Programming Mac OS X:
A GUIDE FOR UNIX
DEVELOPERS

KEVIN O MALLEY

MANNING

Programming Mac OS X

Programming Mac OS X

A GUIDE FOR UNIX DEVELOPERS

KEVIN O'MALLEY

MANNING

Greenwich

(74° w. long.)

For electronic information and ordering of this and other Manning books,
go to www.manning.com. The publisher offers discounts on this book
when ordered in quantity. For more information, please contact:

Special Sales Department

Manning Publications Co.

209 Bruce Park Avenue Fax: (203) 661-9018
Greenwich, CT 06830 email: orders@manning.com

©2003 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books they publish printed on acid-free paper, and we exert our best efforts to that end.

Manning Publications Co. Copyeditor: Tiffany Taylor
/I/I 209 Bruce Park Avenue Typesetter: Denis Dalinnik
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-930110-85-5

Printed in the United States of America
123456789 10— VHG - 05 04 03 02

0 N O O

brief contents

Welcome to Mac OS X 3
Navigating and using Mac OS X 27

Project Builder and Interface Builder 57
Development tools 109

Objective-C and the Cocoa development frameworks 171
Cocoa programming 203

AppleScript programming 245

Mac OS X and beyond 279

contents

foreword xiu

preface xv

acknowledgments xvii

about this book xix

about the author — xxiii

about the cover illustration — xxiv

Welcome to Mac OS X 3

1.1

1.2
1.3

1.4

1.5

Introduction 4

Origins of Mac OS X 5
The Macintosh user interface 6

The Mac OS X user interface &

The desktop 8 = Menus 8 = The Dock 10

Window layering 11 = Dialog boxes 11 * Drawers 12

Keyboard navigation 12 = Other interface features 13
The Mac OS X architecture 13

Architecture layers 15 = The kernel environment 16

Core Services layer 20 = Application Services layer 21

Application Environment layer 22 = Aqua 26
Summary 26

vii

viii CONTENTS

Navigating and using Mac OS X 27

2.1 Introduction 28
2.2 Shells 29

Terminal features 31

2.3 Help system 32

Help Viewer 33
2.4 User accounts and privileges 33

Creating user accounts 34
2.5 Booting and default services 36

2.6 Programs and Mac OS X bundles 37
2.7 Security issues 39
2.8 File system 39

Finder 41 = Case sensitivity and pathname delimiters 43

2.9 Single-user mode 44
2.10 System log files 45
2.11 Processes management 45
2.12 Common commands and tools 46

2.13 Scripting languages 48

AppleScript 48
2.14 Development tools 50

2.15 X Window under Mac OS X 5]/

Installing the X server 52
2.16 UNIX to Mac OS X software projects 53

2.17 Summary 54

Project Builder and Interface Builder 57

3.1 Introduction 58

Macintosh Programmer’s Workbench 59
THINK Pascal and THINK C 59 = CodeWarrior 60
Project Builder and Interface Builder 60

3.2 Creating an application with Project Builder 62

CONTENTS ix

3.3 Project Builder in depth 67

Targets and build styles 67 = Project Builder’s UNIX tools 68
Project Builder’s interface 69 = Project Builder scenarios 78
3.4 Creating an application with Interface Builder 100

Interface Builder scenarios 101

3.5 Summary 108

Development tools 109

4.1 Introduction 110

4.2 UNIX development tools under Mac OS X 112

Editors 112 = Mac OS X editing tools 113
Version control 117 = Static code analysis tools 121
4.3 Compilers and build tools 122

4.4 Mac OS X Aqua-based development tools 122

UNIX-based editors 122 = Mac OS X-based editors 127
4.5 Apple’s GUI-based development tools 127

Apple Help Indexing Tool 128 = AppleScript Studio 128
FileMerge 129 = Icon Composer 132

Interface Builder 132 = JavaBrowser 133

MRJAppBwilder 134 = MallocDebug 135 = ObjectAlloc 143
PEF Viewer 143 = PackageMaker 144 « Pixie 144
Project Builder 144 = PropertyListEditor 144

Quartz Debug 146 = Sampler 147 = Thread Viewer 150
icns Browser 155

4.6 Apple’s command-line development tools 156

ps (process status) and top (system usage statistics) 156
sc_usage: showing system call usage statistics 158
[fs_usage: reporting system calls and page faults related to the
filesystem in real-time 160 = gprof: displaying execution
profile data 161 = leaks: searching a process’s memory for
unreferenced malloc buffers 163 = heap: listing all the
malloc-allocated buffers in the process’s heap 165
malloc_history: showing malloc allocations that a process

has performed 165 = sample: profiling a process during

a time interval 166

4.7 Summary 167

CONTENTS

Objective-C and the Cocoa development frameworks

5.1
5.2

5.3

5.4

5.5

Introduction 172

Introduction to Objective-C 173

Object-oriented terminology 174 = Classes 175
Messages 177 = Categories 178 = Protocols 180
Other featwres 180 = Why learn Objective-C? 181

Cocoa software infrastructure 182
Foundation 182 = Application Kit 187

Memory management 188 = Design patterns 193
Cocoa event handling 197

Other Cocoa development languages 200
C++ 201 = Perl 201 = Ruby 202
Summary 202

Cocoa programming 203

6.1
6.2
6.3
6.4
6.5

6.6

6.7

6.8

Introduction 204

The CocoaWGet example program 205
Program requirements 207

Program design 208

Building the interface 209

Opening the project 209 = The interface components 210
Control alignment and spacing 212 = Forms 215
Classes and instances 215

171

CocoaWGet: implementing code with Project Builder 220

The model 221 = The view 224 = The controller 224
Program extensions 233

Letting the user cancel downloads 234
The application icon 239 = The help file 241

Summary 243

CONTENTS

AppleScript programming 245
7.1 Introduction 246

7.2 Scripting languages 247

7.3 AppleScript 248

Creating and running a script 250 = Types of AppleScripts 251
AppleScript extensions 252 = The AppleScript language 254
Choosing a scripting language 264

7.4 Example applications of AppleScript 264
iTunes and AppleScript 264 = AppleScript Studio 269

7.5 Summary 278

Mac OS X and beyond 279

8.1 Introduction 280

8.2 Development tools 281
Compilers 281 = Project Builder 283 = Changing compilers 283
Inline scripting 283 = New target editor 286
Searching documentation 287

8.3 Terminal application 289

Setting Terminal preferences 289
Splitting the Terminal window 292
Other Terminal additions 293

8.4 The PerlObjCBridge 293
PerlObjCBridge example 295
8.5 Summary 300

Getting and installing development tools 301

UNIX and Mac OS X command mappings 303

B.1 Common Mac OS X operations 304
B.2 UNIX file/directory commands mapped to Mac OS X
commands 304

List directory contents: Is 304
Copy/move files or folders: cp, mv 305
Remove files or folders: rm 305 = Change directory: cd 305

xi

xii CONTENTS

Create a new directory: mkdir 305

Change file permission and group: chmod, chgrp 306

Compare files: diff 306 = Get the word, line, or byte count: we 306
Compress and decompress data: compress, uncompress, tar, gzip,
gnuzip, unzip, zeat 306 = Edit text files: emacs, vi 306

View files: head, tail 306 = Find files: find 307

B.3 UNIX communication commands mapped to
Mac OS X commands 307

OpenSSH: ssh, scp 307 = Talk to another user: talk, ytalk 307
B.4 UNIX process management commands mapped to Mac

OS X commands 307

Show system and process usage statistics: top, ps 307
Terminate a process: kill 307

The precursor of Mac OS X: Mac OS 309

C.1 A tour of the Mac OS interface 310
C.2 Interacting with the system 312

C.3 Mac OS system components 313

System file and Finder 314 = Process scheduling 314
Memory management 315

Extending the system through system extensions 317
Interapplication communication (IAC) 318

File system 319 = Macintosh files 319 = Graphics 320
Networking 321

A brief history of UNIX 323

D.1 The origin of UNIX 324

High-level languages and punch cards 324
Batch processing 325 = Time-sharing 326

D.2 The birth and development of UNIX 328
D.3 GNU, Free Software Foundation, and open source 333
D.4 UNIX software development philosophy 335

resources 337

index 345

foreword

Apple’s release of the Macintosh in 1984 heralded a computer revolution in ease
of use for nontechnical people. Over time, computers and computer interfaces
split into three main camps: Microsoft Windows, the Macintosh, and the various
flavors of UNIX.

UNIX has been a traditional favorite of the research and scientific community
for a variety of reasons. With the rise of Linux, it has become more popular than
ever. Now Apple has brought the worlds of Macintosh user experience and
UNIX together to form Mac OS X. With a full-featured UNIX system as the
driving engine, the two worlds have merged.

All that remains is to create better software for this new blended environment.
This has proven to be challenging. Many UNIX developers haven’t written code
for graphical user interfaces, while many Macintosh developers haven’t written
code based on UNIX environments. Bringing these two diverse types of devel-
opers to the same playing field can be difficult because they each need to learn
from the other.

This book is a large step forward in facilitating that combined knowledge.
While introducing UNIX developers to the tools available under Mac OS X at a
favorite price point (i.e., free), it also shows Macintosh developers how to adapt to
this new environment and make the most of the new tools now available to them.

This book is a clear roadmap for learning to write software under Mac OS X.
As a longtime Macintosh developer (with a little UNIX experience), I can say

xiii

Xiv

FOREWORD

this with confidence. I got the chance to read this book just as I was making the
transition from MacOS 9 to Mac OS X. It has helped my understanding of this
new environment by refocusing my UNIX knowledge to this new target.

For the experienced UNIX developer, this book is your native guide to the
Mac OS X landscape. It speaks both your language and the language of the
natives, helping you quickly make the transition to Mac OS X development.

While the transition from UNIX to Mac OS X may seem daunting, this book is
a gentle guide, highlighting the development issues found along the way and
smoothing the sometimes serpentine path of coding we all travel.

SHANE LOOKER
Senior Software Engineer
Electronics for Imaging, Inc.

preface

This book is about Mac OS X—specifically, the many UNIX! features that com-
pose and distinguish the system. It is also intended to introduce UNIX developers
to the world of Mac OS X development environments, frameworks, and technol-
ogies. UNIX developers will find a lot to like about Mac OS X: its UNIX-based
core operating system (called Darwin); its set of BSD-based commands and tools;
its inclusion of traditional UNIX development tools like gcc, gdb, awk, sed, and
Perl; and its development frameworks and technologies all provide a compelling
platform for a UNIX developer. Collectively, these components and technologies
enable you to create powerful and useful programs with modern graphical
user interfaces.

Given all the high-quality releases of UNIX available today—from commercial
products like Solaris to free distributions such as Linux and FreeBSD—you may
wonder why you should care about another flavor of UNIX. The short answer is
that Mac OS X is more than just another UNIX distribution: on top of the core
UNIX system, you get a well-thought-out, consistent user interface; access to a
wealth of Macintosh software; and some exciting new technologies that are not
available under other UNIX-based systems. In fact, Mac OS X is a successful meld-
ing of two distinct systems and cultures into a single computing environment.

1

UNIX is a registered trademark of The Open Group: http://www.opengroup.org.

Xv

xvi

PREFACE

On one hand, Mac OS X functions as a Macintosh system with an updated user
interface, which Apple calls Aqua; you can run your favorite Macintosh applica-
tions as well as new programs written specifically for Mac OS X. On the other
hand, Mac OS X is a fully functioning UNIX system that you can use from the com-
mand line and that supports all your favorite UNIX tools, commands, and applica-
tions such as Apache (http://www.apache.org) and MySQL (http://www.mysql.com).

Underneath the Aqua interface, many of the core system features are provided
by UNIX and UNIX programs. For example, you start and stop Mac OS X’s built-in
web server with the GUI-based System Preference application. What you don’t
see from the GUI is that the web server is really Apache, the most popular web
server in the world. If you like, you can also start and stop the server from the
command line. Similarly, remote login is provided by OpenSSH.

Darwin, the core operating system for Mac OS X, is a true BSD-like operating
system. Darwin is also open source, so you have full access to all the source code.
On top of Darwin are the software layers that add the Macintosh services and
functionality to Mac OS X. If you like, you can download the Darwin kernel and
use it as a stand-alone UNIX system on either Macintosh or Intel hardware. (Only
Darwin, the UNIX portion of the system, can be run on Intel hardware; for the
Macintosh-specific components, such as the Aqua user interface, you still need a
full Mac OS X installation.)

When most Macintosh users look at the system, they see a Macintosh with an
enhanced interface. When UNIX users look at the system, they see UNIX with a
Macintosh desktop. The beauty is that out of the box, one system services the
needs of both kinds of users, and you can customize the system in either direction.

This arrangement may seem a bit odd and slightly counterintuitive. For instance,
UNIX is known as an operating system built for, and by, programmers; users were
an afterthought. The Macintosh is known as a computer built from the ground
up for usability, with its complexity hidden behind a GUI—it’s a computer for
everyone. In a sense, these systems stand at different ends of the computing
spectrum. Though such a statement is a gross generalization, UNIX users tend to
be technically aware and use the system to support engineering, research, and
systems-level application development tasks (although this characterization has
changed somewhat with the acceptance of Linux). UNIX users enjoy the OS’s
“complex simplicity” and its infinite possibilities.

Traditionally, Macintosh users haven’t wanted to know about or see the
details of the system. From their point of view, the aesthetics are in the applica-
tions and the elegant, easy-to-use interface, not in the details of the OS or some
abstract command set. Mac OS X exists as an integrated system, where Macintosh

PREFACE xvii

and UNIX each benefit from the other. Macintosh users still have their easy-to-use
computer, but they get the performance and stability enhancements of UNIX.
UNIX users keep all the power and possibilities of UNIX, but now have a consistent
and easy-to-use interface, a host of new software, and application compatibility
with the world.

Once you use the system, I think you will agree that this is a powerful combi-
nation, full of possibilities. As a long-time Macintosh user and a long-time UNIX
developer, I am thrilled with Mac OS X. If Apple continues to push forward on both
fronts, the platform is sure to attract more users and developers, which will grow
it for years to come. As far as I'm concerned, Apple has a real winner on its hands!

