
Understanding
the

FFT
A Tutorial on

the Algorithm &

Software for Laymen,

Students, Technicians

& Working Engineers

Anders E. Zonst

V^itrus Tress
Titusville, Florida

To Shirley

iv Understanding the FFT

ACKNOWLEDGEMENTS

A special thanks to Renee, Heather and Maureen. Without

their help you would have had to suffer countless instances of bad

grammar, awkward syntax and incorrect spelling. Of much more

importance, from my point of view, they have nice personalities

and are fun to be around.

CONTENTS

Prologue vii

Introduction ix

1 Starting at the Bottom 1

2 Fourier Series and the DFT 27

3 The DFT Algorithm 53

4 The Inverse Transform 71

Part II - The FFT

5 Four Fundamental Theorems 81

6 Speeding-Up the DFT 103

7 The FFT 115

8 Anatomy of the FFT Program 135

Appendix 1 BASIC Programming Language 155

Appendix 5.1 DFT5.1 (Core Program Listing) 159

Appendix 5.2 DFT5.2 (Theorem Routines Listing) 162

Appendix 5.3 Proof of the Theorems 166

Appendix 6.1 DFT6.01 (Program Listing) 171

vi Understanding the FFT

Appendix 6.2

Appendix 6.3

Appendix 7.1

Modification to DFT6.01

Modification to DFT6.01

Vector Rotation

Bibliography

Index

173

173

174

177

179

PROLOGUE

"Considering how many fools can calculate, it is surprising
that it should be thought either a difficult or a tedious task for any
other fool to learn how to master the same tricks.

Some calculus-tricks are quite easy. Some are enormously
difficult. The fools who write the text books of advanced mathemat
ics—and they are mostly clever fools—seldom take the trouble to
show you how easy the easy calculations are. On the contrary, they
seem to desire to impress you with their tremendous cleverness by
going about it in the most difficult way.

Being myself a remarkably stupid fellow, I have had to
unteach myself the difficulties, and now beg to present to my fellow
fools the parts that are not hard. Master these thoroughly, and the rest
will follow. What one fool can do, another can." (Prologue to
Calculus Made Easy by Silvanus P. Thompson, F.R.S., 1910)

Even though a great many years had passed since I first
obtained a copy of Thompson's magical little book (twenty-eighth
printing of the second edition, Macmillan Publishing Company,
1959), I nonetheless recognized this prologue when a part of it
appeared recently on the front page of a book. The reader should
understand that Professor Thompson wasn't simply being sarcastic.
His intention was, beyond question, to throw a lifeline to floundering
students. His goal was to provide an introduction to that powerful
tool known as The Calculus; to provide a bridge for those who had
been victimized by their teachers and texts. Lest anyone mistake his
true feelings, he adds the following in the epilogue: "...One other
thing will the professed mathematicians say about this thoroughly bad
and vicious book: that the reason why it is 50 easy is because the
author has left out all the things that are really difficult. And the
ghastly fact about this accusation is that—it is true! That is, indeed,
why the book has been written—written for the legion of innocents
who have hitherto been deterred from acquiring the elements of the
calculus by the stupid way in which its teaching is almost always
presented. Any subject can be made repulsive by presenting it
bristling with difficulties. The aim of this book is to enable beginners
to learn its language, to acquire familiarity with its endearing sim-

V11I Understanding the FFT

plicities, and to grasp its powerful methods of problem solving,
without being compelled to toil through the intricate out-of-the-way
(and mostly irrelevant) mathematical gymnastics so dear to the
unpractical mathematician..." (From the Epilogue and Apology of
Calculus Made Easy by Silvanus P. Thompson, 1910. Apparently
some things never change.)

I cannot be sure that the coincidence of Thompson's pro
logue, printed boldly on the front page of an exemplary treatise on
Fourier Analysis, was the sole motivation for this book—I had already
considered just such an essay. Still, if Thompson's ghost had
appeared and spoken to me directly, my task would not have been
clearer Allow me to explain: This book is intended to help those
who would like to understand the Fast Fourier Transform (FFT), but
find the available literature too burdensome. It is born of my own
frustration with the papers and texts available on the FFT, and the
perplexing way in which this subject is usually presented. Only after
an unnecessarily long struggle did I find that the FFT was actually
simple—incredibly simple. You do not need to understand advanced
calculus to understand the FFT—you certainly do not need deliberate
ly obscure notation and symbols that might be more appropriate to the
study of archeology. The simple truth is that the FFT could easily be
understood by any high school student with a grasp of trigonometry.
Understand, then, that I hold heart-felt sympathy with Thompson's
iconoclasm. In fact, if you swap "FFT" for "Calculus," Thompson's
strong words express my own feelings better than I am capable of
expressing them myself.

But there is another, perhaps better, reason for this book.
Today, systems using the FFT abound—real systems—solving real
problems. The programmers, engineers and technicians who develop,
use, and maintain these systems need to understand the FFT. Many
of these people have long since been "excommunicated" from the
specialized groups who discuss and write about this subject. It may
be acceptable for professional scholars to communicate via abstruse
hieroglyphics, but working engineers and technicians need a more
direct route to their tools. This book aims to provide a direct route to
the FFT.

INTRODUCTION

This book is written in two parts—an introduction to (or
review of) the DFT, and an exposition of the FFT. It is a little
book that can be read in a few evenings at most. Recognizing this,
I recommend that you start from the beginning and read it all—
each chapter builds on all that has preceded. If you are already
familiar with the DFT the first four chapters should read comfort
ably in a single evening.

I have gone as far as I can to make this subject accessible
to the widest possible audience, including an appendix 1.1 which
provides a "refresher" on the BASIC language. After that, the
programs in Part I start out very simply with detailed explanations
of each line of code in the text.

My reason for including these features is that, some years
ago (before the advent of the personal computer), there was a
period of several years in my life when I was "computer-less."
When I once again obtained access to a computer I was shocked to
find that I had forgotten the commands and rules for programming
(even in BASIC). To my great relief a few hours at a keyboard
(with a BASIC programming manual in hand) brought back
enough to get me up and running. Appendix 1.1, and the programs
of part 1, are designed to accomplish the same thing with much
less pain.

In addition to these comments, I should point out that the
programs presented in this book are intended to be typed into a
computer and run—they actually work. If you don't like to type,
a disk with all the program listings can be furnished for $5.00
(which includes postage and handling).

Very well then, the first topic we will consider is: "What,
actually, is the Digital Fourier Transform?"

CHAPTER I

STARTING AT THE BOTTOM

It has been said that a good definition first throws the thing

to be defined into a very large pool (i.e. a very broad category) and

then pulls it out again (i.e. describes the unique characteristics that

differentiate it from the other members of that category). That is

the approach we will use in tackling the question; "What, exactly,

is the Fourier series?"

1.01 APPROXIMATION BY SERIES

When we first encounter mathematical functions they are

defined in simple, direct terms. The common trigonometric func

tions, for example, are defined with respect to a right triangle:

X

2 Understanding the FFT

Sin(0) - Y/H (1.1)

0 = angle 0

Y = height

H = hypotenuse

Cos(0) = X/H (1.2)

X = base

Tan(0) = Y/X (1.3)

Shortly thereafter we learn that these functions may also

be expressed as a series of terms:

Sin(x) = x - x3/3! + x5/5! - x7/7! +... (1.4)

x = angle in radians

3!, 5!, etc. = 3 factorial, 5 factorial, etc.

Cos(x) = 1 - x2/2! + x4/4! - x6/6! +... (1.5)

FFT/01 3

These power series are known as Maclauren/Taylor series

and may be derived for all the commonly used trigonometric and

transcendental functions.

1.02 THE FOURIER SERIES

The Fourier series is a trigonometric series. Specifically,

it is a series of sinusoids (plus a constant term), whose amplitudes

may be determined by a certain process (to be described in the

following chapters). Equation (1.6) states the Fourier series

explicitly; unfortunately, this compact notation cannot reveal the

F(x) = A0 + A,Cos(x) + A2Cos(2x) + A3Cos(3x) +...

+ B,Sin(x) + B2Sin(2x) + B3Sin(3x) +... (1.6)

incredible mathematical subtlety contained within. The Fourier

series, like the Taylor/Maclauren series shown earlier, approxi

mates functions, but it has a different derivation and a different

purpose. Rather than being a means of evaluating sines, cosines,

etc., at a single point, it serves as a "transformation" for the whole

of a given, arbitrary, function.

This, then, is the general pool that we have thrown our

Fourier Transform into, but we are at risk here of making the pool

4 Understanding the FFT

so obscure it will require more definition than our definition itself.

The newcomer may well ask; "What is this transformation you

speak of?" Apparently we are going to transform the original

function into another, different, function—but what is the new

function and why do we bother? Does the transformed function

have some special mathematical properties? Can we still obtain

the same information provided by the original function? The

answer is yes to both of these questions but we will come to all of

that later; for now we may say that the transform we are referring

to, in its digital form, provides a mathematical tool of such power

and scope that it can hardly be exceeded by any other development

of applied mathematics in the twentieth century.

Now we move to the second part of our definition—we

must pull the defined topic out of the pond again. This part of the

definition requires that we speak carefully and use our terms

precisely, for now we hope to reveal the specific nature of the

Fourier Transform. We will begin with a couple of definitions that

will be used throughout the remainder of this book.

1.03 FUNCTIONS

The term function (or single valued function) is, in a sense,

a "loose" term (i.e. it describes a very simple notion that can be

fulfilled many different ways). It only implies a set of ordered

pairs of numbers (x,y), where the second number (y, the dependent

variable) is a unique value which corresponds to the first number

FFT/01 5

(x, the independent variable). Now, obviously, the equations

encountered in engineering and physics can provide sets of

numbers which fulfill this definition, but so will any simple list of

numbers. It is not necessary to know the equation that relates the

dependent to the independent variable, nor even that the two

numbers be related by an equation at all! This "looseness" is

essential if the term "function" is to cover the practical work that

is done with a Digital Fourier Transform (DFT), for it is seldom

that the information obtained by digitizing a signal can be de

scribed by an equation.

1.03.1 Discontinuous Functions

There are functions, encountered frequently in technical

work (and especially in Fourier Analysis), that are difficult to

describe in a few words. For example, the "Unit Square Wave",

must be defined in some manner such as the following:

f(x) = 1 [for 0 < x < x,] (1.7)

and:

f(x) = -1 [for x, < x < 2x,] (1.8)

Understanding the FFT

We make no statement about this function outside the interval of

0 < x < 2x,. This interval is referred to as the "domain of defini

tion" or simply the "domain" of the function. We will have more

to say about the domain of a function and its transform shortly, but

for now let's continue to investigate discontinuous functions. We

require two separate equations to describe this Square Wave

function, but we also need some explanation: At the point x = x,

the first equation ends and the second equation begins-there is no

"connection" between them. The function is discontinuous at the

point where it jumps from +1 to -1. It is sometimes suggested that

these two equations be connected by a straight, vertical line of

"infinite slope", but this "connection" cannot be allowed. A con

necting line of infinite slope would have more than one value (in

fact, an infinite number of values) at the "point" of transition. The

definition of a single valued function requires a single "unique"

value of the dependent variable for any value of the independent

variable.

f(x) = 1

x = 0

f(x) = -1

f(x) = Unit Square Wave

FFT/01 7

Mathematically, functions such as the unit square wave

must remain discontinuous; but, physically, such discontinuities

are not realizable. All voltage square waves measured in a

laboratory, for example, will have finite rise and fall times.

1.04 THE FOURIER SERIES

Our original question was; "What, exactly, is a Fourier

series?" We stated back on page 3 that it is a series of sinusoids,

and as an aid to the intuition, it is frequently shown that a square

wave may be approximated with a series of sine waves. Now,

these sinusoids are, in general, referred to as the "harmonics" of the

wave shape, except that a sine wave which just fits into the domain

of definition (i.e. one cycle fits exactly into the waveform domain)

is called the fundamental (see fig. 1.1A). If two cycles fit into this

interval they are called the second harmonic (note that there is no

first harmonic—that would correspond to the fundamental). If

three cycles of sine wave fit into the interval they are called the

third harmonic, etc., etc. A square wave, as described in the

preceding section, consists of, in addition to the fundamental, only

the "odd" numbered harmonics (i.e. 3rd, 5th, 7th, etc., etc.), all of

whose amplitudes are inversely proportional to their harmonic

number. Caveat: To represent a square wave perfectly by Fourier

series, an infinite number of harmonic components would be

required. That is to say, the Fourier series can never perfectly

reproduce such functions; however, it can reproduce them to any

desired degree of accuracy, just as the Taylor series shown in eqns.

8 Understanding the FFT

(1.4) and (1.5) will converge to any desired accuracy (another

caveat: convergence of the Fourier series is not a simple sub

ject—but that discussion diverges from our immediate purpose).

In figure 1.1 we show how a summation of odd harmonics

begins to form a square wave. Even though we only sum in the

first four components, it is apparent that a square wave is begin

ning to form.

A. - Fundamental & 3rd Harmonic lst + 3rd

B . - lst+3rd&5th lst+3rd+5th

FFT/01 9

lst+3rd+5th&7th lst+3rd+5th+7th

Figure 1.1 - Construction of a Square Wave.

In figure 1.2 below, we show the results of summing in 11

components and 101 components. We note that with 101 compo

nents the approximation is very good although not perfect. The

basic idea illustrated here, however, of approximating the wave-

Summation of 11 components 101 components

Figure 1.2

10 Understanding the FFT

form of a function by summing harmonically related sinusoids, is

the fundamental idea underlying the Fourier series. The implica

tion is that any function may be approximated by summing

harmonic components (is this true?)

1.05 DISCRETE DATA

Let's take the time now to point out a distinct charac

teristic of the above "curves." In this book the graphs will usually

show what actually happens in digital systems—they will display

mathematical "points" plotted at regular intervals. While the Unit

Square Wave of section 1.03.1 is discontinuous at the transition

point, the functions of figs. 1.1 and 1.2 are discontinuous at every

point. This is not a trivial phenomenon—a series of discrete data

points is not the same thing as a continuous curve. We suppose the

"continuous curves," from which we extract discrete data points,

are still somehow represented; but, this supposition may not be

justified. This characteristic of sampled data systems, and of

digital systems in general, creates idiosyncracies in the DFT that

are not present in the continuous Fourier series (e.g. the subtleties

of convergence, which were hinted at above, are obviated by the

finite series of the DFT). Put simply, our situation is this: If we

treat discrete functions carefully, we may think of them as

representing underlying linear functions. If, on the other hand, we

are careless, the relationship of the discrete function to what we

suppose to be the underlying linear function may be completely

unfounded (perhaps we can discuss such things in another book).

FFT701

1.06.1 COMPUTER PROGRAMS

It is anticipated that most readers will have some familiari

ty with computer programming; but, if not, don't be intimidated.

We will start with very simple examples and explain everything we

are doing. Generic BASIC is pretty simple, and the examples will

gradually increase in difficulty so that you should have no trouble

following what we are doing. Understand, however, that these

programs are not just exercises—they are the book in the same

way that this text is the book. This is what you are trying to learn.

Type these programs into a computer and run them—experiment

with them—(but be careful, this stuff can be addictive). If you

have no familiarity with BASIC at all, or if you have not used

BASIC in years, you might want to read Appendix 1.1 at this time.

1.06.2 PROGRAM DESCRIPTION

The "square wave" illustration of Figures 1.1 and 1.2 is our

first programming example. DFT 1.0 (next page) is essentially the

routine used to generate those figures, and its operation is com

pletely illustrated by those figures.

BASIC ignores remarks following REM statements (see

line 10). Line 12 asks how many terms we want to sum together

and assigns this value to N. Line 20 defines the value of PI. In

line 30 we set up a loop that steps the independent variable through

12 Understanding the FFT

10 REM *** DFT 1.0 - GENERATE SQUARE WAVE ***
12 INPUT "NUMBER OF TERMS";N
20 PI = 3.14159265358*
30 FOR I = 0 TO 2*PI STEP PI/8
32 Y=0
40 FOR J=l TO N STEP 2: Y=Y+SIN (J*I) /J: NEXT J
50 PRINT Y
60 NEXT I
70 END

Fig. 1.3-DFT 1.0

2*PI radians (i.e. a full cycle of the fundamental) in increments of

PI/8 (if you do not understand the loop structure set up between

lines 30 and 60 read appendix 1.1 now). The "loop counter" for

this loop is the variable I, which we also use as the independent

variable for the equation in line 40. The loop counter I steps in

increments of PI/8, yielding 16 data points. Line 32 clears the

variable Y which will be used to "accumulate" (i.e. sura together)

the values calculated in the "one line loop" at line 40. Mathemati

cally, line 40 solves the following equation:

Y = SIN(I*J)/J (for all odd J) (1.9)

J = harmonic number
I = argument of the fundamental

Note that division by the harmonic number (J) yields values
inversely proportional to the harmonic number. Line 40 is the
heart of the program. It is a loop which counts the variable J "up"

FFT/01 13

from 1 to the number of harmonic terms we requested at line 12
(i.e. "N"). It should be apparent that we are computing the
contribution of each harmonic to the waveshape at a given point on
the x axis (refer to fig. 1.1 if this is not clear). Each time we pass
through the loop, J is incremented by two, so that it takes on only
odd harmonic values. Each time through the loop we will sum the
following into the variable Y:

1) The value it already has (which is zero the first time
through the loop), plus...

2) SIN(I*J)/J.

Since I is the value of the argument (in radians) of the
fundamental, it will be apparent that I*J represents the "distance"
we have progressed through the Jth harmonic component.

When all of the harmonic terms have been summed in (i.e.
J = N), we move down to line 50 and print the result. At line 60
we encounter the NEXT I statement, jump back to line 30, increase
the variable I by PI/8 radians, and compute all of the harmonic
terms for the next position along the x axis.

1.07 EXPERIMENTATION/PRACTICE

The reader should type the above program into a computer
and run it. Once you have it working, try variations—sum up
hundreds (or even thousands) of harmonic components—modify
the mathematical function itself. A simple modification will
produce a "ramp" or "sawtooth" function (as opposed to the
squarewave). Simply allow the loop counter in line 40 (i.e. J) to

14 Understanding the FFT

step through all of the harmonic numbers (i.e. remove the optional
"STEP 2" statement in line 40).

Figures 1.4.x (where "x" indicates "don't care") show
some of the waveshapes that may be obtained along with the varia
tions required to the equation in line 40. These curves illustrate the
effect obtained by simple modifications of the "spectrum" (i.e. the
amplitudes and phases of the harmonic components). After
playing with this program, and generating a sufficiently large
number of functions, we might suspect that any of the common
waveshapes encounter in engineering could be produced by
selecting the correct spectrum. There are an infinite number of

Fig. 1.4.1 - Y=Y+Sin(J*I)/J for all terms.

Fig. 1.4.2 - Y=Y-Cos(J*I)/(J*J) for odd terms.

FFT/01 15

Fig. 1.4.3 - Y=Y+Sin(I*J)/(J*J) for odd terms.

Fig. 1.4.4 - Y=Y+Sin(I*J)/(J*J) for all terms.

Fig. 1.4.5 - Y=Y+Cos(I*J)/J for odd terms.

16 Understanding the FFT

Fig. 1.4.6 - Y=Y-(-l)AJ*Cos(J*I)/(4*J*J-l) for all terms.
Initialize Y to Y = 0.5

combinations of amplitudes and phases for the harmonic com
ponents, which correspond to an infinite number of time domain
waveshapes; unfortunately, this falls short of proving that arty
waveshape can be produced by this means.

In any case the above illustration has the cart before the
horse. We are almost always provided with a time domain wave
shape for which we must find the equivalent frequency domain
spectrum. It is apparent here that one of the underlying assump
tions of generalized Fourier Analysis is that time domain signals
must, in fact, have frequency domain equivalents.

1.07.1 FREQUENCY DOMAIN

Figure 1.5 plots the amplitudes of the harmonic com
ponents against the harmonic number of the component, displaying

FFT/01 17

the "spectrum" of a square wave. Now, in accordance with our
earlier definition of a function, we recognize that this spectrum is
itself a function. The harmonic number (or more commonly the
equivalent frequency) represents the independent variable of this
function, and the amplitude of the harmonic component represents

Amplitude

Frequency

Figure 1.5 - Square Wave Spectrum

the dependent variable. The total interval of the frequencies
represents the domain of this new function; consequently, we refer
to this function as the frequency domain function. It is this
frequency domain function that we seek to obtain with Fourier
Analysis (i.e. the transformation from the time domain to the
frequency domain).

It should be apparent that the frequency domain function
describes the same entity as the time domain function. In the time
domain all of the sinusoid components are summed together into
the resultant. In the frequency domain, however, we separate out

18 Understanding the FFT

the components and plot the amplitudes (and phases) of the indi
vidual sinusoids. It should be absolutely clear, then, that we are
looking at the same thing here.

1.07.2 REALITY OF THE FREQUENCY DOMAIN

When first presented with the proposition that all time
domain waveshapes are composed of sinusoids, we tend to
question the physical reality of the components. We "know" that
the time domain signal is the "real" signal and the frequency
components are "just another way of analyzing things." Seasoned
veterans, however, have no difficulty accepting the sinusoids as
completely real. Let us stop here and ask, once and for all, are the
sinusoids real? Or are they only mathematical gimmicks? Or is
this, in fact, a moot question?

The education of electrical engineers, for example, is
grounded in the frequency domain. They are taught to think in
terms of the frequency domain. They are taught to test their
circuits by driving the input with a sinusoid while observing the
output. By repeating this test for a range of frequencies they
determine the frequency response of their circuits. As a specific
example, they rarely think about audio in the time domain—music
is an ever changing kaleidoscope of fundamentals and harmonics.
Elsewhere, they learn that modifying the frequency response of a
circuit in certain ways will achieve predictable modifications to the
time response, e.g. low pass filtering will reduce the higher
frequency components thereby reducing noise, slowing rise times,
etc. This sort of experience, coupled with the knowledge that
waveforms can be viewed as summations of sinusoids, leads the
student into aparadigm that actually prefers the frequency domain.
Engineers can always arrive at completely logical and self-
consistent conclusions in the frequency domain, and frequently

FFT/01 19

with much less work than in the time domain. After working in
the field for a few years the notion of frequency domain takes on
a sense of reality for engineers and technicians that others may not
share.

10 UOLTS

(500 <1E1

y
2E-7 2E-7

1E1 <500 5E-10

Hh

2N2222R (5E3

5E3

~V-

(2.7E3

2N2222A

2N2222R <3.6E3

Fig. 1.6 - Astable Multivibrator

Let's look at a concrete example—suppose we build an
astable multivibrator and use it to generate a square wave (actually,
astable multivibrators do not produce waveshapes that are very
"square", so a "buffer" stage is added in the schematic above).
When we view the output waveshape we might justifiably ask,
"where are all the sine waves?" (See Fig. 1.7 below.) On the other
hand, we could synthesize a square wave by combining the outputs
of thousands of sine wave generators just as we did with the
computer program several pages back. When we had finished syn
thesizing this waveform, we would have produced the same thing

20 Understanding the FFT

2 00

9.60

7 20

4 80

2 40

0.00

—
•

HULTIUIB1.NET

1.60 3.20 4.80
Tift* In nS(8.0000>

6.40 8.00

Fig. 1.7 - Output Waveform of Astable Multivibrator

the astable multivibrator produced—a square wave (allowing that
our generators produced harmonics that extended beyond the band
width of the testing circuitry). If we took some instrument (such
as a wave analyzer or spectrum analyzer) that was capable of
measuring the harmonic components of our synthesized wave, we
would expect to find each of the sine wave components just

NOTE: Each generator is a
sine wave signal source. The
frequencies are odd multiples
of the "fundamental" Vl(t)
generator and the amplitudes
are inversely proportional to
their frequency.

Fig. 1.8 - Square Wave Synthesizer

HULTIUIB1.NET

FFT/01 21

summed into that wave shape. But the time domain wave shape of
the synthesizer is the same as the output of our multivibrator. If
we use our wave analyzer on the multivibrator output, we will
surely find the same components that we found in the synthesized
wave, because the two time domain wave shapes are the same.
The two are equivalent. A summation of sinusoids is the same
thing as the time domain representation of the signal. That is what
the examples of Fig. 1.4.x illustrate. A multivibrator may be
thought of as a clever device for simultaneously generating a great
many sinusoids. The only difference is in our perception—our
understanding.

i i i i i ' i " i

4 - - * - -H - , - - i - ' + f - t - - i - - i -
i ; 1 ; ! 1 ; ; !
| i ; i ; ij j i ;

; T ; + j T t ?

i ; i • i ; i ; i
-*- - f - -•- - f - - » - -*- Hk- - f - —f-

i ; i ; i ; i | i

i | it | i | | i i
•+- -{- -M -}- •+- -H •+• - f '•*•
i l j l j j %) J l
1 , ' 1 ! ' ; l > ! '
i | it • i : l i ! i

ttil rftlrrt - j - - f - - i _ - 4 _ - j _ _ t - - J _ -) _ - I _ _ | _ _ j _ -) _ _ | _ _ (_ - l _ . - | _ _ j _ _) _

! i ; i j i ! i ; i i i | i i i
- i - - u - i - - i - - t . - (- - i _ - l _ _ i - - i _ _ i _ - | _ j - _ H - i _ -) _ _ i _ _ i _

i i ' i ' i ' i ' i •' i i i ; i

"t""+" •
! 1

- f - •+- -
! '

-f- •+• -
! i

1 i

"t" •+• "
; i

- i - -i- -
1 i

Fig. 1.9 - Synthesizer Waveform

1.08 WHAT IS THE DFT?

The DFT is a procedure, or process, that can analyze the
data points of a "digitized" time domain function to determine a
series of sinusoids which, when summed together, reproduce the
data points of the original function. The resulting Digital Fourier
series is a valid expression of the original function, just as the
Taylor series examples given in section 1.01 are valid expressions
of sines, cosines, etc. It is apparent, however, that the Digital

22 Understanding the FFT

Fourier Transform is different from the Taylor series, although the
exact nature of the difference may still be less than completely
obvious. Let's take a moment and focus precisely on some of the
differences: the Taylor series, as illustrated in equations (1.4) and
(1.5), evaluate a specific function at a given argument. The
coefficients for any specific series are determined once, and
thereafter never change. The Taylor series is used in calculators
and computers to evaluate a sin, cosine, exponential, etc., etc. for
a given argument, and when we use the Taylor series, only the
argument changes. Now the DFT is a process used to determine
the coefficients of a trigonometric series for a given function (i.e.
we analyze an arbitrary function to determine the amplitudes (the
coefficients) for a series of sinusoids). In contrast to the Taylor
series, the arguments of a DFT function are fixed and usually
remain unchanged; when operating in the frequency domain it is
generally the coefficients of the transformed function that we
modify. Obviously, the Fourier series and the Taylor series have
completely different purposes.

What, then, is the purpose of the DFT? A great many
procedures, techniques and theorems have been developed to work
with functions in the frequency domain. As it turns out, in the
frequency domain we may easily perform relatively difficult
mathematical techniques like differentiation, integration, or
convolution via simple multiplication and division (in some cases
this is the only way we can perform these operations). At a higher
level of problem solving, we can perform minor miracles. We
may, of course, examine the frequency spectra of time domain
waveshapes, and taking the next obvious step, perform digital
filtering. From here it is only a small step to enhance photographic
images bringing blurry pictures into sharp focus, but we may
continue along this line of development to remove image distor
tions due to aberrations in the optical system (re: the Hubble
telescope). We can do other things that may not be so obvious
such as speed up the playback of recorded messages without
changing pitch, or convert a television format from 50 frames/sec

FFT/01 23

to 60 frames/sec without speeding up the action. Working in the
frequency domain we can perform still more amazing things than
these, but the best is certainly yet to come as a new generation of
scientists and engineers continue to explore and develop the field
of Digital Signal Processing (DSP).

There is a difference between the Taylor and Fourier series
that we still may not have made apparent. The terms of the Taylor
series are summed to evaluate the function at a single point (i.e at
some specific argument). The transformation and inverse trans
formation of the DFT, on the other hand, involves all of the values
of the function within the domain of definition. That is, we
transform the whole function. When we speak of a function
proper, we are not talking about the value of the function at any
specific point, but rather, we are talking of the values of all of its
points. It is one of the little marvels of the DFT that it can
transform all of the points of a function, as it were, simultaneously,
from the time domain to the frequency domain—and then back to
the time domain again via the inverse transform.

1.09 WHAT IS THE FFT?

What the FFT is, of course, is the question we will spend
most of this book answering. For the moment though it will be
worthwhile to present an analogy which shows clearly what we
hope to accomplish. In calculators and computers the approxima
tion of functions such as SIN(X), COS(X), ATN(X), EXP(X), etc.,
etc., may be obtained by the Taylor series (as we explained
previously); but, there is a problem in applying these series
directly—they are too slow! They take too long to converge to the
accuracy required for most practical work. Use of the Taylor
series would be severely limited had not our friends, the mathe
maticians, figured out the following way to make it run faster:

24 Understanding the FFT

We observe, as a practical matter, that all of the different
series required are of the polynomial form:

F(x) = A0 + A,x + A2x
2 + A3x

3 + A4x
4 + ... (1.10)

where the An terms must be substituted into the polynomial for the
specific function being evaluated (see eqns 1.4 and 1.5 for ex
amples). The "Horner Scheme" takes advantage of this generaliza
tion by solving the polynomial in the following form:

F(x) = A0 + x(A, + x(A2+x(A3+..+(xAn)..))) - (1.11)

where we have repeatedly factored x out of the series at each
succeeding term. Now, at the machine language level of opera
tion, numbers are raised to an integer power by repeated multipli
cation, and an examination of (1.10) and (1.11) above will show
that for an Nth order polynomial this scheme reduces the number
of multiplications required from (N2+N)/2 to N. When one con
siders that N ranges upwards of 30 (for double precision func
tions), where the Horner Scheme yields execution times an order
of magnitude faster, the power of this algorithm becomes apparent.

The above is particularly prophetic in our case. The DFT,
although one of the most powerful weapons in the digital signal
processing arsenal, suffers from the same malady as the Taylor
series described above—when applied to practical problems it
tends to bog down—it takes too long to execute. The FFT, in a
way that is quite analogous to the Horner Scheme just described,
is an algorithm that greatly reduces the number of mathematical

FFT/01 25

operations required to perform a DFT. Unfortunately the FFT is
not as easy to explain as the Horner Scheme; although, as we shall
see, it is not as difficult as the literature usually makes it out to be
either.

1.10 CONCLUSION/ HISTORICAL NOTE

Throughout this chapter we have repeated the proposition
that physicallyrealizable waveshapes can always be represented as
a summation of sine and cosine waves. We have also discussed
things such as the nature of "functions", etc., but the summation of
sinusoids has obviously been our central theme. This proposition
is the foundation of Fourier Analysis. The primary purpose of this
chapter has been to convey this fundamental idea.

