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PROLOGUE 

"Considering how many fools can calculate, it is surprising 
that it should be thought either a difficult or a tedious task for any 
other fool to learn how to master the same tricks. 

Some calculus-tricks are quite easy. Some are enormously 
difficult. The fools who write the text books of advanced mathemat
ics—and they are mostly clever fools—seldom take the trouble to 
show you how easy the easy calculations are. On the contrary, they 
seem to desire to impress you with their tremendous cleverness by 
going about it in the most difficult way. 

Being myself a remarkably stupid fellow, I have had to 
unteach myself the difficulties, and now beg to present to my fellow 
fools the parts that are not hard. Master these thoroughly, and the rest 
will follow. What one fool can do, another can." (Prologue to 
Calculus Made Easy by Silvanus P. Thompson, F.R.S., 1910) 

Even though a great many years had passed since I first 
obtained a copy of Thompson's magical little book (twenty-eighth 
printing of the second edition, Macmillan Publishing Company, 
1959), I nonetheless recognized this prologue when a part of it 
appeared recently on the front page of a book. The reader should 
understand that Professor Thompson wasn't simply being sarcastic. 
His intention was, beyond question, to throw a lifeline to floundering 
students. His goal was to provide an introduction to that powerful 
tool known as The Calculus; to provide a bridge for those who had 
been victimized by their teachers and texts. Lest anyone mistake his 
true feelings, he adds the following in the epilogue: "...One other 
thing will the professed mathematicians say about this thoroughly bad 
and vicious book: that the reason why it is 50 easy is because the 
author has left out all the things that are really difficult. And the 
ghastly fact about this accusation is that—it is true! That is, indeed, 
why the book has been written—written for the legion of innocents 
who have hitherto been deterred from acquiring the elements of the 
calculus by the stupid way in which its teaching is almost always 
presented. Any subject can be made repulsive by presenting it 
bristling with difficulties. The aim of this book is to enable beginners 
to learn its language, to acquire familiarity with its endearing sim-
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plicities, and to grasp its powerful methods of problem solving, 
without being compelled to toil through the intricate out-of-the-way 
(and mostly irrelevant) mathematical gymnastics so dear to the 
unpractical mathematician..." (From the Epilogue and Apology of 
Calculus Made Easy by Silvanus P. Thompson, 1910. Apparently 
some things never change.) 

I cannot be sure that the coincidence of Thompson's pro
logue, printed boldly on the front page of an exemplary treatise on 
Fourier Analysis, was the sole motivation for this book—I had already 
considered just such an essay. Still, if Thompson's ghost had 
appeared and spoken to me directly, my task would not have been 
clearer Allow me to explain: This book is intended to help those 
who would like to understand the Fast Fourier Transform (FFT), but 
find the available literature too burdensome. It is born of my own 
frustration with the papers and texts available on the FFT, and the 
perplexing way in which this subject is usually presented. Only after 
an unnecessarily long struggle did I find that the FFT was actually 
simple—incredibly simple. You do not need to understand advanced 
calculus to understand the FFT—you certainly do not need deliberate
ly obscure notation and symbols that might be more appropriate to the 
study of archeology. The simple truth is that the FFT could easily be 
understood by any high school student with a grasp of trigonometry. 
Understand, then, that I hold heart-felt sympathy with Thompson's 
iconoclasm. In fact, if you swap "FFT" for "Calculus," Thompson's 
strong words express my own feelings better than I am capable of 
expressing them myself. 

But there is another, perhaps better, reason for this book. 
Today, systems using the FFT abound—real systems—solving real 
problems. The programmers, engineers and technicians who develop, 
use, and maintain these systems need to understand the FFT. Many 
of these people have long since been "excommunicated" from the 
specialized groups who discuss and write about this subject. It may 
be acceptable for professional scholars to communicate via abstruse 
hieroglyphics, but working engineers and technicians need a more 
direct route to their tools. This book aims to provide a direct route to 
the FFT. 



INTRODUCTION 

This book is written in two parts—an introduction to (or 
review of) the DFT, and an exposition of the FFT. It is a little 
book that can be read in a few evenings at most. Recognizing this, 
I recommend that you start from the beginning and read it all— 
each chapter builds on all that has preceded. If you are already 
familiar with the DFT the first four chapters should read comfort
ably in a single evening. 

I have gone as far as I can to make this subject accessible 
to the widest possible audience, including an appendix 1.1 which 
provides a "refresher" on the BASIC language. After that, the 
programs in Part I start out very simply with detailed explanations 
of each line of code in the text. 

My reason for including these features is that, some years 
ago (before the advent of the personal computer), there was a 
period of several years in my life when I was "computer-less." 
When I once again obtained access to a computer I was shocked to 
find that I had forgotten the commands and rules for programming 
(even in BASIC). To my great relief a few hours at a keyboard 
(with a BASIC programming manual in hand) brought back 
enough to get me up and running. Appendix 1.1, and the programs 
of part 1, are designed to accomplish the same thing with much 
less pain. 

In addition to these comments, I should point out that the 
programs presented in this book are intended to be typed into a 
computer and run—they actually work. If you don't like to type, 
a disk with all the program listings can be furnished for $5.00 
(which includes postage and handling). 

Very well then, the first topic we will consider is: "What, 
actually, is the Digital Fourier Transform?" 



CHAPTER I 

STARTING AT THE BOTTOM 

It has been said that a good definition first throws the thing 

to be defined into a very large pool (i.e. a very broad category) and 

then pulls it out again (i.e. describes the unique characteristics that 

differentiate it from the other members of that category). That is 

the approach we will use in tackling the question; "What, exactly, 

is the Fourier series?" 

1.01 APPROXIMATION BY SERIES 

When we first encounter mathematical functions they are 

defined in simple, direct terms. The common trigonometric func

tions, for example, are defined with respect to a right triangle: 

X 
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Sin(0) - Y/H (1.1) 

0 = angle 0 

Y = height 

H = hypotenuse 

Cos(0) = X/H (1.2) 

X = base 

Tan(0) = Y/X (1.3) 

Shortly thereafter we learn that these functions may also 

be expressed as a series of terms: 

Sin(x) = x - x3/3! + x5/5! - x7/7! +... (1.4) 

x = angle in radians 

3!, 5!, etc. = 3 factorial, 5 factorial, etc. 

Cos(x) = 1 - x2/2! + x4/4! - x6/6! +... (1.5) 
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These power series are known as Maclauren/Taylor series 

and may be derived for all the commonly used trigonometric and 

transcendental functions. 

1.02 THE FOURIER SERIES 

The Fourier series is a trigonometric series. Specifically, 

it is a series of sinusoids (plus a constant term), whose amplitudes 

may be determined by a certain process (to be described in the 

following chapters). Equation (1.6) states the Fourier series 

explicitly; unfortunately, this compact notation cannot reveal the 

F(x) = A0 + A,Cos(x) + A2Cos(2x) + A3Cos(3x) +... 

+ B,Sin(x) + B2Sin(2x) + B3Sin(3x) +... (1.6) 

incredible mathematical subtlety contained within. The Fourier 

series, like the Taylor/Maclauren series shown earlier, approxi

mates functions, but it has a different derivation and a different 

purpose. Rather than being a means of evaluating sines, cosines, 

etc., at a single point, it serves as a "transformation" for the whole 

of a given, arbitrary, function. 

This, then, is the general pool that we have thrown our 

Fourier Transform into, but we are at risk here of making the pool 
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so obscure it will require more definition than our definition itself. 

The newcomer may well ask; "What is this transformation you 

speak of?" Apparently we are going to transform the original 

function into another, different, function—but what is the new 

function and why do we bother? Does the transformed function 

have some special mathematical properties? Can we still obtain 

the same information provided by the original function? The 

answer is yes to both of these questions but we will come to all of 

that later; for now we may say that the transform we are referring 

to, in its digital form, provides a mathematical tool of such power 

and scope that it can hardly be exceeded by any other development 

of applied mathematics in the twentieth century. 

Now we move to the second part of our definition—we 

must pull the defined topic out of the pond again. This part of the 

definition requires that we speak carefully and use our terms 

precisely, for now we hope to reveal the specific nature of the 

Fourier Transform. We will begin with a couple of definitions that 

will be used throughout the remainder of this book. 

1.03 FUNCTIONS 

The term function (or single valued function) is, in a sense, 

a "loose" term (i.e. it describes a very simple notion that can be 

fulfilled many different ways). It only implies a set of ordered 

pairs of numbers (x,y), where the second number (y, the dependent 

variable) is a unique value which corresponds to the first number 
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(x, the independent variable). Now, obviously, the equations 

encountered in engineering and physics can provide sets of 

numbers which fulfill this definition, but so will any simple list of 

numbers. It is not necessary to know the equation that relates the 

dependent to the independent variable, nor even that the two 

numbers be related by an equation at all! This "looseness" is 

essential if the term "function" is to cover the practical work that 

is done with a Digital Fourier Transform (DFT), for it is seldom 

that the information obtained by digitizing a signal can be de

scribed by an equation. 

1.03.1 Discontinuous Functions 

There are functions, encountered frequently in technical 

work (and especially in Fourier Analysis), that are difficult to 

describe in a few words. For example, the "Unit Square Wave", 

must be defined in some manner such as the following: 

f(x) = 1 [for 0 < x < x,] (1.7) 

and: 

f(x) = -1 [for x, < x < 2x,] (1.8) 
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We make no statement about this function outside the interval of 

0 < x < 2x,. This interval is referred to as the "domain of defini

tion" or simply the "domain" of the function. We will have more 

to say about the domain of a function and its transform shortly, but 

for now let's continue to investigate discontinuous functions. We 

require two separate equations to describe this Square Wave 

function, but we also need some explanation: At the point x = x, 

the first equation ends and the second equation begins-there is no 

"connection" between them. The function is discontinuous at the 

point where it jumps from +1 to -1. It is sometimes suggested that 

these two equations be connected by a straight, vertical line of 

"infinite slope", but this "connection" cannot be allowed. A con

necting line of infinite slope would have more than one value (in 

fact, an infinite number of values) at the "point" of transition. The 

definition of a single valued function requires a single "unique" 

value of the dependent variable for any value of the independent 

variable. 

f(x) = 1 

x = 0 

f(x) = -1 

f(x) = Unit Square Wave 
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Mathematically, functions such as the unit square wave 

must remain discontinuous; but, physically, such discontinuities 

are not realizable. All voltage square waves measured in a 

laboratory, for example, will have finite rise and fall times. 

1.04 THE FOURIER SERIES 

Our original question was; "What, exactly, is a Fourier 

series?" We stated back on page 3 that it is a series of sinusoids, 

and as an aid to the intuition, it is frequently shown that a square 

wave may be approximated with a series of sine waves. Now, 

these sinusoids are, in general, referred to as the "harmonics" of the 

wave shape, except that a sine wave which just fits into the domain 

of definition (i.e. one cycle fits exactly into the waveform domain) 

is called the fundamental (see fig. 1.1A). If two cycles fit into this 

interval they are called the second harmonic (note that there is no 

first harmonic—that would correspond to the fundamental). If 

three cycles of sine wave fit into the interval they are called the 

third harmonic, etc., etc. A square wave, as described in the 

preceding section, consists of, in addition to the fundamental, only 

the "odd" numbered harmonics (i.e. 3rd, 5th, 7th, etc., etc.), all of 

whose amplitudes are inversely proportional to their harmonic 

number. Caveat: To represent a square wave perfectly by Fourier 

series, an infinite number of harmonic components would be 

required. That is to say, the Fourier series can never perfectly 

reproduce such functions; however, it can reproduce them to any 

desired degree of accuracy, just as the Taylor series shown in eqns. 
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(1.4) and (1.5) will converge to any desired accuracy (another 

caveat: convergence of the Fourier series is not a simple sub

ject—but that discussion diverges from our immediate purpose). 

In figure 1.1 we show how a summation of odd harmonics 

begins to form a square wave. Even though we only sum in the 

first four components, it is apparent that a square wave is begin

ning to form. 

A. - Fundamental & 3rd Harmonic lst + 3rd 

B . - lst+3rd&5th lst+3rd+5th 
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lst+3rd+5th&7th lst+3rd+5th+7th 

Figure 1.1 - Construction of a Square Wave. 

In figure 1.2 below, we show the results of summing in 11 

components and 101 components. We note that with 101 compo

nents the approximation is very good although not perfect. The 

basic idea illustrated here, however, of approximating the wave-

Summation of 11 components 101 components 

Figure 1.2 
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form of a function by summing harmonically related sinusoids, is 

the fundamental idea underlying the Fourier series. The implica

tion is that any function may be approximated by summing 

harmonic components (is this true?) 

1.05 DISCRETE DATA 

Let's take the time now to point out a distinct charac

teristic of the above "curves." In this book the graphs will usually 

show what actually happens in digital systems—they will display 

mathematical "points" plotted at regular intervals. While the Unit 

Square Wave of section 1.03.1 is discontinuous at the transition 

point, the functions of figs. 1.1 and 1.2 are discontinuous at every 

point. This is not a trivial phenomenon—a series of discrete data 

points is not the same thing as a continuous curve. We suppose the 

"continuous curves," from which we extract discrete data points, 

are still somehow represented; but, this supposition may not be 

justified. This characteristic of sampled data systems, and of 

digital systems in general, creates idiosyncracies in the DFT that 

are not present in the continuous Fourier series (e.g. the subtleties 

of convergence, which were hinted at above, are obviated by the 

finite series of the DFT). Put simply, our situation is this: If we 

treat discrete functions carefully, we may think of them as 

representing underlying linear functions. If, on the other hand, we 

are careless, the relationship of the discrete function to what we 

suppose to be the underlying linear function may be completely 

unfounded (perhaps we can discuss such things in another book). 
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1.06.1 COMPUTER PROGRAMS 

It is anticipated that most readers will have some familiari

ty with computer programming; but, if not, don't be intimidated. 

We will start with very simple examples and explain everything we 

are doing. Generic BASIC is pretty simple, and the examples will 

gradually increase in difficulty so that you should have no trouble 

following what we are doing. Understand, however, that these 

programs are not just exercises—they are the book in the same 

way that this text is the book. This is what you are trying to learn. 

Type these programs into a computer and run them—experiment 

with them—(but be careful, this stuff can be addictive). If you 

have no familiarity with BASIC at all, or if you have not used 

BASIC in years, you might want to read Appendix 1.1 at this time. 

1.06.2 PROGRAM DESCRIPTION 

The "square wave" illustration of Figures 1.1 and 1.2 is our 

first programming example. DFT 1.0 (next page) is essentially the 

routine used to generate those figures, and its operation is com

pletely illustrated by those figures. 

BASIC ignores remarks following REM statements (see 

line 10). Line 12 asks how many terms we want to sum together 

and assigns this value to N. Line 20 defines the value of PI. In 

line 30 we set up a loop that steps the independent variable through 
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10 REM *** DFT 1.0 - GENERATE SQUARE WAVE *** 
12 INPUT "NUMBER OF TERMS";N 
20 PI = 3.14159265358* 
30 FOR I = 0 TO 2*PI STEP PI/8 
32 Y=0 
40 FOR J=l TO N STEP 2: Y=Y+SIN (J*I) /J: NEXT J 
50 PRINT Y 
60 NEXT I 
70 END 

Fig. 1.3-DFT 1.0 

2*PI radians (i.e. a full cycle of the fundamental) in increments of 

PI/8 (if you do not understand the loop structure set up between 

lines 30 and 60 read appendix 1.1 now). The "loop counter" for 

this loop is the variable I, which we also use as the independent 

variable for the equation in line 40. The loop counter I steps in 

increments of PI/8, yielding 16 data points. Line 32 clears the 

variable Y which will be used to "accumulate" (i.e. sura together) 

the values calculated in the "one line loop" at line 40. Mathemati

cally, line 40 solves the following equation: 

Y = SIN(I*J)/J (for all odd J) (1.9) 

J = harmonic number 
I = argument of the fundamental 

Note that division by the harmonic number (J) yields values 
inversely proportional to the harmonic number. Line 40 is the 
heart of the program. It is a loop which counts the variable J "up" 
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from 1 to the number of harmonic terms we requested at line 12 
(i.e. "N"). It should be apparent that we are computing the 
contribution of each harmonic to the waveshape at a given point on 
the x axis (refer to fig. 1.1 if this is not clear). Each time we pass 
through the loop, J is incremented by two, so that it takes on only 
odd harmonic values. Each time through the loop we will sum the 
following into the variable Y: 

1) The value it already has (which is zero the first time 
through the loop), plus... 

2) SIN(I*J)/J. 

Since I is the value of the argument (in radians) of the 
fundamental, it will be apparent that I*J represents the "distance" 
we have progressed through the Jth harmonic component. 

When all of the harmonic terms have been summed in (i.e. 
J = N), we move down to line 50 and print the result. At line 60 
we encounter the NEXT I statement, jump back to line 30, increase 
the variable I by PI/8 radians, and compute all of the harmonic 
terms for the next position along the x axis. 

1.07 EXPERIMENTATION/PRACTICE 

The reader should type the above program into a computer 
and run it. Once you have it working, try variations—sum up 
hundreds (or even thousands) of harmonic components—modify 
the mathematical function itself. A simple modification will 
produce a "ramp" or "sawtooth" function (as opposed to the 
squarewave). Simply allow the loop counter in line 40 (i.e. J) to 
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step through all of the harmonic numbers (i.e. remove the optional 
"STEP 2" statement in line 40). 

Figures 1.4.x ( where "x" indicates "don't care") show 
some of the waveshapes that may be obtained along with the varia
tions required to the equation in line 40. These curves illustrate the 
effect obtained by simple modifications of the "spectrum" (i.e. the 
amplitudes and phases of the harmonic components). After 
playing with this program, and generating a sufficiently large 
number of functions, we might suspect that any of the common 
waveshapes encounter in engineering could be produced by 
selecting the correct spectrum. There are an infinite number of 

Fig. 1.4.1 - Y=Y+Sin(J*I)/J for all terms. 

Fig. 1.4.2 - Y=Y-Cos(J*I)/(J*J) for odd terms. 
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Fig. 1.4.3 - Y=Y+Sin(I*J)/(J*J) for odd terms. 

Fig. 1.4.4 - Y=Y+Sin(I*J)/(J*J) for all terms. 

Fig. 1.4.5 - Y=Y+Cos(I*J)/J for odd terms. 
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Fig. 1.4.6 - Y=Y-(-l)AJ*Cos(J*I)/(4*J*J-l) for all terms. 
Initialize Y to Y = 0.5 

combinations of amplitudes and phases for the harmonic com
ponents, which correspond to an infinite number of time domain 
waveshapes; unfortunately, this falls short of proving that arty 
waveshape can be produced by this means. 

In any case the above illustration has the cart before the 
horse. We are almost always provided with a time domain wave
shape for which we must find the equivalent frequency domain 
spectrum. It is apparent here that one of the underlying assump
tions of generalized Fourier Analysis is that time domain signals 
must, in fact, have frequency domain equivalents. 

1.07.1 FREQUENCY DOMAIN 

Figure 1.5 plots the amplitudes of the harmonic com
ponents against the harmonic number of the component, displaying 
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the "spectrum" of a square wave. Now, in accordance with our 
earlier definition of a function, we recognize that this spectrum is 
itself a function. The harmonic number (or more commonly the 
equivalent frequency) represents the independent variable of this 
function, and the amplitude of the harmonic component represents 

Amplitude 

Frequency 

Figure 1.5 - Square Wave Spectrum 

the dependent variable. The total interval of the frequencies 
represents the domain of this new function; consequently, we refer 
to this function as the frequency domain function. It is this 
frequency domain function that we seek to obtain with Fourier 
Analysis (i.e. the transformation from the time domain to the 
frequency domain). 

It should be apparent that the frequency domain function 
describes the same entity as the time domain function. In the time 
domain all of the sinusoid components are summed together into 
the resultant. In the frequency domain, however, we separate out 
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the components and plot the amplitudes (and phases) of the indi
vidual sinusoids. It should be absolutely clear, then, that we are 
looking at the same thing here. 

1.07.2 REALITY OF THE FREQUENCY DOMAIN 

When first presented with the proposition that all time 
domain waveshapes are composed of sinusoids, we tend to 
question the physical reality of the components. We "know" that 
the time domain signal is the "real" signal and the frequency 
components are "just another way of analyzing things." Seasoned 
veterans, however, have no difficulty accepting the sinusoids as 
completely real. Let us stop here and ask, once and for all, are the 
sinusoids real? Or are they only mathematical gimmicks? Or is 
this, in fact, a moot question? 

The education of electrical engineers, for example, is 
grounded in the frequency domain. They are taught to think in 
terms of the frequency domain. They are taught to test their 
circuits by driving the input with a sinusoid while observing the 
output. By repeating this test for a range of frequencies they 
determine the frequency response of their circuits. As a specific 
example, they rarely think about audio in the time domain—music 
is an ever changing kaleidoscope of fundamentals and harmonics. 
Elsewhere, they learn that modifying the frequency response of a 
circuit in certain ways will achieve predictable modifications to the 
time response, e.g. low pass filtering will reduce the higher 
frequency components thereby reducing noise, slowing rise times, 
etc. This sort of experience, coupled with the knowledge that 
waveforms can be viewed as summations of sinusoids, leads the 
student into aparadigm that actually prefers the frequency domain. 
Engineers can always arrive at completely logical and self-
consistent conclusions in the frequency domain, and frequently 
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with much less work than in the time domain. After working in 
the field for a few years the notion of frequency domain takes on 
a sense of reality for engineers and technicians that others may not 
share. 

10 UOLTS 

(500 <1E1 

y 
2E-7 2E-7 

1E1 <500 5E-10 

Hh 

2N2222R (5E3 

5E3 

~V-

(2.7E3 

2N2222A 

2N2222R <3.6E3 

Fig. 1.6 - Astable Multivibrator 

Let's look at a concrete example—suppose we build an 
astable multivibrator and use it to generate a square wave (actually, 
astable multivibrators do not produce waveshapes that are very 
"square", so a "buffer" stage is added in the schematic above). 
When we view the output waveshape we might justifiably ask, 
"where are all the sine waves?" (See Fig. 1.7 below.) On the other 
hand, we could synthesize a square wave by combining the outputs 
of thousands of sine wave generators just as we did with the 
computer program several pages back. When we had finished syn
thesizing this waveform, we would have produced the same thing 
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Fig. 1.7 - Output Waveform of Astable Multivibrator 

the astable multivibrator produced—a square wave (allowing that 
our generators produced harmonics that extended beyond the band
width of the testing circuitry). If we took some instrument (such 
as a wave analyzer or spectrum analyzer) that was capable of 
measuring the harmonic components of our synthesized wave, we 
would expect to find each of the sine wave components just 

NOTE: Each generator is a 
sine wave signal source. The 
frequencies are odd multiples 
of the "fundamental" Vl(t) 
generator and the amplitudes 
are inversely proportional to 
their frequency. 

Fig. 1.8 - Square Wave Synthesizer 

HULTIUIB1.NET
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summed into that wave shape. But the time domain wave shape of 
the synthesizer is the same as the output of our multivibrator. If 
we use our wave analyzer on the multivibrator output, we will 
surely find the same components that we found in the synthesized 
wave, because the two time domain wave shapes are the same. 
The two are equivalent. A summation of sinusoids is the same 
thing as the time domain representation of the signal. That is what 
the examples of Fig. 1.4.x illustrate. A multivibrator may be 
thought of as a clever device for simultaneously generating a great 
many sinusoids. The only difference is in our perception—our 
understanding. 
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Fig. 1.9 - Synthesizer Waveform 

1.08 WHAT IS THE DFT? 

The DFT is a procedure, or process, that can analyze the 
data points of a "digitized" time domain function to determine a 
series of sinusoids which, when summed together, reproduce the 
data points of the original function. The resulting Digital Fourier 
series is a valid expression of the original function, just as the 
Taylor series examples given in section 1.01 are valid expressions 
of sines, cosines, etc. It is apparent, however, that the Digital 
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Fourier Transform is different from the Taylor series, although the 
exact nature of the difference may still be less than completely 
obvious. Let's take a moment and focus precisely on some of the 
differences: the Taylor series, as illustrated in equations (1.4) and 
(1.5), evaluate a specific function at a given argument. The 
coefficients for any specific series are determined once, and 
thereafter never change. The Taylor series is used in calculators 
and computers to evaluate a sin, cosine, exponential, etc., etc. for 
a given argument, and when we use the Taylor series, only the 
argument changes. Now the DFT is a process used to determine 
the coefficients of a trigonometric series for a given function (i.e. 
we analyze an arbitrary function to determine the amplitudes (the 
coefficients) for a series of sinusoids). In contrast to the Taylor 
series, the arguments of a DFT function are fixed and usually 
remain unchanged; when operating in the frequency domain it is 
generally the coefficients of the transformed function that we 
modify. Obviously, the Fourier series and the Taylor series have 
completely different purposes. 

What, then, is the purpose of the DFT? A great many 
procedures, techniques and theorems have been developed to work 
with functions in the frequency domain. As it turns out, in the 
frequency domain we may easily perform relatively difficult 
mathematical techniques like differentiation, integration, or 
convolution via simple multiplication and division (in some cases 
this is the only way we can perform these operations). At a higher 
level of problem solving, we can perform minor miracles. We 
may, of course, examine the frequency spectra of time domain 
waveshapes, and taking the next obvious step, perform digital 
filtering. From here it is only a small step to enhance photographic 
images bringing blurry pictures into sharp focus, but we may 
continue along this line of development to remove image distor
tions due to aberrations in the optical system (re: the Hubble 
telescope). We can do other things that may not be so obvious 
such as speed up the playback of recorded messages without 
changing pitch, or convert a television format from 50 frames/sec 
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to 60 frames/sec without speeding up the action. Working in the 
frequency domain we can perform still more amazing things than 
these, but the best is certainly yet to come as a new generation of 
scientists and engineers continue to explore and develop the field 
of Digital Signal Processing (DSP). 

There is a difference between the Taylor and Fourier series 
that we still may not have made apparent. The terms of the Taylor 
series are summed to evaluate the function at a single point (i.e at 
some specific argument). The transformation and inverse trans
formation of the DFT, on the other hand, involves all of the values 
of the function within the domain of definition. That is, we 
transform the whole function. When we speak of a function 
proper, we are not talking about the value of the function at any 
specific point, but rather, we are talking of the values of all of its 
points. It is one of the little marvels of the DFT that it can 
transform all of the points of a function, as it were, simultaneously, 
from the time domain to the frequency domain—and then back to 
the time domain again via the inverse transform. 

1.09 WHAT IS THE FFT? 

What the FFT is, of course, is the question we will spend 
most of this book answering. For the moment though it will be 
worthwhile to present an analogy which shows clearly what we 
hope to accomplish. In calculators and computers the approxima
tion of functions such as SIN(X), COS(X), ATN(X), EXP(X), etc., 
etc., may be obtained by the Taylor series (as we explained 
previously); but, there is a problem in applying these series 
directly—they are too slow! They take too long to converge to the 
accuracy required for most practical work. Use of the Taylor 
series would be severely limited had not our friends, the mathe
maticians, figured out the following way to make it run faster: 
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We observe, as a practical matter, that all of the different 
series required are of the polynomial form: 

F(x) = A0 + A,x + A2x
2 + A3x

3 + A4x
4 + ... (1.10) 

where the An terms must be substituted into the polynomial for the 
specific function being evaluated (see eqns 1.4 and 1.5 for ex
amples). The "Horner Scheme" takes advantage of this generaliza
tion by solving the polynomial in the following form: 

F(x) = A0 + x(A, + x(A2+x(A3+..+(xAn)..))) - (1.11) 

where we have repeatedly factored x out of the series at each 
succeeding term. Now, at the machine language level of opera
tion, numbers are raised to an integer power by repeated multipli
cation, and an examination of (1.10) and (1.11) above will show 
that for an Nth order polynomial this scheme reduces the number 
of multiplications required from (N2+N)/2 to N. When one con
siders that N ranges upwards of 30 (for double precision func
tions), where the Horner Scheme yields execution times an order 
of magnitude faster, the power of this algorithm becomes apparent. 

The above is particularly prophetic in our case. The DFT, 
although one of the most powerful weapons in the digital signal 
processing arsenal, suffers from the same malady as the Taylor 
series described above—when applied to practical problems it 
tends to bog down—it takes too long to execute. The FFT, in a 
way that is quite analogous to the Horner Scheme just described, 
is an algorithm that greatly reduces the number of mathematical 
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operations required to perform a DFT. Unfortunately the FFT is 
not as easy to explain as the Horner Scheme; although, as we shall 
see, it is not as difficult as the literature usually makes it out to be 
either. 

1.10 CONCLUSION/ HISTORICAL NOTE 

Throughout this chapter we have repeated the proposition 
that physicallyrealizable waveshapes can always be represented as 
a summation of sine and cosine waves. We have also discussed 
things such as the nature of "functions", etc., but the summation of 
sinusoids has obviously been our central theme. This proposition 
is the foundation of Fourier Analysis. The primary purpose of this 
chapter has been to convey this fundamental idea. 

The widespread use of Fourier Analysis implies this 
proposition is valid; still, when we are presented with a concept 
whose logical foundations are not readily apparent, our natural 
curiosity makes us wonder how it came about. Who was the first 
to discover it, and how did they figure it out? What made someone 
suspect that all functions could be represented as a series of 
sinusoids? Early on we saw that the summation of sinusoids could 
produce complex looking waveshapes. A perceptive soul, 
recognizing this fact, might well move on to investigate how far 
this process could be extended, what classes of functions could be 
evaluated by this method, and how the terms of each such series 
could be determined. 

F(x) = A0 + A,Cos(x) + A2Cos(2x) + A3Cos(3x)+... 
+ B,Sin(x) + B2Sin(2*x) + B3Sin(3x)+.. (1.11) 

Daniel Bernoulli, in the 18th century, recognized that 
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functions could be approximated by a trigonometric series, and 
many mathematicians worked with the notion afterward, but it was 
Jean Baptiste Joseph Fourier, in the 19th century, who demon
strated the power of this technique as a practical, problem solving 
tool. We might note that this did not bring Fourier immediate 
praise and fame, but rather, harsh criticism and professional 
frustration. His use of this technique was strongly opposed by no 
less a mathematician than Lagrange (and others). Lagrange was 
already familiar with trigonometric series, of course, but he also 
recognized the peculiarities of their behavior. That trigonometric 
series were universally applicable was not at all obvious at that 
time. 

The point here is that Fourier did not completely under
stand the tool he used, nor did he invent it. He had no proof that 
trigonometric series could provide universally valid expressions for 
all functions. The picture we see here is of brilliant men struggling 
with mathematical concepts they cannot quite grasp, and we begin 
to realize that the question, "Who invented Fourier Analysis?" is 
somewhat naive. There was no single great flash of insight; there 
were only many good men working tirelessly to gain understand
ing. Today no one questions the application of Fourier Analysis 
but, in fact, Lagrange was correct: there are functions that cannot 
be transformed by Fourier's method. Fortunately, these functions 
involve infinities in ways that never occur in physically realizable 
systems, and so, Fourier is also vindicated. 

Books on Fourier Analysis typically have a short historical note 
on the role of J.B.J. Fourier in the development of trigonometric series. 
Apparently there is a need to deal with how a thing of such marvelous 
subtlety could be comprehended by the human mind—how we could 
discover such a thing. While the standard reference is J. Herivel, Joseph 
Fourier, The Man and the Physicist, Clarendon Press, one of the better 
summations is given by R.N. Bracewell in chapter 24 of his text The 
Fourier Transform and its Applications, McGraw Hill. He also sheds 
light on the matter in the section on Fourier series in chapter 10. 



