

Summary of Contents

Preface . ix

1. Making a Start . 1

2. Developing and Testing Your Extension . 15

3. Adding Accessibility and Internationalization . 35

4. Publishing Your Extension . 43

A. Introducing Jetpack . 49

BUILD YOUR OWN
FIREFOX EXTENSION

BY JAMES EDWARDS

iv

Build Your Own Firefox Extension
by James Edwards

Copyright © 2009 SitePoint Pty. Ltd.

Managing Editor: Chris Wyness Editor: Kelly Steele

Technical Editor: Andrew Tetlaw Cover Design: Alex Walker

Latest Update: July 2009

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted

in any form or by any means, without the prior written permission of the publisher, except in the case

of brief quotations embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information herein.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any

damages to be caused either directly or indirectly by the instructions contained in this book, or by the

software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the names only

in an editorial fashion and to the benefit of the trademark owner with no intention of infringement of

the trademark.

Published by SitePoint Pty. Ltd.

48 Cambridge Street Collingwood

VIC Australia 3066.

Web: www.sitepoint.com

Email: business@sitepoint.com

.

mailto:business@sitepoint.com
http:www.sitepoint.com

v

About the Author

James (aka brothercake) is a front-end developer based in the UK, specializing in advanced

JavaScript programming and accessible web site development. He's an outspoken advocate

of standards-based development, and contributing author to SitePoint's The Art & Science

of JavaScript (http://www.sitepoint.com/books/jsdesign1/). His web site can be found at

http://www.brothercake.com/.

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for web

professionals. Visit http://www.sitepoint.com/ to access our blogs, books, newsletters, articles,

and community forums.

http://www.sitepoint.com/
http:http://www.brothercake.com
http://www.sitepoint.com/books/jsdesign1

Table of Contents

Preface . ix

Who Should Read This Book . ix

Where to Find Help . ix

The SitePoint Forums . ix

The Book’s Web Site . x

The SitePoint Newsletters . x

The SitePoint Podcast . x

Your Feedback . xi

Conventions Used in This Book . xi

Code Samples . xi

Tips, Notes, and Warnings . xii

Chapter 1 Making a Start . 1

Firefox Configuration . 2

Understanding Chrome . 4

Step 1: Create a Development Folder . 5

Step 2: Define Key Meta Files . 7

Step 3: Create a Basic Overlay . 10

Step 4: Point Firefox at Your Development Folder 12

What’s Next? . 14

Chapter 2 Developing and Testing Your
Extension . 15

XUL . 16

Styling XUL Elements with CSS . 21

JavaScript and the DOM . 22

viii

Event Handling in XUL . 24

The Relationship between Properties and Attributes 26

Opening Windows and Dialogs . 26

Working with the Content Document . 29

Using the Preferences System . 30

Further Reading . 33

Chapter 3 Adding Accessibility and
Internationalization . 35

Adding Keyboard Accessibility . 35

Language Data in XUL . 37

Language Data in JavaScript . 39

The Big Moment Has Arrived! . 41

Chapter 4 Publishing Your Extension 43

Creating an XPI File . 43

Making an Install Trigger . 43

Submitting Your Extension to the Add-ons Directory 46

Now It’s All Up to You! . 47

Appendix A Introducing Jetpack . 49

How Are Jetpack Extensions Programmed? . 50

How Does Jetpack Compare to XUL? . 53

Here’s What Jetpack is Really Good for . 54

So Where's it Heading? . 55

Preface
One of the main reasons for the explosive and continued popularity of Firefox is

its framework for custom extensions. What many web developers don’t realise is

that they’re so easy to create and implement — anyone with a minimal understanding

of JavaScript and XML can build a Firefox add-on. After reading this book, you’ll

be able create simple Firefox extensions with extremely powerful functionality.

Who Should Read This Book
If you want to build custom extensions for Firefox, then this is the book for you!

With a little JavaScript know-how, author James Edwards will show you just how

straightforward it is to build your own Firefox add-ons.

Where to Find Help
The definitive reference source for making Firefox extensions, XUL, and related

technologies can be found at the MDC—the Mozilla Developer Center1. There are

also two google groups available for help:

■	 For topics relating to extension development, the mozilla.dev.extensions

group: http://groups.google.com/group/mozilla.dev.extensions/topics.

■	 For topics relating to XUL, the mozilla.dev.tech.xul group:

http://groups.google.com/group/mozilla.dev.tech.xul/topics.

The SitePoint Forums
The SitePoint Forums2 are discussion forums where you can ask questions about

anything related to web development. You may, of course, answer questions, too.

That’s how a discussion forum site works—some people ask, some people answer

and most people do a bit of both. Sharing your knowledge benefits others and

strengthens the community. A lot of fun and experienced web designers and de

velopers hang out there. It’s a good way to learn new stuff, have questions answered

in a hurry, and just have fun.

1 https://developer.mozilla.org/en/Extensions/
2 http://www.sitepoint.com/forums/

https://developer.mozilla.org/en/Extensions/
http://www.sitepoint.com/forums/
http://www.sitepoint.com/forums
https://developer.mozilla.org/en/Extensions
http://groups.google.com/group/mozilla.dev.tech.xul/topics
http://groups.google.com/group/mozilla.dev.extensions/topics

x

There’s even a dedicated JavaScript forum:

http://www.sitepoint.com/forums/forumdisplay.php?f=15.

The Book’s Web Site
Located at http://www.sitepoint.com/books/byofirefoxpdf1/, the web site that

supports this book will give you access to the following facilities:

The Code Archive
As you progress through this book, you’ll note a number of references to the code

archive. This is a downloadable ZIP archive that contains each and every line of

example source code that’s printed in this book. If you want to cheat (or save

yourself from carpal tunnel syndrome), go ahead and download the archive.3

Updates and Errata
No book is perfect, and we expect that watchful readers will be able to spot at least

one or two mistakes before the end of this one. The Errata page on the book’s web

site will always have the latest information about known typographical and code

errors.

The SitePoint Newsletters
In addition to books like this one, SitePoint publishes free email newsletters, such

as SitePoint Tech Times, SitePoint Tribune, and SitePoint Design View, to name a

few. In them, you’ll read about the latest news, product releases, trends, tips, and

techniques for all aspects of web development. Sign up to one or more SitePoint

newsletters at http://www.sitepoint.com/newsletter/.

The SitePoint Podcast
Join the SitePoint Podcast team for news, interviews, opinion, and fresh thinking

for web developers and designers. They discuss the latest web industry topics,

present guest speakers, and interview some of the best minds in the industry. You

can catch up on the latest and previous podcasts at

http://www.sitepoint.com/podcast/ or subscribe via iTunes.

3 http://www.sitepoint.com/books/byofirefoxpdf1/code.php

http://www.sitepoint.com/books/byofirefoxpdf1/code.php
http://www.sitepoint.com/books/byofirefoxpdf1/code.php
http://www.sitepoint.com/podcast
http://www.sitepoint.com/newsletter
http://www.sitepoint.com/books/byofirefoxpdf1
http://www.sitepoint.com/forums/forumdisplay.php?f=15

xi

Your Feedback
If you’re unable to find an answer through the forums, or if you wish to contact us

for any other reason, the best place to write is books@sitepoint.com. We have a

well-staffed email support system set up to track your inquiries, and if our support

team members are unable to answer your question, they’ll send it straight to us.

Suggestions for improvements, as well as notices of any mistakes you may find, are

especially welcome.

Conventions Used in This Book
You’ll notice that we’ve used certain typographic and layout styles throughout this

book to signify different types of information. Look out for the following items.

Code Samples
Code in this book will be displayed using a fixed-width font, like so:

<h1>A Perfect Summer's Day</h1>

<p>It was a lovely day for a walk in the park. The birds

were singing and the kids were all back at school.</p>

If the code is to be found in the book’s code archive, the name of the file will appear

at the top of the program listing, like this:

example.css

.footer {

 background-color: #CCC;

 border-top: 1px solid #333;

}

If only part of the file is displayed, this is indicated by the word excerpt:

example.css (excerpt)

 border-top: 1px solid #333;

mailto:books@sitepoint.com

xii

If additional code is to be inserted into an existing example, the new code will be

displayed in bold:

function animate() {

new_variable = "Hello";

}

Also, where existing code is required for context, rather than repeat all the code, a

vertical ellipsis will be displayed:

function animate() {

⋮
return new_variable;

}

Some lines of code are intended to be entered on one line, but we’ve had to wrap

them because of page constraints. A ➥ indicates a line break that exists for formatting

purposes only, and should be ignored.

URL.open("http://www.sitepoint.com/blogs/2007/05/28/user-style-she

➥ets-come-of-age/");

Tips, Notes, and Warnings

Hey, You!

Tips will give you helpful little pointers.

Ahem, Excuse Me …

Notes are useful asides that are related—but not critical—to the topic at hand.

Think of them as extra tidbits of information.

Make Sure You Always …

… pay attention to these important points.

xiii

Watch Out!

Warnings will highlight any gotchas that are likely to trip you up along the way.

Chapter1
Making a Start
One of the most sophisticated features in Firefox, and arguably the most significant

reason for its continued popularity among developers, is its framework for custom

extensions. This goes beyond that they’re possible at all, but rather that they’re so

easy and straightforward to build. Anyone with knowledge of JavaScript and XML

can build a Firefox extension, and given the extensive range of components that are

provided by the environment, it takes very little to create extremely powerful

functionality.

The core technology that extensions are built with is an XML language called XUL

(eXtensible User-interface Language—sometimes pronounced zool), which defines

interface components from simple tags like <label> and <menuitem>, through to

more complex structures like <listbox>, <tree>, and <toolbar>. XUL also features

tags for elements that are purely visual, such as <spacer>, <splitter>, and the

primary layout-box elements, <hbox> and <vbox>.

