SECOND EDITION

COMPUTER
SCIENCE

H A N DBO OK

EDITOR-IN-CHIEF

ALLEN B. TUCKER

* CHAPMAN & HALL/CRC

Published in Cooperation with ACM, The Association for Computing Machinery

© 2004 by Taylor & Francis Group, LLC

Library of Congress Cataloging-in-Publication Data

Computer science handbook / editor-in-chief, Allen B. Tucker—2nd ed.
p. cm.
Includes bibliographical references and index.
ISBN 1-58488-360-X (alk. paper)
1.Computer science-Handbooks, manuals, etc. 2. Engineering—Hanbooks, manuals, etc.
I. Tucker, Allen B.

QA76.C54755 2004
004—dc22 2003068758

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with
permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish
reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials
or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior
permission in writing from the publisher.

All rights reserved. Authorization to photocopy items for internal or personal use, or the personal or internal use of specific
clients, may be granted by CRC Press LLC, provided that $1.50 per page photocopied is paid directly to Copyright Clearance
Center, 222 Rosewood Drive, Danvers, MA 01923 USA. The fee code for users of the Transactional Reporting Service is
ISBN 1-58488-360-X/04/$0.00+$1.50. The fee is subject to change without notice. For organizations that have been
granted a photocopy license by the CCC, a separate system of payment has been arranged.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works,
or for resale. Specific permission must be obtained in writing from CRC Press LLC for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation, without intent to infringe.

Visit the CRC Press Web site at www.crcpress.com

© 2004 by Chapman & Hall/CRC

No claim to original U.S. Government works
International Standard Book Number 1-58488-360-X
Library of Congress Card Number 2003068758
Printed in the United States of America 1 2 3 4 56 78 9 0
Printed on acid-free paper

© 2004 by Taylor & Francis Group, LLC

Preface to the Second
Edition

Purpose

The purpose of The Computer Science Handbook is to provide a single comprehensive reference for com-
puter scientists, software engineers, and IT professionals who wish to broaden or deepen their understand-
ing in a particular subfield of computer science. Our goal is to provide the most current information in
each of the following eleven subfields in a form that is accessible to students, faculty, and professionals in
computer science:

algorithms, architecture, computational science, graphics, human-computer interaction, infor-
mation management, intelligent systems, net-centric computing, operating systems, program-
ming languages, and software engineering

Each of the eleven sections of the Handbook is dedicated to one of these subfields. In addition, the
appendices provide useful information about professional organizations in computer science, standards,
and languages. Different points of access to this rich collection of theory and practice are provided through
the table of contents, two introductory chapters, a comprehensive subject index, and additional indexes.

A more complete overview of this Handbook can be found in Chapter 1, which summarizes the contents
of each of the eleven sections. This chapter also provides a history of the evolution of computer science
during the last 50 years, as well as its current status, and future prospects.

New Features

Since the first edition of the Handbook was published in 1997, enormous changes have taken place in the
discipline of computer science. The goals of the second edition of the Handbook are to incorporate these
changes by:

1. Broadening its reach across all 11 subject areas of the discipline, as they are defined in Computing
Curricula 2001 (the new standard taxonomy)

2. Including a heavier proportion of applied computing subject matter

3. Bringing up to date all the topical discussions that appeared in the first edition

This new edition was developed by the editor-in-chief and three editorial advisors, whereas the first
edition was developed by the editor and ten advisors. Each edition represents the work of over 150
contributing authors who are recognized as experts in their various subfields of computer science.

Readers who are familiar with the first edition will notice the addition of many new chapters, reflect-
ing the rapid emergence of new areas of research and applications since the first edition was published.
Especially exciting are the addition of new chapters in the areas of computational science, information

© 2004 by Taylor & Francis Group, LLC

management, intelligent systems, net-centric computing, and software engineering. These chapters explore
topics like cryptography, computational chemistry, computational astrophysics, human-centered software
development, cognitive modeling, transaction processing, data compression, scripting languages, multi-
media databases, event-driven programming, and software architecture.

Acknowledgments

A work of this magnitude cannot be completed without the efforts of many individuals. During the 2-year
process that led to the first edition, I had the pleasure of knowing and working with ten very distinguished,
talented, and dedicated editorial advisors:

Harold Abelson (MIT), Mikhail Atallah (Purdue), Keith Barker (Uconn), Kim Bruce (Williams),
John Carroll (VPI), Steve Demurjian (Uconn), Donald House (Texas A&M), Raghu
Ramakrishnan (Wisconsin), Eugene Spafford (Purdue), Joe Thompson (Mississippi State), and
Peter Wegner (Brown).

For this edition, a new team of trusted and talented editorial advisors helped to reshape and revitalize
the Handbook in valuable ways:

Robert Cupper (Allegheny), Fadi Deek (NJIT), Robert Noonan (William and Mary)

All of these persons provided valuable insights into the substantial design, authoring, reviewing, and
production processes throughout the first eight years of this Handbook’s life, and I appreciate their work
very much.

Of course, it is the chapter authors who have shared in these pages their enormous expertise across the
wide range of subjects in computer science. Their hard work in preparing and updating their chapters is
evident in the very high quality of the final product. The names of all chapter authors and their current
professional affiliations are listed in the contributor list.

I want also to thank Bowdoin College for providing institutional support for this work. Personal thanks
go especially to Craig McEwen, Sue Theberge, Matthew Jacobson-Carroll, Alice Morrow, and Aaron
Olmstead at Bowdoin, for their various kinds of support as this project has evolved over the last eight
years. Bob Stern, Helena Redshaw, Joette Lynch, and Robert Sims at CRC Press also deserve thanks for
their vision, perseverance and support throughout this period.

Finally, the greatest thanks is always reserved for my wife Meg — my best friend and my love — for her
eternal influence on my life and work.

Allen B. Tucker
Brunswick, Maine

© 2004 by Taylor & Francis Group, LLC

Editor-in-Chief

Allen B. Tucker is the Anne T. and Robert M. Bass Professor of Natural
Sciences in the Department of Computer Science at Bowdoin College,
where he has taught since 1988. Prior to that, he held similar positions
at Colgate and Georgetown Universities. Overall, he has served eighteen
years as a department chair and two years as an associate dean. At Colgate,
he held the John D. and Catherine T. MacArthur Chair in Computer
Science.

Professor Tucker earned a B.A. in mathematics from Wesleyan Uni-
versity in 1963 and an M.S. and Ph.D. in computer science from North-
western University in 1970. He is the author or coauthor of several
books and articles in the areas of programming languages, natural lan-

guage processing, and computer science education. He has given many
talks, panel discussions, and workshop presentations in these areas, and
has served as a reviewer for various journals, NSF programs, and curriculum projects. He has also served
as a consultant to colleges, universities, and other institutions in the areas of computer science curriculum,
software design, programming languages, and natural language processing applications.

A Fellow of the ACM, Professor Tucker co-authored the 1986 Liberal Arts Model Curriculum in Com-
puter Science and co-chaired the ACM/IEEE-CS Joint Curriculum Task Force that developed Computing
Curricula 1991. For these and other related efforts, he received the ACM’s 1991 Outstanding Contribution
Award, shared the IEEE’s 1991 Meritorious Service Award, and received the ACM SIGCSE’s 2001 Award for
Outstanding Contributions to Computer Science Education. In Spring 2001, he was a Fulbright Lecturer
at the Ternopil Academy of National Economy (TANE) in Ukraine. Professor Tucker has been a member
of the ACM, the NSF CISE Advisory Committee, the IEEE Computer Society, Computer Professionals for
Social Responsibility, and the Liberal Arts Computer Science (LACS) Consortium.

© 2004 by Taylor & Francis Group, LLC

Contributors

Eric W. Allender
Rutgers University

James L. Alty
Loughborough University

Thomas E. Anderson
University of Washington

M. Pauline Baker

National Center for
Supercomputing
Applications

Steven Bellovin
AT&T Research Labs

Andrew P. Bernat
Computer Research
Association

Brian N. Bershad
University of Washington

Christopher M. Bishop
Microsoft Research

Guy E. Blelloch
Carnegie Mellon University

Philippe Bonnet
University of Copenhagen

Jonathan P. Bowen
London South Bank University

Kim Bruce
Williams College

© 2004 by Taylor & Francis Group, LLC

Steve Bryson
NASA Ames Research Center

Douglas C. Burger
University of Wisconsin
at Madison

Colleen Bushell

National Center for
Supercomputing
Applications

Derek Buzasi
U.S. Air Force Academy

William L. Bynum
College of William and Mary

Bryan M. Cantrill
Sun Microsystems, Inc.

Luca Cardelli
Microsoft Research

David A. Caughy
Cornell University

Vijay Chandru
Indian Institute of Science

Steve J. Chapin

Syracuse University

Eric Chown
Bowdoin College

Jacques Cohen
Brandeis University

J.L. Cox
Brooklyn College, CUNY

Alan B. Craig

National Center for
Supercomputing
Applications

Maxime Crochemore
University of Marne-la-Vallée
and King’s College London

Robert D. Cupper
Allegheny College

Thomas Dean
Brown Univeristy

Fadi P. Deek
New Jersey Institute
of Technology

Gerald DeJong
University of Illinois at
Urbana-Champaign

Steven A. Demurjian Sr.
University of Connecticut

Peter J. Denning
Naval Postgraduate School

Angel Diaz
IBM Research

T.W. Doeppner Jr.
Brown University

Henry Donato
College of Charleston

Chitra Dorai
IBM T.J. Watson
Research Center

Wolfgang Dzida
Pro Context GmbH

David S. Ebert
Purdue University

Raimund Ege
Florida International
University

Osama Eljabiri
New Jersey Institute
of Technology

David Ferbrache
U.K. Ministry of Defence

Raphael Finkel
University of Kentucky

John M. Fitzgerald
Adept Technology

Michael J. Flynn
Stanford University

Kenneth D. Forbus
Northwestern University

Stephanie Forrest
University of New Mexico

Michael J. Franklin
University of California
at Berkeley

John D. Gannon
University of Maryland

Carlo Ghezzi

Politecnico di Milano

Benjamin Goldberg
New York University

© 2004 by Taylor & Francis Group, LLC

James R. Goodman
University of Wisconsin
at Madison

Jonathan Grudin
Microsoft Research

Gamil A. Guirgis
College of Charleston

Jon Hakkila
College of Charleston

Sandra Harper
College of Charleston

Frederick J. Heldrich
College of Charleston

Katherine G. Herbert
New Jersey Institute
of Technology

Michael G. Hinchey
NASA Goddard Space
Flight Center

Ken Hinckley
Microsoft Research

Donald H. House
Texas A&M University

Windsor W. Hsu
IBM Research

Daniel Huttenlocher
Cornell University

Yannis E. Ioannidis
University of Wisconsin

Robert J.K. Jacob
Tufts University

Sushil Jajodia

George Mason University

Mehdi Jazayeri
Technical University of Vienna

Tao Jiang
University of California

Michael J. Jipping
Hope College

Deborah G. Johnson

University of Virginia

Michael I. Jordan
University of California
at Berkeley

David R. Kaeli
Northeastern University

Erich Kalt6fen
North Carolina State University

Subbarao Kambhampati
Arizona State University

Lakshmi Kantha
University of Colorado

Gregory M. Kapfhammer
Allegheny College

Jonathan Katz
University of Maryland

Arie Kaufman
State University of New York
at Stony Brook

Samir Khuller
University of Maryland

David Kieras
University of Michigan

David T. Kingsbury
Gordon and Betty Moore
Foundation

Danny Kopec
Brooklyn College, CUNY

Henry F. Korth
Lehigh University

Kristin D. Krantzman
College of Charleston

Edward D. Lazowska
University of Washington

Thierry Lecroq
University of Rouen

D.T. Lee
Northwestern University

Miriam Leeser
Northeastern University

Henry M. Levy
University of Washington

Frank L. Lewis
University of Texas at Arlington

Ming Li
University of Waterloo

Ying Li
IBM T.]. Watson
Research Center

Jianghui Liu
New Jersey Institute
of Technology

Kai Liu
Alcatel Telecom

Kenneth C. Louden
San Jose State University

Michael C. Loui
University of Illinois at
Urbana-Champaign

James J. Lu
Emory University

Abby Mackness
Booz Allen Hamilton

Steve Maddock
University of Sheffield

© 2004 by Taylor & Francis Group, LLC

Bruce M. Maggs
Carnegie Mellon University

Dino Mandrioli
Politecnico di Milano

M. Lynne Markus
Bentley College

Tony A. Marsland
University of Alberta

Edward J. McCluskey
Stanford University

James A. McHugh
New Jersey Institute
of Technology

Marshall Kirk McKusick
Consultant

Clyde R. Metz
College of Charleston

Keith W. Miller
University of Illinois

Subhasish Mitra
Stanford University

Stuart Mort
U.K. Defence and Evaluation
Research Agency

Rajeev Motwani
Stanford University

Klaus Mueller
State University of New York
at Stony Brook

Sape J. Mullender
Lucent Technologies

Brad A. Myers
Carnegie Mellon University

Peter G. Neumann
SRI International

Jakob Nielsen
Nielsen Norman Group

Robert E. Noonan
College of William and Mary

Ahmed K. Noor

Old Dominion University

Vincent Oria
New Jersey Institute
of Technology

Jason S. Overby
College of Charleston

M. Tamer Ozsu
University of Waterloo

Victor Y. Pan
Lehman College, CUNY

Judea Pearl
University of California
at Los Angeles

Jih-Kwon Peir
University of Florida

Radia Perlman
Sun Microsystems Laboratories

Patricia Pia
University of Connecticut

Steve Piacsek
Naval Research Laboratory

Roger S. Pressman
R.S. Pressman & Associates,
Inc.

J. Ross Quinlan
University of New South Wales

Balaji Raghavachari
University of Texas at Dallas

Prabhakar Raghavan
Verity, Inc.

Z.Rahman
College of William and Mary

M.R. Rao
Indian Institute of
Management

Bala Ravikumar
University of Rhode Island

Kenneth W. Regan
State University of New York
at Buffalo

Edward M. Reingold
Illinois Institute of Technology

Alyn P. Rockwood
Colorado School of Mines

Robert S. Roos
Allegheny College

Erik Rosenthal
University of New Haven

Kevin W. Rudd
Intel, Inc.

Betty Salzberg
Northeastern University

Pierangela Samarati
Universita degli Studi di
Milano

Ravi S. Sandhu
George Mason University

David A. Schmidt
Kansas State University

Stephen B. Seidman
New Jersey Institute
of Technology

Stephanie Seneff
Massachusetts Institute
of Technology

© 2004 by Taylor & Francis Group, LLC

J.S. Shang

Air Force Research

Dennis Shasha
Courant Institute
New York University

William R. Sherman

National Center for
Supercomputing
Applications

Avi Silberschatz
Yale University

Gurindar S. Sohi
University of Wisconsin
at Madison

Ian Sommerville
Lancaster University

Bharat K. Soni
Mississippi State University

William Stallings
Consultant and Writer

John A. Stankovic
University of Virginia

S. Sudarshan
IIT Bombay

Earl E. Swartzlander Jr.
University of Texas at Austin

Roberto Tamassia
Brown University

Patricia J. Teller
University of Texas at ElPaso

Robert J. Thacker
McMaster University

Nadia Magnenat Thalmann
University of Geneva

Daniel Thalmann
Swiss Federal Institute of
Technology (EPFL)

Alexander Thomasian
New Jersey Institute of
Technology

Allen B. Tucker
Bowdoin College

Jennifer Tucker
Booz Allen Hamilton

Patrick Valduriez
INRIA and IRIN

Jason T.L. Wang
New Jersey Institute
of Technology

Colin Ware
University of New Hampshire

Alan Watt
University of Sheffield

Nigel P. Weatherill
University of Wales Swansea

Peter Wegner
Brown University

Jon B. Weissman

University of Minnesota-Twin
Cities

Craig E. Wills

Worcester Polytechnic
Institute

George Wolberg
City College of New York

Donghui Zhang
Northeastern University

Victor Zue
Massachusetts Institute
of Technology

Contents

Computer Science: The Discipline and its Impact
Allen B. Tucker and Peter Wegner

Ethical Issues for Computer Scientists
Deborah G. Johnson and Keith W. Miller

Section I: Algorithms and Complexity

3

10

11

Basic Techniques for Design and Analysis of Algorithms
Edward M. Reingold

Data Structures
Roberto Tamassia and Bryan M. Cantrill

Complexity Theory
Eric W. Allender, Michael C. Loui, and Kenneth W. Regan

Formal Models and Computability
Tao Jiang, Ming Li, and Bala Ravikumar

Graph and Network Algorithms
Samir Khuller and Balaji Raghavachari

Algebraic Algorithms
Angel Diaz, Erich Kaltéfen, and Victor Y. Pan

Cryptography
Jonathan Katz

Parallel Algorithms
Guy E. Blelloch and Bruce M. Maggs

Computational Geometry
D. T Lee

© 2004 by Taylor & Francis Group, LLC

12 Randomized Algorithms
Rajeev Motwani and Prabhakar Raghavan

13 Pattern Matching and Text Compression Algorithms
Maxime Crochemore and Thierry Lecroq

14 Genetic Algorithms
Stephanie Forrest

15 Combinatorial Optimization
Vijay Chandru and M. R. Rao

Section II: Architecture and Organization

16 Digital Logic
Miriam Leeser

17 Digital Computer Architecture
David R. Kaeli

18 Memory Systems
Douglas C. Burger, James R. Goodman, and Gurindar S. Sohi

19 Buses
Windsor W. Hsu and Jih-Kwon Peir

20 Input/Output Devices and Interaction Techniques
Ken Hinckley, Robert]. K. Jacob, and Colin Ware

21 Secondary Storage Systems
Alexander Thomasian

22 High-Speed Computer Arithmetic
Earl E. Swartzlander Jr.

23 Parallel Architectures
Michael]. Flynn and Kevin W. Rudd

24 Architecture and Networks
Robert S. Roos

25 Fault Tolerance
Edward]. McCluskey and Subhasish Mitra

© 2004 by Taylor & Francis Group, LLC

Section III: Computational Science

26

27

28

29

30

31

32

33

34

Geometry-Grid Generation
Bharat K. Soni and Nigel P. Weatherill

Scientific Visualization
William R. Sherman, Alan B. Craig, M. Pauline Baker, and Colleen Bushell

Computational Structural Mechanics
Ahmed K. Noor

Computational Electromagnetics
J. S. Shang

Computational Fluid Dynamics
David A. Caughey

Computational Ocean Modeling
Lakshmi Kantha and Steve Piacsek

Computational Chemistry
Frederick J. Heldrich, Clyde R. Metz, Henry Donato, Kristin D. Krantzman,
Sandra Harper, Jason S. Overby, and Gamil A. Guirgis

Computational Astrophysics
Jon Hakkila, Derek Buzasi, and Robert J. Thacker

Computational Biology
David T. Kingsbury

Section I'V: Graphics and Visual Computing

35

36

37

38

39

Overview of Three-Dimensional Computer Graphics
Donald H. House

Geometric Primitives
Alyn P. Rockwood

Advanced Geometric Modeling
David S. Ebert

Mainstream Rendering Techniques
Alan Watt and Steve Maddock

Sampling, Reconstruction, and Antialiasing
George Wolberg

© 2004 by Taylor & Francis Group, LLC

40

41

42

43

Computer Animation
Nadia Magnenat Thalmann and Daniel Thalmann

Volume Visualization
Arie Kaufman and Klaus Mueller

Virtual Reality
Steve Bryson

Computer Vision
Daniel Huttenlocher

Section V: Human-Computer Interaction

44

45

46

47

48

49

50

51

The Organizational Contexts of Development and Use
Jonathan Grudin and M. Lynne Markus

Usability Engineering
Jakob Nielsen

Task Analysis and the Design of Functionality
David Kieras

Human-Centered System Development
Jennifer Tucker and Abby Mackness

Graphical User Interface Programming
Brad A. Myers

Multimedia
James L. Alty

Computer-Supported Collaborative Work
Fadi P. Deek and James A. McHugh

Applying International Usability Standards
Wolfgang Dzida

Section VI: Information Management

52

53

Data Models
Avi Silberschatz, Henry F. Korth, and S. Sudarshan

Tuning Database Design for High Performance
Dennis Shasha and Philippe Bonnet

© 2004 by Taylor & Francis Group, LLC

54

535

56

57

58

59

60

Access Methods
Betty Salzberg and Donghui Zhang

Query Optimization
Yannis E. Ioannidis

Concurrency Control and Recovery
Michael . Franklin

Transaction Processing
Alexander Thomasian

Distributed and Parallel Database Systems
M. Tamer Ozsu and Patrick Valduriez

Multimedia Databases: Analysis, Modeling, Querying, and Indexing
Vincent Oria, Ying Li, and Chitra Dorai

Database Security and Privacy
Sushil Jajodia

Section VII: Intelligent Systems

61

62

63

64

65

66

67

68

69

Logic-Based Reasoning for Intelligent Systems
James J. Lu and Erik Rosenthal

Qualitative Reasoning
Kenneth D. Forbus

Search
D. Kopec, T.A. Marsland, and J.L. Cox

Understanding Spoken Language
Stephanie Seneff and Victor Zue

Decision Trees and Instance-Based Classifiers
J. Ross Quinlan

Neural Networks
Michael 1. Jordan and Christopher M. Bishop

Planning and Scheduling
Thomas Dean and Subbarao Kambhampati

Explanation-Based Learning
Gerald DejJong

Cognitive Modeling
Eric Chown

© 2004 by Taylor & Francis Group, LLC

70 Graphical Models for Probabilistic and Causal Reasoning
Judea Pearl

71 Robotics
Frank L. Lewis, John M. Fitzgerald, and Kai Liu

Section VIII: Net-Centric Computing

72 Network Organization and Topologies
William Stallings

73 Routing Protocols
Radia Perlman

74 Network and Internet Security
Steven Bellovin

75 Information Retrieval and Data Mining
Katherine G. Herbert, Jason T.L. Wang, and Jianghui Liu

76 Data Compression
Z. Rahman

77 Security and Privacy
Peter G. Neumann

78 Malicious Software and Hacking
David Ferbrache and Stuart Mort

79 Authentication, Access Control, and Intrusion Detection
Ravi S. Sandhu and Pierangela Samarati

Section IX: Operating Systems

80 What Is an Operating System?
Raphael Finkel

81 Thread Management for Shared-Memory Multiprocessors
Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska,
and Henry M. Levy

82 Process and Device Scheduling
Robert D. Cupper

83 Real-Time and Embedded Systems
John A. Stankovic

© 2004 by Taylor & Francis Group, LLC

84 Process Synchronization and Interprocess Communication
Craig E. Wills

85 Virtual Memory
Peter]J. Denning

86 Secondary Storage and Filesystems
Marshall Kirk McKusick

87 Overview of Distributed Operating Systems
Sape J. Mullender

88 Distributed and Multiprocessor Scheduling
Steve]. Chapin and Jon B. Weissman

89 Distributed File Systems and Distributed Memory
T. W. Doeppner Jr.

Section X: Programming Languages

90 Imperative Language Paradigm
Michael J. Jipping and Kim Bruce

91 The Object-Oriented Language Paradigm
Raimund Ege

92 Functional Programming Languages
Benjamin Goldberg

93 Logic Programming and Constraint Logic Programming
Jacques Cohen

94 Scripting Languages
Robert E. Noonan and William L. Bynum

95 Event-Driven Programming
Allen B. Tucker and Robert E. Noonan

96 Concurrent/Distributed Computing Paradigm
Andrew P. Bernat and Patricia Teller

97 Type Systems
Luca Cardelli

98 Programming Language Semantics
David A. Schmidt

© 2004 by Taylor & Francis Group, LLC

99 Compilers and Interpreters
Kenneth C. Louden

100 Runtime Environments and Memory Management
Robert E. Noonan and William L. Bynum

Section XI: Software Engineering

101 Software Qualities and Principles
Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli

102 Software Process Models
TIan Sommerville

103 Traditional Software Design
Steven A. Demurjian Sr.

104 Object-Oriented Software Design
Steven A. Demurjian Sr. and Patricia]. Pia

105 Software Testing
Gregory M. Kapfhammer

106 Formal Methods
Jonathan P. Bowen and Michael G. Hinchey

107 Verification and Validation
John D. Gannon

108 Development Strategies and Project Management
Roger S. Pressman

109 Software Architecture
Stephen B. Seidman

110 Specialized System Development
Osama Eljabiri and Fadi P. Deek

Appendix A: Professional Societies in Computing
Appendix B: The ACM Code of Ethics and Professional Conduct
Appendix C: Standards-Making Bodies and Standards

Appendix D: Common Languages and Conventions

© 2004 by Taylor & Francis Group, LLC

Computer Science:
The Discipline and
1ts Impact

1.1 Introduction
1.2 Growth of the Discipline and the Profession
Curriculum Development ¢ Growth of Academic Programs
* Academic R&D and Industry Growth
1.3 Perspectives in Computer Science
1.4 Broader Horizons: From HPCC
to Cyberinfrastructure
1.5 Organization and Content
Algorithms and Complexity * Architecture * Computational
Allen B. Tucker Science * Graphics and Visual Computing * Human—-Computer
Interaction * Information Management ¢ Intelligent Systems
* Net-Centric Computing ¢ Operating Systems * Programming
Peter Wegner Languages * Software Engineering
Brown University 1.6 Conclusion

Bowdoin College

1.1 Introduction

The field of computer science has undergone a dramatic evolution in its short 70-year life. As the field has
matured, new areas of research and applications have emerged and joined with classical discoveries in a
continuous cycle of revitalization and growth.

In the 1930s, fundamental mathematical principles of computing were developed by Turing and Church.
Early computers implemented by von Neumann, Wilkes, Eckert, Atanasoff, and others in the 1940sled to the
birth of scientific and commercial computing in the 1950s, and to mathematical programming languages
like Fortran, commercial languages like COBOL, and artificial-intelligence languages like LISP. In the
1960s the rapid development and consolidation of the subjects of algorithms, data structures, databases,
and operating systems formed the core of what we now call traditional computer science; the 1970s
saw the emergence of software engineering, structured programming, and object-oriented programming.
The emergence of personal computing and networks in the 1980s set the stage for dramatic advances
in computer graphics, software technology, and parallelism. The 1990s saw the worldwide emergence of
the Internet, both as a medium for academic and scientific exchange and as a vehicle for international
commerce and communication.

This Handbook aims to characterize computer science in the new millenium, incorporating the explosive
growth of the Internet and the increasing importance of subject areas like human—computer interaction,
massively parallel scientific computation, ubiquitous information technology, and other subfields that

© 2004 by Taylor & Francis Group, LLC

would not have appeared in such an encyclopedia even ten years ago. We begin with the following short
definition, a variant of the one offered in [Gibbs 1986], which we believe captures the essential nature of
“computer science” as we know it today.

Computer science is the study of computational processes and information structures, including
their hardware realizations, their linguistic models, and their applications.

The Handbook is organized into eleven sections which correspond to the eleven major subject areas
that characterize computer science [ACM/IEEE 2001], and thus provide a useful modern taxonomy for the
discipline. The next section presents a brief history of the computing industry and the parallel development
of the computer science curriculum. Section 1.3 frames the practice of computer science in terms of four
major conceptual paradigms: theory, abstraction, design, and the social context. Section 1.4 identifies the
“grand challenges” of computer science research and the subsequent emergence of information technology
and cyber-infrastructure that may provide a foundation for addressing these challenges during the next
decade and beyond. Section 1.5 summarizes the subject matter in each of the Handbook’s eleven sections
in some detail.

This Handbook is designed as a professional reference for researchers and practitioners in computer
science. Readers interested in exploring specific subject topics may prefer to move directly to the appropriate
section of the Handbook — the chapters are organized with minimal interdependence, so that they can be
read in any order. To facilitate rapid inquiry, the Handbook contains a Table of Contents and three indexes
(Subject, Who’s Who, and Key Algorithms and Formulas), providing access to specific topics at various
levels of detail.

1.2 Growth of the Discipline and the Profession

The computer industry has experienced tremendous growth and change over the past several decades.
The transition that began in the 1980s, from centralized mainframes to a decentralized networked
microcomputer—server technology, was accompanied by the rise and decline of major corporations.
The old monopolistic, vertically integrated industry epitomized by IBM’s comprehensive client ser-
vices gave way to a highly competitive industry in which the major players changed almost overnight.
In 1992 alone, emergent companies like Dell and Microsoft had spectacular profit gains of 77% and
53%. In contrast, traditional companies like IBM and Digital suffered combined record losses of $7.1
billion in the same year [Economist 1993] (although IBM has since recovered significantly). As the
1990s came to an end, this euphoria was replaced by concerns about new monopolistic behaviors, ex-
pressed in the form of a massive antitrust lawsuit by the federal government against Microsoft. The
rapid decline of the “dot.com” industry at the end of the decade brought what many believe a long-
overdue rationality to the technology sector of the economy. However, the exponential decrease in
computer cost and increase in power by a factor of two every 18 months, known as Moore’s law,
shows no signs of abating in the near future, although underlying physical limits will eventually be
reached.

Opverall, the rapid 18% annual growth rate that the computer industry had enjoyed in earlier decades
gave way in the early 1990s to a 6% growth rate, caused in part by a saturation of the personal computer
market. Another reason for this slowing of growth is that the performance of computers (speed, storage
capacity) has improved at a rate of 30% per year in relation to their cost. Today, it is not unusual for a laptop
or hand-held computer to run at hundreds of times the speed and capacity of a typical computer of the early
1990s, and at a fraction of its cost. However, it is not clear whether this slowdown represents a temporary
plateau or whether a new round of fundamental technical innovations in areas such as parallel architectures,
nanotechnology, or human—computer interaction might generate new spectacular rates of growth in the
future.

© 2004 by Taylor & Francis Group, LLC

1.2.1 Curriculum Development

The computer industry’s evolution has always been affected by advances in both the theory and the practice
of computer science. Changes in theory and practice are simultaneously intertwined with the evolution
of the field’s undergraduate and graduate curricula, which have served to define the intellectual and
methodological framework for the discipline of computer science itself.

The first coherent and widely cited curriculum for computer science was developed in 1968 by the
ACM Curriculum Committee on Computer Science [ACM 1968] in response to widespread demand
for systematic undergraduate and graduate programs [Rosser 1966]. “Curriculum 68” defined computer
science as comprising three main areas: information structures and processes, information processing
systems, and methodologies. Curriculum 68 defined computer science as a discipline and provided concrete
recommendations and guidance to colleges and universities in developing undergraduate, master’s, and
doctorate programs to meet the widespread demand for computer scientists in research, education, and
industry. Curriculum 68 stood as a robust and exemplary model for degree programs at all levels for the
next decade.

In 1978, a new ACM Curriculum Committee on Computer Science developed a revised and updated
undergraduate curriculum [ACM 1978]. The “Curriculum 78” report responded to the rapid evolution
of the discipline and the practice of computing, and to a demand for a more detailed elaboration of the
computer science (as distinguished from the mathematical) elements of the courses that would comprise
the core curriculum.

During the next few years, the IEEE Computer Society developed a model curriculum for engineering-
oriented undergraduate programs [[EEE-CS 1976], updated and published it in 1983 as a “Model Program
in Computer Science and Engineering” [IEEE-CS 1983], and later used it as a foundation for developing
anew set of accreditation criteria for undergraduate programs. A simultaneous effort by a different group
resulted in the design of a model curriculum for computer science in liberal arts colleges [Gibbs 1986].
This model emphasized science and theory over design and applications, and it was widely adopted by
colleges of liberal arts and sciences in the late 1980s and the 1990s.

In 1988, the ACM Task Force on the Core of Computer Science and the IEEE Computer Society
[ACM 1988] cooperated in developing a fundamental redefinition of the discipline. Called “Computing
as a Discipline,” this report aimed to provide a contemporary foundation for undergraduate curriculum
design by responding to the changes in computing research, development, and industrial applications in
the previous decade. This report also acknowledged some fundamental methodological changes in the
field. The notion that “computer science = programming” had become wholly inadequate to encompass
the richness of the field. Instead, three different paradigms—called theory, abstraction, and design—were
used to characterize how various groups of computer scientists did their work. These three points of
view — those of the theoretical mathematician or scientist (theory), the experimental or applied scientist
(abstraction, or modeling), and the engineer (design) — were identified as essential components of research
and development across all nine subject areas into which the field was then divided.

“Computing as a Discipline” led to the formation of a joint ACM/IEEE-CS Curriculum Task Force,
which developed a more comprehensive model for undergraduate curricula called “Computing Curricula
91”7 [ACM/IEEE 1991]. Acknowledging that computer science programs had become widely supported in
colleges of engineering, arts and sciences, and liberal arts, Curricula 91 proposed a core body of knowledge
that undergraduate majors in all of these programs should cover. This core contained sufficient theory,
abstraction, and design content that students would become familiar with the three complementary ways
of “doing” computer science. It also ensured that students would gain a broad exposure to the nine major
subject areas of the discipline, including their social context. A significant laboratory component ensured
that students gained significant abstraction and design experience.

In 2001, in response to dramatic changes that had occurred in the discipline during the 1990s, a
new ACM/IEEE-CS Task Force developed a revised model curriculum for computer science [ACM/IEEE
2001]. This model updated the list of major subject areas, and we use this updated list to form the
organizational basis for this Handbook (see below). This model also acknowledged that the enormous

© 2004 by Taylor & Francis Group, LLC

growth of the computing field had spawned four distinct but overlapping subfields — “computer sci-
ence,” “computer engineering,” “software engineering,” and “information systems.” While these four
subfields share significant knowledge in common, each one also underlies a distinctive academic and
professional field. While the computer science dimension is directly addressed by this Handbook, the
other three dimensions are addressed to the extent that their subject matter overlaps that of computer

science.

1.2.2 Growth of Academic Programs

Fueling the rapid evolution of curricula in computer science during the last three decades was an enor-
mous growth in demand, by industry and academia, for computer science professionals, researchers, and
educators at all levels. In response, the number of computer science Ph.D.-granting programs in the U.S.
grew from 12 in 1964 to 164 in 2001. During the period 1966 to 2001, the annual number of Bachelor’s
degrees awarded in the U.S. grew from 89 to 46,543; Master’s degrees grew from 238 to 19,577; and Ph.D.
degrees grew from 19 to 830 [ACM 1968, Bryant 2001].

Figure 1.1 shows the number of bachelor’s and master’s degrees awarded by U.S. colleges and universities
in computer science and engineering (CS&E) from 1966 to 2001. The number of Bachelor’s degrees peaked
at about 42,000 in 1986, declined to about 24,500 in 1995, and then grew steadily toward its current peak
during the past several years. Master’s degree production in computer science has grown steadily without
decline throughout this period.

The dramatic growth of BS and MS degrees in the five-year period between 1996 and 2001 parallels
the growth and globalization of the economy itself. The more recent falloff in the economy, especially the
collapse of the “dot.com” industry, may dampen this growth in the near future. In the long run, future
increases in Bachelor’s and Master’s degree production will continue to be linked to expansion of the
technology industry, both in the U.S and throughout the world.

Figure 1.2 shows the number of U.S. Ph.D. degrees in computer science during the same 1966 to 2001
period [Bryant 2001]. Production of Ph.D. degrees in computer science grew throughout the early 1990s,
fueled by continuing demand from industry for graduate-level talent and from academia to staff growing
undergraduate and graduate research programs. However, in recent years, Ph.D. production has fallen off
slightly and approached a steady state. Interestingly, this last five years of non-growth at the Ph.D. level is
coupled with five years of dramatic growth at the BS and MS levels. This may be partially explained by the
unusually high salaries offered in a booming technology sector of the economy, which may have lured some

50000 -

45000 -

40000 - —=— BS Degrees

—&— MS Degrees
35000]

30000 - =

25000 n Ipgugt

20000 - .

15000 - L] .
*

10000 - '.,ONN

5000 - s " o ®
®

0 i T T T T T T T]
1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

FIGURE 1.1 U.S. bachelor’s and master’s degrees in CS&E.

© 2004 by Taylor & Francis Group, LLC

1200 -

1000 - -

800 A - -

600 - b

400 4 .

200 A * *

1966 1975 1987 1990 1993 1996 1999

FIGURE 1.2 U.S. Ph.D. degrees in computer science.

4500 -
A
4000 B
A
A
3500 - —e— Mathematics A
—=— Computer science R 4
3000 A —— Engineering . A
A
2500 -
A
2000 - 4
1500 - R
1000 A A
-
. g w s mnu”®
500 - . g m
. L] e & o o o O+
o & & o @
ola, = o % & @ ————————
& © & O & P &P
$ $ N SRR N R

FIGURE 1.3 Academic R&D in computer science and related fields (in millions of dollars).

undergraduates away from immediate pursuit of a Ph.D. The more recent economic slowdown, especially
in the technology industry, may help to normalize these trends in the future.

1.2.3 Academic R&D and Industry Growth

University and industrial research and development (R&D) investments in computer science grew rapidly
in the period between 1986 and 1999. Figure 1.3 shows that academic research and development in
computer science nearly tripled, from $321 million to $860 million, during this time period. This growth
rate was significantly higher than that of academic R&D in the related fields of engineering and mathematics.
During this same period, the overall growth of academic R&D in engineering doubled, while that in
mathematics grew by about 50%. About two thirds of the total support for academic R&D comes from
federal and state sources, while about 7% comes from industry and the rest comes from the academic
institutions themselves [NSF 2002].

Using 1980, 1990, and 2000 U.S. Census data, Figure 1.4 shows recent growth in the number of persons
with at least abachelor’s degree who were employed in nonacademic (industry and government) computer

© 2004 by Taylor & Francis Group, LLC

1800 -

1600 -
01980
14001 1990
2000
1200 |
1000 A
800
600 -
400
200 A
Computer Engineers Life scientists Physical Social scientists

scientists scientists
FIGURE 1.4 Nonacademic computer scientists and other professions (thousands).

science positions. Overall, the total number of computer scientists in these positions grew by 600%, from
210,000 in 1980 to 1,250,000 in 2000. Surveys conducted by the Computing Research Association (CRA)
suggest that about two thirds of the domestically employed new Ph.D.s accept positions in industry or gov-
ernment, and the remainder accept faculty and postdoctoral research positions in colleges and universities.
CRA surveys also suggest that about one third of the total number of computer science Ph.D.s accept
positions abroad [Bryant 2001]. Coupled with this trend is the fact that increasing percentages of U.S. Ph.D.s
are earned by non-U.S. citizens. In 2001, about 50% of the total number of Ph.D.s were earned by this group.
Figure 1.4 also provides nonacademic employment data for other science and engineering professions,
again considering only persons with bachelor’s degrees or higher. Here, we see that all areas grew during this
period, with computer science growing at the highest rate. In this group, only engineering had a higher total
number of persons in the workforce, at 1.6 million. Overall, the total nonacademic science and engineering
workforce grew from 2,136,200 in 1980 to 3,664,000 in 2000, an increase of about 70% [NSF 2001].

1.3 Perspectives in Computer Science

By its very nature, computer science is a multifaceted discipline that can be viewed from at least four
different perspectives. Three of the perspectives — theory, abstraction, and design — underscore the idea
that computer scientists in all subject areas can approach their work from different intellectual viewpoints
and goals. A fourth perspective — the social and professional context — acknowledges that computer
science applications directly affect the quality of people’s lives, so that computer scientists must understand
and confront the social issues that their work uniquely and regularly encounters.

The theory of computer science draws from principles of mathematics as well as from the formal methods
of the physical, biological, behavioral, and social sciences. It normally includes the use of abstract ideas and
methods taken from subfields of mathematics such aslogic, algebra, analysis, and statistics. Theory includes
the use of various proof and argumentation techniques, like induction and contradiction, to establish
properties of formal systems that justify and explain underlying the basic algorithms and data structures
used in computational models. Examples include the study of algorithmically unsolvable problems and
the study of upper and lower bounds on the complexity of various classes of algorithmic problems. Fields
like algorithms and complexity, intelligent systems, computational science, and programming languages
have different theoretical models than human—computer interaction or net-centric computing; indeed, all
11 areas covered in this Handbook have underlying theories to a greater or lesser extent.

© 2004 by Taylor & Francis Group, LLC

Abstraction in computer science includes the use of scientific inquiry, modeling, and experimentation
to test the validity of hypotheses about computational phenomena. Computer professionals in all 11 areas
of the discipline use abstraction as a fundamental tool of inquiry — many would argue that computer
science is itself the science of building and examining abstract computational models of reality. Abstraction
arises in computer architecture, where the Turing machine serves as an abstract model for complex real
computers, and in programming languages, where simple semantic models such as lambda calculus are
used as a framework for studying complex languages. Abstraction appears in the design of heuristic and
approximation algorithms for problems whose optimal solutions are computationally intractable. It is
surely used in graphics and visual computing, where models of three-dimensional objects are constructed
mathematically; given properties of lighting, color, and surface texture; and projected in a realistic way on
a two-dimensional video screen.

Design is a process that models the essential structure of complex systems as a prelude to their practical
implementation. It also encompasses the use of traditional engineering methods, including the classical
life-cycle model, to implement efficient and useful computational systems in hardware and software. It
includes the use of tools like cost/benefit analysis of alternatives, risk analysis, and fault tolerance that ensure
that computing applications are implemented effectively. Design is a central preoccupation of computer
architects and software engineers who develop hardware systems and software applications. Design is
an especially important activity in computational science, information management, human—computer
interaction, operating systems, and net-centric computing.

The social and professional context includes many concerns that arise at the computer-human interface,
such as liability for hardware and software errors, security and privacy of information in databases and
networks (e.g., implications of the Patriot Act), intellectual property issues (e.g., patent and copyright),
and equity issues (e.g., universal access to technology and to the profession). All computer scientists must
consider the ethical context in which their work occurs and the special responsibilities that attend their
work. Chapter 2 discusses these issues, and Appendix B presents the ACM Code of Ethics and Professional
Conduct. Several other chapters address topics in which specific social and professional issues come into
play. For example, security and privacy issues in databases, operating systems, and networks are discussed
in Chapter 60 and Chapter 77. Risks in software are discussed in several chapters of Section XI.

1.4 Broader Horizons: From HPCC to Cyberinfrastructure

In 1989, the Federal Office of Science and Technology announced the “High Performance Computing
and Communications Program,” or HPCC [OST 1989]. HPCC was designed to encourage universities,
research programs, and industry to develop specific capabilities to address the “grand challenges” of the
future. To realize these grand challenges would require both fundamental and applied research, including
the development of high-performance computing systems with speeds two to three orders of magnitude
greater than those of current systems, advanced software technology and algorithms that enable scientists
and mathematicians to effectively address these grand challenges, networking to support R&D for a gigabit
National Research and Educational Network (NREN), and human resources that expand basic research in
all areas relevant to high-performance computing.

The grand challenges themselves were identified in HPCC as those fundamental problems in science
and engineering with potentially broad economic, political, or scientific impact that can be advanced by
applying high-performance computing technology and that can be solved only by high-level collaboration
among computer professionals, scientists, and engineers. A list of grand challenges developed by agencies
such as the NSE, DoD, DoE, and NASA in 1989 included:

* Prediction of weather, climate, and global change
* Challenges in materials sciences

* Semiconductor design

* Superconductivity

* Structural biology

© 2004 by Taylor & Francis Group, LLC

* Design of drugs

* Human genome

* Quantum chromodynamics
* Astronomy

* Transportation

* Vehicle dynamics and signature
* Turbulence

* Nuclear fusion

* Combustion systems

* Oil and gas recovery

* Ocean science

* Speech

* Vision

¢ Undersea surveillance for anti-submarine warfare

The 1992 report entitled “Computing the Future” (CTF) [CSNRCTB 1992], written by a group of leading
computer professionals in response to a request by the Computer Science and Technology Board (CSTB),
identified the need for computer science to broaden its research agenda and its educational horizons,
in part to respond effectively to the grand challenges identified above. The view that the research agenda
should be broadened caused concerns among some researchers that this funding and other incentives might
overemphasize short-term at the expense of long-term goals. This Handbook reflects the broader view of
the discipline in its inclusion of computational science, information management, and human—computer
interaction among the major subfields of computer science.

CTF aimed to bridge the gap between suppliers of research in computer science and consumers of
research such as industry, the federal government, and funding agencies such as the NSF, DARPA, and
DoE. It addressed fundamental challenges to the field and suggested responses that encourage greater
interaction between research and computing practice. Its overall recommendations focused on three
priorities:

1. To sustain the core effort that creates the theoretical and experimental science base on which
applications build

2. To broaden the field to reflect the centrality of computing in science and society

3. To improve education at both the undergraduate and graduate levels

CTF included recommendations to federal policy makers and universities regarding research and edu-
cation:

* Recommendations to federal policy makers regarding research:

— The High-Performance Computing and Communication (HPCC) program passed by Congress
in 1989 [OST 1989] should be fully supported.

— Application-oriented computer science and engineering research should be strongly encouraged
through special funding programs.

* Recommendations to universities regarding research:

— Academicresearch should broaden its horizons, embracing application-oriented and technology-
transfer research as well as core applications.

— Laboratory research with experimental as well as theoretical content should be supported.
* Recommendation to federal policy makers regarding education:

— Basic and human resources research of HPCC and other areas should be expanded to address
educational needs.

© 2004 by Taylor & Francis Group, LLC

* Recommendations to universities regarding education:
- Broaden graduate education to include requirements and incentives to study application areas.

- Reach out to women and minorities to broaden the talent pool.

Although this report was motivated by the desire to provide a rationale for the HPCC program, its
message that computer science must be responsive to the needs of society is much broader. The years since
publication of CTF have seen a swing away from pure research toward application-oriented research that
is reflected in this edition of the Handbook. However, it remains important to maintain a balance between
short-term applications and long-term research in traditional subject areas.

More recently, increased attention has been paid to the emergence of information technology (IT)
research as an academic subject area having significant overlap with computer science itself. This develop-
ment is motivated by several factors, including mainly the emergence of electronic commerce, the shortage
of trained IT professionals to fill new jobs in IT, and the continuing need for computing to expand its
capability to manage the enormous worldwide growth of electronic information. Several colleges and
universities have established new IT degree programs that complement their computer science programs,
offering mainly BS and MS degrees in information technology. The National Science Foundation is a
strong supporter of IT research, earmarking $190 million in this priority area for FY 2003. This amounts
to about 35% of the entire NSF computer science and engineering research budget [NSF 2003a].

The most recent initiative, dubbed “Cyberinfrastructure” [NSF 2003b], provides a comprehensive vision
for harnessing the fast-growing technological base to better meet the new challenges and complexities that
are shared by a widening community of researchers, professionals, organizations, and citizens who use
computers and networks every day. Here are some excerpts from the executive summary for this initiative:

... anew age has dawned in scientific and engineering research, pushed by continuing progress in
computing, information, and communication technology, and pulled by the expanding complex-
ity, scope, and scale of today’s challenges. The capacity of this technology has crossed thresholds
that now make possible a comprehensive “cyberinfrastructure” on which to build new types of
scientific and engineering knowledge environments and organizations and to pursue research in
new ways and with increased efficacy.

Such environments ...are required to address national and global priorities, such as un-
derstanding global climate change, protecting our natural environment, applying genomics-
proteomics to human health, maintaining national security, mastering the world of nanotech-
nology, and predicting and protecting against natural and human disasters, as well as to address
some of our most fundamental intellectual questions such as the formation of the universe and
the fundamental character of matter.

This panel’s overarching recommendation is that the NSF should establish and lead a large-
scale, interagency, and internationally coordinated Advanced Cyberinfrastructure Program (ACP)
to create, deploy, and apply cyberinfrastructure in ways that radically empower all scientific and
engineering research and allied education. We estimate that sustained new NSF funding of $1 bil-
lion per year is needed to achieve critical mass and to leverage the coordinated co-investment from
other federal agencies, universities, industry, and international sources necessary to empower a
revolution.

It is too early to tell whether the ambitions expressed in this report will provide a new rallying call for
science and technology research in the next decade. Achieving them will surely require unprecedented
levels of collaboration and funding.

Nevertheless, in response to HPCC and successive initiatives, the two newer subject areas of “com-
putational science” [Stevenson 1994] and “net-centric computing” [ACM/IEEE 2001] have established
themselves among the 11 that characterize computer science at this early moment in the 21st century.
This Handbook views “computational science” as the application of computational and mathematical
models and methods to science, having as a driving force the fundamental interaction between computa-
tion and scientific research. For instance, fields like computational astrophysics, computational biology,

© 2004 by Taylor & Francis Group, LLC

and computational chemistry all unify the application of computing in science and engineering with
underlying mathematical concepts, algorithms, graphics, and computer architecture. Much of the research
and accomplishments of the computational science field is presented in Section III.

Net-centric computing, on the other hand, emphasizes the interactions among people, computers, and
the Internet. It affects information technology systems in professional and personal spheres, including the
implementation and use of search engines, commercial databases, and digital libraries, along with their
risks and human factors. Some of these topics intersect in major ways with those of human—computer
interaction, while others fall more directly in the realm of management information systems (MIS). Because
MIS is widely viewed as a separate discipline from computer science, this Handbook does not attempt to
cover all of MIS. However, it does address many MIS concerns in Section V (human—computer interaction)
Section VI (information management), and Section VIII (net-centric computing).

The remaining sections of this Handbook cover relatively traditional areas of computer science —
algorithms and complexity, computer architecture, operating systems, programming languages, artificial
intelligence, software engineering, and computer graphics. A more careful summary of these sections
appears below.

1.5 Organization and Content

In the 1940s, computer science was identified with number crunching, and numerical analysis was con-
sidered a central tool. Hardware, logical design, and information theory emerged as important subfields
in the early 1950s. Software and programming emerged as important subfields in the mid-1950s and soon
dominated hardware as topics of study in computer science. In the 1960s, computer science could be
comfortably classified into theory, systems (including hardware and software), and applications. Software
engineering emerged as an important subdiscipline in the late 1960s. The 1980 Computer Science and
Engineering Research Study (COSERS) [Arden 1980] classified the discipline into nine subfields:

Numerical computation
Theory of computation
Hardware systems

Artificial intelligence
Programming languages
Operating systems

Database management systems
Software methodology
Applications

W XN E W=

This Handbook’s organization presents computer science in the following 11 sections, which are the
subfields defined in [ACM/IEEE 2001].

Algorithms and complexity
Architecture and organization
Computational science
Graphics and visual computing
Human—computer interaction
Information management
Intelligent systems
Net-centric computing
Operating systems
Programming languages

. Software engineering

W XN WD

—_ =
= O

© 2004 by Taylor & Francis Group, LLC

This overall organization shares much in common with that of the 1980 COSERS study. That is, except
for some minor renaming, we can read this list as a broadening of numerical analysis into computational
science, and an addition of the new areas of human—computer interaction and graphics. The other areas
appear in both classifications with some name changes (theory of computation has become algorithms
and complexity, artificial intelligence has become intelligent systems, applications has become net-centric
computing, hardware systems has evolved into architecture and networks, and database has evolved into
information management). The overall similarity between the two lists suggests that the discipline of
computer science has stabilized in the past 25 years.

However, although this high-level classification has remained stable, the content of each area has evolved
dramatically. We examine below the scope of each area individually, along with the topics in each area that
are emphasized in this Handbook.

1.5.1 Algorithms and Complexity

The subfield of algorithms and complexity is interpreted broadly to include core topics in the theory
of computation as well as data structures and practical algorithm techniques. Its chapters provide a
comprehensive overview that spans both theoretical and applied topics in the analysis of algorithms.
Chapter 3 provides an overview of techniques of algorithm design like divide and conquer, dynamic
programming, recurrence relations, and greedy heuristics, while Chapter 4 covers data structures both
descriptively and in terms of their space—time complexity.

Chapter 5 examines topics in complexity like P vs. NP and NP-completeness, while Chapter 6 introduces
the fundamental concepts of computability and undecidability and formal models such as Turing machines.
Graph and network algorithms are treated in Chapter 7, and algebraic algorithms are the subject of
Chapter 8.

The wide range of algorithm applications is presented in Chapter 9 through Chapter 15. Chapter 9
covers cryptographic algorithms, which have recently become very important in operating systems and
network security applications. Chapter 10 covers algorithms for parallel computer architectures, Chapter 11
discusses algorithms for computational geometry, while Chapter 12 introduces the rich subject of ran-
domized algorithms. Pattern matching and text compression algorithms are examined in Chapter 13,
and genetic algorithms and their use in the biological sciences are introduced in Chapter 14. Chapter 15
concludes this section with a treatment of combinatorial optimization.

1.5.2 Architecture

Computer architecture is the design of efficient and effective computer hardware at all levels, from the
most fundamental concerns of logic and circuit design to the broadest concerns of parallelism and high-
performance computing. The chaptersin Section II span these levels, providing a sampling of the principles,
accomplishments, and challenges faced by modern computer architects.

Chapter 16 introduces the fundamentals of logic design components, including elementary circuits, Kar-
naugh maps, programmable array logic, circuit complexity and minimization issues, arithmetic processes,
and speedup techniques. Chapter 17 focuses on processor design, including the fetch/execute instruction
cycle, stack machines, CISC vs. RISC, and pipelining. The principles of memory design are covered in
Chapter 18, while the architecture of buses and other interfaces is addressed in Chapter 19. Chapter 20
discusses the characteristics of input and output devices like the keyboard, display screens, and multimedia
audio devices. Chapter 21 focuses on the architecture of secondary storage devices, especially disks.

Chapter 22 concerns the design of effective and efficient computer arithmetic units, while Chapter 23
extends the design horizon by considering various models of parallel architectures that enhance the
performance of traditional serial architectures. Chapter 24 focuses on the relationship between computer
architecture and networks, while Chapter 25 covers the strategies employed in the design of fault-tolerant
and reliable computers.

© 2004 by Taylor & Francis Group, LLC

1.5.3 Computational Science

The area of computational science unites computation, experimentation, and theory as three fundamental
modes of scientific discovery. It uses scientific visualization, made possible by simulation and modeling,
as a window into the analysis of physical, chemical, and biological phenomena and processes, providing a
virtual microscope for inquiry at an unprecedented level of detail.

This section focuses on the challenges and opportunities offered by very high-speed clusters of comput-
ers and sophisticated graphical interfaces that aid scientific research and engineering design. Chapter 26
introduces the section by presenting the fundamental subjects of computational geometry and grid gen-
eration. The design of graphical models for scientific visualization of complex physical and biological
phenomena is the subject of Chapter 27.

Each of the remaining chapters in this section covers the computational challenges and discoveries
in a specific scientific or engineering field. Chapter 28 presents the computational aspects of structural
mechanics, Chapter 29 summarizes progress in the area of computational electromagnetics, and Chapter 30
addresses computational modeling in the field of fluid dynamics. Chapter 31 addresses the grand challenge
of computational ocean modeling. Computational chemistry is the subject of Chapter 32, while Chapter 33
addresses the computational dimensions of astrophysics. Chapter 34 closes this section with a discussion
of the dramatic recent progress in computational biology.

1.5.4 Graphics and Visual Computing

Computer graphics is the study and realization of complex processes for representing physical and concep-
tual objects visually on a computer screen. These processes include the internal modeling of objects, render-
ing, projection, and motion. An overview of these processes and their interaction is presented in Chapter 35.

Fundamental to all graphics applications are the processes of modeling and rendering. Modeling is the
design of an effective and efficient internal representation for geometric objects, which is the subject of
Chapter 36 and Chapter 37. Rendering, the process of representing the objects in a three-dimensional scene
on a two-dimensional screen, is discussed in Chapter 38. Among its special challenges are the elimination
of hidden surfaces and the modeling of color, illumination, and shading.

The reconstruction of scanned and digitally photographed images is another important area of com-
puter graphics. Sampling, filtering, reconstruction, and anti-aliasing are the focus of Chapter 39. The
representation and control of motion, or animation, is another complex and important area of computer
graphics. Its special challenges are presented in Chapter 40.

Chapter 41 discusses volume datasets, and Chapter 42 looks at the emerging field of virtual reality and
its particular challenges for computer graphics. Chapter 43 concludes this section with a discussion of
progress in the computer simulation of vision.

1.5.5 Human-Computer Interaction

This area, the study of how humans and computers interact, has the goal of improving the quality of
such interaction and the effectiveness of those who use technology in the workplace. This includes the
conception, design, implementation, risk analysis, and effects of user interfaces and tools on the people
who use them.

Modeling the organizational environments in which technology users work is the subject of Chapter 44.
Usability engineering is the focus of Chapter 45, while Chapter 46 covers task analysis and the design of
functionality at the user interface. The influence of psychological preferences of users and programmers
and the integration of these preferences into the design process is the subject of Chapter 47.

Specific devices, tools, and techniques for effective user-interface design form the basis for the next few
chapters in this section. Lower-level concerns for the design of interface software technology are addressed
in Chapter 48. The special challenges of integrating multimedia with user interaction are presented in
Chapter 49. Computer-supported collaboration is the subject of Chapter 50, and the impact of international
standards on the user interface design process is the main concern of Chapter 51.

© 2004 by Taylor & Francis Group, LLC

1.5.6 Information Management

The subject area of information management addresses the general problem of storing large amounts of
data in such a way that they are reliable, up-to-date, accessible, and efficiently retrieved. This problem is
prominent in a wide range of applications in industry, government, and academic research. Availability
of such data on the Internet and in forms other than text (e.g., CD, audio, and video) makes this problem
increasingly complex.

At the foundation are the fundamental data models (relational, hierarchical, and object-oriented)
discussed in Chapter 52. The conceptual, logical, and physical levels of designing a database for high
performance in a particular application domain are discussed in Chapter 53.

A number of basic issues surround the effective design of database models and systems. These include
choosing appropriate access methods (Chapter 54), optimizing database queries (Chapter 55), controlling
concurrency (Chapter 56), and processing transactions (Chapter 57).

The design of databases for distributed and parallel systems is discussed in Chapter 58, while the design of
hypertext and multimedia databases is the subject of Chapter 59. The contemporary issue of database secu-
rity and privacy protection, in both stand-alone and networked environments, is the subject of Chapter 60.

1.5.7 Intelligent Systems

The field of intelligent systems, often called artificial intelligence (AI), studies systems that simulate human
rational behavior in all its forms. Current efforts are aimed at constructing computational mechanisms that
process visual data, understand speech and written language, control robot motion, and model physical
and cognitive processes. Robotics is a complex field, drawing heavily from AI as well as other areas of
science and engineering.

Artificial intelligence research uses a variety of distinct algorithms and models. These include fuzzy,
temporal, and other logics, as described in Chapter 61. The related idea of qualitative modeling is discussed
in Chapter 62, while the use of complex specialized search techniques that address the combinatorial
explosion of alternatives in Al problems is the subject of Chapter 63. Chapter 64 addresses issues related
to the mechanical understanding of spoken language.

Intelligent systems also include techniques for automated learning and planning. The use of decision
trees and neural networks in learning and other areas is the subject of Chapter 65 and Chapter 66. Chapter 67
presents the rationale and uses of planning and scheduling models, while Chapter 68 contains a discussion
of deductive learning. Chapter 69 addresses the challenges of modeling from the viewpoint of cognitive
science, while Chapter 70 treats the challenges of decision making under uncertainty.

Chapter 71 concludes this section with a discussion of the principles and major results in the field of
robotics: the design of effective devices that simulate mechanical, sensory, and intellectual functions of
humans in specific task domains such as navigation and planning.

1.5.8 Net-Centric Computing

Extending system functionality across a networked environment has added an entirely new dimension
to the traditional study and practice of computer science. Chapter 72 presents an overview of network
organization and topologies, while Chapter 73 describes network routing protocols. Basic issues in network
management are addressed in Chapter 74.

The special challenges of information retrieval and data mining from large databases and the Internet
are addressed in Chapter 75. The important topic of data compression for internetwork transmission and
archiving is covered in Chapter 76.

Modern computer networks, especially the Internet, must ensure system integrity in the event of inappro-
priate access, unexpected malfunction and breakdown, and violations of data and system security or indi-
vidual privacy. Chapter 77 addresses the principles surrounding these security and privacy issues. A discus-
sion of some specific malicious software and hacking events appears in Chapter 78. This section concludes
with Chapter 79, which discusses protocols for user authentication, access control, and intrusion detection.

© 2004 by Taylor & Francis Group, LLC

1.5.9 Operating Systems

An operating system is the software interface between the computer and its applications. This section
covers operating system analysis, design, and performance, along with the special challenges for operating
systems in a networked environment. Chapter 80 briefly traces the historical development of operating
systems and introduces the fundamental terminology, including process scheduling, memory management,
synchronization, I/O management, and distributed systems.

The “process” is a key unit of abstraction in operating system design. Chapter 81 discusses the dynamics
of processes and threads. Strategies for process and device scheduling are presented in Chapter 82. The
special requirements for operating systems in real-time and embedded system environments are treated
in Chapter 83. Algorithms and techniques for process synchronization and interprocess communication
are the subject of Chapter 84.

Memory and input/output device management is also a central concern of operating systems. Chapter 85
discusses the concept of virtual memory, from its early incarnations to its uses in present-day systems and
networks. The different models and access methods for secondary storage and filesystems are covered in
Chapter 86.

The influence of networked environments on the design of distributed operating systems is considered
in Chapter 87. Distributed and multiprocessor scheduling are the focus in Chapter 88, while distributed
file and memory systems are discussed in Chapter 89.

1.5.10 Programming Languages

This section examines the design of programming languages, including their paradigms, mechanisms for
compiling and runtime management, and theoretical models, type systems, and semantics. Overall, this
section provides a good balance between considerations of programming paradigms, implementation
issues, and theoretical models.

Chapter 90 considers traditional language and implementation questions for imperative program-
ming languages such as Fortran, C, and Ada. Chapter 91 examines object-oriented concepts such as
classes, inheritance, encapsulation, and polymorphism, while Chapter 92 presents the view of func-
tional programming, including lazy and eager evaluation. Chapter 93 considers declarative program-
ming in the logic/constraint programming paradigm, while Chapter 94 covers the design and use of
special purpose scripting languages. Chapter 95 considers the emergent paradigm of event-driven pro-
gramming, while Chapter 96 covers issues regarding concurrent, distributed, and parallel programming
models.

Type systems are the subject of Chapter 97, while Chapter 98 covers programming language semantics.
Compilers and interpreters for sequential languages are considered in Chapter 99, while the issues sur-
rounding runtime environments and memory management for compilers and interpreters are addressed
in Chapter 100.

Brief summaries of the main features and applications of several contemporary languages appear in
Appendix D, along with links to Web sites for more detailed information on these languages.

1.5.11 Software Engineering

The section on software engineering examines formal specification, design, verification and testing, project
management, and other aspects of the software process. Chapter 101 introduces general software qualities
such as maintainability, portability, and reuse that are needed for high-quality software systems, while
Chapter 109 covers the general topic of software architecture.

Chapter 102 reviews specific models of the software life cycle such as the waterfall and spiral mod-
els. Chapter 106 considers a more formal treatment of software models, including formal specification
languages.

Chapter 103 deals with the traditional design process, featuring a case study in top-down functional
design. Chapter 104 considers the complementary strategy of object-oriented software design. Chapter 105

© 2004 by Taylor & Francis Group, LLC

treats the subject of validation and testing, including risk and reliability issues. Chapter 107 deals with the
use of rigorous techniques such as formal verification for quality assurance.

Chapter 108 considers techniques of software project management, including team formation, project
scheduling, and evaluation, while Chapter 110 concludes this section with a treatment of specialized system
development.

1.6 Conclusion

In 2002, the ACM celebrated its 55th anniversary. These five decades of computer science are characterized
by dramatic growth and evolution. While it is safe to reaffirm that the field has attained a certain level of
maturity, we surely cannot assume that it will remain unchanged for very long. Already, conferences are
calling for new visions that will enable the discipline to continue its rapid evolution in response to the
world’s continuing demand for new technology and innovation.

This Handbook is designed to convey the modern spirit, accomplishments, and direction of computer
science as we see it in 2003. It interweaves theory with practice, highlighting “best practices” in the field
as well as emerging research directions. It provides today’s answers to computational questions posed by
professionals and researchers working in all 11 subject areas. Finally, it identifies key professional and social
issues that lie at the intersection of the technical aspects of computer science and the people whose lives
are impacted by such technology.

The future holds great promise for the next generations of computer scientists. These people will
solve problems that have only recently been conceived, such as those suggested by the HPCC as “grand
challenges.” To address these problems in a way that benefits the world’s citizenry will require substantial
energy, commitment, and real investment on the part of institutions and professionals throughout the
field. The challenges are great, and the solutions are not likely to be obvious.

References

ACM Curriculum Committee on Computer Science 1968. Curriculum 68: recommendations for the
undergraduate program in computer science. Commun. ACM, 11(3):151-197, March.

ACM Curriculum Committee on Computer Science 1978. Curriculum 78: recommendations for the
undergraduate program in computer science. Commun. ACM, 22(3):147-166, March.

ACM Task Force on the Core of Computer Science: Denning, P., Comer, D., Gries, D., Mulder, M.,
Tucker, A., and Young, P., 1988. Computing as a Discipline. Abridged version, Commun. ACM, Jan.
1989.

ACM/IEEE-CS Joint Curriculum Task Force. Computing Curricula 1991. ACM Press. Abridged version,
Commun. ACM, June 1991, and IEEE Comput. Nov. 1991.

ACM/IEEE-CS Joint Task Force. Computing Curricula 2001: Computer Science Volume. ACM and IEEE
Computer Society, December 2001, (http://www.acm.org/sigcse/cc2001).

Arden, B., Ed., 1980. What Can be Automated ? Computer Science and Engineering Research (COSERS)
Study. MIT Press, Boston, MA.

Bryant, R.E. and M.Y. Vardi, 2001. 2000-2001 Taulbee Survey: Hope for More Balance in Supply and
Demand. Computing Research Assoc (http://www.cra.org).

CSNRCTB 1992. Computer Science and National Research Council Telecommunications Board. Comput-
ing the Future: A Broader Agenda for Computer Science and Engineering. National Academy Press,
Washington, D.C.

Economist 1993. The computer industry: reboot system and start again. Economist, Feb. 27.

Gibbs, N. and A. Tucker 1986. A Model Curriculum for a Liberal Arts Degree in Computer Science.
Communications of the ACM, March.

IEEE-CS 1976. Education Committee of the IEEE Computer Society. A Curriculum in Computer Science
and Engineering. IEEE Pub. EH0119-8, Jan. 1977.

© 2004 by Taylor & Francis Group, LLC

IEEE-CS 1983. Educational Activities Board. The 1983 Model Program in Computer Science and Engineering.
Tech. Rep. 932. Computer Society of the IEEE, December.

NSF 2002. National Science Foundation. Science and Engineering Indicators (Vol. Iand IT), National Science
Board, Arlington, VA.

NSF 2003a. National Science Foundation. Budget Overview FY 2003 (http://www.nsf.gov/bfa/bud/fy2003/
overview.htm).

NSF 2003b. National Science Foundation. Revolutionizing Science and Engineering through Cyberinfras-
tructure, report of the NSF Blue-Ribbon Advisory Panel on Cyberinfrastructure, January.

OST 1989. Office of Science and Technology. The Federal High Performance Computing and Communication
Program. Executive Office of the President, Washington, D.C.

Rosser,].B. et al. 1966. Digital Computer Needs in Universities and Colleges. Publ. 1233, National Academy
of Sciences, National Research Council, Washington, D.C.

Stevenson, D.E. 1994. Science, computational science, and computer science. Commun. ACM, December.

© 2004 by Taylor & Francis Group, LLC

http://www.nsf.gov/index.jsp

Ethical Issues for
Computer Scientists

2.1 Introduction: Why a Chapter on Ethical Issues?
2.2 Ethics in General
Utilitarianism ¢ Deontological Theories * Social Contract
Theories * A Paramedic Method for Computer Ethics * Easy
and Hard Ethical Decision Making
2.3 Professional Ethics
Deborah G. Johnson 2.4 Ethical Issues That Arise from Computer Technology
Privacy * Property Rights and Computing * Risk, Reliability,
and Accountability ¢ Rapidly Evolving Globally Networked
Keith W. Miller Telecommunications
University of Illinois 2.5 Final Thoughts

University of Virginia

2.1 Introduction: Why a Chapter on Ethical Issues?

Computers have had a powerful impact on our world and are destined to shape our future. This observation,
now commonplace, is the starting point for any discussion of professionalism and ethics in computing.
The work of computer scientists and engineers is part of the social, political, economic, and cultural
world in which we live, and it affects many aspects of that world. Professionals who work with computers
have special knowledge. That knowledge, when combined with computers, has significant power to change
people’s lives — by changing socio-technical systems; social, political and economic institutions; and social
relationships.

In this chapter, we provide a perspective on the role of computer and engineering professionals and
we examine the relationships and responsibilities that go with having and using computing expertise. In
addition to the topic of professional ethics, we briefly discuss several of the social—ethical issues created
or exacerbated by the increasing power of computers and information technology: privacy, property, risk
and reliability, and globalization.

Computers, digital data, and telecommunications have changed work, travel, education, business, en-
tertainment, government, and manufacturing. For example, work now increasingly involves sitting in
front of a computer screen and using a keyboard to make things happen in a manufacturing process or
to keep track of records. In the past, these same tasks would have involved physically lifting, pushing, and
twisting or using pens, paper, and file cabinets. Changes such as these in the way we do things have, in
turn, fundamentally changed who we are as individuals, communities, and nations. Some would argue,
for example, that new kinds of communities (e.g., cyberspace on the Internet) are forming, individuals
are developing new types of personal identities, and new forms of authority and control are taking hold
as a result of this evolving technology.

© 2004 by Taylor & Francis Group, LLC

Computer technology is shaped by social-cultural concepts, laws, the economy, and politics. These same
concepts, laws, and institutions have been pressured, challenged, and modified by computer technology.
Technological advances can antiquate laws, concepts, and traditions, compelling us to reinterpret and
create new laws, concepts, and moral notions. Our attitudes about work and play, our values, and our laws
and customs are deeply involved in technological change.

When it comes to the social—ethical issues surrounding computers, some have argued that the issues are
not unique. All of the ethical issues raised by computer technology can, it is said, be classified and worked
out using traditional moral concepts, distinctions, and theories. There is nothing new here in the sense
that we can understand the new issues using traditional moral concepts, such as privacy, property, and
responsibility, and traditional moral values, such as individual freedom, autonomy, accountability, and
community. These concepts and values predate computers; hence, it would seem there is nothing unique
about computer ethics.

On the other hand, those who argue for the uniqueness of the issues point to the fundamental ways in
which computers have changed so many human activities, such as manufacturing, record keeping, banking,
international trade, education, and communication. Taken together, these changes are so radical, it is
claimed, that traditional moral concepts, distinctions, and theories, if not abandoned, must be significantly
reinterpreted and extended. For example, they must be extended to computer-mediated relationships,
computer software, computer art, datamining, virtual systems, and so on.

The uniqueness of the ethical issues surrounding computers can be argued in a variety of ways. Computer
technology makes possible a scale of activities not possible before. This includes a larger scale of record
keeping of personal information, as well as larger-scale calculations which, in turn, allow us to build and
do things not possible before, such as undertaking space travel and operating a global communication
system. Among other things, the increased scale means finer-grained personal information collection
and more precise data matching and datamining. In addition to scale, computer technology has involved
the creation of new kinds of entities for which no rules initially existed: entities such as computer files,
computer programs, the Internet, Web browsers, cookies, and so on. The uniqueness argument can also
be made in terms of the power and pervasiveness of computer technology. Computers and information
technology seem to be bringing about a magnitude of change comparable to that which took place during
the Industrial Revolution, transforming our social, economic, and political institutions; our understanding
of what it means to be human; and the distribution of power in the world. Hence, it would seem that the
issues are at least special, if not unique.

