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Introduction

This book is for developers who are involved with designing or programming
devices that use the Universal Serial Bus (USB) interface. If you are a hardware
designer, if you write firmware that resides inside USB devices, or if you write
applications that communicate with devices, this book is for you.

USB is versatile enough to serve a multitude of device functions. Familiar USB
peripherals include mice, keyboards, drives, printers, speakers, and cameras.
USB is also suitable for data-acquisition units, control systems, and other
devices with specialized functions, including one-of-a-kind designs. The right
choices of device hardware, software drivers and development tools and tech-
niques can ease the path to designing devices that perform their functions with-
out error or user aggravation. This book will guide you along the way.

����
���
���

The USB specifications are the ultimate authority on the USB interface, but by
design they omit advice, example code, and other information that applies to
specific device hardware, software, and other tools and products. This book
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bridges the gap between the specifications and real-world designs and will save
you time and trouble when developing devices and the software to access them.

These are some of the questions this book answers:

• How do USB devices communicate? I don’t attempt to restate everything in
the USB specifications. Instead, my focus is on what you need to know to
develop devices that communicate efficiently and reliably.

• How can I decide if my device should use a USB interface? Find out whether
your device should use USB or another interface. If the choice is USB,
you’ll learn how to decide which of USB’s four speeds—including USB
3.0’s SuperSpeed—and which of USB’s four transfer types are appropriate
for your application.

• What controller chip should my device use? Every USB device contains an
intelligent controller to manage USB communications. Dozens of silicon
providers offer controller chips with different architectures and abilities.
This book will help you select a controller based on your project’s needs,
your budget, and your preferences for chip architecture, programming lan-
guages, and tools.

• How can applications communicate with my devices? On a PC, an application
accesses a USB device by communicating with a driver the operating system
has assigned to the device. You’ll learn if your device can use a class driver
provided by the host’s operating system. For devices that don’t fit a sup-
ported class, you can explore options such as Microsoft’s WinUSB driver,
other generic drivers, and custom drivers. Example code shows how to
detect and communicate with devices from Visual Basic and Visual C#
applications.

• What firmware does my device need to support USB communications? Find out
how to write firmware that enables your device to respond to USB requests
and events and exchange data for any purpose.

• Does my device need its own power supply? The USB interface can provide
power to devices, including charging current for battery-powered devices.
Learn how to determine if a design can obtain all of its power from the bus,
how to meet USB’s requirements for conserving power, and how to charge
battery-powered devices from the bus.

• How can I implement wireless communications? The Wireless USB specifica-
tion defines a way for USB devices to communicate without wires. Other
industry standards and vendor technologies offer additional options. Learn
which technology is right for your device.
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• How can my device access other USB devices? Find out how to develop a host
for an embedded system or a USB On-The-Go device that can function as
both a USB device and a limited-capability host that accesses other USB
devices.

• How can I ensure reliable communications? All devices must respond to
requests and other events on the USB port. The host computer must detect
attached devices, locate appropriate drivers, and exchange data with the
devices. This book provides tips, example code, and information about
debugging software and hardware to help with these tasks.

To understand the material in the book, it’s helpful to have some experience
with digital logic, application programming for PCs and writing embedded
code for peripherals. You don’t have to know anything about USB.

����
����

The core of USB has remained much the same since the release of USB 1.0 in
1996. But the interface has expanded to support faster bus speeds, improved
power management, more device classes, wireless communications, dual-role
devices (device and host), and more. Plus, new and improved chips and devel-
opment tools have eased the task of developing devices and software to access
them. 

This edition is revised and updated throughout. All new in the Fourth Edition
is an introduction to USB 3.0 and the SuperSpeed bus. You’ll also learn how to
use Microsoft’s WinUSB driver to access devices that perform vendor-specific
functions. Topics with major updates include device-controller chips, technolo-
gies for wireless USB communications, protocols for conserving power, and
USB device classes.

I provide example code for applications in both Visual Basic and Visual C#. For
device firmware, I discuss using both microengineering Labs’ PICBASIC
PRO™ and Microchip Technology’s MPLAB® C compiler. 

������
���������

To find out more about developing USB devices and the software that commu-
nicates with them, I invite you to visit my USB Central page at www.Lvr.com.
You’ll find code examples and links to articles, products, tools, and other infor-
mation related to developing USB devices.

Corrections and updates to the book will also be available at www.Lvr.com. If
you find an error, please let me know.
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At the start of each code example, a sidehead indicates the programming lan-
guage:

The .NET code is compatible with the .NET Framework Version 2.0 and later.

Example applications are available for free download from www.Lvr.com.

�������� �	
�	������������� �	
����	

VB Visual Basic .NET Microsoft
VC# Visual C# .NET Microsoft
PBP PICBASIC PRO microEngineering Labs, Inc.
C18 MPLAB C compiler for 

PIC18 CPUs
Microchip Technology Inc.
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This book uses the abbreviations and symbols below to express quantities and
units:

0���
��
���

������
���

,
��

����
� ����	����
 ���������	

p pico 10-12

n nano 10-9

µ micro 10-6

m milli 10-3

k kilo 103

K kilo 210 (1024)
M mega 106 or 220 depending on context
G giga 109 or 230 depending on context
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A ampere

F farad
Ω ohm
V volt
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s second
Hz Hertz (cycles per second)
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Binary values have a trailing subscript “b”. Example: 10100011b. An
exception is when it’s clear from the context that the values are binary.
Example: Set bits 6..5 to 01. 

Hexadecimal values have a trailing “h”. Example: A3h.

All other values are decimal. Example: 163.
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in. inch
ft foot
m meter
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b bit
B byte
bps bits per second
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USB is much too big a topic to write about without help. I have many people to
thank.

My technical reviewers provided feedback that helped make the book as com-
plete and accurate as possible. With that said, every error in this book is mine
and mine alone. A big thanks to Paul E. Berg, Greg Burk, Robert Dunstan,
John Garney, Bill Jacobus, Kosta Koeman, and Matt Leptich.  

Others I want to thank for their support are Phyllis Brown of J. Gordon Elec-
tronic Design, Michael DeVault of DeVaSys Embedded Systems, Traci Donnell
of the USB-IF, David Flowers of Microchip Technology, Inc., Laurent Guin-
nard of Ellisys, Tim Harvey of CWAV, Inc., Blake Henry of Bitwise Systems,
John Hyde of usb-by-example.com, Rahman Ismail and Jeff Ravencraft of Intel
Corporation, Dr. Bob Miller of Trace Systems, Inc., and Jeff Schmoyer of
microEngineering Labs, Inc.

For their help with the previous editions this edition builds on, thanks to
Joshua Buergel, Gary Crowell, Fred Dart, Wendy Dee, Lucio DiJasio, Keith
Dingwall, Dave Dowler, Mike Fahrion, David Goll, John M. Goodman, Lane
Hauck, David James, Christer Johansson, Geert Knapen, Alan Lowne, Jon
Lueker, Brad Markisohn, Rich Moran, Bob Nathan, Walter Oney, Amar Rajan,
Marc Reinig, Rawin Rojvanit, Glenn M. Roberts, Robert Severson, Craig R.
Smith, and Dave Wright.

I hope you find the book useful and welcome your comments at jan@Lvr.com.
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At over two billion new installed units per year, USB is the most successful per-
sonal-computer interface ever. Every recent PC has USB ports that can connect
to keyboards, mice, game controllers, scanners, cameras, printers, drives, and
more. USB is reliable, fast, versatile, power-conserving, inexpensive, and sup-
ported by major operating systems. USB 3.0’s new SuperSpeed bus means USB
is likely to continue to dominate as the interface of choice for an ever-expand-
ing selection of peripherals.

This chapter introduces USB, including its advantages and limits, some history
about the interface and recent enhancements to it, and a look at what’s involved
in designing and programming a device with a USB interface.

��	���
�������
USB is a likely solution any time you want to use a computer to communicate
with an external device. Internal devices, such as fingerprint readers, can use
USB as well. The interface is suitable for mass-produced, consumer devices as
well as specialized, small-volume products and one-of-a-kind projects.
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To be successful, an interface has to please two audiences: the users who want to
use the devices and the developers who design the hardware and write the code
that communicates with the devices. USB has features to please both groups.

����"���"���
��
From the user’s perspective, the benefits of USB are ease of use, fast and reliable
data transfers, low cost, and power conservation. Table 1-1 compares USB with
other interfaces.
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Ease of use was a major design goal for USB, and the result is an interface that’s
a pleasure to use for many reasons:

One interface for many devices. USB is versatile enough for just about any
standard PC peripheral function. Instead of having a different connector and
cable type for each peripheral function, one interface serves many.

Automatic configuration. When a user connects a USB device to a PC, the
operating system detects the device and loads the appropriate software driver.
The first time the device connects, the operating system may prompt the user to
insert a disc with driver software, but other than that, installation is automatic.
Users don’t need to reboot before using the device.

Easy to connect. A typical PC has multiple USB ports, and hubs make it easy
to add ports without opening up the PC.

Convenient cables. USB connectors are small and compact compared to con-
nectors used by other interfaces such as RS-232. To ensure reliable operation,
the USB specification defines electrical requirements for cables. A cable seg-
ment can be as long as 5 m depending on bus speed. With hubs, again depend-
ing on bus speed, a device can be as far as 30 m from its host PC.

Wireless options. USB originated as a wired interface, but technologies are
now available for wireless communications with USB devices.

Hot pluggable. Users can connect and disconnect a USB device whenever they
want, whether or not the system and device are powered, without damaging the
PC or device. The operating system detects when a device is attached and read-
ies it for use.

No user settings. USB devices don’t have user-selectable settings such as port
addresses and interrupt-request (IRQ) lines, so users have no jumpers to set or
configuration utilities to run. 
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Table 1-1: USB is more flexible than other interfaces, which often target a 

specific use.

���	���� ���� �����	�
��
��������
���������
� !����"#!

��������
���"#���!

������
���"#����!

��������$��

USB 3.0 dual simplex 
serial

127 (per bus) 9 (typical) 
(up to 49 
with 5 hubs)

5 G Mass storage, 
video

USB 2.0 half duplex 
serial

127 (per bus) 16 (98 ft. 
with 5 hubs)

1.5M, 12M, 
480M

Keyboard, 
mouse, drive, 
speakers, printer, 
camera

eSATA serial 2 (port 
multiplier 
supports 16)

6 3G Drives

Ethernet serial 1024 1600 10G General network 
communications

IEEE-1394b 
(FireWire 800)

serial 64 300 3.2G Video, mass 
storage

IEEE-488 
(GPIB)

parallel 15 60 8M Instrumentation

I2C synchronous 
serial

40 18 3.4M Microcontroller 
communications

Microwire synchronous 
serial

8 10 2M Microcontroller 
communications

MIDI serial current 
loop

2 (more with 
flow-through 
mode)

50 31.5k Music, show 
control

Parallel Printer 
Port

parallel 2 (8 with 
daisy-chain 
support)

10–30 8M Printers, 
scanners, disk 
drives

RS-232 
(EIA/TIA-232)

asynchronous 
serial

2 50–100 20k (115k 
with some 
hardware)

Modem, mouse, 
instrumentation

RS-485 
(TIA/EIA-485)

asynchronous 
serial

32 unit loads 
(some chips 
allow up to 
256 devices)

4000 10M Data acquisition 
and control 
systems

SPI synchronous 
serial

8 10 2.1M Microcontroller 
communications



Chapter 1

4                                                                                                           

No power supply required (sometimes). The USB interface includes
power-supply and ground lines that provide a nominal +5V from the PC or a
hub. A device that requires up to 500 mA (USB 2.0) or 900 mA (USB 3.0) can
draw all of its power from the bus instead of using a dedicated power supply. In
contrast, devices that use other interfaces may have to provide a power supply
inside the device or an external supply.

�"	���	��#����


USB supports four bus speeds: SuperSpeed at 5 Gbps, high speed at 480 Mbps,
full speed at 12 Mbps, and low speed at 1.5 Mbps. SuperSpeed requires a USB
3.0 host controller in the host PC. USB 2.0 host controllers support low, full,
and high speeds.

The bus speeds describe the rate that information travels on the bus. In addi-
tion to application data, the bus must carry status, control, and error-checking
information. Plus, multiple devices can share a bus. Thus, the data throughput
for an individual device’s data is less than the bus speed. The USB protocols
support data transfers at around 400 MB/s for SuperSpeed, 53 MB/s for high
speed, 1.2 MB/s for full speed, and 800 B/s for low speed. Hardware and soft-
ware limitations can result in lower real-world rates, however.

The USB 1.0 specification defined low and full speeds. Full speed was intended
for most peripherals that had been using RS-232 (serial) and parallel ports.
Full-speed data-transfer rates are comparable to the speeds of these earlier inter-
faces. Mice tend to use low speed because the less stringent cable requirements
allow flexible cables. Low-speed devices may have lower manufacturing cost due
in part to cheaper cables. High speed became an option with the release of USB
2.0, and USB 3.0 defined SuperSpeed.

$�	���	�

USB’s reliability is due to both the hardware and the protocols. The hardware
specifications for USB drivers, receivers, and cables ensure an electrically quiet
interface that eliminates most noise that could cause data errors. The USB pro-
tocols enable detecting errors in received data and notifying the sender so it can
retransmit. Hardware performs the detecting, notifying, and retransmitting
without software or user support.
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Because the host computer provides most of the intelligence to control the
interface, components for USB devices are inexpensive. A device with a USB
interface is likely to cost the same or less than an equivalent device with a differ-
ent interface.

%�����#���� 

Power-saving circuits and protocols reduce a device’s power consumption while
keeping the device ready to communicate when needed. Reducing power con-
sumption saves money, helps the environment, and for battery-powered
devices, allows a longer time between recharges.

����"���"������������
Many of the user advantages described above also make things easier for devel-
opers. For example, USB’s cable standards and error checking mean that devel-
opers don’t have to worry about specifying cable characteristics or providing
error checking in software.

Other advantages help the hardware designers who select components and
design the circuits in devices and the programmers who write firmware embed-
ded in the devices and software to communicate with devices.

The benefits result from the flexibility built into the USB protocol, the support
in the controller chips and operating system, and the support available from the
USB Implementers Forum.

&��
���	�

USB’s four transfer types and four speeds make the interface feasible for many
types of peripherals. USB has transfer types suited for exchanging large and
small blocks of data, with and without time constraints. For data that can’t tol-
erate delays, USB can guarantee bandwidth. These abilities are especially wel-
come under Windows where accessing peripherals in real time is often a
challenge. Although the operating system, device drivers, and application soft-
ware can introduce unavoidable delays, USB makes it as easy as possible to
achieve transfers that are close to real time even on desktop systems.

Unlike other interfaces, USB doesn’t assign specific functions to signal lines or
make other assumptions about how the system will use the interface. For exam-
ple, the status and control lines on the PC’s parallel port were defined with the
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intention of communicating with line printers. USB makes no such assump-
tions and is suitable for just about any peripheral type.

For communicating with common peripherals such as printers, keyboards, and
drives, USB classes specify device requirements and protocols. Developers can
program a device to conform to a class specification instead of having to rein-
vent everything from the ground up.

'������� �#!
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This book focuses on Windows programming for PCs, but other computers
and operating systems also have USB support, including Linux and Apple
Computer’s Macintosh. Some real-time kernels also support USB.

At the most basic level, an operating system that supports USB must do three
things:

• Detect when devices are attached to and removed from the system.

• Communicate with newly attached devices to find out how to exchange
data with them.

• Provide a mechanism that enables software drivers to pass communications
between the USB hardware and applications that want to access USB
peripherals.

At a higher level, operating-system support may also mean the inclusion of class
drivers that enable applications to access specific types of devices. If the operat-
ing system doesn’t include a driver appropriate for a specific device, the device
vendor must provide the driver.

Microsoft continues to improve and add to the class drivers included with Win-
dows. Supported device types include human interface devices (keyboards,
mice, game controllers), speakers and other audio devices, modems, drives,
still-image and video cameras, scanners, printers, and smart-card readers. Filter
drivers can support device-specific features and abilities within a class. Applica-
tions use Application Programming Interface (API) functions or other software
components to access devices via their drivers.

Devices that have vendor-specific functions can sometimes use a supported
class such as the communications-device or human-interface device class. Other
options for vendor-specific functions include Microsoft’s WinUSB driver and
generic drivers from other sources. Some chip companies provide drivers that
developers can use with the company’s chips.
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Writers of USB device drivers for Windows can use Microsoft’s Windows
Driver Foundation (WDF) model. The WDF provides a framework that sim-
plifies the task of writing drivers.

(������#"�����

On the device side, the hardware must include a controller chip that manages
USB communications. The device is responsible for responding to requests that
identify and configure the device and for reading and writing other data on the
bus. Some controllers perform some functions entirely in hardware.

Many USB controllers are based on popular microcontroller architectures such
as Intel Corporation’s 8051 or Microchip Technology’s PIC® with added hard-
ware support for USB communications. Other controllers don’t contain a CPU
but instead provide a serial or parallel interface to an external microcontroller. If
you’re already familiar with a chip architecture that has a USB-capable variant,
you don’t need to learn a new architecture. Most chip companies provide exam-
ple code to help you get started.

�#)����	�������
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The USB Implementers Forum, Inc., or USB-IF (www.usb.org), is the
non-profit corporation founded by the companies that developed the USB
specification. 

The USB-IF’s mission is to support the advancement and adoption of USB
technology. To that end, the USB-IF offers information, tools, and testing sup-
port. The information includes the specification documents, white papers,
FAQs, and a Web forum. The tools include software and hardware to help in
developing and testing products. The support for testing includes compliance
tests to verify proper operation and compliance workshops where developers
can have their products tested and certified to display a USB logo.

7� ��
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All of USB’s advantages mean that it’s a good candidate for many devices. But a
single interface can’t handle every task.

�����+����,����


Limits of USB include distance constraints, no support for peer-to-peer com-
munications or broadcasting, and lack of support in older hardware and operat-
ing systems.
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Distance. USB was designed as a desktop-expansion bus where devices are rela-
tively close at hand. Other interfaces, including RS-232, RS-485, IEEE-1394b,
and Ethernet, allow much longer cables. To extend the distance between a
device and its host computer, an option is to use USB to connect to a nearby
device that functions as a bridge to a long-distance interface to the end circuits.

Peer-to-Peer Communications. Every USB communication is between a host
computer and a device (except for one option introduced with USB 3.0). The
host is a PC or other computer with host-controller hardware. The device con-
tains device-controller hardware. Hosts can’t talk to each other directly, and
devices can’t talk to each other directly. Other interfaces, such as IEEE-1394,
allow direct device-to-device communication.

USB provides a partial solution with the USB On-The-Go option. An
On-The-Go device can function as both a device and a limited-capability host
that communicates with other devices. 

Two USB hosts can communicate with each other via a bridge cable that con-
tains two USB devices with a shared buffer. USB 3.0 defines a new host-to-host
cable for SuperSpeed. With driver support, this cable can support host-to-host
communications.

Broadcasting. USB doesn’t support sending data simultaneously to multiple
devices (except for USB 3.0 timestamp packets). The host must send the data
to each device individually. If you need broadcasting ability, use IEEE-1394 or
Ethernet.

Legacy Hardware. Older “legacy” computers and peripherals don’t have USB
ports. The issue of supporting legacy equipment has faded, however, as older
systems are retired.

If you need to connect a legacy peripheral to a USB port, a solution is an intel-
ligent adapter that converts between USB and the older interface. Several
sources have adapters for use with peripherals with RS-232, RS-485, and paral-
lel ports. An adapter is useful only for devices that use protocols supported by
the adapter’s device driver. For example, most parallel-port adapters support
communications only with printers, not with other parallel-port peripherals.
RS-232 adapters work with most RS-232 devices.

If you want to use a USB device with a computer that doesn’t support USB, a
solution is to add USB capabilities to the computer. To do so, you need to add
USB host-controller hardware and use an operating system that supports USB.
The hardware is available on expansion cards that plug into a PCI slot or on a
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replacement motherboard. For Windows systems, the edition must be Win-
dows 98 or later.

If upgrading the PC to support USB isn’t feasible, you might think an adapter
would be available to translate a peripheral’s USB interface to the PC’s RS-232,
parallel, or other interface. An adapter is rarely an option when the computer
has the legacy interface because an adapter that contains host-controller hard-
ware and code is too expensive to design and manufacture for its limited mar-
ket.

Even on new systems, users may occasionally run applications on older operat-
ing systems such as DOS. Without a driver, the operating system can’t access a
USB device. Although it’s possible to write a USB driver for DOS, few device
vendors provide one. An exception is mice and keyboards, which the system
BIOS typically supports to ensure that the devices are usable any time, includ-
ing from within DOS and from the BIOS screens that you can view on
boot-up.

(���	�������		�� �


For developers, challenges to USB are the complexity of the protocols, operat-
ing-system support for some applications, and for small-scale developers, the
need to obtain a Vendor ID.

Protocol Complexity. A USB device is an intelligent device that must respond
to requests and other events on the bus. Controller chips vary in how much
firmware support they require to perform USB communications. In most cases,
to program a USB device, you need to be familiar with the USB protocols for
exchanging data on the bus. On the host-computer side, device drivers insulate
application programmers from having to know many of the low-level details
about the protocols and hardware interface. Device-driver writers need to be
familiar with USB protocols.

In contrast, some older interfaces can connect to very simple circuits that soft-
ware addresses directly. For example, the PC’s original parallel printer port is a
series of digital inputs and outputs. You can connect to input and output cir-
cuits such as relays, switches, and analog-to-digital converters with no com-
puter intelligence required on the device side. With a driver to enable port
access, applications can monitor and control the individual bits on the ports.

USB is a shared bus with defined protocols, and the operating system prevents
applications from directly accessing the hardware. To access a USB device,
applications must communicate with a class or device driver that in turn com-
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municates with the lower-level USB drivers that manage communications on
the bus. Devices must support protocols that enable the PC to detect, identify,
and communicate with the device.

Evolving Support in the Operating System. The class drivers included with
Windows enable applications to communicate with many devices. Often, you
can design a device to use one of the provided drivers. If not, you may be able to
use or adapt a driver provided by a chip company or other source. If you need
to provide your own driver, a third-party driver toolkit can help in developing
the driver.

Fees. The USB-IF’s website provides the USB specifications, related docu-
ments, software for compliance testing, and much more at no charge. Anyone
can develop USB software without paying a licensing fee.

Every USB device contains a Vendor ID and a Product ID that identify the
device to the operating system. At this writing, the USB-IF charges a $2000
administrative fee for the rights to a Vendor ID. The owner of the Vendor ID
assigns Product IDs. Joining the USB-IF (at $4000/year) gets you a Vendor ID
along with other benefits such as admittance to compliance workshops. 

Devices that don’t undergo compliance testing and don’t display the USB-IF
logo have lower-cost options. Some chip companies, including Future Technol-
ogy Devices International Limited (FTDI) and Microchip Technology, will
assign a range of Product IDs to a customer for use in products with the com-
pany's Vendor ID, typically at no charge. Chips that perform all of their USB
communications in hardware can use a Vendor ID and Product ID embedded
in the hardware. An example is FTDI's USB device controllers.

Companies that sell products that implement a USB specification must sign an
adopters agreement. The agreement grants a royalty-free, non-exclusive patent
license to implement the specification. You must submit a signed agreement
within the later of one year after first sale of a product or one year after the spec-
ification’s release. See the agreements (at www.usb.org) for the legal specifics.


����������������
For some devices, the choice is between USB and Ethernet. Ethernet’s advan-
tages include the ability to use very long cables, support for broadcasting, and
familiar Internet protocols. Ethernet hardware is more complex and expensive
than typical USB device hardware, however. USB is also more versatile, with
four transfer types and defined classes for different device functions.
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Another interface option for some devices is IEEE-1394. Apple Computer’s
implementation of the interface is called Firewire. Advantages to IEEE-1394
are support for peer-to-peer communications and broadcasting and more bus
power available to devices (up to 1.5A at 30V). 

Compared to USB, where a host computer manages the interface, IEEE-1394
devices have more responsibilities and thus tend to be more complex and
expensive to implement. SuperSpeed USB exceeds IEEE-1394b’s bus speed of
3.2 Gbps. While every new PC has USB ports, IEEE-1394 ports are less com-
mon and thus may require adding ports on expansion cards. For some devices,
such as drives, either interface works well, and some devices support both inter-
faces.

�������������	�����
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The main reason why new interfaces don’t appear very often is that existing
interfaces have the advantage of all of the peripherals that users don’t want to
scrap. By choosing compatibility with the existing Centronics parallel interface
and RS-232 serial-port interface, the developers of the original IBM PC sped
up the design process and enabled users to connect to printers and modems
already on the market. These interfaces proved serviceable for close to two
decades. But as computers became more powerful and the number and kinds of
peripherals increased, the older interfaces became a bottleneck of slow commu-
nications with limited options for expansion.

A break with tradition makes sense when the desire for enhancements is greater
than the inconvenience and expense of change. This is the situation that
prompted the development of USB.

�����6
The Universal Serial Bus Specification Revision 1.0 was released in January 1996.
USB capability first became available on PCs with the release of Windows 95’s
OEM Service Release 2, available only to vendors installing Windows 95 on
PCs they sold. The USB support in these versions was limited and buggy, and
there weren’t many USB peripherals available, so use of USB was limited in this
era.

The situation improved with the release of Windows 98 in June 1998. By this
time, many more vendors had USB peripherals available, and USB began to
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take hold as a popular interface. Windows 98 Second Edition (SE) fixed bugs
and further enhanced the USB support. The original edition of Windows 98 is
called Windows 98 Gold to distinguish it from Windows 98 SE.

This book concentrates on PCs running Windows XP and later. Much of the
information also applies to Windows 98, Windows 2000, and Windows Me.
Windows NT never supported USB except via third-party software. However,
all of the editions mentioned above except Windows 95/98/Me are considered
NT-based Windows editions because they build on the Windows NT kernel.

In this book, the term PC encompasses all of the various computers that share
the common ancestor of the original IBM PC. A host computer is any com-
puter that can communicate with USB devices.

������
The Universal Serial Bus Specification Revision 1.1 (September 1998) added one
new transfer type (interrupt OUT). In this book, USB 1.x refers to USB 1.0
and 1.1.

���!�6
As USB gained in popularity and PCs became more powerful, demand grew for
a faster bus speed. Investigation showed that a bus speed 40× faster than full
speed could remain backwards-compatible with the low- and full-speed inter-
faces. April 2000 saw the release of the Universal Serial Bus Specification Revision
2.0, which added high speed at 480 Mbps. High speed made USB more attrac-
tive for peripherals such as printers, disk drives, and video cameras. Windows
added support for USB 2.0 in Windows XP SP2. The USB 2.0 specification
replaced USB 1.1. 

Except for hubs, a USB 2.0 device can support low speed, full speed, or high
speed, and a high-speed-capable device can support full speed when connected
to a USB 1.x bus. A USB 2.0 hub must support all three USB 2.0 speeds. The
ability to communicate at any speed increases the complexity of the hubs but
conserves bus bandwidth and eliminates a need to use different hubs for differ-
ent speeds.

USB 2.0 is backwards compatible with USB 1.x. In other words, USB 2.0
devices can use the same connectors and cables as 1.x devices, and a USB 2.0
device works when connected to a PC that supports USB 1.x or USB 2.0,
except for a few devices that function only at high speed and thus require USB
2.0 support. 
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When USB 2.0 devices first became available, there was confusion among users
about whether all USB 2.0 devices supported high speed. To reduce confusion,
the USB-IF released naming and packaging recommendations that emphasize
speed and compatibility rather than USB version numbers. A product that sup-
ports high speed should be labeled “Hi-Speed USB,” and messages on the pack-
aging might include Fully compatible with Original USB and Compatible with
the USB 2.0 Specification. For products that support low or full speed only, the
recommended messages on packaging are Compatible with the USB 2.0 Specifi-
cation and Works with USB and Hi-Speed USB systems, peripherals and cables.
The recommendations advise avoiding references to low or full speed on con-
sumer packaging.

To use high speed, a high-speed-capable device must connect to a USB 2.0 or
USB 3.0 host computer with only USB 2.0 or USB 3.0 hubs between the host
and device. USB 2.0 and USB 3.0 hosts and hubs can also communicate with
USB 1.x devices.

The USB-IF releases revisions and additions to the USB specification via Engi-
neering Change Notices (ECNs). Table 1-2 lists ECNs to the USB 2.0 specifi-
cation.      

���#�6
The Universal Serial Bus 3.0 Specification Revision 1.0 was released in November
2008, with the first USB 3.0 device-controller hardware expected to follow
about a year later. Windows will likely support USB 3.0 sometime after the
release of Windows 7, the successor to Windows Vista. 

USB 3.0 defines a new dual-bus architecture with two physical buses that oper-
ate in parallel. USB 3.0 provides a pair of wires for USB 2.0 traffic and addi-
tional wires to support the new SuperSpeed bus at 5 Gbps. SuperSpeed offers a
more than 10× increase over USB 2.0’s high speed. Plus, unlike USB 2.0,
SuperSpeed has a pair of wires for each direction and can transfer data in both
directions at the same time. USB 3.0 also increases the amount of bus current
devices can draw and defines protocols for more aggressive power saving and
more efficient transfers.

USB 3.0 is backwards compatible with USB 2.0. USB 3.0 hosts and hubs sup-
port all four speeds. USB 2.0 cables fit USB 3.0 receptacles.

USB 3.0 supplements, but doesn’t replace, USB 2.0. Low, full, and high-speed
devices continue to comply with USB 2.0 and can’t take advantage of USB 3.0’s
features such as higher bus-current limits and larger data packets.
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As USB became the interface of choice for all kinds of peripherals, developers
began to ask for a way for USB peripherals to access other USB devices. For
example, a user might want to attach a printer to a camera or a keyboard to a
PDA. The On-The-Go (OTG) Supplement to the USB 2.0 Specification defines a
limited-capability host function that devices can implement to enable commu-
nicating with USB peripherals.

7��
�
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Developers who want to design devices with wireless interfaces have several
choices. The Wireless USB Promoter Group’s Wireless Universal Serial Bus Spec-
ification defines the Certified Wireless USB (WUSB) interface for communi-
cating at up to 480 Mbps. Cypress Semiconductor's WirelessUSB enables

Table 1-2: Engineering change notices (ECNs) correct, add to, and clarify the 

USB 2.0 specification.

����� ����

Mini-B Connector 10/2000
Errata 12/2000
Pull-up/Pull-Down Resistors (loosened tolerances) 05/2002
Interface Association Descriptor 05/2003
Rounded Chamfer for the Mini-B Plug (recommendation) 10/2003
Unicode UTF-16LE for String Descriptors 02/2005
Inter-Chip USB Supplement (chip-to-chip interconnects without external cables) 03/2006
USB On-The-Go V1.3 (defines devices that can also function as hosts) 12/2006
Micro-USB connector 04/2007
Link Power Management (optional power saving capabilities) 07/2007
Hi-Speed Interchip Electrical Specification (chip-to-chip interconnects without 
external cables)

09/2007

Suspend Current Limit Changes 04/2008
USB 2.0 Phase-locked SOFs 12/2008
5V Short Circuit Withstand Requirement Change 12/2008
Device Capacitance 12/2008
Material Change 12/2008
MicroUSB Micro-B ID Pin Resistance and Tolerance stack-up between D+ and D- 12/2008
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implementing wireless devices that function as low-speed USB devices. Another
option is to use an adapter that converts between USB and a wireless interface
such as Zigbee, Bluetooth, or WiFi.

���������	
	��
USB communications require a host computer with USB support, one or more
devices with USB ports, and hubs, connectors, and cables as needed to connect
the devices to the host computer.

The host computer is a PC or other computer that contains a USB host con-
troller and a root hub. The host controller formats data for transmitting on the
bus and translates received data to a format that operating-system components
understand. The host controller also helps manage communications on the bus.
The root hub has one or more connectors for attaching devices. The root hub
and host controller together detect attached and removed devices, carry out
requests from the host controller, and pass data between devices and the host
controller. In addition to the root hub, a bus may have one or more external
hubs. 

Each device has hardware and firmware as needed to communicate with the
host computer. The USB specifications define the cables and connectors that
connect devices to their hubs.

�����5%
The topology, or arrangement of connections, on the bus is a tiered star (Figure
1-1). At the center of each star is a hub, and each connection to the hub is a
point on the star. The root hub is in the host. An external hub has one
upstream (host-side) connector for communicating with the host and one or
more downstream (device-side) connectors or internal connections to embed-
ded devices. A typical hub has two, four, or seven ports. When multiple hubs
connect in series, you can think of the series as a tier, one above the next.

The tiered star describes only the physical connections. In programming, all
that matters is the logical connection. Host applications and device firmware
don’t need to know or care whether the communication passes through one hub
or five.

Up to five external hubs can connect in series with a limit of 127 peripherals
and hubs including the root hub. However, bandwidth and scheduling limits
can prevent a single host controller from communicating with this many
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devices. To increase the available bandwidth for USB devices, many PCs have
multiple host controllers, each controlling an independent bus.

������

��������
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A USB 3.0 host supports all four speeds. A USB 2.0 host supports low, full, and
high speed. A USB 1.x host supports low and full speeds only. Exceptions
include On-The-Go devices and other special-purpose hosts in embedded sys-
tems, which may support only the speeds needed to access specific peripherals.

A USB 3.0 hub contains both a USB 2.0 hub and a SuperSpeed hub and han-
dles traffic at any speed. SuperSpeed traffic uses the SuperSpeed hub’s circuits
and wires, and other traffic uses the USB 2.0 hub’s circuits and wires.

A SuperSpeed-capable device communicates at SuperSpeed only if the host and
all hubs between the host and device are USB 3.0 (Figure 1-2). Otherwise the
device must use a slower speed. For compatibility with USB 2.0 hosts and hubs,

Figure 1-1. USB uses a tiered star topology. Each external hub has one 

upstream-facing port and one or more downstream-facing ports.
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a SuperSpeed device that doesn’t fully function at a lower speed must at least
respond to bus resets and standard requests at another speed to inform the host
that the device requires SuperSpeed to perform its function.

A non-SuperSpeed, high-speed-capable device communicates at high speed if
the host and all hubs between are USB 2.0 or higher (Figure 1-3). For compati-
bility with USB 1.x hosts and hubs, a high-speed device that doesn’t fully func-
tion at full speed must at least respond to bus resets and standard requests at full
speed to inform the host that the device requires high speed to perform its func-
tion. Many high-speed devices function, if more slowly, at full speed because

Figure 1-2. USB 3.0 hosts and hubs support all four speeds for downstream 

communications.
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adding support for full speed is generally easy and is required to pass USB IF
compliance tests.

A device that supports full or low speed communicates with its nearest hub at
that speed. For any segments upstream from that hub, if all upstream hubs are
USB 2.0 or higher, the device’s traffic travels at high speed.

�
������5%
In the world of USB, the words function and device have specific meanings. Also
important is the concept of a USB port and how it differs from other ports such
as RS-232.

*"������

A USB function is a set of one or more related interfaces that expose a capabil-
ity. Examples of functions are a mouse, a set of speakers, a data-acquisition unit,
or a hub. A single physical device can contain multiple functions. For example,

Figure 1-3.  USB 2.0 hubs use high speed for upstream communications if the 

host and all hubs between are USB 2.0 or USB 3.0.
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a device might provide both a printer and a scanner function. A host identifies a
device’s functions by requesting a device descriptor and one or more interface
descriptors from the device. The descriptors are data structures that contain
information about the device.

(�����

A device is a logical or physical entity that performs one or more functions.
Hubs and peripherals are devices. The host assigns a unique address to each
device on the bus. A compound device contains a hub with one or more perma-
nently attached devices. The host treats a compound device in much the same
way as if the hub and its functions were separate physical devices. The hub and
embedded devices each have a unique address. A USB 3.0 hub is a special case.
The hub contains both a USB 2.0 hub function and a USB 3.0 hub function.

A composite device has one bus address but multiple, independent interfaces
that each provide a function. Each interface can use a different driver on the
host. For example, a composite device could have interfaces for mass storage
and a keyboard. 

%���

In general terms, a hardware computer port is an addressable location that can
connect to peripheral circuits. A port’s circuits can terminate at a cable connec-
tor or be hard-wired to peripheral circuits. For USB, each downstream-facing
connector on a hub represents a USB port. Host applications can’t access USB
ports directly but instead communicate with drivers assigned to the devices
attached to ports. A USB host controller may reside at a series of port addresses
the system’s CPU accesses, but these ports are distinct from the ports on the
bus.

�������	���������
The host and its devices each have defined responsibilities. The host bears most
of the burden of managing communications, but a device must have the intelli-
gence to respond to communications from the host and other events on the
bus.
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To communicate with USB devices, a computer needs hardware and software
that support the USB host function. The hardware consists of a USB host con-
troller and a root hub with one or more USB ports. The software support is
typically an operating system that enables device drivers to communicate with
lower-level drivers that access the USB hardware.

A typical PC has one or more hardware host controllers that each support mul-
tiple ports. The host is in charge of the bus. The host has to know what devices
are on the bus and the capabilities of each device. The host must also do its best
to ensure that all devices on the bus can send and receive data as needed. A bus
may have many devices, each with different requirements, all wanting to trans-
fer data at the same time. The host’s job isn’t trivial.

Fortunately, the host-controller hardware and drivers in Windows and other
operating systems do much of the work of managing the bus. Each device
attached to the host must have an assigned device driver that enables applica-
tions to communicate with the device. System-level software components man-
age communications between the device driver and the host controller and root
hub.

Applications don’t have to know the hardware-specific details of communicat-
ing with devices. All the application has to do is send and receive data using
standard operating-system functions or other software components. Often the
application doesn’t have to know or care whether the device uses USB or
another interface.

The host performs each of the tasks described below.

(������(�����


On power-up, hubs make the host aware of all attached USB devices. In a pro-
cess called enumeration, the host determines what bus speed to use, assigns an
address, and requests additional information. After power-up, whenever a
device is removed or attached, a hub informs the host of the event, and the host
enumerates any newly attached device and removes any detached device from
its list of devices available to applications.

���� ��(����*	��

The host manages traffic on the bus. Multiple devices may want to transfer data
at the same time. The host controller divides the available time into intervals
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and gives each transmission a portion of the available time. A USB 3.0 host can
simultaneously transmit SuperSpeed data, receive SuperSpeeed data, and trans-
mit or receive data at a USB 2.0 speed. A USB 2.0 bus carries data at one speed
at a time and in one direction at a time.

During enumeration, a device’s driver requests bandwidth for transfers that
must have guaranteed timing. If the bandwidth isn’t available, the driver can
request a smaller portion of the bandwidth or wait until the requested band-
width is available. Transfers that have no guaranteed timing use the remaining
bandwidth and must wait if the bus is busy.

������������ 

When transferring data, the host adds error-checking bits. On receiving data,
the device performs calculations on the data and compares the result with
received error-checking bits. If the results don’t match, the device doesn’t
acknowledge receiving the data and the host knows it should retransmit. In a
similar way, the host error-checks data received from devices. USB also supports
a transfer type without acknowledgments for use with data such as real-time
audio that tolerates errors to enable a constant transfer rate.

If a transmission attempt fails after multiple tries, the host can inform the
device’s driver of the problem, and the driver can notify the application so it can
take action as needed.

%��������������� ��%����

In addition to data wires, a USB cable has wires for a +5V supply and ground.
Some devices draw all of their power from the bus. The host provides power to
all devices on power up or attachment and works with the devices to conserve
power when possible. A high-power USB 2.0 device can draw up to 500 mA
from the bus. A high-power SuperSpeed device can draw up to 900 mA from a
USB 3.0 bus. Ports on some battery-powered hosts and hubs support only
low-power devices, which are limited to 100 mA (USB 2.0) or 150 mA (Super-
Speed). To conserve power when the bus is idle, a host can require devices to
enter a low-power state and reduce their use of bus current.

����� ��(��������(�����


All of the above tasks support the host’s main job, which is to exchange data
with devices. In some cases, a device driver requests the host to attempt to send
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or receive data at defined intervals, while in others the host communicates only
when an application or other software component requests a transfer.

�������������������
In many ways, a device’s duties are a mirror image of the host’s. When the host
initiates communications, the device must respond. But devices also have duties
that are unique. The device-controller hardware typically handles many respon-
sibilities. The amount of firmware support varies with the chip architecture.
Devices must perform all of the tasks described below.

(����������"��������
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Devices must detect communications directed to the device’s address on the
bus. The device stores received data in a buffer and returns a status code or
sends requested data from a buffer or a status code. In almost all chips, these
functions are built into the hardware and require no support in code beyond
preparing the buffers to send or receive data. The firmware doesn’t have to take
other action or make decisions until the chip has detected a communication
intended for the device’s address. SuperSpeed devices have less of a burden in
detecting communications because the host routes SuperSpeed communica-
tions only to the target device.

$�
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On power up or when a device attaches to a powered system, a device must
respond to standard requests sent by the host computer during enumeration.
The host may also send requests any time after enumeration completes.

All devices must respond to these requests, which query the capabilities and sta-
tus of the device or request the device to take other action. On receiving a
request, the device places data or status information in a buffer to send to the
host. For some requests, such as selecting a configuration, the device takes other
action in addition to responding to the host computer.

The USB specification defines requests, and a class or vendor may define addi-
tional requests. On receiving a request the device doesn’t support, the device
responds with a status code.

����������

Like the host, a device adds error-checking bits to the data it sends. On receiv-
ing data that includes error-checking bits, the device performs the error-check-
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ing calculations. The device’s response or lack of response tells the host whether
to re-transmit. The device also detects the acknowledgement the host returns
on receiving data from the device. The device controller’s hardware typically
performs these functions.

���� ��%����

A device may have its own power supply, obtain power from the bus, or use
power from both sources. A host can request a device to enter the low-power
Suspend state, which requires the device to draw no more than 2.5 mA of bus
current. Some devices support remote wakeup, which can request to exit the
Suspend state. USB 3.0 hosts can place individual functions within a USB 3.0
device in the Suspend state. With host support, devices can use additional, less
restrictive low-power states to conserve power and extend battery life.

����� ��(�����������.�
�

All of the above tasks support the main job of a device’s USB port, which is to
exchange data with the host. For most transfers where the host sends data to the
device, the device responds to each transfer attempt by sending a code that indi-
cates whether the device accepted the data or was too busy to accept it. For
most transfers where the device sends data to the host, the device must respond
to each attempt by returning data or a code indicating the device has no data to
send. Typically, the hardware responds according to firmware settings and the
error-checking result. Some transfers don’t use acknowledgements, and the
sender receives no feedback about whether the receiver accepted transmitted
data.

Devices send data only when the host requests data. SuperSpeed devices can
send a packet that causes the host to request data from the device.

The controller chip’s hardware handles the details of formatting the data for the
bus. The formatting includes adding error-checking bits to data to transmit,
checking for errors in received data, and sending and receiving the individual
bits on the bus.

Of course, the device must also do whatever other tasks it’s responsible for. For
example, a mouse must be ready to detect movement and button clicks, a
data-acquisition unit has to read the data from its sensors, and a printer must
translate received data into images on paper.
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The data throughput, or rate of transfer of application data, between a device
and host is less than the bus speed and isn’t always predictable. Some of the
transmitted bits identify, synchronize, and error-check the data, and the
throughput also varies with the transfer type and how busy the bus is.

For time-sensitive data, USB supports transfer types that have a guaranteed rate
or guaranteed maximum latency. Isochronous transfers have a guaranteed rate,
where the host can request a specific number of bytes to transfer at defined
intervals. The intervals can be as short as 1 ms at full speed or 125 µs at high
speed and SuperSpeed. Isochronous transfers have no error correcting, however.
Interrupt transfers have error correcting and guaranteed maximum latency. The
device specifies a maximum interval, and when a driver has requested a data
transfer, the host allows no more than the specified interval, or maximum
latency, to elapse between transfer attempts. The requested maximum interval
can have a range of 10–255 ms at low speed, 1–255 ms at full speed, and 125 µs
to 4.096 s at high speed and SuperSpeed.

Because all devices share the bus, a device has no guarantee that a particular rate
or maximum latency will be available on attachment. If the bus is too busy to
allow a requested transfer rate or maximum latency, the host refuses to complete
the configuration process that enables the host to schedule transfers. The
device’s driver can then request a configuration or interface that requires less
bandwidth. To take full advantage of reserved bandwidth, the device driver and
application software and device firmware must eliminate retries as much as pos-
sible. The device should have data ready to send when the host requests it and
should be ready to accept data when the host sends it.

Of USB’s four transfer types, the fastest on an otherwise idle bus are bulk trans-
fers, with theoretical maximums of around 1.2 MB/s at full speed, 53 MB/s at
high speed, and 400 MB/s at SuperSpeed. Isochronous transfers can request the
most bandwidth (1.023 MB/s at full speed, 24.576 MB/s at high speed, and
393 MB/s at SuperSpeed). Low speed doesn’t support bulk or isochronous
transfers, and the maximum guaranteed bandwidth for a single low-speed trans-
fer is 800 bytes per second.

��������5� ������
Designing a USB device for PCs involves both getting the device up and run-
ning and providing software to communicate with the device.
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A USB device needs the following: 

• A device-controller chip with a USB interface and a CPU or other intelli-
gent hardware that communicates with the controller. The CPU can be in
the same chip as the controller or in a different chip.

• Program code, hardware, or a combination of these to carry out the USB
communications in the device.

• Hardware and code to carry out the device’s function (processing data,
reading inputs, writing to outputs).

The host that communicates with the device needs the following:

• Host controller hardware and software (typically included with the operat-
ing system).

• Device-driver software on the host to enable applications to communicate
with the device. The driver may be included with the operating system or
provided by the vendor, the chip company, or another source.

• Application software to enable users to access the device. For standard
device types such as a mouse, keyboard, or disk drive, you don’t need cus-
tom application software, though you may want to write a test application.

�����"�����������5
To develop a USB device, you need the following tools:

• An assembler or compiler to create the device firmware (the code that runs
inside the device’s controller chip).

• Device-programmer hardware that enables storing the assembled or com-
piled code in the controller’s program memory.

• A compiler for writing and debugging host software, which may include a
combination of a device driver, filter driver, and application code.

Also recommended are a monitor program for debugging the device firmware
and a protocol analyzer for viewing USB traffic.


����������������5� �&��<���
The steps in project development include initial decisions, enumerating, and
exchanging data.
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Before you can begin programming, you need to select device hardware and a
host driver:

1. Specify the device’s requirements. For the USB interface, define the required
rate of data transfer and timing or bandwidth requirements. Consider what else
your device needs to carry out its function. For example, a data logger might
need an analog input. Chapter 3 has more about the capabilities of the different
transfer types and how they relate to device requirements.

2. Decide whether the PC can access the device using a driver included with the
operating system or a driver you provide. Chapter 7 has more about drivers.

3. Select a device controller chip. Chapter 6 has more about selecting chips.
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To enable a host to enumerate your device, do the following:

1. Write or obtain device firmware to respond to standard USB requests from
the host and other events on the bus. The requests ask for a series of descriptors,
which are data structures that describe the device’s USB capabilities. Chip com-
panies generally provide example code that you can modify for a specific appli-
cation. A few controllers can enumerate with no device firmware required.

2. For a Windows host, identify or create a device driver and INF (information)
file to enable identifying the device and assigning a driver. The INF file is a text
file that names the driver the device will use on the host computer. If your
device fits a class supported by Windows, you may be able to use an INF file
included with Windows. Other operating systems use different methods to
match a driver to a device.

3.Build or obtain a development board or other circuit to test the chip and your
firmware. Chip companies typically offer development boards for their chips.

4. Load the code into the device and attach the device to the bus. A Windows
host will enumerate the device and add it to the Device Manager.

����� �� �(���

When the device enumerates successfully, you can begin to add components
and code to carry out the device’s function. If needed, write application code to
communicate with and test the device. When the code is debugged, you’re
ready to test on your final hardware.
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USB 3.0 is a major update to the USB specification. This section is for those
who are familiar with USB 2.0 and want to know what’s new.

�	 ��	�
USB 3.0 incorporates many new features while continuing to support USB 2.0.

Does USB 3.0 replace USB 2.0?
No. USB 3.0 defines a new SuperSpeed bus that operates parallel to the USB
2.0 bus. Devices that don’t support SuperSpeed should continue to comply
with USB 2.0. SuperSpeed devices comply with USB 3.0 when operating at
SuperSpeed and comply with USB 2.0 when operating at a lower speed. USB
3.0 also relies on USB 2.0 to define many aspects of the interface that apply to
all speeds, including transfer types, descriptors, and bus topology.

The introduction of USB 3.0 thus differs from the change from USB 1.1 to
USB 2.0. When USB 2.0 was released, USB 1.1 became obsolete, and USB 2.0
became the current specification for low, full, and high-speed devices. In con-
trast, USB 3.0 supplements, but doesn’t replace, USB 2.0.

What devices will benefit from USB 3.0?
The first devices will likely be mass storage. A USB-IF device working group is
developing a Mass Storage USB Attached SCSI Protocol (UASP) for efficient
transfers at SuperSpeed (and improved efficiency at other speeds). Video and
power-sensitive applications will also benefit from USB 3.0.

How fast is USB 3.0?
The SuperSpeed bus has a signaling rate (the speed of the bits on the wires) of 5
Gb/s, which is over 10× faster than high-speed USB. Unlike USB 2.0, Super-
Speed has a pair of wires for each direction, so data can travel in both directions
at the same time. After encoding and other overhead, the bus can carry around
400 MB/s of application data in each direction. 

Other features that can increase data throughput include these:

• Endpoints can asynchronously (without waiting for the host to request the 
information) notify the host when they have data to send. The host thus 
doesn’t have to use up bandwidth polling endpoints that have nothing to 
send.

• Bulk transfers can use a streaming protocol for improved performance.
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What stays the same?
These features remain essentially unchanged in USB 3.0:

• Tiered star topology.
• Four transfer types (control, bulk, interrupt, isochronous).
• Use of descriptors to provide device information. (USB 3.0 adds new 

descriptors and adds new information in some fields in descriptors defined 
in USB 2.0.)

• Device classes and many class drivers.
• Low, full, and high-speed protocols and cabling for these speeds.

What changes besides the new bus speed?
Besides the 5-Gbps bus speed, other changes with USB 3.0 include these:

• Direct routing. Hubs route downstream traffic only to the receiving device 
rather than to every SuperSpeed-capable port.

• No polling. When a host requests data from a SuperSpeed, non-isochro-
nous endpoint that is busy or has no data, the endpoint returns Not Ready 
(NRDY). The host can then leave the endpoint alone until the device sends 
an Endpoint Ready (ERDY) notification indicating that the endpoint has 
data to send.

• New, aggressive power-saving modes and protocols.
• More bus current available to devices.
• Support for bursts, where a host or device sends multiple data packets with-

out waiting for each previous packet’s acknowledgement.
• Streaming on bulk endpoints. Multiple, independent data streams can use 

the same endpoint with a dedicated buffer for each stream.

���� ��,���%
USB 3.0 is backwards compatible with USB 2.0.

Will USB 1.x and USB 2.0 devices work with USB 3.0 hosts?
Yes. A USB 3.0 host has a USB 2.0 bus in parallel with a SuperSpeed bus.

Will USB 3.0 devices work with USB 2.0 or 1.x hosts?
Sometimes. Every SuperSpeed device must also support a USB 2.0 speed but
doesn’t have to fully function at that speed. A device that can’t perform its func-
tion at the lower speed informs the host that the device requires USB 3.0 to
function. A USB 3.0 device that supports only SuperSpeed and high speed
won’t work with a USB 1.x host or a USB 1.x upstream hub.



USB Basics

                                                                                                29

What will change in host software?
The operating system must provide a driver for the USB 3.0 host controller.
Class and device drivers that support isochronous transfers are likely to require
changes to support SuperSpeed.

What changes do I need to make to a USB 2.0 device to comply with USB
3.0?
The USB 3.0 specification doesn’t apply to USB 2.0 devices. Devices that don’t
support SuperSpeed should continue to comply with USB 2.0.

Can a low-, full-, or high-speed device use USB 3.0’s higher bus currents?
No. SuperSpeed devices should comply with USB 3.0 when operating at Super-
Speed and comply with USB 2.0 when operating at a lower speed. A
high-power device that can operate at both SuperSpeed and high speed can
draw 900 mA at SuperSpeed but only 500 mA at high speed.

Must USB 3.0 hubs support all speeds?
Yes. A USB 3.0 hub contains a SuperSpeed hub and a USB 2.0 hub that share
power and ground lines and logic to control power to the bus. The hub enu-
merates as two devices, a SuperSpeed hub on the SuperSpeed bus and a USB
2.0 hub on the USB 2.0 bus.

Can a USB 3.0 device communicate at multiple speeds at the same time?
No, except for hubs, each USB 3.0 device communicates at the highest speed
supported by the device, the host, and the hubs between them.

� ,��
USB 3.0 defines new cables and connectors.

Can I use USB 2.0 cables with a SuperSpeed host or device?
Yes, for traffic at USB 2.0 speeds. USB 2.0 cables fit USB 3.0 receptacles but
don’t have wires to carry SuperSpeed traffic.

Can I use a USB 3.0 cable with a USB 2.0 host?
Yes. The USB 3.0 Standard-A plug fits the USB 2.0 Standard-A receptacle, so
you can use a USB 3.0 cable to attach a USB 3.0 device to a USB 2.0 host. The
device will communicate at a USB 2.0 speed.

Can I use USB 3.0 cable with a USB 2.0 device?
No. A USB 3.0 cable has a USB 3.0 Standard-B or USB 3.0 Micro-B plug, and
these plugs don’t fit USB 2.0 receptacles.
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What is the maximum cable length?
The USB 3.0 specification defines performance requirements but not maxi-
mum cable length. In practical terms the limit is 3 m using 26 AWG wires for
data and 22 AWG wires for power.

Can two SuperSpeed hosts connect directly to each other?
USB 3.0 defines a new cable with a USB 3.0 Standard-A plug on each end. The
cable is intended for debugging and other host-to-host applications with driver
support. The SuperSpeed wires cross-connect, routing each output to its corre-
sponding input. The cable doesn’t contain wires for VBUS, D+, or D-. The
cable won’t hurt USB 2.0 hosts because the only line that connects on these
hosts is GND.

&�*��
USB 3.0 provides both more power and more power-saving options to devices.

How much bus power can devices draw?
A USB 3.0 host or hub can provide up to 900 mA to high-power SuperSpeed
devices and up to 150 mA to low-power SuperSpeed devices. When operating
at low, full, or high speed, USB 2.0’s limits apply: high power devices can draw
up to 500 mA, and low power devices can draw up to 100 mA.

What other new power capabilities does USB 3.0 define?
A USB 3.0 device can have a Powered-B receptacle with two extra contacts that
enable the device to provide up to 5V at 1A to a device such as a Wireless USB
adapter. The adapter thus doesn’t need its own power supply. In a wired con-
nection to a host or hub, the extra contacts are unused.
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This chapter looks at the elements that make up a USB transfer. You don’t need
to know every detail about USB transfers to get a project up and running, but
understanding something about how the transfers work can help in deciding
which transfer types a device should use, writing device firmware, and debug-
ging.


�������	�����
To send or receive data, a host initiates a USB transfer. Each transfer uses a
defined format to send data, addressing information, error-detecting bits, and
status and control information. The format varies with the transfer type and
direction. 


�������������
Every USB communication (with one exception in USB 3.0) is between a host
and a device. The host manages traffic on the bus, and the device responds to
communications from the host. An endpoint is a device buffer that stores
received data or data to transmit. Each endpoint has a number, a direction, and



Chapter 2

32                                                                                                           

a maximum number of data bytes the endpoint can send or receive in a transac-
tion.

Each USB transfer consists of one or more transactions that can carry data to or
from an endpoint. A USB 2.0 transaction begins when the host sends a token
packet on the bus. The token packet contains the target endpoint number and
direction. An IN token packet requests a data packet from the endpoint. An
OUT token packet precedes a data packet from the host. In addition to data,
each data packet contains error-checking bits and a Packet ID (PID) with a
data-sequencing value. Many transactions also have a handshake packet where
the receiver of the data reports success or failure of the transaction. For USB 3.0
transactions, the packet types and protocols differ, but the transactions contain
similar addressing, error-checking, and data-sequencing values along with the
data.

USB supports four transfer types: control, bulk, interrupt, and isochronous. In
a control transfer, the host sends a defined request to the device. On device
attachment, the host uses control transfers to request a series of data structures
called descriptors from the device. The descriptors provide information about
the device’s capabilities and help the host decide what driver to assign to the
device. A class specification or vendor can also define requests.

Control transfers have up to three stages: Setup, Data (optional), and Status.
The Setup stage contains the request. When present, the Data stage contains
data from the host or device, depending on the request. The Status stage con-
tains information about the success of the transfer. In a control read transfer,
the device sends data in the Data stage. In a control write transfer, the host
sends data in the Data stage, or the Data stage is absent.

The other transfer types don’t have defined stages. Instead, higher-level software
defines how to interpret the raw data. Bulk transfers are the fastest on an other-
wise idle bus but have no guaranteed timing. Printers and USB virtual
COM-port data use bulk transfers. Interrupt transfers have guaranteed maxi-
mum latency, or time between transaction attempts. Mice and keyboards use
interrupt transfers. Isochronous transfers have guaranteed timing but no error
correcting. Streaming audio and video use isochronous transfers.

&��������"����������� ����
USB communications fall into two general categories: communications that
help to identify and configure the device and communications that carry out
the device’s purpose. During enumeration, the host learns about the device and
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requests a configuration that prepares the device to perform its function. When
enumeration is complete, the host can send and request data as needed to carry
out the device’s purpose.

During enumeration, the device’s firmware responds to a series of standard
requests from the host. The device must decode the requests, return requested
information, and take other actions to carry out the requests.

On Windows PCs, the operating system performs enumeration with no appli-
cation programming required. The first time a device attaches to a system, the
Plug-and-Play (PnP) Manager must locate an INF file that identifies the name
and location of one or more driver files to assign to the device. If the required
files are available and the firmware functions correctly, the enumeration process
is generally invisible to users. Chapter 9 has more about device drivers and INF
files.

After the host has enumerated the device and a device driver has been assigned
and loaded, application communications can begin. At the host, applications
can use Windows API functions or other software components to read and
write to the device. At the device, transferring data typically requires either plac-
ing data to send in an endpoint’s transmit buffer or retrieving received data
from an endpoint’s receive buffer, and on completing a transaction, ensuring
that the endpoint is ready for another transaction. Most devices also require
firmware support for handling errors and other events. 

4 � 5��5�� � ��������	��
The host schedules the transfers on the bus. A USB 2.0 host controller manages
traffic by dividing time into 1-ms frames at low and full speeds and 125-µs
microframes at high speed. The host allocates a portion of each (micro)frame to
each transfer. Each (micro)frame begins with a Start-of-Frame (SOF) timing
reference. The SuperSpeed bus doesn’t use SOFs, but a USB 3.0 host schedules
SuperSpeed transfers within 125-µs bus intervals. A USB 3.0 host also sends
timstamp packets once every bus interval to all SuperSpeed ports that aren’t in a
low-power state.

Each transfer consists of one or more transactions. Control transfers always
have multiple transactions because they have multiple stages, each consisting of
one or more transactions. Other transfer types use multiple transactions when
they have more data than will fit in a single transaction. Depending on how the
host schedules the transactions and the speed of a device’s response, the transac-



Chapter 2

34                                                                                                           

tions in a transfer may all be in a single (micro)frame or bus interval, or the
transactions may be spread over multiple (micro)frames or bus intervals.

Every device has a unique address assigned by the host, and all data travels to or
from the host. Except for remote wakeup signaling, everything a USB 2.0
device sends is in response to receiving a packet sent by the host. Because multi-
ple devices can share a data path on the bus, each USB 2.0 transaction includes
a device address that identifies the transaction’s destination. 

SuperSpeed devices can send status and control information to the host without
waiting for the host to request the information. Every SuperSpeed Data Packet
and Transaction Packet includes a device address. SuperSpeed also uses Link
Management Packets packets that travel only between a device and the nearest
hub and thus don’t need addressing information.

��	�	��������������	�
Every USB transfer consists of one or more transactions, and each transaction
in turn contains packets of information. To understand transactions, packets,
and their contents, you also need to understand endpoints and pipes. So that’s
where we’ll begin.

��������(��	�
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All bus traffic travels to or from a device endpoint. The endpoint is a buffer that
typically stores multiple bytes and consists of a block of data memory or a regis-
ter in the device-controller chip. The data stored at an endpoint may be
received data or data waiting to transmit. The host also has buffers that hold
received data and data waiting to transmit, but the host doesn’t have endpoints.
Instead, the host serves as the source and destination for communications with
device endpoints.

An endpoint address consists of an endpoint number and direction. The num-
ber is a value in the range 0–15. The direction is defined from the host’s per-
spective: an IN endpoint provides data to send to the host and an OUT
endpoint stores data received from the host. An endpoint configured for control
transfers must transfer data in both directions, so a control endpoint consists of
a pair of IN and OUT endpoint addresses that share an endpoint number.

Every device must have endpoint zero configured as a control endpoint. There’s
rarely if ever a need for additional control endpoints.
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For other transfer types, data flows in one direction, though status and control
information can travel in the opposite direction. A single endpoint number can
support both IN and OUT endpoint addresses. For example, a device might
have endpoint 1 IN for sending data to the host and endpoint 1 OUT for
receiving data from the host.

In addition to endpoint zero, a full- or high-speed device can have up to 30
additional endpoint addresses (1–15 IN and OUT). A low-speed device can
have at most two additional endpoint addresses which can be two IN, two
OUT, or one in each direction.

�� �� �������%���
Every USB 2.0 transaction begins with a packet that contains an endpoint
number and a code that indicates the direction of data flow and whether the
transaction is initiating a control transfer:

As with endpoint directions, the naming convention for IN and OUT transac-
tions is from the perspective of the host. In an IN transaction, data travels from
the device to the host. In an OUT transaction, data travels from the host to the
device.

A Setup transaction is like an OUT transaction because data travels from the
host to the device, but a Setup transaction is a special case because it initiates a
control transfer. Devices need to identify Setup transactions because these are
the only transactions that devices must always accept and because the device
must identify and respond to the request contained in the received data. Any
transfer type may use IN or OUT transactions.

In every USB 2.0 transaction, the host sends an addressing triple that consists of
a device address, an endpoint number, and endpoint direction. On receiving an
OUT or Setup packet, the endpoint stores the data that follows the packet, and
the device hardware typically triggers an interrupt. Firmware can then process
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IN device all data or status 
information

OUT host all data or status 
information

Setup host control a request
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the received data and take any other required action. On receiving an IN
packet, if the endpoint has data ready to send to the host, the hardware sends
the data on the bus and typically triggers an interrupt. Firmware can then do
whatever is needed to get ready to send data in the next IN transaction. An end-
point that isn’t ready to send or receive data in response to an IN or OUT
packet sends a status code.

For SuperSpeed transactions, the protocol differs as described later in this chap-
ter.

&����(����������5������������������)���
Before data can transfer, the host and device must establish a pipe. A pipe is an
association between a device’s endpoint and the host controller’s software. Host
software establishes a pipe with each endpoint address the host wants to com-
municate with.

The host establishes pipes during enumeration. If a user detaches a device from
the bus, the host removes the no longer needed pipes. The host can also request
new pipes or remove unneeded pipes by using control transfers to request an
alternate configuration or interface for a device. Every device has a default con-
trol pipe that uses endpoint zero.

The configuration information received by the host includes an endpoint
descriptor for each endpoint that the device wants to use. Each endpoint
descriptor contains an endpoint address, the type of transfer the endpoint sup-
ports, the maximum size of data packets, and, when appropriate, the desired
interval for transfers.

�%�����"��� ��"���
Devices with varied and differing requirements for transfer rate, response time,
and error correcting can all use USB. Each of the four types of data transfers
meets different needs. Each device can support the transfer types that are best
suited for its purpose. Table 2-1 summarizes the features and uses of each type.

Control transfers are the only type with functions defined by the USB specifica-
tion. Control transfers enable the host to read information about a device, set a
device’s address, and select configurations and other settings. With driver sup-
port, control transfers can also contain class- and vendor-specific requests that
send and receive data for any purpose. All USB devices must support control
transfers.
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Bulk transfers are intended for applications where the rate of transfer isn’t criti-
cal, such as sending a file to a printer, receiving data from a scanner, or accessing
files on a drive. For these applications, quick transfers are nice, but the data can
wait if necessary. On a busy bus, bulk transfers have to wait, but on a bus that is
otherwise idle, bulk transfers are the fastest type. Low speed devices don’t sup-

Table 2-1: Each of the USB’s four transfer types is suited for different uses.
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and 
configuration

Printer, 
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Mouse, 
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Streaming 
audio, video
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port bulk endpoints. Devices aren’t required to support bulk transfers, but a
specific device class can require them.

Interrupt transfers are for devices that must receive the host’s or device’s atten-
tion periodically, or with low latency, or delay. Other than control transfers,
interrupt transfers are the only way low-speed devices can transfer data. Key-
boards and mice use interrupt transfers to send keypress and mouse-movement
data. Interrupt transfers can use any speed. Devices aren’t required to support
interrupt transfers, but a specific device class can require them.

Isochronous transfers have guaranteed delivery time but no error correcting.
Data that uses isochronous transfers incudes streaming audio and video. Isoch-
ronous is the only transfer type that doesn’t support automatic re-transmitting
of data received with errors, so occasional errors must be acceptable. Low-speed
devices don’t support isochronous endpoints. Devices aren’t required to support
isochronous transfers, but a specific device class can require them.


��� �� ���4��� 5��&����
In addition to classifying a pipe by the type of transfer it carries, the USB speci-
fication defines pipes as either stream or message. Control transfers use bidirec-
tional message pipes; all other transfer types use unidirectional stream pipes.

������	�/���
+��


In a control transfer’s message pipe, a transfer begins with a transaction contain-
ing a request. Depending on the request, to complete the transfer, the host and
device may exchange data and status information, or the device may just send
status information. Each control transfer has at least one transaction that sends
information in each direction.

If a device supports a received request, the device takes the requested action. If a
device doesn’t support the request, the device responds with a code to indicate
that the request isn’t supported.

'����/���
+��


The data in a stream pipe has no structure defined by the USB specification.
The receiver just accepts or rejects the data that arrives. The device firmware or
host software can process the data in whatever way is appropriate for the appli-
cation.

Of course, even with stream data, the sending and receiving devices must agree
on a format of some type. For example, a host application may define a format



Inside USB Transfers

                                                                                                39

for a received series of bytes that contain a temperature reading and the time of
the reading.

����� ���5� ��� ��"��
The USB 2.0 specification defines a transfer as one or more bus transactions
that move information between a software client and its function. A transfer
may be very short, sending as little as a byte of application data, or very long,
sending the contents of a large file.

Windows applications can access some USB devices by calling API functions to
open a handle to the device and request data transfers. The operating system
passes a request to transfer data to a device or class driver, which in turn passes
the request to other system-level drivers and on to the host controller. The host
controller initiates the transfer on the bus.

For devices in standard classes, a programming language can provide alternate
ways to access a device. In many cases, the application doesn’t have to know or
care whether the device uses USB or another interface. For example, the .NET
Framework includes Directory and File classes for accessing files on drives,
which may use USB. A vendor-supplied driver can also define API functions.
For example, chip company FTDI provides a driver that exposes functions for
setting communications parameters and exchanging data with FTDI’s control-
ler chips.

For receiving data from a device, some drivers request the host controller to poll
an endpoint at intervals, while other drivers don’t initiate communications
unless an application has requested data from the device.

���������� �� ������
Figure 2-1 shows the elements of a typical USB 2.0 transfer. A lot of the termi-
nology here begins to sound the same. There are transfers and transactions,
stages and phases, data transactions and data packets. There are Status stages
and handshake phases. Data stages have handshake packets and Status stages
have data packets. It can take a while to absorb it all. Table 2-2 lists the ele-
ments that make up each of the four transfer types.

Each transfer consists of one or more transactions, and each transaction in turn
consists of two or three packets. (Start-of-Frame markers transmit in single
packets.) The USB 2.0 specification defines a transaction as the delivery of ser-
vice to an endpoint. Service in this case can mean either the host’s sending infor-
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mation to the device or the host’s requesting and receiving information from
the device. Setup transactions send control-transfer requests to a device. OUT
transactions send other data or status information to the device. IN transactions
send data or status information to the host. 

Each USB 2.0 transaction includes identifying, error-checking, status, and con-
trol information as well as any data to be exchanged. A transfer may take place
over multiple frames or microframes, but each USB 2.0 transaction completes
within a frame or microframe without interruption. No other packets on the
bus can break into the middle of a transaction. Devices must respond quickly
with requested data or status information. Device firmware typically arms (sets
up, or configures) an endpoint’s response to a received packet, and on receiving
a packet, the hardware places the response on the bus.

Figure 2-1. A USB 2.0 transfer consists of transactions. The transactions in turn 

contain packets, and the packets contain a packet identifier (PID) and 

sometimes additional information.
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A non-control transfer with a small amount of data may complete in a single
transaction. Other transfers use multiple transactions with each carrying a por-
tion of the data.

�� �� ������&� ���
Each transaction has up to three phases, or parts that occur in sequence: token,
data, and handshake. Each phase consists of one or two transmitted packets.
Each packet is a block of information with a defined format. All packets begin
with a Packet ID (PID) that contains identifying information (Table 2-3).
Depending on the transaction, the PID may be followed by an endpoint
address, data, status information, or a frame number, along with error-checking
bits.

Table 2-2: Each USB 2.0 transaction has two or three phases. (Not shown are 

additional transactions required for split transactions, the PING protocol used 

in some transfers, and the PRE packet that precedes downstream, low-speed 

packets.)
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Control Setup Stage One (SETUP) Token
Data
Handshake

Data Stage Zero or more 
(IN or OUT)

Token
Data
Handshake

Status Stage One (opposite direction of the 
transaction(s) in the Data 
stage or IN if there is no Data 
stage)

Token
Data
Handshake

Bulk One or more 
(IN or OUT)

Token
Data
Handshake

Interrupt One or more 
(IN or OUT)

Token
Data
Handshake

Isochronous One or more 
(IN or OUT)

Token
Data
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Table 2-3: The PID provides information about a transaction.  (Part 1 of 2)
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Token
(identifies 
transaction 
type)

OUT 0001 all host all Device and endpoint 
address for OUT 
transaction.

IN 1001 all host all Device and endpoint 
address for IN 
transaction.

SOF 0101 Start of 
Frame

host all Start-of-Frame marker 
and frame number.

SETUP 1101 control host all Device and endpoint 
address for Setup 
transaction.

Data
(carries data 
or status 
code)

DATA0 0011 all host, 
device

all Data toggle or 
data PID sequencing

DATA1 1011 all host, 
device

all Data toggle or 
data PID sequencing

DATA2 0111 isochronous host, 
device

high Data PID sequencing

MDATA 1111 isochronous, 
split 
transactions

host, 
device

high Data PID sequencing

Handshake
(carries 
status code)

ACK 0010 control,
bulk,
interrupt

host, 
device

all Receiver accepts 
error-free data packet.

NAK 1010 control, 
bulk, 
interrupt

device all Receiver can’t accept 
data or sender can’t send 
data or has no data to 
transmit.

STALL 1110 control, 
bulk, 
interrupt

device all A control request isn’t 
supported or the 
endpoint is halted.

NYET 0110 control 
write, bulk 
OUT, split 
transactions

device high Device accepts an 
error-free data packet 
but isn’t ready for 
another, or a hub doesn’t 
yet have complete-split 
data.
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In the token phase of a transaction, the host initiates a communication by send-
ing a token packet. The PID indicates the transaction type, such as Setup, IN,
OUT, or SOF.

In the data phase, the host or device may transfer any kind of information in a
data packet. The PID includes a data-toggle or data PID sequencing value that
guards against lost or duplicated data when a transfer has multiple data packets.

In the handshake phase, the host or device sends status information in a hand-
shake packet. The PID contains a status code (ACK, NAK, STALL, or NYET).
The USB 2.0 specification sometimes uses the terms status phase and status
packet to refer to the handshake phase and packet.

The token phase has one additional use. A token packet can carry a
Start-of-Frame (SOF) marker, which is a timing reference that the host sends at
1-ms intervals at full speed and at 125-µs intervals at high speed. This packet
also contains a frame number that increments, rolling over on exceeding the
maximum value. The number indicates the frame count, so the eight microf-

Special PRE 1100 control,
interrupt

host full Preamble issued by a 
host to indicate that the 
next packet is low speed 
(low/full-speed segment 
only).

ERR 1100 all hub high Returned by a hub to 
report a low- or 
full-speed error in a split 
transaction (high-
speed segment only).

SPLIT 1000 all host high Precedes a token packet 
to indicate a split 
transaction.

PING 0100 control 
write, bulk 
OUT

host high Busy check for bulk 
OUT and control write 
data transactions after 
NYET.

EXT 0000 – host all Protocol extension 
token

Table 2-3: The PID provides information about a transaction.  (Part 2 of 2)
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rames within a frame all have the same number. An endpoint can synchronize
to the SOF packet or use the frame count as a timing reference. The SOF
marker also keeps devices from entering the low-power Suspend state when the
bus has no other USB traffic.

Low-speed devices don’t see the SOF packet. Instead, the hub the device
attaches to provides an End-of-Packet (EOP) signal, called the low-speed
keep-alive signal, once per frame. As the SOF does for full- and high-speed
devices, the low-speed keep-alive keeps low-speed devices from entering the
Suspend state.

The PRE PID contains a preamble code that tells hubs that the next packet is
low speed. On receiving a PRE PID, the hub enables communications with any
attached low-speed devices. On a low- and full-speed bus, the PRE PID pre-
cedes all token, data, and handshake packets directed to low-speed devices.
High-speed buses encode the PRE in the SPLIT packet, rather than sending the
PRE separately. Low-speed packets sent by a device don’t require a PRE PID.

In a high-speed bulk or control transfer with multiple data packets, before send-
ing the second and any subsequent data packets, the host may send a PING
PID to find out if the endpoint is ready to receive more data. The device
responds with a status code.

The SPLIT PID identifies a token packet as part of a split transaction, as
explained later in this chapter. The ERR PID is only for split transactions. A
USB 2.0 hub uses this PID to report an error in a downstream low- or
full-speed transaction. The ERR and PRE PIDs have the same value but don’t
cause confusion because a hub never sends a PRE to the host or an ERR to a
device. Also, ERR is only for high-speed segments and PRE never transmits on
high-speed segments.

The Link Power Management addendum to the USB 2.0 specification defines
the EXT PID. The host follows an EXT token packet with an extended token
packet for a specific function. Chapter 16 has more about an extended token
packet for use in power management.

& �:���
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Every USB 2.0 transaction has a token packet. The host is always the source of
this packet, which sets up the transaction by identifying the packet type, the
receiving device and endpoint, and the direction of any data the transaction will
transfer. For low-speed transactions on a full-speed bus, a PRE packet precedes
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the token packet. For split transactions, a SPLIT packet precedes the token
packet.

Depending on the transfer type and whether the host or device has information
to send, a data packet may follow the token packet. The direction specified in
the token packet determines whether the host or device sends the data packet.

In all transfer types except isochronous, the receiver of the data packet (or the
device if there is no data packet) returns a handshake packet containing a code
that indicates the success or failure of the transaction. The absence of an
expected handshake packet can indicate a more serious error or an unsupported
Packet ID. 

�����5������� ����� ����� � �����
The allowed delays between the token, data, and handshake packets of a USB
2.0 transaction are very short, intended to allow only for cable delays and
switching times plus a brief time to allow hardware (not firmware) to determine
a response, such as data or a status code, in response to a received packet.

A common mistake in writing firmware is to assume that the firmware should
wait for an interrupt before providing data to send to the host. Instead, before
the host requests the data, the firmware must copy the data to send into the
endpoint’s buffer and arm the endpoint to send the data on receiving an IN
token packet. The interrupt occurs when the transaction completes. After a suc-
cessful transaction, the interrupt informs the firmware that the endpoint’s
buffer is ready to store data for the next transaction. If the firmware waits for an
interrupt before providing the initial data, the interrupt never happens and data
doesn’t transfer.

A single transaction can carry data bytes up to the maximum packet size the
device specifies for the endpoint. A data packet with fewer than the maximum
packet size’s number of bytes is a short packet. A transfer with multiple transac-
tions can take place over multiple frames or microframes, which don’t have to
be contiguous. For example, in a full-speed bulk transfer of 512 bytes, the max-
imum number of bytes in a single transaction is 64, so transferring all of the
data requires at least eight transactions, which may occur in one or more
frames.

A data packet that contains a Data PID and error-checking bits but no data
bytes is a zero-length packet (ZLP). A ZLP can indicate the end of a transfer or
successful completion of a control transfer.
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A USB 2.0 hub communicates with a USB 2.0 host at high speed unless a USB
1.x hub is between the host and hub. When a low- or full-speed device is
attached to a USB 2.0 hub, the hub converts between speeds as needed. But
speed conversion isn’t all a hub does to manage multiple speeds. High speed is
40× faster than full speed and 320× faster than low speed. It doesn’t make sense
for the entire bus to wait while a hub exchanges low- or full-speed data with a
device.

The solution is split transactions. A USB 2.0 host uses split transactions when
communicating with a low- or full-speed device on a high-speed bus. What
would be a single transaction at low or full speed usually requires two types of
split transactions: one or more start-split transactions to send information to
the device and one or more complete-split transactions to receive information
from the device. The exception is isochronous OUT transactions, which don’t
use complete-split transactions because the device has nothing to send.

Split transactions require more transactions to complete a transfer but make
better use of bus time because they minimize the time spent waiting for a low-
or full-speed device to transfer data. The components responsible for perform-
ing split transactions are the USB 2.0 host controller and a USB 2.0 hub that
has an upstream connection to a high-speed bus segment and a downstream
connection to a low/full-speed bus segment. The transactions at the device are
identical whether the host is using split transactions or not. At the host, device
drivers and application software don’t have to know or care whether the host is
using split transactions because the protocol is handled at a lower level. Chapter
15 has more about how the host and hubs manage split transactions.
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USB 2.0 transfers use status and control codes and error-checking to help
ensure that data gets to its destination as quickly as possible and without errors.


� ���� ����������
The USB 2.0 specification defines handshake codes that indicate acceptance of
received data, support or non-support of a control request, flow-control condi-
tions, and an endpoint’s HALT state.
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A code indicates the success or failure of all transactions except those in isochro-
nous transfers. In addition, in control transfers, the Status stage reports the suc-
cess or failure of an entire transfer.

The handshake codes travel in the handshake or data packet of a transaction.
The defined status codes are ACK, NAK, STALL, NYET, and ERR. The
absence of an expected handshake code indicates an error. In all cases, the
expected receiver of the handshake uses the information to help decide what to
do next. Table 2-4 shows the status indicators and where they transmit in each
transaction type.

��0

ACK (acknowledge) indicates that a host or device has received data without
error. Devices must return ACK in the handshake packets of Setup transactions
if the token and data packets were received without error. Devices may also
return ACK in the handshake packets of OUT transactions. The host returns
ACK in the handshake packets of IN transactions if the token and data packets
were received without error.

��0

NAK (negative acknowledge) means the device is busy or has no data to return.
If the host sends data when the device is too busy to accept data, the endpoint
returns NAK in the handshake packet. If the host requests data when the device
has nothing to send, the endpoint returns NAK in the data packet. In either
case, NAK indicates a temporary condition, and the host normally retries later
up to a driver-defined limit.

Hosts never send NAK. Isochronous transactions don’t use NAK because they
have no handshake packet for returning a NAK. If a device or the host doesn’t
receive transmitted isochronous data, it’s lost.

#/�,,

The STALL handshake can mean an unsupported control request, control
request failed, or endpoint failed.

On receiving an unsupported control-transfer request, the device returns
STALL in the Data or Status stage. The device also returns STALL if the device
supports the request but for some reason can’t take the requested action. For
example, if the host sends a Set Configuration request to set the device configu-
ration to 2, and the device supports only configuration 1, the device returns
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STALL. To clear this type of stall, the host sends another Setup packet to begin
a new control transfer. The USB 2.0 specification calls this type of stall a proto-
col stall.

Another use of STALL is a response when the endpoint’s Halt feature is set,
which means that the endpoint is unable to send or receive data at all. The spec-
ification calls this type of stall a functional stall.

Bulk and interrupt endpoints must support the functional stall. USB 2.0 con-
trol endpoints may support the functional stall but have little reason to do so. A
control endpoint in a functional stall must continue to respond normally to
other requests that monitor and control the stall condition. An endpoint that is
capable of responding to these requests is capable of communicating and thus
shouldn’t be stalled. Isochronous transactions don’t use STALL because they
have no handshake packet for returning the STALL. SuperSpeed control end-
points can’t use the functional STALL.

On receiving a functional STALL, the host drops all pending requests to the
device and doesn’t resume communications until the host has sent a successful
control request to clear the Halt feature on the device. Hosts never send
STALL.

�1�/

Only high-speed devices send NYET (not yet). High-speed bulk and control
transfers support a protocol that enables the host to find out before sending

Table 2-4: The location, source, and contents of the handshake code depend on 

the type of transaction.
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Setup host data device ACK
OUT host data device ACK, NAK, STALL, 

NYET (high speed 
only), ERR (from hub 
in complete split)

IN device data, NAK, STALL, 
ERR (from hub in 
complete split)

host ACK

PING 
(high speed only)

no data 
packet

– device ACK, NAK, STALL
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data if a device is ready to receive the data. At low and full speeds, when the
host wants to send data in a control, bulk, or interrupt transfer, the host sends
the token and data packets and receives a reply from the device in the transac-
tion’s handshake packet. If not ready for the data, the device returns NAK and
the host retries later. Retrying can waste a lot of bus time if the data packets are
large and the device is often not ready.

High-speed bulk and control transfers with multiple data packets have a better
way. After receiving a data packet, a device endpoint can return a NYET hand-
shake, which says the endpoint accepted the data but is not yet ready to receive
another data packet. When the host thinks the device might be ready, the host
can send a PING token packet, and the endpoint returns either an ACK to
indicate the device is ready for the next data packet or NAK or STALL if the
device isn’t ready. Sending a PING is more efficient than sending the entire data
packet only to find out the device wasn’t ready and having to resend later. Even
after responding to a PING or OUT with ACK, an endpoint is allowed to
return NAK on receiving the data packet that follows but should do so rarely.
The host then tries again with another PING. The use of PING by the host is
optional.

A USB 2.0 hub may return NYET in a complete-split transaction. Hosts and
low- and full-speed devices never send NYET.

�$$

The ERR handshake is for use only by high-speed hubs in complete-split trans-
actions. ERR indicates the device didn’t return an expected handshake in the
transaction the hub is completing with the host.

���$�
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Another type of status indication occurs when the host or a device expects to
receive a handshake but receives nothing. This lack of response can occur if the
receiver’s error-checking calculation detected an error. On receiving no
response, the sender knows it should retry. After multiple failures, the sender
can take other action.

.�������5�����
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In control transfers, the data and handshake packets in the Status stage indicate
the status of the transfer. Table 2-5 shows the status indicators for control trans-
fers.
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For control write transfers, the device returns the status of the transfer in the
data packet of the Status stage. On accepting the request and receiving data in
the Data stage (if present) without error, the device returns a ZLP. Or the device
may return NAK (busy) or STALL (failure). The host returns ACK to complete
the transfer. For an unsupported request, a device may return STALL in the
Data stage to end the transfer.

For control read transfers, on receiving data in the Data stage without error, the
host sends a ZLP in the data packet of the Status stage. The device responds
with ACK (transaction complete), NAK (busy), or STALL (failure). A host may
begin the Status stage before the device has sent all of the requested data pack-
ets, and if so, the device must abandon the Data stage and return a handshake
code.

����������:��5
The USB specifications define hardware requirements that ensure that errors
due to line noise are rare. Still, a noise glitch or unexpectedly disconnected
cable could corrupt a transmission. USB packets include error-checking bits
that enable a receiver to identify just about any received data that doesn’t match
what was sent. For transfers that use multiple transactions, a data-toggle value
keeps the transmitter and receiver synchronized to ensure no transactions are
missed.

�����2������ �)��


Token, data, and SOF packets include bits for use in error-checking. The bit
values are calculated using the cyclic redundancy check (CRC) algorithm
detailed in the USB 2.0 specification. Hardware performs the calculations,

Table 2-5: The Status stage of a control transfer indicates the success or failure 

of the transaction. (A device may also return STALL in the Data stage.)
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Write (Host sends data 
to device or no Data 
stage)

IN ZLP (success),
NAK (busy), or
STALL (failed)

ACK

Read (Device sends 
data to host)

OUT ZLP ACK (success),
NAK (busy), or
STALL (failed)
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which must be fast to enable the device to meet the specification’s timing
requirements.

The CRC is applied to the data to be checked. The sender, whether host or
device, performs the calculation and sends the result along with the data. The
receiver performs the identical calculation on the received data. If the results
match, the data has arrived without error and the receiver returns ACK. If the
results don’t match, the receiver sends no handshake. The absence of the
expected handshake tells the sender to retry. Hosts typically try a total of three
times. On giving up, the host can inform the driver that requested the transfer.

The PID field in token packets uses a simpler form of error checking. The
lower four bits in the field are the PID, and the upper four bits are the comple-
ment. The receiver can check the integrity of the PID by complementing the
upper four bits and ensuring that they match the PID. If not, the packet is cor-
rupted and the receiver ignores the contents.

/��(����/�  	�

The data-toggle value enables detecting missed or duplicate data packets in con-
trol, bulk, and interrupt transfers. IN and OUT transactions have a data-toggle
value in the data packet’s PID field. DATA0 is a code of 0011, and DATA1 is
1011. In controller chips, a register bit often indicates the data-toggle state, so
the data-toggle value is sometimes called the data-toggle bit. Each endpoint
maintains its own data toggle.

Both the sender and receiver keep track of the data toggle. Host controllers han-
dle data toggles at a low level that is invisible to applications and device drivers.
Some device controller chips handle the data toggles completely in hardware,
while others require some firmware control. If you’re debugging a device where
the correct data is transmitting on the bus but the receiver is ignoring or dis-
carding the data, chances are good that the device isn’t sending or expecting the
correct data-toggle value.

When the host configures a device on power up or attachment, the host and
device each set their data toggles to DATA0 for all except some high-speed iso-
chronous endpoints. On detecting an incoming data packet, the host or device
compares the state of its data toggle with the received data toggle. If the values
match, the receiver toggles its value and returns an ACK handshake packet. The
ACK causes the sender to toggle its value for the next transaction.

The next received packet in the transfer should contain a data toggle of
DATA1, and again the receiver toggles its bit and returns ACK. The data toggle
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on each end continues to alternate in each transaction, except for control trans-
fers as explained below. 

If the receiver is busy and returns NAK, or if the receiver detects corrupted data
and returns no response, the sender doesn’t toggle its bit and instead tries again
with the same data and data toggle.

If a receiver returns ACK but for some reason the sender doesn’t see the ACK,
the sender will think that the receiver didn’t get the data and will try again using
the same data and data-toggle bit. In this case, the receiver of the repeated data
ignores the data, doesn’t toggle the data toggle, and returns ACK. The ACK
re-synchronizes the data toggles. If the sender mistakenly sends two packets in a
row with the same data-toggle value, on receiving the second packet, the
receiver ignores the data, doesn’t toggle its value, and returns ACK.

Control transfers always use DATA0 in the Setup stage, use DATA1 in the first
transaction of the Data stage, toggle the value in any additional Data-stage
transactions, and use DATA1 in the Status stage. Bulk endpoints toggle the
value in every transaction, resetting the data toggle only after completing a Set
Configuration, Set Interface, or Clear Feature(ENDPOINT_HALT) request.
Interrupt endpoints can behave the same as bulk endpoints. Or to simplify pro-
cessing with the risk of losing some data, an interrupt IN endpoint can toggle
its data toggle in each transaction without checking for the host’s ACK.
Full-speed isochronous transfers always use DATA0. Isochronous transfers can’t
use the data toggle to correct errors because there is no packet for returning
ACK or NAK and no time to resend missed data.

(����%�(�#�-"����� 

Some high-speed isochronous transfers use DATA0, DATA1, and additional
PIDs of DATA2 and MDATA. This use of the DATA and MDATA PIDs is
called data PID sequencing. High-speed isochronous IN transfers with two or
three transactions per microframe use DATA0, DATA1, and DATA2 encoding
to indicate a transaction’s position in the microframe:
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1 DATA0 – –
2 DATA1 DATA0 –
3 DATA2 DATA1 DATA0
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High-speed isochronous OUT transfers that have two or three transactions per
microframe use DATA0, DATA1, and MDATA encoding to indicate whether
more data will follow in the microframe:       

���	���		�������������
Like USB 2.0, SuperSpeed buses carry data, addressing, and status and control
information. But SuperSpeed has a dedicated data path for each direction, more
support for power conservation, and other enhancements for greater efficiency.
To support these differences, SuperSpeed transactions use different packet for-
mats and protocols.

&��:	��%�	�
SuperSpeed communications use two packet types when transferring data:

A Transaction Packet (TP) carries status and control information.

A Data Packet (DP) carries data and status and control information.

Two additional packet types perform other functions:

An Isochronous Timestamp Packet (ITP) carries timing information that
devices can use for synchronization. The host multicasts an ITP following
each bus-interval boundary to all links that aren’t in a low-power state. The
timestamp holds a count from zero to 3FFFh and rolls over on overflow.  

A Link Management Packet (LMP) travels only in the link between a
device’s port and the hub port the device connects to. The ports are called
link partners. LMPs help manage the link.