I sincerely hope you enjoy learning about Mac OS X and will see the benefits
you can derive from the system. I have found Mac OS X to be a comfortable and
powerful work environment for general computing, as well as software develop-
ment. I hope this book gets you interested in the platform and helps you to begin
a long and fruitful journey toward developing software for Mac OS X.

acknowledgments

I'would like to express my thanks to the following people who were instrumental
in the creation and development of this book. To Manning Publications, for
its dedication to producing high-quality books on various aspects of comput-
ing: specifically, Marjan Bace, Syd Brown, Susan Capparelle, Alex Garrett,
Ted Kennedy, Ann Navarro, Mary Piergies, Tiffany Taylor, Denis Dalinnik,
and Elizabeth Martin.

To the book’s technical reviewers, for giving their time and supplying focus
and much-appreciated advice: Scott Ellsworth, Sean Fagan, Steve Jackson,
David Kerns, and Jeft Kopmanis. To Doug Wiebe of Apple Computer, for his
information and insights on PerlObjCBridge. Special thanks to Shane Looker for
his ability to quickly “serpentine” the technical details of the book and provide
valuable technical insight and comments, as well as for writing the foreword. To
all the programmers, engineers, and computer scientists I have worked with over
the years who have influenced my understanding of computing and software
development. To the faculty, staff, and students of the University of Michigan’s
Artificial Intelligence Lab, for providing an engaging work environment.

To my parents, Pat and Marge O’Malley, for continued support and enduring
faith. And finally, to my family—Kelly, Adam, and my wife Janelle—for providing
lasting significance to areas of life far too numerous to mention.

xviii

about this book

This book is about Mac OS X, Apple’s new UNIX-based operating system. Spe-
cifically, it covers the operating system components and user interface, devel-
opment tools, and programming techniques using key technologies such as
Darwin, Cocoa, and AppleScript. The book was primarily written to help UNIX
developers quickly come up to speed with Mac OS X and begin developing
applications for the platform using Apple’s freely available development tools.

The book introduces the UNIX-based foundations of Mac OS X and shows how
they fit into its system architecture. It also provides coverage of both GUT and
command-line software development tools through realistic programming exam-
ples of the kind developers will encounter when building software for Mac OS X.

Though the book is written from a UNIX perspective, it is intended for any-
one who is interested in the Mac OS X platform and wishes to learn more about
the system and its development environment. If you do not have a strong UNIX
background, don’t worry—the material is still accessible and provides a good
background in understanding the UNIX foundations of the system. As you will
see from this book and the considerable volume of information available else-
where about Mac OS X, the platform is very good for application and system
software development as well as general computing.

This book includes three parts and four appendixes. A separate “Resources”
section follows the appendixes. Part 1, “Overview” is made up of two chapters:

xix

XX

ABOUT THIS BOOK

= Chapter 1 introduces the Mac OS X system, including its user interface and

UNIX-based operating system. The chapter begins by presenting the design
philosophy behind the pre-Mac OS X (Mac OS) user interface and continues
with a discussion of the Mac OS X user interface, covering several of its most dis-
tinguishing components. Next it presents the Mac OS X system architecture and
provides information about specific OS components and how they fit together.

Chapter 2 discusses navigating the Mac OS X system and user interface, and
shows how many UNIX operations, commands, and concepts work under
Mac OS X. It also introduces AppleScript, Mac OS X’s native scripting lan-
guage, and covers installing and running an X Window server.

Part 2, “Tools,” also consists of two chapters:

= Chapter 3 introduces Apple’s freely available development tools: Project

Builder and Interface Builder. Project Builder is an Integrated Development
Environment (IDE) for developing all sorts of Mac OS X applications. Inter-
face Builder is used to create the user interface for your application. The
chapter begins with a brief history of Macintosh IDEs. It then discusses the
main features of Project Builder and Interface Builder within the context
of developing a real application.

Chapter 4 provides a wealth of information about the most important Apple
development tools as well as other available tools that aid in the develop-
ment process, including editors, version control systems, and build tools.
The chapter examines each of Apple’s GUI and command-line development
tools and presents examples of their usage.

Part 3, “Programming,” includes the following chapters:

= Chapter 5 introduces the Objective-C language and Cocoa, Apple’s object-

oriented framework for developing Mac OS X applications. Objective-C is the
primary development language for writing Cocoa applications on Mac OS X.
The chapter provides a tutorial on the Objective-C language and discusses
the main design patterns used in the Cocoa frameworks and applications.

Chapter 6 presents a complete Cocoa application and discusses each step in
the development process, from requirements to design to implementation.

Chapter 7 introduces AppleScript. It covers the fundamentals of the language
and how to develop and run scripts. Two programs are presented: one uses
AppleScript only and the other uses AppleScript Studio, which enables you to
add Cocoa-based GUIs to your scripts and to combine scripts with Objective-C.

ABOUT THIS BOOK xxi

= Chapter 8 introduces Jaguar, Apple’s most recent Mac OS X release. It pre-
sents some of the new development tools that come with Jaguar and discusses
the features most interesting to developers.

The book’s appendixes are as follows:
= Appendix A explains how to download and install the Apple development tools.

= Appendix B presents a set of tables that map common UNIX commands to
their Mac OS X GUI-based equivalents.

= Appendix C presents the pre-Mac OS X system, Mac OS. It discusses the
design goals that led to the Macintosh user interface and explores the under-
lying components that form the system.

= Appendix D presents a short history of UNIX, from the early time-sharing
systems to the development of UNIX. In addition, it briefly discusses the GNU
project, the Free Software Foundation (FSF), and the Open Source move-
ment. The appendix concludes with a short discussion of the UNIX software
design philosophy.

Source code

Conventions

Couri er typeface is used for code examples. Certain references to code in text,
such as statements, functions, and identifiers, also appear in Courier typeface.
Bol d Courier typeface indicates example information the reader should type in.

Downloads

All the projects and source code discussed in this book are available online. To
get your copy, perform the following steps:

1 Download the archive from http://www.manning.com/omalley to a directory
on your machine.

2 Decompress the archive in one of the following ways:
a From the command line, cd to the directory that contains the archive and type
% tar zxfv mac_osx_progranming_1.0.0.tar.gz

b From the Finder, maneuver to the directory that contains the archive
and double-click mac_osx_programming 1.0.0.tar.gz.

xxii

ABOUT THIS BOOK

Author online

Purchase of Programming Mac OS X includes free access to a private web forum run
by Manning Publications where you can make comments about the book, ask techni-
cal questions, and receive help from the author and from other users. To access the
forum and subscribe to it, point your web browser to www.manning.com/omalley.
This page provides information on how to get on the forum once you are registered,
what kind of help is available, and the rules of conduct on the forum.

Manning’s commitment to our readers is to provide a venue where a meaning-
ful dialog between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author; whose contribution to the AO remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray!

The Author Online forum and the archives of previous discussions will be
accessible from the publisher’s web site as long as the book is in print.

about the author

Kevin O’Malley is a long time Macintosh and UNIX developer. He has been
software architect and lead developer of the Michigan Internet AuctionBot and
the original TAC software system. He has published articles in Drx. Dobb’s Journal
and IEEE Internet Computing. These days, he spends his time working on auction
servers and computer music applications.

Shane Looker, author of the foreword, has been a well-known Macintosh hacker
since 1984. He was twice paper chair for MacHack: the Annual Conference for
Macintosh Developers. He is the author of Icon 7/Icon Artist and co-author of:
InTouch, DateView, Corel Gallery 2.0, Transverter Pro, and ScenicSoft Preps.

xxiii

about the cover illustration

The figure on the cover of Programming Mac OS X is a hunter from Abyssinia in
Eastern Africa, today called Ethiopia. The illustration is taken from a Spanish
compendium of regional dress customs first published in Madrid in 1799. The
book’s title page states,

“Coleccion general de los Trages que usan actualmente todas las Nacionas
del Mundo desubierto, dibujados y grabados con la mayor exactitud por
R.M.VA.R. Obra muy util y en special para los que tienen la del viajero
universal.”

We translate this statement, as literally as possible, thus:

“General collection of costumes currently used in the nations of the known
world, designed and printed with great exactitude by R.M.VA.R. This
work is very useful especially for those who hold themselves to be universal
travelers.”

Although nothing is known of the designers, engravers, and workers who colored
this illustration by hand, the “exactitude” of their execution is evident in this
drawing. The Abyssinian hunter is just one of many figures in this colorful col-
lection. Their diversity speaks vividly of the uniqueness and individuality of the
world’s towns and regions just 200 years ago. This was a time when the dress
codes of two regions separated by a few dozen miles identified people uniquely

XXiv

ABOUT THE COVER ILLUSTRATION XXV

as belonging to one or the other. The collection brings to life a sense of isolation
and distance of that period and of every other historic period except our own
hyperkinetic present. Dress codes have changed since then and the diversity by
region, so rich at the time, has faded away. It is now often hard to tell the inhabit-
ant of one continent from another. Perhaps, trying to view it optimistically, we have
traded a cultural and visual diversity for a more varied personal life. Or a more
varied and interesting intellectual and technical life. We at Manning celebrate the
inventiveness, the initiative and the fun of the computer business with book covers
based on the rich diversity of regional life of two centuries ago brought back to
life by the pictures from this collection.

Part 1

Overuview

Chapters 1 and 2 introduce you to the Mac OS X environment, providing
a foundation for understanding the origins of the operating system, how it is
structured, and what components it contains. The first two chapters explain how
to use and navigate Mac OS X, and introduce you to technologies you will use
throughout the book.

Welcome to Mac OS X

Origins of Mac 0OS X
Macintosh user interface

Mac OS user interface

Mac OS X UNIX underpinnings
Mac OS X system architecture

1.1

CHAPTER 1
Welcome to Mac OS X

You’re never too old to become younger.

—Mae West

The Macintosh burst onto the personal computing scene in January 1984,
instantly changing the way people view and interact with personal computers.
Arguably, no other product has affected our perception of personal computers,
or how we expect them to look and operate, more than the Macintosh.

In this chapter, we’ll look at the Mac OS X at the user and architectural levels.
This introduction provides some background on the Macintosh user interface, dis-
cusses the Mac OS X interface, and concludes with a discussion of the Mac OS X
architecture and system components. Section 1.4 contains some terms and con-
cepts associated with operating systems. Appendix D, “A brief history of UNIX,”
gives a brief overview of UNIX and operating system concepts.

Introduction

The Macintosh was separated from other personal computers of the day by its
uncomplicated graphical user interface (GUI) and ease of use. The designers of
the Macintosh accomplished this differentiation by using real-world metaphors for
user interface elements, direct feedback for user actions, and a consistent user
interface shared between and among applications. A central theme of the Macin-
tosh is that the user is in charge of the computer, not the other way around; the
system should always respond to the user’s needs and actions. These design prin-
ciples have spawned a user community that is vehemently loyal to the Macintosh
and expects its applications to behave in a consistent manner.

From a user’s point of view, the Macintosh has always been an elegant system
that is simple to use and easy to understand. This is no accident: Macintosh
developers have a highly acute sense of computer-user interaction and user inter-
face design, and take great pride in producing software that respects the way
people work and use their computers. Macintosh programmers are as concerned
about user interfaces issues as program features or the computational aspects of
a program. If users love Macintoshes for their elegance and simplicity, program-
mers love them because they are uncomplicated, well designed, and great deal of
fun to program.

Introduction 5

1.1.1 Origins of Mac 0S X

In March 2001, Apple released a new generation operation system for the Mac-
intosh platform called Mac OS X (X is pronounced “ten”). Many innovations and
developments led to its creation. In the mid-1990s, Apple began work on its next
generation operating system, called Copland. Copland attempted to address some
of the problems associated with Apple’s then-current operating system, Mac OS.
The Mac OS had always excelled in its user interface and ease of use, but it was
falling behind other personal computer operating systems in performance, fea-
tures, and stability. For various reasons, Copland never panned out; in 1996 the
project was cancelled.

Also in 1996, Apple purchased NeXT computer and began work on another
operating system named Rhapsody. The foundation of Rhapsody was NeXTSTEP,
the operating system Apple acquired from NeXT computer. NeXTSTEP was a
BSD-like operating system based on a Mach kernel, which Apple engineers mod-
ified for Rhapsody. Over time, Rhapsody’s design and features evolved first into
Mac OS X Server and then Mac OS X.

Mac OS X represents a fundamental departure from past Apple operating sys-
tems, merging the best features of the traditional Mac OS with the rock-solid reli-
ability of UNIX. At the core of the system is Darwin, an open source UNIX-based
operating system built on Mach 3.0 and 4.4BSD; it supplies the UNIX underpin-
nings for Mac OS X. On top of Darwin, Apple engineers layered various Macintosh
services that give the system its Macintosh character and functionality. On top of
all this sits a brand new user interface, called Agua.

At one level, the system is a UNIX box, providing access to all the familiar
command-line tools and commands, as well as a wealth of open-source software
and programs including Apache, MySQL, Perl, and GNU software. In addition,
free implementations of X Window can be run under OS X, permitting local and
remote access to a wealth of X Window-based systems and applications. At
another level, the system is a Macintosh; you can run native Mac OS X as well as
older Macintosh application.

Figure 1.1 shows an OS X machine running a variety of Mac OS X, UNIX, and
older Macintosh software.

Another interesting feature is the renewed viability of the Macintosh platform
within the scientific, engineering, and research communities. Many people in
these areas have had a bias toward using a Macintosh, but because of the limita-
tions of the Mac OS, have moved to other platforms to run simulations and con-
duct research. You can now run simulations and develop computationally

CHAPTER 1
Welcome to Mac OS X

@ Preview File Edit Display Window Help M 4) Wed 6:29 PM

0 Network Utility

info | Netstat | Ping | Lookup | Traceroute | Whois | Finger | Port Scan B

Please enter the network address to ping

www.apple.com

© Send an unlimited number of pings
@ send only 10 pings

Ping has started ...

