame. Our vertical thrust will be upwards

(- .5), and well want to enable the flame video with a note that

EO =3. We'll spot lateral thrust as keys Fl and F7, and set value HI

accordingly.

510 E0=1:IF K0=32 THEN V1=-.5:E0=3

512 REM

520 IF K0=133 THEN Hl=-.2

530 IF K0=136 THEN Hl=-2

540 GOTO 560

550 IF K=64 THEN Vl=.1:H1=0:E0=1

Here's where we turn on our sprites — either rocket only

(EO =1) or both rocket and flame (EO =3). As long as we're turning

rockets on and off, we might as well add sound effects, too:

560 IF PEEK(E)=E0 GOTO 600

570 REM THRUST SOUND

580 POKE E,E0:IF E0=1 THEN POKE 54276,0:

GOTO 600

93

.commodore 64

> video

590 POKE 54273#8:POKE 54276,129

600 IF H1=H9 GOTO 630

610 H9=H1:K=SGN(ABS(H9))*129:POKE 54273,

99:POKE 54276,K

Gravity, thrust, or lateral thrust — they all involve accelera

tion. We add acceleration to our speed to get new speed; then we

add speed to position to get new position.

620 REM LET'S MOVE IT1

630 V0=V0+V1:H0=H0+H1

To prevent the player going off screen, well invent a force

field around the screen boundary. If you hit it, you'll bounce; that

is, your speed will flip to the opposite direction. Well fudge a bit.

The high bit of the X position is tricky to set in BASIC; there's

often a flicker during the moment that we set the low and high

values. So let's limit the player's travel to the left-hand three-

quarters of the screen and avoid the problem.

640 REM FIELD FORCE BOUNDARIES

650 IF V<50 THEN V0=ABS(V0)

660 IF H<20 THEN H0=ABS(H0)

670 IF H>240 THEN H0=-ABS(H0)

680 V=V+V0:H=H+H0

We move the craft simply by changing its coordinates. Then

we check the collision register to see if we've hit anything.

There's a problem here. It seems that collision is noted when

the screen is drawn, not when you set the coordinates. BASIC

isn't super fast, but it could be fast enough to miss that collision. If

you watch the program closely, you will see that the rocket some

times bounces after it goes below ground level.

There's an additional contributing factor. BASIC, being slow,

may need to move the rocket several pixels in distance at a time.

So, rather than just touching the ground and stopping, the rocket

may leap from just above the ground to well into it, if it's going

quite fast.

690 REM MOVE CRAFT, CHECK COLLISION

700 POKE X0,H:POKE Y0,V:POKE XI,H:POKE Y

lfV

710 C=PEEK(C0):IF(C AND l)=0 GOTO 470

Collision says we've hit something. We can look at our height

(Y position) to see if it's the ground. If not, it must be a mine.

94

Commodore 64

video

720 IF V>218 GOTO 780

730 IF V+V0<218 GOTO 470

We could do a sensational explosion here, but we'd need to

define more sprites, or modify the ones we've got. Try your hand

at it if you like. For the moment, hitting a mine will cause the

rocket to disappear.

740 REM WE SEEM TO HAVE HIT A MINE

750 PRINT CHR$(19);"CRASHEDI":POKE E,0

760 GOTO 820

Bounce and Overshoot
I arbitrarily decided to make the craft bounce if it hits too fast. If

you'd rather crash, go ahead. See the previous note.

770 REM HIT THE DECK-•.TOO FAST?

780 IF V0>1 OR V0<0 THEN V0=-ABS(V0):GOT

0 470

790 PRINT CHR$(19);"LANDED!":POKE E,l

Because we may overshoot the ground and dig a little hole,

we'll reset the vertical position of a successfully landed rocket to

look neat. Then we wind up the game or play another one.

800 POKE Y0,219

810 REM ALL DONE-SHUT DOWN

820 POKE 54276,0:POKE 54296,0

830 PRINT "WANT TO TRY AGAIN";

840 GOTO 340

There are many features you can add — such as a fuel supply.

We could have done a pretty background in high-resolution

graphics, but this would make it difficult to add features (if you

wish) like meter readouts. In fact, I've used very dull graphics,

but you may consider that a challenge.

That's it. We've done a simple sprite exercise. It's really not

hard, even in BASIC. In machine language, it's almost too easy;

you'll find that you need to slow your program down, or every

thing will happen too fast.

The graphics capability is there, and it's not hard to use. A lit

tle experimentation and practice, and you too can animate a pic

ture that's worth a thousand words.

95

Commodore 64

Video

Split Screens
Jim Butterfield

In this section we will deal with a fairly advanced technique: split

screens. It's a new aspect of the computer, combining things we have

already learned into a new set ofcapabilities. Wefll demonstrate, via a

machine language program, an amazing visual display.

Well need to venture into more technical waters now, but with a

little effort we can perform some minor miracles on the screen.

All the limitations we have learned may be set aside with a little

creative "cheating/' Well have a venture into machine language;

but even if you're not an ML fanatic, it's worth knowing that the

job can be done.

We have learned a number of limitations, largely based on the

idea that the screen can do a lot of things, but only one at a time:

• We can have only one background color, unless we are in

multicolor mode; and even in that case, we're restricted in our

choice of colors.

• We can obtain information only from one 16K memory

quadrant.

• We can use only one character set.

• We can be in character mode or bitmap (hi-res) mode, but

not both.

• We may have only eight sprites on the screen at one time.

In fact, we have a more general set of rules. We may be in only

one mode at a time — multicolor is either on or off; extended

color is either on or off, and so on. It seems impossible to mix

screen modes and have the best of both worlds, but we can do it.

Here's the trick: the Raster Register, address $D012 together

with the high bit of $D011, can do more than tell us where the

screen is being painted at this instant. We may store an interrupt

value there and tell the computer: 'Advise me when you get to

this part of the screen." At this point, we can switch screen char

acteristics: color mode, high resolution, background color, char

acter set, memory bank —• whatever you want. Of course, we

need to put it all back when we return to the top of the screen.

96

commodore 64

video3

The Task
We're going to write a quick program to split the screen into two

parts, each with a different characteristic. It won't be perfect;

we're just trying to show the technique, not polish up all the

loose ends. The fine points will come later. First, let's plan.

If we set a new interrupt into our machine, well need to make

some careful distinctions. First, when an interrupt happens, we

must establish: who caused this one? Was it the raster, or the tra

ditional interrupt source of 1/60 second timing? Second, if it was a

raster, which part of the screen is involved — the top or the

"switch" point?

The interrupt
Let's start to lay out the machine language program. All interrupts

will come here, and we'll need to sort them out. We'll put the pro

gram into the cassette buffer.

033C AD 19 DO INT LDA $D019

033F 29 01 AND #$01

0341 F0 19 BEQ REGULR

The interrupt has happened and has come here. Check the Raster

Interrupt Bit in $D019 — was this one caused by the raster? We'll

need to mask out the bit we want with an AND. If we get nothing,

it's a regular interrupt — go there.

0343 8D 19 DO STA $D019

It is indeed a raster interrupt, and we must shut off the alarm. We

do this by storing the bit back where it came from (there's a 1 in

the A register right now). Amazingly, this turns the bit off.

0346 A2 92 LDX #$92

0348 A0 15 LDY #$15

Well prepare the registers, assuming we are doing the top-of-

screen work. The hex 92 is decimal 146 — the scan line that hits

about mid-screen; that's where we will want the next interrupt to

take place. Note that hex 92 is considered a "negative" byte; we

will use this fact in just a moment. Now, let's see if we are correct

about being at mid-screen:

034A AD 12 DO LDA #$D012

034D 10 04 BPL MID

We look at the raster scan. If it's less than 127, we're near the

top of the screen, and we don't see the negative byte. So we skip

ahead. If, however, we are at the middle of the screen, well see a

97

Commodore 64

Video

negative value. We won't branch; instead, we'll fix up the registers

for mid-screen work:

034F

0351

A2

A0

01

17

LDX

LDY

#$01

#$17

Both streams join again at this point. X contains the raster

location where we will want the next interrupt: if we're at the top,

we want to be interrupted at the middle (hex 92); if we're at the

middle, we will want to be interrupted at the top (hex 01). Y con

tains information on the character set we want to choose:

graphics or text. Let's proceed:

0353 8E 12 DO MID STX $D012

Place the next interrupt point into the raster register. The next in

terrupt will now hit at the right time.

0356 8C 18 DO STY $D018

Place the "character set" value — hex 15 for graphics, hex 17 for

text — into the appropriate register.

0359 4C BC FE JMP $FEBC

We've done our job. We may now exit. Don't give an RTI; instead,

go to a routine that cleans things up nicely, at $FEBC. And what

of our regular interrupt?

035C 4C 31 EA REGULR JMP $EA31

It goes to the normal address ($EA31), to which regular interrupts

go. We have more to do after we get this program into memory.

We must also detour the interrupt vector to our new program and

fire up the raster interrupt control.

Back to basic
Ready to put all this in BASIC? Here we go:

90 POKE 53265,27

100 FOR J=828 TO 862:READ X

110 T=T+X:POKE J,X

120 NEXT J

130 IF T<>3958 THEN STOP

200 DATA 173,25,208,41,1,240,25,141,25,2

08,162,146,160,21,173,18

210 DATA 208,16,4,162,1,160,23,142,18,20

8,140,24,208,76,188,254,76,49,234

300 POKE 56333,127

310 POKE 788,60:POKE 789,3

320 POKE 56333,129:POKE 53274,129

98

Commodore 64

video

Let's look at the last three lines. Line 300 kills the interrupt for a

moment, so that we can mess with the interrupt vector without

running into disaster. Line 310 changes the interrupt vector to

point at our newly POKEd program. Line 320 restores the inter

rupt and adds an extra one: the raster interrupt.

An Amazing split
Whert the program is run, an amazing thing happens: the screen

becoipes graphic at the top and text at the bottom. Impossible,

you say? Not for us clever — and careful — people. The effect is

permanent: you may NEW the program and start something

else, and the split screen will still be there. You shouldn't use

cassette tape with program in place — it's there in the buffer.

And you may find that LOAD and SAVE don't work quite right.

RUN-STOP/RESTORE will put everything back to its former

state. (Please save this program for use in the next section.)

The unsolved Problem
But it's not perfect (I warned you). Every once in a while, the bar

rier seems to creep slightly, and then correct itself. Maybe it's

computer hiccups. It seems worse when you are using the key

board. What's happening? And how can we fix it? Read "Son of

Split Screens."

99

commodore 64

video

Son of
Split Screens
Jim Butterfield

In the section called "Split Screens," we had a program similar

but not identical to the one below. Either type this in or load the

earlier version and make the necessary changes in lines 130,200,

and 210.

90 POKE 53265,27

100 FOR J=828 TO 862:READ X

110 T=T+X:POKE J,X

120 NEXT J

130 IF T<>3929 THEN STOP

200 DATA 173,25f208#41,l,240,25,141,25,2

08,162,146,160,6,173,18

210 DATA 208,16,4,162,1,160,0,142,18,208

,140,33,208,76,188,254,76,49,234

300 POKE 56333,127

310 POKE 788,60:POKE 789,3

320 POKE 56333,129:POKE 53274,129

Our previous example split the screen into two sections:

graphics and text. This one splits the screen into two background

color areas. It makes it easier for us to see the glitch — the hiccup

that occasionally disturbs our screen split. By the way, it's easier

to see the problem when you are using the keyboard.

Why the Problem?
Here's where the problem comes from: the timer interrupt strikes

about every 1/60 second. The screen display, too, runs at a

rate of about 60 times a second. But they are not synchronized.

The two processes run at similar, but not identical, speeds.

Every once in a while, the timer interrupt hits just before the

raster interrupt. The timer interrupt has quite a few jobs to do:

update the TI$ clock, check the cassette motor, flash the cursor,

and check the keyboard. It takes time to do these jobs, and extra

time is required if a key is being pressed.

100

commodore 64

video

Suppose we have just started on the timer interrupt, and the

raster scan says, Tm ready!" Sorry, raster, we're already into an

interrupt routine, and other interrupts are locked out until we

have finished. By that time, the screen scan might have moved

along a few lines, and our split screen has crept from its normal

position.

Some Possible Fixes
There are several possible approaches to fixing this jitter. The

ones that come to mind first are complex; in a moment, we'll

move on to an easy one.

When the timer interrupt strikes, we could ask it to look at the

raster and see if the scan was close to the interrupt point. If so, we

might wait things out or skip part of the timer interrupt jobs.

Messy.

The timer interrupt could unlock the interrupt very quickly,

using a CLI command. That way, we could interrupt the interrupt

program itself to do the split screen job. Better — but some pro

grammers feel it's dangerous to allow this kind of thing to happen.

A Better way
There is an easier way: shut the timer interrupt off completely,

and do its various jobs with our own programs. This seems com

plex, but it's not. We can call the timer interrupt routines our

selves, whenever it's time.

Let's look a little more closely into the timing of these inter

rupts. We expect to cause a raster scan interrupt about 120 times a

second. That's twice as often as the timer interrupt needs to be

handled. So our raster program could occasionally call in the

timer interrupt program.

It seems that we could accomplish the task easily by calling

the timer interrupt routines every second raster interrupt. That

would certainly do the job, but there's a better way.

Even though we've shut off the timer interrupt, it's still signal

ing when the time is ready. Let's review: the timer leaves a signal

in hex address $DC0D (56333) whenever it counts down to zero.

Normally, this signal triggers the interrupt line (IRQ) and causes

the processor to be interrupted. But we may "break" the connec

tion between the timer signal and the interrupt line. In this case,

the timer will not cause an interrupt, but the signal bit will still

flash when the appropriate time has come.

We can see the plan in Figures 1 and 2. We will disconnect the

timer from interrupt and service it ourselves when it flashes.

101

Commodore 64

video

Easier done than said. Let's look at the machine language coding:

033C A9 01 INTR LDA #$01

033E 8D 19 DO STA $D019

Raster interrupt is now the only game in town, so we don't need

to test for it. We must, of course, turn off the raster interrupt flag.

0341 A2 92 LDX #$92

0343 A0 06 LDY #$06

Setup for top of screen. Next interrupt, line 92 hex; new color,

number 6.

0345 AD 12 DO LDA $D012

0348 10 04 BPL MID

If it's really the top of screen, we can skip ahead. Otherwise, we

change for mid-screen — line 1, new color, number 0:

034A A2 01 LDX #$01

034C A0 00 LDY #$00

Now we're ready to do the job, wherever the screen is:

034E 8E 12 DO MID STX $D012

0351 8C 21 DO STY $D021

The job is done. Now let's see if the timer interrupt is calling for

action:

0354 AD 0D DC LDA $DC0D

0357 29 01 AND #$01

0359 F0 03 BEQ SKIP

If we didn't skip, the timer wants attention. Call it in:

035B 4C 31 EA JMP $EA31

If we did skip, the timer isn't needed. Quit with:

035E 4C BC FE SKIP JMP $FEBC

We must remember, of course, to turn off the timer interrupt,

set the IRQ vector to our new code, and turn on the raster inter

rupt. We'll do all that in BASIC.

BASlC-ally Yours
Here's the same program in BASIC.

90 POKE 53265,27

100 FOR J=828 TO 864:READ X

110 T=T+X:POKE J/X

120 NEXT J

130 IF T<>4077 THEN STOP

102

Commodore 64

video

200 DATA 169,1,141,25,208,162,146,160,6,

173,18,208,16,4,162,1

210 DATA 160,0,142,18,208,140,33,208,173

,13,220

220 DATA 41,1,240,3,76,49,234,76,188,254

300 POKE 56333,127

310 POKE 788,60:POKE 789,3

320 POKE 53274,129

Nowwe have a rock-solid color change at the appropriate

screen point. No creeping, no jittering, no hiccups.

We've only touched upon the techniques of raster interrupt.

A whole host of new possibilities open up with its use.

But we've shown it can be done — and some of the tech

niques that can be used to do it.

Figure 1. conventional coding requires the
program to distinguish between the two live

i sources. It may also cause timing jitter.

Raster

Interrupt

T
Return

From Interrupt

Timer

Interrupt

Return

From Interrupt

103

commodore 64

video

Figure 2. Single interrupt coding gives priority to
the time-sensitive raster job.

Raster

Interrupt

Only

No

Return

From Interrupt

Return From Interrupt

104

Chapter 4

Creating
Games

Creating #1
Games ™T

Joysticks
and Sprites
Sheldon Leemon

Fast movement ofsprites can increase the appeal ofany game. Try the

demonstration programs here and learn how to add this technique to

yourgames.

As the owner of an Atari 800 computer, I welcomed Commodore's

announcement of the 64, because it closely parallels the Atari in

its consumer orientation. One example is the inclusion of two

ports for Atari-type joystick controllers. These controllers provide

a simple way for the user to interact with any type of program, in

cluding, of course, arcade games.

A Fascinating Chip
When I bought the computer, however, I discovered, to my

dismay, that the consumer-oriented design approach did not

seem to carry through to the BASIC interpreter and User's Guide.

Not only was there no BASIC command for reading the joystick

controllers, but the BASIC manual also made no mention

whatever of these ports! This meant that if I discovered how to

use these sticks any time soon, I would have to play hardware

detective.

Fortunately, the 64 is similar to the VIC-20 in a number of

ways. Since the VIC reads the joystick through a VIA (Versatile

Interface Adapter) chip, it stands to reason that the 64 would read

its joystick through the analogous CIA (Complex Interface

Adapter) chip. An early memorymap from Commodore shows

CIA #1 to be addressed at location $DC00, or 56320 decimal. The

CIA is a fascinating I/O chip and could well serve as the basis for

an article in itself, but here I'll focus attention on the registers that

read the joysticks.

Like the VIC, the 64 uses Peripheral Data Registers A and B to

read these sticks, and I/O (input/output) through these registers is

controlled by Data Direction Registers A and B. These registers are

107

4Creating

Games

addressed at the chip's first four locations, so that on the 64 Data

Register A is addressed at 65320, Register B is addressed at 56321,

and Data Direction Registers A and B are addressed at 56322 and

56323, respectively.

Reading the Joysticks
Knowing this, with a bit of trial and error I was able to figure out

how to read the joysticks. A quick try seemed to indicate that it

was not necessary to write to the Data Direction Registers before

reading the sticks, as must be done on the VIC-20.

values of Registers A and B while moving joysticks connected to

Control Ports 1 and 2 revealed that the data from the stick con

nected to Control Port 1 appeared in Register B, and that the data

from the stick in Port 2 showed up in Register A.

The relationship of the data returned in the register to the

direction of stick movement is exactly the same as on the Atari.

Each of the low bits (0-3) corresponds to one of the switches that

is closed by moving the stick in one of the four primary directions.

These bits are normally set to 1, but are reset to 0 when the corre

sponding switch is closed. Bit 0 corresponds to the up switch, bit

1 corresponds to the down switch, bit 2 is left, and bit 3 right. Bit 4

is used to read the joystick trigger button. It is set to 1 normally

and reset to 0 if the button is pushed.

What this means to the hardware-weary reader who has

borne with me thus far, patiently waiting for an explanation in

plain English of how to use the Commodore 64 joysticks, is that it

takes only a couple of BASIC statements to do the job. Those

familiar with the Atari system of numbering the joystick positions

(as I am) may want to use the following statements:

S1=PEEK(56321) AND 15:REM READS STICK 1

S2=PEEK(56320) AND 15:REM READS STICK 2

Because these registers can contain irrelevant information in bits

4 -7, the logical AND is used to mask (block out) those bits. The

figure on the next page shows the way in which the number

returned in variable SI or S2 corresponds to the direction in

which the stick is pushed.

To read the trigger buttons, the following statements will re

turn a 1 if a button is pressed, and a 0 if it is not:

T1=-((PEEK(56321) AND 16)=0)

T2=-((PEEK(56320) AND 16)=0)

108

Creating

Games

14

10

11

13

Of course, if you prefer a system where the variable will be 0

when the stick is not pressed, you can use the logical operator

NOT to adjust the values accordingly.

S1=NOT PEEK(56321) AND 15

S2=NOT PEEK(56320) AND 15

This will produce the following pattern:

A Keyboard Bonus
The variations on these basic schemes are limited only by your

applications. If you are using the joystick for an action game, for

example, you may want to read the changes in horizontal position

and vertical position separately. You can do this with the follow

ing formulas:

H1=((PEEK(56321) AND 4)=0)-((PEEK(56321)

AND 8)=0)

H2=((PEEK(56320) AND 4)=0)-((PEEK(56320)

AND 8)=0)

109

4Creating

Games

V1=((PEEK(56321) AND 1)=0)-((PEEK(56321)
AND 2)=0)

V2=((PEEK(56320) AND l)=0)-((PEEK(56320)

AND 2)=0)

The value of HI will be 1 if the stick is pressed to the right, -1 if

the stick is pressed to the left, and 0 if centered. Likewise, the

value of VI will be -1 for an upward press, 1 for a downward press,

and 0 if the stick is centered. If you wish, you can even read each

switch separately. Program 1, short and not exciting, demon

strates the technique.

One interesting sidelight demonstrated with this program is

the fact that some CIA registers that are used to read the joysticks

are used also to read the keyboard. The four keys at the top left of

the keyboard (Control, Left Arrow, 1, and 2) are read exactly the

same as joystick switches 0-3. While you are running Program 1,

try pressing these keys, and you will see what I mean.

Pressing the Control key has the same effect as moving the

stick to the left, while the Left Arrow, 1, and 2 keys function like a

joystick moved down, up, and to the right, respectively.

Sprite Movement
Program 2 sets up a sprite and moves it around based on the posi

tion of the joystick. The initialization routine, which I have put

out of the way at the back of the program, starting with line 1000,

sets up a flying saucer in double width, and then RETURNS to

the movement loop at line 2. The ON-GOSUB routes the pro

gram to the proper line number without having to test each stick

position, which would slow down the loop.

There are a couple of points to note. First, the registers that

designate sprite horizontal and vertical positions are not write-

only registers, as are the Atari horizontal position registers. This

means that you can find out the current position of the sprite just

by reading those registers, without having to set up separate

RAM variables to keep track of them as must be done on the

Atari. I set up variables X% and Y%in Program 2 only for pur

poses of readability.

To move a sprite one position to the right, we need only read

the current horizontal position, add 1, and POKE that number

back into the horizontal position register. Of course, you must

keep in mind that you can't POKE in a value less than 0 or greater

than 255. If you examine the move-down and move-up

110

creating #1
Games ■#

subroutines at lines 80 and 90, you will see that I have incorpo

rated logical statements to move the sprite to the bottom of the

screen if it hits the upper limit, and which will move it to the top if

the value tries to get below 0. This wraparound feature

guarantees that no errors will result from trying to POKE in an

illegal quantity.

The Horizontal "Seam"

A more complicated situation arises when we deal with hori

zontal movement. Because there are 320 horizontal positions

available, but only 256 combinations which can be accessed from

the horizontal position register, we need to set the Most Signifi

cant Bit in the register located at 53264 whenever we wish to use a

horizontal position between 256 and 320. Anytime the sprite

moves into or out of this zone, therefore, special handling of this

bit will be required.

Accordingly, the horizontal movement routines (lines 40-45

and 70-75) have to test to see if this "seam" is encountered before

moving the sprite. If the horizontal position register reads 0, for

example, we don't know whether the sprite is located at the left

edge of the screen or at the "seam" (i.e., location 256) until we

check the MSB register. This extra checking is time-consuming,

and as a result the saucer moves noticeably faster up and down

than it does right and left.

Because of the slowness of the motion in BASIC, I have multi

plied all motion by the factor WUN, which is defined in line 1005,

and which can be set from 1 to 3. When its value is 1, the motion is

very smooth, but extremely slow. When it is 3, each push of the

stick changes the position of the sprite by three places, speeding

up the motion, but making it somewhat jerky.

Machine Language Motion
The best solution to the problem of achieving quick, smooth mo

tion is the use of a machine language subroutine which will read

a joystick and move the sprite accordingly. Program 3 uses just

such a subroutine. Though I POKE it into memory starting at

$C000 (49152 decimal), it is completely relocatable.

If it later proves that this large block of free RAM can be better

used otherwise, you will be able to move the routine with no re

writing. You should be aware, however, that, as written, the rou

tine checks only the joystick in Port 1, and moves only Sprite 0 in

response to movement of that stick. Since some lines of Program

111

4Creating

Games

3 duplicate those of Program 2, you may want to edit the latter

program rather than typing in Program 3 from scratch.

One difference that you will notice immediately is that this

program asks you to select a speed (you should respond with a

value from 1-5). The reason for this is that I wanted to demon

strate the degree to which even a machine language subroutine is

slowed down by BASIC. At Speed 1, each time through the loop

the program calls the subroutine once and returns to BASIC.

Though this produces smooth motion, it is still somewhat slow.

At Speed 2, the program calls the subroutine twice in a row before

returning, and so on up to Speed 4, which produces rather quick

motion. At Speed 5, the machine language subroutine goes into a

continuous loop, without ever returning to BASIC. At this speed,

if you push on the stick diagonally, it will appear as if there are

dozens of saucers on the screen at once!

Though my examples may seem most applicable to game pro

grams, do not overlook the joysticks as input devices for more

mundane tasks. Because each stick has only four switches, it

limits the number of choices available to the user. It therefore re

duces the number of mistakes that can be made, as compared

with a keyboard, which has over 60 keys, each key having both a

shifted and nonshifted value.

Program 1. Joystick Demonstration

10 FOR 1=1 TO 25:DOWN$=DOWN$+CHR$(17):NE

XT:HOME$=CHR$(19):PRINTCHR?(147);CHR$

(5)

15 PRINT" THIS PROGRAM READS STICK #1":P

RINT" INSERT JOYSTICK, AND MOVE IT AR

OUNDI"

20 S=NOT PEEK(56321) AND 15

30 UP=S AND 1:IF UP THEN PRINT HOME$;LEF

T$(DOWN$,10);TAB(15);"UP{3 SPACES}11; :
GOTO 50

40 DOWN=S AND 2:IF DOWN THEN PRINT HOME$

7 LEFT?(DOWN$,10);TAB(15);"DOWN ";

50 LEFT=S AND 4:IF LEFT THEN PRINT HOME?

;LEFT$(DOWN?,10);TAB(25);"LEFT ";:GOT

070

60 RIGHT=S AND 8:IF RIGHT THEN PRINT HOM

E$;LEFT$(DOWN?,10);TAB(25);"RIGHT";

70 IF S=0 THEN PRINT HOME?;LEFT$(DOWN?,1

0);TAB(15);"{16 SPACES}"

80 GOTO 20

112

Creating

Games4

Program 2. Moving Sprites in BASIC

1 GOTO 1000

2 S=PEEK(S0)AND15:ONSGOSUB3,3,3,3,20,30,

40,3,50,60,70,2r80/90,3:GOTO2

3 RETURN

20 GOSUB 40:GOSUB 80:RETURN

30 GOSUB 40:GOSUB 90:RETURN

40 X%=X%+WUN :IF X%>255 THEN X%=0:POKE S

P+16,1

43 IF X%>65 AND PEEK(SP+16)=1 THEN POKE

SP+16,0:X%=0

45 POKEHP,X%:RETURN

50 GOSUB 80:GOSUB 70:RETURN

60 GOSUB 90:GOSUB 70:RETURN

70 X%=X%-WUN:IF X%<1 AND PEEK(SP+16)=1 T

HEN X%=255:POKE SP+16,0

73 IF X%< 1 AND PEEK(SP+16)=0 THEN X%=65

:POKE SP+16,1

75 POKEHP/X%:RETURN

80 Y%=Y%+WUN+HI * (Y%>HI):POKEVP,Y%:RETU

RN

90 Y%=Y%-WUN-HI * (Y%<WUN):POKEVP,Y%:RET

URN

1000 FORI=871TO895:POKEI,0:NEXT:FOR 1=83

2TO870:READA:POKEI,A:NEXT:SP=53248

1005 HP=SP:VP=SP+1:X%=160:Y%=100:WUN=3:H

I=252:S0=56321

1010 POKESP+21,1:POKE2040,13:POKESP+39,6

:POKESP+29,1:POKEHP,X%:POKEVP,Y%

1020 POKESP+32,0:POKESP+33,0:PRINTCHR$(1

47)

1030 FORI=1 TO 50:R=1024+INT(RND(0)*1000

):POKE R#46:POKE R+54272f1:NEXT

1040 DATA 0,56,0,0,124,0,0,254,0,0,170,0

,1,171,0,15,255,224,15,255,224,13,8

5,96

1050 DATA 13,85,96,15,255,224,15,255,224

,0,254,0,0,124,0

1060 GOTO 2

Program 3. Moving Sprites in Machine Language

10 PRINTCHR$(147);CHR$(5): INPUT"SPEED "

;S:GOTO 1000

20 ON S GOTO 30,40,50,60,70

30 SYS(49409):GOTO 30

40 SYS(49406):GOTO 40

50 SYS(49403):GOTO 50

113

4Creating

Games

60 SYS(49400):GOTO 60

70 SYS(49413):GOTO 70

1000 FORI=871TO895:POKEI,0:NEXT:FOR 1=83

2TO870:READA:POKEI,A:NEXT:SP=53248

1010 POKESP+21,1:POKE2040,13:POKESP+39,6

:POKESP+29,1:POKESP,160:POKESP+1,10

0

1020 POKESP+32,0:POKESP+33,0:PRINT CHR$(

147)

1030 FORI=1 TO 50:R=1024+INT(RND(0)*1000

):POKE R,46:POKE R+54272,1: NEXT

1040 DATA 0,56,0,0,124,0,0,254,0,0,170,0

,1,171,0,15,255,224,15,255,224,13,8

5,96

1045 DATA 13,85,96,15,255,224,15,255,224

,0,254,0,0,124,0

1050 FOR 1=1 TO 101:READ A:POKE 49151+1,

A:NEXT

1055 FOR 1=1 TO 19:READ A:POKE 49399+1,A

:NEXT:GOTO 20

1060 DATA 173,1,220,74,176,3,206,1,208,7

4,176,3,238,1,208,74,176,38,173

1070 DATA 0,208,208,15,173,16,208,41,1,2

40,12,173,16,208,41,254,141,16

1080 DATA 208,206,0,208,96,173,16,208,9,

1,162,63,141,16,208,142,0,208,96

1090 DATA 74,176,32,238,0,208,240,28,173

,16,208,41,1,240,20,169,64,205

1100 DATA 0,208,208,13,173,16,208,41,254

,162,0,141,16,208,142,0,208,96

1110 DATA 173,16,208,9,1,141,16,208,96

1200 DATA 32,0,192,32,0,192,32,0,192,32,

0,192,96,32,0,192,76,5,193

114

Creating

Games4

Michael Wasilenko

Preschoolers will love this simple game. The child is required to press the

correct letter in order to start the race.

"Alfabug" is for relatively young people, three to six years old.

To a child learning the alphabet, the accomplishment of pressing

the correct key to initiate a bug race is quite exhilarating.

The object of the game is to press the same letter of the alpha

bet on the keyboard that the computer displays on the screen.

When the correct letter is pressed, a bug race starts: five bugs of

different colors race across the screen. If the wrong letter is

pressed, the computer responds with an unpleasant sound and

then waits for the correct letter. The order in which the bugs finish

is marked at the end of each lane, so the player(s) can also com

pete for points by guessing the winner. Upon completion of each

race, the player is asked if another race is desired. At this point, a

Y or N for yes or no is expected. Again, arfunpleasanfSound is

heard when an invalid answer is given.

In the following program, the computer will select the letters

alphabetically beginning with A (of course) and will reset to A

after Z is reached. By simply deleting the remark statement

(REM) from line 76, the program will select the letters randomly.

You could also modify the program so it asks the player for the

method of letter selection. But I have found that the fewer the

prompts, the easier it is for the child. Remember, this is for young

children who are just learning their alphabet or who are just

learning to read. For instance, with the selection method fixed in

the code, my five-year-old daughter can load and run the pro

gram without any assistance.

This simple program can provide hours of fun for young

children while helping them practice the alphabet. But watch out!

You may not get to use your computer again, unless they're all

asleep.

115

4Creating

Games

Alfabug

0 PRINT"{CLR}INITIALIZING"
1 POKE52,48:POKE56,48:CLR:POKE56334,PEEK

(56334)AND254:POKE1,PEEK(1)AND251

5 FORN=0TO1279;POKEN+12288,PEEK(N+53248)
:NEXTN:P0KE1,PEEK(1)OR4

6 POKE56334,PEEK(56334)OR1
10 PRINT"{BLK}{CLR}":POKE53281,1

20 DIMY(5),K(5)fO(5),CO(5):AB=64

25 CO(0)=0:CO(1)=3:CO(2)=4:CO(3)=5:CO(4)
=7

30 Z=05:A=45:CR=42:IN=-1:WX=54272

34 SS=12288+(41*8):PORI=0TO15:READQ:POKE
SS+I,Q:NEXTI

36 DATA 36,72,123,254,254,123,72,36,144,

72,123,254,254,123,72,144

40 FORN=0TO4:READY(N):NEXTN

50 DATA 1306,1386,1466,1546,1626

55 FORW=0TO4:K(W)=Y(W):NEXTW

57 PRINT"{WHT}{CLR}":FORP=0TO4:O(P)=48:N
EXTP:X=1264:F=48

60 FORL=0TO5:FORI=0TO39:POKEX+I,A:POKEX+

I+WX,0:{2 SPACESjNEXTI

70 POKEX+I-1,115:X=X+80:NEXTL

74 FORG=0TO4:POKEY(G)-1+WX,0:POKEY(G)+WX

,CR:NEXTG

75 FORG=0TO4:POKEY(G)-1,49+G:POKEY(G),CR
:NEXTG

76 REM{3 SPACES}AB=INT(RND(1)*26)+64
77 AB=AB+1:IFAB>90THENAB=65

78 PRINT"{HOME}{BLK}{DOWN}PRESS ";CHR$(1
8)CHR$(AB)CHR$(146);" TO START"

79 GETA$:IFA$=""THEN79

80 IFASC(A$)<>ABTHENGOSUB174:GOTO78

81 POKE53272,(PEEK(53272)AND240)+12: M=3

5:FORC=0TO4:IFK(C)=Y(C)+35THEN105

85 POKEK(C),32

90 E=INT(RND(0)+.5)+1.5:K(C)=K(C)+E:IFK(

C)=>Y(C)+M-1.5THENK(C)=Y(C)+M:F=F+1

100 POKEK(C),CR:POKEK(C)+WX,CO(C):FOR J=

0TOZ:NEXTJ:IFK(C)=Y(C)+MTHEN105

102 GOTO110

105 IFO(C)<>1THENPOKEK(C)+1,F:POKEK(C)+1

+WX,0:POKEK(C),42:O(C)=1:GOSUB200

110 NEXTC

115 CR=CR+IN:IN=IN*-1:IFF<53THEN81

118 POKE53272,21

116

Creating

Games4

120 PRINTM{HOME}{BLK}{19 DOWN}AGAIN? 'Y1

OR 'NIM

130 GETY$:IFY$=""THEN130

140 IFY$="Y"THENCR=42:IN=-1:GOTO55

145 IFY$<>"NIITHENGOSUB174:GOTO120

150 END

174 SO=54272 z FORGH=SOTOSO+24:POKEGH,0:NE

XT:POKESO+24,15:POKESO+1,34:POKESO,7

5

175 POKESO+5,72:POKESO+6,72

176 POKESO+4,129:FORT=1TO500:NEXT

177 FORGH=10TO0STEP-1:POKESO+24,GH:NEXT

178 RETURN

200 SO=54272:FORGH=SOTOSO+24:POKEGH,0:NE

XT:POKESO+24,15:POKESO+1,34:POKESO,7

5

205 POKESO+5,72:POKESO+6,72

210 POKESO+4#17:FORT=1TO500:NEXT

215 FORGH=10TO0STEP-1:POKESO+24,GH:NEXT

220 RETURN

117

Peripherals 5

The Confusing
Catalog
Jim Butterfield

Have you ever wanted to have a program gain control of the disk catalog?