SuperSpeed doesn’t use token packets because packet headers contain the token
packet’s information. Instead of data toggles, SuperSpeed uses 5-bit sequence
numbers that roll over from 31 to zero.
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1 DATA0 – –
2 MDATA DATA1 –
3 MDATA MDATA DATA2
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Each SuperSpeed packet has a 14-byte header followed by a 2-byte Link Con-
trol Word (Table 2-6). The first five bits in the header are a Type field that iden-
tifies the packet as one of the four types above. Every header also contains
type-specific information and a 16-bit CRC. The Link Control Word (Table
2-7) provides information used in managing the transmission. 

A Data Packet consists of a Data Packet Header (DPH) followed immediately
by a Data Packet Payload (DPP). The Data Packet Header (Table 2-8) consists
of the 14-byte packet header and a Link Control Word. The Data Packet Pay-
load contains the transaction’s data and a 4-byte CRC. A Data Packet Payload
with less than the endpoint’s maximum packet size bytes is a short packet. A
Data Packet Payload consisting of just the CRC and no data is a zero-length
Data Payload.

The other three packet types are always 128 bytes. In a Transaction Packet, the
Subtype field indicates the transaction’s purpose (Table 2-9). All Transaction
Packets have a device address that indicates the source or destination of the
packet. All Transaction Packets sent by the host contain a Route String that
hubs use in routing the packet to its destination.

�� ��"�����5�� � 
A SuperSpeed transaction has one or two phases that each contain a Data
Packet or a Transaction Packet. 

In a non-isochronous IN transaction, the host sends an ACK Transaction
Packet to request data, and the device returns a Data Packet or a NRDY or
STALL Transaction Packet.

In an isochronous IN transaction, the host sends an ACK Transaction Packet to
request data, and the device returns a Data Packet.

Table 2-6: Each SuperSpeed packet has Type value, a CRC, and a Link 

Control Word.
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0–4 5 Type Packet header
5–95 91 Fields specific to the packet type
96–111 16 CRC
112–127 16 Link Control Word
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In a non-isochronous OUT transaction, the host sends a Data Packet and the
device returns an ACK, NRDY, or STALL Transaction Packet.

In an isochronous OUT transaction, the host sends a Data Packet.

#�-"������"����


Table 2-10 shows the contents of the ACK Transaction Packet. In an IN trans-
action, on receiving an ACK Transaction Packet with NumP = 1, the endpoint
sends a Data Packet with the Data Packet Header containing the Sequence
Number of the received ACK Transaction Packet. Except for isochronous trans-
actions, on receiving the Data Packet, the host acknowledges receiving the data
by incrementing the Sequence Number and sending another ACK Transaction
Packet. If NumP > 0, the ACK Transaction Packet also serves as a request for
more data. In other words, instead of requiring separate transactions to ACK
received data and request more data, a single ACK Transaction Packet can per-
form both functions.

In an OUT transaction, the Data Packet from the host contains a Sequence
Number. The ACK Transaction Packet the device sends in response contains
the Sequence Number of the next expected Data Packet and serves as an
implicit acknowledgement of receiving the previous Data Packet.

In a control transfer, the Setup transaction packet and the first Data Packet
Header each use a Sequence Number of zero. (Note that this differs from USB
2.0, where the Data Stage begins with DATA1.) For any additional Data Pack-
ets, the Sequence Number increments, resetting to zero on rollover.

Table 2-7: Each packet has a Link Control Word with information used in 

managing the transmission.
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0–2 Header Sequence 
Number

Valid values are 0–7 in continuous sequence.

3–5 Reserved –
6–8 Hub Depth Valid only if Deferred is set. Identifies the hub that deferred 

the packet.
9 Delayed Set to 1 if a hub resends or delays sending a Header Packet.
10 Deferred Set to 1 if a hub can’t send a packet because the downstream 

port is in a power-managed state.
11–15 CRC Error checking bits
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Bulk and interrupt endpoints increment the Sequence Number for every trans-
action, resetting to zero on rollover or after completing a Set Configuration, Set
Interface, or Clear Feature(ENDPOINT_HALT) request. In isochronous
transfers, the Sequence Number resets to zero at the start of a service interval
and increments on each additional Data Packet within the service interval. The
endpoint descriptor specifies the length of a service interval and the maximum
number of Data Packets per service interval.

On detecting an error in a received Data Packet, the host or device sends an
ACK Transaction Packet with the Retry bit set and the Sequence Number of
the packet that contained the error. The sender of the Data Packet must then
resend all sent Data Packets beginning with that Sequence Number.

Table 2-8: The Data Packet Header provides the Data Packet’s length and other 

information. (Reserved fields not shown.)

3���� %��� 3����


Type 5 Data Packet Header (01000b)

Route String or reserved 20 In downstream communications, used by hubs to route 
a packet to the correct port. Otherwise reserved.

Device Address 7 The device that is the source or receiver of the Data 
Packet.

Sequence Number 5 Identifies the Data Packet.
End of Burst (EOB) 
(non-isochronous) or Last 
Packet Flag (LPF) 
(isochronous)

1 For non-isochronous IN endpoints, identifies the last 
packet in a burst. For non-isochronous OUT endpoints, 
zero. For isochronous endpoints, identifies the last 
packet in a service interval.

Direction 1 0 = host to device; 1 = device to host.
Endpoint Number 4 The endpoint that is the source or receiver of the Data 

Packet.
Setup 1 Set by the host when the Data Packet is a Setup packet.
Data Length 16 The number of data bytes in the Data Packet Payload.
Stream ID or reserved 16 For bulk endpoints, can identify a stream.
Packets Pending 1 Set by the host when it has another packet scheduled for 

the target endpoint.
CRC-16 16 For error checking.
Link Control Word 16 For link management.
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SuperSpeed bulk and interrupt endpoints can support burst transactions, where
the host or device sends multiple Data Packets without waiting for ACK Trans-
action Packets to acknowledge previous received data. Every data payload in a
burst except the last must equal the endpoint’s maximum packet size.

The NumP field in an ACK Transaction Packet sets the number of Data Pack-
ets a device or host can receive in a burst. Valid values are zero or any value from
one less than the value in the previous ACK packet to bMaxBurst + 1 in the
endpoint companion descriptor. Note that bMaxBurst is zero-based, with zero

Table 2-9: Hosts and devices use Transaction Packets to send status and control 

information.
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ACK Host Requests data from an IN endpoint and acknowledges a 
previously received data packet. 

Device Acknowledges data received on an OUT endpoint and 
specifies how many data packet buffers are available after 
receiving this packet.

NRDY Device On receiving a Data Packet on an OUT endpoint, informs 
the host that the device has no buffer space to accept the 
data. On receiving an ACK Transaction Packet on an IN 
endpoint, informs the host that the device can’t return a data 
packet. Valid for non-isochronous endpoints.

ERDY Device An endpoint is ready to send or receive Data Packets. Valid 
for non-isochronous endpoints.

STATUS Host The host has initiated the Status stage of a control transfer. 
Valid for control endpoints.

STALL Device The endpoint is halted or a requested control transfer is 
invalid or unsupported.

DEV_NOTIFICATION Device A change in a device or interface state has occurred. The 
high nibble is the type of change:
  0h         reserved
  1h         function wake
  2h         latency tolerance message
  3h         bus interval adjustment message
  4h–Fh  reserved

PING Host Before initiating an isochronous transfer when a link is in a 
low-power state, requests all paths between the host and the 
isochronous endpoint to transition to the active state.

PING_RESPONSE Device Response to PING.
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indicating a maximum burst of 1 packet, while NumP indicates the actual
number of packets a receiver can accept (which may be zero).

A Set Configuration, Set Interface, or Clear Feature(ENDPOINT_HALT)
request resets the burst size of the associated endpoint(s).

Isochronous endpoints can support isochronous burst transactions, which con-
sist of multiple Data Packets transferred in a service interval with each packet
except the last required to be the endpoint’s maximum packet size. Isochronous
transactions never use ACK.
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Devices and hosts must respond quickly to received Data Packets and ACK
Transaction Packets that request data. On receiving an ACK Transaction Packet
with NumP > 0, a device must begin to return a Data Packet or NRDY Trans-
action Packet within 250 ns. On receiving a Data Packet, a device must begin

Table 2-10: An ACK Transaction Packet can acknowledge received data and 

request new data. (Reserved fields not shown.)
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20 Route String Used by hubs in routing packets downstream.
7 Device Address The address assigned during enumeration.
4 SubType ACK
1 Retry Data Packet If set, the host or device requests a resend due to not 

receiving a packet or receiving a corrupted packet.
1 Direction The direction of the endpoint sending or receiving 

the data: 0 = host to device; 1 = device to host.
4 Endpoint Number The endpoint sending or receiving the data.
1 Host Error For host-to-device ACK Transaction Packets, 

indicates that host was unable to accept a valid data 
packet. 

5 Number of Packets 
(NumP)

The number of Data Packets the receiver can accept 
in a burst.

5 Sequence Number 
(Seq Num)

The sequence number of the next expected Data 
Packet.

16 Stream ID For bulk endpoints, can identify a stream.
1 Packets Pending Indicates whether the host has another packet for the 

endpoint.
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to return an ACK or NRDY Transaction Packet within 250 ns. On receiving a
Data Packet, a host must begin to return an ACK or NRDY Transaction Packet
within 3 µs. The maximum interval between Data Packets in a burst is 100 ns.
The device hardware thus handles responding to received packets.

����+!�� ����.�
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To conserve bandwidth and to enable inactive links to transition to low-power
states, USB 3.0 hosts stop requesting to send or receive data from SuperSpeed
endpoints that are in the flow control condition. This condition indicates that
the endpoint temporarily can’t send or receive data. To request to resume com-
munications, the endpoint sends an ERDY Transaction Packet. A device can
send the ERDY at any time without waiting for the host to request a packet.
On receiving the ERDY, the host resumes communications with the endpoint.

An IN endpoint is in the flow control condition after responding to an ACK
Transaction Packet with either of the following:

A NRDY Transaction Packet.

A Data Packet with the End of Burst (EOB) field set to 1, indicating that
the packet is the last in a burst. The device sets EOB if the data payload is
equal to the endpoint’s maximum packet size and the endpoint is returning
fewer than the number of packets requested in the previous ACK Transac-
tion Packet.

An OUT endpoint is in the flow control condition on responding to a Data
Packet with either of the following:

A NRDY Transaction Packet.

An ACK Transaction Packet with the NumP field set to zero, indicating that
the endpoint can’t accept any Data Packets.

Hosts retain the option to attempt communications with bulk endpoints in the
flow-control condition before receiving ERDY.        

+��:�4 � 5������& �:���
Link Management Packets have these subtypes:

• Set Link Function defines a bit for use in testing.
• U2 Inactivity Timeout specifies the timeout for transitioning between 

low-power states.
• Vendor Device Test provides a mechanism for vendor-specific tests.
• Port Capabilities indicates if the port can be configured as an upstream-fac-
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ing port, a downstream-facing port, or both. The ports in a link exchange 
this packet after initializing the link. For situations where both ports in a 
link support both port types, a tiebreaker field and protocol determines 
which port is upstream-facing and which is downstream-facing. 

• Port Configuration contains a bit to specify a speed of 5 Gbps. A down-
stream-facing port sends this packet to its link partner.

• Port Configuration Response accepts or rejects a received Port Configura-
tion LMP. 
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This chapter takes a closer look at USB’s four transfer types: control, bulk,
interrupt, and isochronous. Each type has features that make it suitable for spe-
cific purposes.

����������������
Control transfers have two uses. For all devices, control transfers carry the stan-
dard requests that the host uses to learn about and configure devices. Control
transfers can also carry requests defined by a class or vendor for any purpose.

������,����	
Every device must support control transfers over the default pipe at endpoint
zero. A device may also have additional pipes for control transfers, but in reality
there’s no need for more than one. Even if a device needs to send a lot of control
requests, hosts allocate bandwidth for control transfers according to the number
and size of requests, not by the number of control endpoints, so additional con-
trol endpoints offer no advantage.
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Chapter 2 introduced control transfers and their Setup, Data, and Status stages.
Each stage consists of one or more transactions.

Every control transfer must have a Setup stage and a Status stage. Not all trans-
fers have Data stages, though specific requests can require them. Because every
control transfer requires transferring information in both directions, the control
transfer’s message pipe uses both the IN and OUT endpoint addresses.

In a control write transfer, the data in the Data stage travels from the host to the
device. Control transfers that have no Data stage are also considered to be con-
trol write transfers. In a control read transfer, the data in the Data stage travels
from the device to the host. Figure 3-1 and Figure 3-2 show the stages of con-
trol read and control write transfers at low and full speeds on a low/full-speed
bus. There are differences, described later in this chapter, for some high-speed
transfers, low- and full-speed transfers with USB 2.0 hubs on high-speed buses,
and SuperSpeed transfers.

In the Setup stage, the host begins a Setup transaction by sending information
about the request. The token packet’s SETUP PID identifies the transaction as
a Setup transaction that begins a control transfer. The data packet contains
eight bytes of information about the request, including the request number,
whether or not the transfer has a Data stage, and if so, in which direction the
data will travel.

The USB 2.0 and USB 3.0 specifications define standard requests. Successful
enumeration requires specific responses to some requests, such as the request
that sets a device’s address. For other requests, a device can return STALL to
indicate that the request isn’t supported. A STALL ends the transfer. A class
may require a device to support class-specific requests, and devices can support
requests defined by a vendor-specific driver.

When present, the Data stage consists of one or more transactions. Depending
on the request, the host or peripheral may be the source of the data in these
transactions, but all data packets in this stage are in the same direction.

The Status stage consists of one IN or OUT transaction where the device
reports the success or failure of the transfer. The source of the Status stage’s data
packet is the receiver of the data in the Data stage. When there is no Data stage,
the device sends the Status stage’s data packet. On completing or abandoning
the current transfer, the host can begin a new control transfer.
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Figure 3-1. A USB 2.0 control write transfer contains a Setup transaction, zero or 

more Data transactions, and a Status transaction. Not shown are the PING 

protocol used in some high-speed transfers with multiple data packets and the 

split transactions used with low- and full-speed devices on a high-speed bus.
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Figure 3-2. A USB 2.0 control read transfer contains a Setup transaction, one or 

more data transactions, and a status transaction. Not shown are the split 

transactions used with low- and full-speed devices on a high-speed bus.
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As described in Chapter 2, if a high-speed control write transfer has more than
one data packet in the Data stage and the device returns NYET after receiving a
data packet, the host may use the PING protocol before sending the next data
packet.

If a host is performing a control transfer with a low- or full-speed device on a
high-speed bus, the host uses split transactions for all of the transfer’s transac-
tions. To the device, the transaction is no different than a transaction with a
USB 1.x host. The USB 2.0 or USB 3.0 hub nearest the device initiates transac-
tions with the device and returns data and status information to the host.

#"���#�����(�++������


On a SuperSpeed bus, the Setup stage’s Setup Data Packet contains the eight
bytes of Setup data. The Data Packet Header uses the following values:

Sequence Number = 0

Data Length = 8

Setup = 1

Figure 3-3 shows the structure of a SuperSpeed control write transfer. The host
begins the transfer with a Setup Data Packet, and on receiving the packet with-
out error, the device responds with an ACK Transaction Packet. If the transfer
has a Data stage, the host sends one or more Data Packets, and the device
responds to each with an ACK Transaction Packet. If the transfer has multiple
Data packets, the Sequence Numbers in the Data and ACK packets increment
for each Data packet. In the Status stage, the host sends a STATUS Transaction
Packet, and the device returns ACK. 

Figure 3-4 shows the structure of a SuperSpeed control read transfer., which is
identical to a control write transfer except for the Data stage. In the Data stage,
the host sends one or more ACK Transaction Packets, and the device responds
to each with a Data Packet.

A device can control the flow of a control transfer by responding to the Setup
Data Packet with an ACK Transaction Packet with NumP = 0 and Sequence
Number = 0. The device then requests to start the Data and Status stages by
sending an ERDY Transaction Packet.

In the Data or Status stage, an endpoint can return a STALL or NRDY Trans-
action Packet instead of ACK. A STALL ends the transfer. NRDY halts the
transfer until the device returns ERDY.
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Figure 3-3. A Setup Data packet initiates a SuperSpeed control write transfer. A 

Status transaction packet initiates the Status stage.
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Figure 3-4. A SuperSpeed control write transfer is identical to a control read 

transfer except for the direction of the Data stage.
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In a control transfer’s Data stage, the allowed maximum data packet size varies
with bus speed:

These bytes include only the information transferred in the data packet (USB
2.0) or Data Packet Payload (SuperSpeed), excluding PID and CRC bits.

In the Data stage, all data packets except the last must be the maximum packet
size for the endpoint. The maximum packet size for the default control pipe is
in the device descriptor that the host retrieves during enumeration. If a transfer
has more data than will fit in one data transaction, the host sends or receives the
data in multiple transactions.

For some control read transfers, the amount of data returned by the device can
vary. If the amount is less than the requested number of bytes and is an even
multiple of the endpoint’s maximum packet size, the device should indicate
when it has no more data to send by returning a ZLP (USB 2.0) or a
zero-length Data Payload (SuperSpeed) in response to a request for data after
the device has sent all of its data.

�����
The host must make its best effort to ensure that all control transfers complete
as quickly as possible. The host controller reserves a portion of the bus band-
width for control transfers: 10% for low- and full-speed buses and 20% for
high-speed and SuperSpeed buses. If the control transfers don’t need all of the
reserved bandwidth, bulk transfers can use what remains. If the bus has other
unused bandwidth, control transfers can use more than the reserved amount.
The host attempts to parcel out the available time as fairly as possible to all
devices. A single frame, microframe, or bus interval can contain multiple trans-
actions for the same transfer, or a transfer’s transactions can be spread among
multiple (micro)frames or bus intervals.

There are two opinions on whether control transfers are appropriate for trans-
ferring data other than enumeration and configuration data. Some believe con-
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Low 8
Full 8, 16, 32, or 64
High 64
SuperSpeed 512
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trol transfers should be reserved as much as possible for servicing the standard
USB requests and performing other infrequent configuration tasks. This
approach helps ensure that the transfers complete quickly by keeping the
reserved bandwidth as open as possible. But the USB specifications don’t forbid
other uses for control transfers, and some see no problem in using control trans-
fers for any purpose. Low-speed devices have no other option except periodic
interrupt transfers that can waste bandwidth if data transfers are infrequent.

Control transfers aren’t the most efficient way to transfer data. Each transfer has
significant overhead. At low speed, a single control transfer with 8 data bytes
uses over 1/3 of a frame’s bandwidth, though the transfer’s individual transac-
tions may travel in multiple frames. In a control transfer with multiple data
packets in the Data stage, the data may travel in the same or different
(micro)frames or bus intervals. On a busy bus, all control transfers may have to
share the reserved portion of the bandwidth. 

The USB specifications define timing limits that apply to control requests
unless a class requires a faster response. Where stricter timing isn’t specified, in a
transfer where the host requests data from the device, a device may delay as long
as 500 ms before making the data available to the host. To find out if data is
available, a USB 2.0 host sends a token packet to request the data. If the data is
ready, the device returns the data in that transaction’s data packet. Otherwise
the device returns NAK to advise the host to retry later. The host keeps trying
at intervals for up to 500 ms. SuperSpeed devices can delay communications by
setting NumP = 0 and Sequence Number = 0 in response to a Setup Data
Packet or by sending NRDY in response to requested or received data. In a
transfer where the host sends data to the device, if the host sends the data at the
maximum rate the device can accept the data, a USB 2.0 device can take up to
5 seconds to accept all of the data and complete the Status stage (though once
begun, the Status stage must complete within 50 ms). USB 3.0 devices must
complete each transaction within 50 ms. Additional delays by the host extend
the allowed time. In a transfer with no Data stage, the device must complete the
request and the Status stage within 50 ms. The host and its drivers aren’t
required to enforce the limits, but all devices should comply with the limits to
ensure proper operation with any host. For the hub class, USB 2.0 and USB 3.0
recommend average response times of under 5 ms.

��������5� ���) �����5�������
If a USB 2.0 device doesn’t return an expected handshake packet during a con-
trol transfer, the host retries. On receiving no response after a (typical) total of



Chapter 3

70                                                                                                           

three tries, the host notifies the software that requested the transfer and stops
communicating with the endpoint until the problem is resolved. The two
retries include only those sent in response to no handshake at all. A NAK trig-
gers a retry but doesn’t increment the error count.

Control transfers use data toggles (USB 2.0) or Sequence Numbers (Super-
Speed) to protect against lost data. In the Data stage of a USB 2.0 Control read
transfer, on receiving the data from the device, the host normally returns ACK
and then sends an OUT token packet to begin the Status stage. If the device for
any reason doesn’t see the ACK returned after the transfer’s final data packet,
the device must interpret a received OUT token packet as evidence that the Sta-
tus stage has begun.

Devices must accept all error-free Setup packets. If a new Setup packet arrives
before a previous control transfer completes, the device must abandon the pre-
vious transfer and start the new one.
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A USB 2.0 device has these responsibilities for transfers on a control endpoint:

• Send ACK in response to every Setup packet received without error.

• For supported control write requests, send ACK in response to received
data in the Data stage (if present) and return a ZLP in the Status stage.

• For supported control read requests, send data in response to IN token
packets in the Data stage and ACK the received ZLP in the Status stage.

• For unsupported requests, return STALL in the Data or Status stage.

A SuperSpeed device has these responsibilities for transfers on a control end-
point:

• Send an ACK Transaction Packet in response to Setup data received with-
out error in Data Packets.

• For supported control write requests, when there is a Data stage, send an
ACK Transaction Packet in response to received data in Data Packets. In
the Status stage, send an ACK Transaction Packet in response to a received
STATUS Transaction Packet.

• For supported control read requests, receive acknowledgements and
requests to send data in ACK Transaction Packets and send data in Data
Packets. In the Status stage, send an ACK Transaction Packet in response to
a received STATUS Transaction Packet.
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• For unsupported requests, return a STALL Transaction packet in the Data or
Status stage.

�����������	��
Bulk transfers are useful for transferring data when time isn’t critical. A bulk
transfer can send large amounts of data without clogging the bus because the
transfers defer to the other transfer types, waiting until time is available. Uses
for bulk transfers include sending data to a printer, sending data from a scanner,
and reading and writing to a drive. On an otherwise idle bus, bulk transfers are
the fastest transfer type.

$ ����,����%
Low speed doesn’t support bulk transfers. Devices aren’t required to support
bulk transfers, but a specific device class may require them. For example, a
mass-storage device must have a bulk endpoint in each direction.

��������	
A USB 2.0 bulk transfer consists of one or more IN or OUT transactions (Fig-
ure 3-5). All data travels in one direction. Transferring data in both directions
requires a separate pipe and transfer for each direction.

A bulk transfer ends successfully when the expected amount of data has trans-
ferred or when a transaction contains less than the endpoint’s maximum packet
size, including zero data bytes. The USB 2.0 specification doesn’t define a pro-
tocol for indicating the number of data bytes in a bulk transfer. When needed,
the device and host can use a class-specific or vendor-specific protocol to pass
this information. For example, a transfer can begin with a header that specifies
the number of bytes to be transferred, or the device or host can use a class-spe-
cific or vendor-specific protocol to request a quantity of data.

.� �#�����(�++������


To conserve bus time, a host may use the PING protocol in some high-speed
bulk transfers. If a high-speed bulk OUT transfer has more than one data
packet and the device returns NYET after receiving a packet, the host may use
PING to find out when it’s OK to send more data. In a bulk transfer on a
high-speed bus with a low- or full-speed device, the host uses split transactions
for all of the transfer’s transactions.
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Figure 3-6 shows SuperSpeed bulk IN and OUT transactions. In an IN transac-
tion, the host sends an ACK Transaction Packet to request one or more Data
Packets and acknowledge previous data, if any, and the device sends Data
Packet(s), NRDY, or STALL. On receiving a Data Packet, the host returns an
ACK Transaction Packet. If the host requests multiple Data Packets by setting
NumP > 1, the device doesn’t have to wait for each ACK before sending the
next packet. If NumP > 0 in an ACK Transaction Packet that the host sends in

Figure 3-5. USB 2.0 bulk and interrupt transfers have identical structure, but 

different scheduling by the host. Not shown are the PING protocol used in some 

high-speed bulk OUT transfers with multiple data packets or the split 

transactions used with low- and full-speed devices on a high-speed bus.
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response to received data, the packet also serves as a request for more data. In an
OUT transaction, the host sends data in Data Packets, and the device acknowl-
edges receiving data in ACK Transaction Packets or returns NRDY or STALL.
After an endpoint has sent NRDY, a host can attempt to resume communica-
tions even if the endpoint hasn’t sent ERDY.

SuperSpeed bulk transfers can use a Stream Protocol to transfer multiple, inde-
pendent data streams using a single endpoint. A class or other host driver can
define uses for the streams. Each stream has its own endpoint buffer. A CStream
ID identifies the current stream in Data Packet Headers and in ACK, NRDY,
and ERDY Transaction Packets.

Figure 3-6. SuperSpeed bulk and interrupt transfers use ACK transaction 

packets to request and acknowledge data.
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The allowed maximum data bytes in a bulk transaction’s data packet vary with
the bus speed: 

These bytes include only the information transferred in the data packet (USB
2.0) or Data Packet Payload (SuperSpeed), excluding PID and CRC bits.

During enumeration, the host reads the maximum packet size for each bulk
endpoint from the device’s descriptors. The amount of data in a transfer may be
less than, equal to, or greater than the maximum packet size. If the data doesn’t
fit in a single packet, the host uses multiple transactions to complete the trans-
fer.

�����
The host controller guarantees that bulk transfers will complete eventually but
doesn’t reserve bandwidth for them. Control transfers are guaranteed to have
10% of the bandwidth at low and full speeds and 20% at high speed and Super-
Speed. Interrupt and isochronous transfers may use the rest. So if a bus is very
busy, a bulk transfer can take a very long time.

However, when the bus is otherwise idle, bulk transfers can use the most band-
width of any type and have low overhead and thus are the fastest of all. When a
full-speed bulk endpoint’s maximum packet size is less than 64, some host con-
trollers schedule no more than one packet per frame even if more bandwidth is
available. Thus for best performance, a full-speed bulk endpoint should have a
maximum packet size of 64.

At full speed on an otherwise idle bus, up to nineteen 64-byte bulk transfers can
transfer up to 1,216 data bytes per frame, for a data rate of 1.216 MB/s. In the-
ory, at high speed on an otherwise idle bus, up to thirteen 512-byte bulk trans-
fers can transfer up to 6,656 data bytes per microframe, for a data rate of
53.248 MB/s. Real-world performance varies with the host-controller hardware
and driver and the host architecture, including latencies when accessing system
memory. Some high-speed hosts can transfer bulk data at around 35 MB/s. A
SuperSpeed bus can transfer around 400 MB/s in bulk transfers.

%�������� ��"�������������&�����*�

Full 8, 16, 32, or 64
High 512
SuperSpeed 1024
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If a USB 2.0 device doesn’t return an expected handshake packet, the host tries
up to twice more. A host also retries on receiving NAK. The class or device
driver determines whether the host eventually gives up on receiving multiple
NAKs. For SuperSpeed endpoints, a device uses NRDY and ERDY to cause the
host to stop requesting to send or receive data when an endpoint isn’t ready to
receive data or has no data to send. Data toggles (USB 2.0) or Sequence Num-
bers (SuperSpeed) detect lost or repeated data.
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A USB 2.0 device has these responsibilities for transfers on a bulk endpoint:

• For OUT transfers, ACK data received in data packets. 

• For IN transfers, return data in data packets in response to IN token pack-
ets.

A SuperSpeed device has these responsibilities for transfers on a bulk endpoint:

• For OUT transfers, send ACK Transaction Packets to acknowledge data
received in Data Packets.

• For IN transfers, receive requests to send data and acknowledgements of
received data in ACK Transaction Packets and send data in Data Packets.

������������ ������
Interrupt transfers are useful when data has to transfer without delay. Typical
applications include keyboards, pointing devices, game controllers, and hub
status reports. Users don’t want a noticeable delay between pressing a key or
moving a mouse and seeing the result on screen. A hub needs to report the
attachment or removal of devices promptly. Low-speed devices, which support
only control and interrupt transfers, are likely to use interrupt transfers.

At low and full speeds, the bandwidth available for an interrupt endpoint is
limited, but high speed and SuperSpeed loosen the limits.

Interrupt transfers are interrupt-like because they guarantee fast response from
the host. For both bulk and interrupt endpoints, firmware typically uses inter-
rupts to detect new received data. On a USB 2.0 bus, both bulk and interrupt
endpoints must wait for the host to request data before sending data. Super-
Speed bulk and interrupt endpoints can notify the host that they have data to
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send by sending an ERDY Transaction Packet but still must wait for the host to
request data packets.

$  �� ,����%
All speeds allow interrupt transfers. Devices aren’t required to support interrupt
transfers, but a device class may require it. For example, a HID-class device
must support interrupt IN transfers for sending data to the host.

���������
A USB 2.0 interrupt transfer consists of one or more IN transactions or one or
more OUT transactions. Transferring data in both directions requires a separate
transfer and pipe for each direction. 

On the bus, interrupt transactions are identical to bulk transactions (Figure 3-5
and Figure 3-6) with these differences:

• Interrupt transactions have guaranteed maximum latency and thus differ-
ent scheduling by the host.

• The host doesn’t use the PING protocol in high-speed interrupt transfers.
• SuperSpeed interrupt transfers don’t support Streams.
• On a SuperSpeed bus, after receiving NRDY, a host must wait for ERDY 

before resuming communications with an interrupt endpoint. (Waiting is 
optional for bulk endpoints.)

An interrupt transfer ends successfully when the expected amount of data has
transferred or when a transaction contains less than the endpoint’s maximum
packet size, including zero data bytes. The USB specification doesn’t define a
protocol for specifying the amount of data in an interrupt transfer. When
needed, the device and host can use a class-specific or vendor-specific protocol
to pass this information.
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In an interrupt transfer on a high-speed bus with a low- or full-speed device, the
host uses split transactions for all of the transfer’s transactions. Unlike
high-speed bulk OUT transfers, high-speed interrupt OUT transfers can’t use
the PING protocol when a transfer has multiple transactions.
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The host schedules ACK Transaction Packets to an IN endpoint until the
device has sent all of the transfer’s data, or the device returns a Data Packet
Header with the End Of Burst bit set, or the device returns an ERDY or STALL
Transaction Packet. The host sends Data Packets to an OUT endpoint until the
host has no more data to send or the device returns a NRDY or STALL Trans-
action Packet. After receiving NRDY, the host must receive an ERDY Transac-
tion Packet to resume communications with the endpoint. To ensure fast
response when a device is ready to communicate, the host’s delay between
receiving an ERDY and sending an ACK Transaction Packet is at most 2× the
service interval specified in the endpoint’s descriptor.

The USB 3.0 specification advises that SuperSpeed interrupt transfers are
intended only for small amounts of data that must transfer within defined ser-
vice intervals. In other words, to transfer a large block of data, another transfer
type such as bulk is a better choice.
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The allowed maximum data bytes in an interrupt transaction’s data packet var-
ies with bus speed and the number of packets per microframe (high speed) or
the number of packets per bus interval and the bMaxBurst value (SuperSpeed):

These bytes include only the information transferred in the data packet (USB
2.0) or Data Packet Payload (SuperSpeed), excluding PID and CRC bits.

USB 2.0 and USB 3.0 require interrupt endpoints in a default interface to have
a maximum packet size of 64 bytes or less. If the data doesn’t fit in a single
transaction, the host uses multiple transactions to complete the transfer.

%�������� ��"�����
��������&�����*�

��"�����/��	������
���&����,����	���

Low 1–8 1 / 10 frames
Full 1–64 1 / frame
High 1–1024 1 / microframe

513–1024 2 / microframe
683–1024 3 / microframe

SuperSpeed 1–1024 and bMaxBurst = 0 1 / bus interval
1024 and bMaxBurst > 0 3 / bus interval
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An interrupt transfer guarantees a maximum latency, or time between transac-
tion attempts. In other words, there is no guaranteed transfer rate, just the guar-
antee that the host will make bandwidth available for a transaction attempt in
each maximum latency period.

A SuperSpeed endpoint can request a burst of up to three 1024-byte packets per
bus interval for a maximum data throughput of 24.576 MB/s. A high-speed
endpoint can request up to three 1024-byte packets per microframe, which also
results in a maximum throughput of 24.576 MB/s. A high-speed endpoint that
requests more than 1024 bytes per microframe is called a high-bandwidth end-
point. For hosts that don’t support high-bandwidth interrupt endpoints, the
maximum is 8.192 MB/s. At this writing, the Windows drivers don’t support
high-speed, high-bandwidth interrupt endpoints. If the host’s driver doesn’t
support alternate interfaces, the maximum is the 64 kB/s allowed for the default
interface. A full-speed endpoint can request up to 64 bytes per frame, or 64
kB/s. A low-speed endpoint can request only up to 8 bytes every 10 ms. Devices
with endpoints that need to transfer more than 800 bytes/sec. should not be
low speed. On a USB 1.x bus, low-speed traffic uses much more bandwidth
than full-speed traffic. Limiting the bandwidth available to low-speed end-
points helps keep the bus available for other devices

The endpoint descriptor stored in the device specifies the maximum latency
period. For low-speed devices, the maximum latency can be any value from 10–
255 ms. For full speed, the range is 1–255 ms. For high speed and SuperSpeed,
the range is 125 µs to 4.096 s in increments of 125 µs. In addition, a high-speed
or SuperSpeed interrupt endpoint with a maximum latency of 125 µs can
request 1, 2, or 3 transactions per interval.

The host can begin each transaction at any time up to the specified maximum
latency since the previous transaction began. So, for example, on a full-speed
bus with a 10 ms maximum latency, five transfers could take as long as 50 ms or
as little as 5 ms. OHCI host controllers for low and full speeds schedule trans-
actions in periods of 1, 2, 4, 8, 16, or 32 ms. For a full-speed device that
requests a maximum anywhere from 8 to 15 ms, an OHCI host will begin a
transaction every 8 ms, while a maximum latency from 32 to 255 will cause a
transaction attempt every 32 ms. However, devices shouldn’t rely on behavior
that is specific to a type of host controller and should assume only that the host
complies with the specification. Chapter 8 has more about host-controller
types.
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Because the host is free to transfer data more quickly than the requested rate,
interrupt transfers don’t guarantee a precise rate of delivery. The only exceptions
are when the maximum latency equals the fastest possible rate. For example, on
a USB 1.x host, a full-speed interrupt pipe configured for 1 transaction per ms
will have reserved bandwidth for one transaction per frame. A class driver or
device driver for an interrupt IN endpoint can cause the host controller to
schedule an IN transaction in each interval. The HID driver is an example. Or
a driver can request the host controller to schedule an IN transaction only when
an application has requested data. The WinUSB driver is an example of this
behavior. For interrupt OUT data, the driver requests transactions only when
an application or other software component has provided data to send.

High-speed interrupt and isochronous transfers combined can use no more
than 80% of a microframe. SuperSpeed interrupt and isochronous transfers
combined can use no more than 80% of a bus interval. Full-speed isochronous
transfers and low- and full-speed interrupt transfers combined can use no more
than 90% of a frame. The section More about Time-critical Transfers below has
more about the capabilities and limits of interrupt transfers. 
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If a device doesn’t return an expected handshake packet, host controllers retry
up to twice more. On receiving NAK, a USB 2.0 host may retry without limit.
For example, a keyboard might sit idle for days before someone presses a key. A
host driver might increment an error count on every incomplete transaction
(with no received handshake packet), resetting the count when the device
returns data or ACK and stopping communications to the endpoint if the error
count reaches a defined number. These errors should be rare, yet a device that is
NAKing for a long time might accumulate enough errors to cause the host to
stop communicating. If you can’t change the driver to cause it to reset the error
counter and retry in this situation, a solution is for the device to send data peri-
odically, defining a “no operation” code if needed for this situation. 

SuperSpeed endpoints use NRDY and ERDY as described in Chapter 2 to
cause the host to stop requesting to send or receive data when an endpoint isn’t
ready to receive data or has no data to send and to enable an endpoint to
request to resume communications.

Interrupt transfers can use data toggles (USB 2.0) or Sequence Numbers
(SuperSpeed) to ensure that all data is received without errors. A receiving end-
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point that cares only about getting the most recent data can ignore the data tog-
gle or Sequence Number.

�� ����.�������,�������
Device responsibilities for interrupt endpoints are the same as for bulk end-
points.

���������������������
Isochronous transfers are streaming, real-time transfers that are useful when
data must arrive at a constant rate or within a specific time limit and occasional
errors are tolerable. At full speed and SuperSpeed, isochronous transfers can
transfer more data per frame or bus interval compared to interrupt transfers,
but the transfer type doesn’t support automatic resending of data received with
errors.

Examples of uses for isochronous transfers include encoded voice and music to
be played in real time. Data that will eventually be consumed at a constant rate
doesn’t always require an isochronous transfer. For example, a host can use a
bulk transfer to send a music file to a device. After receiving the file, the device
can stream the music on request.

Nor does the data in an isochronous transfer have to be real-time data such as
audio and video. An isochronous transfer is a way to ensure that any block of
data has reserved bandwidth on a busy bus. Unlike with bulk transfers, a host
guarantees that a configuration’s requested isochronous bandwidth will be avail-
able, so the completion time is predictable.

$ ����,����%
Low speed doesn’t support isochronous transfers. Devices aren’t required to sup-
port isochronous transfers but a device class may require them. For example,
many audio- and video-class devices use isochronous endpoints.

���������
Isochronous means that the data has a fixed transfer rate, with a defined number
of bytes transferring in every frame, microframe, or bus interval.

A USB 2.0 isochronous transfer consists of one or more IN transactions or one
or more OUT transactions at equal intervals. Transferring data in both direc-
tions requires a separate transfer and pipe for each direction. High-speed and
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SuperSpeed isochronous transfers are more flexible. They can request as many
as 3 transactions per microframe (USB 2.0) or 48 transactions per bus interval
(SuperSpeed) or as little as 1 transaction every 32,768 microframes/bus inter-
vals.

Figure 3-7 shows the packets in full-speed isochronous IN and OUT transac-
tions. An isochronous transfer is one way. The transactions in a transfer must all
be IN transactions or all OUT transactions. Transferring data in both directions
requires a separate pipe and transfer for each direction.

The USB 2.0 specification doesn’t define a protocol for specifying the amount
of data in an isochronous transfer. When needed, the device and host can use a
class-specific or vendor-specific protocol to pass this information.

Before requesting a device configuration that consumes isochronous band-
width, the host controller determines whether the requested bandwidth is avail-
able by comparing the available unreserved bus bandwidth with the maximum
packet size and requested transfer rate of the configuration’s isochronous end-
point(s). 

Every USB 2.0 or USB 3.0 device with isochronous endpoints must have an
interface that requests no isochronous bandwidth so the host can configure the

Figure 3-7. USB 2.0 isochronous transfers don’t have handshake packets, so 

occasional errors must be acceptable. Not shown are the split transactions used

with full-speed devices on a high-speed bus or the data PID sequencing in 

high-speed transfers with multiple data packets per microframe.
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device even if the bus has no available reservable bandwidth. In addition to this
interface and an alternate interface that requests the optimum bandwidth for a
device, a device can support additional alternate interfaces that have smaller iso-
chronous data packets or transfer fewer isochronous packets per microframe.
The device driver can then request to use an interface that transfers data at a
slower rate if needed. Or the driver can try again later in the hope that the
bandwidth will be available. After the host configures the device and selects an
interface, the transfers are guaranteed to have the time they need.

Each transaction has overhead and must share the bus with other devices. The
host can schedule a transaction anywhere within a scheduled (micro)frame or
bus interval. Isochronous transfers may also synchronize to another data source
or recipient, SOF packets (USB 2.0), or Isochronous Timestamp Packets
(SuperSpeed). For example, a microphone’s input may synchronize to the out-
put of speakers. The descriptor for a USB 2.0 or higher isochronous endpoint
can specify a synchronization type and a usage value that indicates whether the
endpoint contains data or feedback information used to maintain synchroniza-
tion.

Figure 3-8. As with USB 2.0, SuperSpeed endpoints don’t acknowledge 

isochronous data packets.
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If a host is performing an isochronous transfer with a full-speed device on a
high-speed bus, the host uses the split transactions introduced in Chapter 2 for
all of the transfer’s transactions. Isochronous OUT transactions use start-split
transactions but don’t use complete-splits because there is no status information
to report back to the host. Isochronous transfers don’t use the PING protocol.
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Figure 3-8 shows SuperSpeed isochronous IN and OUT transactions. The first
Data Packet in a service interval has Sequence Number = 0. The Sequence
Number increments with each Data Packet that follows in the service interval.
In an IN transaction, the host sends a single ACK Transaction Packet to request
one or more Data Packets in a service interval, and the device sends the
packet(s). In an OUT transaction, the host sends data in Data Packets, and the
device sends nothing. The endpoint descriptor specifies the length of a service
interval and the number of Data Packets per service interval. For the last data
packet in the service interval, the sender sets the last packet flag in the Data
Packet Header.
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The allowed maximum data bytes in an isochronous transaction’s data packet
varies with bus speed and the number of packets per microframe (high speed)
or the number of packets per bus interval and bMaxBurst (SuperSpeed): 

These bytes include only the information transferred in the data packet (USB
2.0) or Data Packet Payload (SuperSpeed), excluding PID and CRC bits.

If the data doesn’t fit in a single packet, the host completes the transfer in mul-
tiple transactions. Within a USB 2.0 transfer, the amount of data in each trans-
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Full 0–1023 1 / frame
High 0–1024 1 / microframe

513–1024 2 / microframe
683–1024 3 / microframe

SuperSpeed 0–1024 and bMaxBurst = 0 3 / bus interval
1024 and bMaxBurst > 0 48 / bus interval
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action doesn’t have to be the same and doesn’t have to be the maximum packet
size. For example, data at 44,100 samples per second could use a sequence of 9
packets containing 44 samples each, followed by 1 packet containing 45 sam-
ples.

SuperSpeed endpoints can support up to 3 burst transactions per service inter-
val, with each burst consisting of up to 16 Data Packets. All but the last Data
Packet in a burst must be the endpoint’s maximum packet size. In addition,
each burst except the last must have an equal number of Data Packets, and the
number of Data Packets in each burst except the last must be 2, 4, 8, or 16.

For example, with endpoint support for 16 Data Packets per burst, the quickest
way to send 48 maximum-size Data Packets is in 3 bursts of 16 Data Packets
each. With endpoint support for 3 bursts per service interval, all of the data can
transfer within one service interval. But the sender also has the option to send
the data in 6 bursts of 8 Data Packets each, 12 bursts of 4 Data Packets each, 24
bursts of 2 Data Packets each, or 48 non-burst Data Packets.

In a similar way, transferring 47 Data Packets can use 2 bursts of 16 Data Pack-
ets each followed by one burst of 15 packets, 5 bursts of 8 Data Packets each
followed by one burst of 7 packets, 11 bursts of 4 Data Packets each followed
by one burst of 3 packets, 23 bursts of 2 Data Packets each followed by one
burst of 1 packet, or 47 non-burst Data Packets.  

�����
A full-speed isochronous transaction can transfer up to 1023 bytes per frame, or
up to 1.023 MB/s. A high-speed isochronous transaction can transfer up to
1024 bytes. A high-speed isochronous endpoint that requires more than 1024
bytes per microframe can request 2 or 3 transactions per microframe, for a max-
imum data throughput of 24.576 MB/s. A SuperSpeed isochronous transaction
can transfer up to 1024 bytes. A SuperSpeed isochronous burst transaction con-
sists of up to sixteen 1024-byte data packets in a service interval. An endpoint
can request up to 3 burst transactions per service interval, for a maximum data
throughput of over 393 MB/s.

A high-speed endpoint that requests multiple transactions per microframe is a
high-bandwidth endpoint. Recent Windows editions support high-bandwidth
isochronous endpoints. High-speed and SuperSpeed isochronous endpoints
don’t have to reserve bandwidth in every (micro)frame or service interval and
thus can request less bandwidth than full-speed transfers. The minimum
requested bandwidth is one byte every 4.096 seconds. However, any endpoint
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can transfer less data than the maximum reserved bandwidth by skipping avail-
able transactions or by transferring less than the maximum data per transfer. A
SuperSpeed isochronous IN endpoint that has no data to transmit responds to a
request for data with a zero-length Data Payload.

On a high-speed bus, interrupt and isochronous transfers combined can use no
more than 80% of a microframe. On a SuperSpeed bus, interrupt and isochro-
nous transfers combined can use no more than 80% of a bus interval. On a
full-speed bus, isochronous transfers and low- and full-speed interrupt transfers
combined can use no more than 90% of a frame. 

The section More about Time-critical Transfers below has more about the capa-
bilities of isochronous transfers.
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The price for guaranteed on-time delivery of large blocks of data is no error cor-
recting. Isochronous transfers are intended for uses where occasional errors are
acceptable. For example, listeners may tolerate or not notice a short dropout in
voice or music. In reality, under normal circumstances, a USB transfer should
experience only infrequent errors due to line noise. Because isochronous trans-
fers must keep to a schedule, the receiver can’t request the sender to retransmit
if the receiver is busy or detects an error. A receiver that suspects errors could
ask the sender to resend the entire transfer, but this approach isn’t very efficient.

A device or host that doesn’t receive an expected data packet or receives a data
packet with an error can define what to do. The options include using the data
as is, skipping the data, or inserting a packet identical to the previous packet or
other “dummy” data.
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A USB 2.0 device has these responsibilities for transfers on an isochronous end-
point:

• For OUT transfers, accept received data in data packets. 

• For IN transfers, return data in data packets in response to IN tokens.

A SuperSpeed device has these responsibilities for transfers on a isochronous
endpoint:

• For OUT transfers, accept data in Data Packets.

• For IN transfers, send data in Data Packets in response to requests in ACK
Transaction Packets.
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Just because an endpoint is capable of a rate of data transfer doesn’t mean that a
particular device and host will be able to achieve the rate. Several things can
limit an application’s ability to send or receive data at the rate that a device
requests. The limiting factors include bus bandwidth, the capabilities of the
device, the capabilities of the device driver and application software, and laten-
cies in the host’s hardware and software.
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When a device requests more interrupt or isochronous bandwidth than is avail-
able, the host refuses to configure the device. A high-speed interrupt endpoint
can request up to three 1024-byte data packets in each microframe, using as
much as 40% of the bus bandwidth. To help ensure that devices can enumerate
without problems, the interrupt endpoints in default interfaces must specify a
maximum packet size of 64 bytes or less. The device driver is then free to try to
increase the endpoint’s reserved bandwidth by requesting alternate interface set-
tings or configurations. Many drivers don’t support requesting alternate inter-
face settings or configurations, however. 

Isochronous endpoints might also request more bandwidth than is available. In
particular, full-speed endpoints on a 1.x bus and SuperSpeed endpoints can
request over half of the bus bandwidth. To help ensure that devices will enu-
merate without problems, default interfaces in USB 2.0 and USB 3.0 devices
must request no isochronous bandwidth. In other words, a default interface can
transfer no isochronous data at all and typically includes no isochronous end-
points. After enumeration, the device driver can request isochronous band-
width by requesting an alternate interface setting or a configuration with one or
more isochronous endpoints. Note that even full-speed endpoints must meet
this requirement to comply with USB 2.0.

A specific host might configure a device with non-compliant default interfaces,
but future editions of the operating system might enforce this part of the speci-
fication and refuse to configure the device.

�	 � 	�����������	�
If the host has promised that the requested USB bandwidth will be available,
there’s still no guarantee that a device will be ready to send or receive data when
needed.



A Transfer Type for Every Purpose

                                                                                                87

To transfer data efficiently, a device should be ready to send and receive data on
request. To send data, the device must write the data into the endpoint’s buffer
so the data is ready to send when requested by the host. Otherwise, in all but
isochronous transfers, the endpoint returns NAK or NRDY and the host wastes
time retrying. When receiving data, the device must read previously received
data from the endpoint’s buffer before new data arrives from the host. Other-
wise the old data will be overwritten, or the endpoint will return NAK or
NRDY and require the host to retry.

One way to help ensure that a device is always ready for a transfer is to use a
device controller that supports multiple buffers as described in Chapter 6. Dou-
ble or quadruple buffering gives the firmware extra time to load the next data to
transfer or to retrieve received data.

)����� � ,�������
The capabilities of the device driver and application software on the host can
also affect whether transfers occur as efficiently as possible and without losing
data.

A device driver requests a transfer by submitting an I/O request packet (IRP) to
a lower-level driver. For interrupt and isochronous transfers, the host controller
attempts a scheduled transaction only if the host has an outstanding IRP for the
endpoint. To ensure that no transfer opportunities are missed, drivers with large
amounts of data to send or request typically submit a new IRP immediately on
completing the previous one.

The application software that uses the data also has to be able to keep up with
the transfers. For example, the Windows driver for HID-class devices places
report data received in interrupt transfers in a buffer, and applications use Read-
File to retrieve reports from the buffer. If the buffer is full when a new report
arrives, the driver discards the oldest report and replaces it with the newest one.
If the application can’t keep up with reading the buffer, some reports are lost. A
solution is to increase the size of the buffer the driver uses to store received data
or increase the size of the ReadFile buffer to enable reading multiple reports at
once.

One way to help ensure that an application sends or receives data with minimal
delay is to place the code that communicates with the device driver in its own
program thread. The thread should have few responsibilities other than manag-
ing these communications.
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Doing fewer, larger transfers rather than multiple, small transfers can also help.
A host application can typically send or request a few large chunks of data more
efficiently than sending or requesting many smaller chunks. Lower-level drivers
manage the scheduling for transfers with multiple transactions.

)����+ �������
Another factor in the performance of time-critical USB transfers under Win-
dows is latencies due to how the operating system handles multi-tasking. Win-
dows was never designed as a real-time operating system that can guarantee a
rate of data transfer with a peripheral.

With multi-tasking, multiple program threads run at the same time, and the
operating system grants a portion of the available time to each thread. Different
threads can have different priorities, but under Windows, no thread has guaran-
teed CPU time at a defined rate such as once per millisecond. Latencies under
Windows are often well under 1 ms, but in some cases a thread can keep other
code from executing for over 100 ms. Newer Windows editions tend to have
improved performance over older editions.

A USB device and its software have no control over what other tasks the host
CPU is performing and how fast the CPU performs them. If possible, the
device should handle any critical, real-time processing so the timing of the host
communications can be as non-critical as possible. For example, consider a
full-speed device that reads a sensor once per millisecond. The device could
attempt to send each reading to the host in a separate interrupt transfer, but if a
transfer fails to occur for any reason, the data will never catch up. If the device
instead collects a series of readings and transfers them using less frequent, larger
transfers, the timing of the bus transfers is less critical. Data compression can
also help by reducing the number of bytes that transfer.
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Before applications can communicate with a device, the host needs to learn
about the device and assign a driver. Enumeration is the exchange of informa-
tion that accomplishes these tasks. The process includes assigning an address to
the device, reading descriptors from the device, assigning and loading a driver,
and selecting a configuration that specifies the device’s power requirements and
interfaces. The device is then ready to transfer data.

This chapter describes the enumeration process, including the structure of the
descriptors that the host reads from the device during enumeration. Under-
standing enumeration is essential in creating the descriptors that will reside in
the device and in writing firmware that responds to enumeration requests.
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One of a hub’s duties is to detect attachment and removal of devices on its
downstream ports. Each hub has an interrupt IN endpoint for reporting these
events to the host. On system boot-up, hubs inform the host if any devices are
attached, including additional downstream hubs and any devices attached to
those hubs. After boot-up, a host continues to poll periodically (USB 2.0) or
receives ERDY Transaction Packets (SuperSpeed) that request communications
to learn of any newly attached or removed devices.

On learning of a new device, the host sends requests to the device’s hub to cause
the hub to establish a communications path between the host and device. The
host then attempts to enumerate the device by issuing control transfers contain-
ing standard USB requests to the device. All USB devices must support control
transfers, the standard requests, and endpoint zero. For a successful enumera-
tion, the device must respond to requests by returning requested information
and taking other requested actions.

From the user’s perspective, enumeration is invisible and automatic except for
possibly a message that announces the new device and whether the attempt to
configure it succeeded. Sometimes on first use, the user needs to assist in select-
ing a driver or telling the host where to look for driver files. Under Windows,
when enumeration is complete, the new device appears in the Device Manager.
(Right-click Computer, click Manage, and in the Computer Management
pane, select Device Manager.) When a user removes a device from the bus, the
device disappears from the Device Manager. In a typical device, firmware
decodes and responds to requests for information. Some controllers can manage
enumeration entirely in hardware except possibly for vendor-provided values in
EEPROM. On the host side, the operating system handles enumeration.

����	� �������	��
The USB 2.0 specification defines six device states. During enumeration, a
device moves through the Powered, Default, Address, and Configured states.
(The other states are Attached and Suspend.) In each state, the device has
defined capabilities and behavior.

/!����	��#)�345�#�-"����

The steps below are a typical sequence of events that occurs during enumera-
tion of a USB 2.0 device under Windows. Device firmware shouldn’t assume
that enumeration requests and events will occur in a particular order. To func-
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tion successfully, a device must detect and respond to any control request or
other bus event at any time. Figure 4-1 shows received requests and other events
at a device during a device enumeration.

1. The system has a new device. A user attaches a device to a USB port, or the
system powers up with a device attached. The port may be on the root hub at
the host or on a hub that connects downstream from the host. The hub pro-
vides power to the port, and the device is in the Powered state. The device can
draw up to 100 mA from the bus.

2. The hub detects the device. The hub monitors the voltages on the signal
lines (D+ and D-) at each of its ports. The hub has a pull-down resistor of

Figure 4-1.  To enumerate a newly attached device, the host sends a series of 

requests to obtain descriptors and set the device’s bus address and 

configuration. (Screen capture from Ellisys USB Explorer analyzer.) 
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14.25k–24.8kΩ on each line. A device has a pull-up resistor of 900–1575Ω on
D+ for a full-speed device or D- for a low-speed device. High-speed-capable
devices attach at full speed. On attaching to a port, the device’s pull-up brings
its line high, enabling the hub to detect that a device is attached. On detecting a
device, the hub continues to provide power but doesn’t yet transmit USB traffic
to the device. Chapter 15 has more on how hubs detect devices.

3. The host learns of the new device. Each hub uses its interrupt endpoint to
report events at the hub. The report indicates only whether the hub or a port
(and if so, which port) has experienced an event. On learning of an event, the
host sends the hub a Get Port Status request to find out more. Get Port Status
and the other hub-class requests described are standard requests that all hubs
support. The information returned tells the host when a device is newly
attached.

4. The hub detects whether a device is low or full speed. Just before resetting
the device, the hub determines whether the device is low or full speed by exam-
ining the voltages on the two signal lines. The hub detects the device’s speed by
determining which line has a higher voltage when idle. The hub sends the
information to the host in response to the next Get Port Status request. A USB
1.x hub may instead detect the device’s speed just after a bus reset. USB 2.0
requires speed detection before the reset so the hub knows whether to check for
a high-speed-capable device during reset as described below.

5. The hub resets the device. When a host learns of a new device, the host
sends the hub a Set Port Feature request that asks the hub to reset the port. The
hub places the device’s USB data lines in the Reset condition for at least 10 ms.
Reset is a special condition where both D+ and D- are logic low. (Normally, the
lines have opposite logic states.) The hub sends the reset only to the new device.
Other hubs and devices on the bus don’t see the reset.

6. The host learns if a full-speed device supports high speed. Detecting
whether a device supports high speed uses two special signal states. In the Chirp
J state, only the D+ line is driven and in the Chirp K state, only the D- line is
driven. 

During the reset, a device that supports high speed sends a Chirp K. A
high-speed-capable hub detects the Chirp K and responds with a series of alter-
nating Chirp K and Chirp J. On detecting the pattern KJKJKJ, the device
removes its full-speed pull-up and performs all further communications at high
speed. If the hub doesn’t respond to the device’s Chirp K, the device knows it



Enumeration: How the Host Learns about Devices

                                                                                                93

must continue to communicate at full speed. All high-speed devices must be
capable of responding to control requests at full speed.

7. The hub establishes a signal path between the device and the bus. The
host verifies that the device has exited the reset state by sending a Get Port Sta-
tus request. A bit in the returned data indicates whether the device is still in the
reset state. If necessary, the host repeats the request until the device has exited
the reset state.

When the hub removes the reset, the device is in the Default state. The device’s
USB registers are in their reset states, and the device is ready to respond to con-
trol transfers at endpoint zero. The device communicates with the host using
the default address of 00h.

8. The host sends a Get Descriptor request to learn the maximum packet
size of the default pipe. The host sends the request to device address 00h, end-
point zero. Because the host enumerates only one device at a time, only one
device will respond to communications addressed to device address 00h even if
several devices attach at once.

The eighth byte of the device descriptor contains the maximum packet size sup-
ported by endpoint zero. A Windows host requests 64 bytes but after receiving
just one packet (whether or not it has 64 bytes), the host begins the Status stage
of the transfer. On completing the Status stage, Windows requests the hub to
reset the device as in step 5 above. The USB 2.0 specification doesn’t require a
reset here. The reset is a precaution that ensures that the device will be in a
known state when the reset ends.

9. The host assigns an address. When the reset is complete, the host controller
assigns a unique address to the device by sending a Set Address request. The
device completes the Status stage of the request using the default address and
then implements the new address. The device is now in the Address state. All
communications from this point on use the new address. The address is valid
until the device is detached, a hub resets the port, or the system reboots. On the
next enumeration, the host may assign a different address to the device.

10. The host learns about the device’s abilities. The host sends a Get
Descriptor request to the new address to read the device descriptor. This time
the host retrieves the entire descriptor. The descriptor contains the maximum
packet size for endpoint zero, the number of configurations the device supports,
and other basic information about the device.

The host continues to learn about the device by requesting the one or more
configuration descriptors specified in the device descriptor. A request for a con-
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figuration descriptor is actually a request for the configuration descriptor fol-
lowed by all of its subordinate descriptors up to the number of bytes requested.
A Windows host begins by requesting just the configuration descriptor’s nine
bytes. Included in these bytes is the total length of the configuration descriptor
and its subordinate descriptors.

Windows then requests the configuration descriptor again, this time requesting
the number of bytes in the retrieved total length. The device responds by send-
ing the configuration descriptor followed by all of the configuration’s subordi-
nate descriptors, including interface descriptor(s), with each interface descriptor
followed by any endpoint descriptors for the interface. Some configurations
also have class- or vendor-specific descriptors. This chapter has more on what
the descriptors contain.

11. The host assigns and loads a device driver (except for composite devices).
After learning about a device from its descriptors, the host looks for the best
match in a driver to manage communications with the device. Windows hosts
use INF files to identify the best match. The INF file may be a system file for a
USB class or a vendor-provided file that contains the device’s Vendor ID and
Product ID. Chapter 9 has more about selecting a driver.

For devices that have been enumerated previously, Windows may use stored
information instead of searching the INF files. After the operating system
assigns and loads the driver, the driver may request the device to resend descrip-
tors or send other class-specific descriptors.

An exception to this sequence is composite devices, which can have different
drivers assigned to multiple interfaces in a configuration. The host can assign
these drivers only after enabling the interfaces, so the host must first configure
the device as described below.

12. The host’s device driver selects a configuration. After learning about a
device from the descriptors, the device driver requests a configuration by send-
ing a Set Configuration request with the desired configuration number. Many
devices support only one configuration. If a device supports multiple configura-
tions, the driver can decide which configuration to request based on informa-
tion the driver has about how the device will be used, or the driver can ask the
user what to do or just select the first configuration. (Many drivers only select
the first configuration.) On receiving the request, the device implements the
requested configuration. The device is now in the Configured state and the
device’s interface(s) are enabled.
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For composite devices, the host can now assign drivers. As with other devices,
the host uses the information retrieved from the device to find a driver for each
active interface in the configuration. The device is then ready for use.

Hubs are also USB devices, and the host enumerates a newly attached hub in
the same way as other devices. If the hub has devices attached, the host enumer-
ates these after the hub informs the host of their presence.

Attached state. If the hub isn’t providing power to a device’s VBUS line, the
device is in the Attached state. The absence of power may occur if the hub has
detected an over-current condition or if the host requests the hub to remove
power from the port. With no power on VBUS, the host and device can’t com-
municate, so from their perspective, the situation is the same as when the device
isn’t attached.

Suspend State. A device enters the Suspend state after detecting no bus activity,
including SOF markers, for at least 3 ms. In the Suspend state, the device
should limit its use of bus power. Both configured and unconfigured devices
must support this state. Chapter 16 has more about the Suspend state.
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Enumerating SuperSpeed devices has some differences compared to USB 2.0:

• On detecting a downstream SuperSpeed termination at a port, a hub ini-
tializes and trains the port’s link. Enumeration then proceeds at SuperSpeed 
with no need for further speed detecting.

• The host isn’t required to reset the port after learning of a new device. 
• The bus-current limits are 150 mA before configuration and 900 mA after 

configuration.
• The host sends a Set Isochronous Delay request to inform the device of the 

bus delay for isochronous packets.
• The host sends a Set SEL request to inform the device of the system exit 

latency (the amount of time required to transition out of a low-power 
state).

• Protocols for entering and exiting the Suspend state differ.
• For hubs, the host sends a Set Hub Depth request to set the hub-depth 

value.
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When a user removes a device from the bus, the hub disables the device’s port.
The host knows that the removal occurred after the hub notifies the host that
an event has occurred, and the host sends a Get Port Status request to learn
what the event was. The device disappears from the Device Manager and the
device’s address becomes available to another newly attached device.
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Without successful enumeration, the device and host can’t perform other com-
munications. Most chip companies provide example code, which can serve as a
model even if your application doesn’t exactly match the example application. If
your controller interfaces to an external CPU, you may have to adapt code writ-
ten for another chip. 

In general, a device should assume nothing about what requests or events the
host will initiate and should concentrate on responding to requests and events
as they occur. The following tips can help avoid problems.

Don’t assume requests or events will occur in a specific order. Some
requests, such as Set Configuration, require the device to be in the Address or
Configured state, so the request is valid only after the device has accepted a Set
Address request. But the host has some flexibility in what requests to issue and
in what order during enumeration. A host might also reset or suspend the bus
at any time, and the device must detect the event and respond appropriately.

Be ready to abandon a control transfer or end it early. On receiving a new
Setup packet, a device must abandon any transfer in progress and begin the new
one. On receiving an OUT token packet (USB 2.0) or STATUS Transaction
Packet (SuperSpeed), the device must assume that the host is beginning the Sta-
tus stage of the transfer even if the device hasn’t sent all of the requested data in
the Data stage.

Don’t attempt to send more data than the host requests. In the Data stage of
a control read transfer, a device should send no more than the amount of data
the host has requested. If the host requests nine bytes, the device should send
no more than nine bytes.

Send a zero-length data packet when required. In some cases, the device
returns less than the requested amount of data, and the amount of data is an
exact multiple of the endpoint’s maximum packet size. On receiving a request
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for more data, the device should indicate that it has no more data by returning
a ZLP (USB 2.0) or a zero-length Data Payload (SuperSpeed).

Stall unsupported requests. A device shouldn’t assume it knows every request
the host might send. The device should return a STALL in response to any
request the device doesn’t support.

Don’t set the address too soon. In a Set Address request, the device should set
its new address only after the Status stage of the request is complete.

Be ready to enter the Suspend state. A host can suspend the bus when the
device is in any powered state, including before the device has been configured.
When the bus is suspended, the device must reduce its use of bus power.

Test under different host-controller types. Some full-speed host controllers
schedule multiple stages of a control transfer in a single frame, while others
don’t. Devices should be able to handle either way. Chapter 8 has more about
host controllers.

�	� �������
USB descriptors are the data structures that enable the host to learn about a
device. Each descriptor contains information about the device as a whole or an
element in the device.

All USB devices must respond to requests for the standard USB descriptors.
The device must store the contents of its descriptors and respond to requests for
the descriptors.

�%�	�
Table 4-1 lists the descriptors defined in the USB 2.0 and USB 3.0 specifica-
tions. Except for compound devices, each device has one and only one device
descriptor that contains information about the device and specifies the number
of configurations the device supports. For each configuration, each device has a
configuration descriptor with information about the device’s use of power and
the number of interfaces the configuration supports. For each interface, the
device has an interface descriptor that specifies the number of endpoints. Each
endpoint has an endpoint descriptor that contains information needed to com-
municate with the endpoint. An interface with no endpoint descriptors uses the
control endpoint for all communications.

On receiving a request for a configuration descriptor, a device should return the
configuration descriptor and all of the configuration’s interface, endpoint, and
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other subordinate descriptors up to the requested number of bytes. A host can’t
request to retrieve, for example, only an endpoint descriptor. Devices that sup-
port both full and high speeds support two additional descriptor types:
device_qualifier and other_speed_configuration. These and their subordinate
descriptors contain information about the device when using the speed not cur-
rently in use.

SuperSpeed devices must provide a binary device object store (BOS) descriptor
and at least two subordinate device capability descriptors: a SuperSpeed USB

Table 4-1: The bDescriptorType field in a descriptor contains a value that 

identifies the descriptor type.
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01h device Yes.
02h configuration Yes.
03h string No, unless a driver requires it. Optional 

descriptive text.
04h interface Yes.
05h endpoint Yes, to use other than endpoint zero.
06h device_qualifier Yes for devices that support both full and 

high speeds. Not allowed for other devices.
07h other_speed_configuration Yes for devices that support both full and 

high speeds. Not allowed for other devices.
08h interface_power No (proposed but never approved or 

implemented).
09h OTG Yes for On-The-Go devices.
0Ah debug No.
0Bh interface_association Yes for some composite devices.
0Ch security For wireless devices.
0Dh key
0Eh encryption type
0Fh binary device object store 

(BOS)
Yes for SuperSpeed devices, wireless 
devices, and devices that support link 
power management.10h device capability

11h wireless endpoint 
companion

For wireless devices.

30h SuperSpeed_endpoint_
companion

Yes for SuperSpeed devices. Not supported 
for other speeds.
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descriptor and a USB 2.0 Extension descriptor. Other devices may also use
BOS and device capability descriptors. Every SuperSpeed endpoint descriptor
has a subordinate SuperSpeed endpoint companion descriptor.

A string descriptor can store text such as the vendor’s or device’s name or a serial
number. Another descriptor may contain an index value that points to the
string descriptor. The host reads string descriptors using Get Descriptor
requests.

Class- and vendor-specific descriptors offer a structured way for a device or
interface to provide more detailed information about a function. For example,
if an interface descriptor specifies that the interface belongs to the HID class,
the interface also has a HID class descriptor.

Standard descriptors begin with a bLength byte that gives the descriptor’s
length in bytes followed by a bDescriptorType byte that identifies the descrip-
tor’s type. Table 4-1 shows values for standard descriptor types. 

In a Get Descriptor request, the Setup stage’s data packet passes wValue and
wLength values to the device. The wValue field identifies the descriptor being
requested. The wLength field is the number of bytes the host is requesting from
the device. Chapter 5 has more about the Get Descriptor request.

Some class- or vendor-specific descriptors modify or extend other descriptors.
In the descriptors returned in response to a request for a configuration and sub-
ordinate descriptors, a descriptor that extends or modifies a descriptor follows
that descriptor. Like standard descriptors, these class- and vendor-specific
descriptors begin with a bLength byte followed by a bDescriptorType byte. 

For descriptors that don’t modify or extend a standard descriptor, such as a
request for a HID-class report descriptor, the host uses a Get Descriptor request
that specifies the class- or vendor-specific descriptor type and the index of the
request. The class or vendor defines the format for these descriptors.

Each descriptor below begins with bLength and bDescriptorType fields. The
other fields vary with the descriptor type.

�� ���
The device descriptor is the first descriptor the host reads on device attachment.
The descriptor contains information the host needs to retrieve additional infor-
mation from the device. A host retrieves a device descriptor by sending a Get
Descriptor request with the high byte of the Setup transaction’s wValue field
equal to 01h. 
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The descriptor (Table 4-2) provides information about the device, its configura-
tions, and any classes the device belongs to.

bcdUSB is the USB specification version that the device and its descriptors
comply with in BCD (binary-coded decimal) format. If you think of the ver-
sion’s value as a decimal number, the upper byte represents the integer, the next
four bits are tenths, and the final four bits are hundredths. USB 1.1 is 0110h
(not 0101h). USB 2.0 is 0200h. USB 3.0 is 0300h.

A device with bcdUSB = 0210h or higher must support the BOS descriptor. A
device or device wire adapter that complies with Wireless USB V1.0 should set
bcdUSB to 0250h. 

bDeviceClass specifies the device’s class for devices whose function is defined at
the device level. Values from 01h to FEh are reserved for classes defined by USB
specifications. Table 4-3 shows defined codes. Vendor-defined classes use FFh.
Most devices specify their class or classes in interface descriptors. For these
devices, bDeviceClass in the device descriptor equals 00h if the function doesn’t
use an interface association descriptor or EFh if the function uses an interface
association descriptor.

Table 4-2: The device descriptor identifies the product and its manufacturer, sets 

the maximum packet size for endpoint zero, and can specify a device class.
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0 bLength 1 Descriptor size in bytes (12h)
1 bDescriptorType 1 The constant DEVICE (01h)
2 bcdUSB 2 USB specification release number (BCD)
4 bDeviceClass 1 Class code
5 bDeviceSubclass 1 Subclass code
6 bDeviceProtocol 1 Protocol Code
7 bMaxPacketSize0 1 Maximum packet size for endpoint zero
8 idVendor 2 Vendor ID
10 idProduct 2 Product ID
12 bcdDevice 2 Device release number (BCD)
14 iManufacturer 1 Index of string descriptor for the manufacturer
15 iProduct 1 Index of string descriptor for the product
16 iSerialNumber 1 Index of string descriptor for the serial number
17 bNumConfigurations 1 Number of possible configurations
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bDeviceSubclass can specify a subclass within a class. A subclass can add sup-
port for additional features and abilities shared by a group of functions in a
class. If bDeviceClass is 00h, bDeviceSubclass must be 00h. If bDeviceClass is
in the range 01h–FEh, bDeviceSubclass equals 00h or a code defined for the
device’s class. Vendor-defined subclasses in standard classes use FFh.

bDeviceProtocol can specify a protocol for the selected class and subclass. For
example, a USB 2.0 hub uses this field to indicate whether the hub is currently
supporting high speed and if so, if the hub supports one or multiple transaction
translators. If bDeviceClass is in the range 01–FEh, the protocol equals 00h or
a code defined by the device’s class.

bMaxPacketSize0 specifies the maximum packet size for endpoint zero. The
host uses this information in the requests that follow the request for the device
descriptor. For USB 2.0, the maximum packet size equals the field’s value and
must be 8 for low speed; 8, 16, 32, or 64 for full speed; and 64 for high speed.
For SuperSpeed, the maximum packet size equals 2bMaxPacketSize0 and
bMaxPacketSize0 must equal 9 to specify a maximum packet size of 512.

Table 4-3: The bDeviceClass field in the device descriptor can name a class the 

device belongs to.
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00h The interface descriptor specifies the class and the function doesn’t use an 
interface association descriptor. (See EFh below.)

02h Communications device (can instead be declared at the interface level)
09h Hub
0Fh Personal healthcare device (declaring at the interface level preferred)
DCh Diagnostic device (can instead be declared at the interface level)

 bDeviceSubclass = 01h, bDeviceProtocol = 01h: USB2 Compliance Device
E0h Wireless Controller (can instead be declared at the interface level)

  bDeviceSubclass = 01h: Bluetooth programming interface
EFh Miscellaneous 

bDeviceSubclass = 01h
    bDeviceProtocol = 01h: active sync
    bDeviceProtocol = 02h: Palm sync 
bDeviceSubclass = 02h
    bDeviceProtocol = 01h: interface association descriptor
    bDeviceProtocol = 01h: wire adapter multifunction peripheral (Wireless
    USB). 

FFh Vendor-specific (can instead be declared at the interface level)
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idVendor is a Vendor ID assigned by the USB-IF to members of the USB-IF
and others who pay an administrative fee. The host may have an INF file that
contains this value, and if so, Windows may use the value to help select a driver
for the device. Except for devices used only in house where the user is responsi-
ble for preventing conflicts, every device descriptor must have a valid Vendor
ID in this field.

idProduct is a Product ID that identifies the vendor’s device. The owner of the
Vendor ID assigns the Product ID. Both the device descriptor and the device’s
INF file on the host may contain this value, and if so, Windows may use the
value to help select a driver for the device. Each Product ID is specific to a Ven-
dor ID, so multiple vendors can use the same Product ID without conflict.

bcdDevice is the device’s release number in BCD format. The vendor assigns
this value. The host may use this value to help select a driver for the device.

iManufacturer is an index that points to a string describing the manufacturer
or zero if there is no manufacturer descriptor.

iProduct is an index that points to a string describing the product or zero if
there is no string descriptor.

iSerialNumber is an index that points to a string containing the device’s serial
number or 00h if there is no serial number. Serial numbers are useful if users
may have more than one identical device on the bus and the host needs to
remember which device is which even after rebooting. A serial number also
enables a host to determine whether a device is the same one used previously or
a new installation of a device with the same Vendor ID and Product ID.
Devices with the same Vendor ID, Product ID, and device release number
should not share a serial number. Mass-storage devices that use the bulk-only
protocol must have serial numbers.

bNumConfigurations equals the number of configurations the device supports
at the current operating speed.

�� ���?�� ��"���
Devices that support both full and high speeds must have a device_qualifier
descriptor (Table 4-4). When a device switches speeds, the values of some fields
in the device descriptor may change. The device_qualifier descriptor contains
the values for these fields at the speed not currently in use. In other words, the
contents of fields in the device and device_qualifier descriptors swap depending
on which speed is in use. A host retrieves a device_qualifier descriptor by send-
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ing a Get Descriptor request with the high byte of the Setup transaction’s
wValue field equal to 06h.

The Vendor ID, Product ID, device release number, manufacturer string, prod-
uct string, and serial-number string don’t change when the speed changes, so
the device_qualifier descriptor doesn’t include these fields.

���"�5�� ����
After retrieving the device descriptor, a host can retrieve the device’s configura-
tion, interface, and endpoint descriptors.

Each device has at least one configuration that specifies the device’s features and
abilities. Typically a single configuration is enough, but with driver support, a
device with multiple uses or multiple options for power use can support multi-
ple configurations. Only one configuration is active at a time. Each configura-
tion requires a descriptor with information about the device’s use of power and
the number of interfaces supported (Table 4-5). Each configuration descriptor
has subordinate descriptors, including one or more interface descriptors and
optional endpoint descriptors. A host retrieves a configuration descriptor and
its subordinate descriptors by sending a Get Descriptor request with the high
byte of the Setup transaction’s wValue field equal to 02h and the wLength field
equal to wTotalLength.

Table 4-4: In a device that supports both full and high speeds, the 

device_qualifier descriptor contains information about the device when 

operating in the speed not currently in use.
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0 bLength 1 Descriptor size in bytes (0Ah)
1 bDescriptorType 1 The constant DEVICE_QUALIFIER (06h)
2 bcdUSB 2 USB specification release number (BCD)
4 bDeviceClass 1 Class code
5 bDeviceSubclass 1 Subclass code
6 bDeviceProtocol 1 Protocol Code
7 bMaxPacketSize0 1 Maximum packet size for endpoint zero
8 bNumConfigurations 1 Number of possible configurations
9 Reserved 1 For future use
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The host selects a configuration with the Set Configuration request and reads
the current configuration number with a Get Configuration request.

wTotalLength equals the number of bytes in the configuration descriptor and
all of its subordinate descriptors.

bNumInterfaces equals the number of interfaces in the configuration. The
minimum is 01h.

bConfigurationValue identifies the configuration for Get Configuration and
Set Configuration requests and must be 01h or higher. A Set Configuration
request with a value of zero causes the device to enter the Not Configured state.

iConfiguration is an index to a string that describes the configuration. This
value is zero if there is no string descriptor.

bmAttributes sets bit 6 = 1 if the device is self-powered and zero if bus pow-
ered. Bit 5 = 1 if the device supports the remote wakeup feature, which enables
a suspended USB device to tell the host that the device wants to communicate.
The other bits in the field are unused. Bits 4..0 must be zero. Bit 7 must equal 1
for compatibility with USB 1.0  

bMaxPower. Specifies how much bus current a device requires. For USB 2.0,
bMaxPower is in units of 2 mA. If the device requires 200 mA, bMax-
Power=64h. For SuperSpeed, bMaxPower is in units of 8 mA. The maximum

Table 4-5: The configuration descriptor specifies the maximum amount of bus 

current the device will require and gives the total length of the subordinate 

descriptors.

4�����
��������!

3���� ��*�
������!

����	����


0 bLength 1 Descriptor size in bytes (09h)
1 bDescriptorType 1 The constant CONFIGURATION (02h)
2 wTotalLength 2 The number of bytes in the configuration 

descriptor and all of its subordinate descriptors
4 bNumInterfaces 1 Number of interfaces in the configuration
5 bConfigurationValue 1 Identifier for Set Configuration and Get 

Configuration requests
6 iConfiguration 1 Index of string descriptor for the configuration
7 bmAttributes 1 Self/bus power and remote wakeup settings
8 bMaxPower 1 Bus power required in units of 2 mA (USB 2.0) or 8 

mA (SuperSpeed).
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bus current a device can request is 500 mA for USB 2.0 and 900 mA for Super-
Speed. If the requested current isn’t available, the host will refuse to configure
the device. A driver may then request an alternate configuration if available.

;����?�����?���"�5�� ����
The second descriptor unique to devices that support both full and high speeds
is the other_speed_configuration descriptor (Table 4-6). The structure of the
descriptor is identical to that of the configuration descriptor. The only differ-
ence is that the other-speed_configuration descriptor describes the configura-
tion when the device is operating at the speed not currently in use. The
descriptor has subordinate descriptors just as the configuration descriptor does. 

A host retrieves an other_speed_configuration descriptor by sending a Get
Descriptor request with the high byte of the Setup transaction’s wValue field
equal to 07h.

�����" ���$����� ����
An interface association descriptor (IAD) identifies multiple interfaces associ-
ated with a function (Table 4-7). In relation to a device and its descriptors, the
term interface refers to a feature or function a device implements.

Table 4-6: The other_speed_configuration descriptor has the same fields as the 

configuration descriptor but contains information about the device when it 

operates in the speed not currently in use.

4�����
��������!

3���� ��*�
������!

����	����


0 bLength 1 Descriptor size in bytes (09h)
1 bDescriptorType 1 The constant 

OTHER_SPEED_CONFIGURATION (07h)
2 wTotalLength 2 The number of bytes in the configuration 

descriptor and all of its subordinate descriptors
4 bNumInterfaces 1 Number of interfaces in the configuration
5 bConfigurationValue 1 Identifier for Set Configuration and Get 

Configuration requests
6 iConfiguration 1 Index of string descriptor for the configuration
7 bmAttributes 1 Self/bus power and remote wakeup settings
8 MaxPower 1 Bus power required in units of 2 mA (USB 2.0) or 8 

mA (SuperSpeed).
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Most device classes specify the class at the interface level rather than at the
device level. Assigning functions to interfaces enables a single configuration to
support multiple functions. When two or more interfaces in a configuration are
associated with the same function, the interface association descriptor tells the
host which interfaces are associated. For example, a video-camera function may
use one interface to control the camera and another to carry video data. 

The Interface Association Descriptor ECN says that the descriptor must be sup-
ported by future implementations of devices that use multiple interfaces to
manage a single device function. Devices that comply with the video-class and
audio 2.0 specifications must use interface association descriptors. Class specifi-
cations that predate the IAD don’t require it. For example, the audio 1.0 class
specification defines a class-specific descriptor to associate audio interfaces in a
function. Hosts that don’t support the IAD ignore it. Windows began support-
ing the descriptor with Windows XP SP2. In USB 3.0 devices, every function
with multiple interfaces must use an IAD.

To enable hosts to identify devices that use the Interface Association descriptor,
the device descriptor should contain the following values: 

bDeviceClass = EFh (miscellaneous device class)

bDeviceSubClass = 02h (common class)

bDeviceProtocol = 01h (interface association descriptor)

These codes together form the Multi-interface Function Device Class Codes.

Table 4-7: The interface association descriptor can link multiple interfaces to a 

single function.
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0 bLength 1 Descriptor size in bytes (08h)
1 bDescriptorType 1 The constant Interface Association (0Bh)
2 bFirstInterface 1 Number identifying the first interface associated 

with the function
3 bInterfaceCount 1 The number of contiguous interfaces associated 

with the function
4 bFunctionClass 1 Class code
5 bFunctionSubClass 1 Subclass code
6 bFunctionProtocol 1 Protocol code
8 iFunction 1 Index of string descriptor for the function
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A host retrieves an interface association descriptor as one of the subordinate
descriptors sent in response to a request for a configuration descriptor. The IAD
precedes the interface descriptors that the IAD specifies.

bFirstInterface identifies the interface number of the first of multiple interfaces
associated with a function. The interface number is the value of bInterface-
Number in the interface descriptor. The interface numbers of associated inter-
faces must be contiguous.

bInterfaceCount equals the number of contiguous interfaces associated with
the function.

bFunctionClass is a class code for the function shared by the associated inter-
faces. For classes that don’t specify a value to use, the preferred value is the
bInterfaceClass value from the descriptor of the first associated interface. Values
from 01h–FEh are reserved for USB-defined classes. FFh indicates a ven-
dor-defined class. Zero is not allowed.

bFunctionSubClass is a subclass code for the function shared by the associated
interfaces. For classes that don’t specify a value to use, the preferred value is the
bInterfaceSubClass value from the descriptor of the first associated interface.

bInterfaceProtocol is a protocol code for the function shared by the associated
interfaces. For classes that don’t specify a value to use, the preferred value is the
bInterfaceProtocol value from the descriptor of the first associated interface.

iInterface is an index to a string that describes the function. This value is zero if
there is no string descriptor.

�����" ��
The interface descriptor provides information about a function or feature that a
device implements. The descriptor contains class, subclass, and protocol infor-
mation and the number of endpoints the interface uses (Table 4-8).

A configuration can have multiple interfaces that are active at the same time.
The interfaces may be associated with a single function or they may be unre-
lated. Each interface has its own interface descriptor and subordinate descrip-
tors. Each of these interfaces can also have one or more alternate interface
settings. The settings are mutually exclusive; only one is active at a time. Each
setting has an interface descriptor and subordinate descriptors as needed.
Devices that use isochronous transfers have alternate interface settings because
the default interface can request no isochronous bandwidth.
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A host retrieves interface descriptors as subordinate descriptors sent in response
to a request for a configuration descriptor.

bInterfaceNumber identifies the interface. In a composite device, a configura-
tion has multiple interfaces that are active at the same time. Each interface must
have a descriptor with a unique value in this field. The default interface is 00h.

bAlternateSetting identifies the default interface setting or an alternate setting.
For each bInterfaceNumber, the device provides an interface descriptor with
bAlternateSetting = 00h. This is the default setting. A descriptor for an alter-
nate setting has the same value in bInterfaceNumber, a unique value in bAlter-
nateSetting, and different values as needed in the descriptor’s final five bytes.
For each bInterfaceNumber, only one bAlternateSetting is active at a time. The
alternate settings enable the host to request an interface with different band-
width or other requirements and capabilities. The Get Interface request
retrieves the currently active bAlternateSetting. The Set Interface request selects
the bAlternateSetting that a specific bInterfaceNumber should use.

bNumEndpoints equals the number of endpoints the interface supports in
addition to endpoint zero. For a device that supports only endpoint zero, this
field is zero.

bInterfaceClass is similar to bDeviceClass in the device descriptor, but for
devices with a class specified by the interface. Table 4-9 shows defined codes.

Table 4-8: The interface descriptor specifies the number of subordinate 

endpoints and may specify a USB class.
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0 bLength 1 Descriptor size in bytes (09h)
1 bDescriptorType 1 The constant Interface (04h)
2 bInterfaceNumber 1 Number identifying this interface
3 bAlternateSetting 1 A number that identifies a descriptor with 

alternate settings for this bInterfaceNumber.
4 bNumEndpoints 1 Number of endpoints supported not counting 

endpoint zero
5 bInterfaceClass 1 Class code
6 bInterfaceSubclass 1 Subclass code
7 bInterfaceProtocol 1 Protocol code
8 iInterface 1 Index of string descriptor for the interface
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Table 4-9: The bInterfaceClass field in the interface descriptor can name a class 

the interface belongs to.
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00 Reserved
01 Audio
02 Communications device class: communication interface
03 Human interface device
05 Physical
06 Image
07 Printer
08 Mass storage
09 Hub
0A Communications device class: data interface
0B Smart Card
0D Content Security
0E Video
0F Personal healthcare device (can instead be declared at the device level)
DC Diagnostic device (can instead be declared at the device level)

bInterfaceSubclass= 01h, bInterfaceProtocol = 01h. USB2 compliance device
E0 Wireless controller 

bInterfaceSubclass = 01h 
    bInterfaceProtocol = 01h: Bluetooth programming interface 
      (can also be declared at the device level) 
    bInterfaceProtocol = 02h: UWB Radio control interface (Wireless USB) 
    bInterface bInterfaceProtocol = 03h: remote NDIS
bInterfaceSubclass = 02h. Host and device wire adapters (Wireless USB) 

EF Miscellaneous
bInterfaceSubclass = 01h 
    bInterfaceProtocol = 01h: active sync 
    bInterfaceProtocol = 02h: Palm sync
bInterfaceSubclass = 03h. Cable based association framework (Wireless USB)

FE Application specific
bInterfaceSubclass = 01h. Device firmware upgrade
bInterfaceSubclass = 02h. IrDA bridge
bInterfaceSubclass = 03h. Test and measurement

FF Vendor specific (can instead be declared at the device level)
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Values 01h–FEh are reserved for USB-defined classes. FFh indicates a ven-
dor-defined class. Zero is reserved.

bInterfaceSubClass is similar to bDeviceSubClass in the device descriptor, but
for devices with a class defined by the interface. If bInterfaceClass equals 00h,
bInterfaceSubclass must equal 00h. If bInterfaceClass is in the range 01h–FEh,
bInterfaceSubclass equals 00h or a code defined for the interface’s class. FFh
indicates a vendor-defined subclass.

bInterfaceProtocol is similar to bDeviceProtocol in the device descriptor, but
for devices whose class is defined by the interface. The field can specify a proto-
col for the selected bInterfaceClass and bInterfaceSubClass. If bInterfaceClass is
in the range 01h–FEh, bInterfaceProtocol must equal 00h or a code defined for
the interface’s class. FFh indicates a vendor-defined protocol.

iInterface is an index to a string that describes the interface. This value is zero if
there is no string descriptor.

��������
Each endpoint specified in an interface descriptor has an endpoint descriptor
(Table 4-10). Endpoint zero never has a descriptor because every device must
support endpoint zero, the device descriptor contains the maximum packet size,
and the USB specification defines everything else about the endpoint. A host
retrieves endpoint descriptors as subordinate descriptors sent in response to a
request for a configuration descriptor. 

Devices in the audio 1.0 class extend the endpoint descriptor with two addi-
tional bytes of audio-specific information. This is the only allowed extension
that changes the length of a standard descriptor type. Where needed elsewhere,
class and other specifications should define separate, subordinate descriptors
that return extended information. For example, USB 3.0 defines the endpoint
companion descriptor to return SuperSpeed-specific endpoint information.

bEndpointAddress specifies the endpoint number and direction. Bits 3..0 are
the endpoint number. Low-speed devices can have a maximum of 3 endpoint
numbers (usually in the range 0–2), while full- and high-speed devices can have
16 (0–15). Bit 7 is the direction, with OUT = 0 and IN = 1. Bits 6..4 are
unused and must be zero.

bmAttributes sets bits 1..0 to specify the type of transfer the endpoint sup-
ports: 00=control, 01=isochronous, 10=bulk, 11=interrupt. Bits 7..6 are
reserved and must be zero. The functions of the remaining bits vary with the
endpoint type and speed.
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For isochronous endpoints, bits 5..2 can indicate a synchronization type and
usage type of data or feedback.

For SuperSpeed interrupt endpoints, bits 5..4 indicate a usage type of Notifica-
tion or Periodic. Interrupt endpoints have two primary uses with differing
needs from the host. Some endpoints require quick response or frequent data
transfers in consecutive intervals. For example, users don’t want a noticeable
delay before seeing the effect of pressing a key or moving a mouse. These end-
points should specify the Periodic usage. Other endpoints provide infrequent
notifications or data where timing is less critical. An example is hub notifica-
tions that inform the host of device attachment, removal, or other events. The
endpoints should specify the Notification usage. The host can use the Usage
type in deciding whether to place a port in a low-power state that requires more
time to exit. Any undefined bits are reserved.

wMaxPacketSize specifies the maximum number of data bytes the endpoint
can transfer in a transaction. The allowed values vary with the device speed and
type of transfer.

For USB 2.0, bits 10..0 are the maximum packet size with a range of 0–1024.
For USB 1.x, the range is 0–1023. In USB 2.0, bits 12..11 indicate how many
additional transactions per microframe a high-speed interrupt or isochronous
endpoint supports: 00 = no additional transactions (total of 1 / microframe), 01
= one additional (total of 2 / microframe), 10 = 2 additional (total of 3 /
microframe), 11 = reserved. In USB 1.x, these bits were reserved and zero. Bits
15..13 are reserved and zero.

For SuperSpeed bulk endpoints, the value is 1024. For SuperSpeed interrupt
and isochronous endpoints, the allowed values depend on the value of bMax-
Burst in the SuperSpeed endpoint companion descriptor. If bMaxBurst = 0,

Table 4-10: The endpoint descriptor provides information about an endpoint 

address.
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0 bLength 1 Descriptor size in bytes (07h)
1 bDescriptorType 1 The constant Endpoint (05h)
2 bEndpointAddress 1 Endpoint number and direction
3 bmAttributes 1 Transfer type and supplementary information
4 wMaxPacketSize 2 Maximum packet size supported
6 bInterval 1 Service interval or NAK rate
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wMaxPacketSize can be in the range 0–1024 for isochronous endpoints and 1–
1024 for interrupt endpoints. If bMaxBurst > 0, wMaxPacketSize = 1024. 

bInterval specifies the service interval for interrupt and isochronous endpoints.
The service interval is a period within which the host must reserve time for an
endpoint’s transactions. The period is an integral number of frames (low and
full speed), microframes (high speed), or bus intervals (SuperSpeed). The
allowed range and usage of bInterval varies with the device’s speed, the transfer
type, and the USB version.