PING ww.apple. con.akadns . net (17.254.0.91): 56 data bytes
64 bytes from 17.254.0.91: icmp_seq-d ttl=46 time=72.503 ms
64 bytes from 17.25
64 bytes from 17.25
64 bytes from 17.254.0.91: icmp_seq=3 ttl=46 time=72.378 ms
64 bytes from 17.254.0.91: icmp_seqed ttl=46 time=70.689 ms
64 bytes from 17.254.0.91: icmo sea=5 ttl=46 time=69.438 ms

icmp_seq=l ttl=46 time=82.347 ms
icmp_seq=2 ttl=46 tine=65.448 ms

my ($max, $sleep_secs, $host, $port, $str) = BARGY;

for(ny $1=0; $i<Enax; $i++) {

processtgs leep secs, Shost, Spart, $str);
print g
3

sub process {
my($sleep_secs, Shost, $port, $str) = B_;

ftp.gnuorg (| my $sock = I0::Socket::INET->new(Proto

fze Date
s $sock->autoflush(l) if $sock g admin 264 ar 18 2002 YIRS

" i/oeros] 24 Har 18 2002 X11R6 bak

T mer my $line = $str; ar root uheel 16072 fug 2L 20:50 bin
§line .= ; 614 Iu1 8 20102 include

i print “send . ; arw 72root uheel 2404 Dck 24 2001 1ib

- 11rcron print $ooci $1ine; b T i RIRBEE I

- 11/06/02

- oz my byt

- 11/06/02 $s =

- 11/06/02

- oiname § B
“oiname QAL [E

-oviaiz| | QText Iocalhost
O Binary

B e iy W e
PAEN el LB i PP i N

3334 fug 21 20:50 sbin
1010 Jun 12 16:32 share

uhesl 264 58 3 2001 standalone
st)sonal ley =]

Figure 1.1 An example of Mac OS X running UNIX (text and X Window based), Mac OS X, and Mac Classic

software

1.2

intensive software on the platform; in many cases, you only need to recompile
the source code for the UNIX-based program under Mac OS X.

These are truly interesting times for Macintosh users, as well as those moving
to Mac OS X from other UNIX-based platforms.

The Macintosh user interface

When people make the transition to the Macintosh from other systems like
UNIX, often the first thing they notice is how simple and logical the interface is
and how easily they can learn to use the system. As a friend, and long-time UNIX
user, pointed out to me, when he’s using a Macintosh he spends less time work-
ing the levers of the operating system and more time getting work done. The
reasons include Apple’s understanding of user needs and the company’s insis-
tence on developers following a set of interface guidelines when building Macin-
tosh applications.

The Macintosh user interface 7

In the mid-1980s, Apple came up with some fundamental principles for how
the Macintosh and its applications should look and feel: the Macintosh Human
Interface Guidelines. The goal was to present users with a powerful, consistent
system that was easy to use and that had an uncomplicated user interface. These
design goals centered on the user being in charge of the computer and advocated
techniques such as direct feedback for user actions, use of real-world metaphors
for user interface elements, and a consistent user interface shared between and
among applications. (Remember, these were the days when most personal com-
puters ran MS-DOS and users interacted with the system using a command prompt
and text-based interfaces.)

For example, imagine you were developing an application and working on its
user interface. One method would be to design your application’s interface from
scratch according to your own preferences, or possibly base it on a similar pro-
gram’s interface and make appropriate modifications. Now imagine if developers
built all applications this way. The result would be applications that look and
behave very differently and implement common operations in dissimilar ways.
The consequence for users would be an uneven user experience and constant
relearning of tasks when moving to new applications.

Macintosh programmers did things differently. Instead of designing and lay-
ing out their applications’ user interface any way they wished, they followed the
guidelines Apple provided them; this process ensured that applications main-
tained the Macintosh look and feel. In addition, Apple’s toolbox routines did
much of the work of supporting that interface—for most developers, breaking
the guidelines involved more work than following them. At first this program-
ming approach was quite a shift, and it probably would not have succeeded if the
guidelines had not been well thought out or did not make sense. Luckily, Apple
employed some smart, experienced people who cared a great deal about how
users interact with computers. The Macintosh Human Interface Guidelines
became a cornerstone for user interface development on the Macintosh, and
most applications were judged and evaluated based on these principles.

The consequences of these guidelines are applications that implement inter-
face elements and standard operations in a consistent way, enabling users to easily
translate their current knowledge to new programs. Over the years, the interface
guidelines have grown as new technologies and interface components have been
added to the Macintosh system. Today, the Aqua Human Interface Guidelines
(http://developer.apple.com/techpubs/macosx/Essentials/AquaHIGuidelines)
describe how to construct user interfaces for Mac OS X applications. To a degree,

1.3

1.3.1

1.3.2

CHAPTER 1
Welcome to Mac OS X

the Aqua guidelines are another extension of the original interface guidelines,
addressing new features of the Mac OS X user interface.

The most important lesson to take from this discussion is that Apple has put a
lot of time and thought into how Macintosh applications should look and
behave. The company has produced an excellent set of rules and recommenda-
tions for constructing contemporary user interfaces, and developers should read,
understand, and follow them when developing Macintosh applications. Try to
envision the programs you write for Mac OS X as being members of a complete,
well-thought-out system where certain rules exists to promote the user experience.
Your application should exist within this context, and not as a separate entity.

The Mac OS X user interface

The strength of the Macintosh has always been its user interface and ease of use.
The new Mac OS X Aqua interface maintains the tradition of intelligent, easy-to-use
Macintosh user interfaces, but sports a distinctive, liquid-like look, as well as many
new and advanced interface components and features. Figure 1.2 shows an example
of the Aqua user interface.

The Aqua interface continues to use real-world metaphors to represent com-
puter resources. Navigating and using the system is simple because you are already
familiar with many of these concepts. Overall, the Aqua user interface is simple
and intuitive compared to UNIX desktops and window managers such as GNOME
(http://www.gnome.org), KDE (http://www.kde.org), and fvwm (http:/www.fyrwm.org).
As a result, you will require little upfront information to begin using the system.

The desktop

The Mac OS X desktop is analogous to a real office desk, which functions as your
primary workspace and repository of information. A program called the Finder
works with the system software to provide users with file management and process
invocation functions, and presents and manages the desktop.

Menus

Under Aqua, an application displays its menu bar at the top of the screen. This is
different from Windows or UNIX environments, where the menu bar appears at
the top of each application window. The items in the menu bar are ordered as
follows (from left to right): Apple menu, application menu, application-defined
menus, window menu, help menu, and menu status bar items (see figure 1.3).

The Mac OS X user interface

Apple Menu Applecation Menus Menu Bar Status ltems

| | }

Finger

File _Edit_View Go_ Window Help 4 FriGza P

Volurne lcons

Frootdevel
Firder Wind ow

TheDesktop

TheDock

Figure 1.2 Aqua, the user interface for Mac OS X, builds on many features of the original Macintosh user
interface. However, it has an entirely new look and feel, as well as many new features.

@', Address Book File Edit View Window Help <) Tue 7:41 PM]
. I Address Book

About This Mac About Address Book New #N

Get Mac OS X Software... New Group O8N
Preferences... New Group From Selection

System Preferences... -

Dock > BELrERS > Open... RO

Location > Hide Address Book 38H Import ®l

Recent Items (3 Hide Cthers Close BW
Show All Save %S

Force Quit...

Q Quit Address Book %Q Save-To..

Sleep Revert

Restart

Shut Down

Log Out... O%Q

View
Cut X as Columns Minimize ®M
C 8C as List
oY : Bring All to Front

£ o Available Fields >

Clear Address Book

Select All #A Search Directory...

Ed... OHE Show Card ®T Figure 1.3

Add To Favorites O+%F Address Book Help %7 An example of a Mac 0S X

Tl application’s (Address Book)

Compose Mail CEM menu bar and menu items

10

CHAPTER 1
Welcome to Mac OS X

First is the Apple menu, a system-wide menu whose contents do not change. Its
commands permit users to perform tasks that operate on the system as a whole
and are independent of any particular application. Commands support access-
ing system preferences, restarting and shutting down the computer, and logging
off the current session.

Next is the Application menu, which holds items that apply to a specific appli-
cation. Menu items include the application’s preferences, services provided by other
applications, and the Quit option. The menu name is bold, so it stands out from
the other menus.

The next set of menus is application defined, but it typically includes the fol-
lowing menus, in this order: File and Edit, application-defined menus (possibly
including View), Window and Help. They perform these functions:

= The File menu implements operations for document management such as
opening, creating, and printing documents.

= The Edit menu contains commands for editing application documents and
sharing application data over the clipboard.

= The View menu holds commands enabling users to change or alter the
view of an application’s current window.

= The Window menu lists currently open windows as well as window opera-
tions.

= The Help menu provides access to application help.

= Status items appear as the final, rightmost menu item and display informa-
tion about system services, enabling quick access to system settings.

NOTE Clipboard is a Macintosh term for a common shared data holder used by
the applications to temporarily hold data or to transfer data from one
application to another. On the Macintosh, terms like copy, cut, and paste
describe editing operations. For example, after you highlight an item in
a document, you can perform a cut, which moves the selected item from
the document to the clipboard; a copy, which copies the selected item to
the clipboard; or a paste, which copies the item on the clipboard to the
desired location.

1.3.3 The Dock

The Dock, located at the bottom of the screen in Figure 1.2, is a small toolbar that
provides a standard, system-supplied location for you to organize commonly

1.3.4

1.3.5

The Mac OS X user interface 11

accessed items such as applications, documents, and other information. It also
aids in maneuvering between running applications.'

You add items by dragging their icons to the Dock; you remove items by drag-
ging them off the Dock. Clicking an icon will bring it to the foreground, launching
it first if it is not already running. A triangle next to an application icon indicates
that the application is running. The Dock also holds the familiar Macintosh Trash
icon, which collects files waiting to be deleted from the system. You can customize
the Dock’s appearance and behavior through the System Preference program,
located in /Application.

Window layering

The original Mac OS imposed a window-layering scheme that placed all applica-
tion windows conceptually on a single layer. This meant that if you were using one
application and you clicked a window from another application, all of that applica-
tion’s windows came to the foreground. Mac OS X implements a different window-
layering model: windows within an application are independent of one another,
and can therefore be interleaved with windows from different applications.
Imagine you have two applications running, each with several visible windows.
Under Mac OS X, only the window you click comes to the foreground, enabling
windows from different applications to be interspersed. The result is more infor-
mation simultaneously visible at a time and fewer visible transitions between
applications. Perceptually, the new window-layering scheme blurs the boundaries
between applications, causing you to feel as if you are interacting with the system as
a whole, rather than with individual applications. (By the way, clicking the applica-
tion’s icon on the Dock will bring all of the application’s windows to the foreground.)

Dialog boxes

Past Macintosh operating systems used two main types of dialog boxes: modal and
modeless. A modal dialog box forces you to work within the mode of the dialog
box only; once the dialog box is open, the only way to interact with another part
of the system is to close the dialog box. Conversely, a modeless dialog box does
not force you to interact only with it; you can simultaneously use the modeless
dialog box and other parts of the system.

I Bruce Tognazzini, a noted expert on user interfaces design, has written an interesting column called
“Top 10 Reasons the Apple Dock Sucks” that discusses his objections to the Dock. Check it out at http://
www.asktog.com/columns/044top 1 0docksucks.html.

12

1.3.6

1.3.7

CHAPTER 1
Welcome to Mac OS X

088 untitled
Save ak: | Ueitled.iar
where: [[9 Dotuments (i] E
Cancel f Save 3

Figure 1.4

Mac OS X Sheets seem fixed, or
attached, to an application’s document
or window. They simplify identifying the

= owner of the Sheet.

A Sheet is a Mac OS X implementation of a modal dialog box. When an application
displays a Sheet, it appears attached to the application’s document or window (see
figure 1.4). Because it attaches to its creator, you can always tell what program ele-
ment the Sheet belongs to. See the Aqua Human Interface guidelines for more
information about Sheets (http://developer.apple.com/techpubs/macosx/Essentials/
AquaHIGuidelines/AHIGDialogs/index.html).

Drawers

Drawers are child windows that appear to slide out from their parent. This is
another interface element that permits you to access frequently used application
features or information without requiring the application to display the Drawers
throughout the life of the application. To see Drawers in action, open the Mail
application (located in /Applications) and click the Mailbox icon. The mailboxes
for your mail accounts will slide in and out from the parent window as you click
the icon (see figure 1.5).

Keyboard navigation

The Macintosh has traditionally been a point-and-click interface: users interact
with the system using a mouse. Over the years, the system has included increas-
ing support for system navigation through the keyboard at both the Finder and
application levels. Aqua carries on this tradition by providing more keyboard
options you can use to navigate the system.

The Mac OS X architecture 13

8ee INBOX on Personal Mailboxes (=)
—— - e = - PN Personal Mailboxes
o 1S | j @‘,7 = Q] subject v@
O @= =F i Gl [INEOX
Delete Reply Reply All Forward Compeose Mailbox Get Mail Search Mailbox DuthDX
0 messages [Drafts
o FPNETe Subject Date & Time a 77 5Sent Messages

Figure 1.5 Drawers slide out from their parent window, enabling access to frequently used application
features or information.

1.3.8

1.4

To take full advantage of the keyboard, open the System Preference program, select
the Keyboard pane, select the Full Keyboard Access tab, and make sure the Turn
On Full Keyboard Access checkbox is checked. The Use Control With menu enables
you to change the keys associated with each command. Now, you can use the key-
board to select interface elements such as application menus and the Dock.

Other interface features

Mac OS X includes lots of other interface features, including transparent windows
and menus that let you see through a window or menu to what is behind it. The
appearance of icons and lists has improved, and there’s a new help system and a
new system font.

The Mac OS X architecture

From a user’s point of view, the Mac OS X system is its user interface, applica-
tions, and services. For developers, however, the interface is simply a facade;
behind it exists the Mac OS X operating system, a complex web of software that
handles the interactions between user requests and computing resources.

