
Acknowledgments

First on the list of people I have to thank is Sarah Harlin. After writing an essay I
usually showed it to her first. And she usually crossed out half of it and told me
to rewrite the rest. She has a perfect ear for prose rhythm, and barks at
superfluous words like a dog after a squirrel.

If these essays are any good it's because most grew out of conversations with
her or with Robert Morris, Trevor Blackwell, or Jackie McDonough. I'm lucky to
know them.

The book benefits from the ideas of several other friends with whom I've talked
about these questions over the past several years: Ken Anderson, Chip
Coldwell, Matthias Felleisen, Dan Friedman, Daniel Giffin, Shiro Kawai, Lisa
Randall, Eric Raymond, Olin Shivers, Bob van der Zwaan, and David
Weinberger. Eric Raymond I owe special thanks not just for his ideas but for his
example in writing about hacking.

I owe thanks to many others for help and ideas, including Jülide Aker, Chris
Anderson, Jonathan Bachrach, Ingrid Bassett, Jeff Bates, Alan Bawden, Andrew
Cohen, Cindy Cohn, Kate Courteau, Maria Daniels, Rich Draves, Jon Erickson,
John Foderaro, Bob Frankston, Erann Gat, Phil Greenspun, Ann Gregg,
AmyHarmon, AndyHertzfeld, Jeremy Hylton, Brad Karp, Shriram
Krishnamurthi, Fritz Kunze, Joel Lehrer, Henry Leitner, Larry Lessig, Simon
London, John McCarthy, Doug McIlroy, Rob Malda, Julie Mallozzi, Matz, Larry
Mihalko, Mark Nitzberg, North Shore United, Peter Norvig, the Parmets, Sesha
Pratap, Joel Rainey, Jonathan Rees, Guido van Rossum, Barry Shein, the
Sloos,Mike Smith, Ryan Stanley, Guy Steele, Sam Steingold, Anton van Straaten,
Greg Sullivan, Brad Templeton, Dave Touretzky, Mike Vanier, the Weickers,
JonL White, Stephen Wolfram, and Bill Yerazunis.

This book looks good because the design was really done by typography god
Gino Lee, not me. I know enough about book design to do whatever Gino says.
Chip Coldwell spent hours beating on fonts and Amy Hendrickson days writing
LaTex macros to achieve the appearance of ease you see here. The cover,
curiously, was in a sense designed by Robert Morris, who fired up the Gimp and
did some surgery on the previous version. Thanks to Gilberte Houbart for her
ingenuity and persistence in extracting images from sources all over the world.

The guys at O'Reilly did an excellent job: Allen Noren, whose genuine interest
in making good books is enough to restore one's faith in the book business;
Betsy Waliszewski, whose vision for a more popular book stealthily became
mine; Matt Hutchinson, Robert Romano, and Claire Cloutier, who made
production run smoothly; and Tim O'Reilly, who shows what publishing can be
when a publisher is a person rather than a conglomerate.

Extra special thanks to Jessica Livingston. Her advice improved every part of
this book, from the front cover to the index. Her unfailing encouragement
made the book better too: by telling me constantly that lots of people would
want to read it, she frightened me into trying hard to make it something lots of
people would want to read.

I learned about hacking from many people, but I learned about painting mostly
from one: Idelle Weber, a great teacher all the better for teaching by example.
I'm deeply indebted to her and her husband Julian for years of kindness.

Thanks finally to my father, for teaching me skepticism, and to my mother, for
teaching me imagination. Having her for a mom has been like seeing the world
in color.

Preface

This book is an attempt to explain to the world at large what goes on in the
world of computers. So it's not just for programmers. For example, Chapter 6 is
about how to get rich. I believe this is a topic of general interest.

You may have noticed that a lot of the people getting rich in the last thirty years
have been programmers. Bill Gates, Steve Jobs, Larry Ellison. Why? Why
programmers, rather than civil engineers or photographers or actuaries? "How
to Make Wealth" explains why.

The money in software is one instance of a more general trend, and that trend
is the theme of this book. This is the Computer Age. It was supposed to be the
Space Age, or the Atomic Age. But those were just names invented by PR
people. Computers have had far more effect on the form of our lives than space
travel or nuclear technology.

Everything around us is turning into computers. Your typewriter is gone,
replaced by a computer. Your phone has turned into one. So has your camera.
Soon your TV will. Your car has more processing power in it than a room- sized
mainframe had in 1970. Letters, encyclopedias, newspapers, and even your
local store are being replaced by the Internet. So if you want to understand
where we are, and where we're going, it will help if you understand what's
going on inside the heads of hackers.

Hackers? Aren't those the people who break into computers? Among outsiders,
that's what the word means. But within the computer world, expert
programmers refer to themselves as hackers. And since the purpose of this
book is to explain how things really are in our world, I decided it was worth the
risk to use the words we use.

The earlier chapters answer questions we have probably all thought about.
What makes a startup succeed? Will technology create a gap between those who
understand it and those who don't? What do programmers do? Why do kids
who can't master high school end up as some of the most powerful people in
the world? Will Microsoft take over the Internet? What to do about spam?

Several later chapters are about something most people outside the computer
world haven't thought about: programming languages. Why should you care
about programming languages? Because if you want to understand hacking,
this is the thread to follow—just as, if you wanted to understand the technology
of 1880, steam engines were the thread to follow.

Computer programs are all just text. And the language you choose determines
what you can say. Programming languages are what programmers think in.

Naturally, this has a big effect on the kind of thoughts they have. And you can
see it in the software they write. Orbitz, the travel web site, managed to break
into a market dominated by two very formidable competitors: Sabre, who
owned electronic reservations for decades, and Microsoft. How on earth did
Orbitz pull this off? Largely by using a better programming language.

Programmers tend to be divided into tribes by the languages they use. More
even than by the kinds of programs they write. And so it's considered bad
manners to say that one language is better than another. But no language
designer can afford to believe this polite fiction. What I have to say about
programming languages may upset a lot of people, but I think there is no better
way to understand hacking.

Some might wonder about "What You Can't Say" (Chapter 3). What does that
have to do with computers? The fact is, hackers are obsessed with free speech.
Slashdot, the New York Times of hacking, has a whole section about it. I think
most Slashdot readers take this for granted. But Plane & Pilot doesn't have a
section about free speech.

Why do hackers care so much about free speech? Partly, I think, because
innovation is so important in software, and innovation and heresy are
practically the same thing. Good hackers develop a habit of questioning
everything. You have to when you work on machines made of words that are as
complex as a mechanical watch and a thousand times the size.

But I think that misfits and iconoclasts are also more likely to become hackers.
The computer world is like an intellectual Wild West, where you can think
anything you want, if you're willing to risk the consequences.

And this book, if I've done what I intended, is an intellectual Western. I
wouldn't want you to read it in a spirit of duty, thinking, "Well, these nerds do
seem to be taking over the world. I suppose I'd better understand what they're
doing, so I'm not blindsided by whatever they cook up next." If you like ideas,
this book ought to be fun . Though hackers generally look dull on the outside,
the insides of their heads are surprisingly interesting places.

Cambridge, Massachusetts
April 2004

Chapter 1. Why Nerds Are Unpopular

When we were in junior high school, my friend Rich and I made a map of the
school lunch tables according to popularity. This was easy to do, because kids
only ate lunch with others of about the same popularity. We graded them from
A to E. A tables were full of football players and cheerleaders and so on. E tables
contained the kids with mild cases of Down's Syndrome, what in the language
of the time we called "retards."

We sat at a D table, as low as you could get without looking physically different.
We were not being especially candid to grade ourselves as D. It would have
taken a deliberate lie to say otherwise. Everyone in the school knew exactly how
popular everyone else was, including us.

I know a lot of people who were nerds in school, and they all tell the same story:
there is a strong correlation between being smart and being a nerd, and an even
stronger inverse correlation between being a nerd and being popular. Being
smart seems to make you unpopular.

Why? To someone in school now, that may seem an odd question to ask. The
mere fact is so overwhelming that it may seem strange to imagine that it could
be any other way. But it could. Being smart doesn't make you an outcast in
elementary school. Nor does it harm you in the real world. Nor, as far as I can
tell, is the problem so bad in most other countries. But in a typical American
secondary school, being smart is likely to make your life difficult. Why?

The key to this mystery is to rephrase the question slightly. Why don't smart
kids make themselves popular? If they're so smart, why don't they figure out
how popularity works and beat the system, just as they do for standardized
tests?

One argument says that this would be impossible, that the smart kids are
unpopular because the other kids envy them for being smart, and nothing they
could do could make them popular. I wish. If the other kids in junior high
school envied me, they did a great job of concealing it. And in any case, if being
smart were really an enviable quality, the girls would have broken ranks. The
guys that guys envy, girls like.

In the schools I went to, being smart just didn't matter much. Kids didn't
admire it or despise it. All other things being equal, they would have preferred
to be on the smart side of average rather than the dumb side, but intelligence
counted far less than, say, physical appearance, charisma, or athletic ability.

So if intelligence in itself is not a factor in popularity, why are smart kids so
consistently unpopular? The answer, I think, is that they don't really want to be
popular.

If someone had told me that at the time, I would have laughed at him. Being
unpopular in school makes kids miserable, some of them so miserable that they
commit suicide. Telling me that I didn't want to be popular would have seemed
like telling someone dying of thirst in a desert that he didn't want a glass of
water. Of course I wanted to be popular.

But in fact I didn't, not enough. There was something else I wanted more: to be
smart. Not simply to do well in school, though that counted for something, but
to design beautiful rockets, or to write well, or to understand how to program
computers. In general, to make great things.

At the time I never tried to separate my wants and weigh them against one
another. If I had, I would have seen that being smart was more important. If
someone had offered me the chance to be the most popular kid in school, but
only at the price of being of average intelligence (humor me here), I wouldn't
have taken it.

Much as they suffer from their unpopularity, I don't think many nerds would.
To them the thought of average intelligence is unbearable. But most kids would
take that deal. For half of them, it would be a step up. Even for someone in the
eightieth percentile (assuming, as everyone seemed to then, that intelligence is
a scalar), who wouldn't drop thirty points in exchange for being loved and
admired by everyone?

And that, I think, is the root of the problem. Nerds serve two masters. They
want to be popular, certainly, but they want even more to be smart. And
popularity is not something you can do in your spare time, not in the fiercely
competitive environment of an American secondary school.

Alberti, arguably the archetype of the Renaissance Man, writes that "no art,
however minor, demands less than total dedication if you want to excel in it." 1 I
wonder if anyone in the world works harder at anything than American school
kids work at popularity. Navy SEALS and neurosurgery residents seem slackers
by comparison. They occasionally take vacations; some even have hobbies. An
American teenager may work at being popular every waking hour, 365 days a
year.

I don't mean to suggest they do this consciously. Some of them truly are little
Machiavellis, but what I really mean here is that teenagers are always on duty as
conformists.

For example, teenage kids pay a great deal of attention to clothes. They don't
consciously dress to be popular. They dress to look good. But to who? To the
other kids. Other kids' opinions become their definition of right, not just for
clothes, but for almost everything they do, right down to the way they walk. And
so every effort they make to do things "right" is also, consciously or not, an
effort to be more popular.

Nerds don't realize this. They don't realize that it takes work to be popular. In
general, people outside some very demanding field don't realize the extent to
which success depends on constant (though often unconscious) effort. For
example, most people seem to consider the ability to draw as some kind of
innate quality, like being tall. In fact, most people who "can draw" like drawing,
and have spent many hours doing it; that's why they're good at it. Likewise,
popular isn't just something you are or you aren't, but something you make
yourself.

Figure 1-1. Gateway High School chess club, 1981. That's me, upper left.

The main reason nerds are unpopular is that they have other things to think
about. Their attention is drawn to books or the natural world, not fashions and
parties. They're like someone trying to play soccer while balancing a glass of
water on his head. Other players who can focus their whole attention on the
game beat them effortlessly, and wonder why they seem so incapable.

Even if nerds cared as much as other kids about popularity, being popular
would be more work for them. The popular kids learned to be popular, and to
want to be popular, the same way the nerds learned to be smart, and to want to
be smart: from their parents. While the nerds were being trained to get the right
answers, the popular kids were being trained to please.

So far I've been finessing the relationship between smart and nerd, using them
as if they were interchangeable. In fact it's only the context that makes them so.
A nerd is someone who isn't socially adept enough. But "enough" depends on
where you are. In a typical American school, standards for coolness are so high
(or at least, so specific) that you don't have to be especially awkward to look
awkward by comparison.

Few smart kids can spare the attention that popularity requires. Unless they
also happen to be good- looking, natural athletes, or siblings of popular kids,
they'll tend to become nerds. And that's why smart people's lives are worst
between, say, the ages of eleven and seventeen. Life at that age revolves far
more around popularity than before or after.

Before that, kids' lives are dominated by their parents, not by other kids. Kids
do care what their peers think in elementary school, but this isn't their whole
life, as it later becomes.

Around the age of eleven, though, kids seem to start treating their family as a
day job. They create a new world among themselves, and standing in this world
is what matters, not standing in their family. Indeed, being in trouble in their
family can win them points in the world they care about.

The problem is, the world these kids create for themselves is at first a very crude
one. If you leave a bunch of eleven- year- olds to their own devices, what you get
is Lord of the Flies. Like a lot of American kids, I read this book in school.
Presumably it was not a coincidence. Presumably someone wanted to point out
to us that we were savages, and that we had made ourselves a cruel and stupid
world. This was too subtle for me. While the book seemed entirely believable, I
didn't get the additional message. I wish they had just told us outright that we
were savages and our world was stupid.

Nerds would find their unpopularity more bearable if it merely caused them to
be ignored. Unfortunately, to be unpopular in school is to be actively
persecuted.

Why? Once again, anyone currently in school might think this a strange
question to ask. How could things be any other way? But they could be. Adults
don't normally persecute nerds. Why do teenage kids do it?

Partly because teenagers are still half children, and many children are just
intrinsically cruel. Some torture nerds for the same reason they pull the legs off
spiders. Before you develop a conscience, torture is amusing.

Another reason kids persecute nerds is to make themselves feel better. When
you tread water, you lift yourself up by pushing water down. Likewise, in any

social hierarchy, people unsure of their own position will try to emphasize it by
maltreating those they think rank below. I've read that this is why poor whites
in the United States are the group most hostile to blacks.

But I think the main reason other kids persecute nerds is that it's part of the
mechanism of popularity. Popularity is only partially about individual
attractiveness. It's much more about alliances. To become more popular, you
need to be constantly doing things that bring you close to other popular
people, and nothing brings people closer than a common enemy.

Like a politician who wants to distract voters from bad times at home, you can
create an enemy if there isn't a real one. By singling out and persecuting a nerd,
a group of kids from higher in the hierarchy create bonds between themselves.
Attacking an outsider makes them all insiders. This is why the worst cases of
bullying happen with groups. Ask any nerd: you get much worse treatment
from a group of kids than from any individual bully, however sadistic.

If it's any consolation to the nerds, it's nothing personal. The group of kids who
band together to pick on you are doing the same thing, and for the same
reason, as a bunch of guys who get together to go hunting. They don't actually
hate you. They just need something to chase.

Because they're at the bottom of the scale, nerds are a safe target for the entire
school. If I remember correctly, the most popular kids don't persecute nerds;
they don't need to stoop to such things. Most of the persecution comes from
kids lower down, the nervous middle classes.

The trouble is, there are a lot of them. The distribution of popularity is not a
pyramid, but tapers at the bottom like a pear. The least popular group is quite
small. (I believe we were the only D table in our cafeteria map.) So there are
more people who want to pick on nerds than there are nerds.

As well as gaining points by distancing oneself from unpopular kids, one loses
points by being close to them. A woman I know says that in high school she
liked nerds, but was afraid to be seen talking to them because the other girls
would make fun of her. Unpopularity is a communicable disease; kids too nice
to pick on nerds will still ostracize them in self-defense.

It's no wonder, then, that smart kids tend to be unhappy in middle school and
high school. Their other interests leave them little attention to spare for
popularity, and since popularity resembles a zero- sum game, this in turn
makes them targets for the whole school. And the strange thing is, this
nightmare scenario happens without any conscious malice, merely because of
the shape of the situation.

For me the worst stretch was junior high, when kid culture was new and harsh,
and the specialization that would later gradually separate the smarter kids had
barely begun. Nearly everyone I've talked to agrees: the nadir is somewhere
between eleven and fourteen.

In our school it was eighth grade, which was ages twelve and thirteen for me.
There was a brief sensation that year when one of our teachers overheard a
group of girls waiting for the school bus, and was so shocked that the next day
she devoted the whole class to an eloquent plea not to be so cruel to one
another.

It didn't have any noticeable effect. What struck me at the time was that she
was surprised. You mean she doesn't know the kind of things they say to one
another? You mean this isn't normal?

It's important to realize that, no, the adults don't know what the kids are doing
to one another. They know, in the abstract, that kids are monstrously cruel to
one another, just as we know in the abstract that people get tortured in poorer
countries. But, like us, they don't like to dwell on this depressing fact, and they
don't see evidence of specific abuses unless they go looking for it.

Public school teachers are in much the same position as prison wardens.
Wardens' main concern is to keep the prisoners on the premises. They also
need to keep them fed, and as far as possible prevent them from killing one
another. Beyond that, they want to have as little to do with the prisoners as
possible, so they leave them to create whatever social organization they want.
From what I've read, the society that the prisoners create is warped, savage, and
pervasive, and it is no fun to be at the bottom of it.

In outline, it was the same at the schools I went to. The most important thing
was to stay on the premises. While there, the authorities fed you, prevented
overt violence, and made some effort to teach you something. But beyond that
they didn't want to have too much to do with the kids. Like prison wardens, the

teachers mostly left us to ourselves. And, like prisoners, the culture we created
was barbaric.

Why is the real world more hospitable to nerds? It might seem that the answer
is simply that it's populated by adults, who are too mature to pick on one
another. But I don't think this is true. Adults in prison certainly pick on one
another. And so, apparently, do society wives; in some parts of Manhattan, life
for women sounds like a continuation of high school, with all the same petty
intrigues.

I think the important thing about the real world is not that it's populated by
adults, but that it's very large, and the things you do have real effects. That's
what school, prison, and ladies- who- lunch all lack. The inhabitants of all those
worlds are trapped in little bubbles where nothing they do can have more than
a local effect. Naturally these societies degenerate into savagery. They have no
function for their form to follow.

When the things you do have real effects, it's no longer enough just to be
pleasing. It starts to be important to get the right answers, and that's where
nerds show to advantage. Bill Gates will of course come to mind. Though
notoriously lacking in social skills, he gets the right answers, at least as
measured in revenue.

The other thing that's different about the real world is that it's much larger. In a
large enough pool, even the smallest minorities can achieve a critical mass if
they clump together. Out in the real world, nerds collect in certain places and
form their own societies where intelligence is the most important thing.
Sometimes the current even starts to flow in the other direction: sometimes,
particularly in university math and science departments, nerds deliberately
exaggerate their awkwardness in order to seem smarter. John Nash so admired
Norbert Wiener that he adopted his habit of touching the wall as he walked
down a corridor.

As a thirteen- year- old kid, I didn't have much more experience of the world
than what I saw immediately around me. The warped little world we lived in
was, I thought, the world . The world seemed cruel and boring, and I'm not sure
which was worse.

Because I didn't fit into this world, I thought that something must be wrong
with me. I didn't realize that the reason we nerds didn't fit in was that in some
ways we were a step ahead. We were already thinking about the kind of things
that matter in the real world, instead of spending all our time playing an
exacting but mostly pointless game like the others.

We were a bit like an adult would be if he were thrust back into middle school.
He wouldn't know the right clothes to wear, the right music to like, the right
slang to use. He'd seem to the kids a complete alien. The thing is, he'd know
enough not to care what they thought. We had no such confidence.

A lot of people seem to think it's good for smart kids to be thrown together with
"normal" kids at this stage of their lives. Perhaps. But in at least some cases the
reason the nerds don't fit in really is that everyone else is crazy. I remember
sitting in the audience at a "pep rally" at my high school, watching as the
cheerleaders threw an effigy of an opposing player into the audience to be torn
to pieces. I felt like an explorer witnessing some bizarre tribal ritual.

If I could go back and give my thirteen year old self some advice, the main thing
I'd tell him would be to stick his head up and look around. I didn't really grasp
it at the time, but the whole world we lived in was as fake as a Twinkie. Not just
school, but the entire town. Why do people move to suburbia? To have kids! So
no wonder it seemed boring and sterile. The whole place was a giant nursery,
an artificial town created explicitly for the purpose of breeding children.

Where I grew up, it felt as if there was nowhere to go, and nothing to do. This
was no accident. Suburbs are deliberately designed to exclude the outside
world, because it contains things that could endanger children.

And as for the schools, they were just holding pens within this fake world.
Officially the purpose of schools is to teach kids. In fact their primary purpose is
to keep kids locked up in one place for a big chunk of the day so adults can get
things done. And I have no problem with this: in a specialized industrial
society, it would be a disaster to have kids running around loose.

What bothers me is not that the kids are kept in prisons, but that (a) they aren't
told about it, and (b) the prisons are run mostly by the inmates. Kids are sent
off to spend six years memorizing meaningless facts in a world ruled by a caste
of giants who run after an oblong brown ball, as if this were the most natural
thing in the world. And if they balk at this surreal cocktail, they're called misfits.

Life in this twisted world is stressful for the kids. And not just for the nerds. Like
any war, it's damaging even to the winners.

Adults can't avoid seeing that teenage kids are tormented. So why don't they do
something about it? Because they blame it on puberty. The reason kids are so
unhappy, adults tell themselves, is that monstrous new chemicals, hormones ,
are now coursing through their bloodstream and messing up everything.
There's nothing wrong with the system; it's just inevitable that kids will be
miserable at that age.

This idea is so pervasive that even the kids believe it, which probably doesn't
help. Someone who thinks his feet naturally hurt is not going to stop to
consider the possibility that he is wearing the wrong size shoes.

I'm suspicious of this theory that thirteen- year- old kids are intrinsically messed
up. If it's physiological, it should be universal. Are Mongol nomads all nihilists
at thirteen? I've read a lot of history, and I have not seen a single reference to
this supposedly universal fact before the twentieth century. Teenage
apprentices in the Renaissance seem to have been cheerful and eager. They got
in fights and played tricks on one another of course (Michelangelo had his nose
broken by a bully), but they weren't crazy.

As far as I can tell, the concept of the hormone- crazed teenager is coeval with
suburbia. I don't think this is a coincidence. I think teenagers are driven crazy
by the life they're made to lead. Teenage apprentices in the Renaissance were
working dogs. Teenagers now are neurotic lapdogs. Their craziness is the
craziness of the idle everywhere.

When I was in school, suicide was a constant topic among the smarter kids. No
one I knew did it, but several planned to, and some may have tried. Mostly this
was just a pose. Like other teenagers, we loved the dramatic, and suicide
seemed very dramatic. But partly it was because our lives were at times
genuinely miserable.

Bullying was only part of the problem. Another problem, and possibly an even
worse one, was that we never had anything real to work on. Humans like to
work; in most of the world, your work is your identity. And all the work we did
was pointless, or seemed so at the time.

At best it was practice for real work we might do far in the future, so far that we
didn't even know at the time what we were practicing for. More often it was just
an arbitrary series of hoops to jump through, words without content designed
mainly for testability. (The three main causes of the Civil War were. ... Test: List
the three main causes of the Civil War.)

And there was no way to opt out. The adults had agreed among themselves that
this was to be the route to college. The only way to escape this empty life was to
submit to it.

Teenage kids used to have a more active role in society. In pre- industrial times,
they were all apprentices of one sort or another, whether in shops or on farms
or even on warships. They weren't left to create their own societies. They were
junior members of adult societies.

Teenagers seem to have respected adults more then, because the adults were
the visible experts in the skills they were trying to learn. Now most kids have
little idea what their parents do in their distant offices, and see no connection
(indeed, there is precious little) between schoolwork and the work they'll do as
adults.

And if teenagers respected adults more, adults also had more use for teenagers.
After a couple years' training, an apprentice could be a real help. Even the
newest apprentice could be made to carry messages or sweep the workshop.

Now adults have no immediate use for teenagers. They would be in the way in
an office. So they drop them off at school on their way to work, much as they
might drop the dog off at a kennel if they were going away for the weekend.

What happened? We're up against a hard one here. The cause of this problem is
the same as the cause of so many present ills: specialization. As jobs become
more specialized, we have to train longer for them. Kids in pre- industrial times
started working at about 14 at the latest; kids on farms, where most people
lived, began far earlier. Now kids who go to college don't start working full-time
till 21 or 22. With some degrees, like MDs and PhDs, you may not finish your
training till 30.

Teenagers now are useless, except as cheap labor in industries like fast food,
which evolved to exploit precisely this fact. In almost any other kind of work,
they'd be a net loss. But they're also too young to be left unsupervised.
Someone has to watch over them, and the most efficient way to do this is to
collect them together in one place. Then a few adults can watch all of them.

If you stop there, what you're describing is literally a prison, albeit a part- time
one. The problem is, many schools practically do stop there. The stated
purpose of schools is to educate the kids. But there is no external pressure to do
this well. And so most schools do such a bad job of teaching that the kids don't
really take it seriously—not even the smart kids. Much of the time we were all,
students and teachers both, just going through the motions.

In my high school French class we were supposed to read Hugo's Les
Miserables . I don't think any of us knew French well enough to make our way
through this enormous book. Like the rest of the class, I just skimmed the Cliff
's Notes. When we were given a test on the book, I noticed that the questions
sounded odd. They were full of long words that our teacher wouldn't have
used. Where had these questions come from? From the Cliff 's Notes, it turned
out. The teacher was using them too. We were all just pretending.

There are certainly great public school teachers. The energy and imagination of
my fourth grade teacher, Mr. Mihalko, made that year something his students
still talk about, thirty years later. But teachers like him were individuals
swimming upstream. They couldn't fix the system.

In almost any group of people you'll find hierarchy. When groups of adults
form in the real world, it's generally for some common purpose, and the leaders
end up being those who are best at it. The problem with most schools is, they
have no purpose. But hierarchy there must be. And so the kids make one out of
nothing.

We have a phrase to describe what happens when rankings have to be created
without any meaningful criteria. We say that the situation degenerates into a
popularity contest . And that's exactly what happens in most American schools.
Instead of depending on some real test, one's rank depends mostly on one's
ability to increase one's rank. It's like the court of Louis XIV. There is no
external opponent, so the kids become one another's opponents.

When there is some real external test of skill, it isn't painful to be at the bottom
of the hierarchy. A rookie on a football team doesn't resent the skill of the
veteran; he hopes to be like him one day and is happy to have the chance to
learn from him. The veteran may in turn feel a sense of noblesse oblige . And
most importantly, their status depends on how well they do against opponents,
not on whether they can push the other down.

Court hierarchies are another thing entirely. This type of society debases
anyone who enters it. There is neither admiration at the bottom, nor noblesse
oblige at the top. It's kill or be killed.

This is the sort of society that gets created in American secondary schools. And
it happens because these schools have no real purpose beyond keeping the kids
all in one place for a certain number of hours each day. What I didn't realize at
the time, and in fact didn't realize till very recently, is that the twin horrors of
school life, the cruelty and the boredom, both have the same cause.

The mediocrity of American public schools has worse consequences than just
making kids unhappy for six years. It breeds a rebelliousness that actively drives
kids away from the things they're supposed to be learning.

Like many nerds, probably, it was years after high school before I could bring
myself to read anything we'd been assigned then. And I lost more than books. I
mistrusted words like "character" and "integrity" because they had been so
debased by adults. As they were used then, these words all seemed to mean the
same thing: obedience. The kids who got praised for these qualities tended to
be at best dull-witted prize bulls, and at worst facile schmoozers. If that was
what character and integrity were, I wanted no part of them.

The word I most misunderstood was "tact." As used by adults, it seemed to
mean keeping your mouth shut. I assumed it was derived from the same root as
"tacit" and "taciturn," and that it literally meant being quiet. I vowed that I
would never be tactful; they were never going to shut me up. In fact, it's derived
from the same root as "tactile," and what it means is to have a deft touch.
Tactful is the opposite of clumsy. I don't think I learned this until college.

Nerds aren't the only losers in the popularity rat race. Nerds are unpopular
because they're distracted. There are other kids who deliberately opt out
because they're so disgusted with the whole process.

Teenage kids, even rebels, don't like to be alone, so when kids opt out of the
system, they tend to do it as a group. At the schools I went to, the focus of
rebellion was drug use, specifically marijuana. The kids in this tribe wore black
concert t-shirts and were called "freaks."

Freaks and nerds were allies, and there was a good deal of overlap between
them. Freaks were on the whole smarter than other kids, though never studying
(or at least never appearing to) was an important tribal value. I was more in the
nerd camp, but I was friends with a lot of freaks.

They used drugs, at least at first, for the social bonds they created. It was
something to do together, and because the drugs were illegal, it was a shared
badge of rebellion.

I'm not claiming that bad schools are the whole reason kids get into trouble
with drugs. After a while, drugs have their own momentum. No doubt some of
the freaks ultimately used drugs to escape from other problems—trouble at
home, for example. But, in my school at least, the reason most kids started
using drugs was rebellion. Fourteen- year- olds didn't start smoking pot because
they'd heard it would help them forget their problems. They started because
they wanted to join a different tribe.

Misrule breeds rebellion; this is not a new idea. And yet the authorities still for
the most part act as if drugs were themselves the cause of the problem.

The real problem is the emptiness of school life. We won't see solutions till
adults realize that. The adults who may realize it first are the ones who were
themselves nerds in school. Do you want your kids to be as unhappy in eighth
grade as you were? I wouldn't. Well, then, is there anything we can do to fix
things? Almost certainly. There is nothing inevitable about the current system.
It has come about mostly by default. 2

Adults, though, are busy. Showing up for school plays is one thing. Taking on
the educational bureaucracy is another. Perhaps a few will have the energy to
try to change things. I suspect the hardest part is realizing that you can.

Nerds still in school should not hold their breath. Maybe one day a heavily
armed force of adults will show up in helicopters to rescue you, but they

probably won't be coming this month. Any immediate improvement in nerds'
lives is probably going to have to come from the nerds themselves.

Merely understanding the situation they're in should make it less painful.
Nerds aren't losers. They're just playing a different game, and a game much
closer to the one played in the real world. Adults know this. It's hard to find
successful adults now who don't claim to have been nerds in high school.

It's important for nerds to realize, too, that school is not life. School is a strange,
artificial thing, half sterile and half feral. It's all-encompassing, like life, but it
isn't the real thing. It's only temporary, and if you look, you can see beyond it
even while you're still in it.

If life seems awful to kids, it's neither because hormones are turning you all
into monsters (as your parents believe), nor because life actually is awful (as
you believe). It's because the adults, who no longer have any economic use for
you, have abandoned you to spend years cooped up together with nothing real
to do. Any society of that type is awful to live in. You don't have to look any
further to explain why teenage kids are unhappy.

I've said some harsh things in this essay, but really the thesis is an optimistic
one—that several problems we take for granted are in fact not insoluble after
all. Teenage kids are not inherently unhappy monsters. That should be
encouraging news to kids and adults both.

Chapter 2. Hackers and Painters

When I finished grad school in computer science I went to art school to study
painting. A lot of people seemed surprised that someone interested in
computers would also be interested in painting. They seemed to think that
hacking and painting were very different kinds of work—that hacking was cold,
precise, and methodical, and that painting was the frenzied expression of some
primal urge.

Both of these images are wrong. Hacking and painting have a lot in common. In
fact, of all the different types of people I've known, hackers and painters are
among the most alike.

What hackers and painters have in common is that they're both makers. Along
with composers, architects, and writers, what hackers and painters are trying to
do is make good things. They're not doing research per se, though if in the
course of trying to make good things they discover some new technique, so
much the better.

I've never liked the term "computer science." The main reason I don't like it is
that there's no such thing. Computer science is a grab bag of tenuously related
areas thrown together by an accident of history, like Yugoslavia. At one end you
have people who are really mathematicians, but call what they're doing
computer science so they can get DARPA grants. In the middle you have people
working on something like the natural history of computers—studying the
behavior of algorithms for routing data through networks, for example. And
then at the other extreme you have the hackers, who are trying to write
interesting software, and for whom computers are just a medium of expression,
as concrete is for architects or paint for painters. It's as if mathematicians,
physicists, and architects all had to be in the same department.

Sometimes what the hackers do is called "software engineering," but this term
is just as misleading. Good software designers are no more engineers than
architects are. The border between architecture and engineering is not sharply
defined, but it's there. It falls between what and how: architects decide what to
do, and engineers figure out how to do it.

What and how should not be kept too separate. You're asking for trouble if you
try to decide what to do without understanding how to do it. But hacking can
certainly be more than just deciding how to implement some spec. At its best,
it's creating the spec— though it turns out the best way to do that is to
implement it.

Perhaps one day "computer science" will, like Yugoslavia, get broken up into its
component parts. That might be a good thing. Especially if it meant
independence for my native land, hacking.

Bundling all these different types of work together in one department may be
convenient administratively, but it's confusing intellectually. That's the other
reason I don't like the name "computer science." Arguably the people in the
middle are doing something like an experimental science. But the people at
either end, the hackers and the mathematicians, are not actually doing science.

The mathematicians don't seem bothered by this. They happily set to work
proving theorems like the other mathematicians over in the math department,
and probably soon stop noticing that the building they work in says "computer
science" on the outside. But for the hackers this label is a problem. If what
they're doing is called science, it makes them feel they ought to be acting
scientific. So instead of doing what they really want to do, which is to design
beautiful software, hackers in universities and research labs feel they ought to
be writing research papers.

In the best case, the papers are just a formality. Hackers write cool software,
and then write a paper about it, and the paper becomes a proxy for the
achievement represented by the software. But often this mismatch causes
problems. It's easy to drift away from building beautiful things toward building
ugly things that make more suitable subjects for research papers.

Unfortunately, beautiful things don't always make the best subjects for papers.
Number one, research must be original—and as anyone who has written a PhD
dissertation knows, the way to be sure you're exploring virgin territory is to to
stake out a piece of ground that no one wants. Number two, research must be
substantial—and awkward systems yield meatier papers, because you can write
about the obstacles you have to overcome in order to get things done. Nothing
yields meaty problems like starting with the wrong assumptions. Most of AI is
an example of this rule; if you assume that knowledge can be represented as a
list of predicate logic expressions whose arguments represent abstract

concepts, you'll have a lot of papers to write about how to make this work. As
Ricky Ricardo used to say, "Lucy, you got a lot of explaining to do."

The way to create something beautiful is often to make subtle tweaks to
something that already exists, or to combine existing ideas in a slightly new
way. This kind of work is hard to convey in a research paper.

So why do universities and research labs continue to judge hackers by
publications? For the same reason that "scholastic aptitude" gets measured by
simple- minded standardized tests, or the productivity of programmers by lines
of code. These tests are easy to apply, and there is nothing so tempting as an
easy test that kind of works.

Measuring what hackers are actually trying to do, designing beautiful software,
would be much more difficult. You need a good sense of design to judge good
design. And there is no correlation, except possibly a negative one, between
people's ability to recognize good design and their confidence that they can.

The only external test is time. Over time, beautiful things tend to thrive, and
ugly things tend to get discarded. Unfortunately, the amounts of time involved
can be longer than human lifetimes. Samuel Johnson said it took a hundred
years for a writer's reputation to converge. 1 You have to wait for the writer's
influential friends to die, and then for all their followers to die.

I think hackers just have to resign themselves to having a large random
component in their reputations. In this they are no different from other makers.
In fact, they're lucky by comparison. The influence of fashion is not nearly so
great in hacking as it is in painting.

There are worse things than having people misunderstand your work. A worse
danger is that you will yourself misunderstand your work. Related fields are
where you go looking for ideas. If you find yourself in the computer science
department, there is a natural temptation to believe, for example, that hacking
is the applied version of what theoretical computer science is the theory of. All
the time I was in graduate school I had an uncomfortable feeling in the back of
my mind that I ought to know more theory, and that it was very remiss of me to
have forgotten all that stuff within three weeks of the final exam.

Now I realize I was mistaken. Hackers need to understand the theory of
computation about as much as painters need to understand paint chemistry.
You need to know how to calculate time and space complexity, and perhaps
also the concept of a state machine, in case you want to write a parser. Painters
have to remember a good deal more about paint chemistry than that.

I've found that the best sources of ideas are not the other fields that have the
word "computer" in their names, but the other fields inhabited by makers.
Painting has been a much richer source of ideas than the theory of
computation.

For example, I was taught in college that one ought to figure out a program
completely on paper before even going near a computer. I found that I did not
program this way. I found that I liked to program sitting in front of a computer,
not a piece of paper. Worse still, instead of patiently writing out a complete
program and assuring myself it was correct, I tended to just spew out code that
was hopelessly broken, and gradually beat it into shape. Debugging, I was
taught, was a kind of final pass where you caught typos and oversights. The way
I worked, it seemed like programming consisted of debugging.

For a long time I felt bad about this, just as I once felt bad that I didn't hold my
pencil the way they taught me to in elementary school. If I had only looked over
at the other makers, the painters or the architects, I would have realized that
there was a name for what I was doing: sketching. As far as I can tell, the way
they taught me to program in college was all wrong. You should figure out
programs as you're writing them, just as writers and painters and architects do.

Realizing this has real implications for software design. It means that a
programming language should, above all, be malleable. A programming
language is for thinking of programs, not for expressing programs you've
already thought of. It should be a pencil, not a pen. Static typing would be a
fine idea if people actually did write programs the way they taught me to in
college. But that's not how any of the hackers I know write programs. We need
a language that lets us scribble and smudge and smear, not a language where
you have to sit with a teacup of types balanced on your knee and make polite
conversation with a strict old aunt of a compiler.

While we're on the subject of static typing, identifying with the makers will save
us from another problem that afflicts the sciences: math envy. Everyone in the
sciences secretly believes that mathematicians are smarter than they are. I
think mathematicians also believe this. At any rate, the result is that scientists

tend to make their work look as mathematical as possible. In a field like physics
this probably doesn't do much harm, but the further you get from the natural
sciences, the more of a problem it becomes.

A page of formulas just looks so impressive. (Tip: for extra impressiveness, use
Greek variables.) And so there is a great temptation to work on problems you
can treat formally, rather than problems that are, say, important.

If hackers identified with other makers, like writers and painters, they wouldn't
feel tempted to do this. Writers and painters don't suffer from math envy. They
feel as if they're doing something completely unrelated. So are hackers, I think.

If universities and research labs keep hackers from doing the kind of work they
want to do, perhaps the place for them is in companies. Unfortunately, most
companies won't let hackers do what they want either. Universities and
research labs force hackers to be scientists, and companies force them to be
engineers.

I only discovered this myself quite recently. When Yahoo bought Viaweb, they
asked me what I wanted to do. I had never liked business much, and said that I
just wanted to hack. When I got to Yahoo, I found that what hacking meant to
them was implementing software, not designing it. Programmers were seen as
technicians who translated the visions (if that is the word) of product managers
into code.