In this chapter, we will take an approach that synthesizes these two views of computer ethics by assuming
that the analysis of computer ethical issues involves both working on something new and drawing on
something old. We will view issues in computer ethics as new species of older ethical problems [Johnson
1994], such that the issues can be understood using traditional moral concepts such as autonomy, privacy,
property, and responsibility, while at the same time recognizing that these concepts may have to be extended
to what is new and special about computers and the situations they create.

Most ethical issues arising around computers occur in contexts in which there are already social, ethical,
and legal norms. In these contexts, often there are implicit, if not formal (legal), rules about how individuals
are to behave; there are familiar practices, social meanings, interdependencies, and so on. In this respect,
the issues are not new or unique, or at least cannot be resolved without understanding the prevailing
context, meanings, and values. At the same time, the situation may have special features because of the
involvement of computers — features that have not yet been addressed by prevailing norms. These features
can make a moral difference. For example, although property rights and even intellectual property rights
had been worked out long before the creation of software, when software first appeared, it raised a new
form of property issue. Should the arrangement of icons appearing on the screen of a user interface be
ownable? Is there anything intrinsically wrong in copying software? Software has features that make the
distinction between idea and expression (a distinction at the core of copyright law) almost incoherent.
As well, software has features that make standard intellectual property laws difficult to enforce. Hence,
questions about what should be owned when it comes to software and how to evaluate violations of
software ownership rights are not new in the sense that they are property rights issues, but they are new

© 2004 by Taylor & Francis Group, LLC

in the sense that nothing with the characteristics of software had been addressed before. We have, then, a
new species of traditional property rights.

Similarly, although our understanding of rights and responsibilities in the employer—employee rela-
tionship has been evolving for centuries, never before have employers had the capacity to monitor their
workers electronically, keeping track of every keystroke, and recording and reviewing all work done by
an employee (covertly or with prior consent). When we evaluate this new monitoring capability and ask
whether employers should use it, we are working on an issue that has never arisen before, although many
other issues involving employer—employee rights have. We must address a new species of the tension
between employer—employee rights and interests.

The social—ethical issues posed by computer technology are significant in their own right, but they
are of special interest here because computer and engineering professionals bear responsibility for this
technology. It is of critical importance that they understand the social change brought about by their
work and the difficult social-ethical issues posed. Just as some have argued that the social—ethical issues
posed by computer technology are not unique, some have argued that the issues of professional ethics
surrounding computers are not unique. We propose, in parallel with our previous genus—species account,
that the professional ethics issues arising for computer scientists and engineers are species of generic issues
of professional ethics. All professionals have responsibilities to their employers, clients, co-professionals,
and the public. Managing these types of responsibilities poses a challenge in all professions. Moreover, all
professionals bear some responsibility for the impact of their work. In this sense, the professional ethics
issues arising for computer scientists and engineers are generally similar to those in other professions.
Nevertheless, it is also true to say that the issues arise in unique ways for computer scientists and engineers
because of the special features of computer technology.

In what follows, we discuss ethics in general, professional ethics, and finally, the ethical issues surrounding
computer and information technology.

2.2 Ethics in General

Rigorous study of ethics has traditionally been the purview of philosophers and scholars of religious studies.
Scholars of ethics have developed a variety of ethical theories with several tasks in mind:

To explain and justify the idea of morality and prevailing moral notions
To critique ordinary moral beliefs
To assist in rational, ethical decision making

Our aim in this chapter is not to propose, defend, or attack any particular ethical theory. Rather, we offer
brief descriptions of three major and influential ethical theories to illustrate the nature of ethical analysis.
We also include a decision-making method that combines elements of each theory.

Ethical analysis involves giving reasons for moral claims and commitments. It is not just a matter of
articulating intuitions. When the reasons given for a claim are developed into a moral theory, the theory
can be incorporated into techniques for improved technical decision making. The three ethical theories
described in this section represent three traditions in ethical analysis and problem solving. The account
we give is not exhaustive, nor is our description of the three theories any more than a brief introduction.
The three traditions are utilitarianism, deontology, and social contract theory.

2.2.1 Utilitarianism

Utilitarianism has greatly influenced 20th-century thinking, especially insofar as it influenced the devel-
opment of cost—benefit analysis. According to utilitarianism, we should make decisions about what to do
by focusing on the consequences of actions and policies; we should choose actions and policies that bring
about the best consequences. Ethical rules are derived from their usefulness (their utility) in bringing about
happiness. In this way, utilitarianism offers a seemingly simple moral principle to determine what to do

© 2004 by Taylor & Francis Group, LLC

in a given situation: everyone ought to act so as to bring about the greatest amount of happiness for the
greatest number of people.

According to utilitarianism, happiness is the only value that can serve as a foundational base for ethics.
Because happiness is the ultimate good, morality must be based on creating as much of this good as possible.
The utilitarian principle provides a decision procedure. When you want to know what to do, the right action
is the alternative that produces the most overall net happiness (happiness-producing consequences minus
unhappiness-producing consequences). The right action may be one that brings about some unhappiness,
but that is justified if the action also brings about enough happiness to counterbalance the unhappiness
or if the action brings about the least unhappiness of all possible alternatives.

Utilitarianism should not be confused with egoism. Egoism is a theory claiming that one should act
so as to bring about the most good consequences for oneself. Utilitarianism does not say that you should
maximize your own good. Rather, total happiness in the world is what is at issue; when you evaluate your
alternatives, you must ask about their effects on the happiness of everyone. It may turn out to be right
for you to do something that will diminish your own happiness because it will bring about an increase in
overall happiness.

The emphasis on consequences found in utilitarianism is very much a part of personal and policy
decision making in our society, in particular as a framework for law and public policy. Cost-benefit and
risk—benefit analysis are, for example, consequentialist in character.

Utilitarians do not all agree on the details of utilitarianism; there are different kinds of utilitarianism.
One issue is whether the focus should be on rules of behavior or individual acts. Utilitarians have recognized
that it would be counter to overall happiness if each one of us had to calculate at every moment what
the consequences of every one of our actions would be. Sometimes we must act quickly, and often the
consequences are difficult or impossible to foresee. Thus, there is a need for general rules to guide our
actions in ordinary situations. Hence, rule-utilitarians argue that we ought to adopt rules that, if followed
by everyone, would, in general and in the long run, maximize happiness. Act-utilitarians, on the other
hand, put the emphasis on judging individual actions rather than creating rules.

Both rule-utilitarians and act-utilitarians, nevertheless, share an emphasis on consequences; deonto-
logical theories do not share this emphasis.

2.2.2 Deontological Theories

Deontological theories can be understood as a response to important criticisms of utilitarian theories. A
standard criticism is that utilitarianism seems to lead to conclusions that are incompatible with our most
strongly held moral intuitions. Utilitarianism seems, for example, open to the possibility of justifying
enormous burdens on some individuals for the sake of others. To be sure, every person counts equally;
no one person’s happiness or unhappiness is more important than any other person’s. However, because
utilitarians are concerned with the total amount of happiness, we can imagine situations where great
overall happiness would result from sacrificing the happiness of a few. Suppose, for example, that having
a small number of slaves would create great happiness for large numbers of people; or suppose we kill one
healthy person and use his or her body parts to save ten people in need of transplants.

Critics of utilitarianism say that if utilitarianism justifies such practices, then the theory must be wrong.
Utilitarians have a defense, arguing that such practices could not be justified in utilitarianism because of
the long-term consequences. Such practices would produce so much fear that the happiness temporarily
created would never counterbalance the unhappiness of everyone living in fear that they might be sacrificed
for the sake of overall happiness.

We need not debate utilitarianism here. The point is that deontologists find utilitarianism problematic
because it puts the emphasis on the consequences of an act rather than on the quality of the act itself.
Deontological theories claim that the internal character of the act is what is important. The rightness or
wrongness of an action depends on the principles inherent in the action. If an action is done from a sense
of duty, and if the principle of the action can be universalized, then the action is right. For example, ifI tell
the truth because it is convenient for me to do so or because I fear the consequences of getting caught in a

© 2004 by Taylor & Francis Group, LLC

lie, my action is not worthy. A worthy action is an action that is done from duty, which involves respecting
other people and recognizing them as ends in themselves, not as means to some good effect.

According to deontologists, utilitarianism is wrong because it treats individuals as means to an end
(maximum happiness). For deontologists, what grounds morality is not happiness, but human beings as
rational agents. Human beings are capable of reasoning about what they want to do. The laws of nature
determine most activities: plants grow toward the sun, water boils at a certain temperature, and objects
accelerate at a constant rate in a vacuum. Human action is different in that it is self-determining; humans
initiate action after thinking, reasoning, and deciding. The human capacity for rational decisions makes
morality possible, and it grounds deontological theory. Because each human being has this capacity, each
human being must be treated accordingly — with respect. No one else can make our moral choices for us,
and each of us must recognize this capacity in others.

Although deontological theories can be formulated in a number of ways, one formulation is particularly
important: Immanuel Kant’s categorical imperative [Kant 1785]. There are three versions of it, and the
second version goes as follows: Never treat another human being merely as a means but always as an end. It
is important to note the merely in the categorical imperative. Deontologists do not insist that we never use
another person; only that we never merely use them. For example, if I own a company and hire employees
to work in my company, I might be thought of as using those employees as a means to my end (i.e., the
success of my business). This, however, is not wrong if the employees agree to work for me and if I pay
them a fair wage. I thereby respect their ability to choose for themselves, and I respect the value of their
labor. What would be wrong would be to take them as slaves and make them work for me, or to pay them
so little that they must borrow from me and remain always in my debt. This would show disregard for the
value of each person as a freely choosing, rationally valuing, efficacious person.

2.2.3 Social Contract Theories

A third tradition in ethics thinks of ethics on the model of a social contract. There are many different social
contract theories, and some, at least, are based on a deontological principle. Individuals are rational free
agents; hence, itisimmoral to exert undue power over them, that s, to coerce them. Government and society
are problematic insofar as they seem to force individuals to obey rules, apparently treating individuals as
means to social good. Social contract theories get around this problem by claiming that morality (and
government policy) is, in effect, the outcome of rational agents agreeing to social rules. In agreeing to live by
certain rules, we make a contract. Morality and government are not, then, systems imposed on individuals;
they do not exactly involve coercion. Rather, they are systems created by freely choosing individuals (or
they are institutions that rational individuals would choose if given the opportunity).

Philosophers such as Rousseau, Locke, Hobbes, and more recently Rawls [1971] are generally considered
social contract theorists. They differ in how they get to the social contract and what it implies. For our
purposes, however, the keyideais that principles and rules guiding behavior may be derived from identifying
what it is that rational (even self-interested) individuals would agree to in making a social contract. Such
principles and rules are the basis of a shared morality. For example, it would be rational for me to agree
to live by rules that forbid killing and lying. Even though such rules constrain me, they also give me some
degree of protection: if they are followed, I will not be killed or lied to.

It is important to note, however, that social contract theory cannot be used simply by asking what rules
you would agree to now. Most theorists recognize that what you would agree to now is influenced by
your present position in society. Most individuals would opt for rules that would benefit their particular
situation and characteristics. Hence, most social contract theorists insist that the principles or rules of the
social contract must be derived by assuming certain things about human nature or the human condition.
Rawls, for example, insists that we imagine ourselves behind a veil of ignorance. We are not allowed to
know important features about ourselves (e.g., what talents we have, what race or gender we are), for if
we know these things, we will not agree to just rules, but only to rules that will maximize our self-interest.
Justice consists of the rules we would agree to when we do not know who we are, for we would want rules
that would give us a fair situation no matter where we ended up in the society.

© 2004 by Taylor & Francis Group, LLC

2.2.4 A Paramedic Method for Computer Ethics

Drawing on elements of the three theories described, Collins and Miller [1992] have proposed a decision-
assisting method, called the paramedic method for computer ethics. This is not an algorithm for solving
ethical problems; it is not nearly detailed or objective enough for that designation. It is merely a guideline
for an organized approach to ethical problem solving.

Assume that a computer professional is faced with a decision that involves human values in a sig-
nificant way. There may already be some obvious alternatives, and there also may be creative solutions
not yet discovered. The paramedic method is designed to help the professional to analyze alternative
actions and to encourage the development of creative solutions. To illustrate the method, suppose you
are in a tight spot and do not know exactly what the right thing to do is. The method proceeds as fol-
lows:

1. Identify alternative actions; list the few alternatives that seem most promising. If an action requires
a long description, summarize it as a title with just a few words. Call the alternative actions A,
A,, ..., A,. No more than five actions should be analyzed at a time.

2. Identify people, groups of people, or organizations that will be affected by each of the alternative
decision-actions. Again, hold down the number of entities to the five or six that are affected most.
Label the people Py, Py, ..., P,,.

3. Make a table with the horizontal rows labeled by the identified people and the vertical columns
labeled with the identified actions. We call such a table a P x A table. Make two copies of the P x A
table; label one the opportunities table and the other the vulnerabilities table. In the opportunities
table, list in each interior cell of the table at entry [x, y] the possible good that is likely to happen
to person x if action y is taken. Similarly, in the vulnerability table, at position [x, y] list all of the
things that are likely to happen badly for x if the action y is taken. These two graphs represent
benefit—cost calculations for a consequentialist, utilitarian analysis.

4. Make a new table with the set of persons marking both the columns and the rows (a P x P
table). In each cell [x, y] name any responsibilities or duties that x owes y in this situation.
(The cells on the diagonal [x,x] are important; they list things one owes oneself.) Now, make
copies of this table, labeling one copy for each of the alternative actions being considered. Work
through each cell [x, y] of each table and place a + next to a duty if the action for that ta-
ble is likely to fulfill the duty x owes y; mark the duty with a — if the action is unlikely to
fulfill that duty; mark the duty with a +/— if the action partially fulfills it and partially does
not; and mark the duty with a ? if the action is irrelevant to the duty or if it is impossible
to predict whether or not the duty will be fulfilled. (Few cells generally fall into this last cate-
gory.)

5. Review the tables from steps 3 and 4. Envision a meeting of all of the parties (or one representative
from each of the groups) in which no one knows which role they will take or when they will leave the
negotiation. Which alternative do you think such a group would adopt, if any? Do you think such
a group could discover a new alternative, perhaps combining the best elements of the previously
listed actions? If this thought experiment produces a new alternative, expand the P x A tables from
step 3 to include the new alternative action, make a new copy of the P x P table in step 4, and do
the + and — marking for the new table.

6. If any one of the alternatives seems to be clearly preferred (i.e., it has high opportunity and low
vulnerability for all parties and tends to fulfill all the duties in the P x P table), then that becomes
the recommended decision. If no one alternative action stands out, the professionals can examine
trade-offs using the charts or can iteratively attempt step 5 (perhaps with outside consultations)
until an acceptable alternative is generated.

Using the paramedic method can be time consuming, and it does not eliminate the need for judgment. But

it can help organize and focus analysis as an individual or a group works through the details of a situation
to arrive at a decision.

© 2004 by Taylor & Francis Group, LLC

2.2.5 Easy and Hard Ethical Decision Making

Sometimes ethical decision making is easy; for example, when it is clear that an action will prevent a serious
harm and has no drawbacks, then that action is the right thing to do. Sometimes, however, ethical decision
making is more complicated and challenging. Take the following case: your job is to make decisions about
which parts to buy for a computer manufacturing company. A person who sells parts to the company offers
you tickets to an expensive Broadway show. Should you accept the tickets? In this case, the right thing to
do is more complicated because you may be able to accept the tickets and not have this affect your decision
about parts. You owe your employer a decision on parts that is in the best interests of the company, but
will accepting the tickets influence future decisions?

Other times, you know what the right thing to do is, but doing it will have such great personal costs that
you cannot bring yourself to do it. For example, you might be considering blowing the whistle on your
employer, who has been extremely kind and generous to you, but who now has asked you to cheat on the
testing results on a life-critical software system designed for a client.

To make good decisions, professionals must be aware of potential issues and must have a fairly clear
sense of their responsibilities in various kinds of situations. This often requires sorting out complex
relationships and obligations, anticipating the effects of various actions, and balancing responsibilities to
multiple parties. This activity is part of professional ethics.

2.3 Professional Ethics

Ethics is not just a matter for individuals as individuals. We all occupy a variety of social roles that involve
special responsibilities and privileges. As parents, we have special responsibilities for children. As citizens,
members of churches, officials in clubs, and so on, we have special rights and duties — and so it is with
professional roles. Being a professional is often distinguished from merely having an occupation, because
a professional makes a different sort of commitment. Being a professional means more than just having a
job. The difference is commitment to doing the right thing because you are a member of a group that has
taken on responsibility for a domain of activity. The group is accountable to society for this domain, and
for this reason, professionals must behave in ways that are worthy of public trust.

Some theorists explain this commitment in terms of a social contract between a profession and the
society in which it functions. Society grants special rights and privileges to the professional group, such as
control of admission to the group, access to educational institutions, and confidentiality in professional—
client relationships. Society, in turn, may even grant the group a monopoly over a domain of activity
(e.g., only licensed engineers can sign off on construction designs, and only doctors can prescribe drugs).
In exchange, the professional group promises to self-regulate and practice its profession in ways that
are beneficial to society, that is, to promote safety, health, and welfare. The social contract idea is a way
of illustrating the importance of the trust that clients and the public put in professionals; it shows the
importance of professionals acting so as to be worthy of that trust.

The special responsibilities of professionals have been accounted for in other theoretical frameworks, as
well. For example, Davis [1995] argues that members of professions implicitly, if not explicitly, agree among
themselves to adhere to certain standards because this elevates the level of activity. If all computer scientists
and engineers, for example, agreed never to release software that has not met certain testing standards,
this would prevent market pressures from driving down the quality of software being produced. Davis’s
point is that the special responsibilities of professionals are grounded in what members of a professional
group owe to one another: they owe it to one another to live up to agreed-upon rules and standards. Other
theorists have tried to ground the special responsibilities of professionals in ordinary morality. Alpern
[1991] argues, for example, that the engineer’s responsibility for safety derives from the ordinary moral
edict do no harm. Because engineers are in a position to do greater harm than others, engineers have a
special responsibility in their work to take greater care.

In the case of computing professionals, responsibilities are not always well articulated because of several
factors. Computing is a relatively new field. There is no single unifying professional association that

© 2004 by Taylor & Francis Group, LLC

controls membership, specifies standards of practice, and defines what it means to be a member of the
profession. Moreover, many computer scientists and engineers are employees of companies or government
agencies, and their role as computer professional may be somewhat in tension with their role as an
employee of the company or agency. This can blur an individual’s understanding of his or her professional
responsibilities. Being a professional means having the independence to make decisions on the basis of
special expertise, but being an employee often means acting in the best interests of the company, i.e.,
being loyal to the organization. Another difficulty in the role of computing professional is the diversity
of the field. Computing professionals are employed in a wide variety of contexts, have a wide variety
of kinds of expertise, and come from diverse educational backgrounds. As mentioned before, there is
no single unifying organization, no uniform admission standard, and no single identifiable professional
role.

To be sure, there are pressures on the field to move more in the direction of professionalization, but this
seems to be happening to factions of the group rather than to the field as a whole. An important event
moving the field in the direction of professionalization was the decision of the state of Texas to provide a
licensing system for software engineers. The system specifies a set of requirements and offers an exam that
must be passed in order for a computer professional to receive a software engineering license.

At the moment, Texas is the only state that offers such a license, so the field of computing remains loosely
organized. It is not a strongly differentiated profession in the sense that there is no single characteristic (or
set of characteristics) possessed by all computer professionals, no characteristic that distinguishes members
of the group from anyone who possesses knowledge of computing. At this point, the field of computing
is best described as a large group of individuals, all of whom work with computers, many of whom have
expertise in subfields; they have diverse educational backgrounds, follow diverse career paths, and engage
in a wide variety of job activities.

Despite the lack of unity in the field, there are many professional organizations, several professional
codes of conduct, and expectations for professional practice. The codes of conduct, in particular, form the
basis of an emerging professional ethic that may, in the future, be refined to the point where there will be
a strongly differentiated role for computer professionals.

Professional codes play an important role in articulating a collective sense of both the ideal of the
profession and the minimum standards required. Codes of conduct state the consensus views of members
while shaping behavior.

A number of professional organizations have codes of ethics that are of interest here. The best known
include the following:

The Association for Computing Machinery (ACM) Code of Ethics and Professional Conduct (see
Appendix B)

The Institute of Electrical and Electronic Engineers (IEEE) Code of Ethics

The Joint ACM/IEEE Software Engineering Code of Ethics and Professional Practice

The Data Processing Managers Association (DPMA, now the Association of Information Technology
Professionals [AITP]) Code of Ethics and Standards of Conduct

The Institute for Certification of Computer Professionals (ICCP) Code of Ethics

The Canadian Information Processing Society Code of Ethics

The British Computer Society Code of Conduct

Each of these codes has different emphases and goals. Each in its own way, however, deals with issues that
arise in the context in which computer scientists and engineers typically practice.

The codes are relatively consistent in identifying computer professionals as having responsibilities to be
faithful to their employers and clients, and to protect public safety and welfare. The most salient ethical
issues that arise in professional practice have to do with balancing these responsibilities with personal (or
nonprofessional) responsibilities. Two common areas of tension are worth mentioning here, albeit briefly.

As previously mentioned, computer scientists may find themselves in situations in which their respon-
sibility as professionals to protect the public comes into conflict with loyalty to their employer. Such
situations sometimes escalate to the point where the computer professional must decide whether to blow

© 2004 by Taylor & Francis Group, LLC

the whistle. Such a situation might arise, for example, when the computer professional believes that a
piece of software has not been tested enough but her employer wants to deliver the software on time and
within the allocated budget (which means immediate release and no more resources being spent on the
project). Whether to blow the whistle is one of the most difficult decisions computer engineers and sci-
entists may have to face. Whistle blowing has received a good deal of attention in the popular press and in
the literature on professional ethics, because this tension seems to be built into the role of engineers and
scientists, that is, the combination of being a professional with highly technical knowledge and being an
employee of a company or agency.

Of course, much of the literature on whistle blowing emphasizes strategies that avoid the need for it.
Whistle blowing can be avoided when companies adopt mechanisms that give employees the opportunity
to express their concerns without fear of repercussions, for example, through ombudspersons to whom
engineers and scientists can report their concerns anonymously. The need to blow the whistle can also be
diminished when professional societies maintain hotlines that professionals can call for advice on how to
get their concerns addressed.

Another important professional ethics issue that often arises is directly tied to the importance of being
worthy of client (and, indirectly, public) trust. Professionals can find themselves in situations in which
they have (or are likely to have) a conflict of interest. A conflict-of-interest situation is one in which the
professional is hired to perform work for a client and the professional has some personal or professional
interest that may (or may appear to) interfere with his or her judgment on behalf of the client. For example,
suppose a computer professional is hired by a company to evaluate its needs and recommend hardware
and software that will best suit the company. The computer professional does precisely what is requested,
but fails to mention being a silent partner in a company that manufactures the hardware and software that
has been recommended. In other words, the professional has a personal interest — financial benefit — in
the company’s buying certain equipment. If the company were told this upfront, it might expect the com-
puter professional to favor his own company’s equipment; however, if the company finds out about the
affiliation later on, it might rightly think that it had been deceived. The professional was hired to evaluate
the needs of the company and to determine how best to meet those needs, and in so doing to have the
best interests of the company fully in mind. Now, the company suspects that the professional’s judgment
was biased. The professional had an interest that might have interfered with his judgment on behalf of the
company.

There are a number of strategies that professions use to avoid these situations. A code of conduct may,
for example, specify that professionals reveal all relevant interests to their clients before they accept a job.
Or the code might specify that members never work in a situation where there is even the appearance of a
conflict of interest.

This brings us to the special character of computer technology and the effects that the work of computer
professionals can have on the shape of the world. Some may argue that computer professionals have very
little say in what technologies get designed and built. This seems to be mistaken on at least two counts.
First, we can distinguish between computer professionals as individuals and computer professionals as a
group. Even if individuals have little power in the jobs they hold, they can exert power collectively. Second,
individuals can have an effect if they think of themselves as professionals and consider it their responsibility
to anticipate the impact of their work.

2.4 Ethical Issues That Arise from Computer Technology

The effects of a new technology on society can draw attention to an old issue and can change our under-
standing of that issue. The issues listed in this section — privacy, property rights, risk and reliability, and
global communication — were of concern, even problematic, before computers were an important tech-
nology. But computing and, more generally, electronic telecommunications, have added new twists and
new intensity to each of these issues. Although computer professionals cannot be expected to be experts on
all of these issues, it is important for them to understand that computer technology is shaping the world.
And it is important for them to keep these impacts in mind as they work with computer technology. Those

© 2004 by Taylor & Francis Group, LLC

who are aware of privacy issues, for example, are more likely to take those issues into account when they
design database management systems; those who are aware of risk and reliability issues are more likely to
articulate these issues to clients and attend to them in design and documentation.

2.4.1 Privacy

Privacy is a central topic in computer ethics. Some have even suggested that privacy is a notion that has been
antiquated by technology and that it should be replaced by a new openness. Others think that computers
must be harnessed to help restore as much privacy as possible to our society. Although they may not like
it, computer professionals are at the center of this controversy. Some are designers of the systems that
facilitate information gathering and manipulation; others maintain and protect the information. As the
saying goes, information is power — but power can be used or abused.

Computer technology creates wide-ranging possibilities for tracking and monitoring of human behav-
ior. Consider just two ways in which personal privacy may be affected by computer technology. First,
because of the capacity of computers, massive amounts of information can be gathered by record-keeping
organizations such as banks, insurance companies, government agencies, and educational institutions. The
information gathered can be kept and used indefinitely, and shared with other organizations rapidly and
frequently. A second way in which computers have enhanced the possibilities for monitoring and tracking
of individuals is by making possible new kinds of information. When activities are done using a computer,
transactional information is created. When individuals use automated bank teller machines, records are
created; when certain software is operating, keystrokes on a computer keyboard are recorded; the content
and destination of electronic mail can be tracked, and so on. With the assistance of newer technologies,
much more of this transactional information is likely to be created. For example, television advertisers
may be able to monitor television watchers with scanning devices that record who is sitting in a room
facing the television. Highway systems allow drivers to pass through toll booths without stopping as a
beam reading a bar code on the automobile charges the toll, simultaneously creating a record of individual
travel patterns. All of this information (transactional and otherwise) can be brought together to create a
detailed portrait of a person’s life, a portrait that the individual may never see, although it is used by others
to make decisions about the individual.

This picture suggests that computer technology poses a serious threat to personal privacy. However,
one can counter this picture in a number of ways. Is it computer technology per se that poses the threat
or is it just the way the technology has been used (and is likely to be used in the future)? Computer
professionals might argue that they create the technology but are not responsible for how it is used.
This argument is, however, problematic for a number of reasons and perhaps foremost because it fails to
recognize the potential for solving some of the problems of abuse in the design of the technology. Computer
professionals are in the ideal position to think about the potential problems with computers and to design
so as to avoid these problems. When, instead of deflecting concerns about privacy as out of their purview,
computer professionals set their minds to solve privacy and security problems, the systems they design can
improve.

At the same time we think about changing computer technology, we also must ask deeper questions
about privacy itself and what it is that individuals need, want, or are entitled to when they express concerns
about the loss of privacy. In this sense, computers and privacy issues are ethical issues. They compel
us to ask deep questions about what makes for a good and just society. Should individuals have more
choice about who has what information about them? What is the proper relationship between citizens and
government, between individuals and private corporations? How are we to negotiate the tension between
the competing needs for privacy and security? As previously suggested, the questions are not completely
new, but some of the possibilities created by computers are new, and these possibilities do not readily fit
the concepts and frameworks used in the past. Although we cannot expect computer professionals to be
experts on the philosophical and political analysis of privacy, it seems clear that the more they know, the
better the computer technology they produce is likely to be.

© 2004 by Taylor & Francis Group, LLC

2.4.2 Property Rights and Computing

The protection of intellectual property rights has become an active legal and ethical debate, involving
national and international players. Should software be copyrighted, patented, or free? Is computer software
a process, a creative work, a mathematical formalism, an idea, or some combination of these? What is
society’s stake in protecting software rights? What is society’s stake in widely disseminating software? How
do corporations and other institutions protect their rights to ideas developed by individuals? And what are
the individuals’ rights? Such questions must be answered publicly through legislation, through corporate
policies, and with the advice of computing professionals. Some of the answers will involve technical details,
and all should be informed by ethical analysis and debate.

An issue that has received a great deal of legal and public attention is the ownership of software. In
the course of history, software is a relatively new entity. Whereas Western legal systems have developed
property laws that encourage invention by granting certain rights to inventors, there are provisions against
ownership of things that might interfere with the development of the technological arts and sciences. For
this reason, copyrights protect only the expression of ideas, not the ideas themselves, and we do not grant
patents on laws of nature, mathematical formulas, and abstract ideas. The problem with computer software
is that it has not been clear that we could grant ownership of it without, in effect, granting ownership of
numerical sequences or mental steps. Software can be copyrighted, because a copyright gives the holder
ownership of the expression of the idea (not the idea itself), but this does not give software inventors as
much protection as they need to compete fairly. Competitors may see the software, grasp the idea, and
write a somewhat different program to do the same thing. The competitor can sell the software at less
cost because the cost of developing the first software does not have to be paid. Patenting would provide
stronger protection, but until quite recently the courts have been reluctant to grant this protection because
of the problem previously mentioned: patents on software would appear to give the holder control of the
building blocks of the technology, an ownership comparable to owning ideas themselves. In other words,
too many patents may interfere with technological development.

Like the questions surrounding privacy, property rights in computer software also lead back to broader
ethical and philosophical questions about what constitutes a just society. In computing, as in other areas
of technology, we want a system of property rights that promotes invention (creativity, progress), but
at the same time, we want a system that is fair in the sense that it rewards those who make significant
contributions but does not give anyone so much control that others are prevented from creating. Policies
with regard to property rights in computer software cannot be made without an understanding of the
technology. This is why it is so important for computer professionals to be involved in public discussion
and policy setting on this topic.

2.4.3 Risk, Reliability, and Accountability

As computer technology becomes more important to the way we live, its risks become more worrisome.
System errors can lead to physical danger, sometimes catastrophic in scale. There are security risks due to
hackers and crackers. Unreliable data and intentional misinformation are risks that are increased because
of the technical and economic characteristics of digital data. Furthermore, the use of computer programs
is, in a practical sense, inherently unreliable.

Each of these issues (and many more) requires computer professionals to face the linked problems of
risk, reliability, and accountability. Professionals must be candid about the risks of a particular application
or system. Computing professionals should take the lead in educating customers and the public about
what predictions we can and cannot make about software and hardware reliability. Computer professionals
should make realistic assessments about costs and benefits, and be willing to take on both for projects in
which they are involved.

There are also issues of sharing risks as well as resources. Should liability fall to the individual who buys
software or to the corporation that developed it? Should society acknowledge the inherent risks in using

© 2004 by Taylor & Francis Group, LLC

software in life-critical situations and shoulder some of the responsibility when something goes wrong?
Or should software providers (both individuals and institutions) be exclusively responsible for software
safety? All of these issues require us to look at the interaction of technical decisions, human consequences,
rights, and responsibilities. They call not just for technical solutions but for solutions that recognize the
kind of society we want to have and the values we want to preserve.

2.4.4 Rapidly Evolving Globally Networked Telecommunications

The system of computers and connections known as the Internet provides the infrastructure for new kinds
of communities — electronic communities. Questions of individual accountability and social control, as
well as matters of etiquette, arise in electronic communities, as in all societies. It is not just that we have
societies forming in a new physical environment; it is also that ongoing electronic communication changes
the way individuals understand their identity, their values, and their plans for their lives. The changes that
are taking place must be examined and understood, especially the changes affecting fundamental social
values such as democracy, community, freedom, and peace.

Of course, speculating about the Internet is now a popular pastime, and it is important to separate the
hype from the reality. The reality is generally much more complex and much more subtle. We will not
engage in speculation and prediction about the future. Rather, we want to emphasize how much better off
the world would be if (instead of watching social impacts of computer technology after the fact) computer
engineers and scientists were thinking about the potential effects early in the design process. Of course,
this can only happen if computer scientists and engineers are encouraged to see the social—ethical issues
as a component of their professional responsibility. This chapter has been written with that end in mind.

2.5 Final Thoughts

Computer technology will, no doubt, continue to evolve and will continue to affect the character of the
world we live in. Computer scientists and engineers will play an important role in shaping the technology.
The technologies we use shape how we live and who we are. They make every difference in the moral
environment in which we live. Hence, it seems of utmost importance that computer scientists and engineers
understand just how their work affects humans and human values.

References

Alpern, K.D. 1991. Moral responsibility for engineers. In Ethical Issues in Engineering, D.G. Johnson, Ed.,
pp- 187-195. Prentice Hall, Englewood Cliffs, NJ.

Collins, W.R., and Miller, K. 1992. A paramedic method for computing professionals. J. Syst. Software.
17(1): 47-84.

Davis, M. 1995. Thinking like an engineer: the place of a code of ethics in the practice of a profession. In
Computers, Ethics, and Social Values, D.G. Johnson and H. Nissenbaum, Eds., pp. 586—597. Prentice
Hall, Englewood Cliffs, NJ.

Johnson, D.G. 2001. Computer Ethics, 3rd edition. Prentice Hall, Englewood Cliffs, NJ.

Kant, L. 1785. Foundations of the Metaphysics of Morals. L. Beck, trans., 1959. Library of Liberal Arts, 1959.

Rawls, J. 1971. A Theory of Justice. Harvard Univ. Press, Cambridge, MA.

© 2004 by Taylor & Francis Group, LLC

Algorithms and
Complexity

This section addresses the challenges of solving hard problems algorithmically and effi-
ciently. These chapters cover basic methodologies (divide and conquer), data structures,
complexity theory (space and time measures), parallel algorithms, and strategies for solv-
ing hard problems and identifying unsolvable problems. They also cover some exciting
contemporary applications of algorithms, including cryptography, genetics, graphs and

networks, pattern matching and text compression, and geometric and algebraic algorithms.

3 Basic Techniques for Design and Analysis of Algorithms

Edward M. Reingold

Introduction ¢ Analyzing Algorithms * Some Examples of the Analysis
of Algorithms « Divide-and-Conquer Algorithms * Dynamic Programming

* Greedy Heuristics
4 Data Structures

Roberto Tamassia and Bryan M. Cantrill

Introduction * Sequence * Priority Queue * Dictionary
5 Complexity Theory Eric W. Allender, Michael C. Loui, and Kenneth W. Regan
Introduction ¢ Models of Computation * Resources and Complexity
Classes * Relationships between Complexity Classes * Reducibility and
Completeness * Relativization of the P vs. NP Problem * The Polynomial
Hierarchy * Alternating Complexity Classes * Circuit Complexity * Probabilistic

Complexity Classes *

Interactive Models and Complexity Classes * Kolmogorov

Complexity * Research Issues and Summary
6 Formal Models and Computability Tao Jiang, Ming Li, and Bala Ravikumar
Introduction *+ Computability and a Universal Algorithm + Undecidability
+ Formal Languages and Grammars * Computational Models
7 Graph and Network Algorithms Samir Khuller and Balaji Raghavachari
Introduction ¢ Tree Traversals * Depth-First Search ¢ Breadth-First Search
+ Single-Source Shortest Paths + Minimum Spanning Trees * Matchings and Network
Flows * Tour and Traversal Problems
8 Algebraic Algorithms Angel Diaz, Erich Kaltéfen, and Victor Y. Pan
Introduction ¢ Matrix Computations and Approximation of Polynomial Zeros
+ Systems of Nonlinear Equations and Other Applications * Polynomial Factorization
9 Cryptography Jonathan Katz
Introduction * Cryptographic Notions of Security + Building Blocks
* Cryptographic Primitives ¢ Private-Key Encryption * Message
Authentication * Public-Key Encryption * Digital Signature Schemes

© 2004 by Taylor & Francis Group, LLC

10

11

12

13

14

15

Parallel Algorithms Guy E. Blelloch and Bruce M. Maggs

Introduction ¢ Modeling Parallel Computations * Parallel Algorithmic Techniques

+ Basic Operations on Sequences, Lists, and Trees * Graphs * Sorting

+ Computational Geometry * Numerical Algorithms

+ Parallel Complexity Theory

Computational Geometry D. T. Lee

Introduction * Problem Solving Techniques ¢ Classes of Problems ¢« Conclusion
Randomized Algorithms Rajeev Motwani and Prabhakar Raghavan
Introduction * Sorting and Selection by Random Sampling * A Simple Min-Cut
Algorithm « Foiling an Adversary ¢ The Minimax Principle and Lower

Bounds *+ Randomized Data Structures * Random Reordering and Linear
Programming * Algebraic Methods and Randomized Fingerprints

Pattern Matching and Text Compression Algorithms Maxime Crochemore
and Thierry Lecroq

Processing Texts Efficiently * String-Matching Algorithms * Two-Dimensional Pattern
Matching Algorithms - Suffix Trees *+ Alignment * Approximate String Matching

+ Text Compression * Research Issues and Summary

Genetic Algorithms Stephanie Forrest

Introduction * Underlying Principles * Best Practices * Mathematical Analysis

of Genetic Algorithms * Research Issues and Summary

Combinatorial Optimization Vijay Chandru and M. R. Rao

Introduction ¢ A Primer on Linear Programming ¢ Large-Scale Linear Programming
in Combinatorial Optimization ¢ Integer Linear Programs * Polyhedral
Combinatorics * Partial Enumeration Methods * Approximation in Combinatorial
Optimization * Prospects in Integer Programming

© 2004 by Taylor & Francis Group, LLC

Basic Techniques for
Design and Analysis
of Algorithms

3.1 Introduction
3.2 Analyzing Algorithms

Linear Recurrences * Divide-and-Conquer Recurrences

3.3 Some Examples of the Analysis of Algorithms

Sorting * Priority Queues
3.4 Divide-and-Conquer Algorithms
Edward M. Reingold 3.5 Dynamic Programming
Ilinois Institute of Technology 3.6 Greedy Heuristics

3.1 Introduction

We outline the basic methods of algorithm design and analysis that have found application in the manip-
ulation of discrete objects such as lists, arrays, sets, graphs, and geometric objects such as points, lines,
and polygons. We begin by discussing recurrence relations and their use in the analysis of algorithms.
Then we discuss some specific examples in algorithm analysis, sorting, and priority queues. In the final
three sections, we explore three important techniques of algorithm design: divide-and-conquer, dynamic
programming, and greedy heuristics.

3.2 Analyzing Algorithms

It is convenient to classify algorithms based on the relative amount of time they require: how fast does the
time required grow as the size of the problem increases? For example, in the case of arrays, the “size of
the problem” is ordinarily the number of elements in the array. If the size of the problem is measured by
a variable n, we can express the time required as a function of #, T'(n). When this function T'(n) grows
rapidly, the algorithm becomes unusable for large 1; conversely, when T'(n) grows slowly, the algorithm
remains useful even when n becomes large.

We say an algorithm is @ (n?) if the time it takes quadruples when 1 doubles; an algorithm is ® (1) if the
time it takes doubles when # doubles; an algorithm is ®(log #) if the time it takes increases by a constant,
independent of n, when n doubles; an algorithm is ®(1) if its time does not increase at all when n increases.
In general, an algorithm is ®(T(n)) if the time it requires on problems of size n grows proportionally
to T'(n) as n increases. Table 3.1 summarizes the common growth rates encountered in the analysis of
algorithms.

© 2004 by Taylor & Francis Group, LLC

TABLE 3.1 Common Growth Rates of Times of Algorithms

Rate of Growth Comment Examples

0(1) Time required is constant, independent of problem size Expected time for hash searching

O(loglogn) Very slow growth of time required Expected time of interpolation search

O(logn) Logarithmic growth of time required — doubling the problem Computing x"; binary search of an
size increases the time by only a constant amount array

O(n) Time grows linearly with problem size — doubling the problem Adding/subtracting n-digit numbers;
size doubles the time required linear search of an n-element array

®(nlogn) Time grows worse than linearly, but not much worse — Merge sort; heapsort; lower bound
doubling the problem size more than doubles the time required on comparison-based sorting

e(n?) Time grows quadratically — doubling the problem size Simple-minded sorting algorithms
quardruples the time required

e(n?) Time grows cubically — doubling the problem size results Ordinary matrix multiplication
in an eight fold increase in the time required

O(c") Time grows exponentially — increasing the problem size by 1 Traveling salesman problem

results in a c-fold increase in the time required; doubling
the problem size squares the time required

The analysis of an algorithm is often accomplished by finding and solving a recurrence relation that
describes the time required by the algorithm. The most commonly occurring families of recurrences in
the analysis of algorithms are linear recurrences and divide-and-conquer recurrences. In the following
subsection we describe the “method of operators” for solving linear recurrences; in the next subsection
we describe how to transform divide-and-conquer recurrences into linear recurrences by substitution to
obtain an asymptotic solution.

3.2.1 Linear Recurrences
A linear recurrence with constant coefficients has the form

Cody + Crap_1 + 20,3 + - -+ crap_; = f(n), (3.1)
for some constant k, where each ¢; is constant. To solve such a recurrence for a broad class of functions f
(that is, to express a, in closed form as a function of 1) by the method of operators, we consider two basic
operators on sequences: S, which shifts the sequence left,

S{ag, ar,az,...) = (a,azas,...),
and C, which, for any constant C, multiplies each term of the sequence by C:
C(a0> ai,as,. .) = (Cﬂ(), Cal, Caz, ..)

Then, given operators A and B, we define the sum and product

(A+ B)(ag,a1,az,...) = Alag,a1,az,...) + Blag,a1,az,...),
(AB)((ZQ, ay,a,. . > = A(B(ao, ay,a,. . >)

Thus, for example,
(8% — 4)(ag, a1, az,...) = (ay — 4ag, a3 — 4a,, a4 — 4a,...),
which we write more briefly as
(82 —4)(a;) = (ai12 — 4a;).

© 2004 by Taylor & Francis Group, LLC

With the operator notation, we can rewrite Equation (3.1) as

P(S)ai) = (f(i)),
where
P(8) =coS + 18+ 08 P+ o
is a polynomial in S.
Given a sequence (a;), we say that the operator P (S) annihilates (a;) if P(S){a;) = (0). For example,
S? — 4 annihilates any sequence of the form (12! 4+ v(—2)), with constants « and v. In general,

The operator S**! — ¢ annihilates (¢’ x a polynomial ini of degree k).

The product of two annihilators annihilates the sum of the sequences annihilated by each of the operators,
that is, if A annihilates (a;) and B annihilates (b;), then AB annihilates {(a; + b;). Thus, determining the
annihilator of a sequence is tantamount to determining the sequence; moreover, it is straightforward to
determine the annihilator from a recurrence relation.

For example, consider the Fibonacci recurrence

F():O
F1:1

Fiy2 =Fiy1 + Fi.

The last line of this definition can be rewritten as F; 1, — Fiy; — F; = 0, which tells us that (F;) is
annihilated by the operator

S-S-1=(S—d)(S+1/d),
where & = (1 4 +/5)/2. Thus we conclude that
Fi = udf +v(—6)~

for some constants u and v. We can now use the initial conditions Fy = 0 and F; = 1 to determine u and
y: These initial conditions mean that

ud’ +v(—b) =0
ud' +v(—=d)' =1
and these linear equations have the solution
u=v= 1/\/5,
and hence
Fi= &' /V5+(=4)7 V5.

In the case of the similar recurrence,

Giro=Giy1 +G; +14,

© 2004 by Taylor & Francis Group, LLC

TABLE 3.2 Rate of Growth of the Solution to the
Recurrence T(n) = g(n) + uT(n/v): The
Divide-and-Conquer Recurrence Relations

g(n) u, v Growth Rate of T'(n)
e01) u=1 ©(logn)
u1 O(n'osv 1)
O(logn) u=1 ©[(logn)?]
u1 O(n'oe 1)
O(n) u<v O(n)
u=v ®(nlogn)
u>v O(n'osr)
O(n?) u < v? O(n?)
u=v? O(n? logn)
u>v? O(nlosr 1)

u and v are positive constants, independent of n, and v > 1.

the last equation tells us that
(8% =8 = 1)(Gi) = (i),

so the annihilator for (G;) is (§? — S — 1)(S — 1)? since (S — 1)? annihilates (i) (a polynomial of degree
1in i) and hence the solution is

G; =ud' + v(—d))*" + (a polynomial of degree 1 in i);
that is,
Gi = ud’ +v(—d) 7 + wi +z.

Again, we use the initial conditions to determine the constants u, v, w, and x.
In general, then, to solve the recurrence in Equation 3.1, we factor the annihilator

P(S)=coS" + 18+ 6,82+ ¢y,

multiply it by the annihilator for (f (7)), write the form of the solution from this product (which is the
annihilator for the sequence (a;)), and the use the initial conditions for the recurrence to determine the
coefficients in the solution.

3.2.2 Divide-and-Conquer Recurrences
The divide-and-conquer paradigm of algorithm construction that we discuss in Section 4 leads naturally
to divide-and-conquer recurrences of the type

T(n)=gn) +uT(n/v),

for constants u and v, v > 1, and sufficient initial values to define the sequence (T(0), T(1), T(2),...).
The growth rates of T'(n) for various values of u and v are given in Table 3.2. The growth rates in this table
are derived by transforming the divide-and-conquer recurrence into a linear recurrence for a subsequence

of (T(0), T(1), T(2),...).
To illustrate this method, we derive the penultimate line in Table 3.2. We want to solve

T(n) = n* +v*T(n/v).

© 2004 by Taylor & Francis Group, LLC

So, we want to find a subsequence of (T'(0), T(1), T(2), .. .) that will be easy to handle. Let ny = vk; then,
T (i) = ng + v>T(ng/v),
or
T = v + 2 TR,
Defining t = T(v¥),
ek = vk + vztk,l.
The annihilator for # is then (S — v?)? and thus
te = v*(ak + b),
for constants a and b. Expressing this in terms of T'(n),
T(n) ~ tiog, n = VZIOgV"(alogV n+b) = an? log, n + bn?,
or,

T(n) = O(n? logn).

3.3 Some Examples of the Analysis of Algorithms

In this section we introduce the basic ideas of analyzing algorithms by looking at some data structure
problems that commonly occur in practice, problems relating to maintaining a collection of n objects
and retrieving objects based on their relative size. For example, how can we determine the smallest of the
elements? Or, more generally, how can we determine the kth largest of the elements? What is the running
time of such algorithms in the worst case? Or, on average, if all n! permutations of the input are equally
likely? What if the set of items is dynamic — that is, the set changes through insertions and deletions —
how efficiently can we keep track of, say, the largest element?

3.3.1 Sorting

The most demanding request that we can make of an array of n values x[1], x[2], ..., x[n] is that
they be kept in perfect order so that x[1] < x[2] < --- < x[n]. The simplest way to put the values
in order is to mimic what we might do by hand: take item after item and insert each one into the proper
place among those items already inserted:

1 void insert (float x[], int i, float a) {
2 // Insert a into x[1] ... x[i]
3 // x[1] ... x[i-1] are sorted; x[i] is unoccupied
4 if (i == || x[i-1] <= a)
5 x[i] = a;
6 else {
7 X[1i] = x[i-11;
8 insert(x, i-1, a);
9 }
10 }
11

12 void insertionSort (int n, float x[]) {
13 // Sort x[1l] ... x[n]

© 2004 by Taylor & Francis Group, LLC

14 if (n > 1) {

15 insertionSort(n-1, x);
16 insert(x, n, x[n]);
17)

18 }

To determine the time required in the worst case to sort n elements with insertionSort, welet ¢,
be the time to sort n elements and derive and solve a recurrence relation for t,. We have,

e(1) ifn=1,
ty
th—1 + Su—1 + ©O(1) otherwise,

where s, is the time required to insert an element in place among m elements using insert. The value
of s,, is also given by a recurrence relation:

e(1) itm=1,
o Sm—1 + ©(1) otherwise.
The annihilator for (s;) is (S — 1), 50 5,, = ®(m). Thus, the annihilator for (t;) is (S —1)3,s0 t, = O(n?).
The analysis of the average behavior is nearly identical; only the constants hidden in the ®-notation change.

We can design better sorting methods using the divide-and-conquer idea of the next section. These algo-
rithms avoid ©(n?) worst-case behavior, working in time ©(n log n). We can also achieve time ©(nlog)
using a clever way of viewing the array of elements to be sorted as a tree: consider x[1] as the root of
the tree and, in general, x [2*1] is the root of the left subtree of x[1] and x[2*1i+1] is the root of the
right subtree of x [1]. If we further insist that parents be greater than or equal to children, we have a heap;
Figure 3.1 shows a small example.

A heap can be used for sorting by observing that the largest element is at the root, that is, x[11;
thus, to put the largest element in place, we swap x[1] and x[n]. To continue, we must restore the
heap property, which may now be violated at the root. Such restoration is accomplished by swapping
x[1] with its larger child, if that child is larger than x[1], and the continuing to swap it downward
until either it reaches the bottom or a spot where it is greater or equal to its children. Because the tree-
cum-array has height ®(log n), this restoration process takes time ®(log). Now, with the heap in x[1]
to x[n-1] and x[n] the largest value in the array, we can put the second largest element in place by
swappingx [1] and x[n-1];then werestore the heap propertyinx[1] tox[n-2] bypropagatingx[1]
downward; this takes time ®(log(n — 1)). Continuing in this fashion, we find we can sort the entire array in
time

O(logn +log(n — 1) + -+ +1og1) = O(nlogn).

x[1] = 100
x[2] = 95 x[3]=7
x[4] =(x[5] =51 x[6] :/ x[7]=2

x[8] =75 x[9] =14 x[10] =3
FIGURE 3.1 A heap — that is, an array, interpreted as a binary tree.

© 2004 by Taylor & Francis Group, LLC

The initial creation of the heap from an unordered array is done by applying the restoration process
successively tox[n/2],x[n/2-11],...,x[1], which takes time ©(n).
Hence, we have the following ©(# log) sorting algorithm:

1 void heapify (int n, float x[], int i) {

2 // Repair heap property below x[i] in x[1] ... X[n]

3 int largest = i; // largest of x[i], x[2*1i], x[2*i+1]
4 if (2*i <= n && x[2*i] > x[i])

5 largest = 2*i;

6 if (2*i+l <= n && x[2*i+l1l] > x[largest])

7 largest = 2*i+1;

8 if (largest != i) {

9 // swap x[i] with larger child and repair heap below
10 float t = x[largest]; x[largest] = x[i]; x[1] = t;
11 heapify(n, x, largest);

12 }

13 }

14

15 void makeheap (int n, float x[]) {
16 // Make x[1] ... x[n] into a heap
17 for (int i=n/2; i>0; i--)

18 heapify(n, x, i);

19 }

20

21 void heapsort (int n, float x[]) {
22 // Sort x[1l] ... x[n]
23 float t;

24 makeheap(n, x);

25 for (int i=n; i>1; i--) {

26 // put x[1] in place and repair heap
27 t = x[1]; x[1] = x[1]; x[1i] = t;

28 heapify(i-1, x, 1);

29 }

30 }

Can we find sorting algorithms that take less time than ©(rn log7)? The answer is no if we are restricted
to sorting algorithms that derive their information from comparisons between the values of elements. The
flow of control in such sorting algorithms can be viewed as binary trees in which there are #! leaves, one for
every possible sorted output arrangement. Because a binary tree with height can have at most 2" leaves,
it follows that the height of a tree with n! leaves must be at least log, n! = ®(nlogn). Because the height
of this tree corresponds to the longest sequence of element comparisons possible in the flow of control,
any such sorting algorithm must, in its worst case, use time proportional to n log .

3.3.2 Priority Queues

Aside from its application to sorting, the heap is an interesting data structure in its own right. In particular,
heaps provide a simple way to implement a priority queue; a priority queue is an abstract data structure
that keeps track of a dynamically changing set of values allowing the operations

create: Create an empty priority queue.

insert: Insertanew element into a priority queue.
decrease: Decrease an element in a priority queue.
minimum: Report the minimum element in a priority queue.

© 2004 by Taylor & Francis Group, LLC

deleteMinimum: Delete the minimum element in a priority queue.
delete: Delete an element in a priority queue.
merge: Merge two priority queues.

A heap can implement a priority queue by altering the heap property to insist that parents are less than
or equal to their children, so that that smallest value in the heap is at the root, that is, in the first array
position. Creation of an empty heap requires just the allocation of an array, an ®(1) operation; we assume
that once created, the array containing the heap can be extended arbitrarily at the right end. Inserting a
new element means putting that element in the (n+ 1)st location and “bubbling it up” by swapping it with
its parent until it reaches either the root or a parent with a smaller value. Because a heap has logarithmic
height, insertion to a heap of n elements thus requires worst-case time O(logn). Decreasing a value in a
heap requires only a similar O(log#) “bubbling up.” The minimum element of such a heap is always at the
root, so reporting it takes ®(1) time. Deleting the minimum is done by swapping the first and last array
positions, bubbling the new root value downward until it reaches its proper location, and truncating the
array to eliminate the last position. Delete is handled by decreasing the value so that it is the least in the
heap and then applying the deleteMinimum operation; this takes a total of O(logn) time.

The merge operation, unfortunately, is not so economically accomplished; there is little choice but to
create a new heap out of the two heaps in a manner similar to the makeheap function in heapsort. If
there are a total of n elements in the two heaps to be merged, this re-creation will require time O(n).

There are better data structures than a heap for implementing priority queues, however. In partic-
ular, the Fibonacci heap provides an implementation of priority queues in which the delete and
deleteMinimum operations take O(log#n) time and the remaining operations take ®(1) time, pro-
vided we consider the times required for a sequence of priority queue operations, rather than individual times.
That is, we must consider the cost of the individual operations amortized over the sequence of operations:
Given a sequence of n priority queue operations, we will compute the total time T'(#) for all n operations.
In doing this computation, however, we do not simply add the costs of the individual operations; rather,
we subdivide the cost of each operation into two parts: the immediate cost of doing the operation and the
long-term savings that result from doing the operation. The long-term savings represent costs not incurred
by later operations as a result of the present operation. The immediate cost minus the long-term savings
give the amortized cost of the operation.

It is easy to calculate the immediate cost (time required) of an operation, but how can we measure the
long-term savings that result? We imagine that the data structure has associated with it a bank account; at
any given moment, the bank account must have a non-negative balance. When we do an operation that will
save future effort, we are making a deposit to the savings account; and when, later on, we derive the benefits
of that earlier operation, we are making a withdrawal from the savings account. Let B(i) denote the balance
in the account after the ith operation, B(0) = 0. We define the amortized cost of the ith operation to be

Amortized cost of ith operation = (Immediate cost of ith operation) 4+ (Change in bank account)
= (Immediate cost of ith operation) + (B(i) — B(i — 1)).

Because the bank account B can go up or down as a result of the ith operation, the amortized cost may
be less than or more than the immediate cost. By summing the previous equation, we get

Z(Amortized cost of ith operation) = Z(Immediate cost of ith operation) + (B(n) — 5(0))

i=1 i=1
= (Total cost of all n operations) + B(n)

> Total cost of all n operations

= T(n)

© 2004 by Taylor & Francis Group, LLC

because (i) is non-negative. Thus defined, the sum of the amortized costs of the operations gives us an
upper bound on the total time T'(n) for all n operations.

It is important to note that the function B(7) is not part of the data structure, but is just our way to
measure how much time is used by the sequence of operations. As such, we can choose any rules for B,
provided B(0) = 0 and B(i) > 0 for i > 1. Then the sum of the amortized costs defined by

Amortized cost of ith operation = (Immediate cost of ith operation) + (B(i) — B(i — 1))

bounds the overall cost of the operation of the data structure.

Now to apply this method to priority queues. A Fibonacci heap is a list of heap-ordered trees (not
necessarily binary); because the trees are heap ordered, the minimum element must be one of the roots
and we keep track of which root is the overall minimum. Some of the tree nodes are marked. We define

B(i) = (Number of trees after the ith operation)
+ 2 x (Number of marked nodes after the ith operation).

The clever rules by which nodes are marked and unmarked, and the intricate algorithms that manipulate
the set of trees, are too complex to present here in their complete form, so we just briefly describe the
simpler operations and show the calculation of their amortized costs:

Create: To create an empty Fibonacci heap we create an empty list of heap-ordered trees. The
immediate cost is @(1); because the numbers of trees and marked nodes are zero before and after
this operation, B(i) — B(i — 1) is zero and the amortized time is ©(1).

Insert: To insert a new element into a Fibonacci heap we add a new one-element tree to the list
of trees constituting the heap and update the record of what root is the overall minimum. The
immediate cost is ®(1). B(i) — B(i — 1) is also 1 because the number of trees has increased by 1,
while the number of marked nodes is unchanged. The amortized time is thus ®(1).

Decrease: Decreasing an element in a Fibonacci heap is done by cutting the link to its parent, if
any, adding the item as a root in the list of trees, and decreasing its value. Furthermore, the marked
parent of a cut element is itself cut, propagating upward in the tree. Cut nodes become unmarked,
and the unmarked parent of a cut element becomes marked. The immediate cost of this operation
is ©(c), where c is the number of cut nodes. If there were t trees and m marked elements before this
operation, the value of B before the operation was t + 2m. After the operation, the value of B is
(t+c)+2(m—c+2),s0B(i)—B(i —1) = 4—c. The amortized time is thus ©(c) +4—c = ©(1)
by changing the definition of B by a multiplicative constant large enough to dominate the constant
hidden in ©(c).

Minimum: Reportingthe minimum elementin a Fibonacciheap takes time ®(1) and does not change
the numbers of trees and marked nodes; the amortized time is thus ©(1).

DeleteMinimum: Deleting the minimum element in a Fibonacci heap is done by deleting that tree
root, making its children roots in the list of trees. Then, the list of tree roots is “consolidated”
in a complicated O(logn) operation that we do not describe. The result takes amortized time
O(logn).

Delete: DeletinganelementinaFibonacciheapisdoneby decreasingitsvalueto —oo and then doing
adeleteMinimum. The amortized cost is the sum of the amortized cost of the two operations,
O(logn).

Merge: Merging two Fibonacci heaps is done by concatenating their lists of trees and updating the
record of which root is the minimum. The amortized time is thus ®(1).

Notice that the amortized cost of each operation is ®(1) except deleteMinimumand delete, both of
which are O(logn).

© 2004 by Taylor & Francis Group, LLC

3.4 Divide-and-Conquer Algorithms

One approach to the design of algorithms is to decompose a problem into subproblems that resemble the
original problem, but on a reduced scale. Suppose, for example, that we want to compute x". We reason
that the value we want can be computed from x'"/?/ because

1 ifn =0,
x" = (x2)2 if n is even,

x x (x"2)2 ifnis odd.

This recursive definition can be translated directly into

1 int power (float x, int n) {

2 // Compute the n-th power of x
3 if (n == 0)

4 return 1;

5 else {

6 int t = power(x, floor(n/2));
7 if ((n % 2) == 0)

8 return t*t;

9 else
10 return x*t*t;
11 }
12}

To analyze the time required by this algorithm, we notice that the time will be proportional to the number
of multiplication operations performed in lines 8 and 10, so the divide-and-conquer recurrence

T(n) =2+ T(ln/2)),
with T'(0) = 0, describes the rate of growth of the time required by this algorithm. By considering the

subsequence 1y = 2k we find, using the methods of the previous section, that T(n) = ©(logn). Thus,
the above algorithm is considerably more efficient than the more obvious

1 int power (int k, int n) {

2 // Compute the n-th power of k

3 int product = 1;

4 for (int i = 1; i <= n; i++)

5 // at this point power is k*k*k+*...*k (i times)
6 product = product * k;

7 return product;

8 }

which requires time ®(n).

An extremely well-known instance of divide-and-conquer algorithms is binary search of an ordered
array of n elements for a given element; we “probe” the middle element of the array, continuing in either
the lower or upper segment of the array, depending on the outcome of the probe:

1 int binarySearch (int x, int w[], int low, int high) {

2 // Search for x among sorted array w[low..high]. The integer returned
3 // is either the location of x in w, or the location where x belongs.
4 if (low > high) // Not found

5 return low;

© 2004 by Taylor & Francis Group, LLC

6 else {

7 int middle := (low+high)/2;

8 if (w[middle] < x)

9 return binarySearch(x, w, middle+1l, high);
10 else if (w[middle] == Xx)

11 return middle;

12 else

13 return binarySearch(x, w, low, middle-1);
14 }

15 }

The analysis of binary search in an array of n elements is based on counting the number of probes used
in the search, because all remaining work is proportional to the number of probes. But, the number of
probes needed is described by the divide-and-conquer recurrence

T(n) =14 T(n/2),

with T(0) = 0, T(1) = 1. We find from Table 3.2 (the top line) that T'(n) = ®(logn). Hence, binary
search is much more efficient than a simple linear scan of the array.

To multiply two very large integers x and y, assume that x has exactly > 2 digits and y has at most
I digits. Let xg, x1, X2, ..., x7—; be the digits of x and let yo, y1,..., y1—1 be the digits of y (some of the
significant digits at the end of y may be zeros, if y is shorter than x), so that

x = xo + 10x; + 10%x; + - - - + 10" x_y,
and
=50+ 10y + 107, + -+ 107y,

We apply the divide-and-conquer idea to multiplication by chopping x into two pieces — the leftmost n
digits and the remaining digits:

X = Xleft + 1Onxrighta
where n = /2. Similarly, chop y into two corresponding pieces:
Y = Yleft + lonyrightx

because y has at most the number of digits that x does, yrigh might be 0. The product x x y can be now
written

x X y = (Xtefe 4+ 10" Xright) X (Ve + 10" Yright)»
= Xleft X Vleft
+ 10" (Xright X Mefc + Xleft X Pright)
+ 102”xright X Pright-
If T'(n) is the time to multiply two n-digit numbers with this method, then
T(n) =kn+4T(n/2);

the kn part is the time to chop up x and y and to do the needed additions and shifts; each of these tasks
involves n-digit numbers and hence ®(n) time. The 4T (n/2) part is the time to form the four needed
subproducts, each of which is a product of about #/2 digits.

© 2004 by Taylor & Francis Group, LLC

The line for g(n) = O(n), u = 4 > v = 2 in Table 3.2 tells us that T(n) = O(n'°%*) = @(n?), so the
divide-and-conquer algorithm is no more efficient than the elementary-school method of multiplication.
However, we can be more economical in our formation of subproducts:

x X y = (Xieft + 10" Xright) X (Viee + 10" yrighe)»
=B +10"C + 10™A,

where

A= Xright X Vright
B = Xieft X Vieft
C = (Xteft + Xright) X (Vleft + Yright) — A — B.
The recurrence for the time required changes to
T(n) =kn+3T(n/2).

The kn part is the time to do the two additions that form x x y from A, B, and C and the two additions
and the two subtractions in the formula for C; each of these six additions/subtractions involves n-digit
numbers. The 37 (n/2) part is the time to (recursively) form the three needed products, each of which is
a product of about n/2 digits. The line for g(n) = ®(n), u = 3 > v = 2 in Table 3.2 now tells us that

T(n)=0© (n"’g2 3).
Now,

log,, 3

2 1.5849625 - - -,
log,,

log, 3 =
which means that this divide-and-conquer multiplication technique will be faster than the straightforward
©(n?) method for large numbers of digits.

Sorting a sequence of n values efficiently can be done using the divide-and-conquer idea. Split the n
values arbitrarily into two piles of 11/2 values each, sort each of the piles separately, and then merge the two
piles into a single sorted pile. This sorting technique, pictured in Figure 3.2, is called merge sort. Let T (n)
be the time required by merge sort for sorting # values. The time needed to do the merging is proportional
to the number of elements being merged, so that

T(n)=cn+2T(n/2),

because we must sort the two halves (time T'(n1/2) each) and then merge (time proportional to 7). We see
by Table 3.2 that the growth rate of T'(n) is @(nlogn), since u = v = 2 and g(n) = O(n).

3.5 Dynamic Programming

In the design of algorithms to solve optimization problems, we need to make the optimal (lowest cost,
highest value, shortest distance, etc.) choice from among a large number of alternative solutions. Dynamic
programming is an organized way to find an optimal solution by systematically exploring all possibil-
ities without unnecessary repetition. Often, dynamic programming leads to efficient, polynomial-time
algorithms for problems that appear to require searching through exponentially many possibilities.

Like the divide-and-conquer method, dynamic programming is based on the observation that many
optimization problems can be solved by solving similar subproblems and the composing the solutions
of those subproblems into a solution for the original problem. In addition, the problem is viewed as

© 2004 by Taylor & Francis Group, LLC

.
jﬁﬁﬁ}

split into two
nearly equal piles

=]
= =

_]/ the two sorted piles
jﬁﬁﬁ

—_

=

\ sort recursively

FIGURE 3.2 Schematic description of merge sort.

a sequence of decisions, each decision leading to different subproblems; if a wrong decision is made, a
suboptimal solution results, so all possible decisions need to be accounted for.

As an example of dynamic programming, consider the problem of constructing an optimal search
pattern for probing an ordered sequence of elements. The problem is similar to searching an array. In the
previous section we described binary search, in which an interval in an array is repeatedly bisected until
the search ends. Now, however, suppose we know the frequencies with which the search will seek various
elements (both in the sequence and missing from it). For example, if we know that the last few elements in
the sequence are frequently sought — binary search does not make use of this information — it might be
more efficient to begin the search at the right end of the array, not in the middle. Specifically, we are given
an ordered sequence x; < x, < - -+ < x, and associated frequencies of access 1, 32, . - . , Bn> respectively;
furthermore, we are given o, .y, . . . , &, where o is the frequency with which the search will fail because
the object sought, z, was missing from the sequence, x; < z < x;;; (with the obvious meaning when
i = 0 ori = n). What is the optimal order to search for an unknown element z? In fact, how should we
describe the optimal search order?

We express a search order as a binary search tree, a diagram showing the sequence of probes made in
every possible search. We place at the root of the tree the sequence element at which the first probe is made,
for example, x;; the left subtree of x; is constructed recursively for the probes made when z < x;, and the
right subtree of x; is constructed recursively for the probes made when z > x;. We label each item in the
tree with the frequency that the search ends at that item. Figure 3.3 shows a simple example. The search
of sequence x; < x; < x3 < x4 < x5 according the tree of Figure 3.3 is done by comparing the unknown
element z with x, (the root); if z = xy, the search ends. If z < x;, z is compared with x, (the root of the
left subtree); if z = x,, the search ends. Otherwise, if z < x;, z is compared with x; (the root of the left
subtree of x,); if z = x,, the search ends. Otherwise, if z < x1, the search ends unsuccessfully at the leaf
labeled a. Other results of comparisons lead along other paths in the tree from the root downward. By its

© 2004 by Taylor & Francis Group, LLC

7%
o1 s 0 O

FIGURE 3.3 A binary search tree.

nature, a binary search tree is lexicographic in that for all nodes in the tree, the elements in the left subtree
of the node are smaller and the elements in the right subtree of the node are larger than the node.

Because we are to find an optimal search pattern (tree), we want the cost of searching to be minimized.
The cost of searching is measured by the weighted path length of the tree:

D Bix [T+ level(B)] + Yoy x level(ay),
i=1

i=0

defined formally as

W<T = Tl/\T> = W(T) + W(T) + Yo + 3 B

where the summations) | «; and) B; are over all ; and B; in T. Because there are exponentially many
possible binary trees, finding the one with minimum weighted path length could, if done naively, take
exponentially long.

The key observation we make is that a principle of optimality holds for the cost of binary search trees:
subtrees of an optimal search tree must themselves be optimal. This observation means, for example, that
if the tree shown in Figure 3.3 is optimal, then its left subtree must be the optimal tree for the problem
of searching the sequence x; < x, < x3 with frequencies B1, B2, B3 and o, a1, a2, a3. (If a subtree in
Figure 3.3 were not optimal, we could replace it with a better one, reducing the weighted path length of
the entire tree because of the recursive definition of weighted path length.) In general terms, the principle
of optimality states that subsolutions of an optimal solution must themselves be optimal.

The optimality principle, together with the recursive definition of weighted path length, means that
we can express the construction of an optimal tree recursively. Let C;;, 0 < i < j < n, be the cost
of an optimal tree over x; 1 < Xj4 < -+ < x; with the associated frequencies B;11,Bi42,...,B; and
(S 7Py FRE PN ,OL]‘. Then,

Cii =0,
Ci,j = mini<k§j(ci’k71 + Ck,j) + VVI_)]_’

where
Wi =,
Wij = Wij—1 +Bj + ;.

© 2004 by Taylor & Francis Group, LLC

These two recurrence relations can be implemented directly as recursive functions to compute Cy ,, the
cost of the optimal tree, leading to the following two functions:

00 o Ul W IN B

e e
B W N RO W

15
16
17
18
19
20
21

int W (int
if (i ==
return
else
return

int C (int

if (i ==

return
else {

i, int j) {
1)
alpha[jl;

W(i,j-1) + beta[]j] + alphal[j];
i, int j) {

)
0;

int minCost = MAXINT;
int cost;
for (int k = i+l; k <= j; k++) {

cost

= C(i,k-1) + C(k,J) + W(i,J);

if (cost < minCost)
minCost = cost;

}

return

}

minCost;

These two functions correctly compute the cost of an optimal tree; the tree itself can be obtained by storing
the values of k when cost < minCost in line 16.

However, the above functions are unnecessarily time consuming (requiring exponential time) because
the same subproblems are solved repeatedly. For example, each call W(1, j) uses time ®(j — i) and such
calls are made repeatedly for the same values of i and j. We can make the process more efficient by caching
the values of W(1, j) in an array as they are computed and using the cached values when possible:

1
2
3
4
5
6
7
8

9
10
11
12
13

int W[n][n];

for (int i
for (int

W[il[3]

int W (int

= 0; i<n; i++)
J = 0; j < n; j++)
= MAXINT;

i, int j) {

if (W[i][j] = MAXINT)
if (1 == j)
W[i][]j] = alpha[]];

else

W[i][j] = W(i,j-1) + beta[]j] + alpha[]j];
return W[i][j];

}

In the same way, we should cache the values of C (1, j) in an array as they are computed:

1
2
3
4
5

int C[n][n];

for (int i
for (int

Crilrjl

= 0; 1 < n; i++)
j=0; J <n; j++)
= MAXINT;

© 2004 by Taylor & Francis Group, LLC

6 int C (int i, int Jj) {
7 if (C[i][j] == MAXINT)
8 if (i == j)
9 C[i][3J] = O;
10 else {
11 int minCost = MAXINT;
12 int cost;
13 for (int k = i+1l; k <= j; k++) {
14 cost = C(i,k-1) + C(k,3j) + W(i,]J);
15 if (cost < minCost)
16 minCost = cost;
17 }
18 C[i][j] = minCost;
19 }
20 return C[i][]j];
21 }

The idea of caching the solutions to subproblems is crucial to making the algorithm efficient. In this case,
the resulting computation requires time ©(n?); this is surprisingly efficient, considering that an optimal
tree is being found from among exponentially many possible trees.