14

CHAPTER 1
Welcome to Mac OS X

The heart of this system software is the kernel. The kernel provides the operat-
ing system’s basic computing services such as interrupt handling, processor and
memory management, and process scheduling. Two types of kernels form the
basis for most operating systems: the monolithic kernel and the microkernel. A
monolithic kernel encapsulates nearly all the operating system layers within one
program, which runs in kernel space. A microkernel implements a subset of
operating system services, runs in kernel space, and is much smaller than the
monolithic kernel. Additional services, implemented on top of the kernel as user
programs (running in user space), export well-defined interfaces and communi-
cation semantics. To perform a service that resides outside of kernel space, the
kernel communicates with the user-level service through message passing. Gen-
erally, a monolithic kernel is faster but larger than a microkernel.

The original Mac OS was more a collection of cooperating system services,
whose design did not divide neatly into user and kernel domains. In addition, its
handling of critical operating system tasks such as memory management and
process management was showing its age, which led Apple to look into alterna-
tives for its future OS. For example, most of us are familiar with operating sys-
tems that use preemptive multitasking and fixed-process scheduling policies.
Under UNIX, one policy is for the process scheduler to divide CPU time into time
slices, assigning each process a quantum of CPU time. If the running process has
not terminated by the end of its quantum, the operating system will switch processes
by preempting the running process and activating the next.

Contrast this to Mac OS, which implemented a scheduling called cooperative
multitasking. It works as follows: when you run a program, the operating system
loads the program into memory, schedules it for execution on the CPU, and runs
the program only when the currently running program surrenders the CPU. It is
the responsibility of each program, not the operating system, to occasionally
hand over the CPU to allow other programs to run. As you can imagine, this
scheduling is suboptimal, because one rogue program can monopolize the CPU
and disallow others from running. Mac OS X is built on UNIX, and therefore uses
preemptive multitasking; the kernel manages process-scheduling policies.

Another difference between Mac OS X and earlier Macintosh systems is mem-
ory management. Mac OS did not enforce memory protection of the system or
application partitions. Applications were free to write to memory outside their own
address space and could potentially take down other applications, as well as the
entire system. Under Mac OS X, this is not possible: accessing memory outside a
program’s address space will result in a segment fault and the process will dump
core, but it will not take down the operating system or other processes with it.

The Mac OS X architecture 15

1.4.1 Architecture layers

The Mac OS X architecture is composed of several layers, each responsible for dif-
ferent system services. It’s important to keep in mind that Mac OS X is built on
top of a UNIX-based kernel, which provides the system with its plumbing (core
services) and supports the various application layers with which the user interacts.
It’s usetul to view Mac OS X as two systems, one built on the other (see figure 1.6).

At the core of Mac OS X is Darwin, an open source operating system based on
Mach 3.0 and 4.4BSD. Darwin is a complete operating system that does not
require higher-level Macintosh components to run. The Darwin system has two
overall components: the kernel environment and the BSD emulation layer. The
kernel environment provides core operating system services; the emulation layer
supplies the system with the BSD user environment, or operating system person-
ality. In fact, you can install Darwin on a PowerPC or x86 machine and use it as a
stand-alone BSD-like system.

Macintosh-specific system components, built on top of the Darwin kernel envi-
ronment, give Mac OS X its Macintosh character and services. Think of Darwin

Application Environment
Classic, Carbon, Cocoa, BSD
Java

y

A

Application Services

Mac OS X Graphical System Services

A4

Darwin

Core Services
Non-Graphical System Services

v

Kernel Environment
Mach/BSD

A\ 4
A

Figure 1.6 Mac OS X is a series of software layers, each providing services for the layer above it.

16

1.4.2

CHAPTER 1
Welcome to Mac OS X

as the BSD-based operating system core and the Macintosh components as put-

ting the Mac into OS X. This classification enables you to see that Mac OS X is

built on top of Darwin, and that Darwin is a complete UNIX system within itself.
Let’s begin with a brief overview of the Mac OS X system components:

The lowest layer is the Mach/BSD-based kernel, called the kernel environ-
ment. It provides the system with core operating system services such as
processor and memory management, file systems, networking, and device
access and control.

The Core Services layer implements a central set of non-graphical routines
that various Macintosh APIs access. This layer includes facilities for appli-
cation interaction with file systems, threads, and memory, and provides
routines for manipulating strings, accessing local and remote resources
through URLs, and XML parsing.

Above the Core Services layer is the Application Services layer. Application
services supply programs running within the application environment
(except BSD) with user interface, windowing, and graphical support,
including support for drawing graphical elements on the display, event
handling, printing, and window management. This layer includes the Mac
OS X window manager.

The Application Environment, like Applications Services, is composed of the
different application environments that give the system its user-level envi-
ronment. Currently, Carbon, Cocoa, Classic, Java, and BSD form this layer,
each as a separate application environment. Each provides a distinct runtime
environment in which to run programs and interact with the lower layers
of the operating system. For example, when you run a Mac OS X Cocoa pro-
gram, you are in the Cocoa application environment; when you run a Mac OS
program, you are interacting with the Classic application environment.

Above the application environment is Aqua, the Mac OS X user interface.
Aqua gives the Mac OS X system and programs their look and feel.

Now, let’s look at each system layer and its components in more detail.

The kernel environment

The kernel environment supplies Mac OS X with its core operating system services.
This layer is composed of two sublayers: the Mach kernel and the BSD layer,
which encloses Mach (see figure 1.7). Within these layers are five primary com-
ponents: Mach, the I/O Kit, BSD, the file system, and networking.

The Mac OS X architecture 17

Application Environment

Application Services

Core Services

Kernel Environment

Figure 1.7
Mach/BSD
/ The Mac OS X kernel environment supplies the

system with its core operating system services.

Mach

At its core, Mac OS X uses the Mach 3.0 microkernel (Mach 3.0 + OSF/Apple
enhancements). The Mach portion of the kernel environment is responsible for
managing the processor and memory (including virtual memory and memory
protection), preemptive multitasking, and handling messaging between operating
system layers. Mach also controls and mediates access to the low-level computing
resources. It performs the following tasks:

= Provides IPC infrastructure and policies (through ports and port rights), as
well as methods (message queues, RPCs, and locks) enabling operating sys-
tem layers to communicate

= Manages the processor by scheduling the execution and preemption of
threads that make up a task

= Supports SMP (symmetric multiprocessing)

= Handles low-level memory management issues, including virtual memory

Keep in mind that Mach is policy neutral, meaning that it has no knowledge of
things like file systems, networking, and operating system personalities.
Historically, Mach implements a very small set of core system services in the
kernel address space, communicating with additional services in user space through
well-defined interfaces and communication semantics. The kernel implementation
for Darwin integrates many of these user-space services into the kernel space.
There is a fundamental difference between how a UNIX monolithic kernel
and Mach kernel use and implement processes and threads. In a UNIX kernel,
the basic level of scheduling is the process, not the thread. All threads within the
process are bound by the scheduling priority of the process and are not seen by

18

CHAPTER 1
Welcome to Mac OS X

the kernel as schedulable entities. For example, if the operating system suspends
a process, all its threads are also suspended.

Contrast this with Mach. Mach divides the concept of a UNIX process into two
components: a task and a thread. A task contains the program’s execution envi-
ronment (system resources minus control flow) and its threads. With Mach, the
thread is the basic unit of scheduling, as opposed to a UNIX process, which uses
the process as the scheduling unit. Under Mach, scheduling priority is handled
on a per-thread basis: the operating system coordinates and schedules threads
from one or many tasks, not on a per-process level.

I/0 Kit

The /O Kit is an object-oriented framework for developing Mac OS X drivers,
implemented in a subset of C++. Developing device drivers is a specialized task,
requiring detailed knowledge, experience, and highly specific code. The I/O Kit
attempts to increase code reuse and reduce the learning curve of driver develop-
ment by providing programmers with a framework that encapsulates basic device
driver functionality in base classes, which are extended to implement specific device
drivers. Conceptually, this approach is very similar to application frameworks and
class libraries. The I/O Kit infrastructure enables true plug and play, as well as
dynamically loaded and unloaded drivers and dynamic device management.

BSD
Another component of the Darwin kernel environment is its implementation of
BSD, which is based on 4.4BSD. The BSD kernel component sits on top of the
modified Mach kernel, running in the kernel’s address space. This component
provides networking services, file systems, security policies, the application process
model (process management and signals), the FreeBSD kernel API, and the POSIX
API for supporting user space applications. It also provides applications with the
BSD interface into the core services of the OS by wrapping the Mach primitives.
The traditional, or pure, microkernel design places many of these BSD compo-
nents (such as file systems and networking) within user space, not kernel space.
Darwin is not a pure microkernel. To address performance concerns, designers
modified the kernel by placing some BSD system modules within the kernel
space, traditionally reserved for Mach.

File system

Darwin’s file system infrastructure is based on an enhanced virtual file system
(VFS) and includes support for HFS (hierarchical file system), HFS+ (hierarchical
file system plus) , UFS (UNIX file system) , NFS (network file system) , and ISO 9660.

The Mac OS X architecture 19

File related system calls

A 4

Virtual File System (VFS)

v v v
UFS HFS+ NFS
A4
UDP
Figure 1.8
A The Darwin kernel implements a Virtual File System
Disk Network (VFS) that translates a file-related system call into

the matching call for the appropriate file system.

VEFS is a kernel-level component that provides an abstract view of the physical file
systems through a common interface. VFS accepts file-related system calls (open,
close, read, and write) and translates them into the appropriate calls for the target
file system (see figure 1.8). VFS is often referred to as supporting stacks of file sys-
tems (stackable), because it can interact with and add many kinds of file systems
and supports augmenting existing file systems with custom code that supplies
various services (such as encryption or mirroring).

Networking

Darwin’s networking infrastructure is based on 4.4BSD. It includes all the features
you'd expect from a BSD-derived system, such as routing, the TCP/IP stack, and
BSD-style sockets. This component lives in the BSD layer of the kernel.

Kernel Extensions (KEXTs) and Network Kernel Extensions (NKEs)

Kernel Extensions (KEXTs) give developers the ability to access internal kernel data
structures and add functionality to the kernel. KEXTs are dynamically loaded into
kernel space without recompiling or relinking the kernel. Because KEXTs run within
the kernel, a misbehaving module can potentially bring the system to its knees.

20

1.4.3

CHAPTER 1
Welcome to Mac OS X

Network Kernel Extensions (NKEs) are a special instance of KEXTs. They permit
developers to hook into the networking layers of the kernel and implement new fea-
tures or modify existing functionality. Like KEXT5, they are dynamically loaded into
kernel space and do not require recompiling or relinking of the kernel to execute.

Collectively, these components provide the core services for Darwin, and by
extension, Mac OS X. A complete Darwin system adds a BSD emulation or appli-
cation environment on top of this core layer, providing the userland commands
and execution environment you are accustomed to in a BSD system. A complete
Darwin system (core layer and BSD application environment) is a BSD-based UNIX
implementation that is more than capable of running as a stand-alone operating
system. You can run Darwin on a PowerPC or x86 compatible system and install
it from either source code or a binary.

NOTE Remember, Darwin is an open-source project, and it is being actively
developed; all source code for the operating system is available at no
charge. Apple also supports several mailing lists devoted to Darwin de-
velopment issues.

Core Sevrvices layer

The Core Services layer sits above the kernel and is responsible for non-graphical
system services (see figure 1.9). Common operations are not coded into each Mac-
intosh API (Carbon and Cocoa); instead, the Core Services layer implements a
single code base that the various Macintosh APIs access. Developers use the Carbon
and Cocoa APIs to construct Macintosh applications. These services are imple-
mented in the following components:

Application Environment

Application Services

Core Services

Non-Graphical System Services

Figure 1.9

The Core Services layer (the software layer above
the kernel) provides common, non-graphical routines
for the Macintosh APIs (Carbon and Cocoa).

Kernel Environment
Mach/BSD

The Mac OS X architecture 21

= Carbon Managers—A set of services, grouped under various managers, that
implement routines providing applications with access to system resources
and services. Managers exist for file manipulation (File Manager), text
operations (Text Encoding Conversion Manager), memory management
(Memory Management Ultilities), and thread operations (Thread Manager).
For example, when an application requires memory services, it calls a
memory allocation routine located in the memory manager; this routine
subsequently invokes the kernel-level system calls to manage the actual
memory allocation.

= Core Foundation—A library that provides many low-level system services such
as internationalization, string preferences, and XML services. A handy fea-
ture of the Core Foundation is its XML facilities, which include a full-fledged
XML parser that implements both tree (DOM) and callback (SAX) based
XML parsing.

= Open Transport—A single set of routines that offer transport independence
and that access the underlying network protocols. Application programs
interact with Open Transport through its API to perform network opera-
tions such as connecting to and receiving data from other machines. Open
Transport uses the networking primitives supplied by the BSD kernel envi-
ronment code.

1.4.4 Application Services layer

The next layer, called Application Services, supplies the system with the graphical
services to construct user interfaces and windowed environments, as well as perform
drawing operations, printing, and low-level event forwarding (see figure 1.10).

Application Environment

Application Services

Graphics Rendering
QuickDraw, OpenGL, QuickTime

Graphics Services and Window Server

Core Services Figure 1.10
Kermnel Environment The {\pp!icatior_l Service.s layer .supplies Mac QS X
Mach/BSD applications with graphics routines and graphics
rendering using QuickDraw, OpenGL, and QuickTime.

22

CHAPTER 1
Welcome to Mac OS X

The main component of this layer is Quartz. The term Quariz collectively defines
the primary display technologies for Mac OS X. Quartz is composed of two layers:
the core graphics services and the rendering libraries.

Core graphics services implement the Mac OS X window server and provide
window management as well as event- and cursor-handling services. This sublayer
does not actually render objects; the graphics-rendering sublayer that sits on top
of the core services contains the following rendering libraries, which perform the
graphic-rendering operations:

= Core Graphics Rendering library—Performs two-dimensional operations. The

Core Graphics Rendering library is used for drawing and rendering using
the PDF path (vector) based drawing model.

» QuickDraw—Performs two-dimensional operations. QuickDraw is the fun-
damental graphics display system for the traditional Macintosh OS; it is
used to perform traditional Macintosh graphic operations.

= OpenGL—Renders three-dimensional operations.

= QuickTime—Renders multimedia and digital video in many encoding formats.