There are a number ofways to use directory information, but getting hold

ofit is not as simple as it might seem atfirst glance.

On Commodore machines with 4.0 BASIC, you just type CATA

LOG or DIRECTORY to see a list of the programs on a disk. On

other Commodore machines, you must LOAD "$",8 and then

LIST. Either way, you get a directory with your disk header, infor

mation on the programs, and the number of blocks free. Very

handy indeed.

Here's the problem: you would like your program to be able

to read a directory. It seems simple: just OPEN it as a file and

bring in the items. Unfortunately, it doesn't work that way.

two Types
When you command LOAD "$",8 you are bringing in a directory

with a LOAD command; it arrives in a certain format. If you

OPEN 1,8,2,"$" within your program, you'll get an entirely differ
ent format. Why?

When you say LOAD, the disk manufactures a directory that

imitates a BASIC program. After all, the next thing you'll say is

LIST, and the only thing that can be listed is BASIC. If you say

OPEN, however, the disk will give you its directory, in binary, just

as it is stored on the disk surface. That seems to be a little better —

until you realize that BASIC has a devil of a time understanding
binary.

You can do an OPEN and get the imitation program. The trick

is to use secondary address 0 — usually reserved for LOADing.

Another Problem
Either way, you get binary. You'll need to translate it and interpret

it; and youil need to cope with that annoying BASIC glitch, in-

121

5Peripherals

putting a CHR$(O). Whenever BASIC GETs a CHR$(O), it changes

it to a null string (" "), and you'll need to detect this and change it

back.

The coding for this is fairly easy. After we get a character with

GET A$, we may take its binary value with A =ASC(A$) — except

that the null string won't work right. So,.we say, A =ASC(A$ +

CHR$(0)) and everything works out.

imitation BASIC
This is the easiest and most standard way of obtaining directory

information; it works the same way with all Commodore disk

drives. To understand it, we must see how a BASIC line is

constructed:

First two bytes: forward chain or zero (dummy on directory)

Next two bytes: binary number

Then: text of line

Ending with: binary zero

Program 1 prints the directory. Big deal: you could do that

anyway. But since it's a program, you can change it to do what

ever functions you need. For example, you could dig into the text

part in more detail, extracting the program name and type; that

way, your program would know if a given data file were on the

disk.

It's handy to be able to check how many blocks are free on the

disk. Our program already does this: the last number that line

230 calculates will be the blocks-free value. You can abbreviate this

procedure by making the program skip all the file names. Change

the OPEN statement to read:

100 OPEN 1,8,0,"$0:S%Q"

Now, the program will catalog only those programs whose

name happens to be exactly S%Q. Chances are you won't have

many of these. Your directory is now shortened down to the

header line and the BLOCKS FREE line. Let's telescope our pro

gram into a simple block-free checker. Try Program 2.

We've only scratched the surface. Try your hand at program

ming some directory search function of your choice.

Bit-image Directories
You can get more information from a bit-image directory than

from a BASIC-imitator. For example, you can read the length

parameter of relative files, see deleted files, and view file track

and sector values.

122

Peripherals 5

But this comes with considerable difficulty. You might get any

one of several different formats, depending on the disk. We won't

do the whole job here: you can chase after some of the details for

yourself. Look at Program 3.

Yes, you can go in there and drag out the BAM. Yes, you can

dig useful data out of the stuff we skipped in lines 360-380. Check

your disk manual for details.

It's not easy either way. The "imitation BASIC" is the shortest

and works on all disks: use it when you can. But if you need the

extra power of the bitmap, don't hesitate to go for it.

Program 1. Print Directory

95 REM GET THE DIRECTORY FOR DRIVE 0

100 OPEN 1,8,0,"$0"

105 REM NULL STRING REPLACEMENT

110 N$=CHR$(0)

185 REM SKIP THE "LOAD ADDRESS" AT FILE S

TART

190 GET#1,A$,A$

195 REM SKIP THE FORWARD CHAIN

200 GET#1,A$,A$

205 REM EXCEPT ZERO CHAIN MEANS END

210 IF A$=""GOTO 400

215 REM GET THE BINARY NUMBER

220 GET#1,A$,B$

225 REM PRINT "NUMBER OF BLOCKS"

230 PRINT ASC(A$+N$)+ASC(B$+N$)*256;

295 REM LET'S GET TEXT

300 GET#1,A$

305 REM END OF THIS LINE:GO BACK

310 IF A$="" THEN PRINT:GOTO 200

315 REM PRINT ONE CHARACTER

320 PRINT A$;

325 REM GET SOME MORE

330 GOTO 300

400 CLOSE1

Program 2. Block-free Checker

95 REM ANOTHER UNLIKELY NAME

100 OPEN 1,8,0,"$0:E7!N"

110 N$=CHR$(0)

195 REM THROW AWAY LOAD ADDRESS, LINK, N

UMBER

200 GET#1,A$,A?,A$,A$,A$,A$

205 REM THROW AWAY THE HEADER LINE

123

Peripherals

210 GET#1,A$:IF A$<>MIIGOTO 210

215 REM THROW AWAY THE LINK,GET THE NUMB

ER

220 GET#1,A$,A$,A$,B$

225 REM HERE'S OUR BLOCK-FREE COUNT

230 F=ASC(A$+N$)+ASC(B$+N$)*256

400 CLOSE1

410 PRINT F

program 3. Bit-image Directory

95 REM WE MUST INITIALIZE FOR THIS ONE

100 OPEN l,8,15,"I0n:CLOSEl

105 REM HERE COMES THE BIT DIRECTORY

110 OPEN 1,8,2,"$0"

120 N$=CHR$(0)

125 REM DISK WILL IDENTIFY ITSELF

130 GET#1,A$

135 REM HERE'S THE IDENTITY

140 A=ASC(A$+N$)

145 REM JUST TO PROVE WE IDENTIFIED IT.

146 REM 8250'S WILL GIVE TROUBLE HERE

150 IF A=67 THEN PRINT "8050"

160 IF A=65 THEN PRINT "1540/1541/4040"

170 IF A=l THEN PRINT "2040"

195 REM SKIP THE(BIT) BAM

200 FOR J=l TO 253

210 GET #1,A$

220 NEXT J

225 REM THE 8050 HAS A BIG BAM TO SKIP

230 IF A<>67 GOTO 300

240 FOR J=l TO 254*2

250 GET#1,A$

260 NEXT J

295 REM EIGHT FILES PER BLOCK

300 FOR J=l TO 8

305 REM FILE TYPE,TRACK,SECTOR

310 GET#1,F$,T$,S$

320 F=ASC(F$+N$)

325 REM GET 16-CHARACTER NAME

330 P$="":FOR K= 1 TO 16

340 GET#1,X$:P$=P$+X$

350 NEXT K

355 REM THERE'S USEFUL STUFF HERE, BUT WE

'LL SKIP IT

360 FOR K= 1 TO 9

370 GET#1,X$

380 NEXT K

385 REM FILE LENGTH

124

Peripherals 5

390 GET#1,L1$,L2$

395 REM WEIRD; 254 BYTLES/8 LEAVES US TWO
BYTES SHORT

400 IF J<8 THEN GET#1,X$,X$

405 REM TO ALLOW US TO TEST END-OF-DIRECT

ORY

410 SW=ST

415 REM NOT A REAL FILE

420 IF F<129 OR F>132 GOTO 480

425 REM NAME AND LENGTH

430 PRINT P$;ASC(L1$+N$)+ASC(L2$+N$)*256
480 NEXT J

500 IF SW=0 GOTO 300

900 CLOSE1

125

Peripherals

Automatic
Procpram

Selector
Steven A. Smith

Here are several ways to make disks easier to use. A disk menu program

that will run your programs automatically is included.

If you want to be able to choose from among a number of options

within a program, one of the best methods available is a menu.

The computer displays a list of items with numbers or letters as

signed to each, and you press the number or letter corresponding

to the option you want. This way, you don't have to worry about

which responses are allowed or about how to spell a particular re

sponse, and it's much faster.

All this applies to disk drives, as well. Also, someone who is

not familiar with the operating system of the computer can call up

any of a number of programs without having to know about

diskette directories or about LOADing or RUNning programs.

You can choose between two ways of automating program

selection from a disk. The first one well describe uses specific,

predefined menus for each diskette or function. The second can

be used with any diskettes, determining at runtime which pro

grams are available on the disk.

Predefined Menus
A predefined menu is written right into the BASIC menu pro

gram. Because of this, a new program must be written for each

diskette for which you want a menu. However, there are several

advantages to using a predefined menu. First, it's fast. As soon as

you RUN it, the menu program knows what programs should be

on the diskette and can go about the business of displaying the

menu. Also, you can add program descriptions to the menu

screens to show more information about the programs than just

their names.

126

Peripherals

Another, less obvious advantage to predefined menus is that

you can set up a menu for just a few of the programs on a diskette,

have another menu for some others, and have other programs

that are not accessed by any menus. This way, you can let some

one have access to only the programs that a particular application

requires.

Program 1 is a sample of a predefined menu for an inventory

file maintenance system. Although it is short, it is surprising how

impressive it can be in operation, especially to someone who is

used to having to load and run individual programs via the tradi

tional directory method.

Lines 120-130 set up an array of program names, one per array

element.

Lines 140-230 display the actual menu. The numbers 1

through 8 are displayed in reverse, with a description of the

associated programs next to them. The number of items on the

menu is not significant — eight just happened to fit well on this

menu.

In this menu, the programs are grouped by type of operation

to make things clearer for the user. Inventory file operations,

transaction file operations, and setup operations are each

grouped together and separated from the others by a line. Of

course, you can display and group items on your menus any way

you wish, remembering to have your item numbers and array ele

ments correspond properly.

Lines 240-260 accept your menu item choice, making sure it is

between one and the maximum item number on the menu. On

this menu, choice number 8 simply ends the program.

Lines 270-300 are the heart of the menu program. Using the

dynamic keyboard technique (where the computer enters its own

instructions), the computer types the LOAD and RUN instruc

tions on the screen, and then forces RETURNS into the keyboard

buffer to make it execute them. To accomplish this dynamic effect,

you need to POKE a value of 13 into the first two keyboard buffer

bytes, and a value of two into the byte which contains the number

of characters in keyboard buffer (line 300).

This sample menu program will expect to find a "Library In

ventory System" diskette in drive 0 containing programs with the

filenames stored in the array C$ (lines 120-130). To use Program 1

with your own disks, substitute the names of your own programs

in lines 120-130 and short descriptions in lines 140-230. You may

need to change the DIM statement in line 110 and the entry num-

127

Peripherals

ber checking in lines 250-260 if you have more or fewer than eight

menu items.

increasing Menu items
Nine items can be placed on this menu before the screen begins to

look crowded. There are two ways to improve on this number:

the first is simply to use several menus and let each menu chain

(call in) the next. You can let one menu item be the next menu

program, or add a line:

245 IF A$=CHR$(13) THEN C$(0)="MENU2":A$=

111": GOTO 270

This line will call the next menu program (here named MENU2) if

RETURN, rather than one of the options shown, is pressed.

While this works quite well, you do have to wait for the new

menu to be loaded each time you chain from one to the next. A

faster way is shown in Program 2. Several menus can be stored in

the same program. By pressing RETURN, you can go from one

menu to the next without waiting to load a new menu program. A

message is added to the bottom of the screen indicating that you

can press RETURN to go on to the next menu. After the last menu

is shown, pressing RETURN again will bring you back to the first

menu. Of course, going to the next menu could itself be made a

menu option, instead of being automatic.

To make menus especially useful to people unfamiliar with

computers, you can make the programs called by the menu call

the menu back when they finish. To do this, find where your pro

gram ends, whether by an END statement or by reaching the last

of the line numbers. Change your END statements to GOTO

62000 and add the following lines:

62000 PRINT n{CLR}{4 DOWN}11

62010 PRINT"LOAD"CHR$(34)"0:MENU"CHR$(34

)'\8{4 DOWN}11
62020 PRINTIIRUNII:PRINTII{9 UP}11

62030 POKE 631,13:POKE 632,13:POKE 198,2

:END

This assumes that your menu program is named "MENU".

Once you load the menu program, you don't need to worry

about loading any more programs. Each time you finish one pro

gram, the machine will take you back to your menu. This is why

menus are especially helpful for inexperienced operators. A

128

Peripherals 5

menu also works well at parties — you set it up with games which

call back the menu, and you don't have to worry about being

around to show people how to LOAD and RUN their choices.

Fully Automatic Menus
Program 3 is a different method of generating menus, a fully auto

matic diskette menu. When you run this program, you can put

any disk in the drive and it will find out what programs are on the

disk and build a menu around them. Although you can't add de

scriptions to the program names, with disk files you do have

16-character names to work with, and you can make them quite

descriptive.

This method is slower than using predefined menus because,

before the program can generate the menus, it must read the

diskette directory and fill its own array of program names. How

ever, you don't have to write a new menu program for each

diskette or change a menu program when you change the con

tents of a diskette.

The following is a description of the variables used in Pro

gram 3:

AE$

AN

AO

C$

DE

DR$

ER

F$

FL

I

J
MM

MN

: Filename Array

: Array Entry Number

: Files From Drive 0

: Character Read In

: Directory Entry

: Drive Number

: Disk Error Number

: Filename Found

: Filename Length

: Iteration Variable

: Iteration Maximum

: Maximum #On Menu

: Menu Number

Lines 190-210 set up the variables and the program name

array used by the program. Line 220 initializes the diskette in the

drive currently being checked. This sets things up for line 230,

which checks to see if a diskette was found in the drive. If not, the

program prints an error message.

Lines 240-250 are in the program mostly to let you know

something is happening. While the program is reading the disk

directory, it lets you know how many programs it has found on

that drive.

129

5Peripherals

In lines 260-390, the diskette directory is opened and read as a

ping over the directory header, each

[e entries is checked for programs until

sequential file. After skipping over the directory header, each

directory block of eight file entries is checked for prograr

the last entry is reached.

Line 310 skips entries which have their first byte equal to any

thing other than 130. That would indicate that the file was not a

program file. You could use this line to create menus which dis

played only USR or SEQ files if you wished. Line 330 puts the

program name into string F$. Line 340 keeps the DOS support

program from showing up on the menus. Line 340 also shows

how a program can be excluded from the menu if you don't want

it displayed. Line 350 updates your screen to tell you how many

program entries have been found, and line 360 puts this program

name and drive number into the array of filenames found. Lines

370-380 then read past the proper number of bytes to be ready to

read in the next file entry.

Line 410 finishes up the work. If no programs were found, the

program ends with line 430. Otherwise, the first menu is ready to

be displayed.

Entering Your Choices
Line 440 prints the menu heading. The heading will include a

menu number starting with 1 and going as high as necessary to

show all of the program names found, in groups of nine. Line 450

checks to see if there are enough program names left in the array

to display nine menu items. If not, the menu is shortened. Line

460 displays the menu item itself, and lines 470-480 display the

message at the bottom of the screen.

Lines 490-530 check for your choice of menu item. It must be

between 1 and the maximum number on the menu, or it can be

RETURN, in which case the program will display the next menu.

If there are no more items in the program name array, the first

menu is redisplayed;

If the key you pressed was one of the menu items shown, the

program continues to line 540. Variable AE$ is now the drive

number, a colon, and the 16-character name of the program you

have chosen. Any blanks in the name are stored in the directory

as shifted spaces, with an ASCII value of 160.

Lines 560-580 check to see how long the program name is by

looking backwards from the end for the first character that is not a

shifted space. When one is found, variable FL contains the length

of the name plus the drive number. Then, the LOAD and RUN in-

130

Peripherals 5

structions are displayed, and the keyboard buffer is POKEd with

RETURNS to load the chosen program, just as in the predefined

menu programs.

Program 1. Predefined Disk Menu

100 REM ** LIBRARY INVENTORY SYSTEM DRIVE

R MENU **

110 DIMC$(6):PRINT CHR$(14)

120 C$(0)="SLIB":C$(1)="SLIBPRINT":C$(2)=

"SLIBINQI1:C$(3) = IISTRANPRINT"

130 C$(4) = "STRANPURGE":C$(5) = IISLIBSETUP":
C$(6)="F0RMATn

140 PRINT"{CLR}{2 DOWN}{10 SPACES}{RVS} P
ROGRAM CHOICE MENU {OFF}{2 DOWN}"

150 PRINT" {7 SPACES} {RVS}1 {OFF} ^INVENTORY
FILE MAINTENANCE{DOWN}"

160 PRINT"T7 SPACES}{RVS}2{OFF} INVENTORY
FILE LISTING{DOWN}"

170 PRINT"T7 SPACES} {RVS}3 {OFF} JENVENTORY
FILE INQUIRY{2 DOWN}"

180 PRINT"T7 SPACES}{RVS}4{OFF} TRANSACTI
ON FILE LISTINGtDOWN}"

190 PRINT"{7 SPACES}{RVS}5{OFF} TRANSACTI
ON FILE PURGE{2 DOWN}"

200 PRINT"{7 SPACES}{RVS}6{OFF} FIRST-TIM
E FILE SETUP{DOWN}"

210 PRINT"{7 SPACES}{RVS}7{OFF} FORMAT A
DISKETTE{2 DOWN}"

220 PRINT"{7 SPACES}{RVS}8{OFF} END OF LI
BRARY WORK{DOWN}"

230 PRINT"18 SPACES}{RVS} CHOOSE ONE OF T
HE ABOVE {OFF}";

240 GETA$:IFA$=""THEN240

250 IFA$<"1"ORA$>"8"THEN240

260 IFA$="8"THENEND

270 PRINT"{CLR}{6 DOWN}"

280 PRINT"LOAD"CHR$(34)"0:"C$(VAL(A$)-1)C

HR$(34)",8"

290 PRINT"{4 DOWN}RUN":PRINT"{9 UP}"
300 POKE631,13:POKE632,13:POKE198,2:END

Program 2. Multiple Predefined Menus

100 REM ** INVENTORY SYSTEM DISK MENU #1
**

110 DIMC$(9):PRINT CHR$(14)

120 C$(1)="SLIB":C$(2)="SLIBPRINT":C$(3)=

"SLIBINQ":C$(4)="STRANPRINT"

131

5Peripherals

130 C$(5) = "STRANPURGEM:C$(6) = IISLIBSETUP":

C$(7) = "FORMATtI:C$(8) = llDIRECT"

140 PRINT"{CLR}{DOWN}{7 SPACES}{RVS} LIBR

ARY INVENTORY MENU 1 {OFF}{2 DOWNT"
150 PRINT"{7 SPACES}{RVS}1{OFF} LIBRARY F

ILE MAINTENANCE{DOWN}"
160 PRINT"{7 SPACES}{RVS}2{OFF} LIBRARY F

ILE LISTING{DOWN}"

170 PRINT"{7 SPACES}{RVS}3{OFF} LIBRARY F

ILE ENQUIRY{2 DOWN}"

180 PRINT"{7 SPACES}{RVS}4{OFF} TRANSACTI
ON FILE LISTING{DOWN}"

190 PRINT"{7 SPACES}{RVS}5{OFF} TRANSACTI

ON FILE PURGE{2 DOWN}"

200 PRINT" {7 SPACES} {RVS}6{OFF} JSETUP INV

ENTORY FILES{DOWN}"
210 PRINT"{7 SPACES}{RVS}7{OFF} FORMAT A

DISKETTE{DOWN}"

220 PRINT"{7 SPACES}{RVS}8{OFF} PRINT A D

ISKETTE DIRECTORY{2 DOWN}"

230 PRINT"{5 SPACES}{RVS}{4 SPACES}CHOOSE

ONE OF THE ABOVE{4 SPACES}{OFFT"
240 PRINT"{5 SPACES}{RVS} OR PRESS RETURN

FOR NEXT MENU {OFF}";

250 GETA$:IFA$=""THEN250

260 IFA$=CHR$(13)THEN290

270 IFA$<"1"ORA$>"8"THEN250

280 GOTO450

290 C$(1)="SLIBPRT1":C$(2)="SLIBPRT2":C$(

3) = "SLIBPRT3":C$(4)="SLIBPRT4"

300 C$(5)="SLIBPRT5":C$(6)="SLIBPRT6":C$(

7)="SLIBPRT7":C$(8)="SLIBPRT8"

310 PRINT"{CLR}{DOWN}{7 SPACES}{RVS} LIBR

ARY INVENTORY MENU 2 {OFF}{2 DOWNT"
320 PRINT" {7 SPACES} {RVS}1 {OFF} PRINT -SAL

ES REPORT{DOWN}"

330 PRINT"{7 SPACES}{RVS}2{OFF} PRINT BAG

KORDER REPORT{DOWN}"

340 PRINT"{7 SPACES}{RVS}3{OFF} PRINT DEL

INQUENT ACCOUNTS{DOWN}"
350 PRINT"{7 SPACES}{RVS}4{OFF} PRINT HIS

TORICAL REPORT{DOWN}"
360 PRINT"{7 SPACES}{RVS}5{OFF} PRINT HIS

TORICAL SUMMARY{DOWN}"

370 PRINT"{7 SPACES}{RVS}6{OFF} PRINT SAL
ES TAX REPORT{DOWN}"

380 PRINT"{7 SPACES}{RVS}7{OFF} PRINT MON

THLY REPORTS{DOWN}"

132

Peripherals

390 PRINT"{7 SPACES}{RVS}8{OFF} PRINT YEA

RLY REPORTS{DOWN}"
400 PRINT"{5 SPACES}{RVS}{4 SPACES}CHOOSE

ONE OF THE ABOVE{4 SPACES}{OFFTm
410 PRINT"{5 SPACES}{RVS} OR PRESS RETURN

FOR NEXT MENU {OFF}";

420 GETA$:IFA$=""THEN420

430 IFA$=CHR$(13)THEN120

440 IFA$<"1"ORA$>"9"THEN420

450 PRINT"{CLR}{6 DOWN}"
460 PRINT"LOAD"CHR$(34)"0:"C$(VAL(A$))CHR

$(34)",8"

470 PRINT"{4 DOWN}RUN":PRINT"{9 UP}"

480 POKE631,13:POKE632,13:POKE198,2:END

Program 3. Automatic Disk Menus

100 REM * AUTOMATIC DISKETTE MENU *

190 AE$=ll":AN=0:A0=0:C$="ll:DE=0:DR$="0"

200 ER=0:F$="":FL=0:1=0:J=0:MM=0:MN=0

210 DIM AE$(150)

220 OPEN15,8,15:PRINT#15,"I"+DR$

230 INPUT#15,ER:IFER=21THEN400

240 PRINT"{CLR}{DOWN}READING DIRECTORY OF

DRIVE ";DR$

250 PRINT"{DOWN}PROGRAMS FOUND: 0"

260 OPEN8,8,8,"$"+DR$+",SEQ"

270 FORI=1TO254:GET#8,C$:NEXT

280 FORDE=1TO8:F$="":GET#8,C$

290 IFC$=CHR$(199)THEN410

300 IFC$=""THENJ=29:GOTO370

310 IFASC(C$)<>130THENJ=29:GOTO370

320 AN=AN+1:J=ll:GET#8,C$:GET#8,C$

330 FORI=1TO16:GET#8,C$:F$=F$+C$:NEXT

340 IFLEFT$(F$,3)="DOS"THEN AN=AN-1:GOTO3

70

350 PRINT"{UP}"TAB(15)AN-A0

360 AE$(AN)=DR$+":"+F§

370 FORI=1TOJ:GET#8,C$:NEXT

380 IFDE<>8THENGET#8,C$:GET#8,C$

390 NEXT-.GOTO280

400 PRINT"{DOWN}NO DISKETTE FOUND IN DRIV

E "DR$"{DOWN}"

410 CLOSE8:CLOSE15

430 IFAN=0THENPRINT"{2 DOWN}{RVS} NO PROG

RAMS FOUND {OFF}{2 DOWN}":END
440 MM=9:PRINT"{CLR}{DOWN}"TAB(12)"{RVS}P

ROGRAM MENU #"STR$(MN+1)"{OFF}{DOWN}"
450 FORI=1TO9:IFAE$(MN*9+I)=""THENMM=I-1:

I=9:GOTO470

133

5Peripherals

460 PRINTTAB(12)"{RVS}"RIGHT$(STR$(I),1)"

{OFF} "MID$(AE$(MN*9+I),3,16)"{DOWN}"

470 NEXT:PRINT"{4 SPACES}{RVS}{4 SPACES}C

HOOSE ONE OF THE ABOVE OR{3 SPACES}
{OFF}"

480 PRINT"{4 SPACES}{RVS} PRESS RETURN TO

GO TO NEXT MENU {OFF}"
490 GETC$:IFC$=""THEN490

500 IFC$<>CHR$(13)THEN530

510 MN=MN+1:IFMN*9+1>ANTHENMN=0

520 GOTO440

530 IFVAL(C$)<1 OR VAL(C$)>MM THEN490

540 AE$=AE$(MN*9+VAL(C$))

550 PRINT:PRINT"{CLR}{4 DOWN}MENU ITEM CH

OSEN: #"C$" - "MID$(AE$,3,16)

560 FORI=18TO1STEP-1:FL=I

570 IFASC(MID$(AE$,I,1))<>160THENI=1
580 NEXT:PRINT"{4 DOWN}LOAD"CHR$(34)LEFT$

(AE$,FL)CHR$(34)",8{4 DOWN}"

590 PRINT"RUN":PRINT"{9 UP}"

600 POKE631,13:POKE632,13:POKE198,2:END

134

Peripherals 5

64 DOSirtaker
Charley Kozarski

Changing disks to load DOS 5.1 can at times be inconvenient. You can

use these short programs to save time — by putting the Wedge on your

own disks.

If you've bought a 1541 disk drive for your Commodore 64, you've

probably noticed that the Test/Demo disk which comes with it

contains several useful programs. In particular, there is a program

called "DOS 5.1" which simplifies many disk-handling opera

tions for you. For example, you can just use the symbol for divi

sion (/) followed by the name of a file, and the file will be

LOADed in for you.

Despite the misleading name, DOS 5.1 is not a Disk Operat

ing System (DOS) for the 1541. Like all Commodore disk drives,

the 1541 is "intelligent/' which means that its DOS is contained in

ROM inside the drive itself. DOS 5.1 is actually a DOS support pro

gram which makes the built-in DOS easier to use.

All of the helpful functions of the DOS support program,

however, are available only on that disk. If, for some reason, you

need to turn off power, you've got to reload DOS 5.1 from the

demo disk. Wouldn't it be nice to be able to put this useful pro

gram on any of your disks?

Program 1 must be saved onto each disk on which you want

to put DOS 5.1. It is the "wedge," which ties DOS 5.1 into BASIC.

Type Program 1 in and SAVE it on a disk. Then type NEW and

type in Program 2 which is the DOS 5.1 Creator. SAVE Program 2

to the same disk. It is necessary to SiWE Program 2 to only one of

your disks because after it creates DOS 5.1, it serves no further

purpose. You'll only need Program 1 and DOS 5.1 on each disk.

Now replace your disk with the Test/Demo disk. (Program 2

will get DOS 5.1 from the demo disk.) RUN Program 2 and, after a

few seconds, it will ask if you have replaced the demo disk with

your own. Make that replacement and you're halfway through

creating a new DOS 5.1. When your disk is in the drive, type Y for

yes and hit RETURN. The Creator program will now SAVE DOS

5.1 onto your disk and then erase itself from memory. If you forgot

135

Peripherals

to remove the demo disk, there will be no problem because the

tab .on the disk prevents anything from being S^WEd onto it. Pro

gram 2, however, will have erased itself and you'll need to start

over.

After you've got a copy of DOS 5.1 on one of your disks,

you're all set to use it anytime you use that disk. Simply load in

the Wedge (Program 1) from that disk and RUN it.

Program 1. DOS wedge

10 REM DOS WEDGE FOR C-64

20 PRINT "{CLR}"

30 IF IM=YOU THEN YOUR=l2LOAD"DOS 5 .1",8

,1

40 IF YOUR=1 THEN SYS 52224

50 NEW

Program 2. DOS Creator

10 REM DOS WITHOUT LOADING DEMO DISK

20 IF IM=YOU THEN YOUR=1:LOAD"DOS 5.1",8

,1
30 IF YOUR=1 THEN SYS 52224

40 INPUT "{CLRjDEMO DISK REPLACED YET? (
Y OR N)";I$:IF I$o"Y" THEN 40

50 POKE 43,255:POKE 44,203:POKE 45,90:PO

KE 46,207

60 SAVE"DOS 5.1",8,1

70 POKE 43,1:POKE 44,8:POKE 46,8:NEW

136

Peripherals 5

Backup
1540/1541 Disks
Harvey B. Herman

LOAD, switch disks, SAVE, LOAD, switch, SAVE — it can be cumber

some and tedious to make backups ofdisks when you don't have a dual

disk drive. What's worse, you need to go through special extra steps to

transfer machine language programs. This utility makes creating safe

backups on single disk drives nearly automatic.

I recently purchased a 1541 disk drive. The diskette that came

with it included a few sample programs. Conspicuous by its

absence, however, was a program to make duplicate copies of

diskettes for backup purposes. I have learned the hard way that

diskettes do not last forever, and it is foolish to have only one copy

of important programs.

What to do? Well, I was lucky to have acquired an excellent

backup program for the Commodore 2031 single disk drive (writ

ten by Jim Law and Keith Hope and distributed by the Toronto

PET Users Group). I adapted this program to work on the Com

modore 64. The modifications in the original program were quite

modest — a few PEEKs and POKEs were changed, and the

machine language portion was relocated to the cassette buffer

and POKEd in from DATA statements.

using the Program
The program is quite easy to use; no knowledge of machine lan

guage is necessary. First, the destination diskette is formatted, a

good idea if you will be using it later on the same drive. Please be

careful to format only blank diskettes, or ones that are no longer

needed. Next, the diskettes are swapped and the source diskette

is read to determine how much to copy. Successive blocks are

then read from the source into the available computer memory. (I

can read 124 blocks on the Commodore 64.) The diskettes are

swapped again, and identical blocks on the destination disk are

written from data saved in memory. The swapping of source and

destination diskette continues until the entire diskette has been

copied.

137

5 [Peripherals

Of course, it would be easier (but not much faster) if a second

drive were available. However, this program is the next best thing.

one at a time,

les. Try that

sometime if you doubt it.