By studying the pattern in which the arrays C and W are filled in, we see that the main diagonal C[1][1]
is filled in first, then the first upper super-diagonal C[1][i+1], then the second upper super-diagonal
C[1][1+2],and soon until the upper-right corner of the array is reached. Rewriting the code to do this
directly, and adding an array R[] [] to keep track of the roots of subtrees, we obtain:

1 int W[n][n];
int R[n][n];
int C[n][n];

2
3
4
5 // Fill in main diagonal
6
7
8

for (int i = 0; i < n; i++) {
W[il[i] = alpha[i];
R[i][i] = O;
9 Criiril = 0;
10 }
11

12 int minCost, cost;
13 for (int d = 1; d < n; d++)
14 // Fill in d-th upper super-diagonal

15 for (i = 0; i < n-d; i++) {

16 W[i][i+d] = W[i][i+d-1] + beta[i+d] + alpha[i+d];
17 R[i][i+d] = i+1;

18 C[i][i+d] = C[i]1[i] + C[i+1][i+d] + W[i][i+d];
19 for (int k = i+2; k <= i+d; k++) {

20 cost = C[i][k-1] + C[k][i+d] + W[i][i+d];

21 if (cost < C[i][i+d]) {

22 R[1][i+d] = k;

23 C[i][i+d] = cost;

24 }

25 }

26 }

which more clearly shows the ®(n?) behavior.

© 2004 by Taylor & Francis Group, LLC

As a second example of dynamic programming, consider the traveling salesman problem in which a
salesman must visit 7 cities, returning to his starting point, and is required to minimize the cost of the trip.
The cost of going from city i to city j is C; ;. To use dynamic programming we must specify an optimal
tour in a recursive framework, with subproblems resembling the overall problem. Thus we define

cost of an optimal tour from city i to city
1 that goes through each of the cities jj,
j2> - - -» jk exactly once, in any order, and
through no other cities.

T(1> jlajZ’- . ’jk) =

The principle of optimality tells us that
T(i5 15 jo- -5 Jk) = IISnWilISlk{Ci,j,,, + TCms Jis J2s -+ o5 Jm=1 Jmt 15+ -5 Ji) b
where, by definition,
T(i57)=C;; +Cjr.

We can write a function T that directly implements the above recursive definition, but as in the optimal
search tree problem, many subproblems would be solved repeatedly, leading to an algorithm requiring time
©(n!). By caching the values T'(i; ji, ja, . . . » ji), We reduce the time required to ®(n%2"), still exponential,
but considerably less than without caching.

3.6 Greedy Heuristics

Optimization problems always have an objective function to be minimized or maximized, but it is not
often clear what steps to take to reach the optimum value. For example, in the optimum binary search tree
problem of the previous section, we used dynamic programming to systematically examine all possible
trees. But perhaps there is a simple rule that leads directly to the best tree; say, by choosing the largest B;
to be the root and then continuing recursively. Such an approach would be less time-consuming than the
©(n?) algorithm we gave, but it does not necessarily give an optimum tree (if we follow the rule of choosing
the largest 3; to be the root, we get trees that are no better, on the average, than a randomly chosen trees).
The problem with such an approach is that it makes decisions that are locally optimum, although perhaps
not globally optimum. But such a “greedy” sequence of locally optimum choices does lead to a globally
optimum solution in some circumstances.

Suppose, for example, 3; = 0 for 1 < i < n, and we remove the lexicographic requirement of the tree;
the resulting problem is the determination of an optimal prefix code for n 4 1 letters with frequencies
Qg, A, . . ., 0. Because we have removed the lexicographic restriction, the dynamic programming solution
of the previous section no longer works, but the following simple greedy strategy yields an optimum tree:
repeatedly combine the two lowest-frequency items as the left and right subtrees of a newly created item
whose frequency is the sum of the two frequencies combined. Here is an example of this construction; we
start with five leaves with weights

0 0 [0. O O

G — 25 o — 3 G — 38 o o — 95 . — 20

First, combine leaves ap = 25 and a5 = 20 into a subtree of frequency 25 + 20 = 45:

C

5 - -] C
25+ 20 45 38 0y — 58 s = 95

\ o = 34 02
J L

on — 25 a; — 20

il

© 2004 by Taylor & Francis Group, LLC

Then combine leaves a; = 34 and «; = 38 into a subtree of frequency 34 + 38 = 72:

25 = 20 = 45 34 + 38 = 72 C
" o5 = 58 oy = 95

L L . il

Gy = 25 o = 20 &4} 34 o — 38

Next, combine the subtree of frequency oy + o5 = 45 with a3 = 58:

45 + 38 — 103 34+ 38 - 72 0
/\ oy — 95
U H
23+20—43 — o) — 34— 38
H
Oy = 25 3 20

Then combine the subtree of frequency a; + o, = 72 with oy = 95:

45 + 58 — 103 72+ 9895 = 167
25420 =45 [34+38-72 []
¢y = 58 Gy — 95
L i Il]
Cy — 22 s — 20 o = 34 o, — 38

Finally, combine the only two remaining subtrees:

103 + 167 — 271
45 + 38 13 72+ 43 = 167
25+ 20 = 45 d.. u-3d=n a
(¢33 38 Gy =93
C 0 0 0
Cly 25 o, = 20 &3] 34 o, = 38

© 2004 by Taylor & Francis Group, LLC

How do we know that the above-outlined process leads to an optimum tree? The key to proving that
the tree is optimum is to assume, by way of contradiction, that it is not optimum. In this case, the greedy
strategy must have erred in one of its choices, so let’s look at the first error this strategy made. Because all
previous greedy choices were not errors, and hence lead to an optimum tree, we can assume that we have
a sequence of frequencies oy, g, . . ., o, such that the first greedy choice is erroneous — without loss of
generality assume that ap and oy are two smallest frequencies, those combined erroneously by the greedy
strategy. For this combination to be erroneous, there must be no optimum tree in which these two leaves
are siblings, so consider an optimum tree, the locations of oy and a1, and the location of the two deepest
leaves in the tree, a; and o;:

By interchanging the positions of ag and o; and a; and «j (as shown), we obtain a tree in which o, and)
are siblings. Because g and o are the two lowest frequencies (because they were the greedy algorithm’s
choice) oy < aj and a; < «j, the weighted path length of the modified tree is no larger than before the
modification since level(ag) > level(;), level(a;) > level(at ;) and, hence,

level(a;) x g + level(aj) x o < level(ay) X g + level(ar;) X .

In other words, the first so-called mistake of the greedy algorithm was in fact not a mistake because there
is an optimum tree in which o and «; are siblings. Thus we conclude that the greedy algorithm never
makes a first mistake — that is, it never makes a mistake at all!

The greedy algorithm above is called Huffman’s algorithm. If the subtrees are kept on a priority queue
by cumulative frequency, the algorithm needs to insert the n + 1 leaf frequencies onto the queue, and
then repeatedly remove the two least elements on the queue, unite those to elements into a single subtree,
and put that subtree back on the queue. This process continues until the queue contains a single item, the
optimum tree. Reasonable implementations of priority queues will yield O(nlog#n) implementations of
Huffman’s greedy algorithm.

The idea of making greedy choices, facilitated with a priority queue, works to find optimum solutions to
other problems too. For example, a spanning tree of a weighted, connected, undirected graph G = (V, E)
is a subset of |V| — 1 edges from E connecting all the vertices in G; a spanning tree is minimum if the
sum of the weights of its edges is as small as possible. Prim’s algorithm uses a sequence of greedy choices
to determine a minimum spanning tree: start with an arbitrary vertex v € V as the spanning-tree-to-be.
Then, repeatedly add the cheapest edge connecting the spanning-tree-to-be to a vertex not yet in it. If the
vertices not yet in the tree are stored in a priority queue implemented by a Fibonacci heap, the total time
required by Prim’s algorithm will be O(|E| 4 |V|log| V). But why does the sequence of greedy choices
lead to a minimum spanning tree?

© 2004 by Taylor & Francis Group, LLC

Suppose Prim’s algorithm does not result in a minimum spanning tree. As we did with Huffman’s
algorithm, we ask what the state of affairs must be when Prim’s algorithm makes its first mistake; we will
see that the assumption of a first mistake leads to a contradiction, thus proving the correctness of Prim’s
algorithm. Let the edges added to the spanning tree be, in the order added, ey, e, €3, ..., and let ¢; be
the first mistake. In other words, there is a minimum spanning tree Tpni, containing e, e, ..., €j_1, but
no minimum spanning tree contains ey, e, ..., ¢;. Imagine what happens if we add the edge e; to Tpyin:
because Tpyiy 1s a spanning tree, the addition of e; causes a cycle containing e; . Let ep,ax be the highest-cost
edge on that cycle. Because Prim’s algorithm makes a greedy choice — that is, chooses the lowest cost
available edge — the cost of eax is at least that of ¢;, so the cost of the spanning Tinin — {emax} U {e;} is at
most that of Tiin; in other words, Tinin — {emax} U {e;} is also a minimum spanning tree, contradicting our
assumption that the choice of e; is the first mistake. Therefore, the spanning tree constructed by Prim’s
algorithm must be a minimum spanning tree.

We can apply the greedy heuristic to many optimization problems, and even if the results are not optimal,
they are often quite good. For example, in the n-city traveling salesman problem, we can get near-optimal
tours in time O(n?) when the intercity costs are symmetric (C;; = Cj; for all i and j) and satisfy the
triangle inequality (C;; < Cjx + Cy,; for all 4, j, and k). The closest insertion algorithm starts with a
“tour” consisting of a single, arbitrarily chosen city, and successively inserts the remaining cities to the
tour, making a greedy choice about which city to insert next and where to insert it: the city chosen for
insertion is the city not on the tour but closest to a city on the tour; the chosen city is inserted adjacent to
the city on the tour to which it is closest.

Given an n X n symmetric distance matrix C that satisfies the triangle inequality, let I,, be the tour
of length |I,,| produced by the closest insertion heuristic and let O, be an optimal tour of length |O,,].
Then,

| 1]
[Onl

< 2.

This bound is proved by an incremental form of the optimality proofs for greedy heuristics we saw seen
above: we ask not where the first error is, but by how much we are in error at each greedy insertion to the
tour; we establish a correspondence between edges of the optimal tour and cities inserted on the closest
insertion tour. We show that at each insertion of a new city to the closest insertion tour, the cost of that
insertion is at most twice the cost of corresponding edge of the optimal tour.

To establish the correspondence, imagine the closest insertion algorithm keeping track not only of the
current tour, but also of a spider-like configuration including the edges of the current tour (the body of
the spider) and pieces of the optimal tour (the legs of the spider). We show the current tour in solid lines
and the pieces of optimal tour as dotted lines:

oo

Initially, the spider consists of the arbitrarily chosen city with which the closest insertion tour begins and
the legs of the spider consist of all the edges of the optimal tour except for one edge eliminated arbitrarily.
As each city is inserted into the closest insertion tour, the algorithm will delete from the spider-like con-
figuration one of the dotted edges from the optimal tour. When city k is inserted between cities [and m,

© 2004 by Taylor & Francis Group, LLC

the edge deleted is the one attaching spider to the leg containing the city inserted (from city x to city y),
shown here in bold:

Now,

Ck,m =< Cx,y

because of the greedy choice to add city k to the tour and not city y. By the triangle inequality,
Crk < Crn + Cins
and by symmetry, we can combine these two inequalities to get
Cik = Cim + Cuye
Adding this last inequality to the first one above,
Cik + Cem < Cpm + 2Cx,
that is,
Crk + Crm — Crm < 2Cxy.

Thus, adding city k between cities [and m adds no more to I, than 2C, ,. Summing these incremental,
amounts over the cost of the entire algorithm tells us that

Iy <20,

as we claimed.

References

Cormen, T. H.,, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, McGraw-Hill,
New York, 2nd ed., 2001.

Greene, D. H. and D. E. Knuth, Mathematics for the Analysis of Algorithms, 3rd ed., Birkh4user, Boston,
1990.

Knuth, D. E., The Art of Computer Programming, Volume 1: Fundamental Algorithms, Addison-Wesley,
Reading, MA, 3rd ed., 1997.

Knuth, D. E., The Art of Computer Programming, Volume 3: Sorting and Searching, Addison-Wesley, Reading,
MA, 2nd ed., 1998.

Lueker, G. S., “Some techniques for solving recurrences,” Computing Surveys, 12, 419-436, 1980.

Reingold, E. M. and W. J. Hansen, Data Structures in Pascal, Little, Brown and Company, Boston, 1986.

Reingold, E. M., J. Nievergelt, and N. Deo, Combinatorial Algorithms: Theory and Practice, Prentice Hall,
Englewood Cliffs, NJ, 1977.

© 2004 by Taylor & Francis Group, LLC

Data Structures

4.1 Introduction
Containers, Elements, and Positions or Locators
* Abstract Data Types * Main Issues in the Study of Data
Structures * Fundamental Data Structures ¢ Organization
of the Chapter
4.2 Sequence
Introduction ¢ Operations * Implementation with an Array
* Implementation with a Singly Linked List * Implementation
with a Doubly Linked List
4.3 Priority Queue

Introduction ¢ Operations * Realization with a Sequence

Roberto Tamassia * Realization with a Heap * Realization with a Dictionary
Brown University 4.4 Dictionary

) Operations * Realization with a Sequence * Realization with a
BrYan M. Cantrill Search Tree * Realization with an (a, b)-Tree * Realization with
Sun Microsystems, Inc. an AVL-Tree * Realization with a Hash Table

4.1 Introduction

The study of data structures — that is, methods for organizing data that are suitable for computer pro-
cessing — is one of the classic topics of computer science. At the hardware level, a computer views storage
devices such as internal memory and disk as holders of elementary data units (bytes), each accessible
through its address (an integer). When writing programs, instead of manipulating the data at the byte
level, it is convenient to organize them into higher-level entities called data structures.

4.1.1 Containers, Elements, and Positions or Locators

Most data structures can be viewed as containers that store a collection of objects of a given type, called the
elements of the container. Often, a total order is defined among the elements (e.g., alphabetically ordered
names, points in the plane ordered by x-coordinate). Following the approach of Goodrich and Tamassia
[2001], we assume that the elements of a container can be accessed by means of variables called positions
or locators. When an object is inserted into the container, a position or locator is returned, which can
be later used to access or delete the object. A position represents a “place” where an element is stored,
Examples of positions are array cells and list nodes. A locator “tracks” the position of an element in the data
structure as it changes over time. A locator is typically implemented with an object that stores a pointer to
a position.

A data structure has an associated repertory of operations, classified into queries, which retrieve infor-
mation on the data structure (e.g., return the number of elements, or test the presence of a given element),
and updates, which modify the data structure (e.g., insertion and deletion of elements). The performance

© 2004 by Taylor & Francis Group, LLC

of a data structure is characterized by the space requirement and the time complexity of the operations in
its repertory. The amortized time complexity of an operation is the average time over a suitably defined
sequence of operations.

However, efficiency is not the only quality measure of a data structure. Simplicity and ease of imple-
mentation should be taken into account when choosing a data structure for solving a practical problem.

4.1.2 Abstract Data Types

Data structures are concrete implementations of abstract data types (ADTs). A data type is a collection
of objects. A data type can be mathematically specified (e.g., real number, directed graph) or concretely
specified within a programminglanguage (e.g.,intin C, set in Pascal). An ADT is a mathematically specified
data type equipped with operations that can be performed on the objects. Object-oriented programming
languages, such as C++, provide support for expressing ADTs by means of classes. ADTs specify the data
stored and the operations to be performed on them.

4.1.3 Main Issues in the Study of Data Structures

The following issues are of foremost importance in the study of data structures.

4.1.3.1 Static vs. Dynamic

A static data structure supports only queries, whereas a dynamic data structure also supports updates.
A dynamic data structure is often more complicated than its static counterpart supporting the same
repertory of queries. A persistent data structure (see, e.g., Driscoll et al. [1989]) is a dynamic data structure
that supports operations on past versions. There are many problems for which no efficient dynamic data
structures are known.

4.1.3.2 Implicit vs. Explicit

Two fundamental data organization mechanisms are used in data structures. In an explicit data structure,
pointers (i.e., memory addresses) are used to link the elements and access them (e.g., a singly linked list,
where each element has a pointer to the next one). In an implicit data structure (see, e.g., [Munro and
Suwanda 1980]), mathematical relationships support the retrieval of elements (e.g., array representation
of a heap, see Section 4.3). Explicit data structures must use additional space to store pointers. However,
they are more flexible for complex problems. Most programming languages support pointers and basic
implicit data structures, such as arrays.

4.1.3.3 Internal vs. External Memory

In a typical computer, there are two levels of memory: internal memory (also called random access memory,
i.e., RAM) and external memory (disk). The internal memory is much faster than external memory but
has much smaller capacity. Data structures designed to work for data that fit into internal memory may
not perform well for large amounts of data that need to be stored in external memory. For large-scale
problems, data structures need to be designed that take into account the two levels of memory [Aggarwal
and Vitter 1988]. For example, two-level indices such as B-trees [Comer 1979] have been designed to
efficiently search in large databases.

4.1.3.4 Space vs. Time

Data structures often exhibit a trade-off between space and time complexity. For example, suppose we want
to represent a set of integers in the range [0, N] (e.g., for a set of social security numbers N = 10'° — 1)
such that we can efficiently query whether a given element is in the set, insert an element, or delete
an element. Two possible data structures for this problem are an N-element bit array (where the bit in
position i indicates the presence of integer i in the set), and a balanced search tree (such as a 2-3 tree or
a red-black tree). The bit array has optimal time complexity because it supports queries, insertions, and

© 2004 by Taylor & Francis Group, LLC

deletions in constant time. However, it uses space proportional to the size N of the range, irrespective of the
number of elements actually stored. The balanced search tree supports queries, insertions, and deletions
in logarithmic time but uses optimal space proportional to the current number of elements stored.

4.1.3.5 Theory vs. Practice

A large and ever-growing body of theoretical research on data structures is available, where the perfor-
mance is measured in asymptotic terms (big-Oh notation). Although asymptotic complexity analysis is an
important mathematical subject, it does not completely capture the notion of efficiency of data structures
in practical scenarios, where constant factors cannot be disregarded and the difficulty of implementation
substantially affects design and maintenance costs. Experimental studies comparing the practical efficiency
of data structures for specific classes of problems should be encouraged to bridge the gap between the
theory and practice of data structures.

4.1.4 Fundamental Data Structures

The following data structures are ubiquitously used in the description of discrete algorithms, and serve as
basic building blocks for realizing more complex data structures. They are covered in detail in the textbooks
listed in the “Further Information” section and in the additional references provided.

4.1.4.1 Sequence

A sequence is a container that stores elements in a certain linear order, which is imposed by the operations
performed. The basic operations supported are retrieving, inserting, and removing an element given its
position. Special types of sequences include stacks and queues, where insertions and deletions can be done
only at the head or tail of the sequence. The basic realization of sequences are by means of arrays and
linked lists. Concatenable queues (see, e.g., Hoffman et al. [1986]) support additional operations such as
splitting and splicing, and determining the sequence containing a given element. In external memory, a
sequence is typically associated with a file.

4.1.4.2 Priority Queue

A priority queueisacontainer of elements froma totally ordered universe that supports the basic operations
of inserting an element and retrieving/removing the largest element. A key application of priority queues
is sorting algorithms. A heap is an efficient realization of a priority queue that embeds the elements into
the ancestor/descendant partial order of a binary tree. A heap also admits an implicit realization where
the nodes of the tree are mapped into the elements of an array (see Section 4.3). Sophisticated variations
of priority queues include min—max heaps, pagodas, deaps, binomial heaps, and Fibonacci heaps. The
buffer tree is an efficient external-memory realization of a priority queue.

4.1.4.3 Dictionary

A dictionary is a container of elements from a totally ordered universe that supports the basic operations
of inserting/deleting elements and searching for a given element. Hash tables provide an efficient implicit
realization of a dictionary. Efficient explicit implementations include skip lists [Pugh 1990], tries, and
balanced search trees (e.g., AVL-trees, red—black trees, 2-3 trees, 2—3—4 trees, weight-balanced trees,
biased search trees, splay trees). The technique of fractional cascading [Chazelle and Guibas 1986] speeds
up searching for the same element in a collection of dictionaries. In external memory, dictionaries are
typically implemented as B-trees and their variations.
The above data structures are widely used in the following application domains:

1. Graphs and networks: adjacency matrix, adjacency lists, link-cut tree [Sleator and Tarjan 1983],
dynamic expression tree [Cohen and Tamassia 1995], topology tree [Frederickson 1997], SPQR-
tree [Di Battista and Tamassia 1996], sparsification tree [Eppstein et al. 1997]. See also, for example,
Di Battista et al. [1999], Even [1979], Mehlhorn [1984], and Tarjan [1983].

© 2004 by Taylor & Francis Group, LLC

2. Text processing: string, suffix tree, Patricia tree. See, for example, Gonnet and Baeza-Yates [1991].

3. Geometry and graphics: binary space partition tree, chain tree, trapezoid tree, range tree, segment
tree, interval tree, priority search tree, hull tree, quad tree, R-tree, grid file, metablock tree. For
example, see Chiang and Tamassia [1992], Edelsbrunner [1987], Foley et al. [1990], Mehlhorn
[1984], Nievergelt and Hinrichs [1993], O’Rourke [1994], and Preparata and Shamos [1985].

4.1.5 Organization of the Chapter

The remainder of this chapter focuses on three fundamental abstract data types: sequences, priority queues,
and dictionaries. Examples of efficient data structures and algorithms for implementing them are presented
in detail in Section 4.2 through Section 4.4, respectively. Namely, we cover arrays, singly and doubly linked
lists, heaps, search trees, (a, b)-trees, AVL-trees, bucket arrays, and hash tables.

4.2 Sequence

4.2.1 Introduction

A sequenceisa container that stores elements in linear order, which is imposed by the operations performed.
The basic operations supported are:

 INSERTRANK: insert an element in a given position.

* REMOVE: remove an element.

Sequences are a basic form of data organization, and are typically used to realize and implement other
data types and data structures.

4.2.2 Operations

Using positions (see Section 4.1.1), we can define a more complete repertory of operations for a sequence S:

S1ZE(N): return the number of elements N of S.

HEAD(p): assign to p the position of the first element of S; if S is empty, then p is set to null.

TAIL(p): assign to p the position of the last element of S; if S is empty, then p is set to null.

POSITIONRANK (1, p): assign to p the position of the rth element of S;ifr < 1 orr > N, where N is
the size of S, then p is set to null.

PREV(p’, p”): assign to p” the position of the element of S preceding the element with position p’; if p’
is the position of the first element of S, then p” is set to null.

NEXT(p’, p”): assign to p” the position of the element of S following the element with position p'; if p’
is the position of the last element of S, then p” is set to null.

INSERTAFTER(e, p’, p”): insert element e into S after the element with position p’, and return the
position p” of e.

INSERTBEFORE(e, p’, p”): insert element e into S before the element with position p’, and return the
position p” of e.

INSERTHEAD(e, p): insert element e at the beginning of S, and return the position p of e.

INSERTTAIL(e, p): insert element e at the end of S, and return the position p of e.

INSERTRANK (e, 1, p): insert element e in the rth position of S;ifr < 1 orr > N + 1, where N is the
current size of S, then p is set to null.

REMOVE(p, e): remove from S and return element e with position p.

MODIEY(p, e): replace with e the element with position p.

Some of the preceding operations can be easily expressed by means of other operations of the repertory.
For example, operations HEAD and TAIL can be easily expressed by means of POSITIONRANK and SIZE.

© 2004 by Taylor & Francis Group, LLC

TABLE 4.1 Performance of a Sequence
Implemented with an Array

Operation Time
SIZE 0(1)
HEAD 0O(1)
TAIL 0(1)
POSITIONRANK 0O(1)
PREV 0(1)
NEXT 0(1)
INSERTAFTER O(N)
INSERTBEFORE O(N)
INSERTHEAD O(N)
INSERTTAIL 0(1)
INSERTRANK O(N)
REMOVE O(N)
MODIFY 0(1)

TABLE 4.2 Performance of a Sequence
Implemented with a Singly Linked List

Operation Time
SIZE 0o(1)
HEAD 0(1)
TAIL 0o(1)
POSITIONRANK O(N)
PREV O(N)
NEXT 0o(1)
INSERTAFTER o(1)
INSERTBEFORE O(N)
INSERTHEAD o(1)
INSERTTAIL 0o(1)
INSERTRANK O(N)
REMOVE O(N)
MODIFY o(1)

4.2.3 Implementation with an Array

The simplest way to implement a sequence is to use a (one-dimensional) array, where the ith element of the
array stores the 7th element of the list, and to keep a variable that stores the size N of the sequence. With
this implementation, accessing elements takes O(1) time, whereas insertions and deletions take O(N)
time. Table 4.1 shows the time complexity of the implementation of a sequence by means of an array.

4.2.4 Implementation with a Singly Linked List

A sequence can also be implemented with a singly linked list, where each position has a pointer to the next
one. We also store the size of the sequence and pointers to the first and last position of the sequence.

With this implementation, accessing elements by rank takes O(N) time because we need to traverse
the list, whereas some insertions and deletions take O(1) time. Table 4.2 shows the time complexity of the
implementation of a sequence by means of a singly linked list.

4.2.5 Implementation with a Doubly Linked List

Better performance can be achieved, at the expense of using additional space, by implementing a sequence
with a doubly linked list, where each position has pointers to the next and previous positions. We also

© 2004 by Taylor & Francis Group, LLC

TABLE 4.3 Performance of a Sequence
Implemented with a Doubly Linked List

Operation Time
SIZE O(1)
HEAD O(1)
TAIL O(1)
POSITIONRANK O(N)
PREV O(1)
NEXT O(1)
INSERTAFTER O(1)
INSERTBEFORE O(1)
INSERTHEAD O(1)
INSERTTAIL O(1)
INSERTRANK O(N)
REMOVE O(1)
MODIFY O(1)

store the size of the sequence and pointers to the first and last positions of the sequence. Table 4.3 shows
the time complexity of the implementation of sequence by means of a doubly linked list.

4.3 Priority Queue

4.3.1 Introduction

A priority queue is a container of elements from a totally ordered universe that supports the following two
basic operations:

1. INSERT: insert an element into the priority queue.
2. REMOVEMAX: remove the largest element from the priority queue.

Here are some simple applications of a priority queue:

* Scheduling. A scheduling system can store the tasks to be performed into a priority queue, and
select the task with highest priority to be executed next.

* Sorting. To sortaset of N elements, we can insert them one at a time into a priority queue by means
of N INSERT operations, and then retrieve them in decreasing order by means of N REMOVEMAX
operations. This two-phase method is the paradigm of several popular sorting algorithms, including
selection sort, insertion sort, and heap-sort.

4.3.2 Operations
Using locators, we can define a more complete repertory of operations for a priority queue Q:

SIZE(N): return the current number of elements N in Q.

MAX(c): return a locator ¢ to the maximum element of Q.

INSERT(e, ¢): insert element e into Q and return a locator ¢ to e.

REMOVE(c, e): remove from Q and return element e with locator c.
REMOVEMAX(e): remove from Q and return the maximum element e from Q.
MODIFY(c, e): replace with e the element with locator c.

Note that operation REMOVEMAX(e) is equivalent to MAX(c) followed by REMOVE(c, e).

© 2004 by Taylor & Francis Group, LLC

TABLE 4.4 Performance of a Priority
Queue Realized by an Unsorted Sequence,
Implemented with a Doubly Linked List

Operation Time
SIZE o(1)
Max O(N)
INSERT o(1)
REMOVE 0o(1)
REMOVEMAX O(N)
MODIFY 0o(1)

TABLE 4.5 Performance of a Priority
Queue Realized by a Sorted Sequence,
Implemented with a Doubly Linked List

Operation Time
SIZE 0(1)
MAX o(1)
INSERT O(N)
REMOVE o(1)
REMOVEMAX Oo(1)
MODIFY O(N)

4.3.3 Realization with a Sequence

We can realize a priority queue by reusing and extending the sequence abstract data type (see Section 4.2).
Operations SIZE, MODIFY, and REMOVE correspond to the homonymous sequence operations.

4.3.3.1 Unsorted Sequence

We can realize INSERT by an INSERTHEAD or an INSERTTAIL, which means that the sequence is not kept
sorted. Operation MAX can be performed by scanning the sequence with an iteration of NEXT operations,
keeping track of the maximum element encountered. Finally, as observed earlier, operation REMOVEMAX
is a combination of MAX and REMOVE. Table 4.4 shows the time complexity of this realization, assuming
that the sequence is implemented with a doubly linked list. In the table we denote with N the num-
ber of elements in the priority queue at the time the operation is performed. The space complexity is
O(N).

4.3.3.2 Sorted Sequence

An alternative implementation uses a sequence that is kept sorted. In this case, operation MAX corresponds
to simply accessing the last element of the sequence. However, operation INSERT now requires scanning the
sequence to find the appropriate position to insert the new element. Table 4.5 shows the time complexity
of this realization, assuming that the sequence is implemented with a doubly linked list. In the table we
denote with N the number of elements in the priority queue at the time the operation is performed. The
space complexity is O(N).

Realizing a priority queue with a sequence, sorted or unsorted, has the drawback that some operations
require linear time in the worst case. Hence, this realization is not suitable in many applications where fast
running times are sought for all the priority queue operations.

4.3.3.3 Sorting

For example, consider the sorting application (see the first introduction to this section). We have a collection
of N elements from a totally ordered universe, and we want to sort them using a priority queue Q. We

© 2004 by Taylor & Francis Group, LLC

FIGURE 4.1 Example of a heap storing 13 elements.

assume that each element uses O(1) space, and any two elements can be compared in O(1) time. If we
realize Q with an unsorted sequence, then the first phase (inserting the N elements into Q) takes O(N)
time. However, the second phase (removing N times the maximum element) takes time

N
6 <Zl> = O(N?)
i=1

Hence, the overall time complexity is O(N?). This sorting method is known as selection sort.
However, if we realize the priority queue with a sorted sequence, then the first phase takes time

N
o) <Zl> = O(N?)
i=1

while the second phase takes time O(N). Again, the overall time complexity is O (N?). This sorting method
is known as insertion sort.

4.3.4 Realization with a Heap

A more sophisticated realization of a priority queue uses a data structure called a heap. A heap is a binary
tree T whose internal nodes each store one element from a totally ordered universe, with the following
properties (see Figure 4.1):

Level property. All of the levels of T are full, except possibly for the bottommost level, which is left filled.
Partial order property. Let . be a node of T distinct from the root, and let v be the parent of ; then the
element stored at . is less than or equal to the element stored at v.

The leaves of a heap do not store data and serve only as placeholders. The level property implies that heap
T is a minimum-height binary tree. More precisely, if T stores N elements and has height /1, then each level
i with 0 < i < h — 2 stores exactly 2! elements, whereas level h — 1 stores between 1 and 2"~! elements.
Note that level h contains only leaves. We have

h—2 h—1
=14) P <N<) =21
i=0 i=0
from which we obtain:

log,(N+1) <h <1+log, N

© 2004 by Taylor & Francis Group, LLC

(e) ®

FIGURE 4.2 Operation INSERT in a heap.

Now we show how to perform the various priority queue operations by means of a heap T. We denote
with x () the element stored at an internal node . of T. We denote with p the root of T. We call the last
node of T the rightmost internal node of the bottommost internal level of T.

By storing a counter that keeps track of the current number of elements, SIZE consists of simply returning
the value of the counter. By the partial order property, the maximum element is stored at the root and,
hence, operation MAX can be performed by accessing node p.

4.3.4.1 Operation INSERT

To insert an element e into T, we add a new internal node W to T such that pw becomes the new last
node of T, and set x(pu) = e. This action ensures that the level property is satisfied, but may violate
the partial order property. Hence, if p # p, we compare x(p) with x(v), where v is the parent of .
If x(w) > x(v), then we need to restore the partial order property, which can be locally achieved by
exchanging the elements stored at w and v. This causes the new element e to move up one level. Again,
the partial order property may be violated, and we may have to continue moving up the new element e
until no violation occurs. In the worst case, the new element e moves up to the root p of T by means of
O(log N) exchanges. The upward movement of element e by means of exchanges is conventionally called
upheap.

An example of a sequence of insertions into a heap is shown in Figure 4.2.

© 2004 by Taylor & Francis Group, LLC

4.3.4.2 Operation REMOVEMAX

To remove the maximum element, we cannot simply delete the root of T, because this would disrupt the
binary tree structure. Instead, we access the last node \ of T, copy its element e to the root by setting
x(p) = x(N), and delete N. We have preserved the level property, but we may have violated the partial
order property. Hence, if p has at least one nonleaf child, we compare x(p) with the maximum element
x (o) stored at a child of p. If x(p) < x(0), then we need to restore the partial order property, which can
be locally achieved by exchanging the elements stored at p and ¢. Again, the partial order property may be
violated, and we continue moving down element e until no violation occurs. In the worst case, element e
moves down to the bottom internal level of T by means of O (log N) exchanges. The downward movement
of element e by means of exchanges is conventionally called downheap.
An example of operation REMOVEMAX in a heap is shown in Figure 4.3.

4.3.4.3 Operation REMOVE

To remove an arbitrary element of heap T, we cannot simply delete its node ., because this would disrupt
the binary tree structure. Instead, we proceed as before and delete the last node of T after copying to
its element e. We have preserved the level property, but we may have violated the partial order property,
which can be restored by performing either upheap or downheap.

Finally, after modifying an element of heap T, if the partial order property is violated, we just need to
perform either upheap or downheap.

(e) ®

FIGURE 4.3 Operation REMOVEMAX in a heap.

© 2004 by Taylor & Francis Group, LLC

TABLE 4.6 Performance of a Priority
Queue Realized by a Heap, Implemented
with a Suitable Binary Tree Data Structure

Operation Time
SIZE o(1)
MAX o(1)
INSERT O(log N)
REMOVE O(logN)
REMOVEMAX O(log N)
MODIFY O(logN)

4.3.4.4 Time Complexity

Table 4.6 shows the time complexity of the realization of a priority queue by means of a heap. In the table
we denote with N the number of elements in the priority queue at the time the operation is performed.
The space complexity is O(N). We assume that the heap is itself realized by a data structure for binary trees
that supports O(1)-time access to the children and parent of a node. For instance, we can implement the
heap explicitly with a linked structure (with pointers from a node to its parents and children), or implicitly
with an array (where node i has children 27 and 2i + 1). Let N be the number of elements in a priority
queue Q realized with a heap T at the time an operation is performed. The time bounds of Table 4.6 are
based on the following facts:

* In the worst case, the time complexity of upheap and downheap is proportional to the height of T

* If we keep a pointer to the last node of T, we can update this pointer in time proportional to the
height of T' in operations INSERT, REMOVE, and REMOVEMAYX, as illustrated in Figure 4.4.

* The height of heap T is O(log N).
The O(N) space complexity bound for the heap is based on the following facts:

* The heap has 2N + 1 nodes (N internal nodes and N + 1 leaves).
* Every node uses O(1) space.

* In the array implementation, because of the level property, the array elements used to store heap
nodes are in the contiguous locations 1 through 2N — 1.

Note that we can reduce the space requirement by a constant factor implementing the leaves of the heap
with null objects, such that only the internal nodes have space associated with them.

4.3.4.5 Sorting

Realizing a priority queue with a heap has the advantage that all of the operations take O(log N) time,
where N is the number of elements in the priority queue at the time the operation is performed. For
example, in the sorting application (see Section 4.3.1), both the first phase (inserting the N elements) and
the second phase (removing N times the maximum element) take time

N
o (Z logi) = O(NlogN)
i=1

Hence, sorting with a priority queue realized with a heap takes O(N log N) time. This sorting method is

known as heap sort, and its performance is considerably better than that of selection sort and insertion
sort (see Section 4.3.3.3), where the priority queue is realized as a sequence.

© 2004 by Taylor & Francis Group, LLC

FIGURE 4.4 Update of the pointer to the last node: (a) INSERT and (b) REMOVE or REMOVEMAX.

4.3.5 Realization with a Dictionary

A priority queue can be easily realized with a dictionary (see Section 4.4). Indeed, all of the operations in
the priority queue repertory are supported by a dictionary. To achieve O(1) time for operation MAX, we
can store the locator of the maximum element in a variable, and recompute it after an update operation.
This realization of a priority queue with a dictionary has the same asymptotic complexity bounds as the
realization with a heap, provided the dictionary is suitably implemented, for example, with an (a, b)-tree
(see section “Realization with an (a, b)-tree”) or an AVL-tree (see section “Realization with an AVL-tree”).
However, a heap is simpler to program than an (a, b)-tree or an AVL-tree.

4.4 Dictionary

A dictionary is a container of elements from a totally ordered universe that supports the following basic
operations:

* TIND: search for an element.
* INSERT: insert an element.
* REMOVE: delete an element.

A major application of dictionaries is database systems.

4.4.1 Operations

In the most general setting, the elements stored in a dictionary are pairs (x, y), where x is the key giving
the ordering of the elements and y is the auxiliary information. For example, in a database storing student

© 2004 by Taylor & Francis Group, LLC

records, the key could be the student’s last name, and the auxiliary information the student’s transcript. It is
convenient to augment the ordered universe of keys with two special keys (400 and —oo) and assume that
each dictionary has, in addition to its regular elements, two special elements, with keys +o00 and — oo, respec-
tively. For simplicity, we will also assume that no two elements of a dictionary have the same key. An insertion
of an element with the same key as that of an existing element will be rejected by returning a null locator.

Using locators (see Section 4.1), we can define a more complete repertory of operations for a dictio-
nary D:

SIZE(N): return the number of regular elements N of D.

FIND(x, ¢): if D contains an element with key x, assign to ¢ a locator to such as an element; otherwise;
set ¢ equal to a null locator.

LOCATEPREV(x;, ¢): assign to ¢ a locator to the element of D with the largest key less than or equal to x;
if x is smaller than all of the keys of the regular elements, then c is a locator to the special element
with key —oo; if x = —00, then ¢ is a null locator.

LOCATENEXT(x, ¢): assign to ¢ a locator to the element of D with the smallest key greater than or equal
to x; if x is larger than all of the keys of the regular elements, then ¢ is a locator to the special element
with key +o0; then, if x = +00, ¢ is a null locator.

PREV(c’, ¢”): assign to ¢” alocator to the element of D with the largest key less than that of the element
with locator ¢’; if the key of the element with locator ¢’ is smaller than all of the keys of the regular
elements, then this operation returns a locator to the special element with key —ooc.

NEXT(c’,¢”): assign to ¢” a locator to the element of D with the smallest key larger than that of the
element with locator ¢’; if the key of the element with locator ¢’ is larger than all of the keys of the
regular elements, then this operation returns a locator to the special element with key +ooc.

MIN(c): assign to ¢ a locator to the regular element of D with minimum key; if D has no regular
elements, then c is a null locator.

MAX(c): assign to ¢ a locator to the regular element of D with maximum key; if D has no regular
elements, then ¢ is a null locator.

INSERT (e, ¢): insert element e into D, and return a locator c to e; if there is already an element with the
same key as e, then this operation returns a null locator.

REMOVE(c, e): remove from D and return element e with locator c.

MODIFY(c, e): replace with e the element with locator c.

Some of these operations can be easily expressed by means of other operations of the repertory. For
example, operation FIND is a simple variation of LOCATEPREV or LOCATENEXT.

4.4.2 Realization with a Sequence

We can realize a dictionary by reusing and extending the sequence abstract data type (see Section 4.2).
Operations SIZE, INSERT, and REMOVE correspond to the homonymous sequence operations.

4.4.2.1 Unsorted Sequence

We can realize INSERT by an INSERTHEAD or an INSERTTAIL, which means that the sequence is not kept sorted.
Operation FIND(x, ¢) can be performed by scanning the sequence with an iteration of NEXT operations,
until we either find an element with key x, or we reach the end of the sequence. Table 4.7 shows the time
complexity of this realization, assuming that the sequence is implemented with a doubly linked list. In the
table we denote with N the number of elements in the dictionary at the time the operation is performed.
The space complexity is O(N).

4.4.2.2 Sorted Sequence

We can also use a sorted sequence to realize a dictionary. Operation INSERT now requires scanning the
sequence to find the appropriate position to insert the new element. However, in a FIND operation, we
can stop scanning the sequence as soon as we find an element with a key larger than the search key.

© 2004 by Taylor & Francis Group, LLC

TABLE 4.7 Performance of a Dictionary
Realized by an Unsorted Sequence,
Implemented with a Doubly Linked List

Operation Time
SIZE 0o(1)
FIND O(N)
LOCATEPREV O(N)
LOCATENEXT O(N)
NEXT O(N)
PREV O(N)
MIN O(N)
MAX O(N)
INSERT o(1)
REMOVE 0(1)
MODIFY o(1)

TABLE 4.8 Performance of a Dictionary
Realized by a Sorted Sequence,
Implemented with a Doubly Linked List

Operation Time
SIZE o(1)
FIND O(N)
LOCATEPREV O(N)
LOCATENEXT O(N)
NEXT Oo(1)
PREV o(1)
MIN Oo(1)
MAX o(1)
INSERT O(N)
REMOVE 0(1)
MODIFY O(N)

Table 4.8 shows the time complexity of this realization by a sorted sequence, assuming that the sequence
is implemented with a doubly linked list. In the table we denote with N the number of elements in the
dictionary at the time the operation is performed. The space complexity is O(N).

4.4.2.3 Sorted Array

We can obtain a different performance trade-off by implementing the sorted sequence by means of an
array, which allows constant-time access to any element of the sequence given its position. Indeed, with
this realization we can speed up operation FIND(x, ¢) using the binary search strategy, as follows. If the
dictionary is empty, we are done. Otherwise, let N be the current number of elements in the dictio-
nary. We compare the search key k with the key x,, of the middle element of the sequence, that is, the
element at position | N/2]. If x = x,,, we have found the element. Else, we recursively search in the
subsequence of the elements preceding the middle element if x < x,,, or following the middle element
if x > x,. At each recursive call, the number of elements of the subsequence being searched halves.
Hence, the number of sequence elements accessed and the number of comparisons performed by binary
search is O(log N). While searching takes O(log N) time, inserting or deleting elements now takes O(N)
time.

© 2004 by Taylor & Francis Group, LLC

TABLE 4.9 Performance of a Dictionary
Realized by a Sorted Sequence, Implemented
with an Array

Operation Time
SIZE 0o(1)
FIND O(logN)
LOCATEPREV O(log N)
LOCATENEXT O(logN)
NEXT 0o(1)
PREV 0o(1)
MIN 0o(1)
MAX 0(1)
INSERT O(N)
REMOVE O(N)
MODIFY O(N)

Table 4.9 shows the performance of a dictionary realized with a sorted sequence, implemented with an
array. In the table we denote with N the number of elements in the dictionary at the time the operation is
performed. The space complexity is O(N).

4.4.3 Realization with a Search Tree

A search tree for elements of the type (x, y), where x is a key from a totally ordered universe, is a rooted
ordered tree T such that:

* Each internal node of T has at least two children and stores a nonempty set of elements.

* A node p of T with d children py,..., s stores d — 1 elements (x;, y1) - - - (x4—1, ¥4—1)> where
Xp <0 < X1

* For each element (x, y) stored at a node in the subtree of T rooted at w;, we have x;_; < x < x;,
where xg = —o0 and x; = +o00.

In a search tree, each internal node stores a nonempty collection of keys, whereas the leaves do not store
any key and serve only as placeholders. An example search tree is shown in Figure 4.5a. A special type of
search tree is a binary search tree, where each internal node stores one key and has two children.

We will recursively describe the realization of a dictionary D by means of a search tree T because we will
use dictionaries to implement the nodes of T'. Namely, an internal node p of T with children w1, ..., pg
and elements (x1, y1) - - - (x4—1, ¥4—1) is equipped with a dictionary D () whose regular elements are the
pairs (x;, (i, i), 1 = 1,...,d — 1 and whose special element with key 400 is (400, (-, j1g)). A regular
element (x, y) stored in D is associated with a regular element (x, (y,v)) stored in a dictionary D(p.), for
some node p of T'. See the example in Figure 4.5b.

4.4.3.1 Operation FIND

Operation FIND(x, ¢) on dictionary D is performed by means of the following recursive method for a node
w of T, where w is initially the root of T [see Figure 4.5b]. We execute LOCATENEXT(x, ¢’) on dictionary
D(w) and let (x/, (¥, v)) be the element pointed by the returned locator ¢’. We have three cases:

1. Case x = x’: we have found x and return locator ¢ to (x', y’).
2. Case x # x" and v is a leaf: we have determined that x is not in D and return a null locator c.
3. Case x # x’ and v is an internal node: we set . = v and recursively execute the method.

© 2004 by Taylor & Francis Group, LLC

FIGURE 4.5 Realization of a dictionary by means of a search tree: (a) a search tree T, (b) realization of the dictionaries
atthe nodes of T by means of sorted sequences. The search paths for elements 9 (unsuccessful search) and 14 (successful

search) are shown with dashed lines.

4.4.3.2 Operation INSERT

Operations LOCATEPREV, LOCATENEXT, and INSERT can be performed with small variations of the previ-
ously described method. For example, to perform operation INSERT(e, ¢), where e = (x, y), we modify
the previous cases as follows (see Figure 4.6):

1. Case x = x': an element with key x already exists, and we return a null locator.

2. Case x # x’ and v is a leaf: we create a new leaf node A, insert a new element (x, (y,\)) into D(.),
and return a locator ¢ to (x, y).

3. Case x # x’ and v is an internal node: we set . = v and recursively execute the method.

Note that new elements are inserted at the bottom of the search tree.

© 2004 by Taylor & Francis Group, LLC

=

N G-

[] O

FIGURE 4.6 Insertion of element 9 into the search tree of Figure 4.5.

4.4.3.3 Operation REMOVE

Operation REMOVE(e, ¢) is more complex (see Figure 4.7). Let the associated element of e = (x,y) in T
be (x, (y,v)), stored in dictionary D() of node p:

* Ifnode v is a leaf, we simply delete element (x, (y, v)) from D().

* Else (v is an internal node), we find the successor element (x’, (y',v")) of (x, (y,v)) in D(p) with a
NEXT operation in D(). (1) If v/ is a leaf, we replace v' with v, that is, change element (x', (', V"))
to (x/, (¥, v)), and delete element (x, (y,v)) from D(w.). (2) Else (v is an internal node), while the
leftmost child v" of V' is not a leaf, we set v/ = v". Let (x”, (y”,v")) be the first element of D(v')
(node v” is a leaf). We replace (x, (y,v)) with (x”, (¥”,v)) in D() and delete (x”, (y”,v")) from
D).

The listed actions may cause dictionary D () or D(v') to become empty. If this happens, say for D ()
and p is not the root of T, we need to remove node . Let (400, (-, k)) be the special element of D ()
with key 400, and let (z, (w,) be the element pointing to w in the parent node of . We delete node
. and replace (z, (w, w)) with (z, (w,k)) in D(1r).

Note that if we start with an initially empty dictionary, a sequence of insertions and deletions performed
with the described methods yields a search tree with a single node. In the next sections, we show how to
avoid this behavior by imposing additional conditions on the structure of a search tree.

4.4.4 Realization with an (a, b)-Tree

An (a, b)-tree, where a and b are integer constants such that 2 < a < (b + 1)/2, is a a search tree T with
the following additional restrictions:

Level property. All of the levels of T are full, that is, all of the leaves are at the same depth.
Size property. Let . be an internal node of T, and d be the number of children of w; if w is the root of
T,thend > 2,elsea <d < b.

© 2004 by Taylor & Francis Group, LLC

FIGURE 4.7 (a) Deletion of element 10 from the search tree of Figure 4.6. (b) Deletion of element 12 from the search
tree of part a.

The height of an (a, b)-tree storing N elements is O(log, N) = O(log N). Indeed, in the worst case,
the root has two children and all of the other internal nodes have a children.

The realization of a dictionary with an (a, b)-tree extends that with a search tree. Namely, the im-
plementation of operations INSERT and REMOVE need to be modified in order to preserve the level and
size properties. Also, we maintain the current size of the dictionary, and pointers to the minimum and
maximum regular elements of the dictionary.

4.4.4.1 Insertion

The implementation of operation INSERT for search trees given earlier in this section adds a new element
to the dictionary D () of an existing node p of T. Because the structure of the tree is not changed, the
level property is satisfied. However, if D () had the maximum allowed size b — 1 before insertion (recall
that the size of D(j) is one less than the number of children of), then the size property is violated at
because D() has now size b. To remedy this overflow situation, we perform the following node split (see
Figure 4.8):

© 2004 by Taylor & Francis Group, LLC

FIGURE 4.8 Example of node split in a 2—4 tree: (a) initial configuration with an overflow at node ., (b) split of the
node w into p’ and p” and insertion of the median element into the parent node 1, and (c) final configuration.

* Let the special element of D(p) be (400, (-, mp+1)). Find the median element of D (), that is, the
element e; = (x;, (i, i) such thati = [(b + 1)/27).

* Split D(p) into: (1) dictionary D’ containing the [(b — 1)/2] regular elementse; = (x;, (yj, 1;))s
j = 1---i — 1 and the special element (+00, (-, ;)); (2) element e; and (3) dictionary D",
containing the [(b — 1)/2] regular elements e; = (x;,(yj,;)), j = i + 1---b and the special
element (400, (-, wp41)).

* Create a new tree node k, and set D(k) = D’. Hence, node k has children w1 - - - ;.

© 2004 by Taylor & Francis Group, LLC

* Set D(p) = D”. Hence, node . has children w1 - - - pps1.
* If pis the root of T, create a new node 1 with an empty dictionary D(1r). Else, let 1 be the parent
of .

* Insert element (x;, (y;,K)) into dictionary D ().

After a node split, the level property is still verified. Also, the size property is verified for all of the nodes
of T, except possibly for node . If 7 has b + 1 children, we repeat the node split for o = . Each time
we perform a node split, the possible violation of the size property appears at a higher level in the tree.
This guarantees the termination of the algorithm for the INSERT operation. We omit the description of the
simple method for updating the pointers to the minimum and maximum regular elements.

4.4.4.2 Deletion

The implementation of operation REMOVE for search trees given earlier in this section removes an element
from the dictionary D() of an existing node . of T. Because the structure of the tree is not changed, the
level property is satisfied. However, if w is not the root, and D () had the minimum allowed size a — 1
before deletion (recall that the size of the dictionary is one less than the number of children of the node),
then the size property is violated at . because D () has now size a — 2. To remedy this underflow situation,
we perform the following node merge (see Figure 4.9 and Figure 4.10):

* If p has a right sibling, then let " be the right sibling of p and " = ; else, let .’ be the left sibling
of wand w”’ = . Let (00, (-, v)) be the special element of D(").

* Let be the parent of ' and p”. Remove from D(1r) the regular element (x, (y, n’)) associated
with /.

* Create a new dictionary D containing the regular elements of D(p) and D(w”), regular element
(x, (y,v)), and the special element of D(p”).

* Set D(n”) = D, and destroy node .

* If w” has more than b children, perform a node split at p.”.

After anode merge, the level property is still verified. Also, the size property is verified for all the nodes of
T, except possibly for node . If 7 is the root and has one child (and thus an empty dictionary), we remove
node . If 7 is not the root and has fewer than a — 1 children, we repeat the node merge for w = . Each
time we perform a node merge, the possible violation of the size property appears at a higher level in the
tree. This guarantees the termination of the algorithm for the REMOVE operation. We omit the description
of the simple method for updating the pointers to the minimum and maximum regular elements.

4.4.4.3 Complexity

Let T be an (a, b)-tree storing N elements. The height of T is O(log, N) = O(log N). Each dictionary
operation affects only the nodes along a root-to-leaf path. We assume that the dictionaries at the nodes of
T are realized with sequences. Hence, processing a node takes O(b) = O(1) time. We conclude that each
operation takes O(log N) time.

Table 4.10 shows the performance of a dictionary realized with an (a, b)-tree. In the table we denote with
N the number of elements in the dictionary at the time the operation is performed. The space complexity
is O(N).

4.4.5 Realization with an AVL-Tree

An AVL-tree is a search tree T with the following additional restrictions:

Binary property. T is a binary tree, that is, every internal node has two children (left and right child),
and stores one key.

Balance property. For every internal node ., the heights of the subtrees rooted at the children of . differ
at most by one.

© 2004 by Taylor & Francis Group, LLC

©

FIGURE 4.9 Example of node merge in a 2—4 tree: (a) initial configuration, (b) the removal of an element from
dictionary D(p) causes an underflow at node ., and (c) merging node p = " into its sibling "

FIGURE 4.10 Example of subsequent node merge in a 2—4 tree: (a) overflow at node p” and (b) final configuration
after splitting node w”.

© 2004 by Taylor & Francis Group, LLC

TABLE 4.10 Performance of a Dictionary
Realized by an (a, b)-Tree

Operation Time
SIZE O(1)
FIND O(logN)
LOCATEPREV O(log N)
LOCATENEXT O(logN)
NEXT O(log N)
PREV O(logN)
MIN O(1)
Max O(1)
INSERT O(log N)
REMOVE O(logN)
MODIFY O(log N)

FIGURE 4.11 Example of AVL-tree storing nine elements. The keys are shown inside the nodes, and the balance
factors (see subsequent section on rebalancing) are shown next to the nodes.

An example of AVL-tree is shown in Figure 4.11. The height of an AVL-tree storing N elements is
O(log N). This can be shown as follows. Let Nj, be the minimum number of elements stored in an
AVL-tree of height h. We have N; = 0, N; = 1, and

Ny =1+ Ny_1+ Ny, forh>2

The preceding recurrence relation defines the well-known Fibonacci numbers. Hence, Nj, = Q(¢b), where
b = (14++/5)/2 =1.6180- - - is the golden ratio.

The realization of a dictionary with an AVL-tree extends that with a search tree. Namely, the implemen-
tation of operations INSERT and REMOVE must be modified to preserve the binary and balance properties
after an insertion or deletion.

4.4.5.1 Insertion

The implementation of INSERT for search trees given earlier in this section adds the new element to an
existing node. This violates the binary property, and hence cannot be done in an AVL-tree. Hence, we
modify the three cases of the INSERT algorithm for search trees as follows:

* Case x = x': an element with key x already exists, and we return a null locator c.

* Case x # x" and v is a leaf: we replace v with a new internal node k with two leaf children, store
element (x, y) in Kk, and return a locator ¢ to (x, y).

* Case x # x’ and v is an internal node: we set u = v and recursively execute the method.

© 2004 by Taylor & Francis Group, LLC

FIGURE 4.12 Insertion of an element with key 64 into the AVL-tree of Figure 4.11. Note that two nodes (with balance
factors 42 and —2) have become unbalanced. The dashed lines identify the subtrees that participate in the rebalancing,
as illustrated in Figure 4.14.

We have preserved the binary property. However, we may have violated the balance property because the
heights of some subtrees of T have increased by one. We say that a node is balanced if the difference between
the heights of its subtreesis —1, 0, or 1, and is unbalanced otherwise. The unbalanced nodes form a (possibly
empty) subpath of the path from the new internal node « to the root of T'. See the example of Figure 4.12.

4.4.5.2 Rebalancing

To restore the balance property, we rebalance the lowest node p that is unbalanced, as follows:

* Let p/ be the child of . whose subtree has maximum height, and p” be the child of p’ whose subtree
has maximum height.

* Let (1, pL2, iu3) be the left-to-right ordering of nodes {w, ', w”}, and (Ty, T1, T, T3) be the left-to-
right ordering of the four subtrees of {w, p/, .’} not rooted at a node in {p, n', n"}.

* Replace the subtree rooted at . with a new subtree rooted at p.,, where v, is the left child of ., and
has subtrees Tj and T;, and s is the right child of p, and has subtrees T, and T5.

Two examples of rebalancing are schematically shown in Figure 4.14. Other symmetric configurations
are possible. In Figure 4.13 we show the rebalancing for the tree of Figure 4.12.

Note that the rebalancing causes all the nodes in the subtree of p, to become balanced. Also, the subtree
rooted at p, now has the same height as the subtree rooted at node p before insertion. This causes all of the
previously unbalanced nodes to become balanced. To keep track of the nodes that become unbalanced, we
can store at each node a balance factor, which is the difference of the heights of the left and right subtrees.
A node becomes unbalanced when its balance factor becomes +2 or —2. It is easy to modify the algorithm
for operation INSERT such that it maintains the balance factors of the nodes.

4.4.5.3 Deletion

The implementation of REMOVE for search trees given earlier in this section preserves the binary property,
but may cause the balance property to be violated. After deleting a node, there can be only one unbalanced
node, on the path from the deleted node to the root of T.

© 2004 by Taylor & Francis Group, LLC

FIGURE 4.13 AVL-tree obtained by rebalancing the lowest unbalanced node in the tree of Figure 4.11. Note that all
of the nodes are now balanced. The dashed lines identify the subtrees that participate in the rebalancing, as illustrated
in Figure 4.14.

FIGURE 4.14 Schematic illustration of rebalancing a node in the INSERT algorithm for AVL-trees. The shaded subtree
is the one where the new element was inserted. (a) and (b) Rebalancing by means of a single rotation. (¢) and (d)

Rebalancing by means of a double rotation.

© 2004 by Taylor & Francis Group, LLC

TABLE 4.11 Performance of a Dictionary
Realized by an AVL-Tree

Operation Time
SIZE o(1)
FIND O(log N)
LOCATEPREV O(log N)
LOCATENEXT O(log N)
NEXT O(log N)
PREV O(log N)
MIN 0o(1)
MAX o(1)
INSERT O(logN)
REMOVE O(log N)
MODIFY O(logN)

To restore the balance property, we rebalance the unbalanced node using the previous algorithm, with
minor modifications. If the subtrees of . have the same height, the height of the subtree rooted at ., is the
same as the height of the subtree rooted at . before rebalancing, and we are done. If, instead, the subtrees
of p’ do not have the same height, then the height of the subtree rooted at ., is one less than the height
of the subtree rooted at p before rebalancing. This may cause an ancestor of p, to become unbalanced,
and we repeat the above computation. Balance factors are used to keep track of the nodes that become
unbalanced, and can be easily maintained by the REMOVE algorithm.

4.4.5.4 Complexity

Let T be an AVL-tree storing N elements. The height of T is O(log N). Each dictionary operation affects
only the nodes along a root-to-leaf path. Rebalancing a node takes O(1) time. We conclude that each
operation takes O(log N) time.

Table 4.11 shows the performance of a dictionary realized with an AVL-tree. In this table we denote with
N the number of elements in the dictionary at the time the operation is performed. The space complexity
is O(N).

4.4.6 Realization with a Hash Table

The previous realizations of a dictionary make no assumptions on the structure of the keys and use
comparisons between keys to guide the execution of the various operations.

4.4.6.1 Bucket Array

If the keys of a dictionary D are integers in the range [1, M], we can implement D with a bucket array B.
An element (x, y) of D is represented by setting B[x] = y. If an integer x is not in D, the location B[x]
stores a null value. In this implementation, we allocate a bucket for every possible element of D.

Table 4.12 shows the performance of a dictionary realized with a bucket array. In this table the keys in
the dictionary are integers in the range [1, M]. The space complexity is O(M).

The bucket array method can be extended to keys that are easily mapped to integers. For example,
three-letter airport codes can be mapped to the integers in the range [1, 26°].

4.4.6.2 Hashing

The bucket array method works well when the range of keys is small. However, it is inefficient when the
range of keys is large. To overcome this problem, we can use a hash function h that maps the keys of the
original dictionary D into integers in the range [1, M], where M is a parameter of the hash function. Now,
we can apply the bucket array method using the hashed value h(x) of the keys. In general, a collision may

© 2004 by Taylor & Francis Group, LLC

TABLE 4.12 Performance of a Dictionary

Realized by Bucket Array
Operation Time
SIZE 0(1)
FIND 0(1)
LOCATEPREV O(M)
LOCATENEXT O(M)
NEXT O(M)
PREV O(M)
MIN O(M)
MAX O(M)
INSERT 0(1)
REMOVE 0(1)
MODIFY 0(1)

o[o]

1o @

2[2]

3[2]

(@

512

s [2]

7[2]

8|

o[+-(@ @&

11o

12 [e4-(@

FIGURE 4.15 Example of a hash table of size 13 storing 10 elements. The hash function is #(x) = x mod 13.

happen, where two distinct keys x; and x, have the same hashed value, that is, x; # x; and h(x;) = h(x,).
Hence, each bucket must be able to accommodate a collection of elements.

A hash table of size M for a function h(x) is a bucket array B of size M (primary structure) whose
entries are dictionaries (secondary structures), such that element (x, y) is stored in the dictionary B[h(x)].
For simplicity of programming, the dictionaries used as secondary structures are typically realized with
sequences. An example of a hash table is shown in Figure 4.15.

If all of the elements in the dictionary D collide, they are all stored in the same dictionary of the bucket
array, and the performance of the hash table is the same as that of the kind of dictionary used for the
secondary structures. At the other end of the spectrum, if no two elements of the dictionary D collide,
they are stored in distinct one-element dictionaries of the bucket array, and the performance of the hash
table is the same as that of a bucket array.

A typical hash function for integer keys is h(x) = x mod M (here, the range is [0, M — 1]). The size M
of the hash table is usually chosen as a prime number. An example of a hash table is shown in Figure 4.15. It
is interesting to analyze the performance of a hash table from a probabilistic viewpoint. If we assume that
the hashed values of the keys are uniformly distributed in the range [0, M — 1], then each bucket holds on
average N /M keys, where N is the size of the dictionary. Hence, when N = O(M), the average size of the
secondary data structures is O(1).

Table 4.13 shows the performance of a dictionary realized with a hash table. Both the worst-case and
average time complexity in the preceding probabilistic model are indicated. In this table we denote with
N the number of elements in the dictionary at the time the operation is performed. The space complexity

© 2004 by Taylor & Francis Group, LLC

TABLE 4.13 Performance of a Dictionary Realized
by a Hash Table of Size M

Time
Operation Worst Case Average
SIZE 0(1) 0(1)
FIND O(N) O(N/M)
LOCATEPREV O(N+ M) O(N+ M)
LOCATENEXT O(N + M) O(N + M)
NEXT O(N+ M) O(N+ M)
PREV O(N + M) O(N + M)
MIN O(N+ M) O(N+ M)
Max O(N + M) O(N + M)
INSERT 0(1) 0(1)
REMOVE o(1) 0(1)
MODIFY 0o(1) 0(1)

is O(N + M). The average time complexity refers to a probabilistic model where the hashed values of the
keys are uniformly distributed in the range [1, M].

Acknowledgments

Work supported in part by the National Science Foundation under grant DUE-0231202. Bryan Cantrill
contributed to this work while at Brown University.

Defining Terms

(a, b)-Tree: Search tree with additional properties (each node has between a and b children, and all the
levels are full).

Abstract data type: Mathematically specified data type equipped with operations that can be performed
on the objects.

AVL-tree: Binary search tree such that the subtrees of each node have heights that differ by at most one.

Binary search tree: Search tree such that each internal node has two children.

Bucket array: Implementation of a dictionary by means of an array indexed by the keys of the dictionary
elements.

Container: Abstract data type storing a collection of objects (elements).

Dictionary: Container storing elements from a sorted universe supporting searches, insertions, and
deletions.

Hash table: Implementation of a dictionary by means of a bucket array storing secondary dictionaries.

Heap: Binary tree with additional properties storing the elements of a priority queue.

Position: Object representing the place of an element stored in a container.

Locator: Mechanism for tracking an element stored in a container.

Priority queue: Container storing elements from a sorted universe that supports finding the maximum
element, insertions, and deletions.

Search tree: Rooted ordered tree with additional properties storing the elements of a dictionary.

Sequence: Container storing objects in a linear order, supporting insertions (in a given position) and
deletions.

References

Aggarwal, A. and Vitter, J.S. 1988. The input/output complexity of sorting and related problems. Commun.
ACM, 31:1116-1127.

Aho, A.V.,Hopcroft, J.E., and Ullman, J.D. 1983. Data Structures and Algorithms. Addison-Wesley, Reading,
MA.

© 2004 by Taylor & Francis Group, LLC

Chazelle, B. and Guibas, L.J. 1986. Fractional cascading. I. A data structuring technique. Algorithmica,
1:133-162.

Chiang, Y.-J. and Tamassia, R. 1992. Dynamic algorithms in computational geometry. Proc. IEEE,
80(9):1412-1434.

Cohen, R.E. and Tamassia, R. 1995. Dynamic expression trees. Algorithmica, 13:245-265.

Comer, D. 1979. The ubiquitous B-tree. ACM Comput. Surv., 11:121-137.

Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein, C. 2001. Introduction to Algorithms. MIT Press,
Cambridge, MA.

Di Battista, G. and Tamassia, R. 1996. On-line maintenance of triconnected components with SPQR-trees.
Algorithmica, 15:302-318.

Di Battista, G., Eades, P., Tamassia, R., and Tollis, I.G. 1999. Graph Drawing: Algorithms for the Visualization
of Graphs. Prentice Hall, Upper Saddle River, NJ.

Driscoll, J.R., Sarnak, N., Sleator, D.D., and Tarjan, R.E. 1989. Making data structures persistent. J. Comput.
Syst. Sci. 38:86—124.

Edelsbrunner, H. 1987. Algorithms in Combinatorial Geometry, Vol. 10, EATCS Monographs on Theoretical
Computer Science. Springer—Verlag, Heidelberg, Germany.

Eppstein, D., Galil, Z., Italiano, G.E.,, and Nissenzweig, A. 1997. Sparsification: a technique for speeding
up dynamic graph algorithms. J. ACM, 44:669-696.

Even, S. 1979. Graph Algorithms. Computer Science Press, Potomac, MD.

Foley, J.D., van Dam, A., Feiner, S.K., and Hughes, J.F. 1990. Computer Graphics: Principles and Practice.
Addison-Wesley, Reading, MA.

Frederickson, G.N. 1997. A data structure for dynamically maintaining rooted trees. J. Algorithms, 24:37—
65.

Galil, Z. and Italiano, G.F. 1991. Data structures and algorithms for disjoint set union problems. ACM
Comput. Surv., 23(3):319-344.

Gonnet, G.H. and Baeza-Yates, R. 1991. Handbook of Algorithms and Data Structures. Addison-Wesley,
Reading, MA.

Goodrich, M.T. and Tamassia, R. 2001. Data Structures and Algorithms in Java. Wiley, New York.

Hoffmann, K., Mehlhorn, K., Rosenstiehl, P, and Tarjan, R.E. 1986. Sorting Jordan sequences in linear
time using level-linked search trees. Inf. Control, 68:170—184.

Horowitz, E., Sahni, S., and Metha, D. 1995. Fundamentals of Data Structures in C++. Computer Science
Press, Potomac, MD.

Knuth, D.E. 1968. Fundamental Algorithms. Vol. 1. In The Art of Computer Programming. Addison-Wesley,
Reading, MA.

Knuth, D.E. 1973. Sorting and Searching, Vol. 3. In The Art of Computer Programming. Addison-Wesley,
Reading, MA.

Mehlhorn, K. 1984. Data Structures and Algorithms. Vol. 1-3. Springer—Verlag.

Mehlhorn, K. and Niher, S. 1999. LEDA: a Platform for Combinatorial and Geometric Computing. Cam-
bridge University Press.

Mehlhorn, K. and Tsakalidis, A. 1990. Data structures. In Algorithms and Complexity. J. van Leeuwen, Ed.,
Vol. A, Handbook of Theoretical Computer Science. Elsevier, Amsterdam.

Munro, J.I. and Suwanda, H. 1980. Implicit Data Structures for Fast Search and Update. J. Comput. Syst.
Sci., 21:236-250.

Nievergelt, J. and Hinrichs, K.H. 1993. Algorithms and Data Structures: With Applications to Graphics and
Geometry. Prentice Hall, Englewood Cliffs, NJ.

O’Rourke, J. 1994. Computational Geometry in C. Cambridge University Press,

Overmars, M.H. 1983. The Design of Dynamic Data Structures, Vol. 156, Lecture Notes in Computer Science.
Springer-Verlag.

Preparata, EP. and Shamos, M.I. 1985. Computational Geometry: An Introduction. Springer-Verlag,
New York.

Pugh, W. 1990. Skip lists: a probabilistic alternative to balanced trees. Commun. ACM, 35:668—676.

© 2004 by Taylor & Francis Group, LLC

Sedgewick, R. 1992. Algorithms in C++. Addison-Wesley, Reading, MA.

Sleator, D.D. and Tarjan, R.E. 1993. A data structure for dynamic trees. J. Comput. Syst. Sci., 26(3):362—381.

Tamassia, R., Goodrich, M.T., Vismara, L., Handy, M., Shubina, G., Cohen R., Hudson, B., Baker, R.S.,
Gelfand, N., and Brandes, U. 2001. JDSL: the data structures library in Java. Dr. Dobb’s Journal,
323:21-31.

Tarjan, R.E. 1983. Data Structures and Network Algorithms, Vol. 44, CBMS-NSF Regional Conference Series
in Applied Mathematics. Society for Industrial Applied Mathematics.

Vitter, J.S. and Flajolet, P. 1990. Average-case analysis of algorithms and data structures. In Algorithms and
Complexity, J. van Leeuwen, Ed., Vol. A, Handbook of Theoretical Computer Science, pp. 431-524.
Elsevier, Amsterdam.

Wood, D. 1993. Data Structures, Algorithms, and Performance. Addison-Wesley, Reading, MA.

Further Information

Many textbooks and monographs have been written on data structures, for example, Aho et al. [1983],
Cormen et al. [2001], Gonnet and Baeza-Yates [1990], Goodrich and Tamassia [2001], Horowitz et al.
[1995], Knuth [1968,1973], Mehlhorn [1984], Nievergelt and Hinrichs [1993], Overmars [1983], Preparata
and Shamos [1995], Sedgewick [1992], Tarjan [1983], and Wood [1993].

Papers surveying the state-of-the art in data structures include Chiang and Tamassia [1992], Galil and
Italiano [1991], Mehlhorn and Tsakalidis [1990], and Vitter and Flajolet [1990].

JDSL is a library of fundamental data structures in Java [Tamassia et al. 2000]. LEDA is a library of
advanced data structures in C++ [Mehlhorn and Niher 1999].

© 2004 by Taylor & Francis Group, LLC

Complexity Theory

5.1 Introduction

5.2 Models of Computation
Computational Problems and Languages * Turing Machines
* Universal Turing Machines * Alternating Turing Machines
* Oracle Turing Machines

5.3 Resources and Complexity Classes
Time and Space * Complexity Classes

5.4 Relationships between Complexity Classes
Constructibility * Basic Relationships * Complementation
* Hierarchy Theorems and Diagonalization
* Padding Arguments

5.5 Reducibility and Completeness
Resource-Bounded Reducibilities * Complete Languages
* Cook-Levin Theorem * Proving NP-Completeness
* Complete Problems for Other Classes

5.6 Relativization of the P vs. NP Problem

5.7 The Polynomial Hierarchy

5.8 Alternating Complexity Classes

5.9 Circuit Complexity

Michael C. Loui 5.10 Probabilistic Complexity Classes

University of Illinois 5.11 Interactive Models and Complexity Classes

at Urbana-Champaign Interactive Proofs * Probabilistically Checkable Proofs

FEric W. Allender

Rutgers University

Kenneth W. Regan 5.12 Kolmogorov Complexity
State University of New York at Buffalo 5.13 Research Issues and Summary

5.1 Introduction

Computational complexity is the study of the difficulty of solving computational problems, in terms
of the required computational resources, such as time and space (memory). Whereas the analysis of
algorithms focuses on the time or space of an individual algorithm for a specific problem (such as sorting),
complexity theory focuses on the complexity class of problems solvable in the same amount of time
or space. Most common computational problems fall into a small number of complexity classes. Two
important complexity classes are P, the set of problems that can be solved in polynomial time, and NP,
the set of problems whose solutions can be verified in polynomial time.

