
Programming Mac OS X:
A GUIDE FOR UNIX

DEVELOPERS

KEVIN O’MALLEY

MANNING

Programming Mac OS X

Programming Mac OS X
A GUIDE FOR UNIX DEVELOPERS

KEVIN O’MALLEY

M A N N I N G
Greenwich

(74° w. long.)

For electronic information and ordering of this and other Manning books,
go to www.manning.com. The publisher offers discounts on this book
when ordered in quantity. For more information, please contact:

Special Sales Department
Manning Publications Co.
209 Bruce Park Avenue Fax: (203) 661-9018
Greenwich, CT 06830 email: orders@manning.com

©2003 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books they publish printed on acid-free paper, and we exert our best efforts to that end.

Manning Publications Co. Copyeditor: Tiffany Taylor
209 Bruce Park Avenue Typesetter: Denis Dalinnik
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-930110-85-5

Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – VHG – 05 04 03 02

v

PART 1 OVERVIEW ... 1

1 ■ Welcome to Mac OS X 3

2 ■ Navigating and using Mac OS X 27

PART 2 TOOLS ... 55

3 ■ Project Builder and Interface Builder 57

4 ■ Development tools 109

PART 3 PROGRAMMING .. 169

5 ■ Objective-C and the Cocoa development frameworks 171

6 ■ Cocoa programming 203

7 ■ AppleScript programming 245

8 ■ Mac OS X and beyond 279

brief contents

vii

foreword xiii
preface xv
acknowledgments xviii
about this book xix
about the author xxiii
about the cover illustration xxiv

PART 1 OVERVIEW .. 1

1 Welcome to Mac OS X 3
1.1 Introduction 4

Origins of Mac OS X 5
1.2 The Macintosh user interface 6

1.3 The Mac OS X user interface 8
The desktop 8 ■ Menus 8 ■ The Dock 10
Window layering 11 ■ Dialog boxes 11 ■ Drawers 12
Keyboard navigation 12 ■ Other interface features 13

1.4 The Mac OS X architecture 13
Architecture layers 15 ■ The kernel environment 16
Core Services layer 20 ■ Application Services layer 21
Application Environment layer 22 ■ Aqua 26

1.5 Summary 26

contents

viii CONTENTS

2 Navigating and using Mac OS X 27
2.1 Introduction 28

2.2 Shells 29
Terminal features 31

2.3 Help system 32
Help Viewer 33

2.4 User accounts and privileges 33
Creating user accounts 34

2.5 Booting and default services 36

2.6 Programs and Mac OS X bundles 37

2.7 Security issues 39

2.8 File system 39
Finder 41 ■ Case sensitivity and pathname delimiters 43

2.9 Single-user mode 44

2.10 System log files 45

2.11 Processes management 45

2.12 Common commands and tools 46

2.13 Scripting languages 48
AppleScript 48

2.14 Development tools 50

2.15 X Window under Mac OS X 51
Installing the X server 52

2.16 UNIX to Mac OS X software projects 53

2.17 Summary 54

PART 2 TOOLS... 55

3 Project Builder and Interface Builder 57
3.1 Introduction 58

Macintosh Programmer’s Workbench 59
THINK Pascal and THINK C 59 ■ CodeWarrior 60
Project Builder and Interface Builder 60

3.2 Creating an application with Project Builder 62

CONTENTS ix

3.3 Project Builder in depth 67
Targets and build styles 67 ■ Project Builder’s UNIX tools 68
Project Builder’s interface 69 ■ Project Builder scenarios 78

3.4 Creating an application with Interface Builder 100
Interface Builder scenarios 101

3.5 Summary 108

4 Development tools 109
4.1 Introduction 110

4.2 UNIX development tools under Mac OS X 112
Editors 112 ■ Mac OS X editing tools 113
Version control 117 ■ Static code analysis tools 121

4.3 Compilers and build tools 122

4.4 Mac OS X Aqua-based development tools 122
UNIX-based editors 122 ■ Mac OS X-based editors 127

4.5 Apple’s GUI-based development tools 127
Apple Help Indexing Tool 128 ■ AppleScript Studio 128
FileMerge 129 ■ Icon Composer 132
Interface Builder 132 ■ JavaBrowser 133
MRJAppBuilder 134 ■ MallocDebug 135 ■ ObjectAlloc 143
PEF Viewer 143 ■ PackageMaker 144 ■ Pixie 144
Project Builder 144 ■ PropertyListEditor 144
Quartz Debug 146 ■ Sampler 147 ■ Thread Viewer 150
icns Browser 155

4.6 Apple’s command-line development tools 156
ps (process status) and top (system usage statistics) 156
sc_usage: showing system call usage statistics 158
fs_usage: reporting system calls and page faults related to the
filesystem in real-time 160 ■ gprof: displaying execution
profile data 161 ■ leaks: searching a process’s memory for
unreferenced malloc buffers 163 ■ heap: listing all the
malloc-allocated buffers in the process’s heap 165
malloc_history: showing malloc allocations that a process
has performed 165 ■ sample: profiling a process during
a time interval 166

4.7 Summary 167

x CONTENTS

PART 3 PROGRAMMING... 169

5 Objective-C and the Cocoa development frameworks 171
5.1 Introduction 172

5.2 Introduction to Objective-C 173
Object-oriented terminology 174 ■ Classes 175
Messages 177 ■ Categories 178 ■ Protocols 180
Other features 180 ■ Why learn Objective-C? 181

5.3 Cocoa software infrastructure 182
Foundation 182 ■ Application Kit 187
Memory management 188 ■ Design patterns 193
Cocoa event handling 197

5.4 Other Cocoa development languages 200
C++ 201 ■ Perl 201 ■ Ruby 202

5.5 Summary 202

6 Cocoa programming 203
6.1 Introduction 204

6.2 The CocoaWGet example program 205

6.3 Program requirements 207

6.4 Program design 208

6.5 Building the interface 209
Opening the project 209 ■ The interface components 210
Control alignment and spacing 212 ■ Forms 215
Classes and instances 215

6.6 CocoaWGet: implementing code with Project Builder 220
The model 221 ■ The view 224 ■ The controller 224

6.7 Program extensions 233
Letting the user cancel downloads 234
The application icon 239 ■ The help file 241

6.8 Summary 243

CONTENTS xi

7 AppleScript programming 245
7.1 Introduction 246

7.2 Scripting languages 247

7.3 AppleScript 248
Creating and running a script 250 ■ Types of AppleScripts 251
AppleScript extensions 252 ■ The AppleScript language 254
Choosing a scripting language 264

7.4 Example applications of AppleScript 264
iTunes and AppleScript 264 ■ AppleScript Studio 269

7.5 Summary 278

8 Mac OS X and beyond 279
8.1 Introduction 280

8.2 Development tools 281
Compilers 281 ■ Project Builder 283 ■ Changing compilers 283
Inline scripting 283 ■ New target editor 286
Searching documentation 287

8.3 Terminal application 289
Setting Terminal preferences 289
Splitting the Terminal window 292
Other Terminal additions 293

8.4 The PerlObjCBridge 293
PerlObjCBridge example 295

8.5 Summary 300

A Getting and installing development tools 301

B UNIX and Mac OS X command mappings 303
B.1 Common Mac OS X operations 304

B.2 UNIX file/directory commands mapped to Mac OS X
commands 304
List directory contents: ls 304
Copy/move files or folders: cp, mv 305
Remove files or folders: rm 305 ■ Change directory: cd 305

xii CONTENTS

Create a new directory: mkdir 305
Change file permission and group: chmod, chgrp 306
Compare files: diff 306 ■ Get the word, line, or byte count: wc 306
Compress and decompress data: compress, uncompress, tar, gzip,
gnuzip, unzip, zcat 306 ■ Edit text files: emacs, vi 306
View files: head, tail 306 ■ Find files: find 307

B.3 UNIX communication commands mapped to
Mac OS X commands 307
OpenSSH: ssh, scp 307 ■ Talk to another user: talk, ytalk 307

B.4 UNIX process management commands mapped to Mac
OS X commands 307
Show system and process usage statistics: top, ps 307
Terminate a process: kill 307

C The precursor of Mac OS X: Mac OS 309
C.1 A tour of the Mac OS interface 310

C.2 Interacting with the system 312

C.3 Mac OS system components 313
System file and Finder 314 ■ Process scheduling 314
Memory management 315
Extending the system through system extensions 317
Interapplication communication (IAC) 318
File system 319 ■ Macintosh files 319 ■ Graphics 320
Networking 321

D A brief history of UNIX 323
D.1 The origin of UNIX 324

High-level languages and punch cards 324
Batch processing 325 ■ Time-sharing 326

D.2 The birth and development of UNIX 328

D.3 GNU, Free Software Foundation, and open source 333

D.4 UNIX software development philosophy 335

 resources 337

 index 345

xiii

foreword
Apple’s release of the Macintosh in 1984 heralded a computer revolution in ease
of use for nontechnical people. Over time, computers and computer interfaces
split into three main camps: Microsoft Windows, the Macintosh, and the various
flavors of UNIX.

 UNIX has been a traditional favorite of the research and scientific community
for a variety of reasons. With the rise of Linux, it has become more popular than
ever. Now Apple has brought the worlds of Macintosh user experience and
UNIX together to form Mac OS X. With a full-featured UNIX system as the
driving engine, the two worlds have merged.

 All that remains is to create better software for this new blended environment.
This has proven to be challenging. Many UNIX developers haven’t written code
for graphical user interfaces, while many Macintosh developers haven’t written
code based on UNIX environments. Bringing these two diverse types of devel-
opers to the same playing field can be difficult because they each need to learn
from the other.

 This book is a large step forward in facilitating that combined knowledge.
While introducing UNIX developers to the tools available under Mac OS X at a
favorite price point (i.e., free), it also shows Macintosh developers how to adapt to
this new environment and make the most of the new tools now available to them.

 This book is a clear roadmap for learning to write software under Mac OS X.
As a longtime Macintosh developer (with a little UNIX experience), I can say

xiv FOREWORD

this with confidence. I got the chance to read this book just as I was making the
transition from MacOS 9 to Mac OS X. It has helped my understanding of this
new environment by refocusing my UNIX knowledge to this new target.

 For the experienced UNIX developer, this book is your native guide to the
Mac OS X landscape. It speaks both your language and the language of the
natives, helping you quickly make the transition to Mac OS X development.

 While the transition from UNIX to Mac OS X may seem daunting, this book is
a gentle guide, highlighting the development issues found along the way and
smoothing the sometimes serpentine path of coding we all travel.

 SHANE LOOKER

 Senior Software Engineer
 Electronics for Imaging, Inc.

xv

preface
This book is about Mac OS X—specifically, the many UNIX1 features that com-
pose and distinguish the system. It is also intended to introduce UNIX developers
to the world of Mac OS X development environments, frameworks, and technol-
ogies. UNIX developers will find a lot to like about Mac OS X: its UNIX-based
core operating system (called Darwin); its set of BSD-based commands and tools;
its inclusion of traditional UNIX development tools like gcc, gdb, awk, sed, and
Perl; and its development frameworks and technologies all provide a compelling
platform for a UNIX developer. Collectively, these components and technologies
enable you to create powerful and useful programs with modern graphical
user interfaces.

 Given all the high-quality releases of UNIX available today—from commercial
products like Solaris to free distributions such as Linux and FreeBSD—you may
wonder why you should care about another flavor of UNIX. The short answer is
that Mac OS X is more than just another UNIX distribution: on top of the core
UNIX system, you get a well-thought-out, consistent user interface; access to a
wealth of Macintosh software; and some exciting new technologies that are not
available under other UNIX-based systems. In fact, Mac OS X is a successful meld-
ing of two distinct systems and cultures into a single computing environment.

1 UNIX is a registered trademark of The Open Group: http://www.opengroup.org.

xvi PREFACE

 On one hand, Mac OS X functions as a Macintosh system with an updated user
interface, which Apple calls Aqua; you can run your favorite Macintosh applica-
tions as well as new programs written specifically for Mac OS X. On the other
hand, Mac OS X is a fully functioning UNIX system that you can use from the com-
mand line and that supports all your favorite UNIX tools, commands, and applica-
tions such as Apache (http://www.apache.org) and MySQL (http://www.mysql.com).

 Underneath the Aqua interface, many of the core system features are provided
by UNIX and UNIX programs. For example, you start and stop Mac OS X’s built-in
web server with the GUI-based System Preference application. What you don’t
see from the GUI is that the web server is really Apache, the most popular web
server in the world. If you like, you can also start and stop the server from the
command line. Similarly, remote login is provided by OpenSSH.

 Darwin, the core operating system for Mac OS X, is a true BSD-like operating
system. Darwin is also open source, so you have full access to all the source code.
On top of Darwin are the software layers that add the Macintosh services and
functionality to Mac OS X. If you like, you can download the Darwin kernel and
use it as a stand-alone UNIX system on either Macintosh or Intel hardware. (Only
Darwin, the UNIX portion of the system, can be run on Intel hardware; for the
Macintosh-specific components, such as the Aqua user interface, you still need a
full Mac OS X installation.)

 When most Macintosh users look at the system, they see a Macintosh with an
enhanced interface. When UNIX users look at the system, they see UNIX with a
Macintosh desktop. The beauty is that out of the box, one system services the
needs of both kinds of users, and you can customize the system in either direction.

 This arrangement may seem a bit odd and slightly counterintuitive. For instance,
UNIX is known as an operating system built for, and by, programmers; users were
an afterthought. The Macintosh is known as a computer built from the ground
up for usability, with its complexity hidden behind a GUI—it’s a computer for
everyone. In a sense, these systems stand at different ends of the computing
spectrum. Though such a statement is a gross generalization, UNIX users tend to
be technically aware and use the system to support engineering, research, and
systems-level application development tasks (although this characterization has
changed somewhat with the acceptance of Linux). UNIX users enjoy the OS’s
“complex simplicity” and its infinite possibilities.

 Traditionally, Macintosh users haven’t wanted to know about or see the
details of the system. From their point of view, the aesthetics are in the applica-
tions and the elegant, easy-to-use interface, not in the details of the OS or some
abstract command set. Mac OS X exists as an integrated system, where Macintosh

PREFACE xvii

and UNIX each benefit from the other. Macintosh users still have their easy-to-use
computer, but they get the performance and stability enhancements of UNIX.
UNIX users keep all the power and possibilities of UNIX, but now have a consistent
and easy-to-use interface, a host of new software, and application compatibility
with the world.

 Once you use the system, I think you will agree that this is a powerful combi-
nation, full of possibilities. As a long-time Macintosh user and a long-time UNIX
developer, I am thrilled with Mac OS X. If Apple continues to push forward on both
fronts, the platform is sure to attract more users and developers, which will grow
it for years to come. As far as I’m concerned, Apple has a real winner on its hands!

 I sincerely hope you enjoy learning about Mac OS X and will see the benefits
you can derive from the system. I have found Mac OS X to be a comfortable and
powerful work environment for general computing, as well as software develop-
ment. I hope this book gets you interested in the platform and helps you to begin
a long and fruitful journey toward developing software for Mac OS X.

xviii

acknowledgments
I would like to express my thanks to the following people who were instrumental
in the creation and development of this book. To Manning Publications, for
its dedication to producing high-quality books on various aspects of comput-
ing: specifically, Marjan Bace, Syd Brown, Susan Capparelle, Alex Garrett,
Ted Kennedy, Ann Navarro, Mary Piergies, Tiffany Taylor, Denis Dalinnik,
and Elizabeth Martin.

 To the book’s technical reviewers, for giving their time and supplying focus
and much-appreciated advice: Scott Ellsworth, Sean Fagan, Steve Jackson,
David Kerns, and Jeff Kopmanis. To Doug Wiebe of Apple Computer, for his
information and insights on PerlObjCBridge. Special thanks to Shane Looker for
his ability to quickly “serpentine” the technical details of the book and provide
valuable technical insight and comments, as well as for writing the foreword. To
all the programmers, engineers, and computer scientists I have worked with over
the years who have influenced my understanding of computing and software
development. To the faculty, staff, and students of the University of Michigan’s
Artificial Intelligence Lab, for providing an engaging work environment.

 To my parents, Pat and Marge O’Malley, for continued support and enduring
faith. And finally, to my family—Kelly, Adam, and my wife Janelle—for providing
lasting significance to areas of life far too numerous to mention.

xix

about this book
This book is about Mac OS X, Apple’s new UNIX-based operating system. Spe-
cifically, it covers the operating system components and user interface, devel-
opment tools, and programming techniques using key technologies such as
Darwin, Cocoa, and AppleScript. The book was primarily written to help UNIX
developers quickly come up to speed with Mac OS X and begin developing
applications for the platform using Apple’s freely available development tools.

 The book introduces the UNIX-based foundations of Mac OS X and shows how
they fit into its system architecture. It also provides coverage of both GUI and
command-line software development tools through realistic programming exam-
ples of the kind developers will encounter when building software for Mac OS X.

 Though the book is written from a UNIX perspective, it is intended for any-
one who is interested in the Mac OS X platform and wishes to learn more about
the system and its development environment. If you do not have a strong UNIX
background, don’t worry—the material is still accessible and provides a good
background in understanding the UNIX foundations of the system. As you will
see from this book and the considerable volume of information available else-
where about Mac OS X, the platform is very good for application and system
software development as well as general computing.

 This book includes three parts and four appendixes. A separate “Resources”
section follows the appendixes. Part 1, “Overview” is made up of two chapters:

xx ABOUT THIS BOOK

■ Chapter 1 introduces the Mac OS X system, including its user interface and
UNIX-based operating system. The chapter begins by presenting the design
philosophy behind the pre-Mac OS X (Mac OS) user interface and continues
with a discussion of the Mac OS X user interface, covering several of its most dis-
tinguishing components. Next it presents the Mac OS X system architecture and
provides information about specific OS components and how they fit together.

■ Chapter 2 discusses navigating the Mac OS X system and user interface, and
shows how many UNIX operations, commands, and concepts work under
Mac OS X. It also introduces AppleScript, Mac OS X’s native scripting lan-
guage, and covers installing and running an X Window server.

Part 2, “Tools,” also consists of two chapters:

■ Chapter 3 introduces Apple’s freely available development tools: Project
Builder and Interface Builder. Project Builder is an Integrated Development
Environment (IDE) for developing all sorts of Mac OS X applications. Inter-
face Builder is used to create the user interface for your application. The
chapter begins with a brief history of Macintosh IDEs. It then discusses the
main features of Project Builder and Interface Builder within the context
of developing a real application.

■ Chapter 4 provides a wealth of information about the most important Apple
development tools as well as other available tools that aid in the develop-
ment process, including editors, version control systems, and build tools.
The chapter examines each of Apple’s GUI and command-line development
tools and presents examples of their usage.

Part 3, “Programming,” includes the following chapters:

■ Chapter 5 introduces the Objective-C language and Cocoa, Apple’s object-
oriented framework for developing Mac OS X applications. Objective-C is the
primary development language for writing Cocoa applications on Mac OS X.
The chapter provides a tutorial on the Objective-C language and discusses
the main design patterns used in the Cocoa frameworks and applications.

■ Chapter 6 presents a complete Cocoa application and discusses each step in
the development process, from requirements to design to implementation.

■ Chapter 7 introduces AppleScript. It covers the fundamentals of the language
and how to develop and run scripts. Two programs are presented: one uses
AppleScript only and the other uses AppleScript Studio, which enables you to
add Cocoa-based GUIs to your scripts and to combine scripts with Objective-C.

ABOUT THIS BOOK xxi

■ Chapter 8 introduces Jaguar, Apple’s most recent Mac OS X release. It pre-
sents some of the new development tools that come with Jaguar and discusses
the features most interesting to developers.

The book’s appendixes are as follows:

■ Appendix A explains how to download and install the Apple development tools.
■ Appendix B presents a set of tables that map common UNIX commands to

their Mac OS X GUI-based equivalents.
■ Appendix C presents the pre-Mac OS X system, Mac OS. It discusses the

design goals that led to the Macintosh user interface and explores the under-
lying components that form the system.

■ Appendix D presents a short history of UNIX, from the early time-sharing
systems to the development of UNIX. In addition, it briefly discusses the GNU
project, the Free Software Foundation (FSF), and the Open Source move-
ment. The appendix concludes with a short discussion of the UNIX software
design philosophy.

Source code

Conventions
Courier typeface is used for code examples. Certain references to code in text,
such as statements, functions, and identifiers, also appear in Courier typeface.
Bold Courier typeface indicates example information the reader should type in.

Downloads
All the projects and source code discussed in this book are available online. To
get your copy, perform the following steps:

1 Download the archive from http://www.manning.com/omalley to a directory
on your machine.

2 Decompress the archive in one of the following ways:

a From the command line, cd to the directory that contains the archive and type

 % tar zxfv mac_osx_programming_1.0.0.tar.gz

b From the Finder, maneuver to the directory that contains the archive
and double-click mac_osx_programming_1.0.0.tar.gz.

xxii ABOUT THIS BOOK

Author online

Purchase of Programming Mac OS X includes free access to a private web forum run
by Manning Publications where you can make comments about the book, ask techni-
cal questions, and receive help from the author and from other users. To access the
forum and subscribe to it, point your web browser to www.manning.com/omalley.
This page provides information on how to get on the forum once you are registered,
what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaning-
ful dialog between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the AO remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray!

 The Author Online forum and the archives of previous discussions will be
accessible from the publisher’s web site as long as the book is in print.

xxiii

about the author
Kevin O’Malley is a long time Macintosh and UNIX developer. He has been
software architect and lead developer of the Michigan Internet AuctionBot and
the original TAC software system. He has published articles in Dr. Dobb’s Journal
and IEEE Internet Computing. These days, he spends his time working on auction
servers and computer music applications.

Shane Looker, author of the foreword, has been a well-known Macintosh hacker
since 1984. He was twice paper chair for MacHack: the Annual Conference for
Macintosh Developers. He is the author of Icon 7/Icon Artist and co-author of:
InTouch, DateView, Corel Gallery 2.0, Transverter Pro, and ScenicSoft Preps.

xxiv

about the cover illustration
The figure on the cover of Programming Mac OS X is a hunter from Abyssinia in
Eastern Africa, today called Ethiopia. The illustration is taken from a Spanish
compendium of regional dress customs first published in Madrid in 1799. The
book’s title page states,

“Coleccion general de los Trages que usan actualmente todas las Nacionas
del Mundo desubierto, dibujados y grabados con la mayor exactitud por
R.M.V.A.R. Obra muy util y en special para los que tienen la del viajero
universal.”

We translate this statement, as literally as possible, thus:

“General collection of costumes currently used in the nations of the known
world, designed and printed with great exactitude by R.M.V.A.R. This
work is very useful especially for those who hold themselves to be universal
travelers.”

Although nothing is known of the designers, engravers, and workers who colored
this illustration by hand, the “exactitude” of their execution is evident in this
drawing. The Abyssinian hunter is just one of many figures in this colorful col-
lection. Their diversity speaks vividly of the uniqueness and individuality of the
world’s towns and regions just 200 years ago. This was a time when the dress
codes of two regions separated by a few dozen miles identified people uniquely

ABOUT THE COVER ILLUSTRATION xxv

as belonging to one or the other. The collection brings to life a sense of isolation
and distance of that period and of every other historic period except our own
hyperkinetic present. Dress codes have changed since then and the diversity by
region, so rich at the time, has faded away. It is now often hard to tell the inhabit-
ant of one continent from another. Perhaps, trying to view it optimistically, we have
traded a cultural and visual diversity for a more varied personal life. Or a more
varied and interesting intellectual and technical life. We at Manning celebrate the
inventiveness, the initiative and the fun of the computer business with book covers
based on the rich diversity of regional life of two centuries ago brought back to
life by the pictures from this collection.

Part 1

Overview

Chapters 1 and 2 introduce you to the Mac OS X environment, providing
a foundation for understanding the origins of the operating system, how it is
structured, and what components it contains. The first two chapters explain how
to use and navigate Mac OS X, and introduce you to technologies you will use
throughout the book.

3

1Welcome to Mac OS X

■ Origins of Mac OS X
■ Macintosh user interface
■ Mac OS user interface
■ Mac OS X UNIX underpinnings
■ Mac OS X system architecture

4 CHAPTER 1
Welcome to Mac OS X

You’re never too old to become younger.

—Mae West

The Macintosh burst onto the personal computing scene in January 1984,
instantly changing the way people view and interact with personal computers.
Arguably, no other product has affected our perception of personal computers,
or how we expect them to look and operate, more than the Macintosh.

 In this chapter, we’ll look at the Mac OS X at the user and architectural levels.
This introduction provides some background on the Macintosh user interface, dis-
cusses the Mac OS X interface, and concludes with a discussion of the Mac OS X
architecture and system components. Section 1.4 contains some terms and con-
cepts associated with operating systems. Appendix D, “A brief history of UNIX,”
gives a brief overview of UNIX and operating system concepts.

1.1 Introduction

The Macintosh was separated from other personal computers of the day by its
uncomplicated graphical user interface (GUI) and ease of use. The designers of
the Macintosh accomplished this differentiation by using real-world metaphors for
user interface elements, direct feedback for user actions, and a consistent user
interface shared between and among applications. A central theme of the Macin-
tosh is that the user is in charge of the computer, not the other way around; the
system should always respond to the user’s needs and actions. These design prin-
ciples have spawned a user community that is vehemently loyal to the Macintosh
and expects its applications to behave in a consistent manner.

 From a user’s point of view, the Macintosh has always been an elegant system
that is simple to use and easy to understand. This is no accident: Macintosh
developers have a highly acute sense of computer-user interaction and user inter-
face design, and take great pride in producing software that respects the way
people work and use their computers. Macintosh programmers are as concerned
about user interfaces issues as program features or the computational aspects of
a program. If users love Macintoshes for their elegance and simplicity, program-
mers love them because they are uncomplicated, well designed, and great deal of
fun to program.

Introduction 5

1.1.1 Origins of Mac OS X

In March 2001, Apple released a new generation operation system for the Mac-
intosh platform called Mac OS X (X is pronounced “ten”). Many innovations and
developments led to its creation. In the mid-1990s, Apple began work on its next
generation operating system, called Copland. Copland attempted to address some
of the problems associated with Apple’s then-current operating system, Mac OS.
The Mac OS had always excelled in its user interface and ease of use, but it was
falling behind other personal computer operating systems in performance, fea-
tures, and stability. For various reasons, Copland never panned out; in 1996 the
project was cancelled.

 Also in 1996, Apple purchased NeXT computer and began work on another
operating system named Rhapsody. The foundation of Rhapsody was NeXTSTEP,
the operating system Apple acquired from NeXT computer. NeXTSTEP was a
BSD-like operating system based on a Mach kernel, which Apple engineers mod-
ified for Rhapsody. Over time, Rhapsody’s design and features evolved first into
Mac OS X Server and then Mac OS X.

 Mac OS X represents a fundamental departure from past Apple operating sys-
tems, merging the best features of the traditional Mac OS with the rock-solid reli-
ability of UNIX. At the core of the system is Darwin, an open source UNIX-based
operating system built on Mach 3.0 and 4.4BSD; it supplies the UNIX underpin-
nings for Mac OS X. On top of Darwin, Apple engineers layered various Macintosh
services that give the system its Macintosh character and functionality. On top of
all this sits a brand new user interface, called Aqua.

 At one level, the system is a UNIX box, providing access to all the familiar
command-line tools and commands, as well as a wealth of open-source software
and programs including Apache, MySQL, Perl, and GNU software. In addition,
free implementations of X Window can be run under OS X, permitting local and
remote access to a wealth of X Window–based systems and applications. At
another level, the system is a Macintosh; you can run native Mac OS X as well as
older Macintosh application.

 Figure 1.1 shows an OS X machine running a variety of Mac OS X, UNIX, and
older Macintosh software.

 Another interesting feature is the renewed viability of the Macintosh platform
within the scientific, engineering, and research communities. Many people in
these areas have had a bias toward using a Macintosh, but because of the limita-
tions of the Mac OS, have moved to other platforms to run simulations and con-
duct research. You can now run simulations and develop computationally

6 CHAPTER 1
Welcome to Mac OS X

intensive software on the platform; in many cases, you only need to recompile
the source code for the UNIX-based program under Mac OS X.

 These are truly interesting times for Macintosh users, as well as those moving
to Mac OS X from other UNIX-based platforms.

1.2 The Macintosh user interface

When people make the transition to the Macintosh from other systems like
UNIX, often the first thing they notice is how simple and logical the interface is
and how easily they can learn to use the system. As a friend, and long-time UNIX
user, pointed out to me, when he’s using a Macintosh he spends less time work-
ing the levers of the operating system and more time getting work done. The
reasons include Apple’s understanding of user needs and the company’s insis-
tence on developers following a set of interface guidelines when building Macin-
tosh applications.

Figure 1.1 An example of Mac OS X running UNIX (text and X Window based), Mac OS X, and Mac Classic
software

The Macintosh user interface 7

 In the mid-1980s, Apple came up with some fundamental principles for how
the Macintosh and its applications should look and feel: the Macintosh Human
Interface Guidelines. The goal was to present users with a powerful, consistent
system that was easy to use and that had an uncomplicated user interface. These
design goals centered on the user being in charge of the computer and advocated
techniques such as direct feedback for user actions, use of real-world metaphors
for user interface elements, and a consistent user interface shared between and
among applications. (Remember, these were the days when most personal com-
puters ran MS-DOS and users interacted with the system using a command prompt
and text-based interfaces.)

 For example, imagine you were developing an application and working on its
user interface. One method would be to design your application’s interface from
scratch according to your own preferences, or possibly base it on a similar pro-
gram’s interface and make appropriate modifications. Now imagine if developers
built all applications this way. The result would be applications that look and
behave very differently and implement common operations in dissimilar ways.
The consequence for users would be an uneven user experience and constant
relearning of tasks when moving to new applications.

 Macintosh programmers did things differently. Instead of designing and lay-
ing out their applications’ user interface any way they wished, they followed the
guidelines Apple provided them; this process ensured that applications main-
tained the Macintosh look and feel. In addition, Apple’s toolbox routines did
much of the work of supporting that interface—for most developers, breaking
the guidelines involved more work than following them. At first this program-
ming approach was quite a shift, and it probably would not have succeeded if the
guidelines had not been well thought out or did not make sense. Luckily, Apple
employed some smart, experienced people who cared a great deal about how
users interact with computers. The Macintosh Human Interface Guidelines
became a cornerstone for user interface development on the Macintosh, and
most applications were judged and evaluated based on these principles.

 The consequences of these guidelines are applications that implement inter-
face elements and standard operations in a consistent way, enabling users to easily
translate their current knowledge to new programs. Over the years, the interface
guidelines have grown as new technologies and interface components have been
added to the Macintosh system. Today, the Aqua Human Interface Guidelines
(http://developer.apple.com/techpubs/macosx/Essentials/AquaHIGuidelines)
describe how to construct user interfaces for Mac OS X applications. To a degree,

8 CHAPTER 1
Welcome to Mac OS X

the Aqua guidelines are another extension of the original interface guidelines,
addressing new features of the Mac OS X user interface.

 The most important lesson to take from this discussion is that Apple has put a
lot of time and thought into how Macintosh applications should look and
behave. The company has produced an excellent set of rules and recommenda-
tions for constructing contemporary user interfaces, and developers should read,
understand, and follow them when developing Macintosh applications. Try to
envision the programs you write for Mac OS X as being members of a complete,
well-thought-out system where certain rules exists to promote the user experience.
Your application should exist within this context, and not as a separate entity.

1.3 The Mac OS X user interface

The strength of the Macintosh has always been its user interface and ease of use.
The new Mac OS X Aqua interface maintains the tradition of intelligent, easy-to-use
Macintosh user interfaces, but sports a distinctive, liquid-like look, as well as many
new and advanced interface components and features. Figure 1.2 shows an example
of the Aqua user interface.

 The Aqua interface continues to use real-world metaphors to represent com-
puter resources. Navigating and using the system is simple because you are already
familiar with many of these concepts. Overall, the Aqua user interface is simple
and intuitive compared to UNIX desktops and window managers such as GNOME
(http://www.gnome.org), KDE (http://www.kde.org), and fvwm (http://www.fvwm.org).
As a result, you will require little upfront information to begin using the system.

1.3.1 The desktop

The Mac OS X desktop is analogous to a real office desk, which functions as your
primary workspace and repository of information. A program called the Finder
works with the system software to provide users with file management and process
invocation functions, and presents and manages the desktop.

1.3.2 Menus

Under Aqua, an application displays its menu bar at the top of the screen. This is
different from Windows or UNIX environments, where the menu bar appears at
the top of each application window. The items in the menu bar are ordered as
follows (from left to right): Apple menu, application menu, application-defined
menus, window menu, help menu, and menu status bar items (see figure 1.3).

The Mac OS X user interface 9

Figure 1.2 Aqua, the user interface for Mac OS X, builds on many features of the original Macintosh user
interface. However, it has an entirely new look and feel, as well as many new features.

Figure 1.3
An example of a Mac OS X
application’s (Address Book)
menu bar and menu items

10 CHAPTER 1
Welcome to Mac OS X

First is the Apple menu, a system-wide menu whose contents do not change. Its
commands permit users to perform tasks that operate on the system as a whole
and are independent of any particular application. Commands support access-
ing system preferences, restarting and shutting down the computer, and logging
off the current session.

 Next is the Application menu, which holds items that apply to a specific appli-
cation. Menu items include the application’s preferences, services provided by other
applications, and the Quit option. The menu name is bold, so it stands out from
the other menus.

 The next set of menus is application defined, but it typically includes the fol-
lowing menus, in this order: File and Edit, application-defined menus (possibly
including View), Window and Help. They perform these functions:

■ The File menu implements operations for document management such as
opening, creating, and printing documents.

■ The Edit menu contains commands for editing application documents and
sharing application data over the clipboard.

■ The View menu holds commands enabling users to change or alter the
view of an application’s current window.

■ The Window menu lists currently open windows as well as window opera-
tions.

■ The Help menu provides access to application help.
■ Status items appear as the final, rightmost menu item and display informa-

tion about system services, enabling quick access to system settings.

NOTE Clipboard is a Macintosh term for a common shared data holder used by
the applications to temporarily hold data or to transfer data from one
application to another. On the Macintosh, terms like copy, cut, and paste
describe editing operations. For example, after you highlight an item in
a document, you can perform a cut, which moves the selected item from
the document to the clipboard; a copy, which copies the selected item to
the clipboard; or a paste, which copies the item on the clipboard to the
desired location.

1.3.3 The Dock

The Dock, located at the bottom of the screen in Figure 1.2, is a small toolbar that
provides a standard, system-supplied location for you to organize commonly

The Mac OS X user interface 11

accessed items such as applications, documents, and other information. It also
aids in maneuvering between running applications.1

 You add items by dragging their icons to the Dock; you remove items by drag-
ging them off the Dock. Clicking an icon will bring it to the foreground, launching
it first if it is not already running. A triangle next to an application icon indicates
that the application is running. The Dock also holds the familiar Macintosh Trash
icon, which collects files waiting to be deleted from the system. You can customize
the Dock’s appearance and behavior through the System Preference program,
located in /Application.

1.3.4 Window layering

The original Mac OS imposed a window-layering scheme that placed all applica-
tion windows conceptually on a single layer. This meant that if you were using one
application and you clicked a window from another application, all of that applica-
tion’s windows came to the foreground. Mac OS X implements a different window-
layering model: windows within an application are independent of one another,
and can therefore be interleaved with windows from different applications.

 Imagine you have two applications running, each with several visible windows.
Under Mac OS X, only the window you click comes to the foreground, enabling
windows from different applications to be interspersed. The result is more infor-
mation simultaneously visible at a time and fewer visible transitions between
applications. Perceptually, the new window-layering scheme blurs the boundaries
between applications, causing you to feel as if you are interacting with the system as
a whole, rather than with individual applications. (By the way, clicking the applica-
tion’s icon on the Dock will bring all of the application’s windows to the foreground.)

1.3.5 Dialog boxes

Past Macintosh operating systems used two main types of dialog boxes: modal and
modeless. A modal dialog box forces you to work within the mode of the dialog
box only; once the dialog box is open, the only way to interact with another part
of the system is to close the dialog box. Conversely, a modeless dialog box does
not force you to interact only with it; you can simultaneously use the modeless
dialog box and other parts of the system.

1 Bruce Tognazzini, a noted expert on user interfaces design, has written an interesting column called
“Top 10 Reasons the Apple Dock Sucks” that discusses his objections to the Dock. Check it out at http://
www.asktog.com/columns/044top10docksucks.html.

12 CHAPTER 1
Welcome to Mac OS X

A Sheet is a Mac OS X implementation of a modal dialog box. When an application
displays a Sheet, it appears attached to the application’s document or window (see
figure 1.4). Because it attaches to its creator, you can always tell what program ele-
ment the Sheet belongs to. See the Aqua Human Interface guidelines for more
information about Sheets (http://developer.apple.com/techpubs/macosx/Essentials/
AquaHIGuidelines/AHIGDialogs/index.html).

1.3.6 Drawers

Drawers are child windows that appear to slide out from their parent. This is
another interface element that permits you to access frequently used application
features or information without requiring the application to display the Drawers
throughout the life of the application. To see Drawers in action, open the Mail
application (located in /Applications) and click the Mailbox icon. The mailboxes
for your mail accounts will slide in and out from the parent window as you click
the icon (see figure 1.5).

1.3.7 Keyboard navigation

The Macintosh has traditionally been a point-and-click interface: users interact
with the system using a mouse. Over the years, the system has included increas-
ing support for system navigation through the keyboard at both the Finder and
application levels. Aqua carries on this tradition by providing more keyboard
options you can use to navigate the system.

Figure 1.4
Mac OS X Sheets seem fixed, or
attached, to an application’s document
or window. They simplify identifying the
owner of the Sheet.

The Mac OS X architecture 13

To take full advantage of the keyboard, open the System Preference program, select
the Keyboard pane, select the Full Keyboard Access tab, and make sure the Turn
On Full Keyboard Access checkbox is checked. The Use Control With menu enables
you to change the keys associated with each command. Now, you can use the key-
board to select interface elements such as application menus and the Dock.

1.3.8 Other interface features

Mac OS X includes lots of other interface features, including transparent windows
and menus that let you see through a window or menu to what is behind it. The
appearance of icons and lists has improved, and there’s a new help system and a
new system font.

1.4 The Mac OS X architecture

From a user’s point of view, the Mac OS X system is its user interface, applica-
tions, and services. For developers, however, the interface is simply a facade;
behind it exists the Mac OS X operating system, a complex web of software that
handles the interactions between user requests and computing resources.

Figure 1.5 Drawers slide out from their parent window, enabling access to frequently used application
features or information.

14 CHAPTER 1
Welcome to Mac OS X

 The heart of this system software is the kernel. The kernel provides the operat-
ing system’s basic computing services such as interrupt handling, processor and
memory management, and process scheduling. Two types of kernels form the
basis for most operating systems: the monolithic kernel and the microkernel. A
monolithic kernel encapsulates nearly all the operating system layers within one
program, which runs in kernel space. A microkernel implements a subset of
operating system services, runs in kernel space, and is much smaller than the
monolithic kernel. Additional services, implemented on top of the kernel as user
programs (running in user space), export well-defined interfaces and communi-
cation semantics. To perform a service that resides outside of kernel space, the
kernel communicates with the user-level service through message passing. Gen-
erally, a monolithic kernel is faster but larger than a microkernel.

 The original Mac OS was more a collection of cooperating system services,
whose design did not divide neatly into user and kernel domains. In addition, its
handling of critical operating system tasks such as memory management and
process management was showing its age, which led Apple to look into alterna-
tives for its future OS. For example, most of us are familiar with operating sys-
tems that use preemptive multitasking and fixed-process scheduling policies.
Under UNIX, one policy is for the process scheduler to divide CPU time into time
slices, assigning each process a quantum of CPU time. If the running process has
not terminated by the end of its quantum, the operating system will switch processes
by preempting the running process and activating the next.

 Contrast this to Mac OS, which implemented a scheduling called cooperative
multitasking. It works as follows: when you run a program, the operating system
loads the program into memory, schedules it for execution on the CPU, and runs
the program only when the currently running program surrenders the CPU. It is
the responsibility of each program, not the operating system, to occasionally
hand over the CPU to allow other programs to run. As you can imagine, this
scheduling is suboptimal, because one rogue program can monopolize the CPU
and disallow others from running. Mac OS X is built on UNIX, and therefore uses
preemptive multitasking; the kernel manages process-scheduling policies.

 Another difference between Mac OS X and earlier Macintosh systems is mem-
ory management. Mac OS did not enforce memory protection of the system or
application partitions. Applications were free to write to memory outside their own
address space and could potentially take down other applications, as well as the
entire system. Under Mac OS X, this is not possible: accessing memory outside a
program’s address space will result in a segment fault and the process will dump
core, but it will not take down the operating system or other processes with it.

The Mac OS X architecture 15

1.4.1 Architecture layers

The Mac OS X architecture is composed of several layers, each responsible for dif-
ferent system services. It’s important to keep in mind that Mac OS X is built on
top of a UNIX-based kernel, which provides the system with its plumbing (core
services) and supports the various application layers with which the user interacts.
It’s useful to view Mac OS X as two systems, one built on the other (see figure 1.6).

 At the core of Mac OS X is Darwin, an open source operating system based on
Mach 3.0 and 4.4BSD. Darwin is a complete operating system that does not
require higher-level Macintosh components to run. The Darwin system has two
overall components: the kernel environment and the BSD emulation layer. The
kernel environment provides core operating system services; the emulation layer
supplies the system with the BSD user environment, or operating system person-
ality. In fact, you can install Darwin on a PowerPC or x86 machine and use it as a
stand-alone BSD-like system.

 Macintosh-specific system components, built on top of the Darwin kernel envi-
ronment, give Mac OS X its Macintosh character and services. Think of Darwin

Figure 1.6 Mac OS X is a series of software layers, each providing services for the layer above it.

16 CHAPTER 1
Welcome to Mac OS X

as the BSD-based operating system core and the Macintosh components as put-
ting the Mac into OS X. This classification enables you to see that Mac OS X is
built on top of Darwin, and that Darwin is a complete UNIX system within itself.

 Let’s begin with a brief overview of the Mac OS X system components:

■ The lowest layer is the Mach/BSD-based kernel, called the kernel environ-
ment. It provides the system with core operating system services such as
processor and memory management, file systems, networking, and device
access and control.

■ The Core Services layer implements a central set of non-graphical routines
that various Macintosh APIs access. This layer includes facilities for appli-
cation interaction with file systems, threads, and memory, and provides
routines for manipulating strings, accessing local and remote resources
through URLs, and XML parsing.

■ Above the Core Services layer is the Application Services layer. Application
services supply programs running within the application environment
(except BSD) with user interface, windowing, and graphical support,
including support for drawing graphical elements on the display, event
handling, printing, and window management. This layer includes the Mac
OS X window manager.

■ The Application Environment, like Applications Services, is composed of the
different application environments that give the system its user-level envi-
ronment. Currently, Carbon, Cocoa, Classic, Java, and BSD form this layer,
each as a separate application environment. Each provides a distinct runtime
environment in which to run programs and interact with the lower layers
of the operating system. For example, when you run a Mac OS X Cocoa pro-
gram, you are in the Cocoa application environment; when you run a Mac OS
program, you are interacting with the Classic application environment.

■ Above the application environment is Aqua, the Mac OS X user interface.
Aqua gives the Mac OS X system and programs their look and feel.

Now, let’s look at each system layer and its components in more detail.

1.4.2 The kernel environment

The kernel environment supplies Mac OS X with its core operating system services.
This layer is composed of two sublayers: the Mach kernel and the BSD layer,
which encloses Mach (see figure 1.7). Within these layers are five primary com-
ponents: Mach, the I/O Kit, BSD, the file system, and networking.

The Mac OS X architecture 17

Mach
At its core, Mac OS X uses the Mach 3.0 microkernel (Mach 3.0 + OSF/Apple
enhancements). The Mach portion of the kernel environment is responsible for
managing the processor and memory (including virtual memory and memory
protection), preemptive multitasking, and handling messaging between operating
system layers. Mach also controls and mediates access to the low-level computing
resources. It performs the following tasks:

■ Provides IPC infrastructure and policies (through ports and port rights), as
well as methods (message queues, RPCs, and locks) enabling operating sys-
tem layers to communicate

■ Manages the processor by scheduling the execution and preemption of
threads that make up a task

■ Supports SMP (symmetric multiprocessing)
■ Handles low-level memory management issues, including virtual memory

Keep in mind that Mach is policy neutral, meaning that it has no knowledge of
things like file systems, networking, and operating system personalities.

 Historically, Mach implements a very small set of core system services in the
kernel address space, communicating with additional services in user space through
well-defined interfaces and communication semantics. The kernel implementation
for Darwin integrates many of these user-space services into the kernel space.

 There is a fundamental difference between how a UNIX monolithic kernel
and Mach kernel use and implement processes and threads. In a UNIX kernel,
the basic level of scheduling is the process, not the thread. All threads within the
process are bound by the scheduling priority of the process and are not seen by

Figure 1.7
The Mac OS X kernel environment supplies the
system with its core operating system services.

18 CHAPTER 1
Welcome to Mac OS X

the kernel as schedulable entities. For example, if the operating system suspends
a process, all its threads are also suspended.

 Contrast this with Mach. Mach divides the concept of a UNIX process into two
components: a task and a thread. A task contains the program’s execution envi-
ronment (system resources minus control flow) and its threads. With Mach, the
thread is the basic unit of scheduling, as opposed to a UNIX process, which uses
the process as the scheduling unit. Under Mach, scheduling priority is handled
on a per-thread basis: the operating system coordinates and schedules threads
from one or many tasks, not on a per-process level.

I/O Kit
The I/O Kit is an object-oriented framework for developing Mac OS X drivers,
implemented in a subset of C++. Developing device drivers is a specialized task,
requiring detailed knowledge, experience, and highly specific code. The I/O Kit
attempts to increase code reuse and reduce the learning curve of driver develop-
ment by providing programmers with a framework that encapsulates basic device
driver functionality in base classes, which are extended to implement specific device
drivers. Conceptually, this approach is very similar to application frameworks and
class libraries. The I/O Kit infrastructure enables true plug and play, as well as
dynamically loaded and unloaded drivers and dynamic device management.

BSD
Another component of the Darwin kernel environment is its implementation of
BSD, which is based on 4.4BSD. The BSD kernel component sits on top of the
modified Mach kernel, running in the kernel’s address space. This component
provides networking services, file systems, security policies, the application process
model (process management and signals), the FreeBSD kernel API, and the POSIX
API for supporting user space applications. It also provides applications with the
BSD interface into the core services of the OS by wrapping the Mach primitives.

 The traditional, or pure, microkernel design places many of these BSD compo-
nents (such as file systems and networking) within user space, not kernel space.
Darwin is not a pure microkernel. To address performance concerns, designers
modified the kernel by placing some BSD system modules within the kernel
space, traditionally reserved for Mach.

File system
Darwin’s file system infrastructure is based on an enhanced virtual file system
(VFS) and includes support for HFS (hierarchical file system), HFS+ (hierarchical
file system plus) , UFS (UNIX file system) , NFS (network file system) , and ISO 9660.

The Mac OS X architecture 19

VFS is a kernel-level component that provides an abstract view of the physical file
systems through a common interface. VFS accepts file-related system calls (open,
close, read, and write) and translates them into the appropriate calls for the target
file system (see figure 1.8). VFS is often referred to as supporting stacks of file sys-
tems (stackable), because it can interact with and add many kinds of file systems
and supports augmenting existing file systems with custom code that supplies
various services (such as encryption or mirroring).

Networking
Darwin’s networking infrastructure is based on 4.4BSD. It includes all the features
you’d expect from a BSD-derived system, such as routing, the TCP/IP stack, and
BSD-style sockets. This component lives in the BSD layer of the kernel.

Kernel Extensions (KEXTs) and Network Kernel Extensions (NKEs)
Kernel Extensions (KEXTs) give developers the ability to access internal kernel data
structures and add functionality to the kernel. KEXTs are dynamically loaded into
kernel space without recompiling or relinking the kernel. Because KEXTs run within
the kernel, a misbehaving module can potentially bring the system to its knees.

Figure 1.8
The Darwin kernel implements a Virtual File System
(VFS) that translates a file-related system call into
the matching call for the appropriate file system.

20 CHAPTER 1
Welcome to Mac OS X

 Network Kernel Extensions (NKEs) are a special instance of KEXTs. They permit
developers to hook into the networking layers of the kernel and implement new fea-
tures or modify existing functionality. Like KEXTs, they are dynamically loaded into
kernel space and do not require recompiling or relinking of the kernel to execute.

 Collectively, these components provide the core services for Darwin, and by
extension, Mac OS X. A complete Darwin system adds a BSD emulation or appli-
cation environment on top of this core layer, providing the userland commands
and execution environment you are accustomed to in a BSD system. A complete
Darwin system (core layer and BSD application environment) is a BSD-based UNIX
implementation that is more than capable of running as a stand-alone operating
system. You can run Darwin on a PowerPC or x86 compatible system and install
it from either source code or a binary.

NOTE Remember, Darwin is an open-source project, and it is being actively
developed; all source code for the operating system is available at no
charge. Apple also supports several mailing lists devoted to Darwin de-
velopment issues.

1.4.3 Core Services layer

The Core Services layer sits above the kernel and is responsible for non-graphical
system services (see figure 1.9). Common operations are not coded into each Mac-
intosh API (Carbon and Cocoa); instead, the Core Services layer implements a
single code base that the various Macintosh APIs access. Developers use the Carbon
and Cocoa APIs to construct Macintosh applications. These services are imple-
mented in the following components:

Figure 1.9
The Core Services layer (the software layer above
the kernel) provides common, non-graphical routines
for the Macintosh APIs (Carbon and Cocoa).

The Mac OS X architecture 21

■ Carbon Managers—A set of services, grouped under various managers, that
implement routines providing applications with access to system resources
and services. Managers exist for file manipulation (File Manager), text
operations (Text Encoding Conversion Manager), memory management
(Memory Management Utilities), and thread operations (Thread Manager).
For example, when an application requires memory services, it calls a
memory allocation routine located in the memory manager; this routine
subsequently invokes the kernel-level system calls to manage the actual
memory allocation.

■ Core Foundation—A library that provides many low-level system services such
as internationalization, string preferences, and XML services. A handy fea-
ture of the Core Foundation is its XML facilities, which include a full-fledged
XML parser that implements both tree (DOM) and callback (SAX) based
XML parsing.

■ Open Transport—A single set of routines that offer transport independence
and that access the underlying network protocols. Application programs
interact with Open Transport through its API to perform network opera-
tions such as connecting to and receiving data from other machines. Open
Transport uses the networking primitives supplied by the BSD kernel envi-
ronment code.

1.4.4 Application Services layer

The next layer, called Application Services, supplies the system with the graphical
services to construct user interfaces and windowed environments, as well as perform
drawing operations, printing, and low-level event forwarding (see figure 1.10).

Figure 1.10
The Application Services layer supplies Mac OS X
applications with graphics routines and graphics
rendering using QuickDraw, OpenGL, and QuickTime.

22 CHAPTER 1
Welcome to Mac OS X

The main component of this layer is Quartz. The term Quartz collectively defines
the primary display technologies for Mac OS X. Quartz is composed of two layers:
the core graphics services and the rendering libraries.

 Core graphics services implement the Mac OS X window server and provide
window management as well as event- and cursor-handling services. This sublayer
does not actually render objects; the graphics-rendering sublayer that sits on top
of the core services contains the following rendering libraries, which perform the
graphic-rendering operations:

■ Core Graphics Rendering library—Performs two-dimensional operations. The
Core Graphics Rendering library is used for drawing and rendering using
the PDF path (vector) based drawing model.

■ QuickDraw—Performs two-dimensional operations. QuickDraw is the fun-
damental graphics display system for the traditional Macintosh OS; it is
used to perform traditional Macintosh graphic operations.

■ OpenGL—Renders three-dimensional operations.
■ QuickTime—Renders multimedia and digital video in many encoding formats.
■ PDF—(Developed by Adobe Systems.) Specifies a file format whose files

are sharable across platforms. Because the Core Graphics Rendering
library uses PDF for vector graphics representation, Mac OS X programs
can output files in PDF format—users don’t need to buy and install Adobe
Acrobat. The printing system is based on this rendering model, as well.

Building these technologies into the Application Services layer provides applica-
tions with strong graphics support at the operating system level.

1.4.5 Application Environment layer

Next in this architecture is the Application Environment layer, which provides
Mac OS X users with a setting in which to build and run applications (see fig-
ure 1.11). This layer, sometimes referred to as the Software Emulation layer, typi-
cally contains application emulation environments for implementations of various
operating systems. In fact, you can emulate almost any operation system at this
layer, including Solaris, Windows, or MS-DOS. Currently, five application environ-
ments ship with Mac OS X: Classic, Carbon, Cocoa, Java, and BSD.

The Mac OS X architecture 23

Classic
The Classic application environment provides a setting for running programs
written for Mac OS 9 and earlier. Because Apple does not endorse developing
new applications for Mac OS 9, this mode’s primary purpose is to support run-
ning legacy Macintosh programs. To use Classic mode, your machine must have
Mac OS 9.1 or greater installed, which is the default on a typical Mac OS X
machine. Therefore, a conventional Mac OS X machine will have both Mac OS X
and Mac OS 9.1 installed (under Jaguar, it’s version 9.2.2).

 There are various approaches to running more than one operating system on
a single machine. One method involves setting up a dual boot machine. To set up
a dual boot machine, you install different operating systems on a single machine
and choose the operating system you wish to run at system startup. This method
is popular among users of Intel-based UNIX distributions, and it is required to
run Linux/BSD and Windows on a single machine.

 Another approach is software emulation. In this case, you run a software emulator
under the host operating system that translates calls of the emulated operating
system into the language of the host. This technique permits you to run different
operating systems on your machine as long as you have the appropriate emula-
tor. For example, on the Macintosh, a product called Virtual PC (http://www.con-
nectix.com/index_mac.html) enables you to run the Windows operating system
and software on your Macintosh. In addition, MacMAME (Multi-Arcade
Machine Emulator) is an arcade emulator that lets you run and play your older
arcade games on your Macintosh (http://emulation.net/mame).

 Under Mac OS X, Classic mode is not emulated as described so far, because
Classic instructions are not translated. As Sánchez pointed out:

Figure 1.11
The application environment provides a setting
for users to run programs. Mac OS X ships with
Classic, Carbon, Cocoa, Java, and the BSD
application environments.

24 CHAPTER 1
Welcome to Mac OS X

The Classic environment in Mac OS X creates a virtual machine
inside of Mac OS X, which boots a largely unmodified version of
Mac OS 9. Applications that are built for Mac OS 9 and have not
been “Carbonized” run in this environment. The Classic environ-
ment replaces the hardware abstraction layer in Mac OS 9 with a
series of shims that pass requests to parts of Mac OS X. For example,
a memory request in Mac OS 9 is fulfilled by a memory request in
the Darwin kernel. Mac OS 9 can thereby use resources managed by
Mac OS X.2

Carbon
Carbon is a set of APIs developers can use to write applications that run under
both Mac OS X and early versions of the Mac OS. The original intent of Carbon
was to help developers move existing applications from Mac OS to Mac OS X.

 Developers write Carbon applications in C and C++. Once an application is
“Carbonized,” you can run the same binary on your Mac OS X machine as on
machines running Mac OS 8.1 or later.

 The current Carbon API is a redesigned version of the Mac OS Toolbox. This
Toolbox, originally located in the ROM and later in a file loaded by the boot
loader in pre-Mac OS X systems, is a set of functions that programs access to con-
struct the graphical elements of a program and interact with core system compo-
nents. The Toolbox gave the Mac OS its unique appearance and feel, and was a
fundamental element of all Macintosh programming. The Carbon API adds
many new features to support the architectural changes imposed by Mac OS X.
In addition, the API is much smaller, because its designers removed many Mac
OS API calls.

Cocoa
Cocoa is an object-oriented environment for developing native Mac OS X appli-
cations. Cocoa provides developers with a complete component framework that
greatly simplifies and facilitates the development of Mac OS X applications.
Apple recommends that developers use Cocoa when writing new applications for
Mac OS X.

 The etymology of Cocoa begins with NeXT computer and its NeXTSTEP oper-
ating system. NeXTSTEP shipped with a set of tools and libraries called frameworks

2 Wilfredo Sánchez, “The Challenges of Integrating the Unix and Mac OS Environments” (paper pre-
sented at the USENIX 2000 Annual Technical Conference, Invited Talks, San Diego, June 19, 2000),
http://www.mit.edu/people/wsanchez/papers/USENIX_2000.

The Mac OS X architecture 25

for application development. These NeXTSTEP development tools were subse-
quently called OpenStep, and are now called Cocoa.

 Cocoa applications are currently written in one of two languages: Java and
Objective-C. This may seem strange to UNIX developers who are used to devel-
oping code in languages such as C, C++, Perl, Python, and Ruby; some may
even consider this limitation a reason not to develop Cocoa applications. Resist
this temptation. True, many of us would prefer to use Perl or C++ as our main
development language when building Cocoa applications, but any programmer
who is comfortable with C or C++ can easily get the basics of Objective-C in a
few days and be writing useful application in a few weeks.

 In addition, some projects are attempting to bring other languages to Cocoa,
including Perl, Python, and Ruby. It may just be a matter of time before your
favorite language meets Cocoa.3

Java
The Java application environment enables development and execution of Java
programs and applets. This environment supports the most recent Java Devel-
opment Kit (JDK) and virtual machine, so programs developed within this envi-
ronment are portable to virtual machines running on other systems. You can use
Java to write applications and applets as well as Cocoa-based applications,
although Objective-C is the language of choice for Cocoa development. Apple
has made a strong commitment to Java on the Macintosh, so Java developers can
rest assured that Java implementations and tools will be available under
Mac OS X for years to come.

BSD
The BSD command environment enables users to interact with the system as a
BSD workstation, typically through the Terminal application; functionally a shell.
This environment supports the BSD tool set, commands, and utilities, and cumu-
latively provides users with a BSD-derived environment. In fact, the BSD environ-
ment and kernel environment form the complete Darwin system. This
application environment enables traditional UNIX developers and users to make
a smooth transition to the Mac OS X environment by providing them with the
accustomed shell, tools, and command set. I for one spend most of my time in
the Terminal application using Mac OS X as a BSD-based workstation.

3 The PyObjC project has released a version that enables Python developers to talk to Objective-C objects
from Python (http://sourceforge.net/projects/pyobjc/). See chapter 8 for more details.

26 CHAPTER 1
Welcome to Mac OS X

1.4.6 Aqua

The top layer of the Mac OS X architecture is the Aqua user interface. Aqua is a
combination interface implementation and specification that defines recom-
mended user-interface design practices for Mac OS X applications. Think of
Aqua as providing guidelines for how applications should look and behave within
Mac OS X. These guidelines, documented in the Aqua Human Interface Guide-
lines, tell developers how to construct a Mac OS X user interface, including the
proper layout of dialog boxes and window items’ menu structures.

1.5 Summary

You now have a basic understanding of Macintosh user interface principles, as
well as Mac OS X’s user interface and design. As you can imagine, this chapter is
just the tip of the iceberg. If you are interested in this aspect of the Mac OS X system,
I encourage you to look at the references in the “Resources” section at the back
of this book, and to explore the many online and printed sources that exist on
this topic.

 In chapter 2, you will learn more about the UNIX side of Mac OS X. You’ll see
how to accomplish common UNIX tasks under both the Mac OS X command-line
interface and the Aqua interface.

27

2Navigating and
using Mac OS X

■ The Mac OS X Terminal
■ Creating user accounts
■ Process management
■ AppleScript and scripting languages
■ Installing and running X Window under Mac OS X

28 CHAPTER 2
Navigating and using Mac OS X

Everywhere is walking distance if you have the time.

—Steven Wright

Many UNIX developers like user interfaces that are pretty minimal. Give them a
simple, customizable window manager; a shell; pine for email; and programs and
development tools with text-based interfaces, and they feel right at home. However,
in the past few years, many members of the UNIX community have given increasing
attention to developing more complete GUIs, or desktops, for UNIX systems. The
developers of desktop environments such as GNOME (http://www.gnome.org)
and KDE (http://www.kde.org) are attempting to lower the UNIX usability bar by
making the system more approachable and easier to use and understand.

 This chapter is about navigating the Mac OS X system and user interface and
discovering the features they offer. It leverages your existing UNIX knowledge by
concentrating on the commonalities between the UNIX tools and services and how
they are implemented under Mac OS X. Being able to map your UNIX knowledge
to Mac OS X will let you make the transition to Mac OS X more easily and quickly.
The chapter concludes with information about setting up an X Window server
under Mac OS X.

2.1 Introduction

To many UNIX users, a GUI is not the optimal way to interact with a system. For
example, if you’re applying a filter to a set of files, then using pipes and small
command-line tools is much more efficient and extendable than using a GUI
program. However, sometimes a GUI is preferable. If you use a command-line tool
infrequently, it can be difficult to remember its options and features or recall the
correct command-line syntax for a task. A GUI, on the other hand, can help by
presenting the program options in a visual layout, even enabling you to save com-
mon settings for later use.

 In general, desktop environments have been good for users. However, with so
many competing desktops and windowing environments, UNIX systems do not
provide users with a single common interface like commercial systems, such as
Windows or the Macintosh. For users, this lack of consistency means relearning
environments when switching between machines running different desktops. It
can also complicate the work of developers building applications for UNIX sys-
tems and sometimes force them to target a particular environment.

Shells 29

 With the introduction of Mac OS X, users now have a UNIX-based system with a
single, well-thought-out interface—one designed for usability. UNIX developers
coming to the platform should take a serious look at the interface, and will most
likely find it very useful in maneuvering through the system and accomplishing
development tasks.

2.2 Shells

Mac OS X supports interacting with its BSD underpinnings through a program
called the Terminal, located in /Applications/Utilities. The Terminal application
implements a command interpreter, or shell (see figure 2.1). The shell’s basic
function is to accept user commands (in the command language of the shell),
parse them, and pass them to the operating system for execution.

 For many Macintosh users, interacting with the computer using a command
shell is enough to make them run and hide. Remember, the Macintosh and UNIX
operating systems have different design goals and user cultures: the designers of
the Macintosh built the system as a single-user personal computer with the goals
of simplicity and ease of use. The system should empower normal people to use
computers, and not require them to be programmers or system administrators.

 On the other hand, we can trace the origin of UNIX to the time-sharing sys-
tems proposed and developed at MIT in the mid-1950s through 1960s—most
notably CTSS (Compatible Timesharing System; http://wombat.doc.ic.ac.uk/foldoc/
foldoc.cgi?CTSS) and MULTICS (MULTiplexed Information and Computing Ser-
vice; http://www.multicians.org). Time-sharing enables multiple users to simulta-
neously access computing resources. Once time-sharing was established, a shift
occurred in the way people viewed and used large-scale computers. Rather than
considering computers as calculating machines that processed jobs sequentially,

Figure 2.1
The Terminal program
functions as an xterm in
the Mac OS X environment,
which you can customize to
use different shells.

30 CHAPTER 2
Navigating and using Mac OS X

users began to view them as machines embodying interactive properties; many users
could concurrently share a single machine’s computing resources. The shell was a
natural outgrowth of time-sharing—users needed an interactive, extendable method
of communicating with the computer. (Louis Pouzin, then a staff member of the MIT
computing center, first introduced the concept of the modern shell in 1963.)

 MULTICS was one of the most innovative time-sharing systems of its day and
had many contributors, including MIT, GE, and Bell Laboratories. The Bell Labs
group included Ken Thompson, Dennis Ritchie, M. D. McIlroy, and Joe
Ossanna. In 1969, Bell Labs pulled out of the MULTICS project, and Ken
Thompson began work on a new operating system. The new system was directly
influenced by MULTICS, and soon grew into UNIX.1

 From its beginning, UNIX was a multiuser system that facilitated the sharing of
computer resources among many users. Most UNIX users were, and still are, sys-
tem hackers and programmers who love the power and possibilities of the system.

 In Mac OS X, two vastly different system design histories and user cultures
converge. This situation naturally presented the designers of Mac OS X with quite
a few decisions. For example, as I stated earlier, the very idea of using a shell is
contrary to the design goals of the Macintosh. However, Mac OS X is a different
beast and is built on UNIX, so it is natural to include a command shell for interact-
ing with the system. Apple has done its best to hide the shell from the average
Macintosh user, but experienced UNIX users will look for this program first and
gravitate to it instantly.

 The Terminal program supports many shells, which you can customize
through the program’s preferences dialog box and initialization files. By default,
the system comes with the following shells, contained in the /etc/shells file:

% cat /etc/shells
List of acceptable shells for chpass(1).
Ftpd will not allow users to connect who are not using
one of these shells.

/bin/bash
/bin/csh
/bin/sh
/bin/tcsh
/bin/zsh

You can change the shell that Terminal uses by selecting Terminal→Preferences
and clicking the Shell option in the Preferences dialog box (see figure 2.2). Once
you choose a shell, you can customize it in the usual manner. For example, I use

1 See appendix D for more detailed information on the etymology of UNIX.

Shells 31

tcsh, an enhanced version of the Berkeley UNIX C shell (csh). I copied the .cshrc
file from my Solaris box to my home directory on my Mac OS X machine and
modified it for the new system.

2.2.1 Terminal features

Regardless of the shell you choose, some features of the Terminal program are
common to all shells. One interesting set of features helps bridge the gap
between the command line and Finder interfaces.

 Imagine you have a Finder window open and wish to change to this directory in
the Terminal program. Open the shell and type cd (change directory), followed
by a space, at the prompt. Next, drag the folder from the Finder window into the
Terminal window. Doing so will copy the absolute path of the directory to the
prompt (see figure 2.3). This feature is especially useful when you’re dealing with
long directory paths or directories that are highly nested. In addition to copying
directory paths, you can use this technique to copy file paths by dragging a file
from a Finder window into the Terminal window.

 From the Terminal program, you can open directories, files, and programs
within the Finder using the open command. For example, typing open followed by
a directory name opens the specified directory in a Finder window; typing open
followed by a filename opens the file. If you type open .cshrc, the file .cshrc is
opened in TextEdit (a Mac OS X text-file editor).

Figure 2.2
You can use the Terminal program’s
Preferences dialog box to select many
customization options, including your
active shell.

32 CHAPTER 2
Navigating and using Mac OS X

2.3 Help system

UNIX traditionally uses manual pages, or man pages, to document commands
and tools. To view man pages, set the man path environment variable (MANPATH)
to the location of your system’s man pages, and the PAGER variable to the program
you want to filter the pages (typically, more or less). In practice, the PAGER variable
lets you specify the command or program that will display the man page. For
example, if you set PAGER to emacs, the system will display man pages within the
emacs editor. If you set it to the cat command (which writes a file to standard out-
put), the system will send the man page to the cat command. The more and less
commands are common choices, because they enable you to view a man page
one screen at a time.

 The man program takes one argument (the command name to look up); it finds
the corresponding documentation file, runs the file through nroff, and pipes its
output through the more command (nroff, and its supporting utilities, are used
to format text files). As you would expect, the man command is available under
Mac OS X for getting help on UNIX commands.

Figure 2.3 Dragging a folder to the Terminal window is an easy way to copy long path
names with no typing.

User accounts and privileges 33

2.3.1 Help Viewer

To get help on Mac OS X applications, you use the Apple Help Viewer (see
figure 2.4), which you access from a Mac OS X program’s Help menu. Mac OS X
programs implement the Help menu as the rightmost Application menu and use
the help system to present program information to the user. Most Mac OS X pro-
grams (Cocoa, Carbon, and Java) provide help in this manner, rather then using
man pages. This is true of any GUI program written for Mac OS X, as well as GUI
programs included with the OS.

2.4 User accounts and privileges

On a UNIX system, there are two types of users: those with root privileges and
those without. By going root, you have full access to every aspect of a UNIX sys-
tem and can roam the system at will, installing software in privileged locations,
updating system configuration files, and deleting any file you wish. Basically, you
are free to make the system hum along—but you can easily take it to its knees
with a misplaced command.

 Apple recognized that a middle ground exists between user and root privileges,
so it introduced new administrator privileges. Users with administrator privileges
have all the rights of a normal user but can also install new programs, create direc-
tories outside the home directory, and add new users to the system. However, you
can’t do some things with administrator privileges, such as manipulate the System
Folder, view the contents of another user’s directory, or edit many system configu-
ration files. For these operations, you still need root access.

Figure 2.4
Mac OS X applications include online help
through Apple Help Viewer.