Disk Backup

1 FORI=828TO883:READA:POKEI,A:NEXTI

10 REM"D=DSAVE"@BACK2",D0:?DS$:CATALOGD0

20 BB=PEEK(44)+27:POKE995,BB

30 POKE998,PEEK(55):POKE999,PEEK(56):POKE

55,0:POKE56,BB:CLR

40 BB=PEEK(995)

50 N=PEEK(999)-BB-1:BA=BB*256:MA=828
60 DIMBM%(35,24)

70 FORJ=0TO7:TA(J)=2tJ:NEXT
80 PRINT"{CLR}{3 RIGHT}{RVS}BACKUP 1541

{OFF}11

90 PRINT"{DOWN}'GOTO10000' IF PROGRAM QUI
TS ABNORMALLY"

100 PRINT"{DOWN}"N"BUFFERS AVAILABLE"
110 OPEN1,8,15

200 REM *** MAIN FUNCTIONS ****

210 GOSUB1000

220 D$="S":GOSUB3200:I2$=IR$

230 IFDR$<>"2A"THENPRINT11 {RVS} ILLEGAL DOS
1.0 DISK{OFF}":GOTO10000

240 IFI2$=I1$THENPRINT"{RVS}SOURCE AND DE
STINATION HAVE SAME ID CODE{OFF}":GOT
010000

250 GOSUB2500

260 T=TS:S=0:NU=1:T1=T:S1=S

270 PRINT#1,"I0":OPEN3,8,3,"#"

280 PRINT"READING BLOCK #";

290 IFBM%(Tl,SI)=0THENGOSUB2000:NU=NU+1:I

FNU>NTHEN320

300 S1=S1+1:IFS1>20THENS1=0:T1=T1+1

310 IFTKTF+1THEN290

320 PRINT"{DOWN}"
330 CL0SE3

340 D$="D":GOSUB3200 2lFIR$<>Il$THENGOTO34

0

350 PRINT#1#"I0":OPEN3,8,3,"#"

360 PRINT"WRITING BUFFER #";

370 NU=1:T1=T:S1=S

380 IFBM%(Tl,SI)=0THENGOSUB2200:NU=NU+1:I

FNU>NTHEN410

390 S1=S1+1:IFS1>20THENS1=0:T1=T1+1

138

Peripherals 5

400 IFTKTF+1THEN380

410 PRINT"{DOWN}"

420 CLOSE3

430 S=S1+1:IFS>20THENS=0:T1=T1+1

440 T=T1:IFT>TFTHEN500

450 D$="S":GOSUB3200:IFIR$<>I2$THEN450

460 NU=1:T1=T:S1=S:GOTO270

500 REM FINISHED XFERS

510 CLOSE1

520 POKE55,PEEK(998):POKE56,PEEK(999):CLR

530 PRINT"{2 DOWNjBACKUP COMPLETE"
540 OPEN1,8,0,"$0"

550 GET#1,A$:IFA$<>"{RVS}MTHEN550

560 PRINTA$;:GOTO610

570 GET#1,A$:SS=ST:A=LEN(A$):IFATHENA=ASC

(A$)

580 GET#1,B$:SS=ST:B=LEN(B$)zIFBTHENA=ASC
(B$)

590 IFSSTHEN660

600 IFA=1ANDB=1THENGOSUB630

610 GET#1,A$:IFA$=""THENPRINT:GOTO570

620 PRINTA$;:GOTO610

630 GET#1,A$:SS=ST:A=LEN(A$):IFATHENA=ASC
(A$)

640 GET*1,B$:SS=ST:B=LEN(B$):IFBTHENB=ASC

(B$)

650 N=B*256+A:PRINTN;:RETURN

660 CLOSE1

670 END

1000 REM HEADER DEST DISK

1010 PRINT"{DOWN}INSERT DESTINATION DISK

TO BE FORMATTED"

1020 INPUT"{2 DOWN}DISK NAME{3 RIGHT}

{SHIFT-SPACE}{16 SPACES}{19 LEFT}";D

N$

1030 IFDN$="{SHIFT-SPACE}"THENPRINT"

{3 UP}";:GOTO1020

1040 IFLEN(DN$)>16THENCLR:GOTO40

1050 F=0:FORJ=1TOLEN(DN$):S1?=MID$(DN$,J,

1)
1060 IFS1$="{SHIFT-SPACE}"ORS1$=CHR$(34)T

HENF=1

1070 NEXTJ:IFFTHENPRINT"{3 UP}";:GOTO1020

1080 INPUT"{DOWN}UNIQUE DISK ID{3 RIGHT}
{SHIFT-SPACE}{20 SPACES}{23 LEFT}";I

1$
1090 IFI1$="{SHIFT-SPACE}"THENPRINT"

{2 UP}";:GOTO1080

1100 IFLEN(I1$)<>2THENPRINT"{2 UP}";:GOTO

1080

139

5Peripherals

1110 PRINT#1, "N0:"+DN?+", "+I1?

1120 GOSUB3000

1130 IFERTHENPRINTER$:GOTO10000

1140 RETURN

2000 REM READ BLOCK T1,S1 TO BUFFER # NU

2010 C=.

2020 PRINT#1,"U1";3;0;T1;S1

2030 GOSUB3000:IFNOTERTHEN2060

2040 C=C+1:IFC<3GOTO2020

2050 PRINTER?:FORJ=(BB+NU)*256TO(BB+NU)*2

56+255:POKEJ,.:NEXTJ:GOTO2100

2060 PRINT#1,"B-P";3;0

2070 IFNU<>0THENPRINT"{3 SPACES}{3 LEFT}"

;RIGHT?("{2 SPACES}"+STR?(NU),3);"

{3 LEFT}";

2080 POKE996/PEEK(3):POKE997,PEEK(4):POKE

4,BB+NU:SYSMA

2085 POKE3, PEEK(996) :POKE4,PEEK(997)

2090 IFSTO.ANDST<>64THENGOSUB3000:GOTO20

50

2100 RETURN

2200 REM WRITE BLOCK T1,S1 FROM BUFFER #

NU

2210 C=.

2220 PRINTU,"B-A";0;Tl;SI:PRINT#1,"B-P";

3;0

2230 PRINT"{3 SPACES}{3 LEFT}";RIGHT?("

{2 SPACES}"+STR?(NU),3);"{3 LEFT}";

2240 POKE996,PEEK(3):POKE997,PEEK(4):POKE

4,BB+NU:SYSMA+3

2245 P0KE3,PEEK(996)2P0KE4,PEEK(997)

2250 IFSTO.ANDST<>64THENPRINT"{RVS}IEEE

WRITE ERROR"ST"{OFF}":GOTO10000
2260 PRINT#1,"U2";3;0;T1;S1

2270 GOSUB3000:IFNOTERTHEN2300

2280 C=C+1:IFC<3THEN2260

2290 PRINT"{RVS}UNRECOVERABLE WRITE ERROR

"ER?:GOTO10000

2300 RETURN

2500 REM GET BAM TO BM%(T,S)

2510 TS=1:TF=.

2520 PRINT*1,"10":OPEN3,8,3,"#"

2530 S9=0

2540 PRINT"{DOWN}TRACK #{3 SPACES}BLOCKS

TO XFER"

2550 PRINT"g24 T3"

2560 NU=0:T1=18:S1=0:C0?=CHR?(.):GOSUB200

0

2570 BY=4

140

Peripherals

2580 T%=(BY-4)/4+l

2590 PRINT"{2 SPACES}";T%;

2600 IFPEEK(BA+BY)=.THENFORJ=.TO20:BM%(T%

, J) = .:NEXT:BY=BY+4:GOTO2650

2610 S=0

2620 BY=BY+1:A0=PEEK(BA+BY):FORJ=.T07:BM%

(T%,S)=A0ANDTA(J):S=S+l:NEXT

2630 IFS<22THEN2620

2640 BY=BY+1

2650 ES=21:IFT%>17THENES=19

2660 IFT%>24THENES=18

2670 IFT%>30THENES=17

2680 FORJ=ESTO24:BM%(T%,J)=-1:NEXT

2690 SM=.:FORJ=.TO20:IFBM%(T%,J)=.THENSM=

SM+1

2700 NEXT:PRINTTAB(12);SM:S9=S9+SM

2710 IFSM=.ANDTS=T%THENTS=TS+1:GOTO2730

2720 IFSM<>.THENTF=T%

2730 IFBY<143THEN2580

2740 CL0SE3

2750 PRINT"START =";TS7" FINISH ="?TF

2760 PRINT"{DOWN}A TOTAL OF";S9;"BLOCKS T

O XFER"

2770 S8=90+25+(.650+.980)*S9

2780 S7=INT(S8/60):PRINT"APPROX";S7":"INT

(S8-S7*60);"FOR COPY"

2790 RETURN

3000 REM READ ERR CH TO ER,ER$

3010 INPUT#1,E0$,El$,E2$,E3$:ER$=E0$+","+

El$+"#"+E2$+"#"+E3$

3020 ER=LEN(E0$):IFERTHENER=VAL(E0$)

3030 RETURN

3200 REM INSTRUCT TO SWAP TO DISK GIVEN I

N D$

3210 IFD$="D"THENS1$="DESTINATION":GOTO32

30

3220 SI$="SOURCE"

3230 PRINT"{DOWN}INSERT ";S1$;" DISK, PRE

SS {RVS}SPACE{OFF}"

3240 GETA$:IFA$<>" "THEN3240

3250 OPEN2,8/0,"$0"

3260 GOSUB3000:IFER>0THEN10000

3270 FORJ=1TO26:GET#2#A$:NEXTJ

3280 GET#2/A$:GET#2,B$:IR$=A$+B$

3290 GET#2/A$:GET#2,A$:GET#2/B$:DR$=A$+B$

3300 CLOSE2:RETURN

10000 REM DROP OUT

10010 POKE55,PEEK(998):POKE56,PEEK(999):C

LR:STOP

141

5Peripherals

15000 DATA 76,66,3,76,91,3,162,3,32,198,2

55,160,0,132,3,32,207,255,145

15010 DATA 3,165,144,208,3,200,208,244,32

,204,255,96,162,3,32,201,255,160

15020 DATA 0,132,3,177,3,32,210,255,165,1

44,208,3,200,208,244,32,204,255,96

142

Peripherals 5

using the
user Port
John Heilborn

The User Port on the 64 gives you direct access to your computer. This

article explains exactly how to program for and connect to this port.

Located on the back and side of the 64 are several different con

nectors (see Figure 1). Each of them (except one) has a specific

purpose. For example, the video port connects to a television or

monitor; the game ports on the side of the computer connect to

various kinds of game controllers such as paddles or joysticks; the

serial plug on the back of the computer connects to a Commodore

printer or disk drive; and the expander slot accepts program

cartridges.

Figure 1.64 Ports

I—User Port

Cassette Port

Serial Port

Audio/Video

T.V. Video Out

1 Expansion Port

Game Controllers

Power In

143

5 Peripherals

There is one connector, however, that was designed to be

used by you, the user, and is called (appropriately enough) the

User Port.

what is the user Port?
To get an idea of what the User Port is, let's take a look at the 64

system as a whole. Figure 2 is a block diagram of the major com

ponents of the 64. As you can see, the 64 consists of a Central

Processing Unit (CPU), some memory (lots of memory), and

some I/O (Input/Output) devices. The television (or monitor),

the printer, disk drive, and even the keyboard are connected to

the 64 through the I/O devices.

The following is a brief description of each of the major com

ponents of the 64.

The Central Processing unit (CPU)
This is the device that performs all of the logical and numerical

functions for the 64. The central processor in the 64 is a micro

processor called a 6510.

Random Access Memory (RAM)
This part of memory is used to store all of your programs and

data. Whenever you write a program and/or enter data, the com

puter stores it here.

Read Only Memory (ROM)
This is where the 64's control programs reside. Some of the pro

grams stored in ROM are the Operating System, the Kernal, and

the BASIC interpreter.

The I/O Devices
These are the devices that the 64 uses to send information to or re

ceive it from any external equipment. The I/O devices are:

The VIC-II chip. This is the Video Interface Chip. It converts

the data for screen memory into video signals so they can be

viewed on the monitor or television screen.

The SID chip. The SID (Sound Interface Device) chip is the

device that generates all of the sounds for the 64. These signals

can be sent to the television or monitor, or to an external ampli

fier, such as your home stereo system.

The CIA chips. CIA means Complex Interface Adapter. The

CIAs allow the keyboard, the serial port, the game ports, and the

User Port to communicate with the CPU.

144

Peripherals 5

Figure 2.64 Computer System

Central

Processing

Unit (CPU)

6510

Microprocessor

A
\r

V

Video

Interface

Chip

(VIC-II)

SID

Chip

Read-Only Memory

(ROM)

Operating

System

Kernal Routines

BASIC

Character Set

Random-

Access

Memory

(RAM)

To Video

Portion of

Television

or

Monitor

To Sound

Portion of

Television

or

Monitor

Expansion

Port

145

5 Peripherals

how the user Port works
The User Port can be controlled directly from BASIC by using the

commands PEEK and POKE. Remember that the User Port is an

I/O device. When the port is set up for input, PEEK is used to read

data that is coming in. When the port is set up for output, POKE

is used to write the data going out.

The user Port as an Output Device
The User Port operates much like a typical memory location, and

while we're using it as an output device, data can be sent to the

port using the POKE command. Before we examine the specific

features of the User Port, however, let's review the process of

POKEing using some ordinary RAM locations.

Enter and RUN the following routine:

10 A=6000

20 GET A$: IF A$="n THEN 20

30 IF A$=H*" THEN 70

40 PRINT A$;

50 POKE A# ASC(A$)

60 A=A+1: GOTO 20

70 PRINT

80 FOR R = 6000 TO A

90 PRINT CHR$(PEEK(R));

100 NEXT

This program demonstrates how data can be stored and re

called from memory using PEEKs and POKEs. Here is what it

does:

First, in line 20 the program waits for characters to be entered

from the keyboard. In line 50, these characters are converted into

their ASCII number equivalents and are POKEd into memory

starting at location 6000. Note: ASCII codes are numeric values that

the computer uses to represent text.

Memory location 6000 was chosen in this routine because

data that is stored there will not interfere with this program or

with any other computer operations well be using in this

example.

In line 30, the program checks for a special character. (This

program uses the asterisk [*] because it isn't often used in text.

Any character or symbol on the keyboard could have been used.)

When the special character is detected, data entry will end. At

146

Peripherals5

that point the program will skip to line 70, which starts PEEKing

memory locations beginning with location 6000. The characters

stored there will be displayed, one character at a time, up to the

last character we stored.

When Memory is Not Memory
Not every memory location in the 64 is used to store information.

Some memory locations are actually control registers for the I/O

chips which perform special functions. For example, location

53280 is one of the VIC-II chip control registers. POKEing differ

ent numbers into that location will change the color of the screen

border. To look at this, enter and RUN the following program:

10 FOR R=0 TO 15

20 POKE 53280, R

30 FOR G=0 TO 500: NEXT

40 NEXT

50 GOTO 10

This routine displays all of the 16 possible screen border

colors. It does this by POKEing numbers between 0 and 15 into

the control register (at memory location 53280) which controls

this function.

A Closer Look at the Control Numbers
Normally, when the 64 displays the contents of PEEKed memory

locations, it displays them as decimal numbers. This is because

BASIC converts the numbers it finds in memory into their deci

mal equivalents before displaying them. The values are actually

stored in memory as binary numbers.

Binary numbers are made up of only l's and 0's instead of the

decimal numbers 0-9 that we are used to. The reason they are

stored that way is because digital circuits (like the ones in the 64)

are actually tiny electronic switches. Each switch (like a light

switch) can be either on or off. Numerically, these conditions cor

respond to the numbers 1 and 0. By using these l's and 0's, we can

represent any character we want.

Every memory location in the 64 contains eight of these tiny

switches. In computer jargon, the switches are called bits.

"Bit Display/' the program at the end of this article, looks at

the number stored in a memory location (we can use 6000 again)

and displays the bits in that memory location as black and white

squares. Well use a light square to represent a binary 1 and a

black square to represent a binary 0.

147

Peripherals

The keys numbered 1-8 will be used as toggle switches for

each of the eight bits. Pressing a number once will turn the switch

on and pressing it again will turn it off.

In lines 10-240, the program sets up the variables and bit dis

plays. Program control is then transferred to the subroutine in

lines 330-380 which reads the number stored in our memory loca

tion and displays its binary value as black and white squares.

The program jumps to line 260 and GETs a keyboard entry.

Line 270 checks it to make sure it is a number between 1 and 8,

and if it is, its value is assigned to the variable B and lines 290-300

POKE the new value into memory location 6000.

With the new data in variable B, the program jumps to the

subroutine at location 330 again, which converts the number to its

binary value and displays them on the screen. After that, the pro

gram returns to line 260, awaiting another keystroke.

The number in the upper left-hand corner of the screen is the

decimal value of the binary number being displayed.

It should be noted that the numbers 1 to 8 do not represent

the number of the bit, but rather the keys to be pressed in order to

turn the bits on and off. Bit patterns are usually numbered from

the right starting with zero. Thus, the bit toggled by pressing the 8

key would normally be called bit 0, while the bit toggled by press

ing the 1 key would be called bit 7.

Rerouting the Data
The program ("Bit Display") will display and toggle the contents

of any memory location except one that contains ROM. ROM

means Read Only Memory, and by definition, cannot be

changed. If we had used a location that was a control register in

stead of a RAM location, however, the numbers being stored and

displayed would have also affected the device controlled by the

register, just as it did in the program that changed the screen

border colors.

To see how this works, replace all references to memory loca

tion 6000 in the program with 53280 (the screen border color con

trol register we used in the earlier example). These references oc

cur in lines 290,300,330, and 350.

290 IF(PEEK(53280)ANDA(B))=0THENPOKE53280

,PEEK(53280)+A(B):GOTO310

300 POKE53280,PEEK(53280)-A(B)

330 PRINT11 {HOME} {2 DOWN} {4 SPACES} {HOME}

{2 DOWN}n;PEEK(53280)

148

PeirDplheraDs 5

350 IF((2tJ)AND(PEEK(53280)))=0THENPRINTB

$(7-J):GOTO370

When you run the program now, it will behave quite differ

ently. To begin with, the four left-hand bits (numbered 1-4) are all

on, and cannot be changed by pressing the corresponding keys.

Look at what happens when you toggle the four right-hand

bits. Each time a bit is changed, the screen border changes to an

other color. Notice that the control register limits us to only 16 dif

ferent number combinations — one for each color that can be gen

erated for the screen border. You will find that many of the control

registers have rules such as this governing their use.

Sending Data to the user Port
In the previous example, we sent data to the control register at

memory location 53280 which controls the color of the screen

border. This is not the only control register for the VIC-II chip,

however. In order to control the screen display, the VIC-II chip

has several control registers at various memory locations. An

other memory location that controls the functions of the VIC-II

chip is 53281. It controls the screen background color. If you re

place the number 53280 with 53281 in the previous example, you

will be able to manipulate the screen color instead of the border

color.

The User Port is also controlled by several memory locations.

One of the memory locations is 56577. Numbers that you POKE

into that location will appear as data on pins of the User Port

connector.

Figure 3. user Port Edge Connector

B K L M N

149

5Peripherals

Figure 3. user Port Edge Connector

*Assorted serial input/output and "handshaking" functions. See Chapter 6 of the

Programmer's Reference Guide for further details.

A Simple Peripheral Device
For those of you who are inclined to build circuits, here is a simple

device you can plug into the User Port that will receive and dis

play the data sent there by the computer. It can be built on a small

circuit board about IV2 inches wide by 3 inches long. The board

used here is called "perf board/7 That's because it is perforated

with a pattern of holes which allow the components to be in

serted. The components you'll need are eight 3.3K ohm resistors,

eight LEDs, and a 24-pin edge-card connector that fits onto the

User Port. (Bring your computer with you when you buy the con

nector so you can be sure its contacts match the contacts on the

User Port.) Most electronic supply stores carry these parts.

Figure 4 is a picture of the top of the circuit board, showing

where all of the components go.

150

Peripherals 5

Figure 4. Top of Circuit Board

NOTE: Position Flat Surface on Flange of LED Toward Connector

N/C N/C N/C N/C N/C N/C N/C N/C N/C N/C

7 6 5 4 3 2 1

Figure 5 is a picture of the bottom of the board, showing the

connections that need to be made there.

Figure 5. Bottom of Circuit Board

NC NC

H J K L M N

151

Peripherals

Figure 6 is a schematic diagram of the circuit.

Figure 6. Circuit Board

24-Pin

Edge Connector

i "
I

3.3K

c >-fAA/V

3.3K

3.3K

3.3K

3.3K

3.3K

33K

3.3K

I I

152

Peripherals5

When you install this device, be sure you turn off power to

the 64 first, and push the connector all the way onto the User

Port, making sure it fits securely.

Running the Port
The purpose of building the device above is to demonstrate how

an external device can be connected to and controlled by the 64. If

you choose not to build the device, leave the bit display program

in the computer and make the following changes to it:

1) Delete lines 250-320 and line 380,

2) And change these lines:

10 POKE 53280,0:POKE 53281#0:POKE 56579,2

55

330 PRINT"{HOME}{2 DOWN}{4 SPACES}{HOME}

{2 DOWN}";PEEK(56577)

350 IF((2tJ)AND(PEEK(56577)))=0THENPRINTB

$(7-J):GOTO370

With these changes to the program, the video display will

show the output just like the external device.

Programming the user Port
As was mentioned earlier, the User Port can be either an input de

vice or an output device. In this article we'll be using it as an out

put device, so well need to program it to receive data from the

computer and send it out. Memory location 56579 is called the

data direction register for the User Port. By changing the number

in this register, you can control each bit on the port, making it

either an input or an output bit. To make a bit on the User Port an

output, the corresponding bit in the data direction register must

contain a 1. To make all of the bits equal to 1 in the data direction

register, we'll need to POKE memory location 56579 (the data

direction register) with the binary number 11111111. This is equal

to the decimal number 255.

5 POKE 56579,255

Experimenting with the user Port
The examples that follow show various method of controlling the

LEDs (or lighted squares on the video screen). More practical

applications would suggest connecting the User Port to real appli

ances such as the lights in your home, a radio, or perhaps your

coffee maker. However, interfacing with such appliances presents

153

5 Peripherals

a risk of serious electric shock or damage to the computer, and

should not be attempted by the inexperienced.

Keeping this philosophy in mind, enter the examples and

think of how you might apply them to your needs.

Binary Counter
Video Version. Remember to make the changes to Program 1 as

outlined above before adding the following routine:

500 IF A=255 THEN A=0

510 POKE 56577, A

520 A=A+1

530 GOTO 330

External Board Version. This routine has exactly the same

function as the one above, but because the 64 can send data

directly to the port much faster than it can change the screen dis

play, a delay loop was added at line 520 to allow you to see the

counter. Additionally, the LEDs are the reverse of the screen; that

is, a one is represented by a dark LED and a zero by a lit LED. To

compensate for this, line 510 inverts the number.

500 IF A=255 THEN A=0

510 POKE 56577, 255-A

520 FOR G=0 TO 100: NEXT

530 a=A+1

540 GOTO 500

Sequential Lights
This program is similar to the previous program, but instead of

performing a full count, it lights the lamps individually.

Video Version.

500 A(0)=128: A(l)=64: A(2)=32:A(3)=16: A

(4)=8: A(5)=4: A(6)=2: A(7)=l

510 IF B>7 THEN B=0

520 POKE 56577, A(B)

530 B=B+1

540 GOTO 330

External Board Version.

500 A(0)=128: A(l)=64: A(2)=32:A(3)=16: A

(4)=8: A(5)=4: A(6)=2: A(7)=l

510 IF B>7 THEN B=0

154

Peripherals

520 POKE 56577, 255-A(B)

530 B=B+1

540 GOTO 500

Incidentally, to make the lights flash in the other direction, all

you need to do is change line 520 to:

520 POKE 56577, A(7-B)

for the video version, or:

520 POKE 56577, 255-A(7-B)

if you are using the external board.

Random Lights
This program lights the LEDs (or screen lights) randomly.

Video Version.

500 A(0)=128: A(l)=64: A(2)=32:A(3)=16: A

(4)=8: A(5)=4: A(6)=2: A(7)=l

510 B = INT(RND(0)*8)

520 POKE 56577, A(B)

530 GOTO 330

External Board Version.

500 A(0)=128: A(l)=64: A(2)=32:A(3)=16: A

(4)=8: A(5)=4: A(6)=2: A(7)=l

510 B = INT(RND(0)*8)

520 POKE 56577, 255-A(B)

530 GOTO 510

Bit Display

10 POKE 53280,0: POKE53281,0

20 A(1)=128:A(2)=64:A(3)=32:A(4)=16:A(5)=

8:A(6)=4:A(7)=2:A(8)=1

21 A$="{HOME}{12 DOWN}"

22 B$="gG§ gMl{DOWN}{3 LEFT}gG| gM3"
23 C$="{RVS}iGl{2 SPACES}{DOWN}{3 LEFT}

BGJJ{2 SPACES}11

24 D$="gM3gG3 EMigGi gM|

gM3gG3 gMigGi gMigGl

30 B$(0)=A$+H{7 RIGHT}M+B$

40 C$(0)=A$+"{7 RIGHT}"+C$
50 B$(1)=A?+"{10 RIGHT}"+B$
60 C$(1)=A$+"{10 RIGHT}"+C$

70 B$(2)=A$+"{13 RIGHT}"+B$

155

5Peripherals

80 C$(2)=A$+"{13 RIGHT}"+C$

90 B$(3)=A$+"{16 RIGHT}"+B$

100 C$(3)=A$+"{16 RIGHT}"+C$
110 B$(4)=A$+"{19 RIGHT}M+B$

120 C$(4)=A$+"{19 RIGHT}"+C$

130 B$(5)=A$+"{22 RIGHT}"+B$

140 C$(5)=A$+H{22 RIGHT}"+C$

150 B$(6)=A$+"{25 RIGHT}"+B$

160 C$(6)=A$+"{25 RIGHT}"+C$

170 B$(7)=A$+"{28 RIGHT}"+B$

180 C$(7)=A$+"{28 RIGHT}"+C$

190 PRINT" {WHTMcLR}{ 10 DOWN}{8 RIGHT}1
{2 SPACES}2{2 SPACES}3{2 SPACES}4

{2 SPACES}5{2 SPACES}6{2 SPACES}7

{2 SPACES}8{DOWN}";
200 PRINT"{23 LEFT}";

210 PRINT"B24 @3{DOWN}{25 LEFT}";

220 PRINT D$;"{DOWN}{26 LEFT}";

230 PRINT D$;"{DOWN}{29 LEFT}";
240 PRINT"{DOWN}{36 LEFT}i24 T|"

250 GOSUB330

260 GETK$:IFK$=""THEN260

270 IFASC(K$)>57ORASC(K$)<49THEN260

280 B=VAL(K$)

290 IF(PEEK(6000)ANDA(B))=0THENPOKE6000,P

EEK(6000)+A(B):GOTO310

300 POKE6000,PEEK(6000)-A(B)

310 GOSUB330

320 GOTO260

330 PRINT"{HOME}{2 DOWN}{4 SPACES}{HOME}

{2 DOWN}";PEEK(6000)

340 FORJ=0TO7

350 IF((2tJ)AND(PEEK(6000)))=0THENPRINTB$

(7-J):GOTO370

360 PRINTC$(7-J)

370 NEXT

380 RETURN

156

Chapter 6

utilities

utilities6

Data Searcher
Jerry Sturdivant

Programmers are always looking for ways to make their programs more

''friendly/' easier to use.

This special search routine will accept all kinds ofwrong input and

still come up with the right match.

Have you ever searched through a file for something but just

couldn't find it? You know it's in there, but your spelling may be

off by one letter and the strings just won't match?

Or you know the city of Albuquerque is in the program, but

you can't spell it? Or you don't know if you're supposed to add

the state? And if you do need to type the state, should you use the

two-letter abbreviation? Is New Mexico supposed to be NE or

NM?

In short, if a program has to search for a string match, you can

solve all these problems by adding a Truncating Search Routine.

Let's look at the example program. Here a user enters the

name of a city, and the program gives the elevation. If no match is

found for the user's request, rather than having line 120 report

"CITY NOT FOUND": GOTO 70, the program performs a trun

cating search (lines 160 to 210).

The routine searches only that first part of each City string

equal to the length of the Request string. If there is no match, it

shortens the end of the Request string by one letter and searches

the shorter portion of each City string. It will continue to shorten

and search until it finds a match or runs down to two letters. It

will print all matches found for that length Request string.

Suppose the user gets the two-letter abbreviation of Maine

wrong. If the user requests PORTLAND MA rather than ME or

types out the complete word "MAINE", it will still find PORT

LAND ME. If the user requests just PORTLAND, the search will

print both PORTLANDS. As for our Albuquerque problem, the

word can be badly misspelled and still be found. A user who

understands the Truncating Search would just enter ALBU. It's a

very handy and user-friendly routine, especially for poor

spellers.

159

6Utilities

Data Search Demonstration

10 REM PICK CITY - PRINT CITY AND ELEVAT

ION

20 NUMBER OF CITIES=5

30 DIM CITY?(NUMBER OF CITIES),ELEV?(NUM

BER OF CITIES)

40 FOR 1=1 TO NUMBER OF CITIES

50 READ CITY?(l),ELEV?(l)

60 NEXT

70 T=0:PRINT"ENTER CITY NAME"

80 INPUT REQUEST?

90 FOR 1=1 TO NUMBER OF CITIES

100 IF REQUEST?=CITY?(I) THEN PRINT CITY

$(I),ELEV$(I):GOTO 70

110 NEXT

120 REM{7 SPACES}NOTHING FOUND

130 REM{2 SPACESJSEARCH SIMILAR SPELLING
140 REM as==55SSBas=sssas==ss=5assrsasassB5sassssBsas

150 PRINT"SEARCHING FOR SOMETHING SIMILA

R"

160 FOR Z=LEN(REQUEST?) TO 2 STEP -1

170 FOR 1=1 TO NUMBER OF CITIES

180 IF LEFT?(REQUESTS?,Z)=LEFT?(CITY?(I)

,Z) THEN PRINT CITY?(I),ELEV?(I):T=1

190 NEXT I

200 IF T THEN 70

210 NEXT Z

220 PRINT"CITY NOT FOUND":GOTO 70

250 DATA ALBUQUERQUE NM,4500

260 DATA BISHOP CA,4100

270 DATA PORTLAND MA,45

280 DATA PORTLAND OR, 37

290 DATA THE DALLES OR,85

160

utilities6

Music Keyboard
Bryan Kattwinkle

The 64 has amazing sound capabilities. This program will allow you to

experiment with sound by creating a music synthesizer with your 64,

"Music Keyboard" allows convenient experimentation with the

64xs built-in synthesizer, the SID chip. With this program, the 64's

synthesizer becomes almost as easy to adjust as a professional

synthesizer with knobs to control and buttons to push.

Using the computer's keyboard as your control panel, the top

two rows become the piano keys, while the function keys control
the octave and waveform. The attack, decay sustain, release,

length, filter, band pass, resonance, and pulse functions are con

trolled by pressing the appropriate key as shown on the screen.

The program will inform you of the present value of any ofthe

functions you may wish to change.

The Functions
The filter and pulse rates can vary from 1 to 4095, The band pass

can be varied between 1 and 7 and will interact with the filter. All

the other functions will have a value from 1 to 15,

A quick review of each function:

• Attack is the rate at which a note rises to its maximum

volume,

♦ Decay is the rate at which a note falls to the sustain level.

* Sustain allows you to extend a note,

• Release allows you to free a note once it is sustained,

• Length is the number of seconds before a note is released

(use ,5 for % second),

♦ Pulse affects only the pulse waveform (F6) by changirig its

tone quality,

• Filter will cut off the highs orlows of a wave,

* Band pass cuts offboth the highs and lows of a wave,

* Resonance has little audible effect,

161

6Utilities

Waveform refers to the shape of the sound wave: triangle

(F2), sawtooth (F4), pulse (F6), or noise (F8).

Try experimenting with the different functions to see what

kinds of sound you can create with your 64. Try changing the

functions to simulate different instruments such as a piano, flute,

or drum. When you really feel you've got the hang of it, try com

posing a tune.

Music Keyboard

90 REM MUSIC KEYBOARD

100 GOSUB 1000{4 SPACES}:REM SET UP DISP

LAY

102 PRINT TAB(12); "...THINKING..."

110 S=l3*4096+1024 :REM BASE FOR POKES

120 FOR 1=0 TO 28 :POKE S+1,0 :NEXT

130 DIM F(26) :REM FREQUENCY TABLE

140 Fl=7040 :TW=2t(l/l2) :REM CONSTANTS

150 FOR 1=1 TO 26 :F(27-I)=F1*5.8+30 :Fl

=F1/TW :NEXT

160 DIM K(255) :REM KEY TABLE

170 K$="Q2W3ER5T6Y7UI9O0P@-*fet"
180 FOR 1=1 TO LEN(K$) :K(ASC(MID$(K$,I)

))=I :NEXT I

200 GOSUB 1200{4 SPACES}:REM SET UP ADSR

210 FOR 1=0 TO 14 STEP 7 :POKE S+I+5,0 :

POKE S+I+6,0{2 SPACES}:REM TONES OFF

220 WV=32:W=1:M=2:OC=3:HB=256:Z=0:PY=1

225 PRINT "{UP}"? TAB(12)7 "{14 SPACES}"

235 REM ENTER HERE AFTER PARAM CHANGE

240 FOR 1=0 TO 2{4 SPACES}:REM PULSE PAR

AMS

245 POKE S+2+I*7,P(8) AND 255

250 POKE S+3+I*7,P(8)/256

255 NEXT I

260 POKE S+24,P(7)*16 + 15 :REM BP,VOL

270 POKE S+23,P(9)*16 + 7 :REM RES,FV

275 POKE S+22,P(6)/16 :REM FILTER HI

276 POKE S+21,P(6) AND 15 :REM LO

280 AV=P(1) *16+P(2) :REM ATT/DEC

285 SV = P(3) * 16 + P(4) :REM SUS/REL

300 GET A$:IF A$="" THEN 300

310 FR=F(K(ASC(A?)))/M :T=V*7+S

{9 SPACES}:IF FR=Z THEN 500

315 IF PY=1 THEN V=V+1 :IF V=3 THEN V=0

320 POKE T+6,Z :REM CLEAR SUSTAIN/REL
325 POKE T+5,Z :REM CLEAR ATTACK/DECAY

330 POKE T+4,0 :REM TURN OFF SOUND

162

utilities6

:0C=4 :GOTO 30

:0C=3

THEN M=4 :0C=2

:OC=1

:GOTO 30

:GOTO 30

:GOTO 30

:GOTO 3

340 POKE T,FR-HB*INT(FR/HB) :REM LOW FR

350 POKE T+1,FR/HB :REM SET HI FREQ

360 POKE T+6,SV{4 SPACES}:REM SET SUS/RE
L

365 POKE T+5,AV{4 SPACES}:REM SET ATT/DE
C

370 POKE T+4,WV+1 :FOR 1=1 TO 160*P(5)

375 GET A$:IF A$="n THEN NEXT I

380 POKE T+4,WV : IF A$<>IIH THEN 310

385 FOR 1=1 TO 1+(P(4)/2.2)t4

390 GET A$:IF A$<>"" THEN 310
395 NEXT I :POKE S+4,Z :POKE S+llrZ :POK

E S+18,Z

400 GOTO 300

500 IF A$="{Fl}" THEN M=l

0

510 IF A$="{F3}" THEN M=2

0

520 IF A$="{F5}<

0

530 IF A?="{F7}" THEN M=8

0

540 IF A$="{F2}" THEN W=0 :WV=16

00

550 IF A$=

00

560 IF A$="{F6}1

00

570 IF A$="{F8}" THEN W=3 :WV=128

300

580 IF A$<>" " THEN 600

585 PY=1-PY :IF PY<>0 THEN 300

590 POKE S+11,0 :POKE S+18,0 :V=0

595 GOTO 300

600 N=0

610 IF A$="A" THEN N=l :MX=15

620 IF A$=tlD" THEN N=2 :MX=15

630 IF A$="S" THEN N=3 :MX=15

640 IF A$="Z" THEN N=4 :MX=15

650 IF A$="L" THEN N=5 :MX=15

660 IF A$="F" THEN N=6 :MX=4095

670 IF A$="B" THEN N=7 :MX=7

680 IF A$="K" THEN N=8 :MX=4095

690 IF A$="Nn THEN N=9 :MX=15

700 IF N=0 THEN 300

750 PRINT "{UP} "; P$(N); " ="; P(N);

755 PRINT "{2 SPACES}NEW VALUE ";

760 GET A$:I=P(N) :INPUT I

770 PRINT "{UP}{38 SPACES}"

'{F4}" THEN W=l :WV=32 :GOTO 3

THEN W=2 :WV=64 :GOTO 3

:GOTO

163

6Utilities

780 IF (I<0) OR (I>MX) THEN PRINT "{UP}

MAXIMUM =";MX; -.GOTO 755

785 P(N) = I

790 GOTO 240 :REM RE-CALCULATE PARAMS

1000 REM DISPLAY SETUP SUBROUTINE

1002 C=29{2 SPACES}:REM COLUMN

1003 POKE 53280,PEEK(53281) :REM BORDER

1005 PRINT"{CLR} " : PRINT " ""
1007 PRINT "{2 SPACES}2 3{3 SPACES}5 6 7

{3 SPACES}9 0{3 SPACES}- is"; TAB(C

); "{4 SPACES}F1CgS3"
1010 PRINT " {RVS} {RIGHT} {RIGHT} B

{RIGHT} {RIGHT} {RIGHT} B {RIGHT}

{right} b {right} {rightT "; tab(c)
; "{off}ta3cf2{3 spaces}b"

1015 print " {rvs} {right} {right} b
{right} {right} {right} b {right}

{right} b {right} {rightt "7 tab(c)
. "{OFF}B{3 SPACES}F3CgW3"

1020 PRINT " TRVS} {RIGHT} {RIGHT} B
{RIGHT} {RIGHT} {RIGHT} B {RIGHT}
{RIGHT} B {RIGHT} {RIGHTT "? TAB(C)
? »{OFF}lQ3CF4{3 SPACES}B"

1030 PRINT " {RVS} BBBBBBBBBBB

B M? TAB(C); "{OFF}B{3 SPACESTF5C

gi"
1040 PRINT " {RVS}QBWBEBRBTBYBUBIBOBPB@B

*Bt"; TAB(C); "{OFF}fQfCF6
{7 SPACES}B"

1050 PRINT TAB(C); "B{3 SPACES}F7Ciw3"
1060 PRINT "{4 SPACES}{RVS} SOLO / POLYP

HONIC {OFF}"? TAB(C)? "BQ3CF8

{3 SPACES}B"
1065 PRINT TAB(Ch MB{3 SPACES}OCTAVE"
1070 PRINT "{RVS}A{OFF} ATTACK{5 SPACES}

{RVS}S{OFF} SUSTAIN"? TAB(C-4>; "WA

VEFORM"

1075 print " {rvs}d{off} decay{6 spaces}
{rvs}l{off} length"

1080 print "{2 spaces}{rvs}z{off} releas
e{4 spaces}{rvs}n{off} resonance"

1082 print "{3 spaces}{rvs}f{off} filter
{5 spaces}{rvs}k{off} pulse rate"

1084 print "{4 spaces}{rvs}b{off} band p

ASS"

1085 PRINT "{3 DOWN}"
1090 RETURN

1200 REM — SETUP A-D-S-R SUBROUTINE —

1210 DIM P(9) tDIM P${9)

164

utilities6

1212 P$(1)=HATTACK" :P(1)=2

1214 P$(2)=HDECAYn :P(2)=4

1216 P$(3) = "SUSTAIN11 :P(3)=4

1218 P$(4)="RELEASE" :P(4)=10

1220 P$(5)="LENGTH" :P(5)=1

1222 P$(6)="FILTERH :P(6)=500

1224 P$(7)="BAND PASS" :P(7)=7

1226 P$(8)="PULSE RATE" :P(8)=400

1228 P$(9)="RESONANCE" :P(9)=1

1230 RETURN

165

6Utilities

Alarm Clock
Bruce Jaeger

Translated for the 64 by Gregg Peele

You'll never work too long on your 64 ifyou use "Programmer's Alarm

Clock!'