By quantifying the resources required to solve a problem, complexity theory has profoundly affected
our thinking about computation. Computability theory establishes the existence of undecidable problems,
which cannot be solved in principle regardless of the amount of time invested. However, computability
theory fails to find meaningful distinctions among decidable problems. In contrast, complexity theory
establishes the existence of decidable problems that, although solvable in principle, cannot be solved in

© 2004 by Taylor & Francis Group, LLC

practice because the time and space required would be larger than the age and size of the known universe
[Stockmeyer and Chandra, 1979]. Thus, complexity theory characterizes the computationally feasible
problems.

The quest for the boundaries of the set of feasible problems has led to the most important unsolved
question in all of computer science: is P different from NP? Hundreds of fundamental problems, including
many ubiquitous optimization problems of operations research, are NP-complete; they are the hardest
problems in NP. If someone could find a polynomial-time algorithm for any one NP-complete problem,
then there would be polynomial-time algorithms for all of them. Despite the concerted efforts of many
scientists over several decades, no polynomial-time algorithm has been found for any NP-complete prob-
lem. Although we do not yet know whether P is different from NP, showing that a problem is NP-complete
provides strong evidence that the problem is computationally infeasible and justifies the use of heuristics
for solving the problem.

In this chapter, we define P, NP, and related complexity classes. We illustrate the use of diagonalization
and padding techniques to prove relationships between classes. Next, we define NP-completeness, and we
show how to prove that a problem is NP-complete. Finally, we define complexity classes for probabilistic
and interactive computations.

Throughout this chapter, all numeric functions take integer arguments and produce integer values. All
logarithms are taken to base 2. In particular, log # means [log, n].

5.2 Models of Computation

To develop a theory of the difficulty of computational problems, we need to specify precisely what a problem
is, what an algorithm is, and what a measure of difficulty is. For simplicity, complexity theorists have
chosen to represent problems as languages, to model algorithms by off-line multitape Turing machines,
and to measure computational difficulty by the time and space required by a Turing machine. To justify
these choices, some theorems of complexity theory show how to translate statements about, say, the time
complexity of language recognition by Turing machines into statements about computational problems
on more realistic models of computation. These theorems imply that the principles of complexity theory
are not artifacts of Turing machines, but intrinsic properties of computation.

This section defines different kinds of Turing machines. The deterministic Turing machine models
actual computers. The nondeterministic Turing machine is not a realistic model, but it helps classify the
complexity of important computational problems. The alternating Turing machine models a form of
parallel computation, and it helps elucidate the relationship between time and space.

5.2.1 Computational Problems and Languages

Computer scientists have invented many elegant formalisms for representing data and control structures.
Fundamentally, all representations are patterns of symbols. Therefore, we represent an instance of a
computational problem as a sequence of symbols.

Let X be afinite set, called the alphabet. A word over X is a finite sequence of symbols from ¥. Sometimes
a word is called a string. Let £* denote the set of all words over . For example, if & = {0, 1}, then

¥*={\, 0, 1, 00, 01, 10, 11, 000, ...}

is the set of all binary words, including the empty word N. The length of a word w, denoted by |w|, is the
number of symbols in w. A language over X is a subset of X*.

A decision problem is a computational problem whose answer is simply yes or no. For example, is the
input graph connected, or is the input a sorted list of integers? A decision problem can be expressed as a
membership problem for alanguage A: for an input x, does x belong to A? For a language A that represents
connected graphs, the input word x might represent an input graph G, and x € A if and only if G is
connected.

© 2004 by Taylor & Francis Group, LLC

For every decision problem, the representation should allow for easy parsing, to determine whether a
word represents a legitimate instance of the problem. Furthermore, the representation should be concise. In
particular, it would be unfair to encode the answer to the problem into the representation of an instance of
the problem; for example, for the problem of deciding whether an input graph is connected, the representa-
tion should not have an extra bit that tells whether the graph is connected. A set of integers S = {x1, ..., Xy}
is represented by listing the binary representation of each x;, with the representations of consecutive inte-
gers in S separated by a nonbinary symbol. A graph is naturally represented by giving either its adjacency
matrix or a set of adjacency lists, where the list for each vertex v specifies the vertices adjacent to v.

Whereas the solution to a decision problem is yes or no, the solution to an optimization problem is
more complicated; for example, determine the shortest path from vertex u to vertex v in an input graph
G. Nevertheless, for every optimization (minimization) problem, with objective function g, there is a
corresponding decision problem that asks whether there exists a feasible solution z such that g(z) < k,
where k is a given target value. Clearly, if there is an algorithm that solves an optimization problem,
then that algorithm can be used to solve the corresponding decision problem. Conversely, if an algorithm
solves the decision problem, then with a binary search on the range of values of g, we can determine
the optimal value. Moreover, using a decision problem as a subroutine often enables us to construct an
optimal solution; for example, if we are trying to find a shortest path, we can use a decision problem that
determines if a shortest path starting from a given vertex uses a given edge. Therefore, there is little loss of
generality in considering only decision problems, represented as language membership problems.

5.2.2 Turing Machines

This subsection and the next three give precise, formal definitions of Turing machines and their variants.
These subsections are intended for reference. For the rest of this chapter, the reader need not understand
these definitions in detail, but may generally substitute “program” or “computer” for each reference to
“Turing machine.”

A k-worktape Turing machine M consists of the following:

* A finite set of states Q, with special states g, (initial state), g4 (accept state), and qr (reject state).

* A finite alphabet X, and a special blank symbol 0 ¢ X.

* The k + 1 linear tapes, each divided into cells. Tape 0 is the input tape, and tapes 1,. .., k are the
worktapes. Each tape is infinite to the left and to the right. Each cell holds a single symbol from
¥ U {g}. By convention, the input tape is read only. Each tape has an access head, and at every
instant, each access head scans one cell (see Figure 5.1).

Tape 0
(input tape)

slofifofifofa]?

Access head T

Finite
state
control
Access head Access head
sloli]afaf? slofofofa[?
Tape 1 Tape 2

FIGURE5.1 A two-tape Turing machine.

© 2004 by Taylor & Francis Group, LLC

* A finite transition table 8, which comprises tuples of the form

r /
(6],50,51,~--,5k,61)51)~--)5k)d0)d1)~--)dk)

where g,q9" € Q, each s;,s; € ¥ U {0}, and each d; € {—1,0,+1}.

A tuple specifies a step of M: if the current state is ¢, and sg, s1,. . ., s¢ are the symbols in the
cells scanned by the access heads, then M replaces s; by s/ fori = 1,.. ., k simultaneously, changes
state to q’, and moves the head on tape i one cell to the left (d; = —1) or right (d; = +1) or not at

all (d; =0) fori =0,...,k. Note that M cannot write on tape 0, that is, M can write only on the
worktapes, not on the input tape.

* Inatuple, no s/ can be the blank symbol O. Because M may not write a blank, the worktape cells
that its access heads previously visited are nonblank.

* No tuple contains g4 or g as its first component. Thus, once M enters state g 4 or state g, it stops.

* Initially, M is in state qo, an input word in ¥£* is inscribed on contiguous cells of the input tape,
the access head on the input tape is on the leftmost symbol of the input word, and all other cells of
all tapes contain the blank symbol 0.

The Turing machine M that we have defined is nondeterministic: 8 may have several tuples with the
same combination of state g and symbols s¢, 51, . . . , Sk as the first k + 2 components, so that M may have
several possible next steps. A machine M is deterministic if for every combination of state g and symbols
50551, - - - » Sk, at most one tuple in 3 contains the combination as its first k + 2 components. A deterministic
machine always has at most one possible next step.

A configuration of a Turing machine M specifies the current state, the contents of all tapes, and the
positions of all access heads.

A computation path is a sequence of configurations Cy, Cy, ..., Cy, ..., where Cy is the initial configu-
ration of M, and each Cj, follows from C; in one step by applying the changes specified by a tuple in 8.
If no tuple is applicable to C;, then C; is terminal, and the computation path is halting. If M has no infinite
computation paths, then M always halts.

A halting computation path is accepting if the state in the last configuration C; is q4; otherwise it is
rejecting. By adding tuples to the program if needed, we can ensure that every rejecting computation ends
in state gg. This leaves the question of computation paths that do not halt. In complexity theory, we rule
this out by considering only machines whose computation paths always halt. M accepts an input word x
if there exists an accepting computation path that starts from the initial configuration in which x is on the
input tape. For nondeterministic M, it does not matter if some other computation paths end at gz. If M
is deterministic, then there is at most one halting computation path, hence at most one accepting path.

The language accepted by M, written L (M), is the set of words accepted by M. If A = L(M), and M
always halts, then M decides A.

In addition to deciding languages, deterministic Turing machines can compute functions. Designate
tape 1 to be the output tape. If M halts on input word x, then the nonblank word on tape 1 in the final
configuration is the output of M. A function f is fotal recursive if there exists a deterministic Turing
machine M that always halts such that for each input word x, the output of M is the value of f(x).

Almost all results in complexity theory are insensitive to minor variations in the underlying compu-
tational models. For example, we could have chosen Turing machines whose tapes are restricted to be
only one-way infinite or whose alphabet is restricted to {0, 1}. It is straightforward to simulate a Turing
machine as defined by one of these restricted Turing machines, one step at a time: each step of the original
machine can be simulated by O(1) steps of the restricted machine.

5.2.3 Universal Turing Machines

Chapter 6 states that there exists a universal Turing machine U, which takes as input a string (M, x) that
encodes a Turing machine M and a word x, and simulates the operation of M on x, and U accepts (M, x)
if and only if M accepts x. A theorem of Hennie and Stearns [1966] implies that the machine U can be

© 2004 by Taylor & Francis Group, LLC

constructed to have only two worktapes, such that U can simulate any ¢ steps of M in only O(tlog t) steps
of its own, using only O(1) times the worktape cells used by M. The constants implicit in these big-O
bounds may depend on M.

We can think of U with a fixed M as a machine Uy, and define L(Uy) = {x : U accepts (M, x)}.
Then L(Uy) = L(M). If M always halts, then Uy, always halts; and if M is deterministic, then Uy, is
deterministic.

5.2.4 Alternating Turing Machines

By definition, a nondeterministic Turing machine M accepts its input word x if there exists an accepting
computation path, starting from the initial configuration with x on the input tape. Let us call a configuration
C accepting if there is a computation path of M that starts in C and ends in a configuration whose state
is g o. Equivalently, a configuration C is accepting if either the state in C is g4 or there exists an accepting
configuration C’ reachable from C by one step of M. Then M accepts x if the initial configuration with
input word x is accepting.

The alternating Turing machine generalizes this notion of acceptance. In an alternating Turing machine
M, each state is labeled either existential or universal. (Do not confuse the universal state in an alternating
Turing machine with the universal Turing machine.) A nonterminal configuration C is existential (respec-
tively, universal) if the state in C is labeled existential (universal). A terminal configuration is accepting if its
state is g 4. A nonterminal existential configuration C is accepting if there exists an accepting configuration
C’ reachable from C by one step of M. A nonterminal universal configuration C is accepting if for every
configuration C’ reachable from C by one step of M, the configuration C’ is accepting. Finally, M accepts
x if the initial configuration with input word x is an accepting configuration.

A nondeterministic Turing machine is thus a special case of an alternating Turing machine in which
every state is existential.

The computation of an alternating Turing machine M alternates between existential states and universal
states. Intuitively, from an existential configuration, M guesses a step that leads toward acceptance; from a
universal configuration, M checks whether each possible next step leads toward acceptance — in a sense,
M checks all possible choices in parallel. An alternating computation captures the essence of a two-player
game: player 1 has a winning strategy if there exists a move for player 1 such that for every move by player 2,
there exists a subsequent move by player 1, etc., such that player 1 eventually wins.

5.2.5 Oracle Turing Machines

Some computational problems remain difficult even when solutions to instances of a particular, different
decision problem are available for free. When we study the complexity of a problem relative to alanguage A,
we assume that answers about membership in A have been precomputed and stored in a (possibly infinite)
table and that there is no cost to obtain an answer to a membership query: Is w in A? The language A is
called an oracle. Conceptually, an algorithm queries the oracle whether a word w is in A, and it receives
the correct answer in one step.

An oracle Turing machine is a Turing machine M with a special oracle tape and special states QUERY, YES,
and NO. The computation of the oracle Turing machine M*, with oracle language A, is the same as that
of an ordinary Turing machine, except that when M enters the QUERY state with a word w on the oracle
tape, in one step, M enters either the YES state if w € A or the NO state if w ¢ A. Furthermore, during this
step, the oracle tape is erased, so that the time for setting up each query is accounted for separately.

5.3 Resources and Complexity Classes

In this section, we define the measures of difficulty of solving computational problems. We introduce
complexity classes, which enable us to classify problems according to the difficulty of their solution.

© 2004 by Taylor & Francis Group, LLC

5.3.1 Time and Space

We measure the difficulty of a computational problem by the running time and the space (memory)
requirements of an algorithm that solves the problem. Clearly, in general, a finite algorithm cannot have
a table of all answers to infinitely many instances of the problem, although an algorithm could look up
precomputed answers to a finite number of instances; in terms of Turing machines, the finite answer table
is built into the set of states and the transition table. For these instances, the running time is negligible —
just the time needed to read the input word. Consequently, our complexity measure should consider a
whole problem, not only specific instances.

We express the complexity of a problem, in terms of the growth of the required time or space, as a
function of the length # of the input word that encodes a problem instance. We consider the worst-case
complexity, that is, for each n, the maximum time or space required among all inputs of length n.

Let M be a Turing machine that always halts. The time taken by M on input word x, denoted by
Timej;(x), is defined as follows:

* If M accepts x, then Timey(x) is the number of steps in the shortest accepting computation path
for x.

* If M rejects x, then Time,(x) is the number of steps in the longest computation path for x.

For a deterministic machine M, for every input x, there is at most one halting computation path, and its
length is Timeys(x). For a nondeterministic machine M, if x € L (M), then M can guess the correct steps
to take toward an accepting configuration, and Time,;(x) measures the length of the path on which M
always makes the best guess.

The space used by a Turing machine M on input x, denoted by Space,(x), is defined as follows. The space
used by a halting computation path is the number of nonblank worktape cells in the last configuration;
this is the number of different cells ever written by the worktape heads of M during the computation path,
since M never writes the blank symbol. Because the space occupied by the input word is not counted, a
machine can use a sublinear (0(#)) amount of space.

* If M accepts x, then Space,(x) is the minimum space used among all accepting computation paths
for x.

* If M rejects x, then Space,,(x) is the maximum space used among all computation paths for x.

The time complexity of a machine M is the function
t(n) = max{Timey(x) : |x| = n}

We assume that M reads all of its input word, and the blank symbol after the right end of the input word,
so t(n) > n + 1. The space complexity of M is the function

s(n) = max({Space,(x) : |x| = n}

Because few interesting languages can be decided by machines of sublogarithmic space complexity, we
henceforth assume that s (n) > logn.

A function f(x) is computable in polynomial time if there exists a deterministic Turing machine M of
polynomial time complexity such that for each input word x, the output of M is f(x).

5.3.2 Complexity Classes

Having defined the time complexity and space complexity of individual Turing machines, we now define
classes of languages with particular complexity bounds. These definitions will lead to definitions of P and
NP.

© 2004 by Taylor & Francis Group, LLC

Let t(n) and s (n) be numeric functions. Define the following classes of languages:

* DTIME[t(n)] is the class of languages decided by deterministic Turing machines of time comp-
lexity O(t(n)).

* NTIME[t(n)] is the class of languages decided by nondeterministic Turing machines of time
complexity O(t(n)).

* DSPACE[s(n)] is the class of languages decided by deterministic Turing machines of space
complexity O(s(n)).

* NSPACE[s(n)] is the class of languages decided by nondeterministic Turing machines of space
complexity O(s(n)).

We sometimes abbreviate DTIME[t(n)] to DTIME([¢] (and so on) when ¢ is understood to be a function,
and when no reference is made to the input length #.
The following are the canonical complexity classes:

* L = DSPACE(log n] (deterministic log space)

* NL = NSPACE([log 1] (nondeterministic log space)

* P =DTIME[n°"] = |J,., DTIME[#*] (polynomial time)

* NP = NTIME[#°V] = U_k21 NTIME[#*] (nondeterministic polynomial time)

* PSPACE = DSPACE[#°"] = Uk>1 DSPACE([n¥] (polynomial space)

* E=DTIME[2°"] = |J,., DTIM_E[k”]

* NE = NTIME[2°"] = J,., NTIME[k"]

» EXP = DTIME[2"""] = |J,., DTIME[2"] (deterministic exponential time)

* NEXP = NTIME[2"""'] = {J,., NTIME[2"'] (nondeterministic exponential time)

The space classes L and PSPACE are defined in terms of the DSPACE complexity measure. By Savitch’s
Theorem (see Theorem 5.2), the NSPACE measure with polynomial bounds also yields PSPACE.

The class P contains many familiar problems that can be solved efficiently, such as (decision prob-
lem versions of) finding shortest paths in networks, parsing for context-free languages, sorting, matrix
multiplication, and linear programming. Consequently, P has become accepted as representing the set
of computationally feasible problems. Although one could legitimately argue that a problem whose best
algorithm has time complexity @(n%°) is really infeasible, in practice, the time complexities of the vast
majority of known polynomial-time algorithms have low degrees: they run in O(n*) time or less. More-
over, P is a robust class: although defined by Turing machines, P remains the same when defined by other
models of sequential computation. For example, random access machines (RAMs) (a more realistic model
of computation defined in Chapter 6) can be used to define P because Turing machines and RAMs can
simulate each other with polynomial-time overhead.

The class NP can also be defined by means other than nondeterministic Turing machines. NP equals
the class of problems whose solutions can be verified quickly, by deterministic machines in polynomial
time. Equivalently, NP comprises those languages whose membership proofs can be checked quickly.

For example, one language in NP is the set of satisfiable Boolean formulas, called SAT. A Boolean
formula ¢ is satisfiable if there exists a way of assigning true or false to each variable such that under
this truth assignment, the value of ¢ is true. For example, the formula x A (x V y) is satisfiable, but
x A ¥ A (X Vv y) is not satisfiable. A nondeterministic Turing machine M, after checking the syntax of ¢
and counting the number # of variables, can nondeterministically write down an n-bit 0-1 string a on
its tape, and then deterministically (and easily) evaluate ¢ for the truth assignment denoted by a. The
computation path corresponding to each individual a accepts if and only if ¢(a) = true, and so M itself
accepts ¢ if and only if ¢ is satisfiable; that is, L (M) = SAT. Again, this checking of given assignments
differs significantly from trying to find an accepting assignment.

Another language in NP is the set of undirected graphs with a Hamiltonian circuit, that is, a path of edges
that visits each vertex exactly once and returns to the starting point. If a solution exists and is given, its

© 2004 by Taylor & Francis Group, LLC

correctness can be verified quickly. Finding such a circuit, however, or proving one does not exist, appears
to be computationally difficult.

The characterization of NP as the set of problems with easily verified solutions is formalized as follows:
A € NP if and only if there exist a language A" € P and a polynomial p such that for every x, x € A if
and only if there exists a y such that |y| < p(|x|) and (x, y) € A’. Here, whenever x belongs to A, y is
interpreted as a positive solution to the problem represented by x, or equivalently, as a proof that x belongs
to A. The difference between P and NP is that between solving and checking, or between finding a proof
of a mathematical theorem and testing whether a candidate proof is correct. In essence, NP represents
all sets of theorems with proofs that are short (i.e., of polynomial length) and checkable quickly (i.e., in
polynomial time), while P represents those statements that can proved or refuted quickly from scratch.

Further motivation for studying L, NL, and PSPACE comes from their relationships to P and NP.
Namely, L and NL are the largest space-bounded classes known to be contained in P, and PSPACE is the
smallest space-bounded class known to contain NP. (It is worth mentioning here that NP does not stand
for “non-polynomial time”; the class P is a subclass of NP.) Similarly, EXP is of interest primarily because
it is the smallest deterministic time class known to contain NP. The closely related class E is not known to
contain NP.

5.4 Relationships between Complexity Classes

The P versus NP question asks about the relationship between these complexity classes: Is P a proper subset
of NP, or does P = NP? Much of complexity theory focuses on the relationships between complexity
classes because these relationships have implications for the difficulty of solving computational problems.
In this section, we summarize important known relationships. We demonstrate two techniques for proving
relationships between classes: diagonalization and padding.

5.4.1 Constructibility

The most basic theorem that one should expect from complexity theory would say, “If you have more
resources, you can do more.” Unfortunately, if we are not careful with our definitions, then this claim is
false:

Theorem 5.1 (Gap Theorem) There is a computable, strictly increasing time bound t(n) such that
DTIME[t(n)] = DTIME[2>"] [Borodin, 1972].

That is, there is an empty gap between time #(#) and time doubly-exponentially greater than #(#), in
the sense that anything that can be computed in the larger time bound can already be computed in the
smaller time bound. That is, even with much more time, you can not compute more. This gap can be
made much larger than doubly-exponential; for any computable r, there is a computable time bound ¢
such that DTIME([t(n)] = DTIME([r (¢#(n))]. Exactly analogous statements hold for the NTIME, DSPACE,
and NSPACE measures.

Fortunately, the gap phenomenon cannot happen for time bounds ¢ that anyone would ever be interested
in. Indeed, the proof of the Gap Theorem proceeds by showing that one can define a time bound ¢ such
that no machine has a running time that is between ¢(n) and 22 This theorem indicates the need for
formulating only those time bounds that actually describe the complexity of some machine.

A function t(n) is time-constructible if there exists a deterministic Turing machine that halts after exactly
t(n) steps for every input of length n. A function s(n) is space-constructible if there exists a deterministic
Turing machine that uses exactly s (n) worktape cells for every input of length #n. (Most authors consider
only functions ¢(n) > n + 1 to be time-constructible, and many limit attention to s(n) > logn for space
bounds. There do exist sub-logarithmic space-constructible functions, but we prefer to avoid the tricky
theory of o(log n) space bounds.)

© 2004 by Taylor & Francis Group, LLC

For example, t(n) = n + 1 is time-constructible. Furthermore, if #;(n) and f©(n) are time-
constructible, then so are the functions t; + &, t; 1, tfz, and c¢" for every integer ¢ > 1. Consequently,
if p(n) is a polynomial, then p(n) = ©(t(n)) for some time-constructible polynomial function #(#). Sim-
ilarly, s (n) = logn is space-constructible, and if s1(n) and s,(n) are space-constructible, then so are the
functions s; +5,,5152,5;>,and ¢*! for everyinteger ¢ > 1. Many common functions are space-constructible:
for example, n log 1, n°, 2", nl.

Constructibility helps eliminate an arbitrary choice in the definition of the basic time and space classes.
For general time functions ¢, the classes DTIME[¢] and NTIME[¢] may vary depending on whether ma-
chines are required to halt within ¢ steps on all computation paths, or just on those paths that accept. If
t is time-constructible and s is space-constructible, however, then DTIME[¢], NTIME([¢], DSPACE[s],
and NSPACE[s] can be defined without loss of generality in terms of Turing machines that always
halt.

As a general rule, any function #(n) > n + 1 and any function s(n) > logn that one is interested in as
a time or space bound, is time- or space-constructible, respectively. As we have seen, little of interest can
be proved without restricting attention to constructible functions. This restriction still leaves a rich class
of resource bounds.

5.4.2 Basic Relationships

Clearly, for all time functions ¢(#) and space functions s (n), DTIME[#(n)] € NTIME[¢(n)] and DSPACE
[s(n)] € NSPACE[s(n)] because a deterministic machine is a special case of a nondeterministic machine.
Furthermore, DTIME[#(n)] € DSPACE[#(n)] and NTIME[#(n)] € NSPACE[#(n)] because at each step,
a k-tape Turing machine can write on at most k = O(1) previously unwritten cells. The next theorem
presents additional important relationships between classes.

Theorem 5.2 Let t(n) be a time-constructible function, and let s(n) be a space-constructible function,
s(n) = logn.

(a) NTIME[#(n)] € DTIME[2°00(")]
(b) NSPACE[s(n)] € DTIME[20G(m)]
(c) NTIME[¢(n)] € DSPACE[¢(n)]

)

(d) (Savitch’s Theorem) NSPACE([s(n)] € DSPACE[s(n)?] [Savitch, 1970]
As a consequence of the first part of this theorem, NP € EXP. No better general upper bound on

deterministic time is known for languages in NP, however. See Figure 5.2 for other known inclusion
relationships between canonical complexity classes.

EXPSPACE
NEXP

EXP

FIGURE 5.2 Inclusion relationships between the canonical complexity classes.

© 2004 by Taylor & Francis Group, LLC

Although we do not know whether allowing nondeterminism strictly increases the class of languages
decided in polynomial time, Savitch’s Theorem says that for space classes, nondeterminism does not help
by more than a polynomial amount.

5.4.3 Complementation

For a language A over an alphabet %, define A to be the complement of A in the set of words over X: that
is, A = X* — A. For a class of languages C, define co-C = {A : A € C}.IfC = co-C, then C is closed
under complementation.

In particular, co-NP is the class of languages that are complements of languages in NP. For the language
SAT of satisfiable Boolean formulas, SAT is essentially the set of unsatisfiable formulas, whose value is
false for every truth assignment, together with the syntactically incorrect formulas. A closely related
language in co-NP is the set of Boolean tautologies, namely, those formulas whose value is true for every
truth assignment. The question of whether NP equals co-NP comes down to whether every tautology has
a short (i.e., polynomial-sized) proof. The only obvious general way to prove a tautology ¢ in m variables
is to verify all 2" rows of the truth table for ¢, taking exponential time. Most complexity theorists believe
that there is no general way to reduce this time to polynomial, hence that NP # co-NP.

Questions about complementation bear directly on the P vs. NP question. It is easy to show that P is
closed under complementation (see the next theorem). Consequently, if NP # co-NP, then P # NP.

Theorem 5.3 (Complementation Theorems) Let t be a time-constructible function, and let s be a
space-constructible function, with s(n) > logn for all n. Then,

1. DTIME(¢] is closed under complementation.
2. DSPACE(s] is closed under complementation.
3. NSPACE([s] is closed under complementation [Immerman, 1988; Szelepcsényi, 1988].

The Complementation Theorems are used to prove the Hierarchy Theorems in the next section.

5.4.4 Hierarchy Theorems and Diagonalization

A hierarchy theorem is a theorem that says, “If you have more resources, you can compute more.” As we
saw in Section 5.4.1, this theorem is possible only if we restrict attention to constructible time and space
bounds. Next, we state hierarchy theorems for deterministic and nondeterministic time and space classes.
In the following, C denotes strict inclusion between complexity classes.

Theorem 5.4 (Hierarchy Theorems) Lett, and t, be time-constructible functions, and let s, and s, be
space-constructible functions, with s, (n),s,(n) > logn for all n.

(a) If ty(n)logt(n) = o(ta(n)), then DTIME[#;] C DTIME[#,].

(b) If ti(n+ 1) = o(t,(n)), then NTIME[#;] C NTIME([#,] [Seiferas et al., 1978].
(¢) If s1(n) = o(sy(n)), then DSPACE[s;] C DSPACE[s;].

(d) If s1(n) = o(sy(n)), then NSPACE[s;] C NSPACE][s,].

As a corollary of the Hierarchy Theorem for DTIME,
P € DTIME[#'*¢"] C DTIME[2"] € E;

hence, we have the strict inclusion P C E. Although we do not know whether P C NP, there exists a
problem in E that cannot be solved in polynomial time. Other consequences of the Hierarchy Theorems
are NE C NEXP and NL C PSPACE.

© 2004 by Taylor & Francis Group, LLC

In the Hierarchy Theorem for DTIME, the hypothesis on #; and ¢, is t; (1) log t; (1) = 0(t,(n)), instead
of t;(n) = o(t,(n)), for technical reasons related to the simulation of machines with multiple worktapes by
a single universal Turing machine with a fixed number of worktapes. Other computational models, such
as random access machines, enjoy tighter time hierarchy theorems.

All proofs of the Hierarchy Theorems use the technique of diagonalization. For example, the proof
for DTIME constructs a Turing machine M of time complexity #, that considers all machines M, M,, . ..
whose time complexity is #;; for each i, the proof finds a word x; that is accepted by M if and only if
x; ¢ L(M;), the language decided by M;. Consequently, L (M), the language decided by M, differs from
each L(M;), hence L(M) ¢ DTIME([#]. The diagonalization technique resembles the classic method used
to prove that the real numbers are uncountable, by constructing a number whose j® digit differs from
the jt digit of the j™ number on the list. To illustrate the diagonalization technique, we outline the proof
of the Hierarchy Theorem for DSPACE. In this subsection, (i, x) stands for the string 0’ 1x, and zeroes(y)
stands for the number of 0’s that a given string y starts with. Note that zeroes({i, x)) = i.

Proof (of the DSPACE Hierarchy Theorem)
We construct a deterministic Turing machine M that decides a language A such that A € DSPACE[s;] —
DSPACE[s,].

Let U be a deterministic universal Turing machine, as described in Section 5.2.3. On input x of length
n, machine M performs the following:

1. Lay out s,(n) cells on a worktape.

2. Leti = zeroes(x).

3. Simulate the universal machine U on input (7, x). Accept x if U tries to use more than s, worktape
cells. (We omit some technical details, and the way in which the constructibility of s, is used to
ensure that this process halts.)

4. If U accepts (i, x), then reject; if U rejects (i, x), then accept.

Clearly, M always halts and uses space O(s,(n)). Let A = L(M).

Suppose A € DSPACE(s; (n)]. Then there is some Turing machine M; accepting A using space at most
s1(n). Since the space used by U is O(1) times the space used by M;, there is a constant k depending only
on j (in fact, we can take k = |j|), such that U, on inputs z of the form z = (j, x), uses at most ks, (|x|)
space.

Since sy (n) = o(s2(n)), there is an ng such that ks, (n) < s,(n) for all n > ny. Let x be a string of length
greater than n such that the first j 4 1 symbols of x are 0/1. Note that the universal Turing machine U,
on input (j, x), simulates M; on input x and uses space at most ks;(n) < s,(n). Thus, when we consider
the machine M defining A, we see that on input x the simulation does not stop in step 3, but continues
on to step 4, and thus x € A if and only if U rejects (j, x). Consequently, M; does not accept A, contrary
to our assumption. Thus, A ¢ DSPACE([s;(n)]. O

Although the diagonalization technique successfully separates some pairs of complexity classes, diago-

nalization does not seem strong enough to separate P from NP. (See Theorem 5.10 below.)

5.4.5 Padding Arguments

A useful technique for establishing relationships between complexity classes is the padding argument.
Let A be a language over alphabet X, and let # be a symbol not in X. Let f be a numeric function. The
f-padded version of L is the language

A ={x#/" x € Aand n = |x|}.

© 2004 by Taylor & Francis Group, LLC

That is, each word of A’ is a word in A concatenated with f(#) consecutive # symbols. The padded version
A’ has the same information content as A, but because each word is longer, the computational complexity
of A’ is smaller.

The proof of the next theorem illustrates the use of a padding argument.

Theorem 5.5 If P = NP, then E = NE [Book, 1974].

Proof Since E C NE, we prove that NE C E.

Let A € NE be decided by a nondeterministic Turing machine M in at most #(n) = k" time for some
constant integer k. Let A’ be the #(n)-padded version of A. From M, we construct a nondeterministic
Turing machine M’ that decides A’ in linear time: M’ checks that its input has the correct format, using
the time-constructibility of #; then M’ runs M on the prefix of the input preceding the first # symbol.
Thus, A’ € NP.

If P = NP, then there is a deterministic Turing machine D’ that decides A’ in at most p’(n) time for
some polynomial p’. From D', we construct a deterministic Turing machine D that decides A, as follows.
On input x of length n, since t(n) is time-constructible, machine D constructs x# ™ whose length is
n + t(n), in O(t(n)) time. Then D runs D’ on this input word. The time complexity of D is at most
O(t(n)) 4 p'(n + t(n)) = 20, Therefore, NE C E. 0O

A similar argument shows that the E = NE question is equivalent to the question of whether NP — P
contains a subset of 1%, that is, a language over a single-letter alphabet.

5.5 Reducibility and Completeness

In this section, we discuss relationships between problems: informally, if one problem reduces to another
problem, then in a sense, the second problem is harder than the first. The hardest problems in NP are the
NP-complete problems. We define NP-completeness precisely, and we show how to prove that a problem
is NP-complete. The theory of NP-completeness, together with the many known NP-complete problems,
is perhaps the best justification for interest in the classes P and NP. All of the other canonical complexity
classes listed above have natural and important problems that are complete for them; we give some of these
as well.

5.5.1 Resource-Bounded Reducibilities

In mathematics, as in everyday life, a typical way to solve a new problem is to reduce it to a previously solved
problem. Frequently, an instance of the new problem is expressed completely in terms of an instance of
the prior problem, and the solution is then interpreted in the terms of the new problem. For example, the
maximum weighted matching problem for bipartite graphs (also called the assignment problem) reduces
to the network flow problem (see Chapter 7). This kind of reduction is called many-one reducibility, and
is defined below.

A different way to solve the new problem is to use a subroutine that solves the prior problem. For
example, we can solve an optimization problem whose solution is feasible and maximizes the value of an
objective function g by repeatedly calling a subroutine that solves the corresponding decision problem of
whether there exists a feasible solution x whose value g(x) satisfies g(x) > k. This kind of reduction is
called Turing reducibility, and is also defined below.

Let A; and A, be languages. A; is many-one reducible to A,, written A; <,, A,, if there exists a total
recursive function f such that for all x, x € A; if and only if f(x) € A,. The function f is called the
transformation function. A, is Turing reducible to A,, written A; <7 A,, if A; can be decided by a
deterministic oracle Turing machine M using A, as its oracle, that is, A} = L(M%2). (Total recursive
functions and oracle Turing machines are defined in Section 5.2). The oracle for A, models a hypothetical
efficient subroutine for A,.

© 2004 by Taylor & Francis Group, LLC

If f or M above consumes too much time or space, the reductions they compute are not helpful.
To study complexity classes defined by bounds on time and space resources, it is natural to consider
resource-bounded reducibilities. Let A; and A; be languages.

* A, is Karp reducible to A,, written A, <P A, if Ay is many-one reducible to A, via a transfor-
mation function that is computable deterministically in polynomial time.

* A is log-space reducible to A,, written A, <l,?,g Ay, if Ay is many-one reducible to A, via a

transformation function that is computable deterministically in O(logn) space.

* A, is Cook reducible to A,, written A; 51} A,, if A is Turing reducible to A, via a deterministic
oracle Turing machine of polynomial time complexity.

The term “polynomial-time reducibility” usually refers to Karp reducibility. If A; <b, A,and A, <b, A},
then A; and A, are equivalent under Karp reducibility. Equivalence under Cook reducibility is defined
similarly.

Karp and Cook reductions are useful for finding relationships between languages of high complexity,
but they are not at all useful for distinguishing between problems in P, because all problems in P are
equivalent under Karp (and hence Cook) reductions. (Here and later we ignore the special cases A} = ¢
and A; = X*, and consider them to reduce to any language.)

Log-space reducibility [Jones, 1975] is useful for complexity classes within P, such as NL, for which
Karp reducibility allows too many reductions. By definition, for every nontrivial language A (i.e., Ag # ¥
and Ay # X*) and for every A in P, necessarily A <b, A, via a transformation that simply runs a
deterministic Turing machine that decides A in polynomial time. It is not known whether log-space
reducibility is different from Karp reducibility, however; all transformations for known Karp reductions
can be computed in O(log) space. Even for decision problems, L is not known to be a proper subset of P.

Theorem 5.6 Log-space reducibility implies Karp reducibility, which implies Cook reducibility:

1. If Ay <8 A,, then A, <b, A,.
2. If Ay <h Ay, then A, <5 A,.

Theorem 5.7 Log-space reducibility, Karp reducibility, and Cook reducibility are transitive:

1. IfA] flrig Az and Az flzg A3, then A] flmog A3.
2. IfAl S% Az and Az an A3, then A1 an A3.
3. If Ay <h Ayand Ay < As, then Ay < A

The key property of Cook and Karp reductions is that they preserve polynomial-time feasibility. Suppose
A, <b, A, viaatransformation f.If M, decides A,,and M ¢ computes f, then to decide whether an input
word x isin A;, we can use My to compute f(x), and then run M, on input f(x). If the time complexities
of M, and My are bounded by polynomials t, and ¢y, respectively, then on each input x of length n = |x|,
the time taken by this method of deciding A, is at most t7(n) + t;(¢7(n)), which is also a polynomial in
n. In summary, if A, is feasible, and there is an efficient reduction from A; to A,, then A; is feasible.
Although this is a simple observation, this fact is important enough to state as a theorem (Theorem 5.8).
First, however, we need the concept of “closure.”

A class of languages C is closed under a reducibility <, if for all languages A; and A,, whenever
Ay <, Ajyand A, € C, necessarily A; € C.

Theorem 5.8

1. P is closed under log-space reducibility, Karp reducibility, and Cook reducibility.
2. NP is closed under log-space reducibility and Karp reducibility.
3. L and NL are closed under log-space reducibility.

© 2004 by Taylor & Francis Group, LLC

We shall see the importance of closure under a reducibility in conjunction with the concept of com-
pleteness, which we define in the next section.

5.5.2 Complete Languages

Let C be a class of languages that represent computational problems. A language Ay is C-hard under a
reducibility <, if for all Ain C, A <, Aj. A language A, is C-complete under <, if Aj is C-hard and
Ay € C. Informally, if A is C-hard, then A, represents a problem that is at least as difficult to solve as any
problem in C. If Ay is C-complete, then in a sense, Ay is one of the most difficult problems in C.

There is another way to view completeness. Completeness provides us with tight lower bounds on the
complexity of problems. If a language A is complete for complexity class C, then we have a lower bound
on its complexity. Namely, A is as hard as the most difficult problem in C, assuming that the complexity
of the reduction itself is small enough not to matter. The lower bound is tight because A is in C; that is,
the upper bound matches the lower bound.

In the case C = NP, the reducibility <, is usually taken to be Karp reducibility unless otherwise stated.
Thus, we say

* Alanguage A, is NP-hard if A, is NP-hard under Karp reducibility.
* A is NP-complete if Ay is NP-complete under Karp reducibility.

However, many sources take the term “NP-hard” to refer to Cook reducibility.

Many important languages are now known to be NP-complete. Before we get to them, let us discuss
some implications of the statement “Ag is NP-complete,” and also some things this statement does not
mean.

The first implication is that if there exists a deterministic Turing machine that decides A, in polynomial
time —thatis, if Ay € P—then because P is closed under Karp reducibility (Theorem 5.8 in Section 5.5.1),
it would follow that NP C P, hence P = NP. In essence, the question of whether P is the same as NP
comes down to the question of whether any particular NP-complete language is in P. Put another way,
all of the NP-complete languages stand or fall together: if one is in P, then all are in P; if one is not, then
all are not. Another implication, which follows by a similar closure argument applied to co-NP, is that if
Ay € co-NP, then NP = co-NP. It is also believed unlikely that NP = co-NP, as was noted in connection
with whether all tautologies have short proofs in Section 5.4.3.

A common misconception is that the above property of NP-complete languages is actually their defini-
tion, namely: if A € NP and A € P implies P = NP, then A is NP-complete. This “definition” is wrong if
P # NP. A theorem due to Ladner [1975] shows that P % NP if and only if there exists a language A’ in
NP — P such that A’ is not NP-complete. Thus, if P % NP, then A’ is a counterexample to the “definition.”

Another common misconception arises from a misunderstanding of the statement “If A is NP-complete,
then Ay is one of the most difficult problems in NP.” This statement is true on one level: if there is any
problem at all in NP that is not in P, then the NP-complete language A, is one such problem. However,
note that there are NP-complete problems in NTIME[#n] — and these problems are, in some sense, much
simpler than many problems in NTIME[#'*"].

5.5.3 Cook-Levin Theorem

Interest in NP-complete problems started with a theorem of Cook [1971] that was proved independently
by Levin [1973]. Recall that SAT is the language of Boolean formulas ¢(z3, . . ., z,) such that there exists a
truth assignment to the variables zy, . . ., z, that makes ¢ true.

Theorem 5.9 (Cook-Levin Theorem) SAT is NP-complete.

Proof We know already that SAT is in NP, so to prove that SAT is NP-complete, we need to take an
arbitrary given language A in NP and show that A <}, SAT. Take N to be a nondeterministic Turing

© 2004 by Taylor & Francis Group, LLC

machine that decides A in polynomial time. Then the relation R(x, y) = “y is a computation path of N
that leads it to accept x” is decidable in deterministic polynomial time depending only on n = |x|. We
can assume that the length m of possible y’s encoded as binary strings depends only on # and not on a
particular x.

It is straightforward to show that there is a polynomial p and for each 1 a Boolean circuit CX with p(n)
wires, with 1 4+ m input wires labeled x1, .. .,X,, y1, . . -, ¥,» and one output wire wy, such that C¥(x, y)
outputs 1 if and only if R(x, y) holds. (We describe circuits in more detail below, and state a theorem for
this principle as part 1. of Theorem 5.14.) Importantly, CX itself can be designed in time polynomial in
n, and by the universality of NAND, may be composed entirely of binary NAND gates. Label the wires
by variables x1,. .., %u, Y15+ s Ym> Wos Wis - - > Wp(n)—n—m—1. L hese become the variables of our Boolean
formulas. For each NAND gate ¢ with input wires # and v, and for each output wire w of g, write down
the subformula

g = UV W)AVVW)A @V TV D)

This subformula is satisfied by precisely those assignments to u,v,w that give w = u NAND v. The
conjunction ¢y of ¢y, over the polynomially many gates ¢ and their output wires w thus is satis-
fied only by assignments that set every gate’s output correctly given its inputs. Thus, for any binary
strings x and y of lengths n,m, respectively, the formula &b; = &y A wy is satisfiable by a setting of
the wire variables wo, w1, ..., Wpu)—n—m—1 if and only if Cf(x,y) = 1 — that is, if and only if R(x, y)
holds.

Now given any fixed x and taking n = |x|, the Karp reduction computes ¢; via CR and ¢, as above,
and finally outputs the Boolean formula ¢ obtained by substituting the bit-values of x into ¢,. This ¢
has variables y1,. .., ¥ Wo, Wi5 . . s W p(n)—n—m—1, and the computation of ¢ from x runs in deterministic
polynomial time. Then x € A if and only if N accepts x, if and only if there exists y such that R(x, y)
holds, if and only if there exists an assignment to the variables wo, W1, .., W p()—n—m—1 and y1,.. . Ym
that satisfies &, if and only if ¢ € SAT. This shows A <}, SAT. a

We have actually proved that SAT remains NP-complete even when the given instances ¢ are restricted
to Boolean formulas that are a conjunction of clauses, where each clause consists of (here, at most three)
disjuncted literals. Such formulas are said to be in conjunctive normal form. Theorem 5.9 is also commonly
known as Cook’s Theorem.

5.5.4 Proving NP-Completeness

After one language has been proved complete for a class, others can be proved complete by constructing
transformations. For NP, if Ay is NP-complete, then to prove that another language A, is NP-complete,
it suffices to prove that A; € NP, and to construct a polynomial-time transformation that establishes
Ao <b, A,. Since A, is NP-complete, for every language A in NP, A <b Ay, hence, by transitivity
(Theorem 5.7), A <b, A;.

Beginning with Cook [1971] and Karp [1972], hundreds of computational problems in many fields
of science and engineering have been proved to be NP-complete, almost always by reduction from a
problem that was previously known to be NP-complete. The following NP-complete decision problems
are frequently used in these reductions — the language corresponding to each problem is the set of instances
whose answers are yes.

* 3-SATISFIABILITY (3SAT)

Instance: A Boolean expression ¢ in conjunctive normal form with three literals per clause
[eg, WVXVIY)IA(XVyV2)]
Question: Ts ¢ satisfiable?

© 2004 by Taylor & Francis Group, LLC

VERTEX COVER
Instance: A graph G and an integer k.

Question: Does G have a set W of k vertices such that every edge in G is incident on a vertex
of W?

CLIQUE

Instance: A graph G and an integer k.

Question: Does G have a set K of k vertices such that every two vertices in K are adjacent in G?
HAMILTONIAN CIRCUIT

Instance: A graph G.

Question: Does G have a circuit that includes every vertex exactly once?

THREE-DIMENSIONAL MATCHING

Instance: Sets W, X, Y with [W| = |X| = |Y| =g andasubset S € W x X x Y.

Question: Is there a subset S’ C S of size q such that no two triples in S’ agree in any coordinate?
PARTITION

Instance: A set S of positive integers.

Question: Is there a subset S’ C S such that the sum of the elements of S” equals the sum of the
elements of S — §’?

Note that our ¢ in the above proof of the Cook-Levin Theorem already meets a form of the definition of
3SAT relaxed to allow “at most 3 literals per clause.” Padding ¢ with some extra variables to bring up the
number in each clause to exactly three, while preserving whether the formula is satisfiable or not, is not
difficult, and establishes the NP-completeness of 3SAT. Here is another example of an NP-completeness
proof, for the following decision problem:

* TRAVELING SALESMAN PROBLEM (TSP)

Instance: A set of m “cities” Cy,. .., Cy, with an integer distance d(i, j) between every pair of
cities C; and C}, and an integer D.

Question: Is there a tour of the cities whose total length is at most D, that is, a permutation
Ciy... ¢y of {1,...,m}, such that

d(cl)CZ) +--+ d(cm—l)cm) + d(cm)cl) = Dz

First, it is easy to see that TSP is in NP: a nondeterministic Turing machine simply guesses a tour and
checks that the total length is at most D.

Next, we construct a reduction from Hamiltonian Circuit to TSP. (The reduction goes from the known
NP-complete problem, Hamiltonian Circuit, to the new problem, TSP, not vice versa.)

From a graph G on m vertices vy, . . ., vy, define the distance function d as follows:

1 if (vi,v;) isan edgein G
a@i,j) =

m—+1 otherwise.

Set D = m. Clearly, d and D can be computed in polynomial time from G. Each vertex of G corresponds
to a city in the constructed instance of TSP.

If G has a Hamiltonian circuit, then the length of the tour that corresponds to this circuit is exactly m.
Conversely, if there is a tour whose length is at most m, then each step of the tour must have distance 1,
not m + 1. Thus, each step corresponds to an edge of G, and the corresponding sequence of vertices in G
is a Hamiltonian circuit.

© 2004 by Taylor & Francis Group, LLC

5.5.5 Complete Problems for Other Classes

Besides NP, the following canonical complexity classes have natural complete problems. The three problems
now listed are complete for their respective classes under log-space reducibility.

* NL: GRAPH ACCESSIBILITY PROBLEM
Instance: A directed graph G with nodes 1,..., N.
Question: Does G have a directed path from node 1 to node N?
* P: CIRCUIT VALUE PROBLEM
Instance: A Boolean circuit (see Section 5.9) with output node u, and an assignment I of {0, 1}
to each input node.
Question: Is 1 the value of u under I?
* PSPACE: QUANTIFIED BOOLEAN FORMULAS
Instance: A Boolean expression with all variables quantified with either V or 3 [e.g., VxVy
Az(x A (¥ V 2))].

Question: Is the expression true?

These problems can be used to prove other problems are NL-complete, P-complete, and PSPACE-complete,
respectively.

Stockmeyer and Meyer [1973] defined a natural decision problem that they proved to be complete for
NE. If this problem were in P, then by closure under Karp reducibility (Theorem 5.8), we would have
NE C P, a contradiction of the hierarchy theorems (Theorem 5.4). Therefore, this decision problem is
infeasible: it has no polynomial-time algorithm. In contrast, decision problems in NEXP — P that have
been constructed by diagonalization are artificial problems that nobody would want to solve anyway.
Although diagonalization produces unnatural problems by itself, the combination of diagonalization and
completeness shows that natural problems are intractable.

The next section points out some limitations of current diagonalization techniques.

5.6 Relativization of the P vs. NP Problem

Let A be a language. Define P# (respectively, NP#) to be the class of languages accepted in polynomial
time by deterministic (nondeterministic) oracle Turing machines with oracle A.

Proofs that use the diagonalization technique on Turing machines without oracles generally carry over
to oracle Turing machines. Thus, for instance, the proof of the DTIME hierarchy theorem also shows that,
for any oracle A, DTIMEA[#?] is properly contained in DTIMEA[#?]. This can be seen as a strength of
the diagonalization technique because it allows an argument to “relativize” to computation carried out
relative to an oracle. In fact, there are examples of lower bounds (for deterministic, “unrelativized” circuit
models) that make crucial use of the fact that the time hierarchies relativize in this sense.

But it can also be seen as a weakness of the diagonalization technique. The following important theorem
demonstrates why.

Theorem 5.10 There exist languages A and B such that P4 = NP4, and P® £ NP [Baker etal., 1975].

This shows that resolving the P vs. NP question requires techniques that do not relativize, that is, that
do not apply to oracle Turing machines too. Thus, diagonalization as we currently know it is unlikely to
succeed in separating P from NP because the diagonalization arguments we know (and in fact most of the
arguments we know) relativize. Important non-relativizing proof techniques have appeared only recently,
in connection with interactive proof systems (Section 5.11.1).

© 2004 by Taylor & Francis Group, LLC

5.7 The Polynomial Hierarchy

Let C be a class of languages. Define:

* NP¢ = UAEC NP4

e xp=TF =P
and for k > 0, define:

« 3f, = NP

* Iy = co-If.

Observe that ©F = NPP = NP because each of polynomially many queries to an oracle language in

P can be answered directly by a (nondeterministic) Turing machine in polynomial time. Consequently,
M} = co-NP. For each k, £ UTI{ € %[, N II{,,, but this inclusion is not known to be strict. See

Figure 5.3.
The classes £ and I} constitute the polynomial hierarchy. Define:

PH= =/

k>0

It is straightforward to prove that PH € PSPACE, but it is not known whether the inclusion is strict. In
fact, if PH = PSPACE, then the polynomial hierarchy collapses to some level, that is, PH = = for some
m. In the next section, we define the polynomial hierarchy in two other ways, one of which is in terms of
alternating Turing machines.

PSPACE

PH
[]
[]
[]

P P

25 IT;

Zf: NP 1'['2D =co-NP

P

FIGURE 5.3 The polynomial hierarchy.

© 2004 by Taylor & Francis Group, LLC

5.8 Alternating Complexity Classes

In this section, we define time and space complexity classes for alternating Turing machines, and we show
how these classes are related to the classes introduced already. The possible computations of an alternating
Turing machine M on an input word x can be represented by a tree T, in which the root is the initial
configuration, and the children of a nonterminal node C are the configurations reachable from C by one
step of M. For a word x in L(M), define an accepting subtree S of T, to be a subtree of T, with the
following properties:

* S is finite.
* The root of S is the initial configuration with input word x.

* If S has an existential configuration C, then S has exactly one child of C in T,; if S has a universal
configuration C, then S has all children of C in T,.

* Every leaf is a configuration whose state is the accepting state g 4.

Observe that each node in § is an accepting configuration.

We consider only alternating Turing machines that always halt. For x € L(M), define the time taken
by M to be the height of the shortest accepting tree for x, and the space to be the maximum number of
non-blank worktape cells among configurations in the accepting tree that minimizes this number. For
x & L(M), define the time to be the height of T}, and the space to be the maximum number of non-blank
worktape cells among configurations in T.

Let #(n) be a time-constructible function, and let s(#) be a space-constructible function. Define the
following complexity classes:

* ATIME[#(n)] is the class of languages decided by alternating Turing machines of time complexity
O(t(n)).

* ASPACE][s(n)] is the class of languages decided by alternating Turing machines of space complexity
O(s(n)).

Because a nondeterministic Turing machine is a special case of an alternating Turing machine, for every
t(n) and s(n), NTIME[¢] € ATIME[t] and NSPACE([s] € ASPACE[s]. The next theorem states further
relationships between computational resources used by alternating Turing machines, and resources used
by deterministic and nondeterministic Turing machines.

Theorem 5.11 (Alternation Theorems) [Chandra et al., 1981]. Let t(n) be a time-constructible
function, and let s (n) be a space-constructible function, s(n) > log n.
(a) NSPACE[s(n)] € ATIME[s(n)?]
(b) ATIME[t(n)] € DSPACE([t(n)]
(c) ASPACE[s(n)] € DTIME[20G()]
)

(d) DTIME[t(n)] € ASPACE([logt(n)]

In other words, space on deterministic and nondeterministic Turing machines is polynomially related to
time on alternating Turing machines. Space on alternating Turing machines is exponentially related to
time on deterministic Turing machines. The following corollary is immediate.

Theorem 5.12
(a) ASPACE[O(logn)] =P
(b) ATIME[#°M] = PSPACE
(c) ASPACE[n°W] = EXP

In Section 5.7, we defined the classes of the polynomial hierarchy in terms of oracles, but we can
also define them in terms of alternating Turing machines with restrictions on the number of alternations

© 2004 by Taylor & Francis Group, LLC

between existential and universal states. Define a k-alternating Turing machine to be a machine such that
on every computation path, the number of changes from an existential state to universal state, or from a
universal state to an existential state, is at most k — 1. Thus, a nondeterministic Turing machine, which
stays in existential states, is a 1-alternating Turing machine.

Theorem 5.13 [Stockmeyer, 1976; Wrathall, 1976]. For any language A, the following are equivalent:

1. Aexpt.
2. Ais decided in polynomial time by a k-alternating Turing machine that starts in an existential state.
3. There exists a language B in P and a polynomial p such that for all x, x € A if and only if

y1: Il = pUxD)Vy2 2 2l < p(>IxD) - (Qyi = Iyl = p(IxI)[(x, 15 . -5 yx) € B]
where the quantifier Q is 3 if k is odd, ¥ if k is even.

Alternating Turing machines are closely related to Boolean circuits, which are defined in the next section.

5.9 Circuit Complexity

The hardware of electronic digital computers is based on digital logic gates, connected into combinational
circuits (see Chapter 16). Here, we specify a model of computation that formalizes the combinational
circuit.

A Boolean circuit on n input variables xy, . . ., x, is a directed acyclic graph with exactly n input nodes
of indegree 0 labeled x;, . . ., x,,, and other nodes of indegree 1 or 2, called gates, labeled with the Boolean
operators in {A, V, —}. One node is designated as the output of the circuit. See Figure 5.4. Without loss of
generality, we assume that there are no extraneous nodes; there is a directed path from each node to the
output node. The indegree of a gate is also called its fan-in.

An input assignment is a function I that maps each variable x; to either 0 or 1. The value of each gate
g under I is obtained by applying the Boolean operation that labels g to the values of the immediate
predecessors of g. The function computed by the circuit is the value of the output node for each input
assignment.

A Boolean circuit computes a finite function: a function of only n binary input variables. To decide
membership in a language, we need a circuit for each input length n.

A circuit family is an infinite set of circuits C = {cy, ¢5, . ..} in which each ¢, is a Boolean circuit on n
inputs. C decides a language A C {0,1}* if for every n and every assignment ay, . . .,a, of {0,1} to the n
inputs, the value of the output node of ¢, is 1 if and only if the word a, - - - a, € A. The size complexity
of C is the function z(n) that specifies the number of nodes in each c,,. The depth complexity of C is the
function d(n) that specifies the length of the longest directed path in ¢,. Clearly, since the fan-in of each

O—0—0
\

@ output node

FIGURE 5.4 A Boolean circuit.

© 2004 by Taylor & Francis Group, LLC

gate is at most 2, d(n) > logz(n) > logn. The class of languages decided by polynomial-size circuits is
denoted by P/poly.

With a different circuit for each inputlength, a circuit family could solve an undecidable problem such as
the halting problem (see Chapter 6). For each input length, a table of all answers for machine descriptions
of that length could be encoded into the circuit. Thus, we need to restrict our circuit families. The most
natural restriction is that all circuits in a family should have a concise, uniform description, to disallow
a different answer table for each input length. Several uniformity conditions have been studied, and the
following is the most convenient.

A circuit family {cy, ¢y, ...} of size complexity z(n) is log-space uniform if there exists a deterministic
Turing machine M such that on each input of length #n, machine M produces a description of ¢,, using
space O(logz(n)).

Now we define complexity classes for uniform circuit families and relate these classes to previously
defined classes. Define the following complexity classes:

* SIZE[z(n)] is the class of languages decided by log-space uniform circuit families of size complexity
O(z(n)).

e DEPTH[d(n)] is the class of languages decided by log-space uniform circuit families of depth
complexity O(d(n)).

In our notation, SIZE[n°V] equals P, which is a proper subclass of P/poly.

Theorem 5.14

1. If t(n) is a time-constructible function, then DTIME[t(n)] € SIZE[t(n)logt(n)] [Pippenger and
Fischer, 1979].

2. SIZE[z(n)] € DTIME[z(n)°W].

3. If s(n) is a space-constructible function and s(n) > logn, then NSPACE[s(n)] € DEPTH[s(n)?]
[Borodin, 1977].

4. Ifd(n) > logn, then DEPTH[d(n)] € DSPACE[d(n)] [Borodin, 1977].

The next theorem shows that size and depth on Boolean circuits are closely related to space and time
on alternating Turing machines, provided that we permit sublinear running times for alternating Turing
machines, as follows. We augment alternating Turing machines with a random-access input capability. To
access the cell at position j on the input tape, M writes the binary representation of j on a special tape,
in log j steps, and enters a special reading state to obtain the symbol in cell j.

Theorem 5.15 [Ruzzo, 1979]. Let t(n) > logn and s(n) > logn be such that the mapping n +>
(t(n),s(n)) (in binary) is computable in time s (n).

1. Every language decided by an alternating Turing machine of simultaneous space complexity s(n)
and time complexity t(n) can be decided by a log-space uniform circuit family of simultaneous size
complexity 2°C") and depth complexity O(t(n)).

2. Ifd(n) > (logz(n))?, then every language decided by a log-space uniform circuit family of simultaneous
size complexity z(n) and depth complexity d(n) can be decided by an alternating Turing machine of
simultaneous space complexity O(logz(n)) and time complexity O(d(n)).

In a sense, the Boolean circuit family is a model of parallel computation, because all gates compute
independently, in parallel. For each k > 0, NC denotes the class of languages decided by log-space uniform
bounded fan-in circuits of polynomial size and depth O((log n)¥), and ACF is defined analogously for
unbounded fan-in circuits. In particular, AC¥ is the same as the class of languages decided by a parallel
machine model called the CRCW PRAM with polynomially many processors in parallel time O((log 1))
[Stockmeyer and Vishkin, 1984].

© 2004 by Taylor & Francis Group, LLC

5.10 Probabilistic Complexity Classes

Since the 1970s, with the development of randomized algorithms for computational problems (see
Chapter 12). Complexity theorists have placed randomized algorithms on a firm intellectual foundation.
In this section, we outline some basic concepts in this area.

A probabilistic Turingmachine M can be formalized as a nondeterministic Turing machine with exactly
two choices at each step. During a computation, M chooses each possible next step with independent
probability 1/2. Intuitively, at each step, M flips a fair coin to decide what to do next. The probability of a
computation path of steps is 1/2'. The probability that M accepts an input string x, denoted by pas(x),
is the sum of the probabilities of the accepting computation paths.

Throughout this section, we consider only machines whose time complexity ¢(#) is time-constructible.
Without loss of generality, we can assume that every computation path of such a machine halts in exactly
t steps.

Let A be a language. A probabilistic Turing machine M decides A with

forallx € A forallx ¢ A
unbounded two-sided error if pp(x) > 1/2 pm(x) <1/2
bounded two-sided error if pum(x)>1/24+€ pu(x)<l1/2—c¢€

for some positive constant €

one-sided error if pux)>1/2 pm(x) =0

Many practical and important probabilistic algorithms make one-sided errors. For example, in the
primality testing algorithm of Solovay and Strassen [1977], when the input x is a prime number, the
algorithm always says “prime”; when x is composite, the algorithm usually says “composite,” but may
occasionally say “prime.” Using the definitions above, this means that the Solovay-Strassen algorithm is
a one-sided error algorithm for the set A of composite numbers. It also is a bounded two-sided error
algorithm for A, the set of prime numbers.

These three kinds of errors suggest three complexity classes:

1. PPisthe class oflanguages decided by probabilistic Turing machines of polynomial time complexity
with unbounded two-sided error.

2. BPP is the class of languages decided by probabilistic Turing machines of polynomial time com-
plexity with bounded two-sided error.

3. RPistheclass oflanguages decided by probabilistic Turing machines of polynomial time complexity
with one-sided error.

In the literature, RP is also called R.

A probabilistic Turing machine M is a PP-machine (respectively, a BPP-machine, an RP-machine)
if M has polynomial time complexity, and M decides with two-sided error (bounded two-sided error,
one-sided error).

Through repeated Bernoulli trials, we can make the error probabilities of BPP-machines and RP-
machines arbitrarily small, as stated in the following theorem. (Among other things, this theorem implies
that RP C BPP.)

Theorem 5.16 If A € BPP, then for every polynomial q(n), there exists a BPP-machine M such that
pam(x) > 1—1/29" for every x € A, and pu(x) < 121 for every x & A.

IfL € RP, then for every polynomial q (n), there exists an RP-machine M such that pp(x) > 1 —1/21"
for every x in L.

It is important to note just how minuscule the probability of error is (provided that the coin flips are
truly random). If the probability of error is less than 1/2°0%, then it is less likely that the algorithm produces
an incorrect answer than that the computer will be struck by a meteor. An algorithm whose probability of

© 2004 by Taylor & Francis Group, LLC

PSPACE

PP PH
BPP NP
RP
I
ZPP
I
P

FIGURE 5.5 Probabilistic complexity classes.

error is 1/2°0% is essentially as good as an algorithm that makes no errors. For this reason, many computer

scientists consider BPP to be the class of practically feasible computational problems.
Next, we define a class of problems that have probabilistic algorithms that make no errors. Define:

ZPP = RP N co-RP

The letter Z in ZPP is for zero probability of error, as we now demonstrate. Suppose A € ZPP. Here is
an algorithm that checks membership in A. Let M be an RP-machine that decides A, and let M’ be an
RP-machine that decides A. For an input string x, alternately run M and M’ on x, repeatedly, until a
computation path of one machine accepts x. If M accepts x, then accept x; if M accepts x, then reject x.
This algorithm works correctly because when an RP-machine accepts its input, it does not make a mistake.
This algorithm might not terminate, but with very high probability, the algorithm terminates after a few
iterations.

The next theorem expresses some known relationships between probabilistic complexity classes and
other complexity classes, such as classes in the polynomial hierarchy. See Section 5.7 and Figure 5.5.

Theorem 5.17

(a) P C ZPP C RP C BPP C PP C PSPACE [Gill, 1977]
(b) RP C NP C PP [Gill, 1977]

(c) BPP C = NI [Lautemann, 1983; Sipser, 1983]
(d) BPP C P/poly

(&) PH < PPP [Toda, 1991]

An important recent research area called de-randomization studies whether randomized algorithms
can be converted to deterministic ones of the same or comparable efficiency. For example, if there is a
language in E that requires Boolean circuits of size 2% to decide it, then BPP = P [Impagliazzo and
Wigderson, 1997].

5.11 Interactive Models and Complexity Classes

5.11.1 Interactive Proofs

In Section 5.3.2, we characterized NP as the set of languages whose membership proofs can be checked
quickly, by a deterministic Turing machine M of polynomial time complexity. A different notion of
proof involves interaction between two parties, a prover P and a verifier V, who exchange messages.
In an interactive proof system [Goldwasser et al., 1989], the prover is an all-powerful machine, with

© 2004 by Taylor & Francis Group, LLC

unlimited computational resources, analogous to a teacher. The verifier is a computationally limited

machine, analogous to a student. Interactive proof systems are also called “Arthur-Merlin games”: the

wizard Merlin corresponds to P, and the impatient Arthur corresponds to V [Babai and Moran, 1988].
Formally, an interactive proof system comprises the following:

* Aread-only input tape on which an input string x is written.

* A verifier V, which is a probabilistic Turing machine augmented with the capability to send and
receive messages. The running time of V is bounded by a polynomial in |x|.

* A prover P, which receives messages from V and sends messages to V.

* A tape on which V writes messages to send to P, and a tape on which P writes messages to send
to V. The length of every message is bounded by a polynomial in |x|.

A computation of an interactive proof system (P, V) proceeds in rounds, as follows. For j = 1,2,...,
in round j, V performs some steps, writes a message #1;, and temporarily stops. Then P reads m; and
responds with a message 7, which V reads in round j + 1. An interactive proof system (P, V) accepts
an input string x if the probability of acceptance by V satisfies py(x) > 1/2.

In an interactive proof system, a prover can convince the verifier about the truth of a statement without
exhibiting an entire proof, as the following example illustrates.

Consider the graph non-isomorphism problem: the input consists of two graphs G and H, and the
decision is yes if and only if G is not isomorphic to H. Although there is a short proof that two graphs
are isomorphic (namely: the proof consists of the isomorphism mapping G onto H), nobody has found
a general way of proving that two graphs are not isomorphic that is significantly shorter than listing all »!
permutations and showing that each fails to be an isomorphism. (That is, the graph non-isomorphism
problem is in co-NP, but is not known to be in NP.) In contrast, the verifier V in an interactive proof
system is able to take statistical evidence into account, and determine “beyond all reasonable doubt” that
two graphs are non-isomorphic, using the following protocol.

In each round, V randomly chooses either G or H with equal probability; if V chooses G, then V
computes a random permutation G’ of G, presents G’ to P, and asks P whether G’ came from G or from
H (and similarly if V chooses H). If P gave an erroneous answer on the first round, and G is isomorphic
to H, then after k subsequent rounds, the probability that P answers all the subsequent queries correctly
is 1/2F. (To see this, it is important to understand that the prover P does not see the coins that V flips in
making its random choices; P sees only the graphs G’ and H’ that V' sends as messages.) V accepts the
interaction with P as “proof” that G and H are non-isomorphic if P is able to pick the correct graph for
100 consecutive rounds. Note that V has ample grounds to accept this as a convincing demonstration: if
the graphs are indeed isomorphic, the prover P would have to have an incredible streak of luck to fool V.

Itisimportant to comment that de-randomization techniques applied to these proof systems have shown
that under plausible hardness assumptions, proofs of non-isomorphism of sub-exponential length (or even
polynomial length) do exist [Klivans and van Melkebeek, 2002]. Thus, many complexity theoreticians now
conjecture that the graph isomorphism problem lies in NP N co-NP.

The complexity class IP comprises the languages A for which there exists a verifier V and a positive €
such that

* There exists a prover P such that for all x in A, the interactive proof system (P, V) accepts x with
probability greater than 1/2 + €; and

* For every prover P and every x ¢ A, the interactive proof system (P, V') rejects x with probability
greater than 1/2 + €.

By substituting random choices for existential choices in the proof that ATIME(t) € DSPACE(¢)
(Theorem 5.11), it is straightforward to show that IP € PSPACE. It was originally believed likely that
IP was a small subclass of PSPACE. Evidence supporting this belief was the construction of an oracle
language B for which co-NPZ — IPB £ ¢ [Fortnow and Sipser, 1988], so that IP? is strictly included in
PSPACE®. Using a proof technique that does not relativize, however, Shamir [1992] proved that, in fact,
IP and PSPACE are the same class.

© 2004 by Taylor & Francis Group, LLC

Theorem 5.18 |IP = PSPACE. [Shamir, 1992].

If NP is a proper subset of PSPACE, as is widely believed, then Theorem 5.18 says that interactive proof
systems can decide a larger class of languages than NP.

5.11.2 Probabilistically Checkable Proofs

In an interactive proof system, the verifier does not need a complete conventional proof to become
convinced about the membership of a word in a language, but uses random choices to query parts of a
proof that the prover may know. This interpretation inspired another notion of “proof”: a proof consists
of a (potentially) large amount of information that the verifier need only inspect in a few places in order
to become convinced. The following definition makes this idea more precise.

A language A has a probabilistically checkable proof if there exists an oracle BPP-machine M such
that:

* Forall x € A, there exists an oracle language B, such that M®x accepts x with probability 1.

* Forall x ¢ A, and for every language B, machine M? accepts x with probability strictly less than
1/2.

Intuitively, the oracle language B, represents a proof of membership of x in A. Notice that B, can be
finite since the length of each possible query during a computation of M5+ on x is bounded by the running
time of M. The oracle language takes the role of the prover in an interactive proof system — but in contrast
to an interactive proof system, the prover cannot change strategy adaptively in response to the questions
that the verifier poses. This change results in a potentially stronger system, since a machine M that has
bounded error probability relative to all languages B might not have bounded error probability relative to
some adaptive prover. Although this change to the proof system framework may seem modest, it leads to
a characterization of a class that seems to be much larger than PSPACE.

Theorem 5.19 A has a probabilistically checkable proof if and only if A € NEXP [Babai et al., 1991].

Although the notion of probabilistically checkable proofs seems to lead us away from feasible complexity
classes, by considering natural restrictions on how the proofis accessed, we can obtain important insights
into familiar complexity classes.

Let PCP[r(n),q(n)] denote the class of languages with probabilistically checkable proofs in which the
probabilistic oracle Turing machine M makes O[r(n)] random binary choices, and queries its oracle
O[q(n)] times. (For this definition, we assume that M has either one or two choices for each step.) It
follows from the definitions that BPP = PCP(n°™",0), and NP = PCP(0,#°M).

Theorem 5.20 (The PCP Theorem) NP = PCP[@logn,#(1)] [Arora et al., 1998].
Theorem 5.20 asserts that for every language A in NP, a proof that x € A can be encoded so that the verifier

can be convinced of the correctness of the proof (or detect an incorrect proof) by using only O(logn)
random choices, and inspecting only a constant number of bits of the proof.

5.12 Kolmogorov Complexity

Until now, we have considered only dynamic complexity measures, namely, the time and space used
by Turing machines. Kolmogorov complexity is a static complexity measure that captures the difficulty
of describing a string. For example, the string consisting of three million zeroes can be described with
fewer than three million symbols (as in this sentence). In contrast, for a string consisting of three million
randomly generated bits, with high probability there is no shorter description than the string itself.

© 2004 by Taylor & Francis Group, LLC

Let U be a universal Turing machine (see Section 5.2.3). Let A denote the empty string. The Kolmogorov
complexity of a binary string y with respect to U, denoted by K (y), is the length of the shortest binary
string i such that on input (i, \), machine U outputs y. In essence, i is a description of y, for it tells U how
to generate y.

The next theorem states that different choices for the universal Turing machine affect the definition of
Kolmogorov complexity in only a small way.

Theorem 5.21 (Invariance Theorem) There exists a universal Turing machine U such that for every
universal Turing machine U’, there is a constant ¢ such that for all y, Ky(y) < Ky (y) +c.