For low-speed interrupt endpoints, bInterval is the maximum latency in ms in
the range 10–255. For all full-speed interrupt endpoints and for full-speed iso-
chronous endpoints on 1.x devices, the interval equals bInterval in ms. For
interrupt endpoints, the value may range from 1–255. For isochronous end-
points in USB 1.x devices, the value must be 1. For isochronous endpoints in
full-speed USB 2.0 devices, values 1–16 are allowed, and the interval is
2bInterval-1 in ms, allowing a range from 1 ms to 32.768 seconds.

For high-speed and SuperSpeed endpoints, the value is in units of 125 µs. The
value for interrupt and isochronous endpoints may range from 1–16, and the
interval is calculated as 2bInterval-1, allowing a range from 125 µs to 4.096 sec-
onds.

For high-speed bulk and control OUT endpoints, the field can contain a maxi-
mum NAK rate used for compliance purposes only. Devices typically set the
field to zero. For other bulk transfers and control transfers, the value is reserved.

������������������������ ����  

Every SuperSpeed endpoint has a companion descriptor to support SuperSpeed
capabilities. A host retrieves endpoint companion descriptors as subordinate
descriptors sent in response to a request for a configuration descriptor when the
configuration has one or more endpoints.

bMaxBurst specifies the maximum number of packets the endpoint can send
or receive in a burst minus one. A value of zero means one packet per burst.
The maximum value is 15, indicating 16 packets per burst. A Data Packet in a
burst can transmit without waiting for an acknowledgement of the previous
Data Packet in the burst.

bmAttributes provides information specific to bulk and isochronous end-
points. For bulk endpoints, bits 4..0 are a MaxStreams value that indicates the
maximum number of streams the endpoint supports. Zero means the endpoint
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doesn’t define streams. For values 1–16, the number of streams equals
2MaxStreams for a maximum value of 65,536.

For isochronous endpoints, bits 1..0 are a Mult value that indicates, along with
bMaxBurst, the maximum number of packets in a service interval. The maxi-
mum number of packets equals (bMaxBurst + 1) × (Mult + 1). Valid values for
Mult are 0–2. The maximum allowed number of packets thus equals (15 + 1) ×
(2 + 1), or 48.

wBytesPerInterval is the maximum number of bytes a periodic interrupt or
isochronous endpoint expects to transfer per service interval. 
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A string descriptor (Table 4-12) contains descriptive text. Other descriptors can
contain indexes to strings that describe the manufacturer, product, serial num-
ber, configuration, and interface. Class- and vendor-specific descriptors can
contain indexes to additional string descriptors. Support for string descriptors is
optional, though a class may require them. A host retrieves a string descriptor
by sending a Get Descriptor request with the high byte of the Setup transac-
tion’s wValue field equal to 03h.

When the host requests a string descriptor, the low byte of the wValue field is
an index value. An index value of zero has the special function of requesting
language IDs, while other index values request strings.

Table 4-11: A SuperSpeed endpoint has a companion descriptor to provide a 

maximum burst value.
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0 bLength 1 Descriptor size in bytes (06h)
1 bDescriptorType 1 The constant 

SUPERSPEED_USB_ENDPOINT_COMPANION 
(30h)

2 bMaxBurst 1 The maximum number of packets the endpoint 
can send or receive as part of a burst - 1.

3 bmAttributes 1 For bulk endpoints, the maximum number of 
streams. For isochronous endpoints, the maximum 
number of packets in a service interval.

4 wBytesPerInterval 2 For periodic interrupt and isochronous endpoints, 
the maximum number of bytes the endpoint 
expects to transfer per service interval.
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wLANGID[0...n] is valid for string descriptor zero only. This field contains
one or more 16-bit language ID codes that indicate the languages the strings are
available in. U.S. English (0409h) is likely to be the only code supported by an
operating system. The wLANGID value must be valid for any string to be
valid. Devices that return no string descriptors must not return an array of lan-
guage IDs. The USB-IF’s website has a list of defined USB language IDs.

bString is valid for string descriptors one and higher and contains a string in
Unicode UTF-16LE format. In this format, most characters are encoded as
16-bit code units with the low byte of the code unit transmitted first. For U.S.
English, the low byte of the code unit is the character’s ASCII code. For exam-
ple, the character A transmits as the byte 41h followed by 00h. Some rarely used
characters are encoded as surrogate pairs consisting of two 16-bit code units.
The strings are not null-terminated.
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Some devices use additional descriptors to store information that is specific to a
technology or a device function. To provide a standard way to provide this
information, the Wireless USB specification introduced two new descriptor
types. The USB 2.0 Link Power Management Addendum and USB 3.0 specifi-
cation also incorporate these types.  

The binary device object store (BOS) descriptor (Table 4-13) functions as a
base descriptor for one or more related device capability descriptors. A device
capability descriptor (Table 4-14) provides information about a specific capabil-
ity or technology. These are the defined device capability descriptors:

• Wireless USB provides information about wireless features.
• USB 2.0 Extension indicates that a device supports the Link Power Man-

agement protocol when operating at low, full, or high speed. All Super-

Table 4-12: A string descriptor identifies a supported language or stores a string 

of text.
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0 bLength 1 Descriptor size in bytes (variable)
1 bDescriptorType 1 The constant String (03h)
2 bSTRING or 

wLANGID
varies For string descriptor zero, an array of one or more 

Language Identifier codes. For other string 
descriptors, a Unicode UTF-16LE string.
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Speed devices must provide this descriptor and must support Link Power 
Management when operating at high speed. USB 2.0 devices that support 
Link Power Management also provide this descriptor.

• SuperSpeed USB specifies which speeds the device supports, the lowest 
speed that provides full functionality, and power-management capabilities. 
All SuperSpeed devices must provide this descriptor. 

• Container ID provides a 128-bit universally unique identifier (UUID) that 
identifies the device instance. The descriptor is mandatory for USB 3.0 
hubs and optional for other SuperSpeed devices.

A host retrieves a BOS descriptor and all of its subordinate device capability
descriptors by sending a Get Descriptor request with the high byte of the Setup
transaction’s wValue field set to 0Fh and the wLength field equal to the descrip-
tor’s wTotalLength value. There is no request for reading only a device capabil-
ity descriptor.
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Other standard descriptor types are OTG and debug.

Devices that support On-The-Go’s Host Negotiation Protocol (HNP) or Ses-
sion Request Protocol (SRP) have an OTG descriptor that indicates the sup-
ported protocols. Chapter 20 has more about this descriptor.

Intel’s proposed specification USB2 Debug Device: A Functional Device Specifi-
cation defines a debug descriptor. A debug device connects to the optional
debug port defined in the EHCI specification for high-speed host controllers.
The debug port and device are intended to replace the RS-232 port that PCs
have long used for debugging purposes.

Table 4-13: A binary device object store (BOS) descriptor provides a way to 

support descriptors that store additional information about a device.
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0 bLength 1 Descriptor size in bytes (05h).
1 bDescriptorType 1 BOS (0Fh)
2 wTotalLength 2 The number of bytes in this descriptor and all of its 

subordinate descriptors
4 bNumDeviceCaps 1 The number of device capability descriptors 

subordinate to this BOS descriptor.
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Microsoft OS descriptors enable storing Windows-specific information. Placing
the information in descriptors means the information is available on attach-
ment instead of requiring users to provide the information on separate media.
The Microsoft OS string descriptor has an index of EEh and contains an
embedded signature. Windows XP SP1 and later request this string descriptor
from a device on first attachment. A device that doesn’t support the descriptor
should return STALL. On retrieving a Microsoft OS string descriptor, Win-
dows may request one or more Microsoft OS feature descriptors. The extended
compat ID feature descriptor contains Microsoft-defined IDs that can help
Windows locate a driver for device functions that don’t have Windows-pro-
vided drivers. The extended properties feature descriptor can provide text,
icons, and other device-specific properties.
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To update descriptors for a USB 1.x device to USB 2.0, all except some devices
that have isochronous endpoints require just one change: in the device descrip-
tor, bcdUSB must be 0200h or greater. As Chapter 3 explained, a USB 2.0
device’s default interface(s) must request no isochronous bandwidth, so an
interface that wants to do isochronous transfers must have at least one alternate
interface setting, and the alternate interface descriptor will have at least one
subordinate endpoint descriptor.

Table 4-14: The device capability descriptor can provide information that is 

specific to a technology or another aspect of a device or its function.
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0 bLength 1 Descriptor length in bytes (varies).
1 bDescriptorType 1 DEVICE CAPABILITY (10h)
2 bDevCapabilityType 1 01h = Wireless USB

02h = USB 2.0 EXTENSION
03h = SUPERSPEED_USB
04h = CONTAINER ID
00h, 05h–FFH (reserved)

3 Capability-Dependent varies Capability-specific data and format.
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Of USB’s four transfer types, control transfers have the most complex structure.
They’re also the only transfer type with functions defined by the USB specifica-
tion. This chapter looks in greater detail at control transfers and the standard
requests defined in the specification.
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Control transfers enable the host and a device to exchange information about
the device’s capabilities and other class-specific or vendor-specific information.
As Chapter 3 explained, a control transfer consists of a Setup stage, a Data stage
(optional for some transfers), and a Status stage. Each stage consists of one or
more transactions.
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The descriptions below apply to USB 2.0 transfers. SuperSpeed transfers
exchange the same information but use USB 3.0’s packet structures and proto-
cols as described in Chapter 3.

�������� 5�
The Setup stage consists of a Setup transaction, which identifies the transfer as a
control transfer and transmits the request and other information that the device
needs to complete the request.

Devices must return ACK for every Setup transaction received without error.
An endpoint that is in the middle of another control transfer must abandon
that transfer and acknowledge the new Setup transaction. 

/�����%�����

Purpose: identifies the receiver and identifies the transaction as a Setup transac-
tion.

Sent by: the host.

PID: SETUP

Additional contents: the device and endpoint addresses.

(����%�����

Purpose: transmits the request and related information.

Sent by: the host.

PID: DATA0

Additional contents: eight bytes in five fields:

bmRequestType specifies the direction of data flow, the type of request, and
the recipient.

Bit 7 (Direction) names the direction of data flow for data in the Data stage.
Host to device (OUT) or no Data stage is zero; device to host (IN) is 1.

Bits 6..5 (Request Type) specify whether the request is one of USB’s standard
requests (00), a request defined for a specific USB class (01), or a request
defined by a vendor-specific driver for use with a particular product or products
(10).

Bits 4..0 (Recipient) define whether the request is directed to the device
(00000) or to a specific interface (00001), endpoint (00010), or other element
(00011) in the device.
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bRequest identifies the request.

wValue can pass request-specific information to the device. Each request can
define the meaning of these two bytes in its own way. For example, in a Set
Address request, wValue contains the device’s address.

wIndex can pass request-specific information to the device. A typical use is to
pass an index or offset such as an interface or endpoint number, but each
request can define the meaning of these two bytes in any way. When passing an
endpoint index, bits 3..0 specify the endpoint number, and bit 7 = 0 for a Con-
trol or OUT endpoint or 1 for an IN endpoint. When passing an interface
index, bits 7..0 are the interface number. All undefined bits are zero.

wLength is two bytes that contain the number of data bytes in the Data stage
that follows. For a host-to-device transfer, wLength is the exact number of bytes
the host intends to transfer. For a device-to-host transfer, wLength is a maxi-
mum, and the device may return this many bytes or fewer. If the field is zero,
the transfer has no Data stage.

.���
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Purpose: transmits the device’s acknowledgement.

Sent by: the device.

PID: ACK.

Additional contents: none. The handshake packet consists of the PID alone.

Comments: If the device detects an error in the received Setup or Data packet,
the device returns no handshake. The device’s hardware typically handles the
error checking and sending of the ACK with no firmware support needed.

� � ��� 5�
The Data stage, when present, consists of one or more IN or OUT transac-
tions. A Data stage with IN transactions sends data to the host. An example is
the Get Descriptor request, where the device sends a requested descriptor to the
host. A Data stage with OUT transactions sends data to the device. An example
is the HID-class request Set Report, where the host sends a report to a device. If
wLength in the Setup transaction equals 0000h, the transfer has no Data stage.
For example, in the Set Configuration request, the host passes a configuration
value to the device in the wValue field of the Setup stage’s data packet, so the
transaction has no need for a Data stage.
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If all of the data can’t fit in one packet, the stage uses multiple transactions. In
the device descriptor, bMaxPacketSize0 specifies the maximum number of data
bytes per packet. The transactions in the Data stage are all in the same direc-
tion. When the Data stage is present but there is no data to transfer, the data
packet is a ZLP. 

The host uses split transactions in the Data stage when the device is low or full
speed and a hub between the device and host connects upstream at high speed.
The host may use the PING protocol when the device is high speed, the Data
stage uses OUT transactions, and the stage has more than one data transaction.

Each IN or OUT transaction in the Data stage contains token, data, and hand-
shake packets.

/�����%�����

Purpose: identifies the receiver and identifies the transaction as an IN or OUT
transaction.

Sent by: the host.

PID: If the request requires the device to send data to the host, the PID is IN.
If the request requires the host to send data to the device, the PID is OUT.

Additional contents: the device and endpoint addresses.

(����%�����

Purpose: transfers all or a portion of the data specified in the wLength field of
the Setup transaction’s data packet.

Sent by: the device if the token packet’s PID is IN or the host if the token
packet’s PID is OUT.

PID: The first packet is DATA1. Any additional packets in the Data stage alter-
nate DATA0/DATA1.

Additional contents: The host sends data or a ZLP. A device may send data, a
ZLP, STALL (unsupported request or halted endpoint), or NAK.

.���
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Purpose: the data packet’s receiver returns status information.

Sent by: the receiver of the Data stage’s data packet. If the token packet’s PID is
IN, the host sends the handshake packet. If the token packet’s PID is OUT, the
device sends the handshake packet.
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PID: A device may return ACK (data received without error), NAK (endpoint
busy), or STALL (unsupported request or halted endpoint). A high-speed
device that is receiving multiple data packets may return NYET to indicate that
the current transaction’s data was accepted but the endpoint isn’t yet ready for
another data packet. A host can return only ACK.

Additional contents: none. The handshake packet consists of the PID alone.

Comments: If the receiver detected an error in the token or data packet, the
receiver returns no handshake packet.

�� ������ 5�
The Status stage completes the transfer. In some cases (such as after receiving
the first packet of a device descriptor during enumeration), the host may begin
the Status stage before the Data stage has completed, and the device must detect
the token packet of the Status stage, abandon the Data stage, and complete the
Status stage.

/�����%�����

Purpose: identifies the receiver and indicates the direction of the Status stage’s
data packet.

Sent by: the host.

PID: the opposite of the direction of the previous transaction’s data packet. If
the Data stage’s PID was OUT or if there was no Data stage, the Status stage’s
PID is IN. If the Data stage’s PID was IN, the Status stage’s PID is OUT.

Additional contents: the device and endpoint addresses.

(����%�����

Purpose: enables the receiver of the Data stage’s data to indicate the status of
the transfer.

Sent by: the device if the Status stage’s token packet’s PID is IN or the host if
the Status stage’s token packet’s PID is OUT.

PID: DATA1

Additional contents: The host sends a ZLP. A device may send a ZLP (suc-
cess), NAK (busy), or STALL (unsupported request or halted endpoint). 
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Comments: For most requests, a ZLP from the device indicates that the device
has performed the requested action (if any). An exception is Set Address, where
the device takes the requested action after the Status stage has completed.

.���
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Purpose: The sender of the Data stage’s data indicates the status of the transfer.

Sent by: the receiver of the Status stage’s data packet. If the Status stage’s token
packet’s PID is IN, the host sends the handshake packet; if the token packet’s
PID is OUT, the device sends the data packet.

PID: A device may return ACK (success), NAK (busy), or STALL (unsup-
ported request or halted endpoint). The host returns ACK in response to a data
packet received without error.

Additional contents: none. The handshake packet consists of the PID alone.

Comments: The Status stage’s handshake packet is the final transmission in the
transfer. If the receiver detected an error in the token or data packet, the
receiver returns no handshake packet.

For any request that’s expected to take many milliseconds to carry out, the pro-
tocol should define an alternate way to determine when the request has com-
pleted. Doing so ensures that the host doesn’t waste a lot of time asking for an
acknowledgement that will take a long time to appear. An example is the Set
Port Feature(PORT_RESET) request sent to a hub. The reset signal lasts at
least 10 ms. Rather than making the host wait this long for the device to com-
plete the request, the hub acknowledges receiving the request when the hub first
places the port in the reset state. When the reset is complete, the hub sets a bit
that the host can retrieve at its leisure via a Get Port Status request.

) �����5�������
A device might receive a request that firmware doesn’t support. Or a device may
be unable to respond because the endpoint is in the Halt condition, the firm-
ware has crashed, or the device is no longer attached to the bus. A host may also
decide to end a transfer early for any reason.

An example of an unsupported request is one that uses a request code that the
device’s firmware doesn’t know how to respond to. Or a device may support the
request but other information in the Setup stage doesn’t match what the device
expects or supports. On these occasions, a Request Error condition exists and
the device notifies the host by sending STALL. Devices must respond to the
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Setup transaction with an ACK, so the STALL transmits in the Data or Status
stage. When possible, the device should return STALL in the Data stage.

On failing to get a response or on detecting an error in received data or a Halt
condition at the endpoint, the host abandons the transfer. The host then tries
to re-establish communications with the endpoint by sending the token packet
for a new Setup transaction. If a new token packet doesn’t cause the device to
recover, the host requests the device’s hub to reset the device’s port. 

The host may also end a transfer early by beginning the Status stage before
completing all of the Data stage’s transactions. In this case, the device must
respond to the Status stage in the same way as if all of the data had transferred. 
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USB 2.0 device firmware typically performs the steps below to support control
transfers. The implementation details vary with the device architecture and pro-
gramming language.
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To complete a control write request with a Data stage, the device must detect
the request in the Setup stage, accept the data in the Data stage, and send a ZLP
in the Status stage.

1. Device hardware detects a received Setup packet, stores the contents of the
transaction’s data packet, returns ACK, and triggers an interrupt.

2. On detecting the interrupt, the device decodes the request and ensures that
endpoint zero is ready to accept data that arrives following an OUT token
packet. The endpoint must also ACK a new Setup packet if the host decides to
abandon the transfer and should return a ZLP in response to an IN token
packet, which indicates that the host is ending the transfer early.

3. The Data stage begins when the host sends an OUT token packet to end-
point zero. The endpoint stores the received data and returns ACK in the hand-
shake packet. The hardware triggers an interrupt.

4. On detecting the interrupt, the device processes the received data as needed.

5. If the Data stage has additional data packets, steps 3 and 4 repeat for addi-
tional OUT transactions up to the wLength value in the Setup transaction.

6. To complete the transfer, the host sends an IN token packet, the device
responds with a ZLP, and the host returns ACK.
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To complete a control write request without a Data stage, the device must
detect the request in the Setup stage and send a ZLP in the Status stage.

1. The hardware detects a Setup packet, stores the contents of the transaction’s
data packet, returns ACK, and triggers an interrupt.

2. On detecting the interrupt, the device decodes the request, does what is
needed to perform the requested action, and arms endpoint zero to respond to
an IN token packet. The endpoint must also ACK a new Setup packet if the
host decides to abandon the transfer.

3. To complete the transfer, the host sends an IN token packet, the device
responds with a ZLP, and the host returns ACK.
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To complete a control read request, the device must detect the request in the
Setup stage, send data in the Data stage, and acknowledge a received handshake
in the Status stage.

1. The hardware detects a Setup packet, stores the contents of the transaction’s
data packet, returns ACK, and triggers an interrupt.

2. On detecting the interrupt, the device decodes the request and arms end-
point zero to send the requested data on receiving an IN token packet. The
endpoint must also ACK a new Setup packet if the host decides to abandon the
transfer and must return a ZLP in response to an OUT packet if the host begins
the Status stage early.

3. The Data stage begins when the host sends an IN token packet to endpoint
zero. The device hardware sends the data, detects the received ACK from the
host, and triggers an interrupt.

4. On detecting the interrupt, a device that has more data to send arms the end-
point to send the data on receiving another IN token packet, and steps 3 and 4
repeat.

5. On receiving an OUT token packet followed by a ZLP, the endpoint returns
ACK to complete the transfer.

����������	 �	���
Table 5-1 summarizes the requests defined in the USB 2.0 and USB 3.0 specifi-
cations.      
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Table 5-1:  The USB specification defines these requests for control transfers.
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00h
Get Status

device, 
interface, or 
endpoint

0000h 0000h 
(device), 
interface, or 
endpoint

device 0002h;
status

01h 
Clear Feature

device, 
interface, or 
endpoint

feature 0000h 
(device), 
interface, or 
endpoint

none 0000h

03h
Set Feature

device, 
interface, or 
endpoint

feature 0000h 
(device), 
interface, or 
endpoint

none 0000h

05h
Set Address

device device address 0000h none 0000h

06h
Get Descriptor

device descriptor 
type and 
index

0000h or 
language ID

device descriptor length 
(bytes); 
descriptor

07h 
Set Descriptor

device descriptor 
type and 
index

0000h or 
language ID

host descriptor length 
(bytes); 
descriptor

08h 
Get Configuration

device 0000h 0000h device 0001h;
configuration

09h 
Set Configuration

device configuration 0000h none 0000h

0Ah
Get Interface

interface 0000h interface device 0001h;
alternate setting

0Bh
Set Interface

interface interface interface none 0000h

0Ch
Synch Frame

endpoint 0000h endpoint device 0002h;
frame number

30h
Set SEL

device 0000h 0000h host 0006h; 
exit latency values

31h
Set Isochronous 
Delay

device Delay in ns 0000h none 0000h
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Purpose: The host requests the status of the features of a device, interface, or endpoint.

Request Number (bRequest): 00h

Source of Data: device

Data Length (wLength): 0002h

Contents of wValue field: 0000h

Contents of wIndex field: For a device, 0000h. For an interface, the interface number.
For an endpoint, the endpoint number.

Contents of data packet in the Data stage: the device, interface, or endpoint status.

Supported states: Default: undefined. Address: OK for address zero, endpoint zero.
Otherwise the device returns STALL. Configured: OK.

Behavior on error: The device returns STALL if the target interface or endpoint
doesn’t exist.

Comments: For requests directed to devices operating at USB 2.0 speeds, two status
bits are defined. Bit zero is the Self-Powered field: 0 = bus-powered, 1 = self-powered.
The host can’t change this value. Bit 1 is the Remote Wakeup field. The default on
reset is zero (disabled). SuperSpeed devices support the Self-Powered bit and use bits
2–4 for power-management options. Bit 2 = 1 means the device is enabled to initiate
U1 entry. Bit 3 = 1 means the device is enabled to initiate U2 entry. Bit 4 = 1 means
the device is enabled to send Latency Tolerance Messages. 

For request directed to the first interface in a function on a USB 3.0 bus, bit 0 = 1 if
the function supports remote wakeup, and bit 1 = 1 if the host has enabled the func-
tion for remote wakeup. For requests directed to an interface on a USB 2.0 bus, all bits
are reserved.

For requests directed to an endpoint, only bit zero is defined. Bit 0 = 1 indicates a Halt
condition. 

See Set Feature and Clear Feature for more about Remote Wakeup and Halt. All
non-assigned bits are reserved.
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Purpose: The host requests to disable a feature on a device, interface, or endpoint.

Request Number (bRequest): 01h.

Source of Data: no Data stage

Data Length (wLength): 0000h

Contents of wValue field: the feature to disable

Contents of wIndex field: For a device feature, 0000h. For an interface feature, the
interface number. For an endpoint feature, the endpoint number.

Supported states: Default: undefined. Address: OK for address zero, endpoint zero.
Otherwise the device returns a STALL. Configured: OK.

Behavior on error: If the feature, device, or endpoint specified doesn’t exist, or if the
feature can’t be cleared, the device responds with STALL. Behavior is undefined if
wLength > 0000h.

Comments: For USB 2.0, this request can clear the DEVICE_REMOTE_WAKEUP
and ENDPOINT_HALT features. The request does not clear the TEST_MODE fea-
ture.

For SuperSpeed, this request can clear the ENDPOINT_HALT, LTM_ENABLE,
U1_ENABLE, and U2_ENABLE features. (To clear the FUNCTION_SUSPEND
feature, see Set Feature.)

Clear Feature(ENDPOINT_HALT) resets a bulk, interrupt, or isochronous data tog-
gle to DATA0 (USB 2.0) or Sequence Number to zero (SuperSpeed) and resets a
SuperSpeed bulk endpoint’s burst size. 

Hubs support additional features.

See also Set Feature and Get Status.
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Purpose: The host requests to enable a feature on a device, interface, or endpoint.

Request Number (bRequest): 03h

Source of Data: no Data stage

Data Length (wLength): 0000h

Contents of wValue field: the feature to enable

Contents of wIndex field: The low byte equals 00h for a device, the interface number
for an interface, or the endpoint number for an endpoint. For a USB 3.0
FUNCTION_SUSPEND request, the high byte can request the Suspend state (bit 0 =
1) or normal operation (bit 0 = 1) and remote wakeup enabled (bit 1 = 1) or disabled
(bit 1 = 0).

Supported states: For features other than TEST_MODE: Default: undefined.
Address: OK for address zero, endpoint zero. Otherwise the device returns STALL.
Configured: OK. High speed must support the TEST_MODE feature in the Default,
Address, and Configured states.

Behavior on error: If the endpoint or interface specified doesn’t exist, the device
responds with STALL.

Comments: USB 2.0 defines these features:

ENDPOINT_HALT (0000h) applies to endpoints. Bulk and interrupt endpoints
must support the Halt condition. Events that cause a Halt condition are transmission
errors and the device’s receiving a Set Feature request to halt the endpoint.
DEVICE_REMOTE_WAKEUP (0001h) applies to devices. When the host has set
this feature, a device in the Suspend state can request the host to resume communica-
tions. TEST_MODE (0002h) applies to devices. Setting this feature causes an
upstream-facing port to enter a test mode. Chapter 18 has more about test mode.

SuperSpeed supports ENDPOINT_HALT and these features:

FUNCTION_SUSPEND (00h) applies to interfaces and can place a function in the
Suspend state and enable or disable remote wakeup. U1_ENABLE (30h) and
U2_ENABLE (31h) apply to devices and enable the U1 and U2 low-power states.
LTM_ENABLE (32h) applies to devices and enables sending Latency Tolerance Mes-
sages, where a device provides information the host can use in power management.
Chapter 16 has more about power management.

Hubs support additional features.The Get Status request tells the host what features, if
any, are enabled. Also see Clear Feature.
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Purpose: The host specifies an address to use in future communications with the
device.

Request Number (bRequest): 05h

Source of Data: no Data stage

Data Length (wLength): 0000h

Contents of wValue field: new device address. Allowed values are 0001h–007Fh.
Each device on the bus, including the root hub, has a unique address.

Contents of wIndex field: 0000h

Supported States: Default, Address.

Behavior on error: not specified.

Comments: When a hub enables a port after power-up or attachment, the port uses
the default address of 0000h until completing a Set Address request from the host.

This request is unlike most other requests because the device doesn’t carry out the
request until the device has completed the Status stage of the request by sending a ZLP.
The host sends the Status stage’s token packet to the default address, so the device must
detect and respond to this packet before changing its address.

After completing this request, all communications use the new address.

A device using the default address of 0000h is in the Default state. After completing a
Set_ Address request to set an address other than 0000h, the device enters the Address
state.

A device must send the handshake packet within 50 ms after receiving the request and
must implement the request within 2 ms after completing the Status stage.



Chapter 5

130                                                                                                           

��������������
Purpose: The host requests a specific descriptor.

Request Number (bRequest): 06h

Source of Data: device

Data Length (wLength): the number of bytes to return. If the descriptor is longer
than wLength, the device returns up to wLength bytes. If the descriptor is shorter than
wLength, the device returns the entire descriptor. If the descriptor is shorter than
wLength and is an even multiple of the endpoint’s maximum packet size, the device
returns a ZLP in response to a request for more data after the device has sent the
descriptor. The host detects the end of the data on receiving either the requested
amount of data or a data packet containing less than the maximum packet size (includ-
ing a ZLP).

Contents of wValue field: High byte: descriptor type. Low byte: descriptor index, to
specify which descriptor to return when there are multiple descriptors of the same type.

Contents of wIndex field: for String descriptors, Language ID. Otherwise 0000h.

Contents of data packet in the Data stage: the requested descriptor.

Supported states: Default, Address, Configured.

Behavior on error: A device that doesn’t support the specified descriptor should return
STALL.

Comments: Hosts can request the following standard descriptor types: device,
device_qualifier, configuration, other_speed configuration, BOS, and string. On
receiving a request for a configuration or other_speed configuration descriptor, the
device should return the requested descriptor followed by all of its subordinate inter-
face, endpoint, endpoint companion, and class- and vendor-specific descriptors, up to
the number of bytes requested. A class or vendor can define additional descriptors that
the host can request, such as the HID-class report descriptor. See also Set Descriptor.
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Purpose: The host adds a descriptor or updates an existing descriptor.

Request Number (bRequest): 07h

Source of Data: host

Data Length (wLength): The number of bytes the host will transfer to the device.

Contents of wValue field: high byte: descriptor type. (See Get Descriptor). Low byte:
a descriptor index that specifies which descriptor the device is sending when it has
multiple descriptors of the same type.

Contents of wIndex field: For string descriptors, Language ID. Otherwise 0000h.

Contents of data packet in the Data stage: descriptor length.

Supported states: Address and Configured.

Behavior on error: A device that doesn’t support the request or the specified descrip-
tor should return STALL.

Comments: This request makes it possible for the host to add new descriptors or
change an existing descriptor. Few devices support this request, which could enable
errant code to place incorrect information in a descriptor. See also Get Descriptor.
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Purpose: The host requests the value of the current device configuration.

Request Number (bRequest): 08h

Source of Data: device

Data Length (wLength): 0001h

Contents of wValue field: 0000h

Contents of wIndex field: 0000h

Contents of data packet in the Data stage: Configuration value

Supported states: Address (returns zero), Configured

Behavior on error: not specified.

Comments: A device that isn’t configured returns 00h in the Data stage. See also Set
Configuration.
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Purpose: The host requests the device to use the specified configuration.

Request Number (bRequest): 09h

Source of Data: no Data stage

Data Length (wLength): 0000h

Contents of wValue field: The low byte specifies a configuration. If the value matches
a configuration supported by the device, the device implements the requested configu-
ration. A value of 00h indicates not configured, and the device should enter the
Address state and wait for a new Set Configuration request to be configured.

Contents of wIndex field: 0000h

Supported states: Address, Configured.

Behavior on error: If wValue isn’t equal to 0000h or a configuration supported by the
device, the device returns STALL.

Comments: After completing a Set Configuration request specifying a supported con-
figuration, the device enters the Configured state. Many standard requests require the
device to be in the Configured state. See also Get Configuration. This request resets
bulk, interrupt, and isochronous data toggles to DATA0 (USB 2.0) or Sequence Num-
bers to zero (SuperSpeed) and resets the burst size of SuperSpeed bulk endpoints.
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Purpose: For interfaces that have alternate, mutually exclusive settings, the host
requests the currently active interface setting.

Request Number (bRequest): 0Ah

Source of Data: device

Data Length (wLength): 0001h

Contents of wValue field: 0000h

Contents of wIndex field: interface number (bInterfaceNumber)

Contents of data packet in the Data stage: the current setting (bAlternateSetting)

Supported states: Configured

Behavior on error: If the interface doesn’t exist, the device returns STALL.

Comments: The wIndex value refers to the bInterfaceNumber value of an interface
descriptor and indicates which interface the request applies to. In the Data stage, the
device returns a bAlternateSetting value, which identifies which alternate interface set-
ting the device is currently using. Each alternate interface has an interface descriptor
and subordinate descriptors as needed. Many interfaces support only one interface set-
ting. See also Set Interface.
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Purpose: For interfaces that have alternate, mutually exclusive, settings, the host
requests the device to use a specific interface setting.

Request Number (bRequest): 0Bh

Source of Data: no Data stage

Data Length (wLength): 0000h

Contents of wValue field: alternate setting to select (bAlternateSetting)

Contents of wIndex field: interface number (bInterfaceNumber)

Supported states: Configured

Behavior on error: If the requested interface or setting doesn’t exist, the device returns
STALL.

Comments: This request resets bulk, interrupt, and isochronous data toggles to
DATA0 (USB 2.0) or Sequence Numbers to zero (SuperSpeed) and resets the burst size
of SuperSpeed bulk endpoints. See also Get Interface.



Chapter 5

134                                                                                                           

�%������ ��
Purpose: The device sets and reports an endpoint’s synchronization frame.

Request Number (bRequest): 0Ch

Source of Data: host

Data Length (wLength): 0002h

Contents of wValue field: 0000h

Contents of wIndex field: endpoint number

Contents of data packet in the Data stage: frame number

Supported states: Default: undefined. Address: The device returns STALL. Config-
ured: OK.

Behavior on error: An endpoint that doesn’t support the request should return
STALL.

Comments: In isochronous transfers, a device endpoint may request data packets that
vary in size according to a sequence. For example, an endpoint may send a repeating
sequence of 8, 8, 8, 64 bytes. The Synch Frame request enables the host and endpoint
to agree on which frame will begin the sequence.

On receiving a Synch Frame request, an endpoint returns the number of the frame that
will precede the beginning of a new sequence

This request is rarely used because there is rarely a need for the information it provides.
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Purpose: For SuperSpeed devices, sets system exit latencies for power management.

Request Number (bRequest): 31h

Source of Data: host

Data Length (wLength): 0006h

Contents of wValue field: 0000h

Contents of wIndex field: 0000h

Contents of data packet in the Data stage: exit latency values.

Supported states: Address, Configured.

Behavior on error: A device that doesn’t support the request should return STALL.

Comments: Chapter 16 has more on SuperSpeed power management.
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Purpose: For SuperSpeed devices, specifies the amount of time between when a host
transmits an isochronous packet and when a device will receive the packet.

Request Number (bRequest): 30h

Source of Data: host

Data Length (wLength): 0000h

Contents of wValue field: Delay in ns.

Contents of wIndex field: 0000h.

Supported states: Default, Address, Configured.

Behavior on error: a device that doesn’t support the request should return STALL.

Comments: the wValue field can range from 0000h to FFFFh.
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In addition to the requests defined in the USB 2.0 and USB 3.0 specifications,
a device may respond to class-specific and vendor-specific control requests.

�� ��9��	��"����	 �	���
A class can define mandatory and optional requests. Class drivers on the host
should support the mandatory requests and may support optional requests.
Some requests are unrelated to the standard requests, while others build on
standard requests by defining class-specific fields. An example of a request that’s
unrelated to standard requests is the Get_Max_LUN request supported by
some mass-storage devices. The host uses this request to find out the number of
logical units the interface supports. An example of a request that builds on an
existing request is the Get Port Status request for hubs. This request is struc-
tured like the standard Get Status request but bits 4..0 = 00011 indicate that
the request applies to a unit other than the device, an interface, or an endpoint.
(The request applies to a port on a hub.) The wIndex field contains the port
number.
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Implementing a vendor-defined request in a control transfer requires all of the
following:

• Vendor-defined fields as needed in the Setup and Data stages of the request.
Bits 6..5 in the Setup stage’s data packet are set to 10 to indicate a ven-
dor-defined request.

• In the device, code that detects the request number in the Setup packet and
knows how to respond.

• In the host, a vendor-specific device driver that supports the request. The
driver can expose a function that enables applications to initiate the request.
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This chapter is a guide to selecting a device controller. The chips covered
include USB 2.0 controllers with basic USB support as well as more full-fea-
tured, high-end chips. Chapter 20 discusses controllers for use in USB
On-The-Go devices. For information on USB 3.0 controllers as they become
available, visit www.Lvr.com
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Every USB device must have the intelligence to detect and respond to requests
and other events at the USB port. A programmed microcontroller or an appli-
cation-specific integrated circuit (ASIC) can perform these functions in a
device.

Device-controller chips vary in how they implement USB communications and
in how much firmware support the communications require. Some controllers
require little more than accessing buffers to provide and retrieve USB data.
Others require device firmware to handle more of the protocol, including man-
aging the sending of descriptors to the host, setting data-toggle values, and
ensuring that endpoints return appropriate handshake packets. In general,
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low-level firmware isn’t portable among chips with different architectures, but
chip companies provide example firmware for common tasks and applications.

A USB device controller contains a USB port along with whatever buffers, reg-
isters, and other I/O capabilities the controller requires to accomplish its tasks.
Some device controllers include a general-purpose CPU and on-chip program
and data memory or an interface to these in external memory. Other device
controllers must interface to an external CPU that handles non-USB tasks and
communicates with the USB controller as needed. These chips are sometimes
called USB interface chips to distinguish them from microcontrollers with USB
capabilities.

For high-volume products and products that require fast performance, an
option is a custom-designed ASIC. Several sources offer synthesizable VHDL
and Verilog source code for ASICs that function as USB controllers.
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A typical USB 2.0 controller contains a USB transceiver, a serial interface
engine, buffers to hold USB data, and registers to store configuration, status,
and control information relating to USB communications.

/��/���
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The USB transceiver is the hardware interface between the device’s USB con-
nector and the circuits that control USB communications. The transceiver is
typically embedded in the chip, but some controllers allow interfacing to an
external transceiver.
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The circuits that interface to the transceiver form a unit called the serial inter-
face engine (SIE). The SIE handles sending and receiving data in transactions.
The SIE doesn’t interpret or use the data but just places provided data on the
bus and stores any data received. A typical SIE does all of the following:

• Detect incoming packets.

• Send packets.

• Detect and generate Start-of-Packet, EOP, Reset, and Resume signaling.

• Encode and decode data for the bus using NRZI encoding with bit stuff-
ing.

• Check and generate CRC values.
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• Check and generate Packet IDs.

• Convert between USB’s serial data and parallel data in registers or memory.
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USB controllers use buffers to store received data and data that’s ready to trans-
mit on the bus. In some chips, such as PLX Technology’s NET2272, the CPU
accesses the buffers by reading and writing to registers, while others, such as
Cypress Semiconductor’s EZ-USB series, reserve a portion of data memory for
the buffers.

To enable faster transfers, some chips have double buffers that can store two full
sets of data in each direction. While one block is transmitting, firmware can
write the next block of data into the other buffer so the data is ready to go as
soon as the first block finishes transmitting. In the receive direction, the extra
buffer enables a new transaction’s data to arrive before the firmware has
retrieved the data from the previous transaction. The hardware automatically
switches, or ping-pongs, between the two buffers. Some controllers, such as the
Cypress EZ-USB FX2 series, support quadruple buffers.
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USB controller chips typically have registers that hold information about what
endpoints are enabled, the number of bytes received, the number of bytes ready
to transmit, Suspend-state status, error-checking information, and other status
and control information. The number of registers, their contents, and how to
access the registers vary with the chip architecture. These differences are one
reason why low-level firmware for USB communications typically isn’t portable
between chip families.
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USB communications require a timing source, typically provided by a crystal
oscillator. Because USB’s low speed allows more variation in clock speed,
low-speed devices can sometimes use a less expensive ceramic resonator. Some
controllers have on-chip oscillators and don’t require an external timing source.

;����������������������
In addition to a USB interface, the circuits in a typical USB device include a
CPU, program and data memory, other I/O interfaces, and other features such
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as timers and counters. These circuits may be in the controller chip or in sepa-
rate components.

�%�

An on-chip CPU in a microcontroller may be based on a general-purpose archi-
tecture such as the 8051, or the CPU may have an architecture developed spe-
cifically for USB applications. An interface-only USB controller can
communicate with any CPU that has a compatible interface.
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The program memory holds the code that the CPU executes, including code
for USB communications and whatever other tasks the chip is responsible for.
This memory may be in the microcontroller or in a separate chip.

The program storage may use ROM, flash memory, EEPROM, EPROM, or
RAM. All except RAM (unless battery-backed) are nonvolatile: the memory
retains its data after powering down. Chips that can access memory off-chip
may support a megabyte or more of program memory.

Another name for the code stored in program memory is firmware. The term
suggests that the memory is nonvolatile and not as easily changed as program
code that can be loaded into RAM, edited, and re-saved on disk. This book uses
the term firmware to refer to a controller’s program code, with the understand-
ing that the code may reside in a variety of memory types, some more volatile
than others.

ROM (read-only memory) must be mask-programmed at the factory and can’t
be erased. ROM is practical only for product runs in the thousands.

Flash memory is electrically erasable and thus is popular for use during project
development and for final code storage in low-volume projects or devices that
might require firmware updates in the field. Current flash-memory technology
enables around 100,000 erase/reprogram cycles. 

EPROM (erasable programmable ROM) is reprogrammable but is not electri-
cally erasable and thus has been replaced by flash memory in recent chips.

EEPROM (electrically erasable PROM) tends to have longer access times than
flash memory but is useful for storing data that changes occasionally such as
configuration data. Cypress’ EZ-USB controllers can store firmware in
EEPROM and load the firmware into RAM on powering up. EEPROMs are
available with parallel interfaces and with synchronous serial interfaces such as
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Microwire, I2C, and SPI. Current EEPROM technology enables around 10
million erase/reprogram cycles.

RAM (random-access memory) can be erased and rewritten endlessly, but the
stored data disappears when the chip powers down. RAM can store program
code if using battery backup or if the code loads from a PC into RAM on each
power up. Cypress Semiconductor’s EZ-USB chips can use RAM for program
storage with special hardware and driver code that loads code from the host
computer into the chip on power up or attachment. RAM loaded in this way
has no limit on the number of erase/rewrite cycles. For battery-backed RAM,
the limit is the battery life. Access time for RAM is fast.
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Data memory provides temporary storage during program execution. The con-
tents of data memory may include data received from the USB port, data to be
sent to the USB port, values for use in calculations, or anything else the chip
needs to remember or keep track of. Data memory is RAM.
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To do useful work, virtually every USB controller has an interface to the world
outside itself in addition to the USB port. An interface-only chip must have a
local bus or other interface to the device’s CPU. Most chips also have a series of
general-purpose input and output (I/O) pins that can connect to other circuits.
A chip may have built-in support for other serial interfaces, such as an asyn-
chronous interface for RS-232, or synchronous serial interfaces. Some chips
have dedicated interfaces for special purposes such as accessing drives or audio
components.
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A device-controller chip may have additional features such as hardware timers,
counters ,  analog-to-digita l  and digita l-to-analog converters ,  and
pulse-width-modulation (PWM) outputs. Just about anything that you might
find in a general-purpose microcontroller is available in a USB device control-
ler.
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Project development will be easier and quicker if you can find a controller chip
with all of the following:

• A chip architecture and compiler you’re familiar with.

• Excellent hardware documentation.

• Well-documented, bug-free example firmware for an application similar to
yours.

• A development system that enables easy downloading and debugging of
firmware.

Also helpful is the ability to use a class driver included with the operating sys-
tem or a well-documented and bug-free driver provided by the chip company
or another source.

These are not trivial considerations. The right choices will save you many hours
and much aggravation.
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In selecting a device controller suitable for a project, these are some of the areas
to consider:

Speed. A device’s rate of data transfer depends on the supported speeds on the
device and bus, the transfer type. and how busy the bus is. As a device designer,
you don’t control how busy a user’s bus will be, but you can select a speed and
transfer type that give the best possible performance for your application.

If a product requires no more than low-speed interrupt and control transfers, a
low-speed chip might save money in circuit-board design, components, and
cables. But low-speed devices can transfer only up to eight data bytes per trans-
action, and the USB specification limits the guaranteed bandwidth for an inter-
rupt endpoint to 800 bytes per second, much less than the bus speed of 1.5
Mbps. Plus, implementing low speed’s slower edge rates increases the manufac-
turing cost of low-speed controller chips, so you may find a full-speed chip that
can do the job at the same or lower price.

Compared to low and full speeds, circuit-board design for high-speed devices is
more critical and can add to the cost of a product. If possible, devices that sup-
port high speed should also support full speed so they will work with USB 1.x
hosts and hubs.
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Endpoints. Each endpoint address supports a transfer type and direction. A
device that uses only control transfers needs just the default endpoint. Inter-
rupt, bulk, or isochronous transfers require additional endpoint addresses. Not
all chips support all transfer types. Not every controller supports the maximum
possible number of endpoint addresses, but few devices need the maximum.

Firmware upgrades. For firmware upgrades in the field, store program code in
flash memory, in EEPROM, or in RAM loaded from the host on attachment.
The Device Firmware Upgrade USB class specification defines a protocol for
loading firmware from a host to a device. Chapter 7 has more about this class.

Cables. One reason why mice are almost certain to be low-speed devices is the
less stringent cable requirements that allow thinner, more flexible cables. A
cable on a low-speed device has a maximum length of 3 m, while full- and
high-speed cables can be 5 m.

Other needs. Additional considerations are the amount and type of other I/O,
the size of program and data memory, on-chip timers, and other special features
that a particular application might require.
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Most chip companies supplement their data sheets with technical manuals,
application notes, example code, and other documentation. The best way to get
a head start on writing firmware is to begin with example code.

Example code can be useful even if it doesn’t perfectly match your desired appli-
cation. Enumeration code is useful for any device and also provides a model for
performing control transfers for other purposes. Get Descriptor can serve as a
model for other control read transfers. Set Address can serve as a model for con-
trol write transfers with no Data stage. Example code for control write transfers
with a Data stage is harder to find. The only standard, not-class-specific USB
request with a host-to-device Data stage is the rarely supported Set Descriptor.
One possibility is in code for the communications device class with support for
the class-specific Set Line Coding request, where the host sends serial-port
parameters in the Data stage.

From the firmware’s point of view, bulk and interrupt transfers are identical
(except for SuperSpeed’s support for streams in bulk transfers) so code for either
type of transfer (such as HID code for exchanging reports via interrupt trans-
fers) can serve as a model for any firmware that uses bulk or interrupt transfers.
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Chip and tool vendors vary in the amount and quality of documentation and
example code provided. You might also find code examples from others who are
willing to share their work.
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If your device fits into a class supported by the operating system(s) that the
device’s USB hosts use, you don’t have to write or obtain a device driver. For
example, applications can access a HID-class device using standard API func-
tions that communicate with the HID drivers included with Windows.

Some chip companies provide a generic driver that you can use to exchange
data with devices. Cypress Semiconductor, Microchip Technology, and Silicon
Laboratories all have general-purpose drivers. Devices for Windows systems also
have the option of using Microsoft’s generic WinUSB driver. Chapter 7 and
Chapter 8 have more about classes and device drivers.
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Ease of debugging also makes a big difference in how easy it is to get a project
up and running. Products that can help include development boards and soft-
ware offered by chip companies and other sources. A protocol analyzer can save
much debugging time. Chapter 17 has more about protocol analyzers.
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Chip manufacturers offer development boards and debugging software to make
it easier for developers to test and debug new designs. A development board
enables you to load a program from a PC into a chip’s program memory or cir-
cuits that emulate the chip’s hardware.

Typical debugging software provided with development boards is a monitor
program that runs on a PC and enables you to control program execution and
view the results. Common features include the ability to step through a pro-
gram, set breakpoints, and view the contents of the chip’s registers and memory.
You can run the monitor program and a test application at the same time. You
can see exactly what happens inside the chip when it communicates with your
application.

USB’s timing requirements can limit what you can do with breakpoints. For
example, if you halt execution during enumeration, the host will give up, and
you’ll need to restart the enumeration process. But even so, a monitor program
can provide a useful window to the firmware in action.
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The Silicon Laboratories C8051F34x controllers include a dedicated 2-wire
debugging interface that uses no additional memory or port bits on the chip.
With these chips, you can debug without needing to assign other chip resources
to debugging.
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If you’re on a limited budget, inexpensive printed-circuit boards from a variety
of vendors can serve as an alternative to the development kits offered by chip
manufacturers. You can also use these boards as the base for one-of-a-kind or
small-scale projects, saving the time and expense of designing and making a
board for the controller chip. Boards that include firmware and a host driver
make it easy to exchange data with the device.

I/O Boards. A typical board contains a USB controller and connector along
with I/O pins that you can connect to external circuits of your own design. The
EZ-USB family is a natural choice for this type of board because its firmware is
downloadable from the host so you don’t need additional programming hard-
ware. 

Figure 6-1 shows two high-speed USB boards with EZ-USB chips: the USBee
EX2 Experimenter’s Board from CWAV, Inc. and the QuickUSB Module from
Bitwise Systems, Inc. Both boards contain programmed Cypress EZ-USB FX2
controllers, Both companies provide host drivers for generic I/O including
accessing a high-speed parallel port, and example applications in multiple pro-
gramming languages. The USBee EX2’s driver enables configuring and reading
and writing to an 8-bit port. The QuickUSB’s driver and user libraries enable
accessing up to five 8-bit ports and provides functions to support a parallel
port, asynchronous serial ports, I2C and SPI communications, and configuring
FPGAs. A stacking connector mates with an adapter board with headers for
accessing the ports. Two asynchronous serial ports have RS-232 interfaces. 

Another option is the USBI2C/IO (Figure 6-2) from DeVaSys Embedded Sys-
tems. This board contains a Silicon Laboratories full-speed USB C8051F340
with 63 KB of flash memory. Headers provide access to 31 I/O bits plus an I2C
port. DeVaSys provides firmware, a host driver for accessing ports and I2C
communications, and example applications.

Emulating a Device with a PC. Using a PC to emulate a device is another
option for developing. You can use the compilers, debuggers, and other soft-
ware tools you’re familiar with on your PC and compile, run, and debug the
device code on the PC. PLX Technology’s NET2272 Rapid Development Kit
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(RDK) enables using a PC as a device when developing code using PLX Tech-
nology’s NET2272 USB interface chip. The kit includes a PCI card with a
header that attaches to a daughter card that contains a NET2272. You can
install the PCI card in a PC and write applications that perform the role of
device firmware that communicates with the interface chip. The application
can run as a console application on the PC.

The USB connector on the PCI card can connect to any USB host. When
development on the emulated device is complete, you can port the firmware to
run on the CPU that the final design will use. If you want to use the develop-
ment kit’s circuits, you can remove the daughter board from the PCI card and
wire the daughter board to your device’s hardware.

The emulated device may have timing differences, and the may not have the
same hardware architecture as the target device, but the ease of developing on a
PC can help in getting the code for enumerating and basic data transfers work-
ing quickly.

Figure 6-1. Two development boards for the Cypress EZ-USB FX2 are Bitwise 

Systems, Inc.’s QuickUSB Module (left, shown with adapter board) and CWAV, 

Inc.’s USBee EX2 Experimenter’s Board (right).
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If you have a favorite CPU family, the chances are good that a USB-capable
variant is available. The family with the most sources for device controllers is
the venerable 8051. Although Intel, the 8051’s creator, no longer offers
USB-capable 8051s, other manufacturers do. Table 6-1 lists chips that are com-
patible with this and other microcontroller families.

For common applications such as keyboards, drives, and interface converters,
application-specific controllers include hardware to support a particular appli-
cation. Chapter 7 has more about controllers for specific applications.

The following descriptions of USB controllers with embedded CPUs will give
an idea of the range of chips available. The chips described are a sampling, and
new chips are being released all the time, so for any new project, check the latest
offerings.

Figure 6-2. The DeVaSys USB I2C/IO board contains a Silicon Labs C8051F340, 

which has an on-chip debug port.
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Microchip Technology’s PIC microcontrollers are popular due to their low cost,
wide availability, large selection, good performance, and low power consump-
tion. The PIC18F4550 contains a USB controller that can function at low and
full speeds. Microchip offers other variants with different combinations of fea-
tures.
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The PIC18F4550 is a member of Microchip’s high-performance, low-cost,
8-bit PIC18 series. Firmware resides in 32 KB of flash memory. The chip has 2

Table 6-1: USB controller chips that are compatible with popular microcontroller 

architectures are available from many sources.
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ARM Atmel AT91SAM7S full
AT91SAM9R64 high

NXP Semiconductors LPC292x, LPC214x full
Atmel AVR Atmel AT90USBx, 

AVR32UC3
low/full

Infineon C166 Infineon C161U full
Intel 80C186 AMD Am186CC full
Intel 8051 Atmel AT89C513x full

Cypress 
Semiconductor

CY7C64713 EZ-USB full
CY7C6801x EZ-USB full/high

Silicon Laboratories C8051F34x low/full
Standard 
Microsystems 
Corporation (SMSC)

USB2005, USB222x full, full/high

Texas Instruments TUSB3210/3410 full
TUSB6250 full/high

Microchip PIC18 Microchip Technology PIC18F2455/2550/
4455/4550, 
PIC18(L)F1xK50

low/full

STMicroelectronics ST7 STMicroelectronics ST7260 low
ST7265X full
ST7268x full/high
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KB of RAM and 256 bytes of EEPROM. A bootloader routine can upgrade
firmware via the USB port.

The chip has 34 I/O pins that include a 10-bit analog-to-digital converter, a
USART, a synchronous serial port that can be configured to use I2C or SPI,
enhanced PWM capabilities, and two analog comparators.

The USB module and CPU can use separate clock sources, enabling the CPU
to use a slower, power-saving clock.
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The USB controller supports all four transfer types and up to 30 endpoint
addresses plus the default endpoint. The endpoints share 1 KB of buffer mem-
ory, and transfers can use double buffering. For isochronous transfers, USB data
can transfer directly to and from a streaming parallel port.

For each enabled endpoint address, the firmware must reserve memory for a
buffer and a buffer descriptor. The buffer descriptor consists of four registers.
Firmware can access the register’s contents as a structure, a single 32-bit value,
or a byte array (Listing 6-1).

The status register contains status information and the two highest bits of the
endpoint’s byte count. The byte-count register plus the two bits in the status
register contain the number of bytes sent or ready to send in an IN transaction
or the number of bytes expected or received in an OUT transaction. The
address-low and address-high registers contain the starting address for the end-
point’s buffer in RAM.

The microcontroller’s CPU and the USB SIE share access to the buffers and
buffer descriptors. A UOWN bit in the buffer descriptor’s status register deter-
mines whether the CPU or SIE owns a buffer and its buffer descriptor. The SIE
has ownership when data is ready to transmit or when waiting to receive data
on the bus. When the SIE has ownership, the CPU shouldn’t attempt to access
the buffer or buffer descriptor except to read the UOWN bit. When readying
an endpoint to perform a transfer, the last operation the firmware should per-
form is to update the status register to set UOWN, which passes ownership to
the SIE. When a transaction completes, the SIE clears the UOWN bit, passing
ownership back to the CPU.

Each endpoint number also has a control register that can enable a control end-
point, an IN endpoint, an OUT endpoint, or a pair of IN and OUT endpoints
with the same endpoint number. Other bits in the register can stall the end-
point and disable handshaking (for isochronous transactions).
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// A buffer descriptor table holds 4 bytes.

// This union enables firmware to access the bytes in different ways.

typedef union __BDT

{

struct // Four 8-bit variables.

{

BD_STAT STAT; // Status byte structure

BYTE CNT; // Byte count, bits 0-7

BYTE ADRL; // Endpoint address in RAM, low byte

BYTE ADRH; // Endpoint address in RAM, high byte

};

struct // The endpoint address in RAM

{

unsigned :8;

unsigned :8;

BYTE* ADR; // Address pointer

};

DWORD Val; // One 32-bit value.

BYTE v[4]; // Byte array.

} BDT_ENTRY;

Listing 6-1: Firmware can use structures to represent the contents of an 

endpoint’s buffer descriptor table. (Part 1 of 2)



Chip Choices

                                                                                                151

// This union represents the buffer descriptor’s 8-bit status register in a variety of ways.

typedef union _BD_STAT

{

BYTE Val; // Byte variable

struct // Bit values if the CPU owns the buffer.

{

unsigned BC8:1; // Byte count, bit 8

unsigned BC9:1; // Byte count, bit 9

unsigned BSTALL:1; // Buffer stall enable

unsigned DTSEN:1; // Data toggle synchronization enable

unsigned INCDIS:1; // Address increment disable

unsigned KEN:1; // Buffer descriptor keep enable

unsigned DTS:1; // Data toggle synchronization value

unsigned UOWN:1; // USB ownership

};

struct // Bit values if the USB module owns the buffer.

{

unsigned BC8:1; // Byte count, bit 8

unsigned BC9:1; // Byte count, bit 9

unsigned PID0:1; // PID, bit 0

unsigned PID1:1; // PID, bit 1

unsigned PID2:1; // PID, bit 2

unsigned PID3:1; // PID, bit 3

unsigned :1;

unsigned UOWN:1; // USB Ownership

};

 

struct // The 4-bit PID

{

unsigned :2;

unsigned PID:4;

unsigned :2;

};

} BD_STAT;

Listing 6-1: Firmware can use structures to represent the contents of an 

endpoint’s buffer descriptor table. (Part 2 of 2)
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Additional registers store the device’s bus address and status and control infor-
mation for USB communications and interrupts.

Devices with simpler I/O needs can use the 20-pin PIC18(L)F1xK50 series. 

Microchip provides USB Framework firmware and example applications for
USB communications. The firmware is written for Microchip’s C compiler for
PIC18 CPUs. The Framework handles general USB tasks and some class-spe-
cific tasks. The files may require only minor changes and additions for a specific
application. Provided example projects include keyboard, mouse, generic HID,
mass storage, virtual COM port, WinUSB device, and Microchip generic driver
device.

Other C compiler options are the CCS C compiler from CCS, Inc. and the
HI-TECH C compiler from HI-TECH Software.

For Basic programmers, microEngineering Labs, Inc. offers the PICBASIC
PRO compiler. The compiler’s built-in USB support enables developing devices
without having to know much about USB protocols. The supported USB capa-
bilities are limited yet sufficient for many applications. The compiler comes
with example code for a mouse, generic human interface device, virtual COM
port, and Microchip generic-driver device.

PICBASIC PRO programs can use four USB-specific instructions:

USBInit initializes the USB port. 

USBService monitors the bus status and manages low-level USB communi-
cations. A PICBASIC PRO program must call USBService at least every 10
ms. 

USBIn retrieves received data from a bulk or interrupt endpoint.

USBOut writes data to a bulk or interrupt endpoint for transmitting.

Assembly-code files provide behind-the-scenes support for the instructions.
The compiler automatically includes the files when needed. Adding new USB
capabilities to the compiler requires editing the assembly-language source code.

�%�������@9���
Cypress Semiconductor’s EZ-USB family includes full-speed and full/high
speed controllers. The chips support a variety of options for storing firmware,
including loading firmware from the host on each power-up or attachment.
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The EZ-USB’s architecture is similar to the Maxim Integrated Products
DS80C320, which is an 8051 with a redesigned core for enhanced perfor-
mance. The instruction set is compatible with the 8051’s. All of the combined
code and data memory is RAM. There is no on-chip, non-volatile memory.
However, the chips support non-volatile storage in I2C serial EEPROM and in
external parallel memory.

The EZ-USB family includes the full-speed CY7C64713 in the FX1 series and
the full/high speed CY7C6801x chips in the FX2 series. Keil Software has a C
compiler with a free evaluation version. 
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The EZ-USB’s many options for storing firmware make the chip very flexible
but also make the architecture more complicated compared to other USB con-
trollers.

When an EZ-USB wants to use firmware stored in the host, the device enumer-
ates twice. On boot up or device attachment, the host attempts to enumerate
the device. Every EZ-USB contains a core that knows how to respond to enu-
meration requests and can communicate when the device attaches to the bus.
The EZ-USB core is independent from the 8051 core that normally controls
the chip after enumeration. The EZ-USB core communicates with the host
while holding the 8051 core in the reset state.

The EZ-USB core also responds to vendor-specific requests that enable the chip
to receive, store, and run firmware received from the host. For basic testing, the
core circuits enable the device to transfer data using all four transfer types with-
out any firmware programming.

A ReNum register bit determines whether the EZ-USB or the 8051 core
responds to requests at endpoint zero. On power-up, ReNum is zero and the
EZ-USB core controls endpoint zero. When ReNum = 1, the 8051 core con-
trols endpoint zero.

The source of an EZ-USB’s firmware depends on two things: the contents of
the initial bytes in an external EEPROM and the state of the chip’s EA input.
On power-up and before enumeration, the EZ-USB core attempts to read bytes
from a serial EEPROM on the chip’s I2C interface. The result, along with the
state of the chip’s EA input, tell the core what to do next: use the default mode,
load firmware from the host, load firmware from EEPROM, or boot from code
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memory on the external parallel data bus (Table 6-2). The values in the first
EEPROM locations vary depending on whether the chip is an FX1 or FX2.
The description below uses the values for the FX2.

Default Mode. The default mode is the most basic mode of operation and
doesn’t use the serial EEPROM or other external memory. The EZ-USB core
uses this mode if EA is logic low and either the core detects no EEPROM or the
first byte read from EEPROM is not C0h or C2h.

When the host enumerates the device, the EZ-USB core responds to requests.
During this time, the 8051 core is in the reset state. This reset state is controlled
by a register bit in the chip. The host can request to write to this bit to place the
chip in and out of reset. This reset affects the 8051 core only and is unrelated to
USB’s Reset signaling.

The descriptors retrieved by the host identify the device as a Default USB
Device. The host matches the retrieved Vendor ID and Product ID with values
in a Cypress-provided INF file that instructs the host to load the Cypress
CyUSB driver to communicate with the chip. The ReNum bit remains at zero.

This default mode is intended for use in debugging. You can use this mode to
get the USB interface up and transferring data. In addition to supporting trans-
fers over endpoint zero, the Default USB Device can use the other three transfer
types on other endpoints. All of these transfers are possible without writing any
firmware or device drivers.

Load Firmware from the Host. The core can also read identifying bytes from
the EEPROM on power up and provide this information to the host during
enumeration. If the first value read from the EEPROM is C0h, the core reads
EEPROM bytes containing the chip’s Vendor ID, Product ID, and release
number. On device attachment or system boot up, the host uses these bytes to
find a matching INF file that identifies a driver for the device. The driver con-
tains firmware to download to the device before re-enumerating. Cypress pro-
vides instructions for building a driver with this ability.

The driver uses the vendor-specific Firmware Load request to download the
firmware to the device. The firmware contains a new set of descriptors and the
code the device will run. For example, a HID-class device will have report
descriptors and code for transferring HID report data.

On completing the download, the driver causes the chip to exit the reset state
and run the firmware. By writing to a register that controls the chip’s DIS-
CON# pin, the firmware causes the device to electrically emulate removal from,
then reattachment to the bus. The pin controls one end of a resistor whose
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other end connects to D+. When pulled up, the pin indicates device attach-
ment, and when floating, the pin indicates device removal. The firmware also
sets ReNum = 1 to cause the 8051 core, instead of the EZ-USB core, to respond
to requests at endpoint zero.

On detecting the emulated re-attachment, the host enumerates the device
again, this time retrieving the newly stored descriptors and using the informa-
tion in them to select a device driver to load.

An advantage to storing firmware on the host is easy updates. To update the
firmware, you store the new version on the host and the driver sends the firm-
ware to the device on the next power up or attachment. There’s no need to
replace the chip or use special programming hardware or software. The down
side is a more complicated device driver, the need to have the firmware available
on the host, and longer enumeration time.

Load Firmware from EEPROM. A third mode of operation provides a way for
the chip to store its firmware in an external serial EEPROM. If the first byte
read from the EEPROM is C2h, the core loads the EEPROM’s entire contents
into RAM on power-up. The EEPROM must contain the Vendor ID, Product
ID, and release number as well as all descriptors required for enumeration and
whatever other firmware and data the device requires. On exiting the reset state,
the device has everything it needs for USB communications. The core sets the
ReNum bit to 1 on completing the loading of the code. When enumerating the
device, the host reads the stored descriptors and loads the appropriate driver.
There is no re-enumeration.

Table 6-2: An EZ-USB can run firmware from four sources.
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367 368

Load from host on 
re-enumerating

Don’t care B4 C0

Load from serial EEPROM Don’t care B6 C2
Default USB Device logic low No EEPROM 

present OR
not B4 or B6

No EEPROM 
present OR
not C0 or C2

External parallel memory logic high No EEPROM 
present OR
not B4 or B6

No EEPROM 
present OR
not C0 or C2
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Run Code from External Parallel Memory. If no EEPROM is detected, or if
the first byte isn’t C0h or C2h, and if EA is a logic high, the chip boots from
code memory on the external parallel data bus. ReNum is set to 1. The host
enumerates the device and loads a driver, and there is no re-enumeration.

$.4�
For high-end applications, many developers turn to ARM microcontrollers,
which have a fast, efficient, 32-bit RISC architecture. ARM Holdings licenses
intellectual property (IP) cores to chip companies for use in their chips. The
ARM family includes a range of cores with different capabilities. 

An example of an ARM processor with a USB device port is Atmel’s
AT91SAM7S321. The chip has a full-speed USB port, 32 KB of flash memory
for firmware, and 8 KB of RAM. Other I/O includes an 8-channel, 10-bit ana-
log-to-digital converter and synchronous and asynchronous serial ports. Pro-
gramming can use the free GNU GCC compiler or a compiler from IAR
Systems. NXP Semiconductors is another source for ARM-based device con-
trollers.   
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A controller that interfaces to an external CPU enables adding USB to just
about any CPU circuit. A disadvantage is the need to use two chips instead of
having the CPU and USB controller on a single chip. Also, example code for
USB communications using your CPU might not be available.

Some interface chips support a command set for USB-related communications,
while others use a series of registers to store USB data and configuration, status,
and control information.

Most interface chips have a local data bus with a parallel interface to communi-
cate with the CPU. For fast transfers with external memory, many chips sup-
port direct memory access (DMA). To use DMA, the CPU sets up a transfer
that reads or writes a block of data to or from data memory without CPU inter-
vention. For CPUs that don’t have external parallel buses, a few controllers can
use a synchronous or asynchronous serial interface. An interrupt pin can signal
the CPU when the controller has received USB data or is ready for new data to
send.
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Table 6-3 compares a selection of interface chips. The following descriptions
will give an idea of the range of chips available. The chips described are a sam-
pling, and new chips are being released all the time, so for new projects, check
the latest offerings.

��9AB&�7����������&�-2!
The ISP1582 from ST-NXP Wireless is a full/high-speed controller that inter-
faces to an external CPU over a parallel interface.

��������"��

The chip has a serial interface engine for handling USB traffic, a 16-bit data
bus, and an 8-bit address bus. An external CPU can communicate with the
controller by accessing a series of registers. The controller supports multiplexed
and non-multiplexed address buses and DMA transfers.

�#)�������		��

The USB controller supports full and high speeds. In addition to endpoint
zero, the chip can support up to seven IN endpoint addresses and seven OUT
endpoint addresses. All enabled endpoints share 8 KB of buffer memory. The
control endpoint has 64-byte buffers. Firmware allocates memory to each of the
other endpoint addresses, and any of these endpoint addresses can use double
buffering.

Firmware controls when the chip attaches to the bus. An external pull-up resis-
tor connects to the chip’s RPU pin and to a pull-up voltage. After a hardware
reset, the chip appears detached from the bus until the external CPU sets a reg-
ister bit that causes the chip to switch the pull-up onto the bus’s D+ line. This
firmware-controlled connection can give the chip time to initialize on power up
before the host begins enumeration.

The ISP1583 adds an ATA/ATAPI interface. The ISP1181B and ISP1183 are
options for full-speed devices.

&+B���������5%�A��!!1!
PLX Technology, Inc.’s NET2272 is a full/high-speed chip that interfaces to an
external CPU over a parallel interface.
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A series of registers hold configuration data and other information. Packet buff-
ers hold USB data that has been received and data that is ready to transmit. The
parallel interface has 5 address bits and 16 data bits. Transfers to and from the
packet buffers can be 8 or 16 bits.

The registers store status and control information and the data received in the
last Setup transaction. The CPU also uses registers to read and write endpoint
data from and to the packet buffers.

The NET2272 supports three modes for accessing its registers. In direct address
mode, the five address bits specify a register to read or write to. In multiplexed
address mode, the CPU places the register address on the data bits and the
NET2272 reads the address on the falling edge of the ALE control signal. In
indirect address mode, the CPU uses the lowest address bit to distinguish
between a register address pointer (0) and data (1). The CPU writes a register
address pointer to specify a configuration register and then reads or writes data
at the address pointed to. Direct and multiplexed address modes can access only
registers 00h–1Fh, which typically contain the information accessed most fre-
quently. Indirect address mode can access all registers. The controller also sup-
ports DMA transfers. A CPU can write to the NET2272 at up to 60 MB/s and
can read at up to 57 MB/s (in DMA mode).

To access endpoint data in the packet buffers, the CPU selects an endpoint by
writing to the Endpoint Page Select register or the DMA Endpoint Select regis-
ter and then accesses the data by reading or writing to the Endpoint Data regis-
ter.

Table 6-3: These USB interface chips interface to an external CPU.
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FTDI FT232BM Asynchronous serial Full
FT245BM Parallel Full
FT2232H, FT4232H Asynchronous serial 

and parallel
High

ST-NXP Wireless ISP1181B, ISP1183 Parallel Full
ISP1582, ISP1583 Parallel Full/High

PLX Technology NET2272 Parallel Full/High
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The NET2272’s USB controller supports full and high speeds and all four
transfer types. The controller has three physical endpoints in addition to end-
point zero. A device that needs more endpoints can use virtual endpoints,
where one or more logical endpoints share a physical endpoint’s resources. The
device firmware must switch resources between the logical and physical end-
points as needed.

Endpoint zero has a 128-byte buffer, and the other endpoints share 3 KB of
packet buffers. Two of the endpoints can use double buffers. After a failed IN or
OUT transaction, an endpoint automatically recovers and waits for the host to
retry.
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Future Technology Devices International (FTDI) offers controllers that are use-
ful for virtual COM-port devices and other devices that don’t fit a defined USB
class and need only bulk or isochronous transfers.
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FTDI’s chips take a different approach to USB design. The controllers handle
enumeration and other USB communications entirely in hardware.

The FT232R USB UART interfaces to a device CPU via an asynchronous serial
(UART) port. The controller handles all of the USB-specific protocols. Device
firmware just reads and writes data on the serial port. To send data to the host
computer, firmware writes the data to the asynchronous serial port. To read
data from the host computer, firmware reads the asynchronous serial port.The
FT245R USB FIFO functions in a similar way except the CPU interface is a
bidirectional parallel port. Both chips are full speed. The FT2232H is a
high-speed version with two ports that can each function as a UART or parallel
port. The FT4232H is high speed with four ports.

�#)�������		��

Both the FT232R and FT245R have a 128-byte transmit buffer and a 256-byte
receive buffer. The chips use bulk transfers by default with one endpoint for
each direction. A driver for isochronous transfers is also available.
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On the host computer, the chips use a driver provided by FTDI. The driver
enables applications to access a chip as a USB virtual COM port or by using a
driver-specific API.    

Many USB/RS-232 adapters contain FT232R chips. If you have an existing
device that communicates with a PC via RS-232, the FT232R offers a quick
way to upgrade to USB. In most cases, using an FT232R to convert an RS-232
device to USB requires no changes to device firmware or host application soft-
ware. The host accesses the device in the same way as if the device connected via
an RS-232 serial port.

Host software can access an FT245R as a COM port even though the chip
doesn’t have an asynchronous serial port. The host doesn’t need to know what
lies beyond the device’s USB port.

Both controllers contain on-chip EEPROM that can store vendor-specific val-
ues for a Vendor ID, Product ID, serial-number string, other descriptive strings,
and values that specify whether the device is bus- or self-powered. The control-
ler uses default values for items without stored values in EEPROM. FTDI pro-
vides a utility that programs the information into the EEPROM. By default,
the chips use FTDI’s Vendor ID and Product ID. On request, FTDI will grant
the right for your device to use their Vendor ID with a Product ID that FTDI
assigns to you. Or you can use your own Vendor ID and Product ID.

Figure 6-3. For easy prototyping with FTDI’s controllers, use the UM232R and 

UM245R modules.
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Both chips also support a Bit Bang mode, where the chip operates as a basic
USB device without requiring a connection to a device CPU. A host computer
can monitor and control I/O bits on the chip to control LEDs, relays, or other
circuits and read switches and logic-gate outputs.

For easy prototyping, FTDI’s UM232R and UM245R modules (Figure 6-3)
each consist of a circuit board with a controller chip, USB connector, and
related circuits mounted on a 24-pin dual in-line package (DIP). The modules
fit breadboards or PC boards. A variety of other modules offer different form
factors, connectors, and capabilities. A chip with similar capabilities to the
FT232R is the Silicon Laboratories CP2102.
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This chapter is an introduction to the defined USB classes, including how to
decide if a new design fits a defined class.

�������
�	����
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Most USB devices have much in common with other devices that perform sim-
ilar functions. Mice send data about mouse movements and button clicks.
Drives transfer files. Printers receive data to print and inform the host when
they’re out of paper.

When many devices provide or request similar services, it makes sense to define
protocols for all of the devices to use. A class specification can serve as a guide
for programmers who write device firmware or host drivers. Drivers included
with an operating system eliminate the need for vendors to provide drivers with
their devices.

When a device in a supported class has features or abilities not included in a
class driver, a device sometimes can use a class driver along with a vendor-pro-
vided filter driver to support the added features and abilities. 

Classes not currently supported by an operating system might be supported in a
future edition. Firmware that complies with a class specification for an unsup-
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ported class will likely be compatible with a driver added in a future edition of
the operating system.

$�������������"�� �����
The USB-IF sponsors device working groups that develop class specifications.
The defined classes cover most common device functions. Table 7-1 shows the
classes with approved specifications. The hub class is defined in the main USB
2.0 and USB 3.0 specifications rather than in a separate document. Every host
must support the hub class because the host requires a root hub to do any com-
munications. Chapter 4 listed the defined class codes for device and interface
descriptors.

Windows provides drivers for many classes. As Windows and the class specifica-
tions have evolved, the number of supported classes and the completeness of
support for those classes has improved. For some classes, such as the device
firmware upgrade class, Windows doesn’t provide a driver even though the spec-
ification has been available for many years. Table 7-2 shows the support for
each class under different Windows editions.

����������"� ��� ��������"�� ����
A class specification defines the number and type of required and optional end-
points for devices in the class. The document may also define formats for data
to be transferred including application data and status and control information.
Some class specifications define uses for the data being transferred. For exam-
ple, the HID class has usage tables that define how to interpret data sent by
keyboards, mice, and joysticks. Some classes use USB to transfer data in a for-
mat defined by another specification. An example is the SCSI commands used
by mass-storage devices.

A class specification can define values for fields in standard descriptors and may
also define class-specific descriptors, interfaces, and control requests. For exam-
ple, the device descriptor for a hub includes a bDeviceClass value of 09h to
indicate that the device belongs to the hub class. The hub must have a class-spe-
cific hub descriptor with bDescriptorType = 29h. Hubs must also support
class-specific requests. For example, when the host sends a Get Port Status
request to a hub with a port number in the Index field, the hub responds with
status information for the port. A class may also require a device to support spe-
cific endpoints or comply with tighter timing for standard requests. Chapter 4
showed how the device or interface descriptor declares a class.
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The following sections introduce the defined classes. The purpose is to serve as
a guide to deciding whether a new design can use a defined class and if so, what
device controllers to consider and what host drivers are available. For more
information about a class, consult the class specification.

$����
The audio class encompasses devices that send or receive encoded voice, music,
or other sounds. Audio functions are often part of a device that also supports
video, storage, or other functions. Devices in the audio class can use isochro-
nous transfers for audio streams or bulk transfers for data encoded using the
MIDI (Musical Instrument Digital Interface) protocol.

Version 2.0 of the audio class specification retains much of the framework
defined in version 1.0 but is not backwards compatible. In other words, an

Table 7-1: These classes have approved class specifications.

 ���� 0�	��
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Audio 2.0 05/06 Interface
Communication (CDC) 1.2 11/07 Device or interface
Content security 1.0 08/00 Interface
Device firmware upgrade (DFU) 1.1 08/04 Interface (subclass of Application 

Specific Interface)
Human interface (HID) 1.11 06/01 Interface
IrDA bridge 1.0 03/00 Interface (subclass of Application 

Specific Interface)
Mass storage 1.2 06/03 Interface
Personal healthcare 1.0 11/07 Interface (preferred) or device
Printer 1.1 01/00 Interface
Smart card 1.1 03/01 Interface
Still image capture 1.0 07/00 Interface
Test and measurement 1.0 04/03 Interface (subclass of Application 

Specific Interface)
Video 1.1 06/05 Interface
1The current version of the main specification document at this writing. Some classes have 
additional, supplementary specifications.
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audio 2.0 device can’t use an audio 1.0 host driver. Version 2.0 adds full support
for high speed, mandatory use of the interface association descriptor, and new
capabilities and controls. 

(��"���������

The audio specification consists of the main class specification and supporting
documents for audio data formats, terminal types, and MIDI devices. The
MIDI standard is available from the MIDI Manufacturers Association at
www.midi.org. 

Table 7-2: Windows provides drivers for many classes.

 ���� 9��
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Audio Windows 98 Gold: audio 1.0
Windows Me: MIDI
Windows XP: MIDI (improved)

Communications Windows 98 SE: modem
Windows 2000: Remote NDIS

Content Security Windows XP: devices with CSM-1 interfaces can provide a serial number
Device Firmware 
Upgrade

No support

Human Interface Windows 98 Gold: HID 1.0
Windows 98SE: HID 1.1

IrDA Bridge No support
Mass Storage Windows 2000: class driver

Windows 2000 XP3: support for multiple LUNs
Personal healthcare No support
Printer Windows 2000: class driver
Smart Card Windows 2000 update: class driver
Still Image Windows 98SE: class driver (first phase/preliminary)

Windows 2000: class driver (improved)
Test and 
Measurement

No support

Video Windows 98 Gold: USB camera minidriver library USBCAMD 1.0 (not 
supported under Windows 2000)
Windows Me: USB camera minidriver library USBCAMD 2.0
Windows XP SP2: class driver
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Each audio function in a device has an Audio Interface Collection that consists
of one or more interfaces. The interfaces include one AudioControl (AC) inter-
face, zero or more AudioStreaming (AS) interfaces and zero or more
MIDIStreaming (MS) interfaces (Figure 7-1). In other words, every Audio
Interface Collection has an AudioControl interface, while AudioStreaming and
MIDIStreaming interfaces are optional.

In audio 2.0 devices, an interface association descriptor (IAD) specifies the
interfaces that belong to a collection. In audio 1.0 devices, a class-specific AC
interface header descriptor contains this information.

An AudioControl interface can enable accessing controls such as volume, mute,
bass, and treble. An AudioStreaming interface transfers audio data in isochro-
nous transfers and may also carry control data related to the streaming data. A
MIDIStreaming interface transfers MIDI data. 

MIDI is a standard for controlling synthesizers, sound cards, and other elec-
tronic devices that generate music and other sounds. A MIDI representation of
a sound includes values for pitch, length, volume, and other characteristics. A
pure MIDI hardware interface carries asynchronous data at 31.25 kbps. A USB
interface that carries MIDI data uses the MIDI data format but not the asyn-
chronous interface. Instead, the MIDI data travels on the bus in bulk transfers.

A device can have multiple Audio Interface Collections that are active at the
same time, with each collection controlling an independent audio function.

Figure 7-1. Each audio function has an Audio Interface Collection that contains 

one or more interfaces.
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Each audio interface uses standard and class-specific descriptors to enable the
host to learn about the interface, its endpoints, and what kinds of data the end-
points transfer. The specification defines a variety of class-specific descriptors
that provide information specific to audio functions. Audio 1.0 endpoint
descriptors have two additional bytes that follow the 7 bytes defined in the USB
2.0 specification. Audio 2.0 endpoint descriptors use the standard 7-byte struc-
ture.
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The audio class provides optional class-specific requests for setting and getting
the state of audio controls and exchanging generic data.

���


Some USB controllers have built-in support for audio functions. The support
may include codec (compressor/decompressor) functions, analog-to-digital
converters (ADCs), digital-to-analog converters (DACs), and support for
Sony/Philips Digital Interface (S/PDIF) encoding for transmitting audio data
in digital format. 

Texas Instruments has a variety of USB audio chips. The PCM2900 is a stereo
audio codec with a full-speed USB port and 16-bit ADC and DAC. The chip
has an AudioControl interface, an AudioStreaming interface for each direction,
and a HID interface that reports the status of three pins on the chip. The chip
requires no user programming but has the option to use a vendor-specific Ven-
dor ID, Product ID, and strings. The PCM2902 adds support for S/PDIF
encoding. The PCM2702 is a 16-bit stereo DAC with a full-speed USB inter-
face. The chip can accept data sampled at 48, 44.1, and 32 kHz using either
16-bit stereo or monaural audio data and supports digital attenuation and
soft-mute features. The TUSB3200A USB streaming controller contains an
8052-compatible microcontroller that supports up to seven IN endpoints and
seven OUT endpoints. The audio support includes a codec port interface, a
DMA controller with four channels for streaming isochronous data packets to
and from the codec port, and a phase lock loop (PLL) and adaptive clock gener-
ator (ACG) to support synchronization modes.
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Windows XP and Windows Vista support USB Audio 1.0. Windows Vista
implements Microsoft’s Universal Audio Architecture (UAA), which improves
audio support and defines requirements for devices that will use the operating
system’s audio drivers. Earlier Windows editions through Windows 2000 can
also install the UAA driver. All devices that are compatible with the USB audio
class system driver (usbaudio.sys) are UAA compliant.

Applications can access USB audio devices using the DirectMusic and Direct-
Sound components of the Windows DirectX technology.

�������� �����
The communications device class (CDC) encompasses a wide range of devices
that perform telecommunications and networking functions. Telecommunica-
tions devices include analog phones and modems, digital phones (including cell
phones), and ISDN terminal adapters as well as virtual COM-port devices.
Networking devices include ADSL modems, cable modems, and Ethernet
adapters and hubs.

The communications data typically uses an application-specific protocol such
as V.250 for modem control or Ethernet for network data.
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Documentation for the class consists of a main class specification and separate
documents for these subclasses:

Asynchronous transfer mode (ATM)

Ethernet emulation model (EEM)

Ethernet control model (ECM)

ISDN

Public switched telephone network (PSTN)

Wireless mobile communications (WMC)

The V.250 standard (a previous version was V.25ter) defines a derivative of the
Hayes AT modem command set and is available from the International Tele-
communication Union at www.itu.int. The Ethernet standard, IEEE 802.3, is
available from www.ieee.org. 

The Remote Network Driver Interface Specification (NDIS) defines a protocol
for using USB and other buses to configure network interfaces and carry Ether-
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net-framed data. Remote NDIS is based on NDIS, which defines a protocol to
manage communications with network adapters and higher-level drivers. Both
specifications are from Microsoft and are supported only on Windows.

'�������

A communications device is responsible for device management, call manage-
ment if needed, and data transmission. Device management includes control-
ling and configuring a device and notifying the host of events. Call
management involves establishing and terminating telephone calls or other
connections. Not all devices require call management. Data transmission is the
sending and receiving of application data such as phone conversations or files
sent over a modem or network.

The communications device class supports six major models for communicat-
ing.

• Asynchronous transfer mode (ATM) devices include ADSL modems. 

• Ethernet emulation model (EEM) devices exchange Ethernet-framed data.
Commands share endpoints, and each packet is preceded by a 2-byte
header. 

• Ethernet control model (ECM) devices also exchange Ethernet-framed data
using an older protocol that is less efficient than EEM. Class-specific
requests and notifications manage the interface.

• ISDN devices include terminal adapters for ISDN lines. 

• Public switched telephone network (PSTN) devices include voice modems,
telephones, and serial-emulation (virtual COM-port) devices. Some devices
that exchange Ethernet-framed data use the PSTN model with a ven-
dor-specific protocol.

• Wireless mobile communications (WMC) devices include cell phones and
other multi-function devices.

Notifications, which announce events such as ring detect and network connect
or disconnect, can travel to the host in an interrupt or bulk pipe. Most devices
use interrupt pipes. Each notification consists of an 8-byte header followed by a
variable-length data field. Some device types don’t require notifications.

(�
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The descriptors can specify a communications function at the device or inter-
face level. If specified at the device level, all of the device’s interfaces belong to
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the communications function. In the device descriptor, bDeviceClass = 02h to
specify CDC (Figure 7-2). In a composite device, which contains multiple
functions, an interface association descriptor (IAD) specifies which interfaces
belong to the communication function, and bDeviceClass, bDeviceSubclass,
and bDeviceProtocol are set as required for the IAD as described in Chapter 4. 

Figure 7-2. A communications device provides interfaces for data and 

notifications.
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Every communications device must have an interface descriptor with bInter-
faceClass = 02h to indicate a Communication interface that handles device
management and call management. The bInterfaceSubClass field specifies a
communication model. Table 7-3 shows defined values for the subclasses. The
bInterfaceProtocol field can name a protocol supported by a subclass. Table 7-4
shows defined values for protocols.

Table 7-3: In the interface descriptor for a communication device, the 

bInterfaceSubClass field indicates the communication model the device 

supports.
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00h RESERVED –
01h PSTN Direct Line Control Model Telephone modem with the host providing 

any data compression and error correction. 
The device or host may provide 
modulation/demodulation of the modem 
data.

02h PSTN Abstract Control Model Telephone modem with the device providing 
any data compression, error correction, and 
modulation/demodulation of the modem 
data.

03h PSTN Telephone Control Model Telephone.
04h ISDN: Multi-Channel Control 

Model
ISDN device with multiple, multiplexed 
channels.

05h ISDN: CAPI Control Model ISDN device with support for 
COMMON-ISDN-API (CAPI) commands 
and messages.

06h ECM (Ethernet Control Model) Device that exchanges Ethernet-framed data.
07h ATM Asynchronous transfer mode device.
08h WMC wireless handset control 

model
Logical handset.

09h WMC device management model AT commands only.
0Ah WMC mobile direct line model Migrates some functions of wireless terminal 

adapters to the USB host.
0Bh WMC OBEX model Data exchange protocol.
0Ch EEM (Ethernet Emulation Model) Device that exchanges Ethernet-framed data.
0Dh–7Fh Reserved Future use.
80h–FEh Vendor specific Vendor defined.
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Following the Communication interface descriptor is a class-specific Functional
descriptor consisting of a Header Functional descriptor followed by one or
more descriptors (also called Functional descriptors) that provide information
about a communication function. Table 7-5 shows defined values for these
descriptors.

One of these descriptors, the Union Functional descriptor, has the special func-
tion of defining a relationship among interfaces that form a functional unit.
The descriptor designates one interface as the master or controlling interface,
which can send and receive certain messages that apply to the entire group. For
example, a Communication interface can be a master interface for a group con-
sisting of a Communication interface and a Data interface. The interfaces that
make up a group can include communications-class interfaces as well as other
related interfaces such as audio and HID.

If the Communication interface has a bulk or interrupt endpoint for event noti-
fications, the endpoint has a standard endpoint descriptor.

A communications device can also have an interface descriptor with bInterface-
Class = 0Ah to indicate a Data interface. A Data interface can have bulk or iso-
chronous endpoints for carrying application data. Each of these endpoints has a
standard endpoint descriptor. Some devices use other class or vendor-specific
interfaces for application data. For example, a telephone might use an audio
interface to send and receive voice data.

A virtual COM-port device provides serial port emulation. Applications can use
COM-port functions to access the device in the same way as if the device con-

Table 7-4: In the descriptor for a Communication interface, the 

bInterfaceProtocol field can indicate a protocol the communications 

model supports.
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00h No class-specific protocol required
01h AT commands (specified in ITU V.250)
02h–06h AT commands used by WMC devices
07h Ethernet Emulation Model (EEM)
08h–FDh Future use
FEh External protocol. The commands are defined by a command set 

functional descriptor
FFh Vendor specific
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nected directly to an RS-232 port on the PC. The device may have an asyn-
chronous serial interface that communicates with other circuits, but an
asynchronous interface isn’t required. The USB host doesn’t have to know how
the device uses the COM-port data. A virtual COM-port device can use bInter-
faceSubClass = 02h to specify the abstract control model and bInterfaceProto-
col = 01h to specify AT commands. For compatibility with the Windows driver,
the interface should specify this subclass even if the device doesn’t use AT com-
mands. The Communication interface has an interrupt endpoint, and the Data
interface has a bulk endpoint for each direction. For improved performance,
some virtual COM-port devices use vendor-specific drivers and thus don’t

Table 7-5: A Functional descriptor consists of a Header functional 

descriptor followed by one or more function-specific descriptors.
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00h Header
01h Call Management
02h Abstract Control Management
03h Direct Line Control Management
04h Telephone Ringer
05h Telephone Call and Line State Reporting Capabilities
06h Union
07h Country Selection
08h Telephone Operational Modes
09h USB Terminal
0Ah Network Channel Terminal
0Bh Protocol Unit
0Ch Extension Unit
0Dh Multi-channel Management
0Eh CAPI Control Management
0Fh Ethernet Networking
10h ATM Networking
11h–18h WMC Functional Descriptors
19h OBEX Service Identifier
1Ah–7Fh Reserved (future use)
80h–FEh Vendor specific
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belong to the communications device class. My book Serial Port Complete has
more about COM ports and USB virtual COM-port devices.

A USB/Ethernet adapter that functions as a Remote NDIS device consists of a
Communication interface and a Data interface. In the Communication inter-
face, bInterfaceSubClass = 02h to specify the abstract control model and bInter-
faceProtocol = FFh to specify a vendor-specific protocol. The Communication
interface has an interrupt endpoint, and the Data interface has two bulk end-
points. Each endpoint has an endpoint descriptor.
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Class-specific requests get and set status and control information. The sup-
ported requests vary with the subclass and the device.