Have you ever sat down at your computer after dinner to "touch

up that program a bit," only to find again that you've lost all no

tion of time and you've just missed the first half of that movie

you've waited for all week? Or you're supposed to pick someone

up at 6:00, and by the time you look up from the screen it's 7:30?

Me too!

That's why "Programmer's Alarm Clock" came about. When

you first sit down at your computer, LOAD and RUN the pro

gram. It will ask you for the alarm time and current time of day.

You must enter the time based on a 24-hour clock. The following

chart will help you in entering the times.

HHMMSS

000500 12:05AM (and no seconds)

010030 1:00AM (and 30 seconds)

103045 10:30AM (and 45 seconds)

120000 12 noon (and no seconds)

133030 1:30PM (and 30 seconds)

180000 6:00PM (and no seconds)

233000 11:30PM (and no seconds)

As soon as you set the time of day, the clock begins counting

toward the alarm time. When the time of day equals the alarm

time you selected, a beep will sound and the word "QUIT" will be

printed on the screen.

Since the internal clock is affected by using the cassette, the

program will give unpredictable results if you use the cassette

unit. Disk operation and TOOLKIT do not seem to affect the clock.

This program is a good one to study if you are interested in

166

utilities6

learning about simple machine language and interrupt-driven

routines. Since the program is so short, it is fairly simple to

understand and adapt for use in other programs.

Programmer's Alarm Clock

80 S=54272:FORR=STOS+24:POKER,0:NEXT
95 GOSUB195

100 PRINT"{CLR}SET ALARM TIME"
110 PRINT"{DOWN}(HHMMSS)"

120 INPUT"{DOWN}{2 SPACES}000000{8 LEFT}
";TI$

130 POKE956,PEEK(160)

140 POKE957,PEEK(161)

150 PRINT"{DOWN}INPUT TIME OF DAY"
160 PRINT"{DOWN}(HHMMSS)"
170 INPUT"{DOWN}{2 SPACES}000000{8 LEFT}

";TI$

180 PRINT"{CLR}":SYS49152:END

195 FORG=49152TO49284:READE:POKEG,E:NEXT

:RETURN

200 DATA 120, 173, 20, 3, 141, 186, 3, 1

73, 21, 3, 141

210 DATA 187, 3, 169, 25, 141, 20, 3, 16

9, 192, 141

220 DATA 21, 3, 88, 96, 173, 160, 0, 205

, 188, 3

230 DATA 208, 92, 173, 161, 0, 205, 189,

3, 208, 84

240 DATA 169, 145, 141, 17, 4, 169, 149,

141, 18, 4

250 DATA 169, 137, 141, 19, 4, 169, 148,

141, 20, 4

260 DATA 169, 161, 141, 21, 4, 169, 15,

141, 24, 212

270 DATA 169, 9, 141, 5, 212, 169, 6, 14

1, 6, 212

280 DATA 169, 34, 141, 1, 212, 169, 70,

141, 0, 212

290 DATA 169, 33, 141, 4, 212, 169, 255,

160, 255, 136

300 DATA 208, 253, 202, 208, 248, 169, 0

, 141, 24, 212

310 DATA 120, 173, 186, 3, 141, 20, 3, 1

73, 187, 3

320 DATA 141, 21, 3, 88, 76, 49, 234, 13

4, 223, 32

330 DATA 223, 0, 223, 32, 223, 32, 223,

32, 223, 0

167

Chapter 7

Memory

Memory

A window
on Memory
Gregg Peele

Ready to actually look at the 64 memory? This article will take you on a

visual tour ofyour computer's memory.

Our brain's memory is where we store information for future use.

Like the human brain, a computer has memory also. And like the

human brain, a computer stores information for future use. But

unlike our memory, a computer does not forget what it has in its

ROM memory. The computer will forget what it has in its RAM

memory when you turn it off.

Computers' memories allow them to store data and pro

grams. Computers are designed so we can manipulate and

change much of the data. One of the most significant features of

the Commodore 64 is its large memory capacity. On power-up,

the 64 allows the user 38,000 bytes to use with BASIC and over

40,000 bytes for use with machine language. It is this memory that

we will be actually looking at in this article.

The Nature of Memory

Nybbles, Bits, and Bytes
Memory is organized into several structural levels, each based on

the binary (base two) number system. At the lowest level, a com

puter's memory consists of units called bits (from binary digits).

Bits can be in only one of two states — on or off; One bit can thus

define only two possible conditions. This seems extremely

limited until you consider that two bits can define four different

conditions (two to the second power), three bits can define eight

different combinations (two to the third power), and four bits can

describe 16 different combinations.

Four bits seen as a unit are called a nybble. If you want to

change the color of the screen border or background on the 64,

you can choose from among 16 different colors. The POKE com-

171

7 Memory

mand in BASIC allows you to alter a nybble in location 53281 for

screen and a nybble in location 53280 for background. Altering

these two nybbles provides the necessary color combinations for

all 16 colors.

If you utilize eight bits as a unit — called a byte — you can de

scribe a total of 256 unique numbers. The byte is the most useful

unit within the Commodore 64. Each letter, number, or graphics

symbol has its own pattern of eight bits. This pattern provides the

unit for most functions which occur within the 64. For instance,

the keyboard initiates the pattern 00000001 when you press the

letter A. This pattern of bits travels through the computer and is

stored in a byte of screen memory. This byte is then decoded into

the familiar symbol A which appears on the screen.

A single byte can hold any number from zero to 255. A

unique character can be made with each of these values; thus it is

possible to represent a value within a byte by using a single char

acter. This ability will come in handy as we try to decipher the

contents of memory in our memory view program.

Pages and Kilobytes
The next structural level within memory consists of collections of

bytes. One such level is the page, consisting of 256 bytes. There are

256 pages of memory within the Commodore 64 (256*256 =65536

bytes). Four pages (256*4 =1024) make up one K or kilobyte. The

word kilobyte refers to 1024 rather than 1000 bytes since 1024 is two

to the tenth power. A 64K computer has 64*1024 bytes or 65536

bytes.

Kinds of Memory
Memory may have many different functions. From a practical

point of view, these functions can be separated into three differ

ent categories: memory available for user program space, mem

ory used exclusively by the operating system (unavailable to the

user), and memory which provides a connection between the

computer's operating system and the user or his or her programs.

The 64 has the unique ability to "shift" function of its memory

space from one of these functions to the other. (See Jim

Butterfield's "Commodore 64 Architecture/' the next article in

this book.) This chapter will be concerned with the memory func

tions of the computer in its normal configuration.

172

Memory 7

A Picture in Memory

Before embarking on our tour of the Commodore 64's memory,

type in, SjWE, and RUN the program at the end of this section.

The screen should be blank except for the words "LOADING

MAZE/' While the maze is loading, get a pencil or pen and pre

pare to take a few notes. In about one minute you will see a screen

full of what may appear to be random characters.

These characters represent bytes in memory. In the upper-left

corner of the screen is the decimal number of the first location

shown; this number should be flashing. For example, if the flash

ing number is 100, then the first character shown is the character

equivalent to what is stored in byte 100. Notice that the first few

characters in the upper-left corner share the same space with the

decimal number.

If you press the Fl or F3 keys, you can scroll backward and

forward through memory. Use the screen display codes on pages

132-34 in your user's manual to decipher the numbers which rep

resent the characters on the screen.

The Journey

Our journey begins at page zero. Move the display up or down

until the number at the upper-left corner of the screen is at or near

zero. Page zero takes up about one-fourth of the screen. Locations

161 and 162 are the most active locations visible in this area. These

locations provide the internal clock for the system. Location 162

cycles through 256 times for each time that 161 changes.

Just below locations 161 and 162 on the screen are the loca

tions which hold the value for the last key pressed: locations 197

and 203. These locations will change if you press a key. Press a

few keys and watch the values change. The characters produced

do not match the characters on the keys, but they do produce

unique values for each key pressed.

Location 198 contains the number of keystrokes in the key

board buffer. If you press many keys at one time, then this num

ber increments to hold the keystroke values until they can be pro

cessed. Then, as the keystrokes are processed, the buffer grad

ually empties, and the value in location 198 returns to zero.

Page zero contains many locations specifically used by the

operating system. Caution should be the rule when changing

locations in this area.

173

Memory

The Stack
As you move forward within memory, the next activity that you

see occurs in an area known as the stack. This area holds impor

tant information for both BASIC and machine language pro

grams. The BASIC command GOSUB sends a program to the line

indicated. The stack is where the computer stores the necessary

information it needs to RETURN to the proper part in the pro

gram. Since this program contains subroutines which are repeat

edly executing, the contents of the stack also display a pattern of

repeated values.

Continue forward until the screen contains no activity. When

the value in the upper-left corner is around 820, you are looking at

the cassette buffer. The cassette buffer provides a good place for

machine language programs. Since it is unused by the operating

system except for tape input and output, values can be safely

stored in and retrieved from this section of memory. If you scroll

past the cassette buffer, you will find screen memory. Screen

memory provides an interesting phenomenon: like a mirror,

screen memory is now looking at itself. This phenomenon pro

duces a delayed reaction time while the program copies the new

contents of screen memory to itself.

Past screen memory, the contents of the BASIC program are

visible. If you look closely in this area, you can see bits and pieces

of the BASIC program. The BASIC commands are unrecognizable

in their normal formbut are "tokenized" into unique numbers.

At the end of our relatively small BASIC program, a pattern of

characters continues until it ceases around 32768. Here, I have

placed a simple interface between the user and memory. Hit the

CLR key. The screen should freeze for a few moments. Continue

forward in memory until you find a clear screen. Now type a few

words and watch them appear on the screen. If you wish to de

lete, merely use the delete key. The cursor control keys work, but

no visible cursor can be found. This display of typed characters

demonstrates how memory is used to store data. Word processors

utilize memory in just this fashion.

The Journey continues
Continue forward in memory until the pattern of memory

changes to random characters. This is the end of free memory for

user BASIC programs. The next area in memory contains the

BASIC ROM. This area begins at 40960 and contains the machine

language program which runs the BASIC language. If you hit

174

Memory

SHIFT and the COMMODORE key simultaneously to put the

machine into lowercase mode, then you may even see some of the

error messages that BASIC utilizes.

Continue even further to around 49152, and you will see the

maze that was generated while you were waiting for the program

to begin. Use the lower two function keys to center the maze and

then scroll through it. After 49152 ($C000) there are four kilobytes

of user area available to the programmer. The first part of this area

is where the machine language for this program resides. The rest

of it is used for the maze. Since the 64 contains large quantities of

RAM available for programs or other data, you can place any sort

of design or playfield into memory and scroll through it. Think of

the fantastic adventure games you could create.

Nearing the Bid of the Journey
Continue past 50000 and we enter the area of input/output de

vices. First, the 6566 chip with its periodic raster scans which con

stantly change. Further within the code, the next obvious area of

change is the color RAM. The first nybble of each byte in this area

contains the color for the screen, while the other nybble contains

random values. This produces an almost hypnotic effect on the

screen as the values change continuously. (Due to a change in

operating systems, some 64s may not contain random values in

the upper nybble of color memory.) The last area of memory is

the Kernal ROM (57344-). Change to lowercase and you can see

the Commodore logo which is on the screen upon power-up. I/O

(Input/Output) messages are also found in this area.

If you continue further than 65536, then your trip begins

again back at zero page.

We have made the journey through over 65,000 bytes of mem

ory and have seen how the operating system interacts with the

user and how the user can use the memory as a palette for his or

her own designs. I hope our trip has provided you with new

ideas for better use of the vast quantities of memory on the Com

modore 64.

A Look at Memory

1 POKE53281,1:00803190:00803300

2 X=0:POKE191,0:POKE55,0:POKE56,128:R=33

024

3 IFPEEK(191)=255ORPEEK(191)=0THENPOKE19
1,PEEK(191)

175

7 Memory

5 GOSUB1000

10 A=PEEK(197):IFA=4THENX=X+40:1FX+40 > 2 5

5THENX=X+40-256:Fl=l:GOTO20

11 A=PEEK(197):IFA=3THENX=X+1:IFX+1>255T
HENX=X+l-256:Fl=l:GOTO20

12 A=PEEK(197) : IFA=6THENX=X-1: IFX+K0THE

NX=X+l+256:Fl=l:GOTO20

13 A=PEEK(197):IFA=5THENX=X-40:IFX-40<0T

HENX=2 56+X-40:Bl=l:GOTO25

20 IFPEEK(191)<>255THENIFA=4ANDF1=1THENZ
=1:POKE191,PEEK(191)+Z:Fl=0:GOTO28

21 IFPEEK(191)=255THENIFA=4ANDF1=1THENZ=
1:POKE191,PEEK(191)-256+Z:F1=0:GOTO28

22 IFPEEK(191)=0THENIFA=5ANDB1=1THENZ=-1
:POKE191fPEEK(191)+256+Z:Bl=0:GOTO28

25 IFPEEK(191)<>0THENIFA=5ANDB1=1THENZ=-

1:POKE191,PEEK(191)+Z:B1=0

28 IFPEEK(191)=255ANDPEEK(2)=255THENPOKE
191,0:POKE2,0

35 IFX>255THENX=255

36 IFX<0THENX=0

39 POKE2/X:SYS49152

40 PRINT"{HOME}";PEEK(191)*256+PEEK(2);:

GOTO3

190 FORR=49152TO49152+65:READJ:POKER,J:N

EXT:RETURN

200 DATA 165, 2, 133, 251, 165, 191, 133

, 252, 169, 0, 133

210 DATA 253, 169, 4, 133, 254, 162, 4,

177, 251, 145

220 DATA 253, 200, 208, 249, 230, 252, 2

30, 254, 202, 208

230 DATA 242, 169, 0, 133, 251, 169, 216

, 133, 252, 162

240 DATA 4, 169, 0, 145, 251, 200, 208,

251, 230, 252

250 DATA 202, 208, 246, 96, 0, 255, 255,

0, 0, 255

260 DATA 255, 40, 10, 255, 255

300 DIMA(3)
310 A(0)=2:A(1)=-80:A(2)=-2:A(3)=80

320 WL=160:HL=32:SC=49658:A=SC+81

330 PRINT" {CLRHBLK}LOADING MAZE (C. BON

D)"

340 FORZ=SCTOSC+40:POKEZ,160:NEXT

350 FORM=SCTOSC+3072:POKEM,160:NEXT

360 FORM=SCTOSC+3072STEP40:POKEM,32:NEXT

370 FORM=SC+39TOSC+3072STEP40:POKEM,32:N

EXT

176

Memory

410 POKEA,4

420 J=INT(RND(1)*4):X=J

430 B=A+A(J) : IFPEEK(B)=WLTHENPOKEB,J:POK

EA+A(J)/2,HL:A=B:GOTO420
440 J=(J+1)*-(J<3):IFJ<>XTHEN430

450 J=PEEK(A):POKEA,HL:IFJ<4THENA=A-A(J)

:GOTO420

500 J=2

510 RETURN

1000 REM

1010 GETD$:IFD$=MIITHEN1040

1011 IFD$=CHR$(20)THENPOKER,32:POKER+1,3

2:R=R-1:GOTO1040

1012 IF D$=CHR$(157)THEN:R=R-1:GOTO1040

1013 JF D$=CHR$(29)THENR=R+1:GOTO1040

1014 IF D$=CHR$(145)THENR=R-41:GOTO1040

1015 IF D$=CHR$(17)THENR=R+39:GOTO1040

1016 IF D$=CHR$(133)ORD$=CHR$(134)THEN10

40

1017 IF D$="{CLR}IITHENFORT=RTOR+1024:POK

ETr32:NEXT:GOTO1040

1020 E=ASC(D$):IFE>64THENE=E-64

1030 R=R+1:IFR<40959ANDR>32768THENPOKER#

E

1040 RETURN

177

Memory

Commodore 64
Architecture
JimButterfield

77ns article allows you a peek inside the structure of the Commodore 64

and demonstrates some of its extraordinaryfeatures.

Let's build a Commodore 64 — at least in principle. Well put the

memory elements together and see how they all fit.

RAM —64K
We start with a full 64K of RAM. That's the maximum amount of

memory that the 6510 microprocessor chip can address.

If we stopped at this point, we'd have problems. First of all,

the screen is fed from memory, but it would contain nonsense.

We'll need to put in two extra things: a video chip, and a character

generator for the video chip to use. Then again, we have no pro

grams of any sort, and no way to get them into RAM.

Building It Out
Here's what we will do: we'll add the extra features we need by

piling them on top of RAM. That way, RAM will be "hidden" — if

we look at that part of memory, we will see the new elements. But

we'll include a set of switches which will allow us to "flip away"

the overlaying material and expose the RAM beneath any time we

choose. More about these later.

Keep in mind: the RAM is still there, but it's hidden behind

the new chips.

input/Output
Well take the block of memory at hexadecimal D000 to DFFF and

reserve it for our interface chips. These include two CIAs for

timing and input/output, a SID chip for sound, and a video chip

to deliver a screen to the television set.

About the 6566 video chip: its "registers" are located at hex

D000 to D02E; these locations control how the chip works. But

when the video chip needs information to put on the screen, it

178

Memory

gets it directly from RAM memory. For example, the usual place

for the screen characters is hex 0400 to 07E7. There's a distinction

here: we control or check the chip by using its register addresses,

but the chip gets display information from almost anywhere it

likes.

The video chip needs to look at RAM to get characters for the

screen. It also needs to look somewhere else to get a "picture" of

each character; this allows it to light up the individual dots, or

"pixels," that make up a character. There needs to be a table which

gives details of each character: what it looks like, and how to draw

it. This table is called the Character Base Table; hardware types

may just call it the character generator.

We could put this Character Base Table in RAM and point the

video chip to it. In fact, we are likely to do this if we want to define

our own graphics. But on a standard 64, we'd just as soon have

these characters built-in, in other words, well put the Character

Base Table into ROM memory.

Now comes the tricky bit. We will put our ROM character

base (it's 4K long when we allow for both graphics and text) into

locations hex D000 to DFFF. Wait a minute! We just put our inter

face chips there!

No problem. We just pile the memory elements higher. The

ROM character base sits above the RAM, and then we put the I/O

on top. Any time we PEEK these locations, well see the I/O. The

video chip, by the way, has a special circuit allowing it to go direct

ly to the ROM character base, so there's no confusion there.

If you wanted to look at the character ROM, you'd have to flip

it to the top somehow. It turns out you are allowed to do this:

clearing bit two of address one will do the trick. But be sure you

disable the interrupt first, or you're in serious trouble. After all,

the interrupt routines expect the I/O to be in place. Bit 2 of

address 0 is called the CHAREN control line.

Let's look at a small part of the character base — in BASIC! Be

sure to do this on a single line, or as part of a program. First, to

turn the interrupt off and back on again:

POKE 56333,127:... ...:POKE 56333,129

Now, while the interrupt is disabled, flip in the character

base:

POKE 56333 ,127:POKE 1, 51: . . '.POKE 1,55:POK

E 56333,129

179

Memory

Finally, let's PEEK at part of a character:

POKE 56333,127:POKE1,51:X=PEEK(53248):POK

E 1,55:POKE 56333,129:PRINT X

You should see a value of 60; this is the top of the @ character.

To see its pixels, we would write it in binary as 00111100 and to see

the next line of pixels we would repeat the above code with

X=PEEK(53249).

Remember that this is ROM; we can PEEK but can't POKE. If

we wanted a new character set, we would point the video chip to

some new location.

KernalROM

To allow the computer to work at all, we must have an operating

system in place. The 64's system is called the Kernal: it's in ROM,

and placed above RAM at addresses $E000 to $FFFF.

We can flip the Kernal away and expose the RAM beneath by

clearing bit one of address one. Be very careful! The computer

can't exist for long without an operating system. Either put one

into the RAM or be prepared for a crash.

Even if you flip out the Kernal for a moment, you must be

sure to disable the interrupt. The interrupt vectors themselves are

in the Kernal; if the interrupt strikes while the Kernal is flipped

away, well have utter confusion.

Flipping out the Kernal automatically flips out BASIC as well.

So bit one erf address one, called the HIRAM control bit, switches

out both ROMs. We can switch BASIC alone, however, by using

bit zero — the LORAM control bit.

BASIC ROM
To run BASIC, we have anotherROM which is placed above RAM

at addresses $A000 to $BFFR We may flip it out by clearing bit zero

(mask one) of address one.

This is a very useful thing to do. When a word processor,

spreadsheet calculator, or other program is in the computer, we

may not need BASIC at all. Flip it away, and we have extra mem

ory for our program.

do Your Own basic
We can do even more. If we copy BASIC — carefully! — from its

ROM into theRAMbehind it, we can get BASIC-in-RAM— a

BASIC we can change to meet ourown needs.

180

Memory

Let's do this, just to show how. Type the following program

into your Commodore 64:

100 FOR J=40960 TO 49151

110 POKE J, PEEK(J)

120 NEXT J

Run the program. It will take a minute or so. While it's run

ning, let's talk about that curious line 110. What's the point in

POKEing a value into memory identical to what's already there?

Here's the secret: when we PEEK, we see the BASIC ROM; but

when we POKE, we store information into the RAM beneath.

The program should say READY; now we have made a copy

of BASIC in the corresponding RAM. Flip the ROM away with

POKE 1,54. If the cursor is still flashing, we're there. BASIC is

now in RAM. How can we prove this?

Let's try to fix one of my pet peeves (PET peeves?). Whenever

I try to take the ASC value of a null string, BASIC refuses. Try it:

PRINTASC(" ")

.. will yield an 7ILLEGAL QUANTITY ERROR.

Now, it's my fixation that you should be able to take the ASCII

value of a null string, and have BASIC give you a value of zero.

(Don't ask why; that would take a couple more pages.) By peering

inside BASIC, I have established that the situation can be

changed by modifying the contents of address 46991. There is

usually a value of eight there. Normally, we couldn't change it: it's

in ROM. But now BASIC is in RAM, and we'll change the ASC

function slightly by:

POKE 46991,5

Now try PRINT ASC(" "); it will print a value of zero. In every

other way, BASIC is exactly the same.

Just for fun: you can change some of BASIC'S keywords or

error messages to create your own style of machine. For example,

POKE 41122,69 changes the FOR keyword; you must type the

new keyword to get the FOR action. Say LIST and see how line

100 has changed. Alternatively, POKE 41230,85; now you must

say LUST instead of LIST.

You may go back to ROMBASIC at any time with a POKE

1,55.

181

Memory

Combination Switch
When we use the HIRAM control to flip out the Kernal, BASIC

ROM is also removed. Is there any point in flipping both HIRAM

and LORAM? If you do, the I/O and Character Generator also dis

appear, giving you a solid 64K of RAM. You can't talk to anybody,

since you have no I/O, but you can do it.

We have named three control lines: CHAREN, which flips

I/O with the Character Base; HIRAM, which flips out Kernal and

BASIC ROMs; and LORAM, which controls BASIC. In my

memory maps I've called them D-ROM switch, EF-RAM switch,

and AB-RAM switch in an attempt to make them more

descriptive.

But there are two other control lines, and your program can

not get to them. They are called EXROM and GAME and may be

changed only by plugging a cartridge into the expansion slot.

When these lines are switched by appropriate wiring inside the

cartridge, the memory map changes once again.

But that's another story.

For the first time, the machine's architecture is at your

disposal. If you don't like BASIC, throw it out and replace it with

your own. The same is true of the Kernal operating system; it's ac

cessible or replaceable.

New horizons are opening. Well need to do a lot of traveling

to reach them.

Commodore 64 Memory

Addresses shown in hexadecimal.

FFFF

0000

182

Memory

Commodore 64
Memory Map
Compiled by Jim Butterfield

Hex Decimal

0000

0001

0003-0004

0005-0006

0007

0008

0009

000A

000B

oooc

000D

000E

000F

0010

0011

0012

0013

0014-0015

0016

0017-0018

0019-0021

0022-0025

0026-002A

002B-002C

002D-002E

002F-0030

0031-0032

0033-0034

0035-0036

0037-0038

0039-003A

003B-003C

003D-003E

003F-0040

0

1

3-4

5-6

7

8

9

10

11

12

13

14

15

16

17

18

19

20-21

22

23-24

25-33

34-37

38-42

43-44

45-46

47-48

49-50

51-52

53-54

55-56

57-58

59-60

61-62

63-64

Description

Chip data direction register

Chip I/O; memory and tape control

Float-Fixed vector

Fixed-Float vector

Search character

Scan-quotes flag

TAB column save

0=LOAD,1=VERIFY

Input buffer pointer/ #subscript

Default DIM flag

Type: FF =string, 00 =numeric

Type: 80 =integer, 00 =floating point

DATA scan/LIST quote/memory flag

Subscript/FNxflag

0 =INPUT; $40 =GET; $98 =READ

ATN sign/Comparison eval flag

Current I/O prompt flag

Integer value

Pointer: temporary string stack

Last temporary string vector

Stack for temporary strings

Utility pointer area

Product area for multiplication

Pointer: Start-of-BASIC

Pointer: Start-of-Variables

Pointer: Start-of-Arrays

Pointer: End-of-Arrays

Pointer: String-storage (moving down)

Utility string pointer

Pointer: Limit-of-memory

Current BASIC line number

Previous BASIC line number

Pointer: BASIC statement for CONT

Current DATA line number

183

7Memory

0041-0042

0043-0044

0045-0046

0047-0048

0049-004A

004B-004C

004D

004E-0053

0054-0056

0057-0060

0061

0062-0065

0066

0067

0068

0069-006E

006F

0070

0071-0072

0073-008A

007A-007B

008B-008F

0090

0091

0092

0093

0094

0095

0096

0097

0098

0099

009A

009B

009C

009D

009E

009F

00A0-00A2

00A3

00A4

00A5

00A6

00A7

00A8

00A9

65-66

67-68

69-70

71-72

73-74

75-76

77

78-83

84-86

87-96

97

98-101

102

103

104

105-110

111

112

113-114

115-138

122-123

139-143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160-162

163

164

165

166

167

168

169

Current DATA address

INPUT vector

Current variable name

Current variable address

Variable pointer for FOR/NEXT

Y-save; op-save; BASIC pointer save

Comparison symbol accumulator

Miscellaneous work area, pointers, etc.

Jump vector for functions

Miscellaneous numeric work area

Accum#l: Exponent

Accum#l: Mantissa

Accum#l: Sign

Series evaluation constant pointer

Accum#l hi-order (overflow)

Accum #2: Exponent, Mantissa, sign

Sign comparison, Acc#l vs #2

Accum#1 lo-order (rounding)

Cassette buffer length/Series pointer

CHRGET subroutine; get BASIC character

BASIC pointer (within subroutine)

RND seed value

Status word ST

Keyswitch PIA: STOP and RVS flags

Timing constant for tape

LOAD =0, VERIFY =1

Serial output: deferred character flag

Serial deferred character

Tape EOT received

Register save

Number of open files

Input device, normally 0

Output CMD device, normally 3

Tape character parity

Byte-received flag

Run = 0, Direct mode = $80

Tape Pass 1 error log/character buffer

Tape Pass 2 error log corrected

Jiffy clock HML

Serial bit count/EOI flag

Cycle count

Countdown, tape write/bit count

Tape buffer pointer

Tp Wrt ldr count/Rd pass/inbit

Tp Wrt new byte/Rd error/inbit count

Wrt start bit/Rd bit err/stbit

184

Memory 7

OOAA

OOAB

00AC-00AD

OOAE-OOAF

OOBO-OOB1

00B2-00B3

00B4

00B5

00B6

00B7

00B8

00B9

OOBA

OOBB-OOBC

OOBD

OOBE

OOBF

OOCO

00C1-00C2

00C3-00C4

00C5

00C6

00C7

00C8

00C9-00CA

OOCB

OOCC

OOCD

OOCE

OOCF

OODO

00D1-00D2

00D3

00D4

00D5

00D6

00D7

00D8

00D9-00F2

00F3-00F4

00F5-00F6

00F7-00F8

00F9-00FA

O1OO-O1OA

0100-013E

O1OO-O1FF

170

171

172-173

174-175

176-177

178-179

180

181

182

183

184

185

186

187-188

189

190

191

192

193-194

195-196

197

198

199

200

201-202

203

204

205

206

207

208

209-210

211

212

213

214

215

216

217-242

243-244

245-246

247-248

249-250

256-266

256-318

256-511

Tp Scan; Count; Ld; End/byte assembly

Wr lead length/Rd checksum/parity

Pointer: tape buffer, scrolling

Tape end address/End of program

Tape timing constants

Pointer: start of tape buffer

1 =Tape timer enabled; bit count

Tape EOT/RS-232 next bit to send

Read character error/outbyte buffer

Number of characters in filename

Current logical file

Current secondary address

Current device

Pointer to filename

Wr shift word/Rd input character

blocks remaining to Wr/Rd

Serial word buffer

Tape motor interlock

I/O start address

Kernal setup pointer

Last key pressed

Number of characters in keyboard buffer

Screen reverse flag

Pointer: end of line for INPUT

Input cursor log (row, column)

Which key: 64 if no key

0 =flash cursor

Cursor timing countdown

Character under cursor

Cursor in blink phase

Input from screen/from keyboard

Pointer to screen line

Position of cursor on above line

Quote mode flag, 0 = off

Current screen line length

Row where cursor lives

Last inkey/checksum/buffer

Number of INSERTS outstanding

Screen line link table

Screen color pointer

Keyboard pointer

Pointer: RS-232 input buffer

Pointer: RS-232 output buffer

Floating point to ASCII work area

Tape error log

Processor stack area

185

Memory

0200-0258

0259-0262

0263-026C

026D-0276

0277-0280

0281-0282

0283-0284

0285

0286

0287

0288

0289

028A

028B

028C

028D

028E

028F-0290

0291

0292

0293

0294

0295-0296

0297

0298

0299-029A

029B

029C

029D

029E

029F-02A0

02A1

02A2

02A3

02A4

02A5

02C0-02FE

0300-0301

0302-0303

0304-0305

0306-0307

0308-0309

030A-030B

030C

030D

030E

512-600

601-610

611-620

621-630

631-640

641-642

643-644

645

646

647

648

649

650

651

652

653

654

655-656

657

658

659

660

661-662

663

664

665-666

667

668

669

670

671-672

673

674

675

676

677

704-766

768-769

770-771

772-773

774-775

776-777

778-779

780

781

782

BASIC input buffer

Logical file table

Device #table

Secondary address table

Keyboard buffer

Start of BASIC Memory

Top of BASIC Memory

Serial bus time-out flag

Current color code

Color under cursor

Screen memory page

Maximum size of keyboard buffer

Repeat all keys

Repeat speed counter

Repeat delay counter

Keyboard Shift/Control flag

Last shift pattern

Pointer: keyboard table setup

Keyboard shift mode

0 =scroll enable

RS-232 control register

RS-232 command register

Bit timing

RS-232 status register

Number of bits to send

RS-232 speed/code

RS-232 end of input buffer index

RS-232 start of input buffer

RS-232 start of output buffer

RS-232 end of output buffer index

IRQ save during tape I/O

CIA2 (NMI) Interrupt Control

CIAl Timer A control log

CIA1 Interrupt Log

CIA1 Timer A enabled flag

Screen row marker

(Sprite 11)

Error message link

BASIC warm start link

Crunch BASIC tokens link

Print tokens link

Start new BASIC code link

Get arithmetic element link

6510 accumulator store

6510 X-register store

6510 Y-register store

186

Memory7

030F

0310

0311-0312

0313

0314-0315

0316-0317

0318-0319

031A-031B

031C-031D

031E-031F

0320-0321

0322-0323

0324-0325

0326-0327

0328-0329

032A-032B

032C-032D

032E-032F

0330-0331

0332-0333

0334-033B

033C-03FB

0340-037E

0380-03BE

03C0-03FE

0400-07FF

0800-9FFF

8000-9FFF

A000-BFFF

AOOO-BFFF

COOO-CFFF

D000-D02E

D400-D41C

D800-DBFF

DC00-DC0F

783

784

785-786

787

788-789

790-791

792-793

794-795

796-797

798-799

800-801

802-803

804-805

806-807

808-809

810-811

812-813

814-815

816-817

818-819

820-827

828-1019

832-894

896-958

960-1022

1024-2047

2048-40959

32768-40959

40960-49151

49060-49151

49152-53247

53248-53294

54272-54300

55296-56319

56320-56335

DD00-DD0F 56576-56591

DOOO-DFFF 53248-57294

EOOO-FFFF

EOOO-FFFF

57344-65535

57344-65535

FF81-FFF5 65409-65525

FFC6 - Set Input channel

FFC9 -Set Output channel

FFCC - Restore default I/O channels

FFCF -INPUT

FFD2 -PRINT

FFE1 -Test Stop key

FFE4 -GET

6510 status register store

USR function jump instruction

USR function jump address
Unused

Hardware interrupt vector

Break interrupt vector

NMI interrupt vector

OPEN vector

CLOSE vector

Set-input vector

Set-output vector

Restore I/O vector

INPUT vector

Output vector

Test-STOP vector

GET vector

Abort I/O vector

Warm start vector

LOAD vector

SAVE vector

Unused

Cassette buffer

(Sprite 13)

(Sprite 14)

(Sprite 15)

Screen memory

BASIC RAMmemory

Alternate: ROM plug-in area

ROM: BASIC

Alternate: RAM

RAMmemory, including alternate

Video Chip (6566)

Sound Chip (6581 SID)

Color nybble memory

Interface chip 1, IRQ (6526 CIA)

Interface chip 2, NMI (6526 CIA)

Alternate: Character set

ROM: Operating System

Alternate: RAM

Jump Table, Including:

(4C)

(B248)

(EA31)

(FE66)

(FE47)

(F34A)

(F291)

(F20E)

(F250)

(F333)

(F157)

(F1CA)

(F6ED)

(F13E)

(F32F)

(FE66)

(F4A5)

(F5ED)

187

7 Memory

Figure 1.6510 Processor I/O Port

$0000

$0001

IN IN

I

Out IN Out Out Out Out

i I I L

Tape Tape Tape
Motor Sense Write

D-Rom EPRAM AB-RAM

Switch Switch Switch

DDR

PR

Figure 2.6566 SID Chip

VI

D400

D401

D402

D403

D404

D405

D406

V2 V3

D407 D40E

D408 D40F

D409 D410

D40A D411

D40B D412

D40C D413

D40D D414

0

NSE
. j

i

Frequency

Pulse Width

0 0 0 j

Voice Type

PUL SAW TRI
i i

Attack Time

2 ms -8 sec
i j_

Sustain Level

i i i

Decay Time

6 ms - 24 sec
i i t

Release Time

6 ms - 24 sec
i. i i

L

H

L

H

Key

Voices

(Write Only)

VI V2 V3

54272 54279 54286

54273 54280 54287

54274 5428154288

54275 54282 54289

54276 54283 54290

54277 54284 54291

54278 54285 54292

D415

D416

D417

D418

0

V3

Off,

0 0 0 0 j

Filter Frequency

Resonance-

1' - i

fassband

Hi Bd

-L J.