This seems to be the default plan in big companies. They do it because it
decreases the standard deviation of the outcome. Only a small percentage of
hackers can actually design software, and it's hard for the people running a
company to pick these out. So instead of entrusting the future of the software to
one brilliant hacker, most companies set things up so that it is designed by
committee, and the hackers merely implement the design.

If you want to make money at some point, remember this, because this is one
of the reasons startups win. Big companies want to decrease the standard
deviation of design outcomes because they want to avoid disasters. But when
you damp oscillations, you lose the high points as well as the low. This is not a
problem for big companies, because they don't win by making great products.
Big companies win by sucking less than other big companies.

So if you can figure out a way to get in a design war with a company big enough
that its software is designed by product managers, they'll never be able to keep
up with you. These opportunities are not easy to find, though. It's hard to
engage a big company in a design war, just as it's hard to engage an opponent
inside a castle in hand- to- hand combat. It would be pretty easy to write a better
word processor than Microsoft Word, for example, but Microsoft, within the
castle of their operating system monopoly, probably wouldn't even notice if
you did.

The place to fight design wars is in new markets, where no one has yet
managed to establish any fortifications. That's where you can win big by taking
the bold approach to design, and having the same people both design and
implement the product. Microsoft themselves did this at the start. So did Apple.
And Hewlett- Packard. I suspect almost every successful startup has.

So one way to build great software is to start your own startup. There are two
problems with this, though. One is that in a startup you have to do so much
besides write software. At Viaweb I considered myself lucky if I got to hack a
quarter of the time. And the things I had to do the other three quarters of the
time ranged from tedious to terrifying. I have a benchmark for this, because I
once had to leave a board meeting to have some cavities filled. I remember
sitting back in the dentist's chair, waiting for the drill, and feeling like I was on
vacation.

The other problem with startups is that there is not much overlap between the
kind of software that makes money and the kind that's interesting to write.
Programming languages are interesting to write, and Microsoft's first product
was one, in fact, but no one will pay for programming languages now. If you
want to make money, you tend to be forced to work on problems that are too
nasty for anyone to solve for free.

All makers face this problem. Prices are determined by supply and demand,
and there is just not as much demand for things that are fun to work on as there
is for things that solve the mundane problems of individual customers. Acting
in off-Broadway plays doesn't pay as well as wearing a gorilla suit in someone's
booth at a trade show. Writing novels doesn't pay as well as writing ad copy for
garbage disposals. And hacking programming languages doesn't pay as well as
figuring out how to connect some company's legacy database to their web
server.

I think the answer to this problem, in the case of software, is a concept known
to nearly all makers: the day job. This phrase began with musicians, who
perform at night. More generally, it means you have one kind of work you do
for money, and another for love.

Nearly all makers have day jobs early in their careers. Painters and writers
notoriously do. If you're lucky you can get a day job closely related to your real
work. Musicians often seem to work in record stores. A hacker working on some
programming language or operating system might likewise be able to get a day
job using it. 2

When I say that the answer is for hackers to have day jobs, and work on
beautiful software on the side, I'm not proposing this as a new idea. This is
what open source hacking is all about. What I'm saying is that open source is
probably the right model, because it has been independently confirmed by all
the other makers.

It seems surprising to me that any employer would be reluctant to let hackers
work on open source projects. At Viaweb, we would have been reluctant to hire
anyone who didn't. When we interviewed programmers, the main thing we
cared about was what kind of software they wrote in their spare time. You can't
do anything really well unless you love it, and if you love to hack you'll
inevitably be working on projects of your own. 3

Because hackers are makers rather than scientists, the right place to look for
metaphors is not in the sciences, but among other kinds of makers. What else
can painting teach us about hacking?

One thing we can learn, or at least confirm, from the example of painting is how
to learn to hack. You learn to paint mostly by doing it. Ditto for hacking. Most
hackers don't learn to hack by taking college courses in programming. They
learn by writing programs of their own at age thirteen. Even in college classes,
you learn to hack mostly by hacking. 4

Because painters leave a trail of work behind them, you can watch them learn
by doing. If you look at the work of a painter in chronological order, you'll find
that each painting builds on things learned in previous ones. When there's
something in a painting that works especially well, you can usually find version
1 of it in a smaller form in some earlier painting.

I think most makers work this way. Writers and architects seem to as well.
Maybe it would be good for hackers to act more like painters, and regularly start
over from scratch, instead of continuing to work for years on one project, and
trying to incorporate all their later ideas as revisions.

The fact that hackers learn to hack by doing it is another sign of how different
hacking is from the sciences. Scientists don't learn science by doing it, but by
doing labs and problem sets. Scientists start out doing work that's perfect, in
the sense that they're just trying to reproduce work someone else has already
done for them. Eventually, they get to the point where they can do original
work. Whereas hackers, from the start, are doing original work; it's just very
bad. So hackers start original, and get good, and scientists start good, and get
original.

The other way makers learn is from examples. To a painter, a museum is a
reference library of techniques. For hundreds of years it has been part of the
traditional education of painters to copy the works of the great masters,
because copying forces you to look closely at the way a painting is made.

Writers do this too. Benjamin Franklin learned to write by summarizing the
points in the essays of Addison and Steele and then trying to reproduce them.
Raymond Chandler did the same thing with detective stories.

Hackers, likewise, can learn to program by looking at good programs—not just
at what they do, but at the source code. One of the less publicized benefits of
the open source movement is that it has made it easier to learn to program.
When I learned to program, we had to rely mostly on examples in books. The
one big chunk of code available then was Unix, but even this was not open
source. Most of the people who read the source read it in illicit photocopies of
John Lions' book, which though written in 1977 was not allowed to be
published until 1996.

Another example we can take from painting is the way that paintings are
created by gradual refinement. Paintings usually begin with a sketch. Gradually
the details get filled in. But it is not merely a process of filling in. Sometimes the
original plans turn out to be mistaken. Countless paintings, when you look at
them in x-rays, turn out to have limbs that have been moved or facial features
that have been readjusted.

Here's a case where we can learn from painting. I think hacking should work
this way too. It's unrealistic to expect that the specifications for a program will
be perfect. You're better off if you admit this up front, and write programs in a
way that allows specifications to change on the fly.

(The structure of large companies makes this hard for them to do, so here is
another place where startups have an advantage.)

Everyone by now presumably knows about the danger of premature
optimization. I think we should be just as worried about premature design—
deciding too early what a program should do.

The right tools can help us avoid this danger. A good programming language
should, like oil paint, make it easy to change your mind. Dynamic typing is a
win here because you don't have to commit to specific data representations up
front. But the key to flexibility, I think, is to make the language very abstract.
The easiest program to change is one that's short.

Figure 2-1. Leonardo's Ginevra de' Benci, 1474.

This sounds like a paradox, but a great painting has to be better than it has to
be. For example, when Leonardo painted the portrait of Ginevra de' Benci in
the National Gallery, he put a juniper bush behind her head. In it he carefully
painted each individual leaf. Many painters might have thought, this is just
something to put in the background to frame her head. No one will look that
closely at it.

Not Leonardo. How hard he worked on part of a painting didn't depend at all
on how closely he expected anyone to look at it. He was like Michael Jordan.
Relentless.

Relentlessness wins because, in the aggregate, unseen details become visible.
When people walk by the portrait of Ginevra de' Benci, their attention is often
immediately arrested by it, even before they look at the label and notice that it
says Leonardo da Vinci. All those unseen details combine to produce
something that's just stunning, like a thousand barely audible voices all singing
in tune.

Great software, likewise, requires a fanatical devotion to beauty. If you look
inside good software, you find that parts no one is ever supposed to see are
beautiful too. When it comes to code I behave in a way that would make me
eligible for prescription drugs if I approached everyday life the same way. It
drives me crazy to see code that's badly indented, or that uses ugly variable
names.

If a hacker were a mere implementor, turning a spec into code, then he could
just work his way through it from one end to the other like someone digging a
ditch. But if the hacker is a creator, we have to take inspiration into account.

In hacking, like painting, work comes in cycles. Sometimes you get excited
about a new project and you want to work sixteen hours a day on it. Other
times nothing seems interesting.

To do good work you have to take these cycles into account, because they're
affected by how you react to them. When you're driving a car with a manual
transmission on a hill, you have to back off the clutch sometimes to avoid
stalling. Backing off can likewise prevent ambition from stalling. In both
painting and hacking there are some tasks that are terrifyingly ambitious, and

others that are comfortingly routine. It's a good idea to save some easy tasks for
moments when you would otherwise stall.

In hacking, this can literally mean saving up bugs. I like debugging: it's the one
time that hacking is as straightforward as people think it is. You have a totally
constrained problem, and all you have to do is solve it. Your program is
supposed to do x. Instead it does y. Where does it go wrong? You know you're
going to win in the end. It's as relaxing as painting a wall.

The example of painting can teach us not only how to manage our own work,
but how to work together. A lot of the great art of the past is the work of
multiple hands, though there may only be one name on the wall next to it in the
museum. Leonardo was an apprentice in the workshop of Verrocchio and
painted one of the angels in his Baptism of Christ . This sort of thing was the
rule, not the exception. Michelangelo was considered especially dedicated for
insisting on painting all the figures on the ceiling of the Sistine Chapel himself.

As far as I know, when painters worked together on a painting, they never
worked on the same parts. It was common for the master to paint the principal
figures and for assistants to paint the others and the background. But you never
had one guy painting over the work of another.

I think this is the right model for collaboration in software too. Don't push it
too far. When a piece of code is being hacked by three or four different people,
no one of whom really owns it, it will end up being like a common- room. It will
tend to feel bleak and abandoned, and accumulate cruft. The right way to
collaborate, I think, is to divide projects into sharply defined modules, each
with a definite owner, and with interfaces between them that are as carefully
designed and, if possible, as articulated as programming languages.

Like painting, most software is intended for a human audience. And so hackers,
like painters, must have empathy to do really great work. You have to be able to
see things from the user's point of view.

When I was a kid I was constantly being told to look at things from someone
else's point of view. What this always meant in practice was to do what
someone else wanted, instead of what I wanted. This of course gave empathy a
bad name, and I made a point of not cultivating it.

Boy, was I wrong. It turns out that looking at things from other people's point of
view is practically the secret of success.

Empathy doesn't necessarily mean being self-sacrificing. Far from it.
Understanding how someone else sees things doesn't imply that you'll act in
his interest; in some situations—in war, for example— you want to do exactly
the opposite. 5

Most makers make things for a human audience. And to engage an audience
you have to understand what they need. Nearly all the greatest paintings are
paintings of people, for example, because people are what people are interested
in.

Empathy is probably the single most important difference between a good
hacker and a great one. Some hackers are quite smart, but practically solipsists
when it comes to empathy. It's hard for such people to design great software,
because they can't see things from the user's point of view. 6

One way to tell how good people are at empathy is to watch them explain a
technical matter to someone without a technical background. We probably all
know people who, though otherwise smart, are just comically bad at this. If
someone asks them at a dinner party what a programming language is, they'll
say something like "Oh, a high- level language is what the compiler uses as
input to generate object code." High- level language? Compiler? Object code?
Someone who doesn't know what a programming language is obviously
doesn't know what these things are, either.

Part of what software has to do is explain itself. So to write good software you
have to understand how little users understand. They're going to walk up to the
software with no preparation, and it had better do what they guess it will,
because they're not going to read the manual. The best system I've ever seen in
this respect was the original Macintosh, in 1984. It did what software almost
never does: it just worked. 7

Source code, too, should explain itself. If I could get people to remember just
one quote about programming, it would be the one at the beginning of
Structure and Interpretation of Computer Programs . 8

Programs should be written for people to read, and only incidentally for
machines to execute.

Figure 2-2. Piero della Francesca's Federico da Montefeltro, 1465- 66
(detail).

You need to have empathy not just for your users, but for your readers. It's in
your interest, because you'll be one of them. Many a hacker has written a
program only to find on returning to it six months later that he has no idea how
it works. I know several people who've sworn off Perl after such experiences. 9

Lack of empathy is associated with intelligence, to the point that there is even
something of a fashion for it in some places. But I don't think there's any
correlation. You can do well in math and the natural sciences without having to
learn empathy, and people in these fields tend to be smart, so the two qualities
have come to be associated. But there are plenty of dumb people who are bad
at empathy too.

So, if hacking works like painting and writing, is it as cool? After all, you only get
one life. You might as well spend it working on something great.

Unfortunately, the question is hard to answer. There is always a big time lag in
prestige. It's like light from a distant star. Painting has prestige now because of
great work people did five hundred years ago. At the time, no one thought these
paintings were as important as we do today. It would have seemed very odd to
people in 1465 that Federico da Montefeltro, the Duke of Urbino, would one
day be known mostly as the guy with the strange nose in a painting by Piero
della Francesca.

So while I admit that hacking doesn't seem as cool as painting now, we should
remember that painting itself didn't seem as cool in its glory days as it does
now.

What we can say with some confidence is that these are the glory days of
hacking. In most fields the great work is done early on. The paintings made
between 1430 and 1500 are still unsurpassed. Shakespeare appeared just as
professional theater was being born, and pushed the medium so far that every
playwright since has had to live in his shadow. Albrecht Dürer did the same
thing with engraving, and Jane Austen with the novel.

Over and over we see the same pattern. A new medium appears, and people are
so excited about it that they explore most of its possibilities in the first couple
generations. Hacking seems to be in this phase now.

Painting was not, in Leonardo's time, as cool as his work helped make it. How
cool hacking turns out to be will depend on what we can do with this new
medium.

Chapter 3. What You Can't Say

Have you ever seen an old photo of yourself and been embarrassed at the way
you looked? Did we actually dress like that? We did. And we had no idea how
silly we looked. It's the nature of fashion to be invisible, in the same way the
movement of the earth is invisible to all of us riding on it.

What scares me is that there are moral fashions too. They're just as arbitrary,
and just as invisible to most people. But they're much more dangerous.
Fashion is mistaken for good design; moral fashion is mistaken for good.
Dressing oddly gets you laughed at. Violating moral fashions can get you fired,
ostracized, imprisoned, or even killed.

If you could travel back in a time machine, one thing would be true no matter
where you went: you'd have to watch what you said. Opinions we consider
harmless could have gotten you in big trouble. I've already said at least one
thing that would have gotten me in big trouble in most of Europe in the
seventeenth century, and did get Galileo in big trouble when he said it—that
the earth moves. 1

Nerds are always getting in trouble. They say improper things for the same
reason they dress unfashionably and have good ideas. Convention has less hold
over them.

It seems to be a constant throughout history: in every period, people believed
things that were just ridiculous, and believed them so strongly that you would
have gotten in terrible trouble for saying otherwise.

Is our time any different? To anyone who has read any amount of history, the
answer is almost certainly no. It would be a remarkable coincidence if ours
were the first era to get everything just right.

It's tantalizing to think we believe things that people in the future will find
ridiculous. What would someone coming back to visit us in a time machine
have to be careful not to say? That's what I want to study here. But I want to do
more than just shock everyone with the heresy du jour. I want to find general
recipes for discovering what you can't say, in any era.

3.1. The Conformist Test

Let's start with a test: do you have any opinions that you would be reluctant to
express in front of a group of your peers?

If the answer is no, you might want to stop and think about that. If everything
you believe is something you're supposed to believe, could that possibly be a
coincidence? Odds are it isn't. Odds are you just think whatever you're told.

The other alternative would be that you independently considered every
question and came up with the exact same answers that are now considered
acceptable. That seems unlikely, because you'd also have to make the same
mistakes. Mapmakers deliberately put slight mistakes in their maps so they can
tell when someone copies them. If another map has the same mistake, that's
very convincing evidence.

Like every other era in history, our moral map almost certainly contains
mistakes. And anyone who makes the same mistakes probably didn't do it by
accident. It would be like someone claiming they had independently decided in
1972 that bell-bottom jeans were a good idea.

If you believe everything you're supposed to now, how can you be sure you
wouldn't also have believed everything you were supposed to if you had grown
up among the plantation owners of the pre- Civil War South, or in Germany in
the 1930s—or among the Mongols in 1200, for that matter? Odds are you would
have.

Back in the era of terms like "well-adjusted," the idea seemed to be that there
was something wrong with you if you thought things you didn't dare say out
loud. This seems backward. Almost certainly, there is something wrong with
you if you don't think things you don't dare say out loud.

3.2. Trouble

What can't we say? One way to find these ideas is simply to look at things
people do say, and get in trouble for. 2

Of course, we're not just looking for things we can't say. We're looking for
things we can't say that are true, or at least have enough chance of being true

that the question should remain open. But many of the things people get in
trouble for saying probably do make it over this second, lower threshold. No
one gets in trouble for saying that 2 + 2 is 5, or that people in Pittsburgh are ten
feet tall. Such obviously false statements might be treated as jokes, or at worst
as evidence of insanity, but they are not likely to make anyone mad. The
statements that make people mad are the ones they worry might be believed. I
suspect the statements that make people maddest are those they worry might
be true.

If Galileo had said that people in Padua were ten feet tall, he would have been
regarded as a harmless eccentric. Saying the earth orbited the sun was another
matter. The church knew this would set people thinking.

Certainly, as we look back on the past, this rule of thumb works well. A lot of the
statements that got people in trouble seem harmless now. So it's likely that
visitors from the future would agree with at least some of the statements that
get people in trouble today. Do we have no Galileos? Not likely.

To find them, keep track of opinions that get people in trouble, and start asking,
could this be true? Ok, it may be heretical (or whatever modern equivalent), but
might it also be true?

3.3. Heresy

This won't get us all the answers, though. What if no one happens to have
gotten in trouble for a particular idea yet? What if some idea would be so
radioactively controversial that no one would dare express it in public? How
can we find these too?

Another approach is to follow that word, heresy. In every period of history,
there seem to have been labels that got applied to statements to shoot them
down before anyone had a chance to ask if they were true or not. "Blasphemy,"
"sacrilege," and "heresy" were such labels for a good part of Western history, as
in more recent times "indecent," "improper," and "un- American" have been.
By now these labels have lost their sting. They always do. By now they're mostly
used ironically. But in their time, they had real force.

The word "defeatist," for example, has no particular political connotations
now. But in Germany in 1917 it was a weapon, used by Ludendorff in a purge of
those who favored a negotiated peace. At the start of World War II it was used

extensively by Churchill and his supporters to silence their opponents. In 1940,
any argument against Churchill's aggressive policy was "defeatist." Was it right
or wrong? Ideally, no one got far enough to ask that.

We have such labels today, of course, quite a lot of them, from the all-purpose
"inappropriate" to the dreaded "divisive." In any period, it should be easy to
figure out what such labels are, simply by looking at what people call ideas they
disagree with besides untrue. When a politician says his opponent is mistaken,
that's a straightforward criticism, but when he attacks a statement as "divisive"
or "racially insensitive" instead of arguing that it's false, we should start paying
attention.

So another way to figure out which of our taboos future generations will laugh
at is to start with the labels. Take a label—"sexist," for example—and try to
think of some ideas that would be called that. Then for each ask, might this be
true?

Just start listing ideas at random? Yes, because they won't really be random.
The ideas that come to mind first will be the most plausible ones. They'll be
things you've already noticed but didn't let yourself think.

In 1989 some clever researchers tracked the eye movements of radiologists as
they scanned chest images for signs of lung cancer. 3

They found that even when the radiologists missed a cancerous lesion, their
eyes had usually paused at the site of it. Part of their brain knew there was
something there; it just didn't percolate up into conscious knowledge. I think
many interesting heretical thoughts are already mostly formed in our minds. If
we turn off our self-censorship temporarily, those will be the first to emerge.

3.4. Time and Space

If we could look into the future it would be obvious which of our ideas they'd
laugh at. We can't do that, but we can do something almost as good: we can
look into the past. Another way to figure out what we're getting wrong is to look
at what used to be acceptable and is now unthinkable.

Changes between the past and the present sometimes do represent progress. In
a field like physics, if we disagree with past generations it's because we're right

and they're wrong. But this becomes rapidly less true as you move away from
the certainty of the hard sciences. By the time you get to social questions, many
changes are just fashion. The age of consent fluctuates like hemlines.

We may imagine that we are a great deal smarter and more virtuous than past
generations, but the more history you read, the less likely this seems. People in
past times were much like us. Not heroes, not barbarians. Whatever their ideas
were, they were ideas reasonable people could believe.

So here is another source of interesting heresies. Diff present ideas against
those of various past cultures, and see what you get. 4 Some will be shocking by
present standards. Ok, fine; but which might also be true?

You don't have to look into the past to find big differences. In our own time,
different societies have wildly varying ideas of what's ok and what isn't. So you
can try diffing other cultures' ideas against ours as well. (The best way to do
that is to visit them.)

You might find contradictory taboos. In one culture it might seem shocking to
think x, while in another it was shocking not to. But I think usually the shock is
on one side. In one culture x is ok, and in another it's considered shocking. My
hypothesis is that the side that's shocked is most likely to be the mistaken one. 5

I suspect the only taboos that are more than taboos are the ones that are
universal, or nearly so. Murder for example. But any idea that's considered
harmless in a significant percentage of times and places, and yet is taboo in
ours, is a good candidate for something we're mistaken about.

For example, at the high- water mark of political correctness in the early 1990s,
Harvard distributed to its faculty and staff a brochure saying, among other
things, that it was inappropriate to compliment a colleague's or student 's
clothes. No more "nice shirt." I think this principle is rare among the world's
cultures, past or present. There are probably more where it's considered
especially polite to compliment someone's clothing than where it's considered
improper. So odds are this is, in a mild form, an example of one of the taboos a
visitor from the future would have to be careful to avoid if he happened to set
his time machine for Cambridge, Massachusetts, 1992.

3.5. Prigs

Of course, if they have time machines in the future they'll probably have a
separate reference manual just for Cambridge. This has always been a fussy
place, a town of i dotters and t crossers, where you're liable to get both your
grammar and your ideas corrected in the same conversation. And that suggests
another way to find taboos. Look for prigs, and see what's inside their heads.

Kids' heads are repositories of all our taboos. It seems fitting to us that kids'
ideas should be bright and clean. The picture we give them of the world is not
merely simplified, to suit their developing minds, but sanitized as well, to suit
our ideas of what kids should think. 6

You can see this on a small scale in the matter of dirty words. A lot of my friends
are starting to have children now, and they're all trying not to use words like
"fuck" and "shit" within baby's hearing, lest baby start using these words too.
But these words are part of the language, and adults use them all the time. So
parents are giving their kids an inaccurate idea of the language by not using
them. Why do they do this? Because they don't think it's fitting that kids should
use the whole language. We like children to seem innocent. 7

Most adults, likewise, deliberately give kids a misleading view of the world. One
of the most obvious examples is Santa Claus. We think it's cute for little kids to
believe in Santa Claus. I myself think it's cute for little kids to believe in Santa
Claus. But one wonders, do we tell them this stuff for their sake, or for ours?

I'm not arguing for or against this idea here. It is probably inevitable that
parents should want to dress up their kids' minds in cute little baby outfits. I'll
probably do it myself. The important thing for our purposes is that, as a result,
a well brought- up teenage kid's brain is amore or less complete collection of all
our taboos— and in mint condition, because they're untainted by experience.
Whatever we think that will later turn out to be ridiculous, it's almost certainly
inside that head.

How do we get at these ideas? By the following thought experiment. Imagine a
kind of latter- day Conrad character who has worked for a time as a mercenary
in Africa, for a time as a doctor in Nepal, for a time as the manager of a
nightclub in Miami. The specifics don't matter—just someone who has seen a
lot. Now imagine comparing what's inside this guy's head with what's inside
the head of a well-behaved sixteen- year- old girl from the suburbs. What does
he think that would shock her? He knows the world; she knows, or at least

embodies, present taboos. Subtract one from the other, and the result is what
we can't say.

3.6. Mechanism

I can think of one more way to figure out what we can't say: to look at how
taboos are created. How do moral fashions arise, and why are they adopted? If
we can understand this mechanism, we may be able to see it at work in our own
time.

Moral fashions don't seem to be created the way ordinary fashions are.
Ordinary fashions seem to arise by accident when everyone imitates the whim
of some influential person. The fashion for broad- toed shoes in late fifteenth-
century Europe began because Charles VIII of France had six toes on one foot.
The fashion for the name Gary began when the actor Frank Cooper adopted the
name of a tough mill town in Indiana. Moral fashions more often seem to be
created deliberately. When there's something we can't say, it's often because
some group doesn't want us to.

The prohibition will be strongest when the group is nervous. The irony of
Galileo's situation was that he got in trouble for repeating Copernicus's ideas.
Copernicus himself didn't. In fact, Copernicus was a canon of a cathedral, and
dedicated his book to the pope. But by Galileo's time the church was in the
throes of the Counter- Reformation and was much more worried about
unorthodox ideas.

To launch a taboo, a group has to be poised halfway between weakness and
power. A confident group doesn't need taboos to protect it. It's not considered
improper to make disparaging remarks about Americans, or the English. And
yet a group has to be powerful enough to enforce a taboo. Coprophiles, as of
this writing, don't seem to be numerous or energetic enough to have had their
interests promoted to a lifestyle.

I suspect the biggest source of moral taboos will turn out to be power struggles
in which one side barely has the upper hand. That's where you'll find a group
powerful enough to enforce taboos, but weak enough to need them.

Most struggles, whatever they're really about, will be cast as struggles between
competing ideas. The English Reformation was at bottom a struggle for wealth
and power, but it ended up being cast as a struggle to preserve the souls of

Englishmen from the corrupting influence of Rome. It's easier to get people to
fight for an idea. And whichever side wins, their ideas will also be considered to
have triumphed, as if God wanted to signal his agreement by selecting that side
as the victor.

We often like to think of World War II as a triumph of freedom over
totalitarianism. We conveniently forget that the Soviet Union was also one of
the winners.

I'm not saying that struggles are never about ideas, just that they will always be
made to seem to be about ideas, whether they are or not. And just as there is
nothing so unfashionable as the last, discarded fashion, there is nothing so
wrong as the principles of the most recently defeated opponent.
Representational art is only now recovering from the approval of both Hitler
and Stalin. 8

Although fashions in ideas tend to arise from different sources than fashions in
clothing, the mechanism of their adoption seems much the same. The early
adopters will be driven by ambition: self-consciously cool people who want to
distinguish themselves from the common herd. As the fashion becomes
established they'll be joined by a second, much larger group, driven by fear. 9

This second group adopt the fashion not because they want to stand out but
because they are afraid of standing out.

So if you want to figure out what we can't say, look at the machinery of fashion
and try to predict what it would make un- sayable. What groups are powerful
but nervous, and what ideas would they like to suppress? What ideas were
tarnished by association when they ended up on the losing side of a recent
struggle? If a self-consciously cool person wanted to differentiate himself from
preceding fashions (e.g. from his parents), which of their ideas would he tend
to reject? What are conventional- minded people afraid of saying?

This technique won't find us all the things we can't say. I can think of some that
aren't the result of any recent struggle. Many of our taboos are rooted deep in
the past. But this approach, combined with the preceding four, will turn up a
good number of unthinkable ideas.

3.7. Why

Some would ask, why would one want to do this? Why deliberately go poking
around among nasty, disreputable ideas? Why look under rocks?

I do it, first of all, for the same reason I did look under rocks as a kid: plain
curiosity. And I'm especially curious about anything that's forbidden. Let me
see and decide for myself.

Second, I do it because I don't like the idea of being mistaken. If, like other eras,
we believe things that will later seem ridiculous, I want to know what they are
so that I, at least, can avoid believing them.

Third, I do it because it's good for the brain. To do good work you need a brain
that can go anywhere. And you especially need a brain that's in the habit of
going where it's not supposed to.

Great work tends to grow out of ideas that others have overlooked, and no idea
is so overlooked as one that's unthinkable. Natural selection, for example. It's
so simple. Why didn't anyone think of it before? Well, that is all too obvious.
Darwin himself was careful to tiptoe around the implications of his theory. He
wanted to spend his time thinking about biology, not arguing with people who
accused him of being an atheist.

In the sciences, especially, it's a great advantage to be able to question
assumptions. The m.o. of scientists, or at least of the good ones, is precisely
that: look for places where conventional wisdom is broken, and then try to pry
apart the cracks and see what's underneath. That's where new theories come
from.

A good scientist, in other words, does not merely ignore conventional wisdom,
but makes a special effort to break it. Scientists go looking for trouble. This
should be the m.o. of any scholar, but scientists seem much more willing to
look under rocks.

Why? It could be that the scientists are simply smarter; most physicists could, if
necessary, make it through a PhD program in French literature, but few
professors of French literature could make it through a PhD program in
physics. 10 Or it could be because it's clearer in the sciences whether theories

are true or false, and this makes scientists bolder. (Or it could be that, because
it's clearer in the sciences whether theories are true or false, you have to be
smart to get jobs as a scientist, rather than just a good politician.)

Whatever the reason, there seems a clear correlation between intelligence and
willingness to consider shocking ideas. This isn't just because smart people
actively work to find holes in conventional thinking. Conventions also have less
hold over them to start with. You can see that in the way they dress.

It's not only in the sciences that heresy pays off. In any competitive field, you
can win big by seeing things that others daren't. And in every field there are
probably heresies few dare utter. Within the US car industry there is a lot of
hand- wringing about declining market share. Yet the cause is so obvious that
any observant outsider could explain it in a second: they make bad cars. And
they have for so long that by now the US car brands are antibrands—something
you'd buy a car despite, not because of. Cadillac stopped being the Cadillac of
cars in about 1970. And yet I suspect no one dares say this. 11 Otherwise these
companies would have tried to fix the problem.

Training yourself to think unthinkable thoughts has advantages beyond the
thoughts themselves. It's like stretching. When you stretch before running, you
put your body into positions much more extreme than any it will assume
during the run. If you can think things so outside the box that they'd make
people's hair stand on end, you'll have no trouble with the small trips outside
the box that people call innovative.

3.8. Pensieri Stretti

When you find something you can't say, what do you do with it? My advice is,
don't say it. Or at least, pick your battles.

Suppose in the future there is a movement to ban the color yellow. Proposals to
paint anything yellow are denounced as "yellowist," as is anyone suspected of
liking the color. People who like orange are tolerated but viewed with
suspicion. Suppose you realize there is nothing wrong with yellow. If you go
around saying so, you'll be denounced as a yellowist too, and you'll find
yourself having a lot of arguments with anti- yellowists. If your aim in life is to
rehabilitate the color yellow, that may be what you want. But if you're mostly
interested in other questions, being labelled as a yellowist will just be a
distraction. Argue with idiots, and you become an idiot.

The most important thing is to be able to think what you want, not to say what
you want. And if you feel you have to say everything you think, it may inhibit
you from thinking improper thoughts. I think it's better to follow the opposite
policy. Draw a sharp line between your thoughts and your speech. Inside your
head, anything is allowed. Within my head I make a point of encouraging the
most outrageous thoughts I can imagine. But, as in a secret society, nothing
that happens within the building should be told to outsiders. The first rule of
Fight Club is, you do not talk about Fight Club.

When Milton was going to visit Italy in the 1630s, Sir Henry Wootton, who had
been ambassador to Venice, told him that his motto should be "i pensieri stretti
& il viso sciolto." Closed thoughts and an open face. Smile at everyone, and
don't tell them what you're thinking. This was wise advice. Milton was an
argumentative fellow, and the Inquisition was a bit restive at that time. But the
difference between Milton's situation and ours is only a matter of degree. Every
era has its heresies, and if you don't get imprisoned for them, you will at least
get in enough trouble that it becomes a complete distraction.

I admit it seems cowardly to keep quiet. When I read about the harassment to
which the Scientologists subject their critics, 12 or people branded as anti-
Semitic for speaking out against Israeli human- rights abuses, 13 or researchers
threatened with lawsuits under the DMCA, 14 part of me wants to say, "All right,
you bastards, bring it on." The problem is, there are so many things you can't
say. If you said them all you'd have no time left for your real work. You'd have
to turn into Noam Chomsky. 15

The trouble with keeping your thoughts secret, though, is that you lose the
advantages of discussion. Talking about an idea leads to more ideas. So the
optimal plan, if you can manage it, is to have a few trusted friends you can
speak openly to. This is not just a way to develop ideas; it's also a good rule of
thumb for choosing friends. The people you can say heretical things to without
getting jumped on are also the most interesting to know.

3.9. Viso Sciolto?

Perhaps the best policy is to make it plain that you don't agree with whatever
zealotry is current in your time, but not to be too specific about what you
disagree with. Zealots will try to draw you out, but you don't have to answer
them. If they try to force you to treat a question on their terms by asking "are
you with us or against us?" you can always just answer "neither."

Better still, answer "I haven't decided." That's what Larry Summers did when a
group tried to put him in this position. 16 Explaining himself later, he said "I
don't do litmus tests." A lot of the questions people get hot about are actually
quite complicated. There is no prize for getting the answer quickly.

If the anti- yellowists seem to be getting out of hand and you want to fight back,
there are ways to do it without getting yourself accused of yellowism. Like
skirmishers in an ancient army, you want to avoid directly engaging the main
body of the enemy's troops. Better to harass them with arrows from a distance.

One way to do this is to ratchet the debate up one level of abstraction. If you
argue against censorship in general, you can avoid being accused of whatever
heresy is contained in the book or film that someone is trying to censor. You
can attack labels with meta- labels: labels that refer to the use of labels to
prevent discussion. The spread of the term "political correctness" meant the
beginning of the end of political correctness, because it enabled one to attack
the phenomenon as a whole without being accused of any of the specific
heresies it sought to suppress.

Another way to counterattack is with metaphor. Arthur Miller undermined the
House Un- American Activities Committee by writing a play, The Crucible ,
about the Salem witch trials. He never referred directly to the committee and so
gave them no way to reply. What could HUAC do, defend the Salem witch
trials? And yet Miller's metaphor stuck so well that to this day the activities of
the committee are often described as a "witch- hunt."

Best of all, probably, is humor. Zealots, whatever their cause, invariably lack a
sense of humor. They can't reply in kind to jokes. They're as unhappy on the
territory of humor as a mounted knight on a skating rink. Victorian
prudishness, for example, seems to have been defeated mainly by treating it as
a joke. Likewise its reincarnation as political correctness. "I am glad that I
managed to write The Crucible ," Arthur Miller wrote, "but looking back I have
often wished I'd had the temperament to do an absurd comedy, which is what
the situation deserved." 17

3.10. Always Be Questioning

A Dutch friend says I should use Holland as an example of a tolerant society.
It's true they have a long tradition of comparative open- mindedness. For
centuries the low countries were the place to go to say things you couldn't say
anywhere else, and this helped make the region a center of scholarship and

industry (which have been closely tied for longer than most people realize).
Descartes, though claimed by the French, did much of his thinking in Holland.

And yet, I wonder. The Dutch seem to live their lives up to their necks in rules
and regulations. There's so much you can't do there; is there really nothing you
can't say?

Certainly the fact that they value open- mindedness is no guarantee. Who thinks
they're not open- minded? Our hypothetical prim miss from the suburbs thinks
she's open- minded. Hasn't she been taught to be? Ask anyone, and they'll say
the same thing: they're pretty open- minded, though they draw the line at things
that are really wrong. 18 In other words, everything is ok except things that
aren't.

When people are bad at math, they know it, because they get the wrong
answers on tests. But when people are bad at open mindedness, they don't
know it. In fact they tend to think the opposite. Remember, it's the nature of
fashion to be invisible. It wouldn't work otherwise. Fashion doesn't seem like
fashion to someone in the grip of it. It just seems like the right thing to do. It's
only by looking from a distance that we see oscillations in people's idea of the
right thing to do, and can identify them as fashions.

Time gives us such distance for free. Indeed, the arrival of new fashions makes
old fashions easy to see, because they seem so ridiculous by contrast. From one
end of a pendulum's swing, the other end seems especially far away.

To see fashion in your own time, though, requires a conscious effort. Without
time to give you distance, you have to create distance yourself. Instead of being
part of the mob, stand as far away from it as you can and watch what it's doing.
And pay especially close attention whenever an idea is being suppressed. Web
filters for children and employees often ban sites containing pornography,
violence, and hate speech. What counts as pornography and violence? And
what, exactly, is "hate speech?" This sounds like a phrase out of 1984.

Labels like that are probably the biggest external clue. If a statement is false,
that's the worst thing you can say about it. You don't need to say that it's
heretical. And if it isn't false, it shouldn't be suppressed. So when you see
statements being attacked as x-ist or y-ic (substitute your current values of x
and y), whether in 1630 or 2030, that's a sure sign that something is wrong.
When you hear such labels being used, ask why.

Especially if you hear yourself using them. It's not just the mob you need to
learn to watch from a distance. You need to be able to watch your own thoughts
from a distance. That's not a radical idea, by the way; it's the main difference
between children and adults. When a child gets angry because he's tired, he
doesn't know what's happening. An adult can distance himself enough from
the situation to say "never mind, I'm just tired." I don't see why one couldn't,
by a similar process, learn to recognize and discount the effects of moral
fashions.

You have to take that extra step if you want to think clearly. But it's harder,
because now you're working against social customs instead of with them.
Everyone encourages you to grow up to the point where you can discount your
own bad moods. Few encourage you to continue to the point where you can
discount society's bad moods.

How can you see the wave, when you're the water? Always be questioning.
That's the only defence. What can't you say? And why?

Chapter 4. Good Bad Attitude

To the popular press, "hacker" means someone who breaks into computers.
Among programmers it means a good programmer. But the two meanings are
connected. To programmers, "hacker" connotes mastery in the most literal
sense: someone who can make a computer do what he wants—whether the
computer wants to or not.

To add to the confusion, the noun "hack" also has two senses. It can be either a
compliment or an insult. It's called a hack when you do something in an ugly
way. But when you do something so clever that you somehow beat the system,
that's also called a hack. The word is used more often in the former than the
latter sense, probably because ugly solutions are more common than brilliant
ones.

Believe it or not, the two senses of "hack" are also connected. Ugly and
imaginative solutions have something in common: they both break the rules.
And there is a gradual continuum between rule breaking that's merely ugly
(using duct tape to attach something to your bike) and rule breaking that is
brilliantly imaginative (discarding Euclidean space).

Hacking predates computers. When he was working on the Manhattan Project,
Richard Feynman used to amuse himself by breaking into safes containing
secret documents. This tradition continues today. When we were in grad
school, a hacker friend of mine who spent too much time around MIT had his
own lock picking kit. 1 (He now runs a hedge fund, a not unrelated enterprise.)

It is sometimes hard to explain to authorities why one would want to do such
things. Another friend of mine once got in trouble with the government for
breaking into computers. This had only recently been declared a crime, and the
FBI found that their usual investigative technique didn't work. Police
investigation apparently begins with a motive. The usual motives are few:
drugs, money, sex, revenge. Intellectual curiosity was not one of the motives on
the FBI's list. Indeed, the whole concept seemed foreign to them.

Those in authority tend to be annoyed by hackers' general attitude of
disobedience. But that disobedience is a byproduct of the qualities that make
them good programmers. They may laugh at the CEO when he talks in generic

corporate new speech, but they also laugh at someone who tells them a certain
problem can't be solved. Suppress one, and you suppress the other.

This attitude is sometimes affected. Sometimes young programmers notice the
eccentricities of eminent hackers and decide to adopt some of their own in
order to seem smarter. The fake version is not merely annoying; the prickly
attitude of these posers can actually slow the process of innovation.