34 CHAPTER 2
Navigating and using Mac OS X

 Because Mac OS X is first a consumer operating system, Apple naturally dis-
courages users from obtaining root access; toward this end, the root account is
disabled, to protect inexperienced users from clobbering their system. However,
if you plan to do any work that involves tuning the system, configuring system
services, or general hacking, root is a must.

2.4.1 Creating user accounts

You create user accounts from the System Preference application (available from
the Dock or within /Applications), using the Users pane (see figure 2.5). When you
create a user, you can assign normal privileges or administrator privileges, but not
root. There are two primary ways to permit root privileges under Mac OS X: by
using the sudo (“soo-doo”) command and by directly enabling the root account.

The sudo command
The sudo command lets a user execute a command as root. Only certain users
can use this command, and only certain commands can be run; these are defined
as configuration parameters and stored in /etc/sudoers. Mac OS X installs the
sudo program as part of the default load and permits users with administrator
privileges to use the command.

 You can use the command two ways. First, you can add the prefix sudo to the
command you wish to run as root. The following example shows the result of a
command run first as a regular user and then as root, using the sudo command:

Figure 2.5 You add users to the system and assign administrator privileges
using the System Preference program’s Users pane.

User accounts and privileges 35

% more /etc/master.passwd
/etc/master.passwd: Permission denied
% sudo more /etc/master.passwd
Password:
##
User Database

Note that this file is consulted when the system is running
in single-user mode. At other times this information is handled
by lookupd. By default, lookupd gets information from NetInfo,
so this file will not be consulted
unless you have changed lookupd's configuration.
##
nobody:*:-2:-2::0:0:Unprivileged User:/dev/null:/dev/null
root:*:0:0::0:0:System Administrator:/var/root:/bin/tcsh
daemon:*:1:1::0:0:System Services:/var/root:/dev/null
unknown:*:99:99::0:0:Unknown User:/dev/null:/dev/null
www:*:70:70::0:0:World Wide Web Server:/Library/WebServer:/dev/null

(In the preceding example, type your password at the password prompt.) This
method enables you to run a command as root for a defined interval (usually five
minutes) without retyping your password.

 Second, to enable root access indefinitely, use sudo with the –s option and
enter your password at the password prompt:

% sudo -s
Password:

Now, commands run under root. Typing exit will end the session.

Enabling the root account
You can also run commands as root by enabling the root account. To do this, you
need to run the NetInfo Manager system administration tool. NetInfo (located
in /Applications/Utilities) is used to perform administrative tasks on Mac OS X.
The program, originally used under NeXTSTEP, is a hierarchical distributed
database of system information.

 To use NetInfo Manager to enable the root account on your system, follow
these steps:

1 Launch the program and select Domain→Security→Authenticate. (Under
Jaguar—Mac OS X 10.2—select Security→Authenticate; the program is no
longer under Domain.)

2 Enter your password when prompted and click OK (remember, for this
technique to work you must have administrator privileges).

36 CHAPTER 2
Navigating and using Mac OS X

3 Select Domain→Security→Enable Root User. Reauthenticate by selecting
Domain→Security→Authenticate and entering your password.

To test the root account, open a shell (using the Terminal program) and substi-
tute your user identity with root:

% su -
Password:
root#

2.5 Booting and default services

When you boot a Mac OS X system, the system first runs the BootROM firmware to
perform a Power On Self Test (POST), initialize hardware, and select an operating
system to use. Next, the BootX loader takes over and loads the operating system
kernel environment from disk. Once the kernel and devices are loaded, BootX
calls the kernel’s initialization function and mounts the root file system. Kernel
initialization includes initializing the components of the kernel environment
(including data structures, Mach, BSD, and the I/O Kit) and running the mach init
process, which enables messaging (over ports) and runs the BSD init process (as
PID 1). The init process is the parent, or owner, of all subsequent processes. It
performs tasks such as running the system in either single- or multiuser mode,
running the initialization scripts (the rc scripts and SystemStarter), launching
the login window process (which presents the login window and processes user
login attempts), and performing cleanup tasks for child processes.

 The rc scripts perform BSD-style startup. They start processes such as kextd
and update (flushes the file system cache at regular intervals). The last task the rc
scripts perform is to launch the SystemStarter process. SystemStarter runs the
default Mac OS X startup items, located in /System/Library/StartupItems, as well
as user-defined startup items (/Library/StartupItems). The SystemStarter process
runs services such as portmap, autodiskmount, syslog, DesktopDB, inetd, sendmail,
and cron. The services that are started are determined by the entries in the /etc/
hostconfig file:

% cat /etc/hostconfig
##
/etc/hostconfig
##
This file is maintained by the system control panels
##

Programs and Mac OS X bundles 37

Network configuration
HOSTNAME=-AUTOMATIC-
ROUTER=-AUTOMATIC-

Services
AFPSERVER=-YES-
APPLETALK=-NO-
AUTHSERVER=-NO-
AUTOMOUNT=-YES-
CONFIGSERVER=-NO-
IPFORWARDING=-NO-
MAILSERVER=-NO-
MANAGEMENTSERVER=-NO-
NETINFOSERVER=-AUTOMATIC-
RPCSERVER=-AUTOMATIC-
NETBOOTSERVER=-NO-
NISDOMAIN=-NO-
TIMESYNC=-YES-
QTSSERVER=-NO-
SSHSERVER=-NO-
WEBSERVER=-NO-
APPLETALK_HOSTNAME="Kevin O'Malley? Computer"
COREDUMPS=-YES-

2.6 Programs and Mac OS X bundles

Under UNIX, you typically build and install programs from source code using the
./configure, make, and make install commands. The make install command
copies all program files to a default location or a location specified as a command-
line option to the configure script. The downside of this approach is that program
elements are not necessarily placed under a single directory and can be spread out
over the system.

 Many UNIX implementations also support program installation from packages
using a package management tool. The advantage of this approach is that the
package manager software keeps a list of all installed programs and program com-
ponents. When you remove a program, all program components are also removed.

 Mac OS X takes a different approach. When you install a Mac OS X program, all
files that make up the program are stored under a single directory, called a bundle.
A bundle is a directory that holds all program components in one location, includ-
ing the application and application resources such as graphics and sound files.
Figure 2.6 shows the contents of a bundle from the Finder and the shell. Note that
double-clicking on the program icon in the Finder window will run the program
and does not open the directory.

38 CHAPTER 2
Navigating and using Mac OS X

You can also view the contents of the folder by holding the Control key, single-clicking
on the program’s icon, and selecting Show Package Contents from the pop-up menu
(see figure 2.7).

Figure 2.6 Mac OS X applications are stored on disk in bundles. Bundles group
program components under a single directory.

Figure 2.7 You can view the contexts of a folder from the Finder by holding the
Control key and clicking on the program’s icon.

File system 39

 Bundles offer many advantages, but the primary benefit for users is that mov-
ing a program from machine to machine, or from disk to disk, is as simple as a
drag-and-drop operation. Imagine you have a collection of programs on one
machine and wish to transfer them to another machine. You can simply share
one of the machines and drag and drop the programs from the Finder window to
the new machine—no reinstallation or configuration is required.

2.7 Security issues

In today’s computing environments, networks are ubiquitous. Overall, this is a
good thing; it leads to a more productive and enjoyable computing experience
for users. The problem is that as soon as you put one computer online, you open
it to attack from anyone who has access to the network. Users of UNIX systems are
well aware of these risks and typically limit the number of services a system runs
to the bare minimum (ssh only), as well as implementing some sort of software
firewall (ipchains or TCP Wrapper). In practice, replacing the telnet and ftp
daemons with secure shell (ssh) is a good step in eliminating many security risks.

 Mac OS X comes with an IP firewall program called ipfw. Unfortunately, this
command-line tool is a bit daunting to use and requires experience to configure
correctly. Enter BrickHouse (http://personalpages.tds.net/~brian_hill/brick-
house.html), a program that provides a Mac OS X GUI for ipfw (see figure 2.8).

 With BrickHouse, it’s simple to set up a software firewall for your machine with-
out getting into the gory details of ipfw. In fact, BrickHouse is a good example
of how to construct a Mac OS X GUI application that interacts with a UNIX tool.
(This technique is of great value to UNIX developers moving to Mac OS X; I cover
it in detail in chapter 7.)

2.8 File system

The UNIX file system is made up of a hierarchy of files, directories, links (hard
and soft), and mount points under the directory /, called root. The organization
of the file system as seen from the Mac OS X Finder is somewhat different. The
file system visible from the Finder is separated into four domains, each of which
defines an area that holds files defined for a particular function:

■ User domain—Holds home directories for user accounts on the system
■ Network domain—Holds resources shared among all users that reside on the

local network

40 CHAPTER 2
Navigating and using Mac OS X

■ Local domain—Holds resources shared among users, such as programs (in
the Applications folder and Library files)

■ System domain—Holds system software

Tables 2.1 through 2.3 describe the contents of each Mac OS X file system domain.

Table 2.1 Contents of the User domain

Name Description

Desktop User-defined desktop items (programs, aliases, docu-
ments the user has placed on the Finder desktop)

Documents User documents

Library Application resources

Movies User movie files

Music User music files, such as mp3s

Figure 2.8 BrickHouse provides an interface for the ipfw command-line tools,
giving you a simple way to set up software-based firewalling.

File system 41

2.8.1 Finder

The Mac OS X Finder presents a user-friendly view of the file system but hides
many of the files and directories that are visible from the shell. Figure 2.9 shows
the root file system from the shell and Finder.

 The Finder view hides many of the UNIX-specific files and directories. This is
intentional: UNIX is the underpinning of the system, and, for most users, seeing
this information would only detract from their experience and provide little or
no functionality.

Name Description

Pictures User image files

Public Shared items enabled through the System Preference
sharing option

Sites User bookmarks for web sites and the user’s web site

Applications Private user programs

Table 2.2 Contents of the Network domain

Name Description

Applications Applications available to all users over the network

Library Application and system resources for programs that
reside on a network volume, which are available to all
users of the system

Table 2.3 Contents of the Local and System domains

Name Description

Applications Default location for Mac OS X applications that are
available to all users of the system

Applications/Utilities Default location for Mac OS X administrative applications
that are available to all users of the system

Library Application and system resources that are available to all
users of the system

System (both Mac OS X and Mac OS 9) System software

Table 2.1 Contents of the User domain (continued)

42 CHAPTER 2
Navigating and using Mac OS X

If you wish to see these items in the Finder window, you need to edit a configuration
file. The file /.hidden lists and controls the items that are not visible in the Finder:

% ls -l .hidden; cat .hidden
-r--r--r-- 1 root wheel 152 Sep 2 2001 .hidden
automount
bin
cores
Desktop DB
Desktop DF
Desktop Folder

Figure 2.9
The Finder hides many of the
UNIX-specific file system items
from users, including files and
directories.

File system 43

dev
etc
lost+found
mach
mach_kernel
mach.sym
private
sbin
tmp
Trash
usr
var
VM Storage
Volumes

As you can see, user root owns this file. You can change the files that are visible
from the Finder by adding or removing items from this file (as root), logging out
of the current session, and logging back in. (You can also make a directory or file
invisible from the Finder by prefixing its name with a period [.].)

2.8.2 Case sensitivity and pathname delimiters

The primary file system for Mac OS X is HFS+. It is case insensitive, but it main-
tains case information so the UNIX side of things can preserve case sensitivity.

 Another feature of Mac OS X is its treatment of special characters in filenames—
specifically, the pathname delimiter. The original Mac OS used a colon as a path
delimiter, but UNIX has always used the forward slash (/).

 Try this:

1 Create a text file, naming it test_file.txt (echo "" > test_file.txt).

2 From the Finder, locate the directory that holds the file and rename the
file test/file.txt.

3 Go back to the shell and list the directory contexts (ls). You’ll see that a
colon has replaced the forward slash in the filename.

This example demonstrates the result of the conversion between a colon and for-
ward slash at the VFS layer. VFS provides an abstract view of the physical file systems
through a common interface. VFS accepts file-related system calls (open, close, read,
write) and translates them into the appropriate calls for the target file system
(see figure 2.10).

44 CHAPTER 2
Navigating and using Mac OS X

2.9 Single-user mode

UNIX systems permit users with root privileges to boot the system under various
run levels. Each run level provides the user with different functionality. For
example, under Solaris, level 1 boots the system in System Administrator mode,
mounting file systems, and enabling a subset of system services. Under RedHat
Linux, run level 3 enables multiuser mode, 5 boots the system into X11, and 1
boots into single-user mode.

 Most, if not all, UNIX distributions support single-user mode, which is prima-
rily used for diagnostics and system maintenance. Typically, single-user mode
enables a very small subset of commands that let you perform basic system main-
tenance operations. To boot Mac OS X into single-user mode, hold the Com-
mand+S keys at startup.

 Single-user mode disables most services. In fact, the only services run are as
follows:

/sbin/init –s
/sbin/mach_init -s
-sh (sh)

The mach_init process enables messaging over ports by bootstrapping the Mach
port server and running the init process. Without mach_init, there would be no
way for the kernel to communicate with other system components. During the
final stage of the boot process, /sbin/init is run. The –s option tells the process to
run the system in single-user mode. One of the operations performed by the init
process is to fork a process that runs the shell sh.

Figure 2.10
The VFS layer in the kernel is
responsible for translating
Mac OS X file delimiters to
their UNIX equivalent.

Processes management 45

 Once in single-user mode, you can run the fsck command to examine and fix
the boot volume’s file system. To exit single-user mode, type exit, which continues
with the boot process. Typing reboot will restart the system.

2.10 System log files

BSD system log files are stored in their usual BSD location: the /var directory. Mac
OS X provides a GUI tool called Console, located in the Applications/Utilities
folder, which displays the console.log file. In addition to the UNIX log files, two
log folders contain Mac OS X–specific log files: ~/Library/Logs and /Library/Logs
hold log files for disk copies and file service and directory service errors.

2.11 Processes management

UNIX users quickly become familiar with performing process management tasks
through the kill, top, nice, renice, and ps commands. These commands enable
you to control, terminate, and get information about a process by specifying a pro-
cess identifier (PID). A process identifier is a unique integer assigned to a process by
the operating system that enables the system (and you) to identify and interact with
the process. Darwin, and by extension Mac OS X, supports these process-manage-
ment commands through the BSD user environment.

 In addition to the UNIX commands, Mac OS X contains a GUI-based process
management tool called ProcessViewer that performs similar functionality. Process-
Viewer, located in /Applications/Utilities, lists instantiated processes, displays infor-
mation on each process, and enables you to kill a running process (see figure 2.11).
The Show pop-up menu lists the categories of processes (All Processes, User Pro-
cesses, Administrator Processes, and NetBoot Processes), enabling you to filter the
program’s ProcessViewer displays. (The program is self-explanatory; to learn more,
run it and investigate its features.)

 One limitation of the program is that you cannot send processes different
types of signals. Imagine you wrote a program that performs an action when it
gets a SIGUSR1 signal. ProcessViewer does not permit you to send this signal to
the process—it only permits you to kill a process by double-clicking on a process
or name or selecting the process and pressing Command+Shift+Q. Presumably,
ProcessViewer sends the process a KILL signal.

46 CHAPTER 2
Navigating and using Mac OS X

2.12 Common commands and tools

Most users perform a limited number of tasks when using a computer. My day is
usually spent at the command line, within emacs, or using a web browser. When
you switch to a new operating system, it is useful to first learn how to perform
common tasks on the new system so you can get right to work. For example, a
common task is to search for all files greater than a certain size, say 1MB. Under
UNIX, you accomplish this as follows:

% find / -size +1048576c -exec ls -l {} \;

It would be helpful to know how to perform the same task within the Mac OS X
environment. Of course, you can use the same command from the shell, but you
are interested in how to do this within the Macintosh environment (see appendix B
for the Mac OS X GUI-based equivalent of the UNIX find command).

 Let’s look at an example of one of these mappings. Under UNIX, a common
operation is to view the state of the system or a particular process using the top
command (see figure 2.12). To get information on the top processes consuming
CPU, you use the following command (by default, top displays updates every one
second; the –s 2 option tells it to update every two seconds):

% top –s 2

Figure 2.11
The Mac OS X ProcessViewer
lists running processes and
displays information about
each process. It also enables
you to kill an instantiated
process.

Common commands and tools 47

Figure 2.12 shows the result.
 As mentioned earlier, Mac OS X comes with a program called ProcessViewer that

provides similar functionality but displays the information in a GUI (see figure 2.13).
To use ProcessViewer, open the /Applications/Utilities folder and double-click on
the ProcessViewer icon.

 As you can see, much of the same information is displayed, but the GUI pro-
vides access to program features through menus.

 Appendix B lists common UNIX commands and their Mac OS X equivalents.
The information is not all-inclusive, but it will get you started.

Figure 2.12
The top command displays
an updated sample of system
usage statistics.

Figure 2.13
A Mac OS X GUI program
(ProcessViewer) that displays
information similar to that
from the UNIX top command

48 CHAPTER 2
Navigating and using Mac OS X

2.13 Scripting languages

Historically, UNIX systems have provided strong support for text processing, fil-
tering, and program automation through commands, pipes, shell scripts, and
high-level scripting languages such as Shell, Perl, and Python. The most basic
technique is to use standard UNIX commands combined with pipes.

 For example, imagine you wish to count the number of lines (comments and
empty lines) in a project’s source tree and display the result. This task includes
finding all target files under the project directory, counting the number of lines in
each source file, summing the source lines, and printing the results. A common
UNIX solution is to use various UNIX commands linked together with pipes.

 To find the source files, you use the find command; to count the lines, you use
the wc command; to construct arguments and execute a utility (wc), use xargs. To
connect the commands, you use a pipe (|). Using these commands and a pipe, you
can solve the problem without writing a single line of code:

% find myproject -name "*.c" | xargs wc -l

Another technique is to use specialized tools like ed and awk to perform tasks such
as filtering lines in a set of files and extracting and formatting information. Both
UNIX commands and tools such as ed and awk provide you with primitives, but
they do not give you the programmatic infrastructure to perform tasks that are
more complex. Enter scripting languages.

 Scripting languages, such as Perl and Python, enable you to perform many of
the tasks you accomplished using UNIX commands and tools, but give you
plenty of infrastructure to extend and enhance your solutions. In addition, these
languages let you write programs that talk over a network, provide a GUI for user
interaction, and perform mathematical operations. Scripting languages are not
new; they have existed since the 1960s. Early languages included JCL (Job Control
Language), sh (the first shell), and Rexx; today’s popular languages include Perl,
Python, JavaScript, and Tcl.

2.13.1 AppleScript

All your favorite UNIX scripting languages, commands, and tools, are available
under Mac OS X from the Terminal application. However, the Mac OS X offers
another scripting language that is specific to the Macintosh: AppleScript. Apple-
Script, developed by Apple, is a high-level scripting language that facilitates the
manipulation of application and system services. The advantage of AppleScript
over other scripting languages is that AppleScript is a system- and application-level

Scripting languages 49

scripting language supported by most Macintosh applications. Because support
for AppleScript is built into the Macintosh operating system, there is tight inte-
gration with core system services and Inter-Process Communication (IPC) facilities
between applications.

 The main reason to use AppleScript over Perl or Python is its ability to control
other programs and use their services. You can do something like this with Perl
using the open and system calls, but with AppleScript the technique is far more
substantial. In Perl, you call programs as black boxes; but AppleScript gives you
access to the application’s internals, so you can script many of the features that
are available to a user interacting through the program’s GUI.

 AppleScript uses AppleEvents as its primary communication primitive, which
facilitates the sharing of services between applications. AppleEvents are defined
messages that enable applications to extend their functionality by using the ser-
vices of other applications and share their own operations with other applications.
AppleScript communicates with applications by sending AppleEvents to other
AppleEvent-enabled applications or system processes to request services and
receive the result of the operation.

 Let’s take a quick look at AppleScript and get a feel for how easy it is to write
scripts. The AppleScript editor, Script Editor (see figure 2.14), is located in the /
Applications/AppleScript folder and is loaded as part of the default Mac OS X
installation.

 You use the Script Editor as your main development environment for writing
and testing scripts. AppleScript is an easy-to-understand, English-like language,
structured as a series of single or compound statements.

 Imagine you wish to create an AppleScript to connect to a specific host over
ssh. To do so, follow these steps:

Figure 2.14
The Script Editor is the main development tool for
writing and running an AppleScript.

50 CHAPTER 2
Navigating and using Mac OS X

1 Open the Script Editor and select File→Open Dictionary. Select Terminal
from the list and click the Open button.

2 The Open Dictionary menu item opens a window that lists all programs
with which your script can communicate. The Terminal Dictionary window
displays all commands and objects exported by the Terminal program
(see figure 2.15).

3 From this list of objects and commands, you can see the aspects of the
program that are scriptable. Enter the following script into the Script
Editor and save the script as an application:

 tell application "Terminal"
 run
 do script with command "ssh host.my.domain.edu"
 end tell

4 To connect to the host, double-click on the script from the Finder, or
click the Script Editor’s Run button.

AppleScript is a cool and useful technology for controlling many aspects of your
Mac OS X system. It takes very little time to learn, it’s powerful, and it enables you
to tie together the services of many Mac OS X applications to perform powerful
tasks. In chapter 7, you will learn more about AppleScript and its technologies.

2.14 Development tools

The default load of Mac OS X does not contain any UNIX or Mac OS X–specific
development tools, such as gcc, g++, gdb, RCS, CVS, Project Builder, or Interface
Builder. These tools and others are available free from the Apple Developer site
(http://developer.apple.com). Appendix A provides all the information you need
to download and install the complete suite of Apple development tools.

Figure 2.15 AppleScript-enabled programs like Terminal export accessible
operations using dictionaries.

X Window under Mac OS X 51

2.15 X Window under Mac OS X

Mac OS X is really two systems in one: you can use it as a Macintosh system
through its Aqua GUI or as a BSD box through the BSD user environment and
shell (using the Terminal program). However, Terminal is text based and only
supports text-based programs. The default installation of Mac OS X does not come
with an X Window server, so you cannot run X11-based applications from the
Terminal. Luckily, there are free X Window servers that run on Mac OS X, permit-
ting you full access to local and remote X Window applications under Mac OS X.

 In addition, many active projects are being developed to bring the full BSD tool
chain to Mac OS X. These projects provide users with infrastructure that greatly
simplifies locating and installing UNIX and BSD tools that do not come standard
with Mac OS X. This process is exciting and is one of the primary advantages of
using Mac OS X. Through the work of many individuals, most of whom are volun-
teers, you now have the means to replicate your UNIX work environments and tools
on the Macintosh.

 X Window, developed at the Massachusetts Institute of Technology (MIT), is
the primary graphics display and windowing system for UNIX user interfaces. X
Window lets you display basic graphic elements such as pixels, lines, and text, as
well as advanced interface components like windows and buttons, on a computer
terminal. UNIX window managers like twm (http://www.plig.org/xwinman/
vtwm.html) and fvwm (http://www.fvwm.org), and desktops such as KDE (http://
www.kde.org) and GNOME (http://www.gnome.org), use the services of X Window.

 Mac OS X does not use X Window as its graphic display system. Instead, it
uses its own proprietary system called Quartz to handle graphics operations. The
Mac OS X user interface for Quartz is called Aqua. X Window and Quartz are two
fundamentally different graphics and display technologies. For example, you
cannot run X Window applications under Mac OS X, because Quartz does not
support X Window. However, as I mentioned earlier, the software community has
come to the rescue with freely available X Window servers for Mac OS X.2

2 Projects include XFree86 on Darwin and Mac OS X (http://mrcla.com/XonX) and the XDarwin Project
(http://www.xdarwin.org).

52 CHAPTER 2
Navigating and using Mac OS X

NOTE You will often see the terms rooted (full screen) and rootless in the docu-
mentation that accompanies X servers for Mac OS X. Rooted means X11
occupies the entire screen. In this mode, your display looks like an X
Window session on any other UNIX machine. You can switch between
the X Window and Mac OS X environments, but only one is visible at a
time. Rootless mode enables both X Window and Aqua to coexist on the
display simultaneously. You switch between applications in each envi-
ronment by clicking on the appropriate application window.

2.15.1 Installing the X server

There are many ways to install the X server on your machine, but all share some
common steps. First, you need to install the Mac OS X version of XFree86; then
you install the X server software, called XDarwin. Both software packages are
free. For simplicity, you will install both from a combined binary distribution.

 To install the package, follow these steps:

1 Open your web browser and point it to the following location: http://
www.osxgnu.org/software/Xwin/xfree86.

2 Download the XFree86 for Mac OS X Rootless version X by choosing the
appropriate download site and clicking the Download button.

3 If your browser has not already done so, decompress the distribution.
This step should result in an Xfree86Complete-[version].mpkg file.

4 Double-click on the file icon and follow the on-screen installation instruc-
tions. You will need administrative privileges to install the software.

Once the installation is complete, close the installer, open the Mac OS X /Appli-
cations folder, and double-click on the XDarwin icon. The first thing you will see
is a screen asking which display mode you wish to use: Full Screen (Rooted) or
Rootless (see figure 2.16).

 If you choose Full Screen, XDarwin takes over the entire screen; if you choose
Rootless, Aqua and XDarwin coexist on the same screen. To switch between the full
screen mode and Aqua, press Command+Option+A. To exit XDarwin, locate the
main xterm and type exit, or switch to Aqua and select Quit from the XDarwin menu.

 Now that the X server is running, you have full access to UNIX X11 applications.
You can run local X11 applications or ssh to a remote host and run them from
there, just as you would in a traditional X session. XDarwin’s default window man-
ager is twm, but you can install and use others (including the old favorite, fvwm).

UNIX to Mac OS X software projects 53

2.16 UNIX to Mac OS X software projects

Mac OS X users are fortunate to have access to a large amount of UNIX software
that can run under Mac OS X systems. In addition, many projects are devoted to
bringing UNIX tools to the Mac OS X environment. Mac OS X ships with many
commonly used UNIX commands and tools, including ls, cat, more, emacs, vi,
top, and Perl. Installing the development tools (discussed in appendix A) adds
more tools to the system, including gcc, g++, gdb, RCS, and CVS.

 To install tools not covered by these methods, you have several choices. Mac
OS X is based on BSD, after all, so in most cases you can simply locate and down-
load a tool’s source distribution and compile and install the software in the usual
manner. Several projects attempt to simplify this process by providing software
tools and infrastructure that help you locate, build, and install UNIX tools on the
Macintosh:

■ The Fink project (http://fink.sourceforge.net)—Provides UNIX tools to Mac
OS X users by porting existing UNIX tools to the Mac OS X environment
and then making these ports available to the public through packages. You
first download the client-side package manager software (called fink) and
install it on your system. The fink software presents a list of available soft-
ware packages. You select packages from the list, and fink handles all the
installation details, including downloading the package and package depen-
dencies, building the software, and installing it on your system. This process

Figure 2.16
If you run XDarwin in Full Screen
mode, XDarwin takes over the
entire screen. In Rootless mode,
X Window and Aqua coexist on
the display simultaneously.

54 CHAPTER 2
Navigating and using Mac OS X

simplifies many of the tricky issues associated with porting and installing
software packages. Another nice feature is that fink places all installed soft-
ware into a separate directory, away from the system files—you never need
to worry about clobbering system files when installing new software.

■ The GNU Mac OS X Public Archive (http://www.osxgnu.org)—(Specifically,
the OSXGNU Software Archive.) Contains ports of many UNIX tools in Mac
OS X package format (the standard format used to install software under
Mac OS X). To install a tool, you locate it on the site, download it, double-
click on the tool package icon, and follow the on-screen instructions.

■ The Darwin Collection (http://www.ptf.com/tdc)—A set of CDs that contains
the Darwin OS and Mac OS X ports of the BSD Ports Collection and GNU
software. The most interesting aspect of this collection is the Mac OS X port
of the BSD Ports Collection. Currently, the BSD Ports Collection contains
nearly 4,000 packages. Each package contains the most up to date, stable
version (source code, patches, and so on) of the software. Users can install
individual packages or the entire package tree from either source code or
from premade binaries. The Mac OS X ports bring these tools and services
to Mac OS X.

■ The Apple developer site (http://developer.apple.com/unix/index.html)—Contains
a wealth of information about UNIX development and tools for Mac OS X.

■ Open Darwin, Darwin Ports (http://www.opendarwin.org/projects/darwinports)—
Provides many software ports for the Darwin system.

In addition to these projects, many others are committed to bringing UNIX tools
to Mac OS X.

2.17 Summary

In this chapter, you encountered some of Mac OS X’s UNIX tools and saw how to
accomplish familiar UNIX tasks under Mac OS X. Armed with this knowledge,
you are ready to learn about Mac OS X development tools such as Project Builder
and Interface Builder, which enable you to easily develop Mac OS X command-
line and GUI applications.

Part 2

Tools

Chapters 3 and 4 introduce you to programming Mac OS X. The chapters
provide information on Apple’s freely available development tools and its main
development environment. Throughout this section, you will learn what tools
are available and how to use them in your own projects. What’s more, you will
be able to see many of the tools in action through practical examples.

57

3Project Builder and
Interface Builder

■ Macintosh IDEs
■ Using Project/Interface Builder
■ Setting up CVS for Project Builder
■ Configuring optimization for Project Builder
■ Static code checking for Project Builder

58 CHAPTER 3
Project Builder and Interface Builder

All parts should go together without forcing. You must remember
that the parts you are reassembling were disassembled by you.

Therefore, if you can’t get them together again, there must
be a reason. By all means, do not use a hammer.

—IBM maintenance manual (1925)

The Macintosh has always supported application development with some very
good development tools, Project Builder and Interface Builder among them. This
chapter provides an overview of the Project Builder environment, its use, and covers
common scenarios you will encounter when developing programs with Project
Builder. Once you complete this chapter, you will be able to work the levers of
Project/Interface Builder and will be able to get around in the environment.

3.1 Introduction

Traditionally, Macintosh development tools are centered on an Integrated Develop-
ment Environment (IDE). An IDE is commonly composed of an integrated editor, com-
piler, linker, and debugger, all within one program. To develop a new application,
you launch the IDE and create a new project file. The project file acts as a reposi-
tory for all files that make up the project, including source files, libraries, and any
support files. You write your program using the integrated editor, build the pro-
gram by selecting a build command, and execute the program with a run command.
Typically commands are accessible from menu items, and customization takes place
through standard dialog boxes. Debugging a program is as simple as building the
program in debugging mode and stepping through the program within the IDE.
When encountering an error, you simply edit the code (in place), rebuild, and
continue debugging the program.

 The strength of this approach is that all tools and commands are accessible
through a consistent user interface. Also, you can easily access hard-to-remember
commands and options from menus and dialog boxes.

 UNIX, on the other hand, has always offered a more segregated development
environment. To create a new project, you first create a makefile, specifying what
files compose the project, as well as the build tools, their options, and any numbers
of build commands. You write the program using your favorite editor, and build and
run the program from a shell. To debug the program, you run it within a command-
line debugger (gdb), run it within a debugger in emacs, or use print statements.

Introduction 59

3.1.1 Macintosh Programmer’s Workbench

One of the first development environments for the Macintosh was Macintosh Pro-
grammer’s Workbench (MPW), from Apple. MPW is an advanced environment for
developing applications for 68k and PowerPC machines running Mac OS. It con-
tains all the tools you would expect from an advanced development environment,
including an editor, compiler, build tools, debugger, and shell. MPW was separated
from other Macintosh development environments of its time by the blending of
a command-line environment with elements of an IDE. To perform tasks and
development activities, you entered commands into worksheets, much as you
would under a UNIX shell, although the command language was specific to MPW.
Figure 3.1 shows an MPW worksheet with some basic commands.

MPW stood somewhere between a pure command-line development environment
and an IDE. It required a bit of a learning curve compared to other IDEs, but it was
far more powerful and extendable; it also was a favorite among advanced developers
and those who preferred a command-line interface for application development.
If you are interested, MPW is freely available from Apple at http://devel-
oper.apple.com/tools/mpw-tools.

3.1.2 THINK Pascal and THINK C

Another popular series of development tools for the Macintosh included the
THINK Pascal and THINK C development environments from Symantec. Both

Figure 3.1 MPW provides a command-line interface for entering commands
and executing development tasks.

60 CHAPTER 3
Project Builder and Interface Builder

THINK Pascal and C were very good IDE-based development tools used by most
Macintosh developers. The THINK Pascal debugger was one of the best parts of
the program, foreshadowing many of the features that appeared in later Macintosh
debuggers. In addition to their development tools and productive user interface,
both environments supplied all the necessary software infrastructure for building
Macintosh 68k applications. Later incarnations of THINK C included a C++
compiler and application framework called Think Class Library (TCL).1

 You can still get a free copy of THINK Pascal from ftp://ftp.symantec.com//
public/english_us_canada/products. Like MPW, it runs under Classic mode and is
mainly of interest for its historical value or support of legacy applications.

3.1.3 CodeWarrior

Throughout the late 1980s to mid-1990s, the THINK tools were very popular.
About this time, a company called Metrowerks began producing development
tools for the Macintosh under the name CodeWarrior. The CodeWarrior environ-
ment was similar to the THINK tools; it included an editor, compilers, debugger,
as well as an application framework called PowerPlant. At that time, the main
features that distinguished CodeWarrior from other environments were its pro-
ductive user interface, the quality of its compilers, and how it supported different
compilers within a single development environment. In addition, Metrowerks was
first to release a PowerPC (PPC) compiler when Apple transitioned its product
line from the 68k to the PPC architecture.

 THINK Pascal and THINK C were two separate products with two separate, yet
similar, interfaces. In contrast, CodeWarrior offered a single development envi-
ronment that supported different compilers, all within one product. Over time,
Symantec lost market share to Metrowerks as the development environment of
choice for building Macintosh applications. Metrowerks’ CodeWarrior is alive
and well and is still one of the best commercial development tools for developing
Macintosh programs (http://www.metrowerks.com).

3.1.4 Project Builder and Interface Builder

During this time, several attempts were made to bring UNIX tools to the Macin-
tosh, although they were never mainstream efforts whose goal was to compete

1 THINK C was never a true C++ compiler. It lacked many C++ features such as constructors and
method and operator overloading. Symantec C++ was the first true C++ compiler from THINK/
Symantec, but it was too little too late, because most developers had already switched to Metrowerks
compilers.

Introduction 61

with commercial products or offer the broad feature set of MPW, THINK Pascal
and C, and CodeWarrior. Before Mac OS X, you could find usable implementa-
tions of UNIX tools including Perl, gcc, bison, flex, and sed for the Macintosh.
However, many of these tools never integrated well with the platform. With the
introduction of Mac OS X, you now have access to a broad range of UNIX-based
development tools from Apple, as well as third-party and open source developers.
These tools do integrate well with the Mac OS X environment and provide a solid
development foundation for building applications under Mac OS X.

 Apple provides two main development tools for building applications under
Mac OS X: Project Builder and Interface Builder.

Project Builder
Apple’s Project Builder is a freely available IDE that contains an editing, build, and
run environment for developing Mac OS X applications. With Project Builder,
you can build all types of Mac OS X applications, including Carbon and Cocoa
applications, bundles, frameworks, kernel extensions, Java applications and
applets, plug-ins, and tools (don’t worry if you do not know what some of these
terms mean; they are all covered later in the chapter).

 Project Builder is in the tradition of an IDE in the sense that all development
tools and commands are aggregated under a single program. However, it does not
include the main development tools (compiler, linker, assembler, version control,
etc.) as part of the program. Instead, it uses UNIX development tools such as gcc,
g++, and gdb. In a sense, Project Builder is evolutionary: it continues the line of
IDE-based development environments for the Macintosh, but breaks with tradition
by using external UNIX-based build tools for implementing build and development
tasks. It strikes a nice balance by providing a modern interface for application
development while leveraging the strengths of the UNIX tools set.

Interface Builder
Apple’s Interface Builder is used to design the user interface component of your
program. Using Interface Builder, you design your application’s user interface
components including menus, windows, icons, and dialog boxes. In addition, you
can use Interface Builder to create your program’s code framework, which you fill
in using Project Builder.

62 CHAPTER 3
Project Builder and Interface Builder

3.2 Creating an application with Project Builder

Before jumping into the details of Project Builder, let’s begin by looking at how
simple it is to create an application. As you will see, Project Builder enables you
to get a basic application shell running in no time. The example application you
will build is a Cocoa program that displays an image in a window. You will learn
all about Cocoa in chapters 5 and 6, but for now think of it as a collection of
object-oriented libraries, or frameworks, for constructing GUI- and non GUI-based
applications for Mac OS X.

 Throughout the book, you will develop many applications. For consistency,
you’ll store all the projects under a directory called projects, located in your
home directory. At this point, create a new folder in your home directory and
name it projects. Now, follow these steps:

1 Move to the Developer/Applications folder and launch Project Builder. (Bet-
ter yet, drag the Project Builder icon to the Dock so you can get at it easily.)

2 Choose File→New Project (Shift-Command-N), select Cocoa Application (Nib
Based)2 from the New Project list (see figure 3.2), and click the Next button.

2 For Cocoa-based applications, a Nib file holds your application’s interface objects (windows, menus,
and so on) as well as the objects’ attributes and runtime relationship to other objects.

Figure 3.2
The New Project list displays
all project types you can build
within Project Builder.

Creating an application with Project Builder 63

3 Set the location to your projects folder and the project name to Display-
Cat, and click the Finish button. Project Builder will create a new project
and display its main window.

Before making any changes, build and run the program by selecting Build→Build
and Run (Command-R). As you can see in figure 3.3, with no coding you have a
working application complete with a window and menu—all for free. Press Com-
mand-Q to quit the program.

 Next, let’s add a picture to the project:

1 Select the Resource group, located in the Contents pane (on the left side of
the main window under Groups & Files), and select Project→New Group.
Call the new group Images (see figure 3.4).

2 Drag the file cat.tiff from DisplayCat/Images (located on the source code
distribution disk) to the DisplayCat folder within your project directory.

Figure 3.3 The DisplayCat program before you add anything to the project

64 CHAPTER 3
Project Builder and Interface Builder

3 Select the Images group and choose Project→Add Files. Select the cat.tiff
file and click the Open button. Click the Add button in the next dialog to
add the image file to the project. Doing so adds a picture of a cat to the
project so it can be displayed on the program main window.

The next step is to add the cat picture to the main application window of the project:

1 If necessary, expand the Resource group (in the Contents pane) and
double-click on the MainMenu.nib file. Doing so launches Interface
Builder and loads the program’s MainMenu.nib file. You’ll use Interface
Builder to design your application’s user interface, including menus,
windows, icons, and dialog boxes. You will see four open windows within
Interface Builder, as shown in figure 3.5. The first window (titled Window)
is where you place the application’s picture. To its right is the Palette win-
dow, which holds Application Kit interface components. The window at the

Figure 3.4 The Contents pane holds project file, libraries, and resources such as images. The Images group
contains the cat.tiff file that the program displays on the main window.

Creating an application with Project Builder 65

bottom of the screen, called MainMenu.nib, holds the definition for the
application menu, class instances, and images and sounds for the applica-
tion. It also contains more complex information that is described in detail
in chapters 6 and 7. Above this window is the application’s main menu.

2 Click on the Cocoa-Other icon, located in the toolbar of the palette win-
dow (third icon from the left), and select and drag the NSImageView
object to the main window.

3 Move the NSImageView object toward the upper left in the window until
you see the Aqua guides. The Aqua guides become active when you drag
an interface object within a window. They provide on-screen feedback for
placing an interface element in the correct location as specified in Apple’s
Aqua Human Interface Guidelines. By following the Aqua guides, you
can be sure you place interface elements such as buttons and text fields
correctly within the window, adhering to Apple’s interface guidelines.

4 Using the Aqua guides for placement, resize the object until it fills the
entire window (see figure 3.6).

Figure 3.5 The four Interface Builder windows enable you to construct your program’s user interface.

66 CHAPTER 3
Project Builder and Interface Builder

5 Click the Image tab on the MainMenu.nib window and drag the image of
the cat to the NSImageView object on the main window (see figure 3.7).

6 Save your work and switch back to Project Builder.

7 Build and run the project.

Figure 3.6 To add the picture, drag an NSImageView object from the palette window
and resize it to fill the entire window.

Figure 3.7 The main window after adding the picture to the NSImageView object

Project Builder in depth 67

There you have it. In a few simple steps, you have a fully functioning application,
complete with an application menu and window. As this example demonstrates,
Project Builder gives you all the tools and infrastructure you need to construct
applications with little effort. In fact, for this example you did not even write a
line of code!

3.3 Project Builder in depth

As you saw in the previous section, creating the core infrastructure for an appli-
cation is simple and straightforward with Project Builder. With just a few clicks,
you were able to get a basic application running in no time. Next, let’s look at
Project Builder in detail, discussing its features and operation.

3.3.1 Targets and build styles

Before describing Project Builder’s interface, let’s define some terms and concepts.
First, you need to understand targets and build styles. A target collects project com-
ponents that make up a project (source files, header files, and libraries), defines the
basic instructions and attributes that specify how Project Builder builds a project,
and holds information a program uses at runtime, such as command-line arguments
and environment variables. Think of a target as a way of encapsulating the items
and attributes that form a program. Build styles, on the other hand, override certain
aspects of a target’s build instructions to create specialized versions of the program.

 Let’s illustrate targets and build styles through an example. Imagine you wish
to develop a program called AgentServer. The program reads XML-formatted
messages from agents, performs some action, and returns a result to the agent. One
of the primary requirements of the program is performance: it must service agent
request in a timely and predictable manner. To test this requirement, you write
several test agents that simulate various agent behaviors and create different ver-
sions of your program; each build has different compiler optimizations. The goal
is to test these agents with each version of the program and see how they perform.

 Let’s take a high-level look at how you can use targets and build styles for
this problem:

1 Create a new project for the program. When you create the new project,
Project Builder also creates a new default target with the same name as the
project. This target automatically holds all files that compose the program,
as well as default build settings.

68 CHAPTER 3
Project Builder and Interface Builder

2 Create several new build styles—one for each type of optimization setting
you wish to test.

3 To get performance statistics, you also need to add profiling code, either by
writing your own routines or by using the –pg compiler flag. The –pg flag
adds profiling code that produces an execution profile of your program.
GNU gprof, a profiling tool that comes with Mac OS X, uses this informa-
tion to display performance statistics for your program. (This program,
as well as the other Mac OS X developer tools, is discussed in chapter 4.)

Testing the different versions of the server is as easy as selecting a build style,
building the program, running the program and the test agents, and collecting
statistics. You repeat this process for each build style. Once you’ve finished, you
can compare the effect of the different optimization settings on the program’s per-
formance. As you can see from this example, build styles are a simple and intuitive
way to apply different build settings to a target.

 Let’s take this example a step further. Imagine your server uses a third-party
XML parser to decode the XML-based strings sent by the agents. Also imagine
you’ve wrapped the parser with custom code that encapsulates its behavior, so
swapping in a different parser will not change any client code. After repeated
testing, you find the parser is the performance bottleneck. At this point, you
would like to swap in some other parsers (maybe one you wrote) to see if you can
increase performance. This is a perfect application for using multiple targets
within a project. Without targets, you would need to create several new projects,
one for each parser. Using targets, you create a new target for each parser you
wish to test, add the appropriate files to the target, and switch between each target
for testing—all within one project.

 To sum up, targets collect files and build settings for a program. If different
versions of your program contain different files, you should express each version
with a target. Build styles enable you to override the default build setting for the
active target so you can perform particular types of builds.

3.3.2 Project Builder’s UNIX tools

Another concept to understand is that Project Builder uses UNIX command-line
tools for performing builds, managing source code, and debugging applications.
Thus you can leverage your current knowledge of UNIX development tools when
using Project Builder. For example, Project Builder contains all the hooks for
adding stricter static checking to your compiles. So, you can use the same com-
piler flags you use from the command line within Project Builder.

Project Builder in depth 69

3.3.3 Project Builder’s interface

Now, let’s take a closer look at each of the components of the main project window.
Figure 3.8 shows the main Project Builder window.

The toolbar
At the top of the window is the toolbar, which contains a series of icons representing
common Project Builder commands (see figure 3.9).

 The icons on the left side of the toolbar execute various build commands.
Beginning at far left, the buttons are as follows:

■ Build Active Target—(Command-B) Builds the active target by executing the
build command.

■ Build and Debug Active Target—(Command-Y) Executes a build all com-
mand and runs the program under the debugger.

■ Build and Run Active Target—(Command-R) Similar to Build Active Target;
but once Project Builder successfully builds the project, this button runs
the program.

Figure 3.8 The main Project Builder window

70 CHAPTER 3
Project Builder and Interface Builder

■ Clean Active Target—(Shift-Command-K) Invokes the clean command, delet-
ing any intermediate files from the project folder (including object and exe-
cutable files). This command is like the UNIX make clean command.

Collectively, these icons enable easy access to the most frequently used build
commands.

 The Active Target menu enables you to move between all active targets in your
project. A target encapsulates the items that compose a version of the program and
the general attributes that define how Project Builder builds these components.

 The buttons on the right end of the toolbar run debugging commands.
Project Builder enables these icons once a program is running under the debugger.
Beginning from the left, they’re as follows:

■ Restart—Restarts, or reloads, the program in the debugger (does not con-
tinue from where you were, but from the beginning of the program).

■ Pause—(Option-Command-C) Suspends execution of the current program.
■ Continue—Resumes program execution.

The next three commands control how execution continues from a function or
method call:

Figure 3.9 The toolbar contains shortcuts to common build and run commands.

Project Builder in depth 71

■ Step Over—(Shift-Command-O) Executes the current function or method,
but does not single-step into the function code.

■ Step Into—(Shift-Command-I) Jumps to the current function or method and
single-steps through the code.

■ Step Out—(Shift-Command-T) Immediately returns to the calling function
after executing the rest of the function.

The Contents pane
The next component of the project window is the Contents Pane, shown in
figure 3.10. The Contents pane provides various views of project items, as well as
easy access to the individual items that compose the target:

■ Files view—Accessible by clicking on the Files tab. Lists all files and compo-
nents that make up the project. These include source and header files,
libraries, frameworks for the application environment (Carbon, Cocoa,
Java), resource files, and the project product, or executable application.
Where applicable, clicking or double-clicking on a file will open it for edit-
ing or viewing. For example, clicking on a source file or a header file will
display it in the Editor pane. Double-clicking on a .nib file will open the
file in Interface Builder.

■ Classes view—Enables easy access and browsing of application and framework
class files (see figure 3.11). The Class pane (upper pane) displays a filtered

Figure 3.10
The Contents pane provides access to project
file, libraries, and resources such as images.

72 CHAPTER 3
Project Builder and Interface Builder

view of all classes in the active target. You can filter the files that Project
Builder displays by selecting various filtering options from the pop-up
menu at the bottom of the pane. You can also change the display options
by clicking the Options button, also located at the bottom of the pane.
(You have not created any new classes in the DisplayCat project, so certain
filtration options may not show anything.) Double-clicking on a class’s
book icon displays documentation for the class. Clicking on a class displays
its members in the Members pane (lower pane). The Members pane lists all
members for the selected class. Clicking on a class member loads the class’s
implementation file into the editor. Double-clicking on a class member
loads the class’s interface file into the editor in an external window.

Figure 3.11 The Classes view lets you browse the interface and implementation class files for both
application and framework classes.

Project Builder in depth 73

■ Bookmarks view—Holds various pieces of information related to the project
including web sites, project notes, code snippets, and documentation files.
This is a nice way to store and access project-related information from
within Project Builder.

■ Target view—Holds two display panes: Targets and Build Styles (see figure 3.12).
The Targets pane displays all targets for the project. Clicking on a target
displays the settings for the selected target. From here, you can view and
edit all setting for the target. The Build Styles view lists all build styles for
the selected target. As in the Targets pane, selecting a build style enables
you to view and edit its settings. You create new targets and build styles by
selecting Project→New Target or Project→New Build Style, or by holding
down the Control key, clicking on the appropriate pane, and selecting New
Target or New Build Style from the contextual menu.

Figure 3.12 The Targets pane holds project targets and build styles. Project Builder uses these to
determine what files to include in the build and what settings to apply to the current build.

74 CHAPTER 3
Project Builder and Interface Builder

■ Executable view—Displays the different executable programs that your pro-
gram contains. For example, imagine you have several targets in your
project. The Executable view will have an executable program entry for
each corresponding target. (This feature has been move to the Targets tab
under Mac OS X 10.2 [Jaguar].)

■ Breakpoints view—Lists breakpoints from the current debugging session.

The Action pane
You use the Action pane to perform actions related to the current project, as well
as view the results of the action. The panel contains four tabs, each enabling dif-
ferent functionality (if you have changed the settings in Preferences→Task Tem-
plates→Basic Settings from One Window to Some Windows or Many Windows,
you may not see the Action pane or these four tabs; instead, when you select the
Find item or press a build/run button, a dedicated find, build, run, or debug win-
dow will open):

■ Click on the Find tab (see figure 3.13) to search any combination of project or
framework files for a specified token. Find offers many options, including
filtering the files that are searched and choosing a specific search type (such
as textual and regular expression searches). In addition to finding text, you
can choose to perform local or global search and replace operations.

■ Project Builder automatically selects the Build tab when you build the
project. The Build pane displays the progress of a build operation. You can
control the level of detail displayed during a build by selecting Project
Builder→Preferences, clicking the Building icon in the toolbar, and select-
ing the appropriate setting from the Build Log Detail Level menu.

■ The Run pane displays the output a program sends to the stdout and
stderr streams. This can be useful even in GUI applications for displaying
debugging or logging messages.

■ Project Builder activates the Debug pane when you run your program under
the debugger. From here, you can view the contents of variables or data
members, step into code, and view and traverse the call stack, all on a thread-
by-thread basis. When debugging, you can also view the current contents of
the console and standard IO (StdIO) buffers. Because Project Builder uses
gdb as its debugger, all gdb commands are also available. To directly enter
gdb commands, set a breakpoint in your program and start the debugger by
clicking the Build and Debug icon. Once execution stops at the breakpoint,
click on the Console tab and enter your gdb commands at the prompt.

Project Builder in depth 75

The Editor pane
The Editor pane (see figure 3.14) is located at the bottom-right of the project win-
dow. It provides an area for displaying and editing source code, viewing docu-
mentation, and viewing and editing target and build settings. For example, when
you select a source or header file from the Contents pane, Project Builder dis-
plays the file in the Editor pane. When you select Help→Project Builder Help,
documentation files are displayed in the Editor pane; when you select a target or
build style, the selected target or build style’s current values are displayed,
enabling you to view or edit the values.

 At the top of the Editor pane is a toolbar that changes based on the type of
information displayed in the pane. Figure 3.15 shows the toolbar Project Builder
displays for a source file:

Figure 3.13 The Find tab is used to enter search commands, set options, and view the result of a
search.

76 CHAPTER 3
Project Builder and Interface Builder

Figure 3.14 You edit and view project elements in the Editor pane. Elements include source code,
header files, target and build setting, and documentation files.

Figure 3.15
The Editor pane contains
a toolbar that changes
based on the type of
information displayed in
the pane.

Project Builder in depth 77

■ The Go Back and Go Forward icons at the left end of the toolbar enable you
to cycle forward and backward between currently loaded views.

■ The Current View item displays the currently loaded entry. Clicking on this
item displays a menu of all loaded views (see figure 3.16). From here, you
can select different views to display in the pane.

■ The Current Location item shows the cursor position within the current file.
For example, if a source file is loaded and the cursor is on or within a
method, Project Builder displays the method name. Like Current View,
clicking on this item will show a menu that lists the file’s functions or methods
(see figure 3.17).

■ Project Builder enables the Check Syntax icon when a source file is loaded.
Clicking on this button will check the syntax of the file based on its language.

■ The Display New Counterpart Syntax icon toggles between interface and imple-
mentation files. If an implementation file is loaded, clicking this button dis-
plays its interface file; if an interface file is loaded, clicking this button displays
its implementation file.

Figure 3.16 The Current View menu lets you select an element to display in
the Editor pane.

Figure 3.17 You can move to a different function or method in a source
file by choosing its name from the function menu.

78 CHAPTER 3
Project Builder and Interface Builder

■ The Split Editor button splits the Editor view into panes. Clicking on the
Close Split icon closes the current pane.

The status bar
The status bar is located at the bottom of the project window. It displays informa-
tion about the status of Project Builder operations, including the stages and
results of a project build, the result of a find operation, and other tasks.

3.3.4 Project Builder scenarios

Now that you understand some of the basics of the Project Builder interface, let’s
take a closer look at several scenarios that consistently come up when developing
programs under Project Builder. Remember, programming, like most aspects of
computing, is learned through practice, not just by reading or studying theory.
Theory may be able to get you from linear to logarithmic, or exponential to linear
time, but it cannot teach you to write good code—you accomplish this through
practice. Consequently, be sure you try these examples as you read. Enough talk;
let’s get down to work.

Creating a project
The first step in developing a program under Project Builder is to create a project.
Project Builder enables you to create many kinds of programs for Mac OS X,
including applications written in Carbon, Cocoa, Java, frameworks, bundles, and
kernel extensions. Creating a project is similar to writing a makefile, but provides a
friendlier way of controlling how a project is built and what is included in the build.

 To create a new project, launch Project Builder and select File→New Project
(Shift-Command-N). Project Builder opens a window that displays a list of the
available project types (see figure 3.18).

 Let’s take a closer look at the different project types. Currently, you can choose
from seven categories plus the Empty Project option:

■ Empty Project—A project with no added libraries, frameworks, or other soft-
ware infrastructure files.

■ Application—There are nine application types:

• AppleScript Application—An AppleScript Studio application, which is a Cocoa-
based application that contains hooks for AppleScript. This type of project
is useful for putting a Cocoa-based GUI on an AppleScript-based program.

• AppleScript Document-based Application—The same as an AppleScript Appli-
cation, but includes support for the NDDocument architecture.

Project Builder in depth 79

• AppleScript Droplet—An AppleScript application in which files are pro-
cessed by dragging them to the application icon.

• Carbon Application—A Carbon application that includes all necessary sup-
port files and frameworks for developing both Mac OS and Mac OS X
Carbon applications; it uses Resource Manager files to store application
resources (.r or .rsrc files).

• Carbon Application (Nib Based)—The same as Carbon Application, but uses
Nib-based resources (.nib).

• Cocoa Application—A Cocoa application using Objective-C as its develop-
ment language.

Figure 3.18
The New Project assistant list
displays all project types you
can build within Project Builder.

80 CHAPTER 3
Project Builder and Interface Builder

• Cocoa Document-based Application—Same as Cocoa Application, but adds
support for the NDDocument architecture.

• Cocoa-Java Application—A Cocoa application using Java as its development
language.

• Cocoa-Java Document-based Application—Same as Cocoa-Java Application,
but adds support for the NDDocument architecture.

■ Bundle—There are three bundle options:

• Carbon Bundle—A bundle linked to Carbon.

• CFPlugin Bundle—A bundle linked to the Core Foundation framework.

• Cocoa Bundle—A bundle linked to Cocoa.

■ Framework—There are two framework types:

• Carbon Framework—A framework linked to Carbon.
• Cocoa Framework—A framework linked to Cocoa.

■ Kernel Extension—There are two kernel extension options:

• Generic Kernel Extension—A kernel extension project.

• IOKit Driver—An I/O Kit project, used for developing kernel drivers.

■ Pure Java—There are five Pure Java types to choose from:

• Java AWT Applet—A project for developing AWT-based (Abstract Window
Toolkit) Java applets. AWT is superceded by Swing, which is more
advanced and simpler to use. It is used primarily for compatibility with
Mac OS 9.

• Java AWT Application—A project for developing AWT-based (Abstract Win-
dow Toolkit) Java applications. AWT is superceded by Swing, which is
more advanced and simpler to use. It is used primarily for compatibility
with Mac OS 9.

• Java Swing Applet—A project for developing Swing-based Java applets.
Swing supercedes AWT and provides a more advanced and simpler to use
interface toolkit.

• Java Swing Application—A project for developing Swing-based Java appli-
cations. Swing supercedes AWT and provides a more advanced and sim-
pler to use interface toolkit.

• Java Tool—A project for developing Java applications or libraries that do
not require a GUI.

Project Builder in depth 81

■ Standard Apple Plug-ins—There are three options for standard Apple plug-ins:

• IBPalette—A project for developing an Interface Builder palette, which
contains components available for developers to add to applications
(including menus, text fields, and other interface components).

• PreferencePane—A project for developing a Preference Pane, which resides
in the System Preference application and is used to set system-wide param-
eters such as screen saver settings, network settings, and energy settings.

• Screen Saver—A project for developing screen saver modules.

■ Tool—There are five command-line tool types:

• C++ Tool—A project for developing C++ applications. This option is
used for building C++ command-line tools.

• CoreFoundation Tool—A project for developing a tool that is linked to the
Core Foundation framework.

• CoreServices Tool—A project for developing a tool that is linked to the Core
Services framework.

• Foundation Tool—A project for developing a tool that is linked to the Foun-
dation framework.

• Standard Tool—A project for developing C applications. This option is
used for building C command-line tools.

To create a new project, select the appropriate project type from the list and click
the Next button. Enter the name of the project and the location where the
project folder will be stored. You can select a location by clicking the Choose but-
ton and choosing the location from the directory sheet. Once you have filled in
this information, click the Finish button. Project Builder will create a new project
based on a template and store it in the specified location.

Adding files to a project
A common operation during program development is to add files to a project.
Project Builder supports this process through the New File command.

 Imagine you have already created a new Cocoa project, written in Objective-C,
and you wish to add a new source file to the project. Follow these steps:

1 Select File→New File or press Command-N to open the New File window
shown in figure 3.19.

82 CHAPTER 3
Project Builder and Interface Builder

2 The New File window lists the types of files you can add to your project,
classified by project category. Let’s say you wish to add a new Objective-C
class to a Cocoa project. To do this, select Objective-C Class from the list
and click the Next button to open the window shown in figure 3.20.

Figure 3.19
The New File window displays the
types of files you can create for
various languages and projects.

Figure 3.20
When creating a new class file,
Project Builder displays the New
Objective-C class window. Use
this window to specify the name
of the class and its location.

Project Builder in depth 83

3 Enter the name of the class. Make sure the Also Create checkbox is checked
so a corresponding header file is created.

4 Select the location where the generated class files will be stored (typically
the project folder). You can select a location by clicking the Choose but-
ton and choosing the location from the directory sheet, or you can type it
in by hand. The Add To Project menu lets you select the project to which
the new files are added (typically the current project).

5 Click the Finish button. Project Builder creates new files for the class’s
interface and implementation, stores them in the specified location, and
adds them to your project.

The new files are accessible from the Contents pane. By default, the files are
located outside the listed folders. Usually, you will move the new class files to the
Classes folder by highlighting them and dragging them to the folder.

Using CVS
As you already know, Project Builder uses UNIX tools to perform many of its tasks.
For version control, Project Builder uses CVS (Concurrent Versions System). The
CVS revision control program stores a file’s change history and supports com-
mands for easy access to past versions of the file. CVS is built on top of a version
control system called Revision Control System (RCS), and uses RCS commands
behind the scene to perform its actions. (The RCS program dates back to the
early 1980s and was written by Walter F. Tichy while at Purdue University.)
Though the underpinnings of CVS and RCS are similar, the nomenclature,
intended audience, and command set are very different.

 Both RCS and CVS are excellent choices for a version control system and are
available under Mac OS X. The system you use really depends on the organization
of your project. Project Builder supports CVS from its interface. Unfortunately, it
does not currently support RCS.

 Setting up CVS for use with Project Builder is simple: you set up a CVS repos-
itory on one of your disks, set your CVS environment variables, and check in/out
the project. Once these steps are complete, you can open the project under
Project Builder and get full access to the CVS command set and repository. To
make this clear, let’s go through each step in more detail.

 Before using CVS, you need to configure a few things, including the CVS
repository and the client environment. The first step is to set up the CVS reposi-
tory and environment variables:

84 CHAPTER 3
Project Builder and Interface Builder

1 Open the Terminal application (located in /Applications/Utilities) and cre-
ate a directory to hold the CVS repository for your projects. The repository
is a central location that holds all files stored under version control. Place
this directory on a disk partition that is accessible to all users of the version
control system and that is large enough to handle the anticipated file stor-
age requirements. Try to be overly conservative when estimating your disk
requirement. For this example, place the repository in your home directory
under the name cvs-repository.

2 Set the CVS environment variable CVSROOT to the location of the directory
holding the repository (the directory you just created). Doing so enables CVS
commands to locate files under version control. The following command sets
the CVSROOT environment variable to the correct location (for the tcsh shell).

 % setenv CVSROOT /Users/omalley/cvs-repository

3 The CVSEDITOR environment variable specifies the editor you will use to
enter file revision descriptions. Set it to your favorite editor, such as
emacs or vi. Under Project Builder, this variable is not used; instead,
Project Builder opens a Sheet dialog in which you enter revision com-
mands. If you will ever use CVS from the Terminal, it makes sense to set
the variable anyway. Because I’m an emacs user, I set this variable to emacs:

 % setenv CVSEDITOR emacs

4 Run the CVS initialization command to create the CVS administrative
files in the repository:

 % cvs init

You only need to run the cvs init command once, before anyone on the system
uses the new repository. If for some reason you set up another repository in a dif-
ferent location, say for personal files, just change the CVSROOT environment vari-
able to the location of the new repository and run the CVS initialization command.

 For convenience, add the environment variables to your startup file. Doing so
prevents you from entering them each time you open a shell. For the tcsh shell,
add them to your .cshrc file:3

3 I typically do not set my CVSROOT in .cshrc. Instead, I set the repository location manually using aliases:
 alias cvs-proj1 'setenv CVSROOT /Users/omalley/proj1'
 alias cvs-proj2 'setenv CVSROOT /Users/omalley/proj2'

This approach enables me to switch between multiple project repositories.

Project Builder in depth 85

% setenv CVSROOT /Users/omalley/cvs-repository
% setenv CVSEDITOR emacs

Now, the environment is set up and ready to go. The next step is to place a project
under version control and access it from Project Builder. You use the cvs import
command the first time you place a module under version control. The import
command takes all files in the working directory (and subdirectories) and adds
them to the repository specified by CVSROOT:

cvs import [-options] [repository] [vendortag] [releasetag]

The options argument specifies options applied by the import command. (See the
CVS man page or documentation for a description of the options.) The repository
argument specifies the directory where CVS will store the project files within the
repository. The vendor and release tags specify vendor and release information.

 Let’s import a project into CVS for use under Project Builder:

1 Create a new Cocoa project called CocoaExample and store it in your project
directory. Build and close the project.

2 Open the Terminal application and change directory (cd) to the directory
that holds the project:

 % cd ~/projects/CocoaExample

3 Check in the project with the import command. The –m option is used to
enter your revision control message from the command line. If you
remove it, CVS will open the editor specified in the CVSEDITOR variable.
When CVS imports or checks in files, it displays a file status symbol,
expressed as the single, leftmost character (table 3.1 lists the symbols
seen at the beginning of the lines and their descriptions). The import
command is as follows:

 % cvs import -m "Initial revision." projects/CocoaExample book start
 N projects/CocoaExample/main.m
 cvs import: Importing /Users/omalley/cvs-repository/projects/

CocoaExample/CocoaExample.pbproj
 N projects/CocoaExample/CocoaExample.pbproj/omalley.pbxuser
 N projects/CocoaExample/CocoaExample.pbproj/project.pbxproj
 cvs import: Importing /Users/omalley/cvs-repository/
 projects/CocoaExample/English.lproj
 N projects/CocoaExample/English.lproj/InfoPlist.strings
 cvs import: Importing /Users/omalley/cvs-repository/
 projects/CocoaExample/English.lproj/MainMenu.nib
 N projects /CocoaExample/English.lproj/MainMenu.nib/classes.nib
 N projects /CocoaExample/English.lproj/MainMenu.nib/info.nib
 N projects /CocoaExample/English.lproj/MainMenu.nib/objects.nib

 No conflicts created by this import

86 CHAPTER 3
Project Builder and Interface Builder

4 Change directory to the parent of CocoaExample (cd ~/projects) and remove
the CocoaExample directory (rm –rf CocoaExample). Change directory to the
parent of the project directory and check out the version (do not remove or
mess with the CVS directory; CVS uses it to resolve differences between local
versions of files and those stored under version control):

 % cd ~/projects; rm –rf CocoaExample; cd ..
 % cvs co projects/CocoaExample
 cvs checkout: Updating projects/CocoaExample
 U projects/CocoaExample/main.m
 cvs checkout: Updating projects/CocoaExample/CocoaExample.pbproj
 U projects/CocoaExample/CocoaExample.pbproj/omalley.pbxuser
 U projects/CocoaExample/CocoaExample.pbproj/project.pbxproj
 cvs checkout: Updating projects/CocoaExample/English.lproj
 U projects/CocoaExample/English.lproj/InfoPlist.strings
 cvs checkout: Updating projects/CocoaExample/English.lproj/MainMenu.nib
 U projects/CocoaExample/English.lproj/MainMenu.nib/classes.nib
 U projects/CocoaExample/English.lproj/MainMenu.nib/info.nib
 U projects/CocoaExample/English.lproj/MainMenu.nib/objects.nib

Within the CocoaExample directory, you will see a directory called CVS:

 % cd projects/CocoaExample; ls
 CVS CocoaExample.pbproj English.lproj build main.m

Table 3.1 CVS status commands

Symbol Description

A File added

C File merged, changes

E File exported

F File released

G File merge successful

M File modified

N New file added

O File checked out

R File removed

T Tag

U File exists in repository; new
revision created

W File removed from entries file

Project Builder in depth 87

5 Launch Project Builder and open the CocoaExample project. You should see a
CVS icon at the top left of the Contents pane; it indicates that Project Builder
recognizes the project is under version control. Project Builder will also
enable the CVS menu when you save changes to a source file (see figure 3.21).

You can use these menu items to interact with CVS and perform operations on
the repository. Not all of the CVS commands are available from the CVS menu,
but most of the basic ones are there. Typically, you will interact with the CVS
repository from the command line and from within Project Builder. If you are a
purist, you can still use CVS from the command line only.

Creating new targets and build styles
As you have already seen, a target collects all necessary components that make
up a project, as well as instructions for building the project. Components include
source files, header files, and libraries. On the other hand, build styles enable
you to customize the build options of a specified target. Let’s look more at the
relationship between targets and build styles through an example.

 Imagine you are developing an application that implements two Fibonacci
number generators, recursive and loop-based, and you wish to see how the dif-
ferent compiler optimizations affect performance. By using targets and build
styles, you can compare two implementations without changing any client code
in the main function. Follow these steps:

1 Launch Project Builder and create a new project using the C++ Tool
template.

2 Create and add two files to the project, one for each implementation. Call
the files FibonacciRecursive.cpp and FibonacciLoop.cpp. Implement each
algorithm in its corresponding file and add code to main to call the func-
tion. Listing 3.1 shows the code for the different implementation of the
Fibonacci program and the program’s main function.

Figure 3.21
Project Builder enables the CVS menu items when you
open a project that was previously checked into CVS.

88 CHAPTER 3
Project Builder and Interface Builder

/*
 Loop (iterative) implementation of the Fibonacci number
 series generator.
 */
long
Fibonacci(long n)
{
 if (n == 0)
 return 0;

 long x = 1;
 long y = 0;
 long z = 0;
 for (long i=1; i<n; i++) {
 z = x;
 x += y;
 y = z;
 }
 return x;
}

/*
 Recursive implementation of the Fibonacci number series generator.
 */
long
Fibonacci(long n)
{
 if (n == 0)
 return 0;

 if ((n == 1) || (n == 2))
 return 1;

 return Fibonacci(n-1) + Fibonacci(n-2);
}

using namespace std;
#include <iostream>

#include "FibonacciRecursive.h"
#include "FibonacciLoop.h"

const int N_FIBONACCI_NUMS = 10;

int
main()
{
 long fibonacciResult[N_FIBONACCI_NUMS];

 for(int i=0; i<N_FIBONACCI_NUMS; i++) {
 fibonacciResult[i] = Fibonacci(i);
 }

Listing 3.1 Two implementations of the Fibonacci program and the main function

Project Builder in depth 89

 cout << "Computed Fibonacci values:" << endl;
 for(int i=0; i<N_FIBONACCI_NUMS; i++) {
 cout << "fib(" << i << ") = "
 << fibonacciResult[i] << endl;
 }
 return 0;

}

3 Now that the code is in place, you need to create two targets for testing. To
create a new target, select Project→New Target or click on the Targets tab
from the Contents pane, Control-click (right-click) on the upper pane,
and select New Target. Select Tool and click on the Next button; name
the new target Recursive.