CHAPTER II 

FOURIER SERIES AND THE DFT 

2.0 INTRODUCTION 

It is assumed that most readers will already be familiar 

with the Fourier series, but a short review is nonetheless in order 

to re-establish the "mechanics" of the procedure. This material is 

important since it is the foundation for the rest of this book. In the 

following, considerations discussed in the previous chapter are 

assumed as given. 

2.1 MECHANICS OF THE FOURIER SERIES 

You may skip section 2.1 with no loss of continuity. It is 

the only section in this book that employs Calculus. The Fourier 

series is a trigonometric series F(f) by which we may approximate 

some arbitrary function f(t). Specifically, F(f) is the series: 

F(f) = A0 + A,Cos(t)+B,Sin(t) + A2Cos(2t)+B2Sin(2t) +... 
...+ A„Cos(nt)+ B„Sin(nt) (2.1) 
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and, in the limit, as n (i.e. the number of terms) approaches 

infinity: 

F(f) = f(t) (2.2) 

The problem we face in Fourier Analysis, of course, is to 

find the coefficients of the frequency domain sinusoids (i.e. the 

values of A0, A^.-.A,,, and Blv..Bn) which make eqn. (2.2) true. 

Finding A0 is easy—if we integrate F(f) (i.e. eqn. 2.1) 

from 0 to 2n, all sinusoid terms yield zero so that only the A0 term 

is left: 

F(f)dt = A027i (2.3) 
J o 

From eqn.(2.2) and the following condition: 

ft 
J o 

1/2TI f(t) dt = mean value (2.4) 

it follows that: 

1/271 
2* 

f(t) dt = mean value (2.5) 
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Next, if we multiply both sides of eqn.(2.1) by cos(t) and 

integrate from 0 to 2K, the only non-zero term will be: 

2* 

F(f)cos(t) dt 
r2 , 

A,Cos2(t)dt = 7tA[ (2.6) 

This results from the fact that: 

2* 

Cos(rx)Cos(qx) dx = 0 

2% 

Cos(rx)Sin(px) dx = 0 

Sin(rx)Sin(qx) dx = 0 

(2.7.1) 

(2.7.2) 

(2.7.3) 

Where: r, q, and p are integers and r + q 

From eqns.(2.2) and (2.6) then we may evaluate A,: 

A ,= 1/TI f(t)Cos(t)dt 
J o 

(2.8) 

From the same argument, if we multiply eqn.(2.1) by 

Sin(t) and integrate from 0 to 2n, the only non-zero term will be: 



30 Understanding the FFT 

B,Sin2(t)dt = 7tB, (2.9) 

We may therefore evaluate B,: 

B,= 1/TI f(t)Sin(t) dt (2.10) 

If we continue through the other terms of eqn. (2.1) we will find 

that the procedure for determining the A and B coefficients may be 

summarized by the following: 

A = 1/2TI f(t) dt (2.11 A) 

Ak= 1/71 f(t)cos(kt) dt (2.11B) 

Bk= 1/TI f(t)sin(kt) dt 

With: k = 1, 2, 3, ,n 

(2.11C) 

n = number of terms included in the series. 

As n approaches infinity, we must necessarily include all possible 

sinusoidal (by sinusoidal we imply both sine and cosine) compo

nents, and F(f) converges to f(t). 
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COMMENTARY 

We should take the time to point out a few things about the 

above derivation. Our starting equations (2.1) and (2.2) simply 

make the statement that a given arbitrary function f(t) may be 

considered to be a summation of sinusoids as explained in the 

previous chapter. It is well known that functions exist for which 

this condition is untrue; fortunately, it is true for all physically 

realizable systems. 

Equations (2.8) and (2.10) express the mathematical 

operation that is the heart of the Fourier series; the individual 

sinusoids of a composite wave can be "detected" by multiplying 

through with unit sinusoids and finding the mean value of the 

resultant. This process is all that the DFT (and FFT) does. 

The reader should understand that the relationships 

expressed in equations (2.7.1) through (2.7.3) (i.e. the orthogon

ality relationships) are imperative to the proper operation of this 

algorithm; furthermore, these equations are true only when 

evaluated over an integer number of cycles. In practice the Fourier 

series, DFT, and FFT force this condition for any time domain T0 

by restricting the arguments of the sinusoids to integer multiples of 

27rAt/T0 (where N is an integer). 

In addition to these comments, the DFT deals with arrays 

of discrete, digital data. There are no linear, continuous curves in 

a computer. We will spend the rest of this chapter delving into 

how we apply the mathematical process described so neatly above 

to the digitized data we process inside a computer. 
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2.2.0 MECHANICS OF THE DFT 

The DFT is an application of Fourier Analysis to discrete 

(i.e. digital) data. Our objective in this chapter is to find out what 

makes the DFT work—and why. At considerable risk to personal 

reputation, we will employ only simple, direct illustrations. It 

would be safer to brandish the standard confusion and abstruse 

mathematics; but then, there are plenty of books already on the 

market to fulfill that requirement. We will start from the concepts 

covered in the previous chapter and develop our own process for 

extracting harmonic components from arbitrary waveforms. 

2.2.1 THE OBJECTIVE OF THE DFT PROCESS 

We saw in chapter 1 that sinusoids could be summed 

together to create common waveforms. Here we consider the 

reverse of that process. That is, given some arbitrary waveshape, 

we try to break it down into its component sinusoids. 

Let's talk about this for a moment. When we are presented 

with a composite waveshape, all of the sinusoids are "mixed 

together," sort of like the ingredients of a cake—our question is, 

"how does one go about separating them?" We already know, of 

course, that it is possible to separate them (not the ingredients of 

cakes—the components of composite waveforms), but let's forget 

for a moment that we know about Fourier Analysis... 
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2.2.2 REQUIREMENTS FOR A DFT PROCEDURE 

There are two, perhaps three, requirements for a method 

to "separate out" the components of a composite wave: 

1) First, we require a process that can isolate, or "detect", 

any single harmonic component within a complex waveshape. 

2) To be useful quantitatively, it will have to be capable of 

measuring the amplitude and phase of each harmonic component. 

These, of course, are the primary requirements for our 

procedure; but, there is another requirement that is implied by 

these first two: 

3) We must show that, while measuring any harmonic 

component of a composite wave, our process ignores all of the 

other harmonic components (i.e. it must not include any part of the 

other harmonics). In other words, our procedure must measure the 

correct amplitude and phase of the individual harmonics. Very 

well then, let's see how well the DFT fulfills these requirements. 

2.2.3 THE MECHANISM OF THE DFT 

Let's begin with a typical digitized sine wave as shown in 

Figure 2.1 below. The X axis represents time; the Y axis repre

sents volts (which, in turn, may represent light intensity, or 

pressure, or etc.) It has a peak amplitude of 2.0 volts, but its 

average value is obviously zero. The digitized numbers (i.e. our 

function) are stored in a nice, neat, "array" within the computer 
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(see Table 2.1). The interval from the beginning to end of this 

array is the domain (see first column Table 2.1). 

1.0 — 

•1.0 — 

Figure 2.1 - Digitized Sinusoid 

Now, according to Fourier, the way to detect and measure 

a sine wave component within a complex waveshape is to multiply 

through by a unit amplitude sine wave (of the identical frequency), 

and then find the average value of the resultant. This is the 

fundamental concept behind Fourier Analysis and consequently we 

will review it in detail. First, we create a unit amplitude sine wave 

(see Fig. 2.2). To multiply our digitized waveform by a unit sine 

wave we multiply each point of the given function by the corre

sponding point from the unit sinusoid function (apparently the two 
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2.0 — 

unit sinusoid 

• • i 

product of sinusoids 

digitized sinusoid (2 volts peak) 

. . . 

Figure 2.2 - Fourier Mechanism 

functions must have the same number of data points, correspond

ing domains, etc.) This process (and the result) is shown in Figure 

2.2 and Table 2.1. The reason this works, of course, is that both 

sine waves are positive at the same time (yielding positive 

products), and both are negative at the same time (still yielding 

positive products), so that the products of these two functions will 

have a positive average value. Since the average value of a 

sinusoid is normally zero, this process has "rectified" or "detected" 

the original digitized sine wave of Fig. 2.1. The sum of all of the 

products is 16 (see Table 2.1 below), and since there are 16 data 

points in the array, the average value is 1.0. 
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T 

0.00000 
0.06250 
0.12500 

0.18750 
0.25000 

0.31250 
0.37500 
0.43750 
0.50000 
0.56250 
0.62500 
0.68750 
0.75000 
0.81250 
0.87500 
0.93750 

Sin (X) 

0.00000 
0.38268 
0.70711 
0.92388 
1.00000 

0.92388 
0.70711 
0.38268 
0.00000 
-0.38268 
-0.70711 
-0.92388 
-1.00000 
-0.92388 

-0.70711 
-0.38268 

* (2*Sin(X)) 

0.00000 
0.76537 
1.41421 

1.84776 
2.00000 
1.84776 
1.41421 
0.76537 
0.00000 
-0.76537 
-1.41421 
-1.84776 
-2.00000 

-1.84776 
-1.41421 
-0.76537 

= 2*Sin2(X) 

0.00000 
0.29289 

1.00000 
1.70711 

2.00000 
1.70711 

1.00000 
0.29289 

0.00000 
0.29289 

1.00000 
1.70711 
2.00000 
1.70711 
1.00000 
0.29289 

Totals = 0.00000 0.00000 16.00000 

Average Value - 16.0/16 = 1.00000 

Table 2.1 

Note that the average amplitude of the right hand column 
is only half of the peak amplitude of the input function (3rd 
column). We may show that the average value obtained by the 
above procedure will always be half of the original input amplitude 
as follows: 

The input function is generated from the equation shown 
on the following page: 
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F,(T) = A sin(27rt) (2.12) 

Where: t = Time 
A = Peak amplitude 

NOTE: A frequency (or period) of unity is implied here 

We simplify by replacing the argument (27rt) with X: 

F(X) = A Sin(X) (2.13) 

Multiplying through by a sine wave of unit amplitude: 

F(X)Sin(X) = A Sin(X)Sin(X) — (2.14) 
= ASin2(X) (2.14A) 

However, from the trigonometric identity: 

Sin2(X) = 1/2 - Cos(2X)/2 (2.15) 

which we substitute into (2.14A): 

F(X) Sin(X) = A (1/2 - Cos(2X)/2) 
= A/2 - ACos(2X)/2 - (2.16) 

The second term of (2.16) (i.e. A Cos(2X)/2) describes a sinusoid 
so that its average value will be zero over any number of full 
cycles; it follows that the average value of eqn. 2.16 (over any 
integer multiple of 2n radians) will be A/2 (see figure 2.3). 

This result is more or less obvious from an inspection of 
Figs. 2.2 and 2.3. It is apparent that the maximum value will occur 
at the peaks of the two sinusoids, where the unit sinusoid has an 
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peak amplitude = A 
average amplitude = A/2 

Figure 2.3 - A Sin2 Wave 

amplitude of 1.0 and the product of the two functions is A. The 
minimum value will occur when the sinusoids are passing through 
zero. From the symmetry of Fig. 2.3 it is apparent that the average 
value must be A/2. 

This process of detecting or rectifying sinusoids, then, has 
the characteristic of yielding only half the amplitude of the actual 
component. This presents no major problem though, as we can 
simply multiply all of the results by two, or use some other 
technique to correct for this phenomenon. 

2.2.4 THE COSINE COMPONENT 

It is obvious that this scheme will work for any harmonic 
component; we need only change the frequency of the unit 
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amplitude sine wave to match the frequency of the harmonic 
component being detected. This same scheme will work for the 
cosine components if we replace the unit sine function with a unit 
cosine function. 

The component we want to detect is given by: 

F2(T) = A COS(27tt) = A COS(X) - — (2.17) 

Where: All terms are as in (2.12) and (2.13) above. 

Multiplying through by a cosine wave of unit amplitude: 

F(X)COS(X) = A COS(X) COS(X) -- (2.18) 

= A COS2(X) (2.18A) 

From the identity: 

COS2(X) - 1/2 + Cos(2x)/2 (2.19) 

which we substitute into (2.18A): 

F(X)COS(X) = A(l /2 + Cos(2X)/2) 
= A/2 + A Cos(2X)/2 — (2.20) 

Again, the second term will have a zero average value 
while the first term is one half the input amplitude. Note carefully 
in the above developments that, to produce a workable scheme, we 
must design our system such that we always average over full 
cycles of the sinusoids. 
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2.2.5 HARMONICS WITHIN COMPOSITE WAVEFORMS 

Next question: "What about the other harmonics in 
composite waveforms? The scheme described above undoubtedly 
works when we are dealing with a single sinusoid, but when we are 
dealing with a composite of many harmonics, how do we know 
that all of the other harmonics are completely ignored? You will 
recall that our third requirement for a method to extract sinusoidal 
components from a composite wave was that the process ignore all 
but the sinusoid being analyzed. Technically, this condition is 
known as orthogonality. 

2.2.6 ORTHOGONALITY 

1 
What, exactly, does the term orthogonality imply? Two 

straight lines are said to be orthogonal if they intersect at right 
angles; two curved lines are orthogonal if their tangents form right 
angles at the point of intersection. Consider this: the "scaler 
product", or "dot product" between two vectors is defined as 
follows: 

AB = | A | | B | Cos (0) (2.21) 

| A | = magnitude of vector A, etc. 

As the angle 0 between the two vectors approaches + 90 degrees, 
Cos 0 approaches zero, and the dot product approaches zero. It is 
apparent, then, that a zero dot product between any two finite 
vectors implies orthogonality. It is apparent that zero magnitude 
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A B = AB Cos 0 

Projection of 
A onto B 

Figure 2.4 - Dot Product 

vectors will always yield a zero dot product regardless of the angle 
(in fact, the notion of angle begs for definition here). In practice 
we effectively define vectors of zero magnitude as orthogonal to 
all other vectors, and may therefore use a zero resultant from 
equation (2.21) as the operative definition for orthogonality. 

DEFINITION 1: 

If AB = 0 then A and B are orthogonal. 

Note that, by this definition, zero magnitude vectors are orthogonal 
to all other vectors. 

The definition of orthogonality between whole functions 
derives from an argument not completely dissimilar to the above. 
To illustrate, we will first use equation (2.21) to generate a 
function F(<|)). We will do this with a specific example where A is 



42 Understanding the FFT 

a unit vector lying along the X axis and B is a unit vector in the 
direction of (b (where <b takes on a set of values over the domain of 
0 to 2n). Table 2.2 shows this function explicitly—note that, 
according to our definition above, the two vectors are orthogonal 
at only two points (i.e. (b = n/2 and 3TI/2). 

</> 

0 
ir/8 
TT/4 

3ir/8 
TT/2 

5ir/8 
3ir /4 
7-7T/8 

IT 

9TT/8 
5TT/4 

H T T / 8 
3ir/2 

1 3 T T / 8 
7TT/4 

1 5 T T / 8 

F(0) 

1 . 0 0 0 
0 . 9 2 4 
0 . 7 8 5 
0 . 3 8 3 
0 . 0 0 0 

- 0 . 3 8 3 
- 0 . 7 8 5 
- 0 . 9 2 4 
- 1 . 0 0 0 
- 0 . 9 2 4 
- 0 . 7 8 5 
- 0 . 3 8 3 
0 . 0 0 0 
0 . 3 8 3 
0 . 7 8 5 
0 . 9 2 4 

Table 2.2 - F(<b) = | A | | B | cos((b) 

But our concern is not for individual values of a function; 
our concern is for orthogonality between whole functions. To 
investigate this situation we need a second function, G(<b), which 
we will define as follows: 

G((b) = | A | | B | cos(<b+7i/2) (2.22) 
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Let's talk about these two functions, F(<|)) and G(<)>), for a moment. 
For both functions vector A lies along the X axis, while B "rotates" 
about the origin as a function of ((). The difference between these 
two functions is that the argument of G(<(>) is advanced by 7t/2 (i.e. 
90 degrees) so that the vector B of G(<j)) will be orthogonal to B in 

<t> 
0 
IT/8 
IT/A 

3TT/8 
IT/2 

5ir/8 
3TT/4 
7TT/8 

IT 

9ir/8 
5ir /4 

1 1 T T / 8 
3 ir /2 

1 3 T T / 8 
77T/4 

1 5 T T / 8 

F(0) 

1 . 0 0 0 
0 . 9 2 4 
0 . 7 8 5 
0 . 3 8 3 
0 . 0 0 0 

- 0 . 3 8 3 
- 0 . 7 8 5 
- 0 . 9 2 4 
- 1 . 0 0 0 
- 0 . 9 2 4 
- 0 . 7 8 5 
- 0 . 3 8 3 
0 . 0 0 0 
0 . 3 8 3 
0 . 7 8 5 
0 . 9 2 4 

G(0) 

0 . 0 0 0 
- 0 . 3 8 3 
- 0 . 7 8 5 
- 0 . 9 2 4 
- 1 . 0 0 0 
- 0 . 9 2 4 
- 0 . 7 8 5 
- 0 . 3 8 3 
0 . 0 0 0 
0 . 3 8 3 
0 . 7 8 5 
0 . 9 2 4 
1 . 0 0 0 
0 . 9 2 4 
0 . 7 8 5 
0 . 3 8 3 

Sum T o t a l 

F ( 0 ) G ( 

0 . 0 0 0 
- 0 . 3 5 4 
- 0 . 6 1 6 
- 0 . 3 5 4 
0 . 0 0 0 
0 . 3 5 4 
0 . 6 1 6 
0 . 3 5 4 
0 . 0 0 0 

- 0 . 3 5 4 
- 0 . 6 1 6 
- 0 . 3 5 4 
0 . 0 0 0 
0 . 3 5 4 
0 . 6 1 6 
0 . 3 5 4 
0 . 0 0 0 

Table 2.3 - F((|))G((j)) 

F(<j>) for all values of <|). In other words, the vectors which actually 
generate these two functions are orthogonal at all points of the 
functions. 

Now the two functions created here are not vectors; being 
scalar products of vectors, they are scalars. Therefore, the defini
tion of orthogonality given above is inappropriate. Still, these two 
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F(0) = AB Cos 0 

G(0) = AB Cos 0+K/2 

Fig. 2.5 - Orthogonal Functions F(<j>) and G(<j)) 

functions were created by orthogonal vectors and we would like to 
find out if there is some vestige—some latent characteristic—that 
can still expose the orthogonality relationship. In fact, there is. If 
we multiply these two functions point by point, and then sum all 
of the individual products, the result will be zero (see Table 2.3). 
You may recognize that this process is essentially the process we 
used to detect sinusoids back in section 2.2.3. If so, you may also 
begin to grasp the connection we are trying to make here, but bear 
with me for a moment longer. Let's generalize the above results 
as follows: 

G((|)) = | A | | B | cos(<|)+Q) (2.23) 

If we replace the nil in G(<j>) by the variable Q, and repeat the test 
for orthogonality using various values of Q (see Table 2.4), we see 
that a zero resultant is achieved only when Q = nil, indicating 
orthogonality between the vectors which generate the functions. 
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N 
Q E F (0) iG (0) ± 

i = 0 

0 
TT/8 
TT/4 

3 T T / 8 
TT/2 

5 T T / 8 
3 i r /4 
7 T T / 8 

TT 

8 . 0 0 0 
7 . 3 9 1 
5 . 6 5 7 
3 . 0 6 1 
0 . 0 0 0 

- 3 . 0 6 1 
- 5 . 6 5 7 
- 7 . 3 9 1 
- 8 . 0 0 0 

Table 2.4 - Orthogonality Test 

So then, this process does indeed detect "orthogonality" 
between our functions. It is not necessary to prove this relation
ship for all cases, for at this point we simply adopt this procedure 
as our operative definition for orthogonality between functions. If 
we compute products between all of the points of the functions, 
and the summation of these products is zero, then the functions are 
orthogonal. Newcomers sometimes find this remarkable, for by 
this definition, we no longer care how the functions were generat
ed. Nor do we ask that the functions be traceable to geometrically 
orthogonal origins in any sense. The only requirement is that the 
summation of the products of corresponding points between the 
two functions be zero. 

DEFINITION 2: 

N 

If £ FCctOjGCM = 0 then F(<|>) and G((|>) are orthogonal 
i=0 
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Orthogonality then is a condition which applies directly to 
the process we use as the Fourier mechanism. Some functions will 
be orthogonal (i.e. they will always give a zero resultant when we 
perform the process described above) and others will not. 
Obviously the example of section 2.2.3 (i.e. two sine waves of 
identical frequency) does not illustrate orthogonal functions. 

The question here, however, is whether two sinusoids of 
different, integer multiple frequencies represent orthogonal 
functions. This, of course, is an imperative condition. If they are 
orthogonal, components that are not being analyzed will contribute 
zero to the resultant—if they are not orthogonal we have BIG 
problems. Let's see how this works out. 

As before, we start with a digitized sine wave but this time 
we multiply through with a sine wave of twice the frequency (Fig. 
2.6 below). By symmetry it is more or less apparent that this 
yields an average value of zero. Apparently we have orthogonal 
functions here, but we need a demonstration for the general case 
of any integer multiple frequency. 

1.0 _ 

1.0 -

1.0 -

1.0 -

m m 

. . . . . . . . /Sin(x) _ . _ Sin(2x) 

product Sin(x)Sin(2x) 

• • 

Figure 2.6 - Sin(x)Sin(2x) 
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Starting with the identity: 

Sin(A)Sin(B) = Cos(A-B) - Cos(A+B) — (2.24) 

2 

if we let A and B represent arguments of: 

A = 27it and B = NA = 2N7tt 

N = 1,2,3,4,... (i.e. N takes on integer values) 

eqn. (2.24) becomes: 

Sin(A)Sin(NA) = Cos(Ad-NV) - Cos(A(l+NY) (2.25) 

2 
It is interesting to note when N=l, the term Cos(A(l-l)) yields a 
value of 1 regardless of the value of A (i.e. all values of 27iT), and 
eqn.(2.25) reduces to: 

Sin(A)Sin(A) = 1 - Cos(2A) (2.26) 
2 

which is the same equation as (2.15) above. The term Cos(2A) 
generates a sinusoid as A varies from 0 to 2% and must therefore 
have a zero average value. 

If we consider all other positive values of N in eqn.(2.25) 
we will always obtain a non-zero value for the argument of both 
terms. Consequently, both terms on the right in eqn.(2.25) will 
generate sinusoids, which guarantees an average value of zero for 
the function (averaged over any number of full cycles). 
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The second case we must examine is for two cosine waves 
of different frequencies. As before we start with an examination 
of the trigonometric identity: 

Cos(A)Cos(B) = Cos(A+B) + Cos(A-B) 
2 

(2.27) 

When B = NA then (2.27) becomes: 

= Cos(A(l+NV) - Cos(Ad-NV) - (2.27A) 
2 

which shows that these functions are also orthogonal except when 
N=l and the arguments (i.e. the frequencies) are identical. 

1.0 -

1.0 -

1.0 -

1.0 -

Cos(x) Cos(3x) 

• • • • 
• • t * 

• • • * • • • • 
• • • • 

» • • • 

• • » | • # # . 
• a • « 

\ 
product Cos(x)Cos(3x) 

Figure 2.7 - Cos(x)Cos(3x) 

Finally, we must examine the relationship between the 
cosine and sine functions for orthogonality. This can be shown by 
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the following identity: 

Sin(A)Cos(B) = SinfA+B) + Sin(A-B) — (2.28) 

2 

and when B = NA: 

= Sin(A(l+NV) + Sin(A(l-NY) (2.28A) 
2 

In this case it makes no difference whether the N = 1 or not; if the 
argument is zero the value of the sine function is likewise zero; if 
the argument is multiplied by an integer the function will trace out 
an integer number of cycles as A varies from 0 to 2n. In no case 
will the average value of these functions be other than zero—they 
are always orthogonal. 

1.0 -

1.0 -

1.0 -

1.0 -

1 
• 

• 
• 

• « 
• 

• 

Sin 

. • * * ' 
• 

• 
• 

(x) Cos(x) 

\ . • ' 

• • 
• * 

• • • • 
• • • • 

• • • • 
• • • 

• • • • • • * 
• • • 

• • • * • • 

product Cos(x)Sin(x) 

Figure 2.8 - Cos(x)Sin(x) 
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2.2.6 THE DFT/FOURIER MECHANISM 

Finally, we must consider all of this together. We know 
that the composite waveform is generated by summing in harmonic 
components: 

F(f) = A0 + A,Cos(t)+B,Sin(t) + A2Cos(2t)+B2Sin(2t) + ... 
+ AnCos(nt)+BnSin(nt) (2.29) 

If we multiply this composite function by Sin(Kt) (or, alternative
ly, Cos(Kt)), where K is an integer, we will create the following 
terms on the right hand side of the equation: 

A0Sin(Kt)+ A,Sin(t)Sin(Kt)+ B,Cos(t)Sin(Kt)+... 
+A^in2(Kt) + BkCos(Kt)Sin(Kt) + ... 

+AnSin(nt)Sin(Kt)+BnCos(nt)Sin(Kt) (2.30) 

Treating each of these terms as individual functions, if the 
argument (Kt) equals the argument of the sinusoid it multiplies, 
that component will be "rectified." Otherwise, the component will 
not be rectified. From what we have shown above, two sinusoids 
of + n/2 phase relationship (i.e. Sine/Cosine), or integer multiple 
frequency, represent orthogonal functions. As such, when summed 
over all values within the domain of definition, they will all yield 
a zero resultant (regardless of whether they are handled as 
individual terms or combined into a composite waveform). That, 
of course, is precisely what we demanded of a procedure to isolate 
the harmonic components of an arbitrary waveform. The examples 
of the next chapter will illustrate the practical reality of these 
relationships. Since a computer can do little more than simple 
arithmetic on the input data, computer examples have a way of 
removing any reasonable question about the validity of theoretical 
developments. 



CHAPTER III 

THE DIGITAL FOURIER TRANSFORM ALGORITHM 

3.0 INTRODUCTION 

The DFT is a simple algorithm. It consists of stepping 

through the digitized data points of the input function, multiplying 

each point by sine and cosine functions as you go along, and 

summing the resulting products into accumulators (one for the sine 

component and another for the cosine). When we have processed 

every data point in this manner, we divide the accumulators (i.e. 

the sum-totals of the preceding process) by the number of data 

points. The resulting quantities are the average values for the sine 

and cosine components at the frequency being investigated as we 

described in the preceding chapter. We must repeat this process 

for all integer multiple frequencies up to the frequency that is equal 

to the sampling rate minus 1 (i.e. twice the Nyquest frequency 

minus 1), and the job is done. 

In this chapter we will examine a program that performs 

the DFT. We will walk through this first program step by step, 

describing each operation explicitly. 
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3.1 THE DFT COMPUTER PROGRAM 

In the program presented below a "time domain" function 

is generated (16 data points) by summing together the first 8 

harmonic components of the classic "triangle wave." This time 

domain data is stored in an array Y(n), and then analyzed as 

described above. In this program we use programming and data 

structuring features common to all higher level languages, viz. the 

data is stored in arrays and the execution of the program takes 

place via subroutines. Each subroutine works on the data arrays, 

performing a specific task. This allows the main body of the 

program (i.e. lines 20 through 80) to operate at a high level, 

executing the necessary tasks (i.e. the subroutines) in a logical 

order. Lets begin by looking at the whole program. As you can 

see, everything is controlled between lines 20 and 60. 

6 REM ****************************************** 

8 REM *** (DFT3.1) GENERATE/ANALYZE WAVEFORM *** 

10 REM ****************************************** 

12 PI=3.141592653589793#:P2=2*PI:K1=PI/8:K2=1/PI 

14 DIM Y(16),FC(16),FS(16),KC(16),KS(16) 

16 CLS:F0R J=0 TO 16:FC(J)=0:FS(J)=0:NEXT 

20 GOSUB 108: REM - PRINT COLUMN HEADINGS 

30 GOSUB 120: REM - GENERATE FUNCTION Y(X) 

40 GOSUB 200: REM - PERFORM DFT 

60 GOSUB 140: REM - PRINT OUT FINAL VALUES 

70 PRINT:PRINT "MORE (Y/N)? "; 

72 A$ = INKEY$:IF A$="" THEN 72 

74 PRINT A$:IF A$ = "Y" THEN 16 

80 END 
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100 REM ****************************************** 

102 REM * PROGRAM SUBROUTINES * 
104 REM ****************************************** 

106 REM * PRINT COLUMN HEADINGS * 

107 REM ****************************************** 

108 PRINT:PRINT 

110 PRINT "FREQ F(COS) F(SIN) Y(COS) Y(SIN)" 
112 PRINT 
114 RETURN 
118 REM ****************************** 

120 REM *** GENERATE FUNCTION Y(X) *** 
121 REM ****************************** 

122 FOR I = 0 TO 15:K3=I*K1 

124 Y(I) = COS(K3)+COS(3*K3)/(9)+COS(5*K3)/(25)+COS(7*K3)/49 

126 NEXT 

128 FOR 1=1 TO 7 STEP 2: KC(I)=1/IA2:NEXT 

130 RETURN 
132 REM ****************************** 

138 REM * PRINT OUTPUT * 

139 REM ****************************** 

140 FOR Z=0 TO 15 

142 PRINT Z;" "; 

144 PRINT USING "##.#####_ ";FC(Z),FS(Z),KC(Z)fKS(Z) 

146 NEXT Z 

148 RETURN^ 
200 REM ************************** 

202 REM * SOLVE FOR COMPONENTS * 

204 REM ************************** 

206 FOR J=0 TO 15: REM SOLVE EQNS FOR EACH FREQUENCY 

208 FOR I = 0 TO 15:REM MULTIPLY AND SUM EACH DATA POINT 

210 FC(J)=FC(J)+Y(I)*COS(J*I*K1):FS(J)=FS(J)+Y(I)*SIN(J*I*K1) 

212 NEXT I 

214 FC(J)=FC(J)/16: FS(J)=FS(J)/16:REM FIND MEAN VALUE 

216 NEXT J 

218 RETURN 

Figure 3.1 
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Now let's dissect this program and its routines to see how 

things really get done. At the beginning of the program (line 12) 

we define the frequently used constants of PI, 2*PI, PI/8, and 1/PI 

(we will duplicate each section of the program as we go along so 

that you don't have to flip pages). At line 14 we "DIMension" (i.e. 

define the size) of the arrays to be used in the program. Array 

Y(16) will store the 16 data points of the time domain function to 

be analyzed, while FC(16) and FS(16) will hold the 16 derived 

amplitudes of the Fourier cosine and sine components. Similarly, 

6 Rgfi| ****************************************** 

8 REM *** (DFT3.1) GENERATE/ANALYZE WAVEFORM *** 

10 REM ****************************************** 

12 PI=3.141592653589793#:P2=2*PI:K1=PI/8:K2=1/PI 

14 DIM Y(16),FC(16),FS(16),KC(16),KS(16) 

16 CLS:FOR J=0 TO 16:FC(J)=0:FS(J)=0:NEXT 

KC(16) and KS(16) will hold the amplitudes of the sinusoids used 

to generate the input function (these are saved for comparison to 

the derived components). Having completed this preliminary 

work, line 16 clears the screen with a CLS statement, and then 

initializes the arrays FC(J) and FS(J) by placing a zero in every 

location. Note that the array proper is the FC() designation and 

that J only provides a convenient variable to specify the location 

within the array. We may use any variable (or constant) at any 

time to specify locations within arrays. The data stored at those 

locations will be unaffected. 