But even factoring in their annoying eccentricities, the disobedient attitude of
hackers is a net win. I wish its advantages were better understood.

For example, I suspect people in Hollywood are simply mystified by hackers'
attitudes toward copyrights. They are a perennial topic of heated discussion on
Slashdot. But why should people who program computers be so concerned
about copyrights, of all things?

Partly because some companies use mechanisms to prevent copying. Show any
hacker a lock and his first thought is how to pick it. But there is a deeper reason
that hackers are alarmed by measures like copyrights and patents. They see
increasingly aggressive measures to protect "intellectual property" as a threat
to the intellectual freedom they need to do their job. And they are right.

It is by poking about inside current technology that hackers get ideas for the
next generation. No thanks, intellectual homeowners may say, we don't need
any outside help. But they're wrong. The next generation of computer
technology has often—perhaps more often than not—been developed by
outsiders. In 1977 there was no doubt some group within IBM developing what
they expected to be the next generation of business computer. They were
mistaken. The next generation of business computer was being developed on
entirely different lines by two long- haired guys called Steve in a garage in Los
Altos. At about the same time, the powers that be were cooperating to develop
the official next generation operating system, Multics. But two guys who
thought Multics excessively complex went off and wrote their own. They gave it
a name that was a joking reference to Multics: Unix.

Figure 4-1. Jobs and Wozniak with a circumvention device, 1975.

The latest intellectual property laws impose unprecedented restrictions on the
sort of poking around that leads to new ideas. In the past, a competitor might
use patents to prevent you from selling a copy of something they made, but
they couldn't prevent you from taking one apart to see how it worked. The
latest laws make this a crime. How are we to develop new technology if we can't
study current technology to figure out how to improve it?

Ironically, hackers have brought this on themselves. Computers are responsible
for the problem. The control systems inside machines used to be physical:
gears and levers and cams. Increasingly, the brains (and thus the value) of
products is in software. 2 And by this I mean software in the general sense: i.e.
data. A song on an LP is physically stamped into the plastic. A song on an iPod's
disk is merely stored on it.

Data is by definition easy to copy. And the Internet makes copies easy to
distribute. So it is no wonder companies are afraid. But, as so often happens,
fear has clouded their judgement. The government has responded with
draconian laws to protect intellectual property. They probably mean well. But
they may not realize that such laws will do more harm than good.

Why are programmers so violently opposed to these laws? If I were a legislator,
I'd be interested in this mystery—for the same reason that, if I were a farmer
and suddenly heard a lot of squawking coming from my hen house one night,
I'd want to go out and investigate. Hackers are not stupid, and unanimity is

very rare in this world. So if they're all squawking, perhaps there is something
amiss.

Could it be that such laws, though intended to protect America, will actually
harm it? Think about it. There is something very American about Feynman
breaking into safes during the Manhattan Project. It's hard to imagine the
authorities having a sense of humor about such things over in Germany at that
time. Maybe it's not a coincidence.

Hackers are unruly. That is the essence of hacking. And it is also the essence of
American- ness. It is no accident that Silicon Valley is in America, and not
France, or Germany, or England, or Japan. In those countries, people color
inside the lines.

I lived for a while in Florence. But after I'd been there a few months I realized
that what I'd been unconsciously hoping to find there was back in the place I'd
just left. The reason Florence is famous is that in 1450, it was New York. In 1450
it was filled with the kind of turbulent and ambitious people you find now in
America. (So I went back to America.)

It is greatly to America's advantage that it is a congenial atmosphere for the
right sort of unruliness—that it is a home not just for the smart, but for smart-
alecks. And hackers are invariably smart- alecks. If we had a national holiday, it
would be April 1st. It says a great deal about our work that we use the same
word for a brilliant or a horribly cheesy solution. When we cook one up we're
not always 100% sure which kind it is. But as long as it has the right sort of
wrongness, that's a promising sign. It's odd that people think of programming
as precise and methodical. Computers are precise and methodical. Hacking is
something you do with a gleeful laugh.

In our world some of the most characteristic solutions are not far removed from
practical jokes. IBM was no doubt rather surprised by the consequences of the
licensing deal for DOS, just as the hypothetical "adversary" must be when
Michael Rabin solves a problem by redefining it as one that's easier to solve.

Smart- alecks have to develop a keen sense of how much they can get away
with. And lately hackers have sensed a change in the atmosphere. Lately
hackerliness seems rather frowned upon.

To hackers the recent contraction in civil liberties seems especially ominous.
That must also mystify outsiders. Why should we care especially about civil
liberties? Why programmers, more than dentists or salesmen or landscapers?

Let me put the case in terms a government official would appreciate. Civil
liberties are not just an ornament, or a quaint American tradition. Civil liberties
make countries rich. If you made a graph of GNP per capita vs. civil liberties,
you'd notice a definite trend. Could civil liberties really be a cause, rather than
just an effect? I think so. I think a society in which people can do and say what
they want will also tend to be one in which the most efficient solutions win,
rather than those sponsored by the most influential people. Authoritarian
countries become corrupt; corrupt countries become poor; and poor countries
are weak. It seems to me there is a Laffer curve for government power, just as
for tax revenues. 3 At least, it seems likely enough that it would be stupid to try
the experiment and find out. Unlike high tax rates, you can't repeal
totalitarianism if it turns out to be a mistake.

This is why hackers worry. The government spying on people doesn't literally
make programmers write worse code. It just leads eventually to a world in
which bad ideas will win. And because this is so important to hackers, they're
especially sensitive to it. They can sense totalitarianism approaching from a
distance, as animals can sense an approaching thunderstorm.

It would be ironic if, as hackers fear, recent measures intended to protect
national security and intellectual property turned out to be a missile aimed
right at what makes America successful. But it would not be the first time that
measures taken in an atmosphere of panic had the opposite of the intended
effect.

There is such a thing as American- ness. There's nothing like living abroad to
teach you that. And if you want to know whether something will nurture or
squash this quality, it would be hard to find a better focus group than hackers,
because they come closest of any group I know to embodying it. Closer,
probably, than the men running our government, who for all their talk of
patriotism remind me more of Richelieu or Mazarin than Thomas Jefferson or
George Washington.

When you read what the founding fathers had to say for themselves, they sound
more like hackers. "The spirit of resistance to government," Jefferson wrote, "is
so valuable on certain occasions, that I wish it always to be kept alive."

Imagine an American president saying that today. Like the remarks of an
outspoken old grandmother, the sayings of the the founding fathers have
embarrassed generations of their less confident successors. They remind us
where we come from. They remind us that it is the people who break rules that
are the source of America's wealth and power.

Those in a position to impose rules naturally want them to be obeyed. But be
careful what you ask for. You might get it.

Chapter 5. The Other Road Ahead

In the summer of 1995, my friend Robert Morris and I decided to start a startup.
The PR campaign leading up to Netscape's IPO was running full blast then, and
there was a lot of talk in the press about online commerce. At the time there
might have been thirty actual stores on the Web, all made by hand. If there
were going to be a lot of online stores, there would need to be software for
making them, so we decided to write some.

For the first week or so we intended to make this an ordinary desktop
application. Then one day we had the idea of making the software run on our
web server, using the browser as an interface. We tried rewriting the software to
work over the Web, and it was clear that this was the way to go. If we wrote our
software to run on the server, it would be a lot easier for the users and for us as
well.

This turned out to be a good plan. Now, as Yahoo Store, this software is the
most popular online store builder, with over 20,000 users.

When we started Viaweb, hardly anyone understood what we meant when we
said that the software ran on the server. It was not until Hotmail was launched a
year later that people started to get it. Now everyone knows that this is a valid
approach. There is a name now for what we were: an Application Service
Provider, or ASP.

I think a lot of the next generation of software will be written on this model.
Even Microsoft, who have the most to lose, seem to see the inevitability of
moving some things off the desktop. If software moves off the desktop and onto
servers, it will mean a very different world for developers. This essay describes
the surprising things we saw, as some of the first visitors to this new world. To
the extent software does move onto servers, what I'm describing here is the
future.

5.1. The Next Thing?

When we look back on the desktop software era, I think we'll marvel at the
inconveniences people put up with, just as we marvel now at what early car
owners put up with. For the first twenty or thirty years, you had to be a car

expert to own a car. But cars were such a big win that lots of people who
weren't car experts wanted to have them as well.

Computers are in this phase now. When you own a desktop computer, you end
up learning a lot more than you wanted to know about what's happening inside
it. But more than half the households in the US own one. My mother has a
computer that she uses for email and for keeping accounts. A couple years ago
she was alarmed to receive a letter from Apple, offering her a discount on a new
version of the operating system. There's something wrong when a sixty-five-
year- old woman who wants to use a computer for email and accounts has to
think about installing new operating systems. Ordinary users shouldn't even
know the words "operating system," much less "device driver" or "patch."

There is now another way to deliver software that will save users from
becoming system administrators. Web-based applications are programs that
run on web servers and use web pages as the user interface. For the average
user this new kind of software will be easier, cheaper, more mobile, more
reliable, and often more powerful than desktop software.

With web- based software, most users won't have to think about anything
except the applications they use. All the messy, changing stuff will be sitting on
a server somewhere, maintained by the kind of people who are good at that
kind of thing. And so you won't ordinarily need a computer, per se, to use
software. All you'll need will be something with a keyboard, a screen, and a web
browser. Maybe it will have wireless Internet access. Maybe it will also be your
cell phone. Whatever it is, it will be consumer electronics: something that costs
about $200, and that people choose mostly based on how the case looks. You'll
pay more for Internet services than you do for the hardware, just as you do now
with telephones. 1

It will take about a tenth of a second for a click to get to the server and back, so
users of heavily interactive software, like Photoshop, will still want to have the
computations happening on the desktop. But if you look at the kind of things
most people use computers for, a tenth of a second latency would not be a
problem. My mother doesn't really need a desktop computer, and there are a
lot of people like her.

5.2. The Win for Users

Near my house there is a car with a bumper sticker that reads "death before
inconvenience." Most people, most of the time, will take whatever choice

requires least work. If web- based software wins, it will be because it's more
convenient. And it looks as if it will be, for users and developers both.

To use a purely web- based application, all you need is a browser connected to
the Internet. So you can use a web- based application anywhere. When you
install software on your desktop computer, you can only use it on that
computer. Worse still, your files are trapped on that computer. The
inconvenience of this model becomes more and more evident as people get
used to networks.

The thin end of the wedge here was web- based email. Millions of people now
realize that you should have access to email messages no matter where you are.
And if you can see your email, why not your calendar? If you can discuss a
document with your colleagues, why can't you edit it? Why should any of your
data be trapped on some computer sitting on a faraway desk?

The whole idea of "your computer" is going away, and being replaced with
"your data." You should be able to get at your data from any computer. Or
rather, any client, and a client doesn't have to be a computer.

Clients shouldn't store data; they should be like telephones. In fact they may
become telephones, or vice versa. And as clients get smaller, you have another
reason not to keep your data on them: something you carry around with you
can be lost or stolen. Leaving your PDA in a taxi is like a disk crash, except your
data is handed to someone else instead of being vaporized.

With purely web- based software, neither your data nor the applications are
kept on the client. So you don't have to install anything to use it. And when
there's no installation, you don't have to worry about installation going wrong.
There can't be incompatibilities between the application and your operating
system, because the software doesn't run on your operating system.

Because it needs no installation, it will be easy, and common, to try web- based
software before you "buy" it. You should expect to be able to test- drive any
web- based application for free, just by going to the site where it's offered. At
Viaweb our whole site was like a big arrow pointing users to the test drive.

After trying the demo, signing up for the service should require nothing more
than filling out a brief form. And that should be the last work the user has to do.

With web- based software, you should get new releases without paying extra, or
doing any work, or possibly even knowing about it.

Upgrades won't be the big shocks they are now. Over time applications will
quietly grow more powerful. This will take some effort on the part of the
developers. They will have to design software so it can be updated without
confusing the users. That's a new problem, but there are ways to solve it.

With web- based applications, everyone uses the same version, and bugs can be
fixed as soon as they're discovered. So web- based software should have far
fewer bugs than desktop software. At Viaweb, I doubt we ever had ten known
bugs at any one time. That's orders of magnitude better than desktop software.

Web- based applications can be used by several people at the same time. This is
an obvious win for collaborative applications, but I bet users will start to want
this in most applications once they realize it's possible. It will often be useful to
let two people edit the same document, for example. Viaweb let multiple users
edit a site simultaneously, more because that was the right way to write the
software than because we expected users to want to, but it turned out many
did.

When you use a web- based application, your data will be safer. Disk crashes
won't be a thing of the past, but users won't hear about them anymore. They'll
happen within server farms. And companies offering web- based applications
will actually do backups— not only because they'll have real system
administrators worrying about such things, but because an ASP that does lose
people's data will be in big, big trouble. When people lose their own data in a
disk crash, they can't get that mad, because they only have themselves to be
mad at. When a company loses their data for them, they'll get a lot madder.

Finally, web- based software should be less vulnerable to viruses. If the client
doesn't run anything except a browser, there's less chance of running viruses,
and no data locally to damage. And a program that attacked the servers
themselves should find them well defended. 2

For users, web- based software will be less stressful . I think if you looked inside
the average Windows user you'd find a huge and pretty much untapped desire
for software meeting that description. Unleashed, it could be a powerful force.

5.3. City of Code

To developers, the most conspicuous difference between web based and
desktop software is that a web- based application is not a single piece of code. It
will be a collection of programs of different types rather than a single big
binary. And so designing web- based software is like designing a city rather than
a building: as well as buildings you need roads, street signs, utilities, police and
fire departments, and plans for both growth and various kinds of disasters.

At Viaweb, software included fairly big applications that users talked to directly,
programs those programs used, programs that ran constantly in the
background looking for problems, programs that tried to restart things if they
broke, programs that ran occasionally to compile statistics or build indexes for
searches, programs we ran explicitly to garbage- collect resources or to move or
restore data, programs that pretended to be users (to measure performance or
expose bugs), programs for diagnosing network troubles, programs for doing
backups, interfaces to outside services, software that drove an impressive
collection of dials displaying real- time server statistics (a hit with visitors, but
indispensable for us too), modifications (including bug fixes) to open source
software, and a great many configuration files and settings. Trevor Blackwell
wrote a spectacular program for moving stores to new servers across the
country, without shutting them down, after we were bought by Yahoo.
Programs paged us, sent faxes and email to users, conducted transactions with
credit card processors, and talked to one another through sockets, pipes, HTTP
requests, SSH, UDP packets, shared memory, and files. Some of Viaweb even
consisted of the absence of programs, since one of the keys to Unix security is
not to run unnecessary utilities that people might use to break into your
servers.

It did not end with software. We spent a lot of time thinking about server
configurations. We built the servers ourselves, from components—partly to
save money, and partly to get exactly what we wanted. We had to think about
whether our upstream ISP had fast enough connections to all the backbones.
We serially dated RAID suppliers.

But hardware is not just something to worry about. When you control it you
can do more for users. With a desktop application, you can specify certain
minimum hardware, but you can't add more. If you administer the servers, you
can in one step enable all your users to page people, or send faxes, or send
commands by phone, or process credit cards, etc, just by installing the relevant
hardware. We always looked for new ways to add features with hardware, not
just because it pleased users, but also as a way to distinguish ourselves from

competitors who (either because they sold desktop software, or resold web-
based applications through ISPs) didn't have direct control over the hardware.

Because the software in a web- based application will be a collection of
programs rather than a single binary, it can be written in any number of
different languages. When you're writing desktop software, you're practically
forced to write the application in the same language as the underlying
operating system—meaning C and C++. And so these languages (especially
among non technical people like managers and VCs) got to be considered as
the languages for "serious" software development. But that was just an artifact
of the way desktop software had to be delivered. For server- based software you
can use any language you want. 3 Today a lot of the top hackers are using
languages far removed from C and C++: Perl, Python, and even Lisp.

With server- based software, no one can tell you what language to use, because
you control the whole system, right down to the hardware. Different languages
are good for different tasks. You can use whichever is best for each. And when
you have competitors, "you can" means "you must" (we'll return to this later),
because if you don't take advantage of this possibility, your competitors will.

Most of our competitors used C and C++, and this made their software visibly
inferior because (among other things), they had no way around the
statelessness of CGI scripts. If you were going to change something, all the
changes had to happen on one page, with an Update button at the bottom. As I
explain in Chapter 12, by using Lisp, which many people still consider a
research language, we could make the Viaweb editor behave more like desktop
software.

5.4. Releases

One of the most important changes in this new world is the way you do
releases. In the desktop software business, doing a release is a huge trauma, in
which the whole company sweats and strains to push out a single, giant piece
of code. Obvious comparisons suggest themselves, both to the process and the
resulting product.

With server- based software, you can make changes almost as you would in a
program you were writing for yourself. You release software as a series of
incremental changes instead of an occasional big explosion. A typical desktop
software company might do one or two releases a year. At Viaweb we often did
three to five releases a day.

When you switch to this new model, you realize how much software
development is affected by the way it is released. Many of the nastiest problems
you see in the desktop software business are due to the catastrophic nature of
releases.

When you release only one new version a year, you tend to deal with bugs
wholesale. Some time before the release date you assemble a new version in
which half the code has been torn out and replaced, introducing countless
bugs. Then a squad of QA people step in and start counting them, and the
programmers work down the list, fixing them. They do not generally get to the
end of the list, and indeed, no one is sure where the end is. It's like fishing
rubble out of a pond. You never really know what's happening inside the
software. At best you end up with a statistical sort of correctness.

With server- based software, most of the change is small and incremental. That
in itself is less likely to introduce bugs. It also means you know what to test
most carefully when you're about to release software: the last thing you
changed. You end up with a much firmer grip on the code. As a general rule,
you do know what's happening inside it. You don't have the source code
memorized, of course, but when you read the source you do it like a pilot
scanning the instrument panel, not like a detective trying to solve a mystery.

Desktop software breeds a certain fatalism about bugs. You Know you're
shipping something loaded with bugs, and you've even set up mechanisms to
compensate for it (e.g. patch releases). So why worry about a few more? Soon
you're releasing whole features you know are broken. Apple did this a few years
ago. They felt under pressure to release their new OS, whose release date had
already slipped four times, but some of the software (support for CDs and
DVDs) wasn't ready. The solution? They released the OS without the unfinished
parts, and users had to install them later.

With web- based software, you never have to release software before it works,
and you can release it as soon as it does work.

The industry veteran may be thinking: it's a fine- sounding idea to say that you
never have to release software before it works, but what happens when you've
promised to deliver a new version of your software by a certain date? With web-
based software, you wouldn't make such a promise, because there are no
versions. Your software changes gradually and continuously. Some changes
might be bigger than others, but the idea of versions just doesn't naturally fit
onto web- based software.

If anyone remembers Viaweb this might sound odd, because we were always
announcing new versions. This was done entirely for PR purposes. The trade
press, we learned, thinks in version numbers. They will give you major coverage
for a major release, meaning a new first digit on the version number, and
generally a paragraph at most for a point release, meaning a new digit after the
decimal point.

Some of our competitors were offering desktop software and actually had
version numbers. And for these releases, the mere fact of which seemed to us
evidence of their backwardness, they would get all kinds of publicity. We didn't
want to miss out, so we started giving version numbers to our software too.
When we wanted some publicity, we'd make a list of all the features we'd added
since the last "release," stick a new version number on the software, and issue a
press release saying that the new version was available immediately.
Amazingly, no one ever called us on it.

By the time we were bought, we had done this three times, so we were on
Version 4. Version 4.1 if I remember correctly. Once Viaweb became Yahoo
Store there was no longer such a desperate need for publicity, so although the
software continued to evolve, the whole idea of version numbers was quietly
dropped.

5.5. Bugs

The other major technical advantage of web- based software is that you can
reproduce most bugs. You have the users' data right there on your disk. If
someone breaks your software, you don't have to try to guess what's going on,
as you would with desktop software: you should be able to reproduce the error
while they're on the phone with you. You might even know about it already, if
you have code for noticing errors built into your application.

Web- based software gets used round the clock, so everything you do is
immediately put through the wringer. Bugs turn up quickly.

Software companies are sometimes accused of letting the users debug their
software. And that is just what I'm advocating. For web- based software it's
actually a good plan, because the bugs are fewer and transient. When you
release software gradually you get far fewer bugs to start with. And when you
can reproduce errors and release changes instantly, you can find and fix most
bugs as soon as they appear. We never had enough bugs at any one time to
bother with a formal bug- tracking system.

You should test changes before you release them, of course, so no major bugs
should get released. Those few that inevitably slip through will involve
borderline cases and will only affect the few users who encounter them before
someone calls in to complain. As long as you fix bugs right away, the net effect,
for the average user, is far fewer bugs. I doubt the average Viaweb user ever saw
a bug.

Fixing fresh bugs is easier than fixing old ones. It's usually fairly quick to find a
bug in code you just wrote. When it turns up you often know what's wrong
before you even look at the source, because you were already worrying about it
subconsciously. Fixing a bug in something you wrote six months ago (the
average case if you release once a year) is a lot more work. And since you don't
understand the code as well, you're more likely to fix it in an ugly way, or even
introduce more bugs. 4

When you catch bugs early, you also get fewer compound bugs. Compound
bugs are two separate bugs that interact: you trip going downstairs, and when
you reach for the handrail it comes off in your hand. In software this kind of
bug is the hardest to find, and also tends to have the worst consequences. 5 The
traditional "break everything and then filter out the bugs" approach inherently
yields a lot of compound bugs. And software released in a series of small
changes inherently tends not to. The floors are constantly being swept clean of
any loose objects that might later get stuck in something.

It helps if you use a technique called functional programming. Functional
programming means avoiding side effects. It's something you're more likely to
see in research papers than commercial software, but for web- based
applications it turns out to be really useful. It's hard to write entire programs as
purely functional code, but you can write substantial chunks this way. It makes
those parts of your software easier to test, because they have no state, and that
is very convenient in a situation where you are constantly making and testing
small modifications. I wrote much of Viaweb's editor in this style, and we made
our scripting language, RTML, a purely functional language.

People from the desktop software business will find this hard to credit, but at
Viaweb bugs became almost a game. Since most released bugs involved
borderline cases, the users who encountered them were likely to be advanced
users, pushing the envelope. Advanced users are more forgiving about bugs,
especially since you probably introduced them in the course of adding some
feature they were asking for. In fact, because bugs were rare and you had to be
doing sophisticated things to see them, advanced users were often proud to
catch one. They would call support in a spirit more of triumph than anger, as if
they had scored points off us.

5.6. Support

When you can reproduce errors, it changes your approach to customer
support. At most software companies, support is offered as a way to make
customers feel better. They're either calling you about a known bug, or they're
just doing something wrong and you have to figure out what. In either case
there's not much you can learn from them. And so you tend to view support
calls as a pain in the ass that you want to isolate from your developers as much
as possible.

This was not how things worked at Viaweb. At Viaweb, support was free,
because we wanted to hear from customers. If someone had a problem, we
wanted to know about it right away so we could reproduce the error and release
a fix.

So at Viaweb the developers were always in close contact with support. The
customer support people were about thirty feet away from the programmers,
and knew they could always interrupt anything with a report of a genuine bug.
We would leave a board meeting to fix a serious bug.

Our approach to support made everyone happier. The customers were
delighted. Just imagine how it would feel to call a support line and be treated as
someone bringing important news. The customer support people liked it
because it meant they could help the users, instead of reading scripts at them.
And the programmers liked it because they could reproduce bugs instead of
just hearing vague second- hand reports about them.

Our policy of fixing bugs on the fly changed the relationship between customer
support people and hackers. At most software companies, support people are
underpaid human shields, and hackers are little copies of God the Father,
creators of the world. Whatever the procedure for reporting bugs, it is likely to
be one- directional: support people who hear about bugs fill out some form that
eventually gets passed on (possibly via QA) to programmers, who put it on their
list of things to do. It was different at Viaweb. Within a minute of hearing about
a bug from a customer, the support people could be standing next to a
programmer hearing him say "Shit, you're right, it's a bug." It delighted the
support people to hear that "you're right" from the hackers. They used to bring
us bugs with the same expectant air as a cat bringing you a mouse it has just
killed. It also made them more careful in judging the seriousness of a bug,
because now their honor was on the line.

After we were bought by Yahoo, the customer support people were moved far
away from the programmers. It was only then that we realized they were
effectively QA and to some extent marketing as well. In addition to catching
bugs, they were the keepers of the knowledge of vaguer, bug like things, like
features that confused users. 6 They were also a kind of proxy focus group; we
could ask them which of two new features users wanted more, and they were
always right.

5.7. Morale

Being able to release software immediately is a big motivator. Often as I was
walking to work I would think of some change I wanted to make to the software,
and do it that day. This worked for bigger features as well. Even if something
was going to take two weeks to write (few projects took longer), I knew I could
see the effect in the software as soon as it was done.

If I'd had to wait a year for the next release, I would have shelved most of these
ideas, for a while at least. The thing about ideas, though, is that they lead to
more ideas. Have you ever noticed that when you sit down to write something,
half the ideas that end up in it are ones you thought of while writing? The same
thing happens with software. Working to implement one idea gives you more
ideas. So shelving an idea costs you not only that delay in implementing it, but
also all the ideas that implementing it would have led to. In fact, shelving an
idea probably even inhibits new ideas: as you start to think of some new
feature, you catch sight of the shelf and think, "but I already have a lot of new
things I want to do for the next release."

What big companies do instead of implementing features is plan them. At
Viaweb we sometimes ran into trouble on this account. Investors and analysts
would ask us what we had planned for the future. The truthful answer would
have been, we didn't have any plans. We had general ideas about things we
wanted to improve, but if we knew how we would have done it already. What
were we going to do in the next six months? Whatever looked like the biggest
win. I don't know if I ever dared give this answer, but that was the truth. Plans
are just another word for ideas on the shelf. When we thought of good ideas, we
implemented them.

At Viaweb, as at many software companies, most code had one definite owner.
But when you owned something you really owned it: no one except the owner
of a piece of software had to approve (or even know about) a release. There was
no protection against breakage except the fear of looking like an idiot to one's
peers, and that was more than enough. I may have given the impression that we

just blithely plowed forward writing code. We did go fast, but we thought very
carefully before we released software onto those servers. And paying attention
is more important to reliability than moving slowly. Because he pays close
attention, a Navy pilot can land a 40,000 lb. aircraft at 140 miles per hour on a
pitching carrier deck, at night, more safely than the average teenager can cut a
bagel.

This way of writing software is a double- edged sword of course. It works a lot
better for a small team of good, trusted programmers than it would for a big
company of mediocre ones, where bad ideas are caught by committees instead
of the people who had them.

5.8. Brooks in Reverse

Fortunately, web- based software does require fewer programmers. I once
worked for a medium- sized desktop software company that had over 100
people working in engineering as a whole. Only 13 of these were in product
development. All the rest were working on releases, ports, and so on. With web-
based software, all you need (at most) are the 13 people, because there are no
releases, ports, and so on.

Viaweb was written by just three people. 7 I was always under pressure to hire
more, because we wanted to get bought, and we knew that buyers would have a
hard time paying a high price for a company with only three programmers.
(Solution: we hired more, but created new projects for them.)

When you can write software with fewer programmers, it saves you more than
money. As Fred Brooks pointed out in The Mythical Man- Month , adding
people to a project tends to slow it down. The number of possible connections
between developers grows exponentially with the size of the group. 8 The larger
the group, the more time they'll spend in meetings negotiating how their
software will work together, and the more bugs they'll get from unforeseen
interactions. Fortunately, this process also works in reverse: as groups get
smaller, software development gets exponentially more efficient. I can't
remember the programmers at Viaweb ever having an actual meeting. We never
had more to say at any one time than we could say as we were walking to lunch.

If there is a downside here, it is that all the programmers have to be to some
degree system administrators as well. When you're hosting software, someone
has to be watching the servers, and in practice the only people who can do this
properly are the ones who wrote the software. At Viaweb our system had so

many components and changed so frequently that there was no definite border
between software and infrastructure. Arbitrarily declaring such a border would
have constrained our design choices. And so although we were constantly
hoping that one day ("in a couple months") everything would be stable enough
that we could hire someone whose job was just to worry about the servers, it
never happened.

I don't think it could be any other way, as long as you're still actively developing
the product. Web-based software is never going to be something you write,
check in, and go home. It's a live thing, running on your servers right now. A
bad bug might not just crash one user's process; it could crash them all. If a bug
in your code corrupts some data on disk, you have to fix it. And so on. We
found that you don't have to watch the servers every minute (after the first year
or so), but you definitely want to keep an eye on things you've changed
recently. You don't release code late at night and then go home.

5.9. Watching Users

With server- based software, you're in closer touch with your code. You can also
be in closer touch with your users. Intuit is famous for introducing themselves
to customers at retail stores and asking to follow them home. If you've ever
watched someone use your software for the first time, you know what surprises
must have awaited them.

Software should do what users think it will. But you can't have any idea what
users will be thinking, believe me, until you watch them. And server- based
software gives you unprecedented information about their behavior. You're not
limited to small, artificial focus groups. You can see every click made by every
user. You have to consider carefully what you're going to look at, because you
don't want to violate users' privacy, but even the most general statistical
sampling can be very useful.

When you have the users on your server, you don't have to rely on benchmarks,
for example. Benchmarks are simulated users. With server- based software, you
can watch actual users. To decide what to optimize, just log into a server and
see what's consuming all the CPU. And you know when to stop optimizing too:
we eventually got the Viaweb editor to the point where it was memory bound
rather than CPU-bound, and since there was nothing we could do to decrease
the size of users' data (well, nothing easy), we knew we might as well stop there.

Efficiency matters for server- based software, because you're paying for the
hardware. The number of users you can support per server is the divisor of your
capital cost, so if you can make your software very efficient, you can undersell
competitors and still make a profit. At Viaweb we got the capital cost per user
down to about $5. It would be less now, probably less than the cost of sending
them the first month's bill. Hardware is free now, if your software is reasonably
efficient.

Watching users can guide you in design as well as optimization. Viaweb had a
scripting language called RTML that let advanced users define their own page
styles. We found that RTML became a kind of suggestion box, because users
only used it when the predefined page styles couldn't do what they wanted.
Originally the editor put button bars across the page, for example, but after a
number of users used RTML to put buttons down the left side, we made that
the default in the predefined page styles.

Finally, by watching users you can often tell when they're in trouble. And since
the customer is always right, that's a sign of something you need to fix. At
Viaweb the key to getting users was the online test drive. It was not just a series
of slides built by marketing people. In our test drive, users actually used the
software. It took about five minutes, and at the end of it they had built a real,
working store.

The test drive was the way we got nearly all our new users. I think it will be the
same for most web- based applications. If users can get through a test drive
successfully, they'll like the product. If they get confused or bored, they won't.
So anything we could do to get more people through the test drive would
increase our growth rate.

I studied click trails of people taking the test drive and found that at a certain
step they would get confused and click on the browser's Back button. (If you try
writing web- based applications, you'll find the Back button becomes one of
your most interesting philosophical problems.) So I added a message at that
point, telling users they were nearly finished, and reminding them not to click
on the Back button. Another great thing about web- based software is that you
get instant feedback from changes: the number of people completing the test
drive rose immediately from 60% to 90%. And since the number of new users
was a function of the number of completed test drives, our revenue growth
increased by 50%, just from that change.

5.10. Money

In the early 1990s I read an article that described software as a "subscription
business." At first this seemed a very cynical statement. But later I realized that
it reflects reality: software development is an ongoing process. I think it's
cleaner if you openly charge subscription fees, instead of forcing people to keep
buying and installing new versions so they'll keep paying you. And fortunately,
subscriptions are the natural way to bill for web- based applications.

Hosting applications is an area where companies will play a role that is not
likely to be filled by freeware. Hosting applications is a lot of stress, and has real
expenses. No one will want to do it for free.

For companies, web- based applications are an ideal source of revenue. Instead
of starting each quarter with a blank slate, you have a recurring revenue stream.
Because your software evolves gradually, you don't have to worry that a new
model will flop. There never need be a new model, per se, and if you do
something to the software that users hate, you'll know right away. You have no
trouble with uncollectible bills; if someone won't pay, you can just turn off the
service. And there is no possibility of piracy.

That last "advantage" may turn out to be a problem. Some amount of piracy is
to the advantage of software companies. If some user would never have bought
your software at any price, you haven't lost anything if he uses a pirated copy.
In fact you gain, because he is one more user helping to make your software the
standard—or who might buy a copy later, when he graduates from high school.

When they can, companies like to do something called price discrimination,
which means charging each customer as much as they can afford. 9 Software is
particularly suitable for price discrimination, because the marginal cost is close
to zero. This is why some software costs more to run on Suns than on Intel
boxes: a company that uses Suns is not interested in saving money and can
safely be charged more. Piracy is effectively the lowest tier of price
discrimination. I think software companies understand this and deliberately
turn a blind eye to some kinds of piracy. 10 With server- based software they will
have to come up with some other solution.

Web- based software sells well, especially in comparison to desktop software,
because it's easy to buy. You might think that people decide to buy something,
and then buy it, as two separate steps. That's what I thought before Viaweb, to
the extent I thought about the question at all. In fact the second step can

propagate back into the first: if something is hard to buy, people will change
their mind about whether they wanted it. And vice versa: you'll sell more of
something when it's easy to buy. I buy more new books because Amazon exists.
Web- based software is just about the easiest thing in the world to buy,
especially if you have just done an online demo. Users should not have to do
much more than enter a credit card number. (Make them do more at your
peril.)

Sometimes web- based software is offered through ISPs acting as resellers. This
is a bad idea. You have to be administering the servers, because you need to be
constantly improving both hardware and software. If you give up direct control
of the servers, you give up most of the advantages of developing web- based
applications.

Several of our competitors shot themselves in the foot this way—usually, I
think, because they were overrun by suits who were excited about this huge
potential channel, and didn't realize that it would ruin the product they hoped
to sell through it. Selling web based software through ISPs is like selling sushi
through vending machines.

5.11. Customers

Who will the customers be? At Viaweb they were initially individuals and
smaller companies, and I think this will be the rule with web- based
applications. These are the users who are ready to try new things, partly
because they're more flexible, and partly because they want the lower costs of
new technology.

Web- based applications will often be the best thing for big companies too
(though they'll be slow to realize it). The best intranet is the Internet. If a
company uses true web- based applications, the software will work better, the
servers will be better administered, and employees will have access to the
system from anywhere.

The argument against this approach usually hinges on security: if access is
easier for employees, it will be for bad guys too. Some larger merchants were
reluctant to use Viaweb because they thought customers' credit card
information would be safer on their own servers. It was not easy to make this
point diplomatically, but in fact the data was almost certainly safer in our
hands than theirs. Who can hire better people to manage security, a technology
startup whose whole business is running servers, or a clothing retailer? Not

only did we have better people worrying about security, we worried more about
it. If someone broke into the clothing retailer's servers, it would affect at most
one merchant, could probably be hushed up, and in the worst case might get
one person fired. If someone broke into ours, it could affect thousands of
merchants, would probably end up as news on CNet, and could put us out of
business.

If you want to keep your money safe, do you keep it under your mattress at
home, or put it in a bank? This argument applies to every aspect of server
administration: not just security, but uptime, bandwidth, load management,
backups, etc. Our existence depended on doing these things right. Server
problems were the big no- no for us, like a dangerous toy would be for a toy
maker, or a salmonella outbreak for a food processor.

A big company that uses web- based applications is to that extent outsourcing
IT. Drastic as it sounds, I think this is generally a good idea. Companies are
likely to get better service this way than they would from in-house system
administrators. System administrators can become cranky and unresponsive
because they're not directly exposed to competitive pressure. A salesman has to
deal with customers, and a developer has to deal with competitors' software,
but a system administrator, like an old bachelor, has few external forces to keep
him in line. 11 At Viaweb we had external forces in plenty to keep us in line. The
people calling us were customers, not just co-workers. If a server got wedged,
we jumped. Just thinking about it gives me a jolt of adrenaline, years later.

So web- based applications will ordinarily be the right answer for big companies
too. They will be the last to realize it, however, just as they were with desktop
computers. And partly for the same reason: it will be worth a lot of money to
convince big companies that they need something more expensive.

There is always a tendency for rich customers to buy expensive solutions, even
when cheap solutions are better, because the people offering expensive
solutions can spend more to sell them. At Viaweb we were always up against
this. We lost several high- end merchants to web consulting firms who
convinced them they'd be better off if they paid half a million dollars for a
custom- made online store on their own server. They were, as a rule, not better
off, as more than one discovered when Christmas shopping season came
around and loads rose on their server. Viaweb was a lot more sophisticated
than what most of these merchants got, but we couldn't afford to tell them. At
$300 a month, we couldn't afford to send a team of well-dressed and
authoritative- sounding people to make presentations to customers.

At times we toyed with the idea of a new service called Viaweb Gold. It would
have exactly the same features as our regular service, but would cost ten times
as much would be sold in person by a man in a suit. We never got around to
offering this variant, but I'm sure we could have signed up a few merchants for
it.

A large part of what big companies pay extra for is the cost of selling expensive
things to them. (If the Defense Department pays a thousand dollars for toilet
seats, it's partly because it costs a lot to sell toilet seats for a thousand dollars.)
And this is one reason intranet software will continue to thrive, even though it
is probably a bad idea. It's simply more expensive. There is nothing you can do
about this conundrum, so the best plan is to go for the smaller customers first.
The rest will come in time.

5.12. Son of Server

Running software on the server is nothing new. In fact it's the old model:
mainframe applications are all server- based. If server based software is such a
good idea, why did it lose last time? Why did desktop computers eclipse
mainframes?

At first desktop computers didn't look like much of a threat. The first users were
all hackers—or hobbyists, as they were called then. They liked microcomputers
because they were cheap. For the first time, you could have your own
computer. The phrase "personal computer" is part of the language now, but
when it was first used it had a deliberately audacious sound, like the phrase
"personal satellite" would today.

Why did desktop computers take over? Mainly because they had better
software. And the reason microcomputer software was better was that it could
be written by small companies.

I don't think many people realize how fragile and tentative startups are in the
earliest stage. Many startups begin almost by accident—as a couple guys, either
with day jobs or in school, writing a prototype of something that might, if it
looks promising, turn into a company. At this larval stage, any significant
obstacle will stop the startup dead in its tracks. Writing mainframe software
required too much commitment up front. Development machines were
expensive, and because the customers would be big companies, you'd need an
impressive- looking sales force to sell it to them. Starting a startup to write
mainframe software would be a much more serious undertaking than just

hacking something together on your Apple II in the evenings. And so you didn't
get a lot of startups writing mainframe applications.

The arrival of desktop computers inspired a lot of new software, because
writing applications for them seemed an attainable goal to larval startups.
Development was cheap, and the customers would be individual people that
you could reach through computer stores or even by mail-order.

The application that pushed desktop computers out into the mainstream was
VisiCalc, the first spreadsheet. It was written by two guys working in an attic,
and yet did things no mainframe software could do. 12 VisiCalc was such an
advance, in its time, that people bought Apple IIs just to run it. And this was the
beginning of a trend: desktop computers won because startups wrote software
for them.