So in a sense, working with XUL is more akin to visual markup like SVG (Scalable

Vector Graphics), than content markup like XHTML. If you’ve never worked with

a visual markup language before, you might find it a bit of a culture shock, or that

it somehow feels wrong. Be assured, you’ll soon start to enjoy it!

2 Build Your Own Firefox Extension

We’ll see many examples of XUL elements as we go through this book. The definitive

reference source for XUL and related technologies can be found at the MDC—the

Mozilla Developer Center;1 for example, a complete list of XUL elements and attrib

utes can be found at https://developer.mozilla.org/en/XUL_reference/. The docu

mentation is generally of a high quality, even if it’s rather patchy in places and

difficult to follow in others.

The details in this book apply to Firefox 1.5 or later. Building for earlier versions

of Firefox or for the Mozilla application suite is different in detail and approach,

and is beyond the scope of this book. However the techniques here are applicable

to recent versions of Flock,2 with only minor changes to the install file, as we’ll see

later.

Firefox Configuration
To build a Firefox extension we’ll be creating and working with many different file

types, some of which your computer may be unable to recognize, so to do this ef

fectively you’ll need to make sure that your working environment is set up to handle

it:

■	 First, make sure file extensions are visible. If you’re using Windows, in Windows

Explorer go to Tools > Folder Options > View and uncheck the option Hide extensions

for known file types. For Mac users, the equivalent option is called Show all file

extensions and is in the Finder’s Advanced Preferences. Doing this will ensure that

you can see all file extensions, and therefore avoid confusion when working

with a mixture of known and unknown files.

■	 Also, for Windows users, and in the same dialog, check the option Show hidden

files and folders. Later on we’re going to need to access Firefox’s Application Data

folder, which ordinarily is hidden. (For Mac users the folder we want will already

be visible, so no preference change is necessary there.)

For Firefox itself, there are also a couple of tasks you should do to create a suitable

development platform:

1 https://developer.mozilla.org/en/XUL/
2 http://www.flock.com/

https://developer.mozilla.org/en/XUL/
https://developer.mozilla.org/en/XUL/
http://www.flock.com/
http:http://www.flock.com
https://developer.mozilla.org/en/XUL
https://developer.mozilla.org/en/XUL_reference

3 Making a Start

■	 Go to the URL about:config to view the Firefox configuration page and enable

two options: javascript.options.strict and javascript.options.showIn-

Console. This will give us the most comprehensive reporting of JavaScript errors

and warnings, which we’ll need to build our extension properly. Once you do

this, you’ll start seeing errors and warnings appear that have nothing to do with

what you are working on. They can be reported from other extensions, or from

Firefox’s core. Every error report shows the location, so look at that to see if it’s

coming from a file you’re working on, otherwise ignore it.

■	 Grab a hold of the Quick Restart extension.3 For 90% of the development we’ll

be doing it’s necessary to restart the browser between changes, and having a nice

big button on the toolbar—like the one in Figure 1.1—to do this will save you

massive time and hassles. Believe me, you’ll be very glad you did!

Figure 1.1. The Quick Restart button

There's also another option; you can disable the XUL cache while you're devel

oping your extension—see Chapter 2 for details.

Now that we have our environment sorted, we can create the basic extension tem

plate. But before we do that, let me digress for just a moment to give you some

background information. This is necessary to understand the inner workings of an

extension, and of Firefox itself.

3 https://addons.mozilla.org/en-US/firefox/addon/3559

https://addons.mozilla.org/en-US/firefox/addon/3559
https://addons.mozilla.org/en-US/firefox/addon/3559

4 Build Your Own Firefox Extension

Understanding Chrome

Firefox uses a pseudo-protocol called chrome:// to load XUL files; a chrome address

points internally to Firefox’s application files. To see what I mean, type or paste

the address chrome://browser/content/browser.xul into Firefox’s address bar

and take a look at what happens. Seeing double? What you’re viewing is the file

that defines Firefox’s main interface, and you can poke around it using Firebug4 or

the DOM Inspector.5 You may recognize some of the more obvious tags, like the

<toolbarbutton> tags for back, forward, and home buttons, and the <popup> tags

that define the main document context menu.

If you want to see it in your text editor, go to C:\Program Files\Mozilla Firefox\chrome\

on a Windows machine, or /Applications/Firefox/Contents/MacOS/chrome/ in Mac

OS X (you’ll need to right-click the application file and select Show Package Contents

from the context menu to look inside the Firefox directory). In there you’ll find a

file called browser.jar; copy that and rename the copy to browser.zip, then expand

the ZIP file and you’ll have a directory called content. Look inside that, then within

the browser directory, and there you’ll find browser.xul.

When we make a Firefox extension, what we’re doing is inserting new XUL com

ponents into that XUL file, using what’s called an overlay. An overlay defines one

or more insertion points into which new XUL elements can be inserted, usually

(though not always) into browser.xul. We’ll learn more about overlays shortly.

And that’s as much as you need to know about chrome files and addresses for now.

Let’s begin to create our extension. I’m going to talk you through the steps necessary

to create a new template, but you can also download the code archive for this book,6

that has one ready made that has everything necessary to begin working. Unzip the

myextension_template1.zip file and move the entire myextension folder it contains to

a convenient location for you; then we’ll see in the section called “Step 4: Point

Firefox at Your Development Folder” how to point Firefox at it.

4 http://getfirebug.com/
5 https://developer.mozilla.org/En/DOM_Inspector/
6 http://www.sitepoint.com/books/byofirefoxpdf1/code.php

http://getfirebug.com/
https://developer.mozilla.org/En/DOM_Inspector/
http://www.sitepoint.com/books/byofirefoxpdf1/code.php
http://www.sitepoint.com/books/byofirefoxpdf1/code.php
https://developer.mozilla.org/En/DOM_Inspector
http:http://getfirebug.com

5 Making a Start

Step 1: Create a Development Folder

The structure of a Firefox extension is a set of folders and files with a specific

hierarchy, and in many cases, specific names. In Figure 1.2 below, you can see blue

folders, green files (all of which are plain text), and one red file (which is an image).

The names in black are all fixed—you must use that exact name—while the names

in gray can be anything you choose (with the correct file extensions as a given).

You’ll notice that the root folder name (myextension) and one of the JavaScript files

have a star next to their name. This means that you can choose any name for these,

as long as they share the exact same name; that is, the JavaScript filename must

match the root folder name.

Figure 1.2. The directory structure of a Firefox Extension

The root folder name is the name of your extension, and this will be used in lots of

different places—so decide on a name now, and stick to it! (Or you could just leave

6 Build Your Own Firefox Extension

it as “myextension” for now, while you’re setting everything up to work—it’s one

less task to think about, and one less item to go wrong!)

There’s no need to worry about what all those files and folders actually do for now;

we’ll arrive at each one in turn and I’ll explain it as we use it. For now, you just

need to create that hierarchy with empty text files and some kind of image to use

as a logo for the Add-ons dialog. You can easily change it later, so anything will do

for now. The image must be 32x32 pixels, and although there’s no need to make it

a PNG, it may as well be, to take advantage of the lovely alpha-channel transparency

PNG provides.

There are a few other files and folders that an extension may optionally use, but

which are excluded here. Principally among them is a skin directory, which is un

necessary really, unless you plan to support more than one skin (over and above

the default, classic skin that Firefox ships with), or indeed, to create a new skin.

Firefox also supports a mechanism for adding platform-specific style sheets, as well

as style sheets for different skins, but all of that is beyond the scope of this book.

What we’ve included here is a single style sheet, just for any bits of styling we may

need to do to our interface; since that’s all it is, it can quite happily live in the main

content directory along with everything else. There may be no need for it at all,

since all XUL interface components have default styling, defined by the default

skin.

If you’re developing on a Mac then every file and folder name is case-sensitive,

while on a Windows machine they’re case-insensitive. However, since JavaScript

is case-sensitive, and that’s the primary language we’ll be programming in, it’s best

to assume that everything else is case-sensitive too, thereby avoiding any cross-

platform issues. Furthermore, Firefox 2 will be unable to find the chrome if the ex

tension name is mixed case, resulting in a “no chrome registered” error. Therefore,

you should always choose a name that’s purely lowercase, which is why our exten

sion is called “myextension” rather than “MyExtension”.

You may feel that it’s impractical supporting Firefox 2 at all, given that it’s such an

old version, and no longer officially supported. But in my view it’s a question of

accessibility, as some users may not be able to run more recent versions. My sister

in-law, for example, is still running Mac OS X 10.3, and the most recent version

she can run is Firefox 2.

7 Making a Start

Step 2: Define Key Meta Files

Now we need to add content to the two key meta files that the extension uses to

identify its components and installation settings; these are chrome.manifest and

install.rdf.

Let’s begin with chrome.manifest, and this is a tab-delimited text file that tells the

extension where to find its overlay, content directory, and language directories. Our

chrome.manifest file should look like this:

overlay chrome://browser/content/browser.xul

➥ chrome://myextension/content/browser.xul

content myextension chrome/content/

locale myextension en-US chrome/locale/en-US/

As I explained before, an overlay is the primary method by which new components

are inserted into Firefox’s interface. We define the file which will be inserted into,

and the file which contains the overlay. It’s unnecessary for our overlay file to be

strictly called browser.xul, but it may as well be for simplicity.

Next, we define where the content of our extension is and, as we saw in the diagram,

this is the chrome/content/ directory, so that’s what we specify.

Finally, we define where our language files will be kept. You have to have one

definition for each language you support, defining the language code and the direct

ory where the files are. Since we’re only supporting one language in this example,

we only need one definition. But if you want to support additional languages you

would add them underneath, for example:

locale myextension es chrome/locale/es/

locale myextension de chrome/locale/de/

Each of those directories in turn would contain another lang.dtd and lang.properties

file.