Filter Voices

I EXT V3 V2 VI

Master

LJ0 Volume

L

H

54293

54294

54295

54296

Filter & Volume

(Write Only)

188

Memory7

D419

D41A

D41B

D41C

Paddle X

Paddle Y

Noise 3 (Random) '' .'

Envelope 3

54297

54298

54299

54300

Sense
(Read Only)

Special voice features (TEST, RING MOD, SYNC) are omitted from the above diagram.

Figures. 6526 CIA1 Chip

$DC00 .

$DC01

$DC02

$DC03

$DC04

$DC05

$DC06

$DC07

$DC0D

$DC0E

$DC0F

Paddle SELJ
A B 1 F R

Joystick 2

L D

Keyboard Row Select (Inverted)

; Joystick!

Keyboard Column Read --.-J

1 1

$FF- All Output

$00-All Input

Timer A

Tinier B

Tape

Input
i

One

Shot
i i i

One

Shot

i II

Timer

B ,

Out . T™*

Mode,: out x

Out Time

Mode PB7
\Out;,

■ "- • • ' 1

- - -"{

: '"'

•" r'X''

Interrf

A

Timer

AStart

Timer

B Start

— Z^^ PRA 56320

J PRB 56321

DDRA 56322

DDRB 56323

TAL 56324

TAH 56325

TBL 56326

TBH 56327

ICR 56333

CRA 56334

CRB 56335

189

7Memory

Figure 4.6526 CIA2 Chip

$DD00

$DD01

$DD02

$DD03

$DD04

$DD05

$DD06

$DD07

$DD0D

$DD0E

$DD0F

Serial Clock Serial Clock ATN RS-232

In In

DSR CTS

In I In

Out . Out . Out . Out

DCD*

I In
RI*

In

DTR

Out

RTS*

Out

RS-232

In

Parallel User Port

IN IN Out Out Out

$3F

Out Out Out

$06 For RS-232

Timer A

Timer B

RS-232

In

Timer Timer

B. A
Timer

A Start

Timer

B Start

PRA 56576

PRB 56577

DDRA 56578

DDRB 56579

TAL 56580

TAH 56581

TBL 56582

TBH 56583

ICR 56589

CRA 56590

CRB 56591

*Connected but not used by system.

190

Memory

SOft-16
Douglas D. Nicoll

This program, "USR(PEEK)", demonstrates several interesting concepts

about managing the memory of the 64. BASIC programs can be run

essentially without BASIC, and you can switch between ROMand RAM

during a program RUN to access an additional 16K ofRAMfor data

storage. You II also see how to use the USR() statement.

An inexpensive 16K RAM expansion for the Commodore 64? Run

BASIC programs without BASIC or the Kernal? Well, almost. The

6510 microprocessor has the three ROMbanks (BASIC [AB]

$A000-$BFFF; characters [D] $D000-$DFFF; and Kernal [EF]

$E000-$F000) with blocks of RAM. It switches between ROM and

RAM with the control port located at $0001. Bit zero in $0001 con

trols AB, bit one controls EF, and bit two controls D. Setting the bit

to one switches in ROM (the normal state), and zero switches in

RAM memory.

In normal BASIC operation, it is possible to POKE values to

the RAM at the AB and EF locations, but PEEKing these locations

will show only the ROM data. POKEs and PEEKs to the RAM at D

work fine, but you can't PEEK the character ROM without setting

a number of switches so the system won't crash. Thus, without

the ability to PEEK the hidden RAM memory, AB and EF loca

tions are effectively eliminated from use in BASIC programs.

"USR(PEEK)" is a valuable machine language utility program

that opens up the hidden RAM for use in BASIC programs, giv

ing the user 16K of additional memory for data storage. The pro

gram is loaded into $C001-$C0E4 and uses $C000 as a temporary

storage cell. The vector for the USR() function is set (POKE

785,1:POKE 786,192). BASIC programs are loaded normally, and

any RAM location can be PEEKed by using X =USR(N), where X

is any variable and N is any number from 1 to 65535. Any number

less than 0.5 will set X to -1,0.5 to 1.9 evaluate as 1, and all other

decimal numbers are truncated to the integer. If a negative num

ber is given for N, the value returned is for ABS(N). If a number is

greater than 65535, then X is -1. If N is between 53248 and 57343, X

is the value of data stored in character ROM (D).

191

7 Memory

Automatic Switching
How does USR(PEEK) work? The statement X =USR(N) in a

BASIC program loads N into the floating point accumulator and

sends the computer to the machine language program pointed to

by the USR vector. The machine language program evaluates the

number in the FP accumulator, switches out BASIC and Kernal

ROM, loads the desired RAM data into the FP accumulator,

switches BASIC and Kernal ROMback in, and finally sets up the

FP accumulator so that X contains the values on return to the

BASIC program. When character ROM is desired, it is switched in

for the manipulation.

The techniques used to dynamically switch between RAM

and ROM have many other uses for programmers who use both

BASIC and machine language. For example, machine language

programs can be LOADed under BASIC or Kernal ROM and run

with BASIC programs — this leaves more space for BASIC pro

grams and variable storage. It is possible to envision LOADing a

BASIC program editor under BASIC ROM and calling it for re

numbering, searching, etc.

Type in the program and, after saving a copy, RUN it to see a

demonstration of how easy it is to use. Then eliminate lines 10-540

and SAS/E it with the name USR(PEEK). To use with your pro

grams, LOAD and RUN USR(PEEK) and then LOAD and RUN

your own BASIC programs that can be constructed to utilize the

additional 16K ofRAM data storage.

USR (PEEK)

1 GOSUB1000-.REM SET UP USR(PEEK)

5 REM**{9 SPACES}USR(PEEK){12 SPACES}**

10 PRINT"{CLR}USR(PEEK) AT CHARACTER ROM
ii

20 V$="{HOME}{24 DOWN}"

30 H$=""+"{39 RIGHT}"

40 UC=53248:LC=55296:GC=53760

50 H=0:V=10:L=83*8+UC:GOSUB500

60 H=8:V=10:L=3*8+UC:GOSUB500

70 H=14:V=5:L=85*8+UC:GOSUB500:H=14:V=14

:L=74*8+UC:GOSUB500

80 H=22:V=10:L=54*8+UC:GOSUB500

90 H=30:V=10:L=52*8+UC:GOSUB500

100 PRINTLEFT$(V$,5);LEFT$(H$,18);"SC

{UP}U{2 DOWN}{LEFT}J{UP}64";LEFT$(V$

,22)~
110 PRINT"PRESS ANY KEY TO CONTINUE";

192

Memory7

120 GETA$:IFA$=""THEN120

130 PRINT"{CLR}USR(PEEK) INTO BASIC HIDD
EN RAM"

140 PRINTLEFT$(V$/5);"INPUT 10 NUMERS(0-

255) TO STORE IN $A000TO $A00A :"

150 FORI=1TO10

160 PRINT"NUMBER ";I;": ";:INPUT"";X

170 IFINT(X)<>XORX<0ORX>255THENPRINT"INV
ALID ENTRY...":GOTO160

180 POKE40959+I,X:NEXT

190 PRINT"{CLR}USR(PEEK) INTO HIDDEN BAS

IC RAM"

200 PRINT:PRINT:PRINT"LOCATION{3 SPACES}
PEEK{3 SPACES}USR(PEEK)"

205 PRINT" "

210 FORI=1TO10:PRINTI+40959,PEEK(1+40959

),USR(1+40959):NEXT

220 PRINTLEFT$(V$,22);"PRESS ANY KEY TO

CONTINUE ";

230 GETA$:IFA$=""THEN230

240 PRINT"{CLR}USR(PEEK) INTO KERNAL HID

DEN RAM"

250 PRINTLEFT$(V$/5);"INPUT 10 NUMERS(0-

255) TO STORE IN $F000TO $F00A :"

260 FORI=1TO10

270 PRINT"NUMBER ";I;": ";:INPUT"";X

280 IFINT(X)<>XORX<0ORX>255THENPRINT"INV

ALID ENTRY*..":GOTO160

290 POKE61439+I,X:NEXT

300 PRINT"{CLR}USR(PEEK) INTO HIDDEN KER

NAL RAM"

310 PRINT:PRINT:PRINT"LOCATION{3 SPACES}

PEEK{3 SPACES}USR(PEEK)"

320 PRINT" "

330 FORI=1TO10:PRINTI+61439,PEEK(1+61439

),USR(1+61439):NEXT

340 END

500 FORJ=LTOL+7:X$="":X=USR(J)

510 FORI=7TO0STEP-l:IFX=>2tlTHENX=X-2tl:
X$=X$+"{WHT}{RVS} {OFF}":GOTO530

520 X$=X$+"{RIGHT}"
530 NEXTI:IFJ=LTHENPRINTLEFT$(V$,V);

540 PRINTLEFT$(H$,H);X$:NEXT:RETURN

1000 POKE785,1:POKE786,192:REM USR VECTO

R

1010 FORI=49153TO49380:READX:POKEI,X:NEX

T

1015 RETURN

193

7 Memory

1020 DATA173,97,0,201,144,208,3,76,188,1

92,56,201,128,176,3,76,163,192,201,

145

1030 DATA144,3,76,163,192,73,128,141,97,

0,56,169,16,237,97,0,240,13,170,24

1040 DATA78,98,0,110,99,0,202,224,0,208,

244,173,98,0,141,78,192,17?,99,0

1050 DATA141,77,192,173,l,0,14l",0,192,12
0,73,7,141,1,0,173,255,255,141,98,0

1060 DATA173,0,192,141,1,0,88,173,98,0,2

01,0,208,3,76,140,192,162,8,173,98,

0

1070 DATA24,42,176,5,202,224,0,208,247,1

06,141,98,0,73,128,141,102,0,138

1080 DATA9,128,141,97,0,169,0,141,99,0,1

41,100,0,141,101,0,96,169,0,141,97,

0

1090 DATA141,99,0,141,100,0,141,101,0,14

1,102,0,169,128,141,98,0,96,169,129

1100 DATA141,97,0,169,128,141,98,0,141,1

02,0,169,0,141,99,0,141,100,0,141,1

01,0

1110 DATA96,56,173,98,0,201,224,144,3,76

,223,192,201,208,176,3,76,223,192,1

69,4

1120 DATA141,72,192,173,97,0,32,26,192,1

69,7,141,72,192,96,173,97,0,76,11,1

92

194

Chapter 8

Advanced
Memory

Advanced

Memory8

Assembler
BASIC
Ronald Thibault

Here is a symbolic Assembler in BASIC for the Commodore 64.

The original version of this was written by Eric Brandon for the

PET. I modified this Assembler because there were none available

for the 64 and no symbolic assemblers that use only a cassette (I

have no disk). [Disk users need only make the changes shown in

lines 12025 and 13025 — Editor.] In addition, being cheap, this

Assembler is good for those who are just starting out in machine

language programming.

A symbolic assembler is one that allows the use of variable

names in the label and operand fields. This Assembler could also

be used on many other machines using the 6502 with slight modi

fications, most notably the LOAD and SiWE commands.

Since the Assembler is in BASIC, it does have a couple of dis

advantages. The first is that it is slow. The other is that, because it

resides in memory and needs the BASIC Interpreter, the amount

of memory available for machine language programs is reduced.

The major additions to the Assembler from the original are:

1. Bounds checking on the commands that affect the line

numbers.

2. The LOAD and SAVE commands modified for cassette.

3. Compact Command eliminates blank lines between code.

4.40-column screen printout.

5. Instructions internal to the program.

The Assembly Listing
The assembled listing is broken into two segments: the first seg

ment is the memory locations of the variables and labels; the sec

ond is the actual code. The format is as follows:

Column

0-5

6-10

11-13

Value

Line#

Start of Instruction Address

Opcode Value

197

8Advanced

Memory

14-16 & 17-19 Other Bytes of Instruction

20-26 Label Field

27-30 Opcode Field

31-40 Operand Field

A note about this program specifically and all Commodore 64

programs in general. This listing (except where all code would not

fit on the line) has spaces between code elements to make it more

readable. Now that we have more memory available there is no

longer a need to compact the code just to fit it in memory. The

spaces and REM statements (remember them?) can be taken out

later for speed. It is much easier to type in and correct/modify

readable code instead of 80-character strings. So start putting in

spaces and REM statements.

Also, you will notice that in the instructions portion of the

program there is code that stops the printing of the instructions

after the screen is full, until any key is hit. This is of great help to

those of us without printers who cannot read 800 characters per

minute.

Typing in the Assembler in BASIC
I have left spaces between the code elements to make the code

more readable. I have omitted the spaces when the line would not

fit otherwise. If you wish to save typing and memory space, the

spaces and REM statements can be removed. The instructions

come at the end of the listing. With the proper adjustments to the

code, the instructions can also be removed.

Well, there it is. You are now ready to begin writing your

machine language routines using this BASIC Assembler.

BASIC Assembler/Editor

1 REM ASSEMBLER/EDITOR 2.0 -MODIFIED FOR

{SPACE}C-64

2 MEM=50:M2=20

5 PRINT"{CLR}{WHT}":POKE 53281,0:POKE 532

80,11

6 PRINT"INTRUCTIONS ? (Y/N)m;

8 GET Z$:IF Z$="" OR (Z$<>"Y" AND Z$o"N11

) THEN 8

9 IF Z$="Y" THEN GOSUB 11000

10 PRINT"{CLR}"
11 DIM A$(MEM),S$(M2),V(M2)/LI(3)

15 H$="0123456789ABCDEF"

100 LN=1

110 PRINT LN;:TB=5:LT=6:GOSUB 4000:IF IN$

="EXIT" THEN 300

198

Advanced

Memory

120 IF IN$="FIXn THEN LN=LN-1:PRINT CHR$(

-13*(ASC(GT$)<>13));:GOTO 110

125 IF GT$=CHR$(13) THEN PRINT"{UP}";

126 IF LN>MEM THEN PRINT"{DOWN}{RIGHT}

{RVSjLINE LIMIT EXCEEDED":GOTO 300

130 A$(LN)=IN$+" ":TB=13:LT=3:GOSUB 4000:

A$(LN)=A$(LN)+IN$+" "

160 IF GT$=CHR$(13) THEN 200

170 TB=1S:LT=10:GOSUB 4000:A$(LN)=A$(LN)+

IN$

190 if gt$<>chr$(13) then print

200 ln=ln+1:goto 110

300 print"{down}{rvs}c{off}ompact {rvs}l

{offJnput {rvs}d{off}elete i{rvs}n

{OFFjSERT"

305 print"{rvs}l{off}1st {rvs}s{off}ave l

{rvs}o{off}ad {rvs}a{off}ssemble
{rvs}q{off}uit"

310 PRINT"COMMAND ?";

320 GET CM$:IF CM$="" THEN 320

325 PRINT CM$:IF CM$o"l" THEN 360

340 INPUT"LINE ";LN:IF LN>MEM THEN PRINT"

{RVSjLINE NUMBER TO LARGE":GOTO 300

345 IF LN<=0 THEN PRINT"{RVS}LINE NUMBER

{SPACE}TO SMALL":GOTO 300

350 GOTO 110

360 IF CM$="O" THEN 12000

370 IF CM$="S" THEN 13000

410 IF CM$<>"D" THEN 460

420 INPUT"{DOWN}LINES - FROM,TO ";FL,LL

421 IF FL>LL THEN PRINT"{RVS}INCORRECT LI

NE NUMBERS":GOTO 300

423 IF FL>MEM OR LL>MEM THEN PRINT"{RVS}L

INE NUMBER TO LARGE":GOTO 300

424 IF FL<=0 OR LL<=0 THEN PRINT"{RVS}LIN

E NUMBER TO SMALL":GOTO 300

425 IF FLOLL THEN 430

427 FOR T=FL TO MEM-1:A$(T)=A$(T+l):NEXT

{SPACE}T:GOTO 300

430 FOR T=LL TO MEM:A$(T-LL+FL)=A$(T):A$(

T)="":NEXT T:GOTO 300

460 IF CM$o"N" THEN 500

470 INPUT"FIRST LINE,NUMBER";FL,LL

474 IF FL>MEM THEN PRINT"{RVS}LINE NUMBER

TO LARGE":GOTO 300

475 IF FL<=0 OR LL<=0 THEN PRINT"{RVS}INC

ORRECT DATA":GOTO 300

476 MARK=0:FOR T=l TO MEM:IF LEN(A$(T))>2

THEN MARK= T

199

8Advanced

Memory

477 NEXT T

478 IF LL+MARK>MEM THEN PRINT"{RVS}NUMBER

OF INSERTIONS TO LARGE":GOTO 300

480 FOR T=MEM-LL TO FL STEP-1:A$(T+LL)=A$

(T):NEXT T

490 FOR T=FL TO FL+LL-1:A$(T)="":NEXT T:G

OTO 300

500 IF CM$o"L" THEN 580

510 INPUT"LINES FIRST,LAST";FL,LL

512 IF FL>LL THEN PRINT"{RVS}INCORRECT LI

NE NUMBERS"2GOTO 300

515 IF FL>MEM OR LL>MEM THEN PRINT"{RVS}L

INE NUMBER TO LARGE"2GOTO 300

517 IF FL<=0 OR LL<=0 TH?EN PRINT"{RVS}LIN

E NUMBER TO SMALL":GOTO 300

521 FOR T=FL TO LL:IF LEN(A$(T))=0 THEN P

RINT T:GOTO 565

525 LI(1)=0:LI(2)=0:LI(3)=0:LI=0:FOR Q=l

{SPACE}TO LEN(A$(T))

540 IF MID$(A$(T),Q,1)=" " THEN LI=LI+1:L

I(LI)=Q

545 NEXT Q:IF LI(3)=0 THEN LI(3)=Q-1

550 PRINT T TAB(5) LEFT?(A$(T),LI(1)) TAB

(13) MID$(A$(T),LI(1)+1,LI(2)-LI(1));

560 PRINT TAB(18) RIGHT?(A$(T),Ll(3)-LI(2

565 NEXT T:GOTO 300

580 IF CM$o"Q" THEN 600

590 PRINT"{DOWN}GET BACK IN WITH {RVSjGOT

O 300{OFF}":END

600 IF CM$o"A" THEN 1300

605 PRINT"{CLR}{RVS}S{OFF}CREEN OR {RVS}P

{OFFjRINTER ?";

610 GET DV$:IF DV$="" THEN 610

620 PRINT DV$:IF DV$="S" THEN DV=3:GOTO 6

50

640 DV=4

650 CLOSE 1:OPEN 1,DV:SB=1

660 FOR T=l TO MEM:GOSUB 10000:IF LB?=""

{SPACE}THEN 710

670 IF OC$<>"=" THEN 700

680 GOSUB 6000:IF LB?="*" THEN PC=NU:OG=N

U:GOTO 770

690 S?(SB)=LB?:V(SB)=NU:SB=SB+1

692 N=V(SB-1):GOSUB 9000

695 PRINT# 1,S?(SB-1)" = " LEFT?("

{8 SPACES}",8-LEN(S$(SB-1)))"$"R$:GOT

O 770

700 S?(SB)=LB?:V(SB)=PC:SB=SB+1

200

Advanced

Memory8

702 N=V(SB-1):GOSUB 9000

705 PRINT* 1/S$(SB-1)11 =" LEFT? ("

{8 SPACES}",8-LEN(S$(SB-1)))"$"R$

710 IF OC$=IIH THEN 770

715 IF OP$= IIM THEN PC=PC+1:GOTO 770

717 IF OP$="AM THEN PC=PC+1:GOTO 770

720 IF LEFT$(OC$/1)<>IIB" OR OC$= "BITU OR

{SPACE}OC$=nBRKn THEN 740

730 PC=PC+2:GOTO 770

740 IF LEFT$(OC$/1) = "J11 THEN PC=PC+3:GOTO

770

750 GOSUB 6000:IF NU<256 THEN PC=PC+2:GOT

O 770

760 PC=PC+3

770 NEXT T

790 PC=OG:ER=0

800 FOR T=l TO MEM:GOSUB 10000:IF OC$=""

{SPACE}THEN 1220

805 IF OC$="=" THEN O1$=OP$:MV$="

{2 SPACES}M:PC$="{4 SPACES}M:IL=0:GOT

O 1160

810 IF OP$=IIM THEN AM$= "G":IL=1:GOTO 1060

820 IF OP$="AM THEN AM$="H":IL=1:GOTO 106

0

825 X=0:Y=0:I=0:M=0:Z=0

830 FOR Q=l TO LEN(OP$):Q$=MID$(OP$,Q,1):

IF Q$=M)" THEN I=1:GOTO 865

840 IF Q$="#" THEN M=1:GOTO 865

865 NEXT Q

866 FOR Q=l TO LEN(OP$)-l:Q$=MID$(OP$,Q,2

)
867 IF Q$=",Y" THEN Y=1:GOTO 870

868 IF Q$=",X" THEN X=l

870 NEXT Q

875 O1$=OP$:GOSUB 6000

876 IF NU<256 THEN Z=l

880 IF LEFT$(OC$/1) = MB" AND OC$<>IIBRK" AN

D OC$<>IIBIT" THEN 1000

890 IF Z THEN 940

900 IF X THEN AM$=HK":GOTO 1030

910 IF Y THEN AM$=UL":GOTO 1030

920 IF I THEN AM$="M":GOTO 1030

930 AM$="N":GOTO 1030

940 IF M THEN AM$="I":GOTO 1030

950 IF I AND Y THEN AM$="O11 :GOTO 1030

960 IF I AND X THEN AM$="P":GOTO 1030

970 IF X THEN AM$="Q":GOTO 1030

980 IF Y THEN AM$=MR":GOTO 1030

990 AM$=IIS":GOTO 1030

201

Advanced

' Memory

1000 AM$=IIJ":IF NU>PC+1 THEN OS=NU-PC-2:I

F OS>127 THEN ER=1

1010 IF NUMBER<PC+1 THEN OS=254+NU-PC:IF

{SPACE}OS<128 THEN ER=1

1020 IF ER=1 THEN PRINT"{RVS}TOO LONG CON

DITIONAL BRANCH":GOTO 300

1025 FO=OS:IL=2:GOTO 1060

1030 IF Z=0 THEN 1050

1040 FO=NU:IL=2:GOTO 1060

1050 SO=INT(NU/256):FO=(NU/256-SO)*256:IL
=3

1060 RESTORE:FOR W9=l TO 56:READ I$:IF LE

FT$(I$,3)=OC$ THEN CD$=I$:W9=100

1070 NEXT W9:IF W9=57 THEN PRINT"{RVS}ILL

EGAL MNEMONIC":GOTO 300

1080 FOR W9=4 TO LEN(CD$) STEP 3:IF MID$(

CD$,W9,1)=AM$ THEN LW=W9:W9=100

1090 NEXT W9:IF W9<100 THEN PRINT"{RVS}IL

LEGAL ADDRESSING MODE":GOTO 300

1100 MV$=MID$(CD$,LW+1,2):N$=MV$:GOSUB 70

00

1110 POKE PC#V:IF IL=1 THEN 1140

1120 POKE PC+1,FO:IF IL=2 THEN 1140

1130 POKE PC+2,SO

1140 N=PC:GOSUB 9000:PC$=R$:PC=PC+IL

1150 N=FO:GOSUB 9000:FO$=R$:N=SO:GOSUB 90

00:SO$=R$

1160 IF IL<3 THEN SO$="{2 SPACES}"
1170 IF IL<2 THEN FO$="{2 SPACES}"

1175 IF AM$="H" THEN O1$="A"

1180 PRINT# 1,T LEFT$("{4 SPACES}",4-LEN(

STR$(T))) PC$ " ";

1190 PRINT* 1,MV$ " " RIGHT$(FO$,2) " " R

IGHT$(SO$,2) " ";

1200 PRINT# 1,LB$ LEFT$("{7 SPACES}",7-LE

N(LB$)) OC$ LEFT?("{4 SPACES}",4-LEN
(OC$));

1210 PRINT# 1/O1$:O1$=""

1220 NEXT T:CLOSE 1:GOTO 300

1300 IF CM$o"C" THEN 320

1310 FOR T=l TO MEM:IF LEN(A$(T))>2 THEN

{SPACE}1340
1320 FOR TT=MEM TO T+l STEP -1:IF LEN(A$(

TT))>2 THEN A$(T)=A$(TT):MARK=TT

1330 NEXT TT:A$(MARK)=""

1340 NEXT T

1350 GOTO 300

3999 END

4000 IN$="":NL=0:PRINT TAB(TB);

202

Advanced

Memory8

4020 PRINT"{RVS} {OFF}{LEFT}";
4030 GET GT$:IF GT$=IIM THEN 4030

4031 IF GT$>"Z" OR GT$<" " AND GT$<> CHR$

(13) AND GT$<>CHR$(20) THEN 4030

4035 NL=NL+1

4040 IF GT$=CHR$(20) OR GT$=CHR$(13) THEN

4100

4045 IF GT$=" " THEN PRINT" ";:RETURN

4050 PRINT GT$;:IN$=IN$+GT$

4060 IF NL=LT THEN 4100

4070 GOTO 4020

4100 IF GT$<>CHR$(20) THEN 4150

4105 IF LEN(IN$)<2 THEN 4120

4110 PRINT" {2 LEFT}";:NL=NL-2:IN$=LEFT$(

IN$,LEN(IN$)-1):GOTO 4020

4120 IF LEN(IN$)=0 THEN NL=NL-l:GOTO 4020

4130 PRINT" {2 LEFT}";:NL^NL-2:IN$="":GOT

O 4020

4150 IF GT$=CHR$(13) THEN PRINT" "

4160 RETURN

5000 DATA ADCN6DS65I69K7DL79P61O71Q75

5010 DATA ANDN2DS25I29K3DL39P21O31Q35

5020 DATA ASLH0AN0ES06K1EQ16

5030 DATA BCCJ90,BCSJB0,BEQJF0

5060 DATA BITN2CS24

5070 DATA BMIJ30,BNEJD0,BPLJ10,BRKG00

5110 DATA BVCJ50,BVSJ70,CLCG18,CLDGD8

5150 DATA CLIG58,CLVGB8

5170 DATA CMPNCDSC5IC9KDDLD9PC1OD1QD5

5180 DATA CPXNECSE4IE0

5190 DATA CPYNCCSC4IC0

5200 DATA DECNCESC6KDEQD6

5210 DATA DEXGCA,DEYG88

5230 DATA EORN4DS45I49K5DL59P41O51Q55

5240 DATA INCNEESE6KFEQF6

5250 DATA INXGE8,INYGC8

5270 DATA JMPN4CM6C

5280 DATA JSRN20

5290 DATA LDANADSA5IA9KBDLB9PA1OB1QB5

5300 DATA LDXNAESA6IA2LBERB6

5310 DATA LDYNACSA4IA0KBCQB4

5320 DATA LSRH4AN4ES46K5EQ56

5330 DATA NOPGEA

5340 DATA ORAN0DS05I09K1DL19P01O11Q15

5350 DATA PHAG48,PHPG08,PLAG68,PLPG28

5390 DATA ROLH2AN2ES26K3EQ36

5400 DATA RORH6AN6ES66K7EQ76

5410 DATA RTIG40,RTSG60

5430 DATA SBCNEDSE5IE9KFDLF9PE1OF1QF5

203

8Advanced

Memory

5440 DATA SECG38,SEDGF8,SEIG78

5470 DATA STAN8DS85K9DL99P81O91Q95

5480 DATA STXN8ES86R96

5490 DATA STYN8CS84Q94

5500 DATA TAXGAA,TAYGA8,TSXGBA,TXAG8A

5510 DATA TXSG9A,TYAG98

6000 AD=0

6005 Q$=LEFT$(OP$,1) : IF Q$="$11 OR Q$="%"

{SPACEjOR (ASC(Q?)>64 AND ASC(Q$)<91

)THEN6030

6010 IF ASC(Q?)>47 AND ASC(Q$)<58 THEN 60

30

6020 OP$=RIGHT$(OP$/LEN(OP$)-1):GOTO 6000

6030 Q?=RIGHT?(OP?,1):Q1=ASC(Q?):IF (Ql>4

7 ANDQK58)OR(Q1>64 AND QK91)THEN60

50

6035 IF Q?="+" THEN 6050

6040 OP?=LEFT?(OP?,LEN(OP?)-l):GOTO 6030

6050 IF RIGHT?(OP?,2)=",X" THEN OP?=LEFT?

(OP?,LEN(OP?)-2)

6052 IF RIGHT?(OP?,2)=",Y" THEN OP?=LEFT?

(OP?,LEN(OP?)-2)

6053 IF RIGHT$(OP$,1) = 11)11 THEN OP$=LEFT$ (

OP?,LEN(OP?)-1)

6055 IF LEFT?(OP$,1)="$" THEN N$=OP$:GOSU

B 7000:NUMBER=V:GOTO 6100

6060 IF LEFT?(OP?,1)="%" THEN N?=OP?:GOSU

B 8000:NUMBER=V:GOTO 6100

6070 IF ASC(LEFT$(OP$,1))<58 THEN NUMBER=

VAL(OP$):GOTO 6100

6075 IF RIGHT?(OP$,1)="+" THEN AD=AD+1:OP

?=LEFT?(OP?,LEN(OP?)-1):GOTO 6075

6080 FOR Wl=l TO M2:IF S?(W1)=OP? THEN NU

MBER=V(W1):W1=999

6090 NEXT W1:IF W1=M2+1 THEN PRINT"{RVS}U

NDEFINED SYMBOL ERROR":GOTO 300

6100 NU=NU+AD:RETURN

7000 IF LEFT?(N?/1) = "?11 THEN N?=RIGHT?(N?

,LEN(N?)-1)

7010 V=0zIF LEN(N?)=4 THEN 7030

7020 N?=LEFT?("0000",4-LEN(N?))+N?

7030 FOR R2=l TO 4:D?=MID?(N?,R2,1):TV=AS

C(D?)-48:IF TV>9 THEN TV=TV-7

7040 V=TV*16t(4-R2)+V:NEXT R2:RETURN

8000 IF LEFT?(N?,1)="%" THEN N?=RIGHT?(N?

#LEN(N?)-1)

8010 V=0:FOR Z=LEN(N?) TO 1 STEP -1:V=V+V

AL(MID?(N?/Z,l))*2t(LEN(N?)-Z):NEXT

{SPACE}Z

204

Advanced

Memory

8020 RETURN

9000 FD=INT(N/4096):N=(N/4096-FD)*4096:SD

=INT(N/256):N=(N/256-SD)*256
9010 TD=INT(N/16):N=INT((N/16-TD)*16):R$=

MID$(H$,FD+1,1)+MID$(H$,SD+1,1)

9020 R$=R$+MID$(H$,TD+1,1)+MID$(H$,N+l,1)

:RETURN

10000 IF A$(T) = IIM THEN OC$=M " :LB$=" " :GOTO

10100

10005 LI(1)=0:LI(2)=0:LI(3)=0:LI=0

10010 FOR R2=l TO LEN(A$(T)):IF MID$(A$(T

),R2,1)=" " THEN LI=LI+1:LI(LI)=R2
10020 NEXT R2:IF Ll(3)=0 THEN Ll(3)=R2-l

10030 LB$=LEFT$(A$(T),LI(1)):OC$=MID$(A$(

10040 OP$=RIGHT$(A$(T),LI(3)-LI(2)+1)

10050 IF LB$=M " THEN LB$=""xGOTO 10070

10060 LB$=LEFT$(LB$/LEN(LB$)-1)

10070 OC$=LEFT$(OC$/LEN(OC$)-1)

10080 IF OP$=" " THEN OP$=IIM:GOTO 10100

10090 OP$=RIGHT$(OP$/LEN(OP$)-1)

10100 RETURN

11000 PRINT"{CLR}":PRINT"{3 SPACES}THE AS
SEMBLER STARTS WITH THE FIRST11

11010 PRINT"LINE OF THE MACHINE PROGRAM T

O BE":PRINT"ENTERED."

11020 PRINT:PRINT"{3 SPACESjTHIS IS INDIC

ATED BY THE NUMBER 1,"

11030 PRINT"AND A WHITE CURSOR BESIDE IT.

THIS"

11040 PRINT"MEANS THAT YOU ARE AT LINE 1

{SPACE}AND IT IS"

11050 PRINT"WAITING FOR INPUT INTO THE LA

BEL FIELD."

11060 PRINT:PRINT"{3 SPACES}IF YOU TYPE T

O THE END OF THE FIELD,"

11070 PRINT"HIT {RVS}SPACE{OFF}, OR HIT

{RVS}RETURN{OFF},YOU WILL JUMP"
11080 PRINT"TO THE NEXT FIELD.":PRINT

11090 PRINT"{3 SPACES}THE LENGTH OF THE

{RVS}LABEL{OFF} FIELD IS"

11100 PRINT"{RVS}6{OFF} CHARACTERS, THE

{RVS}OPCODE{OFF} FIELD IS {RVS}3
{OFF},"

11110 PRINT"AND THE {RVS}OPERAND{OFF} FIE

LD {RVS}10{OFF}."

11120 PRINT:PRINT"{3 SPACES}A {RVS}SPACE

{OFF} OR {RVS}RETURN{OFF} IN THE
{RVS}OPERAND{OFF}"

205

8Advanced

Memory

11130 PRINT"FIELD WILL PUT YOU AT THE BEG

INING OF"

11140 PRINT"THE NEXT LINE."

11150 PRINT:PRINT"{RVS}TYPE ANY KEY TO CO
NTINUE."

11160 get z$:if z§=imi then 11160

11170 print"{clr}'Sprint11 {3 spaces}there
{space}are two special commands you
ii

11180 PRINT"CAN TYPE WHILE IN THE {RVSjLA

BEL FIELD{OFF} THESE"

11190 PRINT"ARE {RVS}FIX{OFF}, AND {RVS}E

XIT{OFF}."

11200 PRINT:PRINT"{2 SPACES}{RVS}FIX{OFF}

RETURNS YOU TO THE PREVIOUS LINE/1

11210 PRINT"SO THAT YOU CAN CORRECT ANY M

ISTAKES."2PRINT

11220 PRINT"{2 SPACES}{RVS}EXIT{OFF} TAKE

S YOU OUT OF THE INPUT"

11230 PRINT"MODE, AND INTO THE ASSEMBLY/E

DIT MODE."