The widespread use of Fourier Analysis implies this
proposition is valid; still, when we are presented with a concept
whose logical foundations are not readily apparent, our natural
curiosity makes us wonder how it came about. Who was the first
to discover it, and how did they figure it out? What made someone
suspect that all functions could be represented as a series of
sinusoids? Early on we saw that the summation of sinusoids could
produce complex looking waveshapes. A perceptive soul,
recognizing this fact, might well move on to investigate how far
this process could be extended, what classes of functions could be
evaluated by this method, and how the terms of each such series
could be determined.

F(x) = A0 + A,Cos(x) + A2Cos(2x) + A3Cos(3x)+...
+ B,Sin(x) + B2Sin(2*x) + B3Sin(3x)+.. (1.11)

Daniel Bernoulli, in the 18th century, recognized that

26 Understanding the FFT

functions could be approximated by a trigonometric series, and
many mathematicians worked with the notion afterward, but it was
Jean Baptiste Joseph Fourier, in the 19th century, who demon
strated the power of this technique as a practical, problem solving
tool. We might note that this did not bring Fourier immediate
praise and fame, but rather, harsh criticism and professional
frustration. His use of this technique was strongly opposed by no
less a mathematician than Lagrange (and others). Lagrange was
already familiar with trigonometric series, of course, but he also
recognized the peculiarities of their behavior. That trigonometric
series were universally applicable was not at all obvious at that
time.

The point here is that Fourier did not completely under
stand the tool he used, nor did he invent it. He had no proof that
trigonometric series could provide universally valid expressions for
all functions. The picture we see here is of brilliant men struggling
with mathematical concepts they cannot quite grasp, and we begin
to realize that the question, "Who invented Fourier Analysis?" is
somewhat naive. There was no single great flash of insight; there
were only many good men working tirelessly to gain understand
ing. Today no one questions the application of Fourier Analysis
but, in fact, Lagrange was correct: there are functions that cannot
be transformed by Fourier's method. Fortunately, these functions
involve infinities in ways that never occur in physically realizable
systems, and so, Fourier is also vindicated.

Books on Fourier Analysis typically have a short historical note
on the role of J.B.J. Fourier in the development of trigonometric series.
Apparently there is a need to deal with how a thing of such marvelous
subtlety could be comprehended by the human mind—how we could
discover such a thing. While the standard reference is J. Herivel, Joseph
Fourier, The Man and the Physicist, Clarendon Press, one of the better
summations is given by R.N. Bracewell in chapter 24 of his text The
Fourier Transform and its Applications, McGraw Hill. He also sheds
light on the matter in the section on Fourier series in chapter 10.

CHAPTER II

FOURIER SERIES AND THE DFT

2.0 INTRODUCTION

It is assumed that most readers will already be familiar

with the Fourier series, but a short review is nonetheless in order

to re-establish the "mechanics" of the procedure. This material is

important since it is the foundation for the rest of this book. In the

following, considerations discussed in the previous chapter are

assumed as given.

2.1 MECHANICS OF THE FOURIER SERIES

You may skip section 2.1 with no loss of continuity. It is

the only section in this book that employs Calculus. The Fourier

series is a trigonometric series F(f) by which we may approximate

some arbitrary function f(t). Specifically, F(f) is the series:

F(f) = A0 + A,Cos(t)+B,Sin(t) + A2Cos(2t)+B2Sin(2t) +...
...+ A„Cos(nt)+ B„Sin(nt) (2.1)

28 Understanding the FFT

and, in the limit, as n (i.e. the number of terms) approaches

infinity:

F(f) = f(t) (2.2)

The problem we face in Fourier Analysis, of course, is to

find the coefficients of the frequency domain sinusoids (i.e. the

values of A0, A^.-.A,,, and Blv..Bn) which make eqn. (2.2) true.

Finding A0 is easy—if we integrate F(f) (i.e. eqn. 2.1)

from 0 to 2n, all sinusoid terms yield zero so that only the A0 term

is left:

F(f)dt = A027i (2.3)
J o

From eqn.(2.2) and the following condition:

ft
J o

1/2TI f(t) dt = mean value (2.4)

it follows that:

1/271
2*

f(t) dt = mean value (2.5)

FFT/02 29

Next, if we multiply both sides of eqn.(2.1) by cos(t) and

integrate from 0 to 2K, the only non-zero term will be:

2*

F(f)cos(t) dt
r2 ,

A,Cos2(t)dt = 7tA[(2.6)

This results from the fact that:

2*

Cos(rx)Cos(qx) dx = 0

2%

Cos(rx)Sin(px) dx = 0

Sin(rx)Sin(qx) dx = 0

(2.7.1)

(2.7.2)

(2.7.3)

Where: r, q, and p are integers and r + q

From eqns.(2.2) and (2.6) then we may evaluate A,:

A ,= 1/TI f(t)Cos(t)dt
J o

(2.8)

From the same argument, if we multiply eqn.(2.1) by

Sin(t) and integrate from 0 to 2n, the only non-zero term will be:

30 Understanding the FFT

B,Sin2(t)dt = 7tB, (2.9)

We may therefore evaluate B,:

B,= 1/TI f(t)Sin(t) dt (2.10)

If we continue through the other terms of eqn. (2.1) we will find

that the procedure for determining the A and B coefficients may be

summarized by the following:

A = 1/2TI f(t) dt (2.11 A)

Ak= 1/71 f(t)cos(kt) dt (2.11B)

Bk= 1/TI f(t)sin(kt) dt

With: k = 1, 2, 3, ,n

(2.11C)

n = number of terms included in the series.

As n approaches infinity, we must necessarily include all possible

sinusoidal (by sinusoidal we imply both sine and cosine) compo

nents, and F(f) converges to f(t).

FFT/02 31

COMMENTARY

We should take the time to point out a few things about the

above derivation. Our starting equations (2.1) and (2.2) simply

make the statement that a given arbitrary function f(t) may be

considered to be a summation of sinusoids as explained in the

previous chapter. It is well known that functions exist for which

this condition is untrue; fortunately, it is true for all physically

realizable systems.

Equations (2.8) and (2.10) express the mathematical

operation that is the heart of the Fourier series; the individual

sinusoids of a composite wave can be "detected" by multiplying

through with unit sinusoids and finding the mean value of the

resultant. This process is all that the DFT (and FFT) does.

The reader should understand that the relationships

expressed in equations (2.7.1) through (2.7.3) (i.e. the orthogon

ality relationships) are imperative to the proper operation of this

algorithm; furthermore, these equations are true only when

evaluated over an integer number of cycles. In practice the Fourier

series, DFT, and FFT force this condition for any time domain T0

by restricting the arguments of the sinusoids to integer multiples of

27rAt/T0 (where N is an integer).

In addition to these comments, the DFT deals with arrays

of discrete, digital data. There are no linear, continuous curves in

a computer. We will spend the rest of this chapter delving into

how we apply the mathematical process described so neatly above

to the digitized data we process inside a computer.

32 Understanding the FFT

2.2.0 MECHANICS OF THE DFT

The DFT is an application of Fourier Analysis to discrete

(i.e. digital) data. Our objective in this chapter is to find out what

makes the DFT work—and why. At considerable risk to personal

reputation, we will employ only simple, direct illustrations. It

would be safer to brandish the standard confusion and abstruse

mathematics; but then, there are plenty of books already on the

market to fulfill that requirement. We will start from the concepts

covered in the previous chapter and develop our own process for

extracting harmonic components from arbitrary waveforms.

2.2.1 THE OBJECTIVE OF THE DFT PROCESS

We saw in chapter 1 that sinusoids could be summed

together to create common waveforms. Here we consider the

reverse of that process. That is, given some arbitrary waveshape,

we try to break it down into its component sinusoids.

Let's talk about this for a moment. When we are presented

with a composite waveshape, all of the sinusoids are "mixed

together," sort of like the ingredients of a cake—our question is,

"how does one go about separating them?" We already know, of

course, that it is possible to separate them (not the ingredients of

cakes—the components of composite waveforms), but let's forget

for a moment that we know about Fourier Analysis...

FFT/02 33

2.2.2 REQUIREMENTS FOR A DFT PROCEDURE

There are two, perhaps three, requirements for a method

to "separate out" the components of a composite wave:

1) First, we require a process that can isolate, or "detect",

any single harmonic component within a complex waveshape.

2) To be useful quantitatively, it will have to be capable of

measuring the amplitude and phase of each harmonic component.

These, of course, are the primary requirements for our

procedure; but, there is another requirement that is implied by

these first two:

3) We must show that, while measuring any harmonic

component of a composite wave, our process ignores all of the

other harmonic components (i.e. it must not include any part of the

other harmonics). In other words, our procedure must measure the

correct amplitude and phase of the individual harmonics. Very

well then, let's see how well the DFT fulfills these requirements.

2.2.3 THE MECHANISM OF THE DFT

Let's begin with a typical digitized sine wave as shown in

Figure 2.1 below. The X axis represents time; the Y axis repre

sents volts (which, in turn, may represent light intensity, or

pressure, or etc.) It has a peak amplitude of 2.0 volts, but its

average value is obviously zero. The digitized numbers (i.e. our

function) are stored in a nice, neat, "array" within the computer

34 Understanding the FFT

(see Table 2.1). The interval from the beginning to end of this

array is the domain (see first column Table 2.1).

1.0 —

•1.0 —

Figure 2.1 - Digitized Sinusoid

Now, according to Fourier, the way to detect and measure

a sine wave component within a complex waveshape is to multiply

through by a unit amplitude sine wave (of the identical frequency),

and then find the average value of the resultant. This is the

fundamental concept behind Fourier Analysis and consequently we

will review it in detail. First, we create a unit amplitude sine wave

(see Fig. 2.2). To multiply our digitized waveform by a unit sine

wave we multiply each point of the given function by the corre

sponding point from the unit sinusoid function (apparently the two

FFT/02 35

2.0 —

unit sinusoid

• • i

product of sinusoids

digitized sinusoid (2 volts peak)

. . .

Figure 2.2 - Fourier Mechanism

functions must have the same number of data points, correspond

ing domains, etc.) This process (and the result) is shown in Figure

2.2 and Table 2.1. The reason this works, of course, is that both

sine waves are positive at the same time (yielding positive

products), and both are negative at the same time (still yielding

positive products), so that the products of these two functions will

have a positive average value. Since the average value of a

sinusoid is normally zero, this process has "rectified" or "detected"

the original digitized sine wave of Fig. 2.1. The sum of all of the

products is 16 (see Table 2.1 below), and since there are 16 data

points in the array, the average value is 1.0.

36 Understanding the FFT

T

0.00000
0.06250
0.12500

0.18750
0.25000

0.31250
0.37500
0.43750
0.50000
0.56250
0.62500
0.68750
0.75000
0.81250
0.87500
0.93750

Sin (X)

0.00000
0.38268
0.70711
0.92388
1.00000

0.92388
0.70711
0.38268
0.00000
-0.38268
-0.70711
-0.92388
-1.00000
-0.92388

-0.70711
-0.38268

* (2*Sin(X))

0.00000
0.76537
1.41421

1.84776
2.00000
1.84776
1.41421
0.76537
0.00000
-0.76537
-1.41421
-1.84776
-2.00000

-1.84776
-1.41421
-0.76537

= 2*Sin2(X)

0.00000
0.29289

1.00000
1.70711

2.00000
1.70711

1.00000
0.29289

0.00000
0.29289

1.00000
1.70711
2.00000
1.70711
1.00000
0.29289

Totals = 0.00000 0.00000 16.00000

Average Value - 16.0/16 = 1.00000

Table 2.1

Note that the average amplitude of the right hand column
is only half of the peak amplitude of the input function (3rd
column). We may show that the average value obtained by the
above procedure will always be half of the original input amplitude
as follows:

The input function is generated from the equation shown
on the following page:

FFT/02 37

F,(T) = A sin(27rt) (2.12)

Where: t = Time
A = Peak amplitude

NOTE: A frequency (or period) of unity is implied here

We simplify by replacing the argument (27rt) with X:

F(X) = A Sin(X) (2.13)

Multiplying through by a sine wave of unit amplitude:

F(X)Sin(X) = A Sin(X)Sin(X) — (2.14)
= ASin2(X) (2.14A)

However, from the trigonometric identity:

Sin2(X) = 1/2 - Cos(2X)/2 (2.15)

which we substitute into (2.14A):

F(X) Sin(X) = A (1/2 - Cos(2X)/2)
= A/2 - ACos(2X)/2 - (2.16)

The second term of (2.16) (i.e. A Cos(2X)/2) describes a sinusoid
so that its average value will be zero over any number of full
cycles; it follows that the average value of eqn. 2.16 (over any
integer multiple of 2n radians) will be A/2 (see figure 2.3).

This result is more or less obvious from an inspection of
Figs. 2.2 and 2.3. It is apparent that the maximum value will occur
at the peaks of the two sinusoids, where the unit sinusoid has an

38 Understanding the FFT

peak amplitude = A
average amplitude = A/2

Figure 2.3 - A Sin2 Wave

amplitude of 1.0 and the product of the two functions is A. The
minimum value will occur when the sinusoids are passing through
zero. From the symmetry of Fig. 2.3 it is apparent that the average
value must be A/2.

This process of detecting or rectifying sinusoids, then, has
the characteristic of yielding only half the amplitude of the actual
component. This presents no major problem though, as we can
simply multiply all of the results by two, or use some other
technique to correct for this phenomenon.

2.2.4 THE COSINE COMPONENT

It is obvious that this scheme will work for any harmonic
component; we need only change the frequency of the unit

FFT/02 39

amplitude sine wave to match the frequency of the harmonic
component being detected. This same scheme will work for the
cosine components if we replace the unit sine function with a unit
cosine function.

The component we want to detect is given by:

F2(T) = A COS(27tt) = A COS(X) - — (2.17)

Where: All terms are as in (2.12) and (2.13) above.

Multiplying through by a cosine wave of unit amplitude:

F(X)COS(X) = A COS(X) COS(X) -- (2.18)

= A COS2(X) (2.18A)

From the identity:

COS2(X) - 1/2 + Cos(2x)/2 (2.19)

which we substitute into (2.18A):

F(X)COS(X) = A(l /2 + Cos(2X)/2)
= A/2 + A Cos(2X)/2 — (2.20)

Again, the second term will have a zero average value
while the first term is one half the input amplitude. Note carefully
in the above developments that, to produce a workable scheme, we
must design our system such that we always average over full
cycles of the sinusoids.

40 Understanding the FFT

2.2.5 HARMONICS WITHIN COMPOSITE WAVEFORMS

Next question: "What about the other harmonics in
composite waveforms? The scheme described above undoubtedly
works when we are dealing with a single sinusoid, but when we are
dealing with a composite of many harmonics, how do we know
that all of the other harmonics are completely ignored? You will
recall that our third requirement for a method to extract sinusoidal
components from a composite wave was that the process ignore all
but the sinusoid being analyzed. Technically, this condition is
known as orthogonality.

2.2.6 ORTHOGONALITY

1
What, exactly, does the term orthogonality imply? Two

straight lines are said to be orthogonal if they intersect at right
angles; two curved lines are orthogonal if their tangents form right
angles at the point of intersection. Consider this: the "scaler
product", or "dot product" between two vectors is defined as
follows:

AB = | A | | B | Cos (0) (2.21)

| A | = magnitude of vector A, etc.

As the angle 0 between the two vectors approaches + 90 degrees,
Cos 0 approaches zero, and the dot product approaches zero. It is
apparent, then, that a zero dot product between any two finite
vectors implies orthogonality. It is apparent that zero magnitude

FFT/02 41

A B = AB Cos 0

Projection of
A onto B

Figure 2.4 - Dot Product

vectors will always yield a zero dot product regardless of the angle
(in fact, the notion of angle begs for definition here). In practice
we effectively define vectors of zero magnitude as orthogonal to
all other vectors, and may therefore use a zero resultant from
equation (2.21) as the operative definition for orthogonality.

DEFINITION 1:

If AB = 0 then A and B are orthogonal.

Note that, by this definition, zero magnitude vectors are orthogonal
to all other vectors.

The definition of orthogonality between whole functions
derives from an argument not completely dissimilar to the above.
To illustrate, we will first use equation (2.21) to generate a
function F(<|)). We will do this with a specific example where A is

42 Understanding the FFT

a unit vector lying along the X axis and B is a unit vector in the
direction of (b (where <b takes on a set of values over the domain of
0 to 2n). Table 2.2 shows this function explicitly—note that,
according to our definition above, the two vectors are orthogonal
at only two points (i.e. (b = n/2 and 3TI/2).

</>

0
ir/8
TT/4

3ir/8
TT/2

5ir/8
3ir /4
7-7T/8

IT

9TT/8
5TT/4

H T T / 8
3ir/2

1 3 T T / 8
7TT/4

1 5 T T / 8

F(0)

1 . 0 0 0
0 . 9 2 4
0 . 7 8 5
0 . 3 8 3
0 . 0 0 0

- 0 . 3 8 3
- 0 . 7 8 5
- 0 . 9 2 4
- 1 . 0 0 0
- 0 . 9 2 4
- 0 . 7 8 5
- 0 . 3 8 3
0 . 0 0 0
0 . 3 8 3
0 . 7 8 5
0 . 9 2 4

Table 2.2 - F(<b) = | A | | B | cos((b)

But our concern is not for individual values of a function;
our concern is for orthogonality between whole functions. To
investigate this situation we need a second function, G(<b), which
we will define as follows:

G((b) = | A | | B | cos(<b+7i/2) (2.22)

FFT/02 43

Let's talk about these two functions, F(<|)) and G(<)>), for a moment.
For both functions vector A lies along the X axis, while B "rotates"
about the origin as a function of ((). The difference between these
two functions is that the argument of G(<(>) is advanced by 7t/2 (i.e.
90 degrees) so that the vector B of G(<j)) will be orthogonal to B in

<t>
0
IT/8
IT/A

3TT/8
IT/2

5ir/8
3TT/4
7TT/8

IT

9ir/8
5ir /4

1 1 T T / 8
3 ir /2

1 3 T T / 8
77T/4

1 5 T T / 8

F(0)

1 . 0 0 0
0 . 9 2 4
0 . 7 8 5
0 . 3 8 3
0 . 0 0 0

- 0 . 3 8 3
- 0 . 7 8 5
- 0 . 9 2 4
- 1 . 0 0 0
- 0 . 9 2 4
- 0 . 7 8 5
- 0 . 3 8 3
0 . 0 0 0
0 . 3 8 3
0 . 7 8 5
0 . 9 2 4

G(0)

0 . 0 0 0
- 0 . 3 8 3
- 0 . 7 8 5
- 0 . 9 2 4
- 1 . 0 0 0
- 0 . 9 2 4
- 0 . 7 8 5
- 0 . 3 8 3
0 . 0 0 0
0 . 3 8 3
0 . 7 8 5
0 . 9 2 4
1 . 0 0 0
0 . 9 2 4
0 . 7 8 5
0 . 3 8 3

Sum T o t a l

F (0) G (

0 . 0 0 0
- 0 . 3 5 4
- 0 . 6 1 6
- 0 . 3 5 4
0 . 0 0 0
0 . 3 5 4
0 . 6 1 6
0 . 3 5 4
0 . 0 0 0

- 0 . 3 5 4
- 0 . 6 1 6
- 0 . 3 5 4
0 . 0 0 0
0 . 3 5 4
0 . 6 1 6
0 . 3 5 4
0 . 0 0 0

Table 2.3 - F((|))G((j))

F(<j>) for all values of <|). In other words, the vectors which actually
generate these two functions are orthogonal at all points of the
functions.

Now the two functions created here are not vectors; being
scalar products of vectors, they are scalars. Therefore, the defini
tion of orthogonality given above is inappropriate. Still, these two

44 Understanding the FFT

F(0) = AB Cos 0

G(0) = AB Cos 0+K/2

Fig. 2.5 - Orthogonal Functions F(<j>) and G(<j))

functions were created by orthogonal vectors and we would like to
find out if there is some vestige—some latent characteristic—that
can still expose the orthogonality relationship. In fact, there is. If
we multiply these two functions point by point, and then sum all
of the individual products, the result will be zero (see Table 2.3).
You may recognize that this process is essentially the process we
used to detect sinusoids back in section 2.2.3. If so, you may also
begin to grasp the connection we are trying to make here, but bear
with me for a moment longer. Let's generalize the above results
as follows:

G((|)) = | A | | B | cos(<|)+Q) (2.23)

If we replace the nil in G(<j>) by the variable Q, and repeat the test
for orthogonality using various values of Q (see Table 2.4), we see
that a zero resultant is achieved only when Q = nil, indicating
orthogonality between the vectors which generate the functions.

FFT/02 45

N
Q E F (0) iG (0) ±

i = 0

0
TT/8
TT/4

3 T T / 8
TT/2

5 T T / 8
3 i r /4
7 T T / 8

TT

8 . 0 0 0
7 . 3 9 1
5 . 6 5 7
3 . 0 6 1
0 . 0 0 0

- 3 . 0 6 1
- 5 . 6 5 7
- 7 . 3 9 1
- 8 . 0 0 0

Table 2.4 - Orthogonality Test

So then, this process does indeed detect "orthogonality"
between our functions. It is not necessary to prove this relation
ship for all cases, for at this point we simply adopt this procedure
as our operative definition for orthogonality between functions. If
we compute products between all of the points of the functions,
and the summation of these products is zero, then the functions are
orthogonal. Newcomers sometimes find this remarkable, for by
this definition, we no longer care how the functions were generat
ed. Nor do we ask that the functions be traceable to geometrically
orthogonal origins in any sense. The only requirement is that the
summation of the products of corresponding points between the
two functions be zero.

DEFINITION 2:

N

If £ FCctOjGCM = 0 then F(<|>) and G((|>) are orthogonal
i=0

46 Understanding the FFT

Orthogonality then is a condition which applies directly to
the process we use as the Fourier mechanism. Some functions will
be orthogonal (i.e. they will always give a zero resultant when we
perform the process described above) and others will not.
Obviously the example of section 2.2.3 (i.e. two sine waves of
identical frequency) does not illustrate orthogonal functions.

The question here, however, is whether two sinusoids of
different, integer multiple frequencies represent orthogonal
functions. This, of course, is an imperative condition. If they are
orthogonal, components that are not being analyzed will contribute
zero to the resultant—if they are not orthogonal we have BIG
problems. Let's see how this works out.

As before, we start with a digitized sine wave but this time
we multiply through with a sine wave of twice the frequency (Fig.
2.6 below). By symmetry it is more or less apparent that this
yields an average value of zero. Apparently we have orthogonal
functions here, but we need a demonstration for the general case
of any integer multiple frequency.

1.0 _

1.0 -

1.0 -

1.0 -

m m

. /Sin(x) _ . _ Sin(2x)

product Sin(x)Sin(2x)

• •

Figure 2.6 - Sin(x)Sin(2x)

FFT/02 47

Starting with the identity:

Sin(A)Sin(B) = Cos(A-B) - Cos(A+B) — (2.24)

2

if we let A and B represent arguments of:

A = 27it and B = NA = 2N7tt

N = 1,2,3,4,... (i.e. N takes on integer values)

eqn. (2.24) becomes:

Sin(A)Sin(NA) = Cos(Ad-NV) - Cos(A(l+NY) (2.25)

2
It is interesting to note when N=l, the term Cos(A(l-l)) yields a
value of 1 regardless of the value of A (i.e. all values of 27iT), and
eqn.(2.25) reduces to:

Sin(A)Sin(A) = 1 - Cos(2A) (2.26)
2

which is the same equation as (2.15) above. The term Cos(2A)
generates a sinusoid as A varies from 0 to 2% and must therefore
have a zero average value.

If we consider all other positive values of N in eqn.(2.25)
we will always obtain a non-zero value for the argument of both
terms. Consequently, both terms on the right in eqn.(2.25) will
generate sinusoids, which guarantees an average value of zero for
the function (averaged over any number of full cycles).

48 Understanding the FFT

The second case we must examine is for two cosine waves
of different frequencies. As before we start with an examination
of the trigonometric identity:

Cos(A)Cos(B) = Cos(A+B) + Cos(A-B)
2

(2.27)

When B = NA then (2.27) becomes:

= Cos(A(l+NV) - Cos(Ad-NV) - (2.27A)
2

which shows that these functions are also orthogonal except when
N=l and the arguments (i.e. the frequencies) are identical.

1.0 -

1.0 -

1.0 -

1.0 -

Cos(x) Cos(3x)

• • • •
• • t *

• • • * • • • •
• • • •

» • • •

• • » | • # # .
• a • «

\
product Cos(x)Cos(3x)

Figure 2.7 - Cos(x)Cos(3x)

Finally, we must examine the relationship between the
cosine and sine functions for orthogonality. This can be shown by

FFT/02 49

the following identity:

Sin(A)Cos(B) = SinfA+B) + Sin(A-B) — (2.28)

2

and when B = NA:

= Sin(A(l+NV) + Sin(A(l-NY) (2.28A)
2

In this case it makes no difference whether the N = 1 or not; if the
argument is zero the value of the sine function is likewise zero; if
the argument is multiplied by an integer the function will trace out
an integer number of cycles as A varies from 0 to 2n. In no case
will the average value of these functions be other than zero—they
are always orthogonal.

1.0 -

1.0 -

1.0 -

1.0 -

1
•

•
•

• «
•

•

Sin

. • * * '
•

•
•

(x) Cos(x)

\ . • '

• •
• *

• • • •
• • • •

• • • •
• • •

• • • • • • *
• • •

• • • * • •

product Cos(x)Sin(x)

Figure 2.8 - Cos(x)Sin(x)

50 Understanding the FFT

2.2.6 THE DFT/FOURIER MECHANISM

Finally, we must consider all of this together. We know
that the composite waveform is generated by summing in harmonic
components:

F(f) = A0 + A,Cos(t)+B,Sin(t) + A2Cos(2t)+B2Sin(2t) + ...
+ AnCos(nt)+BnSin(nt) (2.29)

If we multiply this composite function by Sin(Kt) (or, alternative
ly, Cos(Kt)), where K is an integer, we will create the following
terms on the right hand side of the equation:

A0Sin(Kt)+ A,Sin(t)Sin(Kt)+ B,Cos(t)Sin(Kt)+...
+A^in2(Kt) + BkCos(Kt)Sin(Kt) + ...

+AnSin(nt)Sin(Kt)+BnCos(nt)Sin(Kt) (2.30)

Treating each of these terms as individual functions, if the
argument (Kt) equals the argument of the sinusoid it multiplies,
that component will be "rectified." Otherwise, the component will
not be rectified. From what we have shown above, two sinusoids
of + n/2 phase relationship (i.e. Sine/Cosine), or integer multiple
frequency, represent orthogonal functions. As such, when summed
over all values within the domain of definition, they will all yield
a zero resultant (regardless of whether they are handled as
individual terms or combined into a composite waveform). That,
of course, is precisely what we demanded of a procedure to isolate
the harmonic components of an arbitrary waveform. The examples
of the next chapter will illustrate the practical reality of these
relationships. Since a computer can do little more than simple
arithmetic on the input data, computer examples have a way of
removing any reasonable question about the validity of theoretical
developments.

CHAPTER III

THE DIGITAL FOURIER TRANSFORM ALGORITHM

3.0 INTRODUCTION

The DFT is a simple algorithm. It consists of stepping

through the digitized data points of the input function, multiplying

each point by sine and cosine functions as you go along, and

summing the resulting products into accumulators (one for the sine

component and another for the cosine). When we have processed

every data point in this manner, we divide the accumulators (i.e.

the sum-totals of the preceding process) by the number of data

points. The resulting quantities are the average values for the sine

and cosine components at the frequency being investigated as we

described in the preceding chapter. We must repeat this process

for all integer multiple frequencies up to the frequency that is equal

to the sampling rate minus 1 (i.e. twice the Nyquest frequency

minus 1), and the job is done.

In this chapter we will examine a program that performs

the DFT. We will walk through this first program step by step,

describing each operation explicitly.

52 Understanding the FFT

3.1 THE DFT COMPUTER PROGRAM

In the program presented below a "time domain" function

is generated (16 data points) by summing together the first 8

harmonic components of the classic "triangle wave." This time

domain data is stored in an array Y(n), and then analyzed as

described above. In this program we use programming and data

structuring features common to all higher level languages, viz. the

data is stored in arrays and the execution of the program takes

place via subroutines. Each subroutine works on the data arrays,

performing a specific task. This allows the main body of the

program (i.e. lines 20 through 80) to operate at a high level,

executing the necessary tasks (i.e. the subroutines) in a logical

order. Lets begin by looking at the whole program. As you can

see, everything is controlled between lines 20 and 60.

6 REM **

8 REM *** (DFT3.1) GENERATE/ANALYZE WAVEFORM ***

10 REM **

12 PI=3.141592653589793#:P2=2*PI:K1=PI/8:K2=1/PI

14 DIM Y(16),FC(16),FS(16),KC(16),KS(16)

16 CLS:F0R J=0 TO 16:FC(J)=0:FS(J)=0:NEXT

20 GOSUB 108: REM - PRINT COLUMN HEADINGS

30 GOSUB 120: REM - GENERATE FUNCTION Y(X)

40 GOSUB 200: REM - PERFORM DFT

60 GOSUB 140: REM - PRINT OUT FINAL VALUES

70 PRINT:PRINT "MORE (Y/N)? ";

72 A$ = INKEY$:IF A$="" THEN 72

74 PRINT A$:IF A$ = "Y" THEN 16

80 END

FFT/02

100 REM **

102 REM * PROGRAM SUBROUTINES *
104 REM **

106 REM * PRINT COLUMN HEADINGS *

107 REM **

108 PRINT:PRINT

110 PRINT "FREQ F(COS) F(SIN) Y(COS) Y(SIN)"
112 PRINT
114 RETURN
118 REM ******************************

120 REM *** GENERATE FUNCTION Y(X) ***
121 REM ******************************

122 FOR I = 0 TO 15:K3=I*K1

124 Y(I) = COS(K3)+COS(3*K3)/(9)+COS(5*K3)/(25)+COS(7*K3)/49

126 NEXT

128 FOR 1=1 TO 7 STEP 2: KC(I)=1/IA2:NEXT

130 RETURN
132 REM ******************************

138 REM * PRINT OUTPUT *

139 REM ******************************

140 FOR Z=0 TO 15

142 PRINT Z;" ";

144 PRINT USING "##.#####_ ";FC(Z),FS(Z),KC(Z)fKS(Z)

146 NEXT Z

148 RETURN^
200 REM **************************

202 REM * SOLVE FOR COMPONENTS *

204 REM **************************

206 FOR J=0 TO 15: REM SOLVE EQNS FOR EACH FREQUENCY

208 FOR I = 0 TO 15:REM MULTIPLY AND SUM EACH DATA POINT

210 FC(J)=FC(J)+Y(I)*COS(J*I*K1):FS(J)=FS(J)+Y(I)*SIN(J*I*K1)

212 NEXT I

214 FC(J)=FC(J)/16: FS(J)=FS(J)/16:REM FIND MEAN VALUE

216 NEXT J

218 RETURN

Figure 3.1

54 Understanding the FFT

Now let's dissect this program and its routines to see how

things really get done. At the beginning of the program (line 12)

we define the frequently used constants of PI, 2*PI, PI/8, and 1/PI

(we will duplicate each section of the program as we go along so

that you don't have to flip pages). At line 14 we "DIMension" (i.e.

define the size) of the arrays to be used in the program. Array

Y(16) will store the 16 data points of the time domain function to

be analyzed, while FC(16) and FS(16) will hold the 16 derived

amplitudes of the Fourier cosine and sine components. Similarly,

6 Rgfi| **

8 REM *** (DFT3.1) GENERATE/ANALYZE WAVEFORM ***

10 REM **

12 PI=3.141592653589793#:P2=2*PI:K1=PI/8:K2=1/PI

14 DIM Y(16),FC(16),FS(16),KC(16),KS(16)

16 CLS:FOR J=0 TO 16:FC(J)=0:FS(J)=0:NEXT

KC(16) and KS(16) will hold the amplitudes of the sinusoids used

to generate the input function (these are saved for comparison to

the derived components). Having completed this preliminary

work, line 16 clears the screen with a CLS statement, and then

initializes the arrays FC(J) and FS(J) by placing a zero in every

location. Note that the array proper is the FC() designation and

that J only provides a convenient variable to specify the location

within the array. We may use any variable (or constant) at any

time to specify locations within arrays. The data stored at those

locations will be unaffected.