8 Build Your Own Firefox Extension

Now we need to define install.rdf, and this is an XML file with the following basic

contents:

<?xml version="1.0"?>

<RDF xmlns="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:em="http://www.mozilla.org/2004/em-rdf#">

 <Description about="urn:mozilla:install-manifest">

 <em:id>myextension@mysite.com</em:id>

 <em:version>1.0</em:version>

 <em:iconURL>chrome://myextension/content/logo.png</em:iconURL>

 <em:name>My Extension</em:name>

 <em:description>

 A brief description for the install dialog and add-ons list

 </em:description>

 <em:homepageURL>

 http://www.mysite.com/extension/details/

 </em:homepageURL>

 <em:creator>My Name; http://www.mysite.com/</em:creator>

 <!-- firefox -->

 <em:type>2</em:type>

 <em:targetApplication>

 <Description>

 <em:id>{ec8030f7-c20a-464f-9b0e-13a3a9e97384}</em:id>

 <em:minVersion>2.0</em:minVersion>

 <em:maxVersion>3.5.*</em:maxVersion>

 </Description>

 </em:targetApplication>

 </Description>

</RDF>

The most important point here is the first em:id element, which defines a unique

identifier for our extension. You could use a GUID7 (Globally Unique Identifier)

7 http://www.guidgenerator.com/

http://www.guidgenerator.com/
http:http://www.guidgenerator.com
http://www.mysite.com/</em:creator
http://www.mysite.com/extension/details

9 Making a Start

wrapped in braces, as Firefox itself and many extensions do, or you could use a

namespace-like value as we have in this example: myextension@mysite.com. The

important point is that the value must be absolutely unique.

Most of the other elements should be fairly self-explanatory, and are all values used

in the install or Add-ons dialog to give users more information. You can also include

one or more em:contributor elements below em:creator to credit any other con

tributors, and there’s an em:aboutURL element if you have an About page for your

extension in addition to its home page. There’s also an em:updateURL element for

defining the URL of an updates meta file, but we’ll avoid dealing with updates here;

we can leave that to Mozilla when we submit our extension to its directory (which

we’ll talk about later).

The section at the bottom of the file, beginning with the <!-- firefox --> comment,

defines the target application for our extension. That code must be exactly as shown

if it’s to target Firefox properly. As well as defining the add-on type (the value 2

means it’s an extension) and Firefox’s GUID, it also includes two elements that

define the minimum and maximum versions we support, using wildcards; hence,

a value of 3.5.* means any version in the 3.5 branch.

You’ll notice that even though we could technically support Firefox 1.5, the lower

limit specified in the install file above is Firefox 2. The reason for this is simply to

avoid having to do legacy testing; you’ll find quite a few CSS differences in this

older version, and it’s arguably pointless spending the time correcting glitches for

a version that nobody will be using anyway.

That previous example shows the install details for Firefox. If you want your exten

sion to support Flock as well, then add the following code to declare it in addition:

<!-- flock -->

<em:type>2</em:type>

<em:targetApplication>

 <Description>

 <em:id>{a463f10c-3994-11da-9945-000d60ca027b}</em:id>

 <em:minVersion>1.0</em:minVersion>

 <em:maxVersion>2.5.*</em:maxVersion>

 </Description>

</em:targetApplication>

mailto:myextension@mysite.com

10 Build Your Own Firefox Extension

Step 3: Create a Basic Overlay

To create an overlay we use the overlay element, and inside that we redefine each

of the elements we want to insert new content into; then we define the new content

inside that, with an optional attribute that specifies a relative insertion point. We

use the file browser.xul to specify our master overlays, so let’s do that now:

<?xml version="1.0"?>

<?xml-stylesheet

 href="chrome://myextension/content/browser.css"

 type="text/css"?>

<!DOCTYPE overlay SYSTEM "chrome://myextension/locale/lang.dtd">

<overlay xmlns=

 "http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul">

⋮
</overlay>

You can see that in this file we have a reference to our main style sheet, and a refer

ence to the document type definition (lang.dtd) that defines our language. Language

here is defined as custom entities which can then be referenced in the XUL code;

more about that later. Then the root element in this file is the overlay element,

which (as with all XUL documents) must define the root namespace.

Inside the overlay element we define each of the overlays we want. For example,

if we wanted to add to the main status bar, we would redefine the status-bar element,

and then define content inside it:

<statusbar id="status-bar">

 <statusbarpanel

id="myextension-statusoverlay"

 insertafter="statusbar-progresspanel">

 <label>Hello World!</label>

 </statusbarpanel>

</statusbar>

So in the above example we’re inserting a new statusbarpanel element inside the

main status bar, and telling it to insert after the progress bar (the element with the

ID of statusbar-progresspanel). We’re unable to obtain absolute control over the

position of our statusbarpanel—it would depend on whether any other extensions

http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul

Making a Start 11

are using the same insertion reference—but it’s as much control as we genuinely

need. In Figure 1.3 we can see other extensions using the same insertion point as

our Hello World example.

Figure 1.3. Multiple extensions using the same insertion point

Neither the insertion reference nor the ID of the status bar can be worked out pro

grammatically, we just have to know what they are. This can be established by

viewing Firefox’s source code, inspecting browser.xul using Firebug or the DOM

Inspector, or by looking at other extensions to see what they do (we’ll see in the

next step how to find the source of other extensions).

There are lots of places where you can insert new content; basically any part of the

visible interface is game. To give another example, we could add a new item to

Firefox’s Tools menu, like this:

<menupopup id="menu_ToolsPopup">

 <menuitem id="myextension-toolsmenuitem"

label="My Extension"

 insertbefore="sanitizeSeparator"/>

</menupopup>

Again, we’ve redefined the menupop element that is the Tools menu, defined a new

menu to go inside it, and specified an insertion reference to determine where it

goes, as Figure 1.4 demonstrates.

12 Build Your Own Firefox Extension

Figure 1.4. Inserting a new menu into the Tools menu

Step 4: Point Firefox at Your
Development Folder
Now we have everything ready, the final step is to point Firefox at your development

folder. To do this, you create a file with the same name as your extension’s ID, enter

the path to your development folder, and put it in Firefox’s extensions directory.

If your extension ID has a value ending in .com—like the ID myextension@mys

ite.com from our example—this may cause you a slight problem on Windows, be

cause it will think this is a binary COM file. You’ll be without an Open with… option

in the right-click menu, and if you open it in an editor like TextPad—which is

binary-aware—it will also think it’s a binary file. The simplest way to bypass this

annoyance is to start up Notepad, then open the file from its File menu (or if you’re

creating it for the first time, save it from Notepad in the same way). Alternatively,

if your ID is a GUID value in braces such as {3c6e1eed-a07e-4c80-9cf3

66ea0bf40b37}, then that should be okay. Make sure, though, that no extension is

added to the file name, like .txt, which many editors will try to do unless you ex

plicitly remove it. This is partly why it’s important that you can view all file exten

sions, as we discussed at the very start.

Making a Start 13

Inside that file you simply add the path to your development folder. So if you’re

on Windows XP and you put the myextension folder directly inside My Documents,

then the path will be as follows:

C:\Documents and Settings\User\My Documents\myextension\

On Windows Vista you put the myextension folder directly inside your Documents

folder, then the path will be as follows:

C:\Users\User\Documents\myextension\

On a Mac, with the development folder directly inside Documents, it would be:

/Users/User/Documents/myextension/

You’ll need to substitute User for your username, and the drive letter C if necessary;

and add the trailing slash too, of course!

Now you should put that file inside your profile extensions folder; this is where all

the extensions you have installed are kept, each with a folder containing all its

source files. But we’ll avoid putting our extension folder here for now; we’re simply

going to point to the development folder elsewhere.

This is where you need to be able to view hidden files on Windows; the path to

your extensions folder on a Windows XP machine will be: C:\Documents and

Settings\User\Application Data\Mozilla\Firefox\Profiles\g5arepve.default\extensions (the

Application Data folder is the one that’s hidden). On Windows Vista the path is

C:\Users\User\AppData\Roaming\Mozilla\Firefox\Profiles\g5arepve.default\extensions

(the AppData folder is the one that’s hidden).

On a Mac the extensions folder will be at /Users/User/Library/Application

Support/Firefox/Profiles/g5arepve.default/extensions.

Again, change User for your username, the drive letter C if necessary, and

g5arepve.default for the name of your profile. (Chances are you only have one profile,

so it will be easy to work out which folder it is!)

With the pointer file in place, restart Firefox—and if all is well it will automatically

open the Add-ons dialog to indicate that a new add-on has been installed. You’ll see

14 Build Your Own Firefox Extension

the information in the dialog from install.rdf, showing the title, version, and descrip

tion of your extension, as well as the 32x32 pixel icon.

You should also see the first bit of content we put into the extension itself: Hello

World! written into the status bar, and My Extension in the Tools menu.

If it has failed to work, make sure of the following: the ID of your extension and the

pointer filename match perfectly; the path inside the pointer file is correct and in

cludes a trailing slash; and that your chrome.manifest file is correct, with all the right

names and paths.

What’s Next?
Now that we’re all set up and our extension is up and running, the fun really starts!

In the next chapter we begin building our extension using XUL and JavaScript.

Chapter2
Developing and Testing Your Extension
There’s so much you can do with a Firefox extension, whether you’re looking to

build tools that make other developers’ lives easier, or usability widgets to improve

the everyday surfing experience, or a more unusual task that meets a particular

need.

A useful maxim when it comes to application development is to solve your own

problems. By that I mean, make something that you need; be it application, widget,

tool, or gadget. This philosophy gives rise to applications that solve genuine needs

and perform useful tasks, as well as being built with genuine passion and care.

With Firefox development you’re also able to experience the joy of developing for

a single browser! No more cross-browser testing—or cross-platform either, unless

you’ve done a great deal of custom styling with your interface, rather than relying

on the default styling. You probably will have to test between older and newer

versions (for example, between 2.0 and 3.5), but there again, only if you’ve done a

lot of custom CSS, or used components that are only supported in later versions.