This brings us to the main program (lines 20 through 60), 

which accomplishes the high level objectives. When the program 
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20 GOSUB 108: REM - PRINT COLUMN HEADINGS 

30 GOSUB 120: REM - GENERATE FUNCTION Y(X) 

40 GOSUB 200: REM - PERFORM DFT 

60 GOSUB 140: REM - PRINT OUT FINAL VALUES 

70 PRINT:PRINT "MORE (Y/N)? "; 

72 A$ = INKEY$:IF A$="" THEN 72 

74 PRINT A$:IF A$ = "Y" THEN 16 

80 END 

comes to the GOSUB instruction at line 20 it will "jump down" to 

line 108, and so will we. This subroutine prints the column 

headings. In addition to printing out the amplitudes of the sine and 

106 REM * PRINT COLUMN HEADINGS * 

108 PRINT:PRINT 

110 PRINT "FREQ F(COS) F(SIN) Y(COS) Y(SIN)" 

112 PRINT 

114 RETURN 

cosine components (as do most Fourier analysis programs), in this 

program we also print out the amplitude of the components which 

w£re used to generate the input function [i.e. Y(COS) Y(SIN)]. 

This allows a direct comparison of output to input and tells us how 

well the analysis scheme is working. Lines 108 through 112 print 

this heading and then, at line 114, we encounter a RETURN 

statement which sends program control back to the instruction 

following the line 20 GOSUB 108 statement (i.e program execu

tion jumps back to line 30). 

Line 30 jumps us down to the subroutine located at line 

120, which generates the input function. Line 120 is a REMark 

statement telling us this is where we generate the time domain 

input function Y(X), which we will do by summing the harmonic 

components known to construct a "triangle wave." At line 122 we 

set up a loop that steps "I" from 0 to 15 (the variable /will count 
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120 REM *** GENERATE FUNCTION Y(X) *** 

122 FOR I = 0 TO 15:K3=I*K1 

124 Y(I) = COS(K3)+C0S(3*K3)/(9)+C0S(5*IC3)/(25>+C0S(7*K3)/49 

126 NEXT 

128 FOR 1 = 1 TO 7 STEP 2: KC(I)=1/IA2:NEXT 

130 RETURN 

the 16 data points of our triangle wave function—note that K3 is 

computed each time through the loop (Kl is defined back on line 

12 as PI/8). Line 124 is the business end of this routine, it sums 

the odd cosine components (with amplitudes inversely proportional 

to the square of their frequencies) into each point of array Y(I). 

Since there are 16 points in the data array we can have a maximum 

of 8 harmonic components (there must be a minimum of two data 

points for each "cycle" of the Nyquest frequency)1. At line 126 

the NEXT statement sends us back through the loop again, until 

we have stepped through the 2*PI radians of a full cycle of the 

fundamental. At line 128 we have inserted a loop which puts 1/N2 

into the odd cosine terms of the KC(I) array (which is, in fact, the 

amplitudes of the sine waves we used to generate this function). 

Having done all this, we have completed the generation of our 

input function, and now RETURN (line 130) to the main program 

(i.e. to line 40). 

40 GOSUB 200: REM - PERFORM DFT 

We are now ready to perform a Fourier Transform of the 

time domain function in array Y(X). From line 40 we GOSUB to 

1. Note that only 8 harmonics are used to generate this function (in fact that is 
all the Nyquest Sampling Theorem will allow), but there are 16 frequencies 
derived in the DFT. We will discuss this in detail later. 
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line 206 where we set up a loop. This loop will handle everything 

that must be done at each of the harmonic frequencies (in this case 

the frequency is designated by J). We must perform a multiplica

tion by cosine and sine at each point of the data array (for the 

frequency being worked on) and sum the results into the location 

of the FC(J) and FS(J). Line 208 sets up a nested loop which will 

200 REM ************************** 

202 REM * SOLVE FOR COMPONENTS * 
204 REM ************************** 

206 FOR J=0 TO 15.-REM SOLVE EQNS FOR EACH FREQUENCY 

208 FOR I = 0 TO 15:REM MULTIPLY AND SUM EACH DATA POINT 

210 FC(J)=FC(J)+Y(I)*C0S(J*I*K1):FS(J)=FS(J)+Y(I)*SIN(J*I*K1) 

212 NEXT I 

214 FC(J)=FC(J)/16: FS(J)=FS(J)/16:REM FIND MEAN VALUE 

216 NEXT J 

218 RETURN 

step I from 0 to 15. Note that, just as J indicates the frequency, I 

indicates the data point in the input function array. Line 210 sums 

into FC(J) the product of the data point at Y(I) multiplied by the 

COS(Kl *I*J). We are multiplying the Ith data point by the Cosine 

of: Kl (i.e. PI/8) multiplied by I (which yields the number of 

radians along the fundamental that this data point lies) and then 

multiplied by the frequency of the component being extracted (i.e. 

J), which yields the correct number of radians for that particular 

harmonic. In this same line the "sine term" is also found and 

summed into FS(J). At line 212 we encounter the NEXT I 

statement, jump back to line 208 and repeat this operation for the 

next data point. When we have stepped through the 16 points of 

the data array, we move down to line 214 and divide both of these 

summations by 16 to obtain the average value. At line 216 we 

jump back to line 206 and perform the whole routine over for the 
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next harmonic. We continue this process until we have analyzed 

all 16 frequencies (the constant, or "D.C." component, is occasion

ally referred to as the "zeroth" frequency). 

60 GOSUB 140: REM - PRINT OUT FINAL VALUES 

Having completed our Fourier analysis, we then return to 

line 60 where we jump down to the "PRINT OUTPUT" subroutine 

located at line 140. We set up a loop counter Z which counts from 

0 to 15 (corresponding to the frequencies analyzed) and, in fact, at 

line 142, we print Z under the column heading "FREQ". Let's 

make note of a few things that happen here: 

138 REM * PRINT OUTPUT * 

140 FOR 2=0 TO 15 

142 PRINT Z;" "; 

144 PRINT USING "##.#####_ ";FC<Z),FS(Z),KC(Z),KS<Z) 

146 NEXT Z 

148 RETURN 

1) A semicolon separates the PRINT Z and the " ". This 

causes them both to be printed on the same line. 

2) The " "; simply causes a space to be printed between 

the frequency column and the following data (note that another 

semicolon is used so that the next PRINT statement will still be 

printed on the same line). 

Line 144 then prints out the relevant data with a PRINT 

USING statement. Line 146 causes the program to go back and 

print out the next line of data with a NEXT Z. 

When the data for all 16 frequencies has been printed we 

return to the main program (line 70) and ask if "MORE (Y/N)" is 

desired . Line 72 looks for an input from the keyboard and assigns 



FFT/02 59 

70 PRINT:PRINT "MORE (Y/N)? "; 
72 A$ = INKEYS:IF A$="" THEN 72 
74 PRINT A$:IF A$ = "Y" THEN 16 
80 END 

the input to the variable A$. If no key is pressed, A$ will have 

nothing in it (i.e. A$ will equal "") and the instruction will be 

repeated. If A$ has any data in it at all, program execution passes 

down to line 74 where the data is printed and we check to see if A$ 

= "Y". If A$ equals "Y" then the execution jumps back to line 16 

and we begin again; otherwise, execution passes on to line 80 

which ends the program. For now this routine only provides a 

controlled ending of the program, but it will be used more 

meaningfully later. 

\2 PROGRAM EXECUTION AND PHENOMENA 

In the exercises that follow we will test what we have 

done. The value of this section is subtle, but profound; all too 

often the student fails to grasp the practical significance and 

limitations of the subject he studies. Do you know, for example, 

if the results of the DFT will be exact or only approximate? 

Perhaps theoretically exact but masked by "noise" sources (e.g. 

truncation errors)? The actual results may surprise you. The 

following exercises have been selected to be instructive in the 

practical usage of the DFT. Our purpose is to gain experience of 

the tool we use, as well as confidence in the software we write. 

Our purpose is to understand the DFT. 
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3.2.1 PROGRAM EXECUTION 

If we run the program created above we will obtain the 

results shown in Fig. 3.2 below. You will note that only cosine 

components were generated for the input function and, fortunately, 

only cosine components appear in the analysis; however, all of the 

results obtained by the analysis are one half the amplitudes of the 

input waveform, within the accuracy of the data printout. You will 

FREQ F(COS) F(SIN) Y(COS) Y(SIN) 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

0.0000 

0.5000 

0.0000 

0.0556 

0.0000 

0.0200 

0.0000 

0.0102 

0.0000 

0.0102 

0.0000 

0.0200 

0.0000 

0.0556 

0.0000 

0.5000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

1.0000 

0.0000 

0.1111 

0.0000 

0.0400 

0.0000 

0.0204 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

Figure 3.2 - Fourier Transform Output 

also note that, while only the first seven harmonics were created 

for the input function, components show up for all 15 frequencies 
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of the analysis. Note that the components from 9 through 15 are 

a "mirror image" of the components from 1 through 7 (i.e. the two 

halves of the spectrum are symmetrical about the Nyquest frequen

cy). The frequencies above the Nyquest are negative frequencies, 

and consequently are complex conjugates of the frequencies below 

the Nyquest (as shall be seen shortly). 

3.3 DATA EXERCISES 

The "triangle wave" used above is a relatively simple 

function, but it confirms that our DFT is working. We will give 

our DFT program a more complicated example shortly, but before 

we do that, let's consider another simple test. We will analyze a 

single sinusoid which has been shifted in phase by 67.5° from the 

reference cosine wave. To do this we change the GENERATE 

FUNCTION Y(X) subroutine as follows: 

122 K4=3*PI/8:KC(1)=COS(K4):KS(1)=SIN(K4):REM SET K4=67.5° 
124 FOR I = 0 TO 15:K3=I*K1 
126 Y(I) = COSCK3+K4) 
128 NEXT I 

At line 122 we define K4 (i.e. we set K4 to 67.5° in 

radians), and place the cosine and sine of this angle into KC( 1) and 

KS(1), which is the data we will use for comparison to the output. 

Lines 124 through 128 then generate a full cycle of a cosine wave 

shifted by 67.5°. When we perform this analysis we find that the 

DFT yields only sine and cosine components at the fundamental 
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and its negative. This example simply illustrates that the program 

can extract the sine and cosine components of a waveform that has 

been generated as a single sinusoid. 

In most of the practical applications of the DFT we will 

deal with considerably more complicated functions than those 

presented above. A more difficult test for our program would be 

to create a composite time domain wave composed of completely 

random harmonic components—if the program can analyze this 

wave successfully if can handle anything. To generate this test we 

take advantage of the computer's ability to generate pseudo 

random numbers and create a random pattern of sine and cosine 

amplitudes. We save these amplitudes in the arrays KC(I) and 

KS(I), and then use them to generate the time based function Y(X). 

This is accomplished by changing the GENERATE FUNCTION 

subroutine as follows: 

122 FOR 1=0 TO 8:KC(I)=RND(1):KS(I)=RND(1):NEXT 

124 FOR 1=0 TO 15:F0R J=0 TO 8:K4=I*J*K1 

126 Y(I)=Y(I)+KC(J)*C0S(K4)+KS(J)*SIN(K4) 

128 NEXT J:NEXT I 

130 RETURN 

Line 122 generates the random amplitudes of the components 

using the RND(l) instruction. Lines 124 through 128 then create 

the points of Y(I) by summing in the contributions of the sinusoids 

which have those random amplitudes. For each data point in the 

time domain function (indicated by I) we step through the 0 

through 8th harmonic component contribution (indicated by J). 
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Now when we run the program we obtain the following 

results: 

FREQ F(COS) F(SIN) Y(COS) Y(SIN) 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

0.12135 
0.43443 
0.39943 
0.24516 
0.05362 
0.35193 
0.48558 
0.47806 
0.53494 
0.47806 
0.48558 
0.35193 
0.05362 
0.24516 
0.39943 
0.43443 

0.00000 
0.36488 
0.03685 
0.22726 
0.47526 
0.26593 
16407 
46726 
00000 
46726 
16407 

0.26593 
0.47526 
0.22726 
0.03685 
0.36488 

.12135 

.86886 

.79885 

.49031 

.10724 
,70387 
.97116 

0.95612 
53493 
00000 
00000 
00000 
00000 
00000 
00000 
00000 

0.65186 
0.72976 
0.07369 
0.45451 
0.95051 
0.53186 
0.32093 
0.93451 
0.56442 

.00000 

.00000 

.00000 

.00000 

.00000 

.00000 

.00000 

0. 
0. 
0. 
0. 
0. 
0. 
0. 

Figure 3.3 - Random Amplitude Function 

We notice several things about this analysis immediately: 
1. The sine components for the 0th term and 8th term are 

both zero, even though they were not zero in the input function. 
This is because no sine term can exist for either of these compo
nents! SIN(N*0) = 0 and SIN(N*PI) = 0. Since we have multi
plied through the zeroth term by the frequency of zero, all of the 
sine terms will be zero in the analysis—they will also be zero in 
the input function for the same reason. Likewise, there can be no 
sine term for the Nyquest frequency. Even though we assigned 
values to these components in our generation of the wave, they 
were never created in the time domain function simply because 
such components cannot be created. 

2. The cosine amplitude of the zeroth and 8th frequency 
components are not half of the input function amplitudes. Now, 
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we showed in the last chapter that the derived amplitudes would all 
be half of the actual component amplitudes, so what is going on 
here? The Oth term represents the D.C. component (average value) 
as explained in chapter 1, and all of the terms are simply multiplied 
by the cos(0) = 1. This is reasonably apparent and, in fact, was 
what we should have expected; but, it may not have been apparent 
that the argument for the cosine term at the Nyquest frequency 
would always be 0 or N*PI, always yielding a cosine value of + 1. 
Any cosine component in the input will be rectified, yielding an 
average value in the analysis equal to the peak value of that 
component. 

3. Note that the sine components for all of the frequencies 
above the Nyquest are negative. This negation of the sine 
component comes about because the frequencies above the 
Nyquest are mathematically negative frequencies (as we noted 
earlier), and a negative frequency produces the complex conjugate 
of its positive frequency counterpart (i.e. the sine component of a 
complex frequency is negated but the cosine component remains 
unchanged). 

If you are already familiar with Fourier Analysis the above 
observations should come as no surprise; still, it is interesting to 
see that practical results agree with the theory. 

Let's change the GENERATE FUNCTION subroutine to 
illustrate one last important point: we will use a linear equation to 
generate a "perfect" triangle wave. We already know that the 
terms attenuate as 1/N2 in a triangle wave and that only the odd 
numbered terms are present—we have just analyzed a seven 
component approximation of this function. It would seem 
reasonable that we obtain similar results with a "straight line" 
version of this function. In the routine shown below we use a 
"scale factor" of PI2/8 to provide the same amplitudes as the 
components used in our synthesized version (i.e. the fundamental 
has an amplitude of 1.0 and the harmonics all "roll off" as 1/N2). 
The final GENERATE FUNCTION subroutine will be: 



FFT/03 65 

122 K2=(PI*PI)/8:K3=K2/4 
124 FOR 1=0 TO 7:Y(I)=K2-K3*I:NEXT I 
126 FOR 1=8 TO 15:Y(I)=K3*I-3*K2:NEXT I 
128 RETURN 

We run the program and obtain the results shown in Fig. 
3.4. First of all we notice that there are no harmonic amplitudes 
given for the input function; there shouldn't be any, of course, 
because we didn't generate the function that way. Of considerably 

FREQ 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

H 12 
13 
14 
15 

F(COS) 

0.00000 
0.50648 
0.00000 
0.06245 
0.00000 
0.02788 
0.00000 
0.02004 
0.00000 
0.02004 
0.00000 
0.02788 
0.00000 
0.06245 
0.00000 
0.50648 

F(SIN) 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

Y(COS) 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

Y(SIN) 

0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 

Figure 3.4 - Analysis of a "Perfect" Triangle Wave 

more importance is the fact that the components don't match the 
amplitudes that we said they would (compare them to the values 
derived back in Figure 3.2). Not only do they not have the correct 
values, they don't even have the correct 1/N2 ratios! This is com
pletely wrong! Is something wrong with our program? 

Even though it is customary to throw up the hands when 
results such as these are obtained (not a completely infrequent 
occurrence), and proclaim the DFT useless for "real work," it will 
actually be best if we can remain calm for a few minutes and 
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examine what has happened here. First of all, there is nothing 
wrong with the computer program. The program is telling us 
exactly what it should be telling us. There is nothing wrong with 
the equations we used to generate the function and there is nothing 
wrong with the DFT we are using. The thing that is "wrong" is 
that we have just experienced the effects of aliasing] We generat
ed the above triangle wave deliberately so that it would include the 
higher order harmonic components (even though we know the 
maximum Nyquest frequency is "8" for a data base of only 16 data 
points. All of the harmonics above that frequency have been 
"folded back" into the spectrum we are analyzing and have given 
us "incorrect" values. If we want to generate a function as we did 
in this example, and have it agree with the known harmonic 
analysis of the "classic" waveshape, we must filter off the harmon
ics above the nyquest before we attempt to digitize it. 

The mechanics of the aliasing phenomenon are very 
interesting to delve into, but our concern here is with the FFT, and 
so we will resist the urge to dig deeper. We have gone through 
this exercise because it is the sort of thing that happens in the 
practical application of DFT/FFT routines. Systems are improper
ly designed (or improperly applied) and then, later, no one can 
understand why the results are invalid. The DFT algorithm is 
indeed a simple program, but there are a great many "traps" lurking 
for the unwary. While it is relatively easy to explain how the FFT 
works and how to write FFT programs, there is no alternative to 
studying the DFT, and FFT, and all of the associated engineering 
disciplines, in detail. Like Geometry (and, for that matter, most 
other things of value)—for this subject "There is no royal road ..." 



CHAPTER IV 

THE INVERSE TRANSFORM 
AND COMPLEX VARIABLES 

4.1 RECONSTRUCTION 

The inverse transform is, intuitively, a very simple 

operation. We know what the amplitudes of the sinusoids are 

(from the forward transform), so we simply reconstruct all of these 

sinusoids and sum them together. Nothing could be simpler. 

We note that the process of extracting the individual 

frequency components yielded only half amplitude values for all 

but the constant term and the Nyquest frequency term; however, 

we extracted components for both the negative and positive 

frequencies (i.e. both above and below the Nyquest). This all 

works out neatly in the reconstruction process since it will provide 

precisely the correct amplitudes when both negative and positive 

frequency terms are summed in. Before we develop this discussion 

further let's write an inverse transform routine and incorporate it 

into the DFT program of the preceding chapters. 
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6 REM ******************************************* 

8 REM ** (DFT4.1) ANALYZE/RECONSTRUCT WAVEFORM ** 
10 REM ******************************************* 

11 REM *** DEFINE CONSTANTS 

12 PI=3.141592653589793#:P2=2*PI:K1=PI/8:K2=1/PI 

13 REM *** DIMENSION ARRAYS 

14 DIM Y(16),FC(16),FS(16)fKC(16),KS(16),Z<16) 

15 REM *** INITIALIZE FOURIER COEFFICIENT ARRAYS 

16 CLS:FOR J=0 TO 16:FC(J)=0:FS(J)=0:NEXT 

20 GOSUB 108: REM * PRINT COLUMN HEADINGS 

30 GOSUB 120: REM * GENERATE FUNCTION Y(X) 

40 GOSUB 200: REM * PERFORM DFT 

60 GOSUB 140: REM * PRINT OUT FINAL VALUES 

69 REM *** ASK IF RECONSTRUCTION IS NECESSARY 

70 PRINT:PRINT "RECONSTRUCT (Y/N)? "; 

72 AS = INKEY$:IF A$="" THEN 72 

74 PRINT A$:IF"A$ = "Y" THEN 80 

76 END 

80 CLS:GOSUB 220:REM * RECONSTRUCT 

82 GOSUB 240:REM * PRINT OUTPUT 

84 PRINT:PRINT "MORE (Y/N)?"; 

86 A$ = INKEY$:IF A$ = "" THEN 86 

88 PRINT A$:IF A$ = "Y" THEN 15 

90 GOTO 76 
100 REM ****************************************** 

102 REM * PROGRAM SUBROUTINES * 
104 REM ****************************************** 

106 REM * PRINT COLUMN HEADINGS * 

108 PRINT:PRINT 

109 REM *** Y(COS) AND Y(SIN)=INPUT COMPONENT AMPLITUDES 

110 PRINT "FREQ F(COS) F(SIN) Y(COS) Y(SIN)" 

112 PRINT 

114 RETURN 

118 REM ****************************** 

120 REM *** GENERATE FUNCTION F(X) *** 

122 FOR I = 0 TO 15:K3=I*K1:REM I=DATA POINT LOCATION IN ARRAY 

123 REM *** SET Y(I)=FIRST 8 COMPONENTS OF TRIANGLE WAVE 

124 Y(I) = C0S(K3)+C0S(3*K3)/(9)+C0S(5*K3)/(25)+C0S(7*K3)/49 

126 NEXT 

127 REM *** STORE COMPONENT AMPLITUDES 

128 FOR 1 = 1 TO 7 STEP 2: KC(I)=1/IA2:NEXT 

130 RETURN 
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132 REM ****************************** 

138 REM * PRINT OUTPUT * 

140 FOR Z=0 TO 15 

142 PRINT Z;" ";:REM * Z=COMPONENT FREQUENCY 

144 PRINT USING "##.#####_ ";FC(Z),FS(Z),KC(Z)fKS(Z) 

146 NEXT Z 

148 RETURN 
200 REM ************************** 

202 REM * SOLVE FOR COMPONENTS * 

206 FOR J=0 TO 15:REM * SOLVE EQNS FOR EACH FREQUENCY 

208 FOR I = 0 TO 15:REM * MULTIPLY AND SUM EACH DATA POINT 

210 FC(J)=FC(J)+Y(I)*COS(J*I*K1):FS(J)=FS(J)+Y(I)*SIN(J*I*K1) 

212 NEXT I 

214 FC(J)=FC(J)/16: FS(J)=FS(J)/16:REM * FIND MEAN VALUE 

216 NEXT J 

218 RETURN 
220 REM ************************** 

222 REM * RECONSTRUCT * 
224 REM ************************** 

226 FOR J=0 TO 15:REM * RECONSTRUCT EACH FREQUENCY 

228 FOR I = 0 TO 15: REM * RECONSTRUCT EACH DATA POINT 

230 Z(I)=Z(I)+FC(J)*COS(J*I*K1)+FS(J)*SIN(J*I*K1) 

232 NEXT I 

234 NEXT J * 

236 RETURN 
240 REM ****************************** 

241 REM * PRINT OUTPUT * 
240 REM ****************************** 

243 REM * Y(I) EQUALS INPUT FUNCTION FOR COMPARISON 

244 CLS:PRINT:PRINT "T Z(I) Y(I)":PRINT:PRINT 

245 FOR Z=0 TO 15 

246 PRINT Z;" "; 

248 PRINT USING "##.#####_ ";Z(Z),Y(Z) 

250 NEXT Z 

252 RETURN 

Figure 4.1 



70 Understanding the FFT 

The first part of this program is apparently unchanged 

from the program of the preceding chapter, except that line 14 

defines a new array Z(16). This array will hold the reconstructed 

input function. At line 70 we change the question asked to the 

following: "RECONSTRUCT (Y/N)". If the answer is "Y" then 

we pass on to line 80, where we begin the operation of reconstruc

tion. 

As in the preceding program, we use subroutines to 

simplify the operation. At line 80 we jump down to line 220 

where the operation of reconstruction is performed. At line 82 we 

print out the results. Line 84 asks if we want "MORE ?". A "Y" 

returns us to line 16—anything else ends the program. Let's now 

look at the inverse transform routine: 

226 FOR J=0 TO 15:REM * RECONSTRUCT EACH FREQUENCY 

228 FOR I = 0 TO 15: REM * RECONSTRUCT EACH DATA POINT 

230 Z(I)=Z(I)+FC(J)*C0S(J*I*K1)+FS(J)*SIN(J*I*K1) 

232 NEXT I 

234 NEXT J 

236 RETURN 

At line 226 we set up a loop to count from 0 to 15 (i.e. 

count the frequency components used in the reconstruction). At 

line 228 we set up a nested loop to count through the 16 data 

points of the reconstruction. At line 230 we sum into the array 

Z(I) the contribution of the Jth frequency component at the data 

point I (both cosine and sine components). As pointed out above 

we sum in all of the frequency components, i.e. the contribution 

from both the positive and negative frequency components, the 

constant term, and the Nyquest frequency term. It's that simple. 

The print routine for the reconstructed function Z(Z) (as 

well as the input time domain function Y(Z)) is located at line 240. 
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243 REM * Y(I) EQUALS INPUT FUNCTION FOR COMPARISON 

244 CLS:PRINT:PRINT "T Z(I) Y(I)":PRINT:PRINT 

245 FOR Z=0 TO 15 

246 PRINT Z;" "; 

248 PRINT USING "##.#####_ ";Z(Z),Y(Z) 

250 NEXT Z 

At line 244 we clear the screen and print the new heading. At lines 

245 through 250 we print the reconstruction as well as the input 

data. 

If we run this program we will obtain the following output: 

T 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

Z(I) 

1.17152 

0.93224 

» 0.61469 

0.30918 

-0.00000 

-0.30918 

-0.61469 

-0.93224 

-1.17152 

-0.93224 

-0.61469 

-0.30918 

-0.00000 

0.30918 

0.61468 

0.93224 

Yd) 

1.17152 

0.93224 

0.61469 

0.30918 

-0.00000 

-0.30918 

-0.61469 

-0.93224 

-1.17152 

-0.93224 

-0.61469 

-0.30918 

-0.00000 

0.30918 

0.61469 

0.93224 

Figure 4.2 
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4. 2 TRANSFORM SYMMETRY AND COMPLEX VARIABLES 

All of the above is beautifully simple; unfortunately, the 

purist will never let us leave things that way. While the above is 

certainly not incorrect, it is slightly "out of bed" with the formal 

definition of the DFT. Actually, the complications are not all that 

difficult; we need only reformulate everything in terms of complex 

variables. Let's look at the problem: 

The definitions of the DFT and Inverse DFT are: 

N-l 

F(f)= 1 / N S f ( t ) W / (4.1) 

T=0 

N-l 

f(T) = I F(f) WN
Tf (4.2) 

f=0 

Where: F(f) = frequency components or transform 

f(T) = time base data points or inverse xform 

N = number of data points 

T = discrete times 

f = discrete frequencies 

W N = eU*/N = Cos(27t/N) + i Sin(27i/N) 
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There is marked symmetry between eqns. (4.1) and (4.2), 

but the algorithms given in DFT4.1 for the transform and inverse 

transform fail to reflect that symmetry. The inverse transform 

starts from complex quantities in the frequency domain while we 

use only real numbers for the input function in the forward 

transform. Now, in the general case, both the frequency domain 

and the time domain may be complex numbers, of course, and 

when we provide for this potential, the symmetry between the 

forward and inverse transforms immediately becomes apparent. 

Let's look at what happens to our transform algorithm when we 

consider complex variables: 

Multiplication of two complex quantities yields the 

following terms: 

(A +iB)(£ +iD) = AC +iAD +iBC - BD 
= (AC-BD)+i(AD+BC) (4.3) 

We might note that (A +iB) is the input function, and (C +iD) is 

equal to WN • eaM = Cos(27t/N) + i Sin(27t/N). Incorporating this 

into program DFT4.1, we convert the forward transform algorithm: 

210 FC(J) = FC(J)+YR(I)*C0S(J*I*K1)-YI(I)*SIN(J*I*K1) 
211 FS(J) = FS(J)+YR(I)*SIN<J*I*K1)+YI(I)*C0S(J*I*K1) 

where YR stands for the real part of the input function and YI 

stands for the imaginary part (this obviously requires defining new 

arrays, YR(16) and YI(16), at program initialization). Similarly, 

recognizing that an imaginary term must be created in the inverse 
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transform (as defined in eqn. 4.2), the reconstruction algorithm 

becomes: 

230 ZR(I) = ZR<I)+FC(J)*C0S(J*I*K1)+FS(J)*SIN(J*I*K1> 
231 Z I ( I ) = ZI(I)-FC(J)*SIN(J*I*K1)+FS(J)*C0S(J*I*K1) 

The symmetry is now much more apparent. Except for the 

sign changes, these lines of code are identical. With a little 

manipulation we can use the same routine for both forward and 

inverse transformation. 

Very well then, we will write a new DFT program with the 

above considerations incorporated. It will require completely 

revamping the data structures and even the basic flow of the 

program, but it will be formally correct. For us, at this point, it 

illustrates a significant characteristic of the DFT/Inverse DFT. 