This brings us to the main program (lines 20 through 60),

which accomplishes the high level objectives. When the program

FFT/03 55

20 GOSUB 108: REM - PRINT COLUMN HEADINGS

30 GOSUB 120: REM - GENERATE FUNCTION Y(X)

40 GOSUB 200: REM - PERFORM DFT

60 GOSUB 140: REM - PRINT OUT FINAL VALUES

70 PRINT:PRINT "MORE (Y/N)? ";

72 A$ = INKEY$:IF A$="" THEN 72

74 PRINT A$:IF A$ = "Y" THEN 16

80 END

comes to the GOSUB instruction at line 20 it will "jump down" to

line 108, and so will we. This subroutine prints the column

headings. In addition to printing out the amplitudes of the sine and

106 REM * PRINT COLUMN HEADINGS *

108 PRINT:PRINT

110 PRINT "FREQ F(COS) F(SIN) Y(COS) Y(SIN)"

112 PRINT

114 RETURN

cosine components (as do most Fourier analysis programs), in this

program we also print out the amplitude of the components which

w£re used to generate the input function [i.e. Y(COS) Y(SIN)].

This allows a direct comparison of output to input and tells us how

well the analysis scheme is working. Lines 108 through 112 print

this heading and then, at line 114, we encounter a RETURN

statement which sends program control back to the instruction

following the line 20 GOSUB 108 statement (i.e program execu

tion jumps back to line 30).

Line 30 jumps us down to the subroutine located at line

120, which generates the input function. Line 120 is a REMark

statement telling us this is where we generate the time domain

input function Y(X), which we will do by summing the harmonic

components known to construct a "triangle wave." At line 122 we

set up a loop that steps "I" from 0 to 15 (the variable /will count

56 Understanding the FFT

120 REM *** GENERATE FUNCTION Y(X) ***

122 FOR I = 0 TO 15:K3=I*K1

124 Y(I) = COS(K3)+C0S(3*K3)/(9)+C0S(5*IC3)/(25>+C0S(7*K3)/49

126 NEXT

128 FOR 1 = 1 TO 7 STEP 2: KC(I)=1/IA2:NEXT

130 RETURN

the 16 data points of our triangle wave function—note that K3 is

computed each time through the loop (Kl is defined back on line

12 as PI/8). Line 124 is the business end of this routine, it sums

the odd cosine components (with amplitudes inversely proportional

to the square of their frequencies) into each point of array Y(I).

Since there are 16 points in the data array we can have a maximum

of 8 harmonic components (there must be a minimum of two data

points for each "cycle" of the Nyquest frequency)1. At line 126

the NEXT statement sends us back through the loop again, until

we have stepped through the 2*PI radians of a full cycle of the

fundamental. At line 128 we have inserted a loop which puts 1/N2

into the odd cosine terms of the KC(I) array (which is, in fact, the

amplitudes of the sine waves we used to generate this function).

Having done all this, we have completed the generation of our

input function, and now RETURN (line 130) to the main program

(i.e. to line 40).

40 GOSUB 200: REM - PERFORM DFT

We are now ready to perform a Fourier Transform of the

time domain function in array Y(X). From line 40 we GOSUB to

1. Note that only 8 harmonics are used to generate this function (in fact that is
all the Nyquest Sampling Theorem will allow), but there are 16 frequencies
derived in the DFT. We will discuss this in detail later.

FFT/03 57

line 206 where we set up a loop. This loop will handle everything

that must be done at each of the harmonic frequencies (in this case

the frequency is designated by J). We must perform a multiplica

tion by cosine and sine at each point of the data array (for the

frequency being worked on) and sum the results into the location

of the FC(J) and FS(J). Line 208 sets up a nested loop which will

200 REM **************************

202 REM * SOLVE FOR COMPONENTS *
204 REM **************************

206 FOR J=0 TO 15.-REM SOLVE EQNS FOR EACH FREQUENCY

208 FOR I = 0 TO 15:REM MULTIPLY AND SUM EACH DATA POINT

210 FC(J)=FC(J)+Y(I)*C0S(J*I*K1):FS(J)=FS(J)+Y(I)*SIN(J*I*K1)

212 NEXT I

214 FC(J)=FC(J)/16: FS(J)=FS(J)/16:REM FIND MEAN VALUE

216 NEXT J

218 RETURN

step I from 0 to 15. Note that, just as J indicates the frequency, I

indicates the data point in the input function array. Line 210 sums

into FC(J) the product of the data point at Y(I) multiplied by the

COS(Kl *I*J). We are multiplying the Ith data point by the Cosine

of: Kl (i.e. PI/8) multiplied by I (which yields the number of

radians along the fundamental that this data point lies) and then

multiplied by the frequency of the component being extracted (i.e.

J), which yields the correct number of radians for that particular

harmonic. In this same line the "sine term" is also found and

summed into FS(J). At line 212 we encounter the NEXT I

statement, jump back to line 208 and repeat this operation for the

next data point. When we have stepped through the 16 points of

the data array, we move down to line 214 and divide both of these

summations by 16 to obtain the average value. At line 216 we

jump back to line 206 and perform the whole routine over for the

58 Understanding the FFT

next harmonic. We continue this process until we have analyzed

all 16 frequencies (the constant, or "D.C." component, is occasion

ally referred to as the "zeroth" frequency).

60 GOSUB 140: REM - PRINT OUT FINAL VALUES

Having completed our Fourier analysis, we then return to

line 60 where we jump down to the "PRINT OUTPUT" subroutine

located at line 140. We set up a loop counter Z which counts from

0 to 15 (corresponding to the frequencies analyzed) and, in fact, at

line 142, we print Z under the column heading "FREQ". Let's

make note of a few things that happen here:

138 REM * PRINT OUTPUT *

140 FOR 2=0 TO 15

142 PRINT Z;" ";

144 PRINT USING "##.#####_ ";FC<Z),FS(Z),KC(Z),KS<Z)

146 NEXT Z

148 RETURN

1) A semicolon separates the PRINT Z and the " ". This

causes them both to be printed on the same line.

2) The " "; simply causes a space to be printed between

the frequency column and the following data (note that another

semicolon is used so that the next PRINT statement will still be

printed on the same line).

Line 144 then prints out the relevant data with a PRINT

USING statement. Line 146 causes the program to go back and

print out the next line of data with a NEXT Z.

When the data for all 16 frequencies has been printed we

return to the main program (line 70) and ask if "MORE (Y/N)" is

desired . Line 72 looks for an input from the keyboard and assigns

FFT/02 59

70 PRINT:PRINT "MORE (Y/N)? ";
72 A$ = INKEYS:IF A$="" THEN 72
74 PRINT A$:IF A$ = "Y" THEN 16
80 END

the input to the variable A$. If no key is pressed, A$ will have

nothing in it (i.e. A$ will equal "") and the instruction will be

repeated. If A$ has any data in it at all, program execution passes

down to line 74 where the data is printed and we check to see if A$

= "Y". If A$ equals "Y" then the execution jumps back to line 16

and we begin again; otherwise, execution passes on to line 80

which ends the program. For now this routine only provides a

controlled ending of the program, but it will be used more

meaningfully later.

\2 PROGRAM EXECUTION AND PHENOMENA

In the exercises that follow we will test what we have

done. The value of this section is subtle, but profound; all too

often the student fails to grasp the practical significance and

limitations of the subject he studies. Do you know, for example,

if the results of the DFT will be exact or only approximate?

Perhaps theoretically exact but masked by "noise" sources (e.g.

truncation errors)? The actual results may surprise you. The

following exercises have been selected to be instructive in the

practical usage of the DFT. Our purpose is to gain experience of

the tool we use, as well as confidence in the software we write.

Our purpose is to understand the DFT.

60 Understanding the FFT

3.2.1 PROGRAM EXECUTION

If we run the program created above we will obtain the

results shown in Fig. 3.2 below. You will note that only cosine

components were generated for the input function and, fortunately,

only cosine components appear in the analysis; however, all of the

results obtained by the analysis are one half the amplitudes of the

input waveform, within the accuracy of the data printout. You will

FREQ F(COS) F(SIN) Y(COS) Y(SIN)

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0.0000

0.5000

0.0000

0.0556

0.0000

0.0200

0.0000

0.0102

0.0000

0.0102

0.0000

0.0200

0.0000

0.0556

0.0000

0.5000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

1.0000

0.0000

0.1111

0.0000

0.0400

0.0000

0.0204

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

Figure 3.2 - Fourier Transform Output

also note that, while only the first seven harmonics were created

for the input function, components show up for all 15 frequencies

FFT702 61

of the analysis. Note that the components from 9 through 15 are

a "mirror image" of the components from 1 through 7 (i.e. the two

halves of the spectrum are symmetrical about the Nyquest frequen

cy). The frequencies above the Nyquest are negative frequencies,

and consequently are complex conjugates of the frequencies below

the Nyquest (as shall be seen shortly).

3.3 DATA EXERCISES

The "triangle wave" used above is a relatively simple

function, but it confirms that our DFT is working. We will give

our DFT program a more complicated example shortly, but before

we do that, let's consider another simple test. We will analyze a

single sinusoid which has been shifted in phase by 67.5° from the

reference cosine wave. To do this we change the GENERATE

FUNCTION Y(X) subroutine as follows:

122 K4=3*PI/8:KC(1)=COS(K4):KS(1)=SIN(K4):REM SET K4=67.5°
124 FOR I = 0 TO 15:K3=I*K1
126 Y(I) = COSCK3+K4)
128 NEXT I

At line 122 we define K4 (i.e. we set K4 to 67.5° in

radians), and place the cosine and sine of this angle into KC(1) and

KS(1), which is the data we will use for comparison to the output.

Lines 124 through 128 then generate a full cycle of a cosine wave

shifted by 67.5°. When we perform this analysis we find that the

DFT yields only sine and cosine components at the fundamental

62 Understanding the FFT

and its negative. This example simply illustrates that the program

can extract the sine and cosine components of a waveform that has

been generated as a single sinusoid.

In most of the practical applications of the DFT we will

deal with considerably more complicated functions than those

presented above. A more difficult test for our program would be

to create a composite time domain wave composed of completely

random harmonic components—if the program can analyze this

wave successfully if can handle anything. To generate this test we

take advantage of the computer's ability to generate pseudo

random numbers and create a random pattern of sine and cosine

amplitudes. We save these amplitudes in the arrays KC(I) and

KS(I), and then use them to generate the time based function Y(X).

This is accomplished by changing the GENERATE FUNCTION

subroutine as follows:

122 FOR 1=0 TO 8:KC(I)=RND(1):KS(I)=RND(1):NEXT

124 FOR 1=0 TO 15:F0R J=0 TO 8:K4=I*J*K1

126 Y(I)=Y(I)+KC(J)*C0S(K4)+KS(J)*SIN(K4)

128 NEXT J:NEXT I

130 RETURN

Line 122 generates the random amplitudes of the components

using the RND(l) instruction. Lines 124 through 128 then create

the points of Y(I) by summing in the contributions of the sinusoids

which have those random amplitudes. For each data point in the

time domain function (indicated by I) we step through the 0

through 8th harmonic component contribution (indicated by J).

FFT/02 63

Now when we run the program we obtain the following

results:

FREQ F(COS) F(SIN) Y(COS) Y(SIN)

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0.12135
0.43443
0.39943
0.24516
0.05362
0.35193
0.48558
0.47806
0.53494
0.47806
0.48558
0.35193
0.05362
0.24516
0.39943
0.43443

0.00000
0.36488
0.03685
0.22726
0.47526
0.26593
16407
46726
00000
46726
16407

0.26593
0.47526
0.22726
0.03685
0.36488

.12135

.86886

.79885

.49031

.10724
,70387
.97116

0.95612
53493
00000
00000
00000
00000
00000
00000
00000

0.65186
0.72976
0.07369
0.45451
0.95051
0.53186
0.32093
0.93451
0.56442

.00000

.00000

.00000

.00000

.00000

.00000

.00000

0.
0.
0.
0.
0.
0.
0.

Figure 3.3 - Random Amplitude Function

We notice several things about this analysis immediately:
1. The sine components for the 0th term and 8th term are

both zero, even though they were not zero in the input function.
This is because no sine term can exist for either of these compo
nents! SIN(N*0) = 0 and SIN(N*PI) = 0. Since we have multi
plied through the zeroth term by the frequency of zero, all of the
sine terms will be zero in the analysis—they will also be zero in
the input function for the same reason. Likewise, there can be no
sine term for the Nyquest frequency. Even though we assigned
values to these components in our generation of the wave, they
were never created in the time domain function simply because
such components cannot be created.

2. The cosine amplitude of the zeroth and 8th frequency
components are not half of the input function amplitudes. Now,

64 Understanding the FFT

we showed in the last chapter that the derived amplitudes would all
be half of the actual component amplitudes, so what is going on
here? The Oth term represents the D.C. component (average value)
as explained in chapter 1, and all of the terms are simply multiplied
by the cos(0) = 1. This is reasonably apparent and, in fact, was
what we should have expected; but, it may not have been apparent
that the argument for the cosine term at the Nyquest frequency
would always be 0 or N*PI, always yielding a cosine value of + 1.
Any cosine component in the input will be rectified, yielding an
average value in the analysis equal to the peak value of that
component.

3. Note that the sine components for all of the frequencies
above the Nyquest are negative. This negation of the sine
component comes about because the frequencies above the
Nyquest are mathematically negative frequencies (as we noted
earlier), and a negative frequency produces the complex conjugate
of its positive frequency counterpart (i.e. the sine component of a
complex frequency is negated but the cosine component remains
unchanged).

If you are already familiar with Fourier Analysis the above
observations should come as no surprise; still, it is interesting to
see that practical results agree with the theory.

Let's change the GENERATE FUNCTION subroutine to
illustrate one last important point: we will use a linear equation to
generate a "perfect" triangle wave. We already know that the
terms attenuate as 1/N2 in a triangle wave and that only the odd
numbered terms are present—we have just analyzed a seven
component approximation of this function. It would seem
reasonable that we obtain similar results with a "straight line"
version of this function. In the routine shown below we use a
"scale factor" of PI2/8 to provide the same amplitudes as the
components used in our synthesized version (i.e. the fundamental
has an amplitude of 1.0 and the harmonics all "roll off" as 1/N2).
The final GENERATE FUNCTION subroutine will be:

FFT/03 65

122 K2=(PI*PI)/8:K3=K2/4
124 FOR 1=0 TO 7:Y(I)=K2-K3*I:NEXT I
126 FOR 1=8 TO 15:Y(I)=K3*I-3*K2:NEXT I
128 RETURN

We run the program and obtain the results shown in Fig.
3.4. First of all we notice that there are no harmonic amplitudes
given for the input function; there shouldn't be any, of course,
because we didn't generate the function that way. Of considerably

FREQ

0
1
2
3
4
5
6
7
8
9
10

H 12
13
14
15

F(COS)

0.00000
0.50648
0.00000
0.06245
0.00000
0.02788
0.00000
0.02004
0.00000
0.02004
0.00000
0.02788
0.00000
0.06245
0.00000
0.50648

F(SIN)

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

Y(COS)

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

Y(SIN)

0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

Figure 3.4 - Analysis of a "Perfect" Triangle Wave

more importance is the fact that the components don't match the
amplitudes that we said they would (compare them to the values
derived back in Figure 3.2). Not only do they not have the correct
values, they don't even have the correct 1/N2 ratios! This is com
pletely wrong! Is something wrong with our program?

Even though it is customary to throw up the hands when
results such as these are obtained (not a completely infrequent
occurrence), and proclaim the DFT useless for "real work," it will
actually be best if we can remain calm for a few minutes and

66 Understanding the FFT

examine what has happened here. First of all, there is nothing
wrong with the computer program. The program is telling us
exactly what it should be telling us. There is nothing wrong with
the equations we used to generate the function and there is nothing
wrong with the DFT we are using. The thing that is "wrong" is
that we have just experienced the effects of aliasing] We generat
ed the above triangle wave deliberately so that it would include the
higher order harmonic components (even though we know the
maximum Nyquest frequency is "8" for a data base of only 16 data
points. All of the harmonics above that frequency have been
"folded back" into the spectrum we are analyzing and have given
us "incorrect" values. If we want to generate a function as we did
in this example, and have it agree with the known harmonic
analysis of the "classic" waveshape, we must filter off the harmon
ics above the nyquest before we attempt to digitize it.

The mechanics of the aliasing phenomenon are very
interesting to delve into, but our concern here is with the FFT, and
so we will resist the urge to dig deeper. We have gone through
this exercise because it is the sort of thing that happens in the
practical application of DFT/FFT routines. Systems are improper
ly designed (or improperly applied) and then, later, no one can
understand why the results are invalid. The DFT algorithm is
indeed a simple program, but there are a great many "traps" lurking
for the unwary. While it is relatively easy to explain how the FFT
works and how to write FFT programs, there is no alternative to
studying the DFT, and FFT, and all of the associated engineering
disciplines, in detail. Like Geometry (and, for that matter, most
other things of value)—for this subject "There is no royal road ..."

CHAPTER IV

THE INVERSE TRANSFORM
AND COMPLEX VARIABLES

4.1 RECONSTRUCTION

The inverse transform is, intuitively, a very simple

operation. We know what the amplitudes of the sinusoids are

(from the forward transform), so we simply reconstruct all of these

sinusoids and sum them together. Nothing could be simpler.

We note that the process of extracting the individual

frequency components yielded only half amplitude values for all

but the constant term and the Nyquest frequency term; however,

we extracted components for both the negative and positive

frequencies (i.e. both above and below the Nyquest). This all

works out neatly in the reconstruction process since it will provide

precisely the correct amplitudes when both negative and positive

frequency terms are summed in. Before we develop this discussion

further let's write an inverse transform routine and incorporate it

into the DFT program of the preceding chapters.

68 Understanding the FFT

6 REM ***

8 REM ** (DFT4.1) ANALYZE/RECONSTRUCT WAVEFORM **
10 REM ***

11 REM *** DEFINE CONSTANTS

12 PI=3.141592653589793#:P2=2*PI:K1=PI/8:K2=1/PI

13 REM *** DIMENSION ARRAYS

14 DIM Y(16),FC(16),FS(16)fKC(16),KS(16),Z<16)

15 REM *** INITIALIZE FOURIER COEFFICIENT ARRAYS

16 CLS:FOR J=0 TO 16:FC(J)=0:FS(J)=0:NEXT

20 GOSUB 108: REM * PRINT COLUMN HEADINGS

30 GOSUB 120: REM * GENERATE FUNCTION Y(X)

40 GOSUB 200: REM * PERFORM DFT

60 GOSUB 140: REM * PRINT OUT FINAL VALUES

69 REM *** ASK IF RECONSTRUCTION IS NECESSARY

70 PRINT:PRINT "RECONSTRUCT (Y/N)? ";

72 AS = INKEY$:IF A$="" THEN 72

74 PRINT A$:IF"A$ = "Y" THEN 80

76 END

80 CLS:GOSUB 220:REM * RECONSTRUCT

82 GOSUB 240:REM * PRINT OUTPUT

84 PRINT:PRINT "MORE (Y/N)?";

86 A$ = INKEY$:IF A$ = "" THEN 86

88 PRINT A$:IF A$ = "Y" THEN 15

90 GOTO 76
100 REM **

102 REM * PROGRAM SUBROUTINES *
104 REM **

106 REM * PRINT COLUMN HEADINGS *

108 PRINT:PRINT

109 REM *** Y(COS) AND Y(SIN)=INPUT COMPONENT AMPLITUDES

110 PRINT "FREQ F(COS) F(SIN) Y(COS) Y(SIN)"

112 PRINT

114 RETURN

118 REM ******************************

120 REM *** GENERATE FUNCTION F(X) ***

122 FOR I = 0 TO 15:K3=I*K1:REM I=DATA POINT LOCATION IN ARRAY

123 REM *** SET Y(I)=FIRST 8 COMPONENTS OF TRIANGLE WAVE

124 Y(I) = C0S(K3)+C0S(3*K3)/(9)+C0S(5*K3)/(25)+C0S(7*K3)/49

126 NEXT

127 REM *** STORE COMPONENT AMPLITUDES

128 FOR 1 = 1 TO 7 STEP 2: KC(I)=1/IA2:NEXT

130 RETURN

FFT/04

132 REM ******************************

138 REM * PRINT OUTPUT *

140 FOR Z=0 TO 15

142 PRINT Z;" ";:REM * Z=COMPONENT FREQUENCY

144 PRINT USING "##.#####_ ";FC(Z),FS(Z),KC(Z)fKS(Z)

146 NEXT Z

148 RETURN
200 REM **************************

202 REM * SOLVE FOR COMPONENTS *

206 FOR J=0 TO 15:REM * SOLVE EQNS FOR EACH FREQUENCY

208 FOR I = 0 TO 15:REM * MULTIPLY AND SUM EACH DATA POINT

210 FC(J)=FC(J)+Y(I)*COS(J*I*K1):FS(J)=FS(J)+Y(I)*SIN(J*I*K1)

212 NEXT I

214 FC(J)=FC(J)/16: FS(J)=FS(J)/16:REM * FIND MEAN VALUE

216 NEXT J

218 RETURN
220 REM **************************

222 REM * RECONSTRUCT *
224 REM **************************

226 FOR J=0 TO 15:REM * RECONSTRUCT EACH FREQUENCY

228 FOR I = 0 TO 15: REM * RECONSTRUCT EACH DATA POINT

230 Z(I)=Z(I)+FC(J)*COS(J*I*K1)+FS(J)*SIN(J*I*K1)

232 NEXT I

234 NEXT J *

236 RETURN
240 REM ******************************

241 REM * PRINT OUTPUT *
240 REM ******************************

243 REM * Y(I) EQUALS INPUT FUNCTION FOR COMPARISON

244 CLS:PRINT:PRINT "T Z(I) Y(I)":PRINT:PRINT

245 FOR Z=0 TO 15

246 PRINT Z;" ";

248 PRINT USING "##.#####_ ";Z(Z),Y(Z)

250 NEXT Z

252 RETURN

Figure 4.1

70 Understanding the FFT

The first part of this program is apparently unchanged

from the program of the preceding chapter, except that line 14

defines a new array Z(16). This array will hold the reconstructed

input function. At line 70 we change the question asked to the

following: "RECONSTRUCT (Y/N)". If the answer is "Y" then

we pass on to line 80, where we begin the operation of reconstruc

tion.

As in the preceding program, we use subroutines to

simplify the operation. At line 80 we jump down to line 220

where the operation of reconstruction is performed. At line 82 we

print out the results. Line 84 asks if we want "MORE ?". A "Y"

returns us to line 16—anything else ends the program. Let's now

look at the inverse transform routine:

226 FOR J=0 TO 15:REM * RECONSTRUCT EACH FREQUENCY

228 FOR I = 0 TO 15: REM * RECONSTRUCT EACH DATA POINT

230 Z(I)=Z(I)+FC(J)*C0S(J*I*K1)+FS(J)*SIN(J*I*K1)

232 NEXT I

234 NEXT J

236 RETURN

At line 226 we set up a loop to count from 0 to 15 (i.e.

count the frequency components used in the reconstruction). At

line 228 we set up a nested loop to count through the 16 data

points of the reconstruction. At line 230 we sum into the array

Z(I) the contribution of the Jth frequency component at the data

point I (both cosine and sine components). As pointed out above

we sum in all of the frequency components, i.e. the contribution

from both the positive and negative frequency components, the

constant term, and the Nyquest frequency term. It's that simple.

The print routine for the reconstructed function Z(Z) (as

well as the input time domain function Y(Z)) is located at line 240.

FFT/04 71

243 REM * Y(I) EQUALS INPUT FUNCTION FOR COMPARISON

244 CLS:PRINT:PRINT "T Z(I) Y(I)":PRINT:PRINT

245 FOR Z=0 TO 15

246 PRINT Z;" ";

248 PRINT USING "##.#####_ ";Z(Z),Y(Z)

250 NEXT Z

At line 244 we clear the screen and print the new heading. At lines

245 through 250 we print the reconstruction as well as the input

data.

If we run this program we will obtain the following output:

T

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Z(I)

1.17152

0.93224

» 0.61469

0.30918

-0.00000

-0.30918

-0.61469

-0.93224

-1.17152

-0.93224

-0.61469

-0.30918

-0.00000

0.30918

0.61468

0.93224

Yd)

1.17152

0.93224

0.61469

0.30918

-0.00000

-0.30918

-0.61469

-0.93224

-1.17152

-0.93224

-0.61469

-0.30918

-0.00000

0.30918

0.61469

0.93224

Figure 4.2

72 Understanding the FFT

4. 2 TRANSFORM SYMMETRY AND COMPLEX VARIABLES

All of the above is beautifully simple; unfortunately, the

purist will never let us leave things that way. While the above is

certainly not incorrect, it is slightly "out of bed" with the formal

definition of the DFT. Actually, the complications are not all that

difficult; we need only reformulate everything in terms of complex

variables. Let's look at the problem:

The definitions of the DFT and Inverse DFT are:

N-l

F(f)= 1 / N S f (t) W / (4.1)

T=0

N-l

f(T) = I F(f) WN
Tf (4.2)

f=0

Where: F(f) = frequency components or transform

f(T) = time base data points or inverse xform

N = number of data points

T = discrete times

f = discrete frequencies

W N = eU*/N = Cos(27t/N) + i Sin(27i/N)

FFT/04 73

There is marked symmetry between eqns. (4.1) and (4.2),

but the algorithms given in DFT4.1 for the transform and inverse

transform fail to reflect that symmetry. The inverse transform

starts from complex quantities in the frequency domain while we

use only real numbers for the input function in the forward

transform. Now, in the general case, both the frequency domain

and the time domain may be complex numbers, of course, and

when we provide for this potential, the symmetry between the

forward and inverse transforms immediately becomes apparent.

Let's look at what happens to our transform algorithm when we

consider complex variables:

Multiplication of two complex quantities yields the

following terms:

(A +iB)(£ +iD) = AC +iAD +iBC - BD
= (AC-BD)+i(AD+BC) (4.3)

We might note that (A +iB) is the input function, and (C +iD) is

equal to WN • eaM = Cos(27t/N) + i Sin(27t/N). Incorporating this

into program DFT4.1, we convert the forward transform algorithm:

210 FC(J) = FC(J)+YR(I)*C0S(J*I*K1)-YI(I)*SIN(J*I*K1)
211 FS(J) = FS(J)+YR(I)*SIN<J*I*K1)+YI(I)*C0S(J*I*K1)

where YR stands for the real part of the input function and YI

stands for the imaginary part (this obviously requires defining new

arrays, YR(16) and YI(16), at program initialization). Similarly,

recognizing that an imaginary term must be created in the inverse

74 Understanding the FFT

transform (as defined in eqn. 4.2), the reconstruction algorithm

becomes:

230 ZR(I) = ZR<I)+FC(J)*C0S(J*I*K1)+FS(J)*SIN(J*I*K1>
231 Z I (I) = ZI(I)-FC(J)*SIN(J*I*K1)+FS(J)*C0S(J*I*K1)

The symmetry is now much more apparent. Except for the

sign changes, these lines of code are identical. With a little

manipulation we can use the same routine for both forward and

inverse transformation.

Very well then, we will write a new DFT program with the

above considerations incorporated. It will require completely

revamping the data structures and even the basic flow of the

program, but it will be formally correct. For us, at this point, it

illustrates a significant characteristic of the DFT/Inverse DFT.

While we are at it we should change the program to a menu driven

format as it will be much better suited to our work in the following

chapters. The new program (DFT4.2) is shown on the following

pages. We must make note of the changes:

1. The data arrays have changed completely. At line 14

we now dimension four arrays—C(2,16), S(2,16), KC(2,16), and

14 DIM C(2,16),S(2,16),KC(2,16),KS(2,16)

KS(2,16). These are "two dimensional" arrays, if you will. There

are two columns of 16 data points in each array. From now on we

will put the time domain data in column 1 and the frequency

domain data in column 2 of each of these arrays. KC(2,16) and

FFT/04

6 REM *

8 REM * * * (DFT4.2) GENERATE/ANALYZE UAVEFORM * * *
10 REM *

12 PI=3.141592653589793#:P2=2*PI:K1=PI/8:K2=1/PI

14 DIM C(2,16),S(2,16),KC(2,16),KS(2,16)

16 CLS:FOR J=0 TO 16:F0R 1=1 TO 2:C(I,J)=0:S(I,J)=0:NEXT:NEXT

19 REM *******************

20 CLS:REM * MAIN MENU *
21 REM *******************

22 PRINT:PRINT:PRINT " MAIN MENU":PRINT

24 PRINT " 1 = GENERATE FUNCTION":PRINT

26 PRINT " 2 = TRANSFORM FUNCTION":PR I NT

28 PRINT " 3 = INVERSE TRANSFORM":PRINT

30 PRINT " 4 = EXIT":PRINT:PRINT

32 PRINT SPC(10);"MAKE SELECTION";

34 A$ = INKEY$:IF A$="" THEN 34

36 A=VAL(A$):ON A GOSUB 300,40,80,1000

38 GOTO 20

39 REM *****************************

40 REM * FORWARD TRANSFORM ROUTINE *
41 REM *****************************

42 CLS:N=1:M=2:K5=16:K6=-1:GOSUB 108

44 FOR J=0 TO 16:C(2,J)=0:S(2,J)=0:NEXT

45 GOSUB 200: REM - PERFORM DFT

46 GOSUB 140: REM - PRINT OUT FINAL VALUES

48 PRINT:INPUT "C/R TO CONTINUE";A$

50 RETURN

79 REM *************************

80 REM * INVERSE TRANSFORM *
81 REM *************************

82 CLS:FOR 1=0 TO 15:C(1,1)=0:S(1,1)=0:NEXT

84 N=2:M=1:K5=1:K6=1:GOSUB 200:REM RECONSTRUCT INPUT

85 GOSUB 150:REM PRINT HEADING

86 GOSUB 140:REM PRINT OUTPUT

88 PRINT:INPUT "C/R TO CONTINUE";A$

90 RETURN

76 Understanding the FFT

100 REM **

102 REM * PROGRAM SUBROUTINES *
104 REM **

106 REM * PRINT COLUMN HEADINGS *

108 PRINT:PRINT

110 PRINT "FREQ F(COS) F(SIN) Y(COS) Y(SIN)"

112 PRINT

114 RETURN

137 REM ******************************

138 REM * PRINT OUTPUT *
139 REM ******************************

140 FOR 2=0 TO 15

142 PRINT Z;" ";

144 PRINT USING "##.#####_ ";C(M,Z),S(M,Z),KC(M,Z)/KS(M,Z)

146 NEXT Z

148 RETURN

150 REM ******************************

152 REM * PRINT COLUMN HEADINGS *

154 PRINT:PRINT

156 PRINT " T RECONSTRUCTION INPUT FUNCTION"

158 PRINT

160 RETURN

200 REM *******************************

202 REM * TRANSFORM/RECONSTRUCT *

204 REM *******************************

206 FOR J=0 TO 15:REM SOLVE EQNS FOR EACH FREQUENCY

208 FOR 1=0 TO 15.-REM MULTIPLY AND SUM EACH POINT

210 C(M,J)=C(M,J)+C(N,I)*C0S(J*I*K1)+K6*S(N,I)*SIN(J*I*IC1)

211 S(M,J)=S(MfJ)-K6*C(N,I)*SIN(J*I*K1)+S(N,I)*C0S(J*I*K1)

212 NEXT I

214 C(M,J)=C(M,J)/K5:S(M,J)=S(M,J)/K5:REM SCALE RESULTS

216 NEXT J

218 RETURN

299 REM ***********************

300 CLS:REM * FUNCTION MENU *
301 REM ***********************

302 FOR 1=0 TO 15:C(1,I)=0:S(1,I)=0

303 FOR J=1 TO 2:KC(J,I)=0:KS(J,I)=0:NEXT:NEXT

FFT/04

304 PRINT:PRINT:PRINT " FUNCTION HENU":PRINT

306 PRINT " 1 = TRIANGLE WAVE":PRINT

308 PRINT " 2 = CIRCLE":PRINT

310 PRINT " 3 = ELLIPSE 1":PRINT

312 PRINT " 4 = ELLIPSE 2":PRINT:PRINT

320 PRINT SPC(10);"HAKE SELECTION";

322 A$ = INKEY$:IF A$="" THEN 322

326 A=VAL(A$):ON A GOSUB 330,340,350,360,1000

328 RETURN

330 REM *** GENERATE FUNCTION F(X) ***

332 FOR I = 0 TO 15:K3=I*K1

334 C(1,1) = COS(K3)+COS(3*K3)/9+COS(5*K3)/25+COS(7*K3)/49

335 KC(1,I)=C(1,I)

336 NEXT

338 FOR 1=1 TO 7 STEP 2:KC(2,I)=1/IA2:NEXT

339 RETURN

340 REM *** GENERATE CIRCLE ***

342 FOR I = 0 TO 15:K3=I*K1

344 C(1,I) = SIN(K3):S(1,I)=COS(K3)

345 KC(1,I)=C(1,I):KS(1,I)=S(1,I)

346 NEXT

348KS(2,1)=1 **

349 RETURN

350 REM *** GENERATE ELLIPSE 1 ***

352 FOR I = 0 TO 15:K3=I*K1

354 CO,I) = SIN(K3):S(1,I)=2*COS(K3)

355 KC(1,I)=C(1,I):KS<1,I)=S(1,1)

356 NEXT

358 KS(2,1)=1.5:KS(2,15)=.5

359 RETURN

360 REM *** GENERATE ELLIPSE 2 ***

362 FOR I = 0 TO 15:K3=I*K1

364 C<1,I) • COS(K3):S(1,I)=2*SIN(K3)

365 KC(1,I)=C(1,I):KS(1,I)=S(1,I)

366 NEXT

368 KC(2,1)=-.5:KC(2,15)=1.5

369 RETURN

1000 STOP

>
Figure 4.3

78 Understanding the FFT

KS(2,16) are not needed for a "working" program, but we use

them here to savesthe input functions which we have generated.

We use these later for comparison with the transform and inverse

transform. Again, the first column stores the time domain data and

the second stores the frequency domain.

2. The program is menu driven. Lines 20 through 30 print

the menu. Lines 32 and 34 determine what the selection is and

20 CLS:REM * MAIN MENU *
21 REM *******************

22 PRINT:PRINT:PRINT " MAIN MENU":PRINT

24 PRINT " 1 = GENERATE FUNCTION":PRINT

26 PRINT " 2 = TRANSFORM FUNCTION":PRINT

28 PRINT " 3 = INVERSE TRANSFORM":PRINT

30 PRINT " 4 = EXIT":PRINT:PRINT

32 PRINT SPC(10);"MAKE SELECTION";

34 A$ = INKEY$:IF A$="" THEN 34

36 A=VAL(A$):ON A GOSUB 300,40,80,1000

38 GOTO 20

jump to the appropriate subroutine. The "generate function" is still

located at line 120. The transform and inverse transform routines

are now located at lines 40 and 80 respectively.

3. The "transform routine" is now located at line 40.

Since we now store the time and frequency data in the same array,

and since the forward and inverse transforms are performed by the

same sub-routine, we must set up "pointers" so that the transform

routine will know which way to operate on the data. We do this by

using M and N as the pointers. N points to the "input function"

and M points to the output function—if N=l and M=2 (according

to the statement above that 1 was time domain and 2 was frequen

cy domain data) then we will perform a "Forward Transform." If

FFT/04 79

N=2 and M=l we will perform the "Inverse Transform." In either

case, we must have already created the input function (i.e. we must

use the generate function option from the Main Menu) before we

can perform a forward transform, and we must have performed a

forward transform before we perform an inverse transform. From

these conditions it is apparent what we must do to perform a

forward transform: we clear the screen at line 40, setN=l, M=2,

and then jump to line 108 to print the heading for the output. You

will also note that we have set the constant K5=16. This constant

is used to find the average value of each transformed component

as we did in line 214 of DFT4.1 (Fig. 4.1). Since we do not need

to make this division in the inverse transform, we set K5=l for that

operation (see inverse transform of Fig. 4.3 above).

At line 42 we clear the frequency domain arrays (i.e.

C(2,16) and S(2,16)) before performing the transform. At line 44

we then jump dow« to line 200 where we perform the DFT on the

time domain data. After performing the DFT we return to line 46,

where we then jump to line 140 and print the results. Line 48 is

only a programming technique for waiting until the user is through

examining the data before returning to the main menu.

4. The "inverse transform" starts at line 80 and follows the

same pattern as the forward transform.

5. As we noted above, the transform routine starts at line

200. It is similar to the transform routines used previously except

now we include the possibility of transforming complex numbers.

'

80 Understanding the FFT

4.3 PROGRAM OPERATION/EXAMPLES

If we run this program for the familiar triangle wave of our

past examples we will obtain the same data that we obtained

previously (Fig 4.2) except that now zeros will be printed in the

column for the imaginary part of the input function (i.e. we still

create only the real part of the time domain function).

While this works, of course, we might want to check this

program for some function which actually has complex numbers

for the input. The GENERATE FUNCTION subroutine presents

a second menu which offers a selection of functions. We may take

sixteen points on the circumference of a circle as an example—or

perhaps the example of an ellipse would be more interesting. If

you have not worked with the Fourier Transform of complex

variable inputs the results of these examples might prove interest

ing.

We are not primarily concerned with the transform of

complex variables in this short book, and so we will complete our

review of the DFT here. It is interesting to note (in connection

with complex variables) that we may actually take the transform of

two real valued functions simultaneously by placing one in the real

part of the input array and the other in the imaginary part. By

relatively simple manipulation of the output each of the individual

spectrums may be extracted (see, for example, Fast Fourier

Transforms, Chapter 3.5, by J.S. Walker, CRCPRESS).

PART II

THE FFT

-

CHAPTERV

FOUR FUNDAMENTAL THEOREMS

5.0 INTRODUCTION

Our development of the FFT (in chapter 7) will be based

on these four theorems. Their validity is not our concern here

(proofs are relegated to appendix 5.3); rather, we need only under

stand their function. We will illustrate these theorems via real

examples using the DFT program developed in the previous chap

ters. This DFT program has necessarily been expanded for these

illustrations and is listed in appendices 5.1 and 5.2.

This material is easily grasped, but that does not diminish

its importance—its comprehension is imperative. These theorems

are the key to understanding the FFT, and consequently, this

chapter is dedicated solely to walking through each of these

illustrations step by step. The best approach might be to run each

i 1 lustration on your computer while reading the accompanying text.

5.1 THE SIMILARITY THEOREM

The Similarity Theorem might better be called "the

reciprocity theorem" for it states: "As the time domain function

84 Understanding the FFT

expands in time, the frequency domain function compresses in

spectrum, and increases in amplitude." The input function for

program DFT5.01 isahalfcycleof Sin2(x) centered in the middle

of the time domain. The program requests a "width" (actually the

half-width) which specifies the number of data points over which

the input function is to be spread. According to Similarity then,

the spectrum of the frequency domain will expand and compress

in inverse proportion to the specified width of the time domain

function. The amplitude of the time domain function is held

constant (peak amplitude of 32) so that, in keeping with Similarity,

T

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

T

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

+32.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

+0.00000

Fig. 5.1 - Time Domain for Width = 1

the spectrum amplitude will be proportional to the width! In this

example the amplitude of the output will vary between 1.0 and 16

FFT/05 85

(for the range of widths allowed—also 1 through 16). Repeating

the example with various widths illustrates Similarity.

Run DFT5.01 and specify a width of 1. A single data

point will be generated as the input function (we reproduce the

computer screen in fig. 5.1 on the previous page). The spectrum

for this input is "flat" (i.e. a series of components alternating

between +1 and -1 as shown in figure 5.2 below). A graph of both

frequency and time domain functions is given in figure 5.3. Note

that in the graphical display only the magnitude of the frequency

domain data is displayed.

F(COS)

+1.00000
-1.00000
+1.00000
11.00000
+1.00000
-1.00000
+1.00000
-1.00000
+1.00000
-1.00000
+1.00000
-1.00000
+1.00000
-1.00000
+1.00000
-1.00000

Fig 5.2 •

F(SIN)

+0.00000
-0.00000
+0.00000
-0.00000
+0.00000
-0.00000
+0.00000
-0.00000
+0.00000
-0.00000
+0.00000
-0.00000
+0.00000
-0.00000
+0.00000
-0.00000

• Spectrum

FREQ

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

F(COS)

+1.00000
-1.00000
+1.00000
-1.00000
+1.00000
-1.00000
+1.00000
-1.00000
+1.00000
-1.00000
+1.00000
-1.00000
+1.00000
-1.00000
+1.00000
-1.00000

F(SIN)

+0.00000
-0.00000
+0.00000
-0.00000
+0.00000
-0.00000
+0.00000
-0.00000
+0.00000
-0.00000
+0.00000
-0.00000
+0.00000
-0.00000
+0.00000
-0.00000

for Time Domain Width = 1

This single example doesn't say anything about the

Similarity Theorem of course for the relationship concerns the

expansion and compression of the function. Repeat the exercise

FREQ

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

86 Understanding the FFT

32 16

Time Domain Waveshape Frequency Domain

Fig. 5.3 - Similarity Test Width = 1

but this time select a width of 2. The graphical results are shown

in Fig. 5.4 below. This display shows the "expanded" time domain

function which now has a maximum value at the 16th data point

(amplitude = 32) with two additional data points (amplitudes = 16)

on either side. The spectrum is still a series of data points which

alternate in sign, but now the amplitude of the frequency compo

nents diminish as the frequency increases. At a frequency of 8 the

amplitude is 0.5, and from there the components "roll off1 to

negligible amplitudes at the higher frequencies.

Continue the experiment by repeating the Similarity Test

with widths of 4, 8 and 16. The frequency spectrum shrinks and

the amplitude increases as the time domain function expands (see

figures 5.5 through 5.7).

FFT/05 87

32 - 16 -

Time Domain Waveshape Frequency Domain

* Fig. 5.4 - Similarity Test Width = 2

32 - • 16

Time Domain Waveshape Frequency Domain

Fig. 5.5 - Similarity Test Width - 4

88 Understanding the FFT

32 - 16 -

32

Time Domain Waveshape Frequency Domain

Fig 5.6 - Similarity Test Width = 8

16

Time Domain Waveshape Frequency Domain

Fig. 5.7 - Similarity Test Width = 16

FFT/05 O ^

This phenomenon is the relationship known as Similarity.

It is understood, of course, that "similarity" is completely general

(i.e. it works for any input function) and also bilateral; if we

compress the spectrum of a function its time domain will be

expanded and simultaneously decreased in amplitude. This

relationship is indeed simple, but not insignificant nor trivial. In

fact, it is perhaps the most fundamental relationship that exists

between the frequency and time domains. The essence of this

relationship is this: Faster transitions and shorter durations require

(imply) higher frequencies, and slower transitions and longer

durations require (imply) lower frequencies. If your tape recorder

runs too fast, everyone sounds like Chip and Dale; if it runs too

slow they sound like Lurch. It's a relationship that's inevita

ble—still, perhaps, not completely inescapable.

5.2 THE ADDITION THEOREM

This theorem states that the transform of the sum of two

functions is equal to the sum of the transforms of the two functions

individually:

Xform {fl(x)+f2(x)} = Xform {fl(x)} + Xform {f2(x)} — (5.1)

This is the result of the system being linear of course, and conse

quently, may not seem remarkable. On the other hand, it allows a

certain amount of manipulation that is worth illustrating.

The example selected for DFT5.02 concerns "rising" and

90 Understanding the FFT

"falling" exponential functions. The rising edge is described by:

f,(x) = A0 (1 - O (5.2)
A0 = Amplitude of final value
T = Time Constant

But the falling edge is described by:

f2(x) = A, e^1 (5.3)

A, = Starting Amplitude

DFT5.02 is slightly longer than the other programs of this

chapter simply because there are more things to do. We first

generate the leading edge exponential (eqn. 5.1), find the trans

form, and display the results (both printing out the numerical

values and graphically plotting the results). Before we generate

the second input function (i.e. the trailing edge exponential), we

save this frequency domain data for the rising edge. We then

generate and transform the falling edge input function (eqn. 5.2)

and again print and plot the results. We are now ready to illustrate

the Addition Theorem—we sum the two frequency domain

functions and take the inverse transform.

The second part of the demonstration consists of summing

the two time domain functions, taking the transform of this

summation, and printing and plotting this result.

FFT/05 91

1 - 0.5 -

Time Domain Waveshape Frequency Spectrum

H Fig. 5 .8- f 1 (x)=A 0 (l -e x / T)

We show the results of the "leading edge" transform as

well as the time domain input function in fig. 5.8. Note that in the

plot of the frequency domain (and in the following tables) we show

the frequency spectrum only up to the Nyquest frequency as the

components above that frequency are essentially redundant.

The function f2(x) (i.e. the "falling edge") and its transform

are shown below in figure 5.9. Once again, these two functions

(i.e. fl(x) and f2(x)) and their transforms tell us nothing about the

theorem we are trying to illustrate; they are only two slightly

interesting looking functions, displaced in time so that one begins

where the other ends. For the actual illustration we add the two

transforms together and take the inverse transform (fig. 5.10). The

reconstruction from the frequency domain summation is shown in

figure 5.11 and the equivalent time domain is shown in 5.12.

92 Understanding the FFT

0.5

Time Domain Waveshape Frequency Spectrum

Fig. 5.9-f2(x) = Al €*"

When we add the two transforms of the separate functions
and take the inverse transform, we get the perfect combination of the
two functions in the time domain.

1 - 0.5

Time Domain Waveshape Frequency Spectrum

Fig. 5.10-f,(x)+f2(x)

FFT/05 93

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

+0.00000
+0.18127
+0.32968
+0.45119
+0.55067
+0.63212
+0.69881
+0.75340
+0.79810
+0.83470
+0.86466
+0.88920
+0.90928
+0.92573
+0.93919
+0.95021

-0.00000
+0.00000
+0.00000
+0.00000
-0.00000
-0.00000
-0.00000
-0.00000
-0.00000
-0.00000
+0.00000
+0.00000
+0.00000
-0.00000
+0.00000
+0.00000

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

+0.95924
+0.78536
+0.64300
+0.52644
+0.43101
+0.35288
+0.28892
+0.23654
+0.19367
+0.15856
+0.12982
+0.10629
+0.08702
+0.07125
+0.05833
+0.04776

-0.00000
-0.00000
-0.00000
+0.00000
+0.00000
+0.00000
-0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
-0.00000
+0.00000

Fig. 5.11 - Reconstruction from Sum of Transforms

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

+0.00000
+0.18127
+0.32968
+0.45119
+0.55067
+0.63212
+0.69881
+0.75340
+0.79810
+0.83470
+0.86466
+0.88920
+0.90928
+0.92573
+0.93919
+0.95021

-0.00000
+0.00000
+0.00000
+0.00000
-0.00000
-0.00000
-0.00000
-0.00000
-0.00000
-0.00000
+0.00000
+0.00000
+0.00000
-0.00000
+0.00000
+0.00000

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

+0.95924
+0.78536
+0.64300
+0.52644
+0.43101
+0.35288
+0.28892
+0.23655
+0.19367
+0.15856
+0.12982
+0.10629
+0.08702
+0.07125
+0.05833
+0.04776

-0.00000
-0.00000
-0.00000
+0.00000
+0.00000
+0.00000
-0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
-0.00000
+0.00000

Fig. 5.12 - Sum of f,(x) and f2(x)

94 Understanding the FFT

Part 2 of the illustration is essentially redundant. We add
the two time based functions and take the transform. If you run
this part of DFT5.02 you will find we get identical results with the
previous example, which was, in fact, what the theorem proposed.
The transform of the sum of two functions is equal to the sum of
the transforms of the individual functions. It is apparent that this
is a bilateral relationship.

5.3 THE SHIFTING THEOREM

This theorem states that if a time domain function is
shifted in time, the amplitude of the frequency components will
remain constant, but the phases of the components will shift
linearly—proportional to both the frequency of the component and
the amount of the time shift.

In program DFT5.03 we have modified the printout
routine so that the magnitude and phase of the frequency compo
nents can be printed as opposed to printing out the sine and cosine
components (we find the magnitude by the RSS [Root of the Sum
of the Squares] of the components, and the phase as the Arc
Tangent of the ratio of the two components).

This theorem uses the Impulse Function, which is a unique
function ideally suited for our purpose. The Impulse Function is
a pulse whose width approaches zero, and amplitude approaches
infinity, while its "area" (i.e. product of width x amplitude)
remains fixed. This unique function produces a unique spectrum—
the frequency components all have amplitudes of 1.0 when the area
of the function is unity. Now, it is obviously impossible to repre
sent an infinite amplitude on a computer, but fortunately, in the
DFT, we don't really need an infinite amplitude. If we make the

FFT/05 95

FREQ

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

F(MAG)

+1.00000
+1.00000
+1.00000
+1.00000
+1.00000
+1.00000
+1.00000
+1.00000
+1.00000
+1.00000
+1.00000
+1.00000
+1.00000
+1.00000
+1.00000
+1.00000
+1.00000

F(THETA)

+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000

Fig. 5.13 - Impulse Xform

1.0 -

amplitude of the impulse equal
to the number of data points in
the digitized array, we will
obtain the desired results (i.e.
the frequency components will
all have an amplitude of 1.0-
seefigs. 5.13 and 5.14).

Run program DFT5.03 and
select the Shifting Theorem
from the MAIN MENU; the
routine automatically runs the
first example with a time shift
of zero. Specifically, the
computer will generate a time
domain impulse of amplitude
32, followed by 31 data points

180° -

Magnitude Phase

Fig. 5.14 - Impulse Xform (polar coordinates)

of zero amplitude. It then takes the transform and prints the output
(in polar coordinates). The results are shown in fig. 5.14—all of

96 Understanding the FFT

the magnitudes will be 1.0 and the phases will be zero (note that
the phase is given in degrees).

Now, a "shift" of 1 will cause the impulse to be generated
at the second data point (i.e. it is "shifted" to the right by one data
point). According to the Shifting Theorem, the magnitude of the
frequency components will be unchanged, but their phases will be
shifted proportional to the time base shift. Furthermore, the phase

1.0 180°

Magnitude Phase

Fig. 5.15 - Xform of Shifted Impulse

of each component will be proportional to its harmonic number.
The results will be as shown in Fig. 5.15. Note that the phase shift
increases by 11.25° for each frequency component yielding a shift
of 7i radians (180°) at the Nyquest frequency. This is a convenient
feature of the DFT—the phase shift at the Nyquest frequency will
always be 7t radians multiplied by the number of data points that
the time domain function has been shifted. The phase continues to
shift in this manner as we continue upward through the negative
frequencies of course. We may verify this fact by running the
Shifting Theorem routine and selecting various shifts. A time shift
of two data points, for example, yields increments of 22.5° for
each component up to 360 degrees at the Nyquest frequency, or by

FFT/05

1.0 - 180° -

1 8 0 ° -

•
•

>

•

•

•
•

»

Magnitude Phase

Fig. 5.16 - Xform of Double Shifted Impulse

twice the amount that it did for a single data point shift (fig. 5.16).
The principle is (again) completely general and bilateral.

You might want to modify the routine to insert some other function
for evaluation. A step function may be substituted as follows:

700 INPUT "SHIFT"; S9
702 FOR 1=0 TO S9: Y(I)=0:NEXT
704 FOR I=S9 TO S9+15:Y(I)=1 :NEXT
706 FOR I=S9+16 TO Q:Y(I)=0:NEXT
708 RETURN

5.4 STRETCHING THEOREM

The Stretching Theorem is a special, unique case of the
Similarity Theorem and requires introductory comments: when
dealing with real digitized data (as opposed to algebraic equations),

98 Understanding the FFT

the question arises as to how this data can be expanded. Expanding
digitized data by the method we refer to as stretching is accomplished
by simply placing zeros between the data points. The stretching
theorem tells us that, if we stretch a function by placing zeros between
the data points, the spectrum of the original function will be repeated
in the frequency domain. Let's illustrate this diagrammatically—we
represent the input data array as follows:

DATAl
ARRAY

= D1,D2,D3,D4 (5.1)

Where D1,D2, etc. are the time domain data points.

Now, if we intersperse zeros between the data points:

DATA'
ARRAY

D1,0,D2,0,D3,0,D4,0 (5.2)

The function is now twice as long; but, except for position, it is
apparent that we have not actually added any new information. At
any rate, the Stretching Theorem says this; "If DATAl ARRAY (of
eqn. 5.1) has the following transform:

Xform DATAl
ARRAY

= A1,A2,A3,A4 (5.3)

Where: A1,A2, etc., are the frequency domain components.

Then:

Xform DATA'
ARRAY

= '/2[A1,A2,A3,A4,A1,A2,A3,A4] (5.4)

FFT/05 99

That is, if we intersperse zeros between the data points, the frequency
components A 1,A2,A3,A4 simply repeat themselves a second time,
with each of the component's amplitudes divided in half." Just as
there was no new "data" in the time domain function, there is no new
"data" in the transform. The information dealt with here is all
contained in "position."

At this point it may be hard to see anything profound in this
seemingly innocuous theorem; but, this simple theorem is the key to
the FFT. Let's now see how it works in practice.

Run DFT5.04 and select the Stretching Theorem. The
program generates a very simple waveform (four data points of +8
and -8 followed by zeros—see Fig. 5.17 below). This waveform has
been selected for no other reason than that it generates a distinctive
spectrum that will be easy to recognize.

T

0
1
2
3
4
5
6
7

DATA INPUT

+8.00000
-8.00000
+8.00000
-8.00000
+0.00000
+0.00000
+0.00000
+0.00000

+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000

T

8
9
10
11
12
13
14
15

DATA INPUT

+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000

+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000

Fig. 5.17 - Un-stretched Data Input for Stretching Theorem

FREQ

0
1
2
3
4
5
6
7

F(HAG)

+0.00000
+0.36048
+0.54120
+0.42522
+0.00000
+0.63638
+1.30656
+1.81226

F(THETA)

+0.00000
-56.25000
-22.50001
+11.25000
-95.71248
-101.25000
-67.50000
-33.74999

FREQ

8
9
10
11
12
13
14
15

F(MAG)

+2.00000
+1.81225
+1.30656
+0.63638
+0.00000
+0.42522
+0.54120
+0.36048

F(THETA

+0.00000
+33.75001
+67.50001
+101.25000
+95.71248
-11.24999
+22.50003
+56.25003

Fig 5.18 - Un-stretched Data Spectrum

100 Understanding the FFT

8.0 - 2.0 -

-8.0 -

Figure 5.19 - Graphical Display of Xform F(x)

The transform of this input function is displayed in figures
5.18 and 5.19, where its distinctive "three humped" spectrum is
apparent.

We now consider the "stretched" function:

T

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

DATA INPUT

+8.00000
+0.00000
-8.00000
+0.00000
+8.00000
+0.00000
-8.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000

+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000

T

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

DATA INPUT

+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000

+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000
+0.00000

Fig. 5.20 - Stretched Input

FFT/05 101

This is the same function with the same four data points

except that now they are separated by zeros (i.e. we stretch the

function. Note that all of the data is "stretched"—including

zeros—yielding 32 data points). The transform of this function

shows the spectrum "doubling" with the amplitude components cut

in half as described above. This is more readily apparent in the

graphical display of fig. 5.22.

FREQ

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

F(MAG)

+0.00000

+0.18024 v
+0.27060

+0.21261

+0.00000

+0.31819

+0.65328

+0.90613

+1.00000

+0.90613

+0.65328

+0.31819

+0.00000

+0.21261

+0.27060

+0.18024

F(THETA)

+0.00000

-56.25000

-22.50001

+11.25000

-95.71248

-101.25000

-67.50000

-33.74999

+0.00000

+33.75001

+67.50001

+101.25000

+0.00000

-11.24999

+22.50003

+56.25003

FREQ

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

F(HAG)

+0.00000

+0.18024

+0.27060

+0.21261

+0.00000

+0.31819

+0.65328

+0.90613

+1.00000

+0.90613

+0.65328

+0.31819

+0.00000

+0.21261

+0.27060

+0.18024

F(THETA

+90.00000

-56.25004

-22.49995

+11.25001

-67.38148

-101.25000

-67.50001

-33.75000

+0.00000

+33.75003

+67.50003

+101.25010

-48.59289

-11.24988

+22.50005

+56.25002

Fig. 5.21 - Double Spectrum of the Stretched Function

Once again, we note that this phenomenon is bilateral (i.e.

if we repeat the spectrum a second time a "stretched" version of

the function will be obtained on reconstructing! Nothing could be

simpler, and the same comment holds for the FFT itself.

102 Understanding the FFT

8.0 -

-8.0 -

Figure 5.22 - Graphical Display of F(x) stretched

2.0 -

Figure 5.23 - Graphical Display of Xform F(x)stretche<1

CHAPTER VI
SPEEDING UP THE DFT

6.0 INTRODUCTION

Our objective in this chapter is to reveal what makes the
DFT so unacceptably slow. To that end we will examine individu
al factors that determine its "speed," and look at ways to eliminate
the bottlenecks.

6.1 FUNDAMENTAL CONSIDERATIONS

First of all, just how slow is the DFT? Program DFT6.01
(listed in Appendix 6.1) is a modification of DFT5.01 allowing us
to measure the time actually spent transforming data arrays of
varying size. Run time vs. length of data is given below:

N

4
5
6
7
8

DATA POINTS

2 4= 16
25 = 32
26 = 64
27 = 128
28 = 256

RUN TIME

5.4 SECONDS
21.8 SECONDS
88.4 SECONDS

354.7 SECONDS
1409.7 SECONDS

Fig. 6.1 - Execution Times for DFT

If we should run the program for 29 (=512) data points we know
the time required will be approximately 5600 seconds (1 hour and
32 minutes!) since the run time is increasing approximately as the
square of the number of data points. You should know that, when
working with the DFT, a thousand data points is not a "large"

104 Understanding the FFT

array—a two-dimensional image, for example, might contain a
thousand lines of a thousand data points each. From the apparent
trend of Fig. 6.1, however, we conclude the run time for a
thousand point array would be about 6 hours—that would be 6000
hours for an entire thousand line image. That works out to be 250
days and it's only half the work required for a proper two-dimen
sional transform. The nature of the DFT is such that we are
usually pushed toward larger data arrays, and it is easy to see that
as arrays become larger processing time becomes prohibitive.

6.2 INSTRUCTION EXECUTION TIMES

Write the following routine and run it:

10 REM TIME TEST FOR SIN(X)
20 PI=3.14159265:E=2„7182818:P3=PI/3
22 T1=TIMER
28 FOR I = 1 TO 100
30 Y1=SIN(P3):REM LINE 30 TYP.(10 PLACES)
32 Y1=SIN(P3)
REM LINES 34 THRU 46 ARE IDENTICAL 30, 32 & 48

48 Y1=SIN(P3)
50 NEXT I
60 T1=TIMER-T1
70 PRINT T1/1000
80 STOP

This routine reveals the time required to evaluate a sine
function. On my 80286 CPU it takes 2.95 ms (milli-seconds—
1 ms = lxlO"3 sec). The time required to multiply two numbers
may be found by replacing lines 30 through 48 with:

30 Y1 = PI*E

FFT/06 105

On my computer a multiplication takes 0.482 ms.
Similarly the sum of two numbers takes 0.421 ms. One of the
reasons why these operations are so slow is that they are written in
GWBASIC—there is a great deal of "overhead" that a BASIC
interpreter must handle for any statement. We could make
significant gains if we wrote the program in FORTRAN, or
PASCAL, or C(+/++), or Assembly Language, or even compiled
BASIC. With a math co-processor they will be improved even
more; still, even if we slash these times by a factor of a thousand,
we will not completely solve the problem—but we will come to
that later.

6.3 COEFFICIENT ARRAYS

In any case we have established that finding the sine of an
argument takes about 2.95A482 = 6 times longer than doing a
multiplication. Since we require either a sine or cosine for
virtually every operation we perform in the DFT, we could speed
things up considerably by placing the required sine and cosine
values in an array and simply calling them up when needed (as
opposed to evaluating them each time through the loop). We can
do this by modifying program DFT6.01 (see Appendix 6.2)—this
modification yields the following execution times:

N DATA POINTS RUN TIME

4 24 = 16 2.19 SECONDS
5 25 = 32 8.51 SECONDS
6 t - 64 33.70 SECONDS

Fig. 6.2 - Execution Times with Coefficient Array

106 Understanding the FFT

The execution times have improved by more than a factor

of two; however, if you try to run more than about 26 data points

the computer will tell you it has run out of memory. The problem

is that the array K(2,Q,Q) takes a lot of memory. We could work

around this, but that's not our objective (for the moment we are

only trying to find the sources of the DFT's slowness). We will

ignore this limitation for the moment and continue our search for

ways to speed up the DFT.