Henceforth, let K be defined by the universal Turing machine of Theorem 5.21. For every integer n and
every binary string y of length #, because y can be described by giving itself explicitly, K (y) < n + ¢’ for
a constant ¢’. Call y incompressible if K(y) > n. Since there are 2" binary strings of length n and only
2" — 1 possible shorter descriptions, there exists an incompressible string for every length n.

Kolmogorov complexity gives a precise mathematical meaning to the intuitive notion of “randomness.”
If someone flips a coin 50 times and it comes up “heads” each time, then intuitively, the sequence of flips is
not random — although from the standpoint of probability theory, the all-heads sequence is precisely as
likely as any other sequence. Probability theory does not provide the tools for calling one sequence “more
random” than another; Kolmogorov complexity theory does.

Kolmogorov complexity provides a useful framework for presenting combinatorial arguments. For
example, when one wants to prove that an object with some property P exists, then it is sufficient to
show that any object that does not have property P has a short description; thus, any incompressible (or
“random”) object must have property P. This sort of argument has been useful in proving lower bounds
in complexity theory.

5.13 Research Issues and Summary

The core research questions in complexity theory are expressed in terms of separating complexity classes:

* Is L different from NL?
* s P different from RP or BPP?
* [Is P different from NP?
* Is NP different from PSPACE?

Motivated by these questions, much current research is devoted to efforts to understand the power of
nondeterminism, randomization, and interaction. In these studies, researchers have gone well beyond the
theory presented in this chapter:

* Beyond Turing machines and Boolean circuits, to restricted and specialized models in which non-
trivial lower bounds on complexity can be proved

* Beyond deterministic reducibilities, to nondeterministic and probabilistic reducibilities, and refined
versions of the reducibilities considered here

* Beyond worst-case complexity, to average-case complexity

Recent research in complexity theory has had direct applications to other areas of computer science and
mathematics. Probabilistically checkable proofs were used to show that obtaining approximate solutions
to some optimization problems is as difficult as solving them exactly. Complexity theory has provided new
tools for studying questions in finite model theory, a branch of mathematical logic. Fundamental questions
in complexity theoryare intimately linked to practical questions about the use of cryptography for computer
security, such as the existence of one-way functions and the strength of public key cryptosystems.

This last point illustrates the urgent practical need for progress in computational complexity theory.
Many popular cryptographic systems in current use are based on unproven assumptions about the difficulty

© 2004 by Taylor & Francis Group, LLC

of computing certain functions (such as the factoring and discrete logarithm problems). All of these systems
are thus based on wishful thinking and conjecture. Research is needed to resolve these open questions and
replace conjecture with mathematical certainty.

Acknowledgments

Donna Brown, Bevan Das, Raymond Greenlaw, Lane Hemaspaandra, John Jozwiak, Sung-il Pae, Leonard
Pitt, Michael Roman, and Martin Tompa read earlier versions of this chapter and suggested numerous
helpful improvements. Karen Walny checked the references.

Eric W. Allender was supported by the National Science Foundation under Grant CCR-0104823. Michael
C. Loui was supported by the National Science Foundation under Grant SES-0138309. Kenneth W. Regan
was supported by the National Science Foundation under Grant CCR-9821040.

Defining Terms

Complexity class: A set of languages that are decided within a particular resource bound. For exam-
ple, NTIME(n? log n) is the set of languages decided by nondeterministic Turing machines within
O(n*logn) time.

Constructibility: A function f(n) is time (respectively, space) constructible if there exists a deterministic
Turing machine that halts after exactly f(n) steps (after using exactly f (n) worktape cells) for every
input of length n.

Diagonalization: A technique for constructing a language A that differs from every L (M;) for a list of
machines M;, M,

NP-complete: A language A, is NP-complete if Ay € NP and A <h, A, for every A in NP; that is, for
every A in NP, there exists a function f computable in polynomial time such that for every x, x € A
ifand only if f(x) € Ay.

Oracle: An oracleisalanguage A to which a machine presents queries of the form “Is w in A” and receives
each correct answer in one step.

Padding: A technique for establishing relationships between complexity classes that uses padded versions
of languages, in which each word is padded out with multiple occurrences of a new symbol — the
word x is replaced by the word x#/(*!) for a numeric function f — in order to artificially reduce
the complexity of the language.

Reduction: A language A reduces to a language B if a machine that decides B can be used to decide A
efficiently.

Time and space complexity: The time (respectively, space) complexity of a deterministic Turing machine
M is the maximum number of steps taken (nonblank cells used) by M among all input words of
length n.

Turing machine: A Turing machine M isamodel of computation with a read-only input tape and multiple
worktapes. At each step, M reads the tape cells on which its access heads are located, and depending
on its current state and the symbols in those cells, M changes state, writes new symbols on the
worktape cells, and moves each access head one cell left or right or not at all.

References

Allender, E., Loui, M.C., and Regan, K.W. 1999. Chapter 27: Complexity classes, Chapter 28: Reducibility
and completeness, Chapter 29: Other complexity classes and measures. In Algorithms and Theory of
Computation Handbook, Ed. M. J. Atallah, CRC Press, Boca Raton, FL.

Arora, S., Lund, C., Motwani, R., Sudan, M., and Szegedy, M. 1998. Proof verification and hardness of
approximation problems. J. ACM, 45(3):501-555.

Babai, L. and Moran, S. 1988. Arthur-Merlin games: a randomized proof system, and a hierarchy of
complexity classes. J. Comput. Sys. Sci., 36(2):254-276.

© 2004 by Taylor & Francis Group, LLC

Babai, L., Fortnow, L., and Lund, C. 1991. Nondeterministic exponential time has two-prover interactive
protocols. Computational Complexity, 1:3—40.

Baker, T., Gill, J., and Solovay, R. 1975. Relativizations of the P = NP? question. SIAM J. Comput., 4(4):
431-442.

Balcazar, J.L., Diaz, J., and Gabarrd, J. 1990. Structural Complexity II. Springer-Verlag, Berlin.

Balcazar, J.L., Diaz, J., and Gabarr0, J. 1995. Structural Complexity I. 2nd ed. Springer-Verlag, Berlin.

Book, R.V. 1974. Comparing complexity classes. J. Comp. Sys. Sci., 9(2):213-229.

Borodin, A. 1972. Computational complexity and the existence of complexity gaps. J. Assn. Comp. Mach.,
19(1):158-174.

Borodin, A. 1977. On relating time and space to size and depth. SIAM J. Comput., 6(4):733-744.

Bovet, D.P. and Crescenzi, P. 1994. Introduction to the Theory of Complexity. Prentice Hall International
Ltd; Hertfordshire, U.K.

Chandra, A K., Kozen, D.C., and Stockmeyer, L.J. 1981. Alternation. J. Assn. Comp. Mach., 28(1):114-133.

Cook, S.A. 1971. The complexity of theorem-proving procedures. In Proc. 3rd Annu. ACM Symp. Theory
Comput., pp. 151-158. Shaker Heights, OH.

Du, D-Z. and Ko, K.-1. 2000. Theory of Computational Complexity. Wiley, New York.

Fortnow, L. and Sipser, M. 1988. Are there interactive protocols for co-NP languages? Inform. Process. Lett.,
28(5):249-251.

Garey, M.R. and Johnson, D.S. 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness.
W.H. Freeman, San Francisco.

Gill, J. 1977. Computational complexity of probabilistic Turing machines. SIAM J. Comput., 6(4):675—695.

Goldwasser, S., Micali, S., and Rackoff, C. 1989. The knowledge complexity of interactive proof systems.
SIAM J. Comput., 18(1):186-208.

Hartmanis, J., Ed. 1989. Computational Complexity Theory. American Mathematical Society, Provi-
dence, RL

Hartmanis, J. 1994. On computational complexity and the nature of computer science. Commun. ACM,
37(10):37—-43.

Hartmanis, J. and Stearns, R.E. 1965. On the computational complexity of algorithms. Trans. Amer. Math.
Soc., 117:285-306.

Hemaspaandra, L.A. and Ogihara, M. 2002. The Complexity Theory Companion. Springer, Berlin.

Hemaspaandra, L.A. and Selman, A.L., Eds. 1997. Complexity Theory Retrospective II. Springer, New
York.

Hennie, F and Stearns, R.A. 1966. Two—way simulation of multitape Turing machines. J. Assn. Comp.
Mach., 13(4):533-546.

Immerman, N. 1988. Nondeterministic space is closed under complementation. SIAM J. Comput.,
17(5):935-938.

Impagliazzo, R. and Wigderson, A. 1997. P = BPP if E requires exponential circuits: Derandomizing the
XOR lemma. Proc. 29th Annu. ACM Symp. Theory Comput., ACM Press, pp. 220-229. El Paso, TX.

Jones, N.D. 1975. Space-bounded reducibility among combinatorial problems. J. Comp. Sys. Sci., 11(1):68—
85. Corrigendum J. Comp. Sys. Sci., 15(2):241, 1977.

Karp, R.M. 1972. Reducibility among combinatorial problems. In Complexity of Computer Computations.
R.E. Miller and]J.W. Thatcher, Eds., pp. 85-103. Plenum Press, New York.

Klivans, A.R. and van Melkebeek, D. 2002. Graph nonisomorphism has subexponential size proofs unless
the polynomial-time hierarchy collapses. SIAM J. Comput., 31(5):1501-1526.

Ladner, R.E. 1975. On the structure of polynomial-time reducibility. J. Assn. Comp. Mach., 22(1):155-171.

Lautemann, C. 1983. BPP and the polynomial hierarchy. Inf. Proc. Lett., 17(4):215-217.

Levin, L. 1973. Universal search problems. Problems of Information Transmission, 9(3):265-266 (in
Russian).

Li, M. and Vitanyi, PM.B. 1997. An Introduction to Kolmogorov Complexity and Its Applications. 2nd ed.
Springer-Verlag, New York.

Papadimitriou, C.H. 1994. Computational Complexity. Addison-Wesley, Reading, MA.

© 2004 by Taylor & Francis Group, LLC

Pippenger, N. and Fischer, M. 1979. Relations among complexity measures. J. Assn. Comp. Mach.,
26(2):361-381.

Ruzzo, W.L. 1981. On uniform circuit complexity. J. Comp. Sys. Sci., 22(3):365-383.

Savitch, W.J. 1970. Relationship between nondeterministic and deterministic tape complexities. J. Comp.
Sys. Sci., 4(2):177-192.

Seiferas, J.I., Fischer, M.J., and Meyer, A.R. 1978. Separating nondeterministic time complexity classes.
J. Assn. Comp. Mach., 25(1):146-167.

Shamir, A. 1992. IP = PSPACE. J. ACM 39(4):869-877.

Sipser, M. 1983. Borel sets and circuit complexity. In Proc. 15th Annual ACM Symposium on the Theory of
Computing, pp. 61-69.

Sipser, M. 1992. The history and status of the P versus NP question. In Proc. 24th Annu. ACM Symp. Theory
Comput., ACM Press, pp. 603—618. Victoria, B.C., Canada.

Solovay, R. and Strassen, V. 1977. A fast Monte-Carlo test for primality. SIAM J. Comput., 6(1):84-85.

Stearns, R.E. 1990. Juris Hartmanis: the beginnings of computational complexity. In Complexity Theory
Retrospective. A.L. Selman, Ed., pp. 5-18, Springer-Verlag, New York.

Stockmeyer, L.J. 1976. The polynomial time hierarchy. Theor. Comp. Sci., 3(1):1-22.

Stockmeyer, L.J. 1987. Classifying the computational complexity of problems. J. Symb. Logic, 52:1-43.

Stockmeyer, L.J. and Chandra, A.K. 1979. Intrinsically difficult problems. Sci. Am., 240(5):140-159.

Stockmeyer, L.J. and Meyer, A.R. 1973. Word problems requiring exponential time: preliminary report. In
Proc. 5th Annu. ACM Symp. Theory Comput., ACM Press, pp. 1-9. Austin, TX.

Stockmeyer, L.J. and Vishkin, U. 1984. Simulation of parallel random access machines by circuits. SIAM
J. Comput., 13(2):409—422.

Szelepcsényi, R. 1988. The method of forced enumeration for nondeterministic automata. Acta Informatica,
26(3):279-284.

Toda, S. 1991. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20(5):865-877.

van Leeuwen, J. 1990. Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.
Elsevier Science, Amsterdam, and M.I.T. Press, Cambridge, MA.

Wagner, K. and Wechsung, G. 1986. Computational Complexity. D. Reidel, Dordrecht, The Netherlands.

Wrathall, C. 1976. Complete sets and the polynomial-time hierarchy. Theor. Comp. Sci., 3(1):23-33.

Further Information

This chapter is a short version of three chapters written by the same authors for the Algorithms and Theory
of Computation Handbook [Allender et al., 1999].

The formal theoretical study of computational complexity began with the paper of Hartmanis and
Stearns [1965], who introduced the basic concepts and proved the first results. For historical perspectives
on complexity theory, see Hartmanis [1994], Sipser [1992], and Stearns [1990].

Contemporary textbooks on complexity theory are by Balcdzar et al. [1990, 1995], Bovet and Crescenzi
[1994], Du and Ko [2000], Hemaspaandra and Ogihara [2002], and Papadimitriou [1994]. Wagner and
Wechsung [1986] is an exhaustive survey of complexity theory that covers work published before 1986.
Another perspective of some of the issues covered in this chapter can be found in the survey by Stockmeyer
[1987].

A good general reference is the Handbook of Theoretical Computer Science [van Leeuwen, 1990], Vol-
ume A. The following chapters in that Handbook are particularly relevant: “Machine Models and Simu-
lations,” by P. van Emde Boas, pp. 1-66; “A Catalog of Complexity Classes,” by D.S. Johnson, pp. 67-161;
“Machine-Independent Complexity Theory,” by J.I. Seiferas, pp. 163-186; “Kolmogorov Complexity and
its Applications,” by M. Li and P.M.B. Vitanyi, pp. 187-254; and “The Complexity of Finite Functions,” by
R.B. Boppana and M. Sipser, pp. 757-804, which covers circuit complexity.

A collection of articles edited by Hartmanis [1989] includes an overview of complexity theory, and
chapters on sparse complete languages, on relativizations, on interactive proof systems, and on applications
of complexity theory to cryptography. A collection edited by Hemaspaandra and Selman [1997] includes
chapters on quantum and biological computing, on proof systems, and on average case complexity.

© 2004 by Taylor & Francis Group, LLC

For specific topics in complexity theory, the following references are helpful. Garey and Johnson [1979]
explain NP-completeness thoroughly, with examples of NP-completeness proofs, and a collection of
hundreds of NP-complete problems. Li and Vitanyi [1997] provide a comprehensive, scholarly treatment
of Kolmogorov complexity, with many applications.

Surveys and lecture notes on complexity theory that can be obtained via the Web are maintained by
A. Czumaj and M. Kutylowski at:

http://www.uni-paderborn.de/fachbereich/AG/agmadh/WWW/english/scripts.html

As usual with the Web, such links are subject to change. Two good stem pages to begin searches are the site
for SIGACT (the ACM Special Interest Group on Algorithms and Computation Theory) and the site for
the annual IEEE Conference on Computational Complexity:

http://sigact.acm.org/
http://www.computationalcomplexity.org/

The former site has a pointer to a “Virtual Address Book” that indexes the personal Web pages of over 1000
computer scientists, including all three authors of this chapter. Many of these pages have downloadable
papers and links to further research resources. The latter site includes a pointer to the Electronic Colloquium
on Computational Complexity maintained at the University of Trier, Germany, which includes downloadable
prominent research papers in the field, often with updates and revisions.

Research papers on complexity theory are presented at several annual conferences, including the an-
nual ACM Symposium on Theory of Computing; the annual International Colloquium on Automata,
Languages, and Programming, sponsored by the European Association for Theoretical Computer Sci-
ence (EATCS); and the annual Symposium on Foundations of Computer Science, sponsored by the IEEE.
The annual Conference on Computational Complexity (formerly Structure in Complexity Theory), also
sponsored by the IEEE, is entirely devoted to complexity theory. Research articles on complexity theory
regularly appear in the following journals, among others: Chicago Journal on Theoretical Computer Sci-
ence, Computational Complexity, Information and Computation, Journal of the ACM, Journal of Computer
and System Sciences, SIAM Journal on Computing, Theoretical Computer Science, and Theory of Computing
Systems (formerly Mathematical Systems Theory). Each issue of ACM SIGACT News and Bulletin of the
EATCS contains a column on complexity theory.

© 2004 by Taylor & Francis Group, LLC

http://www.uni-paderborn.de/fachbereich/AG/agmadh/WWW/english/scripts.html
http://sigact.acm.org/
http://www.computationalcomplexity.org/

Formal Models and
Computability

6.1 Introduction
6.2 Computability and a Universal Algorithm

Some Computational Problems * A Universal Algorithm

6.3 Undecidability

Tao Jiang Diagonalization and Self-Reference * Reductions and More
University of California Undecidable Problems
Ming Li 6.4 Formal Languages and Grammars

Representation of Languages * Hierarchy of Grammars
* Context-Free Grammars and Parsing

Bala Ravikumar 6.5 Computational Models

University of Rhode Island Finite Automata ¢ Turing Machines

University of Waterloo

6.1 Introduction

The concept of algorithms is perhaps almost as old as human civilization. The famous Euclid’s algorithm
is more than 2000 years old. Angle trisection, solving diophantine equations, and finding polynomial roots
in terms of radicals of coefficients are some well-known examples of algorithmic questions. However, until
the 1930s the notion of algorithms was used informally (or rigorously but in a limited context). It was
a major triumph of logicians and mathematicians of this century to offer a rigorous definition of this
fundamental concept. The revolution that resulted in this triumph was a collective achievement of many
mathematicians, notably Church, Godel, Kleene, Post, and Turing. Of particular interest is a machine
model proposed by Turing in 1936, which has come to be known as a Turing machine [Turing 1936].

This particular achievement had numerous significant consequences. It led to the concept of a general-
purpose computer or universal computation, a revolutionary idea originally anticipated by Babbage in the
1800s. It is widely acknowledged that the development of a universal Turing machine was prophetic of the
modern all-purpose digital computer and played a key role in the thinking of pioneers in the development
of modern computers such as von Neumann [Davis 1980]. From a mathematical point of view, however, a
more interesting consequence was that it was now possible to show the nonexistence of algorithms, hitherto
impossible due to their elusive nature. In addition, many apparently different definitions of an algorithm
proposed by different researchers in different continents turned out to be equivalent (in a precise technical
sense, explained later). This equivalence led to the widely held hypothesis known as the Church—Turing
thesis that mechanical solvability is the same as solvability on a Turing machine.

Formal languages are closely related to algorithms. They were introduced as a way to convey mathe-
matical proofs without errors. Although the concept of a formal language dates back at least to the time of
Leibniz, a systematic study of them did not begin until the beginning of this century. It became a vigorous
field of study when Chomsky formulated simple grammatical rules to describe the syntax of a language

© 2004 by Taylor & Francis Group, LLC

[Chomsky 1956]. Grammars and formal languages entered into computability theory when Chomsky
and others found ways to use them to classify algorithms.

The main theme of this chapter is about formal models, which include Turing machines (and their
variants) as well as grammars. In fact, the two concepts are intimately related. Formal computational
models are aimed at providing a framework for computational problem solving, much as electromagnetic
theory provides a framework for problems in electrical engineering. Thus, formal models guide the way to
build computers and the way to program them. At the same time, new models are motivated by advances in
the technology of computing machines. In this chapter, we will discuss only the most basic computational
models and use these models to classify problems into some fundamental classes. In doing so, we hope to
provide the reader with a conceptual basis with which to read other chapters in this Handbook.

6.2 Computability and a Universal Algorithm

Turing’s notion of mechanical computation was based on identifying the basic steps of such computations.
He reasoned that an operation such as multiplication is not primitive because it can be divided into more
basic steps such as digit-by-digit multiplication, shifting, and adding. Addition itself can be expressed in
terms of more basic steps such as add the lowest digits, compute, carry, and move to the next digit, etc.
Turing thus reasoned that the most basic features of mechanical computation are the abilities to read and
write on a storage medium (which he chose to be a linear tape divided into cells or squares) and to make
some simple logical decisions. He also restricted each tape cell to hold only one among a finite number
of symbols (which we call the tape alphabet).* The decision step enables the computer to control the
sequence of actions. To make things simple, Turing restricted the next action to be performed on a cell
neighboring the one on which the current action occurred. He also introduced an instruction that told
the computer to stop. In summary, Turing proposed a model to characterize mechanical computation as
being carried out as a sequence of instructions of the form: write a symbol (such as 0 or 1) on the tape
cell, move to the next cell, observe the symbol currently scanned and choose the next step accordingly, or
stop.
These operations define a language we call the GOTO language.** Its instructions are

PRINT i (i is a tape symbol)

GO RIGHT

GO LEFT

GO TO STEP j IF i IS SCANNED
STOP

A program in this language is a sequence of instructions (written one per line) numbered 1 — k. To run a
program written in this language, we should provide the input. We will assume that the input is a string of
symbols from a finite input alphabet (which is a subset of the tape alphabet), which is stored on the tape
before the computation begins. How much memory should we allow the computer to use? Although we do
not want to place any bounds on it, allowing an infinite tape is not realistic. This problem is circumvented
by allowing expandable memory. In the beginning, the tape containing the input defines its boundary.
When the machine moves beyond the current boundary, a new memory cell will be attached with a special
symbol B (blank) written on it. Finally, we define the result of computation as the contents of the tape
when the computer reaches the STOP instruction.

We will present an example program written in the GOTO language. This program accomplishes the
simple task of doubling the number of 1s (Figure 6.1). More precisely, on the input containing k 1s, the

*This bold step of using a discrete model was perhaps the harbinger of the digital revolution that was soon to follow.
**Turing’s original formulation is closer to our presentation in Section 6.5. But the GOTO language presents an
equivalent model.

© 2004 by Taylor & Francis Group, LLC

PRINT 0

GO LEFT

GO TO STEP 2 IF 1 IS SCANNED
PRINT 1

GO RIGHT

GO TO STEP 5 IF 1 IS SCANNED
PRINT 1

GO RIGHT

GO TO STEP 1 IF 1 IS SCANNED
STOP

O O 00NNV R WN =

—

FIGURE 6.1 The doubling program in the GOTO language.

program produces 2k 1s. Informally, the program achieves its goal as follows. When it reads a 1, it changes
the 1 to 0, moves left looking for a new cell, writes a 1 in the cell, returns to the starting cell and rewrites as
1, and repeats this step for each 1. Note the way the GOTO instructions are used for repetition. This feature
is the most important aspect of programming and can be found in all of the imperative style programming
languages.

The simplicity of the GOTO language is rather deceptive. There is strong reason to believe that it is
powerful enough that any mechanical computation can be expressed by a suitable program in the GOTO
language. Note also that the programs written in the GOTO language may not always halt, that is, on
certain inputs, the program may never reach the STOP instruction. In this case, we say that the output is
undefined.

We can now give a precise definition of what an algorithm is. An algorithm is any program written in
the GOTO language with the additional property that it halts on all inputs. Such programs will be called
halting programs. Throughout this chapter, we will be interested mainly in computational problems of a
special kind called decision problems that have a yes/no answer. We will modify our language slightly when
dealing with decision problems. We will augment our instruction set to include ACCEPT and REJECT
(and omit STOP). When the ACCEPT (REJECT) instruction is reached, the machine will output yes or 1
(no or 0) and halt.

6.2.1 Some Computational Problems

We will temporarily shift our focus from the tool for problem solving (the computer) to the problems
themselves. Throughout this chapter, a computational problem refers to an input/output relationship. For
example, consider the problem of squaring an integer input. This problem assigns to each integer (such
as 22) its square (in this case 484). In technical terms, this input/output relationship defines a function.
Therefore, solving a computational problem is the same as computing the function defined by the problem.
When we say that an algorithm (or a program) solves a problem, what we mean is that, for all inputs,
the program halts and produces the correct output. We will allow inputs of arbitrary size and place no
restrictions. A reader with primary interest in software applications is apt to question the validity (or
even the meaningfulness) of allowing inputs of arbitrary size because it makes the set of all possible inputs
infinite, and thus unrealistic, in real-world programming. But there are no really good alternatives. Any
finite bound is artificial and is likely to become obsolete as the technology and our requirements change.
Also, in practice, we do not know how to take advantage of restrictions on the size of the inputs. (See
the discussion about nonuniform models in Section 6.5.) Problems (functions) that can be solved by an
algorithm (or a halting GOTO program) are called computable.

As already remarked, we are interested mainly in decision problems. A decision problem is said to be
decidable if there is a halting GOTO program that solves it correctly on all inputs. An important class of
problems called partially decidable decision problems can be defined by relaxing our requirement a little
bit; a decision problem is partially decidable if there is a GOTO program that halts and outputs 1 on all
inputs for which the output should be 1 and either halts and outputs 0 or loops forever on the other inputs.

© 2004 by Taylor & Francis Group, LLC

T
S
r

(a) (b)

FIGURE 6.2 An example of tiling.

This means that the program may never give a wrong answer but is not required to halt on negative inputs
(i.e., inputs with 0 as output).

We now list some problems that are fundamental either because of their inherent importance or because
of their historical roles in the development of computation theory:

Problem 1 (halting problem). The input to this problem is a program P in the GOTO language and a
binary string x. The expected output is 1 (or yes) if the program P halts when run on the input x,
0 (or no) otherwise.

Problem 2 (universal computation problem). A related problem takes as input a program P and an
input x and produces as output what (if any) P would produce on input x. (Note that this is a
decision problem if P is restricted to a yes/no program.)

Problem 3 (string compression). For a string x, we want to find the shortest program in the GOTO
language that when started with the empty tape (i.e., tape containing one B symbol) halts and
prints x. Here shortest means the total number of symbols in the program is as small as possible.

Problem 4 (tiling). A tile* is a square card of unit size (i.e., 1 x 1) divided into four quarters by
two diagonals, each quarter colored with some color (selected from a finite set of colors). The
tiles have fixed orientation and cannot be rotated. Given some finite set T of such tiles as input,
the program is to determine if finite rectangular areas of all sizes (i.e., k x m for all positive
integers k and m) can be tiled using only the given tiles such that the colors on any two touching
edges are the same. It is assumed that an unlimited number of cards of each type is available.
Figure 6.2(b) shows how the base set of tiles given in Figure 6.2(a) can be used to tilea 5 x 5 square
area.

Problem 5 (linear programming). Given a system of linear inequalities (called constraints), such as
3x — 4y < 13 with integer coefficients, the goal is to find if the system has a solution satisfying all
of the constraints.

Some remarks must be made about the preceding problems. The problems in our list include nonnu-
merical problems and meta problems, which are problems about other problems. The first two problems
are motivated by a quest for reliable program design. An algorithm for problem 1 (if it exists) can be used
to test if a program contains an infinite loop. Problem 2 is motivated by an attempt to design a universal

*More precisely, a Wang tile, after Hao Wang, who wrote the first research paper on it.

© 2004 by Taylor & Francis Group, LLC

algorithm, which can simulate any other. This problem was first attempted by Babbage, whose analytical
engine had many ingredients of a modern electronic computer (although it was based on mechanical
devices). Problem 3 is an important problem in information theory and arises in the following setting.
Physical theories are aimed at creating simple laws to explain large volumes of experimental data. A famous
example is Kepler’s laws, which explained Tycho Brahe’s huge and meticulous observational data. Problem
3 asks if this compression process can be automated. When we allow the inference rules to be sufficiently
strong, this problem becomes undecidable. We will not discuss this problem further in this section but
will refer the reader to some related formal systems discussed in Li and Vitanyi [1993]. The tiling problem
is not merely an interesting puzzle. It is an art form of great interest to architects and painters. Tiling has
recently found applications in crystallography. Linear programming is a problem of central importance
in economics, game theory, and operations research.

In the remainder of the section, we will present some basic algorithm design techniques and sketch
how these techniques can be used to solve some of the problems listed (or their special cases). The main
purpose of this discussion is to present techniques for showing the decidability (or partial decidability) of
these problems. The reader can learn more advanced techniques of algorithm design in some later sections
of this chapter as well as in many later chapters of this volume.

6.2.1.1 Table Lookup

The basic idea is to create a table for a function f, which needs to be computed by tabulating in one
column an input x and the corresponding f(x) in a second column. Then the table itself can be used
as an algorithm. This method cannot be used directly because the set of all inputs is infinite. Therefore,
it is not very useful, although it can be made to work in conjunction with the technique described
subsequently.

6.2.1.2 Bounding the Search Domain

The difficulty of establishing the decidability of a problem is usually caused by the fact that the object we
are searching for may have no known upper limit. Thus, if we can place such an upper bound (based on
the structure of the problem), then we can reduce the search to a finite domain. Then table lookup can be
used to complete the search (although there may be better methods in practice). For example, consider the
following special case of the tiling problem: Let k be a fixed integer, say 1000. Given a set of tiles, we want to
determine whether all rectangular rooms of shape k x n can be tiled for all n. (Note the difference between
this special case and the general problem. The general one allows k and 7 both to have unbounded value.
But here we allow only 7 to be unbounded.) It can be shown (see Section 6.5 for details) that there are two
bounds ny and 1, (they depend on k) such that if there is at least one tile of size k x t that can be tiled for
some 19 < t < n; then every tile of size k x n can be tiled. If no k x ¢ tile can be tiled for any ¢ between n,
and #ny, then obviously the answer is no. Thus, we have reduced an infinite search domain to a finite one.

As another example, consider the linear programming problem. The set of possible solutions to this
problem is infinite, and thus a table search cannot be used. But it is possible to reduce the search domain
to a finite set using the geometric properties of the set of solutions of the linear programming problem.
The fact that the set of solutions is convex makes the search especially easy.

6.2.1.3 Use of Subroutines

This is more of a program design tool than a tool for algorithm design. A central concept of programmingis
repetitive (or iterative) computation. We already observed how GOTO statements can be used to perform
a sequence of steps repetitively. The idea of a subroutine is another central concept of programming. The
idea is to make use of a program P itself as a single step in another program Q. Building programs from
simpler programs is a natural way to deal with the complexity of programming tasks. We will illustrate the
idea with a simple example. Consider the problem of multiplying two positive integers i and j. The input
to the problem will be the form 11...1011...1 (i 1s followed by a 0, followed by j 1s) and the output
will be i % j 1s (with possibly some Os on either end). We will use the notation 1?01/ to denote the starting
configuration of the tape. This just means that the tape contains i 1s followed by a 0 followed by j 1s.

© 2004 by Taylor & Francis Group, LLC

TABLE 6.1 Coding the GOTO Instructions

Instruction Code
PRINT i 00017+!
GO LEFT 001

GO RIGHT 010

GO TO j IF i IS SCANNED 011101 +1
STOP 100

The basic idea behind a GOTO program for this problem is simple; add j 1s on the right end of tape
exactly 7 — 1 times and then erase the original sequence of i 1s on the left. A little thought reveals that the
subroutine we need here is to duplicate a string of Is so that if we start with x02¥1/ a call to the subroutine
will produce x02577 17, Here x is just any sequence of symbols. Note the role played by the symbol 2. As
new ls are created on the right, the old 1s change to 2s. This will ensure that there are exactly j 1s on the
right end of the tape all of the time. This duplication subroutine is very similar to the doubling program,
and the reader should have very little difficulty writing this program. Finally, the multiplication program
can be done using the copy subroutine (i — 1) times.

6.2.2 A Universal Algorithm

We will now present in some detail a (partial) solution to problem 2 by arguing that there is a program U
written in the GOTO language, which takes as input a program P (also written using the GOTO language)
and an input x and produces as output P (x), the output of P on input x. For convenience, we will assume
that all programs written in the GOTO language use a fixed alphabet containing just 0, 1, and B. Because
we have assumed this for all programs in the GOTO language, we should first address the issue of how
an input to program U will look. We cannot directly place a program P on the tape because the alphabet
used to write the program P uses letters G, O, T, O, etc. This minor problem can be easily circumvented by
coding. The idea is to represent each instruction using only 0 and 1. One such coding scheme is shown in
Table 6.1.

To encode an entire program, we simply write down in order (without the line numbers) the code for
each instruction as given in the table. For example, here is the code for the doubling program shown in
Figure 6.1:

0001001011110110001101001111111011000110100111011100

Note that the encoded string contains all of the information about the program so that the encoding is
completely reversible. From now on, if P is a program in the GOTO language, then code(P) will denote
its binary code as just described. When there is no confusion, we will identify P and code(P). Before
proceeding further, the reader may want to test his/her understanding of the encoding/decoding process
by decoding the following string: 010011101100.

The basic idea behind the construction of a universal algorithm is simple, although the details involved
in actually constructing one are enormous. We will present the central ideas and leave out the actual
construction. Such a construction was carried out in complete detail by Turing himself and was simplified
by others.* U has as its input code(P) followed by the string x. U simulates the computational steps of
P on input x. It divides the input tape into three segments, one containing the program P, the second
one essentially containing the contents of the tape of P as it changes with successive moves, and the third
one containing the line number in program P of the instruction being currently simulated (similar to a
program counter in an actual computer).

*A particularly simple exposition can be found in Robinson [1991].

© 2004 by Taylor & Francis Group, LLC

We now describe a cycle of computation by U, which is similar to a central processing unit (CPU)
cycle in a real computer. A single instruction of P is implemented by U in one cycle. First, U should
know which location on the tape that P is currently reading. A simple artifact can handle this as follows:
U uses in its tape alphabet two special symbols 0’ and 1’. U stores the tape of P in the tape segment
alluded to in the previous paragraph exactly as it would appear when the program P is run on the input
x with one minor modification. The symbol currently being read by program P is stored as the primed
version (0" is the primed version of 0, etc.). As an example, suppose after completing 12 instructions,
P is reading the fourth symbol (from left) on its tape containing 01001001. Then the tape region of U
after 12 cycles looks like 01001001. At the beginning of a new cycle, U uses a subroutine to move to the
region of the tape that contains the ith instruction of program P where i is the value of the program
counter. It then decodes the ith instruction. Based on what type it is, U proceeds as follows: If it is a
PRINT i instruction, then U scans the tape until the unique primed symbol in the tape region is reached
and rewrites it as instructed. If it is a GO LEFT or GO RIGHT symbol, U locates the primed symbol,
unprimes it, and primes its left or right neighbor, as instructed. In both cases, U returns to the program
counter and increments it. If the instruction is GO TO i IF j IS SCANNED, U reads the primed symbol,
and if it is j’, U changes the program counter to i. This completes a cycle. Note that the three regions
may grow and contract while U executes the cycles of computation just described. This may result in
one of them running into another. U must then shift one of them to the left or right and make room as
needed.

It is not too difficult to see that all of the steps described can be done using the instructions of the GOTO
language. The main point to remember is that these actions will have to be coded as a single program,
which has nothing whatsoever to do with program P. In fact, the program U is totally independent of
P. If we replace P with some other program Q, it should simulate Q as well. The preceding argument
shows that problem 2 is partially decidable. But it does not show that this problem is decidable. Why? It
is because U may not halt on all inputs; specifically, consider an input consisting of a program P and a
string x such that P does not halt on x. Then U will also keep executing cycle after cycle the moves of P
and will never halt. In fact, in Section 6.3, we will show that problem 2 is not decidable.

6.3 Undecidability

Recall the definition of an undecidable problem. In this section, we will establish the undecidability of
Problem 2, Section 6.2. The simplest way to establish the existence of undecidable problems is as follows:
There are more problems than there are programs, the former set being uncountable, whereas the latter
is countably infinite.* But this argument is purely existential and does not identify any specific problem
as undecidable. In what follows, we will show that Problem 2 introduced in Section 6.2 is one such
problem.

6.3.1 Diagonalization and Self-Reference

Undecidability is inextricably tied to the concept of self-reference, and so we begin by looking at this rather
perplexing and sometimes paradoxical concept. The idea of self-reference seems to be many centuries
old and may have originated with a barber in ancient Greece who had a sign board that read: “I shave
all those who do not shave themselves.” When the statement is applied to the barber himself, we get a
self-contradictory statement. Does he shave himself? If the answer is yes, then he is one of those who shaves
himself, and so the barber should not shave him. The contrary answer no is equally untenable. So neither
yes nor no seems to be the correct answer to the question; this is the essence of the paradox. The barber’s

*The reader who does not know what countable and uncountable infinities are can safely ignore this statement; the
rest of the section does not depend on it.

© 2004 by Taylor & Francis Group, LLC

paradox has made entry into modern mathematics in various forms. We will present some of them in the
next few paragraphs.*

The first version, called Berry’s paradox, concerns English descriptions of natural numbers. For example,
the number 7 can be described by many different phrases: seven, six plus one, the fourth smallest prime,
etc. We are interested in the shortest of such descriptions, namely, the one with the fewest letters in it.
Clearly there are (infinitely) many positive integers whose shortest descriptions exceed 100 letters. (A
simple counting argument can be used to show this. The set of positive integers is infinite, but the set of
positive integers with English descriptions in fewer than or equal to 100 letters is finite.) Let D denote the
set of positive integers that do not have English descriptions with fewer than 100 letters. Thus, D is not
empty. It is a well-known fact in set theory that any nonempty subset of positive integers has a smallest
integer. Let x be the smallest integer in D. Does x have an English description with fewer than or equal
to 100 letters? By the definition of the set D and x, we have: x is “the smallest positive integer that cannot
be described in English in fewer than 100 letters.” This is clearly absurd because part of the last sentence
in quotes is a description of x and it contains fewer than 100 letters in it. A similar paradox was found
by the British mathematician Bertrand Russell when he considered the set of all sets that do not include
themselves as elements, that is, S = {x | x & x}. The question “Is S € S?” leads to a similar paradox.

As a last example, we will consider a charming self-referential paradox due to mathematician William
Zwicker. Consider the collection of all two-person games (such as chess, tic-tac-toe, etc.) in which players
make alternate moves until one of them loses. Call such a game normal if it has to end in a finite number
of moves, no matter what strategies the two players use. For example, tic-tac-toe must end in at most nine
moves and so it is normal. Chess is also normal because the 50-move rule ensures that the game cannot
go forever. Now here is hypergame. In the first move of the hypergame, the first player calls out a normal
game, and then the two players go on to play the game, with the second player making the first move.
The question is: “Is hypergame normal?” Suppose it is normal. Imagine two players playing hypergame.
The first player can call out hypergame (since it is a normal game). This makes the second player call
out the name of a normal game, hypergame can be called out again and they can keep saying hypergame
without end, and this contradicts the definition of a normal game. On the other hand, suppose it is not a
normal game. But now in the first move, player 1 cannot call out hypergame and would call a normal game
instead, and so the infinite move sequence just given is not possible, and so hypergame is normal after all!

In the rest of the section, we will show how these paradoxes can be modified to give nonparadoxical
but surprising conclusions about the decidability of certain problems. Recall the encoding we presented
in Section 6.2 that encodes any program written in the GOTO language as a binary string. Clearly this
encoding is reversible in the sense that if we start with a program and encode it, it is possible to decode it
back to the program. However, not every binary string corresponds to a program because there are many
strings that cannot be decoded in a meaningful way, for example, 11010011000110. For the purposes of
this section, however, it would be convenient if we can treat every binary string as a program. Thus, we
will simply stipulate that any undecodable string be decoded to the program containing the single statement

1. REJECT
In the following discussion, we will identify a string x with a GOTO program to which it decodes. Now
define a function fp as follows: fp(x) = 1ifx, decoded into a GOTO program, does not halt when started
with x itself as the input. Note the self-reference in this definition. Although the definition of fj seems
artificial, its importance will become clear in the next section when we use it to show the undecidability
of Problem 2. First we will prove that fp, is not computable. Actually, we will prove a stronger statement,
namely, that fp isnoteven partially decidable. [Recall thata function is partially decidable if thereisa GOTO

*The most enchanting discussions of self-reference are due to the great puzzlist and mathematician R. Smullyan
who brings out the breadth and depth of this concept in such delightful books as What is the name of this book?
published by Prentice—Hall in 1978 and Satan, Cantor, and Infinity published by Alfred A. Knopf in 1992. We heartily
recommend them to anyone who wants to be amused, entertained, and, more importantly, educated on the intricacies
of mathematical logic and computability.

© 2004 by Taylor & Francis Group, LLC

program (not necessarily halting) that computes it. An important distinction between computable and
semicomputable functions is thata GOTO program for the latter need not halt on inputs with output = 0.]

Theorem 6.1 Function fp is not partially decidable.

The proofis by contradiction. Suppose a GOTO program P’ computes the function fp. We will modify
P’ into another program P in the GOTO language such that P computes the same function as P’ but has
the additional property that it will never terminate its computation by ending up in a REJECT statement.*
Thus, P isa program with the property that it computes fp and halts onan input y ifand onlyif fp(y) = 1.
We will complete the proof by showing that there is at least one input in which the program produces a
wrong output, that is, there is an x such that fp(x) # P (x).

Let x be the encoding of program P. Now consider the question: Does P halt when given x as input?
Suppose the answer is yes. Then, by the way we constructed P, here P(x) = 1. On the other hand, the
definition of fp implies that fp(x) = 0. (This is the punch line in this proof. We urge the reader to take
a few moments and read the definition of fp, a few times and make sure that he or she is convinced about
this fact!) Similarly, if we start with the assumption that P(x) = 0, we are led to the conclusion that
fp(x) = 1. In both cases, fp(x) # P(x) and thus P is not the correct program for f. Therefore, P’ is
not the correct program for fp either because P and P’ compute the same function. This contradicts the
hypothesis that such a program exists, and the proof is complete.

Note the crucial difference between the paradoxes we presented earlier and the proof of this theorem.
Here we do not have a paradox because our conclusion is of the form fp(x) = 0ifand only if P(x) =1
andnot fp(x) = lifand onlyif fp(x) = 0. But in some sense, the function fp was motivated by Russell’s
paradox. We can similarly create another function f, (based on Zwicker’s paradox of hypergame). Let
f be any function that maps binary strings to {0, 1}. We will describe a method to generate successive
functions fi, f, etc., as follows: Suppose f(x) = 0 for all x. Then we cannot create any more functions,
and the sequence stops with f. On the other hand, if f(x) = 1 for some x, then choose one such x and
decode it as a GOTO program. This defines another function; call it f; and repeat the same process with
f1 in the place of f. We call f a normal function if no matter how x is selected at each step, the process
terminates after a finite number of steps. A simple example of a nonnormal function is as follows: Suppose
P(Q) =1 for some program P and input Q and at the same time Q(P) = 1 (note that we are using
a program and its code interchangeably), then it is easy to see that the functions defined by both P and
Q are not normal. Finally, define f;(X) = 1 if X is a normal program, 0 if it is not. We leave it as an
instructive exercise to the reader to show that f is not semicomputable. A perceptive reader will note the
connection between Berry’s paradox and problem 3 in our list (string compression problem) just as f
is related to Zwicker’s paradox. Such a reader should be able to show the undecidability of problem 3 by
imitating Berry’s paradox.

6.3.2 Reductions and More Undecidable Problems

Theory of computation deals not only with the behavior of individual problems but also with relations
among them. A reduction is a simple way to relate two problems so that we can deduce the (un)decidability
of one from the (un)decidability of the other. Reduction is similar to using a subroutine. Consider two
problems A and B. We say that problem A can be reduced to problem B if there is an algorithm for B
provided that A has one. To define the reduction (also called a Turing reduction) precisely, it is convenient
to augment the instruction set of the GOTO programming language to include a new instruction CALL
X, i, j where X is a (different) GOTO program, and i and j are line numbers. In detail, the execution of
such augmented programs is carried out as follows: When the computer reaches the instruction CALL X,

*The modification needed to produce P from P’ is straightforward. If P’ did not have any REJECT statements at
all, then no modification would be needed. If it had, then we would have to replace each one by a looping statement,
which keeps repeating the same instruction forever.

© 2004 by Taylor & Francis Group, LLC

i, j, the program will simply start executing the instructions of the program from line 1, treating whatever
is on the tape currently as the input to the program X. When (if at all) X finishes the computation by
reaching the ACCEPT statement, the execution of the original program continues at line number 7 and, if
it finishes with REJECT, the original program continues from line number j.

We can now give a more precise definition of a reduction between two problems. Let A and B be two
computational problems. We say that A is reducible to B if there is a halting program Y in the GOTO
language for problem A in which calls can be made to a halting program X for problem B. The algorithm
for problem A described in the preceding reduction does not assume the availability of program X and
cannot use the details behind the design of this algorithm. The right way to think about a reduction is as
follows: Algorithm Y, from time to time, needs to know the solutions to different instances of problem
B. It can query an algorithm for problem B (as a black box) and use the answer to the query for making
further decisions. An important point to be noted is that the program Y actually can be implemented even
if program X was never built as long as someone can correctly answer some questions asked by program
Y about the output of problem B for certain inputs. Programs with such calls are sometimes called oracle
programs. Reduction is rather difficult to assimilate at the first attempt, and so we will try to explain it
using a puzzle. How do you play two chess games, one each with Kasparov and Anand (perhaps currently
the world’s two best players) and ensure that you get at least one point? (You earn one point for a win, 0 for
aloss, and 1/2 for a draw.) Because you are a novice and are pitted against two Goliaths, you are allowed a
concession. You can choose to play white or black on either board. The well-known answer is the following:
Take white against one player, say, Anand, and black against the other, namely, Kasparov. Watch the first
move of Kasparov (as he plays white) and make the same move against Anand, get his reply and play it back to
Kasparovand keep playing back and forth like this. It takes only a moment’s thought that you are guaranteed
to win (exactly) 1 point. The point is that your game involves taking the position of one game, applying
the algorithm of one player, getting the result and applying it to the other board, etc., and you do not even
have to know the rules of chess to do this. This is exactly how algorithm Y is required to use algorithm X.

We will use reductions to show the undecidability as follows: Suppose A can be reduced to B as in the
preceding definition. If there is an algorithm for problem B, it can be used to design a program for A by
essentially imitating the execution of the augmented program for A (with calls to the oracle for B) as just
described. But we will turn it into a negative argument as follows: If A is undecidable, then so is B. Thus,
a reduction from a problem known to be undecidable to problem B will prove B’s undecidability.

First we define a new problem, Problem 2’, which is a special case of Problem 2. Recall that in Problem 2
the input is (the code of) a program P in GOTO language and a string x. The output required is P (x). In
Problem 2/, the input is (only) the code of a program P and the output required is P (P), that is, instead
of requiring P to run on a given input, this problem requires that it be run on its own code. This is clearly
a special case of problem 2. The reader may readily see the self-reference in Problem 2’ and suspect that it
may be undecidable; therefore, the more general Problem 2 may be undecidable as well. We will establish
these claims more rigorously as follows.

We first observe a general statement about the decidability of a function f (or problem) and its com-
plement. The complement function is defined to take value 1 on all inputs for which the original function
value is 0 and vice versa. The statement is that a function f is decidable if and only if the complement f
is decidable. This can be easily proved as follows. Consider a program P that computes f. Change P into
P by interchanging all of the ACCEPT and REJECT statements. It is easy to see that P actually computes
f. The converse also is easily seen to hold. It readily follows that the function defined by problem 2’ is
undecidable because it is, in fact, the complement of fp.

Finally, we will show that problem 2 is uncomputable. The idea is to use a reduction from problem
2’ to problem 2. (Note the direction of reduction. This always confuses a beginner.) Suppose there is an
algorithm for problem 2. Let X be the GOTO language program that implements this algorithm. X takes
as input code(P) (for any program P) followed by x, produces the result P (x), and halts. We want to
design a program Y that takes as input code(P) and produce the output P (P) using calls to program X.
It is clear what needs to be done. We just create the input in proper form code(P) followed by code(P)
and call X. This requires first duplicating the input, but this is a simple programming task similar to the

© 2004 by Taylor & Francis Group, LLC

one we demonstrated in our first program in Section 6.2. Then a call to X completes the task. This shows
that Problem 2’ reduces to Problem 2, and thus the latter is undecidable as well.

By a more elaborate reduction (from fp), it can be shown that tiling is not partially decidable. We will
not do it here and refer the interested reader to Harel [1992]. But we would like to point out how the
undecidability result can be used to infer a result about tiling. This deduction is of interest because the
result is an important one and is hard to derive directly. We need the following definition before we can
state the result. A different way to pose the tiling problem is whether a given set of tiles can tile an entire
plane in such a way that all of the adjacent tiles have the same color on the meeting quarter. (Note that this
question is different from the way we originally posed it: Can a given set of tiles tile any finite rectangular
region? Interestingly, the two problems are identical in the sense that the answer to one version is yes if and
only if it is yes for the other version.) Call a tiling of the plane periodic if one can identify a k x k square
such that the entire tiling is made by repeating this k x k square tile. Otherwise, call it aperiodic. Consider
the question: Is there a (finite) set of unit tiles that can tile the plane, but only aperiodically? The answer
is yes and it can be shown from the total undecidability of the tiling problem. Suppose the answer is no.
Then, for any given set of tiles, the entire plane can be tiled if and only if the plane can be tiled periodically.
But a periodic tiling can be found, if one exists, by trying to tile a k x k region for successively increasing
values of k. This process will eventually succeed (in a finite number of steps) if the tiling exists. This will
make the tiling problem partially decidable, which contradicts the total undecidability of the problem.
This means that the assumption that the entire plane can be tiled if and only if some k x k region can be
tiled is wrong. Thus, there exists a (finite) set of tiles that can tile the entire plane, but only aperiodically.

6.4 Formal Languages and Grammars

The universe of strings is probably the most general medium for the representation of information. This
section is concerned with sets of strings called languages and certain systems generating these languages
such as grammars. Every programming language including Pascal, C, or Fortran can be precisely described
by a grammar. Moreover, the grammar allows us to write a computer program (called the lexical analyzer
in a compiler) to determine if a piece of code is syntactically correct in the programming language. Would
not it be nice to also have such a grammar for English and a corresponding computer program which
can tell us what English sentences are grammatically correct?* The focus of this brief exposition is the
formalism and mathematical properties of various languages and grammars. Many of the concepts have
applications in domains including natural language and computer language processing, string matching,
etc. We begin with some standard definitions about languages.

Definition 6.1 An alphabet is a finite nonempty set of symbols, which are assumed to be indivisible.

For example, the alphabet for English consists of 26 uppercase letters A, B, ..., Z and 26 lowercase
letters a, b, . . ., z. We usually use the symbol X to denote an alphabet.

Definition 6.2 A string over an alphabet ¥ is a finite sequence of symbols of X.

The number of symbols in a string x is called its length, denoted | x |. It is convenient to introduce an
empty string, denoted €, which contains no symbols at all. The length of € is 0.

Definition 6.3 Letx = aja,---a, and y = byb, - - - b,, be two strings. The concatenation of x and y,
denoted xy, is the string aya, - - - a,b1by - - - byy,.

*Actually, English and the other natural languages have grammars; but these grammars are not precise enough to tell
apart the correct and incorrect sentences with 100% accuracy. The main problem is that there is no universal agreement
on what are grammatically correct English sentences.

© 2004 by Taylor & Francis Group, LLC

Thus, for any string x, ex = xe = x. For any string x and integer n > 0, we use x” to denote the string
formed by sequentially concatenating n copies of x.

Definition 6.4 The set of all strings over an alphabet X is denoted X* and the set of all nonempty
strings over ¥ is denoted T . The empty set of strings is denoted @.

Definition 6.5 For any alphabet %, a language over ¥ is a set of strings over X. The members of a
language are also called the words of the language.

Example 6.1

The sets L, = {01,11,0110} and L, = {0"1" | n > 0} are two languages over the binary alphabet {0, 1}.
The string 01 is in both languages, whereas 11 is in L; but notin L,.

Because languages are just sets, standard set operations such as union, intersection, and complemen-
tation apply to languages. It is useful to introduce two more operations for languages: concatenation and
Kleene closure.

Definition 6.6 Let L; and L, be two languages over ¥. The concatenation of L; and L,, denoted
L,L,,is thelanguage {xy | x € L1,y € L;}.

Definition 6.7 Let L be a language over . Define L° = {e} and L' = LL*~! for i > 1. The Kleene
closure of L, denoted L*, is the language

= Jr

i>0

and the positive closure of L, denoted LT, is the language

L+=UL"

i>1

In other words, the Kleene closure of language L consists of all strings that can be formed by concate-
nating some words from L. For example, if L = {0,01}, then LL = {00,001,010,0101} and L* includes
all binary strings in which every 1 is preceded by a 0. L™ is the same as L* except it excludes € in this case.
Note that, for any language L, L* always contains € and L™ contains € if and only if L does. Also note that
3 * is in fact the Kleene closure of the alphabet ¥ when viewed as a language of words of length 1, and =+
is just the positive closure of X.

6.4.1 Representation of Languages

In general, a language over an alphabet X is a subset of X*. How can we describe a language rigorously so
that we know if a given string belongs to the language or not? As shown in the preceding paragraphs, a finite
language such as L; in Example 6.1 can be explicitly defined by enumerating its elements, and a simple
infinite language such as L, in the same example can be described using a rule characterizing all members
of L,. It is possible to define some more systematic methods to represent a wide class of languages. In the
following, we will introduce three such methods: regular expressions, pattern systems, and grammars. The
languages that can be described by this kind of system are often referred to as formal languages.

Definition 6.8 Let = be an alphabet. The regular expressions over & and the languages they represent
are defined inductively as follows.

1. The symbol @ is a regular expression, denoting the empty set.
2. The symbol € is a regular expression, denoting the set {€}.

© 2004 by Taylor & Francis Group, LLC

3. Foreacha € X, a is a regular expression, denoting the set {a}.
4. Ifr and s are regular expressions denoting the languages R and S, then (r +s), (rs), and (r*) are
regular expressions that denote the sets R U S, RS, and R*, respectively.

For example, ((0(0 4+ 1)*) 4+ ((0 + 1)*0)) is a regular expression over {0, 1}, and it represents the
language consisting of all binary strings that begin or end with a 0. Because the set operations union and
concatenation are both associative, many parentheses can be omitted from regular expressions if we assume
that Kleene closure has higher precedence than concatenation and concatenation has higher precedence
than union. For example, the preceding regular expression can be abbreviated as 0(0 + 1)* + (0 + 1)*0.
We will also abbreviate the expression rr* as r*. Let us look at a few more examples of regular expressions
and the languages they represent.

Example 6.2
The expression 0(0 4+ 1)*1 represents the set of all strings that begin with a 0 and end with a 1.

Example 6.3

The expression 0 + 1 + 0(0 + 1)*0 + 1(0 + 1)*1 represents the set of all nonempty binary strings that
begin and end with the same bit.

Example 6.4

The expressions 0%, 0°10*, and 0*10*10* represent the languages consisting of strings that contain no 1,
exactly one 1, and exactly two 1s, respectively.

Example 6.5
The expressions (0 + 1)*1(0 + 1)*1(0 4+ 1)*, (0 + 1)*10*1(0 4+ 1)*, 0¥*10*1(0 + 1)*, and (0 + 1)*10*10*
all represent the same set of strings that contain at least two Is.

For any regular expression r, the language represented by r is denoted as L (r). Two regular expressions
representing the same language are called equivalent. It is possible to introduce some identities to alge-
braically manipulate regular expressions to construct equivalent expressions, by tailoring the set identities
for the operations union, concatenation, and Kleene closure to regular expressions. For more details, see
Salomaa [1966]. For example, it is easy to prove that the expressions 7 (s + t) and rs + rt are equivalent
and (r*)* is equivalent to r*.

Example 6.6

Let us construct a regular expression for the set of all strings that contain no consecutive 0s. A string in this
set may begin and end with a sequence of 1s. Because there are no consecutive Os, every 0 that is not the
last symbol of the string must be followed by at least a 1. This gives us the expression 1*(011)*1*(e + 0).
It is not hard to see that the second 1* is redundant, and thus the expression can in fact be simplified to
1*(017)*(e + 0).

Regular expressions were first introduced in Kleene [1956] for studying the properties of neural nets.
The preceding examples illustrate that regular expressions often give very clear and concise representations
of languages. Unfortunately, not every language can be represented by regular expressions. For example,
it will become clear that there is no regular expression for the language {0"1" | n > 1}. The languages
represented by regular expressions are called the regular languages. Later, we will see that regular languages
are exactly the class of languages generated by the so-called right-linear grammars. This connection allows
one to prove some interesting mathematical properties about regular languages as well as to design an
efficient algorithm to determine whether a given string belongs to the language represented by a given
regular expression.

Another way of representing languages is to use pattern systems [Angluin 1980, Jiang et al. 1995].

© 2004 by Taylor & Francis Group, LLC

Definition 6.9 A pattern system is a triple (X, V, p), where X is the alphabet, V is the set of variables
with ¥ NV = @, and p is a string over £ U V called the pattern.

An example pattern system is ({0, 1}, {vy, v2}, v1v10v,).

Definition 6.10 The language generated by a pattern system (X, V, p) consists of all strings over X
that can be obtained from p by replacing each variable in p with a string over X.

For example, the language generated by ({0, 1}, {v},v2},v1v,0v;) contains words 0, 00,01, 000,001,
010,011,110, etc., but does not contain strings, 1, 10,11, 100, 101, etc. The pattern system ({0, 1}, {v1},
v1v1) generates the set of all strings, which is the concatenation of two equal substrings, that is, the set
{xx | x € {0,1}*}. The languages generated by pattern systems are called the pattern languages.

Regular languages and pattern languages are really different. One can prove that the pattern language
{xx | x € {0, 1}"} is not a regular language and the set represented by the regular expression 0*1* is not a
pattern language. Although it is easy to write an algorithm to decide if a string is in the language generated
by a given pattern system, such an algorithm most likely would have to be very inefficient [Angluin 1980].

Perhaps the most useful and general system for representing languages is based on grammars, which
are extensions of the pattern systems.

Definition 6.11 A grammar is a quadruple (%, N, S, P), where:

1. ¥ is a finite nonempty set called the alphabet. The elements of ¥ are called the terminals.

2. N is a finite nonempty set disjoint from . The elements of N are called the nonterminals or
variables.

3. S € Nis a distinguished nonterminal called the start symbol.

4. P is a finite set of productions (or rules) of the form

a— B

where a € (X U N)*N(X U N)* and B € (X U N)* that is, a is a string of terminals and
nonterminals containing at least one nonterminal and {3 is a string of terminals and nonterminals.

Example 6.7
Let G, = ({0,1}L{S, T, O, 1}, S, P), where P contains the following productions:

S—O0T
S—0I
T—SI
O0—0
I—>1

As we shall see, the grammar G, can be used to describe the set {0"1" | n > 1}.
Example 6.8
Let G, = ({0,1,2},{S, A}, S, P), where P contains the following productions.

S—0SA2
S—e€
2A— A2
0A— 01
1A—11

This grammar G, can be used to describe the set {0"1"2" > n > 0}.

© 2004 by Taylor & Francis Group, LLC

Example 6.9

To construct a grammar G to describe English sentences, the alphabet ¥ contains all words in English.
N would contain nonterminals, which correspond to the structural components in an English sentence,
for example, (sentence), (subject), (predicate), (noun), (verb), (article), etc. The start symbol would be
(sentence). Some typical productions are

(sentence) — (subject) (predicate)
(subject) — (noun)
(predicate) — (verb)(article) (noun)

(noun) — algorithm

)
)
)
(noun) — mary
)

(verb) — wrote
(article) — an
The rule (sentence) — (subject)(predicate) follows from the fact that a sentence consists of a subject
phrase and a predicate phrase. The rules (noun) — mary and (noun) — algorithm mean that both mary
and algorithms are possible nouns.

To explain how a grammar represents a language, we need the following concepts.

Definition 6.12 Let (X, N, S, P) be a grammar. A sentential form of G is any string of terminals and
nonterminals, that is, a string over ¥ U N.

Definition 6.13 Let (X, N, S, P) be a grammar and y; and vy, two sentential forms of G. We say that
1 directly derives vy,, denoted y; = v,, if y; = oaT, y, = o7, and @ — B is a production in P.

For example, the sentential form 00S11 directly derives the sentential form 000 T'11 in grammar Gy,
and A2 A2 directly derives AA22 in grammar G,.

Definition 6.14 Let vy, and vy, be two sentential forms of a grammar G. We say that v, derives v,
denoted y; =* vy,, if there exists a sequence of (zero or more) sentential forms o1, . . ., g, such that

YI=01= =0y = Y2
The sequence y; = 0; = -+ = 0, = 7, is called a derivation from <y, to y,.
For example, in grammar G, S = 0011 because
S= 0T =0T = 0SI =051 = 00I1=00I1= 0011
and in grammar G,, S =% 001122 because
S = 0SA2 = 00SA2A2 = 00A2A2 = 0012A2 = 0011422 = 001122

Here the left-hand side of the relevant production in each derivation step is underlined for clarity.

Definition 6.15 Let(X, N, S, P) be agrammar. The language generated by G, denoted L(G), is defined
as

L(G)={x|x€X*S =" x}
The words in L(G) are also called the sentences of L(G).

© 2004 by Taylor & Francis Group, LLC

Clearly, L(G,) contains all strings of the form 0"1”, n > 1, and L(G;) contains all strings of the form
0"1"2", n > 0. Although only a partial definition of G3 is given, we know that L (G3) contains sentences
such as “mary wrote an algorithm” and “algorithm wrote an algorithm” but does not contain sentences
such as “an wrote algorithm.”

The introduction of formal grammars dates back to the 1940s [Post 1943], although the study of
rigorous description of languages by grammars did not begin until the 1950s [Chomsky 1956]. In the next
subsection, we consider various restrictions on the form of productions in a grammar and see how these
restrictions can affect the power of a grammar in representing languages. In particular, we will know that
regular languages and pattern languages can all be generated by grammars under different restrictions.

6.4.2 Hierarchy of Grammars

Grammars can be divided into four classes by gradually increasing the restrictions on the form of the
productions. Such a classification is due to Chomsky [1956, 1963] and is called the Chomsky hierarchy.

Definition 6.16 Let G = (%, N, S, P) be a grammar.

1. G is also called a type-0 grammar or an unrestricted grammar.

2. G is type-1 or context sensitive if each production @« — B in P either has the form S — € or
satisfies |a| < |B|.

3. G is type-2 or context free if each production &« — f in P satisfies |a| = 1, thatis, a is a
nonterminal.

4. G is type-3 or right linear or regular if each production has one of the following three forms:

A — aB, A — a, A— €

where A and B are nonterminals and a is a terminal.

The language generated by a type-i is called a type-i language, i = 0, 1,2, 3. A type-1 language is also
called a context-sensitive language and a type-2 language is also called a context-free language. It turns
out that every type-3 language is in fact a regular language, that is, it is represented by some regular
expression, and vice versa. See the next section for the proof of the equivalence of type-3 (right-linear)
grammars and regular expressions.

The grammars G; and G3 given in the last subsection are context free and the grammar G, is context
sensitive. Now we give some examples of unrestricted and right-linear grammars.

Example 6.10
Let G4 = ({0,1},{S, A, O, I, T}, S, P), where P contains

S— AT

A—0AO A— 1Al
00— 00 O01—>10
10— 01 I1— 11
OT— 0T IT— 1T
A—e T—e€

Then G4 generates the set {xx | x € {0,1}*}. For example, we can derive the word 0101 from S as follows:

S = AT = 0AOT = 01AIOT = 0110T = 0110T = 010IT => 01017 => 0101

© 2004 by Taylor & Francis Group, LLC

Example 6.11

We give a right-linear grammar Gs to generate the language represented by the regular expression in
Example 6.3, that is, the set of all nonempty binary strings beginning and ending with the same bit. Let
Gs = ({0,1},{S, 0,1}, S, P), where P contains

S—00 S— 11

S—0 S—>1
O0—00 O0—10
I1—0I I1—>11
O0—0 I—>1

The following theorem is due to Chomsky [1956, 1963].

Theorem 6.2 For eachi = 0, 1,2, the class of type-i languages properly contains the class of type-(i + 1)
languages.

For example, one can prove by using a technique called pumping that the set {0"1" | n > 1} is
context free but not regular, and the sets {0"1"2" | n > 0} and {xx | x € {0, 1}*} are context sensitive
but not context free [Hopcroft and Ullman 1979]. It is, however, a bit involved to construct a language
that is of type-0 but not context sensitive. See, for example, Hopcroft and Ullman [1979] for such a
language.

The four classes of languages in the Chomsky hierarchy also have been completely characterized in terms
of Turing machines and their restricted versions. We have already defined a Turing machine in Section
6.2. Many restricted versions of it will be defined in the next section. It is known that type-0 languages
are exactly those recognized by Turing machines, context-sensitive languages are those recognized by
Turing machines running in linear space, context-free languages are those recognized by Turing machines
whose worktapes operate as pushdown stacks [called pushdown automata (PDA)], and regular languages
are those recognized by Turing machines without any worktapes (called finite-state machine or finite
automata) [Hopcroft and Ullman 1979].

Remark 6.1 Recall our definition of a Turing machine and the function it computes from Section 6.2.
In the preceding paragraph, we refer to a language recognized by a Turing machine. These are two seemingly
different ideas, but they are essentially the same. The reason is that the function f, which maps the set of
strings over a finite alphabet to {0, 1}, corresponds in a natural way to the language L ; over X defined as:
Ls={x| f(x) = 1}. Instead of saying that a Turing machine computes the function f, we say equivalently
that it recognizes L f.

Because {xx | x € {0,1}*} is a pattern language, the preceding discussion implies that the class of
pattern languages is not contained in the class of context-free languages. The next theorem shows that the
class of pattern languages is contained in the class of context-sensitive languages.

Theorem 6.3 Every pattern language is context sensitive.

The theorem follows from the fact that every pattern language is recognized by a Turing machine
in linear space [Angluin 1980] and linear space-bounded Turing machines recognize exactly context-
sensitive languages. To show the basic idea involved, let us construct a context-sensitive grammar for
the pattern language {xx | x € {0,1}*}. The grammar G, given in Example 6.10 for this language
is almost context-sensitive. We just have to get rid of the two e-productions: A — eand T — €. A
careful modification of G4 results in the following grammar G¢ = ({0, 1}, {S, Ao, A1, O, I, Ty, T1}, S, P),

© 2004 by Taylor & Francis Group, LLC

where P contains

S—e€

S— ATy S— ATy
Ag— 0400 Ag— 1Ag]
Ay —>0A,0 Al —> 1A1

Ag—0 A —1
00— 00 01—10
10— 0I 11— 11
OTy— 0Ty ITy— 1Ty
OT, — 0T, 1Ty — 1T,
Ty— O T —1,

which is context sensitive and generates {xx | x € {0, 1}*}. For example, we can derive 011011 as

= ATy = 0A,0T, = 01A, 10T,
= 01110T; = 01110T; = 01101 T; = 011017; = 011011

For a class of languages, we are often interested in the so-called closure properties of the class.

Definition 6.17 A class of languages (e.g., regular languages) is said to be closed under a particular
operation (e.g., union, intersection, complementation, concatenation, Kleene closure) if each application
of the operation on language(s) of the class results in a language of the class.

These properties are often useful in constructing new languages from existing languages as well as
proving many theoretical properties of languages and grammars. The closure properties of the four types
of languages in the Chomsky hierarchy are now summarized [Harrison 1978, Hopcroft and Ullman 1979,
Gurari 1989].

Theorem 6.4

1. The class of type-0 languages is closed under union, intersection, concatenation, and Kleene closure but
not under complementation.

2. The class of context-free languages is closed under union, concatenation, and Kleene closure but not
under intersection or complementation.

3. The classes of context-sensitive and regular languages are closed under all five of the operations.

For example, let L, ={0"1"2° | m=norn=p}, L, ={0"1"2° | m=mn},and L5 ={0"1"2F | n= p}.
It is easy to see that all three are context-free languages. (In fact, L, = L, U L3.) However, intersecting L,
with L; gives the set {0™1"27 | m = n = p}, which is not context free.

We will look at context-free grammars more closely in the next subsection and introduce the concept
of parsing and ambiguity.

6.4.3 Context-Free Grammars and Parsing

From a practical point of view, for each grammar G = (X, N, S, P) representing some language, the
following two problems are important:

1. (Membership) Given a string over %, does it belong to L(G)?
2. (Parsing) Given a string in L(G), how can it be derived from S?

© 2004 by Taylor & Francis Group, LLC

The importance of the membership problem is quite obvious: given an English sentence or computer
program we wish to know if it is grammatically correct or has the right format. Parsing is important
because a derivation usually allows us to interpret the meaning of the string. For example, in the case of a
Pascal program, a derivation of the program in Pascal grammar tells the compiler how the program should
be executed. The following theorem illustrates the decidability of the membership problem for the four
classes of grammars in the Chomsky hierarchy. The proofs can be found in Chomsky [1963], Harrison
[1978], and Hopcroft and Ullman [1979].

Theorem 6.5 The membership problem for type-0 grammars is undecidable in general and is decidable
for any context-sensitive grammar (and thus for any context-free or right-linear grammars).

Because context-free grammars play a very important role in describing computer programming lan-
guages, we discuss the membership and parsing problems for context-free grammars in more detail.
First, let us look at another example of context-free grammar. For convenience, let us abbreviate a set of
productions with the same left-hand side nonterminal

A—a,...,A— q,
as

A= ooy

Example 6.12

We construct a context-free grammar for the set of all valid Pascal real values. In general, a real constant
in Pascal has one of the following forms:

m.n, meq, m.neq,

where m and q are signed or unsigned integers and n is an unsigned integer. Let ¥ = {0,1,2,3,4,5,
6,7,8,9,e,+,—,.}, N ={S, M, N, D}, and the set P of the productions contain

S — M.N|MeM|M.NeM
M— N|+N|—-N

N— DN|D

D — 0[1]2|3]4(5|7|8]9

Then the grammar generates all valid Pascal real values (including some absurd ones like 001.200e000).
The value 12.3e — 4 can be derived as

S = M.NeM = N.NeM = DN.NeM = IN.NeM = 1D.NeM
= 12.NeM = 12.DeM = 12.3eM = 12.3e — N = 12.3e — D = 12.3e — 4

Perhaps the most natural representation of derivations for a context-free grammar is a derivation tree or
a parse tree. Each internal node of such a tree corresponds to a nonterminal and each leaf corresponds to a
terminal. If A is an internal node with children Bj, ..., B, ordered from left to right, then A — B, --- B,
must be a production. The concatenation of all leaves from left to right yields the string being derived. For
example, the derivation tree corresponding to the preceding derivation of 12.3e — 4 is given in Figure 6.3.
Such a tree also makes possible the extraction of the parts 12, 3, and —4, which are useful in the storage of
the real value in a computer memory.

Definition 6.18 A context-free grammar G is ambiguous if there is a string x € L(G), which has two
distinct derivation trees. Otherwise G is unambiguous.

© 2004 by Taylor & Francis Group, LLC

FIGURE 6.4 Different derivation trees for the expression 1 + 2 % 3 + 4.

Unambiguity is a very desirable property to have as it allows a unique interpretation of each sen-
tence in the language. It is not hard to see that the preceding grammar for Pascal real values and the
grammar G, defined in Example 6.7 are all unambiguous. The following example shows an ambiguous
grammar.