11240 PRINT:PRINT"{3 SPACES}WHEN IN THE
{RVS}ASSEMBLY/EDIT{OFF} MODE A"

11250 PRINT"MENU WILL BE DISPLAYED. THE C

OMMANDS":PRINT"ARE AS FOLLOWS:"

11260 PRINT:PRINT" C COMPACT THE LISTING

{SPACE}(ELIMINATE":PRINT"{4 SPACES}

EMPTY LINES)."

11270 PRINT" I INPUT MORE CODE (AFTER EDI

TING)."

11280 PRINT"{4 SPACESjTHIS ALSO ALLOWS YO

U TO OVERWRITE"

11290 PRINT"{4 SPACES}PREVIOUS CODE."

11295 PRINT:PRINT"{RVS}TYPE ANY KEY TO CO
NTINUE. {OFF}11

11296 GET Z$: IF Z§="" THEN 11296

11300 PRINT"{CLR}":PRINT" D DELETE CODE.

{SPACE}YOU WILL BE ASKED FOR"

11310 PRINT"{4 SPACES}STARTING AND ENDING

LINE NUMBERS."

11320 PRINT"{4 SPACES}EVERYTHING FROM THE

FIRST LINE"

11330 PRINT"{4 SPACES}UP TO,BUT NOT INCLU

DING THE LAST"

11340 PRINT"{4 SPACES}WILL BE DELETED. TO

DELETE ONE"

11350 PRINT"{4 SPACES}LINE, TYPE IT'S NUM

BER IN BOTH":PRINT"{4 SPACES}PLACES

206

Advanced

Memory8

11360 PRINT11 N INSERT CODE. YOU WILL BE A

SKED THE"

11370 PRINT"{4 SPACES}INSERTION POINT AND

THE # OF LINES"

11380 PRINT"{4 SPACESjTO BE INSERTED."

11390 PRINT" L LIST. YOU WILL BE ASKED FO

R THE"

11400 PRINT"{4 SPACES}BEGINING AND ENDING
LINE NUMBERS."

11402 PRINT" S SAVE. YOU WILL BE ASKED FO

R THE"

11404 PRINT"{4 SPACES}FILENAME OF FILE TO

BE SAVED."

11406 PRINT" O LOAD. YOU WILL BE ASKED FO

R THE"

11408 PRINT"{4 SPACES}FILENAME OF FILE TO

BE LOADED."

11410 PRINT" A ASSEMBLE. YOU WILL BE ASKE

D TO PICK"

11420 PRINT"{4 SPACESjSCREEN OR PRINTER.

{SPACE}AFTER ASSEMBLY"

11430 PRINT"{4 SPACESjTHE CODE IS IN MEMO

RY."

11440 PRINT" Q QUIT THE PROGRAM. IF HIT A

CCIDENTALY"

11450 PRINT"{4 SPACESjYOU CAN RETURN TO P

ROGRAM WITH"

11460 PRINT"{4 SPACES}{RVS}GOTO 300{OFF}.
ii

11465 PRINT:PRINT"{RVS}TYPE ANY KEY TO CO

NTINUE.fOFF}"

11466 GET Z$: IF Z$="" THEN 11466

11470 PRINT"{CLR}"2PRINT"{3 SPACES}VARIAB

LES ARE DEFINED WITH THE"

11480 PRINT"VARIABLE NAME IN THE LABEL FI

ELD, AN"

11490 PRINT"'=' IN THE OPCODE FIELD, AND

{SPACE}THE MEMORY"

11500 PRINT"LOCATION OF THE VARIABLE IN T

HE OPERAND":PRINT"FIELD."

11510 PRINT:PRINT"{3 SPACESjTHE FIRST LIN

E,AND ONLY THE FIRST"

11520 PRINT"LINE, SHOULD BE USED TO DEFIN

E THE"

11530 PRINT"ORIGIN OF PROGRAM LOCATION. T

HIS IS"
11540 PRINT"DONE WITH AN '*' IN THE LABEL

FIELD,AND"

11545 PRINT"THE REST AS IN VARIABLES."

207

8Advanced

Memory

11550 PRINT:PRINT"{3 SPACESjTHE FOLLOWING

CONVENTIONS HOLD:":PRINT

11560 PRINT"{4 SPACES}# IMMEDIATE ADDRESS
ING"

11570 PRINT"{4 SPACES}$ HEXADECIMAL NUMBE

R (UP TO 4 CHAR)"

11580 PRINT"{4 SPACES}% BINARY (UP TO 9 C

HAR)"

11590 PRINT"{4 SPACESjA ACCUMULATOR ADDRE

SSING"

11600 PRINT:PRINT"{3 SPACES}DECIMAL ASSUM
ED BY DEFAULT."

11605 PRINT:PRINT"{RVS}TYPE ANY KEY TO CO

NTINUE.{OFF}"

11606 GET Z$: IF Z$="" THEN 11606

11610 PRINT"{CLR}":PRINT"{3 SPACES}A SYMB

OL MUST BEGIN WITH A LETTER,"

11620 PRINT"AND CONTAIN ONLY LETTERS AND

{SPACE}NUMBERS."
11630 PRINT:PRINT"{3 SPACES}BECAUSE 'A' I

S USED IN ACCUMULATOR"

11640 PRINT"ADDRESSING, IT IS AN ILLEGAL

{SPACE}SYMBOL. IT"

11650 PRINT"CAN BE USED WITH OTHER CHARS

{SPACE}HOWEVER."

11660 PRINT:PRINT"{3 SPACES}ADDITION WITH
IN THE OPERAND FIELD IS"

11670 PRINT"NON-STANDARD. ONLY SYMBOLS CA

N BE ADDED"

11680 PRINT"TO. ADDITION IS DONE BY FOLLO

WING THE"

11690 PRINT"SYMBOL WITH PLUS SIGN(S). THE

NUMBER OF"

11700 PRINT"PLUS SIGNS EQUALS THE NUMBER

{SPACE}TO BE" .-PRINT"ADDED."

11710 PRINT:PRINT"{3 SPACES}SELF-MODIFYIN

G CODE SHOULD BE PLACED"

11720 PRINT"BEFORE THE CODE THAT MODIFIES

IT."

11730 PRINT:PRINT"{3 SPACES}MEM=200 AND M

2=100 CAN BE USED FOR" •

11740 PRINT"LONGER PROGRAMS. HOWEVER THIS

WILL TAKE"

11750 PRINT"VERY LONG. LARGER VALUES MAY

{SPACE}RUN OUT OF"

11760 PRINT"MEMORY."

11770 PRINT:PRINT"{RVS}TYPE ANY KEY TO CO

NTINUE.{OFF}"

11780 GET Z$: IF Z$="" THEN 11780

208

Advanced

Memory

11790 PRINT"{CLR}":PRINT"{3 SPACES}THE
{RVS}LOAD{OFF} AND {RVS}SAVE{OFF} C

OMMANDS LOAD AND"

11800 PRINT"SAVE SOURCE CODE ONLY."

11810 PRINT:PRINT"{3 SPACES}TO USE THE MA

CHINE CODE, FIRST LOAD"

11820 PRINT"THE SOURCE CODE, THEN ASSEMBL

E IT,"

11830 PRINT"FINALLY TYPE 'NEW1 (THIS WILL

CLEAR THE"

11840 PRINT"BASIC PROGRAM) AND 'SYS1 TO T

HE START"

11850 PRINT"OF THE MACHINE CODE."

11860 PRINT:PRINT"{3 SPACES}A NEW BASIC P
ROGRAM CAN ALSO THEN BE"

11870 PRINT"TYPED IN TO USE THE MACHINE C

ODE. "

11880 PRINT:PRINT"{RVS}TYPE ANY KEY TO CO

NTINUE.{OFF}"

11890 GET Z$: IF Z$="" THEN 11890

11900 RETURN

12000 PRINT"LOADING NEW FILE WILL DESTROY

OLD FILE.":PRINT"LOAD ? (Y/N)"

12003 GET Z$:IF Z§="" OR (Z$<>"Y" AND Z$<

>"N") THEN 12003

12005 IF Z$="N" THEN GOTO 300

12010 INPUT"FILENAME ";FL$

12020 OPEN 1,1,0,FL$:REM FOR TAPE

12025 REM FOR DISK USE: OPEN 1,8,8,"0:"+F

L$+"S,R"

12030 FOR T=l TO MEM:A$(T)="":NEXT T

12040 FOR T=l TO MEM

12050 GET* 1,10$:IF I0$=CHR$(13) THEN 12070

12060 A$(T)=A$(T)+IO$:GOTO 12050

12070 NEXT T

12080 CLOSE 1

12090 GOTO 300

13000 PRINT"DO YOU WANT TO SAVE FILE ? (Y/N)"

13003 GET Z$:IF Z$="" OR (Z$o"Yn AND Z$<

>"N") THEN 13003

13005 IF Z$="N" THEN GOTO 300

13010 INPUT"FILENAME ";FL$

13020 OPEN 1,1,1,FL$:REM FOR TAPE

13025 REM FOR DISK USE: OPEN 1,8,8,"0:"+F

L$+"S,W"

13030 FOR T=l TO MEM

13040 PRINT* 1,A$(T);CHR$(13);

13050 NEXT T

13060 CLOSE 1

13070 GOTO 300

8

209

Advanced
Memory

Decoding basic
Statements
John Heilborn

Although most people who use BASIC have a fair understanding

of how data is stored in the computer, few ever really get a clear

idea of how the BASIC programs themselves are stored. A special

part of the computer's operating system called the screen editor

handles all the dirty work of inserting, deleting, and modifying

BASIC program lines for you.

There are, however, some functions that are inaccessible
through the screen editor, and utilizing them can make writing

programs much easier.

The Mysterious Special Function Symbols
The special symbols provide you with some very powerful pro

gramming features. They can also leave you with some very hard-

to-read listings when you have made extensive use of the cursor

control or color control keys within your programs. For example,

typing the SHIFT-CLEAR/HOME key combination will put an in

verse video heart in your program line.

By searching your program lines directly in memory, it is pos

sible to locate each of the special symbols. Once they are located,

you can convert them into words that describe their actual func

tions. This will leave you with programs that are much easier to

read and modify.

where is the Program?
BASIC can store programs in several different places in memory,

but normally BASIC statements begin at memory location 2049.

Since the program lines themselves are stored in the same format

no matter where BASIC puts them, all of the examples in this arti

cle will begin at 2049.

The figure is a diagram of a BASIC statement. It represents

the first line in a program.

As you can see from the figure, the BASIC line is broken up

into sections. The first two bytes in the line contain the memory

location of the beginning of the next program line. If you were to

210

Advanced

Memory8

PEEK those locations, you would find that they contain two

separate numbers which combine to represent a hexadecimal

number. Let's take a closer look at how this works and why it is

done this way.

structure of a basic statement

The BASIC statement
1 s §

Next This °
BASIC Line's

Statement Number

Hexadecimal Numbers
All of the numbers in the computer are actually stored as binary

numbers. These are numbers that are made up of only ones and

zeros. While this may seem like an impractical way to store num

bers, it makes perfect sense to the computer because its circuits

can operate in only one of two conditions — on or off. The ons are

represented as ones and the offs are zeros.

The individual ones and zeros are called bits and the com

bined numbers they make (each of which contains eight bits) are

called bytes. Because there are eight bits in each byte, each byte

can represent any numberbetween 0 and 255. Since program line

numbers in BASIC can be greater than 255, it is necessary to use

two bytes to represent the line numbers. Two bytes together can

represent any numberbetween 0 and 65535, but the largest line

number BASIC allows is 63999.

Looking Ahead
To decode the hexadecimal number, multiply the value stored in

the second byte (high byte) by 256 and add the result to the value

in the first byte (low byte). Enter the following program line:

10 REM THIS IS A TEST

Now PEEK memory locations 2049 (low byte) and 2050 (high

byte). You'll find that they contain the values 22 and 8. Multiply 8

211

8Advanced
Memory

by 256 (2048) and add 22 for a total of 2070. Therefore, the next

program line will begin at memory location 2070.

Line Numbers
The next two memory locations (2051 and 2052) contain the pro

gram line number. The values you'll get by PEEKing these loca

tions are 10 and 0. Once again, multiply the second number by

256 and add it to the first number. This time the result is 10 — our

line number!

Now lefs renumber this program. POKE location 2051 with

the value 100:

POKE 2051,100

and LIST the program. The line number should now be 100.

POKEing 100 into location 2052 will cause the line number to

jump to 25700.

Tokens
Every BASIC command has a corresponding token. The token is a

single number that represents the command. For example, if you

PEEK location 2053, the computer will display the tokenized

value for the REM statement, 143. The table below contains all of

the BASIC statements and their tokens.

basic Tokens

END

FOR

NEXT

DATA

INPUT #

INPUT

DIM

READ

LET

GOTO

RUN

IF

RESTORE

GOSUB

RETURN

REM

STOP

ON

WATT

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

LOAD

SAVE

VERIFY

DEF

POKE

PRINT #

PRINT

CONT

LIST

CLR

CMD

SYS

OPEN

CLOSE

GET

GET#

NEW

TAB(

TO

GET # has no separate token.

212

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

FN

SPC

THEN

NOT

STEP

+

-

*

/

t

AND

OR

>

=

<

SGN

INT

ABS

USR

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

FRE

POS

SQR

RND

LOG

EXP

COS

SIN

TAN

ATN

PEEK

LEN

STR$

VAL

ASC

CHR$

LEFT$

RIGHT!

MID$

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

8Advanced

Memory

Changing the value in location 2053 can modify the BASIC

statement. Change the value in 2053 to 153 with:

POKE 2053,153

Now LIST the program. You have changed the REM statement in

to a PRINT statement! RUN the program to show that the change

is genuine.

Special Function codes
The special function codes enable you to use some of the

keyboard control functions that are ordinarily accessible only in

immediate mode. For example, pressing the key marked CTRL

and one of the number keys at the top of the keyboard will change

the color of the characters as they are printed on the screen. By

using the CHR$ code for that function within a program line, you

can use the same feature within a program. Enter this line:

10 PRINT "{RVSHrED}RED, {WHT} WHITE,

{off}and{rvs}&73blue"

For a complete table of all the special function codes, look at

the Commodore 64 User's Guide that came with your computer. The

special function codes are listed with the rest of the CHR$ func

tions in Appendix E

ascii Data
The rest of the information in your programs is stored as ASCII

data. In other words, if you PEEK a location that has a standard

character stored in it, it will contain the number that is the ASCII

value of that character. Enter these lines:

10 PRINT "THIS IS TEXT"

20 FOR R=2054 TO 2069

30 PRINTR;PEEK(R);CHR$(PEEK(R))

40 NEXT

This routine displays the data as it would normally be printed

and then displays the data by memory location, ASCII value, and

CHR$ code. With this display, it is easy to see that changing a

value in one of the memory locations between 2056 and 2067 will

allow you to modify the text directly.

zero as a Marker

Each BASIC statement stored in memory ends with a zero (see

the figure), which serves as an "end of statement" marker. Note

213

8Advanced
Memory

that the marker is a byte with the value of zero, whereas zeroes

within the statement — for example, the two zeroes in the state

ment GOTO 100 — are stored as the ASCII representation of zero,

which is 48.

The zero byte has two other uses in BASIC. The first byte in

the BASICRAM area (before the first BASIC statement) must con

tain a zero. Try a PEEK(2048) to check this. Also, two zero bytes as

the address of the next program line indicate that the end of the

BASIC program has been reached, so BASIC programs always

end with three zero bytes in a row.

Easy Lister

BASIC program listings as they normally appear on the screen

can be hard to understand. It's difficult to remember what all the

special characters appearing as inverse video symbols are sup

posed to represent. The following program makes listings much

easier to read. It goes through the BASIC program in memory

byte by byte and interprets each BASIC token, special symbol, or

graphics character.

To display all of the special symbols and characters, you need

to generate two tables in memory that contain all the possible

codes that can appear in a program line. In the program below,

these are called table A$ and table B$. Table A$ contains the token-

ized BASIC commands and table B$ contains the CHR$ codes for

the graphics characters and the descriptions of the special

functions.

To use the program, type it in carefully and SAVE it to tape or

disk. You can test the program by having it list itself if you tem

porarily omit line 62040 and type RUN. When you wish to make a

listing, follow these steps to append the Easy Lister program to

the program you wish to list:

1. Tell the computer where the end of your current program is

by typing:

POKE 43,PEEK(45)-2:POKE 44,PEEK(46)

2. LOAD the Easy Lister program from tape or disk.

3. Restore BASIC to its normal starting condition by typing:

POKE 43,1:POKE 44,8

When you LIST the program now you should see your original

program with the lister program added to the end. Activate the

lister by typing:

RUN 61000

214

8Advanced

Memory

The program as presented assumes that your printer is con

nected as device 4, which is standard for Commodore printers. If

you are using an RS-232 printer connected as device 2, delete line

62010 and replace line 61000 with:

61000 OPEN 1,2,0

An OPEN statement for device 2 should come before the string

arrays A$ and B$ are defined because OPENing an RS-232 chan

nel allocates memory for input and output buffers which can

cause a loss of data in string variables. If you wish to list to the

screen instead of a printer, simply delete line 62010 and change

the PRINT#1, statements in lines 62050,62080,62110, and 62120 to

PRINT.

Creating Tables in Memory

61000 REM SET UP 'A1 TABLE

61010 DIMA$(255),B$(255):FOR R=l TO 31

61020 A$(R)="CHR$("+RIGHT?(STR$(R),LEN(ST

R$(R))-1)+")":NEXT

61030 FOR R=32 TO 90

61040 A$(R)=CHR$(R):NEXT

61050 FOR R=91 TO 127

61060 A$(R)="CHR$("+RIGHT$(STR$(R),LEN(ST

R$(R))-1)+")H2NEXT

61070 DATA END,FOR,NEXT,DATA,INPUT*,INPUT

,DIM,READ,LET,GOTO,RUN,IF,RESTORE

61080 DATA GOSUB,RETURN,REM,STOP,ON,WAIT,

LOAD,SAVE,VERIFY,DEF,POKE

61090 DATA PRINT#,PRINT,CONT,LIST,CLR,CMD

,SYS,OPEN,CLOSE,GET,NEW,TAB(,TO,FN,

SPC

61100 DATA THEN,NOT,STEP,+,-,*,/,t#AND,OR
,>,=,<,SGN,INT,ABS,USR,FRE,POS,SQR,

RND

61110 DATA LOG,EXP,COS,SIN,TAN,ATN,PEEK,L

EN,STR$,VAL,ASC,CHR$,LEFT?,RIGHT?,M

ID$

61120 FOR R=128 TO 202

61130 READ A$(R): NEXT

61140 FOR R=203 TO 255

61150 A$(R)="CHR$("+RIGHT$(STR$(R),LEN(ST

R$(R))-1)+")":NEXT

61160 REM SET UP 'B' TABLE

61170 DATA 5,WHITE,17,CURSOR DOWN,18,REVE

RSE ON,19,HOME,20,DELETE,28,RED,29

215

8Advanced

Memory

61180 DATA CURSOR RIGHT,30,GREEN,31,BLUE,

999

61190 READ X:IF X=999 THEN 61210

61200 READ X$:B$(X)=CHR$(91)+X$+CHR$(93):

GOTO 61190

61210 FOR R=32 TO 128: B$(R)=A$(R):NEXT

61220 DATA 129,ORANGE,133,Fl,134,F3,135,F

5,136,F7,137,F2,138,F4,139,F6,140,F

8

61230 DATA 144,BLACK,145,CURSOR UP,146,RE

VERSE OFF,147,CLEAR HOME,148,INSERT

61240 DATA 149,BROWN,150,LIGHT RED,151,GR

EY 1,152,GREY 2,153,LIGHT GREEN,154

61250 DATA LIGHT BLUE,155,GREY 3,156,PURP

LE,157,CURSOR LEFT,158,YELLOW,159,C

YAN

61260 DATA 999

61270 READ X: IF X=999 THEN 61290

61280 READ X$:B$(X)=CHR$(91)+X$+CHR$(93):

GOTO 61270

61290 FOR R=160 TO 255:B$(R)="CHR$("+RIGH

T$(STR$(R),LEN(STR$(R))-1)+")":NEXT

62000 REM READ BASIC STATEMENTS

62010 OPEN 1,4

62020 A=2051:C=1

62030 R=PEEK(A)+((PEEK(A+1))*256)

62040 IF R>=61000 THEN 62130

62050 PRINT#1,RIGHT$(STR$(R),LEN(STR$(R))

62060 A=A+2:GOTO62090

62070 IF(PEEK(A)=0)AND(PEEK(A+1)=0)THEN 6

2130

62080 IF PEEK(A)=0 THEN A=A+3:PRINT#l:GOT

O 62030

62090 IF PEEK(A)=34 THEN C=C*-1

62100 IF C=-l THEN 62120

62110 PRINT#1,A$(PEEK(A));:A=A+1:GOTO6207

0

62120 PRINT#1,B$(PEEK(A));:A=A+1:GOTO6207

0

62130 CLOSE Is END

216

8Advanced

Memory

Micromon-64
BillYee

A machine language monitor is an essential tool for developing

and debugging assembly language programs. It is especially use

ful on the Commodore 64 as it provides a much more powerful

way to explore the inner workings of the computer. Micromon-64

is just such a monitor. It is based on my version of Micromon for

theVIC-20.

Commands
What follows is a listing of all the commands available with

Micromon-64. The listing includes a short explanation and the

format needed.

Assembler

.A 401F AD 14 03 LDA $0314 : CHECK IRQ VECTOR

.A 4022 AE 15 03 LDX $0315

.A 4025 C9 91 CMP #$91

.A 4027 DO 04 BNE $402D

.A 4029

The initial input of this command requires a starting address in

hexadecimal. Once you have input one line, the assembler out

puts the command letter A followed by the address of the next in

struction. Assembler instructions are all 3-character mnemonics

followed by an optional operand field. Operand data is taken to

be hexadecimal and must be prefixed with a $. Immediate data

must be further prefixed with a #. All address references are spec

ified in hexadecimal and are absolute. Relative branches are calcu

lated by the assembler by using the difference between the target

and the current addresses of the branch. A colon (:) can be used

to terminate a line so that comments can follow. To exit the

assembler, hit the RETURN key after the address prompt.

Break set

.B 2000 0010

Break Set allows you to break execution of code after a specified

address has occurred for a specified number of times. Code

execution must be started with the Quick trace command. If no

217

Advanced
' Memory

count is specified, execution stops at first occurrence of the speci

fied address. For th$ example, execution breaks on the sixteenth
time the instruction at location $2000 is executed.

Compare Memory

.C 2000 2FFF C000

Comparison of two memory blocks is done with output of

addresses of the locations in the first block that have data bytes

mismatching data bytes in corresponding relative locations in the
second block. The command requires that the low and high

addresses of the first block be specified followed by the low

address of the second block. For the example, the first memory

block from $2000 to $2FFF is compared to the second memory

block from $C000 to $CFFF. Compare can be stopped by hitting

the RUN/STOP key during output of mismatched data location
addresses.

Disassembler

D 4015 401C

, 4015 A9 DF LDA #$DF

, 4017 A2 45 LDX #$45

, 4019 8D 16 03 STA $0316

, 401C 8E 17 03 STX $0317

A block of code can be disassembled and printed by specifying

the low and high addresses for the block. The RUN/STOP key can

be used to halt output. If only one address is specified, then only

the instruction at that address is disassembled.

.D 4001

., 4001 4C 15 40 JMP $4015

Machine code can be edited by using the CRSR keys to move to

and modify the bytes. Hit the RETURN key to enter the changes

into memory. The new code is disassembled and redisplayed on

the same line. Also, the address of the next instruction is dis

played on the following line to assist you in making further

changes. However, if you disassemble a block of code and then

make a change in the middle of the block on the screen, take care

you don't overwrite more than you intended by hitting the

RETURN key too many times. In other words, don't hit RETURN

while the cursor is sitting on a line beginning with a comma

followed by an address plus one or more data bytes unless you

want to change and disassemble that instruction. The comma is a

218

8Advanced

Memory

"hidden" command which you can use to enter hexadecimal data

into memory with disassembly of the data as you enter it. Hitting

RETURN with no data after the address gets you out of the com

mand. Moving the cursor to the top or bottom of the screen with

one or more disassembled lines displayed causes disassembly

down or up in memory respectively.

Exit Micromon

.E

Restore the IRQ and BRK interrupt vectors, reset the tape buffer to

$033C, and then exit to the BASIC environment. The E command

should be used to exit Micromon when the normal LOAD, S^VE,

and VERIFY commands are to be used in the BASIC environ

ment. Always use SYS49152 to access or reenter Micromon-64

located at $C000.

Fill Memory

.F 2000 3FFF 00

.F 4000 47FF FF

Fill a block of memory with the data byte specified. Memory is

written from low to high, and no check is made on the writes. For

the first example, memory area from $2000 to $3FFF is zeroed. For

the second example, memory area from 14000 to $47FF has the

bits set to all ones.

Go Run

.G

.G 2000

The register image shown by the register display command is set

into the microprocessor registers prior to execution of machine

language code at full speed. For the first example, execution be

gins at the address given for PC (Program Counter) in the register

display. For the second example, execution begins at the address

specified, which is $2000.

You should have a BRK instruction (value 00) in your code to

t back into Micromon.

splayed. Also, the

address of the instruction following the BRK is saved in PC for

execution continuation later if another Go Run command is

given. If a BRK is never executed, you cannot get back into

Micromon. The RUN/STOP and RESTORE keys can be used to

219

8Advanced

Memory

halt execution. A NMI (Non-Maskable Interrupt) is generated

which puts you into the BASIC environment. A SYS49152 is

needed to reenter Micromon at $C000.

Hunt Memory

.H 1000 5FFF 'ASCII CHARACTER STRING

.H 0000 1000 01 02 03 04 05 06

A block of memory specified by a low and a high address is

scanned from low to high for a maximum of 32 characters or bytes

of data. The address of each occurrence is printed out. During

address output, the hunt can be stopped with the RUN/STOP

key. For the examples shown, the first is for characters and the

second is a data byte sequence. A match is always found at $0365,

as that is where the match characters or data are stored.

Jump to Micromon Subroutine

J 3000

The machine language subroutine at location $3000 is called

while remaining in the Micromon environment. The subroutine

must exit by using a RTS (ReTurn from Subroutine) instruction

which causes a return to the command input section of

Micromon. The machine image as shown by the register display

command is not used, nor is it disturbed when the subroutine re

turns to Micromon.

LOAD Memory from Device

.L 4000 "TEST FILE" 08

Search for and, if found, load into memory starting at $4000 the

data file on device #8 named TEST FILE. Device #8 is the 1541

floppy disk which requires that a filename be specified. If the de

vice number is not specified, it defaults to device #1, which is the

cassette tape. For tape, if no filename is specified, the first file

found is loaded. The last address loaded is determined by the

length of the data file. The BASIC memory pointers are not af

fected by this load. When loading from tape, the original memory

addresses and name of the last file read can be inspected by doing

a memory display of the tape buffer, which is located at $0375 for

Micromon.

220

8Advanced

Memory

Memory Display

M 4E70 4E80

4E70 49 43 32 30 20 4D 49 43 IC20MIC

4E78 52 4F 4D 4F 4E 20 56 31 ROMONV1

4E80 2E 30 20 20 20 42 49 4C .OBIL

M 4E88

4E88 4C 20 59 45 45 20 32 32 LYEE22

Display memory in eight-byte segments followed by ASCII

translation. The bytes following the address may be modified by

moving the cursor over the data and overstriking with the new

data. Changes are entered into memory when RETURN is hit. As

with the comma disassembly command, the address of the next

memory area is output to assist in further changes. The colon is

also a "hidden" command you can use by inputting colon plus

address and hexadecimal data. If one or more memory display

lines are on the screen, moving the cursor to the top or bottom of

the screen causes scrolling and display of the next segment of

eight bytes down or up in memory.

New Locater

.N 2000 2003 6000 C000 CFFF

.N 2FB5 2FFE 6000 C000 CFFFW

The first example fixes all three-byte instructions in the memory

area from $2000 to $2003 by adding $6000 to the absolute address

in the two bytes following the instruction opcode. Any absolute

addresses found that are outside the range from $C000 to $CFFF

are not adjusted. Also, if a bad opcode is encountered, the pro

cessing stops with a disassembly and display of the bad opcode.

The second example searches for two-byte or word addresses,

and those found in the range from $C000 to $CFFF are adjusted

by having $6000 added to their value.

Offset or Branch Calculate

.0 1004 1000 FA

Calculate the offset for branch instructions. The first address is for

the location containing the branch opcode, and the second

address is the branch target address. Addresses and the resulting

displayed offset byte are in hexadecimal.

221

8Advanced

Memory

Print Switcher

.p

If the output is to the screen, then switch the output to the RS-232

channel (device #2). If the output is not to the screen, restore the

output to the screen with the RS-232 channel left active until the

RS-232 output buffer is drained. Note that opening the RS-232

channel grabs 512 bytes for I/O buffering from the top of BASIC

memory.

.P 0000

Regardless of the output, clear the RS-232 channel and set output

to the screen.

.P CCBB

If the output is to the screen, set CC into the RS-232 command

register at $0294 and BB into the RS-232 control register at $0293.

This command is invalid if output is not currently to the screen.

If you have a VIC printer on the serial I/O port, don't use this

command for printing. Instead, use the CMD statement in the

BASIC environment to redirect screen output to the VIC printer

prior to entering Micromon as follows:

OPENM:CMD4:SYS49152:PMNT#4:CLOSE4

This line causes all screen output to go to the VIC printer until

you exit Micromon with either the E or X command. The

SYS49152 is used to access Micromon at $C000.

Quick Trace

Q
.Q 4000

Each instruction is executed as in the Walk command, but no out

put occurs. The address specified in the Break Set command is

checked for the break on the Nth occurrence. Execution is not at

full speed. Hitting the RUN/STOP key will break execution which

displays S* followed by the register image saved. For the first

example, begin trace at the address in PC of the register display.

For the second example, begin trace at location $4000.

Register Display

.R

PC IRQ SR AC XR YR SP

.; C04E C391 32 32 00 1C F7

222

8Advanced

Memory

The machine image saved is initialized by execution of a BRK in

struction when Micromon is first entered. This image can be

modified by positioning the cursor over the register values to be

changed and overstriking with the new values. The changes are

entered into the saved image when you hit the RETURN key. The

semicolon is also a "hidden" command you can use directly.

Save Memory to Device

.S 4000 5000 "TEST FILE" 08

Save memory from $4000 up to, but not including, $5000 onto de

vice #8, which is the 1541 floppy disk. If the device number is not

specified, it defaults to device #1, which is the cassette tape. The

name TEST FILE is placed in the tape file header or in the disk

directory for the file saved. Note that files saved on tape or disk

with the Micromon Save command can be loaded back into the

original memory area while in the BASIC environment. The non-

relocating form of the Load command in BASIC must be used. For

the file saved in the example, executing the line

LOAD 'TEST FILE",8,1

while in BASIC will load the data in TEST FILE back to the $4000

to $4FFF memory area. The BASIC memory pointers will be dis

turbed, so a New command should be executed to reset these

pointers. Note that the BASIC memory pointers are not disturbed

by the Micromon Load, Save, or Verify commands.

Transfer Memory

.T 4000 4FFF 6000

Transfer a copy of the data from the memory block at $4000 to

$4FFF into the memory block at $6000 to $6FFF. Transfer begins at

the high location of each block. For the example shown, the first

byte copied is from $4FFF into $6FFF. The last byte copied is from

$4000 into $6000. This is an important consideration when the

source and destination memory blocks overlap.

verify Memory from Device

.V 4000 "TEST FILE" 08

Search for and, if found, verify against memory starting at $4000

the data file on device #8 named TEST FILE. Device #8 is the 1541

floppy disk which requires that a filename be specified. If the de

vice number is not specified, it defaults to device #1, which is the

223

8Advanced

Memory

cassette tape. For tape, if no filename is specified, the first file

found is verified. When verifying from tape, the original memory

addresses and name of the last file verified can be inspected by

doing a memory display of the tape buffer which is located at

$0375 for Micromon.

walk code

.w

.W 4000

The walk begins by setting microprocessor registers to the

machine image shown in the register display. A single instruction

is executed, an IRQ is generated, and the new machine image is

saved and displayed as SR, AC, XR, YR, SP, followed by address,

machine language, and disassembly of the next instruction to be

executed. Hitting the RUN/STOP key stops walking. Hitting the J

key while walking finishes execution of a subroutine at full speed.

You can hit J when the next instruction to be executed is the JSR to

the subroutine to be run at full speed. Or you can hit J when you

are actually within the subroutine. Walk resumes on return from

the subroutine. Hitting any other key during walking causes

execution of the next instruction. Caution: Hitting J when you are

walking in mainline code will probably cause unpredictable re

sults. The most likely result is an attempted return to BASIC as

Micromon is accessed by a SYS command and the return address

is in the stack. For the examples shown, the first begins the walk

ing at the address given by PC of the register display. The second

begins the walking at a specified address, which is $4000.

Exit tO BASIC

.x

Exit to the BASIC environment while leaving the Micromon

vectors in the IRQ and BRK interrupt vector locations. The tape

buffer is also left at $0375. This command allows you to operate in

the BASIC environment but still trap execution of a BRK instruc

tion via Micromon's breakpoint or software interrupt handler.

However, in addition, certain IRQ interrupt conditions such as

the moving of the cursor to the top or bottom of the screen with

output from a D, M, or $ command displayed will cause scrolling

and reentry into Micromon via its IRQ interrupt handler.

224

8Advanced

Memory

ASCII Conversion

."B 42 66 0100 0010

An ASCII, graphics, or control character is input to obtain the

hexadecimal, decimal, or binary values for the character.

Decimal Conversion

.#16706 4142 A B 0100 0001 0100 0010

A decimal number is input to obtain the hexadecimal, ASCII

characters of the two bytes, and binary values for the decimal

number.

Hexadecimal conversion

.$4142 16706 A B 0100 0001 0100 0010

A hexadecimal number is input to obtain the decimal, ASCII

characters for the two bytes, and binary values for the hexa

decimal number. The up/down CRSR key can be used to scroll

the screen to get decreasing/increasing hexadecimal numbers

converted once you have entered one number with this

command.

Binary conversion

.%0100000101000010 4142 16706 A B

A binary number is input to obtain the hexadecimal, decimal, and

ASCII characters of the two bytes for the binary number.

Checksum Memory

.& C000 CFFF A500

The data for the memory block from $C000 to $CFFF inclusive is

byte-summed and displayed.

Command End Tone

.(

Enable the command end tone. A continuous tone will be gener

ated at the end of execution of the next command. The tone can

be turned off but still be enabled by just hitting the RETURN key.

No tone is generated if there is an error while inputting the next

command. This command is handy whenever you want to start a

task that takes a long time to execute in Micromon but do not

225

Advanced

Memory

want to continually watch the screen for task completion. Exam

ples are saves and loads of large files to and from the cassette

tape.

.)

Disable the command end tone.