6.4 OMITTING THE NEGATIVE FREQUENCIES

As we noted back in chapter 2, when the input is limited

to real numbers, we do not need to compute the negative frequen

cies—they are only the complex conjugates of the real frequencies.

Since they eat up almost half of the time required to execute the

DFT, we might well expect to double the processing speed of our

DFT by eliminating them (the necessary program changes are

given in Appendix 6.3). If we add these changes to our test

program we obtain the following execution times:

N

4

5

6

DATA POINTS

24 = 16

25 = 32

26 = 64

RUN TIMES

1.27 SECONDS

4.51 SECONDS

17.40 SECONDS

Fig. 6.3 - Execution Times (Negative Frequencies Omitted)

FFT/06 107

6.5 NON-SYMMETRICAL TRANSFORM ROUTINES

Finally, we went to a certain amount of trouble in chapter
4 to make the forward and reverse transform routines identical.
This provided a very neat algorithm for our program but, in fact,
it is not the fastest possible DFT routine. If we are dealing only
with real number inputs, there is a certain amount of unnecessary
computation going on here, and we can use the algorithms derived
in the first chapters. We may add this to all of the previous
modifications quite easily—we need only change the following
two lines:

210 C(M,J)=C(M,J)+C(N,I)*K(1,J,I)
211 S(M,J)=S(M,J)+C(N,I)*K(2,J,I)

This will provide the forward transform only. The inverse
transform will remain pretty much as it was, and will obviously
have to be repeated somewhere else in the program and designated
as the Inverse Transform Routine, but we are only interested in
showing the improvements attainable here. If we make this
change, and run the illustration one last time, we will obtain the
following execution times:

N DATA POINTS RUN TIMES

4 24 = 16 0.76 SECONDS
5 25 = 32 2.8 SECONDS
6 26 = 64 10.8 SECONDS

Fig 6.4 - Execution Times (non-symmetrical Xform)

As before, the run times are shorter, but still increase as
the square of the number of data points. When we consider that

108 Understanding the FFT

typical applications of the Discrete Fourier Transform handle 1024
data points and up, and even with all of our tricks, 1024 data points
would still take about 45 minutes, it becomes obvious that none of
these tricks will, in themselves, solve the general problem.

6.6 THE DFT COEFFICIENT MATRIX (Twiddle Factors)

I suspect that some rare disease has infiltrated science and

technology within the last half century. The symptoms of this

disease are the distressingly inordinate use of ACRONYMS and

frivolous terminology. Thus, the term Twiddle Factor is an

entrenched part of FFT terminology—it refers to the sine and

cosine coefficients that we developed in section 6.3.

Be that as it may, the array of twiddle factors we created

above (i.e. the coefficient matrix K(2,Q/2,Q)) is, in a sense, a

snapshot of the DFT. If we arrange these coefficients in a matrix

with the vertical positions corresponding to the data sample times,

and the horizontal positions corresponding to the harmonic

numbers in the frequency domain, the operation of the DFT is

visible at a glance—this is a point well worth illustrating. We can

write a short routine to print out this matrix:

10 REM DFT MATRIX

20 INPUT "NUMBER OF DATA POINTS";Q

30 DIM M(2,Q,Q/2):PI=3.14159265358#:P2=2*PI/Q

40 FOR T=0 TO Q:TP=P2*T

50 FOR F=0 TO Q/2:PRINT USING "+#.###_ ";C0S(TP*F);:NEXT

60 PRINT:NEXT

99 STOP

I I 1706 109

This routine prints out the following matrix showing the

no coefficients necessary to convert a 16 point database.

F0 F1 F2 F3 F 4 F5 F6 F 7 F8

tOO+1.000 +1.000 +1.000 +1.000 +1.000 +1.000 +1.000 +1.000+1.00
'1.000 +0.924 +0.707 +0.383 -0.000 -0.383 -0.707 -0.924-1.00

T02 +1.000 +0.707 -0.000 -0.707 -1.000 -0.707 +0.000 +0.707+1.00
1.000 +0.383 -0.707 -0.924 +0.000 +0.924 +0.707 -0.383-1.00
1.000 -0.000 -1.000 +0.000 +1.000 -0.000 -1.000 +0.000+1.00

TOT +1.000 -0.383 -0.707 +0.924 -0.000 -0.924 +0.707 +0.383-1.00
106+1.000 -0.707 +0.000 +0.707 -1.000 +0.707 -0.000 -0.707+1.00

'1.000 -0.924 +0.707 -0.383 +0.000 +0.383 -0.707 +0.924-1.00
ton +1.000 -1.000 +1.000 -1.000 +1.000 -1.000 +1.000 -1.000+1.00
109+1.000 -0.924 +0.707 -0.383 -0.000 +0.383 -0.707 +0.924-1.00
110+1.000 -0.707 -0.000 +0.707 -1.000 +0.707 +0.000 -0.707+1.00

• 1.000 -0.3J3 -0.707 +C.924 -0.000 -0.924 +0.707 +0.383-1.00
1.000 +0.000 -1.000 -0.000 +1.000 +0.000 -1.000 -0.000+1.00
1.000 +0.383 -0.707 -0.924 -0.000 +0.924 +0.707 -0.383-1.00

! K +1.000 +0.707 +0.000 -0.707 -1.000 -0.707 -0.000 +0.707+1.00
1.000 +0.924 +0.707 +0.383 +0.000 -0.383 -0.707 -0.924-1.00

Fig. 6.5 - Cosine Coefficient Matrix for 16 Point Xform

As we stated, the left hand column represents the "times"
>i the digitized data points, and the top row indicates the frequen-

i ics of the transformed function. Look carefully at the columns—
olumn F0 is all ones, column Fl traces out a single cosine wave,
olumn F2 is 2 cosine waves, etc., etc. To obtain the frequency

domain function we go down each column, multiplying the time
l "ii min data points by the corresponding coefficients and summing

ilu- products.
While it has no bearing on our present development, this

illustration is too good to pass up: Those who are familiar with
\ ft itrix Algebra will recognize that, if the digitized data is consid-
i nil to be a Row Matrix, the process described above is nothing
more than matrix multiplication. In fact, if we extend the notion to

110 Understanding the FFT

complex numbers, the whole DFTmay be expressed as the product
of two matrices:

[d „ d 1 2 . . . d , N]
c l l c12 CIN
C21 C22 C2N

CN1 CN2 —Ctm

1 III Il2 —f|N 1 (6.1)

where: C = square matrix of coefficients
D = row matrix of time domain data
F = row matrix of frequency domain data

Having noted this, we should also look at the matrix of sine
coefficients. This is done by changing line 50 to print SIN(TP*F),
as shown below.

F 0

TOO +0.000
T01 +0.000
T02 +0.000
T03 +0.000
T04 +0.000
T05 +0.000
T06+0.000
T07+0.000
T08 +0.000
T09 +0.000
T10 +0.000
T11 +0.000
T12 +0.000
T13 +0.000
T14 +0.000
T15 +0.000

F 1

+0.000
+0.383
+0.707
+0.924
+1.000
+0.924
+0.707
+0.383
-0.000
-0.383
-0.707
-0.924
-1.000
-0.924
-0.707
-0.383

F 2

+0.000
+0.707
+1.000
+0.707
-0.000
-0.707
-1.000
-0.707
+0.000
+0.707
+1.000
+0.707
-0.000

707
000
707

F 3

+0.000
+0.924
+0.707
-0.383
-1.000
-0.383
+0.707
+0.924
-0.000
-0.924
-0.707
+0.383
+1.000
+0.383
-0.707
-0.924

F 4

+0.000
+1.000
-0.000
-1.000
+0.000
+1.000
-0.000
-1.000
+0.000
+1.000
-0.000
-1.000
+0.000
+1.000
-0.000
-1.000

-0.
+1.
-0.

F 5

+0.000
+0.924
-0.707
.383
.000
.383

-0.707
+0.924
-0.000
-0.924
+0.707
+0.383
-1.000
+0.383
+0.707
-0.924

F 6

+0.000
+0.707
-1.000
+0.707
-0.000

707
000
707

+0.000
+0.707
-1.000
+0.707

-0.
+1.
-0.

000
707
000

-0.707

F 7

+0.000
+0.383
-0.707
+0.924
-1.000
+0.924
-0.707
+0.383
-0.000
-0.383
+0.707
-0.924
+1.000
-0.924
+0.707
-0.383

F 8

+0.00
-0.00
+0.00
-0.00
+0.00
-0.00
+0.00
-0.00
+0.00
-0.00
+0.00
+0.00
+0.00
-0.00
+0.00
-0.00

Fig. 6.6 - Sine Coefficient Matrix for 16 Point DFT

If we compare this to Fig. 6.5 we find the coefficients have

changed places in an orderly manner so that now the "ones" have

FFT/06 111

become "zeros" and the 0.383 values have become 0.924s, etc. If

we look at the F1 column we now see that it traces out a sine wave,

etc. The symmetry of this matrix, along with the frequent

occurrence of 1, 0, and -1 brings to mind a course of action

speeding up the DFT: Since multiplying by 1 or 0 requires no

actual multiplication, and multiplying by -1 only requires changing

the sign of the multiplicand, we might work out a scheme where

much of the computation was eliminated. Furthermore, if we look

across the rows we find that every value occurs at least twice. We

need not repeat the operation—we could perform it once and

simply place the product in the correct locations. We might do

more along thase lines, and perhaps make great improvements to

the speed of the DFT, but most of these considerations will become

irrelevant—overcome by events—once we develop the FFT The

most serious criticism of this approach, however, is that it fails to

address the real problem.

Consider the above coefficient matrices overall; it is

apparent that when we perform the DFT, we are performing a

square matrix of mathematically identical operations. This square

matrix illustrates clearly the source of our problem. It is obvious

why the time of execution goes up as the square of the number of

data points—the number of operations required is equal to the

square of the number of data points.

Let's take the time to show precisely why this is such a

damning characteristic: First understand that, even though your

computer may run at 100 MHz, it takes perhaps a dozen clock

cycles to perform a floating point multiply and store. Conse

quently, it takes dozens of clock cycles to complete a complex

arithmetic multiply, sum, and store. You are not doing arithmetic

112 Understanding the FFT

at 100 MHz (nor, for that matter, even at 10 MHz). For the sake

of argument then, let's use 1 f̂ sec as our "bench mark" time for

processing a single data point. If we have 1024 data points, we

require 1,048,576 complex operations, and could process this data

array in just over 1 second. This may not sound too bad, but if you

are trying to design a "real time" Spectrum Analyzer, for example,

you will need to do much better than that. Then again, it frequent

ly turns out 1024 data points are not enough for some applications.

Suppose we need 65,536 data points? This requires 4,294,967,296

operations or, at 1 u.sec/operation, 4,295 seconds (71 minutes 35

seconds) to complete the transform.

Are these examples realistic? Suppose, for example, you

want to process an audio signal in "real time." The audio range

extends from about 20 Hz to 20,000 Hz, and you must include all

of these frequencies within your data; therefore, you must digitize

data for at least .05 seconds (1/20 Hz) at a rate of at least 40,000

digitizations/second. This requires a minimum array size of 2000

data points so we will use 2048 (i.e. 2"). We now have 4,194,430

complex operations and a DFT time of approximately 4 seconds (at

our benchmark time of 1 |usec/ operation). But, we are digitizing

a new block of data every 0.05 seconds! We need to be a thousand

times faster just to get the transform done. Even if we purchase a

computer that's 10 times faster we will still be 100 times too slow!

The point that should be apparent from the above exercise

is that, so long as the number of operations required are propor

tional to the square of the number of data points processed, "large"

input data arrays will always (eventually) produce unmanageable

processing problems.

CHAPTER VII
THE FFT

7.0 INTRODUCTION

We have come, finally, to the object of our quest—the
development of the FFT algorithm proper. The objective of the
FFT is simply to perform the DFT faster. As we have shown in
the previous chapter, executing a DFT requires performing N2

complex operations for N data points (NOTE: a "complex opera
tion" includes evaluating sine and cosine functions, multiplying by
the data point and adding these products to the sums of the other
operations). When we realize that applications may have tens of
thousands of data points (and more) we begin to understand why
the conventional DFT will never suffice; 104 to 105 complex
operations may be manageable, but 108 to 10'° are probably not.
We need an algorithm that does for the DFT what the Horner
scheme did for the series approximations of chapter 1.

How are we going to do this? Let's look at the DFT
coefficient matrix again (Fig. 7.1 below). There are 8 data points
and 8 harmonics (more generally, Q data points and Q frequen
cies), and each data point must be multiplied by its corresponding
point from each harmonic's sinusoid, yielding 64 (Q2) operations.
Is there some way we can turn this liability (i.e. the number of
operations being proportional to the square of the number of data
points) into an asset? Well, the incurable optimist will note that if
we can reduce the number of data points, the number of operations
will be reduced as the square. For example, if we could split the
data base into two equal parts, and process each half separately, we
would have only 4 data points and 4 frequencies (i.e. 16 opera
tions) for each half. The total would be 32 operations—only half
of what we had before.

114 Understanding the FFT

FO F 1 F2 F3 F4 F5 F6 F7 F8

TO +1 .000 +1 .000 +1 .000 +1 .000 +1 .000 +1 .000 +1 .000 +1 .000 +1 .000
T1 +1.000 +0.707 -0.000 -0.707 -1.000 -0.707+0.000 +0.707 -1.000
T2 +1.000 -0.000 -1.000 +0.000 +1.000 -0.000 -1.000 +0.000 +1.000
T3 +1.000 -0.707 +0.000 +0.707 -1.000 +0.707 -0.000 -0.707 -1.000
T4 +1.000 -1.000 +1.000 -1.000 +1.000 -1.000 +1.000 -1.000 +1.000
T5 +1.000 -0.707 +0.000 +0.707 -1.000 +0.707 -0.000 -0.707 -1.000
T6 +1.000 -0.000 -1.000 +0.000 +1.000 -0.000 -1.000 +0.000 +1.000
T7 +1.000 +0.707 -0.000 -0.707 -1.000 -0.707+0.000 +0.707 -1.000

Fig. 7.1 - Cosine Coefficient Matrix for 8 Point DFT

This, in fact, is the approach used to develop the FFT. The
input data array is divided into smaller arrays to reduce the amount
of computation; however, it is not clear at the outset how this can
be done and still obtain the same results as provided by the DFT
of the original input data. For example, if we simply split the data
array in half and take the DFT of each half, we will only obtain
half of the required frequency components. It is not immediately
clear how the spectra of two half-sized (i.e. 4 data point) arrays
might be combined to produce the 8 frequency components of the
original transform.

7.1 FFT MECHANICS

The solution to our dilemma lies in the three theorems we
studied in chapter 5, which we will now apply systematically to the
reduction of the DFT. We start with an 8 point data array as
shown below:

| DATA ARRAY 0 | = | DO, Dl, D2, D3, D4, D5, D6, D7 | ----- (7.0)

FFT/07 115

You recall, in the addition theorem, we added two separate input
functions together to form a function that was the sum of the two.
Let's work that in reverse now and separate the data array shown
in (7.0) into two separate arrays that are capable of being summed
to recreate the original. There are many ways this can be done;
for example, we might split the data out as follows:

| DATA1' | = | DO, 0, D2, 0, D4, 0, D6, 0 | (7.1)

| DATA2' | = | 0, Dl, 0, D3, 0, D5, 0, D7 | (7.2)

It is apparent that we can add these two arrays back together to
obtain the original, and from the addition theorem, we know we
can add their transforms to obtain the transform of the original
function. But each of these arrays has the same number of data
points as the original. Each will require 64 operations to obtain its
transform. If we continue along these lines we will double the
amount of work rather than halving it!

Before throwing the baby out with the wash water let's
take a closer look at (7.1) and (7.2). They are in the same form as
the example given in the Stretching Theorem. Again, if you recall,
the "stretched" data base had the unique characteristic that its
transform was the same as the transform of an un-stretched data
base, except it was repeated a second time (see the example for
stretching in chapter 5). The light begins to dawn here, for indeed,
this is the key to solving our problem. It works like this—we
know that the transform of (7.1) is:

Transform | DATA1' | - | F1.F2.F3.F4, F1.F2.F3.F4 | -- (7.3)

That is, the first four frequency components repeat a second time.

116 Understanding the FFT

Now let's remove the zeros separating the data points in the array
| DATA 1' | , and obtain the array:

| DATA1 | = | D0,D2,D4,D6 | (7.4)

The transform of this array is:

Transform | DATA1 | = | F1,F2,F3,F4 | (7.5)

Where F1,F2,F3, and F4, in equation (7.5) are identical to
F1 ,F2,F3 and F4 in equation (7.3). Good Grief! Can the secret of
the FFT be so simple? We obtain the transform of a stretched data
array (consisting of 8 frequency components) by finding the
transform of a 4 point array (4 frequencies) and repeating it! By
the Addition Theorem then, we may simply add two spectrums
obtained in this manner (i.e. the transforms of | DATA1' | and
| DATA2' |) and we will have the transform of the original 8

point data array. As explained above, the amount of work
necessary will be halved, except that we must now include the
operation of adding all of the components together.

There is one small problem however; the un-stretched data
for | DATA2' | is:

| DATA2 | = | D1.D3.D5.D7 | (7.6)

and to get from | DATA2 | (eqn. 7.6) back to | DATA2' | (eqn.
7.2), we must not only stretch the data but also shift it one data
point to the right. As we have just pointed out, to stretch the array
| DATA2 I we simply repeat its spectrum; and, as you recall from

the Shifting Theorem, if these 8 frequency components for the
transform of | DATA2 | stretched are all phase shifted (proportional
to their frequency) we cause the time domain data to be shifted.

FFT/07 117

NOTE: Since the odd terms are shifted by only one data point we
know the frequency components will be linearly phase shifted from
zero (at the zero frequency component) through PI radians at the
Nyquest frequency (i.e. we must shift each of the components in
the DFTodd transform by 2*PI*N/Q, where N = the harmonic
number of the frequency component and Q = total number of
frequencies—see the Shifting Theorem in Chapter 5).

All of this is diagrammed below (Fig. 7.2)—the character
istic "crossover" pattern is sometimes called a "butterfly." The
even data points are put through a 4 point DFT; the odd data points
are transformed in a separate 4 point DFT The frequency
components from DFTodd are properly phase shifted and summed
into the frequency components of the DFTeven.

Data Xform Output

DO

D2

D4

D6

rji -

U3
m -
i)i

W-.
o =

4 Point

DFT

: In radians
: summation

4 Point

DFT

Fl-0
Fl-1
Fl-2
Fl-3

F2-0
F2-1

F2-2

F2-3

Fig. 7.2 - FFT "Butterfly" Flow Diagram

118 Understanding the FFT

That's it! That is all there is to the basic scheme of the FFT
algorithm. The presentation of the last few pages is the heart of
the FFT and also the heart of this book.

Before going any further, let's see if this scheme really
works. First, we need a routine that will pick out the "even" data
points and perform a DFT on them. This is accomplished as
follows:

As before: Q = the number of data points.
Y(n) = the input data points.
Kl = 2*PI/Q
Q2 = Q/2
J counts the frequency components.
I counts the data points.

109 REM * COMPUTE EVEN DFT *
110 FOR J=0 TO Q2:J1=K1*J*2
112 FOR 1=0 TO Q2-1
114 C1(J)=C1(J)+Y(2*I)*C0S(J1*I)
116 S1(J)=S1(J)+Y(2*I)*SIN(J1*I)
118 NEXT I
120 C1(J)=C1(J)/Q:SUJ)=S1(J)/Q
122 NEXT J

Note that in line 110 the J counter only counts up to Q/2,
and in line 112 the I counter counts up to (Q/2)-l. We operate on
only the even data points in lines 114 and 116 by multiplying 1*2
for each data point i.e. Y(I*2). Also note that we have had to
multiply the argument for each sine and cosine by 2 when- we
define Jl at the beginning of the loop for each frequency compo
nent (line 110 ... :J1=K1*J*2). Other than these comments, we
extract the standard DFT on the components; CI (J) is the cosine
component for the Jth frequency term, and SI (J) is the sine
component. The C1 and S1 arrays are the frequency components

FFT/07 119

for the even data points. The frequency components for the odd
data points will be designated C2 and S2. We perform the DFT on
the odd data points in a similar routine:

124 REM * COMPUTE ODD DFT *
126 FOR J=0 TO Q2:J1=K1*J*2
128 FOR 1=0 TO Q2-1
130 C2(J)=C2(J)+Y(2*I+1)*COS(J1*I)
132 S2(J)=S2(J)+Y(2*I+1)*SIN(J1*I)
134 NEXT I
136 C2(J)=C2(J)/Q:S2(J)=S2(J)/Q
138 NEXT J

This routine is identical to the one presented above except
that now we only wse the odd data points (lines 130 and 132— i.e.
Y(2*I+1).

We have now taken the transform of both halves of the
data base in 2*(Q/2)2 (or Q2/2), as opposed to Q2 operations. We
must now sum these two transforms together to obtain the com
plete transform. This is done as follows (in the following, K2 is
denned as K2=2*PI/Q.):

139 REM * SUM HALF DFTS *
140 FC(0)=C1(0)+C2(0):FS(0)=0
142 FC(1)=C1(1)+C2(1)*COS(K2)-S2(1)*SIN(K2)
144 FS(1)=S1(1)+C2(1)*SIN(K2)+S2(1)*COS(K2)
146 FC(2)=C1(2)+C2(2)*COS(2*K2)-S2(2)*SIN(2*K2)
148 FS(2)=S1(2)+C2(2)*SIN(2*K2)+S2(2)*COS(2*K2)
150 FC(3)=C1(3)+C2(3)*COS(3*K2)-S2(3)*SIN(3*K2)
152 FS(3)=S1(3)+C2(3)*SIN(3*K2)+S2(3)*COS(3*K2)

The cosine term for the zero frequency component (or
constant, or DC term), is found simply by adding the two cosine
terms from each of the half data transforms. Since there is no sine
term for zero frequency that is all there is to it. The remaining
terms are slightly more complicated—the frequency components

120 Understanding the FFT

from the transform of the "odd data points" must be phase shifted
before they are added in. We phase shift complex frequencies by
"vector rotation," and we rotate a vector in rectangular coordinates
by the operations:

X,,,, - X Cos(A)-Y Sin(A) (7.7)

and;

Yrot = X Sin(A)+Y Cos(A) (7.8)

where: A = the angle of rotation.
X = the cosine component of the DFT.
Y = the sine component of the DFT.

(we derive this operation in Appendix 7.1 for those who have
grown "rusty")

From this piece of information, it is apparent that (in lines
142 and on) we are rotating the frequency components obtained in
the DFT for the odd data points before we sum them into the final
transform.

We recognize, of course, that we have only generated Q/2
frequency components, but we require Q frequency components
for the full DFT. We obtain these "latent" components by going

154 REM * CREATE LATENT TERMS *
156 FC(4)=C1(0)+C2(0)*COS(4*K2)-S2(0)*SIN(4*K2)
158 FS(4)=S1(0)+C2(0)*SIN(4*K2)+S2(0)*COS(4*K2)
160 FC<5)=C1(1)+C2(1)*COS(5*K2)-S2(1)*SIN(5*K2)
162 FS(5)=S1(1)+C2(1)*SIN(5*K2)+S2(1)*COS(5*K2)
164 FC(6)=C1(2)+C2(2)*C0S(6*K2)-S2(2)*SIN(6*K2)
166 FS(6)=S1(2)+C2(2)*SIN(6*K2)+S2(2)*COS(6*K2)
168 FC(7)=C1(3)+C2(3>*C0S(7*K2)-S2(3)*SIN(7*K2)
170 FS(7)=S1(3)+C2(3)*SIN(7*K2)+S2<3)*C0S(7*K2)

FFT/07 121

through the two DFT arrays a second time, while continuing to
shift the DFTodd components from PI to 2*PI radians, which is as
we diagrammed it in figure 7.2 above. The reader will recognize,
of course, that all of these lines of instruction (from 140 and
onward) can be programmed into two loops:

140 FOR 1=0 TO 3
142 FCC I)=C1(I)+C2(I)*C0S(K2*I)-S2(I)*SIN(K2*I)
144 FS(I)=S1(I)+C2(I)*SIN(K2*I)+S2(I)*C0S(K2*I)
146 NEXT I

and:

150 FOR 1=4 TO 7
152 FC(I)=ct"(I-4)+C2(I-4)*COS(K2*I)-S2(I-4)*SIN(K2*I)
154 FS(I)=S1(I-4)+C2(I-4)*SIN(K2*I)+S2(I-4)*C0S(K2*I)
156 NEXT I

While this is much neater, our first objective is to understand the
mechanism of the FFT—we can clean up our programming later.

The whole program is given below:

10 REM *** (FFT7.00A) FFT FIRST TEST ***
20 CLS:Q=8:Q2=Q/2:DIH Y(Q)
30 PI=3.141592653589793*:P2=2*PI:K1=P2/Q:K2=P2/Q
50 PRINT SPC(30);"HAIN MENU":PRINT:PRINT
60 PRINT SPC(5);"1 = ANALYZE COS COMPONENT TRIANGLE":PRINT
62 PRINT SPC(5);»2 = EXIT":PRINT
70 PRINT SPC(10);"MAKE SELECTION :";
80 A$=INKEY$:IF A$ = "" THEN 80
90 A=VAL(A$):0N A GOSUB 600,990
95 CLS: GOTO 50
100 REM *** FFT ***
105 CLS:PRINT "FREQ F(COS) F(SIN)":PRINT:PRINT
106 T9=TIMER
109 REM * COMPUTE EVEN DFT *
110 FOR J=0 TO Q2:J1=K1*J*2
112 FOR 1=0 TO Q2-1
114 C1(J)=C1(J)+Y(2*I)*COS(J1*I)
116 S1(J)=S1(J)+Y(2*I)*SIN(J1*I)
118 NEXT I

122 Understanding the FFT

120 C1(J)=C1(J)/Q:S1(J)=S1(J)/Q
122 NEXT J
124 REM * COMPUTE ODD DFT *
126 FOR J=0 TO Q2:J1=K1*J*2
128 FOR 1=0 TO Q2-1
130 C2(J)=C2(J)+Y(2*I+1)*COS(J1*I)
132 S2(J)=S2(J)+Y(2*I+1)*SIN(J1*I)
134 NEXT I
136 C2(J)=C2(J)/Q:S2(J)=S2(J)/Q
138 NEXT J
139 REM * SUM HALF DFTS *
140 FC(0)=C1(0)+C2(0):FS(0)=0
142 FC(1)=C1(1)+C2(1)*COS(K2)-S2(1)*SIN(K2>
144 FS(1)=S1(1)+C2(1)*SIN(K2)+S2(1)*COS(K2)
146 FC(2)=C1(2)+C2(2)*COS(2*K2)-S2(2)*SIN(2*K2)
148 FS(2)=SU2)+C2(2)*SIN(2*K2)+S2(2)*COS(2*K2)
150 FC(3)=C1<3)+C2(3)*COS(3*K2)-S2(3)*SIN(3*K2)
152 FS(3)=S1(3)+C2(3)*SIN(3*K2)+S2(3)*COS(3*K2)
154 REM * CREATE LATENT TERMS *
156 FC(4)=C1(0)+C2(0)*COS(4*K2)-S2(0)*SIN(4*K2)
158 FS(4)=S1(0)+C2(0)*SIN(4*K2)+S2(0)*COS(4*K2)
160 FC(5)=C1(1)+C2(1)*COS(5*K2)-S2(1)*SIN(5*K2)
162 FS(5)=S1(1)+C2(1)*SIN(5*K2)+S2(1)*COS(5*K2)
164 FC(6)=C1(2)+C2(2)*COS(6*K2)-S2(2)*SIN(6*K2)
166 FS(6)=S1(2)+C2(2)*SIN(6*K2)+S2(2)*COS(6*K2)
168 FC(7)=C1(3)+C2(3)*COS(7*K2)-S2(3)*SIN(7*K2)
170 FS(7)=S1(3)+C2(3)*SIN(7*K2)+S2(3)*COS(7*K2)
200 T9=TIMER-T9
210 FOR Z=0 TO Q
215 GOSUB 300
220 NEXT Z
222 PR I NT:PR I NT "TIME =";T9;" ";
225 INPUT "C/R TO CONTINUE:";A$
230 RETURN
300 PRINT USING "## ";Z;
310 PRINT USING "+##.#####_ ";FC(Z);FS(Z)
330 RETURN
400 REM GENERATE COS COMPONENT TRIANGLE
410 FOR 1=0 TO Q-1:Y(I)=0
420 FOR J=1 TO Q/2 STEP 2:Y(I)=Y(I)+COS(K1*J*I)/(J*J):NEXT
430 NEXT
440 RETURN
600 REM * COS COMPONENT TRIANGLE *
605 FOR J=0 TO Q:C1(J)=0:C2(J)=0:S1(J)=0:S2(J)=0:NEXT
610 GOSUB 400
620 GOSUB 100
630 RETURN
990 STOP

Figure 7.3 - Partial FFT

FFT/07 123

If we run this program we will find that the run time is noticeably
less since we have reduced the total number of operations.

7.2 EXTENDING THE CONCEPT

Data Xform W = 27t radians
o = summation

Output

Fig. 7.4 - Double Butterfly FFT Flow Diagram

This is not the complete FFT, of course, for it is obvious
that each of the 4 point DFTs can be split into two 2 point DFTs.
We must then combine the four 2 point DFTs into two 4 point
DFTs which are combined, as described above, into a single 8
point DFT. For our effort, we find that the total processing time

124 Understanding the FFT

will again be reduced by almost half. The flow diagram (Double
Butterfly) for all this will then be as shown in Fig. 7.4 above. The
mechanics of this double butterfly are essentially the same as the
single butterfly described above, but we must take a moment to
look at just what a two point DFT is: It will obviously have only
two frequency components—a D.C. term and the Nyquest
frequency. The cosine term for the zero frequency component is
just the sum of the first and fourth data point divided by two (there
is, of course, no sine term for a zero frequency component). The
cosine term for the Nyquest frequency component is obtained by
subtracting the fourth data point from the first, and again, there is
no sine term. So, for a 2 point DFT, we have:

110 C3(0)=(Y(0)+Y(4))/2
112 C3(1)=(Y(0)-Y(4))/2

The three remaining 2 point transforms are obtained in the
same manner:

i

114 C4(0)=(Y(2)+Y(6))/2
116 C4(1)=(Y(2)-Y(6))/2
118 C5(0)=(Y(1)+Y(5))/2
120 C5(1)=(Y(1)-Y(5))/2
122 C6<0)=(Y(3)+Y(7))/2
124 C6(1)=(Y(3)-Y(7))/2

Now we must sum these terms together to form the 4
component transforms as we did for the 8 point transform of the
preceding program (FFT7.0). There is another point that we
should note here—the "stretched" version of our 2 point DFT has
4 frequency components, implying 2 steps to the Nyquest frequen
cy. Therefore, the phase shifts for the components from the "odd
DFT" are multiples of PI/2 (i.e. 90°). From equations (7.7) and
(7.8) we find that this special case yields:

For a shift of PI/2 Xrot = -Y (7.9)

FFT/07 125

for the first rotated component; and, for the next three components:

For a shift of PI X « - -X (7.10)
Forshift = 3*PI/2 Xrot= Y (7.11)
For shift = 2*PI X^ , - X (7.12)

Similarly the rotated sine components are given by:

For a shift = PI/2
For a shift = PI
Forashift = 3*PI/2
For a shift = 2*PI

v

The summation of the 2 point frequency terms are then
performed as follows:

126 C1(0) = (C3(0)+C4(0))/2
128 C1(1) = (C3(1))/2:S1(1)=C4(1)/2
130 C1(2) = (C3(0)-C4(0))/2:S1(2)=0
132 C1(3) = C3(1)/2:S1(3)=-C4(1)/2
134 C2(0) = (C5(0)+C6(0))/2
136 C2(1) = C5(1)/2:S2(1)=C6(1)/2
138 C2(2) = (C5(0)-C6(0))/2:S2(2)=0
140 C2(3) = C5(1)/2:S2(3)=-C6(1)/2

From this point we continue the FFT as we developed it for the
four point DFTs in the previous section (i.e. lines beyond 140
remain the same). Let's try this as an FFT routine.