���


Many communications devices, including virtual COM-port devices, can use
just about non-low-speed, general-purpose device controller.

For USB/Ethernet bridges, Asix Electronics Corporation has the AX88172A,
which converts between full- or highspeed USB and 10- or 100-Mbps Ether-
net. K-Micro has the KLKUSB220 with a 16-bit CPU, full/high-speed USB
port, and a 10/100-Mbps Ethernet interface. Freescale Semiconductor’s 32-bit
MCF5482 ColdFire microprocessor contains a full/high-speed USB device
controller and an Ethernet controller.
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The modem driver included with Windows 98 SE and later (usbser.sys) is com-
patible with modems and other devices that use the abstract control model.
Each device must have an INF file that contains the device’s Vendor ID and
Product ID. USB virtual COM-port devices can also use the usbser.sys driver.
Composite CDC devices should use Windows XP SP3 or later, which have
updated versions of the usbser.sys and usbccgp.sys drivers. For mapping Remote
NDIS to USB, Windows 2000 and later have the usb8023.sys driver.

Several vendors offer drivers for subclasses that Windows doesn’t support and
enhanced drivers for other subclasses. Belcarra Technologies Corporation has
ECM and EEM drivers. Jungo Ltd. has drivers for modems, serial-port emula-
tion, ACM, ECM, and OBEX. MCCI has firmware and driver support for
modems, serial-port emulation, WMC, ECM, and OBEX. Thesycon System-
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software & Consulting GmbH (yes, that spelling is correct!) has a USBIO
Development Kit with an ACM driver.

���������������%
The content security class defines a way to control access to files, music, video,
or other data transmitted on the bus. The control can use either of two defined
content security methods: basic authorization or digital transmission content
protection (DTCP). 

(��"���������

In addition to the main class specification, each content security method
(CSM) has its own specification document. The DTCP specification and
license information are available from the Digital Transmission Licensing
Administrator (www.dtcp.com).
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The class defines a protocol for activating and deactivating a content security
method and for associating a content security method to a channel. A channel
represents a relationship between an interface or endpoint and one or more
CSMs. Only one CSM can be active on a channel at a time.

Basic authorization, also known as Content Security Method 1, or CSM-1,
consists only of the class-specific request Get_Unique_ID, which enables a host
to request an ID value from a device.

CSM-2 implements DTCP, which prevents unauthorized copying of audio and
video entertainment content via USB and other buses. A content provider can
use DTCP to specify whether copying is allowed, identify authorized users, and
specify an encryption method. A DTCP interface must have an interrupt end-
point in each direction for sending and receiving event notifications. A content
provider who wants to use DTCP must sign a license agreement and pay an
annual (not trivial) fee.

Two additional CSMs that don’t have USB specifications at this writing are
open copy protection system (CSM-3) and elliptic curve content protection
protocol (CSM-4).
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In an interface descriptor, bInterfaceClass = 0Dh declares the content security
class. The class has four class-specific descriptors. CSM-2 defines a string
descriptor for the string Digital Transmission Content Protection Version 1.00.
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Two class-specific requests apply to all CSM interfaces. Get_Channel_Settings
enables the host to learn what CSM is assigned to a channel. The
Set_Channel_Settings request enables the host to assign a CSM to a channel or
deactivate a previously assigned CSM. CSM-2 has additional control requests
to transfer Authentication and Key Exchange (AKE) commands and responses.

���


For a device using content security, the choice of a USB controller depends
mainly on the capabilities needed to exchange the content being protected.
Adding a content-security function requires only the occasional use of the con-
trol endpoint and for CSM-2, two interrupt endpoints.
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Windows doesn’t include a driver for the content security class except for one
function. Under Windows XP and later, if a device has a CSM-1 interface, an
application can request the device’s serial number by sending a request to the
Windows common-class generic parent driver. 

The request calls the DeviceIoControl function with the dwIoControlCode
parameter set to IOCTL_STORAGE_GET_MEDIA_SERIAL_NUMBER. 

�����������* �����5� ��
The device firmware upgrade (DFU) class defines a protocol for sending firm-
ware enhancements and patches to a device. After receiving the firmware
upgrade, the device re-enumerates using its new firmware.

(��"���������

The Device Firmware Upgrade specification defines the class. 
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To perform a firmware upgrade as described in the specification, a device must
have two complete sets of descriptors: run time and DFU mode. The run-time
descriptors are for normal operation and include descriptors that inform the
host that the device is capable of firmware upgrades. The DFU-mode descrip-
tors are for use when a device is upgrading its firmware. For example, a key-
board using its run-time descriptors enumerates as a HID-class device and
sends keypress data to the host. During a firmware upgrade, the device sus-
pends normal operations as a keyboard and uses the DFU-mode descriptors to
communicate with the DFU driver on the host.

The upgrade process has four phases. In the device-enumeration phase, the
device sends its run-time descriptors to the host and operates normally. In the
reconfiguration phase, the host sends a Dfu_Detach request and then resets and
re-enumerates the device, which returns its DFU-mode descriptors. In the
transfer phase, the host sends the firmware upgrade to the device. The manifes-
tation phase begins when the host has completed the transfer. When the device
has finished programming the new firmware, device settings determine whether
the host resets the device or the device initiates a reset by emulating detach and
re-attach. On re-enumerating, the device uses its new, upgraded firmware. Dur-
ing the upgrade process, the device transitions through defined states such as
dfuIdle (waiting for DFU requests) and dfuError (an error has occurred).

An upgrade file stored on the host contains the firmware for the upgrade fol-
lowed by a DFU suffix value that the host can use to help ensure that the firm-
ware is valid and appropriate for a particular device. The suffix contains an
error-checking value, a signature consisting of the ASCII text DFU, and
optional values for the Vendor ID, Product ID, and product release number to
identify devices the firmware is appropriate for. The suffix is for the host’s use
only; the host doesn’t send the suffix to the device.

To ensure that the host will load the correct driver for the firmware-upgrade
process, the device should use different Product IDs in its run-time and
DFU-mode device descriptors.

DFU communications use only the control endpoint.
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The DFU function is defined at the interface subclass level. In a device that
supports DFU, both the run-time and DFU-mode descriptors include a stan-
dard interface descriptor with bInterfaceClass = FEh to indicate an Application
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Specific class and bInterfaceSubClass = 01h to indicate the device firmware
upgrade class. In DFU mode, the DFU interface must be the only active inter-
face in the device.

Both descriptor sets include a Run-time DFU Functional descriptor that speci-
fies whether the device can communicate on the bus immediately after the
manifestation phase, how long to wait for a reset after receiving a DFU_Detach
request, and the maximum number of bytes the device can accept in a control
Write transfer during a firmware upgrade.
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The class defines seven control requests:
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The choice of USB controller depends mainly on the requirements of the
device in run-time mode. The device must have enough memory and other
resources to store and implement the upgraded firmware. STMicroelectronics
has a Windows driver and firmware examples for use with its ST7 microcon-
trollers.
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Windows doesn’t provide a driver for this class. Besides STMicroelectonics,
another driver source is Jungo Ltd.
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DFU_Detach Detach and re-attach to the bus or wait for bus reset within the time 
period specified in the DFU Functional descriptor. On reattach or a reset 
within the specified time, enumerate using the DFU-mode descriptors.

DFU_Dnload Accept new firmware in the request’s Data stage. A request with 
wLength = 0000h means all of the firmware has been transferred.

DFU_Upload Send firmware to the host in the request’s Data stage.
DFU_GetStatus Return status and error information. On error, enter the dfuError state.
DFU_ClrStatus Clear the dfuError state reported in response to a DFU_GetStatus request 

and enter the dfuIdle state.
DFU_GetState Same as DFU_GetStatus but with no change in state on error.
DFU_Abort Return to the dfuIdle state.
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The human interface device (HID) class includes keyboards, pointing devices,
and game controllers. With these devices, the host reads and acts on human
input such as keypresses and mouse movements. Hosts must respond quickly
enough so users don’t notice a delay between an action and the expected
response. Barcode readers can function as HID keyboards with the barcode data
emulating keypresses. Other devices with HID interfaces include uninterrupt-
ible power supply (UPS) units and display monitors that use HID for user con-
figuration. Some devices that perform vendor-specific functions can also use the
HID class.

All HID data travels in reports, which are structures with defined formats.
Usage tags in a report tell the host or device how to use received data. For exam-
ple, a Usage Page value of 09h indicates a button, and a Usage ID value tells
which button, if any, was pressed.

Windows and other operating systems have included HID drivers since the ear-
liest editions with USB support. For this reason, the HID class has been popu-
lar for devices with a variety of vendor-specific functions. A HID can exchange
data for any purpose but can use only control and interrupt transfers. Later
chapters have more about using HIDs for vendor-specific functions.
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The main change from version 1.0 to 1.1 of the HID specification is enabling
the host to send reports in interrupt OUT transfers. In a HID 1.0 interface, the
host must send all reports in control transfers.

Several documents define Usage-tag values for different device types. HID
Usage Tables has values for keyboards, pointing devices, various game control-
lers, displays, telephone controls, and more. Four other device types have their
own documents:

Class Definition for Physical Interface Devices (PID) defines values for force-feed-
back joysticks and other devices that require physical feedback in response to
inputs. 

The Monitor Control specification defines values for user controls and power
management for display monitors. The HID interface controls the display’s set-
tings only. The image data uses a separate hardware interface.
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Usage Tables for HID Power Devices defines values for UPS devices and other
devices where the host monitors and controls batteries or other power compo-
nents. 

Point of Sale (POS) Usage Tables defines values for barcode readers, weighing
devices, and magnetic-stripe readers.

Additional Usage tables are available from the Gaming Standards Association
(www.gamingstandards.com) and in Intel’s Open Arcade Architecture Device Data
Format Specification (www.usb.org).

'��������

HIDs communicate by exchanging data in reports via control and interrupt
transfers. Input and Output reports can use control or interrupt transfers. Fea-
ture reports use control transfers. A report descriptor defines the size of each
report and Usage values for the report data.
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In an interface descriptor, bInterfaceClass = 03h specifies the HID class. The
bInterfaceSubClass field indicates whether the HID supports a boot protocol,
which a host can use instead of the report protocol defined in the device’s report
descriptor. A mouse or keyboard can support a boot protocol to enable using
the device before the host has loaded the full HID drivers.

Following the interface descriptor is a class-specific HID descriptor, which con-
tains the size of the report descriptor. The report descriptor contains informa-
tion about the data in the HID reports. An optional physical descriptor that the
host requests separately can describe the part(s) of the human body that activate
a control.
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The class defines six control requests to enable sending and receiving reports,
setting and reading the idle rate (how often the device sends a report if the data
is unchanged), and setting or reading the currently active protocol (boot or
report). To obtain a report descriptor or physical descriptor, the host sends a
Get Descriptor request to the interface with the high byte of wValue set to 01h
to indicate a class-specific descriptor and the low byte of wValue set to 22h to
request a report descriptor or 23h to request a physical descriptor.
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For devices with a human interface, low speed is fast enough to act on received
user input with no detectable delay. Some HIDs use low speed because the
device needs a flexible or inexpensive cable. A HID can use any speed, however.

Alcor Micro Corporation is a source for controllers with support for interfacing
to keyboard matrixes. Cypress Semiconductor’s CY7C638xx series supports
both USB and PS/2 interfaces to make it easy to design a dual-interface key-
board or mouse.

Code Mercenaries offers programmed chips for use in pointing devices, key-
boards, and joysticks. The MouseWarrior series has interfaces for sensors and
buttons and supports USB, PS/2, asynchronous serial, and Apple Desktop Bus
(ADB). The KeyWarrior series supports USB, PS/2, and ADB and has inter-
faces to keyboard matrixes and optional support for keyboard macros. The Joy-
Warrior series supports a variety of game-controller inputs.
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Applications can use API functions to communicate with many HIDs. The
functions for exchanging reports include ReadFile and WriteFile as well as
HID-specific APIs such HidD_SetFeature and HidD_GetFeature. Documenta-
tion for the HID API is in the WDK.

For system keyboards and pointing devices, Windows has exclusive access to
Input and Output reports. Attempts to retrieve the reports via API functions
trigger the error message Access Denied. Applications typically don’t need to read
the reports that describe keypresses and mouse movements and button clicks.
Instead, the operating system reads the reports, and applications use
higher-level methods to access the data. For example, a button on a form in a
.NET application has a click event that can contain code to execute when a user
clicks the button. If a system has multiple keyboards or pointing devices, the
application treats them all as a single virtual keyboard or pointing device. 

Other options for accessing HIDs include DirectX’s DirectInput component
and Raw Input. DirectInput provides fast, more direct access to keyboard,
mouse, and game-controller data. The raw input API offers a way to read HID
data, including keyboard and mouse data, from specific devices, including a
specific keyboard when multiple keyboards are attached.
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The IrDA (Infrared Data Association) interface defines hardware requirements
and protocols for exchanging data over short distances via infrared energy. A
USB IrDA bridge converts between USB and IrDA data and enables a host to
use USB to monitor, control, and exchange data over an IrDA interface.
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The specification for USB IrDA bridges is IrDA Bridge Device Definition. The
IrDA specifications are available from www.irda.org.
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The data in an IrDA link uses the Infrared Link Access Protocol (IrLAP), which
defines the format of the IrDA frames that carry data, addresses, and status and
control information. The IrLAP Payload consists of the address, control, and
optional information, or data, fields in an IrLAP frame. In addition to the
IrLAP Payload, each frame contains an error-checking value and markers for
the beginning and end of the frame.

A USB IrDA bridge uses bulk pipes to exchange data with the host. The host
and bridge place status and control information in headers with formats
defined in the IrDA bridge specification. On receiving data from the IrDA link,
the IrDA bridge extracts the IrLAP Payload, adds a header, and passes the data
and header to the host. The header can contain values for the IrDA link’s
Media_Busy and Link_Speed parameters. On receiving IrDA data from the
host, the IrDA bridge removes the header added by the host. The header can
specify new values for Link_Speed and the number of beginning-of-frame
markers. The bridge then places the IrDA Payload in an IrDA frame for trans-
mitting.
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An IrDA-bridge function is defined at the interface subclass level. In the inter-
face descriptor, bInterfaceClass = FEh to indicate an application-specific inter-
face and bInterfaceSubclass 02h to indicate an IrDA Bridge Device. A
class-specific descriptor contains IrDA-specific information such as the maxi-
mum number of bytes in an IrDA frame and supported baud rates.
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The class defines five control requests:
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To support the IrDA bridge function, a microcontroller must have a
non-low-speed USB port with bulk endpoints and an IrDA interface. Micro-
controllers can interface to IrDA transceivers and encoder/decoder circuits via
asynchronous serial ports. The Texas Instruments TUSB3410 is an 8052
microcontroller with a full-speed USB port and on-chip IrDA encoder/decoder
for serial communications via an external IrDA transceiver.
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Recent Windows editions include support for IrDA via the irda.sys driver and
the irsir.sys miniport driver for UART-based adapters. Windows doesn’t provide
a driver for the USB IrDA bridge function.

4 ������� 5�
The mass storage class is for devices that transfer files and includes hard drives
as well as CD, DVD, and flash-memory drives. Cameras can use the mass-stor-
age class to enable accessing picture files in a camera’s memory. Under Win-
dows, devices that use the mass-storage driver appear as drives in Windows
Explorer and the file system enables users to copy, move, and delete files in the
devices. Mass-storage communications is a complex topic. My book USB Mass
Storage has more about USB protocols, file systems, and the SCSI commands
that access storage media.

(��"���������

The USB specification for mass storage devices includes an overview and speci-
fications for the bulk-only transport protocol, the control/bulk/interrupt (CBI)

-�'���� �-�'���� ����	����


Receiving 01h Is the device currently receiving an IrLAP frame?
Check_Media_Busy 03h Is infrared traffic present?
Set_IrDA_Rate_Sniff 04h Accept frames at any speed or at a single speed.
Set_IrDA_Unicast_List 05h Accept frames from the named addresses only.
Get_Class_Specific_Descriptors 06h Return the class-specific descriptor.
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transport protocol, Universal Floppy Interface (UFI) commands, and the lock-
able storage devices feature. 

The Lockable Storage Devices feature specification defines a protocol to address
security and privacy concerns for media contents. With host support, a lockable
storage device can require a user-provided passphrase before allowing a host to
access the device’s media.

Each media type has an industry-standard command-block set to enable con-
trolling devices and reading status information.

Generic SCSI media uses the mandatory commands from SCSI Primary Com-
mand (SPC) Set and SCSI Block Command (SBC) Set from www.t10.org.

ATAPI CD/DVD devices use the ATA/ATAPI specification from www.t13.org
and the MultiMedia Command (MMC) Set from www.t10.org. (An earlier ver-
sion of the ATA/ATAPI specification was called SFF 8020i.)

ATAPI removable media uses SFF-8070i: ATAPI Removable Rewritable Media
Devices, available from www.sffcommittee.com. This document is a supplement
to the ATA/ATAPI specification. Floppy drives often belong to this subclass.

UFI uses the UFI Command Specification from www.usb.org. The commands
are based on the SCSI-2 and SFF-8070i command sets.

The USB-IF’s USB Attached SCSI Protocol (UASP) working group is develop-
ing protocols for efficient mass-storage transfers at SuperSpeed and improved
efficiency at lower speeds. The INCITS T10 committee (www.t10.org) is devel-
oping a related USB Attached SCSI standard to define a transport protocol for
USB devices that use SCSI commands.

'�������

Mass-storage devices use bulk transfers to exchange data. Control transfers send
class-specific requests and can clear Stall conditions on bulk endpoints. For
exchanging other information, virtually all devices use the bulk-only protocol.
An alternative, control/bulk/interrupt (CBI), is approved for use only with
full-speed floppy drives and not recommended for new devices.

In the bulk-only protocol, a successful data transfer has two or three stages:
command transport, data transport (if needed), and status transport. In the
command-transport stage, the host sends a command in a structure called a
Command Block Wrapper (CBW). In the data-transport stage, the host or
device sends the requested data. In the status-transport stage, the device sends
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status information in a structure called a Command Status Wrapper (CSW).
Some commands have no data-transport stage.

Table 7-6 shows the fields in the CBW. The meaning of the command-block
value in the CBWCB field varies with the command set specified by the inter-
face descriptor’s bInterfaceSubClass field.

On receiving a CBW, a device must check that the structure is valid and has
meaningful content. A CBW is valid if it is received after a CSW or reset, is 31
bytes, and has the correct value in dCBWSignature. The contents are consid-
ered meaningful if no reserved bits are set, bCBWLUN contains a supported
LUN value, and bCBWCBLength and CBWCB are valid for the interface’s
subclass.

Table 7-7 shows the fields in the CSW. On receiving a CSW, the host must
check that the structure is valid and has meaningful content. A CSW is valid if
it has 13 bytes, has the correct value in dCSWSignature, and has a dCSWTag
value that matches dCBWTag of a corresponding CBW. The contents are con-
sidered meaningful if bCSWStatus equals 02h or if bCSWStatus equals either

Table 7-6: The CBW contains a command block and other information about the 

command.
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dCBWSignature 32 The value 43425355h, which identifies the structure as 
a CBW.

dCBWTag 32 A tag that associates this CBW with the CSW the device 
will send in response.

dCBWDataTransferLength 32 The number of bytes the host expects to transfer in the 
data-transport stage.

bmCBWFlags 8 Specifies the direction of the data-transport stage. Bit 7 
= 0 for an OUT (host-to-device) transfer. Bit 7 = 1 for 
an IN (device-to-host) transfer. All other bits are zero. 
If there is no data-transport stage, bit 7 is ignored.

Reserved 4 Zero
bCBWLUN 4 For devices with multiple LUNs, specifies the LUN the 

command block is directed to. Otherwise the value is 
zero.

Reserved 3 Zero
bCBWCBLength 5 The length (1–16) of the command block in bytes
CBWCB 128 The command block for the device to execute.
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00h  o r  01h  and  dCSWDa taRe s idue  i s  l e s s  t h an  o r  equa l  t o
dCBWDataTransferLength.
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In an interface descriptor, bInterfaceClass = 08h specifies the mass-storage class.

The bInterfaceSubClass field specifies the supported command-block set. Most
new designs should set the field to 06h (generic SCSI media). The host then
determines the specific device type by issuing a SCSI INQUIRY command.
The device’s response specifies a peripheral device type (PDT). The SCSI Pri-
mary Commands (SPC) specification defines PDT codes. The code for hard
drives and flash drives is 00h. The bInterfaceProtocol field indicates the sup-
ported transport protocol. Most new designs should set the field to 50h (bulk
only).

Every bulk-only mass-storage device must have a serial number in a USB string
descriptor. The serial number must be at least 12 characters using only charac-
ters in the range 0–9 and A–F. A serial number enables the operating system to
retain properties such as the drive letter and access policies after a user moves a
device to another port or attaches multiple devices with the same Vendor ID
and Product ID. The serial number must be different from the serial numbers
in other devices that have the same values in the idVendor, idProduct, and bcd-
Device fields in the device descriptor.

A mass-storage device must have a bulk endpoint for each direction.

Table 7-7: The CSW contains status and related information about a command.
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dCBWSignature 32 The value 53425355h, which identifies the structure as a 
CSW.

dCBWTag 32 The value of the dCBWTag in a CBW received from the 
host.

dCSWDataResidue 32 For OUT transfers, the difference between 
dCBWDataTransferLength and the number of bytes the 
device processed. For IN transfers, the difference between 
dCBWDataTransferLength and the number of bytes the 
device sent.

bCSWStatus 8 00h = command passed
01h = command failed
02h = phase error
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Lockable storage devices have additional descriptors to support the locking
capability.

�	�
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The bulk-only protocol has two defined control requests: Bulk Only Mass Stor-
age Reset (reset the device) and Get Max Lun (get the number of logical units,
or partitions, that the device supports). All other commands and status infor-
mation travel in bulk transfers.

The control/bulk/interrupt (CBI) protocol has one defined control request:
Accept Device-Specific Command (ADSC). The Data stage of the request car-
ries the command. A CBI device can use an interrupt transfer to indicate that
the device has completed a command’s requested action.

Lockable storage devices support additional requests for locking functions.

���


A mass-storage device can use just about any non-low-speed controller chip, but
several manufacturers have controllers designed specifically for use in mass-stor-
age devices. Prolific Technology and Standard Microsystems Corporation
(SMSC) each have chips with interfaces to a variety of mass-storage device
types. Controllers with direct interfaces to ATA/ATAPI devices include
ST-NXP Wireless’ ISP1583, Texas Instruments’ TUSB6250, and Cypress Semi-
conductor’s EZUSB AT2LP. Mass storage will likely be an early application for
SuperSpeed device.

������
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Windows 2000 and later include a driver that supports bulk-only and CBI
devices. The USB storage port driver (usbstor.sys) manages communications
between the lower-level USB drivers and the Windows storage-class drivers.
When a device is formatted using a supported file system, the operating system
assigns a drive letter to the device and the device appears in Windows Explorer.

The mass-storage driver in Windows XP and later supports bInterfaceSubClass
codes 02h, 05h, and 06h. Support for drives with multiple Logical Unit Num-
bers (LUNs) was added in Windows 2000 SP3.

One point of confusion relating to the mass-storage support under Windows is
the difference between removable devices and removable media. All USB drives
are removable devices because they’re easily attached and detached from the PC.
A removable device may have removable or non-removable media. CD and
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DVD drives have removable media. A hard drive has non-removable media
because you can’t easily remove the disk from the drive. Windows Autoplay
applies to devices with removable media. Autoplay enables the operating system
to run a program, play a movie, or perform other actions when a disk or other
removable media is inserted. To support AutoPlay, some devices with
non-removable media emulate devices with removable media.

&����� ��)� ���� ��
The personal healthcare device class encompasses devices that help to maintain
health and wellness, manage disease, and enable independent living for the eld-
erly. Devices in the class include heart-rate and blood-pressure monitors, glu-
cose meters, pulse oximeters, motion sensors, and pill monitors.

(��"���������

The class doesn’t define protocols for data or messaging. Devices may use data
and messaging standards defined in the ISO/IEEE 11073-20601 Base
Exchange Protocol.

'�������

A device may send data that is episodic (at irregular or infrequent intervals) or
continuous. A device may collect and store data before transmitting the data to
the host, and a device may collect data when detached from the host. For exam-
ple, a jogger might wear a monitor while out for a run and upload the data on
returning home. Devices may support host-to-device communications to
receive configuration data and other episodic data from a host.

(�
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The preferred location for the class code is in the interface descriptor, but
declaring the class in the device descriptor is allowed. The function must have
at least one bulk endpoint in each direction. An interrupt IN endpoint and
additional endpoints are optional. 

Several class-specific descriptors provide class-specific information. A PHDC
Class Function descriptor specifies the device’s data and messaging protocols. If
needed, a Function Extension descriptor follows the PHDC Class Function
descriptor. Following each endpoint descriptor is a PHDC QoS descriptor with
attributes that describe the latency and reliability of the data channel. If needed,
a PHDC MetaData descriptor follows the PHDC QoS descriptor to provide
application-specific information.
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Set Feature and Clear Feature requests can turn on and off the class-specific
Meta-Data Message Preamble feature. A Get Status request can request a bit-
map of endpoints that have data.

���


Just about any non-low-speed device can support the required endpoints.
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Windows doesn’t provide a driver for this class.

&������
The printer class is for devices that convert received data into text, images, or
both on paper or other media. The most basic printers print lines of text in a
single font. Most laser and inkjet printers understand one or more page descrip-
tion languages (PDLs) and can print text in any font as well as images.

(��"���������

The USB Printing Devices specification is for printers of all types. The
IEEE-1284 standard (www.ieee.org) describes the interface used by parallel-port
printers and defines the format for the Device IDs that USB printers use.

'�������

Printer data uses a bulk OUT pipe. The host obtains status information via
control requests or an optional bulk IN pipe.

(�
�������


In the interface descriptor, bInterfaceClass = 07h to specify the printer class.

The interface descriptor’s bInterfaceProtocol field contains a value that names a
type of printer interface:

����	�����	
�
�
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01h Unidirectional
02h Bidirectional
03h IEEE-1284.4-compatible Bidirectional
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With all three interface protocols, the host uses the bulk OUT endpoint to send
data to the printer. With the unidirectional protocol, the host retrieves status
information by sending a class-specific Get Port Status request. With the bidi-
rectional protocol, the host can retrieve status information using Get Port Sta-
tus or the bulk IN pipe. This method can provide more detailed information.
The IEEE-1284.4-compatible bidirectional protocol is similar to the bidirec-
tional protocol but with added support to enable communications with indi-
vidual functions in a multifunction peripheral.
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The printer class has three class-specific requests.

In response to a GET_DEVICE_ID request, the device returns a Device ID in
the format specified by the IEEE-1284 standard. The first two bytes of the
Device ID are the length in bytes, most significant byte first. Following the
length is a string containing a series of keys and their values in this format:
key: value {,value};

All Device IDs must contain the keys MANUFACTURER, COMMAND
SET, and MODEL, or their abbreviated forms (MFG, CMD, and MDL). The
COMMAND SET key names any PDLs the printer supports, such as Hewlett
Packard’s Printer Control Language (PCL) or Adobe Postscript. Additional
keys, which may be vendor-defined, are optional.

Here is an example Device ID:
MFG:My Printer Company;

MDL:Model 5T;

CMD:MLC,PCL,PML;

DESCRIPTION:My Printer Company Laser Printer 5T;

CLASS:PRINTER;

REV:1.3.2;

In response to the GET_PORT_STATUS request, the device returns a byte
that emulates the Status-port byte on a parallel printer port. Three bits in the
byte contain status information:

%�� ���� ������9���7 ������9���:

3 Not error no error error
4 Select printer selected printer not selected
5 Paper empty out of paper not out of paper
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A printer that can’t obtain the status byte should respond with 18h to signify no
error, printer selected, not out of paper. Parallel-port printers use two additional
status bits, Busy and Ack, for flow control. These bits don’t apply to USB print-
ers.

On receiving a Soft_Reset request, a device should flush all buffers, reset the
interface’s bulk pipes to their default states, and clear all Stall conditions. In a
Soft_Reset request, the bmRequestType value in the Setup transaction should
equal 21h to signify a class-specific request that is directed to an interface and
has no Data stage. However, version 1.0 of the printer-class specification incor-
rectly listed the bmRequestType for Soft_Reset as 23h. So to be on the safe side,
devices should respond to hosts that use a bmRequestType of 23h with this
request, and hosts should try the incorrect value on receiving a STALL in
response to this request using the correct value.

���


Just about any non-low-speed controller will have the one or two bulk end-
points for a printer function. For converting parallel-port printers to USB, Pro-
lific Technology has the PL-2305 USB-to-IEEE-1284 Bridge Controller. The
chip’s IEEE-1284 parallel port can interface to an existing parallel port on a
printer or other peripheral.

������
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Windows includes drivers that handle tasks for Postscript and non-Postscript
printers. A printer manufacturer can customize a driver for a specific printer by
providing a printer data file, which is a text file with customization informa-
tion. The WDK has information on how to create printer data files.

For application programmers, the .NET Framework 3.0 introduced the Win-
dows Presentation Foundation (WPF) subsystem with enhanced printing sup-
port. 

�� ���� ��
Smart cards are the familiar plastic cards used for phone cards, gift cards, keyless
entry, access to toll roads and mass transit, storing medical and insurance data,
enabling satellite TV receivers, and other applications that require storing mod-
est amounts of information with easy and portable access. Alternate terms for
smart card are chip card and integrated circuits card (ICC).
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Each card contains a module with memory and often a CPU. Many cards allow
updating of their contents, for example to change a monetary value or an entry
code. Some cards have exposed electrical contacts, while others communicate
via embedded antennas.

To access a smart card, you establish a connection to a chip card interface device
(CCID), typically by inserting the card into a slot or waving a contactless card
near a reader with a wireless interface. Another term for CCID is smart-card
reader. (Some CCIDs can also write to cards.) USB enters the picture because
some CCIDs have USB interfaces for communicating with USB hosts. 

An ICC device (ICCD) is a smart card that has its own USB interface and thus
doesn’t need a separate CCID. An ICCD uses a vendor-specific USB connector.
Another term for ICCD is USB-ICC. If you’re thinking that all of these terms
are confusingly alike, you’re not alone. Table 7-8 summarizes.

(��"��������� 

CCIDs and ICCDs each have a specification document: Device Class: Smart
Card CCID and Device Class: Smart Card ICCD. The INCITS/ISO/IEC 7816
standard (available from www.ansi.org) defines physical and electrical character-
istics and commands for communicating with smart cards.

'�������

Every CCID must have a bulk endpoint in each direction. All readers with
removable cards must also have an interrupt IN endpoint.

The host and device exchange messages on the bulk pipes. A CCID message
consists of a 10-byte header followed by message-specific data. The specifica-
tion defines commands that the host can use to send data and status and con-
trol information in messages. Every command requires at least one response
message from the CCID. A response contains a message code and status infor-
mation and may contain additional requested data. The device uses the inter-
rupt endpoint to report errors and the inserting or removal of a card.

An ICCD may have an interrupt IN endpoint, a pair of bulk endpoints, or
both endpoint types or may use the control endpoint only.

(�
�������


In an interface descriptor in a CCID or ICCD, bInterfaceClass = 0Bh to
declare the CCID class. For ICCDs, bInterfaceProtocol specifies a protocol that
indicates what endpoints the device uses. Following the interface descriptor is a
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class-specific CCID Class descriptor with bDescriptorType = 21h. The class
descriptor contains parameters such as the number of slots, slot voltages, sup-
ported protocols, supported clock frequencies and data rates, and maximum
message length. CCIDs and ICCDs use the same class-specific descriptor, but
ICCDs ignore some fields.
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CCIDs have defined control requests for aborting a transfer, getting clock fre-
quencies, and getting data rates. ICCDs can use class-specific requests to trans-
fer data and other information.

���


A CCID can use just about any non-low-speed device controller. Some control-
lers have support for CCID functions built in. Alcor Micro Corporation has
the AU9525 USB smart card reader controller with a full-speed USB interface.
Winbond Electronics Corporation’s W81E381 is an 8052-compatible micro-
controller with USB and smart-card-reader interfaces.

������
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A driver for Windows 2000 and later is available via Windows update. Applica-
tions can use DeviceIoControl API functions to communicate with CCIDs.

�������� 5��� �����
The still image class encompasses cameras that capture still images (in other
words, not video) and scanners. The main job of a typical still-image device’s
USB interface is to transfer image data from the device to the host. Some
devices can receive image data from the host as well. If all you need is a way to

Table 7-8: Smart card terminology can be a challenge to master.
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Smart card
Chip card
ICC

The card.

CCID
Smart card reader

A device that communicates with cards. 
May have a USB interface.

ICCD
USB-ICC

A card, CCID function, and USB interface 
in one device.
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transfer image files from a camera, another option is to use the mass-storage
class.

(��"���������

The still-image class specification uses features and commands from PIMA
15740: 2000 Picture Transfer Protocol (PTP), which describes requirements for
transferring files and controlling digital still cameras. The PIMA document is
available from the International Imaging Industry Association (I3A) at
www.i3a.org.

The USB-IF’s Media Transfer Protocol specification is an extension of the Pic-
ture Transfer Protocol for use with digital cameras and other devices that have
significant storage capacity and fulfill their primary purpose while not con-
nected to the bus. For example, a digital camera stores images, and users typi-
cally attach the camera to the bus only to transfer images.

'�������

A still-image device has one bulk IN endpoint and one bulk OUT endpoint for
transferring both image data and non-image data. The specification also
requires an interrupt IN endpoint for event data.

In the bulk and interrupt pipes, information travels in structures called contain-
ers. The four container types are the Command Block, Data Block, Response
Block, and Event Block. The bulk OUT pipe carries Command and Data
Blocks. The bulk IN pipe carries Data and Response Blocks. The interrupt IN
pipe carries Event Blocks.

On the bulk pipes, the host communicates by using a protocol with three
phases: Command, Data, and Response. A short packet indicates the end of a
phase. In the Command phase, the host sends a Command Block that names
an operation defined in PIMA 15740. The Command Block contains an oper-
ation code that determines if the operation requires a data transfer and if so, the
direction of data transfer. In a data transfer, the data travels in a Data Block in
the Data phase. The first four bytes of the Data Block are the length in bytes of
the data being transferred. Some operations have no Data phase. The final
phase is the Response phase, where the device sends a Response Block contain-
ing completion information.

On the interrupt pipe, an Event Block can contain up to three Event Codes
with status information such as a low-battery warning or a notification that a
memory card has been removed. The Check Device Condition Event Code
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requests the host to send a class-specific Get_Extended_Event_Data request for
more information about an event.

A device using the bulk-only protocol cancels a transfer by stalling the bulk
endpoints. The host then sends a class-specific Get_Device_Status request and
uses the Clear Feature request to clear the stalled endpoints. The host cancels a
transfer by sending a class-specific Cancel_Request request. A device is ready to
resume data transfers when it returns OK (PIMA 15740 Response Code
2001h) in response to a Get_Device_Status request.

(�
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In an interface descriptor, bInterfaceClass = 06h to indicate a still-image device,
bInterfaceSubclass = 01h to indicate an image interface, and bInterfaceProtocol
= 01h to indicate a still-image capture function. The interface must have
descriptors for the bulk IN, bulk OUT, and interrupt IN endpoints.
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The class defines four control requests. Cancel_Request requests to cancel the
PIMA 15740 transaction named in the request. Get_Extended_Event_Data
(optional) requests extended information regarding an event or vendor condi-
tion. Device_Reset_Request requests the device to return to the Idle state. The
host can use this request after a bulk endpoint has returned a STALL or to clear
a vendor-specific condition. Get_Device_Status requests information needed to
clear halted endpoints. The host uses this request after a device has canceled a
data transfer.

���


Just about any non-low-speed USB controller will have the three endpoints
required by the still-image class.
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Recent Windows editions support the Windows Image Acquisition (WIA) API
for communicating with devices in the still-image class. Applications communi-
cate with devices by using ReadFile, WriteFile, and DeviceIoControl com-
mands. The usbscan.sys driver adds USB support to WIA in Windows XP and
later.

Beginning with Windows XP, cameras that use the Picture Transfer Protocol
defined in PIMA 15740 require no vendor-provided driver components,
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though a vendor can provide a minidriver to support vendor-specific features
and capabilities. For scanners, the vendor must provide a microdriver, which is
a helper DLL that translates between the driver’s communications and a lan-
guage the scanner understands, or a minidriver that works with the provided
drivers to enable communications with the device.

Windows 98 and Windows 2000 use an earlier Still Image architecture (STI).
Product vendors must provide a user-mode driver to work with the provided
STI driver.

����� ���4� ��������
The test-and-measurement class (USBTMC) is suited for instrumentation
devices where the data on the bus doesn’t need guaranteed timing. These
devices typically contain components such as ADCs, DACs, sensors, and trans-
ducers. A device may be a stand-alone unit or a card in a larger computer.

Before USB, many test-and-measurement devices used the IEEE-488 parallel
interface, also known as the General Purpose Interface Bus (GPIB). The
USB488 subclass of the test-and-measurement class defines protocols for com-
municating using IEEE 488’s data format and commands.

(��"���������

The class’s specifications include the main Test and Measurement class specifi-
cation and a separate document for the USB488 subclass. The IEEE 488 stan-
dards are available from www.ieee.org.

'�������

A test-and-measurement device requires a bulk OUT endpoint and a bulk IN
endpoint. An interrupt IN endpoint is required for devices in the USB488 sub-
class and otherwise is optional for returning event and status information.

The bulk pipes exchange messages consisting of a header followed by data. The
bulk OUT endpoint receives command messages, and the bulk IN endpoint
sends response messages. The header for a command message contains a mes-
sage ID, a bTag value that identifies the transfer, and message-specific informa-
tion. The header for a response message contains a message ID and bTag values
of the command that prompted the response, followed by message-specific
information. 
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The interface subclass specifies the test-and-measurement function. In the
interface descriptor, bInterfaceClass = FEh to indicate an application-specific
interface and bInterfaceSubClass = 03h to indicate the test-and-measurement
class. There are no class-specific descriptors.
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The class defines eight control requests for controlling and requesting the status
of an interface or transfer and requesting information about the interface’s
attributes and capabilities.

���


Just about any non-low-speed device will have the two or three endpoints this
class requires.
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Windows doesn’t include a driver for this class. National Instruments provides a
driver for use with the company’s hardware. Other options for test-and-mea-
surement devices that use bulk transfers include the mass-storage class, the
WinUSB driver, and vendor-specific drivers. A HID-class device can also per-
form test and measurement functions. For an existing device with an IEEE-488
interface, a quick solution is to use a commercial IEEE-488/USB converter.

8����
The video class supports digital camcorders, webcams, and other devices that
send, receive, or manipulate transient or moving images. The class also supports
transferring still images from video devices.

(��"���������

Multiple documents make up the video specification. The main class specifica-
tion defines standard and class-specific descriptors and class-specific control
requests for video devices. The video media transport terminal specification
defines descriptors and requests for devices such as video cameras and digital
VCRs, which stream data stored in sequential media and may require functions
such as play, record, rewind, and eject. Separate specifications contain informa-
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tion for MJPEG, MPEG2-TS, and DV formats as well as generic frame-based,
stream-based, and uncompressed payloads. 

Other specification documents include a video camera example, an FAQ, and
an Identifiers document that gathers together identifier values defined in the
other video-class specifications.

'�������

Figure 7-3 shows the elements that make up a video function in a USB device.
Every function must have a VideoControl interface, which provides informa-
tion about inputs, outputs, and other components of the function. Most func-
tions also have one or more VideoStreaming interfaces that enable transferring
video data. A Video Interface Collection consists of a VideoControl interface
and its associated VideoStreaming interfaces. A device can have multiple, inde-
pendent VideoControl interfaces and Video Interface Collections.

The VideoControl interface uses the control endpoint and may use an interrupt
IN endpoint. Each VideoStreaming interface has one isochronous or bulk end-
point for video data and an optional bulk endpoint for still-image data.
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The video class defines an extensive set of descriptors that enable devices to pro-
vide detailed information about the device’s abilities. Each Video Interface Col-

Figure 7-3. A video interface consists of a VideoControl interface and zero or 

more VideoStreaming interfaces.
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lection must have an interface association descriptor that specifies the interface
number of the first VideoControl interface and the number of VideoStreaming
interfaces associated with the function.

The VideoControl Interface. The VideoControl interface (Figure 7-4) has a
standard interface descriptor with bInterfaceClass = 0Eh to indicate the video
class. The descriptor’s iInterface field must reference a string descriptor that
contains a function name in U.S. English. (Other languages are optional.) A
class-specific VideoControl interface descriptor consists of a VideoControl
interface header descriptor followed by one or more Terminal and/or Unit
descriptors. 

A Terminal is the starting or ending point for information that flows into or out
of a function. A Terminal may represent a USB endpoint or another compo-

Figure 7-4. The VideoControl interface provides information about inputs, 

outputs, and other components of a video function.
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nent such as a CCD sensor, display module, or composite-video input or out-
put.

A Unit transforms data flowing through a function. A Selector Unit routes a
data stream to an output, a Processing Unit controls video attributes, and an
Extension Unit performs a vendor-defined function. 

If the interface has an interrupt endpoint, the endpoint has a standard endpoint
descriptor followed by a class-specific endpoint descriptor.

The VideoStreaming Interface. Each VideoStreaming interface (Figure 7-5)
has a standard interface descriptor. Following this descriptor, an interface with
an IN endpoint has a class-specific VideoStreaming Input Header descriptor,
and an interface with an OUT endpoint has a class-specific VideoStreaming
Output Header descriptor.

Figure 7-5. A VideoStreaming interface has an endpoint for video data and an 

optional endpoint for still-image data.
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Following the Header descriptor is a Payload Format descriptor for each sup-
ported video format. For frame-based formats, the Payload Format descriptor is
followed by one or more Video Frame descriptors that describe the dimensions
of the video frames and other characteristics specific to a format. Some devices
that support still-image capture have a Still Image Frame descriptor. A Payload
Format can also have a Color Matching descriptor to describe a color profile.
Each VideoStreaming interface has one isochronous or bulk endpoint descrip-
tor for video data and an optional bulk endpoint descriptor for still-image data.

�	�
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Class-specific control requests enable setting and reading the states of controls
in VideoControl and VideoStreaming interfaces.

���


Video tends to require a lot of bus bandwidth, so controllers used in video
applications are likely to support high speed. Vista Imaging’s ViCAM-III chip
contains a USB controller and a programmable digital imaging engine that sup-
ports video functions. Cypress Semiconductor has partnered with other compa-
nies to offer reference designs that use EZ-USB controllers in various video
applications. Video will likely be an early application for SuperSpeed chips.

������
�#"�����

Windows XP SP2 introduced a driver compatible with the video class version
1.0 (usbvideo.sys). Vendors of video-class devices that use the driver don’t need
to provide any driver software but can provide a Control or Streaming exten-
sion to support vendor-specific functions or features.

Applications can access video devices using the DirectShow component of
DirectX. DirectX version 9.2 added support for the usbvideo.sys driver.

For earlier Windows editions, vendors of video devices must provide a minid-
river to specify a format for streaming video, implement device-specific func-
tions and properties, and perform bulk transfers if required for video data. The
Windows USBCAMD driver manages isochronous data transfers, including
synchronizing, starting, and stopping the communications and recovering from
errors. The driver communicates with the Windows stream-class driver and
with the lower-level USB drivers.
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Some devices perform functions that don’t have an obvious match to a USB
class. Other functions might fit into a class such as test and measurement or
device firmware upgrade, but the lack of a driver in Windows and other operat-
ing systems might prompt one to look for a different approach. Many legacy
serial- and parallel-port devices perform vendor-specific functions and need to
convert to USB. Another function that doesn’t fit a defined class is host-to-host
communications. USB is flexible enough to accommodate all of these needs.

�������!�������	�
Class drivers that are suitable for some devices with vendor-defined functions
include HID, communications device, and mass storage. HIDs are limited to
control and interrupt transfers but can transfer data for any purpose. A virtual
COM port in the communications device class can exchange data in bulk trans-
fers. Mass storage is an option for devices that transfer data in files if the host
and device support the same file system.

For standard but unsupported classes such as test and measurement and device
firmware upgrade, you might be able to obtain a class driver from a third party.

����!����	�	�� �����	�
A generic driver can be a solution for devices that don’t fit a standard class.
Generic drivers typically enable applications to request control, interrupt, bulk,
and isochronous transfers using a driver-specific API. 

Microsoft’s WinUSB driver is an option if the host systems use Windows XP
and later and the device doesn’t use isochronous transfers. Chapter 14 has more
about WinUSB. Other sources offer generic drivers that have more capabilities
and are compatible with earlier Windows editions. Vendors include Andrew
Pargeter & Associates, Jungo Ltd., Tetradyne Software, Inc., and Thesycon Sys-
temsoftware & Consulting GmbH. Many of these drivers are in toolkits that
generate the required INF file and include example application code. As Chap-
ter 6 explained, some chip companies also provide generic drivers for use with
their chips.
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The RS-232 serial port was a feature on the very first PCs and persisted for
many years on PCs and peripherals. Just about any device that uses RS-232 can
use USB instead. There are several approaches to making the switch.

Some RS-232 devices fit into a defined USB class. The communications device
class includes modems. The HID class provides usages for pointing devices,
uninterruptible power supplies, and point-of-sale devices.

For many other devices, FTDI Chip’s FT232R USB UART introduced in
Chapter 6 provides a quick way to upgrade a design to USB. The chip can con-
vert an existing RS-232 device to USB with minimal design changes and in
most cases no changes to host software or device firmware.

Figure 7-6 shows an example. A typical device with an RS-232 interface con-
tains a UART that converts between the serial data used in RS-232 communi-
cations and the parallel data the CPU uses. The signals on the line side of the
UART connect to converters that translate between RS-232 voltages and the
5V logic used by the UART. The line side of the converter connects to a cable
to the remote computer with an RS-232 interface. To convert from RS-232 to
USB, you replace the RS-232 converter with an FT232R. On the host com-
puter, FTDI Chip’s Virtual COM port driver enables applications to access the
device using the same functions used for RS-232 communications. 

Many RS-232/USB adapter modules contain little more than an FT232R or
similar chip, an RS-232 interface chip, and connectors for RS-232 and USB.
An RS-232 device with an external adapter gives users the choice of using USB
or RS-232.

When using a USB/RS-232 adapter, devices that use the status and control sig-
nals in unconventional ways and with critical timing requirements may require
modifications to device hardware or firmware or application software.

���������5�"��������& � �����&���
Another port that PCs had from the beginning was the parallel port, which
many devices besides printers used. For parallel-port printers, adapter modules
are available to enable connecting to a PC via USB.

Devices with other functions may require redesigning for USB. The device
might use the WinUSB driver or a generic or custom driver. The device will
need new application software to communicate with the driver. A periph-
eral-side parallel-port interface has 8 bidirectional data pins, 5 status outputs,
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and 4 control inputs. Thus a USB controller with 17 I/O bits can emulate a
parallel port. The device will need vendor-specific firmware to translate
between the USB and parallel-port data, plus a host driver and new application
software.

&�9��9&���������� �����
With one exception, USB doesn’t allow hosts to exchange data with each other
directly. Every USB communication must be between a host and a device. Yet

Figure 7-6. FTDI’s FT232R USB UART can convert devices with RS-232 

interfaces to USB. A driver provided by FTDI causes the device to appear as a 

COM-port device to host applications.
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because every PC has a USB port, some applications might want to use the
interface to communicate between PCs.

If both PCs have Ethernet ports, the cheapest solution is to forget about USB
and use Ethernet. Use a crossover cable to connect the PCs directly or connect
the PCs via a hub or router.

If Ethernet ports aren’t an option, a USB host-to-host bridge cable can do the
job. The cable incorporates two USB device controllers (which may reside in a
single chip). Each controller represents a USB device. Each device attaches to a
different PC, and the devices exchange data via a shared buffer (Figure 7-7).
When a PC sends data to its attached device, the device writes the data to the
shared buffer. The other device in the bridge retrieves the data from the buffer
and sends it on to its attached PC.

Prolific Technology’s PL-2501 Hi-Speed USB Host to Host Bridge Controller
is a single chip designed for this type of host-to-host application. The chip con-
tains an 8032 microcontroller and two USB SIEs that access a common buffer.
Typically, the drivers for bridge cables cause each PC to see the other as a net-
work-connected computer.

Another way to achieve a network connection via USB is to use USB/Ethernet
adapters.

Figure 7-7. To enable two USB hosts to communicate with each other, two USB 

serial interface engines can share a buffer. Each SIE copies received USB data 

into the shared buffer, and the other device retrieves the data from the buffer 

and sends the data to the other host.
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An alternate approach for host-to-host communications is to use two FTDI
FT232R USB UARTs and cross-connect the asynchronous interfaces in a
null-modem configuration. Each PC then has a COM port that communicates
with a COM port on the other PC. 

The exception to the host-and-device rule is the USB 3.0 Standard-A to USB
3.0 Standard-A cable. With host driver support, SuperSpeed devices will be able
to use this cable to communicate with each other. Chapter 19 has more about
the cable.
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This chapter explains how a Windows PC manages communications with USB
devices. The driver architecture described applies to Windows XP and Win-
dows Vista, but much of the information also applies to other Windows edi-
tions.

�� ������� ��

A device driver is a software component that enables applications to access a
hardware device. The hardware device may be a printer, modem, keyboard,
video display, data-acquisition unit, or just about anything controlled by cir-
cuits the CPU can access. Most USB devices are external devices that connect
via cables (or wireless links). Some USB devices, such as fingerprint scanners,
are in the box with the CPU. 

���+	%�������� ���4����
USB communications under Windows use a layered driver model where each
driver in a series, or stack, performs a portion of the communication task. At
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the top of the stack is a client driver that the operating system has assigned to
the device. Another term for client driver is function driver. USB class drivers
and vendor-specific device drivers are client drivers. Applications access a USB
device by communicating with the client driver. The client driver in turn com-
municates with lower-level bus and port drivers that access the hardware. One
or more filter drivers can supplement a client driver or bus driver. 

Dividing communications into layers is efficient because devices that have tasks
in common can use the same driver for those tasks. For example, it makes sense
to have one set of drivers that handle tasks common to all USB devices. An
operating system can provide these drivers so device vendors don’t have to do so
with much duplication of effort.

����� ���C������4����
Under Windows, program code runs in either user mode or kernel mode. Each
mode allows a different level of privilege in accessing memory and other system
resources. Figure 8-1 shows the major components of user and kernel modes in
USB communications. Applications run in user mode. A USB device must have
a kernel-mode client driver, which can have a supplementary user-mode driver. 

User mode has limited access to memory and other system resources. Applica-
tions and user-mode client drivers can’t access memory that the operating sys-
tem has designated as protected. Limiting access to memory in this way enables
the PC to run multiple applications at the same time. If an application crashes,
other applications shouldn’t be affected.

Kernel-mode code has unrestricted access to system resources, including the
ability to execute memory-management instructions and control access to I/O
ports. A kernel-mode driver can allow any application to use a device or allow a
single application to have exclusive use. Other abilities that Windows reserves
for kernel-mode drivers include DMA transfers and responding to hardware
interrupts.

The specifics vary with the driver, but in general, ways that applications may
communicate with kernel-mode drivers include Windows API functions, other
functions exposed by a user-mode driver, and the properties, methods, and
events of classes defined by the .NET Framework. To communicate with a USB
device, an application often doesn’t have to know anything about the USB pro-
tocol or whether a device uses USB at all. 

Kernel-mode drivers communicate using structures called I/O request packets
(IRPs) supported by the operating system. Each IRP requests a single input or
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output action. A kernel-mode client driver for a USB device uses IRPs to com-
municate with the bus drivers that handle USB communications.

Drivers create device objects to handle I/O requests. A DEVICE_OBJECT
structure represents the device object. A physical device object (PDO) repre-
sents a device to a bus driver. A functional device object (FDO) represents a
device to a client driver. A filter device object (filter DO) represents a device to
a filter driver.

The Windows PnP manager requests the bus driver to create a PDO for each
device on a bus. For each PDO, the PnP manager may load and call client and
filter drivers that in turn create FDOs and filter DOs. 

�#����	���	�)� 	��
The components involved in accessing USB devices include applications,
user-mode client drivers, kernel-mode client drivers, and bus drivers.

Figure 8-1. USB uses a layered driver model under Windows, with separate 

drivers for devices and the buses they connect to.
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Before an application can communicate with a device, several things must hap-
pen. On power up or device attachment, the operating system enumerates the
device as described in Chapter 4. To identify which driver to use, Windows
compares the retrieved descriptors with the information in the system’s INF
files. Chapter 9 has more about INF files. When enumeration is complete and
the driver is loaded, applications can access the device.

Some drivers cause the host to continuously request data from a device whether
or not an application has requested data. For example, a host requests keypress
data at intervals from a keyboard.

/��������
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Applications written in Visual Basic, C and its variants, Delphi, and other lan-
guages can access many devices by calling Windows API functions. The sup-
ported functions vary with the driver, but an application typically opens
communications with CreateFile, exchanges data using a combination of Read-
File or ReadFileEx, WriteFile or WriteFileEx, and DeviceIoControl, and closes
communications with CloseHandle. Microsoft’s Windows Software Develop-
ment Kit (SDK) documents these functions.

Although the names suggest that the functions are for use with files, ReadFile
and WriteFile (and their variants ReadFileEx and WriteFileEx) can communi-
cate with drivers that access many device types via handle-based operations.
The function calls pass pointers to buffers to store data being read or data to be
written. Depending on the driver, a call to ReadFile might request data from a
device or return data that a driver has already requested and stored in the
driver’s buffer.

DeviceIoControl offers another way to transfer data. Included in each Device-
IoControl request is a control code that identifies a specific command. For
example, IOCTL_STORAGE_GET_MEDIA_TYPES requests the types of
media a mass-storage device supports. Because a function call sends codes to a
specific driver, multiple drivers can use the same codes.

�
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For easier and safer programming, Microsoft’s .NET Framework provides
classes that eliminate the need to call many API functions from application
code. Instead, applications communicate with a Common Language Runtime
(CLR) component that in turn may call API functions. The CLR simplifies
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application programming by handling memory management and other
low-level tasks. For example, instead of using ReadFile and WriteFile to access
files on drives, applications can use methods in .NET’s Directory and File
classes. The CLR works with other components in the .NET Framework to
translate the application code to API calls that access the files.

The .NET classes don’t implement every API function, however. For example,
.NET doesn’t provide methods for detecting device attachment and removal via
WM_DEVICECHANGE messages.

����9�������������������
A user-mode client driver can define a driver-specific API that applications can
use to access devices. The driver is in a dynamic link library (DLL). An example
of a user-mode USB driver is winusb.dll, which exposes routines for accessing
devices that use the WinUSB kernel-mode driver. These routines make up the
WinUSB API. In a similar way, hid.dll is a user-mode driver that exposes HID
API routines for accessing devices that use the HID kernel-mode class driver.

A user-mode driver translates between the driver-defined functions and the
Windows API. For example, when an application calls the Hid_GetFeature API
function, the user-mode HID driver calls the DeviceIoControl API function,
which causes the kernel-mode HID driver to request a HID Feature report
from a device.

C�����9�������������������
A kernel-mode client driver manages communications between user-mode code
and lower-level USB drivers. Kernel-mode client drivers must conform to the
Windows Driver Model (WDM) defined by Microsoft for use under Windows
98 and later. These drivers have the extension .sys. (Other driver types may also
use this extension.) Examples of kernel-mode client drivers are winusb.sys
(WinUSB) and hidclass.sys (HID).

A kernel-mode client driver can be a class driver included with Windows or a
vendor-provided driver. The driver manages communications that are specific
to a device or a class of devices. A class driver may also communicate with a
miniclass driver that manages communications with a subset of devices in a
class.

A client driver or miniclass driver can have one or more upper and lower filter
drivers (Figure 8-2). An upper-level filter driver can monitor and modify com-
munications between applications and a client driver. A lower-level filter driver
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can monitor and modify communications between a client driver and the bus
drivers.

For some composite devices, Windows loads a USB common-class generic par-
ent driver (usbccgp.sys) between the bus drivers and the client drivers for the
device’s interfaces. The generic parent driver handles synchronization,
Plug-and-Play (PnP), and power-management functions for the device as a
whole and manages communications between the lower-level USB drivers and
client drivers for the composite device’s interfaces.

User-mode programmers have a choice of programming languages, including
Visual Basic, Delphi, and C/C++/C#. For kernel-mode drivers, C has the
needed capabilities, including portability to multiple Windows platforms. The
WDK provides C header files that define data types and constants for drivers to
use. While C++ is feasible for some kernel-mode drivers, Microsoft documents
problems and risks with using C++.

USB communications use IRPs that contain structures called USB Request
Blocks (URBs). The URBs enable a driver to configure devices and transfer
data. The WDK documents the URBs. A kernel-mode client driver requests a
transfer by creating an URB and submitting it in an IRP to a lower-level driver.
The bus and host-controller drivers handle the details of scheduling transac-
tions on the bus. For interrupt and isochronous transfers, if there is no out-

Figure 8-2. A client driver can have one or more filter drivers that monitor or 

modify communications with devices.
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standing IRP for an endpoint when its scheduled time comes up, the host
controller skips the transaction.

In USB communications, an URB requests a USB transfer that can consist of
one or more transactions. The lower-level drivers schedule the transfer’s transac-
tions without requiring further communications with the client driver.

If you’re using an existing client driver (rather than writing your own), you need
to understand how to access the driver’s application-level interface, but you
don’t have to concern yourself with IRPs and URBs. If you’re writing a client
driver, you need to provide the IRPs that communicate with the system’s USB
drivers.

���� ���)���9������������������
The lower-level USB drivers consist of the hub, or bus, driver, the host-control-
ler driver, and one or more miniport drivers (Figure 8-3). The hub driver (usb-
hub.sys) identifies devices on the bus, creates device objects for the devices, and
acts as a client driver for the bus as a whole. The host-controller driver consists
of a port driver (usbport.sys) that manages tasks that are common to all host
controllers plus one or more miniport drivers that each manage communica-
tions with a specific type of host-controller hardware.

Windows provides the hub and host-controller drivers. Application and
device-driver writers don’t have to know the details about how they work, and
Microsoft provides little documentation for these drivers. If you want to know

Figure 8-3. USB communications under Windows involve a hub, or bus, driver, a 

host controller driver, and a driver for each host-controller type.
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more about how to implement low-level communications, one source of infor-
mation is the source code and other documentation from the Linux USB
Project.

.�
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To access low- and full-speed devices, a USB 1.x or USB 2.0 host can use a con-
troller that conforms to the Open Host Controller Interface (OHCI) standard
or the Universal Host Controller Interface (UHCI) standard. To access
high-speed devices, a USB 2.0 host uses a host controller that conforms to the
Enhanced Host Controller Interface (EHCI) standard. USB 3.0 hosts use a sin-
gle Extensible Host Controller Interface (xHCI) controller for all speeds. The
USB-IF’s website has links to the specifications.

For information about which host-controller types are in a PC, in Windows
Device Manager, look under Universal Serial Bus controllers. To view a driver’s
name, right-click a host controller’s entry and select Properties > Driver >
Driver Details. One of the drivers listed should have ohci, uhci, or ehci in the
name. Chapter 9 has more about the Device Manager. 
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OHCI and UHCI controllers both provide a way for the low- and full-speed
USB hardware to communicate with higher-level drivers, but each takes a dif-
ferent approach. UHCI places more of the communications burden on software
and thus can use simpler, cheaper hardware. OHCI places more of the burden
on the hardware and allows simpler software control. UHCI was developed by
Intel, and OHCI was developed by Compaq, Microsoft, and National Semi-
conductor. Motherboards tend to have UHCI controllers, and expansion cards
tend to have OHCI controllers.

The differences between host controllers should be transparent to driver devel-
opers and application programmers. Both controller types comply fully with
the USB specification. Their performance can differ, however. Developers
shouldn’t assume a device works fine based on tests with one host-controller
type. 

An OHCI controller can schedule more than one stage of a control transfer in a
single frame, while a UHCI controller always schedules each stage in a different
frame. For bulk endpoints with a maximum packet size less than 64 bytes, a
UHCI driver attempts no more than one transaction per frame, while an
OHCI driver may schedule additional transactions in a frame. An OHCI con-
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troller will poll an interrupt endpoint at least once every 32 ms even if the end-
point descriptor requests a maximum latency of 255 ms, while UHCI
controllers can, but don’t have to, support less-frequent polling.

Developers who use UHCI hosts are sometimes surprised when their devices
fail when connected to an OHCI host. The failure occurs because the device
isn’t expecting to see multiple stages of a control transfer in a frame. Every
device should work with both controller types.

#"������� ��"	���	��#����


An EHCI controller handles high-speed communications only. The EHCI
specification says that a host that supports EHCI must also support low and full
speeds except for the unusual situation where every port has a permanently
attached high-speed device. To support low and full speeds, the host must have
a companion OHCI or UHCI host controller or a USB 2.0-compliant hub,
which performs the function of a host controller for low- and full-speed devices.
Just about every PC with an EHCI controller has a companion OHCI or
UHCI controller that shares the bus.

In general, users and application programmers don’t have to know or care
which host controller is communicating with a device. To ensure the best per-
formance, Windows warns if the system has high-speed-capable ports and a
user attaches a high-speed-capable device to a port that doesn’t support high
speed.

*�����!���� 	��
To support vendor-specific functions, a device can use a vendor-specific ker-
nel-mode driver or a vendor-specific user-mode driver that communicates with
a kernel-mode driver provided by the operating system or a vendor.

Writing drivers has long been an arcane and difficult art. To help ease the pro-
cess, Microsoft provides the Windows Driver Foundation (WDF) framework
for WDM drivers. When developing a WDF driver, you start with a function-
ing driver that provides default processing for PnP, power-management, and
device I/O events. To support device-specific behavior, you add code that over-
rides the default processing. The framework hides much of the driver’s com-
plexity and results in a more stable product.

This section will help you decide whether you need a device-specific driver and
if so, how to get started. For a detailed guide to driver writing, see the WDK
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documentation and examples and the book Developing Drivers with the Win-
dows Driver Foundation by Penny Orwick and Guy Smith (Microsoft Press).

C�����9������������
Writing a kernel-mode client driver requires the WDK, which includes a C
compiler, a linker, build utilities, and documentation including example source
code.

Kernel-mode drivers for Windows 2000 and later can use the Kernel-Mode
Driver Framework (KMDF) library included in the WDK for Windows Vista
and later. The KMDF isolates the driver code from the details of creating and
passing IRPs and managing PnP and power functions. 

A KMDF driver creates a framework driver object to represent the driver and a
framework device object for each device. Instead of creating and passing IRPs,
KMDF drivers perform driver functions via properties, methods, and events of
the framework device objects. Instead of handling PnP and power management
directly, the framework manages these functions with callback functions pro-
viding event notifications as needed.

The framework defines additional object types to represent resources that driv-
ers can use. USB communications use objects that represent USB devices, inter-
faces, and pipes. Other framework objects can represent files, timers, strings,
and other resources.

����9������������
User-mode drivers for Windows XP and Windows Vista can use the
User-Mode Driver Framework (UMDF) library included in the WDK for
Windows Vista and later. UMDF drivers communicate via the Windows API
instead of kernel-mode functions. Developers of UMDF drivers can program in
C++ and debug with user-mode debuggers.

An example of an application that might use a UMDF driver is a device that
uses the WinUSB kernel-mode driver but needs to support multiple open han-
dles to a device interface. The user-mode WinUSB driver component limits
interfaces to one open handle at a time, while a vendor-provided UMDF driver
can allow multiple open handles.

������5������
The WDK’s Device Simulation Framework (DSF) can help with driver testing.
The framework can simulate an EHCI host controller and devices in software.
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Instead of having to attach a physical device to a physical bus for testing, you
can use a simulated host controller and device.

����!�#�#��
A Globally Unique Identifier (GUID) is a 128-bit value that uniquely identifies
a class or other entity. Windows uses GUIDs in identifying two types of device
classes. A device setup GUID identifies a device setup class, which encompasses
devices that Windows installs in the same way. A device interface GUID identi-
fies a device interface class, which provides a mechanism for applications to
communicate with a driver assigned to devices in the class. In many cases,
devices that belong to a particular device setup class also belong to the same
device interface class. Some SetupDi_ API functions accept either type of
GUID. But each type of GUID provides access to different types of informa-
tion used for different purposes.

The conventional format divides the GUID into five sets of hex characters with
the sets separated by hyphens. 

This is the GUID for the HIDCLASS device setup class:
745a17a0-74d3-11d0-b6fe-00a0c90f57da

This is the GUID for the HID device interface class:
4d1e55b2-f16f-11cf-88cb-001111000030

Driver writers and others who need to provide a custom GUID can generate
one using the guidgen utility provided with Visual Studio and also available as a
free download from Microsoft. The utility uses an algorithm that makes it
extremely unlikely that someone else will create an identical GUID. To create a
GUID in Visual Studio Professional edition or better, select Tools > Create
GUID.

�������������#�#��
A device setup GUID identifies devices that Windows sets up and configures in
the same way and using the same class installer and co-installers. The system file
devguid.h defines device setup GUIDs for many classes. The WDK provides the
file.

Most devices should use a device setup class that corresponds to the device’s
function, such as printer or disk drive. A single device can belong to multiple
setup classes, such as HID and mouse. The USB class is appropriate for USB
hosts and hubs and other devices whose installation and configuration require-
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ments or capabilities don’t fit another class. A vendor-specific class is another
option for such devices, but Microsoft discourages creating vendor-specific
classes.

Each device setup GUID corresponds to a Class key in the system registry. Each
Class key has a subkey for each instance of a device in the class. Chapter 9 has
more about Class keys.

Applications can use device setup GUIDs to retrieve information and perform
various installation functions on devices. The devcon example in the WDK
shows how to use device setup GUIDs to detect and retrieve information about
devices and perform functions such as enabling, disabling, restarting, updating
drivers for, and removing devices. These functions are the same as those per-
formed by the Device Manager.
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A class or device driver can register one or more device interface classes to
enable applications to learn about and communicate with devices that use the
driver. Each device interface class has a device interface GUID.

Using a device interface GUID and SetupDi_ functions, an application can
find all attached devices in a device interface class. On detecting a device, the
application can obtain a device path name to pass to the CreateFile function.
CreateFile returns a handle that the application can use to access the device.
Applications can also use device interface GUIDs to request to be notified when
a device is attached or removed. Chapter 10 has more about using GUIDs for
this purpose.

Unlike device setup GUIDs, device interface GUIDs aren’t stored in one file. A
driver package may include a C header file or a Visual Basic or a Visual C# vari-
able or constant that defines a device interface GUID. An application that uses
the WinUSB driver can define a GUID for accessing a specific device. For the
HID class,  applications can retrieve the GUID with the function
HidD_GetHidGuid.

Device interface GUIDs are useful for finding devices that use the WinUSB
driver, devices with vendor-specific drivers, and HID-class devices that perform
vendor-specific functions.

For many other devices that perform standard peripheral functions, applica-
tions have other ways to find and gain access to devices. For example, to access
a drive, the .NET Framework’s Directory class includes a GetLogicalDrives
method that enables applications to find all of the logical drives on a system
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(whether or not they use USB). A vendor-specific driver can also define an API
to enable applications to access devices without having to provide a GUID.

Some older drivers define a symbolic link for each device they control. For
example, the first device attached might be \\.\mydevice0, followed by
\\.\mydevice1, \\.\mydevice2, and so on up as needed. Applications access these
devices using the symbolic links instead of device interface GUIDs.
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On detecting a newly attached USB device, the operating system needs to
decide what driver to assign to the device. This chapter shows how Windows
uses INF files to select a driver and how the Device Manager and system regis-
try store information about devices and their drivers. The information in this
chapter applies to Windows XP through Windows Vista with some comments
on earlier Windows editions.

����%�����������$	�	%��
The Windows Device Manager displays information about all installed devices
and presents a user interface for enabling, disabling, and uninstalling devices
and updating or changing a device’s assigned driver. For developers, the Device
Manager is useful for viewing the driver assigned to a device and for providing a
user interface for making Window forget what it knows about a device and start
fresh.
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To view the Device Manager, right-click Computer, click Manage, and in the
Computer Management pane, select Device Manager. Or from Start, select Set-
tings > Control Panel > System > Hardware > Device Manager. Or save clicks
by creating a shortcut to the file devmgmt.msc in Windows\System32.

The Device Manager’s View menu offers options for viewing device informa-
tion. Viewing devices by connection (Figure 9-1) shows the physical connec-
tions from each host controller and root hub, through any additional hubs, to
the attached devices. To view information about a device, including its driver(s)
and any problem the operating system has detected with the device, right-click
the device’s listing and select Properties (Figure 9-2).

Viewing devices by type (Figure 9-3) groups devices according to their func-
tions with little regard to hardware interface. The USB class lists host control-
lers and hubs. A device with a vendor-specific driver can define its own class or
use the USB class.

Figure 9-1. Viewing devices by connection in the Device Manager shows which 

devices connect to which hubs and host controllers.
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By default, the Device Manager shows only attached USB devices. To view
devices that have been removed but whose drivers are still installed, set the fol-
lowing system environment variable:

DEVMGR_SHOW_NONPRESENT_DEVICES=1

To set the variable, in the Windows Control Panel, select System > Advanced >
Environment Variables, enter the variable’s name, and set its value. Then in
Device Manager, click View and check the option to Show Hidden Devices.
You may need to reboot after setting the environment variable.

&������%�& 5��
Each listing in the Device Manager has property pages that provide additional
information about a device and an interface for configuring the device and its
driver. To view the property pages, double-click the device’s entry. You can
request to enable or disable the device or view, update, roll back, or uninstall
the device’s driver. A Details page provides additional information, including

Figure 9-2. Device Manager’s Properties screens provide more information 

about a device, including what driver the operating system has assigned to the 

device.
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various system IDs, any filter drivers or coinstallers the device uses, and power
capabilities. For example, the Device Instance ID contains the device’s Vendor
ID (VID) and Product ID (PID). A driver can provide custom property pages
when needed.

�	 � 	�#�!��������������	��	!���� 
The system registry is a database that Windows maintains for storing critical
information about the hardware and software installed on a system. The regis-
try stores information about devices that have been installed, including devices
not currently attached. After enumerating a new device, Windows stores infor-
mation about the device in the registry. The registry obtains some of its infor-
mation from the bus drivers, which in turn obtain the information from the
devices. Other information is from the INF file that the operating system
selects when assigning a driver to a device.

You can view the registry’s contents using Windows’ regedit utility (Start > Run
> regedit). You can also use regedit to edit the registry’s contents, but making

Figure 9-3. Device Manager also has an option to view devices grouped by type, 

or function.
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registry changes this way isn’t recommended and is seldom necessary. The Win-
dows SDK documents API functions that enable applications to read and write
to the registry. Device installation adds or changes device information in the
registry. A request to uninstall a device via the Device Manager or another
application also results in registry changes.

The system registry is so important that Windows maintains multiple backup
copies in case the current copy becomes unusable. Windows’ System Restore
utility can restore the registry to an earlier state.

The registry’s data has a tree structure. Each node on the tree is a registry key.
Each key can have entries with assigned values and subkeys that in turn may
have entries and subkeys. Information about the system’s hardware and installed
software is under the HKEY_LOCAL_MACHINE key. Information about
USB devices is under several subkeys: the hardware key, the class key, the driver
key, and the service key.

����) ��* ���C�%
The hardware key, also called the instance key or device key, stores information
about an instance of a specific device. Hardware keys are under the enumerator
(Enum) key:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Enum

Under the Enum key is a USB key. Each subkey of the USB key contains the
Vendor ID and Product ID of a USB device. Figure 9-4 shows the entry for a
device with a Vendor ID of 0925h and Product ID or 1234h. Under each of
these keys may be one or more hardware keys, with each hardware key identify-
ing an instance of the device. Table 9-1 lists some of the entries under the hard-
ware key.

A device without a USB serial number gets a new hardware key every time the
device attaches to a port the device hasn’t been attached to previously. If you
physically remove the device from the bus and attach a different device with
identical descriptors to the same port, the operating system doesn’t know the
difference and thus doesn’t create a new hardware key. Devices with USB serial
numbers have one hardware key per physical device without regard to what port
the device attaches to.

A USB device may also have one or more keys for additional enumerators such
as HID, USBPRINT, and USBSTOR. For example, a UPS back-up device
with a HID interface can have a key in the Enum\USB branch for the HidUsb
service and a key in the Enum\HID branch for the HidBatt service.
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Figure 9-4. A hardware key contains information about an instance of a device 

with a specific Vendor ID and Product ID.

Table 9-1: These are some of the entries in a USB device’s hardware key.
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Class Name of the device’s setup class INF file (from devguid.h)
ClassGUID GUID of the device’s setup class INF file (from devguid.h)
DeviceDesc Device Description INF file, Models section, 

device description entry
HardwareID ID string containing the device’s Vendor 

ID and Product ID
Device descriptor

CompatibleIDs ID string(s) containing the device’s class 
and (optional) subclass and protocol

Device and interface descriptors

Mfg Device manufacturer INF file, Manufacturer section, 
manufacturer name entry

Driver Name of the device’s driver key System registry, under 
CurrentControlSet\Control\Class

Location 
Information

“USB Device” or iProduct string Bus driver or string descriptor

Service Name of the device’s Service key System registry under 
HKLM\System\
CurrentControlSet\Services
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The class key stores information about a device setup class and the devices that
belong to it. The class keys are under this registry key:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Class

The name of a class key is the device setup GUID for the class and is the same
as the value stored in the hardware key for devices in the class, under Class-
GUID. Figure 9-5 shows the class key for the HID class. The class key contains
a friendly name for the setup class, the class name from the header file that
defines the GUID, and an index value that specifies the icon to use in the
Device Manager and other windows that display setup information. Applica-
tions can retrieve the index of the mini-icon for a class by calling Setup-
DiGetClassBitmapIndex. A vendor-specific class installer or co-installer can
provide a vendor-specific icon.    

Optional entries in the class key can affect what users see on device installation.
If NoInstallClass is present and not equal to zero, users will never need to man-
ually install devices in the class. If SilentInstall is present and not equal to zero,
the PnP manager will install devices in the class without displaying dialog boxes
or requiring user interaction. If NoDisplayClass is present and not equal to
zero, the Device Manager doesn’t display the class’s devices.

UpperFilters and LowerFilters entries can specify upper filter and lower filter
drivers that apply to all devices in the class.

Figure 9-5. The class key for the HID class includes a friendly name for the class 

and an index to an icon.
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Table 9-2: The driver key contains information about the driver assigned to a 

device.
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DriverDate Date of the driver file INF file, Version section, 
DriverVer directive

DriverDesc Driver description INF file
DriverVer Driver version INF file, Version section, 

DriverVer directive
InfPath Name of INF file INF file name
InfSection Name of the driver’s DDInstall 

section
INF file

InfSectionExt “Decorated” extension used in INF 
file (.NT, etc.)

INF file

MatchingDeviceID The hardware or compatible ID used 
to assign the driver

Device descriptor and INF file

ProviderName The provider of the driver INF file, Provider string

Figure 9-6. The driver keys under each class key have information about the 

drivers assigned to instances of devices in the class.
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Under the class key, each device in a class has a driver key, also called a software
key. In the hardware key for a device instance, the Driver entry names a device
setup GUID that matches a class key and a device instance number that
matches a driver subkey under the class key. Figure 9-6 shows the key for a
generic HID-class device. Table 9-2 lists some of the entries for a driver key.

The driver key contains the name of the INF file that in turn names the device’s
driver files. 

������������C�%
A service key has information about a driver’s files, including where they are
and how to load them. Service keys are in this branch:
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services

Service keys exist for each host controller type, hubs, classes such as storage
(USBSTOR) and printers (USBPRINT), and HID functions (HidBatt, Hid-
Serv, HidUsb). Figure 9-7 shows the Service key for HidUsb.

#������#%"�"����
A device-setup information file, or INF file, is a text file that contains informa-
tion about one or more devices in a device setup class. The devices can be from

Figure 9-7. The service key names a driver’s file.
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one or more companies. The file tells system Setup components what driver or
drivers to use and contains information to store in the registry. Windows
includes INF files for the drivers provided with the operating system. The files
are in the %windir%\inf folder. The operating system copies any new INF files
for user-added devices to this folder. 

By default, the INF folder is hidden. If you don’t see it in Windows Explorer,
select Tools > Folder Options > View, then under Hidden Files, select Show hid-
den files and folders. Do not select Hide file extensions for known file types.

On first attachment, after retrieving descriptors from a USB device, Windows
looks for a match between the information in the descriptors and the informa-
tion in the system’s INF files.

The WDK has a detailed reference on INF files and many examples. Often you
can begin with an example and customize it as needed. Listing 9-1 shows an
INF file for a device that uses the WinUSB driver.

���������� ����%�� �
The contents of an INF file follow these rules.

• The information is arranged in sections, with each section containing one
or more items. The section name is in square brackets [ ]. Some of the sec-
tions (Version, Manufacturer) are standard sections that every INF file con-
tains. Other sections have names defined in other sections. For example,
the CopyFiles directive defines a section that contains names of files for the
installation process to copy. The sections can be in any order, but the order
of the items within a section can be critical.

• A semicolon (;) indicates a comment.

• Text enclosed in percent symbols (%sampletext%) is a token that refers to a
string. For example, you might have the following item:

DisplayName = %WinUSB_SvcDesc%

     with an item in the Strings section that defines the string:

WinUSB_SvcDesc="WinUSB Demo"

• Windows defines Dirid values that can refer to system paths. The value for
the Windows directory (typically \Windows) is 10. Other ways to represent
the Windows directory are the environment variables %windir% and %Sys-
temRoot%. The System directory (%windir%\system32) is 11. The Drivers
directory (%windir%\system32\drivers) is 12.
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[Version]

Signature = "$Windows NT$"

Class = USB

ClassGUID={36FC9E60-C465-11CF-8056-444553540000}

Provider = %ProviderName%

DriverVer=02/07/2008,1.0.0

;CatalogFile=MyCatFile.cat

; Manufacturer

[Manufacturer]

%ProviderName% = MyDevice_WinUSB,NTx86,NTamd64

[MyDevice_WinUSB.NTx86]

%USB\MyDevice.DeviceDesc% =USB_Install, USB\VID_0925&PID_1456

[MyDevice_WinUSB.NTamd64]

%USB\MyDevice.DeviceDesc% =USB_Install, USB\VID_0925&PID_1456

; Installation

[USB_Install]

Include=winusb.inf

Needs=WINUSB.NT

[USB_Install.Services]

Include=winusb.inf

AddService=WinUSB,0x00000002,WinUSB_ServiceInstall

[WinUSB_ServiceInstall]

DisplayName     = %WinUSB_SvcDesc%

ServiceType     = 1

StartType       = 3

ErrorControl    = 1

ServiceBinary   = %12%\WinUSB.sys

[USB_Install.Wdf]

KmdfService=WINUSB, WinUsb_Install

UmdfServiceOrder=WINUSB

Listing 9-1: This INF file is for a device that uses the WinUSB driver.  (Part 1 of 3).
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[WinUSB_Install]

KmdfLibraryVersion=1.7

[USB_Install.HW]

AddReg=Dev_AddReg

[Dev_AddReg]

HKR,,DeviceInterfaceGUIDs,0x10000,"{42CA71EC-CE1C-44c2-82DE-87D8D8FF6C1E}"

[USB_Install.CoInstallers]

AddReg=CoInstallers_AddReg

CopyFiles=CoInstallers_CopyFiles

[CoInstallers_AddReg]

HKR,,CoInstallers32,0x00010000,"WinUSBCoInstaller.dll","WUDFUpdate_01007.dll","WdfCoInstal

ler01007.dll,WdfCoInstaller"

[CoInstallers_CopyFiles]

WinUSBCoInstaller.dll

WdfCoInstaller01007.dll

WUDFUpdate_01007.dll

[DestinationDirs]

CoInstallers_CopyFiles=11

; Source Media

[SourceDisksNames.x86]

1 = %DISK_NAME%,,,\i386

[SourceDisksNames.amd64]

2 = %DISK_NAME%,,,\amd64

[SourceDisksFiles.x86]

WinUSBCoInstaller.dll=1

WdfCoInstaller01007.dll=1

WUDFUpdate_01007.dll=1

Listing 9-1: This INF file is for a device that uses the WinUSB driver.  (Part 2 of 3).
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• Some section names can use extensions to specify which operating systems
and/or CPUs the item applies to. For example, NTx86 means the item
applies only to systems with x86-based CPUs under Windows XP or later:

[MyDevice_WinUSB.NTx86]

Other extensions are NTamd64 for 64-bit CPUs based on the x86 architecture
and NTia64 for Itanium-based CPUs. A section name with this type of exten-
sion is called a decorated section name.
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A device that uses the WinUSB driver can use Listing 9-1’s INF file with the
following edits to customize the file for a specific device.

Two  Mo d e l s  s e c t i o n s  ( [ My De v i c e _ Wi n U S B . N T x 8 6 ]  a n d
[MyDevice_WinUSB.NTamd64]) each contain a device hardware ID value. In

[SourceDisksFiles.amd64]

WinUSBCoInstaller.dll=2

WdfCoInstaller01007.dll=2

WUDFUpdate_01007.dll=2

; Copy Files 

[_CopyFiles_sys]

winusb.sys

; Destination Directories

[DestinationDirs]

DefaultDestDir = 12 ; %SystemRoot%\system32\drivers

_CopyFiles_sys = 12

; Strings

[Strings]

ProviderName="Lakeview Research"

USB\MyDevice.DeviceDesc="WinUSB Demo"

WinUSB_SvcDesc="WinUSB Demo"

DISK_NAME="My Install Disk"

Listing 9-1: This INF file is for a device that uses the WinUSB driver.  (Part 3 of 3).
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the example, this value is USB\VID_0925&PID_1456. The hardware ID con-
tains the Vendor ID (0925h) and Product ID (1456h) from the device descrip-
tor in the device.

The KmdfLibraryVersion directive specifies a version number for the KMDF
library, which provides redistributable co-installer files used in installing the
driver. The version number can vary with the WDK build and must match the
version of the framework library used to develop the driver. The files
WdfCoInstaller01007.dll and WUDFUpdate_01007.dll also incorporate the ver-
sion number in their names and change with the library version. Chapter 14
has more about these files.

In the Dev_AddReg section, a WinUSB device should have a vendor-defined
device interface GUID as described in Chapter 8.

The Strings section can provide device-specific strings for the company name,
descriptions of the device and the driver service, and a name for the installation
media.

A catalog file contains cryptographic hash values that function as digital
thumbprints that identify the files in a driver package. The catalog file can also
contain a digital signature that the operating system uses to determine whether
the driver files have been altered since the signature was created. You can create
an unsigned catalog file with the Inf2Cat tool in the WDK. Chapter 17 has
more about digital signatures. The example INF file includes a commented-out
reference to the file MyCatFile.cat.
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To identify possible drivers for a device, Windows searches the system’s INF
files for a device identification string that matches a string created from infor-
mation in the device’s descriptors. Types of device identification strings include
hardware IDs and compatible IDs.
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Every USB device has a device ID, which is a hardware ID that the hub driver
creates from the Vendor ID, Product ID, bcdDevice, and as appropriate, other
values in the device descriptor. When assigning a driver, the device ID is the
best match. A device ID for a USB device has this form:
USB\Vid_xxxx&Pid_yyyy&Rev_zzzz
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The values in xxxx, yyyy, and zzzz are four characters each, with xxxx =
idVendor, yyyy = idProduct, and zzzz = bcdDevice. The xxxx and yyyy values are
hexadecimal except for Windows Me, which uses decimal, and zzzz is in BCD
format.

For example, a device with Vendor ID = 0925h, Product ID = 1234h, and bcd-
Device = 0310 has this device ID:
USB\Vid_0925&Pid_1234&Rev_0310

Composite devices can specify a driver for each function. In this case, the device
has a device ID for each interface that represents a function. A device ID for an
interface has this form:
USB\Vid_xxxx&Pid_yyyy&Rev_zzzz&MI_ww

The 2-character value in ww equals bInterfaceNumber in the interface descrip-
tor for one of the device’s interfaces. 

A HID-class device whose report descriptor contains more than one top-level
collection can have a device ID for each collection. A device ID for a collection
has this form with bb indicating the collection number:
USB\Vid_xxxx&Pid_yyyy&Rev_zzzz&MI_ww&Colbb

In addition to a device ID, some drivers create one or more hardware IDs and
compatible IDs for devices. A hardware ID has a similar format to a device ID
but represents a less precise match. For example, the ID may omit the bcdDe-
vice value:
USB\Vid_xxxx&Pid_yyyy

A hardware ID for a CDC device can use a Cdc_ value to specify a subclass.
This device ID specifies CDC subclass 08h (WMC wireless handset control
model):
USB\Vid_0925&Pid_0902&Rev_0210&Cdc_08

A compatible ID identifies a device by class and optional subclass and protocol
codes and may have any of the following forms:
USB\Class_aa&SubClass_bb&Prot_cc

USB\Class_aa&SubClass_bb

USB\Class_aa

The values aa, bb, and cc match values in the device descriptor or an interface
descriptor and are two characters each: aa is bDeviceClass or bInterfaceClass,
bb is bDeviceSubclass or bInterfaceSubclass, and cc is bDeviceProtocol or
bInterfaceProtocol. The values are expressed in hexadecimal, except for Win-
dows Me, which uses decimal.
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For example, the class code for HIDs is 03h, so HID-class devices have the fol-
lowing compatible ID:
USB\Class_03

Mass-storage devices and printers have additional class-specific compatible IDs
defined in the WDK documentation. 

A compatible ID in an INF file indicates a less desirable but acceptable match.
Compatible IDs enable Windows to find and load a driver if the installation
can’t find an INF file with a matching device ID. A vendor’s INF file should not
contain a compatible ID.
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In an INF file, each entry in a Models section has one or more hardware IDs.
The first hardware ID should be a device ID. Following the device ID may be
one or more hardware and compatible IDs separated by commas.
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In looking for the best match between the information retrieved from a device
and the information in INF files, the installer assigns a rank to every possible
match, with a lower numerical value indicating a better match. NT-based Win-
dows editions give more favorable ranks to signed drivers, and 64-bit Windows
editions require signed drivers. Windows 98 doesn’t check for signed drivers.

A signed driver has a catalog file with a digital signature that indicates that the
driver has passed Windows Hardware Quality Labs (WHQL) testing. Chapter
17 has more about WHQL testing. The best match is a device ID that matches
a hardware ID in a signed driver’s INF file. An installer that can’t find a match
starts the Found New Hardware wizard and gives the user a chance to specify a
location to look for the INF file.

Composite devices, which have multiple interfaces, are a special case. Because
each interface may require a different driver, selecting a driver using only the
Vendor ID and Product ID isn’t sufficient. Windows XP and later can use the
compatible ID USB\COMPOSITE, which loads the USB common class
generic parent driver. This driver creates device and compatible IDs for each
interface, and the installer assigns a driver to each interface. In earlier Windows
editions, the bus or hub driver handles this task.

Windows provides INF files for many devices and device classes, and devices
may provide their own INF files. To speed up searching, Windows creates a
precompiled INF (PNF) file during device installation and stores the file in the
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same folder as the device’s INF file. The PNF file contains much of the same
information as the INF file but in a format that enables quicker searching.

7�������&������� ���A������
Not every device requires its own INF file. Many devices that use the system’s
class drivers can use the INF file that Windows provides for the class. These are
some INF files for USB classes included with Windows XP:

Because Windows XP and later prefer signed drivers, if you provide an
unsigned driver for a device in a supported class, Windows XP and later won’t
use your driver and instead will select a compatible ID from the class’s INF file.
An INF file is considered part of the driver package, so Windows XP and later
prefer a system-provided INF file for a system driver over an unsigned, ven-
dor-provided INF file for the same driver even if the vendor’s INF file contains
a matching hardware ID.

When the best match is an unsigned driver, operating-system settings can affect
whether Windows blocks installation, installs the driver with a warning, or
installs with no warning. To change the setting, in Windows Control Panel,
select System > Hardware > Driver Signing.

A device that uses a class driver can have a custom, signed INF file with ven-
dor-specific strings that display in the Device Manager. For example, the entry
for a HID can be a vendor-specific string instead of the default USB Human
Interface Device.

Many INF files provided with Windows contain sections with manufac-
turer-specific information. When a device passes WHQL tests, Microsoft can
add the device’s sections to an existing INF file or add a manufacturer-specific
INF file to the files distributed with Windows.

 ���� ��3�3���

audio wdmaudio.inf
human interface device (HID) input.inf (hiddev.inf in Windows 98)
hub usb.inf
mass storage usbstor.inf
printer usbprint.inf
smart card smartcrd.inf
still image sti.inf
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Modems and USB virtual COM ports in the communications device class must
provide their own INF files even if they use system-supplied drivers. A device
that uses the WinUSB driver must have an INF file that contains the device’s
Vendor ID and Product ID. A device with a vendor-specific driver must have
an INF file.
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Microsoft provides tools to help in creating and testing INF files. The ChkINF
utility tests a file’s structure and syntax. Log files record events that occur during
device installation.

ChkINF is a Perl script that requires a Perl interpreter, available free from
www.activeware.com and other sources. The script runs from a command
prompt and creates an HTML page that annotates an INF file with errors and
warnings.

During device installation, the PnP manager and the Windows Setup and
Device Installer Services (SetupAPI) log events and errors to a text file. The log
can be very helpful when debugging problems with device installations. In
Windows XP, the data is in %windir%\setupapi.log. In Windows Vista, the data
is in %windir%\inf\SetupAPI.dev.log. The WDK documentation has more
about how to use the logging capability.