Example 6.13

Consider a grammar G7 for all valid arithmetic expressions that are composed of unsigned positive integers
and symbols +, %, (,). For convenience, let us use the symbol # to denote any unsigned positive integer.
This grammar has the productions

S—>T+S|S+T|T
T—>FExT|T+FE|F
F—>n|(S)

Two possible different derivation trees for the expression 1 + 2 * 3 + 4 are shown in Figure 6.4. Thus, G;
is ambiguous. The left tree means that the first addition should be done before the second addition and
the right tree says the opposite.

Although in the preceding example different derivations/interpretations of any expression always result
in the same value because the operations addition and multiplication are associative, there are situations
where the difference in the derivation can affect the final outcome. Actually, the grammar G can be made
unambiguous by removing some (redundant) productions, for example, S - T + Sand T — F % T.
This corresponds to the convention that a sequence of consecutive additions (or multiplications) is always
evaluated from left to right and will not change the language generated by G5. It is worth noting that

© 2004 by Taylor & Francis Group, LLC

there are context-free languages which cannot be generated by any unambiguous context-free grammar
[Hopcroft and Ullman 1979]. Such languages are said to be inherently ambiguous. An example of inherently
ambiguous languages is the set

{0™1"2"3" | myn > 0} U {0™1"2"3" | myn > 0}

We end this section by presenting an efficient algorithm for the membership problem for context-free
grammars. The algorithm is due to Cocke, Younger, and Kasami [Hopcroft and Ullman 1979] and is
often called the CYK algorithm. Let G = (X, N, S, P) be a context-free grammar. For simplicity, let us
assume that G does not generate the empty string € and that G is in the so-called Chomsky normal
form [Chomsky 1963], that is, every production of G is either in the form A — BC where B and
C are nonterminals, or in the form A — a where a is a terminal. An example of such a grammar
is G given in Example 6.7. This is not a restrictive assumption because there is a simple algorithm
which can convert every context-free grammar that does not generate € into one in the Chomsky normal
form.

Suppose that x = a; - - - a, is a string of n terminals. The basic idea of the CYK algorithm, which decides
if x € L(G), is dynamic programming. For each pair i, j, where 1 <i < j < n, defineaset X;; C N as

X,"j:{A|A=>* a,—---aj}

Thus, x € L(G) ifand only if S € X ,,. The sets X ; can be computed inductively in the ascending order
of j —i.Itis easy to figure out X;; for each i because X;; = {A | A — a; € P}. Suppose that we have
computed all X; ; where j —i < d for some d > 0.To compute a set X; ;, where j —i = d, we just have to
find all of the nonterminals A such that there exist some nonterminals B and C satisfying A — BC € P
and for some k,i < k < j, B € Xj,and C € Xy, ;. A rigorous description of the algorithm in a Pascal
style pseudocode is given as follows.

Algorithm CYK(x = a; - --a,):

1. fori < 1tondo

2 X,“,‘(—{A|A—>ai€P}
3. ford < 1ton—1do
4, fori < 1ton—ddo
5 Xiiva <9

6 fort < 0tod —1do

7 Xiivd < XijitaU {A| A— BC € P forsome B € X;;j,and C € X1 441i4+4}

Table 6.2 shows the sets X; ; for the grammar G, and the string x = 000111. It just so happens that

every X; ; is either empty or a singleton. The computation proceeds from the main diagonal toward the
upper-right corner.

TABLE 6.2 An Example Execution of the

CYK Algorithm
oJoJofiJ1i]1]
i~ |
1]2]3[4]5]6]
11 O S
2 (0] S| T
i |3 oO|S| T
1[4 1
5 I
6 I

© 2004 by Taylor & Francis Group, LLC

6.5 Computational Models

In this section, we will present many restricted versions of Turing machines and address the question of
whatkinds of problems they can solve. Such a classification is a central goal of computation theory. We have
already classified problems broadly into (totally) decidable, partially decidable, and totally undecidable.
Because the decidable problems are the ones of most practical interest, we can consider further classification
of decidable problems by placing two types of restrictions on a Turing machine. The first one is to restrict
its structure. This way we obtain many machines of which a finite automaton and a pushdown automaton
are the most important. The other way to restrict a Turing machine is to bound the amount of resources it
uses, such as the number of time steps or the number of tape cells it can use. The resulting machines form
the basis for complexity theory.

6.5.1 Finite Automata

The finite automaton (in its deterministic version) was first introduced by McCulloch and Pitts [1943] asa
logical model for the behavior of neural systems. Rabin and Scott [1959] introduced the nondeterministic
version of the finite automaton and showed the equivalence of the nondeterministic and deterministic
versions. Chomsky and Miller [1958] proved that the set of languages that can be recognized by a finite
automaton is precisely the regular languages introduced in Section 6.4. Kleene [1956] showed that the
languages accepted by finite automata are characterized by regular expressions as defined in Section 6.4.

In addition to their original role in the study of neural nets, finite automata have enjoyed great success
in many fields such as sequential circuit analysis in circuit design [Kohavi 1978], asynchronous circuits
[Brzozowski and Seger 1994], lexical analysis in text processing [Lesk 1975], and compiler design. They
alsoled to the design of more efficient algorithms. One excellent example is the development of linear-time
string-matching algorithms, as described in Knuth et al. [1977]. Other applications of finite automata can
be found in computational biology [Searls 1993], natural language processing, and distributed computing.

A finite automaton, as in Figure 6.5, consists of an input tape which contains a (finite) sequence of
input symbols such as aabab - - -, as shown in the figure, and a finite-state control. The tape is read by the
one-way read-only input head from left to right, one symbol at a time. Each time the input head reads
an input symbol, the finite control changes its state according to the symbol and the current state of the
machine. When the input head reaches the right end of the input tape, if the machine is in a final state, we
say that the input is accepted; if the machine is not in a final state, we say that the input is rejected. The
following is the formal definition.

Definition 6.19 A nondeterministic finite automaton (NFA) is a quintuple (Q, %, 8, ¢, F), where:

* Q is a finite set of states.

* X is a finite set of input symbols.

* J, the state transition function, is a mapping from Q x X to subsets of Q.
* qo € Q is the initial state of the NFA.

* F C Qs the set of final states.

‘ a

input tape

a [b ‘ a ‘ b I read-only
l-way input head

finite

control

FIGURE 6.5 A finite automaton.

© 2004 by Taylor & Francis Group, LLC

If 3 maps | Q | x X to singleton subsets of Q, then we call such a machine a deterministic finite automaton
(DFA).

When an automaton, M, is nondeterministic, then from the current state and input symbol, it may go to
one of several different states. One may imagine that the device goes to all such states in parallel. The DFA
is just a special case of the NFA; it always follows a single deterministic path. The device M accepts an input
string x if, starting with go and the read head at the first symbol of x, one of these parallel paths reaches
an accepting state when the read head reaches the end of x. Otherwise, we say M rejects x. A language, L,
is accepted by M if M accepts all of the strings in L and nothing else, and we write L = L(M). We will
also allow the machine to make e-transitions, that is, changing state without advancing the read head. This
allows transition functions such as 8(s, €) = {s'}. It is easy to show that such a generalization does not add
more power.

Remark 6.2 The concept of a nondeterministic automaton is rather confusing for a beginner. But there
is a simple way to relate it to a concept which must be familiar to all of the readers. It is that of a solitaire
game. Imagine a game like Klondike. The game starts with a certain arrangement of cards (the input)
and there is a well-defined final position that results in success; there are also dead ends where a further
move is not possible; you lose if you reach any of them. At each step, the precise rules of the game dictate
how a new arrangement of cards can be reached from the current one. But the most important point is
that there are many possible moves at each step. (Otherwise, the game would be no fun!) Now consider
the following question: What starting positions are winnable? These are the starting positions for which
there is a winning move sequence; of course, in a typical play a player may not achieve it. But that is beside
the point in the definition of what starting positions are winnable. The connection between such games
and a nondeterministic automaton should be clear. The multiple choices at each step are what make it
nondeterministic. Our definition of winnable positions is similar to the concept of acceptance of a string
by a nondeterministic automaton. Thus, an NFA may be viewed as a formal model to define solitaire
games.

Example 6.14

We design a DFA to accept the language represented by the regular expression 0(0 + 1)*1 as in Example
6.2, that is, the set of all strings in {0, 1} which begin with a 0 and end with a 1. It is usually convenient to
draw our solution as in Figure 6.6. As a convention, each circle represents a state; the state a, pointed at
by the initial arrow, is the initial state. The darker circle represents the final states (state ¢). The transition
function & is represented by the labeled edges. For example, 8(a,0) = {b}. When a transition is missing,
for example on input 1 from a and on inputs 0 and 1 from c, it is assumed that all of these lead to an
implicit nonaccepting trap state, which has transitions to itself on all inputs.

The machine in Figure 6.6 is nondeterministic because from b on input 1 the machine has two choices:
stay at b or go to c.

Figure 6.7 gives an equivalent DFA, accepting the same language.

Example 6.15

The DFA in Figure 6.8 accepts the set of all strings in {0, 1}* with an even number of 1s. The corresponding
regular expression is (0¥10%1)*0*.

FIGURE 6.6 An NFA accepting 0(0 + 1)*1.

© 2004 by Taylor & Francis Group, LLC

: 0
FIGURE 6.7 A DFA accepting 0(0 + 1)*1.

0 0

FIGURE 6.8 A DFA accepting (0*10*1)*0*.

FIGURE 6.9 Numbering the quarters of a tile.

Example 6.16

As a final example, consider the special case of the tiling problem that we discussed in Section 6.2. This
version of the problem is as follows: Let k be a fixed positive integer. Given a set of unit tiles, we want to
know if they can tile any k x n area for all n. We show how to deal with the case k = 1 and leave it as an
exercise to generalize our method for larger values of k. Number the quarters of each tile as in Figure 6.9.
The given set of tiles will tile the area if we can find a sequence of the given tiles Ty, T3, . . ., Ty, such that
(1) the third quarter of T; has the same color as the first quarter of T3, and the third quarter of 75 has the
same color as the first quarter of T3, etc., and (2) the third quarter of T,, has the same color as T;. These
conditions can be easily understood as follows. The first condition states that the tiles Tj, T3, etc., can
be placed adjacent to each other along a row in that order. The second condition implies that the whole
sequence Ty T, - - - T, can be replicated any number of times. And a little thought reveals that this is all we
need to answer yes on the input. But if we cannot find such a sequence, then the answer must be no. Also
note that in the sequence no tile needs to be repeated and so the value of m is bounded by the number of
tiles in the input. Thus, we have reduced the problem to searching a finite number of possibilities and we
are done.

How is the preceding discussion related to finite automata? To see the connection, define an alphabet
consisting of the unit tiles and define a language L = {1 T, --- T,, | 1Tz - - - T,,, is a valid tiling, m > 0}.
We will now construct an NFA for the language L. It consists of states corresponding to distinct colors
contained in the tiles plus two states, one of them the start state and another state called the dead state.
The NFA makes transitions as follows: From the start state there is an e-transition to each color state, and
all states except the dead state are accepting states. When in the state corresponding to color i, suppose
it receives input tile T. If the first quarter of this tile has color i, then it moves to the color of the third
quarter of T; otherwise, it enters the dead state. The basic idea is to remember the only relevant piece

© 2004 by Taylor & Francis Group, LLC

C 1 _O 0,1 C 0,1 O

FIGURE 6.10 An NFA accepting L.

of information after processing some input. In this case, it is the third quarter color of the last tile seen.
Having constructed this NFA, the question we are asking is if the language accepted by this NFA is infinite.
There is a simple algorithm for this problem [Hopcroft and Ullman 1979].

The next three theorems show a satisfying result that all the following language classes are identical:

* The class of languages accepted by DFAs
* The class of languages accepted by NFAs
* The class of languages generated by regular expressions, as in Definition 6.8

* The class of languages generated by the right-linear, or type-3, grammars, as in Definition 6.16

Recall that this class of languages is called the regular languages (see Section 6.4).
Theorem 6.6 For each NFA, there is an equivalent DFA.

Proof An NFA might look more powerful because it can carry out its computation in parallel with its
nondeterministic branches. But because we are working with a finite number of states, we can simulate an
NFA M = (Q, £,3,90, F) byaDFA M’ = (Q’, £,%, 4, F'), where

Q' ={[S]:S<c Q)

* g9 = [{qo}].

* 3([S],a) = [S'] = [Ugesd(grra)l.

* F’is the set of all subsets of Q containing a state in F.

It can now be verified that L(M) = L(M'). O

Example 6.17

Example 6.1 contains an NFA and an equivalent DFA accepting the same language. In fact, the proof
provides an effective procedure for converting an NFA to a DFA. Although each NFA can be converted to
an equivalent DFA, the resulting DFA might be exponentially large in terms of the number of states, as
we can see from the previous procedure. This turns out to be the best thing one can do in the worst case.
Consider the language: Ly = {x:x € {0, 1}* and the kth letter from the right of x isa 1}. An NFA of k + 1
states (for k = 3) accepting Ly is given in Figure 6.10. A counting argument shows that any DFA accepting
L must have at least 2 states.

Theorem 6.7 L is generated by a right-linear grammar if it is accepted by an NFA.

Proof Let L be accepted by a right-linear grammar G = (X, N, S, P). We design an NFA M =
(Q,%,8,90, F) where Q = NU{f},q0 = S, F = {f}. To define the & function, we have C € 8(A,b) if
A — bC.Forrules A — b,8(A,b) = {f}. Obviously, L(M) = L(G).

Conversely, if L is accepted by an NFA M = (Q, X, 8, gy, F), we define an equivalent right-linear
grammar G = (X, N, S, P), where N = Q, S = q¢,q; — aq; € Nifq; € 8(g;,a), and q; — e if
qj € F. Again it is easily seen that L (M) = L(G). O

Theorem 6.8 L is generated by a regular expression if it is accepted by an NFA.

© 2004 by Taylor & Francis Group, LLC

° a o v 0 afl*y 7

(a) (b)

FIGURE 6.11 Converting an NFA to a regular expression.

O—-QO

FIGURE 6.12 The reduced NFA.

Proof (Idea) Part1.Weinductively convert a regular expression to an NFA which accepts the language
generated by the regular expression as follows.

* Regular expression € converts to ({g}, =,9,q,{q}).

* Regular expression ¢ converts to ({g}, =,9, q,9).

* Regular expression a, for each a € X converts to ({gq, f}, X,8(q,a) = {f},q,{f}).

* If o and {3 are regular expressions, converting to NFAs M, and Mg, respectively, then the regular
expression o U B converts to an NFA M, which connects M, and Mg in parallel: M has an initial
state g and all of the states and transitions of M, and Mp; by e-transitions, M goes from g to the
initial states of M, and Mp.

* If o and B are regular expressions, converting to NFAs M, and Mg, respectively, then the regular
expression a3 converts to NFA M, which connects M, and Mg sequentially: M has all of the states
and transitions of M, and Mg, with M,’s initial state as M’s initial state, e-transition from the final
states of M, to the initial state of Mg, and Mp’s final states as M’s final states.

* If a is a regular expression, converting to NFA M,,, then connecting all of the final states of M,
to its initial state with e-transitions gives a*. Union of this with the NFA for € gives the NFA
for o*.

Part 2. We now show how to convert an NFA to an equivalent regular expression. The idea used here is
based on Brzozowski and McCluskey [1963]; see also Brzozowski and Seger [1994] and Wood [1987].

Given an NFA M, expand it to M’ by adding two extra states i, the initial state of M’, and ¢, the only
final state of M’, with € transitions from i to the initial state of M and from all final states of M to t. Clearly,
L(M) = L(M').In M, remove states other than i and t one by one as follows. To remove state p, for each
triple of states g, p,q’ as shown in Figure 6.11a, add the transition as shown in Figure 6.11(b). m]

If p does not have a transition leading back to itself, then § = €. After we have considered all such
triples, delete state p and transitions related to p. Finally, we obtain Figure 6.12 and L(a) = L(M).

Apparently, DFAs cannot serve as our model for a modern computer. Many extremely simple languages
cannot be accepted by DFAs. For example, L = {xx:x € {0,1}*} cannot be accepted by a DFA. One can
prove this by counting, or using the so-called pumping lemmas; one can also prove this by arguing that
x contains more information than a finite state machine can remember. We refer the interested readers
to textbooks such as Hopcroft and Ullmann [1979], Gurari [1989], Wood [1987], and Floyd and Beigel
[1994] for traditional approaches and to Li and Vitanyi [1993] for a nontraditional approach. One can try
to generalize the DFA to allow the input head to be two way but still read only. But such machines are not
more powerful, they can be simulated by normal DFAs. The next step is apparently to add storage space
such that our machines can wrifte information in.

© 2004 by Taylor & Francis Group, LLC

[e[s [oo e [[o [+ [o[s]

tape
head

finite control

® @ @
@ ©® @

FIGURE 6.13 A Turing machine.

6.5.2 Turing Machines

In this section we will provide an alternative definition of a Turing machine to make it compatible with
our definitions of a DFA, PDA, etc. This also makes it easier to define a nondeterministic Turing machine.
But this formulation (at least the deterministic version) is essentially the same as the one presented in
Section 6.2.

A Turing machine (TM), as in Figure 6.13, consists of a finite control, an infinite tape divided into cells,
and a read/write head on the tape. We refer to the two directions on the tape as left and right. The finite
control can be in any one of a finite set Q of states, and each tape cell can contain a 0, a 1, or a blank B.
Time is discrete and the time instants are ordered 0, 1,2, ... with 0 the time at which the machine starts
its computation. At any time, the head is positioned over a particular cell, which it is said to scan. At time
0 the head is situated on a distinguished cell on the tape called the start cell, and the finite control is in the
initial state go. At time 0 all cells contain Bs, except a contiguous finite sequence of cells, extending from
the start cell to the right, which contain Os and 1s. This binary sequence is called the input.

The device can perform the following basic operations:

1. It can write an element from the tape alphabet ¥ = {0, 1, B} in the cell it scans.
2. It can shift the head one cell left or right.

Also, the device executes these operations at the rate of one operation per time unit (a step). At the
conclusion of each step, the finite control takes on a state in Q. The device operates according to a finite
set P of rules.

The rules have format (p,s,a,q) with the meaning that if the device is in state p and s is the symbol
under scan then write a ifa € {0, 1, B} or move the head accordingtoa ifa € {L, R} and the finite control
changes to state g. At some point, if the device gets into a special final state q , the device stops and accepts
the input.

If every pair of distinct quadruples differs in the first two elements, then the device is deterministic.
Otherwise, the device is nondeterministic. Not every possible combination of the first two elements has to
be in the set; in this way we permit the device to perform no operation. In this case, we say the device halts.
In this case, if the machine is not in a final state, we say that the machine rejects the input.

Definition 6.20 A Turing machineisaquintuple M = (Q, X, P, qo, q) where each of the components
has been described previously.

Given an input, a deterministic Turing machine carries out a uniquely determined succession of oper-
ations, which may or may not terminate in a finite number of steps. If it terminates, then the nonblank
symbols left on the tape are the output. Given an input, a nondeterministic Turing machine behaves
much like an NFA. One may imagine that it carries out its computation in parallel. Such a computation
may be viewed as a (possibly infinite) tree. The root of the tree is the starting configuration of the machine.

© 2004 by Taylor & Francis Group, LLC

The children of each node are all possible configurations one step away from this node. If any of the
branches terminates in the final state g 7, we say the machine accepts the input. The reader may want to test
understanding this new formulation of a Turing machine by redoing the doubling program on a Turing
machine with states and transitions (rather than a GOTO program).

A Turing machine accepts a language L if L = {w: M accepts w}. Furthermore, if M halts on all
inputs, then we say that L is Turing decidable, or recursive. The connection between a recursive language
and a decidable problem (function) should be clear. It is that function f is decidable if and only if L s
is recursive. (Readers who may have forgotten the connection between function f and the associated
language L should review Remark 6.1.)

Theorem 6.9 All of the following generalizations of Turing machines can be simulated by a one-tape
deterministic Turing machine defined in Definition 6.20.

* Larger tape alphabet &

* More work tapes

* More access points, read/write heads, on each tape
* Two- or more dimensional tapes

* Nondeterminism

Although these generalizations do not make a Turing machine compute more, they do make a Turing
machine more efficient and easier to program. Many more variants of Turing machines are studied and used
in the literature. Of all simulations in Theorem 6.9, the last one needs some comments. A nondeterministic
computation branches like a tree. When simulating such a computation for n steps, the obvious thing for
a deterministic Turing machine to do is to try all possibilities; thus, this requires up to c¢” steps, where ¢ is
the maximum number of nondeterministic choices at each step.

Example 6.18

A DFA is an extremely simple Turing machine. It just reads the input symbols from left to right. Turing
machines naturally accept more languages than DFAs can. For example, a Turing machine can accept
L = {xx:x € {0,1}*} as follows:

* Find the middle point first: it is trivial by using two heads; with one head, one can mark one symbol
at the left and then mark another on the right, and go back and forth to eventually find the middle
point.

* Match the two parts: with two heads, this is again trivial; with one head, one can again use the
marking method matching a pair of symbols each round; if the two parts match, accept the input
by entering q .

There are types of storage media other than a tape:
* A pushdown store is a semi-infinite work tape with one head such that each time the head moves to

the left, it erases the symbol scanned previously; this is a last-in first-out storage.

* A queue is a semi-infinite work tape with two heads that move only to the right, the leading head
is write-only and the trailing head is read-only; this is a first-in first-out storage.

* A counter is a pushdown store with a single-letter alphabet (except its one end, which holds a special
marker symbol). Thus, a counter can store a nonnegative integer and can perform three operations.

A queue machine can simulate a normal Turing machine, but the other two types of machines are not
powerful enough to simulate a Turing machine.

Example 6.19

When the Turing machine tape is replaced by a pushdown store, the machine is called a pushdown au-
tomaton. Pushdown automata have been thoroughly studied because they accept the class of context-free

© 2004 by Taylor & Francis Group, LLC

languages defined in Section 6.4. More precisely, it can be shown that if L is a context-free language, then
it is accepted by a PDA, and if L is accepted by a PDA, then there is a CFG generating L. Various types of
PDAs have fundamental applications in compiler design.

The PDA is more restricted than a Turing machine. For example, L = {xx:x € {0,1}*} cannot be
accepted by a PDA, but it can be accepted by a Turing machine as in Example 6.18. But a PDA is more
powerful than a DFA. For example, a PDA can accept the language L’ = {0F1¥ : k > 0} easily. It can read
the 0s and push them into the pushdown store; then, after it finishes the 0s, each time the PDA reads a 1,
it removes a 0 from the pushdown store; at the end, it accepts if the pushdown store is empty (the number
of 0s matches that of 1s). But a DFA cannot accept L', because after it has read all of the Os, it cannot
remember k when k has higher information content than the DFA’s finite control.

Two pushdown stores can be used to simulate a tape easily. For comparisons of powers of pushdown
stores, queues, counters, and tapes, see van Emde Boas [1990] and Li and Vitényi [1993].

The idea of the universal algorithm was introduced in Section 6.2. Formally, a universal Turing machine,
U, takes an encoding of a pair of parameters (M, x) as input and simulates M on input x. U accepts (M, x)
iff M accepts x. The universal Turing machines have many applications. For example, the definition of
Kolmogorov complexity [Li and Vitanyi 1993] fundamentally relies on them.

Example 6.20

Let L, = {{M,w): M accepts w}. Then L, can be accepted by a Turing machine, but it is not Turing
decidable. The proof is omitted.

Ifalanguage is Turing acceptable but not Turing decidable, we call such a language recursively enumerable
(re.). Thus, L, is r.e. but not recursive. It is easily seen that if both a language and its complement are r.e.,
then both of them are recursive. Thus, L, is not r.e.

6.5.2.1 Time and Space Complexity

With Turing machines, we can now formally define what we mean by time and space complexities. Such a
formal investigation by Hartmanis and Stearns [1965] marked the beginning of the field of computational
complexity. We refer the readers to Hartmanis’ Turing Award lecture [Hartmanis 1994] for an interesting
account of the history and the future of this field.

To define the space complexity properly (in the sublinear case), we need to slightly modify the Turing
machine of Figure 6.13. We will replace the tape containing the input by a read-only input tape and give
the Turing machine some extra work tapes.

Definition 6.21 Let M be a Turing machine. If for each n, for each input of length 1, and for each
sequence of choices of moves when M is nondeterministic, M makes at most T'(n) moves we say that M
is of time complexity T (n); similarly, if M uses at most S(n) tape cells of the work tape, we say that M is
of space complexity S(n).

Theorem 6.10 Any Turing machine using s (n) space can be simulated by a Turing machine, with just one
work tape, using s (n) space. If a language is accepted by a k-tape Turing machine running in time t(n) [space
s(n)], then it also can be accepted by another k-tape Turing machine running in time ct(n) [space cs(n)], for
any constant ¢ > 0.

To avoid writing the constant ¢ everywhere, we use the standard big- O notation: we say f(n) is O(g(n))
if there is a constant ¢ such that f(n) < cg(n) for all but finitely many n. The preceding theorem is called
the linear speedup theorem; it can be proved easily by using a larger tape alphabet to encode several cells
into one and hence compress several steps into one. It leads to the following definitions.

Definition 6.22

DTIME[#(n)] is the set of languages accepted by multitape deterministic TMs in time O(¢(n)).
NTIME(¢t(n)] is the set of languages accepted by multitape nondeterministic TMs in time O(¢(n)).

© 2004 by Taylor & Francis Group, LLC

DSPACE][s (n)] is the set of languages accepted by multitape deterministic TMs in space O (s (n)).
NSPACE][s (n)] is the set of languages accepted by multitape nondeterministic TMs in space O(s(n)).
P is the complexity class | J, ., DTIME([n°].

NP is the complexity class | .y NTIME[n¢].

PSPACE is the complexity class | J, ., DSPACE[n¢].

Example 6.21

We mentioned in Example 6.18 that L = {xx:x € {0,1}"} can be accepted by a Turing machine. The
procedure we have presented in Example 6.18 for a one-head one-tape Turing machine takes O(n?) time
because the single head must go back and forth marking and matching. With two heads, or two tapes, L
can be easily accepted in O(n) time.

It should be clear that any language that can be accepted by a DFA, an NFA, or a PDA can be accepted
by a Turing machine in O(n) time. The type-1 grammar in Definition 6.16 can be accepted by a Turing
machine in O(#n) space. Languages in P, that is, languages acceptable by Turing machines in polynomial
time, are considered as feasibly computable. It is important to point out that all generalizations of the Turing
machine, except the nondeterministic version, can all be simulated by the basic one-tape deterministic
Turing machine with at most polynomial slowdown. The class NP represents the class of languages accepted
in polynomial time by a nondeterministic Turing machine. The nondeterministic version of PSPACE turns
out to be identical to PSPACE [Savitch 1970]. The following relationships are true:

P € NP € PSPACE

Whether or not either of the inclusions is proper is one of the most fundamental open questions in
computer science and mathematics. Research in computational complexity theory centers around these
questions. To solve these problems, one can identify the hardest problems in NP or PSPACE. These topics
will be discussed in Chapter 8. We refer the interested reader to Gurari [1989], Hopcroft and Ullman
[1979], Wood [1987], and Floyd and Beigel [1994].

6.5.2.2 Other Computing Models

Over the years, many alternative computing models have been proposed. With reasonable complexity
measures, they can all be simulated by Turing machines with at most a polynomial slowdown. The reference
van Emde Boas [1990] provides a nice survey of various computing models other than Turing machines.
Because of limited space, we will discuss a few such alternatives very briefly and refer our readers to van
Emde Boas [1990] for details and references.

Random Access Machines. The random access machine (RAM) [Cook and Reckhow 1973] consists
of a finite control where a program is stored, with several arithmetic registers and an infinite collec-
tion of memory registers R[1], R[2],.... All registers have an unbounded word length. The basic in-
structions for the program are LOAD, ADD, MULT, STORE, GOTO, ACCEPT, REJECT, etc. Indirect
addressing is also used. Apparently, compared to Turing machines, this is a closer but more complicated
approximation of modern computers. There are two standard ways for measuring time complexity of the
model:

* The unit-cost RAM: in this case, each instruction takes one unit of time, no matter how big the
operands are. This measure is convenient for analyzing some algorithms such as sorting. But it is
unrealistic or even meaningless for analyzing some other algorithms, such as integer multiplication.

* The log-cost RAM: each instruction is charged for the sum of the lengths of all data manipulated im-
plicitly or explicitly by the instruction. This is a more realistic model but sometimes less convenient
to use.

Log-cost RAMs and Turing machines can simulate each other with polynomial overheads. The unit-cost
RAM might be exponentially (but unrealistically) faster when, for example, it uses its power of multiplying
two large numbers in one step.

© 2004 by Taylor & Francis Group, LLC

Pointer Machines. The pointer machines were introduced by Kolmogorov and Uspenskii [1958]
(also known as the Kolmogorov—Uspenskii machine) and by Schénhage in 1980 (also known as the
storage modification machine, see Schonhage [1980]). We informally describe the pointer machine here.
A pointer machine is similar to a RAM but differs in its memory structure. A pointer machine operates on
a storage structure called a A structure, where A is a finite alphabet of size greater than one. A A-structure
S is a finite directed graph (the Kolmogorov—Uspenskii version is an undirected graph) in which each node
has k = |A| outgoing edges, which are labeled by the k symbols in A. S has a distinguished node called
the center, which acts as a starting point for addressing, with words over A, other nodes in the structure.
The pointer machine has various instructions to redirect the pointers or edges and thus modify the storage
structure. It should be clear that Turing machines and pointer machines can simulate each other with at
most polynomial delay if we use the log-cost model as with the RAMs. There are many interesting studies
on the efficiency of the preceding simulations. We refer the reader to van Emde Boas [1990] for more
pointers on the pointer machines.

Circuits and Nonuniform Models. A Boolean circuit is a finite, labeled, directed acyclic graph. Input
nodes are nodes without ancestors; they are labeled with input variables x, .. ., x,,. The internal nodes
are labeled with functions from a finite set of Boolean operations, for example, {and, or, not} or {®}. The
number of ancestors of an internal node is precisely the number of arguments of the Boolean function that
the node is labeled with. A node without successors is an output node. The circuit is naturally evaluated
from input to output: at each node the function labeling the node is evaluated using the results of its
ancestors as arguments. Two cost measures for the circuit model are:

* Depth: the length of a longest path from an input node to an output node

* Size: the number of nodes in the circuit

These measures are applied to a family of circuits {C, : #n > 1} for a particular problem, where C, solves
the problem of size n. If C,, can be computed from # (in polynomial time), then this is a uniform measure.
Such circuit families are equivalent to Turing machines. If C, cannot be computed from #, then such
measures are nonuniform measures, and such classes of circuits are more powerful than Turing machines
because they simply can compute any function by encoding the solutions of all inputs for each n. See van
Emde Boas [1990] for more details and pointers to the literature.

Acknowledgment

We would like to thank John Tromp and the reviewers for reading the initial drafts and helping us to
improve the presentation.

Defining Terms

Algorithm A finite sequence of instructions that is supposed to solve a particular problem.

Ambiguous context-free grammar For some string of terminals the grammar has two distinct derivation
trees.

Chomsky normal form: Every rule of the context-free grammar has the form A — BC or A — a, where
A, B, and C are nonterminals and a is a terminal.

Computable or decidable function/problem: A function/problem that can be solved by an algorithm (or
equivalently, a Turing machine).

Context-free grammar: A grammar whose rules have the form A — B, where A is a nonterminal and B
is a string of nonterminals and terminals.

Context-free language: A language that can be described by some context-free grammar.

Context-sensitive grammar: A grammar whose rules have the form o — 3, where « and B are strings
of nonterminals and terminals and |a| < [B].

Context-sensitive language: A language that can be described by some context-sensitive grammar.

Derivation or parsing: An illustration of how a string of terminals is obtained from the start symbol by
successively applying the rules of the grammar.

© 2004 by Taylor & Francis Group, LLC

Finite automaton or finite-state machine: A restricted Turing machine where the head is read only and
shifts only from left to right.

(Formal) grammar: A description of some language typically consisting of a set of terminals, a set of
nonterminals with a distinguished one called the start symbol, and a set of rules (or productions)
of the form o — f3, depicting what string « of terminals and nonterminals can be rewritten as
another string B of terminals and nonterminals.

(Formal) language: A set of strings over some fixed alphabet.

Halting problem: The problem of decidingifa given program (or Turing machine) halts on a given input.

Nondeterministic Turing machine: A Turing machine that can make any one of a prescribed set of moves
on a given state and symbol read on the tape.

Partially decidable decision problem: There exists a program that always halts and outputs 1 for every
input expecting a positive answer and either halts and outputs 0 or loops forever for every input
expecting a negative answer.

Program: A sequence of instructions that is not required to terminate on every input.

Pushdown automaton: A restricted Turing machine where the tape acts as a pushdown store (or a stack).

Reduction: A computable transformation of one problem into another.

Regular expression: A description of some language using operators union, concatenation, and Kleene
closure.

Regular language: A language that can be described by some right-linear/regular grammar (or equiva-
lently by some regular expression).

Right-linear or regular grammar: A grammar whose rules have the form A — aB or A — a, where
A, B are nonterminals and a is either a terminal or the null string.

Time/space complexity: A function describing the maximum time/space required by the machine on any
input of length #.

Turing machine: A simplest formal model of computation consisting of a finite-state control and a semi-
infinite sequential tape with a read—write head. Depending on the current state and symbol read on
the tape, the machine can change its state and move the head to the left or right.

Uncomputable or undecidable function/problem: A function/problem that cannot be solved by any
algorithm (or equivalently, any Turing machine).

Universal algorithm: An algorithm that is capable of simulating any other algorithms if properly encoded.

References

Angluin, D. 1980. Finding patterns common to a set of strings. J. Comput. Syst. Sci. 21:46-62.

Brzozowski, J. and McCluskey, E., Jr. 1963. Signal flow graph techniques for sequential circuit state diagram.
IEEE Trans. Electron. Comput. EC-12(2):67-76.

Brzozowski, J. A. and Seger, C.-J. H. 1994. Asynchronous Circuits. Springer—Verlag, New York.

Chomsky, N. 1956. Three models for the description of language. IRE Trans. Inf. Theory 2(2):113—124.

Chomsky, N. 1963. Formal properties of grammars. In Handbook of Mathematical Psychology, Vol. 2,
pp- 323—418. John Wiley and Sons, New York.

Chomsky, N. and Miller, G. 1958. Finite-state languages. Information and Control 1:91-112.

Cook, S. and Reckhow, R. 1973. Time bounded random access machines. J. Comput. Syst. Sci. 7:354-375.

Davis, M. 1980. What is computation? In Mathematics Today—Twelve Informal Essays. L. Steen, ed.,
pp- 241-259. Vintage Books, New York.

Floyd, R. W. and Beigel, R. 1994. The Language of Machines: An Introduction to Computability and Formal
Languages. Computer Science Press, New York.

Gurari, E. 1989. An Introduction to the Theory of Computation. Computer Science Press, Rockville, MD.

Harel, D. 1992. Algorithmics: The Spirit of Computing. Addison—Wesley, Reading, MA.

Harrison, M. 1978. Introduction to Formal Language Theory. Addison—Wesley, Reading, MA.

Hartmanis, J. 1994. On computational complexity and the nature of computer science. Commun. ACM
37(10):37-43.

© 2004 by Taylor & Francis Group, LLC

Hartmanis, J. and Stearns, R. 1965. On the computational complexity of algorithms. Trans. Amer. Math.
Soc. 117:285-306.

Hopcroft, J. and Ullman, J. 1979. Introduction to Automata Theory, Languages and Computation. Addison—
Wesley, Reading, MA.

Jiang, T., Salomaa, A., Salomaa, K., and Yu, S. 1995. Decision problems for patterns. J. Comput. Syst. Sci.
50(1):53-63.

Kleene, S. 1956. Representation of events in nerve nets and finite automata. In Automata Studies, pp. 3—41.
Princeton University Press, Princeton, NJ.

Knuth, D., Morris, J., and Pratt, V. 1977. Fast pattern matching in strings. SIAM J. Comput. 6:323-350.

Kohavi, Z. 1978. Switching and Finite Automata Theory. McGraw—Hill, New York.

Kolmogorov, A. and Uspenskii, V. 1958. On the definition of an algorithm. Usp. Mat. Nauk. 13:3-28.

Lesk, M. 1975. LEX~a lexical analyzer generator. Tech. Rep. 39. Bell Labs. Murray Hill, NJ.

Li, M. and Vitanyi, P. 1993. An Introduction to Kolmogorov Complexity and Its Applications. Springer—Verlag,
Berlin.

McCulloch, W. and Pitts, W. 1943. A logical calculus of ideas immanent in nervous activity. Bull. Math.
Biophys. 5:115-133.

Post, E. 1943. Formal reductions of the general combinatorial decision problems. Am. J. Math. 65:197-215.

Rabin, M. and Scott, D. 1959. Finite automata and their decision problems. IBM J. Res. Dev. 3:114-125.

Robinson, R. 1991. Minsky’s small universal Turing machine. Int. J. Math. 2(5):551-562.

Salomaa, A. 1966. Two complete axiom systems for the algebra of regular events. J. ACM 13(1):158-169.

Savitch, J. 1970. Relationships between nondeterministic and deterministic tape complexities. J. Comput.
Syst. Sci. 4(2)177-192.

Schonhage, A. 1980. Storage modification machines. SIAM J. Comput. 9:490-508.

Searls, D. 1993. The computational linguistics of biological sequences. In Artificial Intelligence and Molecular
Biology. L. Hunter, ed., pp. 47-120. MIT Press, Cambridge, MA.

Turing, A. 1936. On computable numbers with an application to the Entscheidungs problem. Proc. London
Math. Soc., Ser. 2 42:230-265.

van Emde Boas, P. 1990. Machine models and simulations. In Handbook of Theoretical Computer Science.
J. van Leeuwen, ed., pp. 1-66. Elsevier/MIT Press.

Wood, D. 1987. Theory of Computation. Harper and Row.

Further Information

The fundamentals of the theory of computation, automata theory, and formal languages can be found
in many text books including Floyd and Beigel [1994], Gurari [1989], Harel [1992], Harrison [1978],
Hopcroft and Ullman [1979], and Wood [1987]. The central focus of research in this area is to understand
the relationships between the different resource complexity classes. This work is motivated in part by some
major open questions about the relationships between resources (such as time and space) and the role
of control mechanisms (nondeterminism/randomness). At the same time, new computational models
are being introduced and studied. One such recent model that has led to the resolution of a number of
interesting problems is the interactive proof systems. They exploit the power of randomness and interac-
tion. Among their applications are new ways to encrypt information as well as some unexpected results
about the difficulty of solving some difficult problems even approximately. Another new model is the
quantum computational model that incorporates quantum-mechanical effects into the basic move of a
Turing machine. There are also attempts to use molecular or cell-level interactions as the basic operations
of a computer. Yet another research direction motivated in part by the advances in hardware technol-
ogy is the study of neural networks, which model (albeit in a simplistic manner) the brain structure of
mammals. The following chapters of this volume will present state-of-the-art information about many
of these developments. The following annual conferences present the leading research work in computa-
tion theory: Association of Computer Machinery (ACM) Annual Symposium on Theory of Computing;
Institute of Electrical and Electronics Engineers (IEEE) Symposium on the Foundations of Computer
Science; IEEE Conference on Structure in Complexity Theory; International Colloquium on Automata,

© 2004 by Taylor & Francis Group, LLC

Languages and Programming; Symposium on Theoretical Aspects of Computer Science; Mathematical
Foundations of Computer Science; and Fundamentals of Computation Theory. There are many related
conferences such as Computational Learning Theory, ACM Symposium on Principles of Distributed Com-
puting, etc., where specialized computational models are studied for a specific application area. Concrete
algorithms is another closely related area in which the focus is to develop algorithms for specific prob-
lems. A number of annual conferences are devoted to this field. We conclude with a list of major journals
whose primary focus is in theory of computation: The Journal of the Association of Computer Machinery,
SIAM Journal on Computing, Journal of Computer and System Sciences, Information and Computation,
Mathematical Systems Theory, Theoretical Computer Science, Computational Complexity, Journal of Com-
plexity, Information Processing Letters, International Journal of Foundations of Computer Science, and ACTA
Informatica.

© 2004 by Taylor & Francis Group, LLC

Graph and Network
Algorithms

7.1 Introduction
7.2 Tree Traversals
7.3 Depth-First Search
The Depth-First Search Algorithm ¢ Sample Execution
* Analysis * Directed Depth-First Search * Sample Execution
* Applications of Depth-First Search
7.4 Breadth-First Search
Sample Execution * Analysis
7.5 Single-Source Shortest Paths
Dijkstra’s Algorithm * Bellman—Ford Algorithm
7.6 Minimum Spanning Trees
Prim’s Algorithm ¢ Kruskal’s Algorithm
7.7 Matchings and Network Flows
Matching Problem Definitions * Applications of Matching
Samir Khuller * Matchings and Augmenting Paths * Bipartite Matching
Algorithm * Assignment Problem ¢ B-Matching Problem

Uni it Maryland

niversity of Marylan * Network Flows ¢ Network Flow Problem Definitions
Balaji Raghavachari * Blocking Flows * Applications of Network Flow
University of Texas at Dallas 7.8 Tour and Traversal Problems

7.1 Introduction

Graphs are useful in modeling many problems from different scientific disciplines because they capture the
basic concept of objects (vertices) and relationships between objects (edges). Indeed, many optimization
problems can be formulated in graph theoretic terms. Hence, algorithms on graphs have been widely
studied. In this chapter, a few fundamental graph algorithms are described. For a more detailed treatment
of graph algorithms, the reader is referred to textbooks on graph algorithms [Cormen et al. 2001, Even
1979, Gibbons 1985, Tarjan 1983].

An undirected graph G = (V, E) is defined as a set V of vertices and a set E of edges. An edge e = (u,v)
is an unordered pair of vertices. A directed graph is defined similarly, except that its edges are ordered pairs
of vertices; that is, for a directed graph, E € V x V. The terms nodes and vertices are used interchangeably.
In this chapter, it is assumed that the graph has neither self-loops, edges of the form (v, v), nor multiple
edges connecting two given vertices. A graph is a sparse graph if |E| < |V|.

Bipartite graphs form a subclass of graphs and are defined as follows. A graph G = (V, E) is bipartite
if the vertex set V can be partitioned into two sets X and Y such that E € X x Y. In other words, each
edge of G connects a vertex in X with a vertex in Y. Such a graph is denoted by G = (X, Y, E). Because
bipartite graphs occur commonly in practice, algorithms are often specially designed for them.

© 2004 by Taylor & Francis Group, LLC

A vertex w is adjacent to another vertex v if (v,w) € E. An edge (v, w) is said to be incident on vertices
v and w. The neighbors of a vertex v are all vertices w € V such that (v,w) € E. The number of edges
incident to a vertex v is called the degree of vertex v. For a directed graph, if (v, w) is an edge, then we
say that the edge goes from v to w. The out-degree of a vertex v is the number of edges from v to other
vertices. The in-degree of v is the number of edges from other vertices to v.

A path p = [vg,vy,...,vk] from v to v is a sequence of vertices such that (v;,v;4;) is an edge in the
graph for 0 < i < k. Any edge may be used only once in a path. A cycle is a path whose end vertices
are the same, that is, vo = vi. A path is simple if all its internal vertices are distinct. A cycle is simple if
every node has exactly two edges incident to it in the cycle. A walk w = [vg,vy,...,vk] from v to vy
is a sequence of vertices such that (v;,v;1;) is an edge in the graph for 0 < i < k, in which edges and
vertices may be repeated. A walk is closed if vy = vi. A graph is connected if there is a path between every
pair of vertices. A directed graph is strongly connected if there is a path between every pair of vertices in
each direction. An acyclic, undirected graph is a forest, and a tree is a connected forest. A directed graph
without cycles is known as a directed acyclic graph (DAG). Consider a binary relation C between the
vertices of an undirected graph G such that for any two vertices u and v, uCv if and only if there is a path
in G between u and v. It can be shown that C is an equivalence relation, partitioning the vertices of G
into equivalence classes, known as the connected components of G.

There are two convenient ways of representing graphs on computers. We first discuss the adjacency list
representation. Each vertex has a linked list: there is one entry in the list for each of its adjacent vertices.
The graph is thus represented as an array of linked lists, one list for each vertex. This representation uses
O(] V| +|E|) storage, which is good for sparse graphs. Such a storage scheme allows one to scan all vertices
adjacent to a given vertex in time proportional to its degree. The second representation, the adjacency
matrix, is as follows. In this scheme, an # x n array is used to represent the graph. The [4, j] entry of this
array is 1 if the graph has an edge between vertices i and j, and 0 otherwise. This representation permits
one to test if there is an edge between any pair of vertices in constant time. Both these representation
schemes can be used in a natural way to represent directed graphs. For all algorithms in this chapter, it is
assumed that the given graph is represented by an adjacency list.

Section 7.2 discusses various types of tree traversal algorithms. Sections 7.3 and 7.4 discuss depth-first
and breadth-first search techniques. Section 7.5 discusses the single source shortest path problem. Section
7.6 discusses minimum spanning trees. Section 7.7 discusses the bipartite matching problem and the single
commodity maximum flow problem. Section 7.8 discusses some traversal problems in graphs, and the
Further Information section concludes with some pointers to current research on graph algorithms.

7.2 Tree Traversals

A tree is rooted if one of its vertices is designated as the root vertex and all edges of the tree are oriented
(directed) to point away from the root. In a rooted tree, there is a directed path from the root to any vertex
in the tree. For any directed edge (1, v) in a rooted tree, u is v’s parent and v is u’s child. The descendants of
a vertex w are all vertices in the tree (including w) that are reachable by directed paths starting at w. The
ancestors of a vertex w are those vertices for which w is a descendant. Vertices that have no children are
called leaves. A binary tree is a special case of a rooted tree in which each node has at most two children,
namely, the left child and the right child. The trees rooted at the two children of a node are called the left
subtree and right subtree.

In this section we study techniques for processing the vertices of a given binary tree in various orders. We
assume that each vertex of the binary tree is represented by a record that contains fields to hold attributes
of that vertex and two special fields left and right that point to its left and right subtree, respectively.

The three major tree traversal techniques are preorder, inorder, and postorder. These techniques are used
as procedures in many tree algorithms where the vertices of the tree have to be processed in a specific
order. In a preorder traversal, the root of any subtree has to be processed before any of its descendants. In
a postorder traversal, the root of any subtree has to be processed after all of its descendants. In an inorder
traversal, the root of a subtree is processed after all vertices in its left subtree have been processed, but

© 2004 by Taylor & Francis Group, LLC

before any of the vertices in its right subtree are processed. Preorder and postorder traversals generalize to
arbitrary rooted trees. In the example to follow, we show how postorder can be used to count the number
of descendants of each node and store the value in that node. The algorithm runs in linear time in the size
of the tree:

Postorder Algorithm. PostOrder (T):

1 if T # nil then

2 Ic < PostOrder (left[T]) .
3 rc < PostOrder (right[T]) .
4 desc[T] < Ic + rc + 1.

5 return desc[T].

6 else

7 return O.

8 end-if

end-proc

7.3 Depth-First Search

Depth-first search (DFS) is a fundamental graph searching technique [Tarjan 1972, Hopcroft and Tarjan
1973]. Similar graph searching techniques were given earlier by Tremaux (see Fraenkel [1970] and
Lucas [1882]). The structure of DFS enables efficient algorithms for many other graph problems such
as biconnectivity, triconnectivity, and planarity [Even 1979].

The algorithm first initializes all vertices of the graph as being unvisited. Processing of the graph starts
from an arbitrary vertex, known as the root vertex. Each vertex is processed when it is first discovered (also
referred to as visiting a vertex). It is first marked as visited, and its adjacency list is then scanned for unvisited
vertices. Each time an unvisited vertex is discovered, it is processed recursively by DFS. After a node’s entire
adjacency list has been explored, that invocation of the DFS procedure returns. This procedure eventually
visits all vertices that are in the same connected component of the root vertex. Once DFS terminates, if
there are still any unvisited vertices left in the graph, one of them is chosen as the root and the same
procedure is repeated.

The set of edges such that each one led to the discovery of a new vertex form a maximal forest of the
graph, known as the DFS forest; a maximal forest of a graph G is an acyclic subgraph of G such that the
addition of any other edge of G to the subgraph introduces a cycle. The algorithm keeps track of this forest
using parent pointers. In each connected component, only the root vertex has a nil parent in the DFS tree.

7.3.1 The Depth-First Search Algorithm

DEFS is illustrated using an algorithm that labels vertices with numbers 1,2, . .. in such a way that vertices
in the same component receive the same label. This labeling scheme is a useful preprocessing step in many
problems. Each time the algorithm processes a new component, it numbers its vertices with a new label.

Depth-First Search Algorithm. DFS-Connected-Component (G):

c < 0.

for all vertices v in G do
visited[v] <— false.
finished[v] < false.
parent[v] <« nil.

end-for

for all vertices vin G do
if not visited [v] then

O NN N U W~

© 2004 by Taylor & Francis Group, LLC

9 c<«c+1.
10 DFS (v, ¢).
11 end-if
12 end-for
end-proc

DEFS (v, ¢):

1 visited[v] < true.

2 component[v] < c.

3 for all vertices w in adj[v] do
4 if not visited[w] then
5 parent[w] < v.
6 DFS (w,).
7 end-if

8 end-for

9 finished[v] < true.
end-proc

7.3.2 Sample Execution

Figure 7.1 shows a graph having two connected components. DFS was started at vertex a, and the DFS
forest is shown on the right. DFS visits the vertices b, d, ¢, e, and f, in that order. DFS then continues with
vertices g, h, and i. In each case, the recursive call returns when the vertex has no more unvisited neighbors.
Edges (d,a), (¢,a), (f,d), and (i, g) are called back edges (these do not belong to the DFS forest).

7.3.3 Analysis

A vertex v is processed as soon as it is encountered, and therefore at the start of DFS (v), visited[v] is false.
Since visited[v] is set to true as soon as DFS starts execution, each vertex is visited exactly once. Depth-first
search processes each edge of the graph exactly twice, once from each of its incident vertices. Since the
algorithm spends constant time processing each edge of G, it runs in O(|V| + |E|) time.

Remark 7.1 In the following discussion, there is no loss of generality in assuming that the input graph
is connected. For a rooted DFS tree, vertices u and v are said to be related, if either u is an ancestor of v,
or vice versa.

DEFS is useful due to the special way in which the edges of the graph may be classified with respect to
a DFS tree. Notice that the DFS tree is not unique, and which edges are added to the tree depends on the

(a)
FIGURE7.1 Sample execution of DFS on a graph having two connected components: (a) graph, (b) DFS forest.

© 2004 by Taylor & Francis Group, LLC

order in which edges are explored while executing DFS. Edges of the DFS tree are known as tree edges. All
other edges of the graph are known as back edges, and it can be shown that for any edge (u,v), u and v
must be related. The graph does not have any cross edges, edges that connect two vertices that are unrelated.
This property is utilized by a DFS-based algorithm that classifies the edges of a graph into biconnected
components, maximal subgraphs that cannot be disconnected by the removal of any single vertex [Even
1979].

7.3.4 Directed Depth-First Search

The DES algorithm extends naturally to directed graphs. Each vertex stores an adjacency list of its outgoing
edges. During the processing of a vertex, first mark it as visited, and then scan its adjacency list for unvisited
neighbors. Each time an unvisited vertex is discovered, it is processed recursively. Apart from tree edges
and back edges (from vertices to their ancestors in the tree), directed graphs may also have forward edges
(from vertices to their descendants) and cross edges (between unrelated vertices). There may be a cross
edge (u,v) in the graph only if u is visited after the procedure call DES (v) has completed execution.

7.3.5 Sample Execution

A sample execution of the directed DFS algorithm is shown in Figure 7.2. DFS was started at vertex a, and
the DFS forest is shown on the right. DES visits vertices b, d, f, and ¢ in that order. DFS then returns and
continues with e, and then g. From g, vertices / and i are visited in that order. Observe that (d,a) and (i, g)
are back edges. Edges (¢, d), (e,d), and (e, f) are cross edges. There is a single forward edge (g,1).

7.3.6 Applications of Depth-First Search

Directed DFS can be used to design a linear-time algorithm that classifies the edges of a given directed
graph into strongly connected components: maximal subgraphs that have directed paths connecting any
pair of vertices in them, in each direction. The algorithm itself involves running DFS twice, once on the
original graph, and then a second time on G®, which is the graph obtained by reversing the direction of all
edges in G. During the second DFS, we are able to obtain all of the strongly connected components. The
proof of this algorithm is somewhat subtle, and the reader is referred to Cormen et al. [2001] for details.

Checking if a graph has a cycle can be done in linear time using DFS. A graph has a cycle if and only if
there exists a back edge relative to any of its depth-first search trees. A directed graph that does not have
any cycles is known as a directed acyclic graph. DAGs are useful in modeling precedence constraints in
scheduling problems, where nodes denote jobs/tasks, and a directed edge from u to v denotes the constraint
that job u must be completed before job v can begin execution. Many problems on DAGs can be solved
efficiently using dynamic programming.

A useful concept in DAGs is that of a topological order: a linear ordering of the vertices that is consistent
with the partial order defined by the edges of the DAG. In other words, the vertices can be labeled with

(a)

FIGURE 7.2 Sample execution of DFS on a directed graph: (a) graph, (b) DFS forest.

© 2004 by Taylor & Francis Group, LLC

distinct integers in therange [1 . . . | V|] such that if there is a directed edge from a vertex labeled 7 to a vertex
labeled j, theni < j. The vertices of a given DAG can be ordered topologically in linear time by a suitable
modification of the DFS algorithm. We keep a counter whose initial value is | V|. As each vertex is marked
finished, we assign the counter value as its topological number and decrement the counter. Observe that
there will be no back edges; and that for all edges (4, v), v will be marked finished before u. Thus, the
topological number of v will be higher than that of u. Topological sort has applications in diverse areas
such as project management, scheduling, and circuit evaluation.

7.4 Breadth-First Search

Breadth-first search (BFS) is another natural way of searching a graph. The search starts at a root vertex r.
Vertices are added to a queue as they are discovered, and processed in (first-in—first-out) (FIFO) order.
Initially, all vertices are marked as unvisited, and the queue consists of only the root vertex. The algorithm
repeatedly removes the vertex at the front of the queue, and scans its neighbors in the graph. Any neighbor
not visited is added to the end of the queue. This process is repeated until the queue is empty. All vertices
in the same connected component as the root are scanned and the algorithm outputs a spanning tree of
this component. This tree, known as a breadth-first tree, is made up of the edges that led to the discovery
of new vertices. The algorithm labels each vertex v by d[v], the distance (length of a shortest path) of v
from the root vertex, and stores the BFS tree in the array p, using parent pointers. Vertices can be parti-
tioned into levels based on their distance from the root. Observe that edges not in the BFS tree always go
either between vertices in the same level, or between vertices in adjacent levels. This property is often useful.

Breadth-First Search Algorithm. BFS-Distance (G,r):

MakeEmptyQueue (Q) .

for all vertices v in G do
visited [v] <« false.
dlvl <« oo.
pvl <« mnil.

end-for

visited [r] < true.

dir] < 0.

Enqueue (Q, r1).

© J 0 U W N R

\\¢]

10 whilenot Empty (Q) do

11 v < Dequeue (Q).

12 for all vertices w in adjlv] do
13 if not visited [w] then

14 visited [w] <« true.

15 pwl <« v.

16 dlwl <« dvl + 1.

17 Enqueue (Q, w).

18 end-if

19 end-for
20 end-while
end-proc

7.4.1 Sample Execution

Figure 7.3 shows a connected graph on which BFS was run with vertex a as the root. When a is processed,
vertices b, d, and ¢ are added to the queue. When b is processed, nothing is done since all its neighbors
have been visited. When d is processed, e and f are added to the queue. Finally ¢, e, and f are processed.

© 2004 by Taylor & Francis Group, LLC

(a) e (b)
FIGURE 7.3 Sample execution of BFS on a graph: (a) graph, (b) BES tree.

7.4.2 Analysis

There is no loss of generality in assuming that the graph G is connected, since the algorithm can be repeated
in each connected component, similar to the DFS algorithm. The algorithm processes each vertex exactly
once, and each edge exactly twice. It spends a constant amount of time in processing each edge. Hence,
the algorithm runs in O(|V| + |E|) time.

7.5 Single-Source Shortest Paths

A natural problem that often arises in practice is to compute the shortest paths from a specified node to all
other nodes in an undirected graph. BFS solves this problem if all edges in the graph have the same length.
Consider the more general case when each edge is given an arbitrary, non-negative length, and one needs
to calculate a shortest length path from the root vertex to all other nodes of the graph, where the length of
a path is defined to be the sum of the lengths of its edges. The distance between two nodes is the length of
a shortest path between them.

7.5.1 Dijkstra’s Algorithm

Dijkstra’s algorithm [Dijkstra 1959] provides an efficient solution to this problem. For each vertex v, the
algorithm maintains an upper bound to the distance from the root to vertex v in d [v]; initially d [v] is set to
infinity for all vertices except the root. The algorithm maintains a set S of vertices with the property that for
eachvertexv € S,d[v]isthelength ofashortest path fromtheroottov.Foreachvertexuin V — S, thealgo-
rithm maintains d [u], the shortest known distance from the root to u that goes entirely within S, except for
the last edge. It selectsa vertex 1 in V — S of minimum d[u], adds it to S, and updates the distance estimates
to the other verticesin V — S.In this update step, it checks to see if there is a shorter path to any vertexin V—S§
from the root that goes through u. Only the distance estimates of vertices that are adjacent to u are updated
in this step. Because the primary operation is the selection of a vertex with minimum distance estimate, a
priority queue is used to maintain the d-values of vertices. The priority queue should be able to handle a
DecreaseKey operation to update the d-value in each iteration. The next algorithm implements Dijkstra’s
algorithm.

Dijkstra’s Algorithm. Dijkstra-Shortest Paths (G,r):

1 for all vertices v in G do
2 visited [v] <« false.

3 dlv] <« o0.

4 plvl <« mnil.

5 end-for

6 dlr] <« 0.

7 BuildPQ (H, d).

8 whilenot Empty (H) do

© 2004 by Taylor & Francis Group, LLC

9 u <« DeleteMin (H).

10 visited [u] <« true.
11 for all vertices v in adj[u] do
12 Relax (u, v).

13 end-for
14 end-while
end-proc

Relax (u, v)

1 ifnot visited[v] and d([v] > d[u]l + w(u, v) then
2 dlivl <« dlu]l + w(u, v).

3 plvl <« u.

4 DecreaseKey (H, v, d[v]).

5 end-if

end-proc

7.5.1.1 Sample Execution

Figure 7.4 shows a sample execution of the algorithm. The column titled Iter specifies the number of
iterations that the algorithm has executed through the while loop in step 8. In iteration 0, the initial values
of the distance estimates are co. In each subsequent line of the table, the column marked u shows the
vertex that was chosen in step 9 of the algorithm, and the change to the distance estimates at the end of
that iteration of the while loop. In the first iteration, vertex r was chosen, after that a was chosen because
it had the minimum distance label among the unvisited vertices, and so on. The distance labels of the
unvisited neighbors of the visited vertex are updated in each iteration.

7.5.1.2 Analysis

The running time of the algorithm depends on the data structure that is used to implement the priority
queue H. The algorithm performs | V| DELETEMIN operations and, at most, | E | DECREASEKEY operations.
Ifabinary heap is used to update the records of any given vertex, each of these operations runsin O (log | V)
time. There is no loss of generality in assuming that the graph is connected. Hence, the algorithm runs
in O(|E|log|V]). If a Fibonacci heap is used to implement the priority queue, the running time of the
algorithm is O(|E| + | V|log|V]). Although the Fibonacci heap gives the best asymptotic running time,
the binary heap implementation is likely to give better running times for most practical instances.

7.5.2 Bellman-Ford Algorithm

The shortest path algorithm described earlier directly generalizes to directed graphs, but it does not work
correctly if the graph has edges of negative length. For graphs that have edges of negative length, but no

; . Iter | u | dla] | dlb] | dlc] | dld] | dle]
0 J— oo) oo oo oo
a 2 b 1 |3 9 o o o
4 2 a |3 5 4 10 -
1 7 6 3 c |3 5 4 7 -
¢ 4 b 3 5 4 7 9
1 5 d |3 5 4 7 8
c 3 4 6 e |3 5 4 7 8

FIGURE 7.4 Dijkstra’s shortest path algorithm.

© 2004 by Taylor & Francis Group, LLC

cycles of negative length, there is a different algorithm due to Bellman [1958] and Ford and Fulkerson
[1962] that solves the single source shortest paths problem in O(| V|| E|) time.

The key to understanding this algorithm is the RELAX operation applied to an edge. In a single scan of
the edges, we execute the RELAX operation on each edge. We then repeat the step | V| — 1 times. No special
data structures are required to implement this algorithm, and the proof relies on the fact that a shortest
path is simple and contains at most | V| — 1 edges (see Cormen et al. [2001] for a proof).

This problem also finds applications in finding a feasible solution to a system of linear equations, where
each equation specifies a bound on the difference of two variables. Each constraint is modeled by an edge
in a suitably defined directed graph. Such systems of equations arise in real-time applications.

7.6 Minimum Spanning Trees

The following fundamental problem arises in network design. A set of sites needs to be connected by a
network. This problem has a natural formulation in graph-theoretic terms. Each site is represented by a
vertex. Edges between vertices represent a potential link connecting the corresponding nodes. Each edge is
given a nonnegative cost corresponding to the cost of constructing thatlink. A tree isa minimal network that
connectsaset of nodes. The cost of a tree is the sum of the costs of its edges. A minimum-cost tree connecting
the nodes of a given graph is called a minimum-cost spanning tree, or simply a minimum spanning tree.

The problem of computing a minimum spanning tree (MST) arises in many areas, and as a subproblem
in combinatorial and geometric problems. MSTs can be computed efficiently using algorithms that are
greedy in nature, and there are several different algorithms for finding an MST. One of the first algorithms
was due to Boruvka [1926]. The two algorithms that are popularly known as Prim’s algorithm and Kruskal’s
algorithm are described here. (Prim’s algorithm was first discovered by Jarnik [1930].)

7.6.1 Prim’s Algorithm

Prim’s [1957] algorithm for finding an MST of a given graph is one of the oldest algorithms to solve the
problem. The basic idea is to start from a single vertex and gradually grow a tree, which eventually spans
the entire graph. At each step, the algorithm has a tree that covers a set S of vertices, and looks for a good
edge that may be used to extend the tree to include a vertex that is currently not in the tree. All edges that
go from a vertex in S to a vertex in V — S are candidate edges. The algorithm selects a minimum-cost edge
from these candidate edges and adds it to the current tree, thereby adding another vertex to S.

As in the case of Dijkstra’s algorithm, each vertex u € V — S can attach itself to only one vertex in the tree
(so that cycles are not generated in the solution). Because the algorithm always chooses a minimum-cost
edge, it needs to maintain a minimum-cost edge that connects u to some vertex in S as the candidate edge
for including u in the tree. A priority queue of vertices is used to select a vertex in V' — S that is incident
to a minimum-cost candidate edge.

Prim’s Algorithm. Prim-MST (G, r):

1 for all vertices v in G do

2 visited [v] < false.

3 dlv] <« oo.

4 plvl <« mnil.

5 end-for

6 d[r] « 0.
7 BuildPQ (H, d).
8 whilenot Empty (H) do
9 u < DeleteMin (H).
0

1 visited [u] <« true.
11 for all vertices v in adjlu]ldo
12 if not visited [v] and d[v] > w(u,v) then

© 2004 by Taylor & Francis Group, LLC

13 dlvl <« w(u,v).

14 plvl < u.

15 DecreaseKey (H, v, d[v]).
16 end-if

17 end-for

18 end-while

end-proc

7.6.1.1 Analysis

First observe the similarity between Prim’s and Dijkstra’s algorithms. Both algorithms start building the
tree from a single vertex and grow it by adding one vertex at a time. The only difference is the rule for
deciding when the current label is updated for vertices outside the tree. Both algorithms have the same
structure and therefore have similar running times. Prim’s algorithm runs in O(|E|log|V]) time if the
priority queue is implemented using binary heaps, and it runs in O(|E |+ |V|log | V) if the priority queue
is implemented using Fibonacci heaps.

7.6.2 Kruskal’s Algorithm

Kruskal’s [1956] algorithm for finding an MST of a given graph is another classical algorithm for the
problem, and is also greedy in nature. Unlike Prim’s algorithm, which grows a single tree, Kruskal’s
algorithm grows a forest. First, the edges of the graph are sorted in nondecreasing order of their costs. The
algorithm starts with the empty spanning forest (no edges). The edges of the graph are scanned in sorted
order, and if the addition of the current edge does not generate a cycle in the current forest, it is added to
the forest. The main test at each step is: does the current edge connect two vertices in the same connected
component? Eventually, the algorithm adds | V| — 1 edges to make a spanning tree in the graph.

The main data structure needed to implement the algorithm is for the maintenance of connected com-
ponents, to ensure that the algorithm does not add an edge between two nodes in the same connected
component. An abstract version of this problem is known as the Union-Find problem for a collection of
disjoint sets. Efficient algorithms are known for this problem, where an arbitrary sequence of UNION and
FIND operations can be implemented to run in almost linear time [Cormen et al. 2001, Tarjan 1983].

Kruskal’s Algorithm. Kruskal-MST (G):

1T <« o.

2 for all vertices v in G do

3 Makeset (v) .

4 Sort the edges of G by nondecreasing order of costs.
5 for all edges e¢ = (u,v) in G in sorted order do

6 if Find (u) # Find (v) then

7 T <~ TU (u,v).

8 Union (u, v).

9 end-proc

7.6.2.1 Analysis

The running time of the algorithm is dominated by step 4 of the algorithm in which the edges of the graph are
sorted by nondecreasing order of their costs. This takes O(|E | log | E|) [which isalso O(]E|log| V)] time
using an efficient sorting algorithm such as Heap-sort. Kruskal’s algorithm runs faster in the following
special cases: if the edges are presorted, if the edge costs are within a small range, or if the number of
different edge costs is bounded by a constant. In all of these cases, the edges can be sorted in linear time,
and the algorithm runs in near-linear time, O(|E| o (|E |, |V])), where a(m, n) is the inverse Ackermann
function [Tarjan 1983].

© 2004 by Taylor & Francis Group, LLC

Remark 7.2 The MST problem can be generalized to directed graphs. The equivalent of trees in directed
graphsare called arborescences or branchings; and because edges have directions, they are rooted spanning
trees. An incoming branching has the property that every vertex has a unique path to the root. An outgoing
branching has the property that there is a unique path from the root to each vertex in the graph. The input
is a directed graph with arbitrary costs on the edges and a root vertex r. The output is a minimum-cost
branching rooted at r. The algorithms discussed in this section for finding minimum spanning trees do
not directly extend to the problem of finding optimal branchings. There are efficient algorithms that run
in O(|E|+|V|log|V]) time using Fibonacci heaps for finding minimum-cost branchings [Gibbons 1985,
Gabow et al. 1986]. These algorithms are based on techniques for weighted matroid intersection [Lawler
1976]. Almost linear-time deterministic algorithms for the MST problem in undirected graphs are also
known [Fredman and Tarjan 1987].

7.7 Matchings and Network Flows

Networks are important both for electronic communication and for transporting goods. The problem of
efficiently moving entities (such as bits, people, or products) from one place to another in an underlying
network is modeled by the network flow problem. The problem plays a central role in the fields of
operations research and computer science, and much emphasis has been placed on the design of efficient
algorithms for solving it. Many of the basic algorithms studied earlier in this chapter play an important
role in developing various implementations for network flow algorithms.

First the matching problem, which is a special case of the flow problem, is introduced. Then the
assignment problem, which is a generalization of the matching problem to the weighted case, is studied.
Finally, the network flow problem is introduced and algorithms for solving it are outlined.

The maximum matching problem is studied here in detail only for bipartite graphs. Although this
restricts the class of graphs, the same principles are used to design polynomial time algorithms for graphs
that are not necessarily bipartite. The algorithms for general graphs are complex due to the presence of
structures called blossoms, and the reader is referred to Papadimitriou and Steiglitz [1982, Chapter 10], or
Tarjan [1983, Chapter 9] for a detailed treatment of how blossoms are handled. Edmonds (see Even [1979])
gave the first algorithm to solve the matching problem in polynomial time. Micali and Vazirani [1980]
obtained an O(/[V]|E|) algorithm for nonbipartite matching by extending the algorithm by Hopcroft
and Karp [1973] for the bipartite case.

7.7.1 Matching Problem Definitions

Given a graph G = (V, E), a matching M is a subset of the edges such that no two edges in M share a
common vertex. In other words, the problem is that of finding a set of independent edges that have no
incident vertices in common. The cardinality of M is usually referred to as its size.

The following terms are defined with respect to a matching M. The edges in M are called matched edges
and edges not in M are called free edges. Likewise, a vertex is a matched vertex if it is incident to a matched
edge. A free vertex is one that is not matched. The mate of a matched vertex v is its neighbor w that is at
the other end of the matched edge incident to v. A matching is called perfect if all vertices of the graph
are matched in it. The objective of the maximum matching problem is to maximize | M|, the size of the
matching. If the edges of the graph have weights, then the weight of a matching is defined to be the sum
of the weights of the edges in the matching. A path p = [vy,v,,...,vk] is called an alternating path if
the edges (v2j-1,v2), j = 1,2,..., are free and the edges (v2j,v2j11), j = 1,2,..., are matched. An
augmenting path p = [v,v,,...,v,] is an alternating path in which both v, and vy are free vertices.
Observe that an augmenting path is defined with respect to a specific matching. The symmetric difference
of a matching M and an augmenting path P, M @ P, is defined to be (M — P) U (P — M). The operation
can be generalized to the case when P is any subset of the edges.

© 2004 by Taylor & Francis Group, LLC

7.7.2 Applications of Matching

Matchings are the underlying basis for many optimization problems. Problems of assigning workers to
jobs can be naturally modeled as a bipartite matching problem. Other applications include assigning a
collection of jobs with precedence constraints to two processors, such that the total execution time is
minimized [Lawler 1976]. Other applications arise in chemistry, in determining structure of chemical
bonds, matching moving objects based on a sequence of photographs, and localization of objects in space
after obtaining information from multiple sensors [Ahuja et al. 1993].

7.7.3 Matchings and Augmenting Paths

The following theorem gives necessary and sufficient conditions for the existence of a perfect matching in
a bipartite graph.

Theorem 7.1 (Hall’s Theorem.) A bipartite graph G = (X, Y, E) with | X| = |Y| has a perfect match-
ing if and only if VS C X, |N(S)| > |S|, where N(S) C Y is the set of vertices that are neighbors of some
vertex in S.

Although Theorem 7.1 captures exactly the conditions under which a given bipartite graph has a
perfect matching, it does not lead directly to an algorithm for finding maximum matchings. The following
lemma shows how an augmenting path with respect to a given matching can be used to increase the size
of a matching. An efficient algorithm that uses augmenting paths to construct a maximum matching
incrementally is described later.

Lemma 7.1 Let P be the edges on an augmenting path p = [vy,...,vk] with respect to a matching M.
Then M' = M @ P is a matching of cardinality | M| + 1.