10 REM * * * (FFT7.1) FFT 2ND TEST * * *
20 Q=8:Q2=Q/2:DIM Y(Q),F(2,Q/2),K1(2,Q/4),K2(2,Q/4),Z(Q)
30 PI=3.141592653589793#:P2=2*PI:K1=P2/Q:IC2=P2/Q
40 CLS:PRINT SPC(30);"MAIN MENU"
50 PRINT SPC(5);"1 = ANALYZE COS COMPONENT TRIANGLE":PRINT
60 PRINT SPC(5);"2 = EXIT »:PRINT
70 PRINT SPC(10);»MAKE SELECTION :";
80 A$=INKEY$:IF A$ = "" THEN 80
90 A=VAL(A$):0N A GOSUB 600,990
95 GOTO 40

Yrot= X (7.13)
Yrot = -Y (7.14)
Yrot = -X (7.15)
Yrot= Y (7.16)

126 Understanding the FFT

100 REM *** FFT ***
105 CLS:PRINT "FREQ F(COS) F(SIN)":PRINT:PRINT
106 T9=TIMER
110 C3(0)=(Y(0)+Y(4))/2
112 C3(1)=(Y(0)-Y(4))/2
114 C4(0)=(Y(2)+Y(6))/2
116 C4(1)=(Y(2)-Y(6))/2
118 C5(0)=(Y(1)+Y(5))/2
120 C5(1)=(Y(1)-Y(5))/2
122 C6(0)=(Y(3)+Y(7))/2
124 C6(1)=(Y(3)-Y(7))/2
126 C1(0)=(C3(0)+C4(0))/2
128 C1(1)=C3(1)/2:S1(1)=C4<1)/2
130 C1(2)=(C3(0)-C4(0))/2
132 C1(3)=C3(1)/2:S1(3)=-C4(1)/2
134 C2(0)=(C5(0)+C6(0))/2
136 C2(1)=C5(1)/2:S2(1)=C6(1)/2
138 C2(2)=(C5(0)-C6(0>)/2
140 C2(3)=C5(1)/2:S2(3)=-C6(1)/2
170 FOR 1=0 TO Q2-1
172 FC(I)=(C1(I)+C2(I)*COS(K2*I)-S2(I)*SIN(K2*I))/2
174 FS(I)=(S1(I)+C2(I)*SIN(K2*I)+S2(I)*COS(K2*I))/2
176 NEXT
180 FOR I=Q2 TO Q-1
182 FC(I)=(C1(I-Q2)+C2(I-Q2)*COS(K2*I)-S2(I-Q2)*SIN(K2*I))/2
184 FS(I)=(S1(I-Q2)+C2(I-Q2)*SIN(K2*I)+S2(I-Q2)*COS(K2*I))/2
186 NEXT
200 T9=TIMER-T9
210 FOR Z=0 TO Q
215 GOSUB 300
220 NEXT Z
222 PRINT:PRINT "TIME =";T9
225 PRINT:PRINT:INPUT "C/R TO CONTINUE:";A$
230 RETURN
300 PRINT USING "##_ ";Z;
310 PRINT USING "+##.##### ";FC(Z);FS(Z)
330 RETURN
400 REM GENERATE COS COMPONENT TRIANGLE
410 FOR 1=0 TO Q:Y(I)=0
420 FOR J=1 TO Q/2 STEP 2:Y<I)=Y(I)+COS(K1*J*I)/(J*J):NEXT
430 NEXT «
440 RETURN
600 REM * COS COMPONENT TRIANGLE *
610 GOSUB 400
620 GOSUB 100
630 RETURN
990 STOP

Figure 7.5 - Double Butterfly Program Listing

FFT/07 127

It should be apparent that we performed a DFT only at the
first stage of this program; the remaining stages of the process
consist of simply summing the frequency components into higher
order transforms at the succeeding stages. As we pointed out
explicitly, a 2 point DFT is very simple; there are only cosine
terms in a 2 point DFT and the cosine coefficients are either +1 or
-1. There is no need to multiply at all for a 2 point DFT.

7.3 THE ONE POINT DFT

There is bne last step we have to cover. If we carry the
FFT scheme to its logical conclusion, we must extend the process
one more step until we are dealing with 1 point DFTs. Again, we
must pause to consider just what a 1 point DFT will be. There will
only be one frequency component which will apparently be the
zero (and/or Nyquest) frequency component. Furthermore, this
zerocomponent will be the average value of the one point which is
being transformed—it is simply equal to itself!

When we realize this, we realize that we may perform the
FFT process by a shifting (i.e. rotating) and summing mechanism
from the beginning—since the one point DFT is simply equal to
the data point there is no necessity to perform a proper DFT at all.
The full FFT algorithm, then, is illustrated in the diagram on the
following page, and the first stage code will be as follows:

Noting that the shifting process will be in increments of n
radians (180°), we recognize immediately that all phase shifts will
require nothing more than negating terms. We negate the odd
terms before adding them to the even terms to form the Nyquest
frequency term for the 2 point DFT stage. The output from the
first stage will be:

128 Understanding the FFT

FFT/07 129

110 C3(0)=(Y(0)+Y(4))/2
112 C3<1)=(Y(0)-Y(4)>/2
114 C4(0)=(Y(2)+Y(6))/2
116 C4(1)=(Y(2)-Y(6))/2
118 C5(0)=(Y(1)+Y(5))/2
120 C5(1)=(Y(1)-Y(5))/2
122 C6(0)=(Y(3)+Y(7))/2
124 C6(1)=(Y(3)-Y(7))/2

You will recognize this is identical to the code obtained above
when we performed proper 2 point DFTs on the input data (see
page 125 and/or 126). In other words there is no difference (at this
low level) between rotating and summing the single point DFT
equivalents and taking a DFT.

While thgre is no difference in a first stage shift and add
routine vs. a first stage 2 point DFT (so far as the equations
developed above are concerned), there is one very important
difference between the two approaches. If we use a shift and add
technique, we need only write a single routine which can be used
to perform the shifting and summing process at every stage of the
transform. We will need to work out the logistics of how the data
will be handled at each stage of computation, etc., but there are a
great many such considerations involved in writing a practical FFT
program. These considerations will be the subject matter for our
investigations in the next chapter.

One last point should be made: our objective was to reduce
the number of operations required to perform a DFT. How well
have we done? At every stage of the FFT, we now handle all of
the data points of the data array in a shifting and adding routine.
In general this routine requires half of the data points to be
"rotated" which, as we have seen, requires two complex multiplica
tions (p. 120). Consequently, at every stage of computation, we
must perform N complex multiplications (for N data points).

130 Understanding the FFT

Furthermore, in the scheme we have been using, N = 2M, and we
will have to perform M stages of shifting and adding (we will
show this more clearly in the next chapter). This results in M x N
operations to obtain a complete Fourier Transform (as opposed to
the N2 operations we lamented at the beginning of this chapter).
Now this is not quite the "one for one" algorithm we had hoped
for, but as a practical matter, it solves the problem. For example,
to transform 1024 data points requires 10x1024 (10,240) complex
operations, while a 2048 data point transform requires 11 x 2048
(22,528) complex operations (i.e. only 10% greater than a straight
"one for one" increase). You can easily verify that as the number
of data points increases things get better.

Based on our benchmark of 1 u.sec. per operation, it would
take approximately 0.022 seconds to transform the 2048 data point
array we discussed in the "audio" example at the end of chapter
6—that's 0.44 seconds for transform and reconstruction. That
doesn't leave much time to operate on the data in the transform
domain, but a good engineer always has a few tricks up his sleeve
(e.g. you could use two micro-processors and ping-pong every
other block of data to the opposite processor—we now have a
workable situation). In any case, this solution is the FFT.

CHAPTER VIII

ANATOMY OF AN FFT PROGRAM

8.0 INTRODUCTION

One might naturally assume this chapter is only a continu

ation of the last one; but, in fact, it deals with a completely

different subject. In this chapter we assume you already know the

FFT algorithm and now want to write software; this involves a

completely new and unique set of problems. Here we consider the

problems of data manipulation and control within a practical,

general purpose FFT program. To the newcomer these "inner

workings" of FFT software are generally considered to be nothing

less than labyrinthine—and without help, they are. We hope to

unscramble this subject by identifying and isolating the individual

functions of these "inner workings"; still, the reader should be fore

warned that this will not be "a piece of cake." In the past you may

have spent hours trying to solve some clever puzzle of no real

consequence; think of this as just such a puzzle, but one with lots

of help, and of considerable significance.

We should note here that there is no single correct way to

write an FFT program. There are countless variations, trade-offs

and embellishments; in fact, there is more than one FFT algorithm.

We have no intention of reviewing this melange—our objective is

to understand the basic internal operations of FFT software. To

that end we will use the FFT routine of the last chapter as a "straw

man", but first we will expand that program to 16 data points:

132 Understanding the FFT

10 REM *** (FFT8.01) 16 POINT FFT ***
12 CLS
20 Q=16:Q2=Q/2:DIM Y(Q),FC(Q),FS(Q),KC(Q),KS(Q)
30 PI=3.141592653589793#:P2=2*PI:K1=P2/Q
40 FOR 1=0 TO Q:KC(I)=COS(K1*I):KS(I)=SIN(K1*I):NEXT
50 PRINT SPC(30);"MAIN MENU":PRINT:PRINT
60 PRINT SPC(5);"1 = ANALYZE 7 COMPONENT TRIANGLE":PRINT
62 PRINT SPC(5);"2 = EXIT":PRINT
70 PRINT SPC(10);"MAKE SELECTION :";
80 A$=INKEY$:IF A$ = '"' THEN 80
90 A=VAL(A$):ON A GOSUB 600,990
95 CLS:GOTO 50
99 REM *******************
100 REM *** FFT ROUTINE ***
102 CLS:PRINT "FREQ F(COS) F(SIN) ";
105 PRINT "FREQ F(COS) F(SIN)»:PRINT:PRINT
106 T9=TIMER
108 REM *** STAGE A ***
110 A0(0)=(Y(0)+Y(8))/2
111 A0(1)=(Y(0)-Y(8))/2
112 A1(0)=(Y(1)+Y(9))/2
113 A1(1)=(Y(1)-Y(9))/2
114 A2(0)=(Y(2)+Y(10))/2
115 A2(1)=(Y(2)-Y(10))/2
116 A3(0)=(Y(3)+Y(11))/2
117 A3(1)=(Y(3)-Y(11))/2
118 A4(0)^(Y(4)+Y(12))/2
119 A4(1)=(Y(4)-Y(12))/2
120 A5(0)=(Y(5)+Y(13))/2
121 A5(1)=(Y(5)-Y(13))/2
122 A6(0)=(Y(6)+Y(14))/2
123 A6(1)=(Y(6)-Y(14))/2
124 A7(0)=(Y(7)+Y(15))/2
125 A7(1)=(Y(7)-Y(15))/2
126 REM *** STAGE B ***
127 BC0(0)=(A0(0)+A4(0))/2
128 BC0(1)=A0(1)/2:BS0(1)=A4(1)/2
129 BC0(2)=(A0(0)-A4(0))/2
130 BCO(3)=AO(1)/2:BS0(3)=-A4(1)/2
131 BC1(0)=(AK0)+A5(0))/2
132 BC1(1)=A1(1)/2:BS1(1)=A5(1)/2
133 BC1(2)=(A1(0)-A5(0))/2
134 BC1(3)=A1(1)/2:BS1(3)=-A5(1)/2
135 BC2(0)=(A2(0)+A6(0))/2
136 BC2(1)=A2(1)/2:BS2(1)=A6(1)/2
137 BC2(2)=(A2(0)-A6(0))/2
138 BC2(3)=A2(1)/2:BS2(3)=-A6(1)/2
139 BC3(0)=(A3(0)+A7(0))/2
140 BC3(1)=A3(1)/2:BS3(1)=A7(1)/2
141 BC3(2)=(A3(0)-A7(0))/2
142 BC3(3)=A3(1)/2:BS3(3)=-A7(1)/2

FFT/08

148 REM *** STAGE C ***
150 FOR 1=0 TO 3:J=2*I
151 CC1(I)=(BC0(I)+BC2(I)*KC(J)-BS2(I)*KS(J))/2
152 CC2(I)=(BC1(I)+BC3(I) *KC(J)-BS3(I)*KS(J))/2
153 CS1(I)=(BS0(I)+BC2(I)*KS(J)+BS2(I)*KC(J))/2
154 CS2(I)=(BS1(I)+BC3(I)*KS(J)+BS3(I)*KC(J))/2
155 NEXT I
160 FOR 1=4 TO 7:J=2*I:K=I-4
161 CC1(I)=(BC0(K)+BC2(K)*KC(J)-BS2(K)*KS(J))/2
162 CC2(I)=(BC1(K)+BC3(K)*KC(J)-BS3(K)*KS(J))/2
163 CS1(I)=(BS0(K)+BC2(K)*KS(J)+BS2(K)*KC(J))/2
164 CS2(I)=(BS1(K)+BC3(K)*KS(J)+BS3(K)*KC(J))/2
165 NEXT I
168 REM *** STAGE F ***
170 FOR 1=0 TO Q2-1
172 FCC I)=(CC1(I)+CC2(I)*KC(I)-CS2(I)*KS(I))/2
174 FS(I)=(CS1(I)+CC2(I)*KS(I)+CS2(I)*KC(I))/2
176 NEXT
180 FOR I=Q2 TO Q-1
182 FC(I)=(CC1(I-Q2)+CC2(I-Q2)*KC(I)-CS2(I-Q2)*KS<I))/2
184 FS(I)=(CS1(I-Q2)+CC2(I-Q2)*KS(I)+CS2(I-Q2)*KC(I))/2
186 NEXT
200 T9=TIMER-T9
210 FOR Z=0 TO Q2-1
215 GOSUB 300
220 NEXT Z
222 PRINT:PRINT "TIME =";T9
225 PRINT:PRINT:INPUT "C/R TO CONTINUE:";A$
230 RETURN :REM *** END FFT ROUTINE ***
235 REM ***************************
300 PRINT USING "##";Z;:PRINT " ";
310 PRINT USING "+##.#####";FC(Z);:PRINT " ";
312 PRINT USING "+##.#####";FS(Z);:PRINT " ";
320 PRINT USING "##";Z+Q2;:PRINT " ";
322 PRINT USING "+##.#####";FC(Z+Q2);:PRINT " ";
324 PRINT USING "+##.#####";FS(Z+Q2)
330 RETURN
400 REM GENERATE 7 COMPONENT TRIANGLE
410 FOR 1=0 TO Q:Y(I)=0
420 FOR J=1 TO Q/2 STEP 2:Y(I)=Y(I)+COS(K1*J*I)/(J*J):NEXT
430 NEXT
440 RETURN
600 REM * 7 COMPONENT TRIANGLE *
610 GOSUB 400: REM GENERATE INPUT FUNCTION
620 GOSUB 100: REM XFORM FUNCTION
630 RETURN
990 STOP

Figure 8.0- 16 Point FFT

134 Understanding the FFT

8.1 STAGES OF COMPUTATION (BUTTERFLIES)

Look closely at lines 108 to 186 of the computer listing on the
previous two pages (Fig. 8.0). This FFT routine is constructed as a series
of stages of computation (A, B, C and F). While it is apparent that each
of these stages is different, we know from the previous chapter they are,
in a sense, doing the same thing (performing a butterfly). This observa
tion is the foundation of this chapter; we must sort out what is the same,
and what is different, in each of these stages. We can, of course, write a
single iterative loop to perform the parts that are the same. This loop
must then be nested within another loop (or loops) which can change the
parts that are different between stages (and applications e.g. data array
size). This simple methodology, applied to the algorithm of the last
chapter, is all there is to understanding this "difficult" subject. Let's
begin by reviewing this basic structure—let's recall why we wrote this
program in stages of computation in the first place.

NOTE: The following
discussion concerns only the
data flow within the FFT. We
will discuss the "butterflies"
themselves shortly, but for now
we simplify things by represent
ing the computation that takes
place within a DFT as a simple
box (Fig. 8.1).

1. At the outset, our objective is to find the Discrete Fourier Tra
nsform for an array of data designated D(x). For this particular example
x takes on all values from 0 to 15, but in general we will consider any
array size that is an integer power of 2 (i.e. 2").

DO
D l
D 2
D 3
D 4
D 5
D 6
D 7
D8
D 9
D10
D l l
D12
D13
D14
D15

16
POINT

DFT

FO
F l
F 2
F 3
F 4
F5
F 6
F 7
F8
F 9
F10
F l l
F12
F13
F14
F15

Fig. 8.1 - 16 Point DFT

FFT/08 135

2. Before we begin the 16 point DFT though, we realize we can
speed things up by splitting this 16 point array into two 8 point arrays.
We split out every other data point so that one array will have all of the
odd data points and the other will have all of the even. By taking the
DFTs of two 8 point arrays we will reduce the work by almost half.

coo
C01
C02
C03
C04
C05
C06
C07

Dl
D3
D5
D7
D9
Dl l
D13
D15

Fig. 8.2 - 8 Point DFTs

4

3. We recognize, of course, that we can speed things up even
more by splitting each of these 8 point arrays into 4 point arrays.

DO
D4
D8
D12

D2
D6
D10
D14

^ _
—
—

~—

4
POINT

DFT
(BO)

4
POINT

DFT
(B2)

DO
D8

D4
D12

D2
D10

D6
D14

DFT
(AO)

DFT
(A4)

DFT
(A2)

DFT
(A6)

Fig. 8.3 - Breakdown of "Even" Data Points

4. The general scheme is apparent by now—we can split each 4
point DFT into 2 point DFTs, and these can be split into "1 point DFTs."
In Fig. 8.3 above we show this breakdown for the even data points (the
same thing must happen for the odd data points of course). None of this
shows up in the program code however, it is only a mental exercise. It is
from this point forward that we write our program—a shifting and adding
"butterfly" that starts from one point DFTs and works back up through

136 Understanding the FFT

stages of "butterflies" (see Fig. 8.4). Fig. 8.3 only shows how the data is
broken out, and consequently, how it must be recombined in succeeding
stages of computation.

DO
D 8

D4
D12

D2
D10

D6
D14

BFLY
(AO)

BFLY
(A4)

BFLY
(A2)

BFLY
(A<5)

-A2(0)
-AJ(1)

-A6(0)
.A6(l)

Fig. 8.4 - "Even Data" Stageing for FFT

5. We perform the same process for the odd data points, of
course (Fig. 8.5). These two 8 point DFTs (i.e. CO above and CI below),
will then be combined in a final butterfly using an identical shifting and
adding process to form the equivalent of the original 16 point DFT.

Dl
D9

D5
D13 —

D3
Dll

D7 —
D15

BFLY
(Al)

BFLY
(A5)

BFLY
(A3)

BFLY
(A7)

A1(0)
Al(l)

A5(0)
A5(l)

A3(0)

A7(0)
A7(l)

BFLY

(Bl)

BFLY

(B3)

— B1(0)
— Bl(l)

Bl(2)
— Bl(3)

— B3(0)

— BX1)

— B3(2)
— B3(3)

BFLY

(CI)

Fig. 8.5 - "Odd Data" Stageing for FFT

These diagrams contain nothing but butterflies. We know, of
course, that the butterflies are identical in function—only the number of
components handled (and magnitude of phase shifts) is different. Surely
we can write a routine to accommodate all of these stages (or any number
of stages) if we can only find a set of rules describing exactly how each

FFT/08 137

succeeding stage differs from its predecessor. Let's point out some
general rules that are already apparent:

1. The first stage of computation will have an input array of Q
(Q = 2") data points each of which will be treated as a single point DFT.
The second stage will have inputs from Q/2 partial DFTs and each partial
DFT will have 2 frequency components. The third stage will have Q/4
partial (4 component) DFTs, etc., etc. Each stage will halve the number
of partial DFTs, and double the number of frequency components (total
number of "elements" remaining a constant = Q).

2. Therefore, since we start with Q partial DFTs, and halve the
number at each stage (until we have a single DFT), an array of 2" data
points must yield n stages of computation in the FFT!

3. Note that in the first stage, the components summed in the
butterflies (both odd and even) are all separated by exactly 1/2 the length
of the data array! Whether this is so for the following stages of computa
tion (or not) depends on how we handle the data.

There is more to be gleaned from the general flow of data shown
in Figs. 8.2 through 8.5, but its significance might not yet be so obvious;
so, we will move forward at this time and consider the butterflies.

8.2 MECHANICS OF THE BUTTERFLY

The butterflies are the simplest imaginable routines—we add one
complex number to another (phase shifted) complex number. The only
question here is: "How much is each component shifted at each stage of
computation?" From chapter 5 we know that a one data point shift (in the
time domain) will cause a linearly increasing phase shift (in the frequency
domain) resulting in 180° shift at the Nyquest frequency (continuing on
linearly to the end of the array). Also, from the discussion of the previous
chapter (section 7.1) we know that each time we split a data array, the
resulting "odd" element array will be shifted by one data point (the "even"
element array is not shifted of course). For the "A" stage output there are
only two frequency components—the zero frequency component and the

138 Understanding the FFT

Nyquest frequency component. Therefore, these two components will

receive, respectively, phase shifts of zero and 180° (i.e. we multiply the

higher order data point by -1 when forming the Nyquest frequency—see

Fig. 8.0, stage A, lines 108-125), resulting in the following:

FA0(0)

FA0(1)

W = 2 7t radians shift

Fig. 8.6 - Stage "A" Shifting and Adding (Typical)

The notation (W/2) indicates that 1/2 of a full cycle (180°) of

phase shift is performed; FA0(0) indicates the zero frequency component

out of the A0 butterfly—the "o" indicates a "summing junction" where

the lines converging from the left are summed (complex quantities).

The phase shift at stage B will be:

AO(O)

A4(0)

FB0(0)

FB0(2)

A0(1)

A4(l)

FB0(1)

FB0(3)

Fig. 8.7 - Stage "B" Shifting (Typical)

FFT/08 139

Note that, in Fig. 8.7, inputs A4(0) and A0(1) have been reversed
in position to make the diagram simpler. In the computer program A0(0)
is added to A4(0), then A0(1) is added to A4(l) shifted by (W/4). Next
the virtual components will be created by adding A0(0) to A4(0)*(W/2)
and A0(1) to A4(l)*(3W/4) [here "*" = "shifted by"]. Also note that
while the frequency components were rotated by increments of 1/2 of a
cycle (i.e. PI radians) in stage "A," they are rotated by increments of 1/4
cycle (PI/2 radians) in stage "B." Apparently they will be rotated by
increments of 1/8 cycle (i.e. PI/4 radians) in stage "C," etc., etc. Let's add
this to our set of rules:

4. The "phase shift increment" (i.e. the incremental amount that
each successive component's phase is increased) starts at PI (i.e. 180°) for
the first stage and halves for each stage thereafter until the nth stage
(where it will be PI^'XN-l) = 27t/Q).

We may also note the following at this time:

5. It is an almost trivial observation, but we will always add the
0 frequency component of one butterfly to the 0 frequency component of
another, 1st component to 1st, etc., etc. This is true for both the direct
components as well as the "latent components."

6. Finally, when we sum two arrays together (such as A0 and
A4, orBl andB3 back in Fig. 8.4 and 8.5), we will "rotate" or phase shift
only the components from the "time shifted arrays" (i.e. A4 and B3).

From these six observations, we may now write not only a
general purpose butterfly routine, but most of the FFT program. Let's
state explicitly how we intend to do this:

Since, from the foregoing, we know the "arithmetic" of the
butterflies will be identical for each stage of computation (i.e. shifting and
adding complex numbers), we will make this operation our core iterative
routine. On the other hand the phase shift, number of partial DFTs, and
number of components in a partial DFT will change for every stage. To

140 Understanding the FFT

control these variables, we will use a "stage control loop" around our
"universal butterfly." For each stage of computation, this control loop
will change the number of DFTs, number of components within each
DFT, and phase shifts—all according to the rules just established. This
shouldn't be too difficult then, but before we actually write our FFT
routine, it will be prudent to consider how, exactly, we are going to
manage the data within the data arrays. Let me explain:

8.3 ARRAY DATA MANAGEMENT

In the program listed at the beginning of this chapter (Fig. 8.0),
each stage of computation has a separate data array to save the data
generated at that stage. Now, all of these arrays are no problem when
dealing with 16 data points, but, as the number of data points increases,
and array size increases, this inefficient use of memory is disastrous.

It is possible to write a program with only one complex quantity
array; the two data points (complex) to be added are pulled from the
array, rotated, and combined (twice) creating two new pieces of data. The
new data is then stored back into the locations from whence the original
data was taken (intermediate results are saved in temporary storage until
a place is available in the array). This is the most efficient use of memory
possible; however, it is inefficient in execution since it requires multiple
data transfers for every operation, slowing things down.

A practical compromise may be accomplished with two arrays
which are "ping-ponged" between the output and input fi'om stage to
stage. This is the approach we will use, and it will be explained in detail
below, but the reader will recognize this is a design "trade-off decision.

This is certainly simple enough; but, if we follow standard
practice, and manage data as outlined two paragraphs back, the final data
will be out of sequence in the array. An additional "stage" will therefore
be required (usually referred to as "bit reversal") to sort the data points
into proper order. This is a hangover from using a single data array, and
as we have said, we will not do things that way in our FFT routine. We

FFT/08 141

will bite the bullet and face data management from the outset, and avoid
the wasted time used up by this bit reversal "stage."

So, to save memory and facilitate the fastest possible execution,
we will use two separate "2 degree of freedom" arrays [DIMensioned as
C(2,Q) and S(2,Q)]. To control these arrays we will use a pair of
complementary switches (TO designates which side of the array inputs
data to the butterfly and Tl designates the side receiving output). After
each stage of computation we reverse the " 1" and "0" states of TO and Tl,
effectively causing the array sides to "ping-pong" (i.e. they reverse their
input/output functions). This brings us to a crucial consideration: at each
stage of computation, the data stored in the output array must be in proper
position when it is used as input (by the same routine) for the next stage
of computation. Now, we pointed out that the first stage sums the data
from the 0th position in the array with the data in the Q/2th position (Rule
3); the 1st position with the Q/2+1 position; etc.; etc. We will be well
advised, then, to add the following to our set of rules:

7. DEFINITION 1 - We may store data in the array at any
convenient location, so long as the data is managed in such a
way that any two components which must be summed together
(both in the present and the next stage of computation) will be
separated by half the length of the array.

What advantage does this provide? Well, returning to stage 1
computation, data points D(0) and D(Q/2) are used twice—first to form
the A0(0) component, and then A0(1). We are no longer forced to store
these components back into the 0 and Q/2 positions in the array; in fact,
we will put them into theirs? two locations of the output array! The two
components to which they must be added in the next stage of computation
(i.e. A4(0) and A4(l) in figure 8.4), however, must be placed in locations
Q/2 and Q/2+1. Continuing on, Dl and D9 will combine to form A 1(0)
and Al(l) , which we place in position 2 and 3 of the output array. If we
continue in this manner, Definition 1 is satisfied (see Fig. 8.8 below).

142 Understanding the FFT

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

INPU

D00
D01
D02
D03
D04
D05
D06
D07
D08
D09
D10
Dll
D12
D13
D14
D15

r ARRAY

STAGE
"A"

COMPUTATION
("A" BUTTERFLIES)

TO = 0 Tl = 1

A0(0)
AOU)
Al(O)
Al(l)
A2(0)
A2(l)
A3(0)
A3(l)
A4(0)
A4(l)
A5(0)
A5(l)
A6(0)
A6(l)
A7(0)
A7(l)

DFT
AO
DFT
Al
DFT
A2
DFT
A3
DFT
A4
DFT
A5
DFT
A6
DFT
A7

OUTPUT ARRAY

Fig. 8.8 - Input/Output Data Position in the
First Stage of Computation for a 16 Point FFT

Note that the data arrangement of both input and output arrays
are in accordance with the requirements of figures 8.4, 8.5, and
also Definition 1 above. We must follow the same format in stage
"B" of the computation, of course, as shown in figure 8.9 below.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

INPU

A0(0)
AOU)
A1(0)
Al(l)
A2(0)
A2(l)
A3(0)
A3(l)
A4(0)
A4(l)
A5(0)
A5(l)
A6(0)
A6(l)
A7(0)
A7(l)

r ARRAY

STAGE
"B"

COMPUTATION
("B" BUTTERFLIES)

TO = 1 Tl = 0

C

B0(0)
BOU)
BO (2)
BOO)
BKO)
Bl(l)
Bl(2)
BIO)
B2 (0)
B2(l)
B2 (2)
B2(3)
B3(0)
B3(l)
B3(2)
B3(3)

>UTPUT ARR

DFT
BO

DFT
Bl

DFT
B2

DFT
B3

AY

Fig. 8.9 - Data Position Between Input and
Output Arrays for Second Stage of Computation

FFT/08 143

We keep each partial DFT together. The DFTs in the output

array at each stage are arranged so that when used for the input

array in the next stage of computation, we still sum the Oth

element with the 8th element; the 1st with the 9th; etc.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

INPIT

B0(0)
B0(1)
BO (2)
B0(3)
Bl(O)
Bl(l)
Bl(2)
Bl(3)
B2(0)
B2(l)
B2(2)
B2(3)
B3(0)
B3(l)
B3(2)
B3(3)

r ARRAY

STAGE
H p H

COMPUTATION
("C" BUTTERFLIES)

TO = 0 Tl = 1

C0(0)
C0(1)
CO (2)
COO)
C0(4)
C0(5)
C0(6)
CO (7)
CKO)
Cl(l)
Cl(2)
CI (3)
CI (4)
CI (5)
CK6)
CI (7)

OUTPUT A

Fig. 8.10 - Data Position for Input and
Output Arrays for 3rd Stage of Computation

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

INPU

C0(0)
C0(1)
CO (2)
COO)
CO (4)
CO (5)
CO (6)
CO (7)
CKO)
Cl(l)
CI (2)
CIO)
Cl(4)
CI (5)
Cl(6)
Cl(7)

r ARRAY

STAGE
npn

COMPUTATION
("F" BUTTERFLY)

TO = 1 Tl = 0

C

F0(0)
F0(1)
F0(2)
F0O)
F0(4)
F0(5)
F0(6)
F0(7)
F0(8)
F0(9)
F0(10)
FO(ll)
F0(12)
F0(13)
F0(14)
F0(15)

JUTPUT A

Fig. 8.11 - Data Position in Final Input and Output Arrays

144 Understanding the FFT

8.4 THE FFT ALGORITHM

Rather than presenting a completed program with all of the above
considerations neatly incorporated, let's develop our algorithm by
introducing changes sequentially (insofar as possible) into the program
given at the beginning of this chapter. Our first order of business will be
to throw out all of the different data arrays and introduce the data array
structure discussed above.