�����"�������!��A�������
Here are some tips for using INF files during and after product development:

�
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Firmware that you make available outside of a controlled environment must use
a Vendor ID assigned by the USB-IF. My example code uses the Vendor ID of
0925h, which is assigned to my company, Lakeview Research. The owner of the
Vendor ID is responsible for ensuring that each product and version has a
unique Vendor ID/Product ID pair. Borrowing someone else’s Vendor ID can
lead to conflicts if the owner of the ID uses the same values for a different
device.

*����� ���*�*�	�


On installing a device with a new INF file, Windows copies the INF file to
%windir%\inf and may rename the file oem*.inf and create a .PNF file named
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oem*pnf, where * is a number. Using numbered oem file names eliminates con-
flicts if multiple vendors provide INF files with the same name. To find INF
files that contain a specific Vendor ID and Product ID, go to Start > Search >
For Files or Folders, browse to %windir%\inf and search for the text
VID_xxxx&PID_yyyy, where xxxx is the device’s Vendor ID and yyyy is the Prod-
uct ID.

$������ �(��������+��������

When experimenting with different settings in an INF file, you may find that
the operating system remembers information stored in the system registry from
a previous version of the INF file. If you want the installation to use a different
or changed INF file for a device (because you’ve changed the driver or device
firmware, for example), you may need to tell the operating system to forget
what it knows about the device. With the device installed, right-click its listing
in the Device Manager, and select Uninstall. In the inf directory, remove (but
save in another location if needed) any INF and PNF files that contain your
device’s Vendor ID and Product ID. You can then detach and reattach the
device, and installation will start fresh in searching for a driver.

7� ���������������
What the user sees on attaching a USB device varies with the Windows edition,
the contents of the device’s INF file, the driver’s location, whether the driver has
a co-installer and is digitally signed, and whether the device has been attached
and enumerated previously and has a serial number.

(�����������	�
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Device and class installers are DLLs that provide functions relating to device
installation. Windows provides default installers for devices in supported device
setup classes. On NT-based Windows editions, a device vendor can provide a
device co-installer that works along with a class co-installer to support opera-
tions specific to one or more devices in a class. A device co-installer can add
information to the registry, request additional configuration information from
the user, provide device-specific Property pages for the Device Manager to dis-
play, and perform other tasks relating to device installation. The WDK includes
the Driver Install Frameworks (DIFx) tools for creating Windows Installer
packages. 
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On boot up or device attachment, after retrieving a device’s descriptors, the
operating system searches for a hardware key that matches information in the
descriptors. On success, the operating system can assign a driver to the device.
The hardware key’s Driver entry points to the driver key, which names the INF
file. The hardware key’s Service entry points to the service key, which has infor-
mation about the driver files.

On first attachment, no matching hardware key exists so Windows searches for
a match in the INF files. On finding none, the New Device Wizard starts. For
signed drivers, an installation program can use the SetupCopyOEMInf API to
copy the provided INF file to the INF folder on the user’s system. On finding a
matching INF file, Windows copies the file to %windir%\inf (if the file isn’t
already present), loads the driver(s) specified in the file if necessary, and adds
the appropriate keys to the system registry. The device then displays in the
Device Manager.

After installing a device, when installing additional devices that are identical
except for the serial number, Windows behaves differently depending on
whether the driver is digitally signed. When the driver is signed, Windows uses
administrative privileges to install the driver for additional devices after the
first, even if the current user doesn’t have these privileges. If the driver is
unsigned, Windows uses the privileges of the current user in deciding whether
to install the driver for additional devices. 

When re-attaching a previously attached device, whether Windows finds a
driver key can depend on whether the device’s descriptors include a USB serial
number string. If the device doesn’t have a serial number, Windows finds the
hardware key only if the device is re-attached to a port where the device was
attached previously. If the device has a serial number, Windows finds the hard-
ware key no matter which port the device attaches to.
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This chapter shows how applications can obtain information about attached
devices, request a handle for communicating with a device, and detect when a
device is attached or removed. Each of these tasks involve using Windows API
functions and the device interface GUIDs introduced in Chapter 8. Because
many .NET programmers have limited experience with API functions, I begin
with a short tutorial on the topic.

+�����!�#�������������%�+$#�"�������

You can do a lot of programming without ever calling a Windows API function.
Microsoft’s .NET Framework provides classes that support common tasks
including creating user interfaces, accessing files, manipulating text and graph-
ics, accessing common peripheral types, networking, security functions, and
exception handling. Internally, a class’s methods are likely to call API functions,
but the classes offer a safer, more secure, and more modular, object-oriented
way for programmers to accomplish the tasks. Languages that can use the .NET
Framework include Visual Basic, Visual C#, and Visual C++. 
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But .NET’s classes don’t handle every task. Some applications must do things
that require calling API functions. A .NET application can use .NET classes
where possible and API calls where needed.

Because calling API functions can be an obscure art at times, this section
includes an introduction to the topic.

The code examples in this chapter assume the following Imports and using
statements:

�� Imports Microsoft.Win32.SafeHandles

Imports System.Runtime.InteropServices

Instead of Imports statements, you can provide references to the namespaces in
the project’s properties, in the References tab. A reference to the System
namespace is in the properties by default.

��� using Microsoft.Win32.SafeHandles; 

using System;

using System.Runtime.InteropServices;

4 � 5��� ������ � 5�������
Managed code is program code that accesses properties, methods, and events of
the .NET Framework’s classes. Managed code compiles to the Microsoft Inter-
mediate Language (MSIL). When the application runs, .NET’s common lan-
guage runtime (CLR) environment executes the MSIL code.

Because all .NET languages use the same CLR, components written in different
.NET languages can easily interoperate. For example, a Visual Basic application
can call a function written in Visual C# without worrying about differences in
calling conventions. The CLR also simplifies programming by implementing
garbage collection to manage memory. In contrast, Windows API functions are
unmanaged code whose DLLs contain compiled machine code that executes
directly on the target CPU. 

A Visual C++ application can compile to managed code, unmanaged code, or a
combination. The language incorporates a technology that enables managed
code to call API functions exactly as unmanaged code does.

For other .NET languages, managed code can call API functions by using
methods of the System.Runtime.InteropServices namespace. The namespace
supports the Platform Invocation Services, also known as PInvoke and



Detecting Devices

                                                                                                245

P/Invoke. The process of calling unmanaged functions from managed code is
called Interop.

/��(,,


The DLLs included with Windows are typically stored in %System-
Root%\system32. The operating system searches this folder when an application
calls a DLL function. Header files and documentation for Windows API func-
tions are in the Windows Driver Kit (WDK) and Windows Software Develop-
ment Kit (SDK):

Header files contain declarations in C for the DLLs’ functions and define con-
stants, variables, structures, and other components the functions access. The
declarations enable applications to find the functions and pass parameters to
them.

A Visual Basic or Visual C# application must translate the declarations in the
header files from C to Visual Basic or Visual C# syntax and data types. Translat-
ing from C is more complicated than simple syntax changes because many of
the variable and structure types don’t have one-to-one equivalents in .NET. The
.NET code may also requires marshaling to enable passing data between man-
aged and umanaged code.

���
�	�� 

Visual Basic and Visual C# applications must take special care to ensure that
any data passed to an unmanaged function survives the trip from managed to
unmanaged code, and back if needed. The .NET Framework provides the Mar-
shal class to help. Marshaling means doing whatever is needed to make the data
available. The class provides methods for allocating memory for variables to
pass to unmanaged code, copying data between unmanaged and managed
memory, and converting between managed and unmanaged data types. For
example, the PtrToStringAuto method accepts a pointer to a string in unman-
aged memory and returns the string being pointed to. This code retrieves a

3����
 ��� �
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Find devices setupapi.dll WDK under Device Installation
Access devices that support 
handle-based operations

kernel32.dll SDK under File Management

Receive notifications of device 
attachment and removal

user32.dll SDK under Device Management 
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string from the pointer (IntPtr pDevicePathName) returned by an API func-
tion:

�� Dim devicePathName as String = ""

devicePathName = Marshal.PtrToStringAuto(pDevicePathName)

��� String devicePathName = "";

devicePathName = Marshal.PtrToStringAuto(pDevicePathName);

The MarshalAs attribute defines an array’s size to enable accessing the array in a
structure returned by unmanaged code. This example declares a 16-byte array
parameter that will hold a GUID from a structure returned by an API function:

�� <MarshalAs(UnmanagedType.ByValArray, _

ArraySubType:=UnmanagedType.U1, SizeConst:=16)> _

Public dbcc_classguid() _

As Byte

��� [ MarshalAs( UnmanagedType.ByValArray, 

ArraySubType=UnmanagedType.U1, SizeConst=16 ) ]

public Byte[] dbcc_classguid; 

The GUID is marshaled into the byte array as an UnmanagedType.ByValArray.
The ArraySubType field defines the array’s elements as unsigned, 1-byte (U1)
values and the SizeConst field sets the array’s size as 16 bytes.

In an asynchronous read or write operation, an application may need to ensure
that a variable or structure passed to an unmanaged function remains in the
same memory location after the function returns. Doing so enables other
unmanaged functions to access the variable or structure when completing the
asynchronous operation. The Marshal.AllocHGlobal method can help by allo-
cating memory that the garbage collector won’t move:

�� Dim inputReportBuffer(2) As Byte

Dim unManagedBuffer As IntPtr

unManagedBuffer = Marshal.AllocHGlobal(inputReportBuffer.Length)

��� Byte[] inputReportBuffer = {0,0,0}; 

IntPtr unManagedBuffer = IntPtr.Zero;
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unManagedBuffer = Marshal.AllocHGlobal(inputReportBuffer.Length);

The Marshal.FreeHGlobal method frees allocated memory when the applica-
tion no longer needs to access the memory:

�� Marshal.FreeHGlobal(unManagedBuffer)

��� Marshal.FreeHGlobal(unManagedBuffer);   

To ensure that code to free memory or other resources executes, place the code
in the Finally block of a Try...Catch...Finally statement. The examples in this
book omit the Try statements.

(��	���� ���*"������

T h i s  i s  a n  e x a m p l e  d e c l a r a t i o n  f o r  t h e  A PI  f u n c t i o n
HidD_GetNumInputBuffers, which applications can use to learn the number
of Input reports that the driver for a HID-class device can store:

��  <DllImport("hid.dll", SetLastError:=True)> _

Shared Function HidD_GetNumInputBuffers _

(ByVal HidDeviceObject As SafeFileHandle, _

ByRef NumberBuffers As Int32) _

As Boolean

End Function

���  [ DllImport( "hid.dll", SetLastError=true ) ]

internal static extern Boolean HidD_GetNumInputBuffers

( SafeFileHandle HidDeviceObject,

ref Int32 NumberBuffers );               

The declaration contains this information:

• A DllImport attribute that names the file that contains the function’s exe-
cutable code (hid.dll). The optional SetLastError field is set to true to
enable retrieving error codes using the GetLastWin32Error method.
Instead of DllImport, Visual Basic applications can use a Declare state-
ment, but Dllimport offers more control.

• The function’s name (HidD_GetNumInputBuffers).

• The parameters the function will pass to the operating system (HidDevice-
Object, NumberBuffers).

• The data types of the values passed (SafeFileHandle, Int32).
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• Whether the function passes parameters by value or by reference. The
default is by value. Visual Basic supports the optional ByVal modifier. To
pass by reference, precede the parameter name with ByRef (Visual Basic) or
ref (Visual C#). The function passes HidDeviceObject by value and Num-
berBuffers by reference.

• The data type of the value returned for the function (Boolean). A few API
calls have no return value, and Visual Basic can declare these functions as
subroutines.

In Visual Basic, the declaration must be in the Declarations section of a file.

In Visual C#, the extern modifier indicates that the function resides in a differ-
ent file.

��		�� ���*"������

After declaring a function and any parameters to be passed, an application can
call the function. This is a call to the HidD_GetNumInputBuffers function
declared above:

�� Dim success As Boolean

success = HidD_GetNumInputBuffers _

 (hidDeviceObject, _

 numberOfInputBuffers)

��� Boolean success = false;

success = HidD_GetNumInputBuffers

(hidDeviceObject, 

ref numberOfInputBuffers);

The hidDeviceObject parameter is a SafeFileHandle returned previously by the
CreateFile function, and numberOfInputBuffers is an Int32. The Visual C#
code must use the ref modifier to pass numberOfInputBuffers by reference. If
the function returns with success = True, numberOfInputBuffers contains the
number of Input buffers.

4 � 5��5�� � 
Understanding how to pass data to API functions and use data returned by API
functions requires understanding .NET’s data types and how the CLR passes
them to unmanaged code. The explanations below provide a background to
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understand the example code in this and later chapters. If the details seem
obscure at this point, you can skip ahead and come back as needed.

(����/!��


The header files for API functions use many data types that the .NET Frame-
work doesn’t support. To specify a variable’s type for an API call, in many cases
you can use a .NET type of the same length. For example, a DWORD is a
32-bit integer, so a .NET application can declare a DWORD as an Int32. A
GUID translates to .NET’s System.Guid type. For pointers, .NET provides the
IntPtr type, whose size adjusts as needed to 32 or 64 bits depending on the plat-
form. IntPtr.Zero is a null pointer. 

A parameter defined in C as a HANDLE can use an IntPtr, but a safer and
more reliable option for some handles is a SafeHandle object. With an IntPtr
reference to a handle, in some situations, an exception can “leak” a handle, and
a finalizer can corrupt a handle still in use in an asynchronous operation. Recy-
cling of IntPtr handles can expose data that belongs to another resource. Safe-
Handle objects don’t have these vulnerabilities.

The SafeHandle class is abstract. To use a SafeHandle object, you can use one of
the provided classes derived from SafeHandle or derive a new class from Safe-
Handle. Devices accessed via ReadFile and WriteFile can use the SafeFileHan-
dle class.

%�
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Every parameter passed to a function has both an element type and a passing
mechanism. The element type is value or reference, and the passing mechanism
is by value or by reference. The element type determines in part the effect of the
passing mechanism.

A value type contains data. For example, a Byte variable assigned a value of 3
consists of one byte with the value 00000011b. Value types include all numeric
data types; the Boolean, Char, and Date types; structures, even if their members
are reference types; and enumerations. A reference type contains a reference, or
pointer, that specifies the location of the variable’s data, which resides elsewhere
in memory. A 2-byte array variable contains the location where the array’s 2
bytes are stored. Reference types include Strings; arrays, even if their elements
are value types; classes; and delegates. 
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For help in determining if a variable is a value or reference types, Visual Basic
provides the IsReference function. The function returns true if a variable is a
reference type or false if a value type.

Whether to pass a parameter by value or by reference depends on what informa-
tion the function expects, the element type being passed, and in some cases
whether the type is blittable (defined below). Sometimes multiple ways can
achieve the same result.

Passing a value type by value passes a copy of the variable’s value. If the called
function changes the value of the variable or its members, the calling function
doesn’t see the change. For example, when calling ReadFile to read data from a
device, the application passes an Int32 variable that contains the number of
bytes requested from the device. The called function uses the passed value but
doesn’t have to return the value to the calling application, so the application can
pass the variable, which is a value type, by value.

Passing a value type by reference passes a pointer to the variable’s data. If the
called function changes the variable or its members, the calling application sees
the changes. An example, again using ReadFile, is passing an Int32 variable by
reference to hold the number of bytes the function returns. The called function
writes a value to the variable, and when the function returns, the calling appli-
cation sees the value written.

Passing a reference type by value also passes a pointer to the variable’s data, but
the effect varies depending on whether the type is blittable. A blittable type is a
.NET data type that managed and unmanaged code represent in the same way.
Blittable types include Byte, SByte, Int16, UInt16, Int32, UInt32, Int64,
UInt64, IntPtr, UIntPtr, Single, Double, and IntPtr as well as SafeHandles used
as IN parameters. 

When an application passes a blittable, reference type by value to an unman-
aged function, the application passes a reference to the original variable. To pre-
vent the garbage collector from moving the variable while the function
executes, the CLR pins the variable in memory. The calling application sees
changes to the variable’s value but not changes to the variable’s instance. Passing
a reference to the original variable in this way reduces overhead and improves
performance compared to passing the variable by value.

An example of passing a blittable, reference type by value is passing a Byte array
in a synchronous call to ReadFile, which expects a pointer to an array that the
function will fill with data read from the device. Because a Byte array is a refer-
ence type and a Byte is a blittable type, if the application passes the array by
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value, the called function receives a pointer to the original array. The function
writes the data to the array, and when the function returns, the calling applica-
tion can access the new data. (For non-blittable types, the CLR converts the
data to a format the function accepts and passes a pointer to the converted
data.) 

The calling application doesn’t see changes the called function makes to the
variable’s instance, only changes to its value. For example, if the called function
sets the variable to Nothing/null, the calling application doesn’t see the change.

Passing a reference type by reference passes a pointer that points to a pointer to
the variable’s data. The calling application sees changes to the variable and to
the variable’s instance. The examples in this book don’t use this passing mecha-
nism.

%�
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Some API functions pass and return structures that can contain multiple items
of different types. The header files contain declarations for the structures in C
syntax.

A .NET application can usually declare an equivalent structure (a Visual Basic
Structure or Visual C# struct) or a class that contains the items in the structure.
To ensure that the managed and unmanaged code agree on the layout and
alignment of the structure’s members, a structure’s declaration or class defini-
tion can set the StructLayout attribute to LayoutKind.Sequential.

�� <StructLayout(LayoutKind.Sequential)>

��� [ StructLayout( LayoutKind.Sequential ) ]

The Visual Basic and Visual C# compilers always specify LayoutKind.Sequen-
tial for value types, which include structures but not classes, so specifying Lay-
outKind.Sequential in code is optional for structures.

The optional CharSet field can determine whether strings are converted to
ANSI or Unicode before being passed to unmanaged code. CharSet.Auto
selects 8-bit ANSI or 16-bit Unicode characters depending on the target plat-
form. A DllImport attribute can also use the CharSet field.

��  <StructLayout(LayoutKind.Sequential, CharSet:=CharSet.Auto)>

��� [ StructLayout( LayoutKind.Sequential, CharSet=CharSet.Auto ) ]
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Some structures are difficult or impractical to duplicate in Visual Basic or
Visual C#. A solution is to use a generic buffer of the expected size. The appli-
cation can fill the buffer before passing it and extract returned data from the
buffer as needed.  

"�����!�D�����	 � 	
The Windows API provides a series of SetupDi_ API functions that enable
applications to find all devices in a device interface class and to obtain a device
path name for each device. The CreateFile function can use the device path
name to obtain a handle for accessing the device. As Chapter 8 explained, these
functions can be useful in finding devices that use the WinUSB driver,
HID-class devices that perform vendor-specific functions, and some devices
with vendor-specific drivers.

Obtaining a device path name requires these steps:

1. Obtain the device interface GUID.

2. Request a pointer to a device information set with information about all
installed and present devices in the device interface class.

3. Request a pointer to a structure that contains information about a device
interface in the device information set.

4. Request a structure containing a device interface’s device path name.

5. Extract the device path name from the structure.

The application can then use the device path name to open a handle for com-
municating with the device.

Table 10-1 lists the API functions that applications can use to perform these
tasks.

The following code shows how to use API functions to find a device and obtain
its device path name. For complete Visual C# and Visual Basic applications that
demonstrate how to use these functions, visit www.Lvr.com.

;,� ����!���	��	 � 	����	�"  	�����
As Chapter 8 explained, for many drivers, applications can obtain a device
interface GUID from a C header file or other declaration provided with a
driver. The device’s INF file should contain the same GUID.

For the HID class, Windows provides an API function to obtain the GUID
defined in hidclass.h.
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�� Definitions

<DllImport("hid.dll", SetLastError:=True)>

Sub HidD_GetHidGuid (ByRef HidGuid As System.Guid)

End Sub

Use

Dim hidGuid As System.Guid

HidD_GetHidGuid(hidGuid)

��� Definitions

[ DllImport( "hid.dll", SetLastError=true ) ]

public static extern void HidD_GetHidGuid( ref System.Guid HidGuid );

Use

System.Guid hidGuid;

HidD_GetHidGuid( ref hidGuid );

For other GUIDs, you can specify a a constant GUID value as a string and con-
vert the string to a System.Guid object.

�� Definitions

Public Const WINUSB_DEMO_GUID_STRING As String = _

    "{42CA71EC-CE1C-44c2-82DE-87D8D8FF6C1E}"

Use

Dim myGuid As New System.Guid(WINUSB_DEMO_GUID_STRING)

Table 10-1: Applications use these functions to find devices and obtain device 

path names to enable accessing devices.

5���3����
 ��� ��	�
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HidD_GetHidGuid hid Retrieve the device interface GUID for 
the HID class.

SetupDiDestroyDeviceInfoList setupapi Free resources used by 
SetupDiGetClassDevs.

SetupDiGetClassDevs setupapi Retrieve a device information set for the 
devices in a specified class.

SetupDiGetDeviceInterfaceDetail setupapi Retrieve a device path name.
SetupDiEnumDeviceInterfaces setupapi Retrieve information about a device in a 

device information set.
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��� Definitions

public const string WINUSB_DEMO_GUID_STRING =

    "{42CA71EC-CE1C-44c2-82DE-87D8D8FF6C1E}"; 

Use

System.Guid myGuid =  new System.Guid( WINUSB_DEMO_GUID_STRING ); 

.�/������5� �&���������� ����������"��� ��������
The SetupDiGetClassDevs function can return a pointer to an array of struc-
tures containing information about all devices in the device interface class spec-
ified by a GUID.

�� Definitions

<DllImport("setupapi.dll", SetLastError:=True, CharSet:=CharSet.Auto)> _

Shared Function SetupDiGetClassDevs _

(ByRef ClassGuid As System.Guid, _

ByVal Enumerator As IntPtr, _

ByVal hwndParent As IntPtr, _

ByVal Flags As Int32) _

As IntPtr

End Function

Use

Public Const DIGCF_PRESENT As Int32 = 2

Public Const DIGCF_DEVICEINTERFACE As Int32 = &H10

Dim deviceInfoSet As IntPtr

deviceInfoSet = SetupDiGetClassDevs _

(myGuid, _

IntPtr.Zero, _

IntPtr.Zero, _

DIGCF_PRESENT Or DIGCF_DEVICEINTERFACE)

��� Definitions

[DllImport("setupapi.dll", SetLastError = true, CharSet = CharSet.Auto)]

internal static extern IntPtr SetupDiGetClassDevs

(ref System.Guid ClassGuid, 

IntPtr Enumerator, 

IntPtr hwndParent, 

Int32 Flags);
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Use

internal const Int32 DIGCF_PRESENT = 2;

internal const Int32 DIGCF_DEVICEINTERFACE = 0X10; 

IntPtr deviceInfoSet; 

deviceInfoSet = SetupDiGetClassDevs

( ref myGuid, 

IntPtr.Zero,

IntPtr.Zero,

DIGCF_PRESENT | DIGCF_DEVICEINTERFACE ); 

(����	


For HID-class devices, the ClassGuid parameter is the HidGuid value returned
by HidD_GetHidGuid. For other drivers, the application can pass a reference
to the appropriate GUID. The example passes null pointers for Enumerator
and hwndParent. The Flags parameter uses system constants defined in setu-
papi.h. The flags in the example cause the function to look for device interfaces
that are currently attached and enumerated members of the class identified by
the ClassGuid parameter.

The returned deviceInfoSet value is a pointer to a device information set that
contains information about all attached and enumerated devices in the specified
device interface class. The device information set contains a device information
element for each device in the set, or array. Each device information element
contains a handle to a device’s devnode (a structure that represents the device)
and a linked list of device interfaces associated with the device.

When finished using the device information set, the application should free the
resources used by calling SetupDiDestroyDeviceInfoList as described later in
this chapter.

������"%��5� �������������" ��
A call to SetupDiEnumDeviceInterfaces retrieves a pointer to a structure that
identifies a device interface in the previously retrieved deviceInfoSet array. The
call passes an array index that specifies a device interface. To retrieve informa-
tion about all devices in an array, an application can increment the index until
the function returns zero, indicating that the array has no more interfaces.
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In some cases, such as when looking for a HID-class device with a specific Ven-
dor ID and Product ID, the application may need to request more information
before deciding whether a retrieved device interface is the desired one.

�� Definitions

Public Structure SP_DEVICE_INTERFACE_DATA

Dim cbSize As Int32

Dim InterfaceClassGuid As Guid

Dim Flags As Int32

Dim Reserved As IntPtr

End Structure

<DllImport("setupapi.dll", SetLastError:=True)> _

Shared Function SetupDiEnumDeviceInterfaces _

(ByVal DeviceInfoSet As IntPtr, _

ByVal DeviceInfoData As IntPtr, _

ByRef InterfaceClassGuid As System.Guid, _

ByVal MemberIndex As Int32, _

ByRef DeviceInterfaceData As SP_DEVICE_INTERFACE_DATA) _

As Boolean

End Function

Use

Dim memberIndex As Int32 = 0

Dim MyDeviceInterfaceData As SP_DEVICE_INTERFACE_DATA

Dim success As Boolean

MyDeviceInterfaceData.cbSize = Marshal.SizeOf(MyDeviceInterfaceData)

success = SetupDiEnumDeviceInterfaces _

(deviceInfoSet, _

IntPtr.Zero, _

myGuid, _

memberIndex, _

MyDeviceInterfaceData)
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��� Definitions

internal struct SP_DEVICE_INTERFACE_DATA 

{

internal Int32 cbSize;

internal Guid InterfaceClassGuid;

internal Int32 Flags;

internal IntPtr Reserved; 

}   

[DllImport("setupapi.dll", SetLastError = true)]

internal static extern Boolean SetupDiEnumDeviceInterfaces

(IntPtr DeviceInfoSet, 

IntPtr DeviceInfoData, 

ref System.Guid InterfaceClassGuid, 

Int32 MemberIndex, 

ref SP_DEVICE_INTERFACE_DATA DeviceInterfaceData);

Use

Int32 memberIndex = 0;

MyDeviceInterfaceData = new SP_DEVICE_INTERFACE_DATA(); 

Boolean success = false; 

MyDeviceInterfaceData.cbSize = = Marshal.SizeOf( MyDeviceInterfaceData ); 

success = SetupDiEnumDeviceInterfaces

(deviceInfoSet, 

IntPtr.Zero, 

ref myGuid, 

memberIndex, 

ref MyDeviceInterfaceData); 

(����	


In the SP_DEVICE_INTERFACE_DATA structure, the cbSize parameter is
the size of the structure in bytes. The Marshal.SizeOf method returns the struc-
ture’s size.

The myGuid and deviceInfoSet parameters are values retrieved previously. The
DeviceInfoData parameter can be a pointer to an SP_DEVINFO_DATA struc-
ture that limits the search to a particular device instance or a null pointer. The
memberIndex parameter is an index to a structure in the deviceInfoSet array.
The  MyDev i c e In t e r f a c eDa t a  p a r a m e t e r  i s  a  p o i n t e r  t o  t h e
SP_DEVICE_INTERFACE_DATA structure that the function returns. The
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structure identifies a device interface of the requested type. The function
returns true on success.

.�/������5� �����������*���������������& ���A ��
The SetupDiGetDeviceInterfaceDetail function returns a structure that con-
ta ins  a  dev ice  path name for  a  dev ice  inter face  ident i f i ed  in  an
SP_DEVICE_INTERFACE_DATA structure.

When calling this function for the first time, you don’t know the size in bytes of
the DeviceInterfaceDetailData structure to pass in the DeviceInterfaceDetail-
DataSize parameter. Yet the function won’t return the structure unless the func-
tion call passes the correct size. The solution is to call the function twice. The
first time, GetLastError returns the error The data area passed to a system call is
too small, but the RequiredSize parameter contains the correct value for Device-
InterfaceDetailDataSize. The second call passes the returned size value, and the
function returns the structure.

The code below doesn’t pass a structure for the DeviceInterfaceDetailData
parameter. Instead, the code reserves a generic buffer, passes a pointer to the
buffer, and extracts the device path name directly from the buffer. The code
thus doesn’t require a structure declaration, but I’ve included one to show the
contents of the returned buffer.

�� Definitions

Public Structure SP_DEVICE_INTERFACE_DETAIL_DATA

Dim cbSize As Int32

Dim DevicePath As String

End Structure

<DllImport("setupapi.dll", SetLastError:=True, CharSet:=CharSet.Auto)> _

Shared Function SetupDiGetDeviceInterfaceDetail _

(ByVal DeviceInfoSet As IntPtr, _

ByRef DeviceInterfaceData As SP_DEVICE_INTERFACE_DATA, _

ByVal DeviceInterfaceDetailData As IntPtr, _

ByVal DeviceInterfaceDetailDataSize As Int32, _

ByRef RequiredSize As Int32, _

ByVal DeviceInfoData As IntPtr) _

As Boolean

End Function
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Use

Dim bufferSize As Int32

Dim detailDataBuffer As IntPtr

Dim success As Boolean

success = SetupDiGetDeviceInterfaceDetail _

(deviceInfoSet, _

MyDeviceInterfaceData, _

IntPtr.Zero, _

0, _

bufferSize, _

IntPtr.Zero)

detailDataBuffer = Marshal.AllocHGlobal(bufferSize)

Marshal.WriteInt32 _

(detailDataBuffer, 

ConvertToInt32(IIf((IntPtr.Size = 4), 4 + Marshal.SystemDefaultCharSize, 8)))

success = SetupDiGetDeviceInterfaceDetail _

 (deviceInfoSet, _

 MyDeviceInterfaceData, _

 detailDataBuffer, _

 bufferSize, _

 bufferSize, _

 IntPtr.Zero)

��� Definitions

internal struct SP_DEVICE_INTERFACE_DETAIL_DATA 

{

internal Int32 cbSize;

internal String DevicePath; 

}

[DllImport("setupapi.dll", SetLastError = true, CharSet = CharSet.Auto)]

internal static extern Boolean SetupDiGetDeviceInterfaceDetail

(IntPtr DeviceInfoSet, 

ref SP_DEVICE_INTERFACE_DATA DeviceInterfaceData, 

IntPtr DeviceInterfaceDetailData, 

Int32 DeviceInterfaceDetailDataSize, 

ref Int32 RequiredSize, 

IntPtr DeviceInfoData);
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Use

Int32 bufferSize = 0; 

IntPtr detailDataBuffer;

Boolean success = false; 

success = SetupDiGetDeviceInterfaceDetail

(deviceInfoSet, 

ref MyDeviceInterfaceData, 

IntPtr.Zero, 

0, 

ref bufferSize, 

IntPtr.Zero);

detailDataBuffer = Marshal.AllocHGlobal( bufferSize ); 

Marshal.WriteInt32

(detailDataBuffer, (IntPtr.Size == 4) ? (4 + Marshal.SystemDefaultCharSize) : 8);

success = SetupDiGetDeviceInterfaceDetail

(deviceInfoSet, 

ref MyDeviceInterfaceData, 

detailDataBuffer, 

bufferSize, 

ref bufferSize, 

IntPtr.Zero); 

(����	


After calling SetupDiGetDeviceInterfaceDetail, bufferSize contains the value to
pass in the DeviceInterfaceDetailDataSize parameter in the next call. But before
calling the function again, the code needs to take care of a few things.

The second function call returns a pointer (detailDataBuffer) to an
SP_DEVICE_INTERFACE_DETAIL_DATA structure in unmanaged mem-
ory. The Marshal.AllocGlobal method uses the returned bufferSize value to
allocate memory for the structure.

The cbSize member of the structure passed in detailDataBuffer equals four
bytes for cbSize plus the width of one character for the device path name
(which is empty when passed to the function). The Marshal.WriteInt32
method copies the cbSize value into the first member of detailDataBuffer. The
IIf function (Visual Basic) or “?” conditional operator (Visual C#) selects the
correct value for 32- and 64-bit systems.
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The second call to SetupDiGetDeviceInterfaceDetail passes the pointer to
detailDataBuffer and sets the deviceInterfaceDetailDataSize parameter equal to
the bufferSize value returned previously in RequiredSize.

When the function returns after the second call, detailDataBuffer points to a
structure containing a device path name.

���� ����5������������& ���A ��
In detailDataBuffer, the first four bytes are the cbSize member. The string con-
taining the device path name begins at the fifth byte.

�� Dim devicePathName As String = ""

Dim pDevicePathName As IntPtr = New IntPtr(detailDataBuffer.ToInt32 + 4)

devicePathName = Marshal.PtrToStringAuto(pDevicePathName)

Marshal.FreeHGlobal(detailDataBuffer)

��� String devicePathName = ""; 

IntPtr pDevicePathName = new IntPtr( detailDataBuffer.ToInt32() + 4 ); 

devicePathName = Marshal.PtrToStringAuto(pDevicePathName); 

Marshal.FreeHGlobal(detailDataBuffer); 

(����	


The pDevicePathName variable points to the string in the buffer. The Mar-
shal.PtrToString method retrieves the string from the buffer. When finished
with the buffer, Marshal.FreeHGlobal frees the memory previously allocated for
the buffer. 

������5��������� �����
When finished using the DeviceInfoSet returned by SetupDiGetClassDevs, the
application should call SetupDiDestroyDeviceInfoList to free resources.   

�� Definitions

<DllImport("setupapi.dll", SetLastError:=True)> _

Shared Function SetupDiDestroyDeviceInfoList _

(ByVal DeviceInfoSet As IntPtr) _

As Int32

End Function
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Use

SetupDiDestroyDeviceInfoList (deviceInfoSet)

��� Definitions

[DllImport("setupapi.dll", SetLastError = true)]

internal static extern Int32 SetupDiDestroyDeviceInfoList

(IntPtr DeviceInfoSet);

Use

SetupDiDestroyDeviceInfoList( deviceInfoSet );                 

�,������!���!����	
An application can use a retrieved device path name to obtain a handle that
enables communicating with the device. Table 10-2 shows API functions
related to requesting a handle.

.	/�	����!������������������!����	
After retrieving a device path name, an application is ready to open communi-
cations with the device. The CreateFile function requests a handle to an object,
which can be a file or another resource managed by a driver that supports han-
dle-based operations. For example, applications can request a handle to use in
exchanging reports with HID-class devices. For devices that use the WinUSB
driver, CreateFile obtains a handle the application uses to obtain a WinUSB
device handle for accessing a device.

The call to CreateFile can pass a SECURITY_ATTRIBUTES structure that
can limit access to the handle or IntPtr.Zero if the function doesn’t need to limit
access.

Table 10-2: Applications can use CreateFile to request a handle to a device and 

CloseHandle to free the resources used by a handle.

5���3����
 ��� ��	�
��

CloseHandle kernel32 Free resources reserved by CreateFile. To close handles 
for the SafeHandle and derived classes, use the Close 
method, which calls CloseHandle internally.

CreateFile kernel32 Retrieve a handle for communicating with a device.
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�� Definitions

Friend Const FILE_ATTRIBUTE_NORMAL As Int32 = &H80

Friend Const FILE_FLAG_OVERLAPPED As Int32 = &H40000000

Friend Const FILE_SHARE_READ As Int32 = 1

Friend Const FILE_SHARE_WRITE As Int32 = 2

Friend Const GENERIC_READ As UInt32 = &H80000000UL

Friend Const GENERIC_WRITE As UInt32 = &H40000000

Friend Const OPEN_EXISTING As Int32 = 3

<DllImport("kernel32.dll", CharSet:=CharSet.Auto, SetLastError:=True)> _

Shared Function CreateFile _

(ByVal lpFileName As String, _

ByVal dwDesiredAccess As UInt32, _

ByVal dwShareMode As Int32, _

ByVal lpSecurityAttributes As IntPtr, _

ByVal dwCreationDisposition As Int32, _

ByVal dwFlagsAndAttributes As Int32, _

ByVal hTemplateFile As Int32) _

As SafeFileHandle

End Function

Use

Dim deviceHandle As SafeFileHandle

deviceHandle = CreateFile _

(devicePathName, _

GENERIC_WRITE Or GENERIC_READ, _

FILE_SHARE_READ Or FILE_SHARE_WRITE, _

IntPtr.Zero, _

OPEN_EXISTING, _

FILE_ATTRIBUTE_NORMAL Or FILE_FLAG_OVERLAPPED, _

0)

��� Definitions

internal const Int32 FILE_ATTRIBUTE_NORMAL = 0X80;

internal const Int32 FILE_FLAG_OVERLAPPED = 0X40000000;

internal const Int32 FILE_SHARE_READ = 1;

internal const Int32 FILE_SHARE_WRITE = 2;

internal const UInt32 GENERIC_READ = 0X80000000;

internal const UInt32 GENERIC_WRITE = 0X40000000;

internal const Int32 OPEN_EXISTING = 3;
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[DllImport("kernel32.dll", SetLastError = true, CharSet = CharSet.Auto)]

internal static extern SafeFileHandle CreateFile

(String lpFileName, 

UInt32 dwDesiredAccess, 

Int32 dwShareMode, 

IntPtr lpSecurityAttributes, 

Int32 dwCreationDisposition, 

Int32 dwFlagsAndAttributes, 

Int32 hTemplateFile);        

Use

internal SafeFileHandle deviceHandle;

deviceHandle = CreateFile

(devicePathName,

(GENERIC_WRITE | GENERIC_READ),

FILE_SHARE_READ | FILE_SHARE_WRITE,

IntPtr.Zero,

OPEN_EXISTING,

FILE_ATTRIBUTE_NORMAL | FILE_FLAG_OVERLAPPED,

0);

(����	


The function passes a pointer to the devicePathName string returned by Setup-
DiGetDeviceInterfaceDetail. The dwDesiredAccess parameter requests
read/write access to the device. The dwShareMode parameter allows other pro-
cesses to access the device while the handle is open. The lpSecurityAttributes
parameter is a null pointer (or a pointer to a SECURITY_ATTRIBUTES
structure). The dwCreationDisposition parameter must be OPEN_EXISTING
for devices. For use with the WinUSB driver, the dwFlagsAndAttributes param-
e t e r  m u s t  u s e  F I L E _ F L AG _ OV E R L A P PE D .  T h e
FILE_ATTRIBUTE_NORMAL attribute indicates that no other attributes
such as hidden, read-only, or encrypted are set. The example passes zero for the
unused hTemplate parameter. The function returns a SafeFileHandle object.

������5�����) ����
When finished communicating with a device, the application should free the
resources reserved by CreateFile. 

�� deviceHandle.Close()
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��� deviceHandle.Close(); 

(����	


SafeFileHandle objects support the Close method, which marks the handle for
releasing and freeing resources. The method calls the CloseHandle API func-
tion internally.   

�	�	 ���!�+��� ��	��������	�� ��
Many applications find it useful to know when a device has been attached or
removed. On detecting when a device is attached, the application can begin
communicating with the device. On detecting when a device has been removed,
the application can stop attempting to communicate until detecting reattach-
ment. Windows provides device-notification functions for this purpose.

+,�����	 � 	�A���"� ������
To request to be informed when a device is attached or removed, an applica-
tion’s form can register to receive notification messages for devices in a device
interface class. The operating system passes WM_DEVICECHANGE mes-
sages to the form’s WndProc method (called WindowProc in C). An application
can override WndProc in a form’s base class with a method that processes the
messages and then passes them to the base class’s WndProc method. (The code
below shows how to do this.) Each notification contains a device path name
that the application can use to identify the device that the notification applies
to. Table 10-3 lists the API functions used in registering for device notifications.
The example that follows shows how to use the functions.

�	!���	���!�"����	 � 	�A���"� ������
Applications use the RegisterDeviceNotification function to request to receive
notification messages. The function requires a handle for the window or service
tha t  w i l l  r e c e i v e  t h e  no t i f i c a t i on s ,  a  po in t e r  t o  a
DEV_BROADCAST_DEVICEINTERFACE structure that holds information
about the request, and flags to indicate whether the handle is for a window or
service.

In the DEV_BROADCAST_DEVICEINTERFACE structure passed to Regis-
t e rDev i c eNot i f i c a t i on ,  th e  dbcc_dev i c e t ype  member  i s  s e t  t o
DBT_DEVTYP_DEVICEINTERFACE to specify that the application wants
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to receive notifications about a device interface class, and classguid is the GUID
of the device interface class (myGuid in the example).

When the WM_DEVICECHANGE messages are no longer of interest, the
application should call UnregisterDeviceNotification as described later in this
chapter.

�� Definitions

Friend Const DBT_DEVTYP_DEVICEINTERFACE As Int32 = 5

Friend Const DEVICE_NOTIFY_WINDOW_HANDLE As Int32 = 0

Friend Const DIGCF_PRESENT As Int32 = 2

Friend Const DIGCF_DEVICEINTERFACE As Int32 = &H10

Friend Const WM_DEVICECHANGE As Int32 = &H219

<StructLayout(LayoutKind.Sequential)> _

Friend Class DEV_BROADCAST_DEVICEINTERFACE

Friend dbcc_size As Int32

Friend dbcc_devicetype As Int32

Friend dbcc_reserved As Int32

Friend dbcc_classguid As Guid

Friend dbcc_name As Int16

End Class 

<DllImport("user32.dll", CharSet:=CharSet.Auto, SetLastError:=True)> _

Shared Function RegisterDeviceNotification _

(ByVal hRecipient As IntPtr, _

ByVal NotificationFilter As IntPtr, _

ByVal Flags As Int32) _

As IntPtr

End Function

Table 10-3: These functions enable an application to request to receive or stop 

receiving notifications about device attachment and removal.

5���3����
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RegisterDeviceNotification user32 Request to receive device notifications
UnregisterDeviceNotification user32 Request to stop receiving device 

notifications
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Use

Place this statement in the _Load event for the form that will receive
device-change messages:
frmMy = Me

Dim devBroadcastDeviceInterface As DEV_BROADCAST_DEVICEINTERFACE = _

New DEV_BROADCAST_DEVICEINTERFACE()

Dim devBroadcastDeviceInterfaceBuffer As IntPtr

Dim deviceNotificationHandle As IntPtr

Dim size As Int32

' frmMy is the form that will receive device-change messages.

Friend frmMy As frmMain

size = Marshal.SizeOf(devBroadcastDeviceInterface)

devBroadcastDeviceInterface.dbcc_size = size           

devBroadcastDeviceInterface.dbcc_devicetype = DBT_DEVTYP_DEVICEINTERFACE

devBroadcastDeviceInterface.dbcc_reserved = 0

devBroadcastDeviceInterface.dbcc_classguid = myGuid

devBroadcastDeviceInterfaceBuffer = Marshal.AllocHGlobal(size)

Marshal.StructureToPtr _

(devBroadcastDeviceInterface, _

devBroadcastDeviceInterfaceBuffer, _

True)

deviceNotificationHandle = RegisterDeviceNotification _

(frmMy.Handle, _

devBroadcastDeviceInterfaceBuffer, _

DEVICE_NOTIFY_WINDOW_HANDLE)

Marshal.FreeHGlobal (devBroadcastDeviceInterfaceBuffer)

��� Definitions

internal const Int32 DBT_DEVTYP_DEVICEINTERFACE = 5;

internal const Int32 DEVICE_NOTIFY_WINDOW_HANDLE = 0;

internal const Int32 DIGCF_PRESENT = 2;

internal const Int32 DIGCF_DEVICEINTERFACE = 0X10; 

internal const Int32 WM_DEVICECHANGE = 0X219; 
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[ StructLayout( LayoutKind.Sequential ) ]

internal class DEV_BROADCAST_DEVICEINTERFACE  

{

internal Int32 dbcc_size;

internal Int32 dbcc_devicetype;

internal Int32 dbcc_reserved;

internal Guid dbcc_classguid;

internal Int16 dbcc_name; 

} 

[DllImport("user32.dll", CharSet = CharSet.Auto, SetLastError = true)]

internal static extern IntPtr RegisterDeviceNotification

(IntPtr hRecipient, 

IntPtr NotificationFilter, 

Int32 Flags);

Use

Place this statement in the _Load event for the form that will receive
device-change messages:
frmMy = this;

DEV_BROADCAST_DEVICEINTERFACE devBroadcastDeviceInterface = 

    new DEV_BROADCAST_DEVICEINTERFACE(); 

IntPtr devBroadcastDeviceInterfaceBuffer; 

IntPtr deviceNotificationHandle; 

Int32 size = 0; 

// frmMy is the form that will receive device-change messages.

internal frmMain frmMy; 

size = Marshal.SizeOf( devBroadcastDeviceInterface ); 

devBroadcastDeviceInterface.dbcc_size = size; 

devBroadcastDeviceInterface.dbcc_devicetype = DBT_DEVTYP_DEVICEINTERFACE; 

devBroadcastDeviceInterface.dbcc_reserved = 0; 

devBroadcastDeviceInterface.dbcc_classguid = myGuid; 

devBroadcastDeviceInterfaceBuffer = Marshal.AllocHGlobal( size ); 

Marshal.StructureToPtr

( devBroadcastDeviceInterface, 

devBroadcastDeviceInterfaceBuffer, 

true ); 
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deviceNotificationHandle = RegisterDeviceNotification

( frmMy.Handle, 

devBroadcastDeviceInterfaceBuffer,

DEVICE_NOTIFY_WINDOW_HANDLE ); 

Marshal.FreeHGlobal( devBroadcastDeviceInterfaceBuffer ); 

(����	


The device-notification functions use several constants defined in header files.
T h e  Ma r s h a l . S i z e Of  m e t h o d  r e t r i e v e s  t h e  s i z e  o f  t h e
DEV_BROADCAST_DEVICEINTERFACE structure for passing to the
structure’s dbcc_size member. 

Marshal.AllocGlobal allocates memory for a buffer that will hold the
DEV_BROADCAST_DEVICEINTERFACE structure.

The Marshal.StructureToPointer method copies the structure into the buffer.
The application is then ready to call RegisterDeviceNotification, passing the
handle to a form that will receive the notifications and a pointer to the buffer.

When finished using devBroadcastDeviceInterfaceBuffer, the application can
use Marshal.FreeHGlobal to free the memory allocated for it by AllocHGlobal.  

� ������5���������� �5��4��� 5��
The WndProc function processes messages received by a form, dialog box, or
other window. 

�� Protected Overrides Sub WndProc(ByRef m As Message)

If m.Msg = WM_DEVICECHANGE Then

OnDeviceChange(m)

End If

MyBase.WndProc(m)

End Sub
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��� protected override void WndProc( ref Message m ) 

{            

if ( m.Msg == WM_DEVICECHANGE ) 

{ 

OnDeviceChange( m ); 

}                 

base.WndProc( ref m );                 

}

On receiving a WM_DEVICECHANGE message, the method calls the   appli-
cation’s OnDeviceChange method, which can examine the message and take
action, and then passes the message to the WndProc method in the form’s base
class.

.� ���5���������� �5��4��� 5��
A device-change message contains two pointers: lParam and wParam. The
wParam property is a code that indicates device arrival, removal, or another
event. The lParam property is a device management structure. There are several
defined types of device-management structures, but each begins with the same
DEV_BROADCAST_HDR structure. The structure’s dbch_devicetype mem-
ber indicates the type of device-management structure that lParam points to.

If dbch_devicetype = DBT_DEVTYP_DEVICEINTERFACE, the structure is
a DEV_BROADCAST_DEVICEINTERFACE and the application can
retrieve the complete structure, read the device path name in the dbcc_name
member, and compare the name to the device path name of the device of inter-
est.

This example detects device arrival and removal:

�� Definitions

Friend Const DBT_DEVICEARRIVAL As Int32 = &H8000

Friend Const DBT_DEVICEREMOVECOMPLETE As Int32 = &H8004
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Use

Friend Sub OnDeviceChange(ByVal m as Message)

If (m.WParam.ToInt32 = DBT_DEVICEARRIVAL) Then

' Find out if the device path name matches wParam.

' If yes, perform any tasks required on device arrival.

ElseIf (m.WParam.ToInt32 = DBT_DEVICEREMOVECOMPLETE) Then

' Find out if the device path name matches wParam.

' If yes, perform any tasks required on device removal.

End If

End Sub

��� Definitions

internal const Int32 DBT_DEVICEARRIVAL = 0X8000;

internal const Int32 DBT_DEVICEREMOVECOMPLETE = 0X8004;

Use

 internal void OnDeviceChange( Message m ) 

{             

if ( ( m.WParam.ToInt32() == DBT_DEVICEARRIVAL ) ) 

{ 

// Find out if the device path name matches wParam.

// If yes, perform any tasks required on device arrival.        

} 

else if ( ( m.WParam.ToInt32() == DBT_DEVICEREMOVECOMPLETE ) ) 

{                     

// Find out if the device path name matches wParam.

// If yes, perform any tasks required on device removal.  

} 

}

.��������5������������& ���A ����������4��� 5�
If the message indicates a device arrival or removal (or another event of inter-
est), the application can investigate further.

In the structure that lParam points to, if dbch_devicetype contains
DBT_DEVTYP_DEVICEINTERFACE, the event relates to a device interface.
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Thus lParam contains a DEV_BROADCAST_DEVICEINTERFACE struc-
ture, which begins with a DEV_BROADCAST_HDR structure. The
dbcc_name member contains the device path name of the device the message
applies to. The application can compare this device path name with the device
path name of the device of interest. On a match, the application can take any
desired actions.

T h i s  e x a m p l e  c o d e  u s e s  t w o  d e c l a r a t i o n s  f o r  t h e
DEV_BROADCAST_DEVICEINTERFACE structure. The first declaration,
presented earlier, is used when calling RegisterDeviceNotification. A second
declaration, DEV_BROADCAST_DEVICEINTERFACE_1, enables marshal-
ing the data in dbcc_name and classguid.

�� Definitions

<StructLayout(LayoutKind.Sequential)> _

Friend Class DEV_BROADCAST_HDR

Friend dbch_size As Int32

Friend dbch_devicetype As Int32

Friend dbch_reserved As Int32

End Class

<StructLayout(LayoutKind.Sequential, CharSet:=CharSet.Auto)> _

Friend Class DEV_BROADCAST_DEVICEINTERFACE_1

Friend dbcc_size As Int32

Friend dbcc_devicetype As Int32

Friend dbcc_reserved As Int32

<MarshalAs(UnmanagedType.ByValArray, _

ArraySubType:=UnmanagedType.U1, _

SizeConst:=16)> _

Friend dbcc_classguid() As Byte

<MarshalAs(UnmanagedType.ByValArray, 

sizeconst:=255)> _

Friend dbcc_name() As Char

End Class

Use

Dim devBroadcastDeviceInterface As New DEV_BROADCAST_DEVICEINTERFACE_1()

Dim devBroadcastHeader As New DEV_BROADCAST_HDR()

Marshal.PtrToStructure(m.LParam, devBroadcastHeader)
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If (devBroadcastHeader.dbch_devicetype = DBT_DEVTYP_DEVICEINTERFACE) Then

Dim stringSize As Int32 = 

Convert.ToInt32((devBroadcastHeader.dbch_size - 32) / 2)

Array.Resize(devBroadcastDeviceInterface.dbcc_name, stringSize)

Marshal.PtrToStructure (m.LParam, devBroadcastDeviceInterface)

Dim deviceNameString As _

New String(devBroadcastDeviceInterface.dbcc_name, 0, stringSize)

If (String.Compare (deviceNameString, devicePathName, True) = 0) Then

'The name matches.

Else

'It's a different device.

End If

End If

��� Definitions

 [ StructLayout( LayoutKind.Sequential ) ]

internal class DEV_BROADCAST_HDR  

{

internal Int32 dbch_size;

internal Int32 dbch_devicetype;

internal Int32 dbch_reserved; 

}         

[ StructLayout( LayoutKind.Sequential, CharSet=CharSet.Auto ) ]

internal class DEV_BROADCAST_DEVICEINTERFACE_1  

{

internal Int32 dbcc_size;

internal Int32 dbcc_devicetype;

internal Int32 dbcc_reserved; 

[ MarshalAs( UnmanagedType.ByValArray, 

ArraySubType=UnmanagedType.U1, 

SizeConst=16 ) ]

internal Byte[] dbcc_classguid;

[MarshalAs(UnmanagedType.ByValArray, 

SizeConst = 255)]

internal Char[] dbcc_name; 

} 
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Use

DEV_BROADCAST_DEVICEINTERFACE_1 devBroadcastDeviceInterface = 

new DEV_BROADCAST_DEVICEINTERFACE_1();

DEV_BROADCAST_HDR devBroadcastHeader = new DEV_BROADCAST_HDR(); 

                            

Marshal.PtrToStructure( m.LParam, devBroadcastHeader ); 

if ( ( devBroadcastHeader.dbch_devicetype == DBT_DEVTYP_DEVICEINTERFACE ) ) 

{                     

Int32 stringSize = Convert.ToInt32( ( devBroadcastHeader.dbch_size - 32 ) / 2 );       

              

Array.Resize(ref devBroadcastDeviceInterface.dbcc_name, stringSize);

                    

Marshal.PtrToStructure( m.LParam, devBroadcastDeviceInterface ); 

String DeviceNameString = 

new String(devBroadcastDeviceInterface.dbcc_name, 0, stringSize);                   

                    

if ( ( String.Compare( deviceNameString, devicePathName, true ) == 0 ) ) 

{ 

// The name matches.;

} 

else 

{ 

// It’s a different device.;

} 

}

(����	


MarshalPtrToStructure copies the message’s lParam property into a
DEV_BROADCAST_HDR structure. If the message relates to a device inter-
face, the application retrieves the device path name.

The name is in a Char array in unmanaged memory. The application needs to
retrieve the array and convert it to a String.

The dbch_size member of DEV_BROADCAST_HDR contains the number of
bytes in the complete DEV_BROADCAST_DEVICEINTERFACE structure.
To obtain the number of characters in the device path name stored in
dbch_name, subtract the 32 bytes in the structure that are not part of the name
and divide by 2 because there are 2 bytes per character.
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The Array.Resize method trims dbcc_name to the size of the device path name.
Marshal.PtrToStructure copies the data from the unmanaged block in lParam
to the devBroadcastDeviceInterface structure. The Char array containing the
device path name is then stored as a String in deviceNameString, and the
String.Compare method looks for a match.

�������5��������A���"�� �����
To stop receiving device notifications, an application calls UnregisterDeviceNo-
tification.

�� Definitions

<DllImport("user32.dll", SetLastError:=True)> _

Shared Function UnregisterDeviceNotification _

(ByVal Handle As IntPtr) _

As Boolean

End Function

Use

UnregisterDeviceNotification(deviceNotificationHandle)

��� Definitions

[DllImport("user32.dll", SetLastError = true)]

internal static extern Boolean UnregisterDeviceNotification(IntPtr Handle);  

Use

UnregisterDeviceNotification( deviceNotificationHandle ); 
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The human interface device (HID) class was one of the first USB classes sup-
ported under Windows. On PCs running Windows 98 or later, applications
can communicate with HIDs using the drivers built into the operating system.
Because the HID class supports exchanging data for application-specific pur-
poses, many special-purpose devices use the HID class.

Chapter 7 introduced the class. This chapter shows how to determine whether a
device can use the human-interface class, introduces HID-specific requests, and
discusses HID firmware options. Chapter 12 describes the reports that HIDs
use to exchange information and Chapter 13 shows how to access HIDs from
applications.



Chapter 11

278                                                                                                           

*���������!#�E
The name human interface device suggests that HIDs interact directly with peo-
ple, and many HIDs do just that. A mouse detects when someone moves it or
presses a key. A host may send data that translates to an effect that a user senses
on a joystick. Besides keyboards, mice, and joysticks, devices with HID inter-
faces include remote controls; telephone keypads; game controls such as data
gloves and steering wheels; barcode readers; and UPS units. Devices with phys-
ical control panels can use a HID interface to send control-panel input to the
host. Devices with virtual control panels on the host can use a HID interface to
send control-panel data to the device. A virtual control panel can be cheaper to
implement than traditional physical controls on a device.

A HID doesn’t have to have a human interface. The device just needs to be able
to function within the limits of the HID class specification. These are the major
abilities and limits of HID-class devices:

• All data exchanged resides in fixed-length structures called reports. The
host sends and receives data by sending and requesting reports in control or
interrupt transfers. The report format is flexible and can handle just about
any type of data.

• A HID must have an interrupt IN endpoint for sending Input reports.

• A HID can have at most one interrupt IN endpoint and one interrupt
OUT endpoint. A device that requires more interrupt endpoints can be a
composite device with multiple HID interfaces. An application obtains sep-
arate handles for each HID in the device.

• The interrupt IN endpoint enables the HID to send information to the
host at unpredictable times. For example, there’s no way for the host com-
puter to know when a user will press a key on the keyboard, so the host’s
driver uses interrupt transactions to poll the device periodically to obtain
new data. SuperSpeed devices can send ERDY Transaction Packets to
request communications with the host.

• The rate of data exchange is limited. As Chapter 3 explained, a host can
guarantee a low-speed interrupt endpoint a maximum data transfer rate of
800 bytes/sec. For full-speed endpoints, the maximum is 64 kB/s.
High-speed and SuperSpeed endpoints support faster rates, but to comply
with the USB 2.0 and USB 3.0 specifications, the endpoints in the default
interface should request no more than 64 kB/s. Under Windows, support-
ing an alternate HID interface requires a vendor-provided driver, which
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eliminates the advantage of using Windows-provided drivers. Control
transfers have no guaranteed bandwidth except for the bandwidth reserved
for all control transfers on the bus.

• Windows 98 Gold (original edition) supports USB 1.0, so interrupt OUT
transfers aren’t supported and all host-to-device reports must use control
transfers.

A HID may be just one of multiple interfaces in a device. For example, a USB
speaker might use isochronous transfers for audio and a HID interface for con-
trolling volume, balance, treble, and bass.

) ��* ���.�/���������
To comply with the HID specification, the interface’s endpoints and descriptors
must meet several requirements.

��������


All HID transfers use either the control endpoint or an interrupt endpoint.
Every HID must have an interrupt IN endpoint for sending data to the host.
An interrupt OUT endpoint is optional. Table 11-1 shows the transfer types
and their typical use in HIDs.

$�����


The requirement for an interrupt IN endpoint suggests that every HID must
have at least one Input report defined in the HID’s report descriptor. Output
and Feature reports are optional.

������	�/���
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The HID specification defines six class-specific requests. Two requests, Set
Report and Get Report, provide a way for the host and device to transfer
reports to and from the device using control transfers. Set Idle and Get Idle set
and read the Idle rate, which determines whether or not a device resends data
that hasn’t changed since the last report. Set Protocol and Get Protocol set and
read a protocol value, which can enable a device to function with a simplified
protocol when the full HID drivers aren’t loaded on the host, such as during
boot up.
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Interrupt endpoints provide another way to exchange data, especially when the
receiver must get the data periodically and with minimum delay. Control trans-
fers can be delayed if the bus is very busy, while the bandwidth for interrupt
transfers is guaranteed to be available after successful enumeration.

The ability to do Interrupt OUT transfers was added in USB 1.1, and the
option to use an interrupt OUT pipe was added to version 1.1 of the HID
specification. Windows 98 SE was the first Windows edition to support USB
1.1 and HID 1.1.

����* ���.�/���������
The device’s descriptors must include an interface descriptor for the HID class,
a class-specific HID descriptor, and an interrupt IN endpoint descriptor. An
interrupt OUT endpoint descriptor is optional. The firmware must also con-
tain a class-specific report descriptor with information about the format and use
of the report data.

A HID can support one or more reports. The report descriptor specifies the size
and contents of the data in a device’s report(s) and may also include informa-
tion about how the receiver of the data should use the data. Values in the
descriptor define each report as an Input, Output, or Feature report. The host
receives data in Input reports and sends data in Output reports. A Feature
report can travel in either direction.

Table 11-1: The transfer type used in a HID transfer depends on the chip’s 

abilities and the requirements of the data being sent.
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Control Device 
(IN transfer)

Data that doesn’t have critical timing 
requirements.

yes Windows 98 
Gold and later

Host 
(OUT transfer)

Data that doesn’t have critical timing 
requirements, or any data if there is 
no OUT interrupt pipe.

Interrupt Device 
(IN transfer)

Periodic or low-latency data. yes

Host 
(OUT transfer)

Periodic or low-latency data. no Windows 98 
SE and later
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Every device should support at least one Input report that the host can retrieve
using interrupt transfers or control requests. Output reports are optional. To be
compatible with Windows 98 Gold, devices that use Output reports should
support sending the reports using control transfers. Using interrupt transfers for
Output reports is optional. Feature reports always use control transfers and are
optional.

�	� �������
As with any USB device, a HID’s descriptors tell the host what it needs to know
to communicate with the device. Listing 11-1 shows example device, configura-
tion, interface, class, and endpoint descriptors for a HID with a vendor-specific
function. 

The host learns about the HID interface during enumeration by sending a Get
Descriptor request for the configuration containing the HID interface. An
interface descriptor specifies the HID interface. A HID class descriptor specifies
the combined number of report and physical descriptors supported by the
interface. During enumeration, the HID driver requests the report descriptor
and any physical descriptors.

��� In PICBASIC PRO, descriptor tables are in assembly code. Each table is a list
of values with each preceded by a retlw instruction, which places the literal
value that follows in the working register and returns to the calling code. You
don’t have to know assembly code to compose a descriptor. Start with an exam-
ple and edit the values as needed. 
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Device Descriptor

    

12 bLength Descriptor size in bytes

01 bDescriptorType Descriptor type (Device)

0200 bcdUSB USB Specification release number (BCD) (2.00)

00 bDeviceClass Class Code (class is specified in interface descriptor)

00 bDeviceSubClass Subclass code

00 bDeviceProtocol Protocol code

08 bMaxPacketSize0 Endpoint zero maximum packet size

0925 idVendor Vendor ID (Lakeview Research)

1234 idProduct Product ID

0100 bcdDevice Device release number (BCD)

01 iManufacturer Manufacturer string index

02 iProduct Product string index

00 iSerialNumber Device serial number string index

01 bNumConfigurations Number of configurations

Configuration Descriptor

09 bLength Descriptor size in bytes

02 bDescriptorType Descriptor type (Configuration)

0029 wTotalLength Total length of this and subordinate descriptors

01 bNumInterfaces Number of interfaces in this configuration

01 bConfigurationValue Index of this configuration

00 iConfiguration Configuration string index

A0 bmAttributes Attributes (bus powered, remote wakeup supported)

32 bMaxPower Maximum power consumption (100 mA) 

Interface Descriptor

09 bLength Descriptor size in bytes

04 bDescriptorType Descriptor type (Interface)

00 bInterfaceNumber Interface Number

00 bAlternateSetting Alternate Setting Number

02 bNumEndpoints Number of endpoints in this interface

03 bInterfaceClass Interface class (HID)

00 bInterfaceSubclass Interface subclass

00 bInterfaceProtocol Interface protocol

00 iInterface Interface string index

Listing 11-1: Example descriptors for a vendor-specific HID. All values are in 

hexadecimal.  (Part 1 of 2)
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HID Descriptor

09 bLength Descriptor size in bytes

21 bDescriptorType Descriptor type (HID)

0110 bcdHID HID Spec. release number (BCD) (1.1)

00 bCountryCode Country code

01 bNumDescriptors Number of subordinate class descriptors

22 bDescriptorType Descriptor type (report)

002F wDescriptorLength Report descriptor size in bytes

Interrupt IN Endpoint Descriptor

07 bLength Descriptor size in bytes 

05 bDescriptorType Descriptor type (Endpoint)

81 bEndpointAddress Endpoint number and direction (1 IN) 

03 bmAttributes Transfer type (interrupt)

0040 wMaxPacketSize Maximum packet size

0A bInterval polling interval (milliseconds)

    

Interrupt OUT Endpoint Descriptor

    

07 bLength Descriptor size in bytes 

05 bDescriptorType Descriptor type (Endpoint)

01 bEndpointAddress Endpoint number and direction (1 OUT)    

03 bmAttributes Transfer type (interrupt)

0040 wMaxPacketSize Maximum packet size

0A bInterval polling interval (milliseconds)

Listing 11-1: Example descriptors for a vendor-specific HID. All values are in 

hexadecimal.  (Part 2 of 2)
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Here is Listing 11-1’s device descriptor for use in PICBASIC PRO:
DeviceDescriptor

retlw (EndDeviceDescriptor-DeviceDescriptor)/2; bLength

retlw 0x01 ; bDescriptorType

retlw 0x00 ; bcdUSB low byte

retlw 0x02 ; bcdUSB high byte

retlw 0x00 ; bDeviceClass

retlw 0x00 ; bDeviceSubClass

retlw 0x00 ; bDeviceProtocol

retlw 0x08 ; bMaxPacketSize0

retlw 0x25 ; idVendor low byte

retlw 0x09 ; idVendor high byte

retlw 0x34 ; idProduct low byte

retlw 0x12 ; idProduct high byte

retlw 0x00 ; bcdDevice low byte

retlw 0x01 ; bcdDevice high byte

retlw 0x01 ; iManufacturer

retlw 0x02 ; iProduct

retlw 0x00 ; iSerialNumber

retlw 0x01 ; bNumConfigurations

EndDeviceDescriptor

��� For Microchip’s MPLAB C18 compiler, descriptors can reside in structures.
This structure holds a device descriptor:
typedef struct __attribute__ ((packed)) _USB_DEVICE_DESCRIPTOR

{

BYTE bLength;

BYTE bDescriptorType;

WORD bcdUSB;

BYTE bDeviceClass;

BYTE bDeviceSubClass;

BYTE bDeviceProtocol;

BYTE bMaxPacketSize0;

WORD  idVendor;

WORD idProduct;

WORD bcdDevice;

BYTE iManufacturer;

BYTE iProduct;

BYTE iSerialNumber;

BYTE bNumConfigurations;

} USB_DEVICE_DESCRIPTOR;
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This is Listing 11-1’s device descriptor stored in a structure:
ROM USB_DEVICE_DESCRIPTOR device_dsc=

{

0x12, // bLength

0x01, // bDescriptorType

0x0200, // bcdUSB

0x00, // bDeviceClass

0x00, // bDeviceSubClass

0x00, // bDeviceProtocol

0x08, // bMaxPacketSize0

0x0925, // idVendor

0x1234, // idProduct

0x0100, // bcdDevice

0x01, // iManufacturer

0x02, // iProduct

0x00, // iSerialNumber

0x01 // bNumConfigurations

}; 

����)��������" ��
In the interface descriptor, bInterfaceclass = 03h to identify the interface as a
HID. Other fields that contain HID-specific information in the interface
descriptor are the bInterfaceSubclass and bInterfaceProtocol fields, which can
specify a boot interface.

If bInterfaceSubclass = 01h, the device supports a boot interface. A HID with a
boot interface can communicate with the host even when the host hasn’t loaded
its HID drivers. This situation might occur when the computer boots directly
to DOS or when viewing the system setup screens that you can access on
bootup, or when using Windows Safe mode for system troubleshooting. 

A keyboard or mouse with a boot interface can use a simplified protocol sup-
ported by the BIOS in many hosts. The BIOS loads from ROM or other
non-volatile memory on bootup and is available in any operating-system mode.
The HID specification defines boot-interface protocols for keyboards and mice.
If a device has a boot interface, bInterfaceProtocol indicates if the HID sup-
ports a keyboard (01h) or mouse (02h) function.

The HID Usage Tables document defines the report format for keyboards and
mice that use the boot protocol. The BIOS understands the boot protocol and
assumes that a boot device will support the protocol, so the BIOS doesn’t need
to read a report descriptor from the device. Before sending or requesting
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reports, the BIOS sends the HID-specific Set Protocol request to request to use
the boot protocol. When the full HID drivers have been loaded, the driver can
use Set Protocol to cause the device to switch from the boot protocol to the
report protocol, which uses the report formats defined in the report descriptor.

If the HID doesn’t support a boot protocol, bInterfaceSubclass = 00h.

)����� �������������
The HID class descriptor (Table 11-2) identifies additional descriptors for HID
communications. The class descriptor has seven or more fields depending on
the number of additional descriptors. 

.�����������������
A report descriptor defines the format and use of the data in the HID’s reports.
If the device is a mouse, the data reports mouse movements and button clicks.
If the device is a relay controller, the data specifies which relays to open and
close. The descriptor format is flexible enough for use with devices with varied
functions.

A report descriptor is a class-specific descriptor. The host retrieves the descrip-
tor by sending a Get Descriptor request to the interface with the wValue field
containing 22h in the high byte.

Listing 11-2 is a basic report descriptor that defines an Input report, an Output
report, and a Feature report. The device sends two bytes of vendor-defined data
in the Input report. The host sends two bytes of vendor-defined data in the
Output report. The Feature report is two bytes of vendor-defined data that the
host can send to the device or request from the device. 

Basic report descriptors similar to this example can serve many HIDs with ven-
dor-specific functions. For a loop-back test, device firmware can copy received
data from an Input report into an Output report to send back to the host. For a
“lights and switches” application, firmware can use received Input report data
to control LEDs and use Output reports to send logic states read at switches.

Each item in the report descriptor consists of a byte that identifies the item and
one or more bytes containing the item’s data. The HID specification defines
item types that a report can contain. Here is the function of each item in the
example report descriptor:

The Usage Page item (06h) specifies the general function of the device, such as
generic desktop control, game control, or alphanumeric display. In the example
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descriptor, the Usage Page is the vendor-defined value FFA0h. The HID Usage
Tables document provides values for different Usage Pages. Vendor-defined
Usage Pages use the range FF00h–FFFFh.

The Usage item (09h) specifies the function of an individual report in a Usage
Page. For example, Usages available for generic desktop controls include mouse,
joystick, and keyboard. Because the example’s Usage Page is vendor-defined, all
of the Usages in the Usage Page are vendor-defined also. In the example, the
Usage is 01h.

The Collection (Application) item (A1h) begins a group of items that together
perform a single function, such as keyboard or mouse. Each report descriptor
must have an application collection.

The Collection contains three reports. Each report has these items:

A vendor-defined Usage applies to the data in the report.

A Logical Minimum and Logical Maximum specify the range of values that 
the report can contain.

Table 11-2: The HID class descriptor specifies the length of the report 

descriptor.
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0 bLength 1 Descriptor size in bytes.
1 bDescriptorType 1 This descriptor’s type: 21h to indicate the HID 

class.
2 bcdHID 2 HID specification release number (BCD).
4 bCountryCode 1 Numeric expression identifying the country for 

localized hardware (BCD) or 00h.
5 bNumDescriptors 1 Number of subordinate report and physical 

descriptors.
6 bDescriptorType 1 The type of a class-specific descriptor that follows. 

(A report descriptor (required) is type 22h.)
7 wDescriptorLength 2 Total length of the descriptor identified above.
9 bDescriptorType 1 Optional. The type of a class-specific descriptor 

that follows. A physical descriptor is type 23h.
10 wDescriptorLength 2 Total length of the descriptor identified above. 

Present only if bDescriptorType is present 
immediately above. May be followed by additional 
wDescriptorType and wDescriptorLength fields to 
identify additional physical descriptors.
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The Report Size item indicates how many bits are in each reported data 
item. In the example, each data item is eight bits.

The Report Count item indicates how many data items the report contains. 
In the example, each report contains two data items.

In the final item, the first byte specifies whether the report is an Input report 
(81h), Output report (91h), or Feature report (B1h). The second byte con-
tains additional information about the report data, such as whether the val-
ues are relative or absolute.

06 FFA0 Usage Page (vendor-defined)

09    01 Usage (vendor-defined)

A1    01 Collection (Application)

09    03 Usage (vendor-defined)

15    00 Logical Minimum (0)

26    00FF Logical Maximum (255)

95    02 Report Size (8 bits)

75    08 Report Count (2)

81    02 Input (Data, Variable, Absolute)

09    04 Usage (vendor-defined) 

15    00 Logical Minimum (0)

26    00FF  Logical Maximum (255)

75    08 Report Size (8 bits)

95    02 Report Count (2)

91    02 Output (Data, Variable, Absolute)

09    05 Usage (vendor-defined) 

15    00 Logical Minimum (0)

26    00FF Logical Maximum (255)

75    08 Report Size (8 bits)

95    02 Report Count (2)

B1    02 Feature (Data, Variable, Absolute)

C0 End Collection

Listing 11-2: This report descriptor defines an Input report, an Output report, 

and a Feature report. Each report transfers two vendor-defined bytes. All values 

are hexadecimal.
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An End Collection item (C0h) closes the Application Collection.

These are the basics. Chapter 12 has more about report formats.

!#�&��	 �!� ��	 �	���
The HID specification defines six HID-specific requests (Table 11-3).

Table 11-3: The HID class defines six HID-specific requests.

-�'����
�����	

-�'���� �����
�
�	���
������
�����!

)0����
������
����<
�
)�����!

)���" �����
������
������!
�)�����!

�����
������
 
����

-�'��	��(

01h Get 
Report

device report 
type, 
Report ID

interface report 
length

report yes

02h Get Idle device 00h,
Report ID

interface 0001h idle 
duration

no

03h Get 
Protocol

device 0000h interface 0001h protocol yes for HIDs 
that support 
a boot 
protocol

09h Set 
Report

host report 
type, 
Report ID

interface report 
length

report no

0Ah Set Idle no Data 
stage

idle 
duration, 
Report ID

interface – – no, except for 
keyboards 
using the 
boot protocol

0Bh Set 
Protocol

no Data 
stage

00h,
protocol

interface – – yes for HIDs 
that support 
a boot 
protocol
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Purpose: The host requests an Input or Feature report from a HID using a control
transfer.

Request Number (bRequest): 01h

Source of Data: device

Data Length (wLength): length of the report

Contents of wValue field: The high byte contains the report type (01h = Input, 03h =
Feature), and the low byte contains the Report ID. The default Report ID is zero.

Contents of wIndex field: the number of the interface the request is directed to.

Contents of data packet in the Data stage: the report

Comments: The HID specification says that all HIDs must support this request. A
host may enumerate and communicate with a HID that doesn’t support the request,
but future editions of the operating system might enforce the requirement. See also Set
Report.

��������
Purpose: The host reads the current Idle rate from a HID.

Request Number (bRequest): 02h

Source of Data: device

Data Length (wLength): 0001h

Contents of wValue field: The high byte is 00h. The low byte indicates the Report ID
the request applies to. If the low byte is 00h, the request applies to all of the HID’s
Input reports.

Contents of wIndex field: the number of the interface that supports this request.

Contents of data packet in the Data stage: the Idle rate, expressed in units of 4 ms.

Comments: HIDs aren’t required to support this request. See Set Idle for more details. 
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Purpose: The host learns whether the boot or report protocol is currently active in the
HID.

Request Number (bRequest): 03h

Source of Data: device

Data Length (wLength): 0001h

Contents of wValue field: 0000h

Contents of wIndex field: the number of the interface that supports this request.

Contents of data packet in the Data stage: the protocol (00h = boot protocol, 01h =
report protocol).

Comments: Boot devices must support this request. See also Set Protocol.

����.�����
Purpose: The host sends an Output or Feature report to a HID using a control trans-
fer.

Request Number (bRequest): 09h

Source of Data: host

Data Length (wLength): length of the report

Contents of wValue field: The high byte contains the report type (02h = Output, 03h
= Feature), and the low byte contains the Report ID. The default Report ID is zero.

Contents of wIndex field: the number of the interface the request is directed to.

Contents of data packet in the Data stage: the report.

Comments: If a HID interface doesn’t have an Interrupt OUT endpoint or if the host
complies only with version 1.0 of the HID specification, this request is the only way
the host can send data to the HID. HIDs aren’t required to support this request. See
also Get Report.
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Purpose: saves bandwidth by limiting the reporting frequency of an interrupt IN end-
point when the data hasn’t changed since the last report.

Request Number (bRequest): 0Ah

Data Length (wLength): 0000h

Contents of wValue field: The high byte sets the duration, or the maximum amount
of time between reports. A value of 00h means that the HID will send a report only
when the report data has changed. The low byte indicates the Report ID that the
request applies to. If the low byte is 00h, the request applies to all of the HID’s Input
reports.

Contents of wIndex field: the number of the interface that supports this request.

Comments: The duration is in units of 4 ms, which gives a range of 4–1,020 ms. No
matter what the duration value, if the report data has changed since the last Input
report sent, on receiving an interrupt IN token packet, the HID sends the data. If the
data hasn’t changed and the duration time hasn’t elapsed since the last report, the HID
returns NAK. If the data hasn’t changed and the duration time has elapsed since the
last report, the HID sends report data. A duration value of 00h indicates an infinite
duration: the HID sends a report only if the report data has changed and otherwise
returns NAK. On enumerating a HID, the Windows HID driver attempts to set the
idle rate to 00h. HIDs aren’t required to support this request except for keyboards
using the boot protocol. Not all device controllers have hardware support for the Idle
rate though firmware can support the feature with help from a hardware timer. A HID
can refuse the request by returning STALL. See also Get Idle.

����&�������
Purpose: The host specifies whether the HID should use the boot or report protocol.

Request Number (bRequest): 0Bh

Data Length (wLength): 0000h

Contents of wValue field: the protocol (0000h = boot protocol, 0001h = report pro-
tocol).

Contents of wIndex field: the number of the interface that supports this request.

Comments: Boot devices must support this request. See also Get Protocol.
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When enumeration is complete, the host has identified the device interface as a
HID, established pipes with the interface’s endpoints, and learned the report
formats for sending and receiving data.

The host can then request reports using interrupt IN transfers and control
transfers with Get Report requests. The device also has the option to support
receiving reports using interrupt OUT transfers and control transfers with Set
Report requests.

7�����!�����*��	
Many firmware compilers provide HID examples, perhaps because all major
operating systems provide host HID drivers and HID firmware is less complex
than what’s required for many other classes.

��� PIC BASIC PRO includes code for a mouse and a generic HID that sends and
receives reports using interrupt transfers. Supporting the HID Get Report or
Set Report requests would require added support in assembly code.

��� Microchip provides HID example code for the PIC18F4550 and other Micro-
chip microcontrollers for the MPLAB C18 compiler. Microchip’s USB Frame-
work includes mouse and generic HID examples. The code supports sending
and receiving reports using interrupt transfers. See www.Lvr.com for a generic
HID example that supports exchanging reports via both interrupt and control
transfers.

�����
Another option for users of Microchip controllers is HIDmaker FS from Trace
Systems, Inc. A software wizard asks questions about your device and generates
firmware to implement the Input, Output, and Feature reports you specify. The
wizard supports the PICBASIC PRO compiler as well as the Microchip
MPLAB C18, CCS C, and HI-TECH C compilers. The wizard can generate
PC application code to access the HID in several programming languages. 

The HIDmaker Test Suite includes two other tools. The AnyHID application
displays report descriptors and enables exchanging data with attached and enu-
merated HIDs (except system mice and keyboards). USBwatch is a low-budget
USB analyzer for HIDs. To use the analyzer, you add the provided code to your
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device firmware and connect the device’s asynchronous serial port to a PC’s
serial port via RS-232 or a USB/COM-port adapter. The firmware writes
debugging data to the serial port for display by the USBwatch application.
USBwatch can display enumeration and application data. You can also define
your own messages for firmware to send at locations you select in your code. 
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Chapter 11 introduced the reports that HIDs use to exchange data. A report
can be a basic buffer of bytes or a complex assortment of items with assigned
functions and units. This chapter shows how to create reports to fit specific
applications.

����������������
The report descriptor provides information about the data the HID sends and
receives. The descriptor identifies the device’s function and can specify uses and
units for the report data. Controls and data items describe values to be trans-
ferred in one or more reports. A control is a button, switch, or other physical
entity that operates or regulates an aspect of a device. Everything else is a data
item.

For vendor-specific devices intended for use with a single application, the appli-
cation often knows in advance the type, size, and order of the data in a report so
there’s no need to obtain this information from the device. For example, when
the vendor of a data-acquisition unit creates an application for use with the



Chapter 12

296                                                                                                           

unit, the vendor already knows the data format the device uses in its reports. At
most, the application might check the Product ID and release number from the
device descriptor to learn whether the application can request a particular set-
ting or action. For applications like these, the host and device can exchange
data in vendor-defined buffers without relying on the report descriptor to
define what the buffers contain.

����5�����)������������������
The HID Descriptor Tool (Figure 12-1) is a free utility from the USB-IF. The
tool helps create report descriptors and flags errors. Instead of having to look up
the values that correspond to each item in your report, you can select the item
from a list and enter the value you want to assign to it, and the tool adds the
item to the descriptor. You can also add items manually. The Parse Descriptor
function displays the raw and interpreted values in your descriptor and com-
ments on any errors found. When you have an error-free descriptor, you can
convert it to the syntax your firmware requires. The tool has limited support for
vendor-specific items, however, and may flag these as errors.

�������� ���� � ������8 ����
Several documents define values that reports may contain. The first place to
look is the USB-IF’s HID Usage Tables, which defines values for generic desktop
controls, simulation controls, game controls, LEDs, buttons, telephone devices,
and more. Other values are defined in the main HID specification and the HID
specifications for monitor, power, and point-of-sale devices.

��������� �
The HID specification defines two report item types: short items and long
items. As of HID 1.11, there are no defined Long items.

A Short item’s 1-byte prefix specifies the item type, item tag, and item size.
These are the elements that make up the prefix byte:

%��������	  
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1..0 Item size Number of bytes in the item
3..2 Item type Item scope: Main, Global, or Local
7..4 Item tag Item function
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Figure 12-1. The HID Descriptor Tool helps in creating and testing HID report 

descriptors.
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The item size specifies how many data bytes the item contains. Note that an
item size of 11b corresponds to 4 data bytes (not 3):

The item type specifies the scope of the item: Main (00), Global (01), or Local
(10). This chapter has more information about these item types.

The item tag specifies the item’s function.

��	�"����#�	��� �	
A Main item defines or groups data items within a report descriptor. There are
five Main item types. Input, Output, and Feature items each define fields in a
type of report. Collection and End Collection items group related items within
a report. The default for all Main items is zero.

#����F�;�����F������	����	�#�	��
Table 12-1 shows supported values for Input, Output, and Feature items. Each
item has a 1-byte prefix followed by 1 or 2 bytes that describe the report data. 

An Input item applies to data a device sends to the host. An Input report con-
tains one or more Input items. The host uses interrupt IN transfers or Get
Report requests to request Input reports.

An Output item applies to information that the host sends to the device. An
Output report contains one or more Output items. Hosts can send Output
reports via interrupt OUT transfers and Set Report requests.

A Feature report contains one or more Feature items. The report can travel in
either direction. Feature reports typically contain configuration settings that
affect the overall behavior of the device or one of its components. For example,
the host may have a virtual (on-screen) control panel to enable users to select
and control a device’s settings. The host uses control transfers with Set Report
and Get Report requests to send and receive Feature reports.

Following each Input, Output, or Feature item prefix are up to 9 bits that
describe the item’s data. (An additional 23 bits are reserved.) An Input item pre-

�������*������	�! �����	�
�������%����

00 0
01 1
10 2
11 4
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Table 12-1: The bits that follow Input, Output, and Feature Item prefixes describe 

the data in a report.

�	���" ���������

%��������	 �������������=�: �������������=�7

Input 
(100000nn, where nn=the 
number of bytes in the data 
following the prefix)
For example, use 81h for 1 
byte of item data. Use 82h 
for 2 bytes of item data.

0 Data Constant
1 Array Variable
2 Absolute Relative
3 No wrap Wrap
4 Linear Non-linear
5 Preferred state No preferred state
6 No null position Null state
7 Reserved
8 Bit field Buffered bytes
9-31 Reserved

Output 
(100100nn, where nn=the 
number of bytes in the data 
following the prefix)
For example, use 91h for 1 
byte of item data. Use 92h 
for 2 bytes of item data.

0 Data Constant
1 Array Variable
2 Absolute Relative
3 No wrap Wrap
4 Linear Non-linear
5 Preferred state No preferred state
6 No null position Null state
7 Non-volatile Volatile
8 Bit field Buffered bytes
9-31 Reserved

Feature 
(101100nn, where nn=the 
number of bytes in the data 
following the prefix)
For example, use B1h for 1 
byte of item data. Use B2h 
for 2 bytes of item data.

0 Data Constant
1 Array Variable
2 Absolute Relative
3 No wrap Wrap
4 Linear Non-linear
5 Preferred state No preferred state
6 No null position Null state
7 Non-volatile Volatile
8 Bit field Buffered bytes
9-31 Reserved
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fix followed by 8 bits of item data has the value 81h. The high four bits equal
8h to indicate an Input item, and the low four bits equal 1h to indicate that the
item data uses 1 byte. An Input item prefix followed by 9 bits of data has the
value 82h, with the high four bits set to 8h to indicate an Input item and the
low four bits set to 2h to indicate that the item data uses 2 bytes.

The bit functions are the same for Input, Output, and Feature items, except
that Input items don’t support the volatile/non-volatile bit. These are the uses
for each bit:

Data | Constant. Data means that the contents of the item are modifiable
(read/write). Constant means the contents are not modifiable (read-only).

Array | Variable. This bit specifies whether the data reports the state of every
control (Variable) or just reports the states of controls that are asserted, or active
(Array). Reporting only the asserted controls results in a more compact report
for devices such as keyboards that have many controls (keys) but where only
one or a few controls are asserted at the same time.

For example, if a keypad has eight keys, setting this bit to Variable would mean
that the keypad’s report would contain a bit for each key. In the report descrip-
tor, the report size would be one bit, the report count would be eight, and the
total amount of data sent would be eight bits. Setting the bit to Array would
mean that each key has an assigned index, and the keypad’s report would con-
tain only the indexes of keys that are pressed. With eight keys, the report size
would be three bits, which can report a key number in the range 0–7. The
report count would equal the maximum number of simultaneous keypresses
that could be reported. If the user can press only one key at a time, the report
count would be 1 and the total amount of data sent would be just 3 bits. If the
user can press all of the keys at once, the report count would be 8 and the total
amount of data sent would be 24 bits.

An out-of-range value reported for an Array item indicates that no controls are
asserted.

Absolute | Relative. Absolute means that the value is based on a fixed origin.
Relative means that the data indicates the change from the last reading. A joy-
stick normally reports absolute data (the joystick’s current position), while a
mouse reports relative data (how far the mouse has moved since the last report).

No Wrap | Wrap. Wrap indicates that the value rolls over to the minimum if
the value continues to increment after reaching its maximum and rolls over to
the maximum if the value continues to decrement after reaching its minimum.
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An item specified as No Wrap that exceeds the specified limits may report a
value outside the limits. This bit doesn’t apply to Array data.

Linear | Non-linear. Linear indicates that the measured data and the reported
value have a linear relationship. In other words, a graph of the reported data
and the property being measured forms a straight line. In non-linear data, a
graph of the reported data and the property being measured forms a curve. This
bit doesn’t apply to Array data.

Preferred State | No Preferred State. Preferred state indicates that the control
will return to a particular state when the user isn’t interacting with it. A
momentary pushbutton has a preferred state (not pushed, or out) when no one
is pressing the button. A toggle switch has no preferred state and remains in the
last state selected by a user. This bit doesn’t apply to Array data.

No Null Position | Null State. Null state indicates that the control supports a
state where the control isn’t sending meaningful data. A control indicates that
it’s in the null state by sending a value outside the range defined by its Logical
Minimum and Logical Maximum. No Null Position indicates that any data
sent by the control is meaningful data. A hat switch on a joystick is in a null
position when it isn’t being pressed. This bit doesn’t apply to Array data.

Non-volatile | Volatile. The Volatile bit applies only to Output and Feature
report data. Volatile means the device may change the value on its own, without
host interaction, as well as when the host sends a report requesting the device to
change the value. For example, users might request to change the value of a
control by pressing a button on the device or by clicking a button on a virtual
control panel to cause the host to send a report to the device. Non-volatile
means that the device changes the value only when the host requests a new
value in a report.

When the host is sending a report and doesn’t want to change a volatile item,
the value to assign to the item depends on whether the data is defined as relative
or absolute. If a volatile item is defined as relative, a report that assigns a value
of zero should result in no change. If a volatile item is defined as absolute, a
report that assigns an out-of-range value should result in no change. This bit
doesn’t apply to Array data.

Bit Field | Buffered Bytes. Bit Field means that each bit or a group of bits in a
byte can represent a separate piece of data. Buffered Bytes means that the data
consists of one or more byte-wide values. The report size for Buffered Byte
items must be eight. This bit doesn’t apply to Array data. Note that this bit is
bit 8 in the item’s data so setting this bit requires two bytes of item data.  
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All of the report types use Collection and End Collection items to group related
items. Following each Collection item (A1h) in the report descriptor is a value
indicating the collection type (Table 12-2). The End Collection item is a single
byte (C0h).

All report items must be in an application collection. Use of the other collection
types is optional. All Main items between a Collection item and its End Collec-
tion item are part of the collection. Each collection must have a Usage tag
(described below). Collections can be nested.

A top-level collection is a collection that isn’t nested within another collection.
A HID interface can have multiple top-level application collections with each
representing a different HID function. For example, a keyboard with an
embedded pointing device can have a single HID interface with two top-level
collections, one for the pointing device’s reports and one for the keyboard’s
reports. Unlike HIDs in separate interfaces in a composite device, these HID
functions share interrupt endpoints.

����#��,���#����� �� 

Global items identify reports and describe the data in them, including charac-
teristics such as the data’s function, maximum and minimum allowed values,
and the size and number of report items. A Global item tag applies to every
item that follows until the next Global item tag. Thus a report descriptor

Table 12-2: Data values for the Collection and End Collection Main Item Tags.

0���� ���� ����	����


00h Physical Data at a single geometric point.
01h Application Items that have a common purpose or carry out a function.
02h Logical Items that describe a data structure.
03h Report Wraps the fields in a report.
04h Named array Array of selector usages.
05h Usage switch Modifies the purpose or function of Usages in a collection.
06h Usage modifier Modifies the purpose or function of a Usage.
07h–7Fh Reserved –
80h–FFh Vendor defined –
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doesn’t have to repeat values that don’t change from one item to the next. Table
12-3 shows the defined Global items.

������"%��5�����.�����
Report ID. A HID can support multiple reports of the same type, with each
report having its own Report ID and contents. This way, each report doesn’t
have to include every piece of data. Sometimes the simplicity of using a single
report outweighs the need to reduce the bandwidth used by longer reports,
however.