Here again, the Mozilla Developer Center1 (MDC) will steer you right, but if you’ve

1 https://developer.mozilla.org/en/XUL/

https://developer.mozilla.org/en/XUL/
https://developer.mozilla.org/en/XUL

16 Build Your Own Firefox Extension

used such components, then arguably you lack support for the earlier versions

anyway.

In the next two sections of this book we’re going to look at the two main aspects of

extension development: XUL and JavaScript. It would be impossible for me to

cover everything there is to say on the subject—even the MDC is unable to do that,

and it goes on for ages. What I can do is introduce some of the most useful bits and

pieces, and point out any gotchas you might encounter. For the most part however,

it’s up to you to experiment and figure out what’s what—that’s what I did!

The Development and Testing Cycle

The cycle of extension development follows a predictable routine of edit, restart,

test. For most edits you would need to restart Firefox to see the changes—anything

in scripting or style sheets, and anything in XUL inside the main overlay. However,

if you disable the XUL cache it’s possible to see your changes by opening a new

window. To do this, you’ll need to create a new boolean preference in your Firefox

configuration. Go to the URL about:config to view the Firefox configuration page,

right-click on the page, and choose New > Boolean from the context menu. Enter

the preference name nglayout.debug.disable_xul_cache and give it the

value true.

If you prefer to restart Firefox than constantly open new windows, then you’ll

need to get into the habit of reloading every time which is why it’s so helpful to

have the QuickRestart extension that I mentioned at the beginning of the previous

chapter; it places a nice big button right on the toolbar to make restarting a cinch.

There’s also an extension called the “Extension Developers’ Extension” which

purports to offer useful tools, such as the ability to reload the chrome without re

starting the browser, but it failed to work for me—I think it’s just out of date.

XUL
XUL is an interface language, and its elements create structures that are used as

interface components. Some XUL elements are standalone, while others are used

in combination to make a particular structure. For example, an XUL menu is com

prised of several elements that combine to make the overall structure, such as this

simplified context menu from Dust-Me Selectors:2

2 http://www.sitepoint.com/dustmeselectors/

http://www.sitepoint.com/dustmeselectors/
http://www.sitepoint.com/dustmeselectors

Developing and Testing Your Extension 17

<popup id="dms-statuspopup">

 <menuitem label="Find unused selectors"/>

 <menuitem label="Stop" disabled="true"/>

 <menuseparator/>

 <menu label="Automation">

 <menupopup>

 <menuitem label="Run automatically" type="checkbox">

 <menuitem label="Spider Sitemap...">

 </menupopup>

 </menu>

</popup>

As you can see, the master element here is the popup element; it contains multiple

menuitem elements and one menu element, which declares a nested submenu and

has its parent label. The submenu in turn contains a master menupopup element,

and this in turn contains multiple menuitem elements (popup always represents an

independent menu like a context menu, while menupopup is always attached to an

other XUL interface in some way). That structure could continue indefinitely with

further nested menus if necessary, as long as the correct structure is maintained.

One of the most important elements in XUL is label, which is both an element and

an attribute. Most XUL elements cannot directly contain text content, so the label

element is added as a wrapper to that text. Similarly, many XUL elements contain

text as part of their layout—the text next to a checkbox, in a menuitem or inside a

tooltip—and in all these examples the label attribute is used to contain the text.

The most common structural elements in XUL are hbox and vbox, and these elements

simply control the orientation of their children: elements inside an hbox are laid

out horizontally, while elements inside a vbox are laid out vertically. (I’d be lying

if I didn’t sometimes wish that HTML had similar elements, but then that would

be contrary to the function of HTML, whose elements define the meaning of their

content, rather than their structure or appearance. This to my mind is a reason why

HTML is completely the wrong choice for building web applications … but I digress!)

You’ll never just see a label or hbox out there on its own, because what would be

the point?

18 Build Your Own Firefox Extension

Another good example of the interdependence of XUL elements is a tabbed structure,

such as you’d find in a properties dialog, or like Figure 2.1 from CodeBurner.3

Figure 2.1. The tabs in CodeBurner

The basic code looks like this:

<tabbox flex="1">

 <tabs>

 <tab label="Search"/>

 <tab label="DOM"/>

 <tab label="About"/>

 </tabs>

 <tabpanels flex="1">

 <tabpanel flex="1">

⋮ panel content …
 </tabpanel>

 <tabpanel flex="1">

⋮ panel content …
 </tabpanel>

 <tabpanel flex="1">

⋮ panel content …
 </tabpanel>

 </tabpanels>

</tabbox>

In that structure, each tab corresponds with a tabpanel, and the contents of the

panel are visible when its tab is selected. Note the flex attribute used on many

elements there: that’s a visual attribute that tells the element to take up as much

3 http://tools.sitepoint.com/codeburner/

http://tools.sitepoint.com/codeburner/
http://tools.sitepoint.com/codeburner

Developing and Testing Your Extension 19

room as it can inside its parent—to be flexible—and is analogous to the behavior

of a td element in HTML. Elements with a larger flex value take up proportionately

more space than those with a smaller value; the actual value is insignificant. For

example, if two elements in a row had flex values of 1 and 3, then the second element

would take up three times as much space as the first.

I could spend all day showing you different XUL structures, but we have other

things to talk about! So let me give you one more structure to play with, and that’s

a simple listbox, used to build a multi-column layout as in Figure 2.2.

Figure 2.2. A listbox interface

This comes from an as-yet unreleased extension I wrote for personal use, which is

a simple playlist manager for YouTube.

20 Build Your Own Firefox Extension

The code looks like this:

<listbox id="tube-playlistbox" flex="1" seltype="multiple">

 <listcols>

 <listcol/>

 <listcol flex="1"/>

 <listcol/>

 </listcols>

 <listhead>

 <listheader label="#"/>

 <listheader label="Title"/>

 <listheader label="Length"/>

 </listhead>

 <listitem>

 <listcell label="1"/>

 <listcell label="Chad Vader - Day Shift Manager #1"/>

 <listcell label="4:46"/>

 </listitem>

 <listitem>

 <listcell label="1"/>

 <listcell label="Chad Vader #2 "The Date""/>

 <listcell label="5:13"/>

 </listitem>

</listbox>

You can see that the XML structure of a listbox is very similar to an HTML table,

but it behaves more like an HTML select element, with items you can select from.

In this case the seltype attribute declares that you can select more than one item

simultaneously, just like the multiple attribute of a select element.

In the actual extension the example comes from, those listitem groups are generated

on the fly. You can create XUL structures using DOM methods like createElement

and appendChild, just as you would with HTML (there’s more on this in the section

called “JavaScript and the DOM”).

There are so many different kinds of structures that can be built with XUL—some

very simple, some quite complicated. The best way to learn is to look at other exten

sions and to browse around the MDC for pointers; there’s really no substitute for

just playing around to see what stuff does!

Developing and Testing Your Extension 21

Styling XUL Elements with CSS
Just as with HTML, elements in XUL have default styling (provided by a global style

sheet) and can be additionally styled using CSS. You can add a new style sheet to

an XUL file using an <?xml-stylesheet?> instruction, as we did in our template:

<?xml-stylesheet

href="chrome://myextension/content/browser.css"

 type="text/css"?>

Note the use of a chrome:// URL in the style sheet address; that URL points to the

extension’s chrome folder, and should be used whenever external files are used,

including scripts and images.

Then we can add rules to the style sheet just as you’d expect, using XUL element

selectors, ID and other attribute selectors, and so on. And since we’re working in a

Firefox-only environment, we have the freedom to use the most advanced CSS.

For example, if we wanted the status bar text in our original template to have bold

text, we could style it like this:

#myextension-statusoverlay > label

{

 font-weight:bold;

}

Another good example of using CSS in XUL is to add icons to menu items. These

are implemented as a list-style-image property of the <menu> or <menuitem>

element:

#myextension-toolsmenuitem

{

 list-style-image:url(chrome://myextension/content/logo.png);

}

Unfortunately, menu icons only show up on a Mac, they’re unsupported on the

Windows version. But they’re still worth adding, I reckon, because they do look

cool for those who can see them, as Figure 2.3 attests.

22 Build Your Own Firefox Extension

Figure 2.3. Adding an icon to a menu item

JavaScript and the DOM
No amount of XUL will be of tremendous use unless it hooks into scripted behaviors,

but before we learn how to implement those hooks, let’s take a step back and look

more generally at the structure of an extension script.

Before we can do any scripting we obviously have to include the script, and XUL

has a <script/> tag for this, just like HTML. But since we’re in XML we can use a

self-closing tag, and since Firefox understands it we can use the correct mime-type:

<script src="chrome://myextension/content/browser.js"

 type="application/javascript"/>

Now, the best way to structure the code for a Firefox extension is to use object-based

scripting—place all your custom code within a single JavaScript object. This gives

us a single point of reference to the scripting object, both internally from our

methods and externally from XUL event handlers.

So inside our template browser.js file, I would suggest a basic framework like this:

http:browser.js
http:src="chrome://myextension/content/browser.js

Developing and Testing Your Extension 23

var myextension =

{

 init: function()

 {

 }

};

window.addEventListener('load', myextension.init, false);

Any further properties and methods we need can be extended from the myextension

object, remembering that each member must be separated with a comma (apart from

the last one—trailing commas are not allowed in object literals as they are in arrays):

var myextension =

{

 init: function()

 {

 },

 anotherMethod: function()

 {

 },

 aStringProperty: 'foo'

};

We’ll need the init function to take care of anything that needs to be deferred until

the window load event. The XUL DOM is just like HTML or any other DOM in the

sense that you’re unable to access DOM objects until they’ve loaded. When you

look at a Firefox window, what you’re looking at is the top-level window object of

the XUL DOM, and everything else descends from that. And so, just as we do in

HTML scripting, we have a window load method to contain any such code.