It looks as if server- based software will be good this time around, because
startups will write it. Computers are so cheap now that you can get started, as
we did, using a desktop computer as a server. Inexpensive processors have
eaten the workstation market (you rarely even hear the word now) and are most
of the way through the server market; Yahoo's servers, which deal with loads as
high as any on the Internet, all have the same inexpensive Intel processors that
you have in your desktop machine. And once you've written the software, all
you need to sell it is a web site. Nearly all our users came direct to our site
through word of mouth and references in the press. 13

Viaweb was a typical larval startup. We were terrified of starting a company,
and for the first few months comforted ourselves by treating the whole thing as
an experiment that we might call off at any moment. Fortunately, there were
few obstacles except technical ones. While we were writing the software, our
web server was the same desktop machine we used for development,
connected to the outside world by a dialup line. Our only expenses in that
phase were food and rent.

There is all the more reason for startups to write web- based software now,
because writing desktop software has become a lot less fun. If you want to write
desktop software now, you do it on Microsoft's terms, calling their APIs and
working around their buggy OS. And if you manage to write something that
takes off, you may find that you were merely doing market research for
Microsoft.

If a company wants to make a platform that startups will build on, they have to
make it something that hackers themselves will want to use. That means it has
to be inexpensive and well-designed. The Mac was popular with hackers when
it first came out, and a lot of them wrote software for it. 14 You see this less with
Windows, because hackers don't use it. The kind of people who are good at
writing software tend to be running Linux or FreeBSD now.

I don't think we would have started a startup to write desktop software, because
desktop software has to run on Windows, and before we could write software
for Windows we'd have to use it. The Web let us do an end- run around
Windows, and deliver software running on Unix direct to users through the
browser. That is a liberating prospect, a lot like the arrival of PCs twenty- five
years ago.

5.13. Microsoft

Back when desktop computers arrived, IBM was the giant that everyone feared.
It's hard to imagine now, but I remember the feeling well. Now the frightening
giant is Microsoft, and I don't think they are as blind to the threat facing them
as IBM was. After all, Microsoft deliberately built their business in IBM's blind
spot.

I mentioned earlier that my mother doesn't really need a desktop computer.
Most users probably don't. That's a problem for Microsoft, and they know it. If
applications run on remote servers, no one needs Windows. What will
Microsoft do? Will they be able to use their control of the desktop to prevent, or
constrain, this new generation of software?

I expect Microsoft will develop some kind of server/desktop hybrid, where the
operating system works together with servers they control. At a minimum, files
will be centrally available for users who want that. I don't expect Microsoft to
go all the way to the extreme of doing the computations on the server, with only
a browser for a client, if they can avoid it. If you only need a browser for a client,
you don't need Microsoft on the client, and if Microsoft doesn't control the
client, they can't push users towards their server- based applications.

I think Microsoft will have a hard time keeping the genie in the bottle. There
will be too many different types of clients for them to control the mall. And if
Microsoft's applications only work with some clients, competitors will be able
to trump them by offering applications that work from any client. 15

In a world of web- based applications, there is no automatic place for Microsoft.
They may succeed in making themselves a place, but I don't think they'll
dominate this new world as they did the world of desktop applications.

It's not so much that a competitor will trip them up as that they will trip over
themselves. With the rise of web- based software, they will be facing not just
technical problems but their own wishful thinking. What they need to do is
cannibalize their existing business, and I can't see them facing that. The same
single- mindedness that has brought them this far will now be working against
them. IBM was in exactly the same situation, and they couldn't master it. IBM
made a late and half-hearted entry into the microcomputer business because
they were ambivalent about threatening their cash cow, mainframe computing.
Microsoft will likewise be hampered by wanting to save the desktop. A cash cow
can be a heavy monkey on your back.

I'm not saying that no one will dominate server- based applications. Someone
probably will eventually. But I think there will be a good long period of cheerful
chaos, just as there was in the early days of microcomputers. That was a good
time for startups. Lots of small companies flourished, and did it by making cool
things.

5.14. Startups but More So

The classic startup is fast and informal, with few people and little money. Those
few people work very hard, and technology magnifies the effect of the decisions
they make. If they win, they win big.

In a startup writing web- based applications, everything you associate with
startups is taken to an extreme. You can write and launch a product with even
fewer people and even less money. You have to be even faster, and you can get
away with being more informal. You can literally launch your product as three
guys operating out of an apartment, with a server collocated at an ISP. We did.

Over time the teams have gotten smaller, faster, and more informal. In 1960,
software development meant a roomful of men with horn- rimmed glasses and
narrow black neckties, industriously writing ten lines of code a day on IBM
coding forms. In 1980, it was a team of eight to ten people wearing jeans to the
office and typing into VT100s. Now it's a couple of guys sitting in a living room
with laptops. (And jeans turn out not to be the last word in informality.)

Startups are stressful, and this, unfortunately, is also taken to an extreme with
web- based applications. Many software companies, especially at the
beginning, have periods where the developers slept under their desks and so
on. The alarming thing about web based software is that there is nothing to
prevent this becoming the default. The stories about sleeping under desks
usually end: then at last we shipped it, and we all went home and slept for a
week. Web- based software never ships. You can work 16-hour days for as long
as you want to. And because you can, and your competitors can, you tend to be
forced to. You can, so you must. It's Parkinson's Law running in reverse.

The worst thing is not the hours but the responsibility. Programmers and
system administrators traditionally each have their own separate worries.
Programmers worry about bugs, and system administrators worry about
infrastructure. Programmers may spend a long day up to their elbows in source
code, but at some point they get to go home and forget about it. System
administrators never quite leave the job behind, but when they do get paged at
4:00 AM, they don't usually have to do anything very complicated. With web-
based applications, these two kinds of stress get combined. The programmers
become system administrators, but without the sharply defined limits that
ordinarily make the job bearable.

At Viaweb we spent the first six months just writing software. We worked the
usual long hours of an early startup. In a desktop software company, this would
have been the hard part, but it felt like a vacation compared to the next phase,
when we took users onto our server. The second biggest benefit of selling
Viaweb to Yahoo (after the money) was to be able to dump ultimate
responsibility for the whole thing onto the shoulders of a big company.

Desktop software forces users to become system administrators. Web-based
software forces programmers to. There is less stress in total, but more for the
programmers. That's not necessarily bad news. If you're a startup competing
with a big company, it's good news. 16 Web- based applications offer a
straightforward way to outwork your competitors. No startup asks for more.

5.15. Just Good Enough

One thing that might deter you from writing web- based applications is the
lameness of web pages as a UI. That is a problem, I admit. There were a few
things we would have really liked to add to HTML and HTTP. What matters,
though, is that web pages are just good enough.

There is a parallel here with the first microcomputers. The processors in those
machines weren't intended to be the CPUs of computers. They were designed
to be used in things like traffic lights. But guys like Ed Roberts, who designed
the Altair, realized that they were just good enough. You could combine one of
these chips with some memory (256 bytes in the first Altair), and front panel
switches, and you'd have a working computer. Being able to have your own
computer was so exciting that there were plenty of people who wanted to buy
them, however limited.

Web pages weren't designed to be a UI for applications, but they're just good
enough. And for a significant number of users, software you can use from any
browser will be enough of a win in itself to outweigh any awkwardness in the
UI. Maybe you can't write the best- looking spreadsheet using HTML, but you
can write a spreadsheet that several people can use simultaneously from
different locations without special client software, or that can incorporate live
data feeds, or that can page you when certain conditions are triggered. More
importantly, you can write new kinds of applications that don't even have
names yet. VisiCalc was not merely a microcomputer version of a mainframe
application, after all—it was a new type of application.

Figure 5-1. Popular Electronics, January 1975 (detail).

Of course, server- based applications don't have to be web based. You could
have some other kind of client. But I'm pretty sure that's a bad idea. It would be
very convenient if you could assume that everyone would install your client—
so convenient that you could easily convince yourself that they all would. But if
they don't, you're hosed.

Because web- based software assumes nothing about the client, it will work
anywhere the Web works. That's a big advantage already, and the advantage
will grow as new web devices proliferate. Users will like you because your
software just works, and your life will be easier because you won't have to
tweak it for every new client. 17

I feel like I've watched the evolution of the Web as closely as anyone, and I can't
predict what's going to happen with clients. Convergence is probably coming,
but where?

How will it all play out? I don't know. And you don't have to know if you bet on
web- based applications. No one can break that without breaking browsing. The
Web may not be the only way to deliver software, but it's one that works now
and will continue to work for a long time. Web-based applications are cheap to
develop, and easy for even the smallest startup to deliver. They're a lot of work,
and of a particularly stressful kind, but that only makes the odds better for
startups.

5.16. Why Not?

E. B. White was amused to learn from a farmer friend that many electrified
fences don't have any current running through them. The cows apparently
learn to stay away from them, and after that you don't need the current. "Rise
up, cows!" he wrote. "Take your liberty while despots snore!"

If you're a hacker who has thought of one day starting a startup, there are
probably two things keeping you from doing it. One is that you don't know
anything about business. The other is that you're afraid of competition. Neither
of these fences have any current in them.

There are only two things you have to know about business: build something
users love, and make more than you spend. If you get these two right, you'll be
ahead of most startups. You can figure out the rest as you go.

You may not at first make more than you spend, but as long as the gap is
closing fast enough you'll be ok. If you start out under funded, it will at least
encourage a habit of frugality. The less you spend, the easier it is to make more
than you spend. Fortunately, it can be very cheap to launch a web- based
application. We launched on under $10,000, and it would be even cheaper
today. We had to spend thousands on a server, and thousands more to get SSL.
(The only company selling SSL software at the time was Netscape.) Now you
can rent a much more powerful server, with SSL included, for less than we paid
for bandwidth alone. You could launch a web- based application now for less
than the cost of a fancy office chair.

As for building something users love, here are some general tips. Start by
making something clean and simple that you would want to use yourself. Get a
version 1.0 out fast, then continue to improve the software, listening closely to
users as you do. The customer is always right, but different customers are right
about different things; the least sophisticated users show you what you need to
simplify and clarify, and the most sophisticated tell you what features you need

to add. The best thing software can be is easy, but the way to do this is to get the
defaults right, not to limit users' choices. Don't get complacent if your
competitors' software is lame; the standard to compare your software to is what
it could be, not what your current competitors happen to have. Use your
software yourself, all the time. Viaweb was supposed to be an online store
builder, but we used it to make our own site too. Don't listen to marketing
people or designers or product managers just because of their job titles. If they
have good ideas, use them, but it's up to you to decide; software has to be
designed by hackers who understand design, not designers who know a little
about software. If you can't design software as well as implement it, don't start
a startup.

Now let's talk about competition. What you're afraid of is not presumably
groups of hackers like you, but actual companies, with offices and business
plans and salesmen and so on, right? Well, they are more afraid of you than you
are of them, and they're right. It's a lot easier for a couple of hackers to figure
out how to rent office space or hire sales people than it is for a company of any
size to get software written. I've been on both sides, and I know. When Viaweb
was bought by Yahoo, I suddenly found myself working for a big company, and
it was like trying to run through waist- deep water.

I don't mean to disparage Yahoo. They had some good hackers, and the top
management were real butt- kickers. For a big company, they were exceptional.
But they were still only about a tenth as productive as a small startup. No big
company can do much better than that. What's scary about Microsoft is that a
company so big can develop software at all. They're like a mountain that can
walk.

Figure 5-2. Bill Gates, 1977.

Don't be intimidated. You can do as much that Microsoft can't as they can do
that you can't. And no one can stop you. You don't have to ask anyone's
permission to develop web- based applications. You don't have to do licensing
deals, or get shelf space in retail stores, or grovel to have your application
bundled with the OS. You can deliver software right to the browser, and no one
can get between you and potential users without preventing them from
browsing the Web.

You may not believe it, but I promise you, Microsoft is scared of you. The
complacent middle managers may not be, but Bill is, because he was you once,
back in 1975, the last time a new way of delivering software appeared.

Chapter 6. How to Make Wealth

If you wanted to get rich, how would you do it? I think your best bet would be to
start or join a startup. That's been a reliable way to get rich for hundreds of
years. The word "startup" dates from the 1960s, but what happens in one is very
similar to the venture- backed trading voyages of the Middle Ages.

Startups usually involve technology, so much so that the phrase "high- tech
startup" is almost redundant. A startup is a small company that takes on a hard
technical problem.

Lots of people get rich knowing nothing more than that. You don't have to
know physics to be a good pitcher. But I think it could give you an edge to
understand the underlying principles. Why do startups have to be small? Will a
startup inevitably stop being a startup as it grows larger? And why do they so
often work on developing new technology? Why are there so many startups
selling new drugs or computer software, and none selling corn oil or laundry
detergent?

6.1. The Proposition

Economically, you can think of a startup as a way to compress your whole
working life into a few years. Instead of working at a low intensity for forty
years, you work as hard as you possibly can for four. This pays especially well in
technology, where you earn a premium for working fast.

Here is a brief sketch of the economic proposition. If you're a good hacker in
your mid twenties, you can get a job paying about $80,000 per year. So on
average such a hacker must be able to do at least $80,000 worth of work per
year for the company just to break even. You could probably work twice as
many hours as a corporate employee, and if you focus you can probably get
three times as much done in an hour. 1 You should get another multiple of two,
at least, by eliminating the drag of the pointy- haired middle manager who
would be your boss in a big company. Then there is one more multiple: how
much smarter are you than your job description expects you to be? Suppose
another multiple of three. Combine all these multipliers, and I'm claiming you
could be 36 times more productive than you're expected to be in a random
corporate job. 2 If a fairly good hacker is worth $80,000 a year at a big company,
then a smart hacker working very hard without any corporate bullshit to slow
him down should be able to do work worth about $3 million a year.

Like all back- of-the- envelope calculations, this one has a lot of wiggle room. I
wouldn't try to defend the actual numbers. But I stand by the structure of the
calculation. I'm not claiming the multiplier is precisely 36, but it is certainly
more than 10, and probably rarely as high as 100.

If $3 million a year seems high, remember that we're talking about the limit
case: the case where you not only have zero leisure time but indeed work so
hard that you endanger your health.

Startups are not magic. They don't change the laws of wealth creation. They
just represent a point at the far end of the curve. There is a conservation law at
work here: if you want to make a million dollars, you have to endure a million
dollars' worth of pain. For example, one way to make a million dollars would be
to work for the Post Office your whole life, and save every penny of your salary.
Imagine the stress of working for the Post Office for fifty years. In a startup you
compress all this stress into three or four years. You do tend to get a certain
bulk discount if you buy the economy- size pain, but you can't evade the
fundamental conservation law. If starting a startup were easy, everyone would
do it.

6.2. Millions, not Billions

If $3 million a year seems high to some people, it will seem low to others. Three
million? How do I get to be a billionaire, like Bill Gates?

So let's get Bill Gates out of the way right now. It's not a good idea to use
famous rich people as examples, because the press only write about the very
richest, and these tend to be outliers. Bill Gates is a smart, determined, and
hardworking man, but you need more than that to make as much money as he
has. You also need to be very lucky.

There is a large random factor in the success of any company. So the guys you
end up reading about in the papers are the ones who are very smart, totally
dedicated, and win the lottery. Certainly Bill is smart and dedicated, but
Microsoft also happens to have been the beneficiary of one of the most
spectacular blunders in the history of business: the licensing deal for DOS. No
doubt Bill did everything he could to steer IBM into making that blunder, and
he has done an excellent job of exploiting it, but if there had been one person
with a brain on IBM's side, Microsoft's future would have been very different.
Microsoft at that stage had little leverage over IBM. They were effectively a
component supplier. If IBM had required an exclusive license, as they should

have, Microsoft would still have signed the deal. It would still have meant a lot
of money for them, and IBM could easily have gotten an operating system
elsewhere.

Instead IBM ended up using all its power in the market to give Microsoft
control of the PC standard. From that point, all Microsoft had to do was
execute. They never had to bet the company on a bold decision. All they had to
do was play hardball with licensees and copy more innovative products
reasonably promptly.

If IBM hadn't made this mistake, Microsoft would still have been a successful
company, but it could not have grown so big so fast. Bill Gates would be rich,
but he'd be somewhere near the bottom of the Forbes 400 with the other guys
his age.

There are a lot of ways to get rich, and this essay is about only one of them. This
essay is about how to make money by creating wealth and getting paid for it.
There are plenty of other ways to get money, including chance, speculation,
marriage, inheritance, theft, extortion, fraud, monopoly, graft, lobbying,
counterfeiting, and prospecting. Most of the greatest fortunes have probably
involved several of these.

The advantage of creating wealth, as a way to get rich, is not just that it's more
legitimate (many of the other methods are now illegal) but that it's more
straightforward . You just have to do something people want.

6.3. Money Is Not Wealth

If you want to create wealth, it will help to understand what it is. Wealth is not
the same thing as money. 3 Wealth is as old as human history. Far older, in fact;
ants have wealth. Money is a comparatively recent invention.

Wealth is the fundamental thing. Wealth is stuff we want: food, clothes, houses,
cars, gadgets, travel to interesting places, and so on. You can have wealth
without having money. If you had a magic machine that could on command
make you a car or cook you dinner or do your laundry, or do anything else you
wanted, you wouldn't need money. Whereas if you were in the middle of
Antarctica, where there is nothing to buy, it wouldn't matter how much money
you had.

Wealth is what you want, not money. But if wealth is the important thing, why
does everyone talk about making money? It is a kind of shorthand: money is a
way of moving wealth, and in practice they are usually interchangeable. But
they are not the same thing, and unless you plan to get rich by counterfeiting,
talking about making money can make it harder to understand how to make
money.

Money is a side effect of specialization. In a specialized society, most of the
things you need, you can't make for yourself. If you want a potato or a pencil or
a place to live, you have to get it from someone else.

How do you get the person who grows the potatoes to give you some? By giving
him something he wants in return. But you can't get very far by trading things
directly with the people who need them. If you make violins, and none of the
local farmers wants one, how will you eat?

The solution societies find, as they get more specialized, is to make the trade
into a two- step process. Instead of trading violins directly for potatoes, you
trade violins for, say, silver, which you can then trade again for anything else
you need. The intermediate stuff—the medium of exchange —can be anything
that's rare and portable. Historically metals have been the most common, but
recently we've been using a medium of exchange, called the dollar , that doesn't
physically exist. It works as a medium of exchange, however, because its rarity
is guaranteed by the U.S. Government.

The advantage of a medium of exchange is that it makes trade work. The
disadvantage is that it tends to obscure what trade really means. People think
that what a business does is make money. But money is just the intermediate
stage—just a shorthand—for whatever people want. What most businesses
really do is make wealth. They do something people want. 4

6.4. The Pie Fallacy

A surprising number of people retain from childhood the idea that there is a
fixed amount of wealth in the world. There is, in any normal family, a fixed
amount of money at any moment. But that's not the same thing.

When wealth is talked about in this context, it is often described as a pie. "You
can't make the pie larger," say politicians. When you're talking about the
amount of money in one family's bank account, or the amount available to a

government from one year's tax revenue, this is true. If one person gets more,
someone else has to get less.

I can remember believing, as a child, that if a few rich people had all the money,
it left less for everyone else. Many people seem to continue to believe
something like this well into adulthood. This fallacy is usually there in the
background when you hear someone talking about how x percent of the
population have y percent of the wealth. If you plan to start a startup, then
whether you realize it or not, you're planning to disprove the Pie Fallacy.

What leads people astray here is the abstraction of money. Money is not wealth.
It's just something we use to move wealth around. So although there may be, in
certain specific moments (like your family, this month) a fixed amount of
money available to trade with other people for things you want, there is not a
fixed amount of wealth in the world. You can make more wealth . Wealth has
been getting created and destroyed (but on balance, created) for all of human
history.

Suppose you own a beat- up old car. Instead of sitting on your butt next
summer, you could spend the time restoring your car to pristine condition. In
doing so you create wealth. The world is—and you specifically are—one
pristine old car the richer. And not just in some metaphorical way. If you sell
your car, you'll get more for it.

In restoring your old car you have made yourself richer. You haven't made
anyone else poorer. So there is obviously not a fixed pie. And in fact, when you
look at it this way, you wonder why anyone would think there was. 5

Kids know, without knowing they know, that they can create wealth. If you
need to give someone a present and don't have any money, you make one. But
kids are so bad at making things that they consider home- made presents to be a
distinct, inferior, sort of thing to store- bought ones—a mere expression of the
proverbial thought that counts. And indeed, the lumpy ashtrays we made for
our parents did not have much of a resale market.

6.5. Craftsmen

The people most likely to grasp that wealth can be created are the ones who are
good at making things, the craftsmen. Their hand- made objects become store-

bought ones. But with the rise of industrialization there are fewer and fewer
craftsmen. One of the biggest remaining groups is computer programmers.

A programmer can sit down in front of a computer and create wealth . A good
piece of software is, in itself, a valuable thing. There is no manufacturing to
confuse the issue. Those characters you type are a complete, finished product.
If someone sat down and wrote a web browser that didn't suck (a fine idea, by
the way), the world would be that much richer.

Everyone in a company works together to create wealth, in the sense of making
more things people want. Many of the employees (e.g. the people in the
mailroom or the personnel department) work at one remove from the actual
making of stuff. Not the programmers. They literally think the product, one line
at a time. And so it's clearer to programmers that wealth is something that's
made, rather than being distributed, like slices of a pie, by some imaginary
Daddy.

It's also obvious to programmers that there are huge variations in the rate at
which wealth is created. At Viaweb we had one programmer who was a sort of
monster of productivity. I remember watching what he did one long day and
estimating that he had added several hundred thousand dollars to the market
value of the company. A great programmer, on a roll, could create a million
dollars worth of wealth in a couple weeks. A mediocre programmer over the
same period will generate zero or even negative wealth (e.g. by introducing
bugs).

This is why so many of the best programmers are libertarians. In our world, you
sink or swim, and there are no excuses. When those far removed from the
creation of wealth—undergraduates, reporters, politicians—hear that the
richest 5% of the people have half the total wealth, they tend to think injustice!
An experienced programmer would be more likely to think is that all? The top
5% of programmers probably write 99% of the good software.

Wealth can be created without being sold. Scientists, till recently at least,
effectively donated the wealth they created. We are all richer for knowing about
penicillin, because we're less likely to die from infections. Wealth is whatever
people want, and not dying is certainly something we want. Hackers often
donate their work by writing open source software that anyone can use for free.
I am much the richer for the operating system FreeBSD, which I'm running on
the computer I'm using now, and so is Yahoo, which runs it on all their servers.

6.6. What a Job Is

In industrialized countries, people belong to one institution or another at least
until their twenties. After all those years you get used to the idea of belonging to
a group of people who all get up in the morning, go to some set of buildings,
and do things that they do not, ordinarily, enjoy doing. Belonging to such a
group becomes part of your identity: name, age, role, institution. If you have to
introduce yourself, or someone else describes you, it will be as something like,
John Smith, age 10, a student at such and such elementary school, or John
Smith, age 20, a student at such and such college.

When John Smith finishes school he is expected to get a job. And what getting a
job seems to mean is joining another institution. Superficially it's a lot like
college. You pick the companies you want to work for and apply to join them. If
one likes you, you become a member of this new group. You get up in the
morning and go to a new set of buildings, and do things that you do not,
ordinarily, enjoy doing. There are a few differences: life is not as much fun, and
you get paid, instead of paying, as you did in college. But the similarities feel
greater than the differences. John Smith is now John Smith, 22, a software
developer at such and such corporation.

In fact John Smith's life has changed more than he realizes. Socially, a company
looks much like college, but the deeper you go into the underlying reality, the
more different it gets.

What a company does, and has to do if it wants to continue to exist, is earn
money. And the way most companies make money is by creating wealth.
Companies can be so specialized that this similarity is concealed, but it is not
only manufacturing companies that create wealth. A big component of wealth
is location. Remember that magic machine that could make you cars and cook
you dinner and so on? It would not be so useful if it delivered your dinner to a
random location in central Asia. If wealth means what people want, companies
that move things also create wealth. Ditto for many other kinds of companies
that don't make anything physical. Nearly all companies exist to do something
people want.

And that's what you do, as well, when you go to work for a company. But here
there is another layer that tends to obscure the underlying reality. In a
company, the work you do is averaged together with a lot of other people's. You
may not even be aware you're doing something people want. Your contribution
may be indirect. But the company as a whole must be giving people something
they want, or they won't make any money. And if they are paying you x dollars a

year, then on average you must be contributing at least x dollars a year worth of
work, or the company will be spending more than it makes, and will go out of
business.

Someone graduating from college thinks, and is told, that he needs to get a job,
as if the important thing were becoming a member of an institution. A more
direct way to put it would be: you need to start doing something people want.
You don't need to join a company to do that. All a company is is a group of
people working together to do something people want. It's doing something
people want that matters, not joining the group. 6

For most people the best plan probably is to go to work for some existing
company. But it is a good idea to understand what's happening when you do
this. A job means doing something people want, averaged together with
everyone else in that company.

6.7. Working Harder

That averaging gets to be a problem. I think the single biggest problem afflicting
large companies is the difficulty of assigning a value to each person's work. For
the most part they punt. In a big company you get paid a fairly predictable
salary for working fairly hard. You're expected not to be obviously incompetent
or lazy, but you're not expected to devote your whole life to your work.

It turns out, though, that there are economies of scale in how much of your life
you devote to your work. In the right kind of business, someone who really
devoted himself to work could generate ten or even a hundred times as much
wealth as an average employee. A programmer, for example, instead of
chugging along maintaining and updating an existing piece of software, could
write a whole new piece of software, and with it create a new source of revenue.

Companies are not set up to reward people who want to do this. You can't go to
your boss and say, I'd like to start working ten times as hard, so will you please
pay me ten times as much? For one thing, the official fiction is that you are
already working as hard as you can. But a more serious problem is that the
company has no way of measuring the value of your work.

Salesmen are an exception. It's easy to measure how much revenue they
generate, and they're usually paid a percentage of it. If a salesman wants to

work harder, he can just start doing it, and he will automatically get paid
proportionally more.

There is one other job besides sales where big companies can hire first- rate
people: in the top management jobs. And for the same reason: their
performance can be measured. The top managers are held responsible for the
performance of the entire company. Because an ordinary employee's
performance can't usually be measured, he is not expected to do more than put
in a solid effort. Whereas top management, like salespeople, have to actually
come up with the numbers. The CEO of a company that tanks cannot plead
that he put in a solid effort. If the company does badly, he's done badly.

A company that could pay all its employees so straightforwardly would be
enormously successful. Many employees would work harder if they could get
paid for it. More importantly, such a company would attract people who
wanted to work especially hard. It would crush its competitors.

Unfortunately, companies can't pay everyone like salesmen. Salesmen work
alone. Most employees' work is tangled together. Suppose a company makes
some kind of consumer gadget. The engineers build a reliable gadget with all
kinds of new features; the industrial designers design a beautiful case for it; and
then the marketing people convince everyone that it's something they've got to
have. How do you know how much of the gadget's sales are due to each group's
efforts? Or, for that matter, how much is due to the creators of past gadgets that
gave the company a reputation for quality? There's no way to untangle all their
contributions. Even if you could read the minds of the consumers, you'd find
these factors were all blurred together.

If you want to go faster, it's a problem to have your work tangled together with
a large number of other people's. In a large group, your performance is not
separately measurable—and the rest of the group slows you down.

6.8. Measurement and Leverage

To get rich you need to get yourself in a situation with two things, measurement
and leverage. You need to be in a position where your performance can be
measured, or there is no way to get paid more by doing more. And you have to
have leverage, in the sense that the decisions you make have a big effect.

Measurement alone is not enough. An example of a job with measurement but
not leverage is doing piecework in a sweatshop. Your performance is measured
and you get paid accordingly, but you have no scope for decisions. The only
decision you get to make is how fast you work, and that can probably only
increase your earnings by a factor of two or three.

An example of a job with both measurement and leverage would be lead actor
in a movie. Your performance can be measured in the gross of the movie. And
you have leverage in the sense that your performance can make or break it.

CEOs also have both measurement and leverage. They're measured, in that the
performance of the company is their performance. And they have leverage in
that their decisions set the whole company moving in one direction or another.

I think every one who gets rich by their own efforts will be found to be in a
situation with measurement and leverage. Everyone I can think of does: CEOs,
movie stars, hedge fund managers, professional athletes. A good hint to the
presence of leverage is the possibility of failure. Upside must be balanced by
downside, so if there is big potential for gain there must also be a terrifying
possibility of loss. CEOs, stars, fund managers, and athletes all live with the
sword hanging over their heads; the moment they start to suck, they're out. If
you're in a job that feels safe, you are not going to get rich, because if there is no
danger there is almost certainly no leverage.

But you don't have to become a CEO or a movie star to be in a situation with
measurement and leverage. All you need to do is be part of a small group
working on a hard problem.

6.9. Smallness = Measurement

If you can't measure the value of the work done by individual employees, you
can get close. You can measure the value of the work done by small groups.

One level at which you can accurately measure the revenue generated by
employees is at the level of the whole company. When the company is small,
you are thereby fairly close to measuring the contributions of individual
employees. A viable startup might only have ten employees, which puts you
within a factor of ten of measuring individual effort.

Starting or joining a startup is thus as close as most people can get to saying to
one's boss, I want to work ten times as hard, so please pay me ten times as
much. There are two differences: you're not saying it to your boss, but directly
to the customers (for whom your boss is only a proxy after all), and you're not
doing it individually, but along with a small group of other ambitious people.

It will, ordinarily, be a group. Except in a few unusual kinds of work, like acting
or writing books, you can't be a company of one person. And the people you
work with had better be good, because it's their work that yours is going to be
averaged with.

A big company is like a giant galley driven by a thousand rowers. Two things
keep the speed of the galley down. One is that individual rowers don't see any
result from working harder. The other is that, in a group of a thousand people,
the average rower is likely to be pretty average.

If you took ten people at random out of the big galley and put them in a boat by
themselves, they could probably go faster. They would have both carrot and
stick to motivate them. An energetic rower would be encouraged by the
thought that he could have a visible effect on the speed of the boat. And if
someone was lazy, the others would be more likely to notice and complain.

But the real advantage of the ten- man boat shows when you take the ten best
rowers out of the big galley and put them in a boat together. They will have all
the extra motivation that comes from being in a small group. But more
importantly, by selecting that small a group you can get the best rowers. Each
one will be in the top 1%. It's a much better deal for them to average their work
together with a small group of their peers than to average it with everyone.

That's the real point of startups. Ideally, you are getting together with a group

6.10. Technology = Leverage

Startups offer anyone a way to be in a situation with measurement and
leverage. They allow measurement because they're small, and they offer
leverage because they make money by inventing new technology.

What is technology? It's technique . It's the way we all do things. And when you
discover a new way to do things, its value is multiplied by all the people who
use it. It is the proverbial fishing rod, rather than the fish. That's the difference
between a startup and a restaurant or a barber shop. You fry eggs or cut hair
one customer at a time. Whereas if you solve a technical problem that a lot of
people care about, you help everyone who uses your solution. That's leverage.

If you look at history, it seems that most people who got rich by creating wealth
did it by developing new technology. You just can't fry eggs or cut hair fast
enough. What made the Florentines rich in 1200was the discovery of new
techniques for making the high- tech product of the time, fine woven cloth.
What made the Dutch rich in 1600 was the discovery of shipbuilding and
navigation techniques that enabled them to dominate the seas of the Far East.

Fortunately there is a natural fit between smallness and solving hard problems.
The leading edge of technology moves fast. Technology that's valuable today
could be worthless in a couple years. Small companies are more at home in this
world, because they don't have layers of bureaucracy to slow them down. Also,
technical advances tend to come from unorthodox approaches, and small
companies are less constrained by convention.

Big companies can develop technology. They just can't do it quickly. Their size
makes them slow and prevents them from rewarding employees for the
extraordinary effort required. So in practice big companies only get to develop
technology in fields where large capital requirements prevent startups from
competing with them, like microprocessors, power plants, or passenger
aircraft. And even in those fields they depend heavily on startups for
components and ideas.

It's obvious that biotech or software startups exist to solve hard technical
problems, but I think it will also be found to be true in businesses that don't
seem to be about technology. McDonald's, for example, grew big by designing a
system, the McDonald's franchise, that could then be reproduced at will all

over the face of the earth. A McDonald's franchise is controlled by rules so
precise that it is practically a piece of software. Write once, run everywhere.
Ditto for Wal-Mart. Sam Walton got rich not by being a retailer, but by
designing a new kind of store.

Use difficulty as a guide not just in selecting the overall aim of your company,
but also at decision points along the way. At Via web one of our rules of thumb
was run upstairs . Suppose you are a little, nimble guy being chased by a big, fat,
bully. You open a door and find yourself in a staircase. Do you go up or down? I
say up. The bully can probably run downstairs as fast as you can. Going
upstairs his bulk will be more of a disadvantage. Running upstairs is hard for
you but even harder for him.

What this meant in practice was that we deliberately sought hard problems. If
there were two features we could add to our software, both equally valuable in
proportion to their difficulty, we'd always take the harder one. Not just because
it was more valuable, but because it was harder . We delighted in forcing bigger,
slower competitors to follow us over difficult ground. Like guerillas, startups
prefer the difficult terrain of the mountains, where the troops of the central
government can't follow. I can remember times when we were just exhausted
after wrestling all day with some horrible technical problem. And I'd be
delighted, because something that was hard for us would be impossible for our
competitors.

This is not just a good way to run a startup. It's what a startup is. Venture
capitalists know about this and have a phrase for it: barriers to entry . If you go
to a VC with a new idea and ask him to invest in it, one of the first things he'll
ask is, how hard would this be for someone else to develop? That is, how much
difficult ground have you put between yourself and potential pursuers? 7 And
you had better have a convincing explanation of why your technology would be
hard to duplicate. Otherwise as soon as some big company becomes aware of
it, they'll make their own, and with their brand name, capital, and distribution
clout, they'll take away your market overnight. You'd be like guerillas caught in
the open field by regular army forces.

One way to put up barriers to entry is through patents. But patents may not
provide much protection. Competitors commonly find ways to work around a
patent. And if they can't, they may simply violate it and invite you to sue them.
A big company is not afraid to be sued; it's an everyday thing for them. They'll
make sure that suing them is expensive and takes a long time. Ever heard of
Philo Farnsworth? He invented television. The reason you've never heard of
him is that his company was not the one to make money from it. 8 The

company that did was RCA, and Farnsworth's reward for his efforts was a
decade of patent litigation.

Here, as so often, the best defense is a good offense. If you can develop
technology that's simply too hard for competitors to duplicate, you don't need
to rely on other defenses. Start by picking a hard problem, and then at every
decision point, take the harder choice. 9

6.11. The Catch(es)

If it were simply a matter of working harder than an ordinary employee and
getting paid proportionately, it would obviously be a good deal to start a
startup. Up to a point it would be more fun. I don't think many people like the
slow pace of big companies, the interminable meetings, the water- cooler
conversations, the clueless middle managers, and so on.

Unfortunately there are a couple catches. One is that you can't choose the
point on the curve that you want to inhabit. You can't decide, for example, that
you'd like to work just two or three times as hard, and get paid that much more.
When you're running a startup, your competitors decide how hard you work.
And they pretty much all make the same decision: as hard as you possibly can.

The other catch is that the payoff is only on average proportionate to your
productivity. There is, as I said before, a large random multiplier in the success
of any company. So in practice the deal is not that you're 30 times as
productive and get paid 30 times as much. It is that you're 30 times as
productive, and get paid between zero and a thousand times as much. If the
mean is 30x, the median is probably zero. Most startups tank, and not just the
dog food portals we all heard about during the Internet Bubble. It's common
for a startup to be developing a genuinely good product, take slightly too long
to do it, run out of money, and have to shut down.

A startup is like a mosquito. A bear can absorb a hit and a crab is armored
against one, but a mosquito is designed for one thing: to score. No energy is
wasted on defense. The defense of mosquitos, as a species, is that there are a lot
of them, but this is little consolation to the individual mosquito.

Startups, like mosquitos, tend to be an all-or- nothing proposition. And you
don't generally know which of the two you're going to get till the last minute.
Via web came close to tanking several times. Our trajectory was like a sine wave.

Fortunately we got bought at the top of the cycle, but it was damned close.
While we were visiting Yahoo in California to talk about selling the company to
them, we had to borrow a conference room to reassure an investor who was
about to back out of a new round of funding that we needed to stay alive.

The all-or- nothing aspect of startups was not something we wanted. Via web's
hackers were all extremely risk-averse. If there had been some way just to work
super hard and get paid for it, without having a lottery mixed in, we would have
been delighted. We would have much preferred a 100% chance of $1 million to
a 20% chance of $10 million, even though theoretically the second is worth
twice as much. Unfortunately, there is not currently any space in the business
world where you can get the first deal.

The closest you can get is by selling your startup in the early stages, giving up
upside (and risk) for a smaller but guaranteed payoff. We had a chance to do
this, and stupidly, as we then thought, let it slip by. After that we became
comically eager to sell. For the next year or so, if anyone expressed the slightest
curiousity about Via web we would try to sell them the company. But there
were no takers, so we had to keep going.

It would have been a bargain to buy us at an early stage, but companies doing
acquisitions are not looking for bargains. A company big enough to acquire
startups will be big enough to be fairly conservative, and within the company
the people in charge of acquisitions will be among the more conservative,
because they are likely to be business school types who joined the company
late. They would rather overpay for a safe choice. So it is easier to sell an
established startup, even at a large premium, than an early- stage one.

6.12. Get Users

I think it's a good idea to get bought, if you can. Running a business is different
from growing one. It is just as well to let a big company take over once you
reach cruising altitude. It's also financially wiser, because selling allows you to
diversify. What would you think of a financial advisor who put all his client's
assets into one volatile stock?

How do you get bought? Mostly by doing the same things you'd do if you didn't
intend to sell the company. Being profitable, for example. But getting bought is
also an art in its own right, and one that we spent a lot of time trying to master.

Potential buyers will always delay if they can. The hard part about getting
bought is getting them to act. For most people, the most powerful motivator is
not the hope of gain, but the fear of loss. For potential acquirers, the most
powerful motivator is the prospect that one of their competitors will buy you.
This, as we found, causes CEOs to take red- eyes. The second biggest is the
worry that, if they don't buy you now, you'll continue to grow rapidly and will
cost more to acquire later, or even become a competitor.

In both cases, what it all comes down to is users. You'd think that a company
about to buy you would do a lot of research and decide for themselves how
valuable your technology was. Not at all. What they go by is the number of
users you have.

In effect, acquirers assume the customers know who has the best technology.
And this is not as stupid as it sounds. Users are the only real proof that you've
created wealth. Wealth is what people want, and if people aren't using your
software, maybe it's not just because you're bad at marketing. Maybe it's
because you haven't made what they want.

Venture capitalists have a list of danger signs to watch out for. Near the top is
the company run by techno- weenies who are obsessed with solving interesting
technical problems, instead of making users happy. In a startup, you're not just
trying to solve problems. You're trying to solve problems that users care about .

So I think you should make users the test, just as acquirers do. Treat a startup
as an optimization problem in which performance is measured by number of
users. As anyone who has tried to optimize software knows, the key is
measurement. When you try to guess where your program is slow, and what
would make it faster, you almost always guess wrong.