In the report descriptor, a Report ID item applies to all items that follow until
the next Report ID. If there is no Report ID item, the report uses the default
ID of 00h. A descriptor should not declare a Report ID of 00h. Report IDs are
specific to each report type, so a HID can have one report of each type with the
default Report ID. However, if one report type uses multiple Report IDs, every
report in the HID must have a declared Report ID. For example, if a descriptor

Table 12-3: There are twelve defined Global items.

��������� 0��������
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Usage Page 000001nn Specifies the data’s usage or function.
Logical Minimum 000101nn Smallest value that an item will report.
Logical Maximum 001001nn Largest value that an item will report.
Physical Minimum 001101nn The logical minimum expressed in physical units.
Physical Maximum 010001nn The logical maximum expressed in physical units.
Unit exponent 010101nn Base 10 exponent of units.
Unit 011001nn Unit values.
Report Size 011101nn Size of an item’s fields in bits.
Report ID 100001nn Prefix that identifies a report.
Report Count 100101nn The number of data fields for an item.
Push 101001nn Places a copy of the global item state table on the 

stack.
Pop 101101nn Replaces the item state table with the last structure 

pushed onto the stack.
Reserved 110001nn– 

111101nn
For future use.
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declares Report IDs 01h and 02h for Feature reports, any Input or Output
reports must also have a Report ID greater than 00h.

In a transfer that uses a Set Report or Get Report request, the host specifies a
Report ID in the Setup transaction in the low byte of the wValue field. In an
interrupt transfer, if the interface supports more than one Report ID, the
Report ID precedes the report data on the bus. If the interface supports only
the default Report ID of 00h, the Report ID doesn’t travel on the bus with the
report in interrupt transfers.

For Windows applications, the report buffer provided to an API function must
be large enough to hold the report plus one byte for the Report ID even if using
only Report ID zero. When a HID supports multiple Report IDs for Input
reports of different sizes, the Windows HID driver requires applications to pass
a buffer large enough to hold the longest report.

When a HID supports multiple reports of the same type and different sizes and
the HID is sending a report whose data is a multiple of the endpoint’s maxi-
mum packet size, the HID indicates the end of the report by sending a ZLP for
all but the HID’s longest report.

For interrupt transfers that retrieve Input reports from HIDs with multiple
Input Report IDs, the host’s driver has no way to request a specific report from
the device. The device firmware decides which report to place in the endpoint
buffer to send to the host. At the host, the HID driver stores the received
Report ID and report data.

������,��5������ � -�����
The Global items that describe the data and how to use it are the Usage Page,
Logical Minimum and Maximum, Physical Minimum and Maximum, Unit,
and Unit Exponent. Each of these items helps the receiver of the report inter-
pret the report’s data. All but the Usage Page are involved with converting raw
report data to values with units attached. The items make it possible for a
report to contain data in a compact form, with the receiver of the data responsi-
ble for converting the data to meaningful values.

Usage Page. An item’s Usage is a 32-bit value that identifies a function that a
device performs. A Usage contains two values: the upper 16 bits are a Global
Usage Page item and the lower 16 bits are a Local Usage item. The value in the
Local Usage item is a Usage ID. The term Usage can refer to either the 32-bit
value or the 16-bit Local value. To prevent confusion, some sources use the
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term Extended Usage to refer to the 32-bit value. Microsoft defines a USAGE
type that is a 16-bit value that can contain a Usage Page or a Usage ID.

Multiple items can share a Usage Page while having different Usage IDs. After a
Usage Page appears in a report, all Usage IDs that follow are in that Usage Page
until the descriptor declares a new Usage Page.

The HID Usage Tables document defines many Usage Pages. There are Usage
Pages for common device types including generic desktop controls (mouse, key-
board, joystick), digitizer, barcode scanner, camera control, and various game
controls. A vendor can define Usage Pages using values from FF00h to FFFFh.

Logical Minimum and Logical Maximum. The Logical Minimum and Logi-
cal Maximum define limits for reported values. The limits are expressed in logi-
cal units, which means that they use the same units as the values they apply to.
For example, if a device reports values of up to 500 mA in units of 2 mA, the
Logical Maximum is 250.

If the most significant bit of the highest byte is 1, the value is negative and is
expressed as a two’s complement. (To express a negative value as a two’s comple-
ment, complement each bit and add 1 to the result. Perform the same opera-
tions to obtain the negative value represented by a two’s complement.) Using
1-byte values, 00h to 7Fh represent the decimal values zero through +127, and
FFh to 80h represent the decimal values -1 through -128.

The HID specification says that if both the Logical Minimum and Logical
Maximum are considered positive, there’s no need for a sign bit. But the
report-descriptor test in the USB-IF Compliance Tool assumes that if the
most-significant bit is 1, the value is negative. These values will fail the compli-
ance test because the Logical Minimum (0) is greater than the Logical Maxi-
mum (-1):
0x15 0x00     // Logical Minimum

0x25 0xFF     // Logical Maximum - WRONG!

If the desired result is a minimum of zero and a maximum of 255, the solution
is to use a 2-byte value for the maximum:
0x15 0x00     // Logical Minimum

0x26 0x00FF   // Logical Maximum

Note that the Logical Maximum item tag is now 26h to indicate that the data
that follows the tag is two bytes. Because the most-significant bit of the Logical
Maximum is zero, the value is assumed positive and the compliance test accepts
the values as valid.
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The Physical Minimum, Physical Maximum, Unit Exponent, and Unit items
define how to convert reported values into more meaningful units.

Physical Minimum and Physical Maximum. The Physical Minimum and
Physical Maximum define the limits for a value when expressed in the units
defined by the Units tag. In the earlier example of values of zero through 250 in
units of 2 mA, the Physical Minimum is zero and the Physical Maximum is
500. The receiving device uses the logical and physical limit values to obtain the
value in the desired units. In the example, reporting the data in units of 2 mA
means that the value can transfer in a single byte, with the receiver of the data
using the Physical Minimum and Maximum values to translate to mA. The
price is a loss in resolution, compared to reporting 1 bit per mA. If the report
descriptor doesn’t specify these items, they default to the Logical Minimum and
Logical Maximum.

Unit Exponent. The Unit Exponent specifies what power of 10 to apply to the
value obtained after using the logical and physical limits to convert the value
into the desired units. The exponent can range from -8 to +7. A value of zero
causes the value to be multiplied by 100, which is the same as applying no expo-
nent. These are the codes:

For example, if the value obtained is 1234 and the Unit Exponent is 0Eh, the
final value is 12.34.

Unit. The Unit tag specifies what units to apply to the report data after the
value is converted using the Physical and Unit Exponent items. The HID spec-
ification defines codes for the basic units of length, mass, time, temperature,
current, and luminous intensity. Most other units can be derived from these.

Specifying a Unit value can be more complicated than you might expect. Table
12-4 shows values to work from. A value can be as long as four bytes, with each
nibble having a defined function. Nibble 0 (the least significant nibble) speci-
fies the measurement system, either English or SI (International System of
Units) and whether the measurement is in linear or angular units. Each of the
nibbles that follow represents a quality to be measured with the value of the
nibble representing the exponent to apply to the value. For example, a nibble

�������� 0 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2 -1
	�
� 00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah 0Bh 0Ch 0Dh 0Eh 0Fh
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with a value of 2h means that the corresponding value is in units squared. A
nibble with a value of Dh, which represents -3, means that the units are
expressed as 1/units3. These exponents are separate from the Unit Exponent
value, which is a power of ten applied to the data, rather than an exponent
applied to the units.

Note that the basic SI units for length and temperature are meters and kilo-
grams, but the HID specification uses centimeters and grams as basic units for
the Unit tag.

���������5�. *�� � 
To convert raw data to values with units attached, three things must occur. The
firmware’s report descriptor must contain the information needed for the con-
version. The sender must provide data that matches the report descriptor’s spec-
ifications. And the receiver of the data must apply the conversions specified in
the report descriptor.

Below are examples of descriptors and raw and converted data. Just because a
tag exists in the HID specification doesn’t mean you have to use it. If the appli-
cation knows what format and units to use for the values it’s going to send or
receive, the firmware doesn’t have to specify these items.

Table 12-4: The units to apply to a reported value are a function of the measuring 

system and exponent values specified in the Unit item.
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7 ����� None Centimeter Radian Inch Degree
8 ���� None Gram Slug
> ���� None Second
? �����	���	� None Kelvin Fahrenheit
@  �		�� None Ampere
A ����
���

�������
None Candela

B -���	��� None
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To specify time in seconds, up to a minute, the report descriptor might include
this information:

Logical Minimum: 00h

Logical Maximum: 3Ch

Physical Minimum: 00h

Physical Maximum: 3Ch

Unit: 1003h. Nibble 0 = 3 to select the English Linear measuring system
(though in this case, any value from 1 to 4 would work). Nibble 3 = 1 to
select time in seconds.

Unit Exponent: 00h

With this information, the receiver knows that the value sent equals a number
of seconds.

To specify time in tenths of seconds up to a minute, increase the Logical Maxi-
mum and Physical Maximum and change the Unit Exponent:

Logical Minimum: 00h

Logical Maximum: 0258h

Physical Minimum: 00h

Physical Maximum: 0258h

Unit: 1003h. Nibble 0 = 3h to select the English Linear measuring system.
Nibble 3 = 1h to select time in seconds.

Unit Exponent: 0Fh. This represents an exponent of -1 to indicate that the
value is expressed in tenths of seconds rather than seconds.

Sending values as large as 600 requires 2 bytes, which the firmware specifies in
the Report Size tag.

To send a temperature value using one byte to represent temperatures from -20
to 110°F, the report descriptor might contain the following:

Logical Minimum: 80h (-128 decimal expressed as a hexadecimal two’s
complement)

Logical Maximum: 7Fh (127 decimal)

Physical Minimum: ECh (-20 expressed as a hexadecimal two’s comple-
ment)

Physical Maximum: 6Eh (110 decimal)

Unit: 10003h. Nibble 0 is 3h to select the English Linear measuring system.
Nibble 4 is 1h to select degrees Fahrenheit.
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Unit Exponent: 00h

These values ensure the highest possible resolution for a single-byte report item,
because the transmitted values can span the full range from 0 to 255.

In this case the logical and physical limits differ, so converting is required. This
function accepts decimal values and returns the number of bits per logical unit:

�� Private Function BitsPerLogicalUnit _

(ByVal logical_maximum As Int32, _

ByVal logical_minimum As Int32, _

ByVal physical_maximum As Int32, _

ByVal physical_minimum As Int32, _

ByVal unit_exponent As Int32) _

As Single

Dim calculatedBitsPerLogicalUnit As Single = Convert.ToSingle _

((logical_maximum - logical_minimum) / _

((physical_maximum - physical_minimum) * _

(Math.Pow(10, unit_exponent))))

Return calculatedBitsPerLogicalUnit

End Function

��� private Single BitsPerLogicalUnit 

(Int32 logical_maximum,

Int32 logical_minimum,

Int32 physical_maximum, 

Int32 physical_minimum,

Int32 unit_exponent) 

{

Single calculatedBitsPerLogicalUnit = Convert.ToSingle 

((logical_maximum - logical_minimum) / 

((physical_maximum - physical_minimum) * 

(Math.Pow(10, unit_exponent))));

return calculatedBitsPerLogicalUnit;

}

With the example values, the resolution is 1.96 bits per degree, or 0.51 degree
per bit.
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This function converts a logical value to the specified physical units:

�� Private Function ValueInPhysicalUnits _

(ByVal value As Int32, _

ByVal logical_maximum As Int32, _

ByVal logical_minimum As Int32, _

ByVal physical_maximum As Int32, _

ByVal physical_minimum As Int32, _

ByVal unit_exponent As Int32) _

As Single

Dim calculatedValueInPhysicalUnits As Single = _

Convert.ToSingle _

(value * _

((physical_maximum - physical_minimum) * _

(Math.Pow(10, unit_exponent)))/ _

(logical_maximum - logical_minimum))

Return calculatedValueInPhysicalUnits

End Function

��� private Single ValueInPhysicalUnits 

(Int32 value,

Int32 logical_maximum, 

Int32 logical_minimum,

Int32 physical_maximum,

Int32 physical_minimum, 

Int32 unit_exponent) 

{           

Single calculatedValueInPhysicalUnits = Convert.ToSingle 

(value * 

((physical_maximum - physical_minimum) * 

(Math.Pow(10, unit_exponent))) / 

(logical_maximum - logical_minimum));

return calculatedValueInPhysicalUnits;                   

} 

If the value in logical units (the raw data) is 63, the converted value in the spec-
ified units is 32° F.
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Two Global items describe the size and format of the report data.

Report Size specifies the size in bits of a field in an Input, Output, or Feature
item. Each field contains one piece of data.

Report Count specifies how many fields an Input, Output, or Feature item
contains.

For example, if a report has two 8-bit fields, Report Size is 08h and Report
Count is 02h. If a report has one 16-bit field, Report Size is 10h and Report
Count is 01h.

A single Input, Output, or Feature report can contain multiple items, each with
its own Report Size and Report Count.

� ���5� ���.�������5����, �������
The final two Global items enable saving and restoring sets of Global items.
These items allow flexible report formats while using minimum storage space in
the device.

Push places a copy of the Global-item state table on the CPU’s stack. The Glo-
bal-item state table contains the current settings for all previously defined Glo-
bal items.

Pop is the complement to Push. It restores the saved states of the previously
pushed Global item states.

����)�� �������� ��
Local items specify qualities of the controls and data items in a report. A Local
item’s value applies to all items that follow within a Main item until the descrip-
tor assigns a new value. Local items don’t carry over to the next Main item; each
Main item begins fresh with no Local items defined.

Local items relate to general usages, body-part designators, and strings. A
Delimiter item enables grouping sets of Local items. Table 12-5 shows the val-
ues and meaning of each of the items.

Usage. The Local Usage item is the Usage ID that works together with the Glo-
bal Usage Page to describe the function of a control, data, or collection.

The HID Usage Tables document lists many Usage IDs. For example, the But-
tons Usage Page uses Local Usage IDs from 0001h to FFFFh to identify which
button in a set is pressed, with a value of 000h meaning no button pressed.
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If a single Usage precedes a series of controls or data items, that Usage applies to
all of the controls or data items. If multiple Usages precede controls or data
items and the number of controls or data items equals the number of Usages,
each Usage applies to one control or data item, with the Usages and the controls
or data items pairing up in sequence. 

Table 12-5: Local items can provide information about Usages, body parts, and 

strings.
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Usage 000010nn The use for an item or collection.
Usage Minimum 000110nn The starting Usage associated with the 

elements in an array or bitmap.
Usage Maximum 001010nn The ending Usage associated with the 

elements in an array or bitmap.
Designator Index 001110nn A Designator value in a physical 

descriptor. Indicates what body part 
applies to a control.

Designator Minimum 010010nn The starting Designator associated with 
the elements in an array or bitmap.

Designator Maximum 010110nn The ending Designator associated with 
the elements in an array or bitmap.

String Index 011110nn Associates a string with an item or 
control.

String Minimum 100010nn The first string index when assigning a 
group of sequential strings to controls in 
an array or bitmap.

String Maximum 100110nn The last string index when assigning a 
group of sequential strings to controls in 
an array or bitmap.

Delimiter 101010nn The beginning (1) or end (0) of a set of 
Local items.

Reserved 101011nn to 111110nn For future use.
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In this example, the report contains two bytes. The first byte’s Usage is X, and
the second byte’s Usage is Y.
Usage (X),

Usage (Y),

Report Count (02h),

Report Size (08h),

Input (Data, Variable, Absolute),

If multiple Usages preceded a series of controls or data items and the number of
controls or data items is greater than the number of Usages, each Usage pairs up
with one control or data item in sequence, and the final Usage applies to all of
the remaining controls or data items. 

In the following example, the report is 16 bytes. Usage X applies to the first
byte, Usage Y applies to the second byte, and a vendor-defined Usage applies to
the third through 16th bytes.
Usage (X)

Usage (Y)

Usage (vendor defined)

Report Count (10h),

Report Size (08h),

Input (Data, Variable, Absolute)

Usage Minimum and Maximum. The Usage Minimum and Usage Maximum
can assign a series of Usage IDs to the elements in an array or bitmap. The fol-
lowing example describes a report that contains the state (0 or 1) of each of
three buttons. The Usage Minimum and Usage Maximum specify that the first
button has a Usage ID of 01h, the second button has a Usage ID of 02h, and
the third button has a Usage ID of 03h:
Usage Page (Button Page)

Logical Minimum (09h)

Logical Maximum (01h)

Usage Minimum (01h)

Usage Maximum (03h)

Report Count (03h)

Report Size (01h)

Input (Data, Variable, Absolute)

Designator Index. For items with a physical descriptor, the Designator Index
specifies a Designator value in a physical descriptor. The Designator specifies
what body part the control uses.

Designator Minimum and Designator Maximum. When a report contains
multiple Designator Indexes that apply to the elements in a bitmap or array, a
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Designator Minimum and Designator Maximum can assign a sequential Desig-
nator Index to each bit or array item.

String Index. An item or control can include a String Index to associate a string
with the item or control. The strings are stored in the same format described in
Chapter 4 for product, manufacturer, and serial-number strings.

String Minimum and Maximum. When a report contains multiple string
indexes that apply to the elements in a bitmap or array, a String Minimum and
String Maximum can assign a sequential String Index to each bit or array item.

Delimiter. A Delimiter defines the beginning (01h) or end (00h) of a local
item. A delimited local item may contain alternate usages for a control. Differ-
ent applications can thus define a device’s controls in different ways. For exam-
ple, a button may have a generic use (Button 1) and a specific use (Send, Quit,
etc.). 

&�%��� �������������
A physical descriptor specifies the part or parts of the body intended to activate
a control. For example, each finger might have its own assigned control. Similar
physical descriptors are grouped into a physical descriptor set. A set consists of a
header, followed by the physical descriptors. A physical descriptor is a HID-spe-
cific descriptor. The host can retrieve a physical descriptor set by sending a Get
Descriptor request to the HID interface with 23h in the high byte of the
wValue field and the number of the descriptor set in the low byte of the wValue
field. Physical descriptors are optional. For most devices, these descriptors
either don’t apply or the information they provide has no practical use. The
HID specification has more information on how to use physical descriptors.

& ����5
To pad a descriptor so it contains a multiple of eight bits, a descriptor can
include a Main item with no assigned Usage. This excerpt from a keyboard’s
report descriptor specifies an Output report that transfers five bits of data and
three bits of padding:
Usage Page (LEDs)

Usage Minimum (01h)

Usage Maximum (05h)

Output (Data, Variable, Absolute) (five 1-bit LEDs)

Report Count (01h)

Report Size (03h)

Output (Constant) (3 bits of padding)
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Chapter 10 showed how to obtain a handle to communicate with a device. This
chapter shows how Visual Basic and Visual C# applications can use handles to
access HID-class devices.

'&��'$&�"�������

The Windows HID API provides an extensive set of functions that applications
can use to learn about a HID’s reports and to send and receive report data. The
WDK documents the functions.

The HID API considers each report item to be either a button or value. A but-
ton is a control or data item that has a discrete, binary value, such as ON (1) or
OFF (0). Buttons include items represented by unique Usage IDs in the But-
tons, Keyboard, and LED Usage pages. Any report item that isn’t a button is a
value usage. The report descriptor defines the range for each value usage.
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Table 13-1: Applications can use these API functions to obtain information about 

a HID and its reports.

3����
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HidD_FreePreparsedData Free resources used by HidD_GetPreparsedData.
HidD_GetAttributes Retrieve a pointer to a structure containing the HID’s 

Vendor ID, Product ID, and device release number.
HidD_GetPhysicalDescriptor1 Retrieve a physical descriptor.
HidD_GetPreparsedData Return a handle to a buffer with information about the 

HID’s reports.
HidP_GetButtonCaps Retrieve an array with information about the buttons 

in a top-level collection for a specified report type.
HidP_GetCaps Retrieve a structure describing a HID’s reports.
HidP_GetExtendedAttributes1 Retrieve a structure with information about Global 

items the HID parser didn’t recognize.
HidP_GetLinkCollectionNodes Retrieve a structure with information about 

collections within a top-level collection.
HidP_GetSpecificButtonCaps Like HidP_GetButtonCaps but can specify a Usage 

Page, Usage ID, and link collection.
HidP_GetSpecificValueCaps Like HidP_GetValueCaps but can specify a Usage 

Page, Usage ID, and link collection.
HidP_GetValueCaps Retrieve an array with information about the values in 

a top-level collection for a specified report type.
HidP_IsSameUsageAndPage Determine if two Usages (each consisting of a Usage 

Page and Usage ID) are equal.
HidP_MaxDataListLength Retrieve the maximum number of HIDP_DATA 

structures that HidP_GetData can return for a HID 
report type and top-level collection.

HidP_MaxUsageListLength Retrieve the maximum number of Usage IDs that 
HidP_GetUsages can return for a report type and 
top-level collection.

HidP_
TranslateUsagesToI8042ScanCodes

Map Usages on the 
HID_USAGE_PAGE_KEYBOARD Usage Page to 
PS/2 scan codes.

HidP_UsageAndPageListDifference Retrieve the differences between two arrays of Usages 
(Usage Page and Usage ID).

HidP_UsageListDifference Retrieve the differences between two arrays of Usage 
IDs.

1Not supported under Windows 98 Gold.
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Table 13-1 lists API functions that request information about a HID and its
repor t s .  Many  app l i c a t ions  u s e  on ly  a  f ew  o f  the s e  func t ions .
HidD_GetPreparsedData retrieves a pointer to a buffer that contains informa-
tion about the HID’s reports. HidP_GetCaps uses the pointer to retrieve a
HIDP_CAPS structure that specifies what report types a device supports and
provides information about the type of information in the reports. For example,
the structure specifies the number of HIDP_BUTTON_CAPS structures that
have information about a button or set of buttons. The application can call
HidP_GetButtonCaps to retrieve these structures. For values, the structure
specifies the number of HIDP_VALUE_CAPS structures, and the application
can call HidP_GetValueCaps to retrieve these structures.

The HID API also includes functions for retrieving strings, including one to
retrieve a serial number. Table 13-2 lists these functions.

������5� ���.�������5�.������
Table 13-3 lists functions that applications can use to send and receive reports.

The Windows HID driver causes the host controller to request Input reports.
The driver stores received reports in a buffer. ReadFile retrieves one or more
reports from the buffer. If the buffer is empty, ReadFile waits for a report to
arrive. In other words, ReadFile doesn’t cause a device to send a report but just
reads reports that the driver has requested.

WriteFile sends an Output report. The function uses an interrupt transfer if the
HID has an interrupt OUT endpoint and the operating system is later than
Windows 98 Gold. Otherwise, WriteFile uses a control transfer with a Set
Report request. If using interrupt transfers, WriteFile will wait if the device

Table 13-2: Applications can use these API functions to retrieve strings from a 

HID.
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HidD_GetIndexedString1 Retrieve a specified string.

HidD_GetManufacturerString1 Retrieve a manufacturer string

HidD_GetProductString1 Retrieve a product string.

HidD_GetSerialNumberString1 Retrieve a serial-number string.
1Not supported under Windows 98 Gold.



Chapter 13

318                                                                                                           

NAKs. If using control transfers, WriteFile returns with an error code on failure
or a timeout.

HidD_GetInputReport requests an Input report using a control transfer with a
Get Report request. The function bypasses the Input report buffer.
HidD_SetOutputReport provides a way to send an Output report using a con-
trol transfer with a Set Report request even if the HID and operating system
support using interrupt transfers.

For Feature reports, HidD_GetFeature retrieves a report using a control transfer
and Get Report request and HidD_SetFeature sends a report using a control
transfer and Set Report request. Note that HidD_SetFeature is not the same
thing as the standard USB request Set Feature.

All of the functions that use control transfers return with an error code on fail-
ure or a timeout.

&�������5� �������5�.������� � 
After retrieving a report, an application can use the raw data directly from the
buffer or use API functions to extract button or value data. In a similar way, an
application can write data to be sent directly into a report’s buffer or use API
functions to place the data in a buffer for sending. 

Table 13-4 lists API functions that extract information in received reports and
store information in reports to be sent. For example, an application can find
out what buttons have been pressed by calling HidP_GetButtons, which
returns a buffer containing the Usage IDs of all buttons that belong to a speci-

Table 13-3: Applications can use these API functions to send and receive 

reports.
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HidD_GetFeature Read a Feature report.
HidD_GetInputReport1 Read an Input report using a control transfer.
HidD_SetFeature Send a Feature report.
HidD_SetOutputReport1 Send an Output report using a control transfer.
ReadFile Read an Input report obtained via an interrupt transfer.
WriteFile Send an Output report. Use an interrupt transfer if possible, 

otherwise use a control transfer.
1Requires Windows XP or later.
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fied Usage Page and are set to ON. An application can set and clear buttons in a
report to be sent by calling HidP_SetButtons and HidP_UnsetButtons. Appli-
cations can retrieve and set values in a report using HidP_GetUsageValue and
Hid_Set_UsageValue.

4 � 5��5�)����������� �����
Table 13-5 lists API functions that applications can use in managing HID com-
munications.

Table 13-4: Applications can use these API functions to extract information in 

retrieved reports and store information in reports to be sent.
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HidP_GetButtons Same as HidP_GetUsages.
HidP_GetButtonsEx Same as HidP_GetUsagesEx.
HidP_GetData Retrieve an array of structures with each structure 

identifying either the data index and state of a button 
control that is set to ON (1) or the data index and data for a 
value control.

HidP_GetScaledUsageValue Retrieve a signed and scaled value from a report.
HidP_GetUsages Retrieve a list of all of the buttons that are on a specified 

Usage Page and are set to ON (1).
HidP_GetUsagesEx Retrieve a list of all of the buttons that are set to ON (1).
HidP_GetUsageValue Retrieve the data for a specified value.
HidP_GetUsageValueArray Retrieve data for an array of values with the same Usage ID.
HidP_InitializeReportForID1 Set all buttons to OFF (0) and set all values to their null 

values if defined and otherwise to zero.
HidP_SetButtons Same as HidP_SetUsages.
HidP_SetData Sets the states of buttons and data in values in a report.
HidP_SetScaledUsageValue Convert a signed and scaled physical number to a Usage’s 

logical value and set the value in a report.
HidP_SetUsages Set one or more buttons in a report to ON (1).
HidP_SetUsageValue Set the data for a specified value.
HidP_SetUsageValueArray Set the data for an array of values with the same Usage ID.
HidP_UnsetButtons Same as HidP_UnsetUsages.
HidP_UnsetUsages Set one or more buttons in a report to OFF (0).
1Not supported under Windows 98 Gold.
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Chapter 10 showed how to use HidD_GetHidGuid to obtain the device inter-
face GUID for the HID class. HidD_SetNumInputBuffers requests to change
the size of the HID driver’s buffer for Input reports. A larger buffer can be help-
ful if the application might be too busy at times to read reports before the
buffer overflows. The value set is the number of reports the buffer will hold, not
the number of bytes. HidD_FlushQueue deletes any Input reports in the
buffer.

#�	���! ��!����	 � 	
After obtaining a handle to a HID as described in Chapter 10, an application
can use API functions to find out whether the HID is a device that the applica-
tion wants to communicate with. The application can identify a device by its
Vendor ID and Product ID, or by searching for a device with a specific Usage,
such as a game controller.

The code examples in this chapter assume the following Imports and using
statements:

�� Imports Microsoft.Win32.SafeHandles

Imports System.Runtime.InteropServices

Imports System.Threading

��� using Microsoft.Win32.SafeHandles; 

using System.Runtime.InteropServices;

using System;

using System.Threading;

Table 13-5: Applications can use these API functions in managing HID 

communications.

3����
 ��	�
��

HidD_FlushQueue Delete all Input reports in the buffer.
HidD_GetHidGuid Retrieve the device interface GUID for HID-class devices.
HidD_GetNumInputBuffers1 Retrieve the number of reports the Input report buffer can 

hold.
HidD_SetNumInputBuffers1 Set the number of reports the Input report buffer can hold.
HidRegisterMinidriver HID mini-drivers call this function during initialization to 

register with the HID class driver.
1Not supported under Windows 98 Gold.
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For vendor-specific devices that don’t have standard Usages, searching for a
device with a specific Vendor ID and Product ID is often useful. The API func-
tion HidD_GetAttributes retrieves a pointer to a structure containing the Ven-
dor ID, Product ID, and device release number.

�� Definitions

Friend Structure HIDD_ATTRIBUTES

Friend Size As Int32

Friend VendorID As Int16

Friend ProductID As Int16

Friend VersionNumber As Int16

End Structure

<DllImport("hid.dll", SetLastError:=True)> _

Shared Function HidD_GetAttributes _

(ByVal HidDeviceObject As SafeFileHandle, _

ByRef Attributes As HIDD_ATTRIBUTES) _

As Boolean

End Function

Use

Dim DeviceAttributes As HIDD_ATTRIBUTES

Dim success As Boolean

DeviceAttributes.Size =  Marshal.SizeOf(DeviceAttributes)

success = HidD_GetAttributes _

(deviceHandle, _

DeviceAttributes)
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'  Compare the Vendor ID and Product ID to the desired values. 

'  Example values:

Dim myProductID As Int16  = &h0925

Dim myVendorID As Int16 = &h1234

If (DeviceAttributes.VendorID = myVendorID) And _

(DeviceAttributes.ProductID = myProductID) Then

Debug.WriteLine("My device detected")

Else

Debug.WriteLine("Not my device")

deviceHandle.Close()

End If

��� Definitions

internal struct HIDD_ATTRIBUTES 

{ 

internal Int32 Size; 

internal Int16 VendorID; 

internal Int16 ProductID; 

internal Int16 VersionNumber; 

}         

[ DllImport( "hid.dll", SetLastError=true ) ]

internal static extern Boolean HidD_GetAttributes

( SafeFileHandle HidDeviceObject, 

ref HIDD_ATTRIBUTES Attributes );        

Use

HIDD_ATTRIBUTES DeviceAttributes;

Boolean success = false; 

DeviceAttributes.Size = Marshal.SizeOf( DeviceAttributes ); 

success = HidD_GetAttributes(

deviceHandle, 

ref DeviceAttributes); 
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// Compare the Vendor ID and Product ID to the desired values.

// Example values:

Int16 myProductID = 0x1234; 

Int16 myVendorID = 0x0925; 

if ( ( DeviceAttributes.VendorID == myVendorID ) && 

( DeviceAttributes.ProductID == myProductID ) ) 

{ 

Debug.WriteLine( "My device detected" ); 

}

 else 

{                                     

Debug.WriteLine( "Not my device." ); 

deviceHandle.Close();                                     

}

(����	


The deviceHandle parameter is a handle returned by CreateFile. A call to
HidD_GetAttributes passes a HIDD_ATTRIBUTES structure with the Size
member set to the structure’s length. If the function returns true, the structure
filled without error. The application can then compare the retrieved values with
the desired Vendor ID and Product ID and device release number.

If the attributes don’t indicate the desired device, the application should close
the handle to the interface. The application can then move on to test the next
HID in the device information set retrieved with SetupDiGetClassDevs as
described in Chapter 10.

������5� �&������������������ � ,�������
Another way to find out more about a device is to examine its capabilities. The
first task is to call HidD_GetPreparsedData to get a pointer to a buffer with
information about the device’s capabilities.
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�� Definitions

 <DllImport("hid.dll", SetLastError:=True)> _

Shared Function HidD_GetPreparsedData _

(ByVal HidDeviceObject As SafeFileHandle, _

ByRef PreparsedData As IntPtr) _

As Boolean

End Function

Use

Dim preparsedData As IntPtr

Dim success As Boolean

success = HidD_GetPreparsedData(deviceHandle, preparsedData)

��� Definitions

[ DllImport( "hid.dll", SetLastError=true ) ]

internal static extern Boolean HidD_GetPreparsedData

( SafeFileHandle HidDeviceObject, 

ref IntPtr PreparsedData );

Use

IntPtr preparsedData = new IntPtr(); 

Boolean success = false; 

success = HidD_GetPreparsedData( deviceHandle, ref preparsedData ); 

(����	


The deviceHandle parameter is the handle returned by CreateFile. The
preparsedData variable points to the buffer containing the data. The applica-
tion doesn’t need to access the buffer’s data directly. The code just needs to pass
the pointer to another API function.

When finished using the PreparsedData buffer, the application should free sys-
tem resources by calling HidD_FreePreparsedData as described later in this
chapter.

������5�����������-��� � ,�������
HidP_GetCaps returns a pointer to a structure that contains information about
the device’s capabilities. The structure contains the HID’s Usage Pages, Usages,
report lengths, and the number of button-capabilities structures, value-capabili-
ties structures, and data indexes that identify specific controls and data items in
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Input, Output, and Feature reports. An application can use the capabilities
information to identify a specific HID and learn about its reports and report
data. Not every item in the structure applies to all devices.

�� Definitions

Friend Structure HIDP_CAPS

Friend Usage As Int16

Friend UsagePage As Int16

Friend InputReportByteLength As Int16

Friend OutputReportByteLength As Int16

Friend FeatureReportByteLength As Int16

<MarshalAs(UnmanagedType.ByValArray, SizeConst:=17)> _

Friend Reserved() As Int16

Friend NumberLinkCollectionNodes As Int16

Friend NumberInputButtonCaps As Int16

Friend NumberInputValueCaps As Int16

Friend NumberInputDataIndices As Int16

Friend NumberOutputButtonCaps As Int16

Friend NumberOutputValueCaps As Int16

Friend NumberOutputDataIndices As Int16

Friend NumberFeatureButtonCaps As Int16

Friend NumberFeatureValueCaps As Int16

Friend NumberFeatureDataIndices As Int16

End Structure

<DllImport("hid.dll", SetLastError:=True)> _

Shared Function HidP_GetCaps _

(ByVal PreparsedData As IntPtr, _

ByRef Capabilities As HIDP_CAPS) _

As Int32

End Function

Use

Dim Capabilities As HIDP_CAPS

Dim result As Int32

result = HidP_GetCaps(preparsedData, Capabilities)
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��� Definitions

internal struct HIDP_CAPS 

{ 

internal Int16 Usage; 

internal Int16 UsagePage; 

internal Int16 InputReportByteLength; 

internal Int16 OutputReportByteLength; 

internal Int16 FeatureReportByteLength; 

[ MarshalAs( UnmanagedType.ByValArray, SizeConst=17 ) ]

internal Int16[] Reserved; 

internal Int16 NumberLinkCollectionNodes; 

internal Int16 NumberInputButtonCaps; 

internal Int16 NumberInputValueCaps; 

internal Int16 NumberInputDataIndices; 

internal Int16 NumberOutputButtonCaps; 

internal Int16 NumberOutputValueCaps; 

internal Int16 NumberOutputDataIndices; 

internal Int16 NumberFeatureButtonCaps; 

internal Int16 NumberFeatureValueCaps; 

internal Int16 NumberFeatureDataIndices;             

}         

[ DllImport( "hid.dll", SetLastError=true ) ]

internal static extern Int32 HidP_GetCaps

( IntPtr PreparsedData, 

ref HIDP_CAPS Capabilities );

Use

internal HIDP_CAPS Capabilities; 

Int32 result = 0; 

result = HidP_GetCaps( preparsedData, ref Capabilities ); 

(����	


The  p repa r s edDa t a  p a r ame t e r  i s  t h e  po in t e r  r e tu rned  by
HidD_GetPreparsedData. When the function returns, the application can
examine and use whatever values are of interest in the Capabilities structure.
For example, to look for a joystick, look for UsagePage = 0001h and Usage =
0004h.

The ReportByteLength items are useful when setting buffer sizes for sending
and receiving reports.
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An application can also retrieve the capabilities of each button and value in a
report. HidP_GetValueCaps returns a pointer to an array of structures contain-
ing information about the values in a report. The NumberInputValueCaps
property of the HIDP_CAPS structure is the number of structures returned by
HidP_GetValueCaps.

The items in the structures include many values obtained from the HID’s
report descriptor as described in Chapter 12. The items include the Report ID,
whether a value is absolute or relative, whether a value has a null state, and log-
ical and physical minimums and maximums. A LinkCollection identifier dis-
tinguishes between controls with the same Usage and Usage Page in the same
collection. In a similar way, the HidP_GetButtonCaps function can retrieve
information about a report’s buttons. The information is stored in a
HidP_ButtonCaps structure. Not every application needs to retrieve this infor-
mation.

������5� ����� �� ��5��������
The previous API functions help in finding and learning about a device that
matches what the application is looking for. On finding a device of interest, the
application and device are ready to exchange data in reports.

Table 13-3 showed API functions for exchanging reports. Table 13-6 summa-
rizes the transfer types the host uses with different report types. The application
doesn’t have to know or care which transfer type or endpoint the driver uses.

Table 13-6: The transfer type used to send or receive a report can vary 

with the API function, operating system edition, and available endpoints.
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Input ReadFile Interrupt IN
HidD_GetInputReport 
(Windows XP and later)

Control with Get Report request

Output WriteFile Interrupt OUT if available; otherwise 
control with Set Report request

HidD_SetOutputReport 
(Windows XP and later)

Control with Set Report request

Feature IN HidD_GetFeature Control with Get Report request
Feature OUT HidD_SetFeature Control with Set Report request
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On obtaining a handle and learning the number of bytes in an Output report,
an application can send a report to the HID. The application places the data to
send in a buffer and calls WriteFile.

�� Definitions

<DllImport("kernel32.dll", SetLastError:=True)> _

Shared Function WriteFile _

(ByVal hFile As SafeFileHandle, _

ByVal lpBuffer() As Byte, _

ByVal nNumberOfBytesToWrite As Int32, _

ByRef lpNumberOfBytesWritten As Int32, _

ByVal lpOverlapped As IntPtr) _

As Boolean

End Function

Use

Dim numberOfBytesWritten As Int32 = 0

Dim outputReportBuffer() As Byte = Nothing

Dim success As Boolean

' Set the size of the Output report buffer. 

Array.Resize(outputReportBuffer, Capabilities.OutputReportByteLength)

' Store the Report ID in the first byte of the buffer:

outputReportBuffer(0) = 0

' Store the report data following the Report ID. Example:

outputReportBuffer(1) = 85

outputReportBuffer(2) = 83

outputReportBuffer(3) = 66

' Send the report.

success = WriteFile _

(deviceHandle, _

outputReportBuffer, _

outputReportBuffer.Length, _

numberOfBytesWritten, _

IntPtr.Zero)
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��� Definitions

[ DllImport( "kernel32.dll", SetLastError=true ) ]

internal static extern Boolean WriteFile

( SafeFileHandle hFile, 

Byte[] lpBuffer, 

Int32 nNumberOfBytesToWrite, 

ref Int32 lpNumberOfBytesWritten, 

IntPtr lpOverlapped );        

Use

Int32 numberOfBytesWritten = 0; 

Byte[] outputReportBuffer = null; 

Boolean success = false; 

//  Set the size of the Output report buffer. 

                        

Array.Resize(ref outFeatureReportBuffer, Capabilities.FeatureReportByteLength); 

                        

//  Store the Report ID in the first byte of the buffer:

                        

outputReportBuffer[ 0 ] = 0; 

                        

//  Store the report data following the Report ID. Example:

outputReportBuffer[ 1 ] = 85;

outputReportBuffer[ 2 ] = 83;

outputReportBuffer[ 3 ] = 66;

// Send the report.

 success = WriteFile

(deviceHandle, 

outputReportBuffer, 

outputReportBuffer.Length, 

ref numberOfBytesWritten, 

IntPtr.Zero);

(����	


In the call to WriteFile, the hFile parameter is a handle returned by CreateFile.
The lpBuffer parameter is a byte array that contains the report ID followed by
the report data. The nNumberOfBytesToWrite parameter specifies how many
bytes to write and should equal the OutputReportByteLength property of the
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HIDP_CAPS structure retrieved with HidP_GetCaps. This value is the report
size in bytes plus one byte for the Report ID.

The lpOverlapped parameter is a null pointer in this example, but WriteFile
can use overlapped I/O as described in the following section on ReadFile. Over-
lapped I/O can prevent the application’s thread from hanging if the HID’s
interrupt OUT endpoint NAKs endlessly. In normal operation, the endpoint
should accept received data with little delay.

On success, the function returns true with lpNumberOfBytesWritten pointing
to the number of bytes the function wrote to the HID.

If the interface supports only the default Report ID of zero, the Report ID
doesn’t transmit on the bus, but the Report ID must always be the first byte in
the buffer the application passes to WriteFile.

When sending a report to an interrupt endpoint, WriteFile returns on success
or error and will wait endlessly if the endpoint continues to NAK the report
data. When sending a report via the control endpoint, WriteFile returns on suc-
cess, an error, or a timeout if the endpoint continues to NAK the report data. 

A returned error message of CRC Error indicates that the host controller
attempted to send the report, but the device didn’t respond as expected. Despite
the message, the problem isn’t likely to be due to an error detected in a CRC
calculation. The error is more likely to be due to a firmware problem that keeps
the endpoint from accepting the report data. If WriteFile doesn’t return at all,
the interrupt OUT endpoint possibly isn’t configured to ACK the report data.
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The complement to WriteFile is ReadFile. After obtaining a handle to the HID
interface and learning the size of the largest Input report, an application can use
ReadFile to read an Input report from a device.

When called using non-overlapped I/O, ReadFile is a blocking call. If an appli-
cation calls the function when the HID driver’s Input buffer is empty, the call-
ing thread waits until a report is available, the user closes the application from
the Task Manager, or the user removes the device from the bus. An overlapped,
or asynchronous, read operation can keep an application’s main thread from
hanging as it waits for a report.

With an overlapped read, ReadFile returns immediately whether a report is
available or not. If the function doesn’t return a report, the application can call
WaitForSingleObject with a specified timeout. WaitForSingleObject returns
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when a report is available or on a timeout or other error. On a timeout or error,
the application can try again or call the CancelIo function to cancel the read
operation. This approach works well if reports are normally available without
delay but the application needs to regain control if for some reason there is no
report.

To prevent long delays waiting for WaitForSingleObject to return, an applica-
tion can set the timeout to zero and call the function repeatedly in a loop or at
intervals, triggered by a timer. The function returns immediately whether or
not a report is available, and the application can perform other tasks in the loop
or between timer events.

To improve performance, an application can call ReadFile in a separate thread
that notifies the main thread when a report is available. A .NET application can
define an asynchronous delegate and use the BeginInvoke method to call a
method that calls ReadFile in a different thread. BeginInvoke can specify a call-
back routine that executes in the application’s main thread when the method
that has called ReadFile returns. The callback routine can retrieve the returned
report and use the received data as needed.

This example uses overlapped reads with a timeout:

�� Definitions

Friend Const FILE_FLAG_OVERLAPPED As Int32 = &H40000000

Friend Const GENERIC_READ As UInt32 = &H80000000UL

Friend Const GENERIC_WRITE As UInt32 = &H40000000

Friend Const WAIT_OBJECT_0 As Int32 = 0

Friend Const WAIT_TIMEOUT As Int32 = &H102

<DllImport("kernel32.dll", SetLastError:=True)> _

Shared Function CancelIo _

(ByVal hFile As SafeFileHandle) _

As Int32

End Function

<DllImport("kernel32.dll", CharSet:=CharSet.Auto, SetLastError:=True)> _

Shared Function CreateEvent _

(ByVal SecurityAttributes As IntPtr, _

ByVal bManualReset As Boolean, _

ByVal bInitialState As Boolean, _

ByVal lpName As String) _

As IntPtr

End Function
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<DllImport("kernel32.dll", CharSet:=CharSet.Auto, SetLastError:=True)> _

 Shared Function GetOverlappedResult _

 (ByVal hFile As SafeFileHandle, _

 ByVal lpOverlapped As IntPtr, _

 ByRef lpNumberOfBytesTransferred As Int32, _

 ByVal bWait As Boolean) _

 As Boolean

End Function

<DllImport("kernel32.dll", SetLastError:=True)> _

Shared Function ReadFile _

(ByVal hFile As SafeFileHandle, _

ByVal lpBuffer As IntPtr, _

ByVal nNumberOfBytesToRead As Int32, _

ByRef lpNumberOfBytesRead As Int32, _

ByVal lpOverlapped As IntPtr) _

As Boolean

End Function

 <DllImport("kernel32.dll", SetLastError:=True)> _

Shared Function WaitForSingleObject _

(ByVal hHandle As IntPtr, _

ByVal dwMilliseconds As Int32) _

As Int32

End Function

Use

Dim eventObject As IntPtr

Dim HidOverlapped As New NativeOverlapped

Dim inputReportBuffer() As Byte = Nothing

Dim numberOfBytesRead As Int32

Dim result As Int32

Dim success As Boolean

Dim unManagedBuffer As IntPtr

Dim unManagedOverlapped As IntPtr

Array.Resize(inputReportBuffer, Capabilities.InputReportByteLength)
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eventObject = CreateEvent

(IntPtr.Zero, 

False, 

False, 

String.Empty)

HidOverlapped.OffsetLow = 0

HidOverlapped.OffsetHigh = 0

HidOverlapped.EventHandle = eventObject

unManagedBuffer = Marshal.AllocHGlobal(inputReportBuffer.Length)

unManagedOverlapped = Marshal.AllocHGlobal(Marshal.SizeOf(HidOverlapped))

Marshal.StructureToPtr(HidOverlapped, unManagedOverlapped, False)

readHandle = CreateFile _

(devicePathName, _

GENERIC_READ, _

FILE_SHARE_READ Or FILE_SHARE_WRITE, _

IntPtr.Zero, _

OPEN_EXISTING, _

FILE_FLAG_OVERLAPPED, _

0)

success = ReadFile _

(readHandle, _

unManagedBuffer, _

inputReportBuffer.Length, _

numberOfBytesRead, _

unManagedOverlapped)



Chapter 13

334                                                                                                           

' If ReadFile returned True, a report is available. Otherwise, check for completion.

If Not (success) Then

result = WaitForSingleObject(eventObject, 3000)

Select Case result

Case WAIT_OBJECT_0

success = True

GetOverlappedResult _

(readHandle, _

unManagedOverlapped, _

numberOfBytesRead, _

False)

Case WAIT_TIMEOUT

CancelIo(readHandle)

Case Else

CancelIo(readHandle)

End Select

End If

If success Then

' A report was received.

' Copy the received data to inputReportBuffer for the application to use.

Marshal.Copy _

(unManagedBuffer, inputReportBuffer, 0, numberOfBytesRead)

End If

Marshal.FreeHGlobal(unManagedOverlapped)

Marshal.FreeHGlobal(unManagedBuffer)

��� Definitions

internal const Int32 FILE_FLAG_OVERLAPPED = 0X40000000; 

internal const UInt32 GENERIC_READ = 0X80000000;; 

internal const UInt32 GENERIC_WRITE = 0X40000000; 

internal const Int32 WAIT_OBJECT_0 = 0; 

internal const Int32 WAIT_TIMEOUT = 0X102; 



Human Interface Devices: Host Application

                                                                                                335

[ DllImport( "kernel32.dll", SetLastError=true ) ]

internal static extern Int32 CancelIo

( SafeFileHandle hFile );        

[ DllImport( "kernel32.dll", CharSet=CharSet.Auto, SetLastError=true ) ]

internal static extern IntPtr CreateEvent

( IntPtr SecurityAttributes, 

Boolean bManualReset, 

Boolean bInitialState, 

String lpName );        

[DllImport("kernel32.dll", CharSet = CharSet.Auto, SetLastError = true)]

internal static extern Boolean GetOverlappedResult

(SafeFileHandle hFile, 

IntPtr lpOverlapped, 

ref Int32 lpNumberOfBytesTransferred, 

Boolean bWait);       

[ DllImport( "kernel32.dll", SetLastError=true ) ]

internal static extern Boolean ReadFile

( SafeFileHandle hFile, 

IntPtr lpBuffer, 

Int32 nNumberOfBytesToRead, 

ref Int32 lpNumberOfBytesRead, 

IntPtr lpOverlapped );        

[ DllImport( "kernel32.dll", SetLastError=true ) ]

internal static extern Int32 WaitForSingleObject

( IntPtr hHandle, 

Int32 dwMilliseconds );        

Use

IntPtr eventObject= IntPtr.Zero;

NativeOverlapped HidOverlapped = new NativeOverlapped();  

Byte[] inputReportBuffer = null;

Int32 numberOfBytesRead = 0; 

Int32 result = 0; 

Boolean success = false;

IntPtr unManagedBuffer = IntPtr.Zero;

IntPtr unManagedOverlapped = IntPtr.Zero;

Array.Resize(ref inputReportBuffer, Capabilities.InputReportByteLength); 
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 eventObject = CreateEvent

(IntPtr.Zero, 

false, 

false, 

String.Empty); 

HidOverlapped.OffsetLow = 0; 

HidOverlapped.OffsetHigh = 0; 

HidOverlapped.EventHandle = eventObject; 

unManagedBuffer = Marshal.AllocHGlobal(inputReportBuffer.Length);

unManagedOverlapped = Marshal.AllocHGlobal(Marshal.SizeOf(HidOverlapped));

Marshal.StructureToPtr(HidOverlapped, unManagedOverlapped, false);

readHandle = CreateFile

(devicePathName, 

GENERIC_READ, 

FILE_SHARE_READ | FILE_SHARE_WRITE, 

IntPtr.Zero, 

OPEN_EXISTING, 

FILE_FLAG_OVERLAPPED, 

0);

success = ReadFile

(readHandle, 

unManagedBuffer, 

inputReportBuffer.Length, 

ref numberOfBytesRead, 

unManagedOverlapped); 
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// If ReadFile returned true, a report is available. Otherwise, check for completion.

if (!success)

{

result = WaitForSingleObject

(eventObject, 

3000); 

switch ( result ) 

{

case WAIT_OBJECT_0:

                            

success = True; 

GetOverlappedResult

(readHandle, 

unManagedOverlapped, 

ref numberOfBytesRead, 

false);

break;

case WAIT_TIMEOUT:

                            

CancelIo(readHandle);

break;

default:

CancelIo(readHandle); 

break;

}

}

if (success)

{

// A report was received.

// Copy the received data to inputReportBuffer for the application to use.

Marshal.Copy(unManagedBuffer, inputReportBuffer, 0, numberOfBytesRead);

}

Marshal.FreeHGlobal(unManagedOverlapped);

Marshal.FreeHGlobal(unManagedBuffer); 
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The buffer passed to ReadFile should be at least the size reported in the
InputReportByteLength property of the HIDP_CAPS structure returned by
HidP_GetCaps.

The CreateEvent function returns a pointer to an event object that will be set to
the signaled state when the read operation succeeds or the function times out or
returns another error. The call to ReadFile passes the returned pointer in the
HidOverlapped structure. Marshaling allocates memory for the overlapped
structure and the report buffer to ensure that their contents remain accessible
for the life of the overlapped operation.

Crea t eFi l e  ob ta in s  a  hand l e  fo r  ove r l apped  I /O by  s e t t ing  the
dwFlagsAndAttributes parameter to FILE_FLAG_OVERLAPPED.

The call to ReadFile passes the handle returned by CreateFile, an array to store
the returned report, the report’s length, a pointer to a variable to hold the num-
ber of bytes read, and a pointer to a NativeOverlapped structure. The struc-
ture’s EventHandle member is the handle returned by CreateEvent. 

ReadFile returns immediately. A return value of true indicates that the function
has retrieved one or more reports. False means that a report wasn’t available. To
detect when a report arrives, the application calls WaitForSingleObject, passing
a pointer to the event object and a timeout value in milliseconds.

If WaitForSingleObject returns success (WAIT_OBJECT_0), GetOverlappe-
dResult returns the number of bytes read. The Marshal.Copy method copies
the report data to the managed inputReportBuffer array. The application can
then use the report data as desired and free the memory previously allocated
and no longer needed.

The first byte in inputReportBuffer is the Report ID, and the following bytes
are the report data. If the interface supports only the default Report ID of zero,
the Report ID doesn’t transmit on the bus but is still present in the buffer
returned by ReadFile.

A call to ReadFile doesn’t initiate traffic on the bus. The host begins requesting
reports when the HID driver loads during enumeration, and the driver stores
received reports in a ring buffer. When the buffer is full and a new report
arrives, the buffer drops the oldest report. A call to ReadFile reads the oldest
report in the buffer. If the driver’s buffer is empty, ReadFile waits for a report to
arrive.
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Under Windows 98 SE and later, HidD_SetNumInputBuffers can set the
buffer size. Different Windows editions have different default buffer sizes, rang-
ing from 2 under Windows 98 Gold to 32 under Windows XP.

Each handle with read access to the HID has its own Input buffer, so multiple
applications can read the same reports.

If the application doesn’t request reports as frequently as the endpoint sends
them, some reports will be lost. One way to keep from losing reports is to
increase the size of the report buffer passed to ReadFile. If multiple reports are
available, ReadFile returns as many as will fit in the buffer. If you need to be
absolutely sure not to lose a report, use Feature reports instead. Also see the tips
in Chapter 3 about performing time-critical transfers.

The Idle rate introduced in Chapter 11 determines whether or not a device
sends a report if the data hasn’t changed since the last transfer.

If ReadFile isn’t returning, these are possible reasons:

• The HID’s interrupt IN endpoint is NAKing the IN token packets because
the endpoint hasn’t been armed to send report data. An endpoint’s inter-
rupt typically triggers only after endpoint sends data, so the device must
arm the endpoint to send the first report before the first interrupt.

• The number of bytes the endpoint is sending doesn’t equal the number of
bytes in a report (for HIDs that use the default Report ID) or the number
of bytes in a report + 1 (for HIDs that use other Report IDs).

• For HIDs with multiple Report IDs, the first byte doesn’t match a valid
Report ID.

7�����5� ��� �����.�������������������
To send a Feature report to a device, use HidD_SetFeature, which sends a Set
Report request and a report in a control transfer.
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�� Definitions

<DllImport("hid.dll", SetLastError:=True)> _

Shared Function HidD_SetFeature _

(ByVal HidDeviceObject As SafeFileHandle, _

ByVal lpReportBuffer() As Byte, _

ByVal ReportBufferLength As Int32) _

As Boolean

End Function

Use

Dim outFeatureReportBuffer() As Byte = Nothing

Dim success As Boolean

Array.Resize(outFeatureReportBuffer, Capabilities.FeatureReportByteLength)

' Store the Report ID in the first byte of the buffer:

outFeatureReportBuffer(0) = 0

' Store the report data following the Report ID. Example:

outFeatureReportBuffer(1) = 79

outFeatureReportBuffer(2) = 75

success = HidD_SetFeature _

(deviceHandle, _

outFeatureReportBuffer, _

outFeatureReportBuffer.Length)

��� Definitions

[ DllImport( "hid.dll", SetLastError=true ) ]

internal static extern Boolean HidD_SetFeature

( SafeFileHandle HidDeviceObject, 

Byte lpReportBuffer[], 

Int32 ReportBufferLength );               

Use

Byte[] outFeatureReportBuffer = null; 

Boolean success = false; 

Array.Resize(ref outFeatureReportBuffer, Capabilities.FeatureReportByteLength); 
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//  Store the Report ID in the first byte of the buffer:

                        

outFeaturetReportBuffer[ 0 ] = 0; 

//  Store the report data following the Report ID. Example:

                         

outFeatureReportBuffer[ 1 ] =  79;

outFeatureReportBuffer[ 2 ] =  75;

                     

 success = HidD_SetFeature

(deviceHandle, 

outFeatureReportBuffer, 

outFeatureReportBuffer.Length); 

(����	


HidD_SetFeature requires a handle to the HID, an array to write, and the
array’s length. The first byte in the outFeatureReportBuffer array is the Report
ID. The array’s length is in the HIDP_CAPS structure retrieved by
HidP_GetCaps. 

The function returns true on success. If the device continues to NAK the report
data, the function times out and returns.

A call to HidD_SetOutputReport works in much the same way to send an
Output report using a control transfer. The function passes a handle to the
HID, a pointer to a byte array containing an Output report, and the number of
bytes in the report plus one byte for the Report ID.

.� ���5� ��� �����.������"���� �������
To read a Feature report from a device, use HidD_GetFeature, which sends a
Get_Feature request in a control transfer. The endpoint returns the report in
the Data stage.

�� Definitions

<DllImport("hid.dll", SetLastError:=True)> _

Shared Function HidD_GetFeature _

(ByVal HidDeviceObject As SafeFileHandle, _

ByVal lpReportBuffer() As Byte, _

ByVal ReportBufferLength As Int32) _

As Boolean

End Function
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Use

Dim inFeatureReportBuffer() As Byte = Nothing

Dim success As Boolean

Array.Resize(inFeatureReportBuffer, Capabilities.FeatureReportByteLength)

'The first byte in the report buffer is the Report ID:

InFeatureReportBuffer(0) = 0

success = HidD_GetFeature _

(deviceHandle, _

inFeatureReportBuffer, _

inFeatureReportBuffer.Length)

��� Definitions

[ DllImport( "hid.dll", SetLastError=true ) ]

internal static extern Boolean HidD_GetFeature

( SafeFileHandle HidDeviceObject, 

Byte[] lpReportBuffer, 

Int32 ReportBufferLength );        

Use

Byte[] inFeatureReportBuffer = null; 

Boolean success = false; 

Array.Resize(ref inFeatureReportBuffer, Capabilities.FeatureReportByteLength); 

// The first byte in the report buffer is the Report ID:

inFeatureReportBuffer[0] = 0;

success = HidD_GetFeature

(deviceHandle, 

inFeatureReportBuffer, 

inFeatureReportBuffer.Length); 

(����	


HidD_GetFeature requires a handle to the HID, an array to hold the retrieved
report(s), and the array’s length. The inFeatureReportBuffer array holds the
retrieved report. The first byte in the array is the Report ID. The array’s length
is in the HIDP_CAPS structure retrieved by HidP_GetCaps.
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The function returns true on success. If the device continues to return NAK in
the Data stage of the transfer, the function times out and returns.

A call to HidD_GetInputReport works in much the same way to request an
Input report using a control transfer. The function passes a handle to the HID,
an array to hold the Input report, and the number of bytes in the report plus
one byte for the Report ID.

������5��������� �����
When finished communicating, the application should call the Close method
to close any SafeFileHandles opened by CreateFile as described in Chapter 10.
When finished using the PreparsedData buffer that HidD_GetPreparsedData
returned, the application should call HidD_FreePreparsedData.

�� Definitions

<DllImport("hid.dll", SetLastError:=True)> _

Shared Function HidD_FreePreparsedData _

(ByVal PreparsedData As IntPtr) _

As Boolean

End Function

Use

Dim success As Boolean

success = HidD_FreePreparsedData(preparsedData)

��� Definitions

[ DllImport( "hid.dll", SetLastError=true ) ]

internal static extern Boolean HidD_FreePreparsedData

( IntPtr PreparsedData );     

Use

Boolean success = false; 

success = HidD_FreePreparsedData( preparsedData );   
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An option for devices that perform vendor-specific functions is Microsoft’s
WinUSB driver. This chapter shows how to develop a device that uses the
WinUSB driver and how to use the WinUSB API to access the device from
applications.

���,������
�����)����

A device is a candidate for using the WinUSB driver if the device and its host
computer(s) meet the requirements below.

�������.�/��������

The device:

• Exchanges application data using any combination of control, interrupt,
and bulk endpoints. (The driver doesn’t support isochronous transfers.)

• Has descriptors that specify a vendor-specific class.
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The host:

• Is Windows XP SP2 or later.

• Needs no more than one open handle to the device at once.

• Has an INF file that contains the device’s Vendor ID and Product ID and a
vendor-defined device interface GUID. 

• Has the WinUSB driver and installation files. For Windows XP, the device
vendor can provide the files, which are a free, redistributable download
from Microsoft. Windows Vista systems include the files.

• Has a vendor-provided application to communicate with the device. Pro-
gramming languages for the application can include Visual Basic, Visual
C#, and other languages that can call Windows API functions.

�����������* ��
A WinUSB device has an interface descriptor with bInterfaceClass = FFh to
indicate a vendor-specific class. Listing 14-1 shows descriptors for an example
WinUSB device. Following the interface descriptor are endpoint descriptors for
interrupt IN, interrupt OUT, bulk IN, and bulk OUT endpoints as needed. A
device can also use vendor-specific control transfers. Unlike HID data,
WinUSB data doesn’t have to be in defined-length reports.

Device firmware can respond to vendor-specific requests in control transfers.
Firmware handles these transfers in much the same way as the HID Get Report
and Set Report requests. The Setup packet can use any values for the wValue,
wIndex, and wLength fields. In the bmRequestType field, bits 6..5 equal 10 to
indicate a vendor-defined request. The bRequest field is a vendor-defined
request number.

For all of the transfer types, the host application and device firmware must
agree on the data format. For example, for a data-acquisition device, firmware
might define a vendor-specific control request with bRequest = 01h to identify
the request, wIndex indicating which sensor reading to return, and wLength
equal to the number of bytes the device should return with the requested data.
Or the firmware might send sensor data in a defined format on an interrupt or
bulk endpoint. In a similar way, a host application can send data to a device
using control, bulk, or interrupt transfers.
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Device Descriptor

    

12 bLength Descriptor size in bytes

01 bDescriptorType Descriptor type (Device)

0200 bcdUSB USB Specification release number (BCD) (2.00)

00 bDeviceClass Class Code

00 bDeviceSubClass Subclass code

00 bDeviceProtocol Protocol code

08 bMaxPacketSize0 Endpoint 0 maximum packet size

0925 idVendor Vendor ID (Lakeview Research)

1456 idProduct Product ID

0100 bcdDevice Device release number (BCD)

00 iManufacturer Manufacturer string index

00 iProduct Product string index

00 iSerialNumber Device serial number string index

01 bNumConfigurations Number of configurations

Configuration Descriptor

09 bLength Descriptor size in bytes

02 bDescriptorType Descriptor type (Configuration)

002E wTotalLength Total length of this and subordinate descriptors

01 bNumInterfaces Number of interfaces in this configuration

01 bConfigurationValue Index of this configuration

00 iConfiguration Configuration string index

E0 bmAttributes Attributes (self powered, remote wakeup supported)

32 bMaxPower Maximum power consumption (100 mA) 

Interface Descriptor

09 bLength Descriptor size in bytes

04 bDescriptorType Descriptor type (Interface)

00 bInterfaceNumber Interface number

00 bAlternateSetting Alternate setting number

04 bNumEndpoints Number of endpoints in this interface

FF bInterfaceClass Interface class (vendor specific)

00 bInterfaceSubclass Interface subclass

00 bInterfaceProtocol Interface protocol

00 iInterface Interface string index

Listing 14-1: Example descriptors for a WinUSB device. All values are in 

hexadecimal.  (Part 1 of 2)
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Interrupt IN Endpoint Descriptor

07 bLength Descriptor size in bytes 

05 bDescriptorType Descriptor type (Endpoint)

81 bEndpointAddress Endpoint number and direction (1 IN) 

03 bmAttributes Transfer type (interrupt)

0008 wMaxPacketSize Maximum packet size

0A bInterval polling interval (milliseconds)

    

Interrupt OUT Endpoint Descriptor

    

07 bLength Descriptor size in bytes 

05 bDescriptorType Descriptor type (Endpoint)

01 bEndpointAddress Endpoint number and direction (1 OUT)    

03 bmAttributes Transfer type (interrupt)

0008 wMaxPacketSize Maximum packet size

0A bInterval polling interval (milliseconds)

Bulk IN Endpoint Descriptor

07 bLength Descriptor size in bytes 

05 bDescriptorType Descriptor type (Endpoint)

82 bEndpointAddress Endpoint number and direction (2 IN) 

02 bmAttributes Transfer type (bulk)

0040 wMaxPacketSize Maximum packet size

00 bInterval polling interval (ignored)

    

Bulk OUT Endpoint Descriptor

    

07 bLength Descriptor size in bytes 

05 bDescriptorType Descriptor type (Endpoint)

02 bEndpointAddress Endpoint number and direction (2 OUT)    

02 bmAttributes Transfer type (bulk)

0040 wMaxPacketSize Maximum packet size

00 bInterval polling interval (ignored)

Listing 14-1: Example descriptors for a WinUSB device. All values are in 

hexadecimal.  (Part 2 of 2)
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��� For PICBASIC PRO firmware for WinUSB, visit my website (www.Lvr.com).

��� The Microchip USB Framework provides WinUSB firmware for the
PIC18F4550 and other Microchip microcontrollers. The code supports send-
ing and receiving data using bulk and interrupt transfers. For code that also
supports control transfers, visit www.Lvr.com.

$���5���5�����7������������
Installing a USB device that uses the WinUSB driver requires an INF file that
identifies the device. Chapter 9 showed an INF file for a WinUSB device. Win-
dows XP installations also require a free, redistributable coinstaller files from
the WDK.

The WinUSB coinstaller file is:
WinUsbCoinstaller.dll

located in:
<winddk_home>\<build_number>\redist\winusb\<arch>

where <winddk_home> and <build_number> are the home directory and subdi-
rectory of the WDK and <arch> indicates a PC architecture such as x86 for
32-bit systems, amd64 for AMD 64-bit systems, or ia64 for Itanium 64-bit sys-
tems. For example, a 32-bit file for WDK build 6001 might be stored here:
c:\winddk\6001\redist\winusb\x86

The coinstaller contains the winusb.sys driver so you don’t need to provide this
file separately. The coinstaller installs the driver. 

The other needed WDK files are:
WdfCoInstallerxxx.dll

WUDFUpdate_xxx.dll

where xxx represents the edition of the file.

For WDK build 6001, the file names are:
WdfCoinstaller01007.dll

WudfUpdate_01007.dll

For other WDK builds, the file editions and file names may differ. Check the
directories for the correct file names for your WDK.

The files are located here:
<winddk_home>\<build_number>\redist\wdf\<arch>

where again <winddk_home> and <build_number> are the WDK’s home direc-
tory and subdirectory and <arch> indicates a PC architecture.
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The value of KmdfLibraryVersion in the INF file must correspond to the ver-
sion numbers of WdfCoInstaller01xxx.dll and WUDFUpdate_01xxx.dll. For
WDK bui ld  6001,  which conta ins  WdfCoIns ta l l e r01007.d l l  and
WUDFUpdate_01007.dll, set KmdfLibraryVersion=1.7.

If using WDK build 6000, make these changes to the example INF file: the
WudfUpdate and WdfCoinstaller file names are WudfUpdate_01005.dll and
WdfCoinstaller01005.dll, and KmdfLibraryVersion=1.5. Later WDK editions
may require similar changes to these items.

+  	����!���	��	 � 	
Accessing a WinUSB device requires finding the device, initializing communi-
cations, and exchanging data using bulk, interrupt, and control transfers as
needed. The WinUSB driver provides Winusb.dll, which exposes WinUSB-spe-
cific functions that applications can call to obtain access to devices and to con-
figure, and exchange data with them. 

The code examples in this chapter assume the following Imports and using state-
ments:

�� Imports Microsoft.Win32.SafeHandles

Imports System.Runtime.InteropServices

��� using Microsoft.Win32.SafeHandles; 

using System;

using System.Runtime.InteropServices;

;,� ����!� �7������) ���	
Before exchanging data with a WinUSB device, an application obtains a device
pathname using SetupDi_ functions and the device interface GUID from the
device’s INF file. The application can then use CreateFile to obtain a handle. In
the call to CreateFile, the dwFlagsandAttributes parameter must be set to
FILE_FLAG_OVERLAPPED.

Chapter 8 discussed how to generate a GUID. Chapter 10 showed how to
obtain a handle with CreateFile and use the handle to detect when a device is
attached and removed.

After  cal l ing CreateFi le  to obtain a handle,  the appl icat ion cal l s
WinUsb_Initialize to obtain a WinUSB interface handle. The application uses
this handle for all communications with the interface.
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�� Definitions

Friend Structure devInfo

Friend deviceHandle As SafeFileHandle

Friend winUsbHandle As IntPtr

Friend bulkInPipe As Byte

Friend bulkOutPipe As Byte

Friend interruptInPipe As Byte

Friend interruptOutPipe As Byte

Friend devicespeed As UInt32

End Structure

<DllImport("winusb.dll", SetLastError:=True)> Friend Shared Function WinUsb_Initialize _

(ByVal DeviceHandle As SafeFileHandle, _

ByRef InterfaceHandle As IntPtr) _

As Boolean

End Function

Use

Dim success As Boolean

Friend myDevInfo As New devInfo

success = WinUsb_Initialize _

(myDevInfo.deviceHandle, _

myDevInfo.winUsbHandle)

��� Definitions

internal struct devInfo

{

internal SafeFileHandle deviceHandle;

internal InPtr winUsbHandle;

internal Byte bulkInPipe;

internal Byte bulkOutPipe;

internal Byte interruptInPipe;

internal Byte interruptOutPipe;

internal UInt32 devicespeed;

[DllImport("winusb.dll", SetLastError = true)]

internal static extern Boolean WinUsb_Initialize

(SafeFileHandle DeviceHandle, 

ref IntPtr InterfaceHandle);
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Use

Boolean success; 

 

internal devInfo myDevInfo = new devInfo();

success = WinUsb_Initialize

(myDevInfo.deviceHandle,

ref myDevInfo.winUsbHandle);

(����	


The application can create a devInfo structure to hold information about a
device and its endpoints. The myDevInfo.deviceHandle parameter is the han-
dle returned by CreateFile. On success, the function returns True and
myDevInfo.winUsbHandle is a pointer to a WinUSB handle that the applica-
tion can use to access the device.

.�/������5� �������" �������������
The WinUsb_QueryInterfaceSettings function returns a structure with infor-
mation about a WinUSB interface.

�� Definitions

Friend Structure USB_INTERFACE_DESCRIPTOR

Friend bLength As Byte

Friend bDescriptorType As Byte

Friend bInterfaceNumber As Byte

Friend bAlternateSetting As Byte

Friend bNumEndpoints As Byte

Friend bInterfaceClass As Byte

Friend bInterfaceSubClass As Byte

Friend bInterfaceProtocol As Byte

Friend iInterface As Byte

End Structure

<DllImport("winusb.dll", SetLastError:=True)> _

Friend Shared Function WinUsb_QueryInterfaceSettings _

(ByVal InterfaceHandle As IntPtr, _

ByVal AlternateInterfaceNumber As Byte, _

ByRef UsbAltInterfaceDescriptor As USB_INTERFACE_DESCRIPTOR) _

As Boolean

End Function
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Use

Dim ifaceDescriptor As USB_INTERFACE_DESCRIPTOR

Dim success As Boolean

success = WinUsb_QueryInterfaceSettings _

(myDevInfo.winUsbHandle, _

0, _

ifaceDescriptor)

��� Definitions

internal struct USB_INTERFACE_DESCRIPTOR

{

internal Byte bLength;

internal Byte bDescriptorType;

internal Byte bInterfaceNumber;

internal Byte bAlternateSetting;

internal Byte bNumEndpoints;

internal Byte bInterfaceClass;

internal Byte bInterfaceSubClass;

internal Byte bInterfaceProtocol;

internal Byte iInterface;

}

[DllImport("winusb.dll", SetLastError = true)]

internal static extern Boolean WinUsb_QueryInterfaceSettings

(IntPtr InterfaceHandle, 

Byte AlternateInterfaceNumber, 

ref USB_INTERFACE_DESCRIPTOR UsbAltInterfaceDescriptor);

Use

USB_INTERFACE_DESCRIPTOR ifaceDescriptor;

Boolean success; 

success = WinUsb_QueryInterfaceSettings

(myDevInfo.winUsbHandle,

0,

ref ifaceDescriptor);

(����	


The function accepts a pointer to a WinUsb handle and a bAlternateSetting
number from the interface descriptor to indicate which interface setting to
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query.  On success ,  the  funct ion returns  True and a  pointer  to  a
USB_INTERFACE_DESCRIPTOR structure containing information from
the requested interface descriptor.

������"%��5��������������
For each endpoint in the interface descriptor, an application can call
WinUsb_QueryPipe to learn the endpoint’s transfer type and direction. The
myDevInfo structure can store the information.

�� Definitions

Friend Enum USBD_PIPE_TYPE

UsbdPipeTypeControl

UsbdPipeTypeIsochronous

UsbdPipeTypeBulk

UsbdPipeTypeInterrupt

End Enum

Friend Structure WINUSB_PIPE_INFORMATION

Friend PipeType As USBD_PIPE_TYPE

Friend PipeId As Byte

Friend MaximumPacketSize As UShort

Friend Interval As Byte

End Structure

<DllImport("winusb.dll", SetLastError:=True)> _

Friend Shared Function WinUsb_QueryPipe _

(ByVal InterfaceHandle As IntPtr, _

ByVal AlternateInterfaceNumber As Byte, _

ByVal PipeIndex As Byte, _

ByRef PipeInformation As WINUSB_PIPE_INFORMATION) _

As Boolean

End Function
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Use

The UsbEndpointDirectionIn and UsbEndpointDirectionOut functions
enable querying the direction of an endpoint:
Private Function UsbEndpointDirectionIn(ByVal addr As Int32) As Boolean

If ((addr And &H80) = &H80) Then

UsbEndpointDirectionIn = True

Else

UsbEndpointDirectionIn = False

End If

End Function

Private Function UsbEndpointDirectionOut(ByVal addr As Int32) As Boolean

If ((addr And &H80) = 0) Then

UsbEndpointDirectionOut = True

Else

UsbEndpointDirectionOut = False

End If

End Function
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The application can request and store information about each of the interface’s
endpoints in turn.
For i As Int32 = 0 To ifaceDescriptor.bNumEndpoints - 1

WinUsb_QueryPipe _

(myDevInfo.winUsbHandle, _

0, _

Convert.ToByte(i), _

pipeInfo)

If ((pipeInfo.PipeType = _

USBD_PIPE_TYPE.UsbdPipeTypeBulk) And _

UsbEndpointDirectionIn(pipeInfo.PipeId)) Then

myDevInfo.bulkInPipe = pipeInfo.PipeId

ElseIf ((pipeInfo.PipeType = _

USBD_PIPE_TYPE.UsbdPipeTypeBulk) And _

UsbEndpointDirectionOut(pipeInfo.PipeId)) Then

myDevInfo.bulkOutPipe = pipeInfo.PipeId

ElseIf (pipeInfo.PipeType = _

USBD_PIPE_TYPE.UsbdPipeTypeInterrupt) And _

UsbEndpointDirectionIn(pipeInfo.PipeId) Then

myDevInfo.interruptInPipe = pipeInfo.PipeId

 

ElseIf (pipeInfo.PipeType = _

USBD_PIPE_TYPE.UsbdPipeTypeInterrupt) And _

UsbEndpointDirectionOut(pipeInfo.PipeId) Then

myDevInfo.interruptOutPipe = pipeInfo.PipeId

End If

Next i

��� Definitions

internal enum USBD_PIPE_TYPE

{

UsbdPipeTypeControl,

UsbdPipeTypeIsochronous,

UsbdPipeTypeBulk,

UsbdPipeTypeInterrupt,

}
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[StructLayout(LayoutKind.Sequential)]

internal struct WINUSB_PIPE_INFORMATION

{

internal USBD_PIPE_TYPE PipeType;

internal Byte PipeId;

internal ushort MaximumPacketSize;

internal Byte Interval;

}

[DllImport("winusb.dll", SetLastError = true)]

internal static extern Boolean WinUsb_QueryPipe

(IntPtr InterfaceHandle, 

Byte AlternateInterfaceNumber, 

Byte PipeIndex, 

ref WINUSB_PIPE_INFORMATION PipeInformation);

Use

The UsbEndpointDirectionIn and UsbEndpointDirectionOut functions
enable querying the direction of an endpoint:
private Boolean UsbEndpointDirectionIn(Int32 addr)

{

Boolean directionIn;

if (((addr & 0X80) == 0X80))

{ directionIn = true; }

else

{ directionIn = false; }

}

return directionIn;

}

private Boolean UsbEndpointDirectionOut(Int32 addr)

{

Boolean directionOut;

if (((addr & 0X80) == 0))

{ directionOut = true; }

else

{ directionOut = false; }

return directionOut;

}
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The application can request and store information about each of the interface’s
endpoints in turn. 
for ( Int32 i=0; i <= ifaceDescriptor.bNumEndpoints - 1; i++ ) 

{

WinUsb_QueryPipe

(myDevInfo.winUsbHandle, 

0, 

Convert.ToByte(i), 

ref pipeInfo);

if (((pipeInfo.PipeType == 

USBD_PIPE_TYPE.UsbdPipeTypeBulk) && 

UsbEndpointDirectionIn(pipeInfo.PipeId))) 

{ 

myDevInfo.bulkInPipe = pipeInfo.PipeId; 

}

else if (((pipeInfo.PipeType == 

USBD_PIPE_TYPE.UsbdPipeTypeBulk) && 

UsbEndpointDirectionOut(pipeInfo.PipeId))) 

{ 

myDevInfo.bulkOutPipe = pipeInfo.PipeId;

}

else if ((pipeInfo.PipeType == 

USBD_PIPE_TYPE.UsbdPipeTypeInterrupt) && 

UsbEndpointDirectionIn(pipeInfo.PipeId)) 

{ 

myDevInfo.interruptInPipe = pipeInfo.PipeId;

}

else if ((pipeInfo.PipeType == 

USBD_PIPE_TYPE.UsbdPipeTypeInterrupt) && 

UsbEndpointDirectionOut(pipeInfo.PipeId)) 

{ 

myDevInfo.interruptOutPipe = pipeInfo.PipeId;

} 

} 

(����	


The PipeId value equals bEndpointAddress in the endpoint descriptor. A valid
endpoint has a PipeId greater than zero. The USBD_PIPE_TYPE enumerator
includes an entry for isochronous pipes, but the WinUSB driver doesn’t sup-
port isochronous transfers.
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After identifying an endpoint, an application can set vendor-specific policies for
transfers at the endpoint. Table 14-1 shows the policies.

�� Definitions

Friend Enum POLICY_TYPE As UInt32

SHORT_PACKET_TERMINATE = 1

AUTO_CLEAR_STALL

PIPE_TRANSFER_TIMEOUT

IGNORE_SHORT_PACKETS

ALLOW_PARTIAL_READS

AUTO_FLUSH

RAW_IO

End Enum

' Use this definition when the returned Value parameter is a Byte 

' (all except PIPE_TRANSFER_TIMEOUT):

<DllImport("winusb.dll", SetLastError:=True)> _

Friend Shared Function WinUsb_SetPipePolicy _

(ByVal InterfaceHandle As IntPtr, _

ByVal PipeID As Byte, _

ByVal PolicyType As UInt32, _

ByVal ValueLength As UInt32, _

ByRef Value As Byte) _

As Boolean

End Function

' Use this alias when the returned Value parameter

' is a UInt32 (PIPE_TRANSFER_TIMEOUT only):

<DllImport("winusb.dll", EntryPoint:="WinUsb_SetPipePolicy", SetLastError:=True)> _

Friend Shared Function WinUsb_SetPipePolicy1 _

(ByVal InterfaceHandle As IntPtr, _

ByVal PipeID As Byte, _

ByVal PolicyType As UInt32, _

ByVal ValueLength As UInt32, _

ByRef Value As UInt32) _

As Boolean

End Function



Chapter 14

360                                                                                                           

Table 14-1: The WinUsb_SetPipePolicy function can specify how the driver 

responds to various conditions when performing a transfer and whether data 

bypasses WinUSB’s queuing and error handling.

��	�����	 0���� ������� ����	����


SHORT_PACKET_TERMINATE 01h False If True, terminate a write transfer 
that is a multiple of wMaxPacketSize 
with a ZLP.

AUTO_CLEAR_STALL 02h False If True, clear a stall condition 
automatically.

PIPE_TRANSFER_TIMEOUT 03h Zero Set a transfer timeout interval in 
milliseconds. Zero = never time out.

IGNORE_SHORT_PACKETS 04h False If True, complete a read operation 
only on receiving the specified 
number of bytes. If False, complete a 
read operation on receiving the 
specified number of bytes or a short 
packet. 

ALLOW_PARTIAL_READS 05h True Sets the policy if the endpoint 
returns more data than requested. If 
True, complete the read operation 
and save or discard the extra data as 
specified by AUTO_FLUSH. If 
False, fail the read request.

AUTO_FLUSH 06h False If True and 
ALLOW_PARTIAL_READS is also 
True, discard extra data. If False and 
ALLOW_PARTIAL_READS is 
True, save extra data and return it in 
the next read operation. If 
ALLOW_PARTIAL_READS is 
False, ignore.

RAW_IO 07h False Determines whether calls to 
WinUsb_ReadPipe bypasses 
WinUSB's queuing and error 
handling, If True, calls pass directly 
to the USB stack, and the read buffer 
must be a multiple of 
wMaxPacketSize and less than the 
host controller’s maximum per 
transfer. If False, calls don’t pass 
directly to the USB stack, and the 
buffers don’t have the size 
restrictions.
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Use

With these overloaded functions, you can call SetPipePolicy to set a policy with
a Byte or UINT32 value as needed.
Private Function SetPipePolicy _

(ByVal pipeId As Byte, ByVal policyType As UInt32, ByVal value As Byte) _

As Boolean

Dim success As Boolean = WinUsb_SetPipePolicy _

(myDevInfo.winUsbHandle, _

pipeId, _

policyType, _

1, _

value)

Return success

End Function

Private Function SetPipePolicy _

(ByVal pipeId As Byte, ByVal policyType As UInt32, ByVal value As UInt32) _

As Boolean

Dim success As Boolean = WinUsb_SetPipePolicy1 _

(myDevInfo.winUsbHandle, _

pipeId, _

policyType, _

4, _

value)

Return success

End Function

Call the functions to set policies for an endpoint:
Dim success As Boolean

SetPipePolicy _

(myDevInfo.bulkInPipe, _

POLICY_TYPE.IGNORE_SHORT_PACKETS, _

Convert.ToByte(False))

Dim pipeTimeout As UInt32 = 2000
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success = SetPipePolicy _

(myDevInfo.bulkInPipe, _

POLICY_TYPE.PIPE_TRANSFER_TIMEOUT, _

pipeTimeout)

��� Definitions

internal enum POLICY_TYPE

{

SHORT_PACKET_TERMINATE = 1,

AUTO_CLEAR_STALL,

PIPE_TRANSFER_TIMEOUT,

IGNORE_SHORT_PACKETS,

ALLOW_PARTIAL_READS,

AUTO_FLUSH,

RAW_IO,

}

// Use this definition when the returned Value parameter is a Byte 

// (all except PIPE_TRANSFER_TIMEOUT):

[DllImport("winusb.dll", SetLastError = true)]

internal static extern Boolean WinUsb_SetPipePolicy

(IntPtr InterfaceHandle, 

Byte PipeID, 

UInt32 PolicyType, 

UInt32 ValueLength, 

ref Byte Value);

//  Use this alias when the returned Value parameter is a UInt32

// (PIPE_TRANSFER_TIMEOUT only):

[DllImport("winusb.dll", SetLastError = true, EntryPoint = "WinUsb_SetPipePolicy")]

internal static extern Boolean WinUsb_SetPipePolicy1

(IntPtr InterfaceHandle, 

Byte PipeID, 

UInt32 PolicyType, 

UInt32 ValueLength, 

ref UInt32 Value);
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Use

With these overloaded functions, you can call SetPipePolicy to set a policy with
a Byte or UINT32 value as needed.
private Boolean SetPipePolicy( Byte pipeId, UInt32 policyType, Byte value ) 

{             

Boolean success = WinUsb_SetPipePolicy

( myDevInfo.winUsbHandle, 

pipeId, 

policyType, 

1, 

ref value ; 

                

return success;                 

} 

private Boolean SetPipePolicy( Byte pipeId, UInt32 policyType, UInt32 value ) 

{             

Boolean success = WinUsb_SetPipePolicy1

( myDevInfo.winUsbHandle, 

pipeId, 

policyType, 

4, 

ref value ); 

                

return success;                 

}       

Call the functions to set policies for an endpoint:
Boolean success; 

success = SetPipePolicy

( myDevInfo.bulkInPipe, 

Convert.ToUInt32(POLICY_TYPE.IGNORE_SHORT_PACKETS),

Convert.ToByte(false));

UInt32 pipeTimeout = 2000;

success = SetPipePolicy

(myDevInfo.bulkInPipe, 

Convert.ToUInt32(POLICY_TYPE.PIPE_TRANSFER_TIMEOUT),

pipeTimeout); 
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The WinUsb_SetPipePolicy function accepts a Byte for the value parameter for
all policies except PIPE_TRANSFER_TIMEOUT, which requires a UINT32.
To handle both types, the code provides a definition that accepts a Byte value
and an alias that accepts a UINT32. Two overloaded SetPipePolicy functions
accept different value parameter types and pass  the parameter to
WinUsb_SetPipePolicy. 

The Byte parameters have true/false meanings, so for readability, the Set-
PipePolicy function accepts a Boolean value, and the Convert.ToByte method
converts to a Byte for passing to WinUsb_SetPipePolicy.

The example sets two policies for the bulk IN endpoint. In a similar way, you
can set policies for all of the interface’s endpoints. A companion function for
reading pipe policies is WinUsb_GetPipePolicy.

7�����5�� � ��� ����:� ��������������� ��"���
The WinUsb_WritePipe function can write data using bulk or interrupt trans-
fers.

�� Definitions

<DllImport("winusb.dll", SetLastError:=True)> _

Friend Shared Function WinUsb_WritePipe _

(ByVal InterfaceHandle As IntPtr, _

ByVal PipeID As Byte, _

ByVal Buffer() As Byte, _

ByVal BufferLength As UInt32, _

ByRef LengthTransferred As UInt32, _

ByVal Overlapped As IntPtr) _

As Boolean

End Function

Use

Dim buffer(1) As Byte

Dim bytesToWrite As UInt32 = 2

Dim bytesWritten As UInt32

Dim success As Boolean
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' Place data in the buffer to send. Example:

buffer(0) = 72

buffer(1) = 105

bytesToWrite = Convert.ToUInt32(buffer.Length)

success = WinUsb_WritePipe _

  (myDevInfo.winUsbHandle, _

  myDevInfo.bulkOutPipe, _

  buffer, _

  bytesToWrite, _

  bytesWritten, _

  IntPtr.Zero)

��� Definitions

[DllImport("winusb.dll", SetLastError = true)]

internal static extern Boolean WinUsb_WritePipe

(IntPtr InterfaceHandle, 

Byte PipeID, 

Byte[] Buffer, 

UInt32 BufferLength, 

ref UInt32 LengthTransferred, 

IntPtr Overlapped);

Use

Byte[] buffer = new Byte[2]; 

UInt32 bytesToWrite = 2; 

UInt32  bytesWritten = 0;

Boolean success; 

// Place data in the buffer to send. Example:

buffer[0] = 72;

buffer[1] = 105;

bytesToWrite = Convert.ToUInt32( buffer.Length);

success = WinUsb_WritePipe

(myDevInfo.winUsbHandle,

myDevInfo.bulkOutPipe,

buffer,

bytesToWrite,

ref bytesWritten,

IntPtr.Zero);
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The WinUsb_WritePipe function accepts a pointer to a WinUSB handle, an
endpoint address, a buffer with data to send, and the number of bytes to write.
On success, the function returns True with the number of bytes written in
bytesWritten. If the function uses overlapped I/O, the Overlapped parameter
contains a pointer to an OVERLAPPED structure. To send data via an inter-
rupt transfer, change myDevInfo.bulkOutPipe to myDevInfo.interruptOut-
Pipe.

To cause the driver to terminate transfers that are exact multiples of wMaxPack-
e tS i z e  w i th  ZLPs ,  c a l l  WinUsb_Se tP i p ePo l i c y  w i th
SHORT_PACKET_TERMINATE = True. This option can be useful if the
device firmware needs a way to identify the end of a transfer of unknown
length.

.� ���5�� � ��� ����:� ��������������� ��"���
The WinUsb_ReadPipe function can read data via bulk or interrupt transfers.

�� Definitions

<DllImport("winusb.dll", SetLastError:=True)> _

Friend Shared Function WinUsb_ReadPipe _

(ByVal InterfaceHandle As IntPtr, _

ByVal PipeID As Byte, _

ByVal Buffer() As Byte, _

ByVal BufferLength As UInt32, _

ByRef LengthTransferred As UInt32, _

ByVal Overlapped As IntPtr) _

As Boolean

End Function

Use

Dim buffer(63) As Byte

Dim bytesRead As UInt32

Dim bytesToRead As UInt32 = 64

Dim success As Boolean
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success = WinUsb_ReadPipe _

(myDevInfo.winUsbHandle, _

myDevInfo.bulkInPipe, _

buffer, _

bytesToRead, _

bytesRead, _

IntPtr.Zero)

��� Definitions

[DllImport("winusb.dll", SetLastError = true)]

internal static extern Boolean WinUsb_ReadPipe

(IntPtr InterfaceHandle, 

Byte PipeID, 

Byte[] Buffer, 

UInt32 BufferLength, 

ref UInt32 LengthTransferred, 

IntPtr Overlapped);

Use

Byte[] buffer = new Byte[ 64 ]; 

UInt32 bytesRead = 0; 

UInt32 bytesToRead =  64; 

Boolean success = false; 

success = WinUsb_ReadPipe

(myDevInfo.winUsbHandle,

myDevInfo.bulkInPipe,

buffer,

bytesToRead,

ref bytesRead,

IntPtr.Zero);

(����	


The WinUsb_ReadPipe function accepts a pointer to a WinUSB handle, an
endpoint address, the buffer that will store the received data, and the maximum
number of bytes to read. On success, the function returns True with the
received data in the passed buffer and the number of bytes read in bytesRead. If
the function uses overlapped I/O, the Overlapped parameter contains a pointer
to an OVERLAPPED structure. To send data via an interrupt transfer, change
bulkInPipe to interruptInPipe.