24 Build Your Own Firefox Extension

this Might be Unavailable

One important point worth mentioning here is that the this keyword will

sometimes be unavailable in this context, as predictably as you might think at

first glance. If a method of an object is called from any event-handling attribute,

then the this reference doesn’t point to the object. The reason is that event-

handling attributes are out of the object’s scope. If you find that awkward to re

member, it’s easier just to avoid using this altogether, and use the single object

reference instead (in this case, myextension).

Another important reason for using object-based scripting is encapsulation. Just as

multiple scripts on an HTML page can conflict with each other, so multiple scripts

in an XUL document can also conflict; in our case this principally means other ex

tensions, although it also means parts of the Firefox codebase itself, of course. All

of that code lives inside the same XUL DOM, so by keeping our code neatly encap

sulated inside a uniquely-named object, we ensure that there are no conflicts.

It’s also possible for extension scripting to interfere with scripting in the HTML

document a user is viewing; if you add prototypes to built-in objects, they’ll pollute

that scope, so leave well alone!

Event Handling in XUL
The simplest way of associating interface actions with scripted methods is to use

the event-handling attributes, the most common of which is oncommand, which is

valid in virtually all XUL elements. For example, let’s add one to our Tools menu

item (shown in bold):

<menupopup id="menu_ToolsPopup">

 <menuitem id="myextension-toolsmenuitem"

 label="My Extension"

 insertbefore="sanitizeSeparator"

oncommand="myextension.greet(this)"/>

</menupopup>

We then define the method that it calls in our script:

Developing and Testing Your Extension 25

greet: function(menuitem)

{

alert('Welcome to ' + menuitem.getAttribute('label'));

}

The command event will be fired by clicking on the menu item with a mouse or ac

tivating its keyboard trigger (see the section called “Adding Keyboard Accessibility”

in Chapter 3 for how to add keyboard triggers).

These events can also be added in the DOM, using the same addEventListener

syntax you’ll already be familiar with:

var menuitem = document.getElementById('myextension-toolsmenuitem');

menuitem.addEventListener('command', function(e)

{

 alert('Welcome to ' + e.target.getAttribute('label'));

}, false);

This would have to be called from inside our init method, of course, because it

refers to aspects of the XUL DOM that are unavailable at the point when the script

is parsed.

Now in HTML, separation of content and logic is desirable, and so event handlers

added in this way are preferable—they’re better than the use of event-handling at

tributes. XUL is different, however. In XUL the content and logic are far more inex

tricably linked, with greater co-dependence and more closely associated semantics.

XUL elements, in many cases, exist only as a hook to scripted behaviors, and XUL

documents are virtually useless without them.

So a certain shift of mindset is necessary: abstracted event handling in XUL is not

better or in any way intrinsically preferable, and there is no advantage in separating

content and logic, nor is it particularly meaningful.

However, abstracted event listening can still have a useful role in XUL. Personally,

I find it most useful for binding behaviors to elements that are created on the fly;

for instance, if we’d built our Tools menu item in the DOM instead of in static XUL:

26 Build Your Own Firefox Extension

var menuitem = document.createElement('menuitem');

menuitem.setAttribute('label', 'My Extension');

var separator = document.getElementById('sanitizeSeparator');

var toolsmenu = document.getElementById('menu_ToolsPopup');

toolsmenu.insertBefore(menuitem, separator);

The Relationship between Properties and Attributes
Just as with HTML, XUL elements have scriptable properties that relate to specific

attributes. A checkbox element, for example, has a checked attribute (which takes

the value true or false), and a textbox has a value attribute, which can take any

string value. However, when the user modifies the state of such an element the at

tribute value may not change, but the corresponding property value always will

change. So if you were to produce code like this:

<textbox onchange="alert(this.getAttribute('value'))"/>

The alert dialog in this example will always produce an empty string. If you want

to retrieve the actual value, you’d need to do this:

<textbox onchange="alert(this.value)"/>

It may seem obvious, but it’s an annoying gotcha if you’re unaware of it (he says,

speaking from tedious experience!). The same caveat applies to all attributes that

have a user-modifiable state: the attribute value might change, so it’s unreliable—use

the JavaScript property instead. These properties always have intuitive names, like

value and checked, but if in doubt you can look them up in the MDC XUL Refer
4ence.

Opening Windows and Dialogs
XUL has several types of window-level elements, the most general of which is

window. This element should be used as a general container for interfaces that are

outside of the main browser window. It’s also the root element for the main browser

window itself.

4 https://developer.mozilla.org/en/XUL_reference/

https://developer.mozilla.org/en/XUL_reference/
https://developer.mozilla.org/en/XUL_reference/
https://developer.mozilla.org/en/XUL_reference

Developing and Testing Your Extension 27

But for producing dialog boxes, the element you want is dialog, which has a range

of semantics in XUL and JavaScript specifically designed for such purposes. Here’s

the XUL for one of the dialogs from Dust-Me Selectors:5

<?xml version="1.0"?>

<?xml-stylesheet href="chrome://global/skin/" type="text/css"?>

<dialog xmlns=

 "http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul"

 id="dms-clearconfirm"

 buttons="accept,cancel"

 defaultButton="cancel"

 buttonlabelaccept="Yes"

 buttonlabelcancel="No"

 title="Confirm"

 ondialogaccept=

 "opener.DustMeSelectors_browser

 .doClearSavedSelectors(false, window);">

 <description style="margin-bottom:10px;max-width:300px;">

 Are you sure you want to clear data for the current site?

 </description>

 <checkbox id="dms-clearconfirm-clearconfirm" checked="true"

 label="Ask me every time"/>

</dialog>

Note that the dialog manually includes the global skin style sheet; you have to in

clude that in all windows and dialogs, otherwise they’ll have little or no default

styling, and a completely transparent background!

What we have here is basically a slightly more sophisticated confirm, which looks

like Figure 2.4.

5 http://www.sitepoint.com/dustmeselectors/

http://www.sitepoint.com/dustmeselectors/
http://www.sitepoint.com/dustmeselectors
http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul

28 Build Your Own Firefox Extension

Figure 2.4. A modal confirm dialog in Windows Vista

You can see from the code that the choice of buttons, their layout, and their actions

are all controlled by attributes of the <dialog> tag—such as buttonlabelaccept,

which is the text on the accept button, and ondialogaccept, which is the event

handler invoked when the accept button is clicked. You might extrapolate from this

that the behavior of the cancel button would be specified by an event handler called

ondialogcancel—and you’d be right, that’s exactly what it’s called!

The reason for defining the buttons using those attributes, rather than leaving it to

us to add individual button elements, is so that the layout can vary according to

the user’s platform: on Mac computers the convention is that the accept button is

to the right and the cancel button to the left, whereas on Windows machines it’s

the other way round. So that same dialog on a Mac looks like Figure 2.5.

Figure 2.5. The same dialog, on a Mac

Dialogs are opened using window.openDialog. This is very similar to window.open,

but it gives more control over the modality, placement, and decoration of the result

Developing and Testing Your Extension 29

ing dialog, courtesy of a wider range of definable features (as well as having different

default features, such as no address bar). The dialog above, for example, was opened

with this code:

window.openDialog(

 'chrome://dustmeselectors/content/clearconfirm.xul',

 'clearconfirm',

 'modal,centerscreen,resizable=no'

);

The first argument is the URL of the XUL document to be opened, and the second

argument defines the window name, in case we need it for later reference. The third

argument defines the window features, and is a comma-separated list of values that

control aspects of the dialog’s layout. All the same values are available as with

window.open, plus there are several additional features that only work for chrome

windows opened using openDialog.

In this example, modal means that the dialog is, er, modal: it restricts user focus to

the dialog box, unless closed or acted on (just like a standard JavaScript alert or

confirm dialog). The centerscreen option means to place the dialog directly in the

center of the window (but for modal dialogs on a Mac this has no effect, as all such

dialogs appear out of a slot beneath the title bar). The final option, resizable=no,

should be fairly self-explanatory!

Another value that can be used is dialog=no, which, for a non-modal dialog, adds

minimize and maximize/restore controls … although the latter will be disabled if

“resizable=no” is also specified. (Conversely, if the dialog being opened is a window

rather than a dialog element, setting dialog=yes will remove those controls that

would otherwise be present.)

See https://developer.mozilla.org/en/DOM/window.open for a complete list of

window features (in among lots of other information!).

Working with the Content Document
At some point in the development of your extension, it’s very possible that you’ll

need to refer to the actual document the browser is currently viewing. You may

https://developer.mozilla.org/en/DOM/window.open

30 Build Your Own Firefox Extension

want complete data about its DOM for an extension like Firebug6 or the DOM In

spector;7 you may want to scan its elements and style sheets to look for unused

rules, like Dust-Me Selectors;8 or you may just want to add a new item to the docu

ment context menu, like my playlist manager for YouTube.

Fortunately, Firefox provides a convenient window.content object that always refers

to the window object of the currently visible document. Whenever the user changes

this reference—by selecting a different tab, for example—the window.content refer

ence updates automatically.

However, if you want to load a new page you should avoid overriding a user’s main

document—that would be rude. But with a reference to the embedded browser that

contains it (available using the getBrowser method), you can use the addTab

method to create a new tab and load the document into that:

getBrowser().addTab('http://www.sitepoint.com/', null);

The new tab opens the foreground or background, according to the user’s tab pref

erences.

Using the Preferences System
Firefox has a built-in preferences system that you can use to store all kinds of user

data. If you’re used to the limitations of working with cookies, you’ll appreciate

this feature. The basic types of data it can work with are strings, integers, and boolean

values.