4 Create another target, called Loop.

5 Add the appropriate source code files to its target (see figure 3.22). Acti-
vate the recursive target by clicking the radio button to its left. Click on the
Files tab in the Contents pane, and click the checkbox to the left of the files
main.c, FibonacciRecursive.cpp, FibonacciRecursive.h, and libstdc++.a
(located under the External Frameworks and Libraries).

6 Activate the loop target and do the same, this time selecting main.c,
FibonacciLoop.cpp, FibonacciLoop.h, and libstdc++.a.

7 To test each implementation, select its target and build and run the program.

As you can see, targets are a convenient way to build versions of a program that
contain different files.

 Next, let’s look at creating and applying build styles to the project. Build styles
enable you to override aspects of a target’s build settings. By default, two build styles
are defined: Development and Deployment. Each style overrides the build settings
of the active target. Let’s create a few build styles for testing the effect of different
compiler optimizations.

 To create a new build style, follow these steps:

1 Select Project→New Build Style or click on the Targets tab from the Con-
tents pane, Control-click (right-click) on the lower pane, and select New
Build Style from the menu.

2 Enter the name of the build style. Within the Fibonacci project, create
four build styles: OptimizationNone, Optimization1, Optimization2, and
OptimizationSize.

90 CHAPTER 3
Project Builder and Interface Builder

3 To apply a build style to a target, click on the Targets tab from the Contents
pane, select a target from the list, and select the appropriate build style.

Now, when you build the selected target, Project Builder will apply the selected
build settings. As you might expect, build styles are a simple and straightforward
way to quickly apply a variety of build setting to a target.

Project Builder preferences
The Preferences dialog, available from the Project Builder Preference menu,
enables you to set application-wide preferences (see figure 3.23). Editor settings
are updated through the Text Editing, Syntax Coloring, and Indentation items.

 Using these items, you can set up the Project Builder editor to mimic basic
aspects of the emacs language modes, as well as customization options including

Figure 3.22 Adding files to the recursive target

Project Builder in depth 91

showing matching braces, tab settings, text syntax coloring options, and syntax-
aware indentation settings. These options do not give you the customization
available from emacs, but do provide lots of functionality for very little effort. (The
editor does support a subset of common emacs key bindings such as Control-A
and Control-E for moving the insertion point to the beginning and end of line.)

 Many more customizations are supported through the Preferences dialog,
including tailoring class and function navigation, modifying build option behavior,
and changing interface and behavioral elements of the debugging environment.
The best way to get a feel for them is to open the dialog box and try them.

Setting build and link options
In UNIX-style development, you specify your programs build settings in a make-
file. Project Builder also enables you to add and remove build settings, but
through its interface. Let’s look at some of the build options for controlling com-
piler and link settings. As previously mentioned, each target defines its own com-
piler and link settings, which you can override using a build style (see figure 3.24).

 Each time you issue a build command, Project Builder writes the status of the
build to the Build pane. You can set the level of detail that it displays through the
Preferences dialog under the Build item. There are three options to choose from:
minimal, standard, and detailed logs. Listing 3.2 shows the information Project
Builder displays for each type of build.

Figure 3.23 Within the Preferences dialog box, you can set a variety of Project Builder
settings, including editor preferences, build settings, and CVS access integration options.

92 CHAPTER 3
Project Builder and Interface Builder

Minimal Log:
/usr/bin/jam -d0 JAMBASE=/Developer/Makefiles/pbx_jamfiles/

ProjectBuilderJambase
JAMFILE=- build ACTION=build TARGETNAME=Recursive NATIVE_ARCH=ppc
BUILD_STYLE=Development
CPP_HEADERMAP_FILE=/Users/omalley/projects/TargetBuildExample/
build/intermediates/Recursive.build/Headermaps/Recursive.hmap
DSTROOT=/ OBJROOT=/Users/omalley/projects/TargetBuildExample/
build/intermediates SRCROOT=/Users/omalley/projects/
TargetBuildExample
SYMROOT=/Users/omalley/projects/TargetBuildExample/build
Completed phase <CopyHeaders> for Recursive
Completed phase <DeriveAndCompileSources> for Recursive
Completed phase <LinkWithFrameworksAndLibraries> for Recursive

Listing 3.2 Output from the three types of build options

Figure 3.24 Within a target, you add compiler options under the Build Settings tab.

Project Builder in depth 93

Completed phase <RezResourceManagerFiles> for Recursive

Standard Logs:
/usr/bin/jam -d1
JAMBASE=/Developer/Makefiles/pbx_jamfiles/ProjectBuilderJambase
JAMFILE=- build ACTION=build TARGETNAME=Recursive NATIVE_ARCH=ppc
BUILD_STYLE=Development
CPP_HEADERMAP_FILE=/Users/omalley/projects/TargetBuildExample/
build/intermediates/Recursive.build/Headermaps/Recursive.hmap
DSTROOT=/ OBJROOT=/Users/omalley/projects/TargetBuildExample/
build/intermediates SRCROOT=/Users/omalley/projects/
TargetBuildExample
SYMROOT=/Users/omalley/projects/TargetBuildExample/build
...updating 11 target(s)...
BuildPhase Recursive
Completed phase <CopyHeaders> for Recursive
Mkdir /Users/omalley/projects/TargetBuildExample/build/
intermediates/Recursive.build/Objects/ppc
CompileCplusplus /Users/omalley/projects/
TargetBuildExample/build/
intermediates/Recursive.build/Objects/ppc/main.o
CompileCplusplus /Users/omalley/projects/
TargetBuildExample/build/
intermediates/Recursive.build/Objects/ppc/FibonacciRecursize.o
BuildPhase Recursive
Completed phase <DeriveAndCompileSources> for Recursive
MasterObjectFile.Combine /Users/omalley/projects/
TargetBuildExample/build/
intermediates/Recursive.build/master.o
StandaloneExecutable /Users/omalley/projects/TargetBuildExample/build/

Recursive
BuildPhase Recursive
Completed phase <LinkWithFrameworksAndLibraries> for Recursive
BuildPhase Recursive
Completed phase <RezResourceManagerFiles> for Recursive
...updated 11 target(s)...

Detailed Logs:
/usr/bin/jam -d2 JAMBASE=/Developer/Makefiles/pbx_jamfiles/

ProjectBuilderJambase
JAMFILE=- build ACTION=build TARGETNAME=Recursive
NATIVE_ARCH=ppc BUILD_STYLE=Development
CPP_HEADERMAP_FILE=/Users/omalley/projects/TargetBuildExample
/build/intermediates/Recursive.build/Headermaps/Recursive.hmap
DSTROOT=/ OBJROOT=/Users/omalley/projects/TargetBuildExample/
build/intermediates SRCROOT=/Users/omalley/projects/
TargetBuildExample
SYMROOT=/Users/omalley/projects/TargetBuildExample/build
...updating 11 target(s)...
BuildPhase Recursive

 echo Completed phase "<CopyHeaders>" for "Recursive"

94 CHAPTER 3
Project Builder and Interface Builder

Completed phase <CopyHeaders> for Recursive
Mkdir /Users/omalley/projects/TargetBuildExample/build/
intermediates/Recursive.build/Objects/ppc

 /bin/mkdir -p "/Users/omalley/projects/
TargetBuildExample/build/
intermediates/Recursive.build/Objects/ppc"

CompileCplusplus /Users/omalley/projects/TargetBuildExample/build/
intermediates/Recursive.build/Objects/ppc/main.o

 /usr/bin/cc -c "-F/Users/omalley/projects/
TargetBuildExample/build" "-I/Users/omalley/projects/TargetBuildExample/

build/include"
 "-arch" "ppc" "-fno-common" "-fpascal-strings" "-O0"
"-Wmost" "-Wno-four-char-constants" "-Wno-unknown-pragmas"
"-pipe" "-precomp-trustfile" "/Users/omalley/projects/TargetBuildExample/

build/
intermediates/Recursive.build/TrustedPrecomps.txt"
"-Wp,-header-mapfile,/Users/omalley/projects/
TargetBuildExample/
build/intermediates/Recursive.build/Headermaps/
Recursive.hmap" "-I/Users/omalley/projects/
TargetBuildExample/build/
intermediates/Recursive.build/DerivedSources"
"main.cpp" -o "/Users/omalley/projects/
TargetBuildExample/build/
intermediates/Recursive.build/Objects/ppc/main.o"

CompileCplusplus /Users/omalley/projects/
TargetBuildExample/build/
intermediates/Recursive.build/Objects/ppc/FibonacciRecursize.o

 /usr/bin/cc -c "-F/Users/omalley/projects/
TargetBuildExample/build" "-I/Users/omalley/projects/TargetBuildExample/

build/include"
"-arch" "ppc" "-fno-common" "-fpascal-strings" "-O0"
"-Wmost" "-Wno-four-char-constants" "-Wno-unknown-pragmas"
"-pipe" "-precomp-trustfile" "/Users/omalley/projects/TargetBuildExample/

build/
intermediates/Recursive.build/TrustedPrecomps.txt" "-Wp,
-header-mapfile,/Users/omalley/projects/TargetBuildExample/
build/intermediates/Recursive.build/Headermaps/Recursive.hmap"
"-I/Users/omalley/projects/TargetBuildExample/build/
intermediates/Recursive.build/DerivedSources"
"FibonacciRecursize.cpp" -o
"/Users/omalley/projects/TargetBuildExample/build/
intermediates/Recursive.build/Objects/ppc/FibonacciRecursize.o"

BuildPhase Recursive

 echo Completed phase "<DeriveAndCompileSources>"
for "Recursive"

Project Builder in depth 95

Completed phase <DeriveAndCompileSources> for Recursive
ClearFileList /Users/omalley/projects/TargetBuildExample/build/
intermediates/Recursive.build/Objects/LinkFileListPrelink

/bin/rm -rf "/Users/omalley/projects/TargetBuildExample/build/
intermediates/Recursive.build/Objects/LinkFileListPrelink"

AppendToFileList /Users/omalley/projects/TargetBuildExample/build/
intermediates/

Recursive.build/Objects/LinkFileListPrelink

 for file_reference in
"/Users/omalley/projects/TargetBuildExample/build/intermediates/
Recursive.build/Objects/ppc/main.o"
"/Users/omalley/projects/TargetBuildExample/build/intermediates/
Recursive.build/Objects/ppc/FibonacciRecursize.o"
 do
 echo "$file_reference" >>
"/Users/omalley/projects/TargetBuildExample/build/intermediates/
Recursive.build/Objects/LinkFileListPrelink"
 done

MasterObjectFile.Combine
/Users/omalley/projects/TargetBuildExample/build/intermediates/
Recursive.build/master.o

 /usr/bin/cc -arch ppc -keep_private_externs -nostdlib
-filelist "/Users/omalley/projects/TargetBuildExample/build/
intermediates/
Recursive.build/Objects/LinkFileListPrelink" -r -o
"/Users/omalley/projects/TargetBuildExample/build/intermediates/
Recursive.build/master.o"

ClearFileList /Users/omalley/projects/TargetBuildExample/build/
intermediates/
Recursive.build/Objects/LinkFileList

 /bin/rm -rf
"/Users/omalley/projects/TargetBuildExample/build/intermediates/
Recursive.build/Objects/LinkFileList"

AppendToFileList
/Users/omalley/projects/TargetBuildExample/build/intermediates/
Recursive.build/Objects/LinkFileList

 for file_reference in
"/Users/omalley/projects/TargetBuildExample/build/intermediates/
Recursive.build/master.o"
 do
 echo "$file_reference" >>
"/Users/omalley/projects/TargetBuildExample/build/intermediates/
Recursive.build/Objects/LinkFileList"
 done

StandaloneExecutable

96 CHAPTER 3
Project Builder and Interface Builder

/Users/omalley/projects/TargetBuildExample/build/Recursive

StandaloneExecutable.LinkUsingFileList
/Users/omalley/projects/TargetBuildExample/build/Recursive

 /usr/bin/cc -o "/Users/omalley/projects/TargetBuildExample/build/
Recursive" "-

L/Users/omalley/projects/TargetBuildExample/build" "-
L/usr/lib/gcc/darwin/2.95.2" "-
F/Users/omalley/projects/TargetBuildExample/build" -filelist
"/Users/omalley/projects/TargetBuildExample/build/intermediates/
Recursive.build/Objects/LinkFileList" "-arch" "ppc" "-prebind"
"-lstdc++"

BuildPhase Recursive

 echo Completed phase "<LinkWithFrameworksAndLibraries>"
for "Recursive"

Completed phase <LinkWithFrameworksAndLibraries> for Recursive
BuildPhase Recursive

 echo Completed phase "<RezResourceManagerFiles>"
for "Recursive"

Completed phase <RezResourceManagerFiles> for Recursive

...updated 11 target(s)...

The minimal setting only shows the basics of the build: the commands run and
any errors and warnings. The standard setting provides more information about
each step in the build process. The detailed setting shows the commands run,
their command line, and warnings and errors. Note the use of the Jam program
(a make replacement) for managing the build process; it also uses different debug-
ging values (-d0, -d1, -d2).

 Now, let’s look at the Compiler Settings section in the Editor pane. The Code
Generation area is used to set the desired optimization level for the build. The
optimization levels in the menu correspond to the standard gcc optimization levels
(see table 3.2).

Table 3.2 The compiler optimization levels avaliable under gcc/g++

Menu item gcc option Description

None (less optimized, more debuggable) -O Does not optimize

Level 1 -O1 -O0 Optimizes

Project Builder in depth 97

(See the gcc documentation’s section “Options That Control Optimization” for
more specific information about optimizations settings.)

 The next option is the Generate Profiling Code checkbox. Enabling this box
adds -pg to your build options, which adds code to support program performance
analysis with gprof. The gprof program is used to display a performance execution
profile for your program.

 Enabling the Generate Debugging Symbols checkbox adds the -g option to
the build, which adds symbolic information to the object files, enabling gdb to
provide you with more information while debugging. The Other C Compiler Flags
text field is used to adding additional compiler flags to the build.

 Link options are set in the Linker Settings portion of the Build Settings section.
This section enables you to customize elements of the link phase of the build.
Project Builder uses ld, the Mach object file link editor, to perform link operations;
libtool to create static and dynamic libraries; and dyld to load an application’s
dynamic link libraries into its address space.

Development from the command line under Project Builder
In addition to building your programs from within Project Builder, you can choose
to build them from the command line using the pbxbuild command. To use the
command, open a shell and change to the directory that contains your project.
The pbxbuild program has several command-line options:

pbxbuild [-activetarget | -alltargets | -target <targetname>]
[-buildstyle <stylename>] [clean | install]
[<variable>=<value>]

To build Project Builder active target, use the -activetarget option; to build all
targets in the project, use -alltargets; or to build a specific target, use the -target
option, followed by the target name. You apply build styles by specifying the build
style option followed by the name of the style. Both target and build style names

Menu item gcc option Description

Level 2 -O2 -O2 Performs most supported optimizations
except loop unrolling, function inlining, and
register renaming

Level 3 (more optimized, less debuggable) -O3 Turns on all optimizations

Optimize for size -Os Turn on optimizations that do not increase
program size.

Table 3.2 The compiler optimization levels avaliable under gcc/g++ (continued)

98 CHAPTER 3
Project Builder and Interface Builder

are case sensitive. In addition, pbxbuild supports make-like options such as clean
and install, which build and install the program in the target directory.

 The makefile in listing 3.3 is a simple example of how to use pbxbuild and
its options.

#--
Id
#--

BUILD_TOOL = pbxbuild

Uncomment and edit <stylename> to a Project Builder
build style name.
BUILD_STYLE = # -buildstyle <stylename>

Build targets

all:
 $(BUILD_TOOL) -alltargets $(BUILD_STYLE)

active:
 $(BUILD_TOOL) -activetarget $(BUILD_STYLE)

Edit <targetname> to target to build.
target:
 $(BUILD_TOOL) -target <targetname> $(BUILD_STYLE)

Build action (can specify more than one):
export install clean installsrc

clean:
 $(BUILD_TOOL) clean

Must specify SRCROOT in environment.
export:
 $(BUILD_TOOL) SRCROOT=. export

install:
 $(BUILD_TOOL) install

list:

 $(BUILD_TOOL) -list

You can run this makefile from the command line or from within an editor like
emacs. The advantage of running it within an editor is that you can use the editor’s
next/previous message command to jump to the source line of an errors or warn-
ing. (Within emacs, use Control-x-~ to get the next compiler error or warning.)

Listing 3.3 Makefile for building a project from the command line using pbxbuild

Project Builder in depth 99

Adding static checking to builds
Static code analysis refers to techniques and methods applied before a program is
run that highlight potential problems, anomalies, or errors in source code. In the
software engineering literature, as well as in practice, static code analysis means
different things to different people, and consists of many techniques and methods.
These include peer and formal review sessions, formal methods, software metrics,
and methods that focus on detecting language-based and programming problems.
In spite of the varying methods, the goal is the same—to examine a program’s
source code using some measurable procedure with the goal of detecting and remov-
ing prospective errors.

 Historically, developers of early C compilers made a clear separation between
static analysis and compilation. In the spirit of UNIX design, a program should do
one thing and do it well. In this spirit, compiler writers designed their compilers
to be as small and fast as possible, leaving static analysis to another program,
called lint. Some feel this approach was a mistake. As Peter van der Linden
points out, many programmers do not use lint for semantic analysis, so we get
faster compilation, but at the cost of allowing many detectable bugs to get past the
compiler.4 Today, most compiler vendors implement stricter semantic checking in
their compilers. For example, gcc and g++ provide a wide range of options for
detecting semantic errors in source code, and Sun’s CC compilercontains options
that are even more advanced.

 One of the easiest and more productive static code analysis techniques is to use
your compiler’s warning flags to detect programming errors. During the develop-
ment process, your first line of defense is compiler options. By intelligently using
compiler options, you can use the compiler to alert you to potential problems in
your source code early in the development process.

 To use Project Builder for semantic code analysis of C and C++ code, you
need to understand gcc’s compiler flags. By enabling these flags, you tell the
compiler to perform stricter semantic checking when processing source code.
The gcc manual groups warnings into the following categories:

■ Warning options
■ C language options
■ C++ language options

4 Peter van der Linden. Expert C Programming! (Englewood Cliffs, N.J.: SunSoft Press,1994). 50–60. He
also provides an interesting account of Sun’s use of lint for its kernel code.

100 CHAPTER 3
Project Builder and Interface Builder

Warning messages tell the compiler to check for language or programming con-
structs that are potentially dangerous or may lead to errors or unexpected results.
This is one of the most useful sets of options supplied by the compiler. Both C and
C++ language options define a set of options that detect and verify conformance
with various dialects of C, C++, and Objective C. These options are useful if you
wish to check your code for conformance to a particular language standard.

 For example, the –Wall option collects many useful compiler flags under a single
switch, and the –W option adds even more checking. Including these two options
in your build is a great way to perform basic semantic code analysis.

 To set compiler warning flags within Project Builder, follow these steps:

1 Select a target and click on the Build Settings tab of the Edit pane
(changed in Mac OS X 10.2 to a hierarchical list of settings with subpanes
in Expert view).

2 In the list of build settings, double-click on the value section of the
WARNING_CFLAGS record (see figure 3.25). Use this field to add any addi-
tional warning compiler flags to the build. Or, under the Compiler Set-
ting section of the Edit pane, use the Other C Compiler Flags text field
to add compiler flags.

3.4 Creating an application with Interface Builder

The cornerstone of developing Mac OS X programs using the Apple development
tools is Project Builder. You use the Project Builder environment to write your
program’s source code and build, run, and debug your program. However, for
developing GUI-based applications under Mac OS X, this is only half the story. In
addition to implementing the program’s logic, you also need to create its user
interface. Enter Interface Builder.

 You use Interface Builder to design the user interface component of your pro-
gram. The relationship between Project Builder and Interface Builder is similar
to that of Project Builder and the UNIX-based development tools. As you know,
Project Builder uses the services of the UNIX-based development tools to perform
common development tasks. For creating user interfaces, it uses Interface Builder.
With Interface Builder, you design application menus, windows, icons, and dialog
boxes that provide your application with its GUI.

 The best way to understand the components of Interface Builder and its
interaction with Project Builder is to see it in action. If you have not already done
so, go through section 3.3 to get a feel for how Project Builder works.

Creating an application with Interface Builder 101

3.4.1 Interface Builder scenarios

The following sections describe typical situations you will encounter when construct-
ing your programs GUI with Interface Builder. These topics will give you a taste for
some of Interface Builder’s most useful features.

Nib files
Under Mac OS X, you construct a Cocoa application’s user interface using Inter-
face Builder and store this information in one or more Nib files. Nib files come
from the days of NeXT computer and stand for NeXT Interface Builder.5 Generally,
a Nib file holds application interface components.

Figure 3.25 The Build Settings category in the Edit pane enables you to set extra compiler flags that
Project Builder adds to the build command.

5 Aaron Hillegass, Cocoa Programming for Mac OS X (Boston: Addison-Wesley, 2002), 12.

102 CHAPTER 3
Project Builder and Interface Builder

 For example, the Nib file for a Cocoa program not only contains its user
interface components (menus, windows, and so on), but also encodes and stores
information about each object and the relationship between these objects within
the object hierarchy. The runtime system decodes this information when the
program is loaded.

 Let’s look at the contents of a Nib file using a command-line program called
nibtool. The nibtool program lets you display different information from a Nib
file through its command-line options. For example, the –c option displays the
local classes in a Nib file, -j outputs the setting for the objects, and –x prints con-
nections between the objects. To experiment with this program, open a shell and
change to a directory that holds a Nib file (usually under a project’s English.lproj
directory). Listing 3.4 shows the condensed output of a nibtool command.

% nibtool -c MainMenu.nib
/* Classes */
Classes = {
 IBClasses = (
 {CLASS = FirstResponder; LANGUAGE = ObjC;
 SUPERCLASS = NSObject; },
 {
 ACTIONS = {clearMe = id; clickMe = id;
 myMenuAction = id; };
 CLASS = MyClass;
 LANGUAGE = ObjC;
 OUTLETS = {textItem = id; };
 SUPERCLASS = NSObject;
 }
);
 IBVersion = 1;
}; /* End Classes */

% nibtool -j MainMenu.nib
Objects = {

 "Object 1" = {
 Class = "NSCustomObject";
 CustomClass = "NSApplication";
 Name = "File's Owner";
 className = "NSApplication";
 };

 "Object 2" = {
 Class = "NSView";
 autoresizingMask = "0";
 frameRect = "{{1, 9}, {404, 148}}";
 groupedIBObjectID = "<null>";

Listing 3.4 Information from a Nib file, displayed with nibtool

Creating an application with Interface Builder 103

 isLockedIBObject = "0";
 };

% nibtool -x MainMenu.nib
Connections = {
 "Connection 37" = {
 Action = "performMiniaturize:";
 Class = "NSNibControlConnector";
 Source = "23";
 };

 "Connection 39" = {
 Action = "arrangeInFront:";
 Class = "NSNibControlConnector";
 Source = "5";

 };

Creating and editing menus, windows, and other interface objects
The usual way to use Interface Builder is in conjunction with Project Builder.
Typically, you create a new project within Project Builder and edit its user inter-
face using Interface Builder. From within Project Builder, you double-click on the
application’s main Nib file, located in the Resource folder, to launch Interface
Builder and load the Nib file. At this point, you can edit existing interface com-
ponents or create addition interface elements.

 When you open an application’s Nib file in Interface Builder, you will see a
window that holds the application’s menu (the menu displayed at the top of the
screen when the application is running). You can change the text of an existing
menu item by double-clicking on its name and editing the text. To add a new menu
item, click on the Cocoa Menus item in the Palette toolbar (see figure 3.26), select
the item you wish to add, and drag it to its location within the menu window.
Dragging it over a menu item opens the menu so you can place the item in the
menu. You can add a single menu item by selecting the Item menu item, or choose
a predefined menu item from the palette that already contains the menu item.

 To delete an item, select it and press the Delete key. Make sure you read the
Mac OS X User Interface guidelines to ensure that your application’s menus are
stylistically correct.

 Within Interface Builder, windows and other interface components are easy to
construct, customize, and add to your program. For example, to add a new win-
dow to your program, simply select the Cocoa Windows item from the palette tool-
bar and drag it outside of the palette. Doing so creates a new window and adds it
to your application instance. Creating other components is just as simple. Even

104 CHAPTER 3
Project Builder and Interface Builder

better, you can connect components entirely in Interface Builder if all you need is
to have one component respond to another; you need code only to add function-
ality. You will learn more about creating interface components in chapter 6.

Linking interface components to code
Once you have defined your application’s user interface in Interface Builder, you
need to add code to handle the user interaction with the interface. You do so in
Interface Builder as follows:

1 Lay out your interface components.

2 Create a new class for an interface component.

3 Create the files for the class.

4 Create an instance of the class you just created.

5 Make a connection between the instance and the interface component.

6 Add implementation code to the skeleton classes with Project Builder.

Let’s tackle each of these steps through an example:

1 Launch Project Builder. Create a new Cocoa project by selecting File→New
Project and choosing Cocoa Application from the project list.

2 Click the Next button, save the project as InterfaceBuilderExample, and
click the Finish button.

3 Expand the Resource folder and double-click on MainMenu.nib. Doing
so launches Interface Builder and loads the Nib file.

Figure 3.26
You use the Cocoa Menus item to create
and edit your application’s menu.

Creating an application with Interface Builder 105

4 Let’s add a few simple interface elements to the main window. Select Cocoa-
Views from the Palette window and drag a button and text field to the win-
dow. Place them anywhere you like and resize the window for the new con-
trols. Double-click the button and rename it Click Me (see figure 3.27).

5 Create a class to implement the actions associated with the interface
items. To do so, click the Classes tab in the MainMenu.nib window, select
NSObject from the class browser (far-left window), and press Return. Call
the class MyObject.

6 To add instance variables to the class, select MyObject from the class list
and pressing Shift-Command-I to bring up the Class Info window. In
this window, you add instance variables to the class—in this case, one per
interface item. In Cocoa applications, instance variables are called outlets
and instance methods are called actions. For this example, create one out-
let to hold the contents of the text field and one action to respond when
the user clicks the Click Me button.

7 In the MyObject Class Info window, click the Add button and name the
outlet textItem. Click the Actions tab, click Add, and name the action
clickMe. This action responds to clicks on the Click Me button.

8 Create the class’s source files. Make sure MyObject is selected in the Class
list, select Classes→Create Files For MyObject, and click the Choose but-
ton to save the files. Interface Builder creates the interface and implemen-
tation files for the class and merges them into the Project Builder project.

9 Create an instance of the class. Select MyObject from the Class list and select
Classes→Instantiate MyClass, which creates a new icon in the instances
pane representing the instantiation of the class MyObject (see figure 3.28).

10 Now comes the important step: forming relationships between the class
instance and its corresponding interface components. You are graphi-
cally telling the system what you usually do in code. Make sure Interface
Builder is displaying the application window that contains the text field
and Click Me button. To form a relationship for an outlet, click on the

Figure 3.27
This dialog is used as an example of creating
classes and instances in Interface Builder.

106 CHAPTER 3
Project Builder and Interface Builder

MyObject instance while holding down the Control key and drag to the
appropriate interface control. For example, to form a relationship between
the instance and the text field, Control-click the MyObject instance and
drag to the text field. Choose textItem from the outlets list and click the
Connect button to form the connection (see figure 3.29).

11 Repeat for the Click Me button, but this time, Control-click and drag
from the Click Me button to the MyObject instance. Select clickMe from
the actions list (make sure the target is selected) and click the Connect
button. By changing the direction of the Control-drag, you specify that
the button is sending a clickMe message to MyObject.

Figure 3.28
Once you instantiate your class, it will appear
in the Instances panel.

Figure 3.29 You form connections between interface items and their corresponding
outlet by holding down the Control key and dragging to the interface control.

Creating an application with Interface Builder 107

12 Save the file and return to Project Builder. Locate the MyObject header
file and click on its icon. Notice that Interface Builder added the
instance variable’s textItem to the file. Now, all that remains is to add
code to the clickMe method to place a text string into the text field.
Open the implementation file (MyObject.m) and add the following code
to the sender method.6

 - (IBAction)clickMe:(id)sender
 {
 // Place a static string in the text field.

 [textItem setStringValue: @"Hello World!"];
 }

13 Build and run the project (Command-R). When the program displays
the main window, click the Click Me button; the result appears in
figure 3.30.

This is a very basic example, but it shows some of the fundamentals you will use
when building programs that are more complex.

Testing an interface
During the development of your program’s user interface, things can change
quite a bit as you discover more about what functionality you want. It’s useful to
test the look and feel of the interface as you are laying it out, without recompiling
the entire project. For example, it’s convenient to construct your application’s
interface and play with it as you go until you are satisfied it’s correct. Interface
Builder provides this functionality through the Test Interface feature. The Test
Interface feature displays the application’s user interface, enabling you to test it
without invoking Project Builder.

6 See http://www2.latech.edu/~acm/HelloWorld.shtml for a collection of Hello World examples in var-
ious programming languages.

Figure 3.30
The final window for the sample program,
after clicking the Click Me button

108 CHAPTER 3
Project Builder and Interface Builder

 To use this feature, construct your user interface and select File→Test Interface
or press Command-R from within Interface Builder. Interface Builder displays
your application’s interface, enabling you to use it and see if it’s what you want.
To exit the interface test, select Quit from the application menu (Command-Q).

3.5 Summary

This chapter has taken you through some of the basic features of Project Builder,
Apple’s main IDE for building Mac OS X applications; and Interface Builder, the
application used to create your program’s user interface. You’ve seen how to use
these programs to create a simple Cocoa application and walked through some
common scenarios that come daily when developing programs with Project
Builder. You’ve also learned that Project Builder continues the development of
IDE-based development environments for the Macintosh, but breaks with the
past by using external UNIX-based development tools such as gcc, g++, gdb, RCS
and CVS for implementing build and version control commands.

 Armed with this knowledge, you are well on your way to creating your own
Mac OS X applications with Project Builder and Interface Builder. In chapter 4, I
will move on to discuss the details of the different development options available
under Mac OS X. In chapters 5–7, I show how to write more advanced, fully func-
tioning applications using Cocoa and AppleScript.

109

4Development tools

■ UNIX development tools for Mac OS X
■ Compilers and build tools
■ Aqua-based UNIX development tools
■ GUI-based development tools
■ Command line-based development tools

110 CHAPTER 4
Development tools

To put it quite bluntly: as long as there were no machines,
programming was no problem at all; when we had a few

weak computers, programming became a mild problem;
and now we have gigantic computers, programming

has become a gigantic problem.

—E. W. Dijkstra

Cars are wonderful things. Fill them with gas, turn the key, and they will take you
almost anywhere. For most of us, this is enough—we don’t need to understand
how fuel injection works or the mechanics behind it. For others, knowing every
mechanical detail is a necessity—getting under the hood and figuring out how to
optimize performance or add more power is a way of life. We could also apply
this analogy to computer users. Some users are satisfied with what their comput-
ers offer, but others are always looking for ways to get past what they perceive as
limitations, so they can have more control over things like performance and sys-
tem appearance. Typical Macintosh users fall into the former category; most UNIX
users fall into the latter, and love to probe the system looking for more efficient
ways to do things.

 This chapter presents an overview of the Mac OS X development tools that sup-
port the development of UNIX-style command-line tools and Mac OS X GUI-based
programs. Much of the material in the early part of the chapter will be familiar
to experienced UNIX developers. Developing programs with command-line
tools is for the most part the same as development under other flavors of UNIX.
If you understand the basics of gcc, gdb, makefiles, and UNIX-style development,
you will feel right at home under Mac OS X.

4.1 Introduction

The Macintosh GUI-based interface and programs abstract users from the low-level
aspects of operating the computer. For most users, this is a good thing. One of the
primary strengths of the Macintosh platform is its elegant, consistent, and aesthet-
ically pleasing interface and user experience, which shields users from the low-level
details of interacting with the operating system. This design has affected how
Macintosh developers design software and how Macintosh users operate and inter-
act with their programs.

 Typically, Macintosh applications are self-contained entities that encapsulate
several features within one program, encouraging users to operate and use each

Introduction 111

program in relative isolation. You can use programs in succession through native
scripting languages such as AppleScript, but not in the way to which UNIX users
are accustomed.

 UNIX takes a different approach, founded on the tenets of the UNIX philoso-
phy: use and design simple programs with clean and clear interfaces that do one
thing well and that can be linked together to do powerful things. And by all
means, do not get in the user’s way. This is no surprise—the original designers of
UNIX were programmers writing a system for themselves and other programmers,
and their goal was to support program development and text processing. This
approach has changed somewhat over the years, but for most UNIX users, the
command line is the preferred interface. For Macintosh developers and users,
the command line is not a user interface.

 Software development on UNIX and the Macintosh platforms is also different.
On the Macintosh, development centers on an Integrated Development Environ-
ment (IDE) composed of an integrated editor, compiler, linker, and debugger.
UNIX, on the other hand, offers a more segregated development environment,
centering on makefiles and command-line build and editing tools.

 These examples are generalizations, but they convey the main differences
between the environments. Like most things, each environment has its strengths
and weaknesses and, in many respects, is a reflection of the system designers and
user base. The beauty of Mac OS X is that it blends the best of both worlds. If you
like, you can use the system as a UNIX box through its command-line interface, or
operate it as a standard Macintosh using the GUI interface. Software developers
also have many choices in terms of the APIs and frameworks they can use to
build programs. You can develop Mac OS X GUI programs under Cocoa, Java, or
AppleScript using the Mac OS X APIs and frameworks, or develop UNIX text-
based applications from the command line with familiar UNIX development
tools (emacs, gcc, gdb). You can even write X Window programs, although doing
so is not recommended because Mac OS X offers a more appealing GUI-based
application infrastructure through Cocoa and Carbon.

 An interesting approach combines different programs by writing your interface
in Cocoa and the program guts as a command-line tool. This approach makes
sense for many applications and is becoming popular among Mac OS X software
developers. For UNIX developers coming to Mac OS X, this is a useful path; it
enables them to develop their core application in a familiar environment with
known tools and techniques, while making it available to many Macintosh users
who would otherwise shy away from the command line. In addition, you can run
the program without its user interface and even port it to other platforms. You also

112 CHAPTER 4
Development tools

have infinite opportunity to quickly write simple interfaces for the standard UNIX
tools that come with the system. The technique is discussed in detail in chapter 6,
“Cocoa programming.”

 Before continuing with this chapter, see appendix A for information about
getting and installing Apple’s Mac OS X development tools.

4.2 UNIX development tools under Mac OS X

Mac OS X comes with many of the UNIX tools and userland programs that expe-
rienced users are accustomed to, including emacs, vi, more, top, ps, sed, and awk.
Once you install the Apple developer tools, you get most of the standard UNIX
development programs as well. These include perennial favorites like gcc, g++,
gdb, and Perl. Before looking at what editors are available on Mac OS X, let’s
briefly review the design and categories of UNIX editors.

4.2.1 Editors
Programmers probably spend more of their work life creating and editing text files.
Consequently, the demand for and development of high quality, customizable,
stable text editors and text manipulation tools has been a very high priority from
the inception of UNIX. Historically, we can partition UNIX editing tools into two
categories: interactive editors (including both line and screen mode editors) and
non-interactive editors (stream editors).

Line-mode editing
Line-mode editing grew from the era of time-sharing and is personified by ed,
the so-called “standard” UNIX editor. The ed program, developed by Ken
Thompson, embodies many of the features common to line-mode editing tools.

 The ed text editor operates in one of two modes: command mode or input
mode. In command mode, you enter commands that invoke editor operations,
such as deleting a line in a file or searching for a string. These operations trans-
form a line or file but do not display the result immediately; you need to enter a
display command to see the result of the operation. Input mode enables you to
insert new text into a file.

 An obvious question is why you should take the time to learn about line-mode
editing tools. Line-mode editing commands are still used in some current pro-
grams, such as vi. And, some Cocoa applications use UNIX command-line tools
such as ed for performing many operations, so understanding the basics of these
tools will help you build your own programs that use UNIX tools.

UNIX development tools under Mac OS X 113

Screen-mode editing
Screen-mode editors embody a different design principle and user experience than
line-mode editors. Whereas line-mode editors let you interact with a file or a single
line at a time, screen-mode editors display a screen of text at a time, enabling you
to edit text on the entire screen and see the result of an editing operation imme-
diately. More or less, this is what you are accustomed to today. GNU emacs (based
on TECO) and vi are the most popular examples of screen editors. (Actually, vi
contains two interaction modes: line and screen mode. Today we call the editor vi,
but technically it is the visual mode of ex, line-mode editing program based on ed.)

Stream-mode editing
Stream-mode editing enables you to quickly apply editing commands over one or
more files without opening the files in an editor. You specify commands (either on
the command line or in a script file) and a set of files as program parameters. The
stream-editing program applies the editing commands to each file and outputs
the new, transformed text.

 The most popular stream-editing program is sed. It has been around since the
early days of UNIX; over the years it has become less popular, primarily due to the
development and popularity of scripting languages such as Perl, Python, and Ruby.
However, sed is still a very useful and powerful editing tool. For example, it accepts
input from standard input, so you can easily pipe a text file into sed, have it apply
the editing commands to the input, and output the new text, all in one command.

 You can use stream-mode editing tools for Mac OS X development. For example,
FileMerge, a GUI-based file comparison and merging program located in the
/Developer/Applications folder, is implemented as a GUI application that uses the
UNIX diff command, outputting its result to an ed script. Later in the chapter you’ll
see how this works; for now, look at figure 4.1, which shows the result of searching
the process table for the diff command as FileMerge is comparing two large files.

 As you can see from this example, there is still a place for UNIX command-line
tools in the modern age!

4.2.2 Mac OS X editing tools

Mac OS X has all the standard UNIX editing tools you would expect, including
favorites such as emacs, vi, and ed. In addition, you can download precompiled
binaries or source code of other standard editors such as joe, vim, and nedit.
Keep in mind that Mac OS X does not come with a built-in X server, so these edit-
ing tools function in one of two ways: either as terminal-based programs run from
a shell (within the Terminal application) or as native Mac OS X applications. If you

114 CHAPTER 4
Development tools

run an X server on Mac OS X (see chapter 2, “Navigating and using Mac OS X,”
for more information), you can run X Window editing sessions within Mac OS X.
Let’s look at two of the most popular UNIX editors, emacs and vi, and see how
these tools are supported under Mac OS X.

emacs
GNU emacs (Editing MACroS) has its roots in an editor called TECO (Tape/Text
Editor and Corrector), which was developed at MIT (http://www.tuxedo.org/~esr/
jargon/html/entry/TECO.html). TECO contained many new and important advance-
ments, including a mechanism whereby users could link stored programs (macros)
to key commands. Over time, these macros were collected into macro packages,
which replaced the native TECO commands. Richard Stallman collected and

Figure 4.1 The Mac OS X FileMerge program looks for differences between two files using the UNIX diff
command.

UNIX development tools under Mac OS X 115

extended many of the existing TECO macro packages into a single package called
Editor MACroS, or emacs. Stallman later wrote a new editor, called GNU emacs,
where the underlying implementation and extension language was a Lisp-based
language called elisp.

 Mac OS X supports several emacs implementations, ranging from the standard
terminal-based version that comes with the system, to versions that take advantage
of the Mac OS X Aqua interface. The main limitation of the terminal-based version
is that it does not display text highlighting or multicolor fonts and does not sup-
port the mouse for moving around the screen. However, it’s functionally the same
emacs you get with other UNIX distributions and it integrates well with the BSD
command-line development tools. Implementations that are more integrated into
the Mac OS X environment include Carbon emacs, based on Apple’s Darwin port and
Andrew Choi’s Mac OS port; and XEmacs 19.14, which is based on GNU emacs 18.59
for Macintosh by Marc Parmet and facilitates accessing the Codewarrior develop-
ment environment over AppleEvents. Don’t confuse this XEmacs with the XEmacs
implementation available under most UNIX flavors; the X here stands for the X in
Mac OS X.

 Each of these emacs versions implements different features. On one end of the
spectrum is the terminal-mode implementation. This version is simple and clean,
integrates well with the BSD development tools, has a minimal memory require-
ment (compared to the other versions), and is launched from the command line.
The disadvantage is that it is terminal based, does not display text highlighting or
multicolor fonts, and does not support mouse interaction. At the other end of the
spectrum is XEmacs (http://www.porkrind.org/emacs/). This version offers some useful
features, including an Aqua interface, application menus, communication with the
CodeWarrior development environment over AppleEvents, and text highlight-
ing and multicolor fonts (see the About emacs file for more information on its
Macintosh-specific features, as well as differences between it and the UNIX version).
The disadvantage of this version is that it has a higher memory footprint than
the terminal-based version and is not as well integrated with the UNIX-based
development tools or environment as the terminal version.

 Carbon emacs (http://www.porkrind.org/emacs) stands between the terminal-
mode implementation and the Aqua-based version. You can run it from either the
command line or the Finder, it integrates with the BSD development tools, and it
supports text highlighting and multicolor fonts. The disadvantage is a higher
memory footprint than the terminal-based version; it also cannot run in the back-
ground from the command line. To use it from the command line, add the follow-
ing statement to your initialization file (.cshrc):

116 CHAPTER 4
Development tools

alias memacs '[path-to-emacs]/Emacs'

For example
alias memacs '/Users/omalley/CarbonEmacsEmacs/Emacs.app/
Contents/MacOS/Emacs'

New ports of Emacs for Mac OS X appear frequently. Watch online forums and
announcements for more information.

vi
Another popular editor that runs under UNIX and Mac OS X is vi. The vi editor,
originally written by Bill Joy, combines both line and screen modes within a single
editing program. Today, we call the editor vi, but technically vi is really the visual
mode of ex, a line-mode editing utility based on ed.vi. In a sense, vi contains the
best of both worlds. In ex mode, you get all the power of the command mode edit-
ing operations; in vi, or visual mode, you get the benefits of screen mode editing
(seeing the changes to the text as you make them). Keep in mind that vi was cre-
ated within and for a very specific computing environment. As Bill Joy points out,
a design goal was to make vi usable over a 300 baud modem. For a screen editor to
be usable in this context, commands must be as compact as possible. According to
Joy, “People don’t know that vi was written for a world that doesn’t exist anymore.”1

 A terminal-based vi editor (nvi) is loaded with the default Mac OS X system.
Like the default version of emacs, this version does not display text highlighting
or multicolor fonts. A native Mac OS X version of vi, called vim (http://
vim.sourceforge.net), is also available. This version extends the functionality of
vi to include a GUI, split windows, and menus.

Other editors
In addition to the standard UNIX editors, others are available for Mac OS X.
These include joe (http://tony.lownds.com/macosx), the Wordstar-like editor; and
nedit (http://www.nedit.org/download/macos.shtml).

 If you are interested in getting functionality similar to that of the UNIX
implementations, use the terminal-based versions of the editors. Each of the Mac
OS X–based versions contains some useful features but require you to make some
tradeoffs. In the end, it is best to evaluate each editor and make up your own
mind. Another idea is to install X Darwin and a window such as OroborOSX (http://
wrench.et.ic.ac.uk/adrian/software/oroborosx), and run Emacs and vi within X Win-
dow. See chapter 2 for more information on installing X Darwin.

1 See http://www.linux-mag.com/1999-11/joy_01.html for the complete interview.

UNIX development tools under Mac OS X 117

4.2.3 Version control
Version control software facilitates the efficient management of the modification
and revision history of files throughout a project’s life cycle. Version control is a
topic within a discipline of software engineering called Software Configuration
Management (SCM). SCM is a mechanism, instituted through defined processes,
whose goal is to ensure the classification, control, and traceability of a software sys-
tem throughout its life cycle; it is implemented using software tools and procedures
designed to address these objectives. Configuration management was rooted in
the defense industry of the early 1960s, and was an early attempt by management
to control the increasing complexity of designs and the design process.

 One of the first version control systems available on the UNIX platform was
Source Code Control System (SCCS), developed by Marc Rochkind at Bell Tele-
phone Laboratories in 1972. At the present time, the two most popular version
control systems are Revision Control System (RCS), written by Walter F. Tichy in
the early 1980s while at Purdue University; and Concurrent Versions System (CVS),
which is built on top of RCS and uses many RCS programs to perform its actions.

 The primary difference between RCS and CVS lies in how they interact with
multiple users. RSC locks a file when someone checks it out, which simplifies ver-
sion control and sidesteps many unnecessary problems. For example, multiple
developers editing a file simultaneously can lead to one developer breaking the
other’s code. Single checkout forces them to talk to each other and resolve any
conflicts before changing code.

 CVS does not (usually) lock files; instead, it merges changes into each devel-
oper’s code base. Conflicts can arise, but they are rare. This system allows many
people to work in parallel, and as long as they do not create incompatible code,
CVS will fold in each developer’s changes as requested.

Choosing a version control system
Both CVS and RCS are excellent choices for version control systems. Both are
enormously popular, stable, and available under Mac OS X. The following con-
cerns can influence your choice of version control system:

■ Will the project have multiple developers, editing and sharing files simul-
taneously?

■ Is the development team geographically distributed? Do members require
remote access to files?

Let’s look at an example of how a development group might use RCS and CVS on
a project. The goal of this project is to develop a compiler. The group is composed

118 CHAPTER 4
Development tools

of three developers: A, B, and C. Developer A will work on the front-end of the
compiler: the lexical and syntax analyzer and the parser. Developers B and C
will implement the back-end of the compiler: developer B writes the code gener-
ator, and developer C implements the code optimizer. The project uses shared
files (io.c and io.h) that contain common I/O operations.

 Scenario 1: The group members decide to use RCS for the project (configured
for strict locking, its default behavior). Work progresses as follows:

1 All three developers begin work on their part of the compiler, checking in
code as necessary. Assume that io.c and io.h are under version control.

2 Developer A checks out the head version of io.c and io.h (setting the file
lock: co –l files), adds some functions, and checks in both files, thereby
releasing the lock.

3 Developers B and C check out the head versions to get the new changes
(without setting the lock: co io.c, co io.h).

4 Developer B checks out the head version of io.c and io.h (this time set-
ting the file lock), adds some functions, and goes home for the night. At
this point, developer B holds the lock on io.c and io.h.

5 That night developers A and C need a common I/O function to continue
with their work. Developer C checks out io.c and io.h, adds the function,
and attempts to checks in the files so developer A can use the new func-
tion. Unfortunately, RCS rejects this operation because developer B still
owns the lock on the files.

6 Development stops until developer B checks in the files, thereby releas-
ing the lock.

This problem can be sidestepped by setting the file-locking mode to nonstrict and
making sure all developers own the file, possibly working under the same user
account. However, this arrangement is highly unlikely and defeats the primary
reason of using version control in the first place. In addition, developers A and C
can break the lock on the file by using the –u or -M option, but this goes against
the design intent of RCS.

 Scenario 2: The group members decide to use CVS for their project. Work
progresses as follows:

1 All three developers begin work on their part of the compiler, checking in
code as appropriate. Assume that io.c and io.h are under version control.

2 Developer A checks out the head version of io.c and io.h (cvs co io.c,
cvs co io.h), adds some functions, and commits both files.

UNIX development tools under Mac OS X 119

3 Developers B and C perform an update to get the new changes. Developer
B adds some functions to io.c and io.h, and goes home for the night.

4 That night, developers A and C need a common I/O function to continue
with their work. Developer C performs an update, getting the latest ver-
sion of io.c and io.h, adds the function, and commits the files so developer
A can use the new function. Developer A performs an update, getting the
latest version of the files that include the new function. Developer B is at
home, completely unaware of the new additions.

5 After returning, developer B performs an update, and CVS merges any
new changes into the working version of io.c and io.h. If there are any
conflicts, CVS alerts developer B, and changes are manually fixed.

For this use, CVS is clearly the right choice.
 To illustrate the second question (a geographically distributed development

team), envision the following: you and some friends want to develop a new editor
for Mac OS X. Each person lives in a different part of the country. A fundamental
requirement of the project is that members need to be able to access and update
each other’s work at any time. CVS is designed to work over the network, so one
developer sets up the CVS server on their machine and sets up a repository. The
other developers configure their environment to access the repository remotely
over the network. Now all developers have access to CVS as though the reposi-
tory were accessible within their file system.

 Further, suppose you are working in one location and relocate for a few
months to another part of the country. You can set up the CVS server on your
home machine and, when you get to your new location, set up the new machine
as a CVS client, accessing the remote repository over the network. Now, you can
retrieve files from your remote repository as if you were on your local machine.

 These examples demonstrate the primary differences between RSV and CVS.
Because this chapter is about Project Builder, I will focus more on using CVS for
version control.

 Overall, RCS is a good choice for small projects that do not require developers
to simultaneously share and edit files; it is ideal for one-person development
projects. It is easy to set up, the command set is straightforward to learn, and it
consumes few system resources. Unfortunately, Project Builder, Apple’s core IDE
for developing Mac OS X applications, does not support RCS. However, this
doesn’t mean you can’t use RCS as a version control system when developing
under Project Builder; you just need to access it from the command line.

120 CHAPTER 4
Development tools

 CVS is an excellent choice for multideveloper projects where simultaneous file
sharing and editing is a requirement. In addition, CVS works over a network, and
is therefore ideal for projects with geographically distributed developed teams,
such as open source projects. Project Builder also supports CVS as its primary
version control management tool, so it is the right choice if you plan to develop
programs under Project Builder and want to share a single code repository.

Setting up RCS
RCS is very simple to set up. The primary decision is where you want to store RCS
files: in the working directory of the project or in a directory within this working
directory, called RCS. RCS stores file differences, or deltas, in a file called the RCS
file. The difference file holds the revision history of the corresponding file in a
space-efficient manner.

 Each file placed under version control has a parallel RCS file called [file-
name],v. For example, if you place the file parser.c under version control, the
corresponding RCS file is called parser.c,v. If an RCS directory exists within the
working directory, RCS will store the RCS file there; otherwise, RCS stores files in
the working directory.

Setting up CVS
Setting up CVS takes a few more steps. Before using CVS, you need to configure
the CVS repository and the client machine environment:

1 Create a directory called the CVS repository, which holds all files stored
under version control.

2 Set the CVS environment variable CVSROOT to the location of this repository
directory (the directory you just created) and the CVSEDITOR environment
variable to the editor you wish to use to enter revision messages.

3 Run the CVS init command to create the CVS administrative files in the
repository.

The following example demonstrates the CVS commands you use to set up the
environment and create an administrative file in the root repository:

% mkdir /cvs-repository
% setenv CVSROOT /cvs-repository
% setenv CVSEDITOR emacs
% cvs init

For ease of use, add the environment commands to your initialization file so they
are automatically set. Once the version control environments are set up, you can

UNIX development tools under Mac OS X 121

use them just as you would under UNIX. For more information about RCS and
CVS, see their man pages.

4.2.4 Static code analysis tools

UNIX has always been strong in providing high quality developer tools, and static
code analysis tools like lint are no exception. Static code analysis refers to techniques
and methods applied before running a program that highlight potential problems,
anomalies, or errors in source code. Compiler warning flags offer some protection,
but many programmers use lint to perform static analysis on their source code.

 Lint, originally written by Stephen C. Johnson in 1978, arose because the
designers of early C compilers made a clear separation between static analysis and
compilation. Early compiler writers designed their compilers to be as small and fast as
possible, leaving static analysis to another program, called lint. Today, compiler ven-
dors and developers are implementing stricter semantic checking in their compilers.

 The default load of Mac OS X and the developer tools installs some support
for static analysis: gcc/g++ and Perl Lint (B::Lint). By enabling certain gcc/g++
options, you tell the compiler to perform stricter semantic checking when pro-
cessing source code.

 In addition, the open source community has some very good tools that work
under Mac OS X, which you can use to detect potential semantic errors in your
code. One of the best is Splint (formerly LCLint), available from http://
www.splint.org. Splint statically checks C source code for potential coding errors
and possible security violations. One of Splint’s design goals is to detect many
possible programming errors but limit the number of spurious messages, which
can be a problem with other lint versions. Splint also supports the notion of
annotations, which permit you to add comment-based directives to source code
to provide Splint with more information about what you really mean, thereby
enabling it to detect more errors and skip false positives.

 Splint may require a few extra steps to build under Mac OS X. To build Splint:

1 Decompress the distribution:

 tar zxfv splint-[version].src.tgz

2 Execute ./configure.

3 Open config.status, look for file path names split over more than one
line (around line 310), make each into a single line, and save the file.

4 Execute ./config.status (doing so generates correct makefiles).

5 Execute the make command.

122 CHAPTER 4
Development tools

4.3 Compilers and build tools

The Mac OS X development tools come with all the usual UNIX build tools,
including gcc, g++; supporting programs written in C, C++, Objective-C, and
Objective-C++; gdb;, make; Java; and as (GNU assembler). Keep in mind that
under Mac OS X, gcc is called cc and g++ is called c++. This naming convention
will cause problems when you try to compile projects that look for the gcc, g++
compiler. The way around this situation is simply to create soft links for each,
called gcc and g++, to maintain compatibility with UNIX naming conventions
(you must be user root to create these soft links):

% cd /usr/bin
% ln –s /usr/bin/cc gcc; ln –s /usr/bin/c++ g++
% ls -l cc gcc cpp g++
-r-xr-xr-x 1 root wheel 113692 Dec 21 17:31 cc
-r-xr-xr-x 1 root wheel 3207 Sep 2 23:23 c++
lrwxr-xr-x 1 root wheel 12 Dec 21 17:42 g++ -> /usr/bin/c++
lrwxr-xr-x 1 root wheel 11 Dec 21 17:42 gcc -> /usr/bin/cc

4.4 Mac OS X Aqua-based development tools

In addition to the customary UNIX text-based tool set, Mac OS X supports many
UNIX programs that developers have ported to the Aqua user interface. This
means you can use some of your favorite UNIX programs with new, Aqua-based
interfaces.

4.4.1 UNIX-based editors

As you saw in the previous section, all the familiar UNIX editing tools are available
under Mac OS X, including notable favorites like emacs and vi. Within the Mac
OS X Aqua environment, you have several choices of non-UNIX, Aqua-based pro-
gramming editors.

Project Builder editor
Let’s begin with the editor that comes with Project Builder. The Project Builder
editor provides most of the basic editing features you would expect, as well as
some advanced features such as emacs-style key-mappings, syntax highlighting,
and indentation options. You can customize the editor’s behavior through the
Project Builder Preferences dialog (located under Project Builder→Preferences)
using the Text Editing, Syntax, and Indentation items (see figure 4.2). These
options offer most of the common customization features you will require for
basic editing tasks, but certainly do not offer the breadth of customization

Mac OS X Aqua-based development tools 123

options supported by UNIX editors like emacs. Let’s look at some of the more
interesting options.

 The Text Editing item enables you to set various editing options that affect
how the editor treats, formats, and saves information:

■ Preserve Resource Forks—Permits you to save files with or without their
resource fork. Because many Classic mode programs expect files to have
resource forks, this option is useful if you are editing shared files from the
Mac OS X and Classic environments.2

■ Line Endings—Useful if you are editing a set of files for a cross-platform
project and you need to preserve file formats between platforms. These
options are helpful if your code base and primary development environ-
ment are UNIX, but you also plan to do development from the same code
base under Mac OS X and Project Builder. In this case, you would set the
For Existing Files menu item to Preserve, to ensure that Project Builder
maintains the UNIX line endings.

The Syntax Coloring pane item permits you to set the font, colors, and styles
Project Builder applies to a source file (see figure 4.3):

2 Not all Classic programs expect a resource fork, but many do. For example, the Codewarrior IDE and
the BBEdit text editor use the resource fork for storing font and size information.

Figure 4.2 The Project Builder Preferences dialog enables you to set many customization
options for Project Builder’s integrated editor.

124 CHAPTER 4
Development tools

■ Allow Separate Fonts—Enables the editor to display different fonts for dif-
ferent language elements. Imagine you like string constants italicized. You
select the Strings item from the pop-up menu (below the checkbox), check
the Allow Separate Fonts checkbox to enable the Font text item (located at
the bottom of the dialog box), and click Set. Then, select the appropriate font
and typeface and click OK. The editor now displays all strings as italicized.
Deselecting the checkbox will remove the font and typeface highlighting.
Contrast this interface with emacs or vim, where you specify typeface styles
and options in an initialization file. Doing this through an interface makes
the job faster, but is not as extendable.

■ Show Colors When Printing—Prints source code listings with stylized fonts and
font types. You can also get this functionality with the UNIX tool trueprint,
but having the feature available with Project Builder is a real time saver.

Indentation options enable you to specify rules for how the editor indents your
code (see figure 4.4). These rules are similar to emacs language modes and hooks:

Figure 4.3 You set font color and style options using Project Builder’s Syntax Coloring preferences.

Mac OS X Aqua-based development tools 125

■ Solo “{“ Indent—Holds the number of spaces the brace is indented.
■ Auto-Insert “}”—Automatically adds a closing brace after you type an open-

ing brace. If you have ever tried to set up this functionality under emacs, you
know it is a welcome feature.

■ Auto-Indent Characters—Indents the corresponding character if it is not
entered at the correct indentation level.

Collectively, these editor options provide core functionality and should make you
feel right at home within the editing environment.

 One interesting consideration is how you know whether applying a set of for-
matting options to your code has changed the behavior of the program. Granted,
the formatting changes Project Builder applies are minor compared to such tools
such as GNU indent, but it is still an important question. Intuitively, source code
formatting should not alter the operation of a program; it simply reformats code
by inserting whitespace into a source file. As Peter van der Linden’s excellent book
Expert C Programming points out, this is not always the case.3 Nevertheless, how

3 Peter van der Linden, Expert C Programming, 10–11.

Figure 4.4 Source code indentation options are set under the Indentation preferences. These
options are similar in spirit to the options available under most editors such as emacs and vi.

126 CHAPTER 4
Development tools

do you convince yourself this is true? One technique is to compare the binary file
generated from the original source code with the binary file generated from the
newly formatted code:

1 Compile the original program (before reformatting), reformat the code,
and recompile the program to a different name.

2 Compare the two binaries using the cmp command:

 cmp –l [first-file] [second-file]

The cmp command should not produce output if the files are the same. This
method seems intuitively correct, but under some conditions it may not produce
repeatable results. For example, some compilers contain enhancements that ran-
domize the stack layout (insert random values into the stack) at compile time in an
attempt to prevent buffer overflow attacks.4 In this case, there is no guarantee that
compiling a program many times will produce the same object code each time.

NOTE Sometimes it is useful to view a binary file in hex. The program xxd can
be used for this purpose. The following command will produce a text
file (in hex) of the binary program:

 % xxd binary-file > hex-file.txt

emacs and vi can also be used to generate hex files from binary programs.

Another approach is to compile each program to assembly and compare the
assembly listings, first using diff and then manually if necessary. Yet another
approach is to use regression testing to verify that reformatting has not changed
the behavior of the program. This technique involves creating a regression test for
the program: first the program behavior is baselined by running the regression
test; then, after reformatting, you rerun the regression test. Because a regression
test is probably already part of the project, no additional coding is necessary to
verify reformatting. However, testing is only as sound as your test cases, and pro-
viding complete test coverage is a difficult task.

4 StackGuard, now part of Immunix 7.0 (http://immunix.org), is an example of this technology. Stack-
Guard was originally developed under a DARPA-funded Information Survivability research project at
the Oregon Graduate Institute of Science & Technology.

Apple’s GUI-based development tools 127

External editors
Unfortunately, Project Builder does not currently support using external editors.
However, this should not stop you from exploring and using other Mac OS X
editing tools for development. You can use any external editor to edit code, and
use Project Builder to build and debug the software. If Project Builder detects the
file has changed from the version on disk, it will automatically reload the file. This
approach has limitations, but if you prefer another editor, it may be worth it.

4.4.2 Mac OS X-based editors

The Macintosh platform has always supported many fine editing tools, and Mac
OS X is no exception. One of the most popular Macintosh programming editors is
BBEdit, from Bare Bones Software (http://www.barebones.com). BBEdit is a great
editor with a loyal following, it has an uncomplicated interface, and it is rock
solid. It is available in two versions: the full-featured commercial product and a
freeware version that contains a subset of the full version’s features. The freeware
version does not contain features such as the HTML tools, Unix scripting and
command integration, and extensible syntax coloring, to name a few, but it does
include the core editing features, making it a very good choice as a free pro-
gramming editor.

 Another popular editor for the Macintosh is Alpha. Alpha is a very good editor
that uses Tool Command Language (Tcl) as its extension language. Alpha supports
language-based syntax highlighting and many other features for programming
and general text editing operations; it’s also a favorite editor of users composing
LaTeX documents on the Macintosh. The current (as of this writing) public release
of Alpha runs only under the Classic environment, but by the time you read this it
should be ported to Mac OS X. According to the Alpha developers, the Mac OS X
version will add some new functionality, including direct integration with the sys-
tem’s Tcl library, to provide better performance and upgradeability. In addition,
it will support seamless editing of files on remote hosts.

4.5 Apple’s GUI-based development tools

Along with Project Builder and Interface Builder, the Mac OS X developer tools
distribution contains a set of advanced, and very useful, tools to support applica-
tion development under Mac OS X. These GUI and command-line tools cover a
broad range of development areas including runtime memory and thread moni-
toring, tracing application system calls and usage, performance profiling, class
browsing, and interface verification. Collectively, these tools, along with the BSD

128 CHAPTER 4
Development tools

commands, provide a solid tool set, giving you all the support you need for effec-
tively developing programs under Mac OS X.

 Under Mac OS X, it is important to use these tools during development to ver-
ify that your programs are using system resources efficiently. The Mac OS X oper-
ating system is structured in layers, from the low-level Mach-based Darwin kernel,
through the Quartz graphics layer, to a series of application support layers and
frameworks, to the Aqua interface and the application layer where your program
runs. As you can imagine, as messages flow from your program’s GUI to the lower
layers and back again, performance problems can occur. That’s why it’s important
to understand how these layers interact. If you structure your program to take
advantage of the BSD core, you will not harm system performance. The develop-
ment tools will help you investigate these interactions and efficiently pinpoint
possible performance bottlenecks and potential errors. The good news for UNIX
developers is that the spirit of the UNIX tool set is maintained in these programs,
enabling UNIX developers to quickly adjust to the new tools and environment.

 Another interesting use of these tools is reverse engineer engineering Mac OS X
applications. For example, many of the programs that appear to be self-contained
Mac OS X applications are in fact Cocoa interfaces that use the services of UNIX
command-line tools. Many of the development tools, as well as the BSD com-
mands, are quite useful in understanding the interaction between the GUI com-
ponents and the UNIX commands and determining how these programs work.

 The remainder of this chapter focuses on the Mac OS X GUI and command-line
developer tools installed from the Apple Developer Tools release, showing their
features and use during the development cycle.

4.5.1 Apple Help Indexing Tool

The Apple Help Indexing Tool is used to prepare help files for your programs,
which are displayed by the Apple Help Viewer. The Apple Help Viewer imple-
ments a minimal HTML browser to display HTML-based help files.

 The indexing tool’s main job is to parse HTML-based documentation files, or
help books, and create an index file that the Help Viewer uses to efficiently search the
help book for information. I discuss using this program to implement online help
for your application in chapter 6, when you’ll build a functional Cocoa program.

4.5.2 AppleScript Studio

AppleScript Studio is a component of Project Builder that combines four Apple
technologies: the AppleScript language, Project Builder, Interface Builder, and the
Cocoa application framework. It enables you to place a Cocoa GUI on a program

Apple’s GUI-based development tools 129

written in AppleScript. Think if it as a Mac OS X technology that is similar to
using the Tkinter widget set as an interface for Python scripts.

 The advantage of the AppleScript/Cocoa combination over UNIX scripting
languages and GUIs is that AppleScript provides access to Mac OS X application
services and system function that UNIX-based scripting languages cannot. In
addition, the Cocoa interface is more consistent with the look and feel of the
Mac OS X environment and provides you with more components for building
user interfaces.

 AppleScript Studio is available from within Project Builder in two project
types: AppleScript applications and AppleScript document-based applications.
The AppleScript Studio folder, located within /Developer/Applications, contains
example projects and documentation files that demonstrate how to build an
AppleScript Studio application. In chapter 7, you will develop a complete Apple-
Script Studio application. If you prefer script languages to compiled languages,
you should definitely look into AppleScript and AppleScript Studio.

4.5.3 FileMerge

You use FileMerge to find differences between files and directories, and also to
merge any differences into a new file or directory. At its core, FileMerge is a UNIX
diff command. In addition to its diff services, it offers some other features,
including comparing files to a common ancestor and merging files and directories
after comparison. Let’s look at how FileMerge works and some of its features.

The diff command
FileMerge uses the UNIX diff command to perform its basic comparison opera-
tions. The diff command finds differences between two files, or files within two
directories (see the diff command’s man page for more information). For example,
suppose you have two files, fib0.c and fib1.c, and you wish to use the diff com-
mand to compare them:

/* fib0.c */
#include <stdio.h>
long
Fibonacci(long n)
{
 if (n == 0)
 return 0;

 if ((n == 1) || (n == 2))
 return 1;

 return Fibonacci(n-1) + Fibonacci(n-2);
}

130 CHAPTER 4
Development tools

/* fib1.c */
#include <stdio.h>
long
Fibonacci(long n)
{
printf("%ld", n);
 if (n == 0)
 return 0;

 if ((n == 1) || (n == 2))
 return 1;

 return Fibonacci(n-1) + Fibonacci(n-2);
}

The following command compares the two files and displays any differences:

% diff fib0.c fib1.c
1c1
< /* fib0.c */

> /* fib1.c */
5a6
> printf("%ld", n);

The output displays the differences between the files along with information that
shows how to resolve the differences. Let’s look at output in more detail.

 When diff encounters differences between files, it displays the line from each
file that does not match, along with a string indicating how to resolve the lines.
The less-than (<) character indicates that the following line is from the first file;
the greater-than (>) character indicates that the following line is from the second
file. The diff command formats this string as

[line-number-file-1][action-command] [line-number-file-2]

where line number corresponds to the lines in each file. The action command is an
ed command, whose meaning is either a (append), i (insert), c (change), d (delete
line), or m move line (ed is a line-oriented text editor; see the beginning of this
chapter for more information. Therefore, the string 5a6 means that line five of
the first file (fib0.c) and line six of the second file (fib1.c) are not the same; to
resolve these lines, you need to append (a) this line from the second file to the
first file.

 For our purposes, you also need to know about the –e option. It produces out-
put that can be used by ed to reconcile the two files. For example, the following
command converts fib0.c to fib1.c, printing the result to standard output:

% (diff -e fib0.c fib1.c; echo '1,$p') | ed - fib0.c

Apple’s GUI-based development tools 131

How FileMerge uses diff
Next, let’s look at FileMerge and see how it works and how it uses the diff com-
mand. First, you need to know which UNIX commands FileMerge uses to compare
files. A simple way to accomplish this is as follows:

1 Write the following Perl script, which repeatedly looks at the process
table for the token diff. The problem with this approach is the low resolu-
tion at which it acquires process table information, but for this example,
it will suffice:

 #!/usr/bin/perl
 # ProcessWatcher.pl
 for(;;) {
 system("ps aux | grep /usr/bin/diff | grep –v grep");
 }

2 Create two large files that diff will take a few seconds to process. Doing so
enables you to catch the diff call in the process table. Remember, you are
not interested in the result of diff—just that it takes some time to process;
the files can contain any information you like.

3 Open two shells, one for running the Perl script and one for killing the
Perl script once diff has completed. In one shell, run the Perl script (%
perl ProcessWatcher.pl). In the other, get the script’s process identifier
(ps aux | grep ProcessWatcher.pl | grep –v grep).

4 Open FileMerge, load the two large files you created, and run the com-
pare. Depending on the size of the files, the diff operation takes little
time to run, but formatting the files within FileMerge can take some time.

5 Once the ProcessWatcher.pl script displays the result of the diff com-
mand, kill the script (kill –9 [pid-of-ProcessWatcher.pl]).

Here is one line of output from the Perl script (edited for readability):

/usr/bin/diff -ea 1.txt 2.txt

As you can see, FileMerge called the diff command with two command-line
options. The –e option produces output formatted as an ed script. The –a option
tells diff to treat the input files as text and compare them line by line. So, the
output of this command is an ed script that tells ed how to resolve and merge the
differences in the files. The diff program uses the output to show the differences
between the files and, if necessary, merge them into a single file. In spite of the
fact that this approach is limited to tracking an application’s call usage, it works
well for simple cases and is easy to implement.

132 CHAPTER 4
Development tools

FileMerge features
Let’s look at some of the features of the FileMerge program. In addition to com-
paring files, you can compare and merge all files within two directories.

 Another useful feature is the Filter option, located in the Preferences dialog
box, which enables you to apply a program to the files you are comparing before
they are evaluated. Some predefined filters are available or you can write your own.
For example, imagine you wish to diff comments from two source files but exclude
any code. You can write a program to accomplish this (or better yet, use UNIX
commands) and apply it to the files before FileMerge compares the programs.

 Ancestor files permit FileMerge to intelligently resolve file differences in cre-
ating merged versions of files. If two people begin with the same file (a common
ancestor) and make independent modification to each version, FileMerge can
use the extra information from the ancestor of both files to make better choices
when merging the differences.

 The best way to lean about FileMerge’s other features is to fire it up and begin
using it in your work.

4.5.4 Icon Composer

Users launch a Mac OS X Aqua application by double-clicking on the application
icon. As people use your application, they will inevitably begin to associate the
application with its icon, so it’s important for your application’s icon to be as
simple and mnemonic as possible. Apple bundles an icon creation program called
Icon Composer with its development tools.

 To make a set of application icons with Icon Composer, you create your icons,
save them in graphics files, import them into Icon Composer, and save the Icon
Composer file as an .icon file. You must be aware of a few caveats before you begin:

■ Icon Composer imports files stored as either PICT or TIFF files.
■ You can create icon files in the following sizes: 16x16, 32x32, 48x48, and

128x128.
■ Each icon file must contain an alpha mask to handle transparency.

Many graphics programs are available for creating icon files, but one of the best
is Graphic Converter. In chapter 6, you will see an example of how to construct
application icons for Cocoa applications.

4.5.5 Interface Builder

Developing a program’s user interface is a fundamental task when writing Mac
OS X Aqua programs. Under Mac OS X, you create user interface components

Apple’s GUI-based development tools 133

using Apple’s Interface Builder. The Interface Builder application works hand in
hand with Project Builder to develop Mac OS X GUI-based applications. With
Interface Builder, you design user interfaces for your program, including appli-
cation menus, windows, icons, and dialog boxes.

4.5.6 JavaBrowser

The JavaBrowser application enables you to view Java class documentation. The
browser is laid out with the upper window using the familiar Mac OS X column
browser interface and the lower part holding selected documentation files (see
figure 4.5). You can view class documentation by clicking on the various entries
and maneuvering between class items.

 In addition to viewing documentation, you can search for specific information
such as class, method, or field names and view documentation for the result of
the search. The documentation provided is terse and of limited use. JavaBrowser
can show standard javadocs for Java classes if you click the book icon.

Figure 4.5 The JavaBrowser program displays Java documentation files for selected class,
methods, or field names.

134 CHAPTER 4
Development tools

4.5.7 MRJAppBuilder

Imagine you just created the next killer application written in Java for Mac OS X
and you wish to get it to as many Macintosh users as possible. Because most Mac-
intosh users prefer to launch applications from the Aqua interface rather than
the command line, you need a way to make your program available in such a for-
mat. Enter MRJAppBuilder (see figure 4.6), a tool Apple provides for creating
double-clickable, bundle-based Java applications from JAR files (a Java Archive
file, which holds all files that compose a Java program within one compressed file).

 To create a Mac OS X double-clickable application, you add the .jar file that
contains the main class to the Main Classname text field, set the output file name
in the Output File text field, and add any other .jar files that compose the appli-
cation using the Files To Merge Into The Application feature (located under the
Merge Files tab). Once you add the files, click the Build Application button and
let MRJAppBuilder do its stuff. The result is a double-clickable Mac OS X appli-
cation that you can distribute to users.

Figure 4.6
MRJAppBuilder lets
developers create
double-clickable
programs from JAR
files.

Apple’s GUI-based development tools 135

4.5.8 MallocDebug

Programming in languages such as C and C++ provides programmers with lots
of power. However, this power comes at a price. In C and C++, one of the big-
gest costs is that the developer must keep track of all dynamic memory used in a
program and make sure the memory is deallocated correctly when it is no longer
needed. In theory, this process sounds simple; but in practice, it can be tricky to
get right, especially as programs grow in size. Other programming languages, like
Java and LISP, address this limitation by implementing garbage collectors, which
track memory allocations and reclaim memory when needed.

 You can track an application’s runtime memory usage manually, or program-
matically using specialized libraries that you add at compile or runtime. These
libraries replace the default allocation routines with custom calls. At runtime, the
program calls the new allocation routines, which store additional diagnostic infor-
mation, monitor the execution of the program, and report any potential runtime
problems such as stack-based errors and memory leaks. (You can also use static
analysis tools such as Pslint to check memory allocation at compile time.)

 The Apple developer tools come with a powerful program called MallocDebug,
which helps you detect memory-related errors in your programs. Let’s briefly look
at memory allocation before getting into the details of how to use MallocDebug.

Memory allocator overview
Computer programs are dynamic entities. As they run, they can require extra storage
for holding dynamic data structures that cannot be determined at compile time.
This is especially true of object systems that use dynamic binding mechanisms. Pro-
grams make requests for extra memory, called dynamic memory allocation, through a
defined programmatic interface. These memory requests are made through a memory
allocator. A main goal of the memory allocator is to efficiently allocate and deallocate
memory for a program while balancing allocation time versus space tradeoffs.

 In C, you accomplish dynamic memory allocation through the malloc/free family
of function calls. Sometimes, the default allocator that comes with your development
environment is not sufficient for your needs. In these cases, programmers develop
their own versions that replace the default allocator with versions that offer better
performance or more features. Implementations can vary greatly, but allocators that
come with development environments are usually sufficient for most purposes.5

5 For more information about different allocators and implementations, see “Dynamic Storage Alloca-
tion: A Survey and Critical Review” (http://citeseer.nj.nec.com/wilson95dynamic.html) and http://g.os-
wego.edu/dl/html/malloc.html.

136 CHAPTER 4
Development tools

Debugging memory errors
Over the years, programmers have developed many tools and techniques to help
C and C++ developers efficiently detect memory-related errors. In the simplest
case, the tools non-invasively monitor a program at runtime by watching its overall
memory usage. Other tools permit detailed investigation by inserting instructions
into the object code that gather statistics about the program’s runtime memory
behavior. Using these tools, you can get in-depth information about a program’s
memory usage and whether it’s leaking memory or performing any illegal memory
operations such as illegal memory accesses, duplicate frees, or buffer overwrites.

 In the simplest case, you can perform non-invasive dynamic program analysis
on a shoestring by using standard UNIX tools combined with a scripting language.
The ps command displays what processes are currently running and provides
extended information about each process. The top command is similar to ps but
iteratively shows system usage statistics for processes. By controlling either of
these commands with a script, you have a simple and easy-to-implement tool for
monitoring the runtime behavior of a program. For example, using a Perl script
to repeatedly call ps for a specific process and outputting its current memory
usage enables you to see if the program’s memory usage increases over time.
Sometimes, this is all that is necessary for you to determine whether a problem
exists. The trouble is, this technique does not provide any information about the
source of the error within the program or the nature of the problem.

 More specialized memory analysis tools provide detailed information about
possible errors. Fundamentally, these tools share a common technique: replacing
the C/C++ memory allocation and deallocation functions with specialized code
that performs extra tracking of allocations and reports any errors. In the most
common implementation, each new allocation function allocates additional mem-
ory and tags it with specific information. For example, the new allocation code
stores a few bytes of information before the allocated block that locates the mem-
ory request within the program. It also places a defined byte pattern after the
block. At any point when the program is running, or when this memory block is
deallocated, the library code checks the trailing block to see if the pattern is pre-
served. If the pattern does not appear, the code knows a memory overwrite has
taken place and uses the leading block information to pinpoint the error.

Memory errors
Now, let’s look at some common classes of memory errors in C and C++ programs
and how you can detect them with the MallocDebug program. The program

Apple’s GUI-based development tools 137

BuggyServer (located in the chapter 4 directory of the book’s source code distribu-
tion) shows some classes of memory errors that you will detect with MallocDebug.

 Open the BuggyServer project in Project Builder by opening its folder and
double-clicking the project file, BuggyServer.pbproj. The program is a simple
iterative server (after Stevens6) that accepts a command, performs an action, and
returns a reply to the client. The project README file lists the legal commands
you can send to the server. Also included is a Perl script that sends commands to
the server, reads the reply from the server, and prints the result. You invoke the
script as follows:

send [iterations] [sleep between sends (secs)] [server]
[port] [message]
% perl send.pl 10 1 localhost 4444 leak

This example sends the leak command 10 times to the server running on local-
host, port 4444, delaying 1 second between sends. Take a quick look through the
code that handles the commands, located in BuggyCode.cpp. Each command
generates a different class of memory error.

 Before we look at some common errors, run the program a few times to get a
feel for how its works. To run BuggyServer, press Command-R (Build and Run) or
click the Build and Run icon on the toolbar. You should see a message indicating
that the server is running on port 4444, as well as the server’s process identifier
(pid). The server is ready to accept messages. To send the server some messages,
open the Terminal application, change to the directory that contains the send
script, and enter and execute the following command:

% perl send.pl 1 1 localhost 4444 leak
pass: 0
sending: leak:
received: Thu Feb 14 08:08:59 2002

This output shows the client sent a leak command and the server returned the
time it received the request. Also look at the output pane within Project Builder.
You should see a log message indicating the time the server received the event
(in UNIX time) and the command. Repeat this process a few times and try chang-
ing some of the Perl script’s input parameters or commands. Once you are com-
fortable with the program’s operations, click the Stop icon to exit the server.

6 Richard Stevens wrote a series of books on UNIX programming topics, specifically networking issues,
which are considered the bible for UNIX programmers.

138 CHAPTER 4
Development tools

 Now, let’s use MallocDebug to debug the program. Click on the Targets tab
and select the BuggyServer target. Notice that the MallocDebug library is already
part of the project. You can add the library to a project either at compile time or at
runtime. At compile time, you add it as a statically linked library as follows:

1 Select Projects→Add Frameworks.

2 Enter /usr/lib/libMallocDebug.a into the Go text field.

3 Click the Add button.

At runtime, you add it as a dynamic linked library:

1 Select the Executables tab.

2 Add the following environment variables to the Environment Variables list:

 DYLD_INSERT_LIBRARIES /usr/lib/libMallocDebug.A.dylib
 DYLD_FORCE_FLAT_NAMESPACE 1

Now, let’s use MallocDebug to find the memory problems in the server. Open
/Developers/Applications and launch the MallocDebug program. Next, select
File→New Window (Command-N) to display the main work area for the pro-
gram (see figure 4.7):

Figure 4.7
You use the MallocDebug
program’s main window
to enter options and view
results of a debugging
session.

Apple’s GUI-based development tools 139

■ Executable text area—Holds the full path to the program you wish to debug.
■ Browse button—Locates the program (you can also enter the program name

by hand).
■ Arguments text field—Contains any command-line arguments for the program

you will debug.
■ Launch button—Runs the program. Once you run the program, this becomes

a Stop button, which you use to exit the program.

The next set of controls enables you to change the view or gather more informa-
tion on the running program. The call stack browser (leftmost pop-up menu) per-
mits you to change how you view the call stack, or list of currently called
functions. Options include standard, inverted, and flat mode. Imagine a program
that calls the following functions, in this order: main, foo, bar, malloc. Standard
mode displays the call stack from left to right in order of the calls, from main to
malloc. Inverted mode displays the call stack from right to left in order of the calls
from malloc to main. Flat mode lists all calls in one window, ordered by memory
allocated (see figure 4.8).

 The next pop-up menu, called Display Mode, controls how MallocDebug dis-
plays information:

■ All—Displays call stacks for all allocated memory in the program.
■ New—Displays calls that have allocated memory from a particular execution

time. This option is used in conjunction with the Mark and Update buttons.
■ Leaks/Possible Leaks—Displays the call stack for possible leaks (for example,

leaks that come from stale pointers or midblock deallocations).
■ Defined Leaks—Displays the call stack for all leaks that occur in the applica-

tion up to this execution point.

Figure 4.8
MallocDebug enables you
to display an application’s
call stack in three forms:
flat (top window), inverted
(middle window), or
standard (lower window).

140 CHAPTER 4
Development tools

■ Trashed—Displays the call stack for allocated memory that contains illegal
writes (buffer overwrites or underwrites, for example).

You use the Mark button to take a snapshot of memory allocations from a specific
time (when you click on the Mark button) to the current execution time. The
Update button gets all new memory allocations from previous point to now. The
rightmost menu permits you to change the display from bytes to counts, showing
the number rather than the size of memory allocations.

 The next three windows display the contents of the call stack. Clicking on
functions in each window displays more information. The bottom window lists
specific details for each allocated buffer. Double-clicking on an entry opens the
Memory Viewer Panel, where you can interactively search and browse memory.

 Let’s generate some memory leaks and finding them with MallocDebug:

1 In the main MallocDebug window, click the Browse button, navigate the
file system until you find the BuggyServer program (located under the
build folder), and click the OK button.

2 Enter the port 4444 into the Arguments text field.

3 Before running the program, make sure no other BuggyServer process is
running. Click the Launch button to run the server under MallocDebug.

4 Go back to the shell you were using and enter this command:

 % perl send.pl 4 1 localhost 4444 leak
 pass: 0
 sending: leak
 received: Sat Jul 13 07:45:27 2002

 pass: 1
 sending: leak
 received: Sat Jul 13 07:45:29 2002

 pass: 2
 sending: leak
 received: Sat Jul 13 07:45:30 2002

 pass: 3
 sending: leak
 received: Sat Jul 13 07:45:31 2002

5 Notice that MallocDebug has detected a memory problem, stopped the
program, and displayed new information in its main window. Select
Inverted from the call stack menu and Leaks from the display menu, and
click the Update button.

Apple’s GUI-based development tools 141

6 Click on the malloc entry in the leftmost window to display the specific
memory region in the lower window (see figure 4.9).

7 To get a detailed view of memory, double-click on the first item in the
lower window’s list. Doing so opens the Memory Viewer Panel and displays
more information about the memory layout surrounding the allocation
error. As the following hex dump shows, the malloc debug library encloses
each allocated memory block with a defined byte sequence (see also the
patterns in table 4.1). Remember, the server allocated 30 bytes of memory
in the program:

 0x000145b8: 53617420 4a756c20 31332030 373a3435 Sat Jul 13 07:45
 0x000145c8: 3a323720 32303032 0a000000 0000beef :27 2002........
 0x000145d8: dead0000 deadbeef 53617420 4a756c20Sat Jul
 0x000145e8: 31332030 373a3435 3a323920 32303032 13 07:45:29 2002
 0x000145f8: 0a000000 0000beef dead0000 deadbeef
 0x00014608: 53617420 4a756c20 31332030 373a3435 Sat Jul 13 07:45
 0x00014618: 3a333020 32303032 0a000000 0000beef :30 2002........
 0x00014628: dead0000 deadbeef 53617420 4a756c20Sat Jul
 0x00014638: 31332030 373a3435 3a333120 32303032 13 07:45:31 2002

Figure 4.9 The result of the detecting a memory leak in the
BuggyServer program

142 CHAPTER 4
Development tools

Let’s look at another common type of memory error: illegal memory writes either
before or after an allocated buffer. Suppose that through some sort of rogue
pointer operation, you happen to write past the end of an allocated buffer or
overwrite memory before the allocated buffer. Here’s an example of this behavior:

char *buf = new char[10];
strcpy(buf, "AAAAAAAAA");
// overwrite past beginning of buffer
strcpy((buf-5), "ZZZZZZZZZZZZZZZZZZZZ");
// overwrite past end of buffer
strcpy((buf+5), "ZZZZZZZZZZZZZZZZZZZZ");

These types of bugs are really nasty because they do not always appear when the
overwrite occurred; it depends on how memory is laid out. In addition, they can
corrupt the core file the program generates when it crashes, making it difficult to
track down the initial cause and location of the error. To generate this class of
error within the BuggyServer program, enter the following commands:

% perl send.pl 1 1 localhost 4444 over-beg
% perl send.pl 1 1 localhost 4444 over-end

The first command generates an error by overwriting past the beginning of the
buffer; the second command overwrites past the end of the buffer. Generate an

Table 4.1 Patterns the malloc debug library writes to memory

Pattern # of bytes Bytes

Sat Jul 13 07:45:27 2002 24 53617420 4a756c20 31332030
373a3435 3a323720 32303032

NULL terminator 1 0a

Empty bytes 5 000000 0000

Defined pattern 20 beef
dead0000 deadbeef

Sat Jul 13 07:45:29 2002 24 53617420 4a756c20 31332030
373a3435 3a323920 32303032

NULL terminator 1 0a

Empty bytes 5 000000 0000

Defined pattern 20 beef
dead0000 deadbeef

Sat Jul 13 07:45 :30 2002 24 53617420 4a756c20 31332030
373a3435 3a333020 32303032

Apple’s GUI-based development tools 143

overwrite past beginning of buffer (the first command), select Inverted and
Trashed from the menus, and select the last memory record (size 10) from the list.
The following example shows a hex dump from MallocDebug showing memory
from a buffer overflow:

0x000145a8: 00000000 00000001 beefde5a 5a5a5a5aZZZZZ
0x000145b8: 5a5a5a5a 5a004141 4100beef dead0000 ZZZZZ.AAA.......

As you can see, the buffer that should read AAAAAAAAA was overwritten and now
contains ZZZZZ ZZZZZ.AAA. Once again, MallocDebug makes finding and correct-
ing memory-related errors quick and painless.

 The MallocDebug program contains many more features than described here.
You can use it to debug command-line application as well. See the program’s
online help for more information.

4.5.9 ObjectAlloc

The ObjectAlloc program provides another dimension to investigating memory-
related errors in programs. Like MallocDebug, it enables you to collect and view
memory allocations from a target program. Unlike MallocDebug, it does not
require you to link your application to any libraries. One of the main reasons to
use ObjectAlloc is its playback feature. This feature permits you to single-step
forward and backward through all memory allocations your program makes.
This technique is particularly useful for applications that contain memory errors
in complex data structures that change as the programs executes. Being able to
play back all memory-related operations is a real help in diagnosing potential
memory-related problems.

4.5.10 PEF Viewer

Carbon applications that run under Mac OS X and Classic mode (Mac OS)7 store
information in a format called Code Fragment Manager (CFM). Within this format
are storage areas called PEF containers, which hold PEF information. The PEF
Viewer utility lets you graphically view aspects of a PEF container. You can view
all the imported/exported symbols, disassemble any code section, disassemble
the relocation opcodes, and view compressed and uncompressed data sections.

7 They can also be mach-o format.

144 CHAPTER 4
Development tools

4.5.11 PackageMaker

You can deliver Mac OS X applications in a variety of formats including tar files,
GNU zip files, and package formats. You use UNIX formats (tar, gzip) for distributing
UNIX command-line programs. You use the package format to deliver Mac OS X
programs. PackageMaker creates application distributions for your Mac OS X
programs. Basically, you specify the files that make up the package, select some
installation options, and tell PackageMaker to create the application package.

4.5.12 Pixie

The Mac OS X User Interface Guidelines define, among other things, the correct
layout of user interface components. These layouts can be very exact. For example,
the layout of a standard pop-up menu should be 20 pixels high and contain 8
pixels from the text label’s trailing colon to the left edge of the menu. In addi-
tion, there should be at least 12 pixels between two vertically stacked standard
pop-up menus. To ensure your interface is correct, it’s helpful to check its inter-
face components by viewing its layout at varying resolutions, from normal view
down to the pixel level.

 Pixie is a program that lets you view, copy, and save anything on the screen at
varying magnification levels (see figure 4.10). With Pixie, you can check the lay-
out of interface items at the pixel level, copy the current image to the clipboard
or to a .tiff file, and perform other useful tasks. Another nice feature is Pixie’s
ability to display the selected pixel’s RGB values, enabling you to get exact color
values for various interface components.

4.5.13 Project Builder

Project Builder is an IDE that contains an edit, build, and run environment for
developing Mac OS X applications. With Project Builder, you can build all types
of Mac OS X application, including Carbon and Cocoa applications, bundles and
frameworks, kernel extensions, Java applications and applets, plug-ins, and tools.
Project Builder uses many of the underlying UNIX tools to perform its develop-
ment tasks, such as gcc, g++, gdb, and CVS.

4.5.14 PropertyListEditor

You configure most UNIX system services (such as cron) and applications such as
Apache through some sort of text-based configuration file. Typically, you open the
file in your favorite editor, change configuration parameters, and restart the pro-
cess for the new parameters to take effect. This method of specifying application

Apple’s GUI-based development tools 145

parameters applies equally to user programs. UNIX systems are full of text-based
configuration files, many of which are stored in different formats. Text-based
files make it straightforward to reconfigure your system, but you must learn each
new configuration file format and make sure you do not make a mistake in edit-
ing the file.

 Mac OS X builds on this functionality by adding a new configuration file type
called a property list that holds information in a single, structured format. Property
lists are text files that hold information formatted in XML, the near-universal lan-
guage for storing and exchanging structured data among systems.

 Let’s look at an example of how Mac OS X stores application parameters
using property lists. Open ~/Library/Preferences, find a file with a .plist exten-
sion, double-click on the file to launch PropertyListEditor, which will load the file.
Figure 4.11 shows the PropertyListEditor displaying the property list file for
Adobe Acrobat Reader.

Figure 4.10 Pixie displays regions of the screen at various magnification levels and is useful for
checking your program's interface layout.

146 CHAPTER 4
Development tools

Using this interface, you can change the behavior of the application. For example,
changing ShowSplashScreen from Yes to No removes the startup splash screen. You
can also display (read-only) the file in XML format by clicking on the Dump button.

4.5.15 Quartz Debug

Imagine you are writing a game under Mac OS X and you need to compare sev-
eral competing algorithms that update the contents of a window. You also need
to get detailed information about the memory size of a window buffer. For both
tasks, the Quartz Debug program will provide you with the answers. Quartz
Debug gives you detailed information about the Quartz graphics system.

 When you run the program, it displays a window showing three options that
alter the behavior of the program (see figure 4.12).8

Figure 4.11 An example PropertyListEditor displaying preference information for
Adobe Acrobat Reader

8 A new option is added to the application under Jaguar called Flash Identical Updates.

Apple’s GUI-based development tools 147

Enabling the Autoflush Drawing option clears the CoreGraphics graphic context
after every drawing action. The Flash Screen Updates and No Delay After Flash
options work in tandem, enabling you to see what part of the screen Quartz
updates. The Flash Screen option controls whether the screen is marked before
the system updates a region of the screen; the No Delay option prevents a delay
after the screen is marked.

 For example, select the Flash Screen option and point and click various parts
of the user interface; move the mouse over a window’s close, minimize, and zoom
buttons; move a window around the screen; or select an item from an application
menu. You should see the following sequence: a yellow region is displayed, show-
ing which part of the screen the system is about to update; a slight delay occurs if
the No Delay option is not checked; and then the real screen update takes place.

 Clicking the Show Window List button opens a window that lists all windows
open on the system (see figure 4.13). Each line provides information about the
window, including its connection ID (CID), which tells you what process owns the
window; the memory held by the window, in KB; the name of the program to
which the window belongs; and the current relative location of the window in
pixels (Rect).

4.5.16 Sampler

As software developers, we are always looking for ways to speed up the runtime
execution of our programs. Sometimes, in our quest for improvements, we blindly
fall into traps that we know are wrong—we ignore them because we are focused
too hard on one goal. Every year and a half, Moore’s law is realized as hardware
gets faster; some developers believe this speed increase eliminates the need to
spend time on things like optimization. After all, why waste development time
and money when you can throw hardware at the problem, which often costs less
than programmer time? This approach works in some cases, but for other classes

Figure 4.12
You use the QuartzDebug program to get information
about Quartz-level operation, such as screen updates
and window proprieties.

148 CHAPTER 4
Development tools

of applications it does not help. For example, game-theory simulations and web
cache simulators routinely take days or weeks to return results. In these cases, look-
ing for ways to improve program performance can mean the difference between
the program returning useful results in days rather than weeks.

 Other problems are more concrete and involve basic aspects of a program: for
example, how I/O affects program performance, or what delays the program
encounters in reading bytes from a socket. As you know, the first rule of optimi-
zation is understanding what to optimize before jumping in. It makes little sense
to optimize a section of code that will not help the runtime performance of the
program. Sampler, a performance and memory analysis program from Apple, is
a good choice for performing runtime performance analysis of your program.

 Sampler collects four types of performance statistics:

■ Samples of call stacks
■ Allocation information
■ File operations
■ Information about specific function calls

Sampler works by collecting discrete samples of the call stack at millisecond inter-
vals. The call stack holds a list of calls the program makes at this point and time.
This type of performance analysis tells you the frequency at which the program calls
a function, based on the sample rate. Think of it this way: the current execution

Figure 4.13 The Window List window provides a great deal of information about the windows that are
currently open on the system.

Apple’s GUI-based development tools 149

state of your program is captured by its current call stack, which, over the course
of the program’s runtime, is arranged as a linear time sequence. On average, if
the sample rate is high enough, you can capture a representation of the program’s
runtime call history. At each time step, Sampler grabs the current stack frame and
increments the count of the frame. When you stop sampling, you have a group of
captured stack frames and the number of times they occurred. From this informa-
tion, you can get a good idea how often your program called a function or method,
as well as its context.

 Figure 4.14 shows an example of Sampler’s main window after sampling the
BuggyServer program.

 Sampler also lets you capture allocation information so you can track a pro-
gram’s memory allocation behavior. It is similar to MallocDebug, but does not
require you to link to any library.

 Sampler can also track file-related calls in your application. This feature lets
you graphically see all file-related operations in your application and determine
what functions or methods are performing file I/O operations. This technique
can be useful for many situations. For example, imagine your application’s per-
formance is slower than you would like. With this feature, you can examine all

Figure 4.14 Sampler collects runtime statistics for your program and displays
the results in the main window. This information is useful in analyzing your
program’s performance and determining where you need to optimize.

150 CHAPTER 4
Development tools

file-related calls and see if the program is calling file operations more frequently
than you thought. In addition, you can attach to other programs running on the
system or launch them under Sampler, and examine their I/O operations. Doing
so is very useful in determining the I/O requirements for other programs you
may wish to use on a project, such as database applications like MySQL.

 You can get detailed information about specific function calls using Sampler.
For example, imagine you need to know how often your program calls a specific
function and who is calling the function. You enter the function into the Add
Functions Watch list and launch the program. Now, Sampler will collect statistics
for this function only and display them when you click Update All Calls.

 Overall, Sampler is a useful program with specific features that help you
debug or optimize your program. If you have used other CPU-based profiling
tools like gprof, you may find Sampler’s profiling information somewhat limited.
However, used in conjunction with other tools, or as a tool that provides a high-
level view of a program’s runtime performance, it is quite useful. Later in the
chapter, you will use a command-line profiling tool to look into the performance
of another server program.

4.5.17 Thread Viewer

Normally we view computer programs as performing a series of defined, sequen-
tial instructions with the goal of fulfilling some task. Conceptually this is correct,
but in some contexts, it is possible to perform instructions in parallel (the pro-
gram does more than one thing at a time). Imagine a text editor that performs a
batch search-and-replace operation on a large file while still enabling the user to
open other files. Programs that perform several operations in parallel are called
multithreaded programs.

 In general, threading is wonderful—without it, many problems would be dif-
ficult to solve efficiently. But even with all the power and performance benefits of
multithreading, it can be difficult to get the implementation right; ask anyone
who has worked on a nontrivial multithreaded application. The Apple Mac OS X
developer tools come with a program called Thread Viewer that can help you
understand how the threads in your program are interacting at runtime and can
save you significant development time. Before I describe the program, let’s briefly
review the relationship between threads and processes. If you are comfortable with
this topic, feel free to skip this section.

Apple’s GUI-based development tools 151

Threads and processes
A UNIX process runs within a defined address space, has its own internal data
structures and resources, and executes a set of instructions until termination.
The term thread defines a basic unit of execution through a process. In the tradi-
tional model, where instructions proceed sequentially, we say that the process has
a single thread of execution: if statement B follows statement A, B must wait for
A to finish before executing.

 For many programs, this is a perfectly acceptable design, and it is simple to
implement and understand. However, some programs do not fit into this model
and suffer unnecessary performance bottlenecks when designed this way. For
example, programs that perform a long series of computations whose subsequent
steps do not rely on any preceding step, or servers that must service many con-
nections simultaneously, would benefit greatly from performing instructions in
parallel, as apposed to sequentially.

 One common technique to address concurrency within the context of single-
threaded programs is the fork/exec family of calls. These calls enable copies of your
program to run as child processes under a common parent. The usual examples of
this technique are servers that handle more than one client connection at a time. The
servers’ goal is to service client requests concurrently. In this context, the server process
is the parent process. When the server accepts a connection from a client, it creates a
copy of itself, called the child process, to service the request, and goes back to accepting
client connections. It repeats this loop for each client connection until termination.

 The child process is in most respects a duplicate version of the parent. The
child process independently services the client request and exits while the parent
is accepting more connections and forking off more children. The main limita-
tions of this approach are the time and memory required to duplicate aspects of
the parent process and the limited information a parent and child process can
share. One solution to these performance issues is to implement the server as a
threaded server that pools client connections (more on this later).

 To write multithreaded applications, you use a set of instructions from a
thread library and link the thread library to your program at compile time. A
common thread library is pthreads, also called POSIX threads library. The
pthreads library implements a set of threading primitives that applications use to
add threading to the program. As you can imagine, one of the challenges of writ-
ing threaded code is keeping one thread from changing the data another thread
needs before the second thread gets a chance to see it. Because threads can share
data, you must ensure that you protect all shared data through a locking scheme
(such as semaphores or mutexes).

152 CHAPTER 4
Development tools

 As you know, Darwin (and its Mach kernel) is the core operating system of
Mac OS X. Mach kernels use and implement processes and threads differently
than most other UNIX implementations. In many UNIX monolithic kernels, the
basic level of scheduling is the process, where all threads within the process are
bound by the scheduling priority of the process; when a process is suspended by
the operating system, all its threads are also suspended. Under Mach, the thread
is the basic execution unit, not the process. Thus, under Mach, scheduling priority
is handled on a per-thread basis: the operating system coordinates and schedules
threads from many different tasks.

Using Thread Viewer
The Thread Viewer program displays a graphical representation of the interaction
of your application’s threads, as well as providing information on a per-thread
basis. When you run the Thread Viewer program and attach to a running process,
you have full access to the program’s current thread state. You can watch each
thread and see if it is running, is blocked on a semaphore or lock, is suspended,
or has terminated. This information can be a real time saver.

 One of the most frustrating elements of debugging multithreaded applications
is asynchrony. Multithreaded programs are inherently asynchronous, and conse-
quently are very difficult to debug because you simply cannot reproduce the chain
of events that led to the bug. A tool that graphically displays the state of the threads
(at runtime) can help determine the cause of errors. Let’s look at an example of
how to use Thread Viewer on a threaded server that pools client connections.

 The project implements a simple thread server that pools connection threads.
When the server starts up, it creates a pool of connection threads. As clients con-
nect, the next available connection in the thread pool handles the request.

 To see the server’s thread activity, you launch Project Builder, open the
project ThreadedServer, and build and run the program. To simulate concurrent
client requests, you’ll wrap the Perl send.pl script (discussed in section 4.5.8) with
another script that calls it several times. Doing so enables you to simulate many
clients concurrently connecting to the server:

#!/usr/bin/perl -w
use strict;

my ($max) = @ARGV;

for(my $i=0; $i<$max; $i++) {
 system("perl send.pl 1 1 localhost 4444 over-beg &");
}

Before running the client script, follow these steps:

Apple’s GUI-based development tools 153

1 Launch Thread Viewer (located in /Developer/Applications), select File→
Attach, select the threaded server from the application list, and click OK.
You will see a window (figure 4.15) that displays the current server threads
(five connection threads plus the main thread).

2 Click the Key button to display a drawer that holds a legend of the
thread states.

Thread Viewer displays thread activity with a horizontal bar, one per thread, with
a tick mark spaced at every time step. You can update the rate at which the appli-
cation samples thread activity by changing the sampling interval from the Prefer-
ence menu. To the left of the thread bars are the thread addresses, which uniquely
identify each thread. The number to the right of the thread shows the cumulative
CPU time consumed by the thread; a high value in relation to the other threads
indicates that a thread is consuming excessive CPU time. In general, you would
like these values to be as balanced as possible.

 Now, continue as follows:

1 Open a shell and run the client script (listed earlier) with the following
command:

 % perl r.pl 100

This command sends 100 concurrent messages to the server. While the cli-
ents are sending messages, look at the thread timelines (see figure 4.16).

2 You will see flashes of green, indicating that a thread is running, and yellow,
showing that it has recently run. Once the script ends, run it a few more
times. Ideally, the thread times should be evenly distributed, indicating that
no thread is monopolizing the CPU. In addition, click on a thread timeline
while the client is sending messages to see the call stack at that interval
(see figure 4.17).

Figure 4.15
An example of the main
Thread Viewer window
after attaching to the
threaded server

154 CHAPTER 4
Development tools

3 Let’s introduce a bug into the server and see how Thread Viewer handles
the problem. Stop the server (clicking on the stop sign within Project
Builder), open the main.cpp file, and locate the ProcessRequests func-
tion. Look for a comment within this function and do what it says.

4 Rerun the server and the client script and reattach to the server process
within Thread Viewer. Notice how a few threads’ timelines change to light
pink, indicating that the thread is waiting in a lock. Also notice that the cli-
ent messages stop (in Project Builder’s output window), indicating that the
server is blocked. Thread Viewer has immediately alerted you to the fact
that there is a problem in your code, and it tells you the type of problem.

As this example demonstrates, Thread Viewer is a good tool for graphically dis-
playing the status of the threads within your program; it lets you quickly locate
and fix threading errors.

Figure 4.16
The Thread Viewer
shows the activity
of an application’s
threads. This
example shows
the ThreadedServer
accepting concurrent
client messages.

Figure 4.17
By clicking on a thread
bar, you can get
detailed information
on the state of the
thread

Apple’s GUI-based development tools 155

4.5.18 icns Browser

Traditionally, Macintosh applications stored their application icons within the
application file in the resource fork. Under Mac OS X, this arrangement has
changed. Most Mac OS X applications are stored as bundles. A bundle is a direc-
tory that holds programs components in one location, including the application,
application resources, and application icons. If you open a shell and change to
the directory holding an application, you can easily see this arrangement. You
can also view the contents of the folder by holding the Control key, single click-
ing on the program’s icon, and selecting Show Package Contents from the con-
textual menu.

 The Resources directory (located under the application’s parent directory)
holds the application resource files, including icon files stored in .icns files. You
use the icns Browser program to display the contents of a .icns file. It shows the
icons in the file for different bit levels and icon masks for the different bit levels
(see figure 4.18).

 This program is not an editor, but rather a viewer. To create application icons,
use the Icon Composer program.

Figure 4.18 The icns Browser program displays application icons stored in its .icns file.

156 CHAPTER 4
Development tools

4.6 Apple’s command-line development tools

In addition to the GUI-based development tools, Apple has included some very
powerful and useful command-line tools for debugging and monitoring Mac OS
X applications. You may wonder why you need to use UNIX-like command-line
tools for developing Mac OS X GUI applications when GUI tools are available.
Mac OS X applications primarily use the Cocoa and Carbon frameworks for their
services; but these services use the underlying Darwin operating system, which is
a preemptive multitasking system that supports many programs running concur-
rently. Understanding this interaction and being able to use it to your best
advantage can make all the difference between a snappy, properly performing
program and a sluggish program that is no fun to use. Currently, the command-
line tools supplied by Apple let you peek into the operating system while your
program is running and see how it is using the system’s resources. This is a power-
ful tool ability that will help you understand how to design and potentially opti-
mize your program to make the best use of Darwin’s power. In addition, the
command-line tools offer a greater level of detail than the GUI tools.

 Another application of these tools is troubleshooting programs you did not
write, but suspect are causing problems (reverse engineering programs). Imagine
you are using a script to insert data records into a database. Some insert opera-
tions are very slow and cause excessive disk thrashing in the database program.
By using the command-line tools, you can get a snapshot of how the database
program interacts with the operating system, which may shed light on the cause
of the problem.

 All the command-line tools are simple to use, but they do require some study
to understand their use and features. In truth, you must understand the operating
system and the memory allocation scheme, and you need some experience using
the tools on real problems. Luckily, man pages are available for all the tools.
Some of these tools, like top and gprof, will be familiar to most UNIX developers;
others are specific to the Mac OS X environment. In this section, I will try to mini-
mize repeating information from the man pages and instead concentrate on show-
ing examples of how you can use these tools for common development activities.

4.6.1 ps (process status) and top (system usage statistics)

Both the ps and top commands will be familiar to most UNIX users. You use the
ps command to get status information for a process. Its typical command-line
invocation is in one of the following forms:

Apple’s command-line development tools 157

ps aux
ps aux | grep [process-name]

The first syntax lists extended information for all process on the system for all users.
The second displays the same information, but only for the specified process name.

 The top command iteratively shows system usage statistics for the top processe.
The Mac OS X implementation is somewhat different from those running on other
flavors of UNIX. It displays more information that is specific to Mac OS X and gives
you a quick snapshot of what is going on in the system. Figure 4.19 shows the out-
put of the top command for a Mac OS X machine (Darwin Kernel Version 5.5: Thu
May 30 14:51:26 PDT 2002; root:xnu/xnu-201.42.3.obj~1/RELEASE_PPC Power
Macintosh powerpc).

 Figure 4.20 shows the output of the top command for a Linux machine
(Linux 2.4.7-10smp #1 SMP Thu Sep 6 17:09:31 EDT 2001 i686 unknown).

Figure 4.19 Output of the top command on a Mac OS X machine

Figure 4.20 Output of the top command for a Linux machine

158 CHAPTER 4
Development tools

The output of the top command shown in figure 4.21 comes from a Solaris 2.7
machine (SunOS 5.7 Generic sun4u sparc SUNW,Ultra-60).

 As you can see, the Mac OS X implementation provides information about
thread usage at both the system and individual process level. Another valuable
feature of the Mac OS X version is that if a process’s VSIZE (the total address
space currently allocated) is increasing, the command places a + after the value.
This is a quick indicator that the program’s memory usage is increasing, which
could indicate a memory leak. See the man pages for more detailed information
about the ps and top commands’ usage and options under Mac OS X.

4.6.2 sc_usage: showing system call usage statistics

Suppose you are developing a simulation program that requires the processing
of large amounts of data. Ideally, you would like to read the data into physical
memory, perform your calculations on the data, and write the result. Alterna-
tively, perhaps you are writing a multithreaded program and you need to get
detailed information about what system calls the program makes, as well as
thread performance, cache hits, and timing. You need a tool that enables you to
peek into a program as it runs and view its runtime state. In either case, the
sc_usage command is a good choice.

 The sc_usage command samples an application at a specified interval, show-
ing the system calls it makes as well as other information such as the number of
generated page faults. This information helps you understand the kinds of sys-
tem calls your program makes, and also lets you determine potential perfor-
mance bottlenecks.

 Let’s use sc_usage to look at the threaded server program described in sec-
tion 4.5.17:

Figure 4.21 Output of the top command for a Solaris 2.7 machine

Apple’s command-line development tools 159

1 Run the ThreadedServer program and get its process identifier (using
top or ps).

2 Open a shell in the Terminal application and enter the following com-
mand (you must be root or have root privileges to run this command):

 % sudo sc_usage [pid-of-server]

3 By default, sc_usage samples the server application every second. Send it
some messages with the client Perl script (see section 4.5.17 for more
information). Figure 4.22 shows the output of the program.

As you can see, the output includes a lot of useful information. The upper part of
the display tells you the number of threads in the program, the current system time
(21:15:31), how long the sc_usage command has been running, and some global
state information. The next columns of data show the system calls made thus far,
the number of times each call was made (from when the sc_usage command was
run), the CPU time consumed by the command at the current sample time, and
the time the process has been waiting. Below this, the output lists the current sys-
tem calls, the last path name that was blocked, the cumulative thread block time,
the thread number, and the thread priority.

Figure 4.22 Output of the threaded server program using the sc_usage command

160 CHAPTER 4
Development tools

With this information, you can see that the server makes a lot of calls to the read
and write functions, as you would expect, and a high number of calls to accept. You
may be able to improve performance by changing the server from an accept-based
server to a select server. The information at the bottom of the display is also help-
ful: it tells you that four of the threads are in the read system call, one is blocked on
a semaphore, and the other is waiting on the accept call. It also provides cumulative
timing information for each thread.

 The output of sc_usage provides detailed information about the current state
of the program. Compare this with the output of the Thread Viewer program
run on the same example—Thread Viewer provides a nice graphical view of the
program and threads, but it does not offer the same level of information.

 The sc_usage command works for a range of applications and types of prob-
lems. Try it with programs you did not write, to look at the system call distribu-
tion and timing information. It is an excellent reverse-engineering tool, and it is
especially useful for looking at Mac OS X programs that you suspect are really
Cocoa interfaces that call UNIX commands for services.

4.6.3 fs_usage: reporting system calls and page faults related to
the filesystem in real-time

One of the great things about UNIX is the number of cool programming tools
that come with the system. Apple continues this tradition by providing a useful
file system utility called fs_usage. This command presents a continuous display
of system-call usage information for file system operations. In its normal form
(run with no command-line arguments), it displays information about all instan-
tiated processes except the running fs_usage process, Terminal, telnetd, sshd,
rlogind, tcsh, csh and sh. A less noisy way to use the command is to supply a
process identifier (pid) as its only command-line argument. In this form, it
reports all activity for the specified process.

 The following listing shows an example of the program’s output while moni-
toring the ThreadedServer program:

% sudo fs_usage 3008
11:12:03 read 0.002226 W ThreadedServ
11:12:03 write 0.000017 ThreadedServ
11:12:03 write 0.000070 ThreadedServ
11:12:04 read 1.007925 W ThreadedServ
11:12:04 close 0.000105 ThreadedServ
11:12:04 read 0.000016 ThreadedServ
11:12:04 write 0.000032 ThreadedServ
11:12:04 write 0.000064 ThreadedServ
11:12:06 read 1.044468 W ThreadedServ

Apple’s command-line development tools 161

11:12:06 close 0.000066 ThreadedServ
11:12:06 read 0.000014 ThreadedServ
11:12:06 write 0.000021 ThreadedServ
11:12:06 write 0.000063 ThreadedServ
11:12:07 read 1.041570 W ThreadedServ

4.6.4 gprof: displaying execution profile data

As you saw earlier, the Apple developer tools come with a program called Sampler
that helps you profile your program for performance bottlenecks. Because it uses
a sample-based monitor technique, it will tell you the number of times the pro-
gram called a function, but not the percentage of time each function takes within
the program’s total runtime. For this type of analysis, gprof is the right tool.
GNU gprof displays the execution profile of a program. Let’s look at an example
of how you can get this type of information using gprof.

 The SamplerServer project implements two versions of a server, each with a
different socket read function. The first, called SlowServer, reads from a socket one
byte at a time until it reaches the string terminator. The second, called FastServer,
reads a specific number of bytes from the socket. Richard Stevens points out this
problem and discusses design choices and solutions in his classic book on net-
work programming; as Stevens points out, the byte-by-byte version spends most
of its time in the kernel (trapping the kernel with repeated system calls), whereas
the other version significantly reduces kernel noise and improves performance.
Both server implementations enable you to test this behavior and see for yourself
the performance differences.

 The project is set up with two targets: one for the slow socket read (Slow-
Server) and one for the fast read (FastServer). Let’s test them, use gprof, and eval-
uate the results:

1 Select the Targets tab, select SlowServer from the Target list, select the
Build Settings tab in the Editor pane, and make sure the Generate Profil-
ing Code checkbox is selected (under Compiler Options).

2 Build and run the program (Command-R).

3 Open the Terminal application, open a new shell, change to the project
directory, and run the send script as follows. Make sure you send the
server a very long string (say, longer than 3000) so you can really look at
the socket read times. This script sends the string 100 times to the server,
pausing one second between sends:

 % perl send.pl 100 1 localhost 4444 [enter-long-string]

162 CHAPTER 4
Development tools

4 After reading 100 messages, the server will exit and generate a profiling
script called gmon.out. The gprof program uses the gmon.out file to print
program statistics. To view the program’s runtime statistics, change to
the build directory and enter the following command:

 % gprof SlowServer.app/Contents/MacOS/SlowServer gmon.out | less

5 Notice the full path to the executable. SlowServer.app is the bundle, not
the executable program, so you need to specify the full path to the exe-
cutable within the bundle.

NOTE The gprof tool has been used for years by UNIX programmers to generate
execution profiles of programs. Here’s how it works:

1 The first step is to add the –pg option when building the program you
wish to profile. This option tells the compiler to compile source files for
profiling and link with the profiling library. For example, to compile
and link for profiling, use the following commands:

 % gcc –o foo foo.c bar.c –g -pg

2 Now that the program is built for profiling, you can run it to generate
the profiling information or the profiling profile. Run the program
as you normally would and let it execute and exit as usual.

3 When the program exits, it writes to the current directory a file called
gmon.out. This file contains the program’s runtime profile.

4 Run the gprof tool, passing it the gmon.out file, which displays the
program’s runtime execution profile:

 % gprof gmon.out > gprog.log

5 Repeat this process for the FastServer to get its performance statistics.

Figure 4.23 shows the output of the gprof program for the SlowServer imple-
mentation (reading from the socket one byte at a time).

 The output for the FastServer implementation (reading a specific number of
bytes from the socket at one time) is shown in figure 4.24.

 The program spends 78.9 percent of the total runtime in the system call read,
accounting for 0.15 seconds. The fast version is quite different; runtime statistics
are so negligible that they do not even show up in the profiling output.

 From this example, you can see that using gprof to profile your program can
help you pinpoint and diagnose potential performance problems. In addition,
try running the same example with the Sampler program and compare the result.

Apple’s command-line development tools 163

Although doing so is like comparing apples to oranges, it will give you a feel for
how these tools differ and how to use them together to solve certain problems.
For more information, see gprof ’s man page, as well as its GNU documentation.

4.6.5 leaks: searching a process’s memory for unreferenced
malloc buffers

The Mac OS X development tools provide several programs you can use to detect
memory leaks in your application. A memory leak occurs when you allocate
memory within a program and never free it. The command-line tool called leaks
performs a similar role as the GUI-based profiling tools discussed earlier in the
chapter: detecting malloc-allocated memory locations where your program has
lost the pointer to the allocated memory, causing a memory leak. The leaks
command takes one argument, the pid of the process you wish to examine.

 Let’s look at a simple example. The LeaksExample project implements a simple
example of a memory leak. Open this project in Project Builder and build and
run the program. You will see several logging messages in the output window fol-
lowed by the program displaying a window. While the program is still running,
get its process ID from the output window and run the following command in a
shell (you must be user root or have root privileges to run the leaks command):

Figure 4.23 Output of the gprof program for the SlowServer implementation

Figure 4.24 Output of the gprof program for the FastServer implementation

164 CHAPTER 4
Development tools

% leaks 11786
Process 11786: 7424 nodes malloced
Process 11786: 7 leaks
Leak: 0x0008fda0 size=46
 0x80813ff0 0x80813ae0 0x80813ffc 0xa1b1c1d3
 0x0008fd00 0x00091ef0 0x00091f70 0x00000000
 0x00000000 0x00000000 0x00000000
Leak: 0x0008fcd0 size=46 instance of 'NSCFDictionary'
 0x00058610 0x00010395 0x00000003 0x00000003
 0x00000004 0xa1b1c1d3 0xa1b1c1d5 0x00000000
 0x0008fda0 0x0008fdb0 0x00000000
Leak: 0x0007f340 size=46
 0x00530068 0x006f0075 0x006c0064 0x0020006e
 0x006f0074 0x00200073 0x00650065 0x0020006d
 0x0065002e 0x00000000 0x00000000
Leak: 0x0007f040 size=46
 0x00530068 0x006f0075 0x006c0064 0x0020006e
 0x006f0074 0x00200073 0x00650065 0x0020006d
 0x0065002e 0x00000000 0x00000000
Leak: 0x0008fcb0 size=30 instance of 'NSUserDefaults'
 0x808190bc 0x00082850 0x0008fcd0 0x0008e980
 0x00000000 0x00000000 0x00000000
Leak: 0x0007f370 size=30 instance of 'NSCFString'
 0x80160880 0x000107f0 0x0007f340 0x00000012
 0x0007f2b0 0x00000000 0x00000000
Leak: 0x0007f320 size=30 instance of 'NSCFString'
 0x80160880 0x000107f0 0x0007f040 0x00000012
 0x0007f2b0 0x00000000 0x00000000

As you can see, the leaks command detects that the program contains memory
leaks and provides you with information about their locations.

 Let’s look at the format of the information using the last record in the display
(italicized in the code). The first line lists the address of the leaked memory
block, its size (in bytes), and the source (in this case, an instance of the NSCF-
String class). The next series of lines shows the contents of the allocated mem-
ory buffer in hexadecimal. You can use the –nocontext option to suppress
displaying the allocated memory contents:

% leaks -nocontext 11786
Process 11786: 7424 nodes malloced
Process 11786: 7 leaks
Leak: 0x0008fda0 size=46
Leak: 0x0008fcd0 size=46 instance of 'NSCFDictionary'
Leak: 0x0007f340 size=46
Leak: 0x0007f040 size=46
Leak: 0x0008fcb0 size=30 instance of 'NSUserDefaults'
Leak: 0x0007f370 size=30 instance of 'NSCFString'
Leak: 0x0007f320 size=30 instance of 'NSCFString'

This information should give you a good idea where your program is leaking.

Apple’s command-line development tools 165

4.6.6 heap: listing all the malloc-allocated buffers
in the process’s heap

The heap command is a experimental BSD tools that displays memory objects,
including Objective-C objects, allocated on the heap of the specified process.
You run the command, passing it the pid of the program you wish to monitor.
The following listing shows a condensed example of heap’s output:

% heap [pid]
% sudo heap 3186 | more
Process 3186: 6 zones
Zone CoreGraphicsDefaultZone_0x1671d0: Overall size: 256KB;
278 nodes malloced for 48KB (18% of capacity); largest unused:
[0x001
7331e-207KB]
Zone kCFAllocatorNull_0x701e6944: Overall size: 0KB
Zone kCFAllocatorMalloc_0x701e6914: Overall size: 0KB
Zone DefaultMallocZone_0x11f1d0: Overall size: 852KB;
6849 nodes malloced for 618KB (72% of capacity);
largest unused: [0x01eed88
e-205KB]
Zone Custom CFAllocator_0x701e698c: Overall size: 0KB
Zone kCFAllocatorSystemDefault_0x701e6928: Overall size: 0KB
All zones: 7127 nodes malloced - 666KB

--
Zone DefaultMallocZone_0x11f1d0: 6849 nodes (632582 bytes)

<not Objective C object> = 6424 (613064 bytes)
NSMenuItem = 52 (4056 bytes)
NSDynamicSystemColor = 29 (870 bytes)
NSImage = 21 (630 bytes)
NSBitmapImageRep = 20 (1240 bytes)
NSMethodSignature = 20 (2280 bytes)
NSPathStore2 = 15 (1474 bytes)
NSMenu = 10 (300 bytes)
NSCarbonMenuImpl = 10 (140 bytes)
NSCachedWhiteColor = 9 (126 bytes)
NSDistantObject = 3 (74 bytes)
NSConcreteMutableData = 3 (90 bytes)
NSWindowGraphicsContext = 3 (74 bytes)
NSBundle = 2 (92 bytes)
NSView = 2 (188 bytes)

4.6.7 malloc_history: showing malloc allocations
that a process has performed

The malloc_history command is another command-line tool that detects nonfreed
memory allocations and buffer overwrites in your application. To use the com-
mand, follow these steps:

166 CHAPTER 4
Development tools

1 Open a shell and set the environment variables MallocStackLogging and
MallocStackLoggingNoCompact to value 1 (or place them in your .csrch file):

 % setenv MallocStackLogging 1
 % setenv MallocStackLoggingNoCompact 1

2 Make sure you compile the program you wish to debug with debugging
turned on (either through the –g option or by checking the Generate
Debugging Symbols checkbox in Project Builder, under the Target
Build settings).

3 Run the program. While it is running, run the following malloc_history
command. (The leading clear command will clear the current shell’s
output, enabling you to view the results more easily.) If the program con-
tains leaks, malloc_history displays them, along with the call stack:

 % clear; malloc_history 11941 -all_by_size

 6 calls for 96 bytes: thread_800013b8 |0x0 | start | _start |
 main | malloc | malloc_zone_malloc

The malloc_debug command has many additional options than are described
here. For more information, see the command’s man page.

4.6.8 sample: profiling a process during a time interval

The sample command acquires performance statistics for the specified applica-
tion by sampling its execution at an interval specified by the user. It gathers data
the same way as the GUI Sampler application, covered in section 4.5.16. The
command takes three arguments: the pid of the process to monitor, how long the
command should sample the program (in seconds), and the sampling rate (in
milliseconds). For example, the following command collects performance statis-
tics for the SampleExample program:

% sample 12525 20 10
Sampling 12525 each 10 msecs 2000 times
Now analyzing results...
Samples: 42696 bytes
Analysis written to file /tmp/SamplerExample_12525.sample.txt

As you can see, a performance report is written to the /tmp directory, which con-
tains a textual representation of the collected statistics. Here’s an example of the
output generated by the sample program:

752 UnOptimized_LoopFusion(double *, double *, int)
 392 sqrt
 361 sqrt [STACK TOP]

Summary 167

 31 nan
 31 nan [STACK TOP]
273 UnOptimized_LoopFusion(double *, double *, int) [STACK TOP]
 61 error_message
 61 error_message [STACK TOP]
 26 rest_world_eh_r7r8
 26 rest_world_eh_r7r8 [STACK TOP]
359 Optimized_LoopFusion(double *, double *, int)
 237 sqrt
 219 sqrt [STACK TOP]
 18 nan
 18 nan [STACK TOP]
74 Optimized_LoopFusion(double *, double *, int) [STACK TOP]
 31 error_message
 31 error_message [STACK TOP]
 17 rest_world_eh_r7r8
 17 rest_world_eh_r7r8 [STACK TOP]

The sample command is a quick, simple way to get performance information
about a running program, providing information similar to the Sampler program.

4.7 Summary

Mac OS X provides UNIX developers with all the tools they are accustomed to
under their favorite UNIX distribution. Throughout this chapter, you have seen
the editing environments, static analysis tools, version control systems, and build
tools that are available, and some examples of the tools in action. In addition to
the standard tools, many developers are implementing Mac OS X–specific versions
of many of the tools that take advantage of the Aqua interface. These programs
augment—and in some cases replace—the native tools that come with the Mac
OS X system. Overall, experienced UNIX developers will feel right at home
developing under the Mac OS X command-line environment.

 This chapter has also given you an overview of the development tools that
Apple provides with the Mac OS X development tools. These, combined with the
traditional UNIX development tools, give developers the power to fully understand
the performance and behavior of their programs. This is very important, because
it can give you insight into making your applications perform and work better
with the underlying operating system. This chapter has provided a taste of the
tools and their power. To really understand them, you need to dig in and use them
repeatedly on real projects. That way, you will develop experience in understand-
ing the interaction between your programs and the Mac OS X operating system.

Part 3

Programming

Now that we know the underpinnings of Mac OS X, it is time to tackle
concrete programming examples. The chapters in this part of the book guide you
through the steps of building three working programs using the Apple develop-
ment tools and technologies you have learned about thus far. In this section,
you will develop a Cocoa-based program that puts a GUI on the UNIX tool wget,
and develop two AppleScript programs—one for organizing a music collection in
iTunes, and the other for tracking and displaying system resources. In addition,
you will learn some of the more interesting aspects of Jaguar, Apple’s newest
Mac OS X release.

171

5Objective-C and the Cocoa
development frameworks

■ An overview of Objective-C
■ Cocoa software infrastructure
■ Memory management and Cocoa
■ Design Patterns and Cocoa
■ Other Cocoa development languages

172 CHAPTER 5
Objective-C and the Cocoa development frameworks

The most important thing in the programming language is the
name. A language will not succeed without a good name.

I have recently invented a very good name and now
I am looking for a suitable language.

—D. E. Knuth, 1967

This chapter begins your journey into Mac OS X programming by introducing you
to Cocoa, Apple’s object-oriented framework for developing Mac OS X applications.
Your first stop will be an introduction to Objective-C and design patterns. (Cocoa
supports two main development languages, Objective-C and Java; this book focuses
on Objective-C.) Design patterns are used extensively in the Cocoa frameworks and
are important elements of Cocoa application development. The Objective-C sec-
tion is not so much a language tutorial as an overview of the language’s features;
it’s intended to highlight aspects you will encounter when learning Objective-C.
After reading this chapter, you will be well on your way to understanding the Cocoa
frameworks and knowing how to use them to write your own applications.

5.1 Introduction

Up to this point, I have covered topics pertaining to the Mac OS and Mac OS X
system, its design, and the development tools and frameworks. In addition, I’ve
discussed the basics of Apple’s Project Builder and Interface Builder. Project
Builder is Apple’s Integrated Development Environment (IDE), used for develop-
ing all types of Mac OS X applications from command-line tools to GUI-based
Aqua applications. The Project Builder IDE uses UNIX development tools such as
gcc, g++, gdb, RCS, and CVS for performing its development tasks. This strikes a
nice balance between the usefulness of a GUI-based development environment
and the power of the UNIX tool set. Interface Builder works in conjunction with
Project Builder. You use Interface Builder to design and build the user interface
component of your program, as well as define many of your application’s classes.

 In the first four chapters, you’ve also learned that the foundation of Mac OS X
is Darwin, an open source operating system based on a Mach kernel and BSD. The
source code for Darwin is freely available for download, study, and modification
(http://developer.apple.com/darwin/index.html). On top of Darwin are the Mac OS
X-specific layers that complete the system and help distinguish Mac OS X from other
consumer operating systems.

 Against this backdrop, you are ready to move on to programming under Mac
OS X and learn about its supporting tools and frameworks. As you will see, making

Introduction to Objective-C 173

the transition to the Mac OS X develop environment is not as difficult as you may
think. If you already know the basics of UNIX-style development, making the
transition to Mac OS X should be straightforward. In addition, projects like Fink
(http://fink.sourceforge.net/index.php) are actively porting many UNIX tools to
Mac OS X, thereby filling the gap between the UNIX tools you get with Mac OS X
and those available under other UNIX distributions.

 When you’re developing applications under Mac OS X, you should be mindful
to steer toward utilizing the strengths of the system: its strong support for develop-
ing programs with modern user interfaces. For example, writing an application’s
user interface using X Window widgets makes little sense when Mac OS gives you
Aqua and the Cocoa frameworks.

5.2 Introduction to Objective-C

You develop programs in Cocoa in either Objective-C or Java. This book uses
Objective-C for application development. If you have never programmed in
Objective-C, don’t worry—the language is straightforward to learn and intuitive
once you know the basics. I hope that over the next few years other development
languages will be added to the mix, so Cocoa programs can be written in lan-
guages such as C++, Perl, Python, and Ruby.

 This section provides a high-level overview of the Objective-C language. I am
assuming you already program in C and understand the basic concepts of object-
oriented programming (OOP). If you need more information about C or OOP, see
the “Resources” section at the end of the book. This introduction covers the basics
of the language with the goal of providing enough information and context for you
to understand the language’s features, and read and write basic Objective-C code.

 In the 1980s, Brad J. Cox developed Objective-C by adding object-oriented
Smalltalk-80 features and extensions to the C language. Objective-C is ANSI C
with additional features for defining classes, create instances of objects, and send
messages to objects. Stepping back a bit, two categories of object-oriented languages
exist: statically and dynamically typed languages. C++ and Simula are examples
of statically typed languages; Smalltalk, Perl, Python, and Objective-C illustrate
dynamically typed languages.

 Statically typed languages require programmers to provide type information for
all data types at compile time. One of the advantages of a statically typed language is
that you can determine typing errors up stream (at compile time), reducing possible
runtime errors. Such a language also makes for potentially safer code because you
can apply static analysis tools like lint to verify type correctness. Generally, statically

174 CHAPTER 5
Objective-C and the Cocoa development frameworks

typed languages are more efficient than dynamically typed languages because type
information does not need to be resolved during runtime. Examples of statically
typed languages include C, Simula 67, Java, and C++. C++ is traditionally asso-
ciated with the Simula 67 school of OOP because you provide type information at
compile time to ensure that objects receive the correct messages.

 Dynamically typed languages determine a program’s type information at run-
time, relieving you from encoding type information when you write the program.
The runtime system is responsible for tracking a variable’s type at runtime and
correctly resolving conversions between data types. This typing scheme permits
more flexibility at the expense of runtime performance. Examples of dynami-
cally typed languages include Smalltalk, Perl, Python, and Objective-C.

 If you already know C and understand the basics of OOP, learning Objective-C
should be easy. You can expect to learn the basic concepts of the language in a
few weeks and be able to write basic programs in less than a month. What follows
is a breakdown of the main aspects of the Objective-C language, above its ANSI C
foundations. Objective-C is based on ANSI C, adding object orientation in the
style of Smalltalk (dynamically typing). Thus you can mix ANSI C code in the
context of the Objective-C class scheme. In fact, a common use of Objective-C is to
write wrapper classes for C code. Using this approach, Objective-C functions as a
glue language within a language; it joins Objective-C and C code. This arrange-
ment is similar in spirit to using scripting languages such as Perl and Python to
glue together various compiled programs.

5.2.1 Object-oriented terminology

Before I discuss the object-oriented features of Objective-C, let’s make sure we
are using common terminology with a quick review of some basic object terms.
Object-oriented systems let you create user-defined data types, which are called
classes. A class binds into one functional unit data, called a data member or field, and
a set of operations that act on the data, called methods. This process encapsulates a
class’s data and the methods that operate on the data into a single entity. Classes
are brought to life as objects, which are sometimes called class instances. Think of a
class as the blueprint and the object as the realization of the blueprint.

 When you design an object-based system, you typically create classes that rep-
resent the domain you are modeling and use them to stipulate specific behavior.
These classes usually mirror various elements of the problem domain. For example,
if you were designing a program that models a banjo, you would naturally create
a class called Banjo. This class encapsulates the general properties and operations
common to all banjos. To specify the differences between banjos (4 string tenor, 5

Introduction to Objective-C 175

string open back, 5 string resonator, fretless, etc.) you use inheritance to customize
behavior. In the inheritance relationship, the general class is called the base, or parent
class, and the class that specifies custom behavior is the derived, or child class. Inher-
itance enables you to create class hierarchies that derive specific behavior from a
common parent or set of parents (multiple inheritance).

 An alternative to inheritance is composition. Whereas inheritance derives general
behavior from a parent class, composition enables specification by assembling var-
ious classes within another class and calling the composed objects through their
class interface.

 One of the best discussions of object-oriented concepts is the first chapter of
Design Patterns: Elements of Reusable Object-Oriented Software, listed in the reference
section at the end of the book.

5.2.2 Classes

Like all object-oriented languages, Objective-C supports classes. A class is a defi-
nition, or blueprint, of a user-defined type. Classes are a fundamental piece of any
object-oriented language; they encapsulate data members and the methods that
operate on the data members. Classes in Objective-C are implemented in two files:
the interface definition resides in the .h file, and the implementation resides in the
.m file. The following example shows a skeleton of an interface definition (.h file):

@interface Class Name : <Super Class> <Protocol List>
{
 // Instance variables
}
// Methods
@end

An Objective-C class definition begins with the @interface directive. In Objective-C,
the @ token is a compiler directive. Following the interface keyword are the class
name and its super class. The class name is the name you give to your class; the
super class is optional. If it’s included, it specifies the parent class from which your
class derives its behavior. If it’s omitted, your class is a root or base class. Next is
the protocol list. Protocols are discussed in section 5.2.5. This is followed by the
class’s data members, enclosed in a right and left brace, and any class methods.
You terminate the class definition with the @end directive.

 Class implementations reside in a .m file. Here’s a skeleton of a class’s imple-
mentation:

@implementation <Class Name>
 // Implement class methods here…
@end

176 CHAPTER 5
Objective-C and the Cocoa development frameworks

You control access to the class through the private, protected, and public key-
words. The private keyword means that class members are only accessible from
within the class that declared them. Protected restricts access to inheriting
classes, and public permits anyone to access the class.

Data members
Data members (sometimes called fields) store the data state of a class and provide
runtime data persistence for the class. Objective-C uses the same built-in types as
C, including int, long, float, double, char, and pointers. In addition, it defines
further types exclusive to Objective-C (see table 5.1).

Methods
Method is an object-oriented term for what we call a function in procedural pro-
gramming languages. However, in OO languages, we tend to think of methods as
receiving messages. In Objective-C, like other OO languages, you refer to a method
through a class instance variable or the class itself. In the latter case, the methods
are called static methods.

 The following listing shows some examples of Objective-C methods:

// A method with no arguments, returning an Object
- foo;
// A method with no arguments, returning an integer
- (int)foo
// A method with one argument, returning an integer
- (int)foo : (int) n;
// A method with two arguments, returning void
- (void)foo: (int) x and: (int) y;
// A method with three arguments, returning void
- (void)foo3: (int) x and: (int) y and: (int) z;

Table 5.1 Objective-C uses C’s data types, but also defines further types.

Type Description

id Holds an object (pointer); capable of holding any object type

Class Class definition

SEL Selector; an internal identifier for a method name

IMP Pointer to a method returning an id

BOOL Boolean data type: YES or NO

nil Null object pointer

Nil Null class pointer

Introduction to Objective-C 177

Method declarations in Objective-C are preceded by either a minus sign (-) or a
plus sign (+). Preceding a method name with a minus sign indicates that it is an
instance method, which you can access only through a class instance. The leading
plus sign means the method is a class method (or static method), so you can access
it only using the class name.

5.2.3 Messages

Object-oriented systems are typically composed as collections of class instances
that communicate with one another through message passing. Generally, this is a
useful way to view object-oriented systems and makes for a good conceptual sepa-
ration from more static, procedural systems implemented in languages such as C.

 You format Objective-C messages as follows:

[receiver message];

Using Smalltalk nomenclature, you send the message to object receiver. For
example, the message [myrect display] asks the myrect object to respond to the
display message.

 In addition to the basic syntax, you can pass arguments along with the message:

[receiver message:arg1:arg2];

The following example shows some common message-passing scenarios:

@interface MyClass2 {
}

- (void) draw;
- (void) draw:(int) n;
- (void) draw:(int) n:(int) color;
- (void) draw:(int) n:(int) color:(int) shape;
@end

[foo1 draw];
[foo1 draw:1];
[foo1 draw:1 :2];
[foo1 draw:1 :2 :2];

You can also specify a description for each parameter. When you first encounter
this syntax, it seems a bit verbose. However, as you use it in your code, you’ll find
that it documents the intent of the message parameters:

@interface MyClass : NSObject {
}
- (void) draw;
- (void) draw:(int) n;
- (void) draw:(int) n theColor:(int) color;

178 CHAPTER 5
Objective-C and the Cocoa development frameworks

-(void) draw:(int) n theColor:(int) color theOutline:(int) shape;
@end

[foo draw];
[foo draw:1];
[foo draw:1 theColor:2];
[foo draw:1 theColor:2 theOutline:2];

NSObject is the parent for most of the Objective-C class hierarchies.

5.2.4 Categories

Imagine you have a class called Beer that implements the basic attributes and
behavior of beer. The properties held by this class apply equally to all types of
beer. Rather than re-implement these properties for each kind of beer, you make
the Beer class a base (or parent) class and derive other beers from it, which absorb
the basic attributes and behavior of the parent class. For each new beer, you
implement only attributes and behavior specific to that type of beer, and reuse
the basic properties from the parent Beer class.

 In OOP, this process is called inheritance. Inheritance enables you to use the
attributes (data) and behavior (methods) of other classes as a starting point for
creating specialized versions of a class. In doing so, you create hierarchies of
objects, each a specialization of its parent(s). Many OO languages support both
single inheritance, where you inherit from a single class, and multiple inheritance,
where you inherit from multiple classes. However, Objective-C does not support
multiple inheritance.

 You can also extend class properties through categories. Categories enable you
to add new methods to a class without using inheritance. For some applications,
categories offer advantages over inheritance and are a good way to enhance an
existing class.