The  numbe r  o f  by t e s  r e ad  c an  d e pend  on  th e  po l i c i e s  s e t  by
WinUsb_SetPipePolicy.
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Another option for transferring data is to use vendor-defined requests sent via
control transfers directed to the interface.

�� Definitions

Friend Structure WINUSB_SETUP_PACKET

Friend RequestType As Byte

Friend Request As Byte

Friend Value As UShort

Friend Index As UShort

Friend Length As UShort

End Structure

<DllImport("winusb.dll", SetLastError:=True)> _

Friend Shared Function WinUsb_ControlTransfer _

 (ByVal InterfaceHandle As IntPtr, _

 ByVal SetupPacket As WINUSB_SETUP_PACKET, _

 ByVal Buffer() As Byte, _

 ByVal BufferLength As UInt32, _

 ByRef LengthTransferred As UInt32, _

 ByVal Overlapped As IntPtr) _

 As Boolean

End Function

Use

Dim bytesReturned As UInt32

Dim dataStage(1) As Byte

Dim setupPacket As WINUSB_SETUP_PACKET

Dim success As Boolean

' Use this for a vendor-specific request to an interface with a device-to-host Data stage.

' setupPacket.RequestType = &HC1

' Use this for a vendor-specific request to an interface with host-to-device Data stage:

setupPacket.RequestType = &H41

' The number that identifies the specific request.

setupPacket.Request = 1
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' Vendor-defined values to send to the device.

setupPacket.Index = 2

setupPacket.Value = 3

' For control Write transfers (host-to-device Data stage), provide data for the Data stage.

' Example:

dataStage(0) = 65

dataStage(1) = 66

' The number of bytes in the request's Data stage.

setupPacket.Length = Convert.ToUInt16(dataStage.Length)

success = WinUsb_ControlTransfer _

(myDevInfo.winUsbHandle, _

setupPacket, _

dataStage, _

setupPacket.Length, _

bytesReturned, _

IntPtr.Zero)

��� Definitions

internal struct WINUSB_SETUP_PACKET 

{

internal Byte RequestType;

internal Byte Request;

internal ushort Value;

internal ushort Index;

internal ushort Length; 

}

[DllImport("winusb.dll", SetLastError = true)]

internal static extern Boolean WinUsb_ControlTransfer

(IntPtr InterfaceHandle, 

WINUSB_SETUP_PACKET SetupPacket, 

Byte[] Buffer, 

UInt32 BufferLength, 

ref UInt32 LengthTransferred, 

IntPtr Overlapped);
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Use

UInt32  bytesReturned = 0;

Byte[] dataStage = new Byte[ 2 ]; 

WINUSB_SETUP_PACKET setupPacket;

Boolean success; 

//  Use this for a vendor-specific request to an interface with a device-to-host Data stage.

                

// setupPacket.RequestType = 0XC1; 

//  Use this for a vendor-specific request to an interface with host-to-device Data stage.

                

setupPacket.RequestType = 0X41; 

                

//  The request number that identifies the specific request.

                

setupPacket.Request = 1; 

                

//  Vendor-specific values to send to the device.

                

setupPacket.Index = 2; 

setupPacket.Value = 3; 

// For control Write transfers  (host-to-device Data stage), provide data for the Data stage.

// Example:

dataStage[0] = 65;

dataStage[1] = 66;

                

//  The number of bytes in the request's Data stage.

                

setupPacket.Length = Convert.ToUInt16( dataStage.Length ); 

success = WinUsb_ControlTransfer

(myDevInfo.winUsbHandle, 

setupPacket, 

dataStage, 

setupPacket.Length, 

ref bytesReturned, 

IntPtr.Zero); 
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The WINUSB_SETUP_PACKET structure holds the contents of the fields in
the Setup stage’s data packet as described in Chapter 2. The application sets
RequestType to the bmRequestType value for a vendor-specific request directed
to an interface with bit 7 indicating the direction of the Data stage. The
Request, Value, and Index fields are the desired values for bRequest, wValue,
and wIndex in the request.

For a control write request, the application places the data to send to the device
in an array. For a control read request, the application provides an array to hold
data received from the device.

The WinUsb_ControlTransfer function initiates a control transfer. The func-
t i on  pa s s e s  a  po in t e r  t o  a  WinUSB hand l e  t o  the  in t e r f a c e ,  a
WINUSB_SETUP_PACKET structure, a byte array that contains data to send
or space for received data, and the number of bytes to read or write. On success,
the function returns True with the number of bytes read or written in the
LengthTransferred parameter.

������5��������� �����
When finished communicating with a device, the application should free
reserved resources. 

�� Definitions

<DllImport("winusb.dll", SetLastError:=True)> Friend Shared Function WinUsb_Free _

(ByVal InterfaceHandle As IntPtr) _

As Boolean

End Function

Use

WinUsb_Free(myDevInfo.winUsbHandle)

myDevInfo.deviceHandle.Close()

��� Definitions

 [DllImport("winusb.dll", SetLastError = true)]

internal static extern Boolean WinUsb_Free

(IntPtr InterfaceHandle);

Use

WinUsb_Free(myDevInfo.winUsbHandle);

myDevInfo.deviceHandle.Close();
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WinUsb_Free frees the resources allocated by WinUsb_Initialize, and the Close
method marks the SafeFileHandle obtained with CreateFile for releasing and
freeing.
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A hub is an intelligent device that provides attachment points for devices and
manages each device’s connection to the bus. Devices that plug directly into the
host computer connect to the system’s root hub. Other devices can connect to
external hubs downstream from the root hub.

A hub manages power use, helps initiate communications with newly attached
devices, and passes traffic up and down the bus. To manage power, a hub pro-
vides current to attached devices and limits current on detecting an over-cur-
rent condition. To help initiate communications with devices, the hub detects
and informs the host of newly attached devices and carries out requests that
apply to the devices’ ports. The hub’s role in passing traffic up and down the
bus varies with the speeds of the host, device, and hubs between them.

This chapter presents essentials about hub communications. You don’t need to
know every detail about hubs in order to design a USB peripheral. But some
understanding of what the hub does can help in understanding how devices are
detected and communicate on the bus.
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Each external USB 2.0 hub has one port, or attachment point, that connects in
the upstream direction (toward the host) (Figure 15-1). This upstream-facing
port may connect directly to the host’s root hub, or the port may connect to a
downstream-facing port on another external hub. Each hub has one or more
downstream-facing ports. Most downstream ports have a receptacle for attach-
ing a cable. An exception is hubs in compound devices, whose downstream-fac-
ing ports connect to functions embedded in the device. Hubs with one, two,
four, and seven downstream ports are common. A hub may be self powered or
bus powered. As Chapter 16 explains, bus-powered hubs are limited because
you can’t attach high-power devices to them.

A USB 2.0 hub acts as a remote processor with store-and-forward capabilities.
The hub converts between high-speed upstream communications and low- and
full-speed downstream communications as needed and performs other func-
tions that help make efficient use of bus time. In contrast, a USB 1.x hub
doesn’t convert between speeds; it just passes received traffic up or down the
bus. For traffic to and from low-speed devices, a USB 1.x hub changes the edge
rate and signal polarity but not the bit rate. The added intelligence of USB 2.0
hubs is a major reason why the high-speed bus remains compatible with USB
1.x devices.

Controller chips for hubs contain dedicated silicon to perform hub functions.
Due to timing requirements, implementing a hub function with a general-pur-
pose device controller chip isn’t feasible. For single-chip compound devices,

Figure 15-1. This hub has an upstream-facing port with a Standard-B receptacle 

(left), four downstream-facing ports with Standard-A receptacles (center), and 

a power connection (right). 
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chips that contain an embedded hub and a generic device controller are avail-
able.

An external USB 2.0 hub contains a hub repeater and a hub controller (Figure
15-2). The hub repeater passes USB traffic between the upstream hub (which
may be on the host) and attached and enabled downstream devices. The hub
controller manages communications between the host and the hub repeater.
State machines control the hub’s response to events at the hub repeater and
upstream and downstream ports. A USB 2.0 hub also has one or more transac-

Figure 15-2. A USB 2.0 hub contains one or more transaction translators and 

routing logic that enable a hub on a high-speed bus to communicate with low- 

and full-speed devices. A USB 1.x hub doesn’t convert between bus speeds. 

(Adapted from Universal Serial Bus Specification Revision 2.0.)
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tion translators and routing logic that enable low- and full-speed devices to
communicate on a high-speed bus.

The host’s root hub is a special case. The host controller performs many of the
functions that the hub repeater and hub controller perform in an external hub,
so a root hub may contain little more than routing logic and downstream ports.

����)�,�.��� ���
The hub repeater re-transmits the packets it receives, sending them on their way
up or down stream with minimal changes. The hub repeater also detects when a
device is attached and removed, establishes the connection of a device to the
bus, detects bus faults such as over-current conditions, and manages power to
the device.

A USB 2.0 hub repeater has two modes of operation depending on the
upstream bus speed. When the hub connects upstream to a full-speed bus seg-
ment, the repeater functions as a low- and full-speed repeater. When the hub
connects upstream to a high-speed bus segment, the repeater functions as a
high-speed repeater. The repeaters in USB 1.x hubs always function as low- and
full-speed repeaters.

/��,��2�����*"		2
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The hub repeater in a USB 1.x hub handles low- and full-speed traffic. A USB
2.0 hub also uses this type of repeater when its upstream port connects to a
full-speed bus. In this case, the USB 2.0 hub doesn’t send or receive high-speed
traffic but instead functions identically to a USB 1.x hub.

A low- and full-speed repeater re-transmits all low- and full-speed packets
received from the host, including data that has passed through one or more
additional hubs, to all enabled, full-speed, downstream ports. Enabled ports
include all ports with attached devices that are ready to receive communications
from the hub. Devices with ports that aren’t enabled include devices that the
host controller has stopped communicating with due to errors or other prob-
lems, devices in the Suspend state, and devices that aren’t yet ready to commu-
nicate because they have just been attached or are in the process of exiting the
Suspend state.

The hub repeater doesn’t translate, examine the contents of, or process the traf-
fic to or from full-speed ports. The repeater just regenerates the edges of the sig-
nal transitions and passes the traffic on.
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Low-speed devices never see full-speed traffic. A USB 1.x hub repeats only
low-speed packets to low-speed devices. The hub identifies a low-speed packet
by the PRE packet identifier that precedes the packet. The hub repeats the
low-speed packets, and only these packets, to any enabled low-speed ports. The
hub also repeats low-speed packets to its full-speed downstream ports because a
full-speed port may connect to a hub that in turn connects to a low-speed
device. To give hubs time to make their low-speed ports ready to receive data,
the host adds a delay of at least four full-speed bit widths between the PRE
packet and the low-speed packet.

Compared to full speed, traffic in a low-speed cable segment varies not only in
speed, but also in edge rate and polarity. A hub whose downstream port con-
nects directly to a low-speed device uses low speed’s edge rate and polarity when
communicating with the device. When communicating upstream, the hub uses
full-speed’s faster edge rate and an inverted polarity compared to low speed.
The hub repeater converts between the edge rates and polarities as needed.
Chapter 18 has more on the signal polarities, and Chapter 19 has more about
edge rates. 
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A USB 2.0 hub uses a high-speed repeater when the hub’s upstream port con-
nects to a high-speed bus segment. In this case, the hub sends and receives all
upstream traffic at high speed even if the traffic is to or from a low- or
full-speed device. Routing logic in the hub determines whether traffic to or
from a downstream port passes through a transaction translator.

Unlike a low- and full-speed repeater, a high-speed repeater re-clocks received
data to minimize accumulated jitter. In other words, instead of just repeating
received transitions, a high-speed repeater uses its own local clock to time the
transitions when retransmitting. The edge rate and polarity don’t change. An
elasticity buffer allows for small differences between the hub’s clock frequency
and the timing of the received data. When the buffer is half full, the received
data begins clocking out.

������ �� �������� ��� ���
Every USB 2.0 hub must have a transaction translator to manage communica-
tions with low- and full-speed devices. The transaction translator communi-
cates upstream at high speed while enabling low- and full-speed devices to
continue to communicate at low and full speeds. The transaction translator
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stores received data and forwards, or transmits, the data toward its destination
at the appropriate speed.

The transaction translator frees bus time by enabling other communications to
use the bus while a hub completes a low- or full-speed transaction with a device.
Transaction translators can also enable low- and full-speed devices to have more
bandwidth than the host could allocate on a shared low/full-speed bus.

For traffic to and from low- and full-speed devices, the high-speed repeater
communicates with the transaction translator, which manages transactions with
the devices. 

#������


The transaction translator contains three sections (Figure 15-3). The
high-speed handler communicates with the host at high speed. The
low/full-speed handler communicates with devices at low and full speeds. Buff-
ers store data used in transactions with low- and full-speed devices. Each trans-
action translator has to have at least four buffers: one for interrupt and
isochronous start-split transactions, one for interrupt and isochronous com-
plete-split transactions, and two or more for control and bulk transfers.

Figure 15-3. A transaction translator contains a high-speed handler for 

upstream traffic, buffers for storing information in split transactions, and a low- 

and full-speed handler for downstream traffic to low- and full-speed devices.
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When a USB 2.0 host wants to communicate with a low- or full-speed device
that connects to a hub on a high-speed bus, the host initiates a split transaction
with the USB 2.0 hub that is nearest the device and communicating upstream
at high speed. Figure 15-4 shows the transactions that make up a split transac-
tion. 

One or more start-split transactions contain the information the hub needs to
complete the transaction with the device. The transaction translator stores the
information received from the host and completes the start-split transaction
with the host.

On completing a start-split transaction, the hub performs the function of a host
controller in carrying out the transaction with the device. The transaction
translator initiates the transaction in the token phase, sends data or stores
returned data or status information as needed in the data phase, and sends or

Figure 15-4. In a transfer that uses split transactions, the host communicates at 

high speed with a USB 2.0 hub, and the hub communicates at low or full speed 

with the device. Isochronous transactions may use multiple start-split or 

complete-split transactions. 
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receives a status code as needed in the handshake phase. The hub uses low or
full speed as needed in its communications with the device.

After the hub has had time to exchange data with the device, in all transactions
except isochronous OUTs, the host initiates one or more complete-split trans-
actions to retrieve the information returned by the device and stored in the
transaction translator’s buffer. The hub performs these transactions at high
speed.

Table 15-1 compares the structure and contents of transactions with low- and
full-speed devices at different bus speeds.

Bulk and control transfers don’t have the timing constraints of interrupt and
isochronous transfers and thus use a simpler protocol. In the start-split transac-
tion, the USB 2.0 host sends the start-split token packet (SSPLIT), followed by
the usual low- or full-speed token packet and any data packet destined for the
device. The USB 2.0 hub that is nearest the device and communicating
upstream at high speed returns ACK or NAK. The host is then free to use the
bus for other transactions. The device knows nothing about the transaction yet.

On returning ACK in a start-split transaction, the hub has two responsibilities.
The hub must complete the transaction with the device and must continue to
handle any other bus traffic received from the host or other attached devices.

To complete the transaction, the hub converts the packet or packets received
from the host to the appropriate speed, sends them to the device and stores the
data or handshake returned by the device. Depending on the transaction, the
device may return data, a handshake, or nothing. For IN transactions, the hub
returns a handshake packet to the device. To the device, the transaction has pro-
ceeded at the expected low or full speed and is now complete. The device has no
knowledge that the transaction is a split transaction. The host hasn’t yet
received the device’s response.

While the hub is completing the transaction with the device, the host may ini-
tiate other bus traffic that the device’s hub must handle as well. Separate hard-
ware modules within the hub handle the two functions. When the hub has had
enough time to complete the transaction with the device, the host begins a
complete-split transaction with the hub.

In a complete-split transaction, the host sends a complete-split token packet
(CSPLIT), followed by a low- or full-speed token packet to request the data or
status information the hub has received from the device. The hub returns the
information. The transfer is now complete at the host. The host doesn’t return
an ACK to the hub. If the hub doesn’t have the packet ready to send, the hub
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returns NYET, and the host retries later. The device is unaware of the com-
plete-split transaction.

In split transactions in interrupt and isochronous transfers, the process is simi-
lar but with stricter timing. The goals are to transfer data to the host as soon as
possible after the device has data available to send and to transfer data to the
device just as the device is ready to receive new data. To achieve this timing, iso-
chronous transactions with large packets use multiple start splits or complete
splits and transfer a portion of the data in each.

Unlike with bulk and control transfers, start-split transactions in interrupt and
isochronous transfers have no handshake phase, just the start-split token fol-
lowed by an IN, OUT, or Setup token and OUT or Setup transactions, data.

In an interrupt transaction, the hub schedules the start split in the microframe
just before the earliest time that the hub is expected to begin the transaction
with the device. For example, assume that the microframes in a frame are num-
bered in sequence, 0–7. If the start split is in microframe 0, the transaction with
the device can occur as early as microframe 1. The device may have data or a
handshake response to return to the host as early as microframe 2, and the host

Table 15-1: When a low- or full-speed device has a transaction on a high-speed 

bus, the host uses start-split (SSPLIT) and complete-split (CSPLIT) transactions 

with the USB 2.0 hub nearest the device and communicating upstream at high 

speed.
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Low/Full-speed 
communications 
with the device

Setup, OUT PRE if low speed,
LS/FS token

PRE if low speed,
data

status (except for 
isochronous)

IN PRE if low speed,
LS/FS token

data or status PRE if low speed, 
status (except for 
isochronous)

High-speed 
communications 
between a USB 
2.0 hub and host 
in transactions 
with a low- or 
full-speed device

Setup, OUT 
(isochronous 
OUT has no 
CSPLIT 
transaction)

SSPLIT, 
LS/FS token

data status (bulk and 
control only)

CSPLIT, 
LS/FS token 

– status

IN SSPLIT, 
LS/FS token

– status (bulk and 
control only)

CSPLIT, 
LS/FS token)

data or status –
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schedules time for three complete-split transactions in microframes 2, 3, and 4.
If the hub doesn’t yet have the information to return in a complete split, the
hub returns NYET and the host retries.

Full-speed isochronous transactions can transfer up to 1023 bytes. To ensure
that the data transfers as soon as the device has data to send or is ready to
receive data, transactions with large packets use multiple start splits or complete
splits with up to 188 data bytes in each. This amount is the maximum quantity
of full-speed data that fits in a microframe. A single transaction’s data can
require up to eight start-split or complete-split transactions. 

In an isochronous IN transaction, the host schedules complete-split transac-
tions in every microframe where the host expects the device to have at least a
portion of the data to return. Requesting the data in smaller chunks ensures
that the host receives the data as quickly as possible. The host doesn’t have to
wait for all of the data to transfer from the device at full speed before beginning
to retrieve the data.

In an isochronous OUT transaction, the host sends the data in one or more
start-split transactions. The host schedules the transactions so the hub’s buffer
will never be empty but will contain as few bytes as possible. Each SPLIT
packet contains bits that indicate the data’s position in the low- or full-speed
data packet (beginning, middle, end, or all). There is no complete-split transac-
tion.
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Because a USB 2.0 hub acts as a host controller in managing transactions, low-
and full-speed devices share low/full-speed bandwidth only with devices that
use the same transaction translator. Most hubs provide one transaction transla-
tor for all ports, but a single hub can provide a transaction translator for each
port that connects to a low- or full-speed device.

If two full-speed devices each have a dedicated transaction translator on a
high-speed bus, each device can use all of the transaction translator’s down-
stream, full-speed bandwidth. When the hub(s) convert to high speed, the
full-speed traffic uses little of the high-speed bandwidth.

For bulk transactions, the extra transaction with the host in each split transac-
tion can result in lower throughput for a full-speed device that connects to a
hub on a busy bus that is also carrying high-speed bulk traffic. 
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A USB 2.0 hub controller manages communications between the host and the
hub. As it does for all devices, the host enumerates a newly detected hub to
learn about it. The hub descriptor retrieved during enumeration tells the host
the number of ports on the hub. After enumerating the hub, the host requests
the hub to report whether the hub has any attached devices. If so, the host enu-
merates these as well.

The host finds out if a device is attached to a port by sending the hub-class
request Get Port Status. This is similar to a Get Status request but is directed to
a hub and has a port number in the wIndex field. The hub returns two 16-bit
values that indicate whether a device is attached and other information such as
whether the device is in the Suspend state.

The hub controller is also responsible for disabling any port that was responsi-
ble for loss of bus activity or babble. Loss of bus activity occurs when a packet
doesn’t end with the expected EOP. Babble occurs when a device continues to
transmit beyond the EOP.

Each hub has a Status Change endpoint configured for interrupt IN transfers. A
USB 2.0 host polls the endpoint to find out if the hub has any changes to
report. On each poll, the hub controller returns NAK if there have been no
changes or data that indicates a specific port or the hub itself as the source of
the change. After a reported change, the host sends requests to find out more
about the change and take whatever action is needed. For example, if the hub
reports attachment of a new device, the host attempts to enumerate the device.

�����
An external USB 2.0 hub’s downstream ports must support low, full, and high
speeds. In the upstream direction, if a USB 2.0 hub’s upstream segment is high
speed, the hub communicates at high speed. Otherwise, the hub communicates
upstream at low and full speeds.

A USB 1.x hub’s upstream port must support low- and full-speed communica-
tions. All downstream ports with connectors must support both low- and
full-speed communications. USB 1.x hubs never support high speed.

*�	����� �/��++����������� ����#�����

Low-speed devices aren’t capable of receiving full-speed data so hubs don’t
repeat full-speed traffic to low-speed devices. Otherwise, a low-speed device
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would try to interpret full-speed traffic as low-speed data and might even mis-
takenly see what looks like valid data. Full- or high-speed data on a low-speed
cable could also cause problems due to radiated electromagnetic interference
(EMI). In the other direction, hubs repeat received low-speed data upstream.

Low- and full-speed devices aren’t capable of receiving high-speed data, so USB
2.0 hubs don’t repeat high-speed traffic to these devices, including USB 1.x
hubs.
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On attachment, every USB 2.0 device must support either low or full speed. A
hub detects whether an attached device is low or full speed by detecting which
signal line is more positive on an idle line. Figure 15-5 illustrates. As Chapter 4
explained, the hub has pull-down resistors of 14.25k–24.8kΩ on D+ and D-. A

Figure 15-5. The device’s port has a stronger pull-up than the hub’s. The location

of the pull-up tells the hub whether the device is low or full speed. High-speed 

devices are full speed at attachment.
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newly attached device has a pull-up of 900–1575Ω on either D+ for a full-speed
device or D- for a low-speed device. When a device attaches to a port, the line
with the pull-up is more positive than the hub’s logic-high input threshold. The
hub detects the voltage, assumes a device is attached, and determines the speed
by detecting which line is pulled up.

After detecting a full-speed device, a USB 2.0 hub determines whether the
device supports high speed by using the high-speed detection handshake. The
handshake occurs during the Reset state that the hub initiates during enumera-
tion. If the handshake succeeds, the device removes its pull-up and communica-
tions are at high speed. A USB 1.x hub ignores the attempt to handshake, and
the failure of the handshake informs the device that it must use full speed.
Chapter 18 has more details about the handshake.

4 ��� ����5�$������+��:�
SOF packets keep full- and high-speed devices from entering the Suspend state
on an otherwise idle bus. On an idle, full-speed bus, the host continues to send
an SOF once per frame, and hubs pass these packets on to their full-speed
devices. On an otherwise idle, high-speed bus, the host continues to send an
SOF once per microframe, and hubs pass these packets on to their high-speed
devices. A full-speed device that connects to a USB 2.0 hub that communicates
upstream at high speed will also receive an SOF once per frame from the hub.

Low-speed devices don’t see the SOFs. Instead, at least once per frame, hubs
must send their low-speed devices a low-speed End-of-Packet (EOP) signal
(defined in Chapter 18). This signal functions as a keep-alive signal that keeps a
device from entering the Suspend state on a bus with no low-speed activity. A
host can also request a hub to suspend the bus at a single port. Chapter 16 has
more on how hubs manage the Suspend state.  

����201
A USB 3.0 hub contains both a USB 2.0 hub that supports low, full, and high
speeds and a SuperSpeed hub (Figure 15-6). The hubs operate independently
except for sharing logic to control VBUS. The host enumerates a USB 3.0 hub
as two devices. Hubs are the only devices with ports that can communicate
upstream at the same time at both SuperSpeed and high speed.
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The speed of a hub’s upstream port determines what bus speeds are available to
downstream ports. If the upstream port connects at SuperSpeed, the hub can
communicate with downstream devices at any speed. If the upstream port con-
nects at high speed, the hub can communicate downstream at low, full, and
high speeds. If a USB 3.0 hub’s upstream port connects at full speed, the hub
can communicate downstream at low and full speeds. A downstream-facing
port that connects internally to an embedded device can support a single speed.
At the hub’s upstream port, traffic to and from downstream SuperSpeed devices
uses the SuperSpeed wires, and traffic to and from downstream low-, full-, and
high-speed devices uses the USB 2.0 wires. As with USB 2.0 hubs, all upstream
traffic on the USB 2.0 wires uses high speed (unless a USB 1.x hub is upstream
from the hub).

����������
The SuperSpeed portion of a USB 3.0 hub consists of a repeater/forwarder and
a hub controller. Like the hub repeater in a USB 2.0 hub, the repeater/for-

Figure 15-6. A USB 3.0 hub contains a USB 2.0 hub and a hub for SuperSpeed. 

(Adapted from Universal Serial Bus 3.0 Specification.)
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warder re-transmits received packets, detects device attachment and removal,
establishes the connection of a device to the bus, detects bus faults such as
over-current conditions, and manages power to the device. A hub may partially
store a Data Packet before beginning to forward it, and the hub stores and for-
wards all other packets. Buffers help to manage the traffic that passes through
the hub. Buffers enable storing packet headers for later delivery to a down-
stream device that must exit a low-power mode before receiving traffic. Buffers
also enable receiving asynchronous messages from multiple downstream devices
at once and holding received payload data to repeat. To enable retrying, after
transmitting a Data Packet, the buffer retains the packet until receiving a
link-level acknowledgement.

As in a USB 2.0 hub, a USB 3.0 hub controller manages communications
between the host and the hub. The hub sends status information via an inter-
rupt IN Status Change endpoint. A hub with information to report sends an
ERDY Transaction Packet to the host.
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The hub stores and forwards header packets and repeats Data Packets. The hub
must be able to store eight header packets directed to the same downstream
port and eight header packets received at a downstream port.

During hub enumeration, the host sends a Set Hub Depth request to assign a
hub-depth value to the hub. The value equals the number of additional
upstream hubs that lie in the path between the hub and the root hub. Hubs that
connect directly to the root hub have a hub depth of zero. Any hubs that con-
nect to downstream ports on those hubs have a hub depth of one. Any hubs
that connect to those hubs have a hub depth of two, and so on up to a maxi-
mum hub depth of four. The USB 2.0 specification defines the root hub as tier
1 in the bus topology, so hub depth equals the hub’s tier - 2.

Unlike USB 2.0 hubs, USB 3.0 hubs don’t broadcast downstream traffic but
instead direct traffic only toward the target device. Using routing instead of
broadcasting enables ports to enter a low-power state when not communicating
with the host even if the bus is carrying traffic to other device. In the upstream
direction, hubs route all traffic to the host as with USB 2.0. On receiving a
packet from the host, a hub uses its hub-depth value and a Route String in the
packet header to determine whether the hub should process the packet or route
the packet to a downstream port. The Route String has five 4-bit fields. Each
field contains information that applies to one of up to five external hubs in the
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path that the packet travels. The hub-depth value identifies which 4-bit field in
a received Route String applies to the hub. The field contains either a port
number to route the packet to or zero if the packet’s destination is the hub itself.
Because the Route String’s fields are four bits, a USB 3.0 hub can have at most
15 downstream ports. A hub that isn’t configured assumes all packets are
directed to itself. 
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Hubs are members of the hub class, which is the only class defined in the main
USB specification.
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The hub descriptor informs the host of hub-specific capabilities such as sup-
ported modes for power switching and overcurrent protection. For USB 3.0
hubs, the hub descriptor has additional fields to support USB 3.0 capabilities.
A host can request the descriptor with a Get Hub Descriptor control request. A
USB 3.0 hub must have a device capability descriptor with a Container ID that
identifies the device instance. The Container ID is the same value for the USB
2.0 and USB 3.0 hub functions in a device.

!�,������.	/�	���
A host can use hub-class requests to obtain status information, set and clear hub
and port features, and monitor and control transaction translators. 
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The USB 2.0 specification defines optional indicators to indicate port status to
the user. The specification assigns standard meanings to the colors and blinking
properties of status LEDs or similar indicators. Each downstream port on a hub
can have an indicator, which can be a single bi-color green/amber LED or a sep-
arate LED for each color:

Green fully operational
Amber error condition
Blinking off/green software attention required
Blinking off/amber hardware attention required
Off not operational
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A convenient feature of USB is the ability to draw power from the bus. But
using bus power carries the responsibility to operate within allowed limits,
including reducing power in the Suspend state.

This chapter will help you decide if a device can use bus power. Plus, whether
your design is bus-powered or self-powered, you’ll find out how to ensure that
your device follows the USB specification’s requirements for managing power.
Also covered are new power-saving options for USB 2.0 and USB 3.0.
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Inside a typical PC is a power supply with amperes to spare. Many hubs also
have their own power supplies. Some USB devices can take advantage of these
existing supplies rather than providing their own power sources.

Bus power has several advantages. Users don’t need an electrical outlet near the
device. A device with no internal power supply can be physically smaller, lighter
in weight, and less expensive to manufacture. The device can save energy
because power supplies in PCs use efficient switching regulators rather than the
cheap linear regulators in the power adapters that many peripherals use.
(Self-powered hubs may use inefficient supplies, however.)
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The nominal voltage between the VBUS and GND wires in a USB cable is 5V,
but the actual value can vary. VBUS at a host or hub’s downstream port can be
anywhere in the range 4.45–5.25V. Cable and connector losses further reduce
the voltage available at a device’s port.

These are the minimum and maximum valid voltages for connectors on down-
stream-facing ports:

High-power USB 2.0 devices must at minimum respond to enumeration
requests with at least 4.4V on the B connector. All USB 3.0 devices must at
minimum respond to enumeration requests with at least 4.0V on the B connec-
tor. Transient conditions can cause the voltage to drop briefly by a few addi-
tional tenths of a volt.

USB controller chips typically use a +5V or +3.3V supply. Devices powered at
3.3V can use an inexpensive low-dropout linear regulator to obtain 3.3V from
VBUS. If a component needs a higher voltage, the device can contain a step-up
switching regulator. 
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Figure 16-1 will help you decide whether a specific device can use bus power.
Advances in semiconductor technology have reduced the power required by
many circuits. Thanks to CMOS manufacturing processes, lower supply volt-
ages for components, and power-conserving modes in CPUs, you can do a lot
with 100 mA.

A device that requires up to 100 mA can be bus powered from any host or hub.
A device that requires up to 500 mA can use bus power when attached to a
self-powered hub or any host except some battery-powered hosts. A SuperSpeed
device on a USB 3.0 bus can draw up to 150 mA from any USB 3.0 hub and
up to 900 mA when attached to any host except some battery-powered hosts.
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High Power USB 2.0 500 4.75 5.25
USB 3.0 900 4.45 5.25

Low Power USB 2.0 100  4.4 5.25
USB 3.0 150 4.45 5.25
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Figure 16-1. Some devices can draw all of their power from the bus.
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No device should draw more than 100 mA (USB 2.0) or 150 mA (SuperSpeed)
until the host has configured the device for more current. Devices must limit
their power consumption further when in the Suspend state. In some cases, bat-
tery charging can exceed these limits as described later in this chapter.

Of course, devices such as digital cameras that need to function when not
attached to a host will need self power. Self power can use batteries or power
from a wall socket. To save battery power, a device can use bus power when
connected to the bus and self power otherwise. Because a device in the Suspend
state should draw very little current from the bus, some devices need their own
supplies to enable operating when the bus is suspended.

&�*���A����
USB 2.0 defines a low-power device as a bus-powered device that draws up to
100 mA from the bus and a high-power device as a device that draws up to 500
mA from the bus. A self-powered device can draw up to 100 mA from the bus
and as much power as is available from the device’s supply. 

A high-power device must be able to enumerate at low power. On power-up, a
USB 2.0 device can draw up to 100 mA from the bus until the host has config-
ured the device. After retrieving a configuration descriptor, the host examines
the amount of current requested in bMaxPower, and if the current is available,
the host sends a Set Configuration request to select the configuration. The
device can then draw up to the bMaxPower value from the bus. In reality, hosts
and hubs are likely to allocate either 100 mA or 500 mA to a device rather than
a precise amount requested in bMaxPower.

A self-powered USB 2.0 device may also draw up to 100 mA from the bus any
time the device isn’t in the Suspend state. This capability enables the device’s
USB interface to function when the device’s power supply is off and the host
detects and enumerates the device. Otherwise, if a device’s pull-up is bus-pow-
ered and the rest of the interface is self-powered, the host will detect the device
but won’t be able to communicate with it.

The limits are absolute maximums, not averages. Also remember that the bus’s
power-supply voltage can be as high as 5.25V, and a higher voltage can result in
greater current consumption. 

A device must never provide upstream power. Even the pull-up must remain
unpowered until VBUS is present. A device that provides upstream power can
cause problems that include a PC that doesn’t boot or doesn’t resume from the
Suspend state, a hub that doesn’t enumerate its downstream devices, and failure
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of an upstream device. A self-powered device must connect to VBUS to detect
its presence even if the device never uses bus power. USB compliance testing
includes a back-voltage test to verify that a device doesn’t provide upstream
power. The test, described in the compliance test documentation, requires just
three resistors and a voltmeter.

Hosts in embedded systems may turn off VBUS to save power but may still
need the ability to detect device attachment even when VBUS is off. The Device
Capacitance ECN to the USB 2.0 specification enables device detection by
ensuring a change in capacitance on VBUS on device attachment. The ECN
mandates a capacitance of 1–10 µF between VBUS and GND on a device’s
upstream-facing port.

SuperSpeed devices must obey the same rules for using power but with higher
limits of 150 mA for low-power and self-powered devices and 900 mA for
high-power devices.

��"�����5�����)���
During enumeration, the host learns whether the device is self powered or bus
powered and the maximum current the device will draw from the bus. All hubs
must have over-current protection that blocks excessive current to a device.

If you connect a high-power device to a low-power hub on a Windows PC,
you’ll see a message informing you that the hub doesn’t have enough power
available. If the bus has a low-power device connected to a high-power port,
Windows recommends swapping the device with the high-power device (Figure
16-2).

A device can support both bus-powered and self-powered options, using self
power when available and bus power (possibly with limited abilities) otherwise. 

When a hub’s power supply is removed or turned off, the hub must remain in
the Configured state, transition its downstream ports to the Powered Off state,
and inform the host of the change via the hub’s Status Change endpoint. 

� ����%��� �5��5
USB devices with rechargeable batteries can often recharge the batteries by con-
necting to a USB host or hub or a dedicated charging unit. The USB 2.0 speci-
fication doesn’t define a way to draw charging currents greater than 500 mA or
use bus current to charge batteries that are too weak to enable a device to enu-
merate.
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The USB-IF’s Battery Charging Specification addresses these needs and defines
protocols for efficient and compliant charging of batteries in USB devices. The
specification defines requirements for USB hosts, hubs, and dedicated devices
that operate as USB chargers. A USB charger contains charger-detection cir-
cuits so a device can learn if it’s connected to a USB charger.

The description that follows is based on V1.0 of the battery-charging specifica-
tion. V2.0, in development at this writing, will likely define host protocols for
managing the charging process.

Figure 16-2. Windows warns users when they connect a high-power device to a 

low-power hub and helps them find an alternate connection.
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The specification defines three types of USB chargers:

• A host charger is a USB 2.0 host that can provide 500 mA to a port at any
time and that supports charger detection. A low- or full-speed device must
limit the current drawn from a host charger to 1.5A. A high-speed device
must limit the current drawn from a host charger to 900 mA. A device that
has connected to a host charger by pulling up D+ or D- can draw charging
current even if the host has placed the device in the Suspend state.

• A hub charger is a USB 2.0 hub that can provide 500 mA to a downstream
port for normal operation and supports charger detection. Devices that
connect to hub chargers can draw the same charging currents as permitted
for host chargers.

• A dedicated charger provides power from a USB connector but doesn’t enu-
merate the attached device. The charger must connect its D+ and D- lines
together via a 200Ω resistor and must limit the charging current to under
1.5A. The ability to use a USB connector is convenient for users and lowers
manufacturing cost because the device doesn’t need a vendor-specific con-
nector or cable for charging.
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After detecting the presence of VBUS, a device can determine whether it’s con-
nected to a USB charger by driving D+ to the VDAT_SRC voltage (0.5V–0.7V)
and detecting the voltage on D-. If D- is greater than VDAT_REF (0.4V), the
device is attached to a USB charger. 

A host or hub charger that detects a voltage between 0.4V and 0.8V on D+
drives D- to VDAT_SRC, which exceeds VDAT_REF. On a dedicated charger,
D+ and D- are connected together and thus both exceed VDAT_REF. Hosts and
hubs that don’t function as USB chargers pull D- to ground via a 15K resistor,
which brings D- below VDAT_REF. 
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A device attached to a USB charger can determine the charger type after pulling
up D+ (full speed) or D- (low speed) and detecting the voltage on the line not
pulled up:

To ensure valid voltages when connecting, a low-speed device must draw less
than 100mA when it pulls D- high. The specification provides timing require-
ments and other details for implementing charger detection.

��� �� �(����)�������


A dead-battery provision allows devices with dead or very weak batteries to
draw up to 100 mA from a host or hub until the batteries are charged to a weak
battery threshold. A device whose battery has charged to the weak battery
threshold is capable of powering up successfully and connecting to the bus by
pulling D+ or D- high. The device defines its weak-battery-threshold voltage.
The provision also allows the bus to power a device that normally operates on
battery power but has no batteries installed.

!�,�$�$	�
Power use on hubs has special considerations. A hub must control power to its
downstream devices and must monitor power consumption and take action
when devices use too much current and present a safety hazard.

$�$	�������	�
The root hub gets its power from the host. Other hubs are either self-powered
or bus-powered. 

If the host uses AC power from a wall socket or another external source, a USB
2.0 root hub must be capable of supplying 500 mA to each port on the hub. If
the host is battery-powered, the hub may supply either 500 or 100 mA to each
port. A hub that supplies 500 mA per port is a high-power hub, and a hub that
supplies 100 mA per port is a low-power hub.
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Full Pull D+ high D- is low Host or hub
D- is high Dedicated

Low Pull D- high D+ is low Host or hub
D+ is high Dedicated
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All of a bus-powered hub’s downstream devices must be low power. A USB 2.0
hub can draw no more than 500 mA and the hub itself will use some current,
leaving less than 500 mA for all attached devices combined. Thus you shouldn’t
connect two bus-powered hubs in series. The upstream hub can guarantee no
more than 100 mA to each downstream port, and that amount doesn’t leave
enough current to power a second hub that also has one or more downstream
ports that each require 100 mA. 

An exception is a bus-powered compound device, which consists of a hub and
one or more downstream, non-removable devices. In this case, the hub’s config-
uration descriptor can report the maximum power required by the hub’s elec-
tronics plus its non-removable device(s). The configuration descriptors for the
non-removable device(s) report that the devices are self-powered with bMax-
Power = 00h. The hub descriptor indicates whether a hub’s ports are removable.

Like other high-power, bus-powered devices, a USB 2.0 bus-powered hub can
draw up to 100 mA until configured and up to 500 mA after being configured.
During configuration, the hub must manage the available current so its devices
and the hub combined don’t exceed the allowed current.

Like other self-powered devices, a self-powered USB 2.0 hub may also draw up
to 100 mA from the bus so the hub interface can continue to function when the
hub’s power supply is off. If the hub’s power is from an external source such as
AC power from a wall socket, the hub is high power and must be capable of
supplying 500 mA to each port on the hub. If the hub uses battery power, the
hub may supply 100 or 500 mA to each port on the hub.

USB 3.0 raises the current limits. USB 3.0 hubs can provide up to 900 mA per
port if high power and 150 mA per port if low power. If the upstream port isn’t
connected, the hub doesn’t provide power to the downstream ports unless the
hub supports the USB battery charging specification.
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As a safety precaution, hubs must be able to detect an over-current condition,
which occurs when the current used by the total of all devices attached to the
hub exceeds a set value. On detecting an over-current condition, a hub’s port
circuits limit the current at the port, and the hub informs the host of the prob-
lem. Windows warns the user when a device exceeds the current limit of its hub
port (Figure 16-3).

The current that triggers the over-current actions must be less than 5A. To
allow for transient currents, the over-current value should be greater than the
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total of the maximum allowed currents for the devices. In the worst case, seven
high-power, bus-powered, USB 2.0 downstream devices can legally draw up to
3.5A. So a supply for a self-powered hub with up to seven downstream ports
would provide much less than 5A at all times unless something goes very
wrong. A hub can implement multiple over-current gangs.

A device can briefly draw a larger inrush current on attachment to the bus. The
over-current protection circuits typically don’t see the inrush current because a
capacitor downstream from the protection provides the stored energy. If the
inrush current is too large, the device will fail compliance tests.

Figure 16-3. When a device exceeds the current limit of its hub’s port, Windows 

warns the user and offers assistance.
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A bus-powered hub must support power switching that can provide and cut off
power to downstream ports in response to control requests. A single switch may
control all ports, or the ports may switch individually. A self-powered hub must
support switching its ports to the Powered Off state and may also support
power switching via control transfers.
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All USB devices must support the low-power Suspend state. Additional
low-power states enable conserving power with quicker transitions and less
stringent requirements than Suspend. With host support, USB 2.0 devices can
use the Sleep state. SuperSpeed devices can support the U1 and U2 low-power
states.

����!�6�+��:�&�*���4���5�����
The USB 2.0 Link Power Management (LPM) Addendum to the USB 2.0 speci-
fication defines four USB link power management states. SuperSpeed-capable
devices must support link power management when operating at high speed.
USB 2.0 devices may also support link power management. A link consists of a
cable segment and the two ports, or link partners, the cable connects. 

The addendum assigns names to conditions described in the USB 2.0 specifica-
tion and adds the new L1 (Sleep) state:

L0 (On). The link is carrying data or is able to do so. When not carrying data,
the link carries SOF (full and high speed) or keep-alive (low speed) signals.

L1 (Sleep). The link doesn’t carry data or SOF/keep-alive signals. The device
may reduce power consumption.

L2 (Suspend). The link doesn’t carry data or SOF/keep-alive signals. The
device must reduce power consumption. 

L3 (Off). The link is powered off, disconnected, or disabled and isn’t capable of
performing data signaling.

The USB 2.0 Phase-locked SOFs ECN to the USB 2.0 specification can help iso-
chronous devices save power. To comply with the ECN, SOFs issued on exiting
the Sleep or selective Suspend states must be in phase lock with the SOFs that
preceded the low-power state. Isochronous devices can thus enter a low-power
state and maintain synchronization to SOFs on returning to full power. 
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The Suspend state reduces a device’s use of bus power when the host doesn’t
need to communicate. A USB 2.0 device must enter the Suspend state when
the bus has had no activity for 3 ms.

While in the Suspend state, a device must draw no more than 2.5 mA from the
bus. A device that needs to function when the host has ceased communicating
may need to be self-powered. However, many device controllers can consume
very little power while remaining able to detect activity requiring attention on
an I/O pin and wake the host as needed.
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In a global suspend, a USB 2.0 host stops communicating with the entire bus,
which carries no traffic or SOFs. When a full-or high-speed device detects that
no SOF has arrived for 3 ms, the device enters the Suspend state. Low-speed
devices do the same when they haven’t received a low-speed keep-alive signal for
3 ms. A device must be in the Suspend state within 10 ms of no bus activity.

A host may also request a selective suspend of an individual port. The host
issues the class-specific Set Port Feature request to a hub with wIndex set to a
port number and wValue set to PORT_SUSPEND. The request instructs the
hub to stop sending any traffic, including SOFs or low-speed keep-alives, to the
specified port.

�"������,����
�+���#"
�������(�����


A device in the Suspend state should consume maximum of 2.5 mA of bus cur-
rent averaged over 1 s. The limit includes current through the pull-up on D+ or
D-.

The USB 2.0 specification defined a limit of just 500 µA for devices that don’t
support remote wakeup. However, the limit was difficult for many devices to
meet, and in 2008, the USB-IF raised the limit with the ECN Suspend Current
Limit Changes. USB 3.0 also uses the new limit.

Configured, bus-powered hubs and configured, bus-powered compound
devices can draw up to 12.5 mA when suspended. A bus-powered hub can thus
consume 2.5 mA while providing 2.5 mA for each of up to four downstream
ports.
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To resume communications on a suspended bus, a host places the bus in the
Resume state (the K state, defined in Chapter 18) for at least 20 ms. The host
follows the Resume with a low-speed EOP. The host then resumes sending
SOFs and any other communications. (For low-speed devices, the nearest hub
issues low-speed keep-alive signals instead of sending SOFs.) For selectively sus-
pended devices, a host can request a hub to resume communications on a
downstream-facing port by issuing a Clear Port Feature(PORT_SUSPEND)
request.

A device that wants to be able to request to resume communications indicates
support for remote wakeup in the configuration descriptor’s bmAttributes field.
T h e  h o s t  e n a b l e s  r e m o t e  w a k e u p  b y  s e n d i n g  a  Se t  Po r t  Fe a -
ture(DEVICE_REMOTE_WAKEUP) request to the hub port that is the
device’s link partner. A suspended device with remote wakeup enabled can
request to resume communications by driving the upstream bus segment in the
Resume state for 1–15 ms. The device then places its drivers in a high-imped-
ance state to enable receiving traffic from the upstream hub. The resume signal-
ing propagates upstream to the first non-suspended hub, which may be the root
hub. When the resume signaling has completed, the device again receives SOFs
or low-speed keep-alives and other traffic. A device may initiate a Resume any
time after the bus has been idle for at least 5 ms. The host must allow a device
at least 10 ms to recover from a Resume.

Some device controllers require firmware support to monitor the bus to deter-
mine when to enter the Suspend state, while other controllers handle the task
entirely in hardware. The device’s serial interface engine typically handles the
resume signaling without firmware support.

When a device uses bus power, firmware may need to control power to external
circuits, removing power on entering the Suspend state and restoring power on
resuming. A power switch with soft-start capability can limit current surges
when switching. Micrel Inc. has power-distribution switches suitable for use
with USB devices. Each switch contains one or more high-side MOSFET
switches with soft-start capability.

�������� ��
The L1 Sleep state provides a way for devices to reduce power consumption
without having to meet the Suspend state’s stringent requirements. The Sleep
state also enables faster transitions to and from the powered state. A major pur-
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pose in defining the Sleep state was to provide a more effective mechanism for
power conservation on mobile, battery-powered platforms.

In the Sleep state, a device receives no USB traffic including SOFs or keep-alive
signaling. The device can reduce power consumption but isn’t required to do so.

To place a device in the Sleep state, a host issues a Set_and_Test(PORT_L1)
request to the hub that is the device’s link partner. A hub that supports the
Sleep state then initiates an LPM transaction to the device by issuing a token
packet with an EXT Packet ID, followed by an extended token packet with an
LPM Packet ID (0011b). (Chapter 2 covered Packet IDs.) In the LPM token
packet, the bmAttributes field requests the Sleep state and provides information
used in resume signaling (Table 16-1).

A device that receives an EXT token packet followed by an LPM token packet
can return ACK (ready to transition to the Sleep state), NYET (not ready to
transition to the Sleep state), STALL (requested link state not supported), or no
response (the device doesn’t support the transaction type or detected an error).

The hub NAKs the Data stage of the Set_and_Test request as needed until the
downstream device returns ACK or STALL or fails to respond after three
attempts. The hub then returns a completion code in the Data stage of the
request.

To resume communications with a device in the Sleep state, a host issues a
Clear Port Feature(PORT_L1) request to the device’s link partner. The hub
then initiates resume signaling with the device. The signaling is identical to a
resume from Suspend except for timing. The HIRD value in the LPM token
packet indicates how long the hub will hold the line in the Resume state when
exiting Sleep. The encoded value can specify a range from 50 µs to 1.2 ms.

In the LPM token packet, if bRemoteWake = 1, the device can request to wake
the host by driving the line in the Resume state for 50 µs.

A host that doesn’t support the Sleep state will never request it. Devices that
don’t support the Sleep state can return STALL or no response to token packets
that contain the LPM Packet ID.

�����������&�*���4 � 5�����
SuperSpeed offers more ways to conserve power, including new low-power
states and latency tolerance messages that help the host manage power on the
bus and for the system.
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If you’re developing a device that must use as little power as possible, you might
choose to support SuperSpeed even if the application doesn’t require fast perfor-
mance. With SuperSpeed’s extremely fast data transfers and new low-power
states, some devices can save significant power by entering a low-power state
between transactions.
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SuperSpeed defines four operational link states:

• U0 is normal operation and is the highest link state. (Note that U0 has the 
lowest number but the highest power and thus is considered the highest 
link state.) This is the only state where the link can carry packets.

• U1 is a low-power state with fast transitions to U0. The state has no man-
dated reduction in bus current, but the link carries no signaling and the 
device can implement power-saving measures. 

• U2 is a more aggressive low-power state with slower transitions to U0. The 
state has no mandated reduction in bus current, but the link carries no sig-
naling, and the device can turn off clock circuits and implement other 
power-saving measures that require more time to transition to U0.

• U3 is the Suspend state and is the lowest link state. The link carries no sig-
naling, and a device whose port is in U3 can draw up to 2.5 mA of bus cur-
rent. A device in the Suspend state must detect Warm Reset (defined in 
Chapter 18) and wakeup signaling. A device that supports remote wakeup 
must be capable of sending wakeup signaling. 

In addition to the above states, which apply to links, a SuperSpeed device can
have one or more functions in the function suspend state while the link and
other function(s) in the device may remain in a higher-power state.

Table 16-1: In an LPM extended token packet, the bmAttributes field provides 

information about the requested Sleep state.
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10..9 Reserved For future use.
8 bRemoteWake 1  = the device can wake the host.

0 = the device cannot wake the host.
7..4 HIRD Host initiated resume duration (encoded value)
3..0 bLinkState 0001 = L1 (Sleep).

Other values reserved.



Chapter 16

404                                                                                                           

For each device, the host calculates U1 and U2 System Exit Latency values that
are a measure of the time required to transition from U1 or U2 to U0. For
devices with interrupt or isochronous endpoints, the host uses these values in
determining whether the device can initiate U1 or U2. If the corresponding
Latency value plus one bus interval is greater than the shortest service interval
on the device, the host doesn’t allow the device to initiate the low-power state.

A link that is in U0 and is not transmitting data or other packets is in the logi-
cal idle state and transmits encoded zeroes. A link in U1, U2, or U3 is in the
electrical idle state and carries no signaling.
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Link-level communications control the state of a link. The host doesn’t need to
know the state of every link on the bus. To conserve power, if a link has no
pending upstream traffic, a hub transitions its upstream port to the lowest link
state possible. In other words, if a hub’s downstream ports are in U1 and U2,
the hub can place its upstream port in U1. If all of the ports are in U2, the hub
can reduce power further by placing its upstream port in U2. Only a host can
request a transition to U3. When a host or hub wants to communicate with a
device, any links in the communication path that aren’t in U0 must transition
to U0.

The mechanism for changing a power state varies with the state, who initiated
the change, and whether the change applies to an entire link or a function in a
device. Hubs implement host-programmable inactivity timers for each down-
stream-facing port for use in determining when to enter U1 and U2. Isochro-
nous Timestamp packets don’t prevent a device from entering a low-power
state. To exit a low-power state, a link uses a hardware handshake implemented
via low-frequency periodic signaling (LFPS).

U1
A host, hub, or device can request a transition to U1. The host can send a
hub-specific Set Port Feature (PORT_LINK_STATE) request for a down-
stream-facing port on a hub. The hub then uses hardware-generated link com-
mands to implement the state  change on the l ink.  When a hub’s
downstream-facing port is in U0 and an inactivity timer detects no bus activity
on the port for the timer’s specified period, the hub uses link commands to
request to transition the link to U1. A device can use a device-specific policy in
deciding when to request U1 entry via link commands. In all cases, the link
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partner can refuse to change to the requested state for example, if the port will
soon have traffic to send or doesn’t support U1. 

When a host or device has a packet ready to transmit, a hardware handshake
initiates exit from U1 to U0. 

U2
When a link is in U1, if the downstream port supports U2 and the link part-
ners’ U2 inactivity timers time out, the link silently transitions to U2. When a
host or device has a packet ready to transmit, a hardware handshake initiates
exit from U2 to U0. 

U3
Unlike USB 2.0, SuperSpeed doesn’t support global suspends, where the host
places the entire bus in the Suspend state by ceasing to send timing markers.
SuperSpeed supports only selective suspend and function suspend.

In a selective suspend, a device enters the Suspend state on detecting that the
device’s link is in U3. Set Port Feature (PORT_LINK_STATE, U3) requests a
hub to place a downstream-facing port and its link in U3. The hub uses hard-
ware-generated link commands to implement the state change on the link. The
downstream device enters the Suspend state on detecting that the link is in U3.

To suspend the entire bus, the host must request each downstream port on the
bus to enter U3. When all of a hub’s downstream ports are in U3, a host places
the hub’s upstream link in U3. Only a host can request to place a link in U3,
and hubs must accept requests to place an enabled downstream port in U3.

To wake a device, the host sends a Set Port Feature (PORT_LINK_STATE,
U0) request to the downstream-facing hub port that is the device’s link partner.
The hub uses hardware-generated link commands to transition the link to U0.
On detecting that the link is in U0, the downstream device exits the Suspend
state. A device can initiate exit from U3 via low frequency periodic signaling as
described below under Function Suspend.  

Function Suspend
For finer power control, a USB 3.0 host can place an individual function in the
function suspend state while allowing other functions in the device (if any) to
continue to communicate on the bus. To suspend a function, the host issues a
Set Port Feature(FUNCTION_SUSPEND) request to an interface. In the high
byte of wIndex, bit 0 requests the suspend state or normal operation, and bit 1
enables or disables function remote wakeup.
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To resume communications with a suspended function, a host issues a Set Port
Feature(FUNCTION_SUSPEND) request for normal operation. Note that
exiting function suspend uses Set Port Feature rather than Clear Port Feature. If
the device’s link isn’t in U0, the downstream-facing hub port that is the device’s
link partner uses low frequency periodic signaling to initiate the transition to
U0. The hub then resumes communicating with the function. 

A function with remote wakeup enabled can request to wake by sending a
DEV_NOTIFICATION Transaction Packet with a Function Wake notifica-
tion. If the device’s link isn’t in U0, before sending the notification, the device
uses low frequency periodic signaling to transition the link to U0. The signaling
propagates upstream from the device until reaching a hub that isn’t in U3 and
then propagates back downstream to the device requesting the wakeup.

If the host places a device in the Suspend state when one or more functions are
suspended, the functions remain suspended when the device wakes. The host or
device must then initiate exiting function suspend for the individual func-
tion(s). Both composite and non-composite devices can use function suspend.

Informing the Host of Delays
Hubs help manage bus traffic by informing the host of delays due to a device’s
being in a low-power state. On receiving a header packet addressed to a port in
a low-power state, the hub sends a deferred header packet to the host, which
halts communication attempts with the device. When the target port has transi-
tioned to U0, the hub sends the header packet to the device with the Deferred
bit set in the Link Control Word. To inform the host that the device is ready to
communicate, the device sends an ERDY Transaction Packet.
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USB 3.0 hosts can save additional power by obtaining information about the
maximum delay each device can tolerate between sending an ERDY Transac-
tion Packet and receiving a response from the host. The host can use more
aggressive power management with devices that can handle long delays. The
pro toco l s  f o r  ob t a in ing  th i s  in fo rmat ion  inc lude  the  Se t  Fea -
ture(LTM_ENABLE) and Set SEL requests and DEV_NOTIFICATION
Transaction Packets with Latency Tolerance Message Device Notifications. The
SuperSpeed USB device capability descriptor indicates whether a device sup-
ports Latency Tolerance Message notifications.
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If a host initiates an isochronous transaction with a device in a low-power state,
the device might be unable to transition to U0 in time to send or receive data in
the scheduled service interval. To prevent this problem, the host uses PING and
PING_RESPONSE Transaction Packets. Before beginning the isochronous
transfer, the host sends a PING Transaction Packet, which causes all links
between the device and host to transition to U0. The device returns a
PING_RESPONSE Transaction Packet when the device is ready to transfer
data. The host must send the PING far enough in advance of a scheduled trans-
fer to enable the transfer to take place on time.

This use of PING is unrelated to the high-speed PING protocol described in
Chapter 2.

&�*���4 � 5������������7����*�
Recent PCs manage power according to the Advanced Configuration and Power
Interface Specification (ACPI). A system that implements ACPI power manage-
ment enables the operating system to conserve power by shutting down compo-
nents, including suspending the USB bus, when the computer is idle.

PCs support these low-power, or sleeping, states:

In the S1 state, the display is off and drives are powered down. USB buses
are suspended, but VBUS remains powered. 

In the S3 state, the PCI bus’s main power supply is off and memory isn’t
accessed, but system memory continues to be refreshed. USB buses are sus-
pended. In older systems, USB’s VBUS is not powered in the S3 state. In
newer systems, VBUS is powered by the PCI bus’s auxiliary supply (Vaux).

In the S4 state, the system context is saved to disk and the system, including
the USB bus, is powered off.

You can view and change a system’s power-management options in Control
Panel > Power Options. Under Windows Vista, you can specify when the sys-
tem enters S3, called sleep (Figure 16-4). The Advanced Settings tab includes
options to enable or disable selective suspend for USB devices under USB set-
tings and to select hibernation (S4) under Battery > Critical battery action.

Under Windows XP, the Power Schemes tab specifies when the system goes into
standby and hibernation. Standby is either S1 or S3. On a system that has no
USB devices that can wake the system, standby is S3. On a Windows XP sys-
tem that has a USB keyboard, mouse, or another USB device that can wake the
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system, the standby state is S1 due to problems in using S3 with some BIOSes
and device hardware. The problems include loss of VBUS in the S3 state, false
device removal and arrival notifications on resuming, resetting of devices during
suspend and resume, and failure to resume fully. 

For devices that have problems resuming from S3, a possible fix is to force the
host controller to reset on resuming by adding a ForceHCResetOnResume
value to the host controller’s registry key. This approach is imperfect because
some devices require a host-controller reset while others require no reset. To
avoid problems, device designers should take care that their products behave
properly whether the host controller resets or not.

To enable or disable remote wakeup capability for a specific device that sup-
ports remote wakeup, in Windows’ Device Manager, select the device,
right-click, select Properties > Power Management, and check or uncheck Allow
this device to bring the computer out of standby.

Figure 16-4. Windows Vista enables users to specify power-saving options that 

determine when USB devices enter the Suspend state.
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Besides the chip-specific development boards and debugging software described
in Chapter 6, a variety of other hardware and software tools can help with test-
ing and debugging USB devices and their host software. This chapter intro-
duces tools available from the USB-IF and other sources. I also explain what’s
involved in passing tests for the Certified USB logo and Windows logo.

����

Without a doubt the most useful tool for USB device developers is a protocol
analyzer, which enables monitoring USB traffic and other bus events. The ana-
lyzer collects data on the bus and decodes and displays the requested data. You
can watch what happened during enumeration, detect and examine protocol
and signaling errors, view data transferred during control, interrupt, bulk, and
isochronous transfers, and focus on specific aspects of a communication.

A hardware analyzer is a combination of hardware and software, while a soft-
ware analyzer consists only of software that runs on the device’s host computer.
The capabilities of the two types overlap, but each can also record and display
information that isn’t available to the other type.
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Another useful tool is a traffic generator, which emulates a host or device and
offers precise control over what goes out on the bus.

) ��* ���&��������$� �%>���
A hardware protocol analyzer is a piece of equipment that captures the signals
in a cable segment without affecting the traffic in the segment. The analyzer
connects in a cable segment upstream from the device under test (Figure 17-1).
To enable viewing the captured traffic, the analyzer connects to a PC or logic
analyzer. A connection to a PC may use USB or another port type such as
Ethernet. Instead of a PC interface, some protocol analyzers connect to logic
analyzers from Agilent or Tektronix.

With a hardware analyzer, you can see the data in the cable down to the indi-
vidual bytes that make up each packet. There’s no question about what the host
or device did or didn’t send. For example, if the host sends an IN token packet,
you can see whether the device returned data or a NAK. You can view the pack-

Figure 17-1. A hardware protocol analyzer monitors traffic between a device 

under test and the device’s host. An interface to a PC (or logic analyzer) 

enables viewing the captured data.
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ets in every stage of a control request. Time stamps enable you to see how often
the host accesses an endpoint.

Analyzers are available from a variety of vendors and in a range of prices,
including models that support SuperSpeed. If you develop only low- and
full-speed devices, an analyzer that supports only these speeds can save on cost.

In this chapter, I use the Ellisys USB Explorer 200 USB 2.0 analyzer to illus-
trate the kinds of things you can do with an analyzer. Vendors update and
improve their products, and new products become available, so check for the
latest information when you’re ready to buy.

/��.�������

The Explorer 200 requires two USB host controllers. One communicates with
the analyzer and the other controls the bus being monitored. Both host control-
lers can be in the same PC, but when analyzing high-bandwidth traffic, using
two PCs can prevent overflow errors.

One USB cable connects the Explorer to the PC running the Explorer’s Visual
USB Analysis software. The PC detects the Explorer as a USB device that uses a
vendor-specific driver provided by Ellisys.

Two additional USB cables connect the analyzer in a cable segment upstream
from the device being tested. One cable connects the analyzer to the device
being tested or a hub upstream from the device. The other cable connects the
analyzer to the host’s root hub or another hub upstream from the analyzer. The
combined length of the two cables should total 3 m or less. The cables must be
short because the host and device should detect no difference in the bus traffic
when the analyzer is present. The cables and the analyzer’s electronics together
emulate an ordinary cable segment of 5 m or less.

/��#�+�����

The Ellisys Visual USB Analysis Software enables you to start and stop data log-
ging and to save, view, and print the results. Figure 17-2 shows data captured by
an analyzer. You can specify the amount, type, and format of data the displayed.
For less detail, you can elect to hide individual packets, repeated NAKs, and
other information. You can specify criteria to display such as specific devices,
endpoints, speeds, status codes, and control requests.

A Details pane provides more information about a request, transaction, packet,
or other item in a row in the application’s main window (Figure 17-3). A Data
pane displays the individual bytes in hexadecimal and ASCII. You can also
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search for specific items, including events, token-packet types, traffic to and
from a specific device or endpoint, and data. 

Additional software modules add support for triggering on events, decoding
class-specific information, and exporting captured data in text, XML, and other
formats.

��"�* ���&��������$� �%>���
A software-only protocol analyzer runs on the host computer of the device
being tested. You can view traffic to and from any device that connects to any of
the computer’s host controllers.

A software analyzer can display driver information that a hardware analyzer
can’t access. As Chapter 8 explained, Windows drivers communicate with USB
devices using I/O Request Packets (IRPs) that contain USB Request Blocks
(URBs). A software analyzer can show the IRPs and URBs that a driver has sub-
mitted and the responses received from a device.

Figure 17-2. Ellisys’ USB Explorer 200 protocol analyzer includes Visual USB 

application software for viewing captured data. This example shows 

transactions and other events that occurred when a device was attached 



Testing and Debugging

                                                                                                413

Software analyzers don’t show anything that the host-controller or hub hard-
ware handles on its own. For example, the analyzer won’t show how many times
an endpoint NAKed a transaction before returning an ACK or the precise time
a transaction occurred on the bus.

Some software analyzers use a filter driver that loads when the operating system
loads the driver for the device being monitored. Because the filter driver doesn’t
load until the host has enumerated the device, the analyzer can’t show the enu-
meration requests and other events that occur at device attachment.

Sourcequest, Inc.’s SourceUSB is a software analyzer that records USB I/O
requests and other events, including enumeration requests. You can view the
requests along with additional information about the system’s host controllers,
the devices on the host controllers’ buses, and the drivers assigned to each host
controller and device. Figure 17-4 shows logged requests and additional infor-
mation about the request in the selected row.

The SourceUSB application can also display a tree of all of the system’s host
controllers and their attached devices and provide information about the drivers
assigned to each host controller and device. As with a hardware analyzer, you
have much flexibility in selecting what information you want to log and view.

Another software-only analyzer is the SnoopyPro project, free with source code
from www.sourceforge.net.

Figure 17-3. The Details pane in Ellisys’ Visual USB software has more 

information about a request, transaction, packet, or other event.
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Sometimes it’s useful to be able to control bus traffic and signaling beyond what
you can do from host software and device firmware. Some protocol analyzers
can also function as traffic generators that emulate a host or device and give you
precise control over the traffic that the emulated host or device places on the
bus. In addition to generating valid traffic, a traffic generator can introduce
errors such as bit-stuff and CRC errors. RPM Systems’ Root 2 USB Test Host
emulates a USB host and enables you to specify traffic to generate on the bus,
control the bus voltage, and measure bus current.

The USB-IF provides a free USB 2.0 Single Step Transaction Debugger tool that
enables initiating individual transactions with a high-speed device, including
sending standard control requests.

Figure 17-4. SourceUSB’s application shows USB I/O requests at a host 

computer. These requests are for mouse communications.
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The USB-IF and Microsoft offer testing opportunities for developers of USB
devices and host software. Passing the tests can earn a product the right to dis-
play a Certified USB logo and one or more Microsoft Windows logos, or both
types. A logo can give users confidence that a device will work as advertised. A
driver that passes Microsoft’s tests can receive a digital signature that enables the
driver to install without security warnings.

������ ��	
The USB-IF’s compliance program provides tests for peripherals, hubs, host
systems, On-The-Go devices, silicon building blocks, cable assemblies, and
connectors. On passing the tests, the USB-IF asserts that the product has “rea-
sonable measures of acceptability” and adds the product to its Integrators List of
compliant devices. On receiving a signed license agreement and fee payment,
the USB-IF authorizes the product to display a Certified USB logo. Even if you
don’t submit your device to formal compliance testing, you can use the tests to
verify your device’s performance.

To pass compliance testing, a device must meet the requirements specified in
the appropriate checklists and pass tests of the device’s responses to standard
control requests, operation under different host-controller types and with other
devices on the bus, and electrical performance. The USB 2.0 tests other than
high-speed electrical tests are described in Universal Serial Bus Implementers
Forum Full and Low Speed Electrical and Interoperability Compliance Test Proce-
dure. The specifications, procedures, and tools for high-speed electrical tests are
in additional documents and files on the USB-IF’s website. Also check the web-
site for news on USB 3.0 compliance tests.

You can submit a device for compliance testing at a compliance workshop spon-
sored by the USB-IF or at an independent lab authorized by the USB-IF. To
save time and expense, perform the tests as fully as possible on your own before
submitting a product for compliance testing

����	�
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The compliance checklists contain a series of questions about a product’s speci-
fications and behavior. There are checklists for peripherals, hubs, hub and
peripheral silicon, and host systems. The Peripheral checklist covers mechanical
design, device states and signals, operating voltages, and power consumption.
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Accompanying each question is a reference to a section in the USB specification
with more information.

(������*��������

The Device Framework tests verify that a device responds correctly to standard
control requests. The USB Command Verifier (USBCV) software utility per-
forms the tests. The USB Command Verifier Compliance Test Specification
describes the tests. The USBCV software and test-specification document are
available from the USB-IF’s website.

The USBCV software requires a PC with a USB 2.0 host controller. In addi-
tion, any low- or full-speed devices being tested must connect to the host via an
external USB 2.0 hub. When you run USBCV, the software replaces the
host-controller’s driver with its own test-stack driver. On exiting USBCV, the
software restores the original driver. 

The USB-IF recommends running the software only on hosts that are using
Microsoft’s USB drivers. You can run the tests while using a USB mouse and
keyboard, or you can use a PS/2 mouse and keyboard if the system supports
them. Before running USBCV, create a Windows restore point so you can
return to your previous system configuration if something goes wrong with the
stack switch.

The software has test suites for Chapter 9, Current Measurement, HID, Hub,
and OTG.

In the Chapter 9 tests, the host issues the standard control requests defined in
Chapter 9 of the USB 2.0 specification and performs additional checks on the
information returned by a device (Figure 17-5). For example, on retrieving a
device descriptor, the software checks to see that the bMaxPacketSize0 value is
valid for the device’s speed and that the bDeviceClass value is either a value for
a standard class or FFh (vendor-defined). The software requests the device
descriptor when the device is in the default, address, and configured states, at
both full and high speeds if the device supports both, and in every supported
configuration.

The Chapter 9 tests also include these:

• Enumerate the device multiple times with different addresses.

• Verify that all bulk and interrupt endpoints can be halted and unhalted
with Set Feature and Clear Feature requests.
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• Ensure that the device returns STALL in response to receiving a request for
an unsupported descriptor type.

• Ensure that the device returns STALL in response to receiving a Set Feature
request for an unsupported feature.

• Suspend and resume the device.

• If the device supports remote wakeup, suspend the device and request the
user to perform an action to wake the device.

Figure 17-5. USBCV’s Chapter 9 tests check the device’s responses to the 

control requests defined in Chapter 9 of the USB specification.
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The Current Measurement test suite pauses with the device in the unconfigured
and configured states to enable measuring the bus current. In the unconfigured
state, the device should draw no more than 100 mA. When configured, the
device should draw no more than the amount specified in the bMaxPower field
of the configuration descriptor for the currently active configuration.

Additional test suites provide tests for hubs, HID-class devices, and devices that
return On-The-Go descriptors.

The software has two modes. Compliance Test mode runs an entire test suite.
Debug mode enables selecting and running a single test within a suite and
offers more control, such as selecting a configuration to use when running a
test.
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The interoperability tests emulate a user’s experience by testing a product with
different host controllers and with a variety of other USB devices in use. The
device must be tested under both EHCI/UHCI and EHCI/OHCI hosts and
under hubs that do and don’t support high speed. To enable testing both imple-
mentations of the S3 Sleep state, the device must be tested under a host that
maintains VBUS and a host that removes VBUS on entering the S3 state.
Devices are tested under these conditions:

• The bus is carrying control, bulk, interrupt, and isochronous transfers.

• There are five external hubs between the device and host.

• The device is 30 m from the host (28 m for low-speed devices).

• The bus is carrying full- and high-speed traffic.

For performing the tests, the test specification defines a Gold Tree configura-
tion that contains a variety of hubs and other devices on the bus with the device
under test. The test specification revision 1.3 lists these devices in the Gold
Tree:

• Video camera: high speed, uses isochronous transfers, high power, bus pow-
ered.

• Mass storage device: high speed, uses bulk transfers, self powered.

• Flash media drive: high speed, uses bulk transfers, bus powered.

• Keyboard: low speed HID.

• Mouse: low speed HID.
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• Seven hubs, consisting of five hubs that support all three bus speeds includ-
ing one hub with multiple transaction translators and two hubs that sup-
port low and full speeds only.

The devices attach to the host in the configuration shown in Figure 17-6. Test
labs can provide Gold Tree configurations.

On attachment, the host must enumerate and install the driver for the device
(with user assistance to identify the driver’s location if appropriate). The device
must operate properly while the other devices in the Gold Tree are also operat-
ing. In addition, the device must continue to operate properly after each of
these actions:

• Detach the device and reattach it to the same port.

• Detach the device and attach it to a different port.

• Do a warm boot. (Start > Shutdown > Restart.)

• Do a cold boot. (Start > Shutdown > Shutdown. Turn on the PC.)

• When the device is active, place the system in the S1 Sleep state and
resume.

• When the device is idle, place the system in the S1 Sleep state and resume.

• When the device is active, place the system in the S3 Sleep state and
resume.

A high-speed device must also be fully functional at full speed unless the
USB-IF grants a waiver. The test specification has more details about the tests.
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A device can earn a USB Logo without passing every test. At its discretion, the
USB-IF may grant a waiver of a requirement. For example, before the specifica-
tion increased the limit for all devices, the USB-IF granted waivers to devices
that drew up to 2.5 mA in the Suspend state.
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A device that passes compliance testing is eligible to display the Certified USB
logo. The logo also indicates if a device supports SuperSpeed, high speed, Certi-
fied Wireless, and On-The-Go (Figure 17-7). To use the logo, you must sign
the USB-IF Trademark License Agreement. If you’re not a member of the
USB-IF, you must pay a logo administration fee ($2000 at this writing). The
logo is different from the USB icon described in Chapter 19.
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Figure 17-6. Compliance testing uses this Gold Tree configuration for testing 

how a device behaves in a system where other USB devices are in use.
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Figure 17-7. Devices that pass compliance testing can display a Certified USB 

logo. The logo indicates if the device supports high speed SuperSpeed, 

On-The-Go, or Wireless USB as appropriate. (Images courtesy of the USB 

Implementers Forum.)
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Microsoft licenses logos for display by qualifying products and their marketing
materials. To earn the right to display a logo, the manufacturer must submit test
logs that demonstrate that the product meets Microsoft’s standards for compat-
ibility, reliability, and security.

Benefits of a Windows logo include increased customer confidence in the prod-
uct, the ability to distribute drivers via Windows Update, listing the product on
Microsoft’s Windows Marketplace, and inclusion in the Windows Logo'd Prod-
ucts List and Windows Server Catalog.
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To qualify for a Windows logo, a USB device must pass a series of tests based on
the USBCV tests from USB-IF. Other tests deal with device installation and for
vendor-provided drivers, driver reliability. Devices such as printer, keyboard,
and storage device have function-specific tests.

Each Windows family (such as Windows Vista, Windows XP, Windows Server
2008) has its own logo. Recent Windows editions support two logo versions.
For example, under Windows Vista, products that meet baseline requirements
can earn the Works with Windows Vista logo, while products that meet more rig-
orous requirements for ease of use, performance, and security can earn the Cer-
tified for Windows Vista logo.

Standard device functions each have a logo program with function-specific
requirements. Devices that don’t fit a category with a logo program can’t display
a Windows logo, but the manufacturer can submit the driver to Microsoft’s
Unclassified Signature program to obtain a digital signature. A submitted driver
must pass tests on both 32-bit and 64-bit Windows editions.

The Windows Logo Kit (WLK) is a set of tools that developers can use to test
devices and drivers on Windows. The kit is a free download from Microsoft.

Obtaining a license to display a Windows logo requires following these steps:

1. Download the WDK and WLK from Microsoft.

2. Obtain a code-signing ID and set up an organizational account with
Microsoft’s Windows Quality Online Services (Winqual) program. One form
of code-signing ID is a Microsoft Authenticode Code Signing Digital ID. This
ID is a digital certificate that a manufacturer can also use to sign driver files as
described later in this chapter. A lower cost option is a VeriSign Organizational
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Certificate, which enables opening a Winqual account but isn’t valid for use
with hardware products or for driver signing.

3. Use the Driver Test Manager (DTM) software in the WLK to perform the
required tests and generate a submission package with test results. The product
manufacturer must perform all tests either in house or by contracting with a
test lab. You don’t send the product to Microsoft.

4. When the product has passed the required tests, submit the package created
by the DTM to Winqual. Winqual also requires a product name and a signed
logo license agreement. On receiving approval, the product and its marketing
materials are licensed to display the logo(s) applied for.

At this writing, the fee to set up a Winqual account is $250, and the fee to sub-
mit a product for logo licensing is $250. Each Windows family requires a sepa-
rate submission fee. These fees are in addition to the fee to obtain a
code-signing ID.
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A digital signature for a driver enables Windows to verify that the driver files
haven’t been modified since the driver was signed and to identify the source, or
publisher, of the driver. The digital signature is a data set contained in a catalog
(.cat) file associated with the driver or embedded in the driver itself. 

Microsoft or another certification authority (CA) issues a digital signature when
a driver passes WHQL testing. For drivers that haven’t passed WHQL testing, a
vendor with an Authenticode Code Signing Digital ID can sign a driver using
Microsoft’s free SignTool utility.

A device’s INF file can name a catalog file. Each INF file has its own catalog
file, and one INF file can support multiple devices. Any change in an INF file,
including adding a new Product ID or device release number, requires obtain-
ing a new digital signature.

Recent Windows editions store information relating to digital signatures in two
databases called certificate stores. The Trusted Publishers certificate store con-
tains information about the Authenticode certificates of publishers whose driv-
ers are trusted. Users with administrative access can add publishers to this store.
The Trusted Root Certification Authorities certificate store contains informa-
tion about CAs that have met Microsoft’s requirements. Users with administra-
tive access can add private CAs to this store.
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Whether a driver installs on a system depends on the Windows edition, the sys-
tem’s security settings, whether the person installing the driver has administra-
tive access, and whether the driver is signed. If the driver is signed, successful
installation can depend on the source of the signature, whether the driver pub-
lisher’s certificate is in the system’s Trusted Publishers certificate store, and
whether the CA that issued the publisher's certificate is in the Trusted Root
Certification Authorities certificate store.

The 64-bit Windows editions require signed drivers. The 32-bit Windows edi-
tions will install unsigned drivers but may display warnings depending on sys-
tem settings. Under Windows Vista, only users with administrative access can
install unsigned drivers.

A driver signed by the Windows logo program installs without triggering secu-
rity warnings. For other signed drivers, a dialog box with a security warning
may appear if the driver publisher’s certificate isn’t in the computer’s Trusted
Publishers certificate store. In the dialog box, selecting the option to always
trust software from the publisher adds that publisher to the system’s Trusted
Publishers certificate store.  
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Understanding how data is encoded on the bus can help in understanding the
capabilities and limits of devices. This chapter presents the essentials of the
USB’s encoding and data formats for USB 2.0 and SuperSpeed.

��	�/01
The USB 2.0 specification defines bus states that correspond to signal voltages
on the bus or conditions that the voltages signify. Different cable segments may
be in different bus states. For example, in response to a request from the host, a
hub might place one of its downstream ports in the Reset state while its other
ports are in the Idle state. Low/full speed and high speed each have different
defined bus states, though with many similarities.

+�*�������	��������������	�
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Low and full speed support the same bus states, though some are defined differ-
ently depending on the speed of the cable segment. A low-speed segment is a
segment between a low-speed device and its nearest hub. A full-speed segment
is any other segment that carries data at low- or full-speed bit rates.
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When transferring data, the two states on the bus are Differential 0 and Differ-
ential 1. A Differential 0 exists when D+ is a logic low and D- is a logic high. A
Differential 1 exists when D+ is a logic high and D- is a logic low. Chapter 19
has details about the voltages.

The Differential 0/1s don’t translate directly into zero and one data states but
instead indicate either a change in logic level, no change in logic level, or a bit
stuff, as explained later in this chapter.
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The Single-ended 0 (SE0) state occurs when both D+ and D- are logic low. The
bus uses the SE0 state when entering the EOP, Disconnect, and Reset states.
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The complement of SE0 is the Single-ended 1 (SE1). This state occurs when
both D+ and D- are logic high. This is an invalid bus state and should never
occur except as specified in the USB battery-charging specification.
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In addition to the Differential 0 and Differential 1 states, which are defined by
voltages on the lines, USB also defines two Data bus states, J and K. These are
defined by whether the bus state is Differential 0 or Differential 1 and the speed
of the cable segment:

Defining the J and K states in this way makes it possible to use one terminology
to describe an event or logic state even though the voltages on low- and
full-speed lines differ. For example, a Start-of-Packet state exists when the bus
changes from Idle to the K state. On a full-speed segment, the state occurs
when D- becomes more positive than D+, while on a low-speed segment, the
state occurs when D+ becomes more positive than D-.
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Differential 0 Data J Data K
Differential 1 Data K Data J



Packets on the Bus

                                                                                                427

��	�

In the Idle state, no drivers are active. On a full-speed segment, D+ is more pos-
itive than D-, while on a low-speed segment, D- is more positive than D+.
Shortly after device attachment, a hub determines whether a device is low or
full speed by checking the voltages on the Idle bus at the device’s port.
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When a device is in the Suspend state, a Data K state at the device’s port signi-
fies a resume from Suspend.
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The Start-of-Packet (SOP) bus state exists when the lines change from the Idle
state to the K data state. Every transmitted low- or full-speed packet begins with
an SOP.
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The End-of-Packet (EOP) state exists when a receiver has been in the SE0 state
for at least one bit time followed by a Data J state for at least one bit time. A
receiver may optionally accept a shorter minimum time for the Data J state. At
the driver, an SE0 is approximately two bit widths. Every transmitted low- or
full-speed packet ends with an EOP.
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A downstream port is in the Disconnect state when an SE0 has persisted for at
least 2.5 µs.
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A downstream port enters the Connect state when the bus has been in the Idle
state for at least 2.5 µs and no more than 2.0 ms.
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When an SE0 has lasted for 10 ms, the device must be in the Reset state. A
device may enter the Reset state after an SE0 of at least 2.5 µs. A full-speed
device that is capable of high-speed communications performs the high-speed
handshake during the Reset state.
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On exiting the Reset state, a device must be operating at its correct speed and
must respond to communications directed to the default address (00h).

)�5�������������� ���
Many of the high-speed bus states correspond to states for low and full speed,
but a few are unique to high speed, and some low/full-speed states have no
equivalents at high speed.

.� 2
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The two bus states that exist when transferring high-speed data are High-speed
Differential 0 and High-speed Differential 1. As with low and full speeds, a
High-speed Differential 0 exists when D+ is a logic low and D- is a logic high,
and a High-speed Differential 1 exists when D+ is a logic high and D- is a logic
low. The voltage requirements differ at high speed, however, and high speed has
additional requirements for AC differential levels.
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The definitions for High-speed Data J and Data K states are identical to those
for full-speed J and K.

����������������0

The Chirp J and Chirp K bus states are present only during the high-speed
detection handshake. The handshake occurs when a USB 2.0 hub has placed a
downstream bus segment in the Reset state. In a Chirp J, D+ is more positive
than D-, and in a Chirp K, D- is more positive than D+.

A high-speed device must use full speed on attaching to the bus. The
high-speed detection handshake enables a high-speed device to tell a USB 2.0
hub that the device supports high speed and to transition to high-speed com-
munications.

As Chapter 4 explained, shortly after detecting device attachment, a device’s
hub places a device’s port and bus segment in the Reset state. When a
high-speed-capable device detects the Reset, the device places its line in the

%�������� ����������������������!

Differential 0 High-speed Data K
Differential 1 High-speed Data J



Packets on the Bus

                                                                                                429

Chirp K state for 1–7 ms. A hub that communicates upstream at high speed
detects the Chirp K and in response, sends an alternating sequence of Chirp K
and Chirp J. The sequence continues until shortly before the Reset state ends.
On detecting the Chirp K and Chirp J sequence, the device disconnects its
full-speed pull-up, enables its high-speed terminations, and enters the Default
state. A hub that communicates upstream at low/full speed ignores the device’s
Chirp K. The device doesn’t see the answering sequence and knows that com-
munications must take place at full speed.
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The High-speed Squelch state indicates an invalid signal. High-speed receivers
must include circuits that detect the Squelch state, indicated by a differential
bus voltage of 100 mV or less.

.� 2
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In the High-speed Idle state, no high-speed drivers are active and the
low/full-speed drivers assert SE0. Both D+ and D- are between -10 and +10
mV.

#������+�.� 2
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A Start-of-High-speed Packet (HSSOP) exists when a segment changes from
the High-speed Idle state to the High-speed Data K state. Every high-speed
packet begins with a Start of High-speed Packet.
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An End of High-speed Packet (HSEOP) exists when the bus changes from the
High-speed Data K or Data J state to the High-speed Idle state. Every
high-speed packet ends with an End of High-speed Packet.

.� 2
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Removing a high-speed device from the bus also removes the high-speed line
terminations at the device. Removing the terminations causes the differential
voltage at the hub’s port to double. A differential voltage of at least 625 mV on
the data lines indicates the High-speed Disconnect state. A USB 2.0 hub con-
tains circuits that detect this voltage.
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All data on a USB 2.0 bus is encoded using a format called non-return to zero
inverted (NRZI) with bit stuffing. The encoding ensures that the receiver
remains synchronized with the transmitter without the overhead of sending a
separate clock signal or Start and Stop bits with each byte.

If you use an oscilloscope or logic analyzer to view USB data on the bus, you’ll
find that reading the bits isn’t as easy as matching voltage levels to logic levels.
Instead of defining logic zeroes and ones as voltages, NRZI encoding defines
logic zero as a voltage change, and logic one as a voltage that remains the same.
Figure 18-1 shows an example. Each logic zero results in a change from the pre-
vious state. Each logic one results in no change in the voltages. The bits trans-
mit least-significant-bit first.

Fortunately, USB hardware performs the encoding and decoding automatically
so device developers and programmers don’t have to do it. The encoded data is
harder to interpret on an oscilloscope or logic analyzer, but as Chapter 17
showed, a protocol analyzer will decode the data for you.

Figure 18-1. In NRZI encoding, a 0 causes a change and a 1 causes no change. 

Bit stuffing adds a 0 after six consecutive 1s.
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Unlike other interfaces, USB requires no Start and Stop bits or clock line in the
cable. Instead, USB 2.0 synchronizes the sender and receiver by using bit stuff-
ing and SYNC fields. Each of these adds some overhead, but the amount is
minimal, especially with large packets.

)���#�"++�� 

The encoding uses bit stuffing because the receiver synchronizes on transitions.
Data that is all zeroes has plenty of transitions. But for data that contains a long
string of 1s, the lack of transitions could cause the receiver to get out of sync.

After six consecutive 1s, the transmitter stuffs, or inserts, a zero (represented by
a transition). The bit stuffing ensures at least one transition for every seven bit
widths. The receiver detects and discards any bit that follows six consecutive 1s.
The overhead for bit-stuffing in random data is just 0.8%, or one stuff bit per
125 data bits.

#1���*��	�

Because devices and the host don’t share a clock, the receiver has no way of
knowing exactly when a transmitter will send a transition that marks the begin-
ning of a new packet. Thus, each packet begins with a SYNC field to enable the
receiving device to align, or synchronize, its clock to the transmitted data. For
low and full speeds, the SYNC pattern is eight bits: KJKJKJKK. The transition
from Idle to the first K serves as a sort of Start bit that indicates the arrival of a
new packet.

For high speed, the SYNC pattern is 32 bits: fifteen KJ repetitions, followed by
KK. A high-speed hub repeating a packet can drop up to four bits from the
beginning of the sync field, so a SYNC field repeated by the fifth external hub
in series can be as short as 12 bits.

The alternating Ks and Js provide transitions for synchronizing, and the final
two Ks mark the end of the field. After receiving the SYNC pattern, the receiv-
ing device can accurately clock in the remaining bits in the packet. The price
for synchronizing is adding 8 to 32 bit times to each packet. Large packets are
thus much more efficient than smaller ones.
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An EOP returns the bus to the Idle state in preparation for the next SYNC
field. The EOP signal is different for low/full and high speed.

The low- or full-speed EOP is an SE0 that lasts for two bit widths.

At high speed, the signal is more complicated. High-speed receivers treat any
bit-stuff error as an end of packet, so an HSEOP must cause a bit-stuff error.

For all high-speed packets except SOFs, the HSEOP is an encoded byte of
01111111 without bit stuffing. If the preceding bit was a J, the HSEOP is
KKKKKKKK. The initial zero causes the first bit to be a change of state from J
to K, and the following 1s mean that the rest of the bits don’t change. If the pre-
ceding bit was a K, the HSEOP is JJJJJJJJ. The initial zero causes the first bit to
be a change of state from K to J, and the following 1s mean that the rest of the
bits don’t change. In either case, the sequence of seven 1s causes a bit stuff error.

In high-speed SOFs, the HSEOP is 40 bits. This longer packet allows a hub
time to detect the doubled differential voltage that indicates that a device has
been removed from the bus. The encoded byte begins with a zero, followed by
39 ones, which results in an HSEOP consisting of 40 Js or 40 Ks. As with low
and full speeds, this sequence results in a bit-stuff error that the receiver treats as
an EOP.

�����5�$���� �%
One tradeoff of increased speed is stricter timing requirements. High speed has
the strictest timing, while low speed is the most tolerant. These are the toler-
ances for the clock at each speed:

Devices typically derive their timing from a crystal. Many factors can affect a
crystal’s frequency, including initial accuracy, capacitive loading, aging of the
crystal, supply voltage, and temperature. Because of its wider tolerance, low
speed can use inexpensive ceramic resonators instead of quartz crystals

The signaling rate at a host or USB 2.0 hub must be within 0.05%, of the spec-
ified rate at all speeds. The frame intervals must be accurate as well, at 1 ms
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Low 1.5%
Full 0.25%
High 0.05%
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±500 ns per frame or 125.0 ±62.5 µs per microframe. Each hub has its own
timing source and synchronizes its transmissions to the host’s SOF signals in
each frame or microframe.

The USB specification also defines limits for data jitter, which is small varia-
tions in the timing of the individual bit transitions. Factors that affect data jitter
are differences in the rise and fall times of the drivers, clock jitter, and random
noise.

& �:������� �
As Chapter 2 explained, all USB 2.0 data travels in packets, which contain
information in defined fields. Table 18-1 lists the fields that USB 2.0 packets
contain and their purposes.

#1��

Each packet begins with an 8-bit SYNC field, as described earlier. The SYNC
Field serves as the Start-of-Packet delimiter.

%������������+���

The packet identifier field (PID) is 8 bits. Bits 3..0 identify the packet type and
bits 7..4 are the complement of these bits for use in error checking.

Chapter 2 introduced the PID codes for token, data, handshake and special
packets. The lower two bits identify the PID type, and the upper two bits iden-
tify the specific PID.

�����



The address field is seven bits that identify the device the host is communicat-
ing with.

��������

The endpoint field is four bits that identify an endpoint number within a
device.
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The frame-number field is eleven bits that identify the frame. The host sends
this data in the SOF packet that begins each frame or microframe. After 7FFh,
the number rolls over to zero. A full-speed host maintains an 11-bit counter
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that increments once per frame. A high-speed host maintains a 14-bit counter
that increments once per microframe. Only bits 3–13 of the microframe
counter transmit in the frame number field, so the frame number increments
once per frame, with eight microframes in sequence having the same frame
number.