= PDF—(Developed by Adobe Systems.) Specifies a file format whose files
are sharable across platforms. Because the Core Graphics Rendering
library uses PDF for vector graphics representation, Mac OS X programs

can output files in PDF format—users don’t need to buy and install Adobe
Acrobat. The printing system is based on this rendering model, as well.

Building these technologies into the Application Services layer provides applica-
tions with strong graphics support at the operating system level.

1.4.5 Application Environment layer

Next in this architecture is the Application Environment layer, which provides
Mac OS X users with a setting in which to build and run applications (see fig-
ure 1.11). This layer, sometimes referred to as the Software Emulation layer, typi-
cally contains application emulation environments for implementations of various
operating systems. In fact, you can emulate almost any operation system at this
layer, including Solaris, Windows, or MS-DOS. Currently, five application environ-
ments ship with Mac OS X: Classic, Carbon, Cocoa, Java, and BSD.

The Mac OS X architecture 23

Application Environment

Application Services

Core Services

Non-Graphical System Services

Figure 1.11
Kernel Environment The application environment provides a setting
Mach/BSD for users to run programs. Mac OS X ships with

Classic, Carbon, Cocoa, Java, and the BSD
application environments.

Classic

The Classic application environment provides a setting for running programs
written for Mac OS 9 and earlier. Because Apple does not endorse developing
new applications for Mac OS 9, this mode’s primary purpose is to support run-
ning legacy Macintosh programs. To use Classic mode, your machine must have
Mac OS 9.1 or greater installed, which is the default on a typical Mac OS X
machine. Therefore, a conventional Mac OS X machine will have both Mac OS X
and Mac OS 9.1 installed (under Jaguar, it’s version 9.2.2).

There are various approaches to running more than one operating system on
a single machine. One method involves setting up a dual boot machine. To set up
a dual boot machine, you install different operating systems on a single machine
and choose the operating system you wish to run at system startup. This method
is popular among users of Intel-based UNIX distributions, and it is required to
run Linux/BSD and Windows on a single machine.

Another approach is software emulation. In this case, you run a software emulator
under the host operating system that translates calls of the emulated operating
system into the language of the host. This technique permits you to run different
operating systems on your machine as long as you have the appropriate emula-
tor. For example, on the Macintosh, a product called Virtual PC (http://www.con-
nectix.com/index_mac.html) enables you to run the Windows operating system
and software on your Macintosh. In addition, MacMAME (Multi-Arcade
Machine Emulator) is an arcade emulator that lets you run and play your older
arcade games on your Macintosh (http:/emulation.net/mame).

Under Mac OS X, Classic mode is not emulated as described so far, because
Classic instructions are not translated. As Sanchez pointed out:

24 CHAPTER 1
Welcome to Mac OS X

The Classic environment in Mac OS X creates a virtual machine
inside of Mac OS X, which boots a largely unmodified version of
Mac OS 9. Applications that are built for Mac OS 9 and have not
been “Carbonized” run in this environment. The Classic environ-
ment replaces the hardware abstraction layer in Mac OS 9 with a
series of shims that pass requests to parts of Mac OS X. For example,
a memory request in Mac OS 9 is fulfilled by a memory request in
the Darwin kernel. Mac OS 9 can thereby use resources managed by
Mac OS X.2

Carbon

Carbon is a set of APIs developers can use to write applications that run under
both Mac OS X and early versions of the Mac OS. The original intent of Carbon
was to help developers move existing applications from Mac OS to Mac OS X.

Developers write Carbon applications in C and C+ +. Once an application is
“Carbonized,” you can run the same binary on your Mac OS X machine as on
machines running Mac OS 8.1 or later.

The current Carbon API is a redesigned version of the Mac OS Toolbox. This
Toolbox, originally located in the ROM and later in a file loaded by the boot
loader in pre-Mac OS X systems, is a set of functions that programs access to con-
struct the graphical elements of a program and interact with core system compo-
nents. The Toolbox gave the Mac OS its unique appearance and feel, and was a
fundamental element of all Macintosh programming. The Carbon API adds
many new features to support the architectural changes imposed by Mac OS X.
In addition, the API is much smaller, because its designers removed many Mac
OS API calls.

Cocoa
Cocoa is an object-oriented environment for developing native Mac OS X appli-
cations. Cocoa provides developers with a complete component framework that
greatly simplifies and facilitates the development of Mac OS X applications.
Apple recommends that developers use Cocoa when writing new applications for
Mac OS X.

The etymology of Cocoa begins with NeXT computer and its NeXTSTEP oper-
ating system. NeXTSTEP shipped with a set of tools and libraries called frameworks

2 Wilfredo Sanchez, “The Challenges of Integrating the Unix and Mac OS Environments” (paper pre-
sented at the USENIX 2000 Annual Technical Conference, Invited Talks, San Diego, June 19, 2000),
http://www.mit.edu/people/wsanchez/papers/USENIX_2000.

The Mac OS X architecture 25

for application development. These NeXTSTEP development tools were subse-
quently called OpenStep, and are now called Cocoa.

Cocoa applications are currently written in one of two languages: Java and
Objective-C. This may seem strange to UNIX developers who are used to devel-
oping code in languages such as C, C++, Perl, Python, and Ruby; some may
even consider this limitation a reason not to develop Cocoa applications. Resist
this temptation. True, many of us would prefer to use Perl or C++ as our main
development language when building Cocoa applications, but any programmer
who is comfortable with C or C++ can easily get the basics of Objective-C in a
few days and be writing useful application in a few weeks.

In addition, some projects are attempting to bring other languages to Cocoa,
including Perl, Python, and Ruby. It may just be a matter of time before your
favorite language meets Cocoa.’

Java

The Java application environment enables development and execution of Java
programs and applets. This environment supports the most recent Java Devel-
opment Kit (JDK) and virtual machine, so programs developed within this envi-
ronment are portable to virtual machines running on other systems. You can use
Java to write applications and applets as well as Cocoa-based applications,
although Objective-C is the language of choice for Cocoa development. Apple
has made a strong commitment to Java on the Macintosh, so Java developers can
rest assured that Java implementations and tools will be available under
Mac OS X for years to come.

BSD

The BSD command environment enables users to interact with the system as a
BSD workstation, typically through the Terminal application; functionally a shell.
This environment supports the BSD tool set, commands, and utilities, and cumu-
latively provides users with a BSD-derived environment. In fact, the BSD environ-
ment and kernel environment form the complete Darwin system. This
application environment enables traditional UNIX developers and users to make
a smooth transition to the Mac OS X environment by providing them with the
accustomed shell, tools, and command set. I for one spend most of my time in
the Terminal application using Mac OS X as a BSD-based workstation.

% The PyObjC project has released a version that enables Python developers to talk to Objective-C objects
from Python (http://sourceforge.net/projects/pyobjc/). See chapter 8 for more details.

26

1.4.6

1.5

CHAPTER 1
Welcome to Mac OS X

Aqua

The top layer of the Mac OS X architecture is the Aqua user interface. Aqua is a
combination interface implementation and specification that defines recom-
mended user-interface design practices for Mac OS X applications. Think of
Aqua as providing guidelines for how applications should look and behave within
Mac OS X. These guidelines, documented in the Aqua Human Interface Guide-
lines, tell developers how to construct a Mac OS X user interface, including the
proper layout of dialog boxes and window items’ menu structures.

Summary

You now have a basic understanding of Macintosh user interface principles, as
well as Mac OS X’s user interface and design. As you can imagine, this chapter is
just the tip of the iceberg. If you are interested in this aspect of the Mac OS X system,
I encourage you to look at the references in the “Resources” section at the back
of this book, and to explore the many online and printed sources that exist on
this topic.

In chapter 2, you will learn more about the UNIX side of Mac OS X. You'll see
how to accomplish common UNIX tasks under both the Mac OS X command-line
interface and the Aqua interface.

Nauvigating and
using Mac OS X

The Mac OS X Terminal

Creating user accounts

Process management

AppleScript and scripting languages

Installing and running X Window under Mac OS X

27

28

21

CHAPTER 2
Navigating and using Mac OS X

Everywhere is walking distance if you have the time.

—Steven Wright

Many UNIX developers like user interfaces that are pretty minimal. Give them a
simple, customizable window manager; a shell; pine for email; and programs and
development tools with text-based interfaces, and they feel right at home. However,
in the past few years, many members of the UNIX community have given increasing
attention to developing more complete GUIs, or desktops, for UNIX systems. The
developers of desktop environments such as GNOME (http://www.gnome.org)
and KDE (http://www.kde.org) are attempting to lower the UNIX usability bar by
making the system more approachable and easier to use and understand.

This chapter is about navigating the Mac OS X system and user interface and
discovering the features they offer. It leverages your existing UNIX knowledge by
concentrating on the commonalities between the UNIX tools and services and how
they are implemented under Mac OS X. Being able to map your UNIX knowledge
to Mac OS X will let you make the transition to Mac OS X more easily and quickly.
The chapter concludes with information about setting up an X Window server
under Mac OS X.

Introduction

To many UNIX users, a GUI is not the optimal way to interact with a system. For
example, if you're applying a filter to a set of files, then using pipes and small
command-line tools is much more efficient and extendable than using a GUI
program. However, sometimes a GUI is preferable. If you use a command-line tool
infrequently, it can be difficult to remember its options and features or recall the
correct command-line syntax for a task. A GUI, on the other hand, can help by
presenting the program options in a visual layout, even enabling you to save com-
mon settings for later use.

In general, desktop environments have been good for users. However, with so
many competing desktops and windowing environments, UNIX systems do not
provide users with a single common interface like commercial systems, such as
Windows or the Macintosh. For users, this lack of consistency means relearning
environments when switching between machines running different desktops. It
can also complicate the work of developers building applications for UNIX sys-
tems and sometimes force them to target a particular environment.

2.2

Shells 29

With the introduction of Mac OS X, users now have a UNIX-based system with a
single, well-thought-out interface—one designed for usability. UNIX developers
coming to the platform should take a serious look at the interface, and will most
likely find it very useful in maneuvering through the system and accomplishing
development tasks.

Shells

Mac OS X supports interacting with its BSD underpinnings through a program
called the Terminal, located in /Applications/Utilities. The Terminal application
implements a command interpreter, or shell (see figure 2.1). The shell’s basic
function is to accept user commands (in the command language of the shell),
parse them, and pass them to the operating system for execution.

For many Macintosh users, interacting with the computer using a command
shell is enough to make them run and hide. Remember, the Macintosh and UNIX
operating systems have different design goals and user cultures: the designers of
the Macintosh built the system as a single-user personal computer with the goals
of simplicity and ease of use. The system should empower normal people to use
computers, and not require them to be programmers or system administrators.

On the other hand, we can trace the origin of UNIX to the time-sharing sys-
tems proposed and developed at MIT in the mid-1950s through 1960s—most
notably CTSS (Compatible Timesharing System; http://wombat.doc.ic.ac.uk/foldoc/
foldoc.cgi?CTSS) and MULTICS (MULTiplexed Information and Computing Ser-
vice; http://www.multicians.org). Time-sharing enables multiple users to simulta-
neously access computing resources. Once time-sharing was established, a shift
occurred in the way people viewed and used large-scale computers. Rather than
considering computers as calculating machines that processed jobs sequentially,

B8o6 fusribinflogin (ttypl)
Desktop Library HMusic Public bin projects tmp
Documents Movies Pictures Sites bu shuttle

[168] (13:24) (localhost)onalley —: I

Figure 2.1

The Terminal program
functions as an xterm in
the Mac OS X environment,
which you can customize to
use different shells.

NEI =)

30

CHAPTER 2
Navigating and using Mac OS X

users began to view them as machines embodying interactive properties; many users
could concurrently share a single machine’s computing resources. The shell was a
natural outgrowth of time-sharing—users needed an interactive, extendable method
of communicating with the computer. (Louis Pouzin, then a staff member of the MIT
computing centet, first introduced the concept of the modern shell in 1963.)

MULTICS was one of the most innovative time-sharing systems of its day and
had many contributors, including MIT, GE, and Bell Laboratories. The Bell Labs
group included Ken Thompson, Dennis Ritchie, M. D. Mcllroy, and Joe
Ossanna. In 1969, Bell Labs pulled out of the MULTICS project, and Ken
Thompson began work on a new operating system. The new system was directly
influenced by MULTICS, and soon grew into UNIX.!

From its beginning, UNIX was a multiuser system that facilitated the sharing of
computer resources among many users. Most UNIX users were, and still are, sys-
tem hackers and programmers who love the power and possibilities of the system.

In Mac OS X, two vastly different system design histories and user cultures
converge. This situation naturally presented the designers of Mac OS X with quite
a few decisions. For example, as I stated earlier, the very idea of using a shell is
contrary to the design goals of the Macintosh. However, Mac OS X is a different
beast and is built on UNIX, so it is natural to include a command shell for interact-
ing with the system. Apple has done its best to hide the shell from the average
Macintosh user, but experienced UNIX users will look for this program first and
gravitate to it instantly.

The Terminal program supports many shells, which you can customize
through the program’s preferences dialog box and initialization files. By default,
the system comes with the following shells, contained in the /etc/shells file:

% cat /etc/shells
List of acceptable shells for chpass(1).

Ftpd will not allow users to connect who are not using
one of these shells.

/ bi n/ bash
/ bi n/ csh
/' bin/sh

/ bin/tcsh
/ bin/zsh

You can change the shell that Terminal uses by selecting Terminal - Preferences
and clicking the Shell option in the Preferences dialog box (see figure 2.2). Once
you choose a shell, you can customize it in the usual manner. For example, I use

! See appendix D for more detailed information on the etymology of UNIX.

2.2.1

Shells 31

006 Terminal Preferences
kY 1 wood 3 &
\ o) 2
Startup Shell Window Text & Calors Buffer
rs 5 T
L&) JA|»

Shell:

@ Use default login shall for this user
) Use this shell:

[binftcsh

When the shell exits:
O Always close the window
() Close the window if the shell exited cleanly
® Never close the window

String Encoding: | UTF-8 |7 1
Ec=rs - S : Figure 2.2
These settings will not take effect until a new Terminal window is created. . ,
You can use the Terminal program’s
Preferences dialog box to select many
I Cancel

customization options, including your
P active shell.

tcsh, an enhanced version of the Berkeley UNIX C shell (csh). I copied the .cshrc
file from my Solaris box to my home directory on my Mac OS X machine and
modified it for the new system.