 You can specify a category in an interface and implementation file. The syntax
for categories is as follows:

// .h file.
@interface Class Name (Category Name) <Protocol List>
// Category methods.
@end

// .m file.
@implementation Class Name (Category Name)
// Category methods.
@end

Here’s the Beer skeleton class and an example of extending the class through an
Objective-C category called BeerAddition:

Introduction to Objective-C 179

// Beer.h
#import <Foundation/Foundation.h>
@interface Beer : NSObject {
 float alcoholContent;
}
- (float) getAlcoholContent;
- (void) setAlcoholContent:(float)n;
@end

// Beer.m
#import "Beer.h"
@implementation Beer
- (float) getAlcoholContent {
 return alcoholContent;
}
- (void) setAlcoholContent:(float)n {
 alcoholContent = n;
}
@end

// BeerAdditions.h
#import <Foundation/Foundation.h>
#import "Beer.h"
@interface Beer (BeerAdditions)
- (void) printAlcoholContent;
@end

// BeerAdditions.m
#import "BeerAdditions.h"
@implementation Beer (BeerAdditions)
- (void)printAlcoholContent {
 // Float compares are not a great idea.
 if (alcoholContent <= 0.0) {
 NSLog(@"no alcohol content: %f\n", alcoholContent);
 }
 else if (alcoholContent <= 1.0) {
 NSLog(@"why not drink water: alcohol content: %f\n", alcoholContent);
 }
 else if (alcoholContent <= 5.0) {
 NSLog(@"getting better: alcohol content: %f\n", alcoholContent);
 }
 else {
 NSLog(@"much better: alcohol content: %f\n", alcoholContent);
 }
}
@end

// main.m
#import <Foundation/Foundation.h>
#import "BeerAdditions.h"

int main (int argc, const char * argv[]) {
 id myBeer = [[Beer alloc] init];

180 CHAPTER 5
Objective-C and the Cocoa development frameworks

 float content = 5.2;

 [myBeer setAlcoholContent:content];
 content = [myBeer getAlcoholContent];
 [myBeer printAlcoholContent];

 [myBeer dealloc];
 return 0;
}

5.2.5 Protocols

A protocol, in the normal use of the term, defines a set of rules that, when fol-
lowed, enable interaction between entities. For example, File Transfer Protocol
(FTP) is a set of rules that an FTP client and FTP server implement in order to
transfer files.

 In Objective-C, protocols enable you to declare a list of methods that are not
associated with any class and that have no implementation. Any class in your
program is free to supply an implementation for the methods. A class conforms to
the protocol by supplying an implementation of the protocol methods. A protocol
is similar to, but less restrictive than, a Java interface.

 You can use Objective-C protocols to implement multiple inheritance. In this
context, protocols let a class use specific functionality from different classes with-
out taking on the baggage of the entire class. In addition, protocols enable type
checking of objects by specifying that they conform to the same protocol (see
http://www.dekorte.com/Objective-C/Documentation/Language/Protocols.html).

 You define a protocol as follows:

@protocol ProtocolName
 // methods
@end

To find out if an object conforms to a specific protocol, use the conformsTo method.
The method returns YES or NO, depending on whether the object conforms:

[object conformsTo:@protocol(ProtocolName)];

5.2.6 Other features

Objective-C provides some other useful features. For example, it lets you save a
class’s data to disk and bring the object back to life from disk. This process is
called object persistence. Object persistence enables you to save the current state of
an object to disk and later reload the object back into memory with its data intact.
Java also implements a form of object persistence called serialization.

Introduction to Objective-C 181

 Distributed objects are a hot topic these days. This technology is imple-
mented in many forms, including Microsoft .NET, UNIX’s Remote Procedure Calls
(RPC), and Java’s Remote Method Invocation (RMI). The basic idea of all these
schemes is to set up a protocol and infrastructure so that objects running within
different address spaces, typically on different machines across a network, can
communicate and request one another’s services.

 Distributed objects are implemented in Objective-C as Portable Distributed
Objects (PDO), which let you send messages to an Objective-C object running
within another program, another computer, or a host somewhere on the Internet.

5.2.7 Why learn Objective-C?

Before leaving the topic of Objective-C, I’ll address a common concern. Many
UNIX developers question the value of learning Objective-C, feeling that it’s an
Apple-only technology with little application in other areas. In addition, Cocoa
also supports Java, a far more popular language, so why invest the time in learn-
ing Objective-C?

 Let me give you my rationale for using Objective-C for Cocoa development.
Apple recommends using Cocoa for developing new applications for Mac OS X; if
you are going to write new Mac OS X applications, use Cocoa. At this time, Cocoa
supports two languages: Objective-C and Java. Objective-C is not a mainstream
language and requires some learning, but it has always been the primary language
for Cocoa development. Java is more mainstream, but it uses a Java bridge to talk
to the Cocoa framework—and this process can really slow down your program.
According to Aaron Hillegass, author of Cocoa Programming for Mac OS X:

The Java bridge is a wondrous piece of software. Enabling developers
to write Cocoa apps in Java was a hard problem, and the program-
mers who created the bridge are among the best in the world.…

That said, I would never advise a client to write a Cocoa application in
Java. Cocoa is a very elegant framework when used with Objective-C.
Everything becomes buggy, slower, larger, and less documented
when you write it in Java.1

For fairness, make sure you read his explanations and supporting examples to
get the whole picture.

1 http://www.bignerdranch.com/Resources/Java.html.

182 CHAPTER 5
Objective-C and the Cocoa development frameworks

5.3 Cocoa software infrastructure

Cocoa is a collection of object-oriented libraries, also called frameworks, which
enable developers to construct GUI-based applications for Mac OS X. You interact
with the Cocoa frameworks in either Java or Objective-C. In addition to the frame-
works, Cocoa contains a runtime system that runs Cocoa applications. One way
to think of Cocoa is as a collection of software integrated circuits (software ICs) that
you have access to and can use to construct aspects of your program. Cocoa is not
a new technology designed exclusively for Mac OS X; it’s been around since the
days of the NeXT computer.

 Cocoa is divided into two subsystems: the Foundation and the Application Kit. The
Foundation classes implement non-GUI classes that act as utility classes for an applica-
tion. The Application Kit contains classes that provide developers with the basic GUI
functionality required by most applications. Let’s take a high-level look at the com-
ponents of the Foundation, and examine a few examples of how to use the classes.

5.3.1 Foundation

Foundation is composed of several kinds of classes including value objects, strings,
collections, operating system services, file system, interprocess communication,
threading, scripting, and distributed objects. See http://developer.apple.com/tech-
pubs/macosx/Cocoa/Reference/Foundation/ObjC_classic/IntroFoundation.html
for a discussion of the Foundation class hierarchy.

 Let’s look at a few examples of how to use these classes.

NSString
Most object-oriented languages supply a class for storing and manipulating
strings. String classes let you store an arbitrary length string without worrying
about storage details. In addition, the string class implements methods that cover
the space of possible string manipulation operations, such as getting the length
of a string, concatenating two strings, and equality operations. C++ provides
these facilities through the string class, and Java uses the java.lang.String class.
Cocoa provides string operations with the NSString and NSMutableString classes.

 The NSString class operates on immutable strings, or strings that once created,
cannot be changed. NSMutableString handles mutable strings, which are strings
that can and often change after creation. In both cases, the string classes store
strings as Unicode characters.

 The simplest way to declare a string is as follows:

NSString *firstStr = @"My first string!";

Cocoa software infrastructure 183

Here, the @ character indicates that the string is a string object constant.
 NSString supports the formatting of strings in a way similar to C’s sprintf

function. For example, the following C code

char aStr[256];
int x = 10;
sprintf(aStr, "This is a formatted string with an int %d.\n", x);

is written as follows in Objective-C:

NSString *aStr;
aStr = [NSString stringWithFormat:
 @" This is a formatted string with an int %d.", x];

In both cases, the call sets the string aStr to the new formatted string.
 Objective-C builds on C, so you may come across cases where you need to

convert between a C string and an NSString. The following example shows how
to perform this conversion:

char cStr[256] = "A String";
// Convert a C string to an NSString.
NSString *nsStr = [NSString stringWithCString: cStr];
// Convert the NSString back to a C string.
char *p = [nsStr cString];

The NSString class has a static method called stringWithCString that takes an
array of characters as a single parameter. Additionally, NSString has an instance
method, cString, which returns a C string in the default C string encoding.
Objective-C automatically handles deallocating the allocated memory for the
string when it is destroyed. In section 5.3.3, you learn more about Objective-C’s
deallocation mechanism. NSString also supports the usual assortment of opera-
tions such as string comparison, string length, and string access functions.

 The writeToFile method writes the contents of the receiver (NSString object)
to the file specified by the path string. The parameter flag is set to either YES or
NO. If YES, it writes the string to a temporary file and, if successful, writes the tem-
porary file to the file specified by path. If NO, it writes the string directly to the file
named by the path parameter. The writeToURL method performs a similar oper-
ation, but writes to a URL:

(BOOL)writeToFile:(NSString *)path atomically:(BOOL)flag
(BOOL)writeToURL:(NSURL *)anURL atomically:(BOOL)atomically

NSString *buf = @"Bound for a file";
[buf writeToFile: @"/Users/omalley" atomically: YES];

To read a file into an NSString object, you use the stringWithContentsOfFile method:

184 CHAPTER 5
Objective-C and the Cocoa development frameworks

NSString *fileBuf;
NSString *fileName = @"/home/omalley/data.txt";

fileBuf = [NSString stringWithContentsOfFile: fileName];
if (string == nil) {
 // Handle error...
}

As you can see, the NSString class implements fundamental operations for
manipulating strings in Objective-C. See the NSString documentation for more
information about these and other operations (http://developer.apple.com/tech-
pubs /macosx /Cocoa /Re ference /Foundat ion /ObjC_c las s i c /C las ses /
NSString.html#//apple_ref/occ/instm/NSString/cString).

NSDictionary
Collection classes are fundamental in most languages, class libraries, and applica-
tion frameworks. Collections, sometimes called containers, provide developers with
a set of classes for storing and accessing application-defined data. For example,
C++ supports collections through the Standard Template Library (STL) (actually,
STL provides more support, including iterators and algorithms). No matter the
implementation, the principles are the same: to provide a set of classes that
enables the efficient storage and access of application data.

 Suppose you are writing an auction program for an online e-commence site.
Auctions typically work as follows: read and store a sequence of bids from users
and periodically generate price quotes and clears using a matching algorithm,
based on the auction rules. At the heart of this sequence is the matching algo-
rithm, which defines what bids generate trades. The rest is mainly software infra-
structure and involves storing and accessing bids. For example, there are many
implementations for storing a sequence of bids, including placing them in a list,
vector, or a hash table. Lists are easy to implement, but they are accessed in linear
time O(n). A better choice is a hash table, which exhibits a constant time complex-
ity O(1). If you assume that each bid is associated with a user ID, that user IDs are
unique, and that auctions can have only one active bid, then hashes are a good
design choice.

 ASYMPTOTIC
 COMPLEXITY

One of the most common benchmarks for evaluating an algorithm’s
performance is the asymptotic complexity measure. Asymptotic complexity
measures how an algorithm performs in relation to the size of its input.
This measure lets you express how a given algorithm will perform inde-
pendent of platform issues such as compilers or machine architectures.

Cocoa software infrastructure 185

In C++, a possible implementation follows in listing 5.1.

#include <iostream>
#include <string>
#include <map>

using namespace std;

map<int, string, less<int> > activeBids;

void
AddBid(int ownerID, char * const bidStr) {
 if (bidStr == NULL)
 return;
 string s = bidStr;
 activeBids [ownerID] = s;
}

int
main (int argc, const char * argv[]) {
 map<int, string> bids;

 AddBid(1, "1,1,12.99");
 AddBid(3, "3,1,42");
 AddBid(7, "4,1,3.14");

 This measure is expressed using O-notation, which is commonly called
big-O notation. The O is read as order, and the notation reads as follows:
it will take on the order of K steps to perform the algorithm. For exam-
ple, it takes on the order of O(n), steps to perform a sequential search of
an array, or O(log n) to perform a binary search.

The follow table shows common measures from best to worst performance:

O-notation Name

O(1) Constant

O(log n) Logarithmic

O(n) Linear

O(n log n) No name (usually called (n log n))

O(n2) Quadratic

O(nk) Polynomial

O(2n) Exponential

Listing 5.1 Storing bid information in a hash table

186 CHAPTER 5
Objective-C and the Cocoa development frameworks

 // Print the result.
 for(map<int, string, less<int> >::iterator
 it = activeBids.begin ();
 it != activeBids.end(); it++) {
 cout << "Key: " << (*it).first
 << " for value: " << (*it).second << endl;
 }
 return 0;

}

In this example, bid information is stored in a hash table, whose key is the user
ID. The Cocoa Foundation collections give you this functionality though the
NSDictionary and NSMutableDictionary classes. Listing 5.2 shows a possible bid
storage and access implementation using the NSMutableDictionary class.

// auction.h
#import <Foundation/Foundation.h>

@interface auction : NSObject {
 NSMutableDictionary *activeBids;
}

-(BOOL) addBid:(NSString *) ownerID: (NSString *)bidStr;
-(void)print;
@end

#import "auction.h"
// auction.m
@implementation auction

- (id) init {
 self = [super init];
 activeBids = [[NSMutableDictionary alloc] init];

 return self;
}

- (void) dealloc {
 [activeBids release];
 [super dealloc];
}

-(BOOL) addBid:(NSString *) ownerID: (NSString *)bidStr {
 if ((ownerID == nil) || (bidStr == nil))
 return NO;

 [activeBids setObject: bidStr
 forKey: ownerID];

Listing 5.2 Using NSMutableDictionary as a container for bids

Cocoa software infrastructure 187

 return YES;
}

-(void)print {
 NSArray *keys;
 id key, value;
 int i;

 // NSLog prints debug statements.
 keys = [activeBids allKeys];
 NSLog(@"Size: %d", [keys count]);
 for (i=0; i<[keys count]; i++) {
 key = [keys objectAtIndex: i];
 value = [activeBids objectForKey: key];
 NSLog(@"Key: %@ for value: %@", key, value);
 }
}

@end

#import <Cocoa/Cocoa.h>
#import "auction.h"

int
main(int argc, const char *argv[]) {
 // NSAutoreleasePool implements Foundation's autorelease mechanism
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
 auction *anAuction = [[auction alloc] init];

 [anAuction addBid:@"1":@"1,1,12.99"];
 [anAuction addBid:@"3":@"3,1,42"];
 [anAuction addBid:@"4":@"4,1,3.14"];

 [anAuction print];

 [anAuction release];
 [pool release];
 return 0;

}

By using the Foundation container classes, you avoid implementing your own
collection classes for storing and accessing the bids (which is time consuming
and error prone).

5.3.2 Application Kit

Cocoa’s Foundation classes provide your application with fundamental support
for common internal program operations such as storing and accessing data
structures. These operations are basic to an application’s functionality and are

188 CHAPTER 5
Objective-C and the Cocoa development frameworks

used but not directly seen by users. The Cocoa Application Kit supports the visible
aspects of your application. The Application Kit consists of a set of classes that pro-
vide application developers with infrastructure for developing the user interface of
an application, including windows, menus, controls, buttons, and text fields.

 The Application Kit includes more than 100 classes, but as the Apple docu-
mentation points out, you can access the classes at different levels of complexity:

■ At its highest level, you interact with the Application Kit through Interface
Builder. In this mode, you use Interface Builder to draw your user inter-
face, and you write handler routines in Project Builder that respond to
user actions.

■ You can interact with the Application Kit and classes on a more detailed level
by dealing with the framework more directly and writing code to handle
more advanced user interactions with your application’s user interface. For
example, you might write code to handle copying and pasting text or draw-
ing lines or shapes in an application window.

■ The lowest level of interaction involves deriving new classes based on par-
ent Application Kit classes. At this level, you are specializing classes to add
functionality to existing framework classes.

See http://developer.apple.com/techpubs/macosx/Cocoa/Reference/ApplicationKit/
ObjC_classic/IntroAppKit.html for a discussion of the Application Kit class hierarchy.

5.3.3 Memory management

Much of programming and program design requires managing complexity. As a
program grows, as you add more features, or as you implement more advanced
algorithms, the complexity of the program often grows, requiring you to manage
increasing numbers of details. For any program, one of the most important details
is memory management. Depending on your development language, memory
management can be straightforward or quite detailed, requiring you to account
for every allocated memory block. Improper tracking of allocated memory can
result in poor program performance, incorrect behavior, and program crashes.

 To address these issues, many programming languages include built-in support
to help programmers efficiently manage memory. There are three main categories
of language-based memory management support:

■ Offloading management issues to the programmer, as demonstrated by
the C language

Cocoa software infrastructure 189

■ Providing language-level support functions and infrastructure that track
memory and help the programmer supervise memory allocation and de-
allocation (Objective-C)

■ Handling a program’s memory management through a runtime garbage
collector, thereby freeing the programmer from worrying about memory
management details (LISP, Java)

Let’s look at these schemes, focusing on Objective-C’s memory management and
what you need to know to use it effectively.

C
Memory management in C reflects its language design: provide the programmer
with an expressive and powerful language that can be applied to general applica-
tion development as well as system programming. It should put the power in the
hands of programmers and stay out of their way as much as possible. As the saying
goes, it gives you all the power to shoot yourself in the foot (as opposed to C++,
which will let you take off the entire leg). This design translates into a general-
purpose memory allocation package that provides basic memory-management
functions; after that, you are on your own.

 The C language implements memory operations in the malloc/free family of
memory allocation/deallocation calls. Over the years, hosts of C-based support
tools have evolved to aid programmers in checking and debugging memory allo-
cation in their program. They include static code checkers like lint, the popular
Pslint, custom memory allocation packages like debugmalloc, and runtime analysis
tools such as Purify that detect a variety of memory errors at runtime.

 The advantage of C memory management (or lack thereof) is performance.
The disadvantage is that the programmer must be extremely careful in handling
memory management, which is notoriously error prone.

Garbage collection
At the other end of the spectrum are languages that support runtime garbage
collection. The design and implementation of garbage collection systems is a big
topic; in short, a garbage collection system (garbage collector) is responsible for
tracking memory allocations throughout a program’s lifetime and reclaiming
memory when it is no longer needed. The programmer is not responsible for
keeping track of memory as the program runs or making sure it is deallocated.

 Once again, this method has advantages and disadvantages. The programmer
does not need to track and manage memory, and is assured that the program will
not malfunction because of memory-related problems (well, almost assured). The

190 CHAPTER 5
Objective-C and the Cocoa development frameworks

disadvantage is performance: garbage collectors eat CPU cycles and will place a
drain on your program’s performance. Design decisions, like life, are a tradeoff.

Reference counting in Objective-C
Somewhere between these systems lies Objective-C’s—and, by extension,
Cocoa’s—method of memory management. The basis of memory management
under Cocoa is a technique called reference counting. Reference counting is con-
ceptually quite simple: it works by tracking the number of references that exist to
an object. Each time there is a new reference, the reference count is incremented
by one; when a reference is removed, the count is decremented by one. When the
count reaches zero, the object is no longer in use, and the runtime system can
safely free the memory.

 Cocoa accomplishes reference counting through a few memory-related calls,
which are described in table 5.2.

Now that you understand the basics, let’s look at some examples of how reference
counting works using the Cocoa memory methods. We’ll begin with a simple
memory allocation and deallocation example. In the following listing, the code
allocates and releases a string. Between calls, it prints the string and its reference
count, which in this case equals one:

-(void)simpleAllocDealloc {
 NSString *s = [[NSString alloc] initWithString:@"test string"];
 NSLog(@"string object '%@' has reference count of %d.\n",
 s, [s retainCount]);
 [s release];
}

Table 5.2 Cocoa handles basic memory management through a technique called reference counting.

Method name Description

alloc Allocates memory and returns an instance of the allocated object. Sets
the reference count for the object to one.

release Decrements the receiver’s reference count by one. When its reference
count becomes zero, it sends the receiver a dealloc message. The deal-
loc message frees memory held by the receiver.

autorelease Adds the receiver object to the current autorelease pool. At some later
stage, the pool operations decrement the receiver’s reference count by
one.

retain Increments the receiver’s reference count by one.

copy Copies the object and set its reference count to one.

Cocoa software infrastructure 191

This example demonstrates how to perform a basic memory allocation operation
using the alloc and release methods. The alloc method creates a new block of
memory for the object, sets the receiver’s reference count to one, and returns the
memory to the caller. The release method decrements the receiver’s reference
count by one and sends the receiver a dealloc message if the count equals zero.

 The next listing illustrates how to return an allocated object to a caller. The
NSString object is valid only within the scope of its declaration—in this case, only
within the function. However, suppose you need to implement a method that
returns an object the method allocated within its scope:

-(NSString *)returnAllocString {
 NSString *s = [[NSString alloc] init];
 s = @"test string";
 return s;
}

You need a mechanism that retains the object until the caller is done with it, but
that guarantees the object is deleted. Remember, each time you allocate memory,
you must include a corresponding instruction that deallocates the memory.

 To address this issue, you use an autorelease pool. At the beginning of the appli-
cation’s event loop, the runtime system has an autorelease pool. As the event
loop runs, it calls application code. When an application is done with a block of
memory, it sends an autorelease message, which adds the object to the autore-
lease pool. At the end of the current iteration of the event loop, the application
object sends a release message to the autorelease pool, causing the autorelease
pool to send a release message to each object in the pool. If the reference count
of any object in the pool is zero, the object is deallocated. This cycle continues
until the application terminates. This mechanism implements the semantics of
the autorelease method, which says to delete the object you send the message to
at some later time (later being at the end of the event loop).

 Here’s a function that uses the autorelease method and autorelease pool to
ensure that memory is properly deallocated in the caller code:

// Foo.h
#import <Foundation/Foundation.h>

@interface Foo : NSObject {
}

-(NSString *)returnAllocString;

@end

// Foo.m
#import "Foo.h"

192 CHAPTER 5
Objective-C and the Cocoa development frameworks

@implementation Foo

-(NSString *)returnAllocString
{
 NSString *s = [[NSString alloc] initWithString:@"test string"];
 return [s autorelease];
}
@end

// main.m
#import <Cocoa/Cocoa.h>
#import "Foo.h"

int
main(int argc, const char * argv[])
{
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
 Foo *foo;
 NSString *s;

 foo = [[Foo alloc] init];
 s = [foo returnAllocString];

 [foo release];
 [pool release];
 return 0;
}

By using the autorelease pool through the autorelease method, you make sure
the caller gets the memory object it expects and that the memory is marked for
proper deallocation. Remember, the NSApplication class sets up and initializes a
Cocoa application autorelease pool. If you are writing an Objective-C program
that does not use Cocoa (Foundation Tool; you choose this from the New Project
list after selecting File→New Project), make sure you choose Foundation Tool
when you create the new project.

 In addition to using the Application Kit’s built-in autorelease pool (set up and
initialized in NSApplication) or adding it to the main function of non-Application
Kit programs (Foundation Tool), you can create local copies of an autorelease pool
that operates on a per-method or scope basis. The advantages of a local autorelease
pool are performance and memory size; the main application pool does not grow
too large and therefore does not take excessively long to deallocate pooled objects.

 Objective-C’s reference counting gives you better control over handling
memory allocation within your program. This scheme is not perfect, but by
understanding the basic design of reference counting and its use, you can exert
greater control over memory management in your program and produce more
manageable and verifiable code.

Cocoa software infrastructure 193

5.3.4 Design patterns

Objective-C and Cocoa help programmers write better software by embodying
many common and useful design patterns. Design patterns are proven methods for
building better and more reliable programs, and are important to understand
when developing Cocoa programs.

 Over the years, software engineers have developed many commercial software
systems—some very good, others not so good. The good ones succeed for many
reasons, including experienced management teams, reasonable schedules, stable
software development practices, and solid software designs based on proven
models. Conversely, unsuccessful projects exhibit the inverse of many of these
traits. Many would argue that when you develop new systems, you should base
them on the best designs of successful projects. Moreover, if the system is designed
right, you can reuse parts of the system in future systems, thereby decreasing over-
all development time and risk for future projects.

 When building new systems, there’s a real difference between theory and prac-
tice. For example, how many times have you developed a system that iteratively
collects data, transforms it in some way, and displays the transformed data, possi-
bly in various formats? What if each time you developed a program that required
this functionality, your design was different? This process would result in con-
stantly reinventing the wheel and writing code that was not reusable in other
projects, and would be a real waste of your time and your company’s money.

 To address these issues, design patterns decouple the design from the domain
and let you use a set of the most useful, general, and applicable designs as a basis
for new software:

Fundamental to any science or engineering discipline is a common
vocabulary for expressing its concepts, and a language for relating
them together. The goal of patterns within the software community
is to create a body of literature to help software developers resolve
recurring problems encountered throughout all of software develop-
ment. Patterns help create a shared language for communicating
insight and experience about these problems and their solutions.
Formally codifying these solutions and their relationships lets us
successfully capture the body of knowledge which defines our under-
standing of good architectures that meet the needs of their users.
Forming a common pattern language for conveying the structures
and mechanisms of our architectures allows us to intelligibly reason
about them. The primary focus is not so much on technology as it is

194 CHAPTER 5
Objective-C and the Cocoa development frameworks

on creating a culture to document and support sound engineering
architecture and design.2

The wins you get by understanding and applying design patterns in your daily
work include simplicity of design, software based on solid and proven designs,
and a good step toward maximizing reusability.

 As much of the Apple documentation on Cocoa points out, design patterns
play an important role in the design of the Cocoa frameworks, as well as Cocoa
programs. In Cocoa, four primary design patterns emerge: Model-View-Controller
(MVC), Target/Action, Delegation, and Chain of Responsibility. Let’s look briefly
at these patterns and see how they apply to Cocoa.

Model-View-Controller (MVC) pattern
The MVC pattern can be traced back to the days of designing interfaces in Smalltalk.
Strictly speaking, the MVC pattern comprises three groups of classes, sometimes
called the MVC triad:

■ The model holds data describing the state of the application. It responds to
requests to update its state and returns its data to clients. The model is
directed by the controller and sends update messages to the view in response
to state changes.

■ The view is responsible for displaying the data contained in the model. An
application can have more than one view, providing the user with different
views of the model. Each view is controlled either by a single master controller
or possibly by different controllers; it receives update messages from the
model to update its display when state in the model changes.

■ The controller acts a mediator between the model and view, and routes appli-
cation requests from either a user or device to the view and data.

Figure 5.1 shows an example of the MVC pattern.
 Overall, the MVC pattern describes a generic, reoccurring design that you can

apply to many programs. It makes a clear separation between program compo-
nents and their responsibilities and enables you to reuse components of the pro-
gram (specifically, the model and view) in other programs with little or no code
modification. The controller is typically specific to an application.

 Under Cocoa, the MVC pattern is a useful way to structure an application.
Cocoa defines a number of view objects that programs reuse to display application

2 http://hillside.net/patterns.

Cocoa software infrastructure 195

data and post messages when a view is changed. As recommended in O’Reilly’s
Learning Cocoa book, new Cocoa core features like the document architecture,
undo support, and scripting are simpler to use if your programs design follows
the MVC pattern.3

Target/Action (command) pattern
User interfaces provide a simple, intuitive way for users to interact with a program.
Application frameworks encapsulate much of the infrastructure for handling user
events and provide developers with primitives for building user interfaces. On top
of these frameworks, you implement specific code that responds to user actions.
The Target/Action pattern, called the Command pattern by Eric Gamma, defines a
general method for a framework to make requests for services implemented in an
application, where the framework has no knowledge of the application objects.4

 Cocoa implements this pattern in its handling of framework controls and
actions. For example, imagine a user of your application clicks on an interface
control—say, a button. This click event generates a message, which the framework
sends to your application. Application-level code implements how the application
responds to this action. The sending of the action message is in the framework;
the response is in the application. The framework does not know how to respond
to the message; it only knows that the event occurred. The Target/Action pattern
defines a general way an object can send messages to an undetermined object.

 In Cocoa, this pattern is set up in Interface Builder and implemented by han-
dling code in Project Builder. When you create a new control, class, and instance
in Interface Builder and Control-drag from the control to the instance, you are
defining a target action.

3 Apple Computer Inc., Learning Cocoa, ed. Troy Mott (Sebastopol, CA: O’Reilly, 2001).
4 Erich Gamma, Design Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley Professional

Computing Series (Reading, MA: Addison-Wesley, 1995).

Figure 5.1
The MVC pattern describes a design that can be
applied to many problems. It enables a clear
separation between program components,
emphasizes reuse of the model and view
components, and lets you easily add many
views to a program.

196 CHAPTER 5
Objective-C and the Cocoa development frameworks

Delegation pattern
Delegation in object-based systems is a powerful way to handle the problem of
extending an object’s functionality without inheritance (see section 5.2.1 if you
need to refresh your knowledge of OO terminology).

 Delegation lets you achieve some specialization through code reuse. As
Gamma et al point out, inheritance enables a being relationship between a parent
and child class, whereas delegation is a have relationship: one class would have or
contain another class (this is sometimes referred to as an is a or has a relationship).

 You implement delegation by having the main class keep a pointer to the del-
egation class instance, which it uses to access methods in the delegation class.
Instead of inheriting operations from a parent, the class passes requests to its
delegate through its pointer. Other design patterns use delegation, including the
State, Strategy, and Visitor patterns (see Gamma for a description of how delega-
tion is used in these patterns).

 Cocoa implements delegation using Objective-C’s delegation services. For
example, to implement it in Interface Builder, follow these steps:

1 Create two new classes: one for the delegate class (MyDelegate) and one for
the class that holds the delegate pointer (MyHolder).

2 Add an outlet (data member) to the MyHolder class for the delegate class
pointer and create the MyHolder class files and instance.

3 Open the Instances pane and Control-drag from MyHolder to MyDelegate,
select the outlet that holds the pointer, and click the Connect button.

4 Create the files and instance for MyDelegate. You will need to implement
the delegation code in the delegate class from within Project Builder.

Chain of Responsibility pattern
Object-based systems define properties and behavior in classes, which are instan-
tiated into objects at runtime. As a program runs, its objects interact by sending
messages to one another that request services or perform a particular action. In
some cases, the sender explicitly knows what object should handle its request.
For example, the following code sends a display message to the receiver object:

[myPictView display];

In this case, the caller knows the receiver object. However, what if the caller does
not know who should handle the message, but would rather send the message to
a set of objects and let them decide who should handle the request?

Cocoa software infrastructure 197

 Let’s relate this question to a real-world example. Imagine you head a devel-
opment group consisting of three teams. The first team is the least experienced
and handles basic coding issues. The next team handles issues that are more
advanced, and the third team is responsible for designing and implementing
advanced features. You need a new feature added to the program, so you send a
message to the first team. They discover that the addition requires more experi-
ence than they possess and forward the message to team two, who determine that
it will require some design changes as well as more advanced coding experience.
They forward the request to the third team, who implement the feature. In this
case, you sent the original message with the understanding that the team best
able to implement the feature should do so; you really do not care what group
performs the implementation. Effectively, the teams form a chain of responsibility,
where each is responsible for either handling requests they are suited for or for-
warding the request along the chain.

 This example demonstrates the basic principles of the Chain of Responsibility
design pattern, which breaks the link between the sender of a message and the
specific object that will handle the request. It replaces this link with a more general
semantic that says the message should be handled by the most capable object in
the chain.

 This pattern is used in the Cocoa frameworks in its handling and routing of
messages to windows and views. For example, if you click on an active object (say,
a button) in a view, that view becomes the first responder. If that view contains a
method to handles the event, it handles the request. Otherwise, it passes the event
to the next object in the chain. The next object either handles the request or for-
wards it up the chain. This process continues until one of the objects handles the
message or the message falls off the end of the chain and is not handled.

5.3.5 Cocoa event handling

From a user point of view, a Cocoa application looks pretty much like any other
Mac OS X program. It contains menus, windows, and dialog boxes that work
together to respond to user commands that perform some task. Users do not see
that the visible components of a program are the facade over a much more com-
plex interaction of Cocoa interface objects (Foundation, Application Kit, and
user classes); Quartz, which handles drawing windows and graphics; and the
underlying operating system.

 An event-driven system works as follows (I will exclude events generated by
system tasks like timers and concentrate only on user-generated events):

198 CHAPTER 5
Objective-C and the Cocoa development frameworks

1 A user interacts in some way with an application: pressing a key to enter text,
clicking the mouse on a menu item, or perhaps clicking a button control.

2 The system reads the event and sends it to the application that should
service the event, where it is placed on the application’s event queue.

3 At the appropriate time, the application’s event loop pulls the top event
off the queue and routes it to the proper handling routine within the
application.

In Cocoa, the event loop is called an event cycle. Each event on the event queue is
stored in the NSEvent object, which encapsulates information that describes an
event. For example, an event holds general information such as the type of event
and the time the event was generated. For keyboard events, extra information is
stored, including the character the user pressed and its key code. For mouse
events, the event holds the location of the mouse at the time of the event and the
identity of the mouse button that generated the event. See the class documentation
for more information (http://developer.apple.com/techpubs/macosx/Cocoa/Ref-
erence/ApplicationKit/ObjC_classic/Classes/NSEvent.html); but, in general, any-
thing you need to know about an event is stored in this object.

 My description of the Cocoa event cycle is quite general and does a fair
amount of hand waving. Usually, Cocoa applications accomplish event handling
through the Chain of Responsibility pattern (see the preceding section). This
pattern generalizes message handling by breaking the link between a message
sender and receiver. Rather than sending a message to a specific object, an object
sends it to a set of objects (in Cocoa, called the responder chain) and assumes the
object that should handle the request will either do so or pass the request up the
responsibility chain. This process is quite powerful and has many advantages
over one-to-one message passing.

 Let’s look at the interaction of event messages and the responder chain. Con-
ceptually, chain of responsibility, or the responder chain, works as follows:

1 The NSApplication object pops the next event from its event queue and
sends the message, using its sendEvent method, to the window associated
with the event.

2 The window object (NSWindow) sends the event to the first responder, typ-
ically the currently selected view (NSView).

3 If this object can handle the request, it does; otherwise, it passes the
event to its next responder, and so on up to the NSWindow object.

Cocoa software infrastructure 199

4 If no object can handle the event, the last responder object calls its noRe-
sponderFor method to handle the condition. A view’s next responder is
its superview. Figure 5.2 demonstrates the Cocoa event cycle.

To summarize, events go from a view’s first responder to the next responder (its
superview) and so on up to the window. If any responder object handles the event,
control returns to the NSApplication object.

 This discussion has given you a flavor of how Cocoa handles events. However,
Cocoa’s use of responder chains is far more complex than I’ve described here and
includes such elements as action events and key windows. Much of this detail and
interaction will become clearer as you write more Cocoa application and dig into
the details of how your application interacts with these elements. For more infor-
mation about these topics, see Apple’s documentation on event handling and the
responder chain (http://developer.apple.com/techpubs/macosx/Cocoa/TasksAnd-
Concepts/ProgrammingTopics/AppEventHandling/AppEventHandling.html).

Figure 5.2 User events are forwarded by the window server to the active application, where
they are placed in the application event queue and sent to the window’s responder chain.

200 CHAPTER 5
Objective-C and the Cocoa development frameworks

Event tracing
Before concluding this discussion, let’s look at how to enable event tracing in your
Cocoa programs. During development, it is sometimes useful to see the stream
of events that come from the window server to your application and are popped
from the event queue. Cocoa provides this facility by setting the NSTraceEvents
flag. There are a few ways to use this feature. One is to open a shell, change to
the directory that holds your Cocoa program, and run the program as follows:

% ./NSTraceEventsCocoaExample -NSTraceEvents YES
2002-03-30 09:25:00.869 NSTraceEventsCocoaExample[16706]
timeout = 63074799299.132416 seconds, mask = ffffffff,
dequeue = 1, mode = kCFRunLoopDefaultMode
2002-03-30 09:25:00.894 NSTraceEventsCocoaExample[16706]
got apple event of class 61657674, ID 6f617070
2002-03-30 09:25:00.900 NSTraceEventsCocoaExample[16706]
still in loop, timeout = 63074799299.100403 seconds
2002-03-30 09:25:00.902 NSTraceEventsCocoaExample[16706]
timeout = 63074799299.100403 seconds, mask = ffffffff,
dequeue = 1, mode = kCFRunLoopDefaultMode
2002-03-30 09:25:03.169 NSTraceEventsCocoaExample[16706]
Received event: Kitdefined at: 0.0,0.0 time: 171471 flags:
0 win: 35733 ctxt: 0 subtype: 9, data: 1e50,0
2002-03-30 09:25:03.173 NSTraceEventsCocoaExample[16706]
Received event: LMouseDown at: 515.0,156.0 time: 171471
flags: 0 win: 35733 ctxt: 127d7 data: -25994,1
2002-03-30 09:25:03.175 NSTraceEventsCocoaExample[16706]
In Application: NSEvent: type=LMouseDown loc=(328,260)
time=736464.6 flags=0 win=0 winNum=35733 ctxt=0x127d7
evNum=-25994 click=1 buttonNumber=0 pressure=1

Remember, Cocoa applications are stored in a bundle, so you will need to change
to the appropriate directory that holds the executable program—usually some-
thing like ~/[project-directory]/build/[program-name].app/Contents/MacOS.

 Another technique is to set NSTraceEvents within Project Builder so tracing
information is displayed in the Run pane. To accomplish this, open your project
in Project Builder, select the Executables tab, and select the program from the
list. Next, click on the plus icon under the Arguments category and add the
launch argument shown in figure 5.3.

 Next time you run the program, Project Builder will write event-tracing data
to the Run pane.

5.4 Other Cocoa development languages

Apple officially supports two programming languages for developing Cocoa
applications: Objective-C and Java. However, designers of several projects are

Other Cocoa development languages 201

working to bring other languages to the table so developers can get the advan-
tages of the Cocoa frameworks in the language of their choice. Be forewarned:
most of these projects are early in the development process and do not support
the full feature set you get under Objective-C and Java.

5.4.1 C++
C++ is not currently supported for developing Cocoa programs. However, mixing
C++ code with Objective-C is legal, and you can do so under Project Builder and
its supporting compilers. See the Big Nerd Ranch site for an example of mixing
C++ and Objective-C (http://www.bignerdranch.com/Resources/Examples.html).

5.4.2 Perl
As most UNIX developers already know, Perl is a great language for processing text
files, writing to CGIs, or developing network programs. Having a Perl bridge to

Figure 5.3 Setting the NSTraceEvents to YES in Project Builder enables the display of event
messages in the Run pane.

202 CHAPTER 5
Objective-C and the Cocoa development frameworks

Cocoa would be very useful for putting interfaces on Perl scripts, and would give
you a quick prototyping tool.

 Jaguar contains a Perl module called PerlObjCBridge, which bridges Perl and
Objective-C runtimes. This addition is exiting for Perl developers who wish to
use Perl and Cocoa. Unfortunately, this version of PerlObjCBridge does not sup-
port writing GUI Cocoa applications in Perl, but the CamelBones project does; it
even provides a Perl Project Builder template for developing Perl-based Cocoa
programs (http://www.sourceforge.net/projects/camelbones). Chapter 8 discusses
both PerlObjCBridge and CamelBones.

5.4.3 Ruby

Ruby, created by Yukihiro Matsumoto, is a relatively new, freely available object-
oriented scripting language. Ruby supports text-processing functionality similar
to that provided by Perl, and also supports network programming. For more
information about Ruby, see http://www.ruby-lang.org/en.

 RubyCocoa is a combination Mac OS X framework and Ruby library; its
project goal is to let programmers use Cocoa objects through Ruby scripts. For
more information about the RubyCocoa project, see http://www.imasy.or.jp/
~hisa/mac/rubycocoa.

5.5 Summary

This chapter has introduced you to Objective-C and Cocoa. I’ve presented the
basics of the Objective-C language, shown you how to read Objective-C code,
and covered its memory management scheme. You’ve also learned the funda-
mentals of Cocoa, Apple’s object-oriented framework for developing Mac OS X
applications. Cocoa is composed of the Foundation and Application Kit frame-
works, each of which provides developers with a different software infrastructure
for developing Mac OS X programs.

 The Cocoa frameworks, as well as programs written using Cocoa, use many
design patterns that let developers use proven design techniques in their Cocoa
applications. In addition, you have seen how events are handled in Cocoa pro-
grams. Finally, I discussed how languages in addition to Java and Objective-C are
in the works for developing Cocoa programs.

 In chapter 6, you’ll put this knowledge to work as you build your first real
Cocoa program in Objective-C.

203

6Cocoa programming

■ Designing a Cocoa program
■ Building a program’s GUI Interface Builder
■ Creating classes, class instances, and actions
■ Writing code in Project Builder
■ Running UNIX command-line tools as subtasks

204 CHAPTER 6
Cocoa programming

Programming today is a race between software engineers
striving to build bigger and better idiot-proof programs,

and the Universe trying to produce bigger and better
idiots. So far, the Universe is winning.

—Rich Cook

In Chapter 5, I discussed Cocoa, Apple’s object-oriented framework for developing
Mac OS X applications in Objective-C and Java. You learned about Cocoa, its software
infrastructure, and the main concepts you need to know before writing code for
Cocoa. This chapter takes you through the steps of developing a fully functioning
Cocoa application. The program is a GUI front end for wget, the GNU command-line
network utility that retrieves files and directories from the Web over Hypertext Trans-
fer Protocol (HTTP) and File Transfer Protocol (FTP). After reading this chapter, you
will be well on your way to using the Cocoa framework to write your own applications.

6.1 Introduction

Centralizing an application’s features to a single program running in one
address space is a common and straightforward design, but it can be somewhat
limited. For example, imagine you are writing an auction server that operates in
a market environment that supports a number of different auctions. Depending
on the auction (CDA, Vickrey, and so on), a specific set of operations needs to be
performed—some specific to the type of auction and some general to all auctions.
Bid processing, clearing, and information revelation (quotes) are part of the auc-
tion logic. Getting bids from clients, queuing the bids, and passing them to the
auction are general operations, common to all auctions.

 Think of eBay (http://www.ebay.com). Users submit bids to an auction
through a web browser, and the bids are stored on the eBay site. An eBay auction
processes its bids and posts intermediate and final results to its web site, which users
view through their web browser. Getting and storing bids from users is completely
independent from the auction logic.

 You could design your auction server by abstracting all the common infrastruc-
ture to a common location—say, a class, which is used by all auctions. In this design,
operations like reading bids from multiple clients, queuing bids, and passing
bids to the auction logic are packaged in one or more classes, which are used by all
auctions. Another implementation, which is more distributed and language inde-
pendent, runs the common infrastructure code in a separate process; auctions
interact with it through an interprocess communication (IPC) mechanism such as

The CocoaWGet example program 205

TCP sockets. In either case, separating the common from the specific is good
design and enables developers to build systems more quickly and application safely.

 You can scale this example down to applications that run on your desktop
machine. In this case, being able to decouple a program interface from its work-
ing code has some useful properties. You can write your main program logic in a
command-line program (or perhaps use an existing UNIX command-line program)
and write a GUI that enables access to the program features. Using this approach,
you can also target your program to different types of users. UNIX users who prefer
the command-line environment will run the command-line version of the program.
Those who prefer GUI-based interfaces can operate the program through its GUI.
This powerful technique is becoming popular among many Mac OS X developers.

6.2 The CocoaWGet example program

The example program you’ll build in this chapter is called CocoaWGet. It is a
Cocoa front-end for wget. If you are already familiar with wget, you know what a
valuable and powerful program it is. If you have never used it before, you are in
for a treat. With wget, you can download the contents of a web site (including
graphic and sound files) to your local machine with a few simple commands.

 For example, imagine you need to mirror a remote web site on your local
machine, or perhaps you come across a site that contains a collection of images
or sound files you want. With wget, grabbing these files is painless. I typically use
wget to download papers and articles from sites for offline reading or archiving.

 The following are some typical wget commands for performing retrieval operations:

Gets index.html from the URL
wget http://www.site-o-interest.org
Gets the specified file from site over ftp
wget ftp://ftp.site-o-interest.org/file-to-get
Recursively get files from the site, saving to /tmp
wget –r –P/tmp http://www.site-o-interest.org
Get files from the sites listed in url-file
wget -i url-file

As you can see from these examples, using wget from the command line is straight-
forward. However, wget has roughly 70 options. If you’re like me, keeping track of
the basic commands is easy, but I have to look up the subtle ones each time. Adding
a Cocoa interface to wget makes the program options easy to locate, and also makes
the program accessible to users who are not comfortable with the UNIX command
line. In addition, it is a nice example of how you can leverage the power of existing
programs to create new programs—something UNIX people do all the time.

206 CHAPTER 6
Cocoa programming

Figure 6.1 shows the Cocoa-based GUI for CocoaWGet. The program gives you
complete access to the wget command-line options through a series of tab controls.
Once you select a set of wget options, you click the Get button, causing the pro-
gram to collect the selected options into a wget command line and run the wget
program. Clicking Reset initializes the interface to its default values. The View
button displays the current command line based on the state of the interface.
The Open and Save buttons provide a mechanism for saving and loading selected
options—you can save selected options in a file that can be reloaded at any time
(a real time saver).

 This program demonstrates a common theme you will encounter when devel-
oping Cocoa programs, as well as Cocoa front-ends to command-line tools:
designing and constructing a user interface that calls a UNIX command-line tool
and displays the result of the operation. In order to use CocoaWGet, you will need

Figure 6.1 CocoaWGet provides a tabbed control interface for accessing wget options.

Program requirements 207

to install wget. You can do this many ways, but the simplest is to use the Fink instal-
lation tool called dselect. See the Fink site for more information about the Fink
project and installing programs under Fink (http://fink.sourceforge.net/index.php).

NOTE The Fink project simplifies the task of installing Unix open source soft-
ware on Darwin and Mac OS X. The project maintains a collection of
ports, or packages, of UNIX programs that users download through a
package management tool called dselect (like the Debian project’s tool
of the same name). This tool installs the software on your computer.

Cocoa provides developers with a solid set of frameworks for developing Mac OS X
applications. Using these frameworks coupled with Objective-C enables you to
create useful applications with sophisticated user interfaces. This chapter takes you
through the steps of creating a Cocoa program, from building the interface and
creating the classes and instances in Interface Builder, to implementing the code
in Project Builder. In addition, I discuss some design user interface issues.

 As you proceed through these pages, you will see how simple and intuitive it is
to create a Cocoa program. One of the most important aspects of this chapter is
showing how simple it is to call UNIX command-line tools from a Cocoa program.
You will use this technique repeatedly in future programs for connecting Cocoa
interfaces to command-line tools.

6.3 Program requirements

The first step in writing any program is to describe what the program will do. I
have found that unless I constrain the problem in the form of a simple textural or
graphic description, including requirements and design issues, I tend to develop
lots of unnecessary code and add features that are not necessary.

 Here is a simple description of the program:

The CocoaWGet program facilitates the retrieval of files from web
and FTP sites using the GNU wget program. CocoaWGet provides a
GUI front-end for selecting program options and fully supports all
the wget command-line options. Users using CocoaWGet are not
limited in any way and will be able to do anything they can do with
the command-line version.

The CocoaWGet program performs the following tasks:
■ Lets the user select wget options through a GUI interface

208 CHAPTER 6
Cocoa programming

■ Enables the user to retrieve files from a remote site using
the selected options

■ Lets the user save the current options to a file
■ Enables the user to reloaded the saved options file

The user interface should be orderly and intuitive, and should follow the guidelines
outlined in Inside Mac OS X: Aqua Human Interface Guidelines.

6.4 Program design

CocoaWGet is based on the Model-View-Controller (MVC) design pattern, which
is a very useful and commonly used design technique for constructing GUI pro-
grams. As you learned in chapter 5, MVC is composed of three parts: the model,
which holds the program’s data state; the view, which displays one or more views
of the data; and the controller, which mediates between model and view. This
design provides a clear separation of responsibility between program components
and encourages reusability, mainly in the model and view components.

 Figure 6.2 shows an overview of the MVC pattern applied to the CocoaWGet
program.

 The program’s data resides in the model (WgetParameters) and is implemented
with NSMutableDictionary, a hash table. The key is the command-line parameter

Figure 6.2
Cocoa programs are
commonly based on the
Model-View-Controller
(MVC) design pattern,
as shown here applied
to CocoaWGet.

Building the interface 209

and the value is its accompanying value. For example, the --output-file=[file]
option is used to direct all log messages to a specified file. In this design, --output-
file is the key, and the file’s name is the value.

 CocoaWGet has one main controller and four subcontrollers. Each of the sub-
controllers mediates information between the data model and its corresponding
tabbed pane. For example, the download controller handles the download pane,
the HTML/FTP controller handles the HTML/FTP pane, and so on. The main
controller oversees the mediation process and handles information between the
model and the view. The view is responsible for visually displaying the state of the
model, in this case the selected wget parameters. Collectively, these components
work together to handle all of the application’s operations and services.

6.5 Building the interface

The first step in building any Cocoa application is designing and laying out its
user interface in Interface Builder. There are many ways to design a user inter-
face, but because this is a Macintosh program, you want to strive to make it as
“Mac-like” as possible. Doing so will ensure that your program maintains the
Macintosh look and feel and performs as Macintosh users expect.

 A good way to begin is to look at well-designed Mac OS X programs and see how
their designers constructed the program’s interface. There are many examples
to choose from, including programs developed by Apple (such as iTunes and
Mail) and programs developed by third-party developers (like BBEdit from Bare
Bones Software [http://www.barebones.com] and the programs written by the
Omni Group [http://www.omnigroup.com]).

 You should also invest some time reading about good interface design. Many books,
articles, and online sites detail and explain the basic principles of user interface design.
The “Resources” section at the end of the book provides some recommendations.

6.5.1 Opening the project

Project Builder simplifies the process of creating programs by providing a set of
predefined project templates. The project template defines a set of files,
resources, and build options that collectively provide basic application function-
ality. From this base, you add files, resources, and build options specific to your
application. CocoaWGet is based on the Cocoa Application template.

 The CocoaWGet project is located in the source_code/chapter06/CocoaWGet
folder. Locate this directory from the Finder and double-click on CocoaWGet.pbproj
to launch Project Builder and load the CocoaWGet project.

210 CHAPTER 6
Cocoa programming

6.5.2 The interface components

Building an interface with Interface Builder is an intuitive process that primarily
involves drawing the interface, creating classes, and forming connections between
interface elements and program objects. The general cycle is to create your appli-
cation’s interface component, such as a window; populate it with interface controls
by dragging each control from the Interface Builder palette to the window; cre-
ate your program’s classes, including methods and data members; and connect
the appropriate controls to program objects such as outlets (data members) and
actions (methods).

Figure 6.3 The tabbed panes of the CocoaWGet program. Use this figure as a guide for constructing
the user interface layout.

Building the interface 211

Let’s begin by looking at the components of the program’s user interface within
Interface Builder. Open the Resource group in the Groups & Files pane (in Project
Builder) and double click on MainMenu.nib; doing so launches Interface Builder
and opens the file. If necessary, click on the Instance tab on the MainMenu.nib
window and double-click on the Window icon to open the main window.

 The CocoaWGet user interface was built by dragging each interface component
from the Interface Builder palette to the appropriate location within its tabbed
view (see figure 6.3).

 Table 6.1 lists the control types for the various interface objects.

Table 6.1 Most types of controls are straightforward. This table clarifies those that may
not be obvious.

Pane Item Type

Main Status field at bottom of window NSTextField

Download • Output directory, Concatenate
file to, Limit download to

• Pop-up menus

• Checkboxes

NSTextField

NSPopupMenu
NSButton

Recursive Retrieval • Accept/ Do Not Accept files with
extensions, Accept/ Do Not
Accept files from domains,
Follow/Do Not Follow HTML tags
in HTML files, Follow/ Do Not
Follow dir. when downloading

• Recursion depth pop-up menu
• Checkboxes

Each is of type NSForm

NSPopupMenu
NSButton

HTML/FTP • Define additional headers

• Include referer: URL header

• Load/Save cookies from

• Identify as agent-string

• Checkboxes

• Set buttons

Each is of type NSForm

NSTextField

NSButton

NSButton

Logging/Input/Misc. • Log/Append Messages To,
Download URLs From / Prepend
URL Links With

• Add extra command-line parame-
ters, Send wget command

• Checkboxes
• Set buttons

Each is of type NSForm

NSTextField

NSButton

NSButton

212 CHAPTER 6
Cocoa programming

The wget program provides the user with many control-line options. One of the
challenges in creating a user interface is to logically arrange these options and
present them to the user in a clean, orderly way. You can do this by creating a win-
dow containing a pop-up menu that lists each category of command-line option
(download, logging and input files, http/FTP options, recursive retrieval, and so
on; see figure 6.4). When the user selects an option from the menu, the program
displays the controls in the window.

 Another choice is to create a toolbar at the top (or along the left side) of the
window and have each icon represent a different category. When the user selects
an icon, the program displays the appropriate controls in the window. Finally,
the program can display the options using a set of tab controls.

 Each option has its strengths, weaknesses, and design tradeoffs. For this pro-
gram, you will use the final design choice: tabbed controls, each of which displays
a different set of options. Tab controls are a simple, orderly way to present informa-
tion to the user. Each tab control holds a set of wget options, permitting the user
to easily navigate between option classes.

6.5.3 Control alignment and spacing

As you build your interface, you should try to adhere to Apple’s interface guideline
recommendations. Doing so will ensure that your program maintains the look of
a Macintosh program. To support the proper placement of controls, Interface

Figure 6.4 An example of one implementation of the CocoaWGet interface

Building the interface 213

Builder provides on-screen help for aligning interface elements and controlling
the spacing between controls. Let’s take a look at some of these features:

■ Aqua guides—As you drag a control within a window, you will see blue lines
appear in the window. These Aqua guides help you line up interface com-
ponents according to the interface guidelines (see figure 6.5). Using these
guides, you can get a quick indication of where to place a control in relation
to its window, view, or other controls. For example, the interface guidelines
say that there should be 8 pixels between stacked checkboxes. As you stack
checkboxes, the Aqua guides steer you to the correct position.

■ Layout rectangles—To get more visual information about the control layout,
use the View Layout Rectangles feature (Command-L). This feature draws a
red line around each control, showing more precisely its position in the win-
dow (see figure 6.6). Layout rectangles are useful for tasks like consistently
aligning text field captions with their corresponding text fields.

Aqua guides and layout rectangles provide you with general visual feedback about
the position of controls within a window or dialog. However, sometimes you need to
know the relationship between components in exact pixels. For example, to display
the number of pixels from a control to the edges of the window, select the control,
move the mouse over an empty part of the window, and hold down the Option key.

 To display the distance in pixels from the selected control to another control
in the window, select a control, move the mouse to the other control, and hold
down the Option key (figure 6.7).

Figure 6.5
Aqua guides help you align controls
according to the Apple interface
guidelines. The first window shows the
display before you reach the correct
vertical position; the second window
shows the display after positioning.

Figure 6.6
Layout rectangles provide more alignment
information about controls.

214 CHAPTER 6
Cocoa programming

Another way to align controls is by selecting the Layout→Alignment palette. As
you select different controls, the values of the Alignment panel change, enabling
you to set specific values for each alignment option (see figure 6.8).

Figure 6.7
The top two screens show an example
of displaying the number of pixels from
a control to the edges of the window.
The bottom two screens display the
distance in pixels from the selected
control to another control in the
window.

Figure 6.8 The Layout Alignment palette permits you to enter exact values for
control alignment.

Building the interface 215

 Table 6.2 lists the ways you can align controls within Interface Builder.

As you are constructing the CocoaWGet interface, use these techniques to ensure
that you are laying out the window controls correctly.

6.5.4 Forms

You probably noticed the use of forms in some of the dialog boxes. Forms are
often used to group related interface components. It is arguable whether forms
are the best choice for some aspects of this application, but I’ve included them as
examples of using forms in your interface.

 Now that the interface is constructed, it’s time to look at how you create the
application classes and instances.

6.5.5 Classes and instances

Creating the classes and instances for an application follows a few basic steps. For
example, you’ll follow these steps to create the classes and instances for the
CocoaWGet application. For each tabbed control (four in all), do the following:

1 Click the Classes tab and select NSObject (leftmost view).

2 Select Classes→Subclass NSObject, or press the Return key.

3 Type the name of each class: DownloadController for the Download tab,
RRController for the Recursive Retrieval tab, HtmlFtpController for the
HTML/FTP tab, LIMController for the Logging/Input/Misc. tab, and Cocoa-
WGetController for the main application controller.

4 Select the controller class you just created from the class list (select
Tools→Show Info if necessary) and select Attributes from the pop-up menu.

Table 6.2 Interface Builder supports several methods for checking the layout of controls within a window.

Name Command

Aqua guides Automatic as you drag interface components around a window

View Layout Rectangles Command-L

View the number of pixels from a control to
the edges of the window

Select the control, move the mouse over an empty part of
the window, and hold down the Option key

View the distance in pixels from the selected
control to another control in the window

Select a control, move the mouse to the other control, and
hold down the Option key

Alignment tool Layout→Alignment

216 CHAPTER 6
Cocoa programming

5 Enter the outlets and actions. See the header files in the original project
as an example (see figure 6.9).

Outlets and actions
Let’s look at outlets and actions in more detail. Connecting outlets and actions is
one of the techniques you will use a lot when developing Cocoa programs. Most of
us are used to forming these connections programmatically as we develop code; in
Cocoa programming, you also do this through Interface Builder. This process can
be summarized as follows:

■ Outlet—An instance variable pointer that stores an interface object’s data. In
order for the application to exchange data between the model and the view,
you need to define outlets: one for each interface component. You connect
an outlet by Control-dragging from the class instance to its corresponding
interface element, selecting the outlet’s name from the connections list and
clicking the Connect button (figure 6.10). The controller uses the outlets
to access values in the interface and update the state of the model.

Figure 6.9 An example of how to create outlets and actions for each class

Building the interface 217

■ Action—Typically corresponds to an interface item the user selects to per-
form some action. You connect an action by Control-dragging from the
interface element to the class instance, selecting the action’s name from the
connections list, and clicking the Connect button (see figure 6.11).

For example, for CocoaWGet, you form the connections with the following steps:

1 Click the Instances tab on the MainMenu.nib window and double-click on
the Window icon. To set an outlet to its analogous interface objects, Con-
trol-drag from the instance to the interface object, select the appropriate
outlet from the list, and click the Connect button, or double-click on the
outlet name (figure 6.10). Repeat this process until you have connected
each outlet to its interface item.

2 Click the interface component and Control-drag from the component to
the instance. Select the appropriate action from the list and click the
Connect button, or double-click on the action name (figure 6.11). Repeat
this process until you have connected each component to its action item.

Figure 6.10 To connect an outlet, Control-drag from the class instance to its corresponding interface element,
select the outlet’s name from the connections list, and click the Connect button.

218 CHAPTER 6
Cocoa programming

Creating class instances
Once you’ve declared all the outlets and actions for your classes, you can create
class instances. In C++, you create class instances programmatically as follows:

MyClass *a = new MyClass;
MyClass b:

In Cocoa, however, you typically create class instances from within Interface
Builder. Remember, the application’s Nib file holds archived objects that are
unarchived and initialized when the user launches the program. In many cases,
this replaces the typical method of creating instances programmatically within the
source code. To create a class instance, select the class in the class list and select
Classes→Instantiate [Class name].

Connecting components, outlets, and actions
After creating the classes and class files, declaring their outlets and actions, and
creating class instances, you need to connect each interface component with its
corresponding outlet and action. Doing so ensures that the right data is stored in
the right location in the model and your program performs the correct action
based on a user input.

Figure 6.11 To connect an action, Control-drag from the interface element to the class instance, select the
action’s name from the connections list, and click the Connect button.

Building the interface 219

Setting up messaging
In addition to connecting outlets and actions, you can also set up message con-
nections between classes. In the CocoaWGet program, the main controller
(CocoaWGetController) needs to access the subcontrollers. To accomplish this,
Control-drag from the instance that sends the message to the instance that
receives the message, select the receiver from the connections list, and click the
Connect button (see figure 6.12).

Generating interface and implementation files
The last step is to generate the class’s interface (.h) and implementation (.m)
files and add them to the Project Builder CocoaWGet project. The generated
interface file contains the outlets and actions you created, and the implementa-
tion file contains the method definitions. In addition, the application’s Nib files
contain all the application resources, object instances, and connections for the
outlets and actions.

 You generate the CocoaWGet class files as follows:

1 Click the Classes tab and select a class (DownloadController, RRController,
and so on).

Figure 6.12 To connect messaging between classes, Control-drag from the
instance that sends the message to the instance that receives the message,
select the outlet or action name from the connections list, and click the
Connect button.

220 CHAPTER 6
Cocoa programming

2 Select Classes→Create Files For [Class Name] and click the Choose button in
the Save File dialog box to select the directory to save the files in. Interface
Builder creates the class files and automatically adds them to the project.

The next section will show you how to add code to the implementation files to
extend the behavior you defined in Interface Builder. At this point, you have seen
how to build the program’s user interface and how to connect interface components
to outlets and actions. Figure 6.13 illustrates the steps of building a Cocoa interface.

6.6 CocoaWGet: implementing code with Project Builder

Now that you have the program’s interface built, it is time to look at some code. The
CocoaWGet program is composed of five controller classes and some support classes.
The controller classes include one main application controller that drives the applica-
tion and four subcontrollers that mediate messages between the main controller and
the tabbed view panes. The support classes include a task class that is responsible for
running the wget UNIX command-line program, collecting the output of the program,
and returning the output to the client; the application support class, which handles
miscellaneous support tasks for the program; and the parameters class, which
stores wget options. Figure 6.2 shows a simple class diagram of the program.

Figure 6.13
The main steps in designing a
Cocoa program, from Interface
Builder to Project Builder

CocoaWGet: implementing code with Project Builder 221

 Rather than stepping you through the stages of adding code application code
to the program, I’ll instead detail each class, showing how it works and how it fits
into the application. Refer to the code examples here as well as the full source
code from the project.

6.6.1 The model
As you recall from the previous discussion of the MVC pattern, the model is
responsible for maintaining the data state of the program and responding to client
messages that query the state for values or update the state of the model.

WGetParameters class
The CocoaWGet program’s model is represented by the WGetParameters class
(see figure 6.14):

@interface WGetParameters : NSObject {
 NSMutableDictionary *data;
 NSMutableString *cmdLine;
}

- (NSString *)getValue:(NSString *)key;
- (void)setValue:(NSString *)key: (NSString *)value;
- (void)printData;
- (NSMutableArray *)getData;
- (NSMutableString *)getCommandLine;

- (void)formatCommandLine;
- (void)saveData:(NSString *)fname;
- (void)loadData:(NSString *)fname;
- (void)initToDefaults;
@end

The class contains two data members: one holds the data state of the program
(the model) implemented as an NSMutableDictionary, and the other holds the
command line. NSMutableDictionary (mutable meaning capable or subject to
change) is part of the Cocoa Foundation collection classes. It holds objects as key/
value associations, similar to a map in the C++ Standard Template Library (STL) or
a hash in Perl. For each unique key, there is an associated value. The WGetParameters

Figure 6.14
The WGetParameters class holds data (the
model) using an NSMutableDictionary,
which stores objects in key/value pairs.

222 CHAPTER 6
Cocoa programming

class uses the dictionary to store each command-line parameter and, if necessary,
its corresponding value.

 The WGetParameters class initializes its data members through its init
method. The init method, like a C++ constructor, is called when the class is
instantiated by the runtime system and is typically used for initializing the class’s
data members. Rather than setting the hash table values within the init method,
you send a message to initToDefaults and have it set the values to their defaults.
You do this so the program can reuse the method to respond to the user selecting
the Reset button, which also sets the model to its default values. In addition to the
dictionary, the class contains an NSMutableString data member, which holds the
command-line version of the current state of the model.

 Let’s look at the most important class methods:
■ getValue and setValue—Enable controlled access to the class and therefore

the model. The getValue method takes a key parameter that it uses to look
up and return the associated value in the model. The setValue method
takes two parameters (a key and value) that the class uses to set the value
for the associated key.

■ getData—Responsible for taking the current model state and returning an
array of each set key/value pair. By set, I mean a parameter selected by the
user in the interface. For example, when the program starts, the data
model is set to default values. When the user clicks the Download button,
the program controllers query each view, update the model based on the
state of the view, and send a getData message to the model, which it
responds to by returning the selected command-line parameters. The format-
CommandLine method uses the getData method to get the current parameters
and convert them to a wget command-line representation.

■ saveData and loadData—Handle saving the current model to a file, loading
a saved file, and populating the model with the stored values. These are
two of the more interesting methods. The program uses them to handle this
feature. The scenario feature enables the user to save the current setting to
a file they can load later. As you can see from the following snippet, the
saveData method is only one line—this is all it takes to save the contents of
an NSMutableDictionary to a file:

 - (void)saveData:(NSString *)fname
 {
 [data writeToFile:fname atomically:YES];
 }

 - (void)loadData:(NSString *)fname

CocoaWGet: implementing code with Project Builder 223

 {
 NSString *s = fname;
 s = [s stringByExpandingTildeInPath];
 [s retain];
 [data release];
 data = [[NSMutableDictionary alloc] initWithContentsOfFile:s];
 if (data == nil) {
 data = [[NSMutableDictionary alloc] init];
 [self initToDefaults];
 }
 }

The first parameter is the name of the file. The second is a Boolean flag
that tells the method how to save the data. If it is YES, the method saves the
data to a temporary file and, if successful, copies that file over the named
file. If NO, the method writes the data directly to the specified file without
the temporary copy. (Temporary copies protect the user if the power is cut
while the file is being written.) The format of the files is XML. Here’s an
edited example of the XML output:

 <?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPE plist SYSTEM "file://localhost/System/Library/DTDs/

PropertyList.dtd">
 <plist version="0.9">
 <dict>
 <key>--accept=</key>
 <string></string>
 <key>--append-output=</key>
 <string></string>
 <key>--backup-converted</key>
 <string>0</string>
 <key>--base=</key>
 <string></string>
 <key>extra-commands</key>
 <string></string>
 <key>raw-command</key>
 <string></string>
 </string>
 </dict>
 </plist>

■ loadData—Releases the current model and loads the data from the specified
file into a new model. If there is an error (data == nil), the method sets
the model to its default values.

■ stringByExpandingTildeInPath—Expands a path name that contains ~ (the
user’s home directory) to a full path name.

Collectively, these methods show how easy it is to serialize data to and from disk.

224 CHAPTER 6
Cocoa programming

6.6.2 The view

In the MVC paradigm, the view is responsible for displaying data to the user.
When you’re creating CocoaWGet’s user interface within Interface Builder, you
effectively created the application view. Cocoa’s Application Kit handles most of
the displaying and updating of the view for you.

6.6.3 The controller

The controller is responsible for mediating interaction between the application’s
model and view. In the CocoaWGet program, one main controller and four sub-
controllers handle this aspect of the pattern.

CocoaWGetController class
The CocoaWGetController class is the main application controller. It is responsible
for routing messages to each of the subcontrollers and handling user interaction
with the main application. The application supports actions such as saving and
opening the current parameters, resetting the interface and model, and invoking
a wget retrieval. Here is the interface of the CocoaWGetController class:

@interface CocoaWGetController : NSObject
{
 IBOutlet id downloadController;
 IBOutlet id htmlFtpController;
 IBOutlet id limController;
 IBOutlet id retrievalController;
 IBOutlet NSTextView *theStatus;
 IBOutlet NSTextField *url;
 IBOutlet NSWindow *mainWindow;
 IBOutlet NSWindow *downloadWindow;

 NSString *directory;
 WGetParameters *param;
}

- (IBAction)handleDownload:(id)sender;
- (IBAction)handleOpen:(id)sender;
- (IBAction)handleReset:(id)sender;
- (IBAction)handleSave:(id)sender;
- (IBAction)handleViewParams:(id)sender;

- (void)reset:(id)sender;
- (void)raiseSheet;
- (void)closeSheet:(id)sender;
- (void)displayCmdLine:(NSString *)headerStr;
@end

CocoaWGet: implementing code with Project Builder 225

The class contains several data members, which correspond to the subcontrollers,
interface elements, and model. The subcontrollers’ (downloadController, htmlFtp-
Controller, limController, and retrievalController) data members enable Cocoa-
WGetController to access each of the subcontrollers. You set the connection between
CocoaWGetController and these controllers in Interface Builder by Control-dragging
from the CocoaWGetController instance to each subcontroller instance and selecting
the corresponding outlet. With these connections intact, the CocoaWGetController
can talk to any of the subcontrollers.

 The CocoaWGetController class uses the next data members, theStatus and url,
to access interface elements—in this case, the status and URL fields. The status
field holds the output messages from the wget program, as well as any status infor-
mation messages inserted by the CocoaWGet program. The URL field contains
the source URL.

 After the user selects options and clicks the Download button, CocoaWGet
begins the download process. At this point, the program should inform the user
of its operations so the user knows what is going on. This is somewhat different
from the way many UNIX programs work. Typically, a UNIX program remains
silent, showing messages only when a warning or an error occurs. The idea behind
this design choice is that users only need to worry if they see output. Most GUI
interfaces instead display the status of the operation to inform the user that the
program is functioning and processing their request. CocoaWGet displays a dialog
called a Sheet during the download process. (As you’ll recall from chapter 1, Sheets
are modal dialog boxes. When an application displays a Sheet, it appears
attached to an application’s document or window.)