Addition

.+ 11H 2222 3333

Two hexadecimal numbers are input to obtain their modulo 16

sum.

Subtraction

.- 3333 Ull 2222

Two hexadecimal numbers are input, and the second is sub

tracted from the first to obtain their difference. Subtraction is

done with twos complement arithmetic.

Disk Directory

. > 0 "BILL YEE VICDSK1" BY 2A

17 "COMM-64MICROMON" PRG

8 "V1.3 BOOTSTRAP' PRG

639 BLOCKS FREE.

Input of > followed by RETURN interrogates and displays the

1541 floppy disk directory on the screen. Output can be halted by

hitting the RUN/STOP key. The space bar causes output to wait.

Typing in Micromon-64
In order to enter Micromon-64 you must use the "Machine Lan

guage Editor (MLX)" program found in Appendix A and the

DATA listing found at the end of this article. It is important to read

the article that accompanies the MLX program. It may seem like

extra work at first to have to type in two programs, but you'll save

time later when you end up with a virtually error-free program.

In order to use MLX you must know the starting and ending

addresses of Micromon-64.

The starting address is 49152.

The ending address is 53247.

Enter these addresses when prompted by MLX.

226

Advanced

Memory

Micromon-64 Instruction

Secfcunt Memory
|omm#dEnd l^e Enable

Sbditytfp to 8 SltalytesMk
Modify Image Shownby Register Display

Command

^ii&B^

.-.&■■■■■

-■'■;(■

3£

Loading Micromon from Disk or Tape
Once you have S/WEd Micromon-64 to disk or tape using the

Machine Language Editor, you will want to LOAD it back into

memory for future use. Follow these steps to LOAD from BASIC:

1. Type NEW and press RETURN.

2. Type CLR and press RETURN.

227

Advanced

Memory

3. LOAD Micromon-64

Tape type LOAD "MCROMON-64'ai

Disk type LOAD "MCROMON-64",8,1

Press RETURN

4. Once Micromon-64 is in memory, type NEW and press

RETURN.

5. Type CLR and press RETURN.

6. Type SYS49152 and press RETURN.

Relocation
I located Micromon-64 in the 4K byte address space from $C000 to

$CFFF. This space is above the BASIC ROM area and so is not in

cluded with the contiguous area defined for BASIC RAM. How

ever, you may still want to relocate Micromon-64 elsewhere, and

as with VIC Micromon, this version can be relocated with its own

commands. For example, to relocate it into the $2000 to $2FFF

memory area, use the following sequence of operations.

.T C000 CFFF 2000

The Micromon code at $C000 to $CFFF is copied into the memory

area from $2000 to $2FFE

.- 2000 C000

The difference is $6000. This value must be added to all absolute
address references in Micromon to convert from the $C000 to
$CFFF range into the $2000 to $2FFF range. The New Locater

command is used to do this conversion as follows.

.N 2000 2003 6000 C000 CFFF

.N 2012 2E6D 6000 C000 CFFF

The Micromon machine language code at $2000 to $2FFF and

$2012 to $2E6D is scanned for absolute address references. Those

found with values in the range from $C000 to $CFFF are adjusted

by adding $6000 to give new absolute addresses. These new

addresses allow the code at $2000 to $2FFF to execute properly in

that address space.

.N 2FB5 2FFE 6000 C000 CFFF W

The Micromon command vector table at $2FB5 to $2FFE is

scanned for two-byte or word addresses. Those found with

values in the range from $C000 to $CFFF are adjusted by adding

$6000 to give new absolute addresses. The result is a new set of

address vectors to allow the Micromon command handler to

access the command routines in the $2000 to $2FFF address

space.

228

Advanced

Memory8

Finally, there are seven locations which must be changed

directly. Use the memory display command to display these loca

tions. Change the values by moving the cursor over the old value,

entering the new value, and hitting the RETURN key to enter the

changes into memory. If you don't wish to display the current

contents, you can input the colon command followed by the

address and new data byte in hexadecimal. HitRETURN to enter

the data into memory.

ill
: you have completed all of the operations shown, yoi

the relocated Micromon code to tape or disk with the

you canAfter;

save ti:
Micromon SJWE command as follows.

For tape:

.S 2000 3000 "NEWFILENAME"

For disk:

.S 2000 3000 "NEWFILENAME" 08

You should leave the original Micromon code for $C000 to

$CFFF on disk or tape as a permanent backup. The relocated

Micromon at $2000 to $2FFF can be tested by first exiting

Micromon at $C000 with the E command. Then, from BASIC en

vironment use SYS8192 to enter the relocated COMM-64

Micromon code at $2000. To insure that there are no addresses in

the relocated code still having a value from $C000 to $CFFF, you

can zap the Micromon code at $C000 to $CFFF with the Fill Mem

ory command as fpllows.

.F C000 CFFF 00

Successful execution of this command and subsequent suc

cessful exercising of most of the other Micromon commands

verify that the code has been relocated properly. As a further

check, for the version given in this article, relocation to the

229

8Advanced

Memory

memory area from $2000 to $2FFF should include a change of the

last byte at location $2FFF from $A9 to $E9. This should result in a

$2000 to $2FFF checksum of $9800 using Micromon's checksum

memory command. Checksum for Micromon-64 V1.3 at $C000 to

$CFFFis$8E00.

Micromon-64

49152

49158

49164

49170

49176

49182

49188

49194

49200

49206

49212

49218

49224

49230

49236

49242

49248

49254

49260

49266

49272

49278

49284

49290

49296

49302

49308

49314

49320

49326

49332

49338

49344

49350

49356

49362

49368

49374

49380

49386

49392

.-120,076,

2032,210,

:210,255,

:032,024,

:003,173,

2003,201,

:195,240,

:142,097,

:215,032,

:003,142,

:206,061,

:060,003,

:066,169,

:169,063,

2000,044,

2212,032,

2032,210,

2078,003,

2100,003,

2156,200,

2201,032,

2221,144,

2073,003,

2 181,207,

2207,133,

2202,016,

2 162,002,

2180,251,

2 208,003,

2252,214,

2141,078,

2162,009,

2208,250,

2250,072,

2250,104,

2208,241,

2172,085,

2165,253,

021,192,

255,169,

096,032,

229,169,

022,003,

020,003,

145,208,

009,141,

003,032,

133,178,

002,133,

096,206,

100,003,

003,208,

032,163,

042,076,

032,210,

169,017,

163,197,

255,169,

141,086,

162,127,

201,046,

240,245,

207,208,

138,010,

133,251,

252,108,

229,076,

208,002,

208,009,

238,086,

251,096,

003,032,

032,072,

096,162,

189,083,

157,083,

096,173,

003,076,

164,254,

169,018,084

157,032,093

021,253,111

223,162,089

142,023,040

174,021,168

004,224,053

096,003,214

164,200,174

169,128,180

157,162,025

142,072,061

088,000,152

003,206,253

197,162,189

077,201,209

255,169,226

141,004,221

169,046,159

000,141,153

003,141,060

154,032,192

240,249,200

162,036,030

019,141,060

170,189,221

189,182,019

251,000,089

096,192,211

162,000,198

180,252,236

003,214,170

169,000,150

019,194,153

201,202,114

002,181,085

003,149,194

003,202,253

084,003,009

244,192,238

056,229,081

230

Advanced

Memory8

49398

49404

49410

49416

49422

49428

49434

49440

49446

49452

49458

49464

49470

49476

49482

49488

49494

49500

49506

49512

49518

49524

49530

49536

49542

49548

49554

49560

49566

49572

49578

49584

49590

49596

49602

49608

49614

49620

49626

49632

49638

49644

49650

49656

49662

49668

49674

49680

49686

:251,

:252,

:169,

:032,

:032,

:231,

:193,

:254,

:003,

:231,

:254,

:032,

:176,

:178,

2070,

:251,

:129,

:032,

:032,

:032,

:240,

:028,

2096,

2 003,

2 003,

2 208,

:104,

2156,

2032,

2232,

2224,

:142,

2 144,

2032,

2103,

:208,

-.163,

:177,

2010,

2 208,

2 047,

2227,

2192,

2 196,

:225#

:197#

:032,

141#083

168,013

000,240

087,003

163,197

049,200

192,144

230,253

032,047

208,110

192,024

253,133

133,254

089,193

081,032

192,172

240,235

172,087

253,193

008,200

225,255

246,199

030,174

032,240

032,100

032,124

129,251

243,076

192,032

200,201

156,200

032,180

032,208

089,003

214,157

180,201

200,144

238,142

197,162

251,221

200,232

242,032

201,032

032,032

144,013

192,032

255,208

208,138

008,200

,003,152

,083,003

,002,169

,032,219

,032,240

,144,024

,127,032

,208,002

,201,172

,240,232

,173,083

,253,152

,032,213

,032,231

,174,192

,086,003

,162,000

,003,240

,253,240

,032,072

,240,042

,032,177

,086,003

,192,144

,200,141

,193,173

,032,047

,096,192

,116,193

,039,208

,157,101

,201,240

,243,240

,032,111

,101,003

,240,009

,200,224

,074,003

,000,160

,101,003

,236,074

,104,193

,124,193

,196,032

,160,044

,111,194

,238,032

,032,061

,032,072

,229,081

,096,099

,001,071

,199,177

,192,102

,032,245

,089,073

,230,124

,086,062

,032,101

,003,244

,101,025

,192,116

,192,069

,032,249

,208,151

,161,186

,002,079

,011,153

,201,137

,096,232

,201,235

,208,095

,023,019

,075,010

,075,228

,201,041

,076,019

,032,059

,018,218

,003,051

,032,069

,026,131

,200,253

,232,021

,032,126

,032,085

,032,141

,000,132

,208,161

,003,217

,032,023

,176,247

,240,239

,032,071

,032,249

,171,115

,201,085

,201,055

231

8Advanced

Memory

49692

49698

49704

49710

49716

49722

49728

49734

49740

49746

49752

49758

49764

49770

49776

49782

49788

49794

49800

49806

49812

49818

49824

49830

49836

49842

49848

49854

49860

49866

49872

49878

49884

49890

49896

49902

49908

49914

49920

49926

49932

49938

49944

49950

49956

49962

49968

49974

49980

:032,

:194,

:006#

:077,

:003,

:029,

:241,

:189,

:189,

:142,

:032,

:001,

:138,

:200,

:077,

:251,

:252,

:251,

:074,

:201,

:009,

2 206,

:074,

:128,

:206,

:170,

:240,

:074#

:200,

:251,

:032,

:200,

:003,

:246,

:054,

:000,

:046,

:246,

:202,

:032,

:158,

:197,

:001,

:189,

:032,

:180,

:255,

:003,

201,205,

104,032,

224,003,

003,240,

201,232,

032,101,

014,088,

233,206,

239,206,

197,202,

123,194,

200,152,

142,074,

174,074,

003,032,

132,252,

170,016,

144,001,

144,011,

034,240,

128,074,

176,004,

041,015,

169,000,

141,088,

077,003,

152,160,

011,074,

009,032,

136,208,

032,101,

206,192,

144,240,

144,241,

206,141,

207,141,

160,005,

084,003,

105,063,

208,234,

246,199,

195,160,

169,008,

162,165,

255,169,

213,243,

255,165,

169,000,

132,183,

072,032,

230,194,

208,020,

015,173,

177,251,

194,136,

003,144,

032,142,

240,003,

208,210,

170,232,

032,101,

003,032,

003,096,

122>194,

096,056,

001,136,

200,096,

074,176,

019,041,

170,189,

074,074,

208,004,

170,189,

003,041,

152,041,

003,224,

144,008,

136,208,

242,096,

194,162,

204,077,

162,003,

096,168,

084,003,

085,003,

014,085,

042,136,

032,210,

076,072,

169,003,

044,076,

133,186,

160,207,

096,133,

165,186,

185,032,

133,144,

032,165,

207,009

162,182

172,161

088,130

176,068

208,246

014,056

197,045

032,217

096,113

208,023

194,006

015,248

173,058

133,161

164,045

101,032

168,222

023,126

007,172

152,102

074,250

160,150

220,018

003,142

143,223

138,007

074,229

250,137

177,237

001,181

003,160

192,137

185,039

185,073

169,129

003,255

208,001

255,143

201,231

032,181

049,188

169,118

032,245

185,039

032,145

150,247

160,147

255,062

232

Advanced

Memory8

49986 :133,195,032,165,255,133,211

49992 2 196,164,144,208,062,164,242

49998 :183,136,208,235,166,195,177

50004 2 165,196,032,205,189,169,016

50010 2 032,032,022,231,032,165,092

50016 2 255,166,144,208,038,201,084

50022 2 000,240,024,032,022,231,139

50028 2032,225,255,240,026,032,150

50034 2 228,255,240,232,201,032,022

50040 2 208,228,032,228,255,240,031

50046 2 251,208,221,169,013,032,252

50052 2 022,231,160,002,076,061,172

50058 2 195,032,066,246,076,104,089

50064 2 192,169,204,072,169,119,045

50070 2 072,008,072,072,072,108,042

50076 2 096,003,141,075,003,072,034

50082 2 032,156,200,032,016,201,031

50088 :208,248,104,073,255,076,108

50094 2 114,194,032,032,196,174,148

50100 2 086,003,208,013,032,240,250

50106 2 192,144,008,032,200,195,189

50112 2032,225,255,208,238,076,202

50118 2 014,194,032,163,197,162,192

50124 2 046,169,058,032,030,200,227

50130 2032,072,201,032,008,200,243

50136 2 169,008,032,250,200,169,020

50142 2 008,032,171,195,032,072,220

50148 2 201,032,004,192,234,234,101

50154 2160,008,162,000,161,251,208

50160 2 072,041,127,201,032,104,049

50166 2 176,002,169,046,032,210,113

50172 2 255,169,000,133,212,032,029

50178 2047,201,136,208,231,076,133

50184 2 229,202,032,246,199,169,061

50190 2 008,032,158,195,032,171,098

50196 2 197,032,200,195,169,058,103

50202 2 141,119,002,076,061,197,110

50208 2 032,246,199,133,253,134,005

50214 2 254,032,180,201,240,003,180

50220 2032,251,199,076,163,197,194

50226 2032,065,200,133,253,134,099

50232 2 254,162,000,142,102,003,207

50238 2 032,156,200,201,032,240,155

50244 2 244,157,079,003,232,224,239

50250 2003,208,241,202,048,020,028

50256 2 189,079,003,056,233,063,191

50262 2 160,005,074,110,102,003,028

50268 2110,101,003,136,208,246,128

50274 2 240,233,162,002,032,180,179

233

8Advanced
Memory

50280

50286

50292

50298

50304

50310

50316

50322

50328

50334

50340

50346

50352

50358

50364

50370

50376

50382

50388

50394

50400

50406

50412

50418

50424

50430

50436

50442

50448

50454

50460

50466

50472

50478

50484

50490

50496

50502

50508

50514

50520

50526

50532

50538

50544

50550

50556

50562

50568

:201,

:030,

:133,

:200,

:251,

:232,

:217,

:142,

:075,

:135,

:085,

:032,

:032,

:003,

:240,

:232,

:098,

:088,

:206,

:206,

:202,

:098,

:084,

:127,

:003,

:201,

:192,

:224,

:003,

:138,

:185,

:208,

:251,

:032,

2032,

:120#

:252,

:002,

:032#

:198,

:197,

:003,

:104,

:003,

:192#

:074#

:003,

240,034,

201,032,

197,176,

164,251,

169,048,

157,101,

142,084,

086,003,

003,173,

194,174,

003,170,

101,197,

101,197,

208,020,

015,173,

169,048,

197,136,

003,144,

032,101,

240,003,

208,210,

197,032,

003,205,

032,049,

240,047,

157,208,

144,001,

152,042,

130,168,

056,176,

172,077,

252,000,

248,173,

160,065,

171,197,

111,194,

002,141,

032,148,

141,122,

148,197,

124,002,

076,104,

142,074,

221,101,

104,238,

076,149,

232,142,

003,096,

201,071,

201,058,

240,243,

015,032,

132,252,

157,101,

003,232,

003,162,

162,000,

086,003,

088,003,

189,054,

189,246,

162,006,

172,077,

088,003,

176,030,

208,241,

014,189,

197,189,

032,101,

240,006,

098,197,

075,003,

200,172,

173,085,

032,032,

136,200,

174,083,

208,003,

096,202,

003,208,

145,251,

086,003,

140,119,

032,196,

169,032,

125,002,

197,142,

002,165,

142,123,

169,007,

192,032,

003,174,

003,240,

086,003,

196,076,

075,003,

201,048,

096,056,

240,054

032,120

124,025

133,230

003,089

208,043

000,236

142,169

032,012

142,126

207,104

206,117

224,130

003,153

201,140

032,113

014,070

233,109

239,152

197,229

032,098

173,001

208,046

077,131

003,031

240,100

208,117

003,063

176,157

202,245

003,117

136,235

145,135

002,015

192,104

141,225

165,107

121,194

251,247

002,214

133,152

101,029

075,253

013,175

240,119

096,202

174,174

144,184

096,147

234

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

D
)
)
)
)
)

D
0
)
)
)
)
)
)
)
)
)
)
)
)

C
n
C
n
c
n
c
n
c
n
c
n
C
n

o
o
o
o
o
o
o

o
c
D
o
o
o
c
o
c
D
O
o

C
n
c
n

o
o

C
n
c
n
C
n
C
n

o
o
o
o

c
n
c
n
C
n

o
o
o

i
c
n
c
n
c
n
c
n
c
n
c
n
c
n
c
n
c
n
c
n
c
n
c
n
c
n
c
n
c
n
c
n
c
n

t
S
i

S
i

S
I

S
I

S
I

(S
i
S
i

S
i

S
i

S
i

S
i

S
i

S
i

S
i

S
i

S
i

S
i

i
o
n

o
n

o
n

o
n

o
n

o
n
O
N
O
N
O
N
O
N
O
N
O
N
c
n
c
n
c
n

c
n

c
n

>
O
i
^
O
O
t
O
O
N
S
)
i
^
O
O
t
O
O
N
O
£
*
O
O
t
O
O
N
S
l
£
f
c

t
o

O 0
0

s
>

r
o

O
N

V
O

M t
o

0
0

,
_
,

4*
>

Q t
o

O
o

O
O

C
O

M t
o

o v
o
c
n

S
)
O C
O

M O
N

V
O

S
I

O
N

C
O

»
^

4
^

o V
O

C
O

O O C
O

M o V
O

M O
N

V
O

S
I
o t
o
^ o o 0
0

M ^
1

C
O

o V
O

t
o

o c
n

0
0

M O
N

t
o

o 0
0
c
o

o O
N

o v
O
M M v
o

t
o

o o C
O

,
_
,

O
N

c
n

M •
^
c
n

t
o

O M t
o

t
o

O 0
0

o o t
o

o O
N

o V
O
c
n

O O C
O

t
o

O O
N

S
I
V
O

M O
N

v
O

O O M o t
o

S
I
o C
O

t
o

o 0
0

o M v
O
t
o

t
o

S
i

•-
1

Q t
o

O 0
0

O

t
o

c
n

H
1

t
o

O O o C
O

t
o

O 0
0

o o C
O

Q O
N

s
>
M

t
O
O
N

r
o
v
o

M V
O

o C
O

r
o

r
o

r
o

0
0

r
o

c
n

c
n

r
o

i
^

O

r
o

c
n

*-
*

M

C
O

C
O

O
N

*-
*

0
0

S
)
O

*
>

r
o

c
n

r
o

O C
O

r
o

S
i

c
o

r
o

Q C
O

r
o

t
o

O

o O
N

*-
*

S
i

o C
O

M *
>

o O
N

o S
I

S
)

C
O

M C
O

C
O

M O
N

o o Q O S
i
C
O

r
o

S
I

s
t

t
o

t
o

o *-
•

M C
O

o C
O

r
o

s
i
C
O

O
N

r
o

S
)

*-
•

M 4^
>

»-
•

S
t

c
n

Q S
i
C
O

o O
N

o r
o

r
o

M v
o

v
o

Q C
O

r
o

M O
N

C
O

M V
O

M O
N

v
O

*
-
•

V
O

O t
o

M O
N

v
O

0
0

O
N

o r
o

,
_
,

4
^

t
o

I
—
'

O s
>
O
N

O
N

S
J

o C
O

M c
n

*»
»

O S
i
C
O

S
i
i
^

0
0

S
I

J
—
•

0
0

o 0
0

t
o

S
I

o C
O

t
o

S
i
0
0

o 0
0

C
O

M O
N

v
o

H-
1

r
o

0
0

•
^

I-
1

o t
o

o o C
O

r
o

o 0
0

s
i
v
o

*-
*

M C
O

o v
o

c
n

o o C
O

o V
O

S
I

o o C
O

r
o

o 0
0

o v
o

v
O

M «
s
j

C
O

o V
O

r
o

o 0
0

o ^
1

M C
O

M C
O

o O
N

o o S
I
C
O

O
t
o

O
N
O

o o C
O

t
o

o c
n

c
n

o V
O

I-
1

Q o C
O

M v
o
r
o

o o t
o

o o C
O

o 0
0

o o C
O M

S
I

4
^

»-
•

o 1
—
•

O
N

r
o

S
I

o o C
O

o O
N

o 0
0

S
I
O
N

O
N

o o C
O

o 0
0

0
0

M c
o

o O
N

r
o

o o c
o

o o C
O

l
-
l

o O
N

o o C
O

M 0
0
O
N

M t
o

S
I

o c
o

M »£
»

I-
4

o O
N

0
0

o o

o »-
•

o O
N

o o o
C
O
C
O

M C
O

o r
o M

l
_
l

x
j

C
O

o O
N

t
o

s
>
o C
O

M *-
•

o O
N

o
o

r
o

o
o C
O

o I-
1

O
N

c
o

o o C
O

M o M

o O
N

c
n

o o C
O

o 4
^

1
-

4
^

»-
"

o O
N

o o C
O

o C
O

r
o

r
o

t
o

*-
■

r
o

c
n

C
O

t
o

O
N

o *
>

M •
^ M

S
I

o C
O

r
o

o 0
0

o C
O

o

o O
N

o

o O
N

I-
1

o
o

o
o

c
o

c
o

M O
N

v
O

M

c
o

r
o

t
o

I
_
J

O
N

4
^

t
o

o

0
0

M I-
1

o t
o

I
-
1

o 4
^

o c
n

o S
i
o I
-
1

•
^ M

S
I

o C
O

l
-
l

o o t
o

4
^

M o c
n

o o l
_
.

o o c
o

t
o

o O
N

4
^

o o C
O

h
-
1

4
^

S
I

S
I

O
N

c
n

o o 0
0

I
-
.

o o »-
•

t
o

C
O

V
O

M S
I
O
N

t
o

o v
o

O
N

r
o

C
O

t
o

C
O

£
>

•
^

*-
*

o O
N

c
o

o o C
O

t
o

o 0
0

o o v
o

o I
-
1

O
N

M •£
*
M o I
—
"

t
o

o 0
0

M •
^

c
n

o C
O

t
o

t
o

1
—
*

o t
o

c
n

c
n

(
-
.

•
v
j

C
O

S
i

1
—
•

t
o

S
i

t
o

c
n

c
n

M O
N

v
o

o o S
I

H
i

O
N

v
o

o O
N

S
)
c
o

v
o

t
o

o

o C
O

v
o

t
o

o o t
-
l

o
o

M O
n

v
o

o 1
—
'

C
O

o c
o

t
o

,
_
,

o *
>

Q o 1
—
»