Proof 7.1 Since P is an augmenting path, both v; and vy are free vertices in M. The number of free
edges in P is one more than the number of matched edges. The symmetric difference operator replaces
the matched edges of M in P by the free edges in P. Hence, the size of the resulting matching, | M|, is one
more than | M]|. O

The following theorem provides a necessary and sufficient condition for a given matching M to be a
maximum matching.

Theorem 7.2 A matching M in a graph G is a maximum matching if and only if there is no augmenting
path in G with respect to M.

Proof 7.2 If there is an augmenting path with respect to M, then M cannot be a maximum matching,
since by Lemma 7.1 there is a matching whose size is larger than that of M. To prove the converse we
show that if there is no augmenting path with respect to M, then M is a maximum matching. Suppose
that there is a matching M’ such that |M’| > | M|. Consider the set of edges M @& M'. These edges form a
subgraph in G. Each vertex in this subgraph has degree at most two, since each node has at most one edge
from each matching incident to it. Hence, each connected component of this subgraph is either a path or
a simple cycle. For each cycle, the number of edges of M is the same as the number of edges of M. Since
|M'| > |M], one of the paths must have more edges from M’ than from M. This path is an augmenting
path in G with respect to the matching M, contradicting the assumption that there were no augmenting
paths with respect to M. O

© 2004 by Taylor & Francis Group, LLC

7.7.4 Bipartite Matching Algorithm

7.7.4.1 High-Level Description

The algorithm starts with the empty matching M = J, and augments the matching in phases. In each
phase, an augmenting path with respect to the current matching M is found, and it is used to increase the
size of the matching. An augmenting path, if one exists, can be found in O(|E|) time, using a procedure
similar to breadth-first search described in Section 7.4.

The search for an augmenting path proceeds from the free vertices. At each step when a vertex in X is
processed, all its unvisited neighbors are also searched. When a matched vertex in Y is considered, only its
matched neighbor is searched. This search proceeds along a subgraph referred to as the Hungarian tree.

Initially, all free vertices in X are placed in a queue that holds vertices that are yet to be processed.
The vertices are removed one by one from the queue and processed as follows. In turn, when vertex v is
removed from the queue, the edges incident to it are scanned. If it has a neighbor in the vertex set Y that
is free, then the search for an augmenting path is successful; procedure AUGMENT is called to update the
matching, and the algorithm proceeds to its next phase. Otherwise, add the mates of all of the matched
neighbors of v to the queue if they have never been added to the queue, and continue the search for an
augmenting path. If the algorithm empties the queue without finding an augmenting path, its current
matching is a maximum matching and it terminates.

The main data structure that the algorithm uses consists of the arrays mate and free. The array mate
is used to represent the current matching. For a matched vertex v € G, mate[v] denotes the matched
neighbor of vertex v. For v € X, free[v] is a vertex in Y that is adjacent to v and is free. If no such vertex
exists, then free[v] = 0.

Bipartite Matching Algorithm. Bipartite Matching (G = (X, Y, E)):

1 for all vertices v in G do

2 mate[v] <« O.

3 end-for

4 found <« false.

5 whilenot found do

6 Initialize.

7 MakeEmptyQueue (Q) .

8 for all vertices x € X do
9 if mate[x] = 0 then

10 Enqueue (Q,x) .

11 label[x] <« 0.

12 endif

13 end-for

14 done <« false.

15 while not done andnot Empty (Q) do
16 x < Dequeue (Q).

17 if free[x] # 0 then

18 Augment (x) .

19 done <« true.

20 else

21 for all edges (x,x) € A do
22 if label[x’] = 0 then
23 label [X’] <« x.

24 Enqueue (Q,x’).
25 end-if

26 end-for

© 2004 by Taylor & Francis Group, LLC

27 end-if

28 if Empty (Q) then
29 found <« true.
30 end-if
31 end-while
32 end-while
end-proc
Initialize :
1 for all vertices x € X do
2 free[x] < 0.
3 end-for
4 A <.
5 for all edges (x,y) € E do
6 if mate[y] = 0 then free[x] <« y
7 elseif mate[y] # x then A < A U (x, mately]) .
8 end-if
9 end-for
end-proc
Augment(x):
1 if label[x] = 0 then
2 mate [x] <« free[x] .
mate [free [x]] <« x
else

free [label [x]] <« mate [x]
mate [x] < free[x]

mate [free [x]] <« x

8 Augment (label [x])

9 end-if

end-proc

N o U W

7.7.4.2 Sample Execution

Figure 7.5 shows a sample execution of the matching algorithm. We start with a partial matching and show
the structure of the resulting Hungarian tree. An augmenting path from vertex b to vertex u is found by
the algorithm.

7.7.4.3 Analysis

If there are augmenting paths with respect to the current matching, the algorithm will find at least one
of them. Hence, when the algorithm terminates, the graph has no augmenting paths with respect to the
current matching and the current matching is optimal. Each iteration of the main while loop of the
algorithm runs in O(|E|) time. The construction of the auxiliary graph A and computation of the array
free also take O(|E|) time. In each iteration, the size of the matching increases by one and thus there are,
at most, min(| X|, |Y|) iterations of the while loop. Therefore, the algorithm solves the matching problem
for bipartite graphs in time O (min(|X]|, |Y|)|E|). Hopcroft and Karp [1973] showed how to improve the
running time by finding a maximal set of shortest disjoint augmenting paths in a single phase in O(|E|)
time. They also proved that the algorithm runs in only O (/] V) phases.

7.7.5 Assignment Problem

We now introduce the assignment problem, which is that of finding a maximum-weight matching in
a given bipartite graph in which edges are given nonnegative weights. There is no loss of generality in

© 2004 by Taylor & Francis Group, LLC

c w
"""" free edge
d X
matched edge
e y
Initial graph (some vertices already matched)
f z
v c w d
P mma kbbbl - @
-
- - - - .
b «” —
< s ~ ~ - - °
. PP f
~ ~ <‘ -
—*.
z e S <
..
Ne———— - -0
x a u

FIGURE 7.5 Sample execution of matching algorithm.

assuming that the graph is complete, since zero-weight edges may be added between pairs of vertices
that are nonadjacent in the original graph without affecting the weight of a maximum-weight matching.
The minimum-weight perfect matching can be reduced to the maximum-weight matching problem as
follows: choose a constant M that is larger than the weight of any edge. Assign each edge a new weight
of w'(e) = M — w(e). Observe that maximum-weight matchings with the new weight function are
minimum-weight perfect matchings with the original weights. We restrict our attention to the study of
the maximum-weight matching problem for bipartite graphs. Similar techniques have been used to solve
the maximum-weight matching problem in arbitrary graphs (see Lawler [1976] and Papadimitriou and
Steiglitz [1982]).

The input is a complete bipartite graph G = (X, Y, X x Y) and each edge e has a nonnegative weight
of w(e). The following algorithm, known as the Hungarian method, was first given by Kuhn [1955]. The
method can be viewed as a primal-dual algorithm in the linear programming framework [Papadimitriou
and Steiglitz 1982]. No knowledge of linear programming is assumed here.

A feasible vertex-labeling € is defined to be a mapping from the set of vertices in G to the real numbers
such that for each edge (x;, y;) the following condition holds:

xi) +L(yj) = w(xi, ;)

The following can be verified to be a feasible vertex labeling. For each vertex y; € Y, set £(y;) to be 0;
and for each vertex x; € X, set £(x;) to be the maximum weight of an edge incident to x;,

L(y;) =0,

£(x;) = maxw(xi, y;)
i

The equality subgraph, G, is defined to be the subgraph of G, which includes all vertices of G but only
those edges (x;, y;) that have weights such that

Lxi) +L(y;) = wixisyj)

© 2004 by Taylor & Francis Group, LLC

The connection between equality subgraphs and maximum-weighted matchings is established by the
following theorem.

Theorem 7.3 If the equality subgraph, G, has a perfect matching, M*, then M* is a maximum-weight
matching in G.

Proof 7.3 Let M* be a perfect matching in G,. By definition,

w(M) =Y wle)= Y _)

e M* veXUY

Let M be any perfect matching in G. Then,

w(M) =Y wle) < >) =w(M)

eeM veXUY

Hence, M* is a maximum-weight perfect matching. a

7.7.5.1 High-Level Description

Theorem 7.3 is the basis of the algorithm for finding a maximum-weight matching in a complete bipartite
graph. The algorithm starts with a feasible labeling, then computes the equality subgraph and a maximum
cardinality matching in this subgraph. If the matching found is perfect, by Theorem 7.3 the matching must
be a maximum-weight matching and the algorithm returns it as its output. Otherwise, more edges need to
be added to the equality subgraph by revising the vertex labels. The revision keeps edges from the current
matching in the equality subgraph. After more edges are added to the equality subgraph, the algorithm
grows the Hungarian trees further. Either the size of the matching increases because an augmenting path
is found, or a new vertex is added to the Hungarian tree. In the former case, the current phase terminates
and the algorithm starts a new phase, because the matching size has increased. In the latter case, new nodes
are added to the Hungarian tree. In # phases, the tree includes all of the nodes, and therefore there are at
most 7 phases before the size of the matching increases.

It is now described in more detail how the labels are updated and which edges are added to the equality
subgraph G,. Suppose M is a maximum matching in G, found by the algorithm. Hungarian trees are
grown from all the free vertices in X. Vertices of X (including the free vertices) that are encountered
in the search are added to a set S, and vertices of Y that are encountered in the search are added to a
set T.Let S = X — Sand T = Y — T. Figure 7.6 illustrates the structure of the sets S and T. Matched
edges are shown in bold; the other edges are the edges in G,. Observe that there are no edges in the
equality subgraph from S to T, although there may be edges from T to S. Let us choose & to be the
smallest value such that some edge of G — G, enters the equality subgraph. The algorithm now revises
the labels as follows. Decrease all of the labels of vertices in S by 8 and increase the labels of the vertices
in T by 8. This ensures that edges in the matching continue to stay in the equality subgraph. Edges
in G (not in G,) that go from vertices in S to vertices in T are candidate edges to enter the equality
subgraph, since one label is decreasing and the other is unchanged. Suppose this edge goes from x € S
to y € T.If y is free, then an augmenting path has been found. On the other hand, if y is matched, the
Hungarian tree is grown by moving y to T and its matched neighbor to S, and the process of revising
labels continues.

7.7.6 B-Matching Problem

The B-Matching problem is a generalization of the matching problem. In its simplest form, given an integer
b > 1, the problem is to find a subgraph H of a given graph G such that the degree of each vertex is exactly
equal to b in H (such a subgraph is called a b-regular subgraph). The problem can also be formulated
as an optimization problem by seeking a subgraph H with most edges, with the degree of each vertex to

© 2004 by Taylor & Francis Group, LLC

i

-8

——
><“S

FIGURE 7.6 Sets S and T as maintained by the algorithm. Only edges in G, are shown.

be at most b in H. Several generalizations are possible, including different degree bounds at each vertex,
degrees of some vertices unspecified, and edges with weights. All variations of the B-Matching problem
can be solved using the techniques for solving the Matching problem.

In this section, we show how the problem can be solved for the unweighted B-Matching problem in
which each vertex v is given a degree bound of b[v], and the objective is to find a subgraph H in which
the degree of each vertex v is exactly equal to b[v]. From the given graph G, construct a new graph G,
as follows. For each vertex v € G, introduce b[v] vertices in G}, namely vy, vy, ..., vp[y]. For each edge
e = (u,v) in G, add two new vertices e, and e, to G, along with the edge (e,, e,). In addition, add edges
between v; and e,, for 1 <i < b[v] (and between u; and e,, for 1 < j < b[u]). We now show that there
is a natural one-to-one correspondence between B-Matchings in G and perfect matchings in G.

Given a B-Matching H in G, we show how to construct a perfect matching in G;. For each edge
(u,v) € H, match e, to the next available u;, and e, to the next available v;. Since u is incident to
exactly b[u] edges in H, there are exactly enough nodes uy, 1, . .. u[,) in the previous step. For all edges
e = (u,v) € G — H, we match e, and e, . It can be verified that this yields a perfect matching in Gy,.

We now show how to construct a B-Matching in G, given a perfect matching in G;. Let M be a perfect
matching in Gy. For each edge e = (u,v) € G, if (e,,e,) € M, then do not include the edge e in
the B-Matching. Otherwise, ¢, is matched to some u; and e, is matched to some v; in M. In this case,
we include e in our B-Matching. Since there are exactly b[u] vertices u, uy, . . . up[,], each such vertex
introduces an edge into the B-Matching, and therefore the degree of u is exactly b[u]. Therefore, we get a
B-Matchingin G.

7.7.7 Network Flows

A number of polynomial time flow algorithms have been developed over the past two decades. The reader
is referred to Ahuja et al. [1993] for a detailed account of the historical development of the various
flow methods. Cormen et al. [2001] review the preflow push method in detail; and to complement their
coverage, an implementation of the blocking flow technique of Malhotra et al. [1978] is discussed here.

© 2004 by Taylor & Francis Group, LLC

7.7.8 Network Flow Problem Definitions
First the network flow problem and its basic terminology are defined.

Flow network: A flow network G = (V, E) is a directed graph, with two specially marked nodes,
namely, the source s and the sink t. There is a capacity function ¢ : E — R™ that maps edges to
positive real numbers.

Max-flow problem: A flow function f : E — R maps edges to real numbers. For an edge e = (u,v),
f (e) refers to the flow on edge e, which is also called the net flow from vertex u to vertex v. This
notation is extended to sets of vertices as follows: If X and Y are sets of vertices then f(X,Y) is
definedtobe Y~ >° Jev f(x,y). A flow function is required to satisfy the following constraints:

* Capacity constraint. For all edges e, f(e) < c(e).
* Skew symmetry constraint. For an edge e = (u,v), f(u,v) = — f(v,u).

* Flow conservation. For all verticesu € V — {s, t}, ZVEV f(u,v) =0.

The capacity constraint says that the total flow on an edge does not exceed its capacity. The skew symmetry
condition says that the flow on an edge is the negative of the flow in the reverse direction. The flow
conservation constraint says that the total net flow out of any vertex other than the source and sink is zero.
The value of the flow is defined as
1f1=> fls,v)

veV

In other wordes, it is the net flow out of the source. In the maximum-flow problem, the objective is to find
a flow function that satisfies the three constraints, and also maximizes the total flow value | f|.

Remark 7.3 This formulation of the network flow problem is powerful enough to capture generaliza-
tions where there are many sources and sinks (single commodity flow), and where both vertices and edges
have capacity constraints, etc.

First, the notion of cuts is defined, and the max-flow min-cut theorem is introduced. Then, residual
networks, layered networks, and the concept of blocking flows are introduced. Finally, an efficient algo-
rithm for finding a blocking flow is described.

An s—t cut of the graph is a partitioning of the vertex set V into two sets S and T = V — S such that
s e Sandt e T.If f isa flow, then the net flow across the cut is defined as f(S, T'). The capacity of the
cut is similarly defined as ¢(S, T) = Y > yey €(%, 7). The net flow across a cut may include negative
net flows between vertices, but the capacity of the cut includes only nonnegative values, that is, only the
capacities of edges from S to T

Using the flow conservation principle, it can be shown that the net flow across an s—t cut is exactly
the flow value | f|. By the capacity constraint, the flow across the cut cannot exceed the capacity of the
cut. Thus, the value of the maximum flow is no greater than the capacity of a minimum s—t cut. The
well-known max-flow min-cut theorem [Elias et al. 1956, Ford and Fulkerson 1962] proves that the two
numbers are actually equal. In other words, if f* is a maximum flow, then there is some cut (X, X) such
that | f*| = ¢(X, X). The reader is referred to Cormen et al. [2001] and Tarjan [1983] for further details.

The residual capacity of a flow f is defined to be a function on vertex pairs given by ¢'(v,w) =
c(v,w) — f(v,w). The residual capacity of an edge (v,w), ¢’(v,w), is the number of additional units of
flow that can be pushed from v to w without violating the capacity constraints. An edge e is saturated if
c(e) = f(e),thatis, ifits residual capacity, ¢’ (e), is zero. The residual graph G g () fora flow f is the graph
with vertex set V, source and sink s and ¢, respectively, and those edges (v, w) for which ¢’(v,w) > 0.

An augmenting path for f is a path P from s to ¢ in Gg(f). The residual capacity of P, denoted by
¢’(P), is the minimum value of ¢’(v, w) over all edges (v, w) in the path P. The flow can be increased by
¢’(P), by increasing the flow on each edge of P by this amount. Whenever f(v,w) is changed, f(w,v) is
also correspondingly changed to maintain skew symmetry.

© 2004 by Taylor & Francis Group, LLC

Most flow algorithms are based on the concept of augmenting paths pioneered by Ford and Fulkerson
[1956]. They start with an initial zero flow and augment the flow in stages. In each stage, a residual graph
Gr(f) with respect to the current flow function f is constructed and an augmenting path in Gg(f)
is found to increase the value of the flow. Flow is increased along this path until an edge in this path is
saturated. The algorithms iteratively keep increasing the flow until there are no more augmenting paths
in Gg(f), and return the final flow f as their output.

The following lemma is fundamental in understanding the basic strategy behind these algorithms.

Lemma 7.2 Let f beany flow and f* a maximum flow in G, and let G g(f) be the residual graph for f.
The value of a maximum flow in Gr(f)is | f*| — | f|.

Proof 7.4 Let f’ be any flow in Gr(f). Define f + f’ to be the flow defined by the flow function
fv,w) 4+ f'(v,w) for each edge (v,w). Observe that f + f’ is a feasible flow in G of value | f| + | f'|.
Since f* is the maximum flow possible in G, | f'| < | f*| — | f|. Similarly define f* — f to be a flow in
GRr(f) defined by f*(v,w) — f(v,w) in each edge (v,w), and this is a feasible flow in G(f) of value
| f*] — | f1, and it is a maximum flow in Gg(f). a

Blocking flow: A flow f is a blocking flow if every path in G from s to ¢ contains a saturated edge.
It is important to note that a blocking flow is not necessarily a maximum flow. There may be
augmenting paths that increase the flow on some edges and decrease the flow on other edges (by
increasing the flow in the reverse direction).

Layered networks: Let G (f) be the residual graph with respect to a flow f. The level of a vertex v
is the length of a shortest path (using the least number of edges) from s to v in Gg(f). The level
graph L for f is the subgraph of G g(f) containing vertices reachable from s and only the edges
(v, w) such that dist(s,w) = 1 + dist(s, v). L contains all shortest-length augmenting paths and
can be constructed in O(|E|) time.

The Maximum Flow algorithm proposed by Dinitz [1970] starts with the zero flow, and iteratively
increases the flow by augmenting it with a blocking flow in Gr(f) until ¢ is not reachable from s in
GRr(f). At each step the current flow is replaced by the sum of the current flow and the blocking flow.
Since in each iteration the shortest distance from s to ¢ in the residual graph increases, and the shortest
path from s to ¢ is at most | V| — 1, this gives an upper bound on the number of iterations of the algorithm.

An algorithm to find a blocking flow that runs in O(|V|?) time is described here, and this yields an
O(|V]?) max-flow algorithm. There are anumber of O(|V'|?) blocking flow algorithms available [Karzanov
1974, Malhotra et al. 1978, Tarjan 1983], some of which are described in detail in Tarjan [1983].

7.7.9 Blocking Flows

Dinitz’s algorithm to find a blocking flow runs in O(|V||E|) time [Dinitz 1970]. The main step is to find
paths from the source to the sink and saturate them by pushing as much flow as possible on these paths.
Every time the flow is increased by pushing more flow along an augmenting path, one of the edges on this
path becomes saturated. It takes O(]V|) time to compute the amount of flow that can be pushed on the
path. Since there are | E | edges, this yields an upper bound of O(| V|| E|) steps on the running time of the
algorithm.

Malhotra—Kumar-Maheshwari Blocking Flow Algorithm. The algorithm has a current flow function
f and its corresponding residual graph G g(f). Define for each node v € Gg(f), a quantity tp[v] that
specifies its maximum throughput, that is, either the sum of the capacities of the incoming arcs or the sum
of the capacities of the outgoing arcs, whichever is smaller. tp[v] represents the maximum flow that could
pass through v in any feasible blocking flow in the residual graph. Vertices for which the throughput is
zero are deleted from Gg(f).

The algorithm selects a vertex u for which its throughput is a minimum among all vertices with nonzero
throughput. It then greedily pushes a flow of tp[u] from u toward ¢, level by level in the layered residual

© 2004 by Taylor & Francis Group, LLC

graph. This can be done by creating a queue, which initially contains # and which is assigned the task of
pushing tp[u] out of it. In each step, the vertex v at the front of the queue is removed, and the arcs going
out of v are scanned one at a time, and as much flow as possible is pushed out of them until v’s allocated
flow has been pushed out. For each arc (v,w) that the algorithm pushed flow through, it updates the
residual capacity of the arc (v, w) and places w on a queue (if it is not already there) and increments the net
incoming flow into w. Also, tp[v] is reduced by the amount of flow that was sent through it now. The flow
finally reaches t, and the algorithm never comes across a vertex that has incoming flow that exceeds its
outgoing capacity since u was chosen as a vertex with the smallest throughput. The preceding idea is again
repeated to pull a flow of tp[u] from the source s to . Combining the two steps yields a flow of tp[u]
from s to f in the residual network that goes through u. The flow f is augmented by this amount. Vertex
u is deleted from the residual graph, along with any other vertices that have zero throughput.

This procedure is repeated until all vertices are deleted from the residual graph. The algorithm has a
blocking flow at this stage since at least one vertex is saturated in every path from s to t. In the algorithm,
whenever an edge is saturated, it may be deleted from the residual graph. Since the algorithm uses a greedy
strategy to send flows, at most O(|E|) time is spent when an edge is saturated. When finding flow paths
to push #p[u], there are at most n times, one each per vertex, when the algorithm pushes a flow that
does not saturate the corresponding edge. After this step, u is deleted from the residual graph. Hence, in
O(|E| + |V|?) = O(]V]?) steps, the algorithm to compute blocking flows terminates.

Goldberg and Tarjan [1988] proposed a preflow push method that runsin O(|V||E|log |V |?/|E|) time
without explicitly finding a blocking flow at each step.

7.7.10 Applications of Network Flow

There are numerous applications of the Maximum Flow algorithm in scheduling problems of various
kinds. See Ahuja et al. [1993] for further details.

7.8 Tour and Traversal Problems

There are many applications for finding certain kinds of paths and tours in graphs. We briefly discuss some
of the basic problems.

The traveling salesman problem (TSP) is that of finding a shortest tour that visits all of the vertices
in a given graph with weights on the edges. It has received considerable attention in the literature [Lawler
et al. 1985]. The problem is known to be computationally intractable (NP-hard). Several heuristics are
known to solve practical instances. Considerable progress has also been made for finding optimal solutions
for graphs with a few thousand vertices.

One of the first graph-theoretic problems to be studied, the Euler tour problem asks for the existence
of a closed walk in a given connected graph that traverses each edge exactly once. Euler proved that such
a closed walk exists if and only if each vertex has even degree [Gibbons 1985]. Such a graph is known as
an Eulerian graph. Given an Eulerian graph, a Euler tour in it can be computed using DFS in linear time.

Given an edge-weighted graph, the Chinese postman problem is that of finding a shortest closed walk
that traverses each edge at least once. Although the problem sounds very similar to the TSP problem, it
can be solved optimally in polynomial time by reducing it to the matching problem [Ahuja et al. 1993].

Acknowledgments

Samir Khuller’s research is supported by National Science Foundation (NSF) Awards CCR-9820965 and
CCR-0113192.

Balaji Raghavachari’s research is supported by the National Science Foundation under Grant CCR-
9820902.

© 2004 by Taylor & Francis Group, LLC

Defining Terms

Assignment problem: That of finding a perfect matching of maximum (or minimum) total weight.

Augmenting path: An alternating path that can be used to augment (increase) the size of a matching.

Biconnected graph: A graph that cannot be disconnected by the removal of any single vertex.

Bipartite graph: A graph in which the vertex set can be partitioned into two sets X and Y, such that each
edge connects a node in X with anodein Y.

Blocking flow: A flow function in which any directed path from s to t contains a saturated edge.

Branching: A spanning tree in a rooted graph, such that the root has a path to each vertex.

Chinese postman problem: Asks for a minimum length tour that traverses each edge at least once.

Connected: A graph in which there is a path between each pair of vertices.

Cycle: A path in which the start and end vertices of the path are identical.

Degree: The number of edges incident to a vertex in a graph.

DES forest: A rooted forest formed by depth-first search.

Directed acyclic graph: A directed graph with no cycles.

Eulerian graph: A graph that has an Euler tour.

Euler tour problem: Asks for a traversal of the edges that visits each edge exactly once.

Forest: An acyclic graph.

Leaves: Vertices of degree one in a tree.

Matching: A subset of edges that do not share a common vertex.

Minimum spanning tree: A spanning tree of minimum total weight.

Network flow: An assignment of flow values to the edges of a graph that satisfies flow conservation, skew
symmetry, and capacity constraints.

Path: An ordered list of edges such that any two consecutive edges are incident to a common vertex.

Perfect matching: A matching in which every node is matched by an edge to another node.

Sparse graph: A graph in which |E| < V|2

s—t cut: A partitioning of the vertex set into S and T such thats € Sand ¢ € T.

Strongly connected: A directed graph in which there is a directed path in each direction between each
pair of vertices.

Topological order: A linear ordering of the edges of a DAG such that every edge in the graph goes from
left to right.

Traveling salesman problem: Asks for a minimum length tour of a graph that visits all of the vertices
exactly once.

Tree: An acyclic graph with | V| — 1 edges.

Walk: An ordered sequence of edges (in which edges could repeat) such that any two consecutive edges
are incident to a common vertex.

References

Ahuja, R.K., Magnanti, T., and Orlin, J. 1993. Network Flows. Prentice Hall, Upper Saddle River, NJ.

Bellman, R. 1958. On a routing problem. Q. App. Math., 16(1):87-90.

Boruvka, O. 1926. O jistem problemu minimalnim. Praca Moravske Prirodovedecke Spolecnosti, 3:37-58
(in Czech).

Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein, C. 2001. Introduction to Algorithms, second edition.
The MIT Press.

DiBattista, G., Eades, P., Tamassia, R., and Tollis, I. 1994. Annotated bibliography on graph drawing
algorithms. Comput. Geom.: Theory Applic., 4:235-282.

Dijkstra, E.W. 1959. A note on two problems in connexion with graphs. Numerische Mathematik, 1:269—
271.

Dinitz, E.A. 1970. Algorithm for solution of a problem of maximum flow in a network with power
estimation. Soviet Math. Dokl., 11:1277-1280.

© 2004 by Taylor & Francis Group, LLC

Elias, P, Feinstein, A., and Shannon, C.E. 1956. Note on maximum flow through a network. IRE Trans.
Inf. Theory, IT-2:117-119.

Even, S. 1979. Graph Algorithms. Computer Science Press, Potomac, MD.

Ford, L.R., Jr. and Fulkerson, D.R. 1956. Maximal flow through a network. Can. J. Math., 8:399—404.

Ford, L.R., Jr. and Fulkerson, D.R. 1962. Flows in Networks. Princeton University Press.

Fraenkel, A.S. 1970. Economic traversal of labyrinths. Math. Mag., 43:125-130.

Fredman, M. and Tarjan, R.E. 1987. Fibonacci heaps and their uses in improved network optimization
algorithms. J. ACM, 34(3):596—615.

Gabow, H.N., Galil, Z., Spencer, T., and Tarjan, R.E. 1986. Efficient algorithms for finding minimum
spanning trees in undirected and directed graphs. Combinatorica, 6(2):109-122.

Gibbons, A.M. 1985. Algorithmic Graph Theory. Cambridge University Press, New York.

Goldberg, A.V. and Tarjan, R.E. 1988. A new approach to the maximum-flow problem. J. ACM,
35:921-940.

Hochbaum, D.S., Ed. 1996. Approximation Algorithms for NP-Hand Problems. PWS Publishing.

Hopcroft, J.E. and Karp, R.M. 1973. An 12 algorithm for maximum matching in bipartite graphs. SIAM
J. Comput., 2(4):225-231.

Hopcroft, J.E. and Tarjan, R.E. 1973. Efficient algorithms for graph manipulation. Commun. ACM, 16:372—
378.

Jarnik, V. 1930. O jistem problemu minimalnim. Praca Moravske Prirodovedecke Spolecnosti, 6:57—63
(in Czech).

Karzanov, A.V. 1974. Determining the maximal flow in a network by the method of preflows. Soviet Math.
Dokl., 15:434-437.

Kruskal, J.B., 1956. On the shortest spanning subtree of a graph and the traveling salesman problem. Proc.
Am. Math. Soc., 7:48-50.

Kuhn, H.W. 1955. The Hungarian method for the assignment problem. Nav. Res. Logistics Q., 2:83-98.

Lawler, E.L. 1976. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and Winston.

Lawler, E.L., Lenstra,].K., Rinnooy Kan, A.H.G., and Shmoys, D.B. 1985. The Traveling Salesman Problem:
A Guided Tour of Combinatorial Optimization. Wiley, New York.

Lucas, E. 1882. Recreations Mathematiques. Paris.

Malhotra, V.M., Kumar, M.P., and Maheshwari, S.N. 1978. An O(|V|?) algorithm for finding maximum
flows in networks. Inf. Process. Lett., 7:277-278.

Micali, S. and Vazirani, V.V. 1980. An O(/]V]|E|) algorithm for finding maximum matching in general
graphs, pp. 17-27. In Proc. 21st Annu. Symp. Found. Comput. Sci.

Papadimitriou, C.H. and Steiglitz, K. 1982. Combinatorial Optimization: Algorithms and Complexity. Pren-
tice Hall, Upper Saddle River, NJ.

Prim, R.C. 1957. Shortest connection networks and some generalizations. Bell Sys. Tech.]., 36:1389-1401.

Tarjan, R.E. 1972. Depth first search and linear graph algorithms. SIAM J. Comput., 1:146-160.

Tarjan, R.E. 1983. Data Structures and Network Algorithms. STAM.

Further Information

The area of graph algorithms continues to be a very active field of research. There are several journals
and conferences that discuss advances in the field. Here we name a partial list of some of the important
meetings: ACM Symposium on Theory of Computing, IEEE Conference on Foundations of Computer
Science, ACM-SIAM Symposium on Discrete Algorithms, the International Colloquium on Automata,
Languages and Programming, and the European Symposium on Algorithms. There are many other regional
algorithms/theory conferences that carry research papers on graph algorithms. The journals that carry
articles on current research in graph algorithms are Journal of the ACM, SIAM Journal on Computing,
SIAM Journal on Discrete Mathematics, Journal of Algorithms, Algorithmica, Journal of Computer and
System Sciences, Information and Computation, Information Processing Letters, and Theoretical Computer
Science.

© 2004 by Taylor & Francis Group, LLC

To find more details about some of the graph algorithms described in this chapter we refer the reader
to the books by Cormen et al. [2001], Even [1979], and Tarjan [1983]. For network flows and matching,
a more detailed survey regarding various approaches can be found in Tarjan [1983]. Papadimitriou and
Steiglitz [1982] discuss the solution of many combinatorial optimization problems using a primal-dual
framework.

Current research on graph algorithms focuses on approximation algorithms [Hochbaum 1996], dynamic
algorithms, and in the area of graph layout and drawing [DiBattista et al. 1994].

© 2004 by Taylor & Francis Group, LLC

Algebraic Algorithms

8.1 Introduction

8.2 Matrix Computations and Approximation of
Polynomial Zeros
Products of Vectors and Matrices, Convolution of Vectors
* Some Computations Related to Matrix Multiplication
* Gaussian Elimination Algorithm * Singular Linear Systems of
Equations * Sparse Linear Systems (Including Banded
Systems), Direct and Iterative Solution Algorithms ¢ Dense and
Structured Matrices and Linear Systems * Parallel Matrix
Computations * Rational Matrix Computations, Computations
in Finite Fields and Semirings ¢ Matrix Eigenvalues and
Singular Values Problems * Approximating Polynomial Zeros
* Fast Fourier Transform and Fast Polynomial Arithmetic

Angel Diaz 8.3 Systems of Nonlinear Equations and Other

Applications
IBM Research Resultant Methods * Grébner Bases
Erich Kaltéfen 8.4 Polynomial Factorization
North Carolina State University Polynomials in a Single Variable over a Finite Field
* Polynomials in a Single Variable over Fields
Victor Y. Pan of Characteristic Zero * Polynomials in Two Variables
Lehman College, CUNY * Polynomials in Many Variables

8.1 Introduction

The title’s subject is the algorithmic approach to algebra: arithmetic with numbers, polynomials, matrices,
differential polynomials, such as y” + (1/2 + x*/4)y, truncated series, and algebraic sets, i.e., quantified
expressions such as 3x e R: x* + p - x + g = 0, which describes a subset of the two-dimensional space
with coordinates p and q for which the given quartic equation has a real root. Algorithms that mani-
pulate such objects are the backbone of modern symbolic mathematics software such as the Maple and
Mathematica systems, to name but two among many useful systems. This chapter restricts itself to algo-
rithms in four areas: linear matrix algebra, root finding of univariate polynomials, solution of systems of
nonlinear algebraic equations, and polynomial factorization.

8.2 Matrix Computations and Approximation
of Polynomial Zeros

This section covers several major algebraic and numerical problems of scientific and engineering computing
that are usually solved numerically, with rounding off or chopping the input and computed values to a
fixed number of bits that fit the computer precision (Sections 8.2 and 8.3 are devoted to some fundamental

© 2004 by Taylor & Francis Group, LLC

infinite precision symbolic computations, and within Section 8.2 we comment on the infinite precision
techniques for some matrix computations). We also study approximation of polynomial zeros, which is
an important, fundamental, as well as very popular subject. In our presentation, we will very briefly list
the major subtopics of our huge subject and will give some pointers to the references. We will include brief
coverage of the topics of the algorithm design and analysis, regarding the complexity of matrix computation
and of approximating polynomial zeros. The reader may find further material on these subjects in the
survey articles by Pan [1984a, 1991, 1992a, 1995b] and in the books by Bini and Pan [1994, 1996].

8.2.1 Products of Vectors and Matrices, Convolution of Vectors

An m x n matrix A = (a;, i = 0,1,...,m—1; j = 0,1,...,n — 1) is a two-dimensional array,
whose (i, j) entry is (A);; = a;,j. A is a column vector of dimension m if n = 1 and is a row vector of
dimension # if m = 1. Transposition, hereafter, indicated by the superscript T, transforms a row vector
vT =[v,...,v,—1] into a column vector v = [vg,...,v,_1] .
T _ T _ T . . .
For two vectors, u' = (ug,...,Upy—1)andv ' = (vg,...,v,_1)", their outer product is an m x n matrix,

W:uvT:[wi,j,izo,...,m—l;j:O,...,n—l]

where w;; = u;v;, foralli and j, and their convolution vector is said to equal
k
T
w=uov=Wo...,Wnin-2) , W = E UiVi_;
—

where u; =v; = 0,fori > m, j > n;infact, w is the coefficient vector of the product of two polynomials,
n—1
u(x) = Z u;x' and v(x) = Zv,—xl
i i=0

having coefficient vectors u and v, respectively.
If m = n, the scalar value

n—1
T, _ T, _ _
vu=uv=uwy+uyv,+- - +u,_1vy_1 = Ui
s

is called the inner (dot, or scalar) product of u and v.

The straightforward algorithms compute the inner and outer products of u and v and their convolution
vector by using 2n — 1, mn, and mn + (m — 1)(n — 1) = 2mn — m — n + 1 arithmetic operations
(hereafter, referred to as ops), respectively.

These upper bounds on the numbers of ops for computing the inner and outer products are sharp, that s,
cannot be decreased, for the general pair of the input vectors u and v, whereas (see, e.g., Biniand Pan [1994])
one may apply the fast fourier transform (FFT) in order to compute the convolution vector u o v much faster,
for larger m and n; namely, it suffices to use 4.5K log K + 2K ops, for K = 2k k= [log(m + n + 1)].
(Here and hereafter, all logarithms are binary unless specified otherwise.)

If A= (a;j)and B = (b;;) are m x nand n X p matrices, respectively,and v = (vy) isa p-dimensional
vector, then the straightforward algorithms compute the vector

p—1
T .
w=DBv=Wy...,Wn_1)" wizg bijvi, i=0,...,n—1
j=0

by using (2p — 1)n ops (sharp bound), and compute the matrix product
AB=(Wi,i=0,....m—1k=0,...,p—1)

by using 2mnp — mp ops, which is 2n*> — n? if m = n = p. The latter upper bound is not sharp: the
subroutines for n x n matrix multiplication on some modern computers, such as CRAY and Connection

© 2004 by Taylor & Francis Group, LLC

Machines, rely on algorithms using O(n%*#!) ops, and some nonpractical algorithms involve O (n237¢)

[Bini and Pan 1994, Golub and Van Loan 1989].

In the special case, where all of the input entries and components are bounded integers having short
binary representation, each of the preceding operations with vectors and matrices can be reduced to a
single multiplication of 2 longer integers, by means of the techniques of binary segmentation (cf. Pan
[1984b, Section 40], Pan [1991], Pan [1992b], or Bini and Pan [1994, Examples 36.1-36.3]).

For an n x n matrix B and an n-dimensional vector v, one may compute the vectors B'v, i =
1,2,...,k — 1, which define Krylov sequence or Krylov matrix

ops

[Biv,i=0,1,...,k—1]

used as a basis of several computations. The straightforward algorithm takes on (2n — 1)nk ops, which is
order n? if k is of order n. An alternative algorithm first computes the matrix powers

B%, B, BS,...,B*, s =/logk]—1
and then the products of n x n matrices B? by n x 2" matrices, fori =0,1,...,s,

B v
B? (v, Bv) = (B%*, B*)
B* (v, Bv, B*v, B®v) = (B*v, B%v, B%v, B"v)

The last step completes the evaluation of the Krylov sequence, which amounts to 2s matrix multiplications,
for k = n, and, therefore, can be performed (in theory) in O(n*%’® log k) ops.

8.2.2 Some Computations Related to Matrix Multiplication

Several fundamental matrix computations can be ultimately reduced to relatively few [that is, to a constant
number, or, say, to O(logn)] n X n matrix multiplications. These computations include the evaluation of
det A, the determinant of an n X n matrix A; of its inverse A~' (where A is nonsingular, that is, where
det A # 0); of the coefficients of its characteristic polynomial, c ,(x) = det(xI — A), x denoting a scalar
variable and I being the n x 7 identity matrix, which has ones on its diagonal and zeros elsewhere; of its
minimal polynomial, m4(x); of its rank, rank A; of the solution vector x = A~'v to a nonsingular linear
system of equations, Ax = v;ofvarious orthogonal and triangular factorizations of A;and of a submatrix of A
having the maximal rank, as well as some fundamental computations with singular matrices. Consequently,
all of these operations can be performed by using (theoretically) O(n*37%) ops (cf. Bini and Pan [1994,
Chap. 2]). The idea is to represent the input matrix A as a block matrix and, operating with its blocks
(rather than with its entries), to apply fast matrix multiplication algorithms. In practice, due to various
other considerations (accounting, in particular, for the overhead constants hidden in the O notation, for
the memory space requirements, and particularly, for numerical stability problems), these computations
are based either on the straightforward algorithm for matrix multiplication or on other methods allowing
order n° arithmetic operations (cf. Golub and Van Loan [1989]). Many block matrix algorithms supporting
the (nonpractical) estimate O(n>37%), however, become practically important for parallel computations
(see Section 8.2.7).

In the next six sections, we will more closely consider the solution of a linear system of equations,
Av = b, which is the most frequent operation in practice of scientific and engineering computing and is
highly important theoretically. We will partition the known solution methods depending on whether the
coefficient matrix A is dense and unstructured, sparse, or dense and structured.

© 2004 by Taylor & Francis Group, LLC

8.2.3 Gaussian Elimination Algorithm

The solution of a nonsingular linear system Ax = v uses only about n* ops if the system is lower (or
upper) triangular, that is, if all subdiagonal (or superdiagonal) entries of A vanish. For example (cf. Pan
[1992b]), let n = 3,

X1 +2x— x3=3
—2x;, —2x3 = —10
—6.X3 =—18

Compute x3 = 3 from the last equation, substitute into the previous ones, and arrive at a triangular
system of n — 1 = 2 equations. In n — 1 (in our case, 2) such recursive substitution steps, we compute the
solution.

The triangular case is itself important; furthermore, every nonsingular linear system is reduced to two
triangular ones by means of forward elimination of the variables, which essentially amounts to computing
the P LU factorization of the input matrix A, that is, to computing two lower triangular matrices L and
UT (where L has unit values on its diagonal) and a permutation matrix P such that A = PLU. [A
permutation matrix P is filled with zeros and ones and has exactly one nonzero entry in each row and in
each column; in particular, this implies that P” = P~!. Pu has the same components as u but written in
a distinct (fixed) order, for any vector u]. As soon as the latter factorization is available, we may compute
x = A™! v by solving two triangular systems, that is, at first, Ly = PTv, in y, and then Ux = y, in
x. Computing the factorization (elimination stage) is more costly than the subsequent back substitution
stage, the latter involving about 212 ops. The Gaussian classical algorithm for elimination requires about
213 /3 ops, not counting some comparisons, generally required in order to ensure appropriate pivoting, also
called elimination ordering. Pivoting enables us to avoid divisions by small values, which could have caused
numerical stability problems. Theoretically, one may employ fast matrix multiplication and compute the
matrices P, L,and U in O(n*37®) ops [Aho et al. 1974] [and then compute the vectors y and x in O(n?)
ops]. Pivoting can be dropped for some important classes of linear systems, notably, for positive definite
and for diagonally dominant systems [Golub and Van Loan 1989, Pan 1991, 1992b, Bini and Pan 1994].

We refer the reader to Golub and Van Loan [1989, pp. 82—83], or Pan [1992b, p. 794], on sensitivity
of the solution to the input and roundoff errors in numerical computing. The output errors grow with
the condition number of A, represented by || A||||A™!|| for an appropriate matrix norm or by the ratio
of maximum and minimum singular values of A. Except for ill-conditioned linear systems Ax = v, for
which the condition number of A is very large, a rough initial approximation to the solution can be rapidly
refined (cf. Golub and Van Loan [1989]) via the iterative improvement algorithm, as soon as we know P
and rough approximations to the matrices L and U of the P LU factorization of A. Then b correct bits of
each output value can be computed in (b + n)n? ops as b — 0.

8.2.4 Singular Linear Systems of Equations

If the matrix A is singular (in particular, if A is rectangular), then the linear system Ax = v is either
overdetermined, that is, has no solution, or underdetermined, that is, has infinitely many solution vectors.
All of them can be represented as {xy + y}, where x; is a fixed solution vector and y is a vector from the
null space of A, {y : Ay = 0}, thatis, y is a solution of the homogeneous linear system Ay = 0. (The null
space of an n X n matrix A is a linear space of the dimension n-rank A.) A vector xy and a basis for the
null-space of A can be computed by using O(n%37°) ops if A is an n x n matrix or by using O (mn'73¢)
opsif Aisanm x norn X m matrix and if m > n (cf. Bini and Pan [1994]).

For an overdetermined linear system Ax = v, having no solution, one may compute a vector x
minimizing the norm of the residual vector, ||[v — Ax||. It is most customary to minimize the Euclidean
norm,

1/2
||u||=<§j|ui|2) , u=v—Ax=(u)
i

© 2004 by Taylor & Francis Group, LLC

This defines a least-squares solution, which is relatively easy to compute both practically and theoretically
(O(n*37%) ops suffice in theory) (cf. Bini and Pan [1994] and Golub and Van Loan [1989]).

8.2.5 Sparse Linear Systems (Including Banded Systems),
Direct and Iterative Solution Algorithms

A matrix is sparse if it is filled mostly with zeros, say, if its all nonzero entries lie on 3 or 5 of its diagonals. In
many important applications, in particular, solving partial and ordinary differential equations (PDEs and
ODE:s), one has to solve linear systems whose matrix is sparse and where, moreover, the disposition of its
nonzero entries has a certain structure. Then, memory space and computation time can be dramatically
decreased (say, from order #n” to order nlogn words of memory and from #> to n*? or nlogn ops)
by using some special data structures and special solution methods. The methods are either direct, that
is, are modifications of Gaussian elimination with some special policies of elimination ordering that
preserve sparsity during the computation (notably, Markowitz rule and nested dissection [George and Liu
1981, Gilbert and Tarjan 1987, Lipton et al. 1979, Pan 1993]), or various iterative algorithms. The latter
algorithms rely either on computing Krylov sequences [Saad 1995] or on multilevel or multigrid techniques
[McCormick 1987, Pan and Reif 1992], specialized for solving linear systems that arise from discretization
of PDEs. An important particular class of sparse linear systems is formed by banded linear systems with
n x n coefficient matrices A = (a; ;) wherea; ; = 0ifi — j > g or j —i > h, for g + h being much less
than n. For banded linear systems, the nested dissection methods are known under the name of block cyclic
reduction methods and are highly effective, but Pan et al. [1995] give some alternative algorithms, too.
Some special techniques for computation of Krylov sequences for sparse and other special matrices A can
be found in Pan [1995a]; according to these techniques, Krylov sequence is recovered from the solution
of the associated linear system (I — A) x = v, which is solved fast in the case of a special matrix A.

8.2.6 Dense and Structured Matrices and Linear Systems

Many dense n x n matrices are defined by O(n), say, by less than 2n, parameters and can be multiplied by a
vector by using O(n log 1) or O(nlog® n) ops. Such matrices arise in numerous applications (to signal and
image processing, coding, algebraic computation, PDEs, integral equations, particle simulation, Markov
chains, and many others). Animportant example is given by nn x n Toeplitzmatrices T = (&; j), t;,; = tiy1,j+1
fori,j =0,1,...,n— 1. Such a matrix can be represented by 21 — 1 entries of its first row and first column
or by 2n — 1 entries of its first and last columns. The product Tv is defined by vector convolution,
and its computation uses O(nlogn) ops. Other major examples are given by Hankel matrices (obtained
by reflecting the row or column sets of Toeplitz matrices), circulant (which are a subclass of Toeplitz
matrices), and Bezout, Sylvester, Vandermonde, and Cauchy matrices. The known solution algorithms for
linear systems with such dense structured coefficient matrices use from order 1 log # to order nlog® 1 ops.
These properties and algorithms are extended via associating some linear operators of displacement and
scaling to some more general classes of matrices and linear systems. We refer the reader to Bini and Pan
[1994] for many details and further bibliography.

8.2.7 Parallel Matrix Computations

Algorithms for matrix multiplication are particularly suitable for parallel implementation; one may exploit
natural association of processors to rows and/or columns of matrices or to their blocks, particularly, in
the implementation of matrix multiplication on loosely coupled multiprocessors (cf. Golub and Van Loan
[1989] and Quinn [1994]). This motivated particular attention to and rapid progress in devising effective
parallel algorithms for block matrix computations. The complexity of parallel computations is usually
represented by the computational and communication time and the number of processors involved;
decreasing all of these parameters, we face a tradeoff; the product of time and processor bounds (called
potential work of parallel algorithms) cannot usually be made substantially smaller than the sequential
time bound for the solution. This follows because, according to a variant of Brent’s scheduling principle, a

© 2004 by Taylor & Francis Group, LLC

single processor can simulate the work of s processors in time O(s). The usual goal of designing a parallel
algorithm is in decreasing its parallel time bound (ideally, to a constant, logarithmic or polylogarithmic
level, relative to n) and keeping its work bound at the level of the record sequential time bound for
the same computational problem (within constant, logarithmic, or at worst polylog factors). This goal
has been easily achieved for matrix and vector multiplications, but turned out to be nontrivial for linear
system solving, inversion, and some other related computational problems. The recent solution for general
matrices [Kaltofen and Pan 1991, 1992] relies on computation of a Krylov sequence and the coefficients of
the minimum polynomial of a matrix, by using randomization and auxiliary computations with structured
matrices (see the details in Bini and Pan [1994]).

8.2.8 Rational Matrix Computations, Computations
in Finite Fields and Semirings

Rational algebraic computations with matrices are performed for a rational input given with no errors,
and the computations are also performed with no errors. The precision of computing can be bounded by
reducing the computations modulo one or several fixed primes or prime powers. At the end, the exact
output values z = p/q are recovered from z mod M (if M is sufficiently large relative to p and q) by using
the continued fraction approximation algorithm, which is the Euclidean algorithm applied to integers (cf.
Pan [1991, 1992a], and Bini and Pan [1994, Section 3 of Chap. 3]). If the output z is known to be an integer
lying between —m and m and if M > 2m, then z is recovered from z mod M as follows:

zmod M ifzmod M < m
7=
—M+zmod M otherwise

The reduction modulo a prime p may turn a nonsingular matrix A and a nonsingular linear system Ax = v
into singular ones, but this is proved to occur only with a low probability for a random choice of the prime
p in a fixed sufficiently large interval (see Bini and Pan [1994, Section 3 of Chap. 4]). To compute the
output values z modulo M for a large M, one may first compute them modulo several relatively prime
integers mjy, my, . . . , My having no common divisors and such that m;, m,,...,m; > M and then easily
recover z mod M by means of the Chinese remainder algorithm. For matrix and polynomial computations,
there is an effective alternative technique of p-adic (Newton—Hensel) lifting (cf. Bini and Pan [1994, Section
3 of Chap. 3]), which is particularly powerful for computations with dense structured matrices, since it
preserves the structure of a matrix. We refer the reader to Bareiss [1968] and Geddes et al. [1992] for
some special techniques, which enable one to control the growth of all intermediate values computed in
the process of performing rational Gaussian elimination, with no roundoff and no reduction modulo an
integer.

Gondran and Minoux [1984] and Pan [1993] describe some applications of matrix computations on
semirings (with no divisions and subtractions allowed) to graph and combinatorial computations.

8.2.9 Matrix Eigenvalues and Singular Values Problems

The matrix eigenvalue problem is one of the major problems of matrix computation: given an n x n matrix
A, one seeks a k x k diagonal matrix A and an n x k matrix V of full rank k such that

AV = AV (8.1)

The diagonal entries of A are called the eigenvalues of A; the entry (i,1) of A is associated with the ith
column of V, called an eigenvector of A. The eigenvalues of an n x n matrix A coincide with the zeros of
the characteristic polynomial

ca(x) = det(xI — A)

© 2004 by Taylor & Francis Group, LLC

If this polynomial has n distinct zeros, then k = n, and V of Equation 8.1 is a nonsingular # X n matrix.
The matrix A = I + Z, where Z = (z; j), z;,j; = O unless j =i + 1, z;;41 = 1, is an example of a matrix
for which k = 1, so that the matrix V degenerates to a vector.

In principle, one may compute the coefficients of ¢ 4(x), the characteristic polynomial of A, and then
approximate its zeros (see Section 8.3) in order to approximate the eigenvalues of A. Given the eigenvalues,
the corresponding eigenvectors can be recovered by means of the inverse power iteration [Golub and Van
Loan 1989, Wilkinson 1965]. Practically, the computation of the eigenvalues via the computation of
the coefficients of c(x) is not recommended, due to arising numerical stability problems [Wilkinson
1965], and most frequently, the eigenvalues and eigenvectors of a general (unsymmetric) matrix are
approximated by means of the QR algorithm [Wilkinson 1965, Watkins 1982, Golub and Van Loan 1989].
Before application of this algorithm, the matrix A is simplified by transforming it into the more special
(Hessenberg) form H, by a similarity transformation,

H=UAU" (8.2)

where U = (u; ;) is a unitary matrix, where UHU = I, where UH = (uj;) is the Hermitian transpose
of U, with Z denoting the complex conjugate of z; U¥ = UT if U is a real matrix [Golub and Van Loan
1989]. Similarity transformation into Hessenberg form is one of examples of rational transformations of a
matrix into special canonical forms, of which transformations into Smith and Hermite forms are two other
most important representatives [Kaltofen et al. 1990, Geddes et al. 1992, Giesbrecht 1995].

In practice, the eigenvalue problem is very frequently symmetric, that is, arises for a real symmetric
matrix A, for which

AT =(aj;) = A= (a;))
or for complex Hermitian matrices A, for which
A" =(a;;) = A= (a;))

For real symmetric or Hermitian matrices A, the eigenvalue problem (called symmetric) is treated much
more easily than in the unsymmetric case. In particular, in the symmetric case, we have k = n, that is,
the matrix V' of Equation 8.1 is a nonsingular n x n matrix, and moreover, all of the eigenvalues of A are
real and little sensitive to small input perturbations of A (according to the Courant—Fisher minimization
criterion [Parlett 1980, Golub and Van Loan 1989]).

Furthermore, similarity transformation of A to the Hessenberg form gives much stronger results in the
symmetric case: the original problem is reduced to one for a symmetric tridiagonal matrix H of Equation
8.2 (this can be achieved via the Lanczos algorithm, cf. Golub and Van Loan [1989] or Bini and Pan [1994,
Section 3 of Chap. 2]). For such a matrix H, application of the QR algorithm is dramatically simplified;
moreover, two competitive algorithms are also widely used, that is, the bisection [Parlett 1980] (a slightly
slower but very robust algorithm) and the divide-and-conquer method [Cuppen 1981, Golub and Van Loan
1989]. The latter method has a modification [Bini and Pan 1991] that only uses O(n log2 n(logn+ log2 b))
arithmetic operations in order to compute all of the eigenvalues of an n x n symmetric tridiagonal matrix
A within the output error bound 277 || A||, where || A|| < 1 max |ai ;1.

The eigenvalue problem has a generalization, where generalized eigenvalues and eigenvectors for a pair
A, B of matrices are sought, such that

AV = BAV

(the solution algorithm should proceed without computing the matrix B~! A, so as to avoid numerical
stability problems).

In another highly important extension of the symmetric eigenvalue problem, one seeks a singular value
decomposition (SVD) of a (generally unsymmetric and, possibly, rectangular) matrix A: A = UY VT,
where U and V are unitary matrices, UZU = VHV = I, and ¥ is a diagonal (generally rectangular)

© 2004 by Taylor & Francis Group, LLC

matrix, filled with zeros, except for its diagonal, filled with (positive) singular values of A and possibly,
with zeros. The SVD is widely used in the study of numerical stability of matrix computations and in
numerical treatment of singular and ill-conditioned (close to singular) matrices. An alternative tool is
orthogonal (QR) factorization of a matrix, which is not as refined as SVD but is a little easier to compute
[Golub and Van Loan 1989]. The squares of the singular values of A equal the eigenvalues of the Hermitian
(or real symmetric) matrix A A, and the SVD of A can be also easily recovered from the eigenvalue
decomposition of the Hermitian matrix

0 Af
A 0

but more popular are some effective direct methods for the computation of the SVD [Golub and Van Loan
1989].

8.2.10 Approximating Polynomial Zeros

Solution of an nth degree polynomial equation,
px)=> pix' =0, p,#0
i=0

(where one may assume that p,_; = 0; this can be ensured via shifting the variable x) is a classical problem
that has greatly influenced the development of mathematics throughout the centuries [Pan 1995b]. The
problem remains highly important for the theory and practice of present day computing, and dozens of
new algorithms for its approximate solution appear every year. Among the existent implementations of
such algorithms, the practical heuristic champions in efficiency (in terms of computer time and memory
space used, according to the results of many experiments) are various modifications of Newton’s iteration,
z(i+ 1) = z(i) — a(i)p(z(i))/p'(z(i)), a(i) being the step-size parameter [Madsen 1973], Laguerre’s
method [Hansen et al. 1977, Foster 1981], and the randomized Jenkins—Traub algorithm [1970] [all three
for approximating a single zero z of p(x)], which can be extended to approximating other zeros by means
of deflation of the input polynomial via its numerical division by x — z. For simultaneous approximation
of all of the zeros of p(x) one may apply the Durand—Kerner algorithm, which is defined by the following
recurrence:

zj(i) — p((z;(i))

A== S

j=1...,n i=12,... (8.3)
Here, the customary choice for the # initial approximations z;(0) to the n zeros of

px) = pa [J(x—z))
j=1

is given by z;(0) = Z exp(2m/—1/n),j = 1,...,n, with Z exceeding (by some fixed factor t > 1)
max; |z;|; for instance, one may set

Z = 2t max(p;/pn) (8.4)

For a fixed i and for all j, the computation according to Equation 8.3 is simple, only involving order n?
ops, and according to the results of many experiments, the iteration Equation 8.3 rapidly converges to
the solution, though no theory confirms or explains these results. Similar is the situation with various

© 2004 by Taylor & Francis Group, LLC

modifications of this algorithm, which are now even more popular than the original algorithms and many
of which are listed in Pan [1992a, 1992b] (also cf. Bini and Pan [1996] and McNamee [1993]).

On the other hand, there are two groups of algorithms that, when implemented, promise to be com-
petitive or even substantially superior to Newton’s and Laguerre’s iteration, the algorithm by Jenkins
and Traub, and all of the algorithms of the Durand—Kerner type. One such group is given by the mod-
ern modifications and improvements (due to Pan [1987, 1994a, 1994b] and Renegar [1989]) of Weyl’s
quadtree construction of 1924. In this approach, an initial square S, containing all the zeros of p(x) [say,
S = {x,|Imx| < Z,|Re x| < Z} for Z of Eq. (8.4)], is recursively partitioned into four congruent
subsquares. In the center of each of them, a proximity test is applied that estimates the distance from
this center to the closest zero of p(x). If such a distance exceeds one-half of the diagonal length, then the
subsquare contains no zeros of p(x) and is discarded. When this process ensures a strong isolation from
each other for the components formed by the remaining squares, then certain extensions of Newton’s
iteration [Renegar 1989, Pan 1994a, 1994b], or some iterative techniques based on numerical integration
[Pan 1987] are applied and very rapidly converge to the desired approximations to the zeros of p(x),
within the error bound 27?7 for Z of Equation 8.4. As a result, the algorithms of Pan [1987, 1994a,
1994b] solve the entire problem of approximating (within 27 Z) all of the zeros of p(x) at the overall
cost of performing O ((n? logn) log(bn)) ops (cf. Bini and Pan [1996]), versus order n? operations at each
iteration of Durand—Kerner type.

The second group is given by the divide-and-conquer algorithms. They first compute a sufficiently
wide annulus A, which is free of the zeros of p(x) and contains comparable numbers of such zeros (that
is, the same numbers up to a fixed constant factor) in its exterior and its interior. Then the two factors
of p(x) are numerically computed, that is, F (x) having all its zeros in the interior of the annulus, and
G(x) = p(x)/F (x) having no zeros there. The same process is recursively repeated for F (x) and G (x) until
factorization of p(x) into the product of linear factors is computed numerically. From this factorization,
approximations to all of the zeros of p(x) are obtained. The algorithms of Pan [1995a, 1996] based on
this approach only require O(#n log(bn) (logn)?) ops in order to approximate all of the n zeros of p(x)
within 270 Z for Z of Eq. (8.4). (Note that this is a quite sharp bound: at least 1 ops are necessary in order
to output » distinct values.)

The computations for the polynomial zero problem are ill conditioned, that is, they generally require
a high precision for the worst-case input polynomials in order to ensure a required output precision, no
matter which algorithm is applied for the solution. Consider, for instance, the polynomial (x — g)” and
perturb its x-free coefficient by 27", Observe the resulting jumps of the zero x = 6/7 by 27, and observe

similar jumps if the coefficients p; are perturbed by 20="? for i = 1,2,...,n — 1. Therefore, to ensure
the output precision of b bits, we need an input precision of at least (n — i)b bits for each coefficient
pi»i =0,1,...,n — 1. Consequently, for the worst-case input polynomial p(x), any solution algorithm

needs at least about a factor 7 increase of the precision of the input and of computing versus the output
precision.

Numerically unstable algorithms may require even a higher input and computation precision, but
inspection shows that this is not the case for the algorithms of Pan [1987, 1994a, 1994b, 1995a, 1996] and
Renegar [1989] (cf. Bini and Pan [1996]).

8.2.11 Fast Fourier Transform and Fast Polynomial Arithmetic

To yield the record complexity bounds for approximating polynomial zeros, one should exploit fast algo-
rithms for basic operations with polynomials (their multiplication, division, and transformation under
the shift of the variable), as well as FFT, both directly and for supporting the fast polynomial arithmetic.
The FFT and fast basic polynomial algorithms (including those for multipoint polynomial evaluation and
interpolation) are the basis for many other fast polynomial computations, performed both numerically
and symbolically (compare the next sections). These basic algorithms, their impact on the field of algebraic
computation, and their complexity estimates have been extensively studied in Aho et al. [1974], Borodin
and Munro [1975], and Bini and Pan [1994].

© 2004 by Taylor & Francis Group, LLC

8.3 Systems of Nonlinear Equations
and Other Applications

Given asystem { p1 (X1, ..., %), p2(X15. -5 Xn)s - - o> Pr(X15 ..., %x,)} of nonlinear polynomials with rational
coefficients [each p;(xi,...,x,) is said to be an element of Q[x;,...,x,], the ring of polynomials in
X1, . .., X, over the field Q of rational numbers], the n-tuple of complex numbers (a, . . ., a,) isa common
solution of the system, if f;(a;,...,a,) = 0 for each i with 1 < i < r. In this section, we explore the
problem of exactly solving a system of nonlinear equations over the field Q. We provide an overview
and cite references to different symbolic techniques used for solving systems of algebraic (polynomial)
equations. In particular, we describe methods involving resultant and Grobner basis computations.

The Sylvester resultant method is the technique most frequently utilized for determining a common
zero of two polynomial equations in one variable [Knuth 1981]. However, using the Sylvester method
successively to solve a system of multivariate polynomials proves to be inefficient. Successive resultant
techniques, in general, lack efficiency as a result of their sensitivity to the ordering of the variables [Kapur
and Lakshman 1992]. It is more efficient to eliminate all variables together from a set of polynomials,
thus leading to the notion of the multivariate resultant. The three most commonly used multivariate
resultant formulations are the Dixon [Dixon 1908, Kapur and Saxena 1995], Macaulay [Macaulay 1916,
Canny 1990, Kaltofen and Lakshman 1988], and sparse resultant formulations [Canny and Emiris 1993a,
Sturmfels 1991].

The theory of Grobner bases provides powerful tools for performing computations in multivariate poly-
nomial rings. Formulating the problem of solving systems of polynomial equations in terms of polynomial
ideals, we will see that a Grobner basis can be computed from the input polynomial set, thus allowing for
a form of back substitution (cf. Section 8.2) in order to compute the common roots.

Although not discussed, it should be noted that the characteristic set algorithm can be utilized for
polynomial system solving. Ritt [1950] introduced the concept of a characteristic set as a tool for studying
solutions of algebraic differential equations. Wu [1984, 1986], in search of an effective method for automatic
theorem proving, converted Ritt’s method to ordinary polynomial rings. Given the before mentioned
system P, the characteristic set algorithm transforms P into a triangular form, such that the set of
common zeros of P is equivalent to the set of roots of the triangular system [Kapur and Lakshman 1992].

Throughout this exposition we will also see that these techniques used to solve nonlinear equations can
be applied to other problems as well, such as computer-aided design and automatic geometric theorem
proving.

8.3.1 Resultant Methods
The question of whether two polynomials f(x), g(x) € Q[x],

fx)= fux"+ fumix" '+ + fix+ fo
g(x) = gux" + gmotx™ -+ g1x + g0

have a common root leads to a condition that has to be satisfied by the coefficients of both f and g. Using
a derivation of this condition due to Euler, the Sylvester matrix of f and g (which is of order m + 1) can
be formulated. The vanishing of the determinant of the Sylvester matrix, known as the Sylvester resultant,
is a necessary and sufficient condition for f and g to have common roots [Knuth 1981].

As a running example let us consider the following system in two variables provided by Lazard [1981]:

f=x*+xy+2x+y—1=0
g=x"+3x—y"+2y—1=0

The Sylvester resultant can be used as a tool for eliminating several variables from a set of equations [Kapur
and Lakshman 1992]. Without loss of generality, the roots of the Sylvester resultant of f and g treated as
polynomials in y, whose coefficients are polynomials in x, are the x-coordinates of the common zeros of

© 2004 by Taylor & Francis Group, LLC

f and g. More specifically, the Sylvester resultant of the Lazard system with respect to y is given by the
following determinant:

x+1 x242x—1 0
det 0 x+1 x> 4+2x—1 =—x>—2x24+3x
-1 2 x*+3x—1

The roots of the Sylvester resultant of f and g are {—3,0, 1}. For each x value, one can substitute the x
value back into the original polynomials yielding the solutions (—3, 1), (0, 1), (1, —1).

The method just outlined can be extended recursively, using polynomial GCD computations, to alarger set
of multivariate polynomials in Q[x;, . . ., x,]. This technique, however, is impractical for eliminating many
variables, due to an explosive growth of the degrees of the polynomials generated in each elimination step.

The Sylvester formulations have led to a subresultant theory, developed simultaneously by G. E. Collins
and W. S. Brown and J. Traub. The subresultant theory produced an efficient algorithm for computing
polynomial GCDs and their resultants, while controlling intermediate expression swell [Brown 1971,
Brown and Traub 1971, Collins 1967, 1971, Knuth 1981].

It should be noted that by adopting an implicit representation for symbolic objects, the intermediate
expression swell introduced in many symbolic computations can be palliated. Recently, polynomial GCD
algorithms have been developed that use implicit representations and thus avoid the computationally
costly content and primitive part computations needed in those GCD algorithms for polynomials in
explicit representation [Diaz and Kaltofen 1995, Kaltofen 1988, Kaltofen and Trager 1990].

The solvability of a set of nonlinear multivariate polynomials over the field Q can be determined by the
vanishing of a generalization of the Sylvester resultant of two polynomials in a single variable.

Due to the special structure of the Sylvester matrix, Bézout developed a method for computing the
resultantas a determinant of order max(m, n) during the 18th century. Cayley [1865] reformulated Bézout’s
method leading to Dixon’s [1908] extension to the bivariate case. Dixon’s method can be generalized to a set

{pl(xl)' . -)xn)) pZ(xlw . -)xn))' . -)Pn+1(X1>' . ~>xn)}

of n + 1 generic n-degree polynomials in n variables [Kapur et al. 1994]. The vanishing of the Dixon re-
sultant is a necessary and sufficient condition for the polynomials to have a nontrivial projective common
zero, and also a necessary condition for the existence of an affine common zero. The Dixon formulation
gives the resultant up to a multiple, and hence in the affine case it may happen that the vanishing of
the Dixon resultant does not necessarily indicate that the equations in question have a common root. A
nontrivial multiple, known as the projection operator, can be extracted via a method based on so-called
rank subdeterminant computation (RSC) [Kapur et al. 1994]. It should be noted that the RSC method can
also be applied to the Macaulay and sparse resultant formulations as is detailed here.

In 1916, Macaulay constructed a resultant for n homogeneous polynomials in # variables, which simul-
taneously generalizes the Sylvester resultant and the determinant of a system of linear equations [Canny
et al. 1989, Kapur and Lakshman 1992]. Like the Dixon formulation, the Macaulay resultant is a multiple
of the resultant (except in the case of generic homogeneous polynomials, where it produces the exact
resultant). For the Macaulay formulation, Canny [1990] has invented a general method that perturbs any
polynomial system and extracts a nontrivial projection operator.

Using recent results pertaining to sparse polynomial systems [Gelfand et al. 1994, Sturmfels 1991,
Sturmfels and Zelevinsky 1992], the mixed sparse resultant of a system of n + 1 sparse polynomials
in n variables in its matrix form was given by Canny and Emiris [1993a] and consequently improved
in Canny and Emiris [1993b, 1994]. Here, sparsity denotes that only certain monomials in each of the
n + 1 polynomials have nonzero coefficients. The determinant of the sparse resultant matrix, such as the
Macaulay and Dixon matrices, only yields a projection operation, not the exact resultant.

Suppose we are asked to find the common zeros of a set of # polynomials in # variables { p1(x1, . .., x,),
P2(x1 o5 Xn)s oo o Pu(x1,. .., x,)}. By augmenting the polynomial set by a generic linear form [Canny
1990, Canny and Manocha 1991, Kapur and Lakshman 1992], one can construct the u-resultant of a given
system of polynomials. The u-resultant factors into linear factors over the complex numbers, providing

© 2004 by Taylor & Francis Group, LLC

the common zeros of the given polynomials equations. The u-resultant method takes advantage of the
properties of the multivariate resultant, and hence can be constructed using either Dixon’s, Macaulay’s, or
sparse formulations.
Consider the previous example augmented by a generic linear form
fi=x*+xy+2x+y—1=0
fh=x*+3x -y +2y—1=0
fi=ux+vy+w=0
As described in Canny et al. [1989], the following matrix M corresponds to the Macaulay u-resultant
of the preceding system of polynomials, with z being the homogenizing variable:

M1 0 0 1 0 0 0 0 0 0]
1 1 0 0 1 0 u 0 0 0
2 0 1 3 0 1 0 u 0 0
0 1 0 —1 0 0 v 0 0 0
1 2 1 2 3 0 w % u 0
M=
—1 0 2 —1 0 3 0 w 0 u
0 0 0 0 —1 0 0 0 0 0
0 1 0 0 2 -1 0 0 v 0
0 -1 1 0 -1 2 0 0 w v
. 0 0 -1 0 0 -1 0 0 0 w,
It should be noted that

dettM) = (u—v+w)(=3u+v+w)v+w)(u—rv)

corresponds to the affine solutions (1,—1), (—3,1), (0,1), and one solution at infinity. An empirical
comparison of the detailed resultant formulations can be found in Kapur and Saxena [1995]. Recently,
the multivariate resultant formulations are being used for other applications such as algebraic and ge-
ometric reasoning [Kapur et al. 1994], computer-aided design [Stederberg and Goldman 1986], and for
implicitization and finding base points [Chionh 1990].

8.3.2 Grobner Bases

Solving systems of nonlinear equations can be formulated in terms of polynomial ideals [Becker and
Weispfenning 1993, Geddes et al. 1992, Winkler 1996]. Let us first establish some terminology.

The ideal generated by a system of polynomial equations p;,. .., p, over Q[x,...,x,] is the set of all
linear combinations

(p1>--spr)={hipr+---+hep | hyyoo o he € Q..o x4]}
The algebraic variety of py,..., p, € Q[x1,...,x,] is the set of their common zeros,
V(pi,....pr) ={(ar,...,a,) € C"| filay,...;a,) =+ = f(ay,...,a,) =0}
A version of the Hilbert Nullstellensatz states that
V(pi>...,pr) =theemptysetdd <<= 1€ (p1,...,pr)over Q[xy,...,x,]

which relates the solvability of polynomial systems to the ideal membership problem.

Atermt = x{'x3? ... x% ofapolynomial isa product of powers with deg(t) = e;+e,+: - -+e,,. In order
to add needed structure to the polynomial ring we will require that the terms in a polynomial be ordered in
anadmissible fashion [Geddes et al. 1992, Kapur and Lakshman 1992]. Two of the most common admissible
orderings are the lexicographicorder (<;), where terms are ordered as in a dictionary, and the degree order

© 2004 by Taylor & Francis Group, LLC

(<4), where terms are first compared by their degrees with equal degree terms compared lexicographically.
A variation to the lexicographic order is the reverse lexicographic order, where the lexicographic order is
reversed [Davenport et al. 1988, p. 96].

It is this previously mentioned structure that permits a type of simplification known as polynomial
reduction. Much like a polynomial remainder process, the process of polynomial reduction involves
subtracting a multiple of one polynomial from another to obtain a smaller degree result [Becker and
Weispfenning 1993, Geddes et al. 1992, Kapur and Lakshman 1992, Winkler 1996].