Terminal features

Regardless of the shell you choose, some features of the Terminal program are
common to all shells. One interesting set of features helps bridge the gap
between the command line and Finder interfaces.

Imagine you have a Finder window open and wish to change to this directory in
the Terminal program. Open the shell and type cd (change directory), followed
by a space, at the prompt. Next, drag the folder from the Finder window into the
Terminal window. Doing so will copy the absolute path of the directory to the
prompt (see figure 2.3). This feature is especially useful when you’re dealing with
long directory paths or directories that are highly nested. In addition to copying
directory paths, you can use this technique to copy file paths by dragging a file
from a Finder window into the Terminal window.

From the Terminal program, you can open directories, files, and programs
within the Finder using the open command. For example, typing open followed by
a directory name opens the specified directory in a Finder window; typing open
followed by a filename opens the file. If you type open . cshrc, the file .cshrc is
opened in TextEdit (a Mac OS X text-file editor).

32

2.3

CHAPTER 2
Navigating and using Mac OS X

© 0 O [AppkKit.framework o e a0 fusrfhin/login {(ttypl)

s
e

Back View i Computer Home

fesl=im) L:‘ ﬁ = [173] (13:45) (localhostyronalley —: [| ™

Name 4 N Versions

27 AppkKit
2 AppKit_profile
27 Headers
4 Resources
L g 'E Versions

] T4z

KT &)

8086 Jusr/binflogin {ttypl)

[173] (13:45) (localhost):onalley -: /System/Librory/Fromewor (7
ks/AppE it framework AMersions

NI =

Figure 2.3 Dragging a folder to the Terminal window is an easy way to copy long path
names with no typing.

Help system

UNIX traditionally uses manual pages, or man pages, to document commands
and tools. To view man pages, set the man path environment variable (MANPATH)
to the location of your system’s man pages, and the PAGER variable to the program
you want to filter the pages (typically, mor e or | ess). In practice, the PAGER variable
lets you specify the command or program that will display the man page. For
example, if you set PAGER to emacs, the system will display man pages within the
enacs editor. If you set it to the cat command (which writes a file to standard out-
put), the system will send the man page to the cat command. The nore and | ess
commands are common choices, because they enable you to view a man page
one screen at a time.

The man program takes one argument (the command name to look up); it finds
the corresponding documentation file, runs the file through nrof f, and pipes its
output through the nore command (nrof f, and its supporting utilities, are used
to format text files). As you would expect, the man command is available under
Mac OS X for getting help on UNIX commands.

User accounts and privileges 33

2.3.1 Help Viewer

To get help on Mac OS X applications, you use the Apple Help Viewer (see
figure 2.4), which you access from a Mac OS X program’s Help menu. Mac OS X
programs implement the Help menu as the rightmost Application menu and use
the help system to present program information to the user. Most Mac OS X pro-
grams (Cocoa, Carbon, and Java) provide help in this manner, rather then using
man pages. This is true of any GUI program written for Mac OS X, as well as GUI
programs included with the OS.

8oe Mac Help
-! Entering commands
The Terminal application lets you use a command-line interface and
BSD utility programs.
Open Terminal for me
Figure 2.4
@ @ Mac OS X applications include online help
7 through Apple Help Viewer.

2.4 User accounts and privileges

On a UNIX system, there are two types of users: those with root privileges and
those without. By going root, you have full access to every aspect of a UNIX sys-
tem and can roam the system at will, installing software in privileged locations,
updating system configuration files, and deleting any file you wish. Basically, you
are free to make the system hum along—but you can easily take it to its knees
with a misplaced command.

Apple recognized that a middle ground exists between user and root privileges,
so it introduced new administrator privileges. Users with administrator privileges
have all the rights of a normal user but can also install new programs, create direc-
tories outside the home directory, and add new users to the system. However, you
can’t do some things with administrator privileges, such as manipulate the System
Folder, view the contents of another user’s directory, or edit many system configu-
ration files. For these operations, you still need root access.

34

24.1

CHAPTER 2
Navigating and using Mac OS X

Because Mac OS X is first a consumer operating system, Apple naturally dis-
courages users from obtaining root access; toward this end, the root account is
disabled, to protect inexperienced users from clobbering their system. However,
if you plan to do any work that involves tuning the system, configuring system
services, or general hacking, root is a must.

Creating user accounts

You create user accounts from the System Preference application (available from
the Dock or within /Applications), using the Users pane (see figure 2.5). When you
create a user, you can assign normal privileges or administrator privileges, but not
root. There are two primary ways to permit root privileges under Mac OS X: by
using the sudo (“soo-doo”) command and by directly enabling the root account.

8060 Users =
fa] [& @ 1@%
iasl—— v} -
Show All © Displays Sound Metwork Startup Disk
Name Kind
Kevin O'Malley Admin " Mew User... \
{ Edit User...

“ Delete User...

@ Click the lock to prevent further changes.

Figure 2.5 You add users to the system and assign administrator privileges
using the System Preference program’s Users pane.

The sudo command
The sudo command lets a user execute a command as root. Only certain users
can use this command, and only certain commands can be run; these are defined
as configuration parameters and stored in /etc/sudoers. Mac OS X installs the
sudo program as part of the default load and permits users with administrator
privileges to use the command.

You can use the command two ways. First, you can add the prefix sudo to the
command you wish to run as root. The following example shows the result of a
command run first as a regular user and then as root, using the sudo command:

User accounts and privileges 35

% nore /etc/ master. passwd
[etc/ mast er. passwd: Perm ssion deni ed
% sudo nore /etc/master. passwd

Passwor d:

H#

User Database

#

Note that this file is consulted when the systemis running

in single-user node. At other times this information is handl ed
by | ookupd. By default, |ookupd gets information from Netlnfo,
so this file will not be consulted

unl ess you have changed | ookupd's configuration.

H#H#

nobody: *:-2:-2::0:0: Unprivil eged User:/dev/null:/dev/null

root:*:0:0::0:0: System Admi ni strator:/var/root:/bin/tcsh

daenon: *: 1: 1::0: 0: System Services:/var/root:/dev/null

unknown: *:99: 99:: 0: 0: Unknown User:/dev/null:/dev/null

wwy *: 70: 70::0: 0: World Wde Web Server:/Library/ WebServer:/dev/null
(In the preceding example, type your password at the password prompt.) This
method enables you to run a command as root for a defined interval (usually five
minutes) without retyping your password.

Second, to enable root access indefinitely, use sudo with the —s option and
enter your password at the password prompt:

% sudo -s
Passwor d:

Now, commands run under root. Typing exi t will end the session.

Enabling the root account
You can also run commands as root by enabling the root account. To do this, you
need to run the NetInfo Manager system administration tool. NetInfo (located
in /Applications/Utilities) is used to perform administrative tasks on Mac OS X.
The program, originally used under NeXTSTEP, is a hierarchical distributed
database of system information.

To use NetInfo Manager to enable the root account on your system, follow
these steps:

1 Launch the program and select Domain - Security - Authenticate. (Under
Jaguar—Mac OS X 10.2—select Security — Authenticate; the program is no
longer under Domain.)

2 Enter your password when prompted and click OK (remember, for this
technique to work you must have administrator privileges).

36

2.5

CHAPTER 2
Navigating and using Mac OS X

3 Select Domain - Security — Enable Root User. Reauthenticate by selecting
Domain - Security - Authenticate and entering your password.

To test the root account, open a shell (using the Terminal program) and substi-
tute your user identity with root:

% su -
Passwor d:
root #

Booting and default services

When you boot a Mac OS X system, the system first runs the BootROM firmware to
perform a Power On Self Test (POST), initialize hardware, and select an operating
system to use. Next, the BootX loader takes over and loads the operating system
kernel environment from disk. Once the kernel and devices are loaded, BootX
calls the kernel’s initialization function and mounts the root file system. Kernel
initialization includes initializing the components of the kernel environment
(including data structures, Mach, BSD, and the I/O Kit) and running the mach ini t
process, which enables messaging (over ports) and runs the BSD i nit process (as
PID 1). The i ni t process is the parent, or owner, of all subsequent processes. It
performs tasks such as running the system in either single- or multiuser mode,
running the initialization scripts (the rc scripts and SystemStarter), launching
the login window process (which presents the login window and processes user
login attempts), and performing cleanup tasks for child processes.

The rc scripts perform BSD-style startup. They start processes such as kextd
and updat e (flushes the file system cache at regular intervals). The last task therc
scripts perform is to launch the SystenStarter process. Systenftarter runs the
default Mac OS X startup items, located in /System/Library/Startupltems, as well
as user-defined startup items (/Library/Startupltems). The SystenStarter process
runs services such as port map, aut odi sknount, sysl og, Deskt opDB, i net d, sendmai |,
and cron. The services that are started are determined by the entries in the /etc/
hostconfig file:

% cat /etc/hostconfig

#it

letc/hostconfig

#it

This file is maintained by the systemcontrol panels
it

Programs and Mac OS X bundles 37

Network configuration
HOSTNAME=- AUTOVATI C-
ROUTER=- AUTOVATI C-

Services

AFPSERVER=- YES-
APPLETALK=- NO-
AUTHSERVER=- NO-
AUTOMOUNT=- YES-

CONFI GSERVER=- NO-

| PFORWARDI NG=- NO-

MAI LSERVER=- NO-
MANAGEMENT SERVER=- NO-

NETI NFOSERVER=- AUTOVATI C-
RPCSERVER=- AUTOVATI C-
NETBOOTSERVER=- NO-

NI SDOVAI N=- NO-

Tl MESYNC=- YES-
QTSSERVER=- NO-

SSHSERVER=- NO-
VEBSERVER=- NO-

APPLETALK HOSTNAME="Kevin O Mal | ey? Conputer"
COREDUMPS=- YES-

2.6 Programs and Mac OS X bundles

Under UNIX, you typically build and install programs from source code using the
./ configure, make, and make install commands. The make install command
copies all program files to a default location or a location specified as a command-
line option to the configure script. The downside of this approach is that program
elements are not necessarily placed under a single directory and can be spread out
over the system.

Many UNIX implementations also support program installation from packages
using a package management tool. The advantage of this approach is that the
package manager software keeps a list of all installed programs and program com-
ponents. When you remove a program, all program components are also removed.

Mac OS X takes a different approach. When you install a Mac OS X program, all
files that make up the program are stored under a single directory, called a bundle.
Abundle is a directory that holds all program components in one location, includ-
ing the application and application resources such as graphics and sound files.
Figure 2.6 shows the contents of a bundle from the Finder and the shell. Note that
double-clicking on the program icon in the Finder window will run the program
and does not open the directory.

CHAPTER 2
Navigating and using Mac OS X

|+ Applications ey
- @
Back View Computer Home Favorites Applications
Acrobat Reader 5.0 Address Book AppleSeript Calculator |
+ D B -
A | =
2= = |<
Chess Clock DVD Player Image Capture [
4
200 fusr/bin/login (ttypl)
[171] (14:8@) ({localhost):Contents -: ls -1 /Applications/écroboty Reoders 5.8/Contents/ &
total 16 I
—Ih-Th-Y— 1 root adnin 3852 Sep 26 2001 Info-macos.plist |
drwxrwxr-x 14 root admin 432 Sep 26 2801 MacO3 |
—IW-Tb-F— 1 root admin 8 Jon 25 2882 Pkglnfo |
druxrwxr-x 14 root admin 432 Sep 26 2001 Resources m
—IH-TW-T— 1 root adnin 466 Sep 7 20@L version.plist |4
[172] {14:08}% {localhost):Contents -: I ."
s

Figure 2.6 Mac OS X applications are stored on disk in bundles. Bundles group
program components under a single directory.

[Applications =
P
Back WView i Computer Home Favorites Applications
Acrobat AppleScript Caleulator |
Open

é Show Info @ @ k
Show Package Contents = |4

Ch DVD Player Image Capture |
| Move to Trash | Y ge taptu l;
5

[P puplicate

[17] (14:2 Make Alias slicotiong/borobat’y Reader' 5.8/Contents/ "

total 16 |
~IH-TU-T— Copy "Acrobat Reader 5.0" 2081 Info-nacos.plist |
drWXEWEE =X o T pren 2081 MacDS |
—Ih-IW-T— 1 root admin G Jan 25 2002 Pkglnfo b
drwxrwxr—x 14 root admin 432 Sep 26 2001 Resources O
—Ih-Th-Y— 1 root adnin 466 Sep 7 20081 version.plist |

[172] (14:88) {localhost):Contants —: []

T

Figure 2.7 You can view the contexts of a folder from the Finder by holding the
Control key and clicking on the program’s icon.

You can also view the contents of the folder by holding the Control key, single-clicking
on the program’s icon, and selecting Show Package Contents from the pop-up menu

(see figure 2.7).

2.7

2.8

File system 39

Bundles offer many advantages, but the primary benefit for users is that mov-
ing a program from machine to machine, or from disk to disk, is as simple as a
drag-and-drop operation. Imagine you have a collection of programs on one
machine and wish to transfer them to another machine. You can simply share
one of the machines and drag and drop the programs from the Finder window to
the new machine—no reinstallation or configuration is required.

Security issues

In today’s computing environments, networks are ubiquitous. Overall, this is a
good thing; it leads to a more productive and enjoyable computing experience
for users. The problem is that as soon as you put one computer online, you open
it to attack from anyone who has access to the network. Users of UNIX systems are
well aware of these risks and typically limit the number of services a system runs
to the bare minimum (ssh only), as well as implementing some sort of software
firewall (i pchai ns or TCP Wrapper). In practice, replacing the tel net and ftp
daemons with secure shell (ssh) is a good step in eliminating many security risks.

Mac OS X comes with an IP firewall program called i pf w. Unfortunately, this
command-line tool is a bit daunting to use and requires experience to configure
correctly. Enter BrickHouse (http://personalpages.tds.net/~brian_hill/brick-
house.html), a program that provides a Mac OS X GUI for i pf w (see figure 2.8).