c
n

o t
o

o 4
^

S
I

4
^

O 4s
*

O O C
O

t
o

t
o

S
i
c
n

O 0
0

S
I
o C
O

t
o

o 0
0

o r
o

O
N

o v
o

O
N

s
i

i
i
I
I 0
0

8Advanced

Memory

50868

50874

50880

50886

50892

50898

50904

50910

50916

50922

50928

50934

50940

50946

50952

50958

50964

50970

50976

50982

50988

50994

51000

51006

51012

51018

51024

51030

51036

51042

51048

51054

51060

51066

51072

51078

51084

51090

51096

51102

51108

51114

51120

51126

51132

51138

51144

51150

51156

:003,

:201,

:200,

:201,

:173,

:000,

:016,

1141,

:012,

:250,

:220,

:220,

2014,

:174,

:068,

:168,

:173#

:003,

:064,

:076,

:169,

:093,

:092,

:104,

2 098,

:082,

2 080,

:081,

2180,

2255,

2078,

:086,

2192,

2208,

2194,

2 006,

2192,

:208,

2003,

:237#

:237f

:173,

:173#

:016,

:003#

:109#

:047#

032#180,

032,208,

032,243,

208,099,

072,003,

173,017,

240,016,

017,208,

202,208,

120,169,

142,005,

041,128,

220,169,

068,003,

066,003,

003,174,

200,173,

061,003,

072,173,

003,172,

096,192,

090,003,

000,141,

003,032,

003,142,

192,032,

003,142,

200,141,

003,032,

003,142,

201,240,

201,087,

003,032,

003,208,

144,019,

026,177,

170,189,

032,196,

172,077,

051,240,

136,056,

079,003,

080,003,

081,003,

082,003,

136,024,

145,251,

099,003,

201,136,

201,240,

110,032,

200,032,

032,163,

240,055,

208,168,

152,041,

234,234,

253,136,

084,141,

220,173,

009,017,

223,162,

142,067,

154,120,

067,003,

060,003,

072,173,

063,003,

065,003,

032,065,

142,091,

092,003,

082,200,

093,003,

219,199,

099,003,

079,003,

082,200,

082,003,

010,032,

208,003,

049,200,

024,032,

172,078,

251,032,

246,206,

192,076,

003,192,

003,140,

177,251,

200,177,

144,030,

241,251,

241,251,

138,109,

200,177,

145,251,

016,250,

015,083

085,086

180,055

197,074

162,141

041,049

239,152

160,192

208,223

004,234

014,246

141,034

197,213

003,170

173,186

032,105

072,184

062,058

174,008

064,153

200,193

003,008

141,090

141,101

076,221

141,193

032,201

142,221

141,118

032,185

207,206

238,078

174,140

231,194

003,224

135,195

208,073

104,240

002,022

077,109

170,189

251,093

136,038

200,107

144,058

098,203

251,203

032,077

048,142

236

Advanced

Memory8

51162 :158,032,065,200,133,253,03s

51168 :134,254,032,082,200,141,043
51174 :084,003,142,085,003,032,067

51180 :156,200,032,085,200,133,018

51186 :251,134,252,096,032,065,048

51192 :200,176,246,032,085,200,163
51198 :176,003,032,082,200,133,112

51204 :253,134,254,096,165,252,134

51210 :032,015,200,165,251,072,233

51216 .-074,074,074,074,032,039,127

51222 :200,170,104,041,015,032,072

51228 :039,200,072,138,032,210,207

51234 :255,104,076,210,255,024,190

51240 :105,246,144,002,105,006,136

51246 :105,058,096,162,002,181,138

51252 :250,072,181,252,149,250,182

51258 :104,149,252,202,208,243,192

51264 :096,169,000,141,089,003,050

51270 :032,156,200,201,032,240,163

51276 :249,032,124,200,176,008,097

51282 :032,156,200,032,103,200,037

51288 :144,007,170,032,103,200,232

51294 :144,001,096,076,096,192,187

51300 :032,116,193,169,000,141,239

51306 :089,003,032,156,200,201,019

51312 :032,208,009,032,156,200,237

51318 :201,032,208,015,024,096,182

51324 :032,145,200,010,010,010,019

51330 :010,141,089,003,032,156,049

51336 :200,032,145,200,013,089,047

51342 :003,056,096,201,058,008,052

51348 :041,015,040,144,002,105,239

51354 :008,096,032,180,201,208,111

51360 :250,076,101,192,169,145,069

51366 :162,195,141,020,003,142,061

51372 :021,003,096,032,180,201,193

51378 :240,055,032,246,199,165,091

51384 :251,005,252,240,034,165,107

51390 :154,201,003,208,158,165,055

51396 :251,141,147,002,165,252,130

51402 :141,148,002,169,002,170,066

51408 :168,032,186,255,032,192,049

51414 2 255,162,002,032,201,255,097

51420 :076,117,192,169,002,032,040

51426 :195,255,169,003,133,154,111

51432 :076,104,192,165,154,201,100

51438 :003,240,220,208,241,141,011

51444 :061,003,142,060,003,096,097

51450 :141,075,003,160,000,032,149

237

8Advanced

Memory

51456

51462

51468

51474

51480

51486

51492

51498

51504

51510

51516

51522

51528

51534

51540

51546

51552

51558

51564

51570

51576

51582

51588

51594

51600

51606

51612

51618

51624

51630

51636

51642

51648

51654

51660

51666

51672

51678

51684

51690

51696

51702

51708

51714

51720

51726

51732

51738

51744

2072,

:200,

2 003,

:200,

:251,

:047,

:169,

2133,

:251,

:252#

:096,

:104,

2169,

:030,

2 207,

:028,

2061,

2015,

2015,

:067,

2068,

2036,

2 104,

2065,

2 082,

2067,

2075,

2016,

2032,

2 249,

2032,

2160,

2162,

2255,

2073,

2032,

2251,

2 041,

2 207,

2 145,

2081,

2 180,

2 200,

2186,

2169,

2 003,

2251,

2216,

2076,

201,177,

032,047,

208,240,

144,008,

193,251,

201,206,

062,133,

252,169,

208,009,

208,003,

152,072,

162,046,

032,076,

200,162,

032,210,

208,245,

201,173,

200,173,

200,032,

003,032,

003,032,

201,032,

192,076,

200,032,

200,141,

003,032,

003,032,

201,208,

207,255,

208,006,

207,255,

001,132,

101,160,

168,032,

003,201,

180,201,

199,032,

201,034,

255,201,

187,230,

144,240,

201,240,

041,031,

032,168,

000,133,

201,083,

166,253,

255,076,

240,002,

251,032,015,236

201,206,075,255

096,032,103,182

162,000,129,149

208,105,032,040

075,003,096,146

251,169,003,055

005,096,230,159

230,255,230,207

238,086,003,076

032,163,197,004

032,030,200,128

210,255,032,078

000,189,118,009

255,232,224,220

160,059,032,054

060,003,032,114

061,003,032,074

072,201,173,033

015,200,173,092

015,200,032,214

250,200,076,153

096,192,032,056

243,200,032,142

068,003,142,012

036,201,141,118

156,200,032,142

248,240,219,014

201,032,240,111

032,000,200,101

201,013,096,216

186,169,000,066

003,032,189,071

246,199,173,247

083,208,008,012

240,175,032,046

168,201,240,027

208,163,032,133

034,240,011,152

183,200,192,091

176,145,032,034

014,032,103,248

240,133,133,006

201,208,217,246

185,173,073,229

208,012,169,178

164,254,032,116

104,192,073,174

169,001,166,174

238

Advanced

51750

51756

51762

51768

51774

51780

51786

51792

51798

51804

51810

51816

51822

51828

51834

51840

51846

51852

51858

51864

51870

51876

51882

51888

51894

51900

51906

51912

51918

51924

51930

51936

51942

51948

51954

51960

51966

51972

51978

51984

51990

51996

52002

52008

52014

52020

52026

52032

52038

:251

:165

:169

:199

:192

:201

2 200

:192

:173

2 008

2 003

2076

2032

2076

2162

2 200

2 202

2 201

2 202

2169

2046

2210

2 165

2 003

2201

2165

2138

2176

2255

2138

2133

2 146

2201

2 205

2065

2 200

2192

2252

2 203

2032

2 008

2032

2032

2011

2015

2076

2252

2251

,164,

,144,

,105,

,076,

,032,

,032,

,032,

,032,

,144,

,083,

,200,

,016,

,104,

,246,

,104,

,046,

,032,

,032,

,032,

,032,

,048,

,085,

,255,

,252,

,142,

,165,

,251,

,041,

,010,
,138,

,032,

,212,

,076,

,166,

,189,

,032,

,032,

,162,

,032,

,133,

,061,

,032,

,180,

,240,

,201,

,096,

,096,

,072,

,038,

252,032,

041,016,

160,163,

096,192,

165,192,

246,199,

047,201,

072,201,

010,152,

003,048,

208,011,

006,032,

192,076,

199,032,

192,032,

169,036,

008,200,

176,202,

150,202,

072,201,

024,014,

003,105,

202,208,

166,251,

084,003,

252,032,

170,032,

127,201,

169,018,

024,105,

210,255,

040,176,

210,255,

251,165,

032,005,

072,201,

141,202,

004,169,

194,203,

251,032,

203,202,

072,201,

201,240,

011,201,

058,176,

104,104,

192,133,

165,251,

252,006,

213,255,181

240,234,116

032,030,197

032,246,101

076,104,062

032,047,048

032,000,075

032,240,089

208,021,045

016,016,175

173,083,013

015,200,120

096,192,078

138,202,197

163,197,118

032,030,091

032,234,072

032,072,088

032,153,148

162,004,057

084,003,244

000,032,179

239,096,100

141,085,212

032,072,006

196,202,212

072,201,061

032,008,235

032,210,053

064,170,200

169,000,254

202,169,132

032,072,253

252,076,067

203,176,028

032,008,146

076,104,241

000,133,152

032,043,254

034,203,104

208,247,207

040,096,221

015,201,135

048,144,204

007,041,028

024,096,235

254,165,206

072,006,114

251,038,138

239

8Advanced

Memory

52044 2 252,104,101,251,133,251,144

52050 :104,101,252,133,252,006,162

52056 :251,038,252,165,254,101,125

52062 :251,133,251,169,000,101,231

52068 :252,133,252,096,032,194,035

52074 :203,141,085,003,072,072,170

52080 -.032,072,201,032,072,201,210

52086 :104,032,015,200,032,072,061

52092 :201,104,170,169,000,032,032

52098 :241,202,032,072,201,032,142

52104 :150,202,076,104,192,032,124

52110 :159,203,032,072,201,032,073

52116 :008,200,032,234,202,032,088

52122 2 176,202,076,104,192,162,042

52128 2 015,169,000,133,251,133,093

52134 2 252,032,194,203,032,043,154

52140 2 203,032,188,203,032,034,096

52146 2203,032,188,203,202,208,190

52152 2 247,076,072,201,074,038,124

52158 2 251,038,252,096,032,156,247

52164 2 200,201,032,240,249,096,190

52170 2 169,015,141,024,212,169,164

52176 2 000,141,005,212,169,240,207

52182 2 162,068,160,149,141,006,132

52188 2 212,142,001,212,140,000,159

52194 2 212,076,101,192,000,032,071

52200 2000,200,076,235,199,032,206

52206 2 231,203,024,165,251,101,189

52212 2 253,133,251,165,252,101,119

52218 2 254,133,252,076,013,204,158

52224 2032,231,203,032,240,192,162

52230 2 132,252,173,083,003,133,014

52236 2 251,032,072,201,032,008,096

52242 2 200,076,104,192,169,000,247

52248 2 170,168,141,024,212,076,047

52254 2 218,203,000,120,032,021,112

52260 2 253,088,169,060,133,178,149

52266 2 174,066,003,154,165,115,207

52272 2 201,230,240,149,108,000,208

52278 2 160,032,231,203,032,049,249

52284 2 200,032,072,201,160,000,213

52290 2140,084,003,140,085,003,009

52296 2032,240,192,144,027,172,111

52302 2086,003,208,022,024,177,086

52308 2 251,109,084,003,141,084,244

52314 2003,152,109,085,003,141,071

52320 2085,003,032,047,201,076,028

52326 2 072,204,173,085,003,032,159

52332 2015,200,173,084,003,032,103

240

Advanced

Memory8

52338 :015,200,076,104,192,173,106

52344 :100,003,208,004,165,198,030

52350 :208,003,076,129,234,173,181

52356 :119,002,201,017,208,125,036

52362 :165,214,201,024,208,240,166

52368 :165,209,133,253,165,210,255

52374 :133,254,169,025,141,094,198

52380 :003,160,001,032,084,206,130

52386 :201,058,240,026,201,044,164

52392 :240,022,201,036,240,018,157

52398 :206,094,003,240,205,056,210

52404 :165,253,233,040,133,253,233

52410 :176,225,198,254,208,221,188

52416 :141,073,003,032,013,206,148

52422 :176,184,173,073,003,201,240

52428 :058,208,017,024,165,251,159

52434 :105,008,133,251,144,002,085

52440 :230,252,032,200,195,076,177

52446 :244,204,201,036,240,026,149

52452 :032,201,205,032,111,194,235

52458 :169,000,141,078,003,160,017

52464 :044,032,019,194,169,000,186

52470 :133,198,076,014,194,076,169

52476 :129,234,032,047,201,032,159

52482 :125,202,076,244,204,201,030

52488 :145,208,240,165,214,208,164

52494 :236,165,209,133,253,165,151

52500 :210,133,254,169,025,141,184

52506 :094,003,160,001,032,084,144

52512 :206,201,058,240,026,201,196

52518 :044,240,022,201,036,240,053

52524 :018,206,094,003,240,021,114

52530 :024,165,253,105,040,133,002

52536 :253,144,225,230,254,208,090

52542 :221,141,073,003,032,013,033

52548 :206,144,003,076,129,234,092

52554 :173,073,003,201,058,240,054

52560 :006,201,036,240,029,208,032

52566 :039,032,208,205,056,165,023

52572 :251,233,008,133,251,176,120

52578 :002,198,252,032,203,195,212

52584 :169,000,133,198,032,008,132

52590 :206,076,112,192,032,208,168

52596 :205,032,178,192,032,128,115

52602 :202,076,104,205,032,208,181

52608 :205,165,251,166,252,133,020

52614 :253,134,254,169,016,141,077

52620 -.094,003,056,165,253,237,180

52626 :094,003,133,251,165,254,022

241

8Advanced

Memory

52632

52638

52644

52650

52656

52662

52668

52674

52680

52686

52692

52698

52704

52710

52716

52722

52728

52734

52740

52746

52752

52758

52764

52770

52776

52782

52788

52794

52800

52806

52812

52818

52824

52830

52836

52842

52848

52854

52860

52866

52872

52878

52884

52890

52896

52902

52908

52914

52920

:233,

:205,

:192,

:094,

:003,

:195,

:078,

:201,

:205,

:135,

:205,

:134,

:134,

:160,

:172,

:198,

:241,

:254,

:253,

:076,

:002,

:201,

:061,

:133,

:207,

:207,

:032,

:206,

:003,

:127,

:064,

:210,

:000,

:017,

:032,

:079,

:052,

:080,

:032,

:032,

:069,

:048#

:064,

:208#

:069,

:000,

000,133

032,111

240#007

003,208

173,077

162,000

003,169

032,022

162,000

194,166

166,244

173,134

172,169

192,162

145,253

173,198

169,032

132,253

136,016

210,255

056,096

032,240

206,170

251,134

100,003

240,010

145,209

024,096

145,200

141,089

032,145

096,177

201,032

096,189

255,232

000,000

032,032

032,077

077,079

032,032

085,084

066,079

032,032

003,208

034,069

009,064

008,064

179,208

034,068

,252,

,194,

,176,

,224,

,003,

,161,

,044,

,194,

,161,

,210,

,232,

,254,

,040,

,003,

,152,

,254,

,166,

,160,

,251,

,192,

,032,

,243,

,032,

,252,

,133,

,165,

,169,

,032,

,010,
,003,

,200,

,253,

,176,

,152,

,208,

,000,

,018,

,073,

,078,

,067,

,069,

,079,

,032,

,008,

,051,

,002,

,009,

,008,

,051,

032,201,235

032,240,204

243,206,204

238,077,246

032,171,123

251,142,069

032,067,069

076,104,055

251,076,031

032,215,134

232,232,243

162,000,051

133,253,101

136,177,036

208,248,134

202,016,003

210,134,176

039,145,213

169,019,080

040,208,223

084,206,236

136,032,138

061,206,252

169,255,204

204,165,018

206,164,014

000,133,151

084,206,195

010,010,215

032,084,173

013,089,249

200,041,084

002,009,123

205,032,064

247,096,068

000,147,253

032,032,019

067,082,225

045,054,024

079,077,213

033,032,007

075,083,044

064,002,086

064,009,003

208,008,066

069,051,169

064,002,015

064,009,203

208,140,173

242

Advanced

Memory

52926

52932

52938

52944

52950

52956

52962

52968

52974

52980

52986

52992

52998

53004

53010

53016

53022

53028

53034

53040

53046

53052

53058

53064

53070

53076

53082

53088

53094

53100

53106

53112

53118

53124

53130

53136

53142

53148

53154

53160

53166

53172

53178

53184

53190

53196

53202

53208

53214

:068,

:208,

:068,

:016,

2064,

:000,

2089,

:133,

:040,

2036,

:093,

:029,

:000,

2025,

2036,

2091,

2174,

2124,

2165,

:052,

2216,

2104,

2 008,

2164,

2116,

2178,

2026,

:136#

2068,

2032,

2032,

2 083,

:088,

2083,

2070,

2 081,

2 044,

2043,

2038,

2255,

2196,

2193,

2193,

2199,

2 203,

2204,

2 201,

000,017,

140,068,

051,208,

034,068,

009,098,

033,129,

077,145,

157,044,

036,089,

000,028,

139,027,

035,157,

041,025,

035,036,

083,025,

091,165,

174,168,

000,021,

105,041,

017,165,

098,090,

136,084,

068,232,

132,116,

244,204,

138,000,

116,116,

050,178,

026,038,

200,196,

068,162,

032,032,

073,082,

082,032,

082,032,

080,065,

071,072,

082,040,

058,059,

045,079,

069,086,

186,201,

047,199,

135,193,

186,201,

160,198,

006,193,

012,195,

116,202,

034,068

154,016

008,064

051,208

019,120

130,000

146,134

041,044

000,088

138,028

161,157

139,029

174,105

083,027

161,000

105,036

173,041

156,109

083,132

105,035

072,038

068,200

148,000

180,040

074,114

170,162

114,068

000,034

038,114

202,038

200,013

080,067

081,032

065,067

089,082

066,067

076,077

084,087

036,035

073,074

041,062

175,200

002,193

156,198

176,195

080,201

176,198

010,196

244,202

,051,172

,034,048

,009,098

,008,081

,169,181

,000,000

,074,123

,035,174

,036,015

,035,253

,138,197

,161,038

,168,007

,035,253

,026,093

,036,036

,000,248

,156,090

,019,075

,160,070

,098,154

,084,012

,180,030

,110,146

,242,048

,162,112

,104,212

,000,024

,114,202

,072,184

,032,145

,032,139

,032,202

,032,237

,032,031

,068,061

,078,082

,088,106

,034,172

,037,007

,255,213

,050,223

,249,048

,160,203

,076,201

,202,220

,042,004

,137,202

,104,011

243

8Advanced

Memory

53220 :203,237,203,000,204,069,120

53226 :202,096,192,060,202,141,103

53232 :203,055,204,033,204,186,101

53238 :201,022,204,025,195,096,221

53244 :192,096,192,255,000,000,219

244

Appendix A

Using the

Machine
Language

Editor:
MLX

AppendixA

using the
Machine
Language Editor:
MLX
Charles Brannon

Remember the last time you typed in the BASIC loader for a long

machine language program? You typed in hundreds of numbers

and commas. Even then, you couldn't be sure if you typed it in

right. So you went back, proofread, tried to run the program,

crashed, went back and proofread again, corrected a few typing

errors, ran again, crashed again, rechecked your typing... Frus

trating, wasn't it?

Until now, though, that has been the best way to get machine

language into your computer. Unless you happen to have an

assembler and are willing to wrangle with machine language on

the assembly level, it is much easier to enter a BASIC program

that reads DAIA statements and POKEs the numbers into

memory.

Some of these "BASIC loaders" will use a checksum to see if

you've typed the numbers correctly. The simplest checksum is

just the sum of all the numbers in the DATA statements. If you

make an error, your checksum will not match up with the total.

Some programmers make your task easier by including check

sums every few lines, so you can locate your errors more easily.

Now, MLX comes to the rescue. MLX is a great way to enter

all those long machine language programs with a minimum of

fuss. MLX lets you enter the numbers from a special list that looks

similar to DAIA statements. It checks your typing on a line-by-line

basis. It won't let you enter illegal characters when you should be

typing numbers. It won't let you enter numbers greater than 255.

247

AAppendix

It will prevent you from entering the numbers on the wrong line.

In short, MLX will make proofreading obsolete.

Tape or Disk copies
In addition, MLX will generate a ready-to-use copy of your

machine language program on tape or disk. You can then use the

LOAD command to read the program into the computer, just like

a BASIC program. Specifically, you enter:

LOAD "program name",1,1 (for tape)

or

LOAD "program name",8,l (for disk)

To start the program, you need to enter a SYS command that

transfers control from BASIC to your machine language program.

The starting SYS will always be given in the article which presents

the machine language program in MLX format.

Using MLX
Type in and SAVE MLX (you'll want to use it in the future). When

you're ready to type in the machine language program, RUN

MLX. MLX will ask you for two numbers: the starting address

and the ending address. For Micromon-64, these numbers should

be: 49152 and 53247 respectively.

You'll then get a prompt showing the specified starting

address. (For Micromon-64, the prompt will be: 49152)

The prompt is the current line you are entering from the

MLX-format listing. Each line is six numbers plus a checksum. If

you enter any of the six numbers wrong, or enter the checksum

wrong, the 64 will sound a buzzer and prompt you to reenter the

entire line. If you enter the line correctly, a pleasant bell tone will

sound and you may go on to enter the next line.

A Special Editor
You are not using the normal Commodore 64 BASIC editor with

MLX. For example, it will only accept numbers as input. If you

need to make a correction, press the INST/DEL key; the entire

number is deleted. You can press it as many times as necessary,

back to the start of the line. If you enter three-digit numbers as

listed, the computer will automatically print the comma and go

on to accept the next number in the line. If you enter less than

three digits, you can press either the comma, space bar, or

RETURN key to advance to the next number. The checksum will

automatically appear in inverse video; don't worry — it's high

lighted for emphasis.

248

AppendixA

When testing it, I've found MLX to be an extremely easy way

to enter long listings. With the audio cues provided, you don't

even have to look at the screen if you're a touch-typist.

Done at Last!
When you get through typing, assuming you type your machine

language program all in one session, you can then save the com

pleted and bug-free program to tape or disk. Follow the instruc

tions displayed on the screen. If you get any error messages while

saving, you probably have a bad disk, or the disk was full, or you

made a typo when entering the MLX program. (Sorry, MLX can't

check itself!)

Command Control
What if you don't want to enter the whole program in one sitting?

MLX lets you enter as much as you want, save the completed por

tion, and then reload your work from tape or disk when you

want to continue. MLX recognizes these few commands:

SHIFT-S: Save

SHIFT-L: Load

SHIFT-N: New Address

SHIFT-D: Display

Hold down SHIFT while you press the appropriate key. You

will jump out of the line you've been typing, so I recommend you

do it at a new prompt. Use the Save command to store what

you've been working on. It will write the tape or disk file as if

you've finished. Remember what address you stop on. The next

time you RUN MLX, answer all the prompts as you did before,

then insert the disk or tape containing the stored file. When you

get to the entry prompt (49152: for Micromon-64), press SHIFT-L

to reload the file into memory. You'll then use the New Address

command (SHIFT-N) to resume typing.

New Address and Display
After you press SHIFT-N, enter the address where you previously

stopped. The prompt will change, and you can then continue

typing. Always enter a New Address that matches up with one of

the line numbers in the special listing, or else the checksums

won't match up. You can use the Display command to display a

section of your typing. After you press SHIFT-D, enter two

addresses within the line number range of the listing. You can

stop the display by pressing any key.

249

AAppendix

Tricky Stuff
The special commands may seem a little confusing, but as you

work with MLX, they will become valuable. For example, what if

you forgot where you stopped typing? Use the Display command

to scan memory from the beginning to the end of the program.

When you see a bunch of 170's, stop the listing (press a key) and

continue typing where the 170's start. Some programs contain

many sections of 170's. To avoid typing them, you can use the

New Address command to skip over the blocks of 170's. Be care

ful, though; you don't want to skip over anything you should type.

You can use the Save and Load commands to make copies of

the completed machine language program. Use Load command

to reload the tape or disk, then insert a new tape or disk and use

the Save command to create a new copy.

One quirk about tapes made with the MLX Save command:

when you load them, the message "FOUND program" may ap

pear twice. The tape will load just fine, however.

Programmers will find MLX to be an interesting program

which protects the user from most typing mistakes. Some screen

formatting techniques are also used. Most interesting is the use of

ROM Kernal routines for LOADing and SAVEing blocks of mem

ory. To use these routines, just POKE in the starting address (low

byte/high byte) into memory locations 251 and 252 and POKE the

ending address into locations 254 and 255. Any error code for the

SiWE or LOAD can be found in location 253 (an error would be a

code less than ten).

I hope you will find MLX to be a true labor-saving program.

Since it has been tested by entering actual programs, you can

count on it as an aid for generating bug-free machine language.

Be sure to save MLX; it will be used for future applications in

COMPUTE! Magazine, COMPUTED Gazette and COMPUTE!

Books.

Machine Language Editor (MLX)

100 PRINTM{CLR}{RED}M;CHR$(142);CHR$(8)7:

POKE53281,1:POKE53280/1

101 POKE 788,52:REM DISABLE RUN/STOP

110 PRINT"{RVS}{40 SPACES}";
120 PRINT"{RVS}{15 SPACES}{RIGHT}{OFF}

B*i£{RVS}{RIGHT} {RIGHT}{2 SPACES}
B*iTOFF}g*i£{RVS}£{RVS}

{13 SPACES}""";

250

AppendixA

130 PRINT"{RVS}{15 SPACES}{RIGHT} gG^

{RIGHT} {2 RIGHT} {0FF}£{RVS}£g*3
{OFF}g*3{RVS}{l3 SPACEST";

140 PRINT"{RVS}{40 SPACES}"

150 V=53248:POKE2040,13:POKE2041,13:FORI=

832TO894:POKEI,255:NEXT:POKEV+27,3

160 POKEV+21,3:POKEV+39,2:POKEV+40,2:POKE

V,144:POKEV+1,54:POKEV+2,192:POKEV+3,

54

170 POKEV+29,3

180 FORI=0TO23:READA:POKE679+I,A:POKEV+39

,A:POKEV+40,A:NEXT

185 DATA169,251,166,254,164,255,32,216,25

5,133,253,96

187 DATA169,0,166,251,164,252,32,213,255,
133,253,96

190 POKEV+39,7:POKEV+40,7

200 PRINT"{2 DOWN}{PUR}{BLK}{3 SPACES}A F
AILSAFE MACHINE LANGUAGE EDITOR

{5 DOWN}"

210 PRINT"g53{2 UPjSTARTING ADDRESS?

{8 SPACES}{9 LEFT}";:INPUTS:F=1-F:C$=
CHR$(31+119*F)

220 IFS<256OR(S>40960ANDS<49152)ORS>53247

THENGOSUB3000:GOTO210

225 PRINT:PRINT:PRINT

230 PRINT"g53{2 UP}ENDING ADDRESS?

{8 SPACES}{9 LEFT}";:INPUTE:F=1-F:C$=
CHR$(31+119*F)

240 IFE<256OR(E>40960ANDE<49152)ORE>53247

THENGOSUB3000:GOTO230

250 IFE<STHENPRINTC$;"{RVS}ENDING < START
{2 SPACES}":GOSUB1000:GOTO 230

260 PRINT:PRINT:PRINT

300 PRINT"{CLR}";CHR$(14):AD=S:POKEV+21,0

310 PRINTRIGHT?("0000"+MID$(STR$(AD),2),5

);":";:FORJ=1TO6

320 GOSUB570:IFN=-1THENJ=J+N:GOTO320

390 IFN=-211THEN 710

400 IFN=-204THEN 790

410 IFN=-206THENPRINT:INPUT"{DOWN}ENTER N

EW ADDRESS";ZZ

415 IFN=-206THENIFZZ<SORZZ>ETHENPRINT"

{RVSjOUT OF RANGE":GOSUB1000:GOTO410

417 IFN=-206THENAD=ZZ:PRINT:GOTO310

420 IF NO-196 THEN 480

430 PRINT:INPUT"DISPLAY:FROM";F:PRINT,"TO

";:INPUTT

251

AAppendix

440 IFF<SORF>EORT<SORT>ETHENPRINT"AT LEAS

T"7S7"{LEFT}, NOT MORE THAN" ;E:GOTO43

0

450 FORI=FTOTSTEP6:PRINT:PRINTRIGHT?("000

0M+MID$(STR$(I),2),5);":";

451 FORK=0TO5:N=PEEK(I+K):PRINTRIGHT$("00

11 +MID$ (STR$ (N) , 2) , 3) ; " , " ; -

460 GETA$:IFA$>""THENPRINT:PRINT:GOTO310

470 NEXTK:PRINTCHR$(20);:NEXTI:PRINT:PRIN

T:GOTO310

480 IFN<0 THEN PRINT:GOTO310

490 A(j)=N:NEXTJ

500 CKSUM=AD-INT(AD/256)*256:FORI=1TO6:CK

SUM=(CKSUM+A(I))AND2 5 5:NEXT

510 PRINTCHR$(IB);:GOSUB570:PRINTCHR$(20)

515 IFN=CKSUMTHEN530

520 PRINT:PRINT"LINE ENTERED WRONG 2 RE-E

NTER":PRINT:GOSUB1000:GOTO310

530 GOSUB2000

540 FORI=1TO6:POKEAD+I-1,A(I):NEXT:POKE54

272,0:POKE54273,0

550 AD=AD+6:IF AD<E THEN 310

560 GOTO 710

570 N=0:Z=0

580 PRINT"g+3";

581 GETA$:IFA$=""THEN581

585 PRINTCHR$(20);:A=ASC(A$):IFA=13ORA=44

ORA=32THEN670

590 IFA>128THENN=-A:RETURN

600 IFA<>20 THEN 630

610 GOSUB690:IFI=1ANDT=44THENN=-1:PRINT"

{LEFT} {LEFT}";:GOTO690

620 GOTO570

630 IFA<48ORA>57THEN580

640 PRINTA$;:N=N*10+A-48

650 IFN>255 THEN A=20:GOSUB1000:GOTO600

660 Z=Z+1:IFZ<3THEN580

670 IFZ=0THENGOSUB1000:GOTO570

680 PRINT"f";:RETURN

690 S%=PEEK(209)+256*PEEK(210)+PEEK(211)

691 FORI=1TO3:T=PEEK(S%-I)

695 IFT<>44ANDT<>58THENPOKES%-I,32:NEXT

700 PRINTLEFT$("{3 LEFT}",1-1);:RETURN
710 PRINT"{CLR}{RVS}*** SAVE ***{3 DOWN}"

720 INPUT"{DOWN} FILENAME";F$

7 30 PRINT:PRINT"{2 DOWN}{RVS}t{OFF}APE OR

{RVS}D{OFF}ISK: (T/D)"

740 GETA$:IFA$<>"T"ANDA$<>"D"THEN740

750 DV=1-7*(A$="D"):IFDV=8THENF$="0:"+F$

252

Appendix

760 OPEN 1,DV,1,F$:POKE252,S/256:POKE251,

S-PEEK(252)*256

765 POKE255,E/256:POKE254,E-PEEK(255)*256
770 POKE253,10:SYS 679:CLOSEl:IFPEEK(253)

>9ORPEEK(253)=0THENPRINT"{DOWN}DONE."
:END

780 PRINT"{DOWN}ERROR ON SAVE.{2 SPACES}T

RY AGAIN.":IFDV=1THEN720

781 OPEN15,8,15:INPUT#15,DS,DS$:PRINTDS;D

S$:CLOSEl5:GOTO720

790 PRINT"{CLR}{RVS}*** LOAD ***{2 DOWN}"
800 INPUT"{2 DOWN} FILENAME";F$

810 PRINT:PRINT"{2 DOWN}{RVSJt{OFF}APE OR

{RVS}D{OFF}ISK: (T/D)"
820 GETA$:IFA$o"T"ANDA$o"D"THEN820

830 DV=1-7*(A$="D"):IFDV=8THENF$="0:"+F$

840 OPEN 1,DV,0,F$:POKE252,S/256:POKE251,

S-PEEK(252)*256

850 POKE253,10:SYS 691:CLOSEl

860 IFPEEK(253)>9 OR PEEK(253)=0 THEN PRI

NT:PRINT:GOTO310

870 PRINT"{DOWN}ERROR ON LOAD.{2 SPACESjT

RY AGAIN.{DOWN}":IFDV=1THEN800

880 OPEN15,8,15:INPUT#15,DS,DS$:PRINTDS;D

S$:CLOSEl5:GOTO800

1000 REM BUZZER

1001 POKE54296,15:POKE54277,45:POKE54278,

165

1002 POKE54276,33:POKE 54273,6:POKE54272,

5

1003 FORT=1TO200:NEXT:POKE54276,32:POKE54

273,0:POKE542 7 2,0:RETURN

2000 REM BELL SOUND

2001 POKE54296,15:POKE54277,0:POKE54278,2

47

2002 POKE 54276,17:POKE54273,40:POKE54272

,0

2003 FORT=1TO100:NEXT:POKE54276,16:RETURN

3000 PRINTC$;"{RVS}NOT ZERO PAGE OR ROM":

GOTO1000

253

Appendix B

A Beginners
Guide to Typing
in Programs

AppendixB

A Beginner's
Guide to Typing
in Programs
what is a Program?

A computer cannot perform any task by itself. Like a car without

gas, a computer has potential, but without a program, it isn't going

anywhere. Most of the programs in this book are written in a

computer language called BASIC. BASIC is easy to learn and is

built into all Commodore 64s.

BASIC Programs
Computers can be picky. Unlike the English language, which is

full of ambiguities, BASIC usually has only one right way of

stating something. Every letter, character, or number is signifi

cant. A common mistake is substituting a letter such as O for the

numeral 0, a lowercase 1 for the numeral 1, or an uppercase B for

the numeral 8. Also, you must enter all punctuation such as

colons and commas just as they appear in the magazine. Spacing

can be important. To be safe, type in the listings exactly as they

appear.

Braces and Special Characters
The exception to this typing rule is when you see the braces, such

as {DOWN}. Anything within a set of braces is a special character

or characters that cannot easily be listed on a printer. When you

come across such a special statement, refer to "How To Type In

Programs."

About data Statements
Some programs contain a section or sections of DAIA statements.

These lines provide information needed by the program. Some

DATA statements contain actual programs (called machine lan

guage); others contain graphics codes. These lines are especially

sensitive to errors.

257

Appendix

If a single number in any one DA3A statement is mistyped,

your machine could lock up, or crash. The keyboard and STOP

key may seem dead, and the screen may go blank. Don't panic —

no damage is done. To regain control, you have to turn off your

computer, then turn it back on. This will erase whatever program

was in memory, so always SAVE a copy ofyourprogram before you

RUN it. If your computer crashes, you can LOAD the program

and look for your mistake.

Sometimes a mistyped DAIA statement will cause an error

message when the program is RUN. The error message may refer

to the program line that READs the data. The error is still in the

DATA statements, though.

Get to Know Your Machine
You should familiarize yourself with your computer before

attempting to type in a program. Learn the statements you use to

store and retrieve programs from tape or disk. You'll want to save

a copy of your program, so that you won't have to type it in every

time you want to use it. Learn to use your machine's editing func

tions. How do you change a line if you made a mistake? You can

always retype the line, but you at least need to know how to back

space. Do you know how to enter inverse video, lowercase, and

control characters? It's all explained in your computer's manuals.

A Quick Review
1) Type in the program a line at a time, in order. Press RETURN at

the end of each line. Use backspace or the back arrow to correct

mistakes.

2) Check the line you've typed against the line in the printed listing

You can check the entire program again if you get an error when

you RUN the program.

3) Make sure you've entered statements in brackets as the appro

priate control key (see "How To Type Programs" elsewhere in

the book).

258

AppendxC

How TO Type
m Programs

Appendixc

how TO Type
in Programs
Many of the programs which are listed in this book contain spe

cial control characters (cursor control, color keys, inverse video,

etc.). To make it easy to know exactly what to type when entering

one of these programs into your computer, we have established

the following listing conventions.

Generally, any Commodore 64 program listings will contain

words within braces which spell out any special characters:

{DOWN } would mean to press the cursor down key. {5 SPACES }

would mean to press the space bar five times.

To indicate that a key should be shifted (hold down the SHIFT

key while pressing the other key), the key would be underlined in

our listings. For example, S would mean to type the S key while

holding the shift key. This would appear on your screen as a

"heart" symbol. If you find an underlined key enclosed in braces

(e.g., {10 N}), you should type the key as many times as indicated

(in our example, you would enter ten shifted N's).

If a key is enclosed in special brackets, [< >], you should hold

down the Commodore key while pressing the key inside the special

brackets. (The Commodore key is the key in the lower-left corner

of the keyboard.) Again, if the key is preceded by a number, you

should press the key as many times as necessary.

Rarely, you'll see a solitary letter of the alphabet enclosed in

braces. These characters can be entered on the Commodore 64 by

holding down the CTRL key while typing the letter in braces. For

example, {A} would indicate that you should press CTRL-A.

About the quote mode: you know that you can move the cursor

around the screen with the CRSR keys. Sometimes a programmer

will want to move the cursor under program control. That's why

you see all the {LEFT }'s, {HOME }'s, and {BLU }'s in our pro

grams. The only way the computer can tell the difference be

tween direct and programmed cursor control is the quote mode.

Once you press the quote (the double quote, SHIFT-2), you

are in the quote mode. If you type something and then try to

change it by moving the cursor left, you'll only get a bunch of

261

cAppendix

reverse-video lines. These are the symbols for cursor left. The

only editing key that isn't programmable is the DEL key; you can

still use DEL to back up and edit the line. Once you type another

quote, you are out of quote mode.

You also go into quote mode when you INSerT spaces into a

line. In any case, the easiest way to get out of quote mode is to just

press RETURN. You'll then be out of quote mode, and you can

cursor up to the mistyped line and fix it.

Use the following table when entering cursor and color con

trol keys:

Press:

CLR/HOME

CLR/HOME

SHIFT 1 4 CRSR

Listing Conventions

When You

Read:

{CLEAR}

{home}

{up}

{DOWN}

{LEFT}

{RIGHT}

{RVS}

{OFF}

{BLK}

{WHT}

{RED}

{PUR}

When You

See: Read:

QP {grn}

^ {yel}

{F3}

{F4}

{F5}

{F6}

{F7}

{F8}

4

r

Press: See:

CTRL 6

CTRL || 7

CTRL 8

262

index
addresses 183-90

ADSR envelope 8-9,13,20-21,22,161

animation 7

arrays 63-64

ASCII 19,146,213

assembler 197-209

attack (see ADSR envelope)

BASIC 4,180-81,210-16

ABS32

GET 122

GOSUB21,24

GOTO 28

IF... THEN 26

LIST 45

ON 30-31

REM 44-48

STR$24

TAB 23

tokens 212-13

WATT 39-43

BASIC Assembler 197-209

BASIC InterpreterROM3

BASIC statement 210-11

binary numbers 147-48

bit 171,211

bitmap graphics 6

bitwise AND 27-28

byte 172,211

CATALOG 121

Central Processing Unit (CPU) 144

chained menus 16-17

character base 76,80,179

character graphics 5-6

character sets (see also redefined

characters) 5

chips, Commodore 643

collision 7,94,95

Commodore 64 architecture 70,86,178-82

Commodore 64, similarities with PET 4,

88-89

Complex Interface Adapter (CIA) 9-10,107,

144,178,189,190

control register 147

decay (see ADSR envelope)

delay loop 26-27

DIRECTORY 121

diskette

backup 137-42

directory 122-25

DOS 135-36

files 61,63

menu 126-34

editing 210

exclusive-OR39

expander slot 143

extended background color mode 6,72

fine scrolling (see scrolling)

fire button (see joystick button)

flag 26,29

game ports (see joystick port)

graphics 4-7,69-104

high-resolution 6,71-72,89-90

hexadecimal 211-12

jiffy (see also TI$ and timer) 40

joystick 42,49-53,107-14

button 108

memory locations 49-52,108-10

port 107,143

reading 109-10

initialization 20-21

Input/Output Port 3

interrupts 78,97-98,100-3,179

IRQ 102

Kernal3,180

keyboard code 19

keyboard control function 213

kilobyte 172

LED 150-51

light pen 77-78

LISTing a program, prevention of 44-48

locations 183-90

logical AND 108

logical NOT 109

memory 171-77,211-13

bit 171,211

byte 172,211

kilobyte 172

map 183-90

nybble 171-72

organization 171-72,211

pages 172

stack 174

memory map 183-90

menus (see also diskette menu) 15-17,54-60

Micromon-64 217-44

microprocessors

monitor 217-44

Movable Object Blocks (MOBs) (see sprite)

multicolor character mode 5-6,75-76

music 161-65

263

nested menus 16

Non-Maskable Interrupt (NMI) 220

nybble 171-72

page flipping 7

pages of memory 172

Peripheral Data Register 107-8

program writing 11-35

feedback 18

initialization 18-19, 20-21

main loop 25-28

menus 15-17

organizing 14-15

planning 12

user friendly 14-15

quote mode 46-47

RAM4,144,171,178,191

raster interrupts 7-8,77,78,97,103-4

Raster Register 96

redefined characters 5,88

release (see ADSR envelope)

ROM 144,148,191,228

ROM Character Generator 70,86,179

screen editor 210

screen memory 69,172

scrolling 5

serial plug 143

65023

65103,178,188,191

65183

65263,9-10,189,190

65663,5,69-104,178,188

sound 6-7,12-13,162

sound addresses (see also Sound Interface

Device) 13

Sound Interface Device (SID) 3,8-9,144,

161,178,188

split screens 96-104

sprites 6-7,78,80-85,91-95,107-14

memory locations 80,82

movement 83-84,110-12,113-14

stack 174

string variables 61-62

structured programming 25

sustain (see ADSR envelope)

symbolic assembler 197-209

tape files 61,64-65

TI$ (see also jiffies and timer) 40,100

timer (see also jiffies and TI$) 101-2,103,

166-67

tokens 212-13

trigger (see joystick button)

User Port 143-56

edge connector 149

input device 149-50

memory locations 149

output device 146-47

peripheral device 150

programming 153

variable 19-20,61-64

Video Interface Controller (VIC) 5,69-104,

107,144,178-79

video matrix 69,76

video port 143

waveform (see sound)

264

If you've enjoyed the articles in this book you'll find the
same style and quality in every monthly issue of COMPUTE!

Magazine. Use this form to order your subscription to
COMPUTE!.

For Fastest Service,

Call Our Toil-Free US Order Line

800-334-0868
In NC call 919-275-9809

COMPUTE!
P.O. Box 5406

Greensboro, NC 27403

My Computer Is:

E

Commodore 64 □"TI-99/4A □ Timex/Sinclair DVIC-20 DPET

Radio Shack Color Computer □ Apple □ Atari □ Other

Don't yet have one...

□ $24 One Year US Subscription
□ $45 Two Year US Subscription
□ $65 Three Year US Subscription

Subscription rates outside the US:

$30 Canada
$42 Europe, Australia New Zealand/Air Delivery
$52 Middle East North Africa Central America/Air Mail
$72 Elsewhere/Air Mail
$30 International Surface Mail (lengthy, unreliable delivery)

Name

Address

City State Zip

Country

Payment must be in US Funds drawn on a US Bank International Money

Order, or charge card.

n Payment Enclosed □ VISA

□ MasterCard □ American Express

Ace t. No. Expires /

20-5

COMPUTE! Books
P.O. Box 5406 Greensboro, NC 27403

Ask your retailer for these COMPUTE! Books. If he or she

has sold out order directly from COMPUTE!

For Fastest Service

Call Our TOLL FREE US Order Line

800-334-0868
In NC call 919-275-9809

Quantity Title Price Total

Machine Language for Beginners $14.95t

Home EnergyApplications $14.95t

COMPUTED First Book of VIC $12.95t

COMPUTED Second Book ofVIC $12.95t

COMPUTED First Book of VIC Games $12.95t

COMPUTED First Book of 64 $12.95t

COMPUTED First Book of Atari • $12.95t

COMPUTED Second Book of Atari $12.95t

COMPUTED First Book of Atari Graphics $12.95t

COMPUTED First Book of Atari Games $12,95t

Mapping The Atari $14.95t

Inside Atari DOS $19.95t

The Atari BASIC Sourcebook $12.95t

Programmer's Reference Guide for TI-99/4A $14.95t

COMPUTED First Book of Tl Games $12.95t

Every Kid's First Book of Robots and Computers $ 4.95*

The Beginner's Guide to Buying A Personal

Computer $ 3.95*

• Add $1 shipping and handling. Outside US add $5 air mail; $2

surface mail,

t Add $2 shipping and handling. Outside US add $5 air mail; $2

surface mail.

Please add shipping and handling for each book

ordered.

Total enclosed or to be charged.

All orders must be prepaid (money order, check or charge). All

payments must be in US funds. NC residents add 4% sales tax.

□ Payment enclosed Please charge my: □ VISA □ MasterCard
□ American Express Ace t. No. Expires /

Name

Address

City State Zip

Country

Allow 4-5 weeks for delivery.

20-5

i _

COMPUTE!*

First Book of Commodore 64

COMPUTE'.'s First Book of the Commodore 64 includes some of the

best articles and programs from COMPUTE! Magazine and

COMPUTE'.'s Gazette, plus many more that have never before ap

peared in print.

There are dozens of complete, ready to type in programs.

And, because you will see and type in every program line, you

will discover many techniques to use in your own programming.

Here's a sample of what you'll find inside:

• A beginner's introduction to programming

• An explanation of 64 architecture

• How to create programs which use joysticks

• A memory map

• A tutorial on how to create attractive and meaningful

program menus

• A machine language assembler written in BASIC

• "Micromon-64," a complete monitor with numerous extra

functions

• How to add sprites to your programs

No matter whether you are an advanced programmer or just

starting out, COMPUTE'.'s First Book of the Commodore 64 has much

that you will find useful. Edited with the clarity and care which

has made COMPUTE! Publications today's leading publisher of

personal computing magazines and books.

ISBN 0-942386-20-5 $12.95