While we are at it we should change the program to a menu driven 

format as it will be much better suited to our work in the following 

chapters. The new program (DFT4.2) is shown on the following 

pages. We must make note of the changes: 

1. The data arrays have changed completely. At line 14 

we now dimension four arrays—C(2,16), S(2,16), KC(2,16), and 

14 DIM C(2,16),S(2,16),KC(2,16),KS(2,16) 

KS(2,16). These are "two dimensional" arrays, if you will. There 

are two columns of 16 data points in each array. From now on we 

will put the time domain data in column 1 and the frequency 

domain data in column 2 of each of these arrays. KC(2,16) and 
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6 REM * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

8 REM * * * (DFT4.2) GENERATE/ANALYZE UAVEFORM * * * 
10 REM * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

12 PI=3.141592653589793#:P2=2*PI:K1=PI/8:K2=1/PI 

14 DIM C(2,16),S(2,16),KC(2,16),KS(2,16) 

16 CLS:FOR J=0 TO 16:F0R 1=1 TO 2:C(I,J)=0:S(I,J)=0:NEXT:NEXT 

19 REM ******************* 

20 CLS:REM * MAIN MENU * 
21 REM ******************* 

22 PRINT:PRINT:PRINT " MAIN MENU":PRINT 

24 PRINT " 1 = GENERATE FUNCTION":PRINT 

26 PRINT " 2 = TRANSFORM FUNCTION":PR I NT 

28 PRINT " 3 = INVERSE TRANSFORM":PRINT 

30 PRINT " 4 = EXIT":PRINT:PRINT 

32 PRINT SPC(10);"MAKE SELECTION"; 

34 A$ = INKEY$:IF A$="" THEN 34 

36 A=VAL(A$):ON A GOSUB 300,40,80,1000 

38 GOTO 20 

39 REM ***************************** 

40 REM * FORWARD TRANSFORM ROUTINE * 
41 REM ***************************** 

42 CLS:N=1:M=2:K5=16:K6=-1:GOSUB 108 

44 FOR J=0 TO 16:C(2,J)=0:S(2,J)=0:NEXT 

45 GOSUB 200: REM - PERFORM DFT 

46 GOSUB 140: REM - PRINT OUT FINAL VALUES 

48 PRINT:INPUT "C/R TO CONTINUE";A$ 

50 RETURN 

79 REM ************************* 

80 REM * INVERSE TRANSFORM * 
81 REM ************************* 

82 CLS:FOR 1=0 TO 15:C(1,1)=0:S(1,1)=0:NEXT 

84 N=2:M=1:K5=1:K6=1:GOSUB 200:REM RECONSTRUCT INPUT 

85 GOSUB 150:REM PRINT HEADING 

86 GOSUB 140:REM PRINT OUTPUT 

88 PRINT:INPUT "C/R TO CONTINUE";A$ 

90 RETURN 



76 Understanding the FFT 

100 REM ****************************************** 

102 REM * PROGRAM SUBROUTINES * 
104 REM ****************************************** 

106 REM * PRINT COLUMN HEADINGS * 

108 PRINT:PRINT 

110 PRINT "FREQ F(COS) F(SIN) Y(COS) Y(SIN)" 

112 PRINT 

114 RETURN 

137 REM ****************************** 

138 REM * PRINT OUTPUT * 
139 REM ****************************** 

140 FOR 2=0 TO 15 

142 PRINT Z;" "; 

144 PRINT USING "##.#####_ ";C(M,Z),S(M,Z),KC(M,Z)/KS(M,Z) 

146 NEXT Z 

148 RETURN 

150 REM ****************************** 

152 REM * PRINT COLUMN HEADINGS * 

154 PRINT:PRINT 

156 PRINT " T RECONSTRUCTION INPUT FUNCTION" 

158 PRINT 

160 RETURN 

200 REM ******************************* 

202 REM * TRANSFORM/RECONSTRUCT * 

204 REM ******************************* 

206 FOR J=0 TO 15:REM SOLVE EQNS FOR EACH FREQUENCY 

208 FOR 1=0 TO 15.-REM MULTIPLY AND SUM EACH POINT 

210 C(M,J)=C(M,J)+C(N,I)*C0S(J*I*K1)+K6*S(N,I)*SIN(J*I*IC1) 

211 S(M,J)=S(MfJ)-K6*C(N,I)*SIN(J*I*K1)+S(N,I)*C0S(J*I*K1) 

212 NEXT I 

214 C(M,J)=C(M,J)/K5:S(M,J)=S(M,J)/K5:REM SCALE RESULTS 

216 NEXT J 

218 RETURN 

299 REM *********************** 

300 CLS:REM * FUNCTION MENU * 
301 REM *********************** 

302 FOR 1=0 TO 15:C(1,I)=0:S(1,I)=0 

303 FOR J=1 TO 2:KC(J,I)=0:KS(J,I)=0:NEXT:NEXT 
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304 PRINT:PRINT:PRINT " FUNCTION HENU":PRINT 

306 PRINT " 1 = TRIANGLE WAVE":PRINT 

308 PRINT " 2 = CIRCLE":PRINT 

310 PRINT " 3 = ELLIPSE 1":PRINT 

312 PRINT " 4 = ELLIPSE 2":PRINT:PRINT 

320 PRINT SPC(10);"HAKE SELECTION"; 

322 A$ = INKEY$:IF A$="" THEN 322 

326 A=VAL(A$):ON A GOSUB 330,340,350,360,1000 

328 RETURN 

330 REM *** GENERATE FUNCTION F(X) *** 

332 FOR I = 0 TO 15:K3=I*K1 

334 C(1,1) = COS(K3)+COS(3*K3)/9+COS(5*K3)/25+COS(7*K3)/49 

335 KC(1,I)=C(1,I) 

336 NEXT 

338 FOR 1=1 TO 7 STEP 2:KC(2,I)=1/IA2:NEXT 

339 RETURN 

340 REM *** GENERATE CIRCLE *** 

342 FOR I = 0 TO 15:K3=I*K1 

344 C(1,I) = SIN(K3):S(1,I)=COS(K3) 

345 KC(1,I)=C(1,I):KS(1,I)=S(1,I) 

346 NEXT 

348KS(2,1)=1 ** 

349 RETURN 

350 REM *** GENERATE ELLIPSE 1 *** 

352 FOR I = 0 TO 15:K3=I*K1 

354 CO,I) = SIN(K3):S(1,I)=2*COS(K3) 

355 KC(1,I)=C(1,I):KS<1,I)=S(1,1) 

356 NEXT 

358 KS(2,1)=1.5:KS(2,15)=.5 

359 RETURN 

360 REM *** GENERATE ELLIPSE 2 *** 

362 FOR I = 0 TO 15:K3=I*K1 

364 C<1,I) • COS(K3):S(1,I)=2*SIN(K3) 

365 KC(1,I)=C(1,I):KS(1,I)=S(1,I) 

366 NEXT 

368 KC(2,1)=-.5:KC(2,15)=1.5 

369 RETURN 

1000 STOP 

> 
Figure 4.3 
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KS(2,16) are not needed for a "working" program, but we use 

them here to savesthe input functions which we have generated. 

We use these later for comparison with the transform and inverse 

transform. Again, the first column stores the time domain data and 

the second stores the frequency domain. 

2. The program is menu driven. Lines 20 through 30 print 

the menu. Lines 32 and 34 determine what the selection is and 

20 CLS:REM * MAIN MENU * 
21 REM ******************* 

22 PRINT:PRINT:PRINT " MAIN MENU":PRINT 

24 PRINT " 1 = GENERATE FUNCTION":PRINT 

26 PRINT " 2 = TRANSFORM FUNCTION":PRINT 

28 PRINT " 3 = INVERSE TRANSFORM":PRINT 

30 PRINT " 4 = EXIT":PRINT:PRINT 

32 PRINT SPC(10);"MAKE SELECTION"; 

34 A$ = INKEY$:IF A$="" THEN 34 

36 A=VAL(A$):ON A GOSUB 300,40,80,1000 

38 GOTO 20 

jump to the appropriate subroutine. The "generate function" is still 

located at line 120. The transform and inverse transform routines 

are now located at lines 40 and 80 respectively. 

3. The "transform routine" is now located at line 40. 

Since we now store the time and frequency data in the same array, 

and since the forward and inverse transforms are performed by the 

same sub-routine, we must set up "pointers" so that the transform 

routine will know which way to operate on the data. We do this by 

using M and N as the pointers. N points to the "input function" 

and M points to the output function—if N=l and M=2 (according 

to the statement above that 1 was time domain and 2 was frequen

cy domain data) then we will perform a "Forward Transform." If 
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N=2 and M=l we will perform the "Inverse Transform." In either 

case, we must have already created the input function (i.e. we must 

use the generate function option from the Main Menu) before we 

can perform a forward transform, and we must have performed a 

forward transform before we perform an inverse transform. From 

these conditions it is apparent what we must do to perform a 

forward transform: we clear the screen at line 40, setN=l, M=2, 

and then jump to line 108 to print the heading for the output. You 

will also note that we have set the constant K5=16. This constant 

is used to find the average value of each transformed component 

as we did in line 214 of DFT4.1 (Fig. 4.1). Since we do not need 

to make this division in the inverse transform, we set K5=l for that 

operation (see inverse transform of Fig. 4.3 above). 

At line 42 we clear the frequency domain arrays (i.e. 

C(2,16) and S(2,16)) before performing the transform. At line 44 

we then jump dow« to line 200 where we perform the DFT on the 

time domain data. After performing the DFT we return to line 46, 

where we then jump to line 140 and print the results. Line 48 is 

only a programming technique for waiting until the user is through 

examining the data before returning to the main menu. 

4. The "inverse transform" starts at line 80 and follows the 

same pattern as the forward transform. 

5. As we noted above, the transform routine starts at line 

200. It is similar to the transform routines used previously except 

now we include the possibility of transforming complex numbers. 

' 
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4.3 PROGRAM OPERATION/EXAMPLES 

If we run this program for the familiar triangle wave of our 

past examples we will obtain the same data that we obtained 

previously (Fig 4.2) except that now zeros will be printed in the 

column for the imaginary part of the input function (i.e. we still 

create only the real part of the time domain function). 

While this works, of course, we might want to check this 

program for some function which actually has complex numbers 

for the input. The GENERATE FUNCTION subroutine presents 

a second menu which offers a selection of functions. We may take 

sixteen points on the circumference of a circle as an example—or 

perhaps the example of an ellipse would be more interesting. If 

you have not worked with the Fourier Transform of complex 

variable inputs the results of these examples might prove interest

ing. 

We are not primarily concerned with the transform of 

complex variables in this short book, and so we will complete our 

review of the DFT here. It is interesting to note (in connection 

with complex variables) that we may actually take the transform of 

two real valued functions simultaneously by placing one in the real 

part of the input array and the other in the imaginary part. By 

relatively simple manipulation of the output each of the individual 

spectrums may be extracted (see, for example, Fast Fourier 

Transforms, Chapter 3.5, by J.S. Walker, CRCPRESS). 
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CHAPTERV 

FOUR FUNDAMENTAL THEOREMS 

5.0 INTRODUCTION 

Our development of the FFT (in chapter 7) will be based 

on these four theorems. Their validity is not our concern here 

(proofs are relegated to appendix 5.3); rather, we need only under

stand their function. We will illustrate these theorems via real 

examples using the DFT program developed in the previous chap

ters. This DFT program has necessarily been expanded for these 

illustrations and is listed in appendices 5.1 and 5.2. 

This material is easily grasped, but that does not diminish 

its importance—its comprehension is imperative. These theorems 

are the key to understanding the FFT, and consequently, this 

chapter is dedicated solely to walking through each of these 

illustrations step by step. The best approach might be to run each 

i 1 lustration on your computer while reading the accompanying text. 

5.1 THE SIMILARITY THEOREM 

The Similarity Theorem might better be called "the 

reciprocity theorem" for it states: "As the time domain function 
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expands in time, the frequency domain function compresses in 

spectrum, and increases in amplitude." The input function for 

program DFT5.01 isahalfcycleof Sin2(x) centered in the middle 

of the time domain. The program requests a "width" (actually the 

half-width) which specifies the number of data points over which 

the input function is to be spread. According to Similarity then, 

the spectrum of the frequency domain will expand and compress 

in inverse proportion to the specified width of the time domain 

function. The amplitude of the time domain function is held 

constant (peak amplitude of 32) so that, in keeping with Similarity, 

T 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

T 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

+32.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

+0.00000 

Fig. 5.1 - Time Domain for Width = 1 

the spectrum amplitude will be proportional to the width! In this 

example the amplitude of the output will vary between 1.0 and 16 
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(for the range of widths allowed—also 1 through 16). Repeating 

the example with various widths illustrates Similarity. 

Run DFT5.01 and specify a width of 1. A single data 

point will be generated as the input function (we reproduce the 

computer screen in fig. 5.1 on the previous page). The spectrum 

for this input is "flat" (i.e. a series of components alternating 

between +1 and -1 as shown in figure 5.2 below). A graph of both 

frequency and time domain functions is given in figure 5.3. Note 

that in the graphical display only the magnitude of the frequency 

domain data is displayed. 

F(COS) 

+1.00000 
-1.00000 
+1.00000 
11.00000 
+1.00000 
-1.00000 
+1.00000 
-1.00000 
+1.00000 
-1.00000 
+1.00000 
-1.00000 
+1.00000 
-1.00000 
+1.00000 
-1.00000 

Fig 5.2 • 

F(SIN) 

+0.00000 
-0.00000 
+0.00000 
-0.00000 
+0.00000 
-0.00000 
+0.00000 
-0.00000 
+0.00000 
-0.00000 
+0.00000 
-0.00000 
+0.00000 
-0.00000 
+0.00000 
-0.00000 

• Spectrum 

FREQ 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

F(COS) 

+1.00000 
-1.00000 
+1.00000 
-1.00000 
+1.00000 
-1.00000 
+1.00000 
-1.00000 
+1.00000 
-1.00000 
+1.00000 
-1.00000 
+1.00000 
-1.00000 
+1.00000 
-1.00000 

F(SIN) 

+0.00000 
-0.00000 
+0.00000 
-0.00000 
+0.00000 
-0.00000 
+0.00000 
-0.00000 
+0.00000 
-0.00000 
+0.00000 
-0.00000 
+0.00000 
-0.00000 
+0.00000 
-0.00000 

for Time Domain Width = 1 

This single example doesn't say anything about the 

Similarity Theorem of course for the relationship concerns the 

expansion and compression of the function. Repeat the exercise 

FREQ 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 
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32 16 

Time Domain Waveshape Frequency Domain 

Fig. 5.3 - Similarity Test Width = 1 

but this time select a width of 2. The graphical results are shown 

in Fig. 5.4 below. This display shows the "expanded" time domain 

function which now has a maximum value at the 16th data point 

(amplitude = 32) with two additional data points (amplitudes = 16) 

on either side. The spectrum is still a series of data points which 

alternate in sign, but now the amplitude of the frequency compo

nents diminish as the frequency increases. At a frequency of 8 the 

amplitude is 0.5, and from there the components "roll off1 to 

negligible amplitudes at the higher frequencies. 

Continue the experiment by repeating the Similarity Test 

with widths of 4, 8 and 16. The frequency spectrum shrinks and 

the amplitude increases as the time domain function expands (see 

figures 5.5 through 5.7). 
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32 - 16 -

Time Domain Waveshape Frequency Domain 

* Fig. 5.4 - Similarity Test Width = 2 

32 - • 16 

Time Domain Waveshape Frequency Domain 

Fig. 5.5 - Similarity Test Width - 4 
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32 - 16 -

32 

Time Domain Waveshape Frequency Domain 

Fig 5.6 - Similarity Test Width = 8 

16 

Time Domain Waveshape Frequency Domain 

Fig. 5.7 - Similarity Test Width = 16 
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This phenomenon is the relationship known as Similarity. 

It is understood, of course, that "similarity" is completely general 

(i.e. it works for any input function) and also bilateral; if we 

compress the spectrum of a function its time domain will be 

expanded and simultaneously decreased in amplitude. This 

relationship is indeed simple, but not insignificant nor trivial. In 

fact, it is perhaps the most fundamental relationship that exists 

between the frequency and time domains. The essence of this 

relationship is this: Faster transitions and shorter durations require 

(imply) higher frequencies, and slower transitions and longer 

durations require (imply) lower frequencies. If your tape recorder 

runs too fast, everyone sounds like Chip and Dale; if it runs too 

slow they sound like Lurch. It's a relationship that's inevita

ble—still, perhaps, not completely inescapable. 

5.2 THE ADDITION THEOREM 

This theorem states that the transform of the sum of two 

functions is equal to the sum of the transforms of the two functions 

individually: 

Xform {fl(x)+f2(x)} = Xform {fl(x)} + Xform {f2(x)} — (5.1) 

This is the result of the system being linear of course, and conse

quently, may not seem remarkable. On the other hand, it allows a 

certain amount of manipulation that is worth illustrating. 

The example selected for DFT5.02 concerns "rising" and 
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"falling" exponential functions. The rising edge is described by: 

f,(x) = A0 (1 - O (5.2) 
A0 = Amplitude of final value 
T = Time Constant 

But the falling edge is described by: 

f2(x) = A, e^1 (5.3) 

A, = Starting Amplitude 

DFT5.02 is slightly longer than the other programs of this 

chapter simply because there are more things to do. We first 

generate the leading edge exponential (eqn. 5.1), find the trans

form, and display the results (both printing out the numerical 

values and graphically plotting the results). Before we generate 

the second input function (i.e. the trailing edge exponential), we 

save this frequency domain data for the rising edge. We then 

generate and transform the falling edge input function (eqn. 5.2) 

and again print and plot the results. We are now ready to illustrate 

the Addition Theorem—we sum the two frequency domain 

functions and take the inverse transform. 

The second part of the demonstration consists of summing 

the two time domain functions, taking the transform of this 

summation, and printing and plotting this result. 
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1 - 0.5 -

Time Domain Waveshape Frequency Spectrum 

H Fig. 5 .8- f 1 (x)=A 0 ( l -e x / T ) 

We show the results of the "leading edge" transform as 

well as the time domain input function in fig. 5.8. Note that in the 

plot of the frequency domain (and in the following tables) we show 

the frequency spectrum only up to the Nyquest frequency as the 

components above that frequency are essentially redundant. 

The function f2(x) (i.e. the "falling edge") and its transform 

are shown below in figure 5.9. Once again, these two functions 

(i.e. fl(x) and f2(x)) and their transforms tell us nothing about the 

theorem we are trying to illustrate; they are only two slightly 

interesting looking functions, displaced in time so that one begins 

where the other ends. For the actual illustration we add the two 

transforms together and take the inverse transform (fig. 5.10). The 

reconstruction from the frequency domain summation is shown in 

figure 5.11 and the equivalent time domain is shown in 5.12. 
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0.5 

Time Domain Waveshape Frequency Spectrum 

Fig. 5.9-f2(x) = Al €*" 

When we add the two transforms of the separate functions 
and take the inverse transform, we get the perfect combination of the 
two functions in the time domain. 

1 - 0.5 

Time Domain Waveshape Frequency Spectrum 

Fig. 5.10-f,(x)+f2(x) 
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0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

+0.00000 
+0.18127 
+0.32968 
+0.45119 
+0.55067 
+0.63212 
+0.69881 
+0.75340 
+0.79810 
+0.83470 
+0.86466 
+0.88920 
+0.90928 
+0.92573 
+0.93919 
+0.95021 

-0.00000 
+0.00000 
+0.00000 
+0.00000 
-0.00000 
-0.00000 
-0.00000 
-0.00000 
-0.00000 
-0.00000 
+0.00000 
+0.00000 
+0.00000 
-0.00000 
+0.00000 
+0.00000 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

+0.95924 
+0.78536 
+0.64300 
+0.52644 
+0.43101 
+0.35288 
+0.28892 
+0.23654 
+0.19367 
+0.15856 
+0.12982 
+0.10629 
+0.08702 
+0.07125 
+0.05833 
+0.04776 

-0.00000 
-0.00000 
-0.00000 
+0.00000 
+0.00000 
+0.00000 
-0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
-0.00000 
+0.00000 

Fig. 5.11 - Reconstruction from Sum of Transforms 
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+0.00000 
+0.18127 
+0.32968 
+0.45119 
+0.55067 
+0.63212 
+0.69881 
+0.75340 
+0.79810 
+0.83470 
+0.86466 
+0.88920 
+0.90928 
+0.92573 
+0.93919 
+0.95021 

-0.00000 
+0.00000 
+0.00000 
+0.00000 
-0.00000 
-0.00000 
-0.00000 
-0.00000 
-0.00000 
-0.00000 
+0.00000 
+0.00000 
+0.00000 
-0.00000 
+0.00000 
+0.00000 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

+0.95924 
+0.78536 
+0.64300 
+0.52644 
+0.43101 
+0.35288 
+0.28892 
+0.23655 
+0.19367 
+0.15856 
+0.12982 
+0.10629 
+0.08702 
+0.07125 
+0.05833 
+0.04776 

-0.00000 
-0.00000 
-0.00000 
+0.00000 
+0.00000 
+0.00000 
-0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
-0.00000 
+0.00000 

Fig. 5.12 - Sum of f,(x) and f2(x) 
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Part 2 of the illustration is essentially redundant. We add 
the two time based functions and take the transform. If you run 
this part of DFT5.02 you will find we get identical results with the 
previous example, which was, in fact, what the theorem proposed. 
The transform of the sum of two functions is equal to the sum of 
the transforms of the individual functions. It is apparent that this 
is a bilateral relationship. 

5.3 THE SHIFTING THEOREM 

This theorem states that if a time domain function is 
shifted in time, the amplitude of the frequency components will 
remain constant, but the phases of the components will shift 
linearly—proportional to both the frequency of the component and 
the amount of the time shift. 

In program DFT5.03 we have modified the printout 
routine so that the magnitude and phase of the frequency compo
nents can be printed as opposed to printing out the sine and cosine 
components (we find the magnitude by the RSS [Root of the Sum 
of the Squares] of the components, and the phase as the Arc 
Tangent of the ratio of the two components). 

This theorem uses the Impulse Function, which is a unique 
function ideally suited for our purpose. The Impulse Function is 
a pulse whose width approaches zero, and amplitude approaches 
infinity, while its "area" (i.e. product of width x amplitude) 
remains fixed. This unique function produces a unique spectrum— 
the frequency components all have amplitudes of 1.0 when the area 
of the function is unity. Now, it is obviously impossible to repre
sent an infinite amplitude on a computer, but fortunately, in the 
DFT, we don't really need an infinite amplitude. If we make the 
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FREQ 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

F(MAG) 

+1.00000 
+1.00000 
+1.00000 
+1.00000 
+1.00000 
+1.00000 
+1.00000 
+1.00000 
+1.00000 
+1.00000 
+1.00000 
+1.00000 
+1.00000 
+1.00000 
+1.00000 
+1.00000 
+1.00000 

F(THETA) 

+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 

Fig. 5.13 - Impulse Xform 

1.0 -

amplitude of the impulse equal 
to the number of data points in 
the digitized array, we will 
obtain the desired results (i.e. 
the frequency components will 
all have an amplitude of 1.0-
seefigs. 5.13 and 5.14). 

Run program DFT5.03 and 
select the Shifting Theorem 
from the MAIN MENU; the 
routine automatically runs the 
first example with a time shift 
of zero. Specifically, the 
computer will generate a time 
domain impulse of amplitude 
32, followed by 31 data points 

180° -

Magnitude Phase 

Fig. 5.14 - Impulse Xform (polar coordinates) 

of zero amplitude. It then takes the transform and prints the output 
(in polar coordinates). The results are shown in fig. 5.14—all of 
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the magnitudes will be 1.0 and the phases will be zero (note that 
the phase is given in degrees). 

Now, a "shift" of 1 will cause the impulse to be generated 
at the second data point (i.e. it is "shifted" to the right by one data 
point). According to the Shifting Theorem, the magnitude of the 
frequency components will be unchanged, but their phases will be 
shifted proportional to the time base shift. Furthermore, the phase 

1.0 180° 

Magnitude Phase 

Fig. 5.15 - Xform of Shifted Impulse 

of each component will be proportional to its harmonic number. 
The results will be as shown in Fig. 5.15. Note that the phase shift 
increases by 11.25° for each frequency component yielding a shift 
of 7i radians (180°) at the Nyquest frequency. This is a convenient 
feature of the DFT—the phase shift at the Nyquest frequency will 
always be 7t radians multiplied by the number of data points that 
the time domain function has been shifted. The phase continues to 
shift in this manner as we continue upward through the negative 
frequencies of course. We may verify this fact by running the 
Shifting Theorem routine and selecting various shifts. A time shift 
of two data points, for example, yields increments of 22.5° for 
each component up to 360 degrees at the Nyquest frequency, or by 
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1.0 - 180° -

1 8 0 ° -

• 
• 

> 
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• 

• 
• 

» 

Magnitude Phase 

Fig. 5.16 - Xform of Double Shifted Impulse 

twice the amount that it did for a single data point shift (fig. 5.16). 
The principle is (again) completely general and bilateral. 

You might want to modify the routine to insert some other function 
for evaluation. A step function may be substituted as follows: 

700 INPUT "SHIFT"; S9 
702 FOR 1=0 TO S9: Y(I)=0:NEXT 
704 FOR I=S9 TO S9+15:Y(I)=1 :NEXT 
706 FOR I=S9+16 TO Q:Y(I)=0:NEXT 
708 RETURN 

5.4 STRETCHING THEOREM 

The Stretching Theorem is a special, unique case of the 
Similarity Theorem and requires introductory comments: when 
dealing with real digitized data (as opposed to algebraic equations), 
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the question arises as to how this data can be expanded. Expanding 
digitized data by the method we refer to as stretching is accomplished 
by simply placing zeros between the data points. The stretching 
theorem tells us that, if we stretch a function by placing zeros between 
the data points, the spectrum of the original function will be repeated 
in the frequency domain. Let's illustrate this diagrammatically—we 
represent the input data array as follows: 

DATAl 
ARRAY 

= D1,D2,D3,D4 (5.1) 

Where D1,D2, etc. are the time domain data points. 

Now, if we intersperse zeros between the data points: 

DATA' 
ARRAY 

D1,0,D2,0,D3,0,D4,0 (5.2) 

The function is now twice as long; but, except for position, it is 
apparent that we have not actually added any new information. At 
any rate, the Stretching Theorem says this; "If DATAl ARRAY (of 
eqn. 5.1) has the following transform: 

Xform DATAl 
ARRAY 

= A1,A2,A3,A4 (5.3) 

Where: A1,A2, etc., are the frequency domain components. 

Then: 

Xform DATA' 
ARRAY 

= '/2[A1,A2,A3,A4,A1,A2,A3,A4] (5.4) 
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That is, if we intersperse zeros between the data points, the frequency 
components A 1,A2,A3,A4 simply repeat themselves a second time, 
with each of the component's amplitudes divided in half." Just as 
there was no new "data" in the time domain function, there is no new 
"data" in the transform. The information dealt with here is all 
contained in "position." 

At this point it may be hard to see anything profound in this 
seemingly innocuous theorem; but, this simple theorem is the key to 
the FFT. Let's now see how it works in practice. 

Run DFT5.04 and select the Stretching Theorem. The 
program generates a very simple waveform (four data points of +8 
and -8 followed by zeros—see Fig. 5.17 below). This waveform has 
been selected for no other reason than that it generates a distinctive 
spectrum that will be easy to recognize. 

T 

0 
1 
2 
3 
4 
5 
6 
7 

DATA INPUT 

+8.00000 
-8.00000 
+8.00000 
-8.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 

+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 

T 

8 
9 
10 
11 
12 
13 
14 
15 

DATA INPUT 

+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 

+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 

Fig. 5.17 - Un-stretched Data Input for Stretching Theorem 

FREQ 

0 
1 
2 
3 
4 
5 
6 
7 

F(HAG) 

+0.00000 
+0.36048 
+0.54120 
+0.42522 
+0.00000 
+0.63638 
+1.30656 
+1.81226 

F(THETA) 

+0.00000 
-56.25000 
-22.50001 
+11.25000 
-95.71248 
-101.25000 
-67.50000 
-33.74999 

FREQ 

8 
9 
10 
11 
12 
13 
14 
15 

F(MAG) 

+2.00000 
+1.81225 
+1.30656 
+0.63638 
+0.00000 
+0.42522 
+0.54120 
+0.36048 

F(THETA 

+0.00000 
+33.75001 
+67.50001 
+101.25000 
+95.71248 
-11.24999 
+22.50003 
+56.25003 

Fig 5.18 - Un-stretched Data Spectrum 
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8.0 - 2.0 -

-8.0 -

Figure 5.19 - Graphical Display of Xform F(x) 

The transform of this input function is displayed in figures 
5.18 and 5.19, where its distinctive "three humped" spectrum is 
apparent. 

We now consider the "stretched" function: 

T 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

DATA INPUT 

+8.00000 
+0.00000 
-8.00000 
+0.00000 
+8.00000 
+0.00000 
-8.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 

+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 

T 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

DATA INPUT 

+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 

+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 
+0.00000 

Fig. 5.20 - Stretched Input 



FFT/05 101 

This is the same function with the same four data points 

except that now they are separated by zeros (i.e. we stretch the 

function. Note that all of the data is "stretched"—including 

zeros—yielding 32 data points). The transform of this function 

shows the spectrum "doubling" with the amplitude components cut 

in half as described above. This is more readily apparent in the 

graphical display of fig. 5.22. 

FREQ 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

F(MAG) 

+0.00000 

+0.18024 v 
+0.27060 

+0.21261 

+0.00000 

+0.31819 

+0.65328 

+0.90613 

+1.00000 

+0.90613 

+0.65328 

+0.31819 

+0.00000 

+0.21261 

+0.27060 

+0.18024 

F(THETA) 

+0.00000 

-56.25000 

-22.50001 

+11.25000 

-95.71248 

-101.25000 

-67.50000 

-33.74999 

+0.00000 

+33.75001 

+67.50001 

+101.25000 

+0.00000 

-11.24999 

+22.50003 

+56.25003 

FREQ 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

F(HAG) 

+0.00000 

+0.18024 

+0.27060 

+0.21261 

+0.00000 

+0.31819 

+0.65328 

+0.90613 

+1.00000 

+0.90613 

+0.65328 

+0.31819 

+0.00000 

+0.21261 

+0.27060 

+0.18024 

F(THETA 

+90.00000 

-56.25004 

-22.49995 

+11.25001 

-67.38148 

-101.25000 

-67.50001 

-33.75000 

+0.00000 

+33.75003 

+67.50003 

+101.25010 

-48.59289 

-11.24988 

+22.50005 

+56.25002 

Fig. 5.21 - Double Spectrum of the Stretched Function 

Once again, we note that this phenomenon is bilateral (i.e. 

if we repeat the spectrum a second time a "stretched" version of 

the function will be obtained on reconstructing! Nothing could be 

simpler, and the same comment holds for the FFT itself. 
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8.0 -

-8.0 -

Figure 5.22 - Graphical Display of F(x) stretched 

2.0 -

Figure 5.23 - Graphical Display of Xform F(x)stretche<1 



CHAPTER VI 
SPEEDING UP THE DFT 

6.0 INTRODUCTION 

Our objective in this chapter is to reveal what makes the 
DFT so unacceptably slow. To that end we will examine individu
al factors that determine its "speed," and look at ways to eliminate 
the bottlenecks. 

6.1 FUNDAMENTAL CONSIDERATIONS 

First of all, just how slow is the DFT? Program DFT6.01 
(listed in Appendix 6.1) is a modification of DFT5.01 allowing us 
to measure the time actually spent transforming data arrays of 
varying size. Run time vs. length of data is given below: 

N 

4 
5 
6 
7 
8 

DATA POINTS 

2 4= 16 
25 = 32 
26 = 64 
27 = 128 
28 = 256 

RUN TIME 

5.4 SECONDS 
21.8 SECONDS 
88.4 SECONDS 

354.7 SECONDS 
1409.7 SECONDS 

Fig. 6.1 - Execution Times for DFT 

If we should run the program for 29 (=512) data points we know 
the time required will be approximately 5600 seconds (1 hour and 
32 minutes!) since the run time is increasing approximately as the 
square of the number of data points. You should know that, when 
working with the DFT, a thousand data points is not a "large" 
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array—a two-dimensional image, for example, might contain a 
thousand lines of a thousand data points each. From the apparent 
trend of Fig. 6.1, however, we conclude the run time for a 
thousand point array would be about 6 hours—that would be 6000 
hours for an entire thousand line image. That works out to be 250 
days and it's only half the work required for a proper two-dimen
sional transform. The nature of the DFT is such that we are 
usually pushed toward larger data arrays, and it is easy to see that 
as arrays become larger processing time becomes prohibitive. 

6.2 INSTRUCTION EXECUTION TIMES 

Write the following routine and run it: 

10 REM TIME TEST FOR SIN(X) 
20 PI=3.14159265:E=2„7182818:P3=PI/3 
22 T1=TIMER 
28 FOR I = 1 TO 100 
30 Y1=SIN(P3):REM LINE 30 TYP.(10 PLACES) 
32 Y1=SIN(P3) 
REM LINES 34 THRU 46 ARE IDENTICAL 30, 32 & 48 

48 Y1=SIN(P3) 
50 NEXT I 
60 T1=TIMER-T1 
70 PRINT T1/1000 
80 STOP 

This routine reveals the time required to evaluate a sine 
function. On my 80286 CPU it takes 2.95 ms (milli-seconds— 
1 ms = lxlO"3 sec). The time required to multiply two numbers 
may be found by replacing lines 30 through 48 with: 

30 Y1 = PI*E 
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On my computer a multiplication takes 0.482 ms. 
Similarly the sum of two numbers takes 0.421 ms. One of the 
reasons why these operations are so slow is that they are written in 
GWBASIC—there is a great deal of "overhead" that a BASIC 
interpreter must handle for any statement. We could make 
significant gains if we wrote the program in FORTRAN, or 
PASCAL, or C(+/++), or Assembly Language, or even compiled 
BASIC. With a math co-processor they will be improved even 
more; still, even if we slash these times by a factor of a thousand, 
we will not completely solve the problem—but we will come to 
that later. 

6.3 COEFFICIENT ARRAYS 

In any case we have established that finding the sine of an 
argument takes about 2.95A482 = 6 times longer than doing a 
multiplication. Since we require either a sine or cosine for 
virtually every operation we perform in the DFT, we could speed 
things up considerably by placing the required sine and cosine 
values in an array and simply calling them up when needed (as 
opposed to evaluating them each time through the loop). We can 
do this by modifying program DFT6.01 (see Appendix 6.2)—this 
modification yields the following execution times: 

N DATA POINTS RUN TIME 

4 24 = 16 2.19 SECONDS 
5 25 = 32 8.51 SECONDS 
6 t - 64 33.70 SECONDS 

Fig. 6.2 - Execution Times with Coefficient Array 
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The execution times have improved by more than a factor 

of two; however, if you try to run more than about 26 data points 

the computer will tell you it has run out of memory. The problem 

is that the array K(2,Q,Q) takes a lot of memory. We could work 

around this, but that's not our objective (for the moment we are 

only trying to find the sources of the DFT's slowness). We will 

ignore this limitation for the moment and continue our search for 

ways to speed up the DFT. 