The first step in using this system is to create a reference to it, so let’s create it as a

property of our myextension object:

6 http://getfirebug.com/
7 https://developer.mozilla.org/En/DOM_Inspector
8 http://www.sitepoint.com/dustmeselectors/

http://getfirebug.com/
https://developer.mozilla.org/En/DOM_Inspector
https://developer.mozilla.org/En/DOM_Inspector
http://www.sitepoint.com/dustmeselectors/
http://www.sitepoint.com/dustmeselectors
https://developer.mozilla.org/En/DOM_Inspector
http:http://getfirebug.com
http:getBrowser().addTab('http://www.sitepoint.com

Developing and Testing Your Extension 31

var myextension =

{

 'prefservice' : Components

 .classes["@mozilla.org/preferences-service;1"]

 .getService(Components.interfaces['nsIPrefService']),

⋮
}

We can then refer to it as myextension.prefservice, however there’s still a bit

more to do before we’re ready to use it. The preference service is made up of

branches, each of which contains a number of preferences grouped together, or

another branch. You’ll remember that we modified some of these preferences at the

beginning to improve our development environment, and these were contained in

the javascript branch. This is illustrated in Figure 2.6.

Figure 2.6. The javascript branch of the preferences system

We want to create a new branch for our extension, and good practice here is to keep

it within the extensions branch. If you type “extensions.” into the search box

you’ll see all the different preferences that exist for the extensions you’ve installed.

We can create a new branch simply by referring to it, so let’s update our original

definition like this:

var myextension =

{

 'prefservice' : Components

 .classes["@mozilla.org/preferences-service;1"]

 .getService(Components.interfaces['nsIPrefService'])

.getBranch('extensions.myextension.'),

⋮
}

Now, whenever we define any new preferences they’ll be in the extensions.myex-

tension branch, as shown in Figure 2.7.

Figure 2.7. Showing a custom preference in our branch

To use the preferences service then, there are getter and setter methods. For example,

to set the boolean preference called “showinstatus” with the value false we would

do this:

myextension.prefservice.setBoolPref('showinstatus', false);

Then we could read it back like this:

myextension.prefservice.getBoolPref('showinstatus');

The other typed methods are setIntPref and getIntPref for integers, and

setCharPref and getCharPref for strings. Other useful methods are clearUserPref

to clear a value, and prefHasUserValue to test if a user preference exists. If you try

to refer to a preference that doesn’t exist you’ll receive an error.

However, you can be sure that the preferences you want do exist and define defaults

for them by using the default preferences script. You remember how we created a

defaults folder at the start, and inside that we created a script with the same name

as our extension? Well that’s the default preferences script, and inside that we use

the pref method to define them. So for example, if we want our showinstatus

preference to have the default value of true, we would do this:

pref('extensions.myextension.showinstatus', true);

As you can see, we define the complete branch and name, and the value of our

preference. There’s no need to worry about data types when using the pref method;

Build Your Own Firefox Extension32

it will work them out automatically based on the values. Now when we read that

value for the first time it will come back true. We might then want to use it for a

task like whether or not to show the message in the status bar:

init: function()
{
 if(!myextension.prefservice.getBoolPref('showinstatus'))
 {
 document.getElementById('myextension-statusoverlay')
 .setAttribute('hidden', 'true');
 }
},

Another way to use the preference service is inside a prefwindow element. This is

designed specifically for building preferences dialogs, and elements inside it can

take attributes that link their state or value to a preference. However, in my experi-

ence, the implementation of prefwindow is littered with bugs, often incorrectly

sized, badly laid out, or even completely blank! If you want to learn more about it

and you have time to wrestle with its issues, visit

https://developer.mozilla.org/en/XUL/prefwindow/. My recommendation would

be to implement preferences dialogs manually using a regular dialog element, and

you can find an example of this in Dust-Me Selectors.9 For example, in a preferences

window, the state of a checkbox can be automatically linked to a boolean preference.

To implement it manually you simply need to read the checkbox state and modify

the preference yourself, using the dialog’s ondialogaccept event as the trigger.

Too easy!

Further Reading
There’s so much more I could talk about here, but this chapter is way too long

already! There are so many features to explore like using native drag and drop, and

reading and writing to files.

You can find all of this stuff at the MDC, but a lot of it is quite intense and theoret-

ical. The best way to learn at this stage is to look at other extensions. Find extensions

that do similar tasks to what you want, and poke around inside them to see how

9 http://www.sitepoint.com/dustmeselectors/

33Developing and Testing Your Extension

https://developer.mozilla.org/en/XUL/prefwindow/
http://www.sitepoint.com/dustmeselectors/

they work. For example, both drag and drop and file manipulation are implemented

in GreaseMonkey,10 so there’s a place to look to find out more about them.

In fact, I learned quite a lot of what I know now from that extension in particular,

as well as from other popular extensions like Firebug11 and the Web Developer

Toolbar.12 And it never does anyone any harm to feel humbled from time to time,

and reading through such accomplished programmers’ code is a good way of doing

so!

10 https://addons.mozilla.org/en-US/firefox/addon/748
11 http://getfirebug.com/
12 https://addons.mozilla.org/en-US/firefox/addon/60

Build Your Own Firefox Extension34

https://addons.mozilla.org/en-US/firefox/addon/748
http://getfirebug.com/
https://addons.mozilla.org/en-US/firefox/addon/60
https://addons.mozilla.org/en-US/firefox/addon/60

Chapter3
Adding Accessibility and
Internationalization
In this section we’re going to look at two important topics. Firstly, we’ll talk about

improving access for people with disabilities by adding keyboard triggers to our

interface. Secondly, we’ll look at a framework for internationalization, using two

different methods of externalizing language: one for static XUL and one we can use

from JavaScript.

Adding Keyboard Accessibility
XUL has excellent semantics for keyboard accessibility, although they’re less useful

on a Mac as they are on Windows.

The first and most straightforward option is the accesskey attribute that can be

added to certain elements, primarily menu items. On Windows, access keys are

indicated with an underline on the access character, as you’d expect. On a Mac

there’s no indication at all, nor do they work in the same way.

For example, our Tools menu item currently looks like this:

<menuitem id="myextension-toolsmenuitem"
 label="My Extension"
 insertbefore="sanitizeSeparator"
 oncommand="myextension.greet(this)"/>

If we add an accesskey to that item, whenever the Tools menu is open, pressing

that key will trigger the command action:

<menuitem id="myextension-toolsmenuitem"
 label="My Extension"
 insertbefore="sanitizeSeparator"
 oncommand="myextension.greet(this)"

accesskey="M"/>

So now if you open the Tools menu (on Windows that would be Alt+T), then press

M (no modifier), you’ll receive the greeting just as if you’d clicked it with the mouse.

On a Mac, pressing the key merely sets focus on the menu item; you still have to

press Enter to fire its command event.

A more flexible and robust way to implement keyboard actions is to use <keyset>

and <key> tags, and these have much better cross-platform support. For example,

let’s use the key combination Alt+Ctrl+G for Windows, or ⌥+⌘+G (Option+Com-

mand+G) on a Mac, to trigger that greeting. Both of those modifier keys can be ex-

pressed in a platform-independent way, so there’s no need to worry about the dif-

ference:

<keyset>
 <key id="myextension-toolsmenukey"
 key="G"
 modifiers="alt accel"
 oncommand="myextension.greet
 (document.getElementById('myextension-toolsmenuitem'))"/>
</keyset>

In the above example, alt means Alt on Windows and ⌥ on a Mac, while accel

means Ctrl on Windows or ⌘ on a Mac.

Now, since we have an interface element which represents this action (as we

should—just as it would be bad practice to have a mouse action with no key equi-

Build Your Own Firefox Extension36

valent, it’s bad practice to have a keyboard action with no mouse equivalent!), we

can associate that key element with the menuitem in question, using its key attribute:

<menuitem id="myextension-toolsmenuitem"
 label="My Extension"
 insertbefore="sanitizeSeparator"
 oncommand="myextension.greet(this)"
 accesskey="M"

key="myextension-toolsmenukey"/>

That association will cause a platform-specific key label to be drawn next to the

menu text, as Figure 3.1 demonstrates.

Figure 3.1. Platform-specific key labels

And now that we’ve made that association, we can press the key combination at

any time to trigger the command action, even if the menu is closed! The accesskey

assignment will still work too, when the menu is open. This is a fantastic way of

creating shortcuts to commonly used actions, and benefits power users just as much

as it benefits people with disabilities.

Note that even though we’ve now called the greet method twice, it only fires once;

the associative logic is clever enough to understand what we want.

One final point to note is the keyset elements must be deeper than the first-child

of the root element (such as window or overlay), or they may fail to work. In this

case I’ve put them inside the <menupopup> tags that defined our Tools menu overlay.

Language Data in XUL
The language for Firefox extensions is defined in two different ways, and ultimately

all the language you use in an extension should be implemented using one of these

methods.

37Adding Accessibility and Internationalization

Language for XUL files is defined as entities in a Document Type Definition (DTD)

file, kept inside the locale directory. We already have a blank lang.dtd file that we

created at the beginning, so let’s go ahead and add some language to it.

To define a language fragment we create a named entity, for example, the text in

our menu item:

<!ENTITY myextension.title "My Extension">

Entity names are allowed to contain dots, which can help you to group them

meaningfully, but more importantly it ensures encapsulation; that is, there will be

no name conflicts with other entities in the same namespace (such as those defined

by other extensions). Best practice is to begin all our entity names with the name

of our extension, effectively namespacing them.

Then to add that to the XUL code we simply use the entity in place of the text:

<menuitem label="&myextension.title;"

We can also use the same method to define accesskey assignments, so that if a

particular letter is no longer appropriate for a phrase in a different language, it can

be easily changed to a more suitable one, so:

<!ENTITY myextension.accesskey.menuitem "M">

And to make use of it in the XUL code:

accesskey="&myextension.accesskey.menuitem;"

In our extension, all the language is defined in English and contained in the en-US

directory. If you or anyone wanted to translate the extension, all they’d have to do

is translate the text in each of the entities, then put the new DTD (still called lang.dtd)

into a new locale directory that’s named with the appropriate language-code. It

would also need to be declared in chrome.manifest, as we discussed at the start.