Reviewing lines 108 to 186inFFT8.01 (Fig. 8.0) we note that stages
A and B are written in line, while stages C and F employ loops. In our
Universal FFT routine we hope to employ a single, iterative loop for all
of the stages; so, it will be best to start with stage F. Recall that in stage
F we are summing the two 8 point partial DFTs into the final 16
component DFT (see Fig. 8.12 below).

168 REM *** STAGE F ***
170 FOR 1=0 TO Q2-1
172 FC(I)=(CC0(I)+CC1(I)*KC(I)-CS1(I)*KS(I))/2
174 FS(I)=(CS0(I5+CC1(I)*KS(I)+CS1(I)*KC<I))/2
176 NEXT
180 FOR I=Q2 TO Q-1
182 FC(I)=(CC0(I-Q2)+CC1(I-Q2)*KC(I)-CS1(I-Q2)*KS<I))/2
184 FS(I)=(CS0(I-Q2)+CC1(I-Q2)*KS(I)+CS1(I-Q2)*KC(I))/2
186 NEXT

Fig. 8.12 - Stage "F" Butterfly

You should be familiar with this routine by now; we form the
F stage components by summing the CO stage components with the
rotated CI components. We essentially perform the same loop
twice: once rotating the CI components from 0 to it radians (i.e.
the "direct" components in lines 170-176), then once again rotating
from 7t to 2n (lines 180-186, creating the "latent" components).
Okay, let's start the modifications by changing out the data arrays:

FFT/08 145

180 REM *** STAGE "F" BUTTERFLY ***
184 FOR 1=0 TO Q3:REM Q2 = Q/2 AND Q3 = Q2-1
187 C(0,I)=(C(1,I)+C(1,I+Q2)*KC<I)-S(1,I+Q2)*KS(I))/2
188 S(0,I)=(S(1,I)+C(1,I+Q2)*KS<I)+S(1,I+Q2)*KC(I))/2
190 NEXT I
192 FOR I=Q2 TO Q-1
194 C(0,I)=(C(1,I-Q2)+C(1,I)*KC(I)-S(1,I)*KS(I))/2
195 S<0,I)=(S(1,I-Q2)+C(1,I)*KS(I)+S(1,I)*KC(I))/2
197 NEXT I

Fig. 8.13 - 1st Modification of Stage "F" Butterfly

As we said, the data is now handled in arrays dimensioned as C(2,Q)
and S(2,Q). Recognizing that, when we enter stage "A" the data will be
in the C(0,x) side of the cosine component array, the output data for stage
A will be placed in the C(J_,x) and SQ,x) arrays. In the "B" stage
computations, the input data is taken from the I side and output to the 0
side. These two "sides" of the data array ping-pong back and forth as we
proceed through the succeeding stages (see Fig. 8.8 through 8.11) until,
in stage F as shown above, the data is input from the j . side and output to
the 0 side. Also note that the data is managed as shown in Fig. 8.11 in
keeping with rule 3 (p. 137), and Definition 1 (p. 141).

Let's look quickly at the operation of this loop (in the following Q =
total number of data points, Q2 = Q/2 and Q3 - Q2-1). The CO DFT data
is located in the lower half addresses of the input arrays and the CI DFT
data is in the upper half (see Fig. 8.11). We access the C1 data by adding
Q2 to I in lines 187 and 188; the CO data is accessed in lines 194 and 195
by subtracting Q2 from I. Otherwise the routine is the same as shown in
Fig. 8.12.

So far so good—this is how we will handle data array management,
but the "F" stage considered alone is just a little too easy. We know, in
general, that each succeeding stage will halve the number of partial DFTs
and double the number of frequency components (rule 1). We need some
way to track this within the data array, but this gets us into the general
arena of things that change between stages. Let's look at how we handle
this whole area of concern by modifying the "C" stage:

146 Understanding the FFT

180 REM *** STAGE "C" BUTTERFLY ***
182 QT=Q/4:KT1=2
184 FOR J=0 TO Q3 STEP 4: J1=2*J:K9=J+Q2
185 FOR 1=0 TO QT-1:KT=I*KT1:IC=K9+I
187 C(1,Jl+I)=(C(0,I+J)+C(0,K)*KC(KT)-S(0,K)*KS(KT))/2
188 S(1,J1+I)=(S(0,I+J)+C(0,K)*KS(KT)+S(0,K)*KC(KT))/2
190 NEXT I
191 J1 = J1+QT
192 FOR 1=0 TO QT-1:KT=(I+QT)*KT1:K=K9+I
194 C(1,J1+I)=(C(0,I+J)+C(0,K)*KC(KT)-S(0,K)*KS(KT))/2
195 S(1,J1+I)=(S(0,I+J)+C(0,K)*KS(KT)+S(0,K)*KC(KT))/2
197 NEXT I:NEXT J

Figure 8.15 - Modified Stage "C"

We immediately define QT (which stands for QuiT) as the
number of frequency components in any partial DFT (for this stage
QT=4). KT1 relates to the stage dependent phase shift incre
ment—KT the address of the sine and cosine twiddle factors (for
this stage, KT1 = 2). We will talk about this shortly.

Next, note that we have nested the "I" loop, which constituted
stage F, inside a "J" control loop (good lord, they're actually going
to do what they said). However, while the equations of this new
"I" loop are of the same form as in stage "F", addressing the
elements of the data arrays is considerably more complex. Let's
look closely at the operation, keeping in mind that in stage "C" we
form the CO DFTby summing DFT BO and DFTB2 (half an array
away), and the CI by summing Bl and B3: As before, lines 185
through 190 generate the "direct" components, and lines 192
through 197 generate the "latent" components. At line 185 "I" will
step from 0 to QT-1 (as we noted above, the first 4 components,
which constitute B0). KT locates the correct twiddle factor, but
now we use K to generate the address of the B2 DFT components
in the upper half of the array. K satisfies our requirement to sum
components separated by half an array (i.e. Q/2) via lines 184
(where we set K9 equal to J+Q/2), and line 185 (where we set K

FFT/08 147

= K9+I). At the start J=0 so that K will equal I+Q/2. This results
in (lines 187 and 188) our summing the components located at I (J
= 0) with the rotated components located at I+Q/2. Note that we
place these sums into the output side of our two sided array at a
location of I + Jl , and if you look back at line 184 you will find
that Jl = 2*J = 0. This "I" loop will sum the first 4 components in
the array with the first 4 components half an array away and place
the results in the first 4 locations of the output array. It then moves
on to generate the 4 latent components.

The "I" loop for the latent components is almost (but not quite)
identical. We know that we will store these results just above the
direct components in the output array, so we solve this requirement
by adding QT to Jl in line 191. Also, to generate the latent
components, we must continue increasing the rotations of the high
order partial DFT components, and we do this by adding QT to I
(in line 192) before multiplying by KT1. Otherwise...identical.

What about the "J" loop? You will have already figured out
that J keeps track of the partial DFTs (B0/B2 and B1/B3 in this
stage). When we have finished creating the CO DFT in the output
array (i.e. the sum of BO and B2 as just described) we increment J
by 4 (line 184) and execute the two I loops again. We now see the
purpose of Jl and K9; Jl doubles J and is the partial DFT index
for the output array, while K9 adds J to Q/2 to provide an input
array partial DFT index.

That's it...
It is apparent that this routine for the "C" stage is more general

than that presented earlier for the "F" stage. In fact, you will note
that if we set QT = Q/2, KT1 = 1, and the STEP increment for the
J loop = 8, this "C" loop will work for the "F" loop also. In fact,
with very little effort, it can be made to work for all of the stages!
Before we do that, however, let's clear up a little detail we have
left dangling since back in section 8.2.

148 Understanding the FFT

8.5 TWIDDLE FACTOR INDEXING

In lines 30 and 40 of FFT8.01 (Fig. 8.0, p. 132) we generate the
twiddle factors. These are the sine and cosine values we will use to rotate
the complex numbers of one DFT before we add them to the complex
numbers of another [see. (7.7) and (7.8), p. 120)]. Now, by rule 4 (p.
139), the nth stage will require every value generated in this twiddle
factor table. The N-l stage of computation, however, will only require
every second value from this table (but for two partial DFTs). The N-2
stage requires every 4th twiddle factor, etc., until we reach the first stage
of computation which only requires the first value and the middle of the
table value. This is what the twiddle factor index, KTl specifies. It is
multiplied by I or (I+QT) for the actual twiddle factor address KT.

8.6 THE COMPLETE FFT

From this point, the next step in the development of a general
purpose FFT routine is more or less obvious: The whole FFT routine may

181 REM *** FFT ROUTINE ***
182 FOR M=0 TO N-1:QT=2AM:KT1=2*(N-M-1)
183 REM *** "UNIVERSAL" BUTTERFLY ***
184 FOR J=0 TO Q3 STEP QT:J1=2*J:K9=J+Q2
185 FOR 1=0 TO QT-1:KT=I*KT1:K=K9+I
187 C(T0,J1+I)=(C(T1,I+J)+C(T1,K)*KC(KT)-S(T1,K)*KS(KT))/2
188 S(T0,J1+I)=(S(T1,I+J)+C(T1,K)*KS(KT)+S(T1,K)*KC(KT))/2
190 NEXT I
191 J1 = J1+QT
192 FOR 1=0 TO QT-1:KT=(I+QT)*KT1:K=K9+I
194 C(T0,J1+I)=(C(T1,I+J)+C(T1,K)*KC(KT)-S(T1,K)*<S(KT))/2
195 S(T0,J1+I)=(S(T1,I+J)+C(T1,K)*KS(KT)+S(T1,K)*KC(KT))/2
196 NEXT I:NEXT J
197 IF T0=0 THEN T0=1:T1=0:GOTO 199
198 T0=0:T1=1
199 NEXT M

Figure 8.16 - Complete FFT routine

FFT/08 149

be compressed into a single stage, which will be repeated as many times
as necessary to perform the complete transform (Fig 8.16). We do this by
nesting the previous routine (Fig. 8.15) inside an "M loop," where M
counts the stages of computation. This loop sets the value of QT (partial
DFT size) and KTl (skip index for twiddle factors) at the beginning of
each pass. M counts up from 0 to N-1 (i.e. the number of stages that must
be executed), and QT may be calculated simply by figuring 2AM (i.e. 2m),
which obviously starts at 1 and doubles for each pass through the loop.
KTl is calculated by finding the value of 2A((N-1)-M), which starts at
2A(N-1) [i.e. 2(41) = 8 for the 16 point FFT of this chapter] and then
halves at each stage until it becomes 1 (i.e. the final pass through the
loop).

We have inserted our toggle (TO and Tl) to select the input and
output sides of the data array. At the end of the "M loop" (lines 197 and
198) we reverse these values to switch the input and output registers.

To use this routine in the program presented at the beginning of
this chapter (see below, Fig. 8.17) we must make a few changes. In line

10 REM *** (FFT8.02) Q=2AN POINT FFT ***
12 PRINT "INPUT NUMBER OF DATA POINTS AS 2AN"
14 INPUT "N = ";N
16 Q=2AN
20 Q2=Q/2:Q3=Q2-1:Q4=Q/4:Q5=Q4-1:Q8=Q/8
22 DIM Y(Q),C(2,Q),S(2,Q),KC(Q),KS(Q)
30 PI=3.141592653589793#:P2=2*PI:K1=P2/Q
32 FOR 1=0 TO Q:KC(I)=C0S(K1*I):ICS(I)=SIN(K1*I):NEXT
40 CLS
50 PRINT SPC(30);"MAIN MENU":PRINT:PRINT
60 PRINT SPC(5);"1 = ANALYZE Q/2 COMPONENT TRIANGLE":PRINT
64 PRINT SPC(5);"2 = EXIT":PRINT
70 PRINT SPC(10);"MAKE SELECTION :";
80 A$=INKEY$:IF A$ = "" THEN 80
90 A=VAL(A$):ON A GOSUB 600,990
95 GOTO 40
100 REM *** FFT ***
102 CLS:PRINT "FREQ F(COS) F(SIN) ";
105 PRINT "FREQ F(COS) F(SIN)":PRINT:PRINT
106 T9=TIMER
181 REM *** FFT ROUTINE ***
182 FOR M=0 TO N-1:QT=2AM:KT1=2A(N-M-1)

150 Understanding the FFT

183 REM *** "UNIVERSAL" BUTTERFLY ***
184 FOR J=0 TO Q3 STEP QT: J1=2*J :K9=J+Q2
185 FOR 1=0 TO QT-1:KT=I*KT1:K=K9+l
187 C(T0,J1+I)=(C(T1,I+J)+C(T1,K)*KC(KT)-S(T1,K)*KS(KT))/2
188 S(T0,J1 + I)=(S(T1,I+J)+C(T1,K)*KS(KT)+S(T1,K)*KC(ICT))/2
190 NEXT I
191 J1 = J1+QT
192 FOR 1=0 TO QT-1:KT=(I+QT)*KT1:K=K9+I
194 C(T0,J1+I)=(C(T1,I+J)+C(T1,K)*KC(KT)-S(T1,K)*KS(KT))/2
195 S(T0,J1+I)=(S(T1,I+J)+C(T1,K)*KS(KT)+S(T1,K)*KC(KT))/2
196 NEXT I:NEXT J
197 IF T0=0 THEN T0=1:T1=0:GOTO 199
198 T0=0:T1=1
199 NEXT M
200 T9=TIMER-T9
210 FOR Z=0 TO Q2-1
215 GOSUB 300
220 NEXT Z
222 PRINT:PRINT "TIME =";T9
225 PRINT:PRINT:INPUT "C/R TO CONTINUE:";A$
230 RETURN
300 PRINT USING "###»;Z;:PRINT " ";
310 PRINT USING "+##.#####";C(T1,Z);:PRINT " ";
312 PRINT USING "+##.#####";S(T1,Z);:PRINT " ";
320 PRINT USING "###";Z+Q2; :PRINT " ";
322 PRINT USING "+##.#####";C(T1,Z+Q2);:PRINT " ";
324 PRINT USING »+##.#####";S(T1,Z+Q2)
330 RETURN
400 REM GENERATE Q/2 COMPONENT TRIANGLE
410 FOR 1=0 TO Q:C(0,I)=0:S(0,I)=0
420 FOR J=1 TO Q/2 STEP 2:C(0,I)=C(0,I)+COS(K1*J*I)/(J*J):NEXT
430 NEXT
440 RETURN
600 REM * Q/2 COMPONENT TRIANGLE *
602 CLS:PRINT:PRINT
604 PRINT "PREPARING DATA INPUT - PLEASE WAIT!"
610 GOSUB 400
612 T0=1:T1=0
614 PRINT:INPUT "DATA READY - C/R TO CONTINUE";A$
620 GOSUB 100
630 RETURN
990 STOP

Fig. 8.17 - Listing for FFT8.02

FFT/08 151

420 we now input the test function data to the 0 side of the C(0,Q)
array, and set the S(0,Q) side to zero. To print the results out, we
must determine which side of the array was used to receive the last
pass through the loop. This is determined automatically, since the
output is always placed in the side that TO is set to; however, we
toggle TO one last time as we exit the final pass through the loop,
and consequently we will print the side indicated by Tl.

We can now arbitrarily select the number of data points that
we wish to handle in our FFT, and we allow the selection of N at
the beginning of the program before we dimension the arrays. We
do this in lines 12 through 16 and the job is finished. The
complete program is shown above in Fig 8.17. Type it into your
computer and try it. If the program works, and you understand it
all, it's okay to feel a little pride (it's justifiable). In fact, you
deserve a break—perhaps even a beer and pizza. Unfortunately,
that's out of the question. We still have unfinished business—
another "mile to go before we sleep" so to speak.

8.5 THE INVERSE FFT

We already have the inverse FFT of course—it's the same
algorithm we just developed (see chapter 4). We need only make
a change in "scale factors", and some minor changes in program
control. Let's talk about the scale factor first.

When we take the forward transform we must multiply
through by a unit amplitude sinusoid, sum up all the products, and
then divide by the number of terms to find the average value of the
resultant. When we reconstruct the time domain function however,
we only need to sum up all of the points from the individual
sinusoids—no averaging is involved. Consequently, if we use the

152 Understanding the FFT

identical routine for both the forward and reverse transforms, there
will be a scale factor error of Q in one or the other. To correct for
this discrepancy we must introduce a scale factor term into the
routine. We can set this term to either Q or 1.0, effectively scaling
the results for a forward or inverse transform.

In the actual butterflies of the program we have just
presented (Fig 8.17, lines 187, 188, 194 and 195), the right hand
sides of these equations are all divided by 2. This division by 2 for
M stages of computation achieves the scale factor requirement (i.e.
Q) for the forward transform, but is the culprit that introduces an
error into the results of an inverse transform. If we replace the "2"
in these equations with a variable "SKI", we may set SKI to 2
when doing the forward transform and to 1 when doing the
inverse. The changes required will be:

187 C(T0,J1 + I)=(C(T1,I+J)+C(T1,K)*KC(ICT)-S(T1,K)*KS(KT))/SK1
188 S(T0,J1+I)=(S(T1,I+J)+C(T1,K)*KS(KT)+S(T1,K)*KC(KT))/SK1

194 C(T0,J1 + I)=(C(T1fI+J)+C(T1,K)*KC(KT)-S(T1,K)*KS(ICT))/SK1
195 S(T0,J1 + I)=(S(T1,1+J)+C(T1,K)*KS(KT)+S(T1,K)*KC(ICT))/SK1

and at line 612 we set SKI = 2 when we set the TO and Tl flags:

612 T0=1:T1=0:SK1=2

This takes care of the forward transform. To achieve the inverse
transform we must make the following changes to the "MAIN
MENU":

10 REM *** (FFT8.10A) FFT/INV FFT ***

62 PRINT SPC(5);"2 = INVERSE TRANSFORM":PRI NT
64 PRINT SPC(5);"3 = EXIT":PRINT
90 A=VAL(A$):0N A GOSUB 600,700,990

FFT/08 153

Then, at line 700, we write the inverse transform routine.

700 REM *** INVERSE TRANSFORM ***
710 SK1 = 1
712 CLS:PRINT "TIME AMPLITUDE NOT USED ";
714 PRINT "TIME AMPLITUDE NOT USED":PRINT:PRINT
720 GOSUB 106
730 RETURN

We set SKI to 1 (line 710) thereby removing the forward
transform scale factor, and print a new heading for the output data.
Having done this we GOSUB to line 106 of the FFT routine.
When we return the inverse FFT will have been completed.

Put these changes into the program developed previously
and run the forward and inverse transform for N=4. Then compare
the results to those obtained in the previous chapters.

Okay, you've earned that break now.

A UTHOR 'S CLOSING REMARKS

As is always true, when you completely understand a presenta
tion, you will completely understand its limitations. There are a
multitude of shortcomings and places for easy improvement in the
software presented in this chapter... and they will remain there as
challenges—as exercises. If improvements are not immediately
apparent you might want to review chapter 6, or even re-read this
one. That is the advantage (and curse) of writing your own
software—you can always find ways to improve it.

FFT/A1 155

APPENDIX 1.1

BASIC Programming Language

BASIC is simple to use and easy to learn. If you want to
multiply two numbers together, you type:

Y = 2*2 (The * replaces x and must always be used
to indicate multiplication.)

If you want to divide two numbers you type:

Y • 4/2 (The / sign indicates division just as in
algebra.)

To add or subtract you type:

Y = 4 + 2 o r Y = 4 - 2

Nothing could be simpler! [NOTE: Formally, all of the above statements
are written: LET Y = 2*2; LET Y = 4 / 2 ; etc. The LET term is simply
gold plating and usually omitted by experienced programmers. We will
drop it from the start.]

BASIC, of course, is more useful than that. You don't have to
type the actual numbers in, you can type:

Y=A*B: P I = 3 . 1 4 : Y 1 = 2 * P I + A * B : o r AREA = R * R * 3 . 1 4

You can also type:

Y = S I N (3 . 1 4) ; o r Y = C O S (N * P I) ; o r Z=ATN(Y/X)
[ATN=ArcTaNgent]

and, of course, much more. Note that sometimes we use spaces between
the characters and sometimes not. When writing equations the spaces are
optional and BASIC ignores them. This is not true when writing KEY
WORDS such as LET, COS, FOR, THEN, etc., etc. Spaces are required
following KEY WORDS.

156 Understanding the FFT

To "program" in BASIC you simply write down a sequence of
instructions; the computer will perform them one step after the other. All
you have to do is number the lines so the computer will know in what
order to perform the steps:

10 PI = 3.14159265358: E = 2.7182818
20 Y - SIN(E*PI)
3 0 PRINT Y
4 0 END

Note that in line 10 we typed two instructions—all we had to do was
separate them with a colon. In line 30 we introduced a new instruction
PRINT. PRINT Y will cause the value of Y to be displayed on the
screen. Displaying the result of a computation is not automatic—we do
not waste computer time displaying intermediate results. Line 40 tells the
computer to stop running the program—this isn't really necessary in this
case since BASIC would have stopped anyway when it ran out of
instructions. Typing STOP or END is necessary sometimes, and always
a good habit. NOTE: Some versions of BASIC do not require line
numbers, but GWBASIC requires them and we are trying to keep things
simple.

What can we really do with BASIC? Suppose we want to
simulate the input to a hypothetical digital system. Suppose, for example,
the input is normally created by running a sine wave generator into an
A/D converter (A/D = Analog to Digital). The A/D "samples" the sine
wave at regular intervals and presents 16 digitized "words" to the
computer for every cycle of sine wave. How can we simulate this?

10 N=0: PI=3.14159: Kl=PI/8
20 Y=SIN(N)
3 0 PRINT Y
40 N=N+K1
50 GOTO 20

The new instruction, GOTO 20, obviously causes the computer to go back
to line 20 where it continues executing the instructions. There is no END
statement here though—this program never ends. It is an endless "loop",
and that could be a problem...

There are two ways to get out of this "endless loop":

FFT/A1 157

1) change the ending of the routine to this:

50 I F N < 2 * P I THEN 2 0
60 STOP: END

The IF ... THEN statements gives us a great deal of control. It allows the
computer to make decisions. Line 50 now reads: IfN is less than 2 times
PI (i.e. N< 2*PI) THEN go back to line 20. If this condition is not met
the execution simply goes straight ahead to the next instruction which will
stop and end the routine. We could also have written:

50 IF N=> PI-l.14159*1024 THEN 70
60 GOTO 20
70 STOP: END

This routine will run quite a bit longer than the previous one. In line 60
the instruction GOTO is oneword. [Note: You may recognize a potential
problem here. Does the computer multiply before subtracting or does it
perform the sequence as it is written? If you are uncertain, group things
with parentheses ((PI-1.14159)* 1024).]

BASIC is generally pretty flexible in how we use the instruc
tions. The second way to get around the endless loop problem is:

2) change the routine to look like this:

10 PI=3.14159: Kl=PI/8
12 FOR N = 0 TO 2*PI STEP Kl
20 Y=SIN(N)
3 0 PRINT Y
40 NEXT N
50 STOP: END

The FOR statement (line 12) must always be used with a NEXT statement
(line 40)—they come as a pair. This statement is designed specifically for
making loops, and does quite a bit for us: a) It tells the computer that the
following instructions (until it encounters a NEXT statement) are part of
a loop, b) It defines a "loop counter" (variable N in the above example),
c) It gives the starting value for the loop counter (in this case 0). d) It
gives the ending value of the loop counter (2*PI). e) It also gives the
increment by which the loop counter is to increase each time we step
through the loop (STEP Kl). The STEP term is optional and is 1.0 if not
stated otherwise. All in all, this is quite a bit for a single instruction.

158 Understanding the FFT

Line 40 has been changed to a NEXT N statement which tells the
computer to go back to the beginning of the loop (i.e. line 12). The N
following the NEXT is, like LET, unnecessary; but, in this case, it helps
us keep track when we start "nesting" one loop inside of another.

Notice that we sort of slipped the FOR statement in between
lines 10 and 20. GWBASIC is nice about that—you can type in a new
line at any time and BASIC will put it in the correct place for you (you
must specify the line number, of course). If you want to delete a line,
simply type the line number and hit the Enter (Carriage Return) key.

I/O (Input/Output)

The PRINT statement used above is an output command. It
"outputs" something to an "output device" (i.e. the display screen). The
disk drive and printer are other examples of output devices. We also need
to input things to a program occasionally, and this is frequently done from
the keyboard. In BASIC we use the INPUT statement. For example:

INPUT "NUMBER OF TERMS";N

causes the computer to print NUMBER OF TERMS? to the display screen
(as a prompt for the user) and then stop and wait for a number to be typed
into the keyboard. What it is really waiting for is a Carriage Return to be
typed, so when we have typed the desired number we hit the carriage
return to let the computer know we have finished "inputting" the
necessary data. The computer then takes the number that was typed and
assigns it to the variable N. Neat!

That's enough for now. You can read the program in chapter 1.
We will take the time to explain all new instructions as we go along.

[NOTE: There are, of course, a great many instructions,
techniques, and rules that we have not mentioned here. We will cover
what we need as we go along; but, there will be a great deal that we never
mention. Be forewarned that at the beginning you will probably find it
slow going when you read the programs in this book. Don't be discour
aged—very shortly you will be "sight reading" them.]

FFT/A5 159

APPENDIX 5.1

The programs of chapter 5 are based on a single "core" with
specific Execution Control Subroutines used to illustrate the individual
theorems. This is essentially the same program developed in preceding
chapters and, consequently, we will discuss only the modifications here.

4 REM **

6 REM ** (DFT5.00A) GENERATE/ANALYZE WAVEFORM **
8 REM **

10 Q=32
12 PI=3.141592653589793#:P2=2*PI:K1=P2/Q:K2=1/PI
14 DIM C(2.Q),S(2.Q),KC(2,Q).KS(2.Q)
16 CLS:F0R J=0 TO Q:FOR 1=1 TO 2:C(I,J)=0:S(I,J)=0:NEXT:NEXT
20 CLS:REM * MAIN MENU *
22 PRINT:PRINT:PRINT " MAIN MENU":PRINT
24 PRINT " 1 = THEOREM ILLUSTRATION":PRINT
31 PRINT " 2 = EXIT":PRINT:PRINT
32 PRINT SPC(10);"MAKE SELECTION";
34 A$ = INKEY$:IF A$="" THEN 34
36 A=VAL(A$):0N A GOSUB 300,1000
38 GOTO 20
40 CLS:N=1:M=2:K5=Q:K6=-1:GOSUB 108
42 FOR J=0 TO Q:C(2,J)=0:S(2,J)=0:NEXT
44 GOSUB 200: REM - PERFORM DFT
46 GOSUB 140: REM - PRINT OUT FINAL VALUES
48 PRINT:INPUT "C/R TO CONTINUE";A$
50 RETURN
80 CLS:GOSUB 150:REM PRINT HEADING
81 FOR 1=0 TO Q-l:C(1fI)=0:S(1,I)=0:NEXT
82 N=2:M=1:K5=1:K6=1
84 GOSUB 200:REM INVERSE TRANSFORM
86 GOSUB 140:REM PRINT OUTPUT
88 PRINT:INPUT "C/R TO CONTINUE";A$
90 RETURN
100 REM **
101 REM * PROGRAM SUBROUTINES *
102 REM **
104 REM * PRINT COLUMN HEADINGS *
105 REM **
106 REM * FREQUENCY DOMAIN HEADING *
107 REM **
108 PRINT:PRINT :IF COR$="P" THEN 116
109 PRINT "FREQ F(COS) F(SIN) FREQ F(COS) F(SIN)"
110 PRINT
111 RETURN
112 REM **
113 REM * POLAR COORDINATES HEADING *
114 REM **

160 Understanding the FFT

116 PRINT "FREQ F(MAG) F(THETA) FREQ F(MAG) F(THETA)"
118 GOTO 112
137 REM ******************************
138 REM * PRINT OUTPUT *
139 REM ******************************
140 IF COR$="P" AND M=2 THEN GOSUB 170
141 FOR Z=0 TOQ/2-1
142 PRINT USING "## ";Z;
144 PRINT USING "+#*#.#####_ ";C(M,Z),S(M,Z);
145 PRINT USING "##_ ";(Z+Q/2);
146 PRINT USING "+###.#####_ ";C(M,Z+Q/2),SCM,Z+Q/2)
147 NEXT Z
148 RETURN
150 REM **
152 REM * PRINT TIME DOMAIN COLUMN HEADINGS *
153 REM **
154 PRINT
156 PRINT • RECONSTRUCTION":PRINT
158 PRINT " T T":PRINT
160 RETURN
169 REM ***
170 REM * CONVERT FROM RECTANGULAR TO POLAR COORDINATES *

172 FOR I=0T0Q-1
174 MAG=SQR(C(M,ir2+S(M,ir2)
175 IF C(M.I)=0THEN 190
176 ANGLE =180/PI*ATN(S(M.I)/C(M.D)
177 IF C(M.I)>0 THEN S(M,I)=ANGLE:G0T0 180
178 IF ANGLE>0 THEN S(M,I)=ANGLE-180
179 IF ANGLE<0 THEN S(M,I)=ANGLE+180
180 C(M.I)=MAG:NEXT
182 RETURN
190 IF S(M,I)=0 THEN 180
192 S(M,I)=90:G0T0 180
200 REM *******************************
202 REM * TRANSFORM/RECONSTRUCT *
204 REM *******************************
206 FOR J=0 TO Q-1:REM SOLVE EQNS FOR EACH FREQUENCY
208 FOR 1=0 TO Q-1:REM MULTIPLY AND SUM EACH POINT
210 C(M,J)=C(M,J)+C(N,I)*COS(J*I*K1)+K6*S(N,I)*SIN(J*I*K1)
211 S(M,J)=S(M,J)-K6*C(N,I)*SIN(J*I*K1)+S(N,I)*COS(J*I*K1)
212 NEXT I
214 C(M,J)=C(M,J)/K5:S(M,J)=S(MfJ)/K5:REM SCALE RESULTS
216 NEXT J
218 RETURN
220 REM *******************************
222 REM * PLOT FUNCTIONS *
224 REM *******************************
225 SFF=16:SFT=64
226 SCREEN 9,1.1.1:C0L0R 9,1.1:CLS:YF=-1:YT=-1
228 LINE (0,5) - (0,155):LINE (0,160)- (0,310)
230 LINE (0,155) - (600,155):LINE (0,310)-(600,310)

FFT/A5 161

232 GOSUB 266 :REM SET SCALE FACTORS
234 COLOR 15,1,1
236 FOR N=0 TO Q-l :REM PLOT DATA
238 GOSUB 260 :REM CONVERT DATA TO PIXELS
240 LINE (X,Y) - (X,Y):LINE (X.Z)-(X.Z)
242 NEXT N
244 LOCATE 2,10:PRINT "FREQUENCY DOMAIN (MAG)"
246 LOCATE 14,12:PRINT "TIME DOMAIN"
248 LOCATE 24,1
250 INPUT "C/R TO CONTINUE" :A$
252 SCREEN 0.0,0
254 RETURN
256 REM *******************************
257 REM * COMPUTE SCREEN LOCATIONS *
258 REM *******************************
260 Y=SQR(C(2,Nr2+S(2,Nr2):Y=155-(YF*Y)
261 X=N*600/Q:Z=310-(YT*C(1.N))
262 RETURN
264 REM * SET & PRINT SCALE FACTORS *

266 YF=150/SFF:YT=150/SFT:LINE (0,5)-(5,5):LINE (0.80)-(5,80)
268 LINE (0,160)-(5,160):LINE (0.235)-(5.235)
270 LOCATE 1.2:PRINT SFF :LOCATE 6.2:PRINT SFF/2
272 LOCATE 12.2:PRINT SFT:LOCATE 17,2:PRINT SFT/2
274 RETURN

Figure A5.1 - Core Program Listing

In line 10 we now define a variable Q. In a general purpose
program we will need the capability to select the length of the input
function. In this program we provide that capability by defining Q to be
the length of the input data array. In line 12 we define Kl in terms of Q
and in line 14 we dimension all of the data arrays in terms of Q. In line
16 we initialize the primary data arrays by setting up the loop in terms of
Q. This sort of reorienting of the program loops in terms of Q takes place
throughout the program of course.