6.4 OMITTING THE NEGATIVE FREQUENCIES 

As we noted back in chapter 2, when the input is limited 

to real numbers, we do not need to compute the negative frequen

cies—they are only the complex conjugates of the real frequencies. 

Since they eat up almost half of the time required to execute the 

DFT, we might well expect to double the processing speed of our 

DFT by eliminating them (the necessary program changes are 

given in Appendix 6.3). If we add these changes to our test 

program we obtain the following execution times: 

N 

4 

5 

6 

DATA POINTS 

24 = 16 

25 = 32 

26 = 64 

RUN TIMES 

1.27 SECONDS 

4.51 SECONDS 

17.40 SECONDS 

Fig. 6.3 - Execution Times (Negative Frequencies Omitted) 
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6.5 NON-SYMMETRICAL TRANSFORM ROUTINES 

Finally, we went to a certain amount of trouble in chapter 
4 to make the forward and reverse transform routines identical. 
This provided a very neat algorithm for our program but, in fact, 
it is not the fastest possible DFT routine. If we are dealing only 
with real number inputs, there is a certain amount of unnecessary 
computation going on here, and we can use the algorithms derived 
in the first chapters. We may add this to all of the previous 
modifications quite easily—we need only change the following 
two lines: 

210 C(M,J)=C(M,J)+C(N,I)*K(1,J,I) 
211 S(M,J)=S(M,J)+C(N,I)*K(2,J,I) 

This will provide the forward transform only. The inverse 
transform will remain pretty much as it was, and will obviously 
have to be repeated somewhere else in the program and designated 
as the Inverse Transform Routine, but we are only interested in 
showing the improvements attainable here. If we make this 
change, and run the illustration one last time, we will obtain the 
following execution times: 

N DATA POINTS RUN TIMES 

4 24 = 16 0.76 SECONDS 
5 25 = 32 2.8 SECONDS 
6 26 = 64 10.8 SECONDS 

Fig 6.4 - Execution Times (non-symmetrical Xform) 

As before, the run times are shorter, but still increase as 
the square of the number of data points. When we consider that 
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typical applications of the Discrete Fourier Transform handle 1024 
data points and up, and even with all of our tricks, 1024 data points 
would still take about 45 minutes, it becomes obvious that none of 
these tricks will, in themselves, solve the general problem. 

6.6 THE DFT COEFFICIENT MATRIX (Twiddle Factors) 

I suspect that some rare disease has infiltrated science and 

technology within the last half century. The symptoms of this 

disease are the distressingly inordinate use of ACRONYMS and 

frivolous terminology. Thus, the term Twiddle Factor is an 

entrenched part of FFT terminology—it refers to the sine and 

cosine coefficients that we developed in section 6.3. 

Be that as it may, the array of twiddle factors we created 

above (i.e. the coefficient matrix K(2,Q/2,Q)) is, in a sense, a 

snapshot of the DFT. If we arrange these coefficients in a matrix 

with the vertical positions corresponding to the data sample times, 

and the horizontal positions corresponding to the harmonic 

numbers in the frequency domain, the operation of the DFT is 

visible at a glance—this is a point well worth illustrating. We can 

write a short routine to print out this matrix: 

10 REM DFT MATRIX 

20 INPUT "NUMBER OF DATA POINTS";Q 

30 DIM M(2,Q,Q/2):PI=3.14159265358#:P2=2*PI/Q 

40 FOR T=0 TO Q:TP=P2*T 

50 FOR F=0 TO Q/2:PRINT USING "+#.###_ ";C0S(TP*F);:NEXT 

60 PRINT:NEXT 

99 STOP 
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This routine prints out the following matrix showing the 

no coefficients necessary to convert a 16 point database. 

F0 F1 F2 F3 F 4 F5 F6 F 7 F8 

tOO+1.000 +1.000 +1.000 +1.000 +1.000 +1.000 +1.000 +1.000+1.00 
'1.000 +0.924 +0.707 +0.383 -0.000 -0.383 -0.707 -0.924-1.00 

T02 +1.000 +0.707 -0.000 -0.707 -1.000 -0.707 +0.000 +0.707+1.00 
1.000 +0.383 -0.707 -0.924 +0.000 +0.924 +0.707 -0.383-1.00 
1.000 -0.000 -1.000 +0.000 +1.000 -0.000 -1.000 +0.000+1.00 

TOT +1.000 -0.383 -0.707 +0.924 -0.000 -0.924 +0.707 +0.383-1.00 
106+1.000 -0.707 +0.000 +0.707 -1.000 +0.707 -0.000 -0.707+1.00 

'1.000 -0.924 +0.707 -0.383 +0.000 +0.383 -0.707 +0.924-1.00 
ton +1.000 -1.000 +1.000 -1.000 +1.000 -1.000 +1.000 -1.000+1.00 
109+1.000 -0.924 +0.707 -0.383 -0.000 +0.383 -0.707 +0.924-1.00 
110+1.000 -0.707 -0.000 +0.707 -1.000 +0.707 +0.000 -0.707+1.00 

• 1.000 -0.3J3 -0.707 +C.924 -0.000 -0.924 +0.707 +0.383-1.00 
1.000 +0.000 -1.000 -0.000 +1.000 +0.000 -1.000 -0.000+1.00 
1.000 +0.383 -0.707 -0.924 -0.000 +0.924 +0.707 -0.383-1.00 

! K +1.000 +0.707 +0.000 -0.707 -1.000 -0.707 -0.000 +0.707+1.00 
1.000 +0.924 +0.707 +0.383 +0.000 -0.383 -0.707 -0.924-1.00 

Fig. 6.5 - Cosine Coefficient Matrix for 16 Point Xform 

As we stated, the left hand column represents the "times" 
>i the digitized data points, and the top row indicates the frequen-

i ics of the transformed function. Look carefully at the columns— 
olumn F0 is all ones, column Fl traces out a single cosine wave, 
olumn F2 is 2 cosine waves, etc., etc. To obtain the frequency 

domain function we go down each column, multiplying the time 
l "ii min data points by the corresponding coefficients and summing 

ilu- products. 
While it has no bearing on our present development, this 

illustration is too good to pass up: Those who are familiar with 
\ ft itrix Algebra will recognize that, if the digitized data is consid-
i nil to be a Row Matrix, the process described above is nothing 
more than matrix multiplication. In fact, if we extend the notion to 
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complex numbers, the whole DFTmay be expressed as the product 
of two matrices: 

[ d „ d 1 2 . . . d , N ] 
c l l c12 CIN 
C21 C22 C2N 

CN1 CN2 —Ctm 

1 III Il2 —f|N 1 (6.1) 

where: C = square matrix of coefficients 
D = row matrix of time domain data 
F = row matrix of frequency domain data 

Having noted this, we should also look at the matrix of sine 
coefficients. This is done by changing line 50 to print SIN(TP*F), 
as shown below. 

F 0 

TOO +0.000 
T01 +0.000 
T02 +0.000 
T03 +0.000 
T04 +0.000 
T05 +0.000 
T06+0.000 
T07+0.000 
T08 +0.000 
T09 +0.000 
T10 +0.000 
T11 +0.000 
T12 +0.000 
T13 +0.000 
T14 +0.000 
T15 +0.000 

F 1 

+0.000 
+0.383 
+0.707 
+0.924 
+1.000 
+0.924 
+0.707 
+0.383 
-0.000 
-0.383 
-0.707 
-0.924 
-1.000 
-0.924 
-0.707 
-0.383 

F 2 

+0.000 
+0.707 
+1.000 
+0.707 
-0.000 
-0.707 
-1.000 
-0.707 
+0.000 
+0.707 
+1.000 
+0.707 
-0.000 

707 
000 
707 

F 3 

+0.000 
+0.924 
+0.707 
-0.383 
-1.000 
-0.383 
+0.707 
+0.924 
-0.000 
-0.924 
-0.707 
+0.383 
+1.000 
+0.383 
-0.707 
-0.924 

F 4 

+0.000 
+1.000 
-0.000 
-1.000 
+0.000 
+1.000 
-0.000 
-1.000 
+0.000 
+1.000 
-0.000 
-1.000 
+0.000 
+1.000 
-0.000 
-1.000 

-0. 
+1. 
-0. 

F 5 

+0.000 
+0.924 
-0.707 
.383 
.000 
.383 

-0.707 
+0.924 
-0.000 
-0.924 
+0.707 
+0.383 
-1.000 
+0.383 
+0.707 
-0.924 

F 6 

+0.000 
+0.707 
-1.000 
+0.707 
-0.000 

707 
000 
707 

+0.000 
+0.707 
-1.000 
+0.707 

-0. 
+1. 
-0. 

000 
707 
000 

-0.707 

F 7 

+0.000 
+0.383 
-0.707 
+0.924 
-1.000 
+0.924 
-0.707 
+0.383 
-0.000 
-0.383 
+0.707 
-0.924 
+1.000 
-0.924 
+0.707 
-0.383 

F 8 

+0.00 
-0.00 
+0.00 
-0.00 
+0.00 
-0.00 
+0.00 
-0.00 
+0.00 
-0.00 
+0.00 
+0.00 
+0.00 
-0.00 
+0.00 
-0.00 

Fig. 6.6 - Sine Coefficient Matrix for 16 Point DFT 

If we compare this to Fig. 6.5 we find the coefficients have 

changed places in an orderly manner so that now the "ones" have 
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become "zeros" and the 0.383 values have become 0.924s, etc. If 

we look at the F1 column we now see that it traces out a sine wave, 

etc. The symmetry of this matrix, along with the frequent 

occurrence of 1, 0, and -1 brings to mind a course of action 

speeding up the DFT: Since multiplying by 1 or 0 requires no 

actual multiplication, and multiplying by -1 only requires changing 

the sign of the multiplicand, we might work out a scheme where 

much of the computation was eliminated. Furthermore, if we look 

across the rows we find that every value occurs at least twice. We 

need not repeat the operation—we could perform it once and 

simply place the product in the correct locations. We might do 

more along thase lines, and perhaps make great improvements to 

the speed of the DFT, but most of these considerations will become 

irrelevant—overcome by events—once we develop the FFT The 

most serious criticism of this approach, however, is that it fails to 

address the real problem. 

Consider the above coefficient matrices overall; it is 

apparent that when we perform the DFT, we are performing a 

square matrix of mathematically identical operations. This square 

matrix illustrates clearly the source of our problem. It is obvious 

why the time of execution goes up as the square of the number of 

data points—the number of operations required is equal to the 

square of the number of data points. 

Let's take the time to show precisely why this is such a 

damning characteristic: First understand that, even though your 

computer may run at 100 MHz, it takes perhaps a dozen clock 

cycles to perform a floating point multiply and store. Conse

quently, it takes dozens of clock cycles to complete a complex 

arithmetic multiply, sum, and store. You are not doing arithmetic 
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at 100 MHz (nor, for that matter, even at 10 MHz). For the sake 

of argument then, let's use 1 f̂ sec as our "bench mark" time for 

processing a single data point. If we have 1024 data points, we 

require 1,048,576 complex operations, and could process this data 

array in just over 1 second. This may not sound too bad, but if you 

are trying to design a "real time" Spectrum Analyzer, for example, 

you will need to do much better than that. Then again, it frequent

ly turns out 1024 data points are not enough for some applications. 

Suppose we need 65,536 data points? This requires 4,294,967,296 

operations or, at 1 u.sec/operation, 4,295 seconds (71 minutes 35 

seconds) to complete the transform. 

Are these examples realistic? Suppose, for example, you 

want to process an audio signal in "real time." The audio range 

extends from about 20 Hz to 20,000 Hz, and you must include all 

of these frequencies within your data; therefore, you must digitize 

data for at least .05 seconds (1/20 Hz) at a rate of at least 40,000 

digitizations/second. This requires a minimum array size of 2000 

data points so we will use 2048 (i.e. 2"). We now have 4,194,430 

complex operations and a DFT time of approximately 4 seconds (at 

our benchmark time of 1 |usec/ operation). But, we are digitizing 

a new block of data every 0.05 seconds! We need to be a thousand 

times faster just to get the transform done. Even if we purchase a 

computer that's 10 times faster we will still be 100 times too slow! 

The point that should be apparent from the above exercise 

is that, so long as the number of operations required are propor

tional to the square of the number of data points processed, "large" 

input data arrays will always (eventually) produce unmanageable 

processing problems. 



CHAPTER VII 
THE FFT 

7.0 INTRODUCTION 

We have come, finally, to the object of our quest—the 
development of the FFT algorithm proper. The objective of the 
FFT is simply to perform the DFT faster. As we have shown in 
the previous chapter, executing a DFT requires performing N2 

complex operations for N data points (NOTE: a "complex opera
tion" includes evaluating sine and cosine functions, multiplying by 
the data point and adding these products to the sums of the other 
operations). When we realize that applications may have tens of 
thousands of data points (and more) we begin to understand why 
the conventional DFT will never suffice; 104 to 105 complex 
operations may be manageable, but 108 to 10'° are probably not. 
We need an algorithm that does for the DFT what the Horner 
scheme did for the series approximations of chapter 1. 

How are we going to do this? Let's look at the DFT 
coefficient matrix again (Fig. 7.1 below). There are 8 data points 
and 8 harmonics (more generally, Q data points and Q frequen
cies), and each data point must be multiplied by its corresponding 
point from each harmonic's sinusoid, yielding 64 (Q2) operations. 
Is there some way we can turn this liability (i.e. the number of 
operations being proportional to the square of the number of data 
points) into an asset? Well, the incurable optimist will note that if 
we can reduce the number of data points, the number of operations 
will be reduced as the square. For example, if we could split the 
data base into two equal parts, and process each half separately, we 
would have only 4 data points and 4 frequencies (i.e. 16 opera
tions) for each half. The total would be 32 operations—only half 
of what we had before. 
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FO F 1 F2 F3 F4 F5 F6 F7 F8 

TO +1 .000 +1 .000 +1 .000 +1 .000 +1 .000 +1 .000 +1 .000 +1 .000 +1 .000 
T1 +1.000 +0.707 -0.000 -0.707 -1.000 -0.707+0.000 +0.707 -1.000 
T2 +1.000 -0.000 -1.000 +0.000 +1.000 -0.000 -1.000 +0.000 +1.000 
T3 +1.000 -0.707 +0.000 +0.707 -1.000 +0.707 -0.000 -0.707 -1.000 
T4 +1.000 -1.000 +1.000 -1.000 +1.000 -1.000 +1.000 -1.000 +1.000 
T5 +1.000 -0.707 +0.000 +0.707 -1.000 +0.707 -0.000 -0.707 -1.000 
T6 +1.000 -0.000 -1.000 +0.000 +1.000 -0.000 -1.000 +0.000 +1.000 
T7 +1.000 +0.707 -0.000 -0.707 -1.000 -0.707+0.000 +0.707 -1.000 

Fig. 7.1 - Cosine Coefficient Matrix for 8 Point DFT 

This, in fact, is the approach used to develop the FFT. The 
input data array is divided into smaller arrays to reduce the amount 
of computation; however, it is not clear at the outset how this can 
be done and still obtain the same results as provided by the DFT 
of the original input data. For example, if we simply split the data 
array in half and take the DFT of each half, we will only obtain 
half of the required frequency components. It is not immediately 
clear how the spectra of two half-sized (i.e. 4 data point) arrays 
might be combined to produce the 8 frequency components of the 
original transform. 

7.1 FFT MECHANICS 

The solution to our dilemma lies in the three theorems we 
studied in chapter 5, which we will now apply systematically to the 
reduction of the DFT. We start with an 8 point data array as 
shown below: 

| DATA ARRAY 0 | = | DO, Dl, D2, D3, D4, D5, D6, D7 | ----- (7.0) 
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You recall, in the addition theorem, we added two separate input 
functions together to form a function that was the sum of the two. 
Let's work that in reverse now and separate the data array shown 
in (7.0) into two separate arrays that are capable of being summed 
to recreate the original. There are many ways this can be done; 
for example, we might split the data out as follows: 

| DATA1' | = | DO, 0, D2, 0, D4, 0, D6, 0 | (7.1) 

| DATA2' | = | 0, Dl, 0, D3, 0, D5, 0, D7 | (7.2) 

It is apparent that we can add these two arrays back together to 
obtain the original, and from the addition theorem, we know we 
can add their transforms to obtain the transform of the original 
function. But each of these arrays has the same number of data 
points as the original. Each will require 64 operations to obtain its 
transform. If we continue along these lines we will double the 
amount of work rather than halving it! 

Before throwing the baby out with the wash water let's 
take a closer look at (7.1) and (7.2). They are in the same form as 
the example given in the Stretching Theorem. Again, if you recall, 
the "stretched" data base had the unique characteristic that its 
transform was the same as the transform of an un-stretched data 
base, except it was repeated a second time (see the example for 
stretching in chapter 5). The light begins to dawn here, for indeed, 
this is the key to solving our problem. It works like this—we 
know that the transform of (7.1) is: 

Transform | DATA1' | - | F1.F2.F3.F4, F1.F2.F3.F4 | -- (7.3) 

That is, the first four frequency components repeat a second time. 
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Now let's remove the zeros separating the data points in the array 
| DATA 1' | , and obtain the array: 

| DATA1 | = | D0,D2,D4,D6 | (7.4) 

The transform of this array is: 

Transform | DATA1 | = | F1,F2,F3,F4 | (7.5) 

Where F1,F2,F3, and F4, in equation (7.5) are identical to 
F1 ,F2,F3 and F4 in equation (7.3). Good Grief! Can the secret of 
the FFT be so simple? We obtain the transform of a stretched data 
array (consisting of 8 frequency components) by finding the 
transform of a 4 point array (4 frequencies) and repeating it! By 
the Addition Theorem then, we may simply add two spectrums 
obtained in this manner (i.e. the transforms of | DATA1' | and 
| DATA2' | ) and we will have the transform of the original 8 

point data array. As explained above, the amount of work 
necessary will be halved, except that we must now include the 
operation of adding all of the components together. 

There is one small problem however; the un-stretched data 
for | DATA2' | is: 

| DATA2 | = | D1.D3.D5.D7 | (7.6) 

and to get from | DATA2 | (eqn. 7.6) back to | DATA2' | (eqn. 
7.2), we must not only stretch the data but also shift it one data 
point to the right. As we have just pointed out, to stretch the array 
| DATA2 I we simply repeat its spectrum; and, as you recall from 

the Shifting Theorem, if these 8 frequency components for the 
transform of | DATA2 | stretched are all phase shifted (proportional 
to their frequency) we cause the time domain data to be shifted. 
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NOTE: Since the odd terms are shifted by only one data point we 
know the frequency components will be linearly phase shifted from 
zero (at the zero frequency component) through PI radians at the 
Nyquest frequency (i.e. we must shift each of the components in 
the DFTodd transform by 2*PI*N/Q, where N = the harmonic 
number of the frequency component and Q = total number of 
frequencies—see the Shifting Theorem in Chapter 5). 

All of this is diagrammed below (Fig. 7.2)—the character
istic "crossover" pattern is sometimes called a "butterfly." The 
even data points are put through a 4 point DFT; the odd data points 
are transformed in a separate 4 point DFT The frequency 
components from DFTodd are properly phase shifted and summed 
into the frequency components of the DFTeven. 

Data Xform Output 

DO 

D2 

D4 

D6 

rji -

U3 
m -
i)i 

W-. 
o = 

4 Point 

DFT 

: In radians 
: summation 

4 Point 

DFT 

Fl-0 
Fl-1 
Fl-2 
Fl-3 

F2-0 
F2-1 

F2-2 

F2-3 

Fig. 7.2 - FFT "Butterfly" Flow Diagram 
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That's it! That is all there is to the basic scheme of the FFT 
algorithm. The presentation of the last few pages is the heart of 
the FFT and also the heart of this book. 

Before going any further, let's see if this scheme really 
works. First, we need a routine that will pick out the "even" data 
points and perform a DFT on them. This is accomplished as 
follows: 

As before: Q = the number of data points. 
Y(n) = the input data points. 
Kl = 2*PI/Q 
Q2 = Q/2 
J counts the frequency components. 
I counts the data points. 

109 REM * COMPUTE EVEN DFT * 
110 FOR J=0 TO Q2:J1=K1*J*2 
112 FOR 1=0 TO Q2-1 
114 C1(J)=C1(J)+Y(2*I)*C0S(J1*I) 
116 S1(J)=S1(J)+Y(2*I)*SIN(J1*I) 
118 NEXT I 
120 C1(J)=C1(J)/Q:SUJ)=S1(J)/Q 
122 NEXT J 

Note that in line 110 the J counter only counts up to Q/2, 
and in line 112 the I counter counts up to (Q/2)-l. We operate on 
only the even data points in lines 114 and 116 by multiplying 1*2 
for each data point i.e. Y(I*2). Also note that we have had to 
multiply the argument for each sine and cosine by 2 when- we 
define Jl at the beginning of the loop for each frequency compo
nent (line 110 ... :J1=K1*J*2). Other than these comments, we 
extract the standard DFT on the components; CI (J) is the cosine 
component for the Jth frequency term, and SI (J) is the sine 
component. The C1 and S1 arrays are the frequency components 
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for the even data points. The frequency components for the odd 
data points will be designated C2 and S2. We perform the DFT on 
the odd data points in a similar routine: 

124 REM * COMPUTE ODD DFT * 
126 FOR J=0 TO Q2:J1=K1*J*2 
128 FOR 1=0 TO Q2-1 
130 C2(J)=C2(J)+Y(2*I+1)*COS(J1*I) 
132 S2(J)=S2(J)+Y(2*I+1)*SIN(J1*I) 
134 NEXT I 
136 C2(J)=C2(J)/Q:S2(J)=S2(J)/Q 
138 NEXT J 

This routine is identical to the one presented above except 
that now we only wse the odd data points (lines 130 and 132— i.e. 
Y(2*I+1). 

We have now taken the transform of both halves of the 
data base in 2*(Q/2)2 (or Q2/2), as opposed to Q2 operations. We 
must now sum these two transforms together to obtain the com
plete transform. This is done as follows (in the following, K2 is 
denned as K2=2*PI/Q.): 

139 REM * SUM HALF DFTS * 
140 FC(0)=C1(0)+C2(0):FS(0)=0 
142 FC(1)=C1(1)+C2(1)*COS(K2)-S2(1)*SIN(K2) 
144 FS(1)=S1(1)+C2(1)*SIN(K2)+S2(1)*COS(K2) 
146 FC(2)=C1(2)+C2(2)*COS(2*K2)-S2(2)*SIN(2*K2) 
148 FS(2)=S1(2)+C2(2)*SIN(2*K2)+S2(2)*COS(2*K2) 
150 FC(3)=C1(3)+C2(3)*COS(3*K2)-S2(3)*SIN(3*K2) 
152 FS(3)=S1(3)+C2(3)*SIN(3*K2)+S2(3)*COS(3*K2) 

The cosine term for the zero frequency component (or 
constant, or DC term), is found simply by adding the two cosine 
terms from each of the half data transforms. Since there is no sine 
term for zero frequency that is all there is to it. The remaining 
terms are slightly more complicated—the frequency components 
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from the transform of the "odd data points" must be phase shifted 
before they are added in. We phase shift complex frequencies by 
"vector rotation," and we rotate a vector in rectangular coordinates 
by the operations: 

X,,,, - X Cos(A)-Y Sin(A) (7.7) 

and; 

Yrot = X Sin(A)+Y Cos(A) (7.8) 

where: A = the angle of rotation. 
X = the cosine component of the DFT. 
Y = the sine component of the DFT. 

(we derive this operation in Appendix 7.1 for those who have 
grown "rusty") 

From this piece of information, it is apparent that (in lines 
142 and on) we are rotating the frequency components obtained in 
the DFT for the odd data points before we sum them into the final 
transform. 

We recognize, of course, that we have only generated Q/2 
frequency components, but we require Q frequency components 
for the full DFT. We obtain these "latent" components by going 

154 REM * CREATE LATENT TERMS * 
156 FC(4)=C1(0)+C2(0)*COS(4*K2)-S2(0)*SIN(4*K2) 
158 FS(4)=S1(0)+C2(0)*SIN(4*K2)+S2(0)*COS(4*K2) 
160 FC<5)=C1(1)+C2(1)*COS(5*K2)-S2(1)*SIN(5*K2) 
162 FS(5)=S1(1)+C2(1)*SIN(5*K2)+S2(1)*COS(5*K2) 
164 FC(6)=C1(2)+C2(2)*C0S(6*K2)-S2(2)*SIN(6*K2) 
166 FS(6)=S1(2)+C2(2)*SIN(6*K2)+S2(2)*COS(6*K2) 
168 FC(7)=C1(3)+C2(3>*C0S(7*K2)-S2(3)*SIN(7*K2) 
170 FS(7)=S1(3)+C2(3)*SIN(7*K2)+S2<3)*C0S(7*K2) 
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through the two DFT arrays a second time, while continuing to 
shift the DFTodd components from PI to 2*PI radians, which is as 
we diagrammed it in figure 7.2 above. The reader will recognize, 
of course, that all of these lines of instruction (from 140 and 
onward) can be programmed into two loops: 

140 FOR 1=0 TO 3 
142 FCC I)=C1(I)+C2(I)*C0S(K2*I)-S2(I)*SIN(K2*I) 
144 FS(I)=S1(I)+C2(I)*SIN(K2*I)+S2(I)*C0S(K2*I) 
146 NEXT I 

and: 

150 FOR 1=4 TO 7 
152 FC(I)=ct"(I-4)+C2(I-4)*COS(K2*I)-S2(I-4)*SIN(K2*I) 
154 FS(I)=S1(I-4)+C2(I-4)*SIN(K2*I)+S2(I-4)*C0S(K2*I) 
156 NEXT I 

While this is much neater, our first objective is to understand the 
mechanism of the FFT—we can clean up our programming later. 

The whole program is given below: 

10 REM *** (FFT7.00A) FFT FIRST TEST *** 
20 CLS:Q=8:Q2=Q/2:DIH Y(Q) 
30 PI=3.141592653589793*:P2=2*PI:K1=P2/Q:K2=P2/Q 
50 PRINT SPC(30);"HAIN MENU":PRINT:PRINT 
60 PRINT SPC(5);"1 = ANALYZE COS COMPONENT TRIANGLE":PRINT 
62 PRINT SPC(5);»2 = EXIT":PRINT 
70 PRINT SPC(10);"MAKE SELECTION :"; 
80 A$=INKEY$:IF A$ = "" THEN 80 
90 A=VAL(A$):0N A GOSUB 600,990 
95 CLS: GOTO 50 
100 REM *** FFT *** 
105 CLS:PRINT "FREQ F(COS) F(SIN)":PRINT:PRINT 
106 T9=TIMER 
109 REM * COMPUTE EVEN DFT * 
110 FOR J=0 TO Q2:J1=K1*J*2 
112 FOR 1=0 TO Q2-1 
114 C1(J)=C1(J)+Y(2*I)*COS(J1*I) 
116 S1(J)=S1(J)+Y(2*I)*SIN(J1*I) 
118 NEXT I 
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120 C1(J)=C1(J)/Q:S1(J)=S1(J)/Q 
122 NEXT J 
124 REM * COMPUTE ODD DFT * 
126 FOR J=0 TO Q2:J1=K1*J*2 
128 FOR 1=0 TO Q2-1 
130 C2(J)=C2(J)+Y(2*I+1)*COS(J1*I) 
132 S2(J)=S2(J)+Y(2*I+1)*SIN(J1*I) 
134 NEXT I 
136 C2(J)=C2(J)/Q:S2(J)=S2(J)/Q 
138 NEXT J 
139 REM * SUM HALF DFTS * 
140 FC(0)=C1(0)+C2(0):FS(0)=0 
142 FC(1)=C1(1)+C2(1)*COS(K2)-S2(1)*SIN(K2> 
144 FS(1)=S1(1)+C2(1)*SIN(K2)+S2(1)*COS(K2) 
146 FC(2)=C1(2)+C2(2)*COS(2*K2)-S2(2)*SIN(2*K2) 
148 FS(2)=SU2)+C2(2)*SIN(2*K2)+S2(2)*COS(2*K2) 
150 FC(3)=C1<3)+C2(3)*COS(3*K2)-S2(3)*SIN(3*K2) 
152 FS(3)=S1(3)+C2(3)*SIN(3*K2)+S2(3)*COS(3*K2) 
154 REM * CREATE LATENT TERMS * 
156 FC(4)=C1(0)+C2(0)*COS(4*K2)-S2(0)*SIN(4*K2) 
158 FS(4)=S1(0)+C2(0)*SIN(4*K2)+S2(0)*COS(4*K2) 
160 FC(5)=C1(1)+C2(1)*COS(5*K2)-S2(1)*SIN(5*K2) 
162 FS(5)=S1(1)+C2(1)*SIN(5*K2)+S2(1)*COS(5*K2) 
164 FC(6)=C1(2)+C2(2)*COS(6*K2)-S2(2)*SIN(6*K2) 
166 FS(6)=S1(2)+C2(2)*SIN(6*K2)+S2(2)*COS(6*K2) 
168 FC(7)=C1(3)+C2(3)*COS(7*K2)-S2(3)*SIN(7*K2) 
170 FS(7)=S1(3)+C2(3)*SIN(7*K2)+S2(3)*COS(7*K2) 
200 T9=TIMER-T9 
210 FOR Z=0 TO Q 
215 GOSUB 300 
220 NEXT Z 
222 PR I NT:PR I NT "TIME =";T9;" "; 
225 INPUT "C/R TO CONTINUE:";A$ 
230 RETURN 
300 PRINT USING "## ";Z; 
310 PRINT USING "+##.#####_ ";FC(Z);FS(Z) 
330 RETURN 
400 REM GENERATE COS COMPONENT TRIANGLE 
410 FOR 1=0 TO Q-1:Y(I)=0 
420 FOR J=1 TO Q/2 STEP 2:Y(I)=Y(I)+COS(K1*J*I)/(J*J):NEXT 
430 NEXT 
440 RETURN 
600 REM * COS COMPONENT TRIANGLE * 
605 FOR J=0 TO Q:C1(J)=0:C2(J)=0:S1(J)=0:S2(J)=0:NEXT 
610 GOSUB 400 
620 GOSUB 100 
630 RETURN 
990 STOP 

Figure 7.3 - Partial FFT 
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If we run this program we will find that the run time is noticeably 
less since we have reduced the total number of operations. 