With BrickHouse, it’s simple to set up a software firewall for your machine with-
out getting into the gory details of i pf w. In fact, BrickHouse is a good example
of how to construct a Mac OS X GUI application that interacts with a UNIX tool.
(This technique is of great value to UNIX developers moving to Mac OS X; I cover
it in detail in chapter 7.)

File system

The UNIX file system is made up of a hierarchy of files, directories, links (hard
and soft), and mount points under the directory /, called root. The organization
of the file system as seen from the Mac OS X Finder is somewhat different. The
file system visible from the Finder is separated into four domains, each of which
defines an area that holds files defined for a particular function:

= User domain—Holds home directories for user accounts on the system

= Network domain—Holds resources shared among all users that reside on the
local network

40

CHAPTER 2
Navigating and using Mac OS X

e 0o Quick Configuration: Default =)
. - -

< b Dt

© / 2 5

Assistant Quicl Expert or Settings Log Apply—Install

Click the lock to allow changes @
[Ethernet (en0) | PPP | PPPoE | AirPort (en1) [IP Gateway |

Default Filters

Outgoing connections from your

Outgoing (=2 Allow (0 Deny computer will be allowed by default

Inceming cennections from the internet

Incoming C2 Allow (=) Deny will be denied by default

W Enable Firewall

Filtars are appiied in order from top to bottom - Drag 1o Reoraar

. Action | Service | From Source i | To Destination

EE . el 3
@% Advanced | Add Filter ¢/ Edit Filter F/;L Delete Filter

P

Figure 2.8 BrickHouse provides an interface for the ipfw command-line tools,
giving you a simple way to set up software-based firewalling.

= Local domain—Holds resources shared among users, such as programs (in
the Applications folder and Library files)

= System domain—Holds system software
Tables 2.1 through 2.3 describe the contents of each Mac OS X file system domain.

Table 2.1 Contents of the User domain

Name Description

Desktop User-defined desktop items (programs, aliases, docu-
ments the user has placed on the Finder desktop)

Documents User documents
Library Application resources
Movies User movie files

Music User music files, such as mp3s

File system 41

Table 2.1 Contents of the User domain (continued)

Name Description
Pictures User image files
Public Shared items enabled through the System Preference
sharing option
Sites User bookmarks for web sites and the user’s web site
Applications Private user programs

Table 2.2 Contents of the Network domain

Name Description
Applications Applications available to all users over the network
Library Application and system resources for programs that

reside on a network volume, which are available to all
users of the system

Table 2.3 Contents of the Local and System domains

Name

Description

Applications

Default location for Mac OS X applications that are
available to all users of the system

Applications/Utilities

Default location for Mac OS X administrative applications
that are available to all users of the system

Library

Application and system resources that are available to all
users of the system

System (both Mac OS X and Mac 0S 9)

System software

2.8.1 Finder

The Mac OS X Finder presents a user-friendly view of the file system but hides
many of the files and directories that are visible from the shell. Figure 2.9 shows
the root file system from the shell and Finder.

The Finder view hides many of the UNIX-specific files and directories. This is
intentional: UNIX is the underpinning of the system, and, for most users, seeing
this information would only detract from their experience and provide little or

no functionality.

42

CHAPTER 2
Navigating and using Mac OS X

e i

WEeTW | Macintosh HD =

©EED M § ¢ A

Back View Computer Home Favorites Applications

Name 41" Date Modified

B [A Applications Today, 2:04 PM

L. g Applications (Mac OS 9) 11/6/02, 5:45 PM

L3 backups 7302, 9:52 PM

L g cvs-repository 11/9/02, 10:59 AM

| 3 Developer 4/19/02, 3:23 AM

L g Docurments 9/25/02, 8:37 PM

L3 i Library 9f17/02, 802 AM

L. g sw 3/18/02, 6:46 PM

L3 System 6/12/02, 4:32 PM

L g System Folder 11/6/02, 7:58 PM

| 3 Temporary ltems 9/29/02, 7:49 PM

B [E Users 10/2/02, 10:49 PM
[Yaiwl g
BE6 Jusr{bin/legin (ttypl)
druwxrwxr-x 14 root admin 432 Apr 19 28082 Deweloper -
druer-xr-x 9 omalley unknown 264 Sep 25 28:37 Documents
B S 1 onalley adnin B Jun 26 2881 Icon?
druxruxr-x 38 root admin 976 Sep 17 B3:02 Libraory
drwxr-xr-x & root wheel 264 Dec 1 2801 Network
HAruEr-xr-x 6 root whee | 264 Jun 12 16:32 System
druwsr-xr-x 48 omalley unknown 1588 MNov 6 19:58 System Folder
druer—xr—x 3 omalley admin 264 Sep 29 19:49 Temporory Items
druer-xr-x 2 omalley unknown 264 Dec 4 28081 TheFindByvContentFolder
druer-xr-x 4 omalley unknown 264 Dec 1 2881 TheYolumeSettingsFolder
druxr-xr-x 12 omalley unknown 364 Sep 14 B3:29 Trosh
drWxE-XE-% & root wheel 264 Oct 2 22:49 Users
druxrwxrwt 2 root wheel 264 Mov 9 28:67 VYolumes
dr-xr-xr-x 1 root wheel 512 Mov 19 14:86 qutomount
druer-xr—x 3 omalley staff 264 Jul 3 21:52 backups
druwsr-xr-x 33 root whee | 1878 Aug 7 22:85 bin
Lrwerwar—t 1 root admin 13 Mov 19 14:85 cores -» private/cores
drurwrwy E omalley admin 264 Now 9 1B:59 cws-repository
dr-xr-xr-x Z root wheg | 51z Oct 4 21:29 dev
Lruxruxr-t 1 root admin 11 Mov 19 14:85 etc - privotesetc
Lrwsrwxr-t 1 root admin 9 Mow 19 14:65 moch -= /mach.sym
—I-—I--I'—- 1 root admin 564768 Oct 4 21:29 mach.svm
—It—t— 1 root whee | 3169824 May 38 17:52 mach_kernel
druer—xr—x 7 root whee | 264 Oct 4 21:29 private
druwxr-xr-x B9 root whee | 1962 Aug 21 268:48 shin
druxr-xr-x 13 root admin 395 Mar 18 Z26A2 sw
Lruxruxr-t 1 root admin 11 Mov 19 14:85 tnp - privatestmp
druxr-xr-x 13 root wheel 395 Sep 2 Z@A1 usr |-
Lrwsrwxr-t 1 root admin 11 Nov 19 14:65 var - privabesvar v
[176] (14:86) {localhast): -z | s

Figure 2.9

The Finder hides many of the
UNIX-specific file system items
from users, including files and
directories.

If you wish to see these items in the Finder window, you need to edit a configuration
file. The file /.hidden lists and controls the items that are not visible in the Finder:

%ls -
“r--r--r--

aut ormount

bi n

cores

Desktop DB
Deskt op DF
Deskt op Fol der

. hi dden; cat
1 root

. hi dden
wheel

152 Sep 2 2001 . hidden

2.8.2

File system 43

dev

etc

| ost +f ound

mach

mach_ker nel

mach. sym

private

shin

tnp

Trash

usr

var

VM St or age

Vol unes
As you can see, user root owns this file. You can change the files that are visible
from the Finder by adding or removing items from this file (as root), logging out
of the current session, and logging back in. (You can also make a directory or file

invisible from the Finder by prefixing its name with a period [.].)

Case sensitivity and pathname delimiters

The primary file system for Mac OS X is HFS+. It is case insensitive, but it main-
tains case information so the UNIX side of things can preserve case sensitivity.
Another feature of Mac OS X is its treatment of special characters in filenames—
specifically, the pathname delimiter. The original Mac OS used a colon as a path
delimiter, but UNIX has always used the forward slash (/).
Try this:

1 Create a text file, naming it test_file.txt (echo "" > test_file.txt).

2 From the Finder, locate the directory that holds the file and rename the
file test/file.txt.

3 Go back to the shell and list the directory contexts (I s). You’ll see that a
colon has replaced the forward slash in the filename.

This example demonstrates the result of the conversion between a colon and for-
ward slash at the VFS layer. VFS provides an abstract view of the physical file systems
through a common interface. VFS accepts file-related system calls (open, cl ose, r ead,
write) and translates them into the appropriate calls for the target file system
(see figure 2.10).

44

CHAPTER 2
Navigating and using Mac OS X
GO0 ' tmp =
Back View Computer Home Favorites Applications
test /file txt
P
8oe Jusr{bin/legin (ttypl)
[182] {14:09) {localhost):tmp - Ls .
test:file.txt]
[183] {14:18) {localhost):tmp -2 E Flgure 2.10 . R
The VFS layer in the kernel is
@ responsible for translating
£ Mac OS X file delimiters to
7 their UNIX equivalent.

2.9 Single-user mode

UNIX systems permit users with root privileges to boot the system under various
run levels. Each run level provides the user with different functionality. For
example, under Solaris, level 1 boots the system in System Administrator mode,
mounting file systems, and enabling a subset of system services. Under RedHat
Linux, run level 3 enables multiuser mode, 5 boots the system into X11, and 1
boots into single-user mode.

Most, if not all, UNIX distributions support single-user mode, which is prima-
rily used for diagnostics and system maintenance. Typically, single-user mode
enables a very small subset of commands that let you perform basic system main-
tenance operations. To boot Mac OS X into single-user mode, hold the Com-
mand+S keys at startup.

Single-user mode disables most services. In fact, the only services run are as
follows:

/sbin/init -s

/sbin/mach_init -s

-sh (sh)
The mach_i nit process enables messaging over ports by bootstrapping the Mach
port server and running the i ni t process. Without mach_i ni t, there would be no
way for the kernel to communicate with other system components. During the
final stage of the boot process, /sbin/init is run. The —s option tells the process to
run the system in single-user mode. One of the operations performed by the init
process is to fork a process that runs the shell sh.

2.10

2.11

Processes management 45

Once in single-user mode, you can run the f sck command to examine and fix
the boot volume’s file system. To exit single-user mode, type exi t, which continues
with the boot process. Typing r eboot will restart the system.

System log files

BSD system log files are stored in their usual BSD location: the /var directory. Mac
OS X provides a GUI tool called Console, located in the Applications/Utilities
folder, which displays the console.log file. In addition to the UNIX log files, two
log folders contain Mac OS X—specific log files: ~/Library/Logs and /Library/Logs
hold log files for disk copies and file service and directory service errors.

Processes management

UNIX users quickly become familiar with performing process management tasks
through the kil |, top, ni ce, reni ce, and ps commands. These commands enable
you to control, terminate, and get information about a process by specifying a pro-
cess identifier (PID). A process identifier is a unique integer assigned to a process by
the operating system that enables the system (and you) to identify and interact with
the process. Darwin, and by extension Mac OS X, supports these process-manage-
ment commands through the BSD user environment.

In addition to the UNIX commands, Mac OS X contains a GUI-based process
management tool called ProcessViewer that performs similar functionality. Process-
Viewer, located in /Applications/Utilities, lists instantiated processes, displays infor-
mation on each process, and enables you to kill a running process (see figure 2.11).
The Show pop-up menu lists the categories of processes (All Processes, User Pro-
cesses, Administrator Processes, and NetBoot Processes), enabling you to filter the
program’s ProcessViewer displays. (The program is self-explanatory; to learn more,
run it and investigate its features.)

One limitation of the program is that you cannot send processes different
types of signals. Imagine you wrote a program that performs an action when it
gets a S| GUSRL signal. ProcessViewer does not permit you to send this signal to
the process—it only permits you to kill a process by double-clicking on a process
or name or selecting the process and pressing Command +Shift+Q. Presumably,
ProcessViewer sends the process a KI LL signal.

46

CHAPTER 2
Navigating and using Mac OS X

80686 Process Listing

Find: Show: [All Processes liG]

Narne User Status % CPU % Memory t,\

init root Running 0.0 0.0 m

DirectoryService root Running 0.0 0.1

automount root Running 0.0 0.0

ATSS5erver omalley Running 3.7 0.4,

Systemn Preferenc omalley Running 0.0 0.8 ;

41 processes. Sample every 20 E‘ seconds

&
= Less Info
| Process D | Statistics

f : Figure 2.11
| Pracess ID: 1 : The Mac 0S X ProcessViewer
| Parent Process ID: O ((null)) lists running processes and
{ SR, : . . .
e ; displays information about
| Saved User ID: 0 (roat) |
| : each process. It also enables
| T inal: 7 - A -
=S | you to kill an instantiated

.. = Drocess.

2.12 Common commands and tools

Most users perform a limited number of tasks when using a computer. My day is
usually spent at the command line, within emacs, or using a web browser. When
you switch to a new operating system, it is useful to first learn how to perform
common tasks on the new system so you can get right to work. For example, a
common task is to search for all files greater than a certain size, say 1MB. Under
UNIX, you accomplish this as follows:

%find / -size +1048576c -exec Is -1 {} \;

It would be helpful to know how to perform the same task within the Mac OS X
environment. Of course, you can use the same command from the shell, but you
are interested in how to do this within the Macintosh environment (see appendix B
for the Mac OS X GUI-based equivalent of the UNIX fi nd command).