 Sheets are new to Mac OS X. In order for the program to display the Sheet in the
correct window, you need to keep a pointer to the window to which the Sheet is
attached. To accomplish this, you use the mainWindow data member. This member
holds a pointer to the main application window, which is set in Interface Builder by
Control-dragging from the CocoaWGetController to the main application window
and setting the connection to the mainWindow outlet. This member is used as a
parameter to NSApp’s beginSheet method. The downloadWindow data member holds
a pointer to the window that the Sheet uses to display the download message. You
create this window and form the connection between it and the downloadWindow
data member in Interface Builder.

 Along with these data members, the class also holds a pointer to the program’s
home directory, set in the init method, which it uses as the default location to
store downloaded files and the application’s model class (param). The class uses
the model object to access the application model.

226 CHAPTER 6
Cocoa programming

 In addition to the data members, CocoaWGetController implements several
methods that enable it to respond to user requests or actions, display application
information, and interact with the model. The handle family of methods
responds to user requests:

■ handleSave—Responds to messages to save the currently selected parame-
ters to a file. Each of these methods uses support methods defined in the
AppSupport class, discussed later in the section.

■ handleReset—Sets the model to its default values and sends a message to
the view to update its display.

■ handleViewParams—Displays the currently selected parameters in the status
field as a wget command line.

■ handleDownload—The most interesting of the defined methods. It is in
charge of collecting and formatting wget parameters and running the wget
task to retrieve all files based on user selections:

 - (IBAction)handleDownload:(id)sender
 {
 NSMutableArray *args;
 MyTask *task;

 [self displayCmdLine:@"Downloading files, please wait..."];

 [limController getParameters:param];
 [downloadController getParameters:param];
 [retrievalController getParameters:param];
 [htmlFtpController getParameters:param];

 [param setValue:@"url":[url stringValue]];

 [self raiseSheet];
 args = [param getData];

 task = [[MyTask alloc] init];
 [task runTask:WGET_CMD theDirectory:directory
 theArgs:args getOutputFrom:1];

 [self closeSheet:sender];

 [AppSupport setStatusMsgWithDate:theStatus theMsg:[task output]];
 [self displayCmdLine:@"Download complete."];

 if ([task exitStatus] != 0)
 NSRunAlertPanel(@"Error getting files",
 @"wget returned an error.", @"OK", NULL, NULL);

 [task release];
 }

The handleDownload method works as follows:

CocoaWGet: implementing code with Project Builder 227

1 It prints a message to the status text area telling the user that the download
is beginning, and updates the application model by sending a message to
each subcontroller to query its controls and update the model to reflect the
current settings.

2 It sends a message to the raiseSheet method to display the download Sheet,
which has the side effect of disabling the interface for user interaction.

3 It sends a message to the model to return the parameters in an array,
where each element is a key/value parameter pair.

4 To run the wget task, the method instantiates a MyTask object and sends a
message to runTask, passing the launch path to the wget program (/sw/
bin/wget), the directory to store the retrieved file under, the command-line
arguments, and where to read the wget output (0 for standard out or 1
for standard error). The MyTask class, which does much of the real work
of interacting with the UNIX layer, is discussed later in this section.

5 When the runTask method finishes, the download is complete. handleDown-
load closes the Sheet and updates the status field and prints the wget output.

6 The task object is released.

DownloadController, RRController, HtmlFtpController, and
LIMController classes
In addition to the main application controller (CocoaWGetController),
CocoaWGet uses four subcontrollers that operate under the control of the main
controller. As discussed in section 6.5.3, the main program window has four tabbed
controls: each pane holds a related group of wget parameters and is controlled
by a different controller. The Download pane is mediated by an instance of the
DownloadController class; the Recursive Retrieval pane is mediated by an
instance of the RRController class; and this pattern continues for the remaining
panes and controllers. Each subcontroller implements similar functionality, so
let’s look at one of the controllers as an example.

 The DownloadController class implements the following data members and
methods:

@interface DownloadController : NSObject
{
 IBOutlet NSTextField *concatFilesTo;
 IBOutlet NSTextField *limitDownloadSizeTo;
 IBOutlet NSPopUpButton *limitDownloadSizeType;
 IBOutlet NSButton *noDirCreateOnDownload;
 IBOutlet NSButton *noFilesUnlessNewerThanLocal;

228 CHAPTER 6
Cocoa programming

 IBOutlet NSButton *noHostnamePrefix;
 IBOutlet NSPopUpButton *nRetries;
 IBOutlet NSTextField *outputDir;
 IBOutlet NSButton *overwriteFiles;
 IBOutlet NSPopUpButton *pauseBetweenRetrievals;
 IBOutlet NSButton *printServerResponse;
 IBOutlet NSButton *proxyOn;
 IBOutlet NSPopUpButton *removeNDirComponent;
 IBOutlet NSButton *resumeDownload;
 IBOutlet NSButton *spider;
 IBOutlet NSPopUpButton *waitBetweenFailedRetrievals;
}
- (IBAction)handleSetConcatTo:(id)sender;
- (IBAction)handleSetOutputDir:(id)sender;
- (IBAction)reset:(WGetParameters *)param;
- (void)getParameters:(WGetParameters *)param;
@end

The data members perform functions similar to the other classes we looked at; pri-
marily, they provide an access point to get the state of the pane’s interface controls.

 You can divide the methods into two categories: methods that react to messages
sent by the instance in response to user interface selections, and methods that
interact with the data model. The handleSetConcatTo and handleSetOutputDir
methods deal with user selections. For example, handleSetOutputDir is responsible
for responding when the user clicks the Set button and getting a directory from
the user. The method uses the getDirectory methods, which you will implement
in the AppSupport class (discussed later in the section):

- (IBAction)handleSetOutputDir:(id)sender
{
 [outputDir setStringValue:[AppSupport
 getDirectory:@"Output Directory"]];
}

The reset method handles updating the interface (view) to reflect the current
state of the model. For each interface component, you get the corresponding
value from the model and send it as a parameter to the control’s set method:1

- (IBAction)reset:(WGetParameters *)param
{
 [limitDownloadSizeTo setStringValue:[param getValue:@"--quota="]];
 [outputDir setStringValue:[param getValue:
 @"--directory-prefix="]];
 [pauseBetweenRetrievals setStringValue:[param getValue:
 @"--wait="]];

1 The naming scheme of –something= is used to map keys to wget command-line options.

CocoaWGet: implementing code with Project Builder 229

 [removeNDirComponent setStringValue:[param getValue:
 @"--cut-dirs="]];
 [concatFilesTo setStringValue:[param getValue:
 @"--output-document="]];

 if ([[param getValue:@"--timestamp"] isEqualToString:@"1"])
 [noFilesUnlessNewerThanLocal setState:NSOnState];
 else
 [noFilesUnlessNewerThanLocal setState:NSOffState];
 // …
}

Let’s look at a few of these statements. To set the value of the Quota text field, you
first get the value in the model for the key --quota= and pass it as a parameter to
setStringValue. To set the state of a checkbox (NSButton), you determine the
key’s value in the model. If it equals 1, the box should be checked, so you send it
a setState message with NSOnState as its parameter. Conversely, if the box
should be unchecked, you send a setState message with NSOffState as its parame-
ter. You repeat this process for each control on the pane.

 The getParameters method gets the current user settings from the view and
updates the model according to these choices:

- (void)getParameters:(WGetParameters *)param
{
 NSString *s;

 [param setValue:@"--quota=":[limitDownloadSizeTo stringValue]];
 [param setValue:@"Q-size":[limitDownloadSizeType
 titleOfSelectedItem]];
 [param setValue:@"--tries=":[nRetries titleOfSelectedItem]];
 [param setValue:@"--output-document=":[concatFilesTo
 stringValue]];
// …
}

To set a model’s value, you first get the current value of the control and send a
message to the model, passing the options key as the first parameter and the
retrieved value as the value parameter. You repeat this process for each control
on the pane.

 Collectively, these methods, as well as the similar methods in the other subcon-
troller classes, work to mediate information between the application’s view and data
model, and are managed by CocoaWGetController.

230 CHAPTER 6
Cocoa programming

AppSupport support class
CocoaWGet uses two additional classes that provide support functions for the
program: AppSupport and MyTask. The AppSupport class, as its name suggests,
provides basic support for the program:

@interface AppSupport : NSObject {
}
+ (NSString *) getFilename:(NSString *)title;
+ (NSString *) getDirectory:(NSString *)title;
+ (void)setStatusMsgWithDate:(NSTextView *)statusField
 theMsg:(NSString *)msg;
+ (NSString *)getSaveFile:(NSString *)title;
+ (void)scrollStatus:(NSTextView *)statusField;
 @end

The AppSupport class only contains static methods. Static methods are preceded with
a +, as opposed to the – character (which indicates an instance method). You use
a static method through its class rather than its instance variable, so you can use
such methods without creating an instance of the class. This technique is useful in
some contexts where you want to provide functionality but do not need to main-
tain class state. The following example demonstrates the syntax for an instance
method and a factory method:

// Instance method
- (void)foo;
// Factory method
+ (void)foo;

The getFilename, getDirectory, and getSaveFile methods prompt the user for
filenames the program uses in various tabbed panes. Each method takes one
parameter: the title of the dialog. The first two methods (getFilename and get-
Directory) use the Application Kit class NSOpenPanel (specifically, the openPanel
method), which prompts the user for the name of a file to open. The getSave-
File method uses NSSavePanel’s savePanel method. Here’s the AppSupport class’s
getFilename method:

+ (NSString *) getFilename:(NSString *)title
{
 NSString *s = @"";
 NSOpenPanel *panel;
 int result;
 panel = [NSOpenPanel openPanel];
 [panel setCanChooseFiles:TRUE];
 [panel setCanChooseDirectories:FALSE];
 [panel setAllowsMultipleSelection:FALSE];
 [panel setTitle:title];
 result = [panel runModalForDirectory:NSHomeDirectory()

CocoaWGet: implementing code with Project Builder 231

 file:nil types:nil];
 if(result == NSOKButton) {
 NSArray *retArray = [panel filenames];
 s = [NSString stringWithFormat:@"%@",
 [retArray objectAtIndex:0]];
 }
 return s;
}

By changing the parameters of the openPanel method (bold in the listing), you
can alter the behavior of the displayed dialog box. For example, getFilename only
needs a single filename from the user, so you set setCanChooseFiles to TRUE and
setCanChooseDirectories and setAllowsMultipleSelection to FALSE. The getDi-
rectory method prompts the user for a directory name, so you set setCanChoose-
Files and setAllowsMultipleSelection to FALSE, and setCanChooseDirectories
to TRUE. Both methods return either the file or directory name as an NSString.

MyTask support class
The MyTask class is one of the more interesting classes in the project. This class is
responsible for running a task (program), collecting the results of the run, and
returning the result to the user. Is uses the Foundation class NSTask class to do so.

 The NSTask class facilitates running a program as a subprocess of the active
program, as well as monitoring and interacting with the execution of the subpro-
cess. In a sense, this is similar to the UNIX fork/exec model of running a child
process of a parent. With NSTask, there are two ways to run subprocess: you can
run the process in the environment it inherits from its creator process or use the
NSTask launch method. The following example demonstrates how to use the first
method in Objective-C:

NSTask *task = [NSTask launchedTaskWithLaunchPath:path
 arguments:argumentArray];
NSLog("task returned: %@", [task terminationStatus];

You launch a subtask using the launchedTaskWithLaunchPath method, which takes
two arguments: the absolute path to the process you wish to run and any argu-
ments you wish to pass to the process. For example, to use this call to run wget,
the path parameter would hold the absolute path to the wget program, and the
argument parameter would hold any wget command-line arguments. Note that the
subprocess inherits its runtime environment from the calling process. In addition,
launchedTaskWithLaunchPath is a static method, so there is no need to instantiate
the NSTask class. When the call returns, you can use the returned NSTask object to
interact with the task.

232 CHAPTER 6
Cocoa programming

 This is a simple and straightforward method of running a subprocess, but it
does not work when you need to alter the runtime environment of the subprocess.
For example, imagine that you wish to capture the output of the subprocess. In
this case, the launchedTaskWithLaunchPath method will not work.

 If you instead run a subprocess using the NSTask launch method, the launch
method, coupled with supporting NSTask methods, provides more control over
the launching of the subprocess. Table 6.3 lists the methods you use to alter the
subtask’s runtime environment.

Let’s look at the implementation of MyTask’s runTask method:

- (void)runTask:(NSString *)taskName
 theDirectory:(NSString *)dir
 theArgs:(NSMutableArray *)args
 getOutputFrom:(int)outType;
{
 NSPipe *pipe = [NSPipe pipe];
 NSFileHandle *readHandle = [pipe fileHandleForReading];
 NSData *inData = nil;

 m_taskName = taskName;
 m_directory = dir;
 m_args = args;

 task = [[NSTask alloc] init];

 [task setCurrentDirectoryPath:dir];

 if (outType == 0)

Table 6.3 You use these methods to set the runtime environment under which a task executes.

Name Description

setCurrentDirectoryPath:path Sets the current directory path of the subtask environment to path

setStandardOutput:arg Sets standard output as the receiver of arg, which is an NSFileHandle or
NSPipe

Means that information sent to standard output now goes to arg

setStandardInput:arg Sets standard input for the receiver to arg, which is an NSFileHandle or
NSPipe object

setStandardError:arg Sets standard error for the receiver of to arg, which is an NSFileHandle
or NSPipe object

setLaunchPath:path Sets the launch path—the path to the program to execute—to path

setArguments Sets the command-line arguments to arg

launch Launches the subprocess based on the set parameters

Program extensions 233

 [task setStandardOutput:pipe];
 else
 [task setStandardError:pipe];

 [task setLaunchPath:taskName];
 [task setArguments:args];
 [task launch];
 while ((inData = [readHandle availableData])
 && [inData length]) {
 NSString *s = [[NSString alloc] initWithData:inData
 encoding:NSASCIIStringEncoding];
 [m_taskOutput appendString:[NSString stringWithFormat:
 @"%@ ", s]];
 [s release];
 }
 [task release];
 task = nil;
}

The method first creates instances of NSPipe and NSFileHandle. The NSFileHandle
instance will read the piped data sent from the subtask. Next, the method creates
an instance of the NSTask object and sets the task’s environment through the various
set calls (see table 6.3). The setStandardOutput and setStandardError methods
enable you to set up a pipe between the parent and subprocess. Depending on
the passed parameter, you send a message to the task object telling it to attach
one pipe end-point to standard output or standard error. For example, if the
caller passes 0 as the outType parameter, the pipe is set to standard output: all
messages written to standard output will go to the pipe.

 Next, the subtask is run using the launch method. The while loop reads each
message wget writes into the inData variable, converts it to an NSString, and
appends it to m_taskOutput. The inData data member is of type NSData, which is
a wrapper for a sequence of bytes. Once the method completes, the output of the
subtask is stored in m_taskOutput, which the client code accesses by sending an
output message to the object.

6.7 Program extensions

The program is most of the way there, but it is not finished. One of the biggest
omissions is the fact that the user has no way to cancel file retrieval. You also need
to add an application icon and help files. In the current version of the program,
the location of the wget program is hard-coded to /sw/bin/wget in CocoaWGet-
Controller.m. Another logical addition would be to permit the user to select the
default location of the wget program; ideally, you could place this (and perhaps
other options) in a Preference dialog. Let’s look at a few finishing touches.

234 CHAPTER 6
Cocoa programming

6.7.1 Letting the user cancel downloads

Ideally, instead of displaying a Sheet with a static message, the program should
enable the user to stop a download in progress. This functionality is important
from a usability standpoint, as well as a Macintosh design point of view. As I’ve
pointed out, Macintosh programs should put the user in the driver’s seat—the
user should have complete control over the interface of the program, including
canceling running operations. In the current implementation, a user may choose
bad parameters and have no way to cancel a potentially long download (of
course, there is always kill –9 [pid]2).

 Addressing this limitation would require some reworking of the MyTasks class
and the current implementation of CocoaWGetController. Rather than build a new
implementation from scratch, let’s follow the age-old programming paradigm of
reusing and extending (stealing!) existing code: you will use sample code from
Apple and adapt it to fit your needs. This new code is part of a sample program
called Moriarity that is available from Apple’s Cocoa sample site (http://devel-
oper.apple.com/samplecode/Sample_Code/Cocoa/Moriarity.htm).

 The CocoaWGet project already contains an implementation of the new fea-
ture. Let’s begin by running each implementation a few times to get a feel for their
user-level differences. Within the Project Builder’s Groups & Files pane are two
groups: Original Implementation and Modified Implementation (see figure 6.15).

2 In UNIX, each running process has a unique process identifier, or pid. One way to get the pid of a
running process is using the ps and grep commands: ps aux | grep [process-name].

Figure 6.15
The Original Implementation and Modified
Implementation groups hold the source files
that distinguish the different versions of the
CocoaWGet program.

Program extensions 235

Each group contains different source files that distinguish the implementations
of the program. All other project source files remain the same. The Original
Implementation group holds four files that implement the original version of
the program. The Modified Implementation group contains the new files that
enable the user to interrupt a download.

 By the way, this is also a good example of how to use targets within a project
(see chapter 3 for more information about targets).

 To run the original implementation, open the Original Implementation
group by clicking on its disclosure triangle (to the left of the group) and select the
checkbox for each file. Next, open the Modified Implementation group and make
sure there are no enabled checkboxes. Build and run the program.

 To try the other version, deselect the files in the Original Implementation
group and select those in the Modified Implementation group. Once again,
build and run the program.

 The second version provides a much better user experience by letting the
user stop a download in progress. In addition, the program displays messages
directly to the status field as the program receives them from wget.

 Now, let’s look at the code to get a sense of the differences between the ver-
sions. Two changes implement the new additions: modified code in the
CocoaWGetController class and a new class called TaskWrapper that replaces the
MyTask class. Let’s start with CocoaWGetController:

@interface CocoaWGetController : NSObject <TaskWrapperController>
{
 IBOutlet id downloadController;
 IBOutlet id htmlFtpController;
 IBOutlet id limController;
 IBOutlet id retrievalController;
 IBOutlet NSTextView *theStatus;
 IBOutlet NSTextField *url;
 IBOutlet NSWindow *mainWindow;
 IBOutlet NSWindow *downloadWindow;

 IBOutlet NSButton *getButton;
 NSString *directory;
 WGetParameters *param;
 BOOL retrievalInProgress;
 TaskWrapper *task;
}

- (IBAction)handleDownload:(id)sender;
- (IBAction)handleOpen:(id)sender;
- (IBAction)handleReset:(id)sender;
- (IBAction)handleSave:(id)sender;
- (IBAction)handleViewParams:(id)sender;

236 CHAPTER 6
Cocoa programming

- (void)reset:(id)sender;
- (void)raiseSheet;
- (void)closeSheet:(id)sender;
- (void)displayCmdLine:(NSString *)headerStr;
@end

The first change involves adding a protocol list to the class declaration. The pro-
tocol list makes the declared methods under the protocol name accessible to the
class. For this code to work correctly, you must import the header file that con-
tains the protocol, in this case TaskWrapper.h.

#import "TaskWrapper.h"

You use the getButton data member to access the Download button, enabling the
user to initiate a download as well as cancel one. The retrievalInProgress data
member acts as a flag specifying whether a download is in progress. Because the
wget program runs asynchronously with the interface, this flag is necessary to
indicate the status of the download. This final data member, task, points to the
task object that runs and manages the wget command.

 The main differences in the implementation files are a new implementation
of the handleDownload method and the addition of callback methods:

- (IBAction)handleDownload:(id)sender
{
 NSMutableArray *args;

 /*
 Update the model by getting the values from the controls
 and setting the model (param).
 */
 [limController getParameters:param];
 [downloadController getParameters:param];
 [retrievalController getParameters:param];
 [htmlFtpController getParameters:param];

 [param setValue:@"url":[url stringValue]];
 args = [param getData];

 if (retrievalInProgress) {
 // This stops the task and calls our callback (-processFinished)
 [task stopProcess];
 // Release the memory for this wrapper object
 [task release];
 task=nil;
 return;
 }
 else {
 // If the task is still sitting around from the
 // last run, release it
 if (task!=nil)

Program extensions 237

 [task release];
 // Let's allocate memory/initialize a new TaskWrapper
 // object, passing in ourselves as the controller for
 // this TaskWrapper object, the path to the command-line
 // tool, and the contents of the text field that
 // displays what the user wants to search on
 task = [[TaskWrapper alloc] initWithController:self
 arguments:[NSArray
 arrayWithObjects:WGET_CMD,@"--help",nil]];
 // kick off the process asynchronously
 [task startProcess:WGET_CMD theDirectory:directory
 theArgs: args];
 }
}

Like the original version, it first updates the contents of the model based on
interface selections and fills an array with command-line options. Next, it checks
the retrievalInProgress flag to see if the program is retrieving files. If yes, is stops
the retrieval by sending a stopProcess message to the task object and releases
the task memory. Otherwise, a new task object is created and initialized, and a
message is sent to the task to launch the wget process.

 The other changes to the class involve adding implementations for the
TaskWrapperController protocol methods. These methods are slightly modified
versions of sample code from Apple, changed primarily to fit into our program’s
design. The source code contains detailed comments from Apple, describing its
use and operation. Overall, these methods respond to messages sent from the
TaskWrapper class initiated by either user events or the invocation or termination
of the wget process.

 The most interesting changes come in the TaskWrapper. This class is part of the
sample program Moriarity. The class has some interesting features and contains the
core functionality you require that enables users to stop a download in progress.
The code for the class is well documented, so I will limit my observations to those
that affect how it works and interacts with the CocoaWGet program. Let’s look at
the startProcess method:

- (void)startProcess:(NSString *)taskName
 theDirectory:(NSString *)dir
 theArgs:(NSMutableArray *)args
{
 [controller processStarted];
 task = [[NSTask alloc] init];
 [task setStandardOutput: [NSPipe pipe]];
 [task setStandardError: [task standardOutput]];

 [task setLaunchPath: taskName];

238 CHAPTER 6
Cocoa programming

 [task setArguments: args];
 [task setCurrentDirectoryPath:dir];

 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(getData:)
 name: NSFileHandleReadCompletionNotification
 object: [[task standardOutput]
 fileHandleForReading]];

 [[[task standardOutput] fileHandleForReading]
 readInBackgroundAndNotify];
 [task launch];
}

The method first sends a processStarted message to the main controller
(CocoaWGetController) to set the retrievalInProgress flag to true, clear the status
field, and change the name of the Download button to Stop:

- (void)processStarted
{
 retrievalInProgress = YES;
 [AppSupport setStatusMsgWithDate:theStatus theMsg:@""];
 [getButton setTitle:@"Stop"];
}

This indicates to the user that clicking the Stop button will stop the current
download. Next, the method sets up the environment as before.

 The next step is to register the object with the notification center (NSNotifi-
cationCenter):

- (void)addObserver:(id)anObserver selector:(SEL)aSelector
name:(NSString *)notificationName object:(id)anObject

[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(getData:)
 name: NSFileHandleReadCompletionNotification
 object: [[task standardOutput] fileHandleForReading]];

According to the NSNotificationCenter documentation, the NSNotificationCenter
object is implemented as a dispatch table. Clients register with the notification
center; when a notification occurs, the notification center dispatches the message
to the registered objects to handle the request.

 In this case, when a notification named NSFileHandleReadCompletionNotifi-
cation (notificationName) containing the object of type TaskWrapper is posted,
[[task standardOutput] fileHandleForReading]] receives a getData message. This
message enables asynchronous notification when wget writes messages (see the
source code for extensive comments from Apple):

Program extensions 239

- (void) getData: (NSNotification *)aNotification
{
 NSData *data = [[aNotification userInfo]
 objectForKey:NSFileHandleNotificationDataItem];
 if ([data length]) {
 [controller appendOutput: [[[NSString alloc] initWithData:data
 encoding:NSUTF8StringEncoding] autorelease]];
 }
 else {
 [self stopProcess];
 }

 [[aNotification object] readInBackgroundAndNotify];
}

With these additions, the CocoaWGet program is far more functional and useful
to users. All that remains is adding the program icon and help files.

6.7.2 The application icon

Application icons help users identify programs, so it’s a good idea to make your
icon mnemonic. A good rule of thumb is to design as simple an icon as possible,
without clutter and unnecessary components. Mac OS X supports advanced
graphics in icons including photo-realistic icons and antialiasing.

 Adding an application icon for the program takes a few steps. First, you create
your icon using a graphics program such as Photoshop, Graphics Converter
(http://lemkesoft.com/us_gcabout.html), or General Image Manipulation Program
(GIMP; http://fink.sourceforge.net/pdb/package.php/gimp). Next, use Apple’s
Icon Composer to create an icon (.icns) file from the saved graphics file. Finally,
add the .icns file to the CocoaWGet project.

Creating the icon
For CocoaWGet, I used GIMP to create the icon. Follow these steps:

1 Launch GIMP. Create a new file, setting the width and height to 128 pixels.

2 Set the file type to Transparent to ensure the icon will display correctly in
Finder windows and the Dock, rather than having a colored background.

3 Create the icon and save the file in TIF format.

Creating the .icns file
To create the .icns file, follow these steps:

1 Launch Icon Composer, located in /Developer/Application. There are four
image sizes, each used for a different display of the icon.

240 CHAPTER 6
Cocoa programming

2 Double-click on the 128x128 box (Thumbnail), select the file that contains
your icon (icon_128.tiff), and click the Open button. Icon Composer
imports the icon and displays it in the Thumbnail box (see figure 6.16).

3 Repeat this process for each of the other icon sizes, answering Yes if
asked to scale the icon.

4 Save this file as CocoaWGet.icns.

Adding the icon to the project
To add the icon to the project, follow these steps:

1 Launch Project Builder and open the CocoaWGet project.

2 Highlight the Resource group, select Project→Add Files, and choose the
icon file. You can also add the file by dragging it from the Finder window
to the Resource folder in the Groups & Files pane.

3 Select the Targets tab, click on the CocoaWGet target, and click on the
Application Settings tab.

4 Scroll to the icon category and enter CocoaWGet.icns in the Icon File
text field.

5 Perform a make clean (Shift-Command-K) and rebuild the program
(Command-B).

6 When you move the program from the CocoaWGet/build folder to the
Application folder, you will see your new icon.

Figure 6.16
Apple’s Icon Composer enables you to save
icons developed in a graphics program to
an .icns file, which Mac OS X programs use
to display their application icons.

Program extensions 241

6.7.3 The help file

Online help provides users with easily accessible information about program
operations and features. Historically, Macintosh applications provide application
information through the program’s About Box and online help. Under Mac OS X,
the About Box displays version and copyright information, as well as the authors
of the program, and possible contact information.

 The Online Help menu is always the rightmost menu in an application’s menu
bar. Users of your program use online help to get information about how the pro-
gram works, help with its features, and possibly pointers to more information. You
write help files in HTML and display help files with Apple’s Help Viewer, a light-
weight browser conforming to the HTML 3.2 standard.

 Adding online help to a Cocoa application is a relatively painless process and
typically includes the following steps.

1 Create your help files in your favorite HTML editor (compliant with
HTML 3.2).

2 Drag the folder that contains the help files onto the Apple Help Indexing
Tool icon (/Developer/Application).

3 Add help setting to your application and rebuild the project.

Let’s take a look a how to add simple documentation to the CocoaWGet program.

Creating HTML documentation
The first step is to create your documentation in HTML, making sure that it con-
forms to HTML 3.2. For this task, I use BBEdit, a text-based, non-WYSIWYG editor.

 Open the CocoaWGet folder and open the folder called CocoaWGet Help.
This folder holds all help files for the program. There are different ways to struc-
ture your documentation, but let’s keep it as simple as possible.

 Under this folder are two subfolders (graphics and html) and a single HTML
file called cocoawgettitle.html:

<HEAD>
<META NAME="AppleTitle" CONTENT="CocoaWGet Help">
</HEAD>
<TITLE>Test Help</TITLE>
<META NAME="AppleFont" CONTENT="Osaka">
<META NAME="AppleIcon" CONTENT="Test%20Help/icon_16.gif">
<META NAME="AppleSearchResultsFont" CONTENT="Osaka">

<img src="graphics/icon_16.gif" alt="" id="icon" width="16"
height="16" align="left">
<h3>CocoaWGet Help</h3>

242 CHAPTER 6
Cocoa programming

Help is available for the following items

 Using CocoaWGet
 The wget commands
 The wget man page

<hr>

The most important line in this file contains the AppleTitle Meta tag and its cor-
responding value CocoaWGet Help. The project uses this tag to find its online
help files. The remaining section points to the other HTML files that complete
the program documentation. Before continuing, look at the other files to get a
sense of how they are constructed.

Creating an index file
The next step is to create an index file from your help files. The Help Viewer uses
the index file to efficiently search your documentation. To create the index file, drag
the CocoaWGet Help folder to the Apple Help Indexing Tool icon (/Developer/
Application). The indexing tool processes your help files and creates a new index
file called CocoaWGet Help idx in the help folder.

Adding help files to the project
Finally, add your help files to the project. To do so, set some key/value pairs that
tell your program where to find the help files:

1 If necessary, open the CocoaWGet project.

2 Click on the Files tab and select the resource group from the Groups &
Files pane.

3 Select Project→Add Files, navigate to the folder that holds the help files
(CocoaWGet/CocoaWGet Help), and click the Open button.

4 Click the Create Folder References For Any Added Folders button and
click the Add button.

This process adds the help files to the CocoaWGet project. Next, you need to
provide the program with information that tells it where to find the help files
and the names of the files:

1 Select the Targets tab, select the CocoaWGet target, and click on the Appli-
cation Settings tab.

2 Under Basic Information, enter a unique name in the Identifier text
field (org.book-example.CocoaWGet).

Summary 243

3 Click the Expert button and enter the following Propriety List/Value pairs,
which define the location of the help folder and the help book name:
CFBundleHelpBookFolder set to CocoaWGet Help; CFBundleHelpBookName set
to CocoaWGet Help. The key CFBundleHelpBookFolder is the name of the
folder that contains the bundle’s help files, CFBundleHelpBookName is the
name of the help file that Help Viewer presents when a user selects help.

4 Rebuild the program.

Finally, run the program and select the Help menu item. You will see the
CocoaWGet help files displayed in the Help Viewer (see figure 6.17).

As you can imagine, online help is usually more extensive than this example, includ-
ing additional elements such as pictures, links, and even sounds. Because the help
system is HTML-based, there are plenty of tools for creating help files. In addition,
creating complex help is no harder than creating web pages.

6.8 Summary

This chapter has walked you through the steps of developing a fully functioning
Cocoa program in Objective-C. You’ve learned how to design a program using
the MVC design pattern, build a program’s user interface in Interface Builder,
and align interface elements using Interface Builder’s built-in alignment feature.
In addition, you have seen how to create classes, class instances, outlets, and
actions, as well as how to connect these with interface elements.

Figure 6.17
The main help window for
the CocoaWGet program

244 CHAPTER 6
Cocoa programming

 You also learned to use Project Builder to write application code that handles
the operation of your program. Another interesting element of this program is
how it handles calling subtasks, in this case a UNIX command-line tool, to perform
program actions. In addition, you saw how to reuse and modify existing code to
address specific program features.

 Cocoa, coupled with Project Builder and Interface Builder, provides a very
convenient framework and environment for developing useful, expressive pro-
grams. After some experience, you will be able to develop programs quickly and
efficiently to solve tasks in a variety of domains.

245

7AppleScript programming

■ Scripting languages
■ Using the Script Editor and Script Runner
■ Overview of the AppleScript language
■ Developing an AppleScript for iTunes
■ Developing an AppleScript Studio program

246 CHAPTER 7
AppleScript programming

The most likely way for the world to be destroyed, most experts
agree, is by accident. That’s where we come in; we’re

computer professionals. We cause accidents.

—Nathaniel Borenstein

In chapter 6, you learned about programming under Cocoa, Apple’s object-oriented
framework for developing Mac OS X applications in Objective-C and Java. This
chapter takes a different track, covering AppleScript, Apple’s native scripting lan-
guage used exclusively on the Macintosh. AppleScript offers Mac OS X users many
advantages over traditional UNIX scripting languages and opens many new possi-
bilities. The primary strength of AppleScript is in process automation. With Apple-
Script, you can automate many common tasks by using the services of one or more
Mac OS X applications. This is a powerful idea, discussed in detail throughout
the chapter.

 This chapter covers the fundamentals of the AppleScript language, how to
develop and run scripts, and some example AppleScript programs. Once you learn
the basics, you will find AppleScript invaluable for automating many common
Mac OS X tasks.

7.1 Introduction

Most UNIX developers are already familiar with scripting languages and probably
know at least one that they use daily. Scripting languages, which are typically inter-
preted and dynamically typed, are extremely powerful for developing all sorts of
programs from text file processing filters to software agents. As you’ll recall, dynam-
ically typed languages like Perl defer typing of data to the runtime system. On
the other hand, statically typed languages such as C and C++ require you to
provide type information at compile time, enabling the compiler to detect type
problems before you run the program. In general, one method is not any better
than the other, but rather more applicable to the problem you are trying to solve
or the style of development you prefer.

 For example, safety-critical software (such as medical applications) often requires
formal reviews for program correctness, and therefore necessitates languages you
can statically verify. Embedded systems often have hard performance constraints,
calling for languages and tools that produce efficient compiled code. In these cases,
statically typed languages like C and C++ are a logical choice.

Scripting languages 247

7.2 Scripting languages

Scripting languages have existed since the 1960s. Early languages include JCL (Job
Control Language), sh (the first shell), and Rexx; today’s popular languages include
Perl, Python, Ruby, and Tcl. Historically, UNIX systems have provided strong sup-
port for text processing, filtering, and automation through commands, pipes, shell
scripts, and high-level scripting languages such as Perl or Python. The most basic
technique for accomplishing these tasks is to use standard UNIX commands.

 For example, to find how many processes a user is running you use the ps
command to get a list of all running processes, grep to find all lines that contain
the user name, and finally the wc command to count the number of lines:

% ps aux | grep omalley | wc –l
 25

Another technique is to use specialized tools, like ed and awk, which are designed
for extracting and filtering lines of text. You generally use these programs together
to perform tasks like filtering lines in a set of files and extracting and formatting
information. Both UNIX commands and specialized tools provide you with prim-
itives, but they do not give you the programmatic infrastructure to perform tasks
that are more complex. Enter scripting languages.

 Scripting languages like Perl and Python enable you to perform many of the
tasks you accomplished using UNIX commands and tools, but they give you plenty
of infrastructure to extend and enhance your solutions. In addition, these lan-
guages let you write programs that perform a wide range of tasks, from talking to
remote hosts over a network or providing a GUI for user interaction, to performing
mathematical operations.

 There are many reasons to choose a scripting language over a compiled lan-
guage for a project. Among them are the increased speed of development, the
benefits of dynamic typing, and the high-level abstractions insulating you from
low-level operations. The common cycle for developing programs in statically
typed languages goes something like this: create and edit source files, build the
code (compile and link), and run and debug the program. Over time, projects can
grow to include many source files that may require recompilation for each new
edit. Although there are techniques that reduce source dependency and thereby
build times, the build phase can become very time consuming. Contrast this with
development under scripting languages. Because these languages are interrupted,
there is no build phase; development proceeds directly from edit to run. For
mid-to-large projects, this process can greatly reduce the development cycle. In

248 CHAPTER 7
AppleScript programming

general, compiled code does run faster than interrupted code, but for many
applications, execution time is not a factor

 Scripting languages also provide convenient abstractions for common opera-
tions. For example, Perl’s split function places all elements of a line of text into
an array, all in a single statement:

my @rec = split(/:/, $line);
print "$rec[0], $rec[1]\n";

Contrast this with a language like C. The C library provides primitives such as the
strtok function to extract elements from a string, but you still need to implement
the surrounding code to get the same functionality as split.

 Scripting languages, as well as the UNIX commands and tools, are available
under Mac OS X from the command shell. However, Mac OS X offers another
scripting language that is specific to the Macintosh: AppleScript. AppleScript is a
high-level scripting language that facilitates the manipulation of application and
system services. The advantage of AppleScript over other scripting languages is
that support for AppleScript is build into the Macintosh operating system, pro-
viding tighter integration with core system services, as well as utilizing the services
and IPC facilities of Macintosh applications. In addition, AppleScript enables you
to programmatically communicate with, and control, many Macintosh applications.

7.3 AppleScript

AppleScript supports many of the features of traditional scripting languages, but
also includes features specifically designed for interacting with the Macintosh OS
and Macintosh applications. Let’s look at some general aspects of AppleScript and
examine how it communicates with Mac OS X applications.

 Imagine your Macintosh as containing an array of services encapsulated in var-
ious application programs. Programs such as BBEdit and Microsoft Word support
text editing and manipulation services; programs like Fetch, Netscape, and Mozilla
support network services for transferring files, logging in to remote hosts, and
Web access; and others offer multimedia and audio facilities. Typically, users access
application services by running the program and interacting with the GUI. For
example, suppose you have a text document and wish to change all occurrences of
the word this to that. To accomplish this task, you launch BBEdit, open the file, and
choose the BBEdit service that replaces all occurrences of the word this with that.
You can think of each of these actions (opening a file, searching and replacing
text, and so on) as an application service that you access through the program’s

AppleScript 249

GUI. Next, suppose you have replaced all occurrences and saved the file from
within BBEdit. Now, you need to transfer the file to a remote host. Unless BBEdit
supports this service, you are stuck. In this case, you need to use another program,
such as Fetch (http://fetchsoftworks.com) or the secure copy command (scp, available
from Terminal’s command line), to send the file to the host.

 However, what if the same application services you use from the program’s
GUI were available as a library, which you could access programmatically through
AppleScript? Now, instead of being limited by the services of the program you
are using, you would be free to write scripts that use and combine the services of
many programs. Using the previous example, all you need to do is write a script
that combines the text manipulation services of BBEdit and the network services of
Fetch or scp. Now, in one script, you can automate and solve the required task. If you
keep expanding this concept, you can see that the programs that come with your
Macintosh, as well as any programs you add to the system (that support scripting),
become participants in this game. You can accomplish many complex tasks that were
otherwise impossible by using AppleScript to knit together application services.

 In order for a script to use the services of a program, the author of the program
must write it in a way that explicitly makes available application services for client
access. These are called AppleEvent-enabled programs, meaning they can respond
to requests from other programs by exposing services to the outside world. The
underlying communication mechanism used to accomplish the interaction between
clients and AppleScript-enabled programs is AppleEvents.

 AppleEvents are defined messages that let applications extend their function-
ality by using the services of other applications and share their own operations
with others applications. AppleScript communicates with applications by sending
AppleEvents to other AppleEvent-enabled applications or system processes to
request services and receive the results of the operation.

 For example, AppleScripts communicate with an AppleEvent-enabled program
by sending an AppleEvent to a program and receiving an AppleEvent as the result
of the operation. The developer of a Macintosh program chooses what services to
export to clients and implements these services. Typically, these services are the
same that are available from within the application, but they can be a sub- or
superset of those services. Apple suggests that Macintosh applications support at
least four Standard Suite events: open, print, quit, and run.

 Let’s look at an example of these events in action. Here’s a simple script that
uses some of the basic AppleEvents:

250 CHAPTER 7
AppleScript programming

tell application "BBEdit 6.5"
 activate
 open {file "Macintosh HD:Users:omalley:shuttle:junk.txt"}
end tell

First, the script launches the BBEdit program using activate; if the program is
already running, it makes the program active. Next, the script opens the specified
file. (Do not worry about how to run this example; you will learn more about it in
the next section.)

7.3.1 Creating and running a script

Let’s get a feel for AppleScript by developing some basic scripts. The AppleScript
folder, located in Application/AppleScript, contains two main programs that you
will use to develop scripts: Script Editor and Script Runner.

Script Editor
Script Editor is the main script development environment for writing Apple-
Scripts. You use the program to write and run an AppleScript during development
(see figure 7.1).

 You use the description text area for entering and storing information about
the AppleScript. To hide this window, click on the disclosure triangle next to the
description label. The lower part of the window contains a text area for entering
the AppleScript. Above this window are four buttons: Record, Stop, Run, and
Check Syntax:

■ Record—Lets you record the AppleScript commands associated with a
sequence of actions for a particular program. For example, to record com-
mands, click the Record button, switch to an application that supports record-
ing, and perform your actions. Once you are finished, switch back to the

Figure 7.1
The Script Editor is the main development
environment for writing an AppleScript.

AppleScript 251

Script Editor and click the Stop button. You will see the AppleScript code
for the executed commands displayed in the script’s text area. Remember,
not all applications are recordable; if the Script Editor does not display
code, the program is probably not recordable.

■ Stop—Stops the execution of a script.
■ Run—Executes the AppleScript commands contained in the script text area.
■ Check Syntax—Enabled by the Script Editor when you enter new code and

check it for syntax errors.

Script Runner
The Script Runner program acts as an aggregator of scripts, giving you a launching
pad for your AppleScripts (see figure 7.2). To run Script Runner, open /Applica-
tion/AppleScript and double-click on the Script Runner icon.

 Clicking on the program’s main window displays the application menu (also
shown in figure 7.2). This menu lists the folders on your system that contain
AppleScripts, as well as their contents. AppleScripts are stored in /Library/Scripts
and your home directory, within ~/Library/Scripts.

 Keeping scripts in folders is a good way to organize and access related scripts
from the Script Runner menu. In addition, I prefer to order the menu starting with
my scripts (whose folder is prefixed with an underscore) followed by system-level
scripts. To add a new script to Script Runner, exit the program, open a script folder
(/Library/Scripts or ~/Library/Scripts), drag the compiled script to the target
folder, and launch Script Runner.

 In general, Script Runner is a nice way to organize completed scripts that you
access often. (Try adding it to the Dock for better access.)

7.3.2 Types of AppleScripts

There are two main types of AppleScripts: compiled scripts and applets. A compiled
script requires the Script Editor or Script Runner to run, cannot be viewed from
within a text editor, and therefore must be edited from Script Editor. Applets are
self-contained, stand-alone programs that do not need the Script Editor to execute.
To run these, you simply locate the program and double-click on its program icon.
In addition to the main types of AppleScripts, you can also create applications
called droplets. Droplets, as the name suggests, are scripts that execute when you
drag an object to their icon. Droplets are great for scripts that process files or the
contents of a directory. When you drop a file on a droplet, it processes the file;
when you drop a folder, it iterates over all items in the folder.

252 CHAPTER 7
AppleScript programming

7.3.3 AppleScript extensions

Most scripting languages have user communities that are constantly developing
new scripts and tools. For example, if you are a Perl programmer, you are likely
aware of the Comprehensive Perl Archive Network (CPAN). CPAN is a huge collec-
tion of freely available Perl software, modules, and documentation that you can
download and use in your programs. These modules cover a broad spectrum of

Figure 7.2 Script Runner is a convenient way to manage your AppleScripts,
enabling you to collect and launch your scripts from a single location.

AppleScript 253

domains including database interfaces, mail and usenet news, and development
support. If you are thinking of developing a Perl program for a particular
domain, some part of it probably already exists in CPAN.

 AppleScript supports language extensions through scripting additions (also called
osaxen for their code type, Open Scripting Architecture eXtension). Developers
write scripting additions in C or C++; once they’re compiled and installed, you
can use them in your AppleScripts.1 Scripting additions have many advantages,
including faster execution times and access to system-level resources. For example,
AppleScript has a function called display dialog that displays a dialog box that
can hold information from an AppleScript. The display dialog call is a scripting
addition. Basically, if AppleScript does not have the functionality you need for
your program, you can add it with a scripting addition.

 Under Mac OS X, scripting additions are stored in the /System/Library/Script-
ingAdditions folder (see figure 7.3). To install a scripting addition, drag it to this

1 For more information about writing your own scripting additions, see Apple Technical Note TN1164
(http://developer.apple.com/technotes/tn/tn1164.html#DoRunX).

Figure 7.3 Scripting additions extend the AppleScript language and are stored in
/System/Library/ScriptingAdditions.

254 CHAPTER 7
AppleScript programming

folder (you need root privileges to add items to this folder). To see what services
are available from a scripting addition, open the Script Editor and select
File→Open Dictionary. Select the scripting addition from the list and click the
Open button.

7.3.4 The AppleScript language

Compared to other languages, AppleScript looks more like English than code.
In general, AppleScript is a dynamically typed, English-like scripting language
that supports many of the features of standard UNIX scripting languages but is
geared to the Macintosh and is primarily used for application automation and
control. As such, it’s stronger in these areas than as a general-purpose program-
ming language.

 AppleScripts consist of a series of statements. You structure these statements
as commands that operate on objects. A command is an AppleScript statement that
requests an action of an object. Objects are either application objects or system
objects. Application objects are associated with a particular application, covering
the services to which the application will respond. System objects are associated
with the Mac OS X system. You manipulate objects with structured or procedural
code. In AppleScript, you can view application programs as object hierarchies.

 For example, an application’s object hierarchy is laid out in its dictionary, which
is viewable from the Script Editor. Figure 7.4 shows the dictionary for TextEdit.
The left window lists the application’s commands and objects; commands are in
plain text, and objects are italicized.

 Commands operate on objects. For example, the command open operates on
objects such as a window or document. Conceptually, this is similar to object-oriented

Figure 7.4
The dictionary for TextEdit lists the
application’s commands and
objects; commands appear in plain
text and objects in italic text.

AppleScript 255

programming, where you send a message to an object that performs the appro-
priate action.

 In AppleScript, you scope commands and objects using the tell statement:2

tell application "TextEdit"
 quit
end tell

Data types and data structures
AppleScript supports the usual data types, such as the integer, real (float), string,
and boolean, as well as structured types such as Date, List, and Record. Because
the language is dynamically (loosely) typed, you do not need to specify the type
of a variable at development time. Table 7.1 shows the syntax and an example of
the most commonly used data types.

2 In AppleScript, -- is used to indicate a comment.

Table 7.1 AppleScript data types and examples

Type Description Example

Integer Unsigned, nonfractional number set n to 10
get n

Real Unsigned, fractional number set x to 1.123
get x

Number Either an Integer or a Real (see Integer and Real examples)

Boolean Logical value, true or false set aBool to false

String Series of 1-byte characters set msgStr to "This is a message
string"

Text Same as String (see String example)

Date String that holds a date set now to date "5/22/02"

List Collection of values, which can be
of any data type (array)

Set aList to {x, y, z, 1, "as"}

-- get the first items in the list2
item 1 of aList

Record Collection of properties (hash) Set js-bach to {name: "JS-Bach",
period:"Baroque", birth:1685,
death:1750}

-- get Bach's birth date
birth of js-bach

256 CHAPTER 7
AppleScript programming

If you like, you can explicitly specify a type of a variable as follows:

set n to 100 as integer
get now as string

The List data type is an array, which enables you to hold data of different types.
Unlike in C, Lists begin at index one, not zero. In addition, you can nest Lists
within Lists:

set aList to {n, x, aBool, msgStr, date}
set aNewList to {aList, {1, 2, 3, 4}}

The following script demonstrates how to perform some simple math operations
in AppleScript:

set total to 0

set aList to {1, 2, 3, 4, 5, 6, 7, 8, 12, 45, 67, 54, 12,
 4, 12, 12, 45, 56}
repeat with n in aList
 set total to total + n
end repeat

set mean to total div (length of aList)
-- log is not the mathematical log, but rather a log,
-- or print statement.
log "length of list: " & (length of aList)
log "sum of list: " & total
log "mean of list: " & mean

In addition to these data types, AppleScript defines many constants such as pi,
true, false, space, return, and tab. See the AppleScript documents for a complete
list of these constants.

 In figure 7.5, you can see the output of the previous script. (log is useful for
performing printf-style debugging of a script. To see the output of a log command,
open Controls→Open Event Log and make sure you enable Show Events and
Show Event Results.)

Control and iteration statements
Control statements affect the execution path through a script. AppleScript sup-
ports the usual assortment of control and iteration statements found in other
languages, including if, else if, repeat, and exit.

if and else if
The if and else if control statements are used to define which statements are
executed based on some condition. Table 7.2 lists some examples.

AppleScript 257

Loop/iteration statements
Loops, or iteration statements, enable programs to repeatedly call a sequence of
statements. Table 7.3 contains some examples.

Table 7.2 Examples of if, else if statements

-- Single if statement
if x > max then
 max = x
end if

-- Single if/else if state-
ment

if x == 1 then
 y = 1
else if x == 2 then
 y = 2
else if x == 3 then
 y = 3
else
 y = -1
end if

-- if/else statement with
logical operators

if x > y and x < z then
 y = x
else if x > y or y < z then
 y = z
end if

Figure 7.5
An example of the log command, which is used
to perform printf–style debugging of a script

258 CHAPTER 7
AppleScript programming

In addition to the standard control and loop statements, AppleScript supports
some other constructs specific to the language. These include tell, try, and
timeout. Table 7.4 lists these statements and examples.

Operators
Table 7.5 lists the AppleScript arithmetic, logical, and comparison operators.

Table 7.3 Examples of AppleScript iteration statements

-- Infinite repeat
set i to 0
repeat
 set i to i + 1
 if i _ 100 then
 exit repeat
 end if
end

-- repeat k times
set i to 0
repeat 100 times
 set i to i + 1
end

-- repeat until
set done to false
set i to 0
repeat until done
 set i to i + 1
 if i _ 100 then
 set done to true
 end if
end repeat

-- repeat while
set done to false
set i to 0
repeat while not done
 set i to i + 1
 if i _ 100 then
 set done to true
 end if
end repeat

-- repeat from 1 to k
set total to 0
repeat with n from 1 to 100
 set total to total + n
end repeat

-- Iterate over a list
set aList to {1, 2, 3, 4, 5,

6, 7, 8}
repeat with n in aList
 log n
end repeat

Table 7.4 Miscellaneous AppleScript statements

-- tell
tell application "Text-

Edit"
 quit
end tell

-- try
try
 -- statements.
On error errmsg
-- handle error
end try

-- with timeout
with timeout of 10 seconds
 -- statements
end timeout

Table 7.5 AppleScript operators

Type Operators

Arithmetic +, -, *, /, ^, mod

Logical and, or, not

AppleScript 259

Subroutine/function calls
Like most programming languages, AppleScript supports function (subroutine)
calls. Here is an example of how to use a subroutine call in AppleScript:3

set rc to getMax(1, 4)
log "1, 4, max val is: " & rc

set rc to getMax(14, 4)
log "14, 4, max val is: " & rc

-- Subroutine that returns the maximum value of the pair.
on getMax(x, y)
 if x > y then
 return x
 else
 return y
 end if
end getMax

In addition to calling subroutines located within the current script, you can also
call subroutines located in other scripts:

tell application "theApp"
 activate
 [subroutine]
end tell

Table 7.5 AppleScript operators (continued)

Type Operators

Comparison =3

equal, equals, equal to, is, is equal to

!=
does not equal, is not, is not equal to

<
comes before, less than, is less than

>
comes after, greater than, is greater than

≤
is less than or equal to, less than or equal

≥
is greater than or equal to, greater than or equal

3 String comparisons are not case sensitive.

260 CHAPTER 7
AppleScript programming

Comments
AppleScript uses two comment syntaxes: single- and multiline comments. Single-
line comments are preceded by two hyphens (--). Multiline comments begin with
the (* token and end with a *):

-- This is a single line comment
(* This is a multi-line comment that extends over¬
more than on line *)

Another feature in this example is the use of the ¬ character for continuing a line.
To insert this character, press Option-Return.

Input/output
AppleScript excels at program automation. However, sometimes you need to use it
as a general-purpose programming language. One of these cases is text-file pro-
cessing. Like it or not, a simple, structured text file is one of the best ways to store
data and log data during automation tasks. Here are some basic file I/O operations:

-- Open a file.
try
 set fp to open for access file (myFile) with write permission
on error
 log "error opening: " & myFile
end try

-- Close a file.
try
 close access fp
on error
 log "error closing file"
end try

-- Read from a file.
try
 set buf to (read fp)
on error
 log "error reading file"
end try

-- Write to a file.
try
 write s to fp
on error
 log "error writing file"
end try

AppleScript 261

XML-RPC and SOAP
One of the coolest (and simplest) things to do with AppleScript is to access net-
work-based services using XML-RPC and SOAP. XML-RPC (remote procedure call)
permits machines to communicate over a network and share and exchange ser-
vices using XML for message encoding and HTML as a transport. SOAP (Simple
Object Access Protocol) also exchanges information over a network, but it uses
an object-based hierarchy and requires named parameters (see http://
www.w3.org/TR/SOAP for more information).

 You should get used to the idea of writing and using services over a network.
Thinking this way expands the possibilities of your programs by tapping into a
wealth of existing network-based services. In addition, it enables you to build dis-
tributed applications using remote services and write services that others can
access. See the XMethods site (http://www.xmethods.net/site) for a list of available
services as well as more information on using SOAP.

Script debugging
As you develop more scripts, you will sometimes need to trace the execution of
your script, examine the contents of a variable, or perform some action to deter-
mine why a script is failing—known as debugging. AppleScript and the Script Editor
support some limited facilities for debugging your scripts. Before we look at them,
let’s briefly discuss some common debugging techniques that apply to AppleScript.

 If you have ever developed asynchronous, network-based applications, you
know how difficult it can be to understand the cause of a failure. For this reason,
a common debugging technique is to use trace files to synchronously log the
sequence of program statements. By keeping your messages structured, you can
easily parse out the files and see what’s going on in a program. The following
listing shows an example of this technique in the context of an AppleScript,
along with the contents of the output log file:

property DEBUG_LOG : ((path to startup disk as text) & "debug1.log")

-- Clear the log file
set fp to open for access file (DEBUG_LOG) with write permission
set eof fp to 0
close access fp

tell application "BBEdit 6.5"
 my TRACE_INFO("activate")
 activate
 my TRACE_INFO("make new text window")
 make new text window
 my TRACE_INFO("set bounds " & "{0, 0, 200, 300}")
 set bounds of text window 1 to {0, 0, 200, 300}

262 CHAPTER 7
AppleScript programming

end tell

TRACE_WARNING("This is a warning message.")
TRACE_ERROR("This is an error message.")

on TRACE_INFO(msg)
 set fp to open for access file (DEBUG_LOG) with write permission
 set now to current date
 write "I:" & now & ":" & msg & return to fp starting at eof
 close access fp
end TRACE_INFO

on TRACE_WARNING(msg)
 set fp to open for access file (DEBUG_LOG) with write permission
 set now to current date
 write "W:" & now & ":" & msg & return to fp starting at eof
 close access fp
end TRACE_WARNING

on TRACE_ERROR(msg)
 set fp to open for access file (DEBUG_LOG) with write permission
 set now to current date
 write "E:" & now & ":" & msg & return to fp starting at eof
 close access fp
end TRACE_ERROR

-- Example output from the above code.
I:Sunday, June 9, 2002 11:39:29 AM:activate
I:Sunday, June 9, 2002 11:39:29 AM:make new text window
I:Sunday, June 9, 2002 11:39:29 AM:set bounds {0, 0, 200, 300}
W:Sunday, June 9, 2002 11:39:30 AM:This is a warning message.
E:Sunday, June 9, 2002 11:39:30 AM:This is an error message.

Embedding these trace statements in your code enables you to easily trace the
execution of your scripts.

 Another interesting, through less practical, technique uses the say command.
The say command instructs AppleScript to speak the enclosed statement.

 For example, the following code shows a use of the say command:

say "opening file " & myFile
try
 set fp to open for access file (myFile) with write permission
 on error
 say "error opening file " & myFile
end try

Yet another method is to use the display dialog command to display debugging
information in a dialog box:

tell application "BBEdit 6.5"
 display dialog "activate"
 activate

AppleScript 263

 display dialog "make new text window"
 make new text window
 display dialog "set bounds " & " {0, 0, 200, 300}"
 set bounds of text window 1 to {0, 0, 200, 300}
end tell

Each display dialog call will display a dialog box with the quoted text.
 One of the best and most practical debugging techniques is to use the Apple-

Script’s log command in conjunction with the Script Editor’s Event Log window.
The log statement prints a log message to the Event Log window, which is acces-
sible from within the Script Editor (Controls→Open Event Log [Command-E]).
Checking the Show Events checkbox will log all AppleEvents to the window.
Checking Show Event Results displays log messages.

 The following script produces the logging events shown in figure 7.6:

tell application "BBEdit 6.5"
 log "calling activate"
 activate
 log "calling make new text window"
 make new text window
 log "setting bounds to " & "{0, 0, 200, 300}"
 set bounds of text window 1 to {0, 0, 200, 300}
end tell

Figure 7.6 The Event Log displays the output of a script and the AppleScript log
command. The first window shows the result of the script (minus log statements)
with the Show Events checkbox selected. The second window shows the output
when Checking Show Event Results is checked (minus log statements). The third
window shows the results of the embedded log commands.

264 CHAPTER 7
AppleScript programming

7.3.5 Choosing a scripting language

As you have seen from the previous discussion, AppleScript is a powerful, loosely typed
scripting language. It supports many of the constructs you would expect from a script-
ing language, including a rich set of data types and control statements. Even though
you can use it for many common programming tasks, its primary use is automating,
controlling, and tying together Macintosh applications. For general programming
problems such as text-file processing, database access, and network programming,
Perl, Python, and Ruby are better choices. However, if you need to do any scripting
that requires the services of Macintosh programs, AppleScript is the right language.

 In addition to writing pure AppleScripts, you can achieve more power and
functionality by combining it with other languages using AppleScript Studio.
AppleScript Studio enables you to add Cocoa-based GUIs to your scripts and to
combine scripts with Objective-C, providing more power and options.

 In addition, you can combine AppleScripts with other scripting languages by
sending AppleEvents to the Terminal application and having it run your UNIX-
based scripts. This technique is demonstrated later in the chapter when I discuss
AppleScript Studio and show how to use AppleScript to invoke gnuplot.

7.4 Example applications of AppleScript

In this section, you will learn to write two types of AppleScript-based programs. The
first program demonstrates using AppleScript to control the services of iTunes,
Apple’s digital music program.(With iTunes, you can easily play recorded music from
CDs or MP3s, organize you music collection, convert your CDs to MP3 format, and
burn CDs of your favorite MP3s.) The second script is an AppleScript Studio program
that you can use to monitor a program’s memory usage and plot the results.

7.4.1 iTunes and AppleScript

If you are anything like me, you own lots of CDs, MP3s, and even LPs. With the
advent of iTunes and cheap, large hard drives, I have taken to converting many
of my CDs to MP3 format and storing then on my hard disk. Doing so makes it
easy to transport music from my desktop machine to my laptop or iPod, or to burn
mixes of MP3s to CD. The problem is, as my music collection expands, it’s difficult
to keep track of what I have and where it is located. The iTunes program solves
some of this situation through playlists—lists of related songs that help you organize
related songs in your music collection under a name. However, you need to create
each playlist by hand. (The current [as of this writing] version of iTunes has a
feature called Smart Playlists, which automates the creation of custom playlists.)

Example applications of AppleScript 265

 Using AppleScript, you can easily automate many iTunes tasks. Apple’s
iTunes web site (http://www.apple.com/itunes) contains a downloadable collection
of useful scripts for iTunes 2.0 and greater. The collection includes scripts to build
a CD tray insert from a play list, export a summary of the library, or play random
tracks. As useful as these are scripts are, they are more useful to study and use as
the basis for your own scripts. The script collection contains a script called Make
Playlist By Artist, which creates a single playlist containing all the tracks for a
particular artist. You will use it as the basis for your first script and extend it so it
iterates over the entire library and creates playlists for each artist or album. (The
iTunes library contains a list of all tracks you’ve imported from CDs or downloaded
from the Internet, or that exist on your hard drive. Basically, the library contains
your entire music collection, which can be viewed in different ways.) Before get-
ting into this script, let’s look at some of the AppleEvents supported by iTunes.

iTunes scripting services
To see what scripting services iTunes supports, Open the Script Editor, select
File→Open Dictionary, and choose iTunes from the list (see figure 7.7).
The left window lists the scripting services iTunes supports. All scriptable appli-
cations export a dictionary of services that developers can read from the Script
Editor. As I pointed out earlier, commands are in plain font and objects are itali-
cized. To get more information about a command or object, click on its name.
For example, figure 7.7 shows the result of selecting the duplicate command,
which duplicates one or more objects of a given type.

 When you begin using AppleScript, an application’s dictionary may seem a bit
abstract and terse. At first, you should use the dictionary along with sample code

Figure 7.7
The iTunes dictionary displays
the commands and objects
that are accessible to
AppleScript.

266 CHAPTER 7
AppleScript programming

when scripting a Mac OS X application. As you gain more experience, the dictionary
will make more sense, enabling you to use it directly as you would an API.

 You will notice iTunes’ menu bar, which contains an AppleScript menu. Many
Mac OS X applications offer this service, which lets users run scripts directly from
within an application. To install scripts into iTunes, open the Library folder in
your home directory (~/Library), create a folder called Scripts, and add your
AppleScripts to this folder. When you relaunch iTunes, the AppleScript menu will
appear and display the scripts in the Scripts folder. As I mentioned earlier, Apple
provides many useful scripts that you can download and use.

Writing a script
Now that you understand the basics, let’s move on to creating your own script that
you can use within iTunes. You will use parts of the Make Playlist By Artist script
as the basis of a new script that creates playlists for all artists or albums in your
iTunes library. Before continuing, copy the new script (located on the chapter07
folder of the source distribution), called Make Playlist, to the iTunes script folder
(~/Library/iTunes), and relaunch iTunes.

 Here’s how this version works:

1 Select the script from the iTunes scripts menu. It asks if you wish to delete
all current playlists. Doing so is useful if you wish to create new, unique
playlists from your library.

2 The script asks if you want to create playlists by artists or album. Choose
either option.

3 The script loads all records in the library into a list, sorts them, and iter-
ates over the list, creating playlists based on the user selection. For larger
collections, this process can take a few minutes.

Now, let’s look at some of the highlights of the script to give you a feel for how it
works, as well as how it interacts with iTunes. The first block of code comes directly
from the original script. Its purpose is to check the current version of iTunes:

set this_version to the version as string
 if this_version is not greater than
 or equal to the required_version then
 beep
 display dialog "This script requires iTunes version: " &
 required_version & ¬
 return & return & ¬
 "Current version of iTunes: " & this_version buttons
 {"Update", "Cancel"} default button 2 with icon 2
 if the button returned of the result is "Update" then

Example applications of AppleScript 267

 my access_website("http://www.apple.com/itunes/download/")
 return "incorrect version"
 end if
 end if

You can use and modify this code in other scripts to make sure that users are run-
ning the correct version of AppleScript. The only change I made was to move the
code to a subroutine and pass in the expected program version.

 The next section of code prompts the user, asking if it should delete all playlists.
This code is a good example of a reoccurring theme in AppleScript programming—
prompting the user for information and using control statements to perform the
correct action:

display dialog "Delete all playlists?" buttons
{"Yes", "No", "Cancel"} default button 1
 if the button returned of the result is "Yes" then
 Display dialog "Deleting all playlists…"
 buttons {"•"} default button 3
 giving up after 1
 my delete_playlists()
 end if

The first statement displays a dialog box containing three buttons (Yes, No, Cancel)
and sets the default button (highlighted button) to Yes. Next, the script checks
the result of the user selection using the if statement. If the user clicked the Yes
button, the script displays another dialog box saying it is deleting all playlists.
Notice the last part of this statement: giving up after 3. You use this statement
to control how long the script displays a dialog box if no user interaction is
detected. In this case, if the user does not click the button, the script displays the
dialog box for three seconds. Finally, the script calls the delete_playlists sub-
routine to delete all playlists.

 Another common operation prompts a user to enter information, such as a
test string:

display dialog "Enter some text:" default answer ""
set the theText to the text returned of the result

Another interesting block of code is the sort subroutine, which comes directly
from the Apple code. This code takes a list, sorts it, and returns the list to the
caller. Take a look at the syntax of the call:

set the the_list to my ASCII_Sort(the_list)

This statement says to set the_list to the value returned by ASCII_Sort.
 Next, let’s look at the create_playlists subroutine, which is used to create

the playlists. This code is an example of some common operations: iterating

268 CHAPTER 7
AppleScript programming

over a list and interacting with iTunes. I’ve removed unnecessary code from the
listing to make it more readable (see the actual script for the full version):

on create_playlists(the_list, type)
 tell application "iTunes"
 repeat with i from 1 to (number of items in the_list)
 set this_item to (item i of the the_list) as string

 set this_playlist to make new playlist
 if type is equal to "Artist" then
 set the name of this_playlist to this_item
 else if type is equal to "Album" then
 set the name of this_playlist to "_" & this_item
 end if
 tell source "Library"
 tell playlist "Library"
 if type is equal to "Artist" then
 duplicate (every track whose artist is this_item)
 to this_playlist
 else if type is equal to "Album" then
 duplicate (every track whose album is this_item)
 to this_playlist
 end if
 end tell
 end tell
 end repeat
 end tell
end create_playlists

The first line, tell application "iTunes", scopes the calls that follow to the iTunes
application. Next, the script iterates over the list (the_list), using the counter i
as an index into the list data structure, storing the result in the variable
this_item. It sets the name of the new playlist to this value. It also prefixes each
album playlist with a "_" to help distinguish and group them from artist playlists.

 The highlighted code shows the statements that call iTunes services. The first
statement creates a new playlist using the make command from the iTunes Stan-
dard Suite. The other statement also uses the iTunes Standard Suite’s duplicate
call to copy the names of the matching individual tracks to the playlist.

 In general, this script performs the required actions and provides a good
example of the power of AppleScript. However, it could be improved. For example,
for large sets of playlists, the delete operation can take some time; creating play-
lists is also time consuming. Another real limitation is the fact that the script can-
not update existing playlists with new tracks; instead, it deletes all playlists and
creates new ones from scratch. Most of these issues are easily addressed and are
left as an exercise (how’s that for passing the buck?).

Example applications of AppleScript 269

7.4.2 AppleScript Studio

If you use traditional scripting languages such as Perl and Python, you know of
their usefulness in developing support applications. However, their support for
developing modern user interfaces is weak. Because these programs are used pri-
marily by experienced users, GUIs are often not necessary. Both languages offer
modules and libraries for user interface work, but the user interface support is
very limited. Basically, if you are using these languages, you run your scripts
from the command line.

 If you would like your scripts to reach a wider audience of users without experi-
ence in programming and command-line tools, you should give them a modern
user interface. This is exactly what you get with AppleScript Studio—it lets you
write the guts of your application in AppleScript and construct your interface
using the Cocoa frameworks. You can produce AppleScript-based applications
that look and behave exactly like any other Mac OS X application.

 The name AppleScript Studio can be a bit of a misnomer, because it is not a
separate development tool. To construct AppleScript-based applications, you use
the already-familiar Project Builder and Interface Builder. Here is a high-level
view of how it works:

1 Launch Project Builder, select File→Create New Project, and select one of
the AppleScript Studio project templates.

2 Open the Resource folder using the discloser triangle and double-click
on the project’s MainMenu.nib file to open the file in Interface Builder.

3 Construct your application’s user interface and name each interface
component you wish to access from your scripts (more on this later).

4 Create new script-based handlers for interface actions. The development
environment creates these handlers and adds them to the main Apple-
Script of the application.

5 Move back to Project Builder and fill in each handler with AppleScript
code that responds to interface actions.

The process is obviously more detailed than this, but these are the main steps for
creating AppleScript Studio programs. If you have ever used other script-based
development environments such as HyperCard, SuperCard, or MetaCard, these
steps will sound familiar. Basically, you draw the interface, attach handlers to
interface components, and implement each handler in a scripting language.

270 CHAPTER 7
AppleScript programming

Let’s look at an AppleScript Studio application called MemoryTracker (see figure 7.8).
MemoryTracker is implemented entirely in AppleScript and makes extensive use
of other applications’ services through AppleEvents. MemoryTracker’s purpose is
to monitor a running application’s memory usage and display a plot of various
memory-related items.

 To use the program, you enter a running program’s name in the Process To
Track text field. Click the List button to open a window displaying all running
processes (lower-right application window in figure 7.8). You use the Number Of
Samples To Acquire field and the Wait Between Samples field to set how many
samples the program acquires and its sample rate. Once these parameters are set,
click the Start button to begin the process of acquiring data. After the program
acquires data, you select the information you wish to plot from the Data To Plot

Figure 7.8 All application screens for the MemoryTracker program

Example applications of AppleScript 271

menu and click the Plot button. Doing so plots the selected channel in gnuplot.4

Finally, clicking the View button displays a window of the raw acquired data.
 As you can see from the description, this simple program has many features,

most of which already exist as either command-line tools or Mac OS X applications.
For example, to obtain information about a running program, you can use the
command-line tool ps. To parse and format the output of ps, use awk. To display
data and process lists, use the text editor TextEdit; and to plot data, you use the
Mac OS X version of the venerable UNIX tool gnuplot. To tie these components
together, you use AppleScript and the Cocoa frameworks.

 Other than gnuplot, all these components come standard with the Mac OS X
system. If you did not use existing tools, you would have to write these compo-
nents by hand, which is time consuming. Because they already exist, you can easily
build this program in a few hours.

Opening the project
Project Builder makes creating AppleScript-based projects a snap by providing
three AppleScript Studio project templates: AppleScript Application, AppleScript
Document-Based Application, and AppleScript Droplet. Our application uses
the AppleScript Application template.

 The MemoryTracker project is located in the source_code/chapter07/Memory-
Tracker folder. Locate this directory from the Finder and double-click on Memory-
Tracker.pbproj to launch Project Builder and load the project.

WARNING If, like many UNIX users, you have the command-line version of gnuplot
installed, but not the Mac OS X version described in this section, you
may get the cryptic error message “Application.applescript:140: No user
interaction allowed. (-1713)” when you build the project.

Building the interface
The first step in creating the application is to construct the user interface in
Interface Builder. The general cycle is to create your application’s interface com-
ponent, such as a window, populate it with interface controls by dragging each
control from the Cocoa Views palette to the window, and connect the appropriate
controls to program elements such as outlets and actions.

4 Available from http://homepage.mac.com/gnuplot.

272 CHAPTER 7
AppleScript programming

Let’s look at the user interface for the program. Open the Resource group in the
Groups & Files pane and double-click on MainMenu.nib to launch Interface
Builder and open the file. Next, click on the Instance tab and double-click on the
Window icon.

 I built the MemoryTracker user interface by dragging each interface compo-
nent from the Interface Builder palette to the appropriate location within its
tabbed view (see figure 7.9).

 Table 7.6 lists the control types for the various interface objects.

Next, look at the main script handlers and see how interface components are
associated with handler code. Click the Start button, choose Tools→Show Info,
and select AppleScript in the popup menu in the palette (or press Command-6)
to display AppleScript from the popup menu (see figure 7.10). Note that the
Action and Clicked options are selected, as well as the Application.applescript box.

Table 7.6 The data types for the various interface objects of the MemoryTracker program

Item Type

Process to track (as well as the other window labels) System Font Text

All test fields NSTextField

Buttons NSButton

Data To Plot menu NSPopupButton

Help reference NSTextField with Small System Font Text

Figure 7.9
The main window for the
MemoryTracker program

Example applications of AppleScript 273

Also, note that the Name text field is set to start. This name is associated with the
handler script clickedStart, which responds to a user clicking the Start button. To
view the script, click the Edit Script button to display the script handler in Project
Builder. You can repeat these steps to see the attributes and code associated with
the other interface items.

 Table 7.7 lists the names for each interface component.

Table 7.7 The names of the interface components

Item Name

Process To Track process

Number Of Samples To Acquire samples

Wait Between Samples (Secs): sleepsecs

Data To Plot menu (NSPopupButton) datatoplot

Start, Plot, View, List start, plot, view, list

Status field status

Figure 7.10
Use the Attributes dialog to associate a
script handler with an interface element.

274 CHAPTER 7
AppleScript programming

Now that you understand how Interface Builder connects interface objects to han-
dlers, let’s look at the AppleScript code. Switch back to Project Builder and open
the MemoryTracker.applescript file.

 Let’s begin by looking at the main handler, called clicked:

on clicked theObject
 tell window "MemoryTracker"
 set processName to contents of text field "process"
 set nSamples to contents of text field "samples"
 set nSleep to contents of text field "sleepsecs"
 set dataToPlotPos to contents of popup button "datatoplot"
 set dataToPlotName to title of current menu item
 of popup button "datatoplot"
 end tell

 if theObject is button "start" of window "MemoryTracker" then
 my clickedStart(theObject, processName, nSamples, nSleep)
 else if theObject is button "view" of window "MemoryTracker" then
 my clickedView()
 else if theObject is button "plot" of window "MemoryTracker" then
 clickedPlot(dataToPlotPos, dataToPlotName,
 processName, nSamples, nSleep)
 activate
 else if theObject is button "list" of window "MemoryTracker" then
 clickedList()
 end if
end clicked

This handler is the entry point into all handlers for the program. It is passed a
single parameter called theObject. You use this object to determine what action
the user took and to call the appropriate code to handle the request. The first
block, enclosed in tell window "MemoryTracker", gets the values from the inter-
face and places them into the appropriate data members. Note that the name in
double quotes refers to the name you gave to each interface component. Next,
the script uses the object to determine which button the user clicked.

 As you can see, the syntax for this script is very English-like. For each button, it
calls the proper AppleScript subroutine to handle the details of the request. Notice
the handling code for the Plot button: after plotting the channel, it calls the
activate statement so the MemoryTracker application comes to the front of the
screen. Because the user typically does not interact with the plot (except perhaps
to save or print the plot), this action saves the user a click click when choosing
another channel.

 The getMemory subroutine gets information on a process. This function shows
how easy it is to talk to the Terminal application and run command-line tools
with AppleScript. In this case, it uses the command-line tool ps to get specific

Example applications of AppleScript 275

information on all running processes, grep to find the process it is interested in,
and awk to format the input:

on getMemory(cmdToken)
 set psCmd to "ps axo %mem,%cpu,cpu,rss,rsz,time,vsz,ucomm
 | grep " & cmdToken & " | grep -v grep
 | awk '{print $1 \" \" $2 \" \" $3
 \" \" $4 \" \" $5 \" \" $6 \" \" $7\" \" $8}'"
 set theResult to do shell script psCmd
 STATUS_MSG(psCmd)

 if theResult is equal to "" then
 STATUS_MSG("returned empty string")
 set memList to {}
 return memList
 end if

 set mem to 1st word of theResult
 set pCpu to 2nd word of theResult
 set cpu to 3rd word of theResult
 set rss to 4th word of theResult
 set RSZ to 5th word of theResult
 set t to 6th word of theResult
 set VSZ to 7th word of theResult

 set memList to {mem, pCpu, cpu, rss, RSZ, t, VSZ}
 return memList
end getMemory

The first two lines of the function show how easy it is to chain these tools
together, execute the command, and return the result to a variable. These simple
tools make it easy to debug, as well. For example, if you enter a process ID, rather
than a program name, in the entry box, the program will not find anything. It is
easy to type ps axo %mem,%cpu,cpu,rss,rsz,time,vsz,ucomm in a Terminal win-
dow to see just what is being returned, and to then determine that the name, not
the pid, is the proper value for the field.

 The format of the return value is a string of space-separated values. Next, the
function sets each returned value to its corresponding variable, adds them to a
list, and returns the list to the caller.

 The script calls this function repeatedly from the runGrabMemory function. This
function first clears the file used to store the process data and iterates for the num-
ber of samples requested by the user. On each iteration, it gets the process data
by calling getMemory and writes the data to a file. Once complete, it closes the file
and returns:

on runGrabMemory(processName, nSamples, nSleep)
 set fp to open for access file (DATA_FILE_MAC)
 with write permission

276 CHAPTER 7
AppleScript programming

 set eof fp to 0
 close access fp

 repeat with cnt from 1 to nSamples
 set msgPrefix to processName & ":" & nSamples & ":" & nSleep
 set memList to getMemory(processName)
 set fp to open for access file (DATA_FILE_MAC)
 with write permission

 set el to "processing sample: " & cnt & "/" & nSamples
 STATUS_MSG(el)
 repeat with n in memList
 set el to el & "."
 STATUS_MSG(el)
 write n & " " to fp starting at eof
 end repeat
 write return to fp starting at eof
 close access fp
 set el to "sleeping: " & nSleep & " (secs)"
 my sleep(nSleep)
 end repeat
 STATUS_MSG("done processing")
end runGrabMemory

Another interesting function is plot, which displays a plot of the user-selected
channel:

on plot(pos, theName, processName, nSamples, nSleep)
 set pos to pos + 1
 set msg to "calling gnuplot to plot " & theName
 set plotCmd to "plot " & "\"" & DATA_FILE_UNIX
 & "\" using " & pos & " with lines"
 set s to "plotting data for " & theName
 & ", process " & processName

 -- Clear the file.
 set fp to open for access file (PLOT_FORMAT_FILE_MAC)
 with write permission
 set eof fp to 0
 close access fp

 set fp to open for access file (PLOT_FORMAT_FILE_MAC)
 with write permission
 write "set xlabel " & "\"Samples\" " & return to fp
 set s to "\"" & theName & "\""
 write "set ylabel " & s & return to fp

 set s to theName & ": (" & processName
 & "/" & nSamples & "/" & nSleep & ") - (Process/Samples/Delay)"
 write "set title " & "\"" & s & "\"" & return to fp
 write "set yrange [0 :]" & return to fp
 write "set grid" & return to fp

Example applications of AppleScript 277

 write "set key right" & return to fp
 write "set data style linespoint" & return to fp
 write plotCmd & return to fp
 close access fp

 tell application "gnuplot-3.7.1d"
 activate
 -- exec "load \"/mem_log.plt\""
 set s to "load \"" & PLOT_FORMAT_FILE_UNIX & "\""
 exec s
 end tell
end plot

This function is a good example of how to use the functionality of a scriptable
Mac OS X program to accomplish a task. If you have ever written a graphing pro-
gram, you will appreciate being able to use the services of another program
rather than writing your own. For plotting, you use a Mac OS X version of gnuplot,
available from http://homepage.mac.com/gnuplot. As mentioned earlier, building
the project will give an unhelpful error message if the scriptable Mac OS X version
of gnuplot is not installed.

 The function opens a text file, writes a plot file based on the user selection and
plot data, and sends activate and exec AppleEvents to gnuplot. Doing so causes
gnuplot to become the active application: it loads the plot file and displays the plot.

 The View and List buttons use the services of the text editor TextEdit, which
comes standard with Mac OS X. Clicking the View button causes the scripts to acti-
vate TextEdit and open the file that contains the raw process data. Clicking the
List button calls getAllProcesses, which runs the ps command to get the names
of all running processes. Next, the script activates TextEdit and opens the file
that contains process name information:

on clickedView()
 tell application "TextEdit"
 activate
 open {(DATA_FILE_MAC) as alias}
 end tell
end clickedView

on clickedList()
 getAllProcesses()
 tell application "TextEdit"
 activate
 open {(PROCESSES_FILE_MAC) as alias}
 end tell
end clickedList

278 CHAPTER 7
AppleScript programming

Look at the rest of the code for the program. You will find it straightforward and
easy to understand.

 As this example program illustrates, you can implement powerful tools with
AppleScript in almost no time. Your AppleScript programs can be complex, requir-
ing GUI-based user interfaces, or simple in-house tools that you can use to support
application development. In either case, AppleScript Studio makes these things
possible and is an enjoyable environment to work in.

 This example also demonstrates the advantages of using AppleScript over tra-
ditional UNIX scripting languages. Yes, you can produce the same workflow with
Perl, but you cannot package the program under a single icon or develop a Mac
OS X Aqua-based user interface. In addition, UNIX scripting languages do not
enable you to use the services of other Mac OS X programs.

7.5 Summary

This chapter introduced you to the important concepts of AppleScript and walked
you through the steps of developing two AppleScript programs. The first example
program used Script Editor (the main script development environment for writing
AppleScripts) and iTunes (Apple’s digital music player) to show how to interact
with the services of a Mac OS X application.

 The other program used AppleScript Studio. AppleScript Studio enables you
to write AppleScript-based applications with a Cocoa GUI. These programs look
and behave exactly like any other Mac OS X applications but are predominantly
written in AppleScript.

279

8Mac OS X and beyond

■ New features of Jaguar
■ Additions to the developer tools
■ Project Builder features
■ Terminal application features
■ PerlObjCBridge

280 CHAPTER 8
Mac OS X and beyond

I never think about the future. It comes soon enough.

—Albert Einstein

Now to look at the more interesting features UNIX developers can expect from
Jaguar. This chapter provides information about the new developer tools and infra-
structure, covers the new Terminal application, discusses the new features of Project
Builder, and briefly shows you some of the features of the PerlObjCBridge.

8.1 Introduction

On March 24, 2001, Apple released the first version of Mac OS X (v10.0) to the
public. Later that year, it released version v10.1, which focused primarily on per-
formance improvements. Since then, most of the updates to the operating sys-
tem have centered on bug fixes and feature enhancements. In late summer 2002,
Apple released its first major upgrade to Mac OS X, code-named Jaguar. Jaguar
builds on the previous versions of the system but adds many new features and
enhancements; according to Apple, it includes more than 150 new features
(http://www.apple.com/macosx).

 A number of Jaguar’s new features focus on changes and updates to the core
operating system, many of which will be of interest to UNIX users. For example,
Jaguar now uses the Common UNIX Printing System (CUPS) for printing. CUPS
uses the Internet Printing Protocol (IPP) to maintain print jobs and provides better
access to modern printer features than older printing systems like the Berkeley
Line Printer Daemon (LPD).

 Jaguar includes compatibility with FreeBSD 4.4, Kerberos authentication, and
gcc version 3.1, and more support for porting UNIX programs to the Macintosh
by improving compatibility with the POSIX API, libraries, and headers. There is
also a new and improved Terminal application that supports more options and
emulation modes. Another nice addition for Perl programmers is PerlObjCBridge,
developed by Doug Wiebe of Apple, which enables Perl code to access Cocoa
objects, register as clients for notifications from Cocoa-based frameworks, and do
messaging between Perl scripts running on different machines.

 In addition to the changes under the hood, Jaguar extends many of the fea-
tures of current Mac OS X applications. The Mail, Address Book, and Sherlock
applications have been revamped with additional features and services. The
new Finder improves performance by threading tasks and contains a find fea-
ture so you can search for files without leaving the current window. Several new

Development tools 281

applications and technologies also appear, including an AOL-compatible instant
messaging client, called iChat QuickTime 6, Quartz Extreme, Rendezvous, Inkwell,
and Sherlock 3.

 One of the most interesting new features is Rendezvous. The goal of Rendezvous
is to simplify the process of setting up networks and sharing services between
machines. Basically, it enables hosts on an IP network to discover one another and
share services. For users, this means no more network setup or configuration—
they can simply plug in a new device on the network (a computer or printer, for
example) and let it configure itself.

 Another new feature is Quartz Extreme. Quartz is the primary display technol-
ogy for Mac OS X. Quartz Extreme extends Quartz by offloading graphics screen
rendering operations from the CPU to the graphics card. These means faster screen
update and operations, and less use of the CPU. To use this technology, you must
have a supported graphics card.

 In the user space, many of the new features are designed to tie together the
services of various programs, enabling seamless sharing of data between applica-
tions. In addition, Address Book stores data in vCard format and can access infor-
mation from LDAP servers.

8.2 Development tools

The developer tools for Jaguar come with many new features. This section lists
some of the most important and useful additions.

8.2.1 Compilers

The developer tools for the pre-Jaguar version of Mac OS X use gcc 2.95 as the
default compiler. Jaguar ships with gcc 3.1 (http://gcc.gnu.org/gcc-3.1). This new
version of gcc contains many improvements and fixes to the earlier version of the
compiler: better language standards conformance, a faster and more memory effi-
cient preprocessor, and improvements in the C++ library implementation.1 In
addition, this release includes better support for profile-directed optimization.
Let’s examine this feature.

Optimization
Many optimization techniques attempt to improve a program by either making its
code smaller or making its performance faster. Choosing the right option often

1 See http://gcc.gnu.org/gcc-3.1/changes.html and http://gcc.gnu.org/onlinedocs/libstdc++/faq/index.html#4_1.

282 CHAPTER 8
Mac OS X and beyond

means picking the appropriate tradeoff between these two goals. Many optimizers
statically scan intermediate code, looking for obvious inefficiencies based on some
rule set. For example, the optimization technique called dead code elimination
detects and removes unreachable code (code that will not affect the results gen-
erated by a program). In the following example, the code in the if block is never
executed and can be safely removed:

int
main()
{
 bool x = false;
 if (x) {
 printf("some text");
 }
 // Rest of program...

 return 0;
}

Another common optimization is common subexpressions elimination. Here, the com-
piler detects and eliminates expressions that are unnecessarily calculated:

// Contains an unnecessary calculation.
int x = 10.09
int y = 1.99;
float v[1000];
for (int i=0; i<1000; i++) {
 v[i] = x * y + i;
}
// Optimized.
int z = 10.09 * 1.99;
for (int i=0; i<1000; i++) {
 v[i] = z + i;
}

When optimizing code, the compiler will implement a heuristic to determine what
optimization to perform.

Profile-driven optimization
The compiler can make better optimization choices if it understands the runtime
behavior of the program it’s optimizing. Using this information, the optimizer can
decide on the most efficient optimization strategy for the program. This technique
is called profile driven optimization, and is a feature of gcc 3.1 (this feature was con-
tributed by Jan Hubicka of SuSE Labs, together with Richard Henderson of Red
Hat, and Andreas Jaeger of SuSE Labs).

Development tools 283

 As the gcc 3.1 documentation points out, most profile-driven optimization
techniques use a two-pass implementation. The first pass generates information
about the runtime behavior of the program, which the optimizer uses on the sec-
ond pass to inform its optimization choices. This process requires more diligence
on behalf of the user because of the extra step involved in generating runtime
behavior data. Additionally, running the program such that it generates useful
profile data can be tricky (http://gcc.gnu.org/news/profiledriven.html).

 To address these issues, gcc implements profile-driven optimization differently.
Instead of using dynamic data from past runs, it uses a static branch predictor that
infers program execution behavior. In many situations, static profiling techniques
provide a reasonable tradeoff between the traditional two-pass, time-consuming
technique and the faster, less, time-consuming method.

8.2.2 Project Builder

The current (as of this writing) version of Project Builder (2.0.1) contains some new
and useful additions. These include using gcc 3.1 as its default compiler, inline
scripting in the style of MPW-worksheets, a new target editor, better debugging
support, and batch searching of developer documentation. Let’s look at some of
these additions and features.

8.2.3 Changing compilers

As I discussed in the first part of this section, the new development tools include
gcc 3.1, which Apple recommends you use instead of the gcc 2.95 compiler—
Project Builder will use gcc 3.1 as its default compiler. If for some reason you wish
to use the gcc 2.95 compiler, click on your project’s Targets tab, select a target,
click on GCC Compiler Settings, and select GCC v2.95.2 from the Compiler version
menu (see figure 8.1).

8.2.4 Inline scripting

As you learned in chapter 3, the Macintosh Programmer’s Workbench (MPW) was one
of the first development environments for the Macintosh. In many ways, MPW was
a UNIX-like development environment that combined a command-line environ-
ment with elements of an IDE. To perform operations, you entered commands into
worksheets, or used the GUI interface. This combination (command-line and GUI
interface) made MPW a very powerful and extendable development environment.

 Project Builder now includes inline scripting in the style of MPW. The two main
additions are as follows:

284 CHAPTER 8
Mac OS X and beyond

■ Running shell commands inline, or within a Project Builder text buffer
■ Running shell scripts from a customizable menu from within Project Builder

Let’s look at each of these features in more detail.
 Running shell commands from within a Project Builder text buffer is a very

powerful feature and opens up all sorts of interesting possibilities. This feature
encompasses a full range of shell commands such as ls, pw, and cal, and running
Perl statements from the command line (perl –e) or running Perl scripts. The
inline-scripting feature does not support running commands that would require
user interaction, such as vi or emacs.

 To execute a shell command, place the cursor in a text buffer, type the com-
mand(s), and press Control-R (the cursor can be anywhere on the line where the
command appears). The output of the command is written after the command.

Figure 8.1 Project Builder now uses gcc 3.1 as its default compiler. You can switch back to gcc 2.95 using
the target preference’s GCC Compiler Settings.

Development tools 285

 For example, imagine you are testing a server program and wish to check if it is
accepting connections correctly. One way to check this is to write a test agent that
sends a fixed number of messages to the server. The server contains code to log all
connection information to a file. After running several tests, you wish to see if the
server accepted all client connections—if the agent sent 100 messages, the server
should have accepted all 100. A simple check is to count the number of connec-
tions in the server log file. Figure 8.2 shows how to do this from within Project
Builder using inline scripting.

 You can save a lot of time by running commands from within Project Builder
rather than jumping to a shell. In addition, the results are saved to the buffer for
later use.

Figure 8.2 The new inline scripting feature enables you to run shell commands and scripts from within a
Project Builder text buffer.

286 CHAPTER 8
Mac OS X and beyond

NOTE Project Builder lets you set many of its defaults through its user interface
(using Project Builder→Preferences). However, many more are settable
using the defaults write command from the Terminal application:

 defaults write com.apple.ProjectBuilder <defaultName>
 <defaultValue>

For example, to save the dynamically generated jamfiles to disk during
builds, set PBXSaveJamfiles to YES.

 % defaults write com.apple.ProjectBuilder PBXSaveJamfiles YES

Project Builder must be restarted for the changes to become active. For
more information, select Help→Show Expert Preferences Notes from
within Project Builder.

In addition to running scripts in a text buffer, you can also store scripts in files and
run them from a menu within Project Builder. To add a script menu to Project
Builder, copy all files from /Developer/ProjectBuilder\ Extras/ExampleScripts/ to
~/Library/Application\ Support/Project\ Builder and restart Project Builder if
necessary.

 Project Builder’s Application Support folder (~/Library/Application\ Support/
Project\ Builder) now contains two additional items: a file called StartupScript
and a folder called Scripts. The StartupScript file is a shell script that adds the
script menu to Project Builder. Because it is a shell script, you can add other shell
commands to it if you like. The Scripts folder contains a set of shell scripts that are
added to the User Scripts menu by StartupScript. You can add scripts to this folder,
and they will be added to the script menu when Project Builder is launched (see
figure 8.3).

 As you can imagine, being able to run and display the result of a shell com-
mand within Project Builder is a powerful feature. Remember, each time you run
a shell script or command, Project Builder executes a new shell; so, there are
some limitations on what you can do. For more information about scripting, see
Help→Show Release Notes.

8.2.5 New target editor

Project Builder’s GUI has been updated to support a new target editor. In the
older version of Project Builder (pre 2.0.1), the Target view holds two display panes:
Targets and Build Styles (see figure 3.12). The Targets pane displays all targets
for the project; clicking on a target shows its settings. Build styles are displayed in

Development tools 287

a subpane, where you can view and edit their settings. In addition, the Executable
view (seen by selecting the Executable tab) displays the different executable pro-
grams your application contains.

 The new version of Project Builder combines targets, build styles, and execut-
ables into a single view and presents the information in a table format. In addition,
the Executable tab has been removed, and its features have been combined with
the Target view. Figures 8.4 and 8.5 show the new layout of the target editor and
the executable features.

8.2.6 Searching documentation

Project Builder supported batch searches of project code, Frameworks, and open
files through the find tab. Using this feature, you could perform textural and
regular expression searches of your files. The current version of Project Builder
(as of this writing) supports a new search type—the content-based documentation
search. This search type permits you to perform content searches of the Mac OS X
Developer Documentation, a handy feature that will save you lots of time.

 Searches can be in the form of natural language questions such as “Show me
information on Darwin” (figure 8.6) or common strings like “AppleScript”.

 In addition to these items, Project Builder contains many other enhancements.
Debugging features have been improved. Within a debugging session, you can now
Control-click on a valuable in the Debug Variables view to display a contextual
menu with several new addition. The View Value As… addition lets you cast the
currently selected variable to a new type. Doing so will change the variable and
open a new window that displays the variable and its value. Once the variable
goes out of scope, Project Builder closes the window.

Figure 8.3
Any scripts you save to the Project Builder
Application Support folder (~/Library/Application\
Support/Project\ Builder) are added to the User
Scripts menu when Project Builder is launched.

288 CHAPTER 8
Mac OS X and beyond

You can now split editor panes side-to-side as well as top-to-bottom, use new key-
board commands to pop the various navigator bar menus (Ctrl-L displays the
Loaded Files pop-up, Ctrl-2 displays the Function pop-up, and Ctrl-3 displays
the Included Headers pop-up) and copy the results of a find operation using
Command-C or by highlighting and dragging the text to targets that accept tex-
tual pastes. See Help→ Show Release Notes for more information on the Project
Builder’s new features.

 Along with the changes to the interface, several new features are included,
such as a new Summary module that displays a target’s name and type, and a
comment field for adding more information about the target. In addition, you
can now construct a build style to install builds from within the IDE. As always,
see the release notes for more information.

Figure 8.4 The new target editor displays options in a table, enabling you to access and alter settings.

Terminal application 289

8.3 Terminal application

If you use Mac OS X primarily as a UNIX box, you probably spend a lot of your
time with the Terminal application. Terminal implements a command interpreter,
or shell, which enables you to interact with the system through its UNIX interface.
The Terminal application that ships with Jaguar adds some new features you
may find useful.

8.3.1 Setting Terminal preferences

The first big change is the way you set preferences. In previous versions, all pref-
erences were accessible from a single Preferences dialog box (see figure 8.7).

Figure 8.5 In the new version of Project Builder the Executable tab has been removed; its features are merged
into the Targets tab settings.

290 CHAPTER 8
Mac OS X and beyond

Figure 8.6 Project Builder now let you search developer documentation using the content-based
documentation search feature.

Figure 8.7
The Terminal application that comes
with v10.1.x aggregates preferences
into a single dialog, enabling you to
get at them in one place.

Terminal application 291

The new Terminal application splits preferences between two menu items: Ter-
minal→Preferences (figure 8.8) and Terminal→Window Settings (figure 8.9).

 You use the Terminal Preferences dialog box to add behavior to the shell on
startup. The Terminal→Window Settings menu item opens a floating dialog box
(Terminal Inspector) that you use to set window options, including your shell,
buffer size, window colors, and window properties. One improvement of this ver-
sion is that preferences immediately apply to the active window; in past versions,
you had to open a new shell to see the changes. To save your selected preferences,
select File→Use Settings As Defaults.

Figure 8.8
The new Terminal Preferences dialog lets
you add actions to the shell on startup.

Figure 8.9
Many of the preferences from the older Terminal
are now available from the Terminal Inspector.

292 CHAPTER 8
Mac OS X and beyond

8.3.2 Splitting the Terminal window

Another new addition is being able to split a Terminal window. When you click on
the split icon, located in the upper-right part of the window, the Terminal window
is split in half. The upper pane holds a scrollable, read-only history of your Termi-
nal session. The lower pane contains an active area where you can continue work-
ing. You can use this feature to save the history of a program and compare it to the
current run.

 For example, suppose you wish to visually trace the memory usage of a pro-
gram you suspect is leaking memory. In one shell, you run the leaky program. In
another, you run top.

 After a few iterations, click on the split icon in the window running the top
command and drag the horizontal bar to the middle of the window. As you can
see in figure 8.10, you can view the past instance of top in the upper pane at the

Figure 8.10
Being able to split the Terminal
window lets you view past Terminal
histories while continuing your work.

The PerlObjCBridge 293

same time top is running. By splitting the window, you save screen space and the
bother of running another shell.2

8.3.3 Other Terminal additions

In addition to these features, here are some other additions:

■ You can copy text between Terminal windows by highlighting the text in
one window and dragging it to the other. You can also drag text from a
Terminal window to another application, or from an application to the
Terminal window.

■ You can make the Terminal window transparent by choosing Terminal→
Window Settings and selecting Color from the pop-up menu. This option
is not very useful for editing, but in some cases (say, when screen real estate
is limited) you may want to layer windows in such a way that you can see
information through each shell.

■ The new Terminal supports antialiasing of fonts and better vt100/vt220
emulation.

8.4 The PerlObjCBridge

As the last few chapters demonstrate, Project Builder and Interface Builder are
good development environments for creating Mac OS X applications. These tools,
coupled with the Cocoa frameworks, provide you with all the support you need to
write compelling applications for a variety of domains. The problem is, unless you
program in Objective-C, Java, or AppleScript, you’re stuck. With Jaguar, Apple
has introduced a feature called the PerlObjCBridge: a Perl module that allows you
to access Cocoa from Perl.

 The PerlObjCBridge provides the following functions:

■ Enables access to many Objective-C objects from Perl
■ Enables Perl scripts to be Cocoa delegates or targets of notifications
■ Enables Perl scripts to access Cocoa’s Distributed Objects mechanism, letting

Perl objects send and receive messages from Objective-C or Perl objects run-
ning on different machines

2 Terminal does not support the KDE-style Terminal, where many shells can be created and used within
one window and switched by pressing a key combination.

294 CHAPTER 8
Mac OS X and beyond

One limitation of the PerlObjCBridge is its lack of support for accessing Cocoa
GUI objects. This means you cannot use it to construct user interfaces for your
Perl scripts.3

 In terms of syntax, Objective-C uses the : to delimit arguments, which is not
legal in Perl. Therefore, the _ character is used in its place. To access Objective-C
objects and methods from Perl, you use the following forms:

■ Static method (through the class)—ClassName->method(...args...)

■ Instance method (through the instance)—$object->method(...args...)

The following listing shows a few examples of how to use these constructs:

Accessing a method through its class (static method).
$pref = NSMutableDictionary->dictionary();
Accessing a method through an instance (instance method).
$pref->objectForKey_($key);

One of the more powerful features of the PerlObjCBridge is its ability to register
Perl objects as recipients of notifications from Cocoa frameworks.4 For example,
the PerlObjCBridge automatically provides the stubs, or Objective-C objects that
act as proxies for Perl objects. If you have a Perl object

package Foo;

sub new { ... }
sub aCallBack { ... }

you register Foo objects to receive NSNotification messages as follows:

$foo = new Foo();

NSNotificationCenter->defaultCenter()
->addObserver_selector_name_object_($foo,
 "aCallBack", "theNotificationName", undef);

When the event named theNotificationName occurs, Foundation sends the
aCallBack message to $foo. Behind the scenes, PerlObjCBridge automatically
creates a PerlProxy object to stand in for $foo wherever an Objective-C object is
expected, such as the observer argument to the addObserver method.

 Cocoa’s Distributed Objects (DO) mechanism enables Cocoa programs to access
objects from different programs, possibly running on different machines. You can
access DO from the PerlObjCBridge, enabling interprocess messaging between

3 See http://camelbones.sourceforge.net for information about a GUI framework for constructing Cocoa
interfaces in Perl.

4 Example and commentary courtesy of Doug Wiebe.

The PerlObjCBridge 295

Perl objects. Basically, you write Perl scripts that run on different machines—or
in different address spaces on the same machine—and that send messages to one
another. Doing so enables your scripts to communicate with other scripts by
directly calling their methods as if they were part of the same program.

 Let’s look at how to apply this knowledge in a Perl script.

8.4.1 PerlObjCBridge example

These days, Palm devices are everywhere. They are used to track contacts and
schedules, enter information into databases, access email and the web, and play
games. However, most UNIX systems come with software you can use to handle
much of this functionally at little or no cost.

 The example program for this section is called pim.pl and uses standard
UNIX tools to perform tracking contacts, take notes, generate and view calendars,
and even keep a list of quotes. The main UNIX programs used are cal and remind.5

The cal program displays a text-based calendar. If you have used remind, you
already know how useful it is. If you have never used it, you are in for a treat.
Basically, remind is a calendar generator and reminder program with lots of
options and uses.6

 The first step in using remind is to create and edit your reminders file, called
.reminders, which is located in your home directory. Entries in this file represent
calendar events or reminders. Once you add entries to the file, you run the
remind command to process the file. Depending on the options, remind will out-
put everything from a reminder list to a text- or Postscript-formatted calendar.
Figure 8.11 shows an example .reminders file and a text-based calendar generated
from its entries.

 To view or edit your contact list, the Perl-based pim script opens the file in an
editor; to edit tasks, it opens the task file in an editor; and to view tasks, it pro-
cesses the file and prints a formatted version of the tasks list.

 The Foundation classes include a particularly useful set of methods: the write-
ToFile and stringWithContentsOfFile family of methods. Collectively, these meth-
ods let you to take an object, serialize its data to disk, and read the stored data from
disk into an object in runtime. When used in conjunction with the NSMutableDic-
tionary, a hash data structure, you do not need to deal with formatting or parsing

5 The remind program is freely available from http://www.roaringpenguin.com/remind. It does not
come with the system, so you will need to download it, compile it, and install it for Mac OS X.

6 See http://www.linuxjournal.com/article.php?sid=3529 for a very good introduction to remind.

296 CHAPTER 8
Mac OS X and beyond

data; it’s all done for you. This feature is particularly attractive and is a strong rea-
son to use Cocoa objects in your Perl scripts. This program uses these features to
store and access preference settings.

 Application preferences are stored in a preference file, which is a text file for-
matted as XML. Each key/value pair in the file describes a particular program
option. For example, the editor keyword is used to look up the editor the script
uses to open files (contacts-file for the name of the contacts file):

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//
DTD PLIST 1.0//EN"

Figure 8.11
An example reminders
file and a text-based
calendar, generated
using remind
-c ~/.reminders

The PerlObjCBridge 297

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>prefs-path</key>
 <string>./</string>
 <key>editor</key>
 <string>/usr/bin/emacs</string>
 <key>viewer</key>
 <string>more</string>
 <key>file-path</key>
 <string>./</string>
 <key>contacts-file</key>
 <string>contacts.txt</string>
 <key>tasks-file</key>
 <string>tasks.txt</string>
 <key>words-file</key>
 <string>word_list.txt</string>
 <key>notebook-file</key>
 <string>notebook.txt</string>
 <key>quotes-file</key>
 <string>quotes.txt</string>
</dict>
</plist>

You can initially create this file either programmatically or by hand. To create it
programmatically, you can use elements of the following code fragment:

my $pref = NSMutableDictionary->dictionary();
setPrefVal("editor", "/usr/bin/emacs");
setPrefVal("contacts-file", "contacts.txt");
writePrefs("pim.prefs");

sub setPrefVal {
 my ($key, $val) = @_;
 $pref->setObject_forKey_($val, $key);
}

sub writePrefs {
 my ($fName) = @_;
 $pref->writeToFile_atomically_($fName, 1);
}

When the script starts, it creates a new, empty dictionary object by calling the
static method dictionary from Foundation’s NSMutableDictionary class. Next, it
populates the dictionary (readPrefs) with key/value pairs from the preference file.
To do so, it uses the NSDictionary static method dictionaryWithContentsOfFile.
In a single call, it reads the preference file and stores each key/value pair into the
dictionary object. This saves you the trouble of creating a new file format and
writing code to parse and store the preference values:

298 CHAPTER 8
Mac OS X and beyond

my $prefs = readPrefs($PREFS_FILE);
sub readPrefs {
 my ($fName) = @_;
 my($dict) = NSDictionary->dictionaryWithContentsOfFile_($fName);
 if (!defined($dict)) {
 logExit("preferences file not read: $PREFS_FILE");
 exit;
 }
 return $dict;
}

The rest of the script is quite simple. It goes into an infinite loop in which it dis-
plays a menu and handles user selections. To exit the program, press Control-C:

for(;;) {
 system("clear");
 print "=======================\n";
 print "My PIM\n";
 print "=======================\n";
 print "0. Edit preferences file\n";
 print "1. Edit reminders\n";
 print "2. Edit contacts\n";
 print "3. Edit tasks\n";
 print "4. Show tasks\n";
 print "5. Generate calendar (ps)\n";
 print "6. View calendar (txt)\n";
 print "7. Print calendar's";
 print "8. Show system cal\n";
 print "9. Show today’s reminders\n";
 print "-------------------\n";
 print "-1. Edit word list\n";
 print "-2. Edit notebook\n";
 print "-3. Edit quotes\n";
 print "-4. View quotes\n";
 print "=======================\n";
 print "-> ";
 my $s = <STDIN>;
 chop($s);

 if ($s == 0) {
 system(getPrefVal("editor") . " " . $PREFS_FILE);
 }
 elsif ($s == 1) {
 system(getPrefVal("editor") . " ~/.reminders");
 }
 #…

The handling code is also straightforward, as demonstrated by the if/elsif block.
In both cases, it gets the appropriate value from the dictionary (based on a key)
and handles the operation.

 Figures 8.12 show the task features.

The PerlObjCBridge 299

Overall, this script does the job, but it could be improved. The program could be
extended to use Cocoa’s DO mechanism. For example, the script could act as a
server running on one machine, and you could access it from another machine to
access and update information. Additionally, you could write a Cocoa GUI client
that displays the information in an interface while the main handling and storage
code runs on the server.

 Another addition would be to add items to your calendar or task list from your
mail inbox. This functionality would let you send yourself email that goes directly
into your pim.

 Even with these limitations, the program is useful and demonstrates how to use
the PerlObjCBridge. The PerlObjCBridge is a good piece of software engineering,
providing many more functions than I’ve discussed here. I hope it will continue

Figure 8.12
An example of the program
responding to the Task feature

300 CHAPTER 8
Mac OS X and beyond

to grow and include more features, including the ability to construct Cocoa GUIs
from Perl scripts. If you are a Perl programmer working under Mac OS X, take a
serious look at PerlObjCBridge.

8.5 Summary

This chapter has given you a brief look at Jaguar, Apple’s first major upgrade to
Mac OS X. In many ways, Jaguar extends the current system, but it also adds
many new features and enhancements. For UNIX developers, this means gcc v3.1,
FreeBSD4.4 compatibility, additions to the existing developer tools such as Project
Builder and Interface Builder, and new features in the Terminal application. Perl
programmers can now take advantage of the Cocoa Foundation through PerlObjC-
Bridge, which gives you access to Cocoa objects and features from Perl modules.

 Jaguar is a significant step forward for Mac OS X. For UNIX developers and
users, there is a lot to like.

301

AGetting and installing
development tools

302 APPENDIX A
Getting and installing development tools

The default load of the Mac OS X system does not include the necessary tools for
developing software under Mac OS X (Apple’s Developer Tools), including com-
pilers, build tools, Project/Interface Builder, or version control software. To get
and install these tools on your system, you need to register for an Apple Developer
Connection (ADC) account. Joining ADC is free and entitles you to many programs
and services, including:

■ Downloading the latest development tools free of charge
■ Purchasing the development tools on CD (in case you do not have access to

a fast network connection)
■ Viewing ADC TV, which broadcasts various developer-related programs

including overviews and tutorials on Mac OS X technologies like Cocoa,
Darwin, and WebObjects

■ Signing up for various programs

To sign up for an ADC account, go to the ADC page (http://www.apple.com/devel-
oper) and follow the on-screen instructions. After joining, log in to your new
account and download the latest version of the Mac OS X development tools. If
you have a high-speed connection, it is best to download the entire archive as
opposed to downloading it in segments.

Once the download is
complete, double-click on
the archive and follow the
on-screen instructions.
(You will need adminis-
trator privileges to install
the development tools.)
After you install the tools,
a Developer folder will
appear at the root level of
the file system (/Devel-
oper). This folder contains
all necessary develop-
ment tools to build soft-
ware under Mac OS X
(see figure A.1).

Figure A.1 Once installed, the Apple developer tools are located in
/Developer. The folder contains the developer tools, including build
tools, documentation, and source code examples.

303

BUNIX and Mac OS X
command mappings

304 APPENDIX B
UNIX and Mac OS X command mappings

This appendix lists common UNIX commands and their Mac OS X equivalents.
These lists are in no way exhaustive, but they show you how to perform common
UNIX operations using Mac OS X procedures.

B.1 Common Mac OS X operations

■ To select a single file or folder, single-click on the file or folder you wish
to select.

■ To select multiple files or folders:

• Click and drag the mouse over the files and folders you wish to select.
• Press Command and single-click each file or folder.

■ If you have a multibutton mouse, the right mouse button acts like a Con-
trol+click.

■ To paste a file or folder’s path at the command prompt, drag the file or
folder from the Finder into the Terminal window.

■ To open a directory window from the Terminal, type open followed by the
directory name at the Terminal prompt.

B.2 UNIX file/directory commands mapped to
Mac OS X commands

The mappings in this section show UNIX file and directory commands and their
Mac OS X counterparts.

B.2.1 List directory contents: ls
■ Maneuver to the target location by double-clicking on each folder in the

Finder window.
■ Choose a view option from the window’s toolbar:

• Icon

• List (like ls –l)

• Columns

UNIX file/directory commands 305

B.2.2 Copy/move files or folders: cp, mv

Copy files to another location
■ Select files and folders (see section B.1) and then:

• Copy using the mouse by pressing the Option key and dragging the
selected items to the destination.

• Copy using the keyboard by pressing Command+C, maneuvering to the
destination, and pressing Command+V.

Copy files to the same location (duplicate)
■ Select files and folders (see section B.1) and then:

• Duplicate using the mouse by right-clicking the selected items (or pressing
Control and single-clicking the selected items) and selecting Duplicate
from the menu.

• Duplicate using the keyboard by pressing Command+D.

Move files
■ Select files and folders (see section B.1) and then drag the selected items

to the destination.

B.2.3 Remove files or folders: rm
■ Select files and folders (see section B.1) and then:

• Drag the selected items to the Trash icon on the Dock.
• Press Control and single-click on any of the selected items, and select Move

To Trash from the menu.

B.2.4 Change directory: cd
■ Change using the mouse by double-clicking on the folder you wish to open.
■ Change using the keyboard by selecting the folder and pressing Com-

mand+O.

B.2.5 Create a new directory: mkdir
■ Open the Finder window where you wish to create the directory (folder) and then:

• Create the directory using the mouse by pressing Control, clicking in the
window, and selecting New Folder from the menu. Rename the folder.

• Create the directory using the keyboard by pressing Command+Shift+N.
Single-click on the folder and rename it.

306 APPENDIX B
UNIX and Mac OS X command mappings

B.2.6 Change file permission and group: chmod, chgrp
■ Select files and folders (see section B.1) and then:

• To use the mouse, right-click the selected items (or press Control and
single-click the selected items) and select Get Info from the menu.
Change the permission/group.

• To use the keyboard, right-click the selected items (or press Control and
single-click the selected items) and press Command+I. Change the per-
mission/group.

B.2.7 Compare files: diff
■ Open the /Developer/Application folder and double-click on the FileMerge

program. (See chapter 4 for more information about FileMerge.)

B.2.8 Get the word, line, or byte count: wc

This command has no corresponding Mac OS X GUI program. You can use BBEdit-
Lite’s Info command (located on the window’s toolbar). To get file sizes, use the
Finder window’s List view (see section B.2.1).

B.2.9 Compress and decompress data: compress, uncompress,
tar, gzip, gnuzip, unzip, zcat

■ Use StuffIt Expander (located in /Application/Utilities) to extract com-
pressed data.

■ Use StuffIt to compress data (http://www.stuffit.com).

B.2.10 Edit text files: emacs, vi

See chapter 4 for more information about Mac OS X editors. Use TextEdit, located
in /Applications.

B.2.11 View files: head, tail
■ Maneuver to the target location by double-clicking on each folder in the

Finder window. Then:

• Select the Finder window’s Column view and select the file you wish to view.

• To use the mouse, right-click on the file (or press Control and single-click
the file), select Get Info from the menu, and select Preview.

• To use the keyboard, right-click on the file (or press Control and single-
click the file), press Command+I, and select Preview.

UNIX process management commands 307

B.2.12 Find files: find
■ Open the /Application folder and double-click on the Sherlock program.

Then, select the File Names radio button and enter the search string.

B.3 UNIX communication commands mapped to
Mac OS X commands

The mappings in this section show UNIX commands and their Mac OS X equivalents.

B.3.1 OpenSSH: ssh, scp

No corresponding Mac OS X GUI program comes with the system.

B.3.2 Talk to another user: talk, ytalk

No corresponding Mac OS X GUI program comes with the system.

B.4 UNIX process management commands mapped to
Mac OS X commands

This section’s commands show mappings between UNIX process management com-
mands and their Mac OS X counterparts.

B.4.1 Show system and process usage statistics: top, ps
■ Open the /Applications/Utilities folder and double-click on the CPUMonitor

or ProcessViewer program.

B.4.2 Terminate a process: kill
■ Press Command+Option+Esc, select the process to kill from the list, and

click the Force Quit button.
■ Open the /Applications/Utilities folder and double-click on the ProcessViewer

program. Then, double-click on the process you wish to kill.

309

CThe precursor of
Mac OS X: Mac OS

310 APPENDIX C
The precursor of Mac OS X: Mac OS

Before Mac OS X appeared in March 2001, Macintosh computers used another
operating system: Mac OS.1 The Mac OS was the primary operating system for the
Macintosh line of computers from its appearance in 1984 until the introduction of
Mac OS X. The roots of Mac OS go back to the early days of Macintosh computing
and exerted a noticeable influence on Mac OS X. For this reason, it’s useful to under-
stand some of the spirit and components of Mac OS.2

 This appendix introduces you to the Macintosh interface and operating system
(Mac OS). After reading it, you should have a good understanding of the design
goals that led to the Macintosh user interface, the basics of Mac OS, and the under-
lying system components that compose Mac OS. Against this backdrop, the strengths
and weaknesses of the Mac OS emerge, and you can better understand and appre-
ciate the technical developments that led to Mac OS X.

C.1 A tour of the Mac OS interface

The Mac OS user interface is simple and intuitive compared to UNIX desktops
and window managers such as GNOME, KDE, CDE, fvwm, and WindowMaker. Fig-
ure C.1 shows the central user interface metaphor for the Mac OS: the desktop.

 The Macintosh desktop is a metaphor for a real office desk and provides a dis-
play and manipulation surface for information. The Finder manages the desktop.
The Finder works with the system software to provide users with file management
and process invocation functions, and presents and manages the desktop.

 Mac OS centralizes and presents several interface elements that users use to
interact with the Macintosh system. At the top of the screen is the menu bar,
which contains menus enabling users to perform system-related tasks. The system
fixes the location of the menu bar so a user cannot move it. This behavior is differ-
ent than that of the Windows or UNIX environment, where the menu bar appears
at the top of each application window. Mac OS programs order menus as follows
(left to right):

■ The Apple menu is a system-wide menu you can customize. It enables direct
and centralized access to commonly used items such as programs, system
settings, printers, and network servers.

1 The official name is MacOS (no space) followed by a version number—MacOS 9. Because I am dis-
cussing the system as a whole, I will refer to it as Mac OS.

2 The Macintosh interface was related to the Apple Lisa, which descended from the Xerox Star.

A tour of the Mac OS interface 311

■ The next set of menus is application defined, but should begin with the File
and Edit menus and end with an optional Window menu. The system auto-
matically supplies the Help menu. The File menu provides commands for doc-
ument management, such as opening an existing document, creating a new
document, or printing a document. The Edit menu contains commands for
editing application documents and sharing applications data via the clipboard.
The Window menu holds commands for displays and maneuvering applica-
tion windows. The Help menu provides users with access to application help.

■ At far right on the menu bar is the Application Task menu, which lists all
instantiated applications and enables you to change between programs.

Figure C.1 The Mac OS desktop provides a common workspace for using the system and centralizes
many user interface elements, represented by icons.

312 APPENDIX C
The precursor of Mac OS X: Mac OS

The desktop is both aesthetic and functional. You can personalize the environment
by choosing different images to display on the desktop. The desktop is a display
and manipulation surface for applications, files, aliases (soft links), and mounted
file systems and network volumes. In addition, it provides the system with a com-
mon focus, or glue, that enables a smooth user experience when moving from
application to application.

 Formatted disk partitions, or volumes, are usually displayed at the upper right on
the desktop. At the bottom of the screen is the Control Strip, which provides easy
access to applications and system services through a strip of icons that represent
each program or service. The Control Strip is optional and can be resized, moved,
hidden, or minimized. To launch an application or modify a service’s settings, you
click on its icon in the Control Strip.

 At lower right on screen is the Trash icon, which is a metaphor for a real-world
trash can. To delete items such as folders or documents, you toss them into the
Trash by dragging them to the trash can icon. When items are in the trash can, its
icon changes to reflect this fact. To delete all items from the Trash, choose Empty
The Trash from the Finder’s Special menu.

C.2 Interacting with the system

The Macintosh interface primarily uses real-world metaphors to represent com-
puter resources. Navigating and using the system is simple because you already
use many of these metaphors in your daily life.

 On the Macintosh, you organize information in folders (directories). Folders
can contain other folders, documents (files), or other items. Icons represent inter-
face elements such as folders, documents, and disks, which you use to maneuver
the system and perform operations.

 You view and interact with folders and documents through windows. To close
a window, click on its close box. To resize a window, click on the window’s resize
box and, while holding down the mouse button, drag the corner of the window
to its new location. The zoom box toggles between displaying all items in the
window and the original size. To maneuver the window, click on one of the scroll
arrows, the scrollbar itself, or the scroll box (also called the thumb), drag it to the
new position, and release the mouse button.

 To maneuver through the file system, you typically use the mouse to double-click
on icons representing folders until you reach the desired location. Then, you can
perform these tasks:

Mac OS system components 313

■ To launch an application, double-click on the icon for the program.
■ To move a folder or document, click on the icon, drag it to the destination

(perhaps the desktop or another folder), and release the mouse button.
■ To copy an item, do the same thing as in the move operation, but hold down

the Option key.
■ To delete items, click on them and drag them to the Trash.

In all cases, you can select sets of items by holding the Shift key and single-clicking
on each item. Each time, you first select what you wish to work with; then you do
something with it.

 The Mac OS interface contains many more items and features, but these fun-
damentals are enough for you to understand the basics of the interface and its
navigation. For more information, see the Macintosh Human Interface Guide-
lines and Mac OS 8 Human Interface Guidelines.

C.3 Mac OS system components

This section introduces you to the main technical features of Mac OS, from its ini-
tial release in 1984 through the present. These features are contrasted with similar
features of the UNIX operating system.

 The heart of any computer operating system is the kernel. Broadly speaking,
you can view Mac OS as a collection of cooperating system components, distribut-
ing system services between system components. In contrast, Mac OS X is based on
a microkernel design.

 An important element of the Macintosh system, although not technically part
of the traditional notion of an operating system, is the User Interface Toolbox, or
simply the Toolbox. The Toolbox, which was originally located in the ROM but now
resides on disk, is a set of functions that programs access to construct the graphical
elements of a program and interact with core system components. The Toolbox
gives the Macintosh its unique appearance and feel. It defines and implements
routines that handle user interface components like dialog boxes, windows, and
menus; it also provides foundational drawing routines, as well as sound, printing,
memory management, and file services. By providing a fairly complete set of con-
trols, the Toolbox encouraged all developers to use the same controls, thus making
applications similar in look and function. Each group of related routines are
arranged within Managers. For example, memory management functions are part
of the Memory Manager; file functions are part of the File Manager.

 Figure C.2 shows a high-level view of the Macintosh system.

314 APPENDIX C
The precursor of Mac OS X: Mac OS

C.3.1 System file and Finder
Two important files reside on every Macintosh startup disk: the System file and
the Finder. The System file contains components necessary to run the computer.
If the startup disk does not contain a System file, it will not boot. Don’t confuse the
System file with the kernel—they are two different things. Similarly, the System file
contains resources such as fonts, which are not part of a classic kernel.

 The Finder is a program that runs at startup; it provides file-management and
process-invocation functions, and presents the user with the familiar Macintosh
desktop. Later versions of Mac OS X have a multithreaded Finder, allowing users
to perform other tasks as the Finder executes operations such as copying files.

 The System file and Finder are located within the System Folder. The System Folder
collects programs and resources that the operating system needs to run the system.

C.3.2 Process scheduling
Process scheduling under the Macintosh has evolved significantly over the years.
In the early days of the Macintosh, the system was very much a single-process
computer. Switching between programs required you to quit the current program
(which returned you to the Finder) and launch the other program.

 The program Switcher (by Andy Hertzfeld) and Apple’s MultiFinder added
some process management extensions to the Macintosh. Switcher worked by
dividing the Macintosh’s memory into several sections, each of which could hold a
single program. Switcher permitted users to load a single program into a memory
section and switch between the programs, without quitting the current program
and returning to the Finder. However, all programs shared the same screen, so it
was not possible to view more than one program concurrently—Switcher was
non-multitasking.

Figure C.2
The Mac OS system consists of two primary system-level
software components: the operating system and the User
Interface Toolbox.

Mac OS system components 315

 Apple’s MultiFinder, released in 1987, was a cooperative multitasking environment
that allowed all loaded programs to be viewed on the same screen. The function-
ality of MultiFinder was later migrated to Apple’s System 7. Still, it was up to the
user, not the operating system, to switch between programs.

 Cooperative multitasking is implemented as follows. When a user runs a pro-
gram by double-clicking on its icon in the Finder, the operating system loads the
program into memory and schedules it for execution on the CPU. The program
runs only when the currently running program surrenders the CPU. It is the
responsibility of each program—not the operating system—to occasionally hand
over the CPU to allow other programs to run. This implementation is considerably
better than previous scheduling methods, but it is not optimal because one rogue
program can monopolize the CPU and disallow other program from running.3

 Contrast this approach with the way UNIX traditionally schedules processes.
The UNIX process scheduler divides CPU time into time slices, assigning each pro-
cess a quantum of CPU time. If the running process has not terminated by the end
of its quantum, the operating system performs a process switch by preempting the
running process and activating the next. The priority of a process is usually taken
into account when choosing the next process to run. Process scheduling can also
be altered at the user level through the nice and renice commands, which let
you change the current scheduling priority of a process.

C.3.3 Memory management

The Mac OS organizes memory into system and application partitions. Figure C.3
provides an overview of the Mac OS memory layout.

 System components exclusively occupy the system partition; they include system
software, extensions loaded at boot time, and device drivers. The lowest area of
memory is reserved for the system’s global variables, which include the current
application, the system uptime, and the height of the menu bar. Programs typi-
cally access this information through Toolbox calls; the Mac OS does not restrict
direct access.

 The next area of memory is the system heap. It holds operating system code
and data structures.

3 In the Macintosh world, programs are user driven. In a program’s main event loop, it calls the Wait-
NextEvent function, which waits for an event to happen and switches cooperatively to other applications.
This is done transparently to the running application.

316 APPENDIX C
The precursor of Mac OS X: Mac OS

Above the system heap is a partition of memory for loading programs. When a
program is loaded, it’s allocated a chunk of memory from the application partition
based on the application’s SIZE resource. On the Macintosh, a resource holds a spe-
cific piece of information for an application. (Resources are discussed in more detail
in section C.3.7.) The SIZE resource tells the operating system the program’s pre-
ferred and minimum memory requirements. Each application partition is divided
into segments that contain items such as the program heap, stack, and global vari-
ables. On the Macintosh (68k architecture), stacks grow toward low memory and
heaps grow toward high memory. As with other operating systems, the heap is
used mainly for allocating memory.

 As a program runs, it typically allocates and deallocates memory from its appli-
cation heap. Over time, the application’s heap can become fragmented, meaning
that unused memory areas are not contiguous; therefore memory requests that
exceed the size of the largest unused memory area will be rejected, even though
cumulatively enough free memory exists. To address this issue, the Memory Man-
ager performs periodic heap compaction and purging in an attempt to relocate
smaller chunks of memory into contiguous blocks. As you can imagine, moving
memory within the heap at runtime can wreak havoc on application programs that
rely on the addresses of allocated memory.

 Under Mac OS, these semantics are implemented using handles and pointers.
Handles can be moved, but pointers are stuck and cannot be compacted. A handle
is a pointer into a master pointer block that holds pointers to allocated memory. These
pointers can move during heap compaction, which results in stale pointers. The
handle stays valid, even though the pointer it points to has changed. You can

Figure C.3
The Mac OS memory model is primarily organized
into a system partition, which holds system
software and data structures, and application
partitions, which hold application programs.

Mac OS system components 317

lock handles to prevent the master pointers from moving, but doing so can cause
heap fragmentation. Typically, a handle is locked if it is referenced during an
operation that might move memory.

 If a program requires more memory than its application heap provides, it can
request memory from the operating system, which attempts to allocate the mem-
ory from the system’s temporary memory area. Virtual memory was added to the
Mac OS with System 7.

 Under UNIX, processes perform memory management through language-
dependent calls such as malloc, calloc, new, and delete. These calls are available
on the Macintosh in libraries supplied by compiler venders, but Toolbox-defined
memory allocation and deletion calls are preferred because they permit more
control over the allocated memory within the heap.

 The Mac OS does not enforce memory protection of the system or application
partitions. Application programs are free to write to memory outside their address
space, such as the system space or within other application partitions, and poten-
tially take down the entire system. This scenario is not possible under UNIX because
accessing memory outside a program’s address space results in a segment fault
and the process dumping core, but not taking down the operating system or other
processes with it.

C.3.4 Extending the system through system extensions

Extensions have been part of the Macintosh system since the beginning. An Exten-
sion is a program called a code resource that enables you to extend the functionality
of your system. Extensions reside in the Extension Folder (within the System
Folder) and are loaded by the system at startup.4 If you add a new Extension to
the system, you must reboot for it to be loaded. Extensions are popular among
programmers because they allow infinite opportunity to change a system’s behavior.
On the other hand, they are risky because they are challenging to write correctly.
Many of the Macintosh’s most creative programs and hacks are Extensions.

 Some Extensions work by altering and accessing the Mac OS trap dispatch
table.5 At startup, the system creates two trap dispatch tables in low memory: an
operating system trap dispatch table and a Toolbox trap dispatch table. Each table
holds a set of addresses pointing to a single operating system or Toolbox routine.
The code for these routines is located in either RAM or ROM. When an application

4 Control panels can also have Extension components.
5 The true trap dispatch tables have been replaced with TVectors in Power-PC native code.

318 APPENDIX C
The precursor of Mac OS X: Mac OS

calls an operating system or Toolbox routine, a trap (exception) is generated. The
trap dispatcher looks up the call in one of the tables and transfers control to the
routine’s stored address. Once the trapped routine is complete, control returns
to the caller.

 Extensions usually work by first patching a trap dispatch table entry to point to
the address of the Extension code instead of the stored routine. When the patched
routine is called, control transfers to the Extension and its code is executed rather
than the original routine’s code. After the Extension code has executed, the origi-
nal code needs to then be chained and executed. This process sounds simple, but
in practice there are various implementation techniques and subtle details to get
right. If you make a simple mistake, you can cause unexpected system behavior
or, worse, take down the entire operating system.

C.3.5 Interapplication communication (IAC)

The Macintosh implements interprocess communication (IPC)—called interappli-
cation communication (IAC) on the Macintosh—through copy and paste operations
using the clipboard, AppleEvents, or the Program-to-Program Communications
(PPC) Toolbox.

Copy and paste
The simplest technique for sharing data between programs is copy and paste. A
user first selects data from a document and places it on the clipboard through
the cut or copy command. Next, the user switches to a different program and
uses the paste command to insert the data into the program’s document.

AppleEvents
The most popular IAC method is AppleEvents. An AppleEvent is a message whose
format is specified by the AppleEvent Interprocess Messaging Protocol. This
protocol facilitates sharing data and services between applications. A program
that supports AppleEvents is called an AppleEvent-enabled application.

 AppleEvents enable applications to extend their functionality with the services
of other applications and to share their own operations with others. A common
way to interact with AppleEvent-enabled applications is through AppleScript.
AppleScript is a high-level scripting language from Apple that sends AppleEvents
to applications and system services.

Mac OS system components 319

PPC Toolbox
The final IAC mechanism is the Program-to-Program Communications (PPC)
Toolbox. An application can use it to send blocks of data to other applications
and to receive the data other applications have sent to it. The applications can
be on the same system or can reside on a different machine on the network. To use
PPC services, both participating applications must be running and both must
open a port for communication.

UNIX IPC
UNIX supports IPC through mechanisms such as files and locks, pipes, Berkley
sockets and System V derived message queues, semaphores, and shared memory.
There is no UNIX system-level IPC mechanism like AppleEvents. Processes send
messages over sockets or pipes, but the syntax and semantics of the messages are
defined by the individual application programmer.

C.3.6 File system

The Macintosh’s original file system—Macintosh File System (MFS)—was flat. In
1985, Hierarchical File System (HFS) replaced MFS. System 8.1 introduced HFS+,
which contains many extensions to HFS. Among other things, it increased the
number of files possible by adding more allocation blocks, and added support
for longer filenames and international filenames.

C.3.7 Macintosh files

One of the unique innovations of the Macintosh team was the design and structure
of a Macintosh file. Macintosh files are organized into two components called forks:

■ The data fork is composed of the data component of the file.
■ The resource fork contains elements called resources such as strings, sounds,

icons, and runtime memory requirements.

This separation minimizes coupling between related program components and,
in some cases, eliminates the need for recompiling a program if a resource ele-
ment changes. For example, imagine you are developing an application and are
implementing error-handling routines. Commonly, programmers hardcode error
strings into the application code. If you decide to change an error message, you
must recompile the program. File forks change this scenario. Instead, you add error
strings to the resource fork within the string resource. Now, if an error message
changes, it is independent of the program code—no recompilation is required.
Figure C.4 shows a typical resource fork for an application.

320 APPENDIX C
The precursor of Mac OS X: Mac OS

A creator code and a type code identify Macintosh files. The creator code identifies
the program that created the file. For example, files created by BBEdit have the
creator code R*ch. When you double-click on a BBEdit document in the Finder, the
application that created it (BBEdit) is loaded and used to open the file. Compare
this process with UNIX, where, by design, files are viewed as a sequence of bytes;
the file creator and type are deduced by the files extension or, in the case of some
binary files, by the first few bytes of the file.

 The type code specifies the type or kind of file and can help an application deter-
mine how the information in a file is structured. A BBEdit file has the type code TEXT.

 Creator and type codes are meta-information stored in the file system itself.

C.3.8 Graphics

QuickDraw is the fundamental graphics display system for the Macintosh; it’s used
to perform screen-related graphics operations. Originally, QuickDraw supported
only black and white; over the years it has evolved to include support for color
operations as well. Programs use QuickDraw to draw lines and geometric shapes
and perform off-screen drawing as well as other screen-related operations. In
addition, the Menu and Window Managers use QuickDraw to draw menu and
window objects.

Figure C.4
An application’s resource fork, like
the SimpleText editor, is composed
of many resources that collectively
form an application.

Mac OS system components 321

C.3.9 Networking

Mac OS supports networking through AppleTalk, MacTCP, and the Open Trans-
port API. AppleTalk enables computers connected on an AppleTalk network to
communicate by sending and receiving data with one another. The AppleTalk pro-
tocol stack, like TCP, is arranged in a hierarchy that is similar to the Open Systems
Interconnection (OSI) model. MacTCP is an implementation of the TCP protocol
stack for the Macintosh. Both AppleTalk and MacTCP export an API so clients can
access their services.

 Open Transport supplants, and supports, both AppleTalk and MacTCP by pro-
viding a single set of routines offering transport independence. Effectively, you use
the Open Transport API to access the underlying protocol—TCP, UDP, AppleTalk,
or another protocol.

 UNIX primarily supports network-based communication through BSD sockets
and the TCP, UDP, and IP protocols. The Macintosh does not support the BSD
socket interface; instead, it uses platform-specific Open Transport.

323

DA brief history of UNIX

324 APPENDIX D
A brief history of UNIX

The origin of the UNIX1 operating system can be traced to the time-sharing systems
proposed and developed at MIT beginning in the mid-1950s.2 To provide the
necessary historical perspective, I’ll begin with a brief history of computing and
computer operating systems from the 1950s to the inception of UNIX. Against
this backdrop, a clear picture of the foundations of the Mac OS X emerges.

D.1 The origin of UNIX

In the early 1950s, programming languages and operating systems did not exist—
programmers inputted instructions into the computer in machine language from
an operator’s console.3 Once the program was in memory, the programmer exe-
cuted the program and monitored its runtime activity by watching the console
panel’s display lights. If an error occurred, the programmer debugged the program
(in memory) directly from the console. Among the limitations of this approach were
the inefficient use of computer resources and poor use of the programmer’s time.
Because programmers typically had to sign up for computer time, this process
resulted in unused blocks of computer time (because the programmer finished
before the allotted time was up) or the need for the programmer to sign up for
many non-contiguous blocks to solve larger problems.

D.1.1 High-level languages and punch cards
The next generation of machines gave rise to batch processing and time-sharing
systems, as well as the development of high-level languages such as FORTRAN and
COBOL. Before batch processing, programmers wrote their programs in a high-level
language, translated them to punch cards, loaded the cards into the computer, and
executed and debugged the programs.4 In time, special staff called computer opera-
tors took over the task of loading and executing jobs on the machine. The operator
waited until the current job was complete, loaded the card reader with the punch
cards, and read the program into the computer’s memory. If any support pro-
grams were required, they were also loaded.

1 UNIX is a registered trademark of The Open Group: http://www.opengroup.org.
2 See IEEE Annals of the History of Computing, 1992 for several articles on time-sharing and interactive

computing at MIT (listed in the “Resources” section at the end of the book).
3 Machine language is not the same as assembly language. The processor, without compilation or inter-

pretation, can directly execute machine language. A program must translate from assembly language
to machine language before execution.

4 See http://www.cs.uiowa.edu/~jones/cards for more information about, and examples of, the use of
punch cards.

The origin of UNIX 325

 As you can imagine, each job required considerable time to complete, espe-
cially when additional support programs were necessary. Once the job finished,
the operator got the output and made it available to the programmer. These
operations took anywhere from a few hours to many days. This program develop-
ment cycle was ineffective because of the inefficient relationship between program
development time and the time required to run a job. Another problem was poor
CPU utilization, because jobs performing I/O left the CPU idle. During this period,
computers and computing time were not free—in fact, they were quite expensive.
To minimize any unnecessary costs and increase CPU utilization, system designers
developed a technique called batch processing.

D.1.2 Batch processing

Batch processing refers to the batching, or grouping, of related jobs. If several
programs require the same support program (a compiler, for instance), it makes
sense to batch the jobs together so the support program is loaded once, rather
than once per job.

 Let’s look at an example of batch processing. Input jobs are collected and
grouped by the computer operator and written to a magnetic tape by a dedicated
computer. Once a job threshold is reached, the operator moves the tape to the main
computer, which begins processing the tape without operator or programmer
interaction. All jobs on the input tape are processed sequentially, and output is
written to another tape. After running all jobs, the output tape is moved to
another computer, which transfers the stored output to the printer. An important
element of this process is how the computer loads and executes each job from
the input tape. The program that handles this operation, called a monitor or
supervisory system, is the precursor of the modern operating system (see the
“Resources” section of this book: Lee 1992, 14; Tanenbaum 1997, 6; Silberschatz,
Peterson 1989, 6–9). Control cards were added to the process to help the monitor
program control the loading and execution of jobs.

 Batch processing was better than its predecessor, but it did little to reduce pro-
gram development time or to address fully CPU utilization. The main problem
resolved was the reduction of operator time. In the late 1950s, researchers within
academia (as well as their counterparts in industry) began investigating alternatives
and extensions to batch-processing systems. Some thought batch processing—with
expansion and improvement—was the correct course of action. Others, however,
thought that pursuing designs based on batch processing was myopic and pro-
hibitive to developing the next generation of systems.

326 APPENDIX D
A brief history of UNIX

 To extend batch systems, designers added new features such as multiprogramming
and spooling in an attempt to address some of the weaknesses associated with batch
processing.5 These additions somewhat improved CPU usage and job scheduling,
but did not address one of the fundamental problems of batch systems: the time
delay between submitting a job and getting the results. Computers were costly
relative to the programmer; efficiently optimizing the most costly resource (the
computer) means better use of computer time, better job throughput, and lower
computing costs.

D.1.3 Time-sharing

A different approach, which directly addressed the time-delay problem and influ-
enced UNIX, BSD, and future systems, was time-sharing. The idea of time-sharing
began to surface in the mid-1950s and grew to have two meanings. In the paper
“An Experimental Time-Sharing System,” Corbató, Merwin-Daggett, and Daley
describe time-sharing as follows:

One can mean using different parts of the hardware at the same time
for different tasks, or one can mean several persons making use of the
computer at the same time. The first meaning, often called multipro-
gramming, is oriented towards hardware efficiency in the sense of
attempting to attain complete utilization of all components. The second
meaning … is primarily concerned with the efficiency of persons trying
to use a computer. (Corbató, Merwin-Daggett, and Daley 1962, 1.)

The latter definition of the term became associated with the emerging concept of
interactive computing. In fact, time-sharing can be viewed as an implementation
of interactive computing (Lee 1992, 13–14).

 Conceptually, time-sharing occurs at many levels of the computing process.
Traditionally, time-sharing is viewed as multiple users simultaneously accessing
computing resources.

 The evolution of computing research that led to time-sharing constituted a
paradigm shift from the computer being viewed as a discrete, self-contained cal-
culating machine that (more or less) processed jobs sequentially, to the computer
embodying interactive properties, capable of being simultaneously shared among

5 Multiprogramming, a technique based on memory partitioning, allows a single processor to interleave
and execute two or more computer programs. Spool is an acronym for Simultaneous Peripheral Oper-
ation Online. This technique minimizes processing delays when moving data between peripherals and
the CPU (see Tanenbaum 1997, 9).

The origin of UNIX 327

many users. This transformation would not have been possible without advances
in computer hardware (such as the advent of transistors and improvements in
memory technology), the falling cost of hardware, and increased government
funding of research projects. Digital computer networks were a natural outgrowth
of time-sharing, and these technologies formed the theoretical and operational
foundation that led directly to the present day Internet.

CTSS
One of the first time-sharing systems, developed at MIT by Professor Fernando
Corbató, was Compatible Timesharing System (CTSS).6 CTSS was important for
several reasons, but mainly it laid the groundwork for future time-sharing systems
such as MULTICS, DTSS, and UNIX.

MULTICS
Around this time, the Department of Defense’s Advanced Research Projects Agency
(ARPA) began to aggressively fund many research projects designed to further
the nation’s computing defense infrastructure. Dr. J. C. R. Linklider, head of
ARPA’s Information Processing Techniques Office (IPTO), was responsible for
choosing and funding many of the most important projects that undertook the
development of time-sharing systems. Linklider was a true visionary and is one
of the most important and influential thinkers in the history of computing.

 One of the projects funded under Linklider was Project MAC, and one of the
most significant descendants of Project MAC was MULTiplexed Information and
Computing Service (MULTICS).7 MULTICS was a joint project between MIT, General
Electric, and Bell Labs. Bell Labs had been looking for a replacement for its BESYS
operating system and decided that MULTICS was the answer (Pierce 1985, 59). The
project goals were laid out in six papers presented at the 1965 Fall Joint Com-
puter Conference (http://www.multicians.org/papers.html). The Bell Lab contin-
gent included Ken Thompson, Dennis Ritchie, M. D. McIlroy, and Joe Ossanna.

6 CTSS, demonstrated in 1961, was developed at MIT as part of Project MAC. CTSS was an operational
system used as the development system to bootstrap MULTICS. (See Corbató 1962; Lee 1992; Lee,
McCarthy, and Linklider, 1992; IEEE Annals 1992.)

7 ARPA funded Project MAC through a $3 million grant made to MIT. MAC, which stood for “multiple-access
computer,” “machine-aided cognition,” or “man and computer,” was operational by 1963 (Campbell-
Kelly 1996, 214). The main online source for the MULTICS project is http://www.multicians.org.

328 APPENDIX D
A brief history of UNIX

 MULTICS had ambitious goals and pioneered many of the features that were to
become standard in future operating systems, including the hierarchical file system,
virtual memory management, a separate program for command processing (called
the shell), security, and dynamic linking. However, MULTICS suffered excessive
scheduling delays, leaving many of these projects goals’ unreached. This was
largely due to the difficulty of delivering reliable software for such complicated
systems and the contrasting, and often conflicting, goals of the parties involved
(Pierce 1985, 59). In April 1969, Bell Labs withdrew from the MULTICS project
and, through the efforts of Ken Thompson (and later Dennis Ritchie and others)
begin working on an alternative operating system, (See Pierce 1985, 59 and http://
www.multicians.org/unix.html for a discussion of Bell Labs’ withdrawal from the
MULTICS project.)

 In addition to the groups at MIT, other academic groups were developing
and experimenting with time-sharing systems (see http://www.multicians.org/
general.html). Among these was a group at the University of Michigan’s comput-
ing center, which developed the Michigan Terminal System (MTS). A significant
development came from the MTS system: a technique called virtual storage; dis-
cussed in the paper “Program and Addressing Structure in a Time-Sharing Envi-
ronment” (Arden, Galler, O’Brien, Westervelt, 1966). This work came from
collaboration between researchers at the University of Michigan and MIT (see
http://www.clock.org/~jss/work/mts/index.html and Galler, 2001).

D.2 The birth and development of UNIX

The etymologies of the UNIX operating system have been extensively documented.
This section concentrates on the major technical characteristic of UNIX; for more
detailed information on other aspects of its history, see the “Resources” section at
the end of this book.

 UNIX development began at Bell Labs in 1969 by Ken Thompson and, later,
Dennis Ritchie, Joe Ossanna, and Rudd Canaday. The original development was
on a PDP-7 computer; in 1971, it moved to the PDP-11. According to Ritchie:

Thompson wanted to create a comfortable computing environment
constructed according to his own design, using whatever means were
available. His plans, it is evident in retrospect, incorporated many of
the innovative aspects of Multics, including an explicit notion of a
process as a locus of control, a tree-structured file system, a command
interpreter as user-level program, simple representation of text files,
and generalized access to devices. They excluded others, such as

The birth and development of UNIX 329

unified access to memory and to files. At the start, moreover, he and
the rest of us deferred another pioneering (though not original) ele-
ment of Multics, namely writing almost exclusively in a higher-level
language. PL/I, the implementation language of Multics, was not much
to our tastes, but we were also using other languages, including
BCPL, and we regretted losing the advantages of writing programs
in a language above the level of assembler, such as ease of writing
and clarity of understanding. At the time we did not put much
weight on portability; interest in this arose later. (Ritchie 1993, 2)

By the end of 1971, three users within Bell Labs were running UNIX. UNIX was
first described at the Operating Systems Principles Conference (Ritchie 1985, 28)
in 1973.8 A development group was created within Bell Labs to support UNIX, and
that group began supporting and developing commercial versions of UNIX (Sys-
tem III/System V) in 1982. (See http://perso.wanadoo.fr/levenez/unix and http://
minnie.tuhs.org/TUHS/Images/unixtimeline.gif for diagrams of UNIX releases.)

 Many of the technical features embodied in UNIX were evolutionary, but some
were truly groundbreaking. One of these was the reimplementation of the UNIX
kernel in C, which constituted a major event in the history of operating systems.
Up until this time, operating systems were written in assembly language, causing
them to be strongly coupled to specific hardware architectures. With the advent of
C, it was now possible to write an operating system kernel in a high-level language.
Consequently, the operating system was loosely coupled to the hardware on which
it ran, and could be easily ported to other hardware architectures. This feature
significantly contributed to the popularity of UNIX.

 Traditionally, there were two main lines of UNIX releases: the Bell Labs research
versions, which led to the commercial releases of System V Release 4 (SVR[N]);
and versions from the University of California at Berkeley (BSD). Over the past
several years, many free UNIX-like operating systems have emerged, including
Minix, Linux, FreeBSD, and OpenBSD.

 Tables D.1 through D.3 highlight the technical features of various UNIX
releases between 1971 and 1990.9

8 This resulted in the seminal ACM paper on UNIX (Ritchie, Thompson 1974).
9 These tables were collected from the following sources: Pate 1996, 3–5; DiBona, Ockman, Stone 1999,

31–46; Stevens 1990, 11–13; The UNIX FAQ, 6/7.

330 APPENDIX D
A brief history of UNIX

Table D.1 Bell Labs research release

Release Main features

Version 1 (1971) Written in assembler; included a B compiler; included most of
the modern commands, file system, fork(), roff, ed.

Version 2 (1972) -

Version 3 (1973) Added pipes (McIlroy); included a C compiler (Ritchie).

Version 4 (1973) Kernel was rewritten in C.

Version 5 (1974) Included source code; free to universities for educational use.

Version 6 (1975) Nearly all of the OS was written in C. First release available
outside Bell Labs. Release was the basis for John Lions’ “A
Commentary on the Unix Operating System.” 1.xBDS was
derived from this version.

Version 7 (1979) Included the Bourne shell and K&R C compiler. Kernel was
rewritten in C for portability. Licensed by Microsoft to
develop XENIX, uucp. For some, V7 was the “last true Unix,”
an “improvement over all preceding and following Unices”
(UNIX FAQ, 6/7).

Version 8 (1985) Added elements from BSD 4.1BSD; used as the development
version for System V Release 3 (SVR3), STREAM I/O.

Version 9 (1986) Added elements from BSD 4.3BSD.

Version 10 (1989) Last version from Bell Labs.

Table D.2 System III–V releases

Release Main features

System III (1982) First commercial Unix from AT&T. FIFOs (named pipes).

System V (1983) Inner Process Communicated (IPC) package; message queues,
semaphores, shared memory.

System V Release 2 (SVR2) (April 1984) General upgrade.

System V Release 2.0 (November
1984)

Enhancement release including advisory file and record locking,
demand paging.

System V Release 3.0 (SVR3) (1986) Major enhancement to 2.0 including STREAM I/O (from Version
8), poll, Remote File Sharing (RFS), shared libraries, Transport
Layer Interface (TLI), mandatory file and record locking, Transport
Provider Interface (TPI).

System V Release 3.1 (1987) General upgrade.

The birth and development of UNIX 331

Table D.4 summarizes the release dates of the UNIX versions.10

Release Main features

System V Release 3.2 (mid-1988) Included support for Intel 80386; binary compatibility for
programs written for Xenix.

System V Release 4.0 (SVR4)
(late 1990)

Merging of AT&T System V with SunOS (4.xBSD derivative),
Virtual File System (VFS) and Network File System (NFS)
from Sun; different memory management; C and Korn shells;
symbolic links; STREAM-based console I/O and TTY
management; BSD UFS fast file system; job control; sockets;
memory-mapped files; real-time scheduling and partial kernel
pre-emption; C compiler conforming to ANSI X3J11.

Table D.3 BSD release features

Release Main features

BSD (early 1977) Pascal compiler, ex.

2BSD (mid 1978) vi, termcap (both by Bill Joy).

3BSD (December 1979) (based on
Version 7 32V)

Virtual memory kernel, 32/V utilities, features from 2BSD.

4BSD (1980) Job control (originally by Jim Kulp), auto reboot, 1K block file
system, Franz Lisp system, better mail handling, reliable signals.

4.1BSD (June 1981) Auto configuration code (Robert Elz)

4.1aBSD (1982) TCP/IP protocols (Robert Gurwitz); r commands (rcp, rsh,
rlogin, rwho).

4.1bBSD (1982) Fast file system (Marshal Kirk McKusick).

4.1cBSD (April1983) Revised IPC; reorganization of the kernel sources, isolating
machine dependencies.

4.2BSD (August 1983) New signal facilities; re-implemented standalone I/O system to
simplify the install process; disk quote (Robert Elz); updates of
documentation.

4.3BSD (1986/1990) NFS, VFS/vnodes, kernel debugger, enhanced network support.10

10 For detailed information on releases of BSD from 4.3BSD, see DiBona, Ockman, Stone 1999, 31–46.

Table D.2 System III–V releases (continued)

332 APPENDIX D
A brief history of UNIX

Table D.4 UNIX releases

Date
Bell Lab research
versions (BLRV)

Commercial versions based on Bell Lab
research versions

University of
California at

Berkley (BSD)

1971 BLRV (V1)

1972 BLRV (V2)

1973 BLRV (V3)

1973 BLRV (V4)

1974 BLRV (V5)

1975 BLRV (V6)

1979 BLRV (V7)

1977 BSD

1978 2BSD

1979 3BSD

1980 4BSD

1981 4.1BSD

1981 4.1aBSD

1982 4.1aBSD,
4.1bBSD

1983 4.1cBSD

1983

1985 BLRV (V8)

1982 System III

1983 System IV

1983 System V

1984 System V Release 2

1984 System V Release 2.0

1986 BLRV (V9) System V Release 3.0 4.3BSD

1987 System V Release 3.1 4.3BSD

1988 System V Release 3.2 4.3BSD

1989 BLRV (V10) 4.3BSD

1990 System V Release 4.0 4.3BSD

GNU, Free Software Foundation, and open source 333

D.3 GNU, Free Software Foundation, and open source

This section discusses the GNU Project (GNU), the Free Software Foundation
(FSF), and the open source movement, focusing on their importance to software
developers. There are fundamental philosophical differences among these groups,
reflected in their advocated licensing policies.

 Richard Stallman founded the GNU Project in 1984.11 The GNU Project’s stated
software goal is to develop a completely free UNIX-like operating system. The FSF
supports the GNU Project. The following quote describes the FSF:

The Free Software Foundation (FSF), founded in 1985, is dedicated
to promoting computer users’ right to use, study, copy, modify, and
redistribute computer programs. The FSF promotes the development
and use of free (as in freedom) software—particularly the GNU oper-
ating system (used widely today in its Linux variant)—and free (as in
freedom) documentation. The FSF also helps to spread awareness of
the ethical and political issues of freedom in the use of software.
(http://www.gnu.org/fsf)

The FSF is concerned with much more than just supporting the development of
free software. The FSF seeks to support and foster an environment that encourages
the sharing of ideas. In this context, users of software have the freedom to examine
the source code of the software programs they use, can extend them if they wish,
and are obliged to share their source code additions with the community. Under
this model, no one has the right to restrict the dissemination of knowledge by
restricting the availability of source code.12

 This movement stands in direct contrast to the commercial software industry.
This industry views software as the property of the company that created it, and
is therefore closed. Under this scheme, software delivered in binary form does
not include its source code, or contains restrictions on the source code’s use and
dissemination; licensing agreements prohibit sharing the source code with the
outside user community. In recent years, this view has changed as seen in Apple’s
adoption of many open source ideals and its use and support of the Darwin oper-
ating system.

11 GNU is a recursive acronym for “GNU’s Not Unix” (guh-NEW). The official online site is at http://
www.gnu.org. Richard Stallman is the original author of emacs and gcc; see http://www.stallman.org.

12 For another interesting point of view, see Linux Magazine 1999.

334 APPENDIX D
A brief history of UNIX

 GNU software falls under the category of open source. According to the GNU
Project, “‘Free software’ and ‘open source’ describe the same category of software,
more or less, but say different things about the software, and about values. The GNU
Project continues to use the term ‘free software’, to express the idea that freedom,
not just technology, is important” (http://www.fsf.org/gnu/the-gnu-project.html).

 The open source movement shares many of the same ideas as the free software
movement (availability of source code; the ability to freely copy, extend, and dis-
tribute a program), but it was founded on different principles and promotes dif-
ferent goals. Eric Raymond and Bruce Perens, founders of the open source
movement, were concerned that the philosophical ideology and emphasis on free-
dom promoted by the free software movement were turning off traditional busi-
nesses. This factor caused Linux and free software tools to stay within the confines
of research and universities and not make inroads into businesses, which they
believed was preventing Linux and other free tools from growing. The principles
of the open software movement are enumerated in the Open Source Definition,
which was originally based on the Debian Free Software Guidelines.13

 To illustrate these licensing issues, imagine that you would like to use Microsoft
Word to document your programs, but its memory and disk requirements are
excessively high for your machine. Because you only use a subset of Word’s features,
you really need a scaled-down version of the program—say, Word-Lite. Under com-
mercial software policies, you have limited options: you can upgrade your current
machine by adding more disk space and memory, buy a new machine, or find
another program that meets your needs. If Word were available under an open
source license, it would come with its source code. You would be legally entitled to
modify any code you wished, in this case creating a new version of the program
that consumes less resources. If the original Word program was licensed under the
GPL and you decided to distribute your program, you would be required to distrib-
ute all source code, including your additions, along with the program. If Word was
licensed under a BSD-like license, you would be required to retain the original
copyright notice with the program. The actual licensing agreements are far more
inclusive and detailed than indicated in these examples.

13 See the article “The Open Source Definition” (DiBona Ockman Stone, 1999) for more information on
the history of open source.

UNIX software development philosophy 335

D.4 UNIX software development philosophy

In his book The UNIX Philosophy, Mike Gancarz presents a list of philosophical
convictions that collectively embody and described the spirit of UNIX (Gancarz
1995). These include:

■ Small is beautiful.
■ Make each program do one thing well.
■ Build a prototype as soon as possible.
■ Choose portability over efficiency.
■ Store numerical data in flat ASCII files.
■ Use software leverage to your advantage.
■ Avoid captive user interfaces.
■ Make every program a filter.

An example demonstrates these traits. Imagine you wish to write a program that
counts the number of lines in a project’s C source files and displays the total num-
ber of lines. Further, imagine that the project directory contains two subdirectories,
each of which contains project code. Tasks include finding all source files ending
in .c under the project directory, counting the number of lines in each source
file, summing the source lines, and printing the result.

 One approach is to write a single program that performs all the tasks. The
program would contain code, possibly structured as functions or classes, which
handles each task. Although this is a perfectly legitimate design, it is not the way
most UNIX users would attack the problem. A UNIX design would be based on a
collection of small, simple programs linked together to collectively solve the
problem. New code would be written only if a link in the chain did not already
exist. This goes hand in hand with making every program a filter—programs do
not know whether their input is coming from a user or another program, nor
should they care whether the user, or still another program, is using their results.

 To find the source files, you could use the find command; to count the lines, and
the wc command. To connect to commands, you use a pipe.14 Using two commands
and a pipe, you can solve without writing any new code. Here is the command to
perform the task:

% find myproject -name "*.c" | xargs wc -l

14 A pipe, conceived by Doug McIlroy, is a one-way IPC technique for passing information from one process
to another. UNIX users use pipes extensively to link tools (Salus 1994, 50–53).

336 APPENDIX D
A brief history of UNIX

The find command searches the directory tree for all files that match the base file-
name specified by -name (in this case, all files ending in .c). The output of the find
command is piped to wc, which counts the number of lines in each file (-l) and dis-
plays the totals. Here is the output for the find command and the entire command:

% find myproject -name "*.[c]"
myproject/sub0/foo.c
myproject/sub1/bar.c
myproject/main.c

% find myproject -name "*.[c]" | xargs wc -l
14 myproject/sub0/foo.c
14 myproject/sub1/bar.c
20 myproject/main.c
48 total

This is by no means the only way to solve the problem, but it demonstrates the
principles embodied in the UNIX philosophy: use and design simple programs
with clean and clear interfaces that do one thing well and that can be linked
together to do powerful things.

337

resources

338 RESOURCES

In addition to the information that appears in this book, many other books,
papers, and online sources are available to help you continue learning about
Mac OS X and related topics. This section lists the sources used in this book, as
well as others you will find useful.

In print
Apple Computer Inc. Learning Cocoa. Ed. Troy Mott. Sebastopol, CA: O’Reilly, 2001.

Apple Computer Inc. Macintosh Programmer’s Introduction to the Macintosh Family. Reading,
MA: Addison-Wesley, 1988.

Arden, B. W., B. A. Galler, T. C. O’Brien, and F. H. Westervelt. “Program and Addressing
Structure in a Time-Sharing Environment.” Journal of the ACM 13, no. 1 (1966):1–16.

Bach, Maurice J. The Design of the UNIX Operating System. Englewood Cliffs, NJ: Prentice-
Hall, 1986.

Bolinger, Don, and Tan Bronson. Applying RCS and SCCS. Sebastopol, CA: O’Reilly, 1995.

Bovet, Daniel, and Marco Cesati. Understanding the Linux Kernel. Beijing; Cambridge,
MA: O’Reilly, 2001.

Buck, Eric, Donald Yacktman, and Scott Anguish. Cocoa Programming: Programming for the
MAC OS X. Indianapolis: Sams, 2001.

Campbell-Kelly, Martin, and William Aspray. Computer: A History of the Information Machine.
New York: Basic Books, 1996.

Corbato, F. J. “A Paging Experiment with the Multics System.” In In Honor of Philip M.
Morse, ed. Herman Feshbach and K. Uno Ingard. Cambridge, MA: M.I.T. Press, 1969.

Corbato, F. J., M. Merwin-Daggett, and R. C. Daley. “An Experimental Time-Sharing Sys-
tem.” Paper read at AFIPS Proc. 1962 Spring Joint Computer Conf.

Davis, Kelly. “UNIX Genesis Story.” Paper read at The UNIX Review, 1985.

“The Development of the C Language.” In Proceedings of the Conference on History of Pro-
gramming Languages, ed. R. L. Wexelblat. New York: ACM Press, 1993.

DiBona, Chris, Sam Ockman, Mark Stone, and NetLibrary Inc. Open Sources: Voices from
the Open Source Revolution. Beijing; Sebastopol, CA: O’Reilly, 1999.

Dougherty, Dale, and Arnold Robbins. Sed & awk. 2nd ed. Sebastopol, CA: O’Reilly, 1997.

Fogel, Karl and Moshe Bar. Open Source Development with CVS. 2nd ed. Scottsdale, AZ:
Coriolis Group, 2001.

Galler, Bernie. “A Career Interview with Bernie Galler.” By Enid H. Galler. IEEE Annals of
the History of Computing 23, no. 1 (2001):22–33.

Gamma, Erich. Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional Computing Series. Reading, MA: Addison-Wesley, 1995.

RESOURCES 339

Gancarz, Mike. The UNIX Philosophy. Boston: Digital Press, 1995.

Garfinkel, Simson, and Michael K. Mahoney. Building Cocoa Applications. Sebastopol, CA:
O’Reilly, 2002.

Goodman, Danny. Danny Goodman’s AppleScript Handbook. 2nd ed. New York: Random
House Electronic Pub., 1994.

Hauben, Michael and Ronda. Netizens: On the History and Impact of Usenet and the Internet,
chapter 5. Los Alamitos, CA: IEEE Computer Society Press, 1997.

Hillegass, Aaron. Cocoa Programming for Mac OS X. Boston: Addison-Wesley, 2002.

IEEE Annals of the History of Computing 14 (1992).

Knaster, Scott, and Keith Rollin. Macintosh Programming Secrets. 2nd ed. Reading, MA:
Addison-Wesley, 1992.

Knaster, Scott. How to Write Macintosh Software: The Debugging Reference for Macintosh. 3rd ed.
Reading, MA: Addison-Wesley, 1992.

Lee, J. A. N. “CTSS—The Compatible Time-Sharing System.” IEEE Annals of the History
of Computing 14, no. 1 (1992).

———. “Time-Sharing at MIT: Introduction.” IEEE Annals of the History of Computing 14,
no. 1 (1992).

Lee, J. A. N, John McCarthy, and J. C. R. Licklider. “The Beginnings at MIT.” IEEE
Annals of the History of Computing 14, no. 1 (1992):18–30.

Leon, Alexis. A Guide to Software Configuration Management. Boston: Artech House, 2000

Lions, John. Lions’ Commentary on UNIX. 6th ed. with source code. Menlo Park, CA: Peer-
to-Peer Communications, 1996.

Macintosh Programmer’s Toolbox Assistant (computer data and program). Cupertino,
CA: Addison-Wesley, 1995.

McCarthy, John. “Reminiscences on the History of Time Sharing.” 1983, Winter or Spring.

McKusick, Marshall Kirk. “A Berkeley Odyssey.” Paper read at The UNIX Review, 1985.

McKusick, Marshall Kirk, et al. The Design and Implementation of the 4.4BSD Operating System.
Reading, MA: Addison-Wesley, 1996.

Mark, Dave, and Cartwright Reed. Macintosh C Programming Primer. 2nd ed. Reading, MA:
Addison-Wesley, 1992.

Moody, Glyn. Rebel Code: Linux and the Open Source Revolution. London; New York: Allen
Lane, 2001.

Pate, Steve D. UNIX Internals: A Practical Approach. Harlow, England; Reading, MA: Addison-
Wesley, 1996.

Pavlicek, Russell. Embracing Insanity: Open Source Software Development. Indianapolis:
Sams, 2000.

340 RESOURCES

Perry, Bruce W. AppleScript in a Nutshell: A Desktop Quick Reference. Sebastopol, CA:
O’Reilly, 2001.

Peterson, James Lyle, and Abraham Silberschatz. Operating System Concepts. Reading, MA:
Addison-Wesley, 1985.

Pogue, David. Mac OS X: The Missing Manual. 2nd ed. Sebastopol, CA: Pogue Press/
O’Reilly, 2002.

Ritchie, Dennis. N. “The UNIX Time-sharing System—A Retrospective.”

———. “Reflections on Software Research.” Paper read at The UNIX Review, 1985.

Salus, Peter H. A Quarter Century of UNIX. Reading, MA: Addison-Wesley, 1994.

Sánchez, Wilfredo. “The Challenges of Integrating the Unix and Mac OS Environments.”
Paper presented at the USENIX 2000 Annual Technical Conference, Invited Talks, San
Diego, June 19, 2000. http://www.mit.edu/people/wsanchez/papers/USENIX_2000.

Siewiorek, Daniel P., C. Gordon Bell, and Allen Newell, eds. Computer Structures: Principles
and Examples. New York: McGraw-Hill, 1982.

Silberschatz, Abraham, Peter B. Galvin, and Greg Gagne. Operating System Concepts. 6th ed.
New York: John Wiley & Sons, 2002.

Steinberg, Gene. Mac OS X version 10.1 Little Black Book. Scottsdale, AZ: Coriolis Group, 2002.

Stephenson, Neal. In the Beginning … Was the Command Line. New York: Avon Books, 1999.

Sydow, Dan Parks. Mac OS X Programming. Indianapolis: New Riders, 2002.

———. Macintosh Programming Techniques: A Foundation for All Macintosh Programmers. New
York: M&T Books, 1994.

Tanenbaum, Andrew S. Modern Operating Systems. 2nd ed. Upper Saddle River, NJ: Prentice
Hall, 2001.

Tanenbaum, Andrew S., and Albert S. Woodhull. Operating Systems: Design and Implementa-
tion. 2nd ed. Upper Saddle River, NJ: Prentice Hall, 1997.

Van der Linden, Peter. Expert C Programming! Englewood Cliffs, N.J.: SunSoft Press, 1994.

Wilde, Ethan. AppleScript for Applications. Berkeley, CA: Peachpit Press, 2002.

Varian, Melinda. “VM and the VM Community: Past, Present, and Future.” 1997.

Vyssotsky, Victor. “Putting UNIX in Perspective: An Interview with Victor Vyssotsky.” By Ned
Pierce. Paper read at The UNIX Review, 1985.

Online
AppleScript. http://www.apple.com/applescript.

AppleScript Central. http://www.applescriptcentral.com.

AppleScript Sourcebook. http://www.applescriptsourcebook.com/home.html.

RESOURCES 341

Approved Licenses. Open Source Initiative. http://www.opensource.org/licenses.

Aqua Human Interface Guidelines. http://developer.apple.com/techpubs/macosx/Essentials/
AquaHIGuidelines.

BBEdit. Bare Bones Software. http://www.barebones.com.

BrickHouse. http://personalpages.tds.net/~brian_hill/brickhouse.html.

BSD Central. http://www.bsdcentral.com.

Charlie’s Emacs Page. http://www.messengers-of-messiah.org/~csebold/emacs/.

CM Bubbles. http://www.loria.fr/~molli/cm-index.html.

CM Today Yellow Pages. http://www.cmtoday.com/yp/configuration_management.html.

Cocoa Developer Documentation: New to Cocoa Programming. http://developer.apple.com/
techpubs/macosx/Cocoa/SiteInfo/NewToCocoa.html.

“Common Threads: Sed by Example, Part 1.” By Daniel Robbins. IBM developerWorks.
http://www-106.ibm.com/developerworks/linux/library/l-sed1.html?dw-zone=linux.

“Common Threads: Sed by Example, Part 2.” By Daniel Robbins. IBM developerWorks.
http://www-106.ibm.com/developerworks/linux/library/l-sed2.html?dw-zone=linux.

“Common Threads: Sed by Example, Part 3.” By Daniel Robbins. IBM developerWorks.
http://www-106.ibm.com/developerworks/linux/library/l-sed3.html?dw-zone=linux.

Darwin. http://developer.apple.com/darwin.

Darwin Developer Documentation. http://developer.apple.com/techpubs/macosx/Darwin.

Dotemacs. http://www.dotemacs.de/.

Doug’s AppleScripts for iTunes & SoundJam. http://www.malcolmadams.com/itunes/scrx-
cont.shtml.

Emacs Implementations. http://www.finseth.com/~fin/emacs.html.

Erik Sundermann’s XEmacs Customization Page. http://petaxp.rug.ac.be/~erik/xemacs/.

Fink: Unix Software for Your Mac. http://fink.sourceforge.net.

FreeBSD. http://www.freebsd.org.

Free Software Foundation. http://www.gnu.org/fsf.

GNU-Darwin Distribution. http://gnu-darwin.sourceforge.net.

GNU Emacs for Mac OS X. http://www.porkrind.org/emacs.

GNU Mac OS X Public Archive. http://www.osxgnu.org.

GNU’s Not Unix! The GNU Project. http://www.gnu.org.

History of Computing. http://ei.cs.vt.edu/~history/index.html.

“An Incomplete History of the QED Text Editor.” By Dennis Ritchie. http://cm.bell-labs.com/
cm/cs/who/dmr/qed.html.

342 RESOURCES

Inside Mac OS X: System Overview. http://developer.apple.com/techpubs/macosx/Essentials/
SystemOverview/index.html.

Jargon File. http://www.tuxedo.org/~esr/jargon/.

“Joy of Unix.” By Eugene Eric Kim. Linux Magazine, November 1999. http://www.linux-
mag.com/1999-11/joy_04.html.

KernelTrap. http://www.kerneltrap.org.

Linux Distributions. Linux Online. http://www.linux.org/dist.

MacDevCenter.com. O’Reilly Network. http://www.macdevcenter.com/mac.

Mac OS X. http://www.apple.com/macosx.

Mac OS X developer page. http://developer.apple.com/macosx/.

Mac OS X Development Tools. http://developer.apple.com/tools/index.html.

Mac OS X Documentation Essentials. http://developer.apple.com/techpubs/macosx/Essentials/.

Mac OS X Programming: Getting Started. http://developer.apple.com/macosx/gettingstarted.

Mach 4 Project. http://www.cs.utah.edu/flux/mach4/html/Mach4-proj.html.

Michigan Terminal System. http://www.clock.org/~jss/work/mts/index.html.

MINIX Information Sheet. http://www.cs.vu.nl/~ast/minix.html.

Multics. http://www.multicians.org.

Multics Emacs: The History, Design and Implementation. By Bernard S. Greenberg. http://
www.multicians.org/mepap.html.

NetBSD Project. http://www.netbsd.org.

Object-Oriented Programming in Objective-C. http://www.cs.indiana.edu/classes/c304/
oop-intro.html.

Objective-C. http://developer.apple.com/techpubs/macosx/Cocoa/ObjectiveC/.

Objective-C: Documentation. http://www.slip.net/~dekorte/Objective-C/Documentation/
Index.html.

Objective-C: Publications, Books, Articles, Interviews, etc. By Brad Cox. http://www.virtual-
school.edu/lang/objectivec.

Omni Group. http://www.omnigroup.com/.

Omni Group: Developer page. http://www.omnigroup.com/developer.

Once Upon a Time …: Linux history. http://www.educ.umu.se/~bjorn/linux/misc/linux-
history.html.

OpenBSD. http://www.openbsd.org.

Open Group: Working for Interoperability. http://www.opengroup.org.

Operating System Technical Comparison. http://www.osdata.com/oses.

OSNews: Exploring the Future of Computing. http://www.osnews.com/index.php.

RESOURCES 343

Perl.com: The Source for Perl. O’Reilly Network. http://www.perl.com.

Project Builder. http://developer.apple.com/tools/projectbuilder.

Project Mach. http://www-2.cs.cmu.edu/afs/cs/project/mach/public/www/mach.html.

Punched Cards. By Douglas W. Jones. http://www.cs.uiowa.edu/~jones/cards.

RCS. http://www.cs.purdue.edu/homes/trinkle/RCS/#DOC.

RubyCocoa. http://www.imasy.or.jp/~hisa/mac/rubycocoa

Scriptable Applications: iTunes. http://www.apple.com/applescript/itunes.

Scripting: AppleScript. XPressobar. http://www.xpressobar.com/MakeItFaster/scripting.shtml.

SED as a Pipe Tool. Softpanorama University Classic Unix Tools. http://www.softpanorama.org/
Tools/sed.shtml.

Software Configuration Management. SEWeb. http://see.cs.flinders.edu.au/seweb/scm/.

Splint. http://www.splint.org.

TECO—The Original “One True Editor.” Christopher Browne’s Web Pages. http://
www.ntlug.org/~cbbrowne/teco.html.

Ten Commandments for C Programmers. By Henry Spencer. http://www.cs.umd.edu/
users/cml/cstyle/ten-commandments.html.

Tower Floor—C Programming. http://www.sct.gu.edu.au/~anthony/info/C/.

UNIX History. http://www.levenez.com/unix/.

UNIX References. http://www.technion.ac.il/technion/tcc/usg/Ref/UNIX.html.

UNIX release diagram. http://minnie.tuhs.org/TUHS/Images/unixtimeline.gif.

“Version Management with CVS.” By Per Cederqvist et al. Concurrent Versions System.
http://www.cvshome.org/docs/manual/.

Vim: The Editor. http://vim.sourceforge.net.

XFree86 Project, Inc. http://www.xfree86.org.

345

index

Symbols

./configure 37

.icns file 155, 239
creating 239

.NET 181
@ token 175
@end 175
@interface 175

A

About Box 241
action 105, 216–217

connecting 216–217
activate 274, 277
ADC TV 302
Address Book 280
administrator 33
Advanced Research Projects

Agency (ARPA) 327
Alignment panel 214
alloc 190–191
allocated memory

tracking 188
allocation information

capturing 149
allocation routine 135

monitoring execution 135
reporting runtime

problems 135
storing diagnostic

information 135
Alpha 127
ancestor file 132
ANSI C 174

Apple developer site 54
Apple Help Indexing Tool 128
Apple Help Viewer 128
Apple menu 10, 310
AppleEvent 49, 115,

264, 318
AppleEvent-enabled

program 249
AppleScript 48, 78, 246, 248,

271, 318
AppleScript Studio 128, 264,

269, 278
adding code to project 274
application 78
background 269
building an interface 271
example 270
script handlers 272

applet 251
application dictionary 265
background 248
communicating with

AppleEvent-enabled
program 249

compiled script 251
constants 256
creating script 250
debugging 261
dictionary 50
droplets 251
example 49, 249
iTunes example 264
language 254

arithmetic 258
commands 254
comments 260

comparison 258
control statements

(if, else if) 256
data types 255
Date, List, Record 255
file operations 260
iteration 257
logical 258
objects 254
subroutines 259
tell, try, timeout 258

object hierarchy 254
Script Editor 49, 250
Script Runner 251
scripting additions

(osaxen) 253
SOAP 261
vs. UNIX scripting

languages 49
XML-RPC 261

applet 80, 251
building 144

AppleTalk 321
application

launching 313
application development

tools 127
application distribution

creating 144
application environment 16,

20, 22
BSD 25
Carbon 24
Classic 23
Cocoa 24
Java 25

346 INDEX

application icon
creating 239
storing 155

Application Kit 64, 182, 188, 224
Interface Builder 188

application menu 10
application process model 18
Application Services 21

Quartz 22
Application Services layer 16
Application Task menu 311
application threads

viewing interaction with
Thread Viewer 152

AppSupport 226, 230
Aqua 8, 16, 26, 51
Aqua guides 65, 213
Aqua Human Interface

Guidelines 12, 65, 208
arithmetic operator 258
as 122
assembly listings

comparing 126
asymptotic complexity 184
asynchrony 152
autodiskmount 36
autorelease 190–191
autorelease pool 191

local copy 192
awk 48, 112, 247, 271, 275
AWT 80

B

B::Lint 121
bar 139
Bare Bones Software 209
base class 175
batch processing 324–325
BBEdit 127, 209, 241, 320
beginSheet 225
being relationship 196
Berkeley Line Printer Daemon

(LPD) 280
Berkley socket 319
Big Nerd Ranch 201
big-O notation 185
binary file

viewing in hex 126
bison 61
Boolean 255

boot process 36
BootROM 36
init process 36
kernel initialization 36
Power Of Self Test (POST) 36
rc scripts 36
SystemStarter 36

BootROM 36
BootX 36
brace

indenting 125
breakpoint 74
BrickHouse 39
BSD 16, 18, 22, 25, 36, 329

emulation 20
emulation layer 15
layer 16
Ports Collection 54
socket 321

buffer
overflow 143
overwrite 140

detecting 165
underwrite 140

BuggyServer 137
build commands 69
build operation

displaying progress 74
build settings 68, 91

applying 90
viewing 75

build status 91
build style 67–68, 75, 87

applying 97
Deployment 89
Development 89

bundle 37, 61, 78, 80, 155
building 144

byte count 306

C

C++ 173, 201
cal 295
call stack 139

browser 139
displaying 139
displaying contents 140
leaks 139
sampling 148
traversing 74

viewing 74
calloc 317
CamelBones 202
Carbon 16, 20, 22, 24, 61, 78–80

building applications 144
Carbon emacs 115
Carbon Managers 21
cat 53
category 178

adding methods to
classes 178

CC compiler 99
cd 305
Chain of Responsibility design

pattern 194, 197
changing directory 305
changing file permission 306
changing group 306
character

indenting 125
checking syntax 77
chgrp 306
child class 175
child process 151
chmod 306
class 174–175

creating 215
Class Info window 105
class instance 174

creating 218
class method 177
Classic 16, 22–23
clipboard 10, 318
closing brace

adding automatically 125
cmp 126
COBOL 324
Cocoa 16, 20, 22, 24, 61–62,

78–80, 101, 173, 182
accessing from Perl 293
Apple sample site 234
AppleScript Studio 128
Application Kit 182, 187
building applications 144
design patterns 194
event handling 197
Foundation 182
getting filename from

user 230
GUI for command-line

tool 111

INDEX 347

Cocoa (continued)
MVC 194
NSDictionary 184

example 184
NSEvent 198
NSString 182

example 182
openPanel 231
other development

languages 200
C++ 201
Perl 201
Ruby 202

runtime system 182
steps of building

application 220
Cocoa application

constructing user interface 101
designing user interface 209

CocoaWGet 205
controller 224
creating help 241
creating icon 239
design 208
extensions 233
GUI 206
interface 210
model 221
requirements 207
view 224

code
indenting 124

Code Fragment Manager
(CFM) 143

code resource 317
CodeWarrior 60
Codewarrior 115
collection 184
Command pattern 195
command-line development

tools 156
command-line tool

C 81
C++ 81
Core Foundation 81
Core Services framework 81
Foundation framework 81

comment 260
common memory errors 136
common subexpression

elimination 282

Common UNIX Printing
System (CUPS) 280

communication
between operating system

layers 17
comparing files 130, 306
comparison operator 258
Compatible Timesharing

System (CTSS) 327
compiled script 251
compiler flag 97, 99
compiler options 99
compiler settings 91
composition 175
compress 306
compressing data 306
computer operator 324
Concurrent Versions System

(CVS) 83
accessing within Project

Builder 87
checkout 86
creating respository 84
importing project 85
initializing for first use 84
setting environment

variables 84
setup for Project Builder 83

configuration management 117
conformsTo 180
connecting actions 217
connecting outlets 217
console

viewing contents 74
container 184
content-based documentation

search 287
Contents pane 71

Bookmarks view 73
Breakpoints view 74
Classes view 71
Executable view 74
Files view 71
Target view 73

control card 325
control statement 256
Control Strip 312
controller 194, 224
controls

aligning 213, 215
distance between 213

cooperative multitasking 14, 315
Copland 5
copy 190
copy and paste 318
copying files or folders 305
Core Foundation 21

framework 80–81
Core Graphics Rendering

library 22
core graphics services 22
Core Services 20

Carbon Managers 21
Core Foundation 21
Open Transport 21

Core Services framework 81
Core Services layer 16
CoreGraphics 147
cp 305
CPAN 252
creating new directory 305
creator code 320
cron 36, 144
csh 31
cString 183
CTSS 29
cursor-handling 22
CVS 53, 117, 144

CVS features 117
setting up 120

CVS environment variable
setting 84

CVS import 85
CVS init 84, 120
CVS menu 87
CVS repository 120

creating 83
CVSEDITOR 84–85, 120
CVSROOT 84, 120

D

Darwin 5, 15, 156
core layer 20

Darwin Collection 54
Darwin Ports 54
data

decompressing 306
data fork 319
data member 174, 176

viewing contents 74
data persistence 176

348 INDEX

data state 176
Date 255
dead code elimination 282
dealloc 190–191
Debian 207

Free Software Guidelines 334
debugging 74, 97, 261

commands 70
information

displaying 262
memory errors 136
message

displaying 74
debugmalloc 189
decompressing data 306
defaults write 286
delegation 196

implementing 196
Delegation design pattern 194
delete 317
delta 120
Deployment build style 89
derived class 175
design pattern 193

Chain of Responsibility 196
Delegation 196
description 193
Model-View-Controller

(MVC) 194
Target/Action 195

desktop 8, 310, 312, 314
DesktopDB 36
developer tools 112, 302

getting 50
Development build style 89
device management

dynamic 18
dialog box 11
dictionaryWithContentsOf-

File 297
diff 113, 126, 129,

131, 306
difference file 120
directories

changing 31, 305
comparing 129
creating 305
merging after

comparison 129
paths

copying 31

disclosure triangle 235
dispatch table 238
display dialog 253, 262
DisplayCat 63
distributed objects 181, 294
Dock 10
documentation

searching 287
viewing 75

documentation file 128
downloadWindow 225
Drawers 12
drivers

dynamically loaded and
unloaded 18

droplet 79, 251
dual boot machine 23
duplicate 265
dyld 97
dynamic binding 135
dynamic device

management 18
dynamic library

creating 97
dynamic link library

loading into address space 97
dynamic linking 328
dynamic memory

allocation 135
dynamically typed

languages 174

E

ed 48, 112–113, 130, 247
Edit menu 10, 311
editing text files 306
editor

Aqua-based 122
line-mode 112
Project Builder 122
screen-mode 113
stream-mode 113

elisp 115
else if 256
emacs 53, 98, 112–114, 306

differences among
versions 115

Mac OS X versions 115
terminal mode 115
within Project Builder 122

empty project 78
enabling event tracing 200
encapsulation 174
errors

detecting with
MallocDebug 135

event cycle 198
event loop 198
event tracing 200
event-driven system 197
event-handling 22
Events 249
ex 116
exec 277
execution profile

displaying 161
exit 256
Extension Folder 317

F

false 256
Fibonacci 87
field 174, 176
file

adding to project 81
comparing 129,

132, 306
comparing to common

ancestor 129
copying 305, 313
deleting 313
filtering 74, 132
finding 307
identifying 320
merging 132
merging after

comparison 129
moving 305, 313
removing 305
revision history 120
searching for a token 74
viewing 306

file format
preserving 123

File Manager 21, 313
File menu 10, 311
file paths

copying 31
file permission

changing 306

INDEX 349

file system 16, 18, 39, 319
HFS+ 43
hierachical file system

(HFS) 18
hierachical file system plus

(HFS+) 18
layout 39

Local domain 40
Network domain 39
System domain 40
User domain 39

maneuvering 312
network file system (NFS) 18
stack 19
UNIX file system (UFS) 18
Virtual File System (VFS) 18

File Transfer Protocol
(FTP) 180

FileMerge 113, 129, 131
ancestor file 132

file-related calls
tracking 149

find 48, 307, 335
Finder 41, 280, 310, 314

controlling hidden files 42
finding files 307
Fink 207

project 53
firewall 39
flex 61
folder

copying 305, 313
deleting 313
moving 305, 313
removing 305

font
displaying for language

elements 124
foo 139
fork 319
fork/exec 151, 231
formatCommandLine 222
FORTRAN 324
Foundation 182, 186

class hierarchy 182
Foundation framework 81
framework 61–62, 78, 80

building 144
Cocoa 182

free 135
free software 333–334

Free Software Foundation
(FSF) 333

FreeBSD 18, 329
fs_usage 160
fsck command 45
function 259
fvwm 51

G

g++ 53, 99, 112, 122, 144
creating links 122
static analysis 121

garbage collection
135, 189

gcc 53, 61, 99, 112,
122, 144

compiler flag 99
creating links 122
static analysis 121

gcc 3.1
profile-driven

optimization 282
gdb 53, 61, 74, 112,

122, 144
General Image Manipulation

Program (GIMP) 239
getAllProcesses 277
getData 222, 238
getDirectory 230–231
getFilename 230–231
getParameters 229
getSaveFile 230
getValue 222
global search 74
GNOME 28, 51
GNU 54
GNU emacs 114
GNU Mac OS X Public

Archive 54
GNU Project 333–334
gnuplot 271, 277
gnuzip 306
gprof 68, 97, 150, 156, 161

example 161
Graphic Converter

132, 239
grep 275
group

changing 306
gzip 306

H

handle 316
has a relationship 196
have relationship 196
head 306
heap 165, 316

compaction 316
fragmentation 317
purging 316

help book 128, 243
help file

creating 241
creating index file 242
preparing 128

Help menu 10, 311
help system 32
Help Viewer 33, 241–242
HFS (hierarchical file system) 18
HFS+ 319
HFS+ (hierarchical file system

plus) 18
Hierarchical File System

(HFS) 319, 328
high-level language 324
Human Interface Guide-

lines 7, 12
HyperCard 269

I

I/O Kit 16, 18, 36, 80
icns Browser 155
icns files 155
icon

adding to project 240
creating 132

Icon Composer 132, 155,
239–240

icon file 132
alpha mask 132
Graphic Converter 132
sizes 132

if 256
illegal memory write 142
illegal write 140
immutable string 182
implementation 175

file 219
implementation file 77
import 85

350 INDEX

inData 233
indenting code 124
index file 242
indexing tool 242
inetd 36
inheritance 175, 178

multiple 178
single 178
vs. delegation 196

init 222
init process 36
initializing data members 222
initToDefaults 222
Inkwell 281
installing programs from

packages 37
installing programs from source

code 37
instance

creating 215
instance method 177
Integer 255
Integrated Development Envi-

ronment (IDE) 58
CodeWarrior 60
MPW 59, 283
THINK C 59
THINK Pascal 59

interactive computing 326
interactive editor 112
interapplication communication

(IAC) 318
Interface Builder 61, 81,

100, 133
AppleScript Studio 128
building program

interface 210
connecting outlet to

interface 105
creating interface objects 103
linking interface to code 104
Nib file 101
palette 81
palette window 105
testing interface 107

interface component
adding 103
aligning 213
linking to code 104

interface definition 175
interface design 209

interface file 77, 219
interface object

creating 103
editing 103

internationalization 21
Internet Printing Protocol

(IPP) 280
Inter-Process

Communication 49, 318
Interprocess Messaging

Protocol 318
IP 321
IPC infrastructure 17
ipchains 39
ipfw 39
is a relationship 196
ISO 9660 18
iteration statement 257
iTunes 209, 264

scripting services
supported 265

J

Jaguar 23, 280
development tools 281
features 280
gcc 3.1 281
PerlObjCBridge 293

example 295
features 293

Quartz Extreme 281
Rendezvous 281
Terminal application 289

Jam 96
JAR file 134
Java 16, 22, 25, 61, 78,

80, 181
vs. Objective-C 181

Java application
building 144
creating from JAR files 134
MRJAppBuilder 134

Java class documentation
viewing 133

JavaBrowser 133
javadocs

viewing 133
Job Control Language

(JCL) 247
joe 113, 116

K

KDE 28, 51
kernel 14, 313
kernel environment 15–16
kernel extension 78, 80

building 144
Kernel Extensions (KEXT) 19, 61
kernel initialization 36
kextd 36
keyboard navigation 12
keyboard options 12
kill 45, 307

L

language-based syntax
highlighting 127

LaTeX 127
launch 231
launchedTaskWithLaunch-

Path 231
layout rectangle 213
LCLint 121
ld 97
leak 139, 163

example 163
legacy programs 23
less 32
libtool 97
line count 306
line ending

maintaining 123
line-mode editor 112
link

operations 97
option 97
settings 91

lint 99, 121, 189
Linux 329, 334
List 255
listing directory contents 304
loadData 222–223
local search 74
locking scheme 151
log 256, 263
logging message

displaying 74
logical operator 258
loop 257
ls 53, 284, 304

INDEX 351

M

Mac OS 5, 14, 310
Mac OS 8 Human Interface

Guidelines 313
Mac OS 9 23, 80
Mac OS X 5

architecture 13
interaction of layers 128

Mac OS X architecture
compared to Mac OS 14

Mac OS X Server 5
Mach 16–17, 36
Mach kernel 16

and threads 152
mach_init 36, 44
machine language 324
Macintosh File System (MFS) 319
Macintosh Human Interface

Guidelines 7, 313
Macintosh Programmer’s Work-

bench (MPW) 59, 283
Macintosh user interface 6
Macintosh vs. UNIX

development 111
MacMAME 23
MacTCP 321
Mail 12, 209, 280
main 139
MainMenu.nib 65
mainWindow 225
make 37, 122
make install 37
makefile 58
malloc 135, 139, 317
malloc allocations

displaying 165
malloc/free 189
malloc_history 165

example 166
malloc-allocated buffers

listing 165
MallocDebug 135–136, 138,

140, 143, 149
correcting memory-related

errors 143
debugging command-line

applications 143
finding memory-related

errors 143
options 138

MallocStackLogging 166
MallocStackLoggingNo-

Compact 166
man 32
man pages 32
Managers 313
MANPATH 32
master pointer block 316
memory

accessing outside address
space 317

allocating 316
deallocating 183

memory allocation
checking 135
collecting 143
stepping through 143
viewing 143

memory allocator 135
memory error

debugging 136
memory leak 140

detecting 163
finding with MallocDebug 140

memory management 188,
315, 317

C 189
Cocoa 190
garbage collection 189
Objective-C 190

Memory Management
Utilities 21

Memory Manager 313, 316
memory object

displaying 165
memory protection 17
Memory Viewer Panel 140
memory-related errors

detecting 135
menu bar 8, 310
menu item

adding 103
changing text 103
deleting 103

message 177
routing to views 197
routing to windows 197

message connections
setting up 219

messaging 17
setting up 219

MetaCard 269
method 174, 176

adding to classes using
categories 178

Metrowerks 60
Michigan Terminal System

(MTS) 328
microkernel 14
microkernel design 313
Minix 329
mkdir 305
modal dialog box 11
model 194
modeless dialog box 11
Model-View-Controller

(MVC) 194, 208
monolithic kernel 14, 17

scheduling 152
more 53, 112
Moriarity 234, 237
moving files or folders 305
MRJAppBuilder 134
MULTICS 29, 327
MultiFinder 314–315
multiple inheritance 175, 178, 180
MULTiplexed Information and

Computing Service
(MULTICS) 327

multiprogramming 326
multithreaded application

debugging 152
writing 151

multithreading 150
description 151

mutable string 182
mutex 151
mv 305
MyTask 227, 230–231

N

NDDocument 78, 80
nedit 113, 116
NetInfo Manager 35
Network domain 39
Network Kernel Extension

(NFS) 20
networking 16, 19, 321

services 18
new 317
New File 81

352 INDEX

NeXT 24, 101, 182
NeXTSTEP 5, 24
NFS (network file system) 18
Nib file 79, 101–103, 219
nibtool 102
nice 45, 315
non-freed memory allocation

detecting 165
non-interactive editor 112
noResponderFor 199
nroff 32
NSApp 225
NSApplication 192, 198–199
NSButton 229
NSDictionary 184, 186, 297
NSFileHandle 233
NSFileHandleReadCompletion

Notification 238
NSMutableDictionary 186, 208,

221, 295, 297
NSMutableString 182, 222
NSNotificationCenter 238
NSObject 178
NSOffState 229
NSOnState 229
NSOpenPanel 230
NSPipe 233
NSSavePanel 230
NSString 182–183, 231
NSTask 231

launching subtask 231
NSTraceEvents 200
NSView 198
NSWindow 198
Number 255
nvi 116

O

object 174
type checking 180

object persistence 180
ObjectAlloc 143

playback feature 143
Objective-C 173

background 173
categories 178
classes 175
data members 176
distributed objects 181
main features 174

messages 177
methods 176
object persistence 180
protocols 180
why learn 181

object-oriented
terminology 174

Omni Group 209
Online Help menu 241
O-notation 185
Open Darwin 54
Open Source definition 334
open source movement 333–334
Open Systems Interconnection

(OSI) model 321
Open Transport 21, 321

API 321
OpenBSD 329
OpenGL 22
openPanel 230–231
OpenSSH 307
OpenStep 25
operating system

communication between
layers 17

optimization
common subexpression

elimination 282
dead code elimination 282
profile driven optimization 282

optimization level 96
optimization techniques 281
organizing scripts 251
osaxen 253
outlet 105, 216

connecting 216–217
connecting to interface 105

P

PackageMaker 144
page faults

reporting 160
PAGER 32
Palette window 64
parent class 175
parent process 151
pasting path at command

prompt 304
pathname delimiter 43

colon vs. forward slash 43

pbxbuild 97
PDF 22
PEF container 143
PEF Viewer 143
performance analysis 148
performance execution

profile 97
performance statistics 68

acquiring 166
Perl 48–49, 53, 61, 112, 201,

247, 264
CPAN 252

PerlObjCBridge 202, 280, 293
example 295
registering Perl objects as

notification recipients 294
–pg flag 68
Photoshop 239
pi 256
pipe 48, 319, 335
Pixie 144
playlist 264
plotting 277
plug and play 18
plug-in 81

building 144
pointer 316
Portable Distributed Objects

(PDO) 181
portmap 36
POSIX 18, 280
POSIX thread library 151
POST 36
Power On Self Test 36
PowerPC (PPC) 60
PowerPlant 60
preemptive multitasking 14,

17, 156
preference file 296
Preference Pane 81
preference settings

accessing and storing 296
private 176
process 152

getting status
information 156

profiling 166
terminating 307

process automation 246
process identifier 45
process management 45

INDEX 353

process scheduling 14, 17,
314–315

process status information 156
process usage statistics 307
processor

management 17
ProcessViewer 45, 47
profile driven optimization 282
profile-directed

optimization 281
profiling 147
profiling code 68, 97
program output

displaying 74
program performance

analysis 97
programs

Apple-event enabled 249
installing from packages 37
installing from source

code 37
Program-to-Program Communi-

cations (PPC)
Toolbox 318–319

project
placing under version

control 85
Project Builder 61, 67, 144, 283

Active Target menu 70
adding files to a project 81
AppleScript Studio 128
build 69
build and debug

command 69
build style 67
Build tab 74
build tools 68
build, link options 91
clean active target 70
command-line tools 97
Contents pane 71

Bookmarks view 73
Breakpoints view 74
Classes view 71
Executable view 74
Files view 71
Target view 73

creating a new project 78
creating build styles 87
CVS 87
debug 69

Debug pane 74
debugging 287
debugging commands 70
displaying build output 91
editor 75, 122

check syntax 77
indentation 124
Syntax Coloring 123
Text Editing option 123

editor preferences 90
emacs support 90
enabling debugging 97
event tracing 200
example 62
external editors 127
find 74
gcc 3.1 283
gcc optimization settings 96
inline scripting 283
interface 69
pbxbuild 97
preferences 90
profiling code 97
project templates 209
project types 78

application 78
bundle 80
Empty Project 78
Framework 80
Kernel Extension 80
Pure Java 80
Standard Apple Plug-ins 81
Tool 81

Run pane 74
script menu 286
semantic code analysis 99
setting link options 97
status bar 78
target 67
target editor 286
target, build style example 67
toolbar 69
version control 119
warning flags 100

project template 209
PropertyListEditor 144–145
propriety list 145

storing application
parameters 145

protected 176
protocol 180

ps 45, 112, 136, 156, 158, 271,
274, 307

Pslint 135, 189
pthreads 151
public 176
punch card 324
Pure Java 80
Purify 189
pw 284
Python 48–49, 247, 264

Q

Quartz 22, 51, 146, 197
Quartz Debug 146

example 147
Quartz Extreme 281
QuickDraw 22, 320
QuickTime 22, 281

R

rc scripts 36
RCS 53, 83, 117

setting up 120
RCS file 120
Real 255
Record 255
reference counting 190

example 190
regression testing 126
regular expression search 74
release 190–191
remind 295
Remote Method Invocation

(RMI) 181
Remote Procedure Calls

(RPC) 181
removing files or folders 305
Rendezvous 281
renice 45, 315
repeat 256
reset 228
resource 316, 319
resource fork 123, 155, 319
Resource Manager 79
responder chain 198–199
retain 190
return 256
Revision Control System (RCS) 83
Rexx 247

354 INDEX

Rhapsody 5
rm 305
root 33
root directory 39
Ruby 202, 247, 264
RubyCocoa 202
run levels 44

Solaris 44
run modes

Mac OS X 44
RedHat Linux 44

running operation
stopping 234

runTask 227, 232
runtime memory

tracking usage 135
runtime performance

analysis 148
runtime system

Cocoa 182

S

sample 166
example 166

Sampler 148, 161, 166
saveData 222
savePanel 230
say 262
sc_usage 158
scheduling priority 152
scp 307
screen-mode editor 113
screensaver module 81
script

debugging 261
running from a menu 286
storing 286

scripting addition 253
installing 253

scripting language 48,
246–247

background 48
choosing 264

scripts
organizing 251

Scripts folder 286
scroll box 312
search and replace 74
search type

choosing 74

regular expression 74
textual 74

searching documentation 287
security 328

background 39
BrickHouse 39
ipfw 39

security policies 18
sed 61, 112–113
selecting

multiple files or folders 304
single file or folder 304

semantic checking 121
semantic code analysis 100
semaphore 151, 319
sendmail 36
serialization 180
setAllowsMultipleSelec-

tion 231
setCanChooseDirectories 231
setCanChooseFiles 231
setStandardError 233
setStandardOutput 233
setState 229
setValue 222
sh 247
shared memory 319
Sheet 12, 225

displaying 225
shell 29, 58, 328

background 29
shell command

executing 284
shells

changing 30
Sherlock 280, 281
Simula 173–174
single inheritance 178
single-user mode 44
SIZE resource 316
Smalltalk 173–174
SOAP 261
socket 319
Software Configuration Man-

agement (SCM) 117
software emulation 23
Software Emulation layer 22
source code

displaying 75
editing 75
printing 124

Source Code Control System
(SCCS) 117

space 256
Splint 121

annotation 121
building 121

spooling 326
sprintf 183
ssh 39, 307
stack 316
Standard Template Library

(STL) 184
startProcess 237
startup items 36
StartupScript file 286
State design pattern 196
static analysis 135, 173
static code analysis 99, 121
static library

creating 97
static method 176–177
static methods 230
static profiling 283
statically typed languages 173
status bar 78
stderr 74
StdIO buffer

viewing contents 74
stdout 74
Step Into 71
Step Out 71
Step Over 71
stepping into code 74
Strategy design pattern 196
stream-mode editor 113
String 255
string preferences 21
stringByExpandingTildeIn-

Path 223
stringWithContentsOfFile

183, 295
stringWithCString 183
stub 294
StuffIt 306
StuffIt Expander 306
subroutine 259
subtask

launching 231
sudo 34
SuperCard 269
superview 199

INDEX 355

Swing 80
Switcher 314
symmetric multiprocessing 17
syntax

checking 77
syslog 36
system call usage statistics 158
system calls

reporting 160
System domain 40
System file 314
System Folder 314
system heap 315
system logs 45

BSD location 45
Console 45

system partition 315
System Preference 34, 81
system usage statistics 307
System V derived message

queue 319
System V Release 4 329
SystemStarter 36

T

tab 256
tail 306
talk 307
talking to another user 307
tar 306
target 67–68, 75, 87
target action 195
target settings

viewing 75
Target/Action design

pattern 194
task 18
Tcl 247
TCP 321
TCP Wrapper 39
tcsh 31
TECO 113–114
tell 258
Terminal 25, 29–30, 51, 280

anti-aliasing of fonts 293
copying paths to shell 31
dragging text between

windows 293
splitting window 292
transparent window 293

vt100/vt220 emulation 293
Terminal preferences

setting 289
terminating a process 307
Test Interface 107
Text 255
Text Encoding Conversion

Manager 21
text files

editing 306
TextEdit 271
textual search 74
THINK C 59
Think Class Library 60
THINK Pascal 59
thread activity

displaying 153
thread library 151
Thread Manager 21
Thread Viewer 150, 152

example 152
vs. sc_usage 160

threading 150
threading primitive 151
threads 18, 151–152

current state 152
scheduling 17

thumb 312
timeout 258
time-sharing 324, 326, 328

systems 29
Tkinter 129
tool

building 144
Tool Command Language

(Tcl) 127
Toolbox 24, 313
top 45–46, 53, 112, 136,

156–158, 292, 307
examples under different

OSs 157
trace file 261
trap 318
trap dispatch table 317
trap dispatcher 318
Trash 312
true 256
trueprint 124
try 258
twm 51
type code 320

U

UDP 321
UFS (UNIX file

system) 18
uncompress 306
UNIX

commands under Mac
OS X 46

communication
commands 307

development philoso-
phy 335

etymology 328
file/directory com-

mands 304
kernel 329
open source software

installing 207
philosophy 111
process management

commands 307
releases 329
technical features 329

unreachable code
removing 282

unzip 306
update 36
user accounts 33

administrator 33
creating 34
enabling root 35
root 33

User domain 39
user interface 7–8

Apple menu 10
application menu 10
application-defined

menus 10
Aqua 8, 26
component layout 144
creating 100
designing 100, 132
desktop 8
dialog boxes 11
Dock 10
Drawers 12
menu bar 8
testing 107
window layering 11

userland 20, 112

356 INDEX

V

variables
viewing contents 74

version
checking out 86

version control 85, 117
background 117
choosing 117
example 117
geographically distributed

team 119
multiple developers 117

vi 53, 112–113, 116, 306
terminal vs. GUI version 116

View Layout Rectangles 213
View menu 10
viewing binary files 126
viewing files 306
views 194, 224

cycling between 77
updating 228

vim 113, 116
Virtual File System 43
virtual memory 17, 317

management 328

Virtual PC 23
virtual storage 328
Visitor design pattern 196
volume 312
VSIZE 158

W

warning message 100
wc 48, 306, 335
wget 205

example 205
installing 207

WGetParameters 221
window

adding 103
closing 312
layering 11
management 22
manager 16
moving 312
resizing 312

Window menu 311
word count 306
worksheet 59, 283

writeToFile 183, 295
writeToURL 183

X

X server 113
X Window 51

installing on Mac OS X 52
rooted (full screen) 52
rootless 52

X11 applications 52
XDarwin 52
XEmacs 115
XMethods 261
XML services 21
XML-RPC 261
xxd 126

Y

ytalk 307

Z

zcat 306

	Programming Mac OS X: A Guide for Unix Developers
	Cover

	Contents
	foreword
	preface
	acknowledgments
	about this book
	about the author
	about the cover illustration
	PART 1 OVERVIEW
	1 Welcome to Mac OS X
	1.1 Introduction
	Origins of Mac OS X

	1.2 The Macintosh user interface
	1.3 The Mac OS X user interface
	The desktop
	Menus
	The Dock
	Window layering
	Dialog boxes
	Drawers
	Keyboard navigation
	Other interface features

	1.4 The Mac OS X architecture
	Architecture layers
	The kernel environment
	Core Services layer
	Application Services layer
	Application Environment layer
	Aqua

	1.5 Summary

	2 Navigating and using Mac OS X
	2 2.1 Introduction
	2.2 Shells
	Terminal features

	2.3 Help system
	Help Viewer

	2.4 User accounts and privileges
	Creating user accounts

	2.5 Booting and default services
	2.6 Programs and Mac OS X bundles
	2.7 Security issues
	2.8 File system
	Finder
	Case sensitivity and pathname delimiters

	2.9 Single-user mode
	2.10 System log files
	2.11 Processes management
	2.12 Common commands and tools
	2.13 Scripting languages
	AppleScript

	2.14 Development tools
	2.15 X Window under Mac OS X
	Installing the X server

	2.16 UNIX to Mac OS X software projects
	2.17 Summary

	PART 2 TOOLS
	3 Project Builder and Interface Builder
	3.1 Introduction
	Macintosh Programmer’s Workbench
	THINK Pascal and THINK C
	CodeWarrior
	Project Builder and Interface Builder

	3.2 Creating an application with Project Builder
	3.3 Project Builder in depth
	Targets and build styles
	Project Builder’s UNIX tools
	Project Builder’s interface
	Project Builder scenarios

	3.4 Creating an application with Interface Builder
	Interface Builder scenarios

	3.5 Summary

	4 Development tools
	4.1 Introduction
	4.2 UNIX development tools under Mac OS X
	Editors
	Mac OS X editing tools
	Version control
	Static code analysis tools

	4.3 Compilers and build tools
	4.4 Mac OS X Aqua-based development tools
	UNIX-based editors
	Mac OS X-based editors

	4.5 Apple’s GUI-based development tools
	Apple Help Indexing Tool
	AppleScript Studio
	FileMerge
	Icon Composer
	Interface Builder
	JavaBrowser
	MRJAppBuilder
	MallocDebug
	ObjectAlloc
	PEF Viewer
	PackageMaker
	Pixie
	Project Builder
	PropertyListEditor
	Quartz Debug
	Sampler
	Thread Viewer
	icns Browser

	4.6 Apple’s command-line development tools
	ps (process status) and top (system usage statistics)
	sc_usage: showing system call usage statistics
	fs_usage: reporting system calls and page faults related to the filesystem in real-time
	gprof: displaying execution profile data
	leaks: searching a process’s memory for unreferenced malloc buffers
	heap: listing all the malloc-allocated buffers in the process’s heap
	malloc_history: showing malloc allocations that a process has performed
	sample: profiling a process during a time interval

	4.7 Summary

	PART 3 PROGRAMMING
	5 Objective-C and the Cocoa development frameworks
	5.1 Introduction
	5.2 Introduction to Objective-C
	Object-oriented terminology
	Classes
	Messages
	Categories
	Protocols
	Other features
	Why learn Objective-C?

	5.3 Cocoa software infrastructure
	Foundation
	Application Kit
	Memory management
	Design patterns
	Cocoa event handling

	5.4 Other Cocoa development languages
	C++
	Perl
	Ruby

	5.5 Summary

	6 Cocoa programming
	6.1 Introduction
	6.2 The CocoaWGet example program
	6.3 Program requirements
	6.4 Program design
	6.5 Building the interface
	Opening the project
	The interface components
	Control alignment and spacing
	Forms
	Classes and instances

	6.6 CocoaWGet: implementing code with Project Builder
	The model
	The view
	The controller

	6.7 Program extensions
	Letting the user cancel downloads
	The application icon
	The help file

	6.8 Summary

	7 AppleScript programming
	7.1 Introduction
	7.2 Scripting languages
	7.3 AppleScript
	Creating and running a script
	Types of AppleScripts
	AppleScript extensions
	The AppleScript language
	Choosing a scripting language

	7.4 Example applications of AppleScript
	iTunes and AppleScript
	AppleScript Studio

	7.5 Summary

	8 Mac OS X and beyond
	8.1 Introduction
	8.2 Development tools
	Compilers
	Project Builder
	Changing compilers
	Inline scripting
	New target editor
	Searching documentation

	8.3 Terminal application
	Setting Terminal preferences
	Splitting the Terminal window
	Other Terminal additions

	8.4 The PerlObjCBridge
	PerlObjCBridge example

	8.5 Summary

	A Getting and installing development tools
	B UNIX and Mac OS X command mappings
	B.1 Common Mac OS X operations
	B.2 UNIX file/directory commands mapped to Mac OS X commands
	List directory contents: ls
	Copy/move files or folders: cp, mv
	Remove files or folders: rm
	Change directory: cd
	Create a new directory: mkdir
	Change file permission and group: chmod, chgrp
	Compare files: diff
	Get the word, line, or byte count: wc
	Compress and decompress data: compress, uncompress, tar, gzip,gnuzip, unzip, zcat
	Edit text files: emacs, vi
	View files: head, tail
	Find files: find

	B.3 UNIX communication commands mapped to Mac OS X commands
	OpenSSH: ssh, scp
	Talk to another user: talk, ytalk

	B.4 UNIX process management commands mapped to Mac OS X commands
	Show system and process usage statistics: top, ps
	Terminate a process: kill

	C The precursor of Mac OS X: Mac OS
	C.1 A tour of the Mac OS interface
	C.2 Interacting with the system
	C.3 Mac OS system components
	System file and Finder
	Process scheduling
	Memory management
	Extending the system through system extensions
	Interapplication communication (IAC)
	File system
	Macintosh files
	Graphics
	Networking

	D A brief history of UNIX
	D.1 The origin of UNIX
	High-level languages and punch cards
	Batch processing
	Time-sharing

	D.2 The birth and development of UNIX
	D.3 GNU, Free Software Foundation, and open source
	D.4 UNIX software development philosophy

	resources
	index
	Team DDU