7.2 EXTENDING THE CONCEPT 

Data Xform W = 27t radians 
o = summation 

Output 

Fig. 7.4 - Double Butterfly FFT Flow Diagram 

This is not the complete FFT, of course, for it is obvious 
that each of the 4 point DFTs can be split into two 2 point DFTs. 
We must then combine the four 2 point DFTs into two 4 point 
DFTs which are combined, as described above, into a single 8 
point DFT. For our effort, we find that the total processing time 
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will again be reduced by almost half. The flow diagram (Double 
Butterfly) for all this will then be as shown in Fig. 7.4 above. The 
mechanics of this double butterfly are essentially the same as the 
single butterfly described above, but we must take a moment to 
look at just what a two point DFT is: It will obviously have only 
two frequency components—a D.C. term and the Nyquest 
frequency. The cosine term for the zero frequency component is 
just the sum of the first and fourth data point divided by two (there 
is, of course, no sine term for a zero frequency component). The 
cosine term for the Nyquest frequency component is obtained by 
subtracting the fourth data point from the first, and again, there is 
no sine term. So, for a 2 point DFT, we have: 

110 C3(0)=(Y(0)+Y(4))/2 
112 C3(1)=(Y(0)-Y(4))/2 

The three remaining 2 point transforms are obtained in the 
same manner: 

i 

114 C4(0)=(Y(2)+Y(6))/2 
116 C4(1)=(Y(2)-Y(6))/2 
118 C5(0)=(Y(1)+Y(5))/2 
120 C5(1)=(Y(1)-Y(5))/2 
122 C6<0)=(Y(3)+Y(7))/2 
124 C6(1)=(Y(3)-Y(7))/2 

Now we must sum these terms together to form the 4 
component transforms as we did for the 8 point transform of the 
preceding program (FFT7.0). There is another point that we 
should note here—the "stretched" version of our 2 point DFT has 
4 frequency components, implying 2 steps to the Nyquest frequen
cy. Therefore, the phase shifts for the components from the "odd 
DFT" are multiples of PI/2 (i.e. 90°). From equations (7.7) and 
(7.8) we find that this special case yields: 

For a shift of PI/2 Xrot = -Y (7.9) 
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for the first rotated component; and, for the next three components: 

For a shift of PI X « - -X (7.10) 
Forshift = 3*PI/2 Xrot= Y (7.11) 
For shift = 2*PI X^ , - X (7.12) 

Similarly the rotated sine components are given by: 

For a shift = PI/2 
For a shift = PI 
Forashift = 3*PI/2 
For a shift = 2*PI 

v 

The summation of the 2 point frequency terms are then 
performed as follows: 

126 C1(0) = (C3(0)+C4(0))/2 
128 C1(1) = (C3(1))/2:S1(1)=C4(1)/2 
130 C1(2) = (C3(0)-C4(0))/2:S1(2)=0 
132 C1(3) = C3(1)/2:S1(3)=-C4(1)/2 
134 C2(0) = (C5(0)+C6(0))/2 
136 C2(1) = C5(1)/2:S2(1)=C6(1)/2 
138 C2(2) = (C5(0)-C6(0))/2:S2(2)=0 
140 C2(3) = C5(1)/2:S2(3)=-C6(1)/2 

From this point we continue the FFT as we developed it for the 
four point DFTs in the previous section (i.e. lines beyond 140 
remain the same). Let's try this as an FFT routine. 

10 REM * * * (FFT7.1) FFT 2ND TEST * * * 
20 Q=8:Q2=Q/2:DIM Y(Q),F(2,Q/2),K1(2,Q/4),K2(2,Q/4),Z(Q) 
30 PI=3.141592653589793#:P2=2*PI:K1=P2/Q:IC2=P2/Q 
40 CLS:PRINT SPC(30);"MAIN MENU" 
50 PRINT SPC(5);"1 = ANALYZE COS COMPONENT TRIANGLE":PRINT 
60 PRINT SPC(5);"2 = EXIT »:PRINT 
70 PRINT SPC(10);»MAKE SELECTION :"; 
80 A$=INKEY$:IF A$ = "" THEN 80 
90 A=VAL(A$):0N A GOSUB 600,990 
95 GOTO 40 

Yrot= X (7.13) 
Yrot = -Y (7.14) 
Yrot = -X (7.15) 
Yrot= Y (7.16) 
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100 REM *** FFT *** 
105 CLS:PRINT "FREQ F(COS) F(SIN)":PRINT:PRINT 
106 T9=TIMER 
110 C3(0)=(Y(0)+Y(4))/2 
112 C3(1)=(Y(0)-Y(4))/2 
114 C4(0)=(Y(2)+Y(6))/2 
116 C4(1)=(Y(2)-Y(6))/2 
118 C5(0)=(Y(1)+Y(5))/2 
120 C5(1)=(Y(1)-Y(5))/2 
122 C6(0)=(Y(3)+Y(7))/2 
124 C6(1)=(Y(3)-Y(7))/2 
126 C1(0)=(C3(0)+C4(0))/2 
128 C1(1)=C3(1)/2:S1(1)=C4<1)/2 
130 C1(2)=(C3(0)-C4(0))/2 
132 C1(3)=C3(1)/2:S1(3)=-C4(1)/2 
134 C2(0)=(C5(0)+C6(0))/2 
136 C2(1)=C5(1)/2:S2(1)=C6(1)/2 
138 C2(2)=(C5(0)-C6(0>)/2 
140 C2(3)=C5(1)/2:S2(3)=-C6(1)/2 
170 FOR 1=0 TO Q2-1 
172 FC(I)=(C1(I)+C2(I)*COS(K2*I)-S2(I)*SIN(K2*I))/2 
174 FS(I)=(S1(I)+C2(I)*SIN(K2*I)+S2(I)*COS(K2*I))/2 
176 NEXT 
180 FOR I=Q2 TO Q-1 
182 FC(I)=(C1(I-Q2)+C2(I-Q2)*COS(K2*I)-S2(I-Q2)*SIN(K2*I))/2 
184 FS(I)=(S1(I-Q2)+C2(I-Q2)*SIN(K2*I)+S2(I-Q2)*COS(K2*I))/2 
186 NEXT 
200 T9=TIMER-T9 
210 FOR Z=0 TO Q 
215 GOSUB 300 
220 NEXT Z 
222 PRINT:PRINT "TIME =";T9 
225 PRINT:PRINT:INPUT "C/R TO CONTINUE:";A$ 
230 RETURN 
300 PRINT USING "##_ ";Z; 
310 PRINT USING "+##.##### ";FC(Z);FS(Z) 
330 RETURN 
400 REM GENERATE COS COMPONENT TRIANGLE 
410 FOR 1=0 TO Q:Y(I)=0 
420 FOR J=1 TO Q/2 STEP 2:Y<I)=Y(I)+COS(K1*J*I)/(J*J):NEXT 
430 NEXT « 
440 RETURN 
600 REM * COS COMPONENT TRIANGLE * 
610 GOSUB 400 
620 GOSUB 100 
630 RETURN 
990 STOP 

Figure 7.5 - Double Butterfly Program Listing 
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It should be apparent that we performed a DFT only at the 
first stage of this program; the remaining stages of the process 
consist of simply summing the frequency components into higher 
order transforms at the succeeding stages. As we pointed out 
explicitly, a 2 point DFT is very simple; there are only cosine 
terms in a 2 point DFT and the cosine coefficients are either +1 or 
-1. There is no need to multiply at all for a 2 point DFT. 

7.3 THE ONE POINT DFT 

There is bne last step we have to cover. If we carry the 
FFT scheme to its logical conclusion, we must extend the process 
one more step until we are dealing with 1 point DFTs. Again, we 
must pause to consider just what a 1 point DFT will be. There will 
only be one frequency component which will apparently be the 
zero (and/or Nyquest) frequency component. Furthermore, this 
zerocomponent will be the average value of the one point which is 
being transformed—it is simply equal to itself! 

When we realize this, we realize that we may perform the 
FFT process by a shifting (i.e. rotating) and summing mechanism 
from the beginning—since the one point DFT is simply equal to 
the data point there is no necessity to perform a proper DFT at all. 
The full FFT algorithm, then, is illustrated in the diagram on the 
following page, and the first stage code will be as follows: 

Noting that the shifting process will be in increments of n 
radians (180°), we recognize immediately that all phase shifts will 
require nothing more than negating terms. We negate the odd 
terms before adding them to the even terms to form the Nyquest 
frequency term for the 2 point DFT stage. The output from the 
first stage will be: 



128 Understanding the FFT 



FFT/07 129 

110 C3(0)=(Y(0)+Y(4))/2 
112 C3<1)=(Y(0)-Y(4)>/2 
114 C4(0)=(Y(2)+Y(6))/2 
116 C4(1)=(Y(2)-Y(6))/2 
118 C5(0)=(Y(1)+Y(5))/2 
120 C5(1)=(Y(1)-Y(5))/2 
122 C6(0)=(Y(3)+Y(7))/2 
124 C6(1)=(Y(3)-Y(7))/2 

You will recognize this is identical to the code obtained above 
when we performed proper 2 point DFTs on the input data (see 
page 125 and/or 126). In other words there is no difference (at this 
low level) between rotating and summing the single point DFT 
equivalents and taking a DFT. 

While thgre is no difference in a first stage shift and add 
routine vs. a first stage 2 point DFT (so far as the equations 
developed above are concerned), there is one very important 
difference between the two approaches. If we use a shift and add 
technique, we need only write a single routine which can be used 
to perform the shifting and summing process at every stage of the 
transform. We will need to work out the logistics of how the data 
will be handled at each stage of computation, etc., but there are a 
great many such considerations involved in writing a practical FFT 
program. These considerations will be the subject matter for our 
investigations in the next chapter. 

One last point should be made: our objective was to reduce 
the number of operations required to perform a DFT. How well 
have we done? At every stage of the FFT, we now handle all of 
the data points of the data array in a shifting and adding routine. 
In general this routine requires half of the data points to be 
"rotated" which, as we have seen, requires two complex multiplica
tions (p. 120). Consequently, at every stage of computation, we 
must perform N complex multiplications (for N data points). 
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Furthermore, in the scheme we have been using, N = 2M, and we 
will have to perform M stages of shifting and adding (we will 
show this more clearly in the next chapter). This results in M x N 
operations to obtain a complete Fourier Transform (as opposed to 
the N2 operations we lamented at the beginning of this chapter). 
Now this is not quite the "one for one" algorithm we had hoped 
for, but as a practical matter, it solves the problem. For example, 
to transform 1024 data points requires 10x1024 (10,240) complex 
operations, while a 2048 data point transform requires 11 x 2048 
(22,528) complex operations (i.e. only 10% greater than a straight 
"one for one" increase). You can easily verify that as the number 
of data points increases things get better. 

Based on our benchmark of 1 u.sec. per operation, it would 
take approximately 0.022 seconds to transform the 2048 data point 
array we discussed in the "audio" example at the end of chapter 
6—that's 0.44 seconds for transform and reconstruction. That 
doesn't leave much time to operate on the data in the transform 
domain, but a good engineer always has a few tricks up his sleeve 
(e.g. you could use two micro-processors and ping-pong every 
other block of data to the opposite processor—we now have a 
workable situation). In any case, this solution is the FFT. 



CHAPTER VIII 

ANATOMY OF AN FFT PROGRAM 

8.0 INTRODUCTION 

One might naturally assume this chapter is only a continu

ation of the last one; but, in fact, it deals with a completely 

different subject. In this chapter we assume you already know the 

FFT algorithm and now want to write software; this involves a 

completely new and unique set of problems. Here we consider the 

problems of data manipulation and control within a practical, 

general purpose FFT program. To the newcomer these "inner 

workings" of FFT software are generally considered to be nothing 

less than labyrinthine—and without help, they are. We hope to 

unscramble this subject by identifying and isolating the individual 

functions of these "inner workings"; still, the reader should be fore

warned that this will not be "a piece of cake." In the past you may 

have spent hours trying to solve some clever puzzle of no real 

consequence; think of this as just such a puzzle, but one with lots 

of help, and of considerable significance. 

We should note here that there is no single correct way to 

write an FFT program. There are countless variations, trade-offs 

and embellishments; in fact, there is more than one FFT algorithm. 

We have no intention of reviewing this melange—our objective is 

to understand the basic internal operations of FFT software. To 

that end we will use the FFT routine of the last chapter as a "straw 

man", but first we will expand that program to 16 data points: 
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10 REM *** (FFT8.01) 16 POINT FFT *** 
12 CLS 
20 Q=16:Q2=Q/2:DIM Y(Q),FC(Q),FS(Q),KC(Q),KS(Q) 
30 PI=3.141592653589793#:P2=2*PI:K1=P2/Q 
40 FOR 1=0 TO Q:KC(I)=COS(K1*I):KS(I)=SIN(K1*I):NEXT 
50 PRINT SPC(30);"MAIN MENU":PRINT:PRINT 
60 PRINT SPC(5);"1 = ANALYZE 7 COMPONENT TRIANGLE":PRINT 
62 PRINT SPC(5);"2 = EXIT":PRINT 
70 PRINT SPC(10);"MAKE SELECTION :"; 
80 A$=INKEY$:IF A$ = '"' THEN 80 
90 A=VAL(A$):ON A GOSUB 600,990 
95 CLS:GOTO 50 
99 REM ******************* 
100 REM *** FFT ROUTINE *** 
102 CLS:PRINT "FREQ F(COS) F(SIN) "; 
105 PRINT "FREQ F(COS) F(SIN)»:PRINT:PRINT 
106 T9=TIMER 
108 REM *** STAGE A *** 
110 A0(0)=(Y(0)+Y(8))/2 
111 A0(1)=(Y(0)-Y(8))/2 
112 A1(0)=(Y(1)+Y(9))/2 
113 A1(1)=(Y(1)-Y(9))/2 
114 A2(0)=(Y(2)+Y(10))/2 
115 A2(1)=(Y(2)-Y(10))/2 
116 A3(0)=(Y(3)+Y(11))/2 
117 A3(1)=(Y(3)-Y(11))/2 
118 A4(0)^(Y(4)+Y(12))/2 
119 A4(1)=(Y(4)-Y(12))/2 
120 A5(0)=(Y(5)+Y(13))/2 
121 A5(1)=(Y(5)-Y(13))/2 
122 A6(0)=(Y(6)+Y(14))/2 
123 A6(1)=(Y(6)-Y(14))/2 
124 A7(0)=(Y(7)+Y(15))/2 
125 A7(1)=(Y(7)-Y(15))/2 
126 REM *** STAGE B *** 
127 BC0(0)=(A0(0)+A4(0))/2 
128 BC0(1)=A0(1)/2:BS0(1)=A4(1)/2 
129 BC0(2)=(A0(0)-A4(0))/2 
130 BCO(3)=AO(1)/2:BS0(3)=-A4(1)/2 
131 BC1(0)=(AK0)+A5(0))/2 
132 BC1(1)=A1(1)/2:BS1(1)=A5(1)/2 
133 BC1(2)=(A1(0)-A5(0))/2 
134 BC1(3)=A1(1)/2:BS1(3)=-A5(1)/2 
135 BC2(0)=(A2(0)+A6(0))/2 
136 BC2(1)=A2(1)/2:BS2(1)=A6(1)/2 
137 BC2(2)=(A2(0)-A6(0))/2 
138 BC2(3)=A2(1)/2:BS2(3)=-A6(1)/2 
139 BC3(0)=(A3(0)+A7(0))/2 
140 BC3(1)=A3(1)/2:BS3(1)=A7(1)/2 
141 BC3(2)=(A3(0)-A7(0))/2 
142 BC3(3)=A3(1)/2:BS3(3)=-A7(1)/2 
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148 REM *** STAGE C *** 
150 FOR 1=0 TO 3:J=2*I 
151 CC1(I)=(BC0(I)+BC2(I)*KC(J)-BS2(I)*KS(J))/2 
152 CC2(I)=(BC1(I)+BC3(I) *KC(J)-BS3(I)*KS(J))/2 
153 CS1(I)=(BS0(I)+BC2(I)*KS(J)+BS2(I)*KC(J))/2 
154 CS2(I)=(BS1(I)+BC3(I)*KS(J)+BS3(I)*KC(J))/2 
155 NEXT I 
160 FOR 1=4 TO 7:J=2*I:K=I-4 
161 CC1(I)=(BC0(K)+BC2(K)*KC(J)-BS2(K)*KS(J))/2 
162 CC2(I)=(BC1(K)+BC3(K)*KC(J)-BS3(K)*KS(J))/2 
163 CS1(I)=(BS0(K)+BC2(K)*KS(J)+BS2(K)*KC(J))/2 
164 CS2(I)=(BS1(K)+BC3(K)*KS(J)+BS3(K)*KC(J))/2 
165 NEXT I 
168 REM *** STAGE F *** 
170 FOR 1=0 TO Q2-1 
172 FCC I)=(CC1(I)+CC2(I)*KC(I)-CS2(I)*KS(I))/2 
174 FS(I)=(CS1(I)+CC2(I)*KS(I)+CS2(I)*KC(I))/2 
176 NEXT 
180 FOR I=Q2 TO Q-1 
182 FC(I)=(CC1(I-Q2)+CC2(I-Q2)*KC(I)-CS2(I-Q2)*KS<I))/2 
184 FS( I )=(CS1(I-Q2)+CC2(I-Q2)*KS(I)+CS2(I-Q2)*KC(I))/2 
186 NEXT 
200 T9=TIMER-T9 
210 FOR Z=0 TO Q2-1 
215 GOSUB 300 
220 NEXT Z 
222 PRINT:PRINT "TIME =";T9 
225 PRINT:PRINT:INPUT "C/R TO CONTINUE:";A$ 
230 RETURN :REM *** END FFT ROUTINE *** 
235 REM *************************** 
300 PRINT USING "##";Z;:PRINT " "; 
310 PRINT USING "+##.#####";FC(Z);:PRINT " "; 
312 PRINT USING "+##.#####";FS(Z);:PRINT " "; 
320 PRINT USING "##";Z+Q2;:PRINT " "; 
322 PRINT USING "+##.#####";FC(Z+Q2);:PRINT " "; 
324 PRINT USING "+##.#####";FS(Z+Q2) 
330 RETURN 
400 REM GENERATE 7 COMPONENT TRIANGLE 
410 FOR 1=0 TO Q:Y(I)=0 
420 FOR J=1 TO Q/2 STEP 2:Y(I)=Y(I)+COS(K1*J*I)/(J*J):NEXT 
430 NEXT 
440 RETURN 
600 REM * 7 COMPONENT TRIANGLE * 
610 GOSUB 400: REM GENERATE INPUT FUNCTION 
620 GOSUB 100: REM XFORM FUNCTION 
630 RETURN 
990 STOP 

Figure 8.0- 16 Point FFT 
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8.1 STAGES OF COMPUTATION (BUTTERFLIES) 

Look closely at lines 108 to 186 of the computer listing on the 
previous two pages (Fig. 8.0). This FFT routine is constructed as a series 
of stages of computation (A, B, C and F). While it is apparent that each 
of these stages is different, we know from the previous chapter they are, 
in a sense, doing the same thing (performing a butterfly). This observa
tion is the foundation of this chapter; we must sort out what is the same, 
and what is different, in each of these stages. We can, of course, write a 
single iterative loop to perform the parts that are the same. This loop 
must then be nested within another loop (or loops) which can change the 
parts that are different between stages (and applications e.g. data array 
size). This simple methodology, applied to the algorithm of the last 
chapter, is all there is to understanding this "difficult" subject. Let's 
begin by reviewing this basic structure—let's recall why we wrote this 
program in stages of computation in the first place. 

NOTE: The following 
discussion concerns only the 
data flow within the FFT. We 
will discuss the "butterflies" 
themselves shortly, but for now 
we simplify things by represent
ing the computation that takes 
place within a DFT as a simple 
box (Fig. 8.1). 

1. At the outset, our objective is to find the Discrete Fourier Tra
nsform for an array of data designated D(x). For this particular example 
x takes on all values from 0 to 15, but in general we will consider any 
array size that is an integer power of 2 (i.e. 2"). 

DO 
D l 
D 2 
D 3 
D 4 
D 5 
D 6 
D 7 
D8 
D 9 
D10 
D l l 
D12 
D13 
D14 
D15 

16 
POINT 

DFT 

FO 
F l 
F 2 
F 3 
F 4 
F5 
F 6 
F 7 
F8 
F 9 
F10 
F l l 
F12 
F13 
F14 
F15 

Fig. 8.1 - 16 Point DFT 
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2. Before we begin the 16 point DFT though, we realize we can 
speed things up by splitting this 16 point array into two 8 point arrays. 
We split out every other data point so that one array will have all of the 
odd data points and the other will have all of the even. By taking the 
DFTs of two 8 point arrays we will reduce the work by almost half. 

coo 
C01 
C02 
C03 
C04 
C05 
C06 
C07 

Dl 
D3 
D5 
D7 
D9 
Dl l 
D13 
D15 

Fig. 8.2 - 8 Point DFTs 

4 

3. We recognize, of course, that we can speed things up even 
more by splitting each of these 8 point arrays into 4 point arrays. 

DO 
D4 
D8 
D12 

D2 
D6 
D10 
D14 

^ _ 
— 
— 

~— 

4 
POINT 

DFT 
(BO) 

4 
POINT 

DFT 
(B2) 

DO 
D8 

D4 
D12 

D2 
D10 

D6 
D14 

DFT 
(AO) 

DFT 
(A4) 

DFT 
(A2) 

DFT 
(A6) 

Fig. 8.3 - Breakdown of "Even" Data Points 

4. The general scheme is apparent by now—we can split each 4 
point DFT into 2 point DFTs, and these can be split into "1 point DFTs." 
In Fig. 8.3 above we show this breakdown for the even data points (the 
same thing must happen for the odd data points of course). None of this 
shows up in the program code however, it is only a mental exercise. It is 
from this point forward that we write our program—a shifting and adding 
"butterfly" that starts from one point DFTs and works back up through 
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stages of "butterflies" (see Fig. 8.4). Fig. 8.3 only shows how the data is 
broken out, and consequently, how it must be recombined in succeeding 
stages of computation. 

DO 
D 8 

D4 
D12 

D2 
D10 

D6 
D14 

BFLY 
(AO) 

BFLY 
(A4) 

BFLY 
(A2) 

BFLY 
(A<5) 

-A2(0) 
-AJ(1) 

-A6(0) 
.A6( l ) 

Fig. 8.4 - "Even Data" Stageing for FFT 

5. We perform the same process for the odd data points, of 
course (Fig. 8.5). These two 8 point DFTs (i.e. CO above and CI below), 
will then be combined in a final butterfly using an identical shifting and 
adding process to form the equivalent of the original 16 point DFT. 

Dl 
D9 

D5 
D13 — 

D3 
Dll 

D7 — 
D15 

BFLY 
(Al) 

BFLY 
(A5) 

BFLY 
(A3) 

BFLY 
(A7) 

A1(0) 
Al(l) 

A5(0) 
A5(l) 

A3(0) 

A7(0) 
A7(l) 

BFLY 

(Bl) 

BFLY 

(B3) 

— B1(0) 
— Bl(l) 

Bl(2) 
— Bl(3) 

— B3(0) 

— BX1) 

— B3(2) 
— B3(3) 

BFLY 

(CI) 

Fig. 8.5 - "Odd Data" Stageing for FFT 

These diagrams contain nothing but butterflies. We know, of 
course, that the butterflies are identical in function—only the number of 
components handled (and magnitude of phase shifts) is different. Surely 
we can write a routine to accommodate all of these stages (or any number 
of stages) if we can only find a set of rules describing exactly how each 
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succeeding stage differs from its predecessor. Let's point out some 
general rules that are already apparent: 

1. The first stage of computation will have an input array of Q 
(Q = 2") data points each of which will be treated as a single point DFT. 
The second stage will have inputs from Q/2 partial DFTs and each partial 
DFT will have 2 frequency components. The third stage will have Q/4 
partial (4 component) DFTs, etc., etc. Each stage will halve the number 
of partial DFTs, and double the number of frequency components (total 
number of "elements" remaining a constant = Q). 

2. Therefore, since we start with Q partial DFTs, and halve the 
number at each stage (until we have a single DFT), an array of 2" data 
points must yield n stages of computation in the FFT! 

3. Note that in the first stage, the components summed in the 
butterflies (both odd and even) are all separated by exactly 1/2 the length 
of the data array! Whether this is so for the following stages of computa
tion (or not) depends on how we handle the data. 

There is more to be gleaned from the general flow of data shown 
in Figs. 8.2 through 8.5, but its significance might not yet be so obvious; 
so, we will move forward at this time and consider the butterflies. 

8.2 MECHANICS OF THE BUTTERFLY 

The butterflies are the simplest imaginable routines—we add one 
complex number to another (phase shifted) complex number. The only 
question here is: "How much is each component shifted at each stage of 
computation?" From chapter 5 we know that a one data point shift (in the 
time domain) will cause a linearly increasing phase shift (in the frequency 
domain) resulting in 180° shift at the Nyquest frequency (continuing on 
linearly to the end of the array). Also, from the discussion of the previous 
chapter (section 7.1) we know that each time we split a data array, the 
resulting "odd" element array will be shifted by one data point (the "even" 
element array is not shifted of course). For the "A" stage output there are 
only two frequency components—the zero frequency component and the 
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Nyquest frequency component. Therefore, these two components will 

receive, respectively, phase shifts of zero and 180° (i.e. we multiply the 

higher order data point by -1 when forming the Nyquest frequency—see 

Fig. 8.0, stage A, lines 108-125), resulting in the following: 

FA0(0) 

FA0(1) 

W = 2 7t radians shift 

Fig. 8.6 - Stage "A" Shifting and Adding (Typical) 

The notation (W/2) indicates that 1/2 of a full cycle (180°) of 

phase shift is performed; FA0(0) indicates the zero frequency component 

out of the A0 butterfly—the "o" indicates a "summing junction" where 

the lines converging from the left are summed (complex quantities). 

The phase shift at stage B will be: 

AO(O) 

A4(0) 

FB0(0) 

FB0(2) 

A0(1) 

A4(l) 

FB0(1) 

FB0(3) 

Fig. 8.7 - Stage "B" Shifting (Typical) 
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Note that, in Fig. 8.7, inputs A4(0) and A0( 1) have been reversed 
in position to make the diagram simpler. In the computer program A0(0) 
is added to A4(0), then A0(1) is added to A4(l) shifted by (W/4). Next 
the virtual components will be created by adding A0(0) to A4(0)*(W/2) 
and A0(1) to A4(l)*(3W/4) [here "*" = "shifted by"]. Also note that 
while the frequency components were rotated by increments of 1/2 of a 
cycle (i.e. PI radians) in stage "A," they are rotated by increments of 1/4 
cycle (PI/2 radians) in stage "B." Apparently they will be rotated by 
increments of 1/8 cycle (i.e. PI/4 radians) in stage "C," etc., etc. Let's add 
this to our set of rules: 

4. The "phase shift increment" (i.e. the incremental amount that 
each successive component's phase is increased) starts at PI (i.e. 180°) for 
the first stage and halves for each stage thereafter until the nth stage 
(where it will be PI^'XN-l) = 27t/Q). 

We may also note the following at this time: 

5. It is an almost trivial observation, but we will always add the 
0 frequency component of one butterfly to the 0 frequency component of 
another, 1st component to 1st, etc., etc. This is true for both the direct 
components as well as the "latent components." 

6. Finally, when we sum two arrays together (such as A0 and 
A4, orBl andB3 back in Fig. 8.4 and 8.5), we will "rotate" or phase shift 
only the components from the "time shifted arrays" (i.e. A4 and B3). 

From these six observations, we may now write not only a 
general purpose butterfly routine, but most of the FFT program. Let's 
state explicitly how we intend to do this: 

Since, from the foregoing, we know the "arithmetic" of the 
butterflies will be identical for each stage of computation (i.e. shifting and 
adding complex numbers), we will make this operation our core iterative 
routine. On the other hand the phase shift, number of partial DFTs, and 
number of components in a partial DFT will change for every stage. To 
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control these variables, we will use a "stage control loop" around our 
"universal butterfly." For each stage of computation, this control loop 
will change the number of DFTs, number of components within each 
DFT, and phase shifts—all according to the rules just established. This 
shouldn't be too difficult then, but before we actually write our FFT 
routine, it will be prudent to consider how, exactly, we are going to 
manage the data within the data arrays. Let me explain: 

8.3 ARRAY DATA MANAGEMENT 

In the program listed at the beginning of this chapter (Fig. 8.0), 
each stage of computation has a separate data array to save the data 
generated at that stage. Now, all of these arrays are no problem when 
dealing with 16 data points, but, as the number of data points increases, 
and array size increases, this inefficient use of memory is disastrous. 

It is possible to write a program with only one complex quantity 
array; the two data points (complex) to be added are pulled from the 
array, rotated, and combined (twice) creating two new pieces of data. The 
new data is then stored back into the locations from whence the original 
data was taken (intermediate results are saved in temporary storage until 
a place is available in the array). This is the most efficient use of memory 
possible; however, it is inefficient in execution since it requires multiple 
data transfers for every operation, slowing things down. 

A practical compromise may be accomplished with two arrays 
which are "ping-ponged" between the output and input fi'om stage to 
stage. This is the approach we will use, and it will be explained in detail 
below, but the reader will recognize this is a design "trade-off decision. 

This is certainly simple enough; but, if we follow standard 
practice, and manage data as outlined two paragraphs back, the final data 
will be out of sequence in the array. An additional "stage" will therefore 
be required (usually referred to as "bit reversal") to sort the data points 
into proper order. This is a hangover from using a single data array, and 
as we have said, we will not do things that way in our FFT routine. We 
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will bite the bullet and face data management from the outset, and avoid 
the wasted time used up by this bit reversal "stage." 

So, to save memory and facilitate the fastest possible execution, 
we will use two separate "2 degree of freedom" arrays [ DIMensioned as 
C(2,Q) and S(2,Q) ]. To control these arrays we will use a pair of 
complementary switches (TO designates which side of the array inputs 
data to the butterfly and Tl designates the side receiving output). After 
each stage of computation we reverse the " 1" and "0" states of TO and Tl, 
effectively causing the array sides to "ping-pong" (i.e. they reverse their 
input/output functions). This brings us to a crucial consideration: at each 
stage of computation, the data stored in the output array must be in proper 
position when it is used as input (by the same routine) for the next stage 
of computation. Now, we pointed out that the first stage sums the data 
from the 0th position in the array with the data in the Q/2th position (Rule 
3); the 1st position with the Q/2+1 position; etc.; etc. We will be well 
advised, then, to add the following to our set of rules: 

7. DEFINITION 1 - We may store data in the array at any 
convenient location, so long as the data is managed in such a 
way that any two components which must be summed together 
(both in the present and the next stage of computation) will be 
separated by half the length of the array. 