(���

The Data field may range from zero to 1024 bytes, depending on the transfer
type, the bus speed, and the amount of data in the transaction.

�$�

The CRC field is 5 bits for address and endpoint fields and 16 bits for data
fields. The transmitting hardware normally inserts the CRC bits and the receiv-
ing hardware does the required error checking.

�����9& �:������ %
USB 2.0 carries data from multiple sources, in both directions, on one pair of
wires. Data can travel in just one direction at a time. To ensure that the previ-
ous transmitting device has had time to switch off its driver, the bus requires a
brief delay between the end of one packet and the beginning of the next packet
in a transaction. This delay is short, however, and devices must switch direc-
tions quickly.

Table 18-1: USB 2.0 packets contain fields with defined contents.
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SYNC 8 all Start of packet and 
synchronization

PID 8 all Identify the packet type
Address 7 IN, OUT, Setup Identify the function address
Endpoint 4 IN, OUT, Setup Identify the endpoint
Frame Number 11 SOF Identify the frame
Data 0 to 8192 (1024 bytes) 

for USB 2.0;
0 to 8184 (1023 bytes) 
for USB 1.x

Data0, Data1 Data

Token CRC 5 IN, OUT, Setup Detect errors
Data CRC 16 Data0, Data1 Detect errors
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The USB specification defines the delays differently for low/full and high
speed. The delays are handled by hardware and require no support in code.

�����4����
For use in compliance testing, the USB 2.0 specification adds five new test
modes that all host controllers, hubs, and high-speed-capable devices must sup-
port.

An upstream-facing port enters a test mode in response to a Set Feature request
with TEST_MODE in the wValue field. A downstream-facing port enters a
test mode in response to the hub-class request Set Port Feature with
PORT_TEST in the wValue field. In both cases, the wIndex field contains the
port number and the test number. All downstream ports on a hub with a port
to be tested must be in the suspended, disabled, or disconnected state.

An upstream-facing port exits the test mode when the device powers down and
back up. A downstream-facing port exits the test mode when the hub is reset.

These are the five test modes:

/�
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Value. 01h.

Action. The transceiver enters and remains in the High-speed Data J state.

Purpose. Test the high output drive level on D+.

/�
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Value. 02h.

Action. The transceiver enters and remains in the High-speed Data K state.

Purpose. Test the high output drive level on D-.

/�
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Value. 03h.

Action. The transceiver enters and remains in high-speed receive mode.
Upstream-facing ports respond to IN token packets with NAK.

Purpose. Test output impedance, low-level output voltage, and loading charac-
teristics. Test device squelch-level circuits. Provide a stimulus-response test for
basic functional testing.
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Value. 04h.

Action. Repetitively transmit the test packet defined by the USB specification.

Purpose. Test rise and fall times, eye pattern, jitter, and other dynamic wave-
form specifications.

/�
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Value. 05h.

Action. Enable downstream-facing hub ports in high-speed mode. Packets
arriving at the upstream-facing port are repeated at the port being tested. The
disconnect-detect bit can be polled while varying the loading on the port.

Purpose. Measure the disconnect-detection threshold.

'����&�	"�


Test-mode values 06h through 3Fh are reserved for future standard tests. Values
C0–FFh are available for vendor-defined tests. All other values are reserved.

���	���		�
SuperSpeed’s fast, dual-simplex interface and new power-management capabili-
ties require different encoding, packet formats, and low-level protocols. A
SuperSpeed transmitter scrambles and encodes data to be sent on the bus. A
SuperSpeed receiver decodes and de-scrambles the received data.

� � ���� �,���5
Data scrambling eliminates repetitive patterns in the data. Doing so spreads the
radiated EMI over a wider frequency spectrum and helps in meeting FCC
requirements. To scramble data to be transmitted, a free-running linear feed-
back shift register implements a polynomial defined in the USB 3.0 specifica-
tion. The transmitter XORs the output of the shift register with the data bits.
Descrambling uses a complementary mechanism to recover the unscrambled
data.

�������5
SuperSpeed uses 8b/10b data encoding as specified in ANSI INCITS
230-1994. Other interfaces that use this encoding include PCI Express, Gigabit
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Ethernet and IEEE-1394b. The encoding converts each byte value to a 10-bit
Data Symbol for transmitting. The encoded data has no more than five ones or
zeroes in series and contains equal numbers of ones and zeroes over time. As
with USB 2.0 data, frequent transitions enable the receiver to synchronize with
the transmitted data without requiring a separate clock line. The roughly equal
numbers of transmitted ones and zeroes provide DC balance, which prevents
errors that could occur due to a DC component in the signal. The encoding
also enables error detecting by monitoring the number of received ones and
zeroes over time.

Because the encoded data has more bits than the data being encoded, extra
symbols are available to perform special functions. Data Symbols represent val-
ues from 00h to FFh and Special Symbols perform functions used in framing
data and managing link-level communications.

The SuperSpeed signaling rate, or speed of the bits on the wires in each direc-
tion, is 5 Gbps. The USB 3.0 specification refers to the rate as 5 GT/s
(GigaTransfers per second). The 8b/10b encoding increases the number of bits
to be transmitted by 25%, so 5 Gbps on the bus translates to 4 Gbps, or 500
MB/s, of unencoded data. Framing, error detecting, and other protocols reduce
the theoretical maximum data throughput to around 400 MB/s in each direc-
tion.

SuperSpeed links use low-frequency periodic signaling (LFPS) for exiting
low-power states and performing Warm Resets. The signaling consists of bursts
of a frequency for a specified time and repeat rate. The LFPS frequency is in the
range 10–50 MHz, is easy to generate, and uses little power.

+��:�+ %��
A SuperSpeed link is the physical and logical connection between two ports.
The physical connection consists of a cable segment and the two ports, or link
partners, the cable connects. The link partners manage the link by communi-
cating via link commands and other signaling on the link when the wires aren’t
carrying other traffic. Each port provides state machines and buffers to manage
the connection and data transfers with the link partner. State machines generate
link commands to acknowledge received header packets, recover from errors,
implement flow control, and manage power on the link. An upstream-facing
port must detect when its link has been idle for 10 µs and send a special link
command to indicate that the port is present. Link commands transmit when
the link isn’t carrying Transaction Packets. Downstream-facing ports detect
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device connection and removal and wakeup signaling. Link-layer protocols
define how the link manages buffers, frames packets, and detects received pack-
ets. The link layer also handles training and synchronizing to establish connec-
tivity between a device (which may be a hub) and its upstream link partner. To
synchronize, a link partner transmits defined series of bytes called Ordered Sets,
which the receiving link partner detects.

.����
SuperSpeed defines two major categories of reset. A PowerOn Reset restores
memory, registers, and other storage in the device to their default power-on
states. An InBand Reset resets port settings and places the link in the U0 state
while remaining powered. Two types of InBand Reset are the Warm Reset and
Hot Reset. A Warm Reset uses low frequency periodic signaling and takes
around 100 ms. A Hot Reset uses link-level training sequences of Ordered Sets,
is much faster, and leaves more settings unchanged in the device.

The host requests an in InBand reset by issuing a hub-class Set Port Fea-
ture(Port_Reset) or SetPortFeature(BH_Port_Reset) request to the hub that is
the target device’s link partner. On receiving a request for a BH_Port_Reset, the
hub issues a Warm Reset to the device. On receiving a request for a Port_Reset,
if the link is in U3, the hub uses a Warm Reset, and if the link is in U0, the hub
uses a Hot Reset. For other states, the USB 3.0 specification defines how a hub
decides which reset to use.       
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All of the protocols and program code in the world are no use if the signals
don’t make it down the wires in good shape. The electrical and mechanical
interface play an important part in making USB a reliable way to transfer infor-
mation.

If you’re using USB-compliant cables and components, you don’t need to know
much about the electrical and mechanical interface. If you’re designing
printed-circuit boards with USB interfaces, you should understand the inter-
faces and how they affect your project’s circuits.

This chapter presents the essentials about drivers and receivers and options for
cables and connectors for USB 2.0 and USB 3.0. Those who want to go cable
free will find a discussion of wireless options.

����/01���	����� ���
The electrical signals on a USB 2.0 cable vary depending on the speed of the
cable segment. Low-, full-, and high-speed signaling each use a different edge
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rate, which is a measure of the rise and fall times of the voltages on the lines and
thus the amount of time required for an output to switch. The transceivers and
supporting circuits that produce and detect the bus signals also vary depending
on speed.

At any USB 2.0 speed, a transceiver must withstand the shorting of D+, D-, or
both to GND, the other data line, or the cable shield at the connector. A
requirement to withstand shorting to VBUS was reduced to a recommendation
with the 5V Short Circuit Withstand Requirement Change ECN to the USB 2.0
specification. Research showed that shorts to VBUS are extremely unlikely and
that removing the requirement would allow reduced silicon area and power sav-
ings on chips. 
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A cable segment connects a device (which may be a hub) to an upstream hub
(which may be the root hub at the host). A segment’s speed depends on the
speed of the end device and the speeds supported by the host and upstream
hubs. Figure 19-1 illustrates.

Low-speed segments exist only between low-speed devices and the hubs the
devices’ cables connect to. A low-speed segment carries only low-speed data and
uses low-speed’s edge rate and an inverted polarity compared to full speed.

A full-speed segment exists when the segment’s downstream device communi-
cates at full speed. When the downstream device is a hub, the segment may also
carry data to and from low-speed devices that are downstream from the hub. In
this situation, the low-speed data on the full-speed segment uses low-speed’s bit
rate but full speed’s polarity and edge rate. The hub that connects to the
low-speed device converts between low and full speed’s polarity and edge rates.
Full-speed segments never carry data at high speed. A high-speed-capable device
that connects to a USB 1.x hub communicates at full speed.

High-speed segments exist when the host is USB 2.0 and all upstream hubs
between the host and hub are USB 2.0. When the downstream device is a hub,
the segment may also carry data to and from low- and full-speed devices that
are downstream from the hub. All data in a high-speed segment travels at high
speed, and the transaction translator in a downstream hub converts between
low or full speed and high speed as needed.

On attachment, all USB 2.0 devices must communicate at low or full speed.
When possible, a high-speed-capable device transitions from full to high speed
shortly after the device is attached, during the high-speed detection handshake.
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Transceivers for low and full speeds can have a simpler design compared to
transceivers for high speed.
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Low-speed data differs electrically from full-speed data in three ways. The bit
rate is slower, at 1.5 Mbps compared to 12 Mbps for full speed. The polarity of
low-speed traffic is inverted compared to full speed. And low speed has a slower

Figure 19-1. The speed of data in a segment depends on the capabilities of the 

device and its upstream hub.
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edge rate compared to full speed. Figure 19-2 illustrates. The slower edge rate
reduces reflected voltages on the line and makes it possible to use cables that
have less shielding and are thus cheaper to make and physically more flexible.

The transceiver’s hardware doesn’t care about the signal polarity. The transceiver
just retransmits the logic levels at its inputs. A driver that supports both speeds,
such as a driver for a hub’s downstream port, must switch between the two edge
rates as needed.
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Figure 19-3 shows port circuits and cable segments for low- and full-speed
communications. Each transceiver contains a differential driver and receiver for
sending and receiving data on the bus’s twisted pair. 

When transmitting data, the driver has two outputs that are 180 degrees out of
phase: when one output is high, the other is low. A single driver can support
both low and full speeds with an input that selects the edge rate.

The differential receiver detects the voltage difference between the lines. A dif-
ferential receiver has two inputs and defines logic levels in terms of the voltage
difference between the inputs. The output of the differential receiver is also
specified as a logic-high or logic-low voltage referenced to ground.

Each port has two single-ended receivers that detect the voltages on D+ and D-
with reference to signal ground. The logic states of the receivers’ outputs indi-
cate whether the bus is low or full speed or whether the bus is in the SE0 state.

Figure 19-2. a USB 1.x hub converts between low- and full-speed’s polarities and 

edge rates. (Not drawn to scale.)
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Figure 19-3. The downstream-facing ports on a USB 1.x hub must support both 

low and full speeds (except for ports with embedded or permanently attached 

devices). A device’s upstream-facing port supports one speed. (Adapted from 

Universal Serial Bus Specification Revision 2.0.)
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The drivers’ output impedances plus a 36Ω series resistor at each driver’s output
act as source terminations that reduce reflected voltages when the outputs
switch. The series resistors may be on-chip or external to the chip. 
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The pull-up resistor on D+ or D- at a device’s upstream-facing port enables the
hub to detect the device’s speed. The hub’s downstream-facing port has
pull-down resistors on D+ and D-. 

On devices with detachable cables, the pull-up resistors must connect to a posi-
tive voltage of 3.0–3.6V. Devices with captive cables can instead use an alterna-
tive means of termination, including connecting directly to VBUS. In selecting
an alternatives means of termination, the designer must ensure that all signal
levels meet the USB 2.0 requirements.

The USB 2.0 Engineering Change Notice Pull-up/pull-down resistors loosens the
tolerances for pull-up and pull-down resistors that connect to a voltage source
of 3.0–3.6V. The original values were 1.5k ±5% for the pull-ups and 15k ±5%
for the pull-downs. The tolerances were loosened to make it easier to include
the resistors on chip without requiring laser trimming of the values. Using the
looser tolerances increases complexity at upstream-facing ports because the
device must switch between two pull-up values depending on whether the bus
is in the idle or active state. But overall, the new tolerances can reduce cost to
device manufacturers. Devices that use the original 1.5k pull-ups don’t have to
switch values when switching between active and idle links. 
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A high-speed device must support control-transfer requests at full speed, so the
device must contain transceivers to support both full and high speeds and logic
to switch between them. A high-speed-capable device’s upstream-facing trans-
ceivers aren’t allowed to support low speed. In an external USB 2.0 hub, the
downstream transceivers at ports with user-accessible connectors must support
all three speeds.
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High speed’s rate of 480 Mbps was chosen for several reasons. The frequency is
slow enough to allow using the same cables and connectors as full speed. Com-
ponents can use CMOS processes and don’t require the advanced compensation
used in high-speed digital signal processors. Tests of high-speed drivers showed
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20–30% jitter at 480 Mbps. Because receivers can be designed to tolerate 40%
jitter, this bit rate allows a good margin of error. And 480 is an even multiple of
12, so a single crystal can support both full and high speeds.

The use of separate drivers for high speed makes it easy to add high speed to an
existing full-speed design. Current-mode drivers were chosen because they’re
fast.
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Figure 19-4 shows upstream-facing transceiver circuits in a high-speed-capable
device, and Figure 19-5 shows downstream-facing transceiver circuits in a USB
2.0 hub. The USB 2.0 specification requires downstream-facing transceivers,
and thus all compliant hosts and hubs, to support all three speeds.

High speed requires its own drivers, so a high-speed device must contain two
sets of drivers. For receiving, a transceiver may use a single receiver to handle all
speeds or separate receivers for low/full speed and high speed. 

When a high-speed driver transmits data, a current source drives one line with
the other line at ground. The current source may be active all the time or only
when transmitting. A current source that is active all the time is easier to design
but consumes more power. USB 2.0 requires devices to meet the signal-ampli-
tude and timing requirements beginning with the first symbol in a packet, and
this requirement complicates the design of a current source that is active only
when transmitting. If the driver keeps its current source active all the time, the
driver can direct the current to ground when not transmitting on the bus.

In a high-speed-capable transceiver, the output impedance of the full-speed
drivers has tighter tolerance compared to full-speed-only drivers (45Ω ±10%,
compared to 36Ω ±22%). The high-speed bus uses the full-speed drivers as elec-
trical terminations and requires new values for impedance matching. Full-speed
drivers that aren’t part of a high-speed transceiver don’t require a change in out-
put impedance.

When the high-speed drivers are active, the full-speed drivers bring both data
lines low (SE0 state). Each driver and its series resistor then function as a 45Ω
termination to ground. Because each end of the cable segment has a driver, the
line has a termination at both the source and the load. The double termination
quiets the line more effectively than the source-only series terminations in
full-speed segments. Using the full-speed drivers as terminations reduces the
number of components.
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The USB specification provides eye-pattern templates that show required
high-speed transmitter outputs and receiver sensitivity. High-speed receivers
must also meet new specifications that require the use of a differential
time-domain reflectometer (TDR) to measure impedance characteristics.

All high-speed receivers must include a differential envelope detector to detect
the Squelch (invalid signal) state indicated by a differential bus voltage of 100
mV or less. The downstream ports on all USB 2.0 hubs must also include a
high-speed-disconnect detector that detects when a device has been removed
from the bus.

Figure 19-4. The upstream-facing port on a high-speed device must also 

support full-speed communications. (Adapted from Universal Serial Bus 

Specification Revision 2.0.)
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Other new responsibilities for high-speed-capable devices include managing the
switch from full to high speed and handling new protocols for entering and
exiting the Suspend and Reset states.

#������ ����.� �#����

In a low- or full-speed device, a pull-up on one of the signal lines indicates
device speed. When a low- or full-speed device is attached or removed from the

Figure 19-5. The downstream-facing ports on USB 2.0 hubs must support all 

three speeds (except ports with embedded or permanently attached devices). 

(Adapted from Universal Serial Bus Specification Revision 2.0.)
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bus, the voltage change due to the pull-up informs the hub of the change.
High-speed-capable devices always attach at full speed, so hubs detect attach-
ment of high-speed-capable devices in the same way.

As Chapter 18 explained, the switch to high speed occurs after the device has
been detected during the Reset initiated by the hub’s downstream port. A
high-speed-capable device must support the high-speed handshake that informs
the hub that the device is capable of high speed. When switching to high speed,
the device removes its pull-up from the bus.

(������� �$�����	��+���.� 2
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Because a device has no pull-up at high speed, the hub has to use a different
method to detect device removal. Removing a device from the bus also removes
the differential terminations, and the removal causes the differential voltage at
the hub’s port to double. On detecting the doubled voltage, the hub knows the
device is no longer attached.

The hub detects the voltage by measuring the differential bus voltage during the
extended End of High-speed Packet (HSEOP) in each high-speed
Start-of-Frame Packet (HSSOP). A differential voltage of at least 625 mV indi-
cates a disconnect.

#"
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As Chapter 16 explained, USB 2.0 devices must enter the low-power Suspend
state when the bus has been in the Idle state for at least 3 ms and no more than
10 ms. When the bus has been idle for 3 ms, a high-speed device switches to
full speed. The device then checks the state of the full-speed bus to determine
whether the host is requesting a Suspend or Reset. If the bus state is SE0, the
host is requesting a Reset, and the device prepares for the high-speed-detect
handshake. If the bus state is Idle, the device enters the Suspend state. On exit-
ing the Suspend state, the device resumes at high speed.

��5� ��8��� 5��
Chapter 18 introduced USB’s bus states. The voltages that define the states vary
depending on the speed of the cable segment. The difference in the specified
voltages at the transmitter and receiver mean that a signal can have some noise
or attenuation and the receiver will still see the correct logic level.  
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Table 19-1 shows the driver output voltages for low/full and high speeds. At
low and full speeds, a Differential 1 exists at the driver when the D+ output is at
least 2.8V and the D- output is no greater than 0.3V, with both referenced to
the driver’s signal ground. A Differential 0 exists at the driver when D- is at least
2.8V and D+ is no greater than 0.3V referenced to the driver’s signal ground.

At a low- or full-speed receiver, a Differential 1 exists when D+ is at least 2V
referenced to the receiver’s signal ground, and the difference between D+ and
D- is greater than 200 mV. A Differential 0 exists when D- is at least 2V refer-
enced to the receiver’s signal ground, and the difference between D- and D+ is
greater than 200 mV. However, a receiver may optionally have less stringent
definitions that require only a differential voltage greater than 200 mV, ignor-
ing the requirement for one line to be at least 2V.

.� �#����

At high speed, a Differential 1 exists at the driver when both the D+ output is at
least 0.36V and the D- output is no greater than 0.01V referenced to the
driver’s signal ground. A Differential 0 exists at the driver when D- is at least
0.36V and D+ is no greater than 0.01V referenced to the driver’s signal ground.

At a high-speed receiver, the input must meet the requirements shown in the
eye-pattern templates in the USB 2.0 specification. The eye patterns specify
maximum and minimum voltages, rise and fall times, maximum jitter in a
transmitted signal, and the maximum jitter a receiver must tolerate. The speci-
fication explains how to make the measurements.      

Table 19-1: High speed has different driver and receiver specifications 

compared to low and full speed. 

��	�����	 �
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VOUT low minimum 0 -0.010
VOUT low maximum 0.3 0.010
VOUT high minimum 2.8 0.360
VOUT high maximum 3.6 0.440
VIN low maximum 0.8 Limits are defined by the 

eye-pattern templates in the 
USB specification

VIN high minimum 2.0
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The USB specifications include cable and connector requirements that help
ensure that signals will make it to their destinations without errors due to noise.
The cable specifications also limit noise that radiates from the cable.

���������
USB 2.0 cables provide conductors for power, ground, and USB 2.0 communi-
cations. The cables contain wires for VBUS, ground, the D+ and D- signal
wires, and a drain wire that connects to the cable shield (Table 19-3). Chapter
16 detailed the voltage and current limits for VBUS. The signal wires carry the
data. Unlike RS-232, which has a TX line to carry data in one direction and an
RX line for the other direction, USB 2.0’s pair of wires carries a single differen-
tial signal, and data travels in one direction at a time.

Cables for low-speed segments have different requirements than cables for full-
or high-speed segments (Table 19-2). A low-speed segment is a cable segment
between a low-speed device and its hub. Any additional upstream segments
between hubs are considered full- or high-speed segments. A low-speed cable
must have the same inner shield and drain wire required for full speed. The

Table 19-2: The requirements for cables and related components differ for 

full/high-speed cables and cables that attach to low-speed devices.

�����������
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Maximum length (typical) (m) 3 5
Inner shield and drain wire required? yes (new in USB 2.0) yes
Braided outer shield required? no, but recommended yes
Twisted pair required? no, but recommended yes
Common-mode impedance (Ω) not specified 30 ±30%
Differential Characteristic impedance (Ω) not specified 90
Cable skew (picoseconds) < 100
Wire gauge (AWG) 28 or larger diameter
DC resistance, plug shell to plug shell (Ω) 0.6
Cable delay 18 ns (one way) 5.2 ns/m
pull-up location at the device D- D+
Detachable cable OK? no yes
Captive cable OK? yes
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USB 2.0 specification also recommends, but doesn’t require, a braided outer
shield and a twisted pair for data, as on full- and high-speed cables. The USB
1.x specification required no shielding for low-speed cables.

Full- and high-speed segments can use the same cables. In a full/high-speed
cable, the signal wires must have a differential characteristic impedance of 90Ω.
This value is a measure of the input impedance of an infinite, open line and
determines the initial current on the lines when the outputs switch. The charac-
teristic impedance for a low-speed cable isn’t defined because the slower edge
rates mean that the initial current doesn’t affect the logic states at the receiver.

The USB 2.0 specification lists requirements for the cable’s conductors, shield-
ing, and insulation. These are the major requirements for full/high-speed
cables:

Signal wires: twisted pair, 28 AWG or larger diameter.

Power and ground: non-twisted, 28 AWG or larger diameter.
Drain wire: stranded, tinned copper wire, 28 AWG or larger diameter.
Inner shield: aluminum metallized polyester

Outer shield: braided, tinned copper or equivalent braided material

The specification also lists requirements for the cable’s durability and perfor-
mance. 

A low-speed device can use a full-speed cable if the cable meets all of the
low-speed cable requirements including a maximum length of 3 m and not
using a standard USB connector type at the device.

����������
USB 2.0 allows these options for the USB receptacle on a device: Standard B
(also called Std B, Series B, or just “B”), Mini B, and Micro B. Figure 19-6

Table 19-3: A USB 2.0 cable has four wires plus a drain wire.

9�	� ���� $��  
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1 VBUS +5V Red
2 GND Ground reference White
3 D+ Signal pair positive Green
4 D- Signal pair negative Black
Shell Shield Drain wire –
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shows cable plugs that mate with these receptacles. Another option for devices
is a captive cable, which uses a vendor-specific connector or is permanently
attached to the device.

USB 2.0 hosts use the Standard A (also called Std A, Series A or “A”) receptacle.
USB On-The-Go products use Micro-AB receptacles, which can accept a cable
with a Micro-A or Micro-B plug. Chapter 20 has more about On-The-Go con-
nectors.

The USB 2.0 specification defines the Standard series connectors. ECNs define
the Mini and Micro series connectors.

Mini and Micro plugs have an additional ID pin. On-The-Go devices use the
ID pin to identify a device’s default mode (host or function). Table 19-4 shows
the pinout for the connectors.

All of the connectors are keyed so you can’t insert a plug the wrong way. The
connections for D+ and D- are recessed so the power lines connect first on
attachment. The USB icon can identify a USB plug or receptacle (Figure 19-7).
A “+” indicates support for high speed. A receptacle should mount so the USB
icon on the top of the plug is visible to users inserting a plug.

Most devices have a single type-B connector. However, devices with multiple
connectors are allowed. For example, a printer might have a port on the back to
connect to a conventional host and a second port on the front to allow quick
printing directly from a camera or portable computer. The USB-IF’s Embedded

Figure 19-6. Approved cable plugs include (from left) Standard-A for hosts and 

Standard-B, Mini-B, and Micro-B for devices. 
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Hosts and/or Multiple Receptacles document specifies that a device with multiple
type-B connectors is allowed if all ports support the same speeds, if each con-
nector has a device controller that operates independently from other device
controllers in the device, and if all ports can enumerate at the same time. 

��� �� ,��� ���� ������� ,���
USB 2.0 defines cables as being either detachable or captive. From the names,
you might think that a detachable cable is one you can remove while a captive
cable is permanently attached to its device. In fact, a captive cable can be
removable as long as its downstream connector is not one of the standard USB
connector types.

A detachable USB 2.0 cable must be full/high speed, with a Standard-A plug
for the upstream connection and a Standard-B, Mini-B, or Micro-B plug for

Table 19-4: The Mini-B and Micro-B receptacles have an additional 

pin for OTG products.

�� �����	��5<������	��% ����%<����	
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1 VBUS VBUS
2 D- D-
3 D+ D+
4 GND Open or >= 1MΩ
5 Not present GND
Shell Shield Shield

Figure 19-7. The USB icon identifies a USB plug or receptacle. A “+” indicates 

support for high speed.
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the downstream connection. A captive cable may be low or full/high speed. The
upstream end has a Standard-A plug. For the downstream connection, a captive
cable can be permanently attached or removable with a non-standard connector
type. The non-standard connection doesn’t have to be hot pluggable, but the
Standard-A connection must be hot pluggable. Requiring low-speed cables to
be captive eliminates the possibility of trying to use a low-speed cable in a full-
or high-speed segment. 

USB On-The-Go products have other cable options as described in Chapter
20.

� ,���+��5��
USB 1.0 specified maximum lengths for cable segments. A full-speed segment
could be up to 5 m and a low-speed segment could be up to 3 m. USB 1.1 and
later dropped the length limits in favor of a discussion of characteristics that
limit a cable’s ability to meet timing and voltage specifications. On full- and
high-speed cables, the limits are due to signal attenuation, cable propagation
delay (the amount of time it takes for a signal to travel from driver to receiver),
and voltage drops on the VBUS and GND wires. On low-speed cables, the
length is limited by the rise and fall times of the signals, the capacitive load pre-
sented by the segment, and voltage drops on the VBUS and GND wires.

USB 1.0’s limits of 3 m and 5 m are still good guidelines for cables with Stan-
dard-B and Mini-B plugs. Compliant cables of these lengths are readily avail-
able. Cables with Micro-B plugs have the special requirements of a a shorter
maximum transmission delay (10 ns) and a resulting shorter maximum length
of 2 m. 

The USB specifications prohibit extension cables that extend a segment by add-
ing a second cable in series. An extension cable for the upstream side of a cable
would have a Standard-A plug on one end and a Standard-A receptacle on the
other, while an extension cable for the downstream side would have a B plug
and receptacle. Prohibiting extension cables eliminates the temptation to
stretch a segment beyond the interface’s electrical limits. Extension cables are
available, but just because you can buy one doesn’t mean that it’s a good idea or
that the cable will work. Instead, to extend the distance between a host and
device, use hubs.

An exception is an active extension cable that contains a hub, a downstream
port, and a cable. This type of cable works fine because it contains the required
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hub. Depending on the attached device, the hub may need its own power sup-
ply. 

An option for long distances is to use an adapter as a bridge that converts
between USB and Ethernet, RS-485, or another interface suitable for longer
distances. The remote device supports the long-distance interface rather than
USB.

Another approach enables accessing USB devices via a local Ethernet network.
Two products that use this method are the AnywhereUSB hub from Digi Inter-
national and the USB Server from Keyspan. The AnyWhereUSB hub contains
one or more host controllers that communicate with the host PC over an Ether-
net connection using the Internet Protocol (IP). The hub can attach to any
Ethernet port in the PC’s local network. The host drivers for the USB devices
are on the PC. PC applications can access many USB devices that connect to
the AnywhereUSB hub and use bulk and interrupt transfers. The interface has
increased latency due to the added protocol layer. The USB Server works in a
similar way.

Software-only products for accessing USB devices over a network are USB over
Network from Fabula Tech and USB Redirector from Incentives Pro. To use
these products to access a device attached to another computer in a network,
you must install software on the PC the device attaches to and the PC(s) that
will access the device.

����+��5��
A bus can have up to 5 external hubs in a tier. Thus, using 5 m cables, a device
can be up to 30 m from its host. If the device is low speed, the limit is 28 m
because the cable the connects to the low-speed device can be no more than 3
m. The limit on the number of hubs is due to the electrical properties of the
hubs and cables and the resulting delays in propagating signals along the cable
and through a hub.

�����9����������������
USB was developed as an interface to connect computers and peripherals via
cables. But USB has also found uses in products that contain a host and an
embedded or removable peripheral. In these products, communications
between the host and peripheral don’t require standard USB cables or connec-
tors and can use lower supply voltages.
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Two USB-IF standards for this type of interface are the Inter-Chip USB Supple-
ment for low and full speeds and the High-Speed Inter-Chip USB Electrical Spec-
ification for high speed.

For both interface types, all of the following are true:

• The distance between the host and peripheral is 10 cm or less.

• The host doesn’t allow peripheral attachment or removal while the
inter-chip supply voltage is present.

• The interface can use a vendor-specific cable or on-board connection (cir-
cuit-board traces).

An interface that complies with the Inter-Chip USB Supplement must meet
these requirements:

• The host always supports full speed and supports low speed if the host com-
municates with a low-speed peripheral. The peripheral may support low or
full speed.

• The interface supports one or more of six defined supply-voltage classes
with nominal voltages in the range 1–3V.

The low/full speed interface draws no bus current when idle. To save additional
power, hardware can switch out the bus pull-up and pull-down resistors during
traffic signaling.

The High-Speed Inter-Chip USB Electrical Specification defines an interface
that uses a high-speed inter-chip (HSIC) synchronous serial interface. The
interface uses 240-MHz double data rate (DDR) signaling, which transfers data
on both the rising and falling clock edges. A 240-Mhz clock thus supports a
480-Mbps bit rate.

An interface that complies with the High-Speed Inter-Chip USB Electrical
Specification must meet these requirements:

• The host and peripheral support high speed.

• The interface uses 1.2V LVCMOS voltages.

The HSIC interface consumes power only when a transfer is in progress.

����201
To support SuperSpeed, USB 3.0 adds transmitters and receivers and modifies
the cables and connectors to carry the SuperSpeed signals.
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For SuperSpeed, each direction has a dedicated pair of wires with a differential
transmitter at one end and a differential receiver at the opposite end. The hard-
ware interface is based on the PCI Express (PCIe) Gen 2 interface used in
expansion buses in PCs. In a PC, the bus uses multiple lanes to transfer multi-
ple bits in the same direction at once. SuperSpeed uses a single lane with one
signal pair for each direction.

A SuperSpeed transmitter must contain a circuit that detects an attached
receiver’s load of 18–30Ω. An RC charging circuit can perform this function.
Because the SuperSpeed wires carry data at a single speed, an upstream hub that
detects a SuperSpeed device knows the device’s speed.

� ,���
USB 3.0 cables can carry both USB 2.0 and SuperSpeed traffic. The cables have
additional wires and connector contacts to support SuperSpeed.

���������	��!

USB 3.0 cables and connectors are backwards compatible with USB 2.0. Plugs
on USB 2.0 cables fit USB 3.0 receptacles. A USB 2.0 cable attached to a USB
3.0 host or hub can carry low-, full-, and high-speed data.

A USB 3.0 Standard-A plug fits a USB 2.0 Standard-A receptacle. Thus you
can use a USB 3.0 cable to attach a USB 3.0 device to a USB 2.0 host or hub
and communicate at a USB 2.0 speed. Attaching a USB 2.0 device to a USB
3.0 host or hub requires a USB 2.0 cable. USB 3.0 Standard-B and USB 3.0
Micro-B plugs don’t fit USB 2.0 receptacles.

To use SuperSpeed, all cables and receptacles in the links between the device
and host must be USB 3.0.

����"����


A USB 3.0 cable has ten wires (Table 19-5), which include USB 2.0’s power,
ground, and unshielded pair plus two shielded pairs with drain wires for Super-
Speed. The SuperSpeed interface is dual simplex: each direction has its own pair
of wires, each pair has its own ground, or drain, wire, and data can travel in
both directions at once. (Full duplex is also bidirectional but uses a single, com-
mon ground wire.) The SuperSpeed wires can be shielded twisted pairs or twi-
naxial cable (twinax). Twinax is similar to coax but has two inner conductors
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instead of one. The characteristic impedance of shielded twisted pairs should be
90Ω.

USB 3.0 doesn’t specify wire gauges but provides electrical data for typical val-
ues (26–34 AWG) and recommends using the smallest-diameter gauges that
meet the electrical requirements of the cable assembly. Cable flexibility, which
generally decreases with the AWG number, may also be a consideration. The
cable’s outer diameter must be in the range 3–6 mm.

���������


USB 3.0 connectors have five additional contacts for the two SuperSpeed signal
pairs and the two drain wires, which terminate at the same pin. Figure 19-8
shows the connectors.

Table 19-6 shows which plugs can attach to different receptacle types. A USB
3.0 device can have a USB 3.0 Standard-B or USB 3.0 Micro-B receptacle, a
captive cable with a USB 3.0 Standard-A plug, or the USB 3.0 Powered-B con-
nector described below. A USB 3.0 host has a USB 3.0 Standard-A receptacle.

Except for the Mini-B, all USB 2.0 plugs can mate with a USB 3.0 receptacle of
the same series. A USB 2.0 Standard-A plug fits a USB 3.0 Standard-A recepta-
cle, a USB 2.0 Standard-B plug fits a USB 3.0 Standard-B receptacle, and a

Table 19-5: A USB 3.0 cable has additional wires to support SuperSpeed
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1 PWR VBUS power Red
2 UTP_D- Unshielded differential pair, negative (USB 2.0) White
3 UTP_D+ Unshielded twisted pair, positive (USB 2.0) Green
4 GND_PWRrt Ground for power return Black
5 SDP1- Shielded differential pair,1, negative (SuperSpeed) Blue
6 SDP1+ Shielded differential pair 1, positive (SuperSpeed) Yellow
7 SDP1_Drain Drain wire for SDP1. –
8 SDP2- Shielded differential pair 2, negative (SuperSpeed) Purple
9 SDP2+ Shielded differential pair 2, positive (SuperSpeed) Orange
10 SDP2_Drain Drain wire for SDP2. Connects to pin 7 on the 

connectors.
–

Braid Shield External braid terminated onto metal shell of plug –
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Table 19-6:  USB 3.0 connectors are backwards compatible with USB 2.0 

connectors.

$��  
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USB 2.0 host USB 2.0 Standard-A receptacle USB 2.0 Standard-A plug
USB 3.0 Standard-A plugUSB 3.0 host USB 3.0 Standard-A receptacle

USB 2.0 device USB 2.0 Standard-B receptacle USB 2.0 Standard-B plug
USB 2.0 Mini-B receptacle USB 2.0 Mini-B plug
USB 2.0 Micro-B receptacle USB 2.0 Micro-B plug
Captive cable with USB 2.0 
Standard-A plug

USB 2.0 Standard-A receptacle
USB 3.0 Standard-A receptacle

USB 3.0 device USB 3.0 Standard-B receptacle USB 2.0 Standard-B plug
USB 3.0 Standard-B plug
USB 3.0 Powered-B plug

USB 3.0 Powered-B receptacle

USB 3.0 Micro-B receptacle USB 2.0 Micro-B plug
USB 3.0 Micro-B plug

Captive cable with USB 3.0 
Standard-A plug

USB 2.0 Standard-A receptacle
USB 3.0 Standard-A receptacle

Figure 19-8. USB 3.0 connectors have additional contacts for the SuperSpeed 

wires. (Not drawn to scale.)
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USB 2.0 Micro-B plug fits a USB 3.0 Micro-B receptacle. There is no USB 3.0
Mini-B receptacle. Of course, cables with USB 2.0 plugs can’t carry SuperSpeed
traffic.

The USB 3.0 Standard-A plug and receptacle have the same form factors as the
USB 2.0 Standard-A plug and receptacle. Thus a USB 3.0 Standard-A plug will
mate with a USB 2.0 Standard-A receptacle. To support SuperSpeed, USB 3.0
Standard-A connectors use a 2-tier contact system with five additional contacts
that lie behind the four USB 2.0 contacts on the plug.

Compliant USB 3.0 cables should display the USB 3.0 icon (Figure 19-9). The
USB 3.0 specification recommends using Pantone 300 blue for the internal
plastic housing on Standard-A connectors. The connector’s outer shell can be
any color.

%������2)����������

Under USB 2.0, Wireless USB adapters that connect to USB devices must pro-
vide their own power. USB 3.0’s Powered-B connectors enable these and similar
adapters to draw power from a device even when the device isn’t configured or
the link is in the Suspend state. The device must have a Powered-B receptacle,
which has two extra contacts that can provide 5V at up to 1A to a connected
adapter or other device. The adapter to be powered must have a permanently
attached cable with a Powered-B plug. If the device instead uses a wired connec-
tion to a host or hub, the Powered-B contacts are unused. The Powered-B plug
also fits a USB 3.0 Standard-B receptacle, so an adapter that supports self power
can attach to devices that don’t use the Powered-B contacts.    

Figure 19-9. The plugs on compliant USB 3.0 cables should display the USB 3.0 

icon. (Image courtesy of the USB Implementers Forum.)
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USB 3.0 doesn’t specify a maximum cable length. For VBUS and GND, the
specification provides a table that suggests maximum lengths for different AWG
values to meet voltage-drop limits. A 3-m cable requires 22 AWG or larger diam-
eter PWR and GND wires. For the signal wires, the specification defines limits
for differential insertion loss, which is a measure of how much a signal degrades
as it passes through a cable assembly. To comply with these limits, the signal
wires in a 3-m cable must use 26 AWG or larger diameter wires.

)"
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Like USB 2.0, USB 3.0 allows five external hubs in a tier. A typical USB 3.0
cable is 3 m, so a typical maximum SuperSpeed bus length is 18 m. USB 2.0
devices can continue to use 5 m USB 2.0 cables with USB 3.0 hosts and hubs.
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USB 2.0 forbids cables that connect two hosts except for bridge cables that con-
tain device controllers with a shared buffer. USB 3.0 defines a USB 3.0 Stan-
dard-A to USB 3.0 Standard-A cable for debugging and other specialized
host-to-host applications with driver support. The cable is a crossover cable for
the SuperSpeed lines (Table 19-7). VBUS, D-, and D+ have no connection.

�������!���!����=����� 
The USB specifications for drivers, receivers, and cable design ensure that virtu-
ally all data transfers occur without errors. Requirements that help to ensure

Table 19-7:  USB 3.0 defines a host-to-host cable for SuperSpeed traffic.

$�%�>#:������	�C5���� ����� $�%�>#:������	�C5���

1–3 no connect 1–3
4 GND 4
5 SDP1- 8
6 SDP1+ 9
7 SDP1_Drain and 

SDP2_Drain
7

8 SDP2- 5
9 SDP2+ 6
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signal quality include the use of balanced lines and shielded cables, twisted pairs
(required for full/high-speed), and slower edge rates for low-speed drivers. 

���������"�A����
Noise can enter a wire in many ways, including by conductive, com-
mon-impedance, magnetic, capacitive, and electromagnetic coupling. If a noise
voltage is large enough and is present when the receiver is reading a transmitted
bit, the noise can cause the receiver to misread the transmitted logic level. Very
large noise voltages can damage components.

Conductive and common-impedance coupling require ohmic contact between
the signal wire and the wire that is the source of the noise. Conductive coupling
occurs when a wire brings noise from another source into a circuit. For exam-
ple, a noisy power-supply line can carry noise into the circuit the supply pow-
ers. Common-impedance coupling occurs when two circuits share a wire, such
as a ground return.

The other types of noise coupling result from interactions between the electric
and magnetic fields of the wires themselves and signals that couple into the
wires from outside sources, including other wires in the interface. Capacitive
and inductive coupling can cause crosstalk, where signals on one wire enter
another wire. Capacitive coupling, also called electric coupling, occurs when
two wires carry charges at different potentials, resulting in an electric field
between the wires. The strength of the field and the resulting capacitive cou-
pling varies with the distance between the wires. Inductive, or magnetic, cou-
pling occurs because current in a wire causes the wire to emanate a magnetic
field. When the magnetic fields of two wires overlap, the energy in each wire’s
field induces a current in the other wire. When wires are greater than 1/6 wave-
length apart, the capacitive and inductive coupling are considered together as
electromagnetic coupling. An example of electromagnetic coupling is when a
wire acts as a receiving antenna for radio waves.

� � �����+����
One way USB eliminates noise is with the balanced lines that carry the differen-
tial signals. On balanced lines, noise that couples into the interface is likely to
couple equally into both signal wires. At a differential receiver, which detects
only the difference between the two wires’ voltages, any noise that is common
to both wires cancels out.
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In contrast, in the unbalanced, single-ended lines that RS-232 and other inter-
faces use, the receiver detects the difference between a signal wire and a ground
line shared by other circuits. The ground line is likely to be carrying noise from
a number of sources, and the receiver sees this noise when it detects the differ-
ence between the signal voltage and ground.

�*������& ���
In a full/high-speed USB cable, the signal wires must be a twisted pair. Twisted
pairs are also recommended for low-speed cables. A twisted pair is two insulated
conductors that spiral around each other with a twist every few inches (Figure
19-10). The twisting reduces noise by reducing the amount of noise in the
wires and by canceling noise that enters the wires. Twisting is most effective at
eliminating low-frequency, magnetically coupled signals such as 60-Hz
power-line noise.

Twisting reduces noise by minimizing the area between the conductors. The
magnetic field that emanates from a circuit is proportional to the area between
the conductors. Twisting the conductors around each other reduces the total
area between them. The tighter the twists, the smaller the area. Reducing the

Figure 19-10. A full/high-speed USB cable contains a twisted pair for data, 

VBUS and GND wires, and aluminum metallized polyester and braided copper 

shields.
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area shrinks the magnetic field emanating from the wires and thus reduces the
amount of noise coupling into the field.

A twisted pair tends to cancel any noise that enters the wires because the con-
ductors swap physical positions with each twist. Any noise that magnetically
couples into the wires reverses polarity with each twist. The result is that the
noise present in one twist is cancelled by a nearly equal, opposite noise signal in
the next twist. Of course, the twists aren’t perfectly uniform and the canceling
isn’t perfect, but noise is much reduced.
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Metal shielding prevents noise from entering or emanating from a cable. Shield-
ing is most effective at blocking noise due to capacitive, electromagnetic, and
high-frequency magnetic coupling. USB 2.0 requires both low-speed and
full/high-speed cables to be shielded, though the requirements differ.

In a full/high-speed cable, an aluminum metallized polyester shield surrounds
the four conductors. Around this shield is an outer shield of braided, tinned
copper wire. Between the shields and contacting both is a copper drain wire.
The outside layer is a polyvinyl chloride jacket. The shield terminates at the
connector plug.

A low-speed cable has the same requirements except that the braided outer
shield is recommended but not required. USB 1.x required no shielding for
low-speed cables on the premise that the slower rise and fall times made shield-
ing unnecessary. The shielding requirement was added in USB 2.0 not because
the USB interface is noisy in itself, but because the cables are likely to attach to
computers that are noisy internally. Shielding helps keep the cable from radiat-
ing this noise and thus helps with passing FCC tests. The downside is that USB
2.0 low-speed cables are more expensive to make and physically less flexible.

USB 2.0 uses unshielded twisted pairs, but USB 3.0 requires shielding around
each SuperSpeed signal pair and its drain wire. USB 3.0 cables must also have
metal braid surrounding all of the wires and terminating at the metal shell.  

��5��. ���
Because of low speed’s slower data rate, drivers can use slower edge rates that
reduce reflected voltages seen by receivers and noise that emanates from the
cable.

When a digital output switches, a mismatch between the line’s characteristic
impedance and the load presented by the receiver can cause reflected voltages
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that affect the voltage at the receiver. If the reflections are large enough and last
long enough, the receiver may misread a transmitted bit.

In low-speed cables, the slower edge rate ensures that any reflections have died
out by the time the output has finished switching. The slow edge rate also
means that the signals contain less high-frequency energy and thus the noise
emanated by the cables is less.

���� ���������" ���
Galvanic isolation can be useful in preventing electrical noise and power surges
from coupling into a circuit. Circuits that are galvanically isolated from each
other have no ohmic connection. Typical methods of isolation include using a
transformer to transfer power by magnetic coupling and optoisolators to trans-
fer digital signals by optical coupling.

USB devices shouldn’t require isolation in conventional environments such as
offices and classrooms. For industrial environments or other locations where
devices might benefit from isolation, USB’s timing requirements and USB 2.0’s
use of a single pair of wires for both directions make it difficult to isolate a
device from its host. One solution is to isolate the non-USB components the
device controller connects to. For example, in a motor controller with a USB
interface, the motor and control circuits can be isolated from the USB control-
ler and bus.

Another option is to use an isolated hub. B & B Electronics and Sealevel Sys-
tems offer hubs with isolated low/full-speed downstream ports.

#���!�*�������
Replacing a USB cable with a wireless connection isn’t a simple task. USB trans-
actions involve communicating in both directions with tight timing require-
ments. For example, when a USB 2.0 host sends a token and data packet in the
Data stage of an interrupt OUT transaction, the device must respond quickly
with ACK or another code in the handshake packet.

But the idea of a wireless connection for USB devices is so compelling that mul-
tiple technologies have become available to incorporate USB in wireless appli-
cations. In many implementations, the wireless links use wired devices that
serve as wireless bridges, or adapters. The bridge uses USB to communicate
with the host and a wireless interface to communicate with the peripheral. The
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peripheral contains a wireless bridge to convert between the wireless interface
and the peripheral’s circuits. 

�����"����7�����������
The USB-IF’s Wireless Universal Serial Bus Specification defines Certified Wire-
less USB. Revision 1.0 was released in 2005.

Certified Wireless USB supports speeds of up to 480 Mbps at 3 m and 100
Mbps at 10 m. The interface supports power-saving modes and uses encryption
for security. The technology is ultrawideband (UWB) radio, which transmits in
short bursts at very low power over a wide frequency spectrum. The UWB tech-
nology is defined in the ISO/IEC 26907/8 specifications, which evolved from
specifications developed by the nonprofit WiMedia Alliance.

A USB host can have a built-in Wireless USB interface or a wired connection to
a USB device that functions as a host wire adapter (HWA) that communicates
via Wireless USB. In a similar way, a USB device can have a built-in Wireless
USB interface or a wired connection to a device wire adapter (DWA) that com-
municates via Wireless USB.

Products with Certified Wireless USB interfaces have been slow to reach the
market. Development kits have been expensive, making the interface impracti-
cal for many developers. However, notebook PCs with built-in Wireless USB
interfaces are available, and in time development tools will likely become more
affordable.

�%������7����������
For low-speed devices, including HIDs, Cypress Semiconductor offers the
WirelessUSB technology. The obvious market is wireless keyboards, mice, and
game controllers. With a wireless range of up to 50 m, the technology is also
useful for building and home automation and industrial control. The wireless
interface uses radio-frequency (RF) transmissions at 2.4 GHz in the unlicensed
Industrial, Scientific, and Medical (ISM) band.

A WirelessUSB system consists of a WirelessUSB bridge and one or more Wire-
lessUSB devices (Figure 19-11). The bridge translates between USB and the
wireless protocol and medium. The WirelessUSB device carries out the device’s
function (mouse, keyboard, game controller) and communicates with the
bridge.

The bridge contains a USB-capable microcontroller and a WirelessUSB trans-
ceiver chip and antenna. The WirelessUSB device contains a Cypress PsOC or
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Figure 19-11. WirelessUSB provides a way to design low-speed devices that use 

a wireless interface.
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another microcontroller and a WirelessUSB transmitter or transceiver chip and
antenna. A device with a transceiver is 2-way: the device can communicate in
both directions. A device with just a transmitter is 1-way: the device can send
data to the host but can’t receive data or status information. In both the bridge
and device, the transmitter and transceiver chips use the SPI synchronous serial
interface to communicate with their microcontrollers.

In a 2-way system, when a device has data to send to the host, the device’s
microcontroller writes the data to the transceiver chip, which encodes the data
and sends it through the air to the bridge’s transceiver. On receiving the data,
the bridge returns an acknowledgement to the device, decodes the data, and
sends the data to the host in conventional USB interrupt or control transfers.
On failing to receive an acknowledgement from the bridge, the device resends
the data.

When the host has data to send to the device, the host writes the data to the
bridge’s USB controller, which returns ACK (if not busy and the data is
accepted) and passes the data to the bridge’s transceiver. The transceiver
encodes the data and sends it through the air to the WirelessUSB device. The
device returns an acknowledgement to the bridge. On receiving a NAK or no
reply, the bridge resends the data.

In a 1-way system, a device sends data to the host in much the same way as in a
2-way system except the device receives no acknowledgement from the host. To
help ensure that the bridge and host receive all transmitted data, the device
sends its data multiple times. Sequence numbers enable the bridge to identify
previously received data.

With both systems, the host thinks it’s communicating with an ordinary HID
and has no knowledge of the wireless link.

A WirelessUSB link can have a data throughput of up to 62.5 kbps, but
low-speed throughput is limited by the USB bandwidth available for low-speed
control and interrupt transfers. A device and its bridge must use the same fre-
quency/code pair. A single WirelessUSB bridge can use multiple fre-
quency/code pairs to communicate with multiple devices. For faster
performance, the microcontroller can use burst reads to read multiple registers
in the WirelessUSB chip in sequence.

;�����;������
Other ways to use USB in wireless devices include various wireless bridges and a
wireless networking option.
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ZigBee is an inexpensive, low-power, RF interface suitable for building and
industrial automation and other applications that transmit at up to 250 kbps
and over distances of up to 500 m. DLP Design’s DLP-RF1 USB/RF OEM
Transceiver Module provides a way to monitor and control a Zigbee interface
from a USB port. The module’s USB controller is FTDI’s FT245BM. One or
more DLP-RF2 RF OEM Transceiver Modules can communicate with the
DLP-RF1.

The IrDA bridge class described in Chapter 7 defines a way for a USB device to
use bulk transfers to communicate over an infrared link.

Another option is a vendor-specific wireless bridge that uses infrared, RF, or
other wireless modules designed for use in robotics and other low- to moder-
ate-speed applications. The bridge functions as a wired USB device that also
supports a wireless interface. A remote device that supports the wireless inter-
face carries out the peripheral’s function. Firmware passes received wireless data
to the host and passes received USB data to the device.

To use an existing USB device wirelessly, you may be able to use one of the
USB/Ethernet products described earlier in this chapter along with a wireless
network interface between the host PC and the hub/server.
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A USB host in a desktop system has many responsibilities, including support-
ing multiple bus speeds, managing communications with multiple devices, and
providing power to every device connected to the root hub. PCs and other
desktop computers have the resources to implement a full USB host. But many
smaller systems can also benefit by functioning as hosts. A camera can connect
to a USB printer. A data-acquisition device can store its data in a USB drive. A
PDA can interface to a USB keyboard and mouse.

For many of these smaller, embedded systems, a conventional USB host is
impractical and unnecessary. These systems typically communicate with just
one or a few devices with defined requirements for bus power and might not
need to support hubs.

A solution is to implement a limited capability host. For some applications, the
best approach is a dual-role device that can switch functions between host and
device as needed. Other applications require only host capability or require
simultaneous host and device functions. USB supports all of these options. 
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The On-The-Go (OTG) Supplement to the USB 2.0 specification defines a
way for a USB device to function as a limited-capability host and as a peripheral
(though not both at the same time). Version 1.0 of the OTG supplement was
released in 2001. Version 1.3 was released in 2006.

When functioning as a host, the OTG device can communicate with the
devices in its targeted peripheral list. Targeted peripherals can be any combina-
tion of other OTG devices and peripheral-only devices.
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Table 20-1 compares the requirements of an OTG device functioning as a host
and a conventional (not OTG) host. An OTG host doesn’t have to support
external hubs, multiple devices attached at the same time, or high and low
speeds.

Because OTG communications often involve battery-powered devices, conserv-
ing power is important. For this reason, an OTG device that is providing VBUS
is allowed to turn off VBUS when the bus is idle. 

Communications occur in sessions. A session begins when VBUS is above the
session-valid threshold voltage and ends when VBUS falls below this voltage.
The Session Request Protocol (SRP) enables a device to request a session even if
VBUS isn’t present.
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An OTG device must have one and only one Micro-AB receptacle, which can
accept either a Micro-A plug or a Micro-B plug. For SuperSpeed devices, the
USB 3.0 specification defines a USB 3.0 Micro-AB receptacle and USB 3.0
Micro-A plug. The Micro-A plugs are approved for use only with OTG devices.
There is no approved Micro-A receptacle. The original OTG supplement speci-
fied a Mini-AB receptacle, but the USB-IF deprecated this option in 2007 and
requires new designs to use the Micro-AB. For existing OTG devices with
Mini-AB receptacles, substitute Mini- for Micro- in the connector discussions
in this chapter.

��	�$&�	���	� ����&�	���	
Every OTG connection is between an A-device and a B-device. The A-device is
defined by the type of plug inserted in the USB receptacle. The A-device is
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either a host with a Standard-A plug inserted or an OTG device with a micro-A
plug inserted. The device at the other end of the cable is the B-device. Initially,
the A-device functions as the host, and the B-device functions as the peripheral.
As described below, two connected OTG devices can use a protocol to swap
functions when needed. The A-device always provides the VBUS voltage and
current even when functioning as a peripheral.
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A USB 2.0 OTG device must provide all of the following:

• The ability to function as a full-speed peripheral. Support for high speed is
optional. The peripheral function must not use low speed.

• The ability to function as a host that can communicate with one or more
full-speed devices. Support for low speed, high speed, and hubs is optional.

• Support for the Host Negotiation Protocol, which enables two OTG
devices to swap roles. (The host becomes the peripheral and the peripheral
becomes the host.)

Table 20-1: Compared to a non-OTG host, an OTG device functioning as a host 

doesn’t have to supply as much power and can use a single connector for host 

and peripheral functions.
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Communicate at high speed yes optional
Communicate at full speed yes yes
Communicate at low speed yes optional (not allowed in 

device mode)
Support external hubs yes optional
Provide targeted peripheral list no yes
Function as a peripheral no yes (when not 

functioning as a host)
Support Session Request Protocol optional yes
Support Host Negotiation Protocol no yes
Minimum available bus current per port 500 mA (100 mA if 

battery-powered)
8 mA

OK to turn off VBUS when unneeded? no yes
Connector 1 or more Standard A 1 Micro AB
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• The ability to initiate and respond to the Session Request Protocol, which
enables a device to request communications with the host even if VBUS isn’t
present.

• Support for remote wakeup.

• One and only one Micro-AB receptacle, which can accept either a Micro-A
plug or a Micro-B plug.

• A targeted peripheral list that names the devices the host can communicate
with.

• When functioning as the A-device, the ability to provide at least 8 mA of
bus current or the amount required by the targeted peripherals, whichever
is greater.

• A display or other way to communicate messages to users.

OTG adds complexity by requiring hosts to support the Host Negotiation Pro-
tocol and Session Request Protocol and requiring the ability to function as a
peripheral. On the other hand, OTG reduces complexity and expense by using
a single receptacle and by not requiring the host to supply large bus currents or
support external hubs or all bus speeds.

The following paragraphs describe the requirements for OTG devices in more
detail.
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Any device that implements OTG’s limited-capability host must also be able to
function as a USB peripheral. OTG host-only products aren’t allowed. When
functioning as a peripheral, an OTG device may support high speed and must
not communicate at low speed.
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An OTG device functioning as a host must be able to communicate with one or
more devices. The host must support full speed and may support low speed
and/or high speed. The host doesn’t have to support communications via hubs.
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The Host Negotiation Protocol (HNP) enables a B-device to request to func-
tion as a host. When connecting two OTG devices to each other, users don’t
have to worry about which end of the cable goes where. When necessary, the
devices use HNP to swap roles.
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When two OTG devices connect to each other, the A-device enumerates the
B-device in the same way that a standard USB host enumerates its devices. Dur-
ing enumeration, the A-device retrieves the B-device’s OTG descriptor, which
indicates whether the B-device supports HNP. If the B-device supports HNP,
the A-device can send a Set Feature request with a request code of hnp_enable.
The request informs the B-device that it can use HNP to request to function as
the host when the bus is suspended.

At any time after enumerating, if the A-device has no communications for the
B-device, the A-device suspends the bus. A B-device that supports HNP may
then request to communicate. The B-device can use HNP in response to user
input such as pressing a button, or firmware can initiate HNP without user
intervention.

An OTG A-device must support HNP. An OTG B-device must support HNP
if the device’s targeted peripheral list includes any OTG device. This require-
ment ensures that an OTG B-device can request to access the peripheral func-
tion of a supported OTG device. If the targeted peripheral list includes no
OTG devices, the OTG B-device isn’t required to support HNP because the
peripherals will never use it.

Standard hubs don’t recognize HNP signaling. If a hub is between the B-device
and the A-device, the A-device must not send the hnp_enable request and the
B-device can’t use HNP.

When idle or functioning as a host, an OTG device should switch in its
pull-down resistors on D+ and D-. When functioning as a peripheral, an OTG
device should switch out its pull-down resistor on D+ only.

Requesting to Operate as a Host
This is the protocol the B-device uses to request to operate as the host:

1. The A-device suspends the bus.

2. If the devices were communicating at full speed, the B-device removes itself
from the bus by switching out its pull-up resistor on D+. If the devices were
communicating at high speed, the B-device switches in its pull-up on D+ for 1–
147 ms, then switches the pull-up out. The bus is in the SE0 state.

3. The A-device detects the SE0 and connects to the bus as a device by switch-
ing in its pull-up resistor on D+. The bus is in the J state.

4. The B-device detects the J state and resets the bus.

5. The B-device enumerates the A-device and can then perform other commu-
nications with the device.
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Returning to Operation as a Peripheral
When finished communicating, the B-device returns to its role as a peripheral
using the following protocol:

1. The B-device stops all bus activity and may switch in its pull-up resistor.

2. The A-device detects a lack of activity for at least 3 ms and switches out its
pull-up resistor or removes VBUS to end the session.

3. If VBUS is present and the B-device didn’t switch in its pull-up in Step 1, the
B-device switches in its pull-up to connect as a peripheral. The bus is in the J
state.

4. If VBUS is present, the A-device resets the bus. The A-device can then enu-
merate and communicate with the B-device, suspend the bus, or end the session
by removing VBUS.
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If the A-device has turned off the VBUS voltage, a B-device can use the Session
Request Protocol (SRP) to request the host to restore VBUS and begin a new
session. The two SRP methods are data-line pulsing and VBUS pulsing. The
B-device must try data-line pulsing first, followed by VBUS pulsing. An
A-device that supports SRP must respond to one of the methods. 

An A-device must respond to SRP if the device ever turns off VBUS while a
micro-A plug is inserted. A B-device must support initiating SRP if the device
wants to request communications with an OTG device when VBUS is off. A
B-device whose targeted peripheral list has no devices that support SRP will
have no need to initiate SRP.

In data-line pulsing, the device switches in its pull-up (on D+ or D-, depending
on device speed) for 5–10 ms. In VBUS pulsing, the device must drive the
VBUS line long enough for the host to detect the VBUS voltage but not long
enough to damage a non-OTG host that isn’t designed to withstand a voltage
applied to VBUS. Because VBUS capacitance is much higher on a non-OTG
host, the voltage rises more slowly. Within 5 seconds of detecting data-line
pulsing or VBUS pulsing, the A-device must turn on VBUS and reset the bus.

Standard hubs don’t recognize SRP signaling, so if there is a hub between the
B-device and the A-device, the B-device can’t use SRP. Non-OTG USB periph-
erals also have the option to support SRP.
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When VBUS is present and the bus is suspended, an OTG device can use
remote wakeup to request communications from an OTG device or other USB
host.
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A device with a Micro-AB receptacle is an OTG device. Every OTG device
must have one and only one Micro-AB receptacle, and any device with a
Micro-AB connector must function as a OTG device. The Micro-AB receptacle
can accept either a Micro-A plug or a Micro-B plug.

Figure 20-1 shows the cabling options. Two OTG devices connect to each other
via a cable with a Micro-A plug on one end and a Micro-B plug on the other
end. It doesn’t matter which device has which plug.

A host or upstream hub connects to an OTG device via a Standard-A to
Micro-B cable. A peripheral with a Micro-B receptacle connects to an OTG
device with a Micro-A-to-Micro-B cable. A peripheral with a permanently
attached cable with a Micro-A plug attaches directly to the OTG device. 

A peripheral with a Standard-B or Mini-B plug or a captive cable with a Stan-
dard-A plug must use an adapter to connect to an OTG device. The adapter has
a Micro-A plug and a Standard-A receptacle. The Micro-A plug attaches to the
OTG device. The Standard-A receptacle accepts a Standard-A plug from a cable
that attaches to the peripheral with a Standard-B or Mini-B plug or a captive
cable. This adapter is the only approved adapter for standard USB cables.

Micro-A, Micro-B, and Micro-AB connectors have an ID pin that enables an
OTG device to determine whether a Micro-A or Micro-B plug is attached. In a
Micro-A plug, the ID pin is grounded. In a Micro-B plug, the ID pin is open or
connected to ground via a resistance greater than 1MΩ. ( The MicroUSB
Micro-B ID Pin Resistance ECN raised this value from its original 100kΩ.) An
OTG device typically has a pull-up resistor on the ID pin. If the pin is a logic
low, the attached plug is a Micro-A. If the pin is a logic high, the attached plug
is a Micro-B.

The USB 3.0 specification defines a USB 3.0 Micro-AB receptacle and USB
3.0 Micro-A plug that include contacts for SuperSpeed traffic.
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The ability to draw up to 500 mA per port from the bus is a convenience for
users and a cost saver for device manufacturers. But providing this much cur-
rent, or even the 100 mA that USB 2.0 battery-powered hosts must provide,
can be a burden for some hosts. Some peripherals, including battery-powered
ones, may not need bus power at all.

Figure 20-1. An OTG device can communicate with a USB host or a device on 

the OTG device’s target peripheral list.
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For these reasons, OTG devices have more flexible requirements for providing
bus current. A USB 2.0 OTG device must provide the greater of 8 mA of bus
current or the maximum amount the devices on the targeted peripheral list
require, up to 500 mA.

To conserve power, an A-device can leave VBUS unpowered until the device
detects SRP signaling or launches an application that uses USB. For faster
response when a device is attached, an A-device can have an option to power
the bus on detecting device attachment.
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Every OTG device must have a display or another means to display error mes-
sages to users. To pass compliance tests, an OTG device should support these
messages:

Device not connected/responding. A device isn’t working as expected.

Attached device not supported. A device isn’t on the targeted peripheral list or a
B-device is drawing more current than the A-device supports.

Unsupported hub topology. The device doesn’t support hubs, the bus has more
hub tiers than the A-device supports, or the bus is using another unsupported
hub topology.

A very basic messaging system is a series of LEDs with each labeled with an
error message.
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Every OTG device must have a targeted peripheral list that names the devices
the manufacturer has successfully tested with the OTG device. For each periph-
eral, the list should name the manufacturer and model number and describe the
device. The list should not claim to support an entire class or other devices sim-
ilar to those on the list. The OTG supplement doesn’t say where the list must
appear.   
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During enumeration, a device that supports HNP or SRP must include an
OTG descriptor (Table 20-2) in the descriptors returned in response to a Get
Descriptor request for the Configuration descriptor. The bmAttributes field
tells whether the device supports HNP and SRP. A device that supports HNP
must support SRP. The A-device doesn’t need to know in advance if a device
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supports SRP, but this information is included in the descriptor for use in com-
pliance testing.

�� �����������"���)A&
The OTG supplement defines three codes for use in Set Feature requests.

A code of b_hnp_enable (03h) informs the B-Device that it can use HNP. The
A-device sends this request if all of the following are true: the A-device supports
HNP, the A-device will respond to HNP when the bus is suspended, and the
B-device connects directly to the A-device with no hubs in between.

A code of a_hnp_support (04h) informs the B-device that the A-device sup-
ports HNP and the B-device is directly connected (no hubs). The A-device can
send this request before configuring the B-device. The A-device can then enable
HNP at a later time when the A-device is finished using the bus.

A code of a_alt_hnp_support (05h) notifies the B-device that the currently con-
nected port does not support HNP, but that the A-device has an alternate port
that does support HNP.
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Some embedded hosts don’t need to function as a device at all, or they need to
support host and device functions at the same time. For these applications, the
USB-IF document Requirements and Recommendations for USB Products with
Embedded Hosts and/or Multiple Receptacles offers guidance.

The document specifies logo requirements and presents additional recommen-
dations for products that contain embedded host ports. Like OTG hosts, these
hosts have limited resources and generally don’t run general-purpose,

Table 20-2: The OTG Descriptor indicates whether a device supports 

HNP and SRP.
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0 bLength 1 Descriptor length (3)
1 bDescriptorType 1 OTG (9)
2 bmAttributes 1 D2–D7: reserved, 

D1: 1 = HNP supported,
       0 = HNP not supported
D0: 1 = SNP supported,
       0 = SNP not supported
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user-installed software. The hosts may provide one or more device ports that
function simultaneously with the host port.
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Table 20-3 compares embedded hosts and conventional hosts. Requirements
for embedded hosts are similar to those for the host function of OTG devices.

Like an OTG device, an embedded host must provide a targeted peripheral list.
Two versions of the list provide information for compliance testing and for
users. For compliance testing, the list includes Vendor ID and Product ID
numbers for the peripherals. For users, the list includes manufacturer names
and model numbers. The list may name specific peripherals or a class of prod-
ucts such as mass storage along with specific tested devices in the class. The lists
should indicate the supported speeds of the targeted peripherals.

The targeted peripherals determine the amount of bus power the host must
provide and the supported bus speeds and transfer types. For each port, a host
with specific targeted peripherals must supply the greater of 8 mA of bus cur-
rent or the maximum amount the devices on the targeted peripheral list require,
up to 500 mA. A host that supports a class must supply 500 mA per port. A
host can support any single speed or multiple speeds but must support the
speeds required by the devices in the targeted peripheral list. The host must
support bulk, interrupt, and isochronous transfers as needed according to the
requirements of the targeted peripherals.

Support for SRP and hubs is optional. A host that supports hubs can support a
single hub only or the full tiered star topology of a conventional bus.

On attachment of a peripheral or hub, the host must indicate whether it sup-
ports the peripheral or hub configuration. 

As on a conventional host, all ports on an embedded host should support the
same speeds and devices. To inform users that a host port has limited capabili-
ties, a graphical indicator at the connector is recommended. For example, a port
that supports only printers might display a printer icon.

�������&����
An embedded system with a host function can also support one or more periph-
eral functions with type-B connectors. Unlike OTG devices, the system can
perform its host and peripheral functions at the same time. A data logger might
have a Standard-A port that connects to a printer for printing logged data and a
type-B port that connects to a conventional host for uploading data. The host
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and device ports don’t have to support the same speeds, but all device ports
should support the same speeds. 

A non-OTG product that needs to function both as a device and as a host but
not at the same time can use a vendor-specific connector. For operation as a
device, the user attaches a cable that has a mating vendor-specific connector
and a Standard-A plug. For operation as a host, the user attaches an adapter that
has a mating vendor-specific connector and a Standard-A receptacle.

Designers of products that have both Standard-A and type-B receptacles should
use product design, labeling, and product literature to communicate the prod-
uct’s function to users and make it clear that the product isn’t a hub. 

�������	������
Several manufacturers offer controller chips designed for use in OTG devices
and embedded hosts. To function as a peripheral, the controller must support
functions similar to those in the controllers described in Chapter 6. As with
other device controllers, some OTG and embedded-host controllers contain a
CPU while others must interface to an external CPU.

To function as an OTG host, the controller, possibly with the help of external
circuits, must have the ability to send SOF packets, schedule and initiate Setup,

Table 20-3: Unlike an OTG device, a device that functions as an embedded host 

can also function as a peripheral at the same time.

 ����������
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Communicate at high speed yes As needed to support 
targeted peripheralsCommunicate at full speed yes

Communicate at low speed yes
Support external hubs yes optional
Provide targeted peripheral list no yes
Function as a peripheral no optional, can be 

simultaneous with host 
function

Support Session Request Protocol optional optional
Minimum available bus current per port 500 mA (100 mA if 

battery-powered)
8 mA

Connector 1 or more Standard A 1 or more Standard A



Hosts for Embedded Systems

                                                                                                483

IN, and OUT transactions, provide VBUS, manage power, reset the bus, switch
the pull-up and pull-down resistors as needed when changing roles, and detect
the state of the ID pin. Some chips have internal charge pumps for supplying
and controlling VBUS from a 3V supply. A controller may also provide timers,
status signals, or other hardware support for SRP and HNP signaling.

4���������������
Sources for microcontrollers with OTG and embedded-host capability include
Cypress Semiconductor, Atmel, Microchip Technology, and NXP Semiconduc-
tors.

�!���

�#�������"����

As the name suggests, Cypress Semiconductor’s CY7C67200 EZ-OTG control-
ler is designed for use in OTG devices. The chip contains a 16-bit CPU and can
function in two modes. In stand-alone mode, the controller is the device’s main
CPU. The CPU can read firmware from an I2C EEPROM. In coprocessor
mode, the controller interfaces to an external CPU that manages USB commu-
nications and other tasks. The CPU can communicate via either a parallel Host
Peripheral Interface at up to 16 MB/s, a high-speed asynchronous serial inter-
face at up to 2 Megabaud, or a Serial Peripheral Interface (SPI) at up to 2 Mbps.

The EZ-OTG has two USB ports and two serial interface engines that support
low and full speeds. One port can function as an OTG device, a non-OTG
embedded host, or a peripheral-only device port. The other port can function
as a non-OTG host or peripheral-only device port.

The controller contains a ROM BIOS that executes an Idle task consisting of
an endless loop that waits for an interrupt, executes the tasks in the Idle chain,
and repeats. Firmware can add tasks to the Idle chain or replace the entire Idle
task with device-specific programming.

Firmware development can use the free GNU Toolset, which includes a C com-
piler, assembler, make utility, linker, debugger and other utilities. Cypress pro-
vides Frameworks C code for performing USB-related tasks and accessing other
components in the controller.

A tutorial and many examples are in the free e-book, USB Multi-Role Device
Design By Example, by John Hyde, available from www.usb-by-example.com.

A related chip, the CY7C67300 EZ-HOST, adds an interface to external mem-
ory, two ports for each of the two SIEs, memory expansion capabilities, and
more I/O features.
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Atmel’s AVR series of microcontrollers includes the AT90USB1287, which has
an OTG port that supports full and low speeds. The 8-bit chip has 128K of
flash memory, 4K of EEPROM, and 8K of RAM. The 48 I/O bits support
functions such as timer/counters, PWM channels, an ADC, USART, SPI, and
analog comparator. A JTAG interface supports debugging.

Atmel provides an AT90USBxxx USB software library in C with support for
OTG functions. The AT90USB647 is similar but has less memory.

���������/����	� !�

Microchip Technology offers 16-bit and 32-bit microcontrollers with OTG and
embedded-host capability. Chips in the 16-bit PIC24FJ256GB110 family con-
tain a module that can function as a full-speed peripheral or a low/full-speed
OTG or embedded host. The chips have flash memory for program storage and
support a variety of I/O functions in addition to USB. The 16-bit architecture
builds on the 8-bit architecture of the PIC18F4550. Microchip’s USB Frame-
work supports the PIC24F chips.

Chips in the 32-bit PIC32MX family offer similar capabilities with faster per-
formance. Microchip provides a separate USB device and host stack for these
chips.

�>%�#�������"����
�

NXP Semiconductors offers a variety of ARM-based microcontrollers with
OTG and embedded-host capability. One example is the LPC3180, which con-
tains a 32-bit ARM926EJ-S processor. The full-speed USB port requires an
interface to an external transceiver with an I2C interface such as the ST-NXP
Wireless ISP1301.

�����" ��������
Sources for OTG interface chips include ST-NXP Wireless and Oxford Semi-
conductor. Also see the Cypress CY7C67200 EZ-OTG described above.

#/2�>%�����	�
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ST-NXP Wireless’ ISP1362 is an interface-only chip for OTG devices. The
chip contains an ISP1181B device controller and a host controller. Both con-
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trollers can communicate at full and low speeds. (The OTG device must use
full speed when functioning as a peripheral.)

The controller interfaces to an external CPU using a 16-bit interface that can
transfer data at up to 10 MB/s. The external CPU communicates with the con-
troller by accessing its registers and buffer memory. The registers are compatible
with the registers defined in the OHCI host-controller specification.

A descriptor defines a format for exchanging information with the host control-
ler’s driver. The descriptor consists of a header that contains information such
as the endpoint number, transaction type (Setup, IN, OUT), bus speed, tog-
gle-bit value, and a completion code, followed by data.

The chip contains two USB ports. One port can function as the OTG port in
an OTG device or as a host or device port for a non-OTG host or device. The
second port can function only as a host port and isn’t recommended for use in
OTG devices.

ST-NXP Wireless provides host, peripheral, and OTG drivers for PCI plat-
forms running Linux, Windows CE, DOS, and the FlexiUSB real-time operat-
ing system and for Intel PXA250/Arm architecture platforms running Linux or
Windows CE.

The ISP1761 is an OTG controller that supports high speed and can use a 16-
or 32-bit CPU interface.

'�+����#�������"�����

Oxford Semiconductor’s OXU210HP is a physically small, low-power interface
chip especially suited for compact and inexpensive dual-role products.

The controller supports low, full, and high speeds and interfaces to an external
CPU using a 16- or 32-bit data bus. Two USB ports can operate as one host
and one OTG device, one host and one peripheral, or two hosts. Hardware or
software can handle HNP. The chip supports multiple power-saving modes and
a selectable clock frequency. 

Driver options include host and peripheral drivers for Windows CE and Linux
and USBLink drivers for real-time OSes.

The chip is one in a series of OTG-capable chips from Oxford Semiconductor. 



                                                                                                           

I hope you’ve found this book useful. For more about USB developing, includ-
ing device and host example code and links to product information, tutorials,
articles, news, and updates, please visit my website at www.Lvr.com.
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NTx86 235
NumP 57, 58, 59

in bulk transfers 72
in control transfers 65

NXP Semiconductors 148
controllers 484
See also ST-NXP Wireless; specific chip

NYET 48
control transfers and 65
in bulk transfers 71
in control transfers 121
PID 42

O
OBEX 172, 175
OHCI 216

interrupt transfers and 78
vs. UHCI 216–217

On-The-Go. See OTG
Open Host Controller Interface. See OHCI.
Ordered Set 438
oscillator, in device 139
OTG

A-device and B-device 472
bus current 478
cables 477
chips 482–485
connector 472
descriptor 115, 479
requirements 472, 473–479
Supplement 472
targeted peripheral list 479
user messages 479

other_speed_configuration descriptor 105
OUT

defined 34
PID 42
transaction 35

Output item (HID) 298, 299
Output report 328–330

API 317–318
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over-current protection 397
Oxford Semiconductor 485
OXU210HP 485

P
packet

delay between 434
sequence (USB 2.0) 44–45
short. See short packet
size, maximum 101, 111–112
SuperSpeed 53–59

Packet ID. See PID.
Packets Pending 56, 58
padding (HID) 314
page description language 190, 191
parallel port

adapter 8
compared to USB 3
converting from 9–10, 204–205

passphrase, mass storage 185
PC

as device 145–146
connecting two 205–207
See also host

PCI device board 145–146
PCI Express (PCIe) 457
PCM2702/PCM2900 168
PDL 190, 191
PDO 211
PDT 187
Periodic usage 111
peripheral 19

See also device
personal healthcare class 189–190
phase, transaction 41–44
Phase-locked SOFs ECN 399
phone. See telephone; cell phone
physical descriptor 314
physical interface device 180
Physical Minimum and Maximum

(HID) 306, 308–310
PIC. See Microchip Technology; specific chip
PIC18 controllers 148

See also specific chip

PIC18F4550 148–152
PIC24FJ 484
PIC32MX 484
PICBASIC PRO 152

descriptors 281
HID code 293
WinUSB and 349

PID (packet ID) 41–44, 433
error-checking bits 51
sequencing 53

PID (physical interface device) 180
PIMA 15740 195–196
PING (SuperSpeed) 407
PING (USB 2.0) 49

control transfers and 65
in bulk transfers 71
in control transfers 120
PID 43

PING_RESPONSE 407
ping-pong buffer 139
PInvoke (P/Invoke) 244
pipe

defined 36
stream and message 38–39

PL-2305 192
PL-2501 206
Platform Invocation Services 244
Plug-and-Play 211, 214
PLX Technology 145–146, 158
PNF 238, 240
PnP 211, 214
point of sale 181
pointer 249
port

defined 19
indicator (hub) 388

PORT_RESET 122
POS 181
power

bus. See bus power
switch, soft-start 401

Powered-B connector 460
PowerOn Reset 438
PRE PID 43, 44, 377, 381
precompiled INF file 238



Index

499

printer class 190–192
INF file 239
See also parallel port

Product ID
in descriptor 102
INF file and 236

Prolific Technology 188, 192, 206
propagation delay 454
property page 225, 241
protocol analyzer

hardware 410–412
software 412–413

PS/2 182
PSTN 170, 172
PtrToStringAuto 245
Public switched telephone network. See PSTN
pull-up resistor 385, 392, 444

Q
quadruple buffers 139
QuickUSB Module 145

R
RAM

data memory 141
program memory 140, 141

raw input 182
ReadFile 317, 330–339
real-time transfers. See speed
receiver

high speed 445
low/full speed 442
SuperSpeed 457

reference variable 249–250
RegisterDeviceNotification 265–269
registry 226–231
Remote NDIS. See RNDIS
remote wakeup 402

bit 126
removable devices and media 188
repeater/forwarder (SuperSpeed hub) 386–

387
report descriptor 286–289

Report ID 303–304
request

class specific 136
standard 124–135
vendor specific 136

Request Error condition 122
Request Type 118
reset

enumeration and 92, 93
hot 438
SuperSpeed 438
warm 403

Reset state 427–428
Resume state 401, 427
Retry bit 56
rise time 454
RNDIS 169, 175
ROM (program memory) 140
Root 2 USB Test Host 414
root hub 15, 376
Route String 56, 58, 387
RPM Systems 414
RS-232

adapter 8
converting from 204
See also COM port, virtual; EIA/TIA-232

RS-485 3, 455

S
S1-S4 power states 407–408
SafeHandle 249
scrambling 436
SCSI 185, 187

USB Attached. See UASP
SDK 212, 245
Sealevel Systems 465
SECURITY_ATTRIBUTES 262
selective suspend 400
Self-Powered bit 126
self-powered device 392
Sequence Number 55–56
sequence number, header 55
serial interface engine 138
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serial number
content security and 177
driver installation and 242
IOCTL for media 177
mass storage and 187
registry and 227

serial port. See COM port, virtual; RS-232;
RS-485

Series A. See Standard-A connector
Series B. See Standard-B connector
service interval 56, 112
service key 231
service, defined 39
Session Request Protocol 476
Set Address 93, 129
Set Configuration 132
Set Descriptor 131
Set Feature 128
Set Idle 289, 292
Set Interface 133
Set Isochronous Delay 95, 135
Set Port Feature 122
Set Protocol 289, 292
Set Report 289, 291, 318
Set SEL 95, 135, 406
Setup

Data Packet 65
required ACK 70
transaction 35

SETUP PID 42
Setup stage 62, 118–119

SuperSpeed 65
SetupAPI log file 240
setupapi.dll 245
SetupDiDestroyDeviceInfoList 253, 261
SetupDiEnumDeviceInterfaces 253, 255–

258
SetupDiGetClassDevs 253, 254–255
SetupDiGetDeviceInterfaceDetail 253,

258–261
shielding 464

requirement (USB 2.0) 451
short packet 45

WinUSB 360
SIE 138

signature, digital 423–424
signed driver. See digital signature
SilentInstall 229
Silicon Laboratories

controller chip 145, 148, 161
development board 145

Single-ended 0/1 426
sleep (Windows) 407
Sleep state 399, 401–402
smart card 192–194

INF file 239
SMSC

controller chips 148, 188
SnoopyPro 413
SOF 43–44, 385

and low-power states 399
PID 42
synchronizing to 82

soft-start power switch 401
SOP 427

See also HSSP 429
Sourcequest, Inc. 413
SourceUSB 413
SPC 187
specification

Certified Wireless USB 466
class 164
ECNs 14
OTG 472
USB 1.0, 1.1 11
USB 2.0 12–13
USB 3.0 13
See also specific class

speed
bus 4
considerations 16–18
deciding on 142
detecting 92–93
detecting device 384–385
USB 2.0 hub 383–385
See also bandwidth; throughput

SPI
compared to USB 3
EEPROM 141

SPLIT PID 43, 44
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split transaction 379–382
Squelch 429

detecting 446
SRP 476
SSPLIT 380–381
ST-NXP Wireless 158, 188

controllers 484
transceiver 484
See also NXP Semiconductors

ST7260 148
ST7265X 148
ST7268x 148
STALL 47–48

in control transfer 50, 65, 121, 122, 123
PID 42
Transaction Packet 54

Standard Microsystems Corporation. See
SMSC

Standard-A connector 452
Standard-B connector 451

See also USB 3.0 Standard-B connector
standby state 407–408
star, tiered 15–16
Start of Frame. See SOF
Start-of-High-speed-Packet 429
Status Change endpoint 383, 387, 393
status codes 47–49
status phase. See handshake phase
Status stage 62, 121–122

SuperSpeed 65
Std A, Std B. See Standard-A connector; Stan-

dard-B connector
still image

INF file 239
still image class 194–197
STMicroelectronics 148

DFU driver 179
Stream ID 58
stream pipe 38
string descriptor 113–114
structure, passing 251–252
Subtype (Transaction Packet) 54, 57

SuperSpeed 4
detection circuit 457
enumeration 95
See also USB 3.0

SuperSpeed endpoint companion
descriptor 112–113

burst transactions and 57
SuperSpeed USB device capability

descriptor 115
Suspend state 400–401

high speed 448
SuperSpeed 403, 405–406

Symbol 437
symbolic link 221
SYNC field 431, 433
Synch Frame 134
synchronization type 111
system exit latencies 135
%SystemRoot% 232

T
targeted peripheral list 479, 481
TDR 446
telephone

cell 170
network. See PSTN

termination, high speed 445–447
test and measurement class 197–198
test modes 127, 128, 435–436
testing

compliance 415–419
equipment 410–414
logo 419–424

Tetradyne Software, Inc. 203
Texas Instruments 148, 168, 188
Thesycon Systemsoftware & Consulting

GmbH 175, 203
threads (host programming) 87
throughput 24

maximizing 86–88
TIA/EIA-485. See RS-485
tiebreaker 60
tiered star 15–16
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timeout
HidD_GetFeature 342
HidD_SetFeature 341
ReadFile 330–331
WinUSB 360
WriteFIle 317–318

timing reference (device) 139
TMC. See test-and-measurement class
token phase 43
topology, bus 15–16
TP. See Transaction Packet
Trace Systems, Inc. 293
traffic generator 414
training, link 438
transaction

burst 57
burst (isochronous) 84
elements (USB 2.0) 39–46
split. See split transaction
SuperSpeed 53–59

Transaction Packet 53
transaction translator 377–382
transceiver 138

USB 2.0 439–449
USB 3.0. See transmitter (USB 3.0); receiver

(USB 3.0)
transfer

defined 39
types 37
See also bulk transfer; control transfer; in-

terrupt transfer; isochronous trans-
fer

transmitter (USB 3.0) 457
trusted publisher 423
TUSB3200A 168
TUSB3210/3410 148
TUSB3410 184
TUSB6250 148, 188
twinaxial cable 457
twisted pair 457, 463–464

U
U0-U3 link states 403–405

U1_ENABLE and U2_ENABLE 127, 128
U3. See Suspend state
UAA 169
UASP 27, 185
UFI 185
UHCI 216

vs. OHCI 216–217
UM232R/UM245R modules 161
UMDF 218
Universal Audio Architecture 169
Universal Host Controller Interface. See

UHCI
universally unique identifier 115
unmanaged code 244–247
UnregisterDeviceNotification 275
UOWN 149
UPS unit 180
upstream 15
URB 214–215, 412
Usage (HID) 287, 311, 312
Usage Page 286, 304
Usage Tables 181, 296, 305
USB

benefits for developers 5–7
benefits for users 2–5
compared with other interfaces 3
history 11–15
icon 452, 460
limits 7–10
logo 415, 419
speeds 4
topology 15–16
vs. Ethernet 10
vs. IEEE-1394 11
See also specification

USB 1.0, USB 1.1. See USB 1.x
USB 1.x 11

hub 383
USB 2.0

history 12–13
USB 2.0 Extension (device capability

descriptor) 114
USB 2.0 Phase-locked SOFs 399



Index

503

USB 3.0
frequently asked questions 27–30
history 13
See also SuperSpeed

USB 3.0 Micro-B connector 458
USB 3.0 Standard-A to USB 3.0 Standard-A

cable 461
USB 3.0 Standard-B connector 458
USB Attached SCSI Protocol 27
USB FIFO 159–161
USB Implementers Forum. See USB-IF
USB Server 455
USB UART 159–161

for host-to-host communications 207
USB2005/USB222x 148
usb8023.sys 175
USBCAMD 202
usbccgp.sys 175, 214
USBCV 416
USBee EX2 Experimenter’s Board 145
usbhub.sys 215
USBI2C/IO 145
USB-IF

about 7
compliance tests 415–419

usbport.sys 215
usbscan.sys 196
usbser.sys 175
usbstor.sys 188
USBTMC. See test-and-measurement class
usbvideo.sys 202
USBwatch 293
user mode 210
user32.dll 245
user-mode client driver 213
using statement 244
UUID 115
UWB 466

V
V.250 modem standard 169
value variable 249–250
variable type 249

VBUS
capacitance 393
detecting 393
USB 3.0 hub and 385
voltage 390

Vendor ID
in registry 227
INF file and 236, 240
obtaining 10
reading (HID) 321–323

Vendor-specific class 101
Verilog 138
VHDL 138
ViCAM-III 202
video class 198–202
virtual COM port 160, 173–175

driver 175
See also communications device class; USB

UART; USB FIFO
Vista Imaging 202
Visual Basic. See example code; .NET
Visual C#. See example code; .NET
Visual C++ 244
voltage

back 393
bus 390
output (USB 2.0) 449
See also VBUS

W
W81E381 194
Warm Reset 403, 438
WDF 7, 217
WDK 217–219, 245

devcon example 220
GUIDs and 219

WDM 213, 217
WHQL 238
WIA 196
WiMedia Alliance 466
Winbond Electronics Corporation 194
wIndex 119
%windir% 232
WindowProc. See WndProc
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Windows
API 212
audio support 169
CDC support 175
content security support 177
Device Manager 223–226
HID support 184
logo 422–424
mass storage support 188
power management 407–408
printer support 192
registry 226–231
smart card support 194
video support 202

Windows 7 13
Windows 95 11
Windows 98 11
Windows driver

irda.sys 184
usb8023.sys 175
usbccgp.sys 175
usbhub.sys 215
usbport.sys 215
usbscan.sys 196
usbser.sys 175
usbstor.sys 188
usbvideo.sys 202

Windows Driver Foundation 7, 217
Windows Driver Kit. See WDK.
Windows Driver Model 213
Windows Hardware Quality Labs 238
Windows NT 12
Winqual 422–423
WinUSB

assigning 349–350
firmware 346–349
INF file 235
requirements 345–346
See also WinUSB_xxxx functions

WinUsb_ControlTransfer 368–371
WinUsb_Free 371–372
WinUsb_Initialize 350–352
WinUsb_QueryInterfaceSettings 352–354
WinUsb_QueryPipe 354–358
WinUsb_ReadPipe 366–367
WinUsb_SetPipePolicy 359–364
WinUsb_WritePipe 364–366
wire gauge. See AWG
Wireless Controller class 101
wireless interface 465–469
wireless mobile communications 169, 170
Wireless USB 466

device capability descriptor 114
WirelessUSB (Cypress) 466–468
wLANGID 114
wLength 119
WM_DEVICECHANGE 265, 266
wMaxPacketSize 111
WMC 169, 170, 172

driver 175
WndProc 265, 269–270
WPF subsystem 192
WriteFile 317, 328–330
wValue 119

X
xHCI 216

Z
zero-length Data Payload 54

in control transfer 68
zero-length packet. See ZLP
ZigBee 469
ZLP

defined 45
in control transfer 50, 68, 120, 121