Let’s look at an example of one of these mappings. Under UNIX, a common
operation is to view the state of the system or a particular process using the t op
command (see figure 2.12). To get information on the top processes consuming
CPU, you use the following command (by default, t op displays updates every one
second; the —s 2 option tells it to update every two seconds):

%top —s 2

Common commands and tools 47

@00 Jusrfbinflogin (ttypl)

Lood Avg: ©.49, 8.53, 8.39 CPU usoge: 18.9% user, 18.8% svs, 79.1% idle
ShoredLibs: num = 147, resident = 27.8M cods, 1.68M dota, 7.68M LinkEdit
MenRegions: num = 2966, resident = 71.3M + B.78M private, 49.7M shared
PhysMen: E7.8M wired, 119M actiwve, 441M inoctive, 618M used, 22.4M free
WM: 1.42G + BB.9M B4367(A) pogeins, 43519(A) pageouts

PID COMHAMD HCPU TIME #TH #PRTS #MREGS RPRVT R3SHRD RSIZE WSIZE
B933 top 9.8% B:81.52 1 14 15 Z@gk EZ76k 464K 1.62M
539G writeconfi @.8% 8:80.17 1 28 16 3zeK 292K 1.26M 1.61H
5395 System Pre @.8% 8:82.55 4 187 122 2.12M 9.8BM 5.29M S84.2M
5388 tcsh B.8% B8:80.48 1 24 16 B36k 684K 1816K E.78M
5314 Terminal T.2% B:31.9 B 127 389 3.33M 1Z.4M £.68M S9.EM
B&13 GrophicCon A.9% 2:11.59 3 182 2B3 1A.BM 13.2M 13.BM 92.@M
BEE9 Snapz Pro B.8% B:59.26 3 99 181 16.8M 14.9M Z@.4M 186M
B3OS SystemUl3e @.8% 0:81.88 2 186 115 1.368M 5.Z6M Z.68M T7.4M
5367 Dock B.8% 885,22 Z 95 95 1.66M T.B6M 3.27M 73.9M
5663 Finder B.8% 2:83.78 3 93 618 26.6M 27.IM 31.BM 135M
5382 phs B.8% B8:83.95 1 23 35 3.2M 89K 3.99M 28.7H
E797 loginwindo @.8% 8:82.23 7 1289 1B@ 1.04M S5.47M 4.ZEM &7.9M
B796 Window Man 2.7% 3:28.63 3 171 168 1.6BM Z26.7M Z6.BM T4.8M

285 =lpd A.8% §:R6.81 & 29 25 BBK 3RAK 236K 4.99M

Processes: 48 total, 2 running, 38 sleeping... 116 threods 14:12:24

NEI = |

Figure 2.12 shows the result.

Figure 2.12

The t op command displays
an updated sample of system
usage statistics.

As mentioned earlier, Mac OS X comes with a program called ProcessViewer that
provides similar functionality but displays the information in a GUI (see figure 2.13).
To use ProcessViewer, open the /Applications/Utilities folder and double-click on

the ProcessViewer icon.

As you can see, much of the same information is displayed, but the GUI pro-

vides access to program features through menus.
Appendix B lists common UNIX commands and their Mac OS X equivalents.
The information is not all-inclusive, but it will get you started.

B8oe Process Listing

Find: | Show: | All Processes | #]

Name User Status %EPU | % Memory S
top root Running 3.3 0.1
ProcessViewer omalley Running 2.8 0.8
Window Manager omalley Running 0.1 4.2
ATSServer omalley Running 0.0 0.4,
Systemn Preferenc omalley Running 0.0 0.8 v
40 processes. Sample every 5 ‘f seconds
I More Info

g

Figure 2.13

A Mac 0S X GUI program
(ProcessViewer) that displays
information similar to that
from the UNIX t op command

48 CHAPTER 2
Navigating and using Mac OS X

2.13 Scripting languages

Historically, UNIX systems have provided strong support for text processing, fil-
tering, and program automation through commands, pipes, shell scripts, and
high-level scripting languages such as Shell, Perl, and Python. The most basic
technique is to use standard UNIX commands combined with pipes.

For example, imagine you wish to count the number of lines (comments and
empty lines) in a project’s source tree and display the result. This task includes
finding all target files under the project directory, counting the number of lines in
each source file, summing the source lines, and printing the results. A common
UNIX solution is to use various UNIX commands linked together with pipes.

To find the source files, you use the fi nd command; to count the lines, you use
the we command; to construct arguments and execute a utility (wc), use xargs. To
connect the commands, you use a pipe (|). Using these commands and a pipe, you
can solve the problem without writing a single line of code:

% find nmyproject -name "*.c" | xargs we -|

Another technique is to use specialized tools like ed and awk to perform tasks such
as filtering lines in a set of files and extracting and formatting information. Both
UNIX commands and tools such as ed and awk provide you with primitives, but
they do not give you the programmatic infrastructure to perform tasks that are
more complex. Enter scripting languages.

Scripting languages, such as Perl and Python, enable you to perform many of
the tasks you accomplished using UNIX commands and tools, but give you
plenty of infrastructure to extend and enhance your solutions. In addition, these
languages let you write programs that talk over a network, provide a GUI for user
interaction, and perform mathematical operations. Scripting languages are not
new; they have existed since the 1960s. Early languages included JCL (Job Control
Language), sh (the first shell), and Rexx; today’s popular languages include Perl,
Python, JavaScript, and Tcl.

2.13.1 AppleScript

All your favorite UNIX scripting languages, commands, and tools, are available
under Mac OS X from the Terminal application. However, the Mac OS X offers
another scripting language that is specific to the Macintosh: AppleScript. Apple-
Script, developed by Apple, is a high-level scripting language that facilitates the
manipulation of application and system services. The advantage of AppleScript
over other scripting languages is that AppleScript is a system- and application-level

Scripting languages 49

06 EmptyTrash
¥ Description
A simple seript that emnpties the trash.
Record Stop Run Che‘c‘l‘(“gﬁtax
tell application "Finder”
empty trash
end tell
Figure 2.14
The Script Editor is the main development tool for
appleseript |) J<r.7| writing and running an AppleScript.

scripting language supported by most Macintosh applications. Because support
for AppleScript is built into the Macintosh operating system, there is tight inte-
gration with core system services and Inter-Process Communication (IPC) facilities
between applications.

The main reason to use AppleScript over Perl or Python is its ability to control
other programs and use their services. You can do something like this with Perl
using the open and system calls, but with AppleScript the technique is far more
substantial. In Perl, you call programs as black boxes; but AppleScript gives you
access to the application’s internals, so you can script many of the features that
are available to a user interacting through the program’s GUI.

AppleScript uses AppleEvents as its primary communication primitive, which
facilitates the sharing of services between applications. AppleEvents are defined
messages that enable applications to extend their functionality by using the ser-
vices of other applications and share their own operations with other applications.
AppleScript communicates with applications by sending AppleEvents to other
AppleEvent-enabled applications or system processes to request services and
receive the result of the operation.

Let’s take a quick look at AppleScript and get a feel for how easy it is to write
scripts. The AppleScript editor, Script Editor (see figure 2.14), is located in the /
Applications/AppleScript folder and is loaded as part of the default Mac OS X
installation.

You use the Script Editor as your main development environment for writing
and testing scripts. AppleScript is an easy-to-understand, English-like language,
structured as a series of single or compound statements.

Imagine you wish to create an AppleScript to connect to a specific host over
ssh. To do so, follow these steps:

50 CHAPTER 2
Navigating and using Mac OS X

806 Terminal Dictionary

Terminal Suite ldo seript: Run a UNIX shell seript or command
run do script
quit
count
do script
application
window

with command string -- iy e de fodded e 0 Foemedods daplicadiog oa We comimda fne

Figure 2.15 AppleScript-enabled programs like Terminal export accessible
operations using dictionaries.

1 Open the Script Editor and select File - Open Dictionary. Select Terminal
from the list and click the Open button.

2 The Open Dictionary menu item opens a window that lists all programs
with which your script can communicate. The Terminal Dictionary window
displays all commands and objects exported by the Terminal program
(see figure 2.15).

3 From this list of objects and commands, you can see the aspects of the
program that are scriptable. Enter the following script into the Script
Editor and save the script as an application:

tell application "Terninal"

run

do script with command "ssh host. ny. domai n. edu”
end tell

4 To connect to the host, double-click on the script from the Finder, or
click the Script Editor’s Run button.

AppleScript is a cool and useful technology for controlling many aspects of your
Mac OS X system. It takes very little time to learn, it’s powerful, and it enables you
to tie together the services of many Mac OS X applications to perform powerful
tasks. In chapter 7, you will learn more about AppleScript and its technologies.

2.14 Development tools

The default load of Mac OS X does not contain any UNIX or Mac OS X-specific
development tools, such as gcc, g++, gdb, RCS, CVS, Project Builder, or Interface
Builder. These tools and others are available free from the Apple Developer site
(http://developer.apple.com). Appendix A provides all the information you need
to download and install the complete suite of Apple development tools.

X Window under Mac OS X 51

2.15 X Window under Mac 0OS X

Mac OS X is really two systems in one: you can use it as a Macintosh system
through its Aqua GUI or as a BSD box through the BSD user environment and
shell (using the Terminal program). However, Terminal is text based and only
supports text-based programs. The default installation of Mac OS X does not come
with an X Window server, so you cannot run X11-based applications from the
Terminal. Luckily, there are free X Window servers that run on Mac OS X, permit-
ting you full access to local and remote X Window applications under Mac OS X.

In addition, many active projects are being developed to bring the full BSD tool
chain to Mac OS X. These projects provide users with infrastructure that greatly
simplifies locating and installing UNIX and BSD tools that do not come standard
with Mac OS X. This process is exciting and is one of the primary advantages of
using Mac OS X. Through the work of many individuals, most of whom are volun-
teers, you now have the means to replicate your UNIX work environments and tools
on the Macintosh.

X Window, developed at the Massachusetts Institute of Technology (MIT), is
the primary graphics display and windowing system for UNIX user interfaces. X
Window lets you display basic graphic elements such as pixels, lines, and text, as
well as advanced interface components like windows and buttons, on a computer
terminal. UNIX window managers like t wm (http://www.plig.org/xwinman/
vtwm.html) and f vwm (http://www.fvwm.org), and desktops such as KDE (http://
www.kde.org) and GNOME (http://www.gnome.org), use the services of X Window.

Mac OS X does not use X Window as its graphic display system. Instead, it
uses its own proprietary system called Quartz to handle graphics operations. The
Mac OS X user interface for Quartz is called Aqua. X Window and Quartz are two
fundamentally different graphics and display technologies. For example, you
cannot run X Window applications under Mac OS X, because Quartz does not
support X Window. However, as I mentioned earlier, the software community has
come to the rescue with freely available X Window servers for Mac OS X.?

2 Projects include XFree86 on Darwin and Mac OS X (http://mrcla.com/XonX) and the XDarwin Project
(http://www.xdarwin.org).

52

2.15.1

CHAPTER 2
Navigating and using Mac OS X

NOTE You will often see the terms rooted (full screen) and rootless in the docu-
mentation that accompanies X servers for Mac OS X. Rooted means X11
occupies the entire screen. In this mode, your display looks like an X
Window session on any other UNIX machine. You can switch between
the X Window and Mac OS X environments, but only one is visible at a
time. Rootless mode enables both X Window and Aqua to coexist on the
display simultaneously. You switch between applications in each envi-
ronment by clicking on the appropriate application window.

Installing the X server

There are many ways to install the X server on your machine, but all share some
common steps. First, you need to install the Mac OS X version of XFree86; then
you install the X server software, called XDarwin. Both software packages are
free. For simplicity, you will install both from a combined binary distribution.

To install the package, follow these steps:

1 Open your web browser and point it to the following location: http://
www.osxgnu.org/software/Xwin/xfree86.

2 Download the XFree86 for Mac OS X Rootless version X by choosing the
appropriate download site and clicking the Download button.

3 If your browser has not already done so, decompress the distribution.
This step should result in an Xfree86Complete-[version].mpkg file.

4 Double-click on the file icon and follow the on-screen installation instruc-
tions. You will need administrative privileges to install the software.

Once the installation is complete, close the installer, open the Mac OS X /Appli-
cations folder, and double-click on the XDarwin icon. The first thing you will see
is a screen asking which display mode you wish to use: Full Screen (Rooted) or
Rootless (see figure 2.16).

If you choose Full Screen, XDarwin takes over the entire screen; if you choose
Rootless, Aqua and XDarwin coexist on the same screen. To switch between the full
screen mode and Aqua, press Command+Option+A. To exit XDarwin, locate the
main xt er mand type exi t, or switch to Aqua and select Quit from the XDarwin menu.

Now that the X server is running, you have full access to UNIX X11 applications.
You can run local X11 applications or ssh to a remote host and run them from
there, just as you would in a traditional X session. XDarwin’s default window man-
ager is t wm but you can install and use others (including the old favorite, f vam).

UNIX to Mac OS X software projects 53

88686 Welcome to XFreed6

Welcome to XDarwin, a window server for the X Window System under
Mac OS X. XDarwin is provided by the XFree86 Project and is distributed
under the terms of the MIT X11 / X Consortium License. This software is
provided AS IS, with no warranty. Please read the License before using.

For more information, bug reports and the latest versions,
please visit http://sourceforge.net/projects/xonx/.

Figure 2.16

If run XDarwin in Full Screen
The X11 environment can display windows on a separate virtual screen youru a ull Scree

or rootless on the Mac OS X desktop. Choose the display mode to use: mode, XDarwin takes over the
entire screen. In Rootless mode,
@Alwavs ask for display mode £ Full screen ‘) ": Rootless) X Window and Aqua coexist on

the display simultaneously.

2.16 UNIX to Mac 0OS X software projects

Mac OS X users are fortunate to have access to a large amount of UNIX software
that can run under Mac OS X systems. In addition, many projects are devoted to
bringing UNIX tools to the Mac OS X environment. Mac OS X ships with many
commonly used UNIX commands and tools, including | s, cat, nore, emacs, vi,
top, and Perl. Installing the development tools (discussed in appendix A) adds
more tools to the system, including gcc, g++, gdb, RCS, and CVS.

To install tools not covered by these methods, you have several choices. Mac
OS X is based on BSD, after all, so in most cases you can simply locate and down-
load a tool’s source distribution and compile and install the software in the usual
manner. Several projects attempt to simplify this process by providing software
tools and infrastructure that help you locate, build, and install UNIX tools on the
Macintosh:

» The Fink project (http://fink.sourceforge.net)—Provides UNIX tools to Mac
OS X users by porting existing UNIX tools to the Mac OS X environment
and then making these ports available to the public through packages. You
first download the client-side package manager software (called fink) and
install it on your system. The fink software presents a list of available soft-
ware packages. You select packages from the list, and fink handles all the
installation details, including downloading the package and package depen-
dencies, building the software, and installing it on your system. This process

54

2.17

CHAPTER 2
Navigating and using Mac OS X

simplifies many of the tricky issues associated with porting and installing
software packages. Another nice feature is that fink places all installed soft-
ware into a separate directory, away from the system files—you never need
to worry about clobbering system files when installing new software.

» The GNU Mac OS X Publi