What advantage does this provide? Well, returning to stage 1 
computation, data points D(0) and D(Q/2) are used twice—first to form 
the A0(0) component, and then A0(1). We are no longer forced to store 
these components back into the 0 and Q/2 positions in the array; in fact, 
we will put them into theirs? two locations of the output array! The two 
components to which they must be added in the next stage of computation 
(i.e. A4(0) and A4(l) in figure 8.4), however, must be placed in locations 
Q/2 and Q/2+1. Continuing on, Dl and D9 will combine to form A 1(0) 
and Al(l) , which we place in position 2 and 3 of the output array. If we 
continue in this manner, Definition 1 is satisfied (see Fig. 8.8 below). 
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0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

INPU 

D00 
D01 
D02 
D03 
D04 
D05 
D06 
D07 
D08 
D09 
D10 
Dll 
D12 
D13 
D14 
D15 

r ARRAY 

STAGE 
"A" 

COMPUTATION 
("A" BUTTERFLIES) 

TO = 0 Tl = 1 

A0(0) 
AOU) 
Al(O) 
Al(l) 
A2(0) 
A2(l) 
A3(0) 
A3(l) 
A4(0) 
A4(l) 
A5(0) 
A5(l) 
A6(0) 
A6(l) 
A7(0) 
A7(l) 

DFT 
AO 
DFT 
Al 
DFT 
A2 
DFT 
A3 
DFT 
A4 
DFT 
A5 
DFT 
A6 
DFT 
A7 

OUTPUT ARRAY 

Fig. 8.8 - Input/Output Data Position in the 
First Stage of Computation for a 16 Point FFT 

Note that the data arrangement of both input and output arrays 
are in accordance with the requirements of figures 8.4, 8.5, and 
also Definition 1 above. We must follow the same format in stage 
"B" of the computation, of course, as shown in figure 8.9 below. 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

INPU 

A0(0) 
AOU) 
A1(0) 
Al(l) 
A2(0) 
A2(l) 
A3(0) 
A3(l) 
A4(0) 
A4(l) 
A5(0) 
A5(l) 
A6(0) 
A6(l) 
A7(0) 
A7(l) 

r ARRAY 

STAGE 
"B" 

COMPUTATION 
("B" BUTTERFLIES) 

TO = 1 Tl = 0 

C 

B0(0) 
BOU) 
BO (2) 
BOO) 
BKO) 
Bl(l) 
Bl(2) 
BIO) 
B2 (0) 
B2(l) 
B2 (2) 
B2(3) 
B3(0) 
B3(l) 
B3(2) 
B3(3) 

>UTPUT ARR 

DFT 
BO 

DFT 
Bl 

DFT 
B2 

DFT 
B3 

AY 

Fig. 8.9 - Data Position Between Input and 
Output Arrays for Second Stage of Computation 
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We keep each partial DFT together. The DFTs in the output 

array at each stage are arranged so that when used for the input 

array in the next stage of computation, we still sum the Oth 

element with the 8th element; the 1st with the 9th; etc. 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

INPIT 

B0(0) 
B0(1) 
BO (2) 
B0(3) 
Bl(O) 
Bl(l) 
Bl(2) 
Bl(3) 
B2(0) 
B2(l) 
B2(2) 
B2(3) 
B3(0) 
B3(l) 
B3(2) 
B3(3) 

r ARRAY 

STAGE 
H p H 

COMPUTATION 
("C" BUTTERFLIES) 

TO = 0 Tl = 1 

C0(0) 
C0(1) 
CO (2) 
COO) 
C0(4) 
C0(5) 
C0(6) 
CO (7) 
CKO) 
Cl(l) 
Cl(2) 
CI (3) 
CI (4) 
CI (5) 
CK6) 
CI (7) 

OUTPUT A 

Fig. 8.10 - Data Position for Input and 
Output Arrays for 3rd Stage of Computation 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

INPU 

C0(0) 
C0(1) 
CO (2) 
COO) 
CO (4) 
CO (5) 
CO (6) 
CO (7) 
CKO) 
Cl(l) 
CI (2) 
CIO) 
Cl(4) 
CI (5) 
Cl(6) 
Cl(7) 

r ARRAY 

STAGE 
npn 

COMPUTATION 
("F" BUTTERFLY) 

TO = 1 Tl = 0 

C 

F0(0) 
F0(1) 
F0(2) 
F0O) 
F0(4) 
F0(5) 
F0(6) 
F0(7) 
F0(8) 
F0(9) 
F0(10) 
FO(ll) 
F0(12) 
F0(13) 
F0(14) 
F0(15) 

JUTPUT A 

Fig. 8.11 - Data Position in Final Input and Output Arrays 
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8.4 THE FFT ALGORITHM 

Rather than presenting a completed program with all of the above 
considerations neatly incorporated, let's develop our algorithm by 
introducing changes sequentially (insofar as possible) into the program 
given at the beginning of this chapter. Our first order of business will be 
to throw out all of the different data arrays and introduce the data array 
structure discussed above. 

Reviewing lines 108 to 186inFFT8.01 (Fig. 8.0) we note that stages 
A and B are written in line, while stages C and F employ loops. In our 
Universal FFT routine we hope to employ a single, iterative loop for all 
of the stages; so, it will be best to start with stage F. Recall that in stage 
F we are summing the two 8 point partial DFTs into the final 16 
component DFT (see Fig. 8.12 below). 

168 REM *** STAGE F *** 
170 FOR 1=0 TO Q2-1 
172 FC(I)=(CC0(I)+CC1(I)*KC(I)-CS1(I)*KS(I))/2 
174 FS(I)=(CS0(I5+CC1(I)*KS(I)+CS1(I)*KC<I))/2 
176 NEXT 
180 FOR I=Q2 TO Q-1 
182 FC(I)=(CC0(I-Q2)+CC1(I-Q2)*KC(I)-CS1(I-Q2)*KS<I))/2 
184 FS(I)=(CS0(I-Q2)+CC1(I-Q2)*KS(I)+CS1(I-Q2)*KC(I))/2 
186 NEXT 

Fig. 8.12 - Stage "F" Butterfly 

You should be familiar with this routine by now; we form the 
F stage components by summing the CO stage components with the 
rotated CI components. We essentially perform the same loop 
twice: once rotating the CI components from 0 to it radians (i.e. 
the "direct" components in lines 170-176), then once again rotating 
from 7t to 2n (lines 180-186, creating the "latent" components). 
Okay, let's start the modifications by changing out the data arrays: 
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180 REM *** STAGE "F" BUTTERFLY *** 
184 FOR 1=0 TO Q3:REM Q2 = Q/2 AND Q3 = Q2-1 
187 C(0,I)=(C(1,I)+C(1,I+Q2)*KC<I)-S(1,I+Q2)*KS(I))/2 
188 S(0,I)=(S(1,I)+C(1,I+Q2)*KS<I)+S(1,I+Q2)*KC(I))/2 
190 NEXT I 
192 FOR I=Q2 TO Q-1 
194 C(0,I)=(C(1,I-Q2)+C(1,I)*KC(I)-S(1,I)*KS(I))/2 
195 S<0,I)=(S(1,I-Q2)+C(1,I)*KS(I)+S(1,I)*KC(I))/2 
197 NEXT I 

Fig. 8.13 - 1st Modification of Stage "F" Butterfly 

As we said, the data is now handled in arrays dimensioned as C(2,Q) 
and S(2,Q). Recognizing that, when we enter stage "A" the data will be 
in the C(0,x) side of the cosine component array, the output data for stage 
A will be placed in the C(J_,x) and SQ,x) arrays. In the "B" stage 
computations, the input data is taken from the I side and output to the 0 
side. These two "sides" of the data array ping-pong back and forth as we 
proceed through the succeeding stages (see Fig. 8.8 through 8.11) until, 
in stage F as shown above, the data is input from the j . side and output to 
the 0 side. Also note that the data is managed as shown in Fig. 8.11 in 
keeping with rule 3 (p. 137), and Definition 1 (p. 141). 

Let's look quickly at the operation of this loop (in the following Q = 
total number of data points, Q2 = Q/2 and Q3 - Q2-1). The CO DFT data 
is located in the lower half addresses of the input arrays and the CI DFT 
data is in the upper half (see Fig. 8.11). We access the C1 data by adding 
Q2 to I in lines 187 and 188; the CO data is accessed in lines 194 and 195 
by subtracting Q2 from I. Otherwise the routine is the same as shown in 
Fig. 8.12. 

So far so good—this is how we will handle data array management, 
but the "F" stage considered alone is just a little too easy. We know, in 
general, that each succeeding stage will halve the number of partial DFTs 
and double the number of frequency components (rule 1). We need some 
way to track this within the data array, but this gets us into the general 
arena of things that change between stages. Let's look at how we handle 
this whole area of concern by modifying the "C" stage: 
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180 REM *** STAGE "C" BUTTERFLY *** 
182 QT=Q/4:KT1=2 
184 FOR J=0 TO Q3 STEP 4: J1=2*J:K9=J+Q2 
185 FOR 1=0 TO QT-1:KT=I*KT1:IC=K9+I 
187 C(1,Jl+I)=(C(0,I+J)+C(0,K)*KC(KT)-S(0,K)*KS(KT))/2 
188 S(1,J1+I)=(S(0,I+J)+C(0,K)*KS(KT)+S(0,K)*KC(KT))/2 
190 NEXT I 
191 J1 = J1+QT 
192 FOR 1=0 TO QT-1:KT=(I+QT)*KT1:K=K9+I 
194 C(1,J1+I)=(C(0,I+J)+C(0,K)*KC(KT)-S(0,K)*KS(KT))/2 
195 S(1,J1+I)=(S(0,I+J)+C(0,K)*KS(KT)+S(0,K)*KC(KT))/2 
197 NEXT I:NEXT J 

Figure 8.15 - Modified Stage "C" 

We immediately define QT (which stands for QuiT) as the 
number of frequency components in any partial DFT (for this stage 
QT=4). KT1 relates to the stage dependent phase shift incre
ment—KT the address of the sine and cosine twiddle factors (for 
this stage, KT1 = 2). We will talk about this shortly. 

Next, note that we have nested the "I" loop, which constituted 
stage F, inside a "J" control loop (good lord, they're actually going 
to do what they said). However, while the equations of this new 
"I" loop are of the same form as in stage "F", addressing the 
elements of the data arrays is considerably more complex. Let's 
look closely at the operation, keeping in mind that in stage "C" we 
form the CO DFTby summing DFT BO and DFTB2 (half an array 
away), and the CI by summing Bl and B3: As before, lines 185 
through 190 generate the "direct" components, and lines 192 
through 197 generate the "latent" components. At line 185 "I" will 
step from 0 to QT-1 (as we noted above, the first 4 components, 
which constitute B0). KT locates the correct twiddle factor, but 
now we use K to generate the address of the B2 DFT components 
in the upper half of the array. K satisfies our requirement to sum 
components separated by half an array (i.e. Q/2) via lines 184 
(where we set K9 equal to J+Q/2), and line 185 (where we set K 
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= K9+I). At the start J=0 so that K will equal I+Q/2. This results 
in (lines 187 and 188) our summing the components located at I (J 
= 0) with the rotated components located at I+Q/2. Note that we 
place these sums into the output side of our two sided array at a 
location of I + Jl , and if you look back at line 184 you will find 
that Jl = 2*J = 0. This "I" loop will sum the first 4 components in 
the array with the first 4 components half an array away and place 
the results in the first 4 locations of the output array. It then moves 
on to generate the 4 latent components. 

The "I" loop for the latent components is almost (but not quite) 
identical. We know that we will store these results just above the 
direct components in the output array, so we solve this requirement 
by adding QT to Jl in line 191. Also, to generate the latent 
components, we must continue increasing the rotations of the high 
order partial DFT components, and we do this by adding QT to I 
(in line 192) before multiplying by KT1. Otherwise...identical. 

What about the "J" loop? You will have already figured out 
that J keeps track of the partial DFTs (B0/B2 and B1/B3 in this 
stage). When we have finished creating the CO DFT in the output 
array (i.e. the sum of BO and B2 as just described) we increment J 
by 4 (line 184) and execute the two I loops again. We now see the 
purpose of Jl and K9; Jl doubles J and is the partial DFT index 
for the output array, while K9 adds J to Q/2 to provide an input 
array partial DFT index. 

That's it... 
It is apparent that this routine for the "C" stage is more general 

than that presented earlier for the "F" stage. In fact, you will note 
that if we set QT = Q/2, KT1 = 1, and the STEP increment for the 
J loop = 8, this "C" loop will work for the "F" loop also. In fact, 
with very little effort, it can be made to work for all of the stages! 
Before we do that, however, let's clear up a little detail we have 
left dangling since back in section 8.2. 



148 Understanding the FFT 

8.5 TWIDDLE FACTOR INDEXING 

In lines 30 and 40 of FFT8.01 (Fig. 8.0, p. 132) we generate the 
twiddle factors. These are the sine and cosine values we will use to rotate 
the complex numbers of one DFT before we add them to the complex 
numbers of another [see. (7.7) and (7.8), p. 120)]. Now, by rule 4 (p. 
139), the nth stage will require every value generated in this twiddle 
factor table. The N-l stage of computation, however, will only require 
every second value from this table (but for two partial DFTs). The N-2 
stage requires every 4th twiddle factor, etc., until we reach the first stage 
of computation which only requires the first value and the middle of the 
table value. This is what the twiddle factor index, KTl specifies. It is 
multiplied by I or (I+QT) for the actual twiddle factor address KT. 

8.6 THE COMPLETE FFT 

From this point, the next step in the development of a general 
purpose FFT routine is more or less obvious: The whole FFT routine may 

181 REM *** FFT ROUTINE *** 
182 FOR M=0 TO N-1:QT=2AM:KT1=2*(N-M-1) 
183 REM *** "UNIVERSAL" BUTTERFLY *** 
184 FOR J=0 TO Q3 STEP QT:J1=2*J:K9=J+Q2 
185 FOR 1=0 TO QT-1:KT=I*KT1:K=K9+I 
187 C(T0,J1+I)=(C(T1,I+J)+C(T1,K)*KC(KT)-S(T1,K)*KS(KT))/2 
188 S(T0,J1+I)=(S(T1,I+J)+C(T1,K)*KS(KT)+S(T1,K)*KC(KT))/2 
190 NEXT I 
191 J1 = J1+QT 
192 FOR 1=0 TO QT-1:KT=(I+QT)*KT1:K=K9+I 
194 C(T0,J1+I)=(C(T1,I+J)+C(T1,K)*KC(KT)-S(T1,K)*<S(KT))/2 
195 S(T0,J1+I)=(S(T1,I+J)+C(T1,K)*KS(KT)+S(T1,K)*KC(KT))/2 
196 NEXT I:NEXT J 
197 IF T0=0 THEN T0=1:T1=0:GOTO 199 
198 T0=0:T1=1 
199 NEXT M 

Figure 8.16 - Complete FFT routine 
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be compressed into a single stage, which will be repeated as many times 
as necessary to perform the complete transform (Fig 8.16). We do this by 
nesting the previous routine (Fig. 8.15) inside an "M loop," where M 
counts the stages of computation. This loop sets the value of QT (partial 
DFT size) and KTl (skip index for twiddle factors) at the beginning of 
each pass. M counts up from 0 to N-1 (i.e. the number of stages that must 
be executed), and QT may be calculated simply by figuring 2AM (i.e. 2m), 
which obviously starts at 1 and doubles for each pass through the loop. 
KTl is calculated by finding the value of 2A((N-1)-M), which starts at 
2A(N-1) [i.e. 2(41) = 8 for the 16 point FFT of this chapter] and then 
halves at each stage until it becomes 1 (i.e. the final pass through the 
loop). 

We have inserted our toggle (TO and Tl) to select the input and 
output sides of the data array. At the end of the "M loop" (lines 197 and 
198) we reverse these values to switch the input and output registers. 

To use this routine in the program presented at the beginning of 
this chapter (see below, Fig. 8.17) we must make a few changes. In line 

10 REM *** (FFT8.02) Q=2AN POINT FFT *** 
12 PRINT "INPUT NUMBER OF DATA POINTS AS 2AN" 
14 INPUT "N = ";N 
16 Q=2AN 
20 Q2=Q/2:Q3=Q2-1:Q4=Q/4:Q5=Q4-1:Q8=Q/8 
22 DIM Y(Q),C(2,Q),S(2,Q),KC(Q),KS(Q) 
30 PI=3.141592653589793#:P2=2*PI:K1=P2/Q 
32 FOR 1=0 TO Q:KC(I)=C0S(K1*I):ICS(I)=SIN(K1*I):NEXT 
40 CLS 
50 PRINT SPC(30);"MAIN MENU":PRINT:PRINT 
60 PRINT SPC(5);"1 = ANALYZE Q/2 COMPONENT TRIANGLE":PRINT 
64 PRINT SPC(5);"2 = EXIT":PRINT 
70 PRINT SPC(10);"MAKE SELECTION :"; 
80 A$=INKEY$:IF A$ = "" THEN 80 
90 A=VAL(A$):ON A GOSUB 600,990 
95 GOTO 40 
100 REM *** FFT *** 
102 CLS:PRINT "FREQ F(COS) F(SIN) "; 
105 PRINT "FREQ F(COS) F(SIN)":PRINT:PRINT 
106 T9=TIMER 
181 REM *** FFT ROUTINE *** 
182 FOR M=0 TO N-1:QT=2AM:KT1=2A(N-M-1) 
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183 REM *** "UNIVERSAL" BUTTERFLY *** 
184 FOR J=0 TO Q3 STEP QT: J1=2*J :K9=J+Q2 
185 FOR 1=0 TO QT-1:KT=I*KT1:K=K9+l 
187 C(T0,J1+I)=(C(T1,I+J)+C(T1,K)*KC(KT)-S(T1,K)*KS(KT))/2 
188 S(T0,J1 + I)=(S(T1,I+J)+C(T1,K)*KS(KT)+S(T1,K)*KC(ICT))/2 
190 NEXT I 
191 J1 = J1+QT 
192 FOR 1=0 TO QT-1:KT=(I+QT)*KT1:K=K9+I 
194 C(T0,J1+I)=(C(T1,I+J)+C(T1,K)*KC(KT)-S(T1,K)*KS(KT))/2 
195 S(T0,J1+I)=(S(T1,I+J)+C(T1,K)*KS(KT)+S(T1,K)*KC(KT))/2 
196 NEXT I:NEXT J 
197 IF T0=0 THEN T0=1:T1=0:GOTO 199 
198 T0=0:T1=1 
199 NEXT M 
200 T9=TIMER-T9 
210 FOR Z=0 TO Q2-1 
215 GOSUB 300 
220 NEXT Z 
222 PRINT:PRINT "TIME =";T9 
225 PRINT:PRINT:INPUT "C/R TO CONTINUE:";A$ 
230 RETURN 
300 PRINT USING "###»;Z;:PRINT " "; 
310 PRINT USING "+##.#####";C(T1,Z);:PRINT " "; 
312 PRINT USING "+##.#####";S(T1,Z);:PRINT " "; 
320 PRINT USING "###";Z+Q2; :PRINT " "; 
322 PRINT USING "+##.#####";C(T1,Z+Q2);:PRINT " "; 
324 PRINT USING »+##.#####";S(T1,Z+Q2) 
330 RETURN 
400 REM GENERATE Q/2 COMPONENT TRIANGLE 
410 FOR 1=0 TO Q:C(0,I)=0:S(0,I)=0 
420 FOR J=1 TO Q/2 STEP 2:C(0,I)=C(0,I)+COS(K1*J*I)/(J*J):NEXT 
430 NEXT 
440 RETURN 
600 REM * Q/2 COMPONENT TRIANGLE * 
602 CLS:PRINT:PRINT 
604 PRINT "PREPARING DATA INPUT - PLEASE WAIT!" 
610 GOSUB 400 
612 T0=1:T1=0 
614 PRINT:INPUT "DATA READY - C/R TO CONTINUE";A$ 
620 GOSUB 100 
630 RETURN 
990 STOP 

Fig. 8.17 - Listing for FFT8.02 
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420 we now input the test function data to the 0 side of the C(0,Q) 
array, and set the S(0,Q) side to zero. To print the results out, we 
must determine which side of the array was used to receive the last 
pass through the loop. This is determined automatically, since the 
output is always placed in the side that TO is set to; however, we 
toggle TO one last time as we exit the final pass through the loop, 
and consequently we will print the side indicated by Tl. 

We can now arbitrarily select the number of data points that 
we wish to handle in our FFT, and we allow the selection of N at 
the beginning of the program before we dimension the arrays. We 
do this in lines 12 through 16 and the job is finished. The 
complete program is shown above in Fig 8.17. Type it into your 
computer and try it. If the program works, and you understand it 
all, it's okay to feel a little pride (it's justifiable). In fact, you 
deserve a break—perhaps even a beer and pizza. Unfortunately, 
that's out of the question. We still have unfinished business— 
another "mile to go before we sleep" so to speak. 

8.5 THE INVERSE FFT 

We already have the inverse FFT of course—it's the same 
algorithm we just developed (see chapter 4). We need only make 
a change in "scale factors", and some minor changes in program 
control. Let's talk about the scale factor first. 

When we take the forward transform we must multiply 
through by a unit amplitude sinusoid, sum up all the products, and 
then divide by the number of terms to find the average value of the 
resultant. When we reconstruct the time domain function however, 
we only need to sum up all of the points from the individual 
sinusoids—no averaging is involved. Consequently, if we use the 
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identical routine for both the forward and reverse transforms, there 
will be a scale factor error of Q in one or the other. To correct for 
this discrepancy we must introduce a scale factor term into the 
routine. We can set this term to either Q or 1.0, effectively scaling 
the results for a forward or inverse transform. 

In the actual butterflies of the program we have just 
presented (Fig 8.17, lines 187, 188, 194 and 195), the right hand 
sides of these equations are all divided by 2. This division by 2 for 
M stages of computation achieves the scale factor requirement (i.e. 
Q) for the forward transform, but is the culprit that introduces an 
error into the results of an inverse transform. If we replace the "2" 
in these equations with a variable "SKI", we may set SKI to 2 
when doing the forward transform and to 1 when doing the 
inverse. The changes required will be: 

187 C(T0,J1 + I)=(C(T1,I+J)+C(T1,K)*KC(ICT)-S(T1,K)*KS(KT))/SK1 
188 S(T0,J1+I)=(S(T1,I+J)+C(T1,K)*KS(KT)+S(T1,K)*KC(KT))/SK1 

194 C(T0,J1 + I)=(C(T1fI+J)+C(T1,K)*KC(KT)-S(T1,K)*KS(ICT))/SK1 
195 S(T0,J1 + I)=(S(T1,1+J)+C(T1,K)*KS(KT)+S(T1,K)*KC(ICT))/SK1 

and at line 612 we set SKI = 2 when we set the TO and Tl flags: 

612 T0=1:T1=0:SK1=2 

This takes care of the forward transform. To achieve the inverse 
transform we must make the following changes to the "MAIN 
MENU": 

10 REM *** (FFT8.10A) FFT/INV FFT *** 

62 PRINT SPC(5);"2 = INVERSE TRANSFORM":PRI NT 
64 PRINT SPC(5);"3 = EXIT":PRINT 
90 A=VAL(A$):0N A GOSUB 600,700,990 
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Then, at line 700, we write the inverse transform routine. 

700 REM *** INVERSE TRANSFORM *** 
710 SK1 = 1 
712 CLS:PRINT "TIME AMPLITUDE NOT USED "; 
714 PRINT "TIME AMPLITUDE NOT USED":PRINT:PRINT 
720 GOSUB 106 
730 RETURN 

We set SKI to 1 (line 710) thereby removing the forward 
transform scale factor, and print a new heading for the output data. 
Having done this we GOSUB to line 106 of the FFT routine. 
When we return the inverse FFT will have been completed. 

Put these changes into the program developed previously 
and run the forward and inverse transform for N=4. Then compare 
the results to those obtained in the previous chapters. 

Okay, you've earned that break now. 

A UTHOR 'S CLOSING REMARKS 

As is always true, when you completely understand a presenta
tion, you will completely understand its limitations. There are a 
multitude of shortcomings and places for easy improvement in the 
software presented in this chapter... and they will remain there as 
challenges—as exercises. If improvements are not immediately 
apparent you might want to review chapter 6, or even re-read this 
one. That is the advantage (and curse) of writing your own 
software—you can always find ways to improve it. 
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APPENDIX 1.1 

BASIC Programming Language 

BASIC is simple to use and easy to learn. If you want to 
multiply two numbers together, you type: 

Y = 2*2 (The * replaces x and must always be used 
to indicate multiplication.) 

If you want to divide two numbers you type: 

Y • 4/2 (The / sign indicates division just as in 
algebra.) 

To add or subtract you type: 

Y = 4 + 2 o r Y = 4 - 2 

Nothing could be simpler! [NOTE: Formally, all of the above statements 
are written: LET Y = 2*2; LET Y = 4 / 2 ; etc. The LET term is simply 
gold plating and usually omitted by experienced programmers. We will 
drop it from the start.] 

BASIC, of course, is more useful than that. You don't have to 
type the actual numbers in, you can type: 

Y=A*B: P I = 3 . 1 4 : Y 1 = 2 * P I + A * B : o r AREA = R * R * 3 . 1 4 

You can also type: 

Y = S I N ( 3 . 1 4 ) ; o r Y = C O S ( N * P I ) ; o r Z=ATN(Y/X) 
[ATN=ArcTaNgent ] 

and, of course, much more. Note that sometimes we use spaces between 
the characters and sometimes not. When writing equations the spaces are 
optional and BASIC ignores them. This is not true when writing KEY 
WORDS such as LET, COS, FOR, THEN, etc., etc. Spaces are required 
following KEY WORDS. 
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To "program" in BASIC you simply write down a sequence of 
instructions; the computer will perform them one step after the other. All 
you have to do is number the lines so the computer will know in what 
order to perform the steps: 

10 PI = 3.14159265358: E = 2.7182818 
20 Y - SIN(E*PI) 
3 0 PRINT Y 
4 0 END 

Note that in line 10 we typed two instructions—all we had to do was 
separate them with a colon. In line 30 we introduced a new instruction 
PRINT. PRINT Y will cause the value of Y to be displayed on the 
screen. Displaying the result of a computation is not automatic—we do 
not waste computer time displaying intermediate results. Line 40 tells the 
computer to stop running the program—this isn't really necessary in this 
case since BASIC would have stopped anyway when it ran out of 
instructions. Typing STOP or END is necessary sometimes, and always 
a good habit. NOTE: Some versions of BASIC do not require line 
numbers, but GWBASIC requires them and we are trying to keep things 
simple. 

What can we really do with BASIC? Suppose we want to 
simulate the input to a hypothetical digital system. Suppose, for example, 
the input is normally created by running a sine wave generator into an 
A/D converter (A/D = Analog to Digital). The A/D "samples" the sine 
wave at regular intervals and presents 16 digitized "words" to the 
computer for every cycle of sine wave. How can we simulate this? 

10 N=0: PI=3.14159: Kl=PI/8 
20 Y=SIN(N) 
3 0 PRINT Y 
40 N=N+K1 
50 GOTO 20 

The new instruction, GOTO 20, obviously causes the computer to go back 
to line 20 where it continues executing the instructions. There is no END 
statement here though—this program never ends. It is an endless "loop", 
and that could be a problem... 

There are two ways to get out of this "endless loop": 
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1) change the ending of the routine to this: 

50 I F N < 2 * P I THEN 2 0 
60 STOP: END 

The IF ... THEN statements gives us a great deal of control. It allows the 
computer to make decisions. Line 50 now reads: IfN is less than 2 times 
PI (i.e. N< 2*PI) THEN go back to line 20. If this condition is not met 
the execution simply goes straight ahead to the next instruction which will 
stop and end the routine. We could also have written: 

50 IF N=> PI-l.14159*1024 THEN 70 
60 GOTO 20 
70 STOP: END 

This routine will run quite a bit longer than the previous one. In line 60 
the instruction GOTO is oneword. [Note: You may recognize a potential 
problem here. Does the computer multiply before subtracting or does it 
perform the sequence as it is written? If you are uncertain, group things 
with parentheses ((PI-1.14159)* 1024).] 

BASIC is generally pretty flexible in how we use the instruc
tions. The second way to get around the endless loop problem is: 

2) change the routine to look like this: 

10 PI=3.14159: Kl=PI/8 
12 FOR N = 0 TO 2*PI STEP Kl 
20 Y=SIN(N) 
3 0 PRINT Y 
40 NEXT N 
50 STOP: END 

The FOR statement (line 12) must always be used with a NEXT statement 
(line 40)—they come as a pair. This statement is designed specifically for 
making loops, and does quite a bit for us: a) It tells the computer that the 
following instructions (until it encounters a NEXT statement) are part of 
a loop, b) It defines a "loop counter" (variable N in the above example), 
c) It gives the starting value for the loop counter (in this case 0). d) It 
gives the ending value of the loop counter (2*PI). e) It also gives the 
increment by which the loop counter is to increase each time we step 
through the loop (STEP Kl). The STEP term is optional and is 1.0 if not 
stated otherwise. All in all, this is quite a bit for a single instruction. 
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Line 40 has been changed to a NEXT N statement which tells the 
computer to go back to the beginning of the loop (i.e. line 12). The N 
following the NEXT is, like LET, unnecessary; but, in this case, it helps 
us keep track when we start "nesting" one loop inside of another. 

Notice that we sort of slipped the FOR statement in between 
lines 10 and 20. GWBASIC is nice about that—you can type in a new 
line at any time and BASIC will put it in the correct place for you (you 
must specify the line number, of course). If you want to delete a line, 
simply type the line number and hit the Enter (Carriage Return) key. 

I/O (Input/Output) 

The PRINT statement used above is an output command. It 
"outputs" something to an "output device" (i.e. the display screen). The 
disk drive and printer are other examples of output devices. We also need 
to input things to a program occasionally, and this is frequently done from 
the keyboard. In BASIC we use the INPUT statement. For example: 

INPUT "NUMBER OF TERMS";N 

causes the computer to print NUMBER OF TERMS? to the display screen 
(as a prompt for the user) and then stop and wait for a number to be typed 
into the keyboard. What it is really waiting for is a Carriage Return to be 
typed, so when we have typed the desired number we hit the carriage 
return to let the computer know we have finished "inputting" the 
necessary data. The computer then takes the number that was typed and 
assigns it to the variable N. Neat! 

That's enough for now. You can read the program in chapter 1. 
We will take the time to explain all new instructions as we go along. 

[NOTE: There are, of course, a great many instructions, 
techniques, and rules that we have not mentioned here. We will cover 
what we need as we go along; but, there will be a great deal that we never 
mention. Be forewarned that at the beginning you will probably find it 
slow going when you read the programs in this book. Don't be discour
aged—very shortly you will be "sight reading" them.] 



FFT/A5 159 

APPENDIX 5.1 

The programs of chapter 5 are based on a single "core" with 
specific Execution Control Subroutines used to illustrate the individual 
theorems. This is essentially the same program developed in preceding 
chapters and, consequently, we will discuss only the modifications here. 