This means that it’s easy for a person to translate an extension without having to

route through all the files; there’s no need for them to even understand how any of

Build Your Own Firefox Extension38

this works—if they can type between two quotation marks, they can make the

translation!

This elegant method of internationalization is so simple to use that there’s really

no reason to use anything else.

Language Data in JavaScript
DTDs are all very well for static language in XUL, but what if you need data you

can refer to from JavaScript, such as the text in our greeting? That’s what the second

language file, lang.properties, is for.

The language in a properties file is defined in name=value pairs, for example:

greeting=Welcome to My Extension

Just as with the DTD, names may also contain dots to help you group them mean-

ingfully; however, there is no issue with encapsulation here because the data will

be private to our myextension object.

To make the data available to JavaScript, we firstly use the <stringbundleset> and

<stringbundle> tags to include it in the XUL code. The URL must be an absolute

chrome:// address:

<stringbundleset>
 <stringbundle id="myextension-langbundle"
 src="chrome://myextension/locale/en-US/lang.properties"/>
</stringbundleset>

The stringbundleset element is a container for one or more stringbundle elements;

in our case we only have one, but if you’re using a great deal of language data you

may want to split it into multiple files, included using multiple stringbundle ele-

ments as required.

Once we have that element, we need to save a reference to it, and since we’re refer-

ring to the existing DOM we must put this inside our init wrapper:

39Adding Accessibility and Internationalization

init: function()
{
 myextension.lang =
 document.getElementById('myextension-langbundle');

And finally, to retrieve individual values from the properties file, we use the

getString method:

myextension.lang.getString('greeting');

Now, that enables us to retrieve static strings, but what is often needed is a template

string that we can insert dynamic data into. The way to do this is to have variable

tokens in the properties strings, which can then be parsed using String.replace.

There’s no particular convention here, but my preference is to use named tokens

that begin with a percentage sign, such as %name. You could use the same convention

as PHP’s string parsing methods, like %s for a string and %f for a floating-point

number, but personally there’s no point to using such restrictive tokens when there’s

no other advantage to knowing their intrinsic type.

Let’s look back at the greet method we wrote earlier, where we saw how part of

that message came from the XUL element that triggered it:

alert('Welcome to ' + menuitem.getAttribute('label'));

We’ll implement it using language from our properties file. First, we modify the

greeting string so it has a token in place of the name:

greeting=Welcome to %name

And then we modify the output to use that string instead of hard-coded text:

alert(myextension.lang.getString('greeting')
 .replace('%name', menuitem.getAttribute('label')));

To make best use of replacement tokens you should keep in mind that the word

order of phrases differs across languages. Take, for example, a phrase like “No, Mr.

Bond, I expect you to die,” where “die” is also a language variable. This could be

expressed in string fragments like this:

Build Your Own Firefox Extension40

die=die
escape=escape
sing=start singing

threat=No Mr. Bond, I expect you to %action

And then parsed in JavaScript like this:

var action = myextension.lang.getString('die');
myextension.lang.getString('threat').replace('%action', action);

Anyone doing a translation of that can then move the %action token around within

the overall string to achieve the appropriate grammar. This approach is therefore

much preferable to having the action separate from the rest of the string, as in:

die=die
escape=escape
sing=start singing

threat=No Mr. Bond, I expect you to

This is followed by:

var action = myextension.lang.getString('die');
myextension.lang.getString('threat') + ' ' + action;

We do this because the grammar of a different language may place the word “die”

elsewhere within the sentence.

One final note here is that, just like <keyset> tags, <stringbundleset> tags must

be deeper than the first-child of the root element (such as <window> or <overlay>),

or they may fail to work. In our template I put them inside the first overlay as a

child of the statusbar element.

The Big Moment Has Arrived!
So now you’ve built your extension and made sure it’s accessible and ready for

translation, how do you let the world see what you’ve made? The next chapter will

show you how to publish your extension, so that others may enjoy your fine work.

41Adding Accessibility and Internationalization

Chapter4
Publishing Your Extension
So how do you let the world see what you’ve made? It’s easier than you think!

Creating an XPI File
Well, the first step is to package it into an XPI file, and this is incredibly easy. All

you have to do is create a ZIP file of the contents of your working directory; that’s

everything inside but excluding the myextension folder. Then simply rename the file

with a .xpi extension, and there you have it. Another person can then install it just

by opening the file in Firefox, or by dragging and dropping it onto a Firefox window.

But that lacks the required amount of user-friendliness. If you want to make it easy

for others to install your extension, you need to create an install trigger.

Making an Install Trigger
An install trigger is a specially constructed link, placed on your web site, that will

trigger the Firefox add-on install process.

First, create a link to the XPI file in HTML with an onclick event handler defined.

This link uses the onclick attribute:

 Install My Extension!

Clicking on the link above will call the following JavaScript code:

function install(e)
{
 if(typeof InstallTrigger != 'undefined')
 {
 try
 {
 var target = e.target;
 InstallTrigger.install({
 'My Extension' : {
 URL: target.href,
 IconURL: 'logo.png'
 }
 });
 return false;
 }
 catch(err)
 {
 return true;
 }
 }
 return true;
}

The code refers to an icon which will be used in the install dialog, so you’ll need

a copy of your original logo image to use there; you’ll also need to define the title

of the extension, which is also used in the installation dialog. The URL of the exten-

sion itself is extracted from the link’s href attribute.

When the link is clicked in a browser other than Firefox, it will simply try to

download the XPI file, but in Firefox activates the installation process. You’ll see

two visible elements. First, a security warning appears, like the one in Figure 4.1,

that requires you to explicitly allow the installation—although this will only occur

if the HTML page with the install link is viewed across a network, rather than locally.

Build Your Own Firefox Extension44

Figure 4.1. Pre-installation warning

Then if you allow that, you’ll receive the installation dialog as illustrated in Fig-

ure 4.2.

Figure 4.2. Installation dialog

Of course you should do this in a different profile to the one you’re developing

with, otherwise you’ll overwrite your installation pointer file, and then you’ll no

longer see the changes from your working directory.

There’s a mechanism for automatic updates, using a special meta file referred to

from install.rdf, but you can make your life easier by just forgetting about that, and

leaving it to Mozilla to deal with when you submit your extension to their directory.

45Publishing Your Extension

Submitting Your Extension to the
Add-ons Directory
Submitting an extension is simply a case of registering for an account, uploading

your extension, completing some details about it, and then waiting! New extensions

are immediately available but are always sandboxed to begin with, which means

they’re labeled as experimental, and only registered, logged-in users can download

and install them. This is why you’ll probably want to make it available from your

own site as well, at first.

Figure 4.3. The Mozilla Add-ons for Firefox site

Once your extension has been on the site for a while you can nominate it for promo-

tion out of the sandbox; this enables it to be generally available for installation

without users being logged in, and automatic updates are enabled. Nominated add-

ons are all reviewed manually, so expect to wait a few weeks for this to happen.

Go to https://addons.mozilla.org/en-US/firefox/ (shown in Figure 4.3) to find out

more and register for an account, then you can submit your extension through the

Developer Tools at https://addons.mozilla.org/en-US/developers.

Build Your Own Firefox Extension46

https://addons.mozilla.org/en-US/firefox/
https://addons.mozilla.org/en-US/developers

Now It’s All Up to You!
I hope you’ve enjoyed this book and that you’ll find it useful. Building Firefox ex-

tensions is great fun, and if you make a really useful extension, the community

feedback can be very encouraging. There’s no real money in it, but as with everything

in this industry, good work breeds good reputation, and that’s what brings in busi-

ness.

Also, make sure you download the code archive for this book.1 Within archive you’ll

find two files:

■ myextension_template1.zip is a basic template extension that includes everything

we covered in Chapter 1.

■ myextension_template2.zip is the same basic template plus all the stuff we imple-

mented in examples, including a sample installer.

1 http://www.sitepoint.com/books/byofirefoxpdf1/code.php

47Publishing Your Extension

http://www.sitepoint.com/books/byofirefoxpdf1/code.php

Appendix A: Introducing Jetpack
Jetpack is essentially a collection of APIs—to aspects of chrome functionality, to

bundled libraries such as jQuery,1 and to bundled web APIs (currently limited to

the Twitter2 API). Anyone with knowledge of HTML, CSS, and JavaScript (that is,

the technologies you already know and use to build web sites and applications) can

develop a Jetpack extension by making use of these APIs.

Well, I say that, but in fact the kind of extension you can develop using Jetpack is

unable to compare with what’s possible using XUL. Just consider some of the limit-

ations:

■ Jetpack provides only one insertion point into the existing Firefox chrome,

namely, the status bar (no good for users who have the status bar disabled!).

Future versions of Jetpack will allow insertion of menu items, but only single

items, not submenus.

■ Jetpack provides a limited range of scripting components. All the most important

stuff is there, such as access to tabs and the content document, a persistent

storage API, JSON utilities, and cross-domain XMLHttpRequest—but limited to

what’s provided through the Jetpack API.3

Having said that, Jetpack does have some handy features that take away some of

the hassle of extension development, for example:

■ Programming with the Jetpack API means there’s no need to track Firefox versions

and update your extension when each new one comes out; Jetpack takes care of

that for you.

■ Jetpack’s tab access mechanism takes the pain out of monitoring the user’s

browsing, as it always gives you access to the currently focused tab.

It also provides some unique UI components which, for regular extension develop-

ment, you’d have to roll yourself. For example:

1 http://jquery.com/
2 http://apiwiki.twitter.com/
3 https://jetpack.mozillalabs.com/api.html

http://jquery.com/
http://apiwiki.twitter.com/
https://jetpack.mozillalabs.com/api.html

■ The Jetpack SlideBar, which is a retractable sidebar, seen expanded in Figure A.1.

It’s unique to Jetpack, and can be used to display information.

Figure A.1. The Jetpack SlideBar

■ Easy access to operating system level notifications.

How Are Jetpack Extensions Programmed?
Jetpack extensions are programmed in JavaScript using the aforementioned Jetpack

API. All the demo examples4 use jQuery, but other libraries are planned for inclusion

(and of course, using a library at all is totally up to you).

Interface components are coded in HTML, and the mechanism allows you to insert

entire HTML pages—rather than just fragments of HTML—into Firefox’s chrome!

Well … into the status bar anyway which, as I mentioned before, is the only place

you can currently insert UI content (apart from the SlideBar, but that’s for displaying

4 https://jetpack.mozillalabs.com/#demos

Build Your Own Firefox Extension50

https://jetpack.mozillalabs.com/#demos

information, not interface widgets like buttons and menus). Figure A.2 features the

status bar display from the Email Notifier demo,5 and a few other Jetpack extensions.

Figure A.2. Status bar information for the Email Notifier demo

The Jetpack documentation makes a song and dance about its use of HTML, and

the fact that it gives you access to open web-based technologies such as the canvas

element. But in fact this is already the case: you can currently integrate HTML into

Firefox add-ons, either by using browser elements to load or generate HTML pages

(which is what Firebug does for its panels), or by inserting XHTML directly into

XUL using namespaced methods (such as I did in places in Dust-Me Selectors6).

But what will make it attractive to a certain niche of developers is that it’s all so

much easier than programming with XUL. Not inherently easier (as I’ve said, neither

are difficult to learn), it’s just that a) there are no new languages to learn, and b) the

Jetpack API provides much friendlier wrappers around the scripted components.

5 https://jetpack.mozillalabs.com/demos/gmail-checker-install.html
6 http://www.sitepoint.com/dustmeselectors/

51Appendix A: Introducing Jetpack

https://jetpack.mozillalabs.com/demos/gmail-checker-install.html
http://www.sitepoint.com/dustmeselectors/

Here’s a short example of a Jetpack script (paraphrased from the Jetpack tutorial at

https://jetpack.mozillalabs.com/tutorial.html):

jetpack.statusBar.append({
 html: "Tabs Info",
 width: 100,
 onReady: function(widget){
 $(widget).click(function(){
 console.log(jetpack.tabs);
 });
 }
});

What that does is add the bold text “Tabs Info” to the status bar which, when

clicked, writes information about all the currently open tabs to the Firebug console.

(Jetpack uses Firebug for its debugging and logging output, to save re-inventing that

particular wheel.)

I mentioned previously that Jetpack allows easy access to operating system level

notifications. These are displayed using Growl for Mac OS X and toaster notifications

for Windows and Linux, as demonstrated by Figure A.3.

Figure A.3. A notification message in Windows

To create a notification message, you simply do this:

jetpack.notifications.show({
 title: 'Gmail',
 body: 'New message from SitePoint',
 icon: 'http://mail.google.com/mail/images/favicon.ico'
});

Build Your Own Firefox Extension52

https://jetpack.mozillalabs.com/tutorial.html

Using the Notification System in Your Extension

On a side note, I have to say thanks to the Jetpack developers for showing me how

to use the notification system. If you want to generate notifications like those

above in your XUL-based extension, it turns out to be only two lines of code (ex-

ception handling notwithstanding):

var alertService = Components.classes
 ["@mozilla.org/alerts-service;1"]
 .getService(Components.interfaces['nsIAlertsService']);

alertService.showAlertNotification(
 'http://mail.google.com/mail/images/favicon.ico',
 'Gmail',
 'New message from SitePoint'
);

How Does Jetpack Compare to XUL?
If you’re anything like me, you may still need convincing. I guess I’m a bit of an

old-fashioned guy, in the sense that, when I write a JavaScript application I want

to feel like I really wrote it. Completionism is all very well—after all, it’s the end

result that’s the point—but I enjoy programming, that’s why I do it; if so much of

the hard work is done for me in APIs and wrappers, I don’t feel like I’m really pro-

gramming anymore. Instead, it feels as if I’m painting by numbers, and I fail to enjoy

myself.

That’s why I give libraries a miss, and why I rarely use APIs if I could write their

functionality myself (even if I’m re-inventing the wheel—maybe my wheel will be

better!). Still, I also accept that all high-level coding is a level of abstraction, and

it’s perhaps an arbitrary distinction to draw the line in one place rather than another.

But even if you’re nothing like as masochistic as me, let’s face it (as I hope I’ve

demonstrated through the rest of this article): writing Firefox add-ons using XUL

really is quite easy.

One of the beautiful factors about XUL is that its elements only describe the function

and physical layout of UI components, instead of attempting to describe those

components’ appearance. The appearance—as in the fonts, colors, backgrounds,

53Appendix A: Introducing Jetpack

borders, and so on—is all determined by the user’s skin and operating system. This

gives rise to superb visual accessibility with little or no effort on the developer’s

part, because everything you define just naturally slots in with the pre-existing ap-

pearance of the user’s interface.

Components written with Jetpack, on the other hand, will have exactly the same

accessibility issue that all web applications have: namely, that each and every one

has its own, unique appearance, with little or no deference possible to the user’s

chosen scheme—be it high-contrast colors, large fonts, or otherwise.

Every interface developed in HTML must be learned by the user from scratch. This

is an inherent problem with developing interfaces in HTML, and therefore a problem

that every Jetpack extension will create; that wouldn’t be the case if that extension

were developed with XUL.

Here’s What Jetpack is Really Good for
There’s one aspect of Jetpack development which I’ve yet to mention which, in my

opinion, makes all the difference, and fundamentally changes my attitude towards

the whole project:

Jetpack extensions can be developed and installed without the need to restart the

browser.

From a developer’s point of view this makes development faster. But far more im-

portantly, from a site owner’s point of view, it suddenly turns Jetpack into a mech-

anism for giving users more control over the behavior of their site. So Jetpack, in

this sense, is like Greasemonkey on steroids.

Consider that you’re using a favorite site or web application that you trust; that site

can now make scripts available, which modify the browser’s behavior to suit the

application. These scripts can provide privileged functionality to enhance the ap-

plication; they can provide modifications that control the appearance of certain

kinds of content (in much the same way that Greasemonkey7 or content-filtering

extensions like AdBlock8 do now).

7 https://addons.mozilla.org/en-US/firefox/addon/748
8 https://addons.mozilla.org/en-US/firefox/addon/1865

Build Your Own Firefox Extension54

https://addons.mozilla.org/en-US/firefox/addon/748
https://addons.mozilla.org/en-US/firefox/addon/1865

In short, Jetpack scripts can enhance the behavior of the browser on a per application

basis (providing you trust that application), and they can do this in a completely

seamless way. All one has to do to offer a Jetpack script for installation on one’s

web site is this:

<link rel="jetpack" href="my-script.js">

And all the user has to do is click a button to install it, as Figure A.4 demonstrates,

and then carry on browsing. No browser restart is required.

Figure A.4. A Jetpack install notice

The seamlessness of it all may seem like just a small aspect, but it makes a very big

difference. And it also changes Jetpack’s functional limitations from a weakness to

a strength.

Users may be unprepared to install a fully-fledged Firefox add-on just to suit one

application. The vast range of tasks an add-on can do means a vast range of potential

security concerns, and if the installation is outside Mozilla’s official add-ons site,

there’s no independent verification that what you’re installing is safe. But a Jetpack

script, with its limited range of privileged access, is a far less risky—and therefore

easier—proposition.

This, in my opinion, is what Jetpack is really good for.

So Where's it Heading?
Jetpack will never take over as the primary mechanism for extending Firefox: its

niche is entirely different. And I think it will fail to attract developers who want to

build extensions but lack the motivation to learn XUL.

I think Jetpack will attract an entirely different niche of developers, and only time

will tell what weird and wonderful stuff they’ll find to do with it! As William Gib-

son9 famously said, “the street finds its own uses for things.”

9 http://en.wikipedia.org/wiki/Hackers_(anthology)#.22Burning_Chrome.22

55Appendix A: Introducing Jetpack

http://en.wikipedia.org/wiki/Hackers_(anthology)#.22Burning_Chrome.22
http://en.wikipedia.org/wiki/Hackers_(anthology)#.22Burning_Chrome.22

Inevitably, of course, Jetpack will add more fuel to the fiery debate over user

modification versus old-media content control—but I hardly think that’s a bad

outcome!

Build Your Own Firefox Extension56

	Build Your Own Firefox Extension
	Table of Contents
	Preface
	Who Should Read This Book
	Where to Find Help
	The SitePoint Forums
	The Book’s Web Site
	The Code Archive
	Updates and Errata

	The SitePoint Newsletters
	The SitePoint Podcast
	Your Feedback
	Conventions Used in This Book
	Code Samples
	Tips, Notes, and Warnings

	Making a Start
	Firefox Configuration
	Understanding Chrome
	Step 1: Create a Development Folder
	Step 2: Define Key Meta Files
	Step 3: Create a Basic Overlay
	Step 4: Point Firefox at Your Development Folder
	What’s Next?

	Developing and Testing Your Extension
	XUL
	Styling XUL Elements with CSS

	JavaScript and the DOM
	Event Handling in XUL
	The Relationship between Properties and Attributes
	Opening Windows and Dialogs
	Working with the Content Document
	Using the Preferences System

	Further Reading

	Adding Accessibility and Internationalization
	Adding Keyboard Accessibility
	Language Data in XUL
	Language Data in JavaScript
	The Big Moment Has Arrived!

	Publishing Your Extension
	Creating an XPI File
	Making an Install Trigger
	Submitting Your Extension to the Add-ons Directory
	Now It’s All Up to You!

	Appendix A: Introducing Jetpack
	How Are Jetpack Extensions Programmed?
	How Does Jetpack Compare to XUL?
	Here’s What Jetpack is Really Good for
	So Where's it Heading?