Number of users may not be the perfect test, but it will be very close. It's what
acquirers care about. It's what revenues depend on. It's what makes
competitors unhappy. It's what impresses reporters, and potential new users.
Certainly it's a better test than your a priori notions of what problems are
important to solve, no matter how technically adept you are.

Among other things, treating a startup as an optimization problem will help
you avoid another pitfall that VCs worry about, and rightly—taking a long time
to develop a product. Now we can recognize this as something hackers already
know to avoid: premature optimization. Get a version 1.0 out there as soon as

you can. Until you have some users to measure, you're optimizing based on
guesses.

The ball you need to keep your eye on here is the underlying principle that
wealth is what people want. If you plan to get rich by creating wealth, you have
to know what people want. So few businesses really pay attention to making
customers happy. How often do you walk into a store, or call a company on the
phone, with a feeling of dread in the back of your mind? When you hear "your
call is important to us, please stay on the line," do you think, oh good, now
everything will be all right?

A restaurant can afford to serve the occasional burnt dinner. But in technology,
you cook one thing and that's what everyone eats. So any difference between
what people want and what you deliver is multiplied. You please or annoy
customers wholesale. The closer you can get to what they want, the more
wealth you generate.

6.13. Wealth and Power

Making wealth is not the only way to get rich. For most of human history it has
not even been the most common. Until a few centuries ago, the main sources of
wealth were mines, slaves and serfs, land, and cattle, and the only ways to
acquire these rapidly were by inheritance, marriage, conquest, or confiscation.
Naturally wealth had a bad reputation.

Two things changed. The first was the rule of law. For most of the world's
history, if you did somehow accumulate a fortune, the ruler or his henchmen
would find a way to steal it. But in medieval Europe something new happened.
A new class of merchants and manufacturers began to collect in towns. 10

Together they were able to withstand the local feudal lord. So for the first time
in our history, the bullies stopped stealing the nerds' lunch money. This was
naturally a great incentive, and possibly indeed the main cause of the second
big change, industrialization.

A great deal has been written about the causes of the Industrial Revolution. But
surely a necessary, if not sufficient, condition was that people who made
fortunes be able to enjoy them in peace. 11 One piece of evidence is what
happened to countries that tried to return to the old model, like the Soviet
Union, and to a lesser extent Britain under the labor governments of the 1960s
and early 1970s. Take away the incentive of wealth, and technical innovation
grinds to a halt.

Remember what a startup is, economically: a way of saying, I want to work
faster. Instead of accumulating money slowly by being paid a regular wage for
fifty years, I want to get it over with as soon as possible. So governments that
forbid you to accumulate wealth are in effect decreeing that you work slowly.
They're willing to let you earn $3 million over fifty years, but they're not willing
to let you work so hard that you can do it in two. They are like the corporate
boss that you can't go to and say, I want to work ten times as hard, so please
pay me ten times a much. Except this is not a boss you can escape by starting
your own company.

The problem with working slowly is not just that technical innovation happens
slowly. It's that it tends not to happen at all. It's only when you're deliberately
looking for hard problems, as a way to use speed to the greatest advantage, that
you take on this kind of project. Developing new technology is a pain in the ass.
It is, as Edison said, one percent inspiration and ninety- nine percent
perspiration. Without the incentive of wealth, no one wants to do it. Engineers
will work on sexy projects like fighter planes and moon rockets for ordinary
salaries, but more mundane technologies like light bulbs or semiconductors
have to be developed by entrepreneurs.

Startups are not just something that happened in Silicon Valley in the last
couple decades. Since it became possible to get rich by creating wealth,
everyone who has done it has used essentially the same recipe: measurement
and leverage, where measurement comes from working with a small group, and
leverage from developing new techniques. The recipe was the same in Florence
in 1200 as it is in Santa Clara today.

Understanding this may help to answer an important question: why Europe
grew so powerful. Was it something about the geography of Europe? Was it that
Europeans are somehow racially superior? Was it their religion? The answer (or
at least the proximate cause) may be that the Europeans rode on the crest of a
powerful new idea: allowing those who made a lot of money to keep it.

Once you're allowed to do that, people who want to get rich can do it by
generating wealth instead of stealing it. The resulting technological growth
translates not only into wealth but into military power. The theory that led to
the stealth plane was developed by a Soviet mathematician. But because the
Soviet Union didn't have a computer industry, it remained for them a theory;
they didn't have hardware capable of executing the calculations fast enough to
design an actual airplane.

In that respect the Cold War teaches the same lesson as World War II and, for
that matter, most wars in recent history. Don't let a ruling class of warriors and
politicians squash the entrepreneurs. The same recipe that makes individuals
rich makes countries powerful. Let the nerds keep their lunch money, and you
rule the world.

Chapter 7. Mind the Gap

When people care enough about something to do it well, those who do it best
tend to be far better than everyone else. There's a huge gap between Leonardo
and second- rate contemporaries like Borgognone. You see the same gap
between Raymond Chandler and the average writer of detective novels. A top-
ranked professional chess player could play ten thousand games against an
ordinary club player without losing once.

Like chess or painting or writing novels, making money is a very specialized
skill. But for some reason we treat this skill differently. No one complains when
a few people surpass all the rest at playing chess or writing novels, but when a
few people make more money than the rest, we get editorials saying this is
wrong.

Why? The pattern of variation seems no different than for any other skill. What
causes people to react so strongly when the skill is making money?

I think there are three reasons we treat making money as different: the
misleading model of wealth we learn as children; the disreputable way in
which, till recently, most fortunes were accumulated; and the worry that great
variations in income are somehow bad for society. As far as I can tell, the first is
mistaken, the second outdated, and the third empirically false. Could it be that,
in a modern democracy, variation in income is actually a sign of health?

7.1. The Daddy Model of Wealth

When I was five I thought electricity was created by electric sockets. I didn't
realize there were power plants out there generating it. Likewise, it doesn't
occur to most kids that wealth is something that has to be generated. It seems
to be something that flows from parents.

Because of the circumstances in which they encounter it, children tend to
misunderstand wealth. They confuse it with money. They think that there is a
fixed amount of it. And they think of it as something that's distributed by
authorities (and so should be distributed equally), rather than something that
has to be created (and might be created unequally).

In fact, wealth is not money. Money is just a convenient way of trading one
form of wealth for another. Wealth is the underlying stuff—the goods and
services we buy. When you travel to a rich or poor country, you don't have to
look at people's bank accounts to tell which kind you're in. You can see wealth
—in buildings and streets, in the clothes and the health of the people.

Where does wealth come from? People make it. This was easier to grasp when
most people lived on farms, and made many of the things they wanted with
their own hands. Then you could see in the house, the herds, and the granary
the wealth that each family created. It was obvious then too that the wealth of
the world was not a fixed quantity that had to be shared out, like slices of a pie.
If you wanted more wealth, you could make it.

This is just as true today, though few of us create wealth directly for ourselves
(except for a few vestigial domestic tasks). Mostly we create wealth for other
people in exchange for money, which we then trade for the forms of wealth we
want. 1

Because kids are unable to create wealth, whatever they have has to be given to
them. And when wealth is something you're given, then of course it seems that
it should be distributed equally. 2 As in most families it is. The kids see to that.
"Unfair," they cry, when one sibling gets more than another.

In the real world, you can't keep living off your parents. If you want something,
you either have to make it, or do something of equivalent value for someone
else, in order to get them to give you enough money to buy it. In the real world,
wealth is (except for a few specialists like thieves and speculators) something
you have to create, not something that's distributed by Daddy. And since the
ability and desire to create it vary from person to person, it's not made equally.

You get paid by doing or making something people want, and those who make
more money are often simply better at doing what people want. Top actors
make a lot more money than B-list actors. The B-list actors might be almost as
charismatic, but when people go to the theater and look at the list of movies
playing, they want that extra oomph that the big stars have.

Doing what people want is not the only way to get money, of course. You could
also rob banks, or solicit bribes, or establish a monopoly. Such tricks account
for some variation in wealth, and indeed for some of the biggest individual
fortunes, but they are not the root cause of variation in income. The root cause

of variation in income, as Occam's Razor implies, is the same as the root cause
of variation in every other human skill.

In the United States, the CEO of a large public company makes about 100 times
as much as the average person. 3 Basketball players make about 128 times as
much, and baseball players 72 times as much. Editorials quote this kind of
statistic with horror. But I have no trouble imagining that one person could be
100 times as productive as another. In ancient Rome the price of slaves varied
by a factor of 50 depending on their skills. 4 And that's without considering
motivation, or the extra leverage in productivity that you can get from modern
technology.

Editorials about athletes' or CEOs' salaries remind me of early Christian writers,
arguing from first principles about whether the Earth was round, when they
could just walk outside and check. 5 How much someone's work is worth is not
a policy question. It's something the market already determines.

"Are they really worth 100 of us?" editorialists ask. Depends on what you mean
by worth. If you mean worth in the sense of what people will pay for their skills,
the answer is yes, apparently.

A few CEOs' incomes reflect some kind of wrongdoing. But are there not others
whose incomes really do reflect the wealth they generate? Steve Jobs saved a
company that was in a terminal decline. And not merely in the way a
turnaround specialist does, by cutting costs; he had to decide what Apple's next
products should be. Few others could have done it. And regardless of the case
with CEOs, it's hard to see how anyone could argue that the salaries of
professional basketball players don't reflect supply and demand.

It may seem unlikely in principle that one individual could really generate so
much more wealth than another. The key to this mystery is to revisit that
question, are they really worth 100 of us? Would a basketball team trade one of
their players for 100 random people? What would Apple's next product look like
if you replaced Steve Jobs with a committee of 100 random people? 6 These
things don't scale linearly. Perhaps the CEO or the professional athlete has only
ten times (whatever that means) the skill and determination of an ordinary
person. But it makes all the difference that it's concentrated in one individual.

When we say that one kind of work is overpaid and another underpaid, what
are we really saying? In a free market, prices are determined by what buyers
want. People like baseball more than poetry, so baseball players make more

than poets. To say that a certain kind of work is underpaid is thus identical with
saying that people want the wrong things.

Well, of course people want the wrong things. It seems odd to be surprised by
that. And it seems even odder to say that it's unjust that certain kinds of work
are underpaid. 7 Then you're saying that it's unjust that people want the wrong
things. It's lamentable that people prefer reality TV and corndogs to
Shakespeare and steamed vegetables, but unjust? That seems like saying that
blue is heavy, or that up is circular.

The appearance of word "unjust" here is the unmistakable spectral signature of
the Daddy Model. Why else would this idea occur in this odd context? Whereas
if the speaker were still operating on the Daddy Model, and saw wealth as
something that flowed from a common source and had to be shared out, rather
than something generated by doing what other people wanted, this is exactly
what you'd get on noticing that some people made much more than others.

When we talk about "unequal distribution of income," we should also ask,
where does that income come from? 8 Who made the wealth it represents?
Because to the extent that income varies simply according to how much wealth
people create, the distribution may be unequal, but it's hardly unjust.

7.2. Stealing It

The second reason we tend to find great disparities of wealth alarming is that
for most of human history the usual way to accumulate a fortune was to steal it:
in pastoral societies by cattle raiding; in agricultural societies by appropriating
others' estates in times of war, and taxing them in times of peace.

In conflicts, those on the winning side would receive the estates confiscated
from the losers. In England in the 1060s, when William the Conqueror
distributed the estates of the defeated Anglo-Saxon nobles to his followers, the
conflict was military. By the 1530s, when Henry VIII distributed the estates of
the monasteries to his followers, 9 it was mostly political. But the principle was
the same. Indeed, the same principle is at work now in Zimbabwe.

In more organized societies, like China, the ruler and his officials used taxation
instead of confiscation. But here too we see the same principle: the way to get
rich was not to create wealth, but to serve a ruler powerful enough to
appropriate it.

This started to change in Europe with the rise of the middle class. Now we think
of the middle class as people who are neither rich nor poor, but originally they
were a distinct group. In a feudal society, there are just two classes: a warrior
aristocracy, and the serfs who work their estates. The middle class were a new,
third group who lived in towns and supported themselves by manufacturing
and trade.

Starting in the tenth and eleventh centuries, petty nobles and former serfs
banded together in towns that gradually became powerful enough to ignore the
local feudal lords. 10 Like serfs, the middle class made a living largely by creating
wealth. (In port cities like Genoa and Pisa, they also engaged in piracy.) But
unlike serfs they had an incentive to create a lot of it. Any wealth a serf created
belonged to his master. There was not much point in making more than you
could hide. Whereas the independence of the townsmen allowed them to keep
whatever wealth they created.

Once it became possible to get rich by creating wealth, society as a whole
started to get richer very rapidly. Nearly everything we have was created by the
middle class. Indeed, the other two classes have effectively disappeared in
industrial societies, and their names been given to either end of the middle
class. (In the original sense of the word, Bill Gates is middle class.)

But it was not till the Industrial Revolution that wealth creation definitively
replaced corruption as the best way to get rich. In England, at least, corruption
only became unfashionable (and in fact only started to be called "corruption")
when there started to be other, faster ways to get rich.

Seventeenth- century England was much like the third world today, in that
government office was a recognized route to wealth. The great fortunes of that
time still derived more from what we would now call corruption than from
commerce. 11 By the nineteenth century that had changed. There continued to
be bribes, as there still are everywhere, but politics had by then been left to men
who were driven more by vanity than greed. Technology had made it possible
to create wealth faster than you could steal it. The prototypical rich man of the
nineteenth century was not a courtier but an industrialist.

With the rise of the middle class, wealth stopped being a zero sum game. Jobs
and Wozniak didn't have to make us poor to make themselves rich. Quite the
opposite: they created things that made our lives materially richer. They had to,
or we wouldn't have paid for them.

But since for most of the world's history the main route to wealth was to steal it,
we tend to be suspicious of rich people. Idealistic undergraduates find their
unconsciously preserved child's model of wealth confirmed by eminent writers
of the past. It is a case of the mistaken meeting the outdated.

"Behind every great fortune, there is a crime," Balzac wrote. Except he didn't.
What he actually said was that a great fortune With no apparent cause was
probably due to a crime well enough executed that it had been forgotten. If we
were talking about Europe in 1000, or most of the third world today, the
standard misquotation would be spot on. But Balzac lived in nineteenth-
century France, where the Industrial Revolution was well advanced. He knew
you could make a fortune without stealing it. After all, he did himself, as a
popular novelist. 12

Only a few countries (by no coincidence, the richest ones) have reached this
stage. In most, corruption still has the upper hand. In most, the fastest way to
get wealth is by stealing it. And so when we see increasing differences in
income in a rich country, there is a tendency to worry that it's sliding back
toward becoming another Venezuela. I think the opposite is happening. I think
you're seeing a country a full step ahead of Venezuela.

7.3. The Lever of Technology

Will technology increase the gap between rich and poor? It will certainly
increase the gap between the productive and the unproductive. That's the
whole point of technology. With a tractor an energetic farmer could plow six
times as much land in a day as he could with a team of horses. But only if he
mastered a new kind of farming.

I've seen the lever of technology grow visibly in my own time. In high school I
made money by mowing lawns and scooping ice cream at Baskin- Robbins. This
was the only kind of work available at the time. Now high school kids could
write software or design web sites. But only some of them will; the rest will still
be scooping ice cream.

I remember very vividly when in 1985 improved technology made it possible for
me to buy a computer of my own. Within months I was using it to make money
as a freelance programmer. A few years before, I couldn't have done this. A few
years before, there was no such thing as a freelance programmer. But Apple
painters created wealth, in the form of powerful, inexpensive computers, and
programmers immediately set to work using it to create more.

As this example suggests, the rate at which technology increases our productive
capacity is probably polynomial, rather than linear. So we should expect to see
ever- increasing variation in individual productivity as time goes on. Will that
increase the gap between rich and the poor? Depends which gap you mean.

Technology should increase the gap in income, but it seems to decrease other
gaps. A hundred years ago, the rich led a different kind of life from ordinary
people. They lived in houses full of servants, wore elaborately uncomfortable
clothes, and travelled about in carriages drawn by teams of horses which
themselves required their own houses and servants. Now, thanks to
technology, the rich live more like the average person.

Cars are a good example of why. It's possible to buy expensive, handmade cars
that cost hundreds of thousands of dollars. But there is not much point.
Companies make more money by building a large number of ordinary cars than
a small number of expensive ones. So a company making a mass- produced car
can afford to spend a lot more on its design. If you buy a custom- made car,
something will always be breaking. The only point of buying one now is to
advertise that you can.

Or consider watches. Fifty years ago, by spending a lot of money on a watch
you could get better performance. When watches had mechanical movements,
expensive watches kept better time. Not any more. Since the invention of the
quartz movement, an ordinary Timex is more accurate than a Patek Philippe
costing hundreds of thousands of dollars. 13 Indeed, as with expensive cars, if
you're determined to spend a lot of money on a watch, you have to put up with
some inconvenience to do it: as well as keeping worse time, mechanical
watches have to be wound.

The only thing technology can't cheapen is brand. Which is precisely why we
hear ever more about it. Brand is the residue left as the substantive differences
between rich and poor evaporate. But what label you have on your stuff is a
much smaller matter than having it versus not having it. In 1900, if you kept a
carriage, no one asked what year or brand it was. If you had one, you were rich.
And if you weren't rich, you took the omnibus or walked. Now even the poorest
Americans drive cars, and it is only because we're so well trained by advertising
that we can even recognize the especially expensive ones. 14

The same pattern has played out in industry after industry. If there is enough
demand for something, technology will make it cheap enough to sell in large
volumes, 15 and the mass- produced versions will be, if not better, at least more
convenient. And there is nothing the rich like more than convenience. The rich

people I know drive the same cars, wear the same clothes, have the same kind
of furniture, and eat the same foods as my other friends. Their houses are in
different neighborhoods, or if in the same neighborhood are different sizes, but
within them life is similar. The houses are made using the same construction
techniques and contain much the same objects. It's inconvenient to do
something expensive and custom.

The rich spend their time more like everyone else too. Bertie Wooster seems
long gone. Now, most people who are rich enough not to work do anyway. It's
not just social pressure that makes them; idleness is lonely and demoralizing.

Nor do we have the social distinctions there were a hundred years ago. The
novels and etiquette manuals of that period read now like descriptions of some
strange tribal society. "With respect to the continuance of friendships. . . " hints
Mrs. Beeton's Book of Household Management (1880), "it may be found
necessary, in some cases, for a mistress to relinquish, on assuming the
responsibility of a household, many of those commenced in the earlier part of
her life." A woman who married a rich man was expected to drop friends who
didn't. You'd seem a barbarian if you behaved that way today. You'd also have a
very boring life. People still tend to segregate themselves somewhat, but much
more on the basis of education than wealth. 16

Materially and socially, technology seems to be decreasing the gap between the
rich and the poor, not increasing it. If Lenin walked around the offices of a
company like Yahoo or Intel or Cisco, he'd think communism had won.
Everyone would be wearing the same clothes, have the same kind of office (or
rather, cubicle) with the same furnishings, and address one another by their
first names instead of by honorifics. Everything would seem exactly as he'd
predicted, until he looked at their bank accounts. Oops.

Is it a problem if technology increases that gap? It doesn't seem to be so far. As
it increases the gap in income, it seems to decrease most other gaps.

7.4. Alternative to an Axiom

One often hears a policy criticized on the grounds that it would increase the
income gap between rich and poor. As if it were an axiom that this would be
bad. It might be true that increased variation in income would be bad, but I
don't see how we can say it's axiomatic .

Indeed, it may even be false, in industrial democracies. In a society of serfs and
warlords, certainly, variation in income is a sign of an underlying problem. But
serfdom is not the only cause of variation in income. A 747 pilot doesn't make
40 times as much as a checkout clerk because he is a warlord who somehow
holds her in thrall. His skills are simply much more valuable.

I'd like to propose an alternative idea: that in a modern society, increasing
variation in income is a sign of health. Technology seems to increase the
variation in productivity at faster than linear rates. If we don't see
corresponding variation in income, there are three possible explanations: (a)
that technical innovation has stopped, (b) that the people who would create the
most wealth aren't doing it, or (c) that they aren't getting paid for it.

I think we can safely say that (a) and (b) would be bad. If you disagree, try living
for a year using only the resources available to the average Frankish nobleman
in 800, and report back to us. (I'll be generous and not send you back to the
stone age.)

The only option, if you're going to have an increasingly prosperous society
without increasing variation in income, seems to be (c), that people will create
a lot of wealth without being paid for it. That Jobs and Wozniak, for example,
will cheerfully work 20- hour days to produce the Apple computer for a society
that allows them, after taxes, to keep just enough of their income to match what
they would have made working 9 to 5 at a big company.

Will people create wealth if they can't get paid for it? Only if it's fun. People will
write operating systems for free. But they won't install them, or take support
calls, or train customers to use them. And at least 90% of the work that even the
highest tech companies do is of this second, unedifying kind.

All the un fun kinds of wealth creation slow dramatically in a society that
confiscates private fortunes. We can confirm this empirically. Suppose you hear
a strange noise that you think may be due to a nearby fan. You turn the fan off,
and the noise stops. You turn the fan back on, and the noise starts again. Off,
quiet. On, noise. In the absence of other information, it would seem the noise is
caused by the fan.

At various times and places in history, whether you could accumulate a fortune
by creating wealth has been turned on and off. Northern Italy in 800, off
(warlords would steal it). Northern Italy in 1100, on. Central France in 1100, off
(still feudal). England in 1800, on. England in 1974, off (98% tax on investment

income). United States in 1974, on. We've even had a twin study: West
Germany, on; East Germany, off. In every case, the creation of wealth seems to
appear and disappear like the noise of a fan as you switch on and off the
prospect of keeping it.

There is some momentum involved. It probably takes at least a generation to
turn people into East Germans (luckily for England). But if it were merely a fan
we were studying, without all the extra baggage that comes from the
controversial topic of wealth, no one would have any doubt that the fan was
causing the noise.

If you suppress variations in income, whether by stealing private fortunes, as
feudal rulers used to do, or by taxing them away, as some modern governments
have done, the result always seems to be the same. Society as a whole ends up
poorer.

If I had a choice of living in a society where I was materially much better off
than I am now, but was among the poorest, or in one where I was the richest,
but much worse off than I am now, I'd take the first option. If I had children, it
would arguably be immoral not to. It's absolute poverty you want to avoid, not
relative poverty. If, as the evidence so far implies, you have to have one or the
other in your society, take relative poverty.

You need rich people in your society not so much because in spending their
money they create jobs, but because of what they have to do to get rich. I'm not
talking about the trickle-down effect here. I'm not saying that if you let Henry
Ford get rich, he'll hire you as a waiter at his next party. I'm saying that he'll
make you a tractor to replace your horse.

Chapter 8. A Plan for Spam

I think it's possible to stop spam, and that content- based filters are the way to
do it. The Achilles heel of the spammers is their message. They can circumvent
any other barrier you set up. They have so far, at least. But they have to deliver
their message, whatever it is. If we can write software that recognizes their
messages, there is no way they can get around that. 1

To the recipient, spam is easily recognizable. If you hired someone to read your
mail and discard the spam, they would have little trouble doing it. How much
do we have to do, short of AI, to automate this process?

I think we will be able to solve the problem with fairly simple algorithms. In
fact, I've found that you can filter present- day spam acceptably well using
nothing more than a Bayesian combination of the spam probabilities of
individual words. Using a slightly tweaked (as described below) Bayesian filter,
we now miss less than 5 per 1000 spams, with 0 false positives.

The statistical approach is not usually the first one people try when they write
spam filters. Most hackers' first instinct is to try to write software that
recognizes individual properties of spam. You look at spams and you think, the
gall of these guys to try sending me mail that begins "Dear Friend" or has a
subject line that's all uppercase and ends in eight exclamation points. I can
filter out that stuff with about one line of code.

And so you do, and in the beginning it works. A few simple rules will take a big
bite out of your incoming spam. Merely looking for the word click will catch
79.7% of the emails in my spam corpus, with only 1.2% false positives.

I spent about six months writing software that looked for individual spam
features before I tried the statistical approach. What I found was that
recognizing that last few percent of spams got very hard, and that as I made the
filters stricter I got more false positives.

False positives are innocent emails that get mistakenly identified as spams. For
most users, missing legitimate email is an order of magnitude worse than
receiving spam, so a filter that yields false positives is like an acne cure that
carries a risk of death to the patient.

The more spam a user gets, the less likely he'll be to notice one innocent mail
sitting in his spam folder. And strangely enough, the better your spam filters
get, the more dangerous false positives become, because when the filters are
really good, users will be more likely to ignore everything they catch.

I don't know why I avoided trying the statistical approach for so long. I think it
was because I got addicted to trying to identify spam features myself, as if I
were playing some kind of competitive game with the spammers. (Nonhackers

don't often realize this, but most hackers are very competitive.) When I did try
statistical analysis, I found immediately that it was much cleverer than I had
been. It discovered, of course, that terms like virtumundo and teens were good
indicators of spam. But it also discovered that per and FL and ff0000 are good
indicators of spam. In fact, ff0000 (HTML for bright red) turns out to be as good
an indicator of spam as any pornographic term.

Here's a sketch of how I do statistical filtering. I start with one corpus of spam
and one of non spam mail. At the moment each one has about 4000 messages
in it. I scan the entire text, including headers and embedded HTML and
Javascript, of each message in each corpus. I currently consider alphanumeric
characters, dashes, apostrophes, and dollar signs to be part of tokens, and
everything else to be a token separator. (There is probably room for
improvement here.) I ignore tokens that are all digits, and I also ignore HTML
comments, not even considering them as token separators.

I count the number of times each token (ignoring case, currently) occurs in
each corpus. At this stage I end up with two large hash tables, one for each
corpus, mapping tokens to number of occurrences.

Next I create a third hash table, this time mapping each token to the probability
that an email containing it is a spam, Pspam|w which I calculate as follows:

r g = min (1, 2(good (w)/ G)), rb = min (1, bad (w)/ B)

Pspam|w = max(.01,min (.99, rb /(rg + rb)))

where w is the token whose probability we're calculating, good and bad are the
hash tables I created in the first step, and G and B are the number of non spam
and spam messages respectively.

I want to bias the probabilities slightly to avoid false positives, and by trial and
error I've found that a good way to do it is to double all the numbers in good .
This helps to distinguish between words that occasionally do occur in
legitimate email and words that almost never do. I only consider words that
occur more than five times in total (actually, because of the doubling, occurring
three times in non spam mail would be enough). And then there is the question
of what probability to assign to words that occur in one corpus but not the

other. Again by trial and error I chose .01 and .99. There may be room for
tuning here, but as the corpus grows such tuning will happen automatically
anyway.

The especially observant will notice that while I consider each corpus to be a
single long stream of text for purposes of counting occurrences, I use the
number of emails in each, rather than their combined length, as the divisor in
calculating spam probabilities. This adds another slight bias to protect against
false positives.

When new mail arrives, it is scanned into tokens, and the most interesting
fifteen tokens, where interesting is measured by how far their spam probability
is from a neutral .5, are used to calculate the probability that the mail is spam. If
w1, . . . , w15 are the fifteen most interesting tokens, you calculate the combined
probability thus:

Figure 8-1.

One question that arises in practice is what probability to assign to a word
you've never seen, i.e. one that doesn't occur in the hash table of word
probabilities. I've found, again by trial and error, that .4 is a good number to
use. If you've never seen a word before, it is probably fairly innocent; spam
words tend to be all too familiar.

I treat mail as spam if the algorithm above gives it a probability of more than .9
of being spam. But in practice it would not matter much where I put this
threshold, because few probabilities end up in the middle of the range.

One great advantage of the statistical approach is that you don't have to read so
many spams. Over the past six months, I've read literally thousands of spams,
and it is really kind of demoralizing. Norbert Wiener said if you compete with
slaves you become a slave, and there is something similarly degrading about
competing with spammers. To recognize individual spam features you have to
try to get into the mind of the spammer, and frankly I want to spend as little
time inside the minds of spammers as possible.

But the real advantage of the Bayesian approach, of course, is that you know
what you're measuring. Feature- recognizing filters like Spam Assassin assign a
spam "score" to email. The Bayesian approach assigns an actual probability.
The problem with a "score" is that no one knows what it means. The user
doesn't know what it means, but worse still, neither does the developer of the
filter. How many points should an email get for having the word sex in it? A
probability can of course be mistaken, but there is little ambiguity about what it
means, or how evidence should be combined to calculate it. Based on my
corpus, sex indicates a .97 probability of the containing email being a spam,
whereas sexy indicates .99 probability. And Bayes's Rule, equally unambiguous,
says that an email containing both words would, in the (unlikely) absence of
any other evidence, have a 99.97% chance of being a spam.

Because it is measuring probabilities, the Bayesian approach considers all the
evidence in the email, both good and bad. Words that occur disproportionately
rarely in spam (like though or tonight or apparently) contribute as much to
decreasing the probability as bad words like unsubscribe and opt-in do to
increasing it. So an otherwise innocent email that happens to include the word
sex is not going to get tagged as spam.

Ideally, of course, the probabilities should be calculated individually for each
user. I get a lot of email containing the word Lisp, and (so far) no spam that
does. So a word like that is effectively a kind of password for sending mail to
me. In my earlier spam- filtering software, the user could set up a list of such
words and mail containing them would automatically get past the filters. On
my list I put words like Lisp and also my zipcode, so that (otherwise rather
spammy- sounding) receipts from online orders would get through. I thought I
was being very clever, but I found that the Bayesian filter did the same thing for
me, and moreover discovered of a lot of words I hadn't thought of.

When I said at the start that our filters let through less than 5 spams per 1000
with 0 false positives, I'm talking about filtering my mail based on a corpus of
my mail. But these numbers are not misleading, because that is the approach
I'm advocating: filter each user's mail based on the spam and non spam mail he
receives. Essentially, each user should have two delete buttons, ordinary delete
and delete- as- spam. Anything deleted as spam goes into the spam corpus, and
everything else goes into the non spam corpus.

You could start users with a seed filter, but ultimately each user should have his
own per- word probabilities based on the actual mail he receives. This (a) makes
the filters more effective, (b) lets each user decide their own precise definition
of spam, and (c) perhaps best of all makes it hard for spammers to tune mails to
get through the filters. If a lot of the brain of the filter is in the individual

databases, then merely tuning spams to get through the seed filters won't
guarantee anything about how well they'll get through individual users' varying
and much more trained filters.

Content- based spam filtering is often combined with a white list, a list of
senders whose mail can be accepted with no filtering. One easy way to build
such a white list is to keep a list of every address the user has ever sent mail to.
If a mail reader has a delete as spam button then you could also add the from
address of every email the user has deleted as ordinary trash.

I'm an advocate of white lists, but more as a way to save computation than as a
way to improve filtering. I used to think that white lists would make filtering
easier, because you'd only have to filter email from people you'd never heard
from, and someone sending you mail for the first time is constrained by
convention in what they can say to you. Someone you already know might send
you an email talking about sex, but someone sending you mail for the first time
would not be likely to. The problem is, people can have more than one email
address, so a new from address doesn't guarantee that the sender is writing to
you for the first time. It is not unusual for an old friend (especially if he is a
hacker) to suddenly send you an email with a new from- address, so you can't
risk false positives by filtering mail from unknown addresses especially
stringently.

In a sense, though, my filters do themselves embody a kind of white list (and
blacklist) because they are based on entire messages, including the headers. So
to that extent they "know" the email addresses of trusted senders and even the
routes by which mail gets from them to me. And they know the same about
spam, including the server names, mailer versions, and protocols.

If I thought that I could keep up current rates of spam filtering, I would
consider this problem solved. But it doesn't mean much to be able to filter out
most present- day spam, because spam evolves. Indeed, most anti spam
techniques so far have been like pesticides that do nothing more than create a
new, resistant strain of bugs.

I'm more hopeful about Bayesian filters, because they evolve with the spam. So
as spammers start using v1agra instead of viagra to evade simple- minded
spam filters based on individual words, Bayesian filters automatically notice.
Indeed, v1agra is far more damning evidence than viagra, and Bayesian filters
know precisely how much more.

Still, anyone who proposes a plan for spam filtering has to be able to answer the
question: if the spammers knew exactly what you were doing, how well could
they get past you? For example, I think that if checksum- based spam filtering
becomes a serious obstacle, the spammers will just switch to mad- lib
techniques for generating message bodies.

To beat Bayesian filters, it would not be enough for spammers to make their
emails unique or to stop using individual naughty words. They'd have to make
their mails indistinguishable from your ordinary mail. And this I think would
severely constrain them. Spam is mostly sales pitches, so unless your regular
mail is all sales pitches, spams will inevitably have a different character. And
the spammers would also, of course, have to change (and keep changing) their
whole infrastructure, because otherwise the headers would look as bad to the
Bayesian filters as ever, no matter what they did to the message body. I don't
know enough about the infrastructure that spammers use to know how hard it
would be to make the headers look innocent, but my guess is that it would be
even harder than making the message look innocent.

Assuming they could solve the problem of the headers, the spam of the future
will probably look something like this:

Hey there. Check out the following:
www.27meg.com/foo

because that is about as much sales pitch as content- based filtering will leave
the spammer room to make. (Indeed, it will be hard even to get this past filters,
because if everything else in the email is neutral, the spam probability will
hinge on the URL, and it will take some effort to make that look neutral.)

Spammers range from businesses running so-called opt- in lists who don't even
try to conceal their identities, to guys who hijack mail servers to send out spams
promoting porn sites. If we use filtering to whittle their options down to mails
like the one above, that should pretty much put the spammers on the
"legitimate" end of the spectrum out of business; they feel obliged by various
state laws to include boilerplate about why their spam is not spam, and how to
cancel your "subscription," and that kind of text is easy to recognize.

(I used to think it was naive to believe that stricter laws would decrease spam.
Now I think that while stricter laws may not decrease the amount of spam that
spammers send, they can certainly help filters to decrease the amount of spam
that recipients actually see.)

All along the spectrum, if you restrict the sales pitches spammers can make,
you will inevitably tend to put them out of business. That word business is an
important one to remember. The spammers are businessmen. They send spam
because it works. It works because although the response rate is abominably
low (at best 15 per million, vs. 3000 per million for a catalog mailing), the cost,
to them, is practically nothing. The cost is enormous for the recipients, about 5
man- weeks for each million recipients who spend a second to delete the spam,
but the spammer doesn't have to pay that.

Sending spam does cost the spammer something, though. 2 So the lower we can
get the response rate—whether by filtering, or by using filters to force
spammers to dilute their pitches—the fewer businesses will find it worth their
while to send spam.

The reason the spammers use the kinds of sales pitches that they do is to
increase response rates. This is possibly even more disgusting than getting
inside the mind of a spammer, but let's take a quick look inside the mind of
someone who responds to a spam. This person is either astonishingly
credulous or deeply in denial about their sexual interests. In either case,
repulsive or idiotic as the spam seems to us, it is exciting to them. The
spammers wouldn't say these things if they didn't sound exciting. And "check
out the following" is just not going to have nearly the pull with the spam
recipient as the kinds of things that spammers say now. Result: if it can't
contain exciting sales pitches, spam becomes less effective as a marketing
vehicle, and fewer businesses want to use it.

That is the big win in the end. I started writing spam filtering software because I
didn't want have to look at the stuff anymore. But if we get good enough at
filtering out spam, it will stop working, and the spammers will actually stop
sending it.

Of all the approaches to fighting spam, from software to laws, I believe Bayesian
filtering will be the single most effective. But I also think that the more different
kinds of anti spam efforts we undertake, the better, because any measure that
constrains spammers will tend to make filtering easier. And even within the
world of content- based filtering, I think it will be a good thing if there are many
different kinds of software being used simultaneously. The more different filters
there are, the harder it will be for spammers to tune spams to get through them.

Chapter 9. Taste for Makers

Copernicus' aesthetic objections to [equants] provided one essential motive for
his rejection of the Ptolemaic system. ...

THOMAS KUHN, The Copernican Revolution

All of us had been trained by Kelly Johnson and believed fanatically in his
insistence that an airplane that looked beautiful would fly the same way.

BEN RICH, Skunk Works

Beauty is the first test: there is no permanent place in this world for ugly
mathematics.

G. H. HARDY, A Mathematician's Apology

I was talking recently to a friend who teaches at MIT. His field is hot now and
every year he is inundated by applications from would- be graduate students. "A
lot of them seem smart," he said. "What I can't tell is whether they have any
kind of taste."

Taste. You don't hear that word much now. And yet we still need the underlying
concept, whatever we call it. What my friend meant was that he wanted
students who were not just good technicians, but who could use their technical
knowledge to design beautiful things.

Mathematicians call good work "beautiful," and so, either now or in the past,
have scientists, engineers, musicians, architects, designers, writers, and
painters. Is it just a coincidence that they used the same word, or is there some
overlap in what they meant? If there is an overlap, can we use one field's
discoveries about beauty to help us in another?

For those of us who design things, these are not just theoretical questions. If
there is such a thing as beauty, we need to be able to recognize it. We need
good taste to make good things. Instead of treating beauty as an airy
abstraction, to be either blathered about or avoided depending on how one
feels about airy abstractions, let's try considering it as a practical question: how
do you make good stuff?

If you mention taste nowadays, a lot of people will tell you that "taste is
subjective." They believe this because it really feels that way to them. When
they like something, they have no idea why. It could be because it's beautiful,
or because their mother had one, or because they saw a movie star with one in
a magazine, or because they know it's expensive. Their thoughts are a tangle of
unexamined impulses.

Most of us were encouraged, as children, to leave this tangle unexamined. If
you made fun of your little brother for coloring people green in his coloring
book, your mother was likely to tell you something like "you like to do it your
way and he likes to do it his way."

Your mother at this point was not trying to teach you important truths about
aesthetics. She was trying to get the two of you to stop bickering.

Like many of the half-truths adults tolds us, this one contradicts other things
they told us. After dinning into you that taste is merely a matter of personal
preference, they took you to the museum and told you that you should pay
attention because Leonardo is a great artist.

What goes through the kid's head at this point? What does he think "great
artist" means? After having been told for years that everyone just likes to do
things their own way, he is unlikely to head straight for the conclusion that a
great artist is someone whose work is better than the others'. A far more likely
theory, in his Ptolemaic model of the universe, is that a great artist is something
that's good for you, like broccoli, because someone said so in a book.

Saying that taste is just personal preference is a good way to prevent disputes.
The trouble is, it's not true. You feel this when you start to design things.

Whatever job people do, they naturally want to do better. Football players like
to win games. CEOs like to increase earnings. It's a matter of pride, and a real
pleasure, to get better at your job. But if your job is to design things, and there
is no such thing as beauty, then there is no way to get better at your job . If taste
is just personal preference, then everyone's is already perfect: you like whatever
you like, and that's it.

As in any job, as you continue to design things, you'll get better at it. Your tastes
will change. And, like anyone who gets better at their job, you'll know you're
getting better. If so, your old tastes were not merely different, but worse. Poof
goes the axiom that taste can't be wrong.

Relativism is fashionable at the moment, and that may hamper you from
thinking about taste, even as yours grows. But if you come out of the closet and
admit, at least to yourself, that there is such a thing as good design, then you
can start to study it in detail. How has your taste changed? When you made
mistakes, what caused you to make them? What have other people learned
about design?

Once you start to examine the question, it's surprising how much different
fields' ideas of beauty have in common. The same principles of good design
crop up again and again.