A polynomial g is said to be reducible with respect to aset P = {py, ..., p,} of polynomials if it can be
reduced by one or more polynomials in P. When g is no longer reducible by the polynomials in P, we say
that g is reduced or is a normal form with respect to P.

For an arbitrary set of basis polynomials, it is possible that different reduction sequences applied to
a given polynomial g could reduce to different normal forms. A basis G € Q[x;,...,x,] is a Grobner
basis if and only if every polynomial in Q[x,...,x,] has a unique normal form with respect to G.
Buchberger [1965, 1976, 1983, 1985] showed that every basis for an ideal (py,. .., p,) inQ[xy, ..., x,] can
be converted into a Grébner basis { p7,. .., p¥} = GB(ps,. .., pr), concomitantly designing an algorithm
that transforms an arbitrary ideal basis into a Grobner basis. Another characteristic of Grobner bases is
that by using the previously mentioned reduction process we have

g€(p,...,pr) < (gmodpj,...,p;)=0

Further, by using the Nullstellensatz it can be shown that pj,..., p, viewed as a system of algebraic
equations is solvable if and only if 1 € GB(p,..., p,).

Depending on which admissible term ordering is used in the Grobner bases construction, an ideal can
have different Grobner bases. However, an ideal cannot have different (reduced) Groébner bases for the
same term ordering.

Any system of polynomial equations can be solved using a lexicographic Grébner basis for the ideal
generated by the given polynomials. It has been observed, however, that Grébner bases, more specifically
lexicographic Grébner bases, are hard to compute [Becker and Weispfenning 1993, Geddes et al. 1992,
Lakshman 1990, Winkler 1996]. In the case of zero-dimensional ideals, those whose varieties have only
isolated points, Faugere, et al. [1993] outlined a change of basis algorithm which can be utilized for solving
zero-dimensional systems of equations. In the zero-dimensional case, one computes a Grébner basis for
the ideal generated by a system of polynomials under a degree ordering. The so-called change of basis
algorithm can then be applied to the degree ordered Grobner basis to obtain a Grobner basis under a
lexicographic ordering.

Turning to Lazard’s example in the form of a polynomial basis,

fi=x*+xy+2x+y—1
f=x*+3x—y*+2y—1

one obtains (under lexicographical ordering with x~<;y) a Grébner basis in which the variables are trian-
gularized such that the finitely many solutions can be computed via back substitution:

fi=x*+3x+2y—2
ff=xy—x=y+1

fa*:)’z_l

It should be noted that the final univariate polynomial is of minimal degree and the polynomials used in
the back substitution will have degree no larger than the number of roots.

As an example of the process of polynomial reduction with respect to a Grébner basis, the following
demonstrates two possible reduction sequences to the same normal form. The polynomial x?y? is reduced

© 2004 by Taylor & Francis Group, LLC

with respect to the previously computed Grobner basis { f}*, f,', f;'} = GB(f1, f2) along the following
two distinct reduction paths, both yielding —3x — 2y + 2 as the normal form.

x2y2
fi
—3xy2-2y3 + 3y2
f 5

3){); 2}/3...}?2 + 3y -3x —2}’3 + 2}"2
| L
-3x-2y3-y2+3 -3x-2y3 + 2y2
| f
-3x-y2-2y+3

f3
-3x-2y +2

There is a strong connection between lexicographic Grébner bases and the previously mentioned
resultant techniques. For some types of input polynomials, the computation of a reduced system via
resultants might be much faster than the computation of a lexicographic Grébner basis. A good comparison
between the Grobner computations and the different resultant formulations can be found in Kapur and
Saxena [1995].

In a survey article, Buchberger [1985] detailed how Grobner bases can be used as a tool for many poly-
nomial ideal theoretic operations. Other applications of Grobner basis computations include automatic
geometric theorem proving [Kapur 1986, Wu 1984, 1986], multivariate polynomial factorization and
GCD computations [Gianni and Trager 1985], and polynomial interpolation [Lakshman and Saunders
1994, 1995].

8.4 Polynomial Factorization

The problem of factoring polynomials is a fundamental task in symbolic algebra. An example in one’s early
mathematical education is the factorization x> — y* = (x + y) - (x — y), which in algebraic terms is a
factorization of a polynomial in two variables with integer coefficients. Technology has advanced to a state
where most polynomial factorization problems are doable on a computer, in particular, with any of the
popular mathematical software, such as the Mathematica or Maple systems. For instance, the factorization
of the determinant of a 6 x 6 symmetric Toeplitz matrix over the integers is computed in Maple as

> readlib(showtime) :
> showtime() :
01 :=T:= linalg[toeplitz]([a,b,c,d,e,f]);

a b ¢ d e f
b a b ¢ d e
c b a b ¢ d
T:= d ¢ b a b ¢
e d ¢ b a b
f e d ¢ b a

© 2004 by Taylor & Francis Group, LLC

time 0.03 words7701
02 := factor(linalg[det](T));

—(2dca — 2bce + 2¢*a — a® — da® + 2d*c + d*a + b’ + 2abc — 2c%b
+d® +2ab® — 2dch — 2cb* — 2ec® + 2eb* + 2 fcb + 2bae
+ b f+cf +be* —ba* — fdb— fda — fa* — fba + e*a — 2db*
+ dc? — 2deb — 2dec — dba)(2dca — 2bce — 2¢%a + a®
—da* —2d*c — d*a + b + 2abc — 2¢*b + d* — 2ab* + 2dcb
+ 2cb? 4 2ec® — 2eb* — 2fch + 2bae + b f 4 c* f + be? — ba?®
— fdb + fda — fa® + fba — e*a — 2db* + dc* + 2deb — 2dec
+ dba)

time 27.30 words 857700

Clearly, the Toeplitz determinant factorization requires more than tricks from high school algebra.
Indeed, the development of modern algorithms for the polynomial factorization problem is one of the
great successes of the discipline of symbolic mathematical computation. Kaltofen [1982, 1990, 1992] has
surveyed the algorithms until 1992, mostly from a computer science perspective. In this chapter we shall
focus on the applications of the known fast methods to problems in science and engineering. For a more
extensive set of references, please refer to Kaltofen’s survey articles.

8.4.1 Polynomials in a Single Variable over a Finite Field

At first glance, the problem of factoring an integer polynomial modulo a prime number appears to be very
similar to the problem of factoring an integer represented in a prime radix. That is simply not so. The
factorization of the polynomial x°!' — 1 can be done modulo 2 on a computer in a matter of milliseconds,
whereas the factorization of the integer 2°!' — 1 into its integer factors is a computational challenge. For
those interested: the largest prime factors of 2°!! — 1 have 57 and 67 decimals digits, respectively, which
makes a tough but not undoable 123 digit product for the number field sieve factorizer [Leyland 1995].
Irreducible factors of polynomials modulo 2 are needed to construct finite fields. For example, the factor
x% 4+ x* + 1 of x®'! — 1 leads to a model of the finite field with 2° elements, GF(2?), by simply computing
with the polynomial remainders modulo x° +x* + 1 as the elements. Such irreducible polynomials are used
for setting up error-correcting codes, such as the BCH codes [MacWilliams and Sloan 1977]. Berlekamp’s
[1967, 1970] pioneering work on factoring polynomials over a finite field by linear algebra is done with
this motivation. The linear algebra tools that Berlekamp used seem to have been introduced to the subject
as early as in 1937 by Petr (cf. St. Schwarz [1956]).

Today, factoring algorithms for univariate polynomials over finite fields form the innermost subalgo-
rithm to lifting-based algorithms for factoring polynomials in one [Zassenhaus 1969] and many [Musser
1975] variables over the integers. When Maple computed the factorization of the previous Toeplitz de-
terminant, it began with factoring a univariate polynomial modulo a prime integer. The case when the
prime integer is very large has led to a significant development in computer science itself. As it turns
out, by selecting random residues the expected performance of the algorithms can be speeded up expo-
nentially [Berlekamp 1970, Rabin 1980]. Randomization is now an important tool for designing efficient
algorithms and has proliferated to many fields of computer science. Paradoxically, the random elements
are produced by a congruential random number generator, and the actual computer implementations are
quite deterministic, which leads some computer scientists to believe that random bits can be eliminated in
general at no exponential slow down. Nonetheless, for the polynomial factoring problem modulo a large
prime, no fast methods are known to date that would work without this probabilistic approach.

One can measure the computing time of selected algorithms in terms of #, the degree of the input
polynomial, and p, the cardinality of the field. When counting arithmetic operations modulo p (in-
cluding reciprocals), the best known algorithms are quite recent. Berlekamp’s 1970 method performs

© 2004 by Taylor & Francis Group, LLC

O(n® 4 n'+°W log p) residue operations. Here and subsequently, » denotes the exponent implied by the
used linear system solver, i.e., ® = 3 when classical methods are used, and w = 2.376 when asymptotically
fast (though impractical) matrix multiplication is assumed. The correction term o(1) accounts for the
log n factors derived from the FFT-based fast polynomial multiplication and remaindering algorithms. An
approach in the spirit of Berlekamp’s but possibly more practical for p = 2 has recently been discovered by
Niederreiter [1994]. A very different technique by Cantor and Zassenhaus [1981] first separates factors of
different degrees and then splits the resulting polynomials of equal degree factors. It has O (1> log p)
complexity and is the basis for the following two methods. Algorithms by von zur Gathen and Shoup [1992]
have running time O (#*+°(" 4 n!*+°M Jog p) and those by Kaltofen and Shoup [1995] have running time
O(n'8% log p), the latter with fast matrix multiplication.

For n and p simultaneously large, a variant of the method by Kaltofen and Shoup [1995] that uses
classical linear algebra and runs in O(n?° + n!T°(log p) residue operations is the current champion
among the practical algorithms. With it Shoup [1996], using his own fast polynomial arithmetic package,
has factored a randomlike polynomial of degree 2048 modulo a 2048-bit prime number in about 12
days on a Sparc-10 computer using 68 megabyte of main memory. For even larger #, but smaller p,
parallelization helps, and Kaltofen and Lobo [1994] could factor a polynomial of degree n = 15001
modulo p = 127 in about 6 days on 8 computers that are rated at 86.1 MIPS. At the time of this writing,
the largest polynomial factored modulo 2 is X*1¢%! 4 X + 1; this was accomplished by Peter Montgomery
in 1991 by using Cantor’s fast polynomial multiplication algorithm based on additive transforms [Cantor
1989].

8.4.2 Polynomials in a Single Variable over Fields of Characteristic Zero

As mentioned before, generally usable methods for factoring univariate polynomials over the rational
numbers begin with the Hensel lifting techniques introduced by Zassenhaus [1969]. The input polynomial
is first factored modulo a suitable prime integer p, and then the factorization is lifted to one modulo p*
for an exponent k of sufficient size to accommodate all possible integer coefficients that any factors of the
polynomial might have. The lifting approach is fast in practice, but there are hard-to-factor polynomials
on which it runs an exponential time in the degree of the input. This slowdown is due to so-called parasitic
modular factors. The polynomial x* + 1, for example, factors modulo all prime integers but is irreducible
over the integers: it is the cyclotomic equation for eighth roots of unity. The products of all subsets of
modular factors are candidates for integer factors, and irreducible integer polynomials with exponentially
many such subsets exist [Kaltofen et al. 1983].

The elimination of the exponential bottleneck by giving a polynomial-time solution to the integer
polynomial factoring problem, due to Lenstra et al. [1982] is considered a major result in computer
science algorithm design. The key ingredient to their solution is the construction of integer relations to
real or complex numbers. For the simple demonstration of this idea, consider the polynomial

xt42x® —6x* —4x+ 8

A root of this polynomial is a~ 1.236067977, and o~ 1.527864045. We note that 2a + o’=
4.000000000, hence x? + 2x — 4 is a factor. The main difficulty is to efficiently compute the integer
linear relation with relatively small coefficients for the high-precision big-float approximations of the
powers of a root. Lenstra et al. [1982] solve this diophantine optimization problem by means of their now
famous lattice reduction procedure, which is somewhat reminiscent of the ellipsoid method for linear
programming.

The determination of linear integer relations among a set of real or complex numbers is a useful task in
science in general. Very recently, some stunning identities could be produced by this method, including
the following formula for 7 [Finch 1995]:

i 1 4 2 1 1
m= — — — —
16"\ 8n + 1 8n+4 8n+5 8n+6

n=0

© 2004 by Taylor & Francis Group, LLC

Even more surprising, the lattice reduction algorithm can prove that no linear integer relation with integers
smaller than a chosen parameter exists among the real or complex numbers. There is an efficient alternative
to the lattice reduction algorithm, originally due to Ferguson and Forcade [1982] and recently improved
by Ferguson and Bailey.

The complexity of factoring an integer polynomial of degree n with coefficients of no more than [bits
is thus a polynomial in n and I. From a theoretical point of view, an algorithm with a low estimate is by
Miller [1992] and has a running time of O(n>+to(D]1+o() 4 yA+o(D2+0()y bt gperations. It is expected
that the relation-finding methods will become usable in practice on hard-to-factor polynomials in the
near future. If the hard-to-factor input polynomial is irreducible, an alternate approach can be used to
prove its irreducibility. One finds an integer evaluation point at which the integral value of the polynomial
has a large prime factor, and the irreducibility follows by mathematical theorems. Monagan [1992] has
proven large hard-to-factor polynomials irreducible in this way, which would be hopeless by the lifting
algorithm.

Coefficient fields other than finite fields and the rational numbers are of interest. Computing the
factorizations of univariate polynomials over the complex numbers is the root finding problem described
in the earlier section Approximating Polynomial Zeros. When the coefficient field has an extra variable,
such as the field of fractions of polynomials (rational functions) the problem reduces, by an old theorem
of Gauss, to factoring multivariate polynomials, which we discuss subsequently. When the coefficient field
is the field of Laurent series in ¢ with a finite segment of negative powers,

C—k C—k+1
k + k
t th—1

c_
+---+Tl+co+c1t+czt2+-~-, where k > 0

fast methods appeal to the theory of Puiseux series, which constitute the domain of algebraic functions
[Walsh 1993].

8.4.3 Polynomials in Two Variables

Factoring bivariate polynomials by reduction to univariate factorization via homomorphic projection and
subsequent lifting can be done similarly to the univariate algorithm [Musser 1975]. The second variable
y takes the role of the prime integer p and f(x,y) mod y = f(x,0). Lifting is possible only if f(x,0)
had no multiple root. Provided that f(x, y) has no multiple factor, which can be ensured by a simple
GCD computation, the squarefreeness of f(x,0) can be obtained by variable translation y = y + a, where
a is an easy-to find constant in the coefficient field. For certain domains, such as the rational numbers,
any irreducible multivariate polynomial h(x, y) can be mapped to an irreducible univariate polynomial
h(x, b) for some constant b. This is the important Hilbert irreducibility theorem, whose consequence is that
the combinatorial explosion observed in the univariate lifting algorithm is, in practice, unlikely. However,
the magnitude and probabilistic distribution of good points b is not completely analyzed.

For so-called non-Hilbertian coefficient fields good reduction is not possible. An important such field
is the complex number. Clearly, all f(x,b) completely split into linear factors, while f(x,y) may be
irreducible over the complex numbers. An example of an irreducible polynomial is f(x, y) = x* — y°.
Polynomials that remain irreducible over the complex numbers are called absolutely irreducible. An
additional problem is the determination of the algebraic extension of the ground field in which the
absolutely irreducible factors can be expressed. In the example

x® =272 4yt —2xd = (o — V2x — yA) - (P 4+ V2x —)
the needed extension field is Q(+/2). The relation-finding approach proves successful for this problem. The
root is computed as a Taylor series in y, and the integrality of the linear relation for the powers of the series
means that the multipliers are polynomials in y of bounded degree. Several algorithms of polynomial-

time complexity and pointers to the literature are found in Kaltofen [1995].

© 2004 by Taylor & Francis Group, LLC

Bivariate polynomials constitute implicit representations of algebraic curves. It is an important operation
in geometric modeling to convert from implicit to parametric representation. For example, the circle

x4+yP—-1=0
has the rational parameterization

2t 1—t?

Xx=—, =——, where—o00 <t <00
1+1¢2 y 1+ ¢2

Algorithms are known that can find such rational parameterizations provided that they exist [Sendra and
Winkler 1991]. It is crucial that the inputs to these algorithms are absolutely irreducible polynomials.

8.4.4 Polynomials in Many Variables

Polynomials in many variables, such as the symmetric Toeplitz determinant previously exhibited, are rarely
given explicitly, due to the fact that the number of possible terms grows exponentially in the number of
variables: there can be as many as (":") > 2min{n¥} terms in a polynomial of degree # with v variables. Even
the factors may be dense in canonical representation, but could be sparse in another basis: for instance,

the polynomial
(i =Dy —=2) -+ (x, —v) + 1

has only two terms in the shifted basis, whereas it has 2" terms in the power basis, i.e., in expanded format.

Randomized algorithms are available that can efficiently compute a factor of an implicitly given poly-
nomial, say, a matrix determinant, and even can find a shifted basis with respect to which a factor would
be sparse, provided, of course, that such a shift exists. The approach is by manipulating polynomials in
so-called black box representations [Kaltofen and Trager 1990]: a black box is an object that takes as input
avalue for each variable, and then produces the value of the polynomial it represents at the specified point.
In the Toeplitz example the representation of the determinant could be the Gaussian elimination program
which computes it. We note that the size of the polynomial in this case would be nearly constant, only the
variable names and the dimension need to be stored. The factorization algorithm then outputs procedures
which will evaluate all irreducible factors at an arbitrary point (supplied as the input). These procedures
make calls to the black box given as input to the factorization algorithm in order to evaluate them at certain
points, which are derived from the point at which the procedures computing the values of the factors are
probed. It is, of course, assumed that subsequent calls evaluate one and the same factor and not associates
that are scalar multiples of one another. The algorithm by Kaltofen and Trager [1990] finds procedures
that with a controllably high probability evaluate the factors correctly. Randomization is needed to avoid
parasitic factorizations of homomorphic images which provide some static data for the factor boxes and
cannot be avoided without mathematical conjecture. The procedures that evaluate the individual factors
are deterministic.

Factors constructed as black box programs are much more space efficient than those represented in
other formats, for example, the straight-line program format [Kaltofen 1989]. More importantly, once
the black box representation for the factors is found, sparse representations can be rapidly computed by
any of the new sparse interpolation algorithms. See Grigoriev and Lakshman [1995] for the latest method
allowing shifted bases and pointers to the literature of other methods, including those for the standard
power bases.

Theblack box representation of polynomials is normally not supported by commercial computer algebra
systems such as Axiom, Maple, or Mathematica. Diaz is currently developing the FOXBOX system in C++
that makes black box methodology available to users of such systems. It is anticipated that factorizations
as those of large symmetric Toeplitz determinants will be possible on computers. Earlier implementations
based on the straight-line program model [Freeman et al. 1988] could factor 16 x 16 group determinants,
which represent polynomials of over 300 million terms.

© 2004 by Taylor & Francis Group, LLC

Acknowledgment

This material is based on work supported in part by the National Science Foundation under Grants CCR-
9319776 (first and second author) and CCR-9020690 (third author), by GTE under a Graduate Computer
Science Fellowship (first author), and by PSC CUNY Awards 665301 and 666327 (third author). Part of
this work was done while the second author was at the Department of Computer Science at Rensselaer
Polytechnic Insititute in Troy, New York.

Defining Terms

Characteristic polynomial: A polynomial associated with a square matrix, the determinant of the matrix
when a single variable is subtracted to its diagonal entries. The roots of the characteristic polynomial
are the eigenvalues of the matrix.

Condition number: A scalar derived from a matrix that measures its relative nearness to a singular matrix.
Very close to singular means a large condition number, in which case numeric inversion becomes
an unstable process.

Degree order: An order of the terms in a multivariate polynomial; for two variables x and y with x < y
the ascending chain of termsis 1 < x <y < x% <xy < y* - --.

Determinant: A polynomial in the entries of a square matrix with the property that its value is nonzero
if and only if the matrix is invertible.

Lexicographic order: An order of the terms in a multivariate polynomial; for two variables x and y with

Iy =<xy=<xtyo<yt<xye

Ops: Arithmetic operations, i.e., additions, subtractions, multiplications, or divisions; as in floating point
operations (flops).

Singularity: A square matrix is singular if there is a nonzero second matrix such that the product of the
two is the zero matrix. Singular matrices do not have inverses.

x < y the ascending chain of termsis 1 < x < x

Sparse matrix: A matrix where many of the entries are zero.
Structured matrix: A matrix where each entry can be derived by a formula depending on few parameters.
For instance, the Hilbert matrix has 1/(i + j — 1) as the entry in row i and column j.

References

Anderson, E. et al. 1992. LAPACK Users” Guide. SIAM Pub., Philadelphia, PA.

Aho, A., Hopcroft, J.,and Ullman, J. 1974. The Design and Analysis of Algorithms. Addison—Wesley, Reading,
MA.

Bareiss, E. H. 1968. Sylvester’s identity and multistep integers preserving Gaussian elimination. Math.
Comp. 22:565-578.

Becker, T. and Weispfenning, V. 1993. Grobner Bases: A Computational Approach to Commutative Algebra.
Springer—Verlag, New York.

Berlekamp, E. R. 1967. Factoring polynomials over finite fields. Bell Systems Tech.]. 46:1853—1859; rev.
1968. Algebraic Coding Theory. Chap. 6, McGraw—Hill, New York.

Berlekamp, E. R. 1970. Factoring polynomials over large finite fields. Math. Comp. 24:713-735.

Bini, D. and Pan, V. Y. 1991. Parallel complexity of tridiagonal symmetric eigenvalue problem. In Proc. 2nd
Annu. ACM-SIAM Symp. on Discrete Algorithms, pp. 384-393. ACM Press, New York, SIAM Pub.,
1994. Philadelphia, PA.

Bini, D. and Pan, V. Y. 1994. Polynomial and Matrix Computations Vol. 1, Fundamental Algorithms.
Birkhiuser, Boston, MA.

Bini, D. and Pan, V. Y. 1996. Polynomial and Matrix Computations, Vol. 2. Birkhduser, Boston, MA.

Borodin, A. and Munro, 1. 1975. Computational Complexity of Algebraic and Numeric Problems. American
Elsevier, New York.

Brown, W. S. 1971. On Euclid’s algorithm and the computation of polynomial greatest common divisors.
J. ACM 18:478-504.

© 2004 by Taylor & Francis Group, LLC

Brown, W. S. and Traub, J. E 1971. On Euclid’s algorithm and the theory of subresultants. J. ACM
18:505-514.

Buchberger, B. 1965. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem
nulldimensionalen Polynomideal. Ph.D. dissertation. University of Innsbruck, Austria.

Buchberger, B. 1976. A theoretical basis for the reduction of polynomials to canonical form. ACM SIGSAM
Bull. 10(3):19-29.

Buchberger, B. 1983. A note on the complexity of constructing Grébner-bases. In Proc. EUROCAL 83,
J. A. van Hulzen, ed. Lecture Notes in Computer Science, pp. 137—145. Springer.

Buchberger, B. 1985. Grobner bases: an algorithmic method in polynomial ideal theory. In Recent
Trends in Multidimensional Systems Theory, N. K. Bose, ed., pp. 184-232. D. Reidel, Dordrecht,
Holland.

Cantor, D. G. 1989. On arithmetical algorithms over finite fields. J. Combinatorial Theory, Serol. A 50:285—
300.

Canny, J. 1990. Generalized characteristic polynomials. J. Symbolic Comput. 9(3):241-250.

Canny, J. and Emiris, I. 1993a. An efficient algorithm for the sparse mixed resultant. In Proc. AAECC-10,
G. Cohen, T. Mora, and O. Moreno, ed. Vol. 673, Lecture Notes in Computer Science, pp. 89-104.
Springer.

Canny, J. and Emiris, I. 1993b. A practical method for the sparse resultant. In ISSAC *93, Proc. Internat.
Symp. Symbolic Algebraic Comput., M. Bronstein, ed., pp. 183—192. ACM Press, New York.

Canny, J. and Emiris, 1. 1994. Efficient incremental algorithms for the sparse resultant and the mixed
volume. Tech. Rep., Univ. California-Berkeley, CA.

Canny, J., Kaltofen, E., and Lakshman, Y. 1989. Solving systems of non-linear polynomial equations faster.
In Proc. ACM-SIGSAM Internat. Symp. Symbolic Algebraic Comput., pp. 121-128.

Canny, J. and Manocha, D. 1991. Efficient techniques for multipolynomial resultant algorithms. In
ISSAC 91, Proc. Internat. Symp. Symbolic Algebraic Comput., S. M. Watt, ed., pp. 85-95, ACM
Press, New York.

Cantor, D. G. and Zassenhaus, H. 1981. A new algorithm for factoring polynomials over finite fields. Math.
Comp. 36:587-592.

Cayley, A. 1865. On the theory of eliminaton. Cambridge and Dublin Math. J. 3:210-270.

Chionbh, E. 1990. Base Points, Resultants and Implicit Representation of Rational Surfaces. Ph.D. dissertation.
Department of Computer Science, University of Waterloo, Waterloo, Canada.

Collins, G. E. 1967. Subresultants and reduced polynomial remainder sequences. J. ACM 14:128-142.

Collins, G. E. 1971. The calculation of multivariate polynomial resultants. J. ACM 18:515-532.

Cuppen, J. J. M. 1981. A divide and conquer method for the symmetric tridiagonal eigenproblem. Numer.
Math. 36:177-195.

Davenport, J. H., Tournier, E., and Siret, Y. 1988. Computer Algebra Systems and Algorithms for Algebraic
Computation. Academic Press, London.

Diaz, A. and Kaltofen, E. 1995. On computing greatest common divisors with polynomials given by black
boxes for their evaluation. In ISSAC ’95 Proc. 1995 Internat. Symp. Symbolic Algebraic Comput., A.
H. M. Levelt, ed., pp. 232-239, ACM Press, New York.

Dixon, A. L. 1908. The elimination of three quantics in two independent variables. In Proc. London Math.
Soc. Vol. 6, pp. 468-478.

Dongarra, J. et al. 1978. LAPACK Users’ Guide. SIAM Pub., Philadelphia, PA.

Faugere, J. C., Gianni, P., Lazard, D.,and Mora, T. 1993. Efficient computation of zero-dimensional Grobner
bases by change of ordering. J. Symbolic Comput. 16(4):329-344.

Ferguson, H. R. P. and Forcade, R. W. 1982. Multidimensional Euclidean algorithms. J. Reine Angew. Math.
334:171-181.

Finch, S. 1995. The miraculous Bailey—Borwein—Plouffe pi algorithm. Internet document, Mathsoft Inc.,
http://www.mathsoft.com/asolve/ploufte/plouffe.html, Oct.

Foster, L. V. 1981. Generalizations of Laguerre’s method: higher order methods. SIAM J. Numer. Anal.
18:1004-1018.

© 2004 by Taylor & Francis Group, LLC

http://www.mathsoft.com/

Freeman, T. S., Imirzian, G., Kaltofen, E., and Lakshman, Y. 1988. Dagwood: a system for manipulating
polynomials given by straight-line programs. ACM Trans. Math. Software 14(3):218-240.

Garbow, B. S. et al. 1972. Matrix Eigensystem Routines: EISPACK Guide Extension. Springer, New York.

Geddes, K. O., Czapor, S. R., and Labahn, G. 1992. Algorithms for Computer Algebra. Kluwer Academic.

Gelfand, I. M., Kapranov, M. M., and Zelevinsky, A. V. 1994. Discriminants, Resultants and Multidimensional
Determinants. Birkhduser Verlag, Boston, MA.

George, A. and Liu, J. W.-H. 1981. Computer Solution of Large Sparse Positive Definite Linear Systems.
Prentice—Hall, Englewood Cliffs, NJ.

Gianni, P. and Trager, B. 1985. GCD’s and factoring polynomials using Grobner bases. Proc. EUROCAL
’85, Vol. 2, Lecture Notes in Computer Science, 204, pp. 409—410.

Giesbrecht, M. 1995. Nearly optimal algorithms for canonical matrix forms. SIAM J. Comput. 24(5):948—
969.

Gilbert, J. R. and Tarjan, R. E. 1987. The analysis of a nested dissection algorithm. Numer. Math. 50:377-404.

Golub, G. H. and Van Loan, C. E 1989. Matrix Computations. Johns Hopkins Univ. Press, Baltimore, MD.

Gondran, M. and Minoux, M. 1984. Graphs and Algorithms. Wiley—Interscience, New York.

Grigoriev, D. Y. and Lakshman, Y. N. 1995. Algorithms for computing sparse shifts for multivariate
polynomials. In ISSAC ’95 Proc. 1995 Internat. Symp. Symbolic Algebraic Comput., A. H. M. Levelt,
ed., pp. 96-103, ACM Press, New York.

Hansen, E., Patrick, M., and Rusnack, J. 1977. Some modifications of Laguerre’s method. BIT 17:409-417.

Heath, M. T, Ng, E., and Peyton, B. W. 1991. Parallel algorithms for sparse linear systems. SIAM Rev.
33:420-460.

Jenkins, M. A., and Traub, J. F. 1970. A three-stage variable-shift iteration for polynomial zeros and its
relation to generalized Rayleigh iteration. Numer. Math. 14:252-263.

Kaltofen, E. 1982. Polynomial factorization. In 2nd ed. Computer Algebra, B. Buchberger, G. Collins, and
R. Loos, eds., pp. 95-113. Springer—Verlag, Vienna.

Kaltofen, E. 1988. Greatest common divisors of polynomials given by straight-line programs. J. ACM
35(1):231-264.

Kaltofen, E. 1989. Factorization of polynomials given by straight-line programs. In Randomness and
Computation, S. Micali, ed. Vol. 5 of Advances in computing research, pp. 375-412. JAI Press,
Greenwhich, CT.

Kaltofen, E. 1990. Polynomial factorization 1982-1986. 1990. In Computers in Mathematics, D. V. Chud-
novsky and R. D. Jenks, eds. Vol. 125, Lecture Notes in Pure and Applied Mathematics, pp. 285-309.
Marcel Dekker, New York.

Kaltofen, E. 1992. Polynomial factorization 1987—1991. In Proc. LATIN ’92, 1. Simon, ed. Vol. 583, Lecture
Notes in Computer Science, pp. 294-313.

Kaltofen, E. 1995. Effective Noether irreducibility forms and applications. J. Comput. Syst. Sci. 50(2):274—
295.

Kaltofen, E., Krishnamoorthy, M. S., and Saunders, B. D. 1990. Parallel algorithms for matrix normal
forms. Linear Algebra Appl. 136:189-208.

Kaltofen, E. and Lakshman, Y. 1988. Improved sparse multivariate polynomial interpolation algorithms.
Proc. ISSAC ’88, Vol. 358, Lecture Notes in Computer Science, pp. 467—474.

Kaltofen, E. and Lobo, A. 1994. Factoring high-degree polynomials by the black box Berlekamp algorithm.
In ISSAC 94, Proc. Internat. Symp. Symbolic Algebraic Comput.,]. von zur Gathen and M. Giesbrecht,
eds., pp. 90-98, ACM Press, New York.

Kaltofen, E., Musser, D. R., and Saunders, B. D. 1983. A generalized class of polynomials that are hard to
factor. SIAM J. Comp. 12(3):473-485.

Kaltofen, E. and Pan, V. 1991. Processor efficient parallel solution of linear systems over an abstract field.
In Proc. 3rd Ann. ACM Symp. Parallel Algor. Architecture, pp. 180-191, ACM Press, New York.
Kaltofen, E. and Pan, V. 1992. Processor-efficient parallel solution of linear systems II: the positive charac-
teristic and singular cases. In Proc. 33rd Annual Symp. Foundations of Comp. Sci., pp. 714-723, Los

Alamitos, CA. IEEE Computer Society Press.

© 2004 by Taylor & Francis Group, LLC

Kaltofen, E. and Shoup, V. 1995. Subquadratic-time factoring of polynomials over finite fields. In Proc.
27th Annual ACM Symp. Theory Comp., pp. 398—406, ACM Press, New York.

Kaltofen, E. and Trager, B. 1990. Computing with polynomials given by black boxes for their evaluations:
greatest common divisors, factorization, separation of numerators and denominators. J. Symbolic
Comput. 9(3):301-320.

Kapur, D. 1986. Geometry theorem proving using Hilbert’s nullstellensatz. J. Symbolic Comp. 2:399-408.

Kapur, D. and Lakshman, Y. N. 1992. Elimination methods: an introduction. In Symbolic and Numer-
ical Computation for Artificial Intelligence. B. Donald, D. Kapur, and J. Mundy, eds. Academic
Press.

Kapur, D. and Saxena, T. 1995. Comparison of various multivariate resultant formulations. In Proc. Internat.
Symp. Symbolic Algebraic Comput. ISSAC 95, A. H. M. Levelt, ed., pp. 187-195, ACM Press, New York.

Kapur, D., Saxena, T., and Yang, L. 1994. Algebraic and geometric reasoning using Dixon resultants. In
ISSAC °94, Proc. Internat. Symp. Symbolic Algebraic Comput. J. von zur Gathen and M. Giesbrecht,
ed., pp. 99-107, ACM Press, New York.

Knuth, D. E. 1981. The Art of Computer Programming, Vol. 2, Seminumerical Algorithms, 2nd ed.
Addison—Wesley, Reading, MA.

Lakshman, Y. N. 1990. On the complexity of computing Grobner bases for zero dimensional polynomia.
Ph.D. thesis, Dept. Comput. Sci., Rensselaer Polytechnic Inst. Troy, NY, Dec.

Lakshman, Y. N. and Saunders, B. D. 1994. On computing sparse shifts for univariate polynomials. In
ISSAC °94, Proc. Internat. Symp. Symbolic Algebraic Comput., J. von zur Gathen and M. Giesbrecht,
eds., pp. 108-113, ACM Press, New York.

Lakshman, Y. N. and Saunders, B. D. 1995. Sparse polynomial interpolation in non-standard bases. SIAM
J. Comput. 24(2):387-397.

Lazard, D. 1981. Résolution des systemes d’équation algébriques. Theoretical Comput. Sci. 15:77-110. (In
French).

Lenstra, A. K., Lenstra, H. W., and Lovész, L. 1982. Factoring polynomials with rational coefficients.
Math. Ann. 261:515-534.

Leyland, P. 1995. Cunningham project data. Internet document, Oxford Univ., ftp://sable.ox.ac.uk/
pub/math/cunningham/, November.

Lipton, R. J., Rose, D., and Tarjan, R. E. 1979. Generalized nested dissection. SIAM]J. on Numer. Analysis
16(2):346-358.

Macaulay, E. S. 1916. Algebraic theory of modular systems. Cambridge Tracts 19, Cambridge.

MacWilliams, F. J. and Sloan, N. J. A. 1977. The Theory of Error-Correcting Codes. North—Holland,
New York.

Madsen, K. 1973. A root-finding algorithm based on Newton’s method. BIT 13:71-75.

McCormick, S., ed. 1987. Multigrid Methods. SIAM Pub., Philadelphia, PA.

McNamee, J. M. 1993. A bibliography on roots of polynomials. J. Comput. Appl. Math. 47(3):391-394.

Miller, V. 1992. Factoring polynomials via relation-finding. In Proc. ISTCS ’92, D. Dolev, Z. Galil, and
M. Rodeh, eds. Vol. 601, Lecture Notes in Computer Science, pp. 115-121.

Monagan, M. B. 1992. A heuristic irreducibility test for univariate polynomials. J. Symbolic Comput.
13(1):47-57.

Musser, D. R. 1975. Multivariate polynomial factorization. J. ACM 22:291-308.

Niederreiter, H. 1994. New deterministic factorization algorithms for polynomials over finite fields.
In Finite Fields: Theory, Applications and Algorithms, L. Mullen and P. J.-S. Shiue, eds. Vol. 168,
Contemporary mathematics, pp. 251-268, Amer. Math. Soc., Providence, RI.

Ortega, J. M., and Voight, R. G. 1985. Solution of partial differential equations on vector and parallel
computers. SIAM Rev. 27(2):149-240.

Pan, V. Y. 1984a. How can we speed up matrix multiplication? STAM Rev. 26(3):393—415.

Pan, V. Y. 1984b. How to multiply matrices faster. Lecture Notes in Computer Science, 179.

Pan, V. Y. 1987. Sequential and parallel complexity of approximate evaluation of polynomial zeros.
Comput. Math. (with Appls.), 14(8):591-622.

© 2004 by Taylor & Francis Group, LLC

Pan, V. Y. 1991. Complexity of algorithms for linear systems of equations. In Computer Algorithms for
Solving Linear Algebraic Equations (State of the Art), E. Spedicato, ed. Vol. 77 of NATO ASI Series,
Series F: computer and systems sciences, pp. 27-56, Springer—Verlag, Berlin.

Pan, V. Y. 1992a. Complexity of computations with matrices and polynomials. SIAM Rev. 34(2):225-262.

Pan, V. Y. 1992b. Linear systems of algebraic equations. In Encyclopedia of Physical Sciences and Technology,
2nd ed. Marvin Yelles, ed. Vol. 8, pp. 779-804, 1987. 1st ed. Vol. 7, pp. 304-329.

Pan, V. Y. 1993. Parallel solution of sparse linear and path systems. In Synthesis of Parallel Algorithms,].
H. Reif, ed. Ch. 14, pp. 621-678. Morgan Kaufmann, San Mateo, CA.

Pan, V. Y. 1994a. Improved parallel solution of a triangular linear system. Comput. Math. (with Appl.),
27(11):41-43.

Pan, V. Y. 1994b. On approximating polynomial zeros: modified quadtree construction and improved
Newton’s iteration. Manuscript, Lehman College, CUNY, Bronx, New York.

Pan, V. Y. 1995a. Parallel computation of a Krylov matrix for a sparse and structured input. Math. Comput.
Modelling 21(11):97-99.

Pan, V. Y. 1995b. Solving a polynomial equation: some history and recent progress. Manuscript, Lehman
College, CUNY, Bronx, New York.

Pan, V. Y. 1996. Optimal and nearly optimal algorithms for approximating polynomial zeros. Comput.
Math. (with Appl.).

Pan, V. Y. and Preparata, E. P. 1995. Work-preserving speed-up of parallel matrix computations. SIAM J.
Comput. 24(4):811-821.

Pan, V. Y. and Reif, J. H. 1992. Compact multigrid. SIAM J. Sci. Stat. Comput. 13(1):119-127.

Pan, V. Y. and Reif, J. H. 1993. Fast and efficient parallel solution of sparse linear systems. SIAM J. Comp.,
22(6):1227-1250.

Pan, V. Y,, Sobze, 1. and Atinkpahoun, A. 1995. On parallel computations with band matrices. Inf. and
Comput. 120(2):227-250.

Parlett, B. 1980. Symmetric Eigenvalue Problem. Prentice—Hall, Englewood Cliffs, NJ.

Quinn, M. J. 1994. Parallel Computing: Theory and Practice. McGraw—Hill, New York.

Rabin, M. O. 1980. Probabilistic algorithms in finite fields. SIAM J. Comp. 9:273-280.

Renegar, J. 1989. On the worst case arithmetic complexity of approximating zeros of systems of
polynomials. STAM J. Comput. 18(2):350-370.

Ritt, J. E 1950. Differential Algebra. AMS, New York.

Saad, Y. 1992. Numerical Methods for Large Eigenvalue Problems: Theory and Algorithms. Manchester Univ.
Press, U.K., Wiley, New York. 1992.

Saad, Y. 1995. Iterative Methods for Sparse Linear Systems. PWS Kent, Boston, MA.

Sendra, J. R.and Winkler, E 1991. Symbolic parameterization of curves. J. Symbolic Comput. 12(6): 607—631.

Shoup, V. 1996. A new polynomial factorization algorithm and its implementation. J. Symbolic Comput.

Smith, B. T. et al. 1970. Matrix Eigensystem Routines: EISPACK Guide, 2nd ed. Springer, New York.

St. Schwarz, 1956. On the reducibility of polynomials over a finite field. Quart. J. Math. Oxford Ser. (2),
7:110-124.

Stederberg, T. and Goldman, R. 1986. Algebraic geometry for computer-aided design. IEEE Comput.
Graphics Appl. 6(6):52-59.

Sturmfels, B. 1991. Sparse elimination theory. In Proc. Computat. Algebraic Geom. and Commut. Algebra,
D. Eisenbud and L. Robbiano, eds. Cortona, Italy, June.

Sturmfels, B. and Zelevinsky, A. 1992. Multigraded resultants of the Sylvester type. J. Algebra.

von zur Gathen, J. and Shoup, V. 1992. Computing Frobenius maps and factoring polynomials. Comput.
Complexity 2:187-224.

Walsh, P. G. 1993. The computation of Puiseux expansions and a quantitative version of Runge’s theorem on
diophantine equations. Ph.D. dissertation. University of Waterloo, Waterloo, Canada.

Watkins, D. S. 1982. Understanding the QR algorithm. SIAM Rev. 24:427-440.

Watkins, D. S. 1991. Some perspectives on the eigenvalue problem. SIAM Rev. 35(3):430—471.

Wilkinson, J. H. 1965. The Algebraic Eigenvalue Problem. Clarendon Press, Oxford, England.

© 2004 by Taylor & Francis Group, LLC

Winkler, E 1996. Introduction to Computer Algebra. Springer—Verlag, Heidelberg, Germany.

Wu, W. 1984. Basis principles of mechanical theorem proving in elementary geometries. J. Syst. Sci. Math
Sci, 4(3):207-235.

Wu, W. 1986. Basis principles of mechanical theorem proving in elementary geometries. J. Automated
Reasoning 2:219-252.

Zassenhaus, H. 1969. On Hensel factorization 1. J. Number Theory 1:291-311.

Zippel, R. 1993. Effective Polynomial Computations, p. 384. Kluwer Academic, Boston, MA.

Further Information

The books by Knuth [1981], Davenport et al. [1988], Geddes et al. [1992], and Zippel [1993] provide
a much broader introduction to the general subject. There are well-known libraries and packages of
subroutines for the most popular numerical matrix computations, in particular, Dongarra et al. [1978]
for solving linear systems of equations, Smith et al. [1970] and Garbow et al. [1972] approximating matrix
eigenvalues, and Anderson et al. [1992] for both of the two latter computational problems. There is a
comprehensive treatment of numerical matrix computations [Golub and Van Loan 1989], with extensive
bibliography, and there are several more specialized books on them [George and Liu 1981, Wilkinson 1965,
Parlett 1980, Saad 1992, 1995], as well as many survey articles [Heath et al. 1991, Watkins 1991, Ortega
and Voight 1985, Pan 1992b] and thousands of research articles.

Special (more efficient) parallel algorithms have been devised for special classes of matrices, such as
sparse [Pan and Reif 1993, Pan 1993], banded [Pan et al. 1995], and dense structured [Bini and Pan (cf.
[1994])]. We also refer to Pan and Preparata [1995] on a simple but surprisingly effective extension of
Brent’s principle for improving the processor and work efficiency of parallel matrix algorithms and to
Golub and Van Loan [1989], Ortega and Voight [1985], and Heath et al. [1991] on practical parallel
algorithms for matrix computations.

© 2004 by Taylor & Francis Group, LLC

Cryptography

9.1 Introduction
9.2 Cryptographic Notions of Security

Information-Theoretic Notions of Security * Toward a
Computational Notion of Security * Notation

9.3 Building Blocks

One-Way Functions ¢ Trapdoor Permutations

9.4 Cryptographic Primitives
Pseudorandom Generators * Pseudorandom Functions
and Block Ciphers * Cryptographic Hash Functions

9.5 Private-Key Encryption

9.6 Message Authentication
]Onathan Katz 9.7 Public-Key Encryption
University of Maryland 9.8 Digital Signature Schemes

9.1 Introduction

Cryptography is a vast subject, and we cannot hope to give a comprehensive account of the field here.
Instead, we have chosen to narrow our focus to those areas of cryptography having the most practical
relevance to the problem of secure communication. Broadly speaking, secure communication encompasses
two complementary goals: the secrecy (sometimes called “privacy”) and integrity of communicated data.
These terms can be illustrated using the simple example of a user A sending a message m to a user B over a
public channel. In the simplest sense, techniques for data secrecy ensure that an eavesdropping adversary
(i.e., an adversary who sees all communication occurring on the channel) cannot get any information
about m and, in particular, cannot determine m. Viewed in this way, such techniques protect against a
passive adversary who listens to — but does not otherwise interfere with — the parties’ communication.
Techniques for data integrity, on the other hand, protect against an active adversary who may arbitrarily
modify the data sent over the channel or may interject messages of his own. Here, secrecy is not necessarily an
issue; instead, security in this setting requires only that any modifications performed by the adversary to
the transmitted data will be detected by the receiving party.

In the cases of both secrecy and integrity, two different assumptions regarding the initial setup of the
communicating parties can be considered. In the private-key setting (also known as the “shared-key,”
“secret-key,” or “symmetric-key” setting), the assumption is that parties A and B have securely shared a
random key s in advance. This key, which is completely hidden from the adversary, is used to secure their
future communication. (We do not comment further on how such a key might be securely generated and
shared; for our purposes, it is simply an assumption of the model.) Techniques for secrecy in this setting are
called private-key encryption schemes, and those for data integrity are termed message authentication
codes (MACs).

© 2004 by Taylor & Francis Group, LLC

In the public-key setting, the assumption is that one (or both) of the parties has generated a pair of
keys: a public key that is widely disseminated throughout the network and an associated secret key that is
kept private. The parties generating these keys may now use them to ensure secret communication using
a public-key encryption scheme; they can also use these keys to provide data integrity (for messages they
send) using a digital signature scheme.

We stress that, in the public-key setting, widespread distribution of the public key is assumed to occur
before any communication over the public channel and without any interference from the adversary. In
particular, if A generates a public/secret key, then B (for example) knows the correct public key and can use
this key when communicating with A. On the flip side, the fact that the public key is widely disseminated
implies that the adversary also knows the public key, and can attempt to use this knowledge when attacking
the parties’ communication.

We examine each of the above topics in turn. In Section 9.2 we introduce the information-theoretic
approach to cryptography, describe some information-theoretic solutions for the above tasks, and discuss
the severe limitations of this approach. We then describe the modern, computational (or complexity-
theoretic) approach to cryptography that will be used in the remaining sections. This approach requires
computational “hardness” assumptions of some sort; we formalize these assumptions in Section 9.3 and
thus provide cryptographic building blocks for subsequent constructions. These building blocks are used
to construct some basic cryptographic primitives in Section 9.4.

With these primitives in place, we proceed in the remainder of the chapter to give solutions for the tasks
previously mentioned. Sections 9.5 and 9.6 discuss private-key encryption and message authentication,
respectively, thereby completing our discussion of the private-key setting. Public-key encryption and digital
signature schemes are described in Sections 9.7 and 9.8. We conclude with some suggestions for further
reading.

9.2 Cryptographic Notions of Security

Two central features distinguish modern cryptography from “classical” (i.e., pre-1970s) cryptography:
precise definitions and rigorous proofs of security. Without a precise definition of security for a stated
goal, it is meaningless to call a particular protocol “secure.” The importance of rigorous proofs of security
(based on a set of well-defined assumptions) should also be clear: if a given protocol is not proven secure,
there is always the risk that the protocol can be “broken.” That protocol designers have not been able to
find an attack does not preclude a more clever adversary from doing so. A proof that a given protocol is
secure (with respect to some precise definition and using clearly stated assumptions) provides much more
confidence in the protocol.

9.2.1 Information-Theoretic Notions of Security

With this in mind, we present one possible definition of security for private-key encryption and explore
what can be achieved with respect to this definition. Recall the setting: two parties A and B share a random
secret key s; this key will be used to secure their future communication and is completely hidden from
the adversary. The data that A wants to communicate to B is called the plaintext, or simply the message.
To transmit this message, A will encrypt the message using s and an encryption algorithm &, resulting
in ciphertext C. We write this as C = & (m). This ciphertext is sent over the public channel to B. Upon
receiving the ciphertext, B recovers the original message by decrypting it using s and decryption algorithm
D; we write this as m = D (C).

We stress that the adversary is assumed to know the encryption and decryption algorithms; the only
information hidden from the adversary is the secret key s. It is a mistake to require that the details of the
encryption scheme be hidden in order for it to be secure, and modern cryptosystems are designed to be
secure even when the full details of all algorithms are publicly available.

A plausible definition of security is to require that an adversary who sees ciphertext C (recall that C is
sent over a public channel) — but does not know s — learns no information about the message . In

© 2004 by Taylor & Francis Group, LLC

particular, even if the message m is known to be one of two possible messages m, m, (each being chosen
with probability 1/2), the adversary should not learn which of these two messages was actually sent. If
we abstract this by requiring the adversary to, say, output “1” when he believes that m; was sent, this
requirement can be formalized as:

For all possible m;, m, and for any adversary A, the probability that A guesses “1” when C is an
encryption of m; is equal to the probability that A guesses “1” when C is an encryption of m;,.

That s, the adversary is no more likely to guess that m, was sent when m; is the actual message than when m,
is the actual message. An encryption scheme satisfying this definition is said to be information-theoretically
secure or to achieve perfect secrecy.

Perfect secrecy can be achieved by the one-time pad encryption scheme, which works as follows. Let £
be the length of the message m, where m is viewed as a binary string. The parties share in advance a secret
key s that is uniformly distributed over strings of length ¢ (i.e., s is an £-bit string chosen uniformly at
random). To encrypt message m, the sender computes C = m @ s where @ represents binary exclusive-or
and is computed bit-by-bit. Decryption is performed by setting m = C @ s. Clearly, decryption always
recovers the original message. To see that the scheme is perfectly secret, let M, C, K be random variables
denoting the message, ciphertext, and key, respectively, and note that for any message m and observed
ciphertext ¢, we have:

Pr[M = m|C = ¢] = Pr[C = ¢|M = m] Pr[M = m]

Pr[C = ¢]
_ Pr[K = ¢ @ m] Pr[M = m] _ 27 Pr[M = m)]
Pr[C = c] T Pr[C =]

Thus, if m,, m, have equal a priori probability, then Pr[M = m;|C = c¢] = Pr[M = m,|C = c] and the
ciphertext gives no further information about the actual message sent.

While this scheme is provably secure, it has limited value for most common applications. For one, the
length of the shared key is equal to the length of the message. Thus, the scheme is simply impractical when
long messages are sent. Second, it is easy to see that the scheme is secure only when it is used to send a single
message (hence the name “one-time pad”). This will not do for applications is which multiple messages
must be sent. Unfortunately, it can be shown that the one-time pad is optimal if perfect secrecy is desired.
More formally, any scheme achieving perfect secrecy requires the key to be at least as long as the (total)
length of all messages sent.

Can information-theoretic security be obtained for other cryptographic goals? It is known that perfectly-
secure message authentication is possible (see, e.g., [51, Section 4.5]), although constructions achieving
perfect security are similarly inefficient and require impractically long keys to authenticate multiple mes-
sages. In the public-key setting, the situation is even worse: perfectly secure public-key encryption or digital
signature schemes are simply unachievable.

In summary, it is impossible to design perfectly secure yet practical protocols achieving the basic goals
outlined in Section 9.1. To obtain reasonable solutions for our original goals, it will be necessary to (slightly)
relax our definition of security.

9.2.2 Toward a Computational Notion of Security

The observation noted at the end of the previous section has motivated a shift in modern cryptography
toward computational notions of security. Informally, whereas information-theoretic security guaran-
tees that a scheme is absolutely secure against all (even arbitrarily powerful) adversaries, computational
security ensures that a scheme is secure except with “negligible” probability against all “efficient” ad-
versaries (we formally define these terms below). Although information-theoretic security is a strictly
stronger notion, computational security suffices in practice and allows the possibility of more efficient
schemes. However, it should be noted that computational security ultimately relies on currently unproven
assumptions regarding the computational “hardness” of certain problems; that is, the security guarantee

© 2004 by Taylor & Francis Group, LLC

provided in the computational setting is not as iron-clad as the guarantee given by information-theoretic
security.

In moving to the computational setting, we introduce a security parameter k € N that will be used to
precisely define the terms “efficient” and “negligible.” An efficient algorithm is defined as a probabilistic
algorithm that runs in time polynomial in k; we also call such an algorithm “probabilistic, polynomial-time
(PPT).” A negligible function is defined as one asymptotically smaller than any inverse polynomial; that is,
a function € : N — R is negligible if, for all ¢ > 0 and for all n large enough, €(n) < 1/n°.

A cryptographic construction will be indexed by the security parameter k, where this value is given as in-
put (in unary) to the relevant algorithms. Of course, we will require that these algorithms are all efficient and
run in time polynomial in k. A typical definition of security in the computational setting requires that some
condition hold for all PPT adversaries with all but negligible probability or, equivalently, that a PPT adversary
will succeed in “breaking” the scheme with at most negligible probability. Note that the security parameter
can be viewed as corresponding to a higher level of security (in some sense) because, as the security param-
eter increases, the adversary may run for a longer amount of time but has even lower probability of success.

Computational definitions of this sort will be used throughout the remainder of this chapter, and we
explicitly contrast this type of definition with an information-theoretic one in Section 9.5 (for the case of
private-key encryption).

9.2.3 Notation

Before continuing, we introduce some mathematical notation (following [30]) that will provide some
useful shorthand. If A is a deterministic algorithm, then y = A(x) means that we set y equal to the output
of A on input x. If A is a probabilistic algorithm, the notation y < A(x;, x,...) denotes running A on
inputs x, X2, . . . and setting y equal to the output of A. Here, the “<” is an explicit reminder that the
process is probabilistic, and thus running A twice on the same inputs, for example, may not necessarily
give the same value for y. If S represents a finite set, then b <— S denotes assigning b an element chosen
uniformly at random from S. If p(x;, X3, . . .) is a predicate that is either true or false, the notation

Prix; < S;xy < A(x1, 92,..)5 p(x1, %2, ..)]

denotes the probability that p(x;, x,, . . .) is true after ordered execution of the listed experiment. The key
features of this notation are that everything to the left of the colon represents the experiment itself (whose
components are executed in order, from left to right, and are separated by semicolons) and the predicate
is written to the right of the colon. To give a concrete example: Pr[b < {0,1,2} : b = 2] denotes the
probability that b is equal to 2 following the experiment in which b is chosen at random from {0, 1, 2}; this
probability is, of course, 1/3.

The notation {0, 1}* denotes the set of binary strings of length £, while {0, 1}=¢ denotes the set of binary
strings of length at most £. We let {0, 1}* denote the set of finite-length binary strings. 1* represents k
repetitions of the digit “1”, and has the value k in unary notation.

We assume familiarity with basic algebra and number theory on the level of [11]. We let Zy = {0, .. .,

N — 1} denote the set of integers modulo N; also, Z3, C Zy is the set of integers between 0 and N that are

relatively prime to N. The Euler totient function is defined as ¢(N) &f |Z%,|; of importance here is that

¢@(p) = p — 1for p prime, and ¢(pg) = (p — 1)(g — 1) if p, q are distinct primes. For any N, the set Z,
forms a group under multiplication modulo N [11].

9.3 Building Blocks

As hinted at previously, cryptography seeks to exploit the presumed existence of computationally “hard”
problems. Unfortunately, the mere existence of computationally hard problems does not appear to be
sufficient for modern cryptography as we know it. Indeed, it is not currently known whether it is possible
to have, say, secure private-key encryption (in the sense defined in Section 9.5) based only on the conjecture

© 2004 by Taylor & Francis Group, LLC

that P # NP (where P refers to those problems solvable in polynomial time and NP [informally] refers
to those problems whose solutions can be verified in polynomial time; cf. [50] and Chapter 6). Seemingly
stronger assumptions are currently necessary in order for cryptosystems to be built. On the other hand —
fortunately for cryptographers — such assumptions currently seem very reasonable.

9.3.1 One-Way Functions

The most basic building block in cryptography is a one-way function. Informally, a one-way function f is
a function that is “easy” to compute but “hard” to invert. Care must be taken, however, in interpreting this
informal characterization. In particular, the formal definition of one-wayness requires that f be hard to
invert on average and not merely hard to invert in the worst case. This is in direct contrast to the situation in
complexity theory, where a problem falls in a particular class based on the worst-case complexity of solving
it (and this is one reason why P # NP does not seem to be sufficient for much of modern cryptography).

A number of equivalent definitions of one-way functions are possible; we present one such definition
here. Note that the security parameter is explicitly given as input (in unary) to all algorithms.

Definition 9.1 Let F = {f; : Dy — Ri}i>1 be an infinite collection of functions where Dy C
{0, 1}=® for some fixed polynomial £(-). Then F is one-way (more formally, F is a one-way function
family) if the following conditions hold:

“Easy” to compute There is a deterministic, polynomial-time algorithm A such that for all k and for
all x € Dy we have A(1%,x) = fi(x).
“Hard” to invert For all PPT algorithms B, the following is negligible (in k):

Prlx < Dy = filx);x' < B(15y): fi(x)) = y].

Efficiently sampleable There is a PPT algorithm S such that S(1¥) outputs a uniformly distributed
element of Dy.

It is not hard to see that the existence of a one-way function family implies P # NP. Thus, we have
no hope of proving the unequivocal existence of a one-way function family given our current knowledge
of complexity theory. Yet, certain number-theoretic problems appear to be one-way (and have thus far
resisted all attempts at proving otherwise); we mention three popular candidates:

1. Factoring. Let D; consist of pairs of k-bit primes, and define f; such that fy(p,q) = pq. Clearly,
this function is easy to compute. It is also true that the domain Dy is efficiently sampleable because
efficient algorithms for generating random primes are known (see, e.g., Appendix A.7 in [14]).
Finally, f is hard to invert — and thus the above construction is a one-way function family —
under the conjecture that factoring is hard (we refer to this simply as “the factoring assumption”).
Of course, we have no proof for this conjecture; rather, evidence favoring the conjecture comes
from the fact that no polynomial-time algorithm for factoring has been discovered in roughly 300
years of research related to this problem.

2. Computing discrete logarithms. Let D; consist of tuples (p, g,x) in which p is a k-bit prime,
g is a generator of the multiplicative group Zj, and x € Z,_,. Furthermore, define fi such that
fi(p,8,x) = (p,g,¢* mod p). Given p, g asaboveand forany y € Zj, definelog, y as the unique
value x € Z_ suchthatg* = y mod p (thata unique such x exists follows from the fact that Z7 is
a cyclic group for p prime). Although exponentiation modulo p can be done in time polynomial in
the lengths of p and the exponent x, it is not known how to efficiently compute log, y given p, g, y.
This suggests that this function family is indeed one-way (we note that there exist algorithms to
efficiently sample from Dy; see e.g., Chapter 6 in [14]).

It should be clear that the above construction generalizes to other collections of finite, cyclic
groups in which exponentiation can be done in polynomial time. Of course, the function family
thus defined is one-way only if the discrete logarithm problem in the relevant group is hard. Other

© 2004 by Taylor & Francis Group, LLC

popular examples in which this is believed to be the case include the group of points on certain
elliptic curves (see Chapter 6 in [34]) and the subgroup of quadratic residues in Z}, when p and
%1 are both prime.

3. RSA [45]. Let Dy consist of tuples (N, e, x), where N is a product of two distinct k-bit primes,
e < N is relatively prime to ¢(N), and x € Z},. Furthermore, define f; such that fi(N,e,x) =
(N, e,x° mod N). Following the previous examples, it should be clear that this function is easy to
compute and has an efficiently sampleable domain (note that ¢(N) can be efficiently computed if
p»q are known), Itis conjectured that this function is hard to invert [45] and thus constitutes a one-
way function family; we refer to this assumption simply as “the RSA assumption.” For reasons of
efficiency, the RSA function family is sometimes restricted by considering only e = 3 (and choosing
N such that ¢(N) is not divisible by 3), and this is also believed to give a one-way function family.

It is known that if RSA is a one-way function family, then factoring is hard (see the discussion
of RSA as a trapdoor permutation, below). The converse is not believed to hold, and thus the RSA
assumption appears to be strictly stronger than the factoring assumption (of course, all other things
being equal, the weaker assumption is preferable).

9.3.2 Trapdoor Permutations

One-way functions are sufficient for many cryptographic applications. Sometimes, however, an “asym-
metry” of sorts — whereby one party can efficiently accomplish some task which is infeasible for anyone
else — must be introduced. Trapdoor permutations represent one way of formalizing this asymmetry.
Recall that a one-way function has the property (informally) that it is “easy” to compute but “hard” to
invert. Trapdoor permutations are also “easy” to compute and “hard” to invert in general; however, there
is some trapdoor information that makes the permutation “easy” to invert. We give a formal definition
now, and follow with some examples.

Definition 9.2 Let K be a PPT algorithm which, on input 1¥ (for any k > 1), outputs a pair (key, td)
such that key defines a permutation fie, over some domain Dye,. We say K is a trapdoor permutation
generator if the following conditions hold:

“Easy” to compute There is a deterministic, polynomial-time algorithm A such that for all k, all (key, td)
output by KC(1%), and all x € Dyey We have A(1%, key, x) = frey(%).
“Hard” to invert For all PPT algorithms B, the following is negligible (in k):

Pr[(key,td) < K(1¥);x < Dikeys ¥ = fuey(x);x" < B(1*,key, ») : fuey(x') = y].

Efficiently sampleable There is a PPT algorithm S such that for all (key, td) output by &(15), S(1%, key)
outputs a uniformly distributed element of Dje,.

“Easy” to invert with trapdoor There is a deterministic, polynomial-time algorithm I such that for all
(key, td) output by K (1%) and all y € Dyey we have I(lk,td,y) = fk’e)l,(y).

It should be clear that the existence of a trapdoor permutation generator immediately implies the
existence of a one-way function family. Note that one could also define the completely analogous notion
of trapdoor function generators; however, these have (thus far) had much more limited applications to
cryptography.

It seems that the existence of a trapdoor permutation generator is a strictly stronger assumption than
the existence of a one-way function family. Yet, number theory again provides examples of (conjectured)
candidates:

9.3.2.1 RSA

We have seen in the previous section that RSA gives a one-way function family. It can also be used to give a
trapdoor permutation generator. Here, we let K be an algorithm which, on input 1¥, chooses two distinct

© 2004 by Taylor & Francis Group, LLC

k-bit primes p, q at random, sets N = pq, and chooses e < N such that e and ¢(N) are relatively prime
(note that @(N) = (p — 1)(q — 1) is efficiently computable because the factorization of N is known to
KC). Then, K computes d such that ed = 1 mod ¢(N). The output is ((N, e),d), where (N, e) defines the
permutation fy, : Zy — Z} given by fn.(x) = x® mod N. It is not hard to verify that this is indeed
a permutation. That this permutation satisfies the first three requirements of the definition above follows
from the fact that RSA is a one-way function family. To verify the last condition (“easiness” of inversion
given the trapdoor d), note that

fna(x® mod N) = (x)? mod N = x¢¥™od¢(N) ;mod N = x,
and thus fyq = fx.. So, the permutation fy, can be efficiently inverted given d.

9.3.2.2 A Trapdoor Permutation Based on Factoring [42]

Let K be an algorithm which, on input 1¥, chooses two distinct k-bit primes p,q at random such that
p = q = 3mod4, and sets N = pq. The output is (N, (p,q)), where N defines the permutation
fn : QRN — QRy given by fn(x) = x? mod N; here, QR y denotes the set of quadratic residues
modulo N (i.e., the set of x € ZJ such that x is a square modulo N). It can be shown that fy is a
permutation, and it is immediate that fy is easy to compute. QR y is also efficiently sampleable: to choose
a random element in QR y, simply pick a random x € Z}, and square it. It can also be shown that the
trapdoor information p, g (i.e., the factorization of N) is sufficient to enable efficient inversion of fy (see
Section 3.6 in [14]). We now prove that this permutation is hard to invert as long as factoring is hard.

Lemma 9.1 Assuming the hardness of factoring N of the form generated by K, algorithm JC described
above is a trapdoor permutation family.

Proof Thelemma follows by showing that the squaring permutation described above is hard to invert
(without the trapdoor). For any PPT algorithm B, define

8(k) L Pr[(N, (p,q)) < K(15); y < QRy;z < B(15, N,) : 22 = y mod N]

(this is exactly the probability that B inverts a randomly-generated fy). We use B to construct another PPT
algorithm B’ which factors the N output by KC. Algorithm B’ operates as follows: on input (1¥, N), it chooses
arandom % € Z¥ and sets y = %> mod N. It then runs B(1¥, N, y) to obtain output z. If 2 = y mod N
and z # £x, we claim that gcd(z — %, N) is a nontrivial factor of N. Indeed, z2 — %> = 0 mod N, and
thus

(z—x)(z+ x) =0mod N.

Since z # +£X, it must be the case that gcd(z — %, N) gives a nontrivial factor of N, as claimed.

Now, conditioned on the fact that z2 = y mod N (which is true with probability 5(k)), the probability
that z # +£X is exactly 1/2; this follows from the fact that y has exactly four square roots, two of which
are X and —X. Thus, the probability that B’ factors N is exactly 8(k)/2. Because this quantity is negligible
under the factoring assumption, d(k) must be negligible as well. ad

9.4 Cryptographic Primitives

The building blocks of the previous section can be used to construct a variety of primitives, which in turn
have a wide range of applications. We explore some of these primitives here.

© 2004 by Taylor & Francis Group, LLC

9.4.1 Pseudorandom Generators

Informally, a pseudorandom generator (PRG) is a deterministic function that takes a short, random string
as input and returns a longer, “random-looking” (i.e., pseudorandom) string as output. But to properly
understand this, we must first ask: what does it mean for a string to “look random™? Of course, it is
meaningless (in the present context) to talk about the “randomness” of any particular string— once a string
is fixed, it is no longer random! Instead, we must talk about the randomness — or pseudorandomness —
of a distribution of strings. Thus, to evaluate G : {0, 1}¥ — {0,1}**! as a PRG, we must compare the
uniform distribution on strings of length k + 1 with the distribution {G(x)} for x chosen uniformly at
random from {0, 1}*.

It is rather interesting that although the design and analysis of PRGs has a long history [33], it was
not until the work of [9, 54] that a definition of PRGs appeared which was satisfactory for cryptographic
applications. Prior to this work, the quality of a PRG was determined largely by ad hoc techniques; in
particular, a PRG was deemed “good” if it passed a specific battery of statistical tests (for example, the
probability ofa “1” in the final bit of the output should be roughly 1/2). In contrast, the approach advocated
by [9, 54] is that a PRG is good if it passes all possible (efficient) statistical tests! We give essentially this
definition here.

Definition 9.3 Let G : {0,1}* — {0, 1}* be an efficiently computable function for which |G(x)| =
£(]|x|) for some fixed polynomial £(k) > k (i.e., fixed-length inputs to G result in fixed-length outputs,
and the output of G is always longer than its input). We say G is a pseudorandom generator (PRG) with
expansion factor £(k) if the following is negligible (in k) for all PPT statistical tests T

Pr(x <« {0, l}k :T(G(x)) =1] — Pr[y < {O,I}E(k) :T(y)=1]].

Namely, no PPT algorithm can distinguish between the output of G (on uniformly selected input) and the
uniform distribution on strings of the appropriate length.

Given this strong definition, it is somewhat surprising that PRGs can be constructed at all; yet, they can
be constructed from any one-way function (see below). As a step toward the construction of PRGs based
on general assumptions, we first define and state the existence of a hard-core bit for any one-way function.
Next, we show how this hard-core bit can be used to construct a PRG from any one-way permutation. (The
construction of a PRG from arbitrary one-way functions is more complicated and is not given here.) This
immediately extends to give explicit constructions of PRGs based on some specific assumptions.

Definition 9.4 Let F = {f; : Dy — Ri}i>1 be a one-way function family, and let H = {hy : Dy —
{0, 1}}x>1 be an efficiently computable function family. We say that H is a hard-core bit for F if hy(x) is
hard to predict with probability significantly better than 1/2 given f;(x). More formally, H is a hard-core
bit for F the following is negligible (in k) for all PPT algorithms A:

Prx < Disy = fu(x) : A(1%,y) = he(x)] — 1/2|.

(Note that this is the “best” one could hope for in a definition of this sort, since an algorithm that simply
outputs a random bit will guess hy(x) correctly half the time.)

We stress that not every H is a hard-core bit for a given one-way function family F. To give a trivial
example: for the one-way function family based on factoring (in which fi(p,q) = pq), itiseasy to predict
the last bit of p (and also gq), which is always 1! On the other hand, a one-way function family with a
hard-core bit can be constructed from any one-way function family; we state the following result to that
effect without proof.

Theorem 9.2 ([27]) Ifthereexists a one-way function family F, then there exists (constructively) a one-way
function family F' and an H which is a hard-core bit for F’.

© 2004 by Taylor & Francis Group, LLC

Hard-core bits for specific functions are known without recourse to the general theorem above [1, 9,
21, 32, 36]. We discuss a representative result for the case of RSA (this function family was introduced in
Section 9.3, and we assume the reader is familiar with the notation used there). Let H = {h;} be a function
family such that hy (N, e, x) returns the least significant bit of x mod N. Then H is a hard-core bit for
RSA [1, 21]. Reiterating the definition above and assuming that RSA is a one-way function family, this
means that given N, e, and x* mod N (for randomly chosen N, e, and x from the appropriate domains),
it is hard for any PPT algorithm to compute the least significant bit of x mod N with probability better
than 1/2.

We show now a construction of a PRG with expansion factor k 4 1 based on any one-way permutation
family F = { f¢} with hard-core bit H = {h;}. For simplicity, assume that the domain of f; is {0, 1};
furthermore, for convenience, let f(x), h(x) denote fiy(x), |y (x), respectively. Define:

G(x) = f(x) o h(x).

We claim that G is a PRG. As some intuition toward this claim, let |x| = k and note that the first k bits of
G (x) are indeed uniformly distributed if x is uniformly distributed; this follows from the fact that f isa
permutation over {0, 1}¥. Now, because H is a hard-core bit of F, h(x) cannot be predicted by any efficient
algorithm with probability better than 1/2 even when the algorithm is given f(x). Informally, then, h(x)
“looks random” to a PPT algorithm even conditioned on the observation of f(x); hence, the entire string
f(x) o h(x) is pseudorandom.

It is known that given any PRG with expansion factor k + 1, it is possible to construct a PRG with
expansion factor £(k) for any polynomial £(-). The above construction, then, may be extended to yield a
PRG that expands its input by an essentially arbitrary amount. Finally, although the preceding discussion
focused only on the case of one-way permutations, it can be generalized (with much difficulty!) for the
more general case of one-way functions. Putting these known results together, we obtain:

Theorem 9.3 ([31]) If there exists a one-way function family, then for any polynomial £(-), there exists a
PRG with stretching factor £(k).

9.4.2 Pseudorandom Functions and Block Ciphers

A pseudorandom generator G takes a short random string x and yields a polynomially-longer pseudo-
random string G (x). This in turn is useful in many contexts; see Section 9.5 for an example. However,
a PRG has the following “limitations.” First, for G(x) to be pseudorandom, it is necessary that (1) x be
chosen uniformly at random and also that (2) x be unknown to the distinguishing algorithm (clearly,
once x is known, G (x) is determined and hence no longer looks random). Furthermore, a PRG generat