4 REM ****************************************** 

6 REM ** (DFT5.00A) GENERATE/ANALYZE WAVEFORM ** 
8 REM ****************************************** 

10 Q=32 
12 PI=3.141592653589793#:P2=2*PI:K1=P2/Q:K2=1/PI 
14 DIM C(2.Q),S(2.Q),KC(2,Q).KS(2.Q) 
16 CLS:F0R J=0 TO Q:FOR 1=1 TO 2:C(I,J)=0:S(I,J)=0:NEXT:NEXT 
20 CLS:REM * MAIN MENU * 
22 PRINT:PRINT:PRINT " MAIN MENU":PRINT 
24 PRINT " 1 = THEOREM ILLUSTRATION":PRINT 
31 PRINT " 2 = EXIT":PRINT:PRINT 
32 PRINT SPC(10);"MAKE SELECTION"; 
34 A$ = INKEY$:IF A$="" THEN 34 
36 A=VAL(A$):0N A GOSUB 300,1000 
38 GOTO 20 
40 CLS:N=1:M=2:K5=Q:K6=-1:GOSUB 108 
42 FOR J=0 TO Q:C(2,J)=0:S(2,J)=0:NEXT 
44 GOSUB 200: REM - PERFORM DFT 
46 GOSUB 140: REM - PRINT OUT FINAL VALUES 
48 PRINT:INPUT "C/R TO CONTINUE";A$ 
50 RETURN 
80 CLS:GOSUB 150:REM PRINT HEADING 
81 FOR 1=0 TO Q-l:C(1fI)=0:S(1,I)=0:NEXT 
82 N=2:M=1:K5=1:K6=1 
84 GOSUB 200:REM INVERSE TRANSFORM 
86 GOSUB 140:REM PRINT OUTPUT 
88 PRINT:INPUT "C/R TO CONTINUE";A$ 
90 RETURN 
100 REM ****************************************** 
101 REM * PROGRAM SUBROUTINES * 
102 REM ****************************************** 
104 REM * PRINT COLUMN HEADINGS * 
105 REM ****************************************** 
106 REM * FREQUENCY DOMAIN HEADING * 
107 REM ****************************************** 
108 PRINT:PRINT :IF COR$="P" THEN 116 
109 PRINT "FREQ F(COS) F(SIN) FREQ F(COS) F(SIN)" 
110 PRINT 
111 RETURN 
112 REM ****************************************** 
113 REM * POLAR COORDINATES HEADING * 
114 REM ****************************************** 
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116 PRINT "FREQ F(MAG) F(THETA) FREQ F(MAG) F(THETA)" 
118 GOTO 112 
137 REM ****************************** 
138 REM * PRINT OUTPUT * 
139 REM ****************************** 
140 IF COR$="P" AND M=2 THEN GOSUB 170 
141 FOR Z=0 TOQ/2-1 
142 PRINT USING "## ";Z; 
144 PRINT USING "+#*#.#####_ ";C(M,Z),S(M,Z); 
145 PRINT USING "##_ ";(Z+Q/2); 
146 PRINT USING "+###.#####_ ";C(M,Z+Q/2),SCM,Z+Q/2) 
147 NEXT Z 
148 RETURN 
150 REM ****************************************** 
152 REM * PRINT TIME DOMAIN COLUMN HEADINGS * 
153 REM ****************************************** 
154 PRINT 
156 PRINT • RECONSTRUCTION":PRINT 
158 PRINT " T T":PRINT 
160 RETURN 
169 REM *************************************************** 
170 REM * CONVERT FROM RECTANGULAR TO POLAR COORDINATES * 

172 FOR I=0T0Q-1 
174 MAG=SQR(C(M,ir2+S(M,ir2) 
175 IF C(M.I)=0THEN 190 
176 ANGLE =180/PI*ATN(S(M.I)/C(M.D) 
177 IF C(M.I)>0 THEN S(M,I)=ANGLE:G0T0 180 
178 IF ANGLE>0 THEN S(M,I)=ANGLE-180 
179 IF ANGLE<0 THEN S(M,I)=ANGLE+180 
180 C(M.I)=MAG:NEXT 
182 RETURN 
190 IF S(M,I)=0 THEN 180 
192 S(M,I)=90:G0T0 180 
200 REM ******************************* 
202 REM * TRANSFORM/RECONSTRUCT * 
204 REM ******************************* 
206 FOR J=0 TO Q-1:REM SOLVE EQNS FOR EACH FREQUENCY 
208 FOR 1=0 TO Q-1:REM MULTIPLY AND SUM EACH POINT 
210 C(M,J)=C(M,J)+C(N,I)*COS(J*I*K1)+K6*S(N,I)*SIN(J*I*K1) 
211 S(M,J)=S(M,J)-K6*C(N,I)*SIN(J*I*K1)+S(N,I)*COS(J*I*K1) 
212 NEXT I 
214 C(M,J)=C(M,J)/K5:S(M,J)=S(MfJ)/K5:REM SCALE RESULTS 
216 NEXT J 
218 RETURN 
220 REM ******************************* 
222 REM * PLOT FUNCTIONS * 
224 REM ******************************* 
225 SFF=16:SFT=64 
226 SCREEN 9,1.1.1:C0L0R 9,1.1:CLS:YF=-1:YT=-1 
228 LINE (0,5) - (0,155):LINE (0,160)- (0,310) 
230 LINE (0,155) - (600,155):LINE (0,310)-(600,310) 
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232 GOSUB 266 :REM SET SCALE FACTORS 
234 COLOR 15,1,1 
236 FOR N=0 TO Q-l :REM PLOT DATA 
238 GOSUB 260 :REM CONVERT DATA TO PIXELS 
240 LINE (X,Y) - (X,Y):LINE (X.Z)-(X.Z) 
242 NEXT N 
244 LOCATE 2,10:PRINT "FREQUENCY DOMAIN (MAG)" 
246 LOCATE 14,12:PRINT "TIME DOMAIN" 
248 LOCATE 24,1 
250 INPUT "C/R TO CONTINUE" :A$ 
252 SCREEN 0.0,0 
254 RETURN 
256 REM ******************************* 
257 REM * COMPUTE SCREEN LOCATIONS * 
258 REM ******************************* 
260 Y=SQR(C(2,Nr2+S(2,Nr2):Y=155-(YF*Y) 
261 X=N*600/Q:Z=310-(YT*C(1.N)) 
262 RETURN 
264 REM * SET & PRINT SCALE FACTORS * 

266 YF=150/SFF:YT=150/SFT:LINE (0,5)-(5,5):LINE (0.80)-(5,80) 
268 LINE (0,160)-(5,160):LINE (0.235)-(5.235) 
270 LOCATE 1.2:PRINT SFF :LOCATE 6.2:PRINT SFF/2 
272 LOCATE 12.2:PRINT SFT:LOCATE 17,2:PRINT SFT/2 
274 RETURN 

Figure A5.1 - Core Program Listing 

In line 10 we now define a variable Q. In a general purpose 
program we will need the capability to select the length of the input 
function. In this program we provide that capability by defining Q to be 
the length of the input data array. In line 12 we define Kl in terms of Q 
and in line 14 we dimension all of the data arrays in terms of Q. In line 
16 we initialize the primary data arrays by setting up the loop in terms of 
Q. This sort of reorienting of the program loops in terms of Q takes place 
throughout the program of course. 

At line 170 we provide a routine to convert from rectangular to 
polar coordinates. This is done by finding the RSS (square root of the 
sum of the squares) of the cosine and sine components. The angle is 
found as the arctangent of the sine divided by the cosine component (the 
answer is converted from radians to degrees). A certain amount of 
overhead is required (lines 175 - 179) to determine in which quadrant the 
angle lies (BASIC assumes angles are in the first and fourth quadrants— 
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we must make the determination for a true four quadrant system). 
Starting at line 220 we provide a routine to plot the two 

functions. It may be interesting to review this routine if you have never 
plotted anything on the screen before; otherwise, it is hardly worth the 
effort, since different versions of BASIC have different methods of 
plotting data. In G WBASIC we must select the "screen" we want to work 
in (there are several), and the colors to be used for foreground and 
background (see line 226). Lines 228 and 230 draw the X-Y coordinates. 
We then jump down to line 266 to set the scale factors and print this data 
on the screen (this will be different for each illustration). We then return 
to line 234 where we change the color of our plotting "foreground" and 
begin to plot the functions (lines 236 through 242). When plotting points 
on the screen (in G WBASIC) the points are located in a matrix of "pixels" 
and the data of the functions plotted must be converted to these coordi
nates. The actual locations depends on the "screen" selected, the comput
er being used, and version of BASIC. If you are using GWBASIC with 
any PC/CLONE with VGA, this routine will work fine—otherwise there 
may be problems. The data to be plotted is transformed into screen 
coordinates in the subroutine at lines 260 - 262. 

APPENDIX 5.2 

The following routines are presented essentially without comment. They 
are the four routines that modify the program of Figure A5.1 above to 
perform the demonstrations of the Theorems. They are relatively simple 
and should be readable with the help of the remarks. 

4 gEM ****************************************** 
6 REM ** (DFT5.01A) GENERATE/ANALYZE WAVEFORM ** 
24 PRINT " 1 = SIMILARITY THEOREM":PRINT 
299 REM ******************************* 
300 CLS:REM * SIMILARITY THEOREM * 
302 REM CLEAR ARRAYS 
304 FOR 1=0 TO Q-1 :C(1,1)=0:S(1,1)=0 
306 FOR J=1 TO 2:KC(J,I)=0:KS(J,I)=0:NEXT:NEXT 
308 CLS:PRINT "WIDTH =";F9:REM DISPLAY CURRENT WIDTH 
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310 INPUT "WIDTH ";F9 :REM INPUT WIDTH 
311 REM CHECK WIDTH LIMITS 
312 IF F9>Q/2 THEN PRINT Q/2;" DATA POINTS MAXIMUM":F9=Q/2 
314 IF F9<1 THEN PRINT "1 DATA POINTS MINIMUM":F9=1 
316 PRINT SPC(13);"SIMILARITY TEST - WIDTH =";F9 
317 FOR I=Q/2-F9 TO Q/2+F9:REM GENERATE INPUT FUNCTION 
318 C(1,I)=Q*(SIN(PI*(I-(Q/2-F9))/(2*F9)))A2 
319 NEXT 
320 GOSUB 158:REM PRINT HEADING 
322 M=1:GOSUB 140:REM PRINT INPUT FUNCTION 
324 PRINT:INPUT "C/R TO CONTINUE";A$ 
326 GOSUB 40:REM TAKE XFORM 
328 GOSUB 220:REM PLOT DATA 
330 PRINT "MORE (Y/N)?"; 
332 A$=INKEY$:IF A$="" THEN 332 
334 IF A$="Y" OR A$="y" THEN 304 
396 RETURN 
1000 STOP 

Figure A5.2 - DFT5.01 - Similarity Theorem 

4 REM ****************************************** 
6 REM ** (DFT5.02A) GENERATE/ANALYZE WAVEFORM ** 
24 PRINT " 1 = ADDITION THEOREM":PRINT 
299 REM ******************************* 
300 CLS:REM * ADDITION THEOREM * 
301 REM CLEAR DATA ARRAYS 
302 FOR 1=0 TO Q-1 :C(1,1)=0:S(1,1)=0 
304 FOR J=1 TO 2:KC(J,I)=0:KS(J,I)=0:NEXT:NEXT 
308 REM *** GENERATE ADDITION TEST FUNCTION *** 
310 PRINT:PRINT SPC(13);"EXPONENTIAL RISING EDGE":PRINT 
312 FOR 1=0 TO Q/2-1:C(1,I)=1-EXP(-I/5):NEXT 
314 GOSUB 158: REM PRINT HEADING 
316 M=1:GOSUB 140: REM PRINT INPUT FUNCTION 
318 PRINT:INPUT "C/R TO CONTINUE";A$ 
320 GOSUB 40: REM TAKE XFORM 
322 GOSUB 220: REM PLOT DATA 
323 REM SAVE RISING EDGE TRANSFORM 
324 FOR I=OTOQ-1:KC(1,I)=C(1,I):KC(2,I)=C(2,I):KS(2,I)=S(2,I):NEXT 
326 FOR 1=0 TO Q-1 :C(1,1)=0:NEXT 
328 PRINT:PRINT SPC(13);"EXPONENTIAL FALLING EDGE":PRINT 
330 K4=1-EXP(-Q/10) :REM SET INITIAL VALUE 
332 FOR I=Q/2 TO Q-1 :C(1,1 )=K4*EXP(-(I-(Q/2))/5):NEXT 
334 GOSUB 158:REM PRINT HEADING 
336 M=1: GOSUB 140:REM PRINT INPUT DATA 
338 PRINT:INPUT "C/R TO CONTINUE";A$ 
340 GOSUB 40:REM TRANSFORM DATA 
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341 GOSUB 220:REM PLOT DATA 
342 CLS 
343 PRINT "SUM XFORMS OF RISING AND FALLING EXPONENTIAL FUNCTIONS" 
344 FOR 1=0 TOQ-1:C(2,I)=C(2,I)+KC<2,I):S(2,I)=S<2,I)+KS(2,I):NEXT 
345 M=2:PR I NT: GOSUB 108:REM PRINT HEADING 
346 GOSUB 140:REM PRINT SUM OF XFORMS 
347 PRINT:INPUT "C/R TO CONTINUE";A$ 
348 CLS:GOSUB 150:REM PRINT HEADING 
349 GOSUB 81:REM INVERSE TRANSFORM U/O HEADING 
350 GOSUB 220: REM PLOT DATA 
351 REM * SUM BOTH RISING AND FALLING TIME DOMAIN FUNCTIONS * 
353 PRINT:PRINT SPC(10);"EXPONENTIAL RISING EDGE"; 
354 FOR 1=0 TO Q/2-1:C(1,I)=1-EXP(-1/5):NEXT 
356 PRINT " + EXPONENTIAL FALLING EDGE":PRINT 
358 K4=1-EXP(-Q/10) :REM SET INITIAL VALUE 
360 FOR I=Q/2 TO Q-1:C<1,I)=K4*EXP(-(I-(Q/2))/5):NEXT 
362 GOSUB 158:REM PRINT HEADING 
364 M=1: GOSUB 140:REM PRINT INPUT DATA 
366 PRINT:INPUT "C/R TO CONTINUE";A$ 
368 GOSUB 40:REM TRANSFORM DATA 
370 GOSUB 220:REM PLOT DATA 
372 RETURN 

Figure A5.3 - DFT5.02 - Addition Theorem 

6 REM ** (DFT5.03A) GENERATE/ANALYZE WAVEFORM ** 
24 PRINT " 1 = SHIFTING THEOREM":PR I NT 
299 REM ******************************* 
300 CLS:REM * SHIFTING THEOREM * 
301 REM ******************************* 
302 FOR 1=0 TO Q-1:C(1,I)=0:S(1,I)=0 
304 FOR J=1 TO 2:KC(J,I)=0:KS(J,I)=0:NEXT:NEXT 
305 COR$="P" 
308 REM *** GENERATE IMPULSE FUNCTION *** 
310 PRINT:PRINT SPC(18);"IMPULSE FUNCTION":PRINT 
312 C(1,0)=32 
314 GOSUB 158:REM PRINT HEADING 
316 M=1:GOSUB 140:REM PRINT INPUT FUNCTION 
318 PRINT:INPUT "C/R TO CONTINUE";A$ 
320 GOSUB 40:REM TAKE XFORM 
322 GOSUB 220:REM PLOT DATA 
324 FOR 1=0 TO Q-1:C(1,I)=0:S(1,I)=0:NEXT 
326 INPUT "AMOUNT OF SHIFT (0-31)";S9 
328 C(1,S9)=32 
330 GOSUB 158:REM PRINT HEADING 
332 M=1:GOSUB 140:REM PRINT INPUT FUNCTION 
334 PRINT:INPUT "C/R TO CONTINUE";A$ 
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336 GOSUB 40:REM TAKE XFORM 
338 GOSUB 220:REM PLOT DATA 
340 PRINT "CONTINUE ILLUSTRATION ? (Y/N)" 
342 A$=INKEY$:IF A$="" THEN 342 
344 IF A$="Y" OR A$="y" THEN 324 
346 RETURN 

Figure A5.4 - DFT5.03 - Shifting Theorem 

4 REM ****************************************** 
6 REM ** (DFT5.04A) GENERATE/ANALYZE WAVEFORM ** 
24 PRINT " 1 = STRETCHING THEOREM": PRINT 
299 REM ******************************* 
300 CLS : REM * STRETCHING THEOREM * 
301 REM ******************************* 
302 FOR I = 0 TO Q - 1: CO, I) = 0: S(1, I) = 0 
304 FOR J = 1 TO 2: KC(J, I) = 0: KS(J, I) = 0: NEXT: NEXT 
305 COR$ = "P": Q = 16: K1 = P2 / Q 
306 GOSUB 900 
308 REM *** GENERATE "Z1" FUNCTION *** 
310 PRINT : PRINT SPC(18); " - Z1 - FUNCTION": PRINT 
312 C(1, 0) = 8: C<1, 1) = -8: CO, 2) = 8: CO, 3) = -8 
314 GOSUB 158: REM PRINT HEADING 
316 M = 1: GOSUB 140: REM PRINT INPUT FUNCTION 
318 PRINT : INPUT "C/R TO CONTINUE"; A$ 
320 GOSUB 40: REM TAKE XFORM 
322 GOSUB 220: REM PLOT DATA 
324 FOR I = 0 TO Q - 1: CO, I) = 0: SO, I) = 0: NEXT 
326 Q = 32: K1 = P2 / Q 
328 CO, 0) = 8: CO, 2) = -8: CO, 4) = 8: CO, 6) = -8 
330 GOSUB 158: REM PRINT HEADING 
332 M = 1: GOSUB 140: REM PRINT INPUT FUNCTION 
334 PRINT : INPUT "C/R TO CONTINUE"; A$ 
336 GOSUB 40: REM TAKE XFORM 
338 GOSUB 220: REM PLOT DATA 
396 RETURN 

Figure A5.5 - DFT5.04 - Stretching Theorem 
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APPENDIX 5.3 
PROOF OF THE THEOREMS 

In the following proofs the fundamental definition of the Fourier 
Transform is taken as: 

F(f) f(t) e'^Mt (A5.3.1) 

THE SIMILARITY THEOREM 

The Similarity theorem states: If F(f) is the Fourier transform of 
f(t), then the transform of f(at) will be F(f/a)/1 a | ( | a | = magnitude of 
a). This follows directly from (A5.3.1) when f(at) is substituted for f(t): 

f(at) ei2,tftdt = fJ- f(at) e-i2*(f/aXat)d(at) 

F(f/a) (A5.3.2) 

Note: Replacement oft with (at) in the exponential term requires that we 
replace f with (f/a). 

THE ADDITION THEOREM (LINEARITY) 

The theorem is: If F(f) and G(f) are the transforms of f(t) and 
g(t) respectively then F(f)+G(f) will be the transform of f(t)+g(t). Again, 
this results from a direct application of the integral of (A5.3.1): 
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[f(t)+g(t)]e-i2*ftdt = f(t)e-,2,Iftdt + g(t)e-,2,,ttdt 

= F(f) + G(f) (A5.3.3) 

THE SHIFTING THEOREM 

The theorem is: If F(f) is the transform of f(t), then the 

transform of a function which has the form f(t-T,), where T, is a constant, 

will have the form e"'2ltfriF(f). We note that, for the functions used in this 

book, f(t) = 0 for t < 0 because we have taken the lower limit of the 

domain to be t = 0. This remains true even when the function is shifted, 

therefore, we may set the lower limit of integration to 0. Substituting (t-

Tl)fortin(A5.3.1): 

F(f) f(t-Tl) e
i2,lfl:t-T1) d(t-Tl) (A5.3.4) 

Recognizing that the integrand may be written: 

fft-Tlt e"
i2,tfi:t"TI) = flt'TD e •i2rtft 

-i2nfTl 

Then, if we multiply both sides of (A5.3.4) by e"1 

'F(f) = f(t-Tl)e,2,Iftdt (A5.3.5) 

The right side of (A5.3.5) is, of course, the Fourier transform of the 
shifted function f(t-Tl). 
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THE MODULATION THEOREM 

We did not illustrate this theorem in the text, but it will be 
helpful in understanding the Stretching theorem. The theorem relates to 
the practice of multiplying a function f(t) by a sinusoid in a process 
generally known as Amplitude Modulation. In radio engineering this 
process is known to produce two "half amplitude sidebands" centered on 
the "carrier frequency" f0. The theorem is: IfF(f) is the transform of f(t), 
then the transform of f(t) cos(27if0t) is Vi F(f-f0) + 'A F(f+f0). 

F(f) f(t) Cos(27tf0t) e-2,tftdt 

Recognizing that: 

Cos(27tf0t) = e'^'+e-12**" 
2 

(A5.3.6) 

F(f)='/2 

= Vi 

f(t) e ' ^ V ^ d t + 'A f(t) ei2,tfo,e-i2,tftdt 

f(t) e-i2*(f-fo)t dt + Vi f(t) e ^ ™ * dt - (A5.3.7) 

V2 F(f-f0) + 'A F(f+f0) (A5.3.8) 

Note: f >ffor normal operation yielding negative frequencies for (f-fj 
implying the "lower sideband" is the complex conjugate of the upper. 

THE STRETCHING THEOREM 

When we "stretch" a digitized function by placing zeros between 
the data points, we are actually performing two operations: We are 
expanding the function and we are introducing modulation. The signal 
being modulated (i.e. the "carrier") may be represented as a Cos2 function 
which produces ones and zeros at the Nyquest frequency fN. Since a 
frequency doubling occurs when we square a cosine wave we must use 



FFT/A5 169 

fN/2 in our equation i.e. Cos2(27ifN/2). Our data samples then occur when 
Cos2(2;ifN/2) equals 1 and 0. 

The theorem states: when dealing with the DFT, if F(f) is the 
transform of f(t), then the transform of f(t)strctch will produce the original 
F(f), plus a duplicate copy of F(f), both of which will be half the 
amplitude of the original and half the spectrum width. 

The transform of the stretched function is represented by: 

f f(t/2) Cos2(27t(fN/2)t) ei2,tftdt (A5.3.9) 
0 

Recognizing that: 

Cos2(27t(fN/2)t) = 1 + Cos(27tf„f) 
2 

(A5.3.9) becomes: 

'A ff(t/2)e-i2,tftdt +Y2 [f(t/2)Cos(27tfNt)ei2,lftdt 
Jo Jo 

The first part, which we will call F,(f), yields F(2f) from Similarity. This 
is the compacted spectrum of the original function. The second part, F2(f) 
must be modified to put things in terms oft/2: 

Recognizing that Cos(27ifNt) = ei2"fl"+ e'12"*" 
2 

F2(f) = 14 f(t/2) ei4,t(f-fn),/2d(t/2) +V2 f(t/2) e-"'*™)"2 d(t/2) 

- 'A F(2(f-fN)) + K F(2(f+fN)) 

Note that the spectrums of these two functions have both been compressed 
just as the spectrum of F,(f) was. To obtain the complete transform we 
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sum F,(f) and F2(f): 

f(t)stre,ch ei2,lftdt = KF(2f) + V4F(2(f-fN» + V4F(2(ff^)) - (A5.3.10) 
. 0 

A few words will help greatly to make sense of this. In a non-
stretched function, the Nyquest frequency divides the two halves of the 
spectrum. The spectrum displayed above the Nyquest is comprised of the 
negative frequencies in a mirror image of the lower positive frequencies. 
In a stretched function the spectrum is compressed (first term of eqn. 
A5.3.10) such that the positive frequencies will extend only halfway to 
the Nyquest frequency from the bottom, and the negative frequencies will 
extend half way from the top of the frequency domain. The last two 
terms of A5.3.10 provide spectrums centered about the Nyquest frequency 
similar to the "sidebands" of the Modulation Theorem. The overall result 
is that the original spectrum is now duplicated. 
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APPENDIX 6.1 

TIME TRIALS PROGRAM LISTING 

We don't actually need to write another "core" DFT program, of 
course; the one from the previous chapter is as good as any other we 
might come up with (perhaps it is even better for our present purposes 
since it contains no special provisions to enhance performance). We will 
need to make a few changes to DFT5.00A to accomplish our objectives 
however, as listed below: 

6 REM ** (DFT6.01A) GENERATE/ANALYZE WAVEFORM ** 

10 Q = 256 

24 PRINT " 1 = TIME TRIALS": PRINT 

43 TIM9 = TIMER 

45 TIM9 • TIMER - TIM9 

47 PRINT "TIME WAS "; TIM9; " SECONDS" 

In addition to the above changes, we need to write a short routine 
which will actually perform the time trials (similar to the routines that 
illustrated the theorems of the previous chapter). 

300 CLS : REM * TIME TRIALS * 
301 Q • 256" REM ******************************* 
302 FOR I = 0 TO Q - 1: C(1, I) = 0: S O , I) = 0 
304 FOR J = 1 TO 2: KC(J, I) = 0: KS(J, I) = 0: NEXT: NEXT 
305 COR$ = "P" 
306 GOSUB 900 
310 INPUT "ARRAY SIZE AS POWER OF 2"; Q1 
312 Q = 2 A Q1 
324 FOR I = 0 TO Q - 1: C O , I) = 0: S O , I) = 0: NEXT 
328 C O , 0) = Q 
332 M = 1 
336 GOSUB 40: REM TAKE XFORM 
340 PRINT "CONTINUE ILLUSTRATION ? (Y/N)" 
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342 A$ = INKEYS: IF A$ = "" THEN 342 
344 IF A$ <> «N" AND A$ <> "n" THEN 310 
346 RETURN 
900 CLS : SCREEN 9, 1, 1: COLOR 15, 1: REM TEST DESCRIPTION 
902 FOR DACNT = 1 TO 6 
904 READ A$: PRINT A$ 
906 NEXT 
908 INPUT "C/R TO CONTINUE"; A$ 
910 SCREEN 0, C, 0: RETURN 
920 DATA " TEST 1" 
922 DATA " " 
930 DATA "In this routine our sole purpose is to illustrate" 
932 DATA "the time required to perform a DFT for various lengths" 
934 DATA "of input data arrays." 
936 DATA " " 
938 DATA " » 
1000 STOP 

In the above routine we initialize things in lines 301 through 306. 
At line 310 we allow selection of the array size (i.e. Q) and then generate 
an impulse function for our input (lines 324-328). At line 336 we take the 
transform as usual except that now the time just before and after entering 
the xform routine are taken (lines 43 and 45 above). The difference 
between these two times is then printed at line 47 (after printing out the 
transform results). At line 340 the user is given the option of continuing 
or terminating the illustration. 
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APPENDIX 6.2 

To incorporate coefficient matrices we must make the following 
changes: 

10 Q=64 
14 DIM C(2,Q),S(2,Q),K(2,QfQ) 
325 FOR 1=0 TO Q:F0R J=0 TO Q 
326 ARG=K1*I*J:K(1,I,J)=C0S(ARG):K(2,I,J)=SIN(ARG) 
327 NEXT J:NEXT I 

In lines 325 through 327 we generate all of the sine and cosine 
coefficients we will need in the transform, then, at lines 210 and 211: 

210 C(H,J)=C(M,J)+C(N,I)*K(1,J,I)+K6*K(2,J,I)*S(N/I) 
211 S(M,J)=S(M,J)-K6*C(N/I)*K(2,J,I)+S(N,I)*K(1,J,I) 

In lines 210 and 211 we change the transform equations to use this array 
of coefficients rather than computing new sine and cosine values each 
time through the loop. Also change line 301 to Q=64 and delete line 304. 

APPENDIX 6.3 

Eliminating the negative frequencies can be accomplished very 
simply by changing one line in the transform algorithm: 

206 FOR J=0 TO Q/2:REM SOLVE EQNS FOR EACH FREQUENCY 

Note that this still includes the Nyquest frequency. 

While we are at it we might as well take the time to clean up the 
"twiddle factor" generation routine at lines 325 through 327: 

325 FOR 1=0 TO Q/2:F0R J=0 TO Q 

and we can also cut down the size of the K(N,I,J) data array in the 
dimension statement at line 14: 

14 DIM C(2,Q),S<2,Q),K(2,Q/2,Q) 
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APPENDIX 7.1 

VECTOR ROTATION 

A vector may be represented as either a magnitude at some angle 
or as rectangular components as shown below in figure A7.1. These 
representations are equivalent—one can easily be converted into the other. 

R i , a ^ 

Fig. A7.1 - Polar and Rectangular Vector Representations 

Now, it is apparent that, in the polar format (R,,a), we may 
rotate this vector through an angle p by simply adding (3 to a; however, 
when working in rectangular coordinates, it is not immediately apparent 
how to accomplish this rotation. We could convert to the polar format, 
add the angle of rotation, and then convert back to rectangular coordinates 
but that would be tedious and time consuming. 

Actually, it is not difficult to handle rotations in the rectangular 
format. Consider the rectangular representation of R, (as shown in Fig. 
A7.1 above); we may rotate this whole assemblage of coordinates by the 
angle (3 (see Fig. A7.2). The two X,Y components will still add up to the 
original vector R,, but now each of these coordinates is a vector itself (X,, 
Y, in Fig. A7.2). To solve the problem we have set for ourselves we must 
find the components of each of these two vectors along the X and Y axes. 
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YROT 

Fig. A7.2 - Rotated Vector Components 

Obviously they have been rotated by an angle (3, so each of their new X,Y 
coordinates may be found as: 

Y2y = Y, Cos p 
X2y = -Y, Sin p 

and, 
Y2x = X, Sin p 
X2x = X, Cos P 

Now that we have all of these components aligned along the X and Y axes 
we may simply sum them together to find the components of the rotated 
vector: 

YROT = Y2y + Y2x = Y, Cos p + X, Sin p 

and, 
XROT = X2x-X2y = X 1 C o s P - Y 1 S i n p 

which is the relationship we wanted and the one used in Chapter 7. 
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BIBLIOGRAPHY 

If you are not well founded in the calculus there is precious little 
available in the literature. If you have a working familiarity with calculus, and 
want to continue your study, I recommend the following: 

Bracewell, R. N., The Fourier Transform and Its Applications, 
McGraw-Hill. This is my personal preference and my most often used reference. 
If you become serious about this subject this book will eventually find its way into 
your personal library. 

Brigham, E. O., The Fast Fourier Transform And Its Applications, 
Prentice Hall. This is another standard you will want to become familiar with— 
extensive bibliography. 

Walker, J. S., Fast Fourier Transform, CRC Press. Some excellent 
material—comes with a disk. 

There are many other books available and new ones being published 
every year, but you should judge the value of these for yourself. 

Aside from the above, there are a couple of articles you will probably 
want to read or collect: 

Special issues of the IEEE Transactions on Audio and Electroacoustics 
on the FFT, \fol. AU-15, No. 2, June 1967 and \bl. AU-17, No.2, June 1969. 

Bergland, G. D., "A Guided Tour Of The Fast Fourier Transform," 
IEEE Spectrum, \©1. 6, July, 1969. 

Cooley, J. W., and J. W. Tukey, "An Algorithm For The Machine 
Calculation Of Complex Fourier Series," Mathematics of Computation, Vol. 19, 
April, 1965. This, of course, was the article that "lit the torch!" 
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ERRATA 

Page 10, section 1.05 DISCRETE DATA, 4th line from bottom: 

"representing continuous functions. If, on the other hand, we are careless, 
the relationship of the discrete function to what we suppose to be the 
underlying continuous curve may be completely unfounded (perhaps we can 
discuss such things in another book). 

Page 31, COMMENTARY, last paragraph: 

In addition to these comments, the DFT deals with arrays cf 
discrete, digital data. There are no smooth, continuous curves in a 
computer." 

Page 106, section 6.4 OMITTING THE NEGATIVE FREQUENCIES, 
1st para.: 

As we noted back in chapter 3,when the input is limited to real 
numbers, we do not need to compute the negative frequencies—they are 
only the complex conjugates of the real frequencies." 

Page 130, last paragraph, first sentence.: 

Based on our benchmark of 1/tsec per operation, it would take 
approximately 0.022 seconds to transform the 2048 data point array we 
discussed in the "audio" example at the end of chapter 6—that's 0.044 
seconds for transform and reconstruction." 

Page 151, section 8.5 THE INVERSE TRANSFORM 1st para.: 

We already have the inverse FFT of course—it's the same 
algorithm we just developed (see chapter 4). We need only make 
forward/inverse scale factor and sign changes, and minor changes in 
program control." 

Page 152, 2nd para., 6th line: 



If we replace the "2" in these equations with a variable "SKI", 
we may set SKI to 2 when doing the forward transform and to 1 when 
doing the inverse. For the sign change we simply introduce the variable 
K6: 
187 C(T0,J1+I)=(C<T1,I+J)+C(T1fK)*KC(KT)-K6*S(T1,K)*KS(KT))/SK1 
188 S(T0,J1 + I)=(S(T1,I+J)+IC6*C(T1,K)*ICS(KT)+S(T1,K)*KC(KT))/SK1 

194 C(T0,J1+I)=(C(T1,I+J)+C(T1,K)*KC(KT)-K6*S(T1,K)*KS(KT))/S<1 
195 S(T0,J1+I)=(S(T1,I+J)+K6*C(T1,K)*KS(<T)+S(T1,K)*KC(KT))/SK1 

at line 612 we set SKI = 2 and K6 to positive 1 when we set the T0/T1 
flags: 

612 T0=1:T1=0:SK1=2:K6=1 

Page 153, top of page: 

Then, at line 700, we write the inverse transform routine. 

700 REM * * * INVERSE TRANSFORM * * * 
770 SK1 = 1:K6 = -1 
712 CLS:PRINT "TIME AMPLITUDE NOT USED "; 
714 PRINT "TIME AMPLITUDE NOT USED":PR I NT:PR INT 
720 GOSUB 106 
730 RETURN 

We set SKI to 1 (line 710) thereby removing the forward 
transform scale factor, K6 to -1, and print a new heading for the output 
data." 