GOOD DESIGN IS SIMPLE. You hear this from math to painting. In math it
means that a shorter proof tends to be a better one. Where axioms are
concerned, especially, less is more. It means much the same thing in
programming. For architects and designers, it means that beauty should
depend on a few carefully chosen structural elements rather than a profusion of
superficial ornament. (Ornament is not in itself bad, only when it's camouflage
on insipid form.) Similarly, in painting, a still life of a few carefully observed
and solidly modelled objects will tend to be more interesting than a stretch of
flashy but mindlessly repetitive painting of, say, a lace collar. In writing it
means: say what you mean and say it briefly.

It seems strange to have to emphasize simplicity. You'd think simple would be
the default. Ornate is more work. But something seems to come over people
when they try to be creative. Beginning writers adopt a pompous tone that
doesn't sound anything like the way they speak. Designers trying to be artistic
resort to swooshes and curlicues. Painters discover that they're expressionists.
It's all evasion. Underneath the long words or the "expressive" brush strokes,
there's not much going on, and that's frightening.

When you're forced to be simple, you're forced to face the real problem. When
you can't deliver ornament, you have to deliver substance.

GOOD DESIGN IS TIMELESS. In math, every proof is timeless unless it contains
a mistake. So what does Hardy mean when he says there is no permanent place
for ugly mathematics? He means the same thing Kelly Johnson did: if
something is ugly, it can't be the best solution. There must be a better one, and
eventually someone else will discover it.

Aiming at timelessness is a way to make yourself find the best answer: if you
can imagine someone surpassing you, you should do it yourself. Some of the
greatest masters did this so well that they left little room for those who came
after. Every engraver since Dürer suffers by comparison.

Aiming at timelessness is also a way to evade the grip of fashion. Fashions
almost by definition change with time, so if you can make something that will
still look good far into the future, then its appeal must derive more from merit
than fashion.

Strangely enough, if you want to make something that will appeal to future
generations, one way to do it is to try to appeal to past generations. It's hard to
guess what the future will be like, but we can be sure it will be like the past in
caring nothing for present fashions. So if you can make something that appeals
to people today and would also have appealed to people in 1500, there is a good
chance it will appeal to people in 2500.

GOOD DESIGN SOLVES THE RIGHT PROBLEM. The typical stove has four
burners arranged in a square, and a dial to control each. How do you arrange
the dials? The simplest answer is to put them in a row. But this is a simple
answer to the wrong question. The dials are for humans to use, and if you put
them in a row, the unlucky human will have to stop and think each time about
which dial matches which burner. Better to arrange the dials in a square like the
burners.

A lot of bad design is industrious, but misguided. In the mid twentieth century
there was a vogue for setting text in sans- serif fonts. These fonts are closer to
the pure, underlying letterforms. But in text that's not the problem you're
trying to solve. For legibility it's more important that letters be easy to tell apart.
It may look Victorian, but a Times Roman lowercase g is easy to tell from a
lowercase y.

Problems can be improved as well as solutions. In software, an intractable
problem can usually be replaced by an equivalent one that's easy to solve.

Physics progressed faster as the problem became predicting observable
behavior, instead of reconciling it with scripture.

GOOD DESIGN IS SUGGESTIVE. Jane Austen's novels contain almost no
description; instead of telling you how everything looks, she tells her story so
well that you envision the scene for yourself. Likewise, a painting that suggests
is usually more engaging than one that tells. Everyone makes up their own story
about the Mona Lisa.

Figure 9-1. 1973 Porsche 911E.

In architecture and design, this principle means that a building or object
should let you use it as you want: a good building, for example, will serve as a
backdrop for whatever life people want to lead in it, instead of making them live
as if they were executing a program written by the architect.

In software, it means you should give users a few basic elements that they can
combine as they wish, like Lego. In math it means a proof that becomes the
basis for a lot of new work is preferable to one that was difficult, but doesn't
lead to future discoveries. In the sciences generally, citation is considered a
rough indicator of merit.

GOOD DESIGN IS OFTEN SLIGHTLY FUNNY. This one may not always be true.
But Dürer's engravings and Saarinen's Womb Chair and the Pantheon and the
original Porsche 911 all seem to me slightly funny. Gödel's incompleteness
theorem seems like a practical joke.

I think it's because humor is related to strength. To have a sense of humor is to
be strong: to keep one's sense of humor is to shrug off misfortunes, and to lose
one's sense of humor is to be wounded by them. And so the mark—or at least
the prerogative— of strength is not to take oneself too seriously. The confident
will often, like swallows, seem to be making fun of the whole process slightly, as
Hitchcock does in his films or Bruegel in his paintings (or Shakespeare, for that
matter).

Good design may not have to be funny, but it's hard to imagine something that
could be called humorless also being good design.

GOOD DESIGN IS HARD. If you look at the people who've done great work, one
thing they all seem to have in common is that they worked very hard. If you're
not working hard, you're probably wasting your time.

Hard problems call for great efforts. In math, difficult proofs require ingenious
solutions, and these tend to be interesting. Ditto in engineering.

When you have to climb a mountain you toss everything unnecessary out of
your pack. And so an architect who has to build on a difficult site, or a small
budget, will find that he's forced to produce an elegant design. Fashions and
flourishes get knocked aside by the difficult business of solving the problem at
all.

Not every kind of hard is good. There is good pain and bad pain. You want the
kind of pain you get from going running, not the kind you get from stepping on
a nail. A difficult problem could be good for a designer, but a fickle client or
unreliable materials would not be.

In art, the highest place has traditionally been given to paintings of people.
There's something to this tradition, and not just because pictures of faces press
buttons in our brains that other pictures don't. We are so good at looking at
faces that we force anyone who draws them to work hard to satisfy us. If you

draw a tree and you change the angle of a branch five degrees, no one will
know. When you change the angle of someone's eye five degrees, people notice.

When Bauhaus designers adopted Sullivan's "form follows function," what they
meant was, form should follow function. 1 And if function is hard enough, form
is forced to follow it, because there is no effort to spare for error. Wild animals
are beautiful because they have hard lives.

GOOD DESIGN LOOKS EASY. Like great athletes, great designers make it look
easy. Mostly this is an illusion. The easy, conversational tone of good writing
comes only on the eighth rewrite.

In science and engineering, some of the greatest discoveries seem so simple
that you say to yourself, I could have thought of that. The discoverer is entitled
to reply, why didn't you?

Some Leonardo heads are just a few lines. You look at them and you think, all
you have to do is get eight or ten lines in the right place and you've made this
beautiful portrait. Well, yes, but you have to get them in exactly the right place.
The slightest error will make the whole thing collapse.

Line drawings are in fact the most difficult visual medium, because they
demand near perfection. In math terms, they are a closed- form solution; lesser
artists literally solve the same problems by successive approximation. One of
the reasons kids give up drawing at age ten or so is that they decide to start
drawing like grownups, and one of the first things they try is a line drawing of a
face.

In most fields the appearance of ease seems to come with practice. Perhaps
what practice does is train your unconscious mind to handle tasks that used to
require conscious thought. In some cases you literally train your body. An
expert pianist can play notes faster than the brain can send signals to his hand.
Likewise an artist, after a while, can make visual perception flow in through his
eye and out through his hand as automatically as someone tapping his foot to a
beat.

When people talk about being in "the zone," I think what they mean is that the
spinal cord has the situation under control. Your spinal cord is less hesitant,
and it frees conscious thought for the hard problems.

GOOD DESIGN USES SYMMETRY. Symmetry may just be one way to achieve
simplicity, but it's important enough to be mentioned on its own. Nature uses
it a lot, which is a good sign.

There are two kinds of symmetry, repetition and recursion. Recursion means
repetition in subelements, like the pattern of veins in a leaf.

Symmetry is unfashionable in some fields now, in reaction to excesses in the
past. Architects started consciously making buildings asymmetric in Victorian
times, and by the 1920s asymmetry was an explicit premise of modernist
architecture. Even these buildings only tended to be asymmetric about major
axes, though; there were hundreds of minor symmetries.

In writing you find symmetry at every level, from the phrases in a sentence to
the plot of a novel. You find the same in music and art. Mosaics (and some
Cézannes) have extra visual punch because the whole picture is made out of
the same atoms. Compositional symmetry yields some of the most memorable
paintings, especially when two halves react to one another, as in the Creation of
Adam or American Gothic .

In math and engineering, recursion, especially, is a big win. Inductive proofs
are wonderfully short. In software, a problem that can be solved by recursion is
nearly always best solved that way. The Eiffel Tower looks striking partly
because it is a recursive solution, a tower on a tower.

The danger of symmetry, and repetition especially, is that it can be used as a
substitute for thought.

GOOD DESIGN RESEMBLES NATURE. It's not so much that resembling nature
is intrinsically good as that nature has had a long time to work on the problem.
So it's a good sign when your answer resembles nature's.

Figure 9-2. Eiffel Tower, 1889. A tower on a tower.

It's not cheating to copy. Few would deny that a story should be like life.
Working from life is a valuable tool in painting too, though its role has often
been misunderstood. The aim is not simply to make a record. The point of
painting from life is that it gives your mind something to chew on: when your
eyes are looking at something, your hand will do more interesting work.

Imitating nature also works in engineering. Boats have long had spines and ribs
like an animal's ribcage. In other cases we may have to wait for better
technology. Early aircraft designers were mistaken to design aircraft that looked
like birds, because they didn't have materials or power sources light enough, or
control systems sophisticated enough, for machines that flew like birds. 2 But I
could imagine little unmanned reconnaissance planes flying like birds in fifty
years.

Figure 9-3. Leonardo da Vinci, study of a rearing horse, 1481- 99.

Now that we have enough computer power, we can imitate nature's method as
well as its results. Genetic algorithms may let us create things too complex to
design in the ordinary sense.

GOOD DESIGN IS REDESIGN. It's rare to get things right the first time. Experts
expect to throw away some early work. They plan for plans to change.

It takes confidence to throw work away. You have to be able to think, there's
more where that came from . When people first start drawing, for example,
they're often reluctant to redo parts that aren't right. They feel they've been
lucky to get that far, and if they try to redo something, it will turn out worse.
Instead they convince themselves that the drawing is not that bad, really—in
fact, maybe they meant it to look that way.

Dangerous territory, that. If anything, you should cultivate dissatisfaction. In
Leonardo's drawings there are often five or six attempts to get a line right. The
distinctive back of the Porsche 911 only appeared in the redesign of an
awkward prototype. In Wright's early plans for the Guggenheim, the right half
was a ziggurat; he inverted it to get the present shape.

Mistakes are natural. Instead of treating them as disasters, make them easy to
acknowledge and easy to fix. Leonardo more or less invented the sketch, as a
way to make drawing bear a greater weight of exploration. Open source
software has fewer bugs because it admits the possibility of bugs.

It helps to have a medium that makes change easy. When oil paint replaced
tempera in the fifteenth century, it helped painters to deal with difficult
subjects like the human figure because, unlike tempera, oil can be blended and
overpainted.

GOOD DESIGN CAN COPY. Attitudes to copying often make a round trip. A
novice imitates without knowing it; next he tries consciously to be original;
finally, he decides it's more important to be right than original.

Unknowing imitation is almost a recipe for bad design. If you don't know where
your ideas are coming from, you're probably imitating an imitator. Raphael so
pervaded mid- nineteenth century taste that almost anyone who tried to draw
was imitating him, often at several removes. It was this, more than Raphael's
own work, that bothered the Pre- Raphaelites.

The ambitious are not content to imitate. The second phase in the growth of
taste is a conscious attempt at originality.

I think the greatest masters go on to achieve a kind of selflessness. They just
want to get the right answer, and if part of the right answer has already been
discovered by someone else, that's no reason not to use it. They're confident
enough to take from anyone without feeling that their own vision will be lost in
the process.

Figure 9-4. Lockheed SR-71, 1964.

GOOD DESIGN IS OFTEN STRANGE. Some of the very best work has an
uncanny quality: Euler's Formula, Bruegel's Hunters in the Snow , the SR-71,
Lisp. They're not just beautiful, but strangely beautiful.

I'm not sure why. It may just be my own stupidity. A can opener must seem
miraculous to a dog. Maybe if I were smart enough it would seem the most
natural thing in the world that e iπ = -1. It is after all necessarily true.

Most of the qualities I've mentioned are things that can be cultivated, but I
don't think it works to cultivate strangeness. The best you can do is not squash
it if it starts to appear. Einstein didn't try to make relativity strange. He tried to
make it true, and the truth turned out to be strange.

At an art school where I once studied, the students wanted most of all to
develop a personal style. But if you just try to make good things, you'll
inevitably do it in a distinctive way, just as each person walks in a distinctive
way. Michelangelo was not trying to paint like Michelangelo. He was just trying
to paint well; he couldn't help painting like Michelangelo.

The only style worth having is the one you can't help. And this is especially true
for strangeness. There is no shortcut to it. The Northwest Passage that the
Mannerists, the Romantics, and two generations of American high school
students have searched for does not seem to exist. The only way to get there is
to go through good and come out the other side.

Figure 9-5. Bruegel's Hunters in the Snow, 1565.

GOOD DESIGN HAPPENS IN CHUNKS. The inhabitants of fifteenth century
Florence included Brunelleschi, Ghiberti, Donatello, Masaccio, Filippo Lippi,
Fra Angelico, Verrocchio, Botticelli, Leonardo, and Michelangelo. Milan at the
time was as big as Florence. How many fifteenth century Milanese artists can
you name?

Something was happening in Florence in the fifteenth century. And it can't
have been genetic, because it isn't happening now. You have to assume that
whatever inborn ability Leonardo and Michelangelo had, there were people
born in Milan with just as much. What happened to the Milanese Leonardo?

There are roughly a thousand times as many people alive in the US right now as
lived in Florence during the fifteenth century. A thousand Leonardos and a
thousand Michel Angelos walk among us. If DNA ruled, we should be greeted
daily by artistic marvels. We aren't, and the reason is that to make Leonardo
you need more than his innate ability. You also need Florence in 1450.

Nothing is more powerful than a community of talented people working on
related problems. Genes count for little by comparison: being a genetic

Leonardo was not enough to compensate for having been born near Milan
instead of Florence. Today we move around more, but great work still comes
disproportionately from a few hotspots: the Bauhaus, the Manhattan Project,
The New Yorker , Lockheed's Skunk Works, Xerox Parc.

At any given time there are a few hot topics and a few groups doing great work
on them, and it's nearly impossible to do good work yourself if you're too far
removed from one of these centers. You can push or pull these trends to some
extent, but you can't break away from them. (Maybe you can, but the Milanese
Leonardo couldn't.)

GOOD DESIGN IS OFTEN DARING. At every period of history, people have
believed things that were just ridiculous, and believed them so strongly that
you risked ostracism or even violence by saying otherwise.

If our own time were any different, that would be remarkable. As far as I can tell
it isn't.

This problem afflicts not just every era, but in some degree every field. Much
Renaissance art was in its time considered shockingly secular: according to
Vasari, Botticelli repented and gave up painting, and Fra Bartolommeo and
Lorenzo di Credi actually burned some of their work. Einstein's theory of
relativity offended many contemporary physicists, and was not fully accepted
for decades—in France, not until the 1950s. 3

Today's experimental error is tomorrow's new theory. If you want to discover
great new things, then instead of turning a blind eye to the places where
conventional wisdom and truth don't quite meet, you should pay particular
attention to them.

In practice I think it's easier to see ugliness than to imagine beauty. Most of the
people who've made beautiful things seem to have done it by fixing something
they thought ugly. Great work usually seems to happen because someone sees
something and thinks, I could do better than that . Giotto saw traditional
Byzantine madonnas painted according to a formula that had satisfied
everyone for centuries, and to him they looked wooden and unnatural.
Copernicus was so troubled by a hack that all his contemporaries could tolerate
that he felt there must be a better solution.

Intolerance for ugliness is not in itself enough. You have to understand a field
well before you develop a good nose for what needs fixing. You have to do your
homework. But as you become expert in a field, you'll start to hear little voices
saying, What a hack! There must be a better way. Don't ignore those voices.
Cultivate them. The recipe for great work is: very exacting taste, plus the ability
to gratify it.

Chapter 10. Programming Languages Explained

Any machine has a list of things you can tell it to do. Sometimes the list is short.
There are only two things I can do to my electronic kettle: turn it on and turn it
off. My CD player is more complicated. As well as turning it on and off, I can
turn the volume up and down, tell it to play or pause, move back or forward
one song, and ask it to play songs in random order.

Like any other kind of machine, a computer has a list of things it can do. For
example, every computer can be told to add two numbers. The complete list of
things a computer can do is its machine language .

10.1. Machine Language

When computers were first invented, all programs had to be written as
sequences of machine language instructions. Soon after, they started to be
written in a slightly more convenient form called assembly language . In
assembly language the list of commands is the same, but you get to use more
programmer- friendly names. Instead of referring to the add instruction as
11001101, which is what the machine might call it, you get to say add.

The problem with machine/assembly language is that most computers can
only do very simple things. For example, suppose you want to tell a computer
to beep 10 times. There's not likely to be a machine instruction to do something
n times. So if you wanted to tell a computer to do something 10 times using
actual machine instructions, you'd have to say something equivalent to:

 put the number 10 in memory location 0
a if location 0 is negative, go to line b
 beep
 subtract 1 from the number in location 0
 go to line a
b ...rest of program...

If you have to do this much work to make the machine beep 10 times, imagine
the labor of writing something like a word processor or a spreadsheet.

And by the way, take another look at the program. Will it actually beep ten
times? Nope, eleven. In the first line I should have said 9 instead of 10. I
deliberately put a bug in our example to illustrate an important point about

languages. The more you have to say to get something done, the harder it is to
see bugs.

10.2. High- Level Languages

Imagine you had to produce assembly language programs, but you had an
assistant to do all the dirty work for you. So you could just write something like

dotimes 10 beep

and your assistant would write the assembly language for you (but without
bugs).

In fact, this is how most programmers do work. Except the assistant isn't a
person, but a compiler . A compiler is a program that translates programs
written in a convenient form, like the one liner above, into the simple- minded
language that the hardware understands.

The more convenient language that you feed to the compiler is called a high-
level language . It lets you build your programs out of powerful commands, like
"do something n times" instead of wimpy ones like "add two numbers."

When you get to build your programs out of bigger concepts, you don't need to
use as many of them. Written in our imaginary high- level language, our
program is only a fifth as long. And if there were a mistake in it, it would be easy
to see.

Another advantage of high- level languages is that they make your programs
more portable . Different computers all have slightly different machine
languages. You cannot, as a rule, take a machine language program written for
one computer and run it on another. If you wrote your programs in machine
language, you'd have to rewrite them all to run them on a new computer. If you
use a high- level language, all you have to rewrite is the compiler.

Compilers aren't the only way to implement high- level languages. You could
also use an interpreter , which examines your program one piece at a time and
executes the corresponding machine language commands, instead of
translating the whole thing into machine language and running that.

10.3. Open Source

The high- level language that you feed to the compiler is also known as source
code , and the machine language translation it generates is called object code .
When you buy commercial software, you usually only get the object code.
(Object code is so hard to read that it is effectively encrypted, thus protecting
the company's trade secrets.) But lately there is an alternative approach: open
source software, where you get the source code as well, and are free to modify it
if you want.

There is a real difference between the two models. Open source gives you a lot
more control. When you're using open source software and you want to
understand what it's doing, you can read the source code and find out. If you
want, you can even change the software and recompile it.

One reason you might want to do that is to fix a bug. You can't fix bugs in
Microsoft Windows, for example, because you don't have the source code. (In
theory you could hack the object code, but in practice this is very hard. It's also
probably forbidden by the license agreement.) This can be a real problem.
When a new security hole is discovered in Windows, you have to wait for
Microsoft to release a fix. And security holes at least get fixed fast. If the bug
merely paralyzes your computer occasionally, you may have to wait till the next
full release for it to be fixed.

But the advantage of open source isn't just that you can fix it when you need to.
It's that everyone can. Open source software is like a paper that has been
subject to peer review. Lots of smart people have examined the source code of
open source operating systems like Linux and FreeBSD and have already found
most of the bugs. Whereas Windows is only as reliable as big-company QA can
make it.

Open source advocates are sometimes seen as wackos who are against the idea
of property in general. A few are. But I'm certainly not against the idea of
property, and yet I would be very reluctant to install software I didn't have the
source code for. The average end user may not need the source code of their
word processor, but when you really need reliability, there are solid
engineering reasons for insisting on open source.

10.4. Language Wars

Most programmers, most of the time, program in high- level languages. Few use
assembly language now. Computer time has become much cheaper, while
programmer time is as expensive as ever, so it's rarely worth the trouble of
writing programs in assembly language. You might do it in a few critical parts
of, say, a computer game, where you wanted to micromanage the hardware to
squeeze out that last increment of speed.

Fortran, Lisp, Cobol, Basic, C, Pascal, Smalltalk, C++, Java, Perl, and Python are
all high- level languages. Those are just some of the better known ones. There
are literally hundreds of different high- level languages. And unlike machine
languages, which all offer similar instruction sets, these high- level languages
give you quite different concepts to build programs out of.

So which one do you use? Ah, well, there is a great deal of disagreement about
that. Part of the problem is that if you use a language for long enough, you start
to think in it. So any language that's substantially different feels terribly
awkward, even if there's nothing intrinsically wrong with it. Inexperienced
programmers' judgements about the relative merits of programming languages
are often skewed by this effect.

Other hackers, perhaps from a desire to seem sophisticated, will tell you that all
languages are basically the same. I've programmed in all kinds of languages,
said the tough old hacker as he eased up to the bar, and it don't matter which
you use. What matters is whether you have the right stuff. Or something along
those lines.

This is nonsense, of course. There is a world of difference between, say, Fortran
I and the latest version of Perl—or for that matter between early versions of Perl
and the latest version of Perl. But the tough old hacker may himself believe
what he's saying. It's possible to write the same primitive Pascal- like programs
in almost every language. If you only ever eat at McDonald's, it will seem that
food is much the same in every country.

Some hackers prefer the language they're used to, and dislike anything else.
Others say that all languages are the same. The truth is somewhere between
these two extremes. Languages do differ, but it's hard to say for certain which
are best. The field is still evolving.

10.5. Abstractness

Just as high- level languages are more abstract than assembly language, some
high- level languages are more abstract than others. For example, C is quite low-
level, almost a portable assembly language, whereas Lisp is very high- level.

If high- level languages are better to program in than assembly language, then
you might expect that the higher- level the language, the better. Ordinarily, yes,
but not always. A language can be very abstract, but offer the wrong
abstractions. I think this happens in Prolog, for example. It has fabulously
powerful abstractions for solving about 2% of problems, and the rest of the time
you're bending over backward to misuse these abstractions to write de facto
Pascal programs.

Another reason you might want to use a lower- level language is efficiency. If
you need code to be super fast, it's better to stay close to the machine. Most
operating systems are written in C, and it is not a coincidence. As hardware gets
faster, there is less pressure to write applications in languages as low-level as C,
but everyone still seems to want operating systems to be as fast as possible. (Or
maybe they want the prospect of buffer- overflow attacks to keep them on their
toes. 1)

10.6. Seat Belts or Handcuffs?

The biggest debate in language design is probably the one between Those who
think that a language should prevent programmers from doing stupid things,
and those who think programmers should be allowed to do whatever they
want. Java is in the former camp, and Perl in the latter. (Not surprisingly, the
DoD is big on Java.)

Partisans of permissive languages ridicule the other sort as "B&D" (bondage
and discipline) languages, with the rather impudent implication that those who
like to program in them are bottoms. I don't know what the other side call
languages like Perl. Perhaps they are not the sort of people to make up amusing
names for the opposition.

The debate resolves into several smaller ones, because there are several ways to
prevent programmers from doing stupid things. One of the more active
questions at the moment is static versus dynamic typing . In a statically- typed
language, you have to know the kind of values each variable can have at the

time you write the program. With dynamic typing, you can set any variable to
any value, whenever you want.

Advocates of static typing argue that it helps to prevent bugs and helps
compilers to generate fast code (both true). Advocates of dynamic typing argue
that static typing restricts what programs you can write (also true). I prefer
dynamic typing. I hate a language that tells me what to do. But some smart
people seem to like static typing, so the question must still be an open one.

10.7. OO

Another big topic at the moment is object- oriented programming. It means a
different way of organizing programs. Suppose you want to write a program to
find the areas of two- dimensional figures. At first it only has to know about
circles and squares. One way to do it would be to write a single piece of code,
within which you test whether you're being asked about a circle or a square,
and then use the corresponding formula to find the area. The object- oriented
way to write this program would be to create two classes , circle and square, and
then attach to each class a snippet of code (called a method) for finding the
area of that type of figure. When you need to find the area of something, you
ask what its class is, retrieve the corresponding method, and run that to get the
answer.

These two cases may sound very similar, and indeed what actually happens
when you run the code is much the same. (Not surprisingly, since you're
solving the same problem.) But the code can end up looking quite different. In
the object- oriented version, the code for finding the areas of squares and circles
may even end up in different files, one part in the file containing all the stuff to
do with circles, and the other in the file containing the stuff to do with squares.

The advantage of the object- oriented approach is that if you want to change the
program to find the area of, say, triangles, you just add another chunk of code
for them, and you don't even have to look at the rest. The disadvantage, critics
would counter, is that adding things without looking at what was already there
tends to produce the same results in programs that it does in buildings.

The debate about object- oriented programming is not as clear- cut as the one
about static versus dynamic typing. With typing you have to choose one or the
other. But the object- orientedness of a language is a matter of degree. Indeed,
there are two senses of object- oriented: some languages are object- oriented in

the sense that they let you program in that style, and others in the sense that
they force you to.

I see little advantage in the latter. Surely a language that lets you do x is at least
as good as one that forces you to. So as regards languages , at least, we can
finesse this question. Sure, use a language that lets you write object- oriented
programs. Whether you ever actually want to then becomes a separate
question.

10.8. Renaissance

One thing I think everyone in the language business will agree on is that there
are a lot of new programming languages lately. Until the 1980s, only
institutions could afford the hardware needed to develop programming
languages, and so most were designed by professors or researchers at large
companies. Now a high school kid can afford all the hardware necessary.

Inspired largely by the example of Larry Wall, the designer of Perl, lots of
hackers are thinking, why can't I design my own language? Those who manage
to harness the power of the open source community can get a lot of code
written for them very quickly.

The result is a kind of language you might call top- heavy: a language whose
inner core is not very well designed, but which has enormously powerful
libraries of code for solving specific problems. (Imagine a Yugo with a jet
engine bolted to the roof.) For the little, everyday problems that programmers
spend so much of their time solving, libraries are probably more important
than the core language. And so these odd hybrids are quite useful, and become
correspondingly popular. A Yugo with a jet engine bolted to the roof might
actually work, as long as you didn't try to take a corner in it. 2

Another result is a great deal of variety. There has always been a lot of variety in
programming languages. Fortran, Lisp, and APL differ from one another as
much as starfish, bears, and dragonflies, and all were designed before 1970. But
the new open source languages have certainly continued this tradition.

I seem to hear about a new language every couple days. Jonathan Erickson has
called it "the programming language renaissance." Another phrase people
sometimes use is "the language wars." But there is no contradiction here. The
Renaissance was full of wars.

Indeed, many historians believe that the wars were a byproduct of the forces
that created the Renaissance. 3 The key to Europe's vigor may have been the
fact that it was divided up into a number of small, competing states. These were
close enough that ideas could travel from one to the other, but independent
enough that no one ruler could put a lid on innovation—as the Chinese court
disastrously did when they forbade the development of large ocean- going
ships.

So it is probably all to the good that programmers live in a post- Babel world. If
we were all using the same language, it would probably be the wrong one.

Chapter 11. The Hundred- Year Language

It's hard to predict what life will be like in a hundred years. There are only a few
things we can say with certainty. We know that everyone will drive flying cars,
that zoning laws will be relaxed to allow buildings hundreds of stories tall, that
it will be dark most of the time, and that women will all be trained in the martial
arts. Here I want to zoom in on one detail of this picture. What kind of
programming language will they use to write the software controlling those
flying cars?

This is worth thinking about not so much because we'll actually get to use these
languages as because, if we're lucky, we'll use languages on the path from this
point to that.

I think that, like species, languages will form evolutionary trees, with dead- ends
branching off all over. We can see this happening already. Cobol, for all its
sometime popularity, does not seem to have any intellectual descendants. It is
an evolutionary dead- end—a Neanderthal language.

I predict a similar fate for Java. People sometimes send me mail saying, "How
can you say that Java won't turn out to be a successful language? It's already a
successful language." And I admit that it is, if you measure success by shelf
space taken up by books on it, or by the number of undergrads who believe
they have to learn it to get a job. When I say Java won't turn out to be a
successful language, I mean something more specific: that Java will turn out to
be an evolutionary dead- end, like Cobol.

This is just a guess. I may be wrong. My point here is not to diss Java, but to
raise the issue of evolutionary trees and get people asking, where on the tree is
language x? The reason to ask this question isn't just so that in a hundred years
our ghosts can say, I told you so. It's because staying close to the main
branches is a useful heuristic for finding languages that will be good to program
in now.

At any given time, you'll probably be happiest on the main branches of an
evolutionary tree. Even when there were still plenty of Neanderthals, it must
have sucked to be one. The Cro- Magnons would have been constantly coming
over and beating you up and stealing your food.

The reason I want to know what languages will be like in a hundred years is so
that I know which branch of the tree to bet on now.

The evolution of languages differs from the evolution of species because
branches can converge. The Fortran branch, for example, seems to be merging
with the descendants of Algol. In theory this is possible for species too, but it's
so unlikely that it has probably never happened.

Convergence is more likely for languages partly because the space of
possibilities is smaller, and partly because mutations are not random.
Language designers deliberately incorporate ideas from other languages.

It's especially useful for language designers to think about where the evolution
of programming languages is likely to lead, because they can steer accordingly.
In that case, "stay on a main branch" becomes more than a way to choose a
good language. It becomes a heuristic for making the right decisions about
language design.

Any programming language can be divided into two parts: some set of
fundamental operators that play the role of axioms, and the rest of the
language, which could in principle be written in terms of these fundamental
operators.

I think the fundamental operators are the most important factor in a language's
long term survival. The rest you can change. It's like the rule that in buying a
house you should consider location first of all. Everything else you can fix later,
but you can't fix the location.

It's important not just that the axioms be well chosen, but that there be few of
them. Mathematicians have always felt this way about axioms—the fewer, the
better—and I think they're onto something.

At the very least, it has to be a useful exercise to look closely at the core of a
language to see if there are any axioms that could be weeded out. I've found in
my long career as a slob that cruft breeds cruft, and I've seen this happen in
software as well as under beds and in the corners of rooms.

I have a hunch that the main branches of the evolutionary tree pass through the
languages that have the smallest, cleanest cores. The more of a language you
can write in itself, the better.

Of course, I'm making a big assumption in even asking what programming
languages will be like in a hundred years. Will we even be writing programs in a
hundred years? Won't we just tell computers what we want them to do?

There hasn't been a lot of progress in that department so far. My guess is that a
hundred years from now people will still tell computers what to do using
programs we would recognize as such. There may be tasks that we solve now by
writing programs and that in a hundred years you won't have to write programs
to solve, but I think there will still be a good deal of programming of the type we
do today.

It may seem presumptuous to think that anyone can predict what any
technology will look like in a hundred years. But remember that we already
have almost fifty years of history behind us. Looking forward a hundred years is
a graspable idea when we consider how slowly languages have evolved in the
past fifty.

Languages evolve slowly because they're not really technologies. Languages are
notation. A program is a formal description of the problem you want a
computer to solve for you. So the rate of evolution in programming languages is
more like the rate of evolution in mathematical notation than, say,
transportation or communications. Mathematical notation does evolve, but not
with the giant leaps you see in technology.

Whatever computers are made of in a hundred years, it seems safe to predict
they will be much faster. If Moore's Law continues to put out, they will be 74
quintillion (73,786,976,294,838,206,464) times faster. That's kind of hard to
imagine. And indeed, the most likely prediction in the speed department may
be that Moore's Law will stop working. Anything that's supposed to double
every eighteen months seems likely to run up against some kind of
fundamental limit eventually. But I have no trouble believing that computers
will be very much faster. Even if they only end up being a paltry million times
faster, that should change the ground rules for programming languages
substantially. Among other things, there will be more room for what would now
be considered slow languages, meaning languages that don't yield very efficient
code.

And yet some applications will still demand speed. Some of the problems we
want to solve with computers are created by computers; for example, the rate at
which you have to process video images depends on the rate at which another
computer can generate them. And there is another class of problems that
inherently have an unlimited capacity to soak up cycles: image rendering,
cryptography, simulations.

If some applications can be increasingly inefficient while others continue to
demand all the speed the hardware can deliver, faster computers will mean that
languages have to cover an ever wider range of efficiencies. We've seen this
happening already. Current implementations of some popular new languages
are shockingly wasteful by the standards of previous decades.

This isn't just something that happens with programming languages. It's a
general historical trend. As technologies improve, each generation can do
things that the previous generation would have considered wasteful. People
thirty years ago would be astonished at how casually we make long distance
phone calls. People a hundred years ago would be even more astonished that a
package would one day travel from Boston to New York via Memphis.

I can already tell you what's going to happen to all those extra cycles that faster
hardware is going to give us in the next hundred years. They're nearly all going
to be wasted.

I learned to program when computer power was scarce. I can remember taking
all the spaces out of my Basic programs so they would fit into the memory of a
4K TRS-80. The thought of all this stupendously inefficient software burning up
cycles doing the same thing over and over seems kind of gross to me. But I
think my intuitions here are wrong. I'm like someone who grew up poor and
can't bear to spend money even for something important, like going to the
doctor.

Some kinds of waste really are disgusting. SUVs, for example, would arguably
be gross even if they ran on a fuel that would never run out and generated no
pollution. SUVs are gross because they're the solution to a gross problem. (How
to make minivans look more masculine.) But not all waste is bad. Now that we
have the infrastructure to support it, counting the minutes of your long
distance calls starts to seem niggling. If you have the resources, it's more
elegant to think of all phone calls as one kind of thing, no matter where the
other person is.

There's good waste, and bad waste. I'm interested in good waste—the kind
where, by spending more, we can get simpler designs. How will we take
advantage of the opportunities to waste cycles that we'll get from new, faster
hardware?

The desire for speed is so deeply ingrained in us, with our puny computers, that
it will take a conscious effort to overcome it. In language design, we should be
consciously seeking out situations where we can trade efficiency for even the
smallest increase in convenience.

Most data structures exist because of speed. For example, many languages
today have both strings and lists. Semantically, strings are more or less a subset
of lists in which the elements are characters. So why do you need a separate
data type? You don't, really. Strings only exist for efficiency. But it's lame to
clutter up the semantics of a language with hacks to make programs run faster.
Having strings in a language seems to be a case of premature optimization.

If we think of the core of a language as a set of axioms, surely it's gross to have
additional axioms that add no expressive power, simply for the sake of
efficiency. Efficiency is important, but I don't think that's the right way to get it.

The right way to solve that problem is to separate the meaning of a program
from the implementation details. Instead of having both lists and strings, have
just lists, with some way to give the compiler optimization advice that will allow
it to lay out strings as contiguous bytes if necessary. 1

Since speed doesn't matter in most of a program, you won't ordinarily need to
bother with this sort of micromanagement. This will be more and more true as
computers get faster.

Saying less about implementation should also make programs more flexible.
Specifications change while a program is being written, and this is not only
inevitable, but desirable.

The word "essay" comes from the French verb "essayer," which means "to try."
An essay, in the original sense, is something you write to try to figure something
out. This happens in software too. I think some of the best programs were

essays, in the sense that the authors didn't know when they started exactly
what they were trying to write.

Lisp hackers already know about the value of being flexible with data
structures. We tend to write the first version of a program so that it does
everything with lists. These initial versions can be so shockingly inefficient that
it takes a conscious effort not to think about what they're doing, just as, for me
at least, eating a steak requires a conscious effort not to think where it came
from.

What programmers in a hundred years will be looking for, most of all, is a
language where you can throw together an unbelievably inefficient version 1 of
a program with the least possible effort. At least, that's how we'd describe it in
present- day terms. What they'll say is that they want a language that's easy to
program in.

Inefficient software isn't gross. What's gross is a language that makes
programmers do needless work. Wasting programmer time is the true
inefficiency, not wasting machine time. This will become ever more clear as
computers get faster.

I think getting rid of strings is already something we could bear to think about.
We did it in Arc, and it seems to be a win; some operations that would be
awkward to describe as regular expressions can be described easily as recursive
functions.

How far will this flattening of data structures go? I can think of possibilities that
shock even me, with my conscientiously broadened mind. Will we get rid of
arrays, for example? After all, they're just a subset of hash tables where the keys
are vectors of integers. Will we replace hash tables themselves with lists?

There are more shocking prospects even than that. Logically, you don't need to
have a separate notion of numbers, because you can represent them as lists: the
integer n could be represented as a list of n elements. You can do math this
way. It's just unbearably inefficient.

Could a programming language go so far as to get rid of numbers as a
fundamental data type? I ask this less as a serious question than as a way to play

chicken with the future. It's like the hypothetical case of an irresistible force
meeting an immovable object—here, an unimaginably inefficient
implementation meeting unimaginably great resources. I don't see why not.
The future is pretty long. If there's something we can do to decrease the
number of axioms in the core language, that would seem the side to bet on as t
approaches infinity. If the idea still seems unbearable in a hundred years,
maybe it won't in a thousand.

Just to be clear about this, I'm not proposing that all numerical calculations
would actually be carried out using lists. I'm proposing that the core language,
prior to any additional notations about implementation, be defined this way. In
practice any program that wanted to do any amount of math would probably
represent numbers in binary, but this would be an optimization, not part of the
core language semantics.

Another way to burn up cycles is to have many layers of software between the
application and the hardware. This too is a trend we see happening already:
many recent languages are compiled into byte code. Bill Woods once told me
that, as a rule of thumb, each layer of interpretation costs a factor of ten in
speed. This extra cost buys you flexibility.

The very first version of Arc was an extreme case of this sort of multi- level
slowness, with corresponding benefits. It was a classic "metacircular"
interpreter written on top of Common Lisp, with a definite family resemblance
to the eval function defined in McCarthy's original Lisp paper. The whole thing
was only a couple hundred lines of code, so it was easy to understand and
change. The Common Lisp we used, CLisp, itself runs on top of a byte code
interpreter. So here we had two levels of interpretation, one of them (the top
one) shockingly inefficient, and the language was usable. Barely usable, I admit,
but usable.

Writing software as multiple layers is a powerful technique even within
applications. Bottom- up programming means writing a program as a series of
layers, each of which serves as a language for the one above. This approach
tends to yield smaller, more flexible programs. It's also the best route to that
holy grail, reusability. A language is by definition reusable. The more of your
application you can push down into a language for writing that type of
application, the more of your software will be reusable.

Somehow the idea of reusability got attached to object- oriented programming
in the 1980s, and no amount of evidence to the contrary seems to be able to

shake it free. But although some object- oriented software is reusable, what
makes it reusable is its bottom- upness, not its object- orientedness. Consider
libraries: they're reusable because they're language, whether they're written in
an object- oriented style or not.

I don't predict the demise of object- oriented programming, by the way. Though
I don't think it has much to offer good programmers, except in certain
specialized domains, it is irresistible to large organizations. Object- oriented
programming offers a sustainable way to write spaghetti code. It lets you
accrete programs as a series of patches. Large organizations always tend to
develop software this way, and I expect this to be as true in a hundred years as
it is today.

As long as we're talking about the future, we had better talk about parallel
computation, because that's where this idea seems to live. At any given time, it
always seems to be something that's going to happen in the future.

Will the future ever catch up with it? People have been talking about parallel
computation as something imminent for at least twenty years, and it hasn't
affected programming practice much so far. Or hasn't it? Already chip
designers have to think about it, and so must people trying to write systems
software on multi- CPU computers.

The real question is, how far up the ladder of abstraction will parallelism go? In
a hundred years will it affect even application programmers? Or will it be
something that compiler writers think about, but which is usually invisible in
the source code of applications?

One thing that does seem likely is that most opportunities for Parallelism will
be wasted. This is a special case of my more general prediction that most of the
extra computer power we're given will go to waste. I expect that, as with the
stupendous speed of the underlying hardware, parallelism will be something
that is available if you ask for it explicitly, but ordinarily not used. This implies
that the kind of parallelism we have in a hundred years will not, except in
special applications, be massive parallelism. I expect for ordinary programmers
it will be more like being able to fork off processes that all end up running in
parallel.

And this will, like asking for specific implementations of data structures, be
something that you do fairly late in the life of a program, when you try to

optimize it. Version 1s will ordinarily ignore any advantages to be got from
parallel computation, just as they will ignore advantages to be got from specific
representations of data.

Except in special kinds of applications, parallelism won't pervade the programs
that are written in a hundred years. It would be premature optimization if it
did.

How many programming languages will there be in a hundred years? There
seem to be a huge number of new programming languages lately. Part of the
reason is that faster hardware has allowed programmers to make different
tradeoffs between speed and convenience, depending on the application. If this
is a real trend, the hardware we'll have in a hundred years should only increase
it.

And yet there may be only a few widely used languages in a hundred years. Part
of the reason I say this is optimism: it seems that, if you did a really good job,
you could make a language that was ideal for writing a slow version 1, and yet
with the right optimization advice to the compiler would also yield fast code
when necessary. So, since I'm optimistic, I'm going to predict that despite the
huge gap they'll have between acceptable and maximal efficiency,
programmers in a hundred years will have languages that can span most of it.

As this gap widens, profilers will become increasingly important. Little
attention is paid to profiling now. Many people still seem to believe that the
way to get fast applications is to write compilers that generate fast code. As the
gap between acceptable and maximal performance widens, it will become
increasingly clear that the way to get fast applications is to have a good guide
from one to the other.

When I say there may only be a few languages, I'm not including domain-
specific "little languages." I think such embedded languages are a great idea,
and I expect them to proliferate. But I expect them to be written as thin enough
skins that users can see the general- purpose language underneath.

Who will design the languages of the future? One of the most exciting trends in
the last ten years has been the rise of open source languages like Perl, Python,
and Ruby. Language design is being taken over by hackers. The results so far
are messy, but encouraging. There are some stunningly novel ideas in Perl, for

example. Many are stunningly bad, but that's always true of ambitious efforts.
At its current rate of mutation, God knows what Perl might evolve into in a
hundred years.

It's not true that those who can't do, teach (some of the best hackers I know are
professors), but it is true that there are a lot of things that those who teach can't
do. Research imposes constraining caste restrictions. In any academic field,
there are topics that are ok to work on and others that aren't. Unfortunately the
distinction between acceptable and forbidden topics is usually based on how
intellectual the work sounds when described in research papers, rather than
how important it is for getting good results. The extreme case is probably
literature; people studying literature rarely say anything that would be of the
slightest use to those producing it.

Though the situation is better in the sciences, the overlap between the kind of
work you're allowed to do and the kind of work that yields good languages is
distressingly small. (Olin Shivers has grumbled eloquently about this.) For
example, types seem to be an inexhaustible source of research papers, despite
the fact that static typing seems to preclude true macros—without which, in my
opinion, no language is worth using.

The trend is not merely toward languages being developed as open source
projects rather than "research," but toward languages being designed by the
application programmers who need to use them, rather than by compiler
writers. This seems a good trend and I expect it to continue.

Unlike physics in a hundred years, which is almost necessarily impossible to
predict, it may be possible in principle to design a language now that would
appeal to users in a hundred years.

One way to design a language is to just write down the program you'd like to be
able to write, regardless of whether there is a compiler that can translate it or
hardware that can run it. When you do this you can assume unlimited
resources. It seems like we ought to be able to imagine unlimited resources as
well today as in a hundred years.

What program would one like to write? Whatever is least work. Except not quite:
whatever would be least work if your ideas about programming weren't already
influenced by the languages you're currently used to. Such influence can be so
pervasive that it takes a great effort to overcome it. You'd think it would be

obvious to creatures as lazy as us how to express a program with the least effort.
In fact, our ideas about what's possible tend to be so limited by whatever
language we think in that easier formulations of programs seem very surprising.
They're something you have to discover, not something you naturally sink into.

One helpful trick here is to use the length of the program as an approximation
for how much work it is to write. Not the length in characters, of course, but the
length in distinct syntactic elements—basically, the size of the parse tree. It
may not be quite true that the shortest program is the least work to write, but
it's close enough that you're better off aiming for the solid target of brevity than
the fuzzy, nearby one of least work. Then the algorithm for language design
becomes: look at a program and ask, is there a shorter way to write this?

In practice, writing programs in an imaginary hundred- year language will work
to varying degrees depending on how close you are to the core. Sort routines
you can write now. But it would be hard to predict now what kinds of libraries
might be needed in a hundred years. Presumably many libraries will be for
domains that don't even exist yet. If SETI@home works, for example, we'll need
libraries for communicating with aliens. Unless of course they are sufficiently
advanced that they already communicate in XML.

At the other extreme, I think you might be able to design the core language
today. In fact, some might argue that it was already mostly designed in 1958.

If the hundred- year language were available today, would we want to program
in it? One way to answer this question is to look back. If present- day
programming languages had been available in 1960, would anyone have
wanted to use them?

In some ways, the answer is no. Languages today assume infrastructure that
didn't exist in 1960. For example, a language in which indentation is significant,
like Python, would not work very well on printer terminals. But putting such
problems aside— assuming, for example, that programs were all just written on
paper—would programmers of the 1960s have liked writing programs in the
languages we use now?

I think so. Some of the less imaginative ones, who had artifacts of early
languages built into their ideas of what a program was, might have had trouble.
(How can you manipulate data without doing pointer arithmetic? How can you
implement flowcharts without gotos?) But I think the smartest programmers

would have had no troublemaking the most of present- day languages, if they'd
had them.

If we had the hundred- year language now, it would at least make a great
pseudocode. What about using it to write software? Since the hundred- year
language will need to generate fast code for some applications, presumably it
could generate code efficient enough to run acceptably well on our hardware.
We might have to give more optimization advice than users in a hundred years,
but it still might be a net win.

Now we have two ideas that, if you combine them, suggest interesting
possibilities: (1) the hundred- year language could, in principle, be designed
today, and (2) such a language, if it existed, might be good to program in today.
When you see these ideas laid out like that, it's hard not to think, why not try
writing the hundred- year language now?

When you're working on language design, I think it's good to have such a target
and to keep it consciously in mind. When you learn to drive, one of the
principles they teach you is to align the car not by lining up the hood with the
stripes painted on the road, but by aiming at some point in the distance. Even if
all you care about is what happens in the next ten feet, this is the right answer. I
think we should do the same thing with programming languages.

Chapter 12. Beating the Averages

In 1995 Robert Morris and I started a startup called Viaweb. Our plan was to
write software that would let end users build online stores. What was novel
about this software, at the time, was that it ran on our server, using ordinary
Web pages as the interface.

A lot of people could have been having this idea at the same time, of course, but
as far as I know, Viaweb was the first Web based application. It seemed such a
novel idea to us that we named the company after it: Viaweb, because our
software worked via the Web, instead of running on your desktop computer.

Another unusual thing about this software was that it was written primarily in a
programming language called Lisp. 1 It was one of the first big end- user
applications to be written in Lisp, which up till then had been used mostly in
universities and research labs.

12.1. The Secret Weapon

Eric Raymond has written an essay called "How to Become a Hacker," and in it,
among other things, he tells would- be hackers what languages they should
learn. He suggests starting with Python and Java, because they are easy to learn.
The serious hacker will also want to learn C, in order to hack Unix, and Perl for
system administration and CGI scripts. Finally, the truly serious hacker should
consider learning Lisp:

Lisp is worth learning for the profound enlightenment experience you will have
when you finally get it; that experience will make you a better programmer for
the rest of your days, even if you never actually use Lisp itself a lot.

This is the same argument you tend to hear for learning Latin. It won't get you a
job, except perhaps as a classics professor, but it will improve your mind, and
make you a better writer in languages you do want to use, like English.

But wait a minute. This metaphor doesn't stretch that far. The reason Latin
won't get you a job is that no one speaks it. If you write in Latin, no one can
understand you. But Lisp is a computer language, and computers speak
whatever language you, the programmer, tell them to.

So if Lisp makes you a better programmer, like he says, why wouldn't you want
to use it? If a painter were offered a brush that would make him a better painter,
it seems to me that he would want to use it in all his paintings, wouldn't he? I'm
not trying to make fun of Eric Raymond here. On the whole, his advice is good.
What he says about Lisp is pretty much the conventional wisdom. But there is a
contradiction in the conventional wisdom: Lisp will make you a better
programmer, and yet you won't use it.

Why not? Programming languages are just tools, after all. If Lisp really does
yield better programs, you should use it. And if it doesn't, then who needs it?

This is not just a theoretical question. Software is a very competitive business,
prone to natural monopolies. A company that gets software written faster and
better will, all other things being equal, put its competitors out of business. And
when you're starting a startup, you feel this keenly. Startups tend to be an all or
nothing proposition. You either get rich, or you get nothing. In a startup, if you
bet on the wrong technology, your competitors will crush you.

Robert and I both knew Lisp well, and we couldn't see any reason not to trust
our instincts and use it. We knew that everyone else was writing their software
in C++ or Perl. But we also knew that that didn't mean anything. If you chose
technology that way, you'd be running Windows. When you choose
technology, you have to ignore what other people are doing, and consider only
what will work best.

Figure 12-1. With Robert Morris, Viaweb, early 1996.

This is especially true in a startup. In a big company, you can do what all the
other big companies are doing. But a startup can't do what all the other
startups do. I don't think a lot of people realize this, even in startups.

The average big company grows at about ten percent a year. So if you're
running a big company and you do everything the way the average big
company does it, you can expect to do as well as the average big company—
that is, to grow about ten percent a year.

The same thing will happen if you're running a startup, of course. If you do
everything the way the average startup does it, you should expect average
performance. The problem here is, average performance means you'll go out of
business. The survival rate for startups is way less than fifty percent. So if you're
running a startup, you had better be doing something odd. If not, you're in
trouble.

Back in 1995, we knew something that I don't think our competitors
understood, and few understand even now: when you're writing software that
only has to run on your own servers, you can use any language you want. When
you're writing desktop software, there's a strong bias toward writing
applications in the same language as the operating system. Ten years ago,
writing applications meant writing applications in C. But with Web-based
software, especially when you have the source code of both the language and
the operating system, you can use whatever language you want.

This new freedom is a double- edged sword, however. Now that you can use any
language, you have to think about which one to use. Companies that try to
pretend nothing has changed risk finding that their competitors do not.

If you can use any language, which do you use? We chose Lisp. For one thing, it
was obvious that rapid development would be important in this market. We
were all starting from scratch, so a company that could get new features done
before its competitors would have a big advantage. We knew Lisp was a really
good language for writing software quickly, and server- based applications
magnify the effect of rapid development, because you can release software the
minute it's done.

If other companies didn't want to use Lisp, so much the better. It might give us
a technological edge, and we needed all the help we could get. When we started

Viaweb, we had no experience in business. We didn't know anything about
marketing, or hiring people, or raising money, or getting customers. Neither of
us had ever even had what you would call a real job. The only thing we were
good at was writing software. We hoped that would save us. Any advantage we
could get in the software department, we would take.

So you could say that using Lisp was an experiment. Our hypothesis was that if
we wrote our software in Lisp, we'd be able to get features done faster than our
competitors, and also to do things in our software that they couldn't do. And
because Lisp was so high- level, we wouldn't need a big development team, so
our costs would be lower. If this were so, we could offer a better product for less
money, and still make a profit. We would end up getting all the users, and our
competitors would get none, and eventually go out of business. That was what
we hoped would happen, anyway.

What were the results of this experiment? Somewhat surprisingly, it worked. We
eventually had many competitors, about twenty to thirty of them, but none of
their software could compete with ours. We had a wysiwyg online store builder
that ran on the server and yet felt like a desktop application. Our competitors
had CGI scripts. And we were always far ahead of them in features. Sometimes,
in desperation, competitors would try to introduce features that we didn't have.
But with Lisp our development cycle was so fast that we could sometimes
duplicate a new feature within a day or two of a competitor announcing it in a
press release. By the time journalists covering the press release got round to
calling us, we would have the new feature too.

It must have seemed to our competitors that we had some kind of secret
weapon—that we were decoding their Enigma traffic or something. In fact we
did have a secret weapon, but it was simpler than they realized. No one was
leaking news of their features to us. We were just able to develop software faster
than anyone thought possible.

When I was about nine I happened to get hold of a copy of The Day of the
Jackal, by Frederick Forsyth. The main character is an assassin who is hired to
kill the president of France. The assassin has to get past the police to get up to
an apartment that overlooks the president's route. He walks right by them,
dressed up as an old man on crutches, and they never suspect him.

Our secret weapon was similar. We wrote our software in a weird AI language,
with a bizarre syntax full of parentheses. For years it had annoyed me to hear
Lisp described that way. But now it worked to our advantage. In business, there

is nothing more valuable than a technical advantage your competitors don't
understand. In business, as in war, surprise is worth as much as force.

And so, I'm a little embarrassed to say, I never said anything publicly about Lisp
while we were working on Viaweb. We never mentioned it to the press, and if
you searched for Lisp on our web site, all you'd find were the titles of two books
in my bio. This was no accident. A startup should give its competitors as little
information as possible. If they didn't know what language our software was
written in, or didn't care, I wanted to keep it that way. 2

The people who understood our technology best were the customers. They
didn't care what language Viaweb was written in either, but they noticed that it
worked really well. It let them build great looking online stores literally in
minutes. And so, by word of mouth mostly, we got more and more users. By the
end of 1996 we had about 70 stores online. At the end of 1997 we had 500. Six
months later, when Yahoo bought us, we had 1070 users. Today, as Yahoo
Store, this software continues to dominate its market. It's one of the more
profitable pieces of Yahoo, and the stores built with it are the foundation of
Yahoo Shopping. I left Yahoo in 1999, so I don't know exactly how many users
they have now, but the last I heard there were over 20,000.

12.2. The Blub Paradox

What's so great about Lisp? And if Lisp is so great, why doesn't everyone use it?
These sound like rhetorical questions, but actually they have straightforward
answers. Lisp is so great not because of some magic quality visible only to
devotees, but because it is simply the most powerful language available. And
the reason everyone doesn't use it is that programming languages are not
merely technologies, but habits of mind as well, and nothing changes slower.
Of course, both these answers need explaining.

I'll begin with a shockingly controversial statement: programming languages
vary in power.

Few would dispute, at least, that high- level languages are more powerful than
machine language. Most programmers today would agree that you do not,
ordinarily, want to program in machine language. Instead, you should program
in a high- level language, and have a compiler translate it into machine
language for you. This idea is even built into the hardware now: since the 1980s,
instruction sets have been designed for compilers rather than human
programmers.

Everyone knows it's a mistake to write your whole program by hand in machine
language. What's less often understood is that there is a more general principle
here: that if you have a choice of several languages, it is, all other things being
equal, a mistake to program in anything but the most powerful one. 3

There are many exceptions to this rule. If you're writing a program that has to
work closely with a program written in a certain language, it might be a good
idea to write the new program in the same language. If you're writing a
program that only has to do something simple, like number crunching or bit
manipulation, you may as well use a less abstract language, especially since it
may be slightly faster. And if you're writing a short, throwaway program, you
may be better off just using whatever language has the best libraries for the
task. But in general, for application software, you want to be using the most
powerful (reasonably efficient) language you can get, and using anything else is
a mistake, of exactly the same kind, though possibly in a lesser degree, as
programming in machine language.

You can see that machine language is very low-level. But, at least as a kind of
social convention, high- level languages are often all treated as equivalent.
They're not. Technically the term "high- level language" doesn't mean anything
very definite. There's no dividing line with machine languages on one side and
all the high- level languages on the other. Languages fall along a continuum of
abstractness, 4 from the most powerful all the way down to machine languages,
which themselves vary in power.

Consider Cobol. Cobol is a high- level language, in the sense that it gets
compiled into machine language. Would anyone seriously argue that Cobol is
equivalent in power to, say, Python? It's probably closer to machine language
than Python.

Or how about Perl 4? Between Perl 4 and Perl 5, lexical closures got added to the
language. Most Perl hackers would agree that Perl 5 is more powerful than Perl
4. But once you've admitted that, you've admitted that one high- level language
can be more powerful than another. And it follows inexorably that, except in
special cases, you ought to use the most powerful you can get.

This idea is rarely followed to its conclusion, though. After a certain age,
programmers rarely switch languages voluntarily. Whatever language people
happen to be used to, they tend to consider just good enough.

Programmers get very attached to their favorite languages, and I don't want to
hurt anyone's feelings, so to explain this point I'm going to use a hypothetical
language called Blub. Blub falls right in the middle of the abstractness
continuum. It is not the most powerful language, but it is more powerful than
Cobol or machine language.

And in fact, our hypothetical Blub programmer wouldn't use either of them. Of
course he wouldn't program in machine language. That's what compilers are
for. And as for Cobol, he doesn't know how anyone can get anything done with
it. It doesn't even have x (Blub feature of your choice).

As long as our hypothetical Blub programmer is looking down the power
continuum, he knows he's looking down. Languages less powerful than Blub
are obviously less powerful, because they are missing some feature he's used
to. But when our hypothetical Blub programmer looks in the other direction,
up the power continuum, he doesn't realize he's looking up. What he sees are
merely weird languages. He probably considers them about equivalent in
power to Blub, but with all this other hairy stuff thrown in as well. Blub is good
enough for him, because he thinks in Blub.

When we switch to the point of view of a programmer using any of the
languages higher up the power continuum, however, we find that he in turn
looks down upon Blub. How can you get anything done in Blub? It doesn't even
have y.

By induction, the only programmers in a position to see all the differences in
power between the various languages are those who understand the most
powerful one. (This is probably what Eric Raymond meant about Lisp making
you a better programmer.) You can't trust the opinions of the others, because
of the Blub paradox: they're satisfied with whatever language they happen to
use, because it dictates the way they think about programs.

I know this from my own experience, as a high school kid writing programs in
Basic. That language didn't even support recursion. It's hard to imagine writing
programs without using recursion, but I didn't miss it at the time. I thought in
Basic. And I was a whiz at it. Master of all I surveyed.

The five languages that Eric Raymond recommends to hackers fall at various
points on the power continuum. Where they fall relative to one another is a
sensitive topic. What I will say is that I think Lisp is at the top. And to support
this claim I'll tell you about one of the things I find missing when I look at the

other four languages. How can you get anything done in them, I think, without
macros? 5

Many languages have something called a macro. But Lisp macros are unique.
And believe it or not, what they do is related to the parentheses. The designers
of Lisp didn't put all those parentheses in the language just to be different. To
the Blub programmer, Lisp code looks weird. But those parentheses are there
for a reason. They are the outward evidence of a fundamental difference
between Lisp and other languages.

Lisp code is made out of Lisp data objects. And not in the trivial sense that the
source files contain characters, and strings are one of the data types supported
by the language. Lisp code, after it's read by the parser, is made of data
structures that you can traverse.

If you understand how compilers work, what's really going on is not so much
that Lisp has a strange syntax as that Lisp has no syntax. You write programs in
the parse trees that get generated within the compiler when other languages are
parsed. But these parse trees are fully accessible to your programs. You can
write programs that manipulate them. In Lisp, these programs are called
macros. They are programs that write programs.

Programs that write programs? When would you ever want to do that? Not very
often, if you think in Cobol. All the time, if you think in Lisp. It would be
convenient here if I could give an example of a powerful macro, and say, there!
how about that? But if I did, it would just look like gibberish to someone who
didn't know Lisp; there isn't room here to explain everything you'd need to
know to understand what it meant. In Ansi Common Lisp I tried to move things
along as fast as I could, and even so I didn't get to macros until halfway through
Chapter 11.

But I think I can give a kind of argument that might be convincing. The source
code of the Viaweb editor was probably about 20-25% macros. Macros are
harder to write than ordinary Lisp functions, and it's bad style to use them
when they're not necessary. So every macro in that code is there because it has
to be. What that means is that at least 20-25% of the code in this program is
doing things that you can't easily do in any other language. However skeptical
the Blub programmer might be about my claims for the mysterious powers of
Lisp, this ought to make him curious. We weren't writing this code for our own
amusement. We were a tiny startup, programming as hard as we could in order
to put technical barriers between us and our competitors.

A suspicious person might begin to wonder if there was some correlation here.
A big chunk of our code was doing things that are hard to do in other
languages. The resulting software did things our competitors' software couldn't
do. Maybe there was some kind of connection. I encourage you to follow that
thread. There may be more to that old man hobbling along on his crutches than
meets the eye.

12.3. Aikido for Startups

But I don't expect to convince anyone (over 25) to go out and learn Lisp. My
purpose here is not to change anyone's mind, but to reassure people already
interested in using Lisp—people who know that Lisp is a powerful language,
but worry because it isn't widely used. In a competitive situation, that's an
advantage. Lisp's power is multiplied by the fact that your competitors don't
get it.

If you think of using Lisp in a startup, you shouldn't worry that it isn't widely
understood. You should hope that it stays that way. And it's likely to. It's the
nature of programming languages to make most people satisfied with whatever
they currently use. Computer hardware changes so much faster than personal
habits that programming practice is usually ten to twenty years behind the
processor. At places like MIT they were writing programs in high- level
languages in the early 1960s, but many companies continued to write code in
machine language well into the 1980s. I bet a lot of people continued to write
machine language until the processor, like a bartender eager to close up and go
home, finally kicked them out by switching to a RISC instruction set.

Ordinarily technology changes fast. But programming languages are different:
programming languages are not just technology, but what programmers think
in. They're half technology and half religion. 6 And so the median language,
meaning whatever language the median programmer uses, moves as slow as an
iceberg. Garbage collection, introduced by Lisp in about 1960, is now widely
considered to be a good thing. Dynamic typing, ditto, is growing in popularity.
Lexical closures, introduced by Lisp in the early 1960s, are now, just barely, on
the radar screen. Macros, introduced by Lisp in the mid 1960s, are still terra
incognita.

Obviously, the median language has enormous momentum. I'm not proposing
that you can fight this powerful force. What I'm proposing is exactly the
opposite: that, like a practitioner of Aikido, you can use it against your
opponents.

If you work for a big company, this may not be easy. You will have a hard time
convincing the pointy- haired boss to let you build things in Lisp, when he has
just read in the paper that some other language is poised, like Ada was twenty
years ago, to take over the world. But if you work for a startup that doesn't have
pointy haired bosses yet, you can, like we did, turn the Blub paradox to your
advantage: you can use technology that your competitors, glued immovably to
the median language, will never be able to match.

If you ever do find yourself working for a startup, here's a handy tip for
evaluating competitors. Read their job listings. Everything else on their site may
be stock photos or the prose equivalent, but the job listings have to be specific
about what they want, or they'll get the wrong candidates.

During the years we worked on Viaweb I read a lot of job descriptions. A new
competitor seemed to emerge out of the woodwork Every month or so. The first
thing I would do, after checking to see if they had a live online demo, was look
at their job listings. After a couple years of this I could tell which companies to
worry about and which not to. The more of an IT flavor the job descriptions
had, the less dangerous the company was. The safest kind were the ones that
wanted Oracle experience. You never had to worry about those. You were also
safe if they said they wanted C++ or Java developers. If they wanted Perl or
Python programmers, that would be a bit frightening—that's starting to sound
like a company where the technical side, at least, is run by real hackers. If I had
ever seen a job posting looking for Lisp hackers, I would have been really
worried.

Chapter 13. Revenge of the Nerds

In the software business there is an ongoing struggle between the pointy-
headed academics, and another equally formidable force, the pointy- haired
bosses. I believe everyone knows who the pointy- haired boss is. 1 I think most
people in the technology world not only recognize this cartoon character, but
know the actual person in their company that he is modelled upon.

The pointy- haired boss miraculously combines two qualities that are common
by themselves, but rarely seen together: (a) he knows nothing whatsoever about
technology, and (b) he has very strong opinions about it.

Suppose, for example, you need to write a piece of software. The pointy- haired
boss has no idea how this software has to work and can't tell one programming
language from another, and yet he knows what language you should write it in.
Exactly. He thinks you should write it in Java.

Why does he think this? Let's take a look inside the brain of the pointy- haired
boss. What he's thinking is something like this. Java is a standard. I know it
must be, because I read about it in the press all the time. Since it is a standard, I
won't get in trouble for using it. And that also means there will always be lots of
Java programmers, so if those working for me now quit, as programmers
working for me mysteriously always do, I can easily replace them.

Well, this doesn't sound that unreasonable. But it's all based on one unspoken
assumption, and that assumption turns out to be false. The pointy- haired boss
believes that all programming languages are pretty much equivalent. If that
were true, he would be right on target. If languages are all equivalent, sure, use
whatever language everyone else is using.

But all languages are not equivalent, and I think I can prove this to you without
even getting into the differences between them. If you asked the pointy- haired
boss in 1992 what language software should be written in, he would have
answered with as little hesitation as he does today. Software should be written
in C++. But if languages are all equivalent, why should the pointy- haired boss's
opinion ever change? In fact, why should the developers of Java have even
bothered to create a new language?

Presumably, if you create anew language, it's because you think it's better in
some way than what people already had. And in fact, Gosling makes it clear in
the first Java white paper that Java was designed to fix some problems with C++.
So there you have it: languages are not all equivalent. If you follow the trail
through the pointy- haired boss's brain to Java and then back through Java's
history to its origins, you end up holding an idea that contradicts the
assumption you started with.

So, who's right? James Gosling, or the pointy- haired boss? Not surprisingly,
Gosling is right. Some languages are better, for certain problems, than others.
And you know, that raises some interesting questions. Java was designed to be
better, for certain problems, than C++. What problems? When is Java better and
when is C++? Are there situations where other languages are better than either
of them?

Once you start considering this question, you've opened a real can of worms. If
the pointy- haired boss had to think about the problem in its full complexity, it
would make his head explode. As long as he considers all languages equivalent,
all he has to do is choose the one that seems to have the most momentum, and
since that's more a question of fashion than technology, even he can probably
get the right answer. But if languages vary, he suddenly has to solve two
simultaneous equations, trying to find an optimal balance between two things
he knows nothing about: the relative suitability of the twenty or so leading
languages for the problem he needs to solve, and the odds of finding
programmers, libraries, etc. for each. If that's what's on the other side of the
door, it is no surprise that the pointy- haired boss doesn't want to open it.

The disadvantage of believing that all programming languages are equivalent is
that it's not true. But the advantage is that it makes your life a lot simpler. And I
think that's the main reason the idea is so widespread. It is a comfortable idea.

We know that Java must be pretty good, because it is the cool, new
programming language. Or is it? If you look at the world of programming
languages from a distance, it looks like Java is the latest thing. (From far enough
away, all you can see is the large, flashing billboard paid for by Sun.) But if you
look at this world up close, you find there are degrees of coolness. Within the
hacker subculture, there is another language called Perl that is considered a lot
cooler than Java. Slashdot, for example, is generated by Perl. I don't think you
would find those guys using Java Server Pages. But there is another, newer
language, called Python, whose users tend to look down on Perl, and another
called Ruby that some see as the heir apparent of Python.

If you look at these languages in order, Java, Perl, Python, Ruby, you notice an
interesting pattern. At least, you notice this pattern if you are a Lisp hacker.
Each one is progressively more like Lisp. Python copies even features that many
Lisp hackers consider to be mistakes. And if you'd shown people Ruby in 1975
and described it as a dialect of Lisp with syntax, no one would have argued with
you. Programming languages have almost caught up with 1958.

13.1. Catching Up with Math

What I mean is that Lisp was first discovered by John McCarthy in 1958, and
popular programming languages are only now catching up with the ideas he
developed then.

Now, how could that be true? Isn't computer technology something that
changes very rapidly? In1958, computers were refrigerator- sized behemoths
with the processing power of a wristwatch. 2 How could any technology that old
even be relevant, let alone superior to the latest developments?

Figure 13-1. IBM 704, Lawrence Livermore, 1956.

I'll tell you how. It's because Lisp was not really designed to be a programming
language, at least not in the sense we mean today. What we mean by a
programming language is something we use to tell a computer what to do.
McCarthy did eventually intend to develop a programming language in this
sense, but the Lisp we actually ended up with was based on something separate

that he did as a theoretical exercise—an effort to define a more convenient
alternative to the Turing machine. As McCarthy said later,

Another way to show that Lisp was neater than Turing machines was to write a
universal Lisp function and show that it is briefer and more comprehensible
than the description of a universal Turing machine. This was the Lisp function
eval..., which computes the value of a Lisp expression....Writing eval required
inventing a notation representing Lisp functions as Lisp data, and such a
notation was devised for the purposes of the paper with no thought that it
would be used to express Lisp programs in practice.

Figure 13-2. Alpha nerd: John McCarthy.

But in late1958, Steve Russell, 3 one of McCarthy's grad students, looked at this
definition of eval and realized that if he translated it into machine language, the
result would be a Lisp interpreter.

This was a big surprise at the time. Here is what McCarthy said about it later:

Steve Russell said, look, why don't I program this eval..., and I said to him, ho,
ho, you're confusing theory with practice, this eval is intended for reading, not

for computing. But he went ahead and did it. That is, he compiled the eval in
my paper into[IBM] 704machine code, fixing bugs, and then advertised this as a
Lisp interpreter, which it certainly was. So at that point Lisp had essentially the
form that it has today....

Suddenly, in a matter of weeks, McCarthy found his theoretical exercise
transformed into an actual programming language—and a more powerful one
than he had intended.

So the short explanation of why this 1950s language is not obsolete is that it was
not technology but math, and math doesn't get stale. The right thing to
compare Lisp to is not 1950s hardware but the Quick sort algorithm, which was
discovered in 1960 and is still the fastest general- purpose sort.

There is one other language still surviving from the 1950s, Fortran, and it
represents the opposite approach to language design. Lisp was a piece of theory
that unexpectedly got turned into a programming language. Fortran was
developed intentionally as a programming language, but what we would now
consider a very low- level one.

Fortran I, the language that was developed in 1956, was a very different animal
from present- day Fortran. Fortran I was pretty much assembly language with
math. In some ways it was less powerful than more recent assembly languages;
there were no subroutines, for example, only branches. Present- day Fortran is
now arguably closer to Lisp than to Fortran I.

Lisp and Fortran were the trunks of two separate evolutionary trees, one rooted
in math and one rooted in machine architecture. These two trees have been
converging ever since. Lisp started out powerful, and over the next twenty years
got fast. So-called mainstream languages started out fast, and over the next
forty years gradually got more powerful, until now the most advanced of them
are fairly close to Lisp. Close, but they are still missing a few things.

13.2. What Made Lisp Different

When it was first developed, Lisp embodied nine new ideas. Some of these we
now take for granted, others are only seen in more advanced languages, and
two are still unique to Lisp. The nine ideas are, in order of their adoption by the
mainstream,

1. Conditionals. A conditional is an if-then- else construct. We take these for
granted now, but Fortran I didn't have them. It had only a conditional go
to closely based on the underlying machine instruction.

2. A function type. In Lisp, functions are a data type just like integers or
strings. They have a literal representation, can be stored in variables, can
be passed as arguments, and so on.

3. Recursion. Lisp was the first high- level language to support recursive
functions. 4

4. Dynamic typing. In Lisp, all variables are effectively pointers. Values are
what have types, not variables, and assigning values to variables means
copying pointers, not what they point to.

5. Garbage- collection.

6. Programs composed of expressions. Lisp programs are trees of
expressions, each of which returns a value. This is in contrast to Fortran
and most succeeding languages, which distinguish between expressions
and statements.

This distinction was natural in Fortran I because you could not nest
statements. So while you needed expressions for math to work, there was
no point in making anything else return a value, because there could not
be anything waiting for it.

This limitation went away with the arrival of block- structured languages,
but by then it was too late. The distinction between expressions and
statements was entrenched. It spread from Fortran into Algol and then to
both their descendants.

7. A symbol type. Symbols are effectively pointers to strings stored in a
hash table. So you can test equality by comparing a pointer, instead of
comparing each character.

8. A notation for code using trees of symbols and constants.

9. The whole language there all the time. There is no real distinction
between read- time, compile- time, and runtime. You can compile or run
code while reading, read or run code while compiling, and read or
compile code at runtime.

Running code at read- time lets users reprogram Lisp's syntax; running
code at compile- time is the basis of macros; compiling at runtime is the
basis of Lisp's use as an extension language in programs like Emacs; and
reading at runtime enables programs to communicate using s-
expressions, an idea recently reinvented as XML. 5

When Lisp first appeared, these ideas were far removed from ordinary
programming practice, which was dictated largely by the hardware available in
the late 1950s. Over time, the default language, embodied in a succession of
popular languages, has gradually evolved toward Lisp. Ideas 1-5 are now
widespread. Number 6 is starting to appear in the mainstream. Python has a
form of 7, though there doesn't seem to be any syntax for it.

As for number 8, this may be the most interesting of the lot. Ideas 8and 9 only
became part of Lisp by accident, because Steve Russell implemented
something McCarthy had never intended to be implemented. And yet these
ideas turn out to be responsible for both Lisp's strange appearance and its most
distinctive features. Lisp looks strange not so much because it has a strange
syntax as because it has no syntax; you express programs directly in the parse
trees that get built behind the scenes when other languages are parsed, and
these trees are made of lists, which are Lisp data structures.

Expressing the language in its own data structures turns out to be a very
powerful feature. Ideas 8 and 9 together mean that you can write programs that
write programs. That may sound like a bizarre idea, but it's an everyday thing in
Lisp. The most common way to do it is with something called a macro .

The term "macro" does not mean in Lisp what it means in other languages. A
Lisp macro can be anything from an abbreviation to a compiler for a new
language. If you really want to understand Lisp, or just expand your
programming horizons, I would learn more about macros.

Macros (in the Lisp sense) are still, as far as I know, unique to Lisp. This is
partly because in order to have macros you probably have to make your
language look as strange as Lisp. It may also be because if you do add that final

increment of power, you can no longer claim to have invented a new language,
but only a new dialect of Lisp.

I mention this mostly as a joke, but it is quite true. If you define a language that
has car, cdr, cons, quote, cond, atom, eq, and a notation for functions
expressed as lists, then you can build all the rest of Lisp out of it. That is in fact
the defining quality of Lisp: it was in order to make this so that McCarthy gave
Lisp the shape it has.

13.3. Where Languages Matter

Even if Lisp does represent a kind of limit that mainstream languages are
approaching asymptotically, does that mean you should actually use it to write
software? How much do you lose by using a less powerful language? Isn't it
wiser, sometimes, not to be at the very edge of innovation? And isn't popularity
to some extent its own justification? Isn't the pointy- haired boss right, for
example, to want to use a language for which he can easily hire programmers?

There are, of course, projects where the choice of programming language
doesn't matter much. As a rule, the more demanding the application, the more
leverage you get from using a powerful language. But plenty of projects are not
demanding at all. Most programming probably consists of writing little glue
programs, and for little glue programs you can use any language that you're
already familiar with and that has good libraries for whatever you need to do. If
you just need to feed data from one Windows app to another, sure, use Visual
Basic.

You can write little glue programs in Lisp too (I use it as a desktop calculator),
but the biggest win for languages like Lisp is at the other end of the spectrum,
where you need to write sophisticated programs to solve hard problems in the
face of fierce competition. A good example is the airline fare search program
that ITA Software licenses to Orbitz. These guys entered a market already
dominated by two big, entrenched competitors, Travelocity and Expedia, and
seem to have just humiliated them technologically.

The core of ITA's application is a 200,000-line Common Lisp program that
searches many orders of magnitude more possibilities than their competitors,
who apparently are still using mainframe- era programming techniques. I have
never seen any of ITA's code, but according to one of their top hackers they use
a lot of macros, and I am not surprised to hear it.

13.4. Centripetal Forces

I'm not saying there is no cost to using uncommon technologies. The pointy-
haired boss is not completely mistaken to worry about this. But because he
doesn't understand the risks, he tends to magnify them.

I can think of three problems that could arise from using less common
languages. Your programs might not work well with programs written in other
languages. You might have fewer libraries at your disposal. And you might have
trouble hiring programmers.

How big a problem is each of these? The importance of the first varies
depending on whether you have control over the whole system. If you're
writing software that has to run on a remote user's machine on top of a buggy,
proprietary operating system (I mention no names), there may be advantages
to writing your application in the same language as the OS. But if you control
the whole system and have the source code of all the parts, as ITA presumably
does, you can use whatever languages you want. If any incompatibility arises,
you can fix it yourself.

In server- based applications you can get away with using the most advanced
technologies, and I think this is the main cause of what Jonathan Erickson calls
the "programming language renaissance." This is why we even hear about new
languages like Perl and Python. We're not hearing about these languages
because people are using them to write Windows apps, but because people are
using them on servers. And as software shifts off the desktop and onto servers
(a future even Microsoft seems resigned to), there will be less and less pressure
to use middle- of-the- road technologies.

As for libraries, their importance also depends on the application. For less
demanding problems, the availability of libraries can outweigh the intrinsic
power of the language. Where is the breakeven point? Hard to say exactly, but
wherever it is, it is short of anything you'd be likely to call an application. If a
company considers it self to be in the software business, and they're writing an
application that will be one of their products, then it will probably involve
several hackers and take at least six months to write. In a project of that size,
powerful languages probably start to outweigh the convenience of pre- existing
libraries.

The third worry of the pointy- haired boss, the difficulty of hiring programmers,
I think is a red herring. How many hackers do you need to hire, after all? Surely

13.5. The Cost of Being Average

How much do you lose by using a less powerful language? There is actually
some data out there about that.

The most convenient measure of power is probably code size. The point of
high- level languages is to give you bigger abstractions—bigger bricks, as it
were, so you don't need as many to build a wall of a given size. So the more
powerful the language, the shorter the program (not simply in characters, of
course, but in distinct elements).

How does a more powerful language enable you to write shorter programs?
One technique you can use, if the language will let you, is something called
bottom- up programming. Instead of simply writing your application in the
base language, you build on top of the base language a language for writing
programs like yours, then write your program in it. The combined code can be
much shorter than if you had written your whole program in the base language
—indeed, this is how most compression algorithms work. A bottom- up
program should be easier to modify as well, because in many cases the
language layer won't have to change at all.

Code size is important, because the time it takes to write a program depends
mostly on its length. If your program would be three times as long in another
language, it will take three times as long to write—and you can't get around this
by hiring more people, because beyond a certain size new hires are actually a
net lose. Fred Brooks described this phenomenon in his famous book The
Mythical Man- Month , and everything I've seen has tended to confirm what he
said.

So how much shorter are your programs if you write them in Lisp? Most of the
numbers I've heard for Lisp versus C, for example, have been around 7-10x. But
a recent article about ITA in New Architect magazine said that "one line of Lisp
can replace 20 lines of C," and since this article was full of quotes from ITA's
president, I assume they got this number from ITA. 6 If so then we can put some
faith in it; ITA's software includes a lot of C and C++ as well as Lisp, so they are
speaking from experience.

My guess is that these multiples aren't even constant. I think they increase
when you face harder problems and also when you have smarter programmers.
A really good hacker can squeeze more out of better tools.

As one data point on the curve, at any rate, if you were to compete with ITA and
chose to write your software in C, they would be able to develop software
twenty times faster than you. If you spent a year on a new feature, they'd be
able to duplicate it in less than three weeks. Whereas if they spent just three
months developing something new, it would be five years before you had it too.

And you know what? That's the best- case scenario. When you talk about code-
size ratios, you're implicitly assuming that you can actually write the program
in the weaker language. But in fact there are limits on what programmers can
do. If you're trying to solve a hard problem with a language that's too low-level,
you reach a point where there is just too much to keep in your head at once.

So when I say it would take ITA's imaginary competitor five years to duplicate
something ITA could write in Lisp in three months, I mean five years if nothing
goes wrong. In fact, the way things work in most companies, any development
project that would take five years is likely never to get finished at all.

I admit this is an extreme case. ITA's hackers seem to be unusually smart, and C
is a pretty low-level language. But in a competitive market, even a differential of
two or three to one would be enough to guarantee that you'd always be behind.

13.6. A Recipe

This is the kind of possibility that the pointy- haired boss doesn't even want to
think about. And so most of them don't. Because, you know, when it comes
down to it, the pointy- haired boss doesn't mind if his company gets their ass
kicked, so long as no one can prove it's his fault. The safest plan for him
personally is to stick close to the center of the herd.

Within large organizations, the phrase used to describe this approach is
"industry best practice." Its purpose is to shield the pointy- haired boss from
responsibility: if he chooses something that is "industry best practice," and the
company loses, he can't be blamed. He didn't choose, the industry did.

I believe this term was originally used to describe accounting methods and so
on. What it means, roughly, is don't do anything weird . And in accounting
that's probably a good idea. The terms "cutting- edge" and "accounting" do not
sound good together. But when you import this criterion into decisions about
technology, you start to get the wrong answers.

Technology often should be cutting- edge. In programming languages, as Erann
Gat has pointed out, what "industry best practice" actually gets you is not the
best, but merely the average. When a decision causes you to develop software
at a fraction of the rate of more aggressive competitors, "best practice" does not
really seem the right name for it.

So here we have two pieces of information that I think are very valuable. In fact,
I know it from my own experience. Number 1, languages vary in power.
Number 2, most managers deliberately ignore this. Between them, these two
facts are literally a recipe for making money. ITA is an example of this recipe in
action. If you want to win in a software business, just take on the hardest
problem you can find, use the most powerful language you can get, and wait for
your competitors' pointy- haired bosses to revert to the mean.

13.7. Appendix: Power

As an illustration of what I mean about the relative power of programming
languages, consider the following problem. We want to write a function that
generates accumulators—a function that takes a number n ,and returns a
function that takes another number i and returns n incremented by i. (That's
incremented by, not plus. An accumulator has to accumulate.)

In Common Lisp 7 this would be:

(defun foo (n)
 (lambda (i) (incf n i)))

In Ruby it's almost identical:

def foo (n)
 lambda {|i| n += i } end

Whereas in Perl 5 it's

sub foo {
 my ($n) = @_;
 sub {$n += shift}
}

which has more elements than the Lisp/Ruby version because you have to
extract parameters manually in Perl.

In Smalltalk the code is also slightly longer than in Lisp and Ruby:

foo: n
 |s|
 s := n.
 ^[:i| s := s+i.]

because although in general lexical variables work, you can't do an assignment
to a parameter, so you have to create a new variable s to hold the accumulated
value.

In Javascript the example is, again, slightly longer, because Javascript retains
the distinction between statements and expressions, so you need explicit
return statements to return values:

function foo (n) {
 return function (i) {
 return n += i } }

(To be fair, Perl also retains this distinction, but deals with it in typical Perl
fashion by letting you omit returns.)

If you try to translate the Lisp/Ruby/Perl /Smalltalk/Javascript code into Python
you run into some limitations. Because Python doesn't fully support lexical
variables, you have to create a data structure to hold the value of n . And
although Python does have a function data type, there is no literal
representation for one (unless the body is only a single expression) so you need
to create a named function to return. This is what you end up with:

def foo (n):
 s = [n]
 def bar (i):
 s[0] += i
 return s[0]
 return bar

Python users might legitimately ask why they can't just write

def foo (n):
 return lambda i: return n += i

or even

def foo (n):
 lambda i: n += i

and my guess is that they probably will, one day. (But if they don't want to wait
for Python to evolve the rest of the way into Lisp, they could always just...)

In OO languages, you can, to a limited extent, simulate a closure (a function
that refers to variables defined in surrounding code) by defining a class with
one method and a field to replace each variable from an enclosing scope. This
makes the programmer do the kind of code analysis that would be done by the
compiler in a language with full support for lexical scope, andit won't work if
more than one function refers to the same variable, but it is enough in simple
cases like this.

Python experts seem to agree that this is the preferred way to solve the problem
in Python, writing either

def foo (n):
 class acc:
 def _ _init_ _ (self, s):
 self.s = s
 def inc (self, i):
 self.s += i
 return self.s
 return acc (n).inc

or

class foo:
 def _ _init_ _ (self, n):
 self.n = n
 def _ _call_ _ (self, i):
 self.n += i
 return self.n

I include these because I wouldn't want Python advocates to say I was
misrepresenting the language, but both seem to me more complex than the
first version. You're doing the same thing, setting up a separate place to hold
the accumulator; it's just a field in an object instead of the head of a list. And
the use of these special, reserved field names, especially _ _call_ _, seems a bit
of a hack.

In the rivalry between Perl and Python, the claim of the Python hackers seems
to be that Python is a more elegant alternative to Perl, but what this case shows
is that power is the ultimate elegance: the Perl program is simpler (has fewer
elements), even if the syntax is a bit uglier.

How about other languages? In the other languages mentioned here—Fortran,
C, C++, Java, and Visual Basic—it does not appear that you can solve this
problem at all. Ken Anderson says this is about as close as you can get in Java:

public interface Inttoint {
 public int call (int i);
}

public static Inttoint foo (final int n) {
 return new Inttoint () {
 int s = n;
 public int call (int i) {
 s = s + i;
 return s;
 }};
}

which falls short of the spec because it only works for integers.

It's not literally true that you can't solve this problem in other languages, of
course. The fact that all these languages are Turing- equivalent means that,
strictly speaking, you can write any program in any of them. So how would you
do it? In the limit case, by writinga Lisp interpreter in the less powerful
language.

That sounds like a joke, but it happens so often to varying degrees in large
programming projects that there is a name for the phenomenon, Greenspun's
Tenth Rule:

Any sufficiently complicated C or Fortran program contains an ad hoc
informally- specified bug- ridden slow implementation of half of Common Lisp.

If you try to solve a hard problem, the question is not whether you will use a
powerful enough language, but whether you will (a) use a powerful language,
(b) write a de facto interpreter for one, or (c) yourself become a human
compiler for one. We see this already beginning to happen in the Python

example, where we are in effect simulating the code that a compiler would
generate to implement a lexical variable.

This practice is not only common, but institutionalized. For example, in the OO
world you hear a good deal about "patterns." I wonder if these patterns are not
sometimes evidence of case (c), the human compiler, at work. 8 When I see
patterns in my programs, I consider it a sign of trouble. The shape of a program
should reflect only the problem it needs to solve. Any other regularity in the
code is a sign, to me at least, that I'm using abstractions that aren't powerful
enough—often that I'm generating by hand the expansions of some macro that
I need to write.

Chapter 14. The Dream Language

Of all tyrannies, a tyranny exercised for the good of its victims may be the most
oppressive.

C. S. LEWIS

A friend of mine once told an eminent operating systems expert that he wanted
to design a really good programming language. The expert said that itwould be
a waste of time, that programming languages don't become popular or
unpopular based on their merits, and so no matter how good his language was,
no one would use it. At least, that was what had happened to the language he
had designed.

What does make a language popular? Do popular languages deserve their
popularity? Is it worth trying to define a good programming language? How
would you do it?

I think the answers to these questions can be found by looking at hackers, and
learning what they want. Programming languages are for hackers, and a
programming language is good as a programming language (rather than, say,
an exercise in denotational semantics or compiler design) if and only if hackers
like it.

14.1. The Mechanics of Populari ty

It's true, certainly, that most people don't choose programming languages
simply based on their merits. Most programmers are told what language to use
by someone else. And yet I think the effect of such external factors on the
popularity of programming languages is not as great as it's sometimes thought
to be. I think a bigger problem is that a hacker's idea of a good programming
language is not the same as most language designers'.

Between the two, the hacker's opinion is the one that matters. Programming
languages are not theorems. They're tools, designed for people, and they have
to be designed to suit human strengths and weaknesses as much as shoes have
to be designed for human feet. If a shoe pinches when you put it on, it's a bad
shoe, however elegant it may be as a piece of sculpture.

It may be that the majority of programmers can't tell a good language from a
bad one. But that's no different with any other tool. It doesn't mean that it's a
waste of time to try designing a good language. Expert hackers can tell a good
language when they see one, and they'll use it. Expert hackers are a tiny
minority, admittedly, but that tiny minority write all the good software, and
their influence is such that the rest of the programmers will tend to use
whatever language they use. Often, indeed, it is not merely influence but
command: often the expert hackers are the very people who, as their bosses or
faculty advisors, tell the other programmers what language to use.

The opinion of expert hackers is not the only force that determines the relative
popularity of programming languages—legacy software (Fortran, Cobol) and
hype (Ada, Java) also play a role—but I think it is the most powerful force over
the long term. Given an initial critical mass and enough time, a programming
language probably becomes about as popular as it deserves to be. And
popularity further separates good languages from bad ones, because feedback
from real live users always leads to improvements. Look at how much any
popular language has changed during its life. Perl and Fortran are extreme
cases, but even Lisp has changed a lot.

So whether or not a language has to be good to be popular, I think a language
has to be popular to be good. And it has to stay popular to stay good. The state
of the art in programming languages doesn't stand still. Though there is little
change in the depths of the sea, in core language features, there is quite a lot up
on the surface, in things like libraries and environments.

Of course, hackers have to know about a language before they can use it. How
are they to hear? From other hackers. But there has to be some initial group of
hackers using the language for others even to hear about it. I wonder how large
this group has to be; how many users make a critical mass? Off the top of my
head, I'd say twenty. If a language had twenty separate users, meaning twenty
users who decided on their own to use it, I'd consider it to be real.

Getting there can't be easy. I would not be surprised if it is harder to get from
zero to twenty than from twenty to a thousand. The best way to get those initial
twenty users is probably a trojan horse: give people an application they want,
which happens to be written in the new language.

14.2. External Factors

Let's start by acknowledging one external factor that does affect the popularity
of a programming language. To become popular, a programming language has
to be the scripting language of a popular system. Fortran and Cobol were the
scripting languages of early IBM mainframes. C was the scripting language of
Unix, and so, later, were Perl and Python. Tcl is the scripting language of Tk,
Visual Basic of Windows, (a form of) Lisp of Emacs, PHP of web servers, and
Java and Javascript of web browsers.

Programming languages don't exist in isolation. To hack is a transitive verb—
hackers are usually hacking something—and in practice languages are judged
relative to whatever they're used to hack. So if you want to design a popular
language, you either have to supply more than a language, or you have to
design your language to replace the scripting language of some existing system.

One way to describe this situation is to say that a language isn't judged on its
own merits. Another view is that a programming language really isn't a
programming language unless it's also the scripting language of something.
This only seems unfair if it comes as a surprise. I think it's no more unfair than
expecting a programming language to have, say, an implementation. It's just
part of what a programming language is.

A programming language does need a good implementation, of course, and this
must be free. Companies will pay for software, but individual hackers won't,
and it's the hackers you need to attract.

A language also needs to have a book about it. The book should be thin, well-
written, and full of good examples. Kernighan and Ritchie's C Programming
Language is the ideal here. At the moment I'd almost say that a language has to
have a book published by O'Reilly. That's becoming the test of mattering to
hackers.

There should be online documentation as well. In fact, the book can start as
online documentation. But physical books aren't obsolete yet. Their format is
convenient, and the de facto censorship imposed by publishers is a useful if
imperfect filter. Bookstores are one of the most important places for learning
about new languages.

14.3. Succinctness

Given that you can supply the three things any language needs—a free
implementation, a book, and something to hack—how do you make a language
that hackers will like?

One thing hackers like is succinctness. Hackers are lazy, in the same way that
mathematicians and modernist architects are lazy: they hate anything
extraneous. It would not be far from the truth to say that a hacker about to write
a program decides what language to use, at least subconsciously, based on the
total number of characters he'll have to type. If this isn't precisely how hackers
think, a language designer would do well to act as if it were.

The most important kind of succinctness comes from making the language
more abstract. It is to get this that we use highlevel languages in the first place.
So it would seem that the more of it you can get, the better. A language designer
should always be looking at programs and asking, is there some way to express
this in fewer tokens? If you can do something that makes many different
programs shorter, it's probably not a coincidence: you've probably discovered
a useful new abstraction.

It's a mistake to try to baby the user with long- winded expressions meant to
resemble English. Cobol is notorious for this flaw. A hacker would consider
being asked to write

add x to y giving z

instead of

z = x + y

as something between an insult to his intelligence and a sin against God.

Succinctness is one place where statically typed languages lose. All other things
being equal, no one wants to begin a program with a bunch of declarations.
Anything that can be implicit, should be. The amount of boilerplate in a Java
hello- world program is almost enough evidence, by itself, to convict. 1

Individual tokens should be short as well. Perl and Common Lisp occupy
opposite poles on this question. Perl programs can be cryptically dense, while

the names of built- in Common Lisp operators are comically long. The
designers of Common Lisp probably expected users to have text editors that
would type these long names for them. But the cost of a long name is not just
the cost of typing it. There is also the cost of reading it, and the cost of the space
it takes up on your screen.

14.4. Hackability

There is one thing more important than succinctness to a hacker: being able to
do what you want. In the history of programming languages, a surprising
amount of effort has gone into preventing programmers from doing things
considered to be improper. This is a dangerously presumptuous plan. How can
the language designer know what the programmer will need to do? I think
language designers would do better to consider their target user to be a genius
who will need to do things they never anticipated, rather than a bumbler who
needs to be protected from himself. The bumbler will shoot himself in the foot
anyway. You may save him from referring to variables in another module, but
you can't save him from writing a badly designed program to solve the wrong
problem, and taking forever to do it.

Good programmers often want to do dangerous and unsavory things. By
unsavory I mean things that go behind whatever semantic facade the language
is trying to present: getting hold of the internal representation of some high-
level abstraction, for example. Hackers like to hack, and hacking means getting
inside things and second- guessing the original designer.

Let yourself be second- guessed . When you make any tool, people use it in ways
you didn't intend, and this is especially true of a highly articulated tool like a
programming language. Many a hacker will want to tweak your semantic model
in a way that you never imagined. I say, let them. Give the programmer access
to as much internal stuff as you can.

A hacker may only want to subvert the intended model of things once or twice
in a big program. But what a difference it makes to be able to. And it may be
more than a question of just solving a problem. There is a kind of pleasure here
too. Hackers share the surgeon's secret pleasure in poking about in gross
innards, the teenager's secret pleasure in popping zits. 2 For boys, at least,
certain kinds of horrors are fascinating. Maxim magazine publishes an annual
volume of photographs, containing a mix of pin- ups and grisly accidents. They
know their audience.

A really good language should be both clean and dirty: cleanly designed, with a
small core of well understood and highly orthogonal operators, but dirty in the
sense that it lets hackers have their way with it. C is like this. So were the early
Lisps. A real hacker's language will always have a slightly raffish character.

A good programming language should have features that make the kind of
people who use the phrase "software engineering" shake their heads
disapprovingly. At the other end of the continuum are languages like Pascal,
models of propriety that are good for teaching and not much else.

14.5. Throwaway Programs

To be attractive to hackers, a language must be good for writing the kinds of
programs they want to write. And that means, perhaps surprisingly, that it has
to be good for writing throwaway programs.

A throwaway program is a program you write quickly for some limited task: a
program to automate some system administration task, or generate test data for
a simulation, or convert data from one format to another. The surprising thing
about throwaway programs is that, like the "temporary" buildings built at so
many American universities during World War II, they often don't get thrown
away. Many evolve into real programs, with real features and real users.

I have a hunch that the best big programs begin life this way, rather than being
designed big from the start, like the Hoover Dam. It's terrifying to build
something big from scratch. When people take on a project that's too big, they
become overwhelmed. The project either gets bogged down, or the result is
sterile and wooden: a shopping mall rather than a real downtown, Brasilia
rather than Rome, Ada rather than C.

Another way to get a big program is to start with a throwaway program and
keep improving it. This approach is less daunting, and the design of the
program benefits from evolution. Programs that did evolve this way are
probably still written in whatever language they were first written in, because
it's rare for a program to be ported, except for political reasons. And so,
paradoxically, if you want to make a language that is used for big systems, you
have to make it good for writing throwaway programs, because that's where big
systems come from.

Perl is a striking example of this idea. It was not only designed for writing
throwaway programs, but was pretty much a throwaway program itself. Perl
began life as a collection of utilities for generating reports, and only evolved
into a programming language as the throwaway programs people wrote in it
grew larger. It was not until Perl 5 (if then) that the language was suitable for
writing serious programs, and yet it was already massively popular.

What makes a language good for throwaway programs? To start with, it must be
readily available. A throwaway program is something you expect to write in an
hour. So the language probably must already be installed on the computer
you're using. It can't be something you have to install before you use it. It has to
be there. C was there because it came with the operating system. Perl was there
because it was originally a tool for system administrators, and yours had
already installed it.

Being available means more than being installed, though. An interactive
language, with a command- line interface, is more available than one that you
have to compile and run separately. A popular programming language should
be interactive, and start up fast.

Another thing you want in a throwaway program is succinctness. This is always
attractive to hackers, and never more so than in a program they expect to turn
out in an hour.

14.6. Libraries

Of course the ultimate in succinctness is to have the program already written
for you, and merely to call it. And this brings us to what I think will be an
increasingly important feature of programming languages: libraries. Perl wins
because it has large libraries for manipulating strings. This class of library
function is especially important for throwaway programs, which are often
originally written for converting or extracting data. Many Perl programs
probably begin as just a couple library calls stuck together.

I think a lot of the advances that happen in programming languages in the next
fifty years will have to do with library functions. I think future programming
languages will have libraries that are as carefully designed as the core language.
Programming language design will not be about whether to make your
language statically or dynamically typed, or object- oriented, or functional, or
whatever, so much as about how to design great libraries. The kind of language
designers who like to think about how to design type systems may shudder at

this. It's almost like writing applications! Well, too bad. Languages are for
programmers, and libraries are what programmers need.

It's hard to design good libraries. It's not simply a matter of writing a lot of
code. Once the libraries get too big, it can sometimes take longer to find the
function you need than to write it yourself. Libraries need to be designed using
a small set of orthogonal operators, just like the core language. It ought to be
possible for the programmer to guess what library call will do what he needs.

14.7. Efficiency

A good language, as everyone knows, should generate fast code. But in practice
I don't think fast code comes primarily from things you do in the design of the
language. As Knuth pointed out long ago, speed only matters in certain critical
bottlenecks. And as many programmers have observed since, one is often
mistaken about where these bottlenecks are.

So, in practice, the way to get fast code is to have a good profiler, rather than by,
say, making the language statically typed. You don't need to know the type of
every argument in every call in the program. You do need to be able to declare
the types of arguments in the bottlenecks. And even more, you need to be able
to find out where the bottlenecks are.

One complaint people have had with very high level languages like Lisp is that
it's hard to tell what's expensive. This might be true. It might also be inevitable,
if you want to have a very abstract language. And in any case I think good
profiling would go a long way toward fixing the problem: you'd soon learn what
was expensive.

Part of the problem here is social. Language designers like to write fast
compilers. That's how they measure their skill. They think of the profiler as an
add- on, at best. But in practice a good profiler may do more to improve the
speed of actual programs written in the language than a compiler that
generates fast code. Here, again, language designers are somewhat out of touch
with their users. They do a really good job of solving slightly the wrong
problem.

It might be a good idea to have an active profiler—to push performance data to
the programmer instead of waiting for him to ask for it. For example, the editor
could display bottlenecks in red when the programmer edits the source code.

Another approach would be to somehow represent what's happening in
running programs. This would be an especially big win in server- based
applications, where you have lots of running programs to look at. An active
profiler could show graphically what's happening in memory as a program's
running, or even make sounds that tell what's happening.

Sound is a good cue to problems. At Viaweb we had a big board of dials
showing what was happening to our web servers. The hands were moved by
little servomotors that made a slight noise when they turned. I couldn't see the
board from my desk, but I found that I could tell immediately, by the sound,
when there was a problem with a server.

It might even be possible to write a profiler that would automatically detect
inefficient algorithms. I would not be surprised if certain patterns of memory
access turned out to be sure signs of bad algorithms. If there were a little guy
running around inside the computer executing our programs, he would
probably have as long and plaintive a tale to tell about his job as a federal
government employee. I often have a feeling that I'm sending the processor on
a lot of wild goose chases, but I've never had a good way to look at what it's
doing.

A number of languages now compile into byte code, which is then executed by
an interpreter. This is usually done to make the implementation easier to port,
but it could be a useful language feature. It might be a good idea to make the
byte code an official part of the language, and to allow programmers to use
inline byte code in bottlenecks. Then such optimizations would be portable
too.

The nature of speed, as perceived by the end user, may be changing. With the
rise of server- based applications, more and more programs may turn out to be
I/O- bound. It will be worth making I/O fast. The language can help with
straight forward measures like simple, fast, formatted output functions, and
also with deep structural changes like caching and persistent objects.

Users are interested in response time. But another kind of efficiency will be
increasingly important: the number of simultaneous users you can support per
processor. Many of the interesting applications written in the future will be
server- based, and the number of users per server is the critical question for
anyone hosting such applications. In the capital cost of a business offering a
server- based application, this is the divisor.

For years, efficiency hasn't mattered much inmost end- user applications.
Developers have been able to assume that users would have increasingly fast
processors sitting on their desks. And Parkinson's Law has proven as powerful
as Moore's. Software has bloated to consume the resources available. That will
change with server- based applications, because hardware and software will be
supplied together. For companies that offer server- based applications, it will
make a big difference to the bottom line how many users they can support per
server.

In some applications, the processor will be the limiting factor, and execution
speed will be the most important thing to optimize. But often memory will be
the limit; the number of simultaneous users will be determined by the amount
of memory you need for each user's data. The language can help here too.
Good support for threads will enable all the users to share a single heap. It may
also help to have persistent objects and/or language- level support for lazy
loading.

14.8. Time

The last ingredient a popular language needs is time. No one wants to write
programs in a language that might go away, as so many programming
languages do. So most hackers will tend to wait until a language has been
around for a couple years before even considering it.

Inventors of wonderful new things are often surprised to discover this, but you
need time to get any message through to people. A friend of mine rarely does
anything the first time someone asks him. He knows that people sometimes ask
for things they turn out not to want. To avoid wasting his time, he waits till the
third or fourth time he's asked to do something. By then whoever's asking him
may be fairly annoyed, but at least they probably really do want whatever
they're asking for.

Most people have learned to do a similar sort of filtering on new things they
hear about. They don't even start paying attention until they've heard about
something ten times. They're perfectly justified: the majority of hot new
whatevers do turn out to be a waste of time, and eventually go away. By
delaying learning VRML, I avoided having to learn it at all.

So anyone who invents something new has to expect to keep repeating their
message for years before people will start to get it. It took us years to get it
through to people that Viaweb's software didn't have to be downloaded. The

good news is, simple repetition solves the problem. All you have to do is keep
telling your story, and eventually people will start to hear. It's not when people
notice you're there that they pay attention; it's when they notice you're still
there.

It's just as well that it usually takes a while to gain momentum. Most
technologies evolve a good deal even after they're first launched—
programming languages especially. Nothing could be better for a new
technology than a few years of being used only by a small number of early
adopters. Early adopters are sophisticated and demanding, and quickly flush
out whatever flaws remain in your technology. When you only have a few users
you can be in close contact with all of them. And early adopters are forgiving
when you improve your system, even if this causes some breakage.

There are two ways new technology gets introduced: the organic growth
method, and the big bang method. The organic growth method is exemplified
by the classic seat- of-the- pants underfunded garage startup. A couple guys,
working in obscurity, develop some new technology. They launch it with no
marketing and initially have only a few (fanatically devoted) users. They
continue to improve the technology, and meanwhile their user base grows by
word of mouth. Before they know it, they're big.

The other approach, the big bang method, is exemplified by the VC-backed,
heavily marketed startup. They rush to develop a product, launch it with great
publicity, and immediately (they hope) have a large user base.

Generally, the garage guys envy the big bang guys. The big bang guys are
smooth and confident and respected by the VCs. They can afford the best of
everything, and the PR campaign surrounding the launch has the side effect of
making them celebrities. The organic growth guys, sitting in their garage, feel
poor and unloved. And yet I think they are often mistaken to feel sorry for
themselves. Organic growth seems to yield better technology and richer
founders than the big bang method. If you look at the dominant technologies
today, you'll find that most of them grew organically.

This pattern doesn't only apply to companies. You see it in research too.
Multics and Ada were big-bang projects, and Unix and C were organic growth
projects.

14.9. Redesign

"The best writing is rewriting," wrote E. B. White. Every good writer knows this,
and it's true for software too. The most important part of design is redesign.
Programming languages, especially, don't get redesigned enough.

To write good software you must simultaneously keep two opposing ideas in
your head. You need the young hacker's naive faith in his abilities, and at the
same time the veteran's skepticism. You have to be able to think how hard can
it be ? with one half of your brain while thinking it will never work with the
other.

The trick is to realize that there's no real contradiction here. You want to be
optimistic and skeptical about two different things. You have to be optimistic
about the possibility of solving the problem, but skeptical about the value of
whatever solution you've got so far.

People who do good work often think that whatever they're working on is no
good. Others see what they've done and think it's wonderful, but the creator
sees nothing but flaws. This pattern is no coincidence: worry made the work
good.

If you can keep hope and worry balanced, they will drive a project forward the
same way your two legs drive a bicycle forward. In the first phase of the two-
cycle innovation engine, you work furiously on some problem, inspired by your
confidence that you'll be able to solve it. In the second phase, you look at what
you've done in the cold light of morning, and see all its flaws very clearly. But as
long as your critical spirit doesn't outweigh your hope, you'll be able to look at
your admittedly incomplete system and think, how hard can it be to get the rest
of the way?

It's tricky to keep the two forces balanced. In young hackers, optimism
predominates. They produce something, are convinced it's great, and never
improve it. In old hackers, skepticism predominates, and they won't even dare
to take on ambitious projects.

Anything you can do to keep the redesign cycle going is good. Prose can be
rewritten over and over until you're happy with it. But software, as a rule,
doesn't get redesigned enough. Prose has readers, but software has users. If a
writer rewrites an essay, people who read the new version are unlikely to

complain that their thoughts have been broken by some newly introduced
incompatibility.

Users are a double- edged sword. They can help you improve your language,
but they can also deter you from improving it. So choose your users carefully,
and be slow to grow their number. Having users is like optimization: the wise
course is to delay it. Also, as a general rule, you can at any given time get away
with changing more than you think. Introducing change is like pulling off a
bandage: the pain is a memory almost as soon as you feel it.

Everyone knows it's not a good idea to have a language designed by a
committee. Committees yield bad design. But I think the worst danger of
committees is that they interfere with redesign . It's so much work to introduce
changes that no one wants to bother. Whatever a committee decides tends to
stay that way, even if most of the members don't like it.

Even a committee of two gets in the way of redesign. This happens particularly
in the interfaces between pieces of software written by two different people. To
change the interface both have to agree to change it at once. And so interfaces
tend not to change at all, which is a problem because they tend to be one of the
most ad hoc parts of any system.

One solution here might be to design systems so that interfaces are horizontal
instead of vertical—so that modules are always vertically stacked strata of
abstraction. Then the interface will tend to be owned by one of them. The lower
of two levels will either be a language in which the upper is written, in which
case the lower level will own the interface, or it will be a slave, in which case the
interface can be dictated by the upper level.

14.10. The Dream Language

By way of summary, let's try describing the hacker's dream language. The
dream language is clean and terse. It has an interactive top level that starts up
fast. 3 You can write programs to solve common problems with very little code.
Nearly all the code in any program you write is code that's specific to your
application. Everything else has been done for you.

The syntax of the language is brief to a fault. You never have to type an
unnecessary character, or even use the Shift key much.

Using big abstractions you can write the first version of a program very quickly.
Later, when you want to optimize, there's a really good profiler that tells you
where to focus your attention. You can make inner loops blindingly fast, even
writing inline byte code if you need to.

There are lots of good examples to learn from, and the language is intuitive
enough that you can learn how to use it from examples in a couple minutes.
You don't need to look in the manual much. The manual is thin, and has few
warnings and qualifications.

The language has a small core, and powerful, highly orthogonal libraries that
are as carefully designed as the core language. The libraries all work well
together; everything in the language fits together like the parts in a fine camera.
Nothing is deprecated or retained for compatibility. The source code of all the
libraries is readily available. It's easy to talk to the operating system and to
applications written in other languages.

The language is built in layers. The higher- level abstractions are built in a
transparent way out of lower- level abstractions, which you can get hold of if
you want.

Nothing is hidden from you that doesn't absolutely have to be. The language
offers abstractions only as a way of saving you work, rather than as a way of
telling you what to do. In fact, the language encourages you to be an equal
participant in its design. You can change everything about it, including even its
syntax, and anything you write has, as much as possible, the same status as
what comes predefined. The dream language is not only open source, but open
design.

Chapter 15. Design and Research

Visitors to this country are often surprised to find that Americans like to begin a
conversation by asking "what do you do?" I've never liked this question. I've
rarely had a neat answer to it. But I think I have finally solved the problem.
Now, when someone asks me what I do, I look them straight in the eye and say,
"I'm designing a new dialect of Lisp." I recommend this answer to anyone who
doesn't like being asked what they do. The conversation will turn immediately
to other topics.

I don't consider myself to be doing research on programming languages. I'm
just designing one, in the same way that someone might design a building or a
chair or a new typeface. I'm not trying to discover anything new. I just want to
make a language that will be good to program in.

The difference between design and research seems to be a question of new
versus good. Design doesn't have to be new, but it has to be good. Research
doesn't have to be good, but it has to be new. I think these two paths converge
at the top: the best design surpasses its predecessors by using new ideas, and
the best research solves problems that are not only new, but worth solving. So
ultimately design and research are aiming for the same destination, just
approaching it from different directions.

What do you do differently when you treat programming languages as a design
problem instead of a research topic?

The biggest difference is that you focus more on the user. Design begins by
asking, who is this for and what do they need from it? A good architect, for
example, does not begin by creating a design that he then imposes on the users,
but by studying the intended users and figuring out what they need.

Notice I said "what they need," not "what they want." I don't mean to give the
impression that working as a designer means working as a sort of short- order
cook, making whatever the client tells you to. This varies from field to field in
the arts, but I don't think there is any field in which the best work is done by the
people who just make exactly what the customers tell them to.

The customer is always right in the sense that the measure of good design is
how well it works for the user. If you make a novel that bores everyone, or a
chair that's horribly uncomfortable to sit in, then you've done a bad job,
period. It's no defense to say that the novel or chair is designed according to the
most advanced theoretical principles.

And yet, making what works for the user doesn't mean simply making what the
user tells you to. Users don't know what all the choices are, and are often
mistaken about what they really want. It's like being a doctor. You can't just
treat a patient's symptoms. When a patient tells you his symptoms, you have to
figure out what's actually wrong with him, and treat that.

This focus on the user is a kind of axiom from which most of the practice of
good design can be derived, and around which most design issues center.

When I say that design must be for users, I don't mean to imply that good
design aims at some kind of lowest common denominator. You can pick any
group of users you want. If you're designing a tool, for example, you can design
it for anyone from beginners to experts, and what's good design for one group
might be bad for another. The point is, you have to pick some group of users. I
don't think you can even talk about good or bad design except with reference to
some intended user.

You're most likely to get good design if the intended users include the designer
himself. When you design something for a group that doesn't include you, it
tends to be for people you consider less sophisticated than you, not more
sophisticated. And looking down on the user, however benevolently, always
seems to corrupt the designer. I suspect few housing projects in the US were
designed by architects who expected to live in them. You see the same thing in
programming languages. C, Lisp, and Smalltalk were created for their own
designers to use. Cobol, Ada, and Java were created for other people to use.

If you think you're designing something for idiots, odds are you're not
designing something good, even for idiots.

Even if you're designing something for the most sophisticated users, though,
you're still designing for humans. It's different in research. In math you don't
choose abstractions because they're easy for humans to understand; you
choose whichever make the proof shorter. I think this is true for the sciences
generally. Scientific ideas are not meant to be ergonomic.

Over in the arts, things are different. Design is all about people. The human
body is a strange thing, but when you're designing a chair, that's what you're
designing for, and there's no way around it. All the arts have to pander to the
interests and limitations of humans. In painting, for example, all other things
being equal a painting with people in it will be more interesting than one
without. It is not merely an accident of history that the great paintings of the
Renaissance are all full of people. If they hadn't been, painting as a medium
wouldn't have the prestige it does.

Like it or not, programming languages are also for people, and I suspect the
human brain is just as lumpy and idiosyncratic as the human body. Some ideas
are easy for people to grasp and some aren't. For example, we seem to have a
very limited capacity for dealing with detail. It's this fact that makes
programming languages a good idea in the first place; if we could handle the
detail, we could just program in machine language.

Remember, too, that languages are not primarily a form for finished programs,
but something that programs have to be developed in. Anyone in the arts could
tell you that you might want different mediums for the two situations. Marble,
for example, is a nice, durable medium for finished ideas, but a hopelessly
inflexible one for developing new ideas.

A program, like a proof, is a pruned version of a tree that in the past has had
false starts branching off all over it. So the test of a language is not simply how
clean the finished program looks in it, but how clean the path to the finished
program was. A design choice that gives you elegant finished programs may not
give you an elegant design process. For example, I've written a few macro
defining macros that look now like little gems, but writing them took hours of
the ugliest trial and error, and frankly, I'm still not entirely sure they're correct.

We often act as if the test of a language were how good finished programs look
in it. It seems so convincing when you see the same program written in two
languages, and one version is much shorter. When you approach the problem
from the direction of the arts, you're less likely to depend on this sort of test.
You don't want to end up with a programming language like marble.

For example, it is a huge win in developing software to have an interactive
toplevel, what in Lisp is called a read- eval-print loop. And when you have one,
this has real effects on the design of the language. It would not work well for a
language where you have to declare variables before using them. When you're
just typing expressions into the toplevel, you want to be able to set x to some
value and then start doing things to x. You don't want to have to declare the
type of x first. You may dispute either of the premises, but if a language has to
have a toplevel to be convenient, and mandatory type declarations are
incompatible with a toplevel, then no language that makes type declarations
mandatory could be convenient to program in.

To get good design you have to get close, and stay close, to your users. You have
to calibrate your ideas on actual users constantly. One of the reasons Jane
Austen's novels are so good is that she read them out loud to her family. That's

why she never sinks into self-indulgently arty descriptions of landscapes, or
pretentious philosophizing. (The philosophy's there, but it's woven into the
story instead of being pasted onto it like a label.) If you open an average
"literary" novel and imagine reading it out loud to your friends as something
you'd written, you'll feel all too keenly what an imposition that kind of thing is
upon the reader.

In the software world, this idea is known as Worse is Better. Actually, there are
several ideas mixed together in the concept of Worse is Better, which is why
people are still arguing about whether worse is actually better or not. But one of
the main ideas in that mix is that if you're building something new, you should
get a prototype in front of users as soon as possible.

The alternative approach might be called the Hail Mary strategy. Instead of
getting a prototype out quickly and gradually refining it, you try to create the
complete, finished product in one long touchdown pass. Countless startups
destroyed themselves this way during the Internet Bubble. I've never heard of a
case where it worked.

What people outside the software world may not realize is that Worse is Better
is found throughout the arts. In drawing, for example, the idea was discovered
during the Renaissance. Now almost every drawing teacher will tell you that the
right way to get an accurate drawing is not to work your way slowly around the
contour of an object, because errors will accumulate and you'll find at the end
that the lines don't meet. Instead you should draw a few quick lines in roughly
the right place, and then gradually refine this initial sketch.

In most fields, prototypes have traditionally been made out of different
materials. Typefaces to be cut in metal were initially designed with a brush on
paper. Statues to be cast in bronze were modelled in wax. Patterns to be
embroidered on tapestries were drawn on paper with ink wash. Buildings to be
constructed from stone were tested on a smaller scale in wood.

What made oil paint so exciting, when it first became popular in the fifteenth
century, was that you could make the finished work from the prototype. You
could make a preliminary drawing if you wanted to, but you weren't held to it;
you could work out all the details, and even make major changes, as you
finished the painting.

You can do this in software too. A prototype doesn't have to be just a model;
you can refine it into the finished product. I think you should always do this

when you can. It lets you take advantage of new insights you have along the
way. But perhaps even more important, it's good for morale.

Morale is key in design. I'm surprised people don't talk more about it. One of
my first drawing teachers told me: if you're bored when you're drawing
something, the drawing will look boring. For example, suppose you have to
draw a building, and you decide to draw each brick individually. You can do
this if you want, but if you get bored halfway through and start making the
bricks mechanically instead of observing each one, the drawing will look worse
than if you had merely suggested the bricks.

Building something by gradually refining a prototype is good for morale
because it keeps you engaged. In software, my rule is: always have working
code. If you're writing something you'll be able to test in an hour, you have the
prospect of an immediate reward to motivate you. The same is true in the arts,
and particularly in oil painting. Most painters start with a blurry sketch and
gradually refine it. If you work this way, then in principle you never have to end
the day with something that looks unfinished. Indeed, there is even a saying
among painters: "A painting is never finished. You just stop working on it." This
idea will be familiar to anyone who has worked on software.

Morale is another reason that it's hard to design something for an
unsophisticated user. It's hard to stay interested in something you don't like
yourself. To make something good, you have to be thinking, "wow, this is really
great," not "what a piece of shit; those fools will love it."

Design means making things for humans. But it's not just the user who's
human. The designer is human too.