At line 170 we provide a routine to convert from rectangular to
polar coordinates. This is done by finding the RSS (square root of the
sum of the squares) of the cosine and sine components. The angle is
found as the arctangent of the sine divided by the cosine component (the
answer is converted from radians to degrees). A certain amount of
overhead is required (lines 175 - 179) to determine in which quadrant the
angle lies (BASIC assumes angles are in the first and fourth quadrants—

162 Understanding the FFT

we must make the determination for a true four quadrant system).
Starting at line 220 we provide a routine to plot the two

functions. It may be interesting to review this routine if you have never
plotted anything on the screen before; otherwise, it is hardly worth the
effort, since different versions of BASIC have different methods of
plotting data. In G WBASIC we must select the "screen" we want to work
in (there are several), and the colors to be used for foreground and
background (see line 226). Lines 228 and 230 draw the X-Y coordinates.
We then jump down to line 266 to set the scale factors and print this data
on the screen (this will be different for each illustration). We then return
to line 234 where we change the color of our plotting "foreground" and
begin to plot the functions (lines 236 through 242). When plotting points
on the screen (in G WBASIC) the points are located in a matrix of "pixels"
and the data of the functions plotted must be converted to these coordi
nates. The actual locations depends on the "screen" selected, the comput
er being used, and version of BASIC. If you are using GWBASIC with
any PC/CLONE with VGA, this routine will work fine—otherwise there
may be problems. The data to be plotted is transformed into screen
coordinates in the subroutine at lines 260 - 262.

APPENDIX 5.2

The following routines are presented essentially without comment. They
are the four routines that modify the program of Figure A5.1 above to
perform the demonstrations of the Theorems. They are relatively simple
and should be readable with the help of the remarks.

4 gEM **
6 REM ** (DFT5.01A) GENERATE/ANALYZE WAVEFORM **
24 PRINT " 1 = SIMILARITY THEOREM":PRINT
299 REM *******************************
300 CLS:REM * SIMILARITY THEOREM *
302 REM CLEAR ARRAYS
304 FOR 1=0 TO Q-1 :C(1,1)=0:S(1,1)=0
306 FOR J=1 TO 2:KC(J,I)=0:KS(J,I)=0:NEXT:NEXT
308 CLS:PRINT "WIDTH =";F9:REM DISPLAY CURRENT WIDTH

FFT/A5 163

310 INPUT "WIDTH ";F9 :REM INPUT WIDTH
311 REM CHECK WIDTH LIMITS
312 IF F9>Q/2 THEN PRINT Q/2;" DATA POINTS MAXIMUM":F9=Q/2
314 IF F9<1 THEN PRINT "1 DATA POINTS MINIMUM":F9=1
316 PRINT SPC(13);"SIMILARITY TEST - WIDTH =";F9
317 FOR I=Q/2-F9 TO Q/2+F9:REM GENERATE INPUT FUNCTION
318 C(1,I)=Q*(SIN(PI*(I-(Q/2-F9))/(2*F9)))A2
319 NEXT
320 GOSUB 158:REM PRINT HEADING
322 M=1:GOSUB 140:REM PRINT INPUT FUNCTION
324 PRINT:INPUT "C/R TO CONTINUE";A$
326 GOSUB 40:REM TAKE XFORM
328 GOSUB 220:REM PLOT DATA
330 PRINT "MORE (Y/N)?";
332 A$=INKEY$:IF A$="" THEN 332
334 IF A$="Y" OR A$="y" THEN 304
396 RETURN
1000 STOP

Figure A5.2 - DFT5.01 - Similarity Theorem

4 REM **
6 REM ** (DFT5.02A) GENERATE/ANALYZE WAVEFORM **
24 PRINT " 1 = ADDITION THEOREM":PRINT
299 REM *******************************
300 CLS:REM * ADDITION THEOREM *
301 REM CLEAR DATA ARRAYS
302 FOR 1=0 TO Q-1 :C(1,1)=0:S(1,1)=0
304 FOR J=1 TO 2:KC(J,I)=0:KS(J,I)=0:NEXT:NEXT
308 REM *** GENERATE ADDITION TEST FUNCTION ***
310 PRINT:PRINT SPC(13);"EXPONENTIAL RISING EDGE":PRINT
312 FOR 1=0 TO Q/2-1:C(1,I)=1-EXP(-I/5):NEXT
314 GOSUB 158: REM PRINT HEADING
316 M=1:GOSUB 140: REM PRINT INPUT FUNCTION
318 PRINT:INPUT "C/R TO CONTINUE";A$
320 GOSUB 40: REM TAKE XFORM
322 GOSUB 220: REM PLOT DATA
323 REM SAVE RISING EDGE TRANSFORM
324 FOR I=OTOQ-1:KC(1,I)=C(1,I):KC(2,I)=C(2,I):KS(2,I)=S(2,I):NEXT
326 FOR 1=0 TO Q-1 :C(1,1)=0:NEXT
328 PRINT:PRINT SPC(13);"EXPONENTIAL FALLING EDGE":PRINT
330 K4=1-EXP(-Q/10) :REM SET INITIAL VALUE
332 FOR I=Q/2 TO Q-1 :C(1,1)=K4*EXP(-(I-(Q/2))/5):NEXT
334 GOSUB 158:REM PRINT HEADING
336 M=1: GOSUB 140:REM PRINT INPUT DATA
338 PRINT:INPUT "C/R TO CONTINUE";A$
340 GOSUB 40:REM TRANSFORM DATA

164 Understanding the FFT

341 GOSUB 220:REM PLOT DATA
342 CLS
343 PRINT "SUM XFORMS OF RISING AND FALLING EXPONENTIAL FUNCTIONS"
344 FOR 1=0 TOQ-1:C(2,I)=C(2,I)+KC<2,I):S(2,I)=S<2,I)+KS(2,I):NEXT
345 M=2:PR I NT: GOSUB 108:REM PRINT HEADING
346 GOSUB 140:REM PRINT SUM OF XFORMS
347 PRINT:INPUT "C/R TO CONTINUE";A$
348 CLS:GOSUB 150:REM PRINT HEADING
349 GOSUB 81:REM INVERSE TRANSFORM U/O HEADING
350 GOSUB 220: REM PLOT DATA
351 REM * SUM BOTH RISING AND FALLING TIME DOMAIN FUNCTIONS *
353 PRINT:PRINT SPC(10);"EXPONENTIAL RISING EDGE";
354 FOR 1=0 TO Q/2-1:C(1,I)=1-EXP(-1/5):NEXT
356 PRINT " + EXPONENTIAL FALLING EDGE":PRINT
358 K4=1-EXP(-Q/10) :REM SET INITIAL VALUE
360 FOR I=Q/2 TO Q-1:C<1,I)=K4*EXP(-(I-(Q/2))/5):NEXT
362 GOSUB 158:REM PRINT HEADING
364 M=1: GOSUB 140:REM PRINT INPUT DATA
366 PRINT:INPUT "C/R TO CONTINUE";A$
368 GOSUB 40:REM TRANSFORM DATA
370 GOSUB 220:REM PLOT DATA
372 RETURN

Figure A5.3 - DFT5.02 - Addition Theorem

6 REM ** (DFT5.03A) GENERATE/ANALYZE WAVEFORM **
24 PRINT " 1 = SHIFTING THEOREM":PR I NT
299 REM *******************************
300 CLS:REM * SHIFTING THEOREM *
301 REM *******************************
302 FOR 1=0 TO Q-1:C(1,I)=0:S(1,I)=0
304 FOR J=1 TO 2:KC(J,I)=0:KS(J,I)=0:NEXT:NEXT
305 COR$="P"
308 REM *** GENERATE IMPULSE FUNCTION ***
310 PRINT:PRINT SPC(18);"IMPULSE FUNCTION":PRINT
312 C(1,0)=32
314 GOSUB 158:REM PRINT HEADING
316 M=1:GOSUB 140:REM PRINT INPUT FUNCTION
318 PRINT:INPUT "C/R TO CONTINUE";A$
320 GOSUB 40:REM TAKE XFORM
322 GOSUB 220:REM PLOT DATA
324 FOR 1=0 TO Q-1:C(1,I)=0:S(1,I)=0:NEXT
326 INPUT "AMOUNT OF SHIFT (0-31)";S9
328 C(1,S9)=32
330 GOSUB 158:REM PRINT HEADING
332 M=1:GOSUB 140:REM PRINT INPUT FUNCTION
334 PRINT:INPUT "C/R TO CONTINUE";A$

FFT/A5 165

336 GOSUB 40:REM TAKE XFORM
338 GOSUB 220:REM PLOT DATA
340 PRINT "CONTINUE ILLUSTRATION ? (Y/N)"
342 A$=INKEY$:IF A$="" THEN 342
344 IF A$="Y" OR A$="y" THEN 324
346 RETURN

Figure A5.4 - DFT5.03 - Shifting Theorem

4 REM **
6 REM ** (DFT5.04A) GENERATE/ANALYZE WAVEFORM **
24 PRINT " 1 = STRETCHING THEOREM": PRINT
299 REM *******************************
300 CLS : REM * STRETCHING THEOREM *
301 REM *******************************
302 FOR I = 0 TO Q - 1: CO, I) = 0: S(1, I) = 0
304 FOR J = 1 TO 2: KC(J, I) = 0: KS(J, I) = 0: NEXT: NEXT
305 COR$ = "P": Q = 16: K1 = P2 / Q
306 GOSUB 900
308 REM *** GENERATE "Z1" FUNCTION ***
310 PRINT : PRINT SPC(18); " - Z1 - FUNCTION": PRINT
312 C(1, 0) = 8: C<1, 1) = -8: CO, 2) = 8: CO, 3) = -8
314 GOSUB 158: REM PRINT HEADING
316 M = 1: GOSUB 140: REM PRINT INPUT FUNCTION
318 PRINT : INPUT "C/R TO CONTINUE"; A$
320 GOSUB 40: REM TAKE XFORM
322 GOSUB 220: REM PLOT DATA
324 FOR I = 0 TO Q - 1: CO, I) = 0: SO, I) = 0: NEXT
326 Q = 32: K1 = P2 / Q
328 CO, 0) = 8: CO, 2) = -8: CO, 4) = 8: CO, 6) = -8
330 GOSUB 158: REM PRINT HEADING
332 M = 1: GOSUB 140: REM PRINT INPUT FUNCTION
334 PRINT : INPUT "C/R TO CONTINUE"; A$
336 GOSUB 40: REM TAKE XFORM
338 GOSUB 220: REM PLOT DATA
396 RETURN

Figure A5.5 - DFT5.04 - Stretching Theorem

166 Understanding the FFT

APPENDIX 5.3
PROOF OF THE THEOREMS

In the following proofs the fundamental definition of the Fourier
Transform is taken as:

F(f) f(t) e'^Mt (A5.3.1)

THE SIMILARITY THEOREM

The Similarity theorem states: If F(f) is the Fourier transform of
f(t), then the transform of f(at) will be F(f/a)/1 a | (| a | = magnitude of
a). This follows directly from (A5.3.1) when f(at) is substituted for f(t):

f(at) ei2,tftdt = fJ- f(at) e-i2*(f/aXat)d(at)

F(f/a) (A5.3.2)

Note: Replacement oft with (at) in the exponential term requires that we
replace f with (f/a).

THE ADDITION THEOREM (LINEARITY)

The theorem is: If F(f) and G(f) are the transforms of f(t) and
g(t) respectively then F(f)+G(f) will be the transform of f(t)+g(t). Again,
this results from a direct application of the integral of (A5.3.1):

FFT/A5 167

[f(t)+g(t)]e-i2*ftdt = f(t)e-,2,Iftdt + g(t)e-,2,,ttdt

= F(f) + G(f) (A5.3.3)

THE SHIFTING THEOREM

The theorem is: If F(f) is the transform of f(t), then the

transform of a function which has the form f(t-T,), where T, is a constant,

will have the form e"'2ltfriF(f). We note that, for the functions used in this

book, f(t) = 0 for t < 0 because we have taken the lower limit of the

domain to be t = 0. This remains true even when the function is shifted,

therefore, we may set the lower limit of integration to 0. Substituting (t-

Tl)fortin(A5.3.1):

F(f) f(t-Tl) e
i2,lfl:t-T1) d(t-Tl) (A5.3.4)

Recognizing that the integrand may be written:

fft-Tlt e"
i2,tfi:t"TI) = flt'TD e •i2rtft

-i2nfTl

Then, if we multiply both sides of (A5.3.4) by e"1

'F(f) = f(t-Tl)e,2,Iftdt (A5.3.5)

The right side of (A5.3.5) is, of course, the Fourier transform of the
shifted function f(t-Tl).

168 Understanding the FFT

THE MODULATION THEOREM

We did not illustrate this theorem in the text, but it will be
helpful in understanding the Stretching theorem. The theorem relates to
the practice of multiplying a function f(t) by a sinusoid in a process
generally known as Amplitude Modulation. In radio engineering this
process is known to produce two "half amplitude sidebands" centered on
the "carrier frequency" f0. The theorem is: IfF(f) is the transform of f(t),
then the transform of f(t) cos(27if0t) is Vi F(f-f0) + 'A F(f+f0).

F(f) f(t) Cos(27tf0t) e-2,tftdt

Recognizing that:

Cos(27tf0t) = e'^'+e-12**"
2

(A5.3.6)

F(f)='/2

= Vi

f(t) e ' ^ V ^ d t + 'A f(t) ei2,tfo,e-i2,tftdt

f(t) e-i2*(f-fo)t dt + Vi f(t) e ^ ™ * dt - (A5.3.7)

V2 F(f-f0) + 'A F(f+f0) (A5.3.8)

Note: f >ffor normal operation yielding negative frequencies for (f-fj
implying the "lower sideband" is the complex conjugate of the upper.

THE STRETCHING THEOREM

When we "stretch" a digitized function by placing zeros between
the data points, we are actually performing two operations: We are
expanding the function and we are introducing modulation. The signal
being modulated (i.e. the "carrier") may be represented as a Cos2 function
which produces ones and zeros at the Nyquest frequency fN. Since a
frequency doubling occurs when we square a cosine wave we must use

FFT/A5 169

fN/2 in our equation i.e. Cos2(27ifN/2). Our data samples then occur when
Cos2(2;ifN/2) equals 1 and 0.

The theorem states: when dealing with the DFT, if F(f) is the
transform of f(t), then the transform of f(t)strctch will produce the original
F(f), plus a duplicate copy of F(f), both of which will be half the
amplitude of the original and half the spectrum width.

The transform of the stretched function is represented by:

f f(t/2) Cos2(27t(fN/2)t) ei2,tftdt (A5.3.9)
0

Recognizing that:

Cos2(27t(fN/2)t) = 1 + Cos(27tf„f)
2

(A5.3.9) becomes:

'A ff(t/2)e-i2,tftdt +Y2 [f(t/2)Cos(27tfNt)ei2,lftdt
Jo Jo

The first part, which we will call F,(f), yields F(2f) from Similarity. This
is the compacted spectrum of the original function. The second part, F2(f)
must be modified to put things in terms oft/2:

Recognizing that Cos(27ifNt) = ei2"fl"+ e'12"*"
2

F2(f) = 14 f(t/2) ei4,t(f-fn),/2d(t/2) +V2 f(t/2) e-"'*™)"2 d(t/2)

- 'A F(2(f-fN)) + K F(2(f+fN))

Note that the spectrums of these two functions have both been compressed
just as the spectrum of F,(f) was. To obtain the complete transform we

170 Understanding the FFT

sum F,(f) and F2(f):

f(t)stre,ch ei2,lftdt = KF(2f) + V4F(2(f-fN» + V4F(2(ff^)) - (A5.3.10)
. 0

A few words will help greatly to make sense of this. In a non-
stretched function, the Nyquest frequency divides the two halves of the
spectrum. The spectrum displayed above the Nyquest is comprised of the
negative frequencies in a mirror image of the lower positive frequencies.
In a stretched function the spectrum is compressed (first term of eqn.
A5.3.10) such that the positive frequencies will extend only halfway to
the Nyquest frequency from the bottom, and the negative frequencies will
extend half way from the top of the frequency domain. The last two
terms of A5.3.10 provide spectrums centered about the Nyquest frequency
similar to the "sidebands" of the Modulation Theorem. The overall result
is that the original spectrum is now duplicated.

FFT/A6 171

APPENDIX 6.1

TIME TRIALS PROGRAM LISTING

We don't actually need to write another "core" DFT program, of
course; the one from the previous chapter is as good as any other we
might come up with (perhaps it is even better for our present purposes
since it contains no special provisions to enhance performance). We will
need to make a few changes to DFT5.00A to accomplish our objectives
however, as listed below:

6 REM ** (DFT6.01A) GENERATE/ANALYZE WAVEFORM **

10 Q = 256

24 PRINT " 1 = TIME TRIALS": PRINT

43 TIM9 = TIMER

45 TIM9 • TIMER - TIM9

47 PRINT "TIME WAS "; TIM9; " SECONDS"

In addition to the above changes, we need to write a short routine
which will actually perform the time trials (similar to the routines that
illustrated the theorems of the previous chapter).

300 CLS : REM * TIME TRIALS *
301 Q • 256" REM *******************************
302 FOR I = 0 TO Q - 1: C(1, I) = 0: S O , I) = 0
304 FOR J = 1 TO 2: KC(J, I) = 0: KS(J, I) = 0: NEXT: NEXT
305 COR$ = "P"
306 GOSUB 900
310 INPUT "ARRAY SIZE AS POWER OF 2"; Q1
312 Q = 2 A Q1
324 FOR I = 0 TO Q - 1: C O , I) = 0: S O , I) = 0: NEXT
328 C O , 0) = Q
332 M = 1
336 GOSUB 40: REM TAKE XFORM
340 PRINT "CONTINUE ILLUSTRATION ? (Y/N)"

172 Understanding the FFT

342 A$ = INKEYS: IF A$ = "" THEN 342
344 IF A$ <> «N" AND A$ <> "n" THEN 310
346 RETURN
900 CLS : SCREEN 9, 1, 1: COLOR 15, 1: REM TEST DESCRIPTION
902 FOR DACNT = 1 TO 6
904 READ A$: PRINT A$
906 NEXT
908 INPUT "C/R TO CONTINUE"; A$
910 SCREEN 0, C, 0: RETURN
920 DATA " TEST 1"
922 DATA " "
930 DATA "In this routine our sole purpose is to illustrate"
932 DATA "the time required to perform a DFT for various lengths"
934 DATA "of input data arrays."
936 DATA " "
938 DATA " »
1000 STOP

In the above routine we initialize things in lines 301 through 306.
At line 310 we allow selection of the array size (i.e. Q) and then generate
an impulse function for our input (lines 324-328). At line 336 we take the
transform as usual except that now the time just before and after entering
the xform routine are taken (lines 43 and 45 above). The difference
between these two times is then printed at line 47 (after printing out the
transform results). At line 340 the user is given the option of continuing
or terminating the illustration.

FFT/A6 173

APPENDIX 6.2

To incorporate coefficient matrices we must make the following
changes:

10 Q=64
14 DIM C(2,Q),S(2,Q),K(2,QfQ)
325 FOR 1=0 TO Q:F0R J=0 TO Q
326 ARG=K1*I*J:K(1,I,J)=C0S(ARG):K(2,I,J)=SIN(ARG)
327 NEXT J:NEXT I

In lines 325 through 327 we generate all of the sine and cosine
coefficients we will need in the transform, then, at lines 210 and 211:

210 C(H,J)=C(M,J)+C(N,I)*K(1,J,I)+K6*K(2,J,I)*S(N/I)
211 S(M,J)=S(M,J)-K6*C(N/I)*K(2,J,I)+S(N,I)*K(1,J,I)

In lines 210 and 211 we change the transform equations to use this array
of coefficients rather than computing new sine and cosine values each
time through the loop. Also change line 301 to Q=64 and delete line 304.

APPENDIX 6.3

Eliminating the negative frequencies can be accomplished very
simply by changing one line in the transform algorithm:

206 FOR J=0 TO Q/2:REM SOLVE EQNS FOR EACH FREQUENCY

Note that this still includes the Nyquest frequency.

While we are at it we might as well take the time to clean up the
"twiddle factor" generation routine at lines 325 through 327:

325 FOR 1=0 TO Q/2:F0R J=0 TO Q

and we can also cut down the size of the K(N,I,J) data array in the
dimension statement at line 14:

14 DIM C(2,Q),S<2,Q),K(2,Q/2,Q)

174 Understanding the FFT

APPENDIX 7.1

VECTOR ROTATION

A vector may be represented as either a magnitude at some angle
or as rectangular components as shown below in figure A7.1. These
representations are equivalent—one can easily be converted into the other.

R i , a ^

Fig. A7.1 - Polar and Rectangular Vector Representations

Now, it is apparent that, in the polar format (R,,a), we may
rotate this vector through an angle p by simply adding (3 to a; however,
when working in rectangular coordinates, it is not immediately apparent
how to accomplish this rotation. We could convert to the polar format,
add the angle of rotation, and then convert back to rectangular coordinates
but that would be tedious and time consuming.

Actually, it is not difficult to handle rotations in the rectangular
format. Consider the rectangular representation of R, (as shown in Fig.
A7.1 above); we may rotate this whole assemblage of coordinates by the
angle (3 (see Fig. A7.2). The two X,Y components will still add up to the
original vector R,, but now each of these coordinates is a vector itself (X,,
Y, in Fig. A7.2). To solve the problem we have set for ourselves we must
find the components of each of these two vectors along the X and Y axes.

FFT/A7 175

YROT

Fig. A7.2 - Rotated Vector Components

Obviously they have been rotated by an angle (3, so each of their new X,Y
coordinates may be found as:

Y2y = Y, Cos p
X2y = -Y, Sin p

and,
Y2x = X, Sin p
X2x = X, Cos P

Now that we have all of these components aligned along the X and Y axes
we may simply sum them together to find the components of the rotated
vector:

YROT = Y2y + Y2x = Y, Cos p + X, Sin p

and,
XROT = X2x-X2y = X 1 C o s P - Y 1 S i n p

which is the relationship we wanted and the one used in Chapter 7.

FFT/Bibl 177

BIBLIOGRAPHY

If you are not well founded in the calculus there is precious little
available in the literature. If you have a working familiarity with calculus, and
want to continue your study, I recommend the following:

Bracewell, R. N., The Fourier Transform and Its Applications,
McGraw-Hill. This is my personal preference and my most often used reference.
If you become serious about this subject this book will eventually find its way into
your personal library.

Brigham, E. O., The Fast Fourier Transform And Its Applications,
Prentice Hall. This is another standard you will want to become familiar with—
extensive bibliography.

Walker, J. S., Fast Fourier Transform, CRC Press. Some excellent
material—comes with a disk.

There are many other books available and new ones being published
every year, but you should judge the value of these for yourself.

Aside from the above, there are a couple of articles you will probably
want to read or collect:

Special issues of the IEEE Transactions on Audio and Electroacoustics
on the FFT, \fol. AU-15, No. 2, June 1967 and \bl. AU-17, No.2, June 1969.

Bergland, G. D., "A Guided Tour Of The Fast Fourier Transform,"
IEEE Spectrum, \©1. 6, July, 1969.

Cooley, J. W., and J. W. Tukey, "An Algorithm For The Machine
Calculation Of Complex Fourier Series," Mathematics of Computation, Vol. 19,
April, 1965. This, of course, was the article that "lit the torch!"

FFT/Indx 179

A/D conversion, 156
Addition Theorem, 89-94,115,116,
163-164,166-167
Aliasing, 66
Array31,33-35,52,54,56,70,73,74,
98,103,104,105-106,108,114-117,
134-135,140-144

BASIC, ix,l 1,105,155-158
Bernoulli, D., 25
Bit Reversal, 141
Bracewell, R.N., 26
Butterfly, 117,123-124,127,136-
137,138-140,145-147

Coefficient, 28,30,105,108-111
Coefficient matrix, 105-106,108-
112,113,114,174
Complex conjugate, 61,64,106,168
Complex numbers, 72,73,79,80,
110-112,138
Complex operation, 113
Convergence, 8,10,23,30
Cooley-Tukey algorithm, 131

DC Component, 58,64,119
DFT, 10,21-25,3-39,50,51-61,72,
74,96,103,104,105,106,113-114,
134-137
Discrete Fourier Transform, 134,
(see DFT)

Execution time, 24,103-112,171-
173

Fast Fourier Transform, (see FFT)
FFT,23-25,31,83,111,113-130,
131-154

Fourier, J.B.J., 26
Fourier Series, 3-4,7-10,23,27-31
Frequency Domain, 16-23,28,73,
84,85,90,91,98,109,138
Functions, 1-7,10,22-23,31,33-
36,38,39,41-50,72-73,115
Fundamental, 7-8,12,13,18,20,56,
57,61,64

GWBASIC, 105,156

Harmonics, 7-8,18,20,33,40,50,60,
64,66,108
H6rivel, J., 26

Impulse function, 94-95
Inverse DFT, 23,68-79,90,107
Inverse FFT, 152-154

Linearity property, 89,166-167

Magnitude, 40,41,85,94,96,166,175
Maclaurin series, 3
Matrix algebra, 109-110
Modulation theorem, 168

Negative frequency, 61,62,64,66,
67,70,96,106,168,170,174
Nyquest Frequency, 51,56,61,63,
64,67,70,91,96,117,124-125,127,
128,138,168,170
Nyquest Sampling Theorem,

Orthogonality, 31,40-49

Phase shift, 96,116-7,120,125,128,
137-140

180 Understanding the FFT

Random Data, 62,63
Real number data, 73,80,106,107
Real Time FFT, 112
Reconstruction, 67-71,74,91,101

Sampled Data, 108,156,169
Sawtooth function, 13
Shifting Theorem, 94-97,116-117,
164,167
Similarity Theorem, 83-89,162-
163,166,169
Spectrum, 14,16,17,20,61,66,80,
112,116,169-170
Step function
Stretching Theorem, 97-102,115-
116,165,168-170

Taylor Series, 3,7,21,22,23,24
Triangle waveform, 52,55,56,64-
66,80
Twiddle factors, 108-111,147,148

Unit Sinusoid, 31,34,37-39,153
Unit Step Function,
Unit Square Wave, 5,6,10

Vector, 40-44,120,175-176

Walker, J.S., 80
Waveform, 7,18,19-21,32,34,40,50,
60,62,99

ERRATA

Page 10, section 1.05 DISCRETE DATA, 4th line from bottom:

"representing continuous functions. If, on the other hand, we are careless,
the relationship of the discrete function to what we suppose to be the
underlying continuous curve may be completely unfounded (perhaps we can
discuss such things in another book).

Page 31, COMMENTARY, last paragraph:

In addition to these comments, the DFT deals with arrays cf
discrete, digital data. There are no smooth, continuous curves in a
computer."

Page 106, section 6.4 OMITTING THE NEGATIVE FREQUENCIES,
1st para.:

As we noted back in chapter 3,when the input is limited to real
numbers, we do not need to compute the negative frequencies—they are
only the complex conjugates of the real frequencies."

Page 130, last paragraph, first sentence.:

Based on our benchmark of 1/tsec per operation, it would take
approximately 0.022 seconds to transform the 2048 data point array we
discussed in the "audio" example at the end of chapter 6—that's 0.044
seconds for transform and reconstruction."

Page 151, section 8.5 THE INVERSE TRANSFORM 1st para.:

We already have the inverse FFT of course—it's the same
algorithm we just developed (see chapter 4). We need only make
forward/inverse scale factor and sign changes, and minor changes in
program control."

Page 152, 2nd para., 6th line:

If we replace the "2" in these equations with a variable "SKI",
we may set SKI to 2 when doing the forward transform and to 1 when
doing the inverse. For the sign change we simply introduce the variable
K6:
187 C(T0,J1+I)=(C<T1,I+J)+C(T1fK)*KC(KT)-K6*S(T1,K)*KS(KT))/SK1
188 S(T0,J1 + I)=(S(T1,I+J)+IC6*C(T1,K)*ICS(KT)+S(T1,K)*KC(KT))/SK1

194 C(T0,J1+I)=(C(T1,I+J)+C(T1,K)*KC(KT)-K6*S(T1,K)*KS(KT))/S<1
195 S(T0,J1+I)=(S(T1,I+J)+K6*C(T1,K)*KS(<T)+S(T1,K)*KC(KT))/SK1

at line 612 we set SKI = 2 and K6 to positive 1 when we set the T0/T1
flags:

612 T0=1:T1=0:SK1=2:K6=1

Page 153, top of page:

Then, at line 700, we write the inverse transform routine.

700 REM * * * INVERSE TRANSFORM * * *
770 SK1 = 1:K6 = -1
712 CLS:PRINT "TIME AMPLITUDE NOT USED ";
714 PRINT "TIME AMPLITUDE NOT USED":PR I NT:PR INT
720 GOSUB 106
730 RETURN

We set SKI to 1 (line 710) thereby removing the forward
transform scale factor, K6 to -1, and print a new heading for the output
data